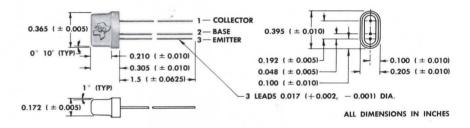
TYPES 2N308 AND 2N309 P-N-P GROWN — DIFFUSED GERMANIUM TRANSISTOR



Texas Instruments Types 2N308 and 2N309 germanium P-N-P grown — diffused transistors are especially designed to provide high gain in 455 kc common emitter intermediate frequency amplifier applications. The closely controlled characteristics of these transistors assure interchangeability in properly designed circuits.

To assure maximum reliability, stability, and long life, all units are cycled from -55° C to $+75^{\circ}$ C and $+75^{\circ}$ C at 95% relative humidity for four complete cycles over an eight-hour period. In addition, the hermetic seal is checked by vacuum testing. All units are thoroughly tested for design characteristics and 455 kc power gain.

mechanical data

Metal case with glass-to-metal hermetic seal between case and leads. Approximate weight is 1 gram.

absolute maximum ratings at 25°C ambient [except where advanced temperatures are indicated]

Collector Voltage Referr	ed	to	En	nitt	er										-20 V
Collector Current					•						,	,			-5 mA
Collector Dissipation .						,									30 mW
Operating Temperature															55 °C

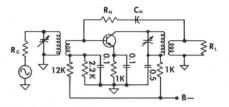
design characteristics at 25°C ambient

		min.	design center	max.	unit
Ico	Collector Cutoff Current *	_	— 5	—10	μΑ
Zin	Common Emitter Input Impedance †	_	4K		Ohm
Zout	Common Emitter Output Impedance †	_	400K	_	Ohm
Cob	Output Capacitance Referred to Base at 455 kc †	_	1	3	$\mu\mu f$
Coe	Output Capacitance Referred to Emitter at 455 kc †		6	_	μμ
Cle	Input Capacitance Referred to Emitter at 455 kc†‡	_	20	_	$\mu\mu$ f

^{*}V_C=-9V, I_E=0

 $tV_{C}^{\circ} = -9V$, $I_{C}^{\circ} = -1.0$ mA

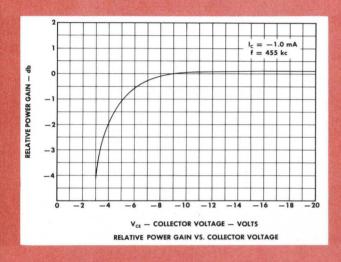
‡Input capacitance on input side of transformer is decreased by a factor of N3, where N is input transformer turns ratio

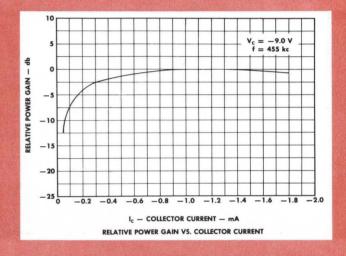

TYPES 2N308 AND 2N309

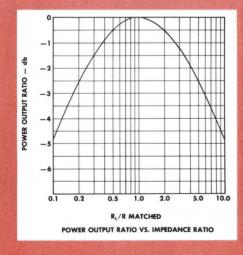
TYPICAL CHARACTERISTICS

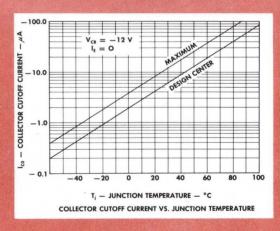
power gain (in test circuit below)

test conditions


type	min.	max.	units	frequency	Vc	Ic		
2N308	39	42	db	455 ke	-9V	-1.0 mA		
2N309	41	44	db	455 kc	-9V	-1.0 mA		




NOTES: 1. CN and RN are determined by circuit configuration and transformer design. Their values should be chosen to minimize the internal feedback of the transistor. For any particular circuit, fixed values of C_N and R_N may be used.


2. Generator Impedance, R_G, must reflect an impedance of 1000 ohms at the transistor input (base to ground).

- 3. Load Impedance, R_L, must reflect an impedance of 100,000 ohms at the transistor output (collector to ground).
- 4. Power Gain = Power Delivered to 100,000-0hm Collector Load
 Maximum Available Power from 1000-0hm Source

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN