
-

....

-
LJ

-

COP

CONTROL PROCESSOR

CHAPTER 4

4. CONTROL PROCESSOR

4.0 INTRODUCTION

The Control Processor is the control center of the AD-10 during run time.
While the host processor exercises overall system control through the HIC,
it is not 1capable of effectively monitoring and controlling the high
speed internal operations of the AD-10. This capability is provided
by the COP. Speci fi ca 11 y, the COP is a programmed processor designed to:

- Make logical decisions based upon a variety of inputs
- Implement program loops and branches through control of its own

and other processor program counters
Initiate system halts

- Control the Active/Wait status of all other processors
- Control the access of other processors .to the SM -
- Provide program initiation of the memory refresh sequence
- Place specific data on the OM
- Control a set of 128 General Registers, including increment/

decrement control
- Contra 1 the ope rat ion of the IOCC and a 11 interface devices therein.

4.1 COP ORGANIZATION

The organization of the COP is illustrated in Figure 4.1. That part of
the diagram in black is common to all processors and is described in
Section 2.6. The part in red is specific to the COP. This consists
of additional inputs to the Program Counter, direct access to both the
OM and AM, the addition of the 128 General Registers with increment/
decrement and compare capability, and a direct Halt input to the HIC.
All of these relate to specific instructions, and are described in
subsequent paragraphs.

4.1.1 PROCESSOR ADDRESS

The processor address for the COP is 7.

r r r r r r r r

HOST K INTERFACE STATUS MULTI BUS ~. CONTROLLER
(HJC) ""

.A 71" Jf I
DATA MULTIBUS

) ~) i"

' STATUS ~ STATUS
I WORD J ENABLE

) " T ' ~ , ~ PAUSE
COUNTER

~
GENERAL

" REGISTERS
COP ' 16 x 128

CONTROLLER AND ~

.....
7 INSTRUCTION)

" DE CODER
" " v

' v ... I/ ' v) I' INCREMCNT I
PROGRAM DECREMENT
COUNTER
I I' •

' PROGRAM ' II
7. MEMORY

32 COMP ARC
7 x 1024

, I'

' ~ i- ADDRESS/CONTROL MULTIBUS

' /

I HIC I
FIGURE 4. 1 COP BLOCK DIAGRAM

4.1 .2 PROCESSOR STATUS WORD

4.l.2.1

M ' HIGH ' I --.- I ' ' ' c c
"'

0 PAUSE A p LOW PAUSE COUNT B B _a_ COUNT .J. .J.. _J_ _. __._ __._ _I_

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

BITS DESCRIPTION

0-7,10-11 Remaining PAUSE Count (l(tJ Bits)
8 COP is present when set
9 COP is active (not in PAUSE) when set

12-13 UNASSIGNED
14 Current state of the condition bit
15* Current state of the Modified condition bit

* Once set, this bit remains set until cleared by a READ operation.

The COP Processor Status Word (PSW) contains information on the current
status of the COP. The PSW is a read-only register.

CONDITION AND MODIFIED CONDITION BITS

The state of the Condition Bit is controlled by any of the following
sources:

a. A direct COP instruction (set or clear):
b. The state (true or false) of any single bit on DM; or
c. The comparison of the contents of a General Register to zero

following an increment or decrement operation.

The Modified Condition Bit is set whenever an instruction is executed
that could change the state of the Condition Bit. This bit then remains
set until a READ opera ti on of this register is performed by the host
processor.

·, ..

4.1.3 PROCESSOR STATUS ENABLE

IH~J0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 ·0 :01
16 14 13 12 11 10 9 8 8 6 4 3 2 0

BIT DESCRIPTION
~-13 UNASSIGNED
14 Enable the Condition Bit; when false, to the AER line in the

STATUS MULTIBUS
15 Enable the Condition Bit, when true, to the AER line in the

STATUS MULTI BUS

The Processor Status Enable Register (PSE) is a write-only register.
This register has the same address as the COP Processor Status Word.

4.1.4 PROGRAM MEMORY

The COP program memory is comprised of 1024 words of 32 bits each.
The word is divided into two 16-bit fi.elds with Field 0 containing the
low order bits of the word. Each field may be accessed from the host
processor for a READ or WRITE opera ti on.

4.2 THE COP INSTRUCTION SET

4.2.1 COP INSTRUCTION WORD FORMAT

The COP Instruction word format is:

X . GENERAL REGISTER NUMBER X X X DATA & GR COMMAND FIELD 0

SEE PECIFIC INSTRUCTIO FIELD 1
16 14 13 12 11 10 9 8 7 8 4 3 2 0

Within this format, unused bits are denoted by an X. These bits are
always read as a 0. A summary of the bit patterns for all instructions
is provided in Figure 4.2.

The description of the COP instruction set is divided into three categories:
General Control Instructions, Data LOAD/STORE Instructions, and IOCC
related instructions.

4. 2. 2 MICRO-PROGRAMMING COP INSTRUCTIONS

Figure 4.2 provides a summary of the COP instruction set. This summary
has been organized into four groupings of instructions to indicate as
clearly as possible the microprogramming possibilities which exist.

A COP instruction can consist of any of the following:

a. <A>
b. <C>
c . < D> < D>

An example of the form <C> is:

LPC $ARP; LGRF 7.

This instruction will cause the contents of General Register #7 to be
loaded into the Program Counter of the ARP.

As indicated in c. above, the START and STOP instructions (which belong
to Group D) may be microprogrammed with each other. Thus,

STOP $ARP; START $DEP

causes the ARP to be put in the WAIT state, the DEP to be put into the
ACTIVE state, and leaves the ACTIVE/WAIT status of the MAP unchanged.

