PASCAL USERS GROUP

Pascal News

NUMBER 17

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS
MARCH, 1930

Policy

POLICY: PASCAL NEWS (17-Mar-80)

Pascal News is the official but informal publication of the User's Group.

Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the

"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

Pascal News is produced 3 or 4 times during an academic year; usually in
September, November, February, and May.

ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and

18.5 cm lines!)

Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

Pascal News is divided into flexible sections:
POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

------ ALL-PURPOSE COUPON - - - - - = (17-Mar-80)

Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342 USA

NoTE

Membership is for an academic year (ending June 30th).

Membership fee and All Purpose Coupon is sent to your Regional
Representative.

SEE THE PoLICY SECTION ON THE REVERSE SIDE FOR PRICES AND
ALTERNATE ADDRESS if you are located in the European or
Australasian Regions.

Membership and Renewal are the same price.

The U. S. Postal Service does not forward Pascal News.

[] 1 year ending June 30, 1980
Enter me as a new member for:

[]2 years ending June 30, 1981
Renew my subscription for:

[] 3 years ending June 30, 1982

Send Back Issue(s)

My new/correct address/phone is listed below

Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

Comments:
! $!
! ENCLOSED PLEASE FIND: A$!
1 £ . !
! !

NAME

ADDRESS

PHONE

COMPUTER

DATE

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,

maintainer, implementor, distributor, or just plain fan.

Please enclose the proper prepayment (check payable to "Pascal User's

Group"); we will not bill you.

Please do not send us purchase orders; we cannot endure the paper work!

When you join PUG any time within an academic year: July 1 to June 30, you

will receive all issues of Pascal News for that year.

We produce Pascal News as a means toward the end of promoting Pascal and

communicating news of events surroundlng Pascal to persons interested in

_Pascal. We are simply interested in the news ourselves and prefer to share

it through Pascal News. We desire to minimize paperwork, because we have

other work to do.

American Region (North and South America): Send $6.00 per year to the

address on the reverse side. International telephone: 1-404-252-2600.

Euro ean Region (Europe, North Africa, Western and Central Asia): Join
rough P G (UK Send £4.00 per year to: Pascal Users Group, c/o Computer

Studies Group, Mathematics Department, The University, Southampton S09 5NH,

United Kingdom; or pay by direct transfer into our Post Giro account

(28 513 4000); International telephone: 44-703-559122 x700.

Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS). Send

$A8.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of

Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania

7001, Australia. International telephone: 61-02-23 0561 x435

PUG(USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a

-service, and they reprint and distribute Pascal News using a proof copy and

mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

Please renew early (before August) and please write us a line or two to tell
us what you are doing with Pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a academic year (July 1 to June 30) means that we
eliminate many requests for backissues ahead of time, and we don't have to
reprint important information in every issue--especially about Pascal
implementations!

Issues 1 .. 8 (January, 1974 - May 1977) are out of print.

(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

Issues 9 .. 12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $10.00 and from PUG(AUS) all for $A10.

Issues 13 .. 16 are available from PUG(UK) all for £6; from PUG(AUS) all for
$A10; and from PUG(USA) all for $10.00.

Extra single copies of new issues (current academic year) are: $3.00 each
- PUG(USA); £2 each - PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm wide) form.

All letters will be printed unless they contain a request to the contrary.

PASCAL NEWS #17

Y POLICY,

—

EDITOR'S

HERE AND

R OOoOJoaaUN N

w N

17 APPLICAT
17
18
29

46
47
52

53 ARTICLES
54
57
59
60
62
63
65
66
68

71 OPEN FOR
83

85 IMPLEMEN
85
86
89
191

Jontributors to this iss

EDITOR
Here & There
Books & Articles

MARCH, 1988 INDEX

COUPONS, INDEX, ETC.
CONTRIBUTION

THERE WITH Pascal

Tidbits

Pascal in the news

Books

Book Review: Alagic & Arbib
Articles

Conferences and Seminars
ADA: an ISO report

Pascal in teaching

IONS

Introduction

REFERENCER -- a cross referencer for procedures
MAP -- a macro processor for Pascal

XREF -- a cross reference program

A string package - OMSI

A complex arithemetic package

A string package - U. of Witwaterstrand

"Conformant Arrays in Pascal" -- A.H.J. Sale I!l!note!l!
"Pascal Survey" -- Robert R. Ransom

"Converting an Application Program from OMSI to AAEC"

"Does Scope = Block in Pascal?" -- T.P. Baker

"A Note on Pascal Scopes" -- T.P. Baker

"Alternate Approach to Type Equivalence" - W.MacGregor
"Fixing Pascals I/0" -- R. Cichelli

"SIMPASCAL" -- J. Deminet

"Some Observations on Pascal and Personal Style"- Sale

UM FOR MEMBERS
Pascal Standards Progress Report

TATION NOTES

Editorial

Implementation Critiques
Validation Suite Reports
Checklists

ue (#17) were:

Rick Shaw
John Eisenberg
Rich Stevens

Applications Rich Cichelli, Andy Mickel

Standards Jim Miner, Tony Addyman
Implementation Notes Bob Dietrich

Administration Moe Ford, Kathy Ford, Jennie Sinclair

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write "as above" if the same)

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop-
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc-
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur-
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc-
uments, reference shall be made to the original copyright notice and its source.

Distribution charge: $50.00

Make checks payable to ANPA/RI in US dollars drawn on a US bank.
Remittance must accompany application. Mail request to:
Source Code Delivery Medium Specification: ANPA/RI
9-track, 800 bpi, NRZI, Odd Parity, 600' Magnetic Tape P.0. Box 598
Easton, Pa. 18042
() ANSI-Standard USA
Attn: R.J. Cichelli
a) Select character code set:

,() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.
()40 () 20 ()10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

Office use only
Signed
Date

Richard J. Cichelli
On behalf of A.H.J. Sale & R.A. Freak

PASCAL NEWS #17 MARCH, 1980 PAGE 1

Editor’s Contribution

GETTING STARTED

Let me start my first editorial by saying, "I can't believe how hard this job
is!!" My esteem for Andy Mickel has always been high, but after the last few
months, it has gone up astronomically! I don't know how one person had all
the time--there are so many things to do, and I have been lucky enough to have
alot of help.

My section editors have been very prompt (for the most part!) and have made
the job "do-able". And, I might add, PUG has hired some part-time clerical
help that is out of this world! To round it off, the switch to a commercial
printer (oh, the luxury of a university print shop) has been quite successful.

I could not ask for better service. Their prices are close to those we paid
in the past.

My thanks

must go to the membership, who have been so patient with me. This issue
represents a tremendous learning curve for me (and culture shock!). Things
will go smoother starting next issue.

NEXT ISSUE (#18) - SPECIAL!!

Speaking of next issue, we at PUG are pleased to announce that the next one
will be completely devoted to the ISO Draft Standard for Pascal. (See Jim
Miner's article this issue for a discussion of this and other items concerning
standards.)

We are currently preparing this document for reproduction; it will be out no
later than one month after this issue (#17).

ABOUT THIS ISSUE

WOW!! Is there alot of good stuff in this issue! Pascal has been on
everyone's tongue lately, so "Here and There" is chock full of "newsy"
information. We also have a large number of books and articles that have been
reviewed this quarter, as well as an excellent in-depth review of the text

Alagic and Arbib by one of our readers. (We could use more contributions such
as this.)

The "Articles" section is kicked off by lucid discussion of "Conformant Array
Parameters" authored by Arthur Sale (who else!). This article is highly
recommended for review by all readers because of its controversial, proposed
inclusion into the ISO standard.

There 1s no lack of contributions to the "Software Tools" section either.
Nearly one-quarter of the issue is devoted to publishing programs and
algorithms. This quarter many checklists are included in the "Implementation
Notes" section, as well as some contributions to ur new section, "Validation
Suite Reports".

A great deal of fine work went into this issue. We hope you like it.

|

Here and There With Pascal

TTTTTTT
T
T
T
T
T
T IDBITS

J. Mack Adams, Comp. Sci Dept., Box 3CU, New Mexico State University, Las
Cruces, NM 88001: '"We have added an assertional checking capability to UCSD
Pascal and have developed a debugging system based on assertional checking
and symbolic execution. A paper on the system will be presented at ACM
79..." (*¥79/05/14%)

Ron Barstad, P.0. Box 6000, B-118, Phoenix, AZ 85005: "The Pascal on the
(*USW Louisiana*) L68 (Multics) is only a subset. The L66 version from
Waterloo is a full blown batch and/or TSS version. (*79/09/14%)

Dr. Oddur Benediktsson, Science Institute, University of Iceland, Dunhaga 3,
Reykjavik: "We...are looking for a PASCAL compiler for...our PDP-11 RSX-11M
system and so far have found only the OMSI product which we find a bit on
the expensive side at $1500. We would also rather have the P-code type
compiler if available. Can you make any suggestions? (*78/11/23%)

Rick Boggs, Natiomnwide Insurance, One Nationwide Plaza, Columbus, OH 43216:
"Our problem is one of finding a Pascal implementation which matches our
operating environment: a large-scale IBM/AMDAHL center running MVS 3.7
and...both the TSO and VSPC interactive systems." (*79/10/10%)

Paul C. Boyd, PPG Industries, Box R, Elwin-Mt. Zion Rd., Mt. Zion, IL 62549:
"We are hoping to implement the OMSI PASCAL-1 package on a DEC
PDP-11/34...under RSX-11/M...to develop process control programs to run on a
network of DEC LSI-11/23 micros.... I would appreciate hearing from any OMSI
PASCAL-1 users with experience in digital control applicatioms."
(%79/09/27%)

Glenn A. Burklund, 3903 Carolyn Ave., Fairfax, VA 22031: "Have North Star
(UCSD) Pascal----it is miserable. Going Pascal/Z...for scientifc and
engineering applications. The funct. & proc. are th main features of
interest. It is virtually aimpossible to implement under Worth Star

Pascal. Unless it is practical to implement these calls easily, Pascal will
wither on the vine." (*79/10/09%)

John D. Bush, Minnesota Power & Light Co., 30 West Superior St., Duluth, MN
55802: "I have been trying to get programmers and DP Managers at MP&L
interested in Pascal. By finding compilers for our Prime and IBM machines, I
hope to give some of these people a chance to experiment with the language."
(*79/10/03%)

Jim Carlson, School of Dentistry, University of the Pacific, 2155 Webster
St., San Francisco CA 94115: "The School of Dentistry has recently acquired
an Omsi Pascal Compiler...configured to operate under RSX-11M and will be
installed on a PDP-11/34. We plan to use Pascal primarily for
administrative purposes, but it will also be available for uses in other
areas." (*79/05/22%)

M. B. Clausing, 5603 Fisher Dr., Dayton, OH 45424: "If the matter’s still at
issue, I vote not to affiliate with ACM. T see no particular advantage."
(*79/07/06%)

John Corliss, Loyola University of Chicago, 6525 N. Sheridan Road, Chicago,
IL 60026: "Loyola University...has acquired the Pascal compiler from the
University of Manitoba for academic instructional use...we are .
(*interested*) in acquiring PASCAL subroutine libraries that we could use in
our computer science classes.' (*79/05/14%)

Don R. Couch, 5100 Montreal Dr., San Jose, CA 95130: "I am a student in a
Cogswell College Pascal course, and use Pascal on a PDP-11/10 computer at
American Microsystems, Inc." (*no date*)

R. H. Fﬁank, Digital Consulting Corporation, P.0. Box 32505, San Jose, CA
95152: "Our company has just released a Pascal Compiler (P2 derivative) for
the popular CP/M microcomputer system." (*79/09/26%)

Jim Gagne, M.D., Datamed Research, 1433 Roscomare Rd., Los Angeles, CA
90024: "Who’s your medical applications editor (if any)? 1711 do it if you
need." (*79/05/30%)

Anton L. Gilbert, Information Sciences, U.S. Army White Sands Missile Range,
NM 88002: "I am a new Pascal users. It will be used in my research
group...on a PDP-11/70, PDP-11/35, a PDP-11/34 (* all under RSX-11M) and a
PDP-11/15 (RT-11). One of my employees...is especially interested in Pascal
in Image Processing Research." (*79/06/12%)

Ricardo 0. Giovannone, Box 3606, University Park Branch, Las Cruces, NM
88003: "I am a graduate student at New Mexico State University...using this
language since fall ‘78 and I really like it.... At the moment, I am working
in a project dealing with implementation of an Educational Data Base System
using Pascal as a host language. ...We hope to finish in this fall. We are
using UCSD Pascal Version I.4." (*79/08/20%)

Mark Gordon, Computer Business Systems, Box 421, Truro, Nova Scotia B2N 5C5:
"I am using a DEC PDP-11 under RSTS/E". (*¥79/05/23%)

Roedy Green, 1478 East 27th Avenue, Vancouver, British Columbia V5N 2W5:
"I’m loking after a computer acquisition for the provincial Electric and Gas
utility. I°m looking forward to using Pascal to implement our records & man
scheduling system. At present Burroughs 1800, DEC PDP-11/70, Tandem, Univac
1100, Cyber 170 are all potential winners. I am particularly interested in
Pascal on these machines." (*79/09/04%)

David L. Hamby, Combustion Engineering, INc., 1000 Prospect Hill Rd.,
Windsor, CT 06095: "Interests are real time process monitoring. Looking for
process support software in a machine independent high level language."
(*79/06/18%)

M. L. Harper, Oak Ridge National Labs, Bldg. 1505, Rm. 118, Oak Ridge, TN
37830: "I have pursued your references at JPL regarding a Pascal for ModComp
minicomputers and the prospects look promising." (*79/06/26%)

David C. E. Holmes, P.0. Box 1708, Grafton, VA 23692: Teacher of
micro-computer design, system design, and programming. owns 48K Z80 Altair
8800, CP/M, UCSD Pascal, and Ithica Intersystem Pascal/Z compiler.
(%79/10/29%)

Mike Hughes, P.O. Box 293, Rapid City, SD 57709: "I am currently about three
fourths of the way there on a business-oriented Pascal compiler for
second-generation BCD machines. The implementation is for the RCA 301, but
the problems are similar to the IBM 1401 and 1620, Burroughs B600, etc. I
would be interested in getting in touch with anyone else having such
Quixotic interests." (*no date*)

G. P. Janas, 4447 Buchanan, Warren, MI 48092: "I own an Apple][with two
disk drives. I have on order, since September, the Apple Language Card and
am awaiting same." (*79/10/18%)

[T# SMIN TYISYd

086T “HIYYW

39vd

-
1

Peter T. Jawbsen, Ceremain Microsystems, 759 Glen Canyon Rd., Santa Cruz, CA
95060: "I use both UCSD and OMSI Pascal." (*79/09/09%)

John W. Jensen, Jensen Farms, RR#1 Box 142, Everly, IA 51338: "I have been
working on computer programs for a complete feedlot management system for
about 4 years. The programs are written in RPG and run on an IBM System 34
which...I am losing access to.... I...am wiling to look at something in the
$10-15000 range not counting software...(* here follows a description of
hardware being considered *) Basic is the most popular language...but I'm
not convinced that Basic is the best language to program in. Pascal has
been called the software superstar. Yet it appears to me to be rather slow
in being accepted. I have seen very little commerical software available
(such as accounting packages, etc.)." (*79/10/01%)

Donald R. Kelley, 2451 Hingham Court, Woodbridge, VA 22192: "Just getting
started using Pascal - have been working with assembly and BASIC."
(%79/10/01%)

Wallace Kendall, 9002 Dunloggin Rd., Ellicott City, MD 21043: "I have an OSI
Challenger III and have been trying for some time to get Pascal for it.
Althought it has a 280 chip (as well as a 6502 and a 6800) OSI apparently
used a slightly different implementation, and the version used by most Z80
computers (I‘m told) doesn’t run on 0SI. HOwever, I‘m told that it will soon

be ready either for the 6502 or the 780 in OSI." (*79/05/07%)

Jack Laffe, 320 19th Ave. S., Minneapolis, MN 55454: "Re: machine dependent
implementations: remove NCR 200 implementation that is listed in News #9/10
p. 105. This has been replaced by an NCR 8400 implementation and will be
available February 1980. I will make more information available at that
time." (*79/08/07%)

W. A. Lane, Canadian Tire Corporation, Limited, Box 770, Station K, Toronto,
ONtario M4P 2V8: "We are a large retailing company in Canada with
approximately 315 stores country wide. We are presently implementing "point
of Sale" systems in these stores and are utilizing Datapoint, NCR and Amdahl
computers. We also have several other machines including IBM system 34°s,
IV Phase and Basic mini’s." (*79/08/22%)

James H. Lauterbach, Genesys Corporation, 223 Alexander Ave., Upper
Montclair, NJ 07043: "Genesys Corporation...(*wishes*) to feature “canned”
applications programs which are easily customized...hence, our development
system will probably be configured largely with C Basic and Pascal
capability in mind--especially Pascal. Our quandary, at present, revolves
arund the...relative merits of UCSD Pascal, the Per Brinch Hansen sequential
version, the Intersystems Pascal/Z, the Alpha Micro versionm, the new 6809
Motorola version, the soon to be released Data General Micro NOva version,
etc. etc. etc. Can you kindly bring some illumination to us?" (* no date %)

C. E. Leonard, 14008 S.E. Harrison, Portland, OR 97233: "I presently own an
Exidy Sorcerer (280) with 32K and want to implement Pascal to go with my one
year of Pascal studies at Portland Commuunity College." (*79/08/31%)

Jerry LeVan, Eastern Kentucky University, Richmond, KY 40475: "I have
extended Pascal-S with strings, scalars, graphics, execution profiler and
many features useful "in a teaching environment - runs under RSTS on a
PDP-11/70." (%*79/06/11%)

Robert C. Luckey, M.D., P.S., 1110 Gillmore Ave., Richland, WA 99352: "It is
with distress that I read in the truly excellent issue 13 of your (*Andy’ s*)
withdrawal from active lead position. You obviously have that combination
of talent to co-ordinate a complex development such as that of a new high
level computer language. None of the alternatives of fered to the present
arrangement at all compares with what we have now." (*¥79/03/26%)

Phong Thanh Ly, 6415 Prospect Terrace, Alexandria, VA 22310: "I am currently
using Pascal on a PDP-11 and am going to have a Pascal compiler for the
Honeywell Level-6 very soon."” (*no date*)

Gregory A. Marks, Institute for Social Research, University of Michigan,
SQR(A), MI 48106: "All I ever hear about UCSD Pascal is the good comments.

Where can I get the opposite viewpoints; the problem in their extensions and
implementation.'" (*79/06/29%)

Richard R. Martin, 634 Dallas Ave. #21, Grand Prairie, TX 75050: "I am
r?nning the UCSD Pascal on my Z80 system and am interested in keeping up
with other implementations. My use for Pascal is in writing a CAI system

with color graphics (RAMTEK). For a living, I manage a comput "
(*%79/08/27%) 8> 8 mputer store.

M. E. Mﬁrkovitz, Culp & Tanner, Inc., 585 Manzanita Suite 6, Chico, CA
95926: "I am trying to build up a Pascal scientific library and would like
to see if anyone else could lend me a hand.

P.S. Does the user’s group have
such a scientific library?" (*79/07/23%)

Sakari M. Mat?ila, Lokkalantie 18 B 43, SF-00330 Helsinki 33, Finland: "I am
a computer scientist at Technical Research Centre of Finland, EDP research

division. We have University of Minnesota Pascal 6000 release 3 on CDC and
some other on minis." (%79/07/07%)

Frank Monaco, 679 Lowell Drive, Marietta, GA 30060: "Keep up the good work."
(*79/03/09%)

Jerry Moore, Dunn, Moore & Associates, 2935 E. Broadway, Suite 201, Tuscon,
AZ 85716: "We are a systems house in Tucson working primarily with
Perkin-Elmer (Interdata) and Alpha Microsystems minicomputers. We have a
project slightly outside our normal sphere of influence, and...for which
Pascal is most desirable. (*The project is*) a hydrologic model of complex
irrigation systems for Saudi Arabian Naval base (* which *) must run on an
IBM 3032 in Saudi Arabia. Development will have to be done on DEC
system...unless I can find some IBM 370 time nearby. I would be very
appreciative if you would consider my plight briefly and forward any
suggestions." (*79/09/04%)

Hal Morris, Prindle and Patrick Architects:planners, 199 S. Fifth St.,
Columbus, OH 43215: "The company...is an architecture firm which has a PDP-
11/34 running RT-11 and TSX. Our applications are Accounting, Word
Processing, and some statistics and simulation.... My own impression is
that. C and Pascal are quite complementary, C being a better systems

language, and Pascal being better for many, or even most applications."
(*79/10/17%)

Gregory L. Nelson, Apt. 31, 2280 California St., Mountain View, CA 94040:
"Have implemented Swedish Pascal V5 and NBS Pascal V1.4d (a preliminary
version) under RSX-11M V3.1 on a PDP-11/70 system. Both Pascals lack

operating system linkages sufficient to consider them for systems
implementation." (*¥79/03/12%)

Neil Overton, Computer Systems and Services, Inc., Box 31407, Dallas, TX
75231: "I wanted an accounting package in Pascal or BASIC to be converted to
run on a TI 990/2 for a large non-chain restaurant." (*79/09/05%)

Craig Payne, Enertec, 19 Jenkins Ave., Lansdale, PA 19446: "We are actively
using Concurrent Pascal to write real time programs for the Z80. The
language has been extended to allow the writing of device drivers directly
in C.P.; the interpreter/kernel knows nothing about I/0." (*79/06/05%)

Raymond E. Penley, 3578F Kelly Circle, Bolling AFB, DC 20336: "Just
purchased Pascal/Z from Ithaca Intersystems. This is a Z80 compiler that
makes assembly code directly from the Pascal source. Will let you know more
when I get it running. I don’t have enough memory right now." (*79/09/24%)

Martin M. Peritsky, Bendix Corporation, P.0O. Drawer 831, Lewisburg, WV
24901: "I am available for membership on standardization committees, etc. I

am a member of IEEE and ISA. One of my specialties is compiler design."
(*79/10/30%)

LT# SMIN TYISYd

086T “HIYVW

39vd

<

Stephen A. Pifts, 305 Jarman Dr., Midwest City, OK 73110: "I have ordered
Apple Computer’s Pascal system for my Apple][." (%*79/08/24%)

Stephen M. Platt, 4060 Irving St., Philadelphia, PA 19104: "In my work (CS
grad student U. of P.) people are starting to prefer Pascal to FORTRAN for
reasons of portability(!) and ease of use. From my own view, it’s a choice
of hours ‘debugging 100 lines of FORTRAN or not having to debug 700-1000
lines of Pascal...you get the idea. Keep up the good work." (*79/09/13%)

Michael S. Plesher, RDI Box 258, Hoewell, NJ 08525: "I am currently using
the AAEC compiler on an IBM 370/168 (RCA, Cherry Hill NJ). They also have a
Pascal P4 compiler." (*79/08/05%)

Hardy J. Pottinger, EE Dept., Univ. of Missouri Rolla, Rolla, MO 65401: '"We
are using University of Lancaster’s implementation for Nova from Gamma Tech
under RDOS and DOS. Like it a lot. We will be experimenting with
microcomputer versions and concurrent Pascal during coming year."
(*79/08/01%)

Fred W. Powell, P.0. Box 2543, Staunton, VA 2240l: "I have been working
primarily on a TI 990/10 computer which has a TI supported Pascal compiler.
I expect to soon be using a TI 990/5 system which does not currently support
the Pascal compiler. if TI does not change that problem soon, I intend to
put the Pascal P compiler on that system. Thanks for your help and for the
good job you are doing with PUG." (*79/10/08%) John Purvis, Sperry Univac
Computer Systems, 55 City Centre Dr., Missisaugua, Ontario L5B 1M4: "I am a
software instructor with Sperry Univac in Toronto. Our Mini Computer
Operation is becoming involved with Pascal, so I am very interested in
finding out what is happening with a Pascal user group." (*79/08/24%)

Frederick A. Putnam, Joseph R. Mares Asst. Prof., Dept. of Chemical
Engineering, Massachusetts Institute of Technology, Cambrdige, MA 02139:
"Here in the Chemical Engineering Department, we have a Data General Eclipse
running (among other things) Gamma Technology’s Pascal." (*79/10/17%)

Holly Robinson, Winthrop Publishers, Inc., 17 Dunster St., Cambridge, MA
02138: "We are about to publish two titles which will be of considerable
interest to your PASCAL NEWS readership: PROGRAMMING FOR POETS: A GENTLE
INTRODUCTION USING PASCAL, by Conway & Archer; and A PRIMER ON PASCAL by the
same authors." (*79/10/03%)

Armando R. Rodriguez, P.0. Box 5771, Stanford, CA 94305: "I am in charge of
the compilers for Pascal at LOTS, SAIL, GSB, SUMEX, and SCORE at Stanford,
all of them DEC-10 or DEC-20. I am preparing a note on our improved version
of the Hamburg compiler for DEC-10 and DEC-20." (*79/06/21%)

Wayne Rosing, Digital Equipment Corp., TW-C03, 1925 Andover St., Tewksbury
MA 01876: "I was a 12/15/78 lost soul. I figured for $4/year you had gone
out of business or you folks had been eaten by a FORTRAN compiler. (I'm on
UCSD now but want to get a 32-bit Zurich version up on a 68000, demand
paging off an 8 inch Winchester hard disk.)" (*79/08/20%)

Louis V. Ruffino, Federal Systems Division, IBM, 18100 Frederick Pike,
Gaithersburg MD 20854: "Your pubs are excellent, but keep up the great
work.

I look forward to PUG just like BYTE!" (*79/07/09%)

Carl Sandin, 314 Shadow Creek Dr., Seabrook, TX 77586: "I have a SOL-20,
with North Star disks and Diablo printer. I‘m trying to get started in
North Star Pascal." (*¥79/08/06%)

Robert H. Scheer, CDP, Sheridan Oaks Cybernetics, 1915 Larkdale Dr.,
Glenview, IL 60025: "I have had some limited experience with Pascal on an
Alpha Micro system and expect to start a project on a North Star Horizon
microcomputer system before the year is over. I am also an instructor in
computer science at Northwestern University’s Division of Continuing
Education in Chicago. I am investigating the possiblity of using Pascal as
a means of teaching structured programming techniques." (*07/07/09%)

R. C. Shaw, The Grange, Spring Brank New Mills, Nr Stockport, Cheshire, SK12
4BH: "I would be interested in information on Pascal implementations on
either Argus 700 or Modular One machines." (*07/09/13%)

Thomas W. Sidle, Technical Staff, Scientific Calculations, Inc., 4245-B
Capitola, CA 95010: "We are interested in bringing up Pascal on VAX11/780,
Prime 400 (and larger), and IBM 370/148 (and larger) computers.'
(*07/07/24%)

Connie Jo Sillin, Kansas City Southern Industries, Inc. 114 W. llth St.,
Kansas City, MO 64105: "We at KCSI are interested in the Pascal programming
language and the compiler for Pascal. We now have the IBM 370/158 and 3032
(0S-VS2) soon to be 3033 (MVS).

T. R. Simonson, G.M. Simonson & T.R. Simonson Consulting Engineers, 612
Howard Street, San Francisco, CA 94105: "I realize that PUG may have simply
collapsed. I certainly hope not, for I have thoroughly enjoyed the
contact. I believe you stated that some cross compilers exist for creating
8080 or Z80 machine code. If you know of one for CDC machines I would
appreciate your jotting down the source." (*¥79/10/12%)

Lee L. C. Sorenson, 10226 Victoria Ave, Whittier, CA 90604: "I do not yet
have a large enough system for Pascal, but I hope to learn from your group
and to implement it in my system some day." (*79/06/07%)

T. J. Sullivan, 712 Rand Ave., Oakland, CA 94610: "I work with BART (*Bay
Area Rapid Transit*) and am a neophyte to Pascal but am highly interested in
all aspects of the language; particularly interested in programming for real
time process control." (*79/06/07%)

Kevin Talbot, 3029 127th Place S.E., Bellevue, WA 98005: "The system I use
is an HP3000 (Pascal P/3000 by Fraley, et. al.)" (*no date¥)

Ron Tenny, President, G.W. Tenny Co. Inc., 3721 Scottsville Rd., Box A,
Scottsville, NY 14546: "We are currently using a DEC 11/34 with 256KB
memory, eight terminals, two printers, and dual 20MB drives in a business
application environment. We want to implement Pascal under RSTS/E (CTS-500)
and -are looking for a good DBMS package to go with the Pascal code."

William W. Tunnicliffe, Bobst Graphic, INc., P.O. Box 462, Bohemia, NY
11716: "Thanks, volunteers!" (*79/08/20%)

Rex M. Venator, Major. USA, 12451 Skipper Circle, Woodbridge, VA 22192:
"While working on my Masters at Georgia Tech I became a Pascal “fanatic’ and
since then my enthusiasm has not diminished. I attempt to follow all aspets
of the language from the standardization efforts to Pascal’s.first
descendant ADA in DOD. I would most certainly like to join your group and
provide what assistance I can from an unofficial DOD perspective."
(*%79/05/16%) ’

Dick Wattson, 10 Dutton St. S., Manchester, NH 03104: "I surely would
appreciate info on PDP-11 compilers (RT-11 compatible)." (*79/10/31%)

Anna Watson, 3705 Delwood Drive, Panama City, FL 32407: "Don’t be
discouraged, Andy. You‘re putting out a really interesting publication. I
expect to use it as a reference tool later." (*79/08/12%)

LT# SMIN TYISYd

086T “434YU

h o 39vd

Sydney S. Weinstein, CDP, CCP, 170 Centennial Road, Warminster, PA 18974:
"I am now working for Fischer and Porter Company, and am developing data
communications software for local networks for them. We use C as our main
development language, but are also looking at Pascal especially as it
develops for the PDP-11 and 8086 computers. Pascal is the basis of our new
“experimental’ process control language.' (*79/08/19%)

Tom Westhoff, Willmark A.V.T.I., Box 1097, Willmar, MN 56201: "Are there any
Pascal implementations for Ohio Scientific Challenger II disk systems?"
(*79/09/07%)

Rodney E. Willard, M.D., Loma Linda Medical Center Clinical Laboratory, Loma
Linda, CA 92350: "I am trying to get a Z80 UCSD-CP/M system together and
running." (*no date%)

R. S. Wood, 260 Trafalgar Lane, Aiken, SC 29801: "I’'m a research analyst
working for the DuPont Company at the Savannah River Laboratory. My
interests in Pascal are both personal i.e., on a home micro and
professional. The company is looking into the possiblity of using a Pascal
based “black-box” between our big main frames and any arbitrary
microcomputer to make the micros look like all the other IBM-TSO terminals
in the shop." (*79/07/03%)

Max Wunderlich, c/o Textronix, Inc., P.O. Box 500, Beaverton, OR 97077:
"Both of us (*Max Wunderlich & Steve Jumonville*) are software engineers for
Tektronix, Inc. We are presently using OMSI Pascal for production testing
purposes on an LSI-11/2 with RT-11." (*no date*)

Richard Yensen, Ph.D., clinical Psychologist, 2403 Talbot Road, Baltimore,
MD 21216: "I am running UCSD Pascal version I.5 on a Heathkit H-11 Computer
with 32K words of 16 bit memory. The computer is a 16 bit machine."
(*79/07/01%)

Fred Zeise, Data Systems Design, 3130 Coronado Drive, Santa Clara CA: "We
are using ESI/OMSI Pascal and will be getting UCSD Pascal 1.5 soon."
(*79/05/07%)

PPPPPP

P P

P P

PPPPPP

P

P

P ASCAL IN THE NEWS

JOBS:

(* Note-these listings are intended primarily to show that there are indeed
openings for Pascal programmers "out there'. By the time you see these
listings, the jobs may well be filled. *)

Control Data Corporation, Communications Systems Division, 3285 E. Carpenter
Avenue, P.O. Box 4380-P, Anaheim, CA 92803: "Professional openings exist in
the areas of data communications netowrk, message switching and front-end
systems. Experienced candidates should be familiar in any of the

following: Assembly/Pascal/Algol languages, Microprocessors, Real Time
Systems, Communications protocols, test procedure development, test tool
development." Contact Jess Holguin. (*Computerworld 79/09/24%)

Hewlett-Packard, West 120 Century Road, Paramus, NJ 07652: "We have
opportunities both in Commercial and Scientific areas. Scientific
experience is desired using FORTRAN, Assembler, BASIC, Pascal, data base,
data communications with real-time operating systems. (*79/10/12%)

V.P. Personnel SS160, New York Times: 'Minimum of 1 year experience.
Programming experience with Pascal, PLM, P1l, ALGOL, or FORTRAN" V.P.
Personnel SS160 Times (*79/10/28%)

Perkin-Elmer Corporation, Main Avenue, NOrwalk, CT 06856: Looking for a
micro-computer programmer whose responsibilities include "developing high
level language (PL/1,Pascal) techniques to improve software development for
micro-computers. (%79/10/28%)

MANUFACTURERS® ADVERTISEMENTS:

Apple Computer Co.,10260 Bandley Drive, Cupertino, CA"95014: Various
advertisements for their version of UCSD Pascal

Columbia Data Products, Inc, 9050 Red Branch Road, Columbia, MD 21045:
Advertising "a unique family of computer systems, the Commander series"
which will run Pascal under CP/M. (* Computer Design, October 1979%)

Enertec, a company in Pennsylvania, has sent a flyer about their version of
concurrent Pascal, which runs on the HP3000, and has an interpreter/kernel
for a Z-80 Micro-computer. P-code for a given program is "about one-third
the size of the P-code from Brinch-Hansen’s concurrent Pascal compiler." On
the Z-80, "execution speed at 4Miz is fast enough to handle 1200 baud
terminals with all I/0 to the IN, OUT level written in Concurrent Pascal.
P-codes execute in 20 microseconds (push constant) to 500 microseconds
(divide, context switch)

Pertec Computer Corp, Chatsworth, CA advertises a ''Pascal Blaiser software
development system, intended for systems and real-time applications
programming," with 64K RAM, 1 megabyte of mass storage. The CPU directly
executes Pascal; price is $5995 in single-unit quantities. (*Mini-Micro
Systems October 1979%)

Rational Data Systems, 245 W 55th St., New York, NY 10019: has provided a
Pascal that is "compatible with the entire (*Data General*) line - from
Eclipse to microNova. All versions are source compatible and each can
cross-compile for any of the other systems. The AOS version is priced at
$3500." (*Computer Design, October 1979%)

Southwest Technical Products Corp., 219 W. Rhapsody, San Antonio, TX 78216
advertises the S/09 with MC6809 processor. "Both multiuser and
multitasking/multiuser operating systems are available for the S$/09. BASIC,
Pascal, and an Assembler are immediately available." Cost with 128K bytes
of RAM is $2995.

Sperry Univac Minicomputer OPerations, 2722 Michelson Dr., Irvine, CA 92713
has various advertisements for the Structured Programming System (SPS)
running under their SUMMIT operating system which supports a Pascal
compiler, debugger, program formatter, and concordance program. SPS also
includes a text editor and document formatter.

Stirling/Bekdorf, 4407 Parkwood, San Antonio, TX 78218, advertises
combination coding and CRT layout sheets to "speed software development and
documentation for Pascal programmers". Two pads of 50 cost $26.85 plus
$3.25 for handling.

Texas Instruments: Various advertisements for the DS990 Model which runs
Pascal on a system that stores "up to 4,600,000 characters using
double-sided, double-density diskette storage'". Also advertisements in
various places for their Microprocessor Pascal System with source editor,
compiler, host debugger, configurator, native-code generator, and run-time
support.

[T# SMIN TYISYd

086T “HIYYW

39vd

q

Three Rivers Computer Corp., 160 N. Craig St., Pittsburgh, PA. 15213: has a
stand-alone system that can take up to 1 Megabyte of RAM, with interactive
graphics (1024 lines on a 15-inch screen), and a speech output module. Mass
storage is provided by 12 Megabyte Winchester disk drive with a 24 Megabyte
disk option. '"The unit contains a 16-bit processor that operates with
P-Code, a high-level instruction language based on Pascal. The processor
can reportedly execute in excess of one million P-Codes per second. The
system’s memory has a 32-bit segmented virtual addressing mechanism," and
has 4K bytes of writable microstore as an option. (*Computerworld,
79/10/22%)

NEWSLETTERS & ARTICLES:

David A. Mundie has an article on the relative merits of Pascal vs. BASIC in
Recreational Computing, Sept-Oct 1979. It concludes with '"Most Pascal
lovers are deeply committed to portability and standardization. It is not
our fault that BASIC dialects have proliferated so wildly that there exists
no standard BASIC to compare with Pascal."

Arthur Sale passes on a note from Computing, 1 November 1979, which mentions
that the European Space Agency (ESA) will be using concurrent Pascal "to
program ESA’s latest venture into the simulation of satellite subsystems,
the Multiple Processor Reconfigurable Simulator."

The Big Byte (University of Calgary) notes in its September 1979 issue that
"the development of a Pascal compiler under Multics is near completion."

Early Warning Newsletter (University of Nebraska Computer Network) has a
"new release of Stanford Pascal. This version is a considerable improvement
over previous versions. For the most part, changes to the system are
enhancements and will not affect Pascal programs that ran under the previous
version." A change has been made to nested comments, giving a compiler
option to make constructs such as (* x:=y (* comment *) *) legal or produce
an error as the user desires. (* 79/09/13%)

Log On (Massey University Computer Centre), notes that.'We are to implement
a Pascal compiler" for a newly-acquired IBM Series/l minicomputer. 1In usage
statistics for the B6700, Pascal comes in second place with 10% of usage
(981 accesses) during June 1979. (*July 1979%)

ICSA Newsletter (Rice University, Houston TX), tells '"Pascal users don’t
despair. Although Pascal is currently not available at ICSA, we hope to
remedy the situation soon. Plans are underway to install Pascal 8000 this
fall." (*79/09/17%)

o fe ok A A A A Ao

BOOKS ABOUT PASCAL

Alagic, S. and Arbib, M. S., The Design of Well-structured and Correct Programs,
Springer-Verlag, 1978, 292 pages.

Bowles, K. L., Microcomputer Problem Solving Using Pascal, Springer-Verlag, 1977,
563 pages. .

Brinch Hansen, P., The Architecture of Concurrent Programs, Prentice-Hall, 1977.

Coleman, D., A Structured Programming Approach to Data, MacMillan Press, 1978,
222 pages.

Conway, R. W., Gries, D. and Zimmerman, E. C., A Primer on Pascal, Winthrop
Publishers Inc., -1976, 433 pages.

Findlay, B. and Watt, D., PASCAL: An Introduction to Methodical Programming,
Computer Science Press (UK Edition by Pitman International) 1978.

Grogono, P., Programming in Pascal, Addison-Wesley, 1978, 359 pages. Note:
Those persons using the first printing of this text may obtain a list of
corrections from: Barry Cornelius, Dept. of Computer Studies, University
of Hull, Hull, HU6 7RX, England.

Hartmann, A. C., A Concurrent Pascal Compiler for Minicomputers, Sprinter-vVerlag
Lecture Notes in Computer Science, No. 50, 1977.

Jensen, K. and Wirth, N., Pascal User Manual and Report, Springer-Verlag Lecture
Notes in Computer Science, No. 18, 2nd Edition, 1976, 167 pages.

Kieburtz, R. B., Structured Programming and Problem-Solving with Pascal, Prentice-
Hall Inc., 1978, 365 pages.

Rohl, J. S. and Barrett, H. J., Programming via Pascal, Cambridge University Press,

in press.

Schneider, G. M., Weingart, S. W., and Perlman, D. M., An Introduction to Program-
ming and Problem Solving with Pascal, Wiley and Sons, 1978, 394 pages.

Webster, C. A. G., Introduction to Pascal, Heyden, 1976, 129 pages.
Welsh, J. and Elder, J., Introduction to Pascal, Prentice-Hall Inc., in press.

Wilson, I. R. and Addyman, A. M., A Practical Introduction to Pascal, Springer-
Verlag, 1978, 148 pages.

Wirth, N., Systematic Programming: An Introduction, Prentice-Hall, 1973, 169
pages.

Wirth, N., Algorithms + Data Structures = Programs, Prentice-Hall, 1976, 366
pages.

LT# SMIN TYISYd

086T “HIYYW

9 39V

Alagicy Se.; Arvib, %. A. "The Design of Well=-Structured and
Correct Programs,' Springer-Verlayg, New York, 1975,

The major goal of this book is to present the tech-
niques of top-aown procram design and verification of
program correctness hand-in-hande. It thus aims to give
readers a new way of looking at algorithms and their
aesign, synthesizing ten years ot research in the
processs It provides many examples of program and
proof development with the aid of a tormal and informal
treatment of Hoare”s method ot invariantsSeess

The secondary yoal ot this book is to teach the reader
how to use the programming language Pascaleseess

From the Preface

This reviewer is a Pascal production programmer and this review
is presented in Light of that background. While many production
programmers, not tamiliar with the Pascal language, may find this
ook to be somewhat difficult at first reading, it is well worth
the trouble for the insights that it proviceses The production
programmer, consiocering the purchase of this book, should have a
well read copy of Jensen anc wirth [1] nhandy. This book”s advan-
tage 1is tnat it can raise the programming abilities of its care-
tful readerss The chapters and the topics chosen for inclusion
are:

Chapter Topic
1 Introducing Top=Dbown Design
2 Basic Compositions ot Actions and Their Proof Rules
3 Data Types
4 Developing Programs with Proofs of Correctness
5 Procevures anc fFunctions
6 Recursion
7 Programming with ana without Gotos

Chapter 2 contains an excellent introauction to logical formulas;
Chapter 3 contains an excellent primer on set theory (expanded
Later in Chapter 4). A bibliography, glossary and subject index
are included as are two appencices: the syntax of Pascal ana a
complete renumeration ot Pascal statement Proof Rules.
Typography is clean and uncluttered with extremely few typograph-
ical errors.

I have only two complaints regarding this booke The tirst, an
annpoyance, is the excessive use of reference numvers appendea to
examples. The authors also begin reference renumbering at the
section level rather than at the chapter level. This causes
unnecessary ditficulties to the reader who, ignoring the section
numoer, provided at the top of the odd-numbered pages, thumbs
tack to find a referenced example (in one casey, the reference is

to an example in a preceading section, therefore requiring a Lit-
tle detective work to determine exactly which example should be
reviewed!) 1 have tounc myselt completely baftled by an
“obviously erroneous” backwara reference, only to realize, atter
some consternation, that I had passed back into an earlier
section!

The secona, and perhaps more significant, complaint deals with
the ‘tormatt1ng of ano symbols used in Pascal program examples.
The indentation scheme is inconsistent. Thus, on page 89, we
tina:

ahile ¢

tor i = 1 to numstud go

pegin gr := gradge [i,jl1 ;
it or U tnen totgrace := totgrage + gr
else numgrades := numgrades - 1

end

In the tirst example, it is clear that the compound Statement is
within the scope, and theretore control, of the while; in the se®
ond it is not at all apparent that the compound statement is
under the control ot the for. Although this inconsistency may be
a symptom of & “gremlin typesetter”, it should be corrected in
1uture edgitions, A less disconcerting problem with the type-
setting of Pascal programs is the use of the non-Pascal symbols
’/\" V7, "7 ang TP, Since they are not a part of the
language, they should be replacea Gy gangsy gfy, DnQt ana °<>°,
respectively, in alt program fragments (they are acceptable with-
in the procf comments, since they have a Logical meaning).

This text has been used in at least one gracuate level course and
so contains material of interest to the more eruaite Pascal
progremmer, Even though the going may be rough at times, I
stonaly recommend tnis book to anyone seriously interested in
programming languages, and especially to Fascal programmers.,

Ge Go Gustafson, San Dieco (A

Reterence

11 Jen§en, Ke ano wirth, N, “PASCAL - User Manual and Report,"
feconu Edition (Corrected Printing), Springer=-vVerlag, New York,
1978,

LT# SMAN TYISYd

086T “HIYYW

[39vd

ARTICLES ABOUT PASCAL

Addyman, -A. M., et al., "A Draft Description of Pascal," Software - Practice
and Experience, Vol. 9, 381-424, (1979).

Atkinson, L. V.,"Pascal Scalars as State Indicators," Software - Practice and
Experience, Vol. 9, 427-431, (1979).

Ball, M. S., "Pascal 1100: "An Implementation of the Pascal Language for Univac
1100 Series Computers," NTIS: AD-A059 861/5WC, (1 Jul 78).

Barron, D., "On Programming Style, and Pascal," Computer Bulletin, 2,2, (Sep 79).
Bate, R. R. and D. S. Johnson, ;;nfting Pascal to Work," Electronics, (7 Jun 79).

