COP

L

L

L

L

X

U

U

CONTROL PROCESSOR

CHAPTER 4

INTRODUCTION

The Control Processor is the control center of the AD-10 during run time. While the host processor exercises overall system control through the HIC, it is not capable of effectively monitoring and controlling the high speed internal operations of the AD-10. This capability is provided by the COP. Specifically, the COP is a programmed processor designed to:

·)*

- Make logical decisions based upon a variety of inputs
- Implement program loops and branches through control of its own and other processor program counters
- Initiate system halts
- Control the Active/Wait status of all other processors
- Control the access of other processors to the SM -
- Provide program initiation of the memory refresh sequence
- Place specific data on the DM
- Control a set of 128 General Registers, including increment/ decrement control
- Control the operation of the IOCC and all interface devices therein.

COP ORGANIZATION

The organization of the COP is illustrated in Figure 4.1. That part of the diagram in black is common to all processors and is described in Section 2.6. The part in red is specific to the COP. This consists of additional inputs to the Program Counter, direct access to both the DM and AM, the addition of the 128 General Registers with increment/ decrement and compare capability, and a direct Halt input to the HIC. All of these relate to specific instructions, and are described in subsequent paragraphs.

4.1.1 PROCESSOR ADDRESS

The processor address for the COP is 7.

4.0

4.1

FIGURE 4.1 COP BLOCK DIAGRAM

BITS DESCRIPTION

Ø-7,1Ø-11	Remaining PAUSE Count (10 Bits)
8	COP is present when set
9	COP is active (not in PAUSE) when set
12-13	UNASSIGNED
14	Current state of the condition bit
15*	Current state of the Modified condition bit

* Once set, this bit remains set until cleared by a READ operation.

The COP Processor Status Word (PSW) contains information on the current status of the COP. The PSW is a read-only register.

4.1.2.1 CONDITION AND MODIFIED CONDITION BITS

The state of the Condition Bit is controlled by any of the following sources:

- a. A direct COP instruction (set or clear):
- b. The state (true or false) of any single bit on DM; or
- c. The comparison of the contents of a General Register to zero following an increment or decrement operation.

The Modified Condition Bit is set whenever an instruction is executed that could change the state of the Condition Bit. This bit then remains set until a READ operation of this register is performed by the host processor.

C C Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø T F	Ε	Ε									-1
	Ç	C	ØØ	ØØ	ø	ØØ	ØØ	Ø	Ø	ØØ	ø
				.		<u>k n</u>	<u> </u>		<u></u>	l	

- BIT DESCRIPTION
- Ø-13 UNASSIGNED
- 14 Enable the Condition Bit, when false, to the AER line in the STATUS MULTIBUS

. 7

15 Enable the Condition Bit, when true, to the AER line in the STATUS MULTIBUS

The Processor Status Enable Register (PSE) is a <u>write-only</u> register. This register has the same address as the COP Processor Status Word.

4.1.4 PROGRAM MEMORY

The COP program memory is comprised of 1024 words of 32 bits each. The word is divided into two 16-bit fields with Field \emptyset containing the low order bits of the word. Each field may be accessed from the host processor for a READ or WRITE operation.

- 4.2 THE COP INSTRUCTION SET
- 4.2.1 COP INSTRUCTION WORD FORMAT

The COP Instruction word format is:

Within this format, unused bits are denoted by an X. These bits are always read as a \emptyset . A summary of the bit patterns for all instructions is provided in Figure 4.2.

The description of the COP instruction set is divided into three categories: General Control Instructions, Data LOAD/STORE Instructions, and IOCC related instructions.

4.2.2 MICRO-PROGRAMMING COP INSTRUCTIONS

Figure 4.2 provides a summary of the COP instruction set. This summary has been organized into four groupings of instructions to indicate as clearly as possible the microprogramming possibilities which exist.

A COP instruction can consist of any of the following:

a. <A> b. <C> c. <D> <D>

An example of the form $\langle B \rangle \langle C \rangle$ is:

LPC \$ARP; LGRF 7.

This instruction will cause the contents of General Register #7 to be loaded into the Program Counter of the ARP.

As indicated in c. above, the START and STOP instructions (which belong to Group D) may be microprogrammed with each other. Thus,

STOP \$ARP; START \$DEP

causes the ARP to be put in the WAIT state, the DEP to be put into the ACTIVE state, and leaves the ACTIVE/WAIT status of the MAP unchanged.

Note: Since the PAUSE Instruction belongs to group C, it can only be microprogrammed with instructions in group B.

