54/74 Family
 MSI/LSI Circuits

The following pages contain functional indexes and selection guides designed to simplify the choice of a particular function to fit a specific application. Essential characteristics of similar or like functions are grouped for comparative analysis, and the electrical specifications are referenced by page number. The following categories of functions are covered:

Adders . $7-4$
Accumulators, arithmetic logic units, look-ahead carry generator
Multipliers
Parity generators/checkers
Other arithmetic operators
Quad, hex, and octal flip-flops
Register files
Register files
Shift registers
Shift registers
Other registers
Other reg
Latches
Clock generator circuits
Code converters
Priority encoders/registers
Data selectors/multiplexers
Decoders/diemuitipiexers
Open-collector display decoders/drivers with counters/latches
Open-collector display decoders/drivers
Bus transceivers and drivers
Asynchronous counters (ripple clock)-negative edge triggered
Synchronous counters-Positive-edge triggered
Bipolar bit-slice processor elements
First-in first-out memories (FIFO's)
Random-access read/write memories (RAM's)
Read-only memories (ROM's)
Programmable-read-only memories ($\mathrm{PRO} \dot{\mathrm{M}}{ }^{\prime} \mathrm{s}$)
Mcroprocessor controllers and support functions

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

ADDERS								
DESCRIPTION	TYPICAL CARRY time	TYPICAL ADD time	TYP POWER dISSIPATION PER BIT	DEVICE TYPE AND PACKAGE				PAGE NO.
				$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
SINGLE 1-BIT GATED FULL ADDERS	10.5 ns	52 ns	105 mW	SN5480	J, W	SN7480	J, N	7-41
SINGLE 2-BIT FULL ADDERS	14.5 ns	25 ns	87 mW	SN5482	J, w	SN7482	J, N	7.49
	10 ns	15 ns	24 mW	SN54LS83A	J, W	SN74LS83A	J, N	7.53
	10 ns	15 ns	24 mW	SN54LS283	J, w	SN74LS283	J, N	7.415
SINGLE 4-BIT FULL ADDERS	11 ns	7 ns	124 mW	SN54S283	J	SN74S283	J, N	7-415
	10 ns	16 ns	76 mW	SN5483A	J, w	SN7483A	J. N	7-53
	10 ns	16 ns	76 mW	SN54283	J.W	SN74283	J, N	7.415
	11 ns	11 ns	110 mW	SN54H183	J, W	SN74H183	J, N	7-287
DUAL 1-BIT CARRY-SAVE FULL ADDERS	15 ns	15 ns	23 mW	SN54LS 183^{*}	J, W	SN74LS183*	J, N	7-287

ACCUMULATORS, ARITHMETIC LOGIC UNITS, LOOK-AHEAD CARRY GENERATORS

DESCRIPTION	TYPICAL CARRY TIME	$\begin{gathered} \text { TYPICAL } \\ \text { ADD } \\ \text { TIME } \end{gathered}$	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				PAGE NO.
				$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
4-BIT PARALLEL BINARY ACCUMULATORS	10 ns	20 ns	720 mW	SN54S281	J, W	SN74S281	J, N	7.410
	11 ns	20 ns	525 mW			SN74S381	N	7-484
4-BIT ARITHMETIC LOGIC UNITS/	7 ns	11 ns	600 mW	SN54S181	J, W	SN74S181	J, N	7-271
FUNCTION GENERATORS	12.5 ns	24 ns	455 mW	SN54181	J.W	SN74181	J, N	7.271
	16 ns	24 ns	102 mW	SN54LS181	J, W	SN74LS181	J, N	7-271
LOOK-AHEAD CARRY GENERATORS	7 ns		260 mW	SN54S182	J, W	SN74S182	J, N	-282
LOOK-AHEAD CARRY GENERATORS	13 ns		180 mW	SN54182	J,W	SN74182	J, N	7-282

MULTIPLIERS

DESCRIPTION	DEVICE TYPE AND PACKAGE				PAGE NO.
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS	SN54LS261	J, W	SN74LS261	J, N	7.380
	SN54284, SN54285	J, W	SN74284, SN74285	J, N	7.420
BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS	SN54S274	J	SN74S274	J, N	7-391
	SN54LS275	J	SN74LS275	J, N	7.391
7-bit-SLICe WALLACE Trees	SN54S275	J	SN74S275	J, N	7.391
25-MHz 6-BIT-BINARY RATE MULTIPLIERS	SN5497	J, W	SN7497	J, N	7.102
25-MHz DECADE RATE MULTIPLIERS	SN54167	J,w	SN74167	J, N	7.222

COMPARATORS							
DESCRIPTION	TYPICAL COMPARE TIME	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				$\begin{aligned} & \text { PAGE } \\ & \text { NO. } \end{aligned}$
			$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
	11.5 ns	365 mW	SN54S85	J, W	SN74S85	J, N	
	21 ns	275 mW	SN5485	J,W	SN7485	J, N	7.57
BIT MAGNITUDE COMPARATOR	23.5 ns	52 mW	SN54LS85	J, W	SN74LS85	J, N	7.57
	82 ns	20 mW	SN54L85	J	SN74L85	J, N	

*New product in development as of October 1976

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

PARITY GENERATORS/CHECKERS							
DESCRIPTION	TYPICAL DELAY TIME	TYP TOTAL POWER dISSIPATION	DEVICE TYPE				$\begin{aligned} & \text { PAGE } \\ & \text { No. } \end{aligned}$
			$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
9-BIT ODD/EVEN PARITY GENERATORS/CHECKER	31 ns	80 mW	SN54LS280	J, W	SN74LS280	J, N	
9-BIT ODD/EVEN PARITY GENERATORS/CHECKER	13 ns	335 mW	SN54S280	J, W	SN74S280	J, N	7-406
8-BIT ODD/EVEN PARITY GENERATORS/CHECKERS	35 ns	170 mW	SN54180	J, w	SN74180	J, N	7-269

DESCRIPTION	TYPICAL DELAY TIME	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				$\begin{aligned} & \text { PAGE } \\ & \text { NO. } \end{aligned}$
			$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
	7 ns	250 mW	SN54S86	J, W	SN74S86	J, N	7-65
QUADRUPLE 2-INPUT EXCLUSIVE-OR	10 ns	30 mW	SN54LS86	J.w	SN74LS86	J, N	7-65
GATES WITH TOTEM-POLE OUTPUTS	10 ns	30 mW	SN54LS386	J, w	SN74LS386	J, N	$7-487$
	14 ns	150 mW	SN5486	J, W	SN7486	J, N	7-65
	55 ns	15 mW	SN54L86	J, T	SN74L86	J, N	7-65
QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES	18 ns	30 mW	SN54LS136	J, W	SN74LS136	J, N	7.131
WITH OPEN-COLLECTOR OUTPUTS	27 ns	150 mW	SN54136	J,w	SN74136	J, N	
QUADRUPIE 2-!NPUT EXCLIUS!VE-NOR GATES	18 ns	40 mm	SN54LS26s	d,w	SN74LS2Es	J, N	7-386
QUADRUPLE EXCLUSIVE OR/NOR GATES	8 ns	325 mW	SN54S135	J, w	SN74S135	J, N	7.129
4BIT TRUE/COMPLEMENT, ZERO/ONE ELEMENT	14 ns	270 mW	SN54H87	J, W	SN74H87	J, N	7-70

QUAD, HEX, AND OCTAL FLIP-FLOPS

DESCRIPTION	F-F PER PKG	FREO	$\begin{array}{\|l\|} \hline \text { POWER } \\ \text { PER } \\ \text { FLIP-FLOP } \end{array}$	DATA TIMES		DEVICE TYPE AND PACKAGE				PAGE NO.
				$\begin{array}{cc} \hline \text { SETUP } & \text { HOLD } \\ \text { ns } & \text { ns } \end{array}$						
						$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
D TYPE 3-STATE WITH ENABLE	8	50 MHz	26 mW	$20 \uparrow$	$0 \uparrow$	SN54LS364*	J	SN74LS364*	J, N	7-467
		50 MHz	17 mW	$20 \uparrow$	$0 \uparrow$	SN54LS374*	J	SN74LS374*	J, N	7-471
		100 MHz	56 mW	5!	2i	SN54S374	J	SN74S374	J, N	7-471
D TYPE WITH ENABLE	8	40 MHz	10.6 mW	$20 \hat{}$	51	SN54LS377	J	SN74LS377	J, N	7.481
	6	40 MHz	10.6 mW	$20 \uparrow$	$5 \uparrow$	SN54LS378	J, w	SN74LS378	J, N	7-481
	4	40 MHz	10.6 mW	$20 \uparrow$	$5 \uparrow$	SN54LS379	J	SN74LS379	J, N	7-481
D TYPE WITH CLEAR	8	40 MHz	39 mW	201	51	SN54273	J	SN74273	J, N,	7.388
		40 MHz	10.6 mW	$20 \uparrow$	5 !	SN54LS273	J	SN74LS273	J, N	7.388
	6	35 MHz	38 mW	$20 \uparrow$	$5!$	SN54174	J, W	SN74174	J, N	
		40 MHz	10.6 mW	20	$5 \uparrow$	SN54LS174	J, w	SN74LS174	J, N	7-253
		110 MHz	75 mW	$5 \uparrow$	$3 \uparrow$	SN54S174	J, W	SN74S174	J, N	
	4	35 MHz	38 mW	$20 \uparrow$	$5 \uparrow$	SN54175	J, W	SN74175	J, N	7.253
		40 MHz	10.6 mW	$20 \uparrow$	$5 \uparrow$	SN54LS175	J, W	SN74LS175	J, N	
		110 MHz	75 mW	$5 \uparrow$	31	SN54S175	J, w	SN74S175	J, N	
J-K TYPE WITH SEPARATE CLOCK	4	50 MHz	75 mW	31	10	SN54276	J	SN74276	J, N	7.401
J-K TYPE WITH COMMON CLOCK	4	45 MHz	65 mW	$0 \uparrow$	$20 \uparrow$	SN54376	J, W	SN74376	J, N	7-479

REGISTER FILES

DESCRIPTION	TYPICAL ADDRESS TIME	$\begin{gathered} \text { TYP READ } \\ \text { ENABLE } \\ \text { TIME } \\ \hline \end{gathered}$	DATA input RATE	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				PAGE NO.
					$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
EIGHT WORDS OF TWO BITS	33 ns	15 ns	20 MHz	560 mW			SN74172	J, N	7-245
FOUR WORDS OF FOUR BITS	$\begin{aligned} & 27 \mathrm{~ns} \\ & 30 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~ns} \\ & 15 \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \mathrm{MHz} \\ & 20 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \mathrm{~mW} \\ & 635 \mathrm{~mW} \end{aligned}$	$\begin{array}{\|l} \hline \text { SN54LS170 } \\ \text { SN54170 } \\ \hline \end{array}$	$\begin{aligned} & J, W \\ & J, w \end{aligned}$	$\begin{aligned} & \text { SN74LS170 } \\ & \text { SN74170 } \end{aligned}$	$\begin{aligned} & J, N \\ & J, N \end{aligned}$	7-237
FOUR WORDS OF FOUR BITS (3-STATE OUTPUTS)	24 ns	19 ns	20 MHz	135 mW	SN54LS670	J. W	SN74LS670	J, N	7-526

*New product in development as of October 1976.

MSI/LSI FUNCTIONS

FUNCTIONAL INDEX/SELECTION GUIDE

SHIFT REGIStERS													
DESCRIPTION	No. OF BITS	SHIFT FREO	$\begin{gathered} \hline \text { SERIAL } \\ \text { DATA } \\ \text { INPUT } \end{gathered}$	ASYNC CLEAR				TYP TOTAL POWER dissipation	DEVICE TYPE AND PACKAGE				PAGE NO.
							1		$-55^{\circ} \mathrm{C}$ to 12	$5^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to 70°		
PARALLEL-IN, PARALLEL-out (BIDIRECTIONAL)	8	50 MHz	D	Low	x x	x \times	x	750 mW	SN54S299	J, w	SN74S299	J, N	7-437
		35 MHz	D	Low	$\times \times$	x	x	175 mW	SN54LS299*	J	SN74LS299*	J, N	7.437
		35 MHz	D	Sync L	$x \times$	x	x	175 mW	SN54LS323*	J	SN74LS323*	J, N	7.443
		25 MHz	D	Low	$x \times$	x	x	360 mW	SN54198	J, W	SN74198	J,N	7.338
	4	70 MHz	D	Low	$x \times$	x	x	450 mW	SN54S194	J, w	SN74S194	J, N	
		25 MHz	D	Low	$x \times$	$x \times$	x	75 mW	SN54LS194A	J, w	SN74LS194A	J, N	7.316
		25 MHz	D	Low	$x \times$	x	x	195 mW	SN54194	J, W	SN74194	J, N	
PARALLEL-IN, PARALLEL-OUT	8	25 MHz	J- $\overline{\mathrm{K}}$	Low	x	x	x	360 mW	SN54199	J, W	SN74199	J, N	7.338
		10 MHz	D	Low	x	X		60 mW	SN54LS96	J, W	SN74LS96	J, N	
	5	10 MHz	D	Low	x	x		240 mW	SN5496	J, W	SN7496	J, N	7-95
		5 MHz	D	Low	x	x		120 mW	SN54L96	J	SN74L96	J, N	
	4	70 MHz	J-K	Low	x	x		375 mW	SN54S195	J, W	SN74S195	J, N	7.324
		30 MHz	$J-\bar{k}$	Low	x	\times		195 mW	SN54195	J, w	SN74195	J, N	7.324
		25 MHz		Low	x	x		75 mW	SN54LS395A*	J, W	SN74LS395A*	J, N	7.496
		25 MHz	D	None	x	\times		195 mW	SN5495A	j, W	SN7495A	J, N	7.89
		25 MHz	D	Low	x	x	x	230 mW	SN54179	J, W	SN74179	J, N	7.265
		25 MHz	,	None	x	\times	x	230 mW	SN54178	J, W	SN74178	J, N	7-265
		30 MHz	J-K	Low	x	\times		70 mW	SN54LS195A	J, W	SN74LS195A	J, N	7.324
		25 MHz	D	None	x	x		65 mw	SN54LS95B	J, w	SN74LS95B	J, N	7-89
		25 MHz	D	None	x	\times		70 mW	SN54LS295B*	J, w	SN74LS295B*	J, N	7.429
		3 MHz	J-k	None	x	x		19 mW	SN54L99	J	SN74L99	J, N	7-109
		3 MHz	D	None	x	\times		19 mW	SN54L95	J,T	SN74L95	J, N	7.89
		25 MHz	Gated D	Low	x			80 mW	SN54LS164	J, W	SN74LS164	J, N	
PARALLEL-OUT	8	25 MHz	Gated D	Low	x			167 mW	SN54164	J, W	SN74164	J, N	7-206
		12 MHz	Gated D	Low	x			84 mW	SN54L164	J, T	SN74L164	J, N	
PARALLEL.IN, SERIAL-OUT	8	25 MHz	D	None	x	x	x	210 mW	SN54165	J, W	SN74165	J, N	7.212
		35 MHz	D	None	x	x	x	105 mW	SN54LS165	J.W	SN74LS165	J, N	7.212
		20 MHz	D	Low	x	x	x	360 mW	SN54166	J, W	SN74166	J, N	7-217
		35 MHz	D	Low	x	\times	x	110 mW	SN54LS166	J, W	SN74LS 166	J, N	7.217
SERIALIN, SERIAL-OUT	4	10 MHz	D	High	x	\times		175 mW	SN5494	J, W	SN7494	J, N	7.86
	8	25 MHz	Gated D	None				60 mW	SN54LS91	J, W	SN74LS91	J, N	
		10 MHz	Gated D	None	x			175 mW	SN5491A	J.w	SN7491A	J, N	7.81
		3 MHz	Gated D	None	x			17.5 mW	SN54L91	J, T	SN74L91	J, N	

${ }^{\prime}$ S-R \equiv shift right, $\mathrm{S}-\mathrm{L} \equiv$ shift left
OTHER REGISTERS

DESCRIPTION	FREQ	ASYNC CLEAR	TYP TOTALPOWERDISSIPATION	DEVICE TYPE AND PACKAGE				PAGE NO.
				$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
QUADRUPLE MULTIPLEXERS WITH STORAGE	30 MHz	None	36.5 mW	SN54LS398	J	SN74L.S398	J, N	7-499
	30 MHz	None	36.5 mW	SN54LS399	J, w	SN74LS399	J,N	7-499
	25 MHz	None	65 mW	SN54LS298	J, w	SN74LS298	J, N	7.432
	25 MHz	None	195 mW	SN54298	J, w	SN74298	J, N	7432
	3 MHz	None	25 mW	SN54L98	J	SN74L98	J, N	7-107
8-BIT UNIVERSAL SHIFT/STORAGE	35 MHz	Low	175 mW	SN54LS299*	J	SN74LS299*	J, N	7437
REGISTERS	50 MHz	Low	750 mW	SN54S299	J, w	SN74S299	J, N	
QUADRUPLE BUS-BUFFER REGISTERS	25 MHz	High	250 mW	SN54173	J, W	SN74173	J, N	7.249
	50 MHz	High	85 mW	SN54LS173*	J, w	SN74LS173*	J, N	

*New product in development as of October 1976.

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

LATCHES										
DESCRIPTION	No. OF	CLEAR	OUTPUTS	TYPICAL DELAY	TYP TOTAL POWER		EVICE	TYPE CKAGE		PAGE
	BITS			TIME	DISSIPATION	$-55^{\circ} \mathrm{C}$ to 125°	$5^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to 70°		
MULTI-MODE BUFFERED	8	Low	Q	11 ns	410 mW	SN54S412	J	SN74S412	J, N	7.502
ADDRESSABLE	8	$\begin{aligned} & \text { Low } \\ & \text { Low } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 12 \mathrm{~ns} \\ & 17 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~mW} \\ & 110 \mathrm{~mW} \end{aligned}$	SN54259 SN54LS259	$\begin{aligned} & \mathrm{J}, \mathrm{~W} \\ & \mathrm{~J}, \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SN74259 } \\ \text { SN74LS259 } \end{array}$	$\begin{aligned} & \mathrm{J}, \mathrm{~N} \\ & \mathrm{~J}, \mathrm{~N} \end{aligned}$	7-376
TRANSPARENT	8	None None None	$\begin{aligned} & \mathrm{o} \\ & \mathrm{a} \\ & \mathrm{o} \end{aligned}$	$\begin{array}{r} 17 \mathrm{~ns} \\ 19 \mathrm{~ns} \\ 7 \mathrm{~ns} \end{array}$	$\begin{aligned} & 210 \mathrm{~mW} \\ & 120 \mathrm{~mW} \\ & 525 \mathrm{~mW} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SN54LS363* } \\ \text { SN54LS373 } \end{array}$ SN54S373	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SN74LS363* } \\ \text { SN74LS373 } \\ \hline \\ \text { SN74S373 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{J}, \mathrm{~N} \\ & \mathrm{~J}, \mathrm{~N} \\ & \mathrm{~J}, \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 7.467 \\ & 7.471 \\ & 7.471 \\ & \hline \end{aligned}$
DUAL 4-BIT WITH INDEPENDENT ENABLE	8	Low None	$\begin{aligned} & \mathrm{o} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 11 \mathrm{~ns} \\ & 15 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 250 \mathrm{~mW} \\ & 320 \mathrm{~mW} \end{aligned}$	SN54116 SN54100	$\begin{aligned} & \mathrm{J}, \mathrm{w} \\ & \mathrm{~J}, \mathrm{w} \end{aligned}$	SN74116 SN74100	$\begin{aligned} & \mathrm{J}, \mathrm{~N} \\ & \mathrm{~J}, \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 7-115 \\ & 7-113 \end{aligned}$
DUAL 2-BIT WITH INDEPENDENT ENABLE	4	None None None None None None ivone	$\begin{gathered} \mathrm{Q}, \overline{\mathrm{o}} \\ \mathrm{o}, \overline{\mathrm{o}} \\ \mathrm{Q}, \overline{\mathrm{Q}} \\ \mathrm{Q} \\ \mathrm{o} \\ \mathrm{Q} \\ \mathrm{Q}, \overline{\mathrm{u}} \\ \hline \end{gathered}$	15 ns 30 ns 11 ns 15 ns 30 ns 10 ns 12 ns	$\begin{array}{r} 160 \mathrm{~mW} \\ 80 \mathrm{~mW} \\ 32 \mathrm{~mW} \\ 160 \mathrm{~mW} \\ 80 \mathrm{~mW} \\ 35 \mathrm{~mW} \\ 32 \mathrm{miN} \\ \hline \end{array}$	SN5475 SN54L75 SN54LS75 SN5477 SN54L77 SN54LS77 Siv54is37	J, W J J, W W T W J,w J, W	SN7475 SN74L75 SN74LS75	$\begin{array}{r} \hline J, N \\ J, N \\ J, N \\ \\ \\ J, N \\ \hline \end{array}$	$\begin{aligned} & \hline 7-35 \\ & 7-35 \\ & 7-35 \\ & 7-35 \\ & 7-35 \\ & 7-35 \\ & 7.478 \\ & \hline \end{aligned}$
QUAD \bar{S} - \bar{R} (SSI)	4	None None	$\begin{aligned} & \mathrm{o} \\ & \mathrm{o} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~ns} \\ & 12 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 90 \mathrm{~mW} \\ & 19 \mathrm{~mW} \end{aligned}$	SN54279 SN54LS279	$\begin{aligned} & \mathrm{J}, \mathrm{~W} \\ & \mathrm{~J}, \mathrm{~W} \end{aligned}$	SN74279 SN74LS279	$\begin{aligned} & \mathrm{J}, \mathrm{~N} \\ & \mathrm{~J}, \mathrm{~N} \end{aligned}$	6-60

Clock generator circuits

DESCRIPTION	TYP TOTAL POWER	DEVICE TYPE AND PACKAGE				PAGE NO.
	dissipation	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
(FOR TMS 9900)	669 mW			SN74LS362*	J, N	7-460
CLOCK GENERATOR/DRIVERS (FOR TMS 8080A)	719 mW			SN74LS424	J, N	7-507
	90 mW	SN54LS124	J, W	SN74LS124	J, N	7-123
dUAL VOLTAGE-CONTROLLED OSCILLATOR WITH ENABLE	525 mW	SN54S124	J,w	SN74S124.	J, N	7-123
	90 mw	SN54LS326	J, W	SN74LS326	J, N	7445
UuA Voltage-controlled oscillator	150 mW	SN54LS325	J, W	SN74LS325	J, N	
al voltage	150 mW	SN54LS327	J, W	SN74LS327	J, N	445
VOLTAGE-CONTROLLED OSCILLATOR WITH ENABLE	90 mW	SN54LS324	J, W	SN74LS324	J, N	$7-445$
DUAL 30-MHz PULSE SYNCHRONIZERS/DRIVERS	255 mW	SN54120	J, W	SN74120	J, N	7-118
QUAD COMPLIMENTARY GATES (CLOCK/CLOCK) [SSI]	125 mW	SN54265	J, W	SN74265	J, N	6-89

CODE CONVERTERS							
DESCRIPTION	TYPICAL DELAY TIME PER PACKAGE LEVEL	TYPICAL TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				PAGE NO.
			$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
6-LINE-BCD TO 6-LINE BINARY, OR 4-LINE TO 4-LINE BCD 9's/BCD 10's CONVERTERS	25 ns	280 mW	SN54184	J, W	SN74184	J, N	7-290
G-BIT-BINARY TO 6-BIT-BCD CONVERTERS	25 ns	280 mW	SN54185A	J, W	SN74185A	J, N	7-290

MSI/LSI FUNCTIONS

FUNCTIONAL INDEX/SELECTION GUIDE

DESCRIPTION	TYPICAL DELAY time	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				PAGE NO.
			$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
FULL BCD PRIORITY ENCODERS	$\begin{aligned} & 10 \mathrm{~ns} \\ & 15 \mathrm{~ns} \end{aligned}$	$\begin{array}{r} 225 \mathrm{~mW} \\ 60 \mathrm{~mW} \end{array}$	$\begin{array}{\|l\|} \hline \text { SN54147 } \\ \text { SN54LS147* } \end{array}$	$\begin{aligned} & \mathrm{J}, \mathrm{~W} \\ & \mathrm{~J}, \mathrm{w} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SN74147 } \\ & \text { SN74LS147* } \end{aligned}$	$\begin{aligned} & \mathrm{J}, \mathrm{~N} \\ & \mathrm{~J}, \mathrm{~N} \end{aligned}$	7-151
CASCADABLE OCTAL PRIORITY ENCODERS	$\begin{aligned} & 12 \mathrm{~ns} \\ & 15 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 190 \mathrm{~mW} \\ & 60 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \hline \text { SN54148 } \\ & \text { SN54LS148* } \end{aligned}$	$\begin{aligned} & \mathrm{J}, \mathrm{w} \\ & \mathrm{~J}, \mathrm{w} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SN74148 } \\ \text { SN74LS148* } \end{array}$	$\begin{aligned} & \mathrm{J}, \mathrm{~N} \\ & \mathrm{~J}, \mathrm{~N} \end{aligned}$	7-151
CASCADABLE OCTAL PRIORITY ENCODERS WITH 3-STATE OUTPUTS	16 ns	63 mW	SN54LS348*	J, W	SN74LS348*	J, N	7.448
4-BIT CASCADABLE PRIORITY REGISTERS	35 ns	275 mW	SN54278	J, w	SN74278	J, N	7-403

data selectors/MULTIPLEXERS

DESCRIPTION	TYPE OF OUTPUT	TYPICAL DELAY TIMES			TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				PAGE NO.
		DATA TO INV OUTPUT	DATA TO NON-INV OUTPUT	FROM ENABLE						
						$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
16-LINE-TO-1-LINE	2-State	11 ns		18 ns	200 mW	SN54150	J, W	SN74150	J, N	7.157
DUAL 8-LINE-TO-1-LINE	3-State	10 ns		17 ns	220 mW			SN74351	N	7-451
8-LINE-TO-1-LINE	3-State	4.5 ns	8 ns	14 ns	275 mW	SN54S251	J, W	SN74S251	J, N	7.362
	3-State	17 ns	21 ns	21 ns	250 mW	SN54251	J, W	SN74251	J, N	7.362
	3-State	17 ns	21 ns	21 ns	35 mW	SN54LS251	J, W	SN74LS251	J, N	7-362
	2-State	4.5 ns	8 ns	9 ns	225 mW	SN54S151	J, W	SN74S151	J, N	$7-157$
	2-State	8 ns	16 ns	22 ns	145 mW	SN54151A	J, W	SN74151A	J, N	7-157
	2-State	8 ns			130 mW	SN54152A	W			7-157
	2-State	11 ns	18 ns	27 ns	30 mW	SN54LS151	J, W	SN74LS151	J, N	7-157
	2-State	11 ns		18 ns	28 mW	SN54LS152	W			7.157
DUAL 4-LINE-TO-1-LINE	3-State		12 ns	16 ns	35 mW	SN54LS253	J, W	SN74LS253	J, N	7-369
	2-State	15 ns		22 ns	31 mW	SN54LS352	J, W	SN74LS352	J, N	7-454
	3-State	12 ns		21 ns	43 mW	SN54LS353	J, W	SN74LS353	J, N	7.457
	2-State		6 ns	9.5 ns	225 mW	SN54S153	J, W	SN74S153	J, N	7.165
	2-State		14 ns	17 ns	180 mW	SN54153	J.W	SN74153	J, N	7-165
	2-State		14 ns	17 ns	31 mW	SN54LS153	J, W	SN74LS153	J, N	7.165
	2-State		27 ns	34 ns	90 mW	SN54L153	J	SN74L153	J, N	7-165
QUADRUPLE 2-LINE-TO-1-LINE WITH STORAGE	2-State		$20 \mathrm{~ns}{ }^{\text {t }}$		65 mW	SN54LS298	J,W	SN74LS298	J, N	7.432
	2-State		$20 \mathrm{~ns}{ }^{\dagger}$		195 mW	SN54298	J, W	SN74298	J, N	$7-432$
	2-State		$20 \mathrm{~ns}{ }^{\text {t }}$		32 mW	SN54LS398	J	SN74LS398	J, N	7-499
	2-State	$20 \mathrm{~ns}{ }^{\text {t }}$	$20 \mathrm{~ns}^{\dagger}$		37 mW	SN54LS399	J, W	SN74LS399	J, N	7-499
	2-State		$120 \mathrm{~ns}^{\dagger}$		25 mW	SN54L98	J	SN74L98	J, N	7-107
QUADRUPLE 2-LINE-TO-1-LINE	3-State	4 ns		14 ns	280 mW	SN54S258	J, W	SN74S258	J, N	7.372
	3 -State		5 ns	14 ns	320 mW	SN54S257	J, W	SN74S257	J, N	7.372
	2-State	4 ns		7 ns	195 mW	SN54S158	J, W	SN74S158	J, N	7-181
	2-State		5 ns	8 ns	250 mW	SN54S157	J, W	SN74S157	J, N	7-181
	3-State	12 ns		20 ns	60 mW	SN54LS258A*	J, W	SN74LS258A*	J, N	7.372
	3-State		12 ns	20 ns	60 mW	SN54LS257A*	J, W	SN74LS257A*	J, N	7.372
	2-State	7 ns		12 ns	24 mW	SN54LS158	J, W	SN74LS158	J, N	7-181
	2-State		9 ns	14 ns	49 mW	SN54LS157	J, W	SN74LS 157	J, N	7-181
	2-State		9 ns	14 ns	150 mW	SN54157	J, W	SN74157	J, N	7-181
	2-State		18 ns	27 ns	75 mW	SN54L157	J	SN74L157	J, N	$7-181$

${ }^{\dagger}$ From clock.
New product in development as of October 1976.

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

DECODERS/DEMULTIPLEXERS									
DESCRIPTION	TYPE OF OUTPUT	TYPICAL SELECT TIME	TYPICAL ENABLE TIME	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				PAGE NO.
					$-55^{\circ} \mathrm{C}$ to 1	$25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to 70		
4 LINE-TO-16-LINE	Totem-Pole	23 ns	19 ns	170 mW	SN54154	J, W	SN74154	J, N	7-171
	Totem-Pole	46 ns	38 ns	85 mW	SN54L154	J	SN74L154	J, N	7.171
	Open-Collector	24 ns	19 ns	170 mW	SN54159	J, w	SN74159	J, N	7-188
4-LINE-TO-10-LINE, BCD-TO-DECIMAL	Totem-Pole	17 ns		35 mW	SN54LS42	J,W	SN54LS42	J, N	7.15
	Totem-Pole	17 ns		140 mW	SN5442A	J, W	SN7442A	J, N	
	Totem-Pole	34 ns		70 mW	SN54L42	J	SN74L42	J, N	
4-LINE-TO-10-LINE,	Totem-Pole	17 ns		140 mW	SN5443A	J, W	SN7443A	J, N	7.15
EXCESS-3-TO-DECIMAL	Totem-Pole	34 ns		70 mW	SN54L43	J	SN74L43	J, N	7.15
4-LINE-TO-10-LINE									
EXCESS-3-GRAY-	Totem-Pole	17 ns		140 mW	SN5444A	J. W	SN7444A	J, N	7-15
TO-DECIMAL	Totem-Pole	34 ns		70 mW	SN54L44	J	SN74L44	J, N	
3-LINE-TO-8-LINE	Totem-Pole	8 ns	7 ns	245 mW	SN54S138	J, W	SN74S138	J, N	7-134
	Totem-Pole	22 ns	21 ns	31 mW	SN54LS138	J, W	SN74LS138	J, N	7.134
DUAL 2-LINE-TO-4 LINE	Totem-Pole	7.5 ns	6 ns	300 mW	SN54S139	J, W	SN74S139	J, iv	7-134
	Totem-Pole	22 ns	19 ns	34 mW	SN54LS139	J, W	SN74LS139	J, N	7-134
	Totem-Pole	18 ns	15 ns	30 mW	SN54LS155	J, W	SN74LS155	J, N	7-175
	Totem-Pole	21 ns	16 ns	125 mW	SN54155	J, W	SN74155	J, N	7-175
	Open-Collector	23 ns	18 ns	125 mW	SN54156	J,W	SN74156	J, N	7.175
	Open-Collector	33 ns	26 ns	31 mW	SN54LS156	J, W	SN74LS156	J, N	7-175

OPEN-COLLECTOR DISPLAY DECODERS/DRIVERS WITH COUNTERS/LATCHES

DESCRIPTION	OUTPUT SINK CURRENT	OFF-STATE OUTPUT VOLTAGE	TYP TOTAL POWER	BLANKING	DEVICE TYPE AND PACKAGE				PAGE NO.
			DISSIPATION		$-55^{\circ} \mathrm{C}$ to	$25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to		
BCD COUNTER/ 4-BIT LATCH/ BCD-TO-DECIMAL DECODER/DRIVER	7 mA	55 V	340 mW				SN74142	J, N	7-140
BCD COUNTER/ 4-BIT LATCH/ BCD-TO-SEVEN- SEGMENT DECODER/ LED DRIVER	Constant Current $15 \mathrm{~mA}$	7 V	280 mW	Ripple	SN54143	J, W	SN74143	J, N	7-143
BCD COUNTER/ 4-BIT LATCH/ BCD-TO-SEVEN- SEGMENT DECODER/ LAMP DRIVER	$\begin{aligned} & 20 \mathrm{~mA} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 280 \mathrm{~mW} \\ & 280 \mathrm{~mW} \end{aligned}$	Ripple Ripple	SN54144	J, W	SN74144	J. N	7-143

MSI/LSI FUNCTIONS

FUNCTIONAL INDEX/SELECTION GUIDE

7

DESCRIPTION	OUTPUT SINK CURRENT	Off-StATE OUTPUT VOLtAGE	TYP TOTAL POWER DISSIPATION	BLANKING	DEVICE TYPE AND PACKAGE				PAGE NO.
					$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
BCD-TO-DECIMAL DECODERS/DRIVERS	80 mA	30 V	215 mW	Invalid Codes	SN5445	J, W	SN7445	J, N	7.20
	80 mA	15 V	35 mw	Invalid Codes			SN74LS145	J, N	7.148
	12 mA	15 V	35 mW	Invalid Codes	SN54LS145	J, w			7-148
	80 mA	15 V	215 mW	Invlaid Codes	SN54145	J, w	SN74145	J, N	7-148
	7 mA	60 V	80 mW	Invalid Codes			SN74141	J, N	7-138
BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS	40 mA	30 V	320 mW	Ripple	SN5446A	J, W	SN7446A	J, N	7.22
	40 mA	30 V	320 mW	Ripple	SN54246	J, w	SN74246	J, N	7-22
	40 mA	15 V	320 mW	Ripple	SN5447A	J, W	SN7447A	J, N	7-22
	40 mA	15 V	320 mW	Ripple	SN54247	J, w	SN74247	J, N	7-351
	24 mA	15 V	35 mw	Ripple			SN74LS47	J, N	7.22
	24 mA	15 V	35 mW	Ripple			SN74LS247	J, N	7-351
	12 mA	15 V	35 mW	Ripple	SN54LS47	J, w			7-22
	12 mA	15 V	35 mW	Ripple	SN54LS247	J, w			7-351
	20 mA	30 V	133 mW	Ripple	SN54L46	J	SN74L46	J, N	7.22
	20 mA	15 V	133 mW	Ripple	SN54L47	J	SN74L47	J, N	7-22
	6.4 mA	5.5 V	265 mW	Ripple	SN5448	J, w	SN7448	J, N	7.22
	6.4 mA	5.5 V	265 mW	Ripple	SN54248	J, w	SN74248	J, N	7.351
	6 mA	5.5 V	125 mW	Ripple			SN74LS48	J, N	7.22
	6 mA	5.5 V	125 mW	Ripple			SN74LS248	J, N	7-351
	2 mA	5.5 V	125 mW	Ripple	SN54LS48	J, w			7.22
	2 mA	5.5 V	125 mW	Ripple	SN54LS248	J.w			7-351
	10 mA	5.5 V	165 mW	Direct	SN5449	w			7-22
	10 mA	5.5 V	265 mw	Direct	SN54249	J. W	SN74249	J, N	7-351
	8 mA	5.5 V	40 mW	Direct			SN74LS249	J. N	7-351
	8 mA	5.5 V	40 mw	Direct			SN74LS49	J, N	7-22
	4 mA	5.5 V	40 mW	Direct	SN54LS49	J. w			7-22
	4 mA	5.5 V	40 mW	Direct	SN54LS249	J, w			7-351

RESULTANT DISPLAYS USING '46A, '47A, '48, '49, 'L46, 'L47, 'LS47,'LS48,'LS49

RESULTANT DISPLAYS USING '246, '247, '248, '249, 'LS247,'LS248, 'LS249

MSI/LSI FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

BUS TRANSCEIVERS AND DRIVERS								
DESCRIPTION	TYPICAL PROPAGATION DELAY TIMES	MAXIMUM SOURCE CURRENT	maximum SINK CURRENT	DEVICE TYPE AND PACKAGE				PAGE NO.
				$-55^{\circ} \mathrm{C}$ to 1	$25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to 70°		
CONTROLLER AND BUS DRIVER FOR 8080A SYSTEMS		$\begin{aligned} & -1 \mathrm{~mA} \\ & -1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mA} \\ & 10 \mathrm{~mA} \end{aligned}$			SN74S428 SN74S438	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	7-514
OCTAL BUS TRANSCEIVERS	12 ns	$-12 \mathrm{~mA}$	12 mA	SN54LS245*	J	SN74LS245*	J, N	7-349
4-BIT BUS TRANSCEIVERS WITH STORAGE	10 ns	$-6.5 \mathrm{~mA}$	20 mA	SN54S226*	J, W	SN74S226*	J, N	7-345

ASYNCHRONOUS COUNTERS (RIPPLE CLOCK)-NEGATIVE-EDGE TRIGGERED

DESCRIPTION	COUNT FREQ	PARALLELLOAD	Clear	TYP TOTAL POWER dISSIPATION	DEVICE TYPE and package				PAGE NO.
					$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
DECADE	50 MHz	Yes	Low	240 mW	SN54196	J, w	SN74196	J, N	7-331
	100 MHz	Yes	Low	375 mW	SN54S196	J, W	SN74S196	J, N	7.331
	35 MHz	Yes	Low	150 mW	SN54176	d, w	SN74176	J, N	7-259
	32 MHz	Set-to-9	High	40 mW	SN54LS90	J, w	SN74LS90	J, N	7.72
	32 MHz	Set-to-9	High	40 mW	SN54LS290	J. W	SN74LS290	J, N	7-423
	32 MHz	Set-to-9	High	160 mW	SN5490A	J, W	SN7490A	J, N	7-72
	32 MHz	Set-to-9	High	160 mW	SN54290	J, w	SN74290	J, N	7-423
	30 MHz	Yes	Low	60 mW	SN54LS196	J, W	SN74LS196	J, N	7-331
	3 MHz	Set-to-9	High	20 mW	SN54L90	J, T	SN74L90	J, N	7.72
4-BIT BINARY	50 MHz	Yes	Low	240 mW	SN54197	J, W	SN74197	J, N	7-331
	100 MHz	Yes	Low	375 mW	SN54S197	J, W	SN74S197	J, N	7-331
	35 MHz	Yes	Low	150 mw	SN54177	d, w	SN74177	J, N	7-259
	32 MHz	None	High	39 mw	SN54LS93	J, w	SN74LS93	J, N	7.72
	32 MHz	None	High	39 mw	SN54LS293	J, w	SN74LS293	J, N	7-423
	32 MHz	None	High	160 mW	SN5493A	J, w	SN7493A	J. N	7.72
	32 MHz	None	High	160 mW	SN54293	J.W	SN74293	J, N	7-423
	30 MHz	Yes	Low	60 mW	SN54LS197	J, W	SN74LS197	J, N	7-331
	3 MHz	None	High	20 mW	SN54L93	J, T	SN74L93	J, N	7.72
DIVIDE-BY-12	32 MHz	None	High	39 mW	SN54LS92	J, W	SN74LS92	J, N	7.72
DIVIDE-BY-12	32 MHz	None	High	160 mW	SN5492A	J, w	SN7492A	J, N	
dual decade	25 MHz	None	High	210 mW	SN54390	J, W	SN74390	J, N	7-489
	35 MHz	None	High	75 mW	SN54LS390	J, w	SN74LS390	J, N	7-489
	25 MHz	Set-to-9	High	225 mW	SN54490	J, w	SN74490	J, N	7-520
	35 MHz	Set-to-9	High	75 mW	SN54LS490	J, w	SN74LS490	J, N	7-520
DUAL 4-BIT BINARY	25 MHz	None	High	190 mW	SN54393	J, W	SN74393	J, N	7.489
	35 MHz	None	High	75 mW	SN54LS393	J, w	SN74LS393	J, N	7-489

MSI/LSI FUNCTIONS

FUNCTIONAL INDEX/SELECTION GUIDE

SYNCHRONOUS COUNTERS-POSITIVE-EDGE TRIGGERED

DESCRIPTION	COUNT FREQ	$\begin{gathered} \text { PARALLEL } \\ \text { LOAD } \end{gathered}$	CLEAR	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				PAGE
					$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
	40 MHz	Sync	Sync-L	475 mW	SN54S162	J,W	SN74S162	J, N	
	25 MHz	Sync	Sync-L	93 mW	SN54LS162A	J, W	SN74LS162A	J, N	
DECADE	25 MHz	Sync	Async-L	93 mW	SN54LS160A	J, W	SN74LS160A	J, N	7-190
	25 MHz	Sync	Sync-L	305 mW	SN54162	J, W	SN74162	J, N	
	25 MHz	Sync	Async-L	305 mW	SN54160	J,W	SN74160	J, N	
DECADE UP/DOWN	40 MHz	Sync	None	500 mW	SN54S168	J,W	SN74S168	J, N	7.226
	25 MHz	Sync	None	100 mW	SN54LS168A	J, W	SN74LS168A	J, N	7.226
	25 MHz	Async	Async-H	85 mW	SN54LS192	J, W	SN74LS192	J, N	7-306
	25 MHz	Async	Async-H	325 mW	SN54192	J.W	SN74192	J, N	7-306
	20 MHz	Async	None	100 mW	SN54LS190	J, W	SN74LS190	J, N	7-296
	20 MHz	Async	None	325 mW	SN54190	J, W	SN74190	J, N	7-296
	3 MHz	Async	Async-H	42 mW	SN54L192	J	SN74L192	J, N	7.306
DECADE RATE MULTIPLIER, $\frac{1}{\mathrm{~N}_{10}}$	25 MHz	Set-to-9	Async-H	270 mW	SN54167	J, W	SN74167	J, N	7-222
4-BIT BINARY	40 MHz	Sync	Sync-L	475 mW	SN54S163	J, W	SN74S163	J, N	
	25 MHz	Sync	Sync-L	93 mW	SN54LS163A	J.W	SN74LS163A	J, N	
	25 MHz	Sync	Async-L	93 mW	SN54LS161A	J, W	SN74LS161A	J, N	7-190
	25 MHz	Sync	Sync-L	305 mW	SN54163	J,w	SN74163	J, N	
	25 MHz	Sync	Async-L	305 mW	SN54161	J, W	SN74161	J, N	
4-BIT BINARY UP/DOWN	40 MHz	Sync	None	500 mW	SN54S 169	J, W	SN74S169	J, N	7-226
	25 MHz	Sync	None	100 mW	SN54LS169A	J, W	SN74LS169A	J, N	7-226
	25 MHz	Async	Async-H	85 mW	SN54LS193	J. W	SN74LS193	J, N	7-306
	25 MHz	Async	Async-H	325 mW	SN54193	J, W	SN74193	J, N	7-306
	20 MHz	Async	None	90 mW	SN54LS191	J, W	SN74LS191	J, N	7-296
	20 MHz	Async	None	325 mW	SN54191	J, w	SN74191	J, N	7-296
	3 MHz	Asyne	Async-H	42 mW	SN54L193	J	SN74L193	J, N	7-306
6-BIT BINARY RATE MULTIPLIER, $\frac{1}{N_{2}}$	25 MHz		Async-H	345 mW	SN5497	J, W	SN7497	J, N	7-102

bipolar bit-slice processor elements ${ }^{\dagger}$

DESCRIPTION	CASCADABLE TO N-BITS	TYPICAL μ-OPERATION TIME	TECHNOLOGY	DEVICE TYPE AND PACKAGE			
				$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
4-BIT SLICE	Yes	100 ns	STTL	SN54S481	J	SN74S481	J, N
	Yes	230 ns	12 L	SBP0400AM	J	SBP0400AC	J, N
	Yes	230 ns	12 L	SBP0401AM	J	SBP0401AC	J, N

FIRST-IN FIRST-OUT MEMORIES (FIFO'S) ${ }^{\dagger}$

DESCRIPTION	TYPE OF OUTPUT	$\begin{gathered} \text { DELAY TIME } \\ \text { FROM } \\ \text { CLOCK } \\ \hline \end{gathered}$	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE		
				$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
ASYNCHRONOUS 16×5	3-State	50 ns	400 mW		SN74S225	J

${ }^{\dagger}$ See Bipolar Microcomputer Components Data Book, LCC4270.

RANDOM-ACCESS READ-WRITE MEMORIES (RAM'S)										
DESCRIPTION	ORGANIZATION	$\begin{array}{\|c\|} \hline \text { TYPE } \\ \text { OF } \\ \text { OUTPUT } \\ \hline \end{array}$	TYPICAL ADDRESS TIME	TYPICAL ENABLE TIME	TYP POWER DISSIPATION PER BIT	DEVICE TYPE AND PACKAGE				$\begin{gathered} \text { PAGE } \\ \text { NO. } \end{gathered}$
						$-55^{\circ} \mathrm{C}$ to 12	$5^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to 70°		
1024-BIT ARRAYS	1024×1	3-State	65 ns	20 ns	$0.2 / 0.07 \mathrm{~mW}$	SN54LS215	JD	SN74LS215	JD, N	\dagger
WITH POWER-DOWN	1024×1	O-C	65 ns	20 ns	$0.2 / 0.07 \mathrm{~mW}$	SN54LS315	JD	SN74LS315	JD, N	\dagger
1024-BIT ARRAYS	1024×1	3-State	65 ns	20 ns	0.2 mW	SN54LS214	JD	SN74LS214	JD, N	\dagger
	1024×1	3-State	30 ns	15 ns	0.51 mW	SN54S214	JD	SN74S214	JD, N	\dagger
	1024×1	O-C	65 ns	20 ns	0.2 mW	SN54LS314	JD	SN74LS314	JD, N	t
	1024×1	O-C	30 ns	15 ns	0.51 mW	SN54S314	JD	SN74S314	JD, N	t
	256×4	3-State	60 ns	20 ns	0.3 mW	SN54LS207	J	SN74LS207	J, N	\dagger
	256×4	3-State	40 ns	15 ns	0.59 mW	SN54S207	J	SN74S207	J, N	t
	256×4	3-State	60 ns	20 ns	0.3 mW	SN54LS208	J	SN74LS208	J, N	\dagger
	256×4	3-State	40 ns	15 ns	0.59 mW	SN54S208	J	SN74S208	J, N	\dagger
256-BIT ARRAYS	256×1	3-State	35 ns	15 ns	$1.1 / 0.39 \mathrm{~mW}$	SN54LS202	J, W	SN74LS202	J, N	\dagger
WITH POWER-DOWN	256×1	O-C	35 ns	15 ns	1.1/0.39 mW	SN54LS302	J, W	SN74LS302	J, N	\dagger
256-BIT ARRAYS	256×1	3-Siate	35 ns	15 ns	1.1 mw	Siv54i.S200A	j, wiw	Sivi4iS20̂Ố	j, iv	\dagger
	256×1	3-State	25 ns	15 ns	1.9 mW	SN54S200A	J,W	SN74S200A	J, N	\dagger
	256×1	3-State	42 ns	17 ns	1.9 mW	SN54S201	J,W	SN74S201	J, N	\dagger
	256×1	O-C	35 ns	15 ns	1.1 mW	SN54LS300A	J, W	SN74LS300A	J, N	\dagger
	256×1	O-C	25 ns	15 ns	1.9 mW	SN54S300A	J, W	SN74S300A	J, N	\dagger
	256×1	O-C	42 ns	13 ns	1.9 mW	SN54S301	J, W	SN74S301		\dagger
64-BIT ARRAYS	16×4	3-State	25 ns	12 ns	5.9 mW	SN54S189	J, W	SN74S189	J, N	t
	16×4	O-C	25 ns	12 ns	5.9 mW	SN54S289	J, W	SN74S289	J, N	\dagger
	16×4	O-C	32 ns	30 ns	5.9 mW			SN7489		t
16-BIT ARRAYS	16×1	$0 \cdot \mathrm{C}$	15 ns	15 ns	14 mW	SN5481A	J, W	SN7481A	J, N	t
	16×1	O-C	15 ns	15 ns	14 mW	SN5484A	J, W	SN7484A	J, N	\dagger
16-BIT MULTIPLE-PORT REGISTER FILE	8×2	3-State	33 ns	15 ns	35 mW			SN74172	J, N	7-245
16-BIT REGISTER FILE	4×4	O-C	27 ns	15 ns	7.8 mW	SN54LS170	J. W	SN74LS170	J, N	7-237
	4×4	O-C	30 ns	15 ns	40 mW	SN54170	J, W	SN74170	J, N	7-237
	4×4	3-State	24 ns	19 ns	9.3 mW	SN54LS670	J, W	SN74LS670	J, N	7-526

7

READ-ONLY MEMORIES (ROM'S) ${ }^{\dagger}$

DESCRIPTION	ORGANI- ZATION	TYPE OF OUTPUT	TYPICAL ADDRESS TIME	TYPICAL ENABLE TIME	TYP POWER DISSIPATION PER BIT	DEVICE TYPE AND PACKAGE			
						$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
2048-BIT ARRAYS	512×4	O-C	45 ns	15 ns	0.26 mW	SN54S270	J	SN74S270	J, N
	256×8	O-C	45 ns	15 ns	0.26 mW	SN54S271	J	SN74S271	J, N
	512×4	3-State	45 ns	15 ns	0.26 mW	SN54S370	J	SN74S370	J, N
	256×8	3-State	45 ns	15 ns	0.26 mW	SN54S371	J	SN74S371	J, N
1024-BIT ARRAYS	256×4	O-C	40 ns	20 ns	0.46 mW	SN54187	J. W	SN74187	J, N
256-BIT ARRAYS	32×8	O-C	26 ns	22 ns	1.1 mW	SN5488A	J, W	SN7488A	J, N

${ }^{\dagger}$ See Bipolar Microcomputer Components Data Book, LCC4270.

TYPES SN5442A THRU SN5444A, SN54L42 THRU SN54L44, SN54LS42, SN7442A THRU SN7444A, SN74L42 THRU SN74L44, SN74LS42
 4-LINE-TO-10-LINE DECODERS (1-0F-10)
 BULLETIN NO. DL-S 7611861, MARCH 1974-REVISED OCTOBER 1976

'42A, 'L42, 'LS42 . . . BCD-TO-DECIMAL
 '43A, 'L43 . . . EXCESS-3-TO-DECIMAL

'44A, 'L44 . . . EXCESS-3-GRAY-TO-DECIMAL

- All Outputs Are High for Invalid Input Conditions

SN5442A THRU SN5444A, ṠN54LS̄42 . . . J OR W PACKAGE SN54L42 THRU SN54L44 ...J PACKAGE

- Also for Application as 4-Line-to-16-Line Decoders 3-Line-to-8-Line Decoders
- Diode-Clamped Inputs

TYPES
TYPICAL
TYPICAL
POWER DISSIPATION PROPAGATION DELAYS

'42A, '43A, '44A	140 mW	17 ns
'L42, 'L43, 'L44	70 mW	49 ns
'LS42	35 mW	17 ns

description
These monolithic decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.

The '42A, 'L42, and 'LS42 BCD-to-decimal decoders,

SN7442A THRU SN7444A
SN7442A THRU SN7444A,
SN74L42 THRU SN74L44, SN74LS42 ...J OR N PACKAGE (TOP VIEW)
 the ' $43 A$ and ' $L 43$ excess-3-to-decimal decoders, and the '44A and 'L44 excess-3-gray-to-decimal decoders feature inputs and outputs that are compatible for use with most TTL and other saturated low-level logic circuits. D-c noise margins are typically one volt.

Series $54,54 \mathrm{~L}$, and 54 LS circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series $74,74 \mathrm{~L}$, and 74 LS circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

NO.	$\begin{gathered} \text { '42A, 'L42, 'LS42 } \\ \text { BCD INPUT } \end{gathered}$				'43A, 'L43 EXCESS-3-INPUT				'44A, 'L44 EXCESS-3-GRAY INPUT				ALL TYPES DECIMAL OUTPUT									
	D	c	8	A	D	c	8	A	D	c	B	A	0	1	2	3	4	5	5	7	8	3
0	L	L	L	L	L	L	H	H	L	L	H	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	L	H	L	L	L	H	H	L	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	L	H	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	L	H	H	L	L	H	L	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	L	H	H	H	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	L	L	L	H	H	L	L	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	L	L	H	H	H	L	H	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	L	H	L	H	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	L
	H	L	H	L	H	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
\bigcirc	H	L	H	H	H	H	H	L	H	L	L	H	H	H	H	H	H	H	H	H	H	H
$\frac{1}{4}$	H	H	L	L	H	H	H	H	H	L	L	L	H	H	H	H	H	H	H	H	H	H
2	H	H	L	H	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H
	H	H	H	L	L	L	L	H	L	L	L	H	H	H	H	H	H	H	H	H	H	H
	H	H	H	H	L	L	H	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H

$$
7.16
$$

TYPES SN5442A THRU SN5444A, SN54L42 THRU SN54L44,
SN54LS42, SN7442A THRU SN7444A,SN74L42 THRU SN74L44, SN74LS42
4LLINE-TO-10-LINE DECODERS (1-OF-10)
REVSEO ocroser 176

SN54144

TYPES SN5442A, SN5443A, SN5444A, SN7442A, SN7443A, SN7444A 4-LINE-TO-10-LINE DECODERS (1-0F-10)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

	SN5442A SN5443A SN5444A			SN7442A SN7443A SN7444A			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			800	$\mu \mathrm{A}$
Low-ievel outpuit curreni, iol			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	$\begin{aligned} & \hline \text { SN5442A } \\ & \text { SN5443A } \\ & \text { SN5444A } \end{aligned}$			SN7442A SN7443A SN7444A			UNIT
		MIN	TYP ${ }^{\text {¢ }}$	max	MIN	TYP ${ }^{\text {\# }}$	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$. Low-level input voltage				0.8			0.8	V
$V_{1 K}$ Input clamp voltage	$V_{C C}=\mathrm{M}$ (N,, $\mathrm{i}_{\mathrm{i}}=-12 \mathrm{~mA}$			-1.5			-1.5	v
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{IOH}^{2}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		\checkmark
VOL Low-level output voltage	$\begin{array}{ll} \hline V_{C C}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
IIH $^{\text {High-level input current }}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL Low level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
Ios Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-20		-55	-18		-55	mA
ICC Supply current	$V_{C C}=$ MAX, See Note 2		28	41		28	56	mA

\dagger For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.
Ali typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with all outputs open and all inputs grounded
switching characteristics, $\mathrm{V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :---: | :---: | :---: | UNIT \mid

NOTE 3: Load circuits and waveforms are shown on page 3-10.

TYPES SN54L42, SN54L43, SN54L44, SN74L42, SN74L43, SN74L44

 4-LINE-T0-10-LINE DECODERS (1-0F-10)absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voitage values are with respect to network ground terminal.
recommended operating conditions

					N74L4 SN74L4 N74L4		UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {c }}$	4.5	5	5.5	4.75	5	5.25	V
High-lievel output current, I OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			8			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
V_{IH}	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	v
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN,	$1_{1}=-12 \mathrm{~mA}$			-1.5	V
VOH	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}^{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		v
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$		0.2	0.4	v
1	Input current at maximum input voltage	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\text {IH }}$	High-ievel input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{1}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low-level input current	$\mathrm{V}_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8	mA
Ios	Short-circuit output current \S	$V_{C C}=$ MAX		-9		-28	mA
Icc	Supply Current	$V_{C C}=\operatorname{MAX}$ See Note 2	$\frac{\text { SN54L' }}{}$		14	22	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions. \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with all outputs open and inputs grounded.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNit
Propagation delay time, high-to-low-level tPHL output from A, B, C, or D through 2 levels of logic	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=800 \Omega, \\ & \text { See Note } 3 \end{aligned}$	10	44	60	ns
Propagation delay time, high-to-fow-level tPHL output from A, B, C, or D through 3 levels of logic			46	70	ns
Propagation delay time, low-to-high-level tPLH output from A, B, C, and D through 2 levels of logic		10	34	50	ns
Propagation delay time, low-to-high-level tpLH output from A, B, C, and D through 3 levels of logic			52	70	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS42			SN74LS42			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	v
High-level output current, 1 OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, $T_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS42			SN74LS42			UNIT
			MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			v
$\mathrm{V}_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN, $I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{IOH}^{2}=-400 \mu \mathrm{~A} \\ \hline \end{array}$		2.5	3.5		2.7	3.5		v
V ${ }_{\text {SL }}$ Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v
		$\mathrm{IOL}^{\prime}=8 \mathrm{~mA}$					0.35	0.5	
1_{1} $\begin{array}{l}\text { Input current at } \\ \text { maximum input voltage }\end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
${ }_{1} \mathrm{H}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
I/L Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current§	$V_{C C}=$ MAX		-20		-100	-20		-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2			7	13		7	13	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2. ICC is measured with all outputs open and inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time, high-to-low-level tPHL output from A, B, C, or D through 2 levels of logic	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$$\text { See Note } 4$		15	25	ns
Propagation delay time, high-to-low-level tPHL output from A, B, C, or D through 3 levels of logic			20	30	ns
tPLH $\begin{aligned} & \text { Propagation delay time, low-to-high-level } \\ & \text { output from A, B, C, and D through } 2 \text { levels of logic }\end{aligned}$			15	25	ns
Propagation delay time, low-to-high-level tPLH output from A, B, C, and D through 3 levels of logic			20	30	ns

NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.

FOR USE AS LAMP, RELAY, OR MOS DRIVERS

featuring

- Full Decoding of Input Logic
- 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions
logic

FUNCTION TABLE														
NO.	INPUTS				OUTPUTS									
	D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
1	L.	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
	H	L	H	L	H	H	H	H	H	H	H	H	H	H
	H	L	H	H	H	H	H	H	H	H	H	H	H	H
を	H	H	L	L	H	H	H	H	H	H	H	H	H	H
之	H	H	L	H	H	H	H	H	H	H	H	H	H	H
	H	H	H	L	H	H	H	H	H	H	H	H	H	H
	H	H	H	H	H	H	H	H	H	H	H	H	H	H

$H=$ high level (off), $L=$ low level (on)

description

These monolithic BCD-to-decimal decoders/drivers consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remain off for all invalid binary input conditions. These decoders feature TTL inputs and high-performance, n-p-n output transistors designed for use as indicator/relay drivers or as open-collector logic-circuit drivers. Each of the high-breakdown output transistors (30 volts) will sink up to 80 milliamperes of current. Each input is one normalized Series 54/74 load. Inputs and outputs are entirely compatible for use with TTL or DTL logic circuits, and the outputs are compatible for interfacing with most MOS integrated circuits. Power dissipation is typically 215 milliwatts.

SN5445 . . . J OR W PACKAGE
SN7445 . . . J OR N PACKAGE (TOP VIEW)

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST COnDifiont ${ }^{+}$		ำกit	TYP ${ }^{+}$	īîAX	$\frac{\text { UiviT }}{V}$
$V_{\text {IH }}$	High-level input voltage			2			
$V_{\text {IL }}$	Low-level input voltage					0.8	V
VIK	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
Vo(on)	On-state output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	I^{O} (on) $=80 \mathrm{~mA}$		0.5	0.9	V
		$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$	$\mathrm{I}_{\text {O(on) }}=20 \mathrm{~mA}$			0.4	
${ }^{1} \mathrm{O}$ (off)	Off-state output current	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=0.8 \mathrm{~V}, & V_{\mathrm{O}(\mathrm{off})}=30 \mathrm{~V} \end{array}$				250	$\mu \mathrm{A}$
11	Input current at maximum input vol tage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {I }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{1 \mathrm{~L}}$	Low-level input current	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$				-1.6	mA
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2	SN5445		43	62	mA
			SN7445		43	70	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ${ }_{\ddagger}$ Alt typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with all inputs grounded and outputs open.
switching characteristics, $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

NOTE 3: Load circuit and waveforms are shown on page 3-10.
schematics of inputs and outputs

TYPES SN5446A, '47A, '48, '49, SN54L46, 'L47, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74L46, 'L47, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

BULLETIN No. DL-S 7611811. MARCH 1974-REVISED OCTOBER 1976
'46A, '47A, 'L46, 'L47, 'LS47
feature

- Open-Collector Outputs Drive Indicators Directly
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
'48, 'LS48
feature
- Internal Pull-Ups Eliminate Need for External Resistors
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
- All Circuit Types Feature Lamp Intensity Modulation Capability

TYPE	DRIVER OUTPUTS				TYPICALPOWERDISSIPATION	PACKAGES
	ACTIVE LEVEL	OUTPUT CONFIGURATION	SINK CURRENT	MAX VOltage		
SN5446A	low	open-collector	40 mA	30 V	320 mW	J, W
SN5447A	low	open-collector	40 mA	15 V	320 mW	J, W
SN5448	high	2-k Ω pull-up	6.4 mA	5.5 V	265 mW	J, W
SN5449	high	open-collector	10 mA	5.5 V	165 mW	W
SN54L46	low	open-collector	20 mA	30 V	160 mW	J
SN54L47	low	open-collector	20 mA	15 V	160 mW	J
SN54LS47	low	open-collector	12 mA	15 V	35 mW	J, W
SN54LS48	high	2-k Ω pull-up	2 mA	5.5 V	125 mW	J, W
SN54LS49	high	open-collector	4 mA	5.5 V	40 mW	J, W
SN7446A	low	open-collector	40 mA	30 V	320 mW	J, N
SN7447A	low	open-collector	40 mA	15 V	320 mW	J, N
SN7448	high	2-k Ω pull-up	6.4 mA	5.5 V	265 mW	J, N
SN74L46	low	open-collector	20 mA	30 V	160 mW	J, N
SN74L47	low	open-collector	20 mA	15 V	160 mW	J, N
SN74LS47	low	open-collector	24 mA	15 V	35 mW	J, N
SN74LS48	high	2-kת pull-up	6 mA	5.5 V	125 mW	J, N
SN74LS49	high	open-collector	8 mA	5.5 V	40 mW	J, N

7

TYPES SN5446A, '47A, '48, '49, SN54L46, 'L47, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74L46, 'L47, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

description
The '46A, 'L46, '47A, 'L47, and 'LS47 feature active-low outputs designed for driving common-anode VLEDs or incandescent indicators' directly, and the '48, '49, 'LS48, 'LS49 feature active-high outputs for driving lamp buffers or common-cathode VLEDs. All of the circuits except ' 49 and 'LS49 have full ripple-blanking input/output controls and a lamp test input. The ' 49 and 'LS49 circuits incorporate a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

The '46A, '47A, '48, 'L46, 'L47, 'LS47, and 'LS48 circuits incorporate automatic leading and/or trailingedge zero-blanking control (RBI and RBO). Lamp test (LT) of these types may be performed at any time when the BI/RBO node is at a high level. All types (including the '49 and 'LS49) contain an overriding blanking input (BI) which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL or DTL logic outputs.
The SN54246/SN74246 through '249 and the SN54LS247/SN74LS247 through 'LS249 compose the \square and the 9 with tails and have been designed to offer the designer a choice between two indicator fonts. The SN54249/SN74249 and SN54LS249/SN74LS249 are 16-pin versions of the 14-pin SN5449 and 'LS49. Included in the ' 249 circuit and 'LS249 circuits are the full functional capability for lamp test and ripple blanking, which is not available in the ' 49 or 'LS49 circuit.

46A, '47A, 'L46, 'L47, 'LS47 FUNCTION TABLE

DECIMAL	INPUTS						BI/RBO ${ }^{\text {+ }}$	OUTPUTS							NOTE
FUNCTION	LT	RBI	D	c	B	A		a	b	c	d	e	f	9	
0	H	H	L	L	L	L	H	ON	ON	ON	ON	ON	ON	OFF	
1	H	x	L	L	L	H	H	OFF	ON	ON	OFF	Off	OFF	OFF	
2	H	x	L	L	H	L	H	ON	ON	OFF	ON	ON	OFF	ON	
3	H	x	L	L	H	H	H	ON	ON	ON	ON	OFF	OFF	ON	
4	H	x	L	H	L	L	H	OFF	ON	ON	OfF	OFF	ON	ON	
5	H	x	L	H	L	H	H	ON	OFF	ON	ON	OFF	ON	ON	
6	H	x	L	H	H	L	H	OFF	OfF	ON	ON	ON	ON	ON	
7	H	x	L	H	H	H	H	ON	ON	ON	OfF	OFF	OFF	OFF	
8	H	x	H	L	L	L	H	ON							
9	H	x	H	L	L	H	H	ON	ON	ON	OFF	OFF	ON	ON	
10	H	x	H	L	H	L	H	OFF	OFF	OFF	ON	ON	OFF	ON	
11	H	x	H	L	H	H	H	OFF	OFF	ON	ON	OfF	OFF	ON	
12	H	x	H	H	L	L	H	OFF	ON	OFF	OFF	OFF	ON	ON	
13	H	x	H	H	1	H	H	ON	OFF	OfF	ON	OfF	ON	ON	
14	H	x	H	H	H	L	H	OFF	OFF	OFF	ON	ON	ON	ON	
15	H	x	H	H	H	H	H	OFF							
BI	X	x	X	X	X	X	L	OFF	2						
RBI	H	L	L	L	L	L	L	OFF	3						
LT	L	x	x	\times	x	x	H	ON	4						

$H=$ high level, $L=$ low level, $X=$ irrelevant
NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any ther input.
3. When ripple-blanking input ($R B I$) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment output go off and the ripple-blanking output (RBO) goes to a low level (response condition).
4. When the blanking input/ripple blanking output ($\mathrm{BI} / \mathrm{RBO}$) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.
BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

TYPES SN5446A, '47A, '48, '49, SN54L46, 'L47, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74L46, 'L47, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

'48, 'LS48 FUNCTION TABLE															
$\begin{array}{\|l} \hline \text { DECIMAL } \\ \text { OR } \\ \text { FUNCTION } \\ \hline \end{array}$	INPUTS						$\mathrm{BI}^{\text {/RBO }}{ }^{\dagger}$	OUTPUTS							NOTE
	LT	RBI	D	C	B	A		a	b	c	d	e	f	g	
0	H	H	L	L	L	L	H	H	H	H	H	H	H	L	1
1	H	X	L	L	L	H	H	L	H	H	L	L	L	L	
2	H	X	L	L	H	L	H	H	H	L	H	H	L	H	
3	H	X	L	L	H	H	H	H	H	H	H	L	L	H	
4	H	X	L	H	L	L	H	L	H	H	L	L	H	H	
5	H	X	L	H	L	H	H	H	L	H	H	L	H	H	
6	H	X	L	H	H	L	H	L	L	H	H	H	H	H	
7	H	X	L	H	H	H	H	H	H	H	L	L	L	L	
8	H	X	H	L	L	L	H	H	H	H	H	H	H	H	
9	H	X	H	L	L	H	H	H	H	H	L	L	H	H	
10	H	X	H	L	H	L	H	L	L	L	H	H	L	H	
11	H	X	H	L	H	H	H	L	L	H	H	L	L	H	
12	H.	X	H	H	L	L	H	L	H	L	L	L	H	H	
13	H	X	H	H	L	H	H	H	L	L	H	L	H	H	
14	H	X	H	H	H	L	H	L	L	L	H	H	H	H	
15	H	x	H	H	H	H	H	L	L	L	L	L	L	L	
BI	X	X	\times	X	X	X	L	L	L	L	L	L	L	L	2
RBI	H	L	L	L	L	L	L	L	L	L	L	L	L	L	3
LT	L	X	X	\times	X	X	H	H	H	H	H	H	H	H	4

$H=$ high level, $L=$ low level, $X=$ irrelevant
NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high, if blanking of a decimal zero is not desired
2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input
3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp-test input high, all segment outputs go low and the ripple-blanking output (RBO) goes to a low level (response condition).
4. When the blanking input/ripple-blanking output ($B 1 / R B O$) is open or held high and a low is applied to the lamp-test input, al segment outputs are high.
$\dagger B 1 / R B O$ is wire-AND logic serving as blanking input ($B \|$) and/or ripple-blanking output ($R B O$).
'49, 'LS49
UNCTION TABLE

$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \end{aligned}$	INPUTS					OUTPUTS							NOTE	
	D	c	B	A	BI	a	b	c	d	e	f	g		
0	L	L	L	L	H	H	H	H	H	H	H	L	1	
1	L	L	L	H	H	L	H	H	L	L	L	L		
2	L	L	H	L	H	H	H	L	H	H	L	H		
3	L	L	H	H	H	H	H	H	H	L	L	H		
4	L	H	L	L	H	L	H	H	L	L	H	H		
5	L	H	L	H	H	H	L	H	H	L	H	H		
6	L	H	H	L	H	L	L	H	H	H	H	H		
7	L	H	H	H	H	H	H	H	L	L	L	L		
8	H	L	L	L	H	H	H	H	H	H	H	H		
9	H	L	L	H	H	H	H	H	L	L	H	H		
10	H	L	H	L	H	L	L	L	H	H	L	H		
11	H	L	H	H	H	L	L	H	H	L	L	H		
12	H	H	L	L	H	L	H	L	L	L	H	H		
13	H	H	L	H	H	H	L	L	H	L	H	H		
14	H	H	H	L	H	L	L	L	H	H	H	H		
15	H	H	H	H	H	L	L	L	L	L	L	L		
BI	X	X	X	X	L	L	L	L	L	L	L	L		2

$H=$ high level, $L=$ low level, $X=$ irrelevan
NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired.
2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.

TYPES SN5446A, '47A, '48, '49, SN54L46, 'L47, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74L46, 'L47, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

functional block diagrams

7

TYPES SN5446A, '47A, '48, '49, SN54L46, 'L47,
SN7446A, '47A, '48, SN74L46, 'L47
BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS
schematics of inputs and outputs

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

			N5446			N5447			N7446			N7447		UNIT
		MIN	NOM	MAX	UNIT									
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
Off-state output voltage, $\mathrm{V}_{\text {O(off) }}$	a thrug			30			15			30			15	V
On-state output current, IO(on)	a thrug			40			40			40			40	mA
High-level output current, loh	BI/RBO			-200			-200			-200			-200	$\mu \mathrm{A}$
Low-level output current, IOL	BI/RBO			8			8			8			8	mA
Operating free-air temperature, T_{A}		-55 125			-55		125	0		70	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger MAX	UNIT
$V_{I H}$	High-level input voltage			2		V
$\mathrm{V}_{1 \mathrm{~L}}$	Low-level input voltage				0.8	V
VIK	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \quad I_{1}=-12 \mathrm{~mA}$		-1.5	V
VOH	High-level output voltage	BI/RBO	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \end{array}$	2.4	3.7	V
VOL	Low-level output voltage	BI/RBO	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{array}$		$0.27 \quad 0.4$	V
'O(off)	Off-state output current	a thrug	$\begin{array}{ll} V_{C C}=M A X & V_{I H}=2 V_{t} \\ V_{I L}=0.8 V, & V_{O(\text { off })}=M A X \end{array}$		250	$\mu \mathrm{A}$
$V_{O}(0 n)$	On-state output voltage	a thrug			0.30 .4	V
1	Input current at maximum input voltage	Any input except Bl/RBO	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
1 HH	High-level input current	Any input except BI/RBO	$V_{C C}=M A X, V_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
IIL	Low-level input current	Any input except BI/RBO	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1.6	mA
		BI/RBO			-4	
Ios	Short-circuit output current	BI/RBO	$\mathrm{V}_{C C}=\mathrm{MAX}$		-4	mA
ICC Supply current			$V_{C C}=\text { MAX },$ See Note 2		$64 \quad 85$	
					$64 \quad 103$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: ' CC is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {toff }}$	Turn-off time from A input	$C_{L}=15 \mathrm{pF}$,See Note 3				100	ns
t_{O}	Turn-on time from A input					100	\%
toff	Turn-off time from RBI input					100	ns
${ }^{\text {ton }}$	Turn-on time from RBI input					100	

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10; $\mathrm{t}_{\mathrm{off}}$ corresponds to $\mathrm{t}_{\mathrm{PLH}}$ and t_{on} corresponds to $\mathrm{t}_{\mathrm{PHL}}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

		SN54L46			SN54L47			SN74L46			SN74L47			UNIT
		MIN	NOM	MAX										
Supply voltage, VCC		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
Off-state output voitage, V_{O} (off)	a thru g			30			15			30			15	v
On-state output current, IO(on)	a thrug			20			20			20			20	mA
High-level output current, I_{OH}	BI/RBO			-100			-100			-100			-100	$\mu \mathrm{A}$
Low-level output current, I_{OL}	BI/RBO			4			4			4			4	mA
Oparating free-air tamperature, $\mathrm{T}_{\text {A }}$		-55		125	-55		125	0		70	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP苇	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8	V
$V_{\text {IK }}$	Input clamp voltage	Any input except BI/RBO	$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High-level output voltage	BI/RBO	$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & \mathrm{~V}_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{array}$		2.4	3.4		V
$\mathrm{VOL}_{\text {OL }}$	Low-level output voltage	BI/RBO	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \end{array}$			0.2	0.4	V
IO(off)	Off-state output current	a thrug	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}(\mathrm{off})}=\mathrm{MAX} \end{array}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{O}}(\mathrm{on})$	On-state output voltage	a thrug	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I L}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}(\mathrm{on})=20 \mathrm{~mA} \end{aligned}$			0.3	0.4	V
11	Input current at maximum input voltage	Any input except BI/RBO	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High-level input current	Any input except BI/RBO	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				20	$\mu \mathrm{A}$
1 IL	Low-level input current	Any input except BI/RBO	$V_{C C}=M A X, V_{1}=0.4 \mathrm{~V}$				-0.8	mA
		BI/RBO					-2	
1 OS	Short-circuit output current	BI/RBO	$V_{C C}=$ MAX				-2	mA
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ See Note 2	SN54L'		32	43	mA
				SN74L'		32	52	

[^0]| | PARAMETER | TEST CONDITIONS | MIN | TYP MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {off }}$ | Turn-off time from A input | $C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=280 \Omega$
 See Note 3 | | 200 | ns |
| ton | Turn-on time from A input | | | 200 | |
| toff | Turn-off time from RBI input | | | 200 | ns |
| $\mathrm{t}_{\text {on }}$ | Turn-on time from RBI input | | | 200 | |

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10; $t_{\text {off }}$ corresponds to $\mathrm{t}_{\mathrm{L}} \mathrm{H}$ and t_{n} corresponds to tPHL.

