
Proceedings of the

WESTERN JOINT COMPUTER CONFERENCE

February 26-28. 1957 Los Angeles. Calif.

Sponsors:
THE INSTITUTE OF RADIO ENGINEERS

Professional Group on Electronic Computers

THE AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS
Committee on Computing Devices

THE ASSOCIATIOf\! FOR COMPUTING MACHINERY

Printed in the United States of America Price $4.00

PROCEEDINGS OF THE
WESTERN JOINT COMPUTER CONFERENCE

PAPERS PRESENTED AT
THE JOINT IRE-AIEE-ACM COMPUTER CONFERENCE

LOS ANGELES. CALIF.. FEBRUARY 26-28. 1957

Sponsors
THE INSTITUTE OF RADIO ENGINEERS

Professional Group on Electronic Computers
THE AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS

Committee on Computing Devices
THE ASSOCIATION FOR COMPUTING MACHINERY

Publ'ished by
The Institute of Radio Engineers

1 East 79th Street. New York 21. N. Y.
for the

Joint Computer Committee

ADDITIONAL COPIES

Additional copies may be purchased from the following spon
soring societies at $4.00 per copy. Checks should be made pay
able to anyone of the following societies:

INSTITUTE OF RADIO ENGINEERS
1 East 79th Street, New York 21, N. Y.

AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS
33 West 39th Street, New York 18, N. Y.

ASSOCIATION FOR COMPUTING MACHINERY
2 East 63rd Street, New York 21, N. Y.

Copyright © 1957

THE INSTITUTE OF RADIO ENGINEERS

LIST OF EXHIBITORS

ALADDIN RADIO INDUSTRIES, INC
AMP, INC .. .
AUTONETICS .. .
BENDIX COMPUTER DIVISION ... "
BERKELEY DIVISION OF BECKMAN INSTRUMENTS

INC .. .
C. P. CLARE & CO
COLEMAN ENGINEERING CO., INC
COMPUTER CONTROL CO., INC
ELECTRODATA DIVISION OF BURROUGHS CORP
ELECTRONIC ASSOCIATES
ELECTRONIC ENGINEERING CO. OF CALIF
ENCYCLOPEDIA BRITANNICA

Los Angeles, Calif.
Harrisburg, Pa.
Downey, Calif.
Los Angeles, Calif.

Richmond, Calif
Chicago, Ill.
Los Angeles, Calif.
Wellesley, Calif.
Pasadena, Calif.
Long Branch, N. J.
Los Angeles, Calif.
Los Angeles, Calif.

ENGINEERED ELECTRONICS CO...... Santa Ana, Calif.
FERRANTI ELECTRIC, INC............................. Brooklyn, N. Y.
FRIDEN CALCULATING MACHINE CO., INC........... San Leandro, Calif.
G. M. GIANNINI & CO., INC............................ Monrovia, Calif.
HUGHES AIRCRAFT CO < Culver City, Calif.
INTERNATIONAL BUSINESS MACHINES CORP.. New York, N. Y.
LIBRASCOPE, INC
F. L. MOSELEY CO
G. E. MOXON SALES
NORDEN-KETAY CORP
PERLMUTH INSTRUMENTS ENTERPRISES
RAMO-WOOLDRIDGE CORP
J. B. REA COMPANY, INC
REMINGTON-RAND
T. LOUIS SNITZER CO
SOROBAN ENGINEERING, INC
SPRAGUE ELECTRIC CO
STROMBERG CARLSON
TELEMETER MAGNETICS, INC
UNDERWOOD CORP
JOHN WILEY AND SONS, INC

Glendale, Calif.
Pasadena, Calif.
San Mateo, Calif.
Gardena, Calif.
Los Angeles, Calif.
Los Angeles, Calif.
Santa Monica, Calif.
New York, N. Y.
Los Angeles, Calif.
Melbourne, Fla.
North Adams, Mass.
San Diego, Calif.
Los Angeles, Calif.
Long Island City, N. Y.
New York, N. Y.

NATIONAL JOINT COMPUTER COMMITTEE

Chairman
M. M. Astrahan
International Business Machines Corp.
San Jose, California

IRE Representatives

D. Haagens
Underwood Corporation
Long Island City, New York

L. Nofrey
Marchant Research, Inc.
Oakland, California

N. H. Taylor
M.LT. Lincoln Laboratories
Lexington, MassachusettG

W. S. Speer
Norden-Ketay Corporation
Gardena, California

Vice-Chairman

N. H. Taylor
M.LT. Lincoln Laboratories
Lexington, Massachusetts

AlEE Representatives

J. G. Brainerd
University of Pennsylvania
Philadelphia, Pennsylvania

D. C. Ross
International Business Machines Corp.
Poughkeepsie, N ew York

F. Kalbach
Burroughs Corporation
Pasadena, California

H. F. Mitchell, Jr.
Sperry Rand Corporation
Los Angeles, California

ACM Representatives

S. Fernbach
University of California
Berkeley, California

G. W. King
International Telemeter Corp.
Los Angeles, California

A. Perlis
Carnegie Tech.
Pi ttsburgh, Pennsylvania

F. M. Verzuh
Massachusetts Institute of Technology
Ca.mbridge, Massachusetts

Ex Officio Representatives

J. W. Carr III (ACM)
University of Michigan
Ann Arbor, Michigan

L. G. Cumming

J. Noe (IRE-PGEC)
Stanlord Research Institute
Menlo Park, California

E. L. Harder (AlEE)
Westinghouse Electric Corp.
East Pittsburgh, Pennsylvania

Headquarters Representatives

J. Moshman
The Institute of Radio Engineers
New York, New York

Bell Telephone Laboratories
Murray Hill, New Jersey

R. S. Gardner
American Institute of Electrical Engineers
New York, New York

WESTERN JOINT COMPUTER CONFERENCE COMMITTEE

Chairman.,. J. L. Barnes, Systems Laboratories Corp.

Associate Chairman. .. W. F. Gunning, Beckman Instruments, Inc.

Secretary. W. S. Speer, Norden-Ketay Corp.

Publication Committee, Chairman.

Finance Committee, Chairman

Technical Program Committee

Chairman

Applications Paper Review.

Digital Paper Review.

Analog Paper Review

Local Arrangements Committee

Chairman

Printing, Sub- Chairman.

Registration
Hotel Arrangements, Sub-Chairman ,

G. W. King, International Telemeter Corp.

W. H. Ware, The RAND Corp.

T. O. Ellis, The RAND Corp.

K. W. Uncapher, The RAND Corp.

L. G. Walters, Aeronutronic Systems, Inc.

M. J. Mendelson, Norden-Ketay Corp.

e. L. Wanlass, Aeronutronic Systems, Inc.

r. Pfeffer, Ramo-Wooldridge Corp.

E. Tomash, Telemeter Magnetics, Inc.

R. Singman, Sperry Rand Corp.

R. Bohrer, Sperry Rand Corp.

A. e. Bellanca, Telemeter Magnetics, Inc.

J. Tupac, The RAND Corp.

J. Seidman, National Cash Register Co.

N. Potter, Douglas Aircraft Company

Exhibits, Sub-Chairman. G. P. West, Ramo-Wooldridge Corp.

D. Weinberg, Ramo-Wooldridge Corp.

E. Ward, Ramo-Wooldridge Corp.

Public Relations, Sub-Chairman. S. D. Wanlass, Aeronutronic Systems, Inc.

R. Rodriques, Aeronutronic Systems, Inc.

Trips. J. F. Donan, Clary Corporation

Women's Activities. V. Clark, Systems Laboratories Corp.

Computer Mailing List, Sub-Chairman. W. A. Farrand, North American Aviation, Inc.

L. Kilpatrick, North American Aviation, Inc.

r. Marshall, North American Aviation, Inc.

MEMORIAL TO JOHN VON NEUMANN

The 1957 Western Joint Computer Conference herewith honors the memory of Dr. John
Von Neumann. One of the world's greatest mathematicians in our age, Johnny, as we ad
miringly called him, made many basic contributions to both the theory and practice of elec
tronic digital computers. While we are sad when we think of the tragic loss from his early
death, we recall with much pleasure the brilliant and beautiful example which he set us in
his work. Let us emulate his humble behavior, his clear logic, and his deep penetration as we
carryon the important work on automatic computation.

FOREWORD

For a number of years the East and West Coasts have been the setting for Joint Computer
Conferences, sponsored by the Institute of Radio Engineers, the American Institute of Elec
trical Engineers, and the Association for Computing Machinery, where designers, users, and
other interested personnel exchange information on electronic computing equipment. As in
the past, a balance between analog and digital computing techniques is maintained. The
theme this year is

"Techniques for Reliability."
JOHN L. BARNES

Conference Chairman

8 1957 WESTERN COMPUTER PROCEEDINGS

TABLE OF CONTENTS

Introductory Remarks .. Edward P. Coleman 9

Keynote Address-Techniques for Reliability in Computers for Weapon Control.James M. Bridges 10

Computers with European Accents. Arthur L. Samuel 14

Reliability from a System Point of View .. . Alexander W. Boldyreff 18

Design of Experiments for Evaluating Reliability .. John Hoffmann 20

Reliability and the Computer ... ' Willis H. Ware 27

A Digital System Simulator ... William E. Smith 31

A New Input-Output Selection System for the Florida Automatic Computer (FLAC) C. F. Summer 37

The IBM 650 RAMAC System Disk Storage Operation ... David Royse 43

The IBM 650 RAMAC Inquiry Station Operation ... Henry A. Reitfort 49

An RCA High-Performance Tape-Transport System S. Baybick and R. E. Montijo, Jr. 52

A Medium-Speed Magnetic Core Memory. Gabriel E. Valenty 57

Millimicrosecond Transistor Current Switching Techniques.......H. S. Yourke and E. J. Slobodzinski 68

The Utilization of Domain-Wall Viscosity in Data-Handling Devices.. Vernon L. Newhouse 73

Reliability in Business Systems , , ... Herbert T. Glantz 81

On Prediction of System Performance from Information on Component Performance Joan R. Rosenblatt 85

Evaluation of Failure Data. Herbert f. Zagor 94

Accuracy Control Systems for Magnetic-Core Memories A. Katz, A. G. Jones, and G. Rezek 105

Design of a Basic Computer Building Block.J. Alman, P. Phipps, and D. Wilson 110

Error Detection in Redundant Systems .. . S. Schneider and D. H. Wagner 115

Analog Logarithmic and Antilogarithmic Circuits Using Switching Transistors A. J. Schiewe and K. Chen 121

High-Speed Digital-to-Analog Conversion by Integration of a Variable-Rate Pulse Train A. Dean Glick 128

A Reliable Method of Drift Stabilization and Error Detection in Large-Scale Analog Computers Everett E. Eddey 133

A New Method of Verifying Analog Computer Problems and Performances , Willard C. Meilander , 138

The Lincoln TX-2 Computer Development ... Wesley A. Clark 143

A Functional Description of the Lincoln TX-2 Computer J. M. Frankovich and H. P. Peterson 146

The Lincoln TX-2 Input-Output System .. " .. James W. Forgie 156

Memory Units in the Lincoln TX-2 : Richard L. Best 160

Transistor Circuitry in the Lincoln TX-2. Kenneth H. Olsen 167

Diagnostic Techniques Improve Reliability. M. Grfms, R. K. Smith, and W. Stadler 172

Error Detection and Error Correction in Real-Time Digital Computers. AnthfJny Ralston 179

The FORTRAN Automatic Coding System J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick,
....................................... . R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, f. Ziller, R. A. Hughes, and R. Nutt 188

The Interpretation and Attainment of Reliability in Industrial Data Systems Bruce K. Smith 198

Accuracy Control in the RCA Bizmac System f. Cohen, J. G. Smith, and A. M. Spielberg 202

Continuous Computer Operational Reliability .. Robert D. Briskman 207

Field Performance of a New Automatic Fault-Locating Means J. F. Scully and L. P. Colangelo 211

The Variable Word and Record Length and the Combined Record Approach on Electronic Data-Processing Systems ... Neal J. Dean 214

Empirical Explorations of the Logic Theory Machine: A Case Study in Heuristic A. Newell, J. C. Shaw, and H. A. Simon 218

Programming the Logic Theory Machine .. A. Ntwell and J. C. Shaw 230

1957 WESTERN COMPUTER PROCEEDINGS 9

Introductory Remarks
EDWARD P. COLEJVIANt

WHAT does reliability mean? I t is not strange to
find that the term "reliability" means many
things to many people. However, we hope to

illuminate a number of these meanings which relate to
the art, science, and industry of computing. Typical of
many definitions in use today is the following:

"Reliability is the probability of a system performing
its purpose adequately for the period of time in
tended under the environmental conditions en
coun tered."

In introducing the subject, one should speak briefly of
some of the past and present trends in reliability. First,
we mention the concept of improvement of reliability
by the detection of unreliability. In order to isolate,
examine, and improve reliability of a system, the reli
ability engineer puts his best efforts on the unreliability
problem. He studies the failures in the system for it is
only through corrective action on failed elements in a
given system that significant improvement can be
made. This technique is an old problem to quality
control engineers, who have worked out many standard
procedures for detecting unreliability based upon the
Shewhart Control Chart and other fundamental con
tributions of the last quarter of a century.

A second concept, which is almost an economic deriva
tive of the first, is that of improvement of reliability by
the prevention of unreliability. Significant advances in
reliability procedures are being made today, many of
which have as their underlying principle the prevention
of unreliability before hardware is put into production.

The placement of emphasis on unreliability appears
to be a negative approach, which is standard practice in
quality control organizations and which uses this so
called negative approach. In the quality control division
of manufacturing industries, parts may be classified as
"defective" or "nondefective." At the end of any such
inspection, the number of defective parts are counted.
If the number of defective parts exceeds a predetermined
allowable number, the production process is halted, and

t Univ. of Calif., Los Angeles, Calif.

it may not be resumed until the assignable cause for
defective products is found and removed. Thus, the
tradition in quality control of "detecting defects" and
"preventing defects" seems to have a continued lon
gevity in modern reliability techniques.

This point suggests what might appear to be a para
dox. As an organization approaches its objective of the
total prevention defects, it would appear to have less
and less work to do in the future and ultimately none at
all. This kind of thinking has manifested itself in indus
trial organizations in many forms. It has caused some
quality administrators to not proceed first directly to
the most important reliability problems. Moreover, it
has caused some to attempt to build beautiful and
permanent procedures for processing unreliability in
formation. One moment of reasoning will show that
reliability engineers are needed most where the going is
most difficult and where reliability is least predictable.
It goes against better nature to leave a beautiful, con
sistent, and predictable process with little or no un
reliability and proceed to one which is ugly, inconsistent,
and unpredictable; but this is the lot of the modern
reliability engineer.

There are many terms being used today in reliability
considera tions. Let us list a few of these:

Physical Terms-Part, item, subassembly, assembly,
and system.

Merit Terms-The term reliability itself as applied to
general effectiveness of system. Reliability in sup
porting equipment and in operations. Minimum
acceptable reliability and mean-time to failure.

Mathematical Terms-Risk, hypothesis, test, random
variable, probability, population parameter, sam
ple, and statistic.

Acceptance and Control Terms-Quality characteristic,
rational subgroup, attributes, variables, process
average quality, sampling plan, sample size, and
operating characteristics function.

We first turn our attention to the fundamental con
cepts of reliability and then to the various details of the
problem.

10 1957 WESTERN COMPUTER PROCEEDINGS

Keynote Address-Techniques for Reliability
In Computers for Weapon Control

JAMES M. BRIDGESt

T HE RAPID advances made in computer develop
ments during the past few years have had a pro
found effect upon the security and economy of the

country and upon all our lives. Today, the influence of
the high-speed, high-capacity computing machine is
being felt throughout our total society: in industry,
commerce, science, education, medicine, and in many
other areas of human existence and progress. The most
significant use of the computer, however, in this era of
international instability, is its vital role in maintaining
our national security.

Because of my association with the Department of
Defense, I am naturally most interested in those com
puter applications which are of the greatest importance
to our defense. I wish I could discuss in detail all the
different ways in which various kinds of computing
machines are being used throughout the military organi
zation. Since that would not be appropriate here, I am
going to limit my remarks to the types of computers
used for the dynamic control of weapons and weapons
systems.

Since the computer is now essential to the effective
performance of all modern weapons and weapons sys
tems, it is obvious that a very high level of reliability is
essen tial. I can assure you that we in the Department of
Defense consider that the theme "Techniques for Re
liability" is completely appropriate for this Joint Com
puter Conference.

I shall begin my discussion by presenting a little more
detail on the widespread usage of computers in weapon
control, together with a few highlights of their develop
mental history. Perhaps I should make it clear at this
point that I use the expression "weapons and weapons
system control" to include all computers involved in
direct control of weapons such as guns, missiles, tor
pedoes, rockets, bombs, or aircraft and those involved
in such functions as tracking, threat evaluation, and
weapon assignment.

Although computing machines have received much
publicity over the past few years, I seriously doubt that
the vital role they have played in the development of
military weapons is generally appreciated.

I t is probably not widely known that the fire of naval
and army artillery was being controlled with computing
devices even before World War I started. I doubt if
many appreciate the fact that the precision and capa
bilities of these weapon control computers have ad
vanced steadily since Hannibal Ford started develop-

t Office of the Assistant Secretary of Defense, Washington, D. C.

ment of his first computer for naval fire control in 1915,
until today practically every offensive or defensive
weapon depends for its effective operation upon one or
more of these computing devices, some very simple and
others even more complex than the largest machines in
commercial use today.

On one end of the size-complexity scale is the tiny
computer that is packed into the nose of a medium
caliber bullet to compute the point in space with respect
to an air target at which detonation should occur. On
the other end of this scale are the huge digital computers
in the ground environment of the air defense system,
which employ tens of thousands of electron tubes and
occupy thousands of square feet of floor space. Between
these two extremes of size and com plexi ty are scores of
different kinds and sizes of computers, each performing
a specific function in the dynamic control of some
weapon or weapons system. Although the performance,
complexity, and packaging requirements of these many
types of control computers differ widely, the need for a
high degree of precision and operating reliability is
common to all.

Until very recently, all these diversified weapon con
trol computers were of the analog type. Although much
development work has been done on digital weapon
control computers, to my knowledge there is no digital
weapon control computer in actual military service
operation.

Because the history of weapon control is truly the
history of analog computer development, it may be of
interest to review very briefly some of the development
highlights. As I mentioned before, the history of the
fire-con trol com pu ter in this country started in 1915
when Hannibal Ford began to develop the first com
puter to control naval surface-to-surface guns. His early
computers, known as "rangekeepers," represented the
first application of precision analog techniques to the
solution of the gun fire-control problem.

At the conclusion of World War I, the need for con
trol of surface guns against aircraft became apparent,
and Ford again pioneered with the development of the
first antiaircraft-gun fire-control system. This system,
completed in 1926, was designed to handle aircraft hav
ing a maximum speed of 95 knots.

The computation in these early analog computers was
performed entirely with mechanical cams, differentials,
multipliers, component solvers, and integrators. With
the exception of the electrical contact-type servos, the
reliability of these mechanical analog computers was
controlled almost entirely by the mechanical designer

Bridges: Keynote Address 11

and the people in the machine shop. Improvements in
the performance of these computers were obtained over
the years through a better mathematical understanding
of the dynamic fire-control problem and more precision
in the design and production of the various mechanical
components. In service, the reliability of these mechani
cal computers was very good.

Just prior to World War II, a basic advance was
made in analog computer technology-the introduction
of the electrical-electronic computer. These computers
used electrical components such as shaped potentiome
ters, electrical resolvers and synchros, and the servo
mechanisms were electrically driven with vacuum-tube
amplifiers. This new concept resulted in the more rapid
solution of the fire-control problem and some reduction
in size, weight, and manufacturing cost. Unfortunately,
these computers were much less reliable than their
mechanical predecessors, primariry because of the poor
reliability of the amplifiers. The reasons for this are
clear now, although they were not at that time. The
problem was twofold. First, the amplifiers were de
signed by engineers with little background of experience
in the design of electron-tube devices and, second, the
pressure of war and the rapid changes in requirements
did not permit redesign to improve reliability before
attempting production. Some of these computers, ex
tremely promising in concept and basic performance,
never reached service use because their electronic ampli
fiers were so unreliable. I might add that even more de
velopmental failures in fire-control computers occurred
during World War II because of a reverse situation in
which experienced electronics companies tried to design
fire-control systems without the necessary background
in the basic fire-control problem. The lessons learned
were very expensive, but they helped to establish one
of the fundamental principles of the modern reliability
concept. We know now that to develop a satisfactory
and reliable military device requires a thorough under
standing of the operational area involved as well as ex
perience in the design techniques employed.

After the basic electrical analog principles were first
developed, improvements in analog computers for
weapon control carne about largely through improved
reliability, reduced size, and increased precision of the
computing components and, most significantly, as a re
sult of a more sophisticated and scientific understanding
and treatment of servomechanism design.

World War II and its forced-draft research and de
velopment effort, together with the development of fire
control radar and more advanced weapons, pushed com
puter development forward rapidly. Before the war was
over, the control of guns, aircraft, bombs, torpedoes,
mines, rockets, and even guided missiles was being ac
complished with the aid of analog computers.

Near the close of the war, a most significant weapon
control concept was developed-the integrated fire
con trol system. Prior to this development, it was the
practice for military agencies to build up a fire-control

system from various pieces procured separately from
different companies. As the speed and maneuverability
bf targets increased, with a corresponding increase in
the performance and complexity of a weapon control
system, it became necessary to develop the entire system
under one system engineering management. The inte
grated weapon control system, now a more or less uni
formly accepted concept, resulted in improved per
formance and substantial savings in size and weight.
This principle of integrated system design must be given
careful consideration in all future weapon control
developmen ts.

Between World \\7 ar I I and the beginning of the
Korean conflict in 1950, the Military Services embarked
upon a new era of weapon development generally based
upon the kind of war that might be fought in 1960.
Development programs which offered only marginal
improvement in performance over World War II de
vices were discontinued, and emphasis in air defense
was placed on weapons capable of engaging targets of
near-sonic or supersonic velocity in mass saturation at
tacks. Guns gave way to guided missiles; manual con
trol of interceptor aircraft was considered obsolete and
the lethality of nuclear weapons was multiplied many
times over.

Requirements for computers for the dynamic control
of these new warfare concepts advanced rapidly, and a
new kind of computer emerged, one which had the
functions of keeping track of a multiplicity of targets,
evaluating their threat to certain defended areas, assign
ing defensive weapons to individual targets and, in some
cases, controlling the weapons themselves. The success
ful instrumentation of a computer to perform this com
plex of operational functions indicated the desirability
if not the necessity-of going to digital techniques.

This was the beginning of the era of "push-button
warfare," and with it began a rapid transition in engi
neering thinking from analog to digital computers for
weapon control. There was a lot of opposition to this on
the part of many knowledgeable people in the weapon
control field, both in the military and outside, most
strongly pressed by those involved in airborne weapon
control. It was argued that a digital computer of the
size and complexity of the then current general-purpose
machines could not possibly be condensed into a size
and weight that could go into any aircraft. Furthermore,
it was argued, even if by some miracle of engineering it
could be so compressed, such a machine would contain
so many vacuum tubes and other electronic components
that it would be completely unreliable in service. (I
might add that some of these thoughts are still prevalent
among military people.) However, with the promise of
more reliable computer components, such as semi
conductors and magnetic devices, this opposition
gradually softened and a few visionary people through
out the military departments initiated experimental de
velopments of weapon control systems around digital
techniques.

12 1957 WESTERN COMPUTER PROCEEDINGS

Looking at the weapon control picture today, I be
lieve that the change to digital computing techniques is
desirable and inevitable. In view of the rapidly increas
ing complexity of weapons of all kinds, I am convinced
that digital methods offer the greatest promise for solv
ing the control problems. Furthermore, the state of the
electronic component art justifies the development of
digital devices for all new weapon control programs. I
believe that, in the future, analog weapon control will
playa minor role in the support of digital systems.

I doubt that it is fully appreciated in thp weapon con
trol field that the digital computer promises many ad
vantages over the analog device in addition to its
greater performance capabilities. By the very nature of
its instrumentation, the digital computer has far
greater flexibility than an analog device; as a result, a
single basic computer design, with only minor modifica
tions, can be applied to the solution of a number of
different weapon control problems. This capability has
very significant implications with regard to standardiza
tion of uesign, which would result in economy of engi
neering effort, improved reliability, and enhanced pro
d uction and logistic posture.

Another advantage that is of some significance in
these times of steadily increasing cost of national de
fense is the fact that a digital computer is considerably
cheaper to manufacture and will require less skilled
labor. Also, the lead time to get a newly developed
digital computer into production should be much less
than for an analog device.

To substantiate these advantages, I have some com
parative information on an airborne digital computer
which is now entering pilot production as a direct re
placement for an analog computer in an existing
bombing-navigation system. It is estimated that the
quantity production cost of this digital computer will be
about 40 to 50 per cent less than that of the analog com
puter it replaces. Capital equipment required for pro
duction of the digital computer is expected to be reduced
by 70 per cent; the requirement for skilled manufactur
ing labor should be reduced by almost 70 per cent, and
the lead time for new production is expected to be re
duced by 60 to 70 per cent.

These many potential improvements in the digital
weapon control computer are very attractive. But there
is a matter of major concern to many military people
and systems engineers, which could seriously delay the
widespread application of digital computers in weapon
systems; that is the fear that system reliability may be
seriously decreased. The reliability of electronic devices
has not acquired a good reputation among military peo
ple, and they know that digital computers are electronic
eq ui pmen ts.

I also share this concern, not because the reliability
of digital computers cannot be made as good as, or
better than, the best analog device now in service, but
because, in entering this new field of digital technology,
we may not fully use the knowledge of weapon control

systems engineering and equipment reliability which
has been developing in the electronics and weapons sys
tem industry.

The relatively new field of digital computers has been
built up primarily around the requirements of the
general-purpose machine. As in any new and highly
specialized branch of engineering, there is a tendency
here that a tightly bound group of specialists may de
velop, speaking its own language and tending to some
extent to break away from other branches of the elec
tronics industry. This has the effect of decreasing the
interchange of technical experience-a potentially seri
ous deterrent to both the reliability and systems per
formance of digital computers in weapon control
systems.

As weapon and target capabilities have increased, the
basic weapon control problem has changed little. The
problem has become" more complex and the require
ments for solution more exacting, but the fundamental
principles are the same. The only thing we are doing
differently with digital techniques is to solve an old
problem with new mechanization. We can waste a lot
of time and engineering resources in this inevitable
transition from analog to digital computing techniques
if we do not make maximum and continued use of the
weapon control know-how that has been built up in this
country over the past quarter of a century.

We can suffer even greater losses if the proven reli
ability concepts and techniques established through
years of hard work and cooperative effort on the part
of industry and the military departments are not applied
to the fullest extent in the military digital-computer
field. After all, to obtain reliability, the techniques which
must be applied in design, test, manufacture, operation,
and maintenance are no different for a digital computer
than for any other military electronic device of com
parable complexity. Unquestionably, such methods as
self-checking, which can be applied so readily to digital
computers, will greatly assist in service maintenance,
but they will not improve the operational reliability of
a weapon system such as a guided missile or a high
performance interceptor aircraft.

With present techniques and components, I am con
vinced that we can design digital weapon system com
puters which will be more reliable than the best elec
tronic equipment now in service. In a progress report on
reliability of military electronic equipment, given before
the Third National Symposium on Reliability and
Quality Control on January 14, 1957, I used data on a
digital bombing computer as an example of reliability
improvement made over the past year. This kind of
reliability can be achieved, however, only when the
basic design of a device is thoroughly engineered for
reliability and adequately tested before production is
initiated.

Many times in the past two years I have discussed the
basic steps in design, testing, production, procurement,
maintenance, and use that are required to obtain a

Bridges: Keynote Address 13

highly reliable military electronic device. I need not
repeat these in detail here since they have been pub
lished widely in the technical press. But I do want to
emphasize that the reliability of any electronic equip
ment is critically dependent upon the design engineer.
If computer designers do not take into proper account
the engineering principles con trolling reliability, which
are now well known, designs will very likely be unrelia
ble in service, regardless of how sophisticated the logic
may be and in spite of anything that can be done in the
production line or by maintenance. Reliability can be
controlled in manufacture and it can be maintained in
service, but it can be established only by sound basic
engineering in design.

One of the most promising techniques for obtaining
reliability in digital computers appears to be the ex
ploitation of their basic inherent flexibility to develop
standardized designs of system building blocks. The
basic geometry of many weapon control problems is
quite similar and can be solved by proper system group
ing of similar computer elements. Such a standardized
design would make it unnecessary to develop a com
pletely original computer for every new weapon system
project and would permit the use of standard computer
elements of proven reliability-reliability which could
be brought to a very high level through extensive
engineering, testing, reengineering, and continued pro
duction.

It may be argued that such a philosophy would seri
ously impede the advancement of digital computer tech
nology. I do not agree. The real advance of digital com
puters in the weapon control field is going to result from
more sophisticated weapon system engineering, ad
vances in logic and improved component parts, not from
a continued redesign of circuits and packaging.

At any given time, the same component parts are
available to all computer designers-or, at least, they
should be. Once circuits and packaging techniques, de
veloped around these components to perform a particu
lar computer function, have demonstrated a high de
gree of reliability, these circuits and packaging designs
should be standardized and used in all applications to
weapon control computers where an unacceptable com
promise of weapon system performance would not re
sult. Obviously, as new and improved components or
techniques become available, new standardized designs
should be developed around them. These designs, when
proved to be better than those already in existence,
should be adopted immedia tel y.

In summarizing the advantages that can accrue to
the military users from a design standardization pro
gram (some of which I have already mentioned), these
factors are significant. The amount of engineering effort,
cost and time required to develop a new weapon system
would be substantially lessened. Also, the cost of pro
duction could be reduced because larger quantities of
similar items could be manufactured, thus permitting
the utilization of more economical manufacturing proc-

esses such as automatic assembly. Furthermore, the
lead time required to get a newly designed weapon con
trol system in to production would be shorter. Another
advantage to be gained from such a standardization
program would, of course, consist of improvements in
logistics, supply, and service maintenance.

I urge that those who are engaged in the development
of digital computers for military weapons systems give
careful consideration to this challenging problem of
establishing and maintaining design standardization in
this field. I can assure you that my office will make every
effort to assist in bringing such a standardization
philosophy into being as early as possible.

Another important need in connection with reliability
in weapon systems employing digital computers is for
increased emphasis on systems engineering. At present,
digital computers are being developed to work in weap
ons systems in which other major system components
were designed to function with analog computers. The
input and output elements of these systems are analog
and must be converted to operate with a digital com
puter. These conversions are costly in equipment com
plexity and they penalize over-all system reliability.
Much more emphasis is needed on the development of
various weapon system elements specifically designed
to operate in a digital environment so that these costly
conversions will not be necessary.

The last technique for reliability that I will present
is simplicity. This, again, is a reliability axiom which is
not unique to the digital computer field-but I suspect
that it may be more difficult to achieve in this field than
in other areas of military electronics. By careful design
of logic and programming, much can be done to simplify
the computer instrumentation in a weapon control sys
tem. We must have very careful systems engineering to
make certain that we have the simplest system possible
and that some of the solutions in the over-all weapon
control problem cannot be obtained satisfactorily with
less complexity and more reliability by using analog
techniques.

In summarizing I would like to present these pertinent
conc1 usions.

1) Because computers are vital to the operation of
every modern weapon and weapons system, an ex
tremely high level of operational reliability in these de
yices is absolutely mandatory.

2) The trend in weapon control is definitely toward
the digital computer, because of its greater flexibility
and higher accuracy and its advantages of lower cost,
better producibility, shorter lead time, and lower re
quirements for skilled manufacturing labor.

3) The cooperative effort of the military departments
and industry must be directed toward the immediate
goal of standardizing the design of digital computer
functional building blocks for application to weapon
systems.

4) The successful use of digital techniques in weapon
control will depend to a large extent upon the applica-

14 1957 WESTERN COMPUTER PROCEEDINGS

tion of combined experience in weapon control and
digital technology.

5) The techniques for obtaining reliability in a digital
computer are fundamentally the same as for any other
electronic equipment of similar complexity. The princi
ples for obtaining reliability of military electronics
equipment through sound design, testing, and produc
tion controls are now fairly well established and should
be applied to the fullest extent in new computer
designs.

6) Careful attention should be given to systems en
gineering in the development of a weapon system em
ploying digital computers to ensure that all system
components are designed so as to minimize conversion
of information between analog and digital forms.

7) Careful consideration should be given to logical de
sign to obtain optimum simplicity of equipment design.
Analog techniques should be employed for mechanizing
functions where they are best for the purpose.

In closing, I would like to emphasize that they who
are working in this relatively new field of digital com
puters have a great obligation in the defense of the
country.

Many of the computing devices which are being de
signed are absolutely essential to military weapons and
weapons systems, and they will become progressively
more important as the capability and complexity of
these systems continue to advance.

Although the challenge of making these new devices
sufficiently reliable to be acceptable for military applica
tions is great, there is a substantial background of
knowledge and experience in reliability engineering to
draw upon.

I see no reason why these new devices should not be
completely reliable as they first become available to the
using military services. If they are not, the future of
digital computers for the dynamic control of weapons
may be seriously affected.

Computers with European Accents
ARTHUR L. SAMUELt

AS THIS is a luncheon talk, it should contain some n.. humor but there is really nothing very funny
about some of the European computer develop

ments which are offering competition to certain un
named American firms that are trying to peddle their
wares in Europe. One of these competing computers,
known as the GAMMA 3, is manufactured in France by
an organization known as Compagnie des Machines
Bull. Compagnie Bull has some 350 of the GAMMA 3
machines in the field. It is primarily a plugboard ma
chine with 64 single-address instructions and can be com
pared in a general way with the IBM 604, although,
more strictly speaking, it occupies a position inter
mediate between the 604 and the 650, particularly when
an 8000-word drum extension unt is attached. The in
teresting features of this machine are not, however, th~
size, speed, or relative cost, which after all are quite
comparable with American developments, but rather
the extensive use of techniques which have never found
wide acceptance in the United States. This refers
particularly to the use of electromagnetic delay lines as
storage elements, and a number of other techniques, the
use of which has enabled this moderately small organi
zation to compete with organizations many times its
size. This is a virility which belies the all-too-prevalent
impression of French decadence:

t Internat'l Busineef' 1V1achines Corp., Pou\;hkeepsie, N. Y.

The same company has recently announced a com
plete data processing system called the GAMMA 60
which includes a central processing unit with magnetic
corestorage. The peripheral equipment includes magnet
ic drums, magnetic tape units, both card and paper tape
readers and punches, lined printers, etc., all under in
ternal stored program control.

Professor F. C. Williams of Manchester University
has made many contributions to the computing art,
perhaps the most well-known being the cathode-ray

. storage system to which his name is customarily at
tached. He has gathered around him at the University a
small group of very competent men who have made and
are continuing to make substantial contributions. The
main location of the Ferranti Company happens to be in
Manchester, and, as one might expect, a cooperative
arrangement has developed in which Ferranti contributes
to the support of a computer project at the University.
I t profits, in turn, by the developments made there, and
manufactures commercial computers embodying some
of the University's developments. Several machines of a
first design, known as the MARK I, have been made and
are in operation at such diverse places as Toronto,
Canada, and Rome, Italy. This computer was followed
by the MARK I STAR, and more recently the Ferranti
Company has announced a new large-scale computer
known as the Ferranti MERCURY Computer. This is
a high-speed computer, using floating point, with a

Samuel: Computers with European Accents 15

1024-word core memory, a 16,000-word drum, and 7
index registers and is quite comparable with the larger
machines made in this country. A weakness of this, as
well as of nearly all other European computers, is its
dependence on punched paper tape as the primary input
and output medium. This observation may, however,
be biased because no one in the United States appears
to have produced paper-tape equipment equivalent to
that manufactured by the Ferranti Company. Several
MERCURY machines are being constructed at the
present time. One of the first machines is to go to Man
chester University. A second is to go to the Norwegian
Research Institute for Defense; a third will be installed
at a Computing Center now being planned for the
University of London, while Oxford University is get
ting a fourth. Mr. Brian Pollard, who is in charge of this
activity at Ferranti, tells me that they have orders for
17. Altogether, there are some ten different industrial
concerns in Great Britain making computers and they
are reported to have orders for over 84 large computers
on their books at the present time.

During the same symposium, Mr. Bill Elliott covered
up a similar display of the letter "F" on the Ferranti
PEGASUS Computer, or FPC, by saying that it stood
for "Fast." Incidentally, the letter "P" originally stood
for "Package." This was later changed to PEGASUS
when the Ferranti Company waxed poetic and decided
to name all of their computers after stellar constella
tions.

The Ferranti computer FPC I (to differentiate it from
the FPC 3, a commercial version) is an amazingly fast
computer in terms of its ability to get work done, al
though it is basically a small, fairly low-speed machine.
These computers are currently being produced; 30 are
on order, 2 have been delivered to customers, and one
has been installed in a company-operated Computing
Center at 21 Portland Place in London.

Most of the computers of Europe are binary rather
than decimal. For example, the Swedish Board for Com
puting Machinery, after first building a relay computer
called the BARK, later designed and built an electronic
machine called the BESK. As originally built, the BESK
was a 40-bit, parallel, asynchronous computer using
Williams tube storage; in concept, very much like the
Princeton machine.

However, here the resemblance ends. The construc
tion details, the exact circuitry, and all the many dif
ferent features which give a machine its character were
distinctly original. Some of the more original features of
this machine are the use of a dielectric paper tape reader
which operates at 400 characters a second, and an un
usual record for economy in the use of vacuum tubes to
achieve the desired results with, of course, an astound
ing record for reliability. They quote figures like 85 per
cent good time on a three-shift basis.

For years the Swedish Board for Computing Machin
ery has been living on year-by-year appropriations, not
unlike the situation confronting certain government-

supported activities in this country. Possibly for this
reason the situation became critical roughly a year ago
and almost the entire engineering staff left in a body and
joined an industrial organization known as Atvidabergs
Industries. Dr. Havermark tells me that the present
staff consists of 35 members, these being 13 mathema~
ticians, 11 engineers for running and maintenance, 3
keypunch operators, and 8 employees for general ad
ministration. This group at Atvidabergs is now busily
engaged in building a copy of the BESK to be called the
FACIT which will form the nucleus of a second com
puter center in Sweden. This machine is an exact copy
and, consequently, incorporates all of the improvements
which have been made to the original BESK in the last
three years, such as the use of a 1024-word magnetic
core memory. In addition to this work at Atvidabergs,
the BESK is being copied elsewhere in Sweden and in
several different places in Europe. The Svenska Aero
plan AB, known as the SAAB, had, prior to the trouble
at the Board, arranged to build a copy for their own
use to be called SARA. Another, to be known as the
SMIL is under construction at the University of Lund,
although this is a stripped down version without core
storage.

The Danish Academy for Technical Science is plan
ning a copy of the BESK for their Institute of Comput
ing Machinery, which is to be called the DASK. The
Board for Mathematical Machines of the Royal N or
wegian Council for Scientific and Industrial Research
has also been considering a BESK to supplement the
small magnetic drum computer called the NUSSE
which was completed in 1953. However, the most recent
information seems to indicate that the Norwegian
Defense Research Institute is purchasing a Ferranti
MERCURY and this may obviate the need for a BESK.

Over-all developments in Europe are following an
amazingly similar course to that pursued in the United
States, with some striking differences in timing. Many
of the earlier machines were built by schools, others by
government laboratories-perhaps rather more in pro
portion than here-and very few by industry. These
machines were all plagued by difficulties of completion
similar to those experienced in the United States. Re
cently, industrial concerns have been entering the field
in Europe so that there are appearing a number, or are
shortly to appear a surprisingly large number, of dif
ferent machines, some of which are decimal.

Elliott Brothers in Great Britain had early exploited
the possibilities of using nickel delay lines for storage
and had built a computer known as the NICHOLAS
using these lines. As a result of this work, this company
was commissioned by the NRDC (the National Re
search Development Corporation) to build a small
computer. This computer, known as the 401, was unique
at the time, for its use of a limited number of differently
designed package units. After making three copies of
the 401, the Elliott organization has gone ahead with a
more pretentious design for commercial applications

16 1957 WESTERN COMPUTER PROCEEDINGS

which is now being marketed as the 405 series of ma
chines and for which there are said to be a dozen orders.

Having successfully launched the PEGASUS and the
405, the NRDC is now turning its attention to com
mercial data processing assemblies, with the word
"assembly" used advisedly.

I t has contracted elsewhere for the design of an all
transistor-driven core logic and core-store data proc
essing assembly in which the main feature will be a
marshalling yard for information external to the com
puter. The strategic object of this will be to provide a
device to which a number of independent keyboard op
erators can send information in an uncorrelated fashion.
This is still in an early stage.

The main preoccupation of the Manchester Univer
sity group at present is with the input-output facilities
of the computer which, as I have indicated, follow
European rather than American practice. For example,
the Manchester Group has found that a fair proportion
of the results printed by their MARK I computer had
to be subsequently plotted. They are, therefore, building
a cathode-ray plotter which is 80 per cent completed.
This plotter uses a 9-inch tube for visual observation
and a second tube to be photographed by an automatic
camera. Each coordinate of the beam is specified by the
least significant 8 digits of a 10-bit word, thus providing
a 256 X256 array of dots which may be used.

Not content with this unit only, they are also build
ing a roughly 10-inch square electroluminescent matrix
panel which will plot an array of 512 X512 points using
the power law voltage characteristic of the phosphor to
provide the discrimination. They hope to use direct
contact photography for recording.

For high-speed numerical output, they are building
magnetic tape units which operate at a maximum rate
of 1000 characters a second, each character consisting
of five binary digits. The magnetic head actually con
sists of two heads, one for writing and one for reading,
separated by 20 mils, the read head being of the static
reading variety. Characters are recorded on the tape at a
fixed packing density of 50 per inch independent of the
tape speed.

Using this same magnetic reading head, they are also
constructing a tape editing unit entirely transistorized,
with an input power of less than 10 watts, which can be
used at teleprinter speeds of approximately 6.7 charac
ters per second.

Turning to storage devices, the Manchester group has
obtained a magnetic tape drive unit built by the Pye
Company which drives the tape in either direction at a
maximum speed of 100 inches a second. They intend to
use addressed records, each containing 1280 digits, with
the records sequentially addressed and provisions being
made to exclude automatically imperfect regions of the
tape.

This group is also turning to evaporated ferromagnet
ic films as a storage medium and they have built an

i

evaporation unit which has all necessary facilities for
rotating large substrates at elevated temperatures, etc.

The Manchester group attaches a great deal of im
portance to its autocoding system which they expect
will virtually replace direct coding at a maximum ex
pense for the worst possible case of a factor of 2 in
computational speed. They have written a translation
program which they liken to the IBM FORTRAN
system and they are attempting a general program
which will automatically solve any linear second order
partial differential equation by finite difference tech
niques. All in all, this is quite an ambitious program for
a small group at a University, but this is the way things
are done in England.

Professor Wilkes at Cambridge University built the
first modern stored-program computer in England,
known as the EDSAC I. This computer is still in opera
tion after many years of useful service, but its days are
now numbered, since Professor Wilkes and his able
associates are in the midst of building a second com
puter, the EDSAC II. In fact, that portion of EDSAC
II which has been completed has been linked up with
a temporary decoder using an abbreviated order code,
and this is actually operating. Since this is a portion of
the II machine, and since like all machines only 80 per
cent completed, Professor Wilkes, in the true British
tradition of understatement, calls this machine EDSAC
1.5. Professor Wilkes' group has programmed and has in
operation an interpretative routine which will accept
program codes for EDSAC I and will execute them
faster than they can be run on EDSAC I. A problem in
stellar structure is in process on EDSAC 1.5 which is
similar to the problem that Hoyle and Haselgrove have
just been doing on a 704 in Pasadena.

EDSAC II uses the microprogramming technique in
its decoder which came out of the Cambridge work and
has been described in the literature. The computer
employs a rather unique packaging arrangement in
which all of the components for each stage of the arith
metic unit are contained in one pluggable unit. Forty
of these units are used to make up the 40-bit accumula
tor and a substantial number of the same units are used
in various other parts of the machine. In terms of order
complexity and speed, this machine compares favorably
with the better commercial machines. The EDSAC 1.5
will remain in its present form for two or three months
when they will begin to install the EDSAC II control
matrix.

Professor Biermann of Gottingen is an astrophysicist,
and he and his able technical leader, Dr. Heinz Billing,
at the Max Planck Institute, have built a series of
computers known as the Gl, the GI-A, the G2, and now
the G3. The G 1 is a small drum machine and has piled
up an impressive record of 28,000 hours of operation
with 82.3 per cent of this as useful time. The GI-A, a
modernized version of this machine, is ready for its trial
runs. This machine is controlled by photoelectrically

Samuel: Computers with European Accents 17

read paper tape. Their second machine, the G2, has
also been in operation for some time, although it is at the
moment down for a general overhaul. However, the G3
is currently of the greatest interest. This is a parallel
40-bit binary machine with floating point arithmetic,
designed, as were all of the Gottingen machines, for
scientific computing. It will have a core memory for
4096 words and will have adequate indexing features for
automatic address modifications. Incidentally, this ma
chine uses a whole word for each instruction, thus re
versing the previous practice almost universal in Europe
up to now of following the Institute for Advanced
Study's practice of confining each instruction to a half
word. Wired microprogramming is to be extensively
applied in this machine and they are, at the moment,
entirely revising their projected order code in an at
tempt to make it especially efficient for the use of
computer programs.

The l\1ax Planck Institute Computer group in Gottin
gen is shortly to move to Munich. This will make
Munich quite an important center as far as computers
are concerned since one machine, the PERM, con
structed at the Munich Institute of Technology, is
already located in this city.

The PERM, a parallel magnetic drum machine, is a
cooperative venture between the Electrical Engineering
Department under Professor Piloty and the Mathema
tical Department under Professor Sauer, now Chancel
lor of the Institute. This is a fine example of a fast drum
machine which, with some projected improvements,
will become a very good machine indeed. Their drum,
which runs at 15,000 rpm, is extremely quiet. At the
moment they are just recovering from troubles with the
contacts on their pluggable units, these being ordinary
tube sockets which had to be replaced-quite a for
midable task for such a small group.

One other group in Germany deserves special men
tion, this being the Institute for Practical Mathematics
at Darmstadt under Professor Walther. Their machine,
the DERA, a magnetic drum machine operating in
floating decimal, is complete as far as construction is
concerned and is now going through the final debugging
stage. This group has also recently acquired a commer
cial machine of American design but manufactured in
Germany. Work at these three places in Germany has
been supported by the German government. A much
larger number of universities are shortly to get com
puters of commercial manufacture. Some of these will
be of foreign design, some even of foreign manufacture,
but a substantial number of German firms are cur
rently entering the computing field.

The firms of Siemens and Halske in Munich, and
Standard Electric of Stuttgart (actually an affiliate of an
American firm) are reported to be building transistor
ized computers. Two firms of the A.E.G. group, Olym
pia-Werke at Wilhelmhaven, and Telefunken at Back
nang, are developing electronic computers. The firm of

Zuse KG in Hunfeld, after a successful experience in
producing relay machines, is now accepting orders for
their Z-22, an electronic computer, about equal to its
Gl-A.

The ERMETH Computer which was designed at the
Swiss Federal Institute of Technology is also a magnetic
drum machine, decimal with floating point, which is
currently running with a 400-word drum, although
ultimately intended to operate with a 10,000-word drum
which is currently not in operation because of magnetic
head difficulties.

In Holland the Mathematical Center under Dr. van
Wijngaarden and the P.T.T. have done work that is
particularly worthy of mention. At the P.T.T. a group
under Dr. van der Poel has designed a drum computer,
called ZEBRA, based on the principles published by
Dr. van der Poe!. The S.T. & C. organization in England
is building several of these machines: the first one should
be completed during the next few months. Dr. van der
Poel's ideas were quite novel when first proposed, and
have been used in the Zuse machine.

There are some transistorized computers in Europey

such as the all-transistor machine built by E. H. Cooke
Yarborough at Harwell in England. There are perhaps
a half a dozen other places in Europe where transistor
computers are in operation or in an advanced stage of
construction. Most of these are rather small experimental
machines, and almost without exception they are rather
slow by American standards. Transistor production in
Europe has lagged behind that in the United States.
This is particularly true with respect to high-frequency
units, and this lack of transistors has inhibited their
extensive use.

There are many other machines that should be men
tioned, for example, the work done in the government
laboratories in Great Britain, such as the National
Physical Laboratories. Their first attempt, known
originally as the ACE, was used as a basic design for the
machine now being manufactured by the English Elec
tric Company as the DEUCE. Meanwhile, the N.P.L.
is going ahead with a new ACE machine which will be
several times as fast as the DEUCE.

Europe is perhaps behind the United States in com
puter developments and we need fear no immediate
reversal in relative positions. However, there are many
clever people in Europe; they have a tradition in Eng
land of achieving a lot with a little, in Germany of
thoroughness, and in France of mathematical intuition,
to name but three countries. These people are not going
to permit us to continue in undisputed mastery of this
expanding field. We can expect many new ideas to come
from Europe. European accents, this time in computing,
may again be heard in this country. European concerns,
particularly those in England and in Germany, are
known to be looking with envious eyes to the American
market and it may not be long before they are offering
their wares at prices which will be highly compe6tive.

18 1957 WESTERN COMPUTER PROCEEDINGS

Reliability from a System Point of View
ALEXANDER W. BOLDYREFFt

THE DEVELOPMENT of complex electronic and
electromechanical systems during the past fifteen
years has been guided primarily by considerations

of improved performance.
In this development, perhaps the most outstanding

factor has been a systematic effort to minimize human
error by a maximum utilization of automatic or semi
automatic devices.

While the progress in this direction has been truly re
markable, it has been achieved at the expense of ever
increasing com plexi ty and cost. .

A few examples will illustrate this point:

1) Number of vacuum tubes on one destroyer: l

Year Number
of Tubes

1937
1944
1952

60
850

3200

2) A modern mobile search radar for ground defense
is com posed of:

500 vacuum tubes
2000
1500

300

resistors
capacitors
transformers

as a part of a complete itemization of more than
20,000 replacement parts.

3) The Norden bombsight of World War II could be
carried by one man and cost 2500 dollars. The
computing bombsights of today weigh between one
and two thousand pounds and cost more than a
quarter million dollars.

I t is not surprising to find associated with this growth
in complexity an alarming rate of failure of equipment,
and an ever increasing requirement for inspection and
main tenance.

Thus, during World War II more aircraft were lost
due to deterioration than were lost in combat.2 Again,
quoting from World War II experience:3

1) Sixty per cent of the British radars shipped to the
Far East were found defective on arrival. Of the

t The RAND Corp., Santa Monica, CaliL, and Univ. of CaliL,
Los Angeles, Calif.

1 Prog. Rep. on "Reliability of Electronic Equipment," by the
Ad Hoc Group on Reliability of Electronic Equipment for the Com
mittee on Electronics of the Research and Development Board, EL
200/17, vol. 1 and 2; February 18, 1952.

2 D. C. Kennard, discussion of paper by J. M. Frankland on "Cri
teria for Specifications," Res. and Dev. Board, Shock and Vibration
Bull. No. 17, March, 1951.

3 R. R. Carhart, "The General Problem of Reliability in Missile
Systems," The RAND Corp., paper S-4; July 9, 1951.

remaining 40 per cent, arriving in operating con
dition, half deteriorated on the shelf.

2) For a set of U. S. bombsights, 60 per cent failed as
a result of poor packaging and rough handling, 15
per cent failed due to improper maintenance and
overhaul, another 10 per cent of the failures were
attributed to poor design.

The situation is no better today, and acceptable per
formance standards for complex electronic equipment
are possible only at the cost of extensive repair and
maintenance facilities. For military electronics, an esti
mate of the maintenance bill is from ten to one hundred
times the cost of original equipment. Considering the
number and the caliber of technicians required to serv
ice adequately existing electronic equipment, it does not
seem possible that, if the present trends continue, the
training of technicians can keep in step with the de
mands for their services, particularly in the event of
total mobilization.4

The seriousness of the reliability problem has been
thoroughly recognized now for a number of years. A
great deal of work has been done to acquire a better
understanding of this problem. Various methods of im
proving reliability have been advocated during the past
nine or ten years.

It has been pointed out6 that in the case of aircraft,
after nearly ,half a century of experience, suitable re
liability was attained only through redundant design;
so that in case of failure of one component, another
could be substituted in its place. In this way, even
though some kind of failure (requiring emergency serv
ice outside the normal maintenance routine) may occur
in aircraft every seven and a half hours of flying, the
ratio of failure to disaster is ten thousand to one. This
ratio is one to one for the systems which are serial in
nature, such that the failure of anyone component
leads to system failure, as, for example, in the case of
guided missiles.

Considering the complexity of many systems in use
today or in the process of development, it is not sur
prising that a great deal of emphasis has been placed on
the importance of component reliability.s-s

4 G. B. Devey, "Reliability in electronic equipment," PROC. IRE,
vol. 38, pp. 344-345; April, 1950.

(; L. N. Ridenour, "The Philosophy of Guided Missile Design,"
Res. and Dev. Board, Shock and Vibration Bull. No. 18; August,
1951.

6 R. Lusser, "A Study of Methods for Achieving Reliability of
Guided Missiles," USNAMTC Tech. Rep. 75; July 10, 1950.

7 R. Lusser, "General Specifications for the Safety Margins Re
quired for Guided Missile Components," USNAMTC Tech. Rep.
84; July 10, 1951.

8 R. Lusser, "The Statistical Aspects of Reliability," Electronic
Applications Reliability Rev. RETMA, no. 2; 1953.

Boldyreff: Reliability from a System Point of View 19

Particularly noteworthy in this connection are the
ARINC Study, the Signal Corps-Cornell University
Program, the Vitro Study, the Bell Laboratories
Studies, the RETMA, the JETEC, the AGREE, etc. 9

At the same time, a great deal of effort has been and
is being expended on component testing and inspection
before they are employed in complex systems. But while
all this is highly necessary, it may be far from sufficient
to insure sufficiently high reliability of a complex high
performance system.

Let us define reliability as the probability of failure
free operation, for a specified length of time, in a
specified environment.

For a serial system of n components, such that the
failure of anyone component causes system failure, it is
possible to estimate the system reliability in terms of the
(geometric) mean compont'nt reliability.

Consider a system of 500 components. For systems
with reliabilities of 0.70 and 0.95, the mean component
reliabilities are 0.99929 and 0.99Q95, respectively. Thus,
it may be argued that the reliability of a system can be
increased from 0.70 to 0.95 by an improvement in mean
component reliability of only 0.07 per cent. But, of
course, this reasoning is misleading. Component im
provement means decreasing the probability of failure.
In the example under discussion, to improve system re
liability from 0.70 to 0.95, we would have to decrease
the probability of component failure from 0.00071 to
0.00005, and this means that we must eliminate more
than 90 per cent of failures for components which are
already highly reliable. To do this for each of the very
many different components of many complex systems
now in the process of design is patently impossible, even
at a prohibitive cost in time and money.

Let us return to the definition of reliability. To be
operationally significant, this definition must be quanti
tative; i.e., the reliability of various components, or sys
tems, must be represented by a number. For vacuum
tubes, this is frequently expressed in terms of mean life
to failure. Unfortunately, this quantity is not a charac
teristic constant. Thus, a vacuum tube may have a mean
life of 10,000 hours in ground equipment, 2500 hours in
aircraft, and 13 minutes in a missile.

It is, therefore, impossible to speak of the component
reliability without specifying the particular system in
which it is employed, as well as the way in which the
system is going to be used. And this includes the
handling, packing, transportation, and storage, as well
as the operational use. Certainly the rest of the system
constitutes an important, sometimes the most impor
tant, part of the environment in which a given com
ponent must operate.

This brings us to the question of compatibility of
various components and subsystems. To use an exam
ple, are the electromechanical, electronic, and optical

9 "Reliability Factors for Ground El~ctronic Equipment," ed. by
Keith Henney, McGraw-Hill Book CO. t Inc., New York, N. Y.;
1956.

components of the guidance system in a guided missile
compatible with the ram jets or rocket engines of the
propulsion system?

Such questions cannot be answered except by a com
prehensive systems approach; I believe that the problem
of reliability cannot be solved satisfactorily without the
use of systems approach, and this means both system
analysis and system synthesis.

Reliability, after all, is merely one of the parameters
of a given system, the other parameters being perform
ance, complexity, cost, logistic requirements, etc. These
parameters are interdependent. Thus, improved per
formance generally implies greater complexity, lower
reliability, and higher cost.

Let us consider the various steps in a system develop
ment program. These are five in number:

1) Definition of system objectives in terms of per
formance requirements.

2) Research, or investigation of alternate reasonable
means of achieving system objectives.

3) Development, or selection and perfection of the
best means.

4) Prototype test, or verification of performance, and
determination of causes of failures.

5) Design and production, or final choice and manu
facture of well engineered, reliable systems, ca
pableof reliably meeting performance requirements.

Note that the degree of success in any step depends on
the preceding steps.

Thus, the choice of performance requirements will
usually dictate the complexity of the system and the
tolerances of all the com ponen ts. Yet this is often done
in the absence of sufficient factual data or rational anal
ysis and most often done by administrators or execu
tives, who technically are the least competent to make
these decisions. It is my opinion that here is the greatest
source of low reliability, dooming many projects to
ultimate failure. Certainly the most crucial question is
whether the required performance is either actually
necessary, or even technically attainable at a reasonable
cost and in a reasonable length of time. Frequently, this
question cannot be acourately answered without con
siderable research, development, and test, the feedback
from which should dictate necessary changes, although
in many cases substantial increase in reliability can be
bought by relaxing unnecessarily stringent performance
requirements. However, it is very difficult to point this
out to the project engineers. Altogether too many of
them treat the initial system objectives and exact per
formance requirements as sacred, and insist on freezing
component and system design before there is a chance to
subject system objectives to a critical analysis or to ob
tain feedback from actual performance tests.

The last and the most important point is that engi
neering is an art that can be practiced successfully only
on a firm base of scientific fact. Reliable design is impos
sible for an unknown environment.

20 1957 WESTERN COMPUTER PROCEEDINGS

How much effort is expended on basic research? Let
us take as an example the annual budget of our Federal
government: of the seventy billions, forty-five billions,
or about sixty per cent, is spent on defense. Of this sum
about two and a half billions are earmarked for research
and development, and only six per cent of this figure is
to be devoted to basic research.1o

This was emphasized in a recent report to the Con
gress by the Commission on Organization of the Execu-

10 "Federal Funds for Science" (The Federal Research and De
velopment Budget, Fiscal Years 1953,1954, and 1955), Nat!. Science
Found., U. S. Government Printing Office, Washington, D. C.

Design of Experiments

tive Branch of the Government: "Among the Federal
Agencies devoted to research and development there is
but a minor amount of basic research into the laws of
nature and the nature of materials. Yet the safety, the
increase of productivity and the advancement of health
in our Nation must come from constantly increasing
knowledge through fundamental research. From these
explorations come knowledge, discoveries, invention,
and progress."l1

11 "Research and Development in the Government," a report to
the Congress by the Commission on Organization of the Executive
Branch of the Government; May, 1955.

for Evaluating Reliability
JOHN HOFMANNt

THE NATURE OF EXPERIMENTATION

Introduction

T HE consulting statistician is frequently charged
with the analysis of large masses of data, and
wi th drawing concl usions and making recommenda

tions from the results. The data are usually collected
according to the time-honored techniques peculiar to
the field of endeavor represented. This often means
that there have been collected, without control, ob
servations on many variables. Some are related and
others unrelated to the problem at hand.

The statistician has techniques for the analysis of
such data, which sometimes are applicable after a few
assumptions are made. However, often the only recourse
is to curve fitting, or regression, i.e., an attempt to
fit a surface to the data taken, assigning one variable as
dependen t and the others as independent according to
some rationalization. The problem in such analyses is
usually the magnitude of the computations. Surface
fitting with statistical methods usually involves matrix
inversion, and it appears sometimes as though the matrix
associated with any worthwhile undertaking is invari
ably large.

The design of experiments, with "design" used in the
statistical sense, can be considered a means of reducing
the computational problems by controlling the inde
pendent variables. However, before we pursue this
point, it seems worthwhile to turn philosophic and to
probe the meaning of the word "experiment."

Certainly, we are all familiar with experimentation.
We do it every day without philosophical probing.

t Systems Labs. Corp., Sherman Oaks, Calif.

Asked to define an "experiment," however, those who
are trained in physics or chemistry will give a far dif
ferent answer than will an engineer or a microbiologist.
The meteorologists, astronomers, and biologists who
must deal with available data may be completely lack
ing in ideas on the subject.

Webster defines an experiment as "a trial or special
observation made to confirm or disprove something
doubtful, especially one under conditions determined
by the experimenter; an act or operation undertaken
in order to discover some unknown principle or effect
or to test, establish or illustrate some suggested or
known truth." From this definition, certainly an ac
ceptable one, we can note at least two kinds of experi
ment: the absolute experiment, exploratory in nature,
planned to add to our fund of knowledge some new
facts; and comparative experiments, designed to com
pare two or more theories, processes, or products and
yield data on which to base an administrative decision.

The distinction seems, at first glance, to hold up.
Millikan, measuring the charge on the electron, or
Joule, measuring the mechanical equivalent of heat,
are adding to our knowledge of nature. On the other
hand, a production engineer, comparing the yield and
precision of two machines, or an electronic engineer,
comparing the output or service life of a black box to
corresponding specifications, is seeking data, by means
of a comparative experiment, on which he may base a
decision-usually one with important economic con
sequences to him.

Actually, there are many in-between types of experi
ment. For example, the determination of atomic weights,
apparently an absolute, knowledge-contributing experi
ment, is in reality a comparative experiment since it

Hofmann: Design of Experiments for Evaluating Reliability 21

involves the determination of ratios of atomic weight.
In fact, I suspect that most fundamental research is, in
effect, a com promise between a desire to discover some
thing new and significant, and a need to provide a
basis or justification for making some administrative
decision. Fortunately, the distinction is not too impor
tant since, in general, the statistical techniques, which
are the subject of this paper, are similar.

The Scientific Method

While we are digressing, it would seem worthwhile to
establish another idea at this point. Since we are scien
tists of one kind or another, either theoretical or applied,
we all have some concept of the meaning of "scientific
methodology." While it is true that there is room for
debate as to whether there is a method, rather than
many methods, there is sufficiently general agreement
on some points to make a noncontroversial discussion
possible.

For example, we can define the scientific method
briefly as the application of logic and objectivity to the
understanding of phenomena. The basis of a scientific
method is the examination of what is known for the
purpose of deriving therefrom theories, or hypotheses,
which may be subjected to experimental verification.
The oft-stated quotation, "Statistics can prove any
thing ... " is quite false. We can derive proofs only
by deductive logic in the manner of theoretical mathe
matics, and the proven theses are adequate descriptions
of "nature" only to the extent that the assumptions
and axioms on which they depend are also related to
nature.

With a scientific method, then, we can only tend to
verify and to add strength to our belief in an hypothesis.
Therefore, we have in science a feedback system that
is not unlike those with which designers and users of
computers are very familiar. From past experience and
observation, our own and those of others, we derive, by
a logical deductive process, new theories or hypotheses.
From the consequences of such theories we arrive at
phenomena which should be observable if the hypothe
sis is true. We perform experiments to observe these
phenomena and, from the results, our belief in the hy
pothesis is either strengthened or shaken. This informa
tion is fed back into the theory for the formulation of
new hypotheses.

The experiment plays a central role here, in the sense
that the results of the experiment to a large extent dic
tate the next step. What is frequently not recognized
is that the experiment proves nothing. If the results
correspond closely to those predicted by the theory,
we are encouraged and our belief is strengthened.
Otherwise, we are led to wonder about the validity
of the theory.

We must recognize, of course, that much experimenta
tion is done simply to explore. There is no hypothesis,
only a desire for more knowledge about the phenome
non in question. The principles that we will discuss are

still applicable, however. The difference is that we
wish to estimate the parameters that describe the phe
nomenon rather than test some hypothesis about it.
While this difference seems fundamental the basic
considerations for the design of the experiment are,
fortunately, much the same.

THE DESIGN OF THE EXPERIMENT

Preliminary Considerations

The one question that the statIstiCIan is most fre
quently asked is, "How large a sample must I take?"
Usually, this question is not easily answered. Before any
answer can be attempted many other questions must
be answered, questions which are too seldom asked.

First, what is the purpose of the experiment? Al
though generalization is seldom wise, a great many
experiments are conducted with no clear statement of
purpose. Even the phrase in the title of this talk is
too general to be useful. Evaluation of reliability is the
subject of an example discussed here.

There is the lack of a commonly accepted definition
of reliability. How can we establish the purpose of an
experimen t if we cannot agree on the definitions of the
terms we use to describe it? Even assuming an accept
able definition, however special, there are other questions
which must be answered. Our purpose may be to com
pare the reliability of a proposed new component to
some previously established standard. In this case we
may plan to test the hypothesis that the component
reliability, r, is greater than or equal to the standard, ro,
with the alternative that r is less than roo Or, we may
wish to measure the effect on reliability of variations in
the environment in which the component will have to
operate. Here we may have an estimation problem
that of estimating a curve or surface relating reliability
to the severity of the environment; or we may wish to
test the hypothesis that the effects of environment do
not degrade reliability beyond a reasonable amount,
i.e., that the reliability in a severe environment is the
same as that in a relatively mild one. Or we may wish
simply to explore the relationship between reliability
and some factors which may affect it. such as input volt
ages, minor design variations, etc.

I t should be obvious that we must determine what
can be measured in the experiment and relate these
measurable quantities to the characteristic in question.
For example, if we chose to define reliability as "the
probability of satisfactory performance for the required
length of time," then we must define satisfactory per
formance unambiguously in terms of observable char
acteristics of the test units. We must also relate these
characteristics to time and to the system of which the
component is a part. (As a simple example of the com
plexity of this problem, consider an electronic assembly
whose output voltage is established as the sole criterion
of performance. If we are monitoring this voltage and
measuring operating time as the variable to be related
to reliability, we frequently encounter this situation.

22 1957 WESTERN COMPUTER PROCEEDINGS

Performance specifications require that the voltage lie
between fixed limits. A momentary transient drives
the voltage outside these limits, but only for a short
time. Shall the unit be considered to have failed when
the output first went out of limits; or, since it returned
within limits, shall we not regard this as failure? The
answer, of course, can only come from consideration of
the effects of this momentary lapse on the performance
of the remainder of the system. This consideration may
require another experiment to obtain the answers
needed.)

As yet we have not even mentioned the considerations
which are usually related to experimental design. None
of the problems mentioned so far are statistical in
nature. However, without the most careful planning
and organization of thought on these preliminary prob
lems, the remainder of the steps may hardly be worth
the taking.

There is one further consideration that must be
settled. What is the population that is being observed?
Do we have a sample, or are we observing the whole
population? This question is not so trivial as it sounds
since to a large extent it determines the kind of inference
that can be drawn from the observations. To make this
clearer consider an example.

Suppose in a simple system a given voltage input
should result in a certain measurable response-sayan
output voltage, and we are concerned with the effect of
high ambient operating temperatures on the output.
If there are four units to test, then we must first ask,
"From what population can we consider these a sam
ple?" (For reasons that will be more apparent later, it
would be preferable to consider this a random sample.)
"If they were made in a model shop and are prototypes
of a proposed new system, can we validly extend any
conclusions we may reach to include future units made
on an assembly line basis?" This is another of the ques
tions that the experimenter must answer. His conclu
sion should be based on careful thought, judgment, in
tuition and experience-on every bit of outside informa
tion available. It is not one to be arrived at lightly, as
recent experiences with missiles have shown. The same
sort of considerations are equally important in all other
types of experimentation and they must be resolved by
the subject matter specialist-the statistician can help
him only to the extent of advising on the risks involved,
and in the formulation of answers as to what the popu
lations sampled may be.

In this example our test units may be a sample from
one or more populations, but by observing at one or
more temperatures we are creating several more-the
populations of output voltages of similar units operated
at similar temperatures. The problem is thus com
pounded by the fact that it is to these populations that
our results pertain. In particular, we may establish the
hypothesis that temperature has no effect on output,
meaning of course no practical effect, within the tem
perature limits that we expect to encounter. We are say-

ing, in effect, that for the population from which our
units are a sample, the populations of output voltages
corresponding to the temperatures at which tests are
conducted are not different. To be a little more precise,
we are saying that these populations have the same
location (on the temperature scale) as measured by
the average or some other statistic, and the same vari
ability as measured by, for example, the rms error about
the average.

To summarize briefly then, before the statistician
can be of much assistance, the experimenter must state
precisely his objectives, the hypotheses to be tested (or
the quantities to be estimated), the variables to be ob
served and their relationship to the objectives, and
the populations to which inferences are to be induced
from the sample. .

The Role of Statistics

When we plan an experiment, our purpose IS to
achieve one or both of these objectives:

1) To test an hypothesis concerning the magnitude
of an effect,

2) To estimate the magnitude of an effect.

In the first case we have an hypothesis which we will
accept or reject on the basis of our results. If we reject,
presumably we decide in favor of some prestated alter
native. We can arrive at the wrong conclusion in either
of two ways. If the hypothesis is true, the inherent
variability of our observations and sampling errors may
lead us to reject it. Also, though the hypothesis is
false we may be led to accept it. Nothing in the experi
men t itself can tell us if we are right or wrong. Thus we
are concerned with making the probabilities of com
mitting these errors as small as possible. These probabil
ities are functions of several aspects of the experiment
that we can control, and of some that are out of our
hands.

To the extent that generalizations are true, all other
things being equal, the greater the sample size the
smaller the chance for error. Most frequently, however,
the sample size is controlled not by desires for minimum
risks but by considerations of costs, manpower, available
test equipment, and test units and allowed time.

A second determining factor is the inherent variability
of the observed variables. In general, for the same sam
ple size, all other things being equal, the less the vari
ability the smaller the chances of error. The reasons for
this will be considered shortly.

Finally, the design of the experiment, the assignment
of values of the controlled test factors (treatments is
the word usually employed here-a carryover from
the fact that the statistical theory of design of experi
ments was developed, primarily, for agronomists who
first recognized the need) can do much to reduce the
chances of error for fixed available resources. This last
consideration, an important one, leads to a specialized
branch of statistics-the design of experiments-that is

Hofmann: Design of Experiments for Evaluating Reliability 23

in itself too complex a mixture of art and science to
discuss here in other than the most elementary terms.

In the example that we have been discussing we
may have the hypothesis that temperature has no
(practical) effect on output (within the range of temper
ature considered). We may conclude that no effect exists
or that there is an effect. In either case we may be
wrong. The probabilities associated with each error
depend on the number of observations we take, the
variability of the test units, and the experimental design.
The most desirable situation is for the experimenter to
specify the risks he is willing to take and then, with the
statistician, to determine a design that provides those
risks. More often than not, the only thing available to
vary is the design of the experiment, since sample size
is fixed by economic considerations and the material
available for testing, and the variability of the ob
served quantities is inherent in the test units. In such
cases it is important that the experimenter realize that
there is risk of error and, where possible, try to obtain
some measure of that risk.

If the purpose of the experiment is estimation, the
design considerations are not much different. The prob
ability that the estimate will be near to the unknown
quantity estimated depends on sample size, variability,
and in a less measurable way, on the design of the ex
periment. We must recognize, however, that the estimate
is just that-it is a random variable and has a distribu
tion (or is a sample of size one from some population)
which depends on the population sampled and the size
of the sample.

If we have given due consideration to the plan of the
experiment we will have an estimate which will, on
the average, be close to the unknown quantity estimated.
A properly conducted experiment will also give us an
estimate of the error of estimation, i.e., the tendency of
the estimate to deviate from the quantity estimated.
This latter quantity is all too frequently ignored in the
presentation of experimental results. Although it seems
somewhat less than honest for the experimenter to
present his results as "fact" without any statement of
possible errors involved, the tendency to accept experi
mental results as "truth" is a persistent one, and the esti
mated error is frequently ignored or discarded.

There is an additional feature that the statistician
should insist on in the design of the experiment. This
feature is randomization-a word that is easy to use and
hard to define. At some stage in the planning of the
experiment, or preferably at several, a conscious effort
should be made to introduce randomization. Without
it the validity of the experiment is questionable regard
less of other considerations.

Randomization may take several forms. For example,
we should be able to regard our test units as being cho
sen at random from the population sampled. If the
population is a real one-for example, the output of a
production run-then a random sample is one which
gave every member of the population the same chance

of being in the sample. Otherwise we cannot be sure
that the sample observed does not consist of items on
which special care has been taken in their assembly (this
has frequently happened). Thus to obtain a random
sample we could assign a number to each member of
the population and draw a corresponding sample of
numbers "out of a hat" or from a table of random num
bers.

If the population is a conceptual one-for example,
all the observations of output voltage that might be
made on one of our units-under given conditions we
are on reasonably safe grounds in assuming random
ness. But, if the unit is not a random sample from the
population of such units, our observation is not a ran
dom sample from the population of all observations
that might be made on all such units, and our induction
must go from the sample to the population sampled
at random.

One may well ask, what of the case where our test
units are all that exist? Then we must define a concep
tual population from which these units can be regarded
as a random sample. Then, as already stated, in extend
ing our induction beyond that population to some other,
we are depending on our judgment in the field of appli
cation and not on any statistical considerations.

There is another form of randomization that is im
portant. This is the random assignment of treatments
or other experimental conditions to the observations.
This is best explained by illustration. In our example
of four test units we could consider two plans, among
many. First we can observe all units at one temperature,
then all at a second, and so on. In this case a random
assignment of conditions would consist of random order
for observing units at a given temperature and random
order of temperatures. As before, randomness can be
achieved by assigning numbers from a hat-with vigor
ous mixing before and between draws.

Alternatively, we might, if only two temperatures
were involved, observe two units chosen at random at
one temperature, assigned at random, and the other two
at the second temperature. Both randomizations would
be accomplished as above.

The purpose of this randomization is to assure that
the results are independent of any intended or acciden
tal effects due to purposive choice and, in any event, to
assure the validity of any induction made from the
results. Although the validity of the interpretation of
the experiment depends in many ways on randomiza
tion, this feature of statistical design of experiments
meets the greatest opposition. The reasons for the op
position, though taking many forms, can be reduced to
one or more of these:

1) There is no reason to expect bias of any kind in
the experiment,

2) It means a great deal of bother,
3) Things are more likely to get mixed up,
4) It is not necessary.

24 1957 WESTERN COMPUTER PROCEEDINGS

We can argue with equal validity that there is never
reason not to expect bias. At any rate, if the experiment
is worth doing at all, then it is worthwhile to take care
and precautions adequate to assure its validity. Why
waste time and money on a shoddy effort? Randomiza
tion gives the only assurance of valid interpretation of
the experiment. If there is some unsuspected source of
correlation between observations, randomization de
stroys the correlation mechanism and assures a valid
statistical analysis based on the assumption of inde
pendent observations.

In our example, it may be that observations made on
the same unit are time correlated. This frequency oc
curs with electronic devices. In the first design- all units
observed at all temperatures-random order of apply
ing treatments gives us assurance that if the average
over units at one temperature differs from that at an
other temperature the difference is due either to chance
variation or to temperature, but not to some other un
known effect. Random observation of units at the same
temperature guarantees that differences between units
occur solely due to chance and not to other unexplained
factors.

In the second design-two units at each of two tem
peratures-if we assign the units without some mecha
nism of randomization, we cannot separate differences
between units from different temperature effects by
any statistical method or ingenuity.

The Analysis

The appropriate analysis of the results of the experi
ment is dictated primarily by the design. However,
whether our purpose is to estimate the magnitude of an
effect or to make a comparison (test an hypothesis) we
will want an estimate of the effects and of the associated
error of estimation.

If we want estimates it is not enough to give an aver
age alone-a second sample of observations is very un
likely to give the same results. In fact, if there is no
variation between results, there is no justification for
multiple observations. Thus, if we admit that variation
is present in the observations, we must admit to its
presence in the average. The average is an estimate of an
unknown quantity. An estimate of the variability allows
us to construct an "interval" and quote "odds" that
the interval includes the unknown quantity being esti
mated. These "confidence intervals" should be as nar
row as possible, a feature which is achieved either by
controlling error by appropriate use of the tricks of de
sign of experiments, or by increasing the sample size.

If the purpose of the experiment is a comparison, we
are intending to compare estimates of similar unknown
quantities from two groups, or to compare a single
estimate to some standard. In either case, variation is
present. The statistician defines a significant difference
in terms of a comparison of the observed average differ
ence to the estimated variance (mean square error) of

the difference. That is, to the statistician absolute dif
ference is never significant. It is important to note, also,
that a significant difference is not always important.
A difference which is large compared to the variation
represents an improbable occurrence if there is no real
difference. It is called statistically significant. The degree
of real difference that can be detected as significant with
reasonably high probability depends on the magnitude
of the variation. So here again, we improve our chances
of a "correct" decision by control of errors (design of
experiments), or by increasing sample sizes, or by a com
bination of the two.

Thus, whether our purpose is estimation or compari
son, close attention to error control, i.e., to the experi
mental design, yields dividends in terms of increased
precision or increased chance of arriving at correct
conclusions. It seems useful here to emphasize the dis
tinction between the words "validity" and "correctness"
as defined here. We are in a perpetual contest with na
ture. A valid decision regarding the state of nature is one
which, whether correct or not, is properly arrived at
as the best one possible from the data at hand.

Until further evidence is available, we can only attach
a probability to the "correctness" of a decision. We can
improve our chances, however, by the use of many of
the available statistical tools. On the other hand, we
can be certain of the validity of our results and conse
quent decisions by careful design and conduct of ex
periments which have built-in assurances that the as
sumptions essential to the planned statistical analysis
of the data will be fulfilled. One such assurance, as al
ready mentioned, is given by careful randomization.

AN EXAMPLE

At this point we could continue in either of two direc
tions. We have mentioned the statistical theory of the
design of experiments as a combination of art and sci
ence, and could discuss many of the designs, and associ
ate analyses, that have proven useful. However, since
many of the ideas presented here are not generally
known, it seems most desirable to illustrate them with
a simple example. It should be adequate to consider in
more detail the illustration discussed previously.

First we will remove the restriction on sample size
and plan for as many observations as needed. Also, we
will restrict the study to the effect of temperature on
output voltage. Suppose now that the unit to be tested
represents a proposed new design. We want to estimate
the effect of operation at high temperature and to com
pare this effect to operation at room temperature.

Since our units represent a new design, we will place
a purchase order for the required number and these
will represent the only ones in existence (at the time).
However, although we recognize that we are sampling
a (conceptual) population of units produced under simi
lar conditions of relatively skilled model shop assembly,
we are fairly certain that we can, with suitable allow-

Hofmann: Design of Experiments for Evaluating Reliability 25

ance for increased variability of performance, extend
our conclusions to the population of units that are mass
produced. We might, for example, allow for a given
increase in variability by increasing the stringency of
our requirements on the prototypes.

Considering the availability of test equipment, man
power, and funds, as well as the time required to "soak"
the units at temperature and take measurements, we
decide on a total of about 60 observations. If we had
a prior estimate of variability we could have considered,
also, the risks of wrong decisions, but since this is a
relatively complex procedure, let us assume instead
that the experimenter will settle for a fixed probability
of deciding that the design is inadequate, i.e., that the
temperature effect is too large to allow. Since a fairly
large amount of money has gone into the design (a com
mon consideration) and there is pressure to produce a
usable unit (particularly common in industry and de
fense today) we establish that there is less than a 1
per cent chance of rejecting a satisfactory design (re
jecting the hypothesis that temperature has no effect).
When we have established the plan of the experiment,
we shall be able to compute a curve giving the probabil
ity of rejecting the design (the hypothesis) as a func
tion of the size of the real, but unknown, effect. If this
curve is not satisfactory, we can modify the plan of the
experimen t.

Since, if we accept the design of the unit, we shall
initiate production of it, we are concerned with variation
between units. We shall, therefore, want to test several
units at each temperature. Also since the unit, in use,
will be operated repeatedly, the reproducibility of ob
servation on the same unit in the same conditions should
be estimated. This requirement calls for at least two
observations per unit in each set of conditions under
which it is operated.

Since reasonable judgment le61ds us to conclude that
performance will be degraded by high temperatures,
we decide that two temperatures, 70°-75°F and 180°
± 2.5°F, will be satisfactory. If operation is satisfactory
at both extremes, we can safely assume satisfactory
operation at intermediate temperatures. This design
will only allow linear interpolation to estimate opera
tion at intermediate temperatures, but we do not expect
to accept the unit unless operation is satisfactory at the
extreme.

We have two hypotheses of concern:

1) Temperature has no effect on average performance
(between 70° and 180°F),

2) Variability of performance is not dependent on
tem pera ture.

In addition we wish to estimate the variability in per
formance.

We are now ready to proceed to the design of the
experiment. We have an upper limit of 60 observations.
The units to be tested will, in normal use, be required to

operate at any or all temperatures in the specified
range, so we will want to operate the test units at both
temperatures. We may, therefore, consider an experi
ment involving 4mn = 60 observations with m observa
tions on each of 2n units at each of 2 temperatures. If
we set n = 5 and m = 3, we have 3 observations on each
unit at the upper temperature first and corresponding
observations on the remaining 5 at the lower tempera
ture first. Such a design allows us to obtain additional
information as to whether high temperature has a lasting
effect on operation. If we operated all units at the lower
temperature first and then at the higher one, we would
be dependent on subjective judgment for "proof" that
any differences were due to temperature and not to some
"temporal trend" in the observations.

Now a comparison of the average of the observations
made at the upper temperature to that of observations
at the lower temperature validly tests the hypothesis
that there is no temperature effect on the average. A
comparison of the average of the 30 initial operations to
that of the second 30 checks for any time effect (a bit
of "free" information not asked for), since each unit will
be equally represented at each temperature, differences
between units will not affect this comparison.

Finally, a comparison among low-temperature aver
ages for the group operated at low temperature first with
low-temperature average for the other group against
the corresponding high-temperature averages will test
for interaction between order of temperature applica
tion and temperature. EsseI].tially, an interaction here
means that the change in performance, if any, resulting
from change in temperature is different when tempera
ture is increased from what it is when temperature is
decreased.

We require 10 test units (this could be reduced to 8 or
6 with resulting sacrifices in the protection against
wrong conclusions) to be divided at random into two
groups of 5. To accomplish this, we can draw 5 numbers
from a hat, or, equivalently, from a table of random
numbers and call this group I (low temperature first)
or group II (high temperature first) as a result of a coin
flip. These precautions are all that are needed to guar
antee that differences between groups are due solely to
the order of temperature in the group and that differ
ences between temperature averages are due to temper
ature rather than to unconscious selection of units.

We will "soak" the 5 units in group II for sufficient
time, we think, to stabilize the internal temperatures at
180°F and at the same time make observations on the
group I units. If any initial warm-up of units is required
before operation we should try to make this warm-up
period uniform, but as an added precaution we can
randomize the order of observing the 5 units in each
group. (At the high temperature this will eliminate any
effect due to inefficient "soak" time, which might cause
the last units operated to have a higher internal temper
ature than the first ones.)

26 1957 WESTERN COMPUTER PROCEEDINGS

After the first operations are complete we will put
the group I units in the oven, removing the group II,
allow both to stabilize at the new temperature, and re
peat the operation (and the randomization).

We must take account of the oven capacity in the
design. It has been assumed that the oven available
could accommodate 5 units. If this were not true ap
propriate modifications in the design would be necessary.

This experiment, with the built-in balances in ob
servations and randomization to assure independence
of observations and equal chance for uncontrolled effects
(such as input voltage fluctuations) to affect any unit,
is an example of a good experimental design for the
stated purpose. Presumably, the size of the experiment
has been limited by practical considerations rather than
considerations of involved risks, this being the more
common situation.

We have considered only one factor (temperature)
but have taken precautions against another that might
have caused trouble (time effect). We could, by further
modifications, have arrived at a slightly more complex
design to take into account any number of other factors
(input voltage, for example). The principles involved
for good design remain unchanged.

We can summarize this discussion sim pI y by stating
a few principles of good experimental design:

1) Try to achieve balance to simplify analysis; i.e.,
try to have equal numbers of operations at each
level of each factor,

2) Try to accommodate in the design all controllable
factors that may conceivably be important, within
the limits of available time and funds,

3) Randomize to eliminate any other effects that can
not be controlled,

4) If there is any reason to suspect that the effect of
one factor depends on the level of another (an
interaction exists between the factors) design to
allow estimation of the interaction as well as the
main effect,

5) Provide ample replication (repetition of observa~
tions under the same conditions) to obtain a good
estimate of the error of estimation.

CONCLUSION

By way of conclusion I would like to quote from Prof.
K. A. Brownlee of the University of Chicago a state
ment that I would wholeheartedly endorse.

"One overriding feeling I have is that often we try
to do too much with too little. In our research work
I often yearn for a little more care and craftsmanship,
a little less haste, a little more thoroughness, a little
more thought and a little less haphazard leaping
around. The shoddy and inadequate experiment may
often get us the right answer, as often by good luck as
by good judgment, but I think that we would be
better off in the long run if we did a more thorough
job. Granted this may take a little more time, it is
only because the work should have been started six
months ago that we are in such a hurry today."l

BIBLIOGRAPHY

The following books and articles represent a fairly complete but
far from exhaustive bibliography of the statistical aspects of the
design of experiments.

[1] Anscombe, F. J. "The Validity of Comparative Experiments"
Journal of the Royal Statistical Society A, Vol. 111, Part 3 (1948\
pp. 181-211.

[2] Bartlett, M. S. "The Use of Transformations," Blometrics, Vol. 3
(1947), pp. 39-52.

[3] Bose, R. C. "On the Application of Galois Fields to the Problem
of the Construction of Hyper-Graeco-Latin Squares," Sankhya,
Vol. 3 (November, 1938), pp. 323-338.

[4} Davies, H. M. "The Application of Variance Analysis to Some
Problems of Petroleum Technology," Journal of the Institute of
Petroleum, Vol. 32 (August, 1946), pp. 465-491.

[5] Eisenhart, C. "The Assumptions Underlying the Analysis of
Variance," Biometrics, Vol. 3 (1947), pp. 1-21.

[6] Fisher, R. A. Design of Experlments, Edinburgh: Oliver and
Boyd, 4th Edition, 1947.

[7] Frazier, D., Klingel, A. R., and Tupa, R. C. "Friction and Con
sumption Characteristics of Motor Oils," Industrial and Engi
neering Chemistry, Vol. 45 (October, 1953), pp. 2336-2342.

[8] Johnson, N. L. "Alternative Systems in the Analysis of Vari
ance," Biometrika, Vol. 35 (June, 1948), pp. 80-87.

[9] Kempthorne, O. The Design and Analysis of Experiments New
York: John Wiley and Sons, 1952. '

[10} Stevens, W. L. "The Completely Orthogonalized Square"
Annals of Eugenlcs, Vol. 9 (January, 1939), pp. 82-93. I

[11] Yates, F. "Incomplete Randomized Blocks," Annals of Eugenics
Vol. 7 (September, 1936), pp. 121-140. '

[12] Youden, W. J. "Experimental Designs to Increase Accuracy of
Greenhouse Studies," Contributlons of the Boyce Thompson Insti
tute, Vol. 11 (April-June, 1940), pp. 219-228.

1 K. A. Brownlee, "The Principles of Experimental Design," Nav.
Ord. Rep. 4028; June, 1955.

1957 WESTERN COMPUTER PROCEEDINGS 27

Reliability and the Computer
WILLIS H. WAREt

T HE subject of reliability and the modern-day
computer is far reaching and complex. The dif
ficulties of designing and manufacturing comput

ing devices which themselves exhibit long intervals of
trouble-free operation are now fairly well understood,
but many kinds of applications are yet to come in which
a computer is but part of a larger system. For these, the
consequences to the computer of a requirement for a re
liable system may not yet be known. To some, reli
ability and a computer are mutually exclusive, but
existing computing devices do operate trouble-free for
long periods, and it is more than an accident that this is
the case. This paper reviews a few salient aspects of the
computer reliability problem, contributes a new view
point to some parts of the reliability question, and sug
gests areas where the techniques of the previous papers
may be pertinent.1 ,2

There are many kinds of reliability: component reli
ability, which concerns itself with developing well
behaved building blocks; design reliability, which is
concerned with the design technique and how, among
other things, it can successfully combat environment,
component drifts, and tolerances; manufacturing reli
ability, which is concerned with the fabrication process
and how it deteriorates performance below design
standards; and system reliability, which is concerned
with the performance of the over-all system in opera
tional use.

As a first attack on this discussion, it is appropriate
to point out that in some respects the reliability prob
lem for the computer is different than for other large
classes of electronic gear. An exam pIe will be selected
from the digital field, although an equally striking one
might be found in the analog area.

It is customary in traditional engineering procedures
-such as those for home entertainment devices or for
some kinds of military equipment-to test the com
pleted product exhaustively for operation under all con
ditions of its expected environment; and to demonstrate
thereby its reliability. For instance, a radar set might
be subjected to all combinations of temperature,
humidity, supply voltage, supply frequency, and so on;
and, so long as the set continued to operate and to locate
targets within a prescribed tolerance, the design would
be accepted as good. If the set then operated successfully
and trouble-free for prescribed minimum intervals of
time, it would be tentatively labeled as reliable. Finally,

t The RAND Corp., Santa Monica, Cal.
1 Alexander W. Boldyreff, "Reliability from a system point of

view," this issue, pp. 18-20.
2 John Hofmann, "Design of experiments for evaluating reliabil

ity," this issue, pp. 20-26.

after it had demonstrated itself over extended opera
tional periods with certain prescribed minimum main
tenance requirements, it might be accepted as a reliable
device. Notice, in passing, how different might be the
meaning of reliability to the original designer, to the
manufacturer, and to the operational or maintenance
crews. Further notice that even if this radar set were
required to demonstrate that it could locate all possible
targets under all sets of environmental circumstances,
it would still be possible to complete such tests within
a reasonable time limit. The worst that might happen
is that a large number of radial, circular, or spiral air
patterns might have to be flown around the radar an
tenna while the set was subjected to various environ
mental or operational conditions. In any event, it is
clear that a matter of months, or a few years at the
outside, would be adequate to perform such exhaustive
tests.

Consider in the same light the problem of reliability
tests for a digital computer. It is especially appropriate
for comparison, since the digital field has drawn many
of its people from the older fields of electronics. For this
example, assume a digital machine of very modest scale,
say one with only a hundred toggles. If it has been de
signed as most machines of today, it will contain no
redundancy, and hence, the hundred toggles are essen
tially independent variables. Each will contribute its
own bit of information, and thus the number of possible
internal configurations of the machine will be 2100. One
can visualize each of these internal configurations of the
machine to be a vector in a 100-dimensional space; thus
the life cycle of any particular problem or sequence of
events within the machine will be represented by a path
in this multidimensional computer space. If exactly the
same approach to reliability testing is followed as was
used in the radar example, each of these configurations
will have to be checked. What does such a test program
imply?

Suppose that one could test each configuration of the
machine in 10 microseconds, which is a little fast even
for today's achievements. There are of the order of 1013

microseconds per year, so that points' in the 100-
dimensional space could be traversed at the rate of 1012

per year. Now 2100 is roughly 1030, so that, with no down
time of the machine, the entire space could be covered
in about 1018 years! The age of the earth is only approx
imately 1013 years. Furthermore, the test described
would have checked the machine under only one com
bina tion of en vironmen tal conditions.

Certainly this is unreal and an extreme example. It
does, however, have point. The number of degrees of
freedom of the typical digital device is so large that con-

28 1957 WESTERN COMPUTER PROCEEDINGS

ven tional methods of inspection and of verifying correct
operation are simply not applicable. Hence, design, in
spection, and performance checks must unavoidably de
pend on statistical methods. Here is certainly one area
where the techniques of experimental design should be
useful. These methods should permit a fuller return for
the amount of experimental effort expended.2

There is a further consequence of this inherent nature
of digital devices. The designer must regard the com
puter as a statistical ensemble and admit that the param
eters and characteristics of each kind of component
will be statistically distributed. There results an ex
tremely conservative attitude toward use of com
ponents in machines intended to give high performance.
Because of this conservatism, meaningful performance
statistics bearing on design faults are very slow to ac
cumulate, and thus the feedback loop, which tells the
designer whether his set of design criteria was good or
poor, is extremely long. In one part at least of the com
puter field, reliability is different in these two ways:
traditional techniques for evaluating it are not applica
ble, and statistics bearing on it are slow to accumulate.

This discussion leads naturally to a comment on an
important difference between digital systems and some
kinds of analog systems, insofar as the meaning of reli
ability is concerned. Consider, for the moment, how a
mathematical analog machine of the differential ana
lyzer type is constructed logically. The differential
equation to be solved is expressed with the highest
derivative on one side of the equality sign and with all
else on the other side. The "all else" part of the equation
is then mechanized on the assumption that the highest
derivative already exists at some point. Finally, the
equality sign is enforced by taking the output terminal
of the "all else" mechanization and physically connect
ing it to the terminal on which the highest derivative
had previously been assumed to exist. A particular kind
of feedback has been forced upon the analog computer,
namely, a logical or mathematical feedback which exists
whether the computer consists of mechanical parts,
electronic parts, hydrodynamic parts, or what not.
Nonetheless, this kind of feedback behaves like a circuit
feedback and may be positive or negative. Thus, if an
errant electron chooses to travel the wrong way along
a wire or to stop at the grid rather than at the plate of
an electronic tube, in those cases where the logical feed
back is negative, the malfunction will be masked and
only a minor perturbation of the result will occur. The
form of the solution is not changed, although the pre
cision may be.

Every component of an analog computer is within at
least one of these logical feedback paths. Hence, the
analog machine, in many cases, is inherently tolerant of
minor fluctuations in the performance of its components.

. Further, if the analog machine happens to be of the
electronic variety, there are additional circuit feedback
loops which encourage an amplifier to behave properly;
it cannot misbehave if it wants to. Thus, in many situ-

ations, the mathematical analog computer need only
have reliability on the average; instantaneously its com
ponents may indulge in a variety of deviations from
normalcy and only minor consequences will result. Ob
viously, none of this is true when the feedback is positive
or when a malfunction causes the feedback to change
sign. Just as obviously, this argument also applies to an
alog systems other than differential analyzers, es
pecially those analog systems in a closed-loop control
application.

What is the corresponding situation for the digital
system? If the computer is built as most of today's
machines are-without redundancy-it must exhibit ab
solute or instantaneous reliability, because any compo
nent malfunction can cause difficulty. There are no
logical feedback loops within the hardware of the com
puter to force the wayward component back into line.
There may still exist circuit feedbacks in some parts of
the machine-in video amplifiers for instance-but
there are no equipment-wide logical feedback loops such
as exist in the analog machine. There are, however,
times when pseudo-feedback loops do exist by virtue of
the particular routine in use; for instance, an error
reducing iterative process with automatic control of
the error in the final answer will make the digital system
tolerate some kinds of malfunctions. But, in general,
such is not the case. In this respect, among others, the
digital system is markedly different from the analog.

Evidently, in some respects, redundancy is to the
digital machine what logical feedback loops are to the
analog machine. Offhand, however, there does not ap
pear to be, for redundancy, a parallel to the notions of
positive vs negative feedback. It is interesting to specu
late, however, on what deeper philosophical meaning is
common to these two concepts, and on what use, if any,
this might have in computer design.

As a result of this fundamental difference, the design
of digital devices must be regarded in a statistical light.
Components or whole assemblies of components must
be regarded as having statistically distributed parame
ters and performance; the design technique must ac
comodate this fluctuation. As suggested before, the
techniques of experimental design may be applicable.
To date, most designers have concerned themselves not
with the statistical distribution of the parameters of a
component or circuit, but only with limit or end-of
life values of the parameters. Even so, experimental
design may have much to contribute.

A further point comes from this discussion. The over
all reliability or performance of a digital system may
involve more than the reliability of the hardware alone.
The particular routine in use may conceivably accom
modate certain types of machine malfunctions, and in
this respect, may better the apparent reliability. It is
interesting to conjecture to what extent sophisticated
programming of digital machines in this sense might
increase their reliability.

The preceding discussion is not meant to imply that

Ware: Reliability and the Computer 29

designers of analog equipment can be casual in their
choice or use of components. While negative feedback
activity can mask many troubles, it cannot, for in
stance, accommodate the catastrophic type of failure.
However, it would seem that the digital design tech
nique is more exacting than the analog design technique.
While the analog designer tends to worry mostly about
catastrophic failures and not to concern himself overly
with long-term drifts and hardly at all with short-term
drifts, the digital designer must concern himself with
all of these and perhaps more. He must play the game
with stricter rules and with more care than his analog
colleague.

It does not necessarily follow that all analog devices
are necessarily of high reliability. The analog art is a
much older discipline than the digital art and has, there
fore, tended to use the traditional techniques-for in
stance, exhaustive testing of a completed device to de
termine its reliability. The analog art also has tended
to be used sooner than the more recent and relatively
untried digital technique for the newer and more de
manding applications. It was on hand and was used.
Thus, before success finally came, there were the strug
gles and disappointments of the designers of airborne
autopilots, navigational systems, and other analog com
puting systems. Further, at the time of the transition of

. the analog device from the laboratory to military and
industrial applications, the need for an exacting design
discipline was not fully realized, and many early efforts,
for this reason, suffered serious setbacks.

The digital art has been fortunate in a way. Because
the digital system inherently lacks the logical feedback
paths, the problem of careful design for maximum reli
ability was evident from the outset. Consequently, a new
kind of designer evolved who established new methods
of design which could tolerate wide extremes of operat
ing parameters. The whole of the electronic industry has
profited in this respect from the growth of the digital
field, but, unfortunately, the new wisdom and design
techniques of these people are not being disseminated
nearly widely enough nor rapidly enough.

Through the balance of the paper, the emphasis will
be on the problems of the digital field. This is not an
implication that the future of the analog device is
limited or even doomed; it certainly is neither. The
analog technique has successfully made the transition
out of the laboratory and is a rather well-grounded,
although perhaps not sufficiently documented, art. On
the other hand, not much has been stated about the re
liability problems of systems containing a digital device.

The digital art again has been fortunate in two ways.
I t was first applied to large-scale computing devices
which were destined for long apprenticeships in com
puting installations where maintenance, environment,
and general care were optimized. Secondly, the digital
art had the advantage, during its early stages, of a much
improved and more sophisticated electronic art. Digital
devices now are beginning to appear in weapon systems,

in process control applications, in air-defense installa
tions, and in other places where extremely high per
formance and reliable operation are demanded. Al
though there is a background of knowledge bearing on
reliability problems, and much remains to be learned,
the digital discipline is in a much better position than
was the analog discipline when it first entered into high
performance applications.

With respect to reliability, one might catalog digital
systems in two ways: those for which the environment
is chosen to suit the digital system, and those for which
the environment is dictated by operational demands of
some larger or other type of system. The first kind of
environment may be called "optimum," with the typical
computing installation for an example; and the second
kind may be called "operational," with military or de
manding industrial applications as examples. In the
former case, a great deal is known about ways of pro
viding long periods of trouble-free operation. Recent
machine statistics indicate that the electronic parts of
SOOO-tube systems are exhibiting average times
between-errors of many hundreds of hours. In military
and industrial applications, however, not much is known
as to reliability. The environment is more rugged and
the demands are higher; but in many cases the interval
over which proper operation is required is much shorter .
It is certain that digital devices will have some of the
troubles that any electronic discipline must encounter
when entering a new area, but this transition should
be greatly eased as a result of the excellent achievements
already made in optimum environment designs. It is
for just this transition into military and industrial appli
cation that points made in the first paper have great
significance.1

Boldyreff suggests that a component must be evalu
ated for reliability in its final environment, where this
final environment must be understood to include the re
mainder of the system in its operational situation. Since
the optimum-environment machines for the most part,
are not parts of a larger system, but are themselves
the entire system, this point has not to date particularly
plagued digital designers. However, the airborne or sea
borne digital computer either does or will have to face
the problem. Its designers must not only think of all
those things which designers of 704's, 1103's, JOHN
NIAC's and other such machines thought of, but they
must face a whole host of problems, some of which they
may not appreciate or even know about until the. first
computer is put into its system environment. A com
puter, well-behaved in all labor!tory tests for instance,
might go completely beserk when operated in proximity
to a source of electrical noise. Or some of the com
ponents of the computer may fail to survive unusual
types of vibration.

A second point made by Boldyreff is that there must
exist a compatibility between reliability and perform
ance. Some levels of performance may demand extreme
reliability from some part of a system, whereas a reallo-

30 1957 WESTERN COMPUTER PROCEEDINGS

cation of performance requirements might greatly
change the situation. For instance, an airborne com
puter as part of a weapon system may have the job of
providing an appropriate course for intercept of a target.
It is conceivable that, for the precision of control re
quired, this machine would not have sufficient time to
use some iterative loop a few extra times to offset a
moment of weakness during which some part of the
machine committed an error. However, with some in
crease in the lethal radius of the weapon proper, the
closeness of control could conceivably be relaxed. Then
the system could tolerate a more ill-behaved computer,
since it would then have an opportunity to correct some
of its difficulties through additional use of its error
reducing iterations.

There is here a germ of an idea which may have value.
An analog computer when constructed and wired solves
exactly one problem; parameters may be varied, but the
problem may not. A digital computer, when wired, can
solve, by adjustment of its routine, many problems or
slight variants of the stated problem. Thus, some of the
give and take in adjusting system performance can be
accommodated by manipulation of the routine, even
late in the development period. Further, the influence
of the routine itself on the over-all reliability of the
digital computer-containing system must not be over
looked. Many examples exist of routines which are
normally well behaved, but which on certain special
combinations of data input go completely wild. Thus,
the programmer, as well as the digital design engineer, is
likely to be an essential part of the team which is dedi
cated to providing digital computing devices for de
manding applications.

Admitting then that the routine itself is part of the
reliability problem of a digital system, it is also true that
one way of experimenting upon a digital machine is
through its routine. In the previous paper,! Hoffman
showed how experiments can be designed to extract data
from systems which are reluctant to yield concise state
ments of their performance or characteristics. One
wonders to what extent a designer of experiments might
prove valuable in constructing diagnostic routines, even
though there is probably no college curriculum in the
country that could produce this hybrid individual.

From this discussion, what might reliability mean to
each of the several designers of any large system which
contains a computer? To the component man, it means
basic components such as capacitors or terminal boards
or servo motors which meet certain tolerance speci
fications, which exhibit prescribed short- and long
term drifts, which can operate within specifications in a
prescribed environment, and which have a specified and
adequately small probability of catastrophic failure. The
analog-components man is in a fairly advanced state of
evolution, but the digital-components man has much
to learn about the behavior of his components in ad
verse en vironmen ts.

To the circuits man, reliability means circuits which
use the parts supplied by 'the components man, which
can accept input signals with a prescribed tolerance,
which provide output signals to a prescribed tolerance,
which tolerate specified supply fluctuations, and which
also tolerate those aspects of the environmental situa
tion which are not applicable at the components level.
The digital-circuits man knows a great deal about de
signing for optimum environment, but he has much to
learn about the operational environment. On the other
hand, the analog-circuits man has learned the hard way
and has evolved toward operational designs. -He would,
however, do well to backtrack now and to learn to make
use of the conservative design philosophy which his
digital brother has been forced to evolve. But his digital
brother would also do well to hear what he has to say
about the problems of meeting adverse environments.

N ext in the reliability chain is the computer designer
responsible for an over-all machine which he hopes will
get the right answer each time, and which tolerates all
of its environmental conditions-some of which may
have appeared for the first time. However, the digital
machine may not get the right answer each time, not
because of electronic difficulties, but because the routine
may malfunction on particular kinds of input data, or
because the input data may be incorrect.

Lastly, therefore, is the man with the systems re
sponsibility who must consider such interactions as this
and guarantee over-all performance under the full en
vironmental situation. Again some aspects of the reli
ability problem as influenced by environment may ap
pear for the first time, such as mutual electrical inter
ference problems. At this level must be considered such
problems as, in the digital case, seeing that the gross
job of the computer is done properly. This now means
that the computer plus routine must be able to tolerate
its environment, where the environment now includes
such things as faulty input data and other misrepresen
tations of information.

Reliability means a completely different thing in de
tail at each of these levels and to each of these people,
although the reliability at each level builds on the reli
ability of all which came before. Reliability in the com
plex system is not a simple thing. Considerable progress
has been made with systems including analog comput
ers. Much is to be learned concerning systems with
digital computers, but the experience with optimum
environment digital machines has provided a good basis
for advancement.

To sum up, a number of points have been suggested
for consideration. The analog system, by virtue of its
inherent logical feedback loops, can in many instances
tolerate much that the digital system cannot; and in
many applications the analog system need only exhibit
reliability on the average. The digital system, because
of its absence of redundancy, demands instantaneous
reliability. This demand imposes new problems for the

Smith: A Digital System Simulator 31

designer, since now short- and long-term drifts, initial
tolerance, and catastrophic failure must all be consid
ered. Reliability of any over-all design starts with a
complete knowledge of component behavior, where, as
Boldyreff has remarked, this behavior must be dis
covered in the final environment. Hoffman's techniques
for optimizing the yield of an experiment should also be
useful in learning the true statistical behavior of a com
ponent. From this knowledge, the circuit designer may
then develop circuits which will operate under wide con
ditions. With these, the final machine and eventually
the system can demonstrate its required reliability.

The digital industry to date has placed the bulk of its
products in optimum-environment installations where
careful maintenance, careful climatic control, and ex
pert operation is routine. For these reasons, the digital
art has had an opportunity to build highly reliable ma
chines, which, for the most part, themselves constitute
the entire system. However, new applications are ap
pearing-such as military and certain industrial de-

mands-inwhich the environment is neither optimum nor
can the machine expect the care and maintenance of its
computing-center predecessors. The analog machine has
already made the transition from the sheltered labora
tory to the world of real life, but even so it should profit
from the methods of experimental design, the notions
of large system reliability, and the new philosophy and
techniques of the digital designer.

The digital field is fortunate in having seen the dif
ficulties which the analog field has experienced; it is
fortunate in having a more sophisticated and elegant
electronic art to use. All of these things will help make
its transition from the laboratory all the easier, but
none of us should for a moment feel that all of the an
swers to reliability are known. It has been the purpose
of this paper to suggest new viewpoints to old problems
and to bring together some of the ideas about reliability
which have never been documented. Although many of
the principles of designing for reliability are clear, most
of the details are not.

A Digital System Simulator
WILLIAM E. SMITHt

INTRODUCTION

A NY COMPUTER can be described by logical
.tl Boolean equations and memory elements. The

computer can then be constructed from physical
components which realize these logical expressions and
memory elements. Some of the more conventional com
ponents which are in use are semiconductor diode gates
interconnected to represent logical equations, and vari
ous forms of the Eccles-Jordan flip-flop which provide
binary storage.

The digital system simulator provides binary storage
analogous to flip-flop storage in the form of magnetic
cells on the surface of a rotating magnetic drum. The
logical equations are also written onto the surface of the
magnetic drum in a coded form. Then, a minimal num
ber of diode gates and actual flip-flops are required to
in terpret the encoded logical expressions and pseudo
flip-flops, thereby causing the simulator to behave as
the encoded digital system would behave. The size of the
memory alone determines the complexity of the digital
system which can be simulated.

t Aeronutronic Systems, Inc., Glendale, Calif.

MEMORY

In the prototype simulator, four nonvolatile channels,
each extending completely around the magnetic drum,
serve as the coded logic channels. These are the J, K,
N, and 0 channels. See Fig. 1.

EIiCODEIl
l-SET
LOGIC

ENCODED
O-SET
LOO-IC

Fig. i-The magnetic drum memory.

One magnetic drum recirculating register, the F regis
ter, which is n+ 1 bits in length, is used to store the
states of n pseudo-flip-flops; one bit position is not used.

32 1957 WESTERN COMPUTER PROCEEDINGS

Another circulating register of the same length, the S
register, is used for temporary storage of the new states
of the pseudo-flip-flops as they are derived from the en
coded logic. This register is also capable of precession in
an n bit loop, which causes the contents to shift right one
bit per word when necessary. A third circulating register
of n+ 1 bits, the M register, is used to derive a marker or
timing pulse at the end of each word.

EQUIPMENT ASSOCIATED WITH THE MEMORY

Each of the four nonvolatile logic channels, J, K, N,
and 0 has a read amplifier and read flip-flop whose desig
nations are J r and J1, Kr and K l , N r and N l , and Or and
0 1, respectively. The read heads are also the write heads,
which can be driven from the write amplifiers J w , K w ,

Nw, and Ow when initially filling the channels. See Fig. 2.

EXCEPT DURING PRECESSION (Po I)

S CHANNEL MAGNETlC TRACIC.

J1 CHANNEL MAGNETIC TRACK

/LMr:I S CHANNEL MAGNETIC TRACK ~

L---------~==~~~~-----~~I~

K CIlANNEL MAGNETIG TRAGK ~
~~----~~~~----~ts7~K~

N

) f4 CHANNEL MAGNETIC TRACK ~
L---------------------~t37~.w~

L-________ ~OG=I~NN=.E~LMA=G.=ET~IG~TRA=CK~ ____ ~~/~
:cw

Fig. 2-Equipment associated with memory registers and
channels.

The F register stores n - 2 bits on the magnetic drum
and three more bits in positions n, 1, and 0 by means of
flip-flops Fn , Fl , and Fo. A read and write amplifier, Fr
and Fw , complete the loop. The F register usually re
circulates, but during word zero, Wo, when computing,
it copies the contents of the S register.

Fo do = FlWO'C + SlWOC

oio = F/Wo'C + Sl'WOC

Fn dn = FoC

oin = Fo'C.

The F register also serves a secondary function which
is described in the filling procedure.

The S register stores n - 2 bits on the magnetic drum,
and the remaining three in flip-flops Sn, S1, and So. It
normally either precesses, Po, in an n \:)it loop, or recircu
lates Po' in an n+1 bit loop. New information may be
wri tten at the end of each word a t time Tn.

So lSO = SIC

OSO = Sl'C

Sn lSn = SoPO'Tn'C + SlPOTn'C + Tn(...).

OSn = So'PO'Tn'C + Sl'POTn'C + Tn(...).

The M register similarly recirculates n+ 1 bits with
the aid of three flip-flops, Mn , M l , and]YIo• A single one
in position zero of the M register identifies the time Tn
by its appearance in M l ; all other bits are zero in this
register.

WORD STRUCTURE AND CODING

All words are described in normal form, as they would
appeal in their appropriate registers at time To.

The F and S registers remember the present and next
future states of the pseudo-flip-flops, respectively. Each
bit position is assigned a flip-flop to represent, except
bit position zero, which is not used. For convenience in
this presentation, all pseudo-flip-flops are designated Q
to avoid confusion with actual flip-flops. A word in the
F or S register is then as shown.

Qn Qn-l Qn-2 ... Q2 Ql /
This representation is always correct for the F regis

ter. It is initially ('orrect for the S register (at To VVo) but
the pattern .will be shifted right during subsequent
words, due to precession. Thus, after two precessions,
Q2 will be in position nat time To in the S register.

Q2 Ql Qn ... Q4 Q3 /
There are 64 words of n+1 bits each on the J, K, N,

and 0 channels. A word may serve three functions.
Four ones in the zero position of word zero, lFo, in

J, K, N, and 0 identify the word as word zero or the
origin: accordingly, these set the word counter to zero.

word 00 I word 77 (octal)

Position 2 1 O-I-n n-1

1 I J

1 K

1 N

1 o

A one in the zero position of any word on the J chan
nel causes precession in the S register during that word
time.

Smith: A Digital System Simulator 33

word i I word i-1
Position 1 0-1-

I 1 I J channel

The Po flip-flop senses this code and controls preces
SIOn.

Po IPO = JlTnC

oPo = J/TnC.

Note that the origin encoding will always cause pre
cession during word zero.

The third and principal use of these channels is to
encode and-gates. The encoding of an and-gate is accom
plished as follows:

In a given word on the J channel "ones" are placed so
that they will occur in coincidence with the propositions
in the F register, which must be true to make the par
ticular and-term true. On the K code channel "ones" are
similarly placed in coincidence with the propositions
which should be false, 0, to make the same and-term
true. Thus, the and-term QllQsQ6'Q5'Qa is encoded as
shown:

I I I I I I I I I I I I J

I I I I I 11 I I I I I I K

Other and-terms are encoded in successive words.
An and-term always triggers the flip-flop simulated in

the last bit of the word in the S register, which is Qn in
the previous example. Thus the complete logical
equation is

This also implies that if no precession in the S register
is called for between successive words, successive and
terms will trigger the same flip-flop, so that these and
terms are effectively or-ed together. If precession is
called for, the and-term will affect the next flip-flop in
succeSSIOn.

By the proper use of the precession code all flip-flops
can be caused to obey their logical input equations in
sequence.

The J and K channels are used to encode 1-set terms.
The Nand 0 channels are similarly used to encode O-set
terms. For example, the term

would be encoded:

F

1 1 N

1 o

AND-GATE SIMULATION

To obtain the function of an and-gate the coding m'ust
be properly interpreted. A flip-flop Dl determines
whether or not the coded and-gate is true in the follow
ing manner:

The flip-flop Dl is initially set true at the start of each
word.