r	ı.	r	1	11	VI	
•	-	-		~	~	

		LILL M		
		8-15-42-00-00-00-00-00-00-00-00-00-00-00-00-00	8-5-5-2-8 8-5-5-2-8 8-5-5-2-8 8-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	
Ø	SCT	x ø ø ø ø ø ø ø x x x ø ø ø ø ø	ØØØ1ØØØØ1ØØØBIT#	102 X
Ø	SCF	x ø ø ø ø ø ø ø x x x ø ø ø ø ø	ØØØ1ØØØØØØØØBIT#	100 x
	HLT	x ø ø ø ø ø ø ø ø x x x ø ø ø ø ø	ØØØ1ØØØ1ØØØØØØ f	1040X
Ø.	HLTC	x ø ø ø ø ø ø ø ø x x x ø ø ø ø ø	Ø Ø Ø 1 Ø Ø Ø 1 Ø Ø Ø Ø Ø Ø 1 f	104011
Ø	LPS	x ø ø ø ø ø ø ø ø x x x ø ø ø ø ø	Ø Ø Ø 1 Ø Ø 1 Ø Ø Ø Ø Ø Ø PROC→	1100x
Ø	RFR	x ø ø ø ø ø ø ø ø x x x ø ø ø ø ø	00010011000000000	11400
Ø	CCB	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	00010100000000000	12000
Ø	SCB	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	0001010100000000	12400
Ø	GIB	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	Ø Ø Ø 1 Ø 1 1 Ø Ø Ø Ø Ø Ø Ø Ø Ø	13000
Ø	JMP	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	$\emptyset \emptyset 1 \emptyset \emptyset \emptyset \longleftrightarrow C O P P C \longrightarrow$	2 x x x *
Ø	JPC	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	$\emptyset \ \emptyset \ 1 \ 1 \ \emptyset \ \emptyset \ \longleftarrow \ C \ O \ P \ P \ C \longrightarrow$	<u>3××××</u>
	START	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	Ø 1 A Ø A Ø A Ø A Ø A Ø A Ø A Ø	
	STOP	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	Ø 1 Ø W Ø W Ø W Ø W Ø W Ø W	
	LPC	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	$1 \text{ PROC} \neq \emptyset \ \emptyset \neq P \text{ R } \emptyset \text{ C } P \text{ C } \Rightarrow$	
		X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	$1000 \neq 1/0$ COMMAND \Rightarrow	
22		X Ø Ø Ø Ø Ø Ø Ø X X X I Ø Ø I Ø		
21			\leftarrow I M M E D I A T E D A T A \rightarrow	
23				× ~
	INC			< 9
14	IGRE	$\begin{array}{c} X \\ G \\ E \\ N \\ R \\ E \\ G \\ E \\ N \\ R \\ E \\ G \\ H \\ X \\ X$		
<u> </u>	LGRS			<u> </u>
<u> </u>		X G F N R F G # X X X 0 0 0 1 1		<u> </u>
6	SGRF	X G E N R E G # X X X Ø Ø 1 1 Ø	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>V</u>
5	SGRS	X G E N R E G # X X X Ø Ø 1 Ø 1	0000000000000000000	Q
<u> </u>	SGRD	X G E N R E G # X X X Ø Ø 1 1 1	0000000000000000000	Ø
Ø	NOP	x ø ø ø ø ø ø ø x x x ø ø ø ø ø	000000000000000000	Ø
đ	PAUSE	x ø ø ø ø ø ø ø x x x ø ø ø ø ø	Ø Ø Ø Ø Ø 🔶 — d — — →	Conference and an and an
Ø	JPM	X Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	00010111000000000	12400
Ø	JPMC	x ø ø ø ø ø ø ø ø x x x ø ø ø ø ø	00010111000000010	13402
Ø	GIF	x ø ø ø ø ø ø ø x x x ø ø ø ø ø	1 Ø Ø Ø 1 1 Ø C C A D D R E S S	106×××
Ø	GIS	x ø ø ø ø ø ø ø x x x ø ø ø ø ø	1 Ø Ø Ø 1 1 1 C C A D D R E S S	107×××
Ø	PBI	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	1 Ø Ø Ø 1 Ø 1 C C A D D R E S S	105XXX
Ø	PFB	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	1000010000000000	102000
Ø	PFI	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	1 Ø Ø Ø Ø Ø Ø C C A D D R E S S	IOOXXX
Ø	PIBH	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø	1 Ø Ø Ø 1 Ø Ø 1 IMMEDIATE DATA	1044x XX
Ø	PIBL	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø	1 Ø Ø Ø 1 Ø Ø Ø IMMEDIATE DATA	104 x X X
Ø	PSB	X Ø Ø Ø Ø Ø Ø Ø X X X Ø Ø Ø Ø Ø		103000
Q	PSI			[Ø] XX ¥
		FIGURE 4.2 CONTROL PRO	DCESSOR INSTRUCTION SET	

GENERAL CONTROL INSTRUCTIONS

There are several subsets within this category. These include:

- a. Instructions relating to setting (or clearing) the Condition
 Bit, including the General Register Increment/Decrement
 instructions.
- Jump instructions, where the contents of the COP's Program Counter are changed.
- c. Halt instructions, allowing the COP to initiate a system Halt via the HIC.
- d. Processor control instructions including control of the ACTIVE/WAIT status of each processor, Program Counter, and Status Enable Register.
- e. Other control instructions including PAUSE, NOP, and RFR (Refresh Data Memory).

The General Control Instructions are:

CCB	Clear Condition Bit
SCB	Set Condition Bit
SCB b	Set Condition Bit if Bit b is False
SCT b	Set Condition Bit if Bit b is True
DEC n	Decrement a General Register
INC n	Increment a General Register
JMP a	Jump
JPC a	Jump Conditionally
JPM	Jump to the Address on the DM
JPMC	Jump to the Address on the DM Conditionally
HLT f	Halt on Flag f True
HLTC f	Halt Conditionally on Flag f True
LPC p,a	Load the Program Counter of a Processor
LPS p	Load the Processor Status Enable Register of a Processor
START	Start Processor(s)
STOP	Stop
NOP	No-Operation
PAUSE d	Pause d Instruction Cycles
RFR	Refresh Data Memory

4.2.3

CLEAR CONDITION BIT

Ø	1	Ø	T	Ø	1 1	ø	Т	ø	. 0)	Ø	Ø	Ø	ø	ļ	, ,	ø	1	Ø	ø	ø	,ø	FIELD	ø
ø		Ø		ø	1	1		ø	1		ø	Ø	Ø	Ø			ø		ø	ø	ø	Ø	FIELD	1
 1.5		14	1	3		1.2		1 1	1	0	9	R	7	A	6		4		3	.2	1	0		

7

OPERATION:

 $CBIT_1 \neq \emptyset$

ERROR CONDITION(S):

CBIT if enabled to the AER line.