Note: Since the PAUSE Instruction belongs to group C, it can only be
microprogrammed with instructions in group B.

rlt:.Lu vi 1 11...1...u .L

J2_ S CT X 0 0 0 0 0 0 0 X ~ X 0 0 0 0 0 0 0 0 · 1 0 0 0 0 1 0 0 0 B I T # [_t}__2 ___
ii_ L SCF x 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 B I T # l (/) J2 ~ t

---~~~~HL_T~~x~0_0_0~0~0_0~0~x_x~x_0_0~0_0~0~0~0_0_100010~~0000f_1~t6X
----·~~~~~H_L_TC~-x~0_0_0+0 __ 0_0~0+x-~xx_0_0+0~0_0~0~0_0_1~00010000001 ~~I m~~I~
-··-·----~-.. --(l LPS x 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 PROC+ I I 0 q)){

, -.,.-...... ~--_R_FR_ x-t-0_0---t0 _0 _0_0-r-0-.---x -TX _x_0_0-t-0_0 _0 ___ 0+-·0_0--11 f---0 _0_1-+-1-+0---+0 _0 _0_0-+-0_0 _0 ·1----1''--'I.-' _._f_.::(/)~7(/)_.;z;;...,,._
r~ ccs x 0 0 .. 0 0 0 0 0 x x x 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 I 2 f/J rA. d' -~.~-SC-B-11-x +:-0_..:...0....:.:.0+0:.__:_0 ..:....j0 l...:....0.f-X-~+--x ...:._0;_0+...:..0_;,.0__;0-+..:-+0 _0_0_1-+0-1 -0 ~li-0-0+0-0 -0t-0-0-0·-1-1~2t.....J.!~¢~.~~
7 p x00~r0000x~x00000 0001011000000000 13¢01 GIB
/) JMP X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 0 0 1 0 0 0 ++-C 0 P P C ~ 2 .X X X j_
.fl LJPC x 0 0 0· 0 0 0 0 x x x 0 0 0 0 0 0 0 1 1 0 0 +-t-C 0 p p C--+- 3 ,?('1-.)(.)f

IL ST ART x 0 0 010 0 0t 0 x x x 0 0 0 0 0 0 1 A 0 A 0 A 01 A 0 A 0 A 0 A 0
-_,_-___ _,,:...J;;;...L:~~-=-S-T __ O_P_--1 ~-x :0~0-,,_! 0 0 0. 0 x x x 0 0 0 0 0 0 1 0 w 0 w 0 ! wl0 w 0 w 0 w 0 w

_---t,;;.L;..___L_P c_'_,..--ix 1-0 _0_0-+-0 _0_0+-0-+--X _xl-x_0_0 t-0_0_0_. ____ 1+-P_R_O C_+_,_0_0_+_J,.._' _P _R-1-D_c_-+-P_C_+-+------· .. a LI 0 X 0 0 0f 0 0 0 i 0 X X X 0 0 0 0 0 1 0 0 0 + I /0 l C 0 M M A N D +

j _2 L Fl X 0 _0 0 l 0 0 0, 0 X X X 1 0 0 1 0 + I M -~~·.,..E~~·....;D,___,.,;.I _A _T_E.-i--_D _A+-T_A_+ -------
--£==-';-J_--L-S I--.-X--i-0 .. -0--0I 0 0 010 X X X 1 0 0 0 1 + I M M E. D I A T E D A T A +

/ 'f- INC X . G E Nj R E ~ # X Xj X 0 1 ! 1 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 . 0 0 0 fl__
-~ LG RF X G E N R E G~ # X X X 0 0 0 1 . 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 (i_
-1. LG RS x G E N R E G. # x x x 0 0 I 0 0 1 ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~
3 ··-·~GRD X G E N R E G, # X Xj X 0 0 l 0 1 1. 0 0 0 0 0 0 0 0 0 0! 0 0 0 0 0 0 fJ_
··~ SGRF X G E N R E G # X X X 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 {Jj
~ SGRS x G E N R E GI # x xj x 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.-1_0_0 _0 ___ £9_ __
7 SGRO x G E N R E GI # x x x 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Qj
.ti NOP x 0 0 0. 0 0 . 01 0 x XI x 0 ~-
~ PAUSE X 0 0 0 0 0 01 0 X X X 0 0 0 0 0 0 0 0 0 0 0 j d ~