Dl Id1 = D/TnC.

Then, as a word is read serially, if a code 1 in channel J
is not coincident with a true proposition (a 1 in channel
F), or if a code 1 in channel K is not coincident with a
false proposition (a 0 in channel F), the flip-flop Dl is
reset. All conditions for the and-gate to be true have not
been met.

Dl odl = (JIF/Tn' + KIFITn')Wo'C.

Flip-flop DI is sensed at the end of a word. If it is still
true, the and-gate is true. The J and K channels accom
plish the 1-set triggering of the last simulated flip-flop
in the S register. Thus, at the end of a word, if Dl is
true, the last bit in the S register is set to a 1.

Sn ISn = Sn'DIDo'TnC.

Two similar channels, Nand 0, by an analogous
process, may instigate the O-set triggering of the same
flip-flop. Do assumes the role of Dl in this analogy.

Do ldo = Do'TnC

odo = (NIF/Tn' + OlFITn')Wo'C

Sn OSn = SnDoD/TnC.

This particular prototype does not allow for simul
taneous 1-set and O-set logic as might occur when using
jk flip-flops. The type of flip-flop which it simulates is
the set-reset or rs flip-flop, which can receive either a
1-set or O-set trigger, but not both, during the same
iteration of the logical equations.

The next word in each code channel represents an
other and-gate and may similarly instigate the 1-set or
O-set triggering of the same simulated flip-flop. Thus,
these two and-gates are functionally or-ed together
since they affect the same flip-flop. The extension of this
concept to any number of and-or gates which affect the
same flip-flop is obvious.

If successive one-word and-gates do not apply to the
same simulated flip-flop, a 1 code in the zero position of
the J channel causes the and-gate encoded in this word
to trigger the next simulated flip-flop in sequence by
causing the S register to precess. To be consistent, the

34 1957 WESTERN COMPUTER PROCEEDINGS

first and-gate computed, encoded in W o, contains a
precess code (part of the origin code) so that flip-flop Ql
is the first flip-flop triggered, followed by Q2, Qa, etc.,
rather than Qn followed by QI, Q2, etc. This precess code
transfers triggering to the next flip-flop by causing the
significant contents of the S register to precess one bit
position to the right each word-time that the code is
employed.

TRANSFER OF NEW DATA

After one revolution, i.e., one solution of the complete
set of logical equations, all and-gates have been sampled
and all flip-flops have been set to their new values in the
S register. The fchannel must have been coded for n-1
precessions so that the S register is now in normal form.

I t remains to transfer this new information from the
S register to the F register in preparation for the next
iteration of the equations. This occurs during word zero,
Woo

Fo do = SlWOC

ojo = Sl'WOC,

In order that gating with new values can proceed during
word zero, the Do and Dl flip-flops must sample the new
values (not yet available in Fl) in Sl during Woo

Dl od l = (JlSl'Tn' + KlSlTn') WoC

Do odo = (NISI' Tn' + OlSlTn') WoC.

Note that this implies that the initial values at the
start of computation be set up in the S register, and that
the F register initial values are immaterial.

ORIGIN FILL

The origin key a causes a one to be set into each of
the four code channels, J, K, N, and 0 at the same time
by the following means: a flip-flop Bl is set on by the a
key for just one clock period

Bl lb l = aB/Il'C

obI = aBIC.

An interlock flip-flop II prevents Bl from being set
on more than once while the origin fill key is held down.
See Fig. 3.

II IiI = aBlC

oil = a'e.

While aB l is true, a one is written into each of the
four code channels. At other times nothing is written

Jw = aB l

iKw = aBI

iNw=aBI

iOw = aB l •

The four code channels must be cleared first by
pressing the code channel clear key, 'Y, to erase any
previous origin indication.

~----- L
~---- - -------
~-----

Fig. 3-0rigin fill waveforms.

iJ w' = 'Y

iKw' = 'Y

iN w' = 'Y

iOw' = 'Y.

L

The origin is then indicated by four simultaneous ones
in JJ, K I , N l , and 0 1•

Xo = JlKd'VlO l.

M AND F REGISTER FILL

The origin pulse, X 0, is copied in to the M register in
position zero when the¢ key is depressed. At other times
the M register recirculates.

Mo lmO = Xo¢BlC + (¢Bl)'MIC

omo = MoC.

Flip-flop Bl causes switch ¢ to be effective at the
proper time.

Bl lb l = ¢XoB/I1'C

obI = ¢X oB IC.

Flip-flop II acts as an interlock to prevent further
writing in the M register until after the ¢ key has been
released.

II IiI = ¢BIC

oil = ¢'C.

The origin pulse, X 0, is also copied in to the F register
but in position one when the ¢ key is depressed.

FI dl = Xo¢B1C + (¢Bl)'FrC

Ojl = FIe.

At other times the one digit in the F register recircu
lates.

The F and M register fill waveforms are shown in
Fig. 4.

J, K, N, AND 0 CHANNEL FILL

When the control panel selection switch is set to JK
and one of the fill keys 0, 1, 2, or 3 is depressed, the J
and K channels are filled simultaneously in word Wi and
in the position specified when Fl = 1.

J w Jw = (2 + 3)JKFlB 1W i

Jw' = (0 + l)JKFlBIW~
Kw iKw = (1 + 3)JKFlB lW i

iKw' = (0 + 2)JKF1B lW i.

Smith: A Digital System Simulator 35

I ONE UV. • I

~~~================---~ Ll- I 1 --~ 

~..----- __ L _____ ~ 
11 -----,-L 
)(0;lI

1 
n 

~~----------------~~-------
"o-----~---~ 
H1 =...,~ ____ -------'-I _____ ~ 

F1 ----~---~ 
'0 -----'--'1 ~ ___ ---LI1-

I--- ONE WORD ---l 
Fig. 4-M and F register fill waveforms. 

The fill keys 0, 1, 2, and 3 are decoded as indicated in 
the logical equations above and also as indicated in the 
following table. 

Fill key J K 

0 0 0 
1 0 1 
2 

I 

1 0 
3 1 1 

The proposition Wi is logically derived from switches 
which sample the word counter for count i. 

Wi (switch logic) 

Flip-flop Bl causes the fill keys to be effective at the 
proper time. 

where 

A = 0 + 1 + 2 + 3. 

Flip-flop II prevents another digit from being flIed 
until after the currently used fill key is released. 

II IiI = ABlC 

As the selected digit is written into memory at time 
('AFI W iB 1) = 1 the 1 code in Fl is delayed there by not 
allowing it to be erased to zero, 

Fl dl = AFrC 

oh = (AF 1W iB 1)'F1C, 

and not allowing it to be copied in to F 0, 

Fo do = (AF 1W iB 1)'F1C 

010 = F1'C. 

Therefore, when the next digit is to be filled, 'AFI W iB I 
will be true one digit time later and cause filling of the 
next successive digit. This term is true at time To just 
after the marker has been written, when digit position 

one is to be filled. It is finally true at time Tn when digit 
n+ 1 (which is digit zero of word i+ 1) is filled. 

At the time that this last position is filled, the 1 in Fl 
is immediately erased and not copied into Fo; therefore 
the F register is cleared to zero and no further digits 
will be written until the marker is again written in 
position one. 

Also, during word 77 when the single one reaches posi
tion n in Fl the F register is cleared to zero by not copy
ing it into Fo, thus preventing filling in the origin 
position. 

Fo do = (AFIW~)'FIC + B/(W77T n )'F1C. 

The Nand 0 channels are similarly filled when the 
fill selector switch is set to NO, 

Nw iNw = (2 + 3)NOF1B 1W i 

iNw' = (0 + 1)NOF1B 1W i 

Ow iOw = (1 + 3)NOFIBIW~ 
~Ow' = (0 + 2)NOF IBI Wi. 

OPERATION 

In operation, the simulator is first filled with the ap
propriate data to solve the particular problem at hand. 
A logical designer must reduce this problem to logical 
equations and thence to J, K, N, and 0 channel coding. 
To fill these channels the "Operation Mode" switch is 
set to JK or NO and the "Word Selector" switches 
are set to the word to be filled. See Fig. 5. The marker 

0 r::; ~, 0 FILL S 

n~!J~J CLEAR 
PILOT 

G 
OFF & FILL 

ORIGIN OPERATION MODE 

CD 0 
00 START 

G 00 WORD SELECTOR STOP 

FILL COMPUTE 

Fig. 5-Sketch of control panel. 

button "eI>" is depressed to estab1ish the beginning of a 
word, and then buttons "0," "1," "2," or "3," are de
pressed as required by the coding. Each entry causes 
the next successive character to be recorded. 

After all logic is encoded, the "Operation Mode" 
switch is set to S and the initial setting of the flip-flops 
to zero or one in the S register is undertaken by depress
ing either the "0" or "1" buttons, respectively; with the 
word selector switch set to the appropriate word, 



36 1957 WESTERN COMPUTER PROCEEDINGS 

namely, to the word with the jth precess pulse in it, the 
pseudo-flip-flop Qj is filled. 

The simulator is now ready to compute. To start com
puting set the "Operation Mode" switch to C and de
press the "start" button. To stop the computer depress 
the "stop" button or wait for a programmed stop caused 
by the logical term DIDoTn. If the "Operation Mode" 
switch is set to C1 the computation will automatically 
stop after each drum rot<ttion. 

Output is obtained by oscilloscope or by logical gating 
plugs which select the desired output from a particular 
flip-flop. 

USE 

I t is intended that the first prototype simulator be 
used as a logical designer's aid in designing and checking 
out equipment; also, as a training device for logical de
signers. Of course, many simple "games" and slow con
trol problems may be coded into this simulator. 

The speed of solution of a problem is relatively slow; 
one iteration of the complete set of logical equations 
takes one drum revolution. The number of flip-flops 
which can presently be simulated is about 30 and no 
simulated internal memory is available. These disad
vantages will be relatively easy to obviate by logical 
means in the second prototype except for the relatively 
slow computation rate which is, however, adequate for 
many slow real-time control problems such as traffic 
control, production control, or logistics. 

ACKNOWLEDGMENT 

I would like to acknowledge the interest and coopera
tive effort shown by Dr. T. A. Rogers of the University 
of California, Los Angeles, and C. L. Wan lass and W. I. 
Pyle of Aeronutronic Systems, Inc., who have been in
strumental in providing for the current construction of 
two simulators, one at UCLA and one at Aeronutronic 
Systems, Inc. 

Discussion ture in the computer and we can adjust that 
for various word lengths in your memory. 

Mr. Smith: This is a machine for process
ing logic. The DDA is a machine which 
essentially adds an overflow. They perform 
two different functions. In addition, an 
overflow can be shown to be an integration. 
The DDA does additional integrations and 
the simulator processes only logic for you, 
whereas, the GP has a computing center 
which processes methodic operations. 

R. R. Johnson (General Electric): Are 
you going to offer the services of this com
puter for checking out equations, and how 
large a computer can it simulate, and how 
can you check the simulated results? 

Mr. Smith: Possibly. This particular 
model can simulate a computer of 28 flip
flops in something like 128 gates. However, 
we are thinking seriously of extending by 
simply putting more J, K, N, and 0 channels 
on this so that the number of gates would 
be doubled. There will be this memory fea-

W. R. Smith (Datamatic): Have you 
tried to use this computer to reduce the 
amount of equipment in the simulated com
puter? 

Mr. Smith: I have thought of that, but 
it seems you need the same amount of 
equipment to interpret the logic that you 
put into the computer. 

A. Dinkel (Convair): What is the major 
difference between this and, say, Cash 
Register Corporation's DDA? 

W. J. Willis (Atomics International): 
What sort of selling price can be foreseen 
for school labs? 

Mr. Smith: This first one is costing us 
around $12,000. 



1957 WESTERN COMPUTER PROCEEDINGS 37 

A New Input-Output Selection System for the 
Florida Automatic Computer (FLAC) 

c. F. SUMMERt 

INTRODUCTION 

T HE ULTIMATE goal-of the original FLAC de
signers was to produce a fully coordinated instru
mentation system and data reduction system with 

a common data language. Their foresight has resulted 
in a coordinated data gathering and data processing 
system, capable of many evolutionary changes as the 
"state of the art" progresses. 

Radar data is presently collected in the field, on 
punched paper tape, in a language which the computing 
facility (FLAC) is capable of handling directly without 
intermediate processing. Success has been attained in 
recording field data from a classified electronic system 
directly on magnetic tape. This recording, in digital 
form, can immediately be processed by the FLAC with
out any preliminary handling. 

Data also gathered byeither photographic or electronic 
means from several geographic sources on the test range 
are all correlated by the central timing system. If 2 cine
theodolites are employed in a net, then 2 separate 
punched paper tapes are derived from the photographic 
data. Using 2 high-speed punched paper tape readers, 
the data collected from these sources can be collated, 
with time, by the FLAC at computer speeds. 

Basic position data derived from the mathematical 
solution for a 2-station theodolite net is usually readout 
to 1 paper tape punch, velocity components are computed 
and readout to a second punch, acceleration data is com
puted and readout to a third punch, and other data 
items such as first and second differences or mathemati
cally smoothed quantities can be readout to other de
vices. This entire processing cycle, from multiple read
ins to multiple readouts, is accomplished with one "data 
pass" through the computer. A tremendous time saving 
in data processing can thus be realized. 

PRESENT AND FUTURE INPUT-OUTPUT CAPABILITY 

It becomes obvious from the example cited, that the 
computing system, for the reduction of large quantities 
of missile test data, in a timely and efficient manner must 
be capable of communicating with a wide variety of in
put-output devices; all under control of the computer 
program. This philosophy was inherent to the original 
logical design and therefore the input-output addresses 
of FLAC can be made very extensive. 

t RCA/Missile Test Project, Patrick Air Force Base, Fla. 

Over the past three years the quantity and quality of 
input-output devices has increased; from a single Flexo
writer and magnetic wire readin units to a full comple
ment of devices. In the expansion of the number and 
types of input-output devices, it has been necessary to 
add the new high-speed input-output selection system 
to complete the computer input-output communication 
and control link. 

Future data acquisition plans point to a requirement 
for at least the following computer input-output devices: 

1) Four magnetic tape input-output handlers-4 
addresses. 

2) Three high-speed punched paper tape readers-
3 addresses. 

3) Three paper tape punches (60 characters per sec
ond)-3 addresses. 

4) Two paper tape punches (120 characters per sec
ond)-2 addresses. 

5) One medium-speed punched paper tape reader 
(60 characters per second)-l address. 

6) One Flexowriter-l address. 
7) A magnetic-tape bin memory (400,000 words with 

a 60-sec mean access time to any word)-20 ad
dresses. (10 additional addresses for rewind or
ders.) 

THEORY OF OPERATION OF SYSTEM 

To appreciate the capability and versatility of the 
FLAC with regard to multiple input-output devices 
under control of the computer, a brief description of 
some of the pertinent machine characteristics seems de
sirable. 

The modified FLAC is a series-parallel machine pat
terned originally after the SEAC and the MIDAC sys
tems. The remaining similarity is only in the type of 
logical circuitry employed. The arithmetic unit is com
posed entirely of dynamic logic type circuitry; 1 tube 
type (computer grade 6AN5), one type of pulse trans
former, and 10 resistor values. A new 4096-word mag
netic core memory handles the binary information in a 
parallel fashion and requires special circuitry to mate it 
to the arithmetic unit (au) and center controls. A 
FLAC word is composed of 44 binary digits, plus sign. 
The pulses are timed at a I-megacycle rate and the 
basic computer timing is controlled by 4-phase I-mega
cycle source (com pu ter clock). 

The operational timing unit of FLAC is the "minor 
cycle" which is 48 J.tsec long. Thus, the computer word 



38 1957 WESTERN COMPUTER PROCEEDINGS 

utilizes 45 one-.usec pulses and there are 3 "blanks" 
which are involved in certain logical operations. 

The computer is a 3-address machine cycled through 
4 operational phases (Fl, F2, F3, F4), possessing 16 
basic orders or commands. Some special features are: 
complete binary-to-decimal and decimal-to-binary num
ber conversion (as an order, not a subroutine), a tally 
order which controls a base counter. Addresses can be 
made relative to the base counter or control counter 
by the special control group of the instruction. Readin 
and readout orders make use of a special word counter 
which allows from one to 4096 words to be read in or 
out with only 1 instruction. The read in or readout then 
makes addresses relative to the word counter as well as 
con trol or base counter. 

INPUT-OUTPUT SELECTION SYSTEM LOGIC 

Construction of Computer Word 

A computer word can be used to represent either in
structions or data. The composition of the instruction 
word is such that 12 binary digits of the word are de
voted to each of the address groups: alpha, beta, and 
gamma. Four digits are for the operation code and four 
digits are for the control group. The pulse positions of 
the instruction word are as follows: 

P 4S-P48 PI P 2-P5 PS-Pg P lO-P2I P 22-Pgg P gCP45 

Blank Sign Opn Control Gamma Beta Alpha Code Group 

Transfer and storage of words are made in a serial form 
throughout the arithmetic unit and central controls. 

Input-Output Address System 

It is convenient within the computer and for pro
gramming purposes to express the numbers utilized by 
FLAC in the hexadecimal system. In this case 4 binary 
digits are represented by one hexadecimal charac
ter. Thus, an input-output address can be repres~nted 
by "01 C" (a high-speed paper tape reader). In binary 
form it is reduced tocOOOO 00011100. The following is an 
example of the hexadecimal addresses of the various 
FLAC input-output devices: 

01B,01C,01D-The3high-speed paper tape readers. 

Instruction Storage-Loop Timing and Logic 

The instruction storage loop (isl) is a 48-.usec re
circulation loop. This loop has several access points in 
order that instructions contained therein may be sam
pled by other units of central control (i.e., operations 
staticizer, run-halt controls, address selector, and rela
tive-address flip-flops). 

An instruction is transferred from the memory or 
shift register to the isl during the first minor cycle of 
phase 1 (Fl). This instruction then remains in the loop 
(recirculated) until the next phase 1 (Fl), at which time 

it is erased (recirculation inhibited) as the new instruc
tion is transferred in. Gates are available for erasing the 
contents of the loop when desired by means of a switch 
on the ~on trol console. 

The position of a pulse being recirculated within the 
isl can be referenced in time or loop position for logical 
purposes. For example, the basic time (T) of a single 
pulse may be expressed as T22 which essentially means 
that it is the 22nd pulse time of the particular minor 
cycle under consideration. Loop time (L) is also consid
ered in the timing logic as well as pulse position (P) in a 
particular minor cycle. It is convenient to relate these 
three time elements (T, L, and P) in the following expres
SlOn: 

T-L =P. Thus at L =0, L22 will be present at T22 
of a particular minor cycle. If L = 3, P I9 will be pres
ent at T 22. 

Fig. 1 (opposite) presents the basic logic of the input
output selector. There are shown gating circuits which 
are connected to the L = 22 and L = 34! access points in 
the instruction storage loop. From the logic it 'is shown 
that the first pulse of beta ({3) is present at L = 22 at the 
input to that particular "AND" gate, but delayed 0.75 
.usec. 

The first pulse of Gamma ('Y) is present at L = 34! at 
the input to the other "AND" gate, but also delayed 0.25 
.usec. T i , To, Tm and (Manual) (termed "Manual Bar" 
indicating absence of manual condition) are conditions on 
the particular gates shown for proper actuation. The out
puts of both "AND" gates are buffered in an "OR" gate 
which is clocked at phase 4 (CP4). Either gate output 
then is present for a readin or readout on the buss as 
shown. 

Shown also in Fig. 1 are 8 "AND" gates timed at T 6, 

Ts, T 2, T I , T 4g , T 47 , T 46 , T 4S• Each gate is also checked 
at CPl (Clock phase 1). Theoutputs feed 8 amplifiers and 
also pulse stretching one-shot multivibrators. The purpose 
of the multivibrator is to lengthen the computer pulses 
which appear at each input; the average output voltage 
actuates the plate-circuit relay schematically shown as 
(Kl, K 2 , K 3 , K 4 , K s, K 6 , K 7 , Kg). Relays, gates, etc., 
pertaining to KI and K2 are associated with the com
puter electronic format circuitry and are not within the 
scope of this paper. As long as an instruction (read in or 
readout) is circulated in the isl, pulse patterns will ap
pear on the output buss from the isl. K 3 , K 4 , K s, K 6 , K 7 , 

Kg are each activated by a particular binary pulse pat
tern, depending upon the binary number associated 
with the address of a particular input-output device. 
Thus, the 8 relays form a "tree" feeding an 8 X8 matrix 
which is capable of making 64 different selections. These 
relays are termed "decoding" relays. 

To illustrate the selection process, the input-output 
address 001 (as represented in hex) is used. 001 is the 
specific input-output address of the Flexowriter. The 
binary pulse pattern for 001 will be 0000 0000 0001 and 
is gated into the isl where it is recirculated. Fig. 2 indi-



ELECTRONIC FORMAT SEL. 

II 
PWG 2-"L-1C2 01 

10 ~ KI 
PLUG I --.r- iL--l 10 

01 ==+rJ- +8V. 
PAN:~~I \' 

OFF I 

.• NOTE 
ALL RELAYS SHOWN IN DE-ENERGIZED POSITION 

Fig, l-FLAC input-output selection logic. 

'~rL 
t-fiL 
I I 
I I 'y-rT 

Jr- 'HI(~ ILl ~= I I ,g ... 

LJJ7
0 

I 000010 
1C8 

000001 

~ 
~ 
~ 
CI:> 
~ 
" 

~ 
""" ~ 
6 
~ 

~ 
~ 

~ 
~ 
~ 
<:,>, 
~ 
~ 

~ 
c" 

~ 
~ 
~ 
~ 

~ 
~ 
("J 

C,N 
\0 



40 1957 WESTERN COMPUTER PROCEEDINGS 

ADDRESS CODE TIMING 
(ILLUSTRATION OF INPUT OUTPUT ADDRESS - 00 I) 

HEXADECIMAL Q 

BINARY OOQQ 

BLANK 
FORMAT 

(.1) GAMMA PIO P21 

(P ) BETA P22 P33 

IF T-L=P 

o 
0000 0001 

~ 
BLANK REGULAR ADDR. 

(PULSE POSITIONS IN 
INSTRUCTION WORD) 

AND P=23 (22 DELAYED I MICROSECOND). 

THEN T= 45 FOR FIRST PULSE OF BETA (JU 
FRON ISL 

Fig. 2-Input-output address code timing. 

cates the portion of the computer word which the ad
dress chosen actually occupies in time. As the first 
pulse of beta (13) (for a readin order) arrives at the Kg 
position, it can be seen from the timing illustration in 
Fig. 2 that a T pulse (T45) will also be present on the 
other input to that gate. Conduction will occur as soon 
as clock phase (CP1) comes up and Kg will be energized. 
By circulating the remaining digits of the selection code 
(in this example they are all "O's"), it should be appar
ent that all other digits will arrive at the particular gate 
associated with the proper "T" time. However, the re
lays do not energize since the gate-input conditions 
("O's" in the remainder of the address) satisfy the prop
er time relationship. 

The circuitry shown in Fig. 1 will indicate that the 
Kg relay activated and the conduction path through the 
matrix selection relay designated "01" was completed. 
This matrix relay (or relays as is the actual case) picks 
up and in turn completes the following circuits to the 
input-output device 001 (Flexowriter) (these are not 
shown in Fig. 1): 

1) Information lines "1" "2" "3" "4" "5" from the 
input-output shift register. 

2) e-1, a signal remaining on until the proper number 
of words have been transferred. 

3) Flexo-sync, a signal which permits e-1 to exist on 
readouts and synchronizes the Flexowriter to the 
computer. 

Check Circuitry 

To give a positive indication of malfunction such as a 
selection of more than one address (unit) etc., a circuit 
was designed to detect an indication of this fact. It has 
been aptly designated as the "only one" circuit, since it 
indicates the correct selection of "only one" unit. Fig. 3 

(opposite) presents a typical "only one" circuit. The 
contacts shown connected to -65 v are contacts of the 
select relays in the matrix. As long as only one contact is 
closed there is a single 5.1 k resistor clamped (via the 
diodes) to -10 v. If more than one contact closes then 
the current drawn will be proportionately greater, thus 
essentially biasing the following stage below proper 
operating level. There is a 4.2-k "pull up" resistor con
nected to +62 v and also clamped to +2 v. This line is 
connected to the check circuit "AND" gate as shown. 
The phase 2 (F2) signal drives a one shot multivibrator 
which is cathode coupled to the "only one" line. This is 
adjusted to provide approximately 20 to 30 milliseconds 
of delay. The delayed "only one" signal also appears 
elsewhere in the computer as positive "AND" gate con
dition for selection of readin or readout functions. It 
is necessary to provide this delay in order to allow switch
ing transients to disappear before input-output selec
tions are actually made in quick succession. Various 
conditions are shown connected to the "check circuit" 
gate which will recirculate every minor cycle until in
hibited by T45 (indicating the absence of T45). The out
put of the following stage indicates correct selection. 
This signal also provides an inhibit on the "wrong selec
tion" light gate as shown. Thus, "correct selection" and 
"wrong selection" cannot be "on" simultaneously unless 
a malfunction has occurred. 

SELECTION-MATRIX RELAYS 

A most interesting element of this new input-output 
selection system is the type of relay utilized in the 
selection matrix. Specifications for this relay are gen
erally as follows: 

1) Operating time-approximately 3 milliseconds. 
2) Hermetically sealed contacts which are individ

ually replaceable. 
3) Average operating current, approximately 10 ma 

(20 milliwatts). 
4) Reliable operating cycle-at least 4 million opera

tions. 

This relay utilizes the "Glaswitch" contact element 
developed by Western Electric Company, and was man
ufactured by Revere Corporation under Western Elec
tric Company license. 

Fig. 4 shows a scaled photograph of a single replace
able "Glaswitch" element, a single relay unit manu
factured by Revere Corp., and a 3-unit relay package 
designed and fabricated locally for this particular ap
plication. If less than 3 units are in parallel, a series re
sistor must be incorporated for proper operation in the 
ma trix. The diodes are also moun ted in the base of the 
relay package and are used to prevent multiple-current
condition paths to other relays and thereby cause mal
functions. Fig. 5 presents a front view of the decoder 
panel with the one-shot multivibrators and the decoder 



Summer: Input-Output Selection System for FLA C 41 

TYPICAL ONLY ONE 

CONTACTS OF SELECT 
RELAYS. (CONTACTS TOTAL) 

1" 62 

I,~--~-~-I--<~~~~+------i-<> u.. ___ -----<lp---_:-"IOWO'li\jK ..... --..IOK. 

r- 'I 10K. 

-65 --- ..... 
, __ -_-.:-:_:4-+--JVVV'---><.t;"""'"----""-" ....... ~-----, 

WIRE ----I 

PERMO. --~ 0--
FLEXO. ---I 

H.S. TAPE ----l 

INDICATES CORRECT 
IN-PUT OUT-PUT 

SELECTION 

+230 

1J 2.5K. 11 
-65 -l ~ 

~ 
PHASE 2 (F2) 

DRIVER SOURCE 

20-30 MIIJ.ISEC. 

+ 2--')11--+~4.2..,.K_. +62 

NOTE' 
ALL RELAYS SHOWN IN DE-ENERGIZED POSITION. 

WARNING LIGHT 
WRONG SELECTION 

Fig. 3-Logical diagram-typical "only one" circuit. 

Fig. 5-Decoder chassis-front view. 

relays, Kl through Ks. This panel is mounted within the 
computer control console. Connectors for signal lines 
and power circuits are shown. Fig. 6 presents a select 
relay "stair step" for a total of 50 different addresses. 
The available space dictated somewhat the peculiar 
construction and layout. The bottom row of sockets con
nect to various input-output units as indicated. This 
unit is also mounted in the computer control console. 

CONCLUSION 

Fig. 4-Relay package and components, selection matrix. 

The multiple input-output system described has been 
in operation on the FLAC for approximately four 



42 1957 WESTERN COMPUTER PROCEEDINGS 

Fig. 7-Florida automatic computer-FLAC 1. 

This system permits a wide variety of input-output 
devices to be addressed and controlled by the FLAC 
and permits the reduction of massive quantities of mis
sile test data from a number of sources in a reliable, effi
cient, and timely manner. Fig. 7 presents an artist's con
ception of the entire FLAC. 

Fig. 6-Selection matrix-relay stair step. 
ACKNOWLEDGMENT 

months. Service has been excellent with no relay failures 
being evident in the select relay matrix. The "Glas
witch" relay has proven to be a highly reliable device for 
high-speed switching of multiple input-output devices 
under programmed control of the computer. 

Recognition should be made of R. W. Mitchell and 

Discussion 

R. R. Johnson (General Electric): Just 
what are the input-output specifications on 
data flow rate, etc., and how does this con
trast with the computer speed? 

Mr. Summer: The units control the rate 
of flow of information in and out. The paper 
tape has an input speed of about three 

J. J. Schell whose engineering design work has made 
this system possible, and to those laboratory personnel 
who gave such excellent cooperation and assistance in 
the construction phases of this proj ect. 

hundred characters per second, and the 
output is about sixty characters per second 
on the punches. 

A. B. Crawford (Signal Corps, Ft. Hau
chuca): Are any of your multiple input
output units remote, and is the FLAC able 
to compute simultaneously with input? 

Mr. Summer: None of the units are 
remote. 

R. A. Jensen (IBM): Are the punched 

paper tape punches located at the remot
data gathering equipments, or is the digie 
talized data transmitted from the theodolites 
to punches located at the FLAC computer? 

Mr. Summer: Currently, the theodolites. 
The next step is to digitalize the position in 
place on magnetic tape. In the case of radar, 
it is digitalized in the punch paper tape or 
perforated at the radar site. Eventually, this 
also will go to magnetic tape. 



1957 WESTERN COMPUTER PROCEEDINGS 43 

The IBM 650 RAMAC System Disk 
Storage Operation 

DAVID ROYSEt 

DISK STORAGE OPERATION 

T HE IBM 650 RAMAC System combines the 
computing flexibility of the Type 650 magnetic 
drum data processing machine with the quick 

random-access large-scale memory which may be assem
bled from several of the Type 355 disk storage units. 
The combination may be programmed to perform rapid 
sopl}isticated jobs of in-line (single-step) data process
ing. "Briefly, this means that the punched-card or taped 
record of each event is in turn completely processed 
against all of the records, inventories, or summaries 
which it affects. The various physical units which may 
comprise the system are shown in Figs. 1-3. 

BASIC COMPUTER 

The basic computer consists of the elements shown in 
Fig. 2: from one to three of the three card inputs; card or 
printer output units may be had in any combination, 
each with or without alphabet. The 655 unit contains 
the power supply for itself and for the 650 console unit. 
I t also contains input-output translating, and any asso
ciated alphabetic equipment. The 650 console unit con
tains the magnetic drum main memory and the princi pal 
arithmetic, logical, and timing elements; it has the dis
play console. (See Fig. 4, next page.) The 650 is the 
nerve center of any of the expanded 650 systems which 
may be assembled. 

The basic computer is a stored program, single ad
dress, intermediate speed machine. It is a serial by digit 
parallel by bit machine with 125-kilocycle clock rate. 
It has a main memory capacity of 2000 ten-digit words, 
a very comprehensive list of commands (including auto
matic table-look-up), and it is very easily programmed. 1 

Circuit design is conservative and the machine is 
thoroughly self-checked. 

653 STORAGE UNIT 

The next unit in the system is the 653 storage unit, 
which may contain automatic floating decimal arith
metic, index registers, immediate access (core) storage, 
or any combination of the three. (See Fig. 3.) 

"Immediate access (core) storage" is a necessary part 
of any system which includes tape or disk storage. The 
core storage array has a capacity of 60 ten-digit words 
(plus their signs). It is directly addressable from the 650. 
Single-word access to transfer to or from the 650 re-

t Internatl. Business Machines Corp., Endicott, N. Y. 
1 E. S. Hughes, Jr., "The IBM magnetic drum calculator type 

650, engineering and design considerations," 1954 Proc. Western Joint 
Computer Conference. 

Fig. 1-IBM 650 RAMAC. 

655 

537 
533 
.07 

POWER SUPPLY 
IN-OUT, TRANSLATE 

PUNCHED CARD IN
PUT, UNE PRINT 

SIOR CARD OUT P,UT 

.......... 
• TO 653 
• 

UP TO 3 ARITH. S LOfJlC 

DRUM 
CONSOLE 

650 

Fig. 2-The basic 650. 

653 652 

FLOATlNfJ DECIMAL TAPE ONTROL 
MANUAL INOUIR' 

INDEI REfJlSTER CONTROL 
CORE STORAfJE DISI( ST(;. 

: l"' __ -JJ IT ' r u~~::. 
• 131 

...... MANUAL IIIOUIR' 
TO 650 r UP TO 10 

355 
DlSI( STORAfJE 

( UP TO. 

.1' DISI( STORA'E 

Fig. 3-650 RAMAC (basic 650 not shown). 

quires the minimum execution time of any 650 instruc
tion, which is two 96-microsecond word time. Block 
transfers may be made directly between the core storage 
and the 650 drum in increments of ten and 50 words. 
Table look-up may be made directly on core storage, the 
same as on the drum. 

In addition to serving as quick access storage for the 
650, the 60-word block of core storage serves as a static 



44 1957 WESTERN COMPUTER PROCEEDINGS 

NOTES 
I ~ VALIDITY CHECK POINTS. 
2. HEAVY LINES SHOW HOLLERITH 

COOE TRANSMISSION. 
3. LIGHT LINES SHOW 7 ELEMENT 

COOE TRANSMISSION. 
4. DASHED LINES SHOW 5 ELEMENT 

COOE TRANSMISSION. 

Fig. 4-Flow of instructions and data in basic 650. 

buffer for information transferred between the computer 
and tape, between computer and disk storage or be
tween tape and disk storage under computer control. 

652 CONTROL UNIT 

The 652 control unit, next in line, Fig. 3, may contain 
electronic controls for tape; it may contain electronic 
controls and a thyratron address buffer for disk storage, 
and it may contain equipment necessary with the man
ual inquiry feature described in a companion paper.2 A 
discussion of tape operation is not included here, except 
to say that tape units are extremely useful in the appli
cation of the 650 RAMAC to in-line processing. 

355 DISK STORAGE 

The remaining element in the system is the 355 disk 
storage unit. (See Fig. 5.) Each disk storage unit has a 
capacity of six million numeric digits plus six hundred 
thousand signs, or three million alphabetic and special 
characters. Information is stored magnetically on both 
surfaces of each of 50 oxide coated disks. The disks are 
stacked and rotated on a common vertical axis at 1200 
rpm. A description of the prototype disk array and ac
cess mechanism has been given.3 Capacity of each sur
face is 100 concentric tracks; capacity of each track, as 
used in the 355, is 600 numeric digits, plus 60 signs, 
organized into 60, 650-sized, ten-digit words. (See 
Fig. 6). 

There are three independently and simultaneously 
moveable access arms in each storage unit. (See Fig. 7.) 
Each arm is forked to straddle a disk and contains a 
spring-retracted air-extendable read-write head recessed 
into the end of each "tine" for access to opposite faces 
of the same disk. (See Fig. 8.) 

2 H. A. Reitfort, "The IBM 650 RAMAC inquiry station opera
tion," this issue, pp. 49-51. 

3 W. E. Dickinson and T. Noyes, "Engineering design of a mag
netic-disk-random-access-memory," 1956 Proc. Western Joint Com
puter Conference, pp. 42-44. 

Fig. 5-355 disk storage unit. 

,lACK 00 TIACK 01 TIACK 99 
Fig. 6-Track and word arrangement on a disk face. 

Disk storage operation is controlled from the com
puter-stored program by only three commands and a 
six-digit disk-storage address. The commands are as 
follows. 

OP Code 
85 
86 
87 

Command 
seek 
read 
write. 



Royse: The IBM 650 RAMAC System Disk Storage Operation 45 

TOP DISI( } 
fACf 00 TD~ 

S0110M DISI( DATA 
fACf 50 DIS I( 

ACCESS AIM '1 
70P DISI( J fACf 0' NfXT 
S0110M DISI( DAT A 

AIM 

I ~ ... --:---~ 
I 
Il'-___ ~-I__~ ~'"IA. 
I 
I 

fACf 51 DISI( 

~ q;::::::::::~f-- fACf .9 DAT A 
70P DISI( l'0110M 

'OT70M DISI( DISI( 
fA~f 99 

Fig. 7-Arrangement of arms and disks. 

UPPfl HfAD 

JfT 

Fig. 8-Air-head arrangement. 

In each case the six digit disk-storage address is pro
grammed into the six low-order positions of the 650 dis
tributor, (Figs. 4 and 9), in a program step just preced
ing any of the three commands. This departure from the 
usual placement of the data address in the 650 address 
register is made necessoary by the fact that only four 
places are available in eit~er the instruction word or the 
address register. 

SEEK OPERATION 

Seek is one of very few commands issued by the 650 
which sets up access to a memory, but which does not 
make the data transfer in the same step. 

At the cost of a few more program steps, the speed of 
the system is greatly increased by permitting move
men ts of the access arms to be overlapped with each 
other and with read or write operations in other arms. 

Appearance of the 85 in the OP code register sets up 
seek-mode controls in the 652; thereafter, the seek com
mand is executed in four steps. 

1) Transfer of seek address from distributor to thyra
tron matrix. Information is read out serial by 
digit, parallel by bit, translated from 2/7 biquinary 
code to 2/5 code and sent to the 652, where the 
unit and arm digits are time sampled and cause 
one of the 12 access thyratrons to fire. The four 
disk and track digits are time-sampled and stored 
in a thyratron matrix in a 2/5 code. (See Fig. 10.) 

INSTRUCTION WORD 

0'. CODE DATA ADDRESS INSTRUCTION ADDRESS 
----"--.~~ 

I I I I I I I 

DATA WORD 

I I I ± I 
Fig. 9-650 word-arrangement. 

THYIA
TIONS 

1112 

} 650 OP CODf 
IfllSTfl 

} 650 DIST. 

} 650 TIANSLATOI 

} 

652 THYIATION 
MATIIX 

Fig. 10-Seek: transfer disk-memory address from 650 to 652. 

After the two word times required to initiate this 
much of the seek operation, the 650 finds its next in
struction and proceeds with its program. 

2) Transfer of the disk and track address from the 
thyratron matrix to a set of address relays cor
responding to the proper arm is made via the con
tacts of one of the 12 access relays. The a<,ldress 
relays are then held through their own contacts. 
(See Fig. 11, next page.) 

A two out of five validity check is made on the ad
dress, a bit-for-bit comparison made between thyratrons 
and address relays, and a one-and-only check made on 
all the access relays. Satisfaction of these checks ex
tinguishes the 652 thyratron matrix and resets the seek 
mode controls. The 652 is then ready to accept a read or 
write command or another seek command. This takes 
about 30 ms from the initiation of the seek command. 

3) Arm servoaction. The information contained in 
the' address relays is translated into a correspond
ing arm position by action of the servo shown 
much simplified in Figs. 12,3 13,3 and 14. 

Power for both up-down and in-out arm motl<l>ns is 
provided by a I hp motor. Magnitude and direction of 
the driving force are controlled by a pair of counter
rotating magnetic clutches. The force is transmitted to 
the a!m by a single steel cable. 



46 1957 WESTERN COMPUTER PROCEEDINGS 

20 -ii --, 
ADDRESS ACCESS I EXTINGUISH 

TH'RA- TH'RA- I 
TRONS TRONS I 

4 'DIGITS 
215 1112 I 

II"'""""T--r-----

355 
DISI( 

UNIT 0 

355 
ARM 1 DIS I( 

...:::=:::::=~ UNIT 3 

.. 
ACCESS 
REtA'S 

.. 
ADDRESS 
REtA'S 

Fig, l1-Seek: Transfer address from 652 to 355 address relays, 

When new disk and track addresses are entered in to 
the address relays, new taps are grounded on both disk 
and track potentiometers through trees of contacts on 
the address relays; see Fig, 14, The disk error signal 
causes the arm to be extracted radially clear of the disks, 
locking the arm in its outermost radial position and un
locking it for vertical motion. The disk wiper error sig
nal then causes the arm to seek and find the new disk 
null point. The vertical position is then digitalized and 
locked opposite the proper disk by an air driven "disk 
detent," unlocking the arm for radial motion and trans
ferring servocontrol to the track potentiometer and 
wiper. The arm is then moved radially to the track null 
position. There it is digitalized and locked in place by 
a "track detent." 

4) Final step in the execution of a seek command is 
to verify that the location of the arm corresponds 
to the new address. 

The arm location is brush-sensed directly in the 2/5 
code from a pair of rhodium-plated printed circuit 
strips. One strip is attached to the top of the arm, the 
other is attached to the vertical way. A successful bit
for-bit comparison on all four disk and track address 
digits signals completion of the seek for that arm and 
prepares it for reading, writing, or another seek. 

Failure to get a proper comparison results in move
ment of the arm to another location, after which it is 
redirected to the true address and the position check is 
repeated. Possible random servo error is thus corrected 
with a minimum of delay and no special programming. 

TRAC/( DETENT 

-REFERENCE SURFACE (WA~ 

ACTUATOR GRDUP 
MDTDR,TACHDMETER, 
CLUTCHES, & CAPSTAN 

Fig. 12-Mechanical portions of arm-servo. 

WIPER 

TACHOMETER J t "-

CLUTCHES ,,=------' 
CAPSTAN 

Fig. 13-Electrical portion of arm-servo (simplified). 

ADDRESS 
REl.AY TREES 

TRAC/( 'DT. 
Fig. 14-Electrical portion of arm-servo including disk 

and track address trees. 

Total time for completion of a single seek varies, de
pending on how far the arm is required to move. Mini
mum time consumed (for seeking from track to track 
on the same disk) is about 150 ms. 

Maximum, for movement from inside track, top disk, 
to inside track, bottom disk, is about 800 ms. The statis
tical mean seek time based on random addressing is a 
little over one-half second. 



Royse: The IBM 650 RAMAC System Disk Storage Operation 47 

0' 
[!ill .. 

1fT U, 652 WIITf 
MODf COIITIOLS 

ADDIESI } 650 O'fIAT/OII 
1 9000 I AIID ADDlfSl 

If GIS Tfll .. 
1fT U, COif MfMOI' 

FOI FULL 'O-WOID ICAII 

UIIIT~~!!!!!~AIM l 
11111131 2 1 , 1 , I 5 I 0 III ) 650 DISTlIlUTOI 

.1 III I I I 
IfT-U' DJlTJI-F~W-PJlTH FIOM CHfCI( ;DDIESI } '52 
'52 TO IELfCTfD I/W HfJlD OF IfLfCTED AIM 3:5 

Fig. is-Write flow path setup and address-check. 

WRITE 

The function of the write command is to cause the full 
60-word content of immediate access (core) storage to 
be stored on a disk-storage track. The information is 
written there by a particular read-write head which was 
placed over the correct track in a preceding seek 
operation. 

Presence of an 87 in the 650 OP code register (Fig. 
15), initiates the disk-storage write command, which is 
also executed in four steps. 

1) The six-digit disk-storage address is again trans
ferred from the 650 distributor to the 652 thyra
tron matrix. The 650 then proceeds with its pro
gram. 

2) The address information stored in the thyratron 
matrix is then used for two purposes (Fig. 15): To 
establish a data flow path from the 652 by means 
of access relay points to the proper read-write 
head, and to check that the selected arm is in the 
proper location. (This is a check on the program 
to insure that the arm was not inadvertently re
seeked between the intended seek and write in
structions for that arm.) 

3) Writing begins at whatever point on the track 
happens to fall under the head at the time the ad
dress check is completed. Writing on the track and 
clocking of core read-out and regeneration are con
trolled by an 83-kc LC oscillator in the 652. 

First, a three-word gap is written, erasing any old in
formation. (See Fig. 16.) Then one digit at a time, core 
memory is read out and regenerated. Core information 
is at the same time placed parallel-by-bit into a one-digit 
buffer, which is scanned out serial-by-digit, serial-by
bit into the read-buss line. (See Fig. 17.) 

Information is written on the track in a modified 
non-return-to-zero form. Presence of a bit is indicated 
by a transition between the opposite remanent states. 
(See Fig. 18.) 

Writing is terminated upon run-out of the core timing 
rings. Nominally the last 11 words of written informa
tion overlap the first portion of the written gap. This 
allows ± 11 word variation (in~63 words) between oscil-

Fig. i6-Track writing overlap. 

____ 1653 
2/ 5 'AIALL'L ., .,T 

is IfltlAL IY 81Tl
652 

AIM 0 

AIM' 

AIM 2 

AIM 0 

AIM' 

AIM 2 

Fig. i7-Write data flow. 

7 2 0 

DIll{ 
IT'. 

UNIT 
o 

DISI{ 
IT'. 
UNIT 

3 

I , 3 2 , 0 I , 3 2 , 0 I , 3 2 , 0 

LJ 
t • 

Fig. i8-Modified NRZ recording. 

lator frequency and disk speed and at the same time in
sures the half-word of gap needed by the read circuits 
to detect the start of a record. It also insures that all of 
the previous record is erased. 



48 1957 WESTERN COMPUTER PROCEEDINGS 

4) To insure that correct, readable information was 
written, the track is read on the following disk 
revolution as core memory is again read out and 
regenerated. 

read into core memory parallel by bit during "S" bit 
time. (Fig. 18.) Satisfaction of the validity check by all 
digits read signals completion of the read operation. If 
the check is not satisfied the operation is repeated from 
the sensing of the gap on. Total time for a read operation 
varies depending on how long the head must wait for 
the gap. Average time is about 30 ms for set-up and 
address check, 25 ms wait for gap, 50 ms for one disk 
revolution, a total of 105 ms. 

CONCLUSION 

Track information is converted from serial by bit to 
parallel by bit in the 652, validity checked and com
pared digit by digit with that from core storage. Satis
faction of this check completes the write operation. 
Otherwise the operation is repeated from the writing of 
the gap until the check is satisfied or until the operator 
intervenes. 

Write execution, from initiation by the 650 to com
pletion of the check, requires approximately 30-ms set
up time plus two disk revolutions, a total of 130 ms. 

Disk-storage operation is controlled by three com
mands from the computer, seek, read, and write. Aver
age times required are 565 ms for seek, 105 ms for read, 
and 130 ms for write. 

READ 

The purpose of the read command is to transfer the 
60-word contents of a track into core memory. Execu
tion is very similar to that of the write command. 

Although access to this disk storage is inherently fast 
compared to that for other comparable random access 
memories, speed of the system is materially improved 
by permitting arm servo actions to be overlapped with 
each other and with other disk-storage operations. 

Flow path set-up and address check are identical. 
The beginning of the record is found by sensing the 

gap. Reading and core timing are clocked by a pair of 
83-kc LC oscillators in the 652, (one of which was used for 
writing). When reading, each bit sensed turns one oscil
lator off and the other one OIl, rephasing the clock with 
the information twice every digit time. Information is 
scanned serially into a one-digit buffer in the 652 dur
ing 6,3,2, 1, and 0 bit times, then validity checked and 

Independent computer operation is permitted dur
ing the execution of any disk-storage command. 

All operations are thoroughly self-checked with re
spect to addressing, valid data transmission, and com
pletion. 

Automatic recycling features, which are provided for 
arm servo, read and write, prevent unnecessary down
time for random errors, without complicating the pro
gram. 

Discussion 

David Zeheb (General Electric): Is the 
density of recording on a disk variable and 
if not, does the number of words increase 
with the distance from the center? 

Mr. Royse: The density of recording is 
variable. It is about a hundred bits to the 
inch on an individual track and about fifty 
bits to the inch on an outside track. Because 
we use just one half of the total radius, the 
distance is two feet in diameter, and we use 
practically five inches of the outer area of 
the disk. We also have sixty words recorded 
in each track. 

N. M. Blachman (Sylvania EDI): Why 
is the RAMAC clock not recorded on a 51st 
disk? 

Mr. Royse: It was less expensive to do 
it the way we did. 

C. O. Carlson (National Cash Register): 
What was the reason for three access arms 
ra ther than more or less? 

Mr. Royse: This seemed to give us an 
overlap with three access arms, and we could 
overlap seek operations so that the total 
seek time, assuming a percentage overlap, 
was of the order of two-hundred milli
seconds. 

W. C. Carter (Datamatic): Does the 653 

have either floating decimal or index regis
ters or core storage, or some combination 
of these? 

Mr. Royse: You can get any combina
tion. You may have one, two, or three of 
these features. 

G. Barclay (General Electric): Would 
stationary arms for each disk decrease the 
access time and make the memory system 
more economical? 

Mr. Royse: They would decrease the 
access time, but it is our belief that they 
would increase the cost of the memory 
system. 

C. H. Richards (Convair): What is the 
function of the "seek" command, if address 
in information is given when reading and 
writing? 

Mr. Royse: By separating a seek com
mand from a read or write, we are able to 
send seeks out ahead. We are able to cause 
seeks ahead of our need for the read or 
write operation, and because we have mul
tiple arms for each disk, we are able to 
overlap. We need not wait for the com
mencing of the seek if we are able to send 
seeks out ahead. 

Mr. Richards: Well then, what function 
does the address information contain in the 
read or write? Just a check? 

Mr. Royse: It is a check principally on 
the program and upon the operator. Even 
in the in-line processing system, there are 
times when you shut down for maintenance 
operations. At that point, we lose the in
formation from the address relation in the 
355 units and after the maintenance opera
tion is done, we must fire the system up and 
get valid information back into these ad
dress relations before we can proceed. The 
nature of the system is that it must have 
valid information back into these address 
relations in order to get another seek com
mand into the seek operation. Now, to take 
care of the situation, we have a button on 
the 652 which is reset, which puts the arm 
over the zero track on the zero disk. Now, 
suppose that the system had stopped be
tween the seek which was not an all zero 
seek, but some other locations in the mem
ory, and the next operation to come up was 
a read or write command. If we did not 
have this check on the address, the system 
might think the arm w"!-s correctly in posi
tion and we might ruin some valid informa
tion in the file. Another reason is that we 
have to have part of that information in 
order to prepare the proper data flow 
pattern between a head and the core mem
ory. 



Reitfort: The IBM 650 RAMAC Inquiry Station Operation 49 

D. L. Shell (General Electric): How long 
does it take an arm to seek the same track 
as present location, and how long to seek 
the same track number on the opposite side 
of the same disk? 

Mr. Royse: We have found that when
ever we resend, it takes a little less time 
than we thought it would originally and 
this time is in the order of one hundred 
milliseconds for the complete search of the 
surface. In other words, in answer to the 
second part of the question, you have 
already seeked the track and you have for
gotten about it and you try to seek the same 
location. This takes of the order of fifty 
milliseconds to accomplish. We must go 
through all the checking procedures. In 
seeking the same track number on the op
posite side of the same disk is approximately 
the same time, five milliseconds. 

c. F. Summer (RCA Missile Test Proj
ect): Would it be possible to address individ
ually any word on any disk? Further, how 
far apart physically are the channels on each 
disk? 

Mr. Royse: In answer to the first part of 
the question, no, not directly. The way we 
handle this is to read an entire track into 
the core memory and there we have very 
powerful editing ability. We can make a 
block transfer of ten or fifty words. From 
core memory, we can make block transfers 
in any amount, which includes words which 
are successive words between core memory 
and the drum. In addition, we can pull out 
one word and we can do the reverse. So, 
what we do to change one word is to read 
out a track into the core memory, alter the 
one word, and rewrite the contents of the 
core memory on the same track. To the last 

part of your question in regard to how far 
apart physically are the channels on each 
disk, they are five thousandths apart. 

W. L. Martin (Marchant Research): 
Does 838 typewriter have a mechanical 
matrix for automatic typing or are the keys 
each activated by individual solenoids? 

Mr. Reitfort: They are activated by 
individual solenoids. 

A. A. Cohen (Remington Rand UNIVAC): 
Please expand on how rotation is controlled 
in servicing waiting inquiry stations. 

Mr. Reitfort: As each increase station 
makes a request, information is stored in 
relays. Once this station has completed its 
inquiry and released the typewriter, then 
we look to see what next station has a re
quest for. 

The IBM 650 RAMAC Inquiry Station Operation 
HENRY A. REITFORTt 

QUICK ACCESS VIA INQUIRY STATION TYPEWRITER 

A FEATURE of the IBM 650 RAMAC important 
to "i!l-line" processing is the facility for quick ac
cess to the data processing system from remote 

locations without interfering with the daily routine. 
This interrogation of the RAMAC is done through the 
IBM 838 inquiry station typewriter from locations up 
to 500 feet from the computer. (See Fig. 1.) 

The inquiry station typewriter provides transmission 
of data to the 650 system and automatic typing of data 
replies from the system. Up to 10 inquiry stations are 
available, arranged in one control or in two controls. 
Each control independently communicates with the 650 
system through its own inquiry station synchronizer. 
Thus, by having two controls, up to twice the volume of 
inquiries can be handled. By proper programming of the 
two controls, inquiries and replies can be functioning 
from both controls at the same time. 

Several operating keys and lights are located at each 
inquiry station which allow the operator to control the 
various functions of the machine. The unit also contains 
a regulated power supply and a small relay gate. 

FLEXIBILITY OF INQUIRY STATIONS 

The inquiry stations are completely flexible since they 
can inquire into any record in the 650 system. By means 
of the typewriter keyboard, data and instructions can 
be provided to the system. Automatic typing of replies 
to inquiries, miscellaneous messages, or productive out
put printing can be accomplished. 

t InternatI. Business Machines Corp., Endicott, N. Y. 

Fig. 1-838 inquiry station. 

Each typewriter is addressable from the 650 program, 
thus an inquiry received from one station can reply at a 
different station, if desired. A program tape on each in
quiry station provides for format arrangement of the in
quiry and reply. The program tape also contains a con
trol word that identifies the station and specifies the 650 
program routine to be followed for the particular in
quiry. 

The inquiry stations are connected by multiconduc-



50 1957 WESTERN COMPUTER PROCEEDINGS 

tor cables to the IBl\1 652 control unit, and to each 
other. Separate transmission channels are provided for 
inquiries going to the 650 and for replies coming from 
the 650 to the 838 unit. Thus, while one station is mak
ing an inquiry, another station can be simultaneously 
typing a reply for a previous inquiry. 

The control unit contains a small relay gate and an 
electronic chassis to synchronize the inquiry station with 
the computer. This unit also contains the 838 check
ing circuitry. All information from the 838 is buffered 
with relays in the control unit prior to combining it in 
the electronic chassis with timing pulses from the com
puter. 

The 652 control unit is an integral part of the 650 
RAMAC system. The 650 computer contains the in
quiry station input-output synchronizers which are 
specific bands on the magnetic drum. Each 838 control 
unit has its own assigned inquiry and reply synchron
izers in the computer. 

The control of the synchronizers used for inquiries 
and replies is designed to accept and transmit one char
acter at a time. On an inquiry, the 838 sends one charac
ter at a time to the inquiry synchronizer as it is typed 
by the operator. A reply to an 838 from the 650 consists 
of transmitting one character at a time from the reply 
synchronizers to be typed by the 838 at a rate of 600 
characters per minute. Each synchronizer contains 100 
digits of storage or 10 words of 10 digits each. 

PROGRAM TAPE 

Each inquiry station has provisions for a program 
tape that provides flexibility for 1) forms control 
through carriage tabulations and spacing, 2) entry and 
exit arrangement for data transmission, and 3) control 
and identification of data for 650 processing. 

The program tape is a 16-channel perforated plastic 
tape, the maximum length being four feet long. Each of 
the 16 channels has an assigned significance. Holes are 
punched in the tape channels to control the assigned 
functions. The tape is advanced in conjunction with the 
programmed movements of the carriage or the control 
keys on the inquiry station console. Separate program 
tapes are prepared for each application and are easily 
interchanged by the operator. (See Fig. 2.) 

Each column of the tape is punched to correspond to 
a given position of the data being sent to the 650 system 
and all characters being typed in the reply. On an in
quiry, as each character is typed, the program tape 
designates the word and digit position of the input syn
chronizer where the character is to be transmitted. On a 
reply from the 650 to the inquiry station, the program 
tape selects the word and digit position within the reply 
synchronizer that is to be typed in that location on the 
paper. 

The ends of the program tape are joined together to 
form a closed loop permitting the inquiry station to pro
ceed automatically from an input format to an output 
format. 

Fig. 2-Rear view of typewriter showing tape lineup. 

The 16 channels of the program tape are assigned the 
following functions: 

Channel 

1-5 
6-10 

11 
12 
13 
14 
15-16 

Function 

Inquiry synchronizer word location 
Digit position within the synchronizer word 
Designates an alphabetic character 
Designates a digit of the control word 
Start of the input format 
Start of the output format 
Control carriage functions. Tabulate, carriage return, 

and space. 

WORD AND DIGIT LOCATIONS 

The word and digit locations are punched in a 2-out
of-5-bit selfchecking code. Any word or digit which does 
not meet the requirements of the 2-out-of-5-bit code is 
recognized as an error to stop the station during an in
quiry. In a reply status, a validity check error prints an 
asterisk in red in place of the character. 

When a hole is punched in the control word channel, 
the function of the word channels 1-5 are changed from 
coded word to that of a digit emitter for that tape col
umn for automatic entry of control word into the in
q uiry synchronizer. 

650 RAMAC COMMUNICATIONS SYSTEM 

The keyboard communication to the 650 RAMAC 
system provided by the IBM 838 units begins with the 
operator requesting permission to send the inquiry or 
data to the 650. This is accomplished by the operator 
depressing the request key. The request key checks that 
the program tape is stopped in the channel designating 
the start of the input format. If not, the unit auto
matically advances the tape to the input hole. If the re
quest key is held down when the tape reaches the input 
hole, it then sends a signal to the 652 control unit asking 
permission to transmit a message. 

When this request is received through the control 
unit, the 650 erases all information in the inquiry syn
chronizer from the previous inquiry. It then enters 
zeros in all positions of the 10 words, and automatically 
checks that the 10 words of the synchronizer contain 



Reitfort: The IBM 650 RAMAC Inquiry Station Operation 51 

zero. If the synchronizer is properly loaded, the pro
ceed light glows at the 838 to inform the operator that 
the message can be sent. At the same time, the inquiry 
transmission channels are connected to the inquiry sta
tion by relay points. Only one station within a control 
unit can be connected at one time. 

The operator then proceeds to type her message. As 
each character is transmitted by the 838 and recorded 
in the particular word and digit position of the syn
chronizer, as specified by the program tape, it is then 
automatically read and checked against the character 
sent by the station. For each character typed, contacts 
operated by the keys transmit the character information 
to the relay gate in the control unit. At the same time 
the synchronizer storage location from the program tape 
is transmitted to another set of relays. Both sets of re
lays are checked for validity, and through points of these 
relays, the information is combined and the character 
code is transmitted to the inquiry synchronizer and re
corded in the proper position on the magnetic drum. 

If an error is detected, the entire message must be can
celled by the operator and a new inquiry begun by re
requesting the 650 synchronizer and retyping the mes
sage. 

When the message is typed and visually verified, the 
operator depresses a release key to signal the control 
unit that the inquiry is complete. This can occur only 
if the program tape has reached the hole in the output 
channel which is a signal to the system that the neces
sary number of characters have been typed to satisfy the 
particular format. 

Two operation codes have been added to the 650 sys
tem for inquiry stations: a branch-on-inquiry code, and 
a reply code. The branch-on-inquiry code is located at 
a convenient place in the normal processing routine. 
The inquiry station program routines are subroutines 
that the 650 will branch into if an inquiry is waiting. 

The branch-on-inquiry code is a signal to the com
puter to check the control unit for a released input syn
chronizer. At this time the ten words of the synchronizer 
are transferred to the working area of the magnetic 
drum. The next instruction is the con trol word entered 
from the program tape which determines which sub-
~routine is to be followed for processing the inquiry. 

Every inquiry should be followed by a reply. There
fore the last instruction of the subroutine should be a 
reply code. Formulation of data for the reply is ac
complished by normal programming The reply instruc
tion transfers the processed data from the working area 
of the magnetic drum to the reply synchronizer At this 
time the 650 system returns to the normal processing 
routine. The reply may consist of 10 words of informa
tion or only a single character to indicate the input data 
was processed. 

DETERMINING THE OUTPUT FORMAT 

To determine which station the reply is being sent to, 
a particular digit of the control word, which has been 

designated as the station number, is analyzed. This 
will connect the proper station to the output transmis
sion lines by means of relay points. When the station is 
selected, the unit checks to make sure that the program 
tape is at the start of the output format prior to start
ing the reply. If not, the program tape is automatically 
advanced until it senses a hole in the output format 
channel. 

The reply it: started when the first position of the out
put format is sensed to determine the location of the 
first character to be printed. The word and digit posi
tion of the reply synchronizer, as designated by the 
program tape, is analyzed, and by means of relays the 
proper character is selected to be printed. As each char
acter is printed, the program tape is advanced and the 
next character location is transmitted to the control 
unit for selection of the next character. As each charac
ter is selected, a validity check of the location relays 
and the information relays is made. If an error is de
tected, the ribbon control is operated and an asterisk is 
prin ted in red. 

The reply continues to be printed until a hole is sensed 
in the input format channel. This is a signal to the con
trol unit that the reply has been completed and the in
quiry station is released. The system is now ready to 
process the next inquiry and reply. 

INSTALLATION COMPONENTS 

An installation can consist of many inquiry stations 
and there will be occasions where several stations may 
simultaneously request permission to make an inquiry. 
The control-unit relay circuitry is designed to remem
ber each request and accept only one request at a time. 
Each request is processed in sequence based upon the 
station number. 

CONCLUSION 

The system as outlined operates with a minimum of 
650 RAMAC computing time. The interlocking of the 
system is such that the inquiry process time through 
the subroutine is the only time the 650 system is held up. 

Two inquiry stations can be operated simultaneously 
with one control unit, one on inquiry and one in reply. 
If traffic from the inquiry stations is such that all in
quiries cannot be handled fast enough, the second con
trol unit can be added. This will permit two strings of 
stations allowing four to be used simultaneously, two 
on inquiry and two on reply. 

The punched program tape provides the system with 
vast flexibility as to the number of formats that can be 
handled with a minimum amount of computer time 
since no rearrangement of data is required in the sub
routine. 

This system, therefore, gives quick access to any or 
all records in the IBM 650 RAMAC with the required 
security necessary for combined records. The IBM 838 
inquiry station is one more step toward complete facili
ties for "in-line" data processing. 



52 1957 WESTERN COMPUTER PROCEEDINGS 

An RCA H igh-Performance Tape-Transport System * 
s. BAYBICKt AND R. E. MONTIJO, JR.t 

INTRODUCTION 

O NE OF THE severest limitations of data-proc
essing systems today continues to be the low 
input and output repetition rate capabilities of 

the electromechanical devices available. While several 
other forms of external storage have appeared on the 
market recently, these units suffer in a depth-of-storage 
and price-per-bit comparison with magnetic tape. Re
cent advancements in the art of data collection and 
telemetering techniques are producing a hopeless lag in 
the data-reduction process with present day computers. 
The characteristics of available computer-type digital 
tape transports leave much to be desired in the way of 
performance when one considers the tremendous 
amount of data to be stored and processed. The subject 
of this paper is the development of a specialized digital 
tape transport intended for computer, data reduction, 
and special data-storage applications, with the prime 
purpose of reducing the severity of the problems men
tioned. 

GENERAL DESCRIPTION 

This tape transport and its associated equipment is 
an all semiconductor and magnetics device. Its elec
tronics consist of germanium and silicon diodes, ger
manium transistors, and magnetic amplifiers. The 
equipment complement is such as to allow use of the 
machine with any of six tape widths from !-inch to 
1 i-inches wide in i-inch multiples. Eight to eighteen 
recording tracks are provided by the series of magnetic 
heads that accompany the equipment. The main assem
blies in the equipment are the tape drive panel, the reel
servo system, the tape-control electronics, the power 
supply, the local control panel, and the cabinet. Space, 
air circulation, and power-supply capacity are provided 
for the read-write electronics which are not included in 
the package. Type of read-write system and the number 
of recorded tracks are allowed to remain a function of 
the application. A front view of the equipment is shown 
in Fig. 1. 

T APE DRIVE ASSEMBLY 

The tape drive shown in Fig. 2 (opposite) is a dual 
capstan device symmetrically designed about a single 
read-write head. Continuous rotation by the capstan 
motors in opposite directions provides tape speeds of 100 
inches per second and 331 inches per second in both di
rections. Two capstan speeds are provided by 12-pole 

* Work described in this paper was performed under contract 
with the National Security Agency. 

t Commercial Electronic Products, RCA, Camden, N. J. 

Fig. i-Tape Transport equipment. 

hysteresis synchronous motors with two-speed windings. 
Magnetic tape buffer storage between the reels and cap
stans is provided by two small bin assemblies located be
low each reel. The servo-control system is described by 
itself in a separate portion of this paper. Rapid start and 
drive action is provided by jam-roller type clutches for 
both forward and reverse. Braking is accomplished by 
two brake shoes which straddle the read-write head. 
When the tape is stopped, it is clamped between the shoes 
and the stainless steel surface provided alongside the 
magnetic head core area. Rough guiding of the tape is 
provided by two hardened, parallel plates extending be
tween the two capstans. Fine guiding as single-edged 
referencing is obtained by providing two interference 
points on the front guide surface to load the tape 
against the rear guide surface. The tape-drive system 
belongs to the tensionless-class introduced and used by 
RCA on the BIZMAC Tapefile. The tape remains in a 
tensionless condition throughout the tape path, except 
for two points. Tension is artificially introduced as the 
tape is unwound and wound on each reel. This action 
is produced by the reel stripper mechanisms located on 
E'3.ch reel and its bin assembly. The reel strippers are 



Baybick and Montijo: RCA Tape-Transport System 53 

Fig. 2-Tape Transport panel. 

driven by reel rotation. When the tape is to be unwound 
and fed into the bin assembly, the tape is gently pulled 
from the reel utilizing the reel motion and an overdriven 
slip clutch in the stripper mechanism. When the tape is 
wound up on the reel, uniform winding tension is pro
vided by a friction pad that is loaded into position 
against the tape by reel motion and another slip clutch. 
The stripper mechanism capstan motion is coupled from 
the reel shaft through belting which provides a higher 
peripheral velocity to the capstan than that possessed 
by the tape as a function of the angular velocity of the 
reel. 

The tape drive is basically designed as a Ii-inch 
mechanism. Changes in tape width are accommodated 
by changing or adjusting various subassemblies. Inserts 
are provided for changing the reel retaining device to 
accommodate the six widths in three steps. Two guide
posts are changed in each reel stripper area for each of 
the six widths. Changes in the bin assembly are accom
plished by providing slots for locating the bin covers and 
by a set of three curved inserts for the internal tape 
weighing structure. A separate read-write head and 
guide assembly is provided for each tape width. This 
assembly is held by two screws. The entire tape drive 
can be converted from the narrowest to the widest tape 
in less than one hour. 

START MECHANISM 

In order to achieve the fastest start time, the im
portant variables are the mass to be accelerated, the 
mass associated with the driving mechanism, and the 
prime mover. Use of the tensionless system enables us 

to neglect everything else except the mass of the tape 
which is slight. The mass associated with the driving 
mechanism consists of a pressure roller and holder 
(fork) and a simple lever. In order to optimize this de
sign, the pressure roller is kept in motion by means of 
metal ridges on its periphery as shown in Fig. 3. To 
reduce further the effect of the roller mass, the fork 
driving linkage is adjusted so that the pressure roller 
is only moved 0.003-inch to drive the tape. The same 
roller, however, is used to drive all widths of tape. 

PRESSURE ROLLER 

METAL RIDGE 

Fig. 3-Plan view of pressure roller and capstan. 

Design of the prime mover represents the most diffi
cult problem of all. To achieve fast start time, this de
vice should deliver a large force in the shortest time 
possible. On the other hand, the instantaneous power 
demand should be minimized. The actuator that is used 
is the result of a joint development effort with the 
speaker development laboratory at RCA. This moving
coil solenoid provides 0.9 pound of force at a stroke of 
0.016 inch in 0.5 milliseconds. When this action is 
converted to start time, it corresponds to starting a li
inch tape in less than 2 milliseconds. It was found, how-

~_"~_"""""""'·"""'~'#.""""-""_'''l!'''',IilI'''''''r.''''''''''''''''''''''''''''),1'iY 

ever, that a considerable improvement in start time 
would result from a shaped current pulse with a high 
starting peak current tapering down exponentially to a 
steady driving level. When all factors, including actua
tor life, were conside~ed, a 50-watt instantaneous peak 
and a 10-watt steady power were settled on to drive the 
actuator. Use of the shaped pulse decreased the start 
time to 1.2 milliseconds. Fig. 4 shows the read output of 
a conti~y'~;~~~d~d tape when it is accelerated in 
this manner. The tape waveform exhibits what appears 
to be a transient oscillation when the start rate exceeds 
10 starts per second. When the tape is subjected to 
1000 g accelerations of this type, many peculiar things 
happen. This is an example of one of them. A combina
tion of various similar effects costs! millisecond of start 
time. 

Several series of tests were conducted to determine 
life and wear of the drive system components and the 
tape. During the first series of tests, less than 10 million 
actuations were provided by the actuators because of 
spring failures. After changing the spring material from 
aluminum to stainless steel, the next series of tests were 
stopped after 100 million operations with the actuators 



54 1957 WESTERN COMPUTER PROCEEDINGS 

r 
I
(3 
o 
...J 
IJJ 
> 
IJJ 
a. 
~ 

o I 1.5 2 
TIME IN MILLISECONDS 

Fig. 4-0utput waveform on starting tape. 

in excellent condition. Interestingly, tapes were still 
usable after 100 million start operations at the 120 cps 
rate. 

THE STOP MECHANISM 

The brake actuator is located in the rear of the tape 
drive panel below the two capstan motors. Its motion is 
coupled to the brake shoes by a long vertical rod which 
drives a lever that extends through to the front of the 
panel. The brake shoes are attached to the lever at a 
point above the center of the read-write head as shown 
previously. By braking the tape as close as possible to 
the read-write head gap line, the brake-shoe assembly 
acts as a mechanical filter for tape flutter during rapid 
start-stop operations. The large mass of the brake shoes 
and brake arms causes the brake shoes to ride on the 
back of the tape at all times. With very little motion 
required to brake the tape, very good brake times are 
achieved. With the same driving power on the brake 
actuator as was previously described for the drive actu
ator, a stop time of 1.5 milliseconds is obtained. The 
first half of this time is required to disengage the drive 
roller and no deceleration takes place. Linear decelera
tion follows during the next 0.75 millisecond. 

START-STOP REPETITION FREQUENCY 

Again, the fundamental problem involved in pro
ducing high start-stop repetition rates involved the 
actuator. The self-resonant frequency of the actuator 
was 60 cycles, and it was accompanied by several other 
minor ones in the springs. Through the use of mechani
cal and electrical damping techniques and very rigid 
mechanical structures in this area of the mechanism, the 
start-stop repetition rate was extended beyond 200 
start-stops per second. 

TAPE-GUIDING EFFICIENCY 

The most important feature in a tape transport is 
tape-guiding efficiency. This feature also happens to be 
the most difficult one to check. The guiding character
istics of this tape transport were checked with a very 
precise rack of read-write electronics whose internal 

timing error was less than '1 microseco~d. Skewn~ss was 
checked by electronically measuring the time difference 
between the receipt of ,the first and last bits in a single 
character with both bits located at the extreme opposite 
edges of the tape. This check was made in bot'h direc
tions over the full length of a reel of tape, the width of the 
tape having been accurately checked on an optical com
parator over its entire length. Using this method, skew
ness was found to be less than ± 2 minutes of arc when 
the guides were widest and the tape was at the low end 
of the specified ± 0.0015-inch width tolerance. 

REEL-SERVO SYSTEM 

The reel servomechanism loop is similar to the time
tested system used on the BIZMAC Tapefile. Control 
for the reel motors is derived from the weight of tape in 
the bin buffer storage provided below each reel. Tape 
weight is converted to electrical information by a differ
ential transformer transducer. The balanced condition 
for the buffer storage corresponds to the weight of ap
proximately twenty-two feet of magnetic tape. Any 
variation from null produces a positive or negative out
put from the differential transformer which in turn is 
amplified by three stages of transistor amplification. 
The amplified sine-wave information drives a transistor 
phase detector where amplitude and phase information 
is converted to a dc level. Linear preamplification and 
phase detection both take place on the servo preampli
fier plug-in unit, NS-4. The output of each phase de
tector is amplified by one stage of dc amplification on 
the phase detector amplifier plug-in NS-9, before the 
signal is used to drive a differential relay. At this point 
the servo loses its proportional characteristic and be
comes an on-off system. Input and output transfer 
characteristics for the phase-detector amplifier are 
shown in Figs. 5 and 6. The circuitry of the NS-9 is de
signed not only to amplify but also to broaden the dead 
zone for the loop. The output of the NS-9 is made to 
approximate a step function so as to produce positive 
and reliable operation of the differential relay contacts. 

One might very logically ask the reason for using a 
relay at this point. There are several reasons. First, the 
differential relay is used as a high gain dc amplifier 
stage. It performs this function with great stability and 
reliability. It has a power gain of approximately 10,000 
and its life is more than adequate. Secondly, functional 
differences accruing from the use of an on-off loop as 
opposed to proportional control are very slight. This is 
attributable to the peculiarities of the error signal de
rived from the weight sensing system. 

The function of the differential relay is to drive the 
power stage in the servo loop. The power amplifier takes 
the form of a reversible magnetic amplifier whose 100-
watt output drives the reel servo motor directly. The 
saturable reactor type magnetic amplifier has a power 
gain of 200. 

Stabilization of the servo loop is provided by inex
pensive ac rate generators. The output of the rate gen-



Baybick and Montijo: RCA Tape-Transport System 5S 

DEAD ZONE ---fo..-+--' 

----------~~~--------+ 
ERROR SIGNAL 

(BEAM DEFLECTION) 

Fig. 5-Input to phase-detector ~mplifier. 

01 

en z 

~ 
f!?+ 
..J o 
> 
I
:;) 
Il. 
I
:;) 
o 

DEAD ZONE-I'----f----i 

----~~--~----~------~+ 
ERROR SIGNAL 

(BEAM DEFLECTION) 

Fig. 6-0utput from phase-detector amplifier. 

era tor vanes directly with the surface velocity of the 
magnetic tape as it passes through' the reel stripper 
mechanism. 

TAPE-CONTROL ELECTRONICS 

There are ten types of plug-in units for the tape con
trol electronics shown in Fig. 7. Since all of the circuits 
in this section employ transistors, the opportunity to 
provide multicircuit plug-ins is taken. Thus, plug-in 
units containing two flip-flops, three two-digital gates, 
three indicator drivers} and seven other multiple circuits 
are provided. A simplified tape control logic diagram is 
shown in Fig. 8. Forward, reverse, and stop command 
inputs accept either pulses or levels. Tape start and stop 
action is a function of the forward, reverse, and brake 
solenoids. These high-speed solenoids are driven with a 
high current waveform as shown in Fig. 9. An impedance 
of three ohms is presented by the actuator to its driving 
circuit. 

The actuator-driver circuit is a three-stage dc ampli
fier with an over-all current gain of 1000. This unit is 
capable of driving a solenoid with 6 amp peaks and 2 
amps continuous with generously derated collector dis
sipation on all components. 

Fig. 7-Rear view of Tape Transp:::>rt, showing plug-ins. 

REV 

FWD FWD 

STOP 

"OR" 

Fig. 8-Simplified tape-control logic. 

I~' MILLISECOND 

L ACTUATOR A ENERGIZED 

-----.-

START STOP 

Fig. 9-Input current for high-speed actuators. 

POWER SUPPLY 

The power supply for the tape transport electronics 
has the difficult requirements of supplying high-current 
pulses and continuous loads to very low impedance cir
cuits. These requirements result in the need for'internal 



56 1957 WESTERN COMPUTER PROCEEDINGS 

im pedances limited to fractions of an ohm in order to 
provide regulation of less than 5 per cent for load 
changes of 0 to 200 per cent. 

Six dc voltages are provided by the power supply in 
the range from -48 to +48 volts. Regulation is pro
vided on the input side of the power supply transformers 
with a constant voltage tranSformer. Fusing for the sup
plies is in the transformer primary with sensing relays 
providing rapid "dc dumping" on the entire supply in 
the event of the loss of a voltage. The basic power sup
ply circuit is a full-wave rectifier circuit with an induct
ance-input filter. The rectifying elements are silicon
i unction power diodes. 

PERFORMANCE SUMMARY 

Before summarizing, the machine characteristics that 
have been mentioned will be specified and some applica
tion data will be noted where it is useful. 

Start time: This time varies from 1 millisecond at low 
start repetition rates on narrow tapes to 2 millisec
onds at the maximum repetition rate for the widest 
tape. 

Stop time: This time remains within 1.5 ± 10 per cent 
for all tapes at all rates. 

Start-stop- space: The interrecord space requirements 
vary between 0.12 inch and 0.15 inch and is rated at 
0.2 inch. 

Start-stop rates: The start-stop rate may be varied 
from 0 to 120 cps for the start-stop specification 

above. There are no resonances throughout this band. 

Reversal time: This time is less than 2 milliseconds. 

Skewness: Skewness is specified as less than ± 2 min
utes of arc with tape and head interchangeability 
without adjustment. The timing error produced by 
this machine allows packing densities of over 750 
pulses per inch and character rates in excess of 75 kc 
on !-inch tape. I 

Tape speed variation: Less than 2 per cent, including 
all effects. 

Tape speeds available: 100 and 331 cps in two direc
tions. 

Equipment duty cycle: May be operated at highest 
repetition rate continuously for extended periods. 

Remote controls available: Tape-control commands: 
"forward," "reverse," and "stop." 

CONCLUSION 

The equipment described is expected to provide high 
performance at low cost for general digital data-storage 
applications. Great flexibility is provided to the user 
through the wide range of tape widths and the number 
of information tracks that are available. Reliability has 
been provided through the use of reliable components 
and techniques, generous derating practices, and simpli
fied mechanical design. The large number of tracks, 
high recording density, and extraordinary start-stop 
characteristics provide powerful tools for using data
storage techniques heretofore considered impractical 
or too costly. 

Discussion wear off as a powder and blow away. adjacent channels simultaneously? 

David Zeheb (General Electric): How 
long would it take an experienced operator 
to change reels? 

Dr. Montijo: A little less than a minute. 
C. L. Baker (RAND Corp.): What pre

cautions are taken to prevent oxide build-up 
on the tape? How many passes can be made 
on one tape? 

Dr. Montijo: Oxide build-up is a very 
peculiar problem, involving the magnetic 
head surface, the shape of the surface; the 
particular type of oxide that is being used; 
the amount of pressure involved between 
the tape and the magnetic head. We have 
designed around this problem by using an 
all-metal surface. The gap line is fairly sharp 
so that there is space for trash that comes 
off the tape surface to fall into. Further, we 
have specified a hard oxide. The oxide will 

Kenneth Olsen (M.LT.): Is an idler 
used to keep the tape in contact with the 
capstan? 

Dr. Montijo: The pressure roller, with 
about 16 pounds behind it, is tapered. This is 
what is used to drive the tape. At this point 
the effect of the wrap of the tape on the 
capstan also provides the force to drive the 
tape, so that the combination of the two 
provides enough force to drive the tape. 
There is no friction, or very little friction, 
between the tape and these capstans; but 
since we do have a rubber surface there, the 
friction between the tape surface and the 
capstan is rather high, and we do get a gain 
in the drive as the result of that. 

C. F. Summer (Missile Test Project): 
What pulse packing factors can be used? 
For a 7-channel head, what is an estimate 
of cross-talk? Can you write and read on 

Dr. Montijo: The cross-talk for the head 
designed for this machine is down 30 db 
between the tape and track. The width of 
the core is 0.032 inch, and the track spacing 
is 0.063 inch. This is an all-metal surface 
head, and the packing density is somewhat 
a function of the head. Practically speaking, 
it is limited by the quality of the tape surface 
that is available. 

As for the skew problem, the 750 pulses 
per inch that I mentioned was used with 
i-inch tape. Instead of the i-inch tape, we 
used i-inch tape, because we had a ready 
supply of it available-some that we used 
in the Bizmac System, and could test its 
width accurately. We did not go above 75 
kc, because we had a number of circuits in 
the equipment that would not operate above 
that point. So that is the reason why we 
stopped at that particular number. 



1957 WESTERN COMPUTER PROCEEDINGS 57 

A Medium-Speed Magnetic Core Memory 
GABRIEL E. V ALENTYt 

INTRODUCTION 

T HE STEADY evolution of the state of the art in 
coincident ~urrent .ma~netic core memories leads 
constantly In the dIrectIOn of an all-transistor sys

tem of appreciable proportions. Several organizations 
have been at work in this field, but the system herein 
described is the first of its type. It is presented to dem
onstrate one of several possibilities in achieving an all
transistor memory of 150,000 bits. 

The engineering design and the construction of the 
memory for the Transac S-1000 Computer was con
tracted to Remington Rand UNIVAC. The computer it
self is designed and constructed by the Philco Corpora
tion. The memory requirements are for a 36-bit parallel 
system with 4096 words of storage with special provi
sions for reading and restoring specified thirds of any 
word. Rigorous limitations on weight, volume, and 
power input were imposed which together constituted 
an extension in the state of the art when the effort was 
originally started. Some of the circuit designs will un
doubtedly seem awkward in view of the improved tran
sistors now available; however, as computer units, they 
represented the state of the transistor art and market. 

GENERAL DESCRIPTION 

The logical block diagram shown in Fig. l' (next page) 
is introduced here to present a general idea of the entire 
system. The system is a conventional one using coinci
dent current and inhibit digit control to operate on all 
36 bits of the data word in parallel. 

The information furnished to the memory by the 
computer consists of the 12-bit memory address, an ini
tiate signal, the type of operation to be performed 
(either read, write, or partial write), and the data word 
or partial data word which is to be written. These signals 
en ter the memory circuitry through buffer amplifiers 
which convert the computer signals to signals which are 
compatible with memory circuitry. 

Address information is translated in two parts, that 
which operates the X-coordinate lines and that which 
operates the Y-coordinate lines. The results of the trans
lation controls drive line switches (current diverters) 
which provide the coincident current selection of the ad
dressed word. 

The initiate signal sets the lock-out flip-flop of the 
memory timing chain which causes the generation of the 
first timing pulse. Further stimulation of the timing 
system is not necessary as additional timing pulses are 
self-generated. Timing pulses are furnished to appro-

t Remington Rand UNIVAC, St. Paul Minn. 

priate points to govern the sequence of events through
out the memory cycle. The timing of the memory opera
tion does not vary whether a word is being read from 
memory or a word is being written in to memory. The 
difference between these two operations lies in the con
trol of the gates at the inputs of the memory data register 
(memory input/output register). To read the memory, 
the read probe gates (RTn) are energized; to write into 
the memory, the write probe (WTn) gates are energized. 
These gates are controlled by the (WRITE)n flip-flops, 
which store information regarding the type of operation 
to be performed. 

The digit plane control contains all the circuitry nec
essary to operate 1-bit plane. This includes the sense 
amplifier, the memory data register and its input gates, 
and the inhibit/disturb current generator. One-word 
information transmissions to and from memory are 
made through the memory data register. 

Information furnished to the computer by the mem
ory consists of the word read from memory, a transfer
complete signal which indicates the word is available in 
the memory data register, and a reference-complete sig
nal which indicates the memory cycle is finished. 

MEMORY CONSTRUCTION 

Tp.e memory cores are assembled in 38 printed circuit 
frames, each of which containS' 4096 magnetic memory 
cores. The cores are arranged in a 64 X 64 configuration 
(see Fig. 2), p. 59. Two of the core memory frames are 
reserved as spares. 

The magnetic cores are General Ceramics Type S-3 
ferrite material which requires a magnetizing force of 
approximately 350 ma-turns. This type core was se
lected for its compatibility with transistor current 
carrying capacity, power dissipation, and voltage and 
current gain characteristics. Prior to assembly in a core 
plane, all the cores' are individually tested and selected 
for uniform characteristics. During the test, the cores 
are subjected to 320 ma full-amplitude current pulses 
and 190 rna half-amplitude current pulses. When tested 
with these current pulses, only those cores which met the 
following specifications were selected for use in the 
memory: (See Fig. 3) 

1) Disturbed "1" output-14 to 18 mv after being 
subjected to a series of half-amplitude read cur
ren t pulses. 

2) Disturbed "0" 01).tput-7 mv maximum after being 
subjected to a series of half-amplitude write cur
ren t pulses. 

3) Switching time-4.5 ± 0.5 p,sec. 
4) Peaking time-2.2 ± 0.25 p,sec. 



C/) 

~ 
~ 
~ a 
a 
~ 
~ 

~ 

~ 
:.::::> 

~ a 
\..) 

~ 
~ 

~ 
C/) 

~ 
t--.. 
l.r) 

0-
"'""-t 

00 
If) 

r 

il 

~I~ I t; i 
L&'~ 

:::;~ :~;~: : ::-"'~~7.:;:---t-------t-. 
WRITE SECTOR I PULSE 

REAO SECTOR 3 PULSE ....-J 
READ SECTOR 2 PULSE 

REAO SECTOR I PULSE 

I 
1 

I 

~~~E II 
CONTROL

12 I

__ J

I----~-... --,

~J. _T~A.SLATOR ~~~..J ___ -,

TRANSLATOR 12'1 -I ~RANSLATOR (2~)

:1 .~I --.~ r~L1~-~- -I ~l J J m I~ L."'l.....'.:'L ~L~~_ .::1 _~.L --'-~ I-,---~l.-~1 1~--,--1 --'----'---l_~L_L._L........l..---~

I
1

i1i,,:IIIIIUUH I I I I

_ ~o=, :-.1 ~0.i :-:.i -';. :-:.i -':, J ~! -. :oJ --. :-: ;-:, -0. :-;. -<;. ;: ;':, ;-_ :~ :-.1 ;0 \ ;1111'111 ,d '1'1 ;(d; :; ! ; ; 1,1 ;1 I I-

i 6 ~- T - -- . ~---
I I' _+--_~~MORY 2"T~~:~G_ ~H_AI~ _ 1o-2~~ I

~--------c--=--=-=-_=-_-=-_~-_--- -- ---:_-=-_--==--=_--==_~

M;:~~:~ C~:EGRS~~"'E

Fig. 1-Logical diagram, magnetic-core storage.

IiE..-...EMn 1-11-.
.A.MITt 1-.-•
........ T[._1_.
"oI.lZlE",.U.4-1I'"
"J 11'1£"'.'.4-11 __

Valenty: A Medium-Speed Magnetic Core Memory S9

Fig. 2-Magnetic-core matrix.

DISTURBED "I"

01 STURBED "0"

Fig. 3-Memory-core output signals.

The waveforms of the "0" and "1" signals induced on
the sense wire are shown in Fig. 3.

Four wires pass through each core: an X-coordinate
drive line, a V-coordinate drive line, an inhibit/disturb
drive line, and a sense wire, as shown in Fig. 4.

The sense wire of each core memory plane passes
through each core once and is wired diagonally in a sym
metrical balanced arrangement so that nearly all un
wan ted noise signals of all cores except the core being
addressed tend to cancel.

The inhibit wire passes through all cores in each core
memory plane parallel to one of the coordinate drive
lines so that when an inhibit pulse (of opposite polarity
to the write pulse) occurs, the magnetic field established
on this coordinate line is cancelled.

Each line of the coordinate drive system passes
through 64 cores of each plane so that there are 64 X
coordinate drive lines and 64 V-coordinate drj:Ve lines.
Therefore, each drive line passes through 2432 cores.
The drive lines between planes are connected by a spe
cial connector consisting of a number of contacts which

WRITE/RESTORE -

... x

II
~

ID
a:
:>
l-

iI'

CLEAR /READ -

Fig. 4-Magnetic-core control wires. Arrows indicate direction cur
rent flow during reading or writing.

resemble cotter keys mounted in a slotted plastic form.
This connector is shown in Fig. S. The cotter key acts
as a jumper between the printed circuits of two adjacent
core memory planes making the drive lines continuous
throughout the length of the memory.

Fig. 5-Memory plane connector.

The memory is mechanically divided into two sec
tions because of space limitations. Each section consists
of 19 core memory planes and 2 printed circuit terminal
boards. The front terminal board of one section is used
to buss together all the drive lines of each coordinate.
Single wires from the busses are connected to the out
puts of the X and Y read/write current generators. The
rear terminal boards are used to connect the two sec-

60 1957 WESTERN COMPUTER PROCEEDINGS

tions, and the front terminal board of the second section
connects each drive line to the collector of individual
current-diverting transistors.

It has been determined that the magnetic coercive
force varies with temperature to such a degree that
operation with fixed drive currents over the full range
of ambient temperature would not be reliable. To over
come this, the memory is contained in a thermally in
sulated box and the temperature within the box is main
tained constant, slightly above the highest ambient.

MEMORY TIMING

A study of the sequence of timed events which occur
during a memory reference, revealed the fact that the
requirements for timed pulses and their duration re
mains fixed regardless of the type of operation and the
repetition rate of memory references. This permits the
use of a timing device which is not synchronized with
computer timing. Therefore, the timing of the memory
can be separate from the computer timing, and requires
only the receipt of an initiate pulse from the computer.
A resume pulse must be supplied to the computer when
the reference is completed. This principle is used in the
timing system which employs magt;letic switch cores to
create accurately shaped pulses and transistor switches
to set and read the cores. Fig. 6 shows the timing circuit
used in the memory.

Transistor Ql is biased to cutoff, and a current i1 flows
in the primary winding of the magnetic switch core of
sufficient magnitude to hold the applied magnetic field
of the core at +Bs (point A) on the hysteresis loop.
When transistor Ql is turned on by the positive going
input pulse, a saturation current, i 2 , flows which reverses
the applied magnetic field of the core. When this occurs,
the magnetic field rapidly traverses the hysteresis loop
to -Bs (point B) and sets the core in approximately 1
p,sec. A negative going pulse is produced at the output.
This pulse is not used. At the termination of the input
pulse, transistor Ql again cuts off, and read current i1
begins to flow, producing a positive going pulse in the
secondary. This voltage is clamped by diode CR1• The
waveforms shown in Fig. 6 illustrate the voltage rela
tions of the transistor and magnetic core.

The output of the first stage is connected to the input
of a second stage so that during the interval that the first
core is being read out the second stage transistor is
turned on thereby setting its associated core. The sub
sequent operation of the second stage is like that of the
first stage, but it is displaced by one pulse period. Simi
larly, many stages could be connected in series produc
ing as many pulses (time displaced from each other) as is
desired.

The emitter resistor, Re, serves the useful purpose of
providing the high input impedance (Beta X Re) nec
essary to cause the clamping diode to conduct, without
seriously reducing reverse base current. In this manner,
the response of the transistor (rise and fall time) is made

INPUT

+16V

;--o--'-"~...---o OUTPUT

-22V

-20V

(a)

INPUT ~ OUTPUT

(b)

INPUT-22V~
I I
I I
I I
I I

'v C -5V I

I
I
I

lav: I :
I I I

,=NT-~

(d)

-Iav

B A

(c)

Fig. 6-(a) Magnetic-core timing-delay schematic diagram, (b) mag
netic-core timing-delay block diagram, (c) magnetic-core hyster
esis loop, (d) magnetic-core timing-delay voltage waveforms.

sufficiently fast so that there is no time lost between
pulses of adjacent stages.

The pulse width produced by this method of clamping
the output of a magnetic switch core' can be accurately
controlled so that the pulses produced by many stages
are very nearly constant in width. Assuming that mag
netic saturation is reached during switching, the core
outputs will differ only by that amount of variation
caused by differences in 'saturation flux and by differ
ences in the forward drop of diode CR1• By precise manu
facture and selection of cores, and the use of high con
ductance diodes with very low forward drop, the varia
tion in pulse width between stages has, in actual circuits,
been limited to ± 0.05 p,sec. The magnetic switch core
used in this application is the Remington Rand Type C
core.

I t was found that a pulse chain of 10 stages, each pro
ducing 2-microsecond pulses, best suited the memory
timing requirements. Fig. 7 shows the various pulses
required, and Fig. 8 is the simplified block diagram of

Valenty: A Medium-Speed Magnetic Core Memory 61

INITIATE

CLEAR MDR

READ

WRITE

PROBE
VARIABLE
DELAY

PROBE

INHIBIT
VARIABLE
DELAY

INHIBIT

POST
WRITE
DISTURB

0 I 4 7 8 9 10 12 13 14 15 16 17 18 19

I I I I I I I I I I I I I I I

Jl

JI

~

________ ~r!L: ________________________ __

__________ ~:__lL ____________________ __

________________ ~r:L: ________________ __

---------------------~
Fig. 7-Memory timed pulses.

20
I

in progress. Read, write, and inhibit pulses which initi
ate the respective current driver circuits are generated
in proper pulse width by connecting the set and reset
inputs of flip-flops to the appropriate timing pulses.
Timed pulses are used directly to clear the memory data
register and to generate the probe pulses and the post
write disturb pulse. It should be noted that the pulses
preceding the probe pulse and the pulse which sets the
inhibit flip-flop are variable in width. This is accom
plished by making the voltage E, across the secondary
winding of the magnetic core, variable. This allows for a
manual adjustment of the probe pulse timing and be
ginning of the inhibit pulse so that they occur at the
proper time.

A decided disadvantage of the system is its inherent
voltage sensitivity. That is, a change in anyone of the
three negative voltages, - 20, -18, or - 22 volts, will
cause either a malfunction of transistor Ql due to in
sufficient base current, or, a change in pulse width due
to a change in voltage E (shown in Fig. 6). These de
fects have been overcome by deriving all negative volt-

TRANSFER COMPLETE
TO COMPUTER

I
FROM

COMPUTER

2 fLsec PULSE
CLEAR MDR

,6 fLsec PULSE
TO READ DRIVERS

2 fLsec PULS E
I-----~ STROBE

6 fL sec PULSE
TO WRITE DRIVERS

REFERENCE COMPLETE
TO COMPUTER

2 fL sec PULSE
CLEAR

WO,W I ,W2 ,W3 ,
FLIP FLOPS

2 fLsec PULSE

L-____ --+~ 6?~iU:BRlig
INHIB IT DRIVERS

7 fLsec PULSE
TO INHIBIT DRIVERS

t

Fig. 8-Simplified block diagram of memory timing chain.

the memory timing chain. A l-,usec initiate pulse sets
the lockout flip-flop which in turn causes the simultane
ous readout of the first stage of the chain. To accom
plish this, the first stage transistor is normally conduct
ing so that its associated core is normally in the "set"
state. The flip-flop output cuts off the transistor and the
core is readout. The lockout flip-flop is reset by a resume
pulse taken from a stage near the end of the chain so
that a reference cannot be initiated while one is already

ages from the same source which is regulated to ± 1 per
cent. In addition, a Zener diode voltage reference for the
voltage E may be utilized.

LOGICAL DECISION ELEMENTS

The logical circuitry employed to operate the memory
consists of simple diode AND and OR circuits.

The logical AND circuit is shown in Fig. 9. In this
circuit, the presence of a logical" 1" is defined as ground

62 1957 WESTERN COMPUTER PROCEEDINGS

INPUT A OUTPUT

INPUT B
-2V

INlPUT C

-20V

A

C

a = AND

Fig. 9-Basic logical AND circuit and symbol.

CR I

INPUT A OUTPUT

27K

-20V

INPUT B

-20V

INPUT C

-20V - 2V

A . + <A+B+Cl

c

+ = OR

Fig. lO-Basic logical OR circuit and symbol.

potential at an input. When any of the three inputs (A,
B, C) are grounded, the voltage at the output will be 0
volts. When all three inputs are open circuited, and only
in this condition, the voltage at the output will be - 2

INPUT A 0----.--1 _ _+---0----.

-20V

INPUT B 0---____ 11-....

INPUT C 0---.... +16V

-2V

-20V

(a)

C

(b)

A

(d)

OUTPUT

Q I
SBIOO

Fig. l1-(a) Basic single inverter circuit, (b) single inverter block
diagram, (c) single inverter connected for double inversion, (d)
double inverter diagram.

volts (clamped by diode CR4). Thus, the latter state
defines the logical AND function.

The logical OR circuit (Fig. 10) operates in a similar
manner, but diodes CR1 , CR 2 , and CRa isolate input cir
cuits from each other so that the presence of a logical
"1" at anyone of the inputs is capable of causing the
output to change to - 2 volts.

The output of these buffing and gating circuits is con
nected to a resistive divider network (Ra and R4 of
Fig. 11) which controls the bias on an SB100 transistor.
When the voltage at point I is zero, a small reverse bias
is applied to the transistor, holding it in the cutoff state.
When the voltage at point I falls to - 2 volts, base cur
rent is supplied to the transistor and it conducts. Signal
inversion in the transistor complements the output of
the AND and OR circuits as shown by the accompany
ing Boolean expression. The output diodes in the col
lector circuit connect to logical circuits similar to the in
put circuitry of this stage. These diodes serve to isolate
the different logical circuits connected to the same tran
sistor.

Valenty: A]v[edium-S peed Magnetic Core Memory 63

RIA
27K

INPUT B - 20V CR 2A

INPUT C

-2f)V

C

-2V

3.9K

(a)

B

F

+ = OR

(b)

3.9K

-2V

OUTPUTS

E

C F

(c)

INPUT 0

RIB
27K

CR2B -20V INPUT ~

CR5B -20V INPUT F

R5B
27K

-20V

Fig. 12-(a) Basic flip-flop schematic diagram, (b) single inverters
connected as flip-flop, (c) flip-flop block diagram.

In order to provide the direct uncomplemented out
put, it is necessary to connect the output of a single in
verter amplifier to a second inverter amplifier. In this
case the first stage is used to drive two second stages so
as to provide additional outputs.

By connecting the collector of one single inverter to
the OR input of a second single inverter, and vice versa,
a bistable flip-flop can be constructed as shown in Fig.
12. Outputs from the flip-flop can be taken directly via
diodes from the collectors to connect to other logical cir
cuitry.

The three basic circuits: the single inverter, the
double inverter, and the flip-flop, provide all the logical
control throughout the memory. This includes memory
address translation, read and write probe, temporary
data storage, and inhibit/disturb logic.

The read or write probe logical signals gate the proper
transmission paths connecting to the inputs of the mem
ory data refister. The read probe pulse energizes the
gates connected to the sense amplifier so that the mem
ory word enters the memory data register. The write
probe pulse enerfizes the gates in the lines from the com
puter X register so that a new word can enter the
memory data register. The memory data register con
trols the inhibit/disturb gates, thus causing the contents
of the memory data register to enter the memory.

There are three different write probe signals; WTI ,

WT2 , WT3 and three different read probe signals RTI,
RT2 , and RT3• Each of these signals controls the read and

write gates of 12 bits of MDR. The RTI and WTI signals
control bits 0-11; RT2 and WT2 signals control bits 12-
23; and RT3 and WT3 signals control bits 24-35. This
method of gating permits the reading of the whole word
from the memory, writing a whole new word into the
memory, or writing new information into a specified
sector of the memory.

The read and write probe signals are produced
through the use of the logical circuits shown in Fig. 1. In
verse logic is employed to create the read probe signals.
One of the four flip-flops shown may be set by a signal
from the computer at the same time that a memory
reference is initiated. Flip-flop Wo is set if an entire new
word is to be written in the memory. Fli p-flop WI is set
if new information is to be written in bits 0-11; flip-flop
W2 is set for bits 12-23, and flip-flop W3 is set for bits
24-35. The flip-flops are cleared at the end of the refer
ence by a pulse from the timing chain. The proper out
puts of the Wo flip-flop are combined with the proper
outputs of the WI, W2, and/or W3 flip-flop outputs into
the correct logical gates. The results of these combina
tions are combined with the probe pulse from the timing
chain.

Therefore, if none of the flip-flops are set, all three of
the read probe signals will be present allowing the whole
word from the memory to enter the memory data
register. If the Wo fli p-flop is set, all three of the write
probe signals will be present allowing the whole com
puter word to enter the memory data register. If the WI

64 1957 WESTERN COMPUTER PROCEEDINGS

INHIBIT

DISTURB

GENERATOR

+=OR

a = AND

"I" FROM X

2 j.LSEC 7 j.LSEC

POST WRITE INHIBIT PULSE
DISTURB PULSE FROM TIMING
FROM TIMING CHAIN
CHAIN

Fig. 13-Logical block diagram of restoration circuit.

flip-flop is set, the WT1 , RT2 , and RTs pulses will be
present, allowing bits 0-11 of the X register and bits
12-35 of the memory to enter the memory data register,
etc. The other read and write functions are formed
similarly. Subsequently, the contents of the memory
data register are written into the memory.

T ne manner in which the memory data register con
trols the inhibit/disturb generators, which, in turn, con
trols the writing of "l's" or "O's" into the memory, is
shown in Fig. 13. The memory data register is cleared
by a 2-p,sec pulse at the beginning of the memory refer
ence in preparation for receipt of the new word from
memory, or the X register, or a combination of both.
The output of the sense amplifier and the read probe
gate is shown connected to an OR circuit with the out
put from the X register and the write probe gate. The
"1" output of the memory data register is connected to
the X register while the "0" output side is connected to
an AND gate with the 7-p,sec inhibit pulse from the in
hibit flip-flops. The output of this gate is connected to
an OR circuit with the 2-p,sec post write disturb pulse
from the timing chain. This line controls the operation
of the inhibit/disturb generator. Thus, for those bits in
MDR containing "l's," a 2-p,sec post write disturb cur
rent pulse will appear on the appropriate inhibit/dis
turb lines, and a "1" will be written into memory. For
those bits containing "O's," however, a- 9-p,sec inhibit
current pulse will appear on the appropriate inhibit/
disturb lines and a "0" will be written into memory. For
the proper timing of these two pulses refer to Fig. 7, cur
rent waveforms.

ADDRESS TRANSLATION AND LINE SELECTION

The 64 X 64 memory core configuration requires 64
X-coordinate drive lines, and 64 V-coordinate drive lines.

1
BUFFER AMPLIFIERS

T
I

+=OR

V
3 BITS OF X ADDRESS

FROM COMPUTER

Fig. 14-Simplified block diagram of translator.

All the X-drive lines are bussed together at one end and
connected to the secondary of the read/write trans
former. The other end of each line is connected to the
collector of a bilateral transistor which is turned on by
the address translator when selected. The V-coordinate
drive lines are connected in the sarlIe manner.

Twenty-four buffer amplifier stages are used to make
the signals from address transmission lines from the
computer (Philco circuitry) compatible with the mem
ory logical circuitry. These are simple isolation tran
sistors in series with the signal lines. The remainder of
the address translation (Fig. 14) is quite conventional
with the exception that inverse logic is employed to re
duce the number of standard logical circuits employed.
The address buffers feed 16 three-input "OR" circuits
to operate the appropriate double inverter amplifiers
(D I) performing an octal translation for the X line se
lection. (The Y line selection is made by an identical
system.) The outputs of the double inverters are fed to
64 two-input "OR" circuits completing the translation.
This is followed by single inverter amplifiers (SI) which
complement the input to restore the proper sense.

The output of the single inversion is connected to the
diverter amplifier (A) and then to the line selecting cur
rent diverter (D). Fig. 15 is the circuit of the last three
stages of the translator. The primary purpose of this
circuit is to change the current level from that of the
surface barrier transistor to that of the current diverter
(200 rna). Transistor Ql supplies approximately 1 ma to
the base of transistor Q2 keeping it in the saturated con
ductive state. A voltage of approximately - 2 volts

Valenty: A Medium-Speed Magnetic Core Memory 6S

~'"'

C':~~~;T -20V
21NPUT175~ =~K

CR2

o--.,..-----'I----t-D---'

"---v---i ~ ~
SINGLE D1VERTER BILATf:RAL

INVERTER AMPLIFIER mVEATER

Fig. 15-Current diverter schematic diagram.

I ",SEC

4r--
o I
I I

10
I

12 13 14 15 16 17 18 19 20
I I I I I I I I I

INITIATE

~L-____________________ _

READ/WRITE
CURRENT

INHIBIT _________ ~/
(WRITING A "d')

DISTURB _______________ ~~
(WRITING A " I")

ALL CURRENT MAGNITUDES 175 MA

Fig. 16-Current generator waveforms.

appears at the collector of transistor Q2 and also at the
base of transistor Qa. The diverter transistor of only one
drive line conducts while all other lines remain cut off.
Therefore, the voltage impressed on the collectors of all
cu toff transistors will reach the peak voltage produced
by the current generators. It is necessary to reverse bias
the cutoff transistors at a voltage greater than the ex
pected collector voltage variations. Thus, in this system,
Qa is cut off with 10 volts reverse bias.

When a drive line is selected, transistor QI and Q2 cut
off, and a 1S-ma base current is supplied to transistor
Qa. Transistor Qa is designed with equal forward and re
verse gains so that it can easily pass bipolar pulses of
equal magnitudes. The response time of transistor Qa in
this circuit is such that a 200-ma pulse can flow 2 p..sec
after the base current begins to flow and will cut off 2
p..sec after base current ceases to flow.

CONSTANT-CURRENT GENERATORS

The current waveforms required to operate the mem
ory are shown in Fig. 16. The inhibit/disturb current
generator produces either of the two pulses shown. The
inhibit pulse is a 9-p..sec pulse which overlaps the write
current pulse and is of opposite polarity to it. The occur
rence of this pulse causes a "0" to be written into the ad
dressed memory core. The disturb pulse is a 2-p..sec pulse
occurring immediately after the write pulse whenever a
"1" is written into the addressed core. This places the
core in the disturbed "1" state immediately so that the
half-disturb noise signal is greatly reduced during sub-

+ sv

.... ..---901 INHIBIT LINE

-2V

(a)

RI+ INHI BIT LOAD RI LOAD r /LINE

B A

Vc +av +16V

(b)

\

+SVINHIBIT I Q2
QI COLLECTOR LINE --~I\ COLLECTOR

VOLTAGE 1',,_ _, 15V VOLTAGE

OV -----~ t, r----~-
V

Q2~'W'" t:: ____ U'.!....-V ~-_-_-_-
INHIBIT CURRENT 0 ~a_

(c)

Fig. 17-(a) Inhibit/disturb current generator schematic diagram'
(b) transistor Q, collector char~teristics, (c) inhibit/disturb
current generator voltage waveforms.

sequent memory references involving either of the two
coordinate drive lines which pass through this core.
This results in greater uniformity of 1-signal output
from all cores.

Several factors were taken in to account in the design
of the constant-current generators; regulation of cur
rent magnitude for variation in load or supply voltage,
stability of current magnitude regardless of transistor
gain, ease of varying current magnitude, and the tran
sient response of the power supply.

Fig. 17 represents the circuit employed as the inhibit/
disturb current generator. The low-frequency tran
sistor (QI) is biased by base voltage, E I, to conduct at the
desired inhibit current magnitude. The high-frequency
response transistor, Q2 (Type GT84S), is normally cut
off and therefore the dc current flowing in transistor QI
passes in to the resistance R 2• The transistor Q2 load line
(exaggerated) is shown as line A on the graph of Fig. 17.
When transistor Q2 is switched into saturation by the
proper timed pulse, the collector voltage of transistor
QI drops rapidly below +8 volts so that diode CRI is
cut off. Consequently all the pre-established dc current

66 1957 WESTERN COMPUTER PROCEEDINGS

CONTRO
INPUT

CONTROL
INPUT

CONTROL
INPUT

CONTRO
INPUT

+8V

+8V

+8V

E~j~~
I DRIVE
I LINES
: BUSSED

.----+-4--....J OGETHE

"x" LINE
SWITCH

"y" LINE
SWITCH

-----r , r
64 "y" DRIVE I

LINES BUSSED:
TOGETHER I

38 MAGNETIC CORE

SIGNAL
INPUT

MEMORY PLANES

64 "y"

CURRENT

DIVERTERS

64 " X" ADDRESS
TRANSLATION INPUTS

~

I

l 64 "X"

I CURRENT
I
: DIVERTERS

f
I
I

Fig. 18-Simplified diagram of "X" and" Y" drive line and current diverter system.

of transistor Ql now flows through the inhibit/disturb
line in the form of a current pulse. Load line B is repre
sentative of the condition during the flat portion of the
current waveform.

During the transition period, the collector capacity
charge variation tends to increase the collector current
which causes an overshoot followed by a drooping wave
form due to the slow response of transistor Q2. The in
ductance, L 1, is inserted in the emitter circuit to provide
degenerative feedback and overcome this undesirable
effect. This keeps the collector current constant during
the transition periods.

Diode CR2 in series with the inhibit/disturb drive line
and the resistor Rs connected to + 16 volts serve to re
duce the capacitive loading of the read/write current
pulses due to the large capacity between the inhibit/
disturb drive lines and the read/write drive lines.

Since the memory word length is 36 bits, there are 36
inhibit/disturb generators. It is desirable to be able to
manually adjust the current magnitude of all 36 gen
erators by a single control. To accomplish this, despite
wide variations in transistor gain, the emitter resistor is
used to provide dc stabilization of the circuit. Actually
this resistance is made up of the controlled winding re
sistance of the inductor, L 1• Controlling the current
magnitude produced by all 36 drivers is easily accom
plished by varying the base bias voltage of transistor
Ql. Fluctuations in current demand from the power sup-

plies due to the pulsing of the inhibit drivers has been
eliminated by maintaining a dc current in the genera
tors, thereby simplifying the design of the + 16 volt
power supply while permitting the +8 volt supply to
vary as much as 10 per cent. This is particularly impor
tant since the transient current demand would be quite
large (6 to 8 amps) making voltage regulation of low
voltage-high current supplies extremely difficult.

The X and Y read/write current generators produce
bipolar half-magnitude current pulses which are coupled
to the X and Y coordinate drive busses. The current
waveforms have a 1-,usec rise and fall time and a S-,usec
flat portion of approximately 175 mao The circuitry for
the read/write current generator is basically the same as
for the inhibit/disturb generator except that two gen
erators and a dual primary transformer are required to
produce bipolar current pulses.

One of the special considerations that had to be taken
into account in the design of the read/write generator
was the response of the read/write transformer. Under
certain operating conditions, the load as seen by the
transformer may not change for long periods of time.
This drive line impedance is relatively low and extends
the recovery time of the transformer to a period greater
than the interval between current pulses. Because of
this, the base reference line of the current pulses would
tend to seek different levels in either the plus or minus
direction depending upon the interval between memory

Valenty: A Medium-Speed Magnetic Core Memory 67

references and also the degree and direction of unbal
ance between the read and write pulses. To insure a
zero base line at the start of each reference, all of the
energy stored in the transformer must be dissipated
prior to the next reference. To accomplish this, a second
ary line switch was placed in the transformer current re
turn path (Fig. 18, preceding page). The circuit of this
switch is the same as the current diverter except that it
is normally in the conducting state. At the end of each
reference, the switch transistor is cut off for 2 p,sec. This
presents a fairly high impedance to the transformer sec
ondary winding, and the stored energy dissipates very
quickly so that the transformer will be ready for the
next reference at the end of each cycle.

SENSE AMPLIFIER

The sense amplifier used in each digit plane control is
shown in Fig. 19. A 1: 1 balanced transformer, T I ,

cou pIes the memory core ou tpu t signal in to the grounded
base input stage QI. The bias voltages applied cause ap
proximately a l-ma dc current to flow through the tran
sistor into the auto transformer T 2• The 14 to 18 mv
signals are amplified to approximately 0.5 volt based at
+0.2 v and clamped by the bases of transistors Q2 and
Qs. The bipolar pulses are rectified and amplified to the
2 volt level shown. These signals are transmitted to a
single inverter to place them in the proper polarity for
logical combination with the read strobe signal. The
output of transistor Q4 is a 2-volt signal 2 p,sec wide,
occurring during the read signal. Waveforms at the
various points are shown.

The +0.2 volt reverse bias on transistor Q2 and Qs is
sufficient to eliminate all unwanted noise signals which
occur at probe time. The wanted signal is sufficient to
cause these two transistors to saturate.

CONCLUSION

The results achieved in this design clearly indicate
that larger and faster all-transistor memory systems are
feasible. The power required to operate this memory is
approximately 300 wand the space required is approxi
mately 5 cubic feet. This represents a power reduction

TO MOR
RTn SET INPUT

(a)

(b)

I/LS"'c

~ f- 1\
+ 2V ~ ,--J '--

"I OV~

+.2V --JL. r===
"2 OV~

"3 OV

J \ - 2V

"4 OV

\ - 2V

"5 OV~

(c)

Fig. 19-(a) Sense amplifier schematic diagram, (b) sense amplifier
logical block diagram, (c) waveforms.

over an all-tube equivalent of about 10 times and a
weight and volume reduction of about 20 times. The
performance of the 1200 transistors used in this system
has yet to be demonstrated but it is felt that it will be
far better than the vacuum-tube equivalent.

Discussion Dr. Valenty: Plus or minus 50 milli
amperes, or approximately 10 per cent.

have you considered as the worst case for
component and transistor tolerances?

S. C. Chao (General Electric): What is
the accuracy of the driving currents?

E. Slobodzinski (I.B.M.): What is the
environment temperature-wise that your
system was designed to operate in? What

Dr. Valenty: The system is designed to
operate up to 90 degrees F; over that it is
automatically turned off.

-.1

68 1957 WESTERN COMPUTER PROCEEDINGS

/

Millimicrosecond Transistor Current
Switching Techniques

H. s. YOURKEt AND E. J. SLOBODZINSKlt

INTRODUCTION

T HERE ARE five major limitations on the speed
of transistor switching circuits. These are: 1) car
rier storage delays, where the transistors are

operated in saturation, 2) the limitations imposed by
transistor and circuit capacitances, 3) a cutoff fre
quency, 4) diffusion or transit-time delay, 5) storage
time in associated diodes.

If transistor switching circuits are to have response
times limited primarily by the bandwidths of the tran
sistors operating as amplifiers and by diffusion or tran
sit-time delay, it is necessary to avoid operation in
saturation. As low collector-to-base voltage generally
has a detrimental effect on transistor bandwidth, it is
desirable, as well, to avoid operation near saturation.

Where nonsaturating circuits are used, and when
transistors having cutoff frequenceis of several hundred
megacycles are considered, circuit capacitances become
the primary limitation on speed. If we assume a current
step into a node, where there is capacitance to ground
a t the node, the voltage rise time is proportional to the
required voltage swing. Therefore, to minimize the
effects of circuit and transistor capacitances it is de
sirable to operate with voltage swings as small as re
liability considerations will permit.

A new mode of operation has been developed whereby
well-specified currents can be switched reliably with
small voltage swings. Transistors are operated well out
of saturation, and switching speeds approach that of a
grounded-base amplifier driven by a current step. The
resulting logical circuits reset their own lev~ls. The cir
cuits place no requirement on the upper limit of a and
have a dc stability factor of unity. They have comple
mented outputs and provide an essentially constant
load to all dc power supplies. The circuits are simple and
relatively noise free.

THE MODE OF OPERATION

The basic principle of the mode of operation pre
sen ted here is the switching of a constant current in to
the emitter of a single transistor, or the emitters of a
group of parallel transistors, to the exclusion of other
transistors whose emitters are tied to the same node.
This mode of operation is best illustrated by an exami
nation of the basic building block shown in Fig. 1. If the
vol tage at the base of the top transistor is permitted to
assume a value either slightly more positive or slightly

t Research Center, IBM, Poughkeepsie, N. Y.

COLLECTOR CURRENT FOR

ON TRANSISTOR:. .1 + lco

COLLECTOR CURRENT FOR
OFF TRANSISTOR = Ico

Fig. 1-Basic transistor block.

more negative then the potential at the base of the bot
tom transistor (in this case, ground), the current, I, will
flow in to the emitter of one transistor to the exclusion
of the other. A voltage swing of +0.4 to -0.4 volts
about the reference voltage has been found sufficient to
guarantee switching of up to 10 ma in high-frequency
experimental drift transistors.

For a positive input voltage whose magnitude is equal
to, or greater than, the emitter-to-base voltage drop of
the bottom transistor, the bottom transistor will con
duct and the top transistor will be off. For a negative
input voltage whose magnitude is equal to or greater
than the emitter to base voltage drop of the top tran
sistor, the top transistor will conduct and the bottom
transistor will be off. The collector current for the non
conducting transistor will be leo, and the collector cur
rent for the other will be Ieo+aI.

For a voltage step applied at the input, the transient
behavior of the circuit approaches that of a grounded
base amplifier driven from a current step. There is
simultaneous switching of emitter currents in the two
transistors. The outputs of the transistors are comple
mentary. If a complemented output is not desired, the
bottom transistor may be replaced by a diode. As noted
above, the dc stability factor is unity.

COUPLING TECHNIQUES

There are several techniques for coupling basic build
ing blocks or the resulting logical circuits. One tech
nique uses alternate p-n-p and n-p-n blocks, directly
coupled. Another uses low impedance voltage translat
ing blocks as coupling devices.

Two basic building blocks, one a p-n-p block and the
other an n-p-n block, are shown in Fig. 2. Both blocks
are 6-ma current switches. An unloaded input voltage
swing of ± 0.6 volt with respect tothe reference voltage at
the base of the bottom transistor is required for reliable
switching in either block. The voltage levels at the out-

Yourke and Slobodzinski: Millimicrosecond Transistor Current Switching 69

T~
-(V+.6)

J
+ .•

-.'

l-(V-.6}

L--__ ----'-_------'--4 L-(V+.6}

,-------,---------,----1+.6

-.S

Fig. 2-N-P-N and p-n-p basic transistor blocks with input
and output levels shown to illustrate compatibility.

puts are ideal for driving blocks of the opposite kind.
The 3 rna current sources in the collector circuits are

not essential. Their use, however, permits the collector
load resistors to be returned to the reference voltage of
the succeeding stages, thereby reducing the effects of
noise on the reference voltage lines. The peaking coils
provide' a degree of transient overdrive and improve the
speed and cascading factor. Since collector voltage
swings are small, the transistor may operate at a fairly
constant collector voltage whose magnitude is chosen to
provide maximum transistor bandwidth. Generally, the
·collector voltage would be as large as breakdown voltage
and power dissipation considerations would permit.

In Fig. 3, a p-n-p block is shown driving a number of
n-p-n blocks located at a relatively large distance. The
peaking coil and collector load resistor have been moved
from the p-n-p block to the vicinity of the n-p-n blocks
being drjven. Since current is being transmitted, rather
than voltage, series parasitic elements along the line,
such as contact-resistance and inductance, have no ef
fect on the dc levels at the end of the line and have little
effect on the transient behavior. The voltage at the in
puts to the n-p-n blocks will be either 0.6 volt more
positive or 0.6 volt more negative than the reference
voltage; and the system is virtually insensitive to noise
on the reference voltage. Since impedance levels at all
nodes are 200 ohms or less, the system is relatively free
of noise due to capacitive coupling.

In the example shown, the long line is terminated in a
dc impedance of 200 ohms. If larger currents were to be
switched the line could be terminated in a proportionally
lower impedance, since the required voltage swing would
be essentially the same. This technique of placing the
load resistor at the end of the long line should lend itself
to coupling through low characteristic impedance trans
mission lines.

The use of voltage translating blocks for coupling
basic building blocks or the resulting logical circuits is
illustrated in Fig. 4. The black box contains a battery,
or any device that simulates a battery, and provides an
essentially constant voltage drop equal to the desired
nominal collector voltage. With the upper transistor
cutoff, I rna flows through the black box. The source on
the load side of the box provides a current of 1-3 rna,

+.61

-.6

Fig. 3-A p-n-p block driving a number of remote
n-p-n blocks.

+.6-1
I-----,-~---- J +.6

-.6

-.6 2000

Fig. 4-Application of a voltage translating block as
a means of coupling.

and 3 rna flows out of the load resistor, establishing an
output potential of -0.6 volt.

When the upper transistor is conducting 6 rna, 1-6 rna
flows through the box, and since 1-3 rna is provided on
the load side of the box, 3 rna flows into the load re
sistor, establishing an output potential of +0.6 volt.
The output of this block may drive either p-n-p or n-p-n
blocks.

Although this coupling technique requires more com
ponents and consumes more power than does the cou
pling of alternate p-n-p and n-p-n blQcks, the advan
tages of low impedance levels and relative freedom from
noise are retained.

TYPICAL LOGICAL CIRCUITS

A nd-Or Circuits

Application of the current switching principle de
scribed here results in a variety of circuits capable of
performing many logical functions. A description of a
few such circuits will illustrate the versatility of the
system. A typical building block is shown in Fig. 5.
Using the notation that the output of a conducting
transistor and the input enabling it to conduct are logi
cal ONE's, this circuit may be called an N-way comple
mented OR circuit. This notation is convenient in deal
ing with the coupling of alternate p-n-p and n-p-n logical
blocks.

70 1957 vVESTERN COMPUTER PROCEEDINGS

LOGICAL NOTATION-
PNP l.NPUT PNP OUTPUT
NPN OUTPUT NPN :INPUT
-0.6= "1"
+0.6= "0"

-y + 0.6 = ",i"
-Y-0.6:"0"

-v

Fig. 5-N-way complemented OR circuit.

Where any or all of the in pu t signals to this circuit are
logical ONE's, the current through the parallel combina
tion of the top transistors is 6 ma, and the current
through the bottom transistor is zero. The bottom tran
sistor conducts 6 ma only when all inputs are logical
ZERO's. For this case, the combined current through
the top transistors is zero. Since all signals have their
complements available, the circuit can perform AND or
o R operations on N signals.

Fig. 6 is a photograph of an input waveform and the
output waveforms of a 3-way complemented OR circuit,
with two inputs held at logical ZERO. The input wave
form, a ten megacycle square wave, is shown at the top.
The two output waveforms are shown below. The non
inverted waveform is the AND output and the inverted
waveform is the OR output. The circuit was operating
as a 6-ma current switch, using drift transistors. The
oscilloscope was synchronized with the input signal.

Fig. 7 shows the response of the same circuit when
two complementary inputs are applied while the third
is a logical ZERO. Ideally, the two outputs should re
main constant. The AND output, shown in the center,
is a logical ZERO. The OR output, shown at the bot
tom, is a logical ONE. Some logical noise does appear at
the OR output when the 6-ma current is switching be
tween two of the three parallel transistors.

Fig. 8 compares the outputs of a 3-way comple
mented OR circuit, shown at the top, and a 10-way
complemented OR circuit, shown below, when driven
from the same signal. Only slight degeneration in both
waveshape and delay is observed, indicating that the
useful number N for the N-way complemented OR
circuit is quite large.

To obtain an indication of the cumulative delay
through logical stages, a circuit was constructed having
four 3-way complemented OR circuits in sequence, each
with a cascading factor of three. This circuit is shown in
Fig. 9. The blocks were 6-ma current switches using
drift transistors, and could be connected through the
inverted or the noninverted outputs. The delay through
the system is measured between any output on the
right and the input to the first three blocks.

Fig. 10 is a photograph of the input and output wave
forms of the system. At the top are the input and out
put waveforms when the blocks are connected through

Fig. 6-Three-way complemented OR circuit. Two inputs are logi
cal ZERO's, third input is the top waveform. Lower waveforms
are outputs. (Hor.: 20 musec/cm, vert.: 1 volt/em.)

Fig. 7-Three-way complemented OR circuit. One input is a logical
ZERO, top waveforms are two complementary inputs. Center
waveform is AND output. Lower waveform is OR output. (Hor.:
20 musec/cm, vert.: 1 volt/em.) .

Fig. 8-0utputs of a ten-way complemented OR circuit, lower wave
forms, compared with the outputs of a three-way complemented
OR circuit, upper waveforms, driven by the same input signal.
(Hor.: 20 musec/cm, vert.: 1 volt/em.)

the inverted outputs. Four inversions result in an in
phase output. The lower waveforms are the input and
output waveforms when the blocks are connected
through the noninverted outputs. The total delay
through the four blocks in both cases is between 35 and
40 millimicroseconds.

Exclusive OR

Another important logical block is the exclusive OR
circuit. A six-transistor complemented exclusive OR
circuit is shown in Fig. 11. This circuit makes use of the
fact that all signals have their complements available.

The combined outputs of the bottom transistors will
be 6 ma for the exclusive OR statement'and will be zero
for the two other possible statements. The combined
outputs of the top transistors will be 6 ma for the ex
clusive OR statement and 12 ma for the two other
possible statements.

Yourke and Slobodzinski: Millimicrosecond Transistor Current Switching 71

Fig. 9-Block diagram of four complemented OR circuits
in sequence, with a cascading factor of three.

Fig. 10-Input and output waveforms of four sequential three-way
complemented OR circuits with a cascading factor of three. Top
waveforms are input and output of the system with blocks con
nected through inverted outputs. Lower waveforms are with the
blocks connected through noninverted outputs. (Hor.: 20 musec/
cm, vert.: I volt/em.)

The 3-ma and 9~ma current sources are arranged so
that the currents into the 200-ohm terminating resistors
switch between plus and minus 3 rna. The switching
speeds and logical noise for this circuit are essentially
the same as for the complemented OR circuit.

Triggers

This mode of operation, using small voltage swings to
switch well defined currents, lends itself readily to the
design of triggers or flip-flop circuits, the simplest of
which is shown in Fig. 12. The circuit is bistable by
virtue of the common-emitter current source and the
feedback from one collector to the opposite base. The
circuit may be triggered by pulsing the base of the
transistor which is tied to the opposite collector. The
lack of symmetrical inputs makes it difficult to employ
conventional pullover techniques without changes in
the collector to base feedback loop and the base circuit
of the normally grounded base transistor.

Fig. 13 illustrates a typical trigger circuit employing
feedback to both bases with p-n-p emitter follower pull
overs. The 200-ohm resistors are the loads normally
found in the collectors of a 6-ma transistor block as
described previously. The base of the ON transistor will
be biased at -0.6 volt while the base of the OFF tran
sistor will be biased at +0.6 volt. The pullover tran
sistor bases are normally at +0.6 volt. During a set or
reset operation, the appropriate pullover base is brought

r---~----~----~------~--~-4AB+AB
200~

A

200~

L---------~--------~--~--AB+AB

Fig. l1-Six-transistor, complemented, exclusive OR circuit.

Fig. 12-Simple two-transistor trigger or flip-flop.

Fig. 13-A typical trigger circuit for use in set and reset operation
using p-n-p emitter followers for pullover.

to - 0.6 volt. This causes the emitter to follow the in
put with some level shift. However, the emitter load of
the pullover is brought sufficiently past the point where
regeneration begins so that the set or reset operation is
completed with a minimum of delay.

A degree of overdrive is obtained by emitter follower
action, and also because the collector of the active pull
over transistor is tied to the collector of the transistor
whose base is being switched. Hence, a times the emitter
current of the pullover transistor appears at the collector
of the transistor being turned on, thereby enhancing the
output signal at that point.

Fig. 14 shows an extension of the technique to the use
of n-p-n emitter followers as pullover transistors. Here
the pullover bases are normally biased at - 0.6 volt

72 1957 WESTERN COMPUTER PROCEEDINGS

Fig. i4-A typical trigger circuit for use in set and reset
operation using n-p-n emitter followers for pullover.

and the pullover collectors are tied to the collectors of
the transistors being switched. Proper collector bias is
obtained for the n-p-n transistors by the use of a trans
lating block in the positive current source. The opera
tion of this circuit is analogous to the circuit of Fig. 13
except that positive swings change the state of the
trigger.

The delays and rise times of the emitter following
pullover triggers are of the same order of magnitude as
those for the other logical blocks described. Fig. 15 is a
photograph of the input and output waveforms of three
sequential triggers using p-n-p emitter followers as pull
over transistors. The noninverted trigger outputs were
used for coupling, giving a total delay of approximately
15 millimicroseconds. This delay is essentially that of
the emitter followers and is caused, in part, by the slope
of the input waveform.

The inverted output of the trigger will have delays
somewhat greater than that of the noninverted output,
since in this case the delay is dependent on the pullover
transistor and the trigger transistors, as well as on the
slope of the input waveform. These delays are of the
same order of magnitude as the delay through a simple
transistor block. Fig. 16 shows the delay through three

Fig. is-Input and output waveforms of three sequential triggers
II1II using p-n-p emitter followers as pullover transistors. The non

inverted output signals were:used for coupling. (Hor.: 20 musec/
em, vert.: O.S volt/cm.)

Fig. i6-Input and output waveforms of three sequential triggers
using alternate p-n-p and n-p-n emitter followers as pull-over
transistors. The inverted output signals were used for coupling.
(Hor.: 20 musec/cm, vert.: O.S volt/cm.)

sequential triggers, employing alternate p-n-p and
n-p-n emitter followers as pullover transistors, in which
the inverted outputs were used for coupling. From
Fig. 16, the total delay is approximately 24 millimicro
seconds with a delay per trigger of approximately
8 millimicroseconds.

ACKNOWLEDGMENT

The authors wish to acknowledge the contributions
of other members of the high-speed transistor circuit
group, and members of the semiconductor device group.
Both groups are at the IBM Research Center, Pough
keepsie, New York.

Discussion

J. R. Braun (Electro Data) : What is used
for the current sources shown?

circuits a very well-specified voltage swing
is not essential, but is conceivable on others
that are not so specified.

Mr. Yourke: The exclusive "or" circuit
is used exclusively at IBM. A great deal of
use is made of the "or" circuit in adding
operations.

S. Sloan (Norden Ketay): Will you please
describe the current sources used?

David Zeheb (General Electric): What
is the internal impedance of these sources?

Mr. Yourke: Transistors can be used as
current sources. For the circuit shown. the
resistance value is of the order of SOO ohms.

John Teska (North American): What is
a "voltage translating block"?

Mr. Yourke: The voltage translating
block is a device which may be biased as to
provide an essential, constant voltage drop
for a relatively large current swing. This
device is a typical type; however, for these

J. Foulkes (Bell Telephone Labs.):
Would you give us a few details of the
transistors used?

Mr. Yourke: The transistors used were
of IBM manufacture. Their cut-off fre
quency speck is above 70 megacycles; some
go up as high as 300 megacycles. However,
for the circuits shown, the speeds are limited
primarily by incidental specifications, and
very little difference in time is observed
where transistors have a cut-off frequency
of more than 300 megacycles.

J. P. Brosius, Jr. (Autonetics): Is IBM
making any specific use of the exclusive
"or" circuit, and, if so, what uses?

R. C. Spriestersbach (Librascope): Have
you worked with silicon transistors in this
type of circuit? If so, how fast?

Mr. Yourke: No, we have not.
David Zeheb (General Electric): Do you

safeguard against an open circuit, and if
not, what value of voltage will result in case
of an open circuit?

Mr. Yourke: The only place where any
problem could be serious is in the voltage
translating block with n-p-n and p-n-p
transistors. There is very little danger of
excessive voltage from open circuit at any
point.

1957 WESTERN COMPUTER PROCEEDINGS 73

The Utilization of Domain-Wall Viscosity In
Data-H andling Devices

VERNON L. NEWHOUSEt

THE MAGNETIC INERTIA EFFECTS

Experimental Account

D URING the investigation of the high-speed
switching of i-mil grain oriented 4-79 Molybde
num Permalloy tape a group of effects were dis

covered which do not seem to have been previously
described in the literature. These effects will be referred
to as the magnetic inertia effects. They appear to be as
sociated with the viscosity of the magnetic domain
boundaries and can be demonstrated in ferrites as well
as in Molybdenum Permalloy. This paper will be con
cerned with the description and utilization of the effects
in 4-79 Molybdenum Permalloy as it is this material
which has been chiefly investigated to date. The Mag
netic inertia effects can be described under the three
following headings.

Nondestructive Read-Out: This effect has been demon
strated in i-mil as well as i-mil grain oriented tape made
of 4-79 Molybdenum Permalloy. It was found that the
application of magnetizing pulses much larger than the
coercive force did not give rise to permanent changes of
magnetiza tion provided that the dura tion of the pulses was
sufficiently short. This effect is demonstrated in Fig. 1
(next page) which shows the waveforms resulting from
the application of a continuous train of 0.1 microsecond
half sine-wave current pulses through suitable magnetiz
ing windings to a toroid consisting of 5 wraps of i-mil
material. The coercivity of this material was approxi
mately O.OS oersted. The peak height of the magnetiz
ing pulses shown in Fig. 1 is 0.63 oersted. This is close
to the maximum amplitude of 0.1-microsecond half sine
wave pulses which can be applied to this material with
out significantly affecting the permanent state of mag
netization.

Size A nomaly of Nondestructive Read-Out Signal: The
minimum amplitude of 0.1-microsecond pulses required
to switch completely the core under discussion was 2.S
oersteds. Waveforms accompanying complete switching
are shown in Fig. 2. Comparison with Fig. 1 shows that
the reversible magnetization changes occurring during
nondestructive read-out consist of a relatively large
fraction of the total magnetization change obtainable on
completely switching the core. The nondestructive
read-out signals are approximately symmetrical about
the base line in i-mil material and their amplitude is
strongly dependent on the state of remanence. In a
representative case such as that shown in Fig. 1, the
ratio between the peak amplitudes of the "one" and

t Radio Corp. of America, Camden, N. J.

"zero" output signal is of the order of 3: 1, and the peak
of the voltage pulse associated with the nondestructive
read-out in the "one" state is as high as 17 per cent of
the voltage pulse associated with complete flux reversal.

A High Field Threshold: In the type of core described
above having a coercivity of approximately O.OS oer
sted, the maximum amplitude of 0.1-microsecond pulses
which do not cause a permanent change of flux is of the
order of 0.63 oersted. This is less than i of the pulse
height required for complete switching. To use the in
ertia effects for writing into a random-access memory
it would be useful to find some way of applying pulses of
at least t the height required for complete switching
without destroying the information content of the core.
A means of doing this exists. It is found that pulses of
more than half the amplitude required for complete
switching can be applied without causing a permanent
change of state, provided that each pulse is followed by
an opposite polarity pulse of similar amplitude. Alterna
tively a pair of positive pulses can be followed by a pair
of negative pulses. The time interval between the pulses
can be of arbitrary length. The permissible difference in
amplitude is of the order of 7 per cent at 1.S oersteds,
and becomes larger as the pulses become smaller. Out
put signals resulting from nondestructive read-out of
this type are shown in Fig. 3.

The technique of current amplitude coincidence for
core selection in conventional memories employs the
core coercivity as a threshold mechanism. The switching
speed of cores selected in this fashion is limited because
the total switching field applied cannot be made greater
than twice the coercivity. The results described above
indicate the existence of a threshold field much higher
than the coercivity.

This makes it possible to use amplitude coincidence
for core selection using much larger fields than the co
ercivity and consequently attaining much higher switch
ing speeds.

Some numerical results which have been abstract
ed from Figs. 1 to 3 are summarized in Table I, p.
75. It is interesting to compare the flux change associa
ted with com plete swi tching-19-vol t millimicroseconds /
turn with the complete reversible 2.4 volt millimicrosec
onds/turn which occurs during nondestructive read-out
with pulses in one direction.

The flux change which occurs during the application
of a sensing pulse of 1.S oersteds is shown to be 9.1-volt
millimicroseconds/turn. Integration of the waveforms of
Fig. 3 shows that approximately 43 per cent of this flux
change is elastic, i.e., reversible, and exists only during

74 1957 WESTERN COMPUTER PROCEEDINGS

O.25V/DIV 1.5 V./DIV.

/ ,\.....
1\ V

50 MILLIMICROSECS.lDIV.
I I I I I I

~
0.25V1DIV

/'-
I"-

50 MILLIMICROSEPS.lDJV.
I ~ I I I

(b)

15 M.A.lDIV
/ 1"\

V \
V

50 -MILLlMICROSECS.lDIV.

(c)

Fig. 1-Nondestructive read-out in i-mi14-79 Molybdenum Permal
loy.
Core construction: 5 wraps of i-mil tape, -h inch wide, ceramic

bobbin, t inch od.
(a) Voltage across 5-turn sense winding: core at negative rema

nence.
(b) Voltage across 5-turn sense winding: core at positive rema

nence.
(c) Negative magnetizing pulse through 5-turn drive winding.

Rep. rate: 2 kc.

the application of the sensing pulse. The other 57 per
cent is inelastic and remains after the termination of
the sense pulse. This inelastic flux change can be can
celled out by a pulse which is within 7 per cent of the
initial pulse in peak amplitude but in the opposite direc
tion. The fact that the net flux excursion over a whole
cycle is zero is proved by the fact that the nondestruc
tive read-out effect is maintained even when positive
and negative pulses are applied indefinitely.

Physical Mechanisms

The magnetic inertia effects can be explained at least
qualitatively in terms of existing domain theory. Fol
lowing a discussion of each of the three inertia effects,
the ideas presented will be examined in the light of re
cent results obtained by other workers from the study of
thin films. It will be seen that several of the mechanisms
used to account for the magnetic inertia effects in grain
oriented tape have been shown to be of importance in
the swi tching behavior of thin films.

Nondestructive Read-Out: The fact that it is possible to
apply an indefinitely large number of very short mag-

J " h - \ /
50 MILLIMICROSECS.lDIV.
I I I I I I

400 M.A .IDIV.

.-

" " ./ ~

50 MILLIMICROSECS.lDIV.
I I I I I I

(b)

400 M. A.lDIV.

r--

\ J
~50 MILLIMICROSECS./DIV.

I I I I I I

(c)

Fig. 2-Complete switching of i-mil 4-79 Molybdenum Permalloy.
Core construction: As in Fig. 1.
(a) Voltage signal across 5-turn sense winding.
(b) Set pulse through 5-turn winding. (Minimum amplitude re

quired for complete switching.)
(c) Reset pulse through 5-turn winding.

IV.lDI V.

,.",-~ ~~ ~ , J
59 MILLIMICROSECS.IDIV.

(a)

IV./DI v.

7 \ '" \~ '" V

50 MILLIMICROSECS'/DIV.

(b)

Fig. 3-Nondestructive read-out in i-mil 4-79 Molybdenum Permal
loy using symmetrical O.l-microsecond half sine wave pulses of
1.8-oersteds peak amplitude.
Core construction: as in Fig. 1.
(a) Voltage signal across 5-turn sense winding. Core at positive

remanence.
(b) Voltage signal across 5-turn sense winding. Core at negative

remanence.

Newhouse: Domain-Wall Viscosity in Data-Handling 75

TABLE I

REVERSIBLE AND IRREVERSIBLE SWITCHING IN t MIL GRAIN ORIENTED 4-79 MOLYBDENUM PERMALLOY USING
O.l-MICROSECOND HALF SINE-WAVE PULSES

Mode of Operation Driving "1" Output "0" Output Peak Flux Change Pulse Voltage Pulse Voltage Pulse

Destructive Switching 2.90e* 0.30 v/turn 0.07 v/turn 19-millimicrosec volts/turn
Nondestructive Read-Out with Pulses of One

Polarity 0.630et o .050 v /turn 0.016 v/turn 2 .4-Millimicrosec volts/turn t
Nondestructive Read-Out with Symmetrical

Pulse Excitation 1.8oe 0.20 v/turn 0.07 v/turn 9 .1-Millimicrosec volts/turnt

* Minimum excitation for complete switching.
t Peak excitation which can be used in this mode.
t This represents the flux change which occurs during the application of a pulse tending to reverse the magnetization.

netizing pulses considerably exceeding the coercive
force of i-mil or i-mil grain oriented Molybdenum
Permalloy tape without causing a cumulative change of
the state of magnetization can be explained in terms of
the domain-wall viscosity and surface tension.

It seems likely that the existing domain walls are
moved over such a relatively small distance during the
application of the nondestructive read-out pulse that
they fall back to their original position after the cessa
tion of the pulse. The assumption that the movement of
domain walls over small enough distances is not ac
companied by irreversible magnetization changes is
supported by the well known fact that the application
of sufficiently weak fields of arbitrary duration to con
ventional magnetic materials will not result in irreversi
ble magnetization changes. This is true even in portions
of the hysteresis loop where most of the magnetization
change takes place by domain-wall motion.

I t can be calculated that the distance moved by a
domain wall under the influence of the maximum 0.1-
microsecond pulse of 0.63 oersted which gives nonde
structive read-out in the case of i-mil permalloy is ap
proximately five times its own thickness. This result
indicates that the mechanism assumed for the nonde
structive read-out effect is plausible, since studies of the
Barkhausen effect in related materials indicate that
irreversible changes only become important as a domain
wall moves through a distance which is between one and
ten times its own thickness. l

The nondestructive read-out signal from i-mil ma
terial shown in Fig. 1 (a) shows a slight exponential
"tail." This feature is accentuated in i-mil material and
is probably associated with eddy currents. The calcu
lated decay time constant of the eddy current field
agrees to within an order of magnitude with the experi
mentally observed values. The value of permeability
used in this calculation is 4000 cgs units, a value which
corresponds to the flux changes observed during non
destructive read-out.

It has been pointed out that nondestructive read-out
is possible with pulses as large as half the amplitude re
quired to switch the core completely, provided that each

1 R. S. Tebble, I. C. Skidmore, and W. D. Corner, "The Bark
hausen effect," Proc. Phys. Soc. A, vol. 63, pp. 739-761; 1950.

positive pulse or pair of pulses is followed at an arbI
trarily long time interval by an equal number of nega
tive ones. In this case the application of the first pulse
tending to switch the material results in a degree of
irreversible wall movement. It is clear that the reabsorp
tion pulse moves the domain walls to a position suffi
ciently close to their remanence location for no cumula
tive changes to occur under the influence of repeated
pairs of pulses.

Size Anomaly of Nondestructive Read-Out Signal:
Having shown that nondestructive read-out using short
pulses is possible because the domain walls move over a
relatively short distance, it is necessary to explain why
the reversible changes accompanying nondestructive
read-out with pulses in one direction are as large as 12
per cent of the major loop magnetization change. More
over, the reversible component of the flux change as
sociated with nondestructive read-out using symmetri
cal excitation is as high as 19 per cent of the flux change
associated with complete switching. These results can
not be accounted for on the basis of domain wall move
ment alone.

The major contribution to the reversible magnetiza
tion changes during nondestructive read-out by short
pulses is believed to be that due to spin rotation; i.e., the
coherent rotation of the magnetization of a whole do
main over a small angle.

This is a process which can be represented by a very
simple mathematical model which has been studied
rather exhaustively because it is of considerable im
portance in the operation of small particle permanent
magnets. 2 Magnetization by rotation is a process which
is known to be reversible provided the rotation is over
an angle less than a critical value. It is difficult to calcu
late the value of applied fields at which spin rotation
becomes significant, because the magnetic anisotropy
constant for Molybdenum Permalloy is rather uncer
tain. It can however be measured experimentally by
applying a field at right angles to the easy direction of
magnetization and turns out to be less than 2 oersteds.
This is in agreement with the fields of the order of

2 E. C. Stoner and E. P. Wohlfarth, "A mechanism of magnetic
hysteresis in heterogeneous alloys," Phil. Trans., vol. A 240, pp. 599-
644; May, 1948.

76 1957 WESTERN COMPUTER PROCEEDINGS

1 oersted which are found to give nondestructive read
out. Further confirmatory evidence is provided by the
work of Conger who has shown that magnetization re
versal takes place by rotation rather than wall move
ment in thin films of 80-20 nickel-iron for applied fields
larger than a few oersteds.3

A further contribution to the reversible magnetization
changes occurring during the nondestructive read-out
pulse may be due to the creation of reversal domains
around imperfections in the material such as grain
boundaries. These would be reabsorbed after the termi
nation of the pulse.

The High Field Threshold: It has been stated that the
magnetization changes due to O.1-microsecond pulses
have been shown to be mainly reversible below 1.8 oer
steds and completely irreversible above 2.8 oersteds. The
existence of this second threshold for core switching is a
further indication that spin rotation rather than wall
movement is taking place since magnetization by wall
movement has a threshold at fields of the order of the
coercivity which in this case is about 0.1 oersted.

The fact that spontaneous rotation throughout the
material occurs when the second threshold field between
1.8 and 2.8 oersteds is exceeded indicates that spin rota
tion may occur at the lower fields used for nondestruc
tive read-out, in areas surrounding imperfections in the
material such as grain boundaries. This type of spin ro
tation around imperfections could lead to the formation
of the transient reversal domains mentioned in connec
tion with the nondestructive read-out effect.

The resul ts of the above section can be summarized as
follows.

The phenomenon of nondestructive read-out associ
ated with the application of very short intense mag
netizing pulses is attributed to the fact that existing
domain walls are moved over distances within their
"elastic limit." Any extra domains created during a
nondestructive read-out pulse are reabsorbed after its
termination.

The reversible magnetization change occurring during
nondestructive read-out is ascribed to the reversible
movemen t of existing domain walls and to temporary
coherent rotation of the direction of magnetization in
areas large compared to the wall thickness. The creation
of temporary reversal domains around imperfections in
the material may also make a contribution.

The second threshold effect occurs at fields which
have been shown to cause magnetization reversal by
rotation in films and is therefore identified as corre
sponding to the onset of irreversible rotation effects.

Review of Related Work

Many nondestructive read-out techniques have been
described which involve the use of cores with special

3 R. L. Conger, "High frequency effects in magnetic films," pa
per presented at the AlEE ConL on Magnetism and Magnetic Ma
terials, Boston, Mass.; October, 1956.

geometries.4- s A nondestructive read-out technique
which uses cores having aeon ven tional geometry has
been described by Widrow. 9 This makes use of the sense
of the curvature of the hysteresis loop near remanence.
The output obtained is relatively small in amplitude.

Haynes10 showed several years ago that the applica
tion of microsecond pulses larger than the coercivity to
metal tape cores having a switching time of the order
of milliseconds produces a reversible flux change whose
duration is dependent on the state of remanence. The
switching of the cores investigated was subject to heavy
eddy current damping and the nondestructive read-out
phenomena observed were interpreted in this light.

Eddy-current damping does not play an important
part in the materials reported on in the present paper.
This makes it possible to demonstrate and utilize the
dynamic properties of the domain walls and spins to a
greater extent than would otherwise be possible.

ApPLICATIONS

Some of the possible data-handling applications of the
two types of nondestructive read-out, and of the second
threshold effect will now be briefly described.

Magnetic Indicator

The order of magnitude of the nondestructive read
out obtainable with the high excitation possible when
symmetrical drive is used is demonstrated by the device
shown in Fig. 4. In this deliberately simple circuit the
nondestructive read-out signals from a conventional
tape core are rectified and used to operate a forward
biased neon bulb. The status of the neon indicator
shows whether the core being sensed is in a state of
positive or negative remanence. In a practical case the
discrimination of the output signal could be increased
by the use of a bucking core. Alternatively the diode
could be replaced with a transistor used as a combined
rectifier and amplifier.

Magnetic Switch

Nondestructive read-out has been applied to a chan
nel-selecting magnetic switch which embodies the cur
rent-steering technique proposed by KarnaughJl The

4 J. A. Rajchman and A. W. Lo, "The transfiuxor-a magnetic
gate with stored variable setting," RCA Reil ., vol. 16, pp. 303-311;
June, 1955.

5 R. L. Snyder, "Magnistor circuits," Electronic Design, vol. 3,
pp. 24-27; August, 1955.

6 D. A. Buck and W. 1. Frank, "Nondestructive sensing of mag
netic cores," Comm. and Electronics, no. 10, pp. 822-830; January,
1954.

7 R. Thorensen and W. R. Arsenault, "A new nondestructive
read for magnetic cores," Proc. West. Joint Compo Conf., pp. 111-116;
March, 1955.

8 A. Papoulis, "The nondestructive read-out of magnetic cores,"
PROC. IRE, vol. 42, pp. 1283-1288; August, 1954.

9 B. Widrow, "A radio frequency nondestructive read-out for
magnetic core memories," IRE TRANS., vol. EC-3, pp. 12-15; De
cember, 1954.

10 M. K. Haynes, "Magnetic cores as elements of digital com
puting systems," Ph.D. thesis, Univ. of Ill.; August, 1950.

11 M. Karnaugh, "Pulse switching circuits using magnetic cores,"
PROC. IRE, vol. 43, pp. 570-584; May, 1955.

Newhouse: Domain-Wall Viscosity in Data-Handling 77

~
O'14~lgR~!EC PULS~.

'V 260 KC REP RATE

SOT IN270

SET RESET WD

+ IOOV

10K

CORE: I/S-MIL,4-79
MOLYBDENUM PERMALLOY
30 WRAPS,I/S-INCH WIDE,
3/S-INCH DIAMETER

Fig. 4-Nondestructive read-out used to
operate neon indicator.

principle of the circuit is illustrated in Fig. 5. Each core
is provided with set and reset windings which ensure
that only one core is set at a time. These are not shown
in the figure.

RI

R2

PULSE DELAY AND

COMPRESSION NETWORK

(\ READ-OUT PULSE J l ('\I 100 M,u SEC.)

~ CLOCK PULSE Jl (IV 50 M,uSEC.)

Fig. 5-Application of nondestructive read-out
to current steering switch.

Nondestructive read-out current pulses are applied
through Rl in such a direction as to tend to reset the
cores. The output windings of the unselected cores pro
d uce voltage pulses similar to those shown in Fig. 1 (b).
The selected core produces a voltage output similar to
that shown in Fig. 1 (a). The initial output pulse from
this core serves to bias off the diodes associated with the
unselected cores and "steers" the clock pulse through its
own output winding into the selected load. In the cir
cuit shown the clock pulse is produced by delaying and
compressing the read-out pulse. Following the termina
tion of the drive pulse the selected core recovers to its
"set" state in a fraction of a microsecond. A further
read-out pulse can then be applied.

The arrangement of the diodes ensures that no current
can flow through any of the loads in the absence of a
clock pulse, i.e., during the set and reset of the cores or
during their recovery from read-out.

In this circuit the provision of bucking cores in series
with each switch core is not required since the operation
of the switch ensures that all the sensing current is di
verted through the output winding exhibiting the largest
voltage pulse. Delay-line effects must however be care
fully controlled in the design.

Shift Register with Permanent Output Indication

r, ~ A one-core-per-bit shift register12 which is well suited
to:nondestructive read-out operation is shown in Fig. 6.
Point P is normally held at a positive potential. The
application of a current pulse through the advance cur
rent winding resets all the cores which were previously
set, and in doing so, charges the associated intermediate
storage capacitors positive. Immediately after the
termination of the advance pulse, point P is pulsed
negative, thus discharging any of the intermediate stor
age capacitors which were charged positive in the previ
ous part of the cycle. In discharging a particular capaci
tor, the subsequent core is set to a state of positive
remanence. In Fig. 6 the shift register has been modi
fied to provide a permanent indication of its contents.
A sensing -curren t source has been attached to the ad
vance winding as shown and each intermediate storage
capacitor is connected to a neon indicator through a
large resistor R. The other end of the neon indicators is
taken to a negative potential so as to minimize the in
verse voltage required across the diodes of the circuit.

ADVANCE
CURRENT/
SENSE
CUR,RENT
WINDING

SENSE
CURRENT -= SOURCE P

Fig. 6-0ne-core-per-bit shift register using nondestructive
read-out to provide permanent output.

--, ,
I
I
I
I ,

Between the application of advance pulses the sense
pulses which can remain "on" continuously, charge the
capacitors which follow cores which are in a "set" state
to a positive potential and excite the associated neon. A
continuous indication of the contents of the shift register
is thereby provided. If the neon indicators are replaced
by transistor or vacuum-tube amplifiers as indicated in
the diagram, other computing or indicating devices can
be driven.

I t is noteworthy that the shift register conversion pro
posed, to provide a continuous indication of its content,
is achieved with a minimum of added components-one
resistor and neon indicator per stage, one current source
of pulses and an extra bias supply for the neon indica
tors. In particular, no extra windings are required.

12 V. L. Newhouse and N. S. Prywes, "High-speed shift registers
using one core per bit," IRE TRANS., vol. EC-5, pp. 114-120; Sep
tember, 1956.

78 1957 WESTERN COMPUTER PROCEEDINGS

Random-A ccess Memories

Perhaps the most important applications of the mag
netic inertia effects lie in the field of data storage.

The use of nondestructive read-out for random access
memories of the conventional type is illustrated sche
matically in Fig. 7. A parallel memory is represented
where all the digits of a particular word are read in
simultaneously and sensed simultaneously. The read-in
process can take place by means of coincident current
techniques. A word line corresponding to a particular
address is selected by means of the word line selector
switch. This switch may utilize vacuum tubes and
diodes, transistors, etc. To enter a particular word into
the store, the selected word line is pulsed and those
digit selection lines corresponding to "ones" in the word
are pulsed simultaneously in the well-known manner.
To clear a given address the corresponding word line is
pulsed with an opposite polarity current in such a way
as to reset all the cores in that line.

WORD

SELECTION

SWITCH

SENSE WRITE
DRIVER DRIVER

DIGIT INPUT DRIVERS

SENSE AMPLIFIERS

Fig. 7-Parallel-digit memory suited for magnetic
inertia operation.

WORD

ADDRESS

LINES

To sense a given address in a nondestructive manner,
the corresponding address line is selected by the word
selection switch and is pulsed with a limited amplitude
pulse of very short duration. Each of the cores on the
pulsed line will emit a voltage pulse on the correspond
ing digit-selection line whose amplitude will be a func
tion of its remanent state. These pulses are sensed by
the amplifiers. It should be noted that this well-known
configuration has the constructional advantage that the
digit-selection lines are used for sensing also. Further
more the sensing line passing through each core being
sensed does not have other half-activated cores in series
with it, producing disturbing signals. The signal-noise
ratio of the nondestructive sensing effect does not there
fore have to be very high in this application.

The advantages of using nondestructive read-out in a
random access memory are as follows:

1) Regeneration is unnecessary. This simplifies the
logic circuitry required.

2) The fact that a memory interrogation does not
have to be followed by a regeneration cycle de
creases the effective access time of the memory by
a factor whose value depends on the proportion of
memory interrogation to memory entries. In the
extreme case where all the memory references are
interrogations the minimum time between inter
rogations need be no longer than the sum of the
length of the interrogation pulse and the time re
quired to refer to a new address in the memory.

To enter information into a memory by means of the
magnetic inertia effects, several modes of operation are
possible. One of the most in teresting has been named the
pulse interlace method and operates as follows.

To switch a particular core in a two-dimensional ma
trix without disturbing any of the others, anticoincident
current pulse trains are sent along the appropriate row
and column as shown in Fig. 8 (a). The length and ampli
tude of each pulse and the number of pulses in each
train depend on the material used for the storage ele
ments. In the case of the cores described above, the
pulse trains shown in Fig. 8 (b) with 1.4 oersted pulses
0.1 microsecond in lei-Igth are sufficient.

JlJUl ROW EXCITATION

220
M/.1.SEC

M~~IDI +1.4"

2 3

- 2.8oe

(a)

COLUMN EXCITATION

EXCITATION OF
SELECTED CORE

+1.4oe

-1.4oe

(b)

Fig. 8-Pulse interlace waveforms for writing into two-dimensional
core matrices.
(a) For use in serial digi~ ~rrays. (e.g., Fig .. 9).
(b) For use in parallel-digit arrays. (e.g., Fig. 7).

These waveforms are for use in a parallel digit mem
ory of the type shown in Fig. 7. Pulse no. 1 of the row
pulse train is used to clear the selected address and is
made large enough to perform this purpose even in the
absence of column pulse no. 1. Column pulse no. 1 is
applied only to those column wires passing through cores
which are to be "set" during the read-in portion of the
cycle. Its purpose is to prevent column pulse no. 2 from
initiating cumulative magnetization changes in cores on
unaddressed rows.

Newhouse: Domain-Wall Viscosity in Data-Handling 79

The application of row excitation pulses 2 and 3 to a
row of reset cores results in a small amount of undesired
magnetization change in those cores which have not
been switched by the application of a column excitation
pulse in the time interval between the two row pulses.
This feature is of no consequence in this type of memory
structure since every pair of row set pulses is always
preceded by a "clear" pulse.

In the pulse interlace method the selected core is
excited continuously whereas the nonselected cores are
excited discontinuously or not at all. The process of
magnetization reversal in the selected core must there
fore take place by domain-wall movement.

A method of reversing the magnetization by means of
spin rotation makes use of the second threshold effect.
To switch a core in a two-dimensional matrix in this
way, conventional amplitude coincidence techniques
may be used provided that each positive pulse on any
one line passing through cores which are not to be
switched, is followed or preceded by a negative pulse
and vice versa. (These pulses are of half the switching
amplitude.) Such a cycle is used in the experimental
memory described below.

By making use of the second threshold effect rela
tively high speeds of operation are possible. Using the
type of core described above, it is possible to write into
anyone core of a matrix by means of two time-coinci
den t 1.4 oersteds O.l-microsecond pulses preceded by two
identical coincident "predisturb" pulses of opposite
polarity. The total writing time is approximately ten
times as short as the switching time required for the
same material using conventional coincident current
techniques. The nondestructive read-out procedure
which can be used in memories of this type take 0.1
microsecond or less, and is thus at least twenty times as
short as the conventional destructive read-out pro
cedure if this has to be followed by re-entry of the sensed
information.

EXPERIMENTAL MODEL OF AN INERTIA MEMORY

A very small transistorized random-access memory
has been built to investigate the use of the second
threshold effect for entry of information and of nonde
structive read-out for sensing.

The cores described in connection with Fig. 1 were
used as the storage element and were arranged in a two
dimensional matrix. The associated control logic is
shown in Fig. 9, and enabled the memory locations to be
addressed individually for writing, or in sequence for
nondestructive read-out.

The core-matrix line-selection circuits use base driven,
grounded emitter transistor switches whose collectors
are connected in series with the matrix lines through
diodes (not shown in the figure). Before pulsing a spe
cific line the emitter base junction of the corresponding
switch transistor is forward biased. The application of
the matrix-drive pulse thus finds this transistor in a
"presaturated" state. This configuration has two ad
vantages.

1) The transistor is not required to undergo a change
of state during the application of the drive pulse.

2) The collector base dissipation is a minimum. (Most
of the dissipation occurs in the emitter base junc
tion.)

CURRENT DRIVERS

Fig. 9-Two-dimensional inertia memory.

(/)

I.LI
::J:
(.)

I-

3=
en

a:::
o
I
en
en
z
«
a:::
I-

In this way, conventional rf transistors (2N140) are
able to switch millimicrosecond pulses of several hun
dred milliamps at high repetition rates. In the present
instance these pulses were generated from commercial
vacuum tube equipment.

Writing a "one" into an individual core was accom
plished by passing a O.l-microsecond pulse correspond
ing to 1.4 oersteds along one of the pair of vertical lines
passing through that core as selected by the correspond
ing transistor switch. Simultaneously, an identical
pulse was passed through one of the pair of horizon tal
lines intersecting the selected core. These coincident
pulses had the effect of entering a "zero" into the se
lected core and of applying a disturb action in the
"zero" direction to the other cores on the selected verti
cal and horizontal lines. To complete the entry of a
"one" into the selected core, current pulses were sent
along the two previously excited lines. These switched
the selected core into the "one" state and cancelled out
the disturbance applied to the other cores on the se
lected vertical and horizontal lines. To enter a "zero"
into an individual location, the order of exciting the se
lected lines was simply reversed.

By setting the address counter and making use of the
single cycle facilities of the control equipment, it was
verified that a "one" or a "zero" could be entered into

80 1957 WESTERN COMPUTER PROCEEDINGS

any memory location in a single cycle. It was also es
tablished that the continuous entry of "ones" or "zeros"
into any position of the memory did not disturb the
information in other positions. The contents of the
memory could be observed on the column lines by
cycling the address counters continuously, while apply
ing nondestructive current pulses corresponding to 0.4
oersted to the rows of the matrix.

I t is of interest to compare the inertia memory with
the evaporated film memory described by Pohm and
Rubens. I3 In this memory the elements are switched by
the application of two time-coincident field pulses with
the resultant field directed at an angle to the easy direc
tion of magnetization. This produces the effect of a
transverse as well as of an anti parallel field on the ele
ments being switched. The switching times reported for
the evaporated film memory are of the order of 0.5
microsecond. Destructive read-out is used and the sense
signals are of the order of 4 millivolts. Since the mag
netization in the partially selected elements undergoes
reversible rotation, it would appear that nondestructive
read-out techniques can be used in a film memory with
a corresponding sacrifice in signal strength.

CONCLUSION

The emphasis in the work done to date has been on
the applications of the magnetic inertia effects rather
than on a very detailed examination of the effects them-

13 A. V. Pohm and S. V. Rubens, "A compact coincident-current
memory," Proc. East. Joint Compo Conf., New York, N. Y.; Decem
ber, 1956.

selves. An experimental and theoretical study of the
wall viscosity should however lead to results of im
portance to the theory of switching at high fields and
may reveal further applications. For example the use of
tape-wound toroids where the easy axis of the tape
makes an angle with the plane of the toroid should lead
to greater speeds of switching for given applied fields at
the expense of loss in the effective squareness of the
hysteresis loop.

Wall-viscosity effects have been looked for in ferro
electric materials but have not yet been demonstrated
in the samples available. Further investigation may re
veal their presence.

The construction of memories of large size will neces
sitate the investigation of techniques for applying the
inertia effects to three-dimensional core structures or
alternatively to two-dimensional memory arrays driven
by magnetic switches.

In the future we hope to be able to present material
describing techniques for making use of nondestructive
read-out in two-dimensional matrices rather than in
one-dimensional matrices as described above.

The work described has been concerned with the use
of the magnetic inertia effects in digital devices only. It
seems likely however that applications will reveal them
selves in allied fields such as that of analog computation.

ACKNOWLEDGMENT

I would like to acknowledge the contributions of
W. L. McMillan who played an important part in the
work described in this paper and in the design and con
struction of the two-dimensional memory.

Discussion

G. H. Smith (Autonetics): Would you
discuss, briefly, magnetic inertia effects in
ferrite cores? Does your research indicate
that ferrite cores are practical in the type
of memory you described?

inhibit effects can also be demonstrated in
ferrites, with pulses which are about half
the width of the pulses which were used for
these metal cores. This, of course, does give
a 20 to 1 reduction in cost, from the user's
point of view. Also the nondestructive read
out phenomenon can be demonstrated in
the aperture ferrite plates.

able to use the inertia effects at quite high
temperatures in expensive metal tape cores.
The ferrites, the S-l ferrite, has a Curie
temperature between 100 and 200°C, so in
that particular type of ferrite you would
presumably have to be careful as you ap
proach the Curie temperature. It is, how
ever, evidently possible that special high
temperature ferrites will be developed in
the near future which will have high Curie
points.

Dr. Newhouse: We started work on fer
rites after this paper was submitted, and
the reason why we concentrated on the
metal type cores in the paper is because the
switching mechanisms in the metal tapes
are similar, and very well known, as com
pared to the switching mechanisms in
ferrites. So it is of more physical interest to
concentrate on the metal tape cores. How
ever, it turns out that one can demonstrate
all of these effects "With pulses on the order
of 50 microseconds, particularly the non
destructive read-out effect in conventional
square-loop ferrite cores. And the ferrite
material in which this has been demon
strated is a material that corresponds closely
to the S-l material, the core material which
has been used in most high-speed core
memories. The nondestructive read-out
effects are, if anything, more pronounced
in ferrites than they are in metals. The pulse

R. J. Pfaff (IBM): How is a "1" output
differentiated from a "O"?

Dr. Newhouse: As shown in Fig. 1 the
"1" output is about three times as high as
the zero output. With some integration the
differences can be made four to one; also
these pulses are very constant from one
core to the next. As an example, we found
that in that experimental memory, we used
quarter mil cores by mistake, and we dis
covered this quite a long time after the
memory had been made in the operational.

H. M. Schiller (American Bosch Arma):
Please comment on the effect of temperature
variations on inertial memories.

Dr. Newhouse: We have not tried any
temperature experiments as yet. As I men
tioned, if the theoretical mechanisms are
half-way correct, we could almost predict it.
In general, the Curie temperature of the
metals is about 400°C. So you should be

M. Eisenberg (Thermo Materials, Inc.):
How can magnetic domain wall viscosity be
defined quantitatively? What would be the
effect of temperature on that viscosity?

Dr. Newhouse: It is known that the
switching speed of cores varies inversely
with the pulse time, so you can draw a
straight line by drawing switching times
against the applied field. The slope of this
line may be expressed in units of centimeters
seconds per oersted. And in these practical
cases the rough figure of the speed of wall
movement is 1000 centimeters per second
per oersted. How this has been effected by
temperature has been quite carefully in
vestigated by Mena Goodnoff, in a paper,
some years ago, in the Journal of Applied
Physics.

1957 WESTERN COMPUTER PROCEEDINGS 81

Reliability in Business Systems
HERBERT T. GLANTZt

INTRODUCTION

~r' HROUGHOUT the past few years a great deal of
lL study has. b~en devoted ~o analyzing the different

characteristics and reqUIrements of scientific and
commercial data processing systems. Although early
general agreement was reached on the fact that such
systems were different, the exact cause and nature of
these variations has not yet been clearly defined.
Equipment manufacturers attempted to resolve this
difficulty by designing two distinct "lines" of computer
models. In some instances these manufacturing distinc
tions have become blurred with usage, with the result
that a Remington Rand Univac is utilized for engineer
ing calculations, while an IBM 704 is applied to payroll
preparation. But, in the main, this dichotomy of design
and application is being effectively preserved.

Dr. Jay Forrester, the former director of M. I. T. Proj
ect Whirlwind, has characterized the chronology of elec
tronic computation as falling into three distinct phases.
Beginning in 1945, an in tensi ve amoun t of research was
devoted to investigation of the physical possibility of
building electronic digital computers. The early studies
of computer logic and circuit design were conducted al
most entirely by various engineering universities. By
1950 it was apparent that the basic problems could be
solved and that electronic computation would become
a reality. Shortly afterwards, the major portion of re
search activity was shifted to the application of these
machines to various problems. The second phase of our
history was devoted to computation in the fields of en
gineering and science as the first large-scale digital com
puters began to appear in the universities and aircraft
companies. In 1955 the emphasis of machine applica
tions research began to switch from engineering to com
mercial problems. This trend marked our entry into
the third and perhaps the most vital phase of develop
ment.

As we approached the problem of utilizing electronic
equipment for business applications, it became appar
ent that there were major differences in the require
men ts of this new area. The early studies devoted to this
problem concentrated on seemingly obvious operational
variations. Business problems called for vast amounts of
input-output data, while scientific problems required
lengthy and involved internal calculations. Thus, in
short order a convenient categorization grew up: 1) en
gineering and scientific applications: small volume of in
put-output data; large amounts of complex internal cal
culations. 2) commercial applications: large volumes of
input-output data; small amounts of simple internal

t John Diebold and Associates, Inc., New York, N. y,

calculations. Although this fairly arbitrary and sweep
ing classification proved adequate for early needs of the
ind ustry, an increasing sophistication in com pu ter us
age has tended to obscure these demarcation lines. It
has become increasingly evident that such operational
differences do not provide an adequate representation
of the two different systems.

If one considers instead, the respective functional
purposes of scientific and commercial systems, a strik
ing contrast may be observed. Scientific data processing
installations may be regarded as selfcontained systems
which function only to satisfy the dictates and require
ments of the parent organization. Thus, in a broad sense,
all input data originates within the system proper; all
computations are determined by the needs of the over
all organization; and the timing, quantity, and amount
of output information is again dictated by the require
ments of the system itself.

Commercial data processing systems, on the other
hand, must inevitably exist and perform their functions
in constant relationship with the environment of the
business world at large. This relationship, which domi
nates both the design and performance of business sys
tems, is notably evidenced in three ways. The mass of
data entering the system originates externally and is to
a large extent uncontrolled in format, timing, content,
and accuracy. The calculations that are performed are
frequently regulated by the rules of outside agencies
such as the SEC, ICC, and the Bureau of Internal
Revenue. Finally, the daily deadlines that must be
satisfied are generally determined by an essentially in
different environment and are frequently unyielding
and seemingly unrealistic.

Accordingly, whereas a scientific data processing sys
tem exists and operates to satisfy its own needs, com
mercial systems must function in large measure to satis
fy requirements imposed from outside the system.

THE DESIGN OF BUSINESS SYSTEMS

Business systems are growing increasingly more com
plex as their range of applications expands to cover
more demanding and intricate areas. A functioning
commercial data processing system includes a variety of
information handling components-human, mechanical,
and electronic-which are linked together by an over
all, communications network. The term "integrated
data processing" has gradually come to be accepted as a
generic description of the workings of such systems.

The design of these systems has created a striking op
portunity for the business world. We are now able to
conceive of all routine daily operations of a company
being controlled and directed by an automatic system.

82 1957 WESTERN COMPUTER PROCEEDINGS

Automatic process control is already a familiar occur
rence in the chemical and petroleum industries. We are
on the verge of applying similar concepts to a number of
commercial enterprises. The underlying theme in such
systems is automatic control of business operations in
cluding a feedback loop for the correction of errors. At
the same time, the managing executive is to be provided
with information that will allow him to exercise control
of over-all company policy on the basis of reliable and
timely data.

However, in painting this picture of successful office
automation we have overlooked a number of evidently
dangerous pitfalls. For as automatic systems exercise a
greater amount of control and direction one must place
a correspondingly greater emphasis on their operating
reliability. Intermittent or periodic failures in such sys
tems can wreak more havoc than is to be gained from
long intervals of reliable operation. The increased com
plexity of these systems introduces more components
that are liable to failure and, owing to their varying
interrelationships, introduces a greater degree of diffi
culty in isolating and replacing the faulty elements.
Many systems engineers become so enamored with pos
sible accomplishments that they tend to overlook the
question of system reliability and the implications of
component failure.

As an illustration of the problems that are inherent in
the openition of business data-processing systems, we
discuss two systems that we have designed for commer
cial organizations. In both cases we have completely re
structured the data-processing operations of the com
panies involved. In both cases, although substantial
dollar savings were accomplished, our primary aim was
to have the data processing system provide more effec
tive aid to the sales organization and to top manage
ment of the company. In both cases this was effected
by centralizing the data processing elements and by
utilizing extensive communications networks.

A STOCK BROKERAGE HOUSE

"X" is one of the largest stock brokerage houses in
the country. Their main volume of business originates
on the West Coast where they maintain a number of
branch offices. One of the principal requirements of
competitive existence in the brokerage field is rapid ful
fillment of the customers' orders and requests for
sample prices or "quotes." Since most of the clients'
trading is done on the floor of the New York Stock Ex
change, the company utilizes an extensive private wire
system to link the branches with the eastern trading
center. It is not unusual for an order to originate in Los
Angeles, be flashed to New York and be executed on the
Exchange, and be confirmed back to Los Angeles in a
ma tter of two or three minutes.

The system that we have designed for this firm in
cludes an automatic teletype switching center on the
West Coast and a data-processing center in New York.
The data-processing center utilizes a medium-scale gen-

eral purpose digital computer as the nucleus of all in
formation processing activities. All branch orders are
received by the West Coast message center and are au
tomatically routed on to New York where they are
simultaneously sent to the Exchange and to the data
processing center. Execution reports from the Exchange
are sent directly to the originating branch and to the
data processing center. These orders and execution re
ports are received on S-channel teletype tape which is
fed directly into the computer. The volume of business
handled during the five and one half hour trading day,
coupled with over-all speed requirements, necessitate a
system capacity of twelve such order-execution pairs per
minute.

Basic input is also provided to the system by the
branch and New York office reports of daily receipts
and disbursements of cash and securities. This extensive
input data must be processed each day according to a
rigid time table.

In general, all of one day's business activity must be
completely recorded and processed before the start of
the next trading day. All of this work is subject to the
detailed scrutiny of various Exchanges, the SEC, and
the auditors.

By utilizing the extensive private wire system, the
data-processing center in New York is able to direct the
complex daily operational activities of this company.
Furthermore, although the company's top management
is separated from the data-processing center by 3000
miles, we are able to provide them with a normal sup
ply of reports while at the same time rapidly fulfilling
requests for special analysis.

A TRANSPORTATION COMPANY

"Y" is a medium size company in the transportation
industry. The main volume of their work is concerned
with cross-country movement of railroad freight cars.
The majority of such movements originate in East
Coast ports and are destined for western cities. How
ever, a considerable portion of volume consists of over
night movements into such midwestern cities as Chi
cago, St. Louis, and Cincinnati. A further comp1ication
is caused by the frequent necessity of transfer opera
tions, as when Baltimore and Boston shipments are
merged in St. Louis before going on to Los Angeles.

A shipping order is prepared by the customer and de
livered to the company with each consignment of mer
chandise. These shipping orders are the basic input to
the system and are used to prepare freight bills, rail
road manifests, receivables entries, and so forth. A
completed freight bill must precede each shipment to its
destination and must be on hand at the appropriate
transfer points before arrival of the various freight
cars. All daily processing activities are subject to ICC
regulation and are continually compared by carrier
railroads with their own computations. Our client proc
esses an average of 10,000 shipping orders each work
ing day.

Glantz: Reliability in Business Systems 83

The data-processing operations of this company are
characterized by a large mass of input data, a require
ment for flexible processing schedules that allow for the
periodic interruptions of rush movements, and a high
volume of printed output accompanied by a moderate
amount of punched paper tape output suitable for
direct teletype transmission.

,Our system design for this company utilizes a medi
um-scale general purpose digital computer installed in
a data-processing center located in Chicago. Owing to
the fluctuating nature of data transmission time sched
ules, the over-all system design is based on a combined
usage of direct teletype input and output and an ex
tensive reliance on air mail communication. Original
shipping orders, as well as other operational data, are
sent to the data-processing center which functions as
the controlling element for the entire company. In ad
dition to processing routine daily operating data, the
computer is utilized for the formulation of strategic de
cisions as to selection of optimum freight car routings
and carrier-tariff combinations.

OPERATIONAL CHARACTERISTICS

The brokerage house and the transportation com
pany are in two vastly different fields of business. Yet
the requirements and characteristics of the data-pro
cessing systems that have been designed for these com
panies are strikingly similar. These similarities reveal a
great deal about the nature of such business systems:
1) Both companies operate over a wide geographic area
utilizing an extensive communications network and a
medium-scale computer in a central data-processing in
stallation. 2) In both cases, basic input data is provided
by elements that are outside of the system and are es
sentially disinterested in the workings of the system
and the difficulties that are caused by incorrect data.
3) In both cases, input data arrives in a fairly random
fashion but must nevertheless be processed upon re
ceipt, since all operations are conducted against fairly
intractable time deadlines. 4) In both cases, normal
operational schedules must be flexible enough to ac
commodate the intermittent interruptions of rush jobs.
5) In both cases, internal system processing must con
form to rulings of various outside regulatory agencies.

"REAL TIME" BUSINESS SYSTEMS

The most important characteristic of both systems,
however, is that they are "real time" business systems.
The standard definition of a real-time data-processing
system is one "whose actions influence the input data
that is being received." In the world of business data
processing systems, this definition may be modified to
read: "A real-time business system operates on-line
with its input data." One such automatic real-time
business system is the American Airlines Reservisor
system wherein passenger requests for seats are satis
fied as they are received with essentially no processing
delay.

Until very recently, almost all commercial installa
tion of general purpose computer systems were used in
nonreal-time situations and relied extensively on
"batch processing" techniques. Examples of areas that
are amenable to such techniques form an honor roll of
the problems first handled by business systems: payroll,
receivables accounting, inventory accounting, insurance
and utility billing, and so forth.

The functional nature of a real-time business system
requires that essential control and direction of the busi
ness be vested in the data-processing system itself.
Both of the systems described above receive information
concerning the environment or stimuli of the business.
In one case these are orders for security trades, and in
the other they are shipping orders. The automatic sys
tem processes the information contained in these initial
messages and issues directions so that successive ap
propriate measures may be taken. Finally, the data
processing center is notified of the results of these ac
tions and proceeds to issue either corrections or instruc
tions for further measures. All operational data funnels
into the processing system and an routine operational
directions issue from the system. Further, the formu
lations of company management are based on analysis
prepared by the data-processing system from informa
tion that is contained in the records of the system.

An operation of this type sounds delightful to the
systems engineer, for we have in large measure elimi
nated the human element from routine business func
tions. The automatic system directs and controls daily
operations while utilizing the results to provide manage
ment with timely reports on which to base long-range
policy decisions.

However, the practical businessman views such a
system in an entirely different light. The system will
red uce direct operating costs; it will provide greater
flexibility and efficiency than the present manual sys
tem; management will receive information in time to
formulate important decisions that direct the com
pany's future operations. But, while accepting the val
idity of such advantages, the executive also realizes that
if this beautiful system should fail, his company will be
out of business.

In the final analysis, this factor is the most important
characteristic of real-time business systems and pro
vides the greatest single functional difference between
on-line and batch-processing systems. If the payroll is
late, there will be an unhappy labor force, and if the
utility bills are delayed the company will be correspond
ingly tardy in receiving revenue. But if an on-line sys
tem fails, all company operations cease.

RELIABILITY IN REAL-TIME SYSTEMS

At the same time, the inherent benefits that may ac
crue from the utilization of automatic real-time business
systems are significantly greater than those provided by
the earlier systems. It is just this factor of automatic
control of routine operations that provides the appeal

84 1957 WESTERN COMPUTER PROCEEDINGS

of on-line systems. For the effect of a day's activity will
be reflected in reports early enough for the executive to
exert an effective influence on these same operations.
Such real-time data-processing systems are capable of
implementing the theory of "management by exception"
In actual daily operations.

We thus have a system concept that can provide ex
tensive and valuable benefits to a business organization
and can also do irreparable harm in case of failure. Ac
cordingly, we must provide a system design that will
reliably ensure against failure while retaining the maxi
mum benefits. Only in this fashion can we hope to im
plement this significant step foreward in the applica
tion of automatic data processing.

In the design of real-time business systems we have
adopted a concept that is based on the assumption that
all components of a system are liable to failure, but that
over-all operations must not fail. One of the simplest
and most effective means of ensuring system reliability
is through the use of redundancy. This technique is uti
lized by the human brain and nervous system, and the
analogy is a natural one since the data-processing sys
tem functions in a similar fashion for the business or
ganism. However, in view of the economic realities of
commercial life, it would appear more practicable to ap
proach the problem in a slightly different manner.

The first requisite of our system is a high quality of
design and performance in each individual element.
Practically, this implies that only proven components
can be incorporated in the system. As newer computers
are developed, they should be "broken in" on the batch
processing problems. If that is not feasible, one must
insist on a substantial period of rigorous testing before
accepting such equipment.

Constan t preven ti ve maintenance of all eq ui pm en t is
required. A number of engineering installations of
medium-scale computers adopted the practice of elimi
nating preventive maintenance periods. These organiza
tions have found it more economical to run the com
puter until it breaks down before calling for the en
gineers. It seems obvious, however, that this practice
could not be tolerated in our system.

The mere availability of "backup" equipment does
not provide insurance. Since the computer in our system
functions as the nerve center of a complex communica
tions network it will generally be impossible to trans-

fer operations to another machine at a distant location
without severely disrupting the information flow. How
ever, commercial teletype lines and neighboring printer
units can be utilized as temporary replacements for cer
tain system com ponen ts.

A fundamental requirement in our system design is
the provision of means for human intervention. Inter
mittent failures in system components are to be ex
pected and their functions must be performed during
the interval necessaty to correct and replace the me
chanical faults. At present, an intelligent human being
is the surest substitute and the safest means of provid
ing against the varying and complex difficulties that
can arise. Accordingly, it is necessary to provide the me
chanical system with a capable and trained operating
staff. This staff must be thoroughly aware of precisely
what the system is accomplishing so that it can im
mediately introduce the correct remedial steps in case
of failure. We have found it wise to run periodic "alerts"
in which a variety of failures are simulated and the
proper countermeasures are promptly initiated.

Application of the principles of automatic control to
the operation of business organizations presents an ex
citing opportunity. Commercial data-processing sys
tems designed to utilize these techniques will assume
responsibility for the direction and control of all routine
daily functions. The utilization of comprehensive com
munications networks will enable a central data-process
ing unit to exercise effective supervision over operations
of the entire organization. The incorporation of feedback
loops in the system will provide a means of notifying
the data-processing center of the results of earlier ac
tivities. Management reports will be abstracted from
the flow of daily information, thus providing the execu
tive with an accurate analysis of the current situation.

As such real-time business systems assume more over
all responsibility and control, an even greater stress
must be placed on the reliability of their operation. For
failure in these systems implies not just delay and an
noyance but almost complete cessation of activity. It
is imperative that extreme care be exercised in the de
sign and operation of on-line systems so that all com
ponent failures are provided against. Only in this fashion
will we be adequately assured that the possibility of
total failure has been eliminated and that operations
can be safely entrusted to the system.

Discussion

c. K. Budd CU. S. Army Signal Corps):
What has been your experience on volume
of teletypewriter transmission and number
or percentage of errors? How are errors
detected and corrected?

Mr. Glantz: Our experience has been
that people always claim that you cannot
rely on teletype transmission, and yet when
actual studies are made they invariably
turn out to be operator error rather than

machine error. We have found that in terms
of actual equipment error the percentage
rate is well under one per cent. Our freight
car company is transmitting something like
ten thousand shipment orders per day, of
which perhaps one-third to a half on a
normal day will go over the wires, and of
which somewhat over half of the resulting
process information will be transferred over
wires. We have found that one of the ad
vantages of an on-line system such as this
is that if the computer itself puts out the

paper tape which will go over the teletype
system, it eliminates the possibility of
human error and will have a great deal more
of reliability in the system.

From the floor: Is there always a paper
tape between a medium speed computer and
communication lines?

Mr. Glantz: In each of the systems that
we have designed paper tape is punched out
on the teletype system, fed into a switch
complex, and then into the computer, which
will punch out paper going back as well.

Rosenblatt: On Prediction of System Performance 85

This is obviously not necessary, particularly
on the Remington Rand Reverse System
which is under design now. We will have
direct communication between the agencies
and the computer which acts as a central
processing unit. We feel that for the moment
it is of great value to have paper tape
physically punched out.

From the floor: In the computer that
you used in the brokerage operation, can you
always be sure that it has broken down?
Can you be sure that one day is long enough
to make your diagnosis every time?

Mr. Glantz: The closest thing we have
to a master file is a record of all freight ship
ments. Now, these are normally broken
down in the file by day on which they
occurred and by cities from which they came,
normally on the East Coast. The location of
Chicago was picked out simply as a matter of
function convenience. Since more shipments
go to the East or West Coast, we thought
that if the shipping order was picked up on
the East Coast and air mailed to a teletype
in Chicago, we could have most of the
processing done when the shipment came
through Chicago and the mid-West.

From the floor: What proportion of the
over-all cost of this system does the com
puter represent?

Mr. Glantz: About two-thirds of the
over-all hardware. If personnel is included,
this fraction drops considerably.

Mr. Glantz: No, you cannot be sure.
From the floor: In the freight car loading

example, the computer center was in Chi
cago. Do you have a master file that you
run through on a random access basis in
tha t particular system, or do you have
segregated parts of a master file you refer
to specifically for each type of processing
run?

On Prediction of System Performance from
Information on Component Performance

JOAN R. ROSENBLATTt

INTRODUCTION

T HE PURPOSE of this paper is to propose some
building blocks for a systematic approach to pre
diction of the performance or reliability of com

plex equipment from information on component per
formance. Particular attention is given to the use of in
formation on ways in which components are believed or
known to be interdependent, functionally as well as
structurall y.

The reliability of a system is defined as the probability
P that its satisfactory operating life under stated con
ditions is not less than a specified time T. This proba
bility can, in principle, be estimated directly from life
tests of a large number of systems. In practice, however,
this is usually undesirable or impossible. In particular,
it would often be desirable to make at least approxi
mate estimates of P before a complete system has ac
tually been assembled.

This paper presents a systematic approach for ex
amining engineering design information, data on com
ponent performance, and information on conditions of
use, in order that statistical techniques may be used to
obtain an estimate of P.

I t is assumed that there may be obtained a collection
of statements such as the following, describing the con
ditions on component behavior which permit satisfac
tory operation of the system:

"The system will operate only if the performance
of component A is satisfactory (in a precisely defined
way.)"

t Nat!. Bureau of Standards, Washington, D. C.

"The system will operate only if properties X Band
Y c of components Band C satisfy a specified relation
(such as X B+ Yc~constant)."

"The system will operate only if at least one of
components D and E has not failed."

It is assumed that this collection of statements contains
all the essential relations determining the dependence of
system performance on component performance. Then P
is equal to the probability that all of these conditions
will be met for the length of time T.

Additional information of the following kind may be
used:

"Components A, B, C will all fail at once if certain
un usuall y extreme atmospheric conditions prevail."

"As the performance of component A deteriorates,
the load on component B is decreased and deteriora
tion of component B is slowed down."

These statements illustrate interrelations among com
ponents in their response to the conditions under which
the system is operated. Information of this kind is dis
cussed below in the section on interdependence of com
ponent failures.

I t is shown in some simple hypothetical examples how
this additional information on interdependence among
components may be introduced into a mathematical ex
pression for P.

In the context of this approach to the analysis of sys
tem performance, the following problems are con
sidered: 1) estimating and giving confidence intervals l

1 See, e.g., W. J. Dixon and F. J. Massey, Jr., "Introduction to
Statistical Analysis," McGraw-Hill Book Co., Inc., New York, N. Y.;
1951.

86 1957 WESTERN COMPUTER PROCEEDINGS

for P from data obtained in tests of components and
subassemblies; 2) using the mathematical expression for
P, together with information about costs, to aid in mak
ing decisions about design changes such as the addition
of redundant elements, and 3) using the mathematical
expression for P to simulate the effect of component
specifications on system performance.

Preliminary Remarks; The Problem of Detail

I t is important to state what sort of composite en
tity is considered in this paper to be a "system," and to
indicate how the "components" of a system are viewed.
A system is understood to be any equipment, subsys
tem, or device composed of subsidiary parts, whose
joint performance determines the performance of the
system in respect to one or more properties. The com
ponents of a system are those parts, at a selected level
of detail, whose performance is to be related to system
performance.

In particular, it is suggested that a useful approach
to predictions of system performance is obtained by
thinking of a complex system as organized in levels.
Thus, the probability of successful performance of a
complex system may be considered first as determined
by the behavior of a relatively small group of major sub
systems. The latter may then be analyzed in turn. This
procedure should lead to efficient concentration of ef
fort toward obtaining detailed information about sub
systems which have the most important effect on sys
tem performance. With this approach, moreover, in
formation is organized in a way which permits selection
of the level of detail appropriate to the kind of ques
tion which is to be asked.

When the "system" under consideration is in fact a
subsystem of a larger system, it will not always be suf
ficient to summarize performance by the probability of
successful operation. For subsystems, the "measure
ment" of reliability requires a somewhat different ap
proach-as will be seen in the discussion of the hypo
thetical examples given below.

Discussions of Interdependent Components

I t has been observed frequently that assessments of
system reliability based on the assumption that com
ponent failures occur independently of one another are
approximate and usually excessively conservative.
Several authors have discussed possibilities for repre
senting the dependence of system performance on the
performance of interdependent components. Some of
these discussions are briefly noted here.

Statistical analysis of circuit performance has been
discussed by Benner and lVleredith,2 and Meltzer.3 Per
formance characteristics are given approximately as

2 A. H. Benner and B. E. Meredith, "Designing Reliability into
Electronic Circuits," Symposium of National Electronics Conference;
October, 1954.

3 S. A. Meltzer, "Designing for reliability," IRE TRANS., vol.
PGRQC-8, pp. 36-43; September, 1956.

functions of circuit elements, so data on behavior (means,
variances, and correlations) of the circuit elements can
be used to predict behavior of the circuit.

If it is not possible on theoretical grounds to state the
relation of system performance to component behavior,
it may be possible to use multiple linear regression an
alysis to estimate the relationship, at least for narrow
ranges of values of component characteristics. This ap
proach has been discussed by Brown4 and Bear.6 If the
estimated relationship (a 1inear equation) appears to
give a satisfactory representation of the dependence of
system performance on component characteristics, then
it may be used to predict the effect on system per
formance of variability in component performance.

The details of these procedures will not be discussed
in this paper. They are available for obtaining functional
relationships between system performance and com
ponent performance in situations where their illethods
are applicable.

Another approach to making use of information
about interdependence among components has been
suggested by Elmaghraby,6 who considers a representa
tion of the effect of component failures which do not
directly cause system failure but increase the proba
bility of failure of other components.

The first two main sections of this paper are devoted
to discussions of the use of information relating system
performance to the performance of interdependent com
ponents.

DEPENDENCE OF SYSTEM PERFORMANCE ON

COMPONENT PERFORMANCE

The first kind of information which is needed for re
lating system performance to component performance is
illustrated by statements such as those discussed below.
These are conditions on component behavior which per
mit satisfactory operation of the system. They are de
termined by the nature of the components and the con
ditions of their application in the system. These condi
tions are distinguished from sources of failure, which
are considered later.

The system will operate only if the performance of com
ponent A is satisfactory. Some components (or sub
systems) have a direct and "independent" effect on
system performance, in that the system cannot operate
properly if these components fail to give satisfactory
performance, no matter what be the performance of
other components. The dependence of system per
formance on these components is then given by a defi
nition as precise as possible of satisfactory performance
for each of them.

4 H. B. Brown, "The role of specifications in predicting equip
ment performance," 1956 Proc. Second National Symposium on
Quality Control and Reliability in Electr01i'tcs, pp. 133-148.

Ii]. C. Bear, "Elements of Reliability Prediction," Arinc Mono
graph No.4, Aeronautical Radio, Inc.; October 1, 1956.

6 S. E. Elmaghraby, "A Generalization in the Calculation of
Equipment Reliability," Cornell Univ., School of Elec. Eng., Res.
Rep. EE 314; November 15, 1956.

Rosenblatt: On Prediction of System Performance 87

I t should be emphasized that a component whose ef
fect on system performance is "independent" (in the sense
that the definition of satisfactory performance for the
component does not involve conditions on the per
formance of other components) may, nevertheless, not
be independent of other components when causes of fail
ure are considered. For example, the front and rear
hand-brakes of an English bicycle operate independ
ently, and the bicycle may be said to operate satis
factorily only if both are working; but a slippery street
affects the performance of both brakes. In the long run,
the proportion of successful operations of the braking
system will depend on the frequency of rainy days as
well as on the frequency of hand-brake breakdowns.

Some components of this type have a simple go-no-go
relation to system performance: if a crucial solder joint
is loose, the system just cannot work. Many compo
nents, however, have a more complicated relation to
system performance: some set of numerically measured
characteristics of the com ponen t must remain wi thin
(known) stated bounds if the system is to operate satis
factorily.

For components having independent direct effect on
system performance, the dependence of system per
formance on component performance may be repre
sented on a zero-one basis. Each component either
meets the stated condition or not.

The value of the system output variable Xo is determined
by a known function of characteristics of a set of 11, com
ponents C1,C2, ... , Cn. Suppose Y1, ... ,Yn are re
spectively the relevant characteristics of C1, ... , Cn,
and that it is known that Xo =f(Y1, ... , Yn) where the
form of the function f(yl, ... ,Yn) is known. If the
value of Xo must be in a stated range, then the values of
Y1, ... , Yn must be restricted so that f(Y1, ... , Yn) is
in this range. In this situation, the components C1, ••• ,

Cn are evidently interdependent; a given value of Y1
may be satisfactory when associated with one set of
values for Y2, ... ,Yn but unsatisfactory when asso
ciated with some other set. The dependence of system
performance on performance of components C1, ••• ,

Cn is given by f(Y1, ... , Yn), and cannot in general be
stated in terms of individual conditions on the charac
teristics Y1, ... , Yn·

The system will operate only ij properties Y1 and Y2 of
components C1 and C2 satisfy a specified relation. An ex
ample of such a relation is the condition that (Y1 +Y2)
must be greater than a specified number. The situation
in this case is essentially the same as that of the preced
ing case.

The system output variable Xo depends on characteristics
YI, ... , Yn of components C1, ... , Cn; but the theo
retical relation does not agree adequately with relations
observed in practice. This situation prevails, for ex
ample, when the best available theoretical analysis of
a system is based on ideal physical properties of the ele
ments of the system, while reali~ations of the elements
cannot have these ideal properties. (Thus" to some de-

gree, this situation always prevails.) If it has been
discovered empirically that the theoretical analysis leads
to inadequate predictions of system operation, it may
have been discovered also what kinds of discrepancies
occur. The representation of system performance as a
function of component performance must be obtained
by "educated guessing." Once a mathematical expres
sion for the reliability of the whole system has been con
structed, then it can be determined by varying the con
jectured relationship whether or not the accuracy of the
guess will have an important effect on the accuracy of
the over-all prediction. In some situations, it may be
feasible to perform an experiment to estimate the em
pirical relation of a set of component characteristics to
system performance.

The probability distribution of the system output vari
able Xo depends on characteristics Y1, ... , Yn of compo
nents CI, ... , Cn. This statement distinguishes a case
in which the relation of system performance to com
ponent performance is statistical. In the previous cases,
the probability distribution of Xo would depend on the
probability distributions of Y1, ... , Yn; this remains
true, but it is supposed further that fixed values of
Y1, ... , Yn determine not the exact value of Xo but, for
example, the average value to be expected for Xo. If the
form of the distribution of Xo is known-e.g., if Xo has a
Gaussian distribution with its mean and variance
(mean-square deviation from mean) determined by
known functions of the values Y1, ... , Yn-then the
statistical relationship of Xo to Y1, ... , Yn is specified.
This case differs from the other kinds of relationships
discussed, in that there may be no values of YI, ... ,
Yn for which it is certain that the value of Xo will be
satisfactory. It will be seen, nevertheless, that it is pos
sible (though not easy) to make predictions about the
probability that Xo will have a satisfactory value.

The system will operate only if at least one of compo
nents A and B gives satisfactory performance. This is the
situation if a system contains duplicate or redundant
components. When the duplicate component is present
on a stand-by basis to be used only if the first one fails,
there may be a third component involved which de
tects the failure and puts the stand-by unit into opera
tion. The representation of this kind of relationship and
its effect on reliability has been discussed by Luebbert. 7

The Composition of Conditions

Suppose now, that all essential conditions on compo
nent behavior which determine satisfactory.system per
formance are effectively accounted for. That is, suppose
a set of components or subsystems have been listed to
gether with the relation of system performance to the
characteristics of each. Abstractly, the situation at this
point may be illustrated by the following example.

7 W. F. Luebbert, "Principles and Concepts of Reliability for
Electronic Equipment and Systems, Part II: Simple Models for
Failure of Complex Equipment," Stanford Univ., Electronics Res.
Lab., Tech. Rep. No. 91; August 18, 1955.

88 1957 WESTERN COMPUTER PROCEEDINGS

S 1) If both DI and D2 fail, the subsystem C2 fails.

Fig. 1-Relation of components in a simple system S.

Fig. 1 is a diagram of a simple system S whose satis
factory performance (apart from catastrophic failure) is
defined in terms of the output variable Xo. The system
S is composed of three subsystems CI ,C2,C3 with out
puts Yl,Y2,Y3, respectively. The subsystem C2 is further
analyzed in terms of components DI and D 2• The system
S is said to be giving satisfactory operation as long as

a ~ Xo ~ b,

where a and b are given numbers. The dependence of
system performance on the performance of the sub
systems C1,C2,C3 is given (say) by the following state
ments.

1) If YI <2, the system S fails.
2) If YI +Y2 > 10, the system S fails.
3) Xo = KeY3.
4) If anyone of CI , C2, Ca has a catastrophic failure,

the system S fails.

Thus the probability P that S will give satisfactory per
formance is given by

Prob. {C1 does not fail and
C2 does not fail and
C3 does not fail and
YI:2::2 and
YI+Y2~10andlog (aIK) ~Y3~log (bIK)}.

I t is clear that the conditions connected by "and" in this
expression are not all independent. One kind of depend
ence among components is explicitly stated in the con
dition "YI +Y2 ~ 10." Another kind of dependence is sug
gested by the distinction between the conditions "CI

does not fail" (i.e., no catastrophic failure) and "YI:2:: 2"
(i.e., no wearout failure-that is to say, the output of
CI is at a satisfactory level). Further consideration of
this sort of interdependence among components is de
ferred until the next section of this paper.

Continuing with the analysis of the system of Fig. 1,
consider now the subsystem C2 with two components
Dl and D 2• Suppose the dependence of C2 on the per
formance of D 1,D2 , and their output variables Zl,Z2 is
given as follows.

2) The value of Y2 is uniformly distributed in the in
terval Zo ± 1, where Zo is the larger of ZI,Z2.

Restating condition 2), it is supposed that the value of
Y2 is not precisely determined by zo, but will be within
± 1 of Zo with any value in this range being as likely as
any other. If it is desired to expand the expression for P
given above, then the condition "C2 does not fail" is re
placed by "D I does not fail or D2 does not fail." Further
more, letting U(zo) denote a random variable uniformly
distributed on the interval Zo ± 1, the condition "YI
+Y2 ~ 10" is replaced by "YI + U(zo) ~ 10."

This illustrative example will be considered further
below, to illustrate the incorporation of additional in
formation about interrelations among the components
of S. The next main section of the paper deals with in
terdependence among components with respect to their
modes of failure.

INTERDEPENDENCE OF COMPONENT FAILURES

Additional information which will be useful for as
sessing the relation of system performance to the per
formance of interdependent components is illustrated
by statements such as those discussed in this seGtion.
These statements are typical of some possible inter
relationships among components, arising from the na
ture of the application of the components in the system,
and from the response of com ponen t performance to the
conditions under which the system is used.

Components A, B, and C will all fail at once if certain
unusually extreme atmospheric conditions prevail; under
normal conditions, they suffer other kinds of catastrophic
failures or wearout failures independently of one another.
This situation may be described by the term "condi
tional independence." Suppose, for instance, that a sys
tem is used in such a way that it is subjected to some
kind of severe shock from time to time, and has been de
signed to withstand such shocks unless they are un
usually severe. Prediction of system performance may
be more realistic if this particular kind of failure is
treated separately. The calculations which are ap
propriate in the conditional independence situation are
illustrated by a simple numerical example.

Consider two components A and B. Suppose that
each one can exhibit three kinds of performance: satis
factory, unsatisfactory because of wearout, or failure,
due to unusual shock. Suppose further that it has been
established that the probabilities of each of these have
been determined to be as follows, where Pa+qa+r=l,
Pb+qb+r= 1.

Component Satis. Unsatis. Shock

A Pa=0.980 qa=0.010 r=0.010
B Pb=0.985 Qb=0.005 r=0.010

The probability r of shock failure is the same for each
component, since it depends not on the nature of It he

Rosenblatt: On Prediction of System Performance 89

particular component but on the occurrence of an un
usual ambient condition. One way to look at the joint
performance of components A and B is to consider the
joint probability distribution, which gives for every pair
(performance of A, performance of B) the probability of
its occurrence. The following table gives the joint dis
tribution for components A and B, assuming conditional
independence.

Example 1: Joint Probabilities of Performance

Performance Performance of B

of A Satis. (Pb) Unsatis. (qb) Shock (r)

PaPb Paqb
Satis. (Pa) -=0.9751 --=0.0049 0

1-r 1-r

qaPb qaqb
Unsatis. (qa) -=0.0099 -=0.0001 0

1-r 1-r

Shock (r) 0 0 r=0.0100

It is seen that the quantities in each row add up to the
probability of the corresponding performance of com
ponent A, and that the columns add up to the corre
sponding probabilities for component B. The sum of all
the entries is unity. The probabilities may be derived
from the conditional independence assumption by the
rules for calculating with conditional probabilities. 8 Let
P(ul V) denote "the probability of U on condition that
V is true." Then, for example,

peA satis. and B satis.)

= peA satis. and B satis.1 shock occurs) XP(shock occurs)

+ peA satis. and B satis.1 no shock) XP(no shock).

N ow the first conditional probability is obviously zero;
if an unusual shock occurs, both A and B fail. Thus,
only the second term must be evaluated. Since A and
B are assumed to be independent under normal condi
tions (no shock), the second conditional probability may
be written as the product of two conditional probabili
ties,

peA satis. and B satis.1 no shock)

= peA satis.l no shock) X PCB satis.1 no shock).

Evaluating these conditions from the information given
about the probabilities for the individual components,
it follows that

peA satis.1 no shock) = pa/(l - r),

PCB satis., no shock) = Pb/(l - r).

Finally, the probability of no shock is (l-r). Thus,

. . Pa Pb
peA sabs. and B sabs.) = --.--. (1 - r)

l-rl-r

8 W. Feller, "An Introduction to Probability and Its Applica
tions," John Wiley and Sons, New York, N. Y.; 1950.

The prediction of system reliability obtained from a
joint distribution of this kind will be somewhat different
from a prediction made on the assumption that the
performance of the two components is unconditionally
independent. To illustrate this, consider two cases. Case
I: Both A and B must give satisfactory performance in
order that the system operate correctly. Case II: At
least one of A and B must give satisfactory performance.
If it is assumed that the two components are uncon
ditionally independent, then the probability that the
joint performance of A and B will be satisfactory is cal
culated from the given probabilities Pa and Pb by well
known methods. 7

Case I: peA satis. and B satis) = PaPb.
Case II: peA satis. or B satis.) =Pa+Pb-PaPb.

Under the conditional independence situation, the Case
I probability may be read directly from the joint distri
bution table. The Case II probability may be calculated
from the table by the usual formula:

peA satis. or B satis.) = peA satis.) + PCB satis.)

- peA satis. and B satis.)

= pa + Pb - PaPb/(l - r).

The numerical comparison is as fol1ows.

PROBABILITY THAT JOINT PERFORMANCE OF A, B Is SATISFACTORY

Case I (series)
A and B satis.

Case II (parallel)
A or B satis.

Independence

0.9653

0.9997

Conditional
Independence

0.9751

0.9899

It is true in general that if the present kind of depend
ence situation prevails, reliability predictions based on
the independence assumption will be overconservative
for components connected in series, but overoptimistic
for components connected in parallel. For Case I, the
differences between the two predictions will be greater
if there are more than two components. For Case II
(parallel), increasing the number of components makes
the probability of satisfactory joint performance become
close to unity very rapidly under unconditional inde
pendence; while under conditional independence the up
per bound for the probability of satisfactory joint per
formance is (l-r).

If a system contains n identical components, con
nected in series, and the probability of satisfactory per
formance for each component is P while the probability
of a "shock failure" is r, then under the conditional inde
pendence assumption the probability that the whole set
of n components will give satisfactory performance is

Thus, suppose an equipment such as a computer con
tains 1000 components each of whose failure probabili
ties Cl-p) is 1/10,000. And suppose the "shock failures"

90 1957 WESTERN COMPUTER PROCEEDINGS

which affect all components simultaneously are about 10
per cent of these, i.e., r = 10-5• The predicted frequency
of failures calculated by the product rule would be

1 - pn = 0.095

while the prediction based on the conditional independ
ence si tua tion would be

1 - pnj(l - r)n-l = 0.086.

As the performance of component A deteriorates, the
load on component B is decreased and degradation of per
formance of B is slowed down. For example, suppose the
following extreme situation prevails. If component A
wears out, then component B will surely continue to
give satisfactory performance; and vice versa. (For sim
plicity, it is assumed that catastrophic failures are im
possible.) This situation is a case of "negative depend
ence." Let the probabilities for A and B be given as
follows, where Pa+qa = 1, Pb+qb = 1.

Component

A
B

Satis. Unsatis.

qa=0.02
Qb=0.03

Under the assumption of negative dependence described
above, the joint probability distribution for the per
formance of components A and B is given by the fol
lowing.

Example 2: Joint Probabilities of Performance

Performance of B
Performance of A

Satis. (Pa)
U nsatis. (qa)

These probabilities are derived from the assumptions
that

peA satis.! B unsatis.) = 1

PCB satis.! A unsatis.) = 1.

Thus, for instance,

peA satis. and B unsatis.)

= peA satis.! B unsatis.) X PCB unsatis.)

= PCB unsatis.) = qb.

To see the effect of this kind of dependence on relia
bility prediction, consider again the two types of possi
ble application of components A and B in a system:
Case I (series) and Case II (parallel). The following
shows the difference between predictions made on the
basis of the independence assumption and the predic
tions appropriate in the present type of negative de
pendence situation.

PROBABILITY THAT JOINT BEHAVIOR OF A, B Is SATISFACTORY

Case I (series)
A and B satis.

Case I I (parallel)
A or B satis.

Independence

0.9506

0.9994

Negative
Dependence

0.9500

1.0000

Observe that in this situation, the independence as
sumption tends to give an overoptimistic prediction in
Case I, and to underestimate the effectiveness of re
dundant components (Case II). This is the opposite
of the previous (conditional independence) situation,
where the dependence between the two components was
positive (shock failures occurred simultaneously in both
components).

Failure reports from the field have indicated that every
time component A fails, component B fails also. This
statement illustrates a particular kind of positive de
pendence which may be called "chain dependence."
Failure of component A always leads to failure of com
ponent B, while component B may be subject to addi
tional types of failure.

Example 3: Joint Probabilities of Performance

Performance of A

Satis. (Pa)
Unsatis. (qa)

Performance of B

As usual, Pa+qa = 1, Pb+qb = 1. Once the zero has been
inserted in the cell corresponding to the ty;,e of joint
performance which is assumed to be impossible, the re
maining en tries shown above are determined by the re
quirement that the rows and columns each add up to
the appropriate individual probabilities. The following
computation provides a comparison between the as
sumption of independence and the assumption of chain
dependence as given in the table. Let qa=O.Ol, Qb=0.02.

PROBABILITY OF SUCCESSFUL JOINT PERFORMANCE
(A AND B SATIS.)

Independence:
Chain Dependence:

The three examples given in this section of the paper
were intended to illustrate some of the possibilities for
obtaining mathematical expressions which incorporate
information about the occurrence of failures. In the next
section, some additional assumptions are made about
the system S of Fig. 1, and the calculations for that
example are continued.

SOME SIMPLE HYPOTHETICAL EXAMPLES

First Illustrative System, System S

Consider again the system S of Fig. 1, and suppose
that it is desired to make use of some additional informa-

Rosenblatt: On Prediction of System Performance 91

tion about interdependence among failures of the com
ponents of S.

Shock Failure: Analysis of component properties and
of the proposed conditions of use for the system Shave
indicated that all components will fail simultaneously if
the system is exposed to a certain extreme atmospheric
condition. The probability of this occurrence is r, and
joint occurrence of this shock situation and other fail
ures is impossible. Then (cf., Example 1 of the preceding
section) all remaining calculations are understood to be
valid on condition that no shock has occurred. The
general rule is

Pr (U and V) = Pr (U I V) X Pr (V).

Accordingly, the probability P of successful system per
formance is obtained from the probability of successful
system performance on condition that no shock has oc
curred, by multiplying the latter by (1-r)-the proba
bility that no shock occurs.

Component C2: Recall that this component is in fact a
subsystem containing two components DI and D 2. Sup
pose that (on condition no shock has occurred) the com
ponents DI and D2 are independent and have the same
performance probabilities. Let qD be the probability of
a catastrophic failure (other than shock failure) for DI
or D2 and let the probability distributions for the output
variables Zl, Z2 be fD(ZI) , fD(Z2), respectively (when no
catastrophic failure has occurred).

Suppose that, except for shock failure, failures of
component C2 occur independently of the performance
of components CI and C3•

Components CI and C3: Suppose component C3 is be
lieved to be chain-dependent on component CI (cj.,
Example 3 of the preceding section). In particular, let
qCl and qCa be the respective probabilities of catastrophic
failure (on condition of no shock), and suppose the joint
probabilities of catastrophic failure are as follows.

J OINT PROBABILITIES OF CATASTROPHIC FAILURE

Component Cl

No failure (I-qat)
Failure (qa1)

Component Ca

No Failure (l-qaa)

l-qaa
o

Failure (qaa)

Suppose further that if no catastrophic failure has oc
curred CI and C3 are independent. That is, the values of
the output variables YI of CI and Y3 of C3 have independ
ent probability distributionsfcl(YI) andfca(Y3) when no
catastrophic failure has occurred to either one.

Expression for P: Recall now the expression for the
probability P that the system S will give satisfactory
performance. P was expressed as the probability of
join t occurrence of several events. With the assumptions
now given, P can be expanded by repeated applications
of the rule

Pr (U and vi W) = Pr (UI V and W) X Pr (Vi W).

The result is

P = (1 - r) X (1 - qD)2 X (1 - qca)

X Pr (YI ~ 2 and YI + U(zo) ~ 10 I Q)

X Pr (lOg ; :::; y, :::; log ~ I Q)

+ 2(1 - r) X qD(l - qD) X (1 - qca)

X Pr (YI ~ 2 and YI + U(ZI) S 10 I Q*)

X Pr (lOg ; :::; y, :::; log ~ I Q*)

where Q stands for the condition "CI does not fail and
neither Dl nor D2 fails and C3 does not fail;" Q* denotes
the condition "CI does not fail and exactly one of Dl D2
fails and C3 does not fail." ,

Now, Pr (1oga/K~Y3~log b/KI Q) may be calculated
from the probability distribution fC a(Y3)-and is the
same whether the condition is Q or Q*. Under condition
Q, the probability of "YI ~ 2 and Yl + U(zo) ~ 10" can in
principle be calculated from the probability distribu
tions fCl(YI) , fD(ZI) , and fD(Z2). The distribution of
Zo = max (Zl, Z2) is determined first; from this, the distri
bution of U(zo) is obtained. Under condition Q*, exactly
one of components DI, D2 has not failed, so that Zo is
equal to Zl (say). The distribution of Zo is then simply
fD(ZI), and the distribution of U(ZI) is obtained from it.
The second term of the expression for P is multiplied by
2 because the condition Q* can occur in two ways (DI
fails or D2 fails) while the probabilities are the same for
both.

It may be seen that the expression for P has now been
expanded into a form which can be calculated when the
following data are available: 1) estimates of the proba
bility distributions for output variables YI, Y3, Zr, Z2 on
condition that no catastrophic failure occurs; 2) an
estimate of the probability of shock, r; 3) an estimate
of qD, the probability of catastrophic failure of DI (or D2)
on condition that no shock has occurred, and 4) an esti
mate of qca, the probability of catastrophic failure of C3

on condition no shock has occurred.

Second Illustrative System, System R

The preceding example was constructed to illustrate
the possibility of using varioup types of information
together. The present example has less variety, with a
larger number of components. Suppose a system R is
composed of two identical major subsystems RI and R2
with output variables Xl and X2. The output x of R is
satisfactory if x~a, where a is a fixed number; and x
equals the larger of Xl, X2. The subsystem RI is composed
of a power source which is either working or not; and
100 identical components, each one of which is either
working correctly, or not. The output Xl of RI is a func
tion Xl = f(nl) of the number nl of components of RI
which are working. Similarly, X2 =f(n2).

There is a possibility of shock failure (propability r)
which would affect all components at once. In the ab-

92 1957 WESTERN COMPUTER PROCEEDINGS

sence of shock failure, RI and R2 are negatively depend
ent with respect to the occurrence of power failures (say
there is always exactly one auxiliary power source avail
able). The probability that a power source fails is q. In
the absence of shock or power failures, all components of
RI and R2 are independent and each has (conditional)
probability p of working.

With this information, the distribution of Xl =f(nl)
may be calculated from the binomial probability dis
tributionS which governs the performance of the 100
components of RI in the absence of shock or power fail
ure. This calculation requires only an estimate of p [and
of course knowledge of the form of the function f(nl)]'
Given the (identical) distributions of Xl and X2, the dis
tribution of X = max (Xl, X2) on condition of no shock or
power failure can be calculated. An expression for P is
then obtained as follows.

P = (1 - r)(l - 2q) Pr {max (Xl, X2) ~ a I no shock,

neither RI nor R2 has power failure}

+ 2(1 - r)q Pr {Xl ~ a I no shock, R2 has

power failure but RI does not} .

This expression can be evaluated if estimates are avail
able for p, q, r.

Discussion of Examples

In both of the examples just given, it is seen that the
performance of a subsystem or component is not always
summarized by the "probability of successful com
ponent performance." In this respect, the analysis of a
whole system may frequently differ from the analysis
of a subsystem. For instance, for the second hypotheti
cal system, it is desirable to know in detail the condi
tional probability distribution of the output variable Xl
(on condition of no shock and no power failure). Indeed,
"Pr {subsystem RI operates satisfactorily}" does not
have a useful definition, since this probability depends
on the performance of R 2•

It is suggested that analysis of subsystems is most
usefully summarized by estimates of the probability
distributions of its output variables under various
condi tions.

CONFIDENCE INTERVAL FOR P

The preceding discussion has been directed toward
the construction of a mathematical model of a system,
incorporating information about interdependence
among components. The outcome was an expression for
the probability P of satisfactory system performance
which could (in principle at least) be evaluated from
estimates or conjectures for certain probabilities and
conditional probability distributions. If the assumptions
relating system performance to component performance
were essentially correct, then the value of P could be
predicted.

Suppose, however, that, as usual, only a limited
number of components are available for making tests to

estimate the required performance probabilities. Then,
because of variability among components, the estimates
are not very precise. It is desirable in such a situation
to obtain also an interval estimate for P, so that the
wid th of the interval can suggest how much uncertainty
attaches to the estimated value of P. Such an interval
estimate is called a confidence interval. I

A confidence interval for P is determined by a con
fidence limit Po, smaller than the estimated value of P,
which is derived by a method which insures that the
statement "P~Po" can be made at a specified confidence
level (often 9S or 99 per cent). The confidence limit Po
is determined by 1) the preassigned desired confidence
level and 2) assumptions which have been made about
the underlying probability distributions of the measure
ments which have been made to obtain an estimate of
P. A fairly strict interpretation of a confidence interval
is that if the data collection procedure could be repeated
over and over, and if the same procedure were used each
time to calculate (say) a 9S per cent confidence limit Po;
then in the long run the statement "P~Po" made after
each repetition of the procedure would be true 9S per
cent of the time.

A looser interpretation of the statement, "P~Po at
the 9S per cent confidence level," is that Po is the small
est value which is not extraordinarily unlikely in view
of the measurements which have been made.

Illustration, for the System R

The usefulness of an interval estimate can be illus
trated quite sharply in the context of the second illus
trative example (the system R) of the preceding section.
In order to estimate P for the system R, it is necessary
to estimate three probabilities:

r = Probability of shock failure.
q = Probability of power failure in subsystem RI (or

R 2) on condition no shock occurs.
p = Probability that one of the 100 components of RI

(or R2) works correctly on condition of no shock
and no power failure.

Suppose, for simplicity, that only negligible uncertainty
attaches to the estimates of r (based on a long history of
weather data) and of q (based on long experience with
the particular type of power source involved). Attention
is focused on the problem of estimating p.

Tests have been made on 1000 components of the type
to be used in the subsystems RI and R2• None of them
has failed to work correctly. Nevertheless, although
this component is believed to be highly reliable, it is not
believed to be perfect. Assuming that the "true" long
run proportion of satisfactory components of this type
is p (less than unity), how small might p be without its
being extraordinarily unlikely that everyone of a sample
of 1000 did not fail? The following table gives several
answers to this question, corresponding to various con
fidence levels (i.e., various meanings of "extraordinarily
unlikely"). It also gives confidence limits for the proba-

Rosenblatt: On Prediction of System Performance 93

bility P for sample sizes 500 and 5000, when no failures
have occurred among the sample items.

CONFIDENCE LIMITS FOR p9

Confidence Sample Size
Level

(In Per Cent) 500 1000 5000

95 0.9943 0.9970 0.9994
99 0.9908 0.9954 0.9991
99.5 0.9895 0.9947 0.9989

If the 99 per cent confidence level is adopted, then
since the sample size was 1000-the estimated confi
dence limit for P would be Po = 0.9954. The ordinary
(point estimate) for the probability P for system R
would be obtained using p = 1; the only predicted fail
ures would be shock and power failures. An interval
estimate for P would be obtained by using Po instead of
p = 1; the result of this calculation would be a confidence
limit Po for P.

The foregoing is admittedly a relatively simple ex
ample of a situation where a confidence limit for P could
be calculated. In many cases, various approximations
would be required, as well as difficult numerical integra
tions. The point is, that the calculation of a confidence
limit for P is in principle possible once there exists a
mathematical expression relating P to measurable
aspects of component performance. And the calculation
of a confidence interval provides reasonable protection
against the imprecision of estimates based on relatively
small samples.

Illustration, for the System S

Suppose that, for the system S of Fig. 1, the following
confidence intervals have been obtained, each at the
99.5 per cent confidence level.

(1-r) ~ (1-ro)-probability of no shock,
(1-qc g) ~ (1-qcgo)-probability Ca does not fail

(on condition no shock),
(1-qD) ~ (1-qDo)-probability Dl does not fail

(on condition no shock).

Suppose further that extensive experiments have veri
fied that it is reasonable to assume that the (conditional)
probability distributions of Yl, Ys, ZI, Z2 in the absence of
catastrophic failure have means at "design center,"
known variances, and have the Gaussian form (but are
truncated at upper and lower specification limits).

Now a method which suggests itself immediately for
obtaining an approximate confidence limit Po for the
system probability P, is to insert the confidence limits
(1-ro), etc., in the expression for P. But each of the

9 These values were computed directly since (in the case that no
failures are observed in the sample) Po is obtained by solving for p
in the equation pn= (1-a), whe:e.n is sample size. ar:d 100a per cent
is the confidence level. Charts gIvmg confidence lImIts for the prob
ability p for more general cases of the number of obse~('e? faIlures
may be found in E. S. Pearson and H. O. Hartley, ed., BIOmetnka
Tables for Statisticians," vol. I, Cambridge University Press, Cam
bridge, England; 1954.

three confidence limits was obtained by a separate set of
tests; each limit has confidence level 99.5 per cent, but
a function of the three limits is subject to cumulative
errors and must in general be less precise. Indeed, the
confidence level for simultaneous assertion of the three
confidence intervals is (0.995)3=0.990, i.e., 99 per cent.
This is a lower bound for the confidence level for assert
ing "P~Po."

If the functional form of P as a function of (1-r),
(1-qc g), and (1-qD) were taken into account, together
with assumptions concerning the underlying probability
distributions governing the measurements from which
they are estimated, it would in principle be possible to
improve on such a lower bound for the confidence level
for asserting "P~Po." One way of making such an im
provement in a special case has been considered by
Buehler.lo

FURTHER USES OF A MATHEMATICAL

EXPRESSION FOR P

In this section some additional uses are noted for a
mathematical expression for the system probability P,
constructed through the suggested approach.

Decisions A bout Design Changes

Given a mathematical expression for the probability
P, incorporating information on interdependence of the
components of a system, one may raise the following
types of questions.

1) What would be the effect on P if a duplicate of a
certain subsystem were added so that the system
could operate if at least one of the subsystems did
not fail?

2) Supposing that it has been decided to add redun
dant components, for which types of component
should they be added?

3) vVhat would be the effect of replacing a given
component type by an improved type less fre
quently subject to catastrophic failure?

Many such questions can be answered usefully only in the
context of costs: "Which is more costly, the present fail
ure rate or the improvements required to achieve a lower
failure rate?" The effect of certain kinds of changes of de
sign may be calculated by a modification of the mathe
matical expression for P; the costs must be estimated
from additional information. If several changes are pro
posed, each of which has presumably the same cost, they
can be compared as to their effect on P. If it is specified
that P must be improved by a fixed amount at least,
manipulation of a mathematical expression for P can be
helpful in deciding which design changes would be suf
ficient to accomplish this.

The approach to analysis of system performance sug
gested in this paper calls attention to the possibilities for
isolating and determining the effect of particular types

10 R. J. Buehler, "Confidence Intervals for the Product of Two
Binomial Parameters," unpublished paper; 1956.

94 1957 WESTERN COMPUTER PROCEEDINGS

of failure which may be removable, if their effect is great
enough to justify the cost of making improvements.

Simulation of the Effect of Component Specifications

The attempt is generally made, in setting component
specifications, to insure that every component which
meets specifications will (in the absence of catastrophic
failure) give satisfactory performance. But when the
performance of one component is dependent on that of
another in such a way that the first mayor may not be
satisfactory depending on the performance of the other,
it may be difficult to determine realistic specifications.

Suppose, then, that a mathematical expression for the
system probability P is available, relating system per
formance to the values of component characteristics,
and taking account of interdependence among com
ponents. Then the same calculations which are carried
out to obtain predictions of P on the basis of measure
ments made on components could be carried out using
hypothetical "measurements" obtained by assuming
that the probability distribution of a characteristic of
a component has some assumed form (truncated at the
specification limits).

Such calculations would make it possible to make
predictions as to the effect of specification changes: in
one case, the probability distributions of component
characteristics might be unchanged, with only the
truncation points (specification limits) altered; in
another case, the whole probability distribution for a
component characteristic might shift so as tn have its
mid-point at a new "design center"; in a third case, the
truncation points might shift toward the center and the
variance of a component characteristic decrease also, so

that about the same proportion of components would
still meet specifications.

The extreme case of these calculations-all compo
nent characteristics having their values at specification
limits-is often unrealistic and can lead to either ex
cessively stringent component specifications or exces
sively pessimistic predictions of system reliability. It is
suggested that various "simulations" of the effect of
component specifications can help to determine whether
a given set of specifications is realistic.

CONCLUSION

The purpose of this paper has not been to outline de
tailed techniques for every step of the process of pre
dicting reliability, but rather to suggest an approach to
system analysis which would organize engineering
design information and data on component performance
in a way suitable for the application of probability
theory and of the techniques of mathematical statistics.

If assumptions relating system performance to com
ponent performance and system design and use are es
sentially valid, one may obtain an estimated value for
the system probability P and usually at least an ap
proximate confidence interval reflecting the imprecision
of this estimate.

In the long run, of course, the accuracy of a prediction
based on an estimate of P can be determined only by
experience with a system as a whole. It is believed,
nevertheless, that the approach adopted in this paper
may help to make possible some representations of sys
tem performance as a function of interdependent com
ponent performance which are sufficiently accurate to
provide useful estimates of the system reliability.

Evaluation of Failure Data
HERBERT 1. ZAGORt

GENERAL

AMONG the many benefits for management which
..fi.. can be derived from a failure evaluation pro-

gram are: 1) evaluating equipment and its main
tenance procedures; 2) directing and guiding reliability
improvement as well as future design; and 3) estimating
spares.

Failure data obtained from one equipment may be
used for reliability and spares predication for similar
equipments under similar environments since opera
tional comparisons may be made directly on such items.

t American Bosch Arma Corp., Garden City, N. Y.

Increasing amounts of data are becoming available to
allow correlation factors to be determined so that one
can extend these predications to diverse equipments .

The problem of stocking spare parts resolves itself
into setting up on a probability basis an equilibrium
condition between the expected number of failures and
the number of stocked items. Once spare parts esti
mates are available, a logistic system can be deter
mined.

The main assumption is that the reliability of an
equipment in its steady state behavior is such that
those failures which inevitably occur are independent,
random, and occur at a uniform rate. The failure dis-

Zag or: Evaluation of Failure Data 95

tribution, therefore, is a Poisson distribution. In actual
practice, the failures may not follow the Poisson distri
bution too closely. Instead, a two-parameter distribution
such as the Polya or negative binomial may be more
directly applicable. To obtain adequate data, a good
failure-reporting system is required. Most benefit can
be derived from such a system by having as small delay
as possible in reporting of failures.

THEORETICAL FAILURE PATTERNS FOR COMPLEX

EQUIPMENT

Let us consider a pure-death process in which an
initial population consisting of No members is life
tested, and no replacements are made for the failed
elements. A plot for this situation of 1) the hazard, Z,
and 2) number of failures per unit time AF / At, as a

TIME

Fig. I-Composite life pattern, pure death process.

function of operating time, is shown in Fig. 1. The
hazard is equal to the ratio of number of failures per
hour dF / dt, to number of survivors Set) at that time.11f
for this statistical aggregate of No elements the renewal
of failed elements is taken into account, a birth-death
process is obtained in which the failed elements are
replaced as soon as they fail. A steady state condition
eventually will arise in which the failure rate, and hence
the replacement rate, becomes constant. The probabil
ity of a failure is a constant independent of the age of
the population as a whole, and the exponential relia
bility law holds. This result holds if the elements are
different or the same, or have chance or wear-out
failures. 2 Two cases are to be considered, namely 1)
the one-horse-shay in which at a time, 71 a large num
ber of elements fail in a relatively short period of time
due to excessive environmental and/or wear-out causes,
and 2) no one-horse-shay at any time.

1 R. R. Carhart, "A Survey of the Current Status of the Elec
tronic Reliability Program," Rand Corp. RM-1131; August 14, 1953.

2 Ibid.,

ONE HORSE SHAY EFFECT

---,----
NO ONE HORSE SHAY EFFECT

~------------------~------------~TIME o 1;'

Fig. 2-Life pattern, renewal process.

The dotted line in Fig. 2 shows a failure pattern iu
which the hazard Z is plotted as a function of time for a
renewal situation without the one-horse-shay effect
The solid curve in Fig. 2 shows the one-horse-shay
effect in this failure pattern, which is also illustrative
of a renewal situation in which preventive maintenance
techniques are employed at time Tl.

I t should be noted that dF / dt is proportional to the
hazard, Z, as well as of Y, the fraction of initial sets fail
ing per hour, since N=No=a constant.

Equipment, both military and industrial, generally
falls into the category of a renewal process except for
throw-away items so that Fig. 2 may be taken as the
model for a complex equipment aggregate such as a
computing laboratory installation. "

Two STATISTICAL FUNCTIONS USEFUL IN FAILURE

PREDICA TION

Poisson

The Poisson distribution arises in describing the
frequency of random, independent events whose prob
ability of occurrence in any given interval of time is
constant. The probability of observing n events is
given by the expression

(1)

where m is the expected or average number of occurrence
of events.

I t is a function of one parameter, the mean m, or
P =f(m). All that is needed is m, the average number of
events which occurred in the past, in order to compute
the probabilities of the occurrence in the future of vari
ous numbers of these events. The mean and variance of
the Poisson distribution are equal so that curve fitting
can be accomplished by fitting to the mean, which is a
constant.

The exponential law is a special case of the Poisson
relationship since P(O) = e-m , which is the probability
of zero failure during the unit time interval. Hence
reliability may be defined in one way as P(O) or the

96 1957 WESTERN COMPUTER PROCEEDINGS

probability of zero failure over the unit time interval,
having observed m failures, on the average, previously.