DESCRIPTION:

The condition bit is cleared.

EXAMPLE:

. ссв

•

Ť

OPERATION:

<u>SCB</u>

CBIT₁ + 1

ERROR CONDITION(S):

CBIT if enabled to the AER line.

DESCRIPTION:

The CBIT is set.

EXAMPLE:

•

SCB

SET CONDITION IF BIT b IS FALSE

Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	ļø	FIELD	Ø
Ø	ø	ø	1	Ø	ø	Ø	Ø	ø	Ø	ø	ø		BIT	#	b	FIELD	1
1.5	1.4	13	12	11	1.0	9	8	7	ß	5	4	3	2	1	0		

OPERATION:

IF DM_{\emptyset} (b) IS FALSE THEN CBIT₁ \leftarrow 1 ELSE CBIT₁ \leftarrow CBIT₀

ERROR CONDITION(S):

None

DESCRIPTION:

The specified bit of the DATA MULTIBUS is tested. If it is false, the condition bit is set. If it is true, the condition bit is not modified.

EXAMPLE:

INSTRUCTION CYCLE			
	.COP	.DEP	
n n+1	START \$DEP	I CEODALISE 3	GET THE CONDITION BIT
n+2 n+3	SCF 15 JPC ERROR	• •	IF FALSE WE HAVE AN ERROR
		•	

SCT b

SET CONDITION IF BIT b IS TRUE

Ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	, Ø	Ø	, Ø , Ø	Ø	FIELD	1
ø	Ø	Ø	r , 1	Ø	Ø	Ø	Ø	1	Ø	Ø	Ø	I	BIT # b		FIELD	
15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0	-	

OPERATION:

IF DM_Ø (b) IS TRUE THEN CBIT₁ ← 1

ELSE $CBIT_1 \leftarrow CBIT_0$

ERROR CONDITION(S):

None

DESCRIPTION:

If the specified bit of the DATA MULTIBUS is true, the condition bit is set. If it is false, the condition bit is not modified.

EXAMPLE:

LGRF	10	! SEND THE CONDITION BIT
SCT	8	!IF TRUE
JPC	ERROR	!WE HAVE AN ERROR

!SEND THE CONDITION BIT

DECREMENT A GENERAL REGISTER

Ø		GE	NERA	L RE	GIST	GENERAL REGISTER n						1	ø	ø	Ø.	FIELD	Ø
ø	Ø	Ø	ø	Ø	ø	Ø	ø	Ø	ø	Ø	ø	ø	ø	Ø	ø	FIELD	1
 1.5	14	13	12	1.1	1.0	9	8	7	6	5	4	3	2	1	0	-	

OPERATION:

 $GR_1(n) \leftarrow GR_0(n) -1$ IF $GR_1(n) \rightarrow \neq \emptyset$ THEN $CBIT_1 \leftarrow 1$ ELSE $CBIT_1 \leftarrow \emptyset$

ERROR CONDITION(S):

CBIT if enabled to the AER line.

DESCRIPTION:

The contents of the specified register are decremented by one; if the result is zero, the CBIT is cleared; otherwise it is set.

EXAMPLE:

LOOP

DEC	67	! DOM	IE?			
JPC	LOOP	!IF	NOT,	DO	LOOP	AGAIN

INC n

INCREMENT A GENERAL REGISTER

ø		GEN	VERAI	RE	GIST	ER #	n	Ø	Ø	Ø	Ø	1	1	Ø	Ø	FIELD	ø
Ø	Ø	ø	Ø	ø	ø	Ø	Ø	Ø	ø	Ø	Ø	ø	Ø	Ø	Ø	FIELD	1
15	14	1 3	1 2	11	10	9	8	7	6	Б	4	3	2	1	0		

OPERATION:

 $GR_{1}(n) \leftarrow GR_{0}(n)+1$ IF $GR_{1}(n) \neq \emptyset$ THEN $CBIT_{1} \leftarrow 1$ ELSE $CBIT_{1} \leftarrow \emptyset$

ERROR CONDITION(S):

CBIT if enabled to the AER line.

DESCRIPTION:

The contents of the specified register are incremented by one. If the result is zero, the CBIT is cleared; otherwise it is set.

EXAMPLE:

LOOP

INC 77 !DONE? JPC LOOP !IF NOT, DO LOOP AGAIN JUMP

OPERATION:

COP PC₁ ← ADDRESS

ERROR CONDITION(S):

NONE

DESCRIPTION:

The address portion of the instruction is placed in the COP PROGRAM COUNTER so that the next instruction executed will be fetched from that address in program memory.