Bishop, J. M., "On Publication Pascal," Software - Practice and Experience, Vol. 9,
711-717, (1979).

Bishop, J. M., "Implementing Strings in Pascal," Software - Practice and Experience,
Vol. 9, 779-788, (1979).

Bonyun, D. A. and Holt, R. C., "Euclid Compiler for PDP-11," NTIS: AD-A061 402/
4WC, (Apr 78).

Bonyun, D. A. and Holt, R. C., "Euclid Compiler for PDP-11," NTIS: AD-A061 406/
5WC, (Oct 78).

Brinch Hansen, P. and Hayden, C., "Microcomputer Comparison,"” Software - Practice and

Experience, Vol. 9, 211-217, (1979).

Clark, R. G., "Interactive Input in Pascal," ACM SIGPLAN Notices, (Feb 79).

Crider, J. E., "Structured Formatting of Pascal Programs," ACM SIGPLAN Notices,
(Nov 78).

Davis, H., "The Pascal Notebook," Interface Age, Chapter 1, (Jun 79).

Fletcher, D., Glass, R. L., Shillington, K., and Conrad, M., "Pascal Power,"
Datamation, (Jul 79).

Forsyth, C. H. and Howard, R. J., "Compilation and Pascal on the New Microproces-
sors," Byte, (Aug 78).

Gracida, J. C. and Stilwell, R. R., "NPS-Pascal. A Partial Implementation of
Pascal Language for a Microprocessor-based Computer System," NTIS: AD-AO61
040/2WC, (Jun 78).

Graef, N., Kretschmar, H., Loehr, K., Morawetz, B., "How to Design and Implement
Small Time-sharing Systems Using Concurrent Pascal," Software - Practice and
Experience, Vol. 9, 17-24, (1979).

Graham, S. L., Berkeley, U. C., Haley, C. B., and Joy W. N., "Practical LR Error
Recovery," ACM SIGPLAN Notices, (Aug 79).

Grogono, P., "On Layout, Identifiers and Semicolons in Pascal Programs," ACM
SIGPLAN Notices, (Apr 79).

Gustafson, G. G., "Some Practical Experiences Formatting Pascal Programs,”
ACM SIGPLAN Notices, (Sep 79).

Hansen, G. J., Shoults, G. A., and Cointment, J. D., "Construction of a Trans-
portable, Multi-pass Compiler for Extended Pascal,” ACM SIGPLAN Notices,
(Aug 79).

Heimbigner, D., "Writing Device Drivers in Concurrent Pascal," ACM SIGOPS, (Nov 78).

Holdsworth, D., "Pascal on Modestly-configured Microprocessor Systems," IUCC
Bulletin, 1, 1, (1979).

Holt, R. C., and Wortman, D. B., "A Model for Implementing Euclid Modules and
Type Templates," ACM SIGPLAN Notices, (Aug 79).

Joslin, D. A., "A Case for Acquiring Pascal," Software - Practice and Experience,
Vol. 9, 691-692, (1979).

LeBlanc, R. J., "Extensions to Pascal for Separate Compilation," ACM SIGPLAN
Notices, (Sep 78).

LeBlanc, R. J., and Fischer, C., "On Implementing Separate Compilation in Block-
Structured Languages," ACM SIGPLAN Notices, (Aug 79).

Luckham, D. C., and Suzuki, N., "Verification of Array, Record, and Pointer
Operations in Pascal," ACM Transactions on Programming Languages and Systems,
Vol. 1, 2, (Oct 79).

Marlin, C. D., "A Heap-based Implementation of the Programming Language Pascal,"
Software - Practice and Experience, Vol. 9, 101-119, (1979).

Narayana, K. T., Prasad, V. R., and Joseph, M., "Some Aspects of Concurrent
Programming in CCNPASCAL," Software - Practice and Experience, Vol. 9, 749-
770, (1979).

Natarajan, N., and Kisinha, M., "Language Issues in the Implementation of a Kernel,"
Software - Practice and Experience, Vol. 9, 771-778, (1979).

Nelson, P. A., "A Comparison of Pascal Intermediate Languages," ACM SIGPLAN Notices,
(Aug 79).

Nievergelt, J., et al., "XS-O: A Self-explanatory School Computer,” Dr. Dobb's
Journal of Computer Calisthenics and Orthodontia, No. 36, (Jun/Jul 79).

Parsons, R. G., "UCSD Pascal to CP/M File Transfer Program," Dr. Dobb's Journal of
Computer Calisthenics and Orthodontia, Box E. Menlo Park, CA 94025, No. 37,
(Aug 79).

Perkins, D. R., and Sites, R. L., "Machine-independent Pascal Code Optimization,"
ACM SIGPLAN Notices, (Aug 79).

Powell, M. S., "Experience of Transporting and Using the SOLO Operating System,"
Software -~ Practice and Experience, Vol. 9, 561-569, (1979).

LT# SMIN TYISVd

086T “HOYYW

8 39Yd

Pugh, J. and Simpson, D.,"Pascal Errors - Empirical Evidence," Computer Bulletin,
(Mar 79).

Ravenel, B. W., "Toward a Pascal Standard," IEEE Computer, (Apr 79).

Rudmik, A. and Lee, E. S., "Compiler Design for Efficient Code Generation and
Program Optimization," ACM SIGPLAN Notices, (Aug 79).

Sale, A., "SCOPE and PASCAL," ACM SIGPLAN Notices, (Sep 79).

Sale, A. H. J., "Strings and the Sequence Abstraction in Pascal," Software -
Practice and Experience, Vol. 9, 671-683, (1979).

Schauer, H., "MICROPASCAL - A Portable Language Processor for Microprogramming
Education," Euromicro Journal, 5, 89-92, (1979).

Schneider, G. M., "Pascal: An Overview," iEEE Computer, (Apr 79).
Shimasaki, M., et al., "A Pascal Program Analysis System and Profile of Pascal

Compilers," Proceedings of the Twelfth Hawaii International Conference on
System Sciences, (ED.) Fairley, R. E., (1979).

Silberschatz, A., "On the Safety of the IO Primitive in Concurrent Pascal,"
Computer Journal, Vol. 22, No. 2, (May 79).

Sites, R. L. and Perkins, D. R., "Universal P-Code Definition,"
NTIS: PB-292 082/5WC, (Jan 79).

Sites, R. L., "Machine-independent Register Allocation," ACM SIGPLAN Notices,
(Aug 79).

Smith, G. and Anderson, R., "LSI-1l Writable Control Store Enhancements to
U. C. S. D. Pascal," NTIS: UCIO-18046, (Oct 78).

Tanenbaum, A. S., "A Comparison of Pascal and ALGOL 68," Computer Journal, Vol. 21,
No. 4, (Nov 78).

Tanenbaum, A. S., "Implications of Structured Programming for Machine Architecture,”

Communications of the ACM, (Mar 78).

Wallace, B., "More on Interactive Input in Pascal,”" ACM SIGPLAN Notices, (Sep 79).

Watt, D. A., "An Extended Attribute Grammar for Pascal," ACM SIGPLAN Notices.

Wickman, K., "Pascal is a Natural," IEEE Spectrum, (Mar 79).

Wiggers, R. and Van De Riet, R. P., "Practice and Experience with BASIS: An
Interactive Programming System for Introductory Courses in Informatics,"
Software - Practice and Experience, Vol 9., 463-476, (1979).

Wirth, N., "MODULA-2," ETH Zurich, Institut fiir Informatik, No. 27, (Dec 78).

Wirth, N., "Reflections About Computer Science," Univ. of York (England) Dept.
of Computer Science, Report No. 19, (Jul 78).

Wirth, N., "A Collection of Pascal Programs," ETH Zurich, Institut fiir Informatik,
No. 33, (Jul 79).

PAGR A A G A A A A G A g

UCSD Workshop Proceedings

The Proceedings of the July 1978 UCSD Workshop on Pascal Extensions
(see Pascal News {13, pages 12..15) are now available for $25 from:

Institute for Information Systems
Mail Code C-021

University of California, San Diego
La Jolla, CA 93093

USA

Payment must acconmpany all orders.

§ Several persons involved with the Workshop expressed to me
their unhappiness with the Proceedings. Because of this,
I asked Ruth liiggins, who served on the Editorial Board, to
provide some background information. Ruth graciously agreed
to do so, and the following note is the result.
~Jim Miner

It X X X X X E X X R R R & & & & & 4

Comments on the Proceedings of the UCSD Workshop on System Prodramming Extensions
to the Pascal language.

The Proceedings of the UCSD Workshop on System Programming Extensions to the
Pascal Language are now available. I would 1ike to provide some information
for the benefit of those who did not attend the workshop but will obtain a
copy of the proceedings.

Near the end of the second week of the Workshop, it became clear that we would
not be able to approve the wording ¢f a final document within the time frame
of the Workshop. And yet, since the proceedings would be purported to
represent consensus of about 50 industry representatives, it was important
that they be accurate. To that end, the Workshop participants appointed an
Editorial Board whose function was to compile a draft of the proceedings for
UCSD to distribute to Workshop attendees for comment with respect to accuracy,
review those comments, attempt to edit the draft to reflect the comments and
prepare a final version. Preparation and distribution of copies was provided
by the Information Sciences Institute, UCSD.

LT# SMIN YISV

086T “HOUYW

6 39vd

The Editorial Board met in August, 1978, to prepare the draft. It was
distributed to Workshop members with the phrase "Not for distribution" on each
page. The comment period was to last until the end of October. The next
date when most of the Editorial Board could meet was January 11, 1979. At
that time, we went through each section of the proceedings and tried to
incorporate comments as fairly as possible. We then wrote instructions to
Gillian Ackland, the UCSD person who was doing the actual editing and
distribution of the document. We also wrote a cover letter to accompany the
proceedings. Copies of both of these are enclosed.

In late April or early May, I received a phone call from Gillian. She said she
had had a very busy winter quarter and had not been able to do anything at all

on the proceedings. However, in the Spring, she had gone on with the

work but had a few questions. Instructions 1 through 5 (see enclosed) were OK,
but why didn't the Editorial Board members want their names included except

in the Workshop attendees 1ist? I told her that we had discussed this at length
and agreed that we did not want our names to lend credibility or be

misconstrued as endorsement of the poor technical quality of the document.

She had another question regarding Section G (Proposed Experiments) on the
subsection on Type Secure External Compilation. This section had sparked
several, carefully written, lTong letters disputing the accuracy of what

claimed to be a representation of the part on which there had been agreement.
The Board could find no way to treat these fairly except to instruct Gillian

to include the letters also in that section. For some reason, Ken Bowles and
Terry Miller did not want to do that. Instead, they left the section as it was
in the first draft and added, as an editorial comment, the sentence "The
accuracy of this representation has been disputed." She asked me if that was
all right. I said that the Board had considered that approach but felt it
would be educationally important to include all of the disagreement to show

how pervasive the dispute was. Anything less would be misleading and, therefore,
unfair to the workshop participants. Gillian suggested that they rewrite the
section, incorporating the comments as best they could. I told her that the
rewritten section would have to be approved by, at Teast, those who had

disputed the first version. It seemed to me that the simplest, fairest, and
most professionally honest way to handle it was to make the whole technical
controversy available to the readers. In addition, it would help to demonstrate
how complicated the issue of external compilation really is.

When one receives a copy of the proceedings one can see that the cover letter

is not included; the words "not for distribution" do not appear &s per

the Board's instructions; and the subsection on Type Secure External Compilation
does not include any of the related technical controversy. Finally, a final

copy was not sent to the Editorial Board Chairman as requested in 8 (see gnc]osed).
I was told that the matter was handled in such a way in the interest of time,

that the whole thing had dragged on far too long and any further delay was

not justified compared to the desirability of getting it distributed. It is

not clear to me how the Board's instructions could have added noticeable

delay.

kst M H g

Ruth M. Higgins

Ene (Z)

Dear Gillian:

Jan, '79

Many thanks for getting your new version of Sections B thru F
to us. There was some concern about how certain comments had been

handled.

Having the updated version allowed us to check.

We have decided that, on the basis of responses from reviewers,
the proceedings do not merit publication. However, the Workshop
participants deserve an accurate report. Therefore, enclosed are the
required corrections.

Regarding overall format,

1.
2.

Replace Section A with the enclosed;

Edit Sections B through G as shown. Although you did not
send us your copy of G, the Board edited a copy from
the first draft to our complete satisfaction;

Delete Section H, Section I, and Appendix X;
Insert page numbers in the Table of Contents;

The Tist of participants should be in alphabetical order
by name of individual accompanied by affiliation, omitting
addresses and phone numbers.

The members of the Editorial Board do not wish to have their
names appear anywhere except among those of Workshop
participants.

Since the Board feels that these proceedings do not merit
wide distribution (even though persons requesting individual
copies should receive them at cost), the phrase NOT FOR
DISTRIBUTION will remain on each page.

Before printing, mail a final copy to Bruce Ravenel. He will
ascertain that editing instructions were understood correctly.

Thank you again for your tremendous efforts. We appreciate the
work you have done so far. Good Luck in this semester!

The Editorial Board

LT# SMIN TYISYd

086T “HOYYW

0T 39vd

To: The Workshop Participants
From: The Editorial Board
Subject: The Enclosed Proceedings

Date: January 11, 1979

This is the final version of the Proceedings to the UCSD Workshop
on System Programming Extensions to the Pascal language.

In light of review responses received, the Editorial Board
has decided that the quality of the contents of this document merits
distribution to the Workshop participants only. It does not warrant
publication. However, as prescribed in the general resolutions (Sec-
tion B), copies will be sent to a few others and will be available
at reproduction and mailing costs to any who request individual copies.
Recipients of this document are requested to restrain from distributing
it further.

The production of these Proceedings reflect the combined
efforts of many people. In particular, Gillian Ackland has performed
an outstanding, Herculean effort of document preparation and distribution

John Barr gave a presentation of his work on implementing NBS Pascal on LSI 11's
running RT-11. The compiler is completely selfsupporting now on such systems, and can
compile itself on a 28K word machine using the RT-11 SJ monitor. It takes approximately

10 minutes to compile the compiler on an LSI-11 using floppy disks (about 700 1ines/minute).

The compiler is not yet a full implementation of Standard Pascal, but we (the Pascal SIG)
are working on it.

William Donner and James Forster of TMI Systems gave interesting presentations on
the implementation of a financial message switch for EFT using a Pascal Multi-Process
Subsystem (PMPS-11), which they also implemented. They added concurrency facilities
(processes, monitors and semaphores) to OMSI Pascal strictly by adding to the runtime,
without extending the language. Fed up with MACRO, FORTRAN and RATFOR, they considered
using C, PL/I and Pascal as their implementation language. They chose Pascal for its
reliability, efficiency and good structure. 99% of their system is written in Pascal.

Isaac Nassi of Digital Equipment gave two overview presentations on Ada, which
were very well attended. The audience seemed somewhat overwhelmed by the complexity of
the language.

During the Pascal SIG Business Meeting a variety of topics was discussed. For
example, Leslie Klein gave an update on DEC's VAX Pascal compiler. The compiler has under-
gone field testing since June 79 at 15 sites, and should be ready for shipment to customers
very soon (approx. December 79). Although it is not a highly optimizing compiler, the
test sites were largely enthusiastic about it. One of the test site users reported
moving a large program from CDC Pascal to the VAX with only 3 changes to the program
required. DEC should start receiving some user feedback on the compiler by the next DECUS
Symposium.

Reid Brown of Digital spoke about the positive influence the Pascal SIG has had
on Digital with respect to Pascal.

LT# SMIAN TYISYd

under the guidance of Terry Miller and Ken Bowles. Ve wish to thank
them on behalf of the Workshop participants. Roy Touzeau (Pascal SIG Newsletter Editor) and John Barr also spoke on a number

of subjects concerning the SIG. Due to DECUS's new funding structure, each SIG may
soon have to charge a small annual subscription fee for its newsletter.

I spoke briefly about the status of the DECUS Pascal SIG library. The Fall 79
Pascal SIG library contains two versions of Seved Torstendahl's "Swedish" Pascq]:
version 6, which contains some new symbolic debugging facilities, and the version
modified by Gerry Pelletier to enable it to compile itself on a PDP11. There are also
versions of NBS Pascal for RSX, RSTS and RT-11 systems, as well as a number of other
utilities. PN readers who are interested in the Pascal SIG library should consult
recent editions of the DECUS Pascal SIG Newsletter for more details.

A Report on Pascal Activities at the
San Diego 1979 Fall DECUS U.S. Symposium

Bi1l Heidebrecht
TRW DSSG
One Space Park

The next DECUS U.S. Symposium will be held in Chicago on April 22-25, 1980, and
Redondo Beach, CA 90278

will again feature a number of interesting Pascal sessions.

The 197? Fall Digital Equipment Computer Users Society (DECUS) U.S. Symposium was
held in San Diego, California on December 10-13. Approximately 600 of the 2500 people
who preregistered indicated an interest in Pascal. The DECUS Pascal SIG, chaired by
Dr. John R. Barr of the University of Montana, has now grown to over 2000 members.

In tbe Pascal Implementation Workshop, John Barr, Brian Nelson and I spoke briefly
about the implementation of NBS Pascal under RSX, RT-11, RSTS and VAX/VMS systems.
Gerry Pelletier of Transport Canada spoke about his work in implementing a self compiling
version of Torstendahl's "Swedish" Pascal (V5.3) under RSX-11M.

LA E X X X E R X X XXX X K X X

In the Pascal Standards Report, Leslie Klein (DEC) and Barry Smith (Oregon Software)
reported on the current status of the ISO draft standard and progress within the X3J9-
IEEE Joint Pascal Committee. Barry gave a detailed discussion on conformant array para-
meters and answered a number of good questions from the audience. The quality of questions
asked showed the increasing level of sophistication of Pascal users in the DEC world.

086T “HIYYW

TT 39vd

~

From: UNIPREA

Telephone. 5317 12

Telegrams: UNISO - TORINO

I1s0/TC 97/SC 5 N

INTERNATIQONAL ORGANIZATION FOR STANDARDIZATION

IS0 ORGANISATION INTERNATIONALE DE NORMALISATION

1SO/TC 97/SC 5

VIA MONTEVECCHIO, 29
10128 - TORINO

PROGRAMMING LANGUAGES

Secretariat ANST (U,S.A.)

REPORT ON ADA

Ada is a programming language being produced by the
U.S. Department of Defense in cooperation with several foreign
and international organizations, The project has spanned five
years and is unique for its openness in all phases and the
resultant international contributions,

The first phase was an evolution of requirements from
the users by an itterative process which produced five versions,
increasingly refined, These documents were widly circulated
and major input was received from individuals outside the U.S,,
from the International Purdue Workshop such especially its LTPL-E
committee, and from experts of SC S/WG 1., Major support has been
contributed by the CEC and by the goverments of the U.K. and
Germany, We believe that this requirements phase was very valuable
in settling many of the questions that normally arise much later
in the development process, when they are much more difficult to
deal with, It might be said that, in the best procedure for
major projects, we are proceeding thorough definitive requirements,
followed by firm design, before coding,

After evaluation of several dozen existing languages
against these requirements, a new design was initiated, On the
basis of an international request for proposal, four contractors
were chosen to produce compg?ive prototypes.IAll started from

Pascal, although there is no intent that the resulting language
be closely related to Pascal, since their requirements were much

different.lThe initial designs from these four contractors were

reviewed by several hundred experts worldwide and a decision was
made to continue refinement of two of the designs, A year later,
these two designs were reviewed, again with international partici-
pation, The single design selected was that produced by Cii
Honeywell-Bull, That design, and a document giving rationale for
design decisions, are contained in N-499 and have been distributed
as the June 1979 issue of SIGPLAN Notices. A preface from the
Secretary of Defense requests international public comment.

553

. 2)
For any that do no have this document, a microfiche is available

this meeting.

Ada is a modern powerful computer programming language,
It has real-time features and has been under consideration by WG 1
for that reason, It is however targeted to a much wider audience,

Ada promotes modularity for the production of 1arge

systems, strong data typing for reliable, even provable, programming,

etc. A rigorous definition will allow control of the language

to make possible wide portability, It is our intent that there

be no subset or superset compilers and that a validation facility
be used to assure compliance,

Our economic analyses bBhow that even more benefit may
be attributed to the commonality resulting from exactly compatible
systems than that would be attributed to the technical improvements
postulated fram introduction of Ada,

Even greater benefits may accrue from the wide availabi-
lity if toolsa development environment, debugging systems, appli-
cations specific packages, etc, We term this the "environment"
of Ada, It is expected that the availability of this environment
to those who have compliant compilers will be an incentive for
such compliance,

A fundamental question is why does the DoD want to get
involved with national and international standardization, Ada
is being volved in 2 single place and dees not have the normal
standards problem of rationalization of divergent defdinitions and
implementations, Is not the DoD's control sufficient?

It may well be that the DoD has sufficient control in-
ternally and with its contractors, This control may be sufficient
to carry over to much of U.,S, industry., We are not confident that
this will be sufficient to cover small business, academic, and
foreign industry, We do, however, feel very strongly about the
benefits of commonality, specifically those benefits to the DoD
of universal commonality, the ability to pick up programs generated
elsewhere, transfer of technology, availability of compilers
generated elsewhere, and most significantly the increacend
availability of other sources on which we can draw for hardware
and software contractors, increacing competition,

For the advantages this will provide, the DoD is
prepared to relinguish some control to the proper authorities,
the matter is certainly up for negothtion, Ada Control Board will
be established to maintain and interpret the standard, It seems
reasonable to have representatives on this group from any nation
having a significant committment to the language., Consider that
group as the sponsoring body, presently the U.S. DoD with repre-
sentatives of U.K,, France and Germany.

LT# SMIN T¥ISYd

086T “HIYYW

ZT 39vd

It has certainly been true that the design of ADA, and
the entire project leading up to it, has been an inter-—
national effort, as I believe has been evidenced here

today. It would be a shame if this opportunity to assu-

%%gfa?géga? beginning, a worldwide single definition

In light of the resolution 6 intent, we consider that
we are now in a phase of simultaneous comment from lo-
cal, national, and international bodies. This was the
purpose of the WG 1 Resolution and the SC 5 circula-
tion of the documents (N 499, N 504, N 505).

Several hundred comments have already been received

and processed. The results of these comments and fur—
ther studies will result in a final design document in
May 1980 (with perhaps an early draft in January 1980).
At that time we will have a Military Standard, and, one
expects, a US Government Standard. I belive that at that
time, with your cooperation, we will have done the pPro-—
cessing appropriate in order for SC 5 to recommend Ada
for international standardization.

A STUDY OF SYNTAX ERRORS ENCOUNTERED
BY BEGINNING PASCAL PROGRAMMERS

Kirk Baird
David W. Embley
Department of Computer Science
University of Nebraska - Lincoln
Lincoln, NE 68588

1. Introduction

In the 1978-1979 school year, the Computer Science Department at the University of
Nebraska - Lincoln replaced FORTRAN with PASCAL as the introductory language for Compu-
ter Science majors. Since PASCAL was knowr to only a handful of upperclassmen and pro-
fessors, it was anticipated that beginning students would encounter difficulty finding
assistance with errors in their programs. The traditional sources of assistance, other
than the teaching assistant or professor (e.g. the debug consultant, fraternity files,
or the dorm-floor Comp. Sci. genius) would not be as helpful as before. In this situ-
ation, increased dependence on the compiler generated error messages was inevitable;
and even though PASCAL is designed for instructional use, its error diagnostics are
unfortunately not composed so that the beginning student can readily understand them.

Anticipating this difficulty, we decided to observe all first semester student programs
submitted for execution and note error message frequency, error persistence, and appar-
ent student reaction and catalogue actual causes for each error. The results of these
observations were to serve as a basis for improving PASCAL error messages or at least
to provide material for a reference document for beginning PASCAL programmers.

2. Data Collection

The students observed were Computer Science majors taking CS 155, Introduction to Com—

LT# SMIN TYISYd

086T "HOUYU

Department of Computer Science
Ferguson Hall puter Programming, using PASCAL. These students ran their PASCAL programs on an
Telephone (402) 472-2402 IBM 370/148 (later upgraded to a 158) using the September 1977 version of a PASCAL

The University of Nebraska-Lincoln Lincoln, Nebraska 68588

The University of Nebraska-Lincoln The University of Nebraska at Omaha

Pascal User's Group, c/o Andy Mickel
University Computer Center: 227 EX
208 SE Union Street

University of Minnesota

Minneapolis, MN 55455

Dear Andy,

Enclosed is an article for the Pascal News that should be of interest
to your readers. It describes some observations on error message fre-
quency, persistence, and apparent student reaction in an introductory
Pascal class for Computer Science majors and advocates the development
of better error diagnostics particularly for novice programmers.

Sincerely,
Quid 0

David W. Embley
Assistant Professor

The University of Nebraska Medical Center

compiler developed at Stanford University.

A special JCL package was developed for use in data-collection. Each time a student
ran a program, the output, including in-line error messages, was routed to disk. If
the program compiled without syntax errors, it was allowed to execute, and the output
was also sent to disk. A copy of all of the temporary disk output including program
listing and program output was placed in a permanent file and finally routed to the
printer and given to the student as if it were undisturbed. The permanent file was
occasionally reblocked and copied to tape.

The data collected in this manner eventually came to almost six million bytes of stor-
age. Elementary pattern matching techniques were used to locate and tabulate the
occurrences of syntax errors in this data. The results of this tabulation appear in
Appendix I.

On occasion, listings of random portions of the data were printed, and the syntax
errors, their cause, and their persistence were analyzed by hand and cataloged. Later
in the semester, printouts of unsuccessful runs were collected by the professor and
turned over for analysis and cataloging. The results of this tabulation are reported
in Appendix II.

¢l 39vd

3. Observations

Three general observations can be made from the data: 1) beginning students interpret
error messages too literally, 2) differences between standard PASCAL as described in
the text (Kieburtz, 78) and the version implemented confuse students, and 3) certain
error messages seem to be particularly ambiguous or misleading.

3.1 Literal Interpretation

Given little else, the beginning student is likely to depend unwittingly on the com-
piler generated error messages, at first taking them too literally. In the Stanford
compiler as implemented at UNL, an error arrow points to a particular column of a

line of code and is followed immediately by a list of error message numbers. The
premise is made that the arrow points to the exact position of the error described by
the error messages associated with the error numbers. In fact, the error arrow never
points to the exact position of the error. Most often, it is positioned just past the
error, usually pointing at the following keyword or identifier.

More than once a student forgot to put a semicolon at the end of the PROGRAM line and
found the error arrow pointing to the character following the succeeding keyword, VAR,
giving the message "SEMICOLON EXPECTED". The student would run the program a second
time with a semicolon after the keyword (i.e. VAR;), and the compiler would respond
with an error arrow pointing to the semicolon and the message 'SEMICOLON EXPECTED",
among others.

Other students inadvertently put a semicolon where a comma belongs in a WRITELN param-
eter list. The resulting error was ") EXPECTED" with the error arrow positioned near
the semicolon. Subsequent runs showed students putting right parentheses before, after,
and in place of the semicolon.

3.2 A Non-Standard Version

The second problem is the difference between the standard version of PASCAL and the ome
implemented at UNL. Since some characters were not available, the compiler expected
standard substitutions such as left-parentheses-vertical-bar for left-square-bracket
and the at-sign for up-arrow. These obvious distinctions caused relatively few prob-
lems.

Some other differences, however, were more detrimental. For example, in the September
1977 version of the Stanford compiler, the standard identifier MAXINT was not imple-
mented, nor was PAGE, and WRITELN and its counterparts had to be féllowed by paren-
theses in contrast to the syntax diagrams. Several students faithfully adhered to the
syntax diagrams and appropriately omitted the parentheses only to find their code blem-
ished with unwarranted syntax errors. The subsequent July 1978 version resolved the
problems with PAGE and WRITELN but disallowed SET OF CHAR. Hence students copying seg-
ments of programs from their text with such syntactically legal expressions as

CH IN (| A'.'2 l) or N >= SQRT (MAXINT) would get syntax errors.

3.3 Ambiguity

The third problem is the ambiguity of the error message itself. There are a handful of
often occurring ambiguous error messages including "ILLEGAL SYMBOL" and "ERROR IN VARI-
ABLE" and less often occurring messages such as "SEMICOLON EXPECTED" and "TYPE CONFLICT
OF OPERANDS". 1In fact, "ILLEGAL SYMBOL" and ERROR IN VARTABLE" accounted for almost
forty percent of all error messages observed.

One of the most often committed bluriders exemplifies. the novices reaction to these
ambiguous messages. Students would precede an ELSE with a semicolon; the resulting
error message, "ILLEGAL SYMBOL", pointed at the blank following the ELSE. Students
replaced this blank with almost anything, including another THEN, another semicolon, a
BEGIN, or a new line.

The reason ambiguous error messages hold such a majority of the total is twofold:

1) the very fact that the error message is unclear causes the student to repeat it,
sometimes with changes, and at times with the innocent hope that it will go away, and
2) many error messages have more than one cause and are unclear because the message
has to be general enough to cover all cases.

4. What can be done?

Ideally, the compiler should be modified, with the beginning student in mind, to give
more appropriate error messages. This modification should involve more than mere cos—
metic changes to the error messages. Most likely, additional messages are needed, and
a finer distinction among possible causes should be incorporated particularly for
ambiguous and high frequency error messages.

Not having developed the compiler ourselves, we were not in a position to make these
intricate alterations. We were, however, in a position to alter the error message
table so that an error message would include a listing of the most prevalent potential
sources of the error. Although this option was at our disposal, we rejected it for a
number of reasons. No beginning student could remain calm at seeing a hard-worked-on,
twenty-line PASCAL program intermingled with two hundred lines of error messages.
Moreover, there are certain to be sources of errors that have not been cataloged; a
given student assignment might generate a particular error message a thousand times
even though it never appeared during the semester observed. In addition, because
Stanford is regularly updating its compiler, such alterations would soon be made obso-
lete. For example, when a literal character string spanned two source lines on the
September 1977 version, the error message generated was '"IMPLEMENTATION RESTRICTION".
In subsequent versions, the error is ''STRING CONSTANT CANNOT EXCEED SOURCE LINE".

In view of these difficulties, it was thought best to provide a supplementary handout
that could be updated from time to time. This handout (Baird, 79) provides a list of
the most frequently encountered errors and their typical causes. Another advantage
of a handout over a cosmetic alteration of the syntax error table is that additional
documentation and helpful suggestions can also be included. In addition to syntax
errors, this handout documents differences between the UNL Stanford compiler and
standard PASCAL, describes runtime errors and what to do about them, lists compiler
options, and shows and explains a sample program listing.

We encourage PASCAL implementors to make the effort to. provide better error messages
particularly for novice programmers. We would be interested to hear of such projects
in progress and would eventually like to obtain a compiler with error messages that
are more palatable to the beginner.

References

1. Kieburtz, R. B., Structured Programming and Problem Solving with PASCAL,
Prentice Hall, 1978.

2. Baird, K., "Stanford PASCAL at UNL", Department of Computer Science,
University of Nebraska - Lincolm, 1979.

LT# SMIN TYISYd

086T “HOUYW

hT 39Yd

Appendix II
APPENDIX 1 The following error messages were found in the programs of beginning PASCAL students
and were catalogued as to what caused them. Only the more recurrent causes are listed;

t
These errors were tabulated from students running PASCAL as an introductory programming the obvious causes are not listed (e.g. error 14, ";" EXPECTED, does mot list missing

language, using the Stanford PASCAL compiler.
order of decreasing occurrence.

The actual error message is listed in
Errors of insignificant occurrence are omitted.

semicolon as a cause).

ERROR PERCENT
OCCURRENCE 2: IDENTIFIER EXPECTED
6 : ILLEGAL SYMBOL 27.0
104 : IDENTIFIER IS NOT DECLARED 18.2 a) extra comma in list
59 : ERROR IN VARIABLE 11.4 b) used TYPE as a variable name
13 : "END" EXPECTED 4.5 c) missing quote in character literal
S8 : ERROR IN FACTOR 04.3 d) previous error in declaration
%%%%% END OF FILE ENCOUNTERED ou.1 e) used zero instead of O in identifier
. 398 : IMPLEMENTATION RESTRICTION 03.6
134 : ILLEGRL TYPE CF OPERAND(S) 02.7
S1 :.":=" EYPRCTED 02.5 4: ")n EXPECTED
4 : "y EXPECTED 02.4
101 : IDENTIFIER DECLARED TWICE 02.1 a) => used instead of >=
S5 ¢ ;v EXPECTED 01.6
129 : TYPE CONFLICT OF OPERANDS 01.6
10 : ERROR IN TYPE 01.5 S: "% EXPECTED
103 : IDENTIFIER IS NOT OF APPROPIATE CLASS(sic) 01.5
18 : ERROK IN DECLARATION PART 01.4 {(note: in Stanford PASCRL, the colon is a viable
14 : »;n" EXPECTED 01.3 substitute for ..)
125 : ERROR IN TYPE OFP STANDARD FUNCTION PARAMETER 01.0
2 : IDENTIFIER EXPECTED 00.8 a) tried to use FILE as a variable name
144 : ILLEGAL TYPE OF EXPRESSION 00.7 b) CASE without END
21 : w%v" EXPECTED 00.6 c) TO used instead of ..
52 : “THEN" EXPECTED 00.6
116 : ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER 00.5
17 : "BEGIN" EXPECTED 00.4 6: ILLEGAL SYMBOL
53 : “UNTIL" EXPECTED 00.4
S4 : "DpO*" EXPECTED 00.4 a) previous statement missing a semicolon
124 : F-FORMAT IS FOR REAL TYPE ONLY cC.u b) semicolon precedes EISE
9 : "(" EXPECTED 00.3 c) misspelled keyword
140 : TYPE OF VARTIRAELE IS NOT A RECORD 00,3 d) => instead of >=
50 : ERROR IN CONSTANT 00.2 e) missing quote in character literal
126 : NUMBER OF PARRMETERS DOES NOT AGREE HITH DECLARATION 00.2 f) missing (in comment
145 : TYPE CONFLICT 00.2 g) = used instead of :=
8 : "OF" EXPECTED 00.1 h) extra END
16 : "=" EYXPECTED 0C.1 i) DO used instead of BEGIW
20 ¢ »," EXPECTED 00,1 j) TO used instead of ..
55 : "TO" OR "DOWNTO" EXPECTED 0C.1 k) = used instead cf : for RECCRD within RECORD
102 : LOW BOUND EXCEEDS HIGHBOUND 00.1 1) END missing on CASE statement
106 : NUMBER EXPECTED 00.1 m) comma missing in list
107 : INCOMPATIBLE SUBRANGE TYPES 00.1 n) spaces within an identifier
135 : INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION 0C.1 0) comma or colon used instead of a semicolon
142 : ILLEGAL PARAMETER SUBSTITUTION 00.1
143 : ILLEGAL TYPE OF LOOP CONTROL VARIABLE 00.1
150 : ASSIGNMENT TO STANDARD FUNCTION IS NCT ALLOWED 00.1 8: "OF" EXPECTED
167 : UNDECLARED LABEL 00.1
201 : ERROR IN REAL CONSTANT : DIGIT EXPECTED 00.1 a) tried to use FILE as a variable name
255 : TOO MANY ERRORS IN THIS SOURCE LINE 00.1 b) identifier declared twice

LT# SMIAN TYISYd

086T “HIYYW

ST 39vd

10: ERROR IN TYPE

a) tried to use TYPE as a variable name
b) colon used instead of equal sign

13: "END" EXPECTED

“a) forgot END for RECORD
b) used TYPE as a variable name within record

14: ";v EXPECTED

(note: this error only occurs within the declaration part

semicolohs missing within the block are f i
error 6: ILLEGAL SYMBOL) 1agged with

a) illegal characters within PROGRAM identi fi

1 ntif
b) foggot END for EECORD er
C) tried to redefine TYPE vithin a RECORD

16: “=w EXPECTED

a) colon used to instead of equal sign
b) tried to use TYPE as a variable within a RECCRD

18: ERROR IN DECLARATION PART

a) VARIABLES used instead of VAR

19: ERROR IN FIELD LIST

a) forgot END for RECORD

50: ERROR IN CONSTANT

a)
b)
<)

«++ used instead of ..
TO used instead of ..
variable list used as an array index

51: ":=n EYPECTED

2)
b)

= used instead of :=
misspelled name of procedure identifier

58: ERROR IN FACTOR

a)
b)
<)

=> used instead of >=
literal ch?racter used without guotes
real fraction constant used without leading zero

59: ERROR IN VARIABLE

a) missing quote

b) missing semicolon

c) missing comma in list

d) misspelled procedure identifier

e) := used instead of = in expression
f) misspelled AND

g) illegal charactrer in identifier

101: IDENTIFIER DECLARED TWICE
a) identifier used once as an element in a user defined
datatype and once as a simple variable

102: LOWBOUND EXCEEDS HIGHBOUND

a) TO used instead of ..

103: IDENTIFIER IS NOT OF APPROPRIATE CL2SS

a) semicolon missing before WRITE
b) previous error in declaration

c) no END for CASE statement

d) missing quote for literal string

104: IDENTIFIER IS NOT DECLARED
a) misspelled identifier
b) misspelled keyword
c) missing quote in character literal
d) imbedded blanks within an indentifier
116: ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER
a) tried to read a user defined datatype qualified record
identifier broken between source lines

125: ERROR IN TYPE OF STANDARD FUNCTION PARAMETER

a) passed integer to TRUNC

129: TYPE CONFLICT OF OPERANDS

a) integer assigned a real result

b) misspelled identifier

c) / used instead of DIV

d) literal character string not the same size as
ARRAY OF CHAR it is assigned to

LT# SMIN TYISYd

086T “HOUYHW

9T 39vd

1342

136:

138:

139:

140:

1432

144

145:

147

152:

156:

ILLEGAL TYPE OF OPERAND(S)

a) => used instead of >=
b) previous error i declaration

SET ELEMENT MUST BE SCALAR OR SUBRANGE

a) set written inside square brackets
€.g. X : SET CF BOOLEAN; ... X 1)

TYPE OF VARIABLE IS NOT AN ARRRY

a) = used instead of := when assigning an array

INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION

a) previous error in declaration

TYPE OF VARIABLE IS NOT A RECORD

a) previous error in declaration

ILLEGAL TYPE OF LCCP CONTROL VARIZBLE

a) previous error in declaration

ILLEGAL TYPE OF EXPRESSION

a) := used instead of =

TYPE CONFLICT

a) previous error in declaration

LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION

a) no END for CASE statement

NO SUCH FIELD IN THIS RECORD

a) misspelled field

b) previous error in declaration
MULTIPLY DEFINED CASE LRBEL

a) no END for CASE statement

b) missing quote within CASE statement
c) ELSE preceded by semicolon in CASE statement

255: TOO MANY ERRORS IN THIS SOURCE LINE #
(note: the compiler only lists the first nine syntax
errors of a source line)
398: IMPLEMENTATION RESTRICTION
a) WRITELN (a record)

b) literal character string > 64 characters
c) SETs OF CHAR are disallowed on the compiler

LI OO0 00O

Applications

AYLT - As You Like It

. Production programming in Pascal requires a number of source code manipulation tools.
With them appropriate application specific syntactic sugar and common multi-program pro-
cedure and data structure definitions can be managed. Doug Comer's MAP is such a pro-
gram.

Tram's complex a(ithmetic routines and Judy Bishop's/Arthur Sale's string routines
are.exampIes of typical library source utilities. Barry Smith also sent in a small
string package. Take your pick. After all, with Pascal you can have it AYLI.

CORRECTIONS

A Qlass of Easily ... - Pascal News #15
in example #3 change
"= gt to MY = om

LT# SMIN T9ISYd

06T “HIYYW

39vd

A

Applications

$-5 "ID2ID" (See PN 15, September 1979, page 31.)

Jim Miner spotted two typos in the published version of ID2ID. He also provided code to
improve error processing by handling unclosed strings correctly as well as an unexpected
EOF inside comments. = Andy Mickel

Correct typographical errors:

Replace line 172 by:
if P27.Bal = HigherRight then P17.Bal := Higherleft

Replace line 314 by:
ImportantChars := LettersAndDigits + [“(", “{", "“"’];

Improve error processing:

Replace line 3 by:
* James F. Miner 79/06/01, 79/09/30.

Insert after line 275:

label
1 { TO ESCAPE EOF INSIDE OF A COMMENT };

Replace lines 338 and 339 by:
“in source program.’)
else begin Write(Target, Source™); Get (Source) end

Insert after line 345:
Write(Target, Source™); Get (Source);

Delete line 347.

Replace lines 350, 351, and 352 by:
if EOLn(Source) then
begin WriteLn(Target); ReadLn(Source);
if EOF(Source) then goto 1 { EXIT SCAN }
end
else begin Write(Target, Source™); Get(Source) end

Replace lines 362, 363, and 364 by:
if EOLn(Source) then .
begin WriteLn(Target); ReadLn(Source);
if EOF(Source) then goto 1 { EXIT SCAN }
end
else begin Write(Target, Source™); Get(Source) end

Replace line 372 by:
end;
1: { COME FROM EOF INSIDE OF COMMENT }

LA R 2 & X R X X XX X X X X X X

L. INTRODUCTION

The Referencer program is a software tool intended to assist programmers in
finding their way around Pascal program listings of non-trivial size. In
keeping with a basic philosophy that software tools should have distinct
and clear purposes (as indeed most craftsmen desire), the function of
Referencer has been defined as providing a compact summary of
procedure-headings in a program, and a table of calls made by each
procedure. It thus provides information on the first-order procedural
interfaces.

The products of Referencer may serve also as an adjunct to a full cross-
reference, because in presenting less information Referencer produces a
more convenient summary. Additionally, for those people who wish to change
the syntax of Pascal to require repetition of a procedure-heading at the
occurrence of the block of a forward-declared procedure, it will serve as a
reminder that language changes are not the only answer to every problem.

2. USE OF REFERENCER

Version S-02,.01 of Referencer, the distribution version, has no options to
be set. It reads from the input file, expecting to find a complete Pascal
program on this textfile. Although the results with syntactically incorrect
programs are not guaranteed, Referencer is not sensitive to most flaws. It
cares about procedure, function, and program headings, and about proper
matching of begins and cases with ends in the statement-parts.

The two tables are produced on the file output. Referencer does not try to
format ‘the headings to fit them into a device-line width; it leaves them
pretty much as they were entered into the program, except for indentation
alignment. The first table thus benefits from a wide print-line. The
second table has a constant in the program which controls its width, and
the distributed version requires 132 characters of print positions.

Thus, use of Referencer involves simply executing it, with the attachment
of the input file to some program text, and the direction of the output
file to some suitable printing device,

3. LEXICAL STRUCTURE TABLE

The first table (see Appendix) displays the lexical structure and the pro-
cedure headings. (The term procedure means procedure, function, or program
in ‘this documentation unless otherwise stated.) As the program is read,
each heading is printed out with the line-numbers of the lines in which it
oceurs, The text is indented on the first 1line so as to display the

LT# SMIN YISV

086T “HIYYMW

8T 39Yd

lexical nesting. Subsequent lines are .adjusted left or right so as to
maintain their relative position with respect to this ‘'mother' 1line. On
rare occasions it may not be possible to achieve this adjustment if there
are insufficient leading spaces to delete on the dependent lines, and then
the display will suffer.

In this context, the 'procedure heading' is taken to mean all the text
between and including the opening reserved word of the heading, and the
semicolon that separates it from the text that follows. What will be
printed is everything contained on the lines that contain this heading.
While this definition of procedure heading is not the one in the draft Pas-
cal Standard, it is a pragmatic convenience to consider it thus rather than
as the syntactic construct.

The prime use of this table is in understanding programs; it documents the
interfaces to each procedure, their lexical nesting, and where the headings
are-located.

4 HE =STRUCT. TAB|

The second table is produced after the program has been scanned completely,
and -is the result of examining the internal data. For each procedure
listed in alphabetical order, the table holds:

- The line-number of the line on which its heading starts.
- Unless it was external or formal (and had no corresponding block),

the line-number of +the begin that starts the statement-part (the
body) . h

In the Notes column, the characters 'ext' are printed if the pro-
cedure has an ‘external body (declared with a directive other than
forward), and the characters 'fml' are printed if it is a formal pro-
cedural or functional parameter. If a number appears, the procedure
has been declared forward and this is the line-number of the 1line
where the block of the procedure begins; the second part of the two-
part declaration.