-~QJ:;.;....__JP_Mc~i--x 1-0_0_0 0_0 -101--0 x_x-+-x _0 _0+-0_0_0___._--10 _0_0_1-1-0_1 _11--110 0 0 0 0 0 1 0 l 3-i tl~
~~~~~G_IF~~x~0_0_0~0~0_0~0~x~x_x_0_0~0_0_0~~1_0_0_0~1101c CA DD RE s s 1~,xx~ 

_'i GIS X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 1 0 0 0 1 1 1 j C C A D D R E S S l IJ.7 g )l. )(. 

{J PFI X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 1 0 0 0 0 0 0} C C A D D R E S S l.l~ )( ( 1'. 

~ P FB X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 1 0 0 0 0 1 0 j 0 f 0 0 0 0 0 0 0 0 j_. ~-1,, (J (/) {J _ 
{JJ PB I X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 1 0 0 0 1 0 1 J C C A D D R E S S ~- _fl_.$:X )(. -~ 

/j_ PIBL X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 1 0 0 0 1. 0 010 IMM .. DIATE DATA l ~f J( J( ( 

m PIBH X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 1 0 0 0 1 0 0jl IMM~OIATE DATA 1~_4_~ X.~. 

Jj_ PSB X 0 0 0 0 0 0 0 X X X 0 0 0 0 0 1 0 0 0 0 1 l_f 0 0 0 0 0 0 0 0 0 ltJ_J_~_q 
'fl PS I x 0 0 0 0 0 0 . 0 x x x 0 0 0 0 0 1 0 0 0 0 0 1 j c c A D D R E s s I/ ~ x )C. " 

FIGURE 4o2 CONTROL PROCESSOR INSTRUCTION SET 



4. 2. 3 GENERAL CONTROL INSTRUCllONS 

There are several subsets within this category. These include: 

a. Instructions relating to setting (or clearing) the Condition 
Bit, including the General Register Increment/Decrement 
instructions. 

b. Jump instructions, where the contents of the COP's Program 
Counter are changed. 

c. Halt instructions, allowing the COP to initiate a system Halt 
via the HIC. 

d. Processor control instructions including control of the ACTIVE/WAIT 

status of each processor, Program Counter, and Status Enable Register. 
e. Other control instructions including PAUSE, NOP, and RFR 

(Refresh Data Memory). 

The General Control Instructions are: 

CCB 
SCB 
SCB b 

SCT b 
DEC n 

INC n 

JMP a 
JPC a 

JPM 
JPMC 
HLT f 
HLTC f 

LPC p,a 
LPS p 

START 
STOP 

Clear Condition Bit 
Set Condition Bit 
Set Condition Bit if Bit b is False 
Set Condition Bit if Bit b is True 
Decrement a General Register 
Increment a General Register 
Jump 
Jump Conditionally 
Jump to the Address on the DM 
Jump to the Address on the DM Conditionally 
Halt on Flag f True 
Ha 1 t Conditionally on Flag f True 
Load the Program Counter of a Processor 
Load the Processor Status Enable Register of a Processor 
Start Processor(s) 
Stop 

NOP No-Operation 
PAUSE d 
RFR 

Pause d Instruction Cycles 
Refresh Data Memory 

)<;., 



CCB 

CLEAR CONDITION BIT 

0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 ~ 0 FIELD 0 

0 0 ~ 1 0 1 0 0 0 0 0 0 0 0 0 0 FIELD 1 
1 6 1 4 1 3 1 2 11 1 0 9 B 6 5 4 3 ·2 0 

OPERATION: 
CBIT1 + 0 

ERROR CONDITION(S): 
CBIT if enabled to the AER line. 

DESCRIPTION: 
The condition bit is cleared. 

EXAMPLE: 

. 
CCB 



SCB 

SET CONDITION BIT 

I : : : : : : ~ : : '. .~ : : : ~: : : : '. : : : : : : : : : : : I:::~: : 
16 14 13, 12 11 10 9 8 6 5 4 3 2 1 0 

OPERATION: 

· CBIT1 + 1 

ERROR CONDITIOR(S): 

CBIT if enabled to the AER line. 

DESCRIPTION:. 

The CBIT is set. 

EXAMPLE: 

SCB 



SCF b 

SET CONDITION IF BIT b IS FALSE 

0 0 0 0 0 (;J 0 0 0 0 0 0 0 0 9' 9' FIELD 

0 0 0 1 0 0 0 0 0 0 0 0 BIT # b FIELD 
1 6 1 4 1 3 1 2 11 1 0 9 8 7 6 6 4 3 0 

OPERATION: 

IF OM
0 

(b) IS FALSE 

THEN CBIT1 + 1 

ELSE csn, + CBIT
0 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
The specified bit of the ·DATA MULTIBUS is tested. If it is false, 
the condition bit is set. If it is true, the condition bit is not 
modified. 

EXAMPLE: 

INSTRUCTION 
CYCLE 

n 
n+l 
n+2 
n+3 

• COP 

. 
START $DEP 
NOP 
SCF 15 
JPC ERROR 

.DEP 

. ! GET THE CONDITION BIT 
LCF;PAUSE 3 !SEND THE CONDITION BIT 

!IF FALSE ••• 
!WE HAVE AN ERROR 

0 

1 

'

:i 

}' .• 
. 

' 

~' 



SCT b 

SET CONDITION IF BIT b IS TRUE 

16 t4 13, 12 11 10 9 8 

OPERATION: 
IF DM

0 
(b) IS TRUE 

THEN CB IT l + 1 

ELSE CBIT1 + CBIT0 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

6 6 4 3 2 .1 0 

If the specified bit of the DATA MULTIBUS is true, the condition 
bit is set. If it is false, the condition bit is not modified. 

EXAMPLE: 

LGRF lJ' 
SCT 8 
JPC ERROR 

.. 

! SEND .THE CONDITION BIT 
! IF TRUE. .. 
! ... WE HAVE AN ERROR 

!SEND THE CONDITION BIT 

)·:/.··.·,.·' ~ '. 

-~' 



DEC n 

DECREMENT A GENERAL REGISTER 

,, GENERAL REGISTER n 