EXAMPLE:

BEGIN

JMP BEGIN !ONE MORE TIME

JUMP CONDITIONALLY

Ø	Ø	Ø	Ø	ø	ø	Ø	ø	Ø	Ø	Ø	Ø	,ø	Ø	, Ø	ı Ø	FIELD	ø
ø	Ø	1	1	Ø	Ø			1		AD	RESS	a	• •	1 1	ı 1	FIELD	1
15	1 4	13	12	11	10	9	8	7	8	5	4	3	2	1	0		

OPERATION:

IF CBIT IS TRUE

THEN COP PC₁ ← ADDRESS

ELSE NOP

ERROR CONDITION(S):

NONE

DESCRIPTION:

If the condition bit is true, the address portion of the instruction is placed in the COP PROGRAM COUNTER so that the next instruction executed will be fetched from that address in program memory. Otherwise, no operation is performed and the next sequential instruction is executed.

EXAMPLE:

BEGIN

ERROR	JMP STOP	BEGIN \$ARP,\$MAP,\$DEP
	HIT	Ø

JUMP TO THE ADDRESS ON THE DATA MULTIBUS

ļ	ø	Ø	ļø	,ø	Ø	Ø	Ø	Ø	Ø	,ø	,ø	, Ø	ı Ø	Ø	, Ø	ı ıØ	FIELD	ø
	Ø	ø	ø	1	Ø	1]	1	ø	Ø	Ø	Ø	ø	ı Ø	ı Ø	.Ø'	FIELD	1
	1 5	14	13	1.2	1.1	10	9	8	7	6	5	4	3	- 2	1	0		

OPERATION:

 $COP PC_1 \leftarrow DM_0(0:9)$

ERROR CONDITION(S):

NONE

DESCRIPTION:

The low order 10 bits of the DATA MULTIBUS FIRST are placed in the COP PROGRAM COUNTER. This causes the next instruction to be fetched from that address.

EXAMPLE:

PROGL	LFI SGRF JMP	PROGL RETURN SUB !CALL SUBROUTINE
SUB		
	LGRF JPM	RETURN !RETURN FROM SUBROUTINE

JPMC

JUMP TO THE ADDRESS ON THE DATA MULTIBUS CONDITIONALLY

FIELD Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 1 FIELD 1 Ø Ø Ø Ø Ø 1 1 1 Ø Ø Ø Ø Ø 1 Ø 1 5 1.4 13, 1 2 1.1 1.0 9 8

OPERATION:

IF CBIT IS TRUE

THEN COP PC₁ \leftarrow DM₀(\emptyset :9)

ELSE NOP

ERROR CONDITION(S):

NONE

DESCRIPTION:

If the condition bit is true, then the low order 10 bits of the DATA MULTIBUS FIRST are placed in the COP PROGRAM COUNTER. Otherwise, no operation is performed.

EXAMPLE:

LGRF RETURN !PUT "RETURN" ON DM JPMC !JUMP TO "RETURN" IF CBIT IS TRUE

HLT f

HALT ON FLAG (f) TRUE

Ø	Ø	Ø	ø	ø	ø	ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	Ø	Ø	FIELD	Ø
ø	ø	Ø	1	ø	Ø	Ø	1	Ø	Ø	Ø	Ø	Ø	Ø	Ø	f	FIELD	1
15	14	13	12	11	1.0	9	8	7	6	5	4	3	2	1	0		

OPERATION:

IF FLAG f IS TRUE

THEN AM₁ + HALT

ELSE NOP

ERROR CONDITION(S):

NONE

DESCRIPTION:

If the HALT f flag is enabled in the HALT MASK REGISTER, all processors will HALT at the end of the current instruction cycle.

EXAMPLE:

BEGIN

- HLT Ø !WAIT FOR USER
 - •

HLT 1 !DONE?

JMP BEGIN !NO, ONE MORE TIME

HLTC f

HALT CONDITIONALLY ON FLAG f TRUE

Ø	Ø	Ø	Ø	Ø	ø	ø	Ø	Ø	Ø	ø	Ø	Ø	,ø,ø	, Ø	FIELD	Ø
Ø	 ø	ø	11	Ø	ø	Ø		Ø	Ø	ø	Ø	Ø		, f	FIELD	1

OPERATION:

IF CBIT IS TRUE

THEN IF FLAG f IS TRUE

THEN $AM_1 \leftrightarrow HALT$

ELSE NOP

ELSE NOP

ERROR CONDITION(S):

NONE

DESCRIPTION:

If the condition bit is set and the HALT f flag is enabled in the HALT MASK REGISTER, all processors will HALT at the end of the current instruction cycle.

EXAMPLE:

BEGIN

HLTC 1 !ERROR ABOVE? JMP BEGIN !NO, ONE MORE TIME

LPC p,a

LOAD THE PROGRAM COUNTER OF A PROCESSOR

OPERATION:

 $AM_1(\emptyset:9) \leftarrow ADDRESS$ $AM_1(16:18) \leftarrow PROC \#$ $PROC\# PC_1 \leftarrow AM_1(\emptyset:9)$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The address is placed in the PROGRAM COUNTER of the specified processor. The processor must not be active (otherwise, the processor PROGRAM COUNTER is <u>not</u> changed). The PAUSE count of the processor is cleared.

EXAMPLE:

LPC \$ARP,FIRS	
	T
START \$ARP	

LOAD THE PROCESSOR STATUS ENABLE REGISTER OF A PROCESSOR

OPERATION:

AM₁(16:18) ← PROC #

PROC # PSE₁ \leftarrow DM₁

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The PROCESSOR STATUS ENABLE REGISTER of the specified processor is loaded with the data on the DATA MULTIBUS.