1

A list of all user-declared procedures immediately called by this
procedure., In other words, their call is contained in the
statement-part. The list is in order of occurrence in the text; a
procedure is not listed more than once if it is called more often.

This table may be useful in finding the components of a procedure as they
are squashed into different places in the listing by the flattening effects
of syntax., It may also be useful in seeing the inter-dependencies of the
procedures of the program.

5. LIMITATIONS

As mentioned before, the behaviour of Referencer when presented with
incorrect Pascal programs is not guaranteed. However, it has been the
intention that it be fairly robust, and there are not too many flaws that

will cause it to fail. The most critical features, and therefore those
likely to cause failure if not correct are the general structure of the
procedure heading (reserved word followed by name with optional parameter-
list with balanced parentheses followed by semicolon and either reserved
word or directive), and the correct matching of end with each hegin or case
in each statement-part (since this information is used to detect the end of
a procedure).

If an error is explicitly detected, and Referencer has very few explicit
error checks and minimal error-recovery, a message is printed out that
looks 1like this:

FATAL ERROR - No identifier after prog/proc/func - AT FOLLOWING LINE
procedure (t : TransactionType);

The line of text printed is where the program was when it got into trouble;
like all diagnoses this does not guarantee that the correct parentage is
ascribed to the error. Processing may continue despite the fatal error for
a while, but the second table will not be produced.

Referencer is believed to accept the full Pascal language, as described in
the draft proposal submitted to ISO, and to process it correctly.

RTABILITY

It is believed that Referencer uses only Standard Pascal features according
to the draft proposal submitted to ISO.

It should be relatively easy to transfer it to other Pascal processors. It
does not use packing, except for pseudo-strings of characters. Neither
does it use dispose, though a possible usage is marked in the program. The
small amount of data stored does not warrant their use if it might imperil
portability. It requires the use of small sets of at least set of 0..15,
and a set of char., Those who have not a set of char available can fairly
easily program around it, and complain to their Pascal suppliers. The
names are stored internally in a canonic letter-case (lower-case in Version
S-02.01), with a set indicating those to be transformed on output. This
strategy should enable users to modify it to run even on CDC's 6+6 bit
lower-case system, and on one-case systems, The program implements the
Pascal Standard's attitude towards letter-case.

SYSTEM NOTES AND MOD

{.1 PARAMETERIZED CONSTANTS

The heading of the program contains information on altering:

- The significance limit of identifiers (currently 16 characters).
This should not be reduced below 10 as it will be difficult to dis-
tinguish identifiers and reserved words.

LT# SMAN TYISYd

086T “HIYYW

6T 39Yd

- The difference between upper-case and lower-case letters., EBCDIC
users will probably need to change only this single constant.

- The line width for table 2, which automatically affects the number of
columns of called procedure names. The distributed version has this
set at 132, which allows 5 columns of 16-character names across the
page. Setting it to 54, which allows a single column, is an useful
variation.

- The number of indentation spaces per level.

2 T T

Procedure information is held in an 'Entry' record, each of which is linked
into two binary trees by alphabetical order of name (ignoring letter-case).
Each 'Entry' record contains a linked list of 'UsageCell's which point to
procedures called from that procedure. There is also a lexical stack
display, composed of 'StackCell's. Similarly, these point to the currently
nested procedures during the first phase of processing. Each stach cell
also contains a root pointer which holds a "scope-tree" which contains all
the names declared at this level. A single "super-tree" contains all the
procedure names. The scope-trees are traversed during searching for names,
and the supertree is used to produce the final table.

The final tables are capable of further interpretation which has not been
done here in the interests of simplicity of the resulting software tool.
For example, recursivity may be deduced from the data, and small modifica-
tions would allow the keeping of call-frequency counts.

As mentioned earlier, each name is separated into a case-independent com-
ponent and a solely-case component for storage. The identifiers are recon-
structed at the time of display. In the case where not all occurrences of
an identifier have the same visual representation, Referencer will thus
still recognize them as the same, and will use the first occurrence as the
display form. Referencer could easily check the identity of such forms,
but any error messages would spoil the tables and it has not been done in
line with the philosophy that each tool has a particular purpose.
General-purpose tools are often such compromises that they are successful
at none of their tasks...

1.3 EFFICIENCY

As might be expected, Referencer spends most of its time in NextCh, NextTo-
ken, ReadIldent, IgnoreComment and FindNode. As a guide, the following
information was collected while.Referencer processed its own text. The
counts wunder the "Statements" column are the maximum statement counts for
any statement within the procedure body. All counts have been rounded and
depend to some extent on the use of spaces and tabs in the source file.

Procedure Calls Statements
NextCh 30800 30800
NextToken 2600 8700
ReadIdent 1600 9000
FindNode 3800 4500
IgnoreComment 102 13500

e e cee

The space usage of Referencer is very small, except perhaps for the program
itself.

On Berkeley Pascal running under UNIX on a PDP-11/34, processing Referencer
by itself requires about 96 seconds of processor time. This is about 10.6
lines per second. The code occupies about 9,000 bytes of storage. Berke-
ley Pascal 1is an interpretive system intended for student users, and is
therefore rather slow in comparison with compilers with native code genera-
tion.

8 ERROR _REPORTI]

If any errors in processing Standard Pascal programs are detected, please
write to the author at the following address with the exact details. Prob-
lems with processing incorrect or non-Standard programs are not interest-
ing.

Prof A.H.J.Sale

Department of Information Science
University of Tasmania

Box 252C, G.P.0. Hobart

Tasmania 7001

Any experiences with the portability of this tool are also welcomed. A
Technical Report on its design and structure is in preparation.

HISTO

This program grew out of the proper haunts of good ideas (the coffee-room)
and several discussions of what one would 1like from such a tool.
A.J.Currie, at the University of Southampton, produced the first prototype
program of 231 lines. Based on this experience and the problems in accept-
ing the full Pascal language, A.H.J.Sale (on leave from the University of
Tasmania) wrote the current version of Jjust over 1000 lines. The resulting
program is now about 20% slower than the prototype, but it is believed to
be a more modifiable and a correct tool.

The current program was written in 4 days. It does not fit into any
integrated system of software tools but has been designed with the basic
view that software tools should be plentiful, correct, portable, flexible,
and single-purpose. All attributes are equally important.

thr Sl
WA A A AR AN A A Ag

LT# SMIN TYISVd

086T “HIYYW

07 39%

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
oouy
0045
0046
oou7
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065

program Referencer(input,output);
{-

PASCAL PROCEDURAL CROSS-REFERENCER
(e) Copyright 1979 A.H.J.Sale, Southampton, England.

DEVELOPMENT

This program is a software tool developed from a prototype by
A.J.Currie at the University of Southampton, England. The proto-
type of 231 lines of source text was used firstly as a basis for
extensions, and then rewritten to assure correctness by
A.H.J.Sale, on leave from the University of Tasmania and then
also at the University of Southampton. The current version was
stabilized at 1979 December 4; the development time being es-
timated at 4 man-days from prototype to production.

PURPOSE

The program reads Pascal source programs and produces two tables
as output. These tables are procedural documentation and cross-
references. One documents all procedure or function headings in
a format that illustrates 1lexical nesting. The other tables
gives the locations of heading, block, and body for each pro-
cedure and function, and what procedures and functions it immedi-
ately calls.

There is a User Manual for this program; if it has not been pro-
vided with your installation write to:

Department of Information Science

University of Tasmania

P.0.Box 252C, G.P.O. Hobart

Tasmania 7001
and ask for the Technical Report on Referencer, if it 1is still
available. The program is written to be portable and is believed
to be in Standard Pascal.

Permission is granted to copy this program, store it in a comput-
er system, and distribute it, provided that this header comment
is retained in all copies.

PROGRAM ASSERTIONS

Pre-Assertion P1:
"The file input contains a representation of a correct
Standard Pascal program, in the ISO Reference form."

Post-assertion P2:
P1 and "the file output contains a representation of the
two tables described above, which correctly describe facts
about the program."

e e e o

const
{ This constant is the number of significant characters kept in
the identifier entries. It can readily be changed. It is not
advised that it be reduced below 10 (reserved words get to 9). }
SigCharLimit = 16;

{ This must always be (SigCharLimit - 1), It is used simply to
reduce the set range to have a lower bound of 0, not 1. }

o e e e e e e e e ———— e e e . e e e ——— o o

- = —— = e e e

0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
o104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129

type

SetLimit = 15;
{ Thi§ constant is used to convert upper-case letters to lower-case
and vice-versa. It should be equal to ord('a') - ord('A'). }
UCLCdisplacement = 32;
{ This constant determines the size of the input line buffer,
The maximum acceptable input line is one smaller because a sentinel
space is appended to every line. }
LineLimit = 200;
{ This constant determines the maximum width of the printing of the
second cross-reference table. The program deduces how many names
will fit on a line. }
LineWidth = 132;
{ This determines the indentation of the lex-levels. }
Indentation = U4;
{ These constants are used for the sketchy syntax analysis.
They are collected here so that their lengths may be altered if
SigCharLimit is altered. }
Sprogram = 'program '
Sprocedure = 'procedure \H
Sfunction = 'function b
Slabel = 'label '
Sconst = 'const '3
Stype = 'type 'S
Svar = 'var '
Sbegin = 'begin A
Scase = 'case '
Send = 'end '
Sforward = 'forward A
Spaces = ! '
Natural = 0..maxint;
Positive = 1..maxint;
SixChars = packed array[1..6] of char;
SigCharRange = 1..SigCharLimit;
SetRange = 0..SetlLimit;
PseudoString = packed array [SigCharRange] of char;
StringCases = set of SetRange;
LineSize = 1..Linelimit;
LineIndex = 0..LineLimit;
SetOfChar = set of char;
ProcKind = (FwdHalf,Al1Fwd,Shortform,Formal,Outside,NotProc);
PtrToEntry = T Entry;
ListOfUsages = | UsageCell;
PtrToStackCell = | StackCell;
TokenType = (OtherSy,NameSy,LParenSy, RParenSy, ColonSy,
SemiColSy,PeriodSy,AssignSy, SubRangeSy);
{ This type represents a procedure or function identifier found

LT# SMIN TYISYd

086T “HOYYW

12 39Yd

0194

0130 during processing of a program. The fields are used as follows: 0195 token : TokenType;
0131 - procname & caseset = representation of name 0196
0132 - linenumber = where heading starts 0197 symbol : PseudoString;
0133 - startofbody = where begin of statement-part starts 0198 symbolcase : StringCases;
0134 - forwardblock = where forward-declared block starts 0199
0135 - status = kind or status of name 0200 savesymbol : PseudoString;
0136 - left,right = subtrees of the scope-level tree 0201
0137 - before, after = subtrees of the supertree 0202 line : array[LineSize] of char;
0138 - calls = a list of the procedures this calls 0203
0139 - localtree = the scope tree for the interior 0204 superroot : PtrToEntry;
0140 1) 0205
0141 Entry = 0206 stack : PtrToStackCell;
0142 record 0207
0143 procname : PseudoString; 0208 { The remaining variables are pseudo-constants., }
0144 caseset : StringCases; 0209 alphabet : SetOfChar;
0145 linenumber :. Natural; 0210 alphanums : SetOfChar;
0146 startofbody : Natural; 0211 uppercase : SetOfChar;
0147 left,right : PtrToEntry; 0212 digits : SetOfChar;
0148 before,after : PtrToEntry; 0213 usefulchars : SetOfChar;
0149 calls : ListOfUsages; 0214
0150 localtree : PtrToEntry; 0215 namesperline : Positive;
0151 case status: ProcKind of . 0216
0152 FwdHalf,Shortform,Formal,Outside,NotProc: 0217 procedure Printline;
0153 (OH 0218 var
0154 Al1Fwd: 0219 i : LineSize;
0155 (forwardblock: Natural) 0220 begin
0156 end; 0221 write(output, lineno:5, ' ');
0157 0222 i =13
0158 { This type records an instance of an activation of a procedure or 0223 { Is this the first time in a run or not? }
0159 function. The next pointers maintain an alphabetically ordered 0224 if adjustment = First then begin
0160 list; the what pointer points to the name of the activated code. } 0225 { Ignore any leading spaces there happen to be. }
0161 UsageCell = 0226 while (i < total) and (line[il = ' ') do
0162 record 0227 i := suce(i);
0163 what: PtrToEntry; 0228 { Compute the adjustment needed for other lines. }
0164 next: ListOfUsages 0229 movement := (level ¥ Indentation) - (i - 1);
0165 end; 0230 ad justment := Other;
0166 0231 { Insert any necessary indentation }
0167 { This type is used to construct a stack which holds the current 0232 if level > 0 then
0168 lexical level information. } 0233 write(output, ' ': (level*Indentation));
0169 StackCell = 0234 end else begin
0170 record 0235 { It wasn't the first time, so try to adjust this
0171 current: PtrToEntry; 0236 line to align with its mother, }
0172 scopetree: PtrToEntry; 0237 if movement > O then begin
0173 substack: PtrToStackCell 0238 write(output, ' ':movement)
0174 end; 0239 end else if movement < 0 then begin
0175 0240 while (i < total) and (line[i]l = ' ') and
0176 var 021 (i <= -movement) do begin
0177 lineno : Natural; 0242 i = suee(i)
0178 chno : LineIndex; 0243 end
0179 total : LineIndex; 0244 end
0180 depth : Natural; 0245 end;
0181 level : -1.,.maxint; 0246 { Write out the line. }
0182 pretty : Natural; 0247 while i < total do begin
0183 0248 write(output, line[il);
0184 { These are used to align the lines of a heading. } 0249 i := suce(i)
0185 adjustment : (First,Other); 0250 end;
0186 movement : integer; 0251 writeln(output)
0187 0252 end; { PrintLine }
0188 {These are true, respectively, if line-buffers need to be 0253
0189 printed before disposal, and if any errors have occurred. } 0254 procedure Error(e: Positive);
0190 printflag : Boolean; 0255 { This procedure is the error message repository. }
0191 errorflag : Boolean; 0256 begin
0192 0257 errorflag := true;
0258 write(output, 'FATAL ERROR - ');

0193 ch : char;

LT# SMIN TYISYd

086T “HIYYW

7t 39vd

0259
0260

0261

0262
0263
0264

0265
0266
0267
0268
0269
0270
0271

0272
0273
0274
0275
0276
0277
0278
0279
0280
0281

0282
0283
0284
0285
0286
0287
0288
0289
0290
0291

0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322

case e of
1: write(output, 'No "program" word');
2: write(output, 'No identifier after prog/proc/func');
3: write(output, 'Token after heading unexpected');
4: write(output, 'Lost ".", check begin/case/ends');
5: write(output, 'Same name, but not forward-declared')
end;
{ We shall print the offending line too. }
writeln(output, ' - AT FOLLOWING LINE');
ad justment := First;
PrintLine
end; { Error }

procedure NextCh;
begin
if chno = total then begin
if printflag then
PrintLine;
total := 03
while not eoln(input) do begin
total := succ(total);
read(input, line[totall)

end;
total := succ(total);
line[totall := ' '3

readln(input);
lineno := lineno + 1;
chno := 1;
ch := line[1]
end else begin
chno := succ(chno);
ch := line[chno]

end
end; { NextCh }

procedure Push(newscope: PtrToEntry);
var
newlevel: PtrToStackCell;
begin
new(newlevel);
newlevel?.current := newscope;
newlevell.scopetree := nilj;
newlevell].substack := stack;
stack := newlevel;
level := level + 1
end; { Push }

procedure Pop;
var
oldcell: PtrToStackCell;
begin
stack?.current?.localtree := stack?.scopetree;
oldcell := stack;
stack := oldcelll.substack;
{ **% dispose(oldcell); ¥*** }
level := level - 1
end; { Pop }

procedure FindNode(var match : Boolean;
var follow : PtrToEntry;
thisnode: PtrToEntry);
begin
match := false;
while (thisnode <> nil) and not match do begin

0323
0321
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
030
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
038l
0385
0386

follow := thisnode;

if savesymbol < thisnode?.procname then
thisnode := thisnodef.left

else if savesymbol > thisnode?.procname then
thisnode := thisnodel.right

else
match := true

end
end; { FindNode }

function MakeEntry (mainprog: Boolean;
proc : Boolean): PtrToEntry;

{ The first parameter is true if the name in symbol is the
program identifier, which has no scope. The second parameter
is true if the name in symbol is that of a procedure or function,
The result returned is the identification of the relevant record.
var

newentry, node: PtrToEntry;

located: Boolean;

procedure PutToSuperTree(newnode: PtrToEntry);
{ This procedure takes the entry that has been created by
MakeEntry and inserted into the local tree, and also links
it into the supertree. }
var

place : PtrToEntry;

procedure FindLeaf;

{ FindLeaf searches the supertree to find where this
node should be placed. It will be appended to a leaf
of course, and placed after entries with the same

name, }
var

subroot : PtrToEntry;
begin

subroot := superroot;

while subroot <> nil do begin
place := subroot;
if savesymbol < subroot!.procname then
subroot := subrootf.before
else
subroot := subrootf.after
end
end; { FindLeaf }

begin { PutToSuperTree }
if superroot = nil then begin
{ Nothing in the supertree yet. }
superroot := newnode
end else begin
{ Seek the right place }
FindLeaf;
with place! do begin
if savesymbol < procname then
before := newnode
else
after := newnode
end
end
end; { PutToSuperTree }

begin { MakeEntry }
located := false;
savesymbol := symbolj

}

LT# SMIN TYISYd

086T “HOYYW

¢ 39vd

0451 { Write either the substitute string or a number. }

0387 if mainprog then begin .
0388 new(newentry); o452 if n = 0 then
0389 end else if stack?.scopetree = nil then begin ous3 write(output, substitute)

0390 { Nothing here yet. } ousy else

0391 new(newentry); ous55 wri‘?e(output., n:6)

0392 stack?.scopetree := newentry 0us56 end; { ConditionalWrite }

0393 end else begin ou57

0394 { Seek the identifier in the tree. } 0458 procedure NameWrite(p : PtrToEntry);

0395 FindNode(located, node, stack(.scopetree); 0459 var

0396 if not located then begin 0460 s : SetRange;

0397 { Normal case, make an entry. } 0461 begin

0398 new(newentry); o462 for s := 0 to SetLimit do begin

0399 with nodef do 0463 if s in pf.caseset then

0400 if symbol < procname then oubl write(output, .
0401 left := newentry 0465 chr(ord(p? .procnamel s+1])-UCLCdisplacement))
0402 else 0466 else

ou03 right := newentry ou67 write(output, pT.procnamels+11)
o4ou end 0468 end

0405 end; 0u69 end; { NameWrite }

0406 if not located then begin ou70)

ouo7 { Here we initialize all the fields } ou71 begin { PrintTree }

0408 with newentry! do begin ou72 if root <> nil then

0409 procname := symbol; ou73 with root? do begin

0410 caseset := symbolcase; ouT7y PrintTree(before);

o411 linenumber := lineno; o475

o412 startofbody := 0; 0476 writeln(output);

0413 if proc then ouT7T write(output, linenumber:5);

ou1y status := Shortform 0478 ConditionalWrite(startofbody, ' ');
0415 else ou79 case status of

o416 status := NotProc; 0480 FwdHalf,NotProc:

ok17 left := nil; ou81 write(output, ' eh?');
o418 right := nil; 0482 Formal:

0419 before := nil; 0u83 write(output, ' fml');
0420 after := nil; ou8y Outside:

ou21 calls := nilj; o485 write(output, ' ext');
o422 localtree := nil 0486 Shortform:

0423 end; 0487 write(output, ' ")
ou2y MakeEntry := newentry; 0488 Al1Fwd:

o425 if proc then begin 0489 write(output, forwardblock:6)
0426 PutToSuperTree(newentry); 0490 end;

ou27 Push(newentry) : 0491 write(output, ' ');

ou28 end 0492 NameWrite(root);

ok29 end else begin 0493 write(output, ' :');

0430 { Well, it'd better be forward or else. } ol o4 thiscell := calls;

0431 MakeEntry := node; 0495 count := 0;

ou32 Push(node); 0496 while thiscell <> nil do begin

0433 if nodel.status = FwdHalf then begin o497 if ((count mod namesperline) = 0) and (count <> 0)
0434 stack!.scopetree := nodef.localtree; 0498 then begin

0435 node! .status := Al1lFwd; 0499 writeln(output);

0u36 node? .forwardblock := lineno 0500 write(output, ' ':35, ' :')
0437 end else begin 0501 end;

0438 Error(5) 0502 write(output, ' ');

0439 end 0503 NameWrite(thiscellf .what);

okko end 0504 thiscell := thiscellf.next;
o441 end; { MakeEntry } 0505 count := count + 1

ouk2 0506 end;

oh443 procedure PrintTree(root: PtrToEntry); 0507 writeln(output);

o4uy var 0508

olks thiscell: ListOfUsages; 0509 PrintTree(after)

o446 count: Naturalj; 0510 end

oh4y7 0511 end; { PrintTree }
o448 procedure ConditionalWrite(n: Naturalj 0512

ollg substitute: SixChars); 0513 procedure NextToken;
0450 begin 0514 { This procedure produces the next "token" in a small set of

0515 recognized tokens. Most of these serve an incidental purpose;

LT# SMIN T¥ISYd

086T “HIYYW

39Vd

he

0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
o5uL
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572

0573

0574
0575
0576

0577

0578
0579

the prime purpose is to recognize names (res'd words or identifiers),
It serves also to skip dangerous characters in comments, strings,
and numbers. }

procedure IgnoreComment;

{ This procedure skips over comments according to the definition

in the Draft Pascal Standard. }

begin
NextCh;
repeat
while (ch <> '¥') and (ch <> '}') do
NextCh;
if ch = '¥' then
NextCh;
until (ch = *)') or (ch = '}");
NextCh;

end; { IgnoreComment }

procedure IgnoreNumbers;
{ This procedure skips numbers because the exponent part
just might get recognized as a name! Care must be taken
not to consume half of a ".." occurring in a construct like
"1,.Name", or worse to consume it and treat the name as an
possible exponent as in "1,,E02". Ugh. }
begin
while ch in digits do
NextCh;
{ The construction of NextCh, chno & line ensure that
the following tests are always defined. It is to get
rid of tokens which begin with a period like .. & .) }
if (ch = '.,') then begin
if (line[chno+1] in digits) then begin

NextCh;
while ch in digits do
NextCh
end;
end;
if (ch = 'E') or (ch = 'e') then begin
NextCh;
if (ch = '+') or (ch = '-') then
NextCh;
while ch in dirits do
NextCh
end

end; { IgnoreNumbers }

procedure ReadIdent;
{ This procedure reads in an identifier }
var
j : Positive;
begin
token := NameSy;
symbol := Spaces;
symbolecase := [];
J =1
while (j <= SigCharLimit) and (ch in alphanums) do begin
if ch in uppercase then begin
symbol[j] := chr(ord(ch) + UCLCdisplacement);
symbolcase := symbolcase + [j=1]
end else begin
symbol[j] := ch
end;
J o= g+
NextCh

0580
0581

0582

0583
0581
0585
0586
0587
0588
0589
0590
0591

0592
0593
0594
0595
0596
0597
0598
0599
0600
0601

0602
0603
0604
0605
0606
0607
0608
0609
0610
0611

0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
Qb2

end;
{ In case there is a tail, skip it. }
while ch in alphanums do
NextCh
end; { ReadIdent }

begin
" token := OtherSy;
repeat
if ch in usefulchars then begin
case ch of

*)': begin
NextCh;
token := RParenSy
end;

'(': begin

NextCh;

if ch = '®' then begin
IgnoreComment

end else begin
token := LParenSy

end

end;

t{t: begin
IgnoreComment
end;

1111: begin
NextCh;
while ch <> '''' do
NextCh;
NextCh
end;

'0','1','2','3','14','5','6','7','8','9':'

begin
IgnoreNumbers
end;

begin
NextCh}
if c¢h = '=' then begin
token := AssignSy;
NextCh
end else begin
token := ColonSy
end
end;

',': begin

NextCh;

if ch <> '.' then
token := PeriodSy

else begin
token := SubRangeSy;
NextCh

end

end;

';': begin

LT# SMIN YISV

086T “HIYYW

¢ 39vd

0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0661
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
068U
0685
0686
0687
0688
0689
0690
0691
0692
0693
0691
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706

NextCh;
token := SemiColSy
end;

'A','B','c','D','E','F','G','H','I','J','K','L','M',
INI"o',lP',|Q'"RI,IS',IT','UI,'VI,'WI"xl,lyl,lZl’
lal 'lbl"cl,'dl,lel ,'f!,lgl ,'h','i','j','k','l','m' y
lnl,Io"'pl"q',lr',ls',lt','u"lv|’lwl,'xl,lyl ,lz':
begin
ReadIdent
end

end
end else begin
{ Uninteresting character }
NextCh
end
until token <> OtherSy
end; { NextToken }

procedure ProcessUnit(programid: Boolean);

{ This procedure processes a program unit. It is called on
recognition of its leading token = program/procedure/function.
The parameter records whether we currently have the main program
identifier in the token, or not. It doesn't have scope. }

var

at : PtrToEntry;

function NameIsInScope: Boolean;

{ This function is called during the declaration phase
of a block, and has to find any procedure which gets
renamed by the scope rules. }

var
llevel : PtrToStackCell;
discovered : Boolean;
where : PtrToEntry;
begin

llevel := stack;
discovered := false;
savesymbol := symbol;
while (1llevel <> nil) and not discovered do begin
FindNode(discovered, where, llevelf.scopetree);
if not discovered then
llevel := llevel}.substack
end;
if discovered then
NameIsInScope := (wheref.status <> NotProc)
else
NameIsInScope := false
end; { NameIsInScope }

procedure ProcessBlock;
{ This procedure is called by ProcessUnit when it -has recognized
the start of a block. It handles the processing of the block. 1
var

address: PtrToEntry;

procedure CrossReferencer;

{ CrossReferencer is called whenever we have a name which
might be a call to a procedure or function. The only way
we tell is by looking in the table to see. If it is, then
the list of usages of the procedure we are in is scanned and
possibly extended. }

var

0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
o724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
o7l1
o742
0743
0744
0745
0746
o747
o748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770

newcell : ListOfUsages;
ptr : ListOfUsages;
home : PtrToEntry;

slevel : PtrToStackCell;
found : Boolean;

procedure FindCell;
{ FindCell is used to scan a List Of Usages to determine
whether the name already appears theret -If not,'it
leaves ptr pointing to the tail of the list so that an
addition can be made. }
var
nextptr : ListOfUsages;
begin
found := false;
nextptr := stack!.current?.calls;
if nextptr <> nil then)
repeat
ptr := nextptr;
found := (ptrf.what!.procname = savesymbol);

nextptr := ptrf.next
until found or (nextptr = nil)
else
ptr := nil

end; { FindCell }

begin { CrossReferencer }
slevel := stack;
found. := false;
while (slevel <> nil) and not found do begin
FindNode(found, home, slevel?.scopetree);
if not found then
slevel := slevell.substack
end;
if found then begin
if home?.status <> NotProc then begin
FindCell;
if not found then begin
. new(newcell);
if ptr <> nil then
ptr{.next := newcell

else
stack?.currentf.calls := newcell;
newcelll.what := home;
newcelll.next := nil
end
end

end
end; { CrossReferencer }

procedure ScanForName;
{ This procedure is required to go forward until the
current token is a name (reserved word or identifier). }
begin

NextToken;

while token <> NameSy do

NextToken

end; { ScanForName }

begin { ProcessBlock }
while (symbol <> Sbegin) do begin
while (symbol <> Sbegin) and (symbol <> Sprocedure) and
(symbol <> Sfunction) do begin)
ScanForName;

LT# SMIAN TYISVd

086T “HOYYW

9¢ 39vd

0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0781
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0831

end;

if NameIsInScope then begin.

end
end;

address := MakeEntry(false, false);
{ MakeEntry made its status NotProc }

if symbol <> Sbegin then begin
ProcessUnit(false);
ScanForName

end
end;

{ We have now arrived at the body }

depth := 1;

stack].current(.startofbody := lineno;

NextToken;
while depth

<> 0 do begin

if token <> NameSy then begin
Nextloken
end else begin
if (symbol = Sbegin) or (symbol = Scase) then begin

end

end

end
end
end
{ ProcessBl

depth := depth + 1;

NextToken

else if (symbol = Send) then begin

depth := depth - 1;

NextToken

else begin

{ This name is a candidate call. But first we

must eliminate assignments to function values. }

savesymbol := symbol;

NextToken;

if token <> AssignSy then begin
CrossReferencer

end else begin
NextToken

end

ock }

procedure ScanParameters;
{ This procedure scans the parameter list because at the outer
level there may be a formal procedure we ought to know about. }

var

which : PtrToEntry;

procedure ScanTillClose;
{ This procedure is called when a left parenthesis is
detected, and its task is to find the matching right

parenthesis.
begin

It does this recursively. }

NextToken;
while token <> RParenSy do begin
if token = LParenSy then

ScanTillClose;

NextToken

end

end; { ScanTillClose }

begin { ScanParameters }

NextToken;
while token

<> RParenSy do begin

if (token = NameSy) then begin

if (

symbol = Sprocedure) or
(symbol = Sfunction) then begin

0835
0836
0837
0838
0839
08u40
0841

o8u2
0843
o84y
0845
0846
0847
08u8
0849
0850
0851

0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
08717
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898

end

end
end;

{ A formal procedural/functional parameter. }
NextToken;
if token = NameSy then begin
which := MakeEntry(false, true);
whichl.status := Formal;
Pop;
NextToken;
if token = LParenSy then begin
{ Skip interior lists. }
" ScanTillClose
end
end else begin
Error(2);
NextToken
end
end else begin
if NameIsInScope then
which := MakeEntry(false, false);
NextToken
end
else begin
NextToken

NextToken
end; { ScanParameters }

begin { ProcessUnit }
printflag := true;

ad justment :
NextToken;
if token <>
Error(2)
else begin

= First;

NameSy then

{ We now have the name to store away. }
at := MakeEntry(programid, true);
while not (token in [LParenSy,SemiColSy,ColonSyl) do
NextToken;
if token = LParenSy then
ScanParameters;
while token <> SemiColSy do
NextToken;
PrintlLine;
{ We have now printed the procedure heading. }
printflag := false;
writeln(output);

{ Our next task is to see if there is an attached block. }

NextToken;

if token <> NameSy then
Error(3)

else begin

if (

end

symbol <> Slabel) and (symbol <> Sconst) and
(symbol <> Stype) and (symbol <> Sprocedure) and
(symbol <> Sfunction) and (symbol <> Svar) and
(symbol <> Sbegin) then begin
{ Bloody directive, mate. }
if symbol = Sforward then
at?.status := FwdHalf
else
at?.status := Outside;
Pop
else begin
ProcessBlock;
Pop

LT# SMIN TYISYd

086T “HIYYW

L2 39Yd

0899
0900
0901
0902
0903
090
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931

0932
0933
0934
0935
0936
0937
0938
0939
0940
0941

0942

0943

094y
0945
0946
09u7

0948
0949
0950

0951

0952
0953

0954

0955
0956
0957
0958
0959
0960

0961

0962

e e e e e e e

end
end
end
end; { ProcessUnit }

%%

This procedure outlines what is needed to insert the
predefined names into Referencer's tables. De-box it
and extend it as needed.

procedure BuildPreDefined;
const
NoOfNames = 2;
type
NamesIndex = 1..NoOfNames;
var
kk : NamesIndex;
tt : array[NamesIndex] of PseudoString;
hohum: PtrToEntry;
begin
tt[01] := 'new H
t£[02] := 'writeln- "
caseset := [];
for kk := 1 to NoOfNames do begin
symbol := ttlkkl;
hohum := MakeEntry(false,false);
hohum? .status := Outside;
end;
end;

e e e e e e e e = —— e

ER

procedure PrintHeading;
begin

writeln(output, 'Procedural Cross-Referencer - Version S-02.01');

writeln(output, 's========z===========z=z==z=z=====z==z=z=sz=z=s=s=s=s==:
writeln(output)
end; { PrintHeading }

begin { Referencer }

superroot := nilj;
{ Here we construct an outer-scope stack entry. This is needed
to hold any pre-defined names. The distributed version does not
include any of these, but they are easily provided. See the
outlines in the code marked with ¥¥¥* if you want this feature. }
new(stack);
with stack? do begin

current := nil;

scopetree := nilj;

substack := nil
end;

printflag := false;
uppercase = ['A'"B','C','D','E','F','G','H','I','J','K'"L','M',
'N','O','P',IQ',IRI,!SI,IT"'UI"VI'|wl,|X',lYl’.lZl];

alphabet := uppercase +
[lal,'bl7'c|’ldl’le|’lf‘,'g!’lh|’|il,ljl,Vkl’lll,tml’
'n‘,'o','p','q','r",'s','t','u','v','w','x','y','z'];

digits 1= [lol"1|’|2|,v3|’vuv,l5|’l6',v7t"8l,v9v];
alphanums := alphabet + digits { #%* 4 ['_1] *%x } .
usefulchars := alphabet + digits +

[I(l’ l)" l{l, 1.1, ':l, l;!, Illl];

)

0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

namesperline := (LineWidth - (SigCharLimit + 21)) div
(SigCharLimit + 1);

{ *%* If you want to introduce some options, this is the place

to insert the call to your OptionAnalyser. None is provided

with the standard tool because the requirements vary widely

across user environments. The probable options that might be
provided are (a) whether pre-declared names should appear in

the call lists, (b) how many columns are to be printed in them
(namesperline), (¢) whether underscore is permitted in identifiers,
and perhaps whether output should be completely in upper-case
letters, The first option (a) requires a call to BuildPreDefined
just below this point, after analysing options... }

total := 03

chno := 03

lineno := 0;

level := =1;
errorflag := false;

{ *#* BuildPreDefined; *#* }

{ ¥%% page(output); *** }
PrintHeading;
writeln(output, ' Line Program/procedure/function heading');
for pretty := 1 to 43 do
write(output, '-');
writeln(output);
writeln(output);
{ Now we need to get the first token, which should be program. }
NextToken;
if token <> NameSy then
Error(1)
else if symbol <> Sprogram then
Error(1)
else begin
ProcessUnit(true);
{ Having returned, there ought to be a period here. }
if not errorflag then begin
{ We check all tokens that begin with a period because
what occurs after the closing period is novhing to do
with us. }
if (token <> PeriodSy) and (token <> SubRangeSy) then
Error(4)
else begin
ad justment := First;
PrintLine
end
end
end;
{ Completed Phase One - now for the next. }
if not errorflag then begin
page(output);
PrintHeading;
writeln(output,
' Head Body Notes ',
' *:SigCharLlimit,
' Calls made to');
for pretty := 1 to (SigCharLimit+37) do
write(output, '-')
writeln(output);
PrintTree(superroot);
writeln(output)
end

1027 end.

LT# SMIN TYISYd

086T “HOYYW

8¢ 39vd

PASCAL NEWS #17

MARCH, 1980

AN OVERVIEW OF MAP

MAP provides four basic additions to Pascal: constant expression
e.aluation; source file inclusion; parameterized macro substitution; and
conditional compilation. This section contains a discussion of each f these
facilities.

MAP evaluates constant e.pressions (expressions where operands are
constants or previously defined symbolic constants) on the right-hand side of
CONST de ..ations. Expressions may contain the following operators (listed in
wescending precedence): .

function: name (arguments)
negating: NOT -

multiplying: AND % / DIV MOD MIN MAX
adding: OR + -

relating: <<= =< d>=>

concatenating: (one or more blanks)

ALL standard operators have the same meaning as in Pascal, and strong typing is
Jbserved. The operators MIN and MAX require operands of type INTEGER or REAL
and return the smaller and Llarger of their operands, respectively.
Concatenation requires operands of type PACKED ARRAY OF CHAR, and returns a
PACKED ARRAY OF CHAR which is their concatenation (the type CHAR is assumed to
be a packed array of one character for concatenation).

MAP recognizes the standard Pascal functions ABS, SQR, CHR, ORD, ROUND,
TRUNC, as well as two nonstandard functions, LENGTH and STRINGOF. LENGTH
requires an argument of type PACKED ARRAY OF CHAR or CHAR, and returns the
number of characters in it. STRINGOF requires an integer argument, and returns
a PACKED ARRAY OF CHAR consisting of its decimal representation.

Operands in CONST expressions may be constants or previously defined CONST
names. Of course, Pascal scope rules apply to defined names. MAP also provides
several predefined symbolic constants which can be used in CONST expressions.
Two especially useful predefined names, TIME and DATE, give the time and date on
which the compilation was performed. These predefined constants help when
writing production programs that must be time and date stamped. For example, in
a production program a heading is usually printed whenever the program runs:

'PROGRAM XYZ COMPILED ON mm/dd/yy AT hh:mm:ss'

Such a heading may provide the only Link between an object version .f a program
and its source. Unfortunately, a programmer may fail to update the heading when
making changes to the program. Using the predefined constants in MAP to create
the heading relieves the programmer of the updating task and guarantees the
heading will always ‘e accurate:

CONST
READING = 'PROGRAM XYZ COMPILED ON' DATE 'AT' TIME;

In addition to constant expression evalugtion, MAP supplies a macro
substitution facility. A macro, which may have zero or more formal parameters,
may be defined anywhere in the source program using the syntax:

SDEFINE(name(formals) ,value)

where 'name' is a valid Pascal identifier, 'formals' is a Llist of identifiers
separat.d by commas, and ‘value' is a sequence of Pascal tokens which is well
balanced with respect to parentheses. Once a macro has been defined, it can be
called by coding

$name(actuals)

where 'name' is the name of the macro, and ‘actuals' is a Llist of actual
parameters separated by commas. Each actual parameter must be a sequence of
Pascal tokens which is well balanced with respect to parentheses.

In addition to the user-defined macros, MAP recognizes several system
macros. Definition of ‘a new macro, as shown above, requires the use of the one
such system macro, DEFINE. Another system macro, INCLUDE, provides for source
file inclusion. When MAP encounters a call:

SINCLUDE(file name)

it opens the named file, and continues processing, reading input from the new
file. Upon encounte.ing an end-of-file condition, MAP closes the included file,
and resumes processing the original file. Includes may be nested, but they may
not be recursive (even though there is a way to prevent an infinite recursion).

One may think of 'include' as a macro whose body is an entire file. This
view, however, does not reflect the fact that the user also expects included
text to be Llisted Like standard input rather than Like the body of a macro.
While macro expansions are ..ot usually displayed in the source listing, included
files are. Therefore, INCLUDE has a special status among macros.

One other system macro, CODEIF, is provided to support the conditional
compilation of code. The syntax of CODEIF is:

$CODEIF(constant Boolean expression,code)

where the constant Boolean exp.cssion follows the rules for CONST expressions
outlined above, and code represents a sequence of Pascal tokens which is well
balanced with respect to parentheses. If the Boolean expression evaluates to
'true', the code is compiled; if the expression evaluates to 'false', the code
is skipped.

REFERENCE

1. D. Comer, 'A Pascal Macro 'Preprocessor for Large Program Development',
Software Practice and Experience ,vol. 9, 203-209 (1979).