0 0 0 0 0 0 
1 6 1 4 1 3 1 2 11 1 0 

OPERATION: 

GR1 (n) + GR
0 

{n) -1 

IF GR1 ( n) + ~- 0 

THEN CBIT l + 1 

ELSE CBIT l + 0 

ERROR CONDITION(S): 

0 
9 

0 

0 0 
8 

.CBIT if enabled to the AER line. 

DESCRIPTION: 

0 0 0 l 0 0 0· FIELD 

0 0 0 0 0 0 0 FIELD 
6 6 4 3 2 0 

The contents of the specified register are decremented by one; 
if the result is zero, the CBIT is cleared; otherwise it is set. 

EXAMPLE: 
LOOP 

DEC 67 
JPC LOOP 

! DONE? 
! IF NOT, DO LOOP AGAIN 

~ 

1 



INC n 

INCREMENT A GENERAL REGISTER 

0 GENERAL REGISTER # n 0 0 0 0 1 1 0 0 FIELD 0 
..__._ __ -1---1---1---+-~ ...... -f---l~-+---t---t---+---t----t---t---t 

0 0 0 0 0 (,J .0 0 0 0 0 0 0 0 0 0 FIELD 1 .___._ __ ..._-'---'--.-.1---...Ji..-~--;1--~-__. __ .....___.. __ _,_~--....... ---
16 14 13 12 11 10 9 8 7 . 6 5 . 4 0 

OPERATION: 

GR1(n) + GR
0

(n)+1 

IF GR1 (n) :! 0 

THEN CBIT l + 1 

ELSE CBIT l + 0 

ERROR CONDITION( S): 

CBIT if en~bled to the AER line. 

DESCRIPTION: 

The contents of the specified register are incremented by one. 
If the result is zero, the CBIT is cleared; otherwise it is set. 

EXAMPLE: 

LOOP 

INC 77 ! DONE? 
JPC LOOP ! IF NOT, DO LOOP AGAIN 

• 

)·/ ...• ,····.·· .•.• ···• 
. ' .. '' 

I' 

··~~ 



JMP a 

JUMP 

1 5 1 4 1 3 I 1 2 1.1 1 0 9 8 6 4 3 2 0 

OPERATION: 
COP PC1 + ADDRESS 

ERROR CONDITION(S): 
NONE 

. DESCRIPTION: 
The address portion of the instruction is pl aced in the COP PROGRAM 
COUNTER so that the next instruction executed will be fetched from 
'that address in program memory. 

EXAMPLE: 
BEGIN . 

. 
JMP BEGIN ! ONE MORE TIME 

' 
)'.·' .. · .. · .• ··/ •. , 

~~ 



JPC a 

JUMP CONDITIONALLY 

0 0 0 0 0 0 0 fb 

0 0 1 1 0 0 
1 6 1 4 t 3 1 2 11 1 0 9 8 

OPERATION: 

IF CBIT IS TRUE 

THEN COP PC1 + ADDRESS 

ELSE NOP 

ERROR CONDITION(S): 
NONE 

DESCRIPTION : 

fb 0 ~ 0 0 
ADDRESS a 

6 . ' 5 

4 3 

0 0 

2 0 

FIELD ~ 

FIELD 1 

If the condition bit is true, the address portion of the instruction 
is placed in the COP PROGRAM COUNTER so that the next instruction 
executed will be fetched from that address in program memory. 
Otherwise, no operation is performed and the next sequential instruction 
is executed. 

EXAMPLE: 

BEGIN • 

JPC ERROR 
JMP BEGIN 

ERROR STOP $ARP,$MAP,$DEP 
HLT 0 



JPM 

JUMP TO THE ADDRESS ON THE DATA MULTIBUS 

16 14 13 12 11 10 9 8 6 6 4 3 0 

OPERATION: 
COP PC1 +- DM

0 
( 0 : 9) 

ERROR CONDITION( S): 
NONE 

DESCRIPTION: 
The low order 10 bits of the DATA MULTIBUS FIRST are placed in 
the COP PROGRAM COUNTER. This causes the next instruction to 
be fetched from that address. 

EXAMPLE: 
LFI 
SGRF 
JMP 

PROGL 
RETURN 
SUB !CALL SUBROUTINE 

PROGL . 

SUB 

. 
LGRF. RETURN !RETURN FROM SUBROUTINE 
JPM -

\ 
)'( ... ·.·•··•·· ... • 

. ' 

:11; 



JPMC 

JUMP TO THE ADDRESS ON THE DATA MULTIBUS CONDITIONALLY 

·0 0 0 0 0 

0 0 0 1 0 
1 5 1 4 1 3 \ 1 2 11 1 0 8 6 6 4 3 2 0 

OPERATION: 

IF CBIT IS TRUE 

. THEN COP PC1 

ELSE NOP 

ERROR CONDITION( S): 

NONE 

DESCRIPTION: 

If the condition bit is true, then the low order 10 bits of the DATA 
MULTIBUS FIRST are pl aced in the COP PROGRAM COUNTER. Otherwise, 
no operation is performed. 

EXAMPLE: 

. 
LGRF RETURN ! PUT II RETURN II ON OM 
JPMC ! JUMP TO "RETURN" IF CBIT IS TRUE 



HLT f 

HALT ON FLAG (f) TRUE 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 

0 0 1 0 0 0 1 0 0 0 0 0 0 0 f FIELD 
1 6 1 4 1 3 1 2 11 1. 0 9 8 6 6 4 3 0 

OPERATION: 

IF FLAG f IS TRUE 

THEN AM1 + HALT 

ELSE NOP 

ERROR CONDITION ( S) : 

NONE 

DESCRIPTION: 

If the HALT f flag is enabled in the HALT MASK REGISTER, all 
processors will HALT at the end of the current instruction cycle. 

EXAMPLE: 

BEGIN • 

. 
HLT 0 ! WAIT FOR USER 

HLT 1 ! DONE? 
JMP BEGIN ! NO, ONE MORE TIME 

~ 

1 



HLTC f 

HALT CONDITIONALLY ON FLAG f TRUE 

I : : : : : : ~ : : : : : : : ~ : : : : : : : : '. : : : : ~ : ; I;:~~: : 
16 14 13 12 11 10 9 8 7 . 6 6 4 3 2 0 

\ 

OPERATION: 
IF CBIT IS TRUE 

THEN IF FLAG f IS TRUE 

THEN AM1 + HALT 

ELSE NOP 

ELSE NOP 

ERROR CONDITION( S): 
NONE 

DESCRIPTION: 
If the congition bit is set and the HALT f flag is enabled in the 
HALT MASK REGISTER, all processors wi 11 HALT at the end of the current 
instruction cycle.· 

EXAMPLE: 
BEGIN . 

HLTC 1 !ERROR ABOVE? 
JMP BEGIN ! NO, ONE MORE TIME 

\ 



LPC p,a 