TYPES SN54LS47, SN74LS47

BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED OCTOBER 1976

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS47			SN74LS47			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=$ MIN,	$I_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage	B1/RBO	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & v_{I L}=V_{I L} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	2.4	4.2		2.4	4.2		V		
V_{OL}	Low-level output voltage	BI/RBO	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				$1 \mathrm{OL}=3.2 \mathrm{~mA}$					0.35	0.5			
${ }^{1} \mathrm{O}$ (off)	Off-state output current	a thrug	$\begin{aligned} & V_{\mathrm{CC}}=\text { MAX }, \\ & V_{\text {IL }}=V_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & V_{O} \text { (off) }=15 \mathrm{~V} \end{aligned}$			250			250	$\mu \mathrm{A}$		
$\mathrm{V}_{\mathrm{O}}(\mathrm{on})$	On-state output voltage	a thrug	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\mathrm{O}}(\mathrm{on})=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				${ }^{\prime} \mathrm{O}(\mathrm{on})=24 \mathrm{~mA}$					0.35	0.5			
1	Input current at maximum input voitage		$V_{C C}=M A X$.	$V_{i}=7 \mathrm{~V}$			0.1			0.1	mA		
$1 / \mathrm{H}$	High-level input current		$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	Any input except BI/RBO	$V_{C C}=$ MAX	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		BI/RBO					-1.2			-1.2			
Ios	Short-circuit output current	BI/RBO	$V_{C C}=M A X$		-0.3		-2	-0.3		-2	mA		
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 2		7	13		7	13	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $\vee_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{\prime} \mathrm{CC}$ is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {off }}$	Turn-off time from A input		100	ns
$\mathrm{t}_{\text {on }}$	Turn-on time from A input	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=665 \Omega$,	100	
$\mathrm{t}_{\text {off }}$	Turn-off time from RBI input	See Note 4		100
$t_{\text {on }}$	Turn-on time from RBI input		ns	

NOTE 4: Load circuit and voltage waveforms are shown on page 3-11; $\mathrm{t}_{\mathrm{off}}$ corresponds to $\mathrm{t}_{\mathrm{PLH}}$ and t_{on} corresponds to tpHL.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP \ddagger	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage				2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8	V
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High-level output voltage	a thru g	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$		2.4	4.2		V
		BI/RBO			2.4	3.7		
${ }^{1} 0$	Output current	a thrug	$V_{C C}=\mathrm{MIN},$ Input condition	$\begin{aligned} & \mathrm{o}=0.85 \mathrm{~V}, \\ & \text { as for } \mathrm{V}_{\mathrm{OH}} \end{aligned}$	-1.3	-2		mA
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$			0.27	0.4	V
11	Input current at maximum input voltage	Any input except BI/RBO	$V_{C C}=\mathrm{MAX}, V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	Any input except BI/RBO	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low-level input current	Any input except BI/RBO	$V_{C C}=M A X, \quad V_{I}=0.4 V$				-1.6	mA
		BI/RBO					-4	
Ios	Short-circuit output current	BI/RBO	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$				-4	mA
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN},$ See Note 2	SN5448		53	76	mA
				SN7448		53	90	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: I CC is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$,See Note 5				100	
tPLH	Propagation delay time, low-to-high-level output from A input					100	
tPHL	Propagation delay time, high-to-low-level output from RBI input					100	
tPLH	Propagation delay time, low-to-high-level output from RBI input					100	

NOTE 5: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS48, SN74LS48

BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED OCTOBER 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

			54LS			774LS		
		MIN	NOM	MAX	MIN	NOM	MAX	UNT
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\prime} \mathrm{OH}$	a thrug			-100			-100	$\mu \mathrm{A}$
	BI/RBO			-50			-50	
Low-level output current, IOL	a thrug			2			6	mA
	BI/RBO			1.6			3.2	mA
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS48			SN74LS48			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage		$V_{C C}=M I N$, $I_{I}=-18 \mathrm{~mA}$ $V_{C C}=M I N$, $V_{I H}=2 \mathrm{~V}$, $V_{I L}=V_{I L} \max$, $I_{O H}=M A X$				0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage						-1.5			-1.5	V		
V_{OH}	High-level output voltage	a thru g and BI/RBO			2.4	4.2		2.4	4.2		V		
10	Output current	a thru 9	$V_{C C}=M I N, \quad V_{O}=0.85 \mathrm{~V},$ Input conditions as for V_{OH}		-1.3	-2		-1.3	-2		mA		
V_{OL}	Low-level output voltage	a thrug	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$					0.35	0.5			
		BI/RBO	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				${ }^{\prime} \mathrm{OL}=3.2 \mathrm{~mA}$					0.35	0.5			
11	Input current at maximum input voltage	Any input except BI/BRO	$V_{C C}=M A X$,	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA		
$\mathrm{I}_{1} \mathrm{H}$	High-ievel input cuirent	Any input except BI/RBO	$V_{C C}=\operatorname{AAX}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	Any input except BI/RBO	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		BI/RBO					-1.2			-1.2			
Ios	Short-circuit output current	BI/RBO	$V_{C C}=\mathrm{MAX}$		-0.3		-2	-0.3		-2	mA		
I_{CC}	Supply current		$\mathrm{V}_{C C}=\mathrm{MAX}$,	See Note 2		25	38		25	38	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A} 25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega,$ See Note 6			100	ns
tPLH	Propagation delay time, low-to-high-level output from A input				100	
tPHL	Propagation delay time, high-to-low-level output from RBI input	$C_{L}=15 \mathrm{pF}, \quad R_{\mathrm{L}}=6 \mathrm{k} \Omega \text {, }$ See Note 6			100	ns
tPLH	Propagation delay time, low-to-high-level output from RBI input				100	

NOTE 6: Load circuit and voltage waveforms are shown on page 3-11

TYPE SN5449
 BCD-TO-SEVEN-SEGMENT DECODER/DRIVER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

	SN5449			UNIT
	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	v
High-level output voitage, V_{OH}			5.5	V
Low-level output current, IOL			10	mA
Operating free-air temperature, $T_{\text {A }}$	-55		125	${ }^{\text {c }}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	SN5449		UNIT	
		MIN	TYP \ddagger MAX			
$\mathrm{V}_{1} \mathrm{H}$	High-level input voltage			2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.6	V	
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad 11=-10 \mathrm{~mA}$		-1.5	V	
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{array}$		250	$\mu \mathrm{A}$	
VOL	Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{iL}}=0.8 \mathrm{~V}, & \mathrm{O}_{\mathrm{OL}}=10 \mathrm{~mA} \end{array}$		$0.27 \quad 0.4$	V	
11	Input current at maximum input voltage	$V_{C C}=M A X, V_{1}=5.5 \mathrm{~V}$		1	mA	
$\mathrm{I}_{1 \mathrm{H}}$	High-ievei input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$	
1 LL	Low-level input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	mA	
${ }^{\text {ICC }}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, See Note 2		$33 \quad 47$	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. $\stackrel{+}{+}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \text { See Note } 5 \end{aligned}$			100	ns
tPLH	Propagation delay time, low-to-high-level output from A input				100	
tPHL	Propagation delay time, high-to-low-level output from RBI input				100	
tPLH	Propagation delay time, low-to-high-level output from RBI input				100	ns

NOTE 5: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS49, SN74LS49

BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED OCTOBER 1976

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS49			SN74LS49			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, IOL			4			8	mA
Operating free-air temperature, \mathbf{T}_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54LS49			SN74LS49			UNIT		
		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			2			V
$V_{\text {IL }}$	Low-level input voltage			0.7			0.8			V		
VIK	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$1_{1}=-18 \mathrm{~mA}$	-1.5			-1.5			V		
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$	250			250			$\mu \mathrm{A}$		
VOL	Low-level output voitage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	${ }^{\prime} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			${ }^{\prime} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5			
1	Input current at maximum input voltage	$V_{C C}=M A X$,	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA		
$\mathrm{I}_{1} \mathrm{H}$	High-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	-0.4			-0.4			mA		
ICC	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, See Note 2			8	15		8	15	mA		

[^1]switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Note } 6 \end{aligned}$			100	ns
tPLH	Propagation delay time, low-to-high-level output from A input				100	
tPHL	Propagation delay time, high-to-low-level output from RBI input	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=6 \mathrm{k} \Omega \text {, } \\ & \text { See Note } 6 \end{aligned}$			100	ns
tPLH	Propagation delay time, low-to-high-level output from RBI input				100	

NOTE 6: Load circuit and voltage waveforms are shown on page 3-11.
logic
FUNCTION TABLE
(Each Latch)

INPUTS		OUTPUTS	
D	G	Q	$\overline{\mathbf{Q}}$
L	H	L	H
H	H	H	L
X	L	Q $_{0}$	\bar{Q}_{0}

$H=$ high level, $L=$ low level, $X=$ irrelevant $Q_{0}=$ the level of Q before the high-to-low transition of G
description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the 0 output until the enable is permitted to go high

The '75, 'L75, and 'LS75 feature complementary Q and $\overline{\mathrm{Q}}$ outputs from a 4 -bit latch, and are available in various $16-$ pin packages. For higher component density applications, the '77, 'L77, and 'LS77 4-bit latches are available in 14-pin flat packages.

These circuits are completely compatible with all popular TTL or DTL families. All inputs are diodeclamped to minimize transmission-line effects and simplify system design. Series 54, 54L, and 54LS devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74, 74L, and 74LS devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN5475, SN54LS75 . . . J OR W PACKAGE
SN54L75 . . . J PACKAG
SN7475, SN74L75, SN74LS75 . . . J OR N PACKAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter input transistor and is not applicable to the 'LS75 and 'LS77

TYPES SN5475, SN5477, SN54L75, SN54L77, SN54LS75, SN54LST7,
SN7475, SN74L75, SN74L71, SN74LS75 4-BIT BISTABLE LATCHES
REVISED OCTOBER 1976
functional block diagrams (each latch)

schematics of inputs and outputs

TEXAS INSTRUMENTS
post office box 5012 - dallas, texas 75222

recommended operating conditions

	SN5475, SN5477			SN7475			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {C }}$	4.5	5	5.5	4.75	5	5.25	\checkmark
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Width of enabling pulse, t_{w}	20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	20			20			ns
Hold time, th	5			5			ns
Operating free-air temperature, $T_{\text {A }}$	-55		125	0		70	\bigcirc

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT	
High-level input voltage				2			V	
Low-level input voltage						0.8	V	
Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	v	
High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{14}=2 V \\ & I_{O H}=-400 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		v	
Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{IOL}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4	V	
Input current at maximum input voitage		$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA	
High-level input current	D input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$	
	G input					160		
Low-level input current	D input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-3.2		
	G input					-6.4	mA	
Short-circuit output current§		$\mathrm{V}_{\mathrm{CC}}=$ MAX	SN54'	-20		-57	mA	
		SN74'	-18		-57	mA		
ICC Supply current			$V_{C C}=\operatorname{MAX},$ See Note 3	SN54'		32	46	
		SN74'			32	53	A	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{F}$ All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
$\S_{\text {Not more than one output should be shorted at a time. }}$
NOTE 3: I CC is tested with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\circ}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	D	Q	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=400 \Omega, \end{aligned}$ See Figure 1	16	30	ns
${ }^{\text {tPHL }}$				14	25	
tPLH ${ }^{\text {¢ }}$	D	$\overline{\mathrm{Q}}$		24	40	ns
tPHL				7	15	
tPLH	G	Q		16	30	ns
tPHL				7	15	
tplH ${ }^{\text {d }}$	G	$\overline{\mathrm{Q}}$		16	30	ns
tPHL				7	15	

[^2]
recommended operating conditions

	SN54L75, SN54L77			SN74L75, SN74L77			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-200			-200	$\mu \mathrm{A}$
Low-level output current, IOL			8			8	mA
Width of enabling pulse, t_{w}	100			100			ns
Setup time, $\mathrm{t}_{\text {su }}$	40			40			ns
Hold time, t_{h}	10			10			ns
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT	
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage				2			V	
$V_{\text {IL }}$	Low-level input voltage						0.8	v	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$				${ }^{1} 1.5$	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \end{array}$		2.4	3.4		v	
V_{OL}	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}_{2}=8 \mathrm{~mA} \end{array}$			0.2	0.4	v	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA	
IIH	High-level input current	D input	$V_{C C}=$ MAX ,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$	
		G input					80		
IIL	Low-level input current	D input	$V_{C C}=$ MAX	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA	
		G input					-3.2		
los	Short-circuit output current ${ }^{\text {§ }}$		$V_{C C}=$ MAX	SN54L'	-10		-29	mA	
			SN74L'	-9		-29			
Icc	Supply current			$\overline{V_{C C}}=M A X$ See Note 3	SN54L'		16	23	mA
			SN74L*			16	27		

[^3]switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {- }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	D	0	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=800 \Omega, \\ & \text { See Figure } 1 \end{aligned}$		32	60	ns
tPHL					28	50	
tPLH	D	$\overline{\mathrm{o}}$			48	80	ns
tPHLI					14	30	
tpLH	G	0			32	60	ns
tPHL					14	30	
TPLH ${ }^{\text {P }}$	G	$\overline{\mathrm{o}}$			32	60	ns
tPHLI					14	30	

$\delta_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPH }} \mathrm{L} \equiv$ propagation delay time, high-to-low-level output
$4{ }^{\text {t }}{ }^{\mathrm{P} H \mathrm{H}} \equiv$ propagation delay time, high-to-low-level output

TYPES SN54LS75, SN54LS7, SN74LS75 4-BIT BISTABLE LATCHES

recommended operating conditions

	SN54LS75 SN54LS77			SN74LS75			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $V_{C C}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, ${ }^{1} \mathrm{OL}$			4			8	mA
Width of enabling pulse, t_{w}	20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	20			20			ns
Hold time, $\mathrm{th}^{\text {r }}$	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$			SN54LS75 SN54LS77			SN74LS75			UNIT			
		MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\frac{1}{+}}$	MAX							
V_{1+}	High-level input voltage							2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V			
$\stackrel{V}{1 K}^{\text {I }}$	input ciamp voitage						-1.5			-1.5	v			
VOH	High-level output voitage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$			2.5	3.5		2.7	3.5		V			
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL} \text { max }} \\ & \hline \end{aligned}$		$\mathrm{I}^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5				
1	Input current at maximum input vol tage	$V_{C C}=$ MAX	$V_{1}=7 \mathrm{~V}$	D input			0.1			0.1	mA			
				G input			0.4			0.4				
${ }_{1} \mathrm{H}$	High-level input current	$\mathrm{V}_{C C}=$ MAX	$\mathrm{V}_{1}=2.7 \mathrm{~V}$	D input			20			20	$\mu \mathrm{A}$			
				G input			80			80				
${ }_{1} \mathrm{~L}$	Low-level input current	$V_{C C}=$ MAX	$V_{1}=0.4 \mathrm{~V}$	D input			-0.4			-0.4	mA			
				G input			-1.6			-1.6				
Ios	Short-circuit output current \S	$\mathrm{V}_{C C}=\mathrm{MAX}$			-20		-100	-20		-100	mA			
${ }^{\text {I CC }}$	Supply current	$V_{C C}=M A X$,	See Note 2	'LS75		6.3	12	6.3		12	mA			
				'LS77		6.9	13							

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second
NOTE 2: I CC is tested with all inputs grounded and all outputs open
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

$0_{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level outpus

TYPES SN5475. SN547, SN54L75, SN54L77, SN54LS75, SN54LS77,
SN7475, SN74L75, SN74L77, SN74LS75 4-BIT BISTABLE LATCHES

NOTES: A. The pulse generators have the following characteristics: $Z_{\text {out }} \approx 50 \Omega$; for pulse generator $A, P R R \leqslant 500 \mathrm{kHz}$; for pulse generator $B, P R R \leqslant 1 \mathrm{MHz}$. Positions of D and G input pulses are varied with respect to each other to verify setup times.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1N3064.
D. When measuring propagation delay times from the D input, the corresponding G input must be held high,
E. For ' $75, ' 77, ' L 75$, and 'L77, $V_{\text {ref }}=1.5 \mathrm{~V}$; for 'LS75 and 'LS77, $V_{\text {ref }}=1.3 \mathrm{~V}$.
${ }^{\dagger}$ Complementary \bar{Q} outputs are on the ' 75 , ' $L 75$, and 'LS 75 only.

FIGURE 1

NOTES: 1. $A=\bar{A}_{C}+\bar{A} \star+A 1 \cdot A 2, B=\bar{B}_{C}+\bar{B} \star+B 1 \cdot B 2$.
2. When $A \star$ is used as an input, $A 1$ or $A 2$ must be low. When $B \star$ is used as an inpuz, $B 1$ or $B 2$ must be low.
3. When A 1 and A 2 or B 1 and B 2 are used as inputs, $\mathrm{A} \star$ or $\mathrm{B} \star$, respectively, must be open or used to perform dot-AND logic.
description
These single-bit, high-speed, binary full adders with gated complementary inputs, complementary sum (Σ and $\bar{\Sigma}$) outputs and inverted carry output are designed for medium- and high-speed, multiple-bit, parallel-add/serial-carry applications. These circuits (see schematic) utilize diode-transistor logic (DTL) for the gated inputs, and high-speed, high-fan-out transistor-transistor logic (TTL) for the sum and carry outputs and are entirely compatible with both DTi and TTL logic families. The implementation of a single-inversion, high-speed, Darlington-connected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 4. Voltage values are with respect to network ground terminal.
5. Input signals must be zero or positive with respect to network ground terminal.
recommended operating conditions

		SN5480			SN7480			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	Σ or $\bar{\Sigma}$			-400			-400	$\mu \mathrm{A}$
	$\overline{\mathrm{C}}_{\mathrm{n}+1}$			-200			-200	
	A \star or $B \star$			-120			-120	
Low-level output current, loL	Σ or $\bar{\Sigma}$			16			16	mA
	\bar{C}_{n+1}			8			8	
	$A \star$ or $B \star$			4.8			4.8	
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

GATED FULL ADDERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time
NOTE 6: ICC is measured with all inputs and outputs open.
switching characteristics, $\mathrm{VCC}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM INPUT	то OUTPUT	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH		$\overline{\mathrm{c}}^{+1}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=780 \Omega, \\ & \text { See Note } 7 \end{aligned}$	13	17	ns
tpHL	c_{n}			8	12	
tpl ${ }^{\text {H }}$	BC	\bar{C}_{n+1}		18	25	
tPHL				38	55	
tPLH	${ }^{\text {A }}$ c	Σ	$C_{L}=15 \mathrm{pF}, \quad R_{L}=400 \Omega,$ See Note 7	52	70	ns
tPHL				62	80	
tPLH	${ }^{\text {B }}$ c	$\bar{\Sigma}$		38	55	
tPHL				56	75	
tPLH	A1	A*	$C_{L}=15 \mathrm{pF}$, See Note 7	48	65	ns
tPHL				17	25	
tPLH	B1	B*		48	65	
tPHL				17	25	

tpHL \equiv propagation delay time, high-to-low-level output
NOTE 7: The load for testing outputs $A \star$ and $B \star$ consists only of capacitance C_{L} to ground. The load circuit for the other outputs and voltage waveforms are shown on page 3-10.

description

Each of these 16 -bit active-element memories is a high-speed, monolithic, transistor-transistor-logic (TTL) array of 16 flip-flops and two write amplifiers interconnected to form a scratch-pad memory with direct-address and nondestructive read-out. These devices are interchangeable with and replace SN5481, SN7481, SN5484, and SN7484, but feature diode-clamped inputs, improved switching speeds, and lower supply current requirements.

The flip-flops are arranged in a four-by-four matrix with each flip-flop representing one bit of 16 words. Four X-address lines and four Y-address lines permit the address of one bit at a time. Each flip-flop, composed of two cross-coupled three-emitter transistors, is used to store one bit. To determine if a logic 1 or logic 0 has been stored, it is necessary to know which one of the two flip-flop transistors is conducting. One emitter of each of these transistors serves as the sensing output. All 16 of the logic 1 sensing outputs are connected to the sense 1 (S_{1}) amplifier input and all 16 of the logic 0 sensing outputs are connected to the sense $0\left(\mathrm{~S}_{0}\right)$ amplifier input. The two remaining emitters of each transistor are used to complete the matrix connections necessary for the X - and Y -address lines. Address line inputs are normally held low and currents from all conducting flip-flop transistors flow out of these address lines.

To address a flip-flop both the X - and Y -address lines associated with that flip-flop are taken to a high level. Due to the matrix nature of the circuit, at least one address iine of ail fiip-fiops except the one being addressed will continue to remain at a low level and no change will occur in those flip-flops. But, in the addressed flip-flop, the current in the conducting transistor diverts from the address lines to the appropriate sense line and then to one of the sense amplifiers. Thus, either the sense 1 amplifier or the sense 0 amplifier is activated. When this occurs, the output of the activated sense amplifier drops from a high logic level to a low logic level. The memory is nondestructive as the states of the flip-flops are not disturbed during sensing. The memory is volatile and information will be lost if the supply voltage is removed.

To store new information in a flip-flop, it is necessary to address it and apply a high-level voltage to the appropriate write amplifier. (The SN5484A and SN7484A have gated write-amplifier inputs). The output of the write amplifier responds by dropping to a low logic level. Since all Sense 0 lines are connected to the output of the write 0 amplifier and all sense 1 lines are connected to the output of the write 1 amplifier, a low level at the output of a write amplifier

TYPES SN5481A, SN5484A, SN7481A, SN7484A 16-BIT RANDOM-ACCESS MEMORIES

description (continued)

Abstract

will cause the emitters of all flip-flop transistors connected to that amplifier to go low. In all the flip-flops except the one being addressed, this low voltage has no effect since at least one other emitter on each of the flip-flop transistors is held low by the address lines. Two possibilities exist with the flip-flop that is addressed. The flip-flop may already be in the desired state, in which case no change occurs. If the flip-flop must be changed from one state to the other, the low voltage applied to the emitter of the transistor which is not conducting turns that transistor on causing the other transistor to turn off.

Since the connection between the output of the write amplifier and the sense line is common to the input of the sense amplifier, the memory cannot be used to provide information on the state of a bit while the write amplifiers are activated.

A number of active-element memories may be paralleled to form the desired matrix size (number of words) and to form the desired word length (number of bits). All inputs and outputs are compatible with most DTL and TTL circuits. Average power dissipation is typically 225 milliwatts, and the open-collector outputs may be wire-AND connected to similar outputs. Internal circuitry of the write and sense amplifiers are operated within their linear range to improve speed. Sensiṇ̆ propagation delay times are typicaliy 12 nanoseconds when operated at fuil fan-out and 30 picóarad́s of circuit capacitance. The SN5481A and SN5484A circuits are designed for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN7481A circuits are designed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
logic diagram

TYPES SN5481A, SN5484A, SN7481A, SN7484A 16-BIT RANDOM-ACCESS MEMORIES
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to any X input in conjunction with any Y input.
recommended operating conditions

	SN5481A, SN5484A			SN7481A, SN7484A			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, IOL			20			40	mA
Width of write pulse, $\mathrm{t}_{\text {w }}$ (write) (see Figure 1)	20			20			ns
Address input setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	0			0			${ }^{\text {ns }}$
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				TEST CONDITIONS ${ }^{\dagger}$	SN5481A, SN5484A			SN7481A, SN7484A			UNIT	
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$V_{\text {IH }}$	High-level voltage at any input					2			2			V
$V_{\text {IL }}$	Low-level voltage at address inputs	to prevent writing					0.8			0.8	\checkmark	
		to prevent sensing					1			1		
$V_{\text {IL }}$ Low-level voltage at write inputs	Low-level voltage at write inputs						0.8			1	V	
$V_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V	
${ }^{1} \mathrm{OH}$	High-level output current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			250			250	$\mu \mathrm{A}$	
$\mathrm{VOL}^{\text {O }}$	Low-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=\mathrm{MAX}$			0.4			0.4	V	
11	Input current at maximum input voltage		Write	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$			1			1	mA	
			Address				3			3		
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current		Write	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
			Address	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=4.5 \mathrm{~V}$			400			400		
IIL	Low-level input current		Write	$\mathrm{V}_{\text {CC }}$ MAX, $\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA	
			Address				-11			-11		
${ }^{1} \mathrm{Cc}$	Supply current			$V_{C C}=$ MAX,All inputs at 0 V			70			65	mA	
				$\mathrm{V}_{C C}=5 \mathrm{~V}$. All inputs at 0 V		45	60		45	60		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{IOL}=\mathrm{MAX}, \mathrm{TA}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, see figure 1

PARAMETER ${ }^{\text {S }}$	LOCATION ADDRESSED	TEST CONDITIONS	SN5481A, SN5484A			SN7481A, SN7484A			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
	X1-Y1	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		13			13		
${ }^{\text {t }}$ SR	X1-Y1	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		18	30		18	30	ns
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	19		12	20	
${ }_{\text {tPHL }}$	X1-Y1	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		17	26		18	27	
	X1-Y1	$\mathrm{C}_{L}=30 \mathrm{pF}$		13	20		12	19	ns
${ }_{\text {tPLH }}$		$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		27	40		18	27	
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		10	18		11	19	
tPHL	X 1 thru X 4 and Y 1	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		16	25		17	26	ns
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		13	20		13	20	
tPLH		$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		27	40		19	28	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
$\S^{t} \mathrm{SR}_{\mathrm{R}} \equiv$ Sense recovery time after writing
${ }^{\text {t }}$ PHL \equiv Propagation delay time, high-to-low-level output
${ }^{t_{P L H}} \equiv$ Propagation delay time, low-to-high-level output
schematic

${ }^{+} W_{0(B)}$ and $W_{1(B)}$ inputs (indicated with dashed lines) are applicable for the SN5484A, SN7484A only.
V... $v_{c c}$ bus

Resistor values shown are nominal and in ohms.

TYPES SN5481A, SN5484A, SN7481A, SN7484A 16-BIT RANDOM-ACCESS MEMORIES

NOTES: A. The pulse generators have the following characteristics: for the address pulse generator, $P R R=2 \mathrm{MHz}$; for the W_{0} and W_{1} pulse generators, $P R R=1 \mathrm{MHz}$.
B. C_{L} includes probe and jig capacitance.
C. For the SN5484A and SN7484A, unused W_{O} and W_{1} inputs are at 3.5 V .
D. $\mathrm{t}_{\mathrm{SR}} \equiv$ sense-recovery time
E. For the SN5481A and SN5484A: R1 $=240 \Omega$ and $R 2=560 \Omega$. For the $S N 7481 A$ and $S N 7484 A: R 1=120 \Omega$ and $R 2=330 \Omega 2$. FIGURE 1 -SWITCHING CHARACTERISTICS

For applications in:

- Digital Computer Systems
- Data-Handling Systems
- Control Systems
logic

description

These full adders perform the addition of two 2-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C2) is obtained from the second bit. Designed for medium-to-highspeed, multiple-bit, parallel-add/serial-carry applications, these circuits utilize high-speed, high-fan-out transistor-transistor logic (TTL) and are compatible with both DTL and TTL logic families. The implementation of a single-inversion, high-speed, Darlington-connected serial-carry circuit within each bit minimizes the necessity for extensive "lookahead" and carry-cascading circuits.

NC-No internal connection
functional block diagram

TYPES SN5482, SN7482

2-BIT BINARY FULL ADDERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $V_{C C}$ (see Note 1) . 7 V
Input voltage (see Note 2) . 5.5 V
Operating free-air temperature range: SN5482 Circuits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ SN7482 Circuits $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input signals must be zero or positive with respect to network ground terminal.
recommended operating conditions

			SN5482			SN748		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{1} \mathrm{OH}$	$\Sigma 1$ or $\Sigma 2$	-400					-400	$\mu \mathrm{A}$
	C2	-200					-200	
Low-level output current, IOL	$\Sigma 1$ or $\Sigma 2$			16			16	mA
	C2			8			8	
Operating free-air temperature, T_{A}		-55	,	125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN5482			SN7482			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$V_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
$\mathrm{VOH}^{\text {O }}$	High-level output voltage	$\Sigma 1$ or $\Sigma 2$	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=0.4 \mathrm{~V} \end{aligned}$	${ }^{\prime} \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4	3.4		2.4	3.4		V		
		C2		$1 \mathrm{OH}=-200 \mu \mathrm{~A}$									
V_{OL}	Low-level output voltage	$\Sigma 1$ or $\Sigma 2$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\text {IH }}=2 \mathrm{~V} . \\ & V_{\text {IL }}=0.4 \mathrm{~V} \end{aligned}$	${ }^{\prime} \mathrm{OL}=16 \mathrm{~mA}$		0.2	0.4		0.2	0.4	V		
		C2		${ }^{\prime} \mathrm{OL}=8 \mathrm{~mA}$									
$1 /$	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1			1	mA		
$\mathbf{I H}_{14}$	High-level input current	A1, B1, or C0	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				160			160	$\mu \mathrm{A}$		
		A2 or B2					40			40			
1 IL	Low-level input current	A1, B1, or C0	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-6.4			-6.4	mA		
		A2 or B2					-1.6			-1.6			
Ios	Short-circuit output current \S	$\Sigma 1$ or $\Sigma 2$	$V_{C C}=$ MAX		-20		-55	-18		-55	mA		
		C2			-20		-70	-18		-70			
ICC Supply current	Supply current		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 3			35	50		35	58	mA		

[^4]
TYPES SN5482, SN7482
 2-BIT BINARY FULL ADDERS

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see note 4)

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	$\begin{gathered} \text { то } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	C0	$\Sigma 1$	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega$			34	ns
tPHL						40	
tPLH	B2	$\Sigma 2$				40	ns
tPHL						35	
tPLH	co	$\Sigma 2$				38	ns
tPHL						42	
tPLH	CO	C2	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=780 \Omega$		12	19	ns
tPHL					17	27	

$\|_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
tpHL = propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-10.
schematics of inputs and outputs

7

7

- Full-Carry Look-Ahead across the Four Bits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple Carry
- SN54283/SN74283 and SN54LS283/SN74LS283

Are Recommended For New Designs as They Feature Supply Voltage and Ground on Corner Pins to Simplify Board Layout

TYPICAL ADD TIMES

TYPE			
	TWO	TWO	TYPICAL POWER
	WORDS	WORDS	4-BIT ADDER
'83A	23 ns	43 ns	310 mW
'LS83A	25 ns	45 ns	95 mW

description
These improved fuil adders perform the addition of two 4 -bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits generating the carry term in ten nanoseconds typically. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Designed for medium-speed applications, the circuits utilize transistor-transistor logic that is compatible with most other TTL families and other saturated low-level logic families.

Series 54 and 54LS circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and Series 74 and 74 LS circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN5483A, SN54LS83A . . . J OR W PACKAGE SN7483A, SN74LS83A . . . J OR N PACKAGE (TOP VIEW)

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level
NOTE: input conditions at A1, B1, A2, B2, and CO are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs $\Sigma 3, \Sigma 4$, and $\mathrm{C4}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

TYPES SN5483A, SN54LS83A, SN7483A, SN74LS83A 4-BIT BINARY FULL ADDERS WITH FAST CARRY

REVISED OCTOBER 1976
functional block diagram

schematics of inputs and outputs
EOUIVALENT OF
EACH INPUT
Any A or $\mathrm{B}: \mathrm{R}_{\mathrm{eq}}=3.5 \mathrm{k} \Omega \mathrm{NOM}$
TYPICAL OF ALL
OUTPUTS
C4 output: $R=100 \Omega$ NOM
Any $\Sigma: R=120 \Omega$ NOM

recommended operating conditions

		SN5483A			SN7483A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH	Any output except C4			-800			-800	$\mu \mathrm{A}$
	Output C4			-400			-400	
Low-level output current, IOL	Any output except C4			16			16	mA
	Output C4			8			8	
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN5483A			SN7483A			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP ${ }_{\text {¢ }}$	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{OH}_{\mathrm{H}}=\mathrm{MAX} \end{aligned}$	2.4	3.4		2.4	3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$		0.2	0.4		0.2	0.4	V		
II	Input current at maximum input voltage		$V_{C C}=$ MAX	$V_{1}=5.5 \mathrm{~V}$			1			1	mA		
${ }^{1} \mathrm{H}$	High-level input current		$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
${ }_{1} \mathrm{IL}$	Low-level input current		$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA		
IOS	Short-circuit output current ${ }^{\S}$	Any output except C4	$V_{C C}=$ MAX		-20		-55	-18		-55			
		Output C4			-20		-70	-18		-70	mA		
${ }^{1} \mathrm{CC}$	Supply current		$V_{C C}=M A X,$ Outputs open	All B low, other inputs at 4.5 V	56				56		mA		
			All inputs at $4.5 \mathrm{~V}$		66	99		66	110				

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Oniy one output should be shorted at a time.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER I	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	C0	Any Σ	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega$ See Note 3		14	21	
tPHL					12	21	ns
${ }^{\text {PPLH }}$	A_{i} or $\mathrm{B}_{\mathbf{i}}$	Σ_{i}			16	24	ns
tPHL					16	24	ns
tPLH	CO	C4	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=780 \Omega$ See Note 3		9	14	ns
tPHL					11	16	s
tPLH	$\mathrm{A}_{\boldsymbol{i}}$ or B_{i}	C4			9	14	ns
tPHL					11	16	

$\|_{\text {tPLH }} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ Propagation delay time, high-to-low-level outpu
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS83A, SN74LS83A
4-BIT BINARY FULL ADDERS WITH FAST CARRY
REVISED OCTOBER 1976

recommended operating conditions

	SN54LS83A			SN74LS83A			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, OL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

+ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
8 Only one output should be shorted at a time, and duration of the short-circuit should not exceed ane second.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT) '	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	C0	Any $\mathrm{\Sigma}$	$C_{L}=15 \mathrm{pF}, \quad R_{L}=2 \mathrm{k} \Omega,$ See Note 4		16	24	
tPHL					15	24	ns
tPLH	A_{i} or $\mathrm{B}_{\boldsymbol{i}}$	Σ_{i}			15	24	ns
${ }^{\text {PPHL }}$					15	24	
${ }^{\text {tPLH }}$	C0	C4			11	17	ns
tPHL					15	22	
tPLH	A_{i} or B_{i}	CA			11	17	ns
tPHL					12	17	

$\|_{t_{\text {PLH }}} \equiv$ Propagation delay time, low-to-high-level output
tPHL \equiv Propagation delay time, high-to-low-level output
Note 4: Load circuit and voltage waveforms are shown on page 3-11

These four-bit magnitude comparators perform comparison of straight binary and straight $B C D(8-4-2-1)$ codes. Three fully decoded decisions about two 4 -bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The $A>B, A<B$, and $A=B$ outputs of a stage handling less-significant bits are connected to the corresponding $A>B, A<B$, and $A=B$ inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the $A=B$ input and in addition for the ${ }^{\prime}$ L85, low-level voltages applied to the A $>B$ and A < B inputs. The cascading paths of the ' 85 , 'LS85, and 'S85 are impiemented with only a two-gate-level delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

FUNCTION TABLES									
COMPARING inputs				CASCADING INPUTS			OUTPUTS		
A3, B3	A2, B2	A1, B1	A0, B0	$A>B$	$A<B$	$A=B$	A $>$ B	$\mathrm{A}<\mathrm{B}$	$A=B$
A3 > B3	X	X	X	X	X	X	H	L	L
$A 3<B 3$	x	X	X	x	X	x	L	H	L
$A 3=B 3$	A2 $>$ B2	x	x	x	x	x	H	L	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2<\mathrm{B} 2$	\times	X	x	x	x	L	H	L
$A 3=B 2$	$A 2=B 2$	A1>B1	\times	x	x	x	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	A1 < B1	x	x	x	x	L	H	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0>B 0$	x	x	x	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$A 0<B 0$	X	X	x	L	H	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A O=B O$	H	L	1	H	L	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	H	L	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	A1 $=B 1$	$A O=B$	L	L	H	L	L	H

'85, 'LS85, 's85

$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	X	X	H	L	L	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A O=B O$	H	H	L	L	L	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A O=B 0$	L	L	L	H	H	L

$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	H	H	L	H	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	L	H	H	L	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	H	H	H	H	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	H	L	H	H	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	L	L	L	L	L

TYPES SN5485, SN54L85, SN54LS85, SN54S85,
SN7485, SN74L85, SN74LS85, SN74S85
4-BIT MAGNITUDE COMPARATORS

TYPES SN5485, SN54L85, SN54LS85, SN54S85, SN7485, SN74L85, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

schematics of inputs and outputs

$A=B$, Any A or $B:$
$R_{\text {eq }}=1.67 \mathrm{k} \Omega \mathrm{NOM}$
$A>B, A<B$:
$R_{\text {eq }}=4 \mathrm{k} \Omega \mathrm{NOM}$
Any A or B:
$R_{\text {eq }}=16.7 \mathrm{k} \Omega$ NOM
$A=B, A>B, A<B$:
$R_{\text {eq }}=40 \mathrm{k} \Omega$ NOM

EQUIVALENT OF EACH
INPUT FOR 'S85 INPUT FOR 'S85

$A=B$, Any A or B :
$R_{\text {eq }}=933 \Omega$ NOM
$A>B, A<B$:
$R_{e q}=2.8 \mathrm{k} \Omega$ NOM

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54 SN54S'	SN54L'	SN54LS	$\begin{array}{\|l\|} \hline \text { SN74' } \\ \text { SN74S } \\ \hline \end{array}$	SN74L'	SN74LS'	UNIT
Supply voltage, V_{CC} (see Note 1)	7	8	7	7	8	7	V
Input voltage (see Note 2)	5.5	5.5	7	5.5	5.5	7	V
Interemitter voltage (see Note 3)	5.5			5.5			V
Operating free-air temperature range	-55 to 125			0 to 70			${ }^{\circ} \mathrm{C}$
Storage temperature range	-65 to 150			-65 to 150			${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. Input voltages for 'L85 must be zero or positive with respect to network ground terminal.
3. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies to each A input in conjunction with its respective B input of the ' 85 and ' S 85 .

TYPES SN5485, SN7485 4-BIT MAGNITUDE COMPARATORS

recommended operating conditions

	SN5485			SN7485			UNIT
	MIN	NOM	MAX	MIN	NOM	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger MAX	UNIT	
$V_{\text {IH }}$	High-level input voltage				2		V	
$V_{\text {IL }}$	Low-level input voltage					0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad 1 \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V	
V_{OH}	High-level output voltage		$\begin{array}{\|ll\|} \hline V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & 1 \mathrm{OH}=-400 \mu \\ \hline \end{array}$		2.4	3.4	V	
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{I H}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.20 .4	V	
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA	
I_{1}	High-level input current	$\mathrm{A}<\mathrm{B}, \mathrm{A}>\mathrm{B}$ inputs	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$	
		all other inputs				120		
IIL	Low-level input current	$A<B, A>B$ inputs	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$		-1.6		
		all other inputs				-4.8	mA	
IOS	Short-circuit output current§		$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{O}}=0$	SN5485	-20	-55		
			SN7485	-18	-55	mA		
ICC	Supply current			$\mathrm{V}_{\mathrm{CC}}=$ MAX, See Note 4			$55 \quad 88$	mA

$\dagger_{\text {For }}$ conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
NOTE 4: ${ }^{1} \mathrm{CC}$ is measured with outputs open, $\mathrm{A}=\mathrm{B}$ grounded, and all other inputs at 4.5 V .
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM INPUT	$\begin{gathered} \text { TO } \\ \text { OUTPUT } \end{gathered}$	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
tple	Any A or B data input	$A<B, A>B$	1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 5 \end{aligned}$	7		ns
			2		12		
			3		17	26	
		$A=B$	4		23	35	
${ }^{\text {tPHL }}$	Any A or B data input	$A<B, A>B$	1		11		ns
			2		15		
			3		20	30	
		$A=B$	4		20	30	
tPLH	$A<B$ or $A=B$	$A>B$	1		7	11	ns
tPHL	$A<B$ or $A=B$	$A>B$	1		11	17	ns
tPLH	$A=B$	$\mathrm{A}=\mathrm{B}$	2		13	20	ns
tpHL	$A=B$	$A=B$	2		11	17	ns
${ }^{\text {tPLH }}$	$A>B$ or $A=B$	$A<B$	1		7	11	ns
tPHL	$\mathrm{A}>\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	$A<B$	1		11	17	ns

${ }^{I_{\text {PLH }}}{ }^{\equiv}$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output.
NOTE 5: Load circuit and voltage waveforms are shown on page 3-10.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ for conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{+}$All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 6: With all outputs open, I CC is measured for Condition A with all inputs at 4.5 V , and for Condition B with all inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER 1	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Any A or B	Any	$C_{L}=50 \mathrm{pF}, \quad R_{\mathrm{L}}=4 \mathrm{k} \Omega,$ See Note 7		90	150	
tPHL					75	150	ns
tPLH	$\begin{gathered} A>B, A<B, \\ \text { or } A=B \end{gathered}$	Any			75	150	ns
tPHL					55	100	

$\|_{\mathrm{t}_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {t }} \mathrm{PHL} \equiv$ propagation delay time, high-to-low-level output
NOTE 7: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54LS85, SN74LS85

 4-BIT MAGNITUDE COMPARATORSREVISED OCTOBER 1976

recommended operating conditions

	SN54LS85			SN74LS85			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $V_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{1} \mathrm{OH}$			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			8	mA
Operating frec-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS85			SN74LS85			UNIT		
			MIN	TYP䒠	MAX	MIN	TYP \ddagger	MAX					
$V_{\text {IH }}$ High-level input voltage							2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage							0.7			0.8	V		
$V_{\text {IK }}$ Input clamp voltage			$\mathrm{V}_{\text {CC }}=$ MIN,	$I_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
VOH High-level output voltage			$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V		
VOL Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			${ }^{1} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
1	Input current at maximum input voltage	$\mathrm{A}<\mathrm{B}, \mathrm{A}>\mathrm{B}$ inputs		$V_{C C}=$ MAX	$V_{1}=7 \mathrm{~V}$			0.1			0.1	mA	
		all other inputs					0.3			0.3			
$\mathrm{IIH}^{\text {H }}$	High-level input current	$A<B, A>B$ inputs	$V_{C C}=M A X$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
		all other inputs					60			60			
IIL	Low-level input current	$A<B, A>B$ inputs	$V_{C C}=$ MAX	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	$m \mathrm{~A}$		
		all other inputs					-1.2			-1.2			
IOS Short-circuit output current ${ }^{\text {\% }}$ ICC			$V_{C C}=$ MAX		-20		-100	-20		-100	mA		
			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$.	See Note 4		10.4	20		10.4	20	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 4: ${ }^{\mathrm{I} C C}$ is measured with outputs open, $A=B$ grounded, and all other inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROMI INPUT	TO OUTPUT	NUARECR OF GATE LEVELS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Any A or B data input	$A<B, A>B$	1	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 7		14		ns
			2			19		
			3			24	36	
		$A=8$	4			27	45	
tPHL	Any A or B data input	$A<B, A>B$	1			11		ns
			2			15		
			3			20	30	
		$A=B$	4			23	45	
tplh	$A<B$ or $A=B$	A $>$ B	1			14	22	ns
tpHL	$A<B$ or $A=B$	$A>B$	1			11	17	ns
tPLH	$A=B$	$A=B$	2			13	20	ns
tPHL	$A=B$	$A=B$	2			13	26	ns
tPLH	$\mathrm{A}>\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	$A<B$	1			14	22	ns
tPHL	$\mathrm{A}>\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	A<B	1			11	17	ns

$\|_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level outpu
$t_{P H Z} \equiv$ propagation delay time, high-to-low-tevel output
NOTE 7: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54S85, SN74S85 4-BIT MAGNITUDE COMPARATORS

recommended operating conditions

	SN54S85			SN74S85			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage	High-level input voltage				2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8	V
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
VOH	high-ievei output voitage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	SN54S85	2.5	3.4		V
			$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	SN74S85	2.7	3.4		
VOL Low-level output voltage			$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \hat{\mathrm{~V}}, \\ \mathrm{~V}_{\mathrm{IL}}-\hat{0.8 \mathrm{~V}}, & \mathrm{iOL}^{2}=2 \hat{\mathrm{~mA}} \end{array}$				0.5	V
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I'H	High-level input current	$A<B, A>B$ inputs	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
		all other inputs					150	
IIL	Low-level input current	$A<B, A>B$ inputs	$V_{C C}=$ MAX, $\quad V_{1}=0.5 \mathrm{~V}$				-2	mA
		all other inputs					-6	
Ios Short-circuit output current ${ }^{\text {§ }}$	Short-circuit output current ${ }^{\S}$		$\mathrm{V}_{\text {CC }}=$ MAX		-40		-100	mA
Icc	Supply current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 4			73	115	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C},$ $\text { See Note } 4$	SN54S85W			110	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
$\S_{\text {Not more }}$ than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 4: ICC is measured with outputs open, $A=B$ grounded, and all other inputs at 4.5 V
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM INPUT	$\begin{gathered} \text { TO } \\ \text { OUTPUT } \end{gathered}$	NUMBER OF gate levels	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Any A or B data input	$A<B, A>B$	1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega, \\ & \text { See Note } 5 \end{aligned}$	5		ns
			2		7.5		
			3		10.5	16	
		$A=B$	4		12	18	
${ }_{\text {tPHL }}$	Any A or B data input	$A<B, A>B$	1		5.5		ns
			2		7		
			3		11	16.5	
		$A=B$	4		11	16.5	
tPLH	$\mathrm{A}<\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	$A>B$	1		5	7.5	ns
${ }_{\text {t }}$ PHL	$A<B$ or $A=B$	A $>$ B	1		5.5	8.5	ns
tPLH	$\mathrm{A}=\mathrm{B}$	$A=B$	2		7	10.5	ns
${ }^{\text {tPHL}}$	$A=B$	$A=B$	2		5	7.5	ns
tPLH	$A>B$ or $A=B$	$A<B$	1		5	7.5	ns
tPHL	$A>B$ or $A=B$	A < B	1		5.5	8.5	ns

[^5]TYPES SN5485, SN54L85, SN54LS85, SN54S85, SN7485, SN74L85, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

TYPICAL APPLICATION DATA

COMPARISON OF TWO N-BIT WORDS

This application demonstrates how these magnitude comparators can be cascaded to compare longer words. The example illustrated shows the comparison of two 24 -bit words; however, the design is expandable to n-bits. As an example, one comparator can be used with five of the 24 -bit comparators illustrated to expand the word length to 120 -bits. Typical comparison times for various word lengths using the '85, 'L85, 'LS85, or 'S85 are:

\quad WORD	NUMBER				
LENGTH	OF PKGS			'L85	'LS85
'S85					
1-4 bits	1	23 ns	90 ns	24 ns	11 ns
$5-24$ bits	$2-6$	46 ns	180 ns	48 ns	22 ns
$25-120$ bits	$8-31$	69 ns	270 ns	72 ns	33 ns

COMPARISON OF TWO 24-BIT WORDS

SN54', SN54LS', SN54S' . . . J OR WPACKAGE SN74', SN74LS', SN74S' . . . J OR N PACKAGE

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
L	H	H
H	L	H
H	H	L

$H=$ high level, $L=$ low level

TYPICAL AVERAGE TYPICAL PROPAGATION TOTAL POWER DELAY TIME DISSIPATION

LAY TIME	DISSIPATION
14 ns	150 mW
55 ns	15 mW
10 ns	30.5 mW
7 ns	250 mW

TYPES SN5486, SN7486
 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN5486			SN7486			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}			-800			-800	$\mu \mathrm{A}$
Low-level output current, 1 OL			16			16	mA
Operating free-air temperature, $\top_{\text {A }}$	-55		125	0		70	${ }^{\text {C }}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN5486		SN7486		UNIT
		MIN	TYP \ddagger	MIN	TYP \ddagger MAX	
$V_{1 H}$ High-level input voltage		2		2		V
$V_{\text {IL }}$ Low-level input voltage			0.8		0.8	V
$V_{\text {IK }}$ Input clamp voitage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-8 \mathrm{~mA}$		-1.5		-1.5	V
V_{OH} High-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \quad V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=0.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.4	2.4	3.4	V
$\mathrm{V}_{\text {OL }}$ Low-level output voitage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{I H}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \hline \end{aligned}$		0.20 .4		0.20 .4	V
$\mathrm{I}_{\mathbf{i}} \quad$ Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1		1	mA
IIH High-level input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=M A X, ~ V_{1}=0.4 \mathrm{~V}$		-1.6		-1.6	mA
IOS Short-circuit output current §	$V_{C C}=$ MAX	-20	-55	-18	-55	mA
${ }^{\text {I CC }}$ Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		$30 \quad 43$		$30 \quad 50$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with the inputs grounded and the outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	A or B	Other input low	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=400 \Omega, \end{aligned}$$\text { See Note } 3$		15	23	ns
${ }_{\text {tPHL }}$					11	17	
tPLH	A or B	Other input high			18	30	ns
tPHL					13	22	

$\|_{t_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54L86, SN74L86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal
4. Input voltages must be zero or positive with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54L86			SN74L86			UNIT
		MIN	TYP ${ }_{\text {¢ }}^{\ddagger}$	MAX	MIN	TYP ${ }^{\text {主 }}$	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage				0.7			0.7	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{IOH}^{2}=\mathrm{MAX} \end{array}$	2.4	3.3		2.4	3.2		V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{IOL}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$		0.15	0.3		0.2	0.4	v
$I_{1} \quad$ Input current at maximum input voitage	$\mathrm{V}_{C C}=$ MAX, $\mathrm{V}_{1}=5.5 \mathrm{~V}$			200			200	$\mu \mathrm{A}$
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=$ MAX, $V_{i}=0.3 \mathrm{~V}$			-0.36			-0.36	mA
IoS Short-circuit output current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-3		-15	-3		-15	mA
ICCH Supply current, all outputs high	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 5		2.2	4.4		2.2	4.4	mA
ICCL Supply current, all outputs low	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 6		3.8	6.68		3.8	6.68	mA

[^6]switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	A or B	Other input low	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=4 \mathrm{k} \Omega, \end{aligned}$ See Note 7		75	150	ns
tPHL					60	150	
tPLH	A or B	Other input high			50	90	ns
tPHL					35	60	

[^7]
TYPES SN 54LS86, SN74LS86
 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

REVISED ОСtober 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54LS86		SN74LS86			UNIT
		MIN	TYP \ddagger MAX	MIN	TYP ${ }^{+}$	MAX	
$\mathrm{V}_{\mathrm{tH}} \quad$ High-level input voltage		2		2			V
$V_{\text {IL }}$ Low-level input voltage			0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$		-1.5			-1.5	V
$\mathrm{VOH}^{\text {OH }}$ High-level output voltage	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$	2.5	3.4	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { mas } \end{aligned}$		0.250 .4		0.25	0.4	V
	$V_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{mas} \quad \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.35	0.5	
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$		0.2			0.2	mA
I/H High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\quad \mathrm{V}_{1}=2.7 \mathrm{~V}$		40			40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.8			-0.8	mA
IOS Short-circuit output current ${ }^{\text {§ }}$	$V_{C C}=$ MAX	-6	-40	-5		-42	mA
ICC Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ See Note 2		6.1		6.1	10	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the appiicabie type. \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with the inputs grounded and the outputs open.
switching characteristics, $\mathrm{VCC}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
${ }^{\text {tPLH }}$	A or B	Other input low	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \text { See Note } 7 \end{aligned}$	12	23	ns
${ }^{\text {tPHL }}$				10	17	
tPLH	A or B	Other input high		20	30	ns
tPHL				13	22	

I $_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
$t_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
NOTE 7: Load circuit and voltage waveforms are shown on page 3-11.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

\left.| | SN54S86 | | SN74S86 | | UNIT |
| :--- | ---: | ---: | ---: | :---: | :---: |
| | MIN | NOM | MAX | MIN | |$\right]$.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54S86		SN74S86		UNIT
		MIN	TYP ${ }^{\ddagger}$ ¢ MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8		0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}^{\prime}=-18 \mathrm{~mA}$		-1.2		-1.2	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	2.5	3.4	2.7	3.4	V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OI}}=20 \mathrm{~mA} \end{array}$		0.5		0.5	v
$\mathrm{I}_{4} \quad$ Input current at maximum input vol tage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1		1	mA
I_{IH} High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{i}}=2.7 \mathrm{~V}$		50		50	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$		-2		-2	mA
IOS Short-circuit output current ${ }^{\text {§ }}$	$\mathrm{V}_{\text {CC }}=$ MAX	-40	-100	-40	-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2		$50 \quad 75$		$50 \quad 75$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. $\ddagger_{\text {All typical values are at }} \mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: I CC is measured with the inputs grounded and the outputs open.
switching characteristics, $\mathrm{V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\int_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

description

Operation of these monolithic 4-bit true/complement elements is controlled by the B and C inputs. With the B input low, the 4-bit binary input (A) is transferred to the output (Y) in either complementary form (with C low) or true form (with C high). When the B input is high, the output will be at the complementary level of the C input regardless of the levels of the data inputs.

These circuits are fully compatible for use with other TTL or DTL circuits. Input clamping diodes are provided to minimize transmission line effects and thereby simplify system design. Each input represents only one normalized series $54 \mathrm{H} / 74 \mathrm{H}$ load, and full fan-out to 10 series $54 \mathrm{H} / 74 \mathrm{H}$ loads is available from each of the outputs in the low-level condition.

Power dissipation is 270 mW typically with an average propagation delay of 14 ns from data inputs to output.

The SN54H87 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and the SN74H87 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

$A 1, A 2, A 3, A 4=$ the level of the respective A input
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	-8mA			-1.5	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & H=2 V, \\ & H=-1 \mathrm{~mA} \end{aligned}$	2.4	3.5		V
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & H=2 \mathrm{~V}, \\ & L=20 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
11	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$ MAX,	$=5.5 \mathrm{~V}$			1	mA
I ${ }^{\text {H }}$	High-level input current	$V_{C C}=$ MAX,	$=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=$ MAX,	$=0.4 \mathrm{~V}$			-2	mA
los	Short-circuit output current \S	$\mathrm{V}_{C C}=\mathrm{MAX}$		-40		-100	mA
	upply	$V_{C C}=M A X$,	SN54H87		54	78	mA
${ }^{\text {c }}$ C	upply current	Sae Note 2	SN74H87		54	89	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \mp All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \top_{A}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time and duration of the short-circuit should not exceed 1 second.
NOTE 2: ICC is measured for the following conditions:
a. All A inputs are at $4.5 \mathrm{~V}, \mathrm{~B}$ and C inputs are grounded, and all outputs are open.
B and C inputs are at 4.5 V , all A inputs are grounded, and all outputs are open
switching characteristics, $\mathrm{V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	MAX
Propagation delay time, low-to-high- tPLH level output from any A input	$C_{L}=25 \mathrm{pF}, \quad R_{\mathrm{L}}=280 \Omega$ See Note 3	14	20	ns
${ }^{\text {tPHL }}$ Propagation delay time, high-to-low-		13	19	ns
Propagation delay time, low-to-high- tpin level output from B or C inputs		17	25	ns
Propagation delay time, high-to-lowtPHL level output from B or C inputs		17	25	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.
functional block diagram and schematics of inputs and outputs

TYPES SN5490A, SN5492A, SN5493A, SN54L90, SN54L93, SN54LS90, SN54LS92, SN54LS93, SN7490A, SN7492A, SN7493A, SN74L90, SN74L93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS BULLETIN NO. DL-S 7611807, MARCH 1974-REVISED OCTOBER 1976
'90A, 'L90, 'LS90 . . . DECADE COUNTERS
'92A, 'LS92 . . . DIVIDE-BY-TWELVE COUNTERS
'93A, 'L93, 'LS93 . . . 4-BIT BINARY
COUNTERS

TYPICAL

TYPES	POWER DISSIPATION
	POW
'90A	145 mW
'L90	20 mW
'LS90	45 mW
'92A, '93A	130 mW
'LS92, 'LS93	45 mW
'L93	16 mW

description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '90A, 'L90, and 'LS90, divide-by-six for the '92A and 'LS92, and divide-by-eight for the '93A, 'L93, and 'LS93.

All of these counters have a gated zero reset and the '90A, 'L90, and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide by-twelve, or four-bit binary) of these counters, the B input is connected to the O_{A} output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A, 'L90, or 'LS90 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output O_{A}.

SN54', SN54LS' . . . J OR W PACKAGE SN54L'... J OR T PACKAGE
SN54', SN74L', SN74LS' . . . J OR N PACKAGE

'92A, 'LS92, (TOP VIEW)

'93A, 'LS93 (TOP VIEW)

NC-No internal connection

TYPES SN5490A, '92A, '93A, SN54L90, 'L93, SN54LS90, 'LS92, 'LS93, SN7490A, '92A, '93A, SN74L90, 'L93, SN74LS90, 'LS92, 'LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

'90A, 'L90,'LS90 BCD COUNT SEQUENCE (See Note A)					'90A, 'L90, 'LS90 BI-QUINARY (5-2) (See Note B)					
COUNT	OUTPUT				COUNT	OUTPUT				
		0	$\mathrm{a}_{\mathrm{C}} \mathrm{a}_{\mathrm{B}}$				A	a_{D}	O_{C}	
0			L L	L	0			L	L	L
1			L L	H	1			L	L	
2			L H	L	2			L	H	L
3		L	L H	H	3			L	H	H
4		H	H L	L	4			H	L	L
5		L	H L	H	5			L	L	L
6		L	H H	L	6			L	L	H
7		L	H H	H	7			L	H	L
8		H	L L	L	8			L	H	
9			L L		9		H	H	L	

'90A, 'L90,'LS90

RESET INPUTS				OUTPUT	
$\mathrm{R}_{0}(1)$	$\mathrm{R}_{0(2)}$	R9i1)	R9(2)	${ }^{0}$	$\mathrm{a}_{\mathrm{C}} \mathrm{a}_{\mathrm{B}} \mathrm{o}^{\prime}$
H	H	L	\times	L	L i
H	H	x	L	L	L L
x	x	H	H	H	L L
x	L	x	L		COUNT
L	x	L	\times		COUNT
L	x	x	L		COUNT
x	L	L	\times		COUNT

NOTES: A. Output Q_{A} is connected to input B for $B C D$ count
B. Output Q_{D} is connected to input A for bi-quinary
count.
C. Output Q_{A} is connected to input B.
D. $H=$ high level, $L=$ low level, $X=$ irrelevant
functional block diagrams
'90A, 'L90, 'LS90

'92A, 'LS92
-
'93A, 'L93, 'LS93
('93A) ['L93]

The J and K inputs shown without connection are for reference only and are functionally at a high level.

TYPES SN5490A, '92A, '93A, SN54L90, 'L93, SN54LS90, 'LS92, 'LS93,
SN7490A, '92A, '93A, SN74L90, 'L93, SN74LS90, 'LS92, 'LS93
DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS REVISED OCTOBER 1976
schematics of inputs and outputs
EOUIVALENT OF EACH INPUT

7
'L90, 'L93
EQUIVALENT OF EACH INPUT
EXCEPT A AND B OF 'L93
VCC
'LS90,'LS92,'LS93

TYPES SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

```
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
```


recommended operating conditions

		$\begin{gathered} \text { SN5490A, SN5492A } \\ \text { SN5493A } \\ \hline \end{gathered}$			SN7490A, SN7492ASN7493A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	v
High-level output current, I OH				-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL				16			16	mA
Count frequency fount (see Figure 1)	A input	0		32	0		32	MHz
Count frequency, icount see figure 1)	B input	0		16	0		16	,
	A input	15			15			
Pulse width, t_{w}	B input	30			30			ns
	Reset inputs	15			15			
Reset inactive-state setup time, $\mathrm{t}_{\text {su }}$		25			25			ns
Operating free-air temperature, T_{A}		-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (uniess otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time.
a_{A} outputs are tested at $\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ plus the limit value for I_{IL} for the B input. This permits driving the B input while maintaining fuli fan-out capability.
NOTE 3: ${ }^{\prime} \mathrm{CC}$ is measured with all outputs open, both R_{0} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.

TYPES SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS
REVISED OCTOBER 1976
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER 1	FROM(INPUT)	TO (OUTPUT)	TEST CONDITIONS	'90A			'92A			'93A			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	A	$\mathrm{Q}_{\text {A }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \end{aligned}$ See Figure 1	32	42		32	42		32	42		MHz
	B	Q_{B}		16			16			16			
tPLH	A	$\mathrm{Q}_{\text {A }}$			10	16		10	16		10	16	ns
tPHL					12	18		12	18		12	18	
tPLH	A	O_{D}			32	48		32	48		46	70	ns
tPHL					34	50		34	50		46	70	ns
tPLH	B	Q_{B}			10	16		10	16		10	16	ns
tPHL					14	21		14	21		14	21	
tPLH	B	${ }^{Q} \mathrm{C}$			21	32		10	16		21	32	ns
tPHL					23	35		14	21		23	35	
tPLH	B	Q_{D}			21	32		21	32		34	51	ns
tphL					23	35		23	35		34	51	
tPHL	Set-to-0	Any			26	40		26	40		26	40	ns
tPLH	Set-to-9	Q_{A}, Q_{D}			20	30							-
tPHL		$\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$			26	40							ns

If $_{\text {max }} \equiv$ maximum count frequency
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

	SN54L90, SN54L93			SN74L90, SN74L93			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $V_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
Count frequency, $\mathrm{f}_{\text {count }}$	0		3	0		3	MHz
High-level output current, I_{OH}			-100			-200	$\mu \mathrm{A}$
Low-level output current, 1OL			2			3.6	mA
Width of input count pulse, ${ }_{\text {w }}$ (count)	200			200			ns
Wïdith of reset puise, $\mathrm{t}_{\text {w }}$ (reset)	200			200			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				TEST CONDITIONS ${ }^{\dagger}$	'L90			'L93			UNIT	
				MIN	TYP ${ }^{\text {+ }}$	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.7			0.7	V	
V_{OH}	High-level output voltage		SN54L'	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4	3.3		2.4	3.3		V	
			SN74L'		2.4	3.2		2.4	3.2			
V_{OL}	Low-level output voltage		SN54L'	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}^{2} & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{O}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$		0.15	0.3		0.15	0.3	V	
			SN74L'			0.2	0.4		0.2	0.4		
11	input current at maximum input voltage	Any reset input		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			100			100	$\mu \mathrm{A}$	
		A input					300			200		
		B input					600			200		
${ }^{1} \mathrm{H}$	High-level input current	Any res	et input	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			10			10	$\mu \mathrm{A}$	
		A input					30			20		
		B input					60			20		
IIL	Low-level input current	Any reset input		$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.3 \mathrm{~V}$			-0.18			-0.18	mA	
		A input					-0.54			-0.36		
		B input					-1.08			-0.36		
Ios	Short-circuit output current§			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-3		-15	-3		-15	mA	
${ }^{\text {ICC }}$	Supply current			$\mathrm{V}_{\text {CC }}=$ MAX, See Note 3		4	7.2		3.2	6.6	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time. ${ }^{\text {A }}$ outputs are ter $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.
NOTE 3: ${ }^{\prime} C C$ is measured with all outputs open, both R_{0} inputs grounded following momentary connection to 4.5 V , and all other input grounded.
switching characteristics, $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		'L90			'L93			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
$\mathrm{f}_{\text {max }}$	Maximum count frequency					3	6		3	6		MHz
tPLH	Propagation delay time, low-to-high-level Q_{D} output from input A	$C_{L}=50 \mathrm{pF}, \quad R_{L}=4 \mathrm{k} \Omega,$ See Figure 1			230	340		280	450	ns		
tPHL	Propagation delay time, high-to-low-level Q_{D} output from input A				230	340		280	450	ns		

TYPES SN54LS90, SN54LS92, SN54LS93, SN74LS90, SN74LS92, SN74LS93
 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS
 REVISED OCTOBER 1976

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 4: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS90 SN54LS92 SN54LS93,			SN74LS90 SN74LS92 SN74LS93			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, ${ }^{1} \mathrm{OL}$				4			8	mA
Count frequency, fcount (see Figure 1)	A input	0		32	0		32	MHz
	B input	0		16	0		16	
Pulse width, t_{w}	A input	15			15			ns
	B input	30			30			
	Reset inputs	15			15			
Reset inactive-state setup time, $\mathrm{t}_{\text {su }}$		25			25			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS90 SN54LS92			$\begin{aligned} & \text { SN74LS90 } \\ & \text { SN74LS92 } \end{aligned}$			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$\mathrm{V}_{1} \mathrm{H}$	High-level input voltage								2			2			V
$V_{\text {IL }}$	Low-level input voltage							0.7			0.8	V			
VIK	Input clamp voltage		$V_{\text {CC }}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
VOH	High-level output voltage		$\begin{array}{\|ll\|} \hline V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max , & I_{O H}=-400 \mu \mathrm{~A} \\ \hline \end{array}$			2.5	3.4		2.7	3.4		V			
VOL Low-level output voltage			$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max, } & \\ \end{array}$		$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v			
			$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	v					
11	Input current at maximum input voltage	Any reset			$V_{C C}=M A X, \quad V_{1}=7 \mathrm{~V}$					0.1			0.1	mA	
		A input	$V_{C C}=$ MAX	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				0.2			0.2				
		B input						0.4			0.4				
$1 / \mathrm{H}$	High-level input current	Any reset	$V_{C C}=$ MAX	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
		A input						40			40				
		B input						80			80				
IIL	Low-leve! output current	Any reset	$V_{C C}=$ MAX	$V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
		A input						-2.4			-2.4				
		B input						-3.2			-3.2				
IOS	Short-circuit output current \S		$V_{C C}=$ MAX			-20		-100	-20		-100	mA			
ICC Supply current			$V_{C C}=M A X, \quad$ See Note 3		'LS90		9	15		9	15	mA			
			'LS92		9	15		9	15						

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\# All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
TOutputs are tested at specified I_{OL} plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.
NOTE 3: $I_{\text {CC }}$ is measured with all outputs open, both R_{O} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.

TYPES SN54LS90, SN54LS92, SN54LS93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS REVISED OCTOBER 1976

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS93			SN74LS93			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$\mathrm{V}_{1} \mathrm{H}$	High-level input voltage								2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage							0.7			0.8	V			
$\mathrm{V}_{1 \mathrm{~K}}$	Input clamp voltage		$V_{C C}=M I N$, $I_{I}=-18 \mathrm{~mA}$ $V_{C C}=M I N$, $V_{I H}=2 \mathrm{~V}$, $V_{I L}=V_{I L}$ max,, $I_{O H}=-400 \mu \mathrm{~A}$					-1.5			-1.5	V			
V_{OH}	High-level output voltage					2.5	3.4		2.7	3.4		V			
V_{OL} Low-level output voltage			$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{II}}=\mathrm{V}_{\mathrm{II}} \max \end{array}$		$\mathrm{I}^{\text {OL }}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v			
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{mAI}$					0.35	0.5	v					
II	Input current at maximum input voltage	Any reset			$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$					0.1			0.1	mA	
		A or B input	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$					0.2			0.2				
1/H	High-level input current	Any reset	$V_{C C}=$ MAX,	$V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
		A or B input						40			80				
IIL	Low-level óuipui čution	Any reset	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
		A input						-2.4			-2.4				
		B input						-1.6			-1.6				
los	Short-circuit output cuirents		$\mathrm{V}_{\mathrm{CC}}=$ MAA			-20		-100	-20		-100	mA			
ICC	Supply current		$V_{C C}=M A X$,	See Note 3			9	15		9	15	mA			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
${ }^{\ddagger} A l l$ typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
$\|_{A}$ outputs are tested at specified IOL plus the limit value for $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.
NOTE 3: ICC is measured with all outputs open, both R_{0} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.
switching characteristics, $\mathrm{VcC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS90			'LS92			'LS93			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	A	Q_{A}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ See Figure 1	32	42		32	42		32	42		MHz
	B	Q_{B}		16			16			16			
tPLH	A	$\mathrm{Q}_{\text {A }}$			10	16		10	16		10	16	ns
tPHL					12	18		12	18		12	18	
tPLH	A	Q_{D}			32	48		32	48		46	70	ns
tPHL					34	50		34	50		46	70	
tPLH	B	$\mathrm{Q}_{\mathrm{B}}$$\mathrm{a}_{C}$			10	16		10	16		10	16	ns
tPHL					14	21		14	21		14	21	
tPLH	B				21	32		10	16		21	32	ns
tpHL					23	35		14	21		23	35	
tPLH	B	Q_{D}			21	32		21	32		34	51	ns
tPHL					23	35		23	35		34	51	
tpHL	Set-to-0	Any			26	40		26	40		26	40	ns
tPLH	Set-to-9	Q_{A}, Q_{D}			20	30							
tPHL		$\mathrm{O}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$			26	40							s

$\|_{f_{\text {max }}} \equiv$ maximum count frequency
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\mathrm{t}} \mathrm{PHL} \equiv$ propagation delay time, high-to-low-level output

TYPES SN5490A, SN5492A, SN5493A, SN54L90, SN54L93, SN54LS90, SN54LS92, SN54LS93, SN7490A, SN7492A, SN7493A, SN74L90, SN74L93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

NOTES: A. Input pulses are supplied by a generator having the following characteristics:
for '90A, '92A, '93A, $\mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$, PRR $=1 \mathrm{MHz}$, duty cycle $=50 \%, \mathrm{z}_{\text {out }} \approx 50$ ohms;
for '90A, '92A, '93A, $\mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$, PRR $=1 \mathrm{MHz}$, duty cycle $=50 \%, z_{\text {out }} \approx 50$ ohms;
for 'L90,' $\mathrm{L} 93, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 15 \mathrm{~ns}$, PRR $=500 \mathrm{kHz}$, duty cycle $=50 \%, z_{\text {out }} \approx 50$ ohms;
for 'LS9, 'Ls, $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 15 \mathrm{~ns}, \mathrm{PRR}=500 \mathrm{kHz}$, duty cycle $=50 \%, 2_{\text {out }} \approx 50$ ohms;
for , $\mathrm{LS} 93, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=50 \%, \mathrm{Z}_{\text {out }} \approx 50$ ohms.
B. C_{L} includes probe and jig capacitance.
C. C1 (30 pF) is applicable for testing' L90 and 'L93.
D. All diodes are 1N916 or 1 N3064.
E. Each reset input is tested separately with the other reset at 4.5 V
F. Reference waveforms are shown with dashed lines.
G. For '90A, '92A, and '93A; $V_{\text {ref }}=1.5 \mathrm{~V}$. For 'L90, 'L93, 'LS90, 'LS92, and 'LS93; $\mathrm{V}_{\mathrm{ref}}=1.3 \mathrm{~V}$.