EXAMPLE:

LPS \$ARP; LGRF 6

NOP

NO OPERATION

a	Ø	a -	Ø	a	1	1 0	0	ัด	1 1	1	1	1	a	a	a	FIELD	Ø
	+	+	+	+	+ <u>~</u>	t	+ p	+	+	+	+	+	+		- <u>v</u>	FTFID	, 1
	14	<u>µ</u>	12		<u>p</u>	ц <u>р</u>	<u>پ</u>	<u>Ø</u>	<u> </u>	<u>, Ø</u>	<u> </u>		_لگ_	بلجب	<u> </u>		. 1

OPERATION:

None

ERROR CONDITION(S):

None

DESCRIPTION:

Suspends execution for one instruction cycle.

EXAMPLE:

NOP

NOPC

NO OPERATION CONDITIONALLY

ø	Ø	Ø	ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	FIELD	ø
Ø	Ø	Ø	Ø	ø	ø	Ø	Ø	Ø	Ø	ø	ø	ø	Ø	Ø	ø	FIELD	1
1 5	14	13	12.	1.1	1.0	9	8	7	ß	5	4	3	2	1	0		

OPERATION:

IF CBIT IS TRUE

THEN NOP ELSE NOP

ERROR CONDITION(S):

None

DESCRIPTION:

If the condition bit is set, then there will be no operation performed. Otherwise, no operation is performed. For further information refer to the NOP instruction.

EXAMPLE:

NOPC

PAUSE FOR d INSTRUCTION CYCLES

OPERATION:

None

ERROR CONDITION(S):

None

DESCRIPTION:

Suspend execution for d instruction cycles following the PAUSE instruction. This has the same effect as (d+1) NOP's.

EXAMPLE:

START	\$MAP,\$DEP,\$ARP	START IT UP
PAUSE	20	!WAIT 21 INSTRUCTIONS
STOP	\$MAP,\$DEP,\$ARP	!ALL DONE

REFRESH DATA MEMORY

-	ø	Ø	ø	ø	Ø	Ø	Ø	Ø	Ø	ø	ø	Ø	ø	Ø	Ø	Ø	FIELD	ø
	ø	Ø	ø	1	ø	Ø	1	1	Ø	ø	Ø	ø	Ø	Ø	/Ø	Ø	FIELD	1

ERROR CONDITION(S):

None

DESCRIPTION:

This instruction causes a memory REFRESH. Automatic REFRESH of 4 rows of DATA MEMORY is performed every 102.4 μ s. A REFRESH will cause a delay of 2.5 μ s in the execution of all processors. The operations performed during a REFRESH are:

- 1. Halt all processors (save all necessary status information);
- 2. Perform a shutdown sequence capturing multibus data;
- 3. REFRESH memory; and
- Restart processors (reset REFRESH counter) and replay shutdown/ restart buffer onto the multibus.

EXAMPLE:

LIO STARTADC RFR PAUSE 73 LIO READADC

4.2.4 DATA LOAD/STORE INSTRUCTIONS

The three Load Immediate Data instructions allow a 16 bit data word contained in Field $\frac{1}{2}$ of the instruction word to be loaded directly onto the DM.

The General Register LOAD/STORE instructions provide the capability to load the contents of any of the 128 General Registers onto the DM or to store the data on the DM in any one of the General Registers.

The Load Immediate Data instructions are:

LDI	Load	Double	Immediate
LFI	Load	First	Immediate
LSI	Load	Second	Immediate

The General Register LOAD/STORE instructions are:

LGRD	Load General Register Double
LGRF	Load General Register First
LGRS	Load General Register Second
SGRD	Store General Register Double
SGRF	Store General Register First
SGRS	Store General Register Second

LOAD DOUBLE IMMEDIATE

OPERATION:

DM₁ ← IMMEDIATE DATA

DM_{1.5} + IMMEDIATE DATA

ERROR CONDITION(S):

BUS CONFLICT (DATA)

DESCRIPTION:

The immediate data is placed on the DATA MULTIBUS FIRST and SECOND.

EXAMPLE:

LDI DATA

LOAD FIRST IMMEDIATE

	Ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	1	Ø	Ø	1	ø	FIELD	Ø
))))	1 1		(IN	MED	IATE	DAT	A k	1				1	FIELD	1
J	1.5	1.4	13	12	1.1	10	9	8	7	6	6	4	3	2	. 1	0	-	

OPERATION:

DM₁ ← IMMEDIATE DATA

ERROR CONDITION(S):

BUS CONFLICT (DATA)

DESCRIPTION:

The immediate data is placed on the DATA MULTIBUS FIRST.

EXAMPLE:

LFI DATA

LSI k

LOAD SECOND IMMEDIATE

ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	 1	Ø	Ø	Ø	,]	FIELD	Ø
	1	1 1				Ι	MMED	IATE	DAT	Ak			1		1	FIELD	1
1.5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	

OPERATION:

DM1.5 + IMMEDIATE DATA

ERROR CONDITION(S):

BUS CONFLICT (DATA)

DESCRIPTION:

The immediate data is placed on the DATA MULTIBUS SECOND.

EXAMPLE:

LSI DATA

LGRD n

LOAD FROM GENERAL REGISTERS DOUBLE

	ø	EVE	EN GE	NERA	L RE	GIS	FER	# n	ø	Ø	ø	ø	Ø	ø	1	1	FIELD	ø
	Ø	Ø	ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	ø	ø	ø	Ø	ø	FIELD	1
÷.,	1 5	14	13	1 2	11	1.0	9	8	7	6	5	4	3	2	1	0		

OPERATION:

- $DM_1 \leftarrow GR_{\emptyset}(n)$
- $DM_{1.5} \leftarrow GR_{\emptyset}(n+1)$

ERROR CONDITION(S):

BUS CONFLICT (DATA)

DESCRIPTION:

The contents of the specified even* register and next register are placed on the DATA MULTIBUS FIRST and SECOND. The low order bit of the register number is ignored.