PAGE 29

PASCAL NEWS #17 MARCH, 1980 PAGE 30

1 program map(output, psource); m erroutype = 'evalrou - type error, real needed H
2 112 ersintype = 'evalsin - type error, number needed °';
3 { ====ccs======x rtable version } 113 ersqrtype = - type error, number needed °‘;
G { RERERRERARRRRARRRRERRARRRIKRAEIRIRIRRAREIRARIR AR RRRRR R RRRRRARRE | 114 erstrtype = - type error, integer needed ';
5 { } 115 ersyslpar = - left paren expected '
6 { program : M A P (Macro Pascal) -- Pascal preprocessor with } 116 ertermtyp = 'term - invalid operand type ';
7 constant expressions, macros, included files, and } 117 ertrutype = 'evaltru - type error, real needed ';
8 conditional campilation. (portable version) } 118 ervalexp = 'variable - value or name expected b
9 { }o119 ervarfnct = i - unknown function, 0 used ‘';
}(1) % date : February 12, 1978, modified April 30, 1979 ;]g? ervarrpar = 'variable - right paren expected '
12 { programmer : Doug Comer, Computer Science Department, Purdue } o122 greater = '>';
13 { } 123 inname = 'INPUT '; { standard input file name }
14 { input : A Pascal program with expressions allowed in the 1 124 inlname ="' ; { standard input file name for }
15 const values, and macro definitions and calls. } 125 { listing }
16 { Macros may be called fram the source code by } 126 letterb = 'B';
17 writing the name prefixed with a dollar sign, with } 127 lettere = 'E';
18 { actual parameters supplied as a string } 128 Lparen =1'(;
19 enclosed in parentheses. The actual parameters }o129 maxcalls = 15; { max macro call depth }
20 may not contain references to other actual } 130 maxcons = 200; { max active const defns }
21 parameters or macros. Formal parameter references, } 131 maxcol = 120; { max right column for input/output }
22 also denoted by $name in the body of the macro, } 132 maxcstr =1000; { max const string area
23 override macro definitions, so a macro with formal } 133 maxdefs = 100; { max defined macros }
24 'a' cannot call macro 'a'. Mull argument lists } 134 maxdefstr =4000; { max macro string area }
25 like () must be used when calling a macro withno } 135 maxfiles = 5; { max included file depth }
26 actual parameters. Null parameters will be used } 136 maxfns = 14; { max recognized functions }
27 if insufficient actual parameters are specified; } 137 maxkeys = 21; { max recognized language keywords }
28 extra actuals are ignored. Note that this differs } 138 maxline = 140; { max characters per input line }
29 from the version cited in the paper.] 139 mincol = 70; { min right column for input/output }
30 Input must be in columns 1 - 'rc' (default 72). } 140 minus ==
31 . .] 141 ndefconst = 9; { number of predefined constants }
32 output : Qutput is the file, psource, a campressed version } 142 {} newline = chr(10); { set to newline character }
33 of the Pascal source deck. The present version } 143 newpage = '1'; { newpage carriage control }
34 strips all comments except '(*$' and all the 1 144 nsysmac = 5; { number of system macros }
35 unnecesary blanks in performing the compression. } 145 pagesize = 55; { 1lines/page not counting heading }
36 Also, the source is crammed into 'prc' columns,] 146 period =1
37 the default being 71. 1} 147 plus = 147;
38 } 148 quote st
39 { system : Pascal on CDC 6500, Purdue dual MACE } 149 rparen ="',
40 } 150 semi =1,
41 { Copyright : (C) 1978. Permission to copy, modify and } 151 space =" { single space carriage control }
42 distribute, but not for profit, is hereby granted, } 152 star = 'x';
43 provided that this note is included. } 153 sysinc = 1; { codes for system macros }
44 } 154 syscodeif = 2;
45 * bebabebebobbbobbd b b it bbbttt il L Ll } 155 sysindex = 3;
46 156 sysdefine = 4;
47 label 1 { for aborting }; 157 sysoption = 5;
48 158 titlel ='MAP (vers 2.0p of 4/30/29) i
49 const 159 titlela ="' runon ';
50 arrow = 1", { pointer for errors } 160 titlelb ="' at ';
51 blank =, 161 title2 = include pascal';
52 break = ' { break between rc and rest of line } 162 title3 = ' Line file Lline Lline source’;
53 comma =1, 163 titled = e ;
54 defexpr = true; { default is expression evaluation } 164 titles = ';
55 deflist = true; { default is listing } 165 titleb =
56 defpre = 71; { default right column for pascal } 166 zero =
57 defrc = 72; { default right column for map input } 167
58 dollar = 's'; 168
59 double ='0'; { double space carriage control } 169 type
60 equal = '=1; 170
61 errflag ="' '; 171 alfa = packed array[1..10] of char;
62 errprefix = '===> error '; 172 text = file of char;
63 errlen = 40; { 1length of error message } 173
64 174 crng = 0..maxcons; { constant expression stack }
65 { error messages } 175 csrng = 0..maxcstr; { constant expr. string area }
66 176 drng = 0..maxdefs; { macro definition stack }
67 erabstype = ‘evalabs = type error, number needed °‘; 177 dsrng = O..maxdefstr; { macro def. string area }
68 erarith = ‘arith - bad type ' 178 flrng = 0..maxfiles; { included file stack }
69 eratntype = 'evalatn - type error, number needed °'; 179 fnrng = 0..maxfns; { builtin functions }
70 erbodyeof = 'getbody - end of file in macro body '; 180 krng = 0..maxkeys; { keywords }
14 erchrtype = 'evalchr - type error, integer needed °‘; 181 lnrng = 0..maxline; { i line }
72 ercklpar = 'ckmacro - Lleft paren expected '; 182 mrng = 0..maxcalls; { macro call stack }
3 erckrpar = ‘ckmacro - right paren expected '; 183 parng = 0..pagesize; { 1listing page }
7 ercodcom = ‘docodeif - syntax error, missing comma'; 184
75 ercodeof = ‘docodeif - unexpected end of file ‘; 185 msg = packed array(1..40] of char;
76 ercodtype = 'docodeif - type error, boolean needed '; 186
” erconvert = 'convert - integer truncated ; 187 fptr ="formal;
78 ercostype = ‘evalcos - type error, number needed °‘; 188
79 erdefcom = ‘dodefine - missing comma '; 189 formal = record
80 erdefname = 'dodefine - syntax error, name needed °; 190 fname : alfa; { name of formal parameter }
81 erexptype = 'expression - invalid operand type '; 191 fnext : fptr
82 erextype = 'evalexp - type error, number needed °‘; 192 end;
83 erfacrpar = 'factor = right paren expected ' 193
84 erfactype = 'factor - type conflict ‘; 194 .
85 erincname = 'doinclude - file name needed '; 195 fns = (fabs,fatn, fchr,fcos,fexp, { builtin functions }
86 erincrpar = 'doinclude - right paren expected ' 196 flen,fln,fodd, ford,frou,fsin,fsqr,fstr, ftru);
87 erindrpar = 'doindex - right paren expected ' 197
88 erindxtyp = 'doindex - type error, integer needed '; 198 Lex = (lexadd,lexsub, { order dependent }
89 erlentype = 'evallen - type error, string needed °‘; 199 Lexand, Llexmult, lexdvd,Lexmin,Lexmax, Lexdiv, Lexmod,
90 erlntype = 'evalln - type error, number needed °'; 200 Lexalpha,lexint,lexreal, lexst,lexmac,
9N erlongstr = 'gettok - string exceeds source line '; 201 Lexbeg, lexcas,lexend, Lexrec,Lexfun,lexproc,Lexcon,
92 ermacname = ‘gettok -.illegal macro name ' 202 Lexmcon,
93 ermacdefn = 'getbsu -~ undefined macro call ' 203 Lextpe,lexvar,lexfwd,
9% ermconsyn = ‘parsemcon - semicolon expected ' 204 Lexor, Llexnot,
95 eroctdig = ‘'gettok - jllegal octal digit ' 205 Lexlt,lexle,lexeq,Lexgt,Lexge, Lexne,
96 eroddtype = 'evalodd - type error, integer needed '; 206 Lexsemi,lexother,
97 eropen = 'open - recursive includes ignored °'; 207 Llexlparen,lexrparen,
98 eropttype = ‘dooptions - error in options list ' 208 Lexcomma,lexeof);
99 erordarg = 'evalord - ord requires 1 char. arg. '; 209
100 erordtype = ‘evalord - type error, char. needed °'; 210 aptr ="arg;
101 erover = ‘over - table overflow '; 211
102 erparscon = 'parsecon - equal sign needed '; 212 arg = record { actual argument list node }
103 erparsend = 'parse - unmatched end ' 213 aform : alfa; { formal name
104 erparseof = 'parse - unexpected end of file ' 214 afirst : dsrng;{ start of actual in dstr 1}
105 erparsfud = 'parse - unmatched forward decl. i 215 alast : dsrng;
106 erparsmcon= ‘parsemcon - equal sign needed ' 216 anext : aptr
107 erpconsyn = 'parsecon - semicolon expected '; 217 end;
108 erputtok = ‘puttok - token too large '; 218
109 errelatyp = 'retate - illegal type for rel. oper.'; 219
110 errelconf = 'relate - type conflict in relation °'; 220 constyp = (tbl,tch,terr,tin, tot,tre); { type of const expression }

PASCAL NEWS #17 MARCH, 1980 PAGE 31

221 33 rocedure ckmacro(name: alfa; { macro name } var found: boolean);
222 cset = set of constyp; 332 forward;
223 - 333 procedure close; forward;
224 strng = arrayClnrngl of char; 334 procedure convrt; forward;
225 335 procedure convrti; forward;
226 errmsg = packed array[1..errlen] of char; 336 procedure convrtr; forward;
227 337 procedure convrts; forward;
228 var 338 procedure docodeif; forward;
229 ctab : arraylcrng) of { constant table } 339 procedure dodefine; forward;
230 record 340 procedure doinclude; forward;
231 cname : alfa; 341 procedure doindex; forward;
232 case ctyp : constyp of 342 rocedure dooptions; forward;
233 tin : (ci : integer); 343 procedure dosysmac(d: drng); { which macro } forward;
234 tre : (cr : real); 344 procedure error(err: errmsg); forward;
235 tch : (cfirst : csrng; clen : csrng); 345 procedure evalfns(f: fns); forward;
236 tblL : (cb : boolean); 346 procedure evalabs; forward;
237 tot : (co : alfa) 347 procedure evalatn; forward;
238 end; 348 procedure evalchr; forward;
239 ctop, T_::urrent top of ctab and last const } 349 procedure evalcos; forward;
240 cvalid : crng; { last nontemporary constant } 350 procedure evalexp; forward;
261 351 procedure evallen; forward;
242 cstr : arraylcsrngl of char;{ string const storage } 352 procedure evalln; forward;
243 cstop : csrng; 353 procedure evalodd; forward;
244 354 procedure evalord; forward;
245 fstack : array[flrng] of { included file stack } 355 procedure evalrou; forward;
246 record 356 procedure evalsin; forward;
247 fname : alfa; { file name } 357 procedure evalsqr; forward;
248 ffile : text; 358 procedure evalstr; forward;
249 fline : integer 359 procedure evaltru; forward;
250 end; 360 procedure experror(err: errmsg); forward;
251 ftop : =1..maxfiles; 361 procedure expression; forward;
252 362 procedure factor; forward;
253 keywd : array[0..maxkeys] of { language keywords } 363 procedure findcon(name: alfa;
254 record 364 { name of const } var found: boolean); forward;
255 kname : alfa; { keyword name } 365 procedure flookup(name: alfa;
256 klex : lex 366 { function name } var fun: fns;
257 end; 367 { function code } var found: boolean); forward;
258 368 procedure flush; forward;
259 mstack : arraylmrngl of { macro calls } 369 procedure forcereal; forward;
260 record 370 procedure getactuals(f: fptr;
261 margs : aptr; { list of arguments } 371 { pointer to next formal } var act: aptr); { pointer to actual }
262 mnext : dsrng; { next char to read } 372 forward;
263 mlast : dsrng; { last char in this macro } 373 procedure getbody; forward;
264 matop : dsrng { actual top upon call } 374 procedure getbsu; forward;
265 end; 375 procedure getcdparm; forward;
266 376 rocedure getch; forward;
267 mtop : mrng; { top of called macro stack } 377 Eroceaﬂ getformals(var f: fptr); forward;
268 378 procedure getkey; forward;
269 defs : arrayldrngl of { macro definitions } 379 procedure getline; forward;
270 record 380 procedure getparm; forward;
271 dname : alfa; { macro name } 381 procedure gettok; forward;
272 dfirst: dsrng; { first char in this macro } 382 procedure initialize; forward;
273 dlast : dsrng; { last char in this macro } 383 procedure need(L: pgrng); forward;
274 dargs : fptr { 1list of formals } 384 procedure newpg; forward;
275 end; 385 procedure open(name: alfa); { file name to open } forward;
276 386 procedure over(i: integer; :
2717 dtop : drng; 387 { current value } maxval: integer); { max value } forward;
278 388 rocedure parse(top: crng; -
279 defstr : arrayldsrngl of char; { macro definition bodies } 389 { ctop upon entry } tok: Lex); { token causing recursion }
280 390 forward;
281 dstop : dsrng; { top of definition string area } 391 procedure parsecon; forward;
282 392 procedure parsemcon; forward;
283 atop : dsrng; { actual arguments saved in top of defstr } 393 procedure pushback; forward;
284 394 procedure puttok; forward;
285 funct : array[fnrngd of { 1list of builtin functions } 395 procedure relate; forward;
286 record 396 procedure scanheader; forward;
287 fnnme : alfa; { function name } 397 procedure term; forward;
288 fntyp : fns 398 procedure terminate; forward;
289 end; 399 rocedure timedate; forward;
290 400 unction typesmatch: boolean; forward;
291 inline : strng; { input line } 401 unction typeis(c: cset): boolean; forward;
292 Last, 402 procedure variable; forward;
293 next : lnrng; { last char and next char in inline } 403
294 ch : char; { next character fram getch } 404 { procedures and functions }
295 Line : integer; { last line number } 405
296 pline : integer; { next pascal output line number } 406
297 407 { wdnkixnx)
298 tme, { time of day from system } 408 { arith - recognize arithmetic ops in expression }
299 dte : alfa; { date from system } 409 { wrxxarax |
300 timein : integer; { clock value at start of run } 410 procedure arith;
301 tottme : integer; { total time used inms } 411
302 412 var
303 linectr : integer; { lines so far on this page } 413 op: lex;
304 nerrors : integer; { number of errors found } 414
305 415 begin
306 psource, 416 _?Fm;
30; dummy : text; { dummy used for real number conversion } ﬂ; lifx' (Lextyp in [lexor, lexadd, lexsubl) and (not typeis([terrl))
30 then
309 rcopt, 419 T ((lextyp = Lexor) and typeis([tbl])) or ((lextyp in [lexadd,
310 prcopt : lnrng; { right column on input/output } 420 Lexsubl) and typeis(ltin, trel))
31 Llistopt : boolean; { 1list on or off } 421 then
312 expropt : boolean; { recognize expressions on or off } 422 begin
313 423 over(ctop, maxcons);
314 Lastlex : lex; { last token type put by puttok } 424 while lextyp in [lexor, lexadd, lexsubl do
315 outpos : lnrng; { 1last column pos used by puttok } 425 begin
316 426 ctop := ctop + 1; op := lextyp; getkey; term;
317 Llexstr : strng; { lexical string } 427 if Cop = lexor) and typeis([tbl])
318 Lexlen : lnrng; { number of chars in lexstr } 428 then with ctablctop = 1] do c¢b := cb or ctablctopl.cb
319 Lextyp : lex; { type of token in lexstr } 429 else
320 430 3f (op in [lexadd, lexsubl) and typeis([tin, trel)
321 index : integer; { for $index macro } 431 then
322 432 with ctablctop - 1] do
323 confl : set of lex; 433 if (ctyp = tin) and (ctablctopl.ctyp = tin)
32 { set of tokens needing blank between } 434 then
325 435 case op of
326 { forward declarations for all procedures and functions } 436 lexadd: ci := ci + ctablctopl.ci;
327 437 lexsub: ci := ci = ctablctopl.ci
328 procedure arith; forward; 438 end { case }
Lr_T

329 ocedure ckformal(name: alfa; { formal name } var found: boolean); 439 else
30 “rorards ’ ’ 440 ~begin

PASCAL NEWS #17 MARCH, 1980 PAGE 32

461 forcereal; 551 else sign := false;
442 case op of 552 Lexlen := 0;
443 Texadd: cr := cr + ctablctopl.cr; 553 while i > 0 do
444 lexsub: cr := cr - ctablctopl.cr 554 begin
445 end { case } 555 exlen := lexlen + 1;
446 end 556 LexstrClexlen] := chr(ord('0") + (i mod 10));
447 else — 557 i =i div 10
448 3F ctablctopl.ctyp <> terr then experror(erarith); 558 end; -
449 ctop := ctop ~ 1 559 if sign then
450 end 560 “begin TexTen := Lexlen + 1; Lexstrllexlen] := minus end;
451 end 561 for i := 1 to(lexlen div 2) do
452 end { arith }; 562 begm
453 563 lexstrlh], lexstrfil := LexstrClexlen - i + 13;
454 { whkakian | 564 Lexstr[LexLen -i+1):=¢c
455 { ckformal - if reference to formal, push on call stack } 565 end;
456 [wkwwxrxx) 566 Lextyp := Llexint
457 procedure ckformal { name:alfa; var found:boolean }; 567 end;
458 568 terr:;
459 var 569 tot:
460 T a: aptr; 570 begin
461 571 Lexlen := 10; unpack(co, Lexstr, 1); Llextyp := lexalpha;
462 begin 572 while LexstrClexlen] = blank do lexlen := lexlen = 1
463 ound := false; 573 end;
464 if mtop > 0 574 tche
465 then 575 begin
466 Eegin 576 Lextyp := lexst; Lexlen := 1; Llexstr[1] := quote;
467 a := mstackCmtopl.margs; S77 for i := 0 toclen -1 do
468 while (a <> nil) and (not found) do 578 " begin
469 begin 579 lexlen := lexlen + 1;
470 with a” do 580 LexstrClexlen] := cstrlcfirst + i1;
471 ¥ aform = name 581 if lexstrClexlen] = quote then
472 then 582 begin Lexlen := lexlen + T; LexstrLlexlen] := quote
473 begin 583 end
474 ound := true; pushback; mtop := mtop + 1; 584 end;
475 with mstack[mtopl do 585 teTG' := lexlen + 1; lexstrllexlen] := quote
476 5 in 586 end;
477 margs := nil; mnext := afirst; mlast := alast; 587 tols
478 matop := atop 588 begin
479 end; 589 Llextyp := lexalpha;
480 getch 590 if cb
481 end; 591 then begin unpack('TRUE', Llexstr, 1); ‘lexlen := 4 end
482 a := a .anext 592 else begin unpack('FALSE', Llexstr, 1); lexlen := 5 end
483 end; 593 end; -
484 if found then gettok 59 tre.
485 end 595 begin
486 end T ckformal }; 596 rewrite(dummy); write(dummy, cr, blank); reset(dummy);
487 T 597 while dummy” = blank do get(dummy); lexlen := 0;
488 { *Hwrakxx } 598 uﬁ't[dummy” <> blank do
489 { ckmacro - if macro called, push onto stack } 599 egin
490 { whkkarxx } 600 Eexlen := lexlen + 1; lexstrllexlenl := dummy”;
491 procedure ckmacro { name:alfa; var found:boolean }; 601 get(dunmy)
492 602 end;
493 var 603 Lextyp := Lexreal
494 d: drng { index to defined macros }; 604 end
495 605 end T case }
496 begin 606 end T comvrt };
497 d := dtop; defs[0].dname := name; 607
498 while defs(dl.dname <> name do d :=d - 1; 608 { *kkkkkkk }
499 ifd>0 609 { convrti - convert integer token to binary form }
500 Then 610 { *dxkrrxx
501 5e$in 611 procedure convrti;
502 ound := true; 612
503 if d <= nsysmac then dosysmac(d) 613 var
504 else 614 i: integer;
505 begin 615 L: lnrng;
506 over(mtop, maxcalls); 616
507 with mstack[mtop + 11, defsCdl do 617 begin
508 begin 618 with ctablctopl do
509 margs := nil; mnext := dfirst; mlast := dlast; 619 begin
510 matop := atop; while ch = blank do getch; 620 ctyp := tin; ¢i :=0;
511 if ch = Lparen 621 for L := 1 to lexlen do
512 then 622 ci := 10 * ci + ord(lexstr[l1) - ord(zero)
513 begin 623 end
514 getch; getactuals(dargs, margs); 624 end T comvrti };
515 if ch <> rparen then error(erckrpar) 625
516 end 626 { whrkrEak)
517 else error(ercklpar) 627 { convrtr - convert real token to binary form }
518 _d' 628 { kkkkkhkk }
519 mtop := mtop + 1; getch 629 procedure convrtr;
520 end; 630 .
521 gettok 631 var
522 end 632 i: lnrng;
523 end T ckmacro }; 633
524 634 begin
525 { wkkxkkkk } 635 rewrite(dummy); for i := 1 to lexlen do write(dummy, Lexstr[il);
526 { close - close the current file + restore old one } 636 write(dummy, blank); reset(duumy),
527 { Wkkkkkkk) 637 with ctablctop] do begin ctyp := tre; read(dummy, cr) end
ggg procedure close; 638 enH T convrtr };7
639

530 begin ftop := ftop -~ 1 end { close }; 640 { AxExRAER]
531 - 641 { convrts - convert quoted string to const string }
532 { hhkkkkkkk) 61'2 { kkkkkkkk }

convrt - convert con i ;
g;i £ o | ert constant to pascal input format } 222 procedure convrts;
535 procedure convrt; 645 var
536 646 L: lnrng;
537 var 647
538 i: integer; 648 begin
539 c: char; 649 with ctablctopl do
540 sign: boolean; 650 begin -
541 651 ctyp := tch; clen :=0; cfirst := cstop + 1;
542 begin 652 L =2 { skip leading quote };
543 with ctabCctop] do 653 while L <= (lexlen = 1) do
544 case ctyp of 654 begm
545 tin: . 655 clen := clen + 1; over(cstop, maxcstr);
546 begin 656 cstop := cstop + 1; cstrlcstop] := lexstr[l];
547 if abs(ci) >= maxint 657 if lexstr[l] = quote then L := L +2 elsel :=1+1
548 Then begin i := maxint; error(erconvert) end 658 end
549 else i := ci; 659 end

.550 FF 1 <0 then begin sign := true; i := abs(i) end 660 end T comvrts };

PASCAL NEWS #17

661
662

{ i dd 2)

docodeif - process $codeif(expr., code) }
(wRhhdkhkh)

procedure docodeif;

var
- a: dsrng { save area for atop upon entry };
ctr: integer { left paren count };
begin
getkey; over(ctop, maxcons); ctop := ctop + 1; expression;
ctop := ctop - 1; a := atop;
if lextyp <> lexcomma then experror(ercodcom)
else
with ctablctop + 11 do
¥ ctyp = tbl
then
¥ cb
then
begin
over(mtop, maxcalls);
with mstackimtop + 1] do
bBegin
-~ margs := nil; mlast := atop - 1; getcdparm;
mnext := atop; matop := a;
end;
mtop := mtop + 1; getch
end
else
begin
ctr = 1;
while ctr > 0 do
begin
if ch = newline
then
Eegxn
If (mtop = 0) and (ftop = 0) and eof (fstack[0l.
ffile)
then begin error(ercodeof); goto 1 end
en
else

if ch = rparen then ctr := ctr - 1
else if ch = lparen then ctr := ctr + 1;
getch
end
end
elsé'TT‘ctyf <> terr then error(ercodtype)
end itk

{ dedkkdhdd }

{ dodefine - process $define(name(formal parms),string) }
{ whkhhhhhk)

procedure dodefine;

begin
gettok;
if lextyp <> lexalpha then error(erdefname)
else
begin

over(dtop, maxdefs); dtop := dtop + 1;

with defsldtopl do

begin
Eexstr[O] := dollar; pack(lexstr, 0, dname);

dfirst := dstop + 1; dlast := dstop; gettok;
if Lextyp = lexlparen
then begin gettok; getformals(dargs); gettok end

else dargs := nil
end;
if lextyp <> Lexcomma
then begin error(erdefcom);
else getbody
end
end T dodefine };

{ wkkkkkkk)

doinclude - process $include(file) }
{ whkkdkhkd }

procedure doinclude;

dtop := dtop - 1 end

var
name: alfa;

begin
getbsu;
if lextyp <> lexalpha
else
begin
pack(lexstr, 1, name) {
getkey; ii Lextyp <> Lexrparen
open(name)
end
ﬂ‘_‘l T doinclude } ;

{ hkkkkkkk }

- process $index(expression) }
{ deddededdheded)

procedure doindex;

then error(erincname)

check file name here if desired };
then error(erincrpar);

var

i: lnrng;

begin
over(ctop, maxcons);
if lextyp = lexrparen
then with ctablctop] do begin ctyp := tin; ci := 0 end
else expression;
if lextyp <> lexrparen
else

" begin

ctop := ctop + 1; getkey;

then error(erindrpar)

MARCH, 1980

m
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

pushback;
with ctablctop] do
if not (ctyp in Lterr, tinl)
else
if ctyp = tin
then

begin
index := index + 1; c¢i := c¢i + index; convrt;
over(mtop, maxcalls); mtop := mtop + 1;
with mstack[mtopl do

then error(erindxtyp)

begin
margs := nil; mnext := atop; mlast := atop - 1;
matop atop;
for i := lexlen downto 1 do

begin
mnext := mnext = 1;
defstrCmnext] := Llexstrlil
end;
getch
end
end
end;
ctop := ctop - 1
end { doindex };

{ Hkkkkrxk)
tions - process $options(...) }
(Rkddkkhk
procedure dooptions;
var

it integer;
begin

gettok;
while not (lextyp in [lexrparen, Lexeofl) do

Begin
1f lextyp = lexalpha
t

hen
T Llexstr[1] in ['R*, 'P', 'N', ‘L', 'E']

then
case lexstrl[1] of
P, R T
begin
while not (ch in ['0' .. '9', ")'D) do getch;
1 :=0;
while ch in ['0' .. '9'] do
begin i := 10 * i + ord(ch) - ord('0");
if (mincol <= i) and (i <= maxcol) then
“case lexstr[1] of
P': prcopt := i;
'R': rcopt := i
end { case }
Wi

py

Lexlen >= 3 then
if lexstr[3] = 'L' then Llistopt := false
else if lexstr[3] = 'E'_ then expropt := false;
'L': Llistopt := true;
'E': expropt := true
end
else error(eropttype)
else if lextyp <> Lexcomma
gettok
end

end T dooptions };

(kkkkkkkk }

- perform proper system macro }
{ hhkkkkkkk }

procedure dosysmac { d:drng };

i

then error(eropttype);

begin
gettok;
if lextyp <> lexlparen then error(ersyslpar)
‘else
case d of

sysinc: doinclude;
syscodeif: docodeif;
sysindex: doindex;
sysdefine: dodefine;
sysoption: dooptions
end
end { dosysmac };

(ek ke ded }
{ error - write out error message }
{ Fedkdkdkdkdkok)

procedure error { errzermsg };

var
i: lnrng;

begin
need(2) { make sure message fits on page };
if listopt
then
begin
write(space, errflag);
writeln(arrow)
end

else writeln(' AT LINE:', line: 2, ' (pascal line:', pl:ne: 2,);

writeln(space, errprefix, err); nerrors := nerrors +

end { error };

(hkkkkkkk }

{ evalfns - evaluate a builtin function }
{ deddeddkdekk)

procedure evalfns { f:fns };

PAGE

getch end;

for i := 1 to next - 1 do write(blank);

33

PASCAL NEWS #17 MARCH, 1980 PAGE 54

881 begin 991 begin
882 case f of 992 wWith ctabCctop] do
883 " fabs: evalabs; 993 31 ctyp = tch
884 fatn: evalatn; 994 Then
885 fchr: evalchr; 995 begin
886 fcos: evalcos; 996 i1 :=clen; cstop := cfirst = 1; ctyp := tin; ci =1
887 fexp: evalexp; 997 end
888 flen: evallen { length of a string }; 998 else experror(erlentype)
889 fln: evalln; 999 end T evallen };
890 fodd: evalodd; 1000
891 ford: evalord; 1001 { *kkkdkrx }
892 frou: evalrou { round }; 1002 { evalln - evaluate the 1n builtin function }
893 fsin: evalsin; 1003 { *wwkasnx
894 fsqr: evalsar; 1006 procedure evalln;
895 fstr: evalstr { string of - make integer a string }; 1005
896 ftru: evaltru { truncate } 1006 begin
897 end { case } 1007 with ctablctop] do
898 end [evalfns }; 1008 if typeis(tre, tinl)
899 T 1009 then
900 { *xaawakx } . 1010 “case ctyp of
901 { evalabs - evaluate the abs builtin function } 1011 Ttin: begin cr := ln(ci); ctyp := tre end;
902 { wawddwnx } i 1012 tre: cr := Lncr)
903 procedure evalabs; 1013 end { case]
904 1014 else experror(eantype)
905 begin 1015 end T 1;
906 with ctablctop] do 1016
907 T 3T typeis([tre, tinl) 1017 { **wxanss }
908 then case ctyp of 1018 { evalodd - evaluate the odd builtin function }
909 T tin: := abs(ci); 1019 { *xkxdakx }
910 tre: cr := abs(cr) 1020 procedure evalodd;
911 end 1021
912 else experror(erabstype) 1022 var
913 end T evalabs }; 1023 iz integer;
914 1024
915 { *hwakakx | 1025 begin
916 { evalatn - evaluate the arctan builtin function } 1026 with ctablctopl do
917 { *awwraan 1027 _iF? ctyp = tin
918 rocedure evalatn; 1028 en begin i := ¢i; ctyp := tbl; c¢b := odd(i) end
919 procecure 1029 else experror(eroddtype) -
920 begin 1030 end T evaw };
921 W ctablctopl do 1031
922 7T typeis([tre, tinl) 1032 { *kkdrkax)
923 Then 1033 { evalord - evaluate the ord builtin function }
924 Tcase ctyp of 1034 { *axwannn }
925 tin: begin 3in cr := arctan(ci); ctyp := tre end; 1035 procedure evalord;
926 tre: cr ‘= arctan(cr) 1036
927 end { case } 1037 var
928 else experror(eratntype) 1038 ~ c: char;
929 end T evalatn }; 1039
930 1040 begin
931 { *awdas 1041 with ctablctopl do
932 { evalchr - evaluate the chr builtin function } 1042 T ctyp = tch
933 { Rkkhkhkk) 1043 then
934 procedure evalchr; 1044 if clen =
935 ‘ 1045 then begin ¢ := cstrlcfirstd; ctyp := tin; ci := ord(c) end
936 var 1046 else experror(erordarg)
937 it integer; 1047 else experror(erordtype)
938 1048 end T evalord };
939 begin 1049
940 with ctabCctopl do 1050 { *awraans }
941 if ctyp = tin 1051 { evalrou - evaluate the round builtin function }
942 Then 1052 { *exaaran)
943 begin 1053 procedure evalrou;
944 1 := c¢i; ctyp := tch; over(cstop, atop); 1054
945 cstop := cstop + 1; clen :=1; cstrlcstopl := chr(i); 1055 var
946 cfirst := cstop 1056 r: real;
947 end 1057
948 else experror(erchrtype) 1058 begin
949 end alchr }; 1059 with ctabCctop] do
950 T 1060 TT3f ctyp = tre
951 { werwmaas } 1061 Then begin r := cr; ctyp := tin; ci := round(r) end
952 { evalcos - evaluate the cosine builtin function } 1062 else experror(erroutype)
3;2 { **':;"* } . 1063 end T evalrou };
procedure evalcos; 1064

955 1065 { RkkRkkkkk }
956 begin 1066 { evalsin - evaluate the sin builtin function }
957 with ctablctopl do 1067 { *xwarsan }
958 3t typeis(ltre, tinl) 1068 procedure evalsin;
959 then 1069
:60 case ctyp of 1070 begin
61 tin: beg!n cr := cos(ci); ctyp := tre end; 1071 with ctablctopl do
962 tre: cr := cos(cr) - 1072 7T typeis([tre, tind)
963 end { case } 1073 Tﬁbn
964 else ¢ experror(ercostype) 1074 case ctyp of
965 end T }; 1075 tin: begin cr := sin(ci); ctyp := tre end;
966 1076 tre: cr := s1n(cr)
967 { *kkkrkkx } 1077 end { case }
968 { evalexp - evaluate the exp builtin function } 1078 else experror(ersintype)
069 { wxrrawax } 1079 end T evalsin };
970 procedure evalexp; 1080
971 1081 { *wwawaax)
972 begin 1082 { evalsqr - evaluate the sqr builtin function }
973 with ctablctop] do 1083 { *xwwkakx }
974 if typeis(Ltre, tinl) 1084 procedure evalsagr;
975 Then 1085
976 case ctyp of 1086 begin
977 tin: begTH cr := exp(ci); ctyp := tre end; 1087 with ctablctop] do
978 tre: cr := exp(cr) 1088 T typeis([tre, tinl)
979 end { case } 1089 then
980 else ¢ experror(erextype) 1090 case ctyp of
981 end { }; 1091 tin: ci := sqrlci);
982 1092 tre: cr := sgrlcr)
983 { wrwrrwax } 1093 end { case
984 { evallen - evaluate the length builtin function } 1094 else experror(ersqrtype)
ggz { whxrxrex | " 1095 end { evalsqr };

rocedure evallen; 1096
987 Broceddre 1097 { *xxxxrax }
988 var 1098 { evalstr - evaluate the stringof builtin function }
989 iz integer; 1099 { **akkaxx }

990 1100 procedure evalstr;

PASCAL NEWS #17

1101
1102

1139
1140
1141
1142
1143
1144
1145
1146
1147

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

var
it integer;
c: char;
sgn: boolean;
begin

with ctablctop] do

¥ ctyp <> tin then experror(erstrtype)

else
Begin
1 := ci;
if 1 <0 then begin sgn := true; i := abs(i) end
else sgn := false;

over(cstop, atop); cstop := cstop + 1; ctyp := tch;
cfirst := cstop;
if i = 0 then begin clen := 1;

else

begin
clen :=0;
while i > 0 do
Begin
cstrlcstopl := chr(ord(zero) + (i mod 10));
i := i div 10; over(cstop, atop);
cstop := cstop + 1; clen := clen + 1

cstrlcstop) := zero end

end;
if sgn then cstrlcstopl := minus

else cstop := cstop - 1;
for i := 0 tolclen = 1) div 2 do
“begin
¢ := cstrli + cfirst];
cstrli + cfirst] := cstrlcfirst + clen - i = 1];
cstrlcfirst + clen = i = 1] = ¢
end
end
end
end { Tevalstr };

{ hhkkhhhkk }

evaltru - evaluate trunc builtin function }
{ dhkkkkhki]

procedure evaltru;

- var
r: real;

Eﬁa
with ctabCctopl do

ctyp = tre
Then begin r := cr; ctyp := tin;
else experror(ertrutype)
end T evaltru };

(kR }

{ experror - print error for expression and flush }
{ dkkkhdkdkd]

procedure experror { err:errmsg };

begin error(err);
end { experror };
(dekdkkhkhk }

{ expression - parse expression; put value in ctab[ctop] }
hkkdkkkik

procedure expression;

ci := trunc(r) end

ctablctopl.ctyp := terr; flush

begin
relate;
if typeis(Ltchl)
then
begin
over{(ctop, maxcons); ctop := ctop + 1;
while lextyp in [lexst, lexalphal do

begin
relate;
if typeis(Ltchl)
Then with ctablctop - 1] do clen := clen + ctablctopl.clen
else 1f not typeis([terr]) then experror(erexptype)

end;

ctop := ctop - 1;
end
end { expression };

{ wkkkhkihk }
{ factor - recognize factor part of expression }
{ dhkdkkkdkk

procedure factor;

var
op: lex;

begin
if lextyp in [lexnot, lexsubl
then
begin
op := lextyp; getkey;
with ctablctopl do
ii typeis([tblij-ggg (op = lexnot)
else
it typeis([tin, trel) and (op = Lexsub)
then
case ctyp of
tin: ci = - ci;
tre: cr := - cr
end { case }
else
3T ctyp < terr
then begin ctyp := terr;

factor;

then cb := not cb

experror(erfactype) end
end
else

MARCH, 1980

PAGE 5>

if lextyp = lexlparen
then
begin
getkey; expression;
if not typeis(Lterrl) then
if lextyp <> lexrparen
‘else getkey

then experror(erfacrpar)

end
else variable

end actor };

(KhAhAAAK

{ findcon - find previously defined constant }
(dkddkkkkk }

procedure findcon { name:alfa; var found:boolean };

var

c: crng;

i: integer;
begin

¢ := cvalid; ctabl0l.cname := name;
while ctablcl.cname <> name do ¢ :=¢ - 1;
ifc>0
then
begin
ctablctop] := ctabCc];
with ctabCctop] do
if ctyp = tch
then
begin
over(cstop + clen, maxcstr);
for i := 0 to clen - 1 do
" begin
cstop := cstop + 1;
cstricstop] := cstrictablcl.cfirst +
end
end;
found := true
end
end T findcon };

cfirst := cstop + 1;

-

]

{ hkkkhkkk }

{ flookup - lookup function name and return type code }
kkkkkkkd

procedure flookup { name:alfa; var fun: fns; var found:boolean };

yar
f: fnrng;

begin

unct(0l.fnnme := name; f := max
while funct[fl.fnnme <> name do f
if f =0 then found := false
else begin found := true; fun := funct[fl.fntyp end

end { flookup };

{ dkkkkkhk }

{ flush - flush to semicolon }
{ khkkkkkkk }

procedure flush;

begin while not (lextyp in [Lexeof, lexsemil) do getkey
end flush };

(hkkhkihkk }

{ forcereal - force top two constants on stack to real }
{ dhkdkhkkk }

procedure forcereal;

var
i: integer;
begin
with ctablctop] do
_li ctyp = tin ~ then begin i := ci; ctyp := tre; cr := i end;
with ctablctop = 17 do
if ctyp = tin then begin i := ci; ctyp := tre; cr := i end

end T forcereal };

(khkkkkhhk }
{ getactuals - get actual parameters for macro call }
{ dekdkRkkkhk)

procedure getactuals { f:fptr; var act:aptr };

1
then { if no formals, then no actuals }
se
begin
new(act);
with act”, f" do

F
(3
£

i

begin
aform := fname; alast := atop - 1;
afirst := atop; if ch = comma
getactuals(fnext, anext)

end

getparm;
then getch;

N

end
{ getactuals };

end
kkkkkkhk
{ }

{ getbody - get the body of a macro }
(hhkkkkkkk }

procedure getbody;

ctr: integer { left parenthesis counter };

‘U <
] |m
1

in
if ch = rparen

[RRVAVY . N

weno #1/

then
with defsldtopl do
begin getch; ~dlast := dstop;
else
Begin
ctr :=1;
with defsCdtopl do
egin
while ctr > 0 do
egin -
over(dstop, atop); dstop := dstop + 1;
defstrldstopl := ch; dlast := dstop;
if ch = rparen then ctr := ctr = 1
else
if ch = lparen

then ctr := ctr + 1
else

if (ch = newline) and (ftop = 0) and eof(fstack(0].

— ffile)
then begin error(erbodyeof);
getc|
end;

defstrldlast] := blank { replace trailing ")"

end

end

end T getbody };

{ hkhkhkkh }
{ getbsu - get basic syntatic unit, subst. macro calls }

(dedededdedhdk
procedure getbsu;
var

alfa;
boolean;

name:
found:

begin
gettok;
while lextyp = lexmac do

egin
pack(lexstr, 1, name); ckformal(name, found);
if not found then

~begin
ckmacro(name, found);

if not found then begin error(ermacdefn);
end;

end
end T getbsu };

{ dekdkdkdkk }

{ getcdparm - get "codeif" code and save it }
{ hkkkkhdkk)

procedure getcdparm;

var
ctr: integer;
d: dsrng;

begin
5 := dstop; ctr :=0;

while (ctr > 0) or (ch <> rparen) do
egin
over(d, atop); d :=d + 1; defstrld] :=
if ch = lparen then ctr := ctr + 1
else if ch = rparen then ctr := ctr - 1;
getch
end;
1i d > dstop then
begin
over(d, atop); d:=d +1;
while d > dstop do
begin
atop := atop - 1;
end
end
end T getcdparm };

(ik kkkikkk }

{ getch - get next character and place in ch }
{ hkkkhhhr }

procedure getch;

begin
if mtop > 0 then

defstrfd] := blank;

defstrlCatopl := defstrldl;

Twhile (mstackCmtopl.mnext > mstack[mtopl.mlast) and (mtop > 0) do
mtop := mtop - 1; end;

egin atop := mstack[mtopl.matop;
if mtop > 0
then
with mstackimtopl do
Begin ch := defstrlmnextl;
else
begin
3f next > last
next := next + 1
end

end T getch }7

mnext := mnext + 1 end

then getline; ch := inlinelnext];

{ Khhkkdkhk }

{ *2$§£2rfals - get formal parameter names }
*

procedure getformals { var f:fptr };

}

MARCH, 1980

dfirst := dstop + 1 end

goto 1 end;

gettok end

d:=d-1

begin
if Lextyp <> lexalpha then f := nil
else
Begin
new(f); Llexstrf0] := dollar; pack(lexstr, 0, f".fname);
gettok;

if lextyp = lexcomma

then begin gettok;

getformals(f".fnext) end
else T .fnext := nil

{

PAGE 36

end

end T getformals };

[kkkkhkhk }

{ getkey - get token and classify language keywords }
{ hkkkkkhk }

procedure getkey;

var

name of constant };

name: atfa { ;
pointer to keywords 1};

: keng {

begin
getbsu;

if Lextyp = lexalpha

Th

en

begin

pack(lexstr, 1, name); keywd[Ol.kname := name;
while keywd[kl.kname <> name do k := k = 1;
if k>0 then lextyp := keywd[kl.klex

end .
end T getkey };

{ dkkkkkhk }

getline - place input line in linline; set next, last }
{ Rk kkkk }

procedure getline;

var

incol: Llnrng;
i: integer;

begin
while eof(fstack[ftopl.ffile) and (ftop > 0) do close;

if eof(fstack[ftopl.ffile)

then begin next := 1;

last := 0; inlinelnext] := newline end

else
with fstack[ftopl do

end

be%in
Uine := line + 1; fline := fline + 1;
if Llistopt
Then
" begin
if linectr >= pagesize
then begin linectr := 0; newpg end;
Ginectr := Linectr + 1; urite(sﬁi?i, Line: &4, *
for i :=1 to 7 do write(fname[il);
write(fline: 5, pline: 8, ' ");
while (not eoln(ffile)) and (incol <= rcopt) and (ffile"
= blank) do
begin get(ffile); write(blank); incol := incol + 1
ens'

incol := 1;

“;

next := incol;
inlinelnext] := newline { in case of empty line };
while (not eoln(ffile)) and (incol <= rcopt) do
Begi
inlinelincoll := ffile";
write(ffile®); get(ffile)
end;
Last := incol ~ 1;
if not eoln(ffile) then
egin
write(break);
while not eoln(ffile) and (incol < maxcol) do
Tbegin write(ffile®);” get(ffile) end

incol := incol + 1;

end;
writeln
end
else
begin :
while (not eoln(ffile)) and (incol <= rcopt) and (ffile"
= blank) do

begin get(¥file);
next := incol;
inlinelnext] := newline { in case of empty line };
while (not eoln(ffile)) and (incol <= rcopt) do
Eegin
inlinelincol]l := ffile";
get(ffile)
end;
tast := incol = 1
end;
readln(ffile);
ifff l.ats,t >= rl\ext)]
then begin last := last + 1;
end
{ getlire };

incol := incol + 1 end;

incol := incol + 1;

inlinellast] := newline end

{ *kkkkkkk }

{ getparm - get an actual parm and save }
{ dkkkkhkk }

procedure getparm;

var
ctr: integer;
d: dsrng;
begin
d := dstop; ctr :=0;

while (ctr > 0) or not (ch in [comma, rparenl) do

begin

defstrld] := ch;
ctr +1
ctr - 1;

over(d, atop); d :=d + 1;
if ch = lparen then ctr :=
else if ch = rparen then ctr :=
getch

end;

if d > dstop

Tﬁén

begin

over(d, atop); d:==d+

-

; defstrld] := blank;

maxkeys;

PASCAL NEWS #17 MAKLR, 195U Vol -

1541 while d > dstop do 1651 repeat

1542 Segin { move parm to right } 1652 getch; lexlen := lexlen + 1;

1543 atop := atop - 1; defstrlatop] := defstrld); d:=d-1 1653 LexstrClexlen] := ch

1544 end 1654 until ch = star;

1545 end ~ 1655 getch; lexlen := lexlen + 1;

1546 end T getparm }; 1656 LexstrClexlen] := ch

1547 1657 until ch = rparen;

1548 (#waswrwx } 1658 getch

1549 { gettok - get a token; set lexstr, lexlen, lextyp } 1659 end

1550 { skawarnn } 1660 else

1551 procedure gettok; 1661 begin

1552 1662 Lexlen := 0;

1553 var 1663 repeat while ch <> star do getch; getch
1554 i: integer; 1664 until ch = rparen;

1555 num: integer { value of octal number }; 1665 getch

1556 1666 end

1557 begin 1667 end

1558 exlen := 0; 1668 end;

1559 while lexten = 0 do 1669 ")T: begin lextyp := Lexrparen; getch end;

1560 begin 1670 s

1561 while ch = blank do getch; lexlen := 1; Lextyp := lexother; 1671 begin

1562 Texstr{1] := ch; 1672 getch;

1563 case ch of 1673 if not (ch in C'A' .. '2'D)

1564 newline: 1674 then begin error(ermacname); lexlen := 0 end
1565 if (ftop = 0) and eof(fstackCftopl.ffile) 1675 else -
1566 then Llextyp := lexeof 1676 begin

1567 else begin getch; lexlen := 0 end; 1677 Lextyp := lexmac;

1568 ‘AT, BT, 'C', 'p', 'E', 'F', 'G',VH', 'I', 'J', 'K', 'L', 1678 while ch in C'A' .. 'Z', '0' .. '9'] do
1569 lnl’ 'N', |°|’ IPII Iql’ lRl' 'S', ITI’ lul’ 'V', lul' %', 1679 _-b_eg'in

1570 A APSRYAH 1680 Llexlen := Lexlen + 1; Lexstrllexlen]l := ch;
1571 begin 1681 getch

1572 getch; Llextyp := lexalpha; 1682 end;

1573 while ch in ['A' .. 'z, '0' .. '9'] do 1683 if Lexlen > 10 then lexlen := 10;

1574 begin - 1684 For i := Lexlen + T to 10 do lexstr[il := blank
1575 exlen := lexlen + 1; lexstrClexlen] := ch; getch 1685 en

1576 end; 1686 end;

1577 if Texlen > 10 then lexlen := 10; 1687 '=T: begin lextyp := lexeq; getch end;

1578 For i := Llexlen + T to 10 do lexstr[il := blank 1688 A Segin Llextyp := lexcomma; getch end;

1579 end; 1689 v

1580 gv, 'Y, t20, '3Y, '4Y, 'S0, Y6, ‘7', '8', '9': 1690 begin

1581 begin 1691 getch;

1582 getch; Lextyp := lexint; 1692 if ch = period then

1583 while ch in L'0' .. '9'] do 1693 “begin lexstr[ZT i= period; Llexlen := 2; getch end
1584 begin 1694 end;

1585 lexlen := lexlen + 1; Llexstrllexlenl := ch; getch 1695 iy {)
1586 end; 1696 begin extract string including all quotes

1587 if ch = letterb 1697 Lexlen := 0;

1588 then 1698 repeat

1589 begin { octal } 1699 over(lexlen, maxline); lexlen := lexlen + 1;
1590 getch; num := 0; 1700 lexstrClexlenl := ch;

1591 for i := 1 to lexlen do 1701 repeat

1592 T 3f Lexstr[3d in ['07 .. '71] 1702 getch;

1593 Then num := 8% num + ord(lexstr[il) - ord(zero) 1703 if ch = newline then

1594 else begin num := 8 * num; error(eroctdig) end; 1704 begin

1595 over(ctop, maxcons); ctop := ctop + 1; . 1705 error(erlongstr); pushback;

1596 with ctabLctop] do begin ctyp := tin; ci := num end; 1706 ch := quote { supply missing quote }
1597 convrt; ctop := ctop - 1 1707 end;

1598 end 1708 over(lexlen, maxline); Lexlen := Lexlen + 1;
1599 else 1709 Lexstrflexlen] := ch

1600 begin 1710 until lexstrllexlen] = quote;

1601 1t ch = period 1711 getch

1602 then 1712 until ch <> quote;

1603 begin 1713 Textyp := lexst

1604 getch; 1714 end;

1605 if ch = period then pushback 1715 T

1606 else 1716 begin

1607 Eegi 1717 getch;

1608 Llextyp := lexreal; lexlen := lexlen + 1; 1718 if ch = equal

1609 lexstrClexlen] := period; 1719 then begin lexlen := 2; lexstr[2] := equal; getch end
1610 while ch in C'0' .. '9'] do 1720 end; -
1611 Eegin 1721 '#:

1612 Llexlen := Lexlen + 1; 1722 begin

1613 Llexstrllexlen := ch; getch 1723 extyp := Lexne; unpack('<>', Llexstr, 1); Lexlen = 2;
1614 end 1724 getch

1615 end 1725 end;

1616 end;” 1726 uT

1617 if ch = Lettere 1727 begin

1618 then 1728 lextyp := lexor; unpack('OR', lexstr, 1); Lexlen := 2;
1619 begin 1729 getch

1620 extyp := lexreal; Llexlen := lexlen + 1; 1730 end;

1621 lexstrllexlenl := ch; getch; 1731 et

1622 if ch in [plus, minus] then 1732 begin

1623 “begin 1733 lextyp := lexand; unpack('AND', lexstr, 1);
1624 lexlen := lexlen + 1; LlexstrClexlen) := ch; 1734 Llexlen := 3; getch

1625 getch 1735 end;

1626 end; 1736 124

1627 while ch in ['0' .. '9'] do 1737 begin

1628 begin - 1738 getch;

1629 exlen := lexlen + 1; Llexstrllexlenl := ch; 1739 if ch = equal

1630 getch 1740 then

1631 end 1741 begin

1632 end 1742 Lexlen := 2; lexstr[2] := equal; Lextyp := lexle;
1633 end 1743 getch

1634 end;” 1744 end

1635 '+T: begin lextyp := lexadd; getch end; 1745 else

1636 '~': begin lextyp := lexsub; getch end; 1746 if ch = greater

1637 'x': begin lextyp := lexmult; getch end; 1747 then

1638 AN Eegm lextyp := lexdvd; getch end; 1748 begin

1639 (' 1749 Lexlen := 2; lexstr[2] := greater;

1640 begin 1750 Llextyp := lexne; getch -

1641 getch; 1751 end

1642 if ch <> star then lextyp := Lexlparen 1752 else lextyp := lexlt

1643 else 1753 end;

1644 begin 1754 >

1645 getch; 1755 begin

1646 if ch = dollar 1756 getch;

1647 then 1757 if ch = equal

1648 begin 1758 then

1649 exlen := 3; unpack('(x$', lexstr, 1); 1759 begin

1650 repeat 1760 Llexlen := 2; lextyp := lexge; Lexstr[2] := equal;

PASCAL NEWS #17

getch
end
else lextyp := lexgt
end;
v
begin
extyp :=
getch
'\e?d,
begin
lextyp :=
getch
end;
Ll
begin
Llextyp @
Lexlen :

Llexle; unpack('<=', lexstr, 1);

lexge; unpack('>=', lexstr, 1);

= lexnot; unpack('NOT', lexstr, 1);

3; getch

end;

5T geg1n lextyp := lexsemi; getch end;
[l

end{ case } 7

end '[_gettok IH

{ hhhkhkkhkh }
{ initialize - perform all necessary initialization }
{ hhkkkdih }

procedure initialize;

var
i: integer;

begin
timein := clock;
with ctab[‘l] do

“begin
c??me == ':H '; ctyp := tch; clen :=2;
cfirst :=
end;
with ctab(2] do
begin
chame '20 ‘s ctyp :=tch; clen :=2;
cfirst :=
end;
with ctabl3] do
begin
°2?m° = ';y '; ctyp := tch; clen := 2;
cfirst :=
end;
with ctabl4] do
begin
cname := 'TIME '; ctyp := tch; clen :=8;
cf1rst =9
with ﬁ ctab[S] do
beg1n
c:amet:= '?ATE '; ctyp := tch; clen := 8;
cfirst :=
uf?ﬁ'btabtb] do
€gin cname := 'TRUE '; ctyp :=tbl; cb :=
with ctabl7] do
Eegiz ;Egged" 'FALSE '; ctyp :=tbl; cb :=
Wi al o
begin cname := "MAXINT '; ctyp := tre; cr :=

ctabl9] do
egin cname := "MININT '; = tr
ctop := ndefconst { number of predefined constants 1;
cvalid := ndefconst;
timedate { put mm/dd/yyhh:mm:ss into cstr[l..16] };
{ keywords are in order of decreasing frequency of access

Wit

lexlen :=

, "', '2': getch { all other characters }

true end;

MARCH, 1980

2;

lexlen := 2;

false end;
maxint end;

:= - maxint end;

with keywd(16] do begin kname := 'AND '; klex := lexand end;
With keywd[20] T begin kname := 'BEGIN '; klex := Lexbeg Eﬁ:
with keywd[14] do begin kname := '; klex := lexcas end;
with keywd[10] do begin kname := '; klex := Lexcon *nd:
with keywd[11] do begin kname := '; klex := Lexdiv E’;
with keywd{21] do begin kname := 'END '; klex := lexend end;
with keywd[8] do begin kname := 'EXTERN '; klex := Llexfwd ond;
with keywdl 2] do begin kname := 'FORTRAN '; klex := Lexfwd E
Wwith keywd[15] do begin kname 'FORWARD '; klex Llexfwd end;
with keywdl 91 do begin kname 'FUNCTION '; klex := lexfun end;
with keywdl 4] do begin kname TMAX '; klex := lexmax ggg;
with keywd[31 do begin kname MCONST '; klex := lexmcon end;
with keywdl 5] TB?Q“E kname := 'MIN '; klex := lexmin end;
with keywdl 61 EF_%_E kname := 'MOD '; klex := Lexmod end;
with keywd[17] do erg_‘ﬂ kname := 'NOT '; klex Llexnot end;
with keywd(12] do begin kname := 'OR '; klex := lexor end;

wWith keywd[19] do

begvn kname := 'PROCEDURE '; klex := lexproc end;
with keywd[13] do begin kname := "RECORD '; klex := lexrec end;
u1th keywd[1] do begin kname := 'RUN '; klex := lexfwd end;
With keywdC 7] do beg1n kname := 'TYPE '; klex := lextpe end;
With keywd[181 do begin kname := 'VAR '; klex := lexvar end;
mtop := 0; dstop := 0; defsCsysincl.dname := "SINCLUDE '; ~—
defs[sysdef1ne].dname = '$DEFINE ';
defsCsysindex].dname '$INDEX ';
defs[sysoptionl.dname '$OPTIONS ';
defsCsyscodeifl.dname := '$CODEIF '; dtop := nsysmac;
atop := maxdefstr { actuals 1n rhs of dstr };
with functl 1] do begin fnnme : '; fntyp := fabs end;
With functl 21 do ggg_n fnnme : ' fntyp := fatn end;
with functl 31 do begin fnnme '; fntyp := fchr end;
with functl 4] Iﬁi fnnme '; fntyp := fcos end;
with functl 5] do begin fnnme : ‘; fntyp := fexp end;
with functl 6] d_J_E fnnme : '; fntyp := flen end;
with functl 71 do o begin fnnme : '; fntyp := fln end;
with funct[8] do begin fnnme '; fntyp := fodd end;
with functl 91 Iﬁi fonme '; fntyp := ford end;
with funct[10] do begin fnnme '; fntyp := frou end;

PAGE 38

with funct[11] do begin fnnme := 'SIN '; fntyp := fsin end;
with funct[12] do begin fnnme := 'SQR '; fntyp := fsqr 333;
with funct[13] do begin fnnme := 'STRINGOF '; fntyp := fstr end;
with funct(14] do begin fnnme := ‘TRUNC '; fntyp := ftru 353;
Gine := 0 { last Iine number for listing };

pline := 1 { next, not last, pascal line number }; .
rewrite(psource); rcopt := defrc; prcopt := defprc;
Listopt := deflist;

expropt := defexpr { parse const expressions };

outpos := 0 { last output position used };

lastlex := lexeof { last token type output }; nerrors := 0;
index := 0;
confl := ttexalpha, lexreal, lexint, lexand, lexor, Llexnot, lexmin,

Lexmax, lexdiv, lexmod, lexbeg, lexcas, lexend, Lexrec, lexfun,
Lexproc, lexcon, lextpe, lexvarl;
linectr := pagesize { force newpage on listing };
ftop := - 1 { no open files }; open(inname);
fstack(0].fname := inlname
end { initialize };
{ hkkkkhkhk }
{ need - need 1 lines: start new page if necessary }
{ khkkkkkikk }

procedure need { l:pgrng };

begin
if (linectr + L) > pagesize
else linectr := linectr + L

id—{_need};

then begin linectr := |; newpg end

{ hkkhkhkhkk }

- skip to a new page and print the heading }

newpg
{ti***ﬁtt}
procedure newpg;

begin
writeln(newpage, titlel, titlela, dte: 9, titlelb, tme: 9);
writeln(double, title2); writeln(space, title3);
write(space, title4); writeln(title5, titleb)
end { newpg };
{ newpy

(Rkkkkkik)

{ open - open an included file }
(22222223 }

procedure open { name:alfa };

yar
f: flrng;

begin
over(ftop, maxfiles); fstack[ftop + 1]1.fname := name;
while fstack[fl.fname <> name do f := f + 1;

if f <= ftop then error(eropen)
else
Eegin

ftop := ftop + 1;
with fstack[ftopl do

begin
{ fgg’ﬁe.;\uggmgé opened with name fname }
reset(ffile); fline :=0; Llast := 0; next :=1;
inlinelnext] := newline; mtop :=0; getch
end
end
end T open };
(hkddd ik }
{ over - abort on overflow }
[hhkhhihh)
procedure over { i:integer; maxval:integer };
begin if i >= maxval then begin error(erover); goto 1 end

end { “over };

{ dededdedhhd }

{ parse - parse the input program }

(dekddddedd l

procedure parse { top:crng;

begin
getkey;
uh1le not (lextyp in Clexeof, Lexend, Lexfwdl) do
Lextyp in Clexrec, lexfun, lexproc, lexcon, Lexmcon, lexbeg,
T lexcasl™
then
case lextyp of
exbeg:
begin
puttok;
if tok in C[lexproc, Llexfunl
then begin tok := lexbeg;
else parse(ctop, lexbeg)
end;
Llexcas:
begin
puttok;
if tok =
end;
Lexcon:
begin puttok;
end;
Lexfun: begin puttok;
Lexmcon: parsemcon;
Lexproc:
begin puttok; scanheader; parse(ctop, lexproc) end;
lexrec: begin puttok; parse(ctop, lextyp) end
end { case™]
else begin puttok;
puttok;

tok:lex };

getkey end

lexrec then getkey else parse(ctop, lexcas)

if expropt then parsecon else getkey

scanheader; parse(ctop, lexfun) end;

getkey end;

PASCAL

1981

NEWS #17

if (lextyp = Lexeof) and (tok <> Llexeof)
then begin error(erparseof); goto 1 end
else
7T (lextyp = Lexend) and not (tok in Clexbeg, lexcas, lexrecl)
-ﬁin error(erparsend)”
else
¥ (lextyp = lexfwd) and not (tok in [lexproc, Lexfunl)

'Fin error(erparsfud);
if lextyp <> Lexeof then getkey;
end { parse };

ctop := top; cvalid := top

{ kAR hkhk }

{ secon - parse a constant declaration with expression }
(RkkRRkAN)

procedure parsecon;

var
Lex;
strng;
tnrng;
boolean;
alfa;

savtyp:
savstr:
savlen:
svalid:
consnam:

begin
getkey;
while lextyp =
5egin
puttok; over(ctop, maxcons); ctop := ctop + 1;
pack(lexstr, 1, consnam); getkey;
if Llextyp <> lexeq

Lexalpha do

then
begin
error(erparscon); ctabCctopl.ctyp := terr; flush;
getkey
end
else
begin
puttok; getkey; while ch = blank do getch;
if (ch = semi) and (lextyp in Clexint, Llexreal, lexotherl)
then
“begin
savstr := lexstr; savlen := lexlen;
savtyp := lextyp; svalid := true
end
else svalid := false;
‘expression;

if (lextyp <> lexsemi) and (not typeis([terr])) then
be in experror(erpconsyn); ctablctopl.ctyp := terr end;
ctablctopl.ctyp <> terr

t en
begin
svalid
then
Ee%in
exstr := savstr; lextyp := savtyp;
Lexlen := savlen
end

else convrt;
puttok; lextyp := lexsemi; lexstr[1] := semi;
lexlen := 1; puttok; ctablctopl.cname := consnam;
cvalid := ctop

end

else

begin
Llexstrf1] := zero; lexstrl2] := semi;
lextyp := lexst; lexlen := 2; puttok

end

end;
if ctablctopl.ctyp in [terr, tot] then ctop := ctop - 1;
getkey

end
end T parsecon };
{ hkkhhkhk }
{ parsemcon - parse an internal constant declaration with expression }
(whkkhkhk)

Erocedure parsemcon;

var
consnam: alfa;
begin
getkey;
while lextyp = lexalpha do
egin
over(ctop, maxcons); ctop := ctop + 1;
pack(lexstr, 1, consnam); getkey;

if lextyp <> lexeq

then
Eegin
error(erparsmcon); ctablctopl.ctyp := terr; flush;
getkey
end
else
begin
getkey; while ch = blank do getch; expression;
if (lextyp < Texsemi) and T_bt typeis(Lterrl)) then
“begin experror(ermconsyn); ctablctopl.ctyp := terr end;
if ctablctopl.ctyp <> terr then -
“begin ctablctopl.cname := consnam; cvalid := ctop end
end;
if_thb[ctop].ctyp in Cterr, tot]l then ctop := ctop - 1;
getkey
end

end T parsemcon };

{ kkkdkkkkk }

{ pushback - push character back onto input }
{ kkkkkhkkk }

MARCH, 1980

{
{
{

{
{

PAGE 39

procedure pushback;

begin
1f mtop > 0 then with mstack[mtopl do mnext := mnext = 1
else next := next -

end { pushback };

ddkkdkkkk]

puttok - put out a token for pascal using cols l-prc }
hhkkhkhhdk

procedure puttok;

var
it lnrng;
begin
1f (lastlex in confl) and (lextyp in confl) then
begin
write(psource, blank) { space needed between tokens };
outpos := outpos + 1
end;
if lextyp = lexeof then begin writeln(psource); outpos := 0 end
else
begin
if (outpos + Lexlen) > prcopt
then
begin
pline := pline + 1; writeln(psource); outpos := 0;
if Llexlen > prcopt
then begin error(erputtok), lexlen := prcopt end
end,
121 1 := 1 to lexlen do write(psource, lexstrlil);
outpos := outpos + Lexlen, Lastlex := lextyp
end

end T puttok };

hhkdkkdik }
relate - parse subexpression with rel. ops }
hhkkkkkhk
procedure relate;
var
op: lex;
i: integer;
r: real;
c1,
c2: csrng;
begin
arith;
while (lextyp in C[lexlt .. lexnel) and (not typeis([terrl)) do
egin
over(ctop, maxcons); ctop := ctop + 1; op := lextyp;
getkey; arith;
if typesmatch
then

with ctabCctop - 1] do
case ctyp of

tin:
begin
1 = ci; ctyp := tbl;
case op of
Texlt: cb i < ctablctopl.ci;
Lexle: cb i <= ctablctopl.ci;
Lexeq: cb i = ctablctopl.ci;
Lexge: cb i >= ctablctopl.ci;
lexgt: cb i > ctablctopl.ci;
Lexne: cb i <> ctablctopl.ci
end { case
end;
tre:
begin
r :=cr; ctyp := tbl;
case op of
Lexlt: r < ctablctopl.cr;
Lexle: r <= ctablctopl.cr;
Lexeq: r = ctablctopl.cr;
Lexge: r >= ctablctopl.cr;
lexgt: r > ctablctopl.cr;
Lexne: = r <> ctablctopl.cr
end { case }
end;
tbl:
case op of
Texlt: cb := cb < ctabLctopl.cb;
Llexle: cb := cb <= ctablctopl.cb;
Llexeq: ¢b := cb = ctablctopl.cb;
lexge: cb := cb >= ctablctopl.cb;
lexgt: cb := cb > ctablctopl.cb;
lexne: cb := cb <> ctablctopl.cb
end;
tot: begin experror(errelatyp); ctyp := terr end;
tch:
begin

c2 := ctablctopl.cfirst; i :=1;
cstrlc2]) do

¢t := cfirst;
while (i < clen) and (cstrlc1] =
=i+

cstop := cstop - clen - ctablctopl.clen;

ctyp := tbi;

case op of
lexlt: cb cstrlc1l < cstrlc2];
Llexle: cb cstrlc1] <= cstrlc2];
lexeq: cb cstrlc1] = cstrlc2];
Lexge: cb cstrlc1] >= cstrlc2];
Lexgt: cb cstrlc1] > cstrlc2];
Lexne: cb cstrlc1] <> cstrlc2]

end { case

end
end T case }

else

FASUAL NEWY #1/ MARCH, 1980 PAGE 4U

2201 if ctablctopl.ctyp <> terr 2302 var

2202 then begin experror(errelconf); ctablctopl.ctyp := terr end; 2303 ratio: real { lines/sec ratio };

2203 ctop := ctop - 1 2304

2204 end 2305 begin

2205 end T relate }; 2306 if outpos > 0 then writeln(psource);

2206 2307 3f nerrors > 0 then

2207 { *kkkkkik } 2308 “begin

2208 { scanheader - scan procedure or function heading } 2309 need(2);

2209 { *xawkirx) 2310 writeln(double, '--=> there were ', nerrors: 1,
2210 procedure scanheader; 2311 ' errors detected by map');

2211 2312 end;

2212 var 2313 tottme := clock = timein;

2213 - ctr: integer; 2314 if tottme = 0 then ratio := 0.0

2214 2315 else ratio := 1000 * Line / tottme;

2215 begin 2316 need(2);

2216 getkey { get name }; puttok { get name }; 2317 writeln(double, '===> end run: ', Line: 5, ' input lines,', pline: 6
2217 getkey { get paren if parameters }; 2318 » ' output lines,', tottme: 7, ' MS (', ratio: 8: 4,
2218 if lextyp <> lexlparen then puttok 2319 ' lines/sec)');

2219 else - 2320 end { terminate };

2220 Eegin 2321

2221 ctr := 1; puttok; 2322 { kkkkkkkk }

2222 repeat 2323 { timedate - get time and date and store in cstr }

2223 getkey; if lextyp = Lexlparen then ctr := ctr + 1; 2324 { wkkkkakx }

2224 if Llextyp ?lexrparen then ctr := ctr - 1; puttok 2325 procedure timedate;

2225 until ctr = 0 2326

2226 end 2327 begin { get time and date fram system and make }

2227 end T scanheader }; 2328 { cstr[l..16] mm/dd/yyhh:mm:ss }

2228 2329 { }

2229 { whkkkikk } 2330 { global variables tme and dte should be }

2230 { term - process multiplication ops in expression } 2331 ¢ set to tl.me -and date for the listing }

2231 { wkxkxdrx) 2332 { ary t ime and date }

2232 procedure term; 2333 unpack(MM/DD/YYHH:MM:SS', cstr, 1); tme := "#TIME* b
2233 2334 dte := "*TODAY* '

2234 var 2335 end { timedate };

2235 op: lex; 2336

2236 2337 { *xkaxkax }

2237 begin 2338 { typeis - return true if type of top of stack is in set }
2238 actor; 2339 [kakkaxwx)

2239 if (lextyp in Clexand .. lexmod]) and (not typeis([terrl)) 2340 function typeis { c:cset):boolean };

2240 then 2341

2261 it (typeis(Ctbl]) and (lextyp = Lexand)) or (typeis([trel) and (2342 begin typeis := ctablctopl.ctyp in ¢ end { typeis };
2242 Lextyp in Clexmult .. lexmax1)) or (typeis(Ltinl) and (lextyp 2343

2243 in Clexmult .. lexmodl)) 2344 [kkkxakkk }

2244 then 2345 { typesmatch - return true if types of top operands campatible }
2245 while lextyp in Elexand .. lexmodl do 2346 { axkxxxrx)

2246 “begin 2347 function typesmatch { :boolean };

2247 ctop := ctop + 1; op := lextyp; getkey; factor; 2348

2248 with ctabfctop = 1] do 2349 begin

2249 7T (op = lexand) and (ctyp = tbl) 2350 typesmatch := false;

2250 then cb := cb and ctablctopl.cb 2351 with ctabCctop = 1] do

2251 else 2352 T3f ctyp = ctablctopl.ctyp then

2252 it (op in [lexdiv .. lexmod]) and (ctyp = tin) 2353 TTif ctyp <> tch then typesmatch := true

2253 then 2354 else if clen = ctablctopl.clen then typesmatch := true
2254 case op of 2355 end { typesmatch };

2255 Texdiv: ci := ci div ctablctopl.ci; 2356

2256 lexmod: ci := ci mod ctabLctopl.ci 2357 [wakarrxx }

2257 end { case } 2358 { variable - recognize variable in expression }

2258 else 2359 [*kkkkkkk

2259 if (op in Clexmult .. Lexmax1) and typeis([tin, trel) 2360 procedure variable;

2260 Then 2361

2261 begin 2362 var

2262 3T (ctyp = tin) and typeis([tinl) and (op <> 2363 name: alfa;

2263 Lexdvd) 2364 found: boolean;

2264 then 2365 fun: fns;

2265 case op of 2366

2266 lexmult: ci := ci * ctablctopl.ci; 2367 begin

2267 Lexmin: 2368 1T not (lextyp in [lexalpha, lexint, lexreal, lexstl)
2268 if ctablctopl.ci < ci 2369 then begin experror(ervalexp); ctablctopl.ctyp := terr end
2269 then ci := ctablctopl.ci; 2370 else

2270 Lexmax: 2371 case lextyp of

227 if ctablctopl.ci > ci 2372 Texint: begin convrti; getkey end;

2272 Then ci := ctablctopl.ci 2373 lexreal: begin convrtr; getkey end;

2273 end T case } 2374 lexst: begin convrts; getkey ena_"

2274 else 2375 Lexalpha:

2275 begin 2376 begin

2276 gorcereal; 2377 pack(lexstr, 1, name); getkey; found := false;
2277 case op of 2378 if Llextyp <> Llexlparen

2278 Lexmult: cr := cr * ctablctopl.cr; 2379 then

2279 lexdvd: cr := cr / ctablctopl.cr; 2380 begin

2280 Lexmin: 2381 findcon(name, found);

2281 if ctablctopl.cr < cr 2382 if not found then

2282 then cr := ctablctopl.cr; 2383 \nth ctabLctop] do

2283 Lexmax: 2384 " begin ctyp := tot; co := name end
2284 if ctablctopl.cr > cr 2385 end

2285 then cr := ctablctopl.cr 2386 else

2286 end T case } 2387 begin

2287 end 2388 flookup(name, fun, found) { function call };
2288 end 2389 if not found then experror(ervarfnct)
2289 else 2390 else

2290 if ctablctopl.ctyp <> terr 2391 begin

2291 then experror(ertermtyp); 2392 getkey; expression;

2292 ctop := ctop - 1 2393 if lextyp <> Lexrparen then experror(ervarrpar)
2293 end 2394 else begin getkey; evalfns(fun) end
2294 else error(ertermtyp) 2395 end

2295 end T tem }; 2396 end

2296 2397 end

2297 { waxxxaax | 2398 end T case }

2298 { terminate - print statistics and close files } 2399 end T variable };

2299 { *xxwxxxx |} 2400 begin { map }

2300 procedure terminate; 2401 initialize; parse(ctop, lLexeof);

2301 2402 1: terminate end.

A R E X E X XX E X X X X K B R

PASCAL NEWS #17 MARCH, 1980 PAGE 41

1 program Xref(input, output, tty) { N. Wirth 10.2.76 }; 111 LineBuffer = packed array [1 .. 80] of char;
2 112 ChrType = (ucletter, LcLetter, digit, other);
3 { Cross Reference generator for Pascal ‘programs } 113 FilStates = (inout, inwrk1, wrklout, wrklwrk2, wrk2out,
4 { quadratic quotient hash method } 114 wrk2wrk1);
S { revised by R.J.Cichelli 16-Feb-79 } 115
6 { include perfect hash function, ring data structures, } 116 var
7 { and clean up code. } 17 charindx,
8 { revised by J.P.McGrath 22-May-79 } 118 idlen,
9 { predefined identifier processing } 119 HshTblIndx: integer;
10 { modified quicksort algorithm } 120 empty: alfa;
11 { command line processing by M.Q.Thompson } 121 identifier: alfa;
12 { revised by R.J.Cichelli 26-Nov-79 } 122 CurrentLineNumber: integer { current line number };
13 { string table processing and work-files } 123 LinesOnPage: integer { number of lines on current page };
14 { Copyright 1979 Pascal Users Group } 124 LineNosPerLine: integer { no. of line-numbers per line };
15 permission to copy - except for profit - granted } 125 HashTable: array [index] of word { hash table };
16 { 126 StgTable: EacEed array [StgTblIndx] of char
17 * Purpose: 127 i for storing 1dentifiers };
18 This program cross references Pascal programs. 128 FreeStgPtr: integer;
19 It supports upper and lower case, long identifiers and 129 FreeltemPtr: ItemPtr;
20 long programs. 130 ItemCnt: integer;
21 131 ChrCatagory: array [charl of ChrType;
22 * Authors: 132 ChrSortOrd: array Cchar] of integer;
23 N. Wirth, R.J.Cichelli, M.Q.Thompson, J.P.McGrath. 133 ReservRepresentedBy,
24 134 PredefRepresentedBy: array [char { 'A' .. '9' } 1 of integer;
25 * Method: 135 LastLeadingChar,
26 Quadratic quotient hash method with tagged, quick-sorted string 136 ch,
27 table and perfect hash function reserved word and predefined 137 rawch,
28 identifier filters. Overflow processing by multi-file merge-sort. 138 fstchar,
29 139 Lstchar: char;
30 * Description of parameters: 140 reserved: array [1 .. NumOfReserved] of alfa;
3 DEC PDP 11 RSX protocol. 141 predefined: array [1 .. NumOfPredefnd] of alfa;
32 PXR <output file>=<input file> [<options>] 142 LineLength: integer;
33 <options> ::= 143 cmlline: LineBuffer;
34 C- captalize identifiers, 144 cmllen: integer;
35 D+ display program, 145 today,
36 P~ cross reference predefined identifiers, 146 now: packed array [1°.. 10] of char;
37 T- terminal output (80 columns and ids. only), 147 OutputSection: (listing, idents);
38 W=132 width of output. 148 PageNumber: integer;
39 149 DisplaylsActive,
40 * Input: 150 DoPredefined,
41 Pascal Program source. 151 terminal,
42 152 AllCapitals: Boolean;
43 * Qutput: 153 state: FilStates;
44 Listing and references. 154 NextState: array [FilStates, Boolean] of FilStates;
45 155 wrk2active: Boolean;
46 * Limitations: 156 wrki,
47 157 wrk2: text;
48 * Computer system: 158
49 Program was run under Seved Torstendahl's DEC PDP 11 RSX Pascal. 159 procedure Pageheader;
50 This compiler (version 4.5) doesn't support program parameters 160
51 in full generality. In this program implememtation specific 161 var
52 code handles control card cracking and file variable and system 162 it integer;
53 file name associations. 163 IsNarrow: 0 .. 1;
;g 164
* Installation under RSX: 165 begin
56 166 IsNarrow := 0;
57 DP1: XREF /~FP/MU, T1 : /SH=DP1 : XREF . ODL/MP) 167 if not terminal
58 TASK=. ..PXR 168 then
59 LIBR=SYSRES:RO 169 begin
60 EXTSCT=$HEAP1: 40000 170 PageNumber := PageNumber + 1; page(output);
61 EXTSCT=$$FSR1: 5140 171 write(' CrossRef - ');
62 UNITS=6 172 case OutputSection of
63 // 173 listing: write('Program Listing ')
64 174 idents: write('Identifier Cross-Reference ")
65 ;ODL (overlay description) 175 end;
66 .ROOT R1-*(01,02) 176 write("' ', today, ' ', now: 8);
67 : .FCTR DP1:XREF/LB:XREF : PAGEHE-DPO: [1, 1] PASLIB/LB 177 if LineLength <= DefaultTerminalWidth
68 ol: .FCTR DP1:XREF/LB:QUICKS 178 then begin writeln; write(' '); IsNarrow := 1; end
69 02: .FCTR DP1:XREF/LB: INITPE-O3-* (021,022) 179 else write(' ";
70 . 021: .FCTR DP1:XREF/LB: INITCH 180 for i := 1 to cmllen do write(cmllineCid);
n 022: .FCTR DP1:XREF/LB:INITPR 181 write(' ': (25 * IsNarrow + 40 - cmllen));
72 03: .FCTR DPO: [1,1]PASLIB/LB:GCML 182 writeln(' Page ', PageNumber: 3); writeln;
73 .END 183 end; ‘
7% } 184 LinesOnPage := IsNarrow;
75 185 end { pageheader };
76 {$R- no runtime testing } 186 T
77 ° {$W- no warning messages } 187 function UpperCase(ch: char): char;
78 188
79 const 189 begin { This should work for both ASCII and EBCDIC. }
80 quote = ''''; 190 if ChrCatagorylch] = LcLetter ’
81 LCurleyBra = '{'; - M then UpperCase := chr(ord(ch) - ord('a') + ord('A'))
82 rCurleyBra = '}'; 192 else UpperCase := ch;
83 HashTblSize = 997 { size of hash table - prime }; 193 end [uppercase };
84 MaxItems = 4000 { arbitrary limit on incore references }; 194
85 StgTblSize = 6000 { string table size }; 195 function EqlStg(indx1, len1, indx2, len2: integer): Boolean;
86 StgTblLimit = 5900 { 1limit is size - 100 }; 196
87 NumOfReserved = 40 { size of reserved word table }; 197 var
88 NumOfPredefnd = 48 { size of predefined id table }; 198 T disp,
89 keylength = 10 { keylength }; 199 StopAt: integer;
90 DigitsPerNumber = 6 { no. of digits per number }; 200
91 LinesPerPage = 57 { 1lines/page }; 201 begin
92 pefaultTerminalWidth = 80 { terminal width }; 202 if len1 <> len2 then EqlStg := false
93 DefaultLpWidth = 132 { 1line printer width }; 203 else
9% MaxLineNo = maxint { maximum line number }; 204 begin
95 205 isp := 0; StopAt := lenl - 1;
96 type 206 while (disp < StopAt) and (StgTablelindx1 + displ = StgTablel
97 text = file of char; 207 indx2 + displ) do
98 index = U .. HashTblSize; 208 disp := disp + 1;
99 StgTbhlIndx = 1 .. StgTblSize; 209 EqlStg := StgTablefindx1 + disp] = StgTablelindx2 + displ
100 alfa = gacked array [1 .. keylengthl of char; 210 end
101 ItemPtr = "jtem; - 21 end T eqlstg };
102 word = record 212 T
103 keyindx, 213 function LssStg(indx1, len1, indx2, len2: integer): Boolean;
104 keylen: StgTblIndx; 214 T
105 lastptr: ItemPtr 215 var
106 end; 216 -7 StopAt,
107 item = packed record 217 disp,
108 LineNumber: 0 .. MaxLineNo; 218 point: integer;
109 next: ItemPtr 219

110 end; 220 begin

PASCAL NEWS #17

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

330

if len1 < Len2
disp := 0;
while (StgTablelindx1 + displ =

then StopAt := lenl - 1

StopAt) do
disp := disp + 1;

point := disp;

while (UpperCase(StgTableLindx1 + displ)
+ d1sp])) and (disp < StopAt) do
disp := disp + 1;

if UpperCase(stgTablelindx1 + displ) =
displ)

then
it lenl =

then

Len2

MARCH,

else StopAt := len2 - 1;

StgTablelindx2 + displ) and (disp <

= UpperCase(StgTablelindx2

UpperCase(StgTablelindx2 +

LssStg := ChrSortOrd(StgTablelindx1 + pointl] < ChrSortOrdl

StgTablelindx2 + pointl]
else LssStg := len1 < Llen2
else
LssStg :=
Cindx2 + displ];
end { 1ssstg };

{$¥+ new segment }
procedure PrintTables(var infil, out: text);

var

tryindx,
trylen:
SwapWord:
midpoint:
Thlindx,

MoveTolndx: index;
i: integer;
NumberCounter: integer;
CmpRefPtr,
CmpRefLen:

integer

word { quicksort temporary 1};
integer;

integer;
procedure QuickSort(LowerBound, UpperBound: integer);

var
TmpLowerBnd,
TmpUpperBnd: integer;
begin
repeat
TmpLowerBnd :=
midpoint := (Tanoveand + TmpUpperBnd) div 2;
tryindx := HashTable[midpointl.keyindx;
trylen := HashTablelmidpointl.keylen;
repeat

LowerBound;

ChrSortOrdCStgTablelindx1 + displ] < ChrSortOrd[StgTable

{ quick sort temporaries };

TmpUpperB8nd := UpperBound;

while LssStg(HashTableLTmpLowerBndl.keyindx, HashTablel

mpLowerBndl.keylen, tryindx, trylen) do
TmpLowerBnd := TmpLowerBnd + 1;

while LssStg(tryindx, trylen, HashTable[TmpUpperBndl.keyindx,

HashTableLTmpUpperBndl.keylen) do
TmpUpperBnd := TmpUpperBnd - 1;
if TmpLowerBnd <= TmpUpperBnd
then

begin
guapuord := HashTablelTmpLowerBndl;
HashTable[TmpLowerBnd] :=
HashTable[TmpUpperBnd] := SwapWord;
TmpLowerBnd := TmpLowerBnd + 1;
TmpUpperBnd := TmpUpperBnd = 1

end

unt1T—_hpLoweand > TmpUpperBnd;

HashTable(TmpUpperBndl;

7T TmpUpperBnd - LowerBound < UpperBound - TmpLowerBnd

Tﬁbn
begin
LowerBound < TmpUpperBnd
-F}n QuickSort (LowerBound, TmpUpperBnd);
LowerBound := TmpLowerBnd;
end
else
begin
11 TmpLowerBnd < UpperBound
then QuickSort(TmpLowerBnd, UpperBound);
UpperBound := TmpUpperBnd;
end;
until UpperBound <= LowerBound;
end { quicksort };

procedure EndLine(achar: char);

begin
if OutputSection = idents
then
begin
writeln(out); LinesOnPage := LinesOnPage + 1;

if LinesOnPage > LinesPerPage
then begin Pageheader; LinesOnPage := 1 end;
end
else i writeln(out, achar);
end { endline };
procedure PrintNumbers(aword: word);
var
LoopPtr,
TailPtr: ItemPtr;

begin
TailPtr :=
TailPtr :=
repeat

if NumberCounter =

begin

NumberCounter := 0; EndLine(',');
write(out, ' ': keylength + ord(OutputSection

aword.lastptr;
LoopPtr;

LineNosPerLine then

LoopPtr := TailPtr”.next;

= idents));

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
370
3n

372
373
374
375
376
377
378
379
380
381

440

1980 PAGE

end;
NumberCounter := NumberCounter + 1;
writelout, LoopPtr”.LineNumber: DigitsPerNumber);

LoopPtr := LoopPtr”.next
until LoopPtr = TailPtr;
{ Tfree ring
aword. lastptr”.next := FreeltemPtr; FreeltemPtr := LoopPtr;
EndLine('.");

end { printnumbers };

procedure NextRef;

begin
if CmpRefLen > 0
then
Eegin
CmpRefLen := 0;
if not eof(infil) then
" repeat
StgTable[CmpRefPtr + CmpRefLen] :=
CmpRefLen := CnpRefLen +1;
until Ginfil® "

infil";
get(infil)

end
end T nextref };

procedure Outld(keyptr, lenkey: integer; SetUpForNos: Boolean);

var
chindx: integer;
begin
if OutputSection = idents
then

begin
i? (LinesOnPage + 4) > LinesPerPage
Then begin Pageheader; LinesOnPage := 1 end
else
1? LastLeadingChar <> UpperCase(StgTablelkeyptrl)
then EndLine(' *);
writeout, ' ');
LastLeadingChar :=
end;
for chindx := keyptr to keyptr + lenkey = 1 do
“write(out, StgTablefchindx1);
if SetUpForNos

UpperCase(StgTablelkeyptrl);

42

then
begin
if lenkey > keylength
then
begin
write(out, ' ': ((DigitsPerNumber - 1) - ((lLenkey - (
keylength + 1)) mod DigitsPerNumber)));
NumberCounter := ((Tenkey - keylength) div DigitsPerNumber
) +1;
end
else
begin
writeCout, ' ': (keylength - Llenkey));
NumberCounter := 0
end;

end
end T outid };
procedure CopyRef(ALLOfIt: Boolean);

var
Lastlen: integer;

procedure CopylLines;

var

RefDone:
savech:

Boolean;
char;

begin
astlen := CmpReflLen;
repeat
repeat
write{out, infil®); Lastlen :=
until Ginfil® = *.') or (infil®

RefDone := false;

Lastlen + 1; get(infil)
="',") or eolnlinfil);

savech := infil";
if savech = ',
then

begin

Refbone := true;
if not ALLOfIt then
begin
savech = ' '; .
NumberCounter := ((lastlen - keylength) div
DigitsPerNumber);
end;
end
else lastlen := 0;
while not eoln(infil) do get(infil);
IF eof(infil
then begin CmpRefLen := 0;

RefDone := true; end
else get(infil);

3f savech <> ' ' then
begin
EndLine(savech);

if not Refbone and (OutputSection = idents)
then n writeCout, ' ');
end;
untiT Refdone
end { copy lines };

begin { copyref }
OutId(CmpRefPtr, CmpRefLen, false);
end { copyref };

CopyLines;

PASCAL NEWS #17

441
442
443
444
445
446
447
448
449

540

549
550

procedure syncronize(aword: word);

var
done: Boolean;

begin
done := false;
with aword do

repeat
1f CmpRefLen = 0

Then begin done := true;
else
7T LssStg(CmpRefPtr, CmpRefLen, keyindx, keylen)
then begin CopyRef(true); NextRef end
else
7T EqLStg(CmpRefPtr, CmpReflLen, keyindx, keylen)

Outld(keyindx, keylen, true); end

then begin CopyRef(false); NextRef; done := true; end
else
begin Outld(keyindx, keylen, true); done := true; end;

until done;
end { syncronize };

begin { printtables }
LinesOnPage := LinesPerPage; MoveToIndx := 0 { compress table };
for TblIndx := 0 to HashTblSize - 1 do
T 1f HashTableCTb{Indx1.keyindx <> 0 then
egin
HashTable[MoveToIndx] := HashTable[TblIndx1;
MoveToIndx := MoveTolndx + 1
end;
if MoveToIndx > 0 then QuickSort(0, MoveTolndx - 1);
TineNosPerLine := (LineLength - keylength - 1) div DigitsPerNumber;
CmpRefPtr := FreeStgPtr + idlen; LastLeadingChar := ' ';
j% state > inwrk1
then begin CmpRefLen := 1;
else CmpReflLen := 0;
11 HashTablel0l.keyindx <> 0 then
12% TblIndx := 0 to MoveToIndx - 1 do
egin
syncronize(HashTable[TblIndx1);
PrintNumbers(HashTable[TblIndx1);
end;
while CmpReflLen <> 0 do begin CopyRef(true);
end [printtables }; ’

NextRef { first reference }; end

NextRef; end;

procedure DumpTables;

var
chptr: integer;

begin
state := NextState[state, (OutputSection = idents)];
case state of
Jnout: PrintTablesCinput { dummy }, output);
inwrk1:
begin
{} rewrite(wrkl, 'XRF1JNK.TMP;1',, 'DPO:");
PrintTables(input { dummy }, wrk1);
end;
uﬁETE@t:
egin
{} _?Eet(wu, 'XRF1INK.TMP;1%,, 'DPO:');
PrintTables(wrk1, output);

end;
wrklurk2:

begin

{} reset (wrk1, "XRF1JNK.TMP;1',, 'DPO:');
{} rewrite(wrk2, 'XRF2JNK.TMP;1',, 'DP0:");
wrk2active := true; PrintTables(wrkl, wrk2);
end;
wrkZout :
begin
{} ~reset(wrk2, 'XRF2JNK.TMP;1',, 'DPO:');
PrintTables(wrk2, output)
end;
wrk2wrk1:
begin
{} reset (wrk2, 'XRF2JNK.TMP;1',, 'DPO:');
{} rewrite(wrkl, 'XRF1INK.TMP;1',, 'DPO:');
PrintTables(wrk2, wrk1)
end
end Tcase };
J¥ OutputSection <> idents
then

begin
gteant :=0;
for HshTblIndx := 0 to HashTblSize do
HashTable[HshTblIndx1.keyindx := 0;
for chptr := 1 to idlen do
StgTablelchptr] := StgTable[FreeStgPtr + chptr - 11;
FreeStgPtr := 1;
end;
end T duwp tables };

procedure scan;
Label
exit scan on eof while processing camment };
procedure advance;
begin
if DisplayIsActive

rawch := input”;
end { advance };

then write(rawch); get(input);
ch := UpperCase(input”);

procedure OpenLine;

begin
CurrentLineNumber := CurrentLineNumber + 1;

MARCH,

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

582

1980 PAGE 43

if DisplayIsActive
then
begin
if LinesOnPage >= LinesPerPage then Pageheader;
write(' ', CurrentLineNumber: DigitsPerNumber, ' ');
LinesOnPage := LinesOnPage + 1;
end;
e_nd'{_épenline };

procedure Closeline;

begin . R
get(input); rawch := input”; ch := UpperCase(input”);
if DisplayIsActive then writeln;

end { closeline };

2

procedure enter;

var
hashval,
FstHashval,
displacement:
NewltemPtr,
TailPtr: ItemPtr;
found: Boolean;
i: integer;

integer;

procedure MakeNew(var AnItemPtr: ItemPtr);

begin
if (ItemCnt > MaxItems) or (FreeStgPtr > StgTblLimit)
then DumpTables;
if FreeltemPtr = nil
else
begin
AnltemPtr := FreeltemPtr;
end;
ItemCnt := ItemCnt + 1
end { makenew };

then new(AnItemPtr)

FreeItemPtr := AnltemPtr”.next

begin { enter }
MakeNew(NewItemPtr); hashval :=1;
for i := FreeStgPtr to FreeStgPtr + idlen - 1 do
hashval := (hashval * 17 + abs(ord(StgTable[71) = ord('A*))) mod
HashTblSize;
FstHashval := hashval; found := false; displacement := 1;
NewItemPtr”.LineNumber := CurrentLineNumber;

repeat
it HashTableChashvall.keyindx = 0
then
begin { new entry }
%ound := true; HashTable[hashvall.keyindx := FreeStgPtr;
HashTableChashvall.keylen := idlen;
FreeStgPtr := FreeStgPtr + idlen;
HashTable[hashvall.lastptr := NewItemPtr;
NewItemPtr”.next := NewltemPtr;
end
else .
if EqlStg(FreeStgPtr, idlen, HashTableChashvall.keyindx,
HashTableChashvall.keylen)
then
“begin { found }
found := true; TailPtr := HashTablelhashvall.lastptr;
NewItemPtr”.next := TailPtr .next;
TailPtr®.next := NewItemPtr;
HashTableLhashvall.lastptr := NewItemPtr;
end
else
begin { collision }
hashval := (hashval + displacement) mod HashTblSize;

displ := displ +2;
if displacement > 2 * HashTblSize then
begin -
DumpTables; hashval := FstHashVal;

displacement := 1;
{ start over }
end
end
until Found
end [enter };

Ly
if eof(input)
then begin writeln(tty, ' Empty input file.');
rawch := input®; ch := UpperCase(input”);
while not eof(input) do
begin
OpenLine;
while not eoln(input) do

begin
ifch="'"

else
T3f chrcatagory[chl in CucLetter, lcLetter]
then
begin
charindx :=
fstchar := ¢
repeat
if charindx < keylength then
begin -
charindx := charindx + 1;
identifierCcharindx] := ch;

end;
if-iT1CapitaLs

goto 1; end;

then advance

idlen := 0; identifier := empty;

’
,

then StgTable[FreeStgPtr + idlen] := ch
else StgTable[FreeStgPtr + idlen] := rawch;

idlen := idlen + 1; advance
until not (ChrCatagorylchl in [ucLetter, digitl);
Ustchar := identifier[charindxl;
if idlen > charindx then enter

PASCAL NEWS #17

661
662
663
664
665
666
667
668
669

else
li identifier <> reservedlcharindx +
ReservRepresentedBy[fstcharl +

ReservRepresentedBy[lstcharll { perfect hash }

then
if DoPredefined
else
if identifier <> predefinedlcharindx +
PredefRepresentedBylfstcharl +

then enter

670
671

PredefRepresentedBy[lstcharl]
then enter;
end T
else
if ChrCatagorylchl =
then
repeat advance; if ch =
until (ChrCatagorylchl <> digit) and (
T and (ch <> 'B') and (ch <> 'e'Y

digit

678 {}

e
if ch =
then

begin { string }
repeat advance
until (ch = quote) or eoln(input);
if not eoln(input) then advance
end =
else
if ch =
then
begin { comment }
advance;
while ch <> rCurleyBra do
beg1n
advance;
while eoln(input) do
begin
CloseLine;
if eof(input)
else OpenLine
end
end;
advance
end
else”
if ch = '('
then
Begin
advance;
if ch =
Then
begin { comment }
advance;
repeat
while ch <> '*' do
begin
if eoln(input)
then
repeat
CloseLine;
if eof(input)
else OpenLine
untiT not eolnCinp
else advance
end;
advance
until ch =
advance
end
end
else advance

quote

LCurleyBra

gt

9

end;
CloseLine
end;
1: { “terminate scan on eof while processing comment }
end { scan };

{$Y+ new segment }
procedure initialize;
procedure InitLetDig;

const
MinCharord = 0;
{ ordinal of minimum character }
DefaultMaxCharOrd = 64;
{ BCD = 64 & ASCII = 127 & EBCDIC = 255 }
var

i,
MaxCharOrd:
ch:

integer;
char;

procedure InitChrVal(StartChar, endchar: char; aval:

var
LcChar,
ucChar: char;

begin
EBL lcChar := StartChar to endchar do
begin
ChrCatagoryllcChar] := LcLetter;
ChrSortOrdClcChar] := aval; wucChar := Uppe
ChrCatagorylucChar] := ucLetter;
ChrSortOrdCucCharl := aval - 1;
end
end T initchrval };

aval := av.

begin { initletdig }

then advance

ch <> 'E")

then goto 1

then goto 1
ut)

integer);

rCase(lcChar);

al + 2;

m
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
91
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

MARCH, 1980

if ord(*A') = 193 . then { EBCDIC } MaxCharOrd := 255
else
if ord('A*) = 65 then { ASCII } MaxCharOrd := 127

‘else MaxCharOrd := DefaultMaxCharOrd;
for i := HinCharOrd to MaxCharOrd do
begin ChrCatagorylchr(i)] := other;
eng-
for ch := '0° 1o '9' do

ChrsortordCchr(i)] :

PAGE 44

=0;

“begin
ChrCatagory[chl := digit;

ChrsortOrdCchl := 100 + ord(ch) - ord('0');

end;

{ Should work for all Pascal campatible character sets }
{ which are cont:.guous and for EBCDIC as well.