FIGURE 1

7

TYPES SN5491A, SN7491A

 8-BIT SHIFT REGISTERSabsolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal
2. Input signals must be zero or positive with respect to network ground terminal
recommended operating conditions

		N5491			N7491		UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			16			16	mA
Width of clock input pulse, $\mathrm{t}_{\text {w }}$	25			25			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	25			25			ns
Hold time, t_{h} (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$	SN5491A			SN7491A			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			2			V
$V_{\text {IL }}$	Low-level input voltage				0.8			0.8	V	
V_{OH}	High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, & \mathrm{~V}_{\text {IH }}=2 \mathrm{~V}, \\ \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.5		2.4	3.5		V	
V_{OL}	Low-level output voltage	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
I_{1}	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
$I_{1 H}$	High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA	
Ios	Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-20		-57	-18		-57	mA	
ICC	Supply current	$V_{C C}=$ MAX, See Note 3		35	50		35	58	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $V C C=5 \mathrm{~V} \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
§ Not more than one output should be shorted at a time.
NOTE 3: ${ }^{1} \mathrm{CC}$ is measured after the eighth clock pulse with the output open and A and B inputs grounded
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :---: | :---: | :---: | UNIT 9.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input signals must be zero or pasitive with respect to network ground terminal.
recommended operating conditions

		SN54L91			SN74L91			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-100			-200	$\mu \mathrm{A}$
Low-level output current, ' OL				2			3.6	mA
Width of clock input pulse, $\mathrm{t}_{\text {w }}$ (clock)	High logic level	100			100			ns
	Low logic level	150			150			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)		120			120			ns
Hold time, $\mathrm{th}^{\text {(see Figure 1) }}$		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	SN54L91		SN74L91		UNIT	
		MIN	TYP \ddagger MAX	MIN	TYP ${ }^{\frac{+}{4}}$ MAX			
$\mathrm{V}_{1} \mathrm{H}$	High-level input voltage			2		2		V
$\mathrm{V}_{1 L}$	Low-level input voltage			0.7		0.7	V	
VOH	High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4	3.3	2.4	3.2	V	
VOL	Low-level output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{l}_{\mathrm{OL}}=\mathrm{MAX} \\ \hline \end{array}$		$0.15 \quad 0.3$		0.20 .4	V	
11	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		100		100	$\mu \mathrm{A}$	
1 IH	High-levet input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		10		10	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.3 \mathrm{~V}$		-0.18		-0.18	mA	
Ios	Short-circuit output current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$	-3	-15	-3	-15	mA	
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 3		3.56 .6		3.56 .6	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathbf{T}_{A}=25^{\circ} \mathrm{C}$.
NOTE 3: I_{CC} is measured after the eighth clock pulse with the outputs open and A and B inputs grounded
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{array}{ll} C_{L}=50 \mathrm{pF}, & R_{\mathrm{L}}=4 \mathrm{k} \Omega, \\ \text { See Figure } 1 & \end{array}$	3	6.5		MHz
tPL.H $\begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$			55	100	ns
TPHL $\begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output }\end{aligned}$			100	150	ns

TYPES SN54LS91, SN74LS91

8-BIT SHIFT REGISTERS

REVISED OCTOBER 1976

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

$$
\text { Supply voltage, } \mathrm{V}_{\mathrm{CC}} \text { (see Note 1) . } 7 \text { V }
$$

Input voltage . 7 V
Operating free-air temperature range: SN54LS91 . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74LS91 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTES: 1. Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS91			SN74LS91			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Width of clock input pulse, t_{w}	25			25			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	25			25			ns
Hold time, $\mathrm{t}_{\text {h }}$ (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS91		SN74LS91			UNIT
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger	MAX	
$V_{\text {IH }}$ High-level input voltage			2		2			V
$V_{\text {IL }}$ Low-level input voltage				0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$V_{C C}=\mathrm{MIN}, \quad \dagger_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \text { max }, I_{O H}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.5	2.7	3.5		V
VOL Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN }, \quad V_{\mathrm{IH}}=2 \mathrm{~V}, \\ & V_{\mathrm{IL}}=V_{\mathrm{IL}} \text { max } \end{aligned}$	$1 \mathrm{OL}=4 \mathrm{~mA}$		$0.25 \quad 0.4$		0.25	0.4	
		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.35	0.5	
 II Input current at maximum input voltage	$V_{C C}=M A X, \quad V_{1}=7 \mathrm{~V}$			0.1			0.1	mA
I/H High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
I/L Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA
'OS Short-circuit output current §	$V_{C C}=\mathrm{MAX}$		-20	-100	-20		-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 3			$12 \quad 20$		12	20	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

$\S_{\text {Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one }}$ NOTE 3: ' CC is measured after the eighth clock pulse with the output open and A and B inputs grounded.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {max }}$ Maximum clock frequency	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$ See Figure 1	10	18		MHz
tPLH Propagation delay time, low-to-high-level output			24	40	ns
tPHL Propagation delay time, high-to-low-level output			27	40	ns

TYPES SN5491A, SN54L91, SN54LS91, SN7491A, SN74L91, SN74LS91 8-BIT SHIFT REGISTERS

PARAMETER MEASUREMENT INFORMATION

INPUT A
 OUTPUT Q_{H}

TYPICAL INPUT/OUTPUT WAVEFORMS

PROPAGATION DELAY TIMES VOLTAGE WAVEFORMS
SWITCHING TIMES VOLTAGE WAVEFORMS
NOTES: A. The generator has the following characteristics: $t_{w(c l o c k)}=500 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}, z_{\text {out }} \approx 50 \Omega$. For SN5491A/SN7491A $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns} ;$ for SN54L91/SN74L91, $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 15 \mathrm{~ns}$; and for SN54LS91/SN74LS91, $\mathrm{t}_{\mathrm{r}}=15 \mathrm{~ns}$, and $t_{f}=6 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N3064 or 1 N916.
D. $C_{1}=30 \mathrm{pF}$ and is used for SN54L91/SN74L91 only
E. For SN5491A/SN7491A, $V_{\text {ref }}=1.5 \mathrm{~V}$; for SN54L91/SN74L91 and $S N 54 L S 91 / S N 74 L S 91, V_{\text {ref }}=1.3 \mathrm{~V}$.

FIGURE 1-SWITCHING TIMES

TTL MSI PARALLEL-IN SERIAL-OUT REGISTERS for application as
 - Serial-In Serial-Out Register

- Dual-Source, Parallel-To-Serial Converter

description

These monolithic shift registers which utilize tran-sistor-transistor logic (TTL) circuits in the familiar Series 54/74 configuration, are composed of four R-S master-slave flip-flops, four AND-OR-INVERT gates, and four inverter-drivers. Internal interconnections of these functions provide a versatile register which performs right-shift operations as a serial-in, serial-out register or as a dual-source, parallel-to-serial converter. A number of these registers may be connected in series to form an n -bit register.
All flip-flops are simultaneously set to a low output level by applying a high-level voltage to the clear input while the internal presets are inactive (high). See the preset function table below. Clearing is independent of the level of the clock input.
The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to either the P1 or P2 inputs of each register stage (A, B, C, and D) with the corresponding preset enable input, PE1 or PE2, high. Presetting, like clearing, is
 input.
Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be setup at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information for the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be at a low level and the internal presets must be inactive (high) when clocking occurs.

PRESET INPUTS				internal PRESET A
PE1	P1A	PE2	P2A	
L	X	L	x	H (inactive)
L	X	X	L	H (inactive)
x	L	L	x	H (inactive)
x	L	x	L	H (inactive)
H	H	x	X	L (active)
X	X	H	H	L (active)

INTERAAL PRESETS				INPUTS			INTERNAL OUTPUTS			OUTPUT
A	B	C	D	CLEAR	CLOCK	SERIAL	$\mathrm{O}_{\mathbf{A}}$	O_{B}	O_{C}	O_{D}
H	H	H	H	H	X	X	L	L	L	L
L	L	L	L	L	X	x	H	H	H	H
H	H	H	H	L	L	X	$\mathrm{Q}_{\text {A0 }}$	O_{BO}	Q_{CO}	O_{DO}
L	H	L	H	L	L	X	H	Q_{BO}	H	QD0
H	H	H	H	L	\uparrow	H	H	Q_{An}	O_{Bn}	$\mathrm{Q}^{\text {Cn }}$
H	H	H	H	L.	\uparrow	L	L	$\mathrm{Q}_{\text {An }}$	O_{Bn}	O_{Cn}

$H=$ high level (steady state), $L=$ low level (steady state), $X=$ irrelevant, $\uparrow=$ transition from low to high level $\alpha_{A O}, Q_{B O}, \alpha_{C O}, \alpha_{D O}=$ the level of $\alpha_{A}, \alpha_{B}, Q_{C}$, or α_{D}, respectively, before the indicated steady-state input conditions were established. $Q_{A n}, Q_{B n}, Q_{C n}=$ the level of Q_{A}, Q_{B}, or Q_{C}, respectively, before the most-recent \uparrow transition of the clock.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input voltage must be zero or positive with respect to network ground terminal.

TYPES SN5494, SN7494

 4-BIT SHIFT REGISTERS

TYPES SN5494, SN7494
4-BIT SHIFT REGISTERS
recommended operating conditions

		SN5494			SN7494			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\mathrm{I}} \mathrm{OH}$				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				16			16	mA
Width of clock pulse, $\mathrm{t}_{\text {w (clock) }}$		35			35			ns
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear)		30			30			ns
Width of preset pulse, t_{w} (preset)		30			30			ns
Setup time, $\mathrm{t}_{\text {su }}$	High-level data	35			35			ns
	Low-level data	25			25			
Hold time, t_{h}		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN5494			SN7494			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
VOH	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.5		2.4	3.5		V	
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ \hline \end{array}$		0.2	0.4		0.2	0.4	V	
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
$\mathrm{IIH}^{\text {l }}$	High-level input current	Presets 1 and 2	$V_{C C}=\mathrm{MAX}, \quad V_{1}=2.4 \mathrm{~V}$			160			160	$\mu \mathrm{A}$	
		Other inputs				40			40		
IIL	Low-level input current	Presets 1 and 2	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$			-6.4			-6.4	mA	
		Other inputs				-1.6			-1.6		
Ios	Short-circuit output current \S		$\mathrm{V}_{C C}=$ MAX	-20		-57	-18		-57	mA	
$I^{\text {I C }}$ Supply current	Supply current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 3		35	50		35	58	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 3: iCC is measured with the outputs oper, clear grounded following momentary application of 4.5 V , both preset-enable inputs grounded, and all other inputs at 4.5 V
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TVP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$C_{L}=15 \mathrm{pF}, \quad R_{L}=400 \Omega$ See Note 4	10		MHz
Propagation delay time, low-to-high-level tply output from clock		25	40	ns
tpHL Propgaation delay time, high-to-low-level output from clock		25	40	ns
$\begin{aligned} & \text { Propagation delay time, low-to-high-level } \\ & \text { output from preset } \end{aligned}$			35	ns
Propagation delay time, high-to-low-level tPHL output from clear			40	ns

NOTE 4: Load circuit and voltage waveforms are shown on page 3-10

TYPES SN5495A, SN54L95, SN54LS95B, SN7495A, SN74L95, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation:
Parallel (broadside) load
Shift right (the direction Q_{A} toward Q_{D}) Shift left (the direction Q_{D} toward Q_{A})
Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (O_{D} to input C, etc.) and serial data is entered at input D . The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

FUNCTION TABLE											
INPUTS								OUTPUTS			
MODE CONTROL	CLOCKS		SERIAL	PARALLEL				$\mathrm{O}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	0_{C}	$\mathbf{O}_{\mathbf{D}}$
	2 (L)	1 (R)		A	B	C	D				
H	H	X	X	X	X	X	X	Q_{AO}	Q_{BO}	O_{CO}	$Q_{\text {DO }}$
H	\downarrow		x	a	b	c	d	a	b	c	d
H	\downarrow	X	x	$\mathrm{Q}_{\mathrm{B}}{ }^{\dagger}$	$\mathrm{Q}_{\mathrm{C}^{+}}$	$Q_{D}{ }^{+}$	d	O_{Bn}	O_{Cn}	O_{Dn}	d
L	L	H	X	X	x	X	X	Q_{AO}	Q_{B0}	Q_{CO}	Q_{DO}
L	x	\downarrow	H	x	x	x	X	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	a_{Cn}
L	x	\downarrow	L	x	x	x	x	L	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}
\uparrow	L	L	X	x	x	x	X	$\mathrm{Q}_{\text {AO }}$	O_{BO}	$\mathrm{Q}_{\text {co }}$	$\mathrm{O}_{\text {Do }}$
\downarrow	L	L	X	x	x	x	X	$\mathrm{Q}_{\mathrm{A} 0}$	$\mathrm{Q}_{\text {B0 }}$	$\mathrm{a}_{\text {co }}$	$\mathrm{Q}_{\text {Do }}$
\downarrow	L	H	x	x	x	x	X	$\mathrm{Q}_{\text {A0 }}$	$\mathrm{Q}_{\text {B0 }}$	O_{CO}	$Q_{\text {Do }}$
\uparrow	H	L	X	x	X	x	X	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	${ }^{\circ} \mathrm{CO}$	$Q_{\text {DO }}$
\uparrow	H	H	X	X	X	X	X	$\mathrm{Q}_{\text {AO }}$	Q_{B0}	Q_{CO}	QDo

${ }^{\dagger}$ Shifting left requires external connection of Q_{B} to A, Q_{C} to B, and Q_{D} to C. Serial data is entered at input D.
$H=$ high level (steady state), $L=$ low level (steady state), $X=$ irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level, $\uparrow=$ transition from low to high level
$a, b, c, d=$ the level of steady-state input at inputs A, B, C, or D, respectively
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established. $Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the most-recent \downarrow transition of the clock.

TYPES SN5495A, SN54L95, SN54LS95B, SN7495A, SN74L95, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

REVISED OCTOBER 1976
functional block diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54*	SN54L'	SN54LS'	SN74	SN74L'	SN74LS	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1)	7	8	7	7	8	7	V
Input voltage (see Note 2)	5.5	5.5	7	5.5	5.5	7	V
Interemitter voltage (see Note 3)	5.5	5.5		5.5	5.5		V
Operating free-air temperature range	-55 to 125			0 to 70			${ }^{\circ} \mathrm{C}$
Storage temperature range	-65 to 150			-65 to 150			${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. For the L95, input vortages must be zero or positive with respect to network ground terminal.
3. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies between the clock-2 input and the mode control input of the '95A and 'L95.

TYPES SN5495A, SN7495A 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

REVISED MARCH 1974

recommended operating conditions

	SN5495A			SN7495A			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-800			-800	$\mu \mathrm{A}$
Low-level output current, ${ }^{\text {I }} \mathrm{OL}$			16			16	mA
Clock frequency, f clock	0		25	0		25	MHz
Width of clock pulse, ${ }_{\text {w }}$ (clock) (see Figure 1)	20			20			ns
Setup time, high-level or low-level data, $\mathrm{t}_{\text {su }}$ (see Figure 1)	15			15			ns
Hold time, high-level or low-level data, t_{h} (see Figure 1)	0			0			ns
Time to enable clock 1, tenable 1 (see Figure 2)	15			15			ns
Time to enable clock 2, tenable 2 (see Figure 2)	15			15			ns
Time to inhibit clock 1, $\mathrm{t}_{\text {inhibit }} 1$ (see Figure 2)	5			5			ns
Time to inhibit clock 2, tinhibit 2 (see Figure 2)	5			5			ns
Operating free-air temperature, $T_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN5495A			SN7495A			UN!T	
			MIN	TYP \ddagger	MAX	MIN	TYP浐	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V	
VOH	High-level output voltage		$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		V	
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
1	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \quad V_{1}=5.5 \mathrm{~V}$			1			1	mA	
I_{H}	High-level input current	Serial, A, B, C, D, Clock 1 or 2	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
		Mode control				80			80		
IIL	Low-level input current	Serial, A, B, C, D, Clock 1 or 2	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA	
		Mode control				-3.2			-3.2		
Ios	Short-circuit output current §		$V_{C C}=$ MAX	-18		-57	-18		-57	mA	
${ }^{\text {CC }}$	Supply current		$V_{C C}=$ MAX, See Note 4		39	63		39	63	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
NOTE 4: I CC is measured with all outputs and serial input open; $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D inputs grounded; mode control at 4.5 V ; and a momentary 3 V , then ground, applied to both clock inputs.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$C_{L}=15 \mathrm{pF}, \quad R_{\mathrm{L}}=400 \Omega$ See Figure 1	25	36		MHz
tPLH Propagation delay time, low-to-high-level output from clock			18	27	ns
tPHL Propagation delay time, high-to-low-level output from clock			21	32	ns

TYPES SN54L95, SN74L95
4-BIT PARALLEL-ACCESS SHIFT REGISTERS
recommended operating conditions

	SN54L95			SN74L95			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-100			-200	$\mu \mathrm{A}$
Low-level output current, 1OL			2			3.6	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$	0		3	0		3	MHz
Width of clock pulse, $\mathrm{t}_{\text {w (clock) }}$ (see Figure 1)	200			200			ns
Setup time, high-level data, $\mathrm{t}_{\text {su }}$ (see Figure 1)	100			100			ns
Setup time, low-level data, $\mathrm{t}_{\text {su }}$ (see Figure 1)	120			120			ns
Hold time, high-level or low-level data, t_{h} (see Figure 1)	0			0			ns
Time to enable clock 1, tenable 1 (see Figure 2)	225			225			ns
Time to enable clock 2, $\mathrm{t}_{\text {enable }} 2$ (see Figure 2)	200			200			ns
Time to inhibit clock 1, $\mathrm{t}_{\text {inhibit }} 1$ (see Figure 2)	100			100			ns
Time to inhibit clock 2, tinhibit 2 (see Figure 2)	0			0			ns
Operating free-air temperature, $T_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54L95			SN74L95			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$V_{\text {IH }}$	High-level input voltage				2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.7			0.7	V	
V_{OH}	High-level output vol tage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4	3.3		2.4	3.2		V	
V_{OL}	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$		0.15	0.3		0.2	0.4	V	
11	Input current at maximum input voltage	Serial, A, B, C, D, Clock 1 or 2	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			100			100	$\mu \mathrm{A}$	
		Mode control				200			200		
$I_{\text {iH }}$	High-level input current	Serial, A, B, C, D, Clock 1 or 2	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			10			10	$\mu \mathrm{A}$	
		Mode control				20			20		
IIL	Low-level input current	Serial, A, B, C, D, clock 1 or 2	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.3 \mathrm{~V}$			-0.18			-0.18	mA	
		Mode contiol				-0.36			-0.36		
IOS	Short-circuit output current §		$V_{C C}=\mathrm{MAX}$	-3		-15	-3		-15	mA	
$I_{\text {CC }}$	Supply current		$V_{\text {CC }}=$ MAX, See Note 4		3.8	9		3.8	9	mA	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time.
NOTE 4: ' CC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V ; and a momentary 3 V , then ground, applied to both clock inputs.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	Max	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega,$ See Figure 1	3	5		MHz
tpLH Propagation delay time, low-to-high-level output from clock			115	200	ns
tPHL Propagation delay time, high-to-low-level output from clock			125	200	ns

TYPES SN54LS95B, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

REVISED OCTOBER 1976
recommended operating conditions

	SN54LS95B			SN74LS95B			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Clock frequency, ficlock	0		25	0		25	MHz
Width of clock pulse, ${ }_{\text {w }}$ (clock) (see Figure 1)	25			25			ns
Setup time, high-level or low-level data, ${ }^{\text {s }}$ ((see Figure 1)	20			20			ns
Hold time, high-level or low-level data, $\mathrm{th}_{\text {h }}$ (see Figure 1)	20			10			ns
Time to enable clock 1, tenable 1 (see Figure 2)	20			20			ns
Time to enable clock 2, $\mathrm{t}_{\text {enable }} 2$ (see Figure 2)	20			20			ns
Time to inhibit clock 1, $\mathrm{t}_{\text {inhibit }} 1$ (see Figure 2)	20			20			ns
Time to inhibit clock 2, $\mathrm{t}_{\text {inhibit }}$ 2 (see Figure 2)	20			20			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS95B			SN74LS95B			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			v
$V_{\text {IL }}$ Low-level input voltage			0.7			0.8			V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$1_{1}{ }^{\prime}=-18 \mathrm{~mA}$	-1.5			-1.5			V
V_{OH} High-level output voltage	$\begin{aligned} & V_{C C}=\text { MIN }, \\ & V_{\text {IL }}=V_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A} \end{aligned}$	2.5	3.4		2.7	3.4		V
VOL Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{iH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	$0.25 \quad 0.4$			$0.25 \quad 0.4$			v
		$\mathrm{I}^{\prime} \mathrm{LL}=8 \mathrm{~mA}$				$0.35 \quad 0.5$			
$\begin{array}{ll}\text { II } & \begin{array}{l}\text { input current at } \\ \text { maximum input voltage }\end{array}\end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$	0.1			0.1			mA
$\begin{array}{\|ll} \hline \text { I/H } & \begin{array}{l} \text { High-level } \\ \text { input current } \end{array} \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{1}=2.7 \mathrm{~V}$	20			20			$\mu \mathrm{A}$
IIL $\begin{array}{l}\text { Low-level } \\ \text { input current }\end{array}$	$\mathrm{V}_{\mathrm{CC}}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$	-0.4			-0.4			mA
IOS Short-circuit output current §	$\mathrm{V}_{C C}=$ MAX		-20	-100		-20	-100		mA
ICC Supply current	$\mathrm{V}_{C C}=\mathrm{MAX}$,	See Note 4		13	21		13	21	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\stackrel{\ddagger}{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 4: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V ; and a momentary 3 V , then ground, applied to both clock inputs.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$C_{L}=15 \mathrm{pF}, \quad R_{L}=2 \mathrm{k} \Omega,$ See Figure 1	25	36		MHz
tPLH Propagation delay time, low-to-high-level output from clock			18	27	ns
tPHL. Propagation delay time, high-to-low-level output from clock			21	32	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input pulses are supplied by a generator having the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}$, and $Z_{\text {out }} \approx 50 \Omega$. For the data pulse generator, $P R R=500 \mathrm{kHz}$; for the clock pulse generator, $P R R=1 \mathrm{MHz}$. When testing $f_{\text {max }}$, vary PRR. For '95A, $\mathrm{t}_{\mathrm{w}(\text { data })} \geqslant 20 \mathrm{~ns} ; \quad \mathrm{t}_{\mathrm{w} \text { (clock) }} \geqslant 15 \mathrm{~ns}$. For 'L95, $\mathrm{t}_{\mathrm{w} \text { (data) }} \geqslant 150 \mathrm{~ns} ; \mathrm{t}_{\mathrm{w} \text { (clock) }} \geqslant 200 \mathrm{~ns}$. For 'LS95B, $\mathrm{t}_{\mathrm{w}}($ data $) \geqslant 20 \mathrm{~ns}$, ${ }^{w}$ (clock) $\geqslant 15$ ns.
B. C_{L} includes probe and jig capacitance.
C. C1 (30 pF) is applicable for testing ' $\mathrm{L95}$
D. All diodes are 1 N916 or 1 N3064.
E. For '95A, $V_{\text {ref }}=1.5 \mathrm{~V}$; for 'L95 and 'LS95B, $V_{\text {ref }}=1.3 \mathrm{~V}$.

VOLTAGE WAVEFORMS FIGURE T-SWITCHING TIMES

NOTES: A. Input A is at a low level.
B. For '95A, $V_{\text {ref }}=1.5 \mathrm{~V}$; for ' $\mathrm{L9} 95$ and ' $\mathrm{LS95B}, \mathrm{~V}_{\text {ref }}=1.3 \mathrm{~V}$.

VOLTAGE WAVEFORMS
FIGURE 2-CLOCK ENABLE/INHIBIT TIMES

TTL

- N-Bit Serial-To-Parallel Converter
- N-Bit Parallel-To-Serial Converter
- N-Bit Storage Register typical
TYPE PROPAGATION TYPICAL
DELAY TIME POWER DISSIPATION

'96	25 ns	240 mW
'L96	50 ns	120 mW
'Ls	25 ns	

description
These shift registers consist of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may de performed.

All flip-flops are simultaneously set to a low output level by applying a low-level voltage to the clear input while the preset is inactive (low). Clearing is independent of the level of the clock input.

The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to the individual preset inputs (A, B, C, D, and E) and a high-level load pulse is applied to the preset enable input. Presetting like clearing is independent of the level of the clock input.

Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be set up at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be high and the preset or preset enable inputs must be low when clocking occurs.

FUNCTION TABLE													
INPUTS									OUTPUTS				
CLEAR	PRESET ENABLE	PRESET					clock	SERIAL	$\mathrm{a}_{\text {A }}$	O_{B}	${ }^{0} \mathrm{C}$	O_{D}	O_{E}
		A	B	c	D	E							
L	L	X	x	X	x	X	x	x	L	L	L	L	L
L	\times		L	L	L	L	x	x	L	L	L	L	L
H	H		H	H	H	H	x	x	H	H	H	H	H
H	H	L	L	L	L	L	L	X	$\mathrm{a}_{\text {A }}$	O_{B}	O_{c}	$0^{\text {DO }}$	$\mathrm{O}_{\text {eo }}$
H	H	H	L	H	L	H	L	X	H	O_{B0}	H	Q_{DO}	H
H	L		X	X	X	X	L	X	$\mathrm{a}_{\text {AO }}$	Q_{BO}	${ }^{\circ} \mathrm{CO}$	$0_{\text {DO }}$	$\mathrm{O}_{\text {eo }}$
H	L	x	x	X	x		\uparrow	H	H	$\mathrm{a}_{\text {An }}$	a_{Bn}	a_{C}	$0_{\text {Dn }}$
H	L	x	x	x	x	x	\uparrow	L	L	$\mathrm{a}_{\text {An }}$	a_{Bn}	O_{C}	Q_{Dn}

$H=$ high level (steady state), $L=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\hat{t}=$ transition from low to high level
$\mathrm{a}_{\mathrm{AO}}, \mathrm{O}_{\mathrm{BO}}$, etc $=$ the level of $\mathrm{O}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$, etc, respectively before the indicated steady-state input conditions were established $\alpha_{A n}, \alpha_{B n}$, etc $=$ the level of α_{A}, α_{B}, etc, respectively before the most-recent $\hat{\imath}$ transition of the clock.

TYPES SN5496, SN54L96, SN54LS96,
SN7496, SN74L96, SN74LS96
5-BIT SHIFT REGISTERS

7

functional block diagram

dynamic input activated by transition from a high level to a low level.
schematics of inputs and outputs

7

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN5496			SN7496			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			16			16	mA
Clock frequency, f.clock	0		10	0		10	MHz
Width of clock input pulse, $\mathrm{t}_{\text {w }}$ (clock)	35			35			ns
Width of preset and clear input pulse, t_{w}	30			30			ns
Serial input setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	30			30			ns
Serial input hold time, t_{h} (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN5496			SN7496			UNIT	
			MIN	TYP末	MAX	MIN	TYP \ddagger	MAX			
$V_{\text {IH }}$	High-level input voltage				2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		V	
VOL	Low-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
11	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
${ }^{\prime} \mathrm{IH}$	High-ievel input current	any input except preset entable	$V C C=M A X, \quad V_{i}=2.4 V$			40			40	$\mu \mathrm{A}$	
		preset enable				200			200		
IIL	Low-level input current	any input except preset enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA	
		preset enable				-8			-8		
los	Short-circuit output current§		$\mathrm{V}_{C C}=$ MAX	-20		-57	-18		-57	mA	
${ }^{\text {ICC }}$	Supply current		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 3		48	68		48	79	mA	

${ }^{\dagger}$ For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time.
NOTE 3: ICC is measured with the clear input grounded and all other inputs and outputs open.
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from clock	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Figure } 1 \end{aligned}$		25	40	ns
tPHL Propagation delay time, high-to-low-level output from clock			25	40	ns
tPLH Propagation delay time, low-to-high-level output from preset or preset enable			28	35	ns
tPHL Propagation delay time, high-to-low-ievel output from clear				55	ns

Texas Instruments
post office box 5012 - dallas. texas 75222
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

	SN54L96			SN74L96			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-200			-200	$\mu \mathrm{A}$
Low-level output current, IOL			8			8	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$	0		5	0		5	MHz
Width of clock, preset, or clear input pulse, t_{w}	100			100			ns
Serial input setup time, ${ }_{\text {su }}$! (see Figure 1)	100			100			ns
Serial input hold time, t_{h} (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54L96			SN74L96			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage		$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & \mathrm{~V}_{I \mathrm{H}}=2 \mathrm{~V} . \\ \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \end{array}$	2.4	3.2		2.4	3.2		V	
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
${ }_{1}$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
${ }_{1} \mathrm{H}$	High-level input current	any input except preset enable	$V_{C C}=\mathrm{MAX}, \quad V_{1}=2.4 \mathrm{~V}$			20			20	$\mu \mathrm{A}$	
		preset enable				100			100		
${ }_{1 / 2}$	Low-level input current	any input except preset enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8			-0.8	mA	
		preset enable				-4			-4		
los	Short-circuit output current§		$\mathrm{V}_{C C}=$ MAX	-10		-29	-9		-29	mA	
ICC	Supply current		$V_{C C}=$ MAX, See Note 3		24	34		24	40	mA	

TYPES SN54LS96, SN74LS96

5-BIT SHIFT REGISTERS

REVISED OCTOBER 1976

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS96			SN74LS96			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\prime} \mathrm{OH}$			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			3	mA
Clock frequency, folock	0		25	0		25	MHz
Width of clock input pulse, $\mathrm{t}_{\text {w }}$ (clock)	35			35			ns
Width of preset and clear input pulse, $\mathrm{t}_{\mathbf{w}}$	30			30			ns
Serial input setup time, $\mathrm{t}_{\text {setup }}$ (see Figure 1)	30			30			ns
Serial input hold time, thold (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54LS96		SN74LS96			UNIT		
		MIN	TYP \ddagger MAX	MIN	TYP \ddagger	MAX					
$V_{1 H}$ High-level input voltage						2		2			V
$V_{\text {IL }}$ Low-level input voltage					0.7			0.8	V		
$V_{\text {IK }}$ Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH} High-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.5	2.7	3.5		V		
$V_{\text {OL }}$ Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		$0.25-0.4$		0.25	0.4	V		
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.35	0.5				
Input current it at maximum	Preset enable		$V_{C C}=M A X, \quad V_{1}=7 V$			0.5			0.5	mA	
input voltage	All others				0.1			0.1			
$1_{1 / H} \begin{aligned} & \text { High-level } \\ & \text { input curre }\end{aligned}$	Preset enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			100			100	$\mu \mathrm{A}$		
	All others				20			20			
Low-level IIL input current	Preset enable	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$			-2			-2	mA		
	All others				-0.4			-0.4			
IOS Short-circuit output current §		$V_{C C}=$ MAX		-20	-100	-20		-100	mA		
ICC Supply current		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 3			1220		12	20	mA		

${ }^{\dagger}$ For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \top_{A}=25 \mathrm{C}$.
${ }^{8}$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 3: ICC is measured with the clear input grounded and all other inputs and outputs open.
switching characteristics, $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpl Propagation delay time, low-to-high-level output from clock	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$ See Figure 1		25	40	ns
tPHL Propagation delay time, high-to-low-level output from clock			25	40	ns
tPLH Propagation delay time, low-to-high-level output from preset or preset enable			28	35	ns
tPHL Propagation delay time, high-to-low-level output from clear				55	ns

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

NOTES: A. Input pulses are supplied by pulse generators having the following characteristics: duty cycle $\leqslant 50 \%, Z_{\text {out }} \approx 50 \Omega$; for 96 and L96, $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}$, and for ' $\mathrm{LS} 96 \mathrm{t}_{\mathrm{r}}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
B. C_{L} includes probe and $j i g$ capacitance.
C. All diodes are 1N3064 or 1 N916.
D. Preset may be tested by applying a high-ievel voltage to the individual preset inputs and pulsing the preset enable or by applying a high-level voltage to the preset enable and pulsing the individual preset inputs.
E. Q_{A} output is illustrated. Relationship of serial input to other Q outputs is illustrated in the typical shift sequence.
E. Q_{A} output is illustrated. Relationship of serial input to other $Q_{\text {outputs is illustrated in th }}$ the
F. Outputs are set to the high level prior to the measurement of $t_{\text {PHL }}$ from the clear input.
F. Outputs are set to the high level prior to the measuremen
G. For ' 96 and ' $L 96, V_{\text {ref }}=1.5 \mathrm{~V}$; for ' $\mathrm{LS} 96 \mathrm{~V}_{\text {ref }}=1.3 \mathrm{~V}$.

FIGURE 1-SWITCHING TIMES

- Perform Fixed-Rate or Variable-Rate Frequency Division
- For Applications in Arithmetic, Radar, Digital-to-Analog (D/A), Analog-to-Digital (A/D), and other Conversion Operations
- Typical Maximum Clock Frequency . . . 32 Megahertz

description

These monolithic, fully synchronous, programmable counters utilize Series 54/74 TTL circuitry to achieve 32 -megahertz typical maximum operating frequencies. These six-bit serial binary counters feature buffered clock, clear, and enable inputs to control the operation of the counter, and a strobe input to enable or inhibit the rate input/decoding AND-OR-INVERT gates. The outputs have additional gating for cascading and transferring unity-count rates.

The counter is enabled when the clear, strobe, and enable inputs are low. With the counter enabled, the output frequency is equal to the input frequency multiplied by the rate input M and divided by 64 , ie.:

$$
\begin{aligned}
& f_{\text {out }}=\frac{M \cdot f_{\text {in }}}{64} \\
& \text { where: } M=F \cdot 2^{5}+E \cdot 2^{4}+D \cdot 2^{3}+C \cdot 2^{2}+B \cdot 2^{1}+A \cdot 2^{0}
\end{aligned}
$$

When the rate input is binary 0 (all rate inputs low), Z remains high. In order to cascade devices to perform 12 -bit rate multiplication, the enable output is connected to the enable and strobe inputs of the next stage, the Z output of each stage is connected to the unity/cascade input of the other stage, and the sub-multiple frequency is taken from the Y output.

The unity/cascade input, when connected to the clock input, may be utilized to pass the clock frequency (inverted) to the Y output when the rate input/decoding gates are inhibited by the strobe. The unity/cascade input may also be used as a control for the Y output.
schematics of inputs and outputs

description (continued)

STATE AND/OR RATE FUNCTION TABLE (See Note A)

NOTES: A. $\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant. All remaining entries are numeric counts.
B. This is a simplified illustration of the clear function. The states of clock and strobe can affect the logic level of Y and Z. A low unity/cascade will cause output Y to remain high.
C. Each rate illustrated assumes a constant value at rate inputs; however, these illustrations in no way prohibit variable-rate inputs.
D. Unity/cascade is used to inhibit output Y.
E. $f_{\text {out }}=\frac{M \cdot f_{\text {in }}}{64}=\frac{(8+32) f_{\text {in }}}{64}=\frac{40 f_{\text {in }}}{64}=0.625 \mathrm{f}_{\text {in }}$
functional block diagram

TYPES SN5497, SN7497

SYNCHRONOUS 6-BIT BINARY RATE MULTIPLIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

	SN5497			SN7494			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {C }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	A
Low-level output current, IOL			16			16	mA
Clock frequency, f clock	0		25	0		25	MHz
Width of clock pulse, ${ }_{\text {w }}$ (clock)	20			20			ns
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear)	15			15			ns
Enable setup time, $\mathrm{t}_{\text {su }}$: (See Figure 1)							
Before positive-going transition of clock pulse	25			25			ns
Before negative-going transition of previous clock pulse	0		$\mathrm{t}_{\text {w }}$ (clock) ${ }^{-10}$	0		$t_{\text {w(clock }}{ }^{-10}$	
Enable hold time, $\mathrm{th}_{\text {: }}$ (See Figure 1)							
After positive-going transition of clock pulse	0		${ }^{\text {tw }}$ (clock) ${ }^{-10}$	0		$t_{\text {w }}$ (clock) ${ }^{-10}$	ns
After negative-going transition of previous clock pulse	20		$\mathrm{t}_{\mathrm{cp}}-10$	20		$\mathrm{t}_{\mathrm{cp}}-10$	
Operating free-air temperature, T_{A} (See Note 2)	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
High-level input voltage				2			V
Low-level input voltage						0.8	V
Input clamp voltage.		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}^{2}=-400 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		v
Low-level output voitage		$\begin{aligned} & V_{C C}=M 1 N, \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{iH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4	v
Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=$ MAX,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
High-level input current	clock input	$\mathrm{V}_{\mathrm{CC}}=$ MAX .	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
	other inputs					40	
Low-level input current	clock input	$V_{C C}=$ MAX	$V_{1}=0.4 \mathrm{~V}$			-3.2	mA
	other inputs					-1.6	
Short circuit output current §		$\mathrm{V}_{\text {CC }}=$ MAX		-18		-55	mA
Supply current, outputs high		$V_{C C}=$ MAX	See Note 3		58		mA
Supply current, outputs low		$\mathrm{V}_{C C}=$ MAX,	See Note 4		80	120	mA

${ }^{\dagger}$ For test conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTES: 1. Voltage values are with respet to network ground terminal,
2. An SN5497 in the W package operating at free-air temperatures above $118^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case to free-air, $\mathrm{R}_{\theta} \mathrm{CA}$, of not more than $55^{\circ} \mathrm{C} / \mathrm{w}$
3. ' CCH is measured with outputs open and all inputs grounded
4. ${ }^{\prime} \mathrm{CCL}$ is measured with outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

$\boldsymbol{I}_{f_{\text {max }}} \equiv$ maximum clock frequency.
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output.
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output.

TYPICAL APPLICATION DATA

This application demonstrates how the ' 97 can be cascaded to perform 18 -bit rate multiplication. This scheme is expandable to n-bits by extending the pattern illustrated.

As illustrated, two of the 6-bit multipliers can be cascaded by connecting the Z output of unit A to the unity cascade input of unit B, in which case, a two-input NOR gate is used to cascade the remaining multipliers. Alternatively, all three Y outputs can be cascaded with a 3 -input NOR gate. The three unused unity cascade inputs can be conveniently terminated by connecting each to its Z output.

TYPES SN5497, SN7497

SYNCHRONOUS 6-BIT BINARY RATE MULTIPLIERS

description
These monolithic data selectors/storage registers are composed of four S-R master-slave flip-flops, four AND-OR-INVERT gates, one buffer, and six inverter/drivers.

When the word select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 ($\mathrm{A} 2, \mathrm{~B} 2, \mathrm{C} 2, \mathrm{D} 2$). The selected word is shifted to the output terminals on the nenative-going edge of the clock pulse.

Typical power dissipation is 25 mW . The SN54L.98 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74L98 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

functional block diagram and schematics of inputs and outputs

EQUIVALENT OF EACH INPUT

[^8]
TYPES SN54L98, SN74L98

4-BIT DATA SELECTORS/STORAGE REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input voltages must be zero or positive with respect to network ground terminal

recommended operating conditions

			N54L9			N74L9		
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voitage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-100			-200	$\mu \mathrm{A}$
Low-level output current, IOL				2			3.6	mA
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)		200			200			ns
Setup time for high-level data, ${ }^{\text {s }}$ su(H$)$	at A, B, C, or D	100			100			ns
	at word select	150			150			
Setup time for low-level data, $\mathrm{t}_{\text {su }}(\mathrm{L})$	at A, B, C, or D	120			120			ns
	at word select	100			100			
Operating free-air temperature, T_{A}		-55	125		0	70		${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54L98		SN74L98		UNIT
		MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{1 \mathrm{H}}$ High-level input voltage		2		2		V
$\mathrm{V}_{1 L}$ Low-level input voltage			0.7		0.7	v
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4	3.3	2.4	3.2	v
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$		$0.15 \quad 0.3$		$\begin{array}{ll}0.2 & 0.4\end{array}$	v
If Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		100		100	$\mu \mathrm{A}$
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		10		10	$\mu \mathrm{A}$
I/L Low-ievel input current	$V_{C C}=\mathrm{MAX}, \quad V_{i}=0.3 \mathrm{~V}$		-0.18		-0.18	mA.
Ios Short-circuit output current \S	$\mathrm{V}_{\mathrm{GC}}=$ MAX	-3	-15	-3	-15	mA
ICC Supply current	$V_{C C}=$ MAX, \quad See Note 3		$5 \quad 9$		5	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time
NOTE 3: ICC is measured with all inputs grounded and all outputs open
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$C_{L}=50 \mathrm{pF}, \quad R_{L}=4 \mathrm{k} \Omega$ See Note 4	3	5		MHz
$\begin{array}{ll}\text { tPLH } & \begin{array}{l}\text { Propagation delay time, low-to- } \\ \text { high-level output from clock input }\end{array}\end{array}$			115	200	ns
$\begin{array}{ll} & \text { Propagation delay time, high-to- } \\ \text { tPHL } & \text { low-level output from clock input }\end{array}$			125	200	ns

NOTE 4: Load circuit and voltage waveforms are shown on page 3-11

- N-Bit Serial-to-Parallel Converter
- N-Bit Parallel-to-Serial Converter
- N-Bit Storage Register
- J- \bar{K} Serial Input
description
These 4-bit registers feature parallei inputs, paraliel outputs, J-K serial inputs, mode control, and two clock inputs. The registers have three modes of operation:

Parallel (Broadside) load
Shift right (the direction Q_{A} toward Q_{D})
Shift left (the direction Q_{D} toward Q_{A})
Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flop and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

SN54L99...JPACKAGE
SN74L99 . .. J OR N PACKAGE
(TOP VIEW)

Shift right is accomplished on a high-to-low transition of clock 1 when the mode control is low. Serial data for the right-shift mode is entered at the $J-\bar{K}$ inputs. These inputs permit the first stage to perform as a $J-\bar{K}$, a D-type, or T-type flip-flop as shown in the function table. Shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (Q_{D} to input C, etc.). Serial data for this mode is entered at the D input. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

FUNCTION TABLE													
INPUTS									OUTPUTS				
MODE	CLOCKS		SERIAL		PARALLEL				$\mathbf{Q}_{\mathbf{A}}$	O_{B}	0_{C}	O_{D}	$\overline{\mathbf{Q}} \mathbf{D}$
CONTROL	2 (L)	1 (R)	J	$\overline{\mathbf{K}}$	A	B	C	D					
H	H	X	X	X	X	X	X	X	Q_{AO}	Q_{BO}	Q_{CO}	QDo	$\overline{\mathrm{Q}}_{\mathrm{DO}}$
H	\downarrow	X	X	X	a	b	c	d	a	b	c	d	\bar{d}
H	\downarrow	X	X	X	$\mathrm{Q}_{\mathrm{B}}{ }^{\dagger}$	$Q_{C}{ }^{\dagger}$	$Q_{D}{ }^{\dagger}$	d	Q_{Bn}	Q_{Cn}	O_{Dn}	d	d
L	L	H	X	X	X	X	X	X	$\mathrm{Q}_{\text {AO }}$	O_{BO}	Q_{C0}	QDo	$\overline{\mathrm{O}}_{\text {DO }}$
L	X	\downarrow	L	H	x	x	X	X	$\mathrm{O}_{\text {A0 }}$	$\mathrm{Q}_{\text {AO }}$	Q_{Bn}	Q_{Cn}	$\overline{\mathrm{Q}}_{\mathrm{C}}$
L	x	\downarrow	L	L	x	x	x	x	L	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{C}	$\overline{\mathrm{O}}_{\mathrm{Cn}}$
L	x	\downarrow	H	H	x	X	x	x	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}	$\overline{\mathrm{Q}}_{\mathrm{Cn}}$
L	X	\downarrow	H	L	x	X	x	X	$\overline{\mathrm{Q}}_{\text {An }}$	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{C}	$\overline{\mathrm{Q}}_{\mathrm{C}}$
\uparrow	L	L	X	X	x	x	X	X	$\mathrm{O}_{\text {AO }}$	Q_{BO}	Q_{CO}	$Q_{\text {Do }}$	$\overline{\mathrm{Q}}_{\text {DO }}$
\downarrow	L	L	x	X	x	x	x	X	$\mathrm{O}_{\text {A0 }}$	Q_{BO}	Q_{Co}	$Q_{\text {D0 }}$	$\overline{\mathrm{O}}_{\text {DO }}$
\downarrow	L	H	x	x	x	x	x	X	$\mathrm{Q}_{\text {AO }}$	O_{BO}	Q_{Co}	QDo	$\overline{\mathrm{O}}_{\mathrm{DO}}$
\uparrow	H	L	X	X	x	x	X	X	$\mathrm{Q}_{\text {A0 }}$	Q_{B0}	Q_{CO}	$\mathrm{Q}_{\text {DO }}$	$\bar{\sigma}_{\text {D0 }}$
\uparrow	H	H	X	X	X	X	X	X	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	Q_{CO}	$\mathrm{Q}_{\text {DO }}$	$\overline{\mathrm{Q}}_{\mathrm{DO}}$

${ }^{\dagger}$ Shifting left requires external connection of Q_{B} to A, Q_{C} to B, and Q_{D} to C. Serial data is entered at input D.
$H=$ high level (steady state), $L=$ iow level (steady state)
$X=$ irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level, $\uparrow=$ transition from low to high level.
$a, b, c, d=$ the level of steady-state input at inputs A, B, C, or D, respectively
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n} \cdot Q_{B n}, Q_{C n}, Q_{D n}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the most-recent \downarrow transition of the clock.

TYPES SN54L99, SN74L99

4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS

functional block diagram

7 - 1 . . . dynamic input activated by transition from a high level to a low level.
schematics of inputs and outputs

$$
\begin{aligned}
\text { It } A \text { and } M: R_{e q} & =20 \mathrm{k} \Omega \mathrm{NOM} \\
\text { All other: } & R_{\mathrm{eq}}=40 \mathrm{k} \Omega \mathrm{NOM}
\end{aligned}
$$

TYPES SN54L99, SN74L99 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input voltages must be zero or positive with respect to network ground terminal.
recommended operating conditions

	SN54L99			SN74L99			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {C }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH			-100			-200	$\mu \mathrm{A}$
Low-level output current, ${ }^{\text {I OL }}$			2			3.6	mA
Width of clock pulse, tw(clock)	200			200			ns
Setup time for high-level data at J, \bar{K}, A, B, C, or D inputs, $\tau_{\text {su }}(H)$	100			100			ns
Seiup time for iow-ievei data ait $\bar{J}, \bar{K}, A, B, C$, or \bar{D} inputs, $t_{\text {su }}(\mathrm{L})$	120			120			ns
Hold time at J, $\bar{K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}$, or D inputs, th	0			0			ns
Time to enable clock 1, tenable 1 (see Figure 1)	225			225			ns
Time to enable clock 2, tenable 2 (see Figure 1)	200			200			ns
Time to inhibit clock 1, inhibit 1 (see Figure 1)	100			100			ns
Time to inhibit clock 2, $\mathrm{t}_{\text {inhibit }} 2$ (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54L99			SN74L99			UNIT		
			MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN	TYP立	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-leve! input voltage						0.7			0.7	V		
VOH	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	2.4	3.3		2.4	3.2		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$		0.15	0.3		0.2	0.4	V		
11	Input current at maximum input voltage	J, $\bar{K}, \mathrm{~B}, \mathrm{C}$, or D	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			100			100	$\mu \mathrm{A}$		
		M or A					200			200			
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	J, K, B, C, or D	$V_{C C}=M A X$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			10			10	$\mu \mathrm{A}$		
		M or A					20			20			
IIL	Low-level input current	J, $\overline{\text { K }, ~ B, ~ C, ~ o r ~ D ~}$	$V_{C C}=$ MAX	$V_{1}=0.3 \mathrm{~V}$			-0.18			-0.18	mA		
		M or A					-0.36			-0.36			
Ios	Short-circuit output current§		$V_{C C}=$ MAX		-3		-15	-3		-15	mA		
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	See Note 3		3.8	9		3.8	9	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
§ Not more than one output should be shorted at a time.
NOTE 3: With all outputs and J and \bar{K} inputs open, mode control at 4.5 V , inputs A through D grounded, CC is measured after a momentary 3 V , then ground, is applied to both clock inputs.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\max }$ Maximum clock frequency	$C_{L}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$ See Figure 2	3	5		MHz
tPLH Propagation delay time, low-to-high-level output from either clock			115	200	ns
tPHL Propagation delay time, high-to-low-level output from either clock			125	200	ns

TYPES SN54L99, SN74L99

4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS

PARAMETER MEASUREMENT INFORMATION

NOTE: A input is at the low level
VOLTAGE WAVEFORMS
FIGURE 1-CLOCK ENABLE/INHIBIT TIMES

7

VOLTAGE WAVEFORMS FIGURE 2-SWITCHING TIMES
NOTES: A. The input waveforms are supplied by pulse generators having the following characteristics: $Z_{\text {out }} \approx 50 \Omega$. For data pulse generator: $t_{w} \geqslant 150 \mathrm{~ns}$, PRR $\leqslant 500 \mathrm{kHz}, \mathrm{t}_{\text {setup }}(\mathrm{L})=120 \mathrm{~ns}$, and $\mathrm{t}_{\text {setup }}(\mathrm{H})=100 \mathrm{~ns}$. For clock pulse generator: $\mathrm{t}_{\mathrm{w}} \geqslant 200 \mathrm{~ns}$ and PRR $\leqslant 1 \mathrm{MHz}$. When testing $f_{\text {max }}$, vary PRR.
. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N916.
D. When data input is applied to J and \bar{K} inputs, the output waveform applies only to output Q_{A}
logic
FUNCTION TABLE
(Each Latch)

INPUTS	OUTPUTS		
D	G	Q	$\overline{\mathbf{Q}}$
L	H	L	H
H	H	H	L
X	L	Q_{0}	$\overline{\mathrm{Q}}_{0}$

H = high level, $\mathrm{X}=$ irrelevant
$\mathrm{Q}_{\mathrm{O}}=$ the level of Q before the
high-to-low transition of G

description

These latches are idealily suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the O output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was setup at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

These circuits are completely compatible with all popular TTL or DTL families. All inputs are diodeclamped to minimize transmission-line effects and simplify system design. Typical power dissipation is 40 milliwatts per latch. The SN54100 is characterized for operation over the full military temperature range of -55° to $125^{\circ} \mathrm{C}$; the SN74100 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54100 . . . J OR N PACKAGE

functional block diagram leach latch)

schematic (each latch)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

TYPES SN54100, SN74100

8-BIT BISTABLE LATCHES

REVISED OCTOBER 1976
recommended operating conditions

	SN54100			SN74100			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Width of enabling pulse, ${ }_{\text {w }}$	20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	20			20			ns
Hold time, $\mathrm{th}^{\text {h }}$	5			5			ns
Operating free-air temperature, T_{A}	-55		125	0		70	c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\text {t }}$		MIN	TYP \ddagger	MAX	UNIT	
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			V	
$V_{\text {IL }}$	Low-level input voltage						0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$I_{1}=-12 \mathrm{~mA}$			-1.5	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.4	3.4		V	
VOL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4	V	
$1 /$	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA	
$\mathrm{I}_{\mathbf{H}}$	High-level input current	D input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$	
		G input					320		
I/L	Low-level input current	D input	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$				-3.2		
		G input					-12.8	mA	
Ios	Short-circuit output current §		$V_{C C}=$ MAX	SN54100	-20		-57	mA	
			SN74100	-18		-57	mA		
${ }^{\prime} \mathrm{Cc}$	Supply current			$V_{C C}=M A X,$ See Note 3	SN54100		64	92	mA
			SN74100			64	106	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 3: ${ }^{1} \mathrm{CC}$ is tested with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{VCC}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	D	0	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 4 \end{aligned}$		16	30	ns
tPHL					14	25	
tPLH	G	0			16	30	ns
tPHL					7	15	

[^9]- Two Independent 4-Bit Latches in a Single Package
- Separate Clear Inputs Provide One-Step Clearing Operation
- Dual Gated Enable Inputs Simplify Cascading and Register Implementations
- Compatible for Use with TTL and DTL Circuits
- Input Clamping Diodes Simplify System Design
description
These monolithic TTL circuits utilize D-type bistables to implement two independent four-bit latches in a singie package. Each four-bit latch has an independent asynchronous clear input and a gated two-input enable circuit. When both enable inputs are low, the output levels will follow the data input levels. When either or both of the enable inputs are taken high, the outputs remain at the last levels setup at the inputs prior to the low-to-high-level transition at the enable input(s). After this, the data inputs are locked out.

The clear input is overriding and when taken low will reset all four outputs low regardless of the levels of the enable inputs.

The SN54116 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74116 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

to $70 \mathrm{C} . \quad \begin{aligned} & \text { FUNCTION TABLE }\end{aligned}$(EACH LATCH)			
INPUTS			OUTPUT 0
CLEAR	ENABLE	DATA	
	$\overline{\mathrm{G}} 1 \quad \overline{\mathrm{G}} 2$		
H	L L	L	L
H	L L	H	H
H	$X \quad H$	X	Q_{0}
H	H X	X	O_{0}
L	$\mathrm{x} \quad \mathrm{x}$	x	L

$\alpha_{0}=$ the level of Q before these input conditions were established.

SN54116 . . . J OR W PACKAGE SN74116 . . . J OR N PACKAGE (TOP VIEW)

functional block diagram (each 4-bit latch)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54116, SN74116
 DUAL 4-BIT LATCHES WITH CLEAR

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT	
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			V	
V_{IL}	Low-level input voltage						0.8	V	
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{l}_{1}=-12 \mathrm{~mA}$			-1.5	v	
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{HH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		V	
Vol	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} V_{I H} & =2 \mathrm{~V}, \\ \mathrm{OL} & =16 \mathrm{~mA} \end{aligned}$		0.2	0.4	V	
$1 /$	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=$ MAX, V_{1}	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA	
IIH	High-level input current	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$, or clear	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$	
		Any D					60	$\mu \mathrm{A}$	
IIL	Low-level input current	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$, or clear	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6		
		Any D, initial peak					-2.4	mA	
		Any D, steady-state					-1.6		
Ios	Short-circuit output current ${ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	SN54116	-20		-57		
			SN74116.	-18		-57	mA		
Icc	Supply current			$\mathrm{V}_{\text {cc }}=$ MAX,	Condition A		60	100	mA
			See Note 2	Condition B		40	70	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time,
NOTE 2: With outputs open, icC is measured for the following conditions
A. All inputs grounded
B. All \bar{G} inputs are grounded and all other inputs are at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Enable	Any 0	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=400 \Omega, \\ & \text { See Figure } 1 \end{aligned}$	19	30	
tPHL				15	22	ns
tPLH	Data	0		10	15	ns
tPHL				12	18	
tPHL	Clear	Any 0		15	22	ns

[^10]TYPES SN54116, SN74116 4-BIT LATCHES WITH CLEAR

PARAMETER MEASUREMENT INFORMATION

SWITCHING TIMES FROM CLEAR AND ENABLE INPUTS

SWITCHING TIMES FROM DATA INPUTS

NOTES: A. Input pulses are supplied by generators having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty $\mathrm{cycle} \leqslant 50 \%$, $Z_{\text {out }} \approx 50 \Omega$.
$Z_{\text {out }} \approx 50 \Omega$.
C_{L} includes probe and jig capacitance
B. C_{L} includes probe and
C. All diodes are $\{\mathrm{N} 3064$.
D. The other enable in
E. Clear input is high.

FIGURE 1

- Generates Either a Single Pulse or Train of Pulses Synchronized with Control Functions
- Ideal for Implementing Sync-Control Circuits Similar to those Used in Oscilloscopes
- Latched Operation Ensures that Output Pulses Are Not Clipped
- High-Fan-Out Complementary Outputs Drive System Clock Lines Directly
- Internal Input Pull-Up Resistors Eliminate Need for External Components
- Diode-Clamped Inputs Simplify System Design
- Typical Propagation Delays:

9 Nanoseconds through One Level 16 Nanoseconds through Two Levels

description

These monolithic pulse synchronizers are designed to synchronize an asynchronous or manual signal with a system clock. Reliable response is ensured as the input signals are latched up; therefore duration of logic input is not critical and the adverse effects of contact-bounce of a manual input are eliminated. The ability to pass output pulses is started and stopped by the levels or pulses applied to the latch inputs S1, S2, or R in accordance with the function table. High-speed circuitry is utilized throughout the clock paths to minimize skew with respect to the system clock. rules:

After initiation, the mode control (M) input determines whether a series of pulses or only one pulse is passed. In the absence of a stop command, the clock driver will continue to pass clock pulses as long as the mode control input is low (see Figures 2 through 4). If the mode control input is high only a single clock pulse will be passed (see Figure 5).

When the mode controi is set to pass a series of pulses, the last pulse out is determined by two general
a. When pulses are terminated by the S or R inputs, conditions meeting the setup times (specified under recommended operating conditions) will dominate.

[^11]b. Low-to-high-level transitions at the mode control input should be avoided during the 20 -nanosecond period immediately following the negative transition of the input clock pulse as transitions during this time period may or may not allow the next pulse to pass (see Figures 4 and 5). When pulses are terminated by the mode control input, a positive transition at the mode control input meeting the high-level setup time, $\mathrm{t}_{\text {su }}(\mathrm{H})$, (specified under recommended operating conditions) will pass that positive clock pulse then inhibit remaining clock pulses. The clock input (C) is latch-controlled ensuring that once initiated the output pulse will not be terminated until the full pulse has been passed.
description (continued)

This clock driver circuit is entirely compatible for use with either digital logic circuits or mechanical switches for input controls since all inputs, except the clock, have internal pull-up resistors. This eliminates the requirement to supply an external resistor to prevent the input from floating when the control switch is open. The internal resistor also means that these inputs may be left disconnected if unused.

Typical propagation delay time is 9 nanoseconds to the $\overline{\mathrm{Y}}$ output and 16 nanoseconds to the Y output from the clock input. The outputs will drive 60 Series $54 / 74$ loads at a high logic level and 30 loads at a low logic level. Typical power dissipation is 127 milliwatts per driver. The SN54120 is characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74120 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram (each driver)

schematics of inputs and outputs

TYPES SN54120, SN74120

DUAL PULSE SYNCHRONIZERS/DRIVERS

recommended operating conditions

				N54120			N7412		
			MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}			4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH					-2.4			-2.4	mA
Low-level output current, IOL					48			48	mA
Setup time (see Figures 2 thru 5)	Any input except mode control, ${ }^{\mathrm{t}} \mathrm{su}$ (H or L)		12			12			ns
	Mode control	$\mathrm{t}_{\text {su }}(\mathrm{H})$	0			0			
		$\mathrm{t}_{\text {su }}(\mathrm{L})$	12			12			
Hold time (see Figures 3 and 5)	Any input except mode control, $t_{h}(\mathrm{H}$ or L$)$		3			3			ns
	Mode control, $\mathrm{th}^{\text {(H or }} \mathrm{L}$)		20			20			
Operating free-air temperature, $\mathrm{T}_{\text {A }}$			-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	Max	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}^{\prime}=-12 \mathrm{~mA}$			-1.5	V
VOH	High-level output voltage		$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA} \end{array}$	2.4	3.4		v
VOL	Low-level output voltage		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{f}_{\mathrm{OL}}=48 \mathrm{~mA} \end{array}$		0.2	0.4	\checkmark
1	Input current at max imum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I/H	High-level input current	Clock input	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
		Other inputs		-0.12	-0.2	-0.36	mA
IIL	Low-level input current	Clock input	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$			-3.2	mA
		Other inputs				-2.1	ma
Ios	Short-circuit output current §		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$	-35		-90	mA
ICC	Supply current		$\mathrm{V}_{C C}=\mathrm{MAX}$, See Note 3		51	90	mA

${ }^{4}$ For conditions shown as M! N or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time.
NOTE 3: ' Cc is measured with ground applied to all inputs except R which is at 4.5 V and all outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

[^12]tpH L \equiv Propagation delay time, high-to-low-level output

FIGURE 1-LOAD CIRCUIT FOR SWITCHING TESTS

NOTE: Mode control and R inputs are low unused S input is high.

NOTE: Mode control input is low and unused S input is high.
FIGURE 3-INITIATING PULSE TRAIN FROM S AND TERMINATING WITH R INPUTS

TYPES SN54120, SN74120
DUAL PULSE SYNCHRONIZERS/DRIVERS

NOTE: At least one of the S inputs is low.
FIGURE 4-INITIATING AND TERMINATING PULSE TRAIN WITH MODE CONTROL INPUT

7

NOTE: Input R is low and the unused S input is high.
FIGURE 5-ENABLING SINGLE PULSE

- Two Independent VCO's in a 16 -Pin Package
- Output Frequency Set by Single External Component:

Crystal for High-Stability Fixed-Frequency Operation
Capacitor for Fixed- or Variable-Frequency Operation

- Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Output Circuitry
- Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges

	GUARANTEED		TYPICAL
TYPE	FREQUENCY	TYPICA!	POWER
	SPECTRUM	f max	PISSIPATION
'LS124	1 Hz to 20 MHz	30 MHz	150 mW
'S124	1 Hz to 60 MHz	85 MHz	525 mW

description
The 'LS124 and 'S124 feature two independent voltage-controlled oscillators (VCO) in a single monolithic chip. The output frequency of each VCO is established by a single external component, either a capacitor or a crystal, in combination with two voltage-sensitive inputs, one for frequency range and one for frequency control. These inputs can be used to vary the output frequency as shown under typical characteristics for the 'S124. The concept also applies for the 'LS124. These highly stable oscillators can be set to operate at any frequency typically between 0.12 Hz and 30 MHz ('LS124) or 0.12 hertz and 85 megahertz ('S124). Under the conditions used in Figure 3, the output frequency can be approximated as follows:

$$
\begin{aligned}
f_{O} & =\frac{1 \times 10^{-4}}{C_{e x t}} \text { for 'LS124, } f_{O}=\frac{5 \times 10^{-4}}{C_{e x t}} \text { for 'S124 } \\
\text { where: } f_{O} & =\text { output frequency in hertz } \\
C_{e x t} & =\text { external capacitance in farads. }
\end{aligned}
$$

These devices can operate from a single 5 -volt supply. However, one set of supply-voltage and ground pins ($V_{C C}$ and GND) is provided for the enable, synchronization-gating, and output sections, and a separate set ($\Theta V_{c c}$ and Θ GND) is provided for the oscillator and associated frequency-control circuits so that effective isolation can be accomplished in the system.

[^13]schematics of inputs and outputs

'S124

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to the appropr'ate ground terminal.
2. Throughout this data sheet, the symbol $V_{C C}$ is used for the voltage applied to both the $V_{C C}$ and $\Theta V_{C C}$ terminals, unless otherwise noted.

TYPES SN54LS124, SN74LS124 DUAL VOLTAGE-CONTROLLED OSCILLATORS

recommended operating conditions

	SN54LS124			SN74LS124			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
Input voltage at frequency control or range input, $\mathrm{V}_{1(\text { freg) }}$ or $\mathrm{V}_{1}(\mathrm{rng})$	0		5	0		5	V
High-level output current, IOH			-1.2			-1.2	mA
Low-level output current, IOL			12			24	mA
Output frequency (enabled), io	1			1			Hz
			20			20	MHz
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS124			SN74LS124			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-ievei input voltage at enable						2			2			V
$V_{\text {IL }}$	Low-level input voltage at enable						0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage at enable		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,				-1.5			-1.5	V		
VOH	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-1.2 \mathrm{~mA} \end{aligned}$		2.5	3.4		2.7	3.4		V		
VOL Low-level output voltage			$\begin{aligned} & V_{C C}=\text { MIN, } \quad \circlearrowleft V_{\text {CC }} \text { open }, \\ & V_{\text {IL }}=V_{\text {ILmax }} \end{aligned}$	$\mathrm{IOL}^{\prime}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5				
1	Input current	Freq control		$V_{C C}=\operatorname{MAX}$	$\mathrm{V}_{1}=5 \mathrm{~V}$		50	250		50	250	$\mu \mathrm{A}$	
		or range	$V_{1}=1 \mathrm{~V}$			10	50		10	50			
11	Input current at maximum input voltage	Enable	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$		0.1			0.1			mA		
$\mathrm{I}_{1} \mathrm{H}$	High-level input current	Enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	Enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA		
Ios	Short-circuit output current ${ }^{\S}$		$\mathrm{V}_{\text {CC }}=$ MAX		-40		-225	-40		-225	mA		
${ }^{1} \mathrm{CC}$	Supply current, total into pins 15 and 16		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ See Note 2			30	50		30	50	mA		

${ }^{\mathrm{t}}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second NOTE 2: ICC is measured with the outputs disabled and open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Oútput frequency (capacitor controlled).	$\mathrm{C}_{\text {ext }}=2 \mathrm{pF}$	$\mathrm{V}_{1(\text { freq) }}=4 \mathrm{~V}, \mathrm{~V}_{1(\mathrm{rng})}=1 \mathrm{~V}$	20	30		MHz
		$\mathrm{V}_{\mathrm{l} \text { (freq) }}=1 \mathrm{~V}, \mathrm{~V}_{1(\mathrm{rng})}=5 \mathrm{~V}$	11	20		
$\mathrm{f}_{0} \quad$ Output frequency (crystal controlled)	$\Theta V_{c c}=3 V_{1} V_{1(\text { freq })}=V_{1(r n g)}=0 \mathrm{~V}$		10	20		MHz
Output duty cycle	$\mathrm{C}_{\text {ext }}=8.3 \mathrm{pF}$ to $500 \mu \mathrm{~F}$			50\%		
tPHL $\begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output from enable }\end{aligned}$	$\mathrm{f}_{\mathrm{O}} \geqslant 1 \mathrm{~Hz}$			$30+*$		ns

*The delay will typically be 30 ns plus up to one period of one cycle (i.e. 30 ns to $30 \mathrm{~ns}+\frac{1 \times 10^{9}}{f_{0}(\mathrm{~Hz})} \mathrm{ns}$) depending upon the timing of
the enable pulse with respect to the signal generated by the internal oscillator.

DUAL VOLTAGE-CONTROLLED OSCILLATORS

recommended operating conditions

NOTE 1: Throughout this data sheet, the symbol V_{CC} is used for the voltage applied to both pins $\mathbf{1 5}$ and 16.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second NOTE 2: ' $C C$ is measured with the outputs disabied and open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 8 0} \Omega, \mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
f_{0} Output frequency	$\mathrm{C}_{\text {ext }}=2 \mathrm{pF}$	$\mathrm{V}_{1 \text { (freq) }}=4 \mathrm{~V}, \mathrm{~V}_{\text {I(rng) }}=1 \mathrm{~V}$	60	85		MHz
		$\mathrm{V}_{1(\text { freq })}=1 \mathrm{~V}, \mathrm{~V}_{1(\mathrm{rng})}=5 \mathrm{~V}$	25	40		
Output duty cycle	$\mathrm{C}_{\text {ext }}=8.3 \mathrm{pF}$ to $500 \mu \mathrm{~F}$			50\%		
Propagation delay time, tPHL high-to-low-level output from enable	$\mathrm{f}_{\mathrm{O}}=1 \mathrm{~Hz}$ to 20 MHz			$\frac{1.4}{f_{0}(\mathrm{~Hz})}$		s
	$\mathrm{fo}>20 \mathrm{MHz}$			70		ns

TYPES SN54LS124, SN54S124, SN74LS124, SN74S124
 DUAL VOLTAGE-CONTROLLED OSCILLATORS

TYPICAL APPLICATION DATA

free-running oscillator

Free-running oscillators can be implemented for most systems by setting the output frequency of the VCO with either a capacitor or a crystal. If excitation is provided with a capacitor the frequency control and/or range inputs can be used to vary the output frequency

When the 'S124 is excited with a crystal, low-frequency response ($\leqslant 1 \mathrm{MHz}$) can be improved if a relatively small capacitor (5 to 15 pF) is paralleled with the crystal. When operated at the fundamental frequency of a crystal, the frequency control input should be high $(\approx 5 \mathrm{~V}$) and the range input should be low (grounded) for maximum stability over temperature and supply voltage variations.

When the 'LS124 is excited with a crystal, a small capacitor (2 to 10 pF) should be placed in series with the crystal and the $\Theta V_{C C}$ supply should be lowered to approximately 3 V . A series-resonant, fundamental-mode crystal with series resistance less than 200 ohms should be used. The frequency control and range inputs should be grounded. The maximum recommended frequency for crystalexcited operation is 10 MHz .

phase-locked loops

A basic crystal-controlled phase-locked loop is illustrated in Figure 1. This application can be used for implementation of:
a. A highly stable fixed-frequency clock generator.
b. A highly stable fixed- or variable-frequency synthesizer.
c. A highly efficient "slave-clock" system for synchronizing off-card, remote, or data-interfacing clock systems

With fixed division rates for both M and N, the output frequency (f_{0}) will be stable at $f_{O}=\frac{N}{M} f_{1}$. Obviously, either ivi or N , or both, couid be programmabie counters in which case the output frequency (f_{o}) wili be a variable frequency dependent on the instantaneous value of $\frac{\mathrm{N}}{\mathrm{M}} \mathrm{f}$.

The crystal-controlled VCO can be operated up to 60 MHz with an accuracy that is dependent on the crystal. At the higher frequencies, response of the phase comparator can become a limiting factor and one of the following approaches may be necessary to extend the operating frequency range.
a. Frequencies $\frac{f}{M}$ and $\frac{f}{N}$ can be divided equally by the same constant (K) also shown in Figure 1. The constant can be any value greater than unity $(K>1)$, and should be selected to yield frequency ranges that can be handled adequately by the phase-comparator and filter. The output frequency (f_{O}) retains the same relationship as previously explained because now:

$$
f_{0}=\frac{K N}{K M} f_{1}=\frac{N}{M} f_{1}
$$

b. In another method, the comparison of $\frac{f 1}{M}$ and $\frac{f}{N}$ can be performed with either an SN54LS85/SN74LS85 or SN54S85/SN74S85. The resultant A>B and A<B outputs from the 'LS85 or 'S85 permit the detector to be simplified to a charge-pump circuit. See Figure 2.

TYPICAL CHARACTERISTICS ('S124 only)

7

TTL

- Fully Compatible with Most TTL and TTL MSI Circuits
- Fully Schottky Clamping Reduces Delay Times . . . 8 ns Typical
- Can Operate as Exclusive-OR Gate (C Input Low) or as Exclusive-NOR Gate (C Input High)
FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	Y
L	L	L	L
L	H	L	H
H	L	L	H
H	H	L	L
L	L	H	H
L	H	H	L
H	L	H	L
H	H	H	H
H = high level, $L=$ low level			

SN54S135 . . . J OR W PACKAGE SN74S135 . . . J OR N PACKAGE (TOP VIEW)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE \uparrow : Voltage values are with respect to network ground terminal.

TYPES SN54S135, SN74S135

 QUADRUPLE EXCLUSIVE-OR/NOR GATES
recommended operating conditions

	SN54S135		SN74S135		UNIT
	MIN	NOM	MAX	MIN	NOM

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP \ddagger	MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline V \\ \hline \end{array}$
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			
$\mathrm{V}_{\text {IL }}$ L Low-level input voltage					0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH} High-level output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	SN54S'	2.5	3.4		v
	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	SN74S'	2.7	3.4		
VOL Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & I_{O L}=20 \mathrm{~mA} \end{array}$				0.5	v
If Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
'OS Short-circuit output current \S	$V_{C C}=$ MAX		-40		-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2			65	99	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
NOTE 2: I CC is measured with the inputs grounded and the outputs open.
switching characteristics, $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
7

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TEST CONDITIONS		MIN TYP	Max	UNIT
tpLH	A or B	B or $A=L, C=L$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega, \\ & \text { See Note } 3 \end{aligned}$	8.5	13	
tPHL				11	15	ns
${ }^{\text {tPLH }}$	A o: B	Sor $A=H, C=L$		8	12	
tPHL				9	13.5	ns
tPLH	A or B	B or $\mathrm{A}=\mathrm{L}, \mathrm{C}=\mathrm{H}$		10	15	
tPHL	A or B	B or $A=L, C=H$		6.5	10	ns
tPLH	A or B	B or $A=H, C=H$		8.5	12	
${ }_{\text {tPHL }}$				7	11	
tPLH	c	$A=B$		8	12	
tPHL				9.5	14.5	ns
tPLH	c	$A \neq B$		7.5	11.5	ns
${ }^{\text {tPHL }}$				8	12	

$\|_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on pege 3-10.