* An even register is of the set:

 $\{n \mid n=0,2,4,6,\ldots,126_{10}\}$

EXAMPLE:

LGRD PAIR ! PASS THEM ON

LOAD FROM GENERAL REGISTER FIRST

OPERATION:

 $DM_1 \leftarrow GR_{\emptyset}(n)$

ERROR CONDITION(S):

BUS CONFLICT (DATA)

DESCRIPTION:

The contents of the specified register are placed on the DATA MULTIBUS FIRST.

EXAMPLE:

LGRF 7 !PASS IT ON

LGRS n

LOAD FROM GENERAL REGISTER SECOND

ø	GENE	RAL I	REGIS	TER	# n		Ø	Ø	Ø	Ø	ø	Ø	Ø	1	FIELD	ø
Ø	Ø¢	ø	Ø	Ø	Ø	Ø	Ø	Ø	ø	LØ.	ø	Ø	Ø	Ø	FIELD	1

OPERATION:

 $DM_{1.5} \leftarrow GR_{\emptyset}(n)$

ERROR CONDITION(S):

BUS CONFLICT (DATA)

DESCRIPTION:

The contents of the specified register are placed on the DATA MULTIBUS SECOND.

EXAMPLE:

LGRS 43 !PASS IT ON

SGRD n

STORE TO GENERAL REGISTERS DOUBLE

Ø	E	VEN	GENE	RAL	REGI	STER	#n	ø	Ø	ø	Ø	Ø	1	1	1	FIELD	ø
ø	Ø	ø	Ø	ø	ø	Ø	ø	ø	Ø	ø	Ø	Ø	Ø	ø	Ø	FIELD	1

OPERATION:

 $GR_{.5}(n) \leftarrow DM_{\emptyset}$ $GR_{1}(n+1) \leftarrow DM_{.5}$

ERROR CONDITION(S):

None

DESCRIPTION:

The contents of the DATA MULTIBUS FIRST and SECOND is placed in the specified even* and next registers. The low order bit of the register number is ignored.

* An even register is of the set:

 $\{n \mid n=\emptyset, 2, 4, 6, \dots, 126_{10}\}$

EXAMPLE:

SGRD PAIR !SAVE THEM

SGRF n

STORE TO GENERAL REGISTER FIRST

Ø	G	ENER	AL R	EGIS	TER	# n	l 1	ø	Ø	Ø	Ø	Ø	1	1	Ø	FIELD	ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	FIELD	1
1.5	1 4	13	1 2	11	1.0		R	. 7	A.	5	Á.	2		. .	0		

OPERATION:

 $GR_{.5}(n) \leftarrow DM_{\emptyset}$

ERROR CONDITION(S):

None

DESCRIPTION:

The contents of the DATA MULTIBUS FIRST are placed in the specified register.

EXAMPLE:

SGRF 32 !SAVE IT

STORE TO GENERAL REGISTER SECOND

ø	GE	ENERA	AL RI	EGIS"	TER ;	# n		Ø	ø	ø	Ø	Ø	1	Ø	1	FIELD	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	ø	ø	Ø	ø	ø	Ø	ø	FIELD	1
1 6	14	13	1 2	1.1	10	9	8	7	6	6	4	3	2	1	0		

OPERATION:

 $GR_1(n) \leftarrow DM_{.5}$

ERROR CONDITION(S):

None

DESCRIPTION:

The contents of the DATA MULTIBUS SECOND are placed in the specified register.

EXAMPLE:

. SGRS 16 !SAVE IT

4.2.5 I/O CHANNEL CONTROLLER INSTRUCTIONS

The I/O Channel Controller (IOCC) is described in detail in Chapter 8. However, a summary is presented here as an aid to understanding the COP instructions that relate to the IOCC.

4.2.5.1 IOCC DESCRIPTION

Figure 4.3 illustrates the overall organization of the IOCC. The IOCC consists of an address and instruction decoder that receives its inputs from the COP via the AM. An Output Data Buffer is also provided which allows data to be transmitted to several output devices without requiring multiple DM transactions. This buffer may be loaded by one transaction from the DM or by two transactions from the AM. Inputs via the AM are limited to the data contained in the COP instruction word. The contents of the Output Data Buffer may be read back via the DM, primarily as a diagnostic aid. Finally, the Channel Controller provides the transmitter/receiver pairs matched to those in the remotely located Device Controller. The Device Controller may contain up to 128 devices in any mixture of A/D or D/A converters or logic (sense and control) buffers. Each device has a physical address decoded from the IOCC Address Bus. In addition, each device may be assigned to any one of up to 32 control groups for command purposes. This allows groups of devices to be simultaneously commanded to perform their specific function. Examples include simultaneous up-dating of the double-buffered D/A converters and/or simultaneous initiation of A/D conversion.

FIGURE 4.3 IOCC BLOCK DIAGRAM

The output of an A/D converter can be read at any time, and care should be exercised to ensure that adequate time has been allowed for the conversion cycle to be completed. A microprogrammed instruction may be used to read an A/D converter output and then initiate another conversion cycle.