, 2);
38);

InitChrval('a', 'i
InitChrval('s', "2 '

end { initletdig };
procedure InitPerfect;

procedure InitReserved;

InitChrval('j', 'r*,

20);

yar
ch: char;
begin { RIC's perfect hash function }

for Pascal's reserved words and predefined identifiers }
{ table index = identifier length +
{ reservrepresentedby[identifier's first character] + }
{ reservrepresentedby[identifier's last character] }
for ch := '0' to '9' do ReservRepresenteday[ch] :=0;

ReservRepresentedBy['A']
ReservRepresentedBy('B']
ReservRepresentedBy['D"]
ReservRepresentedBy['F']
ReservRepresentedBy['H']
ReservRepresentedBy['I']
ReservRepresentedBy['K']
ReservRepresentedBy['M']
ReservRepresentedBy['N']
ReservRepresentedBy['P']
ReservRepresentedBy['R‘]
ReservRepresentedBy['T']

ReservRepresentedBy['V']
ReservRepresentedBy['X']
ReservRepresentedBy['Z']

ReservRepresentedBy['C'] :
ReservRepresentedBy['E'] :
ReservRepresentedBy['G'] :

ReservRepresentedBy('J'] :=
ReservRepresentedBy['L'] :

ReservRepresentedBy['0°]
ReservRepresentedsy('Q']
ReservRepresentedBy('S']
ReservRepresentedBy['U']
ReservRepresentedBy['W']
ReservRepresentedBy['Y']
reserved(1] := empty;

s 80 as o0 00 we
"
-2 000

Wive %o v N
~

~

reserved(38] := empty; reserved[39] := empty;
reservedC40] := empty;
ch := 'A' { prevent optimizing 'and' to - compile bug };
reserved[14] := "AND '; reserved(29] := 'ARRAY ';
reserved(33] *BEGIN '; reservedl 5] := 'CASE
reserved[12] := 'CONST ' reserved13] := 'DIV ;
reservedl 2] := 'DO '; reservedl 6] := :DOHNTO ';
o= ! L .
e e GommER TR
reserved[36] := 'FUNCTION °;
reservedl 7] := 'GOTO ' { to xref gotos set to empty };
reserved(30] := 'IF '; reserved[28] := "IN W
reserved(35] := 'LABEL '; reserved[18] := 'MOD ';
reserved[31] 'NIL '; reserved[22] := 'NOT '

reserved[17] := 'OF
{ if otherwise

reservedl 9] := ' OTHERWISE

becames reserved then flush left the next. }

{ anticipating the revised standard };

reserved[16] := 'OR '; reserved[21] := 'PACKED '
reserved(24] 'PROCEDURE '; reserved[37] := 'PROGRAM ';
reserved(20] 'RECORD '; reserved(26] := 'REPEAT '
reserved[15] 'SET '; reserved(23] := 'THEN ¥
reservedl 8] 'T0 '; reserved(10] := °'TYPE '
reserved(34] TUNTIL '; reserved(27] := 'VAR]
referye§€:1] :=e$HH;LE '; reserved[25] := 'WITH 'z

end initreserv ;

procedure InitStates;

begin
NextStatelinout, truel := inout;
NextStatelinout, falsel := inwrkil;

NextStatelinwrk1, truel := wrklout;
NextStatelinwrk1, falsel := wrklwrk2;
wrklout;

NextStatelwrklout, truel :=

NextStatelwrkiout, falsel :=
NextStatelwrkiwrk2, truel :=

wrkiout;
wrk2out;

NextState[wrkiwrk2, falsel := wrk2wrkil;
NextStatelwrk2out, truel := wrk2out;

NextStatelwrk2out, falsel
NextStatelwrk2wrk1, truel :
NextStateLwrk2wrki,
end { initstates };
{$Y+ new segment }
procedure InitPredefined;

var
ch: char;

begin

for ch := '0" to '9' do PredefRepresentedBy[chJ

PredefRepresentedBy[‘AT :
PredefRepresentedBy['C']
PredefRepresentedBy['D"']
PredefRepresentedBy['F']
PredefRepresentedBy['H']
PredefRepresentedByl'J"']
PredefRepresentedBy('L"']
PredefRepresentedBy['N']
PredefRepresentedBy['P']
PredefRepresentedBy['R']
PredefRepresentedBy['T']

wrk2out;
wrklout;
falsel := wrklwrk2;

state := inout;

0-
PredefRepresentedBy['B']

PredefRepresentedBy['E']
PredefRepresentedBy['G']
PredefRepresentedBy['I']
PredefRepresentedBy['K']
PredefRepresentedBy['M']
PredefRepresentedBy['0']
PredefRepresentedBy['Q']
PredefRepresentedBy['S']
PredefRepresentedBy['U']

-
N WVISE e e OvSe
~

N w

PASCAL NEWS #17

88t
882

{

(
{}
0
{1
{}
{}
{1
{
i
{}
{}
{}
{}
{}
{1
{1
{1

A o s s o sy s e ey e by e, i i i A i e
N M e Sy e St St gt et Nl S g g St vt g e A N Nl Nt Nt St At g Nl gl g s

be in

PredefRepresentedBy['V'] := 0; PredefRepresentedBy('W'] := 10;
PredefRepresentedBy('X'] := 0; PredefRepresentedBy[('Y'] := 0;
PredefRepresentedBy['2'] := 0; predefined[1] := empty;

predefinedl 2] := empty;
predefined[42] := empty;
predefined(44] := empty;

predefinedl 3] := empty;
predefined(43] := empty;
predefined(45] := empty;

predefined(46] := empty; predefined(47] empty;
predefined[48] := empty;
ch = 'A* event optimizing 'abs' to empty - compile ;
predefmed ESSgr 'ABS p n? oLy o bug }s
predefined[40] := 'ARCTAN '
predefined(35] 'BOOLEAN '
predefined[15] 'CHAR ';
predefined[14] ';
predefined[29] ';
predefined(31] ',
predefined(11] ';
predefined(28] '
predefined[261 ';
predefined[13] '; predefined[3] := 'GET '
predefinedl 81 '; predefinedf10] := 'INTEGER ';
prege;jneggggg :; predefined[7] := 'MAXINT '
predefine ;
prege;inedgigg '; predefined[6] := 'OUTPUT ';
predefined B '
predefined(27] : ';
predefined[41] : ';
predefined[21] : ';
predefined(23] : '
predefined(25] : '
predefined(17] : '; predefined[5] := 'RESET '
predefined[12] := 'REWRITE ';
predefined[24] := 'ROUND ';
predefined(37] 'SIN ';
predefined(181 := 'SQR ';
predefined[19] := 'SQRT ';
predefined(30] := ‘succ '; predefined(4] := 'TEXT ';
prege::neggsgg := :;:g:CK :; predefined(16] := 'TRUNC ';
predefine H ;
predefined[20] := 'WRITE '
predefined(36]1 := *WRITELN °';
end { initpredefined };

{$Y+ new segment }

initperfect

}
tReserved, InitStates; InitPredefined;

end { initperfect };

procedure ConnectFiles;

const
FSpeclLeng = 32;

type
fspecs = array [1 .. FSpecLeng] of char;
FileSpecs = array [1 .. 2] of fspecs;
extension = packed arra .. 4 of char;
FileNames = array -+ 321 of char;
devs = array [1 .. 5] of char;
dirs = array [1 .. 91 oF char;
nams = array [1 .. 181 of of char;
var
fspec: FileSpecs;

flen: 0 .. FSpecLeng;
cmlptr: 1 .. 80;
CmtCh,
CmdCh: char;
DotFound: Boolean;
pos: integer;

procedure SplitFileSpecification (fspec: FileNames;

var dev: devs; var dir: dirs; var nam: nams);

Label 2;
var
T3 1 .33 i1 ..19;
begin
ev := ' '; dir =" '
nam := ']

for i :=1 to 32 do
if fspeclil >= 'a' then
" fspec[il := CHR (ord(fspecil) - 408);

izx=1;
while not (fspeclil in C':', 'C', '.', *;'D) and (i < 32) do
begin
1:=13+1;
end;

' then { contains a device name }

1 to i do

5 then dev[jl := fspec[jl;
;

<=
+1

if fspeclil = '[' then { contains a directory part }
begin -
J=1;
repeat
g1r[j] := fspeclil;
i=di+1; j =3+ 1;
until (i > 32) or (j > 9) or (dirfj=1] = '1*);

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

MARCH, 1980

procedure reeset (var f: text;

procedure reewrite (var f: text;

begin {

end;
if i <= 32 then { contains file name part }
begin
Ji=1;
while ord(fspeclil) > ord(' ') do
while do
begin
nam(j] := fspec[1],
ic= 1 +1; ji=3+1;
if G > 32) or (J > 18) then goto 2;
end;
end;
end;

var fspec: FileNames);

var

dev:devs; dir: dirs; nam: nams;

begin
SplitFileSpecification (fspec, dev, dir, nam);
reset (f, nam, dir, dev);

end;

var fspec: FileNames);

var

dev:devs; dir: dirs; nam: nams;

begin
SplitFileSpecification (fspec, dev, dir, nam);
rewrite (f, nam, dir, dev);

end;

procedure GCML(var line: LineBuffer; var len: integer);
extern { return command line in Upper case };

Procedure quit;

begin
writeln(tty, ' Errors in Command Line');
for cmlptr := 1 to cmllen do write(tty, cmllinelcmlptrl);

ur!teln(tty), Writeln(tty);
writeln(tty, ' <output file>=<input file> [<optons>1');
writeln(tty, ' <options> ::=');
writeln(tty, ' C- capitalize identifiers,');
writeln(tty, ' D+ display program,');
writeln(tty, ' P- cross ref predefined ids.,');
writeln(tty, ' 7= terminal output (ids. only),');
writeln(tty, ' W=132 width of output.'); writeln(tty);
writeln(tty); writeln(tty, ' HALT'); halt

end { quit };

procedure NextClmCh;

began
cmlptr >= cmllen then quit; cmlptr := cmlptr + 1;
lech := cmllinelcemlptr
end { nextemlch };

procedure getfspec(InputOutput: integer; DefaultExtension: extension
;

procedure getnext;

begin
flen >= FSpecLeng
FspecLInputOutput] Cflen
NextClmCh;
end { getnext };

then quit;

= CmlCh; flen := flen + 1;

begin { getfspec }
specElnputOutput] = '
flen := 1; DotFound := false;
vh]lslgm;Ch in ['A' .. '2', "0 .. '9', 'z, LY, 020,000,000,
if CmlTh = '[' then repeat getnext; until CmlCh = '1'
else
Eegin
if not DotFound then DotFound := CmlCh = '.'; getnext;
end;

if (flen > 1) and (not DotFound) then

~for pos := 1 to 4 do
begin
fspecCInputOutput] [flenl := DefaultExtensionlpos];
flen := flen + 1;
end;
end { “getfspec };

connectfiles }
GCML(cmlline, cmllen);
cmllen := cmllen + 1;
while CmlCh <> ' ' do NextClmCh;

CmlCh := cmllinel1];
cmilineCemllend := * *;
while CmlCh =

cmiptr := 1;

' ' do NextClmCh;

getfspec(1, '.LST");
if flen =1

then be. 1n vr1teln(tty, ' No Output File Specified');
Next(TmCh; while CmlCh = * * do NextClmCh;
getfspec(z, VPAST);

if flen = 1

then begin writeln(tty, ' No Input File Specified');
reeset (input, fspec[21); reewrite(output, fspec[11);
while ((cmlptr < cmlien) and (CmlCh <> *[')) do NextClmCh;
if Cmtch = *'C*

then

quit; end;

quit; end;

PASCAL

NEWS #17

MARCH,

1980

PAGE

L6

1101 {} repeat 1130 {} then LineLength := DefaultLpWidth;
1102 {} NextClmCh; 131 {} end
1103 {} while (CmlCh = ' ') or (CmlCh = ',') do NextClmCh; 1132 {} end;”
1104 {} if CmlCh in ['C', 'D¥, 'P', 'T', W 1133 {} end;
1105 {} Then 1134 {} until CmlCh = '3';
1106 {} begin 1135 {} g_d_] connectfiles };
1107 {} CmdCh := CmLCh; NextClmCh; 1136
1108 {} case CmdCh of 1137 begin { initialize }
1109 {} TT': AllCapitals := CmlCh = '+'; 1138 CurrentLineNumber := 0; PageNumber := 0;
110 {} 'D': DisplayIsActive := CmlCh = '+'; 1139 LinesOnPage := LinesPerPage; AllCapitals := false;
nog !P': DoPredefined := CmiCh = '+'; 1140 DisplayIsActive := true; DoPredefined := false; FreeStgPtr := 1;
112 {} T 1141 FreeltemPtr := nil;
113 {3} begin 1142 for Itemtnt := T to 80 do cmllinelItemCnt] := ' '; cmilen := 0;
1114 {} terminal := CmlCh = '+'; 1143 TtemCnt := 0; terminal := false; empty := ' ;
1115 {} if terminal 1144 for HshTblIndx := 0 to HashTblSize - 1 do
1116 {} Then LineLength := DefaultTerminalWidth; 1145 “HashTable[HshTblIndx].keyindx := 0; .
1117 {} DisplayIsActive := not terminal; 1146 InitLetdig; InitPerfect; LmeLength := DefaultlLpWidth;
1118 {} end; - 1147 today := empty; now := empty;
1119 {} W 1148 {} Connectfiles; date(today); time(now);
1120 {} begin 1149 wrk2active := false; :
1121 {} if (CmlCh = ':') or (CmlCh = then NextClmCh; 1150 end { initialize };
1122 {} TineLength := 0; 1151
1123 {} while cmlch in ['0' .. '9'] do 1152 {$Y+ new segment }
1124 {} begin 1153
1125 {} LineLength := LineLength * 10 + ord(CmLCh) = ord 1154 begin { xref
1126 {} «oY; 1155 writeln(tty, '- CrossRef (80.2.1)'); initialize;
1127 {} NextClmCh; 1156 OutputSection := Llisting; scan; OutputSection := idents;
1128 {} end; 1157 DumpTables; writeln(tty, '~ End CrossRef'); writeln(tty, ' ');
129 {} if LineLength < (DefaultTerminalWidth - 8) 1158 end { xref }.
1 {* Purpose: 84 if uneq then search := 0 else search := i;
2 Library routines for string manipulation. 85 end;
3 86 end T search }
4 . * Author: 87 -
S . Barry Smith 88 procedure readstring(var f: text; var s: string);
6 Oregon Software 89
7 2340 SW Canyon Road 90 begin
8 Portland Oregon 97201 91 clear(s);
9 92 with s do
10 * Method: 93 while (not eoln(f)) and (len < stringmax) do
" Uses fixed length arrays of characters. 9% begin len := len +1; read(f, chllenl); end;
12 95 readin(f);
13 * Description of Routines: 96 end { readstring };
14 Len -- Function. Returns string length. L7
15 Clear -- Blank fills a string. 98 procedure writestring(var f: text; s: string);
16 Concatenate -~ Appends one string to another. 99
17 rch — Function. Returns substring position. 100 var
18 Readstring =-- Read a string fram a file. 101 i: integer;
19 Writestring -- Write a string to a file. 102
20 Substring -- Extract a substring from a string. 103 begin for i := 1 to s.len do write(f, s.chfil) end { writestring };
21 Delete -- Remove part of a string. 104
s; Insert -- Insert a string into a string. 105 procedure substring(var t: string; s: string; start, span: integer);
106
24 In several routines error processing is left for the 107 var
25 user to provide. 108 i: integer;
26 109
27 * Computer System: 110 begin
28 DEC PDP 11, OMSI Pascal version 1. m if span < 0
29 112 then begin span := - span; start := start - span end;
30) 113 3T start <1
31 114 Then begin span := span + start - 1; start := 1 end;
32 const 115 it start + span > s.len + 1 then span := s.len - start + 1;
33 stringmax = 100; 116 "f span <= 0 then clear(t)
34 117 else
35 type 118 begin
36 string = record 19 for i := 1 to span do t.ch(il := s.chlstart + i - 1];
37 en: 0 .. stringmax; 120 For i := span + 1 to stringmax do t.chlil := ' ';
38 ch: packed array [1 .. stringmax] of char 121 t.len := span;
39 end; 122 end;
40 125 end T sdbstring };
41 function len(s: string): integer; 124
42 125 procedure delete(var s: string; start, span: integer);
43 begin Llen := s.len end { len }; 126
b4 - 127 var
45 procedure clear(var s: string); 128 T 1, Llimit: integer;
46 - 129
47 var 130 begin
48 T1: integer; 131 if span < 0
49 132 Then begin span := = span; start := start - span end;
50 begin s.len := for i := 1 to stringmax do s.chlil := ' ! 133 Timit := start + span; if start <1 then start :=1;
51 end 1 clear }; - - 134 if Limit > s.len + 1 then limit := s.len + 1;
52 135 Span := limit - start;
53 procedure concatenate(var s: string; t: string); 136 if span > 0
g’; :II3; Then
var 3 begin
56 1, j: integer; 139 for i := 0 to s.len - limit do
57 140 S. ch[start + i1 1= s.chllimit + i3;
58 begin 141 s.len - span + 1 to s.len do s.chfil := ' *;
59 s.len + t.len > stringmax 142 s.len - span;
60 —Fen j := stringmax - s.len { overflow } 143
61 else j t.len; 144 end '[_delete L
62 For i := 1 to j do s.chls.len + i] := t.chfil; s.len := s.len + j; 145
63 e_n?!—(concatenate J; 146 procedure insert(var s: string; t: string; p: integer);
64 1%r — -
65 function search(s, t: string; start: integer): integer; 148 var
66 149 i, j: integer;
67 var 150
68 T 1, j: 0 .. stringmax; 151 begin
69 uneq: boolean; 152 if t.len > 0
70 153 Then
7 begin 154 if (p > 0) and (p <= s.len + 1)
72 7f start <1 then start := 1; 155 then -
73 JT (start + t.len > s.len + 1) or (t.len = 0) then search := 0 156 begin
74 else - 157 it s.len + t.len <= stringmax then s.len := s.len + t.len
75 begin 158 else s.len := stringmax { overflow
76 1 := start - 1; 159 for i := s.len downto p + t.len do s. ch[1] := s.chli - t.lenl;
77 repeat 160 Jfs. len < p + T.Ten then j := s.len
78 T = 9+1; j :=0; 161 p+ t.len - 1;
79 repeat j := j +1; uneq := t.ch[j] <> s.chli + j - 11; 162 [t_oj do s. ch[x] := tochli - p + 11;
80 until uneq or (j = t. 163 end
81 Len); 164 else { non-contxguous string }
82 unt1l (not uneq) or (i = s. 165 end T insert J;
83 Ten = tiTen + ;7 166

Lk R R R & X E X XX X ¥R RPN

PASCAL NEWS #17

VRNV

{* Purpose:
Program computes Hankel functions of the first and second
kinds for an integrel order and complex argument.

* Author:
Q.M. Tran, School of Electrical Engineering, University of New
South Wales.

* Method:
Hankel functions of a required order are calculated from
corresponding Bessel functions of the first and second kinds.
A backward recursive scheme is used in computing Bessel function
of the first kind for a number of orders.
These are then summed to give the two orders 0 and 1 of
Bessel function of the second kind, which in turn serve as
starting point for finding a higher-order Bessel function of
the second kind.

* Description of parameters:
P - integral order, where -max <= p <= max and max = 500.
z - complex argument.
fnl - Hankel function of the first kind.
fn2 - Hankel function of the second kind.

* Input:
Program reads in an integer (p) and two real numbers (real and
imaginary parts of z).

* Output:
Arguments and values of the Hankel functions of the first
and second kinds are returned.
Warning message is given if any parameter exceeds specified
limits or is outside range.

* Limitations:
- 500 <= p <= 500 ,
1.0E-5 <= modulus of z <= 377.0 ,
Imaginary part of z <= 50.0 ,
p must not be much greater than the modulus of z, otherwise
exponent error in the camputer (PDP 11/70) will occur.

* Computer system:
Program was run under UNIX Pascal (Berkeley - Version 1.2,
May 1979) on DEC PDP 11/70.

* Accuracy:
Computed results were checked against published values over the
following ranges:
- 100 <= p <= 100 and
real argument z = 0.1 - 100.0 ,
-1<=p<=1and
camplex argument z = (0.01,5 deg.) - (10.0,90 deg.)

They were found to be accurate to at least 10 significant digits. }

program hankel(input, output);

Label
T [Exit to terminate program };

const
Tim = 501;
max = 500;
tpi = 0.6366197723675813 { 2.0 by pi };
euler = 0.5772156649015329;

type
complex = record
re, im: real
end;

var -
~ 4, k, n, m, L, p: integer;
z, u, v, W, yo, y1, y2: complex;
fn1, fn2, sum, esum, osum, norm, zero: complex;
f: array [0 .. Llim] of complex;

procedure stop;
begin

goto 1 { halt }

end [stop };

procedure cread(var z: complex);
begin

read(z.re, z.im)
end { cread };

procedure cwrite(var 2: complex);
begin

writeln(' (', z.re, *',', z.im, ")
end { cwrite };

function mag(var 2: complex): real;
es the modulus of a camplex number }

begin

mag := sqrt(sqr(z.re) + sqr(z.im))
end I

procedure add(u, v: complex; var w: complex);

11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

194

205
206

208
209
210
211
212
213
214
215
216
217
218
219
220

MARCH, 1980 PAGE 47

begin
w.re i= u.re + v.re; w.im := u.im + v.im
end { add };

procedure sub(u, v: complex; var w: complex);
begin

wW.re := u.re - v.re; w.im := u.im - v.im
end { sub };

rocedure mult(a: real; z: complex; var w: complex);
hﬂﬁﬁies a real with a complex J

begin
w.re 1= a *x z.re; w.im = a * z.im
end { mult };

procedure product(u, v: complex; var w: complex);

begin
w.re := (u.re * v.re) = (u.im * v.im);
weim := (u.re * voim) + (u.im * v.re)

end { product };

procedure quotient(u, v: complex; var w: complex);

var
vr, vi, a, b, x1, x2, y1, y2, root: real;

begin
vr := abs(v.re); vi := abs(v.im);
root := sqrt(2.0) * sqrtlvr) * sqrt(vi); a := vr + vi + root;
b := vr + vi - root;
if (a = 0.0 or (b = 0.0) then
begin
writeln('W: dividing by 0 in procedure quotient');
stop { Exit to terminate program };

end;
x1 u.re / a; x2 :=v.re / b; yl :=u.im/ a;
y2 := v.im / b; w.re := x1 % x2 + y1 * y2;

- x1 * y2

end { quotient };

rocedure ccos(z: complex; var c: complex);
i Cosine of a complex }

var
ep, em, p, m: real;

begin
ep := exp(z.im); em :=1.0/ ep; p
c.re := 0.5 * p * cos(z.re); c.im =
end { ccos };

= ep + em; m = em - ep;
0.5 * m * sin(z.re)

rocedure polar(u: complex; var v: complex);
%Wi?iﬁ a camplex into polar form }

const
p1 = 3.1415926535897932;

begin
if (u.re = 0.0) and (u.im = 0.0) then
begin

writeln('W: conversion of 0 in procedure polar');
stop { Exit to terminate program };

end;

if Zu:re = 0.0) and (u.im <> 0.0) then

begin
v.re := mag(u); v.im :=pi / 2.0
end
else
begin
v.re := mag(u); v.im := arctan(u.im / u.re)

en
end Tpolar };

procedure cln(z: complex; var c: complex);
ral logarithm of a camplex }

var
p: complex;

begin
polar(z, p); c.re := ln(p.re); c.im := p.im
end { cln };

function order(z: complex): integer;
Gives a starting and even order for recursive camputation }

a: real;
m: integer;

begin
a := mag(z);
if a<0.1 thenm:=10
else

begin if a < 2.0 thenm :=28 elsem := round(1.2 * a + 48.0)
end;

if odd(m) then order :=m + 1

PASCAL NEWS #17

221

222 procedure s1gn(u. complex; var v: complex);

223 €5 the sign of a complex }

224

225 begin

226 v.re := = u. vaoim 1= = u.im

227 end { sign };

228

229

230 rocedure check(z: complex);

231 S to see if the function argument is outside range }
232

233 var

234 a, b: real;

235

236 begin

237 a:= abs(z.re); b := abs(z.im);

238 if ((a < 1.0E - 5) and (b < 1.0E - 5)) or

239 T (b <> 0.0) and (b < 1.0 - 5)) then

240 begin

241 write('W: small argument which causes exponent error = ');
242 cwrite(z); stop { Exit to terminate program };
243 end;

244 if'b > 50.0 then

245 "begin

246 write('W: argument with imaginary part outside range = ');
247 cwrite(z); stop { Exit to terminate program };
248 end

249 end T check };

250

251

252 procedure hankel12(u, v: complex; var w1, w2: complex);

253 [COmMbInes Bessel functions of the First & second kinds to give Hankel
254 functions }

255

256 begin

257 wi.re := u.re = voim; wil.im := u.im + v.re;

258 w2.re := u.re + v.im; . w2.im := u.im - v.re

259 end { hankell2 };

260 -

261

262 begin { Hankel }

263 read(p); n := abs(p);

264 if n>= Lim then

265 “begin

266 writeln('W: required order ', p: 6, ' is outside the range (', -
267 max: 4, ',', max: 4, ")');

268 stop { Exit to terminate program };

269 end;

270 cread(z);

27 check(z) { If z is outside range, exit to terminate program };
272 m := order(2);

273 if m >= Lim then

274 begin

275 writeln('W: starting order ', m: 6,

276 ' exceeds the specified maximum', max: 4);

277 stop { Exit to terminate program };

278 end;

279 zero.re := 0.0; zero.im := 0.0; sum := zero; esum := zero;
280 osum := zero; flm + 1] := zero; fCml.re := 1.0e - 30;
281 flml.im := 0.0;

282 for i := m downto 1 do

283 begin

284 quotient(fLil, z, w); mult(2.0 * i, w, w);

285 sublw, f[i + 11, f(i - 1D

286 end;

287 k = m div 2;

288 if abs(z.re) > 10.0 * abs(z.im)

289 then

290 begin

MARCH, 1980

PAGE

mult(2.0, sum, sum);

291 for i :=1 to k do add(sum, f(2 * i1, sum);

292 add(sum, f[0J, norm)

293 end

294 else

295 egin

296 for i :=1 to k do

297 begin

298 —_?'_f_odd('l) then add(osum, f[2 * i1, osum)

299 else add(esum, f[2 * i], esum)

300 end;

301 sub(esum, osum, sum); mult(2.0, sum, sum);

302 add(sum, fL01, sum); ccos(z, u); quotient(sum, u, norm)

303 end;

304 for i :=0 tomdo

305 quotient (fLil, norm, f[il) { Bessel functions of 1lst kind };

306 esum := zero; oOsum := zero; L:=1;

307 ifn=

303 then (:

30 begin

310 EEL i:=1tokdo

3N begin

312 L:=-1; mult(l /i, f[2 * i1, w; add(esum, u, esum)
313 end;

314 muLt(Z 0, esum, esum); mult(0.5, z, u); clnlu, u);

315 u.re := u.re + euler; product(u, f[01, u); sub(u, esum, u);
316 mult(tpi, u, yo) { Yo }; hankel12(f[0], yo, fn1, fn2);

317 writeln; writeln; write(' Function argument = ');

318 cwrite(z); writeln;

319 write(' Hankel function of the first kind and order 0 = ');
320 cwrite(fn1); writeln;

321 write(' Hankel function of the second kind and order 0 = ');
322 cwrite(fn2); writeln; writeln;

323 stop { Exit to terminate program };

324 end { Ho }

325 else

326 begin { Hn, where n <> 0 }

327 for i :=1 to k do

328 begin

329 L:=-1; mult(l /7 i, f02 * i1, w; add(esum, u, esum);
330 sub(fl2 * i - 11, fl2 * i + 1], v); mult(l / i, v, Vv);
331 add(osum, v, osum);

332 end;

333 mult(2.0, esum, esum); mult(0.5, z, u); cln(u, u);

334 u.re := u.re + euler; product(u, f[01, v); sub(v, esum, v);
335 mult(tpi, v, yo) { Yo }; product(u, f[11, v);

336 quotient(fL0], z, w); sub(v, ¥ w); add(w, osum, w);

337 mult(tpi, w, y1) { ¥Y1}; 4 :=1;

338 while i < n do

339 Forward recursion to campute ¥n, where n <> 0,1 }

340 begin

341 quotient(y1, z, uw); - mult(2 * i, u, uw); subu, yo, y2);
342 yo :=yl; yl ::=y2; i:=1i+1;

343 end { Forward recursion };

344 ifm < max then for i :=m+ 1 to max do f[il := zero;

345 hankel12(fcn37';T; Tn1, fn2);

346 if (p < 0) and odd(p) then

347 beg1n

348 _sign(fn1, fn1); sign(fn2, fn2)

349 end;

350 writeln; writeln; write(' Function argument = ');

351 cwrite(z); writeln;

352 write(' Hankel function of the first kind and order ', p: 4,
353 t=;

354 cwrite(fn1); writeln;

355 write(' Hankel function of the second kind and order ', p: 4,
356 =");

357 cwrite(fn2); writeln; writeln;

358 end { Hn };

359 1:

360 end { Hankel }.

A A AR AR AN A I AGD A i A ¢

PASCAL NEWS #17

{* Purpose:

Program computes a Bessel function of the first kind for an

integral order and complex argument.
* Author:

Q.M. Tran, School of Electrical Engineering, University of

New South Wales.

* Method:

MARCH, 1980

m
112
113
114
115
116
117
118
119

Backward recurrence equation is employed to campute the function, 120
starting at a higher order for which the Bessel function has a 121

small value.
empirical formula.

normalization is to unity. If it is mainly imaginary, 124

normalization involves cosine of the camplex argument. 125

126

* Description of parameters: 127

p - integral order, where -max <= p <= max and max = 500 128

z - complex argument. 129

fn - Bessel function of z and order p. 130

131

* Input: 132

Program reads in an integer (p) and two real numbers 133

(real and imaginary parts of z). 134

135

* Output: 136

Argument & value of the Bessel function of the first kind 137

are returned. Warning message is given if any parameter 138

exceeds specified limits or is outside range. 139

140

* Limitations: 141

- 500 <= p <= 500, 142

1.0e-5 <= modulus of z <= 377.0, 143

Imaginary part of z <= 50.0. 144

145

* Computer system: 146

Program was run under UNIX Pascal (Berkeley - Version 1.2, 147

May, 1979) on DEC PDP 11/70. :Ag

4

* Accuracy: 150

Computed results were checked against published values over 151

the following ranges: 152

- 100 <= p <= 100 and 0.1 <= modulus of z <= 100.0. 153

They were found to be accurate to at least 8 decimal digits. } 154

155

156

program bessel1(input, output); 157

158

Label 159

1 { Exit to terminate program }; 160

161

const 162

im = 501; 163

max = 500; 164

165

type 166

complex = record 167

re, im: real 168

end; 169

170

var 17

~3, k, n, m, p: integer; 172

2z, W, fn, sum, esum, osum, norm, zero: complex; 173

f: array [0 .. Llim] of complex; };g

176

procedure stop; 177

178

begin 179

oto 1 { halt } 180

end { stop }; 181

182

183

procedure cread(var z: complex); 184

185

begin 186

read(z.re, z.im) 187

end { cread }; 188

- 189

190

procedure cwrite(var z: complex); 191

- 192

begin 193

writeln(' (', z.re, ',', z.im, V") 194

end { cwrite }; 195

- 196

197

function mag(var z: complex): real; 198

Computes the modulus of a camplex number } 199

200

begin 201

mag := sqrt(sqr(z.re) + sqr(z.im)) 202

end { mag }; 203

204

205

procedure add(u, v: complex; var w: complex); 206

207

begin 208

w.re := u.re + v.re; w.im = u.im + v.im 209

end {add }; 210

- 211

212

procedure sub(u, v: complex; var w: complex); 213

214

begin 215

w.re := u.re = v.re; W.im := u.im - v.im 216

end { sub }; 217
218

219

procedure mult(a: real; z: complex; var w: complex); 220

The starting order is calculated using an
when the function argument is mainly real, 123

122

{ Multiplies a real with a complex }

begin
W.re 1= a * z.re;
end { mult };

Ww.im 2= a * z.im

procedure quotient(u, v: complex; var w: complex);

var
vr, vi, a, b, x1, x2, y1, y2, root: real;

begin
vr := abs(v.re); vi := abs(v.im);
root := sqrt(2.0) * sqrtlvr) * sqrt(vi);
b := vr + vi - root;
if (a = 0.0) or (b = 0.0) then
begin
writeln('W: dividing by 0 in procedure
stop { Exits to terminate program };
end;
x1 1= u.re / a; x2 :=v.re/b; yl:=
y2 := v.im / b; w.re := x1 * x2 + y1 * y
woim = x2 * y1 = x1 * y2
end { quotient };

rocedure ccos(z: complex; var c: complex);
i Cosine of a complex }

var
ep, em, p, m: real;

begin
ep := exp(z.im); em :=1.0/ ep; p :=
c.re := 0.5 * p * cos(z.re); c.im := 0.5

end { ccos };

function order(z: complex): integer;

a :=vr + vi + root;

quotient');

u.im / a;
2;

ep + em; m

PAGE

49

= em - ep;
*m * sin(z.re)

{ Gives a starting and even order for recursive computation }

a: real;
m: integer;

begin
a := mag(2);
if a< 0.1 thenm :=10
else
begin if a<2.0 thenm:=28

end;
order :=m; if odd(m) then order :=m
end { order };

procedure sign(u: complex; var v: complex);
Changes the sign of a camplex }

begin
v.re 1= - u.re;
end { sign };

v.im = = u.im

+1

rocedure check(z: complex);
5 Checks to see if the function argument is outside range }

var
a, b: real;

begin

a := abs(z.re); b := abs(z.im);
i

-5
then
begin

write('W: small argument which causes exponent error =

cwrite(z);
end;
if b > 50.0 then
begin

stop { Exits tc terminate program };

write('W: argument with imaginary part outside range =

cwrite(z);
end

end T check };

begin { Bessell }

read(p); n := abs(p);
if n >= Lim then
begin

stop { Exits to terminate program };

else m := round(1.2 * a + 48.0)

(¢a < 1.0e = 5) and (b < 1.0¢ = 5)) or ((b <> 0.0) and (b < 1.0e

writeln('W: required order ', p: 6, ' is outside the range (', -

max: 4, ',', max: 4, ")");
stop { Exits to terminate program };
end;
cread(z);

check(z) { If z is outside range, exit to terminate program };

m := order(2);
if m >= Lim then
begin
writeln('W: starting order ', m: 6,

' exceeds the specified maximum', max: 4);

stop { Exits to terminate program };

ifn>m

writeln; write(' Functi

writeln;

writeln;
cwrite(2);
writetn('

on argument =

";

Bessel function of the first kind and order ', p

4'

PASCAL NEWS #17

221
222
223
224
225
226
227
228

MARCH

'=(0,0)"; 239
writeln; writeln; stop { Exits to terminate program }; 240
end; 241
zero.re := 0.0; zero.im := 0.0; sum := zero; esum := zero; 242
zero; fm + 13 := zero; fCml.re := 1.0e - 30; 243
:= 0.0; 244
m downto 1 do 245
“begin 246
quotient(ffil, z, w); mult(2.0 * i, w, w); 247
sub(w, fLi + 11, f[i - 11) 248
end; 249
k :=m div 2; 250
if abs(z.re) > 10.0 * abs(z.im) 251
Then 252
begin 253
for i := 1 to k do add(sum, f[2 * 11, sum); mult(2.0, sum, sum); 254
add(sum, fL0J, norm) 255
end
{* Purpose: :g?
Program computes a Bessel function of the second kind for an 102
integral order and complex argument. 103
* Author: :g;
Q.M. Tran, School of Electrical Engineering, University of New 106
South Wales.
107
* Method: 103
Initially, a number of Bessel functions of the first kind are }?0
generated by backward recursion. These are then summed to give 111
the two orders 0 and 1 of the Bessel function of the second kind. 12
Using forward recurrence relation based on these two orders, 13
a higher order is calculated. 14
* Description of parameters: Hz
p - integral order, where -max <= p <= max and max = 500. 17
z - complex argument. 18
fn - Bessel function of z and order p. 119
* Input: 120
Program reads in an integer (p) and two real numbers (real and }s;
imaginary parts of z). 123
* Output:]‘sg
Argument & value of the Bessel function of the second kind are 126
returned. Warning message is given if any parameter exceeds 127
specified limits or is outside range. 128
* Limitations: lgg
- 500 <= p <= 500 , 131
1.0e-5 <= modulus of z <= 377.0 , 132
Imaginary part of z <= 50.0 , 133
p must not be much greater than the modulus of z, otherwise 134
exponent error in the computer (PDP 11/70) will occur. 135
* Computer system: 136
Program was run under UNIX Pascal (Berkeley - Version 1.2, 137
May 1979) on DEC PDP 11/70. Eg
* Accuracy: :2?
Computed results were checked against published values over the 142
following ranges: 143
- 100 <= p <= 100 and 144
real argument z = 0.1 - 100.0 , 145
-1l1<¢<p<=1and 146
complex argument z = (0.01,5 deg.) - (10.0,90 deg.). 147
They were found to be accurate to at least 10 significant digits. } 123
program bessel2(input, output); 150
Label :g;
T { Exit to terminate program }; 153
154
const
im = 501; 155
max = 500; 12?
tpi = 0.6366197723675813 { 2.0 by pi }; 158
euler = 0.5772156649015329; 159
type 160
complex = record 161
re, im: real 162
end; 163
£ng, 164
var- 165
——T, k, n, m, L, p: integer; 166
z, u, v, W, yo, yl1, y2: complex; 167
fn, sum, esum, osum, norm, zero: complex; 168
f: array [0 .. Lim] of complex; :gg
17
. 172
grocedure stop; 173
begin A
goto 1 { halt } 176
end { stop };
— 177
178
procedure cread(var z: complex); :;8
3 181
begin
read(z.re, z.im) :g%
end { cread }; 184
185
procedure cwrite(var z: complex); }gg
i 188
begin
writeln(' (', z.re, ',', z.im, ") 133
end { cwrite }; 191
192
function mag(var z: complex): real; 132
Computes the modulus of a complex number } 195
; 196
begin 197

mag := sqrt(sqr(z.re) + sqr(z.im))
end { mag };

, 1980

else
begin
for i := 1ok do
begin
if odd(i) then add(osum, f[2 * i1, osum)

else addCesum, fL2 * il, esum)
end;
sub(esum, osum, sum);
add(sum, fCOJ, sum);
end;
quotient(fCnl, norm, fn);

mult(2.0, sum, sum);
ccos(z, w); quotient(sum, w, norm)

if (p < 0) and (odd(p)) then sign(fn, fn); writeln; writeln;

write(' Function argument = '); cwrite(z); writeln;

write(' Bessel function of the first kind and order ', p: 4, ' ="'
);

cwrite(fn); writeln; writeln; 1:

end { Bessell }.

procedure add(u, v: complex; var w: complex);
begin

W.re := u.re
end { add };

+ vere; w.im = ulim 4 veim

procedure sub(u, v: complex; var w: complex);
begin

w.re := u.re
end { sub };

= vere; weim 3= ulsim - v.oim

rocedure mult(a: real; z: complex; var w: complex);
; Multiplies a real with a complex }

begin
W.re 1= a * z.re;
end { mult };

w.im 1= a * z.im

procedure product(u, v: complex; var w: complex);

= (u.re * v.re) = (u.im * v.im);
w.im := (u.re * v.im) + (u.im * v.re)
end { product };
procedure quotient(u, v: complex; var w: complex);

var
vr, vi, a, b, x1, x2, y1, y2, root: real;

begin

:= abs(v.re); vi := abs(v.im);

:= sqrt(2.0) * sqrtlvr) * sqrt(vi);
b := vr + vi = root;
if (a = 0.0 or (b=
“begin

a 1= vr + vi + root;

0.0) then

writeln('W: dividing by 0 in procedure quotient'); stop;
{ Exit to terminate program }
end;
u.re / a; x2 :=v.re/b; yl :=u.im/ a;
veim / b; were = x1 * x2 + y1 * y2;
w.im 1= x2 * y1 = x1 * y2
end { quotient };
procedure ccos(z: complex; var c: complex);
{ Cosine of a complex }
pL-1s
ep, em, p, m: real;
begin
ep := exp(z.im); em := 1.0 / ep; p :=ep + em; m:= em -
c.re := 0.5 * p * cos(z.re); c.im := 0.5 * m * sin(z.re)

end { ccos };
rocedure polar(u: complex; var v: complex);
i Writing a complex into polar form }

const
pi = 3.1415926535897932;

begin
1 (u.re = 0.0) and (u.im = 0.0) then
T begin - -
writeln('W: conversion of 0 in procedure polar'); stop;
{ Exit to terminate program }

= 0.0) and (u.im <> 0.0) then

= mag(u); v.im = pi / 2.0

= mag(u); v.im := arctan(u.im / u.re)

end T polar };

procedure cln(z: complex; var c: complex);
{ Natural logarithm of a complex }

var
p: complex;

begin
polar(z, p);
end { cln };

c.re := ln(p.re); c.im := p.im

PAGE

ep;

50

PASCAL NEWS #17 MARCH, 1980 PAGE 51

198 function order(z: complex): integer; 267 := 0.0; zero.im := 0.0; sum := zero; esum := zero;
199 T Gives a starting and even order for recursive computation } ggg osum 1= zera,o flm + 11 := zero; fCml.re := 1.0e - 30;
ml.im 3= ;
gg? var 270 2& i := m downto 1 do
—3: . 27 egin
205 o ::ta:;er; 272 Guotient(FLil, z, w; mult(2.0 * i, w, w);
204 273 subCw, fLi + 11,7¢0i = 1)
205 begin ar4 £nd;]
206 a := mag(2); 275k T=m div 2;
207 ifa<0.1 thenm :=10 276 1f abs(z.re) > 10.0 * abs(z.im)
208 Else 1.2 48.0) g;; be%m
3 i 2= = .2 * a + o
g?g :_:g%'ll_ 8<2.0 thenwn 28 clsen round¢ 279 or i := 1 to k do add(sum, f[2 * i], sum); mult(2.0, sum, sum);
21 order :=m; if odd(m) then order :=m + 1 280 add(sum, fC0J, norm)
g:% end { order }; 281 end
214 g2 olse
215 procedure sign(u: complex; var v: complex); _+_b° m o
216 [Changes the sign of a complex } gg;’ —‘-’%eii:" 120 kdo
g:; begin 286 1T odd(i) then addCosum, f[2 * i], osum)
219 V.re := - u.re; v.im := - u.im 287 else add(esum, TL2 * i1, esum)
220 end { sign }; 288 g
-— 289 sub(esun, osum, sum); mult(2.0, sum, sum);
221 290 add(sum, fCOJ, sum); ccos(z, u); quotient(sum, u, norm)
222 291 end;
223 procedure check(z: complex); 292 for i =0 to m do quotient(f[il, norm, fLiD;
224 to see if the function argument is outside range } 293 { Bessel functions of lst kind }
225 294 esum := zero; oOsum := zero; L:=1;
226 var 295 ifn=0
227 " a, b: real; 296 then
228 297 begin { Yo }
229 begin 298 for i :=1 to k do
230 a := abs(z.re); b := abs(z.im); 299 “begin - -
231 if (Ca < 1.0e - 5) and (b < 1.0e = 5)) or ((b <> 0.0) and (b < 1.0e 300 L= - multCl / i, f[2 * i, w); add(esum, u, esum)
232 -5 301 end;
233 then 302 num'é.o, esum, esum); mult(0.5, z, u); clnlu, u);
234 Eegin 303 u.re := u.re + euler; product(u, f£0l, u); sub(u, esum, u);
235 write('W: small argument which causes exponent error = '); 304 mult(tpi, u, yo); fn := yo; writeln; writeln;
236 cwrite(2); stop; 305 write(' Function argument = '); cwrite(2); writeln;
237 { Exit to terminate program } 306 write(' Bessel function of the second kind and order 0 = ');
238 end; 307 cwrite(fn); writeln; writeln; stop;
239 ifb > 50.0 then 308 { Exit to terminate program }
240 begm 309 end { Yo }
241 write('W: argument with imaginary part outside range = '); 310 else
242 cwrite(z); stop; 31 begin { ¥Yn where n <> 0}
243 { Exit to terminate program } 312 gor i:=1 tokdo
244 end 313 “begin
245 end Tcheck }; 314 —f—w - L; multCl / i, f[2 * i1, u); add(esum, u, esum);
246 315 sub(fl2 * i - 1], f[2 * i + 1], v); multdl / i, v, v);
247 () g:g add(osum, v, osum);
248 begin { Bessel2 : end;
249 read(p); n := abs(p); 318 -.u‘lTé.o, esum, sum); multc0.5, z, uw; clnCu, w;
250 if n >= Lim then 319 u.re := u.re + euler; product(u, f[01, v); sub(v, esum, v);
251 “begin 320 mult(tpi, v, yo);
252 writeln('W: required order *, p: 6, ' is outside the range (', = 321 { Yo} productCu, fLil, v);
253 max: &, ',', max: 4, V'); 322 quotient(f[01, z, w); sub(v, w, w); add(w, osum, w);
254 stop; 323 mult(tpi, w, y1);
255 { Exit to terminate program } 324 {yYL} i:=1;
256 end; 325 while i < n do { Forward recursion }
257 crm'zz); check(2); 326 begin
258 { If z is outside range, exit to terminate program } 327 quotient(yl, z, w; mult(2 * i, u, W; sublu, yo, y2);
259 m := order(z); 328 yo :=y1; yl :=y2; i:=1i+1;
260 if m >= lim then 329 end;
261 T begin 330 { Forward recursion }
262 writeln('W: starting order ', m: 6, 331 fn := y1; if (p < 0) and odd(p) then sign(fn, fn); writeln;
263 ' exceeds the specified maximum', max: 4); 332 writeln; write(' Function argument = '); cwrite(2);
264 stop; 333 writeln;
265 { Exit to terminate program } 334 write("' Bessel function of the second kind and order ', p: 4,
266 end; 335 t=1;
- 336 cur1te(fn)' writeln; writeln

337 end;

338 {yn}

339 1:

340 end { bessel2 }.

AR AR A AR AR A A Ay

PASCAL

NEWS #17

{* Purpose: .
Library routines to manipulate character strings in Pascal.

* Author:
Judy M. Bishop, Computer Science Division, University of the
Witwatersrand, Johannesburg 2001, South Africa.

* Description of routines:
stringInitialize —— set up the free space list ... called first

and once.

StringError - Internal error reporting routine.
News — Internal string allocation routine.
Disposes — Internal string deallocation routine.
Rewrites —— User callable. Initialize a string for writing.
Resets - User callable. Initialize a string for reading.
Length —— User callable function.

Returns string's length.
Bofs — User callable function.

True if at end of string.
Puts — Internal string character put routine.
Gets — Internal string character get routine.
Opens — User callable string creation routine.
Closes -- User callable string removal routine.
Reads -- User callable read string routine.
Writes — User callable write string routine.
Suppress — User callable trailing blank removal routine.
Assign —— User callable string assignment routine.
Compare - User callable function returning the

relationship between two strings.
AlfaToString - User callable assigmment of alfa to string.
CharToString —— User callable assigmment of char to string.

An implementation of character string primitives using Pascal's
dynamic storage allocation facilities. The routines follow Arthur
Sale's recammendation that strings be treated as sequences of
characters. Pascal sequences are processed by file routines, thus
these string routines use similar names for similar functions.

* Computer System:
IBM 360/370 AAEC Pascal campiler version 1.2.

* References:
J. M. Bishop, 'Implementing Strings in Pascal', "Software -
Practice and Experience", 9(9), 779-788 (1979).
A. H. J. Sale, 'Strings and the sequence abstraction in Pascal',
o "Software - Practice and Experience", 9(8), 671-683 (1979).

program stg(input, output);
const
chunksize = 32;
alfalen = 10;
type
natural = 0 .. maxint;
text= file %i char;
alfa= packe array [1 .. alfalenl of char;
chunkptr = “chunk; -
chunk = record
next: chunkptr;
line: packed array [1 .. chunksizel of
char
end;
string = record
w: char;
Length: natural;
position: O .. chunksize;
start,
current: chunkptr;
chunkno: natural;
status: (reading, writing, notready)
end;
relation = (before, beforeorequalto, equalto, afterorequalto,
after, notequalto);
var
avail: chunkptr;

procedure stringinitialize;
begin avail := nil; end;

procedure stringerror(n: natural);

begin
writeln; writeln(' *%x*x execution error in string Llibrary **xx');
case n of
T: write(' put attempted in read state ');
2: write(' get attempted in write state ');
3: write(' get attempted beyond end of string ');
4: write(' delete portion bigger than string ');
5: write(' extract portion bigger than string ');
6: write(' inserting beyond end of string ')
end;
writeln(' *%xx'),
{} halt

end { stringerror };
procedure news(var p: chunkptr);

var
i: 1 .. chunksize;

begin
af avail = nil
then
begin
new(p);

with p” do for i := 1 to chunksize do linelil := "'

',
’

MARCH, 1980

m
112
13
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145

146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165

166
167
168
169
170
171

172
173
174
175

176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215

217
218
219
220

PAGE 52

{ undefined }
end

else begin p := avail;
end | news |;

procedure disposes(p: chunkptr);

avail := avail”.next end;

begin p~.next := avail; avail := p; end;

procedure rewrites(var s: string);
begin
with s do
begin

if start = nil
Then begin news(start);

Qo
.

start”.next := nil; en
nkno :

current := start; position :=0; chu =0;
length := 0; status := writing
end

end { rewrites };

procedure resets(var s: string);

var
c: chunkptr;
begin
with s do
begin

if status = writing

then

“begin

Llength := length + position;
current”.next := nil;
while ¢ <> nil do

begin current :=
en

end;
current := start;
status := reading;
if current <> nil then w := current”.linel1]
{ “when reset done on an empty string }
end
end T resets };

¢ := current”.next;

c“.next; disposes(c); ¢ := current

position := 1; chunkno := 0;

else w := "' *;

function length(s: string): natural;

begin resets(s); Length := s.length; end;
function eofs(s: string): boolean;

begin
with s do eofs := (length + 1) = chunkno * chunksize + position;
end { eofs };

procedure puts(var s: string);
begin
with s do
begin

1t status = reading then stringerror(1);

If position = chunksize

then

begin
if current”.next = nil then
" begin
news(current”.next); current”.next”.next := nil;
end;

chunkno := chunkno + 1;
position = 1;

current := current”.next;
Llength := length + chunksize;
end
else position := position + 1;
current”.linelposition] := w; w :=
end
end Tputs };

[
’

procedure gets(var s: string);

begin
With s do
begin
if status = writing then stringerror(2);
I eofs(s) then stringerror(3);
if position = chunksize
then
begin
current := current”.next; chunkné := chunkno + 1;
position := 1
end

position + 1;
L then w := current”.linelpositionl

else position :=
li current <> ni
else w := "' ';
{ when the eof coincides with the end of a chunk. }
end
end T gets };

procedure opens(var s: string);

begin
with s do
begin
Llength := 0;
current := nil;
end
end T opens };

position

chunkno := :
notready; W ;

status :

’

procedure closes(var s: string);

begin
with s do

PASCAL NEWS #17

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

while start <> nil do

begin
current := start”.next; disposes(start);
start := current

end;

end { closes };

rocedure reads(var from: text; var s: string);
i reads until an end-of-line. }

begin
rewrites(s); if eoln(from)
while not eoln(from) do
begin s.w := from®; puts(s);

end { reads };

then get(from);

get(from); end;

procedure writes(var onto: text; s: string);

begin

resets(s);

while not eofs(s) do begin write(onto, s.w); gets(s); end
end Twcltes ;| oot s S 7 end

procedure suppress(var s: string);

{_ removes trailing blanks. }

const
space = ' ';
var
spaces: boolean;
mark,
il
L: natural;
begin
L := length(s); mark := 0; resets(s); spaces := false;
fori:=1to{do
begin
if s.w = space
then
begin
if not spaces then begin spaces := true; mark :=
en
else begin spaces := false; mark := 0; end;
gets(s
end;
if mark > 0 then s.length := mark - 1; resets(s);

end { suppress 3

procedure assign(var s1: string; s2: string);

begin

rewrites(s1); resets(s2);

i end

MARCH, 1980

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

309
310
3N
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

while not eofs(s2) do
begin s1.w := s2.w;
assign };

puts(s1); gets(s2); end;

end

function compare(si: string; r: relation; s2: string): boolean;

PAGE

resets(s2);

’

yar
less,
equal: boolean;
Ls1,
Ls2: natural;
begin
[sT := length(s1); Ls2 := length(s2); resets(s1);
equal := Lst = Ls2; less := false;
while (equal and not Less) and not eofs(s1) and not eofs(s2) do
“begin
equal := s1.w = s2.w; less := s1.w < s2.w; gets(s1)
gets(s2)
end;
case r of

before: compare := less;

beforeorequalto: compare := less or equal;
equalto: compare := equal;
afterorequalto: compare :=
after: compare := not less;

notequalto: compare := not equal

not less or equal;

end;
end { compare };
procedure alfatostring(a: alfa; var s: string);

const
space = ' ';

var
i: natural;
state: (scanning, ended, spacefound);
begin

rewrites(s); i :=1; state := scanning;

repeat
if 1 > alfalen

else
i1f alil = space then state := spacefound
else begin s.w := alil; puts(s); i=1i+1end
until state <> scanning;
end { alfatostring };

then state := ended

procedure chartostring(c: char; var s: string);

begin rewrites(s); S.W = C; puts(s) end;

begin end.

PAGAGR AR A g AR AR AR e

Articles

53

PASCAL NEWS #17 MARCH, 1980 PAGE 54

AR A G A A A G A A G A G A €

by A.H.J.Sale
University of Tasmania
(at the request of Andy Mickel)

1. ONFORMANT AND THE NEW STANDARD

The draft proposal for an ISO Standard for Pascal contains within it a
definition of what I shall call a "conformant array parameter". The basic
concept is that of a parameter specification which allows a formal-
parameter to assume the values and types of different actual array-
parameters.,

How did the draft Standard acquire this feature? And why?

2. PRESSURE GROQUPS

During the preparation of the draft Standard, a considerable amount of
public comment was received by the sponsoring body, BSI, and the chairman
of its Pascal Committee, Tony Addyman. (I seem to recall a figure of
10kg.) ‘A significant amount of this was devoted to the problem of writing
general procedures to sort and perform other array operations, inevitably
leading either to suggestions of a full dynamic array facility, or some
sort of conformant array parameter,

Of course, contributors to Pascal News have not been idle in this regard
either. Many suggestions for conformant array parameters have been
received; some good, some not., It is clear that this is perceived by many
to be a deficiency in the language, though there are quite good arguments
to support the view that it is only a deficiency viewed in a particular
way. Correct or not, the perception has led to pressure being applied to
the Pascal Committee to put a feature of this sort in the draft, the
Numerical Algorithms Group (NAG) at Oxford being an important example.

However, this pressure had not had an effect by the time of the publication
of the third Working Draft (N462) widely published last year. Then, two
critical pressures were applied to the Committee by N, Wirth and
C.A.R.Hoare (independently) supporting the view that now was the time to
add a conformant array feature to Pascal. It seems safe to assume that in-
the absence of pressure from such quarters the urge to add to Pascal would
have been successfully resisted by BSI.

3. PROPOSALS

The proposals put forward by way of defining a conformant array feature
have been many and varied. Some have been strange in their exploitation of
minor aspects of Pascal, and many others have been obsessed by syntax to
the exclusion of what the construct should mean. It is quite clear, even
before you look seriously, that the addition of conformant arrays to Pascal
is not a trivial task.

The BSI Pascal Committee accordingly had to choose something to satisfy the
pressures from the joint designers of the language. They rejected the
silly suggestions of course, and chose to put in the document which went to

Turin (N510) a considerably modified version of a scheme which seemed to
originate with Jacobi. Subsequently, it became clear that there were
better possibilities, and BSI withdrew support for its own draft, in favour
of an improved one, now incorporated in the Draft Proposal. This schenme,
which seems to have originated with N.Wirth, has been examined by both
opponents and proponents of the addition in order to ensure that at least
if there is to be an addition, it should be the best one possible. That is
my own position.

The key idea behind the current proposal is that it preserves the
abstraction of an array as a complete mapping, and incorporates a number of
"compile-time" checks on the validity of actual calls. The cost is that of
introducing what the draft proposal calls a "schema"; or in other words a
specification which is not a 4type but a rule for identifying and
constraining a set of types. Thus the type of a formal conformant-array-
parameter is not known from its declaration, but is supplied by each call.
The consequences are very simple outside this one point, especially in
defining parameter-list congruity which many other proposals make very
heavy weather of indeed.

4, TURIN

At Turin, the site of the very first computer conference ever, there was a
considerable amount of discussion of the conformant array proposal.
Opposition to the proposal was stated by the US, and one or two other
people, but there was clearly a substantial majority which would accept the
inclusion of such a feature, and many indeed welcomed it. Consequently,
the feeling of the experts group was recorded as being in favour of some
form of conformant array parameter being in the first Standard.

Discussion then turned on the form of the parameter mechanism, with the
possibilities being the BSI original, the redraft now incorporated, and an
improved Jacobi-like proposal, Conformant array parameters took over two
hours of technical discussion (about 12% of the total), and also ran into
dinner, breakfast and a coffee-break. However, it 1is useful to realize
that the Turin meeting perceived this as an important issue, but not of
over-riding importance.

5. IIMELINESS

Part of the pressure to make this feature appear in the Draft Standard
arises from a desire to have important numerical algorithms translated into
Pascal, and the language used in this area now dominated by Fortran. But
simply because this pressure is present, many implementors have already
inserted a feature of this general type into their implementations, and
they differ very widely. Not surprizingly, not many implementors think
much about the abstractions behind their extensions, or perhaps they borrow
extensions. The signs are there that if conformant array parameters are
not standardized now, they may as well never be for all the good it will
do.

Speaking personally, I had had six new implementors call me in the last
month, and all of them have asked for guidance on how they should implement
conformant array parameters, Such interest by new commercial
implementations is significant; however the existing implementations are
likely to be harder to bring into any sort of conformance.

Reluctantly, because I was not an original supporter of conformant arrays,
I have been convinced that both timeliness and utility require the action
that was taken at Turin., I think the inclusion is warranted.

6. CURRENT STATUS

To keep readers of Pascal News informed, I reproduce some pieces of the
draft proposal as they relate to conformant array parameters. It can be
seen that the addition is entirely localized within the parameter list,
except for the addition of one item to 'factor' (and no need even to write
anything about it in the accompanying text). The conformant array
parameter schema is well-crafted so that it hangs together as an integrated
whole, and the reasons for most of the statements will be clear after some
thought.

The exact syntax may be changed without damage to the proposal. The use of
",.", Mm".and ";" is based on analogies with subranges, variable-
declarations, and formal parameter lists respectively. Other people may
prefer to use commas or whatever. It doesn't really matter as long as the
abstraction is right, except for students.

1. IMPLEMENTATION

I have noticed some people saying that the implementation of conformant
arrays 1is wunproven, and I should like to sharply disagree. There is no
problem whatsoever about the implementation of any of these schemes, and
they have been well-known for a very long time., The whole argument has
been around fitting the idea into Pascal with the minimum of change to its
fabric. Any competent implementor will be able to implement this feature
on any machine I know, and existing implementations which differ can be
altered very easilv.

There is one exception. Not that it is unknown, but that we know very well
that 1if we are going to allow packed arrays to be actual parameters to a
conformant array parameter, then we will be forced into either giving up
packing completely on some machines, or imposing some ugly restrictions on
conformant array parameters, or passing some bit-size argument and
requiring the called procedure to reproduce the vagaries of the packing
algorithm. The problem is essentially that the size (in bits, say) of the
component-type may not be known until execution. For this reason, the use
of packed in a conformant array parameter was not allowed.

It should be realized that the inclusion of packed in the Standard means
that all implementors must provide it (do not fall into the trap of
thinking of the Standard as a permissive one or a 1layered one such as
COBOL), and the likely effects are simply to cause it to be ignored and the
effectiveness of the Standard nullified, or to cause no packing to take
place when the 'Standard' compiler option is set. This would be singularly
unfortunate for a feature whose main use seems to be to simulate something
else (strings). It should be pointed out that its exclusion means that
some implementors may choose to provide it as an extension. The abstract
meaning 1s clear; the syntax 1is clear; only the implementation is

difficult.
47¥£4£h"

LT# SMIAN TYISYd

086T “HOYYW

99 39vd

EXTRACTS FROM WORKING DRAFT & (Shortly to be Draft Proposal to IS0)

Section 6-6-3

variable-parameter-specification =

"var" identifier-list ":"

(type~-identifier | conformant-array-schema) .
conformant-array-schema =

"array" "[" index-type-specification

{ ";" index-type-specification } "]" wofn

(type-identifier | conformant-array-schema) .
index~-type-specification =

bound-identifier ".." bound-identifier

":" ordinal-type-identifier .
bound-identifier = identifier .

The occurrence of an identifier within an identifier-list of a
value-parameter-specification or a variable-parameter-specification
shall be its defining-point as a parameter-identifier for the region
that is the formal-parameter-list in which it occurs and its
defining-point as a variable-identifier for the region that is the
procedure-block or function-block, if any, whose formal parameters
are defined by that formal-parameter-list.

The occurrence of an identifier as a bound-identifier within an
index-type-specification shall be its defining-point as a
bound-identifier for the region that is the formal-parameter-list in
which it occurs and for the region that is the procedure-block or
function-block, if any, whose formal parameters are defined by that
formal-parameter-1list.

| ——

1r the component of a conformant-array-schema is itself a
conformant-array-schema, then an abbreviated form of defintiion may
be used. In the abbreviated form, all the index-type-specifications
shall be contained within the same enclosing square brackets, a
single semi-colon replacing each sequence of right-square-bracket
"of" "array" left-square-bracket that occurred in the full form. The
abbreviated form shall be equivalent to the full form.

Examples:
array[u..v: T1) of array(Jj..k: T2] of T3
arraylu..v: T1; J..k: T2] of T3

e —

6.6.3.3 Yariable parameters. The actual-parameter (see 6.7.3 and
6.8.2.3) corresponding to formal parameters that occur in the same
identifier-list in the formal-parameter-list shall all be of the
same type. This type shall be the same as the type of the
type-identifier in the variable-parameter-specification if the
formal parameter is so specified, otherwise it shall be conformable
to the conformant-array-schema in the
variable-parameter-specification. Each formal parameter shall denote
the corresponding actual-parameter during the entire activation of
the block. Any operation involving the formal parameter shall be
performed immediately on the actual-parameter,

If access to the actual-parameter involves the indexing of an array
and/or the selection of a field within a variant of a record and/or
the de-referencing of a pointer and/or a reference to a
buffer-variabdble, these actions shall be executed before the
activation of the block.

Components of variables of any type designated packed shall not be
used as actual variable parameters.

e T1 is an array-type, and T2 is the type the
ordinal-type-identifier of a conformant-array-schema, then T1 is
conformable with T2 if all the following four statements are true.
(a) The index-type of T1 is compatible with T2.

(b) The smallest and largest value of the index-type of T1 lie
within the closed interval defined by values of T2,

(¢) The component-type of T1 is the same as a component-type of the
conformant-array-schema, or is conformable to a component
conformant-array-schema.

(d) T1 is not designated packed.

itdshatl be a? error if the smallest or largest value of the
ndex-type of T1 1lies outside the closed intarval defined by th
values of T2, v e

During the entire activation of the block, the first
bound-identifier shall denote the smallest value of the . index-type
of the actual-parameters, and the second bound-identifier shall

denote the largest value of the index-type of the
actual-parameters.

6.6.3.6 Parameter list congruity. Two formal-parameter-lists shall

be congruous if they contain the same number of parameters and if

the parameters in corresponding positions match. Two parameters
shall match if any of the four statements that follow is true.

(a) They are both value parameters of the same type.

(b) They are both variable parameters of the same type, or have
equivalent conformant-array-schemas. Two
conformant-array-schemas are equivalent if they have the same
ordinal-type specified in their index-type-specifications and
their components are either of the same type or are equivalent
conformant-array-schemas,

(e) They are both procedural parameters with congruous parameter
lists, if any.

(d) They are both functional parameters with oongruous parameter
lists, if any, and the same result-type.

Section 6-7-1

factor = variable | unsigned-constant | bound-identifier |}
function-designator | set-constructor H

"(" expression ")" | "not" factor .

LT# SMIN TYISYd

086T “HIMYW

99 39vd

DEPARTMENT OF THE ARMY
USA DARCOM AUTOMATED LOGISTICS MANAGEMENT SYSTEMS ACTIVITY
PO BOX 1578, ST LOUIS, MISSOURI 63188

18 January 1979

Mr. Andy Mickel

Pascal User's Group

University Computer Center: 227 EX
208 SE Union Street

University of Minnesota
Minneapolis, MN 55455

Dear Andy:

Our agency sent questionnaires to about 950 members of the Pascal
User's Group in the United States in order to gather information

on their experience with the language and available software. Thank
you for providing us with a copy of the User's Group mailing list
for this endeavor.

We are submitting the attached copy of the results of our survey to
you for publication in the Pascal News. Also, enclosed is a copy

of the questionnaire for your information. If you have any questions,
please contact John McCandliss, 314-268-2786, or Sue Burklund, 314~

268-5151.
VD
U < \\.’J/ ‘vc» ‘A/yiﬂ{“__.
1 Incl ROBERT R. RANSOM
As stated Director for ADP Technology

PASCAL SURVEY

Pascal is a computer language developed by Niklaus Wirth at ETH in
Zurich, Switzerland. It is derived from Algol 60, but is more powerful
and incorporates structured programming principles. Pascal has been
implemented on a variety of computers throughout the world with the most
common being Control Data Corporation and Digital Equipment Corporation
computers., Its widest use to date has been as an instructional tool to
teach students the principles of programming in a structured manner, but
some computer companies, notably CDC and Texas Instruments are .using it
as a systems programming language. '

ALMSA developed a questionnaire which was sent to approximately 950
members of .the Pascal User's Group in the United States. We received
about 120 usable responses, which were analyzed to provide the statistics
for this report. The responses, especially in the area of relative speed
and size of Pascal generated code compared to other languages, were often
incomplete, so each area of the report indicates the number of responses
on which it is based.

The questionnaire brought some interesting facts about Pascal usage to
light. The first interesting statistic is that almost % of the responses
were from educational institutions, and another % were from computer
companies, Most of the government organizations responding were research
oriented, It is safe to say that as yet, Pascal has not moved into the
mainstream of computer programming, although judging by the fact that
over 4/5 of the respondents said that Pascal usage at their installation
was increasing this development might be forthcoming in the future.

Another interesting fact is that 3/5 of the respondents were using Standard

Pascal., Pascal was highly rated as an educational tool, but got its
lowest ratings as a language for writing operating systems and business
applications. Extensions of Pascal, such as Brinch Hansen's Concurrent
Pascal, will be necessary before Pascal will be acceptable for writing
operating systems. Other extensions, such as better I/0 capabilities
will be necessary to make Pascal an acceptable business programming
language.

It is hard to make any judgment as to the efficiency of Pascal generated
code, because of the small number of responses, and the large variety of
compilers cited. In most cases, the Pascal generated code was both
slower and larger compared to modules in assembly language and other high
level languages. However, a couple of compilers, including the widely

used University of Colorado version, were producing code that was compared

favorably with that produced by FORTRAN compilers.

LT# SMIN TYISYd

086T “HIUWW

(S 39vd

June-October 1978

PASCAL QUESTIONNAIRE STATISTICS

General Statistics: Number Percent

Number of questionnaires mailed 950 100%

Number of replies received 155 16%

Replies from organizations which didn't have working 33 3%
compilers or+said they couldn't answer our survey

Usable replies 122 13%

Types of Respondents:

a. Governmental organizations 10 8.2%
b. Educational organizations 60 49.2%
c. Business organizations gg ;ggz;

d. Computer organizations) .
P & Total 122 100. 1%

Type of Pascal Used:

a, Standard 78 65.0%
b. Subset of standard 12 10.0%
c. Sequential Pascal 11 9.2%
d. Concurrent Pascal 5 4.2%
e. Other 14 11.7%
Total 120 100. 1%

te: These numbers are not exact since some organizations had more than
one Pascal compiler.

How many of these organizations use Pascal compilers
as opposed to interpreters?

a. Pascal compilers 87 7624'
b. Pascal interpreters 15 13%
c. Both 13 11%

Total 115 100%

Percentage of coding being done at each installation in Pascal:

a. Number of replies 94
b. Average % of coding 14.5%

Trend of" Pascal usage at each installation:

a. Replies 116
b. Increasing 84%
c. Decreasing or stable 16%

June-October 1978

Note: The following three areas were rated on a 0 to 3 scale where:

= Poor
1 = Adequate
2 = Good
3 = Excellent
Average
Number of replies Rating
Reliability of Pascal compilers: 116 2.2

Suitability for the following applications:

a.
b.
c.
d.
e.
f.
8.

Pascal's

a.
b.
C.
d.
e.

FORTRAN replacement 110 2.1
ALGOL replacement 95 2.4
Educational use 104 2.6
Operating systems 88 1.4
Systems programming 101 2.0
Business applications 87 1.4
Scientific applications 99 2.1
capabilities in various programming areas:

I1/0 operations 114 1.4
Numeric computations 122 1.8
Integer arithmetic 11 2.4
Character handling 114 1.9
String handling 112 1.1

Speed/size of Pascal generated code compared to a similar module on the
same system in another language:

Speed Size

a. Number of replies 20 a. Number of replies 13

b. Faster 3 b. Smaller 1

c. Slower 17 c. Larger 12
Comments that many respondents made about the limitations of Pascal and

what they thought would be the most useful extensions to Pascal:

a.
b.
Ce
de
€.
f.
8.
h.

Formatted I/0

Random access capabilities

Better interfaces with other programs

Ability to initialize variables

Bit strings

Make it easier to.compile procedures separately
More interactive functions

Dynamic arrays

LT# SMIN TYISYd

086T “HIYYW

8¢ 39vd

CONVERTING AN APPLICATION PROGRAM FROM
OMSI PASCAL. iF TO AAEC PASCAL 8000/1.2

Geoffrey R Grinton
State Electricity Commission of Victoria
Richmond, Victoria 3121, Australia

I recently had occasion to transfer an application program originally
written on a PDP 11/34 system using RT-11 and OMSI Pascal 1. 1F to an
installation running AAEC Pascal 8000/1.2 under MVS on a dual IBM 370.

Although the program had originally been written with this transfer in
mind, and hence with a minimum of system dependent features, there were
several areas in which unexpected changes had to be made. Some of the
changes are of a trivial nature, and were expected. Others, however.
were less obvious, and posed some problems.

Thie note describes the differences encountered, and is intended to show
others the sorts of problems 1likely to be encountered in such an
exercise. -

i. The original version was written using a mixture of upper and lower
case characters. MWhen this was fed into the AAEC compiler the compiler
crashed; no indication of the likely cause of the problem was given, so
a bit of inspired guess—work was required. The solution used was to
change the whole program to upper case.

2. It was necessary to convert occurences of the characters [, 1 and
to the AAEC equivalents, namely (., .) and @ I have since found that
the AAEC compiler accepts [and 1, but this is not documented

3. There were several occurences of VALUE as a variable name. Since
the AAEC compiler allows a VALUE segment, which follows immediately
after the VAR segment, this caused it some confusion.

4. I had omitted to include names of external files, including INPUT
and OQUTPUT, in the program header (which is optional in the OMSI
compiler), so these had to be inserted.

5. 1t was necessary to reduce the nesting level of procedures: since
AAEC allow only six levels. The OMSI compiler allows up to ten levels.
Such a restriction would appear to me to be contrary to the philosophy
of structured programming, as it requires the programmer to either use
larger (and hence less comprehensible) blocks, or to place procedures
which should logically be contained in another block at a higher level.

b. The OMSI system had failed to detect an invalid assignment to a

subrange variable. This was correctly diagnosed by the AAEC run—time
system. The particular example was a subtle form of:
©yar index : 1.. topi

index := 0O;

7. The AAEC system, when vunning under the Time Sharing Option (TS0) of

MYS does not actually write to a terminal until a line is completed,
wx?h writeln. Hence all prompting messages had to be changed to TUse
writeln instead of write.

8. It was necessary to change all output formats to allow for a
carriage control character. This was not strictly necessary, but it was
required if the system default DCB information was to be wused (ie
RECFM=FA).

?. Since the AAEC version does not specifically allow for interactive
use, all input had to be changed so that the file pointer was always
defined. This was done primarily by changing all occurences of
readln(. .) to readln; read(..), although several other minor programming
changes were also necessary

10. The OMSI compiler does not pre—-declare files INPUT and OUTPUT, and
gonsequentlg does not allow references to input™ to look—ahead on the
input file. With the changes described in point 9, it was useful to be
able to do this in the AAEC verion of the program. Further changes
became necessary, however, when I realised that the system was adding
extra blanks to the ends of my input lines, to fill them out to 80
characters. (I can‘t say that I wasn’t warned by Jensen and Wirth, but
that one took a lot of finding!)

11. OMS1 Pascal uses modified forms of reset and rewrite to attach
ac?ual RT-11 files to internal file variables. The AAEC system requires
this connection to be made externally, and hence the appropriate
initialisation routine had to be changed.

12, As OMSI Pascal ignores the ‘packed’ attribute, and automatically
packs all character arrays and strings, I had not specified arrays of
type char as packed. This was necessary on the AAEC system for proper
operation of my program

The conversion process was, despite the differences outlined above.
probably simpler tham I had expected. Apart from the I1/0 related
difficulties, there were few incompatibilities between the systems, and
conversion of the whole program of 1200 lines was completed within a
couple of days.

15th May, 1979

AghAgh A A A < dE A Ie

LT# SMIN TYISYd

086T “HOYYW

39vd

6

DOES SCOPE = BLOCK IN PASCAL?

T. P. Baker®
Department of Computer Science
The University of Iowa
Iowa City, ITowa 52242

and
A. C. Fleck
Department of Computer Science
and

Weeg Computing Center
The University of Iowa
Towa City, Towa 52242

INTRODUCTION

There seems to have developed some controversy over whether the scopes of identi-
fiers are (or should be) synonymous with blocks in PASCAL. 1In this note we call
attention to the formal statement of the "rules" dealing with this situation, point
out several other items in the literature that address the question of the title, and
present our own personal conclusions. We relate our comments first with respect to
"Standard" PASCAL and then to the new BSI/ISO Working Draft Standard PASCAL.

WIRTH'S STANDARD PASCAL

There are several levels of documentation to consider in this case, in decreasing
order of abstraction: the Report [2], the User Manual [2], and the several E.T.H.
compilers. Arthur Sale in [3] argues strongly the position that scope = block. But
we would like to suggest that there are loopholes. The Report is unfortunately vague.
In section 10, we are told that scope = procedure (or function) declaration and that
identifiers are not known outside their scope. But it gives no details of how they
are known inside their scope. The crucial issue is nested scopes which are mentioned
in Section 2 but for which no rules are given. Section 4 of the Report tells us that
the essociation of an identifier must be unique within its scope. This is essentially
the extent of the specifications in the Report. In this light, consider the following
example:

PROGRAM P1(OUTPUT);
PROCEDURE Q; BEGIN WRITELN(1) END;
PROCEDURE R;
PROCEDURE S; BEGIN Q END;
PROCEDURE Q; BEGIN WRITELN(2) END;
BEGIN S END;
7 BEGIN R END.

[NV, IR SVVIN VI o

Now there are two definitions provided for identifier 'Q' within nested scopes.
The one within R must not be known outside R. There is only one invoking instance
of the identifier 'Q' (hence its association must be unique) and its occurrence is
validly within both scopes and the Report's rules give us no reason for preference.

*present address: Mathematics Department, Florida State Univ., Tallahassee, FL 32306

Next we consider the User Manual. Here in Chapter 1 (pp. 6-7) we find it again
stated that scope = procedure declaration. Also it is stated "the scope or range of
validity of an identifier x is the entire block in which x is defined, including
those blocks defined in the same block as x." Applied to program Pl above, this

would seem to imply that the correct output of P1 is 1. However the above quote has a

parenthetical comment that all identifiers must be distinet for this to apply and
refers to Section 3.E for the case where identifiers are not necessarily distinct
(this is the case with P1). Reading Section 3.E, we find that the definition of a
variable definition in an inner block is valid throughout that block. This might sug-
gest the correct output of Pl is 2. Actually this rule has nothing to do with program
Pl as it deals exclusively with variable identifiers, the topic of Section 3.E.
Unfortunately the other sections on type identifiers, procedure identifiers and con-
stant identifiers give no rules at all.

The last, most specific and least satisfactory source for a resolution of scope
rules (other than for variable identifiers) is the E.T.H. compilers. Because of
Wirth's close association here, their performance must be considered significant. The
output of both the Version 2 and Version 3 compiler for P1 is 1. This performance is
supported by the rule in Chapter 1 (p. 8, item 16) of the User Manual that "All ob-
jects must be declared before they are referenced" (two exceptions noted are pointer
types and forward procedures). In the absence of other rules about scope it is not
unnatural to apply this one, hence accepting the outer definition throughout its scope
until another occurs (the Version 2 and 3 compilers do violate the unique association
rule which does not come up in P1l). This is presumably the reason for Watt's [L4]
assumption that Sale [3] criticizes.

THE BSI/ISO STANDARD

We now turn our attention to the new Draft Standard [1]. While there are prob-
lems with the existing language specification, it is this new definition which causes
us the most serious concern. The Draft Standard eliminates the previously existing
omissions on the specification of scope rules. There is an explicit enumeration of
the nested scope rules for all varieties of identifiers (see Section 6.2.1). Unfor-
tunately, as we shall see, these rules imply that scope # block for all cases except
variable and type identifiers.

Fach identifier has a defining occurrence and each defining occurrence has a
scope which encloses all "corresponding occurrences" (a term not defined). Here the
Draft Standard leaves some ambiguity as it does not state precisely where such scope
begins and ends. Since the scope must enclose all "corresponding occurrences" we
shall simply assume that the scope ends with the end of the block in whose heading the
defining occurrence appears. The choice for the beginning of the scope is another
question. Since each defining occurrence is prescribed as having a scope associated
with it (i.e., scopes are associated with defining occurrences not blocks), one seems
naturally forced to assume that such a scope begins with the defining occurrence.
This assumption seems reinforced by the rule (in Section 6.4) that the scope of the
defining occurrence of a type identifier does not include its own definition, except
for pointer types. There is one exception to this assumption explicitly stated in
rule (5) of Section 6.2.1. This rule states that the defining occurrence of any
identifier or label must precede all its "corresponding occurrences" except for a
pointer-type identifier which may have its defining occurrence anywhere in the type-
definition part. Hence we assume that the scope of a pointer-type identifier begins
with the beginning of the type-definition part rather than with its defining occur-
rence.

[T# SMAN TyIsSvd

086T “HIYYW

09 39

Now consider the previously given program example P1. There is no longer any
doubt over what its correct output must be. This program has two defining occurrences
of the identifier 'Q' (the specification of a defining occurrence for a procedure
identifier is given in Section 6.6.1), in lines 2 and 5. The scope of the first
extends to the end of P1 (i.e., lines 2-T) and the nested scope of the second extends
to the end of procedure R (i.e., lines 5-6). Clearly then the call in line L is a
"corresponding occurrence" for the definition in line 2, an association clearly vio-
lating ALGOL60-style scope rules.

The same situation prevails for constant identifiers. As an example consider

1 PROGRAM P2(OUTPUT);

2 CONST TWO = 2;

3 PROCEDURE Q;

L CONST ONE = TWO;

5 TWO = 13

6 BEGIN WRITELN(ONE) END;
7 BEGIN Q END.

We do not include the scope analysis for this program as it is similar to that
for program Pl. The upshot is the same as for procedure identifiers, namely scope #
block for constant identifiers.

On the other hand since type-identifiers cannot occur in a heading prior to the
type-definition part, rule (5) of Section 6.2.1 implies that scope = block for type
identifiers. For instance, in contrast to the previous examples, the program

1 PROGRAM P3(OUTPUT);
2 TYPE A = RECORD L : tA; C : REAL END;

3 PROCEDURE Q;

L TYPE B = tA;

5 A = RECORD L : B; C : INTEGER END;
6 VAR X : Bj

7 BEGIN NEW(X); Xt.C :=0.5 END;

8 BEGIN Q END.

is illegal because of the type conflict in the assignment in line 7 (however the Ver-
sion 3 E.T.H. compiler finds it legal).

Also since variable identifiers cannot be used in the heading at all, these rules
imply that scope = block for variable identifiers as well. Hence for the Draft Stan-
dard we get two answers to the question of the title; 'yes' for variable and type
identifiers and 'no' for constant, procedure and enumeration-type identifiers.

CONCLUSIONS

The lack of specification of rules for nested scopes in the original PASCAL defi-
nition has resulted in different interpretations being taken by different implementa-
tions. This point has already been made in [5]. The fact that so basic an issue must
be settled has been recognized in the development of a draft standard.

We feel that while the Draft Standard does resolve the ambiguities of scopes, the
solution that is proposed is very poorly conceived. The answer to the question "does
scope = block?" should be uniform for all varieties of identifiers and furthermore we
agree with Sale [3], that uniform answer should be yes.

Programs Pl and P2 show how present scope rules provide for the binding of cor-
responding occurrences of identifiers to defining occurrences outside the block of the
corresponding occurrence even though this block itself contains a defining occurrence.
A convention which provides for the binding of one identifier to two definitions with-
in the same block seems entirely contrary to the evolution of PASCAL.

The scope rules should state that the scope of a defining occurrence extends from
the beginning of the block in whose heading it occurs to the end of this block. This
would replace rules (1) and (2) of Section 6.2.1 of [1]. The other rules would be
retained as stated; however we would rephrase rule (5) slightly to say that the com-
pletion of the definition for a defining occurrence must precede all corresponding
occurrences—then the scope rule in Section 6.4 is dropped. This would make programs
Pl and P2 illegal as they then violate rule (5)—the defining occurrence in the nested
block does not precede first use. It has already been suggested [5] how this inter-
pretation can be handled in a ‘one-pass compiler. The only complication to this comes
in the exception to rule (5) for pointer-types which must force the binding of all
such identifiers (even those with definitions in enclosing scopes) to be deferred
until the end of the type-definition part.

We feel the approach we suggest provides a conceptually cleaner solution to the
scoping questions. The treatment of all varieties of identifiers is internally con-
sistent and consistent with the conventions of other block structure languages as
well. Moreover it conforms with the principle of locality. With the rules given in
the present Draft Standard, a block can contain identifiers with both a local and a
nonlocal binding—a very confusing situation.

REFERENCES

1. A.M. Addyman et al., "A draft description of PASCAL," Software-Pract. & Exper.
9,5(1979), 381-42h; also PASCAL News 1L4(1979), T-5L.

2. K. Jensen & N. Wirth, PASCAL User Manual and Report, Springer-Verlag, Second Edi-
tion, 1975.

3. A. Sale, "Scope and PASCAL," SIGPLAN Notices 14,9(Sept. 1979), 61-63.

4. D.A. Watt, "An extended attribute grammar for PASCAL," SIGPLAN Notices 1k4,2(Feb.
1979), 60-Th.

5. J. Welch, W.J. Sneeringer & C.A.R. Hoare, "Ambiguities and insecurities in PASCAL,"
Software-Pract. & Exper. T(1977), 685-696.

LT# SMIN TYISYd

086T “HIYYW

19 39vd

A NOTE ON PASCAL SCOPES

T. P. Baker and A. C. Fleck

Department of Computer Science
The University of Iowa
Iowa City, Iowa 52242

In response to the recent efforts toward development of a PASCAL standard [1], we
would like to point out a peculiarity we have observed in the PASCAL notion of scopes,
as exemplified in the E.T.H. compilers, and to suggest how a "cleaner" alternative
notion might be implemented.

Beginning with ALGOL60, "block structured" languages have followed the convention
that scopes of local declarations correspond to the boundaries of the blocks in which
they occur. Since PASCAL superficially appears to follow this convention, a programmer
is likely to go along for some time before he stumbles upon a case where PASCAL scopes
do not correspond to block boundaries. When he does, it is likely to be a source of
confusion. For example, consider the programs and output below (from Version 3 of the
PASCAL 6000 compiler):

1 PROGRAM P1(OUTPUT);

2 PROCEDURE Q; BEGIN WRITELN(1) END;

3 PROCEDURE R;

I PROCEDURE S; BEGIN Q END;

5 PROCEDURE Q; BEGIN WRITELN(2) END;
6 BEGIN S; Q END;
7 BEGIN R END.

N =

1 PROGRAM P2(OUTPUT);

2 TYPE A = CHAR;

3 PROCEDURE Q;

L TYPE B = "A; _

5 A = RECORD L,R: B END;
6 VAR X: B;

7 BEGIN NEW(X); X" := 'A' END;
8 BEGIN Q END.

1 PROGRAM P3(OUTPUT);

2 VAR F: INTEGER;

3 PROCEDURE Q;

y PROCEDURE R; BEGIN WRITELN(F) END;

5 FUNCTION F: INTEGER; BEGIN F := 2 END;
6 BEGIN R; WRITELN(F) END;
7 BEGIN F := 1; Q END.

n =

Note that according to.current and proposed scope rules [1], this is the "correct"
program behavior in each case.

We propose that PASCAL can be standardized to follow the ALGOL60 scope conventions,
with the added restriction that (except in recursive pointer type declarations) no use
of an identifier may precede its decle®ation (this appears to be the approach taken in
ADA [2]). Thus, program P1 above would be considered incorrect, since the use of Q in
procedure S precedes a local definition of Q. P3 would be incorrect for a similar rea-
son, because the use of F in procedure R precedes a local declaration of F. Program P2
would be considered incorrect, but for a different reason. The variable X would be in-
terpreted as a pointer to a record, so that the assignment "X" :='A'" would be a type
conflict. This is exactly what would have happened if the outer declaration "A= CHAR"
had not been present. In this case, the convention followed by the compiler not only
mekes the interpretation of the procedure Q dependent in an unobvious way on its global
environment, but also effectively blocks the possibility of defining a pointer type for
the local record type A.

A single pass compiler can enforce these conventions. On first encountering a use
of an identifier X that is not yet declared in the local block, the compiler attempts
to resolve the reference to a previously processed nonlocal declaration, say D, in one
of the surrounding blocks. If this search is successful, the processor creates new
"Gummy" entries for X in the symbol table for the local block and all surrounding blocks,
out to the block where D appeared. These dummy entries will include a pointer to the
entry corresponding to D and will serve the purpose of insuring that any subsequent dec-
laration of X locally will be deleted and treated as an error.