Polya or Negative Binomial

The Poisson distribution is based on the constancy of
the expected number, m, from trial to trial. If m, varies,
but the mechanism causing the events remains basically
Poisson, then a modification such as the negative bi
nomial is required to describe this situation. The nega
tive binomial distribution may be derived as follows.3

P(AB) = peA I B) . PCB). (5)

If the first two drawings result in black, then the urn
contains b+r+2c balls among which b+2c are black.
The conditional probability of a black ball at the third
trial becomes by (5), (b+2c)/(b+2c+r). In this way
all probabilities can be calculated. Any sequence of n
drawings resulting in nl black and n2 red balls (nl +n2
=n) has the same probability as the event of extracting
first nl black and then n2 red balls, namely

b(b + c) (b + 2c) ... (b + nlC - c)r(r + c) ... (r + n2C - c)
(6) pn.m = ------------------------

(b + r) (b + r + c) (b + r + 2c) . . . (b + r + nc - c)

Suppose a distribution of chance follows the Poisson
law but that m itself is unknown, having a distribution
of chance given by the Pearson Type III law

da = e-cmdm.
rep)

(2)

To get the total probability for any value of n we must
integrate for all possible values of m. The generating
function is

'Ir(1/;) = (c/c + l)p (1 - 1/;/(c + l))-p (3)

the coefficients of 1/;n being the frequency of 0, 1,2, ... ,
successes, viz.,

(c/c + l)p(l, p/(c + 1), pep + 1)/2!(c + 1)2,

pep + l)(p + 2)/3!(c + 1)3 etc.) (4)

which are the successive coefficients of 1/;n. The mean,
X, is given by pic and the variance, 0"2, is p(1+1/e)/e.
It can be seen that (3) is a negative binomial function
with multiplying factor (e/ e+ l)p.

I t is of interest to note that the negative binomial
distribution also arises from the Polya Urn problem.4 In
the Polya Urn problem, an urn contains b black and
r red balls, and random drawings are made. The ball
drawn is always replaced, and, in addition, c balls of
the color drawn are added to the urn. This scheme was
devised for analysis of phenomena like contagious dis
eases, where the occurrence of certain events increases
their future probabilities.

If the first ball is black, the conditional probability of
a black ball at the second drawing is (b+e)/(b+e+r).
The absolute probability of the sequence black, black,
is therefore (b/(b+r))(b+e/(b+c+r)) from the rela
tionship for the joint probability

3 M. G. Kendall, "The Advanced Theory of Statistics," Hafner
Publishing Co. New York, N. Y., pp. 124; 1952.

4 W. Feller, "An Introduction to Probability Theory and Its Ap
plications," John Wiley and Sons, New York, N. Y.; 1952.

The Polya Urn scheme, in the limit, goes to the
Polya process. Let drawings be made at the rate of one
in time h and let h--,,;O, n--,,; 00 so that np--,,;t, n'l)--,,;at, where
p =r(r+b) and v =c(r+b). Then making this limit
passage in (6), we obtain for n 2:: 1 and n = 0 respecti ve
ly,

n

n!
'lro(t) (7)

(
t)-p [at]-l/a

'lrn(t) = 1 + - 1 - --
P 1 + at

(8)

and

(
t)-p

'lro(t) = 1 + P . (9)

If t = p / e, a = 1/ p, then (8) becomes

'lrn(~) = (_e)P(l - -1/;)-P, (10)
c c+l e+l

which is identical with (3).
In addition, the Polya distribution may be defined

by considering directly a random process with continu
ous time parameter, a process which is characterized
by an intensity function

An(t) = (1 + an)/(l + at). (11)

The Polya distribution then is the solution to the dif
ferential equations

Pn'(t) = - AnPn(t) + An-1Pn- 1

PO/(t) = - AoPo(t) (12)

with initial condition PoCO) = 1, and An given by (11).

Zagor: Evaluation of Failure Data 97

We obtain for this solution

7rn (t) = tn(l + at)-n-l/a

(1 + a)(l + 2a) ... [1 + (n - 1)a I
n!

7ro(t) = (1 + at)-l/a. (13)

If we make the transformations t = P / c and a = 1/ p, then
(13) becomes identical to (3). Thus the Polya process is
a nonstationary pure birth process with An given by

tion. Since failures occur at random, a variation in the
number of failures in each tube type in the same period
will be expected. The range for determination of ab
normality is shown in Fig. 3.

100

70

4

20

10

~
/~ ~

A

~
7' ~ /.

'7 -" ~

lJ
(11). The negative binomial is a function of two param
eters, the mean X=p/c and the variance, u 2 =p/c(1 (.) 4

+ 1/ c). Curve fitting is done by matching the observed ~
~ 2

7

~

A

~ l..>-K ~

P7 J V

~ ~ 7J

V Jri -data to the mean and variance. ..J
~ I---

Pi""" VI II

DETERMINATION OF POISSON DISTRIBUTION

RANGE LIMITS

If the occurrence of failures are assumed to obey a
predetermined statistical distribution, then it should
be possible to identify those elements which have failure
probabilities significantly different from those of the
average element.

Identification of these abnormal elements will point
out those areas in which one should check circuit appli
cation and maintenance techniques, with the abnormal
items being those which require first attention. As a
result it should be possible to monitor equipments for
reliability, and establish a reliability improvement pro
cedure.

For the Poisson distribution the functional relation
ship between the limits of the range, c, and the mean
number of failures, m, of the average element can be
plotted as a graph by use of Molina's Poisson tables.s

These tables contain for a given mean, m, the total
cumulative probability of there being Cl or more failures,
as well as the total cumulative probability of there
being C2 or fewer failures. Two probability values such a
1/1000 and 1/100 are generally emplQyed, and define
four curves, namely, the two upper curves Action (A)
and Warning (W) at the 1/1000 and 1/100 probability
levels and the two lower curves warning (w) and action
(a) at the 1/100 and 1/1000 probability levels re
spectively. These curves are shown in Fig. 3.

Example

Comparison of Performance of Electron Tubes in Three
Makes of Analog Computers:6 In the case of complex elec
tronic equipment it has been shown experimentally that
electron-tube failures usually follow a Poisson distribu-

Ii E. C. Molina, "Poisson's Exponential Binomial Limit," D. Van
Nostrand Co., New York, N. Y., 1942.

6 F. A. Hadden, "Machine Testing for Deviation of Data from a
Poisson Distribution," Communication and Electronics Magazine, p.
155; May, 1955. This paper discusses the use of a machine in solving
a problem of this type.

w
(!)

~ I
a: Q7

0.4

Q2

0.1

J Ic-c(

) r
17

g~::g61 POISSON POINTS I I

w-~
01 .02 .04 .01 0.1 02 0.4 0.7 I 2 4 7 10 20 40 70100

MEAN,m

Fig. 3-Poisson cumulative curves of range limits, C, vs mean, m.
The four curves represent the probability limits A = 1/1000,
W=1/100, W= -1/100, and a= -1/1000.

If equal numbers of tube types are used in the equip
ment, then the expected mean and range limits will be
the same for each of these tube types. However, in an
actual case the number of sockets will vary with the
tube types, so that the expected means will be propor
tional to the number of sockets, with the range limits
varying accordingly.

In Table I (next page) there are 1835 sockets with a
total of 1361 failures or a first mean rate of 1361/1835
=0.742 failure/socket. The expected mean for each tube
type is calculated by multiplying the mean rate by the
number of sockets for the tube type. For each tube type,
the A, W, w, and a range limits are taken from the graph
in Fig. 3. I t can be seen that the 6SN7 and 6L6 in Bare
out of limits and so are considered as abnormal. The
6S]7 in A, and 6SL7 in the B are high, and so should be
suspect as a result of the first mean rate calculation.

If the data include failures from abnormal tube types,
as well as from the average types, the value of the mean
calculated from all the data can be shifted by the fail
ures of the abnormal types. One extremely high failing
type can mask a few moderately hig-h failing types and
even force a few average types that happen by chance
to be a little low to appear abnormally low. The ad
justed figures are calculated by leaving out tube types
6SN7 and 6L6 in the B which tested as very high on the
first calculation. The adjusted data show that the 6S]7
in the A and the 6SL 7 in the B are now abnormal, and
all the remaining tube types are within limits.

98 1957 WESTERN COMPUTER PROCEEDINGS

TABLE I

RANGE LIMITS FOR ELECTRON-TuBE FAILURES FROM THREE TYPES OF COMPUTING AMPLIFIERS

Amplifier Observed Sockets Adjusted Tube Number Expected Adj. Adj. Adj. Adj. Test Chassis Type of per Total Mean W w A a Expected W A a Result Type Chassis Mean w
Failures

A 6SJ7 286 6 408 303 345 263 231 2781 A

6AC7 31 2 136 101 71 77 51 OK
5691 12 2 136 101 71 77 51 OK
5881 75 2 136 101 78 71 77 98 57 OK

B 6SN7 259 2 194 144 1831 A
6SL7 284 4 388 288 329 248 220 2481 A
6L6 283 2 194 144 1831 A

---- ----

I

C 6SJ7 131 3 243 180 140 137 165 110 OK
-- --

Total 1361 1835

First Mean Rate = ~!~~ =0.742 Failure/socket.

. 1361-259 -283 819 .
Adjusted Mean Rate = 1835 -194 -194 = 1447 =0.566 faIlure/socket.

1 Tested out of range, i.e., observed number >A.

DEFINITIONS OF PROBLEM OF SPARES DETERMINATION

The integral

f
T dF
--dt,

o dt

or the area under the curve of number of failures per
unit time as a function of operating time, is F, the total
number of failures. What is desired in an over-alllogis
tics scheme is an equilibrium condition between the
replacement or stocking up of spares and the total num
ber of failures or demand.

To do this, a statistical function or distribution de
scribing the failure or demand pattern is determined,
whence this function is used as a means for estimating
future demand so that, on a probability basis, an equili
brium situation can be set up.

METHODS OF SPARES DETERMINATION

Cumulative Probabilities

The reliability, or probability of zero failure per unit
of time, assuming a Poisson distribution, is given by
P(O) = e-m • Then knowing from past data the average
failure rate m, an estimate for spare parts can be made
from the unreliability of such an aggregate. The un
reliability is

u = 1 - P(O) = (1 - e- m)

and represents the cumulative probability of 1,2,3,
failures occurring.

(14)

For N elements and an operating or use time of t
hours, the expected number of failures would be given
by

UNt = N(1 - e- mt). (15)

Therefore, UNt elements would be the expected number
of elements which need replacement after each t hours

of use. These UNt expected failures can be the basis for
a spare parts program, as well as maintenance program.

The reliability R may also be written as

n

R = 1 - :E P(i).
i=l

The unreliability, or :E~=l P(i), is the cumulative prob
ability of 1, 2, 3, ... , n failures occurring. For N
elements, the unreliability is N L~=l P(i). This is,
however, precisely the number of expected failures,
which is of course, equal to the spares required. For
any average value, m, there is a unique Poisson distri
bution. From Molina's Table II of Cumulated Prob
abilities,5 we have L~=l P(i) computed which, when
multiplied by N, gives the number of spares required.

In an actual problem, failure data for a component
or group of equipments will be tabulated as N failures
over a time period of T units for n similar components
or equipments. Thus for a sample size n, the expected
number of failures, a, over time period, T, is given by
a = NIT This is equivalent to the previous calculation,
since a = np = m, where p is the failure probability per
component or equipment per unit of time, n is the
sample size, and a is Molina's a, or expected number of
failures in a sample of n elements. However, another
factor must now be taken into account. For each value
of m, which is the expected number of failures or ob
served demand rate, there will be associated a range of
demands with a range of probabilities. Fig. 3 shows
this range as a function of m. Hence for any given de
mand m, the limit values m2 and :na at probability
values such as 10-2 or 10-a can be determined so that a
stock supply of quantity m2 will not be expected by a
demand 99 times out of 100, or quantity ma 999 times
out of 1000.

Thus, even though the actual demand or failure rate
ml has been observed, nevertheless a stockroom should

Zag or: Evaluation of Failure Data 99

TABLE II

TABLE FOR LIMITS Lal,2 OF CONFIDENCE INTERVALS FOR POISSON PARAMETERS, m

LOWER (La/m))
I

0.005 0.025 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
m

----- ------------------
0 0 0 0 0 0 0 0 0 0 0 0

I 0.005 0.0253 0.0105 0.0202 0.0305 0.0408 0.0513 0.0619 0.0726 0.0834 0.0943

2 0.103 0.242 0.1485 0.2147 0.2675 0.4124 0.3531 0.3937 0.4295 0.4644 0.4993

3 0.338 0.619 0.4321 0.5643 0.6624 0.7441 0.8167 0.8815 0.9409 0.9983 1.0503

4 0.672 1.09 0.8210 1.0149 1.1530 1.2668 1.3650 1.4527 1.5331 1. 6083 1.6778

5 1.08 1.62 1.2773 1.5279 1.7057 1.8468 1. 9662 2.0776 2.1759 2.2667 1.3516

6 1.54 2.20 1. 7841 2.0884 2.3004 2.4682 2.6125 2.7390 2.8539 2.9598 3.0584

7 2.04 2.81 2.3286 2.6833 2.9268 3.1206 3.2848 3.4289 3.5590 3.6788 3.7902

8 2.57 3.45 2.9569 3.3068 3.5805 3.7978 3.9802 4.1405 4.2854 4.4177 4.5403

9 3.13 4.12 3.507013.9518 4.2549 4.4942 4.6951 4.8704 5.0283 5.17285.3070

4.8014.12904.6176

10 3.72 4.9475 5.2074 5.4248 5.6153 5.7860 5.9458\6.0861

stock ma of these items, where ma>ml' so that demand
will not exceed supply within a probability of Pa. We
can equally well choose 10-2, 10-3, or any other prob
ability value, depending upon the over-all system factors
and the consumer risk that has been chosen. For exam
ple, a probability level of 10-3 requires a stock of ma
items. Incidentally, the observed failure or demand
rate mI, if stocked in a stockroom, would only give
assurance that on the average, the probability of de
mand exceeding spares would be 0.53. This is a consumer
risk of 53 per cent.

Confidence Intervals

It should be noted that the Poisson parameter, m,
is at best subject to sampling error, since the observed
value of demand is the result of a number of sample
observations. Each demand, or failure group, per unit
time may be considered as a new sample. Hence, the
true value of the Poisson parameter, m, can only be
stated within a given confdence level. Table II of con
fidence intervals for Poisson parameters, m, are taken
from Youngs. 7

Conditional Probabilities

The conditional probability, p(yl x) is defined as the
probability of observing the occurrence of event y after
event x has been observed, or the relative frequency y
occurs knowing that x has occurred. The basic rela
tionship in conditional probability is given by (5): the
conditional probability of event y on the hypothesis
x is given by the ratio of the joint probability of (y, x), to
the probability of hypothesis x. The Poisson distribu
tion gives the probability of observing 0, 1, 2, 3, ... ,
events, havinv observed m events, on the average, pre
viously. Thus each of the terms Pi in a Poisson distribu-

7 J. w. T. Youngs, M. A. Geisler, and A. R. Mirkovitch, "Con
fidence Intervals for Poisson Parameters in Logistics Research,"
Rand Corp. RM-1357; September 30,1954.

UPPER (Lalm))

0.10 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.025 0.005

-- ------------------------
0 2.303 2.483 2.527 2.660 2.814 2.996 3.220 3.569 3.913 4.654 3.69 5.30
-- -------------------------
0.1054 3.890 4.022 4.169 4.334 4.523 4.745 5.013 5.357 5.835 6.640 5.57 7.43
-- ------------------------
0.5309 5.323 5.475 5.643 5.831 6.046 6.296 6.599 6.984 7.517 8.406 7.22 9.27
-- ------------------------
1.1020 6.681 6.849 7.035 7.242 7.479 7.754 8.086 8.505 9.085 10.047 8.77 10.98
-- ------------------------
1. 7439 7.994 8.176 8.377 8.601 8.857 9.154 9.511 9.962 10.581 11.648 10.24 12.59
-- ------------------------
2.2334 9.275 9.470 9.685 9.925 10.197 10.513 10.893 11.371 12.028 13.109 11.67 14.15
-- ------------------------
3.1512 10.533 10.739 10.967 11. 221 11.508 11.843 12.243 12.747 13.437 14.571 13.06 15.66
-- ------------------------
3.8946 11.771 11. 989 12.229 12.495 12.798 13.149 13.568 14.295 14.817 16.000 14.42 17.13

--
4.6555 12.995 13.223 13.474 13.753 14.069 14.435 14.874 15.048 16.212 17.469 15.76 18.58
-- ---------- ----------

15.747116.192 5.4320 14.206 14.444 14.70515.996 15.371 16.774 17.570 18.831 17.08 20.00

6.2209 15.450 15.693 15.936116.262 16.615 16.969 17.486 18.030 18.861 20.178 18.39 21.40

tion is a conditional probability and we may write
Pi=P(Yi! m).

The conditional probability function for the negative
binomial distribution (3) is given by the expressions

(
c + l)P+X(if;)-<P+X)

7l"(ylx) = -- 1 ---
c+2 c+2

(16)

Successive terms 7f'ij in (16) give the conditional prob
ability of observing Yi events when Xj events have been
observed in the past, assuming the Polya distribution
as the basic distribution of the Xj events.

Discussion

The in ven tory in a stockroom consists of many items.
If we assume a one-to-one correspondence between num
ber of failures, i.e., types of items that failed and items
drawn from inventory stock, we can use stockroom in
ventory as our measure for spares provisioning. Since
the demand for individual items may be low, i.e., 0 or 1,
over long periods of time, the negative binomial dis
tribution should be expected also to describe the de
mands of individual items more closely than the Poisson.
This is so since a statistical description of a series of
events which are nearly Poisson distributed, but which
have long tails, i.e., low frequency requirements over
long periods of time, may be approximated by the
negative binomial distribution.

Example

Let us consider the problem of estimating the num
ber of spare amplifiers required in a computing labora
tory which consists of three different makes of analog
com pu ters. 9

8 J. w. T. Voung-s, M. A. Geisler, and B. B. Brown, "The Pre
diction of Demand for Aircraft Spare Parts Usin~ the Method of
Conditional Probabilities," Rand Corp. RM-1413, January 17,1955.

9 Problem taken from work done by H. I. Zagor while consultant
at Convair, San Diego, Calif. '

100 1957 WESTERN COMPUTER PROCEEDINGS

A nalysis of Problem: The amplifiers have been chosen
for analysis to illustrate the methods of estimating
spares. Fail ure records had been kept of the com pu ters
since their installation in the computing laboratory
early in 1954. The failure data were on cards which
recorded, for each amplifier chassis, the date 1) on
which the amplifiers had failed, and 2) on which the
amplifier was returned to service, plus the diagnosis and
cure required to make it operational.

In any interval of time Ill, let

AI = number of amplifiers that fail.
An = number of amplifiers that are being repaired.
As = number of amplifiers that are in storage.

A to = state of amplifier failure-replacement-repair
storage system cycle at time to.

A t1 = same at time t1, where t1 > to.

Then AI+An+As=a constant, and A to =A t1 • Hence
the am plifier-replacemen t-repair-storage system
cycle is a stationary process in which the total number
of amplifiers under consideration remain a constant. The
failure-replacement portion of the system is a renewal
process since amplifiers, when they fail, are replaced by
good amplifiers from storage.

The assumption is that, on the average, each amplifier
of the total amplifier population is used operationally
for approximately an equal length of time.

The cards containing the failure records were re
viewed critically and only those cards selected which
were complete enough to have meaningful data.

Type A Amplifiers

Cards for 68 amplifiers out of a total population of 75
amplifiers were found to have sufficient data for analysis.
These cards were divided into four sample groups, the
first three groups consisting of 20 amplifiers each, and
the fourth group containing the residue of eight am
plifiers. Plots of number of failures per four week interval
vs calendar time were made for each of the groups and
are shown in Fig. 4(a), 4(b), and 4(c). It can be seen
that each of the three amplifier groups yielded sub
stantially an identical plot. Group four contained too few
failures itself for statistical results, and so was lumped
into the group three data. In order to get meaningful
statistical data, a four-week time base interval was
chosen.

Fig. 4(c) shows the cumulative total. The initial
failure peak is clearly visible, followed by a valley, and
then a plateau. Thus the general shape of the curve is
similar to Fig. 2.

It is very probable that the plateau region may still
be part of the valley region, as possibly more stringent
operating criteria may have been applied at that later
time so that what was acceptable performance previous
ly is no longer acceptable. This is to be expected as per
sonnel become better trained and more familiar with
the equipment. The peak in the 20th interval was re
duced as indicated by subtracting the obviously bad

(b.

INDEPENDENT FAILURES, GROUPS 't2t'.4
lESS FAULTY AMPLIFIER FAILURES

INDEPENDENT FAILURES,GROUPS '-Z-3'4

rFAILURES,GROUPI

0:

~ o~~~~~~~~~~~~~~~~~~~ i 6MA~ 3At~ I ':y2915~' ~Ou~,:u~ "S~'p2~T30N~'/t,!b2~:N22F\~' t.A~ zAP" 3O~ly28 ~~! 3U~3 aA~ 3s~~ I~ 29NI&l6D~C24lt~
o I 2 S 4 !5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24

(a>

~ • .g.._ ~CLG~~~ES
-.. --e---- tb~[,t:~WRf:,L'm.'i& FAULTY
--iII.-~--INOEPENDENTFAILURES
-A _ \.t1DEPEN2~NTI ~AILUF'1ES L 5

Fig. 4-Plots of number of amplifier failures per four-week interval
vs time for type A amplifiers. (a) Total failures, group 1 ampli
fiers. (b) Total failures, group 2 amplifiers; sum of groups 1 +2
amplifiers. (c) Total failures, group 3+4 amplifiers; Sum of groups
1 +2+3+4 amplifiers.

amplifiers. Reliability, of course, can only be assessed
against those items which have a chance of success.

After the tabulation of total failures vs time, the
data are separated into categories such as 1) independ
ent failures, 2) apparent failures which subsequently
showed acceptable operation on bench check, and 3)
initial failures. In addition, component failures such
as tubes by type, choppers, are tabulated.

An independent failure is classed as one which hap
pens of its own accord, but not as a result of another fail
ure. Since the failure records were not complete, judg
ment was required. The following criteria were applied
in determining independence of failure.

1) No external causes apparent, such as defective
power su ppl y, mistrea tmen t.

2) Not a mistake on the part of a technician, in that
an apparently faulty amplifier is removed and
subsequently found to check out good on the
bench.

3) No initial failure, such as wrong tube inserted, a
lead not connected, poor solder joint, or mechani
cal failure.

4) Consistent failure of a power tube, such as type
5687, would represent a failure due to mistreat
ment, or design fault.

5) Defective voltage tubes such as types 6SJ7, 6AC7,
5691 were considered independent failures, except
when otherwise indicated.

6) Those cases in which an amplifier had one or more
component failures were still classified as one am
plifier failure, and independent, unless the cause
of failure fell into one of the other categories.
There is a finite probability, of course, that one or
more failures can occur during a given interval of
time in a given amplifier.

Zag or: Evaluation of Failure Data 101

Fig. 5-Plots of number of amplifier failures per four-w.eek interval
vs time. (a) Type B amplifiers. (b) Type C amphfiers

Types Band C Amplifiers

Similar graphical plots of number of failures per four
week interval vs time are shown in Fig. 5(a) and (b) for
the Band C amplifiers. The B and A amplifiers can be
compared directly since each consists of modules which
contain two amplifiers on one chassis, and was installed
at about the same time and used for approximately the
same length of time.

The curves for the C amplifiers, in Fig. 5(b), are quite
different from those in Figs. 4(c) and 5(a). The C
amplifiers had been in use approximately for six to nine
months prior to installation of the A and B amplifiers
and had undergone extensive marginal testing and
preventive maintenance by March, 1954, when the
oth2r amplifiers were installed. Hence, by March, 1954,
the conditions for a stationary process should have
been met, in the case of the C amplifiers.

Examination of Fig. 5(b), shows no initial peak, but
rather an approximate constant level for amplifier fail
ures until the peak in the 18-19 periods. After the peak,
the failure rate settled down once again to approxi
mately the same level as previously observed. This is
similar to that portion of Fig. 2 which follows the initial
fail ure period.

The peaks which appear in all the curves at approxi
m~tely the 20th period are an illustration of the one
horse-shay effect in that additional failures were prob
ably caused as a result of the unusual heat wave in San
Diego during the summer of 1955, when the equipment
ran hotter than allowable tolerances.

Techniques of Solution

Determination of Distribution Function on Amplifiers:
Independent failures for each of the 68 chassis for nine
8-week periods over the interval June 26, 1954 to De
cember 9, 1955 were recorded. The 612 chassis-periods
were divided into five groups, namely, those with 0, 1,

2,3, and 4 failures respectively. This observed distribu
tion was then fitted to Poisson and negative binomial
distributions respectively. The results are shown in Ta
ble III.

TABLE III

RESULTS OF FITTING FAILURE DATA OF A AMPLIFIERS TO
POISSON AND NEGATIVE BINOMIAL DISTRIBUTIONS

N umber of Chassis-Periods Having
N umber of Independent Stated Number of Failures

Failures per
Negative Chassis-Period

Observed Poisson Binomial

0 499 492 500
1 97 107 94.2
2 13 11.6 15.2
3 2 0.838 2.30
4 1 0.0454 0.336

Total 612 611.4834 I 612.036

The total number of independent failures is 133.
Hence average number of failures per chassis-period
is X = 133/612 =0.217. This value of 0.217 is set equal
to m in (2), and Pi computed. For the negative binomial
frequency distribution, the mean of the observed data
is X=0.217, and the variance from the mean of 'ob
served data is 0'2 =0.250. For curve fitting, the first
and second moments are matched to the observed data.
Thus, X=0.217, and 0'2=0.250. Solving these simulta
neous equations, we obtain p='1.43, and c=6.57.

For the negative binomial distribution, (3), the prob
abilities are 7ro=0.817, 7rl=0.154, 7r2=0.0243, 7r3
= 0.00376, 7r4 = 0.00055 etc. Multiplication of each term
by 612 gives the expected frequency.

X2 Test: Since the X2 test cannot be safely applied
when the expected frequency in any cell is less than five,
sufficient cells are lumped together so as to get a fre
quency total of five or more. In the Poisson case, lump
ing of the last three frequencies resulted in 11.6+0.838
+0.0454= 12.5. The value for X2 becomes 2.07. For the
negative binomial, the value for x2 becomes 0.267. In
the Poisson case, the mean is determined from the ob
served data, and the Poisson distribution fitted ac
cordingly. Hence, the number of degrees of freedom is
given by the total number of cells minus two.

The negative binomial distribution is a two-para
meter distribution. In the illustrative problem both
the mean and variance were determined from the ob
served data. Hence, for this case the number of degrees
of freedom is given by the total number of cells minus
three.

In the illustrative problem, after pooling the last
three cells together, only three cells remain, which
leaves zero degree of freedom for the negative binomial
distribution. Hence a X2 test cannot be made on these
data. Nevertheless, inspection of the observed and ex
pected frequencies shows a closer fit with the negative
binomial than with the Poisson. The probability value
for goodness of fit for the Poisson case, X2 = 2.07 and

102 1957 WESTERN COMPUTER PROCEEDINGS

two degrees of freedom, is 0.3 or 30 per cent. This can
not be done for the negative binomial fit to the ob
served data.

Remarks

It may be seen that the negative binomial distribu
tion describes very well the observed distribution of
independent failures on 68 A chassis for nine eight-week
periods, June 26 to December 9, 1955 inclusive. In a
practical case, such as the example shown here, the
agreement between the observed frequencies and the
Poisson distribution is very adequate, indeed, for any
computation, and no additional attempt at curve fitting
to another distribution would be necessary. However,
for the purpose of an example and to illustrate the
methods, we have gone ahead and fitted the negative
binomial. All future calculations will be made for both
these distributions to illustrate various methods of esti
mating spares.

In the illustrative problem, as indeed in problems in
general, one's good judgment should prevail as to
what constitutes an adequate solution, assuming one
exists. Thus any results obtained from the mathematics
should be tempered by sober judgment before one
plunges ahead. In other words, caveat emptor should be
observed in mathematics, as well as in economics.

Method of Cumulative Probability.

In the illustrative problem, assume data are ade
quately defined by a Poisson distribution in which
m = 133 failures/68 amplifiers/72 weeks or 0.0272 fail
ure/ amplifier /week.

The reliability or probability of one amplifier having
zero failure in one week, having observed in the past
0.0272 failure per amplifier per week, is given by
Po = e-O.0272 = 0.973. The unreliability or probability of
,observing one or more failure in one amplifier during one
'week is given by U = 1(1_e-o.o272) =0.027.

The expected number of amplifier failures per week
for 68 amplifiers is given by UN =0.027X68 = 1.836
amplifier. Hence, to achieve an equilibrium situation
with respect to amplifiers, we would merely have to
supply a stockroom with 1.836 spare amplifier per week
in order to have an expectancy of zero downtime for
equipment containing 68 amplifiers. In actual practice,
the values obtained for the spares would be rounded off
to the next higher integer, or two amplifiers in our case.

An alternative method for computing cumulative
probabilities is as follows. The average failure rate per
amplifier per week is given by m=0.0272. For this value
of m, or a in Molina's tables, we can computeL:~=1 P(i)
or the cumulative probability of observing 1, 2, 3, ... ,
failures, having previously observed m failures on the
average. From Molina's tables, this is equal to 0.027.
For 68 amplifiers, the number of expected failures/week
is 68XO.027 = 1.836.

I t can be seen that the probability calculations yield
a more economical result than the simple average failure

rate, namely 1.836 vs 1.85. This difference is more pro
nounced for higher failure rates. For example, assume a
failure rate ten times as large as the observed value, or
m =0.272 failure/week/amplifier. The probability cal
culations would yield 68XO.238 = 16.2 spares required
as compared with 18.5 spares required on a simple aver
age basis.

Consumer Risk Considerations

The value for the spares, i.e., 1.836, which we have
previously obtained by cumulative probability methods
is that number of spares which has a probability of 0.53
of being exceeded by failures, or represents a consumer
risk of 0.53.

From Fig. 3, m = 1.85 and consumer risk levels of 10-1,
10-2 or 10-3 imply 5, 7, or 8 spares required per 68
amplifiers per week, respectively.

Method of Confidence Intervals

In the illustrative problem, m = 1.85 failure/68 am
plifiers/week. For 90 per cent confidence limits, the
content in Table II is searched for values within any lim
its such that 1- (Lal + L (2) = 0.9.

For symmetrical limits, L1 + L2 = 0.05. From the ta
bles we obtain the lower limit L 1(0.05) =0.32, and the
upper limit L2(0.05) = 5.8.

Since in stocking spares we are concerned with de
mand not exceeding inventory, the upper value is taken.
Hence, within a 90 per cent confidence limit, for sym
metrical limits, we should stock 6 spares per week for
the 68 amplifiers if we have observed previously a de
mand of 1.85 amplifier per week per 68 amplifiers.

I t should be noted that any confidence limits desired
may be chosen and the spares computed similarly.

Method of Conditional Probability

When the observed events can be described satis
factorily by a Poisson distribution, any of the methods
discussed can be used, depending upon the specific situ
ation and the nature of the problem. Since the Poisson
distribution is basically a conditional probability func
tion, the cumulative probability methods discussed have
been based upon conditional probabilities.

However, if the data are described more adequately
by a negative binomial distribution, the conditional
probability function for the negative binomial distribu
tion is required. Thereafter, cumulative probability
techniques can be applied to estimate the spares re
quirements in a manner similar to that illustrated. In
the illustrative problem, p = 1.43 and c = 6.57, hence,
the conditional probabilities of observing 0, 1, 2, 3, etc.
events having observed 1.85 failure/68 amplifiers per
week are 7r(0 11.85) =0.66, 7r(111.85) =0.252, 7r(2 \1.85)
= 0.062, 7r(311.85) =0.013,7r(411.85) = 0.00185, 7r(5 1.85)
=0.00031, etc. From these computations, a cumulative
probability of approximately 10-3 that demand should
not exceed spares requires a stock of 'about five
amplifiers.

Zag or: Evaluation of Failure Data 103

TABLE IV

REQUIRED NUMBER OF SPARES FOR A AMPLIFIERS

Expected Number of Poisson Negative
Demand/68 Amp/Week Binomial

. Consumer Risk
0.53 2 2
10-1 5 2
10-2 7 3
10-3 8 5

Confidence Limits
90 per cent 6

TABLE V

SAMPLE SIZES, AND x2 TEST RESULTS FOR FITTING OF FAILURE DATA

TO POISSON DISTRIBUTION FOR A, B, C AMPLIFIERS

No. of
Expected No'] x2

Chassis Total No. of of Failures Acceptance
Type Amplifiers Amplifiers per 8 Week Level

in Sample Period Poisson

A 68 75 dual 14.8 0.3
B 102 105 dual 44.5 approx. 0.015
C 82 89 single 11.3 0.3

TABLE VI

REQUIRED NUMBER OF SPARES FOR A, B, C AMPLIFIERS AS A FUNCTION OF CONSUMER RISK LEVEL

Molina's a, Expected No. of Failures, Molina's c, Number of
No. of Independ- Normalized to 68 Dual Channel Spares Required

Chassis Type Sample Size ent Failures in Amplifiers per Time Unit

72-Week Period
Day

A 68 133 0.308
B 102 401 0.618
C 82 102 0.197k

For k=2, 0.394
For k=2.6, 0.513

Results

The results of the methods for A amplifiers are shown
in Table IV. It may be seen that the results of these
various calculations are not identical, even though ap
pioximately the same. This means that in general, one
should evaluate the over-all physical situation for the
problem at hand before accepting anyone method as
final. In the example cited in the text there were not a
sufficient number of independent cells to fit a negative
binomial. Hence, since the Poisson gave an adequate
fit, any of the methods employed with the Poisson func
tion would be adequate.

Analysis of Data Obtained on Independent Failures for
Band C Amplifiers, and Determination of Spares.

The data obtained on independent failures for the
Band C amplifiers were analyzed to see if they followed
a true Poisson or negative binomial distribution. The
failure data were on a time unit of 8 weeks in order to
have statistically meaningful numbers. The calculated
distributions for the Poisson and negative binomial
were compared with the observed distribution, and the
X 2 test made, where applicable. The results are shown
in Table V.

If the distribution of failures is assumed adequately
described by the Poisson function, spares can be calcu
lated by the method of cumulated conditional prob
ability. In Table VI the results for all three types of
chassis are normalized to a sample size of 68, which is
that of the A. Calculations are made on a daily and
weekly basis, wherein 1 week equals 6 days, for 0.1,
0.01, and 0.001 probability levels.

Dailv Basis Weekly Basis
Week Cons umer Risk Consumer Risk

0.1 0.010 0.001 0.10 0.01 0.001
1.85 2 3 4 5 7 8
3.81 3 4 5 7 10 12
1. 18k
2.36 2 3 4 5 7 9
3.06 2 4 5 6 9 11

Since the A and B chassis are a dual channel, i.e., two
amplifiers to each chassis, and the C a single channel
amplifier, normalizing the C sample to the A sample
required an additional factor of k. In the ideal case
k = 2, but k> 2 presents a more realistic figure. This is
so since two C chassis are equivalent to one A chassis;
however, pulling out an A chassis for repair when only
one channel has failed is harmful to the good channel,
and increases its chance of failure upon being replaced.

From the data in Fig. 4(c) an approximate ratio of
1.3 of initial failures to the average number was obtained
for A chassis, and this gave a figure of 2.6 for k.

Thus for a confidence level of 0.001, the A requires
eight spares, the B, 12, and the C, 11 spares on a weekly
basis.

There is another interesting point about the k factor.
Since k represents the ratio of initial to chance failures
it could also represent the increase in required personnei
so as to expect no down time when the equipm~nt has
initially been installed and is being debugged. Converse
ly, if one plans on using only those number of people
initially who would be required ultimately during steady
state operation of the equipment, he can expect a down
time of the order of the k factor. One can then trade
down time for people within the limits of the k factor.

LOGISTICS CONSIDERATIONS

General

As a result of the failure analysis, a value is obtained
for the spare parts replacement based upon the steady
state performance of the equipments. In the illustrative
problem, this is for computing amplifiers, and the value

104 1957 WESTERN COMPUTER PROCEEDINGS

obtained is N spares per T time interval, at a confidence
value of P per cent. Thus, if we are willing to accept a
risk of P per cent, N spares per T time interval should
enable us to operate full time within the stated risk
level. This result, for spares, together with some simpli
fied considerations, can be applied toward estimating
logistics. For a base-field station example, a number
of factors should be taken into account.

1) Average repair-time cycle per amplifier.
2) Shelf deterioration.
3) Equipment obsolescence.
4) Number of repair technicians.
5) Effect of transportation pipe line delay between

field stations and base.

Average Repair-Time Cycle per Amplifier

I t was estimated that on the average, one good tech
nician could repair two A amplifiers per day.

Shelf Deterioration

The observed shelf deterioration of the Band C
amplifiers is negligible over a six months basis. The A
amplifiers use electrolytic capacitors, and so probably
should not be kept as spares longer than six months at
anyone time. Since a rotating system is used in which
spares replace faulty amplifiers, .shelf deterioration
should not be a factor.

Equipment Obsolescence

Eventually all equipment gets obsolete. In case of
obsolescence, the amplifiers either can be replaced or
else rebuilt. If too many spares are kept on hand and
equipments have to be replaced the cost may be high.
Hence, an optimum balance is deisrable between num
ber of spares on hand and repair technicians.

Number of Repair Technicians

It may be desirable to have more than one repair
technician, since they will be able to aid and abet each
other. In addition, if one is absent, the work can still

f continue approximately on pace. This should be bal
anced with the required number of spares and magni
tude of the facility.

Effect of Transportation Delay between Field Stations and
Base

The delay, or pipe line between the base facility and
the equipment in the field stations, means that addi
tional amplifiers over and above the shelf spares are
needed to fill the pipe line. The pipe-line delay should be
kept as small as possible.

Example

Table VI shows the results of the spares determina
tion on a daily basis for the three groups of amplifiers
normalized to 68 chassis, i.e., two amplifiers per chassis.

If we consider the case of the A amplifiers, at a 1000: 1
confidence level, it can be seen that four spare amplifiers
per day will suffice. Suppose for purposes of illustration,
we take the worst case for three days in a row. At the
conclusion of the first day, assume four amplifiers go
bad. Then assume at the start of the second day four
additional amplifiers go bad. That means in order to be
operating on the second day, eight spares will have been
required initially. However, one repair technician can
repair two amplifiers per day. Therefore, at the end of
the second day we shall have two operable spare am
plifiers back in stock.

On the third day, assume four more amplifiers go bad
at the beginning of the day. Then we would need four
spares in order to operate fully the third day. However,
two spares are in stock after having been repaired so that
only two additional amplifiers are needed. Thus, for
the case mentioned, a total of 4+4+2 = 10 spares plus
one competent repair technician will be required to in
sure the station operates within a large confidence limit.

We can estimate this limit as follows. Our calculations
show there is one chance in 1000 that more than four
spares will be required per day. The probability that
exactly four independent failures 1) will occur per day is
given by P(4) = 16 X 10-5 from the Poisson relationship,
and 2) occur three days in a row is (16 X 105)3 = 163

X 10-15• Thus, the occurrence of four failures three days
in a row in the manner discussed represents an extreme.

If we assume we have two competent repair tech
nicians, and the same failure situation as previously,
then at the end of the second day we would have 2 X 2 = 4
amplifiers repaired, which amplifiers would be required
for the third day. Thus, in this case, we need eight
spares to carry us over the three-day period. It is ad
vantageous in many cases to have two repair men, so
that two repair men plus eight spares for the 68 A am
plifier chassis would be preferable, as well as provide a
big margin for safety.

An additional modification must be allowed for in
the delay caused by the pipe line. Assume a field sta
tion at such a distance that there is a delay of one-half
day between it and the base. This one-half day repre
sents, on the average, the amount of time required for
one man to repair one amplifier. Hence, in the case of
the ten spare amplifiers plus one repair man, we would
need one more spare to compensate for the pipe line de
lay time. Thus a total of eleven spare A amplifiers plus
one technician would be required. In the case of two
technicians plus eight spares, one-half day represents,
on the average, the amount of time needed for two re
pair men to repair two amplifiers. Hence, two' repair
men plus ten spares would be required.

The case of three repair technicians is interesting. At
the start of the second day, eight spares are needed.
By the end of the second day, 3 X2 =6 amplifiers have
been repaired, so that a sufficient number of spares are
on hand at the start of the third day, with two amplifiers
to spare. The pipe line will be 3 X2 X! = 3 amplifiers.

Katz, Jones, and Rezek: Accuracy Control for Magnetic Memories 105

However, there are still two good spares available, so
that three repair technicians pI us 8 + (3 - 2) = 9 am pli
fiers will be required.

It may be questioned as to whether such extreme con
fidence levels are required. In each case, the physical
nature of the problem at hand should be examined
carefully, and analytical results used as the best guide
to determine appropriate parameters. It is interesting
to note that we cannot replace spares by technicians
directly, but must consider the factors involved. Dou
bling or tripling the number of technicians will not re
duce the number of spares required in the same propor
tion.

The part played by the delay in the pipe line shows
up very noticeably. To minimize these losses, as short a
pipe line delay as possible should be the aim of the
logistics pattern.

These few aspects of the base-field station example

merely indicate one approach in which spares estimates
can be used for setting up logistics procedures. More
detailed analyses can be carried out for complete solu
tion of some logistics system problems. It can be recog
nized that determination of a logistics scheme is similar
to that of inventory control, and is another aspect of the
more general waiting-line problem.

BIBLIOGRAPHY

[1] Jeffreys, H. Theory of Probability, London: Oxford Press, 1948.
[2] Geisler, M. A., Brown, B. B., and Hixon, O. M. "Analysis of

B-47 Consumption Data and Activity," Rand Corp. RM-1288,
July, 2 1954.

[3] Brown, B. B., and Geisler, M. A. "Analysis of the Demand
Patterns for B-47 Airframe Parts at Air Base Level," Rand Corp.
RM-1297, July 27, 1954.

[4] Lundberg, O. "On Random Processes and Their Applications
to Sickness and Accident Statistics," Uppsala, 1940.

[5] Berman, E. B. "A Model of the Procurement-Repair Decision
for a Spare Item," Rand Corp. RM-1519, July 25, 1955.

[6] Berman, E. B., and Clark, A. J. "An Optimal Inventory Policy
for a Military Organization." Rand Corp. P-647. March 30, 1955

Accuracy Control Systems for Magnetic
Core Memories

A. KATZt, A. G. JONEst, AND G. REZEKt

INTRODUCTION

WHY BE concerned with means for improving
reliability in magnetic-core memories? The co
incident-current magnetic-core memory has

proven to be the most reliable medium yet devised for
high-speed storage in digital computers. Experience with
core storage at BIZMAC, as well as at Lincoln Labora
tory and at RAND,! shows that one can achieve mean
times between errors measured in the hundreds of hours.
Should this, however, be the basis for complacency?
Such performance, although an order of magnitude
better than has been reported2 for electrostatic storage,
is only comparable to those of the arithmetic and control
portions of the com pu ter.

I t is our basic premise that core memory performance,
while presently adequate, will not long suffice in view of
the trend toward greater complexity resulting from in
creases in memory speeds and capacities. If this premise
be accepted, then it follows that means must be pro
vided for enhancing memory reliability. Two such means
will shortly be described.

t Radio Corp. of America, Camden, N. J.
1 RAND JOHNNIAC. See Digital Compo Newsletter, vol. 8,

April, 1956.
2 J. M. Wier, "Reliability and characteristics of the Illiac electro

static memory," Proc. East. Joint Compo Conf., pp. 72-77; 1953.

Accuracy Control

Reliability has been defined "as the probability of a
device performing its purpose adequately for the period
of time intended, under the operating conditions en
countered."3 In the case of a computer, a transient fault
can invalidate the results of extensive computation. A
useful measure of system reliability is, then, the prob
ability of error-free operation during a given run as a
function of the duration of that run.

The usefulness of the processed results is directly re
lated to system reliability. In executing its instructions,
the computer must accurately perform the many trans
fers and transformations whereby data is processed.
Control of accuracy is facilitated by checking: pro
grammed, built-in, or some combination thereof. The
importance of checking and the extent to which it is
applied depends on the consequences of improper opera
tion. If these consequences are measurable, then the
"best" combination may be determined on an economic
basis. More frequently, however, the balance is estab
lished empirically, and consequently reflects the wide
variance of opinion as to the "best" combination.

:I L. M. Clement, "Reliability of military electronic equipment,"
J. Brit. IRE, vol. 16, pp. 488-495; September, 1956.

106 1957 WESTERN COMPUTER PROCEEDINGS

Magnetic-Core Memories

In the course of the past two decades there have been
several generations of memory devices. Although many
devices are capable of retaining binary information,
relatively few lend themselves to rapid selection. One
of these few, the bi-remanent magnetic core, has re
cently become the "standard" storage medium in high
speed computers. The individual core acts as an ele
mentary cell capable of storing one binary digit. As
shown in Fig. 1, the core stores a "0" when in positive
remanence; "1," in negative remanence. The memory
element is relatively insensitive to an applied field H d ,

but is responsive to a field Hm resulting from the coinci
dent application of two fields of value H d • By virtue of
this nonlinearity, the cores provide an added degree of
discrimination which greatly simplifies the selection
problem.

Coincident- Current Operation4- 6

The principle of operation will briefly be reviewed. In
the array shown in Fig. 2, each core is threaded by four
windings: the sense and the inhibit windings are com
mon to all cores, a particular x coordinate and a y co
ordinate access line threads each core. The content of a
specific core is read by applying a drive current Id along
each of the appropriate access line pair. Only the core at
the intersection is driven by 1m = 2Id , and only that core
responds. If it contains a "1," a relatively large voltage
is induced in the sense winding; if a "0," a relatively
small voltage. In Fig. 2, the content of core 21 is being
read by driving lines X 2 and Y1•

To ~rit~ information into a core, the drive currents
are reversed. If a "0" is to be inscribed, a bias current
having magnitude Id and sense opposite to the drive
current is applied to the inhibit winding; if a "1," no
excitation is applied. Note that the 'extraction of the
content of a core results in destruction of the informa
tion in that core-whatever its original content, it will
be "0" after reading. Hence, an access to the memory
requires a "read-write" cycle if the information must be
preserved for later use.

The planar arrays are arranged to form a compact,
three-dimensional lattice by interconnecting corre
sponding x lines and y lines. Each array serves as a
digit plane since it stores a particular digit for each of
the registers in the lattice. Storage elements are selected
by suitably controlling the currents in the three co
ordinates along the edges of the lattice. Since the selec
tion coordinates are entirely spatial, the rate of access
to any register is inherently high.

4 J. W. Forrester, "Digital information storage in three dimen
sions using magnetic cores," J. Appl. Phys., vol. 22, pp. 44-48; Janu
ary, 1951.

S J. A. Rajchman, "A myriabit magnetic-core matrix memory,"
PROC. IRE, vol. 41, pp. 1407-1421; October, 1953.

6 W. N. Papian, "New ferrite-core memory uses pulse transform
ers," Electronics, vol. 28, pp. 194-197; March, 1955.

>.-
en
z
w
o
x
::::>
...J
u..

B

H

MAGNETIZING FORCE

Fig. i-Hysteresis characteristic of memory core.

INHIBIT

Fig. 2-Planar array of memory cores.

A block diagram of the basic memory configuration
is shown in Fig. 3. A particular core register is selected
by the X access and Yaccess means. Each of these con
sists of an address register, selection matrix, access
drivers, and access switches. The information channel
includes digit drivers, ~~.plifi._e~s, strobe gates,
pulse standardizers, a memory register, and a network
for gating information to and from the memory. There
is also a memory-timing generator which converts the
basic machine commands into pulses of a nature deter
mined by the characteristics of the cores.

Accuracy-Control Means

Having reviewed the basic ideas, let us now consider
two systems for the detection and location of memory
faults. The first of these determines if the desired register
has been selected; the second, that the desired informa
tion has been inserted into the memory. In each case,
the actual results are monitored and compared with the
results desired. If the comparison fails, an alarm condi
tion is indicated and the machine is stopped.

Katz, Jones, and Rezek: Accuracy Control for Magnetic Memories 107

COMMAND PULSES

COMMAND LEVELS

MEMORY TIMING

GENERATOR

TO PROGRAM CONTROL

Fig. 3-Block diagram of core memory.

CHECKING OF REGISTER SELECTION

The block diagram of the core memory has been re
drawn in Fig. 4 to show those areas pertinent to the
selection of a core register. With each access system is
now associated a magnetic-core error matrix, the out
puts of which are fed to a lo~ical network which deter
mines if an alarm condition exists. The details of a check
system for one access dimension (8 lines) are shown in
Fig. s.

The theory of operation is as foilows: in the course of
a memory cycle, the binary code for the desired line is
set into the memory address regi.ster from a counter in
the program-control portion of the computer. A coordi
nate line, hopefully the correct one, is then driven by
one of the access drivers. Each line threads its way
through the memory lattice, and then through the ap
propriate set of error cores (represented by the short di
agonal lines) with six turns. Thus, if a current of value Id
produces a magnetizing force lId in the memory cores, it
will produce 6Hd in the error cores. Since the error cores
are identical in characteristic with the memory cores,
the appropriate set of error cores will be switched when
ever a line is driven.

Examination of the error matrix shows it consists of
two parts: the leftmost two columns of cores determine
the parity of the line being addressed, while the right
most three columns re-encode from linear to binary. The
outputs of the parity-detecting cores are amplified and
fed to a network which checks that at least one and no
more than one line was driven during the memory cycle.
The outputs of the address-encoding cores are also
amplified and fed to a network where the address code

C

C

OMMAND PULSES

OMMAND LEVELS
MEMORY TIMING I

GENERATOR

X- ACCESS
ERROR
MATRIX

i Y-ACCESS

/ / I-------- ERROR
MATRIX

0.
y- ACCESS MEMORY

MEANS I- LATTICE (j)(j)

t3~
r a::...J

0;::>
00.. J X-ACCESS I ~

"I MEANS

ADDRESS CODE
COMPARATOR

------------ ----
ADDRESS PARITY

LOGIC
ALARM IF

r--

1 COMPARISON
FAILS

Fig. 4-Checking of register selection.

MEMORY

000

00 I

010

01 LATTICE r---t-~--+---¥-~--I

o 0

o I

o

ACCESS '-----.-I
DRIVERS

ADDRESS
PULSES

ADDRESS
CODE

r-------l--+---I COMPARATOR

ADDRESS OUTPUT
PARITY if OE + 0' E'
LOGIC

Fig. 5-Error-matrix and comparison logic
for one access dimension.

ALARM

sen t by the originating counter is com pared against
that of the line driven. An alarm is indicated in case of
malfunction.

The system just described will detect and locate
faults which occur in register selection. Since the current • in the access line is monitored, no link in the selection
chain is permitted to function without scrutiny. The
control loop is closed around the entire selection system.

If economy, space, or weight are the overriding con
siderations, then a simpler checking system might be

108 1957 WESTERN COMPUTER PROCEEDINGS

Fig. 6-Error matrix.

Fig. 7-Error matrix under test.

based on the parity-detecting cores. This system would
detect single faults, but would be of less effectiveness
in locating the fault.

A photograph of the error core matrix is shown in
Fig. 6. Note that the design is such that it may readily
be assembled with the memory arrays into a complete
lattice. A photograph of the prototype error .matrix
under test is shown in Fig. 7. Fig. 8 shows a photograph
of the error-core outputs from the sensing windings
when the matrix is in operation. Condition I shows the
outputs of the parity-detecting cores under proper ad
dressing, which is addressing one line at a time. Condi
tion II shows one form of improper addressing, which is
addressing two lines simultaneously caused -by an open
diode in the address matrix.

SENSING
OUTPUT

EVEN

ODD

CONDITION I

PROPER ADDRESSING

CONDITION II

IMPROPER ADDRESSING

SCALE: I CM- 100 MILLIVOLTS (VERT.)
I CMIt 2~ SECONDS (HORIZ.)

Fig. 8-Error-core outputs.

n ADDRESS IL
SET~----------------------------~RESET

·0"
____ D_'G_'T_D_R_'V_E ____ ~L __ .c:~' ___ ~'_~ ___ _

"I"
i'~I\MEMORY PLANE OUTPUT

_____ -.Jf\READ STROBE

/-\INFO OUT

f\WRITE STROBE

,r-\INFO CHECK OUT

Fig. 9-Memory-timing diagram.

CHECKING OF INFORMATION INSERTION

Control of this memory function is extremely simple
in concept. We recall that this memory operates on the
principle of a "destructive read-out." Hence each
memory access is characterized by a "read-write" cycle.
If one examines the timing diagram shown in Fig. 9,
one finds that an output is produced from each core in
the selected register during both the "read" and the
"write" portions of a memoty cycle. For either portion,
a relatively large output indicates storage of a "1",; a
small output, a "0." Whereas the output at "read" time
identifies the information which had been stored during
an earlier memory cycle, that at "write" time identifies
that just inserted in the core. By providing an additional
strobe pulse, the core output at "write" time may be
sampled and stored in a memory check register.

Referring to Fig. 10, one finds a simplified diagram
showing the information channels with their a?sociated
accuracy-control logic. Since the memory register con
tains the information that should have been stored in
the core register, and the check register that which
actually was stored, a comparison can be made. In case .. ~.
of error, an alarm is indica ted and the machine is
stopped. Here again the control loop is closed around I
the entire function, since it is the final remarient state
of the memory core that is being monitored.

Katz, Jones, and Rezek: Accuracy Control for Magnetic Memories 109

'" COMMAND PULSES MEMORY

TIMING GENERATOR

savings in operation through reductions in the following:

1) programming costs,

INFO
COMPARATOR

NEW
INFO

2) program debugging costs,
3) key-punching costs,
4) computer running time per task,
5) storage requirements.

Where clearly desirable, hardware checks should be
provided in a manner consistent with the system phi
losophy and with the needs of the particular application.
The amount of additional apparatus required may be
held to a minimum by designing around checking fea
tures inherent in the system and by integrating all such
features on a system basis.

It should be noted that no amount of checking will,
of itself, produce useful data. Implicit throughout has
been the assumption that the computing system is the
end product of mature circuit and system design, and
of high standards of workmanship.

CONCLUSION

Fig. 10-Checking of information insertion.

The importance of checking computer operations is
generally accepted. Economic considerations stemming
from consequences of improper operation dictate extent
and means for implementing checks. A balanced combi
nation of built-in and programmed checking appears to
be adequate for commercial applications.

BALANCE IN MEANS FOR CHECKING Two systems are discussed for improving the reli
ability of operation of a magnetic memory. These sys
tems, simple in concept and economic in implementa
tion, provide checking functions which are extremely
difficult to accomplish by programmed means. By de
tecting and locating faults as they occur, these checking
systems will raise the general level of performance of
the memory. Improvement in performance is necessary
if we are to keep pace with the continuing trend to
higher capacity and speed in computer memories.

The provision of checking features, be, they pro
grammed or built-in, requires additional apparatus, in
creased machine working time, or both. These conse
quences must be weighed against those r,esulting from
improper operation of the system. Furthermore, a
balance must be struck between the relative proportions'
oCprogrammed and built-in checking. The more built-in
checking provided, the hIgher will be the initial cost. A
hardware-checked machine, however, will provide

Discussion

E. J. Otis (Daystrom Systems): In Fig.
5, if lines such as 7 (111) is selected, and line
2 (010) is by mistake pulsed, how is the
sy.stem going to recognize the error?

Dr. Katz: Line 7 consists of three ones,
and line S-ljne 2 (010) are both of odd
parity, so that the parity detecting cores
would not sense this error. However, the
address and coding cores would encode 111,
which is the proper address. From this we
go right into the address code-comparator,
and compare favorably with the address
pulse. The parity-detecting cores, which
I mentioned earlier, would not detect the
error. This error, however, involves the
failure of two bits; in other words the two
to the zero, and the two to the second
bit have failed, and such a simultaneou's
failure is very unlikely, but this would not
have detected it. Now I should amplify it
by saying that this system will detect all
single-bit failures; seven out of eight 3-bit
failures, etc. I did mention that although
this system would detect virtually all errors,
it will not detect this particular error.

John Paivinen (General Electric): Please
repeat the description of how data check is
performed. Is it read-out following a write
operation, or are the inhibit drivers moni
tored?

Dr. Katz: Neither, actually. In the
process of writing information into the core,
if the core were to receive a one, it would be
switched and go back to -Br in this region.
If it were to have a zero inscribed, it would
not switch and would be a relatively small
output. The same sense findings would see
both outputs, C1 and read times, as well as
C1 and write time. And the same sense
amplifier would amplify the signals, since
the response is both positive and negative
polarity signals. By providing an additional
strobe, at a different time, one can examine
the output of the plane at the time of writ
ing. The same sensitiv:e equipment that i~
involved in normal reading is again used in
checking. We do not monitor the current in
the inhibit drive. I

, Vaughn Winkler (IBM): You indicated
15-30 per cent more equipment was required
for register selection. How much additional

time was.required for information channe
checking?

Dr. Katz: That 15-30 per cent was
pulled out of context. The 15-30 per cent
check applies to the, totac-system, in that
it means an increase in eq.tWpment for the
total system. Now, the t\~o systems de
scribed here-the increase and the equip
ment associated with the computer-as far
as these two checks were concerned, would
only be about 5 to 10 per cent of the memory
itself. It would increase the digits for the
most elaborate address check, and the in
formation check. Now the information check
is a function of how many bits are in a
word; and the address check depends on
how many bits determine one dimensional
of access.

Now insofar as additional time on the
information, there is no additional time on
the register selection check; this happens
in the process of reading. With respect to
the information check, there is possibly
another half-microsecond cycle, which is a
staggering of the write pulse, resulting in
less noise at the write time. The strobe
occurs at the write time.

110 1957 WESTERN COMPUTER PROCEEDINGS

Design of a Basic Computer Building Block
J. ALMAN,t P. PHIPPS,t AND D. WILSONt

FOREWORD

I N THE PAST, circuit design of a basic transistor
building block consisted of design by successive
approximations, where known operating circuits

were improved upon by using laboratory techniques to
wire up new circuits and then the working properties
of these new circuits were evaluated by measurement.
A technique for designing and regulating the char
acteristics of a new circuit with a minimum of labora
tory verification is described. lVlost of the actual work
is accomplished by a large scale digital computer, the
Univac Scientific.

The use of the digital computer in these circuit de
signs makes possible a degree of circuit investigation
which was hitherto impractical to perform because of
time and manpower limitations in the laboratory. The
Univac Scientific can, in a few hours, do years of circuit
in vestiga tion.

Fig. 1 shows a team developing circuits. One member
is a circuit engineer experienced in circuit development.
The other member is a mathematician experienced in
Univac Scientific operation.

Fig. 1-0perating the Univac Scientific.

GENERAL

In this case, the goal was a type of transistor dc in
verter circuit having several "or" inputs and several
"and" outputs. The general design is shown in Fig. 2.

The computer proves a most valuable tool for the cir
cuit design, once the circuit equations are established.
Not only can the computer determine which circuit best
meets the specifications, but it also is able to determine
just how acceptable the optimum circuit is.

t Remington Rand UNIVAC, St. Paul, Minn.

V2(-)

INPUTS

OUTPUTS

VI (+)

Fig. 2-Basic building block circuit.

The design is accomplished in two phases. Phase one
consists of developing the circuit equations. The com
puter is then programmed to solve these equations
while commuting the variables for two reasons: first,
to find all possible solutions and to indicate all those
combinations which are not solutions of the desired cir
cuit, and second, to determine and print the particular
solution which best meets the desired circuit specifica
tions.

The input to the computer would be component speci
fications and desired circuit performance specifications.
The computer then searches for the value of resistors
that would meet these circuit specifications when all
the components are in the worst possible end-of-life
condi tions.

Phase two consists of a series of equations which indi
cate if the circuit is operative with the values pro
grammed into these equations. The program varies the
circuit parameters about the nominal values for the
"best" circuit computed in phase one. Failure points are
then established for different values of the circuit para
meters. Curves are plotted to show areas of circuit oper
ation and areas of circuit failure.

PHASE I-DEVELOPING THE EQUATIONS

The equation of a circuit may be developed by several
methods, one of which employs straightforward classical
circuit theory analysis. A spot-check is maintained on
the equations by inserting values of circuit parameters
in the equations to determine actual operating condi
tions. Another method is that circuits may be set up
and their operation noted, and from these observations,
relationships can be observed to derive the equations
necessary to express the circuit. A close check must be
made in the laboratory to be certain that none of the
approximations made in the development of these equa
tions may have a detrimental effect on the final results.

Alman, Phipps, and Wilson: Design of a Basic Computer Building Block 111

The design equations for the transistor inverter are
developed as follows:

The time constant equation for the over-all circuit
IS:

(1)

where

T = time for capacitor to charge to 63 per cent of its
final value

RL = resistance of circuit in ohms
Cw = capacity of circuit wiring.

But, from Ohm's law,

R~ = E/I. (2)

So that substitution of (2) in (1) produces the linear
approximation for rise or fall time of the circuit:

T = ECw/I. (3)

This circuit is to be used in a digital machine and
only two states of the circuit have to be considered.
These two conditions occur at end-of-life operation and
are defined as the most extreme voltage levels which
can possibly appear on one output. These signal volt
ages are thus defined as Eo and E2, where Eo is the signal
voltage at the worst end-of-life case above ground, and
E2 is the signal voltage at the worst case as determined
by V3•

Substituting Eo and E2 in place of E in (3) and adding
the expression I as the current in the load.

and defining I as the current necessary to drive the
worst case load,

(9)

where BT2 is the current gain of the transistor desig
nated as T2• By subsitution of (8) and (9) into (7), a
direct relationship to determine R5 is found:

(10)

N ext, it is necessary to derive the necessary current
input to transistor TI which would be necessary to prop
agate the signal to the output of T 2• This current can be
defined as [D. 'I n the worst case, the in pu t current I D is
equal to

(11)

where BTl is the current gain of the transistor designated
as T I • To determine the value of R3 and R 4, a considera
tion of the end-of-life conditions of the circuit is made.
For the Eo condition where Eo is the end-of-life value
for the signal voltage above ground

(12)

where 15 and h are currents as designated on the circuit
diagram and I co is the cutoff leakage current of tran
sistor T I •

15 and 11 may be defineGi as functions of the circuit
parameters as

15 = - E OY 3 (13)

(4) where

Eq. (4) now gives the first approximation of the speed
of the circuit, T being the rise or fall time of the circuit
(the time required to make the circuit switch from one
state to another state of signal level).

Next, to determine the amount of power dissipated
in the transistor designated as T2 in the circuit, the
power in this transistor can be defined as the current
flowing through the transistor times the voltage across
this transistor in the worst case, or:

p= NEI

or

where

N = the number of outputs
V4 = the voltage on the collector electrode
VI = the voltage tied to the load resistor

RL = the resistance of one load.

(5)

(6)

Y 3 = 1/R3 (the conductance of R 3) (14)

and

(15)

where

Y = 1/ R4 (the conductance of R4). (16)

After substitution of the values for 15 and 11 from (13)
and (15) into (12),

(17)

it should be noted that (17) has variables of Eo and
I co, but the amount of drive necessary to excite Tl is
also of interest. This may be defined as I D, the current
necessary to supply the base with sufficient drive to
operate the circuit. Solving' for the value of R3 and R4
which will then satisfy both binary conditions of the
circuit for the E2 conditions proceeds as follows:

(18)

The next design equation to be defined is for the value and
of R 5• The value of this resistor can be defined as

15 = - E2 Y 3 (19)
(7)

where E is the voltage across this resistor in the worst
case and I is the current through this resistor in the
worst case, now;'defining E as the voltage in the circuit,

(8)

where E2 is the value of a binary signal. Also:

11 = V 1Y 4•

So substitution of (19) and (20) in (18) gives

-E2Y a = V l Y 4 + ID •

(20)

(21)

112 1957 WESTERN COMPUTER PROCEEDINGS

Eqs. (14), (16), (17), and (21) may be solved simultane
ously, and it is found that

(22)

and

(23)

We solve for the value of R2, the resistor which is be
tween the input diodes,

(24)

Since

17 = V 1R4

substitution of (25) in (24) yields:

(25)

R2 = E2 - V 2/(ID + VI/R4). (26)

The equations developed from (1) to (26) are those
which express the absolute circuit conditions which must
be met with no circuit supply voltage variation or no
resistor change from designed resistance. As there must
be an allowance made for changes in resistance and
changes in voltages new variables must be added to the
equations. These may be defined as

and

Ll = + Resistance tolerance
o = - Resistance tolerance

G = + Voltag~ tolerance
H = - Voltage tolerance.

A series of equations may now be set up which will allow
the Univac Scientific to solve and determine what limits
may be placed on such parameters as rise and fall time,
transistor current gains, values of I co, etc. This series
is called the programmed equations.

Programmed Equations

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

Step 7
Step 8
Step 9
Step 10
Step 11
Step 12
Step 13
Step 14
Step 15

Step 16

Step 17

R L = +NV4 V;,G2/PM O (27)
Pick next smaller RTMA value =RLT
PN=NV4 VdRLT (28)
P M =PNG2/0 (29)
Rs =RLTB T20/ KNLl (30)
K starts at 1 and is incremented by 0.1 step
in the'loop to a maximum of 2
Pick next smaller RTMA value =RST
ID = - V2G/BTlR sTo (31)
Ra = (EoLl/o2 - Ed Ll) /(Icof:./o + I D) (32)
Pick next smaller RTMA value =R3T
R4= V1H/(Eof:./RaTo+Icof:.) (33)
Pick next smaller RTMA value: RYT

R 2= (E2- V 2)H/(Ip1l+ V1HLl/R4TO) (34)
Pick next smaller RTMA value R2T
T R = (Eo' -E2')Cw/ [V1(1/R LT + 1/R4T)H/Ll

+ V2H/R2TO] (35)
FT = (Eo'-El)Cw/[(- V1H/RLTO)

- (V2BT2H/ NRsTLl)] (36)
Check value of (36) against value of (35). If
(36) is larger than (35), go back to (30) and
increase K to the next larger value. If (35) is

Note:

larger than (36), print answer. In any case, do
not increase K past 2.
TF and T R , from (35) and (36) were derived
by making the linear approximation for rise
and fall time while taking into account the
effect of loading, where one inverter was
dri ving N other inverters.

The programmed equations now make possible the
computation of many circuits with each having different
end-of-life limits, transistor gains, supply voltages,
wiring capacity, signal levels, etc. With all the pertinent
parameters commuted and different circuits computed,
it becomes a simple task to pick the optimum circuit for
a given set of specifications. Fig. 3 shows a sample
format used as output of the computer to indicate the
necessary parameters and quantities to meet speci
fications.

Format Key

BTl BT. N A
PM PN K In
TR TF I CO RLT
R2T RsT R.T RsT

sample format output
+6.0000 +2.0000 X101 +3.0000 +1.1000 +9.000() X101

+1.17150 XlO-2 +1.0000 X 10-2 +1.3000 +3.1421 XlO-2

+4.0000 X 10-6 +6.5710XIO-S +3.0000XlO-S +2.0000XlO+4

+8.2000X10+4 +5.6000 X 10+3 +1.8000XlO+5 +6.2000X10+4

Fig. 3-Sample format.

PHASE II-CHECKING

Once a circuit has been chosen which can meet the
desired design standards, a new set of equations are de
veloped which are called the checking equations. These
checking equations check circuit operation with a
change in circuit components. If a resistor changes or if
a resistor and vol tage in pu t change sim ul taneousl y,
these checking equations will indicate just how much
the circuit elements may change with the circuit still
meeting the desired design standards.

The checking equations are as follows:

-(E2 + VI/RaR4)BnRs + V 2 = 0 or + (fails-) (37)

Eo + R 3(VI/ R4 - I co) = 0 or + (fails-) (38)

(E2 - Y2)BT2/Rs - (V1 - E 2)N/RL = Oor+ (fails-) (39)

RT - (Eo' - E2')Cw/(VI/RL~ + 1/R4T + VdR2T)

= 0 or + (fails-) (40)

FT + (Eo' - E 2')CW /(- V1/RLT - VdBT2/NRsT)

= 0 or + (fails-). (41)

Eq. (37) checks the current in the collector circuit of
transistor Tl to determine if it is sufficient to maintain
the dc level required by the circuit.

Eq. (38) checks the circuit to determine if the leakage
curren t in transistor Tl will not degrade the circuit
operation.

Eq. (39) checks the current requirements of transistor
T2 to determine if it has enough current output to drive
the required output loads.

Alman, Phipps, and Wilson: Design of a Basic Computer Building Block 113

Eqs. (40) and (41) check rise time and fall time re
spectively. These equations determine if variations in
circuit parameters will increase the rise or fall time so
that circuit specifications are violated.

With these checking equations, it is now possible to
find the failure points for the circuit, and these points
may be plotted in individual curves. The variation in
one component is plotted against variation in another.
This curve would now show which circuit elements are
most critical. This evaluation now points the way to
wards a revision of the original equations to obtain a
circuit which is even more impervious to component
variations.

Fig. 4 shows a component curve developed about one
parameter, R L , all others being varied about their nomi
nal value. All positions inside this curve denote circuit
operation.

(J)

a::
IJJ
J:
I
o
..J
..J «
u.
o
IJJ
;:)
..J

~
..J
« z
~
o
z
X

I
Z
IJJ
U
a::
IJJ
Il.

RL
COMPOSITE

150~'-~--------------~--------~~------~

140

120

110

100~------------------"~----------------~

90

70

60

50 60 70 80 90 100 110 120 130 140 150

PERCENT X NOMINAL VALUE OF RL

Fig. 4-A component curve.

DESCRIPTION OF THE PROGRAM FOR PHASE I

The first part of the program, which is passed through
only once in the run, forms the various differences and
products that would remain constant throughout the
run for the particular circuit under consideration. The
"sub-setup" program then combines these results with
the parameters to be commuted, i.e., the transistor cur
rent gains, the number of inputs, and the resistance
tolerances. The "sub-setup" is used wherever one of
these parameters is commuted. The initial setup and the
sub-setup programs shorten the actual calculation of the
programmed equations a great deal. It then remains to
run through the equations with various vaiues of Pm,
maximum power in the emitter-follower transistor.

The selection of the RTMA values from a table is
carried out in the following way. The calculated re
sistance value is divided by the next smaller power of
ten to bring it into the range of the stored table itself.
After locating the next smaller tabular value, it is multi
plied by the original power of ten. Fig. 5 (next page)
shows an over-all organization of this phase.

For a typical program there are ten values of Pm,
seven pairs of values of ~ and 5, four values of N, and
five pairs of values of BTl and B T2 • This results in 1400
different circuits to be analyzed. The calculation, which
takes 3 hours of computing and output time, is done in
floating-point arithmetic for ease of programming.

DESCRIPTION OF THE PROGRAM FOR PHASE I I

In the list of the circuit parameters, the program con
siders the first variables as the dependent variable and
the second (then the third. then the fourth. etc. succes
sively) as the independent variable, hereafter referred to
as Yand Xi, respectively. For the nominal value of Y
there is a test to see if there is a failure at 150 per cent
of the nominal value of Xi and if so, Xi is increased in
5 per cent steps and failure is tested for until it finally
occurs. These failure values are recorded and the Xi
variable is tested at 50 per cent of nominal value for
failure. If it fails again, Xi is decreased to the failure
point and the results recorded. Otherwise, if there is no
failure no changes are tried. After both sides of Xi have
been tested for a given Y, the Y value is increased by
5 per cent and is analyzed as before. This is continued
until the Y variable either fails on a nominal value of
Xi or 150 per cent of the nominal of Y is reached. In
either case the same procedure is carried out for decreas
ing Y by 5 per cent increments until, again, either a
failure on nominal value of Xi occurs or 50 per cent of
Y is attained.

At this stage the variable Xi and Y can be inter
changed and the same analysis carried out. This inter
change enables the program to follow ,the lines of failure
completely across the 50-150 per cent interval consid
ered, in most cases, although the calculation and the
output time is almost doubled. However, there is sur
prisingly little duplication done due to this interchange.
The variables are again interchanged to their original
positions before a new independent variable is selected.

After one pair of variables has been completely
analyzed, a new independent variable is taken and
again the analysis is carried out. When all possible inde
pendent variables have been used for an initial Y, a new
dependent variable is chosen and the set of computations
for that dependent variable is accomplished for the re
maining independent variables. See Fig. 6 for the pro
gram organization of Phase II.

In the given problem there are 15 variables and there
fore 105 distinct pairs to consider. The calculation time
is about one minute per pair of the average including
output time. One may then expect the problem to run
almost two hours before completion.

114 1957 WESTERN COMPUTER PROCEEDINGS

Calculate Eq.
and punch
results

1 1 __________ I

Equations

No Has 50% or
'------j 150% of X been

reached?
yes

ave all possible
pairs been

used?

Record
Failure Points

Fig. 5-Flow diagram for the first phase.

CONCLUSION

The method of design discussed here determines a way
to utilize the Univac Scientific to do the detail work in
developing circuits. It necessitates a minimum of
engineering time to fully explore the circuit possibilities.
As detailed an analysis which may be obtained with the
Univac Scientific would either take years of laboratory

Fig. 6-Flow diagram for the second phase.

Discussion
Mr. Alman: The best circuit here is

selected after the computer has calculated
as many of the circuits as the designer feels
might be of value; and the circuit designer
then looks to the tabulated forms, plots the
characteristics of these circuits, and picks
the circuit which he feels has the widest
power for components, and will best meet
the circuit requirements.

Gunther Machol (IBM): How much
time is required to produce the solution you
have shown?

Mr. Alman: Six or seven hours to de
sign the circuit, and about the same time

work to obtain, or would not even be considered. Not
only is the computer used to optimize the circuit, but it
is also used to determine how well this optimum circuit
will operate.

for checking it. Of course, the minute you
start doing this sort of thing you realize
how many more circuits you might like to
look into, and how much you might ex
pand. We had one system set up which
would, take us something like three months
to compute, so you can get into this pretty
deeply. I would like to add at this time that
this work was all done on the UNIVAC
Scientific.

John Paivinen (General Electric): Why
does not the transistor cut-off frequency
appear in the rise-time relations?

Mr. Alman: The analysis we have
shown has been simplified as much as pos-

sible. We have expanded the equation to
take this fact into account. The drive cur·
rent is known as is the reaction of the tran
sistor to this drive current; this just adds an
extra time on to the rise-and-fall equation.

T. P. Holloran (National Cash Register,
Dayton): How long did formulation pro
gramming, trouble-shooting program take?

Mr. Alman: We had three people working
on this development, and it took in the
neighborhood of about three months to
develop one circuit. Once we had the pro
gram going well, we could put a new circuit
together in about a week, put it through
the computer, and get results.

1957 WESTERN COMPUTER PROCEEDINGS 115

Error Detection In Redundant Systems
s. SCHNEIDERt AND D. H. WAGNERt

INTRODUCTION

I T IS WELL KNOWN that redundancy is a poten
tially powerful means of increasing reliability, pro
vided the increased size, weight, maintenance, and

cost are acceptable. A simple means of implementing
redundancy is to rely on human detection of errors and
subsequent switching to a standby unit. However, in
control computers and other real-time devices, uninter
rupted operation becomes crucial, and automatic de
tection of err01' followed by automatic switching is thus
required. Indeed, this requirement would seem to be the
heart of the problem of implementing real-time re
dundancy and is the problem to which this paper is
addressed.

Investigations into two general areas are reported. In
the first area, low-level duplication (i.e., at the level of
a single part or elementary circuit), the results are dis
cussed only briefly, since they are largely negative under
the rather stringent requirements which seem to be im
posed by practical considerations. More positive results
are presented in the second area, triplication with
voting. Two practical forms of voting comparators are
proposed, and one is quantitatively evaluated, taking
accoun t of both permanent failures and in termi ttence.

Low-LEVEL DUPLICATION

Probably the simplest example of redundancy with
automatic error detection and switching is a quad of
diodes performing the function of a single diode (see
Creveling l). Such a device counters a single failure
(short or open) simply by automatically obviating the
failed part. This technique is limited to rather special
ized component functions, but applications other than
to diodes exist. For example, if a capacitor is required
merely to maintain at least a certain minimum capaci
tance, it may readily be replaced by a pair or quad of
capacitors. Various configurations are shown in Fig. 1,
together with evaluations based on Vitro failure data on
electrolytic capacitors. 2

Aside from the requirement that wide swings in param
eter values be permitted, the quad technique appears
to be seriously limited from the standpoint of maintain
ability. In circuitry built on quads, failure of a single
part does not interrupt operation, but it does increase
vulnerabili ty to failure of its partner (s). As such failures
build up, the reliability of the circuit decreases, even-

t Burroughs Corp., Paoli, Pa.
1 C. J. Creveling, "Increasing the reliability of electronic equip

ment by the use of redundant circuits," PROC. IRE, vol. 44, pp.
509-515; April, 1956.

2 J. H. Lancor, Jr., "Parts Failure Analysis: Electronic Equipment
Reliability Program," Tech. Rep. No. 25, Vitro Corp. of America,
Silver Spring, Md.; 1951.

I n m IlZ: y ::sa
C 2C 2C 2C 2C C

C 2C 2C -0- -C!:~ -Cl~ -C~ ---1(------ ---jr----l{--

C 2C 2C 2C 2C C

PROTECTION PROTECTION
PROTECTION PROTECTION PROTECTION

AGAINST OPENS AGAINST OPENS AGAINST OPENS
NO PROTECTION AGAINST SHORTS AGA I NST OPENS

AND SHORTS AND SHORTS AND SHORTS
ONLY ONLY

(CHIEFLY SHORTS) (CHIEFLY OPENS) (EQUAL)

PF • Ps + Po PF '" 2 Po PF :: 2 P
s PF=4P0

2 +ZPS
Z PF=4PS

2+ 2P0
2 PF • (P

s
+ P

O
)2

(PERFECT FUSES)

PF IS THE CONFIGURATION FRACTION FAILING PER YEAR

FAILURE OCCURS WHEN CONFIGURATION CAPACITANCE FALLS BELOW C

Po + Ps« 1

GIVEN ~ '" 0046 SHORT PROBABI LI TY

Po '" 0020 OPEN PROBABILITY

PF " 0066 PF '" 0040 PF '" 0092 PF '" 0 006 P
F

::: 0009 PF '" 0 004

Fig. i-Comparison of various capacitor configurations.

tually falling below the reliability without redundancy.
The problem of locating such noncrippling failures in a
large-scale machine appears formidable indeed.

Let us consider a preventive-maintenance concept
called forced-failure checking as a method of overcoming
this maintainability obstacle, which is probably also
present in other low-level redundancy techniques. The
idea is to check by use of an overload signal that can
be borne by a pair, quad, etc., if no member has failed,
but which causes failure of all partners of parts that
have failed during operation. Such a scheme would per
mit a circuit to be renewed to perfect condition periodi
cally and would be extremely effective. Unfortunately,
parts with the necessary properties are not known.

Because of the attractive advantages of forced-failure
checking and the feeling that some such technique is
necessary to apply low-level redundancy, attempts were
made to devise a low-level switch which would give the
duplicated components the necessary properties. Fuses,
thermistors, ferromagnets, the Hall Effect, and organic
liquids were considered to form limit-type devices for
this purpose, as they are generally adaptable to imple
mentation of forced-failure checking. However, these
devices suffer from slow reaction times, and a~ best offer
protection in one direction only, e.g., against failures
such as shorts which result in overloads. Logic elements
composed of units such as flip-flops and gates could be
arranged to perform the switching function. However,
with only two parallel outputs to choose from, differ
ences cannot, in general, be resolved to determine which
output is in error.

It certainly cannot be said that all possibilities for
solutions to these problems have been exhausted; for
example, arithmetic self-checking may be attractive.

116 1957 WESTERN COMPUTER PROCEEDINGS

However, it seems to the authors that these kinds of
difficulties will generally be encountered in attempts to
carry out low-level duplication in practice. Attempts to
devise such means have on two separate occasions led
in a natural fashion to the design of comparators to take
a vote on the outputs of triplicated systems and pass a
majority signal. These techniques are discussed in the
next section.

VOTING COMPARATOR TECHNIQUES

Figs. 2 and 4 consist of logical diagrams of comparator
circuits, either of which can be used to pass a signal
which is the majority of the outputs of A, B, and C.
Fig. 3 shows a transistorized realization of Fig. 2, using
direct-coupled transistor logic. The method of Fig. 4
may be readily transistorized, also.

The operation of these two methods is described in
this section. The method of Fig. 2 is confined to binary
applications, but the alternative method permits ana
log application, as well. Alarm and diagnostic functions
are performed in both methods in addition to voting.

Method oj Fig. 2

Referring to Fig. 2, each branch receives the same in
puts, performs the same function, and, if no fault exists,
produces the same output to the flip-flop. The state of
the gate is then checked' by a pulse of the input P 2,

which succeeds in arriving at j, g, and h, according to
the following propositions:

j = ABC V ABC V ABC V ABC

g = ABC V ABC V ABC V ABC V ABC V ABC

h = ABC V ABC V ABC

Here "A" means that the output from A was a pulse,
"A" no pulse, etc. It is seen accordingly that

1) The output at j is the same as the majority of A,
B, and C and should be passed to the next stage,
if any.

2) An output is obtained at h if, and only if, there is
disagreement among A, B, and C. This is passed
to an alarm signal without necessarily stopping
the machine.

3) If, during a diagnostic period, A, B, and Care
operated two at a time in rotation, the output at
h can be used to determine which of the three has
failed. This can also be done during operation by
observing which of the six outputs at g indicates
an alarm.

Thus the comparator performs the functions of vote
taking, alarm in case of disagreement, and diagnosis.

1 t may be seen in Fig. 2 that the outputs "g" pass
through a filter to some form of error indicator. The
function of this filter is to provide an output only when
the error rate exceeds a predetermined figure. 111 the

EACH BRANCH (A, B, a C) RECEIVES THE SAME
INPUTS, PERFORMS THE SAME FUNCTION, AND
PRODUCES THE SAME OUTPUT,

OUTPUT ·t· EXISTS IF TWO OR MORE INPUTS ARE IN
THE ONE STATE
OUTPUT '9" INDICATES ONE BRANCH HAS FAILED
OUTPUT "h" INDICATES ERROR DURING DIAGNOSTIC
CHECK PERIOD

r-------------r------r~a

SYMBOLS

AND OR

:'~ :~
GATE BUFFER

(AB) (AvB)

~
BAND PASS

FILTER

Fig. 2-Logical diagram of voting comparator.

Fig. 3-DCTL mechanization of comparator.

FLIP-FLOP RESET

F,

F,

Fig. 4-Logical diagram of alternate voting comparator.

event of such a failure indication, the machine operator
may, by using switch Sr, switch the operation from the
two-out-of-three mode to nonredundant operation, tak
ing the output directly from one of A, B, or C.

Schneider and Wagner: Error Detection in Redundant Systems 117

If the provision of the functions "g" and "h" is not re
quired, then the mechanization can be reduced to a com
parator of six gates. This still fulfills the functions of 1)
operating correctly in the event of one branch failure,
and 2) being capable of indicating the fault during the
check period.

Referring to the DCTL version in Fig. 3, it will be
noted that the configuration of the second stage is dif
ferent from that of stages 1 and 3. This is required by
the fact that when a signal goes through a stage there is
a polarity inversion of the transmitted pulse. The circuit
as shown does not take into account the need for addi
tional transistors at junctions where the indicated num
bers of connections may exceed the limits of DCTL de
sign criteria.

Method of Fig. 4

The comparator shown in Fig. 4 performs the same
function, but has a more general circuit which may per
mit its use with analog or binary, provided the signals
are synchronized. The comparison is a circular one, in
which the output of each component is compared di
rectly to that of the other two. For example, let com
ponent A be putting a signal different from the signals
of components Band C, and let the latter two agree.
Then a signal will be passed by the exclusive-OR (XV)
gates GI and G3, whose function is to pass a signal only
if the two incoming signals are of different level. The
outputs passed by the gates go to FI and F3 respectively,
upsetting the flip-flops and deactivating the AND gates
through which the signal must pass. A delay in the sig
na1line prevents the wrong signal from getting through
before the gate is deactivated. Thus the signals from A
and C are cut off, but the signal from B passes through
unhindered. The error signal given by the upset flip
flops can be used to initiate the reset of the flip-flops.
The "terrible error" output is required to show that all
three flip-flops have indicated an error and, therefore,
that the output has been cut off, and is not just ZERO.

Comparison of Figs. 2 and 4

The difference between the methods of Figs. 2 and 4
is the manner in which the comparison is made. For the
latter design, no signal need pass through the compara
tor mechanism unless an error has been made. On the
other hand, the signals must be synchronized. This re
quirement differs from the method of Fig. 2, where the
comparator is an integral part of the transmission net
work but absolute synchronization is not necessary. The
difference between the two can best be summed up by
saying that the comparator of Fig. 2 operates on the
total signal output of the component, whereas the com
parator proposed in Fig. 4 operates on the difference in
signals between two components. This enables the latter
to compare continuous as well as pulse signals, provided
the comparator is suitably mechanized.

EVALUATION OF COMPARATOR (FIG. 3)

In this section we discuss an evaluation of the com
parator circuit of Fig. 3. If permanent failures only are
considered, derivation of the reliability formula would
be fairly easy. However, incorporation of intermittence
into the formula becomes extremely complicated, so
that recourse is made to simplifying approximations
which generally yield a pessimistic estimate of the reli
ability of the triplicated system.

I t is assumed that the computer is required to operate
for a time t without failure (but not necessarily without
error). The figure of merit used to evaluate triplication
is the ratio of probability that an untriplicated circuit
will fail before time t to the corresponding probability
for the triplicated system. This ratio is defined as gain.

I t has been shown by Cohns that reliability ordinarily
can be improved beyond that of the configurations con
sidered here by using three com para tors, each taking a
vote and providing an input to one of three parallel
branches in the next stage of computation. If the vote is
being taken on the final stage, a fourth comparator pre
sumably is added to vote on the output votes already
taken.

Failures in the Comparator

Let us consider the consequences of various types of
single failures in the comparator. Focussing attention
on what happens during a single computational cycle,
the situation is described by Table I, (next page), which
tabulates the effect of shorts and opens in each individ
ual transistor (according to the transistor enumeration
in Fig. 3) under the assumption that everything else in
the comparator is perfect. Columns I and VIII list the
instances of single failure which will produce error even
though the three inputs are all correct. Columns II to
VII consist of error-producing failures when one of the
three inputs is in error. Comparator failures that are not
tabulated do not of themselves produce error, and are
ignored.

The shorts are presumed to be collector-emitter, but
opens can occur in the base, collector, or emitter. We
assume that shorts and opens are equally probable.
Then the rate of failures in the category of Columns I
,and VIII is six times that of a single -transistor, while
in taking all columns the multiple is 30.

Comparator Cutout

I t can be shown that if an in pu t circui t A, B, or C fails
permanently in such a way that half of the subsequent
bits will be in error, and if the comparator is perfect,
then on each bit the error probability of the triplicated
system is precisely the same as that of a single input
circuit. Possibilities of failure in the comparator would
then shift the balance in favor of no triplication. It is

3 M. Cohn, "Redundancy in complex computers," Proc. National
Conference on Aeronautical Electronics, pp. 231-235; May, 1956.

118 1957 WESTERN COMPUTER PROCEEDINGS

TABLE 1

COMPARATOR-TRANSISTOR FAILURE CHART

Transistor Signal (ABC) to Comparator

Designation I II III IV (Fig. 3) 000 001 010 100

1 - -
2 - -
3 + +
4 + +
5 +
6 +
7 + + +
8 + + +
9 - -

10 - -
11 + +
12 + +
14 -
16 -
17 -
18 - -
19 -
20 - -
21 - -
22 - -
23 + +
24 + +
31 +
32 +
35 +
36 +
37 +
38 +
39 +
40 +
41 -
42 -
43 -
44 -

Comparator

Output 1 1 1 1

+ represents a transistor short circuit.
- represents a transistor open circuit.

V VI VII
110 101 011

+ +
+ +
- -
- -

- -
+ +
+ +
- -
- -

+
+

+
+

+ +
+ + - -
- -

-
-

-
-

- -
-

+ + +
+ + +
+ + +
+ + +

0 0 0

VIII
111
--

-

-+-
+
+
+

--

0

for this reason that the a-{3-,), switch is provided for
comparator cutout in Fig. 2. It is assumed that this
switch will be thrown shortly after a permanent failure
in A, B, or C, as indicated by the alarm lights at g. The
possibility of a second failure between failure and cutout
is ignored.

Failure-Law Assumptions

Considering permanent failures only, we may assume
the reliability of a circuit, i.e., probability of no perma
nent failure to time t, to be of the usual exponential
form e-~t where ~ is the failure rate. It is assumed that
the circuit is transistorized and that ~ is proportional to
the complexity as measured by the transistor count n.
Thus,

~ = nif;

where if; is called the failure rate of a transistor.
It is assumed that intermittent errors have a Poisson

distribution, which is to say that the probability that a
circuit will err on a given cycle is independent of what
has occurred in preceding cycles. This may be consid
ered unrealistic in that serial correlation is likely to be

present. However, it has been shown by Einhorn and
Thiess4 that under fairly general conditions this assump
tion leads to a pessimistic estimate of reliability as op
posed to the assumption that the sequence of error
probabilities form a Markov chain. This does not neces
sarily yield a pessimistic estimate of gain. The foregoing
statement applies to our estimates of the reliability of
both the triplicated and untriplicated circuits. Some ap
parently difficult mathematical problems lie in this
area, and there is a dearth of empirical data as to rates
and distributions of intermittent errors.

Under the independence assumption, the probability
of not exceeding k errors in time t is

k

~ e-~t(rt) ilj!
i=O

where r is the intermittent error rate. Like ~, r is as
sumed to be proportional to the transistor count
(although it is not expected that a transistor itself will
become in termi tten t) :

r = ncf>,

where cf> is called the error rate per transistor.

Derivation of Reliability Formula

The reliability R(t) of the triplicated system is defined
as the probability that no more than k errors will be
produced in the system output in time t. This could be
caused by any of the following:

1) Permanent failure of one of the input circuits A,
B, or C, followed by failure of the input chosen for
operation after comparator cutout.

2) Permanent failure in the comparator before cut
out. (l t is assumed pessimistically that intermit
tence in the inputs A, B, C is a sufficiently great
problem that permanent failures according to the
entries in Columns II to VI of Table I are counted,
in addition to those of Columns I and VIII, as
permanent failures of the system.)

3) Exceeding k intermittent errors in time t.

The following rates are defined:

{3 =the average rate of intermittent errors in the out
put of the triplicated system,

}J. =the rate of permanent failures in the comparator,
A =the permanent failure rate of one input (A, B, or

C),
p =the intermittent error rate of one input (A, B, or

C).

It is assumed that intermittent errors do not occur at
two different places in the system on the same computa
tional cycle. This means that f3 is derived only from
Columns I and VIII of Table 1.

4 S. J. Einhorn and F. B. Thiess, "Intermittence as a stochastic
process," Proc. NYU-RCA Working Co.njerence on Theory oj Re
liability, Ardsley-on-Hudson, N. Y.; Apnl 17-19, 1957.

Schneider and Wagner: Error Detection in Redundant Systems 119

The reliability of the system will be expressed as the
sum of two probabilities,

R(t) = A (t) + B(t),

where

A (t) = the probability of no cutout, no comparator
failure, and k or less errors in time t,

and

B(t) =the probability of exactly one input failure, no
comparator failure before cutout, and k or less
errors in time t.

The expression for A (t) can be written directly as the
product of three independent probabilities:

k

A(t) = e-3>'te-it t L e-{3t((3t)i/j!.
i=O

The expression for B (t) is more complex, and its
evaluation involves approximations. Let

f(t) = the probability of exactly one input failure in
time t and no comparator failure before cutout.

Then

f(t) = J, t ,,("'+"'e->(t--"3}"dr

3}"
= --- e->.t(1 - e-(2HI')t).

2}.+ J1.

Here, the variable of integration is the time T to cutout.
Let

get) =the probability of exactly one input failure in
time t with no comparator failure before cutout
and more than k intermittent errors.

Then

B(t) = J(t) - get)

R(t) = A (t) + J(t) - get).

It remains only to evaluate get).
Considering m errors occurring before cutout and n

errors after cutout, we have

00 i

g(t) = L L hm<i-m)
i=k+l m=O

where, letting 0 = p - 2"'1\ - jl- (3,

As before, the variable of integration is time to cutout.
Should it be the case that 0 ~O, th~n an upper bound

on get) [which leads to a pessimistic estimate of R(t)]
could be computed with 0 =0, whereupon geometric

summation could be used to transform the formula for
get) into a multiple of the Poisson series which is tabu
lated, e.g., by Molina.s

However, ordinarily we will have 0> 0, and this will
be assumed henceforth. Two approximation methods
are given to compute g(t). The first method includes an
assumption (that (3 is negligible) which is optimistic, but
ordinarily very slightly so. The second method is more
complicated, but is strictly pessimistic.

First Method: Here it will be assumed that {3 is negligi
ble compared to p (which amounts to assuming that the
transistor count of input circuits A, B, or C is large
compared to six). By the same token, it is assumed that
intermittent errors before cutout are negligible. We then
have

00

get) ~ L hon
n=k+l

Since

- e°'T(t - r)ndr = -- 1 - L -. - e-at ,
1 f t e

a
t { n (ot) i }

n ! 0 0 n+1 i=O J !

we have

get) ~ - e-(Hp)t L L - --3}" 00 00 (p)n+l (ot) i

P n=k+l i=n+l 0 j!

= - e-(>.+p)t L -.- L -3A 00 (ot) i i (P) i

P i=k+2 J ! i=k+2 0

= --- e-(>'+p)t L--3}" { 00 (pt) i

2}" + J1. i=k+2 j!

(
p) k+1 00 (Ot) '} -- L-.-,.
o i=k+2 J.

This last formula is readily computed using Poisson
tables.s

Second Method: We may rewrite the formula for get)
as follows:

g(t) = 3}..e-(pH)t f t ((3/ P: m(pt) HI 4>(m + 1, j + 2; 01)
i=k+1 m=O p() + 1) 1

where cP is defined by the formula

(j + I)! fleautum(1 - u)j-mdu

<p(m + l,j + 2; ot) = ____ 0 ______ _

m!(j - m)!

Regarding cP as a weighted averaging of eat, it can be
shown thatcp(m+l,j+2; ot) decreases as} increases and
increases as m increases. Therefore

I) E. C. Molina, "Poisson's Exponential Binomial Limit," D. Van
Nostrand Co" Inc., New York, N, y,; 1942,

120 1957 WESTERN COMPUTER PROCEEDINGS

00 i ({3 / p) m(pt) iH
get) ~ 3Ae-(P+A)t L: L: . I <I>(m + 1, k + 3; ot)

i=kH m=O p() + 1).

::;; - e-(P+A)t L: 3A (00 (pt) iH - ((3t) HI)
- P i=k+l (j + 1)!

. (E ({3/p)""P(m + 1, k + 3; at)}
This formula may be used to compute an upper bound

on g(t). Poisson tables6 provide the first sum. Since
cI>(m+l, k+3; at) is bounded above byeBt, the second
series will converge rapidly for small (3/p. Below are
recurrence formulas for cI>, derived from the fact that cI>
is a confluent hypergeometric function:6

(k + 2)! ~ (ot)i,
<1>(1, k + 3; ot) = --- £....i

(ot) H2 i=k+2 i!

<1>(2, k + 3; ot)
(k+2)! t(at)'

(ot) HI i=kH i!

- (k + 1)<1>(1, k + 3; at),

<I>(m+ 1, k+3;ot)

1
= - {(k + 3 - m)<I>(m - 1, k + 3; ot)

m

+ (2m - 3 - k + ot)<I>(m, k + 3; ot) } for m ~ 2.

Example

As an illustrative example, let us consider the triplica
tion of a computer containing 104 transistors. Assume
that the permanent failure rate per transistor is If'= 10-5

failures per hour. This is roughly 10 times the transistor
failure rates presently being experienced; however, it
makes allowance for other parts, and is consistent with
being in the position of having less reliability than pre
dicted and therefore being in need of redundancy.

Assume that the required time of operation is one
hour. Then A = 104f =0.1, t = 1, and the reliability of the
computer as regards permanent failures is e-0 •1 =0.9.

Assume that the allowable number k of errors in time
t is 10 and that, by this standard, intermittence causes
half as much unreliability as permanent failures, i.e.,

10

0.95 = L: e-pt(pt)i/j!,
i=O

which corresponds to p =6.2 errors per hour, and
cf>=6.2 X 10-4 errors per hour, the intermittent error rate
per transistor.

As noted earlier, (3 is derived from Columns I and VIII
of Table I, and p. is derived from all eight columns. We
have:

{3 = 6cf> = 0.0037 error per hour

p. = 30y; = 0.0003 failure per hour.

6 A. Erdelyi, W. Magnus, F. Oberhettinger, and G. Tricomi,
"Higher Transcendental Functions," Bateman Manuscript Project,
McGraw-Hill Book Co., Inc., New York, N. Y.; 1953.

Clearly (3 is negligible compared to p. Using these
values and the first of the two methods above, we com
pute the reliability with triplication to be R(t) ~0.985.
The reliability without triplication is 0.9 XO.95 =0.855.
Thus, the gain accrued by triplication is approximately
(1-0.855)/(1-0.985) =9.7 .

If this example is recomputed with an error rate cor
responding to an intermittence reliability of 0.975 in
stead of 0.95, then R(t) remains virtually unchanged.
The same is true if k is changed from 10 to 100 in both
instances.

In the above example, the estimated values of get)
were computed to be 0.0018 and 0.0022 by the first and
second methods respectively. In the alternative three
cases of the preceding paragraph, get) and, accordingly,
the difference between the results of the two methods
are much smaller. This confirms that neglecting (3 in
computing get) does not have a significant effect in these
cases.

The gain factor of 9.7 is impressive. The gain com
puted with the same failure and error rates per transis
tor, but with the assumption that the computer is
triplicated has only 1000 or 100 transistors, becomes 25
or 3.3 respectively.

Suppose the computer with 104 transistors consists of
a series of 10 stages with 1000 transistors each. With
triplication, one might take a vote at each stage. The
problem of estimating the gain of such a system is com
plicated by the numerous states (and corresponding
intermittent error rates) which can occur as one or more
cutouts take place. However, if one assumes that at
most one cutout will occur in time t, the situation being
analogous to the single-comparator case. The formulas
already derived may be adapted by substituting 10(3,
lOp. for (3, p. and making other substitutions. Analysis
proceeding in this fashion could be used to determine
the optimum level of vote-taking.

Discussion of the Evaluation

The natural simplified method of evaluating a voting
comparator is to ignore intermittence and comparator
reliability. Then the gain factor without cutout is ap
proximately iq where q is the failure probability of the
circuit being triplicated. The results computed from the
formula for R(t) derived above are quite different from
this simplified method.

It is not desired to generalize too far on such compari
sons, since the present formula is conditioned by various
uncertainties, notably the form of the distribution of
intermittent errors. It is possible that our treatment of
comparator failures is too pessimistic; however, this
could easily be modified as empirical information may
warrant.

I t is believed that the methods developed here can be
used to provide a basis for deciding whether or not to
triplicate and the optimum level at which the vote
should be taken. While much further work needs to be
done, particularly in the area of intermittence, such

Schiewe and Chen: Analog Logarithmic and Antilogarithmic Circuits 121

estimates should be somewhat closer to reality than
would be obtained, for example, by ignoring intermit
tence or comparator reliability or both.

ACKNOWLEDGMENT

The research reported here was carried out under
USAF Contract No. AF 04(645)-23, and much of it was
performed by associates of the authors. Figs. 2 and 3
were conceived by J. K. Moore and S. Schneider, Fig. 4

by D. J. Kerrisk and G. H. Barnes, and Fig. 1 by J. C.
Moffet. The comparator evaluation was carried out
largely by S. J. Einhorn, G. S. Goodman, and F. B.
Thiess, the second of the two methods for computing
get) being due to the latter. H. H. Goode, of the Uni
versity of Michigan, proposed the idea of forced-failure
checking which was investigated, along with low-level
redundancy techniques, by D. J. Kerrisk. Thanks are
due to Mrs. A. S. Bikle for editorial assistance.

Discussion can monitor the operation, check and deter
mine the volts during the operation.

inversely proportional to mean time so that
the gain in the mean time would be again
about a factor of ten in the example cited.
This assumes that the process is described
by exponential failure law, and regarding
the triplicated system, as a whole, I doubt if
this is strictly the case, especially with two
different states to consider, before and after
cut-out. But for a rough answer, the ratio of
mean time would be approximately the same
as the ratio between the failure probabilities

O. Lowenschluss (Sperry Gyroscope): It
is possible to build a 6-transistor DCTL
majority element, outside of checking fea
tures, so why use the 53 transistors?

Mr. Lowenschluss: Also, of course, the
checking features are worth something.

Mr. Wagner: The case that we were just
discussing was done in this way because it
represented more general cases and because
it provides for indication outputs, and one

R. M. Walker (IBM): Could you give a
comparison (for triplication) in terms of the
ratio of improvement in mean time to fail
ure?

Mr. Wagner: When you are at the up
per end of the probability scale the 90-100
per cent failure probability is approximately

Analog Logarithmic and Antilogarithmic Circuits
Using Switching Transistors

A. J. SCHIEWEt AND K. CHENt

INTRODUCTION

AS THE FUNCTION of modern control and comn puter systems becomes more complex, there is an
increasing need of electronic analog circuits

which automatically perform the mathematical opera
tions of taking the logarithm and antilogarithm. The
logarithmic function may be desired in itself as in con
version of linear inputs into logarithmic values for scale
compression in one-dimensional instrument indicators
and recorders. On the other hand, it may be used in
conjunction with the antilogarithmic function to obtain
the operations of multiplication, division, and taking
powers and roots.

The circuits discussed in this paper were developed
with the following objectives:

1) Reliability and indefinitely long life.
2) Reproducible characteristics.
3) Fast response (less than 1 millisecond).
4) Good accuracy (less than 1 per cent error).
5) Simplicity and practical design.
6) Moderate range of inputs (2 decades).
7) Temperature stability (-55°C to + 71°C).

t The Ramo-Wooldridge Corp., Los Angeles, Calif.
t Westinghouse Electric Corp., East Pittsburgh, Pa.

To the authors' knowledge no contemporary circuits
have satisfactorily met all these objectives.

The computing elements described herein are com
pletely static in their operation utilizing exponential
time decays in conjunction with pulse-width modula
tion. The output is in the form of a train of voltage
pulses, the average value of which is a definite function
of the in pu t voltage.

BASIC COMPUTING ELEMENT

Fig. 1 shows the basic computing circuit used to
generate the logarithmic and antilogarithmic functions.
That it may also be used to generate other transcen
dental functions will be demonstrated. The n-p-n tran
sistor will block (exhibit a very high impedance between
emitter and collector) if the base is more negative than
both the emitter and collector. If the base is more posi
tive than the emitter, the transistor will exhibit nearly
a short circuit between emitter and collector within the
limit of its base-to-collector current gain.

In order to generate the logarithmic function, a dc
voltage, el =El, is used to modulate the zero level of a
train of exponential pulses e2 [Fig. 2(a)]. The relative
polarities are as indicated in Fig. 1. When the net volt
age, eb, is negative, the transistor blocks and the voltage,

122 1957 WESTERN COMPUTER PROCEEDINGS

1

+

Fig. i-Basic computing element.

O~--~~----~~~----+-~------

(a)WAVEFORM OF eb

.0

~T-J
(b}OUTPUT WAVEFORM

Fig. 2-Waveforms pertinent to logarithmic circuit.

eo, is zero. When, on the other hand, the net voltage is
positive, the transistor conducts applying a dc voltage,
ebb = Ebb, across the output. The resultant output voltage
is a train of rectangular pulses of amplitude Ebb and
with a width W L. That the width, W L, is a logarithmic
function of the input, El, is easily seen in the following
manner. Over the period T the voltage e2 is given by

(1)

The transistor switches from conduction to blocking
when El equals e2 in magnitude. Hence, the conduction
time and consequently the width, W L, of the output
pulses is given by

(2)

If only the logarithmic function is desired, the output
voltage may be averaged to obtain a dc voltage, Eo,
proportional to the logarithm of the input El

Eo (average) = EbbWL/T = - EbbTLjln EI/EL. (3)

where f is the frequency of the exponential pulse train.

The inverse function, or antilogarithmic function, is
obtained in the following manner. It is assumed that the
antilogarithmic circuit is to be operated in conjunction
with the logarithmic circuit already described. That is,
the input information to the antilogarithmic circuit will
be contained in a pulse width, WA , which results from
mathematical operations being performed on the out
puts of the logarithmic circuits. In this case the input,
el, becomes the rectangular pulse train of Fig. 3(a) and
the voltage ez becomes a dc bias voltage to insure proper
switching of the transistor. As one might expect, the
voltage, ebb, is now required to be a train of exponential
pulses synchronized with the input pulses el as indicated
in Fig. 3. The exponential pulses are switched to the

I
I

(a) WAVEFORM OF e b

o -~L---::=...----'--~--=:::=""""--L.~~ ______

(c) OUTPUT WAVEFORM

Fig. 3-Waveforms pertinent to antilogarithmic circuit.

output only during the interval (T - WA) in each period
T. The average output voltage, Eo is given approxi
mately by

(4)

A constant error is involved in this approximation in
that a portion of the exponential tail has been deleted
in the actual averaging process. The magnitude of this
error relative to full-scale output may be made very
small by choosing the time constant T A small. Also,
since the error is constant and independent of the input
variable, W A , it may be removed completely by adding
a bias voltage at the output. The magnitude of the error
is given by

(6)

Schiewe and Chen: Analog Logarithmic and Antilogarithmic Circuits 123

If for some reason the input to the antilogarithmic cir
cuit is scaled into a dc voltage, E l , then it is necessary
to make e2 a sawtooth waveform as indicated in Fig, 4,
The resultant output waveform and hence average out
put voltage is the same as that described in the previous
paragraph with WA now proportional to E l ,

e2= K t
"-

0---E,i I
I

~WA~
I (0) WAVEFORM OF eb

: -1

o _-+-_/i-l~_e_bb....::::'=-.EA.-E_T_A_~L--_----=::!!O __

Li-T-J
: (b) WAVEFOR~ OF ebb
I

o ----I-~~--'--~~...I.....-~~
(c) OUTPUT WAVEFORM, eO

Fig, 4-Waveforms for an alternate antilogarithmic circuit,

Indeed, a great variety of transcendental functions of
an input voltage can be obtained in theory from this
very simple circuit, Table I is a listing of a few such

TABLE I

AVERAGE OUTPUT VOLTAGES FOR VARIOUS WAVEFORMS OF e2 AND e3

el ebb e2 Eo (average)
Proportional To:

de de Kt e/>b'el
de dc Kt2 .!.

ebb'el'
dc de Ktn ebb· el l/n
dc dc K cos wt ebb· cos-1 eI/ K
de de K sin wt ebb· sin -1 eI/ K
de dc Ke-at ebb·ln eI/K
dc cos wt Kt sin wiKel
de Kitn Kt eln+l
de J(t) Kt Je1/KJ(t)dt
de K]tn Ktm el<n+1)/m ,_
de cos wt Kt2 sih (wlyK)yCr

functions. The input, el, is assumed present as a dc
voltage. The voltages e2 and e3 are assumed periodic
with period T. The average output voltage is found in
each case from the same line of reasoning as given in the
preceding paragraphs. The authors have developed de
tailed circuitry only for the logarithmic and antilog-

arithmic functions since only the easily obtained ex
ponential is required for e2 and e3. Van Allen and
Schaefer used somewhat the same principle to obtain
transcendental functions, but they required transistors
and magnetic cores. 1 Glaser and Blasbalg developed a
logarithmic voltage quantizer with vacuum tube cir
cuitry based on the principle of modulating exponential
voltage pulses, but they did not consider the antilog
arithmic counterpart, nor transistor circuitry in per
forming the logarithmic function. 2

OPERATIONS ON PULSE WIDTHS

It is possible, of course, to average the output of the
logarithmic circuit with an approximate filter and then
combine several such dc outputs to obtain a dc input for
the antilogarithmic circuit. For multiplication the dc
outputs from the logarithmic circuits would add and
for division, subtract. To take powers and roots, the dc
output of a single logarithmic circuit would be propor
tioned. However, the filtering of the logarithmic outputs
greatly increases the response time of the over-all com
puter operation. For this reason a magnetic core is
utilized to operate on the pulse widths directly,

If such a core is assumed to be at positive saturation
and provided with low-resistance windings of Ni turns,
then a set of rectangular nonoverlapping voltage pulses
of proper polarity from low internal impedance sources
across the windings will tend to reset the core in accord
ance with (8), provided negative saturation is not
reached (Fig. 5),

------+---t=----t--t----L N i o ",
---*----t------+
.6.<Pn ' .. i ..

..

-<Ps--------~----~----~

Fig. 5-Magnetic characteristic of rectangular hysteresis loop
core material.

n n

Llcf> = L: Llcf>i = L: EbbiLlti/ Ni'
i=l i=l

(8)

1 D. H. Schaefer and R. L. Van Allen, "Transcendental function
analogue computation with magnetic cores," AlEE Trans., vol. 75,
pp. 160-165; May, 1956.

2 E. M. Glaser and H. Blasbalg, "A logarithmic voltage quan
tizer," IRE TRANS., vol. EC-4, pp. 15-155; December, 1955.

124 1957 WESTERN COMPUTER PROCEEDINGS

The ~ti is the time duration of the ith pulse and Ebbi is
its amplitude. In order to bring the core back to positive
saturation, an equal and opposite change in flux must
be effected. If a constant "firing" voltage E is applied
to a winding of N turns, then the time duration of this
voltage must produce the same volt-time area per turn
as on reset to saturate the core.

n

ED-tiN = L: EbbiD-tiINi. (9)
i=l

All the jj,t/s are simply the widths Wi of rectangular
pulses and ~t is the width W of the "firing" voltage
pulse.

n

W = NIE L: EbbiWi/Ni. (10)
i=l

The above discussion applies equally well if the opera
tion is made cyclic in nature. The W/s represent the
outputs of identical logarithmic circuits each of which
has been assigned a discrete interval of time, T /2n
seconds, for full range of operation (where! T is the re
setting period and n is the number of log circuits being
used). The pulses from the logarithmic circuits are made
nonoverlapping by means of time delays to be described
later. During the "read out" half cycle the logarithmic
circui ts are disconnected from the core and the firing
voltage E is applied. The width of the voltage pulse
across the core is given by (10) and depicted in Fig. 6.
Substituting (2) into (10) yields

n

W = - NIE L: EbbiTLINi In Eli/ELi. (11)
i=l

If this Wis made the input to the antilogarithmic circuit
previously described, (5) may be applied resulting in

Eo (average) = EATAj II -- -- -- --
[

n (Eli) (N Ebbi TL)]
i=l ELi Ni E TA

(12)

From (12) it is clear that logarithmic-magnetic core
antilogarithmic ensemble may be used to obtain multi
plication and the taking of powers and roots. If division
is to be performed, then the divisor must be presented
to the core as a negative pulse and must be scaled and
delayed in such a fashion that it does not return the
core to positive saturation before the "read out" half
cycle.

. The delay time for the ensemble is one cycle of the
operating frequency, j. If the output must be filtered
before use, then the filtering delay must be included.
For the circuits developed a frequency of 1000 cps was
used giving a delay of one millisecond plus filtering
delay.