TYPES SN54136, SN54LS136, SN74136, SN74LS136 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES WITH OPEN-COLLECTOR OUTPUTS

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	L
L	H	H
H	L	H
H	H	L

schematics of inputs and outputs

7

TYPES SN54136, SN74136 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN TYP \ddagger MAX	UNIT
$\mathrm{V}_{1 H}$ High-level input voltage			2	V
$V_{\text {IL }}$ Low-level input voltage			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN,	$i_{1}=-8 \mathrm{~mA}$	-1.5	V
${ }^{\prime} \mathrm{OH}$ High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$	250	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOL}=16 \mathrm{~mA} \end{aligned}$	0.20 .4	V
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	1	mA
$\mathrm{I}_{1 / \mathrm{H}} \quad$ High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$	40	$\mu \mathrm{A}$
ILL Low-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	-1.6	mA
ICC Supply current, high-level output	$\mathrm{V}_{\text {cC }}=$ MAX, See Note 2	SN54136	$30 \quad 43$	mA
		SN74136	$30 \quad 50$	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger All typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ICC is measured with one input of each gate at 4.5 V , the other inputs grounded, and the outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {a }}$	$\begin{gathered} \text { FROM } \\ \text { (INPUT) } \end{gathered}$	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	A or B	Other input low	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=400 \Omega \end{aligned}$ See Note 3		12	18	ns
tPHL					39	50	
tPLH	A or B	Other input high			14	22	ns
${ }^{\text {tPHL}}$					42	55	

$\|_{\mathrm{I}_{\mathrm{PLH}}} \equiv$ propagation delay time, low-to-high-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS136			SN74LS136	

éectrical characteristics over recommended operating free-air temperat̃ure range (uniess otinerwise notedi)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SÑ54LSi3\%		SṄ74LS136			UNIT
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2		2			V
$V_{\text {IL }}$ Low-level input voltage				0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$=-18 \mathrm{~mA}$		-1.5			-1.5	V
IOH High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$		100			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.250 .4		0.25	0.4	V
		$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$				0.35	0.5	
I/ Input current at maximum input voltage	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=7 \mathrm{~V}$		0.2			0.2	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$		40			40	$\mu \mathrm{A}$
I_{IL} Low-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.8			-0.8	mA
ICC Supply current	$V_{C C}=M A X$,	See Note 2		$6.1 \quad 10$		6.1	10	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ' CC is measured with one input of each gate at 4.5 V , the other inputs grounded, and the outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
tPLH	A or B	Other input low	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$$\text { See Note } 4$	18	30	ns
tpHL				18	30	
tPLH	A or B	Other input high		18	30	ns
tPHL				18	30	

$\mathbb{I}_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {t PHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.

- Designed Specifically for High-Speed:

Memory Decoders
Data Transmission Systems

- 'S138 and 'LS138 3-to-8-Line Decoders Incorporate 3 Enable Inputs to Simplify Cascading and/or Data Reception
- 'S139 and 'LS139 Contain Two Fully Independent 2-to-4-Line Decoders/ Demultiplexers
- Schottky Clamped for High Performance

	TYPICAL	
TYPE	PROPAGATION DELAY	TYPICAL
	(3 LEVELS OF LOGIC)	POWER DISSIPATION
'LS138	22 ns	32 mW
'S138	8 ns	245 mW
'LS139	22 ns	34 mW
'S139	7.5 ns	300 mW

description

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fastenable circuit the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

The 'LS138 and 'S138 decode one-of-eight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented without external inverters and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The 'LS139 and 'S139 comprise two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs each of which represents only one normalized Series 54LS/74LS load ('LS138, 'LS139) or one normalized Series 54S/74S load ('S138, 'S139) to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design. Series 54 LS and 54 S devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 LS and 74 S devices are characterized for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ industrial systems.
functional block diagrams and logic

INPUTS					OUTPUTS							
ENABLE		SELECT										
G1	G2*	c	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

schematics of inputs and outputs

TYPES SN54LS138, SN54LS139, SN74LS138, SN74LS139, DECODERS/DEMULTIPLEXERS

REVISED OCTOBER 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS138 SN54LS139			SN74LS138 SN74LS139			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, Vcc	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, $\mathrm{IOL}^{\text {L }}$						8	mA
Operating free-air temiperature, $T^{\text {a }}$	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS138 SN54LS139			SN74LS138 SN74LS139			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$V_{1 H}$ High-levet input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$		2.5	3.4		2.7	3.4		V
VOL Low-level output voltage	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=V_{\mathrm{IL} \text { max }} \end{array}$	$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	\checkmark
$I_{1} \quad \begin{aligned} & \text { Input current at } \\ & \text { maximum input voltage }\end{aligned}$	$V_{C C}=\operatorname{MAX}, \quad V_{1}=7 \mathrm{~V}$				0.1			0.1	mA
IIH High-level input current	$V_{\mathrm{CC}}=\mathrm{MAX}, \quad V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=M A X, \quad V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current ${ }^{\text {8 }}$	$\mathrm{V}_{\text {CC }}=$ MAX		-6		-40	-5		-42	mA
'CC Supply current	$V_{C C}=M A X$ Outputs enabied and open	'LS138		6.3	10		6.3	10	mA
		'LS139		6.8	11		5.8	11	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	LEVELS OF DELAY	TEST CONDITIONS	SN54LS138 SN74LS138			SN54LS139 SN74LS139			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	Binary Select	Any	2	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 2		13	20		13	20	ns
${ }_{\text {t }}$						27	41		22	33	ns
tPLH			3			18	27		18	29	ns
tPHL			3			26	39		25	38	ns
tPLH	Enable	Any	2			12	18		16	24	ns
tPHL						21	32		21	32	ns
tPLH			3			17	26				ns
tPHL						25	38				ns

${ }^{{ }^{t_{P L H}}} \neq$ propagation delay time, low-to-high-level output; $t_{P H L} \equiv$ propagation delay time, high-to-low-level output NOTE 2: Load circuits and waveforms are shown on page 3-11.

TYPES SN54S138, SN54S139, SN74S138, SN74S139 DECODERS/DEMULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

	SN54S138 SN74S139			SN74S138 SN74S139			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-1			-1	mA
Low-level ouput current, 1 OL			20			20	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ}$

eiectricai characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54S138 SN74S138		SN54S139 SN74S139		UNIT
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2		2		V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage				0.8		0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2		-1.2	V
V_{OH} High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	SN54S'	2.5	3.4	2.5	3.4	v
	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	SN74S'	2.7	3.4	2.7	3.4	
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$			0.5		0.5	v
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1		1	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.7 \mathrm{~V}$			50		50	$\mu \mathrm{A}$
ILL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-2		-2	mA
IOS Short-circuit output current ${ }^{\text {§ }}$	$V_{C C}=$ MAX		-40	-100	-40	-100	mA
ICC Supply current		and open		$49 \quad 74$		$60 \quad 90$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\$Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second
switching characteristics, $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5} \mathbf{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVELS OF DELAY	TEST CONDITIONS	SN54S138, SN74S138			SN54S139 SN74S139			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	Binary select	Any	2	$\begin{aligned} & C_{L}=15 \rho F, \\ & R_{L}=280 \Omega, \end{aligned}$ See Note 3		4.5	7		5	7.5	ns
tPHL						7	10.5		6.5	10	
tPLH			3			7.5	12		7	12	ns
tPHL						8	12		8	12	
tPLH	Enable	Any	2			5	8		5	8	ns
tPHL						7	11		6.5	10	
tPLH			3			7	11				ns
tPHL						7	11				

${ }^{\text {I }}{ }_{\mathrm{PLH}} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuits and waveforms are shown on page 3-10.

- Drives gas-filled cold-cathode indicator tubes directly
- Fully decoded inputs ensure all outputs are off for invalid codes
- Input clamping diodes minimize transmission-line effects

InPut				OUTPUT ON^{\dagger}
D	c	B	A	
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	L	8
H	L	L	H	9
H	L	H	L	NONE
H	L	H	H	NONE
H	H	L	L	NONE
H	H	L	H	NONE
H	H	H	L	NONE
H	H	H	H	NONE

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level
${ }^{\dagger}$ All other outputs are off

description

The SN74141 is a second-generation BCD-to-decimal decoder designed specifically to drive cold-cathode indicator tubes. This decoder demonstrates an improved capability to minimize switching transients in order to maintain a stable display.

Full decoding is provided for all possible input states. For binary inputs 10 through 15 , all the outputs are off. Therefore the SN74141, combined with a minimum of external circuitry, can use these invalid codes in blanking leading- and/or trailing-edge zeros in a display. The ten high-performance, n-p-n output transistors have a maximum reverse current of 50 microamperes at 55 volts.

Low-forward-impedance diodes are also provided for each input to clamp negative-voltage transitions in order to minimize transmission-line effects. Power dissipation is typically 80 milliwatts. The SN74141 is characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

TYPE SN74141
 BCD-TO-DECIMAL DECODER/DRIVER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MiN	TYP ${ }_{\text {¢ }}$	MAX	UNIT
$V_{1!}$	High-level input vol tage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-5 \mathrm{~mA}$			-1.5	V
Volon)	On-state output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{O}}=7 \mathrm{~mA}$			2.5	V
Vo(off)	Off-state output voltage for input counts 0 thru 9		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~mA}$	60			V
IO(off)	Off-state reverse current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=55 \mathrm{~V}$			50	$\mu \mathrm{A}$
${ }^{1} \mathrm{O}$ (off)	Off-state reverse current for input counts 10 thru 15		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=30 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			15	
1	Input current at maximum input veltage		$V_{C C}=$ MAX, $V_{i}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\mathbf{H}}$	High-level input current	A input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
		B, C, or D input				80	$\mu \mathrm{A}$
${ }^{1 / L}$	Low-level input current	A input	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	
		B, C, or D input				-3.2	
ICC	Supply current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		16	25	mA

7

[^14]FUNCTION TABLE

INPUTS			OUTPUTS	
COUNT PULSE (CLOCK)	CLEAR	LATCH STROBE	ON †	$\overline{\text { O }}_{\text {D }}$
X	L	L	0	H
1	H	L	1	H
2	H	L	2	H
3	H	L	3	H
4	H	L	4	H
5	H	L	5	H
6	H	L	6	H
7	H	L	7	H
8	H	L	8	L
9	H	L	9	L
9	H	L	0	H
10	H	H	0	H
11				

${ }^{\dagger}$ All other outputs are off.
$H=$ high level, $L=$ low level, $X=$ irrelevant

description

DUAL-IN-LINE PACKAGE (TOP VIEW)

positive logic: see function table and description

The SN74142 contains a divide-by-ten (BCD) counter, a four-bit latch, and a decoder/Nixie \ddagger tube driver on a monolithic chip and is packaged in popular 16-pin packages. This single MSI function can replace the equivalent of three separately packaged MSI circuits to reduce printed-circuit board area and the number of system interconnections, resulting in reduced costs and improved reliability.

Four master-slave flip-flops are fully decoded to provide a divide-by-ten counter. A direct clear input will, when taken low, reset and hold the counter at zero (all Q outputs low, $\overline{\mathrm{Q}}_{\mathrm{D}}$ output high). While the clear input is inactive (high), each positive-going transition of the clock will increment the counter. The $\overline{\mathrm{Q}}_{\mathrm{D}}$ output is made available externally for cascading to n -bit counters.

The Q outputs of the counter are routed to the data inputs of the four-bit latch. While the latch strobe input is low, the internal latch outputs will follow the respective Q outputs of the counter. When the latch strobe input is taken high, the latch stores the data which has been setup by the counter outputs prior to the low-to-high level transition of the latch strobe input. The \bar{O}_{D} output from the counter is not stored by the latch since it is intended for clocking the next counter stage. This means that the system counter can continuously acquire new data. Since all outputs of the latch and Q outputs of the counter drive low-capacitance on-chip loads, the circuitry is considerably simplified with respect to the number of components required. This results in a highly efficient function which typically reduces power requirements 15% when compared to systems using the three separate packages.

The SN74142 counter/latch/driver features fully buffered inputs to reduce drive requirements to one normalized Series 74 load per input, and diode-clamping of all inputs to minimize transmission line effects. The counter will accept input clock frequencies up to 20 MHz and is entirely compatible for use with all popular TTL and DTL logic circuits. The high-performance n-p-n driver outputs are identical to the SN74141 and have a maximum off-state reverse current of 50 microamperes at 55 volts.
$\ddagger_{\text {Nixie }}$ is a registered trademark of the Burroughs Corporation.

TYPE SN74142

 BCD COUNTER/4-BIT LATCH/BCD DECODER/DRIVERabsolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: All voltage values are with respect to the network ground terminal.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
High-level output current from $\overline{\mathrm{O}}_{\mathrm{D}}, \mathrm{I}^{\prime}$				-400	$\mu \mathrm{A}$
Low-level output current from $\overline{\mathrm{Q}}_{\mathrm{D}}$, IOL				8	mA
Input clock frequency, felock		0		20	MHz
Clock pulse width, $\mathrm{t}_{\text {w }}$ (clock) (see Figure 1)	High logic level	15			ns
	Low logic level	35			
Clear pulse width, $\mathrm{t}_{\text {wiclearr }}$ (see Figure 1)		25			$n \mathrm{n}$
Strobe pulse width, $\mathrm{t}_{\text {wistrobe) }}$ (see Figure 1)		20			ns
Ciear inactive-state setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1).		25			ns
Strobe time, $\mathrm{t}_{\text {strobe }}$ (see Figure 1)		45		$\mathrm{t}_{\mathrm{w}(\text { clock })}$ $+10$	ns
Operating free-air temperature, T_{A}		0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High-level $\overline{\mathrm{O}}_{\mathrm{D}}$ output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	3.4		V
V_{OL}	Low-level $\overline{\text { Of }}_{\text {D }}$ output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.2	0.4	V
$\mathrm{V}_{\text {Olon) }}$	On-state voltage, outputs 0 thru 9	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad 1 \mathrm{O}=7 \mathrm{~mA}$			2.5	V
$\mathrm{V}_{\text {O(off) }}$	Off-state voltage, outputs 0 thru 9	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{I}^{\prime}=0.5 \mathrm{~mA}$	60			V
IO(off)	Off-state current, outputs 0 thru 9	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=55 \mathrm{~V}$			50	$\mu \mathrm{A}$
$1 /$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, ~ V_{1}=5.5 \mathrm{~V}$			1	mA
${ }_{1}{ }_{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
1 IL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
Ios	Short-circuit $\overline{\text { O }}_{\text {D }}$ output current	$V_{C C}=$ MAX	-18		-55	mA
ICC	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All outputs open		68	102	mA

${ }^{\mathrm{t}}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $\mathrm{V} C C=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level $\overline{\mathrm{Q}}_{\mathrm{D}}$ output from clock	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=800 \Omega, \\ & \text { See Figure } 1 \end{aligned}$		35	55	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level $\overline{\mathrm{Q}}_{\mathrm{D}}$ output from clock			30	45	
tPLH	Propagation delay time, low-to-high-level $\overline{\mathrm{o}}_{\mathrm{D}}$ output from clear			30	45	ns

TYPE SN74142
BCD COUNTER/4-BIT LATCH/BCD DECODER/DRIVER

PARAMETER MEASUREMENT INFORMATION

NOTES: A. This typical abbreviated sequence illustrates clearing from count 8 or 9 and counting through ten clock pulses. Clock pulses 3 through 7 and 9 are omitted for brevity.
B. Strobe input can go low at any time; however, the positive transition to store data from any given clock transition (t_{A}) must occur a minimum of 45 ns after t_{A} and prior to 10 ns after the next positive-going clock transition ($\mathrm{t}_{\mathrm{B}}+10 \mathrm{~ns}$).
C. Input pulses are supplied by generators having the following characteristics: $t_{r} \leqslant 7 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, and $\mathrm{Z}_{\text {out }} \approx 50 \Omega$.
D. C_{L} includes probe and jig capacitance.
E. All diodes are 1 N3064

- Choice of Driver Outputs:

SN54143 and SN74143 have 15-mA Constant-Current Outputs for Driving Common-Anode LED's such as TIL302 or TIL303 without Series Resistors

SN54144 and SN74144 Drive High-Current Lamps, Numitrons ${ }^{\dagger}$, or LED's from Saturated Open-Collector Outputs

- Universal Logic Capabilities

Ripple Blanking of Extraneous Zeros
Latch Outputs Can Drive Logic Processors Simultaneously
Decimal Point Driver is Included

- Synchronous BCD Counter Capability Includes:

Cascadable to N -Bits
Look-Ahead-Enable Techniques Minimize Speed Degradation When Cascaded for Large-Word Display Direct Clear Input

description

These TTL MSI circuits contain the equivalent of 86 gates on a single chip. Logic inputs and outputs are completely TTL/DTL compatible. The buffered inputs are implemented with relatively large resistors in series with the bases of the input transistors to lower drive-current requirements to one-half of that required for a standard Series 54/74 TTL input. The serial-count-enable, actually two internal emitters, is rated as one standard series 54/74 load. The logic outputs, except RBO, have active pull-ups.
The SN54143 and SN74143 driver outputs are designed specifically to maintain a relatively constant on-level sink current of approximately 15 milliamperes from outputs " a " through " g " and seven milliamperes from output "dp" over a voltage range from one to five volts. Any number of LED's in series may be driven as long as the output voltage rating is not exceeded.

[^15]
TYPES SN54143, SN54144, SN74143, SN74144 4-BIT COUNTER/LATCH, SEVEN-SEGMENT LED/LAMP DRIVERS

description (continued)

The SN54144 and SN74144 drivers have high-sink-current saturated outputs for driving indicators having voltage ratings up to 15 volts or requiring up to 25 milliamperes drive. The SN54144 sinks 20 milliamperes and the SN74144 sinks 25 milliamperes at an on-level voltage of 0.6 volts across their respective operating temperature ranges.

All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design. Maximum clock frequency is typically 18 megahertz and power dissipation is typically 280 milliwatts. The SN54143 and SN54144 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74143 and SN74144 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Functions of the inputs and outputs of these devices are as follows:

FUNCTION CLEAR INPUT	PIN NO. 3	DESCRIPTION When low, resets and holds counter at 0 . Must be high for normal counting.
CLOCK INPUT	2	Each positive-going transition will increment the counter provided that the circuit is in the normal counting mode (serial and parallel count enable inputs low, clear input high).
PARALLEL COUNT ENABLE INPUT (PCEI)	23	Must be low for normal counting mode. When high, counter will be inhibited. Logic level must not be changed when the clock is low.
SERIAL COUNT ENABLE INPUT (SCEI)	1	Must be low for normal counting mode, also must be low to enable maximum count output to go low. When high, counter will be inhibited and maximum count output will be driven high. Logic level must not be changed when the clock is low.
MAXIMUM COUNT OUTPUT	22	Will go low when the counter is at 9 and serial count enable input is low. Will return high when the counter changes to 0 and will remain high during counts 1 through 8 . Will remain high (inhibited) as long as serial count enable input is high.
LATCH STROBE INPUT	21	When low, data in latches follow the data in the counter. When high, the data in the latches are held constant, and the counter may be operated independently.
LATCH OUTPUTS ($Q_{A}, Q_{B}, Q_{C}, Q_{D}$)	17, 18, 19, 20	The BCD data that drives the decoder can be stored in the 4-bit latch and is available at these outputs for driving other logic and/or processors. The binary weights of the outputs are: $Q_{A}=1, Q_{B}=2, Q_{C}=4, Q_{D}=8$.
DECIMAL POINT INPUT	7	Must be high to display decimal point. The decimal point is not displayed when this input is low or when the display is blanked.
BLANKING INPUT (BI)	5	When high, will blank (turn off) the entire display and force RBO low. Must be low for normal display. May be pulsed to implement intensity control of the display.
RIPPLE-BLANKING INPUT (RBI)	4	When the data in the latches is BCD 0 , a low input will blank the entire display and force the RBO low. This input has no effect if the data in the latches is other than 0 .
RIPPLE-BLANKING OUTPUT (RBO)	6	Supplies ripple blanking information for the ripple blanking input of the next decade. Provides a low if BI is high, or if RBI is low and the data in the latches in BCD 0; otherwise, this output is high. This pin has a resistive pull-up circuit suitable for performing a wire-AND function with any open-collector output. Whenever this pin is low the entire display will be blanked; therefore, this pin may be used as an active-low blanking input.
LED/LAMP DRIVER OUTPUTS (a, b, c, d, e, f, g, dp)	$\begin{aligned} & 15,16,14,9 \\ & 11,10,13,8 \end{aligned}$	Outputs for driving seven-segment LED's or lamps and their decimal points. See segment identification and resultant displays on following page.

TYPES SN54143, SN54144, SN74143, SN74144 4-BIT COUNTER/LATCH, SEVEN-SEGMENT LED/LAMP DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) . 7 V
Input voltage . 5.5 V
Off-state voltage at outputs " a " thru " g " and "dp", '144 . 15 V
Off-state current at outputs " a " thru " g " and "dp", '143 . $250 \mu \mathrm{~A}$
Continuous total power dissipation at (or below) $70^{\circ} \mathrm{C}$ free-air temperature (see Note 2) 1.4 W
Operating free-air temperature range: SN54' Circuits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74' Circuits
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTES: 1. Voltage values are with respect to network ground terminal.
2. For the SN54143 and SN54144 in the N and W packages, this rating applies at (or below) $80^{\circ} \mathrm{C}$ free-air temperature. For operation above this temperature, derate linearly at the rate of $11.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the W package and $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the N package. No derating is required for these devices in the J package.
recommended operating conditions

		SN54143, SN54144			SN74143, SN74144			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
On-state voltage at outputs a thru g and dp ('143 only)		1		5	1		5	V
High-level output current, IOH	$\mathrm{Q}_{A}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$			-240			-240	$\mu \mathrm{A}$
	Maximum count			-560			-560	
	RBO			-120			-120	
Low-level output current, IOL	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}, \mathrm{RBO}$			4.8			4.8	mA
	Maximum count			11.2	11.2			
Clock pulse width, $\mathrm{t}_{\text {w }}$ (clock)	High logic level	25			25			ns
	Low logic level	55			55			
Clear pulse width, $\mathrm{t}_{\text {w }}$ (clear)		25			25			ns
Setup time, $\mathrm{t}_{\text {su }}$	Serial and parallel carry	$30 \uparrow$			$30 \uparrow$			ns
	Clear inactive state	$60 \uparrow$			$60 \uparrow$			
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

\uparrow The arrow indicates that the rising edge of the clock pulse is used for reference.

TYPES SN54143, SN54144, SN74143, SN74144 4-BIT COUNTER/LATCH, SEVEN-SEGMENT LED/LAMP DRIVERS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54143, SN74143			SN54144, SN74144			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V	
VOH	High-level output voltage	RBO	$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4			2.4			V	
		$Q_{A}, Q_{B}, Q_{C}, Q_{D}$									
		Maximum count									
V_{OL}	Low-level output voltage	$\mathrm{Q}_{A}, \mathrm{O}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}, \mathrm{RBO}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$		0.4		0.4			V	
		Maximum count									
V_{O} (off)	Off-state output voltage	Outputs a thru g, dp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},{ }^{\text {I }} \mathrm{OH}=250 \mu \mathrm{~A}$	7			15			V	
$V_{O}(0 n)$	On-State output voltage	Outputs a thru g, dp	$V_{C C}=$ MIN, See Note 3						0.6	V	
${ }^{\prime} \mathrm{O}(\mathrm{on})$	On-state output current	Outputs a thrug	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, \quad \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	9	15					mA	
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}$		15						
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		15	22					
		Output dp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	4.5	7						
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}$		7						
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		7	12					
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
${ }^{1} \mathrm{H}$	High-level input current	Serial carry	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
		RBO node		-0.12	-0.5		-0.12	-0.5		mA	
		Other inputs				20			20	$\mu \mathrm{A}$	
IIL	Low-level input current	Serial carry	$\begin{aligned} & V_{C C}=M A X, \quad V_{I}=0.4 \mathrm{~V} \\ & \text { See Note } 4 \end{aligned}$			-1.6			-1.6	mA	
		RBO node			-1.5	-2.4		-1.5	-2.4		
		Other inputs				-0.8			-0.8		
${ }^{\prime} \mathrm{OS}$	Short-circuit output current	$\mathrm{Q}_{A}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	$V_{C C}=M A X$	-9		-27.5	-9		-27.5	mA	
		Maximum count		-15		-55	-15		-55		
${ }^{1} \mathrm{CC}$	Supply current		$V_{C C}=$ MAX, See Note 5		56	93		56	93	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
NOTES: 3. For SN54144, $\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$; for $\mathrm{SN} 74144, \mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$.
4. IIL at RBO node is tested with BI grounded and RBI at 4.5 V .
5. CC is measured after the following conditions are established
a) Strobe $=\mathrm{RBI}=\mathrm{DP}=4.5 \mathrm{~V}$
b) Paraliel count enable $=$ serial count enable $=B!=$ GND
c) Clear (7) then clock until all outputs are on (\mathcal{A})
d) For '143, outputs " a " through " g " and " dp " $=2.5 \mathrm{~V}$, all other outputs open. For '144, all outputs are open.
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER \S | FROM
 (INPUT) | TO
 (OUTPUT) | TEST CONDITIONS | MIN | TYP MAX |
| :---: | :---: | :---: | :---: | :---: | :---: | UNIT

$\S_{f_{\text {max }}} \equiv$ Maximum clock frequency, $\mathrm{I}_{\mathrm{PLH}} \equiv$ Propagation delay time, low-to-high-level output,
${ }^{\text {tpHL }}$ ㅇ Propagation delay time, high-to-low-level output
NOTE 6: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54143, SN54144, SN74143, SN74144 4-BIT COUNTER/LATCH, SEVEN-SEGMENT LED/LAMP DRIVERS

TYPICAL APPLICATION DATA

This application demonstrates how the drivers may be cascaded for N -bit display applications. It features:
Synchronous, look-ahead counting
Ripple blanking of leading zeros; blanking of trailing zeros (not illustrated) can also be implemented Overriding blanking for total suppression or intensity modulation of display
Direct parallel clear
Latch strobe permits counter to acquire next display while viewing current display

The serial count-enable input of the least-significant digit is normally grounded; however, it may be used as a count-enable control for the
entire counter (high to disable, low to count) provided the loglc level on this pin is not changed while the clock line is low or false counting may result.

FOR USE AS LAMP, RELAY, OR MOS DRIVERS

- Full Decoding of Input Logic
- SN54145, SN74145, and SN74LS145 Have 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions
- Low Power Dissipation of 'LS145 . . . 35 mW Typical
logic

FUNCTION TABLE														
NO.'	INPUTS				OUTPUTS									
	D	c	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
$1 \cdot$	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L.	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	1	H	H	H	H	H	H	H	H	H	H	L
$\begin{aligned} & 0 \\ & \vdots \\ & \geqq \\ & \geqq \end{aligned}$	H	L	H	L	H	H	H	H	H	H	H	H	H	H
	H	L	H	H	H	H	H	H	H	H	H	H	H	H
	H	H	L	L	H	H	H	H	H	H	H	H	H	H
	H	H	L	H	H	H	H	H	H	H	H	H	H	H
	H	H	H	L	H	H	H	H	H	H	H	H	H	H
	H	H	H	H	H	H	H	H	H	H	H	H	H	H

$H=$ high level (off), $L=$ low level (on)
description

These monilithic BCD-to-decimal decoder/drivers consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid $B C D$ input logic ensures that all outputs remain off for all invalid binary input conditions. These decoders feature high-performance, n-p-n output transistors designed for use as indicator/ relay drivers or as open-collector logic-circuit drivers. Each of the high-breakdown output transistors (15 volts) of the SN54145, SN74145, or SN74LS145 will sink up to 80 milliamperes of current. Each input is one Series 54/74 or Series 54LS/74LS standard load, respectively. Inputs and outputs are entirely compatible for use with TTL or DTL logic circuits, and the outputs are compatible for interfacing with most MOS integrated circuits. Power dissipation is typically 215 milliwatts for the ' 145 and 35 milliwatts for the 'LS145.

SN54145, SN54LS145 . . . J OR W PACKAGE SN74145, SN74LS145 ...J OR N PACKAGE (TOP VIEW)

functional block diagram

TYPES SN54145, SN74145 BCD-TO-DECIMAL DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

\left.| | SN54145 | | | SN74145 | | UNIT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | MIN | NOM | MAX | MIN | NOM | |$\right)$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
${ }^{1} \mathrm{O}$ (off)	Off-state output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O} \text { (off) }}=1 \end{array}$				250	$\mu \mathrm{A}$
$V_{\text {O }}$ (on)	On-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	IO(on) $=80 \mathrm{~mA}$		0.5	0.9	v
			$10(0 n)=20 \mathrm{~mA}$			0.4	
${ }_{1}$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{i}}=5.5 \mathrm{~V}$				1	mA
${ }_{1}{ }_{\text {IH }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low-ievel input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
${ }^{\text {ICC }}$	Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2	SN54145		43	62	
			SN74145		43	70	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with all inputs grounded and outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$C_{L}=15 \mathrm{pF}, \quad R_{L}=100 \Omega$,		See Note 3		50	ns
tPHL Propagation delay time, high-to-low-level output				50	ns	

NOTE 3: Load circuit and waveforms are shown on page 3-10.
schematics of inputs and outputs

TYPES SN54LS145, SN74LS145

BCD-TO-DECIMAL DECODERS/DRIVERS

REVISED october 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V_{CC} (see Note 1) . 7 V
Input voltage . 7 V
Operating free-air temperature range: SN54LS145 $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74LS145 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS145		SN74LS145		UNIT
	MIN	NOM	MAX	MIN	NOM

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54LS145			SN74LS145			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$V_{\text {IH }}$	High-level input voltage					2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
'Oloff)	Off-state output current	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=15 \mathrm{~V} \end{aligned}$			250			250	$\mu \mathrm{A}$		
Vo(on)	On-state output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{\text {IL }} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$1 \mathrm{OL}=24 \mathrm{~mA}$					0.35	0.5			
			$\mathrm{I}_{\mathrm{OL}}=80 \mathrm{~mA}$					2.3	3			
11	Input current at maximum input voltage	$V_{C C}=$ MAX	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA		
${ }_{1} \mathrm{IH}$	High-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	$V_{C C}=$ MAX	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 2		7	13		7	13	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: ICC is measured with a!! inputs grounded and outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	$C_{L}=45 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=665 \Omega$,		See Note 4		50	ns
tPHL	Propagation delay time, high-to-low-level output				50	ns	

NOTE 4: Load circuit and waveforms are shown on page 3-11.
schematic of inputs and outputs

'147, 'LS147

- Encodes 10-Line Decimal to 4-Line BCD
- Applications Include:

Keyboard Encoding Range Selection
'148, 'LS148

- Encodes 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:

N-Bit Encoding
Code Converters and Generators

	TYPICAL	TYPICAL
TYPE	DATA	POWER
	DEIAY	DISSIPATION
'147	10 ns	225 mW
'148	10 ns	190 mW
'LS147	15 ns	60 mW
'LS148	15 ns	60 mW

description
These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The ' 147 and 'LS147 encode nine data lines to four-line (8-4-2-1) BCD. The implied decima! zero condition requires no input condition as zero is encoded when all nine data lines are at a high logic level. The '148 and 'LS148 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input EI and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level. All inputs are buffered to represent one normalized Series 54/74 or 54LS/74LS load, respectively.
'147,'LS147

INPUTS									OUTPUTS			
1	2	3	4	5	6	7	8	9	D	C	B	A
H	H	H	H	H	H	H	H	H	H	H	H	H
X	X	X	X	x	X	X	X	L	L	H	H	L
x	x	x	X	x	X	X	L	H	L	H	H	H
X	\times	X	X	X	X	L	H	H	H	L	L	L
x	x	x	X	X	L	H	H	H	H	L	L	H
x	x	x	X	L	H	H	H	H	H	L	H	L
x	x	x	L	H	H	H	H	H	H	L	H	H
x	X	L	H	H	H	H	H	H	H	H	L	L
x	L	H	H	H	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	L

$H=$ high logic lavel, $L=$ low logic leval, $X=$ irrelevant

SN54147, SN54LS147. . . J OR W PACKAGE SN74147, SN74LS147 . . J J OR N PACKAGE
(TOP VIEW)

'148,'LS148

INPUTS									OUTPUTS				
E1	0	1	2	3	4	5	6	7	A2	A1	AO	GS	EO
H	\times	X	X	\times	X	X	\times	\times	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	x	x	x	X	X	X	L	L	L	L	L	H
L	x	X	X	x	X	X	L	H	L	L	H	L	H
L	x	x	x	x	x	L	H	H	L	H	L	L	H
L	x	x	x	\times	L	H	H	H	L	H	H	L	H
L	x	x	x	L	H	H	H	H	H	L	L	L	H
L	X	x	L	H	H	H	H	H	H	L	H	L	H
L	x	L	H	H	H	H	H	H	H	H	L	L	H
L	L	H	H	H	H	H	H	H	H	H	H	L	H

TYPES SN54147, SN54148, SN54LS147, SN54LS148, SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148
10-LINE-TO-4-LINE AND 8-LINE-TO-3-LINE PRIORITY ENCODERS
functional block diagrams

7

TEXAS INSTRUMENTS
1076
post office box 5012 - dallias. texas 75222

TYPES SN54147, SN54148, SN54LS147, SN54LS148, SN74147, SN74148 (TIM9907) SN74LS147, SN74LS148 10-LINE-TO-4-LINE AND 8-LINE-TO-3-LINE PRIORITY ENCODERS
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except intermitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For' 148 circuits, this rating applies between any two of the eight data lines, 0 through 7.
recommended operating conditions

	SN54'			SN74'			SN54LS'			SN74LS'			UNIT
	MIN	NOM	MAX										
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			16			16			4			8	mA
Operating free-air temperature, $T_{\text {A }}$	-55		125	0		70	-55		125	0		70	C

TYPES SN54147. SN54148. SN74147, SN74148(TIM9907), 10-LINE-TO-4-LINE AND 8-LINE-TO-3-LINE PRIORITY ENCODERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)									
PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	'147		'148		UNIT	
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2		2		V
$V_{\text {IL }}$	Low-level input voltage				0.8		0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}^{\prime}=-12 \mathrm{~mA}$		-1.5		-1.5	v	
V OH	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}^{2}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.3	2.4	3.3	V	
VOL	Low-level output voltage		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4		0.20 .4	V	
1	Input current at maximum	put voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1		1	mA	
IIH	High-level input current	0 input	$V_{C C}=$ MAX, $\quad V_{1}=2.4 \mathrm{~V}$				40		
		Any input except 0			40		80	$\mu \mathrm{A}$	
IL	Low-level input current	0 input	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA	
		Any input except 0			-1.6		-3.2	mA	
IOS Short-circuit output current \$			$\mathrm{V}_{\mathrm{CC}}=$ MAX	-35	-85	-35	-85	mA	
'cc Supply current			$V_{C C}=$ MAX C See Note 3 C		$50 \quad 70$		$40 \quad 60$	mA	
				4262		$35 \quad 55$	mA		

NOTE 3: For '147, ' CC (condition 1) is measured with input 7 grounded, other inputs and outputs open; I CC (condition 2) is measured with all inputs and outputs open. For ' 148 , ICC (condition 1) is measured with inputs 7 and El grounded, other inputs and outputs open; ${ }^{1} \mathrm{CC}$ (condition 2) is measured with all inputs and outputs open.
${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V} . \top_{A}=25^{\circ} \mathrm{C}$.
SNot more than one output should be shorted at a time
SN54147, SN74147 switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Any	Any	In-phase output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ See Note 4		9	14	
tPHL						7	11	ns
TPLH	Any	Any	Out-of-phase output			13	19	ns
tPHL						12	19	

SN54148, SN74148 switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	0 thru 7	A0, A1, or A2	In-phase output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ See Note 4		10	15	ns
tPHL						9	14	
tPLH	0 thru 7	$A 0, A 1$, or A2	Out-of-phase output			13	19	ns
tPHL						12	19	
tPLH	0 thru 7	EO	Out-of-phase			6	10	ns
tPHL			output			14	25	
tPLH	0 thru 7	GS	In-phase			18	30	ns
tPHL			output			14	25	
tPLH	EI	A0, A1, or A2	In-phase			10	15	ns
${ }^{\text {tPHL }}$			output			10	15	
tPLH	EI	GS	In-phase			8	12	as
tPHL			output			10	15	
tPLH	El	EO	In-phase output			10	15	ns
tPHL						17	30	

ItPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
NOTE 4: Load circuits and waveforms are shown on page 3-10.

TYPES SN54LS147, SN54LS148, SN74LS147, SN74LS148 10-LINE-TO-4-LINE AND 8-LINE-TO-3-LINE PRIORITY ENCODERS

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS'		SN74LS ${ }^{\prime}$			UNIT		
			MIN	TYP \ddagger	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2		2			V
$V_{\text {IL }}$	Low-level input voltage					0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.5			-1.5	V		
V OH	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$		3.42 .5		3.4	2.7	V		
VOL Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		$0.25 \quad 0.4$		0.25	0.4	V		
			$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$				0.35	0.5				
II	Input current at maximum input voltage	'LS148 inputs 1 thru 7		$V_{C C}=M A X$	$\mathrm{V}_{1}=7 \mathrm{~V}$		0.2			0.2	mA	
		All other inputs				0.1			0.1			
	High-level input current	${ }^{\prime}$ LS148 inputs 9 thru 7	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
		All other inputs				20			20			
	Low-level input current	'LS148 inputs 1 thru 7	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8			-0.8	mA		
		All other inputs				-0.4			-0.4			
Ios	Short-circuit output current §		$V_{C C}=$ MAX		-20	-100	-20		-100	mA		
ICC Supply current			$V_{C C}=M A X,$ See Note 5	Condition 1		$12 \quad 20$		12	20	mA		
			Condition 2		$10 \quad 17$		10	17	mA			

NOTE 5: For 'LS147, ICC (condition 1) is measured with input 7 grounded, other inputs and outputs open; ICC (condition 2) is measured with all inputs and outputs open. For 'LS148, ICC (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open, ICC (condition 2) is measured with all inputs and outputs open.
${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\dot{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time.

SN54LS147, SN74LS147 switching charaçeteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Any	Any	In-phase output	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \text { See Note } 4 \end{aligned}$		12	18	ns
tPHL						17	25	ns
tPLH	Any	Any	Out-of-phase output			24	36	ns
tPHL						19	29	

SN54LSí48, SN74LS148 switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	0 thru 7	A0, A1, or A2	In-phase output	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 6		12	18	ns
tPHL						17	25	
tPLH	0 thru 7	A0, A1, or A2	Out-of-phase output			24	36	ns
tPHL						19	29	
tPLH	0 thru 7	EO	Out-of-phase output			12	18	ns
tPHL						6	15	
${ }_{\text {PLH }}$	0 thru 7	GS	In-phase output			15	23	ns
tPHL						14	21	
tPLH	EI	A0, A1, or A2	In-phase output			12	18	ns
tPHL						17	25	
${ }^{\text {PPLH }}$	EI	GS	In-phase output			11	17	ns
tPHL						24	36	
tPLH	EI	EO	In-phase output			14	21	ns
tPHL						17	25	

tPLH \equiv propagation delay time, low-to-high-level outpu
TPHL $=$ propagation delay time, high-to-low-level outpu
NOTE 6: Load circuits and waveforms are shown on page 3-11.

TYPICAL APPLICATION DATA

7

Full 4 -bit binary 16 -line-to- 4 -line encoding can be implemented as shown above. The enable input must be low to enable the function. Decoding with 2 -input NAND gates produces true (active-high) data for the 4 -line binary outputs. If active-low data is required, the SN5408/SN7408 or SN54LS08/SN74LS08 AND gate may be used, respectively.

TYPE'	PROPAGATION DELAY TIME		
DATA INPUT TO W OUTPUT			POWER
:---:			
DISSIPATION			

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired data source. The '150 selects one-of-sixteen data sources; the '151A, '152A, 'LS151, 'LS152, and 'S151 select one-of-eight data sources. The '150, '151A, 'LS151, and 'S151 have a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output (as applicable) low.

The '151A, 'LS151, and 'S151 feature complementary W and Y outputs whereas the '150, '152A, and 'LS152 have an inverted (W) output only.

The '151A and '152A incorporate address buffers which have symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients occurring at the output(s) due to changes made at the select inputs, even when the '151A outputs are enabled (i.e., strobe low).

7

TYPES SN54150, SN54151A, SN54152A, SN54LS151, SN54LS152, SN54S151, SN74150, SN74151A SN74LS151, SN74S151 dATA SELECTORS/MULTIPLEXERS REVISED OCTOBER 1976
logic

INPUTS				OUTPUTS	
	LEC		STROBE	Y	w
C	B	A	S	γ	W
X	X	X	H	L	H
L	L	1	L	D0.	$\overline{\text { DO }}$
L			L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\overline{\mathrm{D} 3}$
H	L	L	L	D4	D4
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\mathrm{D} 6}$
H	H	H	L	D7	$\overline{\text { D7 }}$

'152A, 'LS152 FUNCTION TABLE			
SELECT INPUTS			OUTPUT
C	B	A	
L	L	L	$\overline{\mathrm{DO}}$
	L	H	$\overline{\text { D1 }}$
	H	L	D2
	H^{+}	H	D3
H	L	L	$\overline{\text { D4 }}$
H	L	H	$\overline{\mathrm{D} 5}$
H	H	L	$\overline{\mathrm{D} 6}$
H		H	$\overline{\mathrm{D7}}$

$H=$ high level, $L=$ low level, $X=$ irrelevan
$\overline{E 0}, \overline{\mathrm{E} 1} \ldots \overline{\mathrm{E} 15}=$ the complement of the level of the respective E input Do, D1 \ldots D7 = the level of the D respective input
7
functional block diagrams

ADDRESS BUFFERS FOR '151A, '152A ADDRESS BUFFERS FOR 'LS151, 'S151, 'LS152

TYPES SN54150, SN54151A, SN54152A, SN74150, SN74151A DATA SELECTORS/MULTIPLEXERS

REVISED OCTOBER 1976

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. For the ' 150 , input voltages must be zero or positive with respect to network ground terminal
recommended operating conditions

	SN54'			SN74'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, OH			-800			-800	$\mu \mathrm{A}$
Low-level output current, I_{OL}			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\boldsymbol{+}}$		'150			'151A, '152A			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage					0.8			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ MIN, $\quad 1{ }_{1}=-8 \mathrm{~mA}$							-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$		2.4	3.4		2.4	3.4		V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$			0.2	0.4		0.2	0.4	V
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1			1	mA
$\mathrm{I}_{\mathrm{IH}} \quad$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40			40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6			-1.6	mA
Short-circuit output current ${ }^{\text {§ }}$	$V_{C C}=\mathrm{MAX}$	SN54 ${ }^{\prime}$	-20		-55	-20		-55	mA
		SN74'	-18		-55	-18		-55	
Supply current	$V_{C C}=\text { MAX },$ See Note 3	'150		40	68				mA
		'151A					29	48	
		'152A					26	43	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
All typical values at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
Not more than one output of the' 151A should be shorted at a time.
NOTE 3: I CC is measured with the strobe and data select inputs at 4.5 V , all other inputs and outputs open.

TYPES SN54150, SN54151A, SN54152A, SN74150, SN74151A DATA SELECTORS/MULTIPLEXERS

switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'150			'151A, '152A			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
tple	$\begin{gathered} \hline \text { A, B, or C } \\ (4 \text { levels) } \end{gathered}$	Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 4 \end{aligned}$					25	38	ns
tPHL								25	38	
tPLH	$\begin{gathered} \text { A, B, C, or D } \\ \text { (3 levels) } \end{gathered}$	W			23	35		17	26	ns
tPHL					22	33		19	30	
tPL.H	Strobe	Y						21	33	ns
tPHL								22	33	
tPL.H	Strobe	W			15.5	24		14	21	ns
tPHL					21	30		15	23	
tPLH	D0 thru D7	Y						13	20	ns
tPHL								18	27	
tPLH	E0 thru E15, or D0 thru D7	W			13	20		8	14	ns
tPHL					8.5	14		8	14	

$\int_{t_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-10.
schematics of inputs and outputs

7

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS'			SN74LS'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, $\mathrm{I}^{\text {OH }}$			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating íree-air temperature, T_{A}	-55		125	ú		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS'			SN74LS'			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP ${ }_{\text {耍 }}$	max	
V_{IH} High-level input voltage			2			2			v
$\mathrm{V}_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
VOH High--ievel output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}_{r} & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		v
VOL Low-level output voltage	$\begin{array}{ll} \hline V_{C C}=M I N \quad V_{I H}=2 V_{t} \\ V_{I L}=V_{I L} \max \end{array}$	$1 \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v
		$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5	
II $\begin{array}{l}\text { Input current at } \\ \text { maximum input voltage }\end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\mathrm{IH}} \quad$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
Ios Short-circuit output current ${ }^{\text {§ }}$	$\mathrm{V}_{\text {CC }}=$ MAX		-20		-100	-20		-100	mA
ICC Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ Outputs open, All inputs at 4.5 V	'LS151		6.0	10		6.0	10	mA
		'LS152		5.6	9				

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.

TYPES SN54LS151, SN54LS152, SN74LS151 data selectors/multiplexers

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$

PARAMETER ${ }^{\text {I }}$	FROM		TEST CONDITIONS	SN54LS', SN74LS'			UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	
tPLH	$\begin{aligned} & \hline \text { A, B, or C } \\ & \text { (4 levels) } \end{aligned}$	Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Note } 5 \end{aligned}$		27	43	ns
tPHL					18	30	
tPLH	$\begin{aligned} & A, B, \text { or } C \\ & \text { (3 levels) } \end{aligned}$	W			14	23	ns
tPHL					20	32	
tPLH	Strobe	Y			26	42	ns
tPHL					20	32	
tPLH	Strobe	W			15	24	ns
tPHL					18	30	
tPLH	Any D	Y			20	32	ns
tPHL					16	26	
tPLH	Any D	W			13	21	ns
tPHL					12	20	

$\|_{\text {tpLH } \equiv \text { Propagation delay time, low-to-high-level output }}$
بHL \equiv Propagation delay time, high-to-low-level output
NOTE 5: See load circuits and waveforms on page 3-11
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

\left.| | SN54S151 | | SN74S151 | | UNIT |
| :--- | ---: | ---: | ---: | ---: | :---: |
| | MIN | NOM | MAX | MIN | NOM MAX |$\right)$

electrical characteristics over recommended operating free-air temperature range (uniess otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline V \end{array}$
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage			2			
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V
V OH	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	SN54S'	2.5	3.4		v
		$\mathrm{V}_{1 \mathrm{LL}}=0.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	SN74S'	2.7	3.4		
V_{OL}	Low-level output voltage	$\begin{array}{ll} \mathrm{VCC}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{iOL}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$				0.5	V
1	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
${ }_{\text {IIH }}$	High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
If	Low-level input current	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short-circuit output current \S	$V_{C C}=$ MAX		-40		-100	mA
${ }^{\text {I CC }}$	Supply current	$V_{C C}=$ MAX, All inputs at 4 All outputs open			45	70	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

TYPES SN54S151, SN74S151 dATA SELECTORS/MULTÍPLEXERS
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54S151, SN74S151			UNIT
				MIN	TYP	MAX	
tPLH	A, B, or C (4 levels)	Y	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=280 \Omega, \\ & \text { See Note } 4 \end{aligned}$		12	18	ns
tpHL					12	18	
tPLH	A, B, or C (3 levels)	w			10	15	ns
${ }^{\text {tPHL }}$					9	13.5	
tPLH	Any D	Y			8	12	ns
tPHL					8	12	
tpLH	Any D	W			4.5	7	ns
tPHL					4.5	7	
tPLH	Strobe	Y			11	16.5	ns
tPHL					12	18	
tPLH	Strobe	W			9	13	ns
tpHL					8.5	12	

It $t_{\text {PLH }} \equiv$ Propagation delay time, low-to-high-leval output
${ }^{t_{P}} \mathrm{HL} \equiv$ Propagation delay time, high-to-low-level output
NOTE 4: See load circuits and waveforms on page 3-10.
schematics of inputs and outputs

- Permits Multiplexing from \mathbf{N} lines to 1 line
- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N lines to n lines)
- High-Fan-Out, Low-Impedance, Totem-Pole Outputs
- Fully Compatible with most TTL and DTL Circuits

TYPICAL AVERAGE						
	TYPICAL					
TYPE	PROPAGATION DELAY TIMES	TYPICR	POWER			
	FROM	FROM	FROM	DISSIPATION		
	DATA	STROBE	SELECT			
'153	14 ns	17 ns	22 ns	180 mW		
'L153	27 ns	34 ns	44 ns	90 mW		
'LS153	14 ns	19 ns	22 ns	31 mW		
'S153	6 ns	9.5 ns	12 ns	225 mW		

description

1 Each of these monolithic, data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

SELECT INPUTS		DATA INPUTS				STROBE	OUTPUT
B	A	CO	C1	C2	C3	G	Y
X	X	X	X	X	X	H	L
L	L	$\underline{\square}$	x	x	X	L	L
L	L	H	X	X	X	L	H
	H	X	L	X	X	L	L
L	H	X	H	X	x	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Select inputs A and B are common to both sections. $H=$ high level, $L=$ low level, $X=$ irrelevant
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54153, SN54L153, SN54LS153, SN54S153,
SN74153, SN74L153, SN74LS153, SN74S153
DUAL 4-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS
REVISED OctOBER 1976
functional block diagram

schematics of inputs and outputs

dual 4-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	SN54153			SN74153			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54153		SN74153		UNIT
		MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		2		V
$V_{\text {iL }}$ Low-jevel inpuit voltage			0.6		0.8	V
VIK Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5		-1.5	V
VOi High-lovel output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4	2.4	3.4	V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4		0.20 .4	V
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1		1	mA
I_{IH} 'High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$
IIL $^{\text {L }}$ Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6		-1.6	mA
IOS Short-circuit output current ${ }^{\S}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-20	-55	-18	-57	mA
ICCL Supply current, output low	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		$36 \quad 52$		$36 \quad 60$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ICCL is measured with the outputs open and all inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER 1	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Data	Y	$C_{L}=30 \mathrm{pF}, \quad R_{\mathrm{L}}=400 \Omega,$ See Note 3	12	18	ns
tPHL	Data	Y		15	23	ns
${ }^{\text {tPLH }}$	Select	Y		22	34	ns
tPHL	Select	Y		22	34	ns
tPL.H	Strobe	Y		19	30	ns
tPHL	Strobe	Y		15	23	ns

$I_{t_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
tpHI \equiv propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54L153, SN74L153
dual 4-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS
recommended operating conditions

	SN54L153			SN74L153			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {cc }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			8			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

- PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54L153			SN74L153			UNIT
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2			2			V
$\mathrm{V}_{1} \mathrm{~L}$ Low-level input voltage				0.8			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}^{\prime}=-12 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}^{2}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{IOL}^{2}=8 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
IIH High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8			-0.8	mA
IOS Short-circuit output current ${ }^{\text {§ }}$	$V_{C C}=$ MAX	-10		-28	-9		-30	mA
ICCL Supply current, output low	$V_{C C}=M A X$, See Note 2		18	26		18	30	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }_{\S}^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\S_{\text {Not more than one output should be shorted at a time. }}$
NOTE 2: ICCL is measured with the outputs open and all inputs grounded.
7
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {a }}$	FROM input	то OUTPUT	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Data	Y	$C_{L}=30 \mathrm{pF}, \quad R_{L}=400 \Omega,$ See Note 3		24	36	ns
tPHL	Data	Y			30	46	ns
tPLH	Select	Y			44	68	ns
tPHL	Select	Y			44	68	ns
tPLH	Strobe	Y			38	60	ns
tPHL	Strobe	Y			$30 \cdot$	46	ns

$\|_{t_{\text {PH }}} \equiv$ propagation delay time, low-to-high-level output
$t_{P H L} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

	REVISED OCTOBER 1976						
recommended operating conditions							
	SN54LS153			SN74LS153			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, loL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS153			SN74LS153			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			V
$\mathrm{V}_{\text {IL }}$ L Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \hline \mathrm{v}_{\mathrm{CC}}=\mathrm{MiiN}, \quad \mathrm{v}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{v}_{\mathrm{IL}}=\mathrm{v}_{\mathrm{IL}} \text { max }, & \mathrm{IOH}^{2}=-400 \end{array}$		2.5	3.4		2.7	3.4		\checkmark
Vōl Lowilevel output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{IOL}_{\text {O }}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	\checkmark
		$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	
1 Input curientat maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IoS Short-circuit output current ${ }^{\S}$	$\mathrm{V}_{\text {CC }}=$ MAX		-20.		-100	-20		-100	mA
ICCL Supply current, output low	$V_{C C}=$ MAX, \quad See Note 2			6.2	10		6.2	10	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\stackrel{\ddagger}{\ddagger}$ All typical values are at $V C C=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.
NOTE 2: ' CCL is measured with the outputs open and all inputs grounded.
switching characteristics, $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Data	Y	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Note } 4 \end{aligned}$		10	15	ns
tPHL	Data	Y			17	26	ns
tPLH	Select	Y			19	29	ns
tPHL	Select	Y			25	38	ns
tPLH	Strobe	Y			16	24	ns
tPHL	Strobe	Y			21	32	ns

$I_{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 4: Load circuits and voltage waveforms are shown on page 3-11.

TYPES SN54S153, SN74S153

DUAL 4-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS
recommended operating conditions

	SN54S153		SN74S153		UNIT
	MIN	NOM	MAX	MIN	NOM MAX

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\top}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second, NOTE 2: ICCL is measured with the outputs open and all inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER!	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Data	Y	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=280 \Omega,$ See Note 3	6	9	ns
tPHL	Data	Y		6	9	ns
tPLH	Select	Y		11.5	18	ns
tPHL	Select	Y		12	18	ns
tPLH	Strobe	Y		10	15	ns
tpHL	Strobe	Y		9	13.5	ns

It ${ }_{\text {LPH }} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

- '154 is Ideal for High-Performance Memory Decoding
- 'L154 is Designed for Power-Critical Applications
- Decodes 4 Binary-Coded Inputs into One of 16 Mutually Exclusive Outputs
- Performs the Demultiplexing Function by Distributing Data From One Input Line to Any One of 16 Outputs
- input Ciamping Diodes Simpiify System Design
- High Fan-Out, Low-Impedance, Totem-Pole Outputs
- Fully Compatible with Most TTL, DTL, and MSI Circuits

	TYPICAL AVERAGE		
TYPE	PROPAGATION DELAY		TYPICAL
	3 LEVELS OF LOGIC	STROBE	POWER DISSIPATION
'154	23 ns	19 ns	170 mW
'L154	46 ns	38 ns	85 mW

description

Each of these monolithic, 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. For ultra-high-speed systems, SN54S138/SN74S138 and SN54S139/ SN74S139 are recommended.

These circuits are fully compatible for use with most other TTL and DTL circuits. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.
Series 54 and 54 L devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 and 74 L devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TYPES SN54154, SN54L154, SN74154, SN74L154 4-LINE-TO-16-LINE DECODERS/DEMULTIPLEXERS
logic

INPUTS						OUTPUTS															
61	G2	D	c	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	- L
L	H	x	x	\times	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	x	x	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	x	\times	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

7

functional block diagram and schematics of inputs and outputs

EQUIVALENT OF EACH INPUT

'L154: $R=8 \mathrm{k} \Omega$ NOM

TYPES SN54154, SN74154
 4-LINE-TO-16-LINE DECODERS/ DEMULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54154			SN74154			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5.	5.25	V
High-level output current, I OH			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAVİTER	TEST COÑDitioñs ${ }^{\text {¢ }}$	SN54154			SN74154			UNIT
		MIN	TYP	MAX	MIN	TYP苇	MAX	
V_{IH} High-level input voltage		2			2			V
$V_{\text {IL }}$ Low-level input voltage				0.8			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V
VOH High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V
$I_{1} \quad$ Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
$\mathrm{IIH}^{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{i}}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
los Short-circuit output current ${ }^{\text {§ }}$	$\mathrm{V}_{C C}=\mathrm{MAX}$	-20		-55	-18		-57	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		34	49		34	56	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Propagation delay time, low-to-high-level output, tPLH from A, B, C, or D inputs through 3 levels of logic	$C_{L}=15 \mathrm{pF}, \quad R_{L}=400 \Omega$,See Note 3	24	36	ns
tPHL Propagation delay time, high-to-low-level output, from A, B, C, or D inputs through 3 levels of logic		22	33	ns
Propagation delay time, low-to-high-level output, tPLH from either strobe input		20	30	ns
\qquad		18	27	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54L154, SN74L154

4-LINE-TO-16-LINE DECODERS/ DEMULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{1 H}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{OH}^{\prime}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.4	v
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \overline{\mathrm{~V}}_{1 \mathrm{H}}=2 \overline{\mathrm{~V}}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}^{2}=8 \mathrm{~mA} \end{array}$		0.20 .4	v
I/ Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
$\mathrm{I}_{\text {IH }} \quad$ High-level input current	$\mathrm{V}_{C C}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$		20	$\mu \mathrm{A}$
I/L Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.8	mA
IoS Short-circuit output current ${ }^{\text {¢ }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-9	-29	mA
ICC Supply current	$V_{C C}=\text { MAX, SN54L154 }$		17 25 17 28	mA
ICC Supply correm	See Note 2 SN74L154		$17 \quad 28$	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25 \mathrm{C}$
§ Not more than one output should be shorted at a time
NOTE 2: ICC is measured with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time, low-to-high-ievel output, tPLH from A, B, C, or D inputs through 3 levels of logic	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=800 \Omega$ See Note 3		48	72	ns
Propagation delay time, high-to-low-level output, tPHL from A, B, C, or D inputs through 3 levels of logic			44	66	ns
tPLH Propagation delay time, low-to-high-level output, from either strobe input			40	60	ns
TPHL Propagation delay time, high-to-low-level output, from either strobe input			36	54	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10

- Applications:

Dual 2-to-4-Line Decoder
Dual 1-to-4-Line Demultiplexer
3-to-8-Line Decoder
1-to-8-Line Demultiplexer

- Individual Strobes Simplify Cascading for Decoding or Demultiplexing Larger Words
- Input Clamping Diodes Simplify System Design
- Choice of Outputs:

Totem Pole ('155, 'LS155)
Open-Collector ('156, 'LS156)

	TYPICAL AVERAGE	TYPICAL
TYPES	PROPAGATION DELAY	POWER
	3 GATE LEVELS	DISSIPATION
'155,'156	21 ns	125 mW
'LS155	18 ns	31 mW
'LS156	32 ne	31 mW

SN54155, SN54156, SN54LS155, SN54LS156 . . . J OR W PACKAGE SN74155, SN74156, SN74LS155, SN74LS156 . . . J OR N PACKAGE (TOP VIEW)

description
These monolithic transistor-transistor-logic (TTL) circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16 -pin package. When both sections are enabled by the strobes, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4 -bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3 -to-8-line decoder or 1 -to- 8 -line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design.
Series 54 and 54 LS are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 and 74 LS are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
schematics of inputs and outputs

TYPES SN54155, SN54 156, SN54LS155, SN54LS156, SN74155, SN74156, SN74LS155, SN74LS156 DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS

functional block diagram and logic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

[^16]recommended operating conditions

\left.| | SN54155 | | SN74155 | | UNIT | |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| | MIN | NOM | MAX | MIN | | MAX |
| UNIT | | | | | |$\right]$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54155 SN74155		UNIT
		MIN	TYP	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		V
$\mathrm{V}_{\text {IL }}$ L Low-level input voltage			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
$\mathrm{V}_{\mathrm{OH}} \mathrm{H}$ High-level output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}^{2}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4	V
VOL Low-ievei output voitage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4	\checkmark
II \quad Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
$\mathrm{I}_{\text {IH }} \quad$ High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	mA
IOS Short-circuit output current ${ }^{\text {§ }}$	$\mathrm{V}_{\text {CC }}=$ MAX \quad SN54155	-20	-55	mA
	$V_{\text {CC }}$ - MAX ${ }^{\text {a }}$	-18	-57	mA
Su	$\mathrm{V}_{\text {CC }}=$ MAX, \quad SN54155		$25 \quad 35$	
Sup	See Note 2 SN74155		$25 \quad 40$	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with outputs open, A, B, and 1 C inputs at 4.5 V , and $2 \mathrm{C}, 1 \mathrm{G}$, and 2 G inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	то (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, 2 \mathrm{C}, \\ & 1 \mathrm{G}, \text { or } 2 \mathrm{G} \end{aligned}$	Y	2	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \end{aligned}$$\text { See Note } 3$		13	20	ns
tPHL	$\begin{gathered} \hline \mathrm{A}, \mathrm{~B}, 2 \mathrm{C}, \\ 1 \mathrm{G}, \text { or } 2 \mathrm{G} \end{gathered}$	Y	2			18	27	ns
tPLH	A or B	Y	3			21	32	ns
tPHL	A or B	Y	3			21	32	ns
tPLH	1 C	Y	3			16	24	ns
tPHL	1 C	Y	3			20	30	ns

ItpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS155, SN74LS155

DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS

REVISED OCTOBER 1976

recommended operating conditions

	SN54LS155		SN74LS155		UNIT
	MIN	NOM	MAX	MIN	NOM

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS155			SN74LS155			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
V_{IH} High-level input voltage			2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{C C}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	v
V_{OH} High-level output voltage	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, \quad V_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, \mathrm{IOH}^{\prime}=-400 \end{array}$		2.5	3.4		2.7	3.4		V
V OL Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=M I N, \quad V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5	
$\begin{array}{ll}\text { II } & \begin{array}{l}\text { Input current at } \\ \text { maximum input voltage }\end{array}\end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
ILL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=$ MAX		-6		-40	-5		-42	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, , See Note 2			6.1	10		6.1	10	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
NOTE 2: $I_{\text {CC }}$ is measured with outputs open, A, B, and 1 C inputs at 4.5 V , and $2 \mathrm{C}, 1 \mathrm{G}$, and 2 G inputs grounded.

7
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameterf	FROM (INPUT)	то (OUTPUT)	LEVELS of LOGIC	TEST CONDITIONS	SN54LS155 SN74LS155			UNIT
					MIN	TYP	MAX	
tPLH	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, 2 \mathrm{C}, \\ & 1 \mathrm{G}, \text { or } 2 \mathrm{G} \end{aligned}$	Y	2	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Note } 4 \end{aligned}$		10	15	ns
tPHL	$\begin{gathered} \hline A, B, 2 C, \\ 1 G, \text { or } 2 G \end{gathered}$	γ	2			19	30	ns
tpLH	A or B	Y	3			17	26	ns
tphi	A or 8	Y	3			19	30	ns
tPLH	1 C	Y	3			18	27.	ns
tPHL	1 C	Y	3			18	27.	ns

tpHL \equiv propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54 156, SN74156 DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS
recommended operating conditions

	SN54156		SN74156		UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	$\begin{aligned} & \hline \text { SN54156 } \\ & \text { SN74156 } \end{aligned}$		UNIT
		MIN	TYP¥ MAX	
$\mathrm{V}_{\text {iH }}$ High-level input voltage		2		V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
l OH High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ \hline \end{array}$		250	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4	v
1/ Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
IIH High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, S		$25 \quad 35$	mA
	See Note 2 \quad SN74156		$25 \quad 40$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specirited under recommended operating conditions.
\#All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with outputs open, A, B, and 1 C inputs at 4.5 V , and $2 \mathrm{C}, 1 \mathrm{G}$, and 2 G inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	$\begin{aligned} & \hline A, B, 2 C, \\ & 1 G, \text { or } 2 G \\ & \hline \end{aligned}$	Y	2	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 3 \end{aligned}$		15	23	ns
tPHL	$\begin{gathered} \mathrm{A}, \mathrm{~B}, 2 \mathrm{C} \\ 1 \mathrm{G}, \text { or } 2 \mathrm{G} \end{gathered}$	Y	2			20	30	ns
tPLH	A or B	Y	3			23	34	ns
${ }^{\text {tPHL }}$	A or B	Y	3			23	34	ns
tPLH	1 C	Y	3			18	27	ns
tPHL	1 C	Y	3			22	33	ns

$I_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
${ }_{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS156, SN74LS156
DUAL 2-LINE-TO-4-LINE DECODERS/DEMULTIPLEXERS
recommended operating conditions

	SN54LS156			SN74LS156			UNIT
	MiN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, I_{OL}			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			SN54LS156			SN74LS156			UNIT			
		MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN TYP \ddagger (MAX									
$V_{\text {IH }}$	High-level input voltage							2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V			
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{\mathrm{f}}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
${ }^{1} \mathrm{OH}$	High-level output current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \end{aligned}$				100			100	$\mu \mathrm{A}$			
VOL	Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max & \\ \hline \end{array}$		$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				${ }^{1} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
11	Input current at maximum input voltage	$V_{C C}=$ MAX, $V_{1}=7 \mathrm{~V}$					0.1			0.1	mA			
${ }_{1} \mathrm{IH}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
1 IL	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\mathrm{CG}}=$ MAX,	See Note 2			6.1	10		6.1	10	mA			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: I CC is measured with outputs open, A, B, and 1 C inputs at 4.5 V , and $2 \mathrm{C}, 1 \mathrm{G}$, and 2 G inputs grounded.
switching characteristics, $\mathrm{V}_{\mathbf{C}}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$

7

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	$\begin{aligned} & \hline \text { SN54LS156 } \\ & \text { SN74LS156 } \\ & \hline \end{aligned}$			UNIT
					MIN	TYP	MAX	
tPLH	$\begin{gathered} \mathrm{A}, \mathrm{~B}, 2 \mathrm{C} \\ 1 \mathrm{G}, \text { or } 2 \mathrm{G} \end{gathered}$	Y	2	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 4		25	40	ns
tPHL	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, 2 \mathrm{C} \\ & 1 \mathrm{G}, \text { or } 2 \mathrm{G} \end{aligned}$	Y	2			34	51	ns
tPLH	A or B	Y	3			31	46	ns
tPHL	A or B	Y	3			34	51	ns
tPLH	1C	Y	3			32	48	ns
tPHL	1C	Y	3			32	48	ns

$\mathbb{1}_{\text {tPLH } \equiv \text { propagation delay time, low-to-high-level output }}$
${ }^{2} \mathrm{PHL}=$ propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54157, SN54L157, SN54LS157, SN54LS158, SN54S157, SN54S158, SN74157, SN74L157, SN74LS157, SN74LS158, SN74S157, SN74S158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS
 BULLETIN NO. DL-S 7611847, MARCH 1974-REVISED OCTOBER 1976

features

- Buffered Inputs and Outputs
- Three Speed/Power Ranges Available

TYPES	TYPICAL AVERAGE PROPAGATION TIME	TYPICAL POWER DISSIPATION
'157	9 ns	150 mW
'L157	18 ns	75 mW
'LS157	9 ns	49 mW
'S157	5 ns	250 mW
'LS158	7 ns	24 mW
'S158	4 ns	195 mW

applications

- Expand Any Data Input Point
- Multiplex Dual Data Buses
- Generate Four Functions of Two Variables (One Variable Is Common)
- Source Programmable Counters
description
These monolithic data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The '157, 'L157, 'LS157, and 'S157 present true data whereas the 'LS158 and 'S158 present inverted data to minimize propagation delay time.

INPUTS					OUTPUT Y	
STROBE	SELECT	A	B	'157, 'L157,	'LS158	
				LS157,'S157	'S158	
H	X	X	X	L	H	
L	L	L	X	L	H	
L	L	H	X	H	L	
L	H	X	L.	L	H	
L	H	X	H	H	L	

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal

TYPES SN54157, SN54L157, SN74157, SN74L157, QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS
functional block diagram
'157, 'L157

7
schematics of inputs and outputs
'157, 'L157

'157, 'L157

TYPES SN54LS157, SN54LS158, SN54S157, SN54S158, SN74LS157, SN74LS158, SN74S157, SN74S158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS
functional block diagrams schematics of inputs and outputs

S or G inputs: $R_{\text {eq }}=8.5 \mathrm{k} \Omega$ NOM
A or B inputs: $R_{\text {eq }}=17 \mathrm{k} \Omega$ NOM

'S157, 'S158
EQUIVALENT OF EACH INPUT

S or G inputs: $R_{\text {eq }}=1.4 \mathrm{k} \Omega$ NOM

TYPICAL OF ALL OUTPUTS
$--\frac{1}{50 \Omega \text { NOM }} v_{C C C}$

TYPES SN54157, SN74157

QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions							
	SN54157			SN74157			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54157		SN74157		UNIT
		MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage		2		2		V
$V_{\text {IL }}$ Low-level input voltage			0.8		0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5		-1.5	V
VOH High-level output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4	2.4	3.4	V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{O}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4		0.20 .4	\checkmark
If Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		1		1	mA
$\mathrm{I}_{1 \mathrm{H}} \quad$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$
I/L Low-level input current	$V_{C C}=$ MAX, $\quad V_{1}=0.4 \mathrm{~V}$		-1.6		-1.6	mA
IoS Short-circuit output current \S	$\mathrm{V}_{C C}=$ MAX	-20	-55	-18	-55	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2		$30 \quad 48$		$30 \quad 48$	mA

\dagger^{\dagger} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second. NOTE 2: ${ }^{\mathrm{I}} \mathrm{CC}$ is measured with 4.5 V applied to all inputs and all outputs open.
switching characteristics, $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
7

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Data	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=400 \Omega, \\ & \text { See Note } 3 \end{aligned}$		9	14	ns
tPHL				9	14	
tPLH	Strobe			13	20	ns
tPHL				14	21	
tPLH	Select			15	23	ns
tPHL				18	27	

$\|_{\mathrm{IPLH}} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {t PHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

recommended operating conditions

	SN54L157		SN74L157		UNIT
	MIN	NOM	MAX	MIN	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		V
$V_{\text {IL }}$ Low-level input voltage			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \hline \mathrm{VC}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}^{2}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.4	V
VoL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{O}_{\mathrm{LL}}=8 \mathrm{~mA} \end{array}$		0.20 .4	V
I/ Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
IIH High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$		20	$\mu \mathrm{A}$
IL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, ~ \mathrm{~V}_{1}=0.4 \mathrm{~V}$		-0.8	mA
IoS Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=$ MAX	-9	-28	mA
${ }^{\text {I CC }}$ Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2		$15 \quad 24$	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with 4.5 V applied to all inputs and all outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Data	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=800 \Omega, \\ & \text { See Note } 3 \end{aligned}$		18	28	ns
tPHL				18	28	
tPLH	Strobe			26	40	ns
tPHL				28	42	
${ }^{\text {tPLH }}$	Select			30	46	ns
tPHL				36	54	

I $t_{\text {pLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS157, SN54LS158, SN74LS157, SN74LS158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions							
	SN54LS'			SN74LS'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	\checkmark
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS'			SN74LS'			UNIT			
			MIN	TYP \ddagger	max	MIN	TYP \ddagger	MAX							
$\mathrm{V}_{1 H}$	High-level input voltage								2			2			v
$\mathrm{V}_{\text {IL }}$	Low-level input voltage							0.7			0.8	v			
$\mathrm{V}_{\text {IK }}$	input clamp voltage		$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$					-1.5			-1.5	V			
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, & \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$			2.5	3.4		2.7	3.4		V			
$V_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
			$1 \mathrm{OL}=8 \mathrm{~mA}$						0.35	0.5					
1	Input current at maximum input voltage	S or G input		$V_{C C}=$ MAX,	$V_{1}=7 \mathrm{~V}$				0.2			0.2	mA		
		A or B input						0.1			0.1				
It	High-level input current	S or G input	$\mathrm{V}_{\mathrm{Cc}}=$ MAX,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				40			40	$\mu \mathrm{A}$			
		A or B input						20			20				
IIL	Low-level input current	S or G input	$V_{C C}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$				-0.8			-0.8	mA			
		A or B input						-0.4			-0.4				
los	Short-circuit output current \S		$V_{C C}=$ MAX			-20		-100	-20		-100	mA			
'cc	Supply current		$V_{C C}=M A X,$	See Note 2	'LS157		9.7	16		9.7	16	mA			
			'LS158			4.8	8		4.8	8					

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.
NOTE 2: ' CC is measured with 4.5 V applied to all inputs and all outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER 1 I	FROM (INPUT)	TEST CONDITIONS	${ }^{\text {LS }}$ S157			${ }^{\text {L } 25158}$			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	Data	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 4		9	14		7	12	ns
tpHL				9	14		7	12	ns
tPLH	Strobe			13	20		11	17	ns
tpHL				14	21		12	18	
tPLH	Select			15	23		13	20	ns
tPHL				18	27		16	24	

${ }^{1} \mathrm{t}_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54S157, SN54S158, SN74S157, SN74S158 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	SN54S157 SN54S158			SN74S157 SN74S158			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL.			20			20	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54S157 SN74S157			SN54S158 SN74S158			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8					0.8	V		
$V_{\text {LK }}$	Input clamp voltage		$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{i}}=-18 \mathrm{~mA}$				-1.2			1.2	V		
V_{OH} High-level output voltage			$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	Series 54S	2.5	3.4		2.5	3.4		V		
			Series 74S	2.7	3.4		2.7	3.4					
V OL Low-level output voltage				$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$				0.5			0.5	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1			1	mA		
$I_{\text {IH }}$ High-level input current		S or G input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				100			100	$\mu \mathrm{A}$		
		A or B input					50			50			
IIL L	Low-level input current	S or G input	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-4			-4	mA		
		A or B input					-2			-2			
Ios Short-circuit output current §	Short-circuit output current \S				-40		-100	-40		-100	mA		
ICC	Supply current		$V_{C C}=$ MAX, See Note 2			50	78		39	61	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\ddagger All typical values are at $\mathrm{V} C C=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 2: I CC is measured with 4.5 V applied to all inputs and outputs open
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER !	FROM (INPUT)	TEST CONDITIONS	SN54S157 SN74S157			SN54S158 SN74S158			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	Data	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega, \\ & \text { See Note } 3 \end{aligned}$		5	7.5		4	6	ns
tPHL				4.5	6.5		4	6	
tPL. ${ }^{\text {d }}$	Strobe			8.5	12.5		6.5	11.5	ns
tPHL				7.5	12		7	12	
tPLH	Select			9.5	15		8	12	ns
tPHL				9.5	15		8	12	

$\int_{\text {tpLH } \equiv \text { propagation delay time, low-to-high-level output }}$
${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

- Open-Collector Outputs for Interfacing with MOS or Memory Decoders/Drivers
- Decodes 4 Binary-Coded Inputs into One of 16 Mutually Exclusive Outputs
- Performs the Demultiplexing Function by Distributing Data from One Input Line to Any One of 16 Outputs
- Typical Average Propagation Delay Times: 24 ns through 3 Levels of Logic 19 ns from Strobe Input
- Output Off-State Current is Less Than $50 \mu \mathrm{~A}$
- Fully Compatible with Most TTL, DTL, and MSI Circuits

description

Each of these monolithic, 4 -line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive open-collector outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing MOS memory decoding or for interfacing with discrete memory address drivers. For ultra-high-speed applications, the SN54S138/SN74S138 or SN54S139/SN74S139 is recommended.
These circuits are fully compatible for use with most other TTL and DTL circuits. Input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design. Input buffers are used to lower the fan-in requirement to only one normalized Series 54/74 load. A fan-out to 10 normalized Series 54/74 loads in the low-level state is available from each of the sixteen outputs. Typical power dissipation is 170 mW .
The SN54159 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74159 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
function table
Same as SN54154, SN74154. See page 7-172.
functional block diagram
Same as SN54154, SN74154. See page 7-172.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal

recommended operating conditions

	SN54159			SN74159			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8	V
$\mathrm{V}_{1 \mathrm{~K}}$. Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
${ }^{\prime} \mathrm{OH}$ High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{array}$		50	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.4	v
! i \quad Input current at maximum input voltage	$\mathrm{V}_{\text {cc }}=\frac{\mathrm{Lf}}{\text { mix }}$, $\mathrm{V}_{1}-5.5 \mathrm{~V}$		1	mA
$\mathrm{I}_{\text {IH }}$. High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, All inputs grounded		$34 \quad 56$	mA

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :---: | :---: | :---: | UNIT \mid

NOTE 2: See load circuit and waveforms shown on page 3-10.

schematics of inputs and outputs

'160, '161,'LS160A, 'LS161A . . . SYNCHRONOUS COUNTERS WITH DIRECT CLEAR
'162, '163, 'LS162A, 'LS163A, 'S162, 'S163 . . . FULLY SYNCHRONOUS COUNTERS
SERIES 54', 54LS', 54S' . . J OR W PACKAGE

- Internal Look-Ahead for Fast Counting

SERIES 74', 74LS', 74S' . . . J OR N PACKAGE

- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Load Control Line
- Diode-Clamped Inputs

TYPE	TYPICAL PROPAGATION TIME, CLOCK TO O OUTPUT	TYPICAL MAXIMUM CLOCK FREQUENCY	$\begin{aligned} & \text { TYPICAL } \\ & \text { POWER } \\ & \text { DISSIPATION } \end{aligned}$
'160 thru '163	14 ns	32 MHz	305 mW
'LS160A thru 'LS 163 A	A 14 ns	32 MHz	93 mW
'S162 and 'S163	9 ns	70 MHz	475 mW

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The '160, '162, 'LS160A, 'LS162A, and 'S162 are decade counters and the '161, '163, 'LS161A, 'LS163A, and 'S163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input of the ' 160 thru ' 163 or 'S163A or 'S162 should be avoided when the clock is low if the enable inputs are high at or before the transistion. This restriction is not applicable to the 'LS160A thru 'LS163A. The clear function for the ' 160 , ' 161 , 'LS160A, and 'LS161A is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. The clear function for the '162, '163, 'LS162A, 'LS163A, 'S162, and 'S163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock' pulse, regardiless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL). Low-to-high transitions at the clear input of the ' 162 and ' 163 should be avoided when the clock is low if the enable and load inputs are high at or before the transition.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_{A} output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs of the ' 160 thru ' 163 should occur only when the clock input is high. Transitions at the enable P or T inputs of the 'LS160A thru 'LS163A or 'S162 and 'S163 are allowed regardless of the level of the clock input.
'LS160A thru 'LS163A, 'S162 and 'S163 feature a fully independent clock circuit. Changes at control inputs (enable P or T , or clear) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.
The 'LS160A thru 'LS163A are completely new designs. Compared to the original 'LS160 thru 'LS163, they feature 0 -nanosecond minimum hold time and reduced input currents I_{IH} and IIL.