LOAD THE PROGRAM COUNTER OF A PROCESSOR 

1 PROC P. 
1 6 t 4 1 3 I 1 2 1 , t 0 

OPERATION: 
AM1(0:9) + ADDRESS 

AM
1 

(16-:18) + PROC # 

PROC# PC1 + AM1(0:9) 

ERROR CONDITION(S): 
BUS CONFLICT (ADDRESS) 

DESCRIPTION: 

ADDRESS a 
9 8 8 6 4 2 0 

FIELD 0 

FIELD 1 

The address is p 1 aced in the PROGRAM COUNTER of the specified 
processor. The processor must not be active (otherwise, the processor 
PROGRAM COUNTER is not changed). The PAUSE count of the processor 
is cleared. -

EXAMPLE: 

. 
STOP $ARP 
LPC $ARP,FIRST 
START $ARP 

\ 
}' 



LPS p 

LOAD THE PROCESSOR STATUS ENABLE REGISTER OF A PROCESSOR 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD ~ 

0 0 0 1 9l 0 1 0 0 0 0 0 0 PROC p FIELD 1 
, 6 1 4 1 3 . 1 2 11 1 0 9 8 6 6 4 3 2 0 

OPERATION: 

· AM
1 

( 16 : 1 8) + PROC # 

PROC # PSE1 + DM1 

ERROR CONDITION(S): 

BUS CONFLICT (ADDRESS) 

DESCRIPTION: 

The PROCESSOR STATUS ENABLE REGISTER of the specified processor is 
loaded with the data on the DATA MULTIBUS. 

EXAMPLE: 

. 
LPS $ARP; LGRF 6 



NOP 

NO OPERATION 

16 14 13 12 11 10 9 8 6 6 4 3 

OPERATION: 

None 

ERROR CONDITION(S): 

None 

DESCRIPTION: 

Suspends execution for one instruction cycle. 

EXAMPLE: 

NOP 

0 

\,, 

' 



NOPC 

NO OPERATION CONDITIONALLY 

0 0 0 0 0 0 0 ·0 0 0 0 0 YJ 0 0 0 FIELD 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 1 
1 5 1 4 1 3 •, 1 2 11 1 0 9 e 6 6 4 3 2 0 

OPERATION: 
IF CBIT IS TRUE 

THEN NOP 
ELSE NOP 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
If the condition bit is set, then there will be no operation performed. 
Otherwise, no operation is performed. For further information refer 
to the NOP instruction. 

EXAMPLE: 

. 
NOPC 

. 

' 

•• 



PAUSE d 

PAUSE FOR d INSTRUCTION CYCLES 

OPERATION: 
None 

ERROR CONDITION(S): 

None 

DESCRIPTION: 
Suspend execution ford instruction cycles following the PAUSE 
instruction. This has the same effect as (d+l) NOP's. 

EXAMPLE: 

. 
ST ART $MAP , $ DEP , $ARP ! ST ART IT UP 
PAUSE 20 !WAIT 21 INSTRUCTIONS 
STOP $MAP,$DEP,$ARP !ALL DONE 



RFR 

REFRESH DATA MEMORY 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 

0 0 0 1 0 0 1 1 0 0 0 0 0 0 /0 0 FIELD 
1 6 1 4 '1 3 1 2 11 10 9 8 6 6 4 3 2 0 

ERROR CONDITION(S): 
None 

DESCRI PT.ION: 
This instruction causes a memory REFRESH. Automatic REFRESH of 
4 rows of DATA MEMORY is performed every 102.4µs. A REFRESH will 
cause a delay of 2.5µs in the execution of all processors. The 
operations performed during a REFRESH are: 

1. Halt all processors (save all necessary status information); 
2. Perform a shutdown sequence capturing multibus data; 
3. REFRESH memory; and 

~ 

1 

.4. Restart processors {reset REFRESH counter) and replay shutdown/ 
restart buffer onto the multibus. 

EXAMPLE: 

. 
LI 0 ST ART ADC 
RFR 
PAUSE 73 
LIO READADC 

' 



4.2.4 DATA LOAD/STORE INSTRUCTIONS 

The three Load Immediate Data instructions allow a 16 bit data word 

contained in Field~of the instruction. word to be loaded directly 
onto the OM. ~ · 

The General Register LOAD/STORE instructions provide the capability 

to load the contents of any of the 128 General Registers onto the 

OM or to store the data on the DM in any one of the General Registe.rs. 

The Load Irrmediate Data instructions are: 

LOI 

LFI 

LSI 

The General 

LGRD 

LGRF 

LGRS 
SGRO 

SGRF 

SGRS 

Load Double Immediate 

Load First Immediate 

Load Second Immediate 

Register LOAD/STORE instructions 

Load Genera 1 Register Double 

Load Genera 1 Register First 

Load General Register Second 

Store Genera 1 Register Double 

Store Genera 1 Register First 

Store General Register Second 

are: 



LOI k 

LOAD DOUBLE IMMEDIATE 

16 t4 13 12 11 10 9 8 6 6 4 0 

OPERATION: 

DMl IMMEDIATE DATA 

DMl.S + IMMEDIATE DATA 

ERROR CONDITION(S): 
BUS CONFLICT (DATA) 

DESCRIPTION: 
The imnediate data is placed on the DATA MULTIBUS FIRST and SECOND. 

EXAMPLE: 

. 
LOI DATA 

'
;,, 

' 

' 



LFI k 

LOAD FIRST IMMEDIATE 

16 14 13 12 11 10 9 8 6 6 3 2 0 

OPERATION: 
DM1 ~ IMMEDIATE 'DATA 

ERROR CONDITION { S) : 
BUS CONFLICT (DATA) 

DESCRIPTION: 
The immediate data is placed on the DATA MULTIBUS FIRST. 

EXAMPLE: 

. 
LFI DATA 



LSI k 

LOAD SECOND IMMEDIATE 

10: 0: 0: 0: 0: ~: 0 1~:D:IA~E:D:T~~k: 1: 0: 0:0 :1 J;::~:: 
15 14 13 12 11 10 9 B 7 , 6 6 .4 3 2 0 