LOGARITHMIC CIRCUIT

Details of the logarithmic circuit, which includes the
network for generating exponential pulses, are shown in
Fig. 7. The main difference between the logarithmic

ilWI
jtWn Eln nEe, ilV21

0
I IE2

I

rln-J f 1 ~L~
2

(0) CORE VOLTAGE DURING RESETTING HALF CYCLE

o

(b)CORE VOLTAGE DURING FIRING OR "READ-OUT" HALF CYCLE

Fig. 6--Pulse-width operations.

~~~~~~~Ei ~~4---~~~ 

2K 
Eo 

'-------+-I1----+-----+---4~ '---I~_I-
Ebb=40 V 

~~o~s~C~. __ ~T~RA~N~S~IS~T~OR~~~R~C~D~IF~F~. __ -*~L~OGARIT"MIC ~ 
BUFFER STAGE NETWORK UNIT 

Fig. 7-Details of the logarithmic circuit. 

unit in this circuit and the basic circuit shown in Fig. 1 
is the inclusion of a second transistor switch T2 of the 
germanium p-n-p type for the purpose of minimizing the 
effect of leakage current through the main transistor 
switch T1. Since this second switch T2 is closed when
ever the main switch Tl is opened and since T2 is con
nected in the inverted connection,S its extremely low 
voltage drop effectively shunts the leakage current of 
T1. 

The exponential pulses required for the logarithmic 
operation are obtained from a dc source by means of a 
magnetic-coupled transistor square-wave generator,4 a 
transistor buffer stage and a RC differentiating network 
as shown in Fig. 7. The diodes connected to the bases of 
Tl and T2 maintain the input impedance seen by the 
exponential function generator essentially constant over 
a full cycle. The diodes also serve the purpose of reduc
ing the Zener voltage requirement of Tl and T2. 

The input voltage Ei is so connected that it modulates 
the zero level of the base current of Tl during the half 
cycle in which the capacitor C L discharges. An analysis 
of the circuit transient shows that the time constant as-

3 R. L. Bright, "Junction transistors used as switches," AlfiE 
Trans., vol. 74, p. 111; March, 1955. ' 

4 G. H. Royer, "A switching transistor d-c to a-c converter having 
an output frequency proportional to the d-c input voltage," AlEE 
Trans., vol. 74, p. 322; July, 1955. 



Schiewe and Chen: A nalog Logarithmic and A ntilogarithmic Circuits 125 

sociated with this discharge, which becomes the T L in 
(1)-(3) of previous discussion, is given by 

TL = CL[R1 + R2Ra/(R2 + Ra) J. (13) 

The base current of the transistor Tl has the waveform 
shown in Fig. 8, in which the portions a and b are deter
mined by the relation 

b RIR2 + R2Ra + RaRl Ei 
---- = ------------------
a + b R2(R2 + Ra) EL' 

(14) 

Thus, the maximum value for E i , or the upper limit of 
the input to the logarithmic circuit, can be determined 
by setting a = 0 and becomes 

R2(R2 + Ra) 
Ei max = E'L. 

RIR2 + R2Ra + RaRl 
(15) 

The lower limit of the input Ei min is dictated by the 
minimum base-to-emitter voltage required for the sili
con transistor Tl to perform as a closed switch. The 
choice of the supply voltage levels and the RC com
ponent values as given in Fig. 7 was based on the con
sideration of the Zener voltage and current gain capa
bilities of the available transistors, and the objective 
of obtaining maximum operating range of the logarith
mic circuit for a supply frequency of 1000 cps. 

The steady-state temperature characteristic of the 
logarithmic circuit is shown in Fig. 9. All transistors and 
diodes used in the logarithmic circuit under test and in 
the antilogarithmic circuit to be described are of the 
following types: 

Si diodes --lN137A 
Si n-p-n transistors--904 (Texas Instruments, Inc.) 
Ge p-n-p transistors-2 N 74 
Ge n-p-n transistors-4815C. 

The only parts of the circuit which were subjected to 
tern perature changes were the semiconductor com po
nents in the logarithmic unit. Under these conditions 
the experimental tests indicate the maximum error to be 
within 1.5 per cent of the full-scale output for the 
temperature range from O°C to +71°C with a corre
sponding input range of 0.7 to 120 volts.s The major 
cause of error is the lack of sharpness at the trailing edge 
of the output voltage pulse as the transition time of the 
transistor switch from conducting to cutoff lengthens at 
low input. The maximum error increased above the 
value of 1.5 per cent as temperature' decreased from 
O°C to -60°C. This effect is believed to have been 
caused by a significant decrease in current gain of the 
silicon transistor for temperatures in this range. 

The stable operation of the logarithmic circuit within 
the temperature range of O"C to +71°C is attributed 
to the operation of the transistors in the switching mode. 
For the same reason the circuit possesses the important 
property of reproducibility. The characteristics do not 

6 The errors in measurement were estimated to be 1 per cent. 

Fig. 8-Base current waveform of the main transistor switch in 
the logarithmic circuit. 

12 
(/) 

~ 
~IO 

U 
"0 -;8 
~ 
w 
~6 
...J o 
> 
!:)4 
ll
l
::> 

~2 
o 

o 

+++ 0 0 c. 
.......... .0 0 +710 C. 

~ ~ ~r-. - IDEAL CHARACTERISTIC 

~ 
"-t'-.r-, 

~ 
~ 

&0 
~~ , 

1.0 10 100 

DC INPUT VOLTAGE (Ej) -VOLTS 

Fig. 9-Steady-state temperature characteristic of the 
logarithmic circuit. 

1000 

depend upon a particular transistor or upon special 
matching of components which is experienced in many 
contemporary circuits. Also, simplicity has been 
achieved even if the generation of the exponential pulses 
is taken into consideration. The circuit gains reliability 
and long life from the use of transistors and magnetic 
cores as the only active elements. 

ANTILOGARITHMIC CIRCUIT 

Details of the antilogarithmic circuit are shown in 
Fig. 10 (next page). Here the input is assumed to be a dc 
voltage. A sawtooth function generator, which mixes 
a square wave with a triangular wave in proper pro
portion to produce the desired output waveform, is in
cluded in the circuit for the purpose of converting the 
dc input Ei to the form of pulse width (~T- WA ). The 
exponential voltage pulses required as the voltage sup
ply for the output of the antilogarithmic unit are gen
erated by periodically charging and discharging the 
0.04 p.f capacitor (lower portion of Fig. 10). The ger
manium p-n-p transistor T2 and the two diodes in the 
antilogarithmic unit are employed for the same reasons 
given in the discussion of the logarithmic circuit. 

The steady-state characteristic of the antilogarithmic 
circuit at room temperature is shown in Fig. 11. The 
maximum error is within 1 per cent of the full-scal~ out
put for an output voltage range from 0 to 1.5 volts.,The 



126 1957 WESTERN COMPUTER PROCEEDINGS 

I----J I--------l 1--------

I • I I 1 I 
I 

I 
I 

I 

I I I I I 
I I I I I 

5K 

I I I • 1 I 
I I I II '--I--E-----ft- E i o-+ ____ ------1~_F_____, 
I I I 0 /1 I r 
I I I 32 K : ""'J T I ~K Eo 

I 
I 
I 
I 

I I I ...------'fJ'--I----I--.--r:::
5

:==i
K
i--'-+--I T ki I 

I 12.5K 1 ~ 
I I 10K I 
1 II 2K I 1 ___ _ _I 
I • I L SAWTOOTH FUNCTION-I 
1 ____ J GENERATOR 

SQUARE WAVE 
OSCILLATOR 

EXPONENTIAL FUNCTION 
GENERATOR 

ANTI LOGARITHMIC 
UNIT 

Fig. lO-Details of the antilogarithmic circuit. 

12.0 

(/)10.0 

~ g 
I 80 

w 

t~r6.0 
~ 
d 
~4.0 

~ 
~2.0 

o 
0,01 

" ~ 
~~ 

+++ EXPERIMENTAL POINTS 
- IDEAL CHARACTERISTICS 

~~ 

~ 
~ 

I"" 
~'" 

+t'-
+ 

OJ 1.0 

DC OUTPUT VOLTAGE (EO)-VOLTS 

Fig. ll-Steady-state characteristic of the antilogarithmic 
circuit. 

10 

major source of error is the inherent approximation given 
by (5) and (6) and the imperfect linearity of the saw
tooth waveform. Comments on the reproducibility, reli
ability, and long life of the logarithmic circuit apply 
also to the antilogarithmic circuit. Simplicity and 
temperature stability of the antilogarithmic circuit in 
Fig. 10 are somewhat poorer because of the employment 
of the low-voltage sawtooth function generator, which, 
however, is not needed in the ensemble circuit described 
below. 

LOGARITHMIC-l\1AGNETIC CORE

ANTILOGARITHMIC ENSEMBLE 

Details of the ensemble circuit with two inputs are in 
Fig. 12 (opposite). The two logarithmic units, the pulse
width algebraic unit, and the antilogarithmic unit are 
the heart of the ensemble. Accessory equipment con
sists of several transistor buffer stages, several expo
nential function generators, a square-wave oscillator 
which synchronizes the operation of the different parts 
of the ensemble, and a delay network which keeps the 
output pulses of the logarithmic units from overlapping. 

The logarithmic units differ slightly in physical layout 
from that in Fig. 7. First, they are operating during the 
charging periods of the capacitors C1 and C2• This was 
necessary in order to be able to introduce the delay net
work and to use silicon transistors in the logarithmic 
units. (Only n-p-n type of silicon transistors was cavail
able at the time of the circuit development.) The in
versely connected germanium transistor in Fig. 7 is not 
used here because it would interfere with the operation 
of the pulse-width algebraic unit. 

The delay network is composed of a magnetic core 
and a biased rectifier. The core is so designed that it is 
saturated upon absorbing one-half the volt-time area 
per pulse put out by the square-wave oscillator. There
fore the operation of the .upper logarithmic unit lays be
hind the operation of the lower one by a quarter cycle. 



SQUARE -WAVE 
OSCILLATOR 

I 
I 
I 
I 
, 
I 
1 

Schiewe and: Chen: Analog' Logarithmic and=A ntilogarithmic Circuits 

EXP. M 
TRANSISTOR FUNC. LOGARITH.IC 

DELAY BUFFER STAGES GENS. UNITS _-.r-----
NETWORK 1----,Cj--'12K I I 
----I Si I '= I I , - I , I 

Eil I I 
+ I PULSE WIDTH 

I 
ALGEBRAIC 

UNIT 

I 
I 
I TRANSIS10R 

I BUFFE R ANTILOGARITHM IC 
AMP. UNIT 

~~ 
I : 2K i 
I I I 

__ ~ I 1 

1 ___ - __ 

1 ______ 2.-'< __ J 
EXPONENTIAL FUNCTIO N 

GENERATOR 

Fig. 12-Ensemble circuit. 

127 

The pulse-width algebraic unit operates in accordance 
with the principle discussed previously. The transistors 
of the log units close during part of the reset half cycle, 
and the transistor of the pulse width unit closes during 
the entire firing half cycle. Since the same voltage Ebb is 
applied to the core during both reset and firing opera
tions, its variation has no first-order effect on the accu
racy of the pulse-width algebraic performance. 

200 
/v / 

In order to operate the antilogarithmic unit, a pulse 
width corresponding to (~T- W A ) is required where W A 

is the width of the winding voltage pulse of the magnetic 
core during the firing half cycle. This pulse width of 
(!T- WA ) is easily obtained as the current waveform 
picked up by the resistor Rc and is then used to drive a 
transistor amplifier which in 'turn drives the anti
logarithmic unit. All remaining parts of the ensemble 
circuit have been discussed previously. 

The ensemble circuit has been operated as a simple 
multiplier with two inputs and the resultant character
istic at room temperature is shown in Fig. 13. This was 
achieved by choosing the circuit parameters so that 
7 L=7A, Ebbl=ELb2=E, N 1 =N2 =N, and n=2 in (12). 
With the omission of one logarithmic unit and halving 
the reset voltage (by connecting the emitter of the re-

(f) 

~ 
~ 150 
:J 
...J 
~ 
I 

'0 
~ 

~ 100 
<l: 
~ o 
> 
I
::> 
a.. 
I
::> 
o 50 

° 

xxx 

-

~ 
~ 

SECOND INPUT /11' 
VOLTAGE Ej2=80V..,( 

TEST POINTS V 
IDEAL CHARACTERISTICS V 

/v 
/ 

/ 
/ 

VV 
"r 

v ......... 
1/ ,.,./ 

40V 

/ .".-V 

V / K 
.".-

V 
V 

V 
VI' -.-ft"'1,....--

.".- ~ -f0- r- ,or / v -I-
V -fo- ...- ~ v ~ ~ -- A i

O
, 

~ t-

50 100 150 200 

FIRST INPUT VOLTAGE (Ej) -VOLTS 

Fig. 13-Steady-state characteristic of the ensemble operating 
as a multiplier. 



128 1957 WESTERN COMPUTER PROCEEDINGS 

maining log unit transistor to the center tap of Ebb), the 
same circuit was made to operate as a square-ropter with 
the resultant characteristic at room temperature shown 
in Fig. 14. This operation corresponds to T L =T A, Ebbl 

= !E, Nl = N, and n = 1 in (12). Of course, any other op
eration representable by (12) can be achieved by the 
highly flexible ensemble circuit in Fig. 12 without any 
modification of the basic circuit configuration. The re
quirement for each additional input is a logarithmic unit 
and a delay network. The over-all accuracy of the en
semble characteristics as indicated by Figs. 13 and 14 is 
in the order of 2 per cent. 

CONCLUSION 

A logarithmic circuit and an antilogarithmic circuit 
using switching transistors have been developed based 
on the principle of modulating exponential voltage 
pulses. The main feature of these circuits is their quality 
of reliability and reproducibility not found in contem
pory circuits of the same degree of accuracy. Also, good 
stability with temperature variations has been achieved 
by operating the transistors as switches. Time con
stants of the exponential pulses can be made stable by 
the use of negative-temperature-coefficient resistors and 
mica capacitors. The circuit performance also ap
proaches the other objectives listed in the introduction 
of this paper. An ensemble of the logarithmic and anti
logarithmic circuits interconnected through a pulse
width algebraic unit keeps the over-all response time 
within one cycle of the supply frequency if the output 

en 
~IOOO 
o 
> 
:J 
...J 
~ 
I 

'0 
~ 
w 
~ 100 

~ o 
> 
I
:::> a.. 
I
:::> o 

,/ 

/ 

V 
~ 

..,. 

V Ill. 

/--
14 
1 ----;r-- ....J 

2 

+++ TEST POINTS 

- IDEAL CHARACTERISTICS 

10 100 1000 

fNPUT VOLTAGE (Ej) -VOLTS 

Fig. 14-Steady-state characteristic of the ensemble operating 
as a square-rooter. 

pulse waveform is acceptable. The ensemble has such a 
high degree of flexibility that it should find applications 
in many computing systems. 

ACKNOWLEDGMENT 

The development work which led to this paper was 
done when both authors were with Westinghouse Elec
tric Corporation. The authors wish to acknowledge the 
technical guidance rendered them by Dr. G. F. Pittman 
and R. O. Decker, and the assistance by I. Gerson in the 
improvement and measurement of the ensemble circuit. 

High-Speed Digital-to-Analog Conversion by Integra
tion of a Variable-Rate Pulse Train 

. A. DEAN GLICKt 

INTRODUCTION 

T HE CONVERSION of a binary number into an 
analog voltage, current, or shaft position is a basic 
problem which must be solved in a wide variety 

of digital control systems. Because of this widespread 
need, many techniques have been devised, each with 
individual limitations and shortcomings. A conversion 
of digits-to-shaft position can be made by comparing the 
digital representation from a code wheel with the binary 
number to be converted. The shaft attached to the code 

t Minneapolis-Honeywell Regulator Co., Minneapolis, Minn. 

wheel is made to rotate until the reading obtained from 
it agrees with the number to be converted. The code 
wheel reading is subtracted from the number to be con
verted, and the difference quantity generates an analog 
error voltage which controls a servo connected to the 
shaft of the code wheel. A digit-to-voltage or current 
conversion may be accomplished by the method illus
trated in Fig. 1. The principle is that of assigning 
appropriate analog weights to each binary digit. The 
individual analog quantities are essentially voltages or 
currents which are proportional to the significance of the 
respective digits in the numbering system. The con-



Glick: High-Speed Digital-to-A nalog Conversion 129 

2R 

CONSTANT 
VOLTAGE 
SOURCE 

Fig. i-Digital-analog curren.t converter. 

version is effected by summing up the analog equivalent 
for each digit containing a binary one in the number 
being converted. In Fig. 1, the conversion is to an analog 
current, 10, proportional to the binary number, repre
sented by the switch settings. The binary number repre
sen ted by the switch setting in this figure corresponds 
to 000101. It will be noted that the current produced is 
5/64 E/R. Another system which should be mentioned, 
because at first glance it appears similar to the one to 
be described, is the Shannon-Rack converter. In this 
system, the binary representation of the number to be 
converted is sampled serially, starting with the lowest
order digit and proceeding to the highest. As the digits 
are shifted out of the register containing the number, a 
one digit will cause a pulse to be generated into a shunt 
RC circuit. The time constant of the RC network is 
such that in a digit pulse period the charge on the capa
citor will decay to one-half of its initial value. Therefore, 
after n pulse periods, the charge remaining due to a 
one occurring at the first pulse time is proportional to 
1/2n

-
1• The exponential decay provides a convenient 

method of obtaining the appropriate binary weight. The 
voltage across the capacitor, one pulse period after the 
most significant digit has been shifted out, will equal a 
voltage proportional to the digital number which was 
contained in the register. A simplified circuit of this sys
tem is shown in Fig. 2. The circuit consists of a constant 
current source, a switch, a resistor, and a capacitor. The 
switch is controlled by the output of the register con
taining the number being converted. It is closed for a 
given period of time as each one is shifted from the 
register. 

In connection with the development of a digital gyro
torquing technique for an airborne digital computer, a 
novel method for converting a binary number to an 
analog quantity was developed. Digital gyro torquing is 
a term used to describe a method of applying varying 
sequences of constant width, constant amplitude, cur-

SWITCH CONTROLLED 
BY DIGITAL REGISTER 

CURRENT 
SOURCE 

( 1 ) 

R 

Fig. 2-Shannon-Rack converters. 

C Vc 

rent pulses to the gyro torque-motor winding. In the 
analog case, a steady value of current is applied to pro
duce the desired torque. In the digital case, the average 
rate at which the standardized pulses are applied deter
mines the torque produced. The conversion system de
veloped produces constant charge pulses at a rate pro
portional to the digital number being converted. Since 
a charge flow rate is equal to a current, the output is a 
current proportional to the digital number. This system 
requires the following: 

1) A means of producing an average pulse rate pro
portional to the digital number to be converted. 

2) A means of producing, from this pulse train, cur
rent pulses which are precisely controlled in width 
and amplitude. 

3) A means of averaging and smoothing these pulses 
such that the analog output is proportional to the 
average current produced by these pulses. 

In the subject matter which follows, the system is 
explained on the basis of converting a normal binary 
number to a proportional analog current. However, the 
extension to the con version to vol tage and shaft position 
is also discussed. 

GENERATING THE DESIRED PULSE RATE 

The method of generating a pulse rate proportional to 
the digital number to be converted is perhaps the most 
novel aspect of this system. Ideally, the pulse train 
generated would contain pulses which were equally 
spaced with respect to one another. Fig. 3 shows the 
pulse patterns generated by such an ideal converter. 
The number of pulses produced in each time period T 
equals the number being converted. This type of system 
was abandoned at an early stage because of the dif
ficulty in generating the wide range of pulse rates re
quired, yet maintaining a precise spacing between the 
pulses. Implementing this type of system required con
verting the digital number to an analog quantity, which 
could then be used to control a pulse-generating system 
in which the pulse rate produced was a function of the 
analog signal applied. The conversion from digits to 
analog in this case suffered the usual accuracy limita-



130 1957 WESTERN COMPUTER PROCEEDINGS 

1= Jl~ ______________________ __ rL 

n 2 = JlL...-________ ----' rt 

n n rt 

4 = Jl~ __ ___' n n n IL 
t- ..I T I .. 

Fig. 3-Ideal pulse patterns. 

tions of such devices and further conversion to a pulse 
rate was somewhat meaningless. 

A more truly digital means of converting a digital 
number to a pulse rate is to generate pulses as a func
tion of the computer clock (or some other standard) and 
then gate a number of these pulses into the output line. 
The number of pulses gated out is made equal to the 
binary number to be converted. Fig. 4 shows pulse pat
terns obtained from such a system. As before, the num
ber of pulses produced during each period T equals the 
bmary number being converted. This system has the 
advantage that discrete positions are allotted for each 
pulse, and the time at which each pulse occurs is con
trolled by the computer clock. Since the period T is 
associated with the same clock source which is causing 
the pulses to be generated there will always be the pre
cise number of pulses per period T desired. This type 
of system is easily implemented by having a binary 
counter which is reset to zero at the beginning of each 
period T. Pulses are applied to the counter and to the 
output line at the same time and continue to occur until 
the counter reaches the digital number being converted. 
In utilizing this system, the average current produced is 
a precise conversion of the binary number. However, 
the system has one rather serious drawback. A high
amplitude, low-frequency variation in the output signal 
is produced, particularly when converting numbers in 
the middle range. This type of output signal is generally 
tolerable only in systems having a very long time con
stant. 

The system which was finally developed retains the 
feature of allotting a discrete position for each pulse 
produced, yet does not develop the high-amplitude, 
low-frequency variation noted for the previous system. 
It approaches the ideal system mentioned earlier, in that 
the pulses produced for converting a given number are 
distributed relatively uniformly over the time period T. 
This system converts each individual binary digit into 
a proportional pulse rate. 

The system is in several respects very similar to the 
analog weighting of digits conversion method discussed 
in the introduction, and represented schematically by 

1 = 
~ __________________ ----,n~ __ __ Jl 

2= 

3= 

4= 

T 

Fig. 4-"Count off" pulse patterns. 

Fig. 1. Referring to this figure again, if the voltage 
source is eliminated and individual current pulse sources 
substituted for the resistors, it becomes a simplified dia
gram of the new system. The current pulse source sub
stituted for each resistor must produce a current which 
is equivalent to that produced by the resistor it was sub
stituted for. Fig. 5 shows the pulse patterns obtained 
with this system for the conversion of some typical 
numbers. The pulse patterns generated for 1, 2, 4, or 8 
have discrete locations relative to the period T. Further
more, none of the pulses in the various trains coincide 
(timewise) with one another. This feature permits com
bining pulse trains to obtain all possible digital com
binations. It will be noted that a 5 is produced by com
bining a pulse train for a 4 with the pulse train for a 1, 
and that a 13 is produced by combining the pulse trains 
for an 8, 4, and 1. 

The method of generating pulse rates which bear a 
binary relationship to one another, yet have no pulses 
coincident with one another, is shown in the logic and 
timing diagram of Fig. 6. A simple, free-running binary 
counter is used, excited by some frequency source f 
(which will generally be the computer clock or some sub
multiple thereof). The outputs obtained from the flip
flops are assumed to be the differentiated positive going 
signals. The output from the first flip-flop (P2) will be 
a pulse rate at a frequency f /2. Since the next flip-flop is 
being excited by a frequency f /2 which is out of phase 
with the output P 2, the output PI will be a pulse rate 
one-half that of P 2 and out of phase with P 2• The same 
reasoning applies to the next stage which will produce a 
pulse rate equal to one-half the preceding stage and out 
of phase with it, and applies all the way down the line 
for as many stages as one cares to consider. The number 
of such stages needed equals the number of digits (word 
length) of the binary number being converted. These 
binary related pulse rates are applied to gates which 
are enabled by the appropriate digit of the number being 
converted. The outputs of all the digit gates are com
bined on a common output line. At this point we have 
an average pulse rate proportional to the input binary 
number. 



Glick: High-Speed Digital-to-A nalog Conversion 131 

1= Jl~ ____________________ ~ 

2= ______ ~n~ ________ ~n~ ____ __ 

4= 

8= 

5= 

13= 

I. t- .1 T 

Fig. 5-"Binary weighted" pulse patterns. 

Pz PI Po 

y FFz ~ Y FFI ~ Y FFo 

T T r 
Yz Y4 

~----~----~----~----~----~----~----~---

PI ______ -L __________ ~ __________ ~ __________ ~ 

~------------~----------------------~-------
• 

Fig. 6-Logic and timing diagram. Binary related pulse generation. 

CONTROLLING THE PULSE WIDTH AND AMPLITUDE 

The preceding section has dealt with the problems 
associated with generating a number of pulses in period 
Tequal to the digital number to be converted. The pulse 
rate thus produced can be used to ini tia te a circuit 
which produces precisely gated pulses synchronized 
with the computer clock frequency. The turn-on and 
turn-off times of these gated pulses are controlled by 
computer clock pulses applied to a flip-flop. This de~ 
scription is clarified by referring to the simplified logic 
of the system, Fig. 7. A control pulse initiates the gen
eration of a precision gated pulse by setting FFA • This 
enables the associated AND gate and causes the next 
clock pulse to turn on F F B, and reset F FA. The next 
clock pulse turns off F F B. 

Thus, FFB has been turned on for precisely the inter-

INPUT BINARY NUMBER 

B 
f(CLOCK INPUT) OUTPUT 

PRECISION GATING PULSE 

Fig. 7-Simplified 4-bit converter. 

~--~NDI~-------.------~~NOI~--~ 

DUMMY 
LOAD 

PRECISION 
CONSTANT 
CURRENT 
·SOURCE 

ACTIVE 
LOAD 

8 1 B 
,~----------~ ~----------_/ V 

OUTPUT FROM 
CONVERTER LOG Ie 

Fig. 8-Constant-current pulse generator. 

val between two clock pulses. For the present discussion 
we will consider that the clock source is a stable con
stant frequency. Hence, the pulses produced will be of 
constant width. 

This precision gating pulse is used to produce current 
pulses of a constant amplitude. This is accomplished by 
switching a constant current into the active load when 
the precision gating pulse occurs, or into a dummy load 
of approximately the same impedance when the gating 
pulse is not present. The circuit is shown in Fig. 8. BB' 
is the output of the converter logic (Fig. 7). Switching 
between the dummy load and the active load causes the 
loading on the constant current source to remain ap
proximately constant, which greatly improves the sta
bili ty of the current source. 



132 1957 WESTERN COMPUTER PROCEEDINGS 

INTEGRATING AND SMOOTHING THE PULSES 

One of the simplest methods of utilizing the precision 
pulses to produce an analog quantity proportional to the 
input binary number is to apply the pulses to a D'Arson
val meter winding. The time constant of the meter can 
be long relative to the applied pulse rate and it will 
effectively average the applied current. The analog out
put will be a meter reading (shaft position) proportional 
to the input binary number. In using this system for 
digital HIG gyro torquing, the same situation exists 
wherein the time constant of the device is long relative 
to the applied pulse rate. In this case, the output is an 
angular rate rather than a shaft position. 

A more general method of averaging the pulses is to 
use an RC circuit. Common circuits employed for cur
rent smoothing and averaging-often loosely described 
as integrating circuits-consist of a capacitance shunted 
with a resistance. If the time constant of this circuit is 
large compared with the pulse train cycle time, the 
voltage across the capacitor will rise until the average 
flow of current into the capacitor is opposed by the 
average discharging current through the resistor. The 
mean value of the capacitor voltage is a measure of the 
mean rate of the precision pulses. The extent to which 
this voltage fluctuates (ripple content) will be governed 
by the choice of the RC time constant. As this time 
constant is increased, the ripple becomes smaller in 
amplitude. More sophisticated filters may also be em
ployed to reduce the ripple content. As desired, the 
analog output may be taken as either a voltage or a 
current. 

A method for obtaining a voltage or shaft position 
proportional to the input binary number using a RC 
integrating circuit is shown in Fig. 9. A voltage is pro
duced at point A which is proportional to an input 
binary number. Conversion to a shaft position is ob
tained by mechanically driving a potentiometer to ob
tain an equal voltage. In the illustrated conversion to a 
shaft position, the stability requirements on the voltage 
source are greatly reduced because it is used as a stand
ard by both the precision pulse generator and the 
potentiometer. A change in this supply voltage is re
flected as a proportional change in the output of both 
the potentiometer and digital to voltage converter cir
cuits. For precise digit-to-voltage conversion the 
voltage source should, of course, be more precise than 
the precision desired in the output. 

ACCURACY CONSIDERATIONS 

The accuracy of this con version system is determined 
primarily by three factors. First, the precision to which 
the ratio of on time to off time in the period T can be 
made equal (or proportional to) the number to be con
verted. Second, the precision to which the current can 
be switched completely on and completely off when 
desired. Third, the accuracy of the constant current 
source. 

OUTPUT FROM 
CONVERTER LOGIC 

~ 
BI B 

STABLE 
VOLTAGE 
SOURCE 

Fig. 9-Digit-to-voltage or shaft-position converter. 

In considering the first requirement, it is interesting 
to note that the actual width of the standard pulse 
generated is not what must be controlled, but its rela
tionship to the period T. This is because it is the ratio 
of the on time to off time of the pulse (and the number 
of pulses) that determines the analog output produced. 
By turning the pulse on and off with clock pulses, the 
ratio will be constant regardless of the clock frequency. 
The uncertainty as to when the pulse turns on and 
when it turns off, with respect to the initiating pulses 
is then the primary concern in determining the width 
precision of the pulses. With transistorized flip-flops, 
which trigger in approximately 0.1 microsecond, the 
uncertainty was determined to be less than 0.01 micro
second. The accuracy of the width of such pulses is then 
a function of the pulse width. With a one millisecond 
pulse width, the pulse width accuracy is one part in 
100,000. 

The details of the current gating circuits are beyond 
the scope of the present paper. However, it should be 
mentioned that it requires more than a simple gate to 
switch currents fully on and fully off. Circuits tested 
have shown on/off ratios of 1,000,000 and higher. 

The primary factor limiting the accuracy of this sys
tem is the constant current source. The system was 
tested using a current source which maintained the cur
rent constant to one part in 20,000. Since the loading 
remains constant, this accuracy is not unduly difficult 
to obtain. 

CONCLUSION 

The conversion technique described is believed to be 
new. The utilization of this technique has resulted in a 
converter that has greater accuracy with fewer critical 
components than converters built using other known 
conversion techniques. 



Eddey: Drift Stabilization and Error Detection 133 

I t is basically a parallel, straight binary-to-analog con
verter. The system is quite adaptable to time sharing. 
The frequency source and individual pulse-train gener
ators associated with one conversion may be common 
to as many conversions as may be required. The addi
tional circuitry for additional conversions is the gates 
associated with each digit of the binary number to be 
converted, and the circuits needed to standardize the 
pulses. Time-sharing techniques can be used in applying 
several different binary inputs to their associated gate 

enable lines. Capacitor "memories" on these lines elimi
nates the need for individual registers to hold each bi
nary input. 

ACKNOWLEDGMENT 

The conversion system described was developed on 
a company':st>ons·ored airborne digital computer re
search project.: The author also wishes to acknowledge 
the suggestions and encouragement given by T. Lode 
which led to the development of this technique. 

Discussion clear how the accuracy is independent of 
clock frequency. 

rent is on to the time the current is off. 
Since we gear this time period to our basic 
computer clock which says that the time 
period T can vary, but the number will re
main the same and therefore, the average 
current produced will remain the same re
gardless of variation. If there is a discon
tinuity in frequency, there will be an error. 
However, low velocity changes in frequency 
will not affect the accuracy of the system. 

W. A. Erickson: What was used as a 
constant current source? 

Mr. Glick: The constant current source 
used in this system was transistorized cur
rent source built for an analog computing 
system. 

W. Hochwald (Autonetics): It is not 

Mr. Glick: The reason the accuracy is 
not affected by clock frequency is because 
of the fact that we are extracting a period of 
time T in which we wish to produce a cer
tain number of pulses. Now, the output 
we get will, of course, be a function of the 
number of pulses that we put into this time 
period T and the ratio of the time the cur-

A Reliable Method of Drift Stabilization and Error 
Detection in Large-Scale Analog Computers 

EVERETT E. EDDEYt 

INTRODUCTION 

T HE NEED FOR continuous, automatic stabiliza
tion of the zero balance of the dc amplifiers in 
modern electronic analog computers is well estab

lished. Goldberg,l in 1950, described the first or one of 
the first successful circuits for this purpose. In 1951, 
Ingerson2 described a drift-stabilization system using 
a single stabilizer amplifier in conjunction with a multi
channel mechanical commutator to stabilize several dc 
amplifiers. This type of system has been used in the 
GEDA3 L3 and N3 and other analog computers.4 

Although the stabilization system used in the L3 and 
N3 computers is successful in its primary purpose of re
ducing drift, it was not designed to take full advantage 
of some of the inherent properties of commutator sta-

t Goodyear Aircraft Corp., Akron, Ohio. 
1 E. A. Goldberg, "Stabilization of wide-band direct-current am

plifiers for zero and gain," RCA Rev., vol. 11, pp. 296-300; June, 
1950. 

2 W. E. Ingerson, "Drift Compensation in D-C Amplifiers for 
Analog Computers," paper presented at IRE National Convention, 
New York, N. Y., 1951. 

3 Reg TM, Goodyear Aircraft Corporation, Akron 15, Ohio. 
4 D. W. Slaughter, "Time-shared amplifier stabilizes computers," 

Electronics, vol. 27, pp. 188-190; April, 1954. 

bilization. These properties make possible highly relia
ble and dependable operation and provide accurate and 
immediate detection of errors. 

The stabilization system used in the new GEDA A14 
general-purpose electronic differential analyzer makes 
full use of these properties. GEDA A14 installations 
may contain several hundred dc amplifiers. A typical 
small-scale installation is shown in Fig. 1. 

This paper describes the operation of the A14 stabili
zation system and error-detection circuits, and the 
methods chosen to improve reliability. Finally, the 
reliability and dependability to be expected from the 
A14 are discussed. 

DRIFT-STABILIZATION SYSTEM 

The over-all operation of the A14 drift-stabilization 
system may be understood with the aid of Fig. 2. For 
simplicity, only a few of the commutator contacts are 
shown. Because the circuitry associated with each dc 
amplifier is essentially the same, only one amplifier is 
shown being stabilized. The dc amplifiers may be either 
standard computing amplifiers, switched amplifiers 
(such as used in electronic multipliers), dc servo
amplifiers, or dc power-supply-regulating amplifiers. 



134 1957 WESTERN COMPUTER PROCEEDINGS 

Fig. 1-Typical small-scale GEDA A14 installation. 

INPUT 
SWITCH PLATE 

OUTPUT 
SWITCH PLATE 

lOOK + + 470K 

~ ~ 
TO lOOK 470K' TO 

OTHER INPUT OUTPUT OTHER 
INPUT ~ ~ ~ 

OUTPUT 
, FILTERS FILTERS 

STABILIZER 
lOOK AMPLIFIER 470K 

~ ~ 
Z FEEDBACK 

D-C AMPLIFIER 

Z . 
INPUT 

_ BEING 

-- STABILIZED 

I 05\lF 

I C2 R2 I I 33MEG 002\lF 5 MEG
1 L_-2 _____ -1 

INPUT FILTER OUTPUT FILTER 

Fig. 2-Major parts of drift-stabilization system. 

Hence the entire computer can be drift-stabilized by 
this system. 

The signal grid voltage of the dc amplifier is fed to a 
commutator contact through the input filter. The input 
filter removes signals that are synchronous with the 
commutator sampling rate; otherwise, these voltages 
would be synchronously rectified by the commutator 
and appear as offset in the dc amplifier. The voltage 
applied to the commutator contacts is sampled by the 
commutator input wiper and amplified by the negative
gain stabilizer amplifier. This amplified voltage is then 
sent through the output wiper to the output filter of the 
same dc amplifier. The output filter reduces the ripple 
resulting from the pulse voltages received from the 

commutator. The filtered voltage is applied to the bal
ancing grid of the dc amplifier, where it acts to restore 
the dc balance of the amplifier. 

The commutator, the stabilizer amplifier, and the in
put filter capacitor, Cl, are located in the same A14 
modular plug-in unit (see Fig. 3). The other components 
of the input filter, along with the output filter com
ponents, are located with the associated dc amplifier. 
In Fig. 3, the commutator switch end-bells have been 
removed to show the ease of cleaning the contacts. 

Fig. 3-GEDA A14 stabilizer modular unit. 

. ERROR-DETECTION CIRCUITS 

The commutator stabilizing system provides a con
venient central point for originating signals indicating 
faulty operation anywhere in the computer. Almost all 
component failures affecting the operation cause ab
normally large voltages at the signal grid of the asso
ciated dc amplifier unit. The resulting large pulse from 
the stabilizer amplifier triggers the warning indicators. 

Three types of warning indicators are used in the A14 
computer: 1) a master indicator, on the computer con
trol panel, that shows faulty operation and which, if the 
operator desires, will stop the computer and hold all 
voltages; 2) an easily visible group indicator that signals 
the general location of the offending element; and 3) in
dividual indicators that pinpoint the defective unit. For 
example, if a tube in one of the switched dc amplifiers 
in an electronic multiplier becomes defective and im
pairs the accuracy of the solution, the master indicator 
on the computer control console will light, the group 
indicator on the particular electronic multiplier modular 
unit will light, and the individual light for the defective 
multiplier amplifier will light. 

Individual Indicators 

The operation of the individual indicators can be 
understood with the aid of Fig. 4. The NE-2 neon lamp 
is connected to the input of the output filter of the dc 
amplifier with which the indicator is associated. Re
sistor R2 and capacitor C2 are the same as in Fig. 2. 



Eddey: Drift Stabilization and Error Detection 135 

The NE-2 lamp sets the threshold value at which a 
pulse from the stabilizer will turn on the indicator. The 
NE-51, mounted on the front panel, provides the visual 
indication. The low-impedance positive bias source is 
set at a value between the firing and extinguishing po
tentials of the NE-S1, which must be selected for these 
potentials. A built-in selfchecking circuit tests the NE-
51 lamps. 

A voltage pulse that fires the NE-2 will also raise the 
voltage across the NE-S1 to the firing voltage. Once the 
NE-S1 is ignited, current from the bias supply main
tains the ionization. Capacitor C3 and crystal diode 
1N34 form a diode clamping network permitting opera
tion on both positive and negative pulses from the com
mutator. The NE-Sl thus provides a memory-type in
dication that remains until turned off by the operator. 
Reset is accomplished by inserting high resistance in 
series with the bias supply so the current is reduced be
low the value necessary to maintain ionization. All NE-
51 lamps are extinguished simultaneously. High resist
ance may be left permanently in series with the bias sup
ply if a nonmemory flashing-type indication is desired. 

FROM 
COMMUTATOR 

OUTPUT 
CONTACT 

TO REMAINDER OF '---...--+---........ ---.. OUTPUT FI LTER 

C2 
002\lF 

R2 
5MEG 

NE-2 

47< 05f,t;'4 ~EBIAS 

Fig. 4-Individual warning indicator. 

Group Indicator 

The group indicator is activated by the individual in
dicator circuits. All the NE-51's in a given modular 
unit, instead of being connected directly to ground as 
shown for simplicity in Fig. 4, are connected to a tran
sistor flip-flop circuit. The input impedance of this cir
cuit is on the order of a few hundred ohms; thus the 
operation of the individual indicator circuits is not af
fected. The flip-flop circuit operates a relay controlling 
an incandescent light on the front panel. This light is 
easily visible from a distance. Fig. 5 shows the front 
panel of an electronic multiplier modular unit with in
dividual and group indicators. 

Master Indicator 

The signal for the master indicator is derived from a 
small resistor in series with the bias supply for the in
dividual indicators. When any NE-S1 fires and draws 
current from the bias supply, the voltage across the re
sistor changes. Amplified, this voltage change operates 
a relay that energizes circuits controlling the master 

Fig. 5-Front panel of GEDA A14 electronic multiplier. 

indicator lamp. At the operator's choice, the relay in 
addition will energize an audible alarm, and place the 
computer into "hold," stopping the problem solution. 

Self-Checking Circuits 

The stabilization system itself has two built-in self
checking circuits. The first provides a continuous check 
on the operation of the commutator and stabilizer 
amplifier. A small dc voltage is applied to a contact of 
the input pole of the commutator. The resulting ampli
fied positive output pulse is applied through a filter to 
the grid of a tube having a large, fixed negative bias. 
This pulse is normally sufficient to keep the tube con
ducting strongly. If the pulse is absent or reduced in 
value (commutator stopped, stabilizer amplifier gain 
reduced, etc.), the tube will be cut off. The resulting 
high plate voltage flashes a neon lamp through a relaxa
tion oscillator circuit. The neon lamp gives visual indi
cation on the stabilizer modular unit; at the same time, 
the master indicator is activated. The second test circuit 
may be switched on occasionally to check commutator 
leakage. A dc voltage on the order of 10 v is substituted 
for the ground potential to which the 100-k and 470-k 
isolating resistors are normally returned. An oscilloscope 
is connected to each wiper arm in turn. If there is no 
leakage, the oscilloscope display will be a series of regu
lar pulses. If there is leakage in any contact, it will be 
indicated by a change in pulse height. An oscilloscope 
pattern showing a contact with leakage is presented in 
Fig. 6. 

IMPROVEMENTS IN A14 STABILIZER RELIABILITY 

Major factors affecting the reliability and operation 
of the A14 stabilization system, in approximate order of 
decreasing importance based on experience with pre
vious computers using commutator stabilization, in
clude: leakage between adjacent contacts on the com
mutator, phasing of the commutator, mechanical failure 
of the commutator, hum pickup, and capacitive cou-



136 1957 WESTERN COMPUTER PROCEEDINGS 

Fig. 6-0scilloscope test waveform. 

pIing between input and output sections of the com
mutator. Methods used to improve these factors will 
now be described. 

Many of the items affecting reliability in the past 
were associated with the commutator itself, probably 
because the commutators used in the early computers 
were originally intended for telemetering applications. 
These applications required sharp edges on the switch
ing pattern, with relatively short life being acceptable. 
These conditions are not applicable in drift stabilization 
systems where sharp transition from switch "off" to 
switch "on" is unimportant. Consequently, investiga
tion was made, in association with the commutator 
manufacturer, of the proper design of a commutator for 
exclusive use in drift stabilization. 

Leakage between adjacent input contacts on the com
mutator causes both cross talk between channels and 
reduced gain, while leakage between adjacent output 
contacts causes only reduced gain. The input-contact 
cross-talk effects are greatly reduced by the 100-k iso
lating resistors and are not a major problem. Howe~er, 
leakage can reduce the stabilization gain almost to zero, 
and this effect has been the principal source of stabiliza
tion system failure in the past. 

Leakage between contacts is caused by the accumu
lation of carbon particles from the silver-graphite 
brushes of the wi per arms. Experimen ta tion has shown 
that life can be improved by reducing the brush pressure 
against the contacts. This pressure, in the case of the 
commutators intended for telemetering use, was more 
than 15 ounces. Satisfactory switch action for use in the 
stabilization system can be obtained with brush pres
sures of just a few ounces. 

Optimum service-free brush life requires a fairly care
ful control of brush pressure and composition for con
trolled release of carbon-wear particles. Release of some 
particles is essential for proper lubrication. However, 
the particles must be small and released slowly to delay 

the build-up between adjacent contacts. The actual 
wear on -the' brush is quite small, with the ultimate 
brush life, based on the wearing 'away of material only, 
probably being about 50,000 hours. The service-free life 
of the brush and commutator is, of course, much shorter 
because of the development of leakage. Tests indicate 
an average service-free life of 5000 hours for the present 
commutator. Investigations are being made of methods 
of continually removing the wear particles from the 
commutator (e.g., by use of an air scoop). If these meth
ods are successful, the life of the commutator may be 
limited only by the ultimate life of the brush. 

Ease in cleaning the switch contacts has been pro
vided by designing the commutator to make the con
tacts accessible by merely removing a dust cover, as 
shown in Fig. 3. Cleaning can be completed in a few 
minutes without disturbing any of the commutator ad
justments. The construction also facilitates the meas
urement, and hence the control, of brush pressure. 

Both the phasing and leakage requirements on the 
commutator are reducecl ,by the type of output filter 
used (Fig. 2). The output wiper is phased to always 
lead the input wiper. A signal is sent from the signal 
grid to the output filter contacts only when both input 
and output wipers are simultaneously contacting signal 
contacts (including the'shorting time to the adjacent 
contact). This interval is the channel "on" time. The 
charging-time constant of C2 with the output imped
ance of the stabilizer amplifier is considerably less than 
the average channel "on" time. Thus variations in 
channel "on" time produced by phasing differences re
sult in small changes in stabilizer gain. A change of 25 
per cent in the "on" time results in a gain reduction of 
less than 4 per cent. 

The rectification efficiency of the output circuit (the 
ratio of the dc voltage developed across C2 to the output 
pulse amplitude) would be nearly 100 per cent if it were 
not for R2. R2 lowers the rectification efficiency to 
about 20 per cent by tending to discharge C2. The gain 
of the stabilizer amplifier is increased by a factor of 5 
to compensate for this lower efficiency. Also, the effects 
of commutator leakage resistance, which is essentially 
in parallel with R2, is somewhat reduced, and the 
higher amplifier gain is useful in the error-detection 
circuits. The stabilizer gain is still an ord-er of magnitude 
less than that used in the GEDA L3 and N3 stabilizer 
amplifier in which the holding capacitor C2 is not used. 

Mechanical failures of the motor and bearings used 
in the earlier commutator can also be largely ascribed 
to the use of components not necessarily intended for 
long life. With a commutator specifically designed for 
long life, these failures should be almost eliminated. 
Capacitive coupling problems are largely eliminated 
because the stabilizer amplifier gain has been reduced. 

Hum pickup in the input circuitry results in low
frequency variations, on the order of magnitude of the 



Eddey: Drift Stabilization and Error Detection 137 

hum, in the output of the dc amplifier being stabilized. 
One of the principal hum components can be largely 
filtered out by placing C1 in the commutator instead of 
in the dc amplifier. This procedure reduces the effect of 
hum voltage induced in the loop from the dc amplifier 
signal grid to the commutator and back through the 
ground. Much more freedom in cable layout is thus 
afforded. 

SYSTEM RELIABILITY AND DEPENDABILITY 

The reliability and dependability of the A14 drift
stabilization and error-detection system can be dis
cussed under three aspects: mean time to failure, per 
cent service, and dependability itself. 

Mean Time to Failure 

The reliability of any system is indicated by the 
length of time it will operate properly without a break
down. Computation of the mean time to failure of the 
system, a commonly used index of the capability of 
equipment to resist failure, permits quantitative de
scription. The mean time to failure, of course, yields 
no particular information regarding the time between 
any two successive failures. The latter time is a function 
of the time distribution of failures of each component. 

In any discussion of drift-stabilizing systems, the 
question arises of the relative reliability of a commu
tator system vs a system using chopper-stabilized am
plifiers. Table I lists major items required in the A14 
commutator system, with mean time to failure of each. 

TABLE I 

COMPONENTS OF COMMUTATOR STABILIZING SYSTEM 

Component Quantity Mean Time to 
Failure-(hour) 

Commutators 4 5,000 
Tubes 12 15,000 
Resistors (composition) 

Under load 92 106 

No load 2,670 2Xl06 

Capacitors 1,326 106 

Transformers 4 106 

Selenium rectifiers 4 25,000 
Transistors 8 25,000 
Silicon diodes 8 25,000 

System Mean Time to Failure = 194 hours 

Table II gives similar data for one of the more reliable 
chopper-stabilized systems currently available. The 
quantities are those required in a fairly large-scale com
puter currently being fabricated by Goodyear Aircraft 
Corporation. This computer uses 329 dc amplifier 
channels. The transformers, selenium rectifiers, and 
transistors listed in Table I are required in the regulated 
dc filament supply for the first two tubes of the stabilizer 
amplifier. Values for tube life given in Table II are 
greater than in Table I since an ac amplifier is used in 

the chopper system. The mean-lives of all components 
except the camm u ta tor are based on data taken over a 
four-year period in Goodyear Aircraft's Dynamic Sys
tems and Computation Laboratory, and on published 
data.6 •6 Information on commutator life is given else
where in this paper. 

TABLE II 
COMPONENTS OF CHOPPER-STABILIZING SYSTEM 

Component Quantity Mean Time to 
Failure-(hour) 

Choppers 165 10,000 
Tubes 
Resistors (composition) 

329 20,000 

Underload 987 106 

No load 3,290 2Xl06 

Capacitors 2,303 106 

System Mean Time to Failure = 26.4 hours 

Per Cent Service 

By per cent service is meant the ratio of actual 
operating time to operating plus trouble-shooting and 
maintenance time. High per cent service is just as 
important as long failure-free life in computer applica
tions, where equipment breakdowns may be annoying 
but do not affect safety or completion of a mission. 

The A14 system is unusually well-suited for high per 
cent service because the operation of 83 stabilization 
channels can be checked simultaneously from one loca
tion. There is no need for individual checking of a num
ber of chopper-stabilized amplifiers to determine the 
defective units. The shortest-lived component in the 
A14 system as shown in Table I is the commutator. 
However, the life figure given is that for failure due to 
switch leakage; the ultimate life is much longer. Clean
ing of the contact plate requires just a few minutes. The 
built-in checking circuits show when cleaning is needed. 

Dependability 

The dependability of a system represents the con
fidence the operator can have that the system is oper
ating properly at any particular time. The error
detecting circuits previously described give the operator 
assurance that the computing equipment is functioning 
at all times. Another paper7 describes the A14 problem 
analyzer system. This system gives the operator a check 
on the accuracy of his solution. Together, these systems 
should give the operator the highest confidence in the 
proper and accurate operation of the A14 computer. 

Ii R. L. Wendt and M. H. Smith, "A bombing system reliability 
program," 1956 IRE CONVENTION RECORD, part 6, pp. 68-74. 

6 V. Harris and M. M. Tall, "A Progress Report on Reliability 
Measurement and Prediction," paper presented at Second National 
Symposium on Quality Control and Reliability in Electronics, Wash
ington, D. c.; January, 1956. 

7 W. C. Meilander, "A new method of verifying analog computer 
problems and performance," this issue, p. 138. 



138 1957 WESTERN COMPUTER PROCEEDINGS 

CONCLUSION 

Improvements in the A14 commutator system have 
produced a reliable method of drift stabilization that 
gives convenient indications of malfunction anywhere 
in the computer. The system offers high per cent service 

and high dependability. The writer would like to give 
acknowledgment to his following associates at Goodyear 
Aircraft Corporation: P. J. Hermann, R. Armstrong, 
and W. H. Byers for data used in calculating mean time 
to failure, and to C. D. Morrill and S. B. Yochelson for 
their fine cooperation. 

Discussion 

S. Rogers (Convair): Is it true that the 
A14 commutator system improvements are 
in mechanical features and accessory cir
cuits rather than in the basic circuits, or is 

there new art here, too? Do you have avail
able reports on your chopper, commutator, 
and tube failures and on your failure-record 
system? 

the unit and also better control of the pres 
sure. We have used improved bearings and 
better motors, necessary to improve the 
mechanical operations of the unit. The cir
cuitry we have improved by decreasing the 
requirements on the commutator itself. 

Mr. Eddey: Partly yes and partly no. 
The commutator permits easier cleaning of 

A New Method of Verifying Analog Computer 
Problems and Performances 

WILLARD c. MEILANDERt 

INTRODUCTION 

DURING the past decade the electronic differen
tial analyzer has become an effective research 
and development tool. Present techniques allow 

the computer user to translate nearly every conceivable 
physicaP system into computer wiring diagrams. 

The analog computer ideally is a super slide rule, for 
while it is easily capable of arithmetic operations, its 
outstanding ability to handle integrodifferential opera
tions is its most salient feature. The conventional slide 
rule has been accepted as a reliable device, but the dif
ferential analyzer has not been so universally received. 
In fact, one of the more difficult problems associated 
with differential analyzers is determining whether they 
are solving the desired mathematical relations. The 
obvious technique of point-to-point verification of the 
wiring diagram is far too time consuming to be practical 
for most problems; therefore, several necessarily cum
bersome methods have been developed to ascertain 
when the computer is correctly wired for a given prob
lem. Some of these methods, such as digital or analytic 
solution of a test case of the general problem, are very 
laborious and time consuming, and, if the analog solu
tion of the test case does not agree with the analytic or 
digital solution, the location of the error or errors still 
is not known. 

t Goodyear Aircraft Corp., Akron 15, Ohio. 
1 The scope of problems studied is not, of course, limited to physi

cal problems. Much important work in economic and other non
physical fields has been carried out with the differential analyzer. 

The problem then is: How can the reliability of the 
electronic differential analyzer, a super slide rule, be 
made more comparable to that of its simpler predeces
sor? 

In the early days of analog computer use, the prob
lems were comparatively simple. The small number of 
amplifiers and computing elements employed for a given 
problem did not require an elaborate method for deter
mining whether the correct hookup was made on the 
problem board or whether the elements of the computer 
were operating correctly. Today, analog computers are 
becoming larger and more complex. The number of ele
ments used for a given problem may exceed several 
hundred. Checking the computer to determine that the 
components are operating satisfactorily and, more im
portant, that the problem is correctly wired has become 
a bothersome task. Present techniques require a point
by-point check of all elements of the system with an 
ohmmeter or by visual observation, or both. Generally, 
after the problem board is wired by one operator, a 
second operator checks it visually and compares it with 
a block diagram of the desired wiring. 1 

The individual scales of a slide rule are checked by 
matching the indexes correctly for a particular problem. 
The result is accepted without question. The differential 
analyzer can be checked in a similar manner by verifying 
each computing operation, including scale, and compar
ing the hookup with the desired wiring diagram or 
directly with the desired mathematical relations. Once 
it has been established that the requested computations 



M eilander: Verifying A nalog Computer Problems 139 

are not beyond the capabilities of the computer, it can 
be more effectively used as a research and development 
tool than its simpler relative, the slide rule, because of 
its high accuracy, speed, scope of operations, and 
flexibility. 

The GEDA2 A14 computer readily copes with these 
difficulties of problem analysis by using a system that 
readily provides a complete printed record of the wiring 
system and its individual components. The problem
board hookup can be verified exactly; that is, each 
amplifier and each computing element can be checked 
to determine that it is correctly connected to the next 
computing element in the wiring. The A14 problem
analyzer system also indicates whether the element 
under test is hooked up as a summer or as an integrator 
and determines the over-all gain setting of the element 
in question. 

As is shown in Fig. 1, the over-all gain, K, involves 
all the computing circuits associated with the amplifier 
for a given problem. The .computer network, as it is 
hooked up with its coefficient potentiometer, its input 
resistor, and its feedback circuits, must provide a gain 
setting to fit the requirements of the problem. 

K 

-----------~~----------

- e RF 
K=_o-=fJ--

ej RL 

Fig. 1-Elements involved in determining the over-all 
gain of a computer amplifier. 

The A14 problem-analyzer system easily determines 
the correct gain setting by the method shown in Fig. 2. 
A single-pole double-throw relay is located at the output 
of each amplifier and at each of the other computing 
elements. This relay will switch the output of the ampli
fier to an equivalent test-output voltage which, in turn, 
is applied as a substitute for the output of amplifier 1.3 

When the output-monitor switch is stepped to positi~n 
~, the output depends on the feedback and the input 
circuits of amplifier 2, thus providing a complete check 

on the over-all gain ~f amplifier 2. Similarly, when the 

monitor switch is stepped to po~tion 6, the output of 

amplifier ~ represents the over-all g~n produced by 
that part of the system from the equivalent output of 

2 Reg. TM, Goodyear Aircraft Corp., Akron 15, Ohio. 
3 All.figur~s or words capit!llized and underscored in the text indi

cate designations on A14 eqUipment. 

OUTPUT 
MONITOR 

Fig. 2-Simplified A14 problem setup. 

OUT 

OUT 

amplifier 1 to the output of amplifier 6, including the 

effects of the feedback resistor, the inp-;t resistor, and 
the coefficient potentiometer. An integrator or any of 
the nonlinear elements of the A14 computer may be 
checked by using the A14 problem-analyzer system. 

By checking the network feedback, input resistors, 
and coefficient potentiometers in this manner, the am
plifier performance also is verified. A comparison of re
sults obtained by the problem analyzer with a block 
diagram of the desired wiring quickly reveals whether 
the problem is correctly wired and pinpoints the location 
of any errors. 

In actual operation the checkout procedure is some
what different because the output monitor switch auto
matically scans all outputs and records the output of 
each element on an automatic printer, providing a 
record in digital form for comparison with the wiring 
diagram. For a typical system involving 100 amplifiers 
and 20 nonlinear components, it would be possible to 
check completely not only the wiring but also the ma
chine com ponen ts and the gain setting of each of the 
computing elements in about 40 minutes of computer 
time. When compared to the time it takes an operator 
to perform the measurements required by any other 
method of problem analysis, it can be seen that the A14 
problem analyzer offers an important service to the 
computing field. Moreover, the analyzing operation is 
not dependent on arithmetic. The operator does nothing 
but examine the printed results. All gain settings are 
recorded in their exact values by the printer, except 
those of the integrator circuits. For these, the printed 
gain settings must be multiplied by 10. 

Another desirable feature of the GEDA A14 problem 
analyzer is its ability to set accurately the potentiometer 
values within the networks in which they are to be used. 
All GEDA A14 potentiometers can be set by using a 
voltage from the potentiometer itself or by using a 
voltage from the amplifier to which that coefficient 
potentiometer is connected. This permits a check on the 
over-all gain, which is the important factor in setting 



140 1957 WESTERN COMPUTER PROCEEDINGS 

up any given problem. To obtain the correct potenti
ometer setting for the conditions presented in Fig. 2, the 
operator would turn the computer program control to 
the CALIBRATE position and introduce an equivalent 

signal for amplifier !. He would then select output posi

tion 6, by dialing a two-digit code, and adjust the po

tenti~meter until the output of amplifier 6 reaches the 

desired value when the precisely known test voltage of 
the input is considered. Nearly all system errors have 
been eliminated. Errors in the test-input voltage and 
the output-monitor voltmeter can be adjusted to less 
than 0.01 per cent; therefore, the over-all gain setting 
can be adjusted to within 0.01 per cent of the desired 
value. 

Another significant feature of the A14 analyzer is that 
while all voltage measurements are made at points of 
low impedance, all high-impedance elements, such as 
input resistors and potentiometers, are measured very 
accurately. Measuring at high-impedance points often 
introduces hum, cross talk, and signal noise that obscure 
desired results. 

The automatic checking system operates as follows. 
The problem board to be checked is inserted in to the 
A14 computer. The PROGRAM control is set to CALI-

BRATE, and all coefficient potentiometers are cali

brated; then, the system is set to automatically scan 
all outputs, and a sequence of operations is performed 
to check the connections from the output of each 
amplifier. In the automatic problem-analyzer mode, all 
relays at outputs of computing elements are turned to 
the ANALYZE position and an equivalent input is in-

troduced for amplifier 1. The output-monitor switch 

then automatically scans all computing element out
puts; when it finds an element with a voltage greater 
than 100 mv, it stops, and the voltage is read on a 
digital voltmeter. After the digital voltmeter has sta
bilized, the printer records the following information: 
1) the test-voltage origin, 2) the magnitude of the test 
voltage, 3) the amplifier at which the output is read, 
and 4) the scale factor, or gain, of the amplifier. The 
printer then releases the output-monitor switch to 
search for the next computing element with an output 
exceeding 100 mv. The operation may be repeated until 
all outputs have been checked. 

For the conditions presented in Fig. 2, for example, 
the printer would designate amplifier 1 as the test

voltage origin, designate amplifier 2 as the point at 

which the output voltage was read, record the value of 
the test-input voltage to amplifier ~, and record the gain 

of amplifier 3. Then the output-monitor switch would 

move automatically to position ~, print the amplifier 

number and the gain to this point, and as soon as the 
printed cycle was completed for each output, the scan-

ner would move to the next position or to the end of its 
scan; on reaching the end of scan it would cause the input 
test voltage, as shown in Fig. 2, to move to amplifier 2 

thus providing an equivalent output for amplifier 2. The 

automatic-scan cycle would then be repeated. In this 
way all amplifier outputs are checked, and an accurate 
digital record of the gain of each amplifier with its rela
tionship to other elements in the system is provided. 
The reference voltage is removed from the board during 
most of the problem analysis, but it is applied for one 
test-input position. A scan of the outputs also shows 
where connections are made to the reference voltages. 

When the scan cycle has been completed, the values 
of all initial conditions have been checked. Since the 
printed record is available to the operator in about 40 
minutes for checking, the computer is not tied up for 
long periods for a single problem analysis. The problem 
board is removed from the analyzer so that the operator 
may conveniently check it with the printed record and 
make any corrections indicated. If it is desirable to store 
a problem board which has been analyzed in the A14, 
the checking operation can be repeated. The second 
printed record then can be compared with the earlier 
analysis to ensure that wires have not been changed and 
that potentiometer settings are correct. 

Problem-board errors, as pinpointed by the A14 prob
lem analyzer, can be altered in a short time. For exam
ple, if the second analysis of a problem board indicates 
no output for amplifier ~ (Fig. 2) when an equivalent 

output exists at amplifier 1, the operator knows immedi

ately that either the lead between the output of amplifier 
~ and the input of amplifier ~ is broken or that amplifier 

~ is not functioning properly. In earlier systems the 

operator could only check the second-run results of the 
stored problem against' the earlier results and, if these 
did not agree, a complete dieck of the system would be 
required to find the error. 

The A14 problem analysis also can be performed 
manually; that is, a test voltage can be substituted for 
the output of amplifier ~ by dialing input ~; the output 

monitor can be switched to amplifier ~ by dialing output 

2 and the printer can be operated manually by pushing 

the MANUAL-PRINT button. The dial setting of the 

potentiometer at the input of amplifier ~ can be typed 

in manuaIly, using the electrically controlled type
writer, if it is desired. to provide a reference to a particu
lar position on the printed record so that the previous 
potentiometer setting can be readily discerned. It must 
be remembered, however, that the potentiometer dial 
is accurate only to three positions and that maximum 
accuracy can be obtained by setting the potentiometer 
to the approximate position, then adjusting the setting 
to provide the desired output. Where accuracy of 0.01 
per cent is not, required, the,setting can be made man-



M eilander: Verifying A nalog Computer Problems 141 

ually and checked for gross errors. 
After all the elements of a problem have been checked 

statically, and all input networks and coefficient po
tentiometers have been adj usted in the CALIBRATE 

position, a check is made of the dynamic performance of 
the integrator elements. The system is switched to the 
DYNAMIC TEST position, and a voltage is applied 

simultaneously to the input of all integrators. The out
puts of all integrators rise at a controlled rate, then are 
shut off. The automatic scanner will detect the elements 
that are connected as integrators and can provide a 
printed record of these elements in one operation. The 
element numbers then can be checked against the ele
ments shown as integrators in the wiring diagram. 

The dynamic check completes the operation per
formed by the A14 problem analyzer. Thus it can be 
used to determine that all connections are as shown on 
the wiring diagram and that no extraneous connections 
exist. It checks the over-all gains of the system. I t ac
curately checks potentiometer settings and each of the 
machine components of the system. It can be used to 
determine whether the proper initial conditions are ap
plied. 

An example of the typical information as printed by 
the A14 problem-analyzer equipment is as follows: 

01 10 
02 -2.560 
12 -5.000 

02 10 
03 -5.000 
07 -0.9999. 

These data show that, reading from left to right, the 
equivalent signal for the output of amplifier ~ is 10 v, 

that a connection exists from the output of amplifier 2. 
to the inputs of amplifiers 2 and 12, that the gain of 

amplifier 2 is - 2.560 and the gain of amplifier 12 is 

- 5.000. The second grouping of data, as recorded by 
the A14 printer, tells the operator that the equivalent 
signal for the output of amplifier 2 is 10 v, that a con-

nection exists from the output of ;:mplifier ~ to the in

puts of amplifiers 3 and 7, and that the gain of amplifier 

3 is - 5.000 and the gai~ of amplifier 7 is - 0.9999. 

The A14's automatic scanner also can be used in the 
program control positions STANDBY, I.C. (initial 

condition), and HOLD. In STANDBY the scanner will 

detect computing element failure by indicating the 
presence of an undesired output voltage. In 1. C. the 

scanner will stop at the output of each amplifier where 
an initial condition exists. In HOLD the scanner will 

indicate all voltages at the outputs of every element in 
the machine unless these are negligible. The operator 
can obtain a digital record of his problem at any time 

because switching the system from OPERATE to 

HOLD causes all computing elements to retain the 

voltages that existed at the time of switching. A part of 
the record of a typical problem printed with the equip
ment switched to the HOLD position is as follows: 

01 08.25 
02 55.66 
03 00.99 
06 27.50 
08 99.20 
43 17.66. 

This information shows the output voltage of each of 
the elements, listed in the column on the left, at the 
time the problem was switched. The problem is con
tinued as if the interruption had not been made when 
the equipment again is switched from HOLD to 

OPERATE. 

Among the several advantages of the A14 computer 
that assist the operator in setting up a given problem 
and assure him that the computer is functioning cor
rectly are the following: 

1) The A14 system provides for a change of time scale 

2) 

in a problem by a factor of 10, thus providing the 
operator with a check on the response character
istics of the problem as set up in the computer. 
The system provides for the reversal of initial con
ditions in the problem without wiring changes and 
thus provides the operator with a check on the 
linearity of the computing elements for both 
polarities of output. This is useful in checking 
special circuits containing diodes. 

3) The inherently low differential-operate time (less 
than 100 jJsec) of all HOLD relays assures the 

operator that errors will not accumulate rapidly if 
the machine is switched from OPERATE to 

HOLD repeatedly during the running of a prob

lem. 
4) The A14 computer high-speed UTILITY RE-

LA YS can be operated from the control position, 

~ be operated directly from the output of an 
operational amplifier. 

Fig. 3 shows the internal construction and wiring of 
the side control panel. The major portion of the problem 
analyzer, the PROGRAM switch, and other control 

functions are contained in this control panel. Fig. 4 
shows the A14 problem board and control panels from 
the operator's position. The computer operator who 
uses the A14 problem-analyzer system can be certain 
the problem is properly wired, that the computer com
ponents required for the problem are functioning prop
erly, and that the proper scale factors have been ap
plied. He can obtain this and other useful and accurate 



142 1957 WESTERN COMPUTER PROCEEDINGS 

Fig. 4-Problem board and control panels of the GEDA 
A14 problem analyzer. 

Fig. 3-Internal view of the A14 side control panel. 

The A14 problem analyzer operator, knowing his equip
ment is reliable and his problem properly set up, can be 
more confident of his results. He need not rely exces
sively on his own judgment of the reasonableness of a 
problem solution. He is relieved of laborious point-to
point checking and of the time-consuming transference 
of computer data to usable form. Thus the A14 marks 
a decided advancement toward greater computer re
liability, a factor which has limited the extensive use of 
electronic differential analyzers since their inception. 

data for his problem analysis in digital form directly 
from the equipment in a relatively simple operation 
requiring only about 40 min. on a typical computer. 

Discussion 

E. W. Purcell (Douglas Aircraft Corp.): 
How are the test voltages used in your prob
lem analyzer mode determined, and how 
are they set? 

Mr. Meilander: The test voltages are the 
output of regular operational amplifiers, 
specifically designated for this purpose. 
They are determined from our reference 
sources and driven from the reference 
sources, so that they will also have the same 

characteristics as reference the voltage 
chains by a very small amount over a long 
period of time. The setting of the amplifier 
voltages is accomplished by precision resis
tors which can be adjusted to the correct 
value. 



1957 WESTERN COMPUTER PROCEEDINGS 143 

The Lincoln TX-2 Computer Development* 
WESLEY A. CLARK t 

INTRODUCTION 

T HE TX-2 is the newest member of a growing fam
Oily of experimental computers designed and con

structed at the Lincoln Laboratory of M.LT. as 
part of the Lincoln program for the study and develop
ment of large-scale, digital computer systems suitable 
for control in real time. Although, in general character
istics and design philosophy, it owes a great deal to its 
predecessors, Whirlwind I and the Memory Test Com
puter, the Lincoln TX-2 incorporates several new de
velopments in components and circuits, memories, and 
logical organization. It is the purpose of this paper to 
summarize these new features and to give some idea of 
the historical development and general design objectives 
of the TX-2 program. Fig. 1 shows TX-2 in its present 
developmen t stage. 

Fig. 1-The l:incoln TX-O and TX-2 computers. Foreground: TX-O 
cons?le; mIddle center: TX-O central computer frame; right rear: 
partIally completed TX-2 frame showing plug-in unit construc
tion; left rear: the 256X256 memory. 

HISTORY 

With the development by Lincoln and IBM en
gineers of the SAGE computer for air defense, real-time 
control computer systems had reached an impressive 
level of size, sophistication, and complexity. The highly 
successful 64 X 64 coincident-current, magnetic-core, 
memory array was in operation in the Memory Test 
Computer which had given up its earlier 32 X 32 array 
to Whirlwind. Vacuum tubes abounded in all directions. 
It was apparent that the further advances in system 
design which could be made by increasing memory size, 
eliminating vacuum tubes wherever possible, and or
ganizing input-output buffering, control, and communi
cations into more efficient forms, would be well worth
while. 

* The research reported in this document was supported jointly 
by the Army, Navy, and Air Force under contract with Mass. Inst 
Tech. " 

t Lincoln Lab., M.T.T., Lexington, Mass. 

The development of a 256 X 256, switch-driven, mag
netic-core memory array was begun and the Philco sur
face-barrier transistor made its appearance. After some 
very promising bench experiments with flip-flops and 
logic circuits, it became apparent that this transistor 
was potentially well-suited to use in large-scale systems 
and warranted further study. Accordingly, plans were 
laid for a succession of experimental digital systems of 
increasing size and complexity which would make pos
sible the development and evaluation of circuits using 
the surface-barrier transistors, and which would lead 
to a computer of advanced design that would be capable 
of making efficien t use of the 256 X 256 memory. 

A double-rank shift register of eight stages and con
taining about 100 transistors was constructed and put 
on life-test in April, 1955. It has since been circulating a 
fixed pattern almost continuously with no known errors 
and no natural transistor failures. 

As the next step, it was decided to build a small 
high-speed, error-detecting multiplier and incorporat~ 
marginal checking and other system features. The value 
of a multiplier as a preliminary model had been well 
demonstrated by the 5-digit system built during Whirl
wind's early development. The shift, carry, count, and 
complement operations, under closely controlled timing 
conditions, were felt to be representative 0f all of the 
operations in the manipulative elements of the type of 
computer planned. Accordingly, an 8-bit system using 
600 transistors was designed and completed in August, 
1955 and has been in nearly continuous operation since. 
Operating margins are periodically checked, and in 
steady state operation, the multiplier's error-rate has 
been about one every two months, or one error per 
5 X 1011 multiplications at 105 multiplications per second. 
Most of these errors appear to have been caused by 
cracks in the printed wiring which open intermittently. 

During this period, a better idea of the general char
acteristics of the projected computer began to develop 
and the engineers who were designing the 256 X 256 
memory were encouraged to think in terms of a word of 
36 bits. The notion of a logically separate input-output 
processor was examined and rejected in favor of a mini
mum buffering scheme in which data is transferred 
directly to and from the central memory of the com
puter. The possibility was recognized of programming 
these transfers by means of additional program se
quences and associated program counters, thus taking 
advantage of the extensive facilities of the central ma
chine itself for processing input-output data. 

It was realized that another development step was 
desirable before attempting such an elaborate 36-bit 
system. The 8-bit multiplier had produced a certain 



144 1957 WESTERN COMPUTER PROCEEDINGS 

measure of confidence and familiarity with circuits, 
packaging, and techniques of logical design, but there 
remained the problems associated with communicating 
with memory units and input-output equipment operat
ing at vacuum-tube levels over relatively large dis
tances from a central machine which operated at tran
sistor levels. It appeared that the memory development, 
which had now entered the construction phase, would 
also benefit by a preliminary evaluation of the 256 X 256 
array and its switching, timing, and noise problems in 
an operating computer of some kind, possibly with a 
reduced word length. It was, therefore, decided to design 
and build next a simple machine-in fact, the simplest 
reasonable machine-in order to bring about an early 
intermediate closure of the various efforts within the 
program. 

After some thought about the various possible mini
mal machines, a design was completed in which the word 
length would be 18 bits-a graceful half of the projected 
final form. We began to refer to this computer as the 
TX-O and to the projected machine as the TX-2. Be
cause the 256 X 256 memory array required 16 bits for 
com plete addressing, the single-address instruction word 
of the TX-O was left with 2 bits in which to encode in
structions. The particular set of instructions chosen in
cluded three which required a memory address (add, 
store, and conditional jump) and one which did not. In 
this last instruction, the remaining 16 bits were used to 
control certain necessary and useful primitive opera
tions such as clearing and complementing the accumu
lator, transferring words between registers, and turning 
on and off input-output equipment. 

The TX-O, equipped with a Flexowriter, a paper
tape reader, and a cathode-ray tube display system was 
completed, except for the memory, in April, 1956. 
Twenty planes of the 256 X 256 memory array were in
stalled the following August and the TX-O, now con
taining about 3600 transistors and 400 vacuum tubes, 
began to function as a complete computer. Since that 
time, it has been used to run a variety of testing and 
demonstration programs, and a symbolic address com
piler and other utility programs have been constructed 
and are currently in use. 

Not only has the TX-O served the evaluational pur
poses for which it was built, but it has also demon
strated an effectiveness as a usable computer that is 
somewhat surprising in view of its simplicity. Its rela
tively high speed of about 80,000 instructions per sec
ond and its 65,536-word memory compensate in large 
measure for the limitations of its instruction code and 
logical structure. 

With the successful completion of the TX-O, the final 
steps in the development were undertaken in packag
ing, circuit refinement, and logical design of the TX-2. 
A great deal had been learned about the performance of 
the transistors and memory, the types of logical circuits 
which are practical, techniques of marginal checking, 
and the lesser system problems such as color scheme 

selection and the proper location of pencil sharpeners. 
As design work progressed, the TX-2 took form as a 
system of about 22,000 transistors and 600 vacuum 
tubes. It is an interesting fact that at each step of the 
development since the shift register, the number of 
transistors involved was about 6 times the number in 
the preceding step. This is graphically shown in Fig. 2. 
At the time of writing, approximately 16 million tran
sistor-hours have accumulated in the shift register, 
multiplier, and TX-O. There have been two natural 
deaths and a dozen or so violent ones, primarily due to 
contact shorting with clip leads and probes. 

100,000 

10.000 

NUMBER OF 
TRANS I STORS 

1000 

100 

--

-----
36 - BIT TX-2 

18 - BIT TX-O 

--
8 - BIT 

MULTIPLIER 

SHIFT 
REGISTER 

JAN. APRIL JULY OCT. JAN. APRIL JULY OCT. JAN. APRIL JULY 

W" W~ W~ 

Fig. 2-Steps in the Lincoln TX-2 development program. 

DESIGN OBJECTIVES 

In describing design objectives, it should be pointed 
out that speed of operation was not the primary consider
ation to which all other attributes were sacrificed. It 
would have been possible, at the expense of a few more 
logic circuits, to increase the speed of multiplication, 
division, and shift-type operations. Similarly, the opera
tion of the index register system could have been made 
more efficient at the cost of an additional small, fast 
memory. The principal objective was rather that of 
achieving a balance among the factors of speed, relia
bility, simplicity, flexibility, and general virtue. 

A key aspect is that of expandability which, in an 
experimental computer in an active environment, cer
tainly ranks with the foregoing qualities in importance. 
The address structure in the TX-2 permits an expansion 
of the memory by about a factor of 4, partly to allow 
for new memory developments, such as the transistor
driven 64X64 array which was begun following the 
completion of TX-O. New instructions and pieces of ter
minal equipment will certainly be added during the 
course of future operation. Extra space and spare plugs 
have been artfully distributed about in constructing 
the computer frame. Finally, modular construction will 
permit a fairly easy physical expansion when required. 

The result of all this activity has been a computer of 
relatively large capability. In addition to incorporating 
high-speed transistor circuits and a large magnetic-core 



Clark: Lincoln TX-2 Computer Development 145 

TABLE I memory array, the Lincoln TX-2 has two major and 
distinguishing design characteristics: PEAK OPERATING SPEEDS OF TX-2 

Word Lengths Additions Multiplications 
(in bits) per second per second 

36 150,000 80,000 
18 300,000 240,000 
9 600,000 600,000 

1) The structure of the arithmetic element can be 
altered under program control. Each instruction specifies 
a particular form of machine in which to operate, rang
ing from a full 36-bit computer to four 9-bit computers 
with many variations. Not only is such a scheme able to 
make more efficient use of the memory in storing data 
of various word lengths, but it also can be expected to 
result in greater over-all machine speed because of the 
increased parallelism of operation. • 

Peak operating rates must then be referred to par
ticular configurations. For addition and multiplication, 
these peak rates are given in Table I. 

2) Instead of one instruction counter, the TX-2 has 
32 such counters which are assigned separately to dif
ferent users of the computer, who then compete for 
opera ting time from instruction to instruction. A special 
part of the machine selects a particular user based 

partly on a predetermined priority schedule and partly 
on the current needs of that user. This multiple-sequence 
operation, in which many essentially independent in
struction sequences interrupt and interleave one an
other, is an extension of the breakpoint operation found 
in DYSEAC of the National Bureau of Standards. 

Discussion 

P. C. Miller (Logistics Research): When 
several programs are being run simultane
ously, are there any provisions to prevent 
each of the users from stealing another's 
storage space? 

Mr. Clark: This is a provision which, of 
course, has to be made by the programmer 
himself. Actually, suppose we were talking 
about the multisequence type machine that 
will be discussed in the next paper, I might 
mention that there are certain things that we 
can't acquire in the control of the program
mer, if the programmer does try to use the 
same area of storage that another program
mer is using, and there is no way at all 
that we are going to try to attempt to de
tect this. 

F. S. Preston (Norden Labs.): What uses 
are planned for the TX-2? 

Nelson Blachman (Sylvania ED I) and 
Howard Bedford (North American Avia
tion): Will the TX-2 Computer be used in 
any manner by the SAGE system? 

Mr. Clark: What motivated the com
puter was an obvious desire to make some
thing better. Is this a direct part of the 
SAGE development? The answer to that is, 
"N 0 direct part," This is a development 
project of experimental systems, one of 
many development projects at the Lincoln 
Laboratory, and the Lincoln Laboratory is, 

The value of these features will have to be assessed 
during the course of future machine operation. The 
features themselves are discussed in more detail in the 
next two papers. 

of course, very deeply involved in the SAGE 
program, but no other form of connection 
exists. This machine is to be used in simu
lating physical systems. 

W. A. Farrand (Autonetics Div. of 
N.A.A., Bellflower, Calif.): I would like to 
know what checking methods are used? 

Mr. Clark: I am not sure just what 
checking methods are meant here. So far as 
the circuits go, we check the memory sys
tem by means of a parity loop; this is a 
very simple check. We expect the memory 
to be quite reliable in that we do check all 
of the core memories with the parity; other
wise, there is no checking while the machine 
is running. We have to check the machine 
before the machine is actually doing the 
programming, but this will be gone into 
later. 

L. Kolbo (RAND Corp.): Does this ma
chine make use of extract and deposit 
operations by use of masks? 

Mr. Clark: The three floating functions 
that I mentioned originally, the and/or 
instructions, are not masked instructions; 
the only one which is, is the masked stored 
instruction, which is not, strictly speaking, 
a logical instruction but a digit and memory 
substitution type instruction. 

W. Heising (IBM): What is the time 
to execute typical floating "add" (pro
grammed)? 

Mr. Clark: The reason why we did not 
wire floating-point operations into the ma
chine is because we found that with con
figuration control it is very easy to program 
these instructions. Floating addition, for 
instance, takes 7 to 9 instructions, depend
ing on how many there are going to be of 
them, to be actually executed in sequence to 
develop in 10 microseconds per instruction. 
That is, about 70 microseconds are required 
to execute an interpretive floating addition 
operation. Multiplication and division are 
much shorter: they take 3 or 4 instructions 
apiece. 

R. Frohman (National Cash Register 
Co.): It appears that the TX-2 was well 
and thoroughly planned. Could you please 
indicate about what amount of time was 
spent in preliminary planning? 

Mr. Clark: The preliminary planning was 
done largely in the previous systems which 
were developed. The actual manpower 
which went into the design and building of 
the computer is roughly broken down: three 
engineers doing logical design; three engi
neers doing the memory work; and three 
engineers designing and building the hard
ware. This is besides shop facilities, drafting 
facilities, and a good number of very good 
technicians. It was approximately nine 
people for one year. 



146 1957 WESTERN COMPUTER PROCEEDINGS 

A Functional Description of the 
Lincoln TX-2 Computer* 

J. M. FRANKOVICHt AND H. P. PETERSONt 

INTRODUCTION 

T HE TX-2 is a large scale digital computer de
signed and built at the Massachusetts Institute of 
Technology Lincoln Laboratory utilizing new 

memory and circuit components and some new logical 
design concepts. The computer will be applied as a re
search tool in scientific computations, and in data
handling and real-time problems. The design of the com
puter reflects not only the characteristics of the com
ponents available, but also the nature of the intended 
applications. This paper explains the functional and 
organizational aspects of the computer which are im
portant from the user's point of view. 

GENERAL STRUCTURE OF TX-2 

TX-2 is a parallel binary computer with a 36-digit 
word length. The internal memory is all random-access 
and will initially consist of 69,632 registers of parity 
checked magnetic-core memory and about 24 additional 
toggle switch and flip-flop registers. About 150,000 in
structions can be executed per second. Instructions are 
of the indexed single-address type, and a fixed-point, 
signed-fraction, one's complement number system is 
used. 

Several unusual ideas incorporated in the system 
organization reduce the amount of information unneces
sarily manipulated during program sequences. Further
more, the system organization facilitates the execution 
of several operations simultaneously, thereby increasing 
the effective speed of the computer. 

The principal registers and information paths in the 
computer are illustrated schematically in Fig. 1. 
A, B, C, D, E, F, M, and N are the 36-bit flip-flop 
registers in the machine. M and N are memory buffer 
registers, each of which has a parity flip-flop and asso
ciated circuitry used to check the parity of memory 
words. P, Q, and X are 18-digit registers; X also has a 
parity digit which is used to check the parity of words 
in the X memory. Control flip-flops are not shown in 
Fig. 1. 

Instructions are full memory words and are placed in 
the Control Element during the instruction memory 
cycle. During the operand memory cycle, an operand is 
usually transmitted between the Memory Element and 
some other element-always through the Exchange 

* This research was supported jointly by the Army, Navy, and 
Air Force under contract with the Mass. lnst. Tech., Cambridge, 
Mass. 

t M.LT. Lincoln Lab., Lexington, Mass. 

CQ 
~ 
CQ 

~ 
ARITHMETIC 

ELEMENT 

OPERAND ADDRESS 

I INSTRUCTION ADDRESS 

BBBB 
OPERAND 

MEMORY ELEMENT 

OPERAND 

~ 

~ 
EXCHANGE 

ELEMENT 

OPERAND 

IN-OUT 
BUFFERS 

IN-OUT 
UNITS 

SEQUENCE 
SELECTOR 

j INSTRUCTION 

BASE 

~ ADDRESS 

OPERAND c::cJ INDEX 

CONTROL NUMBER 
ELEMENT 

OPERAND 

10 UNIT MODE 

PROGRAM COUNTER NUMBER 

IN-OUT SEQUENCE SELECTOR NUMBER 
ELEMENT 

'0CIJ 
QJ~ ADDER 

IM~CRYI 
PROGRAM ELEMENT 

Fig. 1-TX-2 system schematic, showing the principal registers and 
transfer paths. 

Element. The 36-digit configuration of the memory is 
not, however, maintained throughout the computer 
during operation timing. A programmer can, in effect, 
con trol several independent, shorter operand word 
length computers simultaneously during the execution 
of each instruction. This flexibility is realized by speci
fying a particular system configuration with each 
instruction. 

The computer communicates with the outside world 
through units in the In-Out Element, several of which 
can be simultaneously operated. Whenever an input or 
output information transfer can occur, signals to the 
Program Element from the In-Out Element automati
cally call into operation the associated instruction se
quence. This multiple-sequencing aspect of the computer 
will not be described in this paper.! 

1 J. W. Forgie, "The Lincoln TX-2 in-out system," this issue' 
p.156. 



Frankovich and Peterson: Functional Description of TX-2 Computer 147 

MEMORY ELEMENT 

The availability of a large, fast, core memory for 
TX-2 permitted an emphasis on the design of a machine 
with an all random-access memory which could be as 
large as 262,144 words. The homogeneous aspect of so 
large a memory system simplifies the programmer's 
coding problems and permits continued high-speed 
operation regardless of the program location in the in
ternal memory. 

The TX-2 Memory Element (see Fig. 2) is divided 
into four independently operating memories, each con
taining up to 65,536 36-digit words. The operating speed 
of TX-2 is determined by the cycle time for the mem
ories: the 65,536-word S Memory is expected to have a 
cycle time of between six and seven microseconds; and 
the 4096-word T Memory, -a cycle time between five and 
six microseconds. Both memories are pari1 y checked. 

I I 

: U MEMORY: 
I (SPARE> I 
I I 
I I 
L ______ ..I 

EE CE 

I 

: v MEMORY 
I 
I I L ______ l 

INSTRUCTION 

Fig. 2-TX-2 Memory Element. Two address and two buffer registers 
are used to permit simultaneous operation of any two of the four 
memories. 

Although the U Memory currently is not specified, it 
may contain a 4096-word core memory in the initial 
system. The V Memory consists of 8 flip-flop registers 
in the central machine and 16 toggle switch registers 
which contain the program sequence executed whenever 
the START button on the operator's console is pushed. 
The contents of the toggle switch registers can be used 
as instructions or operands, but naturally cannot be 

altered by a program. The six 36-bit registers A, B, C, 
D, E, and F are also part of the V Memory but their 
contents can be used only as operands during the execu
tion of an instruction. The programmer has, in a limited 
sense, a two address instruction machine when he refers 
to these registers in load and store type instructions. The 
other two flip-flop registers in the V Memory are a 60-
counts-per-second clock and a random-number register. 

When an instruction calls for the storing of an oper
and in memory, the operand memory cycle can be ex
tended up to two microseconds. The extension occurs 
between the time that the memory register is read and 
the time that it is rewritten. During this extension time 
the memory register transfers in the central computer 
take place, the parity of the word read from memory is 
checked, and the parity of the new memory word com
puted. Because the extended cycle is less than the two 
complete cycles traditionally used for word-modifying 
instructions, an increase in computing efficiency is 
realized. 

The P Register in the Program Element specifies the 
loca tion of an instruction in memory and the N Register 
in the Control Element holds the instruction after it has 
been read from memory. The two leftmost digits of P 
select the memory system from which the irtstruction 
word is to be obtained; the right 16 digits address the 
word within the memory. Similarly, the Q Register lo
cates the operand in one of the memory systems, the 
operand being placed in M. 

CONTROL AND INDEXING 

An instruction word read in to N has the structure 
shown in Fig. 3. The first two digits of the word specify 
information to the In-Out Element, and the four cf 
digits specify the computer configuration. The interpre
tation of the band d digits is not discussed here. 2 The 
cf digits will be discussed later. 

The operation code for the instruction is specified by 

IN-OUT BREAK 8 DISMISS BITS PERMIT 

(

CHANGE OF PROGRAM SEQUENCE 

CONFIGURATION NUMBER SELECTS ONE OF 16 SYSTEM 

CONFIGURATIONS (PERMUTATION, ACTIVITY, COUPLING) 

OPERATION 

CODE OF 

I NSTRUCTION WORD 

18 

ADDRESS 

y 

OPERAND MEMORY 

ADDRESS (USUALLY 

INDEXED) 

~--~------y-~---------) 

INDEXED OPERAND ADDRESS Y= y+(i) 

Fig. 3-TX-2 instruction word layout. 

2 Ibid. 



148 1957 WESTERN COMPUTER PROCEEDINGS 

the six op digits. On simple load and store type instruc
tions these six digits are further subdivided into two 
groups of three. The first group determines the operation 
and the second specifies the register in the central com
puter which is being loaded or whose contents are being 
stored. 

The base address for the operand, formed by the 18 y 

digits, is usually modified by the contents of the index 
register selected by the six j digits. The index registers 
form a unique 64-register, parity-checked core memory 
which has a 1 microsecond access time. The contents of 
the specified index register is read in to the X Register 
of the Program Element via the paths indicated in Fig. 
4. The base address and the index are fed into a full 
adder circuit which produces the sum, Y = y+(j), in 
about 1 microsecond. The over-all complexity of the 
Program Element was red uced by having the adder pro
duce both the sum, Y, and the unmodified base address, 
y; either of these quantities can be directed to the 
operand memory address register Q. Whenever the 
zeroth index register is chosen, the adder produces only 
the unmodified base address. The effect is the same as 
having the index register contain zero, so the pro
grammer can avoid index modification altogether. 

The instruction memory address register P normally 
is indexed by one as each instruction is executed, but 
jump instructions may cause the output of the index 
adder to be directed to P. The adder also provides a com
munication path for index jump instructions from the 
X Memory to the Memory Element by way of the 
Exchange Element. 

ARITHMETIC ELEMENT 

The registers and sufficient basic operations in the 
Arithmetic Element CAE) to implement addition, multi
plication, division, shift, and various logical operations 
are shown in Fig. S. Operation timing for most of the 
TX-2 instructions is also performed in the AE. 

The design of the AE reflects the desire to attain high
speed operation for TX-2 even when long-time instruc
tions are being performed in the AE. The only instruc
tions which require more than a memory-cycle time for 
execution are those which involve shifting. These are, 
for example, multiply, divide, shift, and normalize. For 
this reason the AE contains a sufficient number of 
storage registers to permit these instructions to be car
ried out in the AE while the remainder of TX-2 is freed 
to perform other instructions. 

The four registers in the AE can each communicate 
with the E Register in the Exchange Element and thus 
with the Memory Element. As mentioned earlier, these 
registers are addressable as part of the V Memory 
System. Therefore, programmers have access to the re
sults in any register of an AE computation. 

The AE registers, designated by A, B, C, and D, are 
described on the next page. 

INSTRUCTION OPERAND 

ADDRESS ADDRESS 

ME 

~ 
I E I bs P J 118 Q I 

It· I 

EE y. y+(j) 

I X ADDER I TF Y (j) 

N I I J I y J 
I BASE 18 X P 

ADDRESS 

<E 
X MEMORY 

INDEX NUMBER 64 x 19 

CE 

PROGRAM ELEMENT 

roE 

SEQUENCE 
SELECTOR 

NUMBER 

Fig. 4-TX-2 Program Element, determining the instruction and 
operand memory addresses, performing X memory operations. 

Fig. 5-TX-2 Arithmetic Element, showing the circuits 
and transfer paths for AE operations. 



Frankovich and Peterson: Functional Description of TX-2 Computer 149 

The A Register accumulates the results of all the 
arithmetic operations except division for which it holds 
the remainder. I t holds one of the operands and accum u
lates the results of the three logical operations (AND, 
INCLUSIVE OR, EXCLUSIVE OR) which, it should 
be noted, are bit-wise operations. The information in 
the A Register can also be shifted (i.e., multiplied by 
some positive or negative power of two) or cycled (i.e., 
shifted, without preserving the special significance of 
the sign bit, as in a closed ring). 

The B Register serves as an extension of A during 
multiplication, certain shifts and cycles, and, in a sense, 
during division when the least significant digits of the 
double-length dividend are stored in B. The resulting 
quotient then appears in B. Moreover, the information 
in B can be shifted or cycled independently of A. In 
multiplication, the multiplier originally in A is trans
ferred via parallel paths directly into B (where the least 
significant digit then controls the operation). 

The C Register stores the partial carries during arith
metic operations, most important during multiplication 
as described later. Since these partial carries are actually 
bit-wise logical products (AND), C is also used to ac
cumulate logical products. 

The D Register holds the multiplicands, divisors, ad
dends, and one of the operands for the logical operations. 
I t also holds the numbers which control the shifting and 
cycling of A and B, namely the number of places, up 
to 72, and the direction, right or left. The facility of D 
to count is used also in accumulating the results of the 
normalizing of A and counting ones in A. 

Besides the above mentioned facilities, each of the 
AE registers can be complemented, which allows sub
tractions to be done. 

AE CIRCUITS 

There are four Add One circuits on D, so that different 
parts of A and B can be controlled separately and 
simultaneously. For simplicity, just one Add One circuit 
is shown in Fig. 5. These Add One circuits use the simul
taneous carry principle, permitting one count to occur 
every 0.4 microsecond. Each can count up to 127. 

The Logical Product circuit of A and D into C and the 
Sum Modulo 2 (EXCLUSIVE OR) circuit of A and D 
into A when used at the same time are called a Partial 
Add. When the Complete Carry circuit is activated after 
a Partial Add, the result is a full addition of D all,j A 
into A. The Complete Carry circuit uses the high-speed 
carry principle and takes about 1.5 microseconds for 36 
bits. 

The Partial Carry and Shift Right circuit is also 
known as "multiply step" and was, we believe, first used 
on Whirlwind I. As used in multiplication, this circuit 
obviates the need for a full addition for each "one" in 
the multiplier. Carries are propagated only one stage 
during each step except the last when a complete carry 

is executed. This iterative process takes about 16 micro
seconds in the worst case for a full 36-digit multiplica
tion. The iterative process for division, on the other 
hand, requires a complete addition at each step and 
consequently takes about 72 microseconds in the worst 
case. 

Two features of the AE control ought to be mentioned 
here. A 7-bit step counter, like the Add One circuit on 
D, is used to control multiplication and division and to 
limit the shifting in normalizing and the cycling in 
counting "ones." A flip-flop signifying overflow during 
addition and division is also used to remember the sign 
of the product during multiplication and the sign of the 
quotient during division. If a division overflow occurs, 
the sign is replaced by the overflow state and the 
quotient is lost. 

Control of the Arithmetic Element is independent of 
the rest of the machine, thus providing the time-saving 
device of continuing to execute non-AE instructions 
while AE is performing one of the longer shift operations 
or a division. 

SYSTEM TIMING 

In part, the high speed of TX-2 is attained by over
lapping the operation of as many components as is 
logically possible without incorporating large amounts 
of circuitry. The time-consuming cyclic operations in 
an indexed single-address computer are the instruction
memory cycle, the index-memory cycle, the index-addition 
time, the operand-memory cycle, and the operation 
timing. These cycles occur in the mentioned sequence 
during the execution of ordinary instructions. 

Several asynchronous "clocks" which use a 5-mega
cycle pulse source control the various cycles. The in
struction and operand memory cycles can be overlapped 
if they take place in different memory systems. 

The overlap of these cycle times for a sequence of load 
type instructions is illustrated in Fig. 6(a). Here dif
ferent instruction and operand memories with roughly 
equal cycle times are assumed. If a sequence of store 
type instructions is executed which requires extended 
memory cycles for the operand, then the situation 
shown in Fig. 6(b) results. Fig. 6(c) shows the time used 
when both the instruction and the operand are in the 
same memory. 

"Peak" operating speed for the computer is attained 
only in Fig. 6(a); additional circuitry could improve 
Fig. 6(b) and Fig. 6(c), but only at considerable cost. 
It is interesting to note that if the computer is to run 
at peak speeds, the address of the operand used by the 
current instruction must be available before the earliest 
moment at which the next instruction memory cycle 
could begin. If the total accumulated time from the be
ginning of an instruction memory cycle until the time 
that the address of the operand is known is greater than 
the instruction memory cycle time, then the computer 



150 1957 WESTERN COMPUTER PROCEEDINGS 

I NST. MEMORY CYCLE IINST. MEMORYCYCLE I L.I __ ......-__ 
I C;= t 

I OPERATION TIMING 

(a) 

INST. MEMORY CYCLE I I INST. MEMORY CYCLE 

t t~ ___ ~ I 
I 
I 
I 
I 
I 

INST. MEMORY CYCLE 

t 

I NST. MEMORY CYCLE 

t 

~-----~ t 

(b) 

I I NST. MEMORY CYCLE 
I t 
I i-------. 
I 
I 
I 

I OPERATION TIMING 

(c) 

I I NST. MEMORY CYCLE 

t 
I CHANGE PROGRAM COUNTERI 

I OPERATION TIMING 

(d) 

C 

I OPERATION TIMING 

t 
C 

~ 
I 
I 

I OPERATION TIMING 

Fig. 6-TX-2 timing schematic, showing overlapped execution of 
memory and operation cycles. (a) Consecutive load type instruc
tions-instructions and operands in different memories. (b) Con
secutive store type instructions. (c) Instruction and operand in 
same memory. (d) Change sequence. 

cannot run in the ideal manner shown in Fig. 6(a). This 
means that the access time of all memories, and the 
index add time must be kept as short as possible. 

Fig. 6(d) depicts the timing of events when the In
Out Element causes a change in program sequence by 
changing the contents of the P register. The additional 
X Memory cycles which must be performed in carrying 
this out produce a timing situation similar to that of the 
X Memory load and store type instructions. 

The operation timing for an instruction is executed 
when the operand is available from memory. Only the 
Arithmetic Element step counter instructions, m~ltiply, 
divide, shift, etc., require an operating timing cycle 
longer than a memory cycle. Since only the Arithmetic 
Element is tied up when these instructions occur, the 

Control Element permits any non-Arithmetic-Element 
instruction to be executed while the AE is busy. Division 
takes up to 75 microseconds, so the programmer can 
write as many as 14 non-AE instructions following a 
divide, all of which can be executed before the division 
is completed. 

CONFIGURATION 

The design of a general purpose computer must neces
sarily reflect the contradictory demands for both short 
and long word lengths, floating and fixed point arith
metic operations. and a multitude of logical and decision 
instructions. The computer should be able to process 
information at an optimum rate in a variety of problems 
without the need for intricately coded programs. This 
ability should be achieved without excessively complex 
and costly circuitry. 

The fu1136-digit word in TX-2 represents a reasonable 
length for operands in some numerical computations, 
notably scientific and engineering computations. 
Though floating point arithmetic operations are not 
included in the instruction code, both they and multiple
precision operations can be easily synthesized by means 
of the existing instructions. The logical instructions in 
the code facilitate operations on individual digits, but 
also, a configuration which the programmer specifies 
anew with each instruction permits him to perform 
arithmetic operations on operands which are less than 
36 digits long. When such is the case, several shorter 
operands can be manipulated simultaneously. 

The four cf digits in an instruction word (see Fig. 3) 
are decoded as shown schematically in Fig. 7. The con
tents of the selected one of 16 9-digit configuration 
words are placed in a flip-flop register whose output 
levels determine a static configuration for the entire 
computer during the execution of the instruction. The 
contents of the first twelve registers are specified by a 
notation whose meaning will be clarified in the follow
ing discussion. 

The full 36-digit word length is always maintained for 
instruction words, but during operation timing, every 
36-digit register in the Memory, Exchange, and Arith
metic Elements is considered broken into four 9-digit 
quarters [numbered from 1 to 4, from right to left as in 
Fig. 8(a)]. While the instruction is being executed, 
these quarters are recombined on the basis of the con
figuration. 

Parallel register transfers are the usual means for 
moving information about in the machine. The EE 
permutation digits select one of the lour permutations 
PO, Pl, P2, or P3 as defined in Fig. 8(b). The chosen 
permutation effects the corresponding cross-communi
cation paths between the quarters of the E and M 
registers of the Exchange Element. As operands are 
transmitted through the EE, the quarters of the word 
follow the set of paths determined by the selected per
mutation. The result is that the operand is shifted 9n 
places to the left as it moves from M to E or 9n places 



Frankovich and Peterson: Functional Description of TX-2 Computer 151 

1 Iz 

CONFIGURATION DIGITS 
IN INSTRUCTION WORD 

~ 

( PO 

I PO 

( PO 

I P2 

I PO 

I Pl 

( P2 

( P3 

(PO 

( Pi 

( P2 

( P3 

Fl 

F2 

F3 

F4 

14 

t 
,~I 

.?,?,~,~I 

• 18,~1 

,18, l!) 
,9,9, 9,~1 

,9, 9, 9,~) 

,9, 9,9,~1 

,9,9, 9,~) 

,E,9) 

,27, ~) 

,9,!,9,~1' 

,27,~1 

} 
SELECTED CONFIGURATION 
GATING REGISTER 

FIXEDIWIRED INI 
CONfIGURATIONS 

VARIABLE (FLIP
flOP) CONFIGURA
TIONS 

CONFIGURATION 
MOORY 
116 WORDS 
9 BITS EACH! 

Fig. 7-TX-2 configuration selection, The cf digits select a configu
ration for the computer for use during the execution of the in
struction. 

QUARTERING 

4 

M c::::::::J 

I 
E c::::::::J 

o o o o 

(a) 

3 

c:::=:J 

I 
c:::=:J 

(b) 

2 

c:::=:J 

I 
c:::=:J 

Fig. 8-TX-2 configuration, (a) Quartering, permutation paths, and 
activity flip-flops. (b) The four sets of permutation paths avail
able, one of which is used during the execution of an instruction. 

to the right as it moves from E to M, n = 0, 1, 2, or 3. 
Thus the programmer can have any quarter of the AE 
communicate with any quarter of the ME. 

This communication ability is focused more sharply 
by having the configuration specify a system activity. All 
operation timing events in a given quarter of the AE 
and EE and the quarter of the ME connected via the 
selected permutation path in the EE are controlled by 
the activity flip-flop of that quarter. If the activity 
flip-flop of a given quarter holds a "one," as specified by 
the configuration, then the operation timing events of 

the instruction occur in that quarter. If the activity 
'flip-flop holds a "zero," then nothing happens. 

During the execution of arithmetic operations, the 
AE coupling bits further specify the connections of the 
lateral information paths between quarters in the AE. 
Information flows laterally only through the shift and 
the carry circuits, and the connection of these circuits 
alone determines the word length of the numerical 
quantities manipulated in the AE . 

In Fig. 9(a) (next page) every quarter of the AE has 
coupling units at each end which receive the shift and 

, carry information entering the quarter. The general 
type of connections among several quarters is shown in 
Fig. 9(b). The digit length of operands during add and 
shift operations is determined by the number of quarters 
coupled together. In TX-2 from one to four quarters 
can be coupled together to permit arithmetic operations 
on 9, 18, 27, or 36-digit operands. The various combina
tions of coupling unit connections actually chosen by 
the AE coupling are symbolized in Fig. 9(c). Since 
A-register, B-register, and AB-register shifts are per
mitted in the Arithmetic Element, the programmer can 
obtain 18, 36, 54, or 72-digit shifts. All the possible shift 
(and cycle) configurations are shown in Fig. 9(d). 

Only those inputs to the coupling units which would 
yield useful arithmetic element structures are realized 
by the AE coupling. It should be emphasized that the 
programmer can realize several arithmetic elements 
simultaneously. The coupling (36) gives only one 36-bit 
AE, but the coupling (18, 18) gives two complete, inde
pendent 18-bit arithmetic elements which are separately 
but simultaneously controlled by the instruction being 
executed. Two arithmetic elements are again available 
with the coupling (27, 9), one 27 bits and the other 9 bits 
long, and the (9, 9, 9, 9) case gives four 9-bit arithmetic 
elements. The permutation paths in the Exchange Ele
ment permit each arithmetic element to communicate 
with any quarter of a memory word and the activity 
flip-flops can specify just which of the realized arith
metic elements will actually be active and in active 
communication with the connected part of memory. 

In Fig. 10, several examples are given of the different 
configurations which can be realized in TX-2. The most 
straightforward configuration has one 36-digit arith
metic element and communicates directly with memory. 
The notation (PO, 36) signifies the permutation (no 
shift) and the form of the arithmetic element (one 36-
digit). The underlining indicates that the whole system 
is active. Slightly more varied is the (PO, 9, 2, 9, 2) con
figuration which specifies four 9-digit arithmetic ele
ments communicating directly with memory, but with 
only two of them active. The (P2, 9,2, 9, 2) configura
tion has the same arithmetic elements but with the asso
ciated memories interchanged. The (P2, 18, 18) con
figuration illustrates an 18-digit arithmetic element 
which uses the "other" half of memory. 

One of the 9 configuration digits is at the moment 
unused, but will probably be used to control the ex-



152 1957 WESTERN COMPUTER PROCEEDINGS 

~ 
CARRY COUPLING UNIT 

SHIFT RIGHi: SHIFT LEFT ~
' 

COUPLING UNITS COUPLING UNITS 

B, 

(a) 

END AROUNO CARRV 

(36) 

(IB,'B) 

(27,9) 

(9,9,9,9) 

v ~ ~ 

SHIFT A RIGHT 

(b) 

SEPARATE (A,e SHIFT PATHS) 

d A4 i A3 ; A2 ! A I b 
q 84 ; B3 82; B I P 

d 
A4 i A3 

b d 
A, i A I b 

q B4 i B3 P q B, ! B, 

dA4!A'!A'b~ 

q B4 ! B3 I B, P ~ 

~~~cQgJ 
CC5l~~C05J

(d)

ONE,7S,Ta 01 4 , 3 , ' IEJ' ONE 9 BIT AE C ---- ---;- ------,------ - .-- ---
(27,9) A ------ -1- ------:---- --- -- ----______ J _______ L.. ___________ _

B ' ,

'~,~:::;.~ ll'll:':ll:':ll:'j
O:~=~~~U:~RD ~ lLLJ lLTI ~

(c)

COMBINED (AB SHIFT PATHS)

* A4 : A, : A, : A, *
84 I B3 I 82 I BI

Fig. 9-TX-2 arithmetic element coupling units. (a) i-th quarter
coupling units. The coupling units receive information mov
ing laterally into the i-th quarter of the AE, i= 1, 2, 3, 4. (b)
Coupling unit connections between a contiguous group of quar
ters which realize a 9-bit (j=O), i8-bit (j=i), 27-bit (j=2) or
36-bit (j=3) "arithmetic element." (c) Arithmetic element and
operand word structures. The four forms the arithmetic element
can assume with associated operand word structure. (d) The pos
sible shift path arrangements realized with the configurations.

tension of the sign of numbers as they pass through the
EE on the way from the ME to the AE. The scheme
presently under consideration would permit program
mers to add, for example, a 9-digit memory operand to
an 18-digit arithmetic element. This scheme would per
mit closer packing of operands in memory and signifi-:
cantly increase the speed of solving some real-time prob
lems, where short data words need to be extended so
higher precision can be maintained during computations.
Working details of the scheme have yet to be fixed.

The configuration memory from which the program
mer chooses a configuration for use with each instruc
tion was shown in Fig. 7. Twelve of the configuration
memory registers are fixed circuitry whose contents
cannot be changed wi thou t changing the wiring of the
computer. These configurations are assumed to be ones
which will be useful to most programmers. The last four
registers in the memory consist of the 36 digits of the
F register. As will be seen the programmer can quite
simply alter the contents of this register and thereby
obtain any of the (less than 29) possible configurations.

D D
t t

c=::::::J c:::::J

t !
c=::J c=:::J

: :
D D

EJ[Q[Q0 ~ GJ ~ GJ
(a) (b)

~0
(c) (d)

Fig. 10-Illustrative example of different configurations. Areas of ac
tivity during execution of instruction are shown shaded. Effects
of AE coupling are shown by juxtaposition. (a) (PO, 36) configu-
ration. (b) (PO, 9, 9, 9, 9) configuration. (c) (P2, 18, 18) configu-
ration. (d) (P2. 9, ,2, 9, ~) configuration. -

INSTRUCTION CODE

Of the 64 possible operation codes, only 51 are cur
rently decoded to define instructions. In Table I (oppo
site) the effect of each instruction is described. If several
computers are defined by the configuration, then the ef
fect occurs in all of them simultaneously and independ
ently. The notation used in the definition of the operation
is described in Table II (p. 154).

The instructions are grouped according to type. Load
and store type instructions simply effect an operand
transfer between the selected register and memory. The
load complement instructions are variants which load
the one's complement into the specified registers. Ex
change simply interchanges the contents of A and the
indicated memory register. The insert instruction allows
any set of bits in A, as specified by the bits in B, to be
stored in memory. In the index memory load and store
instructions, the j bits select the index register involved
so the operand address is not modified.

All of the add and step-counter instructions can also
be classed as load type instructions in so far as the
operand memory cycle is concerned. The multiply in
struction forms the full product in the A and B registers.
Division is the inverse of multiplication, the double

Frankovich and Peterson: Functional Description of TX-2 Computer 153

TABLE I

Type Mnemonic Code Operation Name

Ida

r~
Load into A

Idb Load into B
Idc Load into C
Idd (i')1~ Load into D

Load Ide Load into E
Idf Load into F

lea (Y)~{~ Load complement into A
lcb Load complement into B
Idx (y)~j Load into index

sta
(A))

Store A
stb (B) Store B
stc (C) Store C
std (D) ~Y Store D
ste (E) Store E

Store stf (F) Store F
exa {(Y)~Al Exchange A

(A)-Yf

ins (B) & (A) v (B) & (Y)~Y Insert digits of A
stx (j)~y Store index

add (A) + (Y)~A Add
sub (A) + m ~A Subtract
dma I (A) I + I (Y) I ~A Difference of magnitude
and (A) & (Y)~A Logical and
ori (A) v (Y) ~A Logical or-inclusive

Add {(A) EB (Y) ~A } Logical or-exclusive (and accumulate product) ore (A) & (Y) v (C)~C
axm (j)+(y)~y Add index to memory
amx (j)+(y)~j Add memory to index

sbo 1~Yi Set j-th bit one
Set bit sbz O~Yi Set j-th bit zero

sbc (Yl)~Yj Setj-th bit complement

mul (A)X(Y)~AB Multiply
div (AB) +(Y)~fA (remainder) Divide

lB (quotient)
sha

(A) I (A
Shift A

sab (AB) X2(Y)~i AB Shift AB together
shb (B) B Shift B

Step-Count cya (A) A Cycle A
cab (AB) cyc(Y) ~{ AB Cycle AB together
cyb (B) B Cycle B
nab {(AB) X2 n! ~AB Normalize AB

(Y)-nf ~D
coa (Y)+no ~D Count ones in A

rds f(Y)~IO{ Read and shift
}(IO~Y

In-out rdn (Y)~IO Read without shift
l(IO~Y !

jpe If (Ei) = 1, then y~P Jump if j-th bit of E is a one
jpp If any (A) > 0) Jump if the contents of any A is positive
jpn If any (A)~O Jump if the contents of any A is negative
jpz If any (A) =0 then Y~P Jump if the contents of any A is zero
jpo If any (A) J

Jump overflowed Jump if the contents of any A has overflowed
jxp If (j);2:0, then (j) -cf~j, y~P Jump if index positive and decrease index
jxn If (j)<0, then (j)+cf~j, y~P Jump if index negative and increase index

(If cf=1, 3, then (P)+1~j~
jpu tlf cf=O, 1, then y~P Jump unconditionally

If cf=2, 3, then Y~P)

Misc. ios In-out select
opr Operate

length dividend in A and B being divided by the mem
ory operand. The remainder is left in A and the quotient
in B. Normalize shifts the con ten ts of A and B left un til
the magnitude of the number in A is between one-half
and one. The number of shifts to do this, the normalizing
factor, is subtracted from the memory operand in D. The

shift and cycle instructions use the memory operand,
rather than the address section of the instruction, to
specify the number of places to shift. This is necessary
since more than 18 bits are required to specify all the
possible shifts for the (2, 2, 2, 2) configuration. The
count ones instruction adds the number of bits in A

154 1957 WESTERN COMPUTER PROCEEDINGS

Notation

-+
(x)

Y=y+(j)
I (x) I
(x)
&
v

E9
+
nj
no
Y i

TABLE II

Meaning

goes into
contents of x
indexed memory address
magnitude of (x)
one's complement of (x)
logical and operation
inclusive or operation
exclusive or operation
one's complement addition
number of shifts to normalize
number of ones
j-th digit of register Y

which are ones to the memory operand in D. This pro
vides a simple means for determining bit density in
areas of storage, since the one's count for several words
can be accum ula ted in D.

The two replace add instructions, using the index
memory, facilitate instruction and index modification.
Both require two memory cycle times for execution.

The two in-out read instructions transmit information
between the memory and the selected in-out unit. The
details of these and the in-out select instruction are
given in another paper.

Single bits in memory can be manipulated with the
three bit-setting instructions. The bit-sensing instruc
tion facilitates the use of single bits in memory as
operands.

The variety of jump instructions available simplifies
the coding of logical decision functions. The two-index
jump instructions permit indexed program loops to refer
successively in either the forwards or backwards direc
tion to operands in a data block. The unconditional
jump instruction uses the cf digits to specify whether the
selected index register will be used to remember the
previous contents of P. These contents are always trans
mitted to the E register whenever a jump occurs.

Arithmetic overflows can be caused by addition,
subtraction, and division instructions. Such overflows as
do occur are remembered in overflow flip-flops in the
arithmetic element. The overflow condition can be de
tected by a jump instruction, or by the in-out element
in a manner described in another paper. If an overflow
is anticipated, however, it can be shifted into the A
register by executing a normalize instruction. A normal
ize usually shifts AB left, but if an overflow exists AB is
shifted right one place, and the overflow placed in the
most significant digit position of A to the right of the
sign digit. The memory operand is increased by one in
the D register, when this occurs, rather than decreased.
This interpretation of an overflow permits floating-point
operations to be programmed quite simply in the arith
metic element. The in-out select and operate instruc
tions differ from all the others in the sense that the y
digits are used to specify different operations. In-out
select chooses the mode in which an in-out unit will run.

The operate instruction will control individual useful
commands, as for example, round-off.

INSTRUCTION TIMES

The average execution time for instructions depends
upon whether one memory or two different overlapped
memories are used for instructions and operands. In the
latter case the average time is the longer of the instruc
tion memory and the operand memory cycle times, and
in the first case the sum of the two cycle times. It
should be remembered that any instruction which in
volves storing an operand in memory has the normal
operand memory cycle time extended by from one to
two microseconds. Instructions which alter or transfer
the contents of index memory registers, require approxi
mately two normal memory cycles even when instruc
tion and operand memory cycles are overlapped.

Successive step counter instructions require a time
which depends upon the length of the longest active
arithmetic element. In the case of multiply, divide, and
count ones, this time is a function of the operand word
length only, but the shift, cycle, and normalize times
depend upon the number of places actually shifted. Di
vide requires about 2 microseconds per digit and all
other step counter instructions 0.4 microsecond per
digit. These shift times become significant only when
they exceed the one or two memory cycles already re
quired. In the worst 36-digit case about 75 microseconds
is required for division and 19 microseconds for multi
plication. A 72 place shift would take 32 microseconds.
These are the times required for these instructions when
they are written in sequence. If the operand word length
is shorter, then these times become proportionally less,
down to the minimum memory times required.

CONCLUSION

The organization of TX-2 permits a programmer to
pay considerable attention to coding details and receive
a worthwhile reward in the form of increased efficiency
of operation. The operating speed can be doubled when
instructions and operands are stored in different mem
ories. Further increases result by the sequencing of in
structions so that non-Arithmetic-Element instructions
are executed concurrently with AE step-counter in
structions. And the ability to choose a configuration
with each instruction means not only that some instruc
tions take less time, but also that many of them can be
eliminated from a program altogether.