TYPES SN54LS160A THRU SN54LS163A, SN74LS160A THRU SN74LS163A
SYNCHRONOUS 4-BIT COUNTERS

TYPES SN54160, SN54162, SN54LS160A, SN54LS162A, SN54S162, SN74160, SN74162, SN74LS160A, SN74LS162A, SN74S162 SYNCHRONOUS 4-BIT COUNTERS
'160, '162, 'LS160A, 'LS162A, 'S162 DECADE COUNTERS
typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

1. Clear outputs to zero ('160 and 'LS160A are asynchronous; ' 162 , 'LS162A, and 'S162 are synchronous)
2. Preset to BCD seven
3. Count to eight, nine, zero, one, two, and three
4. Inhibit

7

TYPES SN54161, SN54163, SN54LS161A, SN54LS163A, SN54S163, SN74161, SN74163, SN74LS161A, SN74LS163A, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

'161, 'LS161A, '163, 'LSS163A, 'S163 BINARY COUNTERS
typical clear, preset, count, and inhibit sequences
Illustrated below is the following sequence:

1. Clear outputs to zero ('161 and 'LS161A are asynchronous; '163, 'LS163A, and 'S163 are synchronous)
2. Preset to binary twelve
3. Count to thirteen, fourteen fifteen, zero, one, and two
4. Inhibit

TYPES SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the coun enable inputs P and T
recommended operating conditions

		SN54160, SN54161 SN54162, SN54163			SN74160, SN74161 SN74162, SN74163			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-800			-800	$\mu \mathrm{A}$
Low-level output current, 1 OL				16			16	mA
Clock frequency, folock		0		25	0		25	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)		25			25			ns
Width of clear pulse, ${ }_{\text {t }}$ (clear)		20			20			ns
Setup time, $\mathrm{t}_{\text {Su }}($ see Figures 1 and 2)	Data inputs A, B, C, D	20			20			ns
	Enable P	20			20			
	Load	25			25			
	Clear ${ }^{\circ}$	20			20			
Hold time at any input, th		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

${ }^{\circ}$ This applies onlv for' '162 and ' 163 , which have synchronous clear inputs.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	$\begin{array}{\|l\|} \hline \text { SN54160, SN54161 } \\ \text { SN54162, SN54163 } \\ \hline \end{array}$			SN74160, SN74161 SN74162, SN74163			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		v	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}^{2}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
${ }^{1} \mathrm{H}$	High-leve! input current	Clock or enable T	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			80			80		
		Other inputs				40			40	$\mu \mathrm{A}$	
$1!$	Low-level input current	Clock or enable T	$v_{C C}=M \Delta x, \quad v_{i}=0.4 v$			-3.2			-3.2		
		Other inputs				-1.6			-1.6	ma	
Ios	Short-circuit output current§		$\mathrm{V}_{\mathrm{Cc}}=$ MAX	-20		-57	-18		-57	mA	
${ }^{\text {I CCH }}$	Supply current, all outputs high		$\mathrm{V}_{C C}=\mathrm{MAX}$, See Note 3		59	85		59	94	mA	
ICCL	Supply current, all outputs low		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, See Note 4		63	91		63	101	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTES: 3. ${ }^{\mathrm{I}} \mathrm{CCH}$ is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
4. 'CCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$			$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=400 \Omega, \end{aligned}$ See Figures 1 and 2 and Notes 5 and 6	25	32		ns
tPLH	Clock	Ripple carry			23	35	ns
tPHL					23	35	
tpLH	Clock (load input high)	Any			13	20	ns
tPHL		Q			15	23	
tPLH	Clock (load input low)	Any			17	25	ns
tPHL		Q			19	29	
tPLH	Enable T	Ripple carry			11	16	ns
tPHL					11	16	
tPHL	Clear	Any Q			26	38	ns

If $_{\text {max }} \equiv$ Maximum clock frequency
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPLH }}=$ propagation delay time, low-to-high-level output
tPHL $^{\text {= propagation delay time, high-to-low-level output }}$
NOTES: 5. Load circuit is shown on page 3-10.
6. Propagation delay for clearing is measured from the clear input for the ' 160 and ' 161 or from the clock input transition for the '162 and '163.

TYPES SN54LS160A, THRU SN54LS163A, SN74LS160A, THRU SN74LS163A, SYNCHRONOUS 4-BIT COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 7: Voltage values are with respect to network ground terminal.
recommended operating conditions

			SN4L			N74LS		
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-400			-400	$\mu \mathrm{A}$
Low-level output current, 1 OL				4			8	mA
Clock frequency, ficlock		0		25	0		25	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)		25			25			ns
Width of clear pulse, ${ }^{\text {w }}$ (clear)		20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figures 1 and 2)	Data inputs A, B, C, D	20			20			ns
	Enable P or T	20			20			
	Load	20			20			
	Clear ${ }^{\circ}$	20			20			
Hold time at any input, th		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	C

${ }^{\ominus}$ This applies only for 'LS162 and 'LS163, which have synchronous clear inputs.

TYPES SN54LS160A THRU SN54LS163A, SN74LS160A THRU SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS'			SN74LS'			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\text {º }}$	MAX					
$\mathrm{V}_{1 \mathrm{H}}$ High-level input voltage							2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage							0.7			0.8	V		
$V_{\text {IK }}$ Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
$\mathrm{VOH}_{\mathrm{OH}}$ High-level output voltage			$\begin{aligned} & V_{C C}=\text { MiN, } \\ & V_{I L}=V_{1 L} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.5	3.4		2.7	3.4		V		
VOL Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			${ }^{\prime} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
11	Input current at maximum input voltage	Data or enable P		$V_{C C}=M A X$	$V_{1}=7 \mathrm{~V}$			0.1			0.1	mA	
		Load, clock, or enable T					0.2			0.2			
		Clear ('LS160A, 'LS161A)					0.1			0.1			
		Clear ('LS162A, 'LS163A)					0.2			0.2			
${ }^{1} \mathrm{H}$	High-level inpui current	Data or enable P	$V_{C C}=\mathrm{MAX}$,	$V_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
		Load, clock, or enable T					40			40			
		Ciear ('LSí̄UA, 'LSí̄iÀ)					20			20			
		Clear ('LS162A, 'LS163A)					40			40			
IIL	Low-level input current	Data or enable P	$V_{C C}=$ MAX	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		Load, clock, or enable T					-0.8			-0.8			
		Clear ('LS160A, 'LS161A)					-0.4			-0.4			
		Clear ('LS162A, 'LS163A)					-0.8			-0.8			
IOS Short-circuit output current ${ }^{\text {\% }}$			$\mathrm{V}_{C C}=\mathrm{MAX}$		-20		-100	-20		-100	mi		
$\mathrm{I}_{\mathrm{CCH}}$ Supply current, all outputs high			$V_{C C}=$ MAX	See Note 3		18	31		18	31	mA		
$I_{\text {ICCL }}$ Supply current, all outputs low			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$.	See Note 4		19	32		19	32	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
$\frac{\text { * }}{3}$ Ali typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time, and duration of the short-circuit shauld not exceed one second.
NOTES: 3. ${ }^{1} \mathrm{CCH}$ is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open
4. ' CCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {I }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$			$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Figures 1 and 2 and Notes 8 and 9	25	32		MHz
tPLH	Clock	Ripple carry			20	35	ns
tPHL					18	35	
tPLH	Clock (load input high)	Any			13	24	ns
tPHL		Q			18	27	
tPLH	Clock (load input low)	Any			13	24	ns
tPHL		Q			18	27	
tPLH	Enable T	Ripple carry			9	14	ns
tPHL					9	14.	
tPHL	Clear	Any 0			20	28	ns

$I_{f_{\text {max }}} \equiv$ Maximum clock frequency
$t_{P L H} \equiv$ propagation delay time, low-to-high-level output.
PHL \equiv propagation delay time, high-to-low-level output.
NOTES: 8. Load circuit is shown on page 3-11
9. Propagation delay for clearing is measured from the clear input for the 'LS160A and 'LS161A or from the clock transition for the 'LS162A and 'LS163A

TYPES SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN54S162, SN54S163			SN74S162, SN74S163			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}				-1			-1	mA
Low level output current, 1 OL				20			20	mA
Clock frequency, f clock		0		40	0		40	MHz
Width of clock pulse, $\mathrm{t}_{\text {w (clock) }}$ (high or low)		10			10			ns
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear)		10			10			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 4)	Data inputs, A, B, C, D	4			4			ns
	Enable P or T	12			12			
	Load	14			14			
	Clear	14			14			
	Load inactive-state	12			12			
	Clear inactive-state	12			12			
Release time, trelease (see Figure 4)	Enable P or T			4			4	ns
Hold time, th (see Figure 4)	Data inputs A, B, C, D	3			3			ns
	Load	0			0			
	Clear	0			0			
Operating free-air temperature, T_{A} (see Note 10)		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.
10. An SN54S162 or SN54S163 in the W package operating at free air temperatures above $91^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case to free-air, $\mathrm{R}_{\theta \mathrm{CA}}$, of not more than $26^{\circ} \mathrm{C} / \mathrm{W}$.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54S162 SN54S163			SN74S162 SN74S163			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$V_{\text {IH }}$	High-level input voltage				2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
VIK	Input clamp voitage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad 1_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	2.5	3.4		2.7	3.4		V	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$			0.5			0.5	V	
II	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA	
${ }_{1}{ }^{\text {H }}$	High-level input current	Enable T	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			100			100	$\mu \mathrm{A}$	
		Other inputs				50			50		
IIL	Low-level input current	Enable T	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.5 \mathrm{~V}$			-4			-4	mA	
		Other inputs				-2			-2		
Ios	Short-circuit output current ${ }^{\text {§ }}$		$V_{C C}=$ MAX	-40		-100	-40		-100	mA	
ICC	Supply durrent		$V_{C C}=$ MAX		95	160		95	160	$m A$	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\prime \prime} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	T0 (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$			$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega, \end{aligned}$ See Figures 1, 3, and 4 and Note 5	40	70		MHz
${ }_{\text {PPLH }}$	Clock	Rippie carry			14	25	ns
tPHL					17	25	
tPLH	Clock	Any 0			8	15	ns
tPHL					10	15	
tPLH	Enable T	Ripple carry			10	15	ns
tPHL					10	15	

[^17]TYPES SN54160 THRU SN54163, SN54LS160A,THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163.
SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

PARAMETER MEASUREMENT INFORMATION

7

VOLTAGE WAVEFORMS

NOTES: A. The input pulses are supplied by a generator having the following characteristics: $P R R \leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%$, $\mathrm{Z}_{\text {Out }} \approx 50 \bar{\Omega}$; for ' 160 thru ' $163, \mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}$; for'LS160A thru' LS163A, $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$; and for ' S 162 , 'S 163 , $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$. Vary PRR to measure $f_{\text {max }}$
B. Outputs Q_{D} and carry are tested at t_{n+10} for '160,'162,'LS160A,'LS162A, and 'S162, and at t_{n+16} for ' 161 , ' 163 , 'LS161A LS163A, and 'S163, where t_{n} is the bit time when all outputs are low.
C. For '160 thru ' 163, 'S162, and 'S163, $V_{\text {ref }}=1.5 \mathrm{~V}$; for 'LS 160 A thru ' $\mathrm{LS} 163 \mathrm{~A}, \mathrm{~V}_{\text {ref }}=1.3 \mathrm{~V}$.

FIGURE 1-SWITCHING TIMES

TYPES SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

TYPES SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, Z_{\text {out }} \approx 50 \Omega$.
B. ${ }^{1} P L H$ and $t_{P H L}$ from enable T input to carry output assume that the counter is at the maximum count $\left(Q_{A}\right.$ and Q_{D} high for 'S162, all Q outputs high for ' S 163).

FIGURE 3-PROPAGATION DELAY TIMES FROM ENABLE T INPUT TO CARRY OUTPUT

N-BIT SYNCHRONOUS COUNTERS

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The '160, '162, LS160A, 'LS162A, or 'S162 will count in BCD and the '161, '163, 'LS161A, 'LS163A or 'S163 will count in binary. Virtually any count mode (modulo- $\mathrm{N}, \mathrm{N}_{1}$-to- $\mathrm{N}_{2}, \mathrm{~N}_{1}$-to-maximum) can be used with this fast look-ahead circuit.

- Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

TYPICAL

TYPE | MAXIMUM | TYPICAL |
| :---: | :---: |
| CLOCK FREQUENCY | | POWER DISSIPATION

'164	36 MHz	21 mW per bit
'L164	18 MHz	11 mW per bit
'LS164	36 MHz	10 mW per bit

These 8 -bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.
Series $54,54 \mathrm{~L}$, and 54 LS devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series $74,74 \mathrm{~L}$, and 74 LS devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

INPUTS				OUTPUTS		
CLEAR	CLOCK	A	B	$\mathrm{a}_{\text {A }}$	a_{B}	O_{H}
L	X	X	X	L	L	L
H	L	x	x	$\mathrm{a}_{\text {AO }}$	O_{BO}	O_{HO}
H	\dagger	H	H	H	$\mathrm{a}_{\text {An }}$	$a_{G n}$
H	\uparrow	L	x	L	$a_{A n}$	a_{Gn}
H	\uparrow	x	L	L	$\mathrm{a}_{\text {An }}$	$a_{G n}$

$H=$ high level (steady state), $L=$ low levet (steady state)
$X=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level.
$\alpha_{A O}, \alpha_{B O}, \alpha_{H O}=$ the level of α_{A}, a_{B}, or α_{H}, respectively, before the indicated $\mathrm{a}_{\mathrm{AO}}, \mathrm{a}_{\mathrm{BO}}, \mathrm{a}_{\mathrm{HO}}$ steady-state input conditions were established
$Q_{A n}, Q_{G n}=$ the level of Q_{A} or Q_{G} before the most-recent \uparrow transition of the clock; indicates a one-bit shift.
schematics of inputs and outputs
typical clear, shift, and clear sequences

functional block diagram
7

TYPES SN54164, SN74164

8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54164			SN74164			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			8			8	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$	0		25	0		25	MHz
Width of clock or clear input pulse, t_{w}	20			20			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	15			15			ns
Data hold time, $\mathrm{th}^{\text {(}}$ (see Figure 1)	5			5			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54164			SN74164			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8					0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$	-1.5			-1.5			V
$\mathrm{VOH}^{\text {O }}$ High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.4	3.2		2.4	3.2		V
VOL Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{MIN}}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$0.2 \quad 0.4$			0.20 .4			V
I) Input current at maximum input voltage	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$,			1			1	mA
IIH High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
IOS Short-circuit output current ${ }^{\text {¢ }}$	$V_{C C}=M A X$		-10		-27.5	-9		-27.5	mA
ICC Supply current	$V_{C C}=M A X,$ See Note 2	V_{1} (clock) $=0.4 \mathrm{~V}$	30			30			mA
		$\mathrm{V}_{\text {I(clock) }}=2.4 \mathrm{~V}$		37	54		37	54	

${ }^{\dagger}$ For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than two outputs should be shorted at a time.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with outputs open, serial inputs grounded, and a momentary ground, then 4.5 V , applied to clear.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$R_{L}=800 \Omega$ See Figure 1	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	25	36		MHz
\qquad		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		24	36	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		28	42	
Propagation delay time, low-to-high-level tPLH Q outputs from clock input		$C_{L}=15 \mathrm{pF}$	8	17	27	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	10	20	30	
Propagation delay time, high-to-low-leveltPHL Q outputs from the clock input		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	10	21	32	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	10	25	37	

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54L164			SN74L164			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-ievei output currenti, i_{OH}			-200			-200	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			4	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$	0		12	0		12	MHz
Width of clock or clear input pulse, t_{w}	40			40			ns
Data setup time, ${ }_{\text {su }}$ (see Figure 1)	30			30			ns
Data hold time, t_{h} (see Figure 1)	10			10			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$	SN54L164			SN74L164			UNIT
		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\text {+ }}$	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage				0.8			0.8	V
$V_{1 K}$ Input clamp voltage	$V_{C C}=M!N, \quad!_{i}=-12 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}, \end{array}$	2.4	3.2		2.4	3.2		V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
I_{IL} Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8			-0.8	mA
IOS Short-circuit output current \S	$\mathrm{V}_{C C}=\mathrm{MAX}$	-5		-20	-4		-20	mA
ICC Supply current	$\mathrm{V}_{\mathrm{CC}}=$ MAX, See Note 3		19	27		19	27	mA

${ }^{\dagger}$ For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
Not more than two outputs should be shorted at a time.
NOTE 3: I CC is measured with outputs open, serial inputs grounded, the clock input at 2.4 V , and a momentary ground, then 4.5 V , applied to clear.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }_{\text {frax }}$ Maximum clock frequency	$R_{L}=800 \Omega,$ See Figure 1	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	12	18		MHz
Propagation delay time, high-to-low-level tPHL Q outputs from clear input		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		48	72	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		56	84	
$\begin{aligned} & \text { Propagation delay time, low-to-high-level } \\ & \text { tPLH outputs from clock input } \end{aligned}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	8	34	54	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	10	20	60	
$\begin{aligned} & \text { Propagation delay time, high-to-low-level } \\ & \text { tPHL } Q \text { outputs from the clock input } \end{aligned}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	10	42	64	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	10	50	74	

8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

REVISED OCTOBER 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS164			SN74LS164			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			8	mA
Clock frequency, f ${ }_{\text {clock }}$	0		25	0		25	MHz
Width of clock or clear input pulse, t_{w}	20			20			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	15			15			ns
Data hold time, t_{h} (see Figure 1)	5			5			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			SN54LS164			SN74LS164			UNIT			
		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TVP ${ }^{\ddagger}$	MAX							
$\mathrm{V}_{\text {IH }}$	High-level input voltage							2			2			\checkmark
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V			
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,					-1.5			-1.5	V			
V_{OH}	High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & I_{O H}=-400 \mu \mathrm{~A} \end{array}$			2.5	3.5		2.7	3.5		\checkmark			
VOL	Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max & \\ \end{array}$		$1 \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5				
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$					0.1			0.1	mA			
1 H	High-level input current	$V_{C C}=$ MAX, $\quad V_{i}=2.7$					20			20	$\mu \mathrm{A}$			
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,					-0.4			-0.4	mA			
Ios	Short-circuit output current \S	$\mathrm{V}_{\text {CC }}=$ MAX			-20		-100	-20		-100	mA			
${ }^{\text {I CC }}$	Supply current	$V_{C C}=$ MAX, See Note 3				16	27		16	27	mA			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ Not more than one outplit should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 3: ICC is measured with outputs open, serial inputs grounded, the clock input at 2.4 V , and a momentary ground, then 4.5 V applied to clear
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Figure } 1 \end{aligned}$	25	36		MHz
tPHL Propagation delay time, high-to-low-level Q outputs from clear input			24	36	ns
tpLH Propagation delay time, low-to-high-level Q outputs from clock input			17	27	ns
tPHL Propagation delay time, high-to-low-level Q outputs from clock input			21	32	ns

TYPES SN54164, SN54L164, SN54LS164, SN74164, SN74L164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion

	TYPICAL MAXIMUM	TYPICAL
TYPE	CLOCK FREQUENCY	POWER DISSIPATION
'165	26 MHz	210 mW
'LS165	35 MHz	105 mW

description

The '165 and 'LS165 are 8 -bit serial shift registers that shift the data in the direction of Q_{A} toward O_{H} when clocked. Parallel-in access to each stage is made available by eight individual direct data inputs that are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

Clocking is accomplished through a 2 -input positive-NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking and holding either clock input low with the shift/load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the shift/load input is high. Data at the parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input independently of the levels of the clock, clock inhibit, or serial inputs.

INPUTS					INTERNAL OUTPUTS		$\begin{gathered} \text { OUTPUT } \\ \sigma_{H i} \end{gathered}$
SHIFT/ LOAD	CLOCK INHIBIT	CLOCK	SERIAL	PARALLEL			
				A... H	$\mathbf{O}_{\mathbf{A}}$	O_{B}	
L	X	X	X	a...h	a	b	h
H	L	L	X	X	$\mathrm{Q}_{\text {A0 }}$	Q_{B0}	Q_{HO}
H	L	\uparrow	H	X	H	$Q_{A_{n}}$	O_{Gn}
H	L	\uparrow	L	X		$\mathrm{Q}_{\text {An }}$	Q_{G}
H	H	x	x	X	$\mathrm{O}_{\text {AO }}$	Q_{B0}	$\mathrm{OHO}_{\mathrm{HO}}$

See explanation of function tables on page 3-8.
schematic of inputs and output
'165

'LS165

typical shift, load, and inhibit sequences

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interamitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies tor the ' 165 to the shift/load inpur in conjunction with the clock-inhibit inputs.

TYPES SN54165, SN74165 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54165			SN74165			UNIT	
			MIN	TYPI	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V	
VOH	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{l}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		V	
V_{OL}	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
11	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
I_{IH}	High-level input current	Shift/load	$V_{C C}=$ MAX, $V_{1}=2.4 \mathrm{~V}$			80			80	$\mu \mathrm{A}$	
		Other inputs				40			40		
	Low-level input current	Shift/load	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$			-3.2			-3.2	mA	
		Other inputs				-1.6			-1.6		
IOS Short-circuit output current \$	Short-circuit output current \S §		$V_{C C}=$ MAX	-20		-55	-18		-55	mA	
ICC Supply current	Supply current		$V_{C C}=$ MAX, See Note 3		42	63		42	63	mA	

NOTE 3: With the outputs open, clock inhibit and clock at 4.5 V , and a clock pulse applied to the shift/load input, ICC is measured first with the parallel inputs at 4.5 V , then with the parallel inputs grounded.
tfor conditions shown as MIN or MAX, use the approprlate value specified under recommended eperating condirions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TVP	MAX	UNIT
${ }^{\prime}$ max			$C_{L}=15 \mathrm{pF}, R_{L}=400 \Omega$ See figures 1 thru 3	20	26		MHz
tPLH	Load	Any			21	31	ns
${ }^{\text {P PHL }}$					27	40	
tPLH	Clock	Any			16	24	ns
tPHL					21	31	
tPLH	H	O_{H}			11	17	ns
tPHL					24	36	
${ }^{\text {tPLH }}$	H	$\overline{\mathrm{a}}_{\mathrm{H}}$			18	27	ns
tPHL					18	27	

$\Pi_{f_{\text {max }}} \equiv$ maximum clock frequency
$t_{\mathrm{PLH}} \equiv$ propagation delay time, low-to-high-level output
$t_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output

TYPES SN54LS165, SN74LS165 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

recommended operating conditions							
	SN54LS165			SN74LS165			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Clock frequency, felock	0		25	0		25	MHz
Width of clock input pulse, ${ }_{\text {w }}$ (clock)	25			25			ns
Width of load input pulse, $\mathrm{t}_{\text {w }}$ (load)	15			15			ns
Clock-enable setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	30			30			ns
Parallel input setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	10			10			ns
Serial input setup time, $\mathrm{t}_{\text {su }}$ (see Figure 2)	20			20			ns
Shift setup time, $\mathrm{t}_{\text {su }}$ (see Figure 2)	45			45			ns
Hold time at any input, $t_{\text {h }}$	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONṢ ${ }^{\text { }}$		SN54LS165			SN74LS165			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP	MAX					
$\mathrm{V}_{\underline{1} \mathrm{H}}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
$V_{\text {IK }}$	Input clamp voitage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN }, \\ & V_{\text {IL }}=V_{\text {IL }} \max , \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.5	3.5		2.7	3.5		V		
VOL	Low-level output voitage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max }, \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			${ }^{\prime} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
11	Input current at maximum input voltage	Shift/load		$V_{C C}=$ MAX ,	$V_{1}=7 \mathrm{~V}$			0.3			0.3	mA	
		Other inputs					0.1			0.1			
${ }^{1} \mathrm{H}$	Low-level input current	Shift/load	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			60			60	$\mu \mathrm{A}$		
		Other inputs					20			20			
${ }_{1} \mathrm{IL}$	Low-level input current	Shift/load	$V_{C C}=\mathrm{MAX}$,	$V_{1}=0.4 \mathrm{~V}$			-1.2			-1.2	mA		
		Other inputs					-0.4			-0.4			
Ios	Short-circuit output current \S.		$V_{C C}=\mathrm{MAX}$		-20		-100	-20		-100	mA		
ICC	Supply current		$V_{C C}=$ MAX	See Note 3		21	36		21	36	mA		

NOTE 3: With the outputs open, clock inhibit and clock at 4.5 V , and a clock pulse applied to the shift/load input, ICC is measured first with the parallel inputs at 4.5 V , then with the parallel inputs grounded
${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
$\ddagger \mathrm{All}$ typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {[}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$			$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$ See figures 1 thru 3	25	35		MHz
tPLH	Load	Any			22	35	ns
${ }^{\text {tPHL }}$					22	35	
tPLH	Clock	Any			27	40	ns
${ }^{\text {tPHL }}$					28	40	
${ }^{\text {PPLH }}$	H	Q_{H}			14	25	ns
tPHL					21	30	
tPLH	H	$\overline{\mathrm{Q}}_{\mathrm{H}}$			21	30	ns
tPHL					16	25	

$\|_{\text {fax }} \equiv$ maximum clock frequency
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
$\mathrm{tpHL}^{\mathrm{t}} \equiv$ propagation delay time, high-to-low-level output

- Synchronous Load
- Direct Overriding Clear
- Parallel to Serial Conversion

	TYPICAL MAXIMUM	TYPICAL
TYPE	CLOCK FREQUENCY	POWER DISSIP
'166	35 MHz	
LS166	35 MHz	360 mW
		110 mW

functional block diagram

- - $>$. . . dynamic input activated by transition from a high level to a low level.

SN54166, SN54LS166 . . . J OR W PACKAGE SN74166, SN74LS166 . . . J OR N PACKAGE (TOP VIEW)

description
The '166 and 'LS166 8-bit shift registers are compatible with most other TTL and DTL logic families. All '166 and 'LS166 inputs are buffered to lower the drive requirements to one Series 54/74 or Series 54LS/74LS standard ioad, respectively. Input clamping diodes minimize switching transients and simplify system design.

These parallel-in or serial-in, serial-out shift registers have a complexity of 77 equivalent gates on a monolithic chip. They feature gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a two-input positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This, of course, allows the system clock to be free-running and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.
typical clear, shift, load, inhibit, and shift sequences

schematics of inputs and outputs

TYPES SN54166, SN74166
 8-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54166			SN74166			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Clock frequency, f ${ }_{\text {clock }}$	0		25	0		25	MHz
Width of clock or clear pulse, $\mathrm{t}_{\underline{0} \mathrm{w}}$ (see Figure 1)	20			20			ns
Mode-control setup time, $\mathrm{t}_{\text {su }}$	30			30			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (́see Figure i).	20			20			ns
Hold time at any input, t_{h} (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54166			SN74166			UNIT
		MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP \ddagger	MAX	
V_{IH} High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage				0.8			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		v
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	v
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
$\mathrm{I}_{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
IoS Short-circuit output current§	$V_{C C}=$ MAX	-20		-57	-18		-57	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2		72	104		72	116	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: With all outputs open, 4.5 V applied to the serial input, all other inputs except the clock grounded, ICC is measured after a momentary ground, then 4.5 V , is applied to clock.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$C_{L}=15 \mathrm{pF}, \quad R_{L}=400 \Omega,$ See Figure 1	25	35		MHz
tPHL $\begin{aligned} & \text { Propagation delay time, high-to- } \\ & \text { low-level output from clear }\end{aligned}$			23	35	ns
$\begin{aligned} & \text { Propagation delay time, high-to- } \\ & \text { tPHL } \begin{array}{l} \text { low-level output from clock } \end{array} \end{aligned}$			20	30	ns
Propagation delay time, low-totPLH high-level output from clock			17	26	ns

TYPES SN54LS166,SN74LS166

8-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS166		SN74LS166		UNIT
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2		2		V
$V_{\text {IL }}$ Low-level input voltage				0.7		0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5		-1.5	V
VOH High-level output voltage	$\begin{array}{ll} V_{C C}=M_{I N}, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max }, I_{O H}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4	2.7	3.4	V
VOL Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=M I N, \quad V_{I H}=2 V \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$1 \mathrm{OL}=4 \mathrm{~mA}$		$0.25 \quad 0.4$		$0.25 \quad 0.4$	V
		${ }^{1} \mathrm{OL}=8 \mathrm{~mA}$				0.350 .5	
I/Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$			0.1		0.1	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			20		20	$\mu \mathrm{A}$
IIL Low-leve! input current	$V_{C C}=$ MAX, $V_{1} 0.4 \mathrm{~V}$			-0.4		-0.4	mA
IOS Short-circuit output current§	$V_{C C}=$ MAX		-20	-100	-20	-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2			$22 \quad 38$		$22 \quad 38$	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of short-circuit should not exceed one second.
NOTE 2: With all outputs open, 4.5 V applied to the serial input and all other inputs except the clock grounded, CC is measured after a momentary ground, then 4.5 V , is applied to clock.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$C_{L}=15 \mathrm{pF}, \quad R_{\mathrm{L}}=2 \mathrm{k} \Omega$ See Figure 1	25	35		MHz
$\begin{array}{ll} \hline & \text { Propagation delay time, high-to- } \\ \text { tPHL } \\ \text { low-level output from clear } \end{array}$			19	30	ns
tPHLPropagation delay time, high-to- low-level output from clock		8	23	35	ns
tpLHPropagation delay time, low-to- high-level output from clock		8	24	35	ns

TYPES SN54166, SN54LS166, SN74166, SN74LS166 8-BIT SHIFT REGISTERS

NOTE: A. All pulse generators have the following characteristics: $Z_{o u t} \approx 50 \Omega$; for ${ }^{\prime} 166, t_{r} \leqslant 7 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns} ;$ for ${ }^{\prime}$ LS166, $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.
B. The clock pulse has the following characteristics: $\mathrm{t}_{\mathrm{ww} \text { (clock) }} \leqslant 20 \mathrm{~ns}$ and $P R R=1 \mathrm{MHz}$. The clear pulse has the following characteristics: $\mathrm{t}_{\mathrm{w} \text { (clear) }} \geqslant 20 \mathrm{~ns}$ and $\mathrm{t}_{\text {hold }}=0 \mathrm{~ns}$. When testing $\mathrm{f}_{\text {max }}$. vary the clock PRR.
C. C_{L} includes probe and jig capacitance.
D. All diodes are 1 N 3064 or 1 N 916 .
E. A clear pulse is applied prior to each test.
F. Propagation delay times ($t_{\text {PLH }}$ and $t_{P H L}$) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+8} with a functional test.
G. $\mathrm{t}_{\mathrm{n}}=$ bit time before clocking transition
$t_{n+1}=$ bit time after one clocking transition
$\mathrm{t}_{\mathrm{n}+8}=$ bit time after eight clocking transitions
H. For '166 $\mathrm{V}_{\mathrm{ref}}=1.5 \mathrm{~V}$; for ' $\mathrm{LS} 166 \mathrm{~V}_{\mathrm{ref}}=1.3 \mathrm{~V}$.

- Perform Fixed-Rate or Variable-Rate Frequency Division
- For Applications in Arithmetic, Radar, Digital-to-Analog (D/A), Analog-to-Digital (A/D), and other Conversion Operations
- Typical Maximum Clock Frequency ... 32 Megahertz

description

These monolithic, fully synchronous, programmable counters utilize Series 54/74 TTL circuitry to achieve 32-megahertz typical maximum operating frequencies. These decade counters feature buffered clock, clear, enable and set-to-nine inputs to control the operation of the counter, and a strobe input to enable or inhibit the rate input/decoding AND-ORINVERT gates. The outputs have additional gating for cascading and transferring unity-count rates.

SN54167 ... J OR W PACKAGE
SN74167 . . .J OR N PACKAGE (TOP VIEW)

NC-No internal connection

The counter is enabled when the clear, strobe set-to-nine, and enable inputs are low. With the counter enabled, the output frequency is equal to the input frequency multiplied by the rate input M and divided by 10 , ie .:

$$
\begin{aligned}
& f_{\text {out }}=\frac{M \cdot f_{\text {in }}}{10} \\
& \text { where: } M=D \cdot 2^{3}+C \cdot 2^{2}+B \cdot 2^{1}+A \cdot 2^{0} \text { for decimal zero through nine. }
\end{aligned}
$$

When the rate input is binary 0 (all rate inputs low), Z remains high. In order to cascade devices to perform two-decade rate multiplication ($0-99$), the enable output is connected to the enable and strobe inputs of the next stage, the Z output of each stage is connected to the unity/cascade input of the other stage, and the sub-multiple frequency is taken from the Y output. For longer words, see typical application data, Figure 1.

The unity/cascade input, when connected to the clock input, may be utilized to pass the clock frequency (inverted) to the Y output when the rate input/decoding gates are inhibited by the strobe. The unity/cascade input may also be used as a control for the Y output.

All of the inputs of these counters are diode-clamped, and each input, except the clock input, represents one normalized Series 54/74 load. The buffered clock input, used with the strobe gate, is only two Series $54 / 74$ loads. Full fan-out to 10 Series 54/74 loads is available from each of the output. These devices are completely compatible with most TTL and DTL families. Typical dissipation is 270 milliwatts. The SN54167 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and the SN74167 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

STATE AND/OR RATE FUNCTION TABLE (See Note A)												
INPUTS									OUTPUTS LOGIC LEVEL OR NUMBER OF PULSES			NOTES
CLEAR	ENABLE	STROBE	BCD RATE				NUMBER OF CLOCK PULSES	UNITY/ CASCADE				
			D	C	B	A			Y	Z	ENABLE	
H	X	H	X	X	X	X	X	H	L	H	H	B
L	L	L	L	L	L	L	10	H	L	H	1	C
L	L	L	L	L	L	H	10	H	1	1	1	C
L	L	L	L	L	H	L	10	H	2	2	1	c
L	L	L	L	L	H	H	10	H	3	3	1	C
L	L	L	L	H	L	L	10	H	4	4	1	c
L	L	L	L	H	L	H	10	H	5	5	1	C
L	L	L	L	H	H	L	10	H	6	6	1	C
L	L	L	L	H	H	H	10	H	7	7	1	C
L	L	L	H	L	L	L	10	H	8	8	1	c
L	L	L	H	L	L	H	10	H	9	9	1	C
L	L	L	H	L	H	L	10	H	8	8	1	C, D
L	L	L	H	L	H	H	10	H	9	9	1	C, D
L	L	L	H	H	L	L	10	4	\%	8	1	C, 0
L	L	L	H	H	L	H	10	H	9	9	1	C, D
L	L	L	H	H	H	L	10	H	8	8	1	C, D
L	L	L	H	H	H	H	10	H	9	9	1	C, D
L	L	L	H	L	L	H	10	L	H	9	1	E

NOTES: A. $\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant. All remaining entries are numeric counts.
B. This is a simplified illustration of the clear function. The states of clock and strobe can affect the logic level of Y and Z. A low unity/cascade will cause output Y to remain high.
C. Each rate illustrated assumes a constant value at rate inputs; however, these illustrations in no way prohibit variable-rate inputs.
D. These input conditions exceed the range of the decimal rate inputs
E. Unity/cascade can be used to inhibit output Y.
functional block diagram and schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

NOTE 2: $t_{w(c l o c k)}$ is the interval in which the clock is high. $t_{c p}$ is the total clock cycle starting with a negative transition. See Figure 1 on SN5497, SN7497 data sheet,
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
High-level input voltage				2			V
Low-level input voltage						0.8	V
Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
High-fevel output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}^{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		V
Low-level output voltage		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{\text {IL }}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOL}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4	\checkmark
Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
High-level input current	clock input	$V_{C C}=$ MAX	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
	other inputs					40	
Low-level input current	clock imputs	$V_{C C}=$ MAX	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-3.2	mA
	other inputs					-1.6	
Short circuit output current§		$V_{C C}=$ MAX		-18		-55	mA
Supply current, output high		$\mathrm{V}_{\text {CC }}=$ MAX	See Note 3		43		mA
Supply current, output low		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	See Note 4		65	99	mA

NOTES: 3. ${ }^{1} \mathrm{CCH}$ is measured with outputs open and all inputs low.
4. ICCL is measured with outputs open and all inputs high except the set-to-nine input which is low.
${ }^{\dagger}$ For test conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.

TYPES SN54167, SN74167 SYNCHRONOUS DECADE RATE MULTIPLIERS

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$						
PARAMETERS ${ }^{\text {I }}$	FROM INPUT	TO OUTPUT	TEST CONDITIONS	MIN TYP	MAX	UNIT
$f_{\text {max }}$		Enable	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ See Note 5	$25 \quad 32$		MHz
tpLH	Enable			13	20	ns
tPHL				14	21	
tpLH	Strobe	Z		12	18	ns
tPHL				15	23	
tPLH	Clock	Y		26	39	ns
tPHL.				20	30	
tPLH	Clock	Z		12	18	ns
tPHL				17	26	
tPLH	Rate	Z		9	14	ns
tPHL				6	10	
${ }_{\text {tPLH }}$	Unity/Cascade	Y		9	14	ns
tPHL.				6	10	
tPLH	Strobe	Y		19	30	ns
tPHL				22	33	
trin	Clock	Enable			30	ns
tPHL				22	33	
tPLH	Clear	Y		24	36	ns
¢PHL		Z		15	23	
tPHL	Set-to-9	Enable		18	27	ns
tPLH	Any Rate Input	Y			23	ns
tPHL				15	23	
${ }^{{ } f_{\text {max }}}$ is maximum clock frequency. ${ }^{t_{P L H}}$ is propagation delay time, low-to-high-level output. $\tau_{P H L}$ is propagation delay time, high-to-low-level output.						

TYPICAL APPLICATION DATA

This application demonstrates how the decimal-rate multipliers may be cascaded for longer words. Three decades are illustrated (0.999 to 999) although longer words can be implemented by using the pattern shown. The output is decoded either from output Y with a NOR gate or from output Z with a NAND gate. Either method of decoding produces the complement of the output used.

Figure 1
'LS168A, 'S168 . . . SYNCHRONOUS UP/DOWN DECADE COUNTERS
'LS169A, 'S169 . . . SYNCHRONOUS UP/DOWN BINARY COUNTERS
SERIES SN54LS', SN54S' . . . J OR W PACKAGE SERIES SN74LS', SN74S' ... J OR N PACKAGE (TOP VIEW)

Programmable Look-Ahead Up/Down Binary/Decade Counters

- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY		TYPICAL POWER DISSIPATION
	COUNTING UP	COUNTING DOWN	
'LS168A, 'LS169A	35 MHz	35 MHz	100 mW
'S168, 'S169	70 MHz	55 MHz	500 mW

description

These synchronous presettable counters feature an internal carry look-ahead for cascading in high-speed counting applications. The 'LS168A and 'S168 are decade counters and the 'LS169A and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next ciock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs ($\overline{\mathrm{P}}$ and $\overline{\mathrm{T}}$) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input \bar{T} is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the Q_{A} output when counting up and approximately equal to the low portion of the Q_{A} output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the enable $\overline{\mathrm{P}}$ or $\overline{\mathrm{T}}$ inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (enable $\overline{\mathrm{P}}$, enable $\overline{\bar{T}}$, load, up/down) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

The 'LS168A and 'LS169A are completely new designs. Compared to the original 'LS168 and 'LS169, they feature 0 -nanosecond minimum hold time and reduced input currents $I_{I H}$ and $I_{I L}$.

TYPES SN54LS168A, SN54LS169A, SN74LS168A, SN74LS169A SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

functional block diagrams

TYPES SN54S168, SN54S169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS
functional block diagrams

7

TYPES SN54LS168A, SN54S168, SN74LS168A, SN74S168 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

typical load, count, and inhibit sequences
lliustrated below is the following sequence:

1. Load (preset) to BCD seven
2. Count up to eight, nine (maximum), zero, one, and two 3. Inhibit
3. Count down to one, zero (minimum), nine, eight, and seven

TYPES SN54LS169A, SN54S169, SN74LS169A, SN74S169 SYNCHRONOUS 4-BIT UP UP/DOWN COUNTERS
'LS169A, 'S169 BINARY COUNTERS
typical load, count, and inhibit sequences

Illustrated below is the following sequence:

1. Load (preset) to binary thirteen
2. Count up to fourteen, fifteen (maximum), zero, one, and two
3. Inhibit
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen

7

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

This page provides tentative information on a new product. Texas instruments reserves the right to change specifications for this product in any manner without notice.

TEXAS Instruments

TYPES SN54LS168A, SN54LS169A, SN74LS168A, SN74LS169A SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS168A SN54LS169A			SN74LS168A SN74LS169A			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$V_{1 H}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
V^{OH}	High-level output voltage		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V		
VOL Low-level output voltage			$\begin{aligned} & V_{C C}=M 1 N, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			${ }^{1} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
$1 /$	Input current at maximum input voltage	A, B, C, D, $\bar{P}, \mathrm{U} / \overline{\mathrm{D}}$		$V_{C C}=M A X$	$V_{1}=7 \mathrm{~V}$			0.1			0.1	mA	
		Clock, $\overline{\text { T }}$					0.1			0.1			
		Load					0.2			0.2			
$\mathrm{I}_{1} \mathrm{H}$	High-level input current	A, B, C, D, $\overline{\mathrm{P}}, \mathrm{U} / \overline{\mathrm{D}}$	$V_{C C}=$ MAX	$V_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
		Clock, \bar{T}					20			20			
		Load					40			40			
$I_{1 L}$	Low-level input current	A, B, C, D, $\bar{P}, \mathrm{U} / \overline{\mathrm{D}}$	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		Clock, \bar{T}					-0.4			-0.4			
		Load					-0.8			-0.8			
IOS Short-circuit output current ${ }^{\text {¢ }}$	Short-circuit output current ${ }^{\S}$		$V_{C C}=M A X$		-20		-100	-20		-100	mA		
ICC Supply current	Supply current		$V_{C C}=M A X, \quad \text { See Note } 2$			20	34		20	34	mA		

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second
NOTE 2: ICC is measured after applying a momentary 4.5 V , then ground, to the clock input with all other inputs grounded and the outputs open
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
7

PARAMETER ${ }^{\text {I }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$			$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Figures 2 and 3 and Note 3	25	32		MHz
tPLH	Clock	Ripple carry			23	35	ns
${ }^{\text {tPHL }}$					23	35	
tPLH	Clock	Any			13	20	ns
tPHL		0			15	23	
tPLH	Enable \bar{T}	Ripple			10	14	ns
tPHL		carry			10	14	
tPLH ${ }^{\circ}$	Up/Down	Ripple carry			17	25	ns
tPHL ${ }^{\circ}$					19	29	

$I_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }^{\text {tp }}$ LH $=$ propagation delay time, low-to-high-level output
${ }^{\text {t }} \mathrm{PHL} \equiv$ propagation delay time, high-to-low-level output.
Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As th logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transition will be in phase. If the count is maximum (9 for 'LS168A or 15 for 'LS169A), the ripple carry output will be out of phase.
NOTE 3: Load circuit is shown on page 3-11.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

		SN54S168 SN54S169			SN74S168 SN74S169			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-1	mA
Low-level output current, IOL				20			20	mA
Clock frequency, felock		0		40	0		40	MHz
Width of clock pulse, $\mathrm{t}_{\text {w(clock) }}$ (high or low) (see Figure 1)		10			10			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	Data inputs A, B, C, D	4			4			ns
	Enable $\overline{\mathrm{P}}$ or $\overline{\mathrm{T}}$	14			14			
	Load	6			6			
	Up/Down	20			20			
Hold time at any input with respect to clock, $t_{\text {h }}$ (see Figure 1)		1			1			ns
Operating free-air temperature, T_{A} (see Note 6)		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 4. Voltage values, except interemitter voltage, are with respect to network ground terminal.
5. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count 5. This is the voltage bet
enable inputs \bar{P} and \bar{T}.
6. An SNS4S168 or SN54S169 in the W package operating at free-air temperatures above $91^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case to free-air, $\mathrm{R}_{\theta \mathrm{CA}}$, of not more than $26^{\circ} \mathrm{C} / \mathrm{W}$.

TYPES SN54S168, SN54S169, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54S168 SN54S169			SN74S168 SN74S169			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, & \mathrm{~V}_{I \mathrm{H}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	2.5	3.4		2.7	3.4		V	
VOL.	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$			0.5			0.5	V	
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
IH	High-level input current	Enable T	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			100			100	$\mu \mathrm{A}$	
		Other inputs				50			50		
IIL	Low-level input current	Enable $\overline{\text { T }}$	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.5 \mathrm{~V}$			-4			-4	mA	
		Other inputs				-2			-2		
Ios	Short-circuit output current ${ }^{\S}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$	-40		-100	-40		-100	mA	
${ }^{\text {ICC }}$	Supply cureent		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		100	160		100	160	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 2: 'CC is measured after applying a momentary 4.5 V , then ground, to the clock input with all other inputs grounded and the outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM	то	TEST CONDITIONS	UP/D	OWN	HIGH	UP/D	WN	LOW	UNIT
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNT
$f_{\text {max }}$			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ See Figures 2 and 3 and Note 7	40	70		40	55		MHz
tPL.H	Clock	Ripple carry			14	21		14	21	ns
tPHL					20	28		20	28	
tPLH	Clock	Any 0			8	15		8	15	ns
tPHL					11	15		11	15	
tPLH	Enable \bar{T}	Ripple			7.5	11		6	12	n ¢
tPHL		carry			15	22		15	25	
${ }^{\text {PPLH }}{ }^{\circ}$	Up/Down	Ripple carry			9	15		8	15	ns
${ }^{\text {tPHL }}{ }^{\circ}$					10	15		16	22	

- $f_{\text {max }} \equiv$ maximum clock frequency
${ }^{t}{ }^{\text {pLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transition will be in phase. If the count is maximum (9 for ' S 168 or 15 for ' S 169), the ripple carry output will be out of phase.
NOTE 7: Load circuit is shown on page 3-10.

TYPES SN54LS168A, SN54LS169A, SN54S168, SN54S169,
SN74LS168A, SN74LS169A, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP UP/DOWN COUNTERS

voltage waveforms
NOTES: A. The input pulses are supplied by a generator having the following characteristics: $P R R \leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, Z_{\text {out }} \approx 50 \Omega$; for 'LS168A and 'LS169A, $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$, and for ' S 168 and ' $\mathrm{S} 169, \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.
B. For 'LS168A and 'LS169A, $V_{\text {ref }}=1.3 \mathrm{~V}$; for 'S168 and 'S169, $\mathrm{V}_{\text {ref }}=1.5 \mathrm{~V}$.

FIGURE 1 -PULSE WIDTHS, SETUP TIMES, HOLD TIMES

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, Z_{\text {out }} \approx 50 \Omega$; for 'LS168A and 'LS169A, $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$; and for ' S 168 and ' $\mathrm{S} 169, \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.
B. ${ }^{T_{P L H}}$ and $t_{P H L}$ from enable \widetilde{T} input to ripple carry output assume that the counter is at the maximum count (Q_{A} and Q_{D} high for 'LS168A and 'S168, all Q outputs high for 'LS169A and 'S169)
C. For 'LS 168 A and ' $\mathrm{LS} 169 \mathrm{~A}, \mathrm{~V}_{\text {ref }}=1.3 \mathrm{~V}$; for 'S168 and 'S169, $\mathrm{V}_{\text {ref }}=1.5 \mathrm{~V}$.
D. Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0) the ripple carry output transition will be in phase. If the count is maximum (9 for 'LS168A and 'S168, or 15 for 'LS169A and 'S169) the ripple carry output will be out of phase.

FIGURE 2-PROPAGATION DELAY TIMES TO CARRY OUTPUT

TYPES SN54LS168A, SN54LS169A, SN54S168, SN54S169, SN74LS168A, SN74LS169A, SN74S168, SN74S169 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR $\leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, Z_{\text {out }} \approx 50 \Omega$; for 'LS168A and 'LS169A, $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$; and for ' S 168 and ' $\mathrm{S} 169, \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$. Vary PRR to measure $\mathrm{f}_{\text {max }}$.
B. Outputs O_{D} and carry are tested at t_{n+10} for the 'LS168A and 'S168, and at t_{n+16} for the 'LS169A and 'S169, where t_{n} is the bit-time when all outputs are low.
C. For 'LS168A and 'LS169A, $V_{\text {ref }}=1.3 \mathrm{~V}$; for 'S168 and 'S169, $V_{\text {ref }}=1.5 \mathrm{~V}$.

FIGURE 3-PROPAGATION DELAY TIMES FROM CLOCK

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing
- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 1024 Words of n-Bits
- For Use as:

Scratch-Pad Memory
Buffer Storage between Processors Bit Storage in Fast Multiplication Designs

- Open-Collector Outputs with Low

Maximum Off-State Current:
'170... $30 \mu \mathrm{~A}$
'LS170... $20 \mu \mathrm{~A}$

- SN54LS670 and SN74LS670 Are Similar But Have 3-State Outputs description

SN54170, SN54LS170 . . . J OR W PACKAGE SN74170, SN74LS170 . . . J OR N PACKAGE (TOP VIEW)

The ' 170 and 'LS170 MSI 16 -bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G_{W}, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G_{R}, is high, the data outputs are inhibited and remain high.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement-data-entry addressing separate from data-read addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 nanoseconds typical) and the read time (25 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All '170 inputs and all inputs except the read enable and write enable of the 'LS170 are buffered to lower the drive requirements to one Series $54 / 74$ or Series 54LS/74LS standard load, respectively. Input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of these registers may be paralleled to provide n -bit word length.

The SN54170 and SN54LS170 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74170 and SN74LS170 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TYPES SN54170, SN54LS770, SN74170, SN74LS770 4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

logic	WRite function table (SEE NOTES A, B, AND C)							READ FUNCTION TABLE (SEE NOTES A AND D)						
	WRITE INPUTS			WORD				READ INPUTS			OUTPUTS			
	W_{B}	W_{A}	Gw	0	1	2	3	$\mathbf{R}_{\text {B }}$	R_{A}	$\mathrm{G}_{\mathbf{R}}$	01	02	03	04
	L	L	L	Q = D	0_{0}	a_{0}	a_{0}	L	L	L	WOB1	WOB2	W0B3	WOB4
	L	H	L	0_{0}	$\mathrm{Q}=\mathrm{D}$	o_{0}	a_{0}	L	H	L	W1B1	W1B2	W1B3	W1B4
	H	L	L	a_{0}	0_{0}	$\mathrm{Q}=\mathrm{D}$	0_{0}	H	L	L	W2B1	W2B2	W2B3	W2B4
	H	H	L	a_{0}		0_{0}	$\mathrm{Q}=\mathrm{D}$	H	H	L	W3B1	W3B2	W3B3	W3B4
	X	X	H	O_{0}	o_{0}	0_{0}	0_{0}	x	x	H	H	H	H	H

NOTES: A. $\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant.
B. $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs
C. $Q_{0}=$ the level of Q before the indicated input conditions were established.
D. WOB1 $=$ The first bit of word 0 , etc.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

2. An SN54170 in the W package operating at free-air temperatures above $105^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case to free-air, $\mathrm{R}_{\theta \mathrm{CA}}$, of not more than $38^{\circ} \mathrm{C} / \mathrm{W}$

TYPES SN54170, SN74170

4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

NOTES: 2. An SN54170 in the W package operating at free-air temperatures above $105^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case to free-air, $R_{\theta C A}$, of not more than $38 \mathrm{C} / \mathrm{W}$.
3. Write select setup time will protect the data written into the previous address. If protection of data in the previous address is no required, $\mathrm{t}_{\text {su }}(W)$ can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during $\mathrm{t}_{\mathrm{h}}(\mathbf{W})$ will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
4. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is importan only when attempting to read from a location immediately after that location has received new data
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		V
$V_{\text {IL }}$ Low-level input voltage			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
I_{OH} High-ievel output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{array}$		30	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4	V
$\mathrm{I}_{1} \quad$ Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
$\mathrm{I}_{\text {IH }}$ High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	mA
ICC Supply current	$\begin{array}{l\|l} \hline V_{C C}=\text { MAX }, & \text { SN54170 } \\ \text { See Note 5 } & \text { SN74170 } \end{array}$		$127 \S$ 140 $127 \S$ 150	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
§ Typical supply current shown is an average for 50% duty cycle.
NOTE 5: Maximum ${ }^{1} \mathrm{CC}$ is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, al address inputs are grounded, and all outputs are open.

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$						
PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Read enable	Any 0	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ See Figures 1 and 2	10	15	ns
tPHL				20	30	
tPLH	Read Select	Any Q		23	35	ns
tPHL				30	40	
tPLH	Write enable	Any Q	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ See Figures 1 and 3	25	40	ns
tPHL				34	45	ns
${ }^{\text {tPLH }}$	Data	Any 0		20	30	ns
${ }^{\text {tPHL }}$				30	45	

$\mathrm{I}_{\mathrm{t}_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
t $_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
schematics of inputs and outputs

TYPES SN54LST70, SN74LS170

4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

		SN54LS170			SN74LS170			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}				5.5			5.5	V
Low-level output current, IOL				4			8	mA
Width of write-enable or read-enable pulse, t_{w}		25			25			ns
Setup times, high- or low-level data (see Figure 2)	Data input with respect to write enable, t_{su} (D)	10			10			ns
	Write select with respect to write enable, $t_{\text {su }}(W)$	15			15			ns
Hold times, high- or low-levet data (see Note 3 and Figure 2)	Data input with respect to write enable, $\mathrm{t}_{\mathrm{h}}(\mathrm{D})$	15			15			ns
	Write select with respect to write enable, $\mathrm{t}_{\mathrm{h}}(\mathrm{W})$	5			5			ns
Latch time for new data, $\mathrm{t}_{\text {latch }}$ (see Note 4)		25			25			ns
Operating free-air temperature range, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 3. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, $t_{s u}(W)$ can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during $\mathrm{t}_{\mathrm{h}}(\mathrm{W})$ will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
4. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS170			SN74LS170			UNIT		
			MIN	TYP\$	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
IOH	High-level output current		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$			20			20	$\mu \mathrm{A}$		
VOL Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5				
11	Input current at maximum input voltage	Any D, R, or W		$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA	
		G_{R} or G_{W}					0.2			0.2			
IIH	High-level input current	Any D, R, or W	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
		G_{R} or G_{W}					40			40			
	Low-level input current	Any D, R, or W	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 V$				-0,4			-0.4	mA		
		G_{R} or G_{W}					-0.8			-0.8			
${ }^{\text {I CC }}$ Supply current	Supply current		$V_{C C}=$ MAX, See Note 6			25	40		25	40	mA		

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 6: I CC is measured under the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER \mathbb{f}	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Read enable	Any 0	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Figures } 1 \text { and } 2 \end{aligned}$		20	30	ns
tPHL					20	30	
tPLH	Read select	Any 0			25	40	ns
tPHL					24	40	
tPLH	Write enable	Any 0	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Figures } 1 \text { and } 3 \end{aligned}$		30	45	ns
tPHL					26	40	
${ }^{\text {tPLH }}$	Data	Any 0			30	45	ns
tPHL					22	35	

If $\mathrm{tpLH}=$ propagation delay time, low-to-high-level output
$t_{P H L} \equiv$ propagation delay time, high-to-low-level output
schematics of inputs and outputs

TYPES SN54170, SN54LS770, SN74170, SN74LS170

4-BY-4 REGISTER FILES WITH OPEN-COLLECTOR OUTPUTS

PARAMETER MEASUREMENT INFORMATION

C_{L} includes probe and jig capacitance
LOAD CIRCUIT

FIGURE 1

NOTES: A. High-level input pulses at the select and data inputs are illustrated in Figure 2; however, times associated with low-level pulses are measured from the same reference points.
B. When measuring delay times from a read-select input, the read-enable input is low. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states.
C. In Figure 3, each select address is tested. Prior to the start of each of the above tests, both write and read address inputs are stablized with $W_{A}=R_{A}$ and $W_{B}=R_{B}$. During the test G_{R} is low.
D. Input waveforms are supplied by generators having the following characteristics: $P R R \leqslant 1 \mathrm{MHz}, Z_{\text {out }} \approx 50 \Omega$, duty cycle $\leqslant 50 \%$, $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}$ for ' 170 , and $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$ for 'LS S170.
D. For ' $170, V_{\text {ref }}=1.5 \mathrm{~V}$; for 'LS $170, V_{\text {ref }}=1.3 \mathrm{~V}$.

- Independent Read/Write Addressing Permits Simultaneous Reading and Writing
- Organized as Eight Words of Two Bits Each
- Fast Access Times:

From Read Enable . . . 15 ns Typical
From Read Select . . . 33 ns Typical

- Three-State Outputs Simplify Use in Bus-Organized Systems
- Applications:

Stacked Data Registers
Scratch-Pad Memory
Buffer Storage Between Processors
Fast Multiplication Schemes

description

The SN74172, containing the equivalent of 201 gates on a monolithic chip, is a high-performance 16 -bit register file organized as eight words of two bits each.

Multiple address decoding circuitry is used so that the read and write operation can be performed independently on two word locations. This provides a true simultaneous read/write capability. Basically, the file consists of two distinct sections (see Figure A).

Section 1 permits the writing of data into any two-bit word location while reading two bits of data from another location simultaneously. To provide this flexibility, independent decoding is incorporated.

Section 2 of the register file is similar to section 1 with the exception that common read/write address circuitry is employed. This means that section 2 can be utilized in one of three modes:

1) Writing new data into two bits
2) Reading from two bits
3) Writing into and simultaneously reading from the same two bits.

Regardless of the mode, the operation of section 2 is entirely independent of section 1 .

TYPE SN74172

16-BIT MULTIPLE-PORT REGISTER FILE WITH 3-STATE OUTPUTS

description (continued)

The three-state outputs of this register file permit connection of up to 129 compatible outputs and one Series 54/74 high-logic-level load to a common system bus. The outputs are controlled by the read-enable circuitry so that they operate as standard TTL totem-pole outputs when the appropriate read-enable input is low or they are placed in a high-impedance state when the associated read-enable input is at a high logic level. To minimize the possibility that two outputs from separate register files will attempt to take a common bus to opposite logic levels, the read-enable circuitry is designed such that disable times are shorter than enable times.

All inputs are buffered to lower the drive requirements of the clock, read/write address, and write-enable inputs to one normalized Series 54/74 load, and of all other inputs to one-half of one normalized Series 54/74 load

Functions of the inputs and outputs of the SN74172 are as shown in the following table.

FUNCTION	SECTION 1	SECTION 2	DESCRIPTION
Write Address	1W0, 1W1, 1W2	2W/R0, 2W/R1, 2W/R2	Binary write address selects one of eight two-bit word locations.
Write Enable	1GW	2GW	When low, permits the writing of new data into the selected word location on a positive transition of the clock input.
Data Inputs	1DA, 1DB	2DA, 2DB	Data at these inputs is entered on a positive transition of the clock input into the location selected by the write address inputs if the write enable input is low. Since the two sections are independent, it is possible for both write functions to be activated with both write addresses selecting the same word location. If this occurs and the information at the data inputs is not the same for both sections (i.e., 1DA $=2 \mathrm{DA}$ and/or $1 \mathrm{DB} \neq 2 \mathrm{DB}$) the low-level data will predominate in each bit and be stored.
Read Address	1R0, 1R1, 1R2	Common with write address	Binary write address selects one of eight two-bit word locations.
Read Enable	1GR	2GR	When read enable is low, the outputs assume the levels of the data stored in the location selected by
Data Outputs	$10_{A}, 10_{B}$	${ }^{2} \mathrm{Q}_{\mathrm{A}}, 2 \mathrm{O}_{\mathrm{B}}$	state and neither significantly load nor drive the lines to which they are connected.
Clock		CK	The positive-going transition of the clock input will enter new data into the addressed location if the write enable input is low. The clock is common to both sections.

TYPE SN74172
 16-BIT MULTIPLE-PORT REGISTER FILE WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. This is the maximum voltage which should be applied to any output when it is in the high-impedance state.
recommended operating conditions

		MiN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	\checkmark
High-level output current, I OH				-5.2	mA
Low-level output current, IOL				16	mA
$\text { Width of clock pulse, } \mathrm{t}_{\text {w }} \text { (clock) }$		0		20	MHz
		25			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	Write select	$\mathrm{t}_{\mathrm{w} \text { (ctock }}+10$			ns
	High-level data	30			
	Low-ievei data	45			
	Write enable	35			
Hold time, t_{h} (see Figure 1)	Write select	0			ns
	Write enable	0			
Data release time, $\mathrm{t}_{\text {release }}$ (see Figure 1)	High-level data			10	ns
	Low-level data			10	
Operating free-air temperature, T_{A}		0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	v
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
VOH	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA} \end{array}$	2.4	3		V
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}^{2}=16 \mathrm{~mA} \end{array}$		0.2	0.4	v
IO(off)	Off-state (high-impedance state) output current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\overline{\mathrm{MAX}}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\underline{1 H}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low-level input current	2W/RO, 2W/R1, 2W/R2, 1GW, 2GW, or clock	$\mathrm{VCC}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
		Any other input				-0.8	
Ios	Short-circuit output current ${ }^{\text {§ }}$		$V_{C C}=$ MAX	-18		-55	mA
${ }^{1} \mathrm{CC}$	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs at 4.5 V , Outputs open		112	170	mA

[^18]16-BIT MULTIPLE-PORT REGISTER FILE WITH 3-STATE OUTPUTS
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=400 \Omega$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 1	20			MHz
tPLH	Propagation delay time, low-to-high-level output from read select			33	45	
tPHL	Propagation delay time, high-to-low-level output from read select			30	45	ns
tPLH	Propagation delay time, low-to-high-level output from clock			35	50	ns
tPHL	Propagation delay time, high-to-low-level output from clock			35	50	
t ZH	Output enable time to high level			14	30	ns
tZL	Output enable time to low level			16	30	
${ }^{\text {t }} \mathrm{HZ}$	Output disable time from high level	$C_{L}=5 \mathrm{pF},$ See Figure 1		6	20	ns
${ }_{\text {t }}$	Output disable time from low level			11	20	

PARAMETER MEASUREMENT INFORMATION

ENABLE AND DISABLE TIMES FROM READ ENABLE
NOTES: A. Input waveforms are supplied by putse generators having the following characteristics: $t_{r} \leqslant 7 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled. Waveform 2 is for an output with internal conditions such that the output is high except when disabled
C. Write select setup time, as specified, will protect data written into previous address.
D. Load circuit is shown on page 3-10.

NOTES: A

- Three-State Outputs Interface Directly with System Bus
- Gated Output-Control Lines for Enabling or Disabling the Outputs
- Fully Independent Clock Virtually Eliminates Restrictions for Operating in One of Two Modes:

> Parallel Load Do Nothing (Hold)

- For Application as Bus Buffer Registers

	TYPICAL	MAXIMUM	TYPICAL
TYPE	PROPAGATION	CLOCK	POWER
	DELAY TIME	FREQUENCY	DISSIPATION
'173	23 ns	35 MHz	250 mW
$'$ 'S 173	18 ns	50 MHz	85 mW

description
The '173 and 'LS173 four-bit registers include D-type flip-flops featuring totem-pole three-state out-puts capable of driving highly capacitive or relatively low-impedance loads. The high-impedance third state and increased high-logic-level drive provide these flip-flops with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pu!!-up components. Up to 128 of the SN74173 or SN74LS173 outputs may be connected to a common bus and stilk drive two Series 54/74 or 54LS/74LS TTL normalized loads, respectively. Similarly, up to 49 of the SN54173 or SN54LS173 outputs can be connected to a common bus and drive one additional Series 54/74 or 54LS/74LS TTL normalized load, respectively. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.
Gated enable inputs are provided on the '173 and 'LS173 for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states (high or low levels) of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the function table.
Higher density D-type registers, some with improved performance and including the new octal D-type registers, are shown in the functional index/selection guide, see pages 1-11 and 1-12.

TYPES SN54173, SN54LSI73, SN74173, SN74LS173
4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminals,
functional block diagram and schematics of inputs and outputs

7

4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
NOTE 2: I CC is measured with all outputs open; clear grounded following momentary connection to $4.5 \mathrm{~V} ; \mathrm{N}, \mathrm{G} 1, \mathrm{G} 2$, and all data inputs grounded; and the clock input and M at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=400 \Omega$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum clock frequency	$C_{L}=50 \mathrm{pF},$ See Note 3	25	35		MHz
tPHL	Propagation delay time, high-to-low-level output from clear input			18	27	ns
tPLH	Propagation delay time, low-to-high-level output from clock input			28	43	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clock input			19	31.	
${ }^{\text {tPZH }}$	Output enable time to high level		7	16	30	ns
${ }^{\text {tPZL }}$	Output enable time to low level		7	21	30	
tPHZ	Output disable time from high level	$C_{L}=5 \mathrm{pF},$ See Note 3	3	5	14	ns
${ }^{\text {tPLZ }}$	Output disable time from low level		3	11	20	

NOTE 3: Load circuits and voltage waveforms are shown on page 3-10.

TYPES SN54LSI73, SN74LS173
4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS173			SN74LS173			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage			0.7			0.8			V
$V_{\text {IK }} \quad$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$	-1.5			-1.5			V
VOH High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\text {IL }} \text { max } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	2.4	3.4		2.4	3.1		V
Low-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5	
Off-state (high-impedance state) output current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{1 H}=2 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	
II. Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\text {IH }} \quad$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current §	$V_{C C}=M A X$		-30		-130	-30		-130	mA
ICC Supply current	$V_{C C}=$ MAX	See Note 2		17	30		17	30	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output shouid be shorted at a time.
NOTE 2: ICC is measured with all outputs open; clear grounded following momentary connection to $4.5 \mathrm{~V} ; \mathrm{N}, \mathrm{G} 1, \mathrm{G} 2$, and all data inputs grounded; and the clock input and M at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=667 \Omega$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {max }}$	Maximum clock frequency	$C_{L}=45 \mathrm{pF},$ See Note 4	30	50		MHz
tPHL	Propagation delay time, high-to-low-ievel output from clear input			20	30	ns
${ }_{\text {tPLH }}$	Propagation delay time, low-to-high-level output from clock input			16	29	ns
tPHL	Propagation delay time, high-to-low-level output from clock input			20	30	
tPZH	Output enable time to high level			13	21	ns
tPZL	Output enable time to low level			24	36	
tPHZ	Output disable time from high level	$C_{L}=5 \mathrm{pF},$ See Note 4		11	17	ns
tPLZ	Output disable time from low level			15	23	

NOTE 4: Load circuits and voltage waveforms are shown on page 3-11.

- '174, 'LS174, 'S174 Contain Six Flip-Flops with Single-Rail Outputs
- '175, 'LS175, 'S175 Contain Four Flip-Flops with Double-Rail Outputs
- Three Performance Ranges Offered: See Table Lower Right
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications include:

Buffer/Storage Registers
Shift Registers
Pattern Generators

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the '175, 'LS175, and 'S175 feature complementary outputs from each flip-flops.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D -input signal has no effect at the output.