PASCAL already provides means for handling the few cases where forward references
are unavoidable. For procedures, functions, and labels, there are forward declarations.
For recursively defined pointer types, processing can be deferred until it can be
determined whether a type identifier should be resolved as a local or nonlocal refer-
ence. For example, processing of "B="A" in P2 would be deferred until the local dec-
laration of A was encountered (or until the end of the TYPE section).

We believe that the proposed conventions are an improvement in the direction of
simplicity and conformity to established practice. Furthermore, as exemplified best in_
program P2, they improve program modularity, by permitting reliable local resolution of
references, which under present rules is impossible.

[1] A.M. Addyman et al. "A draft description of PASCAL," Software Pract. & Exper.
9, 5(1979), 381-L2k; also PASCAL News 14(1979), T-Sk.

[2] Preliminary ADA Reference Manual, SIGPLAN Notices 1k, 6(1979).

LT# SMIN TYISYd

086T “HIYYW

79 - 39vd

AN ALTERNATE APPROACH TO TYPE EQUIVALENCE

William I. MacGregor

Bolt, Beranek, and Newman
Se Moulton St.
Cambridge, MA 02138

One of the strongest features of Pascal is the ability to define new data
types. Because this ability is central to the language it is unfortunate that the
original documents defining Pascal (i.e., the Jensen and Wirth "User Manual and
Report" and the axiomatic definition) did not precisely state when two variables or
values are of the same type, or precisely what constitutes "type checking' in an
assignment statement or procedure call. Language designers have exercised their
skill and imagination in attempting to resolve the ambiguities without unduly
disturbing the "spirit of Pascal'; this note is one such attempt.

Recently, the BSI/ISO Working Draft of Standard Pascal was published in Pascal
News #14, and this standard exhibits a particular (and carefully considered) solution
to the type equivalence problem. The technique is a hybrid of name and structural
equivalence; for strings and sets, the standard specifies a structural definition of
type equivalence (for a discussion of name versus structural equivalence, see Welsh,
Sneeringer and Hoare, "Ambiguities and insecurities in Pascal", Software Practice and
Experience, N 7, 1977). While the solution is relatively direct it leaves a great
deal to be desired, for instance, under the proposed interpretation all variables
which are structurally integer or subrange of integer are of compatible types. Since
the criterion for type equivalence is a function of the underlying structure,
seemingly inconsistent cases arise. After the program fragment

VAR

:PACKED ARRAY [l1..10] OF integer;
:PACKED ARRAY [1..10] OF integer;
:PACKED ARRAY [1..10] OF char;
:PACKED ARRAY [1..10] OF char;

< e< M

the assignment "u:=v'" is legal whereas "x:=y" is not. (The first must be permitted
to include statements like "u:="abcdefghij’", and the second is presumably denied to
limit the complexity of the equivalence definition and forthcoming Standard Pascal
compilers.)

The rest of this note describes a different role for types and type equivalence
in a Pascal-like language. The scope of the solution is strictly limited because
significant extensions to the syntax of Pascal were not considered (this eliminated
interesting but grandiose schemes involving a new unit of program modularity, as well
as the possibility of explicit type transfer operators). The details are developed
from a series of principles embodying my understanding of what strong typing means in
the context of Pascal.

Pl. Every variable has a unique type and a unique symbolic type
name.

Since both the type and type name are unique, the type of a variable can be referred
to by its symbolic name without ambiguity. In the interests of simplicity it seems

wise to prohibit multiple names for the same type. Types are assigned to variables
rather than values, because I wish to allow distinct types to exist with the same
value set.

P2. All types are either predefined or created in a TYPE definition
part.

The only function of the TYPE part is to define new types; the only function of the
VAR part is to define new variables. As obvious as this may appear at first glance’
it is a very strong restriction--it implies that all types must be explicitly named
in a TYPE part. For example, the Standard Pascal fragment

VAR
v :ARRAY [1..100] OF REAL;
e : (red,blue,green);

would have to be rewritten in order to conform to principle P2

TYPE
vector = ARRAY [l1..100] OF REAL;"
color = (red,blue,green);
VAR
v ivector;
e :color;

This principle will force the creation of many new names in a typical program, one
for each type, but at the same time it provides the basis for a simple and explicit
test for type equivalence. In fact, the spread of names can be controlled in a
manner described below.

P3. Every clause in a TYPE definition part (i.e., every use of the
operator "='") creates a unique type.

This principle, too, seems like good common sense: the TYPE part exists to define
new types. (It is interesting to note that the proposed Standard Pascal allows new
types to be created in a VAR part, and doesn’t require types to be created by a TYPE
part!)

P4. Two variables have the same type if and only if they are
declared with the same type name.

In other words we adhere to a very strict form of name equivalence. After the TYPE
and VAR parts

TYPE
speed = -real;
weight = real;
VAR
a,b :speed;
X :weight;
y :weight;
z treal;

the variables a and b have the same type (namely speed); x and y have the same type
(weight) and no other type equivalences exist.

LT# SMIN TYISYd

086T “HOYYW

€9 39vd

P5. 1In every assignment, the type of the variable on the left must
be the same as the type of the expression on the right (exception:
integers may be assigned to real variables).

I believe this is the simplest definition of "strong typing". To continue the
previous example "a:=b" is a legal assignment but "a:=x" is not, even though the
values of both a and x are real numbers. Since parameter transmission can be
described in terms of assignment this principle applies to parameters in function and
procedure calls; it forces an exact match between the types of formal and actual
parameters, and it implies a careful interpretation of operator overloading in
expressions (discussed after P7 .below).

The exception is galling but historically founded. It is pervasive, as will be
seen, because it implies that any type derived from integer is assignment compatible
with any type derived from real.

P6. The types of all constants (simple and structured) are
determined from context.

There is no way to avoid this, given P5 and the fact that variables of different
types may have the same value set. Continuing the example, if the statement "a:=4.7"
is legal, then by principle P5 the constant "4.7" is of type speed; but if "x:=4.7"
is also legal, in this case the same value has type weight. To reconcile these
cases, the type of a constant must be permitted to be a function of its context.
(Note that P6 paves the way for the introduction of other types of structured
constants, e.g., record and array constants; the proposed BSI type equivalence
definition does not extend so easily.)

P7. A created type inherits all of the predefined operators on its
underlying type, but none of the user defined functions or
‘procedures.

This principle is admittedly a compromise. Since the ground rules forbid syntactic
extensions, the promotion of operators to the new type must be automatic, and the
only issue remaining is which operators should be promoted. A primal set of
operators is specified in Standard Pascal; this provides a natural partitioning. (If
user defined functions and procedures were promoted as well, ambiguities would result
which could only be resolved through explicit typing of constants.)

An operator in the language (e.g., +) consists of a semantic action (e.g.,
addition) and a "signature", a template giving the types of the arguments and result
of the operator (e.g., integer + integer -> integér). A user-defined type extends
the set of operators available to a program, implicitly creating new operators from
old ones by combining the old semantics with new signatures; each new signature is
obtained from an old one by uniformly substituting the new type name for all
occurrences of the base type in the old signature. For example, all programs will
initially possess an operator + defined by

+ == addition; real + real -> real
and in a program containing the declarations of speed and weight above the operators

+ == addition; speed + speed -> speed
+ == addition; weight + weight =-> weight

are also available; but it would be impossible to add a "speed" to a "weight" or a

"real".

With some information about context, these principles are sufficient to deduce
the type of an expression or subexpression, or to select the correct operator for an
overloaded operator symbol. Given

IF 3 < round(x/4.5 + 3.0) THEN...
the operators in the boolean expression must be

< == less than; integer < integer -> boolean
round H weight -> integer

+ == addition ; weight + weight -> weight

/ == divide ; weight / weight -> weight

and the constants 4.5 and 3.0 must both be of type weight. In a few cases involving
only constants, it may not be possible to determine the constituent types, but the
correct action is obvious, e.g.,

IF 3 IN {1,5,7,12} THEN...

does not permit the determination of a unique type either for the set or the base
type of the set elements, but the value of the expression must be false in spite of
that.

P8. A subrange is a global constraint on the set of values assumed
by a variable; it does not create a new type.

Subranges are used for many different purposes; sometimes it would be useful for them
to be distinct types and sometimes not. For this reason it is a good idea to
accomodate both usages—-if there is a simple way to do so. At this point I admit to
bending the rules, and introduce one minor change to the Pascal syntax, in the form
of a typed subrange. A declaration of a variable

i sinteger 1..10

means that the type of i is integer, but its values are constrained to the closed
interval 1..10. A typed subrange consists of a type name followed by a subrange
contained in the value set of the type. If the type name is omitted, it is assumed
to be integer. If a typed subrange appears in a variable declaration, the variables
have the named type; but if the typed subrange appears in the TYPE section, it
participates in the creation of a (range restricted) new type, just as required by
P3. For example

TYPE
hour = 1..24;
VAR
i :integer;
am thour 1..12;
pm thour 13..24;
h thour;

The variables am, pm and h are all of type hour, and the assignments "h:=am" and
"h:=pm" will always be valid; "am:=pm" will never be valid because the value sets of
am and pm are disjoint; "am:=1i", "pm:=i" and "h:=i" are all prohibited by type
mismatch.

LT# SMIN TYISYd

086T “HOYYW

t9 39Yd

These principles lead to a view of types very different from the BSI/ISO

Working Draft. It is a much more restrictive world, emphasizing type safety at the

expense of flexibility. 1 suspect that neither approach is clearly superior for
"general purpose" use, but the reader can form his own opinion.

Finally, a suggestion for controlling name proliferation appeared in an
entertaining paper by Robert G. Herriot, "Towards the ideal programming language"
(SIGPLAN Notices, V 12 N 3, March 1977). Herriot proposed the use of English

articles ("the", "a", "an", etc.) and adjectives to create variable names. With this

syntactic mechanism, the fragment

TYPE
car = (ford,GM,volkswagen);
VAR
a car tcar;
a sports car tcar;
a compact car :car;

a blue electric car :car;

would declare four enumeration variables, referred to in the program text as "the

car", "the sports car", "the compact car" and "the blue electric car". Thus names
for variables can be directly manufactured irom type names, frequently improving the

program’s readability.

OO e O O L

X A X X XX XX X XXX X R B & J

FIXING PASCAL'S I/0 by Richard J. Cichelli

There have been a flurry of articles advocating modifications to Pascal's
file facility to improve its functionality for input/output. Here, questions
regarding terminal I/0 and relative record I/0 will be discussed.

Many criticisms of Pascal's file facility contain arguments that Pascal's
files don't support the full data set manipulation capabilities of the host's
operating system. An alternate view of the situation is to ask if the problem
to be solved can have its solution cleanly specified as an algorithm in Pascal.
If so, request that the Pascal compiler/system writer provide an implementation
complete enough to run the program efficiently. In short, buy compilers and
computing systems to run your programs rather than write programs to instruct
your (particular) computer.

Wirth created Pascal files. In the Revised Report Section 2, paragraph 10,
Wirth defines them as sequences of components of the same type. Although an
implementer may map Pascal files into sequential data sets, this isn't required
by the definition. The Report doesn't seem to require that the ideas of 1/0
and files be associated. A valid Pascal implementation could exist on a system
which lacks backing storage and a third generation file system. If this is the
case for your system and you still can run your Pascal programs, what do you
care? Besides, future data base oriented systems may avoid the redundancy of
a "file system". The problems of named data sets and directories are obviously
best dealt with in terms of local predefined (not standard) procedures.

For legible input and output (Report section 12) Pascal has a special type
of file called a text file. Text files have a special substructure and special
procedures and functions. Since sequences work and Pascal has appropriate fa-
cilities for manipulating them (i.c. the Pascal file primaiives), it would be
very strange if you couldn't make Pascal talk to terminals. Wirth specifically
mentions them in the first paragraph of section 12 and, guess what, many imple-
mentors have succeeded in implementing exactly what the report calls for and
having facile terminal interaction as well. One of the techniques is called
"lazy I/0" and it is fully detailed in Pascal News #13.

There are those who want to put random I/0 or "direct access files" into
Pascal. What's Pascal missing? Surely not random access. In the Report sec-
tion 2, paragraph 6, the array is discussed and specifically called & randonm
access structure. "But", you say, "I can't fit big direct access files in
core". Every implementation of Pascal is Tikely to have some restrictions.
Perhaps an array will need to be stored on bulk storage. Would you embed this
limitation in the language and in your algorithms and programs? If you need
to worry about a hierarchy of memory access facilities in these days of virtual
memory, etc, then a pragma or compiler directive might be the appropriate mech-
anism for suggesting to a particular compiler that certain data be placed on
backing store. Note: There is no prohibition to passing arrays (e.g. an im-
plementation relative records I/0) as program parameters. See the Report sec-
tion 13. Program parameters can reference any external object.” It is only
suggested that these are "(usually files)". Thus arrays and pointer based
data structures can be external objects to Pascal programs. (The "(usually
files)" reference has been removed from the current draft standard document.)

Although doing relative record I/0 with Pascal arrays may seem strange at
first, adding the unnecessary notion of memory hierarchies to the language is
far worse. The IBM System/38 has a uniform 48 bit addressing mechanism. A
System/38 applications programmer does quite well while being unaware of the
storage location of his data whether it be cache, core, disk buffer or on disk.
If the 38 can be said to auger the future, then certainly Pascal shouldn't take

a step backwards and introduce concepts which provide no additional functionality

In summary, fixing Pascal's I/0 only requires implementing what the Report
suggests.

'EXXEXE XXX E X R & R K & B

LT# SMIN TYISYd

086T “HOYYW

99 39vd

JAREK DEMINET, M.SC.
JOANNA WISNIEWSKA
Institute of Informatics
University of Warsaw
P.0.Box 1210

00-901 Warszawa

POLAND

Simpascal

Introduction

This article presents a new extension (called Simpascal) to Pascal. The goal of this
extension was to provide facilities for simuiating discrete time systems in the way similar to
the one adopted in Simula. This goal has been achieved with no changes in the original
Pascal compilers, but rather by use of some run-time routines. Simpascal has been
implemented on CDC CvyBeR73 and IBM 360.

Background

Simpascal was designed as a part of the OSKit Project (simulation of operating systems
[1]) at the Institute of Informatics, University of Warsaw. Those extensions were necessary
since existing slandard Pascal facilities didn’t allow one to write a simulator in this language.
The reason for creating a new tool instead of using Simula was mainly better performance of
the Pascal object code. Besides, all other parts of the project (data input preparation and
output analysis) had been already written in Pascal.

A general design of Simpascal and its implementation on the CYBER73 were made by
Jarek Deminet, while some improvements and the 360 version were prepared by Joanna
Wisniewska. A standard Pascal compiler was used on the CYBER73. 360 compiler was
produced at the Institute of Computer Science, Polish Academy of Science. The whole work
lasted approximately 6 weeks.

Description

A simulator in Pascal (as in Simula) consists of some number of coroutines, each of
which implements one process. At any given time one of them is active and the others are
suspended. Some of the latter may be ready to run and wait in a so-called Sequential Set
(SQS), other are blocked. SQS is ordered according to increasing time, which is an attribute
of each process. Full description of this idea may be found in [2]. From this point on, a term
routine will mean either a coroutine, subroutine or the main program, while a subroutine will
be either a procedure or a function.

In order to provide all expected functions the following subroutines were implemented:

function Create (procedure P):coroutinelD;

Creates a new process (coroutine), with the same attributes and the body as in the
procedure given as a parameter. This corouline is started; after an initial part it
should call Detach (see below). Control then returns to a creator, and the function
returns as its value a unique coroutine identificr. The first routine calling this
function is called a root of the whole set of coroutines. There is a restriction that
Create may be later called either by the root or by any other coroutine, but not in
its initial part (ie. no nesting of Create calls is allowed).

procedure Detach;
Finishes an initial part of a coroutine and returns contro! to its creator.

procedure Start (C:coroutineID; maxtime:real);
Starts the coroutine C, thus initiating the whole simulation. It should be pointed that,
unlike in Simula, an root is not a coroutine itself and may be resumed only after
finishing the simulation. Simulation ends as soon as there is no process in the SQS
with its time less then the maxtime parameter of Start.
This rouline may be called only by the root.

procedure Activate (C:coroutinelD; delay:real);
Makes the coroutine C ready, i.e. inserts it into the SQS. Its time will be equal to the
time of the currently active (current) coroutine increased by delay. If delay is
negative, then the coroutine C will be resumed immediately (becoming active), and
the current coroutine will be suspended.

procedure Pass (C:coroutinelID);
Acts similarily to Activate (C,-1) , but also removes the current coroutine from
the SQS

procedure Cancel (C:coroutinelID);
Removes the coroutine C from the SQS. If that was the current coroutine, the next
coroutine from the SQS is resumed.

function Time (C:coroutinelD):real;
Returns time of the coroutine C.

procedure Hold (increment:real);
Suspends the current coroutine, increases its time by increment and resumes the
first coroutine from the SQS.

function This:coroutinelD;
Returns an ID of the current coroutine.

There is one very unpleasant and artificial restriction for a call of the so-called special
routines, which may change an active coroutine (i.e. Activate, Pass, Cancel and Hold). If
any of those subroutines is called from a Simpascal subroutine, called in turn (directly or
indirectly) from a coroutine, then all subroutines down to the level of the coroutine will be
immediately terminated. That means that the coroutine is suspended and reactivated always
at its own level. This concept was called husking and is necessary to ensure stack
consistency.

Implementation

The data structure on which Simpascal subroutines operate is very similar in both
implementations so it will be presented here in a relatively machine-independent form.

LT# SMIN TYISYd

086T “HOMYM

99 39vd

Each instantiation of every Pascal routine is defined by a segment on the stack (the
routine is called an owner of this segment). Each such segment (except the first one,
corresponding to the main program) consists generally of two parts:

Environment definition
Contains all information necessary to refer non-local objects, to safely execute a
return jump, and to perform an error handling action if necessary.

Local data
Contains local variables (which include also parameters of the call, compiler-
generated auxiliary variables and space for registers saved in case of further routine
calls). Generally, this part is of no interest for Simpascal, except for register saving
space.

A base (an address of the first word) of the segment of the current routine is pointed by
one of the registers (a B register on CDC, a general purpose register on 1BM), which will be
called a Base Register (BRey). Also the first free location above a top of the stack is pointed
by a register (Top Register or TReg).

In case of ordinary Pascal subroutines information in the environment definition is as
follows:

Static Link (SLink)
Poinls to a base of the segment defining the latest instantiation of the routine in
which the segment’s owner was declared. A chain of those links defines an access
path to all non-local objects.

This link is created always by the caller, according to its own access path.

Dynamic Link (DLink)
Points to a base of the previous segment on the stack, ie. the segment
corresponding to the routine which called the owner of this segment. It is used to
restore the BReg before return and to produce a Post-Mortemm Dump should an
error arrive.
This link is created by the routine itself using the old value of BReg.

Return Address (RAddr)
Contains the address to which control shuld be transferred in a return jump.
This address is provided by a caller (passed through a register).

Figure 1 presents the general structure of the Pascal stack.

The same data structure had to be adopted in Simpascal, since the code of coroutines
was to be the same as for normal subroutines. Several assumptions had to be made,
however, to ensure a consistency of the structure:

All coroutine segments occupy a contiguous space on the stack, directly above the
segment defining the root of the system (there may be no other segments in
between).

The stack of only one coroutine at any particular time (the active, or current coroutine)

may consist of more than one segment. This would mean that no action which
implies a change of the active coroutine may be undertaken from any level other
than the level of the coroutine itself. To allow creating of user-defined control
transfer subroutines the concept of husking (described above) was adopted. Its
implementation is very simple: any special subroutine removes from the stack all
segments from above the block of the coroutine segments.

TReg —»]

Current routine

DLink

BReg ___,|

SLink

Previous routine

DLink

SLink

DLink

SLink

Figure 1. Pascal stack structure.

TReg —uy]

Main program

Subroutine

BReg ———f piink

Coroutine

seyments

Coroutine

DLink

Negative part

Ancestor

Main

Figure 2. Simpascal stack (only some parts shown)

LT# SMIK TvISYd

086T "HIYVW

9vd

L9

The segment for each coroutine was changed in a manner invisible to ordinary routine
code. First, a negative part was added. It contains a restart adciess for an inactive coroutine,
and also some additional information (time, stalus and some pointers) used by routines
which handle and sequence processes. The meaning of some standard fieids was also
modified. Since the assumption is that a coroutine will never execute a return jump (because
it would destroy the stack structure), RAddr points to an error-handling routine.

DLink, in turn, no longer points to the previous segment on the stack, since it is not
intended to be used to update the BRReg. Because of some functions played by DLink during
standard eror handling, it was decided that this it should point to a base of the root's
segment.

Contents of BReg, TReg and SLink were left unchanged.
Figure 2 illustrates the general stack structure in Simpascal.
In order to have such a structure, the following actions have to be performed by Create
before calling a coroutine:
- setting BReg to a base of the root;
- incrementing TReg by the size of the negative part of the segment;

- setling SLing according to information which is always a part of the actual-parameter-
descriptor in a call-by-procedure in Pascal.

Results

Several programs have already been written in Simpascal and run on both machines,
fulfilling all expectations. A comparison with Simula shows that a program in Simpascal
needs 50 to 80% less memory and 50 to 70% less time. This is mainly due to much simpler
memory structure allowing better performance of the code.

References

[1 Leppert M., Madey J., Schroff R. : ITS Status Report
Report 7739, Technisches Universitat Munchen, Munich, Germany;
Report 63, Instytut Informatyki Uniwersytetu Warszawskiego, Warsaw, Poland

[2] Simula 67 Common Base Language
Publ. no. S-22, Norwegian Computing Center, Oslo, Norway

A AR AR AR g g b i N e

Lk kR R R R X X R R T T T T

The University of Tasmania

Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Australia 7001
Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE:

IF TELEPHONING OR CALLING

Some observations on Pascal and personal style

Arthur Sale

Tasmania, 1979 June

Background

Recently, arising out of a course I gave for microprocessor engineers and
their possible use of Pascal, I had to write a program of around 800 lines
to control a hot-plate assembly (as might be installed in a home with
provision for switching the hot-plates individually up or down at selected
times). The purpose of the program was to demonstrate the viability (and
superiority!) of Pascal for microprocessor purposes over assembly code or
Fortran. The experiment was a demonstrable success, taking one man-day to
write together with its correctness proof, and another man-day to transform
the abstract program into one having some useful properties for micro-
processor Pascal compilers and run-time support. The experimeit will be
reported elsewhere; by contrast the writing of the consequent paper has
consumed over a man-week, and nearer two...

However, in the course of writing this up, I came across some interesting
facts I should like to share with the readers of Pascal News. They relate
to personal stylistics, and use of Pascal's features. None of the reported
statistics here were considered specifically while writing the program:
they reflect a personal style.

LT# SMIN TYISYd

086T “HOYYW

29Yd

-89

Identifiers

The program contains 120 identifie
R e rs, and one label (as a conse

Fransfo?mat19n to eliminate a task). The length disEribution o%uiﬁce of @

identifiers is shown in Figure 1. € . .
It is interesting to note that approximately 55% exceed 8 characters in
length, and approximately 274% exceed 10 characters in length. These
correspond to the significance limits of the Pascal Standard and the
Control Data Cyber compiler. The Burroughs B6700 compiler I used has,

of course, no limit on significance.

Since the B6700 compiler is good in this respect, it is possible to write

i programs which work on the B6700, but which give rise to compiler error

messages (or worse, altered and undetected scope renaming) on systems with

R R A T limited significance. How often does this occur? Fortunately, the
STANDARD option on the B6700 compiler checks the possibility of any such

events. The answer seems to be: surprizingly often. 1In previous programs

I have seldom been able to escape changing an identifier name to avoid
The instances

¥ problems elsewhere, and it happened twice in this program.
were:

-

1 numbero fevents {an integer variable}
NumberOfPlates {a constant, altered to NoOfPlates}

FHE

T

DisplayType {the type of the display register}
DisplayTime {a procedure, altered to DisplayATime}

ESE

I draw the conclusion that any compiler that has a significance limit greater

o e e than 8 characters ought to perform the same checks; software I receive from
elseihere often exhibits the same problem. I also conclude that the

§-character limit is a mistake, and should never have been introduced into

Pascal.

The B6700 compiler also produces as a by-product of this checking a list
of instances of renaming under the scope rules. None were reported in this
HHH T B program at all, which surprized me. Usually Z and § crop up with mono-

tonous regularity, but in this case it appeared that the lesser numeric

orientation and the program structure minimized this.

1007,

Letter Cases
As the examples above indicate, the compiler accepts either letter case in
accordance with the Pascal Standard, and I write programs in predominantly
HH lower-case letters. I dislike the practice of capitalizing the reserved
5 words as it has a bad effect on readability for me. However, during the
course of this program I found myself falling into a practice which I had
never used before, but which seemed to be useful. I offer it as an
example of the differences in personal style that can arise with a little

thought devoted to stylistics.

The practice I adopted, more or less by chance at first, was to write
variables in all-lower-case, as in numberofevents, but constants, types,
PP i o : and procedures in mixed-cases, as in NoOfPlates or DisplayATime.

ks Rationalizing it after the event, I noted that variables often have
H . shorter and less complex names than other objects and thus may have less
i need of extra lexical cues, and procedure names are often the longest and
most complex. Sometimes these are a verb-phrase, while variable names

are more noun-like.

&

The practice improved my understanding of the program, mainly because I
could detect in expressions which were variables and which constants.
Such slight cues are worth a lot more to me than emphasizing reserved

words (which I know very well). Example:
if (time = LastMinuteOfDay) then begin
I am not yet sure whether this will be a stable feature of my future style.

o
NG

Seaam:

LT# SMIN T¥ISVd

086T “HOYYW

69 I9vd

Line Layout

I used my usual line layout and indentation rules, reported in Sale [1978],
and had no need to edit or correct any semicolons or ends. A consistent
style minimizes these trivial but annoying errors.

Comments
I classified the comments into three categories:

(a) Marker comments, used to assist picking out corresponding
points in a program, typically attached to an end to show
what it is the end of, or to pick out a procedure name by
underlining. Little semantic content.

(b) Procedure heading comments. These have considerable
semantic content, and outline the purpose of the procedure.

(c) In-text comments, which either give additional information
relating to the execution, or explain definitional points.
They vary all the way from a hint:

{Midnight changeover}

to an assertion:

{Re-establishing the inmvariant:
Ri = "All events up to and including the one pointed
: to by the 'preceding' pointer are due to occur
before or simultaneously with the new one. Also
‘if state=Exit there are no more records that
satisfy this criterion.”

The comment characteristics are shown below.

Kind of comment no lines % lines
spanned spanned
Marker 36 36 19%
Header 18 67 35%
In-text 67 87 46%
TOTAL 121 190 100%

The closing comment marker ("}') was always the last non-blank character
of the line it appeared on. Since one-line comments make up 80% of the
total number of comments, and 51% of the total number of lines spanned,
here is support for the idea that comments delimited by end-of-line
require no more keystrokes than bracketted comments. (Apart from other,
better, reasons for preferring them.)

The distribution of comment lengths, shown in Figure 2, emphasizes this.
It is certainly influenced by my habit of putting correctness assertions’
and hints in the code body, thus reducing the size of procedure header
comments. (The comments often share lines with code, so do not make the
mistake of assuming that the program contains 190 lines of waffle together
with the 157 blank layout lines).

100

50

t

LT# SMAN TYISYd

—

Procedures and Functions

Having arrived at a suitable transformation level by eliminating tasks from
the conceptual solution and substituting interrupt-driven procedures (Yes,
I know they aren't standard), the resulting program had 18 procedures/
functiens, including the main program. Other statistics are:

* Procedures Functions Program
15 (83%) 2 (11%) 1 (6%)
Parameters: 0 1 2
13 (76%) 3 (18%) 1 (6%)

The low frequency of parameters is explained by the nature of several of
the procedures: they are refinements. In fact six of the parameterless
procedures are called from only one place each, and a microprocessor
engineer might well apply a transform to put their code in-line and their
Jocal data in the caller's stack. Personally, I exert pressure on compiler
suppliers to make their compilers do it automatically: detecting the once-
only call is not difficult for a multi-pass compiler. On the B6700 such a
transformation would save 54 bytes of code out of a total of 2304 (2.3%),
and would also speed up the execution slightly.

The maximum level of procedure nesting is three, and this occurs 7 times.
This is astonishingly low for me, since my refinements often creep up
into the 10 to 12 levels deep. Analysing it after the event, I conclude
that the low nesting level here is due (a) to the complexity of this
problem being in task interlocking, not in algorithm complexity, and (b)
to several refinements being pushed to outer levels for use in several
contexts (by the sub-tasks).

086T “HIYYW

0/ 39vd

Types

As might be expected, real numbers are not needed in this problem.
The usage of different types in the program is shown below:

definitions uses in var or type
boolean (€3] 2
integer (1) 0
char 1) 0
real (1) 0
user-defined scalars 6 7
subranges of scalars 1 1
subranges of integer 9 30
records 1 1
arrays 3 8
sets 4 8
pointer types 1 4
files 0 0

The absence of integers arises naturally because no negative numbers occur
in this problem, and because the range of every integral value is predict-
able. Only innate laziness allowed one of my favourite types:

Natural = 0 .. Maxint;

in to substitute for the type of a value parameter which ought to have had
a special type declared for it in the outermost block:

TwoDaysWorthOfMinutes = 0 .. 2879; {2*24%60 - 1}
I salved my conscience by adding a comment to this effect, which probably
took more time doing it right...

Of some interest is the ratio of user-defined scalars to uses of pre-
defined types (7 : 2). This is a measure which I take as roughly indicative
of a switch from other language thinking to Pascal (or abstract) thinking.
The problem isn't big enough to draw any more conclusions.

Boolean expressions

Some people, on seeing my programs, adopt a knowing look and say, "You used
to be a Fortran programmer, weren't you?" and point to an example like:
if (eventlist = 0) then begin

Since this is total misunderstanding, it deserves a few words. I usually
put parentheses around every relational expression I write. The prime
reason is that I find it greatly improves the readability of the program
in that the limits of some complex expression can be more readily found,
as for example in:

if (modulocounter in pattern[plate[i]]) then begin

But having done this for a long time, it confers several other benefits:

(a) I almost never make mistakes in writing expressions which the
Pascal syntax will parse in a way I didn't intend. (The few
priority levels are well-known as a trap).

(b) I have to devote less thought to trivia while writing programs,
and therefore more thought to correctness proofs, simply
because I use codified rules.

To illustrate the point, the same thing happens in the following example:
IsTI1BeforeT2 := (tl1 < t2);

Summary

The purpose of this little letter is to give you some insight into
some personal stylistics in the hope that you will examine your own
equally carefully and ask yourself whence they came and why.

Pascal is no language for nongs who mindlessly copy others. I also
hope it may give some ideas to compiler-suppliers on the sorts of
things I do. If you ever want to please me, here are some hints.
Preserve the abstractions and make any limits on what I can do at

what I call virtual infinity.... W

L] L

Open Forum for Members

LT# SM3IN TYISYd

086T “HOYYMW

T/ 39vd

Andy Mickel January 23, 1980

YalC UniVle Sity New Haven, Connecticut 06510

these systems are complex by definition, and thus a full DISPOSE is
probably not excessive. In this case release effectively signals the
SCHOOL OF MEDICINE garbage disposal system to function.

333 Cedar Street

Section of Laboratory Medicine

January 23, 1980

Andy Mickel

University Computer Center
University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

Yesterday I called and spoke to Rick Marcus about a bug I have found in
ID2ID. My version is attached, together with the data that showed the
fault, and the symbol table progression in the original system.

Please consider this as a letter to PUG, and pass it on accordingly. 1
attach a second copy for the purpose.

On Pascal Standards, I have several observations, First, based on Bob
Fraley's HP3000 Pascal Compiler, I feel the need for a standard procedure

PROMPT (FILE)
which will have the effect of a writteln without causing a line-feed or
carriage-return. This is required for interactive use, where the under-
lying system buffers output. The procedure will flush the buffers.
Wherever the I1/0 system is direct, the procedure is not needed and need
not generate any code.

I firmly approve of the "otherwise" clause in the case statement, and
also feel it should be extended to variant records. I.E.

A = Record
Case B : Type of (
C : Ctype)
D : Dtype)
Otherwise : Elsetype))

iDISPOSE is often replaced by Mark/Release, which should be an available

option in the standard. DISPOSE must always require a garbage collector, ~

and thus a good deal of run-time. However, systems not implementing
dispose should generate a null procedure for source compatibility, and
similarly for Mark/Release. Note that implementation of Mark/Release
on systems that provide (new) storage to various processes from a common
pool must implement the equivalent of dispose for a release. However,

An extension sorely needed is simple arithmetic in constant definitions,
allewing all compile time constants to be slaved to a single definition.
Similarly the use of ORD and CHR functions in constant definitions
would be useful.

Implementation of goto's out of procedures is virtually impossible (at
reasonable cost) on many machines. The HP3000 is an example. I would
therefore recommend that the standard does not require these, and that
they be considered an extension. Logically, I have never found such
goto's necessary, and in addition such use customizes code segments to
any overall program, preventing direct re-use.

I am also running the USCD Pascal System, VER I1I.0. Users should be
warned that, as supplied, this does not detect integer overflows, (at
least on 8080/Z80 Systems), and that the complement of -32768 is 0!!
with no warning.Some stack overflows can occur without trapping in
addition. My revised interpreter cures these problems, when many

system programs proceed to crash on integer overflow, and thus the over-
flow check has been made switchable. The USCD System does not detect
EOF on the remote files, and thus cannot read text files remotely with-
out considerable contortions.

Sincerely,
—

s -
(=7~
& 7
Charles Falconer ‘
Chief Instrument Engineer
CF:tmm

Enclosures

[T# SMIN 1YISYd

086T “HOYYW

¢/ 39vd

Carnegte-MeHon UﬂlVGFSI[Y Department of Computer Science leading blank. 1 suggest rewriting the specification
Schenley Park so that this is clear - by noting that @ rather than
Pittsburgh, Pennsylvania 15213 1 leading blank is required.

I have seen the notation Write(Val: 1) used to mean: Use the
smallest possible fieldwidth, A cute use of the specifications,
but its obscurity is not in the spirit of the language. Perhaps
Write(Val) ocught to print Val in the smallest fieldwidth possible
(no leading blanks either!) while a fixed fieldwidth would be used
only if specified. This would unquestionably be the most pleasant
solution for most users, especially novices.

The Write(Val: 1) idiom is deficient for another reason. Many
implementors have chosen to implement output in an undersized field

January 29, 1980 by writing out asterisks. A good case can be made for this, and I
suspect many Pascal implementors will continue to do so despite the
standard.

A.M. Addyman Sincerely,
Department of Computer Science .
University of Manchester @
Oxford Road Frorr—
Manchester M13 9PL Ellis Cohen

England
Dear Professor Addyman:

I was delighted to see the proposed Pascal standard in Pascal
News. 1In general, I think the proposal is excellent. However,
there were a few points that troubled me.
BRITISH COLUMBIA HYDRO AND POWER AUTHORITY
- Textfiles. 6.4.24 seems to require that every textfile
end with a linemarker. Is that intentional? If so,

must closing a file(used for writing)force a linemarker Red Stripe Computer Trailer
to be output if one does not already end the file? Gas Division
3777 Lougheed Highway
- Pages. It seems bizarre to include a standard Page Burnaby, B.C.
procedure without specifying the effect on the file V5C 3Y3 CANADA
or including a procedure to test for end of page .
1 propose making the procedure optional, but if it is l9go 3“‘”“3 2L
included, require that a page marker be written which Dear Pug

is (like a linemarker) read as a blank, and that an
Eop (end-of-page) predicate be included as well.
Additional questions: Should Eop imply Eoln? Should I wrote a while ago about banning the marriage of Pascal and EBCDIC.
Page force a Writeln automatically? E think I stated a decent character set should have the following property
» ORD('9')-ORD('0') should be 8" That should read "ORD('9')-ORD('0') should he 9".
~ The CASE statement. I must say I am surprised the
OTHERS clause was not included in the standard. I'm If you decide the publish that letter, please correct the mistake!
equally unhappy (but less surprised) that subranges) Please do not publish this letter.
were not to be permitted in the case-constant list,

- Numeric output. 6.9.3 requires a leading blank for a
number that fits in the output field, while no leading Tharks
blank is required if it does not. So, in the case of a
number whose width is the same as the fieldwidth, the
number is'printed out in just that fieldwidth without a

LT# SMIN TYISYd

086T “HOYYW

¢/ 39vd

WINTHROP PUBLISHERS, INC., 17dunster st., cambridge, mass. 02138 tel: 617-868-1750

January 8, 1980

Professor Andy Mickel

University Computer Center

227 Experimental Engineering Bldg
208 SE Union Street

University of Minnesota
Minneapolis, MN 55455

Dear Andy,

I'm a little concerned about some possi?le unintended
effects of your brief book reviews section on page 8
of Pascal News, No, 15.

You quoted a table from a review by Jan Hext, of Fhe .
University of Sydney, comparing Pascal textbooks in their
coverage of the language. I am concerned t@at, taken
out of context, that table may scare potential readers
away from our book by Conway, Gries, and zimmetmqn,

A PRIMER ON PASCAL, the second edition of which is due
this spring.

There is no question that the coverage of Pascal in that
book is not nearly as extensive as many other books
(although in the new edition it will be somewhat more so),
but taken out of context, it looks like you are rating the
book in general as "poor." The reviews in my files
indicate, of course, that the book is arguably thg best
introduction to programming using Pascal as a vehlgle,

and for such a use might well be much more appropriate than
a book which is a more thorough rendering of the language
but less helpful in learning to program. So, while I do
not quarrel for a moment with Professor Hext's analysis

of what this book is not, I wish to rush to the barricades

to reaffirm what, on the other hand, it is.

Thanks for listening.

Best regards,
(liuaciz____,ab

Charles F. Durang .
Editor, Computer Science

CFD/mw

SOPHIE DAVIS SCHOOL OF
BIOMEDICAL EDUCATION

THE CITY COLLEGE
OF
THE CITY UNIVERSITY OF NEW YORK
NEW YORK, N.Y. 10081

Wednesday, January 30th, 1980 (212)690-6629, 8255

Rick Shaw

PASCAL User's Group

Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick;

Enclosed is my personal check for $26.00; please enter my subscription/
membership to PASCAL News for this academic year 1979/80, and also send the
previous two years' back issues 9 - 16. I would be glad to pay Xeroxing and
mailing expenses (within reason) if somebody could furnish copies of your
extinct issues 1 - 8.

In our mammoth CUNY University Computer Center (Amdahl 470/V6 and IBM 3033
under 0S/MVT and ASP; IBM 3031 under VM and CMS), Stony Brook PASCAL 1.3 is
standard, and Version 2S was just added to a test library last week. (I gather
from the documentation that both are rather Timited in complex applications -
for example, no external files...) Although I know of no campus among our 20
where PASCAL is the prime teaching language, faculty and student use is clearly
on the rise; we've just brought up 2 PASCALs on a PDP-10 here in the CCNY
Science Building.

I am involved in bringing up an orphan Z-80 microcomputer from the defunct
Digital Group in Denver; besides opscan test grading, the primary application
will be bibliographic citation retrieval from a hybrid collection of about 8,000
articles. I am presently working up the necessary software package for this
operation in PASCAL, using bit-string inverted lists hung from a B-tree.

With the possibility of a brief trip to Switzerland this April, I have
considered arranging a visit with Professor Wirth: if anvbody else has done
so, expecially recently, I'd love to hear from him as soon as possible. PASCAL
was my native language at SUNY Stony Brook, and I'm very thankful for that.
I'm eager to meet other New York City PASCAL users.

Sincerely yours;
R .
3 !

7/
(. « '/')‘ : LN

Alan N. Bloch, M.P.H.
CCNY Biomed J 910 C1

encl.

4N EQUAL OPPORTUNITY EMPLOYER

LT# SMIN 1YISYd

086T “HOYYW

W/ 39vd

KERN INSTRUMENTS, INC.
GENEVA ROAD ¢« BREWSTER, NEW YORK 10509

TELEPHONE:
(914) 279-5095

TELEX:
969624

January 15, 1980

Mr. Rick Shaw

Digital Equipment Corporation
Pascal User's Group

5775 Peachtree Dunwoody Road
Atlanta, GA 30342

Dear Rick:

While renewing my subscription, I am taking the opportunity to say
a few words.

I have used two Pascal systems in my work here; initially, a
Northwest Microcomputer 85/P with UCSD Pascal, and now a PDP-11
with RT-11 operating system and OMSI, Pascal I version 1.1. Both
have advantages (and disadvantages). The UCSD operating system
(with CP/M utilities) was fantastic, especially the editor. How-
ever, I/0 handling (I wanted interrupts) was poor. With RT-11, I
can use all the I/0 facilities of this excellent operating system,
but OMSI doesn't support them very well. Hopefully, this will be
fixed in version 2 which is due any day now. I'm also disappointed
that several Pascal features I used quite heavily with the UCSD
system are not implemented in OMSI Pascal I, particularly the Pack
and Unpack functions. These are very convenient for formatting and
unformatting I/0 records used in certain peripherals.

I see almost weekly announcements concerning new Pascal compilers
and machines. Now that most of the established computer manu-
facturers have taken up the cause, we can say that Pascal has
arrived. So much so in fact, that I would not have resubscribed to
PUG if not for Arthur Sale's recent issue describing the Validation
Suite. Congratulations to Prof. Sale and his group.

Now it's up to us Pascalers to encourage the compiler writers to
meet the standard and implement any extensions in an acceptable
manner.
Good Tuck, Rick!

Sincerely yours,

KERN INSTRUMENTS; IfiC.

/

T. P. Roberts
Photogrammetric Systems Engineer

TPR:pm

BRITISH COLUMBIA HYDRO AND POWER AUTHORITY

970 BURRARD STREET
VANCOUVER, B.C.
V6Z 1Y3

TELEX 04-54395

1979 December 31

Dear PUG
re: outlawing EBCDIC and Pascal marriage

I have tried to write some text tidying routines with the
University of B.C. Pascal compiler under MTS. It uses
EBCDIC as its underlying code. Arrgh!

ORD('Z"')-ORD('A') should be 25 in all decent Pascal implementations.
ORD('z')-ORD('a') should also be 25. There should exist a magic
number m such that you can do lower to upper case conversions.
ORD('9')-ORD('0') should be 8. (Even EBCDIC gets that right!)

ORD(' ') should be Tess than ORD('A'), ORD('a'), and ORD('0').

ASCII has these properties. EBCDIC does not. It is thus difficult
to write portable code.

I suggest that any Pascal standard insist that an "excellent" rated
compiler provide a compile-time switch to insist that all internal
character codes be ASCII even if this means translation in and out.
Alternatively, Pascals that live in an EBCDIC environment that wish
to manipulate all 256 characters should work internally on a
modified EBCDIC that has the above nice properties. A compiler

that could not provide this option could only obtain a "reasonable" rating.

To indicate the honrors of EBCDIC, consider that none of the following
code works as you would expect.

if ¢ in ['a'..'z'] then S1; if C>= 'a' and C & 'z' then S3;
for C := "A' . to 'Z' do S2;

It is also impossible to write (I hope I am wrong) decent hashing
algorithms and random number generators that are truly portable (ie.
give the same answers in all implementationg. Perhaps "excellent" rated
compilers should also provide some extra builtin functions for these
tasks. It wouldn't hurt to define their names and parameters now.

Qzﬁt\j 6\6&’\

Roedy Green

LT# SMIAN,T¥ISYd

0357 “HIYYY

G/ 39Yd

E COMPUTER SCIENCE PRESS INC.

9125 FALL RIVER LANE
POTOMAC, MD. 20854
(301) — 299-2040

November 27, 1979

Dr. Andy Mickel

Editor

Pascal Newsletter

University of Minnesota

University Computer Center

227 Experimental Engineering Building
Minneapolis, Minnesota 55455

Dear Dr. Mickel:

In the 15th issue of Pascal News on page 8 you inadvertently omitted
the list for our book PASCAL: An Introduction to Methodical Program-
ming by William Findlay and David Watt in an article comparing the
available Pascal books. It was listed in the table at the bottom of
the page. We would appreciate it if you would correct this ommission.
Pascal: An Introduction to Methodical Programming is published far
the United States and Canada by Cétputer Science Press, Inc. @ $11.95.
it is available and published throughout the Yemainder of the world by
Pitman Publishing Ltd., 39 Parker Street, London, England WC2B 5PB.

In its first year Computer Science Press has sold over 12,00<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>