4.2.5.2 IOCC INSTRUCTIONS

The IOCC Instructions are:

LIO c	Load the IOCC with a command word.
GIB	Get the I/O Buffer.
PFB	Put First to the I/O Buffer.
PSB	Put Second to the I/O Buffer.
PIBH k	Put Immediate to the I/O Buffer High
PIBL k	Put Immediate to the I/O Buffer Low
PBI	Put I/O Buffer to the I/O.
GIF c,a	Get the I/O First
PFI c,a	Put First to the I/O.
PSI c.a	Put Second to the I/O.

LOAD THE I/O CHANNEL CONTROLLER WITH A COMMAND WORD

ø	ø	Ø	Ø	ø	ø	Ø	Ø	ø	ø	Ø	ø	Ø	ø	Ø	Ø	FIELD	Ø
1	ø	ø	Ø				I/0	COM	MANE	с	1	Î	I I	I I	ı I	FIELD	1
1.5	14	1 2	1 2	1 1	1.0	0	0	7	A	5	4	2		1	0	-	

OPERATION:

 $AM_1(\emptyset:11) \leftarrow I/O COMMAND$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The I/O command is sent to the CHANNEL CONTROLLER over the ADDRESS MULTIBUS. The command may be self contained or used in conjunction with the DATA MULTIBUS.

EXAMPLE:

LIO WRITE; LGRF 14

PUT FIRST TO I/O BUFFER

1 Ø Ø Ø 1 Ø Ø Ø Ø Ø Ø Ø Ø Ø FIELD	Ø	ø	Ø	ø	Ø	ø	ø	ø	ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	FIELD	ý
	1	ø	Ø	ø	Ø	. 1	Ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	FIELD]

Ť

OPERATION:

 $AM_1(\emptyset:11) \leftarrow COMMAND$

 $IOB_2 \leftarrow DM_1$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The CHANNEL CONTROLLER takes the data on the DATA MULTIBUS and places it in the I/O BUFFER. This allows the same data to be used several times without using the DATA MULTIBUS each time.

EXAMPLE:

PFB; LGRF 5 !SEND THE CONTENTS OF GR#5 TO THE I/O BUFFER PBI WRITE, DAC1 PBI WRITE, DAC2 PUT SECOND TO I/O BUFFER

.7

OPERATION:

 $AM_1(\emptyset:11) \leftarrow COMMAND$

 $10B_2 \leftarrow DM_{1.5}$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The CHANNEL CONTROLLER takes the data on the DATA MULTIBUS and places it in the I/O BUFFER. This allows the same data to be used several times without using the DATA MULTIBUS each time.

EXAMPLE:

. PSB; LGRS 4 PBI WRITE, DAC1 PBI WRITE, DAC2

PUT IMMEDIATE TO I/O BUFFER HIGH

7

OPERATION:

 $AM_{\tau}(\emptyset:7) \leftarrow IMMEDIATE DATA$

 $IOB_{2}(8:15) \leftarrow AM_{1}(\emptyset:7)$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The CHANNEL CONTROLLER takes the 8 bits of immediate data and places it in the high order 8 bits of the I/O BUFFER. This allows the buffer to be loaded without using the DATA MULTIBUS.

EXAMPLE:

. PIBH HDATA PIBL LDATA PBI WRITE,DAC1 PUT IMMEDIATE TO I/O BUFFER LOW

	ø	Ø)	, Ø		Ø	T	ø		ø	r L	ø		ø	Ø	ø	Ø	ø	, Ø		Ø	ļ	Ø	FIELD	ø
	1	Ŕ)	, Ø		ø	1	1		ø	1	ø	1	Ø		IM	MED	ATE	DAT	Ą	k	1 1		FIELD	1
1	5	1	4	1	3	12	1	1 1	1	0		9		8	7	 6	5	4	3		2	1	0		

OPERATION:

 $AM_1(\emptyset:7) \leftarrow IMMEDIATE DATA$

 $IOB_2(0:7) \leftarrow AM_1(0:7)$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The CHANNEL CONTROLLER takes the 8 bits of immediate data and places it in the low order 8 bits of the I/O BUFFER. This allows the buffer to be loaded without using the DATA MULTIBUS.

EXAMPLE:

. PIBH HDATA PIBL LDATA PBI WRITE,DAC1

PBI c,a

PUT I/O BUFFER TO I/O

1 0 0 0 1 0 1 CMD c ADDRESS a FIELD	ø	Ø	Ø	ø	Ø	Ø	ØØ	Ø	Ø	Ø	Ø	Ø	Ø	Ø	FIELD	ø
	1,	Ø	Ø	0 1	Ø	1	CMD c		ı - 1	AÇ	DRE	SS a	1		FIELD	1

77

OPERATION:

 $AM_1(\emptyset:8) \leftarrow COMMAND, ADDRESS$

 $10_2 \leftrightarrow AM_1(0:8), IOB_1$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The CHANNEL CONTROLLER takes the COMMAND and ADDRESS portion of the ADDRESS MULTIBUS and the contents of the I/O BUFFER and sends them to the DEVICE CONTROLLER. The DEVICE CONTROLLER will process the information.