These circuits are fully compatible for use with most TTL or DTL circuits.
FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS				OUTPUTS
CLEAR	CLOCK	D	O	$\overline{\mathrm{Q}} \dagger$
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	$\mathrm{Q}_{\mathbf{0}}$	$\overline{\mathrm{Q}}_{\mathbf{0}}$

[^19]SN54174, SN54LS174, SN54S174 . . . J OR W PACKAGE SN74174, SN74LS174, SN74S174 ... J OR N PACKAGE (TOP VIEW)

SN54175, SN54LS175, SN54S175 . . . J OR W PACKAGE SN74175, SN74LS175, SN74S175 . . . J OR N PACKAGE (TOP VIEW)

$' 174, ' 175$	35 MHz	38 mW
$' L S 174, ' L S 175$	40 MHz	14 mW

'S174, 'S175
110 MHz

TYPES SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 hex/aUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

TYPES SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74Si75 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

REVISED OCTOBER 1976
schematics of inputs and outputs
SN54174, SN54175, SN74174, SN74175

SN54LS174, SN54LS175, SN74LS174, SN74LS175

Clock: $R_{\text {eq }}=17 \mathrm{k} \Omega$ NOM Clear, $\mathrm{D}: \mathrm{R}_{\text {eq }}=20 \mathrm{k} \Omega$ NOM

SN54S174, SN54S175, SN74S174, SN74S175

TYPES SN54174, SN54175, SN74174, SN74175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
$V_{1 H}$ High-level input voltage			2			V
$V_{\text {IL }}$ Low-level input voltage					0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}_{2} \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & I_{O H}=-800 \mu \mathrm{~A} \end{array}$		2.4	3.4		V
VOL Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & I_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$			0.2	0.4	V
$I_{1} \quad$ Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{I}_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	SN54'	-20		-57	mA
		SN74'	-18		-57	
Supply current	$V_{C C}=$ MAX, See Note 2	'174		45	65	mA
		'175		30	45	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type
$\ddagger_{\text {All }}$ typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time
NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I CC is measured after a momentary ground, then 4.5 V , is applied to clock.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :---: | :---: | :---: | UNIT 1

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS174, SN54LS175, SN74LS174, SN74LS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR
 REVISED Осtober 1976

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS174 SN54LS175			SN74LS174 SN74LS175			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-ievel output current, IOH				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$		0		30	0		30	MHz
Width of clock or clear pulse, t_{w}		20			20			ns
	Data input	20			20			ns
Setup time, ${ }_{\text {su }}$	Clear inactive-state	25			25			ns
Data hold time, $\mathrm{th}^{\text {h }}$		5			5			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		$\begin{aligned} & \text { SN54LS174 } \\ & \text { SN54LS175 } \end{aligned}$			$\begin{aligned} & \hline \text { SN74LS174 } \\ & \text { SN74LS175 } \end{aligned}$			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage					2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voitage	$\mathrm{V}_{C C}=\mathrm{MiIN}, \quad \mathrm{i}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
VOH	High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=-400 \end{array}$		2.5	3.5		2.7	3.5		v		
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max \end{aligned}$	$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v		
			$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5			
1	Input current at maximum input voltage	$V_{C C}=$ MAX, $\quad V_{1}=7 \mathrm{~V}$				0.1			0.1	mA		
${ }_{1} \mathrm{H}$	High-level input current	$\begin{array}{ll}\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{V}_{1}=2.7 \mathrm{~V}\end{array}$				20			20	$\mu \mathrm{A}$		
ILL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA		
Ios	Short-circuit output current §	$V_{C C}=$ MAX		-20		-100	-20		-100	mA		
	Supply current	$V_{C C}=$ MAX, \quad See Note 2	'LS174		16	26		16	26	mA		
			'LS175		11	18		11	18			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I CC is measured after a momentary ground, then 4.5 V , is applied to clock.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 4	30	40		MHz
\qquad			16	25	ns
tPHL Propagation delay time, high-to-low-level output from clear			23	35	ns
${ }^{\text {tPLH }}$ Propagation delay time, low-to-high-level output from clock			20	30	ns
tPHL Propagation delay time, high-to-low-level output from clock			21	30	ns

NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54S174, SN54S175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage			2			V
$V_{\text {IL }}$ Low-level input voltage					0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN, $\quad i_{1}=-18 \mathrm{~mA}$				-1.2	V
	$V_{C C}=$ MIN, $V_{\text {IH }}=2 \mathrm{~V}$,	SN54S'	2.5	3.4		V
V	$V_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	SN74S'	2.7	3.4		\checkmark
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{O}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$				0.5	V
If Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{iH} High-level input current	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
I!L Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
IOS Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-40		-100	mA
CC Sup	c MAX, See Note 2	'174		90	144	mA
CC Supply	VCC MAX, See Note 2	'175		60	96	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second
NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, ${ }^{\prime} \mathrm{CC}$ is measured after a momentary ground, then 4.5 V . is applied to clock
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega, \\ & \text { See Note } 3 \end{aligned}$	75	110		MHz
$\begin{aligned} & \text { Propagation delay time, low-to-high-level } \overline{\mathrm{Q}} \text { output from clear } \\ & \text { tPLH } \\ & \text { (SN54S175, SN74S175 only) } \end{aligned}$			10	15	ns
tPHL Propagation delay time, high-to-low-level Q output from clear			13	22	ns
tPLH Propagation delay time, low-to-high-level output from clock			8	12	ns.
tPHL Propagation time, high-to-low-level output from clock			11.5	17	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

- Reduced-Power Versions of SN54196, SN54197, SN74196, and SN7419750-MHz Counters
- D-C Coupled Counters Designed to Replace Signetics 8280, 8281, 8290, and 8291 Counters in Most Applications
- Performs BCD, Bi-Quinary, or Binary Counting
- Fully Programmable
- Fully Independent Clear Input
- Guaranteed to Count at Input Frequencies from 0 to 35 MHz
- Input Clamping Diodes Simplify System Design

description

These high-speed monolithic counters consist of four d-c coupled master-slave flip-flops which are internally interconnected to provide either a divide-by-two and a divide-by-five counter (SN54176, SN74176) or a divide-by-two and a divide-by-eight counter (SN54177, SN74177). These counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

These counters may also be used as 4 -bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

These high-speed counters will accept count frequencies of 0 to 35 megahertz at the clock-1 input and 0 to 17.5 megahertz at the clock-2 input. During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. The counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.

All inputs are diode-clamped to minimize transmission-line effects and simplify system design. The circuits are compatible with most TTL and DTL logic families. Typical power dissipation is 150 milliwatts. The SN54176 and SN54177 circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74176 and SN74177 circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

typical count configurations

SN54176 and SN74176

The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore, the count may be operated in three independent modes:

1. When used as a binary-coded-decimal decade counter, the clock-2 input must be externally connected to the Q_{A} output. The clock-1 input receives the incoming count, and a count sequence is obtained in accordance with the $B C D$ count sequence function table shown at right.
2. If a symmetrical divide-by-ten count is desired for frequency synthesizers for other applications requiring division of a binary count by a power of ten), the O_{D} output must be externally connected to the clock- 1 input. The input count is then applied at the clock- 2 input and a divide-by-ten square wave is obtained at output Q_{A} in accordance with the bi-quinary function table.

SN54176, SN74176

 FUNCTION TABLES| DECADE (BCD) (See Note A) | | | | | BI-QUINARY (5-2)
 (See Note B) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COUNT | OUTPUT | | | | COUNT | OUTPUT | | | |
| | | ${ }_{0} \mathrm{O}_{\mathrm{c}}$ | ${ }_{C} \mathrm{O}_{\mathrm{B}}$ | | | | $\mathrm{A}_{\mathrm{O}} \mathrm{D}$ | $\mathrm{D}_{0} \mathrm{C}$ | $\mathrm{C}^{\text {a }}$ |
| 0 | | L | L | | 0 | L | L | L | L L |
| 1 | | L | L | | 1 | | L | L | L H |
| 2 | | L | H | | 2 | | L | H | H L |
| 3 | | L | H | H | 3 | | L | H | H H |
| 4 | | H | L | | 4 | | H | H | L L |
| 5 | | H | L | | 5 | | L | L | L L |
| 6 | | H | H | | 6 | | L | L | H |
| 7 | | H | H | | 7 | | L | H | H |
| 8 | | H L | L | | 8 | | L | H | H H |
| 9 | | H L | L | | 9 | | H | 4 L | L L |

$H=$ high level, $L=$ low levei
NOTES: A. Output Q_{A} connected to clock-2 input.
B. Output Q_{D} connected to clock-1 input.
3. For operation as a divide-by-two counter and a divide-by-five counter, no external interconnections are required. Flip-flop A is used as a binary element for the divide-by-two function. The clock- 2 input is used to obtain binary divide-by-five operation at the $\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, and O_{D} outputs. In this mode, the two counters operate independently; however, all four flip.flops are loaded and cleared simultaneously.

SN54177 and SN74177

7
The output of flip-flop A is not internally connected to the succeeding flip-flops, therefore the counter may be operated in two independent modes:

1. When used as a high-speed 4 -bit ripple-through counter, output Q_{A} must be externally connected to the clock-2 input. The input count pulses are applied to the clock-1 input. Simultaneous divisions by 2, 4, 8, and 16 are performed at the Q_{A}, Q_{B}, Q_{C}, and Q_{D} outputs as shown in the function table at right.
2. When used as a 3 -bit ripple-through counter, the input count pulses are applied to the clock-2 input. Simultaneous frequency divisions by 2, 4, and 8 are available at the $\mathrm{O}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, and O_{D} outputs. Independent use of flip-flop A is available if the load and clear functions coincide with those of the 3 -bit ripple-through counter.

SN54177, SN74177
FUNCTION TABLE
(See Note A)

COUNT	OUTPUT			
	OD	O_{c}	O_{B}	Q_{A}
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	1
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H		H	L
11	H	L	H	H
12	H	H	L	L
13	H		L	H
14	H	H	H	L
15	H	H	H	H
$H=$ high level, $L=$ low level				
te A:	$\begin{aligned} & \text { Outp } \\ & \text { to cl } \end{aligned}$	put lock		

TYPES SN54176, SN54177, SN74176, SN74177 35-MHz PRESETTABLE DECADE AND BINARY COUNTERS/LATCHES
functional block diagrams

7

TYPES SN54176, SN54177, SN74776, SN74177
35-MHz PRESETTABLE DECADE AND BINARY COUNTERS/LATCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the clear and count/load inputs.

7
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}	SN54	4.5	5	5.5	V
	SN74	4.75	5	5.25	
High-level output current, 1 OH				-800	$\mu \mathrm{A}$
Low-level output current, I_{OL}				16	mA
Count frequency (see Figure 1)	Clock-1 input	0		35	MHz
	Clock-2 input	0		17.5	
Pulse width, $\mathrm{t}_{\mathbf{W}}$ (see Figure 1)	Clock-1 input	14			ns
	Clock-2 input	28			
	Clear	20			
	Load	25			
Input hold time, t_{h} (see Figure 1)	High-level data	$\mathrm{t}_{\text {w }}$ (load)			ns
	Low-level data	${ }^{\text {tw }}$ (load			
Input setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	High-level data	15			ns
	Low-level data	20			
Count enable time, tenable (see Note 3 and Figure 1)		25			ns
Operating free-air temperature, T_{A}	SN54'	-55		125	${ }^{\circ} \mathrm{C}$
	SN74'	0		70	

NOTE 3: Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/foad and clear inputs must both be high to ensure counting.

TYPES SN54176, SN54177, SN74176, SN74177 $35-\mathrm{MHz}$ PRESETTABLE DECADE AND BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54176, SN74176			SN54177, SN74177			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$\mathrm{V}_{\text {IH }}$	High-level input voltage								2			2			v
$\mathrm{V}_{\text {IL }}$	Low-level input voltage							0.8			0.8	v			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$					-1.5			-1.5	V			
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{I \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{IOH}=-800 \mu \mathrm{~A} \end{array}$			2.4	3.4		2.4	3.4		v			
VoL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{LL}}=16 \mathrm{~mA} \end{array}$				0.2	0.4		0.2	0.4	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$					1			1	mA			
${ }^{1} \mathrm{H}$	High-level input current	Data, count/load	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$					40			40	$\mu \mathrm{A}$			
		Clear, clock 1						80			80				
		Clock 2						120			80				
IIL	Low-level input current	Data, count/load	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$					-1.6			-1.6	mA			
		Clear						-3.2			-3.2				
		Clock 1						-4.8			-4.8				
		Clock 2						-4.8			-3.2				
ios	Short-circuit output current §		$V_{C C}=$ MAAX		SN54'	-20		-57	-20		-57	mA			
			SN74'	-18		-57	-18		-57						
icc	Supply current				$\mathrm{V}_{\text {CC }}=$ MAX, See Note 4				30	48		30	48	mA	

NOTE 4: ICC is measured with all inputs grounded and all outputs open.
\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$.
$\dot{T}_{Q_{A}}$ outputs are tested at $I_{O L}=16 \mathrm{~mA}$ plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54/74 loads.
§ Not more than one output should be shorted at a time.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see figure 1

PARAMETER ${ }^{\text {® }}$	FROM (INPUT)	TO (OUTPUT)	SN54176, SN74176			SN54177, SN54177			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	Clock 1	Q_{A}	35	50		35	50		MHz
tPLH	Clock 1	$\mathrm{O}_{\text {A }}$		8	13		8	13	ns
tPHL				11	17		11	17	
tPLH	Clock 2			11	17		11	17	ns
tPHL	Clock 2			17	26		17	26	
tPLH	Clock 2	0		27	41		27	41	ns
tPHL				34	51		34	51	
tpLH	Clock 2	O_{0}		13	20		44	66	ns
tPHL		${ }_{\text {c }}$		17	26		50	75	
${ }_{\text {tPLH }}$	A, B, C, D	$Q_{A}, Q_{B}, Q_{C}, O_{D}$		19	29		19	29	ns
${ }_{\text {tPHL }}$				31	46		31	46	
tPLH	Load	Any		29	43		29	43	ns
tPHL				32	48		32	48	
tPHL	Clear	Any		32	48		32	48	ns

[^20]- Typical Maximum Clock Frequency . . . 39 MHz
- Three Operating Modes:

Synchronous Parallel Load
Right Shift
Hold (Do Nothing)

- Negative-Edge-Triggered Clocking
- D-C Coupling Symplifies System Designs
description
These shift registers utilize fully d-c coupled storage elements and feature synchronous parallel inputs and parallel outputs. The SN54179/SN74179 has a direct clear line and complementary output from the D flip-flop, thereby differing from the SN54178/ SN74178.
Parallel loading is accomplished by taking the shift input low, applying the four bits of data, and taking the load input high. The data is loaded into the associated flip-flop synchronously and appears at the outputs after a high-to-low transition of the clock. During loading, serial data flow is inhibited.
Shift right is also accomplished on the falling edge of the clock pulse when the shift input is high regardless of the level of the load input. Serial data for this mode is entered at the serial data input.
When both the shift and load inputs are low, clocking of the register can continue; however, data appearing at each output is fed back to the flip-flop input creating a mode in which the data is held unchanged. Thus, the system clock may be left free-running without changing the contents of the register.
'178, '179 ${ }^{\dagger}$
FUNCTION TABLE

INPUTS							OUTPUTS				
CLEAR ${ }^{\dagger}$ SHIFT LOAD	CLOCK	SERIAL	PARALLEL				$\mathrm{O}_{\text {A }}$	0_{B}	a_{c}	O_{D}	$\overline{\mathbf{o}}^{\mathbf{D}}{ }^{\text { }}$
			A	B	c	D					
$\frac{x}{x}-\frac{x}{}$	X	x	x	\underline{x}	\underline{x}	x	L		L	L	H
H $\Gamma^{\text {¢ }}$	H	x	x	\bar{x}	\bar{x}	\bar{x}	$\overline{Q_{A O}}$				${ }_{\text {DO }}$
H L	\downarrow	X	x	X	x	x	$\mathrm{a}_{\text {A }}$	Q_{BO}	O_{CO}		OD0
H L H	\downarrow	x	a	b	c	d	a	b	c		\bar{d}
H H H	\downarrow	H	X	X	x	x	H	$a_{A n}$	a_{Bn}		$\overline{\mathrm{a}}_{\text {cn }}$
H H H	\downarrow	L	x	x	x	x	L	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	O_{Cn}	$\overline{\mathrm{a}}_{\mathrm{Cn}}$

${ }^{\dagger}$ The columns for clear, $\overline{\mathrm{Q}}_{\mathrm{D}}$, and the top line of the table apply for the '179 only.
$\mathrm{H}=$ high level (steady state), $\mathrm{L}=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level
$a, b, c, d=$ the level of steady-state input at inputs A, B, C, or D, respectively.
$\alpha_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$\alpha_{A n}, Q_{B n}, Q_{C n}=$ the level of Q_{A}, Q_{B}, or Q_{C}, respectively, before the most-recent \downarrow transition of the clock.

TYPES SN54178, SN54179, SN74178, SN7479 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (uniess otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	SN54178, SN54179			SN74178, SN74179			UNIT	
		MIN	TYP \ddagger	MAX	MIN	TYP ${ }_{\text {京 }}$	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V	
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}^{2}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		2.4	3.4		v	
VOL	Low-level output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
${ }_{1}{ }_{\text {IH }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
ILL	Low-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA	
IOS	Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=$ MAX	-20		-57	-18		-57	mA	
${ }^{\text {ICC }}$	Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2		46	70		46	75	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\S_{\text {Not more than one output should be shorted at a time. }}$
NOTE 2: ' CC is measured as follows:
a) 4.5 V is applied to serial inputs, load, shift, and clear,
b) Parallel inputs A through D are gounded,
c) 4.5 V is momentarily applied to clock which is then grounded.

TYPES SN54178, SN54179, SN74178, SN74179 4-BIT PARALLEL-ACCESS SHIFT REGISTERS
switching characteristics, $\mathrm{V} C \mathrm{CC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER \mathbb{T}	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$			$C_{L}=15 \mathrm{pF}, \quad R_{L}=400$ See Figure 1	25	39		MHz
tPLH	Clear	$\overline{\mathrm{O}}_{\text {D }}$			15	23	ns
tPHL		$\mathrm{O}_{A}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$			24	36	ns
tPLH	Clock	Any output			17	26	ns
tPHL					23	35	

$I_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }^{{ }^{\text {P }}}{ }^{\text {PHL }} \equiv$ Propagation delay time, high-to-low-level output ${ }^{{ }^{\mathrm{I}} \text { PLH }}$ \#Propagation delay time, low-to-high-level output

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

TYPES SN54180, SN74180 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS
logic

FUPUCTION TABLE				
Σ OF H's AT A THRU H	EVEN	ODD	OUTPUTS EVEN	Σ
EVEN	H	L	H	L
ODD	H	L	L	H
EVEN	L	H	L	H
ODD	L	H	H	L
X	H	H	L	L
X	L	L	H	H

$H=$ high level, $L=$ low level,$X=$ irrelevant

description

These universal, monolithic, 9-bit (8 data bits plus 1 parity bit) parity generators/checkers, utilize familiar Series 54/74 TTL circuitry and feature odd/even outputs and control inputs to facilitate operation in either odd- or even-parity applications. Depending on whether even or odd parity is being generated or checked, the even or odd inputs can be utilized as the parity or 9 th-bit input. The word-length capability is easily expanded by cascading.

The SN54180/SN74180 are fully compatible with other TTL or DTL circuits. Input buffers are provided so that each data input represents only one normalized series $54 / 74$ load. A full fan-out to 10 normalized series $54 / 74$ loads is available from each of the outputs at a low logic level. A fan-out to 20 normalized loads is provided at a high logic level to facilitate the connection of unused inputs to used inputs. Typical power dissipation is 170 mW .

The SN54180 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; and the SN74180 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

	SN54180			SN74180			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\text {I }} \mathrm{OH}$			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

TYPES SN54180, SN74180 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54180			SN74180			UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
V_{IH}	High-level input voltage				2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}^{\prime}=-12 \mathrm{~mA}$			-1.5			-1.5	V	
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{IOH}^{2}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.3		2.4	3.3		V	
VOL	Low-level output voltage		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	V	
11	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
${ }_{1} \mathrm{H}$	High-level input current	Any data input	$v_{C C}=$ MAX, $V_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
		Even or odd input				80			80		
IIL	Low-level input current	Any data input	$V_{C C}=$ MAX, $V_{1}=0.4 V$			-1.6			-1.6	mA	
		Even or odd input				-3.2			-3.2		
Ios	Short-circuit output current§		$V_{C C}=$ MAX	-20		-55	-18		-55	mA	
ICC	Supply current		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2		34	49		34	56	mA	

NOTE 2: ICC is measured with even and odd inputs at 4.5 V , all other inputs and outputs open.
\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Data	Σ Even	$C_{L}=15 \mathrm{pF}, \quad R_{\mathrm{L}}=400 \Omega$ Odd input grounded, See Note 3	40	60	ns
tPHL				45	68	
tPLH	Data	Σ Odd		32	48	ns
tPHL				25	38	
tPLH	Data	Σ Even	$C_{L}=15 \mathrm{pF}, \quad R_{\mathrm{L}}=400 \Omega$ Even input grounded, See Note 3	32	48	ns
tPHL				25	38	ns
tple	Data	Σ Odd		40	60	ns
tpHL				45	68	ns
tplH	Even or Odd	Σ Even or Σ Odd	$C_{L}=15 \mathrm{pF},$ See Note 3	13	20	ns
tPHL				7	10	

NOTE 3: Load circuits and waveforms are shown on page 3-10.
It $_{\text {tLH }} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {tpHL }}$: \equiv Propagation delay time, high-to-low-level output
functional block diagram and schematics of inputs and outputs

- Full Look-Ahead for High-Speed Operations on Long Words
- Input Clamping Diodes Minimize Transmission-Line Effects
- Darlington Outputs Reduce Turn-Off Time
- Arithmetic Operating Modes:

Addition
Subtraction
Shift Operand A One Position
Magnitude Comparison
Plus Twelve Other Arithmetic
Operations

- Logic Function Modes:

Exclusive-OR
SN54181, SN54LS181, SN54S181 . . . J OR W PACKAGE SN74181, SN74LS181, SN74S181 . . . J OR N PACKAGE (TOP VIEW)

Comparator
AND, NAND, OR, NOR
Plus Ten Other Logic Operations

TYPICAL ADDITION TIMES

NUMBER OF BITS	ADDITION TIMES			PACKAGE COUNT		CARRY METHOD BETWEEN ALU's
	USING '181 AND '182	$\begin{gathered} \text { USING 'LS181 } \\ \text { AND '182 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { USING 'S181 } \\ & \text { AND 'S182 } \end{aligned}$	ARITHMETIC/ LOGIC UNITS	LOOK-AHEAD CARRY GENERATORS	
1 to 4	24 ns	24 ns	11 ns	1		NONE
5 to 8	36 ns	40 ns	18 ns	2		RIPPLE
9 to 16	36 ns	44 ns	19 ns	3 or 4	1	FULL LOOK-AHEAD
17 to 64	60 ns	68 ns	28 ns	5 to 16	2 to 5	FULL LOOK-AHEAD

description

The '181, 'LS181, and 'S181 are arithmetic logic units (ALU)/function generators that have a complexity of 75 equivalent gates on a monolithic chip. These circuits perform 16 binary arithmetic operations on two 4 -bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the SN54182, SN54S182, SN74182, or SN74S182, full carry look-ahead circuits, high-speed arithmetic operations can be performed. The typical addition times shown above illustrate the little additional time required for addition of longer words when fult carry look-ahead is employed. The method of cascading ' 182 or 'S182 circuits with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the '182 and 'S182.

If high speed is not of importance, a ripple-carry input (C_{n}) and a ripple-carry output (C_{n+4}) are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

TYPES SN54181, SN54LS181, SN54S181, SN74181, SN74LS181, SN74S181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

description (continued)

The '181, 'LS181, and 'S181 will accommodate active-high or active-low data if the pin designations are interpreted as follows:

PIN NUMBER	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 7}$
Active-low data (Table 1)	$\overline{\mathrm{A}}_{0}$	$\overline{\mathrm{~B}}_{0}$	$\overline{\mathrm{~A}}_{1}$	$\overline{\mathrm{~B}}_{1}$	$\overline{\mathrm{~A}}_{2}$	$\overline{\mathrm{~B}}_{2}$	$\overline{\mathrm{~A}}_{3}$	$\overline{\mathrm{~B}}_{3}$	$\overline{\mathrm{~F}}_{0}$	$\overline{\mathrm{~F}}_{1}$	$\overline{\mathrm{~F}}_{2}$	$\overline{\mathrm{~F}}_{3}$	C_{n}	$\mathrm{C}_{n}+4$	F	$\overline{\mathrm{G}}$
Active-high data (Table 2)	A_{0}	$\mathrm{~B}_{0}$	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~F}_{0}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\overline{\mathrm{C}}_{n}$	$\overline{\mathrm{C}}_{n}+4$	X	Y

Subtraction is accomplished by 1's complement addition where the 1 's complement of the subtrahend is generated internally. The resultant output is $A-B-1$, which requires an end-around or forced carry to provide $A-B$.

The '181, 'LS181, or 'S181 can also be utilized as a comparator. The $\mathrm{A}=\mathrm{B}$ output is internally decoded from the function outputs ($F 0, F 1, F 2, F 3$) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality ($\mathrm{A}=\mathrm{B}$). The ALU should be in the subtract mode with $\mathrm{C}_{\mathrm{n}}=\mathrm{H}$ when performing this comparison. The $A=B$ output is open-collector so that is can be wire-AND connected to give a comparison for more than four bits. The carry output ($\mathrm{C}_{\mathrm{n}}+4$) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs $\mathrm{S} 3, \mathrm{~S} 2, \mathrm{~S} 1$, SO at L, H, H, L, respectively.

INPUT $\mathrm{C}_{\boldsymbol{n}}$	OUTPUT $\mathrm{C}_{\boldsymbol{n}+4}$	ACTIVE-LOW DATA (FIGURE 1)	ACTIVE-HIGH DATA (FIGURE 2)
H	H	$\mathrm{A} \geqslant \mathrm{B}$	$\mathrm{A} \leqslant \mathrm{B}$
H	L	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$
L	H	$\mathrm{A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
L	L	$\mathrm{A} \leqslant \mathrm{B}$	$\mathrm{A} \geqslant \mathrm{B}$

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs ($\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3$) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR, and OR functions.

Series 54,54 LS, and 54 S devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series $74,74 \mathrm{LS}$, and 74 S devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

signal designations

The '181, 'LS181, and 'S181 together with the '182 and 'S182 can be used with the signal designations of either Figure 1 or Figure 2. The inversion indicators (O) and the bars over the terminal letter symbols (e.g., $\overline{\mathrm{C}}$) each indicate that the associated input or output is active with respect to the selected function of the device when that input or output is low. That is, a low at $\overline{\mathrm{C}}$ means "do carry" while a high means "do not carry".

The logic functions and arithmetic operations obtained with signal designations of Figure 1 are given in Table 1 ; those obtained with signal designations of Figure 2 are given in Table 2.

TYPES SN54181, SN54LS181, SN54S181, SN74181, SN74LS181, SN74S181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

TYPES SN54181, SN74181

ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-mitter transistor. For this circuit, this rating applies to each $\overline{\mathrm{A}}$ input in conjunction with inputs S 2 or $\mathbf{S 3}$, and to each $\overline{\mathrm{B}}$ input in conjunction with inputs SO or $\mathrm{S3}$.
recommended operating conditions

	SN54181			SN74181			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH} (All outputs except $\mathrm{A}=\mathrm{B}$)			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\text {c }}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54181			SN74181			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
$V_{\text {IK }}$	Input clamp vol tage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$1_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage, any output except $\mathrm{A}=\mathrm{B}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		2.4	3.4		V		
${ }^{1} \mathrm{OH}$	High-level output current, $A=B$ output only		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$			250			250	$\mu \mathrm{A}$		
VOL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4		0.2	0.4	V		
11	Input current at maximum input voltage		$V_{C C}=$ MAX	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
${ }^{1 / H}$	High-level input current	Mode input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$				40			40	$\mu \mathrm{A}$		
		Any \bar{A} or $\overline{\mathrm{B}}$ input					120			120			
		Any S input					160			160			
		Carry input					200			200			
${ }_{1 / 2}$	Low-level input current	Mode input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6			-1.6	mA		
		Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ input					-4.8			-4.8			
		Any S input					-6.4			-6.4			
		Carry input					-8			-8			
'os	Short-circuit output current, any output except $A=B \S$		$V_{C C}=M A X$		-20		-55	-18		-57	mA		
${ }^{1} \mathrm{CC}$	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} .$ See Note 3	Condition A		88	127		88	140	mA		
			Condition B		94	135		94	150	mA			

[^21]
TYPES SN54181, SN74181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

switching characteristics, $\mathrm{VCC}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega\right.$, see note 4)

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	C_{n}	C_{n+4}			12	18	ns
tpHL					13	19	
tPLH	Any \vec{A} or \bar{B}	C_{n+4}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\overline{\mathrm{SUM}} \text { mode }) \end{gathered}$		28	43	ns
tPHL					27	41	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	C_{n+4}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{D} \mid \mathrm{FF}} \text { mode }) \end{gathered}$		35	50	ns
tPHL					33	50	
tPLH	C_{n}	Any $\overline{\mathrm{F}}$	$\mathrm{M}=\mathrm{OV}$(SUM or DIFF mode)		13	19	ns
tPHL					12	18	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\overline{\mathrm{G}}$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\mathrm{SUM} \text { mode }) \end{gathered}$		13	19	ns
tpHL					13	19	
tPLH	Any \bar{A} or \bar{B}	$\overline{\mathrm{G}}$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V} \text { (DIFF mode) } \end{gathered}$		17	25	ns
tPHL					17	25	
tPLH	Any $\overline{\mathrm{A}}$ or \bar{B}	$\overline{\mathrm{P}}$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V} \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\mathrm{SUM} \text { mode }) \end{gathered}$		13	19	ns
tPHL					17	25	
tPL	Any A or \bar{B}	$\overline{\mathrm{P}}$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$		17	25	ns
tPHL					17	25	
tPLH	\bar{A}_{i} or \bar{B}_{i}	\bar{F}_{i}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V} \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\mathrm{SUM} \text { mode }) \end{gathered}$		28	42	ns
tPHL					21	32	
tPLH	\bar{A}_{i} or \bar{B}_{i}	\bar{F}_{i}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\mathrm{DIFF} \text { mode }) \end{gathered}$		32	48	ns
tPHL					23	34	
${ }_{\text {tPLH }}$	\bar{A}_{i} or $\overline{\mathrm{B}}_{\mathrm{i}}$	\bar{F}_{i}	$\mathrm{M}=4.5 \mathrm{~V}$ (logic mode)		32	48	ns
tPHL					23	34	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$A=B$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\mathrm{DIFF} \text { mode }) \end{gathered}$		35	50	ns
tPHL					32	48	

ItpLH \equiv propagation delay time, low-to-high-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-10.
schematics of inputs and outputs

7

TYPES SN54LS181, SN74LS181

 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORSabsolute maximum ratings over recommended operating free-air temperature range (unless otherwise noted) Supply voltage, V_{CC} (see Note 1
Input voltage . 5.5 V

Interemitter voltage (see Note 2) 5.5 V

Operating free-air temperature range: SN54LSi81 . $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74LS181
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-mitter transistor. For this circuit, this rating applies to each \bar{A} input in conjunction with inputs S 2 or S 3 , and to each $\overline{\mathrm{B}}$ input in conjunction with inputs SO or $\mathrm{S3}$.
recommended operating conditions

		54LS1			74LS1		
	MIN	NOM	MAX	MIN	NOM	Max	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH (All outputs except $\mathrm{A}=\mathrm{B}$)			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one outout should be shorted at a time
NOTE 3: With outputs open, ${ }^{1} \mathrm{CC}$ is measured for the following conditions:
A. So through $S 3, M$, and \bar{A} inputs are at 4.5 V , all other inputs are grounded.
B. SO through S 3 and M are at 4.5 V , all other inputs are grounded.
switching characteristics, $\mathrm{VCC}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},\left(\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k}\right.$, see note 4)

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	$\begin{array}{\|c\|} \hline \text { TO } \\ \text { (OUTPUT) } \end{array}$	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {tPLH }}$	C_{n}	C_{n+4}		18	27	ns
tPHL				13	20	
${ }^{\text {tPLH }}$	Any \bar{A} or \bar{B}	$\mathrm{C}_{\mathrm{n}+4}$	$\begin{aligned} \mathrm{M} & =0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \\ \mathrm{~S} 1 & =\mathrm{S} 2=0 \mathrm{~V}(\mathrm{SUM} \text { mode }) \end{aligned}$	25	38	ns
${ }^{\text {tPHL }}$				25	38	
tPLH	Any \bar{A} or \bar{B}	C_{n+4}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V} \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\mathrm{DIFF} \text { mode }) \end{gathered}$	27	41	ns
tPHL				27	41	
${ }^{\text {tPLH }}$	C_{n}	Any F	$\begin{aligned} & \mathrm{M}=0 \mathrm{OV} \\ & \text { (SUM or DIFF mode) } \end{aligned}$	17	26	ns
tPHL				13	20	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\overline{\mathrm{G}}$	$\begin{aligned} \mathrm{M} & =0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \\ \mathrm{~S} 1 & =\mathrm{S} 2=0 \mathrm{~V}(\overline{\mathrm{SUM}} \mathrm{mode}) \end{aligned}$	19	29	ns
tPHL				15	23	
tPL	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	G	$\begin{gathered} M=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$	21	32	ns
tPHL				21	32	
${ }_{\text {tPLH }}$	Any \bar{A} or \bar{B}	$\overline{\mathrm{P}}$	$\begin{aligned} \mathrm{M} & =0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V} \\ \mathrm{~S} 1 & =\mathrm{S} 2=0 \mathrm{~V},(\overline{\mathrm{SUM}} \text { mode }) \end{aligned}$	20	30	ns
tPHL				20	30	
tpi_H	Any \bar{A} or \bar{B}	$\overline{\mathbf{P}}$	$\begin{gathered} M=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V} \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$	20	30	ns
${ }^{\text {tPHL }}$				22	33	
${ }^{\text {tPLH }}$	\bar{A}_{i} or \bar{B}_{i}	\bar{F}_{i}	$\begin{aligned} \mathrm{M} & =0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V} \\ \mathrm{~S} 1 & =\mathrm{S} 2=0 \mathrm{~V}(\mathrm{SUM} \text { mode }) \end{aligned}$	21	32	ns
tPHL				13	20	
${ }^{\text {PPLH }}$	\bar{A}_{i} or \bar{B}_{i}	\bar{F}_{i}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V} \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$	21	32	ns
tPHL				21	32	
tPLH	\bar{A}_{i} or \bar{B}_{i}	\bar{F}_{i}	$\mathrm{M}=4.5 \mathrm{~V}$ (logic mode)	22	33	ns
tPHL				26	38	
${ }^{\text {PPLH }}$	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$A=B$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$	33	50	ns
tPHL				41	62	

$\|_{\text {IPLH }} \equiv$ propagation delay time, low-to-high-level output
tPHL = propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.
schematics of inputs and outputs

TYPES SN54S181, SN74S181

ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

REVISED OCTOBER 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES; 1. Voltage values, except interemitter voltage, are with respect to network ground terminal
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to each $\overline{\mathrm{A}}$ input in conjunction with inputs S2 or S3, and to each $\overline{\mathrm{B}}$ input in conjunction with inputs S0 or S3.
recommended operating conditions

	SN54S181			SN74S181			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH} (All outputs except A = B)			-1			-1	mA
Low-level output current, 1 OL			20			20	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54S181			SN74S181			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$V_{\text {IH }}$	High-level input voitage								2			2			V
$V_{\text {IL }}$	Low-level input voltage							0.8			0.8	V			
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2			-1.2	V			
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage, any output except $\mathrm{A}=\mathrm{B}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$		2.5	3.4		2.7	3.4		V			
${ }^{1} \mathrm{OH}$	High-level output current, $A=B$ output only		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$				250			250	$\mu \mathrm{A}$			
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$				0.5			0.5	V			
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{1}=5.5 \mathrm{~V}$				1			1	mA			
1 IH	High-level input current	Mode input	$V_{C C}=M A X$,	$V_{1}=2.5 \mathrm{~V}$				50			50	$\mu \mathrm{A}$			
		Any \bar{A} or \bar{B} input						150			150				
		Any S input						200			200				
		Carry input						250			250				
IIL	- Low-level input current	Mode input	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{J}}=0.5 \mathrm{~V}$				-2			-2	mA			
		Any \bar{A} or \bar{B} input						-6			-6				
		Any S input						-8			-8				
		Carry input						-10			-10				
Ios	Short-circuit output current, any output except $A=B \S$		$V_{C C}=$ MAX			-40		-100	-40		-100	mA			
${ }^{1} \mathrm{CC}$	Supply current		$V_{C C}=M A X,$ See Note 3	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C},$	W package only			195				mA			
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 3	All packages		120	220		120	220				

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time
NOTE 3: ' CC is measured for the following conditions (the typical and maximum values apply to both):
A. So through $\mathrm{S} 3, \mathrm{M}$, and A inputs are at 4.5 V , all other inputs are grounded, and all outputs are open
B. SO through S 3 and M are at 4.5 V , all other inputs grounded, and all outputs are open

TYPES SN54S181, SN74S181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega\right.$, see note 4)

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tPL.H }}$	C_{n}	$\mathrm{C}_{\mathrm{n}+4}$			7	10.5	ns
${ }^{\text {tPHL }}$					7	10.5	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\mathrm{C}_{\mathrm{n}+4}$	$\begin{gathered} \mathrm{M}=\mathrm{OV}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\overline{\mathrm{SUM}} \text { mode }) \end{gathered}$		12.5	18.5	ns
tPHL					12.5	18.5	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	C_{n+4}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$		15.5	23	ns
tPHL					15.5	23	
tPLH	C_{n}	Any $\overline{\mathrm{F}}$	$\mathrm{M}=0 \mathrm{~V}$(SUM or $\overline{\text { DIFF mode) }}$		7	12	ns
${ }^{\text {tPHL }}$					7	12	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\overline{\mathrm{G}}$	$\begin{gathered} M=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V} \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\overline{\mathrm{SUM}} \text { mode }) \end{gathered}$		8	12	ns
tPHL					7.5	12	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\overline{\mathrm{G}}$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\mathrm{DIFF} \text { mode }) \end{gathered}$		10.5	15	ns
tPHL					10.5	15	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\overline{\mathrm{P}}$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\overline{\mathrm{SUM}} \text { mode }) \end{gathered}$		7.5	12	ns
tPHL					7.5	12	
triti	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	\bar{P}	$\begin{gathered} \mathrm{M}-0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=.4 .5 \mathrm{~V} \text { (DIFF mode) } \end{gathered}$		10.5	15	ns
tPHL					10.5	15	
tPLH	\bar{A}_{i} or \bar{B}_{i}	$\bar{F}_{\mathbf{i}}$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=4.5 \mathrm{~V} \\ \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}(\overline{\mathrm{SUM}} \text { mode }) \end{gathered}$		11	16.5	ns
tPHL					11	16.5	
tplh	\bar{A}_{i} or \bar{B}_{i}	\bar{F}_{i}	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$		14	20	ns
tPHL					14	22	
tpLH	\bar{A}_{i} or \bar{B}_{i}	\bar{F}_{i}	$\mathrm{M}=4.5 \mathrm{~V}$ (logic mode)		14	20	ns
tPHL					14	22	
tPLH	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$A=B$	$\begin{gathered} \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V}, \\ \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}} \text { mode }) \end{gathered}$		15	23	ns
tPHL					20	30	

ItpLH $=$ propagation delay time, low-to-high-leve! output
tPHI \equiv propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-10.
schematics of inputs and outputs

TYPES SN54181, SN54LS181, SN54S181, SN74181, SN74LS181, SN74S181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS
functional block diagram

PARAMETER MEASUREMENT INFORMATION SUM MODE TEST TABLE FUNCTION INPUTS: $\mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=\mathrm{M}=0 \mathrm{~V}$							
PARAMETER	inPuT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		output UNDER TEST	output WAVEFORM (Soe Note 4)
		$\begin{gathered} \text { APPLY } \\ 4.5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { APPLY } \\ \text { GND } \end{gathered}$	$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { APPLY } \\ \text { GND } \\ \hline \end{gathered}$		
tPLH	\bar{A}_{i}	\bar{B}_{i}	None	Remaining	c_{n}	\bar{F}_{i}	In-Phase
${ }_{\text {tPHL }}$				Remaining			
tpHL	${ }^{\text {B }}$	\bar{A}_{i}	None	$\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	c_{n}	\bar{F}_{i}	In-Phase
TPLH	\bar{A}_{i}	\bar{B}_{i}	None	None	Remaining	$\overline{\mathrm{p}}$	In-Phase
tPHL	${ }_{1}$						
tPLH	\bar{B}_{i}	\bar{A}_{i}	None	None	Remaining	$\overline{\text { ¢ }}$	In-Phase
${ }_{\text {tPHL }}^{\text {tPL }}$				Remaining	Remaining		
${ }_{\text {tPHL }}$	\bar{A}_{i}	None	B_{i}	$\overline{\text { B }}$	\bar{A}, c_{n}	G	In-Phaz
tPLH	\bar{B}_{i}	None	\bar{A}_{i}	${ }^{\text {Remaining }}$	Remaining	$\overline{\mathrm{G}}$	In-Phase
${ }_{\text {tPHL }}$							
tPLH	c_{n}	None	None	${ }_{\text {All }}$	$\stackrel{\text { All }}{\text { B }}$	Any F	In.Phase
tPHL	c_{n}			\bar{A}		or $\mathrm{C}_{\mathrm{n}+4}$	InPase
tolit	A_{i}	None	\bar{B}_{i}	Rambining		$\mathrm{c}_{\mathrm{n}+4}$	Out-ot-Phase
${ }_{\text {tPLL }}^{\text {tPL }}$							
${ }_{\text {tPHL }}$	${ }^{\text {B }}$	None	\bar{A}_{i}	$\overline{\text { B }}$	\bar{A}, C_{n}	c_{n+4}	Out-of.Phase

$\overline{\text { DIFF }}$ MODE TEST TABLE
FUNCTION INPUTS: $\mathrm{S} 1=\mathrm{S} 2=4.5 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=\mathrm{M}=\mathbf{0 V}$

parameter	INPUT UNDER test	OTHER INPUT SAME BIT		OTHER DATA INPUTS		output UNDER TEST	output waveform (See Note 4)
		$\begin{gathered} \text { APPLY } \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { APPLY } \\ \text { GND } \\ \hline \end{gathered}$	$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { APPLY } \\ & \text { GND } \end{aligned}$		
${ }_{\text {tPLH }}$	\bar{A}_{i}	None	\bar{B}_{i}	Remaining	Remaining	\bar{F}_{i}	In-Phase
tPHL					$\text { B. } \mathrm{C}_{\mathrm{n}}$		
tPLH	\bar{B}_{i}	\bar{A}_{i}	None	$\begin{gathered} \text { Remaining } \\ \bar{A} \end{gathered}$	Remaining \bar{B}, C_{n}	\bar{F}_{i}	Out-of-Phase
${ }_{\text {tPHL }}^{\text {tpL }}$							
${ }_{\text {tPLH }}$	\bar{A}_{i}	None	\bar{B}_{i}	None	Remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{P}}$	In-Phase
${ }_{\text {tPHL }}$							
${ }_{\text {TPLH }}$ TPHL	\bar{B}_{i}	\bar{A}_{i}	None	None	Remaining \bar{A} and \bar{B}, C	戸	Out-of.Pha
tPL	\bar{A}_{i}	\bar{B}_{i}	None	None	Remaining	$\overline{\text { G }}$	In-Phase
LPHL					\bar{A} and \bar{B}, C_{n}	G	In- n ase
${ }_{\text {TPLH }}$	\bar{B}_{i}	Nons	\bar{A}_{i}	None		$\overline{\text { G }}$	Out-ot-Phase
${ }_{\text {tPHL }}$							
${ }_{\text {TPLH }}$	\bar{A}_{i}	None	\bar{B}_{i}	Remaining	${ }^{\text {Remaining }}$	$\mathrm{A}=\mathrm{B}$	InPhase
${ }_{\text {TPHL }}$							
${ }_{\text {tPPLH }}$	\bar{B}_{i}	\bar{A}_{i}	None	${ }_{\bar{A}}^{\text {Remaining }}$	Remaining \bar{B}, C_{n}	$A=B$	Outof Phase
${ }_{\text {tPHL }}^{\text {TPL }}$							
${ }_{\text {tPLH }}^{\text {tPHL }}$	c_{n}	None	None	$\overline{\bar{A} \text { and } \bar{B}}$	None	C_{n+4}	In-Phase
tPLH	\bar{A}_{i}	\bar{B}_{i}	None	None	Remaining	$\mathrm{c}_{\mathrm{n}+4}$	Out-of.Phase
tPHL					$\overline{\mathrm{A}}, \overline{\mathrm{B}, \mathrm{C}_{\mathrm{n}}}$		
tPLH	\bar{B}_{i}	None	\bar{A}_{i}	None	Remaining	$\mathrm{c}_{\mathrm{n}+4}$	In - Phase
tPHL					$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$		

LOGIC MODE TEST TABLE
FUNCTION INPUTS: $\mathbf{S 1}=\mathbf{S 2}=\mathbf{M}=4.5 \mathrm{~V}, \mathbf{S O}=\mathbf{S 3}=0 \mathrm{~V}$

parameter	inPut under TEST	OTHER INPUT SAME BIT		OTHER DATA InPUTS		output UNDER TEST	output waveform (See Note 4)
		$\begin{gathered} \text { APPLY } \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { APPLY } \\ \text { GND } \end{gathered}$	$\begin{aligned} & \text { APPLY } \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { APPLY } \\ & \text { GND } \end{aligned}$		
tPLH	$\overline{\mathrm{A}}_{i}$	\bar{B}_{i}	None	None	Remaining \bar{A} and \bar{B}, C	\bar{F}_{i}	Out-of-Phase
${ }_{\text {tPHL }}^{\text {tPLH }}$					${ }_{\text {Remaining }}$		
tpHL	${ }^{\text {B }}$	\bar{A}_{i}	None	None	$\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{F}_{i}	Out-ot.Phase

- Directly Compatible for Use With:

SN54181/SN74181, SN54LS181/SN74LS181, SN54S281/SN74S281, SN54S381, SN74S381, SN54S481/SN74S481

Pin designations

ALTERNATIVE	DESIGNATIONS ${ }^{\dagger}$	PIN NOS.	FUNCTION
$\overline{\mathrm{G}} 0, \overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2, \overline{\mathrm{G}} 3$	G0, G1, G2, G3	3, 1, 14, 5	CARRY GENERATE INPUTS
$\overline{\mathrm{P}} 0, \overline{\mathrm{P}}_{1}, \overline{\mathrm{P}} 2, \overline{\mathrm{P}} 3$	P0, P1, P2, P3	4, 2, 15, 6	CARRY PROPAGATE INPUTS
C_{n}	$\overline{\mathrm{C}}_{n}$	13	CARRY INPUT
$\begin{gathered} C_{n+x}, C_{n+y}, \\ C_{n+z} \end{gathered}$	$\begin{gathered} \overline{\mathrm{C}}_{n+x}, \overline{\mathrm{C}}_{n+y}, \\ \overline{\mathrm{C}}_{n+z} \\ \hline \end{gathered}$	12, 11, 9	CARRY OUTPUTS
$\overline{\mathrm{G}}$	Y	10	CARRY GENERATE OUTPUT
$\overline{\mathbf{P}}$	\times	7	CARRY PROPAGATE OUTPUT
$V_{C C}$		16	SUPPLY VOLTAGE
GND		8	GROUND

${ }^{\dagger}$ Interpretations are illustrated on page 7-273

SN54182, SN54S 182 . . J J OR W PACKAGE SN74182, SN74S182 . . . J OR N PACKAGE (TOP VIEW)

logic: see description and function tables

description

The SN54182, SN54S182, SN74182, and SN74S182 are high-speed, look-ahead carry generators capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry, and propagate-carry functions are provided as enumerated in the pin designation table above.

When used in conjunction with the '181, 'LS181, or 'S181 arithmetic logic unit (ALU), these generators provide high-speed carry look-ahead capability for any word length. Each '182 or 'S182 generates the look-ahead (anticipated carry) across a group of four ALU's and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n-bits. The method of cascading ' 182 or ' S 182 circuits to perform multi-level look-ahead is illustrated under typical application data.

The carry functions (inputs, outputs, generate, and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU. Reinterpretations of carry functions as explained on the '181, 'LS181, and 'S181 data sheet are also applicable to and compatible with the look-ahead generator. Logic equations for the '182 and 'S182 are:

$$
\begin{aligned}
C_{n+x} & =G 0+P 0 C_{n} \\
C_{n+y} & =G 1+P 1 G 0+P 1 P 0 C_{n} \\
C_{n+z} & =G 2+P 2 G 1+P 2 P 1 G 0+P 2 P 1 P 0 C_{n} \\
\bar{G} & =\overline{G 3+P} 3 G 2+P 3 P 2 G 1+P 3 P 2 P 1 G 0 \\
\bar{P} & =\bar{P} 3 P 2 P 1 P 0
\end{aligned}
$$

$$
\begin{aligned}
\bar{C}_{n+x} & =\overline{Y 0\left(X 0+C_{n}\right)} \\
\bar{C}_{n+y} & =\overline{Y 1\left[X 1+Y\left(X 0+C_{n}\right)\right]} \\
\text { or } \quad \bar{C}_{n+z} & =Y 2\left\{X 2+Y 1\left[X 1+Y 0\left(X 0+C_{n}\right)\right]\right\} \\
Y & =Y 3(X 3+Y 2)(X 3+X 2+Y 1)(X 3+X 2+X 1+Y 0) \\
X & =X 3+X 2+X 1+X 0
\end{aligned}
$$

logic

FUNCTION TABLE FOR $\overline{\mathrm{G}}$ OUTPUT

INPUTS						OUTPUT	
$\overline{\mathrm{G}} 3$	$\overline{\mathrm{G}} 2$	$\overline{\mathrm{G}} 1$	$\overline{\mathrm{G}} 0$	$\overline{\mathbf{P}} 3$	$\overline{\mathbf{P}} 2$	$\overline{\mathbf{P}} 1$	$\overline{\mathrm{G}}$
L	X	X	X	X	X	X	L
X	L	X	X	L	X	X	L
X	X	L	X	L	L	X	L
X	X	X	L	L	L	L	L
	All	other combinations		H			

FUNCTION TABLE FOR $\overline{\mathrm{P}}$ OUTPUT

INPUTS	$\begin{gathered} \text { OUTPUT } \\ \bar{P} \end{gathered}$
$L \quad \mathrm{~L}$ L L	L
All other combinations	H

$H=$ high level, $L=$ low level, $X=$ irrelevant
Any inputs not shown in a given table are irrelevant with respect to that output.
functional block diagram

$H=$ high level, $L=$ low level, $X=$ irrelevant
Any inputs not shown in a given table are irrelevant with respect to that output.

FUNCTION TABLE FOR $\mathrm{C}_{\mathrm{n}+\mathrm{z}}$ OUTPUT

INPUTS							
$\overline{\mathbf{G}} \mathbf{2}$	$\overline{\mathbf{G}}$ 1	$\overline{\mathbf{G}} 0$	$\overline{\mathrm{P}} \mathbf{2}$	$\overline{\mathrm{P}}$ 1	$\overline{\mathrm{P}} \mathbf{0}$	C_{n}	$\mathrm{C}_{\mathrm{n}+\mathrm{z}}$
L	X	X	X	X	X	X	H
X	L	X	L	X	X	X	H
X	X	L	L	L	X	X	H
X	X	X	L	L	L	H	H
All other combinations							L

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminat
2. This is the voltage between two emitters of a multiple-emitter input transistor. For these circuits, this rating applies to each \bar{G} input in conjunction with any other $\overline{\mathrm{G}}$ input or in conjunction with any $\overline{\mathrm{P}}$ input.

TYPES SN54182, SN74182
 LOOK-AHEAD CARRY GENERATORS

recommended operating conditions

	SN54182		SN74182	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54182		SN74182		UNIT	
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX			
$V_{1 H}$	High-level input voltage				2		2		V
$V_{\text {IL }}$	Low-level input voltage				0.8		0.8	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5		-1.5	V	
VOH	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4	2.4	3.4	V	
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4		0.20 .4	V	
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1		1	mA	
$1{ }_{1}$	High-level input current	C_{n} input	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		80		80	$\mu \mathrm{A}$	
		P3 input			120		120		
		$\overline{\mathrm{P}}$ 2 input			160		160		
		$\overline{\mathrm{P}} 0, \overline{\mathrm{P}} 1$, or $\overline{\mathrm{G}} 3$ input			200		200		
		$\overline{\mathrm{G}} 0$ or $\overline{\mathrm{G}} 2$ input			360		360		
		$\overline{\mathrm{G}} 1$ input			400		400		
1/L	Low-level input current	C_{n} input	$V_{C C}=M A X, V_{1}=0.4 V$		-3.2		-3.2	mA	
		$\overline{\bar{P}} 3$ input			-4.8		-4.8		
		$\overline{\mathrm{P}} 2$ input			-6.4		-6.4		
		P0, $\overline{\mathrm{P}} 1$, or $\overline{\mathrm{G}} 3$ input			-8		-8		
		$\overline{\mathrm{G}} 0$ or $\overline{\mathrm{G}} 2$ input			-14.4		-14.4		
		$\overline{\mathrm{G}} 1$ input			-16		-16		
Ios	Short-circuit output current§		$V_{C C}=$ MAX	-40	-100	-40	-100	mA	
${ }^{1} \mathrm{CCH}$	Supply current, all outputs high		$V_{C C}=5 \mathrm{~V}$, See Note 3		27		27	mA	
ICCL	Supply current, all outputs low		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 4		$45 \quad 65$		$45 \quad 72$	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second
NOTES: 3. I CCH is measured with all outputs open, inputs $\overline{\mathrm{P}} 3$ and $\overline{\mathrm{G}} 3$ at 4.5 V , and all other inputs grounded.
4. ' CCL is measured with all outputs open; inputs $\overline{\mathrm{G}} 0, \overline{\mathrm{G}} 1$, and $\overline{\mathrm{G}} 2$ at 4.5 V ; and all other inputs grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX |
| :---: | :---: | :---: | :---: | :---: | UNIT

NOTE 5: Load circuit and voltage waveforms are shown on page 3-10.

recommended operating conditions

	SN54S182			SN74S182			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	SN54S182		SN74S182			UNIT	
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2		2			V
$V_{\text {IL }}$	Low-level input vol tage				0.8			0.8	V	
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{l}_{1}=-18 \mathrm{~mA}$		-1.2			-1.2	V	
VOH	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	2.5	3.4	2.7	3.4		V	
V'OL	Lơv-ievei ouipuit voitage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$		0.5			0.5	V	
ii	Input cuirent at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{i}}=5.5 \mathrm{~V}$		1			1	mȦ	
IH	High-level input current	C_{n} input	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$		50			50	$\mu \mathrm{A}$	
		$\overline{\text { P3 }}$ input			100			100		
		$\overline{\mathrm{P}} 2$ input			150			150		
		$\overline{\mathrm{P}} 0, \overline{\mathrm{P}} 1$, or $\overline{\mathrm{G}} 3$ input			200			200		
		$\overline{\mathrm{G}} 0$ or $\overline{\mathrm{G}} 2$ input			350			350		
		$\overline{\mathrm{G}} 1$ input			400			400		
IIL	Low-ievei input current	C_{n} input	$V_{C C}=M A X, \quad V_{1}=0.5 V$		-2			-2	mA	
		F3 input			-4			-4		
		$\overline{\mathrm{P}} 2$ input			-6			-6		
		$\overline{\mathrm{P}}, \overline{\mathrm{P}} 1$, or ${ }^{\text {G3}} 3$ input			-8.			-8		
		$\overline{\mathrm{G}} 0$ or $\overline{\mathrm{G}} 2 \mathrm{input}$			-14			-14		
		$\overline{\mathrm{G}} 1$ input			-16			-16		
Ios	Short-circuit output current §		$V_{C C}=\mathrm{MAX}$	-40	-100	-40		-100	mA	
1 CCH	Supply current, all outputs high		$V_{C C}=5 \mathrm{~V}$, See Note 3	35		35			mA	
ICCL	Supply current, all outputs low		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 4		69 99		69	109	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.
NOTES: 3. ${ }^{\mathrm{I} C C H}$ is measured with all outputs open, inputs P 3 and G 3 at 4.5 V , and all other inputs grounded.
4. I CCL is measured with all outputs open; inputs $\overline{\mathrm{G}} 0, \overline{\mathrm{G}} 1$, and $\overline{\mathrm{G}} 2$ at 4.5 V ; and all other inputs grounded
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	$\begin{aligned} & \overline{\mathrm{G}} 0, \overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2, \overline{\mathrm{G}} 3, \\ & \mathrm{PO}, \mathrm{P} 1, \mathrm{P} 2, \text { or P3 } \end{aligned}$	$\begin{gathered} \mathrm{C}_{n+x}, \mathrm{C}_{\mathrm{n}+\mathrm{y}}, \\ \text { or } \mathrm{C}_{\mathrm{n}+\mathrm{z}} \end{gathered}$	$\mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ See Note 5		4.5	7	ns
tPHL					4.5	7	
tPLH	ज̄0, G1, G2, G3, P1, P2, or P3	$\overline{\mathbf{G}}$			5	7.5	ns
tPHL					7	10.5	
tPL.H	$\overline{\mathrm{P}} 0, \overline{\mathrm{P}} 1, \overline{\mathrm{P}} 2$, or $\overline{\mathrm{P}} 3$	\bar{p}			4.5	6.5	ns
tPHL					6.5	10	
tPL.H	C_{n}	$\begin{gathered} C_{n+x}, C_{n+y}, \\ \text { or } C_{n+z} \end{gathered}$			6.5	10	ns
tPHL					7	10.5	

[^22]TYPES SN54182, SN54S182, SN74182, SN74S182 LOOK-AHEAD CARRY GENERATORS

7

TYPICAL APPLICATION DATA

64-BIT ALU, FULL-CARRY LOOK-AHEAD IN THREE LEVELS
Remaining inputs and outputs of •181, 'LS181,'S181'S281,'S381, and 'S481 are not shown.

- For Use in High-Speed Wallace-Tree Summing Networks
- High-Speed, High-Fan-Out Darlington Outputs
- Input Clamping Diodes Simplify System Design

	TYPICAL AVERAGE	TYPICAL
	PROPAGATION	POWER
TYPES	DELAY TIME	DISSIPATION
'H183	11 ns	110 mW per bit
'LS183	15 ns	23 mW per bit

functional block diagram (each adder)

SN54H183, SN54LS183 . . . J OR W PACKAGE SN74H183, SN74LS183 . . J J OR N PACKAGE

FUNCTION TABLE
(EACH ADDER)

INPUTS			OUTPUTS	
C $_{\boldsymbol{n}}$	B	A	Σ	C $_{\boldsymbol{n}+1}$
L	L	L	L	L
L	L	H	H	L
L	H	L	H	L
L	H	H	L	H
H	L	L	H	L
H	L	H	L	H
H	H	L	L	H
H	H	H	H	H

$H=$ high levei, $L=$ low level
schematics of inputs and outputs

description
These dual full adders feature an individual carry output from each bit for use in multiple-input, carry-save techniques to produce the true sum and true carry outputs with no more than two gate delays. The circuits utilize high-speed, high-fan-out, transistor-transistor logic (TTL), but are compatible with both DTL and TTL families. Series 54H and 54 LS devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 H and 74 LS devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TYPES SN54H183, SN74H183

dUAL CARRY-SAVE FULL ADDERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between any two inputs to the same adder

recommended operating conditions

	SN54H183			SN74H183			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage		2		V
V_{IL} Low-level input voltage			0.8	V
V_{IK} Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-8 \mathrm{~mA}$		-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & I_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	2.4	3.5	V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$		0.20 .4	V
II Input current at maximum input voltage	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
IIH High-level input current	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		150	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-6	mA
'OS Short-circuit output current §	$V_{C C}=$ MAX	-40	-100	mA
ICCL Supply current, all outputs low	$\mathrm{V}_{\text {CC }}=$ MAX, ${ }^{\text {SN }}$ S4H183		$48 \quad 69$	mA
ICCL Supply current, all outputs low			$48 \quad 75$	
${ }^{1} \mathrm{CCH}$ Supply current, all outputs high	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 4		40	mA

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\$$ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second
NOTES: 3. ${ }^{1} \mathrm{CCL}$ is measured with all outputs open and all inputs grounded
4. ${ }^{\mathrm{ICCH}}$ is measured with all outputs open and all outputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$C_{L}=25 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=280 \Omega$,		10	15	ns
tPHL Propagation delay time, high-to-iow-level output	See Note 5		12	18	ns

NOTE 5: Load circuit and waveforms are shown on page 3-10.

TYPES SN54LS183, SN74LS183 DUAL CARRY-SAVE FULL ADDERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values, except interemitter voltage, are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operation free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP ${ }_{\text {¢ }}^{\text {¢ }}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V
VOH High-level output voltage	$\begin{aligned} & V_{C C}=\text { MiN }, \\ & V_{I L}=V_{I L} \max , \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}^{2}=-400 \mu \mathrm{~A} \end{aligned}$	2.5	3.4		2.7	3.4		V
	$V_{C C}=\operatorname{MAN},$	$\mathrm{J}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	
VOL	$V_{\text {IL }}=V_{\text {IL }}^{\max },$	${ }^{1} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	v
I/ Input current at maximum input voltage	$V_{C C}=M A X$,	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.3			0.3	mA
$\mathrm{I}_{\mathrm{IH}} \quad$ High-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			60			60	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.2			-1.2	mA
IOS Short-circuit output current §	$\mathrm{V}_{C C}=\mathrm{MAX}$		-20		-100	-20		-100	mA
ICCL Supply current, all outputs low	$V_{C C}=$ MAX,	See Note 3		10	17		10	17	mA
ICCH Supply current, all outputs high	$V_{C C}=$ MAX,	See Note 4		8	14		8	14	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second
NOTES: 3. 'CCL is measured with all outputs open and all inputs grounded.
4. ${ }^{\mathrm{I} C C H}$ is measured with all outputs open and all outputs at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$,	15	23	ns	
tPHL Propagation delay time, high-to-low-level output	See Note 6	23	ns		

NOTE 6: Load circuit and waveforms are shown on page 3-11.

SN54184, SN74184 BCD-TO-BINARY CONVERTERS SN54185A, SN74185A BINARY-TO-BCD CONVERTERS

description

These monolithic converters are derived from the custom MSI 256 -bit read-only memories SN5488 and SN7488. Emitter connections are made to provide direct read-out of converted codes at outputs Y8 through Y 1 as shown in the function tables. These converters demonstrate the versatility of a read-only memory in that an unlimited number of reference tables or conversion tables may be built into a system using economical, customized read-only memories. Both of these converters comprehend that the least significant bits (LSB) of the binary and BCD codes are logically equal, and in each case the LSB bypasses the converter as illustrated in the typical applications. This means that a 6 -bit converter is produced in each case. Both devices are cascadable to N bits.

SN54184, SN54185A . . . J OR W PACKAGE
SN74184, SN74185A . . . J OR N PACKA GE

An overriding enable input is provided on each converter which, when taken high, inhibits the function, causing all outputs to go high. For this reason, and to minimize power consumption, unused outputs Y 7 and Y 8 of the '185A and all "don't care" conditions of the '184 are programmed high. The outputs are of the open-collector type.

The SN54184 and SN54185A are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74184 and SN74185A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54184 and SN74184 BCD-to-binary converters

The 6-bit BCD-to-binary function of the SN54184 and SN74184 is analogous to the algorithm:
a. Shift $B C D$ number right one bit and examine each decade. Subtract three from each 4-bit decade containing a binary value greater than seven.
b. Shift right, examine, and correct after each shift until the least significant decade contains a number smaller than eight and all other con-

TABLEI
SN54184, SN74184
PACKAGE COUNT AND DELAY TIMES FOR BCD-TOBINARY CONVERSION

INPUT	PACKAGES	TOTAL DELAY TIMES (ns)	
(DECADES)	REQUIRED	TYP	MAX
2	2	56	80
3	6	140	200
4	11	196	280
5	19	280	400
6	28	364	520

SN54184 and SN74184 BCD-to-binary converters (continued)

BCD 9'S
COMPLEMENT CONVERTER

BCD 10'S COMPLEMENT CONVERTER

FUNCTION TABLE BCD 9'S OR BCD 10'S

$\begin{gathered} \text { BCD } \\ \text { NORD } \end{gathered}$	INPUTS (See Note C)						OUTPUTS (See Note D)		
	$\mathrm{E}^{\text {t. }}$	D	C	B	A	G	Y8	Y7	Y6
0	L	L	L	L	L	L	H	L	H
1	L	L	L	L	H	L	H	L	L
2	L	L	L	H	L	L	L	H	H
3	L	L	L	H	H	L	L	H	1
4	L	L	H	L	L	L	L	H	H
5	L	L	H	L	H	L	L	H	L
6	L	L.	H	H	L	L	L	L	H
7	L	L	H	H	H	L	L	L	L
8	L	H	L	L	L	L	L	L	H
9	L	H	L	1	H	L	L	L	L
0	H	L	2	L	L	L	L	L	L
1	H	L	L	L	H	L	H	L	L
2	H	1	L	H	L	L	H	L	L
3	H	L	L	H	H	L	L	H	H
4	H	L	H	L	L	L	L	H	H
5	H	L	H	L	H	L	L	H	L
6	H	L	H	H	L	L	L	H	L
7	H	1	H	H	H	L	L	L	H
8	H	H	L	L	L	L	L	L	H
9	H	H	L	L	H	L	L	L	L
ANY	X	\times	x	x	x	H	H	H	H

$H=$ high level, $L=$ low level, $X=$ irrelevant
NOTES: A. Input conditions other than those shown produce highs at outputs $Y 1$ through $Y 5$.
B. Outputs Y6, Y7, and Y8 are not used for BCD-to binary conversion.
In addition to BCD-to-binary conversion, the SN54184 and SN74184 are programmed to generate BCD 9's complement or BCD 10's complement. Again, in each case, one bit of the complement code is logically equal to one of the BCD bits; therefore, these complements can be produced on three lines. As outputs $\mathrm{Y} 6, \mathrm{Y} 7$, and Y 8 are not required in the BCD-to-binary conversion, they are utilized to provide these complement codes as specified in the function table (above, right) when the devices are connected as shown above the function table.

TYPES SN54184, SN54185A, SN74184, SN74185A BCD-TO-BINARY AND BINARY-TO-BCD CONVERTERS

SN54185A and SN74185A binary-to-BCD converters

The function performed by these 6-bit binary-to-BCD converters is analogous to the algorithm:
a. Examine the three most significant bits. If the sum is greater than four, add three and shift left one bit
b. Examine each BCD decade. If the sum is greater than four, add three and shift left one bit.
c. Repeat step b until the least-significant binary bit is in the least-significant $B C D$ location.
table II
SN54185A, SN74185A PACKAGE COUNT AND DELAY TIMES FOR BINARY-TO-BCD CONVERSION

INPUT	PACKAGES	TOTAL DELAY TIME (ns)	
(BITS)	REQUIRED	TYP	MAX
4 to 6	1	25	40
7 or 8	3	50	80
9	4	75	120
10	6	150	160
11	7	125	200
12	8	125	200
13	10	150	240
14	12	175	280
15	14	175	280
16	16	200	320
17	19	225	360
18	21	225	360
19	24	250	400
20	27	275	440

6-BIT CONVERTER

FUNCTION TABLE

BINARY WORDS	INPUTS						OUTPUTS							
	BINARY SELECT					$\begin{gathered} \text { ENABLE } \\ \mathbf{G} \\ \hline \end{gathered}$	Y 8	Y7	Y6	Y5	Y4 Y3		Y2	Y1
0.1	L	L	L	L	L	L	H	H	L	L	L	L	L	L
2.3	L	L	L	L	H	L	H	H	L	L	L	L	L	H
4.5	L	1	L	H	L	L	H	H	L	L	L	L	H	L
6.7	L	L	L	H	H	L	H	H	L	L	L	L	H	H
8.9	L	L	H	L	L	L	H	H	L	L	L	H	L	L
10. 11	L	L	H	1	H	L	H	H	L	L	H	L	L	L
12. 13	L	1	H	H	L	L	H	H	L	L	H	L	L	H
14. 15	L	L	H	H	H	L	H	H	L	1	H	L	H	L
16.17	L	H	L	L	1	L	H	H	1	L	H	L	H	H
18.19	L	H	L	L	H	L	H	H	L	L	H	H	L	L
20.21	L	H	L	H	L	L	H	H	L	H	1	L	L	L
$22 \cdot 23$	L	H	L	H	H	L	H	H	L	H	L	L	L	H
24.25	L	H	H	L	L	L	H	H	L	H	L	L	H	L
26.27	L	H	H	L	H	L	H	H	1	H	L	L	H	H
28.29	L	H	H	H	L	L	H	H	L	H	L	H	L	L
30.31	L	H	H	H	H	L	H	H	L	H	H	L	L	1
32.33	H	L	L	L	L	L	H	H	L	H	H	L	L	H
34. 35	H	L	L	t	H	L	H	H	L	H	H	L	H	L
36.37	H	L	L	H	L	L	H	H	1	H	H	L	H	H
38.39	H	L	L	H	H	L	H	H	L	H	H	H	L	1
40.41	H	L	H	L	1	L	H	H	H	1	L	L	L	i
42.43	H	L	H	L	H	L	H	H	H	L	L	L	L	H
44.45	H	L	H	H	L	L	H	H	H	L	L	L	H	L
46.47	H	1	H	H	H	L	H	H	H	L	L	L	H	H
48.49	H	H	L	1	L	L	H	H	H	L	L	H	L	L
50-51	H	H	L	L	H	L	H	H	H	1	H	1	L	
52.53	H	H	L	H	L	L	H	H	H	L	H	L	L	H
54.55	H	H	L	H	H	L	H	H	H	L	H	L	H	
56.57	H	H	H	L	L	L	H	H	H	L	H	L	H	H
58.59	H	H	H	L	H	L	H	H	H	L	H	H	L	
60.61	H	H	H	H	L	L	H	H	H	H	L	L	L	L
62.63	H	H	H	H	H	L	H	H	H	H	L	L	L	
ALL	\times	\times	\times	\times	\times	H	H	H	H	H	H	H	H	H

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage vaiues are with respect to network ground terminal.

TYPES SN54184, SN54185A, SN74184, SN74185A BCD-TO-BINARY AND BINARY-TO-BCD CONVERTERS

recommended operating conditions

	SN54184, SN54 185A SN74184, SN74185A ,						UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Low-level output current, IOL			12			12	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	ITIONS ${ }^{\dagger}$	MIN	TYP ${ }_{\text {¢ }}$	MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			V
$V_{\text {IL }}$ Low-level input voltage					0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
${ }^{\mathrm{I}} \mathrm{OH}$ High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$			0.4	V
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
iIH High-ievei input current	$V_{C C}=$ M MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1	mA
$\mathrm{I}^{\mathrm{CCH}}$ Supply current, all outputs high	$V_{C C}=$ MAX		50			mA
ICCL Supply current, all programmed outputs iow				62	99	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from enable G	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & R_{\mathrm{L} 1}=400 \Omega, \\ & \mathrm{R}_{\mathrm{L} 2}=600 \Omega, \end{aligned}$ See Figure 1 and Note 2	19	30	ns
tPHL Propagation delay time, high-to-iow-ievel outpur from enabie s		22	35	ns
tPLH Propagation delay time, low-to-high-level output from binary select		27	40	ns
tPHL Propagation delay time, high-to-low-level output from binary select		23	40	ns

PARAMETER MEASUREMENT INFORMATION	schematics of inputs and outputs	
	EQUIVALENT OF ALL INPUTS	TYPICAL OF ALL OUTPUTS
C_{L} includes probe and jig capacitance. LOAD CIRCUIT FIGURE 1		
NOTE 2: Voltage waveforms are shown on page 3-10.		

TYPES SN54184, SN54185A, SN74184, SN74185A
BCD-TO-BINARY AND BINARY-TO-BCD CONVERTERS

TYPICAL APPLICATION DATA
SN54184, SN74184

FIGURE 1-BCD-TO-BINARY CONVERTER FOR TWO BCD DECADES

FIGURE 2-BCD-TO-BINARY CONVERTER FOR THREE BCD DECADES

FIGURE 3-BCD-TO-BINARY CONVERTER FOR SIX BCD DECADES

TYPES SN54184, SN54185A, SN74184, SN74185A BCD-TO-BINARY AND BINARY-TO-BCD CONVERTERS

FIGURE 4-6-BIT BINARY-TO-BCD CONVERTER

FIGURE 5-8-BIT BINARY-TO-BCD CONVERTER CONVERTER

FIGURE 7-12-BIT BINARY-TO-BCD CONVERTER (SEE NOTE B)

7 LSD-Least significant decade

FIGURE 8-16-BIT BINARY-TO-BCD CONVERTER (SEE NOTE B)

NOTES: A. Each rectangle represents an SN54185A or an SN74185A B. All unused E inputs are grounded.