However, this versatility and efficiency is not accom
panied by a disastrous loss in simplicity. The system
organization is such that details can be easily ignored by
the naive programmer, without the details having even
subtly obtrusive effects. If all the digits in an instruction
word are zero except for the operation code and the base
address, then TX-2 appears as a simple single address

Frankovich and Peterson: Functional Description of TX-2 Computer iSS

36-bit operand word computer with a single, uniformly
addressed 70,000 word memory.

instruction overlap, multiple-sequencing, and con
figuration can be ignored or used as the programmer de
sires. Ignoring them would seem to permit straight
forward coding; using them actually permits much
shorter and faster codes for a given function. Each facil
ity is easily represented by a clear conceptual picture of
what the facility permits, the only real difficulty being
the greater number of simultaneous actions possible
with each instruction. However, higher speeds and
greater system capacity are obtained by shorter cycle
times, increased bit storage, and greater simultaneity of
events. In TX-2 all three aspects are emphasized.

If the j bits are used, then the machine is enlarged to
become an indexed single-address 36-bit operand word
computer for which the entire instruction code is mean
ingful. When the band d bits are used, then the pro
grammer can control the manner in which several in-out
units running concurrently can cause program sequence
changes. And by selecting various configurations the
programmer can perform more operations simultane
ously with each instruction:

The differen t facilities for indexing, memory overlap,

Discussion

C. H. Richards (Convair-Astronautics):
What is the accumulator length of TX-2,
and where is the binary point located?

Mr. Frankovich: This is' a 36-bit word
accumulator, in a ones-complement ma
chine. The binary point really exists only by
virtue of what happens during multiplica
tion or division type instructions. The left
digit is the sign digit of whatever configura
tion you have, and the remaining digit is a
numeric digit; and ordinarily during multi
plication you can consider the binary point
to be between the sign digit and the first
significant digit on the remainder of the
operand. During division, however, we have
a different interpretation, so we cannot really
say that this is a fractional machine. During
addition it makes no difference where you
put the binary point. During division the
quotient is generated in a different register
than the accumulator, so we cannot say that
it is a fractional machine during that opera
tion.

Chairman Pfister: When you multiply
two 36-bit words, together you have a 72-bit
product; where does the product go when
you have an accumulator with only 36 bits?

Mr. Frankovich: There are 4 registers
in the arithmetical element; and another
register which acts as the right-hand exten-

sion of this accumulator-a B register.
During multiplication the full 72-digit prod
uct is generated in the accumulator in the
B register. The binary point is at the left
hand of the accumulator during the entire
process. The other two registers are used,
one to hold the partial carry during addition
operations; another is used to carry out
division, thereby enabling the arithmetical
element to be completely selfcontained dur
ing such a long period of instruction.

D. L. Shell (General Electric): What
happens on overflow?

Mr. Frankovich: We have four over
flow indicators in the arithmetical element.
If we have a full 36-bit operand for an
instruction, then we use only the left-most
overflow indicator, and associate one over
flow indicator with each quarter; none of
the other overflow indica tors are affected at
all. On the other hand, if we have four 9-bit
operands, then we use all four overflow indi
cators to indicate overflow for anyone of
them.

I might also mention that during the
jump on overflow instruction you can specify
it by means of configuration control, in a
very straightforward manner. There are
further techniques for handling such situa
tions which are devised to make program
ming easier.

Mr. Groelinger (Ramo-Wooldridge): Can

the exchange element be used to store ac
cumulator content in several places in
memory?

G. G. Chapin (Remington Rand UNI
VAC): Can you read from one memory ele
ment into more than one arithmetical ele
ment?

Mr. Frankovich: This can be done in
two ways. As far as the one and one instruc
tion in each transfer: if you want to store
one-half of the arithmetical element in
several places in the memory, be it in the
left half, or the right half, wherever your
location might be, then you give instruc
tions to each transfer, unless the transfer
were to be done in the same register. If you
are loading the arithmetic element, you
can load either half of the accumulator from
a given memory register, but again this
takes two instructions.

G. G. Chapin (Remington Rand UNI
VAC): Can jump instructions be condi
tioned on more than one 9-bit section of the
accumulator simultaneously?

Mr. Frankovich: Yes. The configuration
control device is used universally and homo
geneously upon all arithmetical instruc
tions. If you have four 9-bit operands, and
you want to jump on the basis of two of
them, the jump instruction is interpreted to
be "jump on either the first-quarter or the
third -q uarter. "

156 1957 WESTERN COMPUTER PROCEEDINGS

The Lincoln TX-2 Input-Output System*
, JAMES w. FORGIEt

INTRODUCTION

T HE input-output system of the Lincoln TX-2
computer contains a variety of input-output de
vices suitable for general research and control ap

plications. The system is designed in such a way that
several input-output devices may be operated simul
taneously. Since the computer is experimental in nature,
and changes in the complement of input-output devices
are anticipated, the modular scheme used will facilitate
expansion and modification. The experimental nature
of the computer also requires that the input-output sys
tem provide a maximum of flexibility in operating and
programming for its input-output devices.

The input-output devices, currently scheduled for
connection to TX-2, include magnetic-tape units for
auxiliary storage; photoelectric paper-tape readers for
program input; a high-speed printer, cathode-ray-tube
displays, and Flexowriters for direct output; analog-to
digital conversion equipment; data links with other
computers; and miscellaneous special-purpose equip
ment. This paper will not be concerned with the details
of these devices, but will limit itself to a discussion of the
logical incorporation of them into the system.

In describing the TX-2 input-output system, refer
ence will be made to certain design aspects of other parts
of the TX-2 as set forth in the previous paper.

THE MULTIPLE-SEQUENCE PROGRAM TECHNIQUE

Of the various organizational schemes which permit
the simultaneous operation of many devices, we have
chosen the "multiple-sequence program technique" for
incorporation in TX-2. A multiple-sequence computer
is one that has several program (instruction) counters.
If the program sequences associated with these program
counters are arranged to time-share the hardware of the
central computer, a machine can be obtained which will
behave as if it were a number of logically separate com
puters. We call these logical computers sequences and
therefore refer to TX-2 as a multiple-sequence computer.
By associating each input-output device with such a se
quence, we effectively obtain an input-output computer
for each device.

Since the one physical computer in which these se
quences operate is capable of performing only one in
struction at a time, it is necessary to interleave the se
quences if they are to operate simultaneously. This in
terleaving process can take place aperiodically to suit
the needs of and under the control of, whatever individ-

* The research i~ this document was supported jointly by the
Army, .Navy, and AIr Force under contract with Mass. Inst. Tech.

t Lmcoln Lab., M.LT., Lexington, Mass.

ual input-output devices are operating. The number of
sequences which can operate simultaneously, and the
complexity of the individual sequences, is limited by the
peak and average data-handling rate of the central
computer hardware. .

In a multiple-sequence computer, the main body of
the computation can be carried out in any sequence, but
if maximum efficiency of input-output operation is to be
achieved, the bulk of arithmetic operations must be con
fined to a few special sequences, called main sequences,
which have no associated input-output devices. The in
put-output sequences may then be kept short, and a
large number of them can be executed at once.

MULTIPLE-SEQUENCE OPERATION IN TX-2

In TX-2, one-half of the index-register memory has
been made available for storing program counters. Thus,
a total of 32 sequences may be operated in the machine.
(Actually an additional sequence of special characteris
tics is obtained by using index register number 0 as a
program counter. This special sequence will be dis
cussed later.) Some of these sequences are associated
with input-output devices. Others perform functions,
such as interpreting arithmetic overflows, that are called
into action by conditions arising within the central
computer. Finally, there are the main sequences which
are intended to carry out the bulk of the arithmetic com
putations performed by the machine.

A priority scheme is used to determine which sequence
will control the computer at a given time. If more than
one sequence requires attention at the same time, con
trol of the machine will go to the sequence having the
highest priority, and instructions addressed by its pro
gram counter will be executed.

Table I is a list of the sequences currently planned for
inclusion in TX-2. They are listed in approximate order
of priority with the highest at the top. Asterisks mark
sequences which are not associated with any particular
in-out device. A special sequence (number 0) has first
priority and will be used to start any of the other se
quences at arbitrary addresses. The next two sequences
interpret alarms (under program control). These three
sequences have the highest priorities, since they must be
capable of interrupting the activities of other sequences.
The input-output devices follow, with high-speed, free
running units carrying next highest priorities. The main
sequences (we anticipate three) are at the bottom of the
list. The priority of any sequence may be easily changed,
but such changes are not under program control. Priori
ties are in tended to remain fixed under normal operating
conditions. The list totals about 25 sequences, leaving
eight spaces for future expansion.

Forgie: The Lincoln TX-2 Input-Output System 157

TABLE I

TX-2 SEQUENCE ASSIGNMENTS IN THE ORDER OF THEIR PRIORITY

*Start-Over (special index register number 0 sequence)
*In-out alarms
* Arithmetic alarms (overflows, etc.)
Magnetic tape units (several sequences)
High-speed printer
Analog-to-digital converter
Photoelectric paper tape readers (several sequences)
Light pen (photoelectric pick-up device)
Display (several sequences)
MTC (Memory Test Computer)
TX-O
Digital-to-analog converter
Paper tape punch
Flexowriters (several sequences)

*Main sequences (three)

* The sequences have no input-output device.

Switching between sequences is under the control of
both the input-output devices (generalized to include
alarms, etc.) and the programmed instructions within
the sequence.

Once a sequence is selected and its instructions are
controlling the computer, further switching is under con
trol of the programmed instructions. Program control of
sequence switching is maintained through two bits,
called the break and dismiss bits, in each instruction.
The break bit governs changes to higher-priority se
quences. When the break bit permits a change, and
some higher-priority sequence requests attention, a
change will be made. The dismiss bit indicates that the
sequence has completed its operation (for the moment,
at least) and that lower-priority sequences may receive
attention. The interpretation of the break and dismiss
bits will be discussed in more detail.

THE TX-2 INPUT-OUTPUT ELEMENT

The TX-2 input-output element is shown schemati
cally in Fig. 1. It consists of anumberof input-output de
vices, associated buffers, and a sequence selector. Each
device has enough control circuitry to permit it to oper
ate in some selected mode once it has been placed in
that mode by signals from the central computer. Asso
ciated with each device is a buffer storage of appropriate
size. This buffer may be large or small, to suit individual
data-rate requirements, but the buffers used in TX-2
will generally be the smallest possible. For the most
part, buffering for only one line of data from the device
(e.g., 6 bits for a paper-tape reader) will be provided.
Each input-output device is associated with one stage of
the sequence selector. The sequence selector provides the
control information necessary for proper interleaving of
the program sequences. When it is desired to add a new
input-output device to the computer, the three pack
ages, in-out unit, buffer, and sequence-selector stage,
must be provided.

As shown in Fig. 1, data is transferred between the in
put-output element and the central computer by way of
the exchange element. Fig. 1 indicates two-way paths
between the E register and all in-out buffers. Actually,

IN - OUT ELEMENT

r-~============~

PROGRAM
COUNTER
NUMBER
(INDEX

~f-----'A~~~~~~)

PROGRAM

'~~ {:::=t=:::!==~======:r~
Fig. 1-Block diagram of TX-2 in-out element.

SET
IN-OUT UNIT
., TO MODE y

(lOS INSTRUCTION)

most devices are either readers or recorders, but not
both, and therefore require one-way paths only. Only
the necessary paths are provided; the drawing simply
shows the most general case.

Signals from the sequence selector connect the ap
propriate buffer register to the E register to transfer
data. When a sequence is selected (i.e., its program
counter is supplying instruction locations), the asso
ciated buffer is connected to the E register, and all other
buffers are disconnected. A read instruction will effect a
transfer of information between the buffer and the E
register. A particular buffer is thus accessible only to
read instructions in the sequence associated with the
buffer's in-out unit.

Fig. 1 shows paths from the sequence selector to a
coder which provides an output called the program
counter number. These paths are used in the process of
changing sequences to be described in a later section.

Fig. 1 also shows paths for mode selection in the in
out element. The use of these paths is described in the
next section under ios.

INPUT-OUTPUT INSTRUCTIONS

In addition to the break and dismiss bits on all in
structions, the programmer has three computer in
structions for operating the input-output system. There
are two read instructions, rdn and rds, which transfer
data between the in-out devices and the central com
puter memory. The third instruction, ios, selects the
mode of operation of the in-out devices.

rdn and rds

Both of the read instructions obtain a word from
memory. If the in-out device associated with the se
quence in which the read instruction occurs is in a read
ing (input) mode, appropriate bits of the memory word
are altered, and the modified word is replaced in mem
ory. If the in-out device is in a recording (output) mode,
appropriate bits of the memory word are fed to the se-

158 1957 WESTERN COMPUTER PROCEEDINGS

lected in-out buffer, and the word is replaced in memory.
Thus, the same read instruction suffices for both input
and output operations. The distinction between rdn
and rds lies in the assembling of full memory words
from short buffer words. An rdn instruction will place
the 6 bits from a tape reader in the right 6 bits of a 36-
bit memory word. The remaining 30 bits will be left un
changed. An rds instruction for the same tape reader will
place the 6 bits in a splayed pa ttern (every sixth bit
across the memory word) and will shift the entire word
one place to the left before replacing it in memory.
Except for the shift, the other 30 bits remain un
changed. A sequence of 6 rds instructions, one for each
of 6 tape lines and all referring to the same memory ad
dress, will suffice to assemble a full 36-bit word.

The distinction between rdn and rds could be obtained
from mode information in the in-out device, but the in
cl usion of both instructions in the order code allows the
programmer to interchange the two types freely to suit
his needs. The rdn instruction makes use of the permu
tation aspect of the TX-2 configuration control and is,
therefore, particularly convenient for dealing with al
phanumeric Flexowriter characters. Configuration is not
applicable to the rds instruction.

ios

The ios instruction serves to put a particular in
out device into a desired mode of operation. The j
bits of the instruction word, normally the index register
number, in this case specify the unit number of the
in-out device. This number is the same as the pro
gram counter number for the associated sequence, al
though the correspondence is not necessary. The y bits
of the instruction word specify the mode of opera
tion in which the unit is to be placed. Two of the y bits
are sent directly to the jth sequence selector stage and
serve to control the sequence, regardless of the mode
of its associated in-out device. These two bits allow ios
instructions to arbitrarily dismiss or request attention
for any sequence in the machine. By means of these in
structions, one sequence can start or stop all others in
the machine. A third y bit determines whether the mode
of the in-out device is to change as a result of the in
struction. If it is to change, the remaining 15 bits
specify the new mode. An ios instruction occurring in
any sequence can thus start or stop any sequence and/or
change the mode of its in-out device.

A further property of the ios instruction is that it
leaves in the E register a map of the state of the speci
fied in-out control prior to any changes resulting from
the instruction itself; ios instructions may, therefore,
be used to sense the sfate of the in-out system without
altering it in any way.

SEQUENCE-CHANGING AND OPERATION OF THE

SEQUENCE-SELECTOR

At some point just before the completion of the in
struction memory cycle in TX-2, the Control must de
cide whether the next instruction would be taken from

the current sequence or from some new sequence. The
information on which this decision must be based comes
from the break and dismiss bits of the instruction word
currently in use and from the sequence selector. Fig. 2
is a detailed drawing of one stage of the sequence se
lector. All stages, except that with the highest-priority,
are identical. The lowest-priority stage returns the final
three control signals to the contr'ol element.

Each stage of the sequence selector retains two pieces
of information concerning its associated sequence. One
flip-flop (ss j.1) remembers whether or not the sequence
is selected (i.e., whether or not it is receiving attention).
The priority signal (labeled no higher priority sequence
requests attention) passes from higher to lower priority
stages until it encounters a stage which requests, but is
not receiving attention. Such a stage is said to have
priority at the moment, and its output to the program
counter-number coder prepares the number of the new
program counter in anticipation of a sequence change.

The process of changing sequences involves storing
the program counter for the old sequence and obtaining
the counter for the new. Actually, to speed up the over
all process, the new program counter is obtained first,
so that it may be used while the old is being stored.
Using the paths shown in Fig. 1, the new program
counter number is placed in thej bits of the N register.
The new program counter is then obtained from the X
memory and interchanged with the old program counter
contents which have been in the P register. 1 The K
register, which has been holding the old program counter
number since the last sequence change, is now inter
changed with thej bits, and the old counter is stored at
the proper location in the X memory. The state of the
sequence selector is changed, to conform to the change
of sequence, by sending a select new sequence command
from Control. This command clears the ss j.2 flip-flop in
the old-sequence stage and sets the ss j.2 flip-flop to a
ONE in the new-sequence stage.2

INTERPRETATION OF THE BREAK BIT

The programmer uses the break bit of an instruction
word to indicate whether or not change to a higher pri
ority sequence may occur at the completion of the in
struction. The fact that a programmer permits a break
does not mean that the sequence has completed its cur
rent task, but merely that no harm will be done if a
change to some higher-priority sequence is made. Breaks
should be permitted at every opportunity if a number
of in-out devices are operating. The sort of situation in
which a break cannot be permitted occurs when the E
register is left containing information which the pro
gram requires at a later step. If a change occurred in
this case, the contents of the E register would be de
stroyed. and lost to the program.

1 The P register is shown in Fig. 4 of Frankovich and Peterson,
this issue, p. 148.

2 The relative timing of the central computer actions during the
change process is shown in Fig. 6(d) of Frankovich and Peterson,
this issue, p. 150.

Forgie: The Lincoln TX-2 Input-Output System 159

When a break is permitted by the current instruction,
a sequence change will actually take place only if some
higher-priority sequence requests attention. A signal
from the sequence selector to the control element pro
vides this information (Fig. 2). When a break type of se
quence change is made, the ss j.1 flip-flop in the sequence
selector remains unchanged, and the sequence which
was abandoned in favor of one of a higher-priority con
tinues to request attention.

TO
PROGRAM COUNTER

NUMBER CODER

SEQUENCE SELECTOR
STAGE .1

HI~~~t!-I-------+--+-----t---r-'
PRIORITY

STAGE

CURRENT
SEQUENCE
MAY BE

DISMISSED

A CHANGE
TO SOME

HIGHER PRI
ORITY SE
QUENCE IS
REQUESTED

TO NEXT LOWER
PRIORITY STAGE
AND ULTIMATELY

TO CONTROL
FROM LOWEST
PRIORITY STAGE

NO HIGHER
PRIORITY
SEQUENCE
REQUESTS
ATTENTION

S~~~T }
TO { SEQUENCE FROM
ALL ==i===i======i==i===±======t==========DISMISS CONTROL

ST AGES BUFFER CURRENT
SERVICED SEQUENCE

..... ~_~ SEQUENCE" 1 SELECTED
(TO IN-OUT BUFFER "I)

Fig. 2-Block diagram of TX-2 sequence selector stage.

INTERPRETATION OF THE DISMISS BIT

The dismiss bit is used by the programmer to indicate
that the sequence presently in use has completed its task.
To provide synchronization in the In-out system, dis
miss bits must be programmed between attention re
quests from the in-out devices. In this case, the dismiss
operation guarantees that the computer will wait for
the next signal from the in-out device before proceeding
with the associated program sequence.

The dismiss bit is also used to accomplish the halt
function in TX-2. A multiple-sequence computer halts
when all sequences have been dismissed and all in-out
units turned off. The priority signal from the sequence
selector to the control element provides the information
as to whether or not any sequence in the machine re
quests attention. When none request attention, the
control stops all activity in the machine as soon as a
dismiss bit appears on an instruction in the sequence be
ing used. Activity is resumed in the machine as soon as
some in-out device or push button requests attention.

The sequence change which results from a dismiss
bit is identical with that resulting from a break except
that a dismiss current sequence command accompanies
the select new sequence command from Control to the
Sequence Selector (Fig. 2).

STARTING A MULTIPLE-SEQUENCE COMPUTER

In a single-sequence computer the starting process in
volves resetting the program counter to some arbitrary
value and starting the control. In a multiple-sequence
computer, the program counter for a particular sequence

must be reset and the sequence started. In TX-2 a
special sequence (number 0) has the highest priority
and is used to facilitate starting. This sequence has the
special feature that its program counter always starts
at an initial memory location specified by a set of toggle
switches. Attention for the sequence is requested by
pushing a button on the console. By executing a short
program stored in the toggle-switch registers of the V
memory, this sequence can start (or stop) any other se
quence in the machine. The starting process for an ar
bitrary sequence involves resetting its program counter
by means of an ldx (load index register) instruction, and
starting its sequence with an ios instruction.

THE ARITHMETIC ELEMENT IN MULTIPLE

SEQUENCE OPERATION

While efficient operation requires that the hulk of
arithmetic operations be carried out in a main sequence,
the arithmetic element in TX-2 is available to all se
quences. Since once a change has been made to a higher
priority sequence, control cannot return to a lower
priority sequence until the higher-priority one has been
dismissed, a simple rule allows the arithmetic element to
be used in any sequence without confusion. If, when
ever a higher-priority sequence requires the arithmetic
element, it stores the contents of any registers it will
need (A, B, C, D, or F) and reloads them before dis
missing, all lower-priority sequenCes will find the regis
ters as they left them. This storing and loading opera
tion requires time and, therefore, lowers the total data
handling capacity, but the flexibi1ityobtained may well
be worth the loss in capacity.

The step-counter class of arithmetic element instruc
tions is a special problem. These instructions can require
many microseconds to complete, and while TX-2 is de
signed to allow in-out and program element instructions
to take place while the arithmetic element is busy, the
case can arise in which an arithmetic element instruction
(load, store, etc.) appears before the AE is finished with
a step-counter class instruction. The machine would
normall y wait in an inactive state un til the operation is
complete, but since there is a chance that some higher
priority sequence may request attention in the interim
and have instructions which can be carried out, provi
sion is made to keep trying changes to higher-priority
sequences as they request attention. The machine thus
waits in an inactive state only when no higher-priority
sequences have instructions which can be performed.
This provision allows the programmer to ignore the
arithmetic element in considerations of peak- and aver
age-peak rate calculations when he desires to operate a
maximum number of in-out devices.

CONCLUSION

Multiple-sequence operation of input-output devices,
as realized in TX-2, has a number of significant char
acteristics. Among them are:

1) A number of in-out devices may be operated con
currently with a minimum of buffering storage.

160 1957 WESTERN COMPUTER PROCEEDINGS

2) Machine time is used efficiently, since no time
need be lost waiting for input-output devices to
complete their operation. Other machine activity
may proceed meanwhile.

3) Each input-output device may be treated sepa
rately for programming purposes. Efficiency of
operation is obtained automatically when several
separately programmed devices are operated
simultaneously, although average- and peak-rate
limitations must be considered.

4) Maximum flexibility in programming for input
output devices is obtained. The full power of the
central machine may be used by each input-output
sequence if desired. Routines for each device

may be as long or as short as the particular situa
tion requires.

5) The modular organization of the input-output
equipment simplifies additions and modifications
to the complement of in-out devices.

6) The organization of buffering storage allows the
amount and kind of such storage to be tailored
to the needs of the individual devices and the data
handling requirements to be met by the system.

7) The multiple-sequence program technique appears
to be particularly well suited to the operation of a
large number of relatively slow input-output de
vices of varying characteristics, as opposed to a
smaller number of high-speed devices.

Memory U nits in the Lincoln TX-2 *
RICHARD L. BESTt

MEMORY UNITS IN THE LINCOLN TX-2 COMPUTER

T HERE ARE 3 high-speed live memories in TX-2;
all are random access and all use ferrite cores.
The largest is the 6!-J..'sec cycle time "S" memory

with 65,536 37-digit words. The "T" memory is entirely
transistor driven; it has a capacity of 4096 37-digitwords
and a 5!-J..'sec cycle time. The smallest and fastest is the
"X" memory with a capacity of 64 19-digit words; ex
ternal word selection and 2 cores per bit make possible
an access time of 0.8 J..'sec and a cycle time of 4 J..'sec.

"S" MEMORY (65,536 WORDS)

The "S" memory (Fig. 1) is a coincident-current
magnetic core unit with a storage capacity of 65,536
37-bit words. The bits in the word are read out in
parallel with a cycle time of 6.5 fJ.sec and an access time
of 2.8 J..'sec. (Cycle time is the time between successive
strobe pulses and access time is the minimum delay be
tween setting the address register and strobing.) The block
diagram (Fig. 2, opposite) shows that two 256 position
magnetic core switches are used to supply the READ
and WRITE current pulses to the X and Y selection
lines. The operating characteristics of these switches
are such that the contents of the address register are no
longer needed after the READ half of the cycle, and the
interval between READ and WRITE may be extended

* This work was supported jointly by the Army, Navy, and Air
Force under contract with the Mass. Inst. Tech.

t M.LT. Lincoln Lab., Lexington, Mass.

Fig. 1-"S" memory, 65,536 words, 37 digits.

several microseconds under computer control to permit
the other operations to occur. Two coordinates are used
to select a register during READ and three coordinates
are used for WRITE. In each case, 2: 1 current selection
ratio is used. The S memory with 604 tubes and 1406
transistors, is a 37 -digi t version of the 19-digi t TX-O
memory that has been described in the literature. 1 The
basic operation of this type memory has also been de
scribed and will not be repeated here. 2

1 J. L. Mitchell, "Part I, the TX-O memory," Proc. Eastern
Joint Computer Conference; December, 1956.

2 J. W. Forrester, "Digital information storage in three dimen
sions using magnetic cores," J. Appl. Phys., vol. 22, pp. 44-48,
January, 1951.

Best: Memory Units in the Lincoln TX-2 161

4 x
__ ---'.,. MAGNETIC

CORE
SWITCH

y
MAGNETIC _-,

CORE
SWITCH

ADDRESS REGISTER (P OR Q)

Fig. 2-Block diagram, "S" memory.

"T" MEMORY (4096 WORDS)

STROBE

The 4096 37-bit word memory is also a coincident
current magnetic core unit. The bits of the word are read
out in parallel with a cycle time of 5.5 J.l.sec and an ac
cess time of 2.4 J.l.sec. A timing diagram is shown in Fig.
3. The computer program can extend by any amount the
interval between READ and WRITE. Again, a 2: 1
current selection ratio is used with two coordinates used
to select for READ and three coordinates for WRITE.
A total of 1460 transistors and 64 diodes are used (not
counting the address and buffer registers and control).

Mechanical Features

The 64 X64 X38 (one spare plane) pluggable array
(Fig. 4) is contained within a 5-inch cube. The cores
used at 47 mils OD, 27 mils ID, and 12 mils thick. The

TIME, J'SEC

READ·WRITE CURRENTS

STROBE

SET ADDRESS

REGISTER

o 2 345

Fig. 3-Timing, "T" memory.

Fig. 4-"T" memory, 4096 words, 37 digits, 4iX4iX5 inches
inside the brackets.

material is similar to General Ceramics' S-1, and is also
used in the S memory.

Selection Circuits

The logic and circuitry of the memory address register
decoder is shown in Figs. 5 and 6 (next page). The input
to the emitter follower AND gates is a dc level of zero or
- 3 volts. Silicon diodes add a bias shift without the loss
that would be associated with a simple voltage divider.
The + 1.2 volt supply for the inverter AND gates is a
single divider for the whole memory-the load on the
di vider is constant.

Each inverter AND gate feeds a selection line driver
(Fig. 7). Q4 passes the full selection line current (+ and
- 250 rna) and is selected to have a minimum {3 of 10
for current of either polarity. The transient back voltage
of the selection line for this current is 12 volts. The
series connected emitter followers (Q1 and Q2) supply
the large amount of current needed to cut off Q3 quickly
during selection.

The load for Q2 is such that a large surge of current is
delivered to Q3 to turn it on quickly when this line is
deselected.

162 1957 WESTERN COMPUTER PROCEEDINGS

DIGIT
PLANE

DRIVERS

SENSE
AMPLIFIERS

MEMORY ARRAY

STROBE

X SELECTION
LI NE DR IVERS

READ
WRITE
DRIVERS

Y SELECTION
LINE DRIVER S

EMlnER
FOLLOWER
& GATES

EMlnER
FOLLOWER
& GATES

EMlnER
FOLLOWER
& GATES

INVERTER
& GATES

MEMORY ADDRESS REGISTER (P OR Q)

Fig. 5-Block diagram, "T" memory.

EMlnER
FOLLOWER
& GATES

Fig. 8 (opposite) shows the circuit geometry planned
for the read-write driver. Currents for READ and WRITE
operations are supplied by the 1S0-volt supplies through
R2 and R1 respectively. The currents are switched into
the proper selection line drivers by cutting off Q1 or Q2.

Digit Circuits

The input of the digit plane driver shown in Fig. 9 is
a standard logic level of 0 or - 3 volts. Q2 acts as a
switch which connects a voltage source across the digit
winding and the parallel RC combination. It can be
turned on and off very quickly by virtue of the large
overdrive of current into its base which is supplied by
the combination of Q1 and its collector load. The ad-

EMITTER FOLLOWER a GATE

+IOV

SILICON
DIODES

~~---~y~------~)

FROM MEMORY ADDRESS
REGISTER (P OR Q)

(GROUND WHEN SELECTED)

INVERTER a GATE

+1.2V

'------4""" TO

-IOV

SELECTION
LINE

DRIVER

Fig. 6-0ne channel, emitter follower and inverter AND gates,
"T" memory.

QI

SBT

+3V

~--""""Q-3V
(NEGATIVE

WHEN SELECTED)

FROM
READ-WRITE

+70V DRIVER

Fig. 7-0ne channel, selection line driver, "T" memory.

justable resistor is used to set the correct dc inhibit
current which is measured across the 2-ohm resistor,
and the 0.001-,uf capacitor is used to speed the current
rise time in the digit winding.

In the sense amplifier shown in Fig. 10 two 160-ohm
resistors terminate the sense winding and tie it down to
ground. Constant dc emitter currents are supplied to
Q1 and Q2 by the 13k resistors. A stable dc collector-to
base voltage results from the voltage divider comprising
the 1.3k resistors which form a virtual center tap on the
sense winding operating in conjunction with the 3.3k
resistor. Thus, with the dc emitter current and the base
to-collector voltage stabilized, the operating point of
Q1 and Q2 is stabilized. Two 60 ,uf electrolytic capaci-

Best: Memory Units in the Lincoln TX-2 163

+ 30V

LrWRITE INPUTcr--1

+30V

+ 150V

QI

GT901

Q2
GA52830

R I

R2

-150V

OUTPUT TO X OR Y
SELECTI ON LINE

DRIVERS

Fig. 8-Read-write driver (2 needed), "T" memory.

+IOV

INPUT C>-4-it-~

GROUND

LEVEL INHIBITS

I.SK

13,00011

+ 30V

13,00011

16011 160n.

-30V

Fig. lO-Sense amplifier, "T" memory.

r; --; 330011

-30V

OUTPUT
(TO AN
INVERTER
NEG. IF

"ONE".)

QS but can be interrupted by an input signal large
enough to overcome the bias on the 68-ohm resistor.
The Sk variable resistance is adjusted sa' that a 50-
mv input signal will be just enou~h for this purpose.
The normal ONE input signal is ioo mv. All of the + 10

-30V 0.001 MFD volt marginal check lines'fiare tied together so that the
sense-amplifier clip levels may be remotely' checked to
determine the memory margins.

-30V

Fig. 9-Digit plane driver, "T" memory.

tors in series tie the emitters of Ql and Q2 together for
,signal gain. The 6.8k resistors damp the transformer
windings.

There is no gain for a common mode input, and a
gain of about 22 for a difference-signal input (output
measured across half the transformer secondary). The
current through the 16k resistor normally flows through

"X" MEMORY (64 WORDS)

There are three modes of operation of the "X"
memory:

1) READ-WRITE,
2) READ, and
3) CLEAR-WRITE.

The external-word-selection magnetic-core unit using 2
cores per bit has a storage capacity of 64 19-bit words.
The bits of the word are read out in parallel with a cycle
time of 4 }1sec and an access time of 0.6 }1sec. In this
memory, cycle time is the time between successive strobe
pulses with a repetitive READ-WRITE cycle; access
time is again the minimum delay between setting the

164 1957 WESTERN CO¥PUTER PROCEEDINGS

TO' WORD SELECTION SWI TCH

DIGIT IIJ "

DIGIT "K- DIGIT -K-

TO READ AND WRITE DRIVERS

Fig. ll-Winding configuration, "X" memory.

TIME, ,uSEC. o 2 3 4

CURRENT IN

REGISTER "y"
'. ~~READ WRITE i

-43' I

NET CURRENT .!... I i-t==1_+--+~+1.....;-~_-+-__ -+ __ ~-+-_
IN CORE uA" 3 V

NET
CURRENT
IN CORE

-41-

Fig. 12-Timing diagram, "X" memory.

address register and strobing. A total of 434 transistors,
8 diodes, and 1 vacuum tube are used excluding the ad
dress and buffer registers and control.

Operating Principle

The winding configuration of the single plane unit is
shown in Fig. 11. A word is selected externally by con
necting the upper end of a word line (pt. Y, for instance)
to a fixed point. The READ driver then puts out a cur
rent pulse 4i times that required to switch a core on a
2: 1 basis (Fig. 12). Only one of the two cores (per bit)
is switched to the cleared state by this pulse because any
previous WRITE operation would have left one core set,
and one cleared. The switched core generates a pulse in

its digit line. This line passes through one of the cores
in the same direction as the word line and through the
other core in a direction opposite to the word line. Thus,
the polarity of the pulse on the digit line during READ,
indicates whether a ONE or a ZERO is being read out.

Current always flows in the digit winding. The polar
ity is controlled by the flip-flop associated with that digit,
and the amplitude is i of the required switch current in
a 2: 1 system. The digit current is swamped out by the
large read current and therefore has no effect during
READ. During WRITE, a current of i is sent down the
selected word line. The digit current adds to the write
current in one core. and subtracts from it in the other,
so that one core has a current of unity and the other a
current of i. Thus, the current ratio used during
WRITE is 3: 1 with a disturb current of no more than
i. Fig. 12 shows the timing and current relationships in
cores A and B of Fig. 11.

The cores used for the "X" memory are 47 mils OD,.
27 mils ID, and 12 mils thick. The core material is simi
lar to General Ceramics' type S-3 which differs from S-l
in that the coercive force required for switching is lower.
and the switching time is longer. We needed the low
coercive force so that we could drive the cores with
transistors.

Access time remained short because, even with transis
tors, we could overdrive the cores during READ. Each
winding makes 4 turns on each core through which it
passes. Fig. 13 (opposite) shows the complete memory
plane (41 X 61 inches) and Fig. 14 shows a portion of it
enlarged. The cores are· mounted on a lucite plane; the
w ires pass through openings made by the intersection of
milled slots on one side of the plate with similar slots on
the other side milled at right angles to the first. With
each winding making 4 turns per core, the digit current
is 8 rna, the write-driver output current is 18 rna, and
the read driver current is 117 rna.

The block diagram is shown in Fig. 15. The particular
method of word selection used is determined partially
by the computer's use of the outputs of the j-bits de
coder. Two write drivers are used and the output of the
first level selection determines which one is used.

Selection Circuits

One channel of the selection circuit is shown in Fig.
16. The.f-bits decoder uses S-way emitter follower AND
gates which drive parallel inverters (Q6 and Q7). The
collector load of these transistors is such as to provide
an overdrive of base current into Q8 or Q9 during both
selection and deselection. When neither read nor write
driver is active, the word lines are free to float between
o and -10 volts. Only one of the first-level selection
transistors (QI0 or Q11) will be saturated, so base cur
rent flows only into either Q8 or Q9. The read driver
generates a negative pulse,so that the large read current
(117 rna) flows in the normal direction in the 2N123's.

Best: Memory Units in the Lincoln TX-2 165

Fig. 13-"X" memory plane, complete (41- X6i inches over-all).

BUFFER
REGISTER

(Xl

Fig. 14-"X" memory plane enlarged.

Fig. is-Block diagram, "X" memory.

TO
EXCHANGE

AND
IN-OUT

ElEMENTS

FIRST LEVEL SELECTION r,::-------;---,
I (DRIVEN BY -3V I

I INVERTER QIO QII I
LIKE Q6 AND 2NI23 2NI23 I

I Q7 BELOW)

L-___ _J
SECOND LEVEL SELECTION

r---- +IOVI
I. j BITS DECODER

---1- -I
WORD SELECTION ISWITCH I I

I I I
I I I

I 3900..0 I
-3V

I I
I I I

I I
I
I INPUTS

I FROM
"ADD-

I RESS"
REG.

I(j BITS
OF N)

I
I SBT

•
TO MEMORY

I
I
I
I
I L _____ ' --------~

TO EXCHANGE AND IN-OUT ELEMENTS

Fig. 16.--Register s~lection circuit, "X" memory.

The write current flows in the reverse direction, but it
is only 18 rna, and does not require a very high reverse
{3. It would have been more economical of transistors to
use a decoder such as that in the "T" memory, but ac
cess time is at a premium here, so that the faster circuit
was used.

Read-Write Drivers

The read driver shown in Fig. 17 (next page) consists of
three SBT transistors in series (because of the voltage
needed) driving a 61?7 to saturation. The back voltage
presented by the cores to this driver is constant because,
as mentioned before, it always switches one of thelf'two
cores in each pair. The 5: 1 transformer holds·'the"'tube
load to a low value.

The write driver (Fig. 18) is very simple-the current
in the 1640-ohm resistor is switched into the memory
load during WRITE by saturating Q2 which cuts off
Q1. Since the selection circuits are returned to - 3 volts,
the output terminal of this circuit is always below
ground.

Digit Circuits

The digit driver (Fig. 19) is connected directly to the
corresponding flip-flop in the buffer X register. One of
the two transistors is always saturated so that current
always flows in the digit winding and in a direction de
termined by the flip-flop. The terminals of the digit
winding are connected to input stage (Q1 and Q2) of the
sense amplifier shown in Fig. 20 which responds to the
voltage difference between the inputs. The open circuit

166 1957 WESTERN COMPUTER PROCEEDINGS

+IOV

47
MMFD

IIOK

I NPUT
O

•
OOI

(- 3 V MF<-D~Nv-~f----r
LEVELo-j.-
READS)

-3

-9

-15V

+150V

lOOn..

;---4----0 TEST POINT

H02121 } TO MEMORY

+150V

Fig. i7-Read driver, "X" memory.

TO
MEMORY

+30V

-IOV -30V

+IOV

75K

0.001 MFD

3.6K INPUT'

(-3V LEVEL WRITES)

Fig. i8-Write driver, "X" memory.

READ signal on the digit winding is a l-J-tsec pulse ± t
volt in amplitude. The sense amplifier loads the winding
to reduce the pulse to about half this amplitude. A
saturation signal is fed to the gates Q3 and QS so that
the strobe pulse forces the flip-flop to the correct posi
tion. If the signal on the free end of the digit winding is
positive the flip-flop is left in the same state; if it is
negative the flip-flop is complemented.

Modes of Operation

There are three modes of operation of the X memory:
1) READ-WRITE,
2) READ, and
3) CLEAR-WRITE.

READ-WRITE has been described above. The READ
operation, used when the contents of two registers are
needed quickly, performs the necessary function of
clearing both cores in each bit before writing. When the
computer returns to WRITE in registers that have had

+IOV

3.3K

FROM

BUFFER

+IOV

01
2N 12 3 +---".IV'v-+----i1----f"

02
2NI23

MEMORY {

REG I ST ER cr--------+----'
FLIP-FLOP
tx~ REG.)

3300.0.

r------,
+--_..:....1 ----' ,--:.....1_--+

I 1
I MEMORY I
I DIGIT I
I WINDING I L _____ ..J

3300.0.

-30V

Fig. i9-Digit driver, "X" memory.

2K 2K

-10

+IOV

TO BUFFER REGISTER FLIP-FLOP

("x" REG.)

Fig. 20-Sense amplifier, "X" memory.

a READ cycle only, the CLEAR-WRITE cycle is used.
CLEAR-WRITE is the same as READ-WRITE except
that the strobe pulse is eliminated. Actually, a WRITE
cycle alone would be sufficient but the CLEAR-WRITE
cycle was added as an aid to program trouble shooting,
since if a WRITE operation should follow a previous
WRITE operation on the same register, some bits would
have both cores set. A subsequent READ would clear
both cores, their outputs would subtract in the digit
winding, and the response of the sense amplifier would
be unpredictable.

ACKNOWLEDGMENT

The results reported above were due to the efforts of
many people associated with core-memory development
at Lincoln Laboratory.

Major contributions to the system and circuit design
• were made by S. Bradspies, G. A. Davidson, D. H. Ellis,
and J. L. Mitchell. E. A. Guditz was responsible for
most of the ideas incorporated in the mechanical design
and packaging.

Olsen: Transistor Circuitry in the Lincoln TX-2 167

Discussion
D. J. Theobold (U.S.N.E.L.): What

type of core material was used?
Mr. Best: The cores for all our memories

are made at M.LT. so we do not have direct
counterparts. Two larger memories use the
materials which are quite similar to General
Ceramics' S-1. It switches in one micro
second. The core material used in the index
memory is a very low-gravity, coarse ma
terial that is not square enough to be used
in the two-to-one selection. It switches with
a driving current of 110 milliamp-turns.

E. E. Jungclas, Jr. (Hughes Aircraft):
What are the operational temperature lim
its?

Mr. Best: The relatively high-speed core
is used in the two larger core memories,
with a high enough Curie temperature for
most land base applications. The index
memory that is used has a core that has
quite a bit of zinc in it, in order to get the

cores to force down. The Curie tempera
ture of that is relatively low.

Jan Rajchman (RCA Laboratories):
What is the inside diameter of the 0.047-
inch cores?

Mr. Best: The inside diameter is 27
mills.

David Zeheb (General Electric): Would
you amplify on the manner in which you use
two cores per bit in the index memory?

Mr. Best: The two cores used in this
particular bit are A and B (Fig. 10). The
reason for using two cores is so that during
"read" one can overdrive the cores very
heavily, ~nd switch them quickly, and
therefore get short access time. You can
only use two cores per bit when you have
external selection, that is, some external ac
tive element for each word. The read cur
rent only goes through these cores, and it
does not disturb any portion in the whole
range. The main reason for going into the

two cores per bit is to get a short read time.
When you have two cores there are actual

ly four possible states of those cores; you
can have both clear, or both set, right after
you have read you have both cores cleared.
But you never have both cores set, at least
never on purpose. The primary reason for
going into two cores was to get a fast read
time (indicating on slide). A current of i is
set in the word line and a current of! in the
digit winding. These two windings are wound
so that they add in one core and subtract
in another. So, depending upon the polarity
of the current in the digit winding, only
one of the two cores would be set.

R. L. Compton (Librascope, Inc.): Do
you mean to imply that the magnetiC core
memory system was operative to tempera
tures of the same order as the Curie temper
ature of the cores?

Mr. Best: No. The room is air-condi
tioned.

Transistor Circuitry In the Lincoln TX-2 *
KENNETH H. OLSENt

CIRCUIT CONFIGURATIONS

O NLY TWO BASIC circuits are needed to per
form most of the logical operations in the TX-2
computer; a saturated transistor inverter and a

saturated emitter follower. To the logical designer who
works with them, these circuits can be considered as
simple switches which are either open or closed.

The schematic diagram of an emitter follower and the
symbol used by the logical designers is shown in Fig. 1.

+10 +10

OUTPUT ---.OUT

1 NPUT 0--+--1

-3 -3

Fig. 1-Emitter follower.

* This work was supported jointly by the U. S. Army, Navy, and
Air Force under contract with Mass. Inst. Tech.

t Lincoln Lab., M.I.T., Lexington, Mass.

With a negative input, the output is "shorted" to the
-3-volt supply as through a switch. When several of
these emitter followers are combined in parallel, as in
Fig. 2, anyone of them will clamp the output to -3 v.

+10

~------~~--------__ --------'----.OUT

-3

Fig. 2-Parallel emitter follower.

We have then an OR circuit for negative signals and an
AND circuit for positive signals. The transistor inverter
is shown in Fig. 3 (next page) with its logic symbol. Ba
sic AND, OR circuits result from the connection of these
simple switches in series or parallel (Figs. 4 and 5). More
complex networks like the TX-2 carry circuit use these
elements arranged in series-parallel (Fig. 6).

In Fig. 3 the resistor Rl is chosen so that under the
worst combinations of stated component and power

168 1957 WESTERN COMPUTER PROCEEDINGS

I NPUT----'

+10

-10

Fig. 3-Inverter.

GND

-10

GND

~---------~------------,-----------,---.OUT

+10

Fig. 4-Parallel inverters.

GND

---~ OUT

-10
Fig. 5-Series inverters.

OUT

supply variations, the drop across the transistor will be
less than 200 millivolts during the "on-condition." R2
biases the transistor base positive during the off condi
tion to provide greater tolerance to noise, 100 , and signal
variations. Capacitance C was selected to remove all of
the minority carriers from the base when the transistor
is being turned off. The effect of C on a test circuit
driven by a fast step is shown in Fig. 7. Note that the
delay due to hole storage is only a few millimicroseconds.

We run the circuits under saturated conditions to
achieve stability and a wide tolerance to parameters

CARRY FROM
PREVIOUS DIGIT

FROM CARRY
FLI P - FLOP

GND

-10

FROM
ACCUMULATOR

CARRY TO
NEXT DIGIT

Fig. 6-TX-2 carry circuits.

+IOV

0.18 MEG

1000 fl..

-3V

Tz = TURN-OFF TIME

OUTPUT WITHOUT C

Fig. 7-Turn-off time.

without the need for clamp diodes. Unlike vacuum tubes
which always need an appreciable voltage across them
for operation, a transistor requires practically no voltage
across it. In spite of the delay in turning off saturated
transistors, these circuits are faster than most vacuum
tube circuits. Faster circuit speed is not due to the fact
that the transistors are faster than vacuum tubes, but
because they operate at much lower voltage levels. A
vacuum tube takes a signal of several volts to turn it
from fully "on" to fully "off;" a transistor takes less
than one volt.

FLIP-FLOP

On the basis of previous experience, we decided that
the advantages of having one standard flip-flop were
worth some complication in TX-2 circuitry. The circuit
diagram of the flip-flop package in Fig. 8 is basically an
Eccles-Jordan trigger circuit with a three-transistor
amplifier on each output. The input amplifiers isolate
the pulse input circuits and give high input impedance.
The amplifiers give enough delay to allow the flip-flop
to be set at the same time that it is being sensed. Fig.
9 shows the waveforms of this flip-flop package when
complemented at a 10-megapulse rate. The rise and fall

Olsen: Transistor Circuitry in the Lincoln TX-2 169

Me It (+IOV)

Me A (+IOV)

GROUND

FLIP -F OP

ONE OUT

-- .,
I
I
I
I
I
I
I

ZERO OUT

-IOV

-3V

Fig. 8-TX-2 flip-flop.

o 100 200 300 400 500 600

m,.,.SEC

OUTPUT
(UNLOADED)

OUTPUT
LOADED WITH

(100 MMFD, 1000.0.)

TRIGGER
PULSES

(10 MCS)

Fig. 9-Flip-flop waveforms.

times, about 25 millimicroseconds, are faster than one
normally sees in a single inverter, or an emitter follower
because on each output there is an inverter that pulls
to ground and an emitter follower that pulls to -3 v.

3.0

2.5

2.0

PULSE
1.5

VOLTS

1.0

0.5

0 2 4 6 8 10

FREQUENCY IN MCS

Fig. 10-Trigger sensitivity.

Fig. 10 is a plot of the pulse amplitude necessary to com
plement the flip-flop at various frequencies. Note the
independence of trigger sensitivity to pulse repetition
rate. This circuit will operate at a 10-megapulse rate,
twice the maximum rate at which it will be used in
TX-2.

The TX-2 circuits reproduced most often were de
signed with a minimum number of components to
achieve economies in manufacture and maintenance.
The design of less frequently reproduced circuits made
liberal use of components-even redundancy to achieve
long life and broad tolerance to component variations.
The goal was system simplicity and high performance
with a lower total number of components than might
otherwise be possible. For example, the number of flip
flops in the TX-2 is small compared to the gates which
transfer information from one group of flip-flops to
another; so the flip-flops were allowed to be relatively
complicated but the TX-2 transfer gates were made very
simple. A transfer gate is only a single inverter. The
emitter is connected to the output of the flip-flop be-

170 1957 WESTERN COMPUTER PROCEEDINGS

20r---------~-------

Me
vOLTS

"," SIDE T 070

20~--~----~----~----~--~----~
20 40 60 ~O

·0" SIDE,

Fig. l1-Tau margins.

20~---------r----------~--------~

MC
VOLTS 0

o

o o 00

o

"I" SIDE fj= 20

-20~--~----~--·--~--~----~--~

10 20 30 40
"O"SIDEfj

Fig. 12-Beta margins.

20
.J">.

/
~

OPERATING

POINT

0............. -:-.

-20

5 7 9 13 15

Fig. 13--10-volt supply margins.

ing read and the collector is connected to the in pu t of
the flip-flop being set. The output impedance of the flip
flop is so low that, when the output is at the ground
level, a pulse on the base of the transfer gate shorts the
input of the other flip-flop to ground and sets its condi
tion.

MARGINAL CHECKING

We planned, of course, to incorporate marginal check
ing in the design of these circuits so that, under a pro
gram of regularly scheduled maintenance, deteriorating
components could be located before they caused failure
in the system. We also found it practical to use the
technique during the design of the circuits to locate the
design center of the various parameters and to indicate
the tolerance of circuit performance to these parame-

20

/VOPERATING----
POINT ~

'''--..a.

-20

o 10 20 30 40 50

Fig. 14--3-volt supply margins.

20 r------,-------,------~------~~ -
10 r-----~-------+------_r------1___4

MC 0
VOLTS

-10 C=~~==t====f::::;;::::===j~
-20 L..-____ ---'-______ --L. ______ --L-______l.-----l

MC
VOLTS

o

20

o

-20

20 40 60 80 90

o CENTIGRADE

Fig. 15-Temperature margins.

I OPERATING
POINT

\
2 4 6

PULSE AMPLITUDE (volts)

Fig. 16-Pulse margins.

ters. ~ further application of marginal checking has
been found in other systems during shakedown and
initial operation to pin point noise and other system
faults not serious enough to cause failure and therefore
very difficult to isolate by other means.

The operating condition of the inverters is indicated
by varying the + 10-v bias. In the flip-flop schematic in
Fig. 8, the inverters were divided into two groups for
marginal checking, and the two leads labeled MeA and
MCB were varied one at a time for most critical check
ing of the circuit. The following curves show the locus of
failure points for various parameters as a function of the
marginal checking voltage. Fig. 11 shows the tolerance
to tau, a measure of hole storage and Fig. 12 shows the
tolerance to beta, the current gain. Operating margins
for supply voltages, temperature, anG pulse amplitude
are shown in Figs. 13 through 16.

Olsen: Transistor Circuitry in the Lincoln TX-2 171

Fig. 18-TX-2 back panel.

Fig. 17-TX-2 plug-in unit.
CONCLUSION

PACKAGING

The number of types of plug-in units was kept small
for ease of production and to keep the number of spares
to a minimum. The circuits are built on dip soldered
etched boards and the components are hand soldered
to solid turret lugs. The boards are mounted in steel
shells shown in Fig. 17 to keep the boards from flexing.
The male and female contacts are machined and gold
plated. The sockets are hand wired and soldered in
panels as in Fig. 18.

The result of these design considerations is a 5-mega
pulse control and arithmetic element which will take
less than 40 square feet of space and dissipate less than
800 watts of power. The simplicity of the circuits has
encouraged a degree of logical sophistication which
would not have been chanced before.

ACKNOWLEDGMENT

A number of people took part in the work reported
here. Major contributions were made by B. M. Gurley,
J. R. Fadiman, R. A. Hughes, K. H. Konkle, and M. E.
Petersen.

Discussion

R. D. Gloor (Ramo-Wooldridge Corp.):
What is the estimate of the expected mean
free-time between component failures for
TX-2?

Mr. Olsen: The TX-O Computer, which
has been running eight hours a day since
last April, has lost no transistors. So our
experience with the TX-O is that we expect
the transistor portion of the machine to
go for weeks without an error.

John Hayes (U.S.N.E.L.): What type
of transistors are used in the flip-flops?

Mr. Olsen: The Philco Service Barrier
Transistor was a key part of this develop
ment. It is tested to computer specifications.

We also use two or three thousand
Micro-alloy transistors. We would like to
use 100 per cent Micro-alloy transistors, but
there were only two or three thousand avail
able at the time we needed them. They have

higher gains, particularly higher current,
and appear to be much better transistors.

L. P. Retzinger (Litton): What is the
propagation time per carry digit?

Mr. Olsen: About 40 millmicroseconds
per digit. We made no effort to speed this
up. This is a straightforward cascaded in
verter, and it was the simplest type carrier
we felt we could make. Even though it is
slow compared to the rest of the circuits, in
the over-all system it contributes very little
to it in time or calculations.

Win Soule (Digital Techniques): How
do you obtain visual indication of flip-flop
position?

Mr. Olsen: We drive incandescent bulbs
with a jumping transistor-a hardly satis
factory way of doing it: 400 transistors
drive 400 incandescent bulbs. This is prob
ably the best system as a whole, because it
is not too expensive. We have been looking
for less expensive ways for getting informa
tion.

L. H. Crandon (Autonetics): Are there
any other sensitive parameters, different
from voltage, which are used in marginal
checking?

Mr. Olsen: One of course, can spend a
lifetime comparing every parameter with
every other parameter. Marginal checking
gives you very good measure of most sensi
tive areas, and this is the one we concen
trated on, and we feel that this is a reason
able approach to it, when one is limited by
a limited length of time.

R. O. Barnes (Boeing): How much cir
cuitry is represented in one plug-in unit (as
shown in the figure) i.e., how many flip-flops
per unit?

Mr. Olsen: The figure shows that it con
tained one of the ten transistor flip-flops,
plus three volume transistors. Three is in
one package of cross section of one by two
inches, one flip-flop plus a little logic; eight
to twelve converters, or eight to twelve inter
followers.

172 1957IwESTERN COMPUTER PROCEEDINGS

Diagnostic Techniques Improve Reliability
M. GREMSt, R. K. SMITHt, AND W. STADLERt

INTRODUCTION

DIAGNOSTIC TECHNIQUES, as used in this
paper, are aids for testing, sampling, and spot
checking a com pu ter program. These aids are

employed to obtain evidence that the program is pro
ducing satisfactory answers. This evidence promotes
confidence, assurance, and trust in the results. The re
liability of the computing process is improved by the
diagnostic techniques. Since the reliability of calculated
results depends upon many phases of computing such as
problem statement, coding, data presentation, and
machine operation, diagnostic techniques also are con
cerned with the many phases of an integrated comput
ing system.

The trend toward completely planned program-con
trolled diagnosis of errors can be illustrated by consider
ing three levels of diagnostic techniques according to
their degree of automaticity:

1) Manual techniques use program tests to cause a
machine STOP in case of an error. Minimum
planning is expended in the hope that a STOP will
not occur.

2) Semiautomatic techniques prepare a logical pat
tern of program tests and record data before a
machine STO P. Planning is required to prestore
useful information before the occurrence of an
error.

3) Automatic techniques require extensive planning,
as part of a complete system, to circumvent a
machine STO P. A programmed method is neces
sary to report trouble and still get results.

A most significant change in technique is shown by
the jump from manual to semiautomatic methods.
These methods include rules for storing pertinent data
before performing a calculation or using a subroutine.
If subsequent tests indicate the occurrence of an error
the data are available for print-out by an uncompli~
cated subroutine. This print-out of the trouble-report
does not require special programming beyond the test
for error.

The transition from manual through semiautomatic
to the third level, automatic diagnostic techniques,
demonstrates the steady and rapid growth of improved
automatic computing methods. Change is necessary be
cause the complexities of very large, selfcontained ma
chine systems make it impractical to use manual diag-

t Boeing Airplane Co .• Seattle, Wash.

nostic techniques. Imagine trying to analyze a storage
dump of 32,768 words (which were machine-coded and
machine-stored), in the hope of finding the source of an
error. Instead, an automatic diagnostic routine, con
sisting of several techniques already in practice, is indi
cated. This type of diagnostic provides a record (or
progress trail) of successfully completed stages of .calcu
lation and provides probable clues for finding trouble
when an error is suspected. Also it enables some correc
tive action while calculations are continued at high
speed.

It is obvious that preparation of an automatic diag
nostic routine is expensive in planning time alone. How
ever, the alternative of improved manual methods is in
compatible with the published concepts of automatic
programming. Advanced compilers which generate ma
chine instructions or systems which plan storage alloca
tion according to a hidden formula nullify the usefulness
of such manual techniques as selective tracing or
changed word post mortems.

MANUAL TECHNIQUES

Manual diagnostic techniques are not new to com
puting practices but are an outgrowth of the old fa
miliar check-list. A check-list is used at progressive
stages during hand computing to explain progress and
to ensure that completed results are similar to antici
pated results at each stage. The designers of computers
recognize this need for a check-list, and include machine
operation codes for conditional and unconditional
STOPS and TRANSFERS; e.g. STOP, HALT, MS
(Manually Selective Stop), EJ (Equality Jump) and
TR 0 (Transfer on zero). The early computer programs
would be unreliable without these operation codes and
an accompanying check-list.

In a manual diagnostic routine the common practice
for using conditional and unconditional STOP and
TRANSFER codes is to include a STOP for any ques
tionable situation. Then, when the STOP is executed
this manual procedure follows: '

1) Manually copy all information from the console
panel.

2) Dump or trace that portion of storage containing
the STOP instruction.

3) Scrutinize carefully (on or off the machine) the in
structions and the console information, hoping to
isolate the error.

4) Decide on a corrective measure.
S) Employ the corrective measure in the program.

Grems, Smith, and Stadler: Diagnostic Techniques Improve Reliability 173

Manual diagnostic techniques' are used almost ex
clusively in initial library subroutines. These library
subroutines detect errors which cause the computer to
stop. Then, the machine operator examines both the
console information and a list of STOP explanations to
isolate the error and decide on corrective action. The
use of a check-list with machine operation codes is
illustrated in one computer program where a specific
angle is required. The sine of this angle is available from
a previous computation in the program and the arcsine
is to be computed by using a library subroutine. When
the sine is greater than + 1.0 or less than -1.0, some
thing is wrong. Therefore, before the actual computing
of the arcsine starts, a test is made of 1.0 minus the
absolute value of the sine.

The regional instructions for the arcsine subroutine
illustrate this test where X is the sine of the angle.

LOCATION INSTRUCTION EXPLANATION

F0318
F0319
F0320
F0321

R ADD -E0004 -E0004 contains (1.0-IX!)
TR+ F0321 Continue, IXI is :::;1.0
STOP F0100 Stop, I X I is too large
R ADD Continue computing

Suppose that an incorrect sine value of 2.3715 is com
puted. This error is detected by not transferring on plus
at instruction F0319. The execution of the next instruc
tion stops the computer to indicate the error. The ma
chine operator copies the contents of the instruction

SEMIAUTOMATIC TECHNIQUES

Semiautomatic diagnostic techniques include not
only the detection and isolation of errors, but also the
recording of comments and pertinent data by the pro
gram. They are a direct outgrowth of the manual tech
niques and a stepping stone to a fully automatic rou
tine. The recording of comments by the trail, when
something is amiss, assures the engineer that unusual
circumstances are recognized and therefore increases
confidence in the reliability of results. This ability to
isolate errors automatically and record pertinent in
formation is a big step forward in diagnostic techniques.
I t assures that spot-checking is taking place during
computing and is essential to computing and coding sys
tems where relocation and storage assignment are dele
gated to the system itself. Currently, there are a number
of successful diagnostic routines using these techniques
for such computers as International Business Machines
Models 701, 704, and 650; for Remington-Rand Models
1103A and UNIVAC; and for the Bendix G-15.

Semiautomatic techniques are used in the algebraic
computing system, BACAIC.l When the BACAIC
IBM 701 program detects an error, the program prints
the reason for the error and suggests a corrective meas
ure. It also prints a minimum of information to pinpoint
the actual storage location of the error and the relative
location of the computing in the problem.

The sample error print-out below shows the machine
stopped at storage location 1051 while computing a
square root in problem expression number six.

Fl08 SRT X MUST BE GREATER THAN OR EQUAL TO ZERO TO CONTINUE. STOP.
DECIMAL NUMBERS OCTAL NUMBERS

CONTROL PROG. EXPRESSION NUMBER STOPPED AT TRANSFER TO
31 6 1051 4704

CASE RESULTS WRONG. PUSH START FOR NEXT CASE, OR SENSE 1 FOR INTERRUPT

counter and the accumulator from the console panel to
isolate the location of the error. He refers to a list of
STOPS which include the following information for the
arcsine subroutine:

After printing this trail data, computer STOPS, as no
corrective action is taken automatically by program.

When the BACAIC IBM 650 program detects an
error, the program punches an error card and continues

REGIONAL
LOCATION

DECIMAL
LOCATION

OCTAL
LOCATION MEANING CORRECTIVE ACTION

F0320 t+66 t+l02 I X I > 1.0 for arcsine Press START for second attempt. There is an error in
or arccosine calcula- your previous computation for X. Correct before re-
tion. running.

The cause of error is decided and corrective action
taken before the computation is continued. This method
is wasteful of machine time and is frustrating to the
programmer. It is a satisfactory method for short
library subroutines, programs using limited storage, and
hand-coded programs with little or no relocation of in
structions.

computing. This error card contains alphabetic and
decimal information. The sample of an error card's con
tents given below shows that this data is sufficient to
pin-point the error by expression and job case numbers:

1 M. Grems and R. E. Porter, "A truly automatic computing
system," 1956 Proc. Western Joint Computer Conf.

174 1957 WESTERN COMPUTER PROCEEDINGS

JOB

6015

CASE

0127

ROUTINE

SRT

LEFT OP. RIGHT OPERAND

X-0.36000000 01

ERROR
CODE

02

EXPRESSION
NUMBER

33 ERROR

Where error code 02 is explained by:

2 ATTEMPTING TO FIND THE SQUARE ROOT OF A NEGATIVE NUMBER.

Three error cards are punched for one problem before
the program automatically transfers to an interrupt
routine which stops the computer.

Use of advanced diagnostic techniques prescribes that
a large program be planned around a diagnostic routine.
This requires an acute awareness of the fault areas in a
problem. Sufficient checking should be included to en
sure that when final results are computed they have a
high degree of reliability.

Library subroutines, which are the backbone of a
good programming system, should be consistent as a
group for successful use in diagnosis. The control in
formation for each library subroutine, which includes
input and output data and exit instructions, should be
in definite locations relative to the beginning of the sub
routine, or else the locations must be specified in some
manner. Consider the following instructions, which are
the" front end" (beginning instructions) of each one of
a set of library subroutines. These instructions are de
signed to work with a diagnostic routine provided by a
compiler2 written for the UNIVAC scientific computer.

1
1-\-1
1-\-2
t-\-3
t-\-4

MJ 0 START
TP t-\-4 t-\-4
RJ DIAG-\-3 DIAG
MJ 0 FILL

INPUT DATA BEGINS HERE

If the subroutine successfully completes its function a
return is made through instruction (t+3), where FILL
has been replaced with the address in the main program
at which computing is to continue. If an error is found
a return is made to the diagnostic through instruction
(t+2), with the number of words of input data left in the
accumulator. At instruction (t+2) control jumps to the
diagnostic routine, and the address (t+3) is put into the
fourth instruction of the diagnostic. The instruction
(t+1) serves the important purpose of telling the diag
nostic where the input data is located. With a consistent
"front end" such as this on library subroutines the diag
nostic operates more efficiently to point out errors that

An example of a semiautomatic diagnostic routine
gives some idea of the techniques used to help speed up
prod uction and increase the user's confidence in the re
sults. When problems are a complex of many parts and
computing is lengthy, a progress trail of intermediate
results is valuable. It is inadvisable to compute for long
periods of time with no indication of the progress of the
problem. By looking at a trail of intermediate results
one can tell when a problem goes astray. Also when final
results are obtained they have a higher probability of
being reliable if a checking of the trail shows little or no
deviations from the expected values. In the event of an
error the diagnostic indicates which part of the program
is operating at that time. In most cases it suggests pos
sible alternatives to use to continue computing, and fre
quently it restarts the problem from some point at
which correct results are known.

The following diagnostic is used in an airplane and
target system simulation programmed for the IBM 701.
The problem involves very little input data and a long
period of computing. The diagnostic is written to com
men t on the following three types of conditions:

1) Changes in the flow of the program by printing a
trail of the progress of the problem.

2) Errors found bY.tlubroutines in their input data.
3) Errors found as a result of checking the arithmetic

and logic operations of the main program.

Before computing begins, all initial input data with
headings and comments are printed cas part of the trail.
These data then become immediately available if check
ing through the trail is necessary, and may show er
roneous values not found by the data read-in program.
The progress trail is a printing of informative data at
selected points in the sequence of operations. The point
where printing occurs is determined by the particular
part of the program in operation and by a flight plan
read in as part of the input. The following sample of a
print-out is typical of trail information.

AIRPLANE AND TARGET POSITION

TIME
1.93

X AIR
3861.63

YAIR
730.24

HAIR
2341.55

X TARGT
5773.21

Y TARGT
2604.67

H TARGT
1817.203

occur. It provides for printing of input data through the
use of instruction (t+1), and indicates the location in
the main program where the subroutine is used from
instruction (t+3).

2 M. B. Lieberknecht, L. J. McPhee, M. Morris, W. K. McKin
ley, and R. E. Porter, "The Boeing programming system for the
UNIVAC scientific computer model 1103A." In preparation.

Each comment and its associated values represents an
en try in to the diagnostic. The com men t and particular
values to print are determined by a code left in the MQ
register for the diagnostic. Control is turned over to the
diagnostic which interprets the code and prints the

3 These values are fictitious.

Grems, Smith, and Stadler: Diagnostic Techniques Improve Reliability 175

necessary information. After printing, control reverts to
the main program, and computing continues.

The values printed are used particularly in checking
the flow of the problem. For example, when the printed
values of airplane position at time (t) differ from the
expected values by a large factor, then the operator
knows that the problem is not progressing successfully.
Stopping the machine at this point could save consider
able computing time, particularly if the problem is to
continue computing for a long period after this.

As computing progresses many library subroutines
are used. The subroutines are written with consistent
entry and exit points, and are used as part of the diag
nostic. They check their input data to determine if it is
compatible with the requirements of the subroutine. If a
discrepancy occurs, a code denoting the type of error
and the program number are placed in the accumulator
and the subroutine transfers to an error exit. All the
subroutines use a common input-output region, called
the J region. Just prior to using a subroutine input data
is stored in the J region, and when the subroutine is
finished it stores its output in the J region. At various
times during the computing, information is stored in a
control region (called the X region). This information
includes a code denoting the particular part of the pro
gram in operation, transfer locations, and various opera
tional values. Both the J region and the X region are
available to the diagnostic at all times. A sample of the
information printed when an error is found in the input
to a subroutine is described below.

X IS TOO LARGE PROG. 6203 R ADDR 1726 TBL 20
P-C-S TR ADDR TIME INPUT INPUT
1-3-1 1742 863 7369201

PROG. 6203 identifies the subroutine in which the error
occurred. This particular subroutine is a table look-up
and interpolation subroutine. The print-out indicates
that the· argument value exceeds the argument values
in the table. The R ADDR indicates the location in the
main program where entry was made to the subroutine.
The R ADDR along with the INPUT are found in the
J region while the other values are found in the X re
gion. TBL gives the number of the last table used or the
table being used at this time; P-C-S refers to the par
ticular part of the main program in operation at the
time of error; TR ADDR is an address where control
may be transferred in order to modify the computing
sequence and either continue computing or prepare to
remove the problem from the machine; TIME is air
plane flight time; INPUT refers to the argument or
arguments used by the subroutines. Following the error
print-out, the machine stops. The decision as to what
should be done at this point is left to the operator.

Checking for arithmetic and logic errors is done by
the main computing programs. Depending upon the
type of error, values from the X region mayor may not
be printed. When data are printed along with the com
ment, the print-out is essentially the same as that for
subroutine errors. In the case where no values from the

X region are printed with the comment a statement is
usually included which suggests some action to perform.
The latter case is illustrated by sample printings which
follow:

CANNOT LOCATE TABLE ON 257. START TO REWIND
ITERATION COUNT EQUALS 20

After each error com men t the machine stops. The
first comment indicates that by restarting the machine,
tape 257 will be rewound and a second search made for
the particular table. Some comments, such as the second
comment above, do not indicate the next step, and after
the machine stops the operator decides what course of
action to follow.

It is noted that after printing an error comment any
decision made is left to the operator. It is now felt that
many of the decisions which are defined for the operator
could be included in the programming. In a number of
instances this allows the machine to continue computing
without stopping, and thereby saves considerable time.

Each of the parts which make up the main computing
programs are checked out (debugged) individually be
fore being incorporated in the complete program. How
ever, the true test of their correctness comes when the
combined parts are checked out as a unit with sample
problems. The diagnostic serves one of its most impor
tant functions at this time by giving more concrete
information as to the type and location of programming
errors. Also, it has an indirect application in that it helps
give better clues to the service engineers for locating
machine malfunctions.

AUTOMATIC TECHNIQUES

The preceding example illustrates that the second
level, semiautomatic diagnostic routine leaves a trail
of problem progress. Reliability is promoted thereby
because rather permanent evidence is available which
shows the actual path of the calculation. Furthermore,
intermediate answers allow hand-calculated checks upon
the methods or the final results at any convenient time
when added assurance is felt necessary. However, the
routine in the example is termed semiautomatic be
cause analysis of the trail and any corrective actions are
performed at manual speeds after a machine STOP. Any
such manual procedure is subject to fumbles, errors, and
costly delays even for small programs. More advanced,
program-controlled techniques are necessary to improve
reliability as problems become very large and thereby
multiply the costs of manual machine procedures. The
confusing mass of detail concealed in an integrated com
puting system prohibits any person or group of people
from tracing trouble in the earlier fashion of STOP, copy
control console, consult check-list, consider locations in
storage, dump large portions of storage, and then retire
gracefully for analysis. These slow procedures impede
communication between man and machine and are con
trary to more sophisticated thinking as expressed in th~
deluge of literature on "automatic prograll1min~."

176 1957 WESTERN COMPUTER PROCEEDINGS

Of course, progress has been made in reducing the
communication difficulties in transferring a problem to
a machine. For example, the compiler2 for the 1103A
accepts several kinds of language including algebraic
symbols, such as those in Fig. 1, which are quite fa
miliar to the engineer. A problem consisting of 88 ex
pressions including those three in the figure were re
cently prepared for the Boeing Airplane Company
Algebraic Interpretive Computing l system (for an IBM
701) in a few hours. The significant fact is that the prob
lem statement precisely as it goes into the computer is
familiar and understandable to the originator of the
problem who has neither time nor inclination to learn
about subroutines, machine language, or diagnostic
techniques. But, while communication to machines has
been effected and documented, communication from
machines has not been equally aided or popularized.

Expressions from Cloudy Ball Calculation

ALG' - SIN X/COS X=H

ALG' (COS X -SIN X/X)/(SIN X +COS X/X) =1

ALG' (3.0 COS X/X -(3.0/X/X -:-1.0) SIN X)/(3.0 SIN

X/X + (3.0/X/X -1.0) COS X) =J

Fig. 1-Example of communication to the
Boeing 1103A compiler.

A diagnostic routine which provides a great deal of
communication from an IBM Model 701 will be illus
trated. The diagnostic duties are performed by a diag
nostic print routine and by special programming in a
sample problem. This one-program diagnostic is written
to prove that automatic techniques are possible. It pro
vides for general and specific handling of error situa
tions. The general error is reported through a standard
entry, from a conventional subroutine, to a diagnostic
print routine. This error report is made with minimum
interference from the main program. Specific error
techniques are programmed as part of the main program
and explained (at compute time) by the diagnostic print
routine. Even if there is no 'error, periodic progress re
ports are set up by the main program and printed by the
diagnostic.

In this sample problem-computing, diagnosis, error
correction, progress printing, and input-output are per
formed by a combination of three routines. Fig. 2 shows
the three classes of routines used: main program, diag
nostic print, and standard subroutines. Each class of
routine has access to common storage. The main pro
gram sets control data in storage, links to subroutines,
performs tests, and links to diagnostic print. The main
program is the only means of performing special error
activity like replacing bad data ..

The diagnostic print performs all of the program
printing including input, progress trail, error comments,
and output. The diagnostic will print from a general
error code left by a subroutine or will respond to a spe-

MAIN
PROGRAM

Stores Data
Links
Tests

SUBROUTINES

SUBROUTINE P200

. SUBROUTINE 601

Fig. 2-Three classes of routines for a sample problem.

cial error code from the main program. In either case,
the error report is prefaced by a block title line which
indicates what part of the main program is in operation.
That information is available at error time because it
had been prestored in the common storage region.

Fig. 3 (opposite) shows the various en try points to the
diagnostic print routine. Particular interest should be di
rected at the entry number 8 which provides for error
explanation printing without special programming. In
contrast, diagnostic print entry 6 is used after a special
comment code has been stored by the main program. It
implies that further special programming for the error is
provided within the main program. This additional pro
gramming is effective before or after the trouble print
out with the intention of continuing the normal program
as soon as possible.

Common storage is used by the main program and by
the diagnostic print; subroutines also use common stor
age to find their control data. If an error occurs, this
information in common storage is readily available
without extensive searching. Fig. 4 indicates the kind of
information placed in the common storage region. Loca
tions reserved for Accumulator and MQ values, in com
mon storage, does not imply that those values are pre
stored. It is merely a convenient arrangement for print
out of that information at error time.

Exactly what data must be prestored is ruled by sub
routine conventions which hold for this sample prob
lem. Besides specifying which data must be prestored,
the rules provide a basic linkage, and prescribe informa
tion which must be in the accumulator and in the MQ
for an "error return." (See Fig. S.) These three conven
tions illustrate the type of consistency which is necessary
for any automatic system.

The parts of a diagnostic routine and main program
for a particular problem are described in Figs. 2-4. A
list of instructions from part of the main program (re
fer to Fig. 6) illustrates the use of a diagnostic. The
F1400 block in Fig. 6 has two instructions which cause
entry to the diagnostic print routine. Only the instruc
tion at F1419 (TR DOOOS) is executed each time the
program is used. This entry to the diagnostic will cause

Grems, Smith, and Stadler: Diagnostic Techniques Improve Reliability 177

1) Page headings.
Uses common storage locations C, D, and E.

2) Column headings.
Uses common storage location F.

3) Print data.
Uses common storage locations G, H, and I.

4. Print comment.
Uses common storage location F.

5) Print progress trail.
Uses common storage locations A and B.

6) Error print.
Uses common storage locations B, F, L, M, N, 0, P, Q,
R, S, etc.

7) Error print with erasable storage.
Uses common storage locations B, F, J, K, L, M, N, 0, P,
Q, R, S, etc.

8) Print from general §ubroutine error code.
Use success return and common storage locations B, F,
L, M, N, 0, P, Q, R, S.

9) Hardware test.
Loads and uses test routine from magnetic tape.

10) Open ended for more entries to diagnostic routine.

(See Fig. 4 for locations in common storage referred to by
letters A-S.)

Fig. 3-Entry points to the diagnostic print.

A-Code number for major block title.
B-Code number for minor block title.
C-First code number for page heading.
D-Second number for page heading.
E-Page count.
F-Comment code number, drum or tape.
G-Data location.
H-Location of data index.
I-Amount of data.
J-Location of erasable storage.

K-Size of erasable storage.
L-Contents of ACCumulator left half.

M-Contents of ACCumulator right h,alf.
N-Contents of MQ left half.
O-Contents of MQ right half.
P-Subroutine code number.
Q-Amount of control data.
R-Control data 1.
S-Control data continued.

Fig. 4-Contents of common storage.

a print of the trail of progress. The trail consists of the
major and minor block titles which are stored and
printed periodically.

The TRANSFER instruction at F1412 (TR D0008)
is at the "error return" position (in the main program)
which is used only if trouble is encountered by a sub~
routine. In the case of the error return and TRANSFER
at instruction F1412 the diagnostic print routine would
operate as follows:

1) The contents of the Accumulator and MQ are
stored in the common region.

2) The block title code, prestored as a code number
in common storage location B, is printed:

TEST T AND Q FOR LIMITING CONDITIONS

44

1) All subroutines are entered by basic linkage as follows:

Main Program Locations
r R ADD r
r+1 TR t
r+2 TR
r+3 TR

Explanation
TheaddressrisinACCumulator.
Transfer to subroutine.
Subroutine returns here if error.
Subroutine returns here if suc-

cess.

2) Before using a subroutine the following information must
be placed in common storage:

Minor block title code in location B----.
Subroutine code name in location P----.
Control data as required by the subroutine in Q----,

R ----, and S----.

3) All error returns from subroutines will be to (r+2) of the
main program and must have a general error code in the
ACCumulator and the success address in the MQ. (There are
57 general error codes so far, but the list is open ended.)

Fig. 5-Subroutine conventions.

F1400 RADD ~~~~~ l Set block code title.
F1401 STORE
F1402 RADD XOO07 Set subroutine code name.
F1403 STORE P----
F1404 RADD BOOO2 Constant 2-amount data.
F1405 STORE

8~J F1406 RADD
F1407 STORE R---- First five pieces of data
F1408 RADD Exxxx are stored in common
F1409 STORE S---- storage (see Fig. 4).
F1410 RADD F1410 Basic linkage to subroutine
F1411 TR -to test Yi and qi
F1412 TR DOO08 If error return, TR to diag-

nostic.
F1413 NOOP Success return.
F1414 RADD Z0023
F1415 STORE A---- Major
F1416 RADD Z0024 and minor block titles.
F1417 STORE B---- Stored in common storage.
F1418 RADD F1418 Basic linkage to
F1419 TR DOOO5 diagnostic entry 5.

Fig. 6-Sample of main program instructions.

3) The contents of common storage locations L
through S are printed:

ACC MQ SUB CNTRL DATA DATA

o 1734 o 603 2 1201 36

4) The explanation of error code 44 (found using the
code from the Accumulator) is printed:

IMPROBABLE ZERO DATA-AUTOMATIC TRANSFER TO
TEST HARDWARE

5) Most general error codes allow a success return to
the main program (in this case to the actual ad
dress (1734) which was obtained from the MQ).
However, error code 44 is one of several malfunc
tion codes which causes an entry to the diagnostic
hardware test. The hardware test is a machine
testing routine obtained from magnetic tape. This
routine is loaded and used by means of a transfer
to the en try of the diagnostic.

One other error return is programmed in the F 1400
block of the sample problem. (Refer to Fig. 7.) The

178 1957 WESTERN COMPUTER PROCEEDINGS

F1420 RADD ZOO25 Block title code for
F1421 STORE B---- calculation of V.
F1422 RADD XOO08 Subroutine code name.
F1423 STORE p----
F1424 RADD BOO02 Amount of control data.
F1425 STORE Q----
F1426 RADD Exxxx Control data.
F1427 STORE R----
F1428 RADD Cxxxx These five pieces of data
F1429 STORE S---- are placed in common

storage.
F1430 RADD F1430 Basic linkage to subroutine.
F1431 TR -to calculate V =sum Zij

F1432 TR DOO08 Error transfer to diagnostic.
F1433 Success return from sub-

routine.
Continue computing.

Fig. 7-Sample instructions from main program.

TRANSFER to D0008 (instruction F1432) is executed
upon an error return from a subroutine which performs
a certain calculation of V. Entry D0008 of the diagnostic
print results in the following printed record:

CALCULATION OF V EQUALS SUM OF Z, IJ

ACC MQ SUB CNTRL DATA DATA
53 0 1754 1999 605 2 3201 36

THE CALCULATED RESULTS ARE BEYOND NORMAL
RANGE

In this case control is returned to the success return in
the main program which is the actual address (1754).
The trouble has been recorded but calculation continues
on the assumption that the results will be of value. This
is an automatic diagnostic technique.

CONCLUSION

In conclusion, programmed reliability using auto
matic (nonstop) diagnostic techniques is possible. This
fact is demonstrated by examples of successful semi
automatic approaches which are performing in a nearly
automatic manner. The amount of programming fore
sight necessary to provide for probable errors is illus
trated by the sample problem and diagnostic routine
outlined in Figs. 2 through 7. Experience with several
computers indicates that the techniques and planning
for automatic diagnostics are thee same for all machines
although the mechanics of their operation are different.
Advanced techniques are deemed essential for reliable
problem solution by very complex systems. The ad
vantages of machine selfcoding, machine storage plan
ning, and machine selfprogramming are cancelled by
human debugging. Only nonstop, program-controlled
recording and correcting measures can operate with the
thoroughness necessary to ensure the success of auto
matic machine methods.

Discussion

John Paivinen (General Electric): What
is the ratio of diagnostic instructions to
main program instructions?

Mr. Stadler: The percentage of running
time is best calculated by the time it takes
to print out. The computing is insignificant.

are checked separately and represent a small
amount of check-out time. Subroutines in
the example of airplanes and target systems
simulated in the diagnostic routines, was
probably about a week. This diagnostic
routine helps debugging of the rest of the
program appreciably, and helps mainte
nance engineers find machine trouble as
well.

Mr. Stadler: About one to three.
R. C. Boden (IBM): What percentage of

running time is used by your programmed
checkingroutineswhenthe machine is operat
ing correctly?

M. I. Bernstein (The RAND Corp.):
What percentage of debugging time is spent
debugging that part of the code which uses
the diagnostic routines?

Mr. Stadler: The diagnostic routines do
require some debugging time, but they are
in the form of subroutines, and subroutines

1957 WESTERN COMPUTER PROCEEDINGS 179

Error Detection and Error Correction tn Real-Time
Digital Computers*

ANTHONY RALSTONt

INTRODUCTION

U NTIL the digital computer is built which
never malfunctions, programmers will have to
worry about what will happen to their programs

if a machine error does occur. In the case of computers
used as integral parts of real-time control systems
"worry" is perhaps too weak a word. For a machine
error in a computer in such a system may not just cause
trouble; it may cause disaster. Thus, with the increasing
use of digital computers as elements of real-time systems
it has become increasingly important that techniques
be developed to handle the malfunction problem in
real-time computers. The purpose of this paper is to
present a number of such techniques-programming
techniques-some well-known and some new for the
detection and correction of performance errors in real
time digital computers.

The key word in the previous sentence, is of course,
"correction." As long as digital computers have been
used for non-real-time applications, whether scientific
or business, methods to detect machine errors have been
a basic part of the programming effort. To correct such
errors however, the usual technique has been, upon de
tection of the machine error, to stop the computer and
rerun the problem or at least to rerun the problem from
the point of the last successful programmed check. In a
real-time digital computer such a procedure is clearly
not feasible. First of all it is quite obvious that when a
computer is a link in a control system it just cannot be
stopped without bringing the system to a grinding halt
(or perhaps something much worse). This is equally true
whether the computer is controlling a reaction in a
chemical plant or is being used to fire an antiaircraft
gun. Secondly, owing to the real-time nature of the
computer it is not possible to repeat more than a very
small portion of the computation when a malfunction is
detected. Thus, when a malfunction is detected there
must be as part of the over-all program a routine which,
in a very small amount of time, "corrects" this machine
error. In this paper the term "correction" will be used
both in its usual sense to mean obtaining the true value
of the quantity in error and to mean obtaining a suf
ficiently close approximation to the true value to enable
the computation to proceed. Also, when the malfunction
causes not a direct arithmetic error but rather some
logical error, "correction" will be used to mean the re
pair, exact or approximate, of such a machine error.

* This work was done at the Bell Telephone Labs., Whippany,
N. J., under Air Force Contract AF33(600)-21536.

t Bell Telephone Labs., Whippany, N. J.

Although we have thus far emphasized correction of
machine errors, the detection of such errors in a real
time situation has problems connected with it which
are not present in the non-real-time case. In the first
place the exigencies of the real-time case are such that
the detection process must take up only a small per
centage of the total computation time since we will be
looking for errors many times for each time we actually
find an error. Therefore, for example, performing the
whole computation twice and periodically comparing
results is a method which in general cannot be tolerated. 1

Furthermore, since the detection of an error is always
followed by correction, detection processes should be
used which facilitate as much as possible the correction
process if a malfunction is detected. Thus in what fol
lows we will generally consider each detection technique
to be directly related to a cOl'rection technique.

Before proceeding further we should make it clear
that the methods discussed here are aimed at detecting
and correcting random, transient malfunctions (e.g.,
dropped bits, incorrect execution of an instruction, in
correct reading of a register in memory). Therefore, the
term malfunction (or machine error) from here on will
have this meaning and will exclude outright equipment
breakdowns. In particular most of the methods to be
discussed are aimed at detecting and correcting single
isolated transient machine errors (e.g. a single dropped
bit) although some types of multiple or recurring mal
functions (e.g., more than one dropped bit) are also de
tected and corrected. (Some of the methods will also
detect and correct certain malfunctions external to the
computer which might, for example, cause incorrect
data to be sent to the computer.) That this is a reason
able way of attacking the error detection and correction
problem is borne out by various studies, among them
one made at the Bell Telephone Laboratories on the
Tradic Computer that indicated a ratio of greater than
three-to-one of single machine errors to multiple ma
chine errors. We note here the obvious fact that a single
malfunction such as a dropped bit may cause a multiple
bit error in a later computed quantity. Our methods are
aimed at 'detecting and correcting single malfunctions
even though such an error may later cause a multiple
bit error in a computed quantity. In what follows the
term "error" when used alone is meant to signify the
result of a malfunction.

1 Of course, if a double computation check is performed by two
com~uters .operating in parallel the!! there is no loss of time in per
formmg thIS check. However, even If the economics of the situation
p.ermit this type of operation, physical restraints on the weight and
SIze of the computer often will make it impossible.

180 1957 WESTERN COMPUTER PROCEEDINGS

CLASSIFICATION OF MACHINE ERRORS

The most important factor in deciding what kind of
detection and correction process to use in a given si tua
tion is how exact the arithmetic quantity (or logical
process) in question must be after correction in order for
the system to continue in reasonable operation. It is
clear that exact correction will require more time than
that required for performing a computation twice and
then comparing the results, since this will detect but not
correct errors. Therefore, time limitations will make it
important to decide when approximate corrections are
enough to keep the system in reasonable operation. In
this connection we may classify errors as follows:

1) Vital errors-These are errors which if not cor
rected exactly (or to some specified number or
significant bits)2 may cause complete breakdown
or failure of the system.

2) Serious errors-These are errors which will cause
the system to fail only if they are repeated suf
ficiently often. In general approximate correction
of such errors is enough to keep the system operat
ing properly.

3) N onserious errors-These are errors which will be
smoothed out in time (unless repeated at very high
frequency) and thus can usually be neglected.

These classifications have been kept purposely very
general so as to try and cover the field in a simple fash
ion. There are of course gradations within each category
and between the categories. In the example of a com
puter in a missile guiding the missile to a target, a vital
error would be the loss by the computer of the position
of the missile (if there were no external means of re
covering the position); a serious error would be an in
correct computation of an increment to the present
position (which, if the increments were small, would not
cause a vital error in the end result unless the error was
repeated often); and a nonserious error would be a
minor error in the steering order to the missile at an
earl y stage of the flight.

In discussing methods "of detection and correction of
errors it will be convenient to classify the types of errors
somewhat differently than above as follows:

1) Arithmetic errors-These are errors whose only
effect is to cause a computed quantity to be in
correct.

2) Sequencing errors-These are errors which cause
the program to get out of its proper sequence.
Sequencing errors will, in turn, of course, cause
arithmetic errors.

Again these categories must not be considered rigid.
For example, it is clear that certain errors in computed
quantities may at some later time cause the program to
get out of its proper sequence. Such an error would be

2 In this paper we will use the language of binary computers but
most of what is said holds equally well for computers using other
number systems.

difficult to classify as above. But these categories will
serve as a starting point in our discussion of methods of
error detection and correction.

TECHNIQUES FOR THE DETECTION AND

CORRECTION OF ARITHMETIC ERRORS

By Multiple Storage and Computation

We have previously said that detection of errors by
computing a quantity twice is in general too time-con
suming for a real-time system and we have also noted
that this method will detect but not correct errors.
However, in the case where an uncorrected error would
be vital we generally have to detect and correct exactly
even if the process we use is time-consuming. (Luckily
of course few types of errors fall into the vital category.)
One way of a voiding vi tal errors is to use the well
known method of computing and storing the vital
quantities at least three times. As an example let us
assume that we have a vital quantity Q (e.g., the present
position of the missile in the previous example) which is
being regularly changed by adding an increment LiQ to
it. Let us assume that errors in LiQ are only "serious"
so that even if LiQ is in error Q+LiQ will still be suf
ficiently accurate to let the system operate. This is the
same as saying that only the first k significant bits of Q
are vital"and that we have constrained LiQ to be so small
that it cannot (in one addition) affect these k bits ex
cept by a carry. Then our problem is to safeguard these
k significant bits when holding Q in storage and when
adding LiQ to Q. Let Q be stored in registers aI, a2, and
as and let LiQ be stored in registers bI , b2, and bs.

We assume that: 1) At most one of the six quantities
in a!, a2, as, bI, b2, and bs is incorrect and the computation
about to be described is performed correctly or, 2) all
six of the quantities are correct and at most one arith
metic error occurs in the computation about to be
discussed.s

That is, we assume that not more than one malfunc
tion directly affecting Q occurs per recomputation of Q.
Then a possible sequence of operations (though not
necessarily the most economical in program steps)
which will compute (the first k significant figures of)
Q+LiQ correctly and place the result correctly in aI, a2,
and as is:

1) Clear and add al
2) Add bi

3) Store in al
4) Clear and add a2
5) Add b2 Puts Q+LiQ in aI, a2, as
6) Store in a2
7) Clear and add as
8) Add bs
9) Store in as

3 By "correct" for llQ we mean that the magnitude of llQ is such
that it cannot affect the first k significant bits of Q, except by a carry.
Clearly the case discussed here includes the special case in which
every bit of Q is vital and where, therefore, llQ must be exactly cor
rect.

Ralston: Error Detection and Error Correction 181

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)

Clear and add al
Subtract a2
Transfer if nonzero to 17
Clear and add a3
Subtract a2
Transfer if nonzero to 21

Tests to see if C(al)
= C(a2)4

Tests to see if C(a2)
= C(aa)

Transfer out End of routine
Clear and add a3}

Store in al If C(al) ~ C(a2) replace both by
Store in a2 C(aa)

Transfer to 161
Clear and add a2
S

. IfC(aa) ¢ C(a2) replace C(a3) by
tore m a3 C()

Transfer to 16 a2

An analysis of this routine will easily indicate that if
condition 1) or 2) is satisfied, at the end of the routine
aI, a2, and as will contain Q+~Q correct to k significant
bits. That is, any single malfunction affecting the stor
age of the quantities or the computation of Q+~Q will
have been detected and corrected. The routine also de
tects and corrects certain multiple errors (e.g., two
separate malfunctions involving al). One way to sim
plify the routine with little loss in safetf is to make
C(a3) = C(a2) if C(al) = C(a2)' To do this we eliminate
steps 13)-15) and insert steps 21)-22) after step 12). On
the other hand, of course, more sophisticated routines
using quadruple or higher order computation and stor
age will detect and correct more general m ul ti pIe errors.

Multiple storage and computation may also be used to
protect nonphysical vital quantities. An example of such
a quantity might be a count which if incorrectly stored
or tested might cause a vital error in some associated
physical quantity or a vital sequencing error. This count
could then be triply stored and triply tested.

By Extrapolative Checking

This method is a type of reasonableness check I and
should have wide application because of its computa
tional sim plici ty and high effectiveness in detection and
correction of serious errors. The essence of the method
is to compare the value of a quantity as computed
directly from physical data with the value found by ex
trapolating from previous values. Then using the known
error bounds and physical bounds in the system, gross
errors may be detected and corrected5 although small
errors may not be detected. We will consider two mathe
matical formulations of this method, the first in which
we use direct Lagrangian extrapolation from previous
values and the second in which we introduce smoothing
before extrapolating. Before discussing these methods
we will define some notation. Let yet) be the quantity
we are computing. For example yet) might be the ~Q of
the previous example. We will assume we are computing
the function at equal intervals of time. Let

4 C(al) = Contents of al.
5 Gross errors not only in the computer but also in the input to the

computer will be detected and corrected.

YiT be the true physical value of yet) at time ti
yp be the value of yet) at ti correctly computed from

physical data
YiE be the extrapolated value of yet) at ti

and define

and

(1)

and finally let M = Maxil Eil.
Lagrangian Extrapolation : We will discuss in detail

the case where three previous values of yet) are used in
the extrapolation. The discussion for any other number
of points is completely analogous. Using the Lagrangian
interpolation formula [2] to find the extrapolated value
of yet) at time ts from the values at times t2 , tI , and to we
get

(2)

where the true values of yet) at these four points are
related by the formula

ysT = 3Y2T - 3y1T + YoT + hay"'(~) (3)

where the primes indicate differentiation6 and to 5: ~ 5: ta.
We are interested in comparing ysE with Yso, so we com
pute using (1), (2), and (3)

ysE - yl

= 3Y20 - 3y10 + yoo - yso

= 3Y2T - 3ylT + YoT - ysT + 3f2 - 3fl + fo - f3

= EO - 3fl + 3f2 - f3 - h3ylll(~) (4)

thus we have

lYSE - yaO I 5: 8M + hS Max I y"'(~) I . (5)
[to,ta]

Both M and the maximum of the derivative can usually
be estimated from a knowledge of the physical system
and computational procedures being employed. Thus the
bound on lysE -ysOI can be estimated quite accurately.

This bound is in general quite conservative but can
be used to insure that no errors greater than the bound
given by (5) occur. To use this method on the computer
then, we would first compute Yao, then find ysE and com
pare the two. If the difference was less than the bound
or "gate" we have chosen we would use Y30 as the value
of yet) at ts. If not we would use yaE. We note here that
it may be necessary to do the first few steps of the com
putation without extrapolative checking since in general
we will have no past values of the function at the start.
However it may be possible to provide some pseudo
past values of the function to use at the start. These
pseudo-past values would generally be derived from a
knowledge of how the physical system would behave

6 We assume here and in all that follows that functions we
consider have derivatives of as high orders as required in our for-
mulas. '

182 1957 WESTERN COMPUTER PROCEEDINGS

initially and would be such that good agreement would
be expected between the computed values and the values
extrapolated from the pseudo-past data.

Smoothed Extrapolation: Again here we will discuss
the method when the three points Y2G, y1G and yoG are
used for smoothing, but as before the discussion for
more points is completely analogous. In particular we
will use these three points to determine a first degree
least-squares polynomial. Then we will use this poly
nomial to calculate yaG• This first degree polynomial p(t)
(or any higher degree polynomial when more points are
being used in the smoothing) may be easily calculated
using the Gram polynomials7 and is

p(t) = 1/6 [5yo + 2Yl - Y2] + (1/2h) [Y2 - yoJt (6)

where we have let to = 0 for convenience. The value of
p(t) at t = 3h gives us the extrapolated value of y(t) at
ts and is

In terms of the true values of y(t) at these four points
theexactequation~

where 02YIT = YoT - 2y1T +Y2T is the second central dif
ference of y(t) taken about t1• This part of the error term
is found by evaluating the first dropped Gram poly
nomial term in (6) at t = 3h. 8

Now using (1), (7), and (8) we get, analogously to (4),

yaE
- yaG = 1/3 [- 2€o + €l + 4€2 - 3€s]

(9)

Therefore

10
lysE - ysG I ~ - M + hS Max I y"'(~) I

3 [to,ta)

5 + - Max I 02YIT I . (10)
3 [to,t2)

The basic differences between (5) and (10) are as we
would expect. That is, since M is essentially a measure
of the noise-both physical and computational-in the
system, the smoothed extrapolation tends to reduce the
error due to this noise, the maximum errors being in the
ratio 10: 24. On the other hand the function y(t) is a
physical quantity and thus the first degree smoothing
process does not extrapolate it as accurately as the
second-degree Lagrangian process. The added error,
5/3 Max I02YITI may be estimated by 5/3 h2 Max I y"(1]) I
for 1] in [to, t2].9 As in the case of Lagrangian extrapola
tion, (10) may be used to set a gate size to test whether
the computed value, ysG, lies sufficiently close to ysE. It
should be emphasized that the setting of this gate size in

7 See Hildebrand [2], p. 287.
8 Ibid., p. 294.
9 See Kopal [3], pp. 102 ff.

either case is an extremely important and basic part of
using extrapolative checking. It is beyond the scope of
this paper to go deeply into this problem. However, it
is clear that a thorough knowledge of those components
of the system which are providing inputs to the com
puter and a thorough understanding of the numerical
process within the computer itself are required before M
and the derivatives of y(t) can be estimated properly.
Then the setting of the gate size is a matter of deter
mining from a knowledge of the error distributions,
whether a less conservative gate size than the maxi
mum error bounds of (5) and (10) is desirable. A gate
size smaller than the maximum error bound might be
chosen if values of lysE - ysG I close to this bound were
considered extremely unlikely. If a gate size smaller
than the maximum error bound given by (5) or (10) is
chosen, then some correctly computed values of y(t)
will be detected as errors and the extrapolated value
will be used. However, the maximum possible difference
between the value of y(t) that is used and the correct
computed value will still be given by (5) or (10).

It is worthwhile to note that it may be desirable or
necessary to,change the gate sizes occasionally during
the course of the computation. This change might be
required during periods of particularly rapid change of
physical quantities. Or perhaps estimates of M from (5)
or (10) would make a change in gate size seem desirable.

The choice of whether to use Lagrangian or smoothed
extrapolation again requires a thorough knowledge of
the system. If noise is the predominant type of error
expected, naturally smoothed extrapolation would be
used. However, if the physical quantities involved are
varying rapidly, Lagrangian extrapolation would proba
bly be a better choice.

One question we have thus far neglected is: How can
we insure that the extrapolated value itself is not badly
in error? A simple way of checking the extrapolated
value is to extrapolate a second time using a different
formula and compare the results. For example, in the
Lagrangian case, we might use the two-point formula

(11)

where, using the error term related to (11), we may
compute

lYSE - YaEl I ~ 4M + hS Max I y"/(~) I
+ h2 Max I y"(rJ) I (12)

where ~ is in [to, ts] and 1] is in [to, t2]' Then testing the
two extrapolations against a second gate we would either
accept the first extrapolation as correct or, if the dif
ference in the two extrapolations exceeds the gate, we
would use the computed value without a check. This
assumes as before that no more than one malfunction
has occurred in the computation of ysG and the related
check.

The above procedure for checking yaE guards against
gross errors in yaE caused either by a malfunction during

Ralston: Error Detection and Error Correction 183

the computation of yaE or by a mutilation in memory of
the past values of yet) used in the extrapolation. The
latter cause of error is protected against owing to the
fact that the coefficients of yoG, YIG and Y2G are different
in (2) and (11). Another possible way of checking the
extrapolation would be to use YaE , Y2G and YIG to "back
extrapolate" for yoG using (2). This method, however,
would not detect mutilation in memory.

Still another question which must be answered is:
how is the extrapolation at the n+ 1st step affected if
at the nth step the extrapolated, rather than the com
puted, value was used due to a malfunction? If, for exam
ple, we put Y2E instead of Y2G in (2) and (11) 'and calcu
late the changes in (5) and (12) caused by this, we
would see that the gate sizes used at ta would have to
be increased. Indeed it is true in general that, if an ex
trapolated rather than a computed value is used at one
step of the calculation, then at the next step the gate
sizes must be increased. These increased gate sizes must
be used in succeeding steps until the first extrapolated
value no longer affects the computation of later extra
polated values. However, in order to keep the program
ming simple and the gate sizes small, it may be desirable
to make a rule such as the following: if at step n the
extrapolated value of yet) is used and if m past values
are used in our extrapolation procedure, then at the
next m steps we will use the computed value without a
check. For instance, using the previous example, if at
ta we had used yaE due to a malfunction then at t4, ts, and
t6 we would accept the computed value without an
extrapolative check. Since we expect malfunctions to
be rare, the, above procedure is probably applicable.
However, if more safety is desired, we might use some
simple procedure for changing the gate size which would
apply to all successive steps affected by the extrapo
la ted val ue at step n.

In order to use properly the method of extrapolative
checking, it is necessary to program it very carefully.
As an illustration of how this may be done let us, re
ferring to the previous example, assume that the value
of LlQ corresponding to time ta has been computed and
is in the accumulator. Then the following procedure for
the case of Lagrangian extrapolation will perform the
extrapolative check and set up the conditions of the
example on the use of multiple storage and computation.

1) Store the accumulator in bI , b2 , and ba•

2) Using the values of LlQ corresponding to to, tI , and
t2 and (2) find the extrapolated value of LlQ and
store in CI, C2, and Ca.

3) Now using the values of LlQ at tl and t2 and (11)
extrapolate to find LlQ and leave this value in the
accum ula tor.

4) Compare the two extrapolated values using C(ca)
for the first extrapolation. If the difference falls
within the gate go on to step 5). If not assume the
computed LlQ is correct and go to step 7).

5) Compare the magnitude of the difference between

the extrapolated and computed values in bs and
Cs with the associated gate. If the magnitude is
less than the gate size use the contents hl' b2 , and
ba for LlQ and go to step 7). If not, replace the
contents of bI , b2, and ba by the contents of CI, C2,

and Ca.

6) If the extrapolated rather than the computed
value has been used, set up the desired modification
of the extrapolative check in succeeding steps.

7) "Age" the data. That is, set up the extrapolation
for the next cycle.

This sequence assures that any single machine error
(and some multiple errors), that causes an error larger
than the associated gate size in the computation for LlQ
or the check computation will be detected and corrected.
The maximum possible difference between the final
value of LlQ in bI , h2, and ba and the correct computed
value· is given by (5). In the Appendix the above se
quence is written out order by order. For step 6) we
have used the case in which no extrapolative check is
made at the three computations of yet) following the
one in which an extrapolated rather than a computed
value was used. The number of program steps needed
when no error has been made (the usual case) is thirty
two (1-26 and 38-43). Thus if this sequence is used to
check a lengthy computation it will take up only a small
percentage of the total computation time when no mal
function occurs. Of course, the number of program steps
required when an error has been made in the computed
value must be taken into account. This total is 41
(1-35 and 38-43).

The formulas that have been included here clearly
cover some of the simplest cases of the method of extra
polative checking. Use of more previous values of the
function would naturally require more complicated for
mulas which, as we have pointed out, may be derived
in a fashion similar to those listed here. Of course, the
very simplicity of the formulas we have displayed is a
large part of their charm, for the simpler they are the
less time the check takes and the less program storage
is used by the check routine.

By Scaling

When the change of a single bit can greatly increase
the magnitude of a small quantity, we have a serious
source of computer errors. In cases where the total vari
ation of a quantity is over a small range the possibility
of such an error can be greatly lessened by proper use
of scaling. For example, again using LlQ of the previous
examples, suppose that we know that the maximum
magnitude of LlQ will never exceed some small quantity.
Then if we properly scale up the quantities used in com
puting LlQ so that the maximum magnitude of LlQ would
use all the positions in a word, then no single-bit change
can greatly increase the magnitude of LlQ by more than
the maximum of LlQ/2. (Incidentally this scaling up may
also be useful in improving the accuracy of the calcula
tion.) For instance if the computer is such that all num,-.:

184 1957 WESTERN COMPUTER PROCEEDINGS

bers have absolute value less than one, then we would
scale LlQ so that its maximum scaled absolute value is as
near one as possible. Thus the scaling process acts as a
type of limiter.

It often becomes necessary to scale down previously
scaled up quantities for use in subsequent calculations.
For example in order to add LlQ to Q, LlQ must be scaled
down (barring the case where the single quantity Q
would be stored as a multiple word length number).
This scaling down is generally a matter of shifting. It
may be desirable to check that there has been no error
made in this shifting process. This is particularly true
when the first k significant digits of Q are, vital. For the
case of a number LlQ in register hI the following pro
cedure might be used:

1) Clear and add hI, shift right k places and store the
result in hI.

2) Clear and add hI, shift left k places and test for
overflow. If there is overflow it means that the
shifting in step 1) was perhaps done improperly
and we must shift again.

By the Use of Built-in Machine Checking Devices

The detection of overflow in real time computers may
be used in a fashion similar to its use in nonreal time
computers where typically the overflow indication sets
a flip-flop which may be tested by a transfer on overflow
instruction. An example of the use of overflow to detect
arithmetic errors was given in the section on scaling. In
general the detection of an arithmetic error by overflow
would send the program to a correction routine. In the
case of the scaling example the correction would merely
provide for the rescaling of the quantity. Overflow de
tection may also be used to indicate when the magnitude
of a quantity has exceeded the capacity of the computer
and, therefore, must be scaled down. In this case a
scaling routine would be used in conjunction with the
transfer on overflow instruction.

Parity-check failures, however, which typically stop
nonreal time computers must clearly be handled dif
ferently on real time computers. One possible scheme is
to have a parity-check failure set a flip-flop as in the
case of overflow. An instruction would then be provided
to, for example, transfer if a parity failure had occurred
since the last use of this instruction. The usefulness of
such an instruction in real-time applications would
probably be at best limited since continual testing for
parity failures is too costly in time. On the other hand,
occasional testing creates a problem in knowing what
to do if a failure is detected, since the location and time
of the occurrence cannot be determined. A second
scheme for the use of parity failures would be for such
a failure to cause an automatic transfer to a specified
location and to cause the contents of the program
counter to be put in a sgecified register. A correction
routine starting in the transferred to location would

then decide what action to take depending on the loca
tion of the failure. This scheme seems much more useful
than the other for real-time applications.

In general we may say that built-in machine checking
devices must, on the detection of an error, cause an
action which will not stop the computer but which will
make the fact of the error available to the computer in
some form.

ADDRESS CODING

This is a technique in digital computer programming
which has applications to both arithmetic and sequenc
ing errors. Basically the method involves coding the
addresses of the locations of a group of quantities so
that no single bit change in one address will give an
other address in the group. In this sense the method uses
a philosophy similar to that of the error detecting and
correcting codes used in transmitting information [4].

The method is best illustrated by an example. Con
sider the case where the program in the computer is
divided into a number of different computation blocks.
Let us assume that the determination of which block of
computation is to be performed at a given time is deter
mined by a control routine which makes its decisions
on the basis of the present state of the system. Associ
ated with this control routine will be a number of
transfer instructions to the various computation blocks.
We may consider these arranged in a table. The basic
function of the control program is then to calculate the
correct entry to this table and then, using some type of
address modification facility, to enter the table and so
transfer to the desired computation block. Clearly an
error in entering the table which causes a transfer to
the wrong block would violate the proper sequence of
the program and would cause a serious or vital error.
The procedure about to be described insures that any
single bit change in the address of the correct table entry
(which, for instance, might be caused by a malfunction
of the address modification facility) and many multiple
bi t errors will be detected and then the program will
enter a correction procedure. Although this method may
be somewhat costly in storage, it is fast and easy to
implement.

Suppose the table has eight entries. Then we will
store these eight entries in eight out of sixteen consecu
tive registers, where the address of the first register is a
multiple of 16, in such a way that a single-bit change in
anyone of the eight addresses will not give another
address of the set. (In the general case for k entries we
will use a sequence of 2n registers, the first address of
which will be a multiple of 2n, where 2n-I<2k~2n.) We
do this by choosing the eight of the sixteen registers
whose addresses have an even number of ones in the
four least significant places. The number of ones in the
more significant places is a constantin these sixteen
registers. In the general case we would choose the 2n- 1

Ralston: Error Detection and Error Correction 185

of the 2n registers with an even number of ones in the
n least significant places.

To show that the above is possible we must prove
that exactly 2n- 1 of the binary numbers from 0 to 2n- 1

have an even number of ones. Now the number of binary
numbers between 0 and 2n- 1 having m ones is (!) since
2n-

1 has n significant digits. Thus the number having
an even number of ones is

m even

(13)

which completes the proof.
Now if we calculate the entry to the table as a number

between zero and fifteen (to be used to modify the four
least significant digits of the address of the first register
in the table) then any single-bit error in this calculation
or the subsequent address modification will give an ad
dress in the table other than one of the eight correct
entries. If in the other eight registers we store a transfer
instruction, the same one in each register, which when
executed transfers control to a correction routine, then
this single-bit error will cause the correction routine to
be entered. This routine then would provide for the re
calculation of the entry address. This procedure clearly
will also catch various multiple-bit errors. It should be
realized, however, that single-bit errors in the non
modified digits of the address of the first register in the
table will not be detected by this procedure. However,
this type of error can be made extremely unlikely if the
instructions of the program are stored in some per
manent fashion.

An apparent drawback to this procedure is the dif
ficulty of calculating the entry address. In the usual
case of eight entries stored in eight consecutive registers
it is merely a matter of calculating a number between
zero and seven and then using this to modify the address
of the first register in the table. However, with address

. coding the eight entries will be in the 0, 3, 5, 6, 9, 10, 12,
and 15 positions in the sixteen entry table. Thus know
ing we want the jth entry where j is between 0 and 7
means calculating the relationship between j and the
position of thejth entry in the address coded table. This
can be simply done by the following procedure:

1) Shift the number j left one place
2) To this result logically add (i.e., bit by bit addition

or addition without carry) j.

The result is then a unique entry in the table. To see
this we need only note that the shifted j and j itself
contain the same number of ones so that the logical sum
contains an even number of ones. The result is less than
2n and thus does correspond to an entry in the table.
Finally it is easy to see that two different j's cannot

give the same logical sum as above. In particular this
process transforms the numbers 0, 1"", 7 into 0, 3,
6, 5, 12, 15, 10, 9 respectively.lo Thus the second entry
in the original table is in register 3 in the address-coded
table and the sixth en try in the original table is in
register 15 of the address-coded table. When the number
of en tries in the table is not a power of two, more than
half of the entries in the address-coded table must be
transfers to the correction routine.

A similar application of address coding which detects
and corrects arithmetic errors without being so wasteful
of storage is the case of table look-up of numbers. Let us
assume we have two tables of constants to store where
all the entries in each table have the same sign. Then we
can store the entries of one table in registers whose ad
dresses have an even number of ones and the entries of
the other table in registers whose addresses have an odd
number of ones. In order to distinguish between the two
tables we need only store one table with positive signs
and one with negative signs. Then when an entry is
extracted from the table we test the sign and if not cor
rect we know that a single-bit (or perhaps a multiple
bit) error has' occurred so we then go to a correction
routine which again provides for recalculation of the
address of the table entry. In this application of the
method of address coding the only storage wasted is
the difference between 2n and the total of entries in both
tables, where the number of entries in each table is less
than or equal to 2n

- 1 but greater than 2n- 2 for at least
one table. But even some of these registers may be used
for constants and thus not wasted.

Address coding has applications beyond table look-up
operations. In general we can say that whenever there
is a set of two or more locations in a digital computer
such that the use of the number in, or the transfer to,
one member of the set other than the desired member of
the set would cause a serious or vital error, then the
use of address coding may be profitable. One further
example of this method will illustrate this general
property. As in a previous example let us consider the
cas'e where the program is divided up into a number of
blocks of computation. In order to increase the effi
ciency of block-entry checking (to be described later) it
is desirable to have the entry addresses of the various
blocks as different as possible, where by this we mean
that each block entry address will differ in as many
positions as possible from all the other block entry
addresses. To achieve this greatest possible difference is
clearl y a type of address coding and moreover it is an
application which costs nothing in time or storage.

10 It is interesting to note that the sequence: 0, 3, ... , 9, is
made up of the first, third, fifth, etc. members of a 4-bit Gray Code5 in
their proper sequence. To get the second, fourth, sixth, etc. members
of the Gray Code we transform 0, 1, ... , 7, as before and then
logically add a one in the least significant bit position. This trans
formation gives a sequence of numbers each of which has an odd
number of ones.

186 1957 WESTERN COMPUTER PROCEEDINGS

OTHER TECHNIQUES OF DETECTING AND COR

RECTING SEQUENCING ERRORS

By the Cyclic Method of Calculation and the Use of Timing
Pulses

In real-time computers the use of periodic timing
pulses is of course a common method of keeping the
computer synchronized with the rest of the system.
This timing pulse may also be used to prevent the ad
mittedly unlikely possibility that the program will get
so badly out of sequence as to not be able to get back
by itself (e.g., in a loop). To use a timing pulse for this
purpose we merely require that there be a timing pulse
at a fixed interval which automatically transfers control
to a fixed point in the program. Thus the program
would be assured of being at a certain point at fixed
time intervals determined by the interval, T, between
timing pulses. Clearly this scheme necessitates breaking
up the program into cycles, each of which takes no more
than T seconds to perform. Possible excess time at the
end of a cycle might be used for diagnostic checking.
This cyclic method of calculation has the added ad
vantage of simplifying prediction and extrapolation
formulas by enabling us to calculate quantities at fixed
intervals of time, which we assumed was the case in dis
cussing extrapolative checking.

By Block-Entry Checking

In order to assure that a block of calculations has been
correctly entered the following simple sequence of pro
gram steps may be used:

At the entry to the block:

1) Clear and add b;-where bi is any constant.
2) Store in register R-to set up check.

At the end of the block'
1) Clear and add C(R)
2) Subtract bi

3) Store in R-in order to reset R
4) Jump on nonzero to correction program.

The constant bi must be different for each block but,
since the value of bi is immaterial, constants already in
the program may be used. This procedure is insurance
that a block was entered at the beginning. The address
coding procedure mentioned in the previous section is
insurance that the wrong block will not be entered at its
correct en try place.