OPERATION: 
DMl.S + IMMEDIATE DATA 

ERROR CONDITION(S): 
BUS CONFLICT (DATA) 

DES CR I PT ION: 
The immediate data is placed on the DATA MULTIBUS SECOND. 

EXAMPLE: 

LSI DATA 

~~·' , 



LGRD n 

LOAD FROM GENERAL REGISTERS DOUBLE 

0 EVEN GENERAL REGISTER # n 0 0 0 0 0 0 1 FIELD 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 
1 6 1 4 1 3 1 2 1, 1 0 9 8 6 & 4 3 0 

OPERATION: 

OMl + GR0(n) 

DM1 .5 + GR0(n+l) 

ERROR CONDITION(S): 

BUS CONFLICT (DATA) 

DESCRIPTION: 

The contents of the specified even* register and next register are 
pl aced on the DATA MULTIBUS FIRST and SECOND. The 1 ow order bit of 
the register number is ignored. 

* An even register is of the set: 

· {njn=0,2,4,6, ... ,12610} 

EXAMPLE: 

. 
LGRD PAIR !PASS THEM ON 

'

! .. 

. 

I 

~ 

1 



LGRF n 

LOAD FROM GENERAL REGISTER FIRST 

0 GENERAL REGISTER # n 0 0 0 0 0 0 0 

0 0 0 0 0 ~ 0 0 0 0 0 0 0 0 0 0 
1 6 1 4 1 3 ' 1 2 11 1 0 9 8 6 6 4 3 0 

OPERATION: 

DMl + GR
0

(n) 

ERROR CONOITlON(S): 
BUS CONFLICT (DATA) 

DESCRIPTION: 
The contents of the specified register are placed on the DATA 
MULTIBUS FIRST. 

EXAMPLE: 

. 
LGRF 7 !PASS 1T ON 

FIELD ~ 

FIELD 1 



LGRS n 

LOAD FROM GENERAL REGISTER SECOND 

0 GENERAL REGISTER # n 0 0 0. {ll 0 0 0 1 FIELD ~ . 

0 0 0 0 0 0 0 0 0 FIELD 1 
1 6 1 4 1 3 1 2 11' , 0 9 B 6 6 4 3 2 0 

OPERATION: 

DMl.5 + GR0(n) 

ERROR CONDITION(S): 

BUS CONFLICT (DATA) 

DESCRIPTION: 

The. contents of the specified register are placed on the DATA MULTI BUS 
SECOND. 

EXAMPLE: 

LGRS 43 !PASS IT ON 



SGRO n 

STORE TO GENERAL REGISTERS DOUBLE 

0 EVEN GENERAL REGISTER #n 0 0 ~ 0 0 1 1 FIELD 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 
1 5 1 4 1 3 ' 1 2 11 t 0 9 8 7. 8 4 3 0 

OPERATION: 
GR. 5(n} + OM0 

·GR
1 

( n+l ) + DM.S 

ERROR CONDITION { S): 

None 

DES CR I PT ION : 

The contents of the DATA MULTIBUS FIRST and SECOND is placed in 
the specified even* and next·registers. The 16w order bit of the 
register number is ·ignored. · · 

* An even register is of the set: 

· {nl n=0 ,2 ,4 ,6 ••• , 126HJ} 

EXAMPLE: 

. 
SGRO PAIR !SAVE THEM 

0 

1 



SGRF n 

STORE TO GENERAL REGISTER FIRST 

0 GENERAL REGISTER # n 0 0 0 0 0 1 1 0 FIELD 

0 0 0 0 0 0 0 0 0 0· ·0 0 0 0 0 0 FIELD 

1 ' 
1 4 1 3 1 2 1, 1 0 9 8 6 6 4 3 . 2 0 

OPERATION: 

. GR. 5( n) + DM0 

ERROR CONDITION( S): 

None 

DESCRIPTION: 

The contents of the DATA MULTI BUS FIRST are pl aced in the specified 
register. 

EXAMPLE: 

SGRF 32 ! SAVE IT 

~ 

.1 



SGRS n 

STORE TO GENERAL REGISTER SECOND 

0 GENERAL REGISTER # n 0 0 0 0 0 1 0 1 FIELD 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 
1 6 1 4 , 3 , 2 11 , 0 9 8 6 4 2 0 

OPERATION: 
GR1(n) + DM. 5 

ERROR CONDITION(S): 
None 

DES CR I PT ION: 
The contents of the DATA MULTIBUS SECOND are placed in the specified 
register. 

EXAMPLE: 

. 
SGRS 16 ! SAVE IT 

0 

1 



4. 2 .5 1/0 CHANNEL CONTROLLER INSTRUCTIONS 

4.2.5.1 

The 1/0 Channel Controller (IOCC) is described in detail in Chapter 8. 
However, a sumnary is presented here as an aid to understanding the 

COP instructions that relate to the IOCC. 

IOCC DESCRIPTION 

Figure 4.3 illustrates the overall organization of the IOCC. The 
IOCC consists of an address and instruction decoder that receives its 

inputs from the COP via the AM. An Output Data Buffer is also provided 

which allows data to be transmitted to several output devices without 
requiring multiple DM transactions .. This buffer may be 1 oaded by one. 

transaction from the DM or by two transactions from the AM. Inputs 

via the AM are limited to the data contained in the COP instruction 
word. The contents of the Output Data Buffer niay be read back via 

the OM, primarily as a diagnostic aid. Finally, the Channel Controller 

provides the transmitter/receiver pairs matched to those in the 
remotely located Device Controller. The Device Controller may contain 

up to 128 devices in any mixture of A/Dor D/A converters or logic 

(sense and control) buffers. Each device has a physical address 

decoded from the IOCC Address Bus. . In addition, each device may be 

assigned to any one of up to 32 control groups for command purposes. 

This allows groups of devices to be simultaneously commanded to perform 

their specific function. Examples include simultaneous up-dating 