- Counts 8-4-2-1 BCD or Binary
- Single Down/Up Count Control Line
- Count Enable Control Input
- Ripple Clock Output for Cascading
- Asynchronously Presettable with Load Control
- Parallel Outputs
- Cascadable for n-Bit Applications

TYPE	AVERAGE PROPAGATION DELAY	TYPICAL MAXIMUM CLOCK	TYPICAL PREQUENCY
	DISSIPATION		

description

SN54', SN54LS' . . . J OR W PACKAGE SN74', SN74LS' . . . J OR N PACKAGE

asynchronous inputs: Low input to load sets $Q_{A}=A$, $Q_{B}=B, Q_{C}=C$, and $Q_{D}=D$

The '190, 'LS190, '191, and 'LS191 are synchronous, reversible up/down counters having a complexity of 58 equivalent gates. The '191 and 'LS191 are 4-bit binary counters and the '190 and 'LS190 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.
The outputs of the four master-slave flip-flops are triggered on a low-to-high-level transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down. Level changes at the down/up input of the 'LS190 and 'LS191 should be made only when the clock input is high.
These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to iower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Series 54^{\prime} and $54 \mathrm{LS}{ }^{\prime}$ are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74^{\prime} and $74 \mathrm{LS}{ }^{\prime}$ are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TYPES SN54190, SN54191, SN54LS190, SN54LS191, SN74190, SN74191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

'190, 'LS190 DECADE COUNTERS
typical load, count, and inhibit sequences
Illustrated below is the following sequence:

1. Load (preset) to $B C D$ seven.
2. Count up to eight, nine (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), nine, eight, and seven.

7

TYPES SN54191, SN54LS191, SN74191, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

'191, 'LS191 BINARY COUNTERS

typical load, count, and inhibit sequences
Illustrated below is the following sequence:

1. Load (preset) to binary thirteen
2. Count up to fourteen, fifteen (maximum), zero, one, and two
3. Inhibit.
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54190, SN54191, SN74190, SN74191

SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	SN54190, SN54191		SN74190, SN74191		UNIT	
		MIN	TYP \ddagger MAX	MIN	TYP京 MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage		$V_{C C}=$ MIN	2		2		V
$V_{\text {IL }}$	Low-level input voltage	$V_{C C}=$ MIN		0.8		0.8	V	
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5		-1.5	V	
$\mathrm{VOH}^{\text {O }}$	High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \\ \hline \end{array}$	2.4	3.4	2.4	3.4	V	
VOL	Low-level output voltage	$\begin{array}{\|ll\|} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ \hline \end{array}$		0.20 .4		0.20 .4	V	
1	High-level input current at maximum input voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1		1	mA	
I_{IH}	High-level input current at any input except enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$	
I H	High-level input current at enable input			120		120	$\mu \mathrm{A}$	
11.	Low-level input current at any input except enabie	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6		-1.6	mA	
IIL	Low-level input current at enable input			-4.8		-4.8	mA	
Ios	Short-circuit output current §	$V_{C C}=M A X$	-20	-65	-18	-65	mA	
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		$65 \quad 99$		$65 \quad 105$	mA	

${ }^{\dagger}$ For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	$\begin{gathered} \text { FROM } \\ \text { (INPUT) } \\ \hline \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS		90, '1		
PARAMETER				MIN	TYP	MAX	
$\mathrm{f}_{\text {max }}$			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega,$ See Figures 1 and 3 thru 7	20	25		MHz
${ }^{\text {tPLH }}$	Load	$Q_{A}, Q_{B}, Q_{C}, Q_{D}$			22	33	ns
tPHL					33	50	ns
tPLH	Data A, B, C, D	$\mathrm{a}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{o}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$			14	22	
${ }^{\text {t PHL }}$					35	50	ns
tPLH	Clock	Ripple Clock			13	20	ns
tPHL					16	24	
${ }^{\text {tPLH }}$	Clock	$Q_{A}, Q_{B}, Q_{C}, Q_{D}$			16	24	ns
tPHL					24	36	
${ }^{\text {tPLH }}$	Clock	Max/Min			28	42	ns
tPHL					37	52	ns
${ }^{\text {tPLii }}$	Down/Up	Ripple Clock			30	45	ns
tPHL					30	45	
tPLH	Down/Up	Max/Min			21	33	ns
tPHL					22	33	

$\|_{f_{\text {max }}} \equiv$ maximum clock frequency
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tpHL }}$ ㄹpragation delay time, high-to-low-level output
schematics of inputs and outputs

TYPES SN54LS190, SN54LS191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL REVISED OCTOBER 1976
recommended operating conditions

	SN54LS190 SN54LS191			SN74LS190 SN74LS191			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	\checkmark
High-level output current, I^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Clock frequency, flock	0		20	0		20	MHz
Width of clock input pulse, $\mathrm{t}_{\text {w }}$ (clock)	25			25			ns
Width of load input pulse, $\mathrm{t}_{\text {w }}$ (load)	35			35			ns
Data setup time, tsetup $^{\text {(See Figures } 1 \text { and 2) }}$	20			20			ns
Data hold time, thold	0			0			ns
Count enable time, ${ }_{\text {enable }}$ (see Note 3)]	20			20			ns
Operating free-air temperature, $T_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTES: 2. ICC is measured with all inputs grounded and all outputs open.
3. Minimum count enable time is the interval immediately preceeding the rising edge of the clock pulse during which interval the count enable input must be low to ensure counting.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS190, 'LS191			UNIT
				MIN	TYP	MAX	
$f_{\text {max }}$			$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,$ See Figures 1 and 3 thru 7	20	25		MHz
${ }^{\text {t PLH }}$	Load	$Q_{A}, Q_{B}, Q_{C}, Q_{D}$			22	33	ns
${ }^{\text {tPHL }}$					33	50	ns
${ }^{\text {tPLH }}$	Data A, B, C, D	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$			20	32	ns
tPHL					27	40	
tPLH	Clock	Ripple Clock			13	20	ns
${ }^{\text {tPHL }}$					16	24	s
${ }^{\text {tPLH }}$	Clock	$Q_{A}, Q_{B}, Q_{C}, Q_{D}$			16	24	ns
${ }^{\text {tPHL }}$					24	36.	ns
${ }^{\text {tPLH }}$	Ciock	Max/Min			28	42.	ns
${ }^{\text {tPHL }}$					37	52	
${ }^{\text {tPLH }}$	Down/Up	Ripple Clock			30	45.	ns
tpiiL					30	45	s
${ }^{\text {P PLH }}$	Down/Up	Max/Min			21	33	
tPHL					22	33	S
${ }^{\text {PPLH }}$	Enable	Ripple Clock			21	33	
tPHL					22	33	ns

If $f_{\text {max }} \equiv$ maximum clock frequency
${ }^{t_{\mathrm{PLH}}} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {t PHL }} \equiv$ propagation delay time, high-to-low-level output
schematics of inputs and outputs

7

TYPES SN54190, SN54191, SN54LS190, SN54LS191,
SN74190, SN74191, SN74LS190, SN74LS191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL
PARAMETER MEASUREMENT INFORMATION

> See waveform sequences in figures 4 through 7 for propagation times from a specific input to a specific output. For simplification, puise rise times, reference levels, etc., have not been shown in figures 4 through 7 .
> FIGURE 3-GENERAL VOLTAGE WAVEFORMS FOR PROPAGATION TIMES

NOTE E: Conditions on other inputs are irrelevant
FIGURE 4-LOAD TO OUTPUT AND DATA TO OUTPUT

NOTE F: All data inputs are low
FIGURE 5-ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO RIPPLE CLOCK, AND DOWN/UP TO MAX/MIN
switching characteristics (continued)

FIGURE 6-CLOCK TO OUTPUT

NOTE J: Data inputs B and C are shown by the dashed line for the '190 and 'LS190 and the solid line for the '191 and 'LS191: Data input D is shown by the solid line for both devices.

TYPES SN54192, SN54193, SN54L192, SN54L193, SN54LS192, SN54LS193 SN74192, SN74193, SN74L192, SN74L193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

- Cascading Circuitry Provided Internally
- Synchronous Operation
- Individual Preset to Each Flip-Flop
- Fully Independent Clear Input

TYPES	TYPICAL MAXIMUM COUNT FREQUENCY	TYPICAL
POWER DISSIPATION		

description

These monolithic circuits are synchronous reversible (up/down) counters having a complexity of 55 equivalent gates. The '192, 'L192, and 'LS192 circuits are BCD counters and the '193, 'L193 and 'LS193 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.
The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers, etc., required for long words.

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry autput produces a pulse equal in width to the count down input when an overfiow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54'	SN54L'	SN54LS'	SN74'	SN74L'	SN74LS'	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1)	7	8	7	7	8	7	V
Input voltage	5.5	5.5	7	5.5	5.5	7	V
Operating free-air temperature range	-55 to 125			0 to 70			${ }^{\circ} \mathrm{C}$
Storage temperature range	-65 to 150			-65 to 150			${ }^{\circ} \mathrm{C}$

TYPES SN54192, SN54193, SN54L192, SN54L193, SN54LS192, SN54LS193, SN74192, SN74193, SN74L192, SN74L193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

functional block diagrams

Texas Instruments

TYPES SN54192, SN54193, SN54L192, SN54L193, SN54LS192, SN54LS193, SN74192, SN74193, SN74L192, SN74L193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR) REVISED OCTOBER 1976
schematics of inputs and outputs

7

TYPES SN54192, SN54L192, SN54LS192, SN74192, SN74L192, SN74LS192 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

'192,'L192,'LS192 DECADE COUNTERS

typical clear, load, and count sequences
Illustrated below is the following sequence:

1. Clear outputs to zero
2. Load (preset) to $B C D$ seven.
3. Count up to eight, nine, carry, zero, one, and two.
4. Count down to one, zero, borrow, nine, eight, and seven.

7
B. When counting up, count-down input must be high; when counting down, count-up input must be high.
'193, 'L 193, 'LS193 BINARY COUNTERS
typical clear, load, and count sequences
Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

7

NOTES: A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)
recommended operating conditions

	SN54192 SN54193			SN74192 SN74193			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\text {I }} \mathrm{OH}$			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Clock frequency, folock	0		25	0		25	MHz
Width of any input pulse, t_{w}	20			20			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	20			20			ns
Data hold time, $\mathrm{th}^{\text {h }}$	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
\ddagger All typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
7
NOTE 2: I CC is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM INPUT	то OUTPUT	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$		Carry	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Figures } 1 \text { and } 2 \end{aligned}$	25	32		MHz
tPLH	Count-up				17	26	ns
tPHL					16	24	
tPLH	Count-down	Borrow			16	24	ns
tPHL					16	24	
tPLH	Either Count	Q			25	38	ns
tPHL					31	47	
tPLH	Load	Q			27	40	ns
tPHL					29	40	
TPHL	Clear	0			22	35	ns

${ }^{4} \mathrm{fmax} \equiv$ maximum clock frequency
${ }^{\text {t P LH }} \equiv$ propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output

TYPES SN54L192, SN54L193, SN74L192, SN74L193
 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

recommended operating conditions

	SN54L192SN54L193			SN74L192 SN74L193			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, $\mathrm{I}^{\text {OH}}$			-100			-200	$\mu \mathrm{A}$
Low-level output current, I_{OL}			2			3.6	mA
Clock frequency, felock	0		3	0		3	MHz
Width of any input pulse, t_{w}	200			200			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	100			100			ns
Data hold time, th_{h}	0			0			ns
Operating free-air temperature range, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time
NOTE 2: ICC is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM INPUT	TO OUTPUT	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$			$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=4 \mathrm{k} \Omega \end{aligned}$ See Figures 1 and 2	3	7		MHz
tPLH	Count-up	Carry			65	130	ns
tPHL					65	130	
${ }^{\text {tPLH }}$	Count-down	Borrow			65	130	ns
tPHL					65	130	
tpLH	Either Count	Q			104	200	ns
tPHL					135	240	
tPLH	Load	0			130	240	ns
tPHL					105	200	
tPHL	Clear	Q			110	200	ns

$\|_{\text {max }} \equiv$ maximum clock frequency
${ }^{t_{P L H}} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
recommended operating conditions

	SN54LS192 SN54LS193			SN74LS192 SN74LS193			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, l^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Clock frequency, filock	0		25	0		25	MHz
Width of any input pulse, t_{w}	20			20			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	20			20			ns
Data hold time, $\mathrm{th}^{\text {m }}$	0			0			ns
Operating free-air temperature range, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS192 SN54LS193		SN74LS192 SN74LS193			UNIT
			Mifin	TY̌FT MAX	vilin	TYP ${ }^{\text {¢ }}$	VîAX	
$V_{1 H}$ High-level input voltage			2		2			V
$V_{\text {IL }}$ Low-level input voltage				0.7			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & V_{I H}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=V_{\mathrm{IL}} \text { max, }, & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4	2.7	3.4		V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\text {IH }}=2 \mathrm{~V}, \\ \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\text {IL }} \text { max } \end{array}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		$0.25 \quad 0.4$		0.15	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.35	0.5	
II $\begin{aligned} & \text { Input current at maximum } \\ & \text { input voltage }\end{aligned}$	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA
IIH High-level input current	$V_{C C}=$ MAX,$\quad V_{1}=2.7$			20			20	$\mu \mathrm{A}$
IIL. Low-level input current	$V_{C C}=M A X, \quad V_{1}$			-0.4			-0.4	mA
IOS Short-circuit output current §	$V_{C C}=$ MAX		-20	-100	-20		-100	mA
ICC Supply current	$V_{C C}=M A X, \quad$ See Note 2			$19 \quad 34$		19	34	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 2: I CC is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM INPUT	TO OUTPUT	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$			$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Figures 1 and 2	25	32		MHz
tPLH	Count-up	Carry			17	26	ns
tPHL					21	23	
tPLH	Count-down	Borrow			16	24	ns
tPHL					21	33	
tPLH	Either Count	Q			25	38	ns
tPHL					31	47	
tPLH	Load	Q			27	40	ns
tPHL					29	40	
tPHL	Clear	0			22	35	ns

If $f_{\text {max }} \equiv$ maximum clock frequency
${ }^{\text {tP }}$ LH \equiv propagation delay time, low-to-high-level output
tpHI \equiv propagation delay time, high-to-low-level output

TYPES SN54192, SN54193, SN54L192, SN54L193, SN54LS192, SN54LS193, SN74192, SN74193, SN74L192, SN74L193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

PARAMETER MEASUREMENT INFORMATION

test circuit

7

NOTES: A. The pulse generators have the following characteristics: $Z_{\text {out }} \approx 50 \Omega$ and for the data pulse generator $P R R \leqslant 500 \mathrm{kHz}$, duty cycle $=50 \%$; for the load puise generator PRR is two times data PRR, duty cycle $=50 \%$
cycle $=50 \%$; for the load puise generat
B. C_{L} includes probe and jig capacitance.
C. Diodes are 1 N3064 for '192,'193, 'LS192, and 'LS193; 1 N916 for 'L192 and 'L193.
D. t_{r} and $t_{f} \leqslant 7$ ns for '192, '193, 'LS192, and 'LS193; $\leqslant 25 \mathrm{~ns}$ for 'L192 and 'L193.
E. $V_{\text {ref }}$ is 1.5 volts for ' 192 and '193; 1.3 volts for 'L192, 'L193; 'LS192, and 'LS193

TYPES SN54192, SN54193, SN54L192, SN54L193, SN54LS192, SN54LS193, SN74192, SN74193, SN74L192, SN74L193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $P R R \leqslant 1 \mathrm{MHz}, Z_{\text {out }} \approx 50 \Omega$, duty cycle $=50 \%$.
B. C_{L} includes probe and jig capacitance.
C. Diodes are 1N3064 for '192, '193, 'LS192, and 'LS193; 1N916 for 'L192 and 'L193.
D. Count-up and count-down pulse shown are for the '193, 'L193, and 'LS193 binary counters. Count cycle for '192,'L192, and 'LS 192 decade counters is 1 through 10.
E. Waveforms for outputs Q_{A}, Q_{B}, and Q_{C} are omitted to simplify the drawing.
F. t_{r} and $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$ for '192, '193, 'LS192, and 'LS $193 ; \leqslant 25 \mathrm{~ns}$ for ' L 192 and 'L193.
G. $V_{\text {ref }}$ is 1.5 volts for '192 and '193; 1.3 volts for 'L192, 'L193, LS192, and 'LS193.

FIGURE 2-PROPAGATION DELAY TIMES

TIL

TYPES SN54194, SN54LS194A, SN54S194,
SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

- Parallel Inputs and Outputs
- Four Operating Modes:

Synchronous ParalleI Load Right Shift
Left Shift
Do Nothing

- Positive Edge-Triggered Clocking
- Direct Overriding Clear

	TYPICAL	
	TYPICAL	
TYPE	MAXIMUM	POWER
	CLOCK	DISSIPATION
	FREQUENCY	
'194	36 MHz	195 mW
'LS194A	36 MHz	75 mW
'S194	105 MHz	425 mW

description

SN54 194, SN54LS194A, SN54S194 . . . J OR W PACKAGE
SN74194, SN74LS194A, SN74S194 . . . J OR N PACKAGE

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

> Parallel (broadside) load
> Shift right (in the direction Q_{A} toward Q_{D})
> Shift left (in the direction Q_{D} toward Q_{A})
> Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transistion of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls of the SN54194/SN74194 should be changed only while the clock input is high.

FUNCTION TABLE														$\mathrm{H}=$ high level (steady state) $\mathbf{L}=$ low level (steady state) $X=$ irreievant (any input, including transitions)
INPUTS										OUTPUTS				
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathrm{O}_{\mathbf{A}}$	$\mathbf{O}_{\mathbf{B}}$	$\mathrm{O}_{\mathbf{C}}$	0_{D}	
	S1	S0		LEFT	RIGHT	A	B	C	D					
L	X	X	X	X	X	X	X	X	X	L	L.	L	L	$\uparrow=$ transition from low to high leve!
H	X	X	L	X	x	x	\times	\times	X	$\mathrm{O}_{\text {AO }}$	Q_{BO}	O_{CO}	$\mathrm{Q}_{\text {D0 }}$	$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}=$ the level of steady-state input at
H	H	H	\uparrow	X	X	a	b	c	d	a			d	inputs A, B, C, or D, respectively.
H	L	H	\uparrow	x	H	x	\times	X	X	H	$Q_{\text {An }}$	Q_{Bn}	$Q_{\text {cn }}$	α_{B}, Q_{C}, or Q_{D}, respectively, before the
H	L	H	\uparrow	X	L	x	x	x	X	L	$Q_{\text {An }}$	O_{Bn}	O_{Cn}	indicated steady-state input conditions
H	H	L	\uparrow	H	x	x	x	x	x	O_{Bn}	Q_{Cn}	$Q_{\text {Dn }}$	H	were established.
H	H	L	\uparrow	L	x	x	x	X	X	O_{Bn}	Q_{Cn}	O_{Dn}	L	$\mathrm{Q}_{\mathrm{B}},{ }^{\mathrm{Q}_{\mathrm{C}}}$, respectively, before the most-
H	L	L	X	X	X	X	X	X	X	$Q_{\text {AO }}$	$\mathrm{Q}_{\text {B0 }}$	Q_{CO}	QDo	recent \uparrow transition of the clock.

TYPES SN54194, SN54LS194A, SN54S194,
SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS
functional block diagrams

TYPES SN54194, SN54LS194A, SN54S194,
SN74194, SN74LS194A, SN74S194
4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS
typical clear, load, right-shift, left-shift, inhibit, and clear sequences

7

TYPES SN54194, SN54LS194A, SN54S194,
 SN74194, SN74LS194A, SN74S194
 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

schematics of inputs and outputs

TYPES SN54194, SN74194

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54194			SN74194			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-800			-800	$\mu \mathrm{A}$
Low-level output current, I_{OL}				16			16	mA
Clock frequency, f clock		0		25	0		25	MHz
Width of clock or clear puise, t_{w}		20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	Mode control	30			30			ns
	Serial and parallel data	20			20			ns
	Clear inactive-state	25			25			ns
Hold time at any input, th		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54194			SN74194			UNIT
		MIN	TYP \ddagger	Max	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{1 \mathrm{H}}$ High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage				0.8			0.8	v
V_{IK} Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{\|ll\|} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}^{2}=-800 \mu \mathrm{~A} \\ \hline \end{array}$	2.4	3.4		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4		0.2	0.4	v
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
IIH \quad High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
İS Short-circuit output current\%	$v_{C C}=$ MAX	-20		-57	-18		-57	mA
ICC Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, See Note 2		39	63		39	63	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T},=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time.
NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to So , S 1 , clear, and the serial inputs, ICC is tested with a momentary GND, then 4.5 V applied to clock.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=400 \Omega, \end{aligned}$ See Figure 1	25	36		MHz
tpHL Propagation delay time, high-to-low-level output from clear			19	30	ns
tPLH Propagation delay time, low-to-high-level output from clock			14	22	ns
tpHL Propagation delay time, high-to-low-level output from clock			17	26	ns

TYPES SN54LS194A, SN74LS194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voitage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS194A			SN74LS194A			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{1 \mathrm{H}}$ High-level input voltage			2			2			V
V_{12} Low-level input voltage					0.7			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{\mathrm{CC}}=\text { MIN }, & V_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max, }, & \mathrm{IOH}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.5		2.7	3.5		v
VOL Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \max \end{aligned}$	${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v
		$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	
$\begin{array}{ll} \hline \text { II } & \begin{array}{l} \text { Input current at } \\ \text { maximum input voltage } \end{array} \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current ${ }^{\S}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-20		-100	-20		-100	mA
ICC Supply current	$V_{\text {CC }}=$ MAX, , See Note 2			15	23		15	23	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{SO}, \mathrm{S} 1$, clear, and the serial inputs, ICC is tested with a momentary GND, then 4.5 V , applied to clock
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Figure 1	25	36		MHz
tPHL Propagation delay time, high-to-low-level output from clear			19	30	ns
tPLH Propagation delay time, low-to-high-level output from clock			14	22	ns
tPHL Propagation delay time, high-to-low-level output from clock			17	26	ns

TYPES SN54S194, SN74S194

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

REVISED MARCH 1974

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54S194			SN74S194			UNIT
			MIN	TYP \ddagger	Max	MIN	TYP ${ }^{\ddagger}$	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage					0.8			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V
VOH High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	2.5	3.4		2.7	3.4		v
$\mathrm{V}_{\text {OL }}$ Low-level output valtage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$			0.5			0.5	\checkmark
II Input current at maximum input voltage	$V_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
IIH \quad High-ievel input current	$V_{C C C}=M A X$,	$V_{i}=2.4 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
ILL Low-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-2			-2	mA
IOS Short-circuit output current ${ }^{\text {§ }}$	$V_{C C}=$ MAX		-40		-100	-40		-100	mA
	$V_{C C}=$ MAX,	See Note 2		85	135		85	135	
ICC Supply current	$\begin{array}{\|l\|} \hline V_{C C}=M A X, \\ T_{A}=125^{\circ} \mathrm{C}, \\ \text { See Note } 2 \end{array}$	W package			110				mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\Delta}=25^{\circ} \mathrm{C}$
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applies to $\mathrm{S} 0, \mathrm{~S} 1$, clear, and the serial inputs, ICC is tested with a momemtary GND, then 4.5 V , applied to clock.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=280 \Omega, \\ & \text { See Figure } 1 \end{aligned}$	70	105		MHz
tPHL Propagation delay time, high-to-low-level output from clear			12.5	18.5	ns
tPLH Propagation delay time, low-to-high-level output from clock		4	8	12	ns
tPHL Propagation delay time, high-to-low-level output from clock		4	11	16.5	ns

PARAMETER MEASUREMENT INFORMATION

TEST TABLE FOR SYNCHRONOUS INPUTS

LOAD FOR OUTPUT UNDER TEST

DATA INPUT FOR TEST	S1 s0	OUTPUT TESTED (SEE NOTE E)
A	4.5 V 4.5 V	Q_{A} at t_{n+1}
B	4.5 V 4.5 V	O_{B} at $\mathrm{t}_{\mathrm{n}+1}$
C	4.5 V 4.5 V	Q_{C} at t_{n+1}
D	4.5 V 4.5 V	$\mathrm{O}_{\mathrm{D}}{ }^{\text {at } t_{n+1}}$
L Serial Input	4.5 V 0 V	O_{A} at $\mathrm{t}_{\mathrm{n}+4}$
R Serial Input	0 V 4.5 V	O_{D} at $\mathrm{t}_{\mathrm{n}}+4$

C. All diodes are 1 N3064 or 1N916.
D. A clear pulse is applied prior to each test.
E. For'194 and 'S194, $V_{\text {ref }}=1.5 \mathrm{~V}$; for' 'LS194A, $V_{\text {ref }}=1.3 \mathrm{~V}$
F. Propagation delay times ($t_{P L H}$ and $t_{P H L}$) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+4} with a functional test.
G. $\mathrm{t}_{\mathrm{n}}=$ bit time before clocking transition
$t_{n+1}=$ bit time after one clocking transition.
$t_{n+4}=$ bit time after four clocking transitions.

FIGURE 1-SWITCHING TIMES

- Synchronous Parallel Load
- Positive-Edge-Triggered Clocking
- Parallel Inputs and Outputs from Each Flip-Flop
- Direct Overriding Clear
- J and \bar{K} Inputs to First Stage
- Complementary Outputs from Last Stage
- For Use in High-Performance:

Accumulators/Processors
Serial-to-Parallel, Parallel-to-Serial Converters

description

These 4 -bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation:
Parallel (broadside) load Shift (in the direction Q_{A} toward Q_{D})

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the $J \cdot \overline{\mathrm{~K}}$ inputs. These inputs permit the first stage to perform as a $J-\overline{\mathrm{K}}, \mathrm{D}$-, or T -type flip-flop as shown in the function table.

The high-performance 'S195, with a 105 -megahertz typical maximum shift-frequency, is particularly attractive for very-high-speed data processing systems. In most cases existing systems can be upgraded merely by using this Schottky-clamped shift register.

INPUTS									OUTPUTS				
	$\begin{aligned} & \hline \text { SHIFT/ } \\ & \text { LOAD } \end{aligned}$	clock	SERIAL		PARALLEL				$\mathbf{O}_{\mathbf{A}}$	a_{B}		O_{D}	
CLEAR			J	$\overline{\mathrm{K}}$	A	B	C	D					
L	X	X	X	x		\times	\times	\times	L	L	L	L	
H	L	\dagger	X	\times	a	b	c	d	a	b	c	d	
H	H	L	x	X	x	X	X	x	$\mathrm{a}_{\text {AO }}$			ODO	$\overline{\mathrm{a}}_{\mathrm{DO}}$
H	H	\uparrow	L	H	x	x	X	\times	$\mathrm{a}_{\text {AO }}$	$\mathrm{a}_{\text {A }}$	a_{Bn}	${ }^{0} C_{n}$	$\overline{\mathrm{a}}_{\mathrm{C}}$
H	H	个	L	L	x	x	X	x	L			${ }^{\circ} \mathrm{Cn}$	$\overline{\mathrm{a}}_{\mathrm{Cn}}$
H	H	\uparrow	H	H	x	x	X	x	H			a_{Cn}	
H	H	\uparrow	H	L	X	X	X	x	$\overline{\mathrm{a}}_{\text {An }}$	$\mathrm{O}_{\text {An }}$	O_{Bn}	${ }^{0}{ }_{C n}$	$\overline{\mathrm{a}}_{\mathrm{C}}$

$$
\begin{aligned}
H & =\text { high level (steady state) } \\
\mathrm{L} & =\text { low level (steadv state) }
\end{aligned}
$$

$X=$ irrelevant (any input, including transitions)
$X=$ irrelevant (any input, including transition from low to high level
$a, b, c, d=$ the level of steady-state input at A, B $=$ the level of steady-st
C, or D, respectively
$\alpha_{A O}, \alpha_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}. or Q_{D}, respectively, before the indicated steadystate input conditions were established
$Q_{A n}, Q_{B n}, Q_{C n}=$ the level of Q_{A}, Q_{B}, or Q_{C}, respectively, before the mostrecent transition of the clock

TYPES SN54195, SN54LS195A, SN54S195, SN74195, SN74LS195A, SN74S195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

functional block diagram

${ }^{\dagger}$ This connection is made on '195 only.
typical clear, shift, and load sequences

POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

TYPES SN54195, SN54LS195A, SN54S195, SN74195, SN74LS195A, SN74S195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS
REVISED OCTOBER 1976
schematics of inputs and outputs

LS195A

7

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54195			SN74195			UNIT
		MIN	NOM	MAX	Min	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL				16			16	mA
Clock frequency, $\mathrm{f}_{\text {clock }}$		0		30	0		30	MHz
Width of clock input pulse, twíciock)		16			i¢			ns
Width of clear input pulse, $\mathrm{t}_{\text {w }}$ (clear)		12			12			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	Shift/load	25			25			ns
	Serial and parallel data	20			20			
	Clear inactive-state	25			25			
Shift//oad release time, $\mathrm{t}_{\text {release }}$ (see Figure 1)				10			10	ns
Serial and parallel data hold time, $\mathrm{th}_{\text {h }}$ (see Figure 1)		0			0			ns
Operating free-air temperature, T_{A}		-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the $\mathrm{J}, \overline{\mathrm{K}}$, and data inputs, ${ }^{1} \mathrm{CC}$ is measured by applying a momentary ground, followed by 4.5 V , to clear and then applying a momentary ground, followed by 4.5 V , to clock.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=400 \Omega, \\ & \text { See Figure } 1 \end{aligned}$	30	39		MHz
			19	30	ns
tPLH Propagation delay time, low-to-high-level output from clock			14	22	ns
tPHL Propagation delay time, high-to-low-level output from clock			17	26	ns

TYPES SN54LS195A, SN74LS195A
 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

REVISED OCTOBER 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS195A			SN74LS195A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Clock frequency, folock		0		30	0		30	MHz
Width of clock or clear pulse, ${ }_{\text {w }}$ (clock)		16			16			ns
Width of clear input pulse, $\mathrm{t}_{\text {w }}$ (clear)		12			12			ns
	Shift/load	25			25			
Setup time, $\mathrm{t}_{\text {SU }}$ (see Figure 1)	Serial and parallel data	15			15			ns
	Clear inactive-state	25			25			
Shift/load release time, $\mathrm{t}_{\text {release }}$ (see Figure 1)				10			10	ns
Serial and parallel data hold time, $\mathrm{th}^{\text {(}}$ (see Figure 1)		0			0			ns
Operating free-air temperature, $T_{\text {A }}$		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS195A		SN74LS195A		UNIT
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{1} \mathrm{H}$ High-level input voltage			2		2		V
$V_{1 /}$ Low-level input voltage				0.7		0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\quad \mathrm{I}_{1}=-18$			-1.5		-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=\text { MIN }, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max , I_{O H}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4	2.7	3.4	V
VOL Low-ievei output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		$0.25 \quad 0.4$		$0.25 \quad 0.4$	V
		$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$				$0.35-0.5$	
II Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$			0.1		0.1	mA
I_{IH} High-level input current	$V_{C C}=\mathrm{MAX}, \quad V_{1}=2.7$			20		20	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=M A X$,			-0.4		-0.4	mA
IOS Short-circuit output current \S	$V_{C C}=\mathrm{MAX}$		-20	-100	-20	-100	mA
${ }^{\text {ICC }}$ Supply current	$V_{C C}=$ MAX, See Note 2			$14 \quad 21$		$14 \quad 21$	mA

${ }^{1}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25 \mathrm{C}$.
Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second
NOTE 2: With all outputs open, shiftload grounded, and 4.5 V applied to the J, K, and data inputs, CC is measured by applying a momentary ground, followed by 4.5 V , to clear and then applying a momentary ground, followed by 4.5 V , to clock
switching characteristics, $\mathrm{V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \text { See Figure } 1 \end{aligned}$	30	39		MHz
tPHL Propagation delay time, high-to-low-level output from clear			19	30	ns
tPLH Propagation delay time, low-to-high-level output from clock			14	22	ns
tPHL Propagation delay time, high-to-low-level output from clock			17	26	ns

TYPES SN54S195, SN74S195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

Párámititer	TEST CONDITIONS ${ }^{\text {¢ }}$			MIN	TYP \ddagger	MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline \mathrm{V} \\ \hline \end{array}$
V_{IH} High-level input voltage				2			
$\mathrm{V}_{\text {IL }}$ Low-level input voltage						0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH} High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	SN54S195	2.5	3.4		\checkmark
			SN74S195	2.7	3.4		
V OL Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{v}, \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOL}^{2}=20 \mathrm{~mA} \end{aligned}$				0.5	V
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
IIH \quad High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
IOS Short-circuit output current §	$V_{C C}=$ MAX			-40		-100	mA
C Supply current	$V_{C C}=$ MAX	See Note 2	SN54S195		70	99	
C Supply carrent	$V_{C c}=$ MAX,	See Note 2	SN74S195		70	109	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the J, K, and data inputs, I CC is measured by applying a momentary ground, followed by 4.5 V , to clear, and then applying a momentary ground, followed by 4.5 V , to clock.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega . \end{aligned}$ See Figure 1	70	105		MHz
tPHL Propagation delay time, high-to-low-level output from clear			12.5	18.5	ns
tpLH Propagation delay time, low-to-high-level output from clock			8	12	ns
tPHL Propagation delay time, high-to-low-level output from clock			11	16.5	ns

TYPES SN54195, SN54LS195A, SN54S195,
SN74195, SN74LS195A, SN74S195
4-BIT PARALLEL-ACCESS SHIFT REGISTERS

NOTES: A. The clock pulse generator has the following characteristics: $Z_{\text {out }} \approx 50 \Omega$ and $P R R \leqslant 1 \mathrm{MHz}$. For ${ }^{\prime} 195, \mathrm{t}_{\mathrm{r}} \leqslant 7 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$. For 'LS $195 \mathrm{~A}, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$. For 'S $195, \mathrm{t}_{\mathrm{r}}=2.5 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$. When testing $\mathrm{f}_{\text {max }}$, vary the clock PRR
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N3064.
D. A clear pulse is applied prior to each test.
E. For' 195 and 'S195, $V_{\text {ref }}=1.5 \mathrm{~V}$; for 'LS195A, $V_{\text {ref }}=1.3 \mathrm{~V}$
F. Propagation delay times ($t_{P L H}$ and $t_{P H L}$) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+4} with a functional test.
G. J and \bar{K} inputs are tested the same as data A, B, C, and D inputs except that shift/load input remains high
$H . t_{n}=$ bit time before clocking transition.
$\tau_{n+1}=$ bit time after one clocking transition.
$\mathrm{t}_{\mathrm{n}+4}=$ bit time after four clocking transitions.
FIGURE 1-SWITCHING TIMES

TYPES SN54196, SN54197, SN54LS196, SN54LS197,SN54S196, SN54S197,

 SN74196. SN74197, SN74LS196, SN74LS197. SN74S196, SN74S197SN54', SN54LS', SN54S' . . . J OR W PACKAGE SN74', SN74LS', SN74S' . . . J OR N PACKAGE

- Performs BCD, Bi-Quinary, or Binary Counting
- Fully Programmable
- Fully Independent Clear Input
- Input Clamping Diodes Simplify System Design
- Output OA Maintains Full Fan-out Capability In Addition to Driving Clock-2 Input

	GUARANTEED		
- TYPES	COUNT FREQUENCY	TYPICAL	
	CLOCK 1	CLOCK 2	

description

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divide-by-two and a divide-by-eight counter ('197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.

These counters may also be used as 4 -bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

All inputs are diode-clamped to minimize transmission-line effects and simplify system design. These circuits are compatible with most TTL and DTL logic families. Series $54,54 \mathrm{LS}$, and 54 S circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series $74,74 \mathrm{LS}$, and 74 S circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

typical count configurations

'196, 'LS196, and 'S196 typical count configurations and function tables are the same as those for ' 176. See page 7-260.
'197, 'LS197, and 'S197 typical count configurations and function tables are the same as those for ' 177. See page 7-260.

functional block diagrams

'196, 'LS196, and 'S196 functional block diagram is the same as that for '176. See page 7-261. '197, 'LS197, and 'S197 functional block diagram is the same as that for '177. See page 7-261.

TYPES SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V_{CC} (see Note 1) . 7 V

Input voltage . 5.5 V
Interemitter voltage (see Note 2) . 5.5 V
Operating free-air temperature range: SN54196, SN54197 Circuits SN74196, SN74197 Circuits
SN74196, SN74197 Circuits $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
: 1. Voltage values are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the clear and count/load inputs.
recommended operating conditions

		SN54196, SN54197			SN74196, SN74197			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-800			-800	$\mu \mathrm{A}$
Low-level output current, 1OL				16			16	mA
Count frequency	Clock-1 input	0		50	0		50	MHz
	Clock-2 input	0		25	0		25	
Pulse width, t_{w}	Clock-1 input	20			20			ns
	Clock-2 input	30			30			
	Clear	15			15			
	Load	20			20			
Input hold time, th	High-level data	${ }^{\text {tw }}$ (load)			$t_{\text {w }}$ (load)			ns
	Low-level data	${ }^{\text {t }}$ (load)			$\mathrm{t}_{\text {w }}$ (load)			
Input setup time, $\mathrm{t}_{\text {su }}$	High-level data	10			10			ns
	Low-level data	15			15			
Count enable time, tenable (See Note 3)		20			20			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTE 3: Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

TYPES SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 4: ' CC is measured with all inputs grounded and all outputs open.
$\dagger_{\text {For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. }}$
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{O_{A}}$ outputs are tested at $I_{O L}=16 \mathrm{~mA}$ plus the limit value of $I_{I L}$ for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54/74 loads.
§ Not more than one output should be shorted at a time.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\diamond}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54196 SN74196			SN54197 SN74197			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{f}_{\text {max }}$	Clock 1	Q_{A}	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ See Note 5	50	70		50	70		MHz
tpLH	Clock 1	$\mathrm{Q}_{\text {A }}$			7	12		7	12	ns
tPHL					10	15		10	15	
tPLH	Clock 2	O_{B}			12	18		12	18	ns
tPHL					14	21		14	21	
tPLH	Clock 2	Q_{C}			24	36		24	36	ns
tPHL					28	42		28	42	
tPLH	Clock 2	Q_{D}			14	21		36	54	ns
tPHL					12	18		42	63	
tPLH	A, B, C, D	$\mathrm{Q}_{A}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$			16	24		16	24	ns
tPHL					25	38		25	38	
${ }^{\text {tPLH }}$	Load	Any			22	33		22	33	ns
tPHL					24	36		24	36	
tPHL	Clear	Any			25	37		25	37	ns

$\sigma_{\text {fmax }} \equiv$ maximum count frequency.
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output.
${ }^{\text {t PHL }} \equiv$ propagation delay time, high-to-low-level output.
NOTE 5: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 (page 7-264) except that testing $f_{\text {max }}, V_{I L}=0.3 \mathrm{~V}$

TYPES SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES
REVISED осtober 1976
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V_{CC} (see Note 1) . 7 V
Input voltage . 5.5 V

Interemitter voltage (see Note 2). 5.5 V
Operating free-air temperature range: SN54LS196, SN54LS197 Circuits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Storage temperature range

NOTES: 1. Voltage values are with respect to network ground terminal,
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the clear and count/load inputs.
7
recommended operating conditions

		SN54LS	96, SN	LS197	SN74LS	96, SN	LS197	IT
		MIN	NOM	MAX	MIN	NOM	MAX	T
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Count freq	Clock-1 input	0		30	0		30	MHz
Coun	Clock-2 input	0		15	0		15	
	Clock-1 input	20			20			
	Clock-2 input	30			30			ns
Pulse width, ${ }_{\text {w }}$	Clear	15			15			ns
	Load	20			20			
Input hold time, th	High-level data	${ }^{t}$ w(load)			${ }_{\text {tw }}$ (load)			ns
	Low-level data	$t_{\text {w (load) }}$			$t_{\text {w }}$ (load)			
Input setup time, $\mathrm{t}_{\text {su }}$	High-level data	10			10			ns
	Low-level data	15			15			
Count enable time, tenable (See Note 3)		20			20			ns
Operating free-air temperature, T_{A}		-55	125		0		70	${ }^{\circ} \mathrm{C}$

NOTE 3: Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.
electrical characteristics over recommended operating free-air temperature range (undess otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS196 SN54LS197			SN74LS196 SN74LS197			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$\mathrm{V}_{1 \mathrm{H}}$ High-level input voltage									2			2			V
$V_{\text {IL }}$ Low-level input voltage								0.7			0.8	V			
$\mathrm{V}_{\text {IK }}$ Input clamp voltage			$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5			-1.5	V			
V_{OH} High-level output voltage			$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{\text {IL }} \text { max }, I_{O H}=-400 \mu \mathrm{~A} \end{aligned}$			2.5	3.4		2.7	3.4		V			
VOL Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL} \text { max }} \end{aligned}$		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ f		0.25	0.4		0.25	0.4	V			
			$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$ 析					0.35	0.5						
11	Input current at maximum input voltage	Data, count/load			$V_{C C}=M A X, \quad V_{l}=5.5 \mathrm{~V}$					0.1			0.1	mA	
		Clear, clock 1						0.2			0.2				
		Clock 2 of 'LS196						0.4			0.4				
		Clock 2 of 'LS197						0.2			0.2				
'in	High-level input current	Data, count/load	V'CC $=$ MiAX,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	μA			
		Clear, clock 1						40			40				
		Clock 2 of 'LS196						80			80				
		Clock 2 of 'LS137						40			40				
IIL	Low-level Input current	Data, count/load	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
		Clear						-0.8			-0.8				
		Clock 1						-2.4			-2.4				
		Clock 2 of 'LS196,						-2.8			-2.8				
		Clock 2 of 'LS197						-1.3			-1.3				
IOS Short-circuit output current \S			$V_{C C}=M A X$			-20		-100	-20		-100	mA			
ICC Supply current			$V_{C C}=M A X, \quad$ See Note 4				16	27		16	27.	mA			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\dagger}$ Ail rypicai vaiues are at $V_{C C}=5 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
${ }^{1} \mathrm{O}_{A}$ outputs are tested at specified I OL plus the limit value of I_{IL} for the clock- 2 input. This permits driving the clock- 2 input while maintain ing full fan-out capability.
NOTE 4: ICC is measured with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\circ}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54LS196 SN74LS196			SN54LS197 SN74LS197			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	Clock 1	$\mathrm{Q}_{\text {A }}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Note } 6 \end{aligned}$	30	40		30	40		MHz
tPLH	Clock 1	Q_{A}			8	15		8	15	ns
tPHL					13	20		14	21	
tPLH	Clock 2	0_{B}			16	24		12	19	ns
tpHL					22	33		23	35	
${ }^{\text {PPLH}}$	Clock 2	Q_{C}			38	57		34	51	ns
tPHL					41	62		42	63	
${ }^{\text {PPLH }}$	Clock 2	Q_{D}			12	18		55	78	ns
tPHL					30	45		63	95	
tPLH	A, B, C, D	$Q_{A}, Q_{B}, Q_{C} Q_{D}$			20	30		18	27	ns
${ }^{\text {tPHL }}$					29	44		29	44	
tPLH	Load	Any			27	41		26	39	ns
tPHL					30	45		30	45	
${ }^{\text {tPHL }}$	Clear	Any			34	51		34	51	ns

Ofmax \equiv maximum count frequency
${ }^{\mathrm{t}} \mathrm{PLH} \equiv$ propagation delay time, low-to-high-level output, $\mathrm{I}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 (page 7-264) except that $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$, and $\mathrm{V}_{\text {ref }}=1.3 \mathrm{~V}$ (as opposed to 1.5 V)

TYPES SN54S196, SN54S197, SN74S196, SN74S197 100-mHZ PRESETTABLE DECADE AND BINARY COUNTERS/LATCHES
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

7
recommended operating conditions

		SN54S196, SN54S197			SN74S196, SN74S197			UNIT
		MIN	NOM	MAX	MiN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\prime} \mathrm{OH}$				-i			-1	mA
Low-level output current, IOL				20			20	mA
Clock frequency	Clock-1 input	0		100	0		100	MHz
	Clock-2 input	0		50	0		50	
Pulse width, t_{w}	Clock-1 input	5			5			ns
	Clock-2 input	10			10			
	Clear	30			30			
	Load	5			5			
Input hold time, th	High-level data	$3 \uparrow$			$3 \uparrow$			ns
	Low-level data	$3 \uparrow$			$3 \uparrow$			
Input setup time, $\mathrm{t}_{\text {su }}$	High-level data	$6 \uparrow$			$6 \uparrow$			ns
	Low-level data	$6 \uparrow$			$6 \uparrow$			
Count enable time, ${ }_{\text {enable }}$ (see Note 3)		12			12			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

[^23] count/load and clear inputs are both high to permit counting.

TYPES SN54S196, SN54S197, SN74S196, SN74S197 100-mhZ PRESETTABLE DECADE AND BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54S 196, SN74S196			SN54S197, SN74S197			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\text { }}$	MAX							
$\mathrm{V}_{\text {IH }}$	High-level input voltage								2			2			v
$V_{\text {IL }}$	Low-level input voitage							0.8			0.8	v			
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2			-1.2	V			
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	54 S	2.5	3.4		2.5	3.4					
			74S		2.7	3.4		2.7	3.4						
V_{OL}	Low-level output voltage			$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{v}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \mathrm{I} \end{aligned}$				0.5			0.5	v		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				1			1	mA			
If	High-evel input current		$\mathrm{V}_{\mathrm{CC}}=$ MAX ,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				50			50	$\mu \mathrm{A}$			
ill	Low-level input current	data, count/load clear	$V_{C C}=$ MAX.	$\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$				0.75			0.75	mA			
		clock 1						-8			-8	mA			
		ciock 2						-10			-6	mA			
los	Short-circuit output current \S		$V_{C C}=$ MAX			-30		-110	-30		-110	mA			
${ }^{\text {ICc }}$	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 4	545		75	110		75	110				
			74 S			75	120		75	120	mA				

NOTE 4: ICC is measured with all inputs grounded and all outputs open.
$\dagger_{\text {For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. }}$
FAll typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
I_{A} outputs are tested at $1_{\mathrm{OL}}=20 \mathrm{~mA}$ plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series $54 \mathrm{~S} / 74 \mathrm{~S}$ loads.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {® }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54S 196, SN74S196			SN54S 197, SN74S197			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{f}_{\text {max }}$	Clock 1	Q_{A}	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega, \\ & \text { See Note } 7 \end{aligned}$	100	140		100	140		MHz
${ }^{\text {tPLH }}$	Clock 1	Q_{A}			5	10		5	10	
tPHL					6	10		6	10	ns
tPLH	Clock 2	O_{B}			5	10		5	10	ns
tPHL					8	12		8	12	
${ }^{\text {tPLH }}$	Clock 2	${ }^{Q} \mathrm{C}$			12	18		12	18	ns
tPHL					16	24		15	22	
${ }^{\text {tPLH }}$	Clock 2	Q_{D}			5	10		18	27	ns
${ }^{\text {tPHL }}$					8	12		22	33	
tPLH	A, B, C, D	$\mathrm{Q}_{A}, \mathrm{Q}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$			7	12		7	12	ns
${ }^{\text {tPHL }}$					12	18		12	18	
tPLH	Load	Any			10	18		10	18	ns
tPHL					12	18		12	18	
tPHL	Clear	Any			26	37		26	37	ns

$\diamond_{f_{\text {max }}} \equiv$ maximum input county frequency.
${ }^{\mathrm{P} P L H} \equiv$ propagation delay time, low-to-high-level output.
${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output,
NOTE 7: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176,'177 on page 7-264

description

These 8 -bit shift registers are compatible with most other TTL, DTL, and MSI logic families. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input clamping diodes minimize switching transients to simplify system design. Maximum input clock frequency is typically 35 megahertz and power dissipation is typically 360 mW .

Series 54 devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54198 and SN74198

These bidirectional registers are designed to incorporate virtually all of the features a system designer may
 want in a shift register. These circuits contain 87 equivalent gates and feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-modecontrol inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

> Parallel (Broadside) Load
> Shift Right (In the direction Q_{A} toward Q_{H})
> Shift Left (In the direction Q_{H} toward Q_{A}) Inhibit Clock (Do nothing)

Synchronous parallel loading is accomplished by applying the eight bits of data and taking both mode control inputs, S0 and S1, high. The data is loaded into the associated flip-flop and appears at the outpuis after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode cont inputs are low. The mode controls should be changed only while the clock input is high.
'198

FUNCTION T								
INPUTS							OUTPUTS	
CLEAR	MODE		CLOCK	SERIAL		$\frac{\text { PARALLEL }}{\text { A...H }}$	a_{A}	
	S_{1}	S_{0}		LEFT	RIGHT			
L		X	X	X	\times	X	L L	L L
H	X	\times	L	x	x	x	$\mathrm{a}_{\text {AO }} \mathrm{a}_{\mathrm{BO}}$	$\mathrm{Q}_{\mathrm{GO}} \mathrm{O}_{\mathrm{HO}}$
H	H	H	\uparrow	x	X	a.... h	a b	$g h$
H	L	H	\uparrow	x	H	x	H $\mathrm{a}_{\text {An }}$	$\mathrm{O}_{\mathrm{Fn}} \mathrm{O}_{\mathrm{Gn}}$
H	L	H	\uparrow	x	L	x	L Q_{An}	$\mathrm{O}_{\mathrm{Fn}} \mathrm{O}_{\mathrm{Gn}}$
H		L	\uparrow	H	x	x	$\mathrm{a}_{\mathrm{Bn} \mathrm{a}_{\mathrm{Cn}}}$	$\mathrm{O}_{\mathrm{Hn}} \mathrm{H}$
H	H	L	\uparrow	L	x	x	$\mathrm{a}_{\mathrm{Bn}} \mathrm{a}_{\mathrm{Cn}}$	$\mathrm{O}_{\mathrm{Hn}} \mathrm{L}$
H	L	L	x	X	X	x	$\mathrm{a}_{\mathrm{AO}} \mathrm{a}_{\mathrm{B} 0}$	$\mathrm{O}_{\mathrm{GO}} \mathrm{O}_{\mathrm{HO}}$

$\mathrm{H}=$ high level (steady state), $\mathrm{L}=$ low level (steady state)
$\mathrm{X}=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level
a ... $h=$ the level of steady-state input at inputs A thru H, respectively.
$\mathrm{a}_{\mathrm{AO}}, \mathrm{Q}_{\mathrm{BO}}, \mathrm{O}_{\mathrm{GO}}, \mathrm{Q}_{\mathrm{HO}}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{G}}$, or O_{H}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{B n}$, etc, $=$ the level of Q_{A}, Q_{B}, etc., respectively, before the most-recent \uparrow transition of the clock.

TYPES SN54199, SN74199 8-BIT SHIFT REGISTERS

Shifting is accomplished synchronously when shift/load is high and the clock input is not inhibited. Serial data for this mode is entered at the J-K inputs. See the function table for levels required to enter serial data into the first f!ip-flop.

Both of the clock inputs are identical in function and may be used interchangeably to serve as clock or clock-inhibit inputs. Holding either high inhibits clocking, but when one is held low, a clock input applied to the other input is passed to the eight flip-flops of the register. The clock-inhibit input should be changed to the high level only while the clock input is high.

These shift registers contain the equivalent of 79 TTL gates. Average power dissipation per gate is typically 4.55 mW .
'199

INPUTS							OUTPUTS			
CLEAR	$\begin{array}{\|l\|} \hline \text { SHIFT/ } \\ \text { LOAD } \end{array}$	CLOCK INHIBIT	clock			PARALLEL $A \ldots H$	a_{A}	O_{B}	0_{C}	a_{H}
L	X	\times	\times	x	x	x	L	L	L	L
H	x	L	L	X	x	x	$\mathrm{a}_{\text {AO }}$	a_{BO}	a_{CO}	O_{HO}
H	L	L	\uparrow	x	x	a...h	a	b	c	h
H	H	L	\uparrow	L	H	x	a_{AO}	$\mathrm{a}_{\text {AO }}$	a_{Bn}	a_{Gn}
H	H	L	\dagger	L	L	x	L	$\mathrm{O}_{\text {An }}$	O_{Bn}	$0_{G n}$
H	H	L	\uparrow	H	H	x	H	$\mathrm{a}_{\text {An }}$	O_{Bn}	a_{Gn}
H	H	L	\uparrow	H	L	x	$\overline{\mathrm{a}}_{\text {An }}$	$\mathrm{a}_{\text {An }}$	a_{Bn}	a_{Gn}
H	x	H	\uparrow	x	x	x	$\mathrm{a}_{\text {AO }}$	O_{BO}	O_{BO}	O_{HO}

$\mathrm{H}=$ high level (steady state), $\mathrm{L}=$ low level (steady state)
$x=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level
a $\ldots h=$ the level of steady-state input at inputs A thru H, respectively.
$\mathrm{a}_{A 0}, \mathrm{a}_{\mathrm{BO}}, \mathrm{a}_{\mathrm{CO}} \ldots \mathrm{a}_{\mathrm{HO}}=$ the level of $\mathrm{a}_{A}, \mathrm{a}_{\mathrm{B}}$, or o_{C} thru o_{H}, respectively, before the indicated steady-state input conditions were established.
$\alpha_{A n}, \alpha_{B n} \ldots \alpha_{G n}=$ the level of α_{A} or α_{B} thru α_{G}, respectively, before the most-recent \uparrow transition of the clock.

TYPES SN54198, SN54199, SN74198, SN74199

8-BIT SHIFT REGISTERS

7

TYPES SN54199, SN74199 8 -BIt Shift registers

SN54199, SN74199

typical clear, shift, load, and inhibit sequences

7

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54198 SN54199			SN74198 SN74199			UNIT
	MIN	NOM	MıAX	MIIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Clock frequency, flock	0		25	0		25	Mitiz
Width of clock or clear pulse, t_{w} (see Figure 1)	20			20			ns
Mode-control setup time, $\mathrm{t}_{\text {su }}$	30			30			ns
Data setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	20			20			ns
Hold time at any input, t_{h} (see Figure 1)	0			0			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54198 SN54199		SN74198 SN74199		UNIT
		MIN	TYP	MIN	TYP声 MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8		0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5		-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4	2.4	3.4	V
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4		0.20 .4	V
I_{1} Input current at maximum input vol tage	$V_{C C}=M A X, V_{1}=5.5 \mathrm{~V}$		1		1	mA
IIH High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1.6		-1.6	mA
IOS Short-circuit output current \&	$V_{C C}=M A X$	-20	-57	-18	-57	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Table Below		$72 \quad 104$		$72 \quad 116$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time.
TEST CONDITIONS FOR ICC
(ALL OUTPUTS ARE OPEN)

TYPE	APPLY 4.5 V	FIRST GROUND, THEN APPLY 4.5 V	GROUND
SN54198, SN74198	Serial Input, $\mathrm{S}_{0}, \mathrm{~S}_{1}$	Clock	Clear, Inputs A thru H
SN54199, SN74199	$\mathrm{J}, \overline{\mathrm{K}}$, Inputs A thru H	Clock	Clock inhibit, Clear, Shift/Load

TYPES SN54198, SN54199, SN74198, SN74199

 8-BIT SHIFT REGISTERS| switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | TEST CO | Itions | MIN | TYP | MAX | UNIT |
| $f_{\text {max }}$ Maximum clock frequency | $\begin{aligned} & C_{L}=15 \mathrm{pF}, \quad R_{L}=400 \Omega, \\ & \text { See Figure } 1 \end{aligned}$ | | 25 | 35 | | MHz |
| tPHLPropagation delay time, high-to-
 low-level output from clear | | | | 23 | 35 | ns |
| TPHLPropagation delay time, high-to-
 low-level output from clock | | | | 20 | 30 | ns |
| Propagation delay time, low-totPLH high-level output from clock | | | | 17 | 26 | ns |

PARAMETER MEASUREMENT INFORMATION

SN54198, SN74198
TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT FOR TEST	S1	So	OUTPUT TESTED (SEE NOTE E)
A	4.5 V	4.5 V	Q_{A} at $\mathrm{t}_{\mathrm{n}+1}$
B	4.5 V	4.5 V	Q_{B} at t_{n+1}
C	4.5 V	4.5 V	Q_{C} at t_{n+1}
D	4.5 V	4.5 V	Q_{D} at t_{n+1}
E	4.5 V	4.5 V	Q_{E} at t_{n+1}
F	4.5 V	4.5 V	Q_{F} at t_{n+1}
G	4.5 V	4.5 V	Q_{G} at $t^{\prime}+1$
H	4.5 V	4.5 V	Q_{H} at t_{n+1}
L Serial Input	4.5 V	0 V	Q_{A} at $\mathrm{t}_{\mathrm{n}+8}$
R Serial Input	0 V	4.5 V	Q_{H} at $t^{\prime}+8$

SN54199, SN74199
TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT FOR TEST	SHIFT/LOAD	OUTPUT TESTED (SEE NOTE E)
A	$0 V$	Q_{A} a $t_{n}+1$
B	$0 V$	Q_{B} at t_{n+1}
C	$0 V$	Q_{C} at t_{n+1}
D	$0 V$	Q_{D} at t_{n+1}
E	$0 V$	Q_{E} at t_{n+1}
F	$0 V$	Q_{F} at t_{n+1}
G	$0 V$	Q_{G} a t_{n+1}
H	$0 V$	Q_{H} at t_{n+1}
J and \bar{K}	$4.5 V$	Q_{H} at t_{n+8}

7

NOTES: A. The clock pulse has the following characteristics: $t_{w(c l o c k)} \geqslant 20 \mathrm{~ns}$ and PRR $=1 \mathrm{MHz}$. The clear pulse has the following

B. C_{2} includes probe and jig capacitance.
C. All diodes are 1 N3064.
D. A clear pulse is applied prior to each test.
E. Propagation delay times ($t_{P L H}$ and $t_{P H L}$) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+8} with a functional test
F. $t_{n}=$ bit time before clocking transition
$t_{n+1}=$ bit time after one clocking transition
${ }^{\mathrm{t}} \mathrm{n}+8=$ bit time after eight clocking transitions

- Universal Transceivers for Implementing System Bus Controllers
- Dual-Rank 4-Bit Transparent Latches Provide
- Exchange of Data Between 2 Buses In One Clock Pulse
- Bus-to-Bus Isolation
- Rapid Data Transfer
- Full Storage Capability
- Hysteresis at Data Inputs Enhances Noise Rejection
- Separate Output Control Inputs Provide Independent Enable/Disable for Either Bus Output
- 3-State Outputs Drive Bus Lines Directly

description

These high-performance Schottky TTL quadruple bus transceivers employ dual-rank bidirectional four-bit transparent latches and feature three-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The bus-management functions impiemented and the high-impedance controls offered provide the designer with a controller/ transceiver that interfaces and drives system busorganized lines directly. They are particularly attractive for implementing:

Bidirectional bus transceivers
Data-bus controllers
The bus-management functions, under control of the function-select (S1, S2) inputs, provide complete data integrity for each of the four modes described in the function table. Directional transparency provides for routing data from or to either bus, and the dual store and dual readout capabilities can be used to perform the exchange of data between the two bus lines in the equivalent of a single clock pulse. Storage of data is accomplished by selecting the latch function, setting up the data, and taking the appropriate strobe input low. As long as the strobe is held low, the data is latched for the selected function. Further control is offered through the availability of independent output controls that can be used to enable or

functional block diagram

TYPES SN54S226, SN74S226

4-BIT PARALLEL LATCHED BUS TRANSCEIVERS

BUS-MANAGEMENT FUNCTION TABLE

OPERATION	S2	S1	LATCH FUNCTIONS
DRIVE BUS B	L	L	Pass Bus A Data to Bus B
DRIVE BUS A	H	L	Pass Bus B Data to Bus A
EXCHANGE	H	H	Store Bus A and Bus B Data
BUS A AND B	L	H	Readout Stored Data

OUTPUT-CONTROL FUNCTION TABLE

OCAB	OCBA	OUTPUT FUNCTION
L	X	Disable Bus B Outputs (Hi-Z)
H	X	Enable Bus B Outputs
X	L	Disable Bus A Outputs (Hi-Z)
X	H	Enable Bus A Outputs

disable the outputs as shown in the output-control function table, regardless of the latch function in process. Store operations can be performed with the outputs disabled to a high impedance ($\mathrm{Hi}-\mathrm{Z}$). In the $\mathrm{Hi}-\mathrm{Z}$ state the inputs/outputs neither load nor drive the bus lines significantly. The p-n-p inputs feature typically 400 millivolts of hysteresis to enhance noise rejection.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminai.

recommended operating conditions

			54S22			N74S22		
		MIN	NOM	MAX	MIN	NOM	MAX	NIT
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}				5.5			5.5	V
High-level output current, I OH				-6.5			-10.3	mA
Data setup time, $\mathrm{t}_{\text {su }}$	Data (A or B)	$5 \downarrow$			$3 \downarrow$			ns
	Select	$5 \downarrow$			$3 \downarrow$			
Data hold time, th_{h}	Data (A or B)	$5 \downarrow$			$3 \downarrow$			ns
	Select	5			$3 \downarrow$			
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

the arrow indicates that the high-to-low transition of the enable input is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage				2		V
$V_{1 L}$	Low-level input voltage					0.8	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
VOH	High-level output voltage	SN54S226	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	SN54S226	2.4	3.3	V
		SN74S226		SN74S226	2.4	2.9	
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{I L}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$			0.5	V
$\mathrm{I}_{\mathrm{OZH}}$	Off-state output current, high-level voltage applied		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
IOZL	Off-state output current, low-level voltage applied		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$			-100	$\mu \mathrm{A}$
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
${ }^{1} \mathrm{IH}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{IIL}_{\text {IL }}$	Low-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-300	$\mu \mathrm{A}$
Ios	Short-circuit output current §		$V_{C C}=M A X$		-50	-180	mA
ICC	Supply current		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2			125	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. NOTE 2: I CC is measured with all inputs (and outputs) grounded.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
tPLH	A or B	B or A	$C_{L}=50 \mathrm{pF},$ See Note 2	$R_{L}=280 \Omega$,	14		ns
tPHL					14		
tPLH	Select	Any			12		ns
tPHL					12		
tPLH	Strobe GBA or GAB	A or B			12		ns
tPHL					12		
tPZH	Output Control	A or B			9		ns
tPZL	OCBA or OCAB				9		
tPHZ	Output Control OCBA or OCAB	A or B	$C_{L}=5 \mathrm{pF},$ See Note 2	$\mathrm{R}_{\mathrm{L}}=280 \Omega$,	7		ns
tPLZ					7		

$\mathrm{tPLH} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, low-to-high-level output
$t_{Z H} \equiv$ output enable time to high level
tZL \equiv output enable time to low level
$\mathrm{t}_{\mathrm{H} Z} \equiv$ output disable time from high level
$\tau_{\mathrm{L}} Z \equiv$ output disable time from low level
NOTE 2: Load circuits and voltage waveforms are shown on page 3-10.

applications

The following examples demonstrate four fundamental bus-management functions that can be performed with the 'S226. Exchange of data on the two bus lines can be accomplished with a single high-to-low transition at S2 when S1 is high.

- Bi-directional Bus Transceiver in a High-Density 20-Pin Package
- 3-State Outputs Drive Bus Lines Directly
- P-N-P Inputs Reduce D-C Loading on Bus Lines
- Hysteresis at Bus Inputs Improve Noise Margins
- Typical Propagation Delay Times, Port-to-Port . . . 12 ns
- Typical Enable/Disable Times . . . 17 ns

TYPE	IOL (SINK CURRENT)	IOH (SOURCE CURRENT)
SiN54LS245	12 mA	-12 mA
SN74LS245	24 mA	-15 mA

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input ($\overline{\mathrm{G}}$) can be used to disable the device so that the buses are effectively isolated.

The SN54LS245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LS245 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
schematics of inputs and outputs
EQUIVALENT OF EACH INPUT
function table

ENABLE $\overline{\mathbf{Q}}(19)$	DIRECTION CONTROL DIR (')	OPERATION
L	L	Bdata to A bus
$\stackrel{+}{4}$	${ }^{+}$	A data to B bus
H	X	Isolation

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54LS245, SN74LS245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

PARAMETER	SN54LS245			SN74LS245			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-12			-15	mA
Low-level output current, IOL			12			24	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
INot more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH $\begin{aligned} & \text { Propagation delay time, } \\ & \text { low-to-high-level output }\end{aligned}$	$C_{L}=45 \mathrm{pF}$,	$R_{L}=667 \Omega$,	12	18	ns
tPHL Propagation delay time, high-to-low-level output			12	18	ns
tPZL Ouput enable time to low level			20	30	ns
+PZH Output enable time to high leve!			15	25	ns
tPLZ Output disable time from low level	$C_{L}=5 \mathrm{pF}$	$R_{L}=667 \Omega$,	15	25	ns
tPHZ Output disable time from high level		RL 667 , See Note 2	10	18	ns

NOTE 2: Load circuit and waveforms are shown on page 3-11.
'246, '247, 'LS247 feature

- Open-Collector Outputs Drive Indicators Directly
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
'248, 'LS248 feature
- Internal Pull-Ups Eliminate Need for External Resistors
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
'249, 'LS249 feature
- Open-Collector Outputs
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
- All Circuit Types Feature Lamp Intensity Modulation Capability

TYPE	DRIVER OUTPUTS				TYPICAL POWER DISSIPATION	PACKAGES
	ACTIVE LEVEL	OUTPUT CONFIGURATION	SINK CURRENT	MAX VOLTAGE		
SN54246	low	open-collector	40 mA	30 V	320 mW	J, W
SN54247	low	open-collector	40 mA	15 V	320 mW	J, W
Siv54248	high	2 -k $\sqrt{2}$ puii-up	6.4 mA	5.5 V	265 mivi	j, w
SN54249	high	open-collector	10 mA	5.5 V	265 mW	J, W
SN54LS247	low	open-collector	12 mA	15 V	35 mW	J, W
SN54LS248	high	$2-k \Omega$ pull-up	2 mA	5.5 V	125 mW	J, W
SN54LS249	high	open-collector	4 mA	5.5 V	40 mW	J, W
SN74246	low	open-collector	40 mA	30 V	320 mW	J, N
SN74247	low	open-collector	40 mA	15 V	320 mW	J, N
SN74248	high	$2-\mathrm{k} \Omega$ pull-up	6.4 mA	5.5 V	265 mW	J, N
SN74249	high	open-collector	10 mA	5.5 V	265 mW	J, N
SN74LS247	low	open-collector	24 mA	15 V	35 mW	J, N
SN74LS248	high	2-k Ω pull-up	6 mA	5.5 V	125 mW	J, N
SN74LS249	high	open-collector	8 mA	5.5 V	40 mW	J, N

'246, '247, 'LS247
(TOP VIEW)
248, '249, 'LS248, 'LS249
(TOP VIEW)

description

The ' 246 through ' 248 are electrically and functionally identical to the SN5446A/SN7446A, SN5447A/SN7447A, and SN5448/SN7448, respectively, and have the same pin assignments as their equivalents. Also the 'LS247 and 'LS248 are electrically and functionally identical to the SN54LS47/SN74LS47 and SN54LS48/SN74LS48, respectively, and have the same pin assignments as their equivalents. They can be used interchangeably in present or future designs to offer designers a choice between two indicator fonts. The '249 and 'LS249 are 16-pin versions of the 14-pin SN5449 and SN54LS49/SN74LS49, respectively. Included in the '249 and 'LS249 circuits is the full functional capability for lamp test and ripple blanking, which is not available in the ' 49 and 'LS49 circuits. The '46A, '47A, '48, '49, 'LS47, 'LS48, and 'LS49 compose the \square and the \square without tails and the ' 246 through ' 249 and 'LS247, 'LS248, and 'LS249

TYPES SN54246 THRU SN54249, SN54LS247 THRU SN54LS249, SN74246 THRU SN74249, SN74LS247 THRU SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

description (continued)

compose the $\bar{\square}$ and the with tails. Composition of all other characters, including display patterns for BCD inputs above nine, is identical. The '246, '247, and 'LS247 feature active-low outputs designed for driving indicators directly, and the '248, '249, 'LS248, and 'LS249 feature active-high outputs for driving lamp buffers. All of the circuits have full ripple-blanking input/output controls and a lamp test input. Segment identification and resultant displays are shown below. Display patterns for $B C D$ input counts above 9 are unique symbols to authenticate input conditions.
All of these circuits incorporate automatic leading and/or trailing-edge zero-blanking control (RBI and RBO). Lamp test (LT) of these types may be performed at any time when the BI/RBO node is at a high level. All types contain an overriding blanking input (BI) which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL or DTL logic outputs.