EXAMPLE:

PFB		SAVE DATA
PBI	WRITE, DACI	WRITE IT ONE TIME
PBI	WRITE, DAC2	WRITE IT TWICE

GET I/O FIRST

the second se	ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	FIELD	Ø
	1	Ø	Ø	Ø	1	1	Ø	CN	ID c		l I	ADI	RESS	a			FIELD	1

. 7

OPERATION:

 $AM_{1}(\emptyset:8) \leftarrow COMMAND, ADDRESS$

 $IO_2 + AM_1(\emptyset:8)$ DM₅ + IO*

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS, DATA)

DESCRIPTION:

The CHANNEL CONTROLLER takes the COMMAND and ADDRESS information from the ADDRESS MULTIBUS and sends it to the DEVICE CONTROLLER. The DEVICE CONTROLLER (assumming an input device and an input command) will send data via the I/O BUS and the CHANNEL CONTROLLER will place the data on the DATA MULTIBUS. The elapsed time from execution of this instruction until data is present on the MULTIBUS is 5 instruction cycles; this is the same as the delay from the time a DATA MEMORY address is sent out from the MAP until the time the memory data is present on the MULTIBUS.

The data portion of the I/O BUS should be considered busy from the start of the instruction until the data is on the MULTIBUS. Legal commands during this period of time are: GIF, GIS, GIB, PIBL, PIBH and PIB. Illegal instructions are PFI, PSI and PBI.

EXAMPLE:

GIF NEXT, ADC1

PUT FIRST TO 1/0

OPERATION:

 $AM_1(\emptyset:8) \leftarrow COMMAND, ADDRESS$

 $IO_2 + AM_1(0:8), DM_1$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

This instruction sends COMMAND and ADDRESS information to the CHANNEL CONTROLLER. The CHANNEL CONTROLLER will respond by taking the data off of the DATA MULTIBUS. The COMMAND and ADDRESS portion of the ADDRESS MULTIBUS and the data from the DATA MULTIBUS are sent "down the cable" to the DEVICE CONTROLLER which will process the information.

EXAMPLE:

LGRF 3; PFI WRITE, DAC1

GET I/O BUFFER

ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	, Ø, Ø	Ø	FIELD	ø
Ø	Ø	Ø	1	Ø	1	1	Ø	ø	Ø	ø	Ø	Ø	ØØ	Ø	FIELD	1

7

OPERATION:

 $AM_1 \leftarrow COMMAND$ $DM_{1.5} \leftarrow IOB_1$

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS, DATA)

DESCRIPTION:

The CHANNEL CONTROLLER will place the contents of the I/O BUFFER on the DATA MULTIBUS on the SECOND BUS TRANSACTION.

EXAMPLE:

GIB

•

PUT SECOND TO I/O

0 0 0	0 0	0 0	0 0	0 0	a. ø	0.0	Ø FIELD Ø
1,0,0		101	CMD c			DDRESS a	FIELD 1

·)"

OPERATION:

 $AM_{1}(\emptyset:8) \leftarrow COMMAND, ADDRESS$

 $10_2 + AM_1(0:8), DM_{1.5}$

ERROR CONDITION(S):

BUC CONFLICT (ADDRESS)

DESCRIPTION:

This instruction sends command and address information to the CHANNEL CONTROLLER. The CHANNEL CONTROLLER will respond by taking the data off of the DATA MULTIBUS. The COMMAND and ADDRESS portion of the ADDRESS MULTIBUS and the data from the DATA MULTIBUS are sent "down the cable" to the DEVICE CONTROLLER which will process the information.

EXAMPLE:

PSI WRITE, DAC1; LGRS 8

START p[,...[,p]]

START PROCESSOR(S)

	Ø	ø	ø	Ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	FIELD	ý
	Ø	1	# 7	Ø	#6	ø	#5	Ø	#4	Ø	#3	Ø	#2	Ø	#1	ø	FIELD	1
1	1 6	1.4	13	1 2	11	1.0	9	8	7	6	5	4	3	2	1	0	· ·	

7.

OPERATION:

IF FIELD 1 (PROC# *2-1) IS TRUE

THEN PROC# $PS_1(9) \leftarrow 1$

ELSE NOP

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The processors whose numbers (1-7) are specified with a 1 in the appropriate bit position of Field 1 are put into the active state. They will begin execution on the next instruction cycle. Note: If a START instruction is microprogrammed with a STOP instruction, and a given processor is specified in both instructions, a NOP will result for that processor (i.e., its START/STOP status will not be changed).

EXAMPLE:

START \$ARP

STOP p[,...[,p]]

STOP PROCESSOR(S):

Ø 1 Ø #7 Ø #6 Ø #5 Ø #4 Ø #3 Ø #2 Ø #1 FIELD	Ø	ø	Ø	ø	Ø	ø	ø	Ø	Ø	Ø	Ø	ø	ø	ø	Ø	Ø	FIELD	ø
	ø	, 1	Ø	#7	Ø	#6	Ø	#5	Ø	#4	Ø	#3	ø	#2	Ø	#1	FIELD	1

OPERATION:

IF FIELD 1 (PROC#*2-2) IS TRUE

THEN PROC# $PS_1(9) \leftarrow \emptyset$

ELSE NOP

ERROR CONDITION(S):

BUS CONFLICT (ADDRESS)

DESCRIPTION:

The processors whose numbers (1-7) are specified with a 1 in the appropriate bit position of Field 1 are put into the wait state. They will halt at the end of the current instruction cycle. Note: If a START instruction is microprogrammed with a STOP instruction, and a given processor is specified in both instructions, a NOP will result for that processor (i.e., its START/STOP status will not be changed).

EXAMPLE:

STOP \$ARP; START \$DEP