of the double-buffered D/A converters and/or simultaneous initiation 

of A/D conversion. 

.·~ 



DAT A MULTI BUS 

IOCC 
ADDRESS & 
INSTRUCTION 

DECODER 

I 
• 

I 
• 

• 

• 

EXTERNAL TO AD 10 

DEVICE 
CONTROLLER 

DEVICE 
# 127 

FIGURE 4.3 IOCC BLOCK DIAGRAM 



4.2.5.2 

The output of an A/D converter can be read at any time~ and care should 
be exercised to ensure that adequate time has been allowed for the 
conversion cycle to be completed. A microprogrammed instruction may 
be used to read an A/D converter output and then initiate another 
conversion cycle. 

IOCC INSTRUCTIONS 

The IOCC Instructions are: 

LIO .c 

GIB 
PFB 
PSB 

PIBH k 
PlBL k 

PBI 
GIF c,a 
PFI c ,a 
PSI c ,a 

Load the IOCC with a command word. 
Get the 1/0 Buffer. 
Put First to the 1/0 Buffer. 
Put Second to the 1/0 Buffer. 
Put Immediate to the I/0 Buffer High 
Put Immediate to the 1/0 Buffer Low 
Put 1/0 Buffer to the 1/0. 
Get the 1/0 First 
Put First to the 1/0. 
Put Second to the 1/0. 

)', ..• · .. · .. ·.:.• ..• · :'( 

{. 

':~( 



LIO c 

LOAD THE I/0 CHANNEL CONTROLLER WITH A COMMAND WORD 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD·~ 

1/0 COMMAND c FIELD 1 
16 14 13 12 11 10 9 8 6 4 3 0 

OPERATION: 

·AM1(0:11) + I/0 COMMAND 

ERROR CONDITION(S): 

BUS CONFLICT (ADDRESS) 

DESCRIPTION: 
The I/0 command is sent to the CHANNEL CONTROLLER over the ADDRESS 
MULTIBUS. The command may be self contained or used in conjunction 
with the DATA MULTIBUS. 

EXAMPLE: 

. 
LIO WRITE; LGRF 14 

·~ 

-)' l· .. ;f···;··.···.··. 

,, 

';· 

;t' 



PFB 

PUT FIRST TO 1/0 BUFFER 

0 0 0 0 0 0 0 0 0 0 0 {fl. 0 0 0 0 FIELD 

1 0 0 0 0 ·1 0 0 0 0 0 0 0 0 0 FIELD 
1 6 1 4 1.3 1 2 11 1 0 9 8 6 6 4 3 0 

OPERATION: 
AM1 (0: l1) + COMMAND 

IOB2 . + .. DM1 

ERROR CONDITION(S): 
BUS CONFLICT (ADDRESS) 

DESCRIPTION: 
The CHANNEL CONTROLLER takes the data on the DATA MULTIBUS and places 
it in the I/O BUFFER. This allows the same data to be used several. 
times without using the DATA MULTIBUS each time. 

EXAMPLE: 

. 
PFB; LGRF 5 !SEND THE CONTENTS OF GR#5 TO THE I/0 BUFFER 
PBI WRITE, DACl 
PBI WRITE, DAC2 

~ 

1 
·'r ,, .• -.... ·:····.· - ') 

) v 

~ ,';' 

) 
'· 



PSB 
1 

PUT SECOND TO I/0 BUFFER 

OPERATION: 

AM1 (0: ll) + COMMAND 

1082 + DMl .5 

ERROR CONDITION( S): 

BUS CONFLICT (ADDRESS) 

DESCRIPTION: 

The CHANNEL CONTROLLER takes the data on the DATA MULTIBUS and 
places it in the I/0 BUFFER. This allows the same data to be used· 
several times without usi.ng the DATA .. MULTIBUS each time. 

EXAMPLE: 

PSB; LGRS 4 
PBI WRITE, DACl 
PBI WRITE, DAC2 

I . 



PIBH k 

PUT IMMEDIATE TO I/0 BUFFER HIGH 

f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 

1 0 0 0 1 0 0 1 IMMEDIATE DATA k F I'E L D 
1 5 1 4 1 3 . 1 2 11 1 0 9 8 6 6 4 3 0 

OPERATION: 

AM1 (0 :7) + IMMEDIATE DATA 

1082( 8: 15) + AM1(0:7) 

ERROR CONDITION{S): 

BUS CONFLICT (ADDRESS) 

DESCRIPTION: 

The CHANNEL CONTROLLER takes the 8 bits of immediate data and 
places it in the high order 8 bits of the I/0 BUFFER. This allows. 
the buffer to be loaded without tis ing the DATA MULTI BUS. 

EXAMPLE: 

. 
PIBH HDATA 
PIBL LDATA 
PB I WRITE , DA Cl 

"' 
1 



PIBL k 

PUT IMMEDIATE TO I/0 BUFFER LOW 

0 0 0 0 0 0 0 ~ 0 0 0 FIELD ~ 

1 0 0 0 l 0 0 0 k FIELD ·1 
t 6 t 4 1 3 1 2 1, , 0 9 8 1 e 4 3 2 0 

OPERATION: 

. AM1 (0 :7) + IMMEDIATE DATA 

IOB2 (.0 : 7) + AM1 (ll: 7) 

ERROR CONDITION(S}: 

BUS CONFLICT (ADDRESS) 

DESCRIPTION: 

The CHANNEL CONTROLLER takes the 8 bits of immediate data and 
places it in the low order 8 bits of the 1/0 BUFFER. This allows 
the buffer to be loaded without using the DATA MULTIBUS. 

EXAMPLE: 

. 
PIBH HDATA 
PIBL LDATA 
PB I WRITE~ DA Cl 



PBI c,a 

PUT I/O BUFFER TO I/O 

1 0 0 0 1 0 1 CMD c 
16 14 1.3\12 11 10 9 8 6 

OPERATION: 

AM1(0:8) + COMMAND,ADDRESS 

I02 + AMt(0':8),IOB1 

ERROR CONDITION(S): 

BUS CON FU CT (ADDRESS) 

DESCRIPTION: 

4 3 2 0 

FIELD ~ 

FIELD 1 

The CHANNEL CONTROLLER takes the COMMAND and ADDRESS portion of the 
ADDRESS MULTI BUS and the contents of the I/0 BUFFER and sends them . 
to the DEVICE CONTROLLER. The DEVICE CONTROLLER will process the 
information. 

EXAMPLE: 

. 
PFB ! SAVE DATA 
PBI WRITE ,DAC1 ! WRITE IT ONE TIME 
PB! WRITE ,DAC2 ! WRITE IT TWICE 



GIF c,a 