Series 54 and Series 54 LS devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 and Series 74 LS devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

EGMENT dentification
'246, '247,'LS247
FUNCTION TABLE

decimal	INPUTS						BI/RBO ${ }^{+}$	OUTPUTS							NOTE
FUNCTION	LT	RBI	D	c	B	A		a	b	c	d	e	f	9	
0	H	H	L	L	L	L	H	ON	ON	ON	ON	ON	ON	OFF	1
1	H	x	L	L	L	H	H	OFF	ON	ON	Off	OFF	OFF	OFF	
2	H	x	L	L	H	L	H	ON	ON	Off	ON	ON	OFF	ON	
3	H	x	L	1	H	H	H	ON	ON	ON	ON	OFF	OFF	ON	
4	H	\times	L	H	L	L	H	OFF	ON	ON	OFF	OFF	ON	ON	
5	H	x	L	H	L	H	H	ON	OFF	ON	ON	OFF	ON	ON	
6	H	x	L	H	H	L	H	ON	OFF	ON	ON	ON	ON	ON	
7	H	x	L	H	H	H	H	ON	ON	ON	OFF	OFF	OFF	OFF	
8	H	x	H	L	L	L	H	ON	ON	ON	ON	ON	ON	ON	
9	H	x	H	L	L	H	H	ON	ON	ON	ON	Off	ON	ON	
10	H	\times	H	L	H	L	H	Off	OFF	OFF	ON	ON	OFF	ON	
11	H	\times	H	1	H	H	H	OFF	OFF	ON	ON	OFF	OFF	ON	
12	H	x	H	H	L	L	H	OFF	ON	OFF	OFF	OfF	ON	ON	
13	H	x	H	H	L	H	H	ON	OFF	OFF	ON	OfF	ON	ON	
14	H	\times	H	H	H	L	H	OFF	OFF	OFF	ON	ON	ON	ON	
15	H	x	H	H	H	H	H	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
BI	X	x	x	X	\times	\times	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2
RBI	H	L	L	L	L	L	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
LT	L	x	\times	x	x	\times	H	ON	ON	ON	ON	ON	ON	ON	4

$H=$ high level, L - low level, $X=$ irrelevan

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired
2. When a low logic level is applied directly to the blanking input (B), all segment outputs are off regardless of the level of any other input.
3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).
4. When the blanking input/ripple blanking output ($B 1 / R B O$) is open or held high and a low is applied to the lamp-test input, all segment outputs are on
${ }^{\dagger}$ BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO)

TYPES SN54246 THRU SN54249, SN54LS247 THRU SN54LS249,
 SN74246 THRU SN74249, SN74LS247 THRU SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

'248, '249, 'LS248, 'LS249 FUNCTION TABLE															
DECIMAL OR FUNCTION	INPUTS						BI/RBO ${ }^{\dagger}$	OUTPUTS							NOTE
	LT	RBI	D	C	B	A		a	b	c	d	e	f	g	
0	H	H	L	L	L	L	H	H	H	H	H	H	H	L	1
1	H	X	L	L	L	H	H	L	H	H	L	L	L	L	1
2	H	X	L	L	H	L	H	H	H	L	H	H	L	H	
3	H	X	L	L	H	H	H	H	H	H	H	L	L	H	
4	H	X	L	H	L	L	H	L	H	H	L	L	H	H	
5	H	X	L	H	L	H	H	H	L	H	H	L	H	H	
6	H	X	L	H	H	L	H	H	L	H	H	H	H	H	
7	H	X	L	H	H	H	H	H	H	H	L	L	L	L	1
8	H	X	H	L	L	L	H	H	H	H	H	H	H	H	
9	H	X	H	L	L	H	H	H	H	H	H	L	H	H	
10	H	x	H	L	H	L	H	L	L	L	H	H	L	H	
11	H	x	H	L	H	H	H	1	L	H	H	L	L	H	
12	H	X	H	H	L	L	H	L	H	L	L	L	H	H	
13	H	X	H	H	L	H	H	H	L	L	H	L	H	H	
14	H	x	H	H	H	1	H	1	1	1	H	H	H	H	
15	H	X	H	H	H	H	H	L	L	L	L	L	L	L	
81	\times	\times	\times	\times	X	\times	L	L	L	L	L	L	L	L	2
RBI	H	L	L	L	L	L	L	L	L	L	L	L	L	L	3
LT	L	X	X	\times	X	X	H	H	H	H	H	H	H	H	4

$H=$ high level, $L=$ low level, $X=$ irrelevant
NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.
3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go low and the ripple-blanking output (RBO) goes to a low level (response condition).
4. When the blanking input/ripple-blanking output ($\mathrm{Bi} / \mathrm{RBO}$) is open or held high and a low is applied to the lamp-test input, af segment outputs are high.
$\dagger_{B I / R B O}$ is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO)

'248, '249, 'LS248, 'LS249

TYPES SN54246 THRU SN54249, SN74246 THRU SN74249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

TYPES SN54LS247 THRU SN54LS249, SN74LS247 THRU SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

TYPES SN54246, SN54247, SN74246, SN74247

 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS
recommended operating conditions

		SN54246			SN54247			SN74246			SN74247			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
Off-state output voltage, V_{O} (off)	a thru g			30			15			30			15	V
On-state output current, IO(on)	a thru g			40			40			40			40	mA
High-level output current, 1 OH	BI/RBO			-200			-200			-200			-200	$\mu \mathrm{A}$
Low-level output current, I OL	BI/RBO			8			8			8			8	mA
Operating free-air temperature, T_{A}		-55		125	-55		125	0		70	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		1.5 V	V
V_{OH}	High-level output voltage	BI/RBO	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{IOH}=-200 \mu \mathrm{~A} \end{array}$	2.4	3.7	v
VoL	Low-level output voltage	BI/RBO	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{O}_{\mathrm{OL}}=8 \mathrm{~mA} \end{array}$		$0.27 \quad 0.4$	v
'O(off)	Off-state output current	a thru 9	$\begin{aligned} & V_{C C}=M A X, \\ & V_{1 \mathrm{IH}}=2.8 \mathrm{~V}, \\ & V_{O(\text { off })}=\text { MAX } \end{aligned}$		250	$\mu \mathrm{A}$
Volon)	On-state output voltage	a thru 9	$\begin{array}{ll} V_{C C}=M A X, & V_{1 H}=2 V, \\ V_{1 L}=0.8 V, & I O(o n)=40 \mathrm{~mA} \end{array}$		0.30 .4	v
1	Input current at maximum input voltage	Any input except BI/RBO	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
1 H	High-level input current	Any input except Bi/RBO	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
IIL	Low-level input current	Any input except BI/RBO	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$		-1.6	mA
		BI/RBO			-4	
Ios	Short-circuit output current	BI/RBO	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-4	mA
ICC	Supply current		$V_{C C}=$ MAX, See Note 2		$64 \quad 103$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: I CC is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
$t_{\text {off }}$	Turn-off time from A input	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=120 \Omega$,See Note 3		100	ns
ton	Turn-on time from A input			100	
${ }^{\text {toff }}$	Turn-off time from RBI input			100	
ton	Turn-on time from RBI input			100	

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10; toff corresponds to tpLH and $t_{\text {on }}$ corresponds to tPHL

TYPES SN54LS247, SN74LS247
 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS247			SN74LS247			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=$ MIN,	$I_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
VOH	High-level output voltage	BI/RBO	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{I L}=V_{I L} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	2.4	4.2		2.4	4.2		V		
$\mathrm{VOL}^{\text {O }}$	Low-ievei output voitage	Bi/RBO	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{IOL}=1.6 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				${ }^{1} \mathrm{OL}=3.2 \mathrm{~mA}$					0.35	0.5			
'Oloff)	Off-state output current	a thrug	$\begin{aligned} & V_{C C}=\text { MAX }, \\ & V_{\text {IL }}=V_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & V_{1 H}=2 \mathrm{~V} \\ & V_{O(\text { off })}=15 \mathrm{~V} \end{aligned}$			250			250	$\mu \mathrm{A}$		
$\mathrm{V}_{\mathrm{O}}(\mathrm{on})$	On-state output voltage	a thrug	$V_{C C}=M A X,$	$\mathrm{I}^{\mathrm{O}(\mathrm{on})}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$V_{I L}=V_{I L} \max$	$\mathrm{I}^{\mathrm{O}}(\mathrm{on})=24 \mathrm{~mA}$					0.35	0.5			
$1 /$	Input current at maximum input voltage		$V_{C C}=$ MAX,	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA		
$\mathrm{IIH}^{\text {I }}$	High-level input current		$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	Any input except BI/RBO	$V_{C C}=$ MAX	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		B1/RBO					-1.2			-1.2			
Ios	Short-circuit output current	BI/RBO	$V_{C C}=\operatorname{MAX}$		-0.3		-2	-0.3		-2	mA		
${ }^{\text {I CC }}$	Supply current		$V_{\text {CC }}=$ MAX,	See Note 2		7	13		7	13	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: I Cc is measured with alt outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
toff Turn-off time from A input	$C_{L}=15 \mathrm{pF}, \quad \mathbf{R}_{\mathrm{L}}=665 \Omega$ See Note 4	100	ns
$\mathrm{t}_{\text {on }}$ Turn-on time from A input		100	
$\mathrm{t}_{\text {off }}$ Turn-off time from RBI input		100	ns
$\mathrm{t}_{\text {on }}$ Turn-on time from RBI input		100	

TYPES SN54248, SN74248

BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

REVISED MARCH 1974
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminals.
recommended operating conditions

			N5424			N7424		
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	a thrug			-400			-400	$\mu \mathrm{A}$
	BI/RBO			-200			-200	
Low-level output current, IOL	a thrug			6.4			6.4	m
	BI/RBO			8			8	A
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
$V_{\text {IK }}$	Input clamp voltage		$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
VOH	High-level output voltage	a thru g	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4	4.2		V
		BI/RBO		2.4	3.7		
10	Output current	a thrug	$V_{C C}=\mathrm{MIN}, \quad V_{\mathrm{O}}=0.85 \mathrm{~V}$ Input conditions as for VOH	-1.3	-2		mA
V_{OL}	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$		0.27	0.4	V
11	Input current at maximum input voltage	Any input except BI/RBO	$V_{C C}=\mathrm{MAX}, \quad V_{1}=5.5 \mathrm{~V}$			1	mA
${ }_{1} \mathrm{H}$	High-level input current	Any input except BI/RBO	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
ILL	Low-level input current	Any input except R!/RBO	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$			-1.6	mA
		BI/RBO				-4	
Ios	Short-circuit output current	BI/RBO	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			-4	mA
$I_{\text {IC }}$	Supply current		$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2		53	90	mA

${ }^{\top}{ }^{\top}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
NOTE 2: ICC is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \text { See Note } 5 \end{aligned}$		100	ns
tPLH	Propagation delay time, low-to-high-level output from A input			100	
tPHL	Propagation delay time, high-to-low-level output from RBI input			100	
tPLH	Propagation delay time, low-to-high-level output from RBI input			100	ns

NOTE 5: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS248, SN74LS248 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
 NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

			54LS2			74LS2		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH	a thrug			-100			-100	$\mu \mathrm{A}$
	B1/RBO			-50			-50	
Low-level output current, IOL	a thrug			2			6	
	BI/RBO			1.6			3.2	mA
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS248			SN74LS248			UNIT		
			inin	TYP ${ }^{\text { }}$	MAAX	Min	TYP ${ }^{\ddagger}$	MiAX					
$V_{\text {IH }}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
VOH	High-level output voltage	a thru g and BI/RBO	$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN }, \\ & V_{\text {IL }}=V_{\text {IL }} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{I H}=2 \mathrm{~V} \\ & 1 \mathrm{OH}=\mathrm{MAX} \end{aligned}$	2.4	4.2		2.4	4.2		V		
10	Output current	a thrug	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN},$ Input conditions	$V_{\mathrm{O}}=0.85 \mathrm{~V},$ as for V_{OH}	-1.3	-2		-1.3	-2		mA		
VOL	Low-level output voltage	a thrug	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\prime} \mathrm{OL}=2 \mathrm{~mA}$		0.25	0.4		0.25	0.4	๒		
				$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$					0.35	0.5			
		BI/RBO	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				$1 \mathrm{OL}=3.2 \mathrm{~mA}$					0.35	0.5			
11	Input current at maximum input voltage	Any input except BI/BRO	$V_{C C}=$ MAX	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA		
$\mathrm{I}_{1} \mathrm{H}$	High-level input current	Any input except BI/RBO	$V_{C C}=$ MAX	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	Any input except BI/RBO	$V_{C C}=$ MAX	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	-0.4			-0.4			mA		
		BI/RBO					-1.2			-1.2			
Ios	Short-circuit output current	BI/RBO	$V_{C C}=\mathrm{MAX}$		-0.3		-2	-0.3		-2	mA		
${ }^{\text {ICC }}$	Supply current		$\mathrm{V}_{\mathrm{CC}}=$ MAX,	See Note 2		25	38		25	38	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}$.
NOTE 2: ' CC is measured with all outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

NOTE 6: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54249, SN74249
 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

			N5424			N742		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}				5.5			5.5	v
High-level output current, IOH	BI/RBO			-200			-200	$\mu \mathrm{A}$
Low-level output current, IOL	a thru 9			10			10	mA
	BI/RBO			8			8	
Operating free-air temperature, T_{A}		-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
V_{OH}	High-level output voltage	BI/RBO	$\begin{array}{ll} V_{C C}=M I N, & V_{1 H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{OHH}^{2}=\mathrm{MAX} \\ \hline \end{array}$	2.4	3.7	V
${ }^{1} \mathrm{OH}$	High-level output current	a thru g	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{array}$		250	$\mu \mathrm{A}$
$\mathrm{v}_{\text {OL }}$	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$		$0.27 \quad 0.4$	v
1	Input current at maximum input voltage	Any input except Bl/RBO	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7 \mathrm{~V}$		1	mA
$\mathrm{IIH}^{\text {H }}$	High-level input current	Any input except BI/RBO	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
I/L	Low-level input current	Any input except BI/RBO	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	mA
		B1/RBO			-4	
Ios	Short-circuit output current	B1/RBO	$\mathrm{V}_{C C}=\mathrm{MAX}$		-4	mA
ICC	Supply current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		$53 \quad 90$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{\prime} \mathrm{CC}$ is measured with ail outputs open and all inputs at 4.5 V .
switching characteristics, $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	max	UNIT
${ }_{\text {tPHL }}$	Propagation delay time, high-to-low-level output from A input	$C_{L}=15 \mathrm{pF}$,See Note 5				100	
${ }_{\text {tPLH }}$	Propagation delay time, low-to-high-level output from A input					100	
tPHL	Propagation delay time, high-to-low-level output from RBI input					100	
tPLH	Propagation delay time, low-to-high-level output from RBI input					100	

NOTE 5: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS249, SN74LS249 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless othervise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS249			SN74LS249			UNIT		
			MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage	BI/RBO	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{1 \mathrm{~L}}=\mathrm{V}_{\mathrm{IL}} \text { max }, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	2.4	4.2		2.4	4.2		V		
${ }^{1} \mathrm{OH}$	High-level output current	a thru g	$\begin{aligned} & V_{\text {CC }}=\text { MIN }, \\ & V_{I L}=V_{\text {IL }} \text { max } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$			250			250	$\mu \mathrm{A}$		
$\mathrm{V}_{\text {OL }}$	Low-ievei output voltage	BI/RBO	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$					0.35	0.5			
		a thrug	$\begin{aligned} & V_{C C}=M I N \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
				$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5			
11	Input current at maximum input voltage	Any input except BI/RBO	$V_{C C}=$ MAX	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA		
$\mathrm{I}_{1} \mathrm{H}$	High-level input current	Any input except BI/RBO	$V_{C C}=M A X$,	$V_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	Any input except BI/RBO	$V_{C C}=\operatorname{MAX}$	$V_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		BI/RBO					-1.2			-1.2			
Ios	Short-circuit output current	Bl/RBO	$V_{C C}=$ MAX		-0.3		-2	-0.3		-2	mA		
${ }^{1} \mathrm{CC}$	Supply current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	See Note 2		8	15		8	15	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. $\ddagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: ${ }^{1} \mathrm{CC}$ is measured with all outputs open and inputs at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low-level output from A input	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,$ See Note 6			100	ns
tPL.H	Propagation delay time, low-to-high-level output from A input				100	
tPHL	Propagation delay time, high-to-low-level output from RBI input	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=6 \mathrm{k} \Omega \text {, }$ See Note 6			100	ns
tPLH	Propagation delay time, low-to-high-level output from RBI input				100	

NOTE 6: Load circuit and voltage waveforms are shown on page 3-11.

- Three-State Versions of '151, 'LS151, 'S151
- Three-State Outputs Interface Directly with System Bus
- Perform Parallel-to-Serial Conversion
- Permit Multiplexing from N -lines to One Line
- Complementary Outputs Provide True and Inverted Data
- Fully Compatible with Most TTL and DTL Circuits

TYPE	max No. OF COMMON OUTPUTS	TYPICAL AVG PROP DELAY TIME (D TO Y)	TYPICAL POWER DISSIPATION
SN54251	49	17 ns	250 mW
SN74251	129	17 ns	250 mW
SN54LS251	49	17 ns	35 mW
SN74LS251	129	17 ns	35 mW
SN54S251	39	8 ns	275 mW
SN74S251	129	8 ns	275 mW

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources and feature a strobe-controlled threestate output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and iower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.
To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the 'average output disable time is shorter than the average output enable time. The SN54251 and SN74251 have output clamp diodes to attenuate reflections on the bus line.

functional block diagram

PUNCTS TABLE					UTS
SELECT			$\begin{array}{\|c} \hline \text { STROBE } \\ \mathrm{s} \\ \hline \end{array}$	OUTPTS	
c	B	A		γ	W
X	X	X	H	z	z
L	L	L	L	D0	DO
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\text { D2 }}$
L.	H	H	L	D3	$\bar{\square}$
H	L	L	L	D4	$\bar{\square}$
	L	H	L	D5	$\overline{05}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

$H=$ high logic level, $L=$ low logic level
$X=$ irrelevant, $Z=$ high impedance (off) $X=$ irrelevant, $Z=$ high impedance (off)
$D 0, D 1 \ldots D 7=$ the level of the respective D input

TYPES SN54251, SN74251
 data selectors/multiplexers with 3-State outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54251		SN74251		UNIT
	MIN	NOM	MAX	MIN	NOM

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input vol tage			2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN,	$-12 \mathrm{~mA}$		-1.5	v
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & =2 \mathrm{~V}, \\ & =\text { MAX } \end{aligned}$	2.4	3.2	V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & =2 \mathrm{~V}, \\ & =16 \mathrm{~mA} \end{aligned}$		0.20 .4	v
'O(off)	Off-state (high-impedance-state) output current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-40	
V_{O}	Output clamp voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{0}=-12 \mathrm{~mA}$		-1.5	V
			$10=12 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC}}+1.5$	
1	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$ MAX,	5.5 V		1	mA
${ }_{\text {IH }}$	High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}$,	2.4 V		40	$\mu \mathrm{A}$
${ }_{\text {IL }}$	Low-level input current	$\mathrm{V}_{\text {CC }}=$ MAX,	0.4 V		-1.6	mA
Ios	Short-circuit output current ${ }^{\text {§ }}$	$V_{C C}=$ MAX		-18	-55	mA
Icc	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ All outputs open	inputs at 4.5 V ,		$38 \quad 62$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
\ddagger All typical values are at $\mathrm{V} C C=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.

TYPES SN54251, SN74251
 data selectors/Multiplexers with 3-state outputs

switching characteristics, $\mathrm{V} C \mathrm{CC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	$\begin{aligned} & \hline \text { A, B, or C } \\ & \text { (4 levels) } \end{aligned}$	Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ See Note 2		29	45	ns
tPHL					28	45	
tPLH	A, B, or C (3 levels)	W			20	33	ns
tPHL					21	33	
tPLH	Any D	Y			17	28	ns
tPHL					18	28	
${ }^{\text {tPLH }}$	Any D	W			10	15	ns
tPHL					9	15	
t ZH	Strobe	Y			17	27	ns
t ZL					26	40	
t ZH	Strobe	W			17	27	ns
tZL					24	40	
thz	Strobe	Y	$\begin{aligned} & C_{L}=5 \mathrm{pF}, \\ & R_{L}=400 \Omega, \end{aligned}$ See Note 2		5	8	ns
tL					15	23	
thz	Strobe	W			5	8	ns
tı					15	23	

$I_{\mathbf{t P L H} \equiv \text { Propagation delay time, low-to-high-level output }}$
$\mathrm{t}_{\mathrm{PHL}} \equiv$ Propagation delay time, high-to-low-level output
$\mathrm{t}_{\mathrm{ZH}} \equiv$ Output enable time to high level
$\mathbf{Z H}^{2} \equiv$ Output enable time to low level
$\mathrm{t}_{\mathrm{HZ}} \equiv$ Output disable time from high level
${ }^{t^{2}} \mathrm{HZ} \equiv$ Output disable time from high level
${ }_{\mathrm{t}}^{\mathrm{L}-Z} \equiv$ Output disable time from low level
NOTE 2: See load circuits and waveforms on page 3-10.
schematics of inputs and outputs

TYPES SN54LS251, SN74LS251 (TIM9905) data selectors/Multiplexers with 3-state outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS251		SN74LS251		UNIT
	MIN	NOM	MAX	MIN	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS251		SN74LS251		UNIT
			MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX	
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage			2		2		V
$V_{\text {IL }} \quad$ Low-level input voltage				0.7		0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$V_{C C}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.5		-1.5	V
$V_{O H}$ High-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	2,4	3.4	2.4	3.1	V
Low-level voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		$0.25 \quad 0.4$		0.250 .4	V
	$V_{I L}=V I L \max$	$\mathrm{IOL}^{\prime}=8 \mathrm{~mA}$				$0.35 \quad 0.5$	
Off-state (high-impedance-state)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		20		20	$\mu \mathrm{A}$
O(off) output current		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-20		-20	
$I_{1} \quad$ Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$			0.1		0.1	mA
$I_{\text {IH }} \quad$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			20		20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4		-0.4	mA
${ }^{1}$ OS Short-circuit output current δ	$V_{C C}=M A X$		-30	-130	-30	-130	mA
ICC Supply current	$V_{C C}=M A X,$ See Note 3	Condition A		6.110		6.110	mA
		Condition B		7.112		7.1	

[^24]TYPES SN54LS251, SN74LS251(TIM9905)
DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	$\begin{aligned} & \text { A, B, or C } \\ & \text { (4 levels) } \end{aligned}$	Y	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Note } 4 \end{aligned}$		29	45	ns
tPHL					28	45	
tPLH	A, B, or C	w			20	33	ns
tPHL					21	33	
tPLH	Any D	Y			17	28	ns
tpHL					18	28	
tPLH	Any D	w			10	15	ns
tPHL					9	15	
tZH	Strobe	Y			30	45	ns
tzL					26	40	
t ZH	Strobe	w			17	27	ns
t ZL					24	40	
thz	Strobe	Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { See Note } 4 \end{aligned}$		30	45	ns
t LZ					15	25	
thz	Strobe	w			37	55	ns
t LZ					15	25	

ItPLH \equiv Propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ Propagation delay time, high-to-low-level output
${ }^{\mathrm{t}_{\mathrm{ZH}}} \equiv$ Output enable time to high level
${ }^{\mathrm{t}} \mathrm{ZL}$. \equiv Output enable time to low level
$\mathrm{t}_{\mathrm{HZ}} \equiv$ Output disable time from high level
$t_{L Z} \equiv$ Output disable time from low level
NOTE 4: See load circuits and waveforms on page 3-11.
schematics of inputs and outputs

TYPES SN54S251, SN74S251
 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54S251			SN74S251			UNIT
	Milin	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-2			-6.5	mA
Low-level output current, IOL			20			20	mA
Operating fiee-aii temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

TYPES SN54S251, SN74S251
DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{1}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	$A, B, \text { or } C$ (4 levels)	Y	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=280 \Omega, \end{aligned}$ See Note 2		12	18	ns
tPHL					13	19.5	
tPLH	$A, B, \text { or } C$	W			10	15	ns
${ }^{\text {tPHL }}$	(3 levels)				9	13.5	
tPLH	Any D	Y			8	12	ns
tPHL					8	12	
${ }_{\text {tPLH }}$	Any D	W			4.5	7	ns
tPHL					4.5	7	
t ZH	Strobe	Y	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ See Note 2		13	19.5	ns
tZL					14	21	
t ZH	Strobe	W			13	19.5	ns
tZL					14	21	
thz	Strobe	Y	$\begin{aligned} & C_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$ See Note 2		5.5	8.5	ns
$\mathrm{t}_{\mathrm{L}} \mathrm{Z}$					9	14	
t_{Hz}	Strobe	W			5.5	8.5	ns
${ }_{\text {t }} \mathrm{L}$					9	14	

[^25]schematics of inputs and outputs

TYPES SN54LS253, SN74LS253

- Three-State Version of SN54LS153/SN74LS153
- Schottky-Diode-Clamped Transistors
- Permits Multiplexing from \mathbf{N} Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Typical Average Propagation Delay Times:

Data Input to Output . . . 12 ns
Control Input to Output . . . 16 ns
Select Input to Output . . . 21 ns

- Fully Compatible with Most TTL and DTL Circuits
- Low Power Dissipation . . . 35 mW Typical (Enabled)

description
Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level.
logic

SELECT INPUTS			DATA INPUTS				OUTPUT CONTRO
B	A	CO	C1	C2	C3	G	Y
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address inputs A and B are common to both sections.
$H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54LS253, SN74LS253

DUAL 4-LINE-TO-1-LINE DATA SELECTORS/ MULTIPLEXERS WITH 3-STATE OUTPUTS
REVISED OCTOBER 1976

recommended operating conditions

		54LS2			74LS2		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-2.6	mA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		test conditions ${ }^{\boldsymbol{t}}$		SN54LS253		SN74LS253			UNIT		
		MIN	TYP \ddagger MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage					2		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.7			0.8	V		
$V_{1 K}$	Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max }, & \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$		2.4	3.4	2.4	3.1		v		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}^{\mathrm{OLL}}=4 \mathrm{~mA}$		0.250 .4		0.25	0.4	V		
			$1 \mathrm{OL}=8 \mathrm{~mA}$				0.25	0.5			
loz	Off-State (high-impedance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		20			20	$\mu \mathrm{A}$		
	state) output current		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-20			-20			
1	Input current at maximum input voltage	$V_{C C}=$ MAX, $\quad V_{1}=7 \bar{V}$			0.1			0.1	mA		
1 IH	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
Ios	Short-circuit output current ${ }^{\text {§ }}$	$\mathrm{V}_{\text {CC }}=$ MAX		-30	-130	-30		-130	mA		
'cc	Supply current	$v_{C C}=M A X, \quad$ See Note 2	Condition A		$7 \quad 12$		7	12	mA		
			Condition B		8.514		8.5	14			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration for the short-circuit should exceed one second NOTE 2: 'CC is measured with the outputs open under the following conditions:
A. All inputs grounded.
B. Output control at 4.5 V , all inputs grounded.
switching characteristics, $\mathrm{VCC}_{\mathrm{C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
tPLH	Data	Y	$C_{L}=15 \mathrm{pF},$ See Note 3	$R_{L}=2 \mathrm{k} \Omega$,	17	25	
${ }^{\text {tPHL }}$					13	20	ns
tple	Select	Y			30	45	ns.
tPHL					21	32	
t ZH	Output Control	Y			15	28	ns
t ZL					15	23	
thz	Output Control	Y	$=5 \mathrm{pF},$ See Note 3	$R_{L}=2 \mathrm{k} \Omega$,	27	41	ns
$t_{L Z}$					18	27	

$\mathrm{t}_{\mathrm{PH}}: \equiv$ Propagation delay time, high-to-low-level output
$\mathrm{t}_{\mathrm{ZH}} \equiv$ Output enable time to high level
${ }^{\mathbf{t}} \mathrm{ZL} \equiv$ Output enable time to low level
${ }^{t_{H Z}} \equiv$ Output disable time from high level
$\mathrm{t}_{\mathrm{L} Z} \equiv$ Output disable time from low level
NOTE 3: Load circuit and waveforms are shown on page 3-11.

TYPES SN54LS253, SN74LS253
DUAL 4-LINE-TO-1-LINE DATA SELECTORS/ MULTIPLEXERS WITH 3-STATE OUTPUTS
schematic (each selector/multiplexer, and the common select section)

V... $V_{c c}$ bus

Resistor values shown are nominal and in ohms.

- Three-State Outputs Interface Directly with System Bus
- 'LS257A and 'LS258A Offer Three Times the Sink-Current Capability of the Original 'LS257 and 'LS258
- Same Pin Assignments as SN54LS157, SN74LS157, SN54S157, SN74S157, and SN54LS158, SN74LS158, SN54S158, SN74S158
- Provides Bus Interface from Multiple Sources in High-Performance Systems

	AVERAGE PROPAGATION	TYPICAL
DELAY FROM	POWER	
	DATA INPUT	DISSIPATION
	12 ns	60 mW
'LS257A	12 ns	60 mW
'LS258A	4.8 ns	320 mW
'S257	4 ns	280 mW
'S258		
'Off state (worst case)		

description

These Schottky-clamped high-performance multiplexers feature three-state outputs that can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the outputenable circuitry is designed such that the output disable times are shorter than the output enable times.

This three-state output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Series 54LS and 54S are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 LS and 74 S are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54LS257A, SN54S257 . . . J OR W PACKAGE SN74LS257A, SN74S257 . . . J OR N PACKAGE (TOP VIEW)

SN54LS258A, SN54S258 . . . J OR W PACKAGE SN74LS258A, SN74S258 . . J OR N PACKAGE (TOP VIEW)

FUNCTION TABLE					
INPUTS				OUTPUT Y	
OUTPUT CONTROL	SELECT	A	B	$\begin{gathered} \text { 'LS257A } \\ \text { 'S257 } \end{gathered}$	$\begin{gathered} \text { 'LS258A } \\ \text { 'S258 } \end{gathered}$
H	X	X	X	Z	Z
L	L	L	x	L	H
L	L	H	X	H	L
L	H	X	L	L	H
L	H	X	H	H	L

$H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)

TYPES SN54LS257A, SN54LS258A, SN54S257, SN54S258, SN74LS257A, SN74LS258A, SN74S257, SN74S258 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

schematics of inputs and outputs

'S257, 'S258

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal

TYPES SN54LS257A, SN54LS258A, SN74LS257A, SN74LS258A QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS
recommended operating conditions

	SN54LS $^{\prime}$		SN74LS'	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }_{\ddagger}^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second,
NOTE 2: ICC is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\mathbf{6 6 7} \mathrm{k} \Omega$

PARAMETER ${ }^{\text {T }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS257A			'LS258A			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
${ }^{\text {tPLH }}$	Data	Any	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF},$ See Note 3		12	18		12	18	
tPHL					12	18		12	18	ns
tple	Select	Any			14	21		14	21	ns
${ }^{\text {tPHL }}$					14	21		14	21	
${ }^{\text {tPZH }}$	Output Control	Any			20	30		20	30	ns
${ }^{\text {tPZL }}$					20	30		20	30	
${ }^{\text {tPHZ }}$	Outbut Control	Any	$C_{L}=5 p F,$ See Note 3		18	30		18	30	ns
tplZ					16	25		16	25	

$\|_{\mathrm{IPLH} \equiv \text { propagation delay time, low-to-high-level output }}$
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
${ }^{{ }^{\text {P }} \mathrm{PZ}} \mathrm{H} \equiv$ output enable time to high level
TPZH \equiv output enable time to high level
NOTE 3: Load circuit and waveforms are shown on page 3-11.
${ }^{\text {tpZL }} \equiv$ output enable time to low level
${ }^{\text {t PHZ }} \equiv$ output disable time from high leve
$t_{\text {PLZ }} \equiv$ output disable time from low level

TYPES SN54S257, SN54S258, SN74S257, SN74S258 QUADRUPLE 2-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	SN54S257, SN54S258			SN74S257, SN74S258			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-2			-6.5	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54S	57, SN7	4S257	SN54S	58, SN	4S258	UNIT		
			MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
V_{iK}	Input clamp voltage		$V_{C C}=$ MIN, $i_{i}=-18 \mathrm{~mA}$				-1.2			-1.2	V		
V_{OH} High-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	SN54S'	2.4	3.4		2.4	3.4		V		
			SN74 ${ }^{\prime}$	2.4	3.2		2.4	3.2					
V_{OL}	Low-level output voltage			$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & I_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$				0.5			0.5	V	
${ }^{1} \mathrm{OZH}$	Off-state output current, high-level voltage applied		$\begin{aligned} & V_{C C}=\mathrm{MAX}, \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \end{aligned}$				50			50	$\mu \mathrm{A}$		
IOZL	Off-state output current, low-level voltage applied		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$				-50			-50	$\mu \mathrm{A}$		
11	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1			1	mA		
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	S input	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				100			100	$\mu \mathrm{A}$		
		Any other					50			50			
IIL	Low-leve! input current	S input	$V_{C C}=M A X, V_{1}=0.5 V$				-4			-4	mA		
		Any other					-2			-2			
IOS Short-circuit output current ${ }^{\text {§ }}$	Short-circuit output current ${ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-40		-100	-40		-100	mA		
${ }^{1} \mathrm{CC}$	Supply current	All outputs high	$V_{C C}=$ MAX, See Note 2			44	68		36	56	mA		
		All outputs low				60	93		52	81			
		All outputs off				64	99		56	87			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\S_{\text {Not more the the }}$ mene output should be shorted at a time and duration of the short-circuit should not exceed one second.
NOTE 2: ICC is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=280 \Omega$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54S257, SN74S257			SN54S258, SN74S258			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	Data	Any	$C_{L}=15 \mathrm{pF},$ See Note 4		5	7.5		4	6	
tPHL					4.5	6.5		4	6	ns
tPLH	Select	Any			8.5	15		8	12	ns
tPHL					8.5	15		7.5	12	
tPZH	Output Control	Any			13	19.5		13	19.5	ns
tPZL					14	21		14	21	
${ }^{\text {tPHZ }}$	Output Control	Any	$C_{L}=5 \mathrm{pF},$ See Note 4		5.5	8.5		5.5	8.5	ns
${ }^{\text {f PLZ }}$					9	14		9	14	

[^26]$t_{P Z L} \equiv$ output enable time to low level
${ }^{\text {tPZL }} \equiv$ output enable time to low level
${ }^{\text {tPHZ }} \equiv$ output disable time from high level
$t_{P L Z} \equiv$ output disable time from low level

- 8-Bit Parallel-Out Storage Register Performs Serial-to-Parallel Conversion With Storage
- Asynchronous Parallel Clear
- Active High Decoder
- Enable/Disable Input Simplifies Expansion
- Direct Replacement for Fairchild 9334
- Expandable for N -Bit Applications
- Four Distinct Functional Modes
- Typical Propagation Delay Times:

	'259	'LS259
Enable-to-Output ...	12	17
Data-to-Output	12	18
Address-to-Output .	16	20
Clear-to-Output	16	20

description

These 8 -bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serialholding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1 -of- 8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held high (inactive) while the address lines are changing. In the 1 -of- 8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

FUNCTION TABLE

INPUTS		OUTPUT OF ADDRESSED LATCH	EACH OTHER OUTPUT	FUNCTION
CLEAR	$\overline{\mathrm{G}}$			
H ,	L	D	a_{i}	Addressable Latch
H	H	$\mathrm{a}_{\mathrm{i} 0}$	O_{i}	Memory
L	L	D	L	8-Line Demultiplexer
L	H	L	L	Clear

LATCH SELECTION TABLE

SELECT INPUTS		LATCH	
C	B	A	ADDRESSED
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3
H	L	L	4
H	L	H	5
H	H	L	6
H	H	H	7

$H \equiv$ high level, $L \approx$ low level
$D \equiv$ the level at the data input
$Q_{i 0} \equiv$ the level of $Q_{i}(i=0,1, \ldots 7$, as appropriate $)$ before the indicated steady-state input conditions were established.

7
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

8-BIT ADDRESSABLE LATCHES

recommended operating conditions

$\uparrow T$ he arrow indicates that the rising edge of the enable pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54259			SN74259			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=12 \mathrm{~mA}$			-1.5			-1.5	V		
$\mathrm{VOH}^{\text {O }}$	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O H}=-800 \mu A \end{aligned}$	2.4	3.4		2.4	3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4		0.2	0.4	V		
$1 /$	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
1 H	High-level input current	Enable	$V_{C C}=$ MAX	$V_{1}=2.4 \mathrm{~V}$			80			80	$\mu \mathrm{A}$		
		Other inputs					40			40			
IIL	Low-level input current	Enable	$\mathrm{V}_{\text {CC }}=$ MAX	$V_{1}=0.4 \mathrm{~V}$			-3.2			-3.2	mA		
		Other inputs					-1.6			-1.6			
IOS	Short-circuit output current§		$V_{C C}=$ MAX		-18		-57	-18		-57	mA		
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=$ MAX	See Note 2		60	90		60	90	mA		

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 2: ' CC is measured with the inputs grounded and the outputs open.
switching characteristics, $\mathrm{VCC}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Clear	Any Q	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 3 \end{aligned}$		16	25	ns
${ }^{\text {tPLH }}$	Data	Any Q			14	24	ns
${ }^{\text {tPHL }}$					11	20	
tPLH	Address	Any Q			15	28	ns
${ }^{\text {PPHL}}$					17	28	
tPLH	Enable	Any Q			12	20	ns
tPHL					11	20	

$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit is shown on page 3-10.
recommended operating conditions

		SN54LS259			SN74LS259			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-400			-400	$\mu \mathrm{A}$
Low-level outpu				4			8	mA
Width of clear or enable pulse, t_{w}		15			15			ns
Setup time, $\mathrm{t}_{\text {su }}$	Data	$15 \uparrow$			15			ns
Setup time, tsu	Address	$15 \uparrow$			15			
Hold time, th	Data	$0 \uparrow$			0			ns
	Address	$0 \uparrow$			0			
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$		-55		125	0		70	${ }^{\circ} \mathrm{C}$

\uparrow The arrow indicates that the rising edge of the enable pulse is used for reference,
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$			SN54LS259			SN74LS259			UNIT			
		MIN	TYP!	Max	MAN	TYPt	MAAX							
$\mathrm{V}_{\text {IH }}$	High level input voltage							2			2			V
$\mathrm{V}_{\text {IL }}$	Low level input voltage						0.7			0.8	V			
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,					-1.5			-1.5	V			
V OH	High-level output voltage	$\begin{array}{ll} \hline V_{\mathrm{CC}}=\mathrm{MIN}, & V_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \\ \hline \end{array}$			2.5	3.4		2.7	3.4		V			
VOL	Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\text {IL }} \text { max }, \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{I}^{\text {OL }}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$\mathrm{I}^{\text {OL }}=8 \mathrm{~mA}$					0.35	0.5				
11	Input current at maximum input voitage	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA			
IIH	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
$1 / \mathrm{L}$	Low-level input current	$V_{C C}=$ MAX	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
${ }^{\text {IOS }}$	Short-circuit output current \S	$V_{C C}=$ MAX			-20		-100	-20		-100	mA			
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=$ MAX	See Note 2			22	36		22	36	mA			

\dagger^{\dagger} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration short-circuit should not exceed one second.
NOTE 2: 'CC is measured with the inputs grounded and the outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Clear	Any 0	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$$\text { See Note } 3$		17	27	ns
tPLH	Data	Any 0			20	32	ns
${ }^{\text {TP }}$ PL					13	21	
tPLH	Address	Any 0			24	38	ns
tPHL					18	29	
tPLH	Enable	Any 0			22	35	ns
tPHL					15	24	

tPLH \equiv propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit is shown on page 3-11.

- Fast Multiplication . . . 5-Bit Product in 26 ns Typ
- Power Dissipation . . . 110 mW Typical
- Latch Outputs for Synchronous Operation
- Expandable for m-Bit-by-n-Bit Applications
- Fully Compatible with Most TTL and Other Saturated Low-Level Logic Families
- Diode-Clamped Inputs Simplify System Design
description

These low-power Schottky circuits are designed to be used in parallel multiplication applications. They perform binary multiplication in two's-complement form, two bits at a time.

The M inputs are for the multiplier bits and the B inputs are for the multiplicand. The Q outputs represent the partial product as a recoded base-4 number. This recoding effectively reduces the Wallace-tree hardware requirements by a factor of two.

The outputs represent partial products in one'scomplement form generated as a result of multiplication. A simple rounding scheme using two additional gates is needed for each partial product to generate two's complement.

The leading (most-significant) bit of the product is inverted for ease in extending the sign to square (left justify) the partial-product bits.

The SN54LS261 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74LS261 for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
schematics of inputs and outputs

FUNCTION TABLE								
INPUTS				OUTPUTS				
LATCH CONTROL G	MULTIPLIER			$\overline{0} 4$	Q3	02	01	00
	M2	M1	MO					
L	X	X	X	$\overline{\mathrm{O}} 40$	O30	O_{0}	Q10	QO_{0}
H	L	L	L	H	L	L	L	L
H	L	L	H	$\bar{B} 4$	B4	B3	B2	B1
H	L	H	L	$\bar{B} 4$	B4	B3	B2	B1
H	L	H	H	B4	B3	B2	B1	B0
H	H	L	L	B4	$\overline{\text { B }}$	$\overline{\mathrm{B}} 2$	$\overline{\mathrm{B}} 1$	$\bar{B} 0$
H	H	L	H	B4	$\overline{B 4}$	B3	$\overline{\text { B }} 2$	B1
H	H	H	1	B4	$\bar{B} 4$	B3	$\overline{\mathrm{B}} 2$	IB1
H	H	H	H	H	L	L	L	L

$\underline{H}=$ high level, $L=$ low level, $X=$ irrelevant
$\bar{\alpha} 4_{0} \ldots Q 0_{0}=$ The logic level of the same output before the high-to-low transition of G.
$B 4 \ldots B 0=$ The logic level of the indicated multiplicand (B) input.

TYPES SN54LS261, SN74LS261

2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

REVISED OCTOBER 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $V_{C C}($ see Note 1) . 7 V
Input voltage . 7 V

Operating free-air temperature range: SN54LS261 $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74LS261 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS261			SN74LS261			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Width of enable pulse, t_{w}		25			25			ns
Setup time, $\mathrm{t}_{\text {su }}$	Any M input	17 \downarrow			17 \downarrow			ns
	Any B input	15 \downarrow			$15 \downarrow$			
Hold time, th	Any M input	$0 \downarrow$			O \downarrow			ns
	Any B input	04			0 \downarrow			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

\downarrow The arrow indicates that the falling edge of the enable pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54LS261			SN74LS261			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{1} \mathrm{H}$	High-level input voltage					2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.7			0.8	V		
VIK	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V		
V OH	High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max, } & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ \hline \end{array}$		2.5	3.4		2.7	3.4		V		
$\mathrm{V}_{\text {OL }}$ Low-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \bar{V}, \\ V_{I L}=V_{I L} \max & \end{array}$	${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		10.25	0.4		0.25	0.4	\checkmark		
		$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
11	Input current at		$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$	MO or MI			0.2			0.2	mA	
	maximum input voltage	All others				0.1			0.1			
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	$V_{C C}=$ MAX,	MO or MI			40			40	$\mu \mathrm{A}$		
			All others			20			20			
	Low-level input current	$V_{C C}=$ MAX, $\quad V_{1}=0.4{ }^{-} \mathrm{V}$	MO or M!			-0.8			-0.8	mA		
			All others			-0.4			-0.4			
IOS	Short-circuit output current ${ }^{\text {§ }}$	$V_{\text {CC }}=$ MAX		-20		-100	-20		-100	mA		
${ }^{\prime} \mathrm{Cc}$	Supply current	$V_{C C}=\mathrm{MAX}, \quad$ All inputs at 0 V,Outputs open.		22		38		20	40	mA		

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the output short-circuit should not exceed one second.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Enable G	Any Q	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 2	22	35	ns
tPHL				20	30	ns
tPLH	Any M input	Any 0		25	40	ns
tPHL				22	35	ns
tPLH	Any B input	Any Q		27	42	ns
tPHL				24	37	ns

$\|_{\mathrm{IPLH}_{\mathrm{L}}} \equiv$ propagation delay time, low-to-high-level output; tpHL\equiv propagation delay time, high-to-lowlevel output.

NOTE 2: Load circuit and voltage waveforms are shown on page 3-11.

Multiplication of the numbers 26 (multiplicand) by 29 (multiplier) in decimal, binary, and 2-bit-at-a-time-binary is shown here:

	DECIMAL	BINARY	2-BIT-AT-A-TIME BINARY
		Sign	Sign
		Bit	Bit
		\dagger	
B	26	011010	011010
M	29	011101	$(+2)(-1)(+1)$
	234	011010	00000011010
	52	000000 6	111100110 Partial
	754	011010 6	0110100 Products
		011010 (0 Partial	01011110010
		011010 Products	$4 \underbrace{10100}$
		000000 ,	Sign Product
		01011110010	Bit
		* $\sim^{\text {a }}$	
		Sign Product	

Two points should be noted in the two-bit-at-a-time-binary example above. First, in positioning the partial products beneath each other for final addition, each partial product is shifted two places to the left of the partial products above it instead of one place as is done in regular multiplication. Second, the msb of the partial product (the sign bit) is extended to the sign-bit column of the final answer.

A substantial reduction of multiplication time, cost, and power is obtained by implementing a parallel partial-product-generation scheme using a 2-bit-at-a-time algorithm, followed by a Wallace Tree summation.

Partial-product-generation rules of the algorithm are:

1. Examine two bits of multiplier M plus the next lower bit. For the first partial product (PP1) the next lower bit is zero.

TYPES SN54LS261, SN74LS261

2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

TYPICAL APPLICATION DATA
2. Generate partial product (PPi) as shown in the following table:

MULTIPLIER BITS FROM STEP 1			OPERATOR SYMBOL	TO OBTAIN PARTIAL PRODUCT
22i-1	22i-2	22i-3		
0	0	0	0	Replace multiplicand by zero
0	0	1	+1 B	Copy multiplicand
0	1	0	+1 B	Copy multiplicand
0	1	1	+2 B	Shift multiplicand left one bit
1	0	0	-2 B	Shift two's complement of multiplicand left one bit
1	0	1	-1 B	Replace multiplicand by two's complement
1	1	0	-1 B	Replace multiplicand by two's complement
1	1	1	0	Replace multiplicand by zero

3. Weight the partial products by indexing each two places left relative to the next-less-significant product.
4. Extend the most-significant bit of the partial product to the sign-bit place value of the final product.

EXAMPLE OF ALGORITHM

$M=29=$| 011101 |
| :--- | :--- | :--- |\quad| Operator |
| :--- |
| Symbol |$\quad B=26=011010$

The summation of these partial products was shown in the 2-bit-at-a-time binary multiplication example above.
The 'LS261 generates partial products according to this algorithm with two exceptions:
i. The one's compiement is generated for the cases requiring the two's complement. The two's complement can be obtained by adding one to the one's complement; this rounding can be done by using one NAND gate and one AND gate as shown in Figure B.
2. The most-significant bit is complemented to reduce the hardware required to extend the sign bit. This extension can be accomplished by adding a hard-wired logic 1 in bit position $2^{2 i+15}$ of each partial product and also in bit position 2^{16} of the first partial product (PP1).

In general, the 4×2 bit 'LS261 can be expanded for use in $4 \mathrm{~m} \times 2 \mathrm{n}$ bit multipliers. Partial-product generation uses $m \times n$ 'LS261s $m \times n \div 16^{\prime}$ LSOOs, and $m \times n \div 16^{\prime}$ LSO8s. The size of the Wallace tree and ALU requirements vary depending on the size of the problem. The count for the 16×16 bit multiplier is:

32	SN54LS261/SN74LS261
2	SN54LS00/SN74LS00
2	SN54LS08/SN74LS08
56	SN54H183/SN74H183
7	SN54LS181/SN74LS181
2	SN54LS182/SN74LS182

- Input Clamping Diodes Simplify System Design
- Fully Compatible with Most TTL and DTL Circuits

FUNCTION TABLE

INPUTS		OUTPUT Y
A	B	
L	L	H
L	H	L
H	L	L
H	H	H

$H=$ high level, L = low level
description

The 'LS266 is comprised of four independent 2 -input exclusive-NOR gates with open-collector outputs. The opencollector outputs permit tying outputs together for multiple-bit comparisons.
schematics of inputs and outputs

7

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

\left.| | SN54LS266 | | SN74LS266 | | UNIT |
| :--- | ---: | ---: | ---: | ---: | :---: |
| | MIN | NOM | MAX | MIN | NOM MAX |$\right)$

eiectricai characteristics over recommended operating free-air temperature range (uniess otherwise notedi)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		Siñ54is266			Sin7alszib			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$V_{\text {IH }}$ High-level input voltage			2			2			v
$V_{\text {IL }}$ Low-level input voltage			0.7					0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-1.5			-1.5			v
$\mathrm{IOH}^{\text {High-level output current }}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{array}$		100			100			$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	$\mathrm{I}^{\prime} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v
		$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
$I_{1} \quad$ Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7$				0.2			0.2	mA
${ }_{1} /$ H ${ }^{\text {IIL }}$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				40			40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	-0.8			-0.8			mA
'CC Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 2		8	13		8	13	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: I CC is measured with one input of each gate at 4.5 V , the other inputs grounded, and the outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
tPLH	A or B	Other input low	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$$\text { See Note } 3$	18	30	ns
tPHL				18	30	
${ }^{\text {tPLH }}$	A or B	Other input high		18	30	ns
tPHL				18	30	

$\|_{t_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
tPHI \equiv propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-1

- Contains Eight Flip-Flops with Single-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications Include:

Buffer/Storage Registers
Shift Registers
Pattern Generators

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic with a direct clear input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 30 megahertz while maximum clock frequency is typically 40 megahertz. Typical power dissipation is 39 milliwatts per flip-flop for the '273 and 10 milliwatts for the 'LS273.

SN54273, SN54LS273 . . J JACKAGE SN74273, SN74LS273 . . . J OR N PACKAGE

See explanation of function tables on page 3-8

schematics of inputs and output

functional block diagram

TYPES SN54273, SN74273 OCTAL D-TYPE FLIP-FLOP WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

			N54273			N74273		
		MIN	NOM	MAX	MIN	NOM	MAX	IT
Supply voltage, V_{CC}	,	4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{1} \mathrm{OH}$				-800			-800	$\mu \mathrm{A}$
Low-level output current, I_{OL}				16			16	mA
Clock frequency, fclock		0		30	0		30	MHz
Width of clock or clear pulse, t_{w}		16.5			16.5			ns
Seet-up time, $\mathrm{t}_{\text {Sut }}$	Data input	$20 \uparrow$			$20 \uparrow$			is
	Clear inactive state	$25 \uparrow$			$25 \uparrow$			
Data hold time, th		$5!$			$5 \uparrow$			ns
Operating free-air temperature, T_{A}		-55	125		0	70		${ }^{\circ} \mathrm{C}$

The arrow indicates that the rising edge of the clock pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage					0.8	V
$V_{\text {IK }}$ Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
VOH High-level output voltage		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{ViNN}, \quad \mathrm{v}_{\mathrm{IH}}=2 \mathrm{v}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		V
VOL Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$			0.4	V
Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
I_{IH} High-level input current	Clear	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
	Clock or D				40	
IIL Low-level input current	Clear	$V_{C C}=\operatorname{MAX}, V_{1}=0.4 \mathrm{~V}$			-3.2	mA
	Clock or D				-1.6	
Short-circuit output current \S		$V_{C C}=$ MAX	-18		-57	mA
Supply current		$V_{C C}=$ MAX, See Note 2		62	94	mA

${ }^{\dagger}$ For conditions shawn as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
$\S_{\text {Not more than one output should be shorted at a time }}$
NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I CC is measured after a momentary ground, then 4.5 V , is applied to clock.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 3 \end{aligned}$	30	40		MHz
tPHL Propagation delay time, high-to-low-level output from clear			18	27	ns
tpLH Propagation delay time, low-to-high-level output from clock			17	27	ns
tPHL Propagation delay time, high-to-low-level output from clock			18	27	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal
recommended operating conditions

			54L.S2			74LS		
		MIN	NOM	MAX	MIN	NOM	MAX	IT
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL				4			8	mA
Clock frequency, f clock		0		30	0		30	MHz
Width of clock or clear pulse, t_{w}		20			20			ns
Set-up time, $\mathrm{t}_{\text {su }}$	Data input	$20 \uparrow$			$20 \uparrow$			ns
	Clear inactive state	$25 \uparrow$			$25 \dagger$			
Data hold time, th		$5 \uparrow$			$5 \uparrow$			ns
Operating free-air temperature, T_{A}		-55	125		0	70		${ }^{\circ} \mathrm{C}$

\dagger The arrow indicates that the rising edge of the clock pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54LS273		SN74LS273			UNIT
		MIN	TYP \ddagger MAX	MIN	TYP \ddagger	MAX	
V_{IH} H \quad High-level input voltage		2		2			V
$V_{\text {IL }}$ Low-level input voltage			0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ MIN, $\quad \mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.5			-1.5	V
$V_{\text {OH }}$ High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=-400 \mu \mathrm{~A} \end{array}$	2.5	3.4	2.7	3.4		v
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$V_{C C}=\mathrm{MIN}$, $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$, $\mathrm{IOL}=4 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ max $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.25 0.4		0.25	0.4	V
II Input current at maximum input voitage	$V_{C C}=$ MAX, $V^{\prime} V_{i}=7 \mathrm{~V}$		0.1			0.1	mA
IIH High-level input current	$\begin{array}{ll}\text { VCC MAX, } & V_{1}=2.7 \mathrm{~V}\end{array}$		20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=-0.4 \mathrm{~V}$		-0.4			-0.4	mA
IOS Short-circuit output current ${ }^{\text {8 }}$	$V_{C C}=$ MAX	-20	-100	-20		-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 2		$17 \quad 27$		17	27	mA

\dagger For conditions shown as MIN or MAX, use the appropriate value specifiad under recommended operating conditions.
$\ddagger_{A l l}$ typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
§ Not more than one output should be shorted at a time and duration of short circuit should not exceed one second.
NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I CC is measured after a momentary ground, then 4.5 V is applied to clock.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 4	30	40		MHz
${ }^{\text {tPHL }}$ Propagation delay time, high-to-low-level output from clear			18	27	ns
tPLH Propagation delay time, low-to-high-level output from clock			17	27	ns
${ }^{\text {tPHL }}$ Propagation delay time, high-to-low-level output from clock			18	27	ns

NOTE 4: Load circuit and voltage waveforms are shown on page 3-11. SN74LS275, SN74S274, SN74S275

- 'S274 Provides 8-Bit Product in Typically 45 ns
- 'S274 Can Provide Sub-Multiple Products for n-Bit-by-n-Bit Binary Numbers
- 'LS275 and 'S275 Accept 7 Bit-Slice Inputs and 2 Carry Inputs for Reduction to 4 Lines in Typically 45 ns
- These High-Complexity Functions Can Reduce Package Count by Nearly 50\% in Most Parallel Multiplier Designs
- When SN74S274 is Combined With SN74H183 (or SN74LS183) and Schottky Look-Ahead Adders, Multiplication Times are Typically:

16-Bit Product in 75 ns (79 ns)

SN54S274 . . . J PACKAGE SN74S274 . . J OR N PACKAGE

description

These high-complexity Schottky-clamped TTL circuits are designed specifically to reduce the delay time required to perform high-speed parallel binary multiplication and significantly reduce package count. The 'S274 is a basic 4-bit-by-4-bit parallel multiplier in a single package, and as such, no additional components are required to obtain an 8-bit product. For word lengths longer than 4 bits, a number of 'S274 multipliers can be combined to generate sub-multiple partial products. These partial products can then be combined in Wallace trees to obtain the final product. See Typical Application Data.

The 'LS275 and 'S275 expandable bit-slice Wallace trees have been designed to accept up to seven bit-slice inputs and two carry inputs from previous slices for reduction to four lines.

TYPES SN54LS275, SN54S274, SN54S275, SN74LS275, SN74S274, SN74S275 4-BIT-BY-4-BIT BINARY MULTIPLIER WITH 3-STATE OUTPUTS 7-BIT-SLICE WALLACE TREES WITH 3-STATE OUTPUTS
functional block diagram

NOTE: When one of of the $\mathrm{C}_{2}{ }^{\mathrm{n}}$ carry inputs is not used, it must be grounded. If neither $C_{2}{ }^{n}$ carry input is used, both $C_{2}{ }^{n}$ inputs are grounded and the $\mathrm{C}_{2}{ }^{\text {n+1 }}$ output is normally left open.
schematics of inputs and outputs

'S274, 'S275

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

\left.| | SN54LS275 | | SN74LS275 | | UNIT |
| :--- | ---: | ---: | ---: | :---: | :---: |
| | MIN | NOM | MAX | MIN | NOM |
| MAX | | | | | |$\right)$.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS275			SN74LS275			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
V_{IH}	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$1_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
VOH	High-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	2.4	3.2		2.4	3.1		V		
$\mathrm{VOL}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M!N, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{i}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{t}^{\text {OL }}=24 \mathrm{~mA}$					0.35	0.5				
$\mathrm{I}^{\mathrm{O}} \mathrm{OH}$	Off-state output current, high-level voltage applied			$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} & \\ \end{array}$				20			20	$\mu \mathrm{A}$	
IOZL	Off-state output current, low-level voltage applied		$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$	$V_{I H}=2 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$		
11	input current at maximum input voltage	Enable $\overline{\mathrm{G}}$	$V_{C C}=$ MAX	$V_{1}=7 \mathrm{~V}$			0.1			0.1	mA		
		All others					0.3			0.3			
IH	High-level input current	Enable $\overline{\mathrm{G}}$	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
		All others					60			60			
IIL	Low-level input current	Enable $\overline{\mathrm{G}}$	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA		
		All others					-1.2			-1.2			
Ios	Short-circuit output current \S		$V_{C C}=$ MAX		-30		-130	-30		-130	mA		
ICC	Supply current		$\mathrm{V}_{C C}=\mathrm{MAX}$			25	40		25	40	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {T }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPL.H	Any Slice or Carry	Any	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=667 \Omega,$ See Note 2			41	62	ns
tPHL						44	66	
${ }^{\text {tPZH }}$	Any Enable	Any	$C_{L}=5 \mathrm{pF},$ See Note 2	$R_{L}=667 \Omega$,		15	23	ns
tPZL						15	23	
tPHZ						10	15	ns
tpLZ						10	15	

$t_{\text {PHL }} \equiv$ Propagation delay time, high-to-low-level output
$t_{P Z H} \equiv$ Output enable time to high level
$\mathrm{t}_{\mathrm{PZL}} \equiv$ Output enable time to low level
$t_{\text {PHZ }} \equiv$ Output disable time from high level
$\mathrm{t}_{\mathrm{PLZ}} \equiv$ Output disable time from low level
NOTE 2: Load circuit and voltage waveforms are shown on page 3-11.

TYPES SN54S274, SN54S275, SN74S274, SN74S275
4-BIT-BY-4-BIT BINARY MULTIPLIER WITH 3-STATE OUTPUTS
7-BIT-SLICE WALLACE TREES WITH 3-STATE OUTPUTS
recommended operating conditions

	SN54S274 SN54S275			SN74S274 SN74S275			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\mathrm{C}} \mathrm{C}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-2			-6.5	mA
Low-level output current, IOL			12			12	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54S274 SN54S275		$\begin{aligned} & \text { SN74S274 } \\ & \text { SN74S275 } \end{aligned}$		UNIT
		MIN	TYP \ddagger MAX	Min	TYP \ddagger MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		2		V
$V_{\text {IL }}$ Low-level input voltage			0.8		0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.2		-1.2	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} . \\ \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4	3.4	2.4	3.2	v
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}_{\mathrm{OL}}=12 \mathrm{~mA} \end{array}$		0.5		0.5	v
${ }^{\prime} \mathrm{OZH}$ high-level voltage applied	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} & \end{array}$		50		50	$\mu \mathrm{A}$
${ }^{1} \mathrm{OZL}$ Off-state output current,	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} & \\ \hline \end{array}$		-50		-50	$\mu \mathrm{A}$
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		1		1	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$		25		25	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.5 \mathrm{~V}$		-0.25		-0.25	mA
IOS Short-circuit output current ${ }^{\text {§ }}$	$V_{C C}=$ MAX	-30	-100	-30	-100	mA
ICC Supply current	$V_{C C}=\mathrm{MAX}$		105155		$105 \quad 155$	mA

7
switching characteristics over recommended ranges of \mathbf{T}_{A} and $V_{C C}$ (unless otherwise noted)

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54S274 SN54S275			$\begin{aligned} & \text { SN74S274 } \\ & \text { SN74S275 } \end{aligned}$			UNIT
				MIN	TYP \ddagger	max	MIN	TYP \ddagger	MAX	
tPHL	Any A or B ('S274), or Any Slice or Carry ('S275)	Any	$\begin{aligned} & C_{L}=30 \mathrm{p} \bar{F}_{1} \\ & R_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 3 \end{aligned}$		50	95		50	70	ns
tPLH					50	95		50	70	
${ }_{\text {tPZH }}$	Any Enable	Any	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 3 \end{aligned}$		15	45		15	30	ns ns
tPZL					15	45		15	30	
${ }^{\text {tPHZ }}$					10	40		10	25	
tplz					10	40		10	25	

[^27]

FIGURE 3-MODERATESPEED BITSLICE WALLACE TREE

NOTES: A. Ground unused inputs.
B. These outputs from preceeding trees may go to any of the inputs of the 'LS275/'S275.
C. The circuit within the dotted lines may be either the basic bit-slice Wallace tree or the high-speed wallace tree. In the latter case both carry inputs of the 'LS275/'S275 must be grounded.

NOTES: A. Ground unused inputs.
B. The number of bits in parentheses is the maximum number of bits this tree can combine if the remaining 'LS275/'S275 (all having a higher number in the parentheses) were not connected.

FIGURE 5-7-TO-31-BIT-SLICE WALLACE TREE FOR UP TO 64-BIT \times 64-BIT MULTIPLIERS

TYPICAL APPLICATION DATA

TYPES SN54LS275, SN54S274, SN54S275, SN74LS275, SN74S274, SN74S275 4-BIT-BY-4-BIT BINARY MULTIPLIER WITH 3-STATE OUTPUTS 7-BIT-SLICE WALLACE TREES WITH 3-STATE OUTPUTS

TYPICAL APPLICATION DATA

7

TYPICAL APPLICATION DATA

*Each starred block may be either a basic bit-slice Wallace tree('LS275 or 'S275 only) or a high-speed bit-slice Wallace tree ('LS 275 olus $1 / 2$ 'LS183 or 'S275 plus $1 / 2$ ' H 183). In either case the function of the terminal is the same as the similarly located terminal of the basic bit-slice (Figure 1) or high-speed bit-slice Wallace tree (Figure 2). Also for either tree, when only five inputs of the seven-input adder of the 'LS275/'S275 are used, the remaining two inputs must be grounded. When the high-speed adder is used, the C2' inputs of the 'LS275/'S275 must be grounded.
${ }^{\dagger}$ For improved performance SN74LS181/SN74S181 ALUs with SN74S182 look-ahead generators can be substituted for the SN74283/SN74LS283/SN74S283 adders. Typically, the multiplication time will be reduced by 18 to 32 nanoseconds.

FIGURE 10-16-BIT $\times 16$-BIT MULTIPLIER
(SHEET 3 OF 3-SUMMING PARTIAL PRODUCTS)

features

- Four J-K Flip-Flops in a Single Package . . Can Reduce FF Package Count by 50%
- Separate Negative-Edge-Triggered Clocks with Hysteresis . . . Typically 200 mV
- Typical Clock Input Frequency . . . 50 MHz
- Fully Buffered Outputs
description
These quadruple TTL J- \bar{K} flip-flops incorporate a number of third-generation IC features that can simplify system design and reduce flip-flop package count by up to 50%. They feature hysteresis at each clock input, fully buffered outputs, and direct clear capability, and are presctable through a buffer that also features an input hysteresis loop. The negative-edge-triggering clocks are directly compatible with earlier Series $54 / 74$ single and dual pulse-triggered flip-flops. These circuits can be used to emulate D- or T-type flip-flops by hard-wiring the inputs, or to implement asychronous sequential functions.

The SN54276 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74726 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE (EACH FLIP-FLOP)

COMMON INPUTS		INPUTS			OUTPUT
PRESET	CLEAR	CLOCK	J	$\overline{\mathbf{K}}$	0
L	H	X	X	X	H
H	L	X	X	X	L
L	L	X	X	X	H^{\dagger}
H	H	\downarrow	L	H	Q_{0}
H	H	\downarrow	H	H	H
H	H	\downarrow	L	L	L
H	H	\downarrow	H	L	TOGGLE
H	H	H	\times	X	Q_{0}

${ }^{\dagger}$ This configuration is nonstable; that is, it may not persist when preset and clear return to their inactive (high) level.

See explanation of function tables on page 3-8.

SN54276 . . . J PACKAGE SN74276 . . J J OR N PACKAGE

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

QUADRUPLE J-K FLIP-FLOPS

		SN54276			SN74276			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-800			-800	$\mu \mathrm{A}$
Low-level outpu	IOL			16			16	mA
Clock frequency		0		35	0		35	MHz
Pulse width, $\mathrm{t}_{\text {w }}$	Clock high	13.5			13.5			ns
	Clock low	15			15			
	Preset or clear low	12			12			
Setup time, $\mathrm{t}_{\text {su }}$	$\mathrm{J}, \overline{\mathrm{K}}$ inputs	$3 \downarrow$			$3 \downarrow$			ns
	Clear and preset inactive state	10 \downarrow			$10 \downarrow$			
Input hold time, th		10 \downarrow			$10 \downarrow$			ns
Operating free-ai	ture, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

\downarrow The arrow indicates that the falling edge of the clock puise is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP茦	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
VIK	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$I_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.4		V
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{1 H}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
I_{1}	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\text {IH }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
I_{IL}	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6	mA
Ios	Short-circuit output current §	$V_{C C}=$ MAX		-30		-85	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=M A X$			60	81	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 2 \end{aligned}$	35	50		MHz
tPLH	Propagation delay time, low-to-high-level output from preset			15	25	ns
tPHL	Propagation delay time, high-to-low-level output from clear			18	30	ns
tPLH	Propagation delay time, low-to-high-level output from clock			17	30	ns
tPHL	Propagation delay time, high-to-low-level output from clock			20	30	ns

NOTE 2: Load circuit and voltage waveforms are shown on page 3-10.

SN54278 . . . J OR W PACKAGE

- Latched Data Inputs Serve as Buffer Register and Can also:

Synchronize Data Acquisition
"Debounce" Mechanical Switch Input

- Cascading Input P0 and Output P1

Provides "Busy"Signal Inhibiting All Lower-Order Bits

- Full TTL Compatibility
- Use for:

Priority Interrupt
Synchronous Priority Line Selection

description

The SN54278 and SN74278 each consist of four data latches, full priority output gating, and a cascading gate. The highest-order data applied at a D latch input is transferred to the appropriate Y output while the strobe input is high, and when the strobe goes low all data is latched. The cascading input PO is fully overriding and on the highest-order package this input must be held at a low logic level. The P1 output is intended for connection to the PO input of the next lower-order package and will provide a "busy" (high-level) signal to inhibit all subsequent lowerorder packages.

After the overriding PO input, the order of priority is D1, D2, D3, and D4, respectively, within the package.
functional block diagram

positive logic: see function table
NC-No internal connection

$H=$ high level, $L=$ low level, $X=$ irrelevant

TYPES SN54278, SN74278

4-BIT CASCADABLE PRIORITY REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the strobe input and any of the four data inputs.
recommended operating conditions

	SN54278			SN74278			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, l^{OH}			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Data setup time, $\mathrm{t}_{\text {su }}$ (see Figure 1)	20			20			ns
Data hold time, $\mathrm{th}^{\text {(}}$ (see Figure 1)	5			5			ns
Strobe pulse width, t_{w} (see Figure 1)	20			20			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP	MAX	UNIT	
$V_{\text {IH }}$	High-level input voltage			2			V	
$V_{\text {IL }}$	Low-level input voltage					0.8	V	
$\mathrm{V}_{1 \mathrm{~K}}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		V	
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4	V	
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA	
1 H	High-level input current	Any D input	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$	
		PO input				200		
		G input				320		
IIL	Low-level input current	Any D input	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-3.2	mA	
		PO input				-8		
		G input				-12.8		
Ios	Short-circuit output current §		$V_{C C}=$ MAX	-18		-55	mA	
			-18		-57			
${ }^{\text {cc }}$	Supply current			$\mathrm{V}_{\text {CC }}=$ MAX, See Note 3		55	80	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time.
NOTE 3: ${ }^{1} \mathrm{CC}$ is measured with the PO input grounded, all other inputs at 4.5 V , and outputs open.
switching characteristics, $\mathrm{VCC}_{\mathrm{C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	WAVEFORMS	TEST CONDITIONS	MIN TYP MAX	UNIT
tPLH	Data	Y	A and C (with strobe high)	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ See Figure 1	30	ns
tPHL					39	
tPLH	Data	Y	A and D		38	ns
tPHL			(with strobe high)		31	
tPLH	Data	P1	A and E (with strobe high)		46	ns
tPHL					39	
tPLH	Strobe	Any Y	$\begin{gathered} B \text { and } C \\ \text { or } B \text { and } D \end{gathered}$		30	ns
tpHL					31	
treth	Strobe	P1	B and E		38	ns
tPHL					42	
tPLH	PO	P1	F and G		23	ns
tPHL.					30	

$\|_{\mathrm{t}_{\mathrm{PLH}}} \equiv$ propagation delay time, low-to-high-level output $t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
schematics of inputs and outputs

Any D: $\mathrm{R}_{\text {eq }}=2.5 \mathrm{k} \Omega \mathrm{NOM}$

$$
\begin{aligned}
\text { PO: } R_{e q} & =1 \mathrm{k} \Omega \mathrm{NOM} \\
G: R_{e q} & =0.6 \mathrm{k} \Omega \mathrm{NOM}
\end{aligned}
$$

PARAMETER MEASUREMENT INFORMATION

C_{L} includes probe and jig capacitance.
All diodes are 1 N3064.
LOAD CIRCUIT

NOTE: Input pulses are supplied by a generator having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 7 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 7 \mathrm{~ns}$, PRR $\leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$. FIGURE 1-SWITCHING TIMES

BULLETIN NO. DL-S 7611829 , DECEMBER 1972-REVISED OCTOBER 1976

- Generates Either Odd or Even Parity for Nine Data Lines
- Cascadable for n-Bits
- Can Be Used to Upgrade Existing Systems using MSI Parity Circuits
- Typical Data-to-Output Delay of Only 14 ns for 'S280 and 33 ns for 'LS280
- Typical Power Dissipation:
'LS280 . . . 80 mW
'S280 . . . 335 mW

FUNCTION TABLE

NUMBER OF INPUTS A	OUTPUTS	
THRU I THAT ARE HIGH	Σ EVEN	Σ ODD
$0,2,4,6,8$	H	L
$1,3,5,7,9$	L	H

$H=$ high level, $L=$ low level

SN54LS280, SN54S280 . . . J OR W PACKAGE SN74LS280, SN74S280 . . . J OR N PACKAGE (TOP VIEW)

NC-No internal connection

description

These universal, monolithic, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry and feature odd/even outputs to facilitate operation of either odd or even parity application. The word-length capability is easily expanded by cascading as shown under typical application data.

Series 54LS/74LS and Series 54S/74S parity generators/checkers offer the designer a trade-off between reduced power consumption and high performance. These devices can be used to upgrade the performance of most systems utilizing the '180 parity generator/checker. Although the 'LS280 and 'S280 are implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4 and the absence of any internal connection at pin 3. This permits the 'LS280 and 'S280 to be substituted for the ' 180 in existing designs to produce an identical function even if 'LS280's and 'S280's are mixed with existing ' 180 's.

These devices are fulliy compatible with most other TTL and DTL circuits. All 'LS280 and 'S280 inputs are buffered to lower the drive requirements to one Series $54 \mathrm{LS} / 74 \mathrm{LS}$ or Series $54 \mathrm{~S} / 74 \mathrm{~S}$ standard load, respectively.
schematics of inputs and outputs
EQUIVALENT OF INPUTS

TYPES SN54LS280, SN74LS280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS280			SN74LS280			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH			-0.4			4	mA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN54LS280		SN74LS280			UNIT
		MIN	TYP \ddagger MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.7			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, & \mathrm{IOH}^{2}=-0.4 \mathrm{~mA} \end{array}$	2.5	3.4	2.7	3.4		v
VOL Low-level output voltage	$V_{C C}=$ MIN, $V_{I H}=2 \mathrm{~V}$,		0.250 .4		0.25	0.4	v
	$\mathrm{V}_{\text {IL }}=\mathrm{MAX}$				0.35	0.5	
$I_{1} \quad$ Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7 \mathrm{~V}$		0.1			0.1	mA
$I_{\text {IH }} \quad$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$		20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.4			-0.4	mA
IOS Short-circuit output current ${ }^{\text {8 }}$	$V_{C C}=M A X$	-20	-100	-20		-100	mA
${ }^{\text {I CC }}$ Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2	16	27		16	27	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second
NOTE 2: ICC is measured with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Data	Σ	$C_{L}=15 \rho F, R_{L}=2 \mathrm{k} \Omega,$ See Note 3		33	50	
${ }^{\text {tPHL }}$					29	45	ns
${ }^{\text {tPLH }}$	Data	Σ Odd			23	35	ns
tPHL					31	50	

[^28]
TYPES SN54S280, SN74S280

9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		54S28			74S2		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, $\mathrm{IOH}^{\mathrm{OH}}$			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{1 H}$ High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage					0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=M 1 N, & V_{1 H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	SN54S'	2.5	3.4		\checkmark
		SN74S'	2.7	3.4		
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} . & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$				0.5	\checkmark
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$I_{\text {IH }}$ High-level input current	$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
IOS Short-circuit output current §	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-40		-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, See Note 2	SN54S280		67	99	mA
		SN74S280		67	105	
	$V_{C C}=M A X, T_{A}=125^{\circ} \mathrm{C},$ See Note 2	SN54S280N			94	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second
NOTE 2: I CC is measured with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text { }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Data	Σ Even	$C_{L}=15 \mathrm{pF}, \quad R_{\mathrm{L}}=180 \mathrm{~s} 2$ See Note 4	14	21	ns
tPHL				11.5	18	,
${ }_{\text {tPLH }}$	Data	£ Odd		14	21	ns
tPHL				11.5	18	

${ }^{t_{P L H}} \equiv$ propagation delay time, low-to-high-level output; $t_{P H L} \equiv$ propagation delay time, high-to-low-level output
NOTE 4: Load circuit and voltage waveforms are shown on page 3-10.

- Full 4-Bit Binary Accumulator in a Single Package
- 15 Arithmetic/Logic-Type Operations: Add
Subtract ($\mathrm{B}-\mathrm{A}$ or $\mathrm{A}-\mathrm{B}$)
Complement
Increment
Transfer
Plus 10 Other Functions
- Full Shifting Capabilities: Logic Shift (Left or Right) Arithmetic Shift (Left or Right)
for Sign Bit Protection Hold
Parallel Load
- Expandable to Handle n-Bit Words with Full Carry Look-Ahead

- Logic Mode Operation Provides Seven Boolean Functions of the Two Variables

description

These Schottky-clamped four-bit accumulators integrate high-performance versions of an arithmetic logic unit/function generator and a shift/storage matrix on a single monolithic circuit bar. The arithmetic logic unit (ALU) portion, similar to the SN54S181/SN74S181 circuit, incorporates the capability to perform 16 arithmetic/logic-type operations as detailed in Table 1. The accumulator includes an exchange of subtract operands by which either A-B or B-A can be accomplished directly. The ALU is controlled by three function-select inputs (ASO, AS1, AS2) and a mode-control input (M). When the mode-control input is high, the ALU is placed in a logic mode that performs any of seven logic functions on two binary variables as detailed in Table 2. Full carry look-ahead is provided for fast, simultaneous carry generation for the full four binary bits. The carry input $\left(\mathrm{C}_{n}\right)$ and propagate and generate outputs ($\overline{\mathrm{P}}, \overline{\mathrm{G}}$) are implemented for direct use with the SN54S182/SN74S182 look-ahead carry generators. This permits systems to be implemented with the added advantage of full look-ahead across any word length to minimize the accumulator delay times. Once data is loaded into the accumulator, the typical add time with full look-ahead is 29 nanoseconds for 16 -bit words.

The shift/storage matrix is analogous in its capabilities to the SN54S194/SN74S194 universal bidirectional shift register with the added advantages of multiplexed input/output (I/O) cascading lines that comprehend arithmetic shift functions having a sign bit, such as 2 's complements. The matrix can be used to perform either logic or arithmetic shifts in either direction (left or right), parallel load, or hold. Control of the register is accomplished with three inputs: register control (RC) and register selection (RSO, RS1). The cascading input/output lines incorporate three-state outputs multiplexed with an input. The least-significant cascading bit is combined with the AO, FO circuitry to provide the shift-right input and the shift-left output (RI/LO), and the most significant bit is coupled with the A3, F3 circuitry to provide the shift-left input and the shift-right output (LI/RO).

Series 54 S circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 S circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TYPES SN54S281, SN74S281
 4-BIT PARALLEL BINARY ACCUMULATORS

FUNCTION TABLES

TABLE 1-ARITHMETIC FUNCTIONS Mode Control (M) = Low			TABLE 2-LOGIC FUNCTIONS Mode Control (M) = High Carry Input $\left(\mathbf{C}_{\mathbf{n}}\right)=X \quad$ (Irrelevant)	
ALU SELECTION	ACTIVE-HIGH