By the Use of Parity Checking

Incorrect readout of instructions from memory can
easily cause sequencing errors. Parity checking is of
course a standard method of detecting such errors. As
to the correction of such an error, the simple approach
seems to be the best one; that is, when a parity-check
failure is detected on read-out, we merely read out the
desired instruction (or number) again. Some limit to
the number of times a given read-out will be attempted
should probably be made since a continued parity
check failure would indicate a dropped bit in storage
(or perhaps a failure in a read circuit).

THE RELATION BETWEEN PROGRAMMED ERROR

DETECTION AND CORRECTION, COMPONENT

RELIABILITY AND CHECKING

CIRCUITRY

As with all the elements in a real-time control system,
the digital. computer must be an inherently reliable
piece of equipment in order for the system to operate
usefully. By emphasizing the treatment of single mal
functions we have implicitly assumed a basically reliable
computer. Indeed programmed error detection and cor
rection can only supplement the use of reliable computer
components. It cannot replace them. But this supple
menting may in fact be the difference between success
and failure since as we have pointed out a single mal
function may mean catastrophe. This is especially true
when maintenance of the computer is difficult such as in
the case of computers in military systems in the field.

The use of checking circuitry is another method of
improving the performance of a digital computer. It
does not however negate the need for programmed error
detection and correction which is inherently more flexi
ble and more easily applicable to special situations than
checking circuitry. Furthermore in some cases, notably
in military applications, the extra size and weight that
checking circuitry adds to a computer may make it
impractical.

I t is certainly not the purpose of this paper to discuss
in any detail the problem of reliable computer com
ponents. But it is perhaps worthwhile to mention at
least two places in a computer where reliable com
ponents and/or checking circuitry are of special impor
tance in that malfunctions in these components cause
errors which are particularly serious or which are dif
ficult to detect by programming techniques.

Mutilation anywhere in that part of the memory
where instructions or constants of the program are
stored is certainly very serious. Moreover mutilation
in certain places can produce vital, errors which cannot
be corrected by programming techniques. To prevent
this type of malfunction some type of permanent (e.g.,
wired-in) storage is desirable. Although this may not be
practical in general purpose computers, on real time
computers, where typically a single program is used
over long periods of time, it is eminently practical.

'Even very occasional malfunctions of the program
counter can cause very serious errors which may not be
detected. One possible method of improving the relia
bility of the program counter is, analogously to the
method of triple computation and storage, to provide
three program counters and, when all three do not
agree, to choose as correct a value that appears in two
of them. This method, however, appears quite expensive
to implement.

In general it can be said that a digital computer is
extremely sensitive to malfunctions anywhere in the
control unit of the computer for such machine errors
may be undetectable or uncorrectable. This statement
only serves to illustrate what we said at the beginning
of this section; namely, that programmed error detec-

Ralston: Error Detection and Error Correction 187

tion and correction can only supplement but can never
replace reliable computer components.

CONCLUSION

A knowledge of error-detection and error-correction
techniques is necessary but not sufficient to the writing
of an efficient program for a real-time digital computer.
We have already indicated that it is also necessary to
have a thorough knowledge of the computer in question
with regard to the probabilities of malfunction in the
various parts of the computer. Furthermore the system
of which the computer is a part must be clearly under
stood in order that the damage to the system operation
of each type of malfunction may be assessed. It is the
implication of this last factor which often determines
the extent of the error detecting and correcting that is
programmed. Clearly the cost in money of providing
the extra storage (a'nd perhaps also speed) in the com
puter for error detection and correction must be weighed
against both the probability of failure of the system
without error detection and correction and the cost of
such failure. In this connection we must consider a given
error-detection and correction technique in relation both
to the probability that the error this technique is sup
posed to detect and correct will actually occur and to
the probability that the technique will detect and cor
rect the error if it does occur. Also we must consider
factors such as whether the added weight of and space
occupied by the extra storage needed for error detection
and correction will impede the operation of the system.
Thus, in general, the determination of what error de
tecting and correcting to build into a program is a
matter of weighing a number of factors: economic,
mathematical, and physical.

Virtually all the techniques we have presented here
still must be tested in actual real-time situations. Until
this has been done the effectiveness of these methods
cannot be fairly assessed. However, it seems reasonable
to say that some of the techniques will have useful ap
plication in a wide class of real-time systems. This
should be notably true of extrapolative checking which
is a powerful and simple method of checking the reason
ableness of the result of a lengthy computation. Other
techniques, such as address coding, will be useful only
in those cases where the basic structure of the program
makes them applicable. Some techniques are clearly
aimed at more unlikely types of errors than others and
thus will find only specialized application.

For most of the methods described here only one or
two· of the possible applications have been mentioned.
I t would seem likely that the ingenuity of individual
programmers will find a number of applications for a
method such as address coding. And of course the in
genuity of individual programmers is basic to good
programmed error detection and correction since the
specialized nature of most real-time systems makes them
ripe for the use of very specialized techniques. In this
paper we have tried to present some of the general
techniques of error detection and correction and to

indicate the path toward some of the more specialized
techniques.

The use of real-time digital computers is a young and
rapidly expanding field. With the development of larger
and more versatile digital computers for use in larger
and more complicated real time control systems, there
will come a growing need for more efficient and more
sophisticated programmed error-detection and error
correction techniques.

ACKNOWLEDGMENT

Most of the ideas presented in this paper were gener
ated in a seminar at the Bell Telephone Laboratories.
The author would like to thank the other regular mem
bers of that seminar, E. G. Andrews, H. A. Helm, N. K.
Poole, J. G. Tryon, and V. M. Wolontis, for the ideas
they have contributed to this paper.

ApPENDIX

A ROUTINE FOR EXTRAPOLATIVE CHECKING

The following routine performs the operations de
scribed in the seven steps at the end of the section on
extrapolative checking. The following storage locations
are assumed:

A) go, qI, and q2 for the values of fiQ corresponding to to, tI, and t2.
B) gl, g2, ••. ,gs for respectively, the gate sizes to check the

extrapolation and the computation and the constants 0, 1, and 3.
C) it for temporary storage.
D) kl for a counter, initially containing 3.

1) Store in bi
2) Store in b2 Step 1)-Puts fiQ in bl , b2 , bs.
3) Store in ba
4) Clear and add kl
5) Transfer if non- Transfer only if the extrapolative check

zero to 36 is not to be used (see 33-37).
6) Clear and add q2
7) Subtract gl
8) Multiply by g5 Step 2)-Computes the extrapolated
9) Add qo value and stores it in Cl, C2, Ca.

10) Store in Cl

11) Store in C2

12) Store in Cs

13) Clear and add g2 Step 3)-Computes second extrapolated
1~ Add ~
15) Subtract ql value of fiQ.
16) Subtract Cs

17) Store in tl
18) Clear and add ab- Step 4)-Tests extrapolated values, if re-

solute value of tl suIt plus test fails.
19) Subtract gl
20) Transfer on plus to 381
21) Clear and add ba
22) Subtract Cs

23) Store in tl Step 5)
24) Clear and add g2 a) Compares computed and extra po-
25) Subtract absolute lated values. If result plus use com~

value of tl puted value.
26) Transfer on plus to 38
27) Clear and add CI

28) Store in bl
29) Clear and add C2 b) Replaces computed values by ex-
30) Store in b2 trapolated values.
31) Clear and add Cs

32) Store in bs
33) Clear and add gs Step 6)
34) Store in kl a) Disables extrapolative check by
35) Transfer to 38 putting nonzero quantity in kt.
36) Subtract g4 b) Reduces counter by 1. After three
37) Store in ki cycles counter contains o.
38) Clear and add ql
39) Store in qo
40) Clear and add q2 Step 7-"Ages" data for use in next
41) Store in ql extrapolation.
42) Clear and add bs
43) Store in q2

188 1957 WESTERN COMPUTER PROCEEDINGS

Notes:
1) The number of program steps executed in this routine is:

a) 32 if the extrapolative check is used and no errors are made.
b) ~l.if the extrapolative check is used and the computed value

1S 1n error.
c) 2.6 if t~e.extrapolative check is used and one of the extrapola

tions 1S m error.
d) 13 if the extrapolative check is disabled.

2) Another possible method of disabling the check would be to
store temporarily a transfer instruction after the third order in
the routine. However, in real-time computers it is very desirable
to have the instructions of the program permanently stored
and therefore untouchable by the program itself.

3) Steps 38)-43) must be executed whether the check is disabled
or not so that when the check is reinstated the proper data will
be available.

4) It is reasonably clear that performing step 6) by any method
more sophisticated than disabling the check would require
quite a large number of extra program steps.

5) The contents of kl has been made equal to 3 initially to indicate
the case in which no extrapolative check is made for the first
three cycles.

6) The author would like to thank J. G. Tryon for his help in
streamlining this routine.

BIBLIOGRAPHY

[1] Doersam, C. H. Jr. "The Reasonableness Check in Automa
ti<?n," 1956 IRE CONVENTI~N RECORD, Part 4, pp. 67-72.

[2] Htldebrand, F. B. Introductwn to Numerical Analysis New York'
McGraw-Hill Book Company, Inc., 1956. ' .

[3] Kopal, Z. Numerical Analysis, New York: John Wiley and Sons
Inc., 1955. '

[4] Hamming, R. W. "Error Detecting and Error Correcting Codes"
Bell Systemlechnical Journal, Vol. 29 (April, 1950), pp. 147-160.

[5] Flores, 1. Reflected Number Systems," IRE TRANSACTIONS
ON ELECTRONIC COMPUTERS, Vol. EC-5 (June, 1956), pp. 79-82.

The FOR TRAN Automatic Coding System
J. w. BACKUSt, R. J. BEEBERt, s. BESTt, R. GOLDBERGt, L. M. HAIBTt,

H. L. HERRICKt, R. A. NELSONt, D. SAYREt, P. B. SHERIDANt,
H. STERNt, 1. ZILLERt, R. A. HUGHES§, AND R. NUTTII

INTRODUCTION

T HE FORTRAN project was begun in the sum
mer of 1954. Its purpose was to reduce by a large
factor the task of preparing scientific problems for

IBM's next large computer, the 704. If it were possible
for the 704 to code problems for itself and produce as
good programs as human coders (but without the
errors), it was clear that large benefits could be achieved.
For it was known that about two-thirds of the cost of
solving most scientific and engineering problems on
large computers was that of problem preparation.
Furthermore, more than 90 per cent of the elapsed time
for a problem was usually devoted to planning, writing,
and debugging the program. In many cases the de
velopment of a general plan for solving a problem was
a smap job in comparison to the task of devising and
coding machine procedures to carry out the plan. The
goal of the FORTRAN project was to enable the pro
grammer to specify a numerical procedure using a con
cise language like that of mathematics and obtain
automatically from this specification an efficient 704
program to carry out the procedure. I t was expected
that such a system would reduce the coding and de
bugging task to less than one-fifth of the job it had been.

Two and one-half years and 18 man years have elapsed
since the beginning of the project. The FORTRAN

t Internat'l Business Machines Corp., New York, N. Y.
t Mass. Inst. Tech., Computation Lab., Cambridge Mass.
§ Radiation Lab., Univ. of California, Livermore Calif.
1\ United Aircraft Corp., East Hartford, Conn. '

system is now complete. It has two components: the
FORTRAN language, in which programs are written,
and the translator or executive routine for the 704
which effects the translation of FORTRAN language
programs into 704 programs. Descriptions of the FOR
TRAN language and the translator form the principal
sections of this paper.

The experience of the FORTRAN group in using the
system has confirmed the original expectations con
cerning reduction of the task of problem preparation
and the efficiency of output programs. A brief case
history of one job done with a system seldom gives a
good measure of its usefulness, particularly when the
selection is made by the authors of the system.
Nevertheless, here are the facts about a rather simple
but sizable job. The programmer attended a one-day
course on FORTRAN and spent some more time re
ferring to the manual. He then programmed the job
in four hours, using 47 FORTRAN statements. These
were compiled by the 704 in six minutes, producing
about 1000 instructions. He ran the program and found
the output incorrect. He studied the output (no tracing
or memory dumps were used) and was able to localize
his error in a FORTRAN statement he had written.
He rewrote the offending statement, recompiled, and
found that the resulting program was correct. He esti
mated that it might have taken three days to code this
job by hand, plus an unknown time to debug it, and
that no appreciable increase in speed of execution would
have been achieved thereby.

Backus et al.: The FORTRAN Automatic Coding System 189

THE FORTRAN LANGUAGE

The FORTRAN language is most easily described
by reviewing some exam pIes.

A rithmetic Statements

Example 1: Compute:

root =
- (B/2) + v'(B/2)2 - AC

A

FORTRAN Program:

ROOT
= (-(B/2.0) + SQRTF((B/2.0) * *2 - A*C»/A.

Notice that the desired program is a single FOR
TRAN statement, an arithmetic formula. Its meaning
is: "Evaluate the expression on the right of the = sign
and make this the value of the variable on the left."
The symbol * denotes multiplication and * * denotes
exponentiation (i.e., A * * B means AB). The program
which is generated from this statement effects the
computation in floating point arithmetic, avoids com
puting (B/2.0) twice and computes (B/2.0) * * 2 by a
multiplication rather than by an exponentiation routine.
[Had (B/2.0) * * 2.01 appeared instead, an exponentia
tion routine would necessarily be used, requiring more
time than the multiplication.] .

The programmer can refer to quantities in both
floating point and integer form. Integer quantities
are somewhat restricted in their use and serve primarily
as subscripts or exponents. Integer constants are written
without a decimal point. Example: 2 (integer form) vs
2.0 (floating point form). Integer variables begin with
I,], K, L, M, or N. Any meaningful arithmetic expres
sion may appear on the right-hand side of an arithmetic
statement, provided the following restriction is ob
served: an integer quantity can appear in a floating
point expression only as a subscript or as an exponent
or as the argument of certain functions. The functions
which the programmer may refer to are limited only
by those available on the library tape at the time, such
as SQRTF, plus those simple functions which he has
defined for the given problem by means of function
statements. An example will serve to describe the latter.

Function Statements

Example 2: Define a function of three variables to be
. used throughout a given problem, as follows:

ROOTF(A, B, C)
= (-(B/2.0) + SQRTF«(B/2.0) * *2 - A*C»/A.

Function statements must precede the rest of the pro
gram. They are composed of the desired function name
(ending in F) followed by any desired arguments which
appear in the arithmetic expression on the right of the
= sign. The definition of a function may employ any

previously defined functions. Having defined ROOTF
as above, the programmer may apply it to any set of
arguments in any subsequent arithmetic statements. For
example, a later arithmetic statement might be

THETA = 1.0 + GAMMA * ROOTF(PI, 3.2 * Y
+ 14.0, 7.63).

DO Statements, DIMENSION Statements, and Sub
scripted Variables

Example 3: Set Qrnax equal to the largest quantity
P(ai+bi)/P(ai-bi) for some i between 1 and 1000
where P(x) =CO+CIX+C2X2+CaXa.

FORTRAN Program:

1) POLYF(X) =CO+X * (C1+X * (C2+X * C3».
2) DIMENSION A(1000), B(1000).
3) QMAX = -1.0 E20.
4) D051=1,1000.
5) QMAX = MAXF(QMAX, POL YF(A(I)

+B(I»/POLYF(A(I) -B(l»).
6) STOP.

The program above is complete except for input and
output statements which will be described later. The
first statement is not executed; it defines the desired
polynomial (in factored form for efficient output pro
gram). Similarly, the second statement merely informs
the executive routine that the vectors A and B each have
1000 elements. Statement 3 assigns a large negative
initial value to QMAX, -1.0 X 1020, using a special
concise form for writing floating-point constants. State
ment 4 says "DO the following sequence of statements
down to and including the statement numbered 5 for
successive values of I from 1 to 1000." In this case
there is only one statement 5 to be repeated. It is exe
cuted 1000 times; the first time reference is made to
A(1) and B(l), the second time to A(2) and B(2), etc.
After the 1000th execution of statement 5, statement
6-STOP-is finally encountered. In statement 5,
the function MAXF appears. MAXF may have two
or more arguments and its value, by definition, is the
value of its largest argument. Thus on each repetition
of statement 5 the old value of QMAX is replaced by
itself or by the value of POLYF(A(I)+B(I»/POLYF
(A(l) -B(l», whichever is larger. The value of QMAX
after the 1000th repetition is therefore the desired
maXImum.

Example 4: Multiply the nXn matrix aij(n~20) by
its transpose, obtaining the product elements on or be
low the main diagonal by the relation

n

Ci, i = L: ai, Ie • ai,k (for j ~ i)
k=l

and the remaining elements by the relation

190 1957 WESTERN COMPUTER PROCEEDINGS

FORTRAN Program:
DIMENSION A(20, 20), C(20, 20)

DO 2 I = 1, N P
~ ~

DO 2 J = 1, I Q
! ~

C(I, J) = 0.0

DO 1 K = 1, N R
! !

1 C(I, J) = C(I, J) + A(I, K) * AO, K)

2 CO, I) = C(I, J)

STOP

As in the preceding example, the DIMENSION
statement says that there are two matrices of maximum
size 20X20 named A and C. For explanatory purposes
only, the three boxes around the program show the
sequence of statements controlled by each DO state
ment. The first DO statement says that procedure P,
i.e., the following statements down to statement 2 (outer
box) is to be carried out for 1=1 then for 1=2 and so
on up to I =N. The first statement of procedure
P(DO 2 J = 1, I) directs that procedure Q be done for
J = 1 to J = I. And of course each execution of pro
cedure Q involves N executions of procedure R for
K=1, 2, ... , N.

Consider procedure Q. Each time its last statement
is completed the "index" J of its controlling DO state
ment is increased by 1 and control goes to the first
statement of Q, until finally its last statement is reached
and J = I. Since this is also the last statement of P and
P has not been repeated until 1= N, I will be increased
and control will then pass to the first statement of P.
This statement (DO 2 J = 1, I) causes the repetition
of Q to begin again. Finally, the last statement of Q and
P (sta temen t 2) will be reached with J = I and I = N,
meaning that both Q and P have been repeated the
required number of times. Control will then go to the
next statement, STOP. Each time R is executed a new
term is added to a product element. Each time Q is
executed a new product element and its mate are ob
tained. Each time P is executed a product row.(over to
the diagonal) and the corresponding column (down to
the diagonal) are obtained.

The last example contains a "nest" of DO state
ments, meaning that the sequence of statements con
trolled by one DO statement contains other DO state
ments. Another example of such a nest is shown in the
next column, on the left. Nests of the type shown on the
right are not permitted, since they would usually be
meaningless.

Although not illustrated in the examples given, the
programmer may also employ subscripted variables
having three independent subscripts.

f[[1
I

f [[I f[II
l

READ, PRINT, FORMAT, IF and GO TO Statements

Example 5: For each case, read from cards two vec
tors, ALPHA and RHO, and the number ARG. ALPHA
and RHO each have 25 elements and ALPHA(I)
:::;ALPHA(I +1), 1=1 to 24. Find the SUM of all the
elemen ts of ALPHA from the beginning to the last
one which is less than or equal to ARG [assume
ALPHA(1) :::;ARG <ALPHA(25)]. If this last element
is the Nth, set VALUE=3.14159 * RHO(N). Print a
line for each case with ARG, SUM, and VALUE.

FORTRAN Program:

DIMENSION ALPHA(25), RHO(25)
1) FORMAT(5F12.4).
2) READ 1, ALPHA, RHO, ARG

SUM =0.0
DO 3 1= 1,25
IF (ARG - ALPHA(I)) 4, 3, 3.

3) SUM = SUM + ALPHA(I)
4) VALUE = 3.14159 * RHO(I -1)

PRINT 1, ARG, SUM, VALUE
GO TO 2.

The FORMAT statement says that numbers are to
be found (or printed) 5 per card (or line) , that each
number is in fixed point form, that each number oc
cupies a field 12 columns wide and that the decimal
point is located 4 digits from the right. The FORMAT
statement is not executed; it is referred to by the READ
and PRINT statements to describe the desired arrange
ment of data in the external medium.

The READ statement says "READ cards in the
card reader which are arranged according to FORMAT
statement 1 and assign the successive numbers obtained
as values of ALPHA (I) 1= 1, 25 and RHO(I) 1= 1, 25 .
and ARG." Thus "ALPHA, RHO, ARG" is a descrip
tion of a list of 51 quantities (the size of ALPHA and
RHO being obtained from the DIMENSION state
ment). Reading of cards proceeds until these 51 quanti
ties have been obtained, each card having five numbers,
as per the FORMAT description, except the last which
has the value of ARG only. Since ARG terminated the
list, the remaining four fields on the last card are not
read. The PRINT statement is similar to READ except
that it specifies a list of only three quantities. Thus

Backus et aZ.: The FORTRAN Automatic Coding System 191

each execution of PRINT causes a single line to be
printed with ARG, SUM, VALUE printed in the first
three of the five fields described by FORlVIAT state
ment 1.

The IF statement says "If ARG-ALPHA(I) is
negative go to statement 4, if it is zero go to statement
3, and if it is positive go to 3." Thus the repetition
of the two statements controlled by the DO consists
normally of computing ARG - ALPHA(I), finding it
zero or positive, and going to statement 3 followed by
the next repetition. However, when I has been in
creased to the extent that the first ALPHA exceeding
ARG is encountered, control will pass to statement 4.
Note that this statement does not belong to the se
quence controlled by the DO. In such cases, the repeti
tion specified by the DO is terminated and the value of
the index (in this case I) is preserved. Thus if the first
ALPHA exceeding ARG were ALPHA (20), then RHO
(19) would be obtained in statement 4.

The GO TO statement, of course, passes control to
statement 2, which initiates reading the 11 cards for the
next case. The process will continue until there are no
more cards in the reader. The above program is entirely
complete. When punched in cards as shown, and com
piled, the translator will produce a ready-to-run 704
program which will perform the job specified.

Other Types of FORTRAN Statements

In the above examples the following types of FOR-
TRAN statements have been exhibited.

Arithmetic statements
Function statements
DO sta temen ts
IF statements
GO TO sta temen ts
READ statements
PRINT statements
STOP statements
DIMENSION statements
FORMAT statements.

The explanations accompanying each example have
attempted to show some of the possible applications and
variations of these statements. It is felt that these
examples give a representative picture of the FOR
TRAN language; however, many of its features have
had to be omitted. There are 23 other types of state
ments in the language, many of them completely
analogous to some of those described here. They pro
vide facilities for referring to other input-output and
auxiliary storage devices (tapes, drums, and card
punch), for specifying preset and computed branching
of control, for detecting various conditions which may
arise such as an attempt to divide by zero, and for pro
viding various information about a program to the
translator. A complete description of the language is to
be found in Programmer's Reference Manual, the FOR
TRAN Automatic Coding System for the IBM 704.

Preparation of a Program for Translation

The translator accepts statements punched one per
card (continuation cards may be used for very long
statements). There is a separate key on the keypunch
ing device for each character used in FORTRAN state
ments and each character is represented in the card by
several holes in a single column of the card. Five
columns are reserved for a statement number (if pres
ent) and 66 are available for the statement. Keypunch
ing a FORTRAN program is therefore a process similar
to that of typing the program.

Translation

The deck of cards obtained by keypunching may
then be put in the card reader of a 704 equipped with
the translator program. When the load button is pressed
one gets either 1) a list of input statements which fail
to conform to specifications of the FORTRAN language
accompanied by remarks which indicate the type of
error in each case; 2) a deck of binary cards representing
the desired 704 program, 3) a binary tape of the program
which can either be preserved or loaded and executed
immediately after translation is complete, or 4) a tape
containing the output program in symbolic form suitable
for alteration and later assembly. (Some of these out
puts may be unavailable at the time of publication.)

THE FORTRAN TRANSLATOR

General Organization of the System

The FORTRAN translator consists of six successive
sections, as follows.

Section 1: Reads in and classifies statements. For
arithmetic formulas, compiles the object (output) in
structions. For nonarithmetic statements including
input-output, does a partial compilation, and records
the remaining information in tables. All instructions
compiled in this section are in the COMPAIL file.

Section 2: Compiles the instructions associated with
indexing, which result from DO statements and the oc
currence of subscripted variables. These instructions
are placed in the CO M PDO file.

Section 3: Merges the COMPAIL and COMPDO
files into a single file, meanwhile completing the compila
tion of nonarithmetic statements begun in Section 1.
The object program is now complete, but assumes an
object machine with a large number of index registers.

Section 4: Carries out an analysis of the !low of the
object program, to be used by Section S.

Section 5: Converts the object program to one which
involves only the three index registers of the 704.

Section 6: Assembles the object program, producing
a relocatable binary program ready for running. Alsc
on demand produces the object program in SHARE
symbolic language.

(Note: Section 3 is of internal importance only; Sec
tion 6 is a fairly conventional assembly program. These
sections will be treated only briefly in what follows.)

192 1957 WESTERN COMPUTER PROCEEDINGS

Within the translator, information is passed from
section to section in two principal forms: as compiled
instructions, and as tables. The compiled instructions
(e.g., the COMPAIL and COMPDO files, and later their
merged result) exist in a four-word format which con
tains all the elements of a symbolic 704 instruction;
i.e., symbolic location, three-letter operation code, sym
bolic address with relative absolute part, symbolic tag,
and absolute decrement. (Instructions which refer to
quantities given symbolic names by the programmer
have those same names in their addresses.) This sym
bolic format is retained until section 6. Throughout, the
order of the com piled instructions is maintained by
means of the symbolic locations (internal statement
numbers), which are assigned in sequential fashion by
section 1 as each new statement is encountered.

The tables contain all information which cannot yet
be embodied in compiled instructions. For this reason
the translator requires only the single scan of the source
program performed in section 1.

A final observation should be made about the organ
ization of the system. Basically, it is simple, and most
of the complexities which it does possess arise from the
effort to cause it to produce object programs which
can compete in efficiency with hand-written programs.
Some of these complexities will be found within the
individual sections; but also, in the system as a whole,
the sometimes complicated interplay between compiled
instructions and tables is a consequence of the desire to
postpone compiling until the analysis necessary to
produce high object-program efficiency has been per
formed.

Section 1 (Beeber, Herrick, Nutt, Sheridan, and Stern)

The over-all flow of section 1 is

Read and classify next source statement
. and assign internal statement number

Input-output

For an input-output statement, section 1 compiles the
appropriate read or write select (RDS or WRS) in
struction, and the necessary copy (CPY) instructions
(for binary operations) or transfer instructions to pre
written input-output routines which perform conver
sion between decimal and binary and govern format (for
decimal operations). When the list of the input-output
statement is repetitive, table entries are made which
will cause section 2 to generate the indexing instructions
necessary to make the appropriate loops.

The treatment of statements which are neither input
output nor arithmetic is similar; i.e., those instructions

which can be compiled are compiled, and the remaining
information is extracted and placed in one or more of
the appropriate tables.

In contrast, arithmetic formulas are completely
treated in section 1, except for open (built-in) sub
routines, which are added in section 3; a complete set
of compiled instructions is produced in the COMPAIL
file. This compilation involves two principal tasks: 1)
the generation of an appropriate sequence of arith
metic instructions to carry out the computation speci
fied by the formula, and 2) the generation of (symbolic)
tags for those arithmetic instructions which refer to
subscripted variables (variables which denote arrays)
which in combination with the indexing instructions to
be compiled in section 2 will refer correctly to the indi
vidual members of those arrays. Both these tasks are
accomplished in the course of a single scan of the for
mula.

Task 2) can be quickly disposed of. When a sub
scripted variable is encountered in the scan, its sub
script(s) are examined to determine the symbols used
in the subscripts, their multiplicative coefficients, and
the dimensions of the array. These items of information
are placed in tables where they will be available to
section 2; also from them is generated a subscript com
bination name which is used as the symbolic tag of
those instructions which refer to the subscripted vari
able.

The difficulty in carrying out task 1) is one of level;
there is implicit in every arithmetic formula an order of
computation, which arises from the control over order
ing assigned by convention to the various symbols
(parentheses, +, -, *, I, etc.) which can appear, and
this implicit ordering must be made explicit before
compilation of the instructions can be done. This ex
plicitness is achieved, during the formula scan, by
associating with each operation required by the formula
a level number, such that if the operations are carried

. out in the order of increasing level number the correct·
sequence of arithmetic instructions will be obtained. The
sequence of level numbers is obtained by means of a
set of rules, which specify for each possible pair formed
of operation type and symbol type the increment to be
added to or subtracted from the level number of the
preceding pair.

In fact, the compilation is not carried out with the
raw set of level numbers produced during the scan.
After the scan, but before the compilation, the levels
are exarpined for empty sections which can be deleted,
for permutations of operations on the same level which
will reduce the number of accesses to memory, and for
redundant computation (arising from the existence of
common sub expressions) which can be eliminated.

An example will serve to show (somewhat inaccurate
ly) some of the principles employed in the level-analysis
process. Consider the following arithmetic expression:

Backus et al.: The FORTRAN Automatic Coding System 193

In the level analysis of this expression parentheses
are in effect inserted which define the proper order in
which the operations are to be performed. If only three
implied levels are recognized (corresponding to +, *
and * *) the expression obtains the following:

+ (* (* * A)) + (* (* * B * * C) * [+ (* (* * E)) + (* (* * F)) J).
The brackets represent the parentheses appearing in the
original expression. (The level-analysis routine actually
recognizes an additional level corresponding to func
tions.) Given the above expression the level-analysis
routine proceeds to define a sequence of new dependent
variables the first of which represents the value of the
entire expression. Each new variable is generated when
ever a left parenthesis is encountered and its definition
is entered on another line. In the single scan of the ex
pression it is often necessary to begin the definition of
one new variable before the definition of another has
been completed. The subscripts of the u's in the follow
ing sets of definitions indicate the order in which they
were defined.

Uo = + Ul + Us

Ul = * U2

U2 = **A

US = * U4* U5

U4 = **B**C

U5 = + U6 + Us

U6 = * U7

U7 = * * E

Us = * U9

U9 = * *F.

This is the point reached at the end of the formula
scan. What follows illustrates the further processing
applied to the set of levels. Notice that U9, for example,
is defined as * * F. Since there are not two or more
operands to be combined the * * serves only as a level
indication and no further purpose is served by having
defined U9. The procedure therefore substitutes F for
U9 wherever U9 appears and the line U9 = * * F is deleted.
Similarly, F is then substituted for Us and Us = * F is
deleted. This elimination of "redundant" u's is carried
to completion and results in the following:

Uo = + A + Us

Us = * U4* U5

U4 = * * B* *C
U5 = + E + F.

These definitions, read up, describe a legitimate
procedure for obtaining the value of the original ex-

pression. The number of u's rema111111g at this point
(in this case four) determines the number of intermedi
ate quantities which may need to be stored. However,
further examination of this case reveals that the result
of Us is in the accumulator, ready for Uo; therefore the
store and load instructions which would usually be
compiled between Us and Uo are omitted.

Section 2 (Nelson and Ziller)

Throughout the object program will appear in
structions which refer to subscripted variables. Each
of these instructions will (until section 5) be tagged with
a symbolic index register corresponding to the particu
lar subscript combination of the subscripts of the varia
ble [e.g., (I, K, J) and (K, I, J) are two different sub
script combinations]. If the object program is to work
correct! y , every symbolic index register must be so
governed that it will have the appropriate contents at
every instant that it is being used. It is the source pro
gram, of course, which determines what these appro
priate contents must be, primarily through its DO
statements, but also through arithmetic formulas (e.g.
I=N+1) which may define the values of variables ap
pearing in subscripts, or input formulas which may
read such values in at object time. Moreover, in the
case of DO statements, which are designed to produce
loops in the object program, it is necessary to provide
tests for loop exit. It is these two tasks, the governing
of symbolic index registers and the testing of their
contents, which section 2 must carry out.

Much of the complexity of what follows arises from
the wish to carry out these tasks optimally; i.e., when
a variable upon which many subscript combinations de
pend undergoes a change, to alter only those index
registers which really require changing in the light of
the problem flow, and to handle exits correctly with
a minimum number of tests.

If the following subscripted variable appears 111 a
FORTRAN program

A(2*,I + 1, 4*J + 3, 6*K + 5),

the index quantity which must be in its symbolic index
register when this reference to A is made is

where Cl, C2, and Cs in this case have the values 2, 4, and
6; i,j, and k are the values of I, J, and K at the moment,
and d i and d j are the I and J dimensions of A. The
effect of the addends 1, 3, and 5 is incorporated in the
address of the instruction which makes the reference.

In general, the index quantity associated with a sub
script combination as given above, once formed, is not
recomputed. Rather, every time one of the variables in
a subscript combination is incremented under control of
a DO, the corresponding quantity is incremented by
the appropriate amount. In the example given, if K

194 1957 WESTERN COMPUTER PROCEEDINGS

is increased by n (under control of a DO), the index
quantity is increased 'by cadidjn, giving the correct new
value. The following paragraphs discuss in further detail
the ways in which index quantities are computed and
modified.

Choosing the Indexing Instructions; Case of Subscripts
Controlled by DO's

We distinguish between two classes of subscript;
those which are in the range of a DO having that sub
script as its index symbol, and those subscripts which
are not controlled by DO's.

The fundamental idea for subscripts controlled by
DO's is that a sequence of indexing instruction groups
can be selected to answer the requirements, and that
the choice of a particular instruction group depends
mainly on the arrangement of the subscripts within the
subscript combination and the order of the DO's con
trolling each subscript.

DO's often exist in nests. A nest of DO's consists of
all the DO's contained by some one DO which is itself
not contained by any other. Within a nest, DO's are
assigned level numbers. Wherever the index symbol of a
DO appears as a subscript within the range of that DO,
the level number of the DO is assigned to the subscript.
The relative values of the level numbers in a subscript
combination produce a group number which, along with
other information, determines which indexing instruc
tion group is to be compiled.

The source language,

DO 10 I = 1,5
DO 10 J = 1,5
DO 5 K = 1, J

5 ... A (I, J, K)· . (some statement referring to
A (I, J, K))

DO 10K = J,5
10 ... A (K, J, I) .

produces the following DO structure and group combi
nations:

I level 1

J level 2

level 3

levels group no.

I, J, K -----7 (1, 2, 3) -------4) 6

level 3

K, J, 1-----7 (3, 2, 1) ----4) 1.

Producing the Decrement Parts of Indexing Instructions

The part of the 704 instruction used to change or test
the con ten ts of an index register is called the decrement
part of the instruction.

The decrement parts of the FORTRAN indexing
instructions are functions of the dimensions of arrays
and of the parameters of DO's; that is, of the initial
value nlJ the upper bound n2, and the increment na
appearing in the statement DO 1 i=nl, n2, na. The
general form of the function is [(n2-nl+na)/na]nag
where g represents necessary coefficients and dimen
sions, and [x] denotes the integral part of x.

If all the parameters are constants, the decrement
parts are computed during the execution of the FOR
TRAN executive program. If the parameters are vari
able symbols, then instructions are compiled in the
object program to compute the proper decrement val
ues. For object program efficiency, it is desirable to
associate these computing instructions with the outer
most DO of a nest, where possible, and not with the
inner loops, even though these inner DO's may have
variable parameters. Such a variable parameter (e.g.,
N in "DO 7 1=1, N") may be assigned values by the
programmer by any of a number of methods; it may be
a value brought in by a READ statement, it may be
calculated by an arithmetic statement, it may take its
value from a transfer exit from some other DO whose
index symbol is the pertinent variable symbol, or it may
be under the control of a DO in the nest. A search is
made to determine the smallest level number in the
nest within which the variable parameter is not assigned
a new value. This level number determines the place
at which computing instructions can best be compiled.

Case of Subscripts not Controlled by DO's

The second of the two classes of subscript symbols is
that of subscript symbols which are not under control
of DO's. Such a subscript can be given a value in a
number of ways similar to the defining of DO param
eters: a value may be read in by a READ statement,
it may be calculated by an arithmetic statement, or it
may be defined by an exit made from a DO with that
index symbol.

For subscript combinations with no subscript under
the control of a DO, the basic technique used to intro
duce the proper values into a symbolic index register is
that of determining where such definitions occur, and,
at the point of definition, using a subroutine to compute
the new index quantity. These subroutines are generated
at executive time, if it is determined that they are
necessary.

If the index quantity exists in a DO nest at the time
of a transfer exit, then no subroutine calculations are
necessary since the exit values are precisely the desired
values.

Mixed Cases

In cases in which some subscripts in a subscript com
bination are controlled by DO's, and some are not,
instructions are compiled to compute the initial value

Backus et al.: The FORTRAN Automatic Coding System 195

of the subscript combination at the beginning of the
outside loop. If the non-DO-controlled subscript sym
bol is then defined inside the loop (that is, after the
computing of the load quantity) the procedure of using
a subroutine at the point of subscript definition will
bring the new value into the index register.

An exception to the use of a subroutine is made when
the subscript is defined by a transfer exit from a DO,
and that DO is within the range of a DO controlling
some other subscript in the subscript combination.
In such instances, if the index quantity is used in the
inner DO, no calculation is necessary; the exit values
are used. If the index quantity is not used, instructions
are compiled to simulate this use, so that in either case
the transfer exit leaves the correct function value in
the index register.

Modification and Optimization

Initializing and computing instructions correspond
ing to a given DO are placed in the object program at a
point corresponding to the lowest possible (outermost)
DO level rather than at the point corresponding to the
given DO. This technique results in the desired removal
of certain instructions from the most frequent inner
most loops of the object program. However, it necessi
tates the consideration of some complex questions when
the flow within a nest of DO's is complicated by the
occurrence of transfer escapes from DO-type repetition
and, by other IF and GO TO flow paths. Consider a
simple example, a nest having a DO on I containing a
DO on J, where the subscript combination (I, J) appears
only in the inner loop. If the object program corre
sponded precisely to the FORTRAN language pro
gram, there would be instructions at the entrance point
of the inner loop to set the value of J in (I, J) to the
initial value specified by the inner DO. Usually, how
ever, it is more efficient to reset the value of J in (I, J)
at the end of the inner loop upon leaving it, and the ob
ject program is so constructed. In this case it becomes
necessary to compile instructions which follow every
transfer exit from the inner loop into the outer loop (if
there are any such exits) which will also reset the value
of J in (I, J) to the initial value it should have at the
entrance of the inner loop. These instructions, plus the
initialization of both I and J in (I, J) at the entrance
of the outer loop (on 1), insure that J always has its
proper initial value at the entrance of the inner loop
even though no instructions appear at that point which
change J. The situation becomes considerably more
complicated if the subscript combination (I, J) also ap
pears in the outer loop. In this case two independent
index quantities are created, one corresponding to
(I, J) in the inner loop, the other to (I, J) in the outer
loop.

Optimizing features play an important role in the
modification of the procedures and techniques outlined
above. It may be the case that the DO structure and

subscript combinations of a nest describe the scanning
of a two- or three-dimensional array which is the equiva
lent of a sequential scan of a vector; i.e., a reference
to each of a set of memory locations in descending order.
Such an equivalent procedure is discovered, and where
the flow of a nest permits, is used in place of more com
plicated indexing. This substitution is not of an empiri
cal nature, but is instead the logical result of a general
ized analysis.

Other optimizing techniques concern, for example,
the computing instructions compiled to evaluate the
functions (governing index values and decrements) men
tioned previously. When some of the parameters are
constant, the functions are reduced at executive time,
and a frequent result is the compilation of only one
instruction, a reference to a variable, to obtain a proper
initializing value.

In choosing the symbolic index register in which to
test the value of a subscript for exit purposes, those
index registers are avoided which would require the
compilation of instructions to modify the test instruc
tion decrement.

Section 4 (Haibt) and Section 5 (Best)

The result of section 3 is a complete program, but one
in which tagged instructions are tagged only sym
bolically, and which assumes that there will be a real
index register available for every symbolic one. It is the
task of sections 4 and 5 to convert this program to one
involving only the three real index registers of the 704.
Generally, this requires the setting up, for each symbolic
index register, of a storage cell which will act as an
index cell, and the addition of instructions to load the
real index registers from, and store them into, the index
cells. This is done in section 5 (tag analysis) on the basis
of information about the pattern and frequency of flow
provided by section 4 (flow analysis) in such a way
that the time spent in loading and storing index registers
will be nearly minimum.

The fundamental unit of program is the basic block; a
basic block is a stretch of program which has a single
entry point and a single exit point. The purpose of sec
tion 4 is to prepare for section 5 a table of predecessors
(PRED table) which enumerates the basic blocks and
lists for every basic block each of the basic blocks which
can be its immediate predecessor in flow, together with
the absolute frequency of each such basic block link.
This table is obtained by an actual "execution" of the
program in Monte-Carlo fashion, in which the outcome
of conditional transfers arising out of IF-type state
ments and computed GO TO's is determined by a ran
dom number generator suitably weighted according
to whatever FREQUENCY statements have been pro
vided.

Section 5 is divided into four parts, of which part 1 is
the most important. It makes all the major decisions
concerning the handling of index registers, but records

196 1957 WESTERN COMPUTER PROCEEDINGS

them simply as bits in the PRED table and a table of
all tagged instructions, the STAG table. Part 2 merely
reorganizes those tables; part 3 adds a slight further
treatment to basic blocks which are terminated by an
assigned GO TO; and finally part 4 compiles the finished
program under the direction of the bits in the PRED and
ST AG tables. Since part 1 does the real work involved
in handling the index registers, attention will be con
fined to this part in the sequel.

The basic flow of part 1 of section 5 is,

Yes

Any PRED entries not yet considered?

No

Consider a moment partway' through ,the execution
of part 1, when a new region has just been treated. The
less frequent basic blocks have not yet been encoun
tered; each basic block that has been treated is a mem
ber of some region. The existing regions are of two
types: transparent, in which there is at least one real
index register which has not been used in any of the
member basic blocks, and opaque. Bits have been en
tered in the STAG table, calling where necessary for
an LXD (load index register from index cell) instruc
tion preceding, or an SXD (store index register in index
cell) instruction following, the tagged instructions of the
basic blocks that have been treated. For each basic
block that has been treated is recorded the required
contents of each of the three real index registers for
entrance into the block, and the contents upon exit.
In the PRED table, entries that have been considered
may contain bits calling for interblock LXD's and
SXD's, when the exit and entrance conditions across the
link do not match. ~

N ow the PRED table is scanned for the highest
frequency link not yet considered. The new region is
formed by working both forward over successors and
backward over predecessors from this point, always
choosing the most frequent remaining path of control.
The marking out of a new region is terminated by en
countering 1) a basic block which belongs to an opaque
region, 2) a basic block which has no remaining links
into it (when working backward) or from it (when
working forward), or which belongs to a transparent
region with no such links remaining, or 3) a basic block
which closes a loop. Thus the new region generally
includes both basic blocks not hitherto encountered, and
entire regions of basic blocks which have already been
treated.

The treatment of hitherto untreated basic blocks in
the new region is carried out by simulating the action
of the program. Three cells are set aside to represent the
object machine index registers. As each new tagged in
struction is encountered these cells are examined to see~

if one of them contains the required tag; if not, the
program is searched ahead to determine which of the
three index registers is the least undesirable to replace,
and a bit is entered in the STAG table calling for an
LXD instruction to that index register. When the
simulation of a new basic block is finished, the en
trance and exit conditions are recorded, and the next
item in the new region is considered. If it is a new basic
block, the simulation continues; if it is a region, the
index register assignment throughout the region is
examined to see if a permutation of the index registers
would not make it match better, and any remaining mis
match is taken care of by entries in PRED calling for
interblock LXD's.

A final concept is that of index register activity.
When a symbolic index register is initialized, or when
its contents are altered by an indexing instruction, the
value of the corresponding index cell falls out of date,
and a subsequent LXD will be incorrect without an
intervening SXD. This problem is handled by activity
bits, which indicate when the index cell is out of date;
when an LXD is required the activity bit is interrogated,
and if it is on an SXD is called for immediately after the
initializing or indexing instruction responsible for the
activity, or in the interblock link from the region con
taining that instruction, depending upon whether the
basic block containing that instruction was a new basic
block or one in a region already treated.

When the new region has been treated, all of the
old regions which belonged to it simply lose their iden
tity; their basic blocks and the hitherto untreated basic
blocks become the basic blocks of the new region. Thus
at the end of part 1 there is but one single region, and
it is the entire program. The high-frequency parts of the
program were treated early; the entrance and exit con
ditions and indeed the whole handling of the index
registers reflect primarily the efficiency needs of these
high-frequency paths. The loading and unloading of the
index registers is therefore as much as possible placed
in the low-frequency paths, and the object program
time consumed in these operations is thus brought near
to a minimum.

CONCLUSION

The preceding sections of this paper have described
the language and the translator program of the FOR
TRAN system. Following are some comments on the
system and its application.

Scope of Applicability

The language of the system is intended to be capable
of expressing virtually any numerical procedure. Some
problems programmed in FORTRAN language to date
include: reactor shielding, matrix inversion, numerical
integration, tray-to-tray distillation, microwave ~propa
gation, radome design, numerical weather prediction,
plotting and root location of a quartic, a procedure for
playing the game "nim," helicopter design, and a number

Backus et al.: The FORTRAN Automatic Coding System 197

of others. The sizes of these first programs range from
about 10 FORTRAN statements to well over 1000, or
in terms of machine instructions, from about 100 to
7500.

Conciseness and Convenience

The statement of a program in FORTRAN lan
guage rather than in machine language or assembly
program language is intended to result in a considerable
reduction in the amount of thinking, bookkeeping,
writing, and time required. In the problems mentioned
in the preceding paragraph, the ratio of the number of
output machine instructions to the number of input
FORTRAN statements for each problem varied be
tween about 4 and 20. (The number of machine il).struc
tions does not include any library subroutines and thus
represents approximately the number which would need
to be hand coded, since FORTRAN does not normally
produce programs appreciably longer than correspond
ing hand-coded ones.) The ratio tends to be high, of
course, for problems with many long arithmetic expres
sions or with complex loop structure and subscript ma
nipulation. The ratio is a rough measure of the concise
ness of the language.

The convenience of using FORTRAN language is
necessarily more difficult to measure than its concise
ness. However the ratio of coding times, assembly pro
gram language vs FORTRAN language, gives some in
dication of the reduction in thinking and bookkeeping
as well as in writing. This time reduction ratio appears
to range also from about 4 to 20_ although it is difficult
to estimate accurately. The largest ratios are usually
obtained by those problems with complex loops and
subscript manipulation as a result of the planning of
indexing and bookkeeping procedures by the translator
rather than by the programmer.

Education

It is considerably easier to teach people untrained in
the use of computers how to write programs in
FORTRAN language than it is to teach them machine
language. A FORTRAN manual specifically designed
as a teaching tool will be available soon. Despite the
unavailability of this manual, a number of successful
courses for non programmers, ranging from one to three
days, have been completed using only the present ref
erence manual.

Debugging

The structure of FORTRAN statements is such that
the translator can detect and indicate many errors
which may occur in a FORTRAN-language program.
Furthermore, the nature of the language makes it possi
ble to write programs with far fewer errors than are to
be expected in machine-language programs.

Of course, it is only necessary to obtain a correct
FORTRAN-language program for a problem, therefore
all debugging efforts are directed toward this end. Any

errors in the translator program or any machine mal
function during the process of translation will be de
tected and corrected by procedures distinct from the
process of debugging a particular FORTRAN program.

In order to produce a program with built-in debugging
facilities, it is a simple matter for the programmer to
write various PRINT statements, which cause "snap
shots" of pertinent information to be taken at appropri
ate points in his procedure, and insert these in the deck
of cards comprising his original FORTRAN program.
After compiling this program, running the resulting
machine program, and comparing the resulting snap
shots with hand-calculated or known values, the pro
grammer can localize the specific area in his FORTRAN
program which is causing the difficulty. After making
the appropriate corrections in the FORTRAN program
he may remove the snapshot cards and recompile the
final program or leave them in and recompile if the pro
gram is not yet fully checked.

Experience in debugging FORTRAN programs to
date has been somewhat clouded by the simultaneous
process of debugging the translator program. However,
it becomes clear that most errors in FORTRAN pro
grams are detected in the process of translation. So far,
those programs having errors undetected by the trans
lator have been corrected with ease by examining the
FORTRAN program and the data output of the ma
chine program.

Method of Translation

In general the translation of a FORTRAN program
to a machine-language program is characterized by the
fact that each piece of the output program has been
constructed, instruction by instruction, so as not only
to produce an efficient piece locally but also to fit effi
ciently into its context as a result of many considerations
of the structure of its neighboring pieces and of the
entire program. With the exception of subroutines (cor
responding to various functions and input-output
statements appearing in the FORTRAN program), the
output program does not contain long precoded instruc
tion sequences with parameters inserted during trans
lation. Such instruction sequences must be designed to
do a variety of related tasks and are often not efficient
in particular cases to which they are applied.
FORTRAN-written programs seldom contain sequences
of even three instructions whose operation parts alone
could be considered a pre coded "skeleton."

There are a number of interesting observations con
cerning FORTRAN-written programs which may throw
some light on the nature of the translation process.
Many object programs, for example, contain a large
number of instructions which are not attributable to
any particular statement in the original FORTRAN
program. Even transfers of control will appear which
do not correspond to any control statement (e.g., DO,
IF, GO TO) in the original program. The instructions
arising from an arithmetic expression are optimally

198 1957 WESTERN COMPUTER PROCEEDINGS

arranged, often in a surprisingly different sequence than
the expression would lead one to expect. Depending
on its context, the same DO statement may give rise to
no instructions or to several complicated groups of in
structions located at different points in the program.

While it is felt that the ability of the system to trans
late algebraic expressions provides an important and
necessary convenience, its ability to treat subscripted
variables, DO statements, and the various input-output
and FORMAT statements often provides even more
significant conveniences.

In any case, the major part of the translator program
is devoted to handling these last mentioned facilities
rather than to translating arithmetic expressions. (The
near-optimal treatment of arithmetic expressions is sim
ply not as complex a task as a similar treatment of
"housekeeping" operations.) A list of the approximate
number of instructions in each of the six sections of the
translator will give a crude picture of the effort expend
ed in each area. (Recall that Section 1 completely treats

arithmetic statements in addition to performing a num
ber of other tasks.)

Section Number
1
2
3
4
5
6

Number of Instructions
5500
6000
2500
3000
5000
2000

The generality and complexity of some of the tech
niques employed to achieve efficient output programs
may often be superfluous in many common applications.
However the use of such techniques should enable the
FORTRAN system to produce efficient programs for
important problems which involve complex and unusual
procedures. In any case the intellectual satisfaction of
having formulated and solved some difficult problems
of translation and the knowledge and experience ac
quired in the process are themselves almost a sufficient
reward for the long effort expended on the FORTRAN
project.

The Interpretation and Attainment of Reliability
In Industrial Data Systems

BRUCE K. SMITHt

PURPOSE OF AN INDUSTRIAL DATA SYSTEM

T' HE FIRST self-sequenced digital computer was
a relay device conceived for the purpose of reliev
ing man of the tedium of involved computation.

I t was a docile slave, content (for the most part) to work
a 24-hour day doing arithmetic faster, cheaper, and
with fewer errors, than had theretofore been possible.
Even before the incorporation of electronics, these capa
bilities were being utilized on problems which were en
tirely unreasonable for manual solution. The modern
digital computer represents a considerably faster, more
versatile, and more reliable instrument than its prede
cessor, but the advances in capability have been hard
pressed to keep pace with the advances in application.
It may truly be said at this writing that there is no
foreseeable limit to either the speed or the reliability
which can be profitably utilized.

Industrial data-handling systems have been con
ceived for the purpose of relieving man of the tedium of
data gathering, data interpretation, and the use of in
terpreted data in factory control. We want, in essence,
an'other docile slave who knows nothing of time clocks,

t Beckman Instruments, Inc. Fullerton, Calif.

and who will do our present tasks with greater accuracy,
speed, economy, and reliability than presently possible
through manual methods. We must expect that the in
troduction of such devices will permit manufacturing
techniques heretofore considered unreasonable because
of human limitations. We must, therefore, expect that
considerably greater demands will be made of the
equipment than originally intended. There is no such
thing as enough reliability, or enough capability in a
data-handling system which is to be modern both on
the drawing board and on the day of installation. This
does not imply any futility to construction with the
means presently available, but rather the realization
that these means can never be sufficient.

THE SYSTEM AS A DIGITAL COMPUTER

Automatic process control requires the continuing
development of suitable end instruments for measure
ment of physical and chemical process variables. The in
strumentation must, in many cases, be extremely accu
rate, and must in all cases produce outputs which may
be scanned and monitored at a centralized facility. Com
plete processing of this information for a closed-loop
control system necessarily implies some computing

Smith: Reliability in Industrial Data Systems 199

ability. Many of the simpler control tasks are being
handled entirely by analog techniques. But the optimum
process-control system preferably includes a digital
computer, and employs the end instruments as special
ized input-output equipments on the computer. It is
much more profitable to consider present requirements
as simplifications of that end, than to direct future
growth from the somewhat hazy needs of the present.

The analogy of data-handling systems and computers
is useful not only to the determination of future system
requirements, but also as a means for improving present
system reliability. Reliability is fundamentally more
readily attainable in the digital domain, because of
tolerance permission on components, and because of a
higher degree of standardization in the use of those
components.

Failure of a component is very often a matter of defi
nition. We are apt to say that a unit has failed when
what is meant is that it has drifted out of the tolerance
range permissible in its application. When presence of
energy, rather than value of energy, constitutes infor
mation, it is very much easier to design with adequate
allowances for long-term variations. Early signal quanti
zation, i.e., analog-to-digital conversion, is an important
step toward reliability, inasmuch as it extends tolerance
permission to the majority of the system.' Digital end
instruments are the logical extension of this aim, but at
this writing do not exist with accuracies sufficient for
most system requirements.

FUNDAMENTAL COMPONENT RELIABILITY

The over-all reliability of a system is controlled by
the weakest system element. Intelligent design implies
not only the proper choice of every component, but a use
balance which will result in all parts of the system hav
ing equivalent life expectancy. No component is unre
liable except as made so by the way that it is used or
by the environment in which it is employed. The most
meaningful basis for comparison of components, there
fore, is their worth to a proposed system when operated
in the manner necessary to achieve reliability. The
"manner necessary" may be one in which the device has
no value whatsoever, or it may simply be one involving
a maximum skin temperature or other environment
influenced factor. A number of unusual environments
may be impractical to supply in a single system, but it
is very often reasonable to incorporate one special en
vironment when it can be shown to benefit most circuit
elements.

The life of an electromechanical device is usually
given in terms of the number of cycles of operation.
Life, measured in time, is thus a direct function of use
frequency. The life of an electronic component is usually
given in thousands of hours. Provided dissipation is held
constant, there is usually no correlation between life and
the use frequency. A system employing electromechani
cal components may actually be more reliable (in terms
of time) than o,ne employing electronics in their stead,

if the use frequency is low and if the electronic com
ponents available for substitution have a relatively
short life expectancy.

LOGICAL BALANCE

But straight forward comparison of electromechanical
and electronic means wi thin a given system logic is
seldom an accurate basis for comparison. A properly
optimized logic is one which takes recognition of com
ponent capabilities and attempts to minimize numbers
of components through maximum use of these capabili
ties. Early digital computers comprised combinations
of special-purpose logical elements, such as "multipli.
ers," "square rooters," and various different number and
command storage devices. A major step in computer
reliability was taken through the use of a single arith
metic organ to perform all arithmetic functions, and the
assignment of similar multiple-use tasks to other parts
of the system. This required an increase in information
rate to maintain a given computational speed, but it has
already been noted that the speed of an electronic com
ponent need have no bearing on its life expectancy.
Logical multiplexing, when the components being multi
plexed are electronic, can significantly improve system
reliability by virtue of reduction in the number of com
ponents required. Maximum potential reliability exists
in that system which makes the greatest possible use
of each of its electronic components, and the least pos
sible use of each of its electromechanical devices.

Potential system reliability is a function both of over
all logical balance and of the detailed breakdown of that
logic. A finite number of engineering man hours exists for
the creation of each new system design. To a very large
extent the reliability of the end product is determined
by how those hours must be spread over the different
design problems in the product. If the logic of a system
can be implemented through combinations of a few
simple common denominators, correspondingly more
time is available for each denominator's development.

MODULAR DESIGN

Modular design is the development and use of such
basic common denominators. Because the modules are
simple, and have small variety, there are also a rela
tively small number of different component types. This
has important implications in the practicability of ex
haustive component analysis, to the end of determining
how they must be used to make them most reliable. It
also implies that there is a greater probability of finding
one optimum environment for the entire system.

Reliable module design requires not only the knowl
edge of how each component must be operated to assure
reliability, but the prediction and control of all possible
component interactions over the life of the equipment.
The most reliable of basic designs may be rapidly con
verted into an unreliable assemblage of hardware as a
result of unusual voltages or temperatures existing dur
ing breakdown of one part of the system. Prediction of

200 1957 WESTERN COMPUTER PROCEEDINGS

all such interactions is not within human capabilities in
a system which has been designed over a "practical"
period of time and which is comprised of many non
standard circuit forms. Modular design is far more than
a design convenience. It is a design necessity if all factors
influencing long-term life expectancy are to be consid
ered.

PACKAGING

The physical manifestation of modular design is
paG:Kaging, wherein each package has a logical value
determined by the common denominator it contains.
Modular design increases the reliability potential of a
given system design. Use of a few package types to im
plement the logic of many different systems, varying
both in speed and complexity, further increases that
potential. It makes very good sense, therefore, to fix the
speed and use parameters of the packages with the most
ambitious system in mind. The economics of standardi
zation are such that fast but standard packages in all
applications are often cheaper than a variety of package
types tailored to individual system requirements.

Packaging, and in particular packaging via printed
circuit panels, provides a means for rigidly controlling
the physical juxtaposition of components during manu
facture. Intelligence in package design is no less im
portant to reliability than intelligence in component
selection, and is very often the deciding factor in that
selection. Too often the layout of the circuit elements is
delegated to a draftsman who has no comprehension of
the physical or the electronic problems associated with
the use of those elements. Modular design, with a few
package types, makes it possible for the circuit designer
to control every single factor which will influence the
long-term performance of his circuit. The fact that the
transformer prevented proper air flow to the resistor,
so that it in turn radiated too much heat to the diode,
is nobody's fault but his own. There are no design jobs
in the development of a reliable package which should
not receive careful engineering attention.

THE SOCKET Is A COMPONENT

The contacts of the packages and their sockets are
in the general category of components with other elec
tromechanical devices. Like such devices, they may be
used in such a way that they are extremely reliable or
they may be the determining factor in machine sta
bility. Rhodium plating has assumed the same password
to reliability position in contacts as ~'50 per cent derat
ing" in electronic components. Neither password will
open the door to reliability unless applied as the result
of a complete physical analysis of the use conditions of
the component. The limiting factor in socket contact
life is more often improper spring pressure than poor
contact surface. For example, uniform insertion, guaran
teed by close tolerance package guides, is one method of
insuring constancy of design spring pressure.

Contacts, as components, should be minimized for
maximum life expectancy. However, the optimum num
per of con tacts may very well be determined by the
machine service requirements and be much more than
the logical minimum. Inasmuch as service is one very
important aspect of reliability, minimum number con
sistent with serviceability is a better statement of design
objective.

THE REAL MEANING OF RELIABILITY

AND BREAKDOWN

Reliability to a missile designer is his guarantee that
nothing will fail during the first (and only) useful
moments of the equipment's life. Reliability, to the
general purpose computer designer, is the ratio of useful
computing time to scheduled computing time. Reli
ability, as applied to an industrial data-control system,
is much more concerned with duration of time between
breakdowns. It is not sufficient to have a high proba
bility of successful operation for some designated num
ber of continuous hours, if the failure rate thereafter
will make the equipment unusable.

Failure of a centralized process-control facility is
tantamount to a complete walk out of personnel em
ployed in manual control applications. In the analogous
situation, however, it is very often possible to divert
other employees to the control function. With an auto
matic control it is probable that the manual control
facilities will be nonexistent-particularly if the auto
matic control capabilities have been utilized in manu
facturing processes not possible with manual tech
niques. Insofar as most processes have sufficient inertia
to go on for short times without control, breakdown is
serious mainly if it is of longer duration than system
inertia will carry, or if it produces a drastic change in a
controlled device at the instant of breakdown.

Breakdown, then, may have two meanings. If the
janitor accidentally shuts down system power, but im
mediately restores it, and if no information vital to
control is lost during the momentary shutdown, the
breakdown may be completely inconsequential to the
controlled process. A system designed so that failures
may be instantly remedied by a passing janitor is, per
haps, an unrealizable goal. The degree of realization,
however, is one measure of effective system reliability.

FINDING THE TROUBLE

Localization of a faulty package is very much easier
than location of a faulty component in an unpackaged
design. If relatively few package types are involved, a
small number of spares may be economically considered
as a part of the system, to be used as replacements for
those causing breakdown. Subsequent location of the
specific component causing failure may be done on in
dependent package checkers, involving no system down
time whatever. This aspect of servicing, however, is
properly the province of the original manufacturer.

Smith: Reliability in Industrial Data Systems 201

Continued package reliability may be guaranteed only
by assuring that component replacement is made to
original circuit specification. This applies both to the
choice of component and to the way that it is mounted.
A package design which requires that components must
be unsoldered for testing imposes unnecessarily severe
condi tions on those parts and the package might better
be discarded than "salvaged" as a future source of
difficulty.

SELF DIAGNOSIS

Even with packaging and with elaborate test indi
cators, fault localization in a large system demands in
telligence and time from a serviceman, and'assumes his
availability at the time of breakdown. The expansion of
a basic scanning and monitoring facility to one provid
ing complete factory control would appear to increase
this problem in direct proportion to system elaboration.
Fortunately, the inclusion of a digital computer as the
heart of the data-handling facility builds in the means
for intelligent and rapid failure diagnosis. The concept
of self diagnosis, applied to packaged digital computers,
has only recently been investigated by the manufactur
ers of such equipments. It has been demonstrated that
it is possible for a computer to completely analyze the
vast majority of its own breakdowns as well as those in
tertiary equipments, and to print out the results of the
analysis, as the bad package number, on a directly con
nected typewriter. Complete introspective ability may
require that the equipment involved in typeout be in
dependent of the main control line. But extra hardware
of this nature is a small price to pay for fast return to
serVIce.

These concepts are being applied to the design of
business computers under development today. They
constitute computing routines, rather than hardware,
and as such represent an actual manufacturing saving
over the conventional servicing provisions. So far, the
application of such methods has been extended only to
service of unchecked machines. In a business applica
tion where initial machine cost is an important factor,
and where breakdown constitutes inconvenience rather
than catastrophe, such an approach is a tremendous but
sufficient advance over older servicing methods. As ap
plied to factory control, however, it must be recognized
that the cost of breakdown may exceed the worth of the
control system, and that elaboration which materially
improves reliability is cheap insurance.

ERROR DETECTION

It is profitable, therefore, to consider the logical ex
tension of this automatic servicing procedure. The
techniques for self-checking are well known to the art,
having been applied in computers for over a decade and
a half. Breakdown of the end instruments themselves
is detectable by comparison with alarm limits, and also
by rates of change in excess of those possible with the

inertia of the process being measured. The incorporation
of self-checking logic is justifiable as insurance against
nonobvious error, as an aid to self diagnosis, and as the
means for automatically initiating the full diagnostic
test routine.

Rapid service, as made possible by automatic detec
tion of error, alarm, and automatic indication of error
source, can make the difference between momentary
failure and consequential breakdown. When that service
can be accomplished by personnel completely unversed
in machine logic or circuitry, machine reliability ac
quires an entirely new definition.

PREVENTIVE MAINTENANCE

No breakdown, however, is completely without con
sequence, even if the consequence is no more than in
convenience to our hypothetical janitor. Detection and
correction of incipient failure is always more desirable
than correction after failure, no matter how efficiently
the means for the latter may be implemented.

Preventive maintenance may eliminate a large per
centage of breakdowns, but must be applied with in
telligence so that the procedure, in itself, does not set up
conditions for other failures. A well-intentioned testing
routine, involving periodic removal of packages for
analysis, may actually decrease reliability by too fre
quent stressing of socket contacts. The socket, like every
other component, must be given a proper environment
for guaranteed longevity. Like the vacuum tube, the
socket must not be used if it is to last for the economic
life of the equipment. But "not being used," or at least
being "used" seldomly, is an economically useful en
vironmen t fQr the socket.

MARGINAL CHECKING

Marginal checking, as a means for system test under
extreme tolerance condi.tions, may be employed on a
data-handling system with considerable advantage and
without danger of establishing unfavorable component
environments. Built in facilities for varying all system
voltages may be used in conjunction with self-diagnostic
test routines for rapid location of potential trouble spots.
These routines are generally manually applied on a
once-a-day or once-a-month basis in normal digital com
puting systems but can be applied automatically at any
desired interval. Applied in this fashion they may
eliminate the need for self-checking circuitry. The sys
tem is assured, after each test, that it is working prop
erly and has very high probability of remaining so until
the next test.

Marginal checking is frequently difficult if not im
possible to apply to electromechanical devices, and if a
given system requires their use, every effort should be
made to obtain a sound basis for life prediction. This
requires that a sufficiently large number of the devices
must be tested to end of life under conditions which
realistically approximate those in the system. It also

202 1957 WESTERN COMPUTER PROCEEDINGS

requires that the components must be manufactured
under rigidly controlled factory conditions, so that the
statistic may have reasonable accuracy on every such
unit in the system. Knowing that a device can be ex
pected to operate without trouble for a given number of
years, it is then possible to arrange for replacement at
or before that time.

CONCLUSION

Through proper balance of the logical system, through
the use of an intelligently derived modular design phi
losophy, and through exhaustive analysis of each of the
component parts and environments in the system, it is
possible to achieve a high degree of potential reliability
in an industrial data facility. Present designs should be
considered as simplifications of the closed loop system,

and make maximum use of digital information handling
techniques. With the digital computer, effective system
reliability may be substantially improved by built in
programs for location of failures in potential trouble
areas.

The house of cards has fictitious economic attractive
ness over one built of more substantial materials. An
industrial data system is very much a part of the factory
in which it is used, and as such has an economic value
determined over a large number of years. Reliability
may justify whatever price is needed for its attainment,
but fortuitously it can be shown that the majority of the
means are those which actually lead to production econ
omy. In the final analysis, the only sure technique for
attaining reliability is a conscientious desire for
improvement.

Discussion

D. A. Weir (STL England): Did the
speaker say that it was not possible to make
marginal checks on electromechanical equip
ment? Is it common to apply such checks in
automatic telephone switching?

Mr. Smith: I believe that the exact
words that I used on that subject were, "It
is difficult, if not impossible, to apply margi
nal checking on such apparatus." It is cer
tainly possible to do marginal checking on

more elaborate mechanical devices. On sim
pler devices, such as the socket in which a
card is plugged, being a very simple mechan
ical device, it is rather difficult to do this
without shutting the machine down. I think
the point here is that we are talking about a
completely different order of reliability than
heretofore has been considered in the com
puter equipment. Have any of you, for
example, approached the manufacturer and
asked for a blower, a simple blower, which he
would probably guarantee to operate with-

out any maintenance whatsoever through
out a year? The point is that the way to
make an electromechanical component reli
able is to use it as little as you possibly can.
Marginal checking necessarily implies using
it over and above the amount of use that
component would receive in the normal
operational function of the system. It is to
the end of attaining more life out of a com
ponent, which has a finite life; and I say
that we should not apply marginal checking
to electromechanical components.

Accuracy Control in the RCA Bizmac System
I. COHENt, J. G. SMITHt, AND A. M. SPIELBERGt

INTRODUCTION

V ERY EARLY in the development of the RCA
Bizmac system it was recognized that large-scale
data-handling applications presented particular

requirements which could not be met by the multiplica
tion of data-processing devices alone. The size and com
plexity of such applications were such that several de
partures from the organization of earlier data-processing
systems were indicated. Centralized and immediate con
trol of the entire system conferred all the advantages on
system operation that the programmed computer had
on the interim organization of data for computation.
All processing machines and data-transfer media not

t Radio Corp. of America, Camden, N. J.
t General Electric Co., Phoenix Ariz.; formerly with Radio Corp.

of America, Camden, N. J.

only contain necessary internal monitoring devices, but
also the ability to monitor their own system operation.

LARGE-SCALE SYSTEM REQUIREMENTS

The scope of a large data-processing application may
be seen from Fig. 1. This represents a daily cycle of
operations at the Ordnance Tank and Automotive
Command (OT AC) in Detroit, where RCA Bizmac
product-line equipment is installed. The data processing
encompasses all the bookkeeping functions of OTAC
involving stock and supply control, catalog changes, and
cross-reference filing, among others, for some two hun
dred and fifty thousand catalog items. The daily load
involves some eighty thousand transactions. At the side
of the figure are represented the types of operations that
are shown interconnected to form the daily cycle.

~GEND

LJ

~

D

CARD
TRAN5CR)BER

PAPER TAPE
TRANSCR ISER

SORT

() COMPUTE

V ELECTRO-
MECHANICAl

PRINTER

~
MAGNETIC

TAPE
TQAN5CRIBER

0 TAPE
DUPLICATOR

0 REFERENCE
FI L E

Fig. l-Consolidated flow chart-one cycle.

<J
<::l
~
C1:>
~

~ ""'.
-~
~
~
~

~ ""'. C1:>

~
C1:>
'""t
~

~

'" '" ~
'""t
~

'" '<
<J
<::l

~
'""t

~
""'. ~

~
C1:>

~

Q
b;j
""'. t\I

~
~

'"
~
v,
~
~

t-.:)

o
w

204 1957 WESTERN COMPUTER PROCEEDINGS

The necessity for rigorous data-handling procedures
is quite apparent. The variety and sequence of different
operations call for the closest attention in verifying the
data each machine is handling, the accurate identifica
tion of data-storage locations, and the instruction of
machines in their tasks. Procedures for organizing the
daily routines may be found wanting due to a number
of factors. Communication between operators is subject
to human frailties. Operator monitoring of operations is
not so acute as should be and there are tendencies for
watchfulness to decrease with periods of error-free
operation. The status and operation of machines would
not be known except by constant supervision at their
locations. Variations in the schedule due to greater or
lesser amounts of daily input or' machine down-time
would take extended time for modification.

CENTRALIZED SYSTEM CONTROL

The RCA Bizmac System Central was designed to
guide the operation of the entire data-processing system.
System Central controls extend to the introduction and
output of all information to and from the system. It also
provides for the semiautomatic set-up, or instruction of
all machines, the location of data on magnetic tape and
the supervision of all operator's work. Fig. 2 shows the
operation of the System Central.

The schedulers provide the sequence of operations for
which the system operator selects machines. The system
operator then releases the machine instructions, or set
up, to one of the two available operator-verifier teams.
The operator and verifier selected then proceed inde
pendently of each other (at separate consoles) to in
struct the machine and connect it to the assigned tape
files. All Tapefile switching and machine set-up are
actuated via the operation control unit. This unit re
turns a record of all setups and tape connections to the
monitor console. It also will guard the system against
improper operating routines and operator mistakes by
equipment checks and lockouts. Agreements must be
reached between the operator and verifier consoles be
fore the schedule can proceed.

The monitor operator reviews all operations prior to
their initiation by the system operator and after the
operator and verifier have completed a set-up. The
monitor console also provides information on the pres
ent state of the system. Fig. 3 (opposite) is a photograph
of the monitor console. Its upper panel presents the sta
tus of all Tapefiles in the system. The lower panel pre
sents the interconnection of Tape Stations and machines.
The information gives the particular Tapefiles connect
ed to each of the information trunks of the Computer
and Sorters. The schedule number of the particular ma
chine run is shown and, where more than one tape per
trunk is necessary, the subrun numbers are also given.

The design of the System Central consoles and the
comm unica tion procedures used by i ts operators were
"human engineered" by a group of specialists and sys
tem engineers. All operational information appears in
the form of the actual console controls. The cards bear
ing the information are color coded for ease in handling.

....

.. :{' :::y:?;'<':< :'::::?"~ ::,":.'; '::: :::',:,::.:: :.-,.: .. :.' . .:,: .

I TAPE DATA

•.••• FILE

PAPER
TAPE

READER

SYSTEM CENTRAL OPERATORS
- CONTROL ROOM --------------------

~ '''N''''.

~ ~;~"~
Fig. 2-System Central diagram.

Scheduled operations may also be actuated automati
cally from paper tape loops containing all setup and
tape-connection data for the operation. Every action at
the operator verifier consoles is monitored and printed
out by a Schedule Recorder for record keeping purposes.
An interim scheduler is available to modify the se
quence of operations should the need arise. No machine
operators can change any data that is being processed
by the system.

DATA-TRANSFER CONTROLS

To meet the requirements of rapid availability of fre
quently used Tapefiles, the RCA Bizmac system adopted
the philosophy of Tapes-at-stations. This afforded the
system a further advantage in that human intervention
was avoided in data-transfer between machines. The
System Central classifies Tapefiles into available and
non-available for various types of operations so that in
put and output tapes are not intermixed with the result
ing loss of valuable data. When a Tape Station is selected,
it identifies itself to the System Central. This identifica
tion is in the form of numbers registered beside the Com
puter or Sorter information trunk to which it is to be
connected. Other machines have the same displays at
their own console or indication area.

Each Tapefile provides a series of status indicators
which may be utilized by the data processing machines
connected to it. These are shown in Fig. 4. These status

Cohen, Smith, and Spielberg: Accuracy Control in the RCA Bizmac System 205

Fig. 3-Monitor console.

{
SELECTION

START

COMMAND STOP - FORWARD

LINES STOP-REVERSE

READ -WRITE

RUN-STOP

FORWARD-REVERSE

TAPE REWOUND

RETURN END-OF- TAPE WARNING
-<

LINES TAPE OPERABLE

TAPE BUSY

READ-WRITE

{
WRITE OR READ BETA HEAD 17 LINES

DATA

LINES WRITE ECHO OR READ ALPHA HEAD

L7 LINES
USER EQUIPMENT TAPEFILE

Fig. 4-Controllines for RCA Bizmac Tapefile.

indicators form closed-loop systems which permit Tape
Station control completely and automatically by the
user machines. All user machine commands are verified.
In addition "end-of-tape" warnings and "tape operable"
are supplied. The user machines automatically discon
nect tapes when they are exhausted and the tapes re
wind. To forestall another connection of that rewinding
tape for another purpose, a "tape-busy" signal is pro
vided. Upon completion of rewind, a "tape-rewound"

signal occurs signifying the tape's availability. Every
Tapefile permits checking the current in the writing
heads to verify proper transcription. This is termed an
echo check.

An machines in the system that work with magnetic
tape use Tapefile status indicators. Transcription is
monitored by echo checking. Parity checks are made on
all data transfer whether to or from magnetic tape or
paper tape. Special checks are used in transcribing ma
chines, the Computer and Sorter, to avoid the loss of
characters or whole messages. These data-organization
checks monitor the sequence of Bizmac editing symbols.

SYSTEM EQUIPMENT CHECKING

In the system all error-checking devices and proce
dures are called accuracy controls. The accuracy con
trols in each area of the system are adapted to the needs
of that area. In machines such as the input and output
devices, which are generally monitored visually, the
functions of the accuracy controls are to call operator
attention to errors or difficulties. In machines such as
the Computer or Sorters, automatic reruns ~ the oper
ation are possible so that the machine itself can dis
criminate between errors due to component failure or
incorrect information, and those due to failures of a
transien t nature such as extreme excursions in line vol tage.

The accuracy con trois of the system were reviewed
during their design to fulfill the requirements of error
detection and correction. Error indicators were required
to indicate their own failures at the machine console or
control area. Error detectors were frequently added to
make error location easier and simplify the task of cor
rection. Special detection techniques were used to pre
vent a machine failure without indication. Comparison
devices for duplicated equipments or operations were
built in to the machines.

The Computer will attempt to rerun an operation in
which an error is detected if the error involved is of the
nature of incorrect parity, lack of verification, arith
metic overflow or lack of comparison of arithmetic re
sults. All arithmetic operations are performed twice, the
second time with complemented operands. However, in
cases of hardware failures such as counters or Tapefiles.
immediate shutdown results. When the Computer at
tempts an operation again, the number of retrials is
lImited by programmed counters. The Computer's pro
gramming abilities permit a variety of programmed
checks which can only be treated adequately in a sepa
rate series of papers.

The Sorter possesses the ability to discriminate be
tween errors causing immediate shutdown and those it
can again attempt. As its function is the reorganization
of data on magnetic tape it monitors its own use of the
Tapefiles.

In addition to the regular tapefile-status indicators
which it uses, extra detection devices insure that the
proper tapes, and only those, are in motion and read
ing or writing at any time. Parity checks are provided
for all information registers. Message criteria are ex
amined for proper size. To maintain the data rate on

206 1957 WESTERN COMPUTER PROCEEDINGS

tapes special equipment will reconstitute data-pulse
densities on tape if it is found to vary considerably from
the Tapefile 10-kc rate. Intermessage gaps on tape are
also reconstituted if they vary too much from system
norms.

Input to the system is by means of paper tape or
punched card. Paper tapes are prepared on Tapewriters.
They are verified by the Tapewriter-Verifier equipment.
The original tape is inserted into the Tapewriter-Verifier
and a new tape is prepared by another operator using
the original document. Both tapes are compared char
acter for character and their parity checked.

The Card Transcriber transcribes from cards to mag
netic tape. Each card is sensed at two separate sensing
stations and the data compared. If a lack of comparison
exists, all cards in motion are ejected into a hopper for
operator inspection. Mechanical checks monitor the
card transport and assure the transmission of only one
card at a time. In case of error an alarm summons the
operator. The Card Transcriber will automatically back
up the tape, erase the last message and restore starting
condi tions.

All input and output devices monitor the condition of
the magnetic or paper tapes and cards where they are
used. Indications of breaks, jams, low tape supply, or
exhaustion are brought to the operator's attention by
appropriate alarms. Transcription devices such as the
Card Transcriber, Magnetic Tape Transcriber, and
Paper Tape Transcriber cannot complete their opera
tion until the operator inserts proper terminal editing
symbols. When errors occur in data transmission they
all possess the ability to erase improperly transcribed
da ta and restore starting conditions.

The Electro-Mechanical Printer can, on detection of
parity errors in data transmission, back up and reread
the magnetic tape connected to it before transferring
control to its operator. It guards against printed lines of
more than one hundred twenty characters. Lack of
paper or rips in the paper are detected. The operator can
inhibit the parity checkers in the machine to cause the
line of data in question to be printed out.

For those machines in the system which do not have
the facility to print out the contents of their Tapefiles
the RCA Bizmac Interrogation Unit can be quickly
connected for printout. It can be made to print out data
despite parity errors or improper organization. The
Document Printer can be used to page print the con
tents of any paper tape.

EQUIPMENT RELIABILITY

Conservative design techniques are used throughout
the system. Circuits will perform their functions if
cathode emission drops to one half rated value. Rated
dissipations were also cut by one half. The system is
fused to retain independence of various areas of the
machines and aid in location of faulty components. All
component connections are readily available and plug
in, or modular, construction assists rapid repair. Margi
nal checking equipment is integral to the Computer and
Sorter.

Each Tape Station has facilities for marginal checking
of magnetic tape and head deterioration. Elapsed-time
meters are built into all Tape Stations to record length
of tape service. Magnetic heads are constructed to
record a character (seven bits) into 14 separate tracks.
The arrangement of recording heads are such that bad
areas on tape that may develop with time will not inter
fere with normal data handling. A maximum poor spot
of one-eighth inch by five-sixteenths of an inch can be
tolerated. This is shown in Fig. 5. All magnetic tape is
completely written and checked at twice normal pulse
densities before acceptance for system use.

A sam pIing of the system accuracy con troIs available
are presented here. More detailed treatment of internal
and system accuracy controls for each machine can be
found in the attached bibliography.

5
"8

HALF efTS

Fig. 5-Seven-bit dual-channel configuration.

CONCLUSION

The philosophy of system reliability of the RCA
Bizmac system is embodied in the concept of centralized
control of large scale data processing. Where necessary,
the human-machine transfer loop has been strengthened
by the development of more potent monitoring devices.
A great degree of system flexibility has been achieved.
The over-all reliability and efficiency of the entire data
handling process has been improved.

BIBLIOGRAPHY

[1] Halstead, W. K., Leas, J. W., Marshall, J. N., and Minett, E. E.,
"Purpose and Application of the RCA BIZMAC System," Pro
ceedings of the Western Joint Computer Conference, 1956.

[2] Beard, A. D., Bensky, L. S., Nettleton, D. L., and Poorte, G. E.,
"Characteristics of the RCA BIZMAC Computer," Proceedings
of the West~rn Joint Computer Conference, 1956.

[3] Owings, J. L. "The RCA BIZMAC System Central," Proceedings
of the Western Joint Computer Conference, 1956.

[4] Beard, A. D., Halstead, W. K., and Page, J. F. "Functional Or
ganization of Data in the RCA BIZMAC System," Proceedings
of the Western Joint Computer Conference, 1956.

[5] Bensky, L. S., Hurewitz, T. M., Lane, R. A. c., and Kranzley,
A. S. "Programming a Variable-Word-Length Computer," Pro
ceedings of the Western Joint Computer Conference, 1956.

[6] Montijo, R. E. "Control Philosophy in the Design of the RCA
BIZMAC Tapefile," presented at the National Electronics Con
ference, Chicago, Illinois, October 1, 1956.

[7] Katz, A., Jones, A. G., and Rezek, G. "Accuracy Control Sys
tems for Magnetic-Core Memories," Proceedings of the Western
Joint Computer Conference, 1957 (this issue).

1957 WESTERN COMPUTER PROCEEDINGS 207

Continuous Computer Operational Reliability
ROBERT D. BRISKMANt

INTRODUCTION

I N THE near future the homes, families, and lives of
every indi:ridual in the United States will be pro
tected agamst an aggressor attack by gigantic in te

grated radar defense networks. The heart of these
networks will be large computer systems. With the
probable use of ICBM (intercontinental ballistic mis
siles) and long-range strategic bombers as aggressive
weapons, a criterion for defense against surprise attacks
is an early-warning capability which must operate 24
hours a day, seven days a week. The consideration of
methods to give maximum reliability in the operation of
a computer system that must function continuously is
of national importance.

ILLUSTRATIVE COMPUTER SYSTEM

For illustrative purposes, practical discussion will be
limited to the typical large computer system described
in this paragraph. Extension of consideration to com
puter systems of different structures or variants would
be relatively simple. The computer will be divided into
the basic components of synchronizer (clock), memory,
logical systems (including program and arithmetic units),
and input-output circuits. All operations and data flow
will be serial in nature with internal, fixed programming.
For ease of maintenance the computer circuits will be
modularly constructed in the form of pluggable units.
This type of construction will include a ferrite core
memory.

Input information for the computer will come from
multiple communication sources or data transmission
links. Punched cards, punched tape, magnetic drum, or
magnetic tape can be used if necessary for intermediate
storage. The output data will be both permanently re
corded and presented instantaneously on some alerting
device for recognition and monitoring purposes. The
computer will also have the capability of determining
the proper courses of action concerning input and output
data flow.

RELIABILITY

No matter what operational characteristics and sys
tem organizations are attributed to the illustrative com
puter, the only important assumption is that the com
puter system will be so large or complex that a signifi
cant number of basic components fail daily. Actually
the important fact is not the number of failures but that
there is a significant probability of component mal
function.

For the case of a computer system which will con
tinuously operate, the term reliability must be carefully
examined. This term was not included in the "IRE

t Army Security Agency, Arlington 12, Va.

Standards. "1 Reliability might be defined in terms of
"component failure" which is related to function cessa
tion rather than in terms of "accuracy" which is more
related to degree of error. Reliability as concerned in
this paper can be defined in relation to the probability
of component failure. The degree of success in keeping
the computer system continuously operating will be a
function of the ability to predict this probability of com
ponent failure.

By the addition of a "prediction" function the varia
ble of time is introduced. Prediction can be defined in
time for this particular case by four periods.

1) The duration (dr) of the prediction interval.
2) The difference (dt) between the time of performing

the prediction and the time that the prediction
interval occurs.

3) The duration (dl) necessary for performing the
prediction test.

4) The period (dz) elapsed between each probability
test. For example, the probability of component
failure during a one-hour (dr) period occurring
five hours (dt) from performing a prediction test
can be determined in a two-second (dl) interval
which will be repeated every 20 minutes (dz).

An improvement in the prediction of reliability may
be established by use of a longer dt period. However dt is
determined practically from probability failure curves of
various electronic components. These curves are ob
tained from life testing of the more sensitive electronic
devices used in computers such as vacuum tubes, tran
sistors, diodes, ferrite-core drivers, relays, etc.2 There
fore dt will be limited in maximum length to the mean
probability of operating life of the components being
considered. Likewise, dr is limited by similar practical
considerations. In general an improvement in the pre
diction of reliability may also be established by use of
a longer dr period.

Prediction of operational reliability can be signifi
cantly improved by using a higher number of times that
probability is sampled per unit time (1/dz) or a shorter
dz period. The restrictions on increasing this probability
sampling rate are imposed by the computer system and
not by the characteristics of the individual circuit com
ponents. Basically, one restriction stems from the fact
that any time used for probability sampling in a con
tinuously operating system must be considered com
puter down time. High down time in a computer system
creates a poor duty cycle and a low operational effi
ciency. Also, a normal requirement is that the computer

1 "IRE standards on electronic computers: definitions of terms
1956." PROC. IRE! vol. .44, pp. 1166-1173; September, 1956. '

2 For further discussiOn of this topic see IRE TRA,N$., vo!. EC-5,
no. 4; December, 1956.

208 1957 WESTERN COMPUTER PROCEEDINGS

output devices will need a certain information flow per
unit time to properly function. Therefore the probabil
ity sampling rate is secondly restricted to low enough
values that the information output flow necessary for
continuity will be sufficient. The time required for per
forming each probability test (dl) should be as short as
possible to allow either a higher number of probability
samples or a decreased amount of down time with a
corresponding increase in the output information rate.
Actually dl is equal to the down time per operational
period and usually is inversely proportional to the prob
ability sampling rate.

From the above, one justified approach to maximum
reliability in a continuously operating computer system
is to attempt recurrent prediction of values for the pre
cise probability of component failure during a specified
period of time in the f,uture.

PREDICTION TESTING

Prediction testing on computers is a commonplace
practice today. However, almost no computer systems
must face the stringent requirements of continuous op
eration and prohibition of long-term outages.

The most common prediction test for computers is
some type of diagnostic programming or programmed
checks. A diagnostic program is designed to test as many
circuit components as possible throughout the computer
system in a rigorous manner to obtain early indications
of malfunctioning parts. These tests are often performed
with increased or reduced operating voltages. The varia
tions in operating voltages are designed to place sensi
tive circuit components nearer a marginal region of per
formance. This causes the malfunction of components
with the higher probabilities of failure. By replacing
these components the over-all computer's dt and dr
periods are increased for the subsequent operating
period. For a certain large business computer which
operates eight hours daily, one diagnostic program a day
insures a 90 per cent reliability during the operating
period. The whole diagnostic program takes 40 minutes
including test runs with variations of plus and minus
12 per cent in all dc operating voltages.

Several disadvantages are apparent when diagnostic
programming of this type is applied to a continuously
operating computer system. The major disadvantage is
that the operating section of the computer must usually
be halted to perform the diagnostic program. As a
thorough diagnostic test will probably take considerable
time, it is necessary to switch to an auxiliary operating
section of the computer. Switching of computer sections
is always necessary if variations in operating voltages
are used as part of the diagnostic testing.

The actual switching from one operational section of a
computer to an auxiliary section will normally involve
significant down time when the memory blocks are con
sidered. If the data in the operational memory is unique,
this information must be transferred to the auxiliary
men\ory section with accompanying loss of time. If the

data is accumulative from experience or computation,
either the transfer can be effected or new data can be
regenerated. Both alternatives' may result in significant
computer down time and may possibly cause a short
term output data flow rate below requirements.

To illustrate the above, a transfer of information
from the operational memory to an auxiliary memory
by use of the computer's logical system would involve
a minimum instructional program of SELECT, LOAD,
SHIFT, SELECT, STORE, TRANSFER plus neces
sary check cycles. The actuaJ time needed for a transfer
can easily be computed from knowledge of storage
capacity of the memory, time required for operational
cycles, number of operational cycles necessary per trans
fer, and amount of information that can be transferred
per operation cycle (usually limited by the accumulator
length). With coincidence-driven ferrite-core memories
in the order of 109 bits of storage, the time lost using the
computer logic system for a memory transfer operation
will be appreciable. On the other hand, if the auxiliary
memory must be regenerated, even greater time can be
lost when pertinent data is obtained through extensive
recomputation (e.g., a memory containing one thousand
targets all stored in vectorially computed positions).

COMPUTER SYSTEM ORGANIZATIONS

I t has been noted that a continuously operating com
puter system may consist of one or more integral com
puters. Obviously when failure during operation occurs
or when normal maintenance is necessary, at least one
stand-by computer unit would be required to insure
continuity of operation. More elaboration on some pos
sible configurations of computer systems is pertinent.

An obvious configuration is a system composed of
three separate computers. One is in continuolls opera
tion, the second in stand-by, and the third in mainte
nance or semistand-by. When the computer in use makes
a certain number of mistakes uncorrectable by the pro
grammed error correction routines or exhibits opera
tional errors through other failure detection devices,
operations are switched to the stand-by computer. The
stand-by computer has been previously prediction
tested so extremely reliable operation will be main
tained while the operational computer is in repair.
After maintenance, the operational computer can be
prediction tested and then become the stand-by com
puter. If the stand-by computer does fail during the
time the operational computer is under maintenance, a
third computer is still available.

Advantages of using the three-computer configuration
are that individual computer down time is relatively
unimportant and that no limitations are placed on the

.long term continuity of data output. However, com
puter system down time and short-term discontinuities
in output data flow will be determined by the time re
quired to transfer or regenerate memory information.
Although this configuration for a continuous operating
computer system obtains an exceptionally high reliabil-

Briskman: Continuous Computer Operational Reliability 209

ity by a brute force method, there are the previously
mentioned advantages in such a solution. These were
ac~rued by effectively reducing the problem to one com
puter operating on an eight-hour shift, substantially
lowering the over-all efficiency of such a system. No
further consideration will be given to a three-computer
system due to the prohibitive construction cost.

A second configuration is a system composed of two
computers. Although the cost of such a computer system
is extremely high, it is the minimum construction with
which any type of continuity of operation can be
main tained.

One variation of the two-computer system configura
tion involves the use of an operational and a stand-by
unit. The method of employment would be exactly simi
lar to the three-computer system arrangement previ
ously described, with the computers automatically
switching upon failure of a significant component. The
obvious objection to this system is the possibility of
failure in the second computer while the first is being
maintained, resulting in complete cessation of data out
put. However a computer simple enough for rapid main
tenance and with an extremely low probability figure of
component failure could efficiently operate in such a
configuration. All the advantages and disadvantages of
a two-computer system will be similar to the three
computer system with the above noted exception. To
obtain maximum reliability with this two-computer sys
tem, the stand-by computer can be subjected to various
prediction tests. The prediction tests should establish an
insignificant probability of component malfunction over
the time interval determined necessary to service the
operational computer (normal or failure type of mainte
nance).

A second variation of the two-computer system con
figuration involves prediction of a predetermined high
reliability figure for each of the computers over a speci
fied time interval of practical length. At the end of this
period the computers are automatically switched. For
example, assume computer one is given stringent diag
nostic programs until a prediction of 98 per cent reliable
operation can be obtained for a certain minimum period
(e.g., three hours). Operations are started with computer
one. Meanwhile computer two is subjected to the same
diagnostic tests until it can be predicted that this com
puter can operate with 98 per cent reliability for the es
tablished minimum period. If computer one does not fail
during the predicted three-hour reliability period, the
computers will be switched at the end of that time. Fail
ure of computer one during the predicted reliability pe
riod will cause immediate switching of operations to
computer two. Computer one will then be resubjected to
the prediction tests and become stand-by until com
puter two either fails or completes its predicted reliabil
i ty period. The two com pu ters are then al tern a ted based
on the above criteria to obtain continuity of operation.

Three of the major advantages of this computer con
figuration are listed below.

1) The over-all operational reliability of the above
computer system can theoretically be made ex
tremely high.

2) The computer system down time and short-term
discontinuity in output data flow is determined
solely by the switching time necessary to transfer
stored information.

3) The majority of the switching operations normally
occur when the operating computer is in perfect
working order. In all previous cases this informa
tion transfer must be attempted with a malfunc
tioning component in the computer which may
nullify the applicability of the transferred data.

One of the major disadvantages of this system is that
a large number of switching operations will be necessary.
This high switching rate will be required to maintain a
prediction of low probability of component failure (i.e.,
a high reliability). A high probability of component
failure is inherent due to the large number of sensitive
components used in present day computer circuitry. The
ability to predict high reliability figures for practical
periods depends directly on the mean life of the more
sensitive circuit components. These mean life spans are
relatively short for an application in this computer con
figuration. Another disadvantage is that this configura
tion is subject to complete stoppage if both computers
fail consecutively or during a short interval.

If this system is to be practical, the time between
each switching must be long. Also, the time required for
performing the prediction test must be much shorter
than the nominal predicted reliability period. Using the
above computer configuration, transfer of information
in memory cannot be done through the logical circuitry
as too much time will be lost. A 'direct method of data
transfer between memories must be used despite addi
tional costs.

CONTINUOUS INTERNAL PREDICTION

Of all the configurations previously described for a
continuously operating computer system, the second
variation of the two-computer system seems to utilize
best the benefits of prediction and to indicate a direction
towards solution.

One of the disadvantages of all the previously-
mentioned computer systems is that prediction testing
of the operational computer can only be accomplished
before or after operation. Therefore no prediction testing
can be done until either computer failure has occurred
or a specified time interval of relatively long duration
has elapsed.

A configuration is proposed as a possible solution
whereby prediction testing is accomplished as an inde
pendent part of each operation cycle or multiple thereof.
The use of prediction testing of the type previously de
scribed must be discarded as the time for the prediction
test must be extremely small compared to the com
puter's operating cycle. This is necessary to preserve a

210 1957 WESTERN COMPUTER PROCEEDINGS

workable duty ratio. If a recurrent prediction test sub
stantially increases the computer duty ratio, the prob
ability of component failure will significantly increase
with a corresponding decrease in reliability of operation.
With present day computers, a 10-microsecond period
for a prediction test (including circuit recovery time)
repeated every 50 operational cycles may be a high
figure. Variation of operating voltages as an aid to pre
diction testing for these short periods would also be im
possible. Therefore a totally new method of prediction
testing must be established.

The first consideration in developing a prediction test
would be to establish new standards for component
failure probability. This prediction test will be based on
the application of an internally generated waveform to
the computer circuitry. Each modular unit will be
broken down into the various component circuits such
as triggers, inverters, gates, amplifiers, delays, couplers,
etc. These circuits are designed for normal operation
with certain minimum-pulse type inputs. Therefore,
life testing of these component circuits with various de
generative varieties of input test pulses will be per
formed in order to establish a favorable prediction test.
A favorable prediction test would be defined by that
test waveform input which causes the greatest number
of malfunctions in those circuit components with the
high probabilities of failure.

The parameters of a pulsed test input waveform that
can be easily varied are the amplitude, shape, width,
and recurrence frequency. The single test input which
will provide the most favorable prediction for all the
com pater circuits will be a com posi te of pulse parame
ters. For example, an amplifier might respond primarily
to variations in pulse amplitude, diode gates to pulse
shapes, filters to pulse width, and multivibrators to
pulse recurrence periods (especially transistorized trig
gers). A possible test input which might give favorable
prediction would be a double pulsed waveform. This
waveform would consist of two test pulses, each being
one-quarter to three-quarters the width of the narrowest
pulse used in normal operation. The two test pulses
would be separated by a definite time period less than
the shortest operating pulse spacing and have an ampli
tude of one-half to nine-tenths of the minimum voltage
levels used in design. Various rise and fall times of either
or both test pulses would also be employed to obtain the
best prediction test. The entire duration of the test input
waveform normally should occupy a period less than
2.0 per cent of an operation cycle. This would include
circui t recovery time.

A computer configuration using a prediction testing
system similar to that proposed above would not be very
costly. The diagnostic circuitry would consist of the test
waveform generator, an elementary timer (to syn
chronize the prediction test with the operation cycle),
line drivers, and failure detection circuits. Each plugga
ble unit or modular circuit will also require a test wave-

form input and an error detection output. The com
puter system may employ separate busses for conveying
the test input waveforms to the various sections of the
computer.

The failure detection circuits, can be built into each
computer block, each operating section, each pluggable
unit, or each modular circuit. Some advantages of plac
ing failure detection devices into as small an operating
entity as possible are listed below.

1) Failure location is tremendously simplified.
2) The actual detection devices are extremely simple.
3) The probability of error in the failure detection

circuits themselves is reduced.

The above advantages may be nullified if it is neces
sary to use such a large number of simple detection de
vices that computer size and costs are substantially
increased.

It is obvious that a computer system employing con
tinuous prediction testing as an integral part of the
operational cycle must be designed around the predic
tion-testing technique. This proposed type of testing
cannot be easily added to existing computer systems.
The computer system should also be designed with
circuitry to allow complete transfer of information con
tained in memory to an auxiliary memory without the
use of the logical circuitry. The construction needed for
such a parallel-type transfer may be quite expensive
although simple in design and extremely rapid in opera
tion. In practice it may be advantageous costwise to
sectionalize the memory and provide spare memory
sections in case of failure in operating sections. Although
this avoids fabrication of two complete memory blocks
in parallel, sectionaIization will involve considerable ad
ditional circuitry for addressing, reading, writing,
parallel switching to auxiliary sections, and faiJure detec
tion in each separate memory division.

CONCLUSION

Reliability for a continuous operating computer sys
tem can be considered by many approaches. In general,
these computer systems are composed of multiple dupli
cated units which are interchanged to maintain con
tinuity of operation. Of the approaches considered, a
computer system which incorporates continuous pre
diction testing as part of the operational cycle seems a
promising solution. Using this approach for design of
the computer configuration and component circuits,
continuous operation of a computer system may be ob
tained with high reliability by establishment of a favor
able prediction-testing method. Computer design will
also include the necessary circuitry for direct memory
transfer upon failure detection.

The computer system using the proposed prediction
testing technique would have the advantages of insig
nificant long and short term discontinuities in the infor-

Scully and Colangelo: A utomatic Fault-Locating Means 211

mation output, a low data error level, negligible system
down time, a high efficiency, and relatively low costs.
The proposed prediction testing method is also advan
tageous as each memory transfer would be accomplished
under normal operating environment, while the com
ponent failure had occurred during the more stringent
test conditions.

BIBLIOGRAPHY

[1] Richards, R. K. Arithmetic Operations in Digital Computers'
New York: D. Van Nostrand Co., Inc., 1955.

[2] Shea, R. F. Principles of Transistor Circuits, New York: John
Wiley and Sons, 195.3.

[3] Goldman, S. Information Theory, New York: Prentice-Hall, Inc.,
1953.

[4] Engineering Research Associates. High Speed Computing Devices,
New York: McGraw-Hill Book Co. Inc., 1950.

Discussion

Chainnan Parsons: The speaker was very
careful to develop a theoretical computing
machine for his description of the continu
ous computer operational reliability; I won
der if we can comment on it concerning the
applicability of this particular marginal
techniq ue to such existing systems as the
SAGE?

Mr. Briskman: I stated, I believe, in

the close of my speech that this cannot be
added to the existing systems. My familiar
ity with the SAGE system is very slight;
however, from the size there it might have
been a very interesting experiment to try the
prediction system of techniques, such as
was proposed, rather than the standard
formula technique which is employed. In
other words, reducing various dc operating
voltages, and running diagnostic programs.
Actually the SAGE system is probably a
little small to benefit on a cost basis, on

changing to this alternative method of pre
diction testing.

J. G. Tryon (Bell Telephone Labs.): I
question whether continuous internal pre
diction testing via special test signals can
be realized with moderate equipment cost.
Restoration of wave shapes is so extensive
in a good computer that very many test
signals and associated verification circuits
would be required. I estimate that the size of
the computer would be doubled.

Field Performance of a New Automatic Fault
Locating Means

J. F. SCULLyt AND L. P. COLANGELOt

A MODERN Air Force electronic system does the
work of scores of people. Viewed as a labor
saving device, it is comparable to an automatic

telephone exchange. There is, however, a great organiza
tional difference between these two automatic systems.
A digital calculator, for example, is essentially a single
unit of great complexity, whereas the telephone ex
change is com posed of a m ul ti plici ty of units, each
capable of working independently. The telephone ex
change can be operated successfully by disconnecting
its malfunctioning circuits, but the entire digital calcu
lator is rendered useless if one component fails. It is as
though all the automatic clerks have staged a walk-out
until the single troublesome source is located.

The net result of the ever-increasing complexity of
electronic equipment has been that the shortage of ade
quately trained personnel in the Air Force has been ac
centuated. Not only has research and development
work been hampered, but the reliability of operational
field equipment and the establishment of sound main-

t Monroe Calculating Machine Co., Morris Plains, N. J.
t Rome Air Dev. Center, Rome, N .• Y.

tenance programs for such equipment, have been ad
versely affected. It has therefore become incumbent
upon designers, engineers, and manufacturers to strive
for greater simplicity of electronic equipment and to
produce equipment easier to maintain.

At the outset, we must clarify what we mean when
referring to "reliability" in connection with a large
ground electronic equipment. Since such equipment is
repaired, and so made operational again after each fail
ure, it is a different problem from, say, a missile or sys
tem in which one failure renders the device useless for
all time. So, while the mean time between failures is of
great importance, and the probability of successful oper
ation for a given time interval is also important, an
additional factor, the "down time" of the system, is of
equal importance. We shall define the reliability of our
system in terms of its operational efficiency as follows.
The efficiency of a system is the ratio of the time during
which the machine is capable of corre~t operation to the
time during which correct operation is desired. Thus,
if correct operation is experienced whenever we want it,
the system has an efficiency of 1; if it never works when
we want it to, an efficiency of O. This definition makes

212 1957 WESTERN COMPUTER PROCEEDINGS

it easy to examine the characteristics of a machine of
given efficiency in terms of ease of maintenance for that
machine. Table I presents the mean trouble duration
per trouble which would cause the observed efficiency if
the number of troubles encountered during an opera
t lonal week of 168 hours were experienced.

TABLE I
DOWN TIME VS EFFICIENCY

Efficiency

Troubles 0.75 I 0.85 I 0.95 per Week

Trouble Duration (Hours: Minutes)

1 42:00 25:00 8:00
2 21 :00 12:00 4:00
4 10:00 6:00 2:00
8 5:00 3:00 1:00

12 3:30 2:00 0:40
25 1:40 1:00 0:20
33 1:15 0:45 0: 15
50 0:50 0:30 0:10

100 0:25 0: 15 0:05

This table suggests that electronic machines are beset
by serious problems. For any fixed efficiency, if there
are very few troubles, then each must be very difficult
to locate. Let us suppose that every endeavor has been
made by a manufacturer to reduce the occurrence of
faults to the lowest possible number with all the tech
niques at his command. When all advantage possible
has been taken in this direction, the system will exhibit
an efficiency which is now a direct function of the time
which it takes the maintenance personnel to remove the
troubles which occur.

An automatic fault-locating means has been devised,
reduced to practice, and subsequently utilized in a large
scale digital data-processing equipment built for the
Rome Air Development Center by the Monroe Calcu
lating Machine Company. The machine solves a classi
fied Air Force problem and contains several thousand
logical elements (vacuum tubes and diodes). The
Monrobot Automatic Internal Diagnosis (MAID) moni
tors the machine at all times to make sure that there are
no circuit failures which might cause errors in the solu
tion of the problem. Upon occurrence of a failure, the
diagnosis unit quickly and automatically localizes the
circuit at fault.

The genesis of this automatic fault-location system
lay in the answer to the question: since electronic calcu
lators have been designed to perform automatically
operations otherwise handled by humans, why do we not
design maintenance machines to replace servicemen?
MAID is a pioneer answer to this question.

SeIfrepair implies that maintenance operations are
completely mechanized. Five steps are required where
maintenance is to be done on electronic calculating or
switching circuits: error detection, fault location, com
ponent replacement, error clearing, and restarting. With
the exception of com ponen t replacement, each step is

easily susceptible' of mechanization. The system here
considered mechanizes these steps and so greatly re
duces the time required to repair a fault when it occurs.
It does so by scanning points of possible error in the
machine. If one point exhibits defective behavior earlier
than another, it is regarded as a "better" cause of the
error than the other; if, on the other hand, two points
exhibit the error simultaneously, that point which is
functionally independent of the other is taken as the
"better" cause. When all points of the machine have
been scanned, one point stands out as the cause of all
of the errors which were observed during the scanning
process. Phrased alternatively, we may say that of all
points of possible error, some subset of points will ex
hibit the error at the earliest time; of this subset, that
point which is functionally least dependent on the others
locates the cause. A decimal number assigned to this
point appears in lights on the control console; replace
ment of the plug-in unit associated with this number by
a spare completes the repair and permits correct opera
tion to con tin ue.

The digital data processor built for the Air Force was
selected for the prototype application of MAID shortly
after a demonstration unit, which proved out the basic
feasibility of the particular approach used, had been
completed and operated successfully in the laboratory.
Consul ta tion with Rome Air Development Center repre
sentatives revealed that such a system was greatly de
sired. Design of the automatic fault locator proceeded
in parallel with design of the data processor itself.

Because of certain technical uncertainties at the time
construction of the machine was begun, it was decided
to apply the MAID to the logical section only of the
machine. It was realized at the time that the exclusion
of other sections from the diagnosis would, of course,
make those sections of the equipment more difficult to
troubje-shoot than would otherwise be the case. On the
other hand, since the machine in question was an experi
mental model, it was decided that the advantages of full
application could more efficiently be made in later
machines after the technical difficulties had been re
moved. (As of this writing, several machines, using the
MAID throughout, have been delivered to customers
and successfully operated in the field.)

The data processor was delivered to the Electronic
Warfare Laboratory of Rome Air Development Center
on September 1, 1955. Installation was completed, and
power applied on September 2. The equipment was cor
rectly processing test data the same day. There followed
a two-week period of acceptance testing by Rome Air
Development Center Engineers. In the period that fol
lowed the conclusion of these tests, a detailed opera
tionallog was kept to provide a complete picture of the
efficiency and maintainability of the machine. During
this period, 360 hours of operation were scheduled, the
equivalent of nine 40-hour work weeks. Of this time, 13
down-time hours ocCllrred, so that the operating effi
ciency of the machine was 0.96 over-all.

Scully and Colangelo: Automatic Fault-Locating Means 213

The 13 hours of down time were brought about by 20
separate faults. Of these, 8 were in the sections of the
machine with which MAID was integrated and ac
counted for three hours total down time, an average of
22 minutes for each fault. The remaining 12 occurred in
sections to which automatic diagnosis was not applied,
and account for 10 hours, an average of 50 minutes each.
Thus it is apparent that MAID effected a marked de
crease in the down time per trouble as encountered in
actual field experience, since the same maintenance
personnel serviced the machine over the entire period.
In actuality, the results of using MAID were even more
favorable than these figures indicate, since it was de
cided at the outset of the operational logging period to
maintain the log in 15 minute quanta only, thereby
making it impossible for any trouble to appear in the log
as requiring less than 15 minutes. Six of the eight
troubles diagnosed by MAID are logged at this mini
mum interval; hence, they actually required less than
15 minutes each. Only two of the 12 troubles not in the
section diagnosed by MAID occupied this short a time.

Since the MAID was applied in this pioneer equip
ment to about half of the data processor, conclusions
can be formed as to its effect on the efficiency of that
part of the equipment as compared to the part not
having this advantage. One may suppose that, on the
average, about an equal number of troubles would occur
in both parts. (The actual poorer experience with re
spect to number of troubles in the nondiagnosed section
was in all likelihood due to chance.) Thus, had the en
tire unit been diagnosed by MAID, the expected effi
ciency may be computed by assuming that 20 troubles
would have occurred each requiring 22 minutes or less to
repair; this machine would have at least 0.98 efficiency.
I ts counterpart, the data processor with no automatic
fault location, would have had 20 faults requiring, on
the average, 50 minutes each; this corresponds to 0.95
efficiency.

The automatic diagnosis means employed has addi
tional advantages not reflected directly in the efficiency
figures. One of the most important of these is the reduc
tion in the level of training required to maintain the
equipment. Since the difficult task of locating troubles is
now mechanized, most troubles can be serviced by per
sonnel with very little technical skill who could not,

without this aid, service the equipment at all. Secondly,
as a production trouble-shooting means, impressive re
ductions in delivery schedules can be made with no in
crease in technical staff, a matter of great importance
in these times of critical shortage: Thirdly, training of
personnel to a high degree of efficiency is made much
easier, as the machine itself does much of the teaching!
Also of great importance is the security inherent in the
certain knowledge that an equipment is performing cor
rectly at a given time.

The application of automatic diagnosis discussed here
is the first in the art. We believe that it has fully lived
up to expectations, but recognize at the same time that
improvement is certainly possible. In the first place,
the desirability of extension of the principle to include
complete systems, rather than portions only, was clear
from the outset. The practical limitations which weighed
against doing this in the prototype have since been re
moved and succeeding calculators have been built with
the completely automatic system. The advantages of
doing this have been realized in practice. Also, it has
been recognized that MAID application should be con
sidered as a vital part of the design of equipment if its
full potentialities are to be achieved. Experience has
shown that applique construction is often possible, but
not as efficient. Again, since the past experience of the
people concerned has been largely in the field of digital
techniques, it was natural to devote the major applica
tion effort in this field; however, it must be stressed that
the means are applicable to many nondigital electronic
systems. Work is progressing to improve. the actual
means employed so that both simpler circuitry and even
more rapid fault analysis can be made. Consideration
has also been given to more direct correlation of trouble
indication with defective component to still further sim
plify the duties of maintenance personnel.

The future of large electronic systems depends to a
large degree on the ability of those of us in the services
and industry to break through the barriers of maintain
ability and reliability which still lie ahead. Components
people are working ceaselessly to provide better pieces
for equipment people to use; surely systems designers
can do no less. It is perhaps, then, not inconceivable that
the day will come of which we all dream from time to
time-the advent of the perfect electronic system!

Discussion
N. J. Dean (Ramo-Wooldridge): How

much do the dual elements add to cost?
How much does MAID add to cost? Would
you dualize storage units?

Mr. Scully: If you are using the system
for production line debugging, the dual
units cost two or three per cent more for
connections to the existing device. If you
are going to do your testing by one equip-

ment with another unit alongside, plugging
the two together trouble-shooting does not
cost anything (SIC). If there are dual equip
ments anyway, as in SAGE, because of
military necessity, there is no additional
cost either.

ment, and the expenditure probably would
not be justified.

The MAID unitistelf, once we suppose the
means for determining whether a given point
is performing properly or not, as exemplified
by dual equipments, it is probably only a
matter of some five to ten per cent of the
cost of the unit.

If, on the other hand, it is a system where
you can afford to have the down time, as
might be the case in some applications, the
cost will be 100 per cent of the extra equip-

Yes, we dualize storage units. That does
not necessarily mean in the drum system;

214 1957 WESTERN COMPUTER PROCEEDINGS

for example, one must provide two drums.
One might have one drum which has dupli
cate heads, and duplicate tracks, without
two separate rotating mechanisms.

J. G. Tryon (Bell Telephone Labs.): How
does diagnostic equipment step from point
to point when trouble is observed? How
much equipment is required for the MAID
scheme?

the side of the cabinet and the equipment.
The MAID unit is plugged into these, so
that each point has one wire which carries
it over to the central MAID circuitry. So
that in the models which are now in the field,
the scanning process is accomplished by step
switches. This is not necessarily the only
means, but it seems about the cheapest at
the present state of the art.

duced. It so happens that the circuits to
which the unit has been applied in our own
production are such that the capacitances
introduced are negligible.

The maximum rate to which it has been
applied to date in existing equipment has
been 120 kc; however, that is the clock rate
on the equipment on which it is operated.
The time which it takes the MAID unit to
take one step in the diagnostic process is
essentially a fun,ction of the scanning mecha
nism, which being step switches, are con
fined to about 50 steps a second, maximum.
The electronic portion, which does the error
detection, and makes the decision earliest
in time, of course, can be made to operate
on equipments essentially as fast as one
,pleases, taking into account cabling problems.

Mr. Scully: The presence of an error is
detected by a comparator unit which initial
ly scans a critical point, or points, of the
dual equipment. The occurrence of an error
results in the setting of a flip-flop, and that
flip-flop holds the error in condition until the
necessary control logic has caused the scan
ning mechanism to take one step. Actually
it is wired into cables which terminate at

D. A. Weir (STL England): Has the
connection of the testing equipment any
deleterious effect upon the equipment under
test due to its great capacity, or circuit
loading? To what digital rate equipment
has the MAID ever applied?

Mr. Scully: The connection to the equip
ment is one of the problems where you have
to face the extra capacitances that are intro-

The Variable Word and Record Length and the
Combined Record Approach on Electronic

Data-Processing Systems
NEAL J. DEANt

I N THE literature concerning electronic data
processing systems there has been much discussion
of the advantages of the variable word-length fea

ture as opposed to the fixed word-length restriction. It
might be well at the outset to specify what is meant by
a "word." A word is defined by the IRE Committee as
"an ordered set of symbols which is the normal unit in
which information may be stored, transmitted, or oper
ated upon within the computer." It is characterized by
the fact that it is usually a single unit of information
about the record, such as the "balance on hand" in an
inventory application or the employee's current weekly
salary in payroll. In some cases it should be pointed out
that this restriction does not strictly apply, because
there can be a combination of several independent items
of information in a single word. This might be referred to
as a hybrid word and is frequently resorted to in order
to increase the efficiency of storage, when the individual
items are short-such as a yes-no condition. However,
this is an exception and in general the comments made
will apply even when this hybrid technique is used.