GET I/0 FIRST 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 0 

0 l 1 CMD c FIELD 1 
1 5 1 4 1 3., 1 2 1 1 1 0 9 8 6 6 4 3 2 0 

OPERATION: 
.AM1(0:8). + COMMAND,ADDRESS 

I02 + AM1 (0 :8} 

OM5 + IO* 

ERROR CONDITION(S): 
BUS CONFLICT (ADDRESS,DATA) 

DESCRIPTION: 
The CHANNEL CONTROLLER takes the COMMAND and ADDRESS information from 
the ADDRESS MULTIBUS and sends it to the DEVICE CONTROLLER. The 
DEVICE CONTROLLER (assumming an input device and an input command) 
will send data via the I/0 BUS and the CHANNEL CONTROLLER will place 
the data on the DATA MULTIBUS. The elapsed time from execution 
of this instruction until data is present on the MULTIBUS is 5 
instruction cycles; this is the same as the delay from the time 
a DATA MEMORY address is sent out from the MAP until the time the 
memory data is present on the MULTI BUS. 

* The data portion of the I/0 BUS should be considered busy from the 
start of the instruction until the data is on the MULTIBUS. 
Legal commands during this period of time are: GIF, GIS, GIB, 
PIBL, PIBH and PIB. Illegal instructions are PFI, PSI and PBI. 

EXAMPLE: 

. 
GIF NEXT,ADCl 

·}' 



PFI c,a 

PUT FIRST TO 1/0 

9.1 9.1 0 0 0 0 9.1 0 0 0 0 0 0 VJ 0 FIELD 

1 0 0 0 0 0 0 CMD c FIELD 
1 5 , 4 , 3 ., t 2 , t , 0 9 8 6 6 4 3 2 0 

OPERATION: 

AM1(0:8) + COMMAND, ADDRESS 

102 + AM1 (0:8},DM1 

ERROR CONDITION{S): 

BUS CONFLICT (ADDRESS) 

DESCRIPTION: 

This instruction sends COMMAND and ADDRESS information to the 
CHANNEL CONTROLLER. The CHANNEL CONTROLLER wi 11 respond by taking . 
the data off of the DATA MULTIBUS. The COMMAND and ADDRESS portion 
of the ADDRESS MULTIBUS and the data from the DATA MULTIBUS are 
sent "down the cable 11 to the DEVICE CONTROLLER which will process 
the information. 

EXAMPLE: 

. 
LGRF 3; PFI WRITE, DACl 

~ 

1 



GIB 

GET I/0 BUFFER 

16 14 13 12 11 10 9 8 6 6 4 3 0 

OPERATION:· 

AM1 -+- COMMAND 

DM1 • 5 -+- IOB1 

ERROR CONDITION(S): 

BUS CONFLICT(ADDRESS ,DATA) 

DESCRIPTION: 

The CHANNEL CONTROLLER will place the contents of the I/O BUFFER 
on the DATA MUL ns·us on the SECOND BUS TRANSACTION. 

· EXAMPLE: 

. 
GIB 



PSI c,a 

PUT SECOND TO I/0 

" 0 0 0 0 0 0 " 0 

1 0 0 0 0 0 1 CMD c 
1 5 1 4 1 3 t 2 11 1 0 9 8 6 4 3. 0 

OPERATION: 

AM1(0:8) + COMMAND, ADDRESS 

102 + AM1 U~.:8} ~DM,_ 5 . 

ERROR CONDITION (S) ,: 

BUC CONFLICT (ADDRESS) 

DESCRIPTION: 

This instruction sends command and address information to the 
CHANNEL CONTROLLER. The CHANNEL CONTROLLER wi 11 respond by taking . 
the data off of the DATA MULTIBUS. The COMMAND and'ADDRESS portion 
of the ADDRESS MULTIBUS and the data from the DATA MULTIBUS are 
sent "down the cab 1 e" to the DEVICE CONTROLLER which wi 11 process 
the information. 

EXAMPLE: 

. 
PSI WRITE, DACl; LGRS 8 



START p[,· •.. [,p]] 

START PROCESSOR(S) 

0 0 0 0 0 0 0 

0 1 #7 0 #6 0 #5 
1 6 1 4 1 3 . 1 2 1 l t 0 9 

OPERATION: 

IF FIELD 1 ( PROC# *2-1 ) 

THEN PROC# PS
1

(9) + 

ELSE NOP 

ERROR CONDITION(S): 

BUS CONFLICT (ADDRESS} 

DESCRIPTION: 

0 0 0 0 

0 #4 0 #3 
9 6 6 

IS TRUE 

1 

tJ 0 

0 #2 
4 3 

0 

2 0 

FIELD ~ 

FIELD 1 

The processors whose numbers (1-7) are specified with a 1 in the 
appropriate bit position of Field 1 are put into the active state. 
They will begin execution on the ·next instruction cycle. Note: 
If a START instruction is microprogrammed with a STOP instruction, and 
a given processor is specified in both instructions, a NOP will 
result for that processor (i.e., its START /STOP status wi 11 not be 
changed). 

EXAMPLE: 

START $ARP 



STOP p[, ... [ ,p]] 

STOP PROCESSOR( S): 

0 0 0 0 0 0 0 0 0 0 0 0 0 ·0 0 0 FIELD 

0 1 0 #7 0 116 0 #5 0 #4 0 #3 0 #2 0 #1 FIELD 
1 6 1 4 1 3 . 1 2 1, 1 0 9 e 6 6 4 3 0 

OPERATION: 
lF FIELD 1 (PROC#*2-2) IS TRUE 

THEN PROC# PS1 ( 9) + 0 

ELSE NOP 

ERROR CONDITION(S}: 
BUS CONFLICT (ADDRESS) 

DESCRlPT ION : 

The processors whose numbers (1-7) are specified with a 1 in the 
appropriate bit position of Field 1 are put into the wait state. 
They will halt at the end of the current instruction cycle. Note: 
If a START instruction is microprogrammed with a STOP instruction, 
and a given processor is specified in both instructions, a NOP will 
result for that processor (Le., its START/STOP status will not be 
changed)~ 

EXAMPLE: 

. 
STOP $ARP; START $DEP 

0 

1 
I 