THE WORD-LENGTH PROBLEM

If a machine utilizes a fixed word length, it means
that all of the items of information within a record and
from record to record must be of the same size. This is

t Ramo-Wooldridge Corp., Los Angeles, Calif.

a rather stringent restriction and one which, in general,
results in wasted storage space. Consider, for example,
the restriction applied to a payroll application where in
a given employee's records is stored several items of in
formation including his annual salary and his hourly
rate. In a typical case, the annual salary may require six
or seven decimal digits (including the cents digits) and
the hourly rate would be typically three decimal digits.
If the same size word had to be used for both of these
items of information, this word length would have to
be at least seven decimal digits long. If it were seven
decimal digits, the hourly salary would be using less
than one-half of the assigned space. Hence, we see a
relatively inefficient storage situation resulting from the
fixed word length.

We might also consiqer the variation of word length
for the same word from record to record. Of course, if
all of the words wi thin a machine were a fixed word
length there would be the same space penalty, not only
within the record, but also from record to record. How
ever, there is a degree of variability which has been
built into some commercial machines which consists of
the following: the individual words within a record can
be of different size but must be preset by the pro
grammer for a given application. Then they must be
of the same size from record to record. For example, if
the annual salary for an individual were word number
one and it were assigned seven decimal digits in Record
1 (for a certain employee), it would have to be seven

Dean: Variable Word and Record Length Approach 215

decimal digits for every record (every employee). This
would not result in as severe a loss in storage efficiency,
however, since the degree of variability for a given word
from individual to individual is not as great (probably
only the variation from seven to six decimal digits for
annual salary). Similarly the hourly rate word might be
assigned three decimal digits which would probably ac
commodate the entire range involved in the payroll.

THE RECORD-LENGTH PROBLEM

N ow let us turn our attention to the variability in a
record size. A record might be defined as all of the in
dividual items of information (or words) about a given
file unit (for example, the employee in a payroll applica
tion, the part number in an inventory application, the
depositor's account information in a commercial check
handling application for a bank, etc.).l It is obvious the
degree of variability in a record can be greater than that
in a word since it can vary not only in the length of the
individual words but also in the number of words that
make up the record. The latter variability can be a much
more serious one even than the variability of the word
length, in cases where individual transaction detail is
to be stored on an account.

For example, in a commercial deposit-accounting ap
plication in a bank, the number of checks drawn on a
given account in a given month, may vary from tens of
thousands for a large corporate payroll account to even
zero for some individuals' accounts or inactive business
accounts (where the business restricts the use of the
account to rare entries). In fact, there are quite a few
"dormant" accounts in the typical system, which have
no activity month after month.

Obviously if a record of fixed size were to be assigned
in the electronic data-processing system to accommo
date all of the depositor's accounts for the commercial
bank, it would either be much too large for the inactive
accoun ts resulting in a ridiculous waste in storage space
or the more active accounts would exceed the capacity
assigned and would overflow. One might now consider
assigning different length records to the different ac
counts based upon past experience or predicted activi
ties. This would certainly result in increased efficiency;
but there is also the degree of variability from month to
month for a given account. Therefore, even if this tech
nique of assigning a fixed space dependent upon past
experience with an account is used, either a much larger
capacity than the account needs on the average would
have to be assigned or the frequency of overflow would
be large. In addition, the procedure involved in assign
ing a specified space to each individual account in a
commercial bank may prove quite unwieldy. This is
particularly so, since the bank in general is not aware of
how active an account will be when it opens, indeed,

1 A record is defined by the IRE Committee as "a unit of corre
lated information relating to a single person or article." However, in
many machines a record refers to the largest block of information
which can be directly transferred as a unit.

the individual depositors may not accurately know
particularly where there are several special purpose ac
counts for a business. The controller's office for that
business frequently shifts the significance of these ac
counts and the activity on the individual accounts
changes radically.

VARIABLE VS ADJUSTABLE

Thus, we can see from the above discussion that there
is a tremendous advantage in at least being able to set
a word length and a record length in advance to different
sizes depending upon the application. Preferably, this
should not be referred to as a technique of "variable"
word and record length, but of "adjustable" word and
record length. The word and record lengths are set in
advance, not necessarily all the same, of course, but of
a length which must persist throughout the application.
In the case of word lengths, they must be the same for
the same word from record to record. In the case of the
records, the individual record lengths have been preset
and must maintain this length during the operating
period.-

However, even this restricted degree of variabiIi ty
which we have referred to as "adjustability" is of great
val ue in improving the efficiency of storage as we can
easily see considering the above two examples of the
variable word length (between the annual salary and
the hourly rate) and the variable record length (between
active corporate accounts and inactive individual ac
counts). In fact the casual observer might feel that the
combination of the features of adjustable record and the
adjustable word lengths goes so far toward optimizing
record storage efficiency that it would be adequate.

However, let us consider in a little more detail the
commercial banking application. The specific dollar
amount on individual checks might conceivably vary
from even one or two digits to a maximum (in regular
checking accounts for commercial banks) of about 10
decimal digits. A study made by the author in a large
commercial bank indicated that the average was about
4.5 decimal digits. Hence, if the word length-even if
adjustable-assigned to each individual item was 10
decimal digits, the efficiency of storage for this informa
tion would be less than 50 per cent. Since the program
mer or system designer will not know in advance how
long the individual transactions charged against the ac
count will be, the adjustable feature is of no assistance
in reducing this waste storage space. If, however, the
system were able to accommodate a truly "variable"
word length in which the individual items would be only
as long as required to store the information in the item
and would be placed densely in the storage space, then
a truly efficient storage system would result.2

2 This has some important implications for an addressing scheme
which is beyond the scope of this paper to discuss, but those readers
who are familiar with the problem will recognize it as requiring a
technique of word addressing rather than character addressing for
locating information in storage.

216 1957 WESTERN COMPUTER PROCEEDINGS

"EXPANDABLE" RECORD LENGTHS

If the data-processing system, then, accommodates a
truly variable word length, the loss in efficiency that
would result from requiring that each item have the
same word length would be eliminated. However, the
wasted space due to the fact that the record length can
not be predicted in advance would still remain. If the
record length were adj ustable and set on the basis of
experience, the wasted space would only be that result
ing from fluctuating activity from month to month, but
that can be quite large. There is a technique which can
eliminate even the wasted space due to the variation in
record length from month to month. This technique
might be referred to as an "expandable" record length
in which there is no fixed space assigned to the record
but the entire file of records is constantly rewritten
whenever the file is updated. This might be likened to
an expandable file drawer whereby the space assigned
to any particular account is truly expandable and simply
pushes back the rear end of the drawer when necessary.

This system is actually afforded in most magnetic
tape file systems; where the record length is not fixed
and where the entire tape file is updated; the entire file
is rewritten on an output tape and the new items to be
entered are merely inserted into the individual account
storage and written together with the previously ac
cumulated file for each account on the output tape.
Thus, we have an expanding tape file as new activity is
introduced. In the case of the deposit accounting appli
cation for a bank, the tape-file length would be a mini
mum at the beginning of the month and expand to a
maximum at the end of the month. Presumably at that
time the conventional printed statements would be pre
pared, and the magnetic-tape file for that account wiped
clean with the new balance being that obtaining at the
end of the just concluded month.

COMBINED-RECORD TECHNIQUE

Certain types of storage media do not lend themselves
to this technique of expanding record length. They have,
however, other operational advantages which some
times make it desirable to incorporate these media in a
data-processing system. For example, a magnetic-drum
file would normally not be rewritten during each proc
essing, since one of the advantages is that of random
access and only the accounts which have been active
need to be posted. This reduces the time for updating
the file and makes it more feasible to post activity in an
" l' "f h' . d on- me as lOn, m ran om, and more promptly. In a
magnetic-tape file, of the type we described, all of the
accounts would have to be rewritten on the output tape
regardless of the activity ratio.

On a magnetic drum which is not constantly rewrit
ten,3 a certain space must be assigned to each record
when the application has been established. Of course,

3 Inci~enta!ly, the saI?e conclusions would apply to a magnetic
tape file III whIch the entIre file was not rewritten but the new infor
mation inserted in the account-records storage on the tape.

on the basis of experience it might be changed from
month to month, but we would still have this difficulty
of the variation in the actual activity from the pre
dicted activity either resulting in. a low-storage effi
ciency or a high probability of overflow. In order to re
duce this in a commercial checking-account application,
the author investigated the possibility of a "combined
record" technique.

If one were to investigate the degree of variability on
an individual checking account over a long period of
time, one would find that this variation was considerably
greater than the variation in the combined activity for
a large number of similar checking accounts over the
same period of time. This is very familiar to statisticians,
and others who have considered the implication of an
averaging process.4

We might think of this averaging effect which reduces
the variability of a group of accounts as follows: if 10
similar accounts were combined in a single record stor
age it would be expected that the variation in the space
required for this kind of combined record would be less
than the variation required for the 10 accounts if they
were all kept separately, for the same degree of over
flow. This result might be anticipated since the proba
bility of member A of this group of ten being active at
precisely the same time as member B is not very great
except for such common activity increases as seasonal
peaks. A given individual's activity for such personal
transactions as buying a house, moving, purchasing an
automobile, etc., would not be correlated with other
individuals' activities of the same type. (We are not
attempting the thesis that there is no correlation, but
simply that correlation is considerably less than one.)

Specifically, if we wish to reduce the probability of
overflow to some specified value, the amount of storage
space required for the 10 combined accounts detail
lumped into one storage area (i.e., a record) would be
considerably less than the amount of storage space re
quired for the total of 10 individual accounts for the
same probability of overflow. The author became quite
interested in the possibilities of this technique and in
vestigated jn detail the special checking-account appli
cation at a large commercial bank.

Since it was considered too difficult to acquire a large
amount of data over a long period on individual ac
counts, the approach was tried on a slightly different
problem under the assumption that the same general
conclusions would obtain in the case of the temporal
variations as for the variations from account to account
for a given time period. Hence, a significant sample of
special checking accounts was examined for a given
month. The distribution of the number of accounts vs
the amount of activity in the account was obtained and
is shown in Fig. 1.

4 It can be proved that, regardless of what the individual dis
tribution of activity might be over a period of time, if a sufficiently
large number of them were to be combined, the distribution is Gaus
sian. The variance of the normal distribution would be less than
that of the individual distributions.

Dean: Variable Word and Record Length Approach 217

{~
~

tt

II
AVERAGEl

OVERFLOW
100/0 50/0 2%

1,

'1.
I

. ..,.
f'">--, -o

a 10 15 20 25 30 3S 40 45_ 50 55 60 65 70 75 80 85 90 ~
l = NUMBER OF COMBINED DEBITS AND CREDITS

Fig. i-Distribution of combined debits and credits.
Special checking.

It is seen that, although the average activity for the
special checking account was about 10 items, in order
to reduce the probability of overflow to two per cent
(ha ve two per cen t of the accounts overflowing), about
26 or 27 transactions would have to be accommodated.
The same results are shown in a cumulative distribution
in Fig. 2. If, however, 16 (in this case 16 was selected
because it is a power of two which made the calculations
somewhat simpler) accounts were combined, the cumu
lative distribution shown in Fig. 3 results. Here, for a

10

~-- - 1-- 1-- ? ~ -- 1--- -- __ t-2.!o .£V~Rr:!;0.! _ --
5 % OVERFLOW - ==-= I- I- .- -~- r-- - +-"1--,--

.96

I
10% OVERFLOW- --- -- - ~}- -- -- -- -- -- - ;-- -- ---

tJ

.92

.88

~
~
~

~ J

.84

.80

.76

.72

.68

1
~
J
J
J
I

W

.64

.60

• 56

.52

.48

.44

40

. 36

.32

r
J
~
I
r
I
I
r

.28

.24

.20

.16

.12

.08

.04

o
o 10 15 20 25 30 35 40 45 50 55 60 65 70

NUMBER OF TRANSACTIONS PER ACCOUNT

Fig. 2-Special checking.

two per cent overflow, the number of transactions to be
stored could be reduced to 12. This resulted in a better
than 2 to 1 reduction in storage space required.

The results are even more dramatic if one considers
probabilities of overflow to be allowed to be considerably
less. For example, if it were 0.1 per cent the number of
transactions which must be provided for per account if
the accounts are not grouped was 47. If 16 accounts were
grouped, this number could be reduced to 14 per account
thus resulting in a better than three to one reduction in
storage requirements.

100 1- __ ~ --f--r-=I-- I--f- __ 1--__ ,~o..QVERFLOW ___ _

96 _______ I--I--f-- ___ ~o~OVER~O~ __ _

.921- ________ I-- ~ r--~- _~o~~~O~ __ _

.88 1--+--+--11--+---+-1--+--+-1---+--+-1----+--+-1---+--+--1

.84 f--+---+--f--4~=j---I---+-+--I---+-+-___+--f-+--I---+-+-_j

.80 f--+--+--II---+--+--I--+--+~I--+--+-I----+--+-I---+--+--I

.76 I--+--+--II---+--+--I----t----+-r--+--+-t---+--+-t--+--+--I

.72 f--+--t---If----+--t--f----+--t----II--+--+-t---+---+-t---+---+--I

.68f--+--t-~f----+--+-t--+--t-~1--~1-+-_r--+-+-_r--+-+-~
I

.64 1--+--+-t--t--+-+----+--+-I-----+--+-+---+--+-+---+--+----1

.48 I--+--+-t--t--+-+---+---+-t--+--+-+---+--+-+---+--+---I

441--+--+-1-__ ~-+----+--+-+--r--+-+----+--+-+----+--+-+--j

.16 ~-+-_+---II__+-_+-I--+-_+-I__+-_+-t--+-_+-t--+--+___j

.12 I--+--+--I---+--+-l--+--+-f--+--+-t-+--+-+----t--t----i

.08 1----+--+-....... -+--+-+---+--+-l---+--+-+--+--+-t---t--t----1
;----

.04 I-+--+-+--+-+-+--+-+-+--+-+-+--+--+-t--+--+----i

8 10 12 14 16 18 20 22 24 26 2B 30

NUMBER OF TRANSACTIONS PER ACCOUNT

Fig. 3-Sixteen accounts grouped. Special checking .

If one were to plot the entire graph indicating the
storage space required as a function of the number of
accounts grouped for various probabilities of overflow,
the results in Fig. 4 (next page) would be obtained .

Of course, it is obvious that there is a disadvantage
to this system as opposed to having each individual ac
count stored separately; i.e., the fact that all of the
transactions on the combined ten accounts have been
lumped together. However, in at least one commercial
data-processing system this disadvantage did not prove
operationally serious owing to the ability to sort rapidly
individual transactions from a group of transactions.
The technique is based upon a single digit added to each
item to indicate which one of the 10 accounts the item
referred to (in the case where 10 transactions were
grouped together).

218 1957 WESTERN COMPUTER PROCEEDINGS

10 I 1.,11 \ -I
r , " "1 p : PROBABILITY OF OVERFLOWING

• ' I °m(X,) SPACE PROVIDED

X,=Y
r : AVERAGE NUMBER OF ITEMS -

4".(XI) : F~EQUENCY Of ACCOUNTS PER ACCOUNT i
WITH AVERAGE OF XI ITEMS PER
ACCOUNTS. m ACCOllNTS GROUPED

~Ol

.,.o~ I

~ ~
,:96

'"
\

N"OS '\.

~ ::::::::: :---.-" :::::: '\

===-
;--.

1--__

~ "'-,,- I

p=.30 - ::::--

!
!: 20

o

I
4 5 6 7 8 9 10 30 40 50 60 70 8090 100

m " NUMBER OF ACCOUNTS GROUPED

Fig. 4-Special checking accounts. Empirical distribution.

Looking at Fig. 4 we can see the significance of group
ing 10 accounts if a one per cent overflow figure were

to be tolerated. If the transactions had not been com
bined, a storage space of 31 transactions per account
would have been required; but, with a combined-record
approach, a storage space sufficient to accommodate a
little over 13 items is adequate. Thus the storage space
required is reduced by about 60 per cent. The technique
for selecting which of the 10 accounts a given item be
longs to on the basis of this single digit is beyond the
scope of this paper and would depend upon the specific
data processor utilized.

The author feels that this technique of combining
similar accounts in a single record storage where the
data processor can accommodate the sorting required
is a very powerful one, indeed, in reducing the storage
\space required, particularly where storage space is at a
premi um as it is in magnetic-drum or core storage. As
pointed out above, in many applications the advantages
of this more expensive storage in the terms of more im
media te random access are essential.

Empirical Explorations of the Logic Theory Machine:
A Case Study in Heuristic

A. NEWELLt, J. c. SHAwt, AND H. A. SIMONt

T' HIS PAPER is a case study in problem solving,
represen ting part of a program of research on
complex information-processing systems. We have

specified a system for finding proofs of theorems in ele
mentary symbolic logic, and by programming a com
puter to these specifications, have obtained empirical
data on the problem-solving process in elementary logic.
The program is called the Logic Theory Machine (L T) ;
it was devised to learn how it is possible to solve dif
ficult problems such as proving mathematical theorems,
discovering scientific laws from data, playing chess, or
understanding the meaning of English prose.

The research reported here is aimed at understanding
the complex processes (heuristics) that are effective in
problem solving. Hence, we are not interested in meth
ods that guarantee solutions, but which require vast
amounts of computation. Rather, we wish to under
stand how a mathematician, for example, is able to
prove a theorem even though he does not know when
he starts how, or if, he is going to succeed.

This paper focusses on the pure theory of problem
solving. In a previous paperl we specified in detail a pro
gram for the Logic Theory Machine; and we shall re-

t The RAND Corp., Santa Monica, Calif.
t Carnegie Institute of Technology, Pittsburgh, Pa.
1 A. Newell and H. A. Simon, "The logic theory machine: a com

plex information processing system," IRE TRANS., vol. IT-2, pp. 61-
79; September, 1956.

peat here only as much of that specification as is needed
so that the reader can understand our data. In a com
panion paper2 we consider how computers can be pro
grammed to execute processes of the kinds called for by
LT, a problem that is interesting in its own right. Simi
larly, we postpone to later papers a discussion of the im
plications of our work for the psychological theory of
human thinking and problem solving. Other areas of
application will readily occur to the reader, but here we
will limit our attention to the nature of the problem
solving process itself.

Our research strategy in studying complex systems is
to specify them in detail, program them for digital com
puters, and study their behavior empirically by run
ning them with a number of variations and under a
variety of conditions. This appears at present the only
adequate means to obtain a thorough understanding of
their behavior. Although the problem area with which
the present system, LT, deals is fairly elementary, it
provides a good example of a difficult problem-logic is
a subject taught in college courses, and is difficult enough
for most humans.

Our data come from a series of programs run on the
JOHNNIAC, one of RAND's high-speed digItal com
puters. We will describe the results of these runs, and

2 A. Newell and]. C. Shaw, "Programming the logic theory ma
chine," this issue, p. 230.

Newell, Shaw, and Simon: The Logic Theory Machine 219

analyze and interpret their implications for the prob
lem-solving process.

THE LOGIC THEORY MACHINE IN OPERATION

We shall first give a concrete picture of the Logic
Theory Machine in operation. LT, of course, is a pro
gram, written for the]OHNNIAC, represented by
marks on paper or holes in cards. However, we can
think of L T as an actual physical machine and the
operation of the program as the behavior of the ma
chine. One can identify LT with]OHNNIAC after the
latter has been loaded with the basic program, but be
fore the input of data.

LT's task is to prove theorems in elementary sym
bolic logic, or more precisely, in the sentential calculus.
The sentential calculus is a formalized system of mathe
matics, consisting of expressions built from combina
tions of basic symbols. Five of these expressions are
taken as axioms, and there are rules of inference for
generating new theorems from the axioms and from
other theorems. In flavor and form elementary symbolic
logic is much like abstract algebra. Normally the vari
ables of the system are interpreted as sentences, and
the axioms and rules of inference as formalizations of
logical operations, e.g., deduction. Howeve~, LT deals
with the system as a purely formal mathematics, and
we will have no further need of the interpretation. We
need to introduce a smattering of the sentential calcu
lus to understand L T's task.

There is postulated a set of variables p, q, r, ... ,
A, B, C, ... , with which the sentential calculus deals.
These variables can be combined into expressions by
means of connectives. Given any variable p, we can form
the expression "not-p." Given any two variables p and
q, we can form the expression "p or q," or the expression
"p implies q," where "or" and "implies" are the con
nectives. There are other connectives, for example
"and," but we will not need them in this paper. Once
we have formed expressions, these can be further com
bined into more complicated expressions. For example,
we can form:3

"(p implies not-p) implies not-p." (2.01)

There is also given a set of expressions that are axi
oms. These are taken to be the universally true ex
pressions from which theorems are to be derived by
means of various rules of inference. For the sake of
definiteness in our work with LT, we have employed
the system of axioms, definitions, and rules that is
used in the "Principia Mathematica," which lists five
aXIOms:

(p or p) implies p (1.2)
P implies (q or p) (1.3)
(p or q) implies (q or p) (1.4)
[p or (q or r)] implies [q or (p or r)] (1.5)
(p implies q) implies [(r or p) implies (r or q)]. (1.6)

3 For easy reference we have numbered axioms and theorems to
correspond to their numbers in "Principia Mathematica," by A. N.
Whitehead and B. Russell, Cambridge University Press, 2nd ed.,
vol. 1; 1935.

Given some true theorems one can derive new theo
rems by means of three rules of inference: SUbstitution,
replacement, and detachment.

1) By the rule of substitution, any expression may be
substituted for any variable in any theorem, provided
the substitution is made throughout the theorem where
ever that variable appears. For example, by substitu
tion of "p or q" for "p," in the second axiom we get the
new theorem:

(p or q) implies [q or (p or q)].

2) By the rule of replacement, a connective can be
replaced by its definition, and vice versa, in any of its
occurrences. By definition "p implies q" means the same
as "not-p or q." Hence the former expression can always
be replaced by the latter and vice versa. For example
from axiom (1.3), by replacing "implies" with "or,"
we get the new theorem:

not-p or (q or p).

3) By the rule of detachment, if "A" and "A implies
B" are theorems, then "B" is a theorem. For example.
from:

(p or p) implies p,

and

[(p or p) implies p] implies (p im plies p),

we get the new theorem:

p implies p.

Given an expression to prove, one starts from the
set of axioms and theorems already proved, and ap
plies the various rules successively until the desired ex
pression is produced. The proof is the sequence of ex
pressions, each one validly derived from the previous
ones, that leads from the axioms and known theorems to
the desired expression.

This is all the background in symbolic logic needed
to observe LT in operation. LT "understands" expres
sions in symbolic logic-that is, there is a simple code
for punching expressions on cards so they can be fed
into the machine. We give LT the five axioms, instruct
ing it that these are theorems it can assume to be true.
L T already knows the rules of inference and the defini
tions-how to substitute, replace, and detach. Next we
give LT a single expression, say) expression (2.01), and
ask LT to find a proof for it. LT works for about 10
seconds and then prints out the following proof:
(p implies not-p) implies not-p (theorem 2.01, to be proved)

1) (A or A) implies A (axiom 1.2)

2) (not-A or not-A) implies not-A (subs. of not-A for A)

3) (A implies not A) implies not-A (rep!. of "or" with "implies")

4) (p implies not-p) implies not-p (subs. of p for A; QED).

Next we ask LT to prove a fairly advanced theorem,4
theorem 2.45; allowing it to use all 38 theorems proved
prior to 2.45. After about 12 minutes, LT produces the
following proof:

4 Ibid., ch. 2.

220 1957 WESTERN COMPUTER PROCEEDINGS

not (p or q) implies not-p

1) A implies (A or B)

2) P implies (p or q)

3) (A implies B) implies (not-B im-

(theorem 2.45, to be proved)

(theorem 2.2)

(subs. p for A, q for B in 1)

plies not-A) (theorem 2.16)

4) [p implies (p or q)] implies [not [subs. p for A, (p or q) for B
(p or q) implies not-p] in 3]

5) not (p or q) implies not-p (detach right side of 4, using
2; QED)

Finally, all the theorems prior to (2.31) are given to
L T (a total of 28) ; and then L T is asked to prove:

[p or (q or r)] implies [(p or q) or r]. (2.31)

LT works for about 23 minutes and then reports that it
cannot prove (2.31), that it has exhausted its re
sources.

Now, what is there in this behavior of LT that needs
to be explained? The specific examples given are difficult •
problems for most humans, and most humans do not
know what processes they use to find proofs, if they
find them. There is no known simple procedure that
will produce such proofs. Various methods exist for
verifying whether any given expression is true or false;
the best known procedure is the method of truth tables.
But these procedures do not produce a proof in the
meaning of Whitehead and Russell. One can invent
"automatic" procedures for producing proofs. We will
look at one briefly later, but these turn out to require
computing times of the orders of thousands of years for
the proof of (2.45).

We must clarify why such problems are difficult in
the first place, and then show what features of LT ac
count for its successes and failures. These questions
will occupy the rest of the paper.

PROBLEMS, ALGORITHMS, AND HEURISTICS

In describing LT, its environment, and its behavior
we will make repeated use of three concepts. The first of
these is the concept of problem. Abstractly, a person is
given a problem if he is given a set of possible solutions,
and a test for verifying whether a given element of this
set is in fact a solution to his problem.

The reason why problems are problems is that the
original set of possible solutions given to the problem
solver can be very large, the actual solutions can be
dispersed very widely and rarely throughout it, and the
cost of obtaining each new element and of testing it can
be very expensive. Thus the problem solver is not really
"given" the set of possible solutions; instead he is given
some process for generating the elements of that set in
some order. This generator has properties of its own,
not usually specified in stating the problem; e.g., there
is associated with it a certain cost per element produced,
it may be possible to change the order in which it
produces the elements, and so on. Likewise the verifica
tion test has costs and times associated with it. The
problem can be solved if these costs are not too large

in relation to the time and computing power available
for solution.

One very special and valuable property that a gener
ator of solutions sometimes has is a guarantee that if
the problem has a solution, the generator will, sooner
or later, produce it. We will call a process that has this
property for some problem an algorithm for that prob
lem. The guarantee provided by an algorithm is not
an unmixed blessing, of course, since nothing has been
specified about the cost or time required to produce
the solutions. For example, a simple algorithm for
opening a combination safe is to try all cominations,
testing each one to see if it opens the safe. This algorithm
is a typical problem-solving process: there is a generator
that produces new combinations in some order, and
there is a verifier that determines whether each new
combination is in fact a solution to the problem. This
search process is an algorithm because it is known that
some combination will open the safe, and because the
generator will exhaust all combinations in a finite inter
val of time. The algorithm is sufficiently expensive,
however, that a combination safe can be used to pro
tect valuables even from people 'who know the al
gorithm.

A process that may solve a given problem, but offers
no guarantees of doing so, is called a heuristic5 for that
problem. This lack of a guarantee is not an unmixed
evil. The cost inflicted by the lack of guarantee de
pends on what the process costs and what algorithms
are available as alternatives. For most run-of-the-mill
problems we have only heuristics, but occasionally we
have both algorithms and heuristics as alternatives for
solving the same problem. Sometimes, as in the problem
of finding maxima for simple differentiable functions,
everyone uses the algorithm of setting the first deriva
tive equal to zero; no one sets out to examine all the
poin ts on the line one by one even if it were possible.
Sometimes, as in chess, everyone plays by heuristic,
since no one is able to carry out the algorithm of exam
ining all continuations of the game to termination.

THE PROBLEM OF PROVING THEOREMS IN LOGIC

Finding a proof for a theorem in symbolic logic can
be described as selecting an element from a generated
set, as shown by Fig. 1. Consider the set of all possible
sequences of logic expressions-call it E. Certain of these
sequences, a very small minority, will be proofs. A
proof sequence satisfies the following test:

Each expression in the sequence is either

1) One of the accepted theorems or axioms, or
2) Obtainable from one or two previous expressions

in the sequence by application of one of the three
rules of inference.

5 As a noun, "heuristic" is rare and generally means the art of ~is~
covery. The adjective "heuristic" is defined by Webster as: servmg
to discover or find out. It is in this sense that it is used in the phrase
"heuristic process" or "heuristic method." For conciseness, we will
use "heuristic" in this paper as a noun synonymous. with "~euristic
process." No other English word appears to have thls meamng.

Newell, Shaw, and Simon: The Logic Theory Machine 221

Tx:seq uences
ending in X

Fig. 1-Relationships between E, P, and Tx.

Call the set of sequences that are proofs P. Certain of the
sequences in E have the expression to be proved-call it
X, as their final expression. Call this set of sequences
T x. Then, to find a proof of a given theorem X means
to select an element of E that belongs to the intersec
tion of P and T x. The set E is given implicitly by rules
for generating new sequences of logic expressions.

The difficulty of proving theorems depends on the
scarcity of elements in the intersection of P and T x,
relative to the number of elements in E. Hence, i.t de
pends on the cost and speed of the available generators
that produce elements of E, and on the cost and speed
of making tests that determine whether an element be
longs to T x or P. The difficulty also depends on whether
generators can be found that guarantee that any ele
ment they produce automatically satisfies some of the
conditions. Finally, as we shall see, the difficulty de
pends heavily on what heuristics can be found to guide
the selection.

A little reflection, and experience in trying to prove
theorems, make it clear that proof sequences for speci
fied theorems are rare indeed. To reveal more precisely
why proving theorems is difficult, we will construct an
algorithm for doing this. The algorithm will be based
only on the tests and definitions given above, and not on
any "deep" inferred properties of symbolic logic. Thus
it will reflect the basic nature of theorem proving; that
is, its nature prior to building up sophisticated proof
techniques. We will call this algorithm the British
Museum algorithm, in recognition of the supposed
originators of procedures of this type.

The British-Museum Algorithm

The algorithm constructs all possible proofs in a
systematic manner, checking each time 1) to eliminate
duplicates, and 2) to see if the final theorem in the proof
coincides with the expression to be proved. With this
algorithm the set of one-step proofs is identical with
the set of axioms (i.e., each axiom is a one-step proof
of itself). The set of n-step proofs is obtained from the
set of (n -l)-step proofs by making all the permissible

CI) -0
0
"-a. -0

"-
Cb
.0

E
:::J
Z

Includes only:
200 substitutions

not- p for p
not- q for q
not- r for r

replacements
or for implies

100 Implies for or

2 3 4 5 6 7

Proof steps

Fig. 2-Number of proofs generated by first few steps of
British Museum algorithm.

8

substitutions and replacements in the expressions of the
(n - 1) -step proofs, and by making all the permissible
detachments of pairs of expressions as permitted by the
recursive definition of proof.6

Fig. 2 shows how the set of n-step proofs increases
with n at the very start of the proof-generating process.
This enumeration only extends to replacements of "or"
with "implies," "implies" with "or," and negation of
variables (e.g., "not-p" for "p") . No detachments and
no complex substitutions (e.g., "q or r" for "p") are in
cluded. No specializations have been made (e.g., sub
sitution of p for q in "p or q"). If we include the special
izations, which take three more steps, the algorithm
will generate an (estimated) additional 600 theorems,
thus providing a set of proofs of 11 steps or less con
taining almost 1000 theorems, none of them duplicates.

In order to see how this algorithm would provide proofs
of specified theorems, we can consider its performance
on the sixty-odd theorems of Chapter 2 of "Principia."
One theorem (2.01) is obtained in step (4) of the genera
tion, hence is among the first 42 theorems proved. Three
more (2.02,2.03, and 2.04) are obtained ih step (6), hence
among the first 115. One more (2.05) is obtained in step
(8), hence in the first 246. Only one more is included in
the first 1000, theorem 2.07. The proofs of all the re
mainder require complex substitutions or detachment.

We have no way at present to estimate how many
proofs must be generated to include proofs of all theo
rems of Chapter 2 of" Principia." Our best guess is that it

6 A number of fussy but not fundamental points must be taken
care of in constructing the algorithm. The phrase "all permissible
substitutions" needs to be qualified, for there is an infinity of these.
Care must be taken not to duplicate expressions that differ only in
the names of their variables. We will not go into details here, but
simply state that these difficulties can be removed. The essential fea
ture in constructing the algorithm is to allow only one thing to hap
pen in generating each new expression, i.e., one replacement, substi
tution of "not-p" for "p," etc.

222 1957 WESTERN COMPUTER PROCEEDINGS

might be a hundred million. Moreover, apart from the
six theorems listed, there is no reason to suppose that
the proofs of these theorems would occur early in the
list.

Our information is too poor to estimate more than
very roughly the times required to produce such proofs
by the algorithm; but we can estimate times of about
16 minutes to do the first 250 theorems of Fig. 2 [i.e.,
through step (8)] assuming processing times compa
rable with those in LT. The first part of the algorithm
has an additional special property, which holds only to
the point where detachment is first used; that no check
for duplication is necessary. Thus the time of computing
the first few thousand proofs only increases linearly
with the number of theorems generated. For the theo
rems requiring detachments, duplication checks must be
made, and the total computing time increases as the
square of the number of expressions generated. At this
rate it would take hundreds of thousands of years of
computation to generate proofs for the theorems in
Chapter 2.

The nature of the problem of proving theorems is
now reasonably clear. When sequences of expressions are
produced by a simple and cheap (per element produced)
generator, the chance that any particular sequence is
the desired proof is exceedingly small. This is true even
if the generator produces sequences that always satisfy
the most complicated and restrictive of the solution
conditions: that each is a proof of something. The set of
sequences is so large, and the desired proof so rare, that
no practical amount of computation suffices to find
proofs by means of such an algorithm.

THE LOGIC THEORY MACHINE

If LT is to prove any theorems at all it must employ
some devices that alter radically the order in which
possible proofs are generated, and the way in which they
are tested. To accomplish this, LT gives up almost all
the guarantees enjoyed by the British-Museum al
gorithm. Its procedures guarantee neither that its
proposed sequences are proofs of something, nor that
L T will ever find the proof, no matter how much effort
is spent. However, they often generate the desired proof
in a reasonable computing time.

Methods

The major type of heuristic that L T uses we call a
method. As yet we have no precise definition of a meth
od that distinguishes it from all the other types of
routines in LT. Roughly, a method is a reasonably self
contained operation that, if it works, makes a major and
permanent contribution toward finding a proof. It is
the largest unit of organization in LT, subordinated
only to the executive routines necessary to coordinate
and select the methods.

The Substitution Method: This method seeks a proof
for the problem expression by finding an axiom. or
previously proved theorem that can be transformed, by

a series of substitutions for variables and replace
ments of connectives, into the problem expression.

The Detachment Method: This method attempts, using
the rule of detachment, to substitute for the problem
expression a new subproblem which, if solved, will
provide a proof for the problem expression. Thus, if
the problem expression is B, the method of detachment
searches for an axiom or theorem of the form "A im
plies B." If one is found, A is set up as a new subprob
lem. If A can be proved, then, since "A implies B" is a
theorem, B will also be proved.

The Chaining Methods: These methods use the transi
tivity of the relation of implication to create a new sub
problem which, if solved, will provide a proof for the
problem expression. Thus, if the problem expression is
"a implies c," the method of forward chaining searches
for an axiom or theorem of the form "a implies b." If
one is found, "b implies c" is set up as a new subprob
lem. Chaining backward works analogously: it seeks a
theorem of the form "b implies c," and if one is found,
"a implies b" is set up as a new subproblem.

Each of these methods is an independent unit. They
are alternatives to one another, and can be used in
sequence, one working on the subproblems generated by
another. Each of them produces a major part of a proof.
Substitution actually proves theorems, and the other
three- generate subproblems, which can become the
intermediate expressions in a proof sequence.

These methods give no guarantee that they will
work. There is no guarantee that a theorem can be
found that can be used to carry out a proof by the sub
stitution method, or a theorem that will produce a
subproblem by any of the other three methods. Even
if a subproblem is generated, there is no guarantee that
it is part of the desired proof sequence, or even that it
is part of any proof sequence (e.g., it can be false). On
the other hand, the generated methods do guarantee
that any subproblem generated is part of a sequence
of expressions that ends in the desired theorem (this is
one of the conditions that a sequence be a proof). The
methods also guarantee that each expression of the se
quence is derived by the rules of inference from the pre
ceding ones (a second condition of proof). What is not
guaranteed is that the beginning of the sequence can be
completed with axioms or previously proved theorems.

There is also no guarantee that the combination of the
four methods, used in any fashion whatsoever and with
unlimited computing effort, comprises a sufficient set of
methods to prove all theorems. In fact, we have dis
covered a theorem [(2.13), "p or not-not-not-p"] which
the four methods of L T cannot prove. All the sub
problems generated for (2.13) after a certain point are
false, and therefore cannot lead to a proof.

We have yet no general theory to explain why the
methods transform L T into an effective problem solver.
That they do, in conjunction with the other mechanisms
to be described shortly, will be demonstrated amply in
the remainder of the paper. Several factors may be in-

Newell, Shaw, and Simon: The Logic Theory Machine 223

volved. First, the methods organize the sequences of indi
vid ual processing steps in to larger units that can be
handled as such. Each processing step can be oriented
toward the special function it performs in the unit as a
whole, and the units can be manipulated and organized
as entities by the higher-level routines.

Apart from their "unitizing" effect, the methods
that generate subproblems work "backwards" from the
desired theorem to axioms or known theorems rather
than "forward" as did the British-Museum algorithm.
Since there is only one theorem to be proved, but a
number of known true theorems, the efficacy of working
backward may be analogous to the ease with which a
needle can find its way out of a haystack, compared
with the difficulty of someone finding the lone needle in
the haystack.

The Executive Routine

In L T the four methods are organized by an execu
tive routine, whose flow diagram is shown in Fig. 3.

(Start)

l
Select problem 4 (no more methods) ~--.......

t
Try method 4 (no more theorems) _-___...1

L Select theorem

l
Try it-(fail) -----.....,1

(get neJ problem)

T J n t" (no more)

ry su L:nelect theorem~ems
TJ it (fail)~
t

(proof)

t
through

Fig. 3-General flow diagram of LT.

1) When a new problem is presented to LT, the sub
stitution method is tried first, using all the axioms and
theorems that L T has been told to assume, and that are
now stored in a theorem list.

2) If substitution fails, the detachment method is
tried, and as each new subproblem is created by a suc
cessful detachment, an attempt is made to prove the
new subproblem by the substitution method. If sub
stitution fails again, the subproblem is added to a sub
problem list.

3) If detachment fails for all the theorems in the
theorem list, the same cycle is repeated with forward
chaining, and then with backward chaining: try to
create a subproblem; try to prove it by the substitution
method; if unsuccessful, put the new subproblem on the
list. By the nature of the methods, if the substitution
method ever succeeds with a single subproblem, the
original theorem is proved. ,

4) If all the methods have been tried on the original
problem and no proof has been produced, the executive
routine selects the next untried subproblem from the
subproblem list, and makes the same sequence of at
tempts with it. This process continues until 1) a proof
is found, 2) the time allotted for finding a proof is used
up, 3) there is no more available memory space in the
machine, or 4) no untried problems remain on the sub
problem list.

In the three examples cited earlier, the proof of (2.01)
[(P implies not-p) implies not-p] was obtained by the
substitution method directly, hence did not involve
use of the ,subproblem list.

The proof of (2.45) [not (p or q) implies not-p]
was achieved by an application of the detachment meth
od followed by a substitution. This proof required L T
to create a subproblem, and to use the substitution meth
od on it. It did not require LT ever to select any sub
problem from the subproblem list, since the substitution
was successful. Fig. 4 shows the tree of subproblems

not (p or q) implies not-p

:-..,
" " ,

" ,
"

"''«

Fig. 4-Subproblem tree of proof by L T of 2.45 (all
previous theorems available).

\
\
\
\
\
\
\
\

6

corresponding to the proof of (2.45). The subproblems
are given in the form of a downward branching tree.
Each node is a subproblem, the original problem being
the single node at the top. The lines radiating down
from a node lead to the new subproblems generated
from the subproblem corresponding to the node. The
proof sequence is given by the dashed line; the top link
was constructed by the detachment method, and the
bottom link by the substitution method. The other
links extending down from the original problem lead
to other subproblems generated by the detachment
method (but not provable by direct substitution) prior
to the time LT tried the theorem that leads to the final
proof.

224 1957 WESTERN COMPUTER PROCEEDINGS

LT did not prove theorem 2.31, also mentioned earlier,
and gave as its reason that it could think of nothing
more to do. This means that L T had considered all sub
problems on the subproblem list (there were six in this
case) and had no new subproblems to work on. In none
of the examples mentioned did LT terminate because of
time or space limitations; however, this is the most com
mon result in the cases where LT does not find a proof.
Only rarely does L T run out of things to do.

This section has described the organization of LT in
terms of methods. We have still to examine in detail
why it is that this organization, in connection with the
addi tional mechanisms to be described below, allows
LT to prove theorems with a reasonable amount of
computing effort.

The Matching Process

The times required to generate proofs for even the
simplest theorems by the British-Museum algorithm
are larger than the times required by L T by factors
ranging from five (for one particular theorem) to a
hundred and upwards. Let us consider an example from
the earliest part of the generation, where we have de
tailed information about the algorithm. The 79th theo
rem generated by the algorithm (see Fig. 2) is theorem
2.02 of "Principia," one of the theorems we asked LT to
prove. This theorem, "p implies (q implies p)," is gener
ated by the algorithm in about 158 seconds with a se
quence of substitutions and replacements; it is proved
by LT in about 10 seconds with the method of substitu
tion. The reason for the difference becomes apparent if
we focus attention on axiom 1.3, "p implies (q or p),"
from which the theorem is derived in either scheme.

Fig. 5 shows the tree of proofs of the first twelve
theorems obtained from (1.3) by the algorithm. The
theorem 2.02 is node (9) on the tree and is obtained by
substitution of "not-q" for "q" in axiom 1.3 to reach
node (5); and then by replacing the" (not-q or p)" by
"(q implies p)" in (5) to get (9). The 9th theorem gener
ated from axiom 1.3 is the 79th generated from the five
axioms considered together.

This proof is obtained directly by L T
following matching procedure. We compare
wi th (9), the expression to be proved:

p implies (q or p)
p implies (q implies p).

using the
the axiom

(1.3)
(9)

First, by a direct comparison, LT determines that
the main connectives are identical. Second, LT deter
mines that the variables to the left of the main con
nectives are identical. Third, LT determines that
the connectives within parentheses on the right-hand
sides are different. It is necessary to replace the "or" with
"implies," but in order to do this (in accordance with
the definition of implies) there must be a negation sign
before the variable that precedes the "or." Hence, L T
first replaces the "q" on the right-hand side with "not-q"
to get the required negation sign, obtaining (5). Now

------p implies(q or p)

9 ~p implies (q implies p)

Fig. 5-Proof tree of proof of 2.02 by British Museum
algorithm (using axiom 1.3).

LT can change the "or" to "implies," and determines
that the resulting expression is identical with (9).

The matching process allowed LT to proceed directly
down the branch from (1) t.hrough (5) to (9) without
even exploring the other branches. Quantitatively, it
looked at only two expressions instead of eight, thus
reducing the work of comparison by a factor of four.
Actually, the saving is even greater, since the matching
procedure does not deal with whole expressions, but with
a single pair of elements at a time.

An important source of efficiency in the matching
process is that it proceeds component-wise, obtaining
at each step a feedback of the results of a substitution
or replacement that can be used to guide the next step.
This feedback keeps the search on the right branch of
the tree of possible expressions. It is not important for
an efficient search that the goal be known from the
beginning; it is crucial that hints of "warmer" or "cold
er" occur as the search proceeds. 7 Closely related to this
feedback is the fact that where L T is called on to make
a substitution or replacement at any step, it can deter
mine immediately what variable or connective to sub
stitute or replace by direct comparison with the prob
lem expression, and without search.

Thus far we have assumed that LT knows at the
beginning that (1.3) is the appropriate axiom to use.
Without this information, it would begin matching
with each axiom in turn, abandoning it for the next one
if the matching should prove impossible. For example,
if it tries to match the theorem against axiom 1.2, it
determines almost immediately (on the second test) that
"p or p" cannot be made into "p" by substitution. Thus,
the matching process permits L T to abandon unprofit
able lines of search as well as guiding it to correct sub
~titutions and replacements.

7 The following analogy ~ay be}r:str~,ctive. C~an&ing th~ sy~
boIs in a logic expression unt11 the r1ght t;Xpress10n .1S o~ta1?ed 1S
like turning the dials on a safe u!lhl the ~1ght combmatlOn IS ob
tained. Suppose two safes, each wIth te!l d,~als and ten n.umbe~s o.n
a dial. The first safe gives a signal (a "chck) when any gIven d1alls
turned to the correct number; the second safe clicks only when all
ten dials are correct. Trial-and-error search will open the first safe,
on the average, in 50 trials; the second safe, in five billion trials.

Newell, Shaw, and Simon: The Logic Theory Machine 225

Matching in the Substitution Method: The matching
process is an essential part of the substitution method.
Without it, the substitution method is just that part of
the British-Museum algorithm that uses only replace
ments and substitutions. With it, LT is able, either
directly or in combination with the other methods, to
prove many theorems with reasonable effort.

To obtain data on its performance, LT was given the
task of proving in sequence the first 52 theorems of
"Principia." In each case, LT was given the axioms plus
all the theorems previously proved in Chapter 2 as the
material from which to work (regardless of whether LT
had proved the theorems itself). 8

Of the 52 theorems, proofs were found for a total 38
(73 per cent). These proofs were obtained by various
combinations of methods, but the substitution method
was an essential component of all of them. Seventeen
of these proofs, almost a half, were accomplished by
the substitution method alone. Subjectively evaluated,
the theorems that were proved by the substitution
method alone have the appearance of "corollaries" of the
theorems they are derived from; they occur fairly close
to them in the chapter, generally requiring three or
fewer attempts at matching per theorem proved (54
attempts for 17 theorems).

The performance of the substitution method on the
subproblems is somewhat different, due, we think, to
the kind of selectivity implicit in the order of theorems
in "Principia." In 338 attempts at solving subproblems
by substitution, there were 21 successes (6.2 per cent).
Thus, there was about one chance in three of proving
an original problem directly by the substitution method,
but only about one chance in 16 of so proving a sub
problem generated from the original problem.

Matching in Detachment and Chaining: So far the
matching process has been considered only as a part of
the substitution method, but it is also an essential com
popent of the other three methods. In detachment, for
example, a theorem of form "A implies B" is sought,
where B is identical with the expression to be proved.
The chances of finding such a theorem are negligible
unless we allow some modification of B to make it
match the theorem to be proved. Hence, once a theorem
is selected from the theorem list, its right-hand sub
expression is matched against the expression to be
proved. An analogous procedure is used in the chaining
methods.

We can evaluate the performance of the detachment
and chaining methods with the same sample of prob
lems used for evaluating the substitution method. How
ever, a successful match with the former three methods
generates a subproblem and does not directly prove the

8 The version of LT used for seeking solutions of the 52 prdblems
included a similarity test (see next section). Since the matching proc
ess is more important than the similarity test, we have presented the
facts about matching first, using adjusted statistics. A notion of the
sample sizes can be gained from Table 1. The sample was limited to
the first 52 of the 67 theorems in Chapter 2 of "Principia" because of
memory limitations of ·]OHNNIAC.

theorem. With the detachment method, an average of
three new subproblems were generated for each applica
tion of the method; with forward chaining the average
was 2.7; and with backward chaining the average was
2.2. For all the methods, this represents about one sub
problem per 7! theorems tested (the number of theorems
available varied slightly).

As in the case of substitution, when these three meth
ods were applied to the original problem, the chances of
success were higher than when they were applied to
subproblems. When applied to the original problem, the
number of subproblems generated averaged eight to
nine; when applied to subproblems derived from the
original, the number of subproblems generated fell to
an ave~age of two or three.

In handling the first 52 problems in Chapter 2 of
"Principia," 17 theorems were proved in one step-that
is, in one application of substitution. Nineteen theorems
were proved in two steps, 12 by detachment followed
by substitution, and seven by chaining forward fol
lowed by substitution. Two others were proved in
three steps. Hence, 38 theorems were proved in all.
There are no two step proofs by backward chaining,
since, for two step proofs only, if there is a proof by
backward chaining, there is also one by forward chain
ing. In 14 cases LT failed to find a proof. Most of these
unsuccessful attempts were terminated by time or space
limitations. One of these 14 th-eorems we know LT can
not prove, and one other we believe it cannot prove. Of
the remaining twelve, most of them can be proved by
LT if it has sufficient time and memory (see section on
subproblems, however).

Similarity Tests and Descriptions

Matching eliminates enough of the trial and error in
substitutions and replacements to make LT into a suc
cessful problem solver. Matching permeates all of the
methods, and without it none of them would be useful
within practical amounts of computing effort. However,
a large amount of search is still used in finding the cor
rect theorems with which matching works. Returning
to the performance of LT in Chapter 2, we find that the
over-all chances of a particular match being successful
are 0.3 per cent for substitution, 13.4 per cent for de
tachment, 13.8 per cent for forward chaining, and
9.4 per cent for backward chaining.

The amount of search through the theorem list can be
red uced by interposing a screening process that will re
ject any theorem for matching that has low likelihood
of success. L T has such a screening device, called the
similarity test. Two logic expressions are defined to be
similar if both their left-hand and right-hand sides are
equal, with respect to, 1) the maximum number of
levels from the main connective to any variable; 2) the
number of distinct variables; and 3) the number of
variable places. Speaking intuitively, two logic expres
sions are "similar" if they look alike, and look alike if
they are similar. Consider for example:

226 1957 WESTERN COMPUTER PROCEEDINGS

(p or q) implies (q or p) (1)
P implies (q or p) (2)
r implies (m implies r). (3)

By the definition of similarity, (2) and (3) are similar,
but (1) is not similar to either (2) or (3).

In all of the methods LT applies the similarity tests
to all expressions to be matched, and only applies the
matching routine if the expressions are similar; other
'wise it passes on to the next theorem in the theorem list.
The similarity test reduces substantially the number of
matchings attempted, as the numbers in Table I show,
and correspondingly raises the probability of a match if
the matching is attempted. The effect is particularly
strong in substitution, where the similarity test reduces
the matchings attempted by a factor of ten, and in
creases the probability of a successful match by a factor
of ten. For the other methods attempted matchings
were reduced by a factor of four or five, and the prob
ability of a match increased by the same factor.

TABLE I

STATISTICS OF SIMILARITY TESTS AND MATCHING

Per Cent Per Cent Theo- Theo- Theo- Similar of Matched
Method rems rems Theo- of Theo-Consid- Simi- rems

Matched rems rems ered lar Consid- Similar ered

Substitution 11 ,298 993 37 8.8 3.7
Detachment 1,591 406 210 25.5 51.7
Chain. Forward 869 200 120 23.0 60.0
Chain. Backward 673 146 63 21.7 43.2

These figures reveal a gross, but not necessarily a net,
gain in performance through the use of the similarity
test. There are two reasons why all the gross gain may
not be realized. First, the similarity test is only a
heuristic. It offers no guarantee that it will let through
only expressions that will subsequently match. The
similarity test also offers no guarantee that it will not
reject expressions that would match if attempted. The
similarity test does not often commit this type of error
(corresponding to a type II statistical error), as will be
shown later. However, even rare occurrences of such
errors can be costly. One example occurs in the proof of
theorem 2.07:

p implies (p or p). (2.07)

This theorem is proved simply by substituting p for q
in axiom 1.3:

p implies (q or p). (1.3)

However, the similarity test, because it demands equal
ity in the number of distinct variables on the right-hand
side, calls (2.07) and (1.3) dissimilar because (2.07) con
tains only p while (1.3) contains p and q. L T discovers
the proof through chaining forward, where it checks for
a direct match before creating the new'subproblem, but
the proof is about five times as expensive as when the
similarity test is omitted.

The second reason why the gross gain will not all be

realized is that the similarity test is not costless, and in
fact for those theorems which pass the test the cost of
the similarity test must be paid in addition to the cost
of the matching. We will examine these costs in the next
section when we consider the effort L T expends.

Experiments have been carried out with a weaker
similarity test, which compares only the number of
variable places on both sides of the expression. This test
will not commit the particular type II error cited above,
and (2.07) is proved by substitution using it. Apart
from this, the modification had remarkably little effect
on performance. On a sample of ten problems it ad
mitted only 10 per cent more similar theorems and about
10 per cent more subproblems. The reason why the two
tests do not differ more radically is that there is a high
correlation among the descriptive measures.

Effort in LT

So far we have focussed entirely on the performance
characteristics of the heuristics in L T, except to point
out the tremendous difference between the computing
effort required by LT and by the British-Museum
algorithm. However, it is clear that each additional
test, search, description, and the like, has its costs in
co.mputing effort as well as its gains in performance.
The costs must always be balanced against the per
formance gains, since there are always alternative
heuristics which could be added to the system in place
of those being used. In this section we will analyze the
computing effort used by LT. The memory space used
by the various processes also constitutes a cost, but one
that will not be discussed in this paper.

Measuring Effort: LT is written in an interpretive
language or pseudo code, which is described in the com
panion paper to this one. LT is defined in terms of a set
of primitive operations, which, in turn, are defined by
subroutines in JOHNNIAC machine language. These
primitives provide a convenient unit of effort, and all
effort measurements will be given in terms of total
number of primitives executed. The relative frequen
cies of the different primitives are reasonably constant,
and, therefore, the total number of primitives is an
adequate index of effort. The average time per primitive
is quite con~tant at about 30 milliseconds, although for
very low totals (less than 1000 primitives) a figure of
about 20 milliseconds seems better.

Computing E..ffort and Performance: On a priori
grounds we would expect the amount of computing
effort required to solve a logic problem to be roughly
proportional to the total number of theorems examined
(i.e., tested for similarity, if there is a similarity routine;
or tested for matching, if there is not) by the various
methods in the course of solving the problem. In fact,
this turns out to be a reasonably good predictor of effort;
but the fit to data is much improved if we assign greater
weight to theorems considered for detachment and
chaining than to theorems considered for substitution.

Actual and predicted efforts are compared below
(with the full similarity test included, and excluding

Newell, Shaw, and Simon: The Logic Theory Machine 227

theorems proved by substitution) on the assumption
that the number of primitives per theorem considered
is twice as great for chaining as for substitution, and
three times as great for detachment. About 45 primitives
are executed per theorem considered with the substitu
tion method (hence 135 with detachment and 90 with
chaining). As Table II shows, the estimates are gener
ally accurate within a few per cent, except for theorem
2.06, for which the estimate is too low.

TABLE II

EFFORT STATISTICS WITH "PRECOMPUTE DESCRIPTION" ROUTINE

Theorem

2.06
2.07
2.08
2.11
2.13
2.14
2.15
2.18
2.25

Total Primitives (in thousands)

Actual

3.2
4.3
3.5
2.2

24.5
3.3

15.8
.34.1
11.1

Estimate

0.8
4.4
3.3
2.2

24.6
3.2

13.6
35.8
11.5

There is an additional source of variation not shown
in the theorems selected for Table II. The descriptions
used in the similarity test must be computed from the
logic expressions. Since the descriptions of the theorems
are used over and over again, LT computes these at the
start of a problem and stores the values with the theo
rems, so they do not have to be computed again. How
ever, as the number of theorems increases, the space
devoted to storing the precomputed descriptions be
comes prohibitive, and LT switches to recomputing
them each time it needs them. With recomputation, the
problem effort is still roughly proportional to the total
number of theorems considered, but now the number of
primitives per theorem is around 70 for the substitution
method, 210 for detachment, and 140 for chaining.

Our analysis of the effort statistics shows, then, that
in the first approximation the effort required to prove a
theorem is proportional to the number of theorems that
have to be considered before a proof is found; the num
ber of theorems considered is an effort measure for
evaluating a heuristic. A good heuristic, by securing
the consideration of the "right" theorems early in the
proof, reduces the expected number of theorems to be
considered before a proof is found.

Evaluation of the Similarity Test: As we noted in the
previous section, to evaluate an improved heuristic, ac
count must be taken of any additional computation that
the improvement introduces. The net advantage may
be less than the gross advantage, or the extra computing
effort may actually cancel out the gross gain in selec
tivity. We are now in a position to evaluate the simi
larity routines as preselectors of theorems for matching.

A number of theorems were run, first with the full
similarity routine, then with the modified similarity
routine (which tests only the number of variable
places), and finally with no similarity test at all. We

also made some comparisons with both precomputed
and recomputed descriptions.

When descriptions are precomputed, the computing
effort is less with the full similarity test than without it;
the factor of saving ranged from 10 to 60 per cent (e.g.,
3534/5206 for theorem 2.08). However, if LT must re
compute the descriptions every time, the full similaFity
test is actually more expensive than no similarity test at
all (e.g., 26,739/22,914 for theorem 2.45).

The modified similarity test fares somewhat better.
For example, in proving (2.45) it requires only 18,035
primitives compared to the 22,914 for no similarity test
(see the paragraph above). These comparisons involve
recomputed descriptions; we have no figures for pre
computed descriptions, but the additional saving ap
pears small since there is much less to compute with the
abridged than with the full test.

Thus the similarity test is rather marginal, and does
not provide anything like the factors of improvement
achieved by the matching process, although we have
seen that the performance figures seem to indicate much
more substantial gains. The reason for the discrepancy
is not difficult to find. In a sense, the matching process
consists of two parts. One is a testing part that locates
the differences between elements and diagnoses the cor
rective action to be taken. The other part comprises the
processes of substituting and replacing. The latter part
is the major expense in a matching that works, but most
of this effort is saved when the matching fails. Thus
matching turns out to be inexpensive for precisely those
expressions that the similarity 'test excludes.

SUBPROBLEMS

LT can prove a great many theorems in symbolic
logic. However, there are numerous theorems that LT
cannot prove, and we may describe LT as having
reached a plateau in its problem solving ability.

Fig. 6, (next page) shows the amount of effort re
quired for the problems L T solved out of the sample of
52. Almost all the proofs that LT found took less than
30,000 primitives of effort. Among the numerous at
tempts at proofs that went beyond this effort limit, only
a few succeeded, and these required a total effort that
was very much greater.

The predomiqance of short proofs is even more strik
ing than the approximate upper limit of 30,000 primi
tives suggests. The proofs by substitution-almost half
0'£ the total-required about 1000 primitives or less
each. The effort required for the longest proof-89,000
primitives-is some 250 times the effort required for the
short proofs. We estimate that to prove the 12 addi
tional theorems that we believe L T can prove requires
the effort limit to be extended to about a million primi
tives.

From these data we infer that LT's power as a prob
lem solver is largely restricted to problems of a certain
class. While it is logically possible for L T to solve others
by large expenditures of effort, major adjustments are
needed in the program to extend LT's powers to essen-

228 1957 WESTERN COMPUTER PROCEEDINGS

f/) -0
0
'-
Q.. -0

'-
Q)
.Q

E
::l
Z

20

15

10

5

o
o 10 20 30 40 50 60 70 80 90 100

Effort (thousands of primitives~

Fig. 6-Distribution of L T's proofs by effort. Data include all proofs
from attempts on the first 52 theorems in Chapter 2 of "Prin
cipia."

tially new classes of problems. We believe that this situa
tion is typical: good heuristics produce differences in
performance of large orders of magnitude, but invaria
bly a "plateau" is reached that can be surpassed only
with quite different heuristics. These new heuristics will
again make 'differences of orders of magnitude. In this
section we shall analyze LT's difficulties with those theo
rems it cannot prove, with a view to indicating the gen
eral type of heuristic that might extend its range of
effecti veness.

The Subproblem Tree

Let us examine the proof of theorem 2.17 when all the
preceding theorems are available. This is the proof that
cost LT 89,000 primitives. It is reproduced below, using
chaining as a rule of inference (each chaining could be
expanded into two detachments, to conform strictly to
the system of "Principia").

(not-q implies not-p) implies (p im-
plies q) (theorem 2.17, to be proved)

1) A implies not-not-A (theorem 2.12)

2) P implies not-not-p (subs. p for A in 1)

3) (A implies B) implies [(B implies
G) implies (A implies G)] (theorem 2.06)

4) (p implies not-not-p) implies [(not-
not-p implies q) implies (p implies (subs. p for A, not-not-p for
q)] B, q for Gin 3)

5) (not-not-p implies q) implies (p im-
plies q) (det. 4 from 3)

6) (not-A implies B) implies (not-B
implies A) (theorem 2.15)

7) (not-q implies not-p) implies (not-
not-p implies q) (subs. q for A, not-p for B)

8) (not-q implies not-p) implies (p im-
plies q) (chain 7 and 5; QED)

The proof is longer than either of the two given at the
beginning of the paper. In terms of LT's methods it
takes three steps instead of two or one: a forward chain
ing, a detachment, and a substitution. This leads to the
not-surprising notion, given human experience, that
length of proof is an important variable in determining
total effort: short proofs will be easy and long proofs
difficult, and difficulty will increase more than propor
tionately with length of proof. Indeed, all the one-step

proofs require 500 to 1500 primitives, while the number
of primitives for two-step proofs ranges from 3000 to
50,000. Further, LT has obtained only six proofs longer
than two steps, and these require from 10,000 to 90,000
primitives.

The significance of length of proof can be seen by
comparing Fig. 7, which gives the proof tree for (2.17),
with Fig. 4, which gives the proof tree for (2.45), a two
step proof. In going one step deeper in the case of (2.17),
L T had to generate and examine many more subprob
lems. A comparison of the various statistics of the proofs
confirms this statement: the problems are roughly simi
lar in other respects (e.g., in effort per theorem con
sidered), hence the difference in total effort can be at
tributed largely to the difference in number of subprob
lems generated.

{not-q implies not-p} implies (p implies q)

\
\ o

Fig. 7-Subproblem tree of proof by LT of 2.17 (all
previous theorems available).

Let us examine some more evidence for this conclu
sion. Fig. 8 shows the subproblem tree for the proof of
(2.27) from the axioms, which is the only four-step
proof LT has achieved to date. The tree reveals immedi-

'. ately why LT was able to find the proof. Instead of
·"l

branching widely at each point, multiplying rapidly the
number of subproblems to be looked at, L T in this case
only generates a few subproblems at each point. It
thus manages to penetrate to a depth of four steps with
a reasonable amount of effort (38,367 primitives). If
this tree had branched as the other two did, L T would
have had to process about 250 subproblems before ar
riving at a proof, and the total effort would have been
at least 250,000 primitives. The statistics quoted earlier
on the effectiveness of subproblem generation support
the general hypothesis that the number of subproblems
to be examined increases more or less exponentially with
the depth of the proof.

The difficulty is that LT uses an algorithmic pro
cedure to govern its generation of subproblems. Apart
from a few subproblems excluded by the type II errors
of the similarity test, the procedure guarantees that all
subproblems that can be generated by detachment and
chaining will in fact be obtained (duplications are elimi
nated). L T also uses an algorithm to determine the order

Newell, Shaw, and Simon: The Logic Theory Machine 229

p implies ((p im plies q) implies q)

/
/

/
/

/

/
/

/

/
/

/

Fig. 8-Subproblem tree of proof by L T of 2.27
(using the axioms).

,in which it will try to solve subproblems. The subprob
lems are considered in order of generation, so that a
proof will not be missed through failure to consider a
subproblem that has been generated.

Because of these systematic principles incorporated in
the executive program, and because the methods, ap
plied to a theorem list averaging 30 expressions ip
length, generate a large number of subproblems, LT
must find a rare sequence that leads to a proof by search
ing through a very large set of such sequences. For
proofs of one step, this is no problem at all; for proofs of
two steps, the set to be examined is still of reasonable
size in relation to the computing power available. For
proofs of three steps, the size of the search already
presses L T against its computing limits; and if one or
two additional steps are added the amount of search
required to find a proof exceeds any amount of comput
ing power that could practically be made available.

The set of subproblems generated by ,the Logic The
ory Machine, however large it may seem, is exceedingly
selective and rich in proofs compared with the set
through which the British-Museum algorithm searches.
Hence, the latter algorithm could find proofs in a
reasonable time for only the simplest theorems, while
proofs for a much larger number are accessible with LT.
The line dividing the possible from the impossible for
any given problem-solving procedure is relatively sharp,
,hence a further increase in problem-solving power, com-
parable to that obtained in passing from the British
Museum algorithm to LT, will require a corresponding
enrichmen t of the heuristic.

Modification of the Logic Theory Machine

There are many possible ways to modify LT so that it
can find proofs of more than two steps in a way which

has reason and insight, instead of by brute force. First,
the unit cost of processing subproblems can be substan
tially reduced so that a given computing effort will
handle many more subproblems. (This does not, per
haps, change the "brute force" character of the process,
but makes it feasible in terms of effort.) Second, LT can
be modified so that it will select for processing only
subproblems that have a high probability of leading to
a proof. One way to do this is to screen subproblems be
fore they are put on the subproblem list, and eliminate
the unlikely ones altogether. Another way is to reduce
selectively the number of subproblems generated.

For example, to reduce the number of subproblems
generated, we may limit the lists of theorems available
for generating them. That this approach may be effec
tive is suggested by the statistics we have already cited,
which show that the number of subproblems generated
by a method per theorem examined is relatively con
stant (about one subproblem per seven theorems).

An impression of how the number of available theo
rems affects the generation of subproblems may be
gained by comparing the proof trees of (2.17) (Fig. 7)
and (2.27) (Fig. 8). The broad tree for (2.17) was pro
duced with a list of twenty theorems, while the deep
tree for (2.27) was produced with a list of only five
theorems. The smaller theorem list in the latter case
generated fewer subproblems at each application of one
of the methods.

Another exam pIe of the same point is provided by
two proofs of theorem 2.48 obtained with different lists
of available theorems. In the one case, (2.48) was proved
starting with all prior- theorems on the theorem list; in
the other case it was proved starting only with the
axioms and theorem 2.16. We had conjectured that the
proof would be more difficult to obtain under the latter
conditions, since a longer proof chain would have to be
constructed than under the former. In this we were
wrong: with the longer theorem list, LT proved theo
rem 2.48 in two steps, employing 51,450 primitives of
effort. With the shorter list, L T proved the theorem in
three steps, but with only 18,558 primitives, one-third
as many as before. Examination of the first proof shows
that the many "irrelevant" theorems on the list took a
great deal of processing effort. The comparison provides
a dramatic demonstration of the fact that a problem
solver may be encumbered by too much information,
just as he may be handicapped by too little.

We have only touched on the possibilities for modify
ing LT, and have seen some hints in LT's current be
havior about'their potential effectiveness. All of the
avenues mentioned earlier appear to' offer worthwhile
modifications of the program. We hope to report on
these explorations at a later time.

CONCLUSION

In this paper we have provided data on the per
formance of a complex information-processing system
that is capable of finding proofs for theorems in ele
mentary symbolic logic. We have used these data to
analyze and illustrate the difference between systematic,

'230 1957 WESTERN COMPuTER PROCEEDINGS

algorithmic processes, on the one hand, and heuristic,
problem-solving processes, on the other. We have shown
how heuristics give the program power to solve prob
lems in a reasonable computing time that could be
solved algorithmically only in large numbers of years.
Finally, we have assessed the limitations of the present
program of the Logic Theory Machine and have indi
cated some of the directions that improvement would

Discussion report on these results.

have to take to extend its powers to problems at new
levels of difficulty.

Our explorations of the Logic Theory Machine repre
sent a step in a program of research on complex in
formation-processing systems that is aimed at develop
ing a theory of such systems and applying that theory
to such fields as computer programming, and human
learning and problem solving.

L. D. Yarbrough (No. American A via
tion): Have you made an attempt at finding
some set of theorems which might tend to
optimize the proof of the remaining theo
rems?

Lt. Col. Bryan Cowan (U. S. Army): Does
the LT machine select and operate on sub
problems in a predetermined order, such as
taking first those characterized by high prob
ability of giving a solution?

Mr. Newell: This is related to the notion
of familiar theorems, which the machine
does not recognize. We believe that we can
devise a rule which will really throw all the
false theorems out. We can use truth tables,
for instance, but these would prove to be
rather expensive so we are using instead a
fairly cheap kind of a test which is to say
'that expression is most likely false. For ex
ample, if there are no common variables, then
the "theorem" is probably false. I believe
that I ...

Mr. Newell: No, we have not. One of
the interesting things in mathematics is once
an area has been studied very thoroughly
metamathematical theorems are developed.
One of these is called the Dix Theorem,
which is a theorem about the use of all the
theorems to prove new ones. It would be
excellent if the machine would discover such
a powerful theorem. A learning program
should be developed so that the machine
will learn to use those theorems which have
worked in the past. We have done some ex
periments in this direction and we expect to

Mr. Newell: At the moment, the rou
tine used takes the subproblems in order of
generation and this leads to the large trees.
So, in fact, the machine does a large amount
of searching. The logic theory machine is
being used to make a much better selection
but we have not gone very far in this direc
tion. At the mement we think that this is
one of the major defects.

P. E. Tanner: Have you tried using the
contradictory method of solution, i.e., as
sume the negative of the proposition and
prove this false? G. H. McClurg (Signal Corps): Can the

machine disprove theorems or recognize
when it has disproved a theorem which it is
trying to prove?

Mr. Newell: No, we have not used this
as a method for the reason that this is a
poor technique.

Programming the Logic Theory Machine*
A. NEWELLt AND J. C. SHAWt

INTRODUCTION

ACOMPANION paperl has discussed a system,
called the Logic Theory Machine (L T), that dis
covers proofs for theorems in symbolic logic in

much the same way as a human does. It manipulates
symbols, it tries different methods, and it modifies some
of its processes in the light of experience.

The primary tool currently available for studying
such systems is to program them for a digital computer
and to examine their behavior empirically under varying
conditions. The companion paper is a report of such a
study of LT. In this paper we shall discuss the pro
gramming problems involved and describe the solutions
to these problems that we tried in programming LT.

The aims of this paper are several. First, it serves to
amplify and make more precise its companion paper.
Second, progress in research on complex information

* This paper is part of a research project being conducted jointly
by the authors and H. A. Simon of Carnegie Institute of Technology.
All of us have shared in the development of most of the ideas in
the language.

t The RAND Corp., Santa Monica, Calif.
1 Newell, Shaw, and Simon, this issue, p. 218.

processing demands a heavy investment in technique
I t is not sufficient simply to specify a rough flow dia
gram for each new system and to program it in machine
code on a one-shot basis. We hope this paper not only
shows the techniques and concepts we found useful, but
also emphasizes the role played by flexible and powerful
languages in making progress in this area.

Finally, L T is representative of a large class of prob
lems which are just beginning to be considered amenable
to machine solution; problems that require what we
have called heuristic programs. A description of the
problems encountered in LT may give some first hints
about the requirements for writing heuristic programs.

NATURE OF THE PROGRAMMING PROBLEM

To avoid too much dependence on the companion
paper, we will repeat a few general statements about
LT in the context of programming. LT is a program to
try to find proofs for theorems in symbolic logic. In this
type of problem, a superabundance of information and
alternatives is provided, but with no known clean-cut
way of proceeding to a solution. These situations require
"proble~-solving" activity, in the sense that one has no

Newell and Shaw: Programming the Logic Theory Machine 231

path to the solution at the start, except to apply vague
rules of thumb, like "consider the relevant features."
Playing chess, finding proofs for mathematical theorems,
or discovering a pattern in some data are examples of
problems of this kind. Occasionally, as in chess, one can
specify simple ways to solve the problem "in principle"
-given virtually unlimited computational power-but,
in fact, limitations of computing speed and memory
make such exhaustive procedures inadmissible.

LT, as an example of a heuristic program, may be
expected to yield some clues about constructing this
type of program. Actually, LT is still very simple com
pared to the complexity in learning, self-programming,
and memory structure that seem necessary for more
general problem solving. Thus, we think that LT under
estimates the flexibility and programming power re
quired in complex problem-solving situations.

Perhaps the most striking feature of LT when com
pared with current computer programs is its truly non
numerical character. Not only does L T work with other
symbols besides numbers, but many of its computations
either generate new symbolic entities (i.e., logic expres
sions) that are used in subsequent stages of solution, or
change the structure of memory. In contrast, in most
current computer programs, the set of entities that are
going to be considered (the variables and constants) is
determined in advance, and the task of the program is
to compute the values of some of these variables in
terms of the others. Such forward planning is not possi
ble with LT. Although there are fixed entities in LT
which remain constant over the problem and provide a
framework within which the computation takes place
these are complex affairs, rather than symbols. An
example of such an entity is a list of subproblems. The
elemen ts on this list are variable: each problem is a logic
expression which is generated by L T itself and may
carry with it various amounts of descriptive informa
tion. The number, kind, and order of these logic expres
sions are completely variable.

The program of L T is also very large. There are large
numbers of different features under consideration and
large numbers of special cases. All of these features and
cases require special routines to deal with them, and,
by a kind of compounding rule, the existence of numer
ous subroutines requires yet other subroutines to inte
grate them. This is further compounded in LT, because
no one way of proceeding ensures solution of a given
logic problem, and hence, many alternative subroutines
exist. Their existence again implies routines to choose
among them. Some reduction in the total size of the pro
gram is achieved through multiple use of routines, but
this increases the complexity of the subroutine structure
considerably. The hierarchies of routines become rather
large: 13 or 14 levels are common in LT.

Another characteristic of LT is its use of information
about the workings of the program-how much memory
is being used for particular purposes, and how much
effort is allocated to various subprocesses-to govern
the further course of the program. L T uses such in-

formation in its "stop rules," by which it passes from one
problem to another, and in its choice between recom
puting and storing information. It is cheaper in terms
of total amount of computation to compute information
and then store it; L T does this as long as memory space
is available. When memory becomes scarce, LT shifts to
recomputing information each time it is needed.

LT also contains routines for recording the results of
its operation, so that we can study its behavior. It is
built to permit easy and rapid change of program, in
order to let us study radical program variations. These
additional features do not add anything qualitatively to
the· features mentioned above, but they do add to the
total size and complexity of the program.

Requirements for the Programming Language

We can transform these statements about the general
nature of the program of LT into a set of requirements
for a programming language. By a programming Ian...,
guage we mean a set of symbols and conventions that
allows a programmer to specify to the computer what
processes he wan ts carried out.

Flexibility of Memory Assignment:

1) There should be no restriction on the number of
different lists of items of information to be stored. This
number should not have to be decided in advance; that
is, it should be possible to create new lists at will during
the course of computation.

2) There should be no restriction on the nature of the
items in a list. These might range from a single symbol
or number to an arbitrary list. Thus, it should be possible
to make lists, lists of lists, lists of lists of lists, etc.

3) It should be possible to add, delete, insert~ and re
arrange items of information in a list at any time and in
any way. Thus, for example, one should be able to add
to the front of a list as well as to the end.

4) It should be possible for the same item to appear
on any number of lists simultaneously.

Flexibility in the Specification of Processes:

1) It should be possible to give a name to any sub
routine, and to use this name in building other sub
routines. That is to say, there should be no limitation
on the size and complexity of hierarchies of definitions.

2) There should be no restriction on the number of
references in the instructions, or on what is referenced.
That is, it should be possible to refer in an instruction
to data, to lists of data, to processes, or what not.

3) It should be possible to define processes implicitly;
e.g., by recursion. More generally, the programmer
should be able to specify any process in whatever way
occurs naturally to him in the context of the problem.
If the programmer has to "translate" the specification
into a fixed and rigid format, he is doing a preliminary
processing of the specifications that could be avoided.

4) It should be unnecessary to have a single inte
grated plan or set of conventions for the form of infor
mation; that is, for symbols, tags, orderings, in lists, etc.

232 1957 WESTERN COMPUTER PROCEEDINGS

On the other hand, it should be possible to introduce
conventions locally within parts of the problem when
ever this will increase processing efficiency.

These requirements are neither precise nor exhaus
tive. Except in a world where all things are costless,
they should not be taken as general programming re
quirements for all types of problems. They characterize
the kinds of flexibility we think are needed for the sorts
of complex processes we have been discussing.

Solutions of the Program Language Requirements for LT

The requirements ,stated above for' L T were met by
constructing a complete language, or pseudo code,
which has the power of expression implied by the re
quirements, but which the computer can interpret. A
first version of the language was developed independ
ently of any particular computer and was used only to
specify precisely a logic theory machine. 2 A second ver
sion is an actual pseudo code prepared for use on the
RAND JOHNNIAC,3 and it is this version that we will
describe here. We have had about fifty hours of machine
computation using the language and hence, we can eval
uate fairly well how it performs.

The present language has a number of shortcomings.
I t is very costly both in memory space and in time, for
it seemed to us that these costs could be brought down
by later improvement, after we had learned how to ob
tain the flexibility we required. Further, the language
does not meet the flexibility requirements completely.
We will com men t on some of these deficiencies in the
final section of thi~ paper.

The language is purely a research tool, developed for
use by a few experienced people who know it very well.
Thus a number of minor rough spots remain. Further,
we used available utility routines, fitting the format and
symbols of the language to a symbolic loading program
which already eXIsts for JOHNNIAC. This loader ac
cepts a series of subroutines coded in absolute, relative,
or symbolic addresses (symbolic within each routine
separately) and assigns memory space for them.

DESCRIPTION OF THE LANGUAGE

The description of the language, which we shall call
[PL, falls naturally into two parts. First, we shall de
scribe the structure of the memory and the kinds of in
formation that can be stored in it. Then we shall de
scribe the language itself ahd how it refers to informa
tion, processes, and so on.

The Memory Structure

L T is a program for doing problems in symbolic logic.
Basically, then, IPL must be able to refer to symbolic
logic expressions and their properties. It must also be

2 A. Newell and H. A. Simon, "The log-ic theory machine," IRE
TRAN<;., vol. IT-2, pp. 61-79; September, 1956.

3 The JOHNNIAC is an automatic digital computer of the
Princeton type. It has a word length of 40 bits with two instructions
in each word. Its fast storage consists of 4096 words of magnetic
C'res and its secondary storage consists of 9216 words on magnetic
drums. Its speed is about 15,000 operations per second.

able to refer to descriptions of the expressions which are
properties only in an extended sense. For example, an
expression may have a name, or it may have been de
rived in a given fashion, or by using a certain theorem,
and IPL must be able to express these facts. LT needs
to consider lists of expressions and lists of processes
used to solve logic problems, and there must be ways to
express these facts.

Elements: The basic unit of information in IPL is an
element. An element consists of a set of symbols, which
are the values of a set of variables or attributes. There
are different kinds of elements to handle the different
,kinds of information referred to above. The two most
important elements are the logic element, which allows
the specification of a symbolic logic expression, and the
description, which is a general purpose element, used to
describe most other things, and which carries with it its
own identification.

Each element fits into a single JOHNNIAC word of
40 bits. The symbols are assigned to fixed bit positions
in the word, so that the element is handled as a unit
when it comes to moving information around, etc. Each
variable and symbol has a name which is used in IPL to
refer to it. The name of a symbol is the address of a
word that contains the appropriate set of bits. Since
JOHNNIAC has instructions corresponding to the logi
cal "and" and complementati<?n, the name of a variable
is the address of a word that holds the mask necessary
to extract the bit positions corresponding to the
variable.

Logic elements are the units from which logic expres
sions are constructed. Fig. 1 shows what variables and

(bits) 3 3 12 5 9 3

~H A ~ N
I

p H
G Number of negatIOn signs

C Connective (or vanable)

A LocatIOn of logiC expression

N Name

p Position number

Q Level In expression

Fig. i-Logic element.

symbols comprise a logic element. Expressions in sym
holic logic ~re much like algebraic expressions: each
element consists of an operation (called a "connective"
in logic) or a variable, together with the negation signs
(if any) that,apply to it. We use a parenthesis-free nota
tion, in which the position of each element in a logic
expression is designated by a number-this number,
therefore, being one of the symbols in the element. For
example, the logic expression p~(-q v p) would be
represented by five elements as shown in Fig. 2. Each
logic element consists of six variables (each taking on a
variety of values) all of which fit in to a single word:
the number of negation signs, the connective, the loca-

Newell and Shaw: Programming the Logic Theory Machine 233

Fig. 2-Logic expression.

tion of the list which holds the entire logic expression of
which this is an element, the name of the variable, the
position number, and the number of levels down from
the main connective.

Description elements consist of two symbols, as shown
in Fig. 3. There are many different types of descriptions

(bits) 6 12
Ir--------------r-D-N~---V~~

ON Description name

V Value of description

Fig. 3-Description element.

such as the name of a logic expression, the method used
to derive a logic expression, or the number of different
variables appearing in a given logic expression, and each
type has a name. The left-hand symbol in the element
gives the name of the type of description. The right
hand symbol gives the value of this description for some
logic expression with which this description is associ
ated. Thus, for example, in considering a certain logic
expression the description element 012-L082 might be
found. The 012 indicates that this description element
gives the method used in deriving the expression, and
the L082 is the name of the actual method used, in this
case, the method of detachment.

Lists: Lists are the general units of information in the
memory. A list consists of an ordered set of items of in
formation. Any item on a list IT,lay be either a list or an
element, and these are fundamentally different types of
units, as we shall see later (the difference arises mostly
from the fact that an element is contained in a single
]OHNNIAC word). Since a list is itself an ordered set
of items which may themselves be lists, we obtain most
of the flexibility we desire in the memory structure.
There is no limit to the complexity of the structures that
can be built up, provided that one knows how to use
them, except the total memory space available. Also,
there is no restriction to the number of lists on which
an item can appear. For example, if we have a list of
items, we can construct one or more indexes (lists) on
each of which an arbitrary subset of the items of the
original list appears.

With each item located in a given list we may associ
ate descriptive information without disturbing the gen-

eral structure of the lists. That is, each item can have a
list of description elements associated with it. As many
descriptions may be put on the list as desired, and, since
they are self-identifying (by means of the description
names they contain) they may be put on in any order.
Descri ptions are associated with the item on a given list;
hence, if an item is on several lists, it can have several
distinct description lists.

Forming Lists: This memory structure has most of
the flexibility that we specified earlier as desirable.
There are information processes that can create new
lists at any time; or that can add items to a list at any
time, either in front, in back, or in some relation to other
locatable items in the list. Likewise, items can be de
leted from lists at any time, or moved from one list to
another, or simply "adjoined" to a new list without
being deleted from the old one.

All this flexibility in the memory is achieved by the
single expedient of divorcing the ordering relations
among items of information from the ordering relations
built into the address structure of the computer mem
ory.Let us sketch how this is done in]OHNNIAC for
IPL.

To form a list, we use a set of location words, each con
taining two addresses. One address locates an item on
the list, the other address locates the next location word.
Fig. 4 shows how this is done for a list of three elemen ts.

-I

Fig. 4-List of elemmts. The left half of the location word contains
the address of the next location word (single arrow); the right
half contains the address of the element (double arrow).

A location word holding a negative number serves to
terminate the list. Since the]OHNNIAC word holds
two instructions and hence, contains two addresses, it is
very convenient for this scheme. The left address is the
address of the next location word, the right address is
the address of the item on the list. In order to permit the
general list structure indicated earlier, each location
word contains a code telling whether the item it refers
to is an element (001), in which case it contains informa
tion, or a list (000), in which case it is the beginning of
another list; i.e., of a series of location words. Fig. 5
shows a general list containing both elements and lists.

Each item on a list is uniquely determined by one of
the location words. To associate a description list with
this item, we insert a location word for the description
list right behind the location word of the item with
which it is to be associated. We use a code 002 to dis
tinguish the location word of the description list from
the location word of the next item. Since a description
requires only half a word to hold its two attributes, we
put the location of the next description in the list in the
other half of the same]OHNNIAC word (Fig. 6).

234 1957 WESTERN COMPUTER PROCEEDINGS

List A

Fig. 5-General list. List B is the second item on list A; list C is
the third item on list B.

Item A
Item A

Description list
Item B

Fig. 6-Description list. The description list for item A is inserted
immediately behind item A, and distinguished from the next
item, B, by a 002 location word.

The address of the next item or location word in a list
need bear no particular relation to the address of a given
location word; they need not be adjacent, for instance.
Hence, an item is deleted from a list simply by deleting
its location word. Suppose, as in Fig. 7, we have three

Before~ ! ~ ! ~ ! ~

After~ ! ~ ! ~
loe,eted

Fig. 7-Deletion of an item from a list. Item B deleted by chang
ing address in location word of A to refer to location word of C.

items, A, B, and C, on a list. To delete B, we simply
change the address in the location word of A to refer to
the location word of C. Because of this same freedom of
position of the words in a list, location words on differ
ent lists may hold the address of the same item of in
formation. Hence, a single item of information may be
on as many lists as we please.

Perhaps the major problem in creating a flexible
memory is the housekeeping necessary to make avail
able unused words after they have become scattered all
through the memory because of repeated use and reuse.
When a word is deleted from a list, we must be able to
"recapture" this word, in order that it may be used sub
sequently for other purposes. The association memory
(the name we use for this type of memory) starts with
all "available space" on a single long list, called the
available-space list. Whenever space is required for build
ing up a new list, this is obtained by using the words
from the front of the available-space list, and whenever
information is erased and the words that held it become
available for use elsewhere, these words are added to
the front of the available space list. I n Fig. 7, the dele
tion process would be completed by tying all of the de
leted words into a list and attaching this at the front of
the available-space list. Thus, the fact that unused
space is scattered all through the memory creates no
difficulty in finding new space, for there is a single
known word (the head of the available-space list) that
always contains the address of the next available wor<;l.
Hence, the use of the memory is not complicated by any
natural ordering like the natural sequence of machine
addresses.

Since all lists obtain their new space from the same
list, the only restriction on amounts or degrees of com
plexity of lists is the total size of memory. Thus, it is
clear why there are no separate limits to the number of

, lists, their maximum size, how "stacked" up they can
be, and ~o on. In this sense the language is easy to learn
and use.

Language Structure

The basic form of the language is the same as in all
current programming languages. The terms of the lan
guage are instructions. Each instruction specifies a com
plete information process; that is, it can be followed by
any other instruction. Thus, the syntax of the language
is basically identical with that of machine codes or flow
diagrams: sequences of instructions are carried out in
succession, with conditional transfers of control to per
mit alternative subsequences to be carried out as a
function of the process. (lPL is slightly more general
than this, as will be seen subsequently.) Also, as is usual
in this general type of language, each instruction speci
fies separately: 1) an operation and 2) the information
upon which it operates.

In IPL, a program-e.g., L T -is a system of sub
routines. Each subroutine is a sequence of instructions.
Each IPL instruction is defined by a subroutine (more
precisely, each particular occurrence of an instruction
has its operation part carried out by some subroutine),
usually called the defining subroutine of the instruction.
Subroutines may be written either in JOHNNIAC ma
chine language or in IPL (whenever "routine" is used in
this paper it always means IPL routine, unless stated
otherwise). Correspondingly, there are two kinds of
IPL instructions; primitives, whose defining subroutine

Newell and Shaw: Programming the Logic Theory Machine 235

is written in machine language, and higher instructions
whose defining subroutine is written in IPL.

The system of subroutines is organized in a roughly
hierarchical fashion. There is a "master routine," each
instruction of which is defined by another routine; the
instructions in these subroutines, in turn, are defined by
yet other subroutines, and so on. Eventually, primitive
instructions are reached, and their defining subroutines,
which are in machine language, are executed.

Instructions: Fig. 8 shows a typical instruction for-

0

100 L 092 21 II
2 3

Z 037 01

Fig. 8-Typical IPL instruction. The small numbers over the half
words give the number of the reference place.

mat. An instruction is a vertical sequence of JOHN
NIAC words; a routine is a vertical sequence of instruc
tions. Each half-word in an instruction is a reference
place, the first being numbered 0, as shown in the
figure. There may be any number of reference places in
an instruction, and the number need not even be con
stant from one use of the instruction to another, pro
vided that the subroutine which carries out the opera
tion understands how to use the references. Each refer
ence states (by code): 1) the type of reference (the small
space on the left side of each reference) and 2) the
reference. All references are to elements; hence, to refer
to a list in an instruction, it is necessary to refer to an
element that refers to the list.

There are three types of references (coded 0, 1, 2).
Type ° gives the location of an element in memory by
specifying either the absolute or relative address of the
word containing the element. Type-O references are used
for the fixed names of things, like constants (Z037) or
subroutines (L092). Within each routine, instructions
are located by symbolic addresses (such as * 32) which
are also of type 0. In this scheme there is no general way
to make reference in one routine to an arbitrary instruc
tion in any other routine, although there are some im
portant special ways of referring from one routine to
another which are considered below.

Each subroutine has its own working storage, consist
ing of an indefinite number of elements. These are re
ferred to by type-1 references: 1-0, 1-1, 1-2, When
a subroutine is completed, these working-storage ele
ments are automatically erased and made available for
reuse.

As stated above, each subroutine carries out the oper
ation for the instruction it defines, called the higher in
struction of that subroutine. Since this higher instruc
tion has variable references that differ with each occur
rence of the instruction, some way must exist of referring
to these variable values within the defining subroutine.
This is done by the type-2 references,. The symbols

2-0, 2-1, 2-2, ... , in a subroutine refer to the reference
places 0, 1, 2, ... , of the higher instruction defined by
the subroutine. Thus, the type-2 references are indirect,
referring to an element by referring to a reference place,
that, in turn, refers to the element. The situation is
shown in Fig. 9, where a given routine, L081, uses an

L081
working memory

01-1 ___ --'

I 1-1 ___ --'

2
'-------'

Routine L081
uSing LO 55

Defining
subroutine
for L055

2-3 refers to E VIO

reference ploce 3

working memory 2
which conto inS E

o I

L092 2-3

2 3

Fig. 9-IPL Type 2 reference.

instruction, L055, which is a higher instruction. Thus,
L055 is defined by a subroutine, part of which is shown
further to the right. In the working memory of L08t,
shown at the far left, the element E is located in cell 2.
The instruction L055 refers to E by using symbol 1-2 in
reference place 3. The instruction L092, which is in the
defining subroutine of LOSS, refers to E by 2-3.

The first reference place (number 0) in an instruction
determines the operation; or, more precisely, refers to
the subroutine that will carry out the operation. All
other reference places may refer to anything needed by
the subroutine. Thus, an instruction is simply a format
for a general process that is a function of an arbitrary
number of variables.

Execution of Instructions: Access is gained to the sub
routine that defines an operation by reference to an ele
ment which contains the location of that subroutine.
These elements are normally collected in a directory
(the Lxxx region), but may be put on lists and processed
like other elements.

From the point of view of coding for JOHNNIAC,
the language is entirely interpretive. When the inter
preter picks up an IPL instruction, it obtains the address
of the directory element from reference place 0. Besides
giving the location of the defining subroutine, the direc
tory element tells whether the instruction is a primitive
or a higher instruction.4

In case an instruction is a primitive, the defining sub
routine is in machine language, and the interpreter
transfers control to it. This subroutine then either moves
the referenced elements into fixed positions or adapts its
instructions to the addresses of the referenced elements,
and carries out the operation. Upon finishing it returns
con trol to the interpreter.

The directory element also gives other information which is de
scribed in the section, "Other Details."

236 1957 WESTERN COMPUTER PROCEEDINGS

In the case of a higher-level instruction, the defining
subroutine is also written in IPL and requires further
interpretation. To interpret the subroutine, the interpre
ter sets up several lists (obtaining space for these from
the available space list). The first list contains the
referenced elements in the instruction; it is the "2" list
from the point of view of the subroutine. The second list
is the "I" list, which will hold the working memory ele
ments, as they are set up in the subroutine. Finally, be
fore beginning to interpret the subroutine, the inter
preter must add to the next-instruction list the location
of the instruction following the one it is currently
in terpreting.

Within the subroutine the interpreter picks up the
first instruction and repeats the process described above.
Thus, no matter how many levels there are in the hier
archy, the interpreter continues to set up the lists
described above for each successive subroutine until it
reaches a primitive instruction. After the primitive is
executed, the interpreter proceeds to the next instruc
tion in the lowest subroutine. When this subroutine is
completed, the interpreter backs up to the next lowest
subroutine, and so on. In operation, the memory struc
ture for interpretation looks like a gigantic yoyo: lists
of references are set up successively one "below" another
as the interpreter goes down in search of a primitive, and
then these lists are erased again in reverse order as the
routines they correspond to are finished.

Prir,nitive Processes

So far we have described only the outline of a
language-the structure of memory and the format of
the instructions. The power of the language to express
complex processes depends on the set of primitive proc
esses out of which all the others must be built.

The set of primitives in IPL is built to reflect the
principle that the programmer should need to know as
little as possible about the storage of information in
memory. One of the clear lessons from programming
experience is that small differences in what the program
mer must know about the information in memory have
important consequences for ease of programming. Much
of the power of automatic computation derives from the
fact that in order to program it is sufficient to know only
the location of a number, and not the number itself.
Further, large gains in programming efficiency have
come from allowing the programmer to know this loca
tion only as a symbol or 'a relative address, rather than
as an absolute address.

In IPL an attempt was made to carry this principle
one step, further. The concept of working r,ner,nory, al
ready encountered earlier, is used to divide the memory
into two parts, so that all the intricate processing is done
in working memory. The remaining memory, which we
shall call the list r,ner,nory, is used for permanent storage
of information. This division of memory separates the
primitive operations into two groups. One group of
operations finds information in the list memory, makes
it available in the working memory, and stores it back

in the list memory again. The other group of operations
processes information in working memory. There are
also primitive operations for input and output, which
will be discussed in the next section.

Working-Mer,nory Operations: The primitives for
processing information in working memory are roughly
similar to typical machine instructions for a two-address
com'puter. An example will make this clear. Fig. 10

o
100 LOl5 ZOl2

2 3

01
Fig. 10-IPL addition instruction.

shows a typical occurrence of LOIS, the addition in
struction. The instruction adds a value stored in work
ing memory 1-0 to a value in working memory 1-1.
Since a working memory holds an en tire elemen t, which
is a collection of attribute values, it is necessary to
indicate which attribute is being added; the Z012 in
reference place 1 designates this. Z012 is the name of an
attribute: in this case the number of negation signs of
a logic element. Hence, this instruction reads, "add the
number of negations in the element 1-0 to the number of
negations in element 1-1, and place the result in 1-1."
This type of instruction requires the programmer to
know what information is in the working mempry ele
ments and defines some elementary process involving
two of them.

The set of primitives for processing information in
working memory includes addition and subtraction in
structions; test instructions for equality and inequality
with a conditional transfer of control to some other part
of the subroutine; and instructions for copying informa
tion from one working memory to another. All of these
instructions use a reference, like the Z012 in the exam
ple, to designate which attributes in the element are
being considered.

Find and Store Operations,' The find and store instruc
tions, whi'ch pass information between list memory and
working memory, are quite different in nature from the
instructions discussed above. To avoid having the pro
grammer know anything in detail about the location of
information in the list memory, all the find and store in
structions take the form of searches through a list with
tests to identify the informatio'n desired.

An example will make this clear. Referring back to
Fig. 8, L092 is a primitive find instruction that obtains
information about a logic expression. A logic expression
is stored as a list of elements (see Fig. 2) in the list
memory. The order of symbols in a logic expression is
specified by position numbers and is unrelated to the
ordering of the elements in the list. Given the position
number of a logic element it is easy to compute the posi
tion number of the element that is in any given relative
position to it, say, its left subelement. L092, then, is an
instruction that finds an element in a logic expression

Newell and Shaw: Programming the Logic Theory Machine 237

which bears a specified relative position, (e.g., Z037) to
some element (e.g., in 2-1) already known, and that puts
it in a working memory (e.g., 1-0) where it can be proc
essed further. Thus, the programmer only has to know
that the element he wants bears a given relation to some
known element, and he need know nothing about the
actual location of this element in the list or about the
rest of the logic expression. Each logic element carries
as one attribute the location of the list of the logic ex
pression containing it, so this does not have to be found
separately. Typically, when an element is called for by
an instruction, it is not known whether the desired ele
ment even exists; hence, L092 provides a conditional
transfer of control if the desired element is not found.
This particular instruction is written as a primitive be
cause the programming problem it solves-to find a
logic element bearing a given relation to a known logic
element-occurs repeatedly in LT.

The instructions for finding descriptions provide a
second example of how the instructions concerned with
the list memory use search and test processes. As stated
earlier, a list of description elements can be associated
with any item in a list. An instruction to find a descrip
tion requires the programmer to know the item to which
the description applies. The programmer must also
know the name of the description he wants. The opera
tion then searches the list for the item, and when it finds
it, searches the description list associated with that item
for the description with the indicated name. Again there
is no guarantee that the item is on the list, that the de
scription is on the description list, or even that a descrip
tion list exists; and the failure to find the desired de
scription is signaled with a conditional transfer of
control.

Like the find instructions, none of the store instruc
tions depend on the precise location of an item in a list.
A typical store instruction is L023, which moves de
scriptions from working memory to the description list
of a known item on a known list. L023 searches the list
until it identifies the item, then searches down the de
scription list until it identifies the description name of
the description it is storing. If it finds it, it stores the
new value; if it does not find it, it stores the description
as a new item on the description list. L023 must also be
prepared to set up a description list in case it does not
find one at all. One of the important features of the de
scriptions is that no space needs to be reserved for them
until they are actually created.

Other Processing Instructions: Besides find and store
instructions for the various types of lists, there are in
structions for erasing lists, for, creating lists, and for
moving items from one list to another directly. There is
no erasing problem in the working memory, since work
ing memory elements are erased automatically when a
subroutine has been carried out. In erasing items from
lists, the instructions require only that the programmer
know what item is to be erased and on what list it oc
curs, but not its location on the list. Likewise, the pro
grammer does not have to know anything at all about

the structure of a list to erase it, but only where it
starts. The erase operations are constructed to explore
all possible extensions of a list and erase them all.

Other Details

No attempt has been made with this language to
build a repertoire of service routines or to make input
and output exceptionally convenient. For output, the
]OHNNIAC has either punched cards or a high-speed
numeric printer, but we use the printer almost ex
clusively. There is a "print list" primitive, which prints
any list however complicated and extensive. This single
primitive essentially suffices for our output needs, since,
if we have several lists we wish to print, we simply put
them on a new superordinate list in the right order, and
apply the "print list" instruction to this superordinate
list. The instruction then prints out the several lists in
the indicated order. We can suppress all the location
words, so that only the items of information print.

]OHNNIAC has punched-card input. We use a card
format for giving an arbitrary list to the computer, so
that a single "read list" primitive suffices for data input.
The program input is handled by the symbolic loading
routine mentioned earlier.

The use of the interpretive mode for the language al
lows the computer easy access to its own process. As a
matter of course we trace the IPL instructions that are
being performed. The trace can be selective, each direc
tory element indicating whether the trace of that in
struction is to be printed or not. What is printed is the
name of the subroutine (i.e., the relative address of the
directory element) indented according to its level in the
hierarchy of routines. Since we wish to study the course
of the processing as well as' end results, the trace is a
prime source of data.

Also as a matter of course, we keep tallies of the num
ber of times each instruction is performed, both for our
use as data and for the program's use in operating. The
directory element also tells the address of the tally. For
example, LT allocates its effort by using such tallies to
see how much effort it has devoted to a given problem.

The devices mentioned above provide us with some
debugging facilities. Since all the information connected
with the hierarchy of routines is on lists (see the section
on the language structure), we can print a single debug
ging list which contains these plus a number of other
lists as items. The printing of this list (with all location
words being printed) gives us most of the information
we need. We also use the tracing with a selective sup
pression of details to aid in debugging. This procedure
traces all instructions within the subroutines of interest,
and none of the instructions in those of no interest.

The]OHNNIAC's 4096 words of high-speed,
random-access core storage is not adequate for a pro
gram and data lists of this size. LT in operation has
about 1600 words of interpretive code, about 1600
words of machine code, and about 400 words of directo
ries, constants, etc.; hence, a total storage of about 3600
words for the program alone. We have been forced to

238 1957 WESTERN COMPUTER PROCEEDINGS

utilize secondary storage, which for JOHNNIAC, is a
drum of 9216 words. Storage hierarchies are notorious
for presenting difficult problems of accessibility, and the
type of program we are working with, with its avoidance
of consecutive blocks of words, simply compounds the
the difficulties. So far, we have used the drum only for
the program, and not for data; we are keeping almost
all the higher routines on it.

When the interpreter goes to the directory element of
a given instruction, it discovers whether the defining
subroutine is in cores, or on the drum. If the subroutine
is on the drum, it is fetched into the next available
stretch in a large consecutive block in core storage. As
the interpreter works down the hierarchy, more and
more subroutines are brought in from the drum and
gradually fill up this large block. Each subroutine re
mains intact until it is finished, but no attempt is made
to plan or schedule trips to the drum. As soon as a sub
routine is completed it is "discarded" and the next rou
tine from the drum is placed in the same stretch of the
core storage block.

EVALUATION OF THE LANGUAGE

The previous section has given a picture of the solu
tions we tried in programming LT. We will now consider
more critically what this language accomplishes, and
what its shortcomings are.

Association Memory

We have made a great issue of the flexibility of
memory-the ability to create lists at will and to add
and delete items from existing lists. This has certainly
simplified a number of housekeeping tasks. For instance,
the entire structure involved in the hierarchy of subrou
tines with their indefinite numbers of working memories
was easily handled by means of the association memory.
Similarly, in a primitive like "erase list," which must
search out all items in a list of arbitrary structure, there
is a need to remember an indefinite number of junctions
in exploring the list. The flexible memory allows the
primitive to build up a list of these points of choice,
adding each new one to the front of the list.

We have made extensive use of the flexibility through
out LT, the one major program we have written in IPL.
Our most complicated structure to date is a list of lists
of lists connected with a routine that modifies the list
of theorems used by L T as a function of experience.
This same structure also has theorems (a list of logic
elements) as items on multiple lists.

The association memory also has severe costs. The
most obvious cost is the extra memory space needed for
location words. Location words occupy about one half
of the list memory, since it takes one location word to
refer to each "item" word in a simple list. The propor
tion of location words is not much greater than one half,
since the space devoted to simple lists greatly exceeds
the space devoted to the more complicated structures
that take additional location words. This cost factor is
rather difficult to estimate, however, since alternative

schemes for achieving the same total program are not
known. Any component comparison is somewhat mis
leading, since the virtues of the association memory
arise from the avoidance of planning, of reserving blocks
of storage, and so on.

Another cost, which may be the more serious one, is
the loss of ability to compute addresses. In a computa
tion which can be well laid out in advance, it is often
possible to assign addresses to data in such a way that
the addresses can be computed in a simple fashion. For
example, instead of searching a table for a function
value corresponding to a given argument, the address
of the function value can be made a simple function of
the argument, say the argument plus a constant, and
the value obtained almost without effort. This is not
possible with the association memory, where the only
function the address can perform is to designate the
location of another word in a list.

The Language Structure

Some of the flexibilities of the language structure have
provided greatly increased power in the language where
as others have not. We have not made much use of the
variable number of reference places if one measures use
in terms of variability of that number. Most of our in
structions have about four references: the operation
and three pieces of information. Both examples de
scribed in this paper are of this size. Whenever a routine
exceeds about six references-one of the executive rou
tines has 15-the references are not used as "variables"
but to transmit data. In the case of the executive rou
tine, for example, the 15 references provide a convenient
place to hold all the parameter values for a run of LT.
On the other hand, we have used the variable number
of references considerably as a flexible communication
device up and down the hierarchy of routines. Thus, in
making changes in the program it is often convenient to
transform what was a constant into a variable. This can
be done simply by adding a new reference place to the
higher instruction and replacing the constant by a
type-2 reference, say 2-6, if the original instruction pre
viously had only references ° through 5.

We have used extensively the hierarchical properties
of the language-the ability to define new subroutines
in terms of old ones. The number of levels in the main
part of LT is about 10, ignoring some of the recursions,
which sometimes add another four or five levels. It
would be interesting to compare the size of the LT pro
gram written in IPL and the program written in ma
chine code. This is very difficult to do, since when
writing in machine language one makes use of sub
routines, and even of subroutines of subroutines. Hence
there is no standard machine language program for
comparison. However, the following figures give a rough
approximation. IPL consists of about 45 primitive
instructions, which take an average of about 70
JOHNNIAC instructions each. Instructions are packed
two to the JOHNNIAC word, so the number of words
used is roughly 35 per primitive. In addition the ma-

Newell and Shaw: Programming the Logic Theory Machine 239

chine-language subroutines all include some initial code
either to position the words used by the subroutine, or to
adapt its instructions to the addresses of the words.
This can be an appreciable fraction of some of the
simpler primitives like LOIS, the addition instruction.
Further, these statistics do not reflect the fact that the
primitives themselves use a number of closed sub
routines.

The L T program described in this and the companion
paper contains about 45 different higher instructions,
defined by 45 higher routines. A typical higher routine
contains about 16 primitives and two higher instruc
tions. If we expand the entire hierarchy for LT, ignoring
recursions, we find that L T can be written as about 8000

,primitives. Since the average primitive instruction
takes about two JOHNNIAC words to write, it is clear
that some hierarchization of subroutines is needed to
compress a program like L T into manageable size.

The fact that the operation part of an instruction is
a reference place like all the others, and can be treated
as such, gives additional power to IPL. An operation is
normally referred to by its "name," which is the relative
address of the directory element that leads to the de
fining subroutine; e.g., LOIS, L092, etc. However, an
operation can also be referred to by a type-l reference,
such as 1-3, if the correct element is in the working
storage. For instance, LT uses a set of routines, called
methods, which are, roughly speaking, alternatives to
one another, and are used in about the same way. There
is a list of methods, which is simply a list whose items
are the directory elements of the methods. The execu
tive routine executes a method by searching the list
until it finds the desired one, bringing it into a working
memory (e.g., 1-3) and then performing an instruction
with 1-3 in the 0 reference place. If this method does not
work, the executive routine finds the next method and
repeats the process. Thus the executive routine is able
to perform a simple iteration over the set of methods.
We use this device also to compute sets of descriptions
of logic expressions.

We can also use a type-2 reference for an operation.
This essentially makes the operation a variable and de
pendent on information in the higher routine. This de
vice is used in several places in L T, but only to allow
fixed specification at a higher level. We have no exam
ples where the operation is determined by a computation
in the higher routine, although this is possible.

An entirely different kind of power arises from the
flexibility of the hierarchy-the ability to do recursions.
An instruction may be used in its own defining sub
routine, or in any of the subroutines connected with its
definition, in any way whatsoever provided that the
routine does not modify itself and that the entire process
terminates. The restriction on self-modification is clearly
needed if the same routine is to be available at more
than one level. All the information necessary to carry
out the routine must be stored in the working memory,
which is set up separately for each occurrence of the
routine, and not within the routine. In L T there are no

higher routines that modify themselves. The impetus for
self-modification of routines usually arises from the use
of iterative loops. In LT all iterations are accomplished
by means of lists. A succession of elements is brought in
from a list to fixed working-memory references, and the
iteration terminates when the end of the list is reached.

There are two kinds of recursions in LT. The matching
routine, which compares one logic expression with
another, is an example of the first kind. The routine
starts with the main connective of the expression and
proceeds recursively down the tree of the expression ele
ment by element (see Fig. 2). The recursion is bound to
stop, since the number of elements in any expression is
finite. This recursion could also be expressed as an itera
tion through the list of the expression, although perhaps
not so neatly.

A more fundamental recursion occurs at the highest
levels of the program. Here LT has an executive routine
which governs its whole problem-solving behavior.
Within this routine, that is, at some lower level, are
methods that generate subproblems. Also within this
routine are subroutines that select the subproblem to be
worked on next. A subproblem does not differ from the
original problem with respect to the methods and tech
niques used to solve it. Hence the appropriate program
ming technique is to apply the entire executive routine,
to the subproblem; that is, to perform a recursion with
the entire program. Such a recursive system will termi
nate if a solution is found, but since no guarantee exists
that the problem will be solved there is no guarantee the
machine will stop. In LT we add such a guarantee sim
ply by having LT stop after a certain total amount of
effort, a rather trivial but effective device.

The language also has its drawbacks. It is expensive;
the over-all average time for a primitive is about 30
milliseconds. JOHNNIAC performs an add order in
about 80 microseconds. Thus if we consider LOIS, the
addition instruction, and compare it with a direct repli
cation of its operation in machine language, we find we
lose a factor of about 60. This is one of the more ex
treme cases. If we consider an instruction like L092,
which is typical of the list operations, the loss factor
drops to about 5. However, as in the case of the associa
tion memory, a component comparison is somewhat mis
leading, since all the virtues of the interpretive scheme
arise from its automatic handling of the entire problem.
For example, the hierarchy provides a way of keeping
track of some 50 words of data in process, and it would
seem that this information must be maintained if the
problem is handled in any other way. The appropriate
com parison is with an al terna ti ve way of coding a total
problem such as LT, and no comparable alternative
currently exists.

The large hierarchy with its multiple levels may seem
a very expensive feature. However, its cost appears to
be less than the cost of interpreting the primitives,
primarily because of the infrequency of higher routines
in comparison with the number of primitives. All the
higher instructions account for only about 10 per cent

240 1957 WESTERN COMPUTER PROCEEDINGS

of the total number of instructions interpreted, whereas
the unit cost of interpretation of a higher instruction is
only two and a half times as great as for a primitive
(about 50 ms to 20 ms). Thus interpretation of all the
higher routines accounts for less than 30 per cent of the
total cost of interpretation.

Additional Deficiencies of IP L

Experience in writing programs in IPL has revealed
a number of additional deficiencies. Perhaps the one
that strikes the pro~rammer most is the artificiality of
the distinction between the element and the list. By
packing a set of symbols into a single JOHNNIAC word
we gain in memory space over schemes that use one full
word for each variable. The net result, however, is that
certain properties, those packed in to an element, are
treated in one way, and others, those expressed by the
lists or by the description elements, are treated in an
other. Elements are brought into working storage for
processing; since lists have various sizes and shapes,
they cannot be handled in this fashion. Information
that must be kept as a list is handled by indirect ref
erence, through an element in working storage that
refers to it. Information that can be fitted into an ele
ment is handled directly in working storage. For
example, an element and a one-element list must be
processed very differently in IPL.

A second deficiency is the restriction to certain forms
of referencing. IPL has great flexibility in the specifica
tion of operations, that is, an operation can be specified
by giving an expression in the language for that opera
tion. We have allowed no such flexibility in the specifi
cation of the other references. There are only three ways
of giving the information to be used in a routine: by
giving the address of the element, the name of the work
Ing storage that holds the element, and the name of a
reference place that refers to the element. These meth
ods allow certain indirect references, but they still lack
flexibility. A rather simple example, but one that is
typically annoying, occurs when we want to refer to a
name of a routine, that is, to a symbol like L082, which
is the address of a directory element. This symbol is used
in many places throughout the program, but there is no
simple way of getting to it. There is no reason why there

Discussion gramming?

should be less power of expression for information ref
erences than for operations. It should be possible to give
a reference by giving an expression for determining that
reference, just as is now done in IPL for operations.

There are other unsolved problems. For instance, we
have no satisfactory way of erasing in the association
memory. The problem is not how to delete items and
make their space available again, which we think is done
fairly well in IPL. The problem is how to know what
can be erased, since there is no direct way of knowing
what else in the system may be referring to the items
about to be erased. References are directional, so that
if location word A refers to item B, there is no way of
knowing this, when only the address of B is known.
Uniform two-way referencing seems to be an expensive
solution, although it may be the only one. In simpler
programs this erasing problem is handled by having the
programmer know at all times exactly what refers to
what. But if we move to programs in which all lists are
set up during operation by the program itself, such solu
tions are not adequate, and the problem soon becomes
acute.

CONCLUSION

IPL is an experimental language that was built to
find ways of achieving extreme flexibility. It was de
veloped in connection with a particular substantive
problem-proving theorems in symbolic logic-which
requires great flexibility in the memory structure, and
powerful ways of expressing information processes.

The language achieved its purpose: we have a
running program for L T which has allowed us to explore
its behavior empirically with a number of variations.
On the other hand, the language 'is relatively crude,
viewed as a general language for ~pecifying programs
like LT. It is very costly; it shows the "provincialism"
of too close a connection with symbolic logic; and it still
has a number of rigidities.

We believe that the basic elements of the language are
sound, and can be used as the ingredients of languages
having considerably greater powers of expression and
speed. We are currently engaged in the construction of
a new language patterned on IPL, which we hope will
serve us as a general tool for the construction and in
vestigation of complex information processes.

L. P. Meissner (Nol, Corona): Do you
have a list of those lists which do not list
themselves?

Mr. Shaw: No, except to suggest that
. programming itself is a field of complex
information. Processing such is the field we
are studying.

one, it then takes a look at the lower left
element of each expression and there again
it is faced with exactly the same problem as
it was faced with initially. Again the match
ing routine is asked to match this expression.
So, at this point the routine recourses and
calls upon itself to match the expression it
is faced with to the second expression. Even
tually, of course, it comes to the termination
on these trees and proceeds to back off. So,·
it says, "I am done" to itself, reiteratively.
and then backs up to a certain point at
which it proceeds down the right branch.

Mr. Shaw: Without going further into
paradoxes except to say that there is not a
direct answer to this question, but the de
bugging list does list itself.

P. Sayre (Northrop): Would you reiter
a te or expand your remarks on the next ver
sion especially with regard to automatic pro-

J. Matlock (Douglas): Can you give an
example of a subroutine using itself?

Mr. Shaw: 1 think the best example of
this is the matching routine which is asked
to match one expression to another. The
first part of this routine merely looks at the
main connectives. If it is successful in
matching the given expression to the second

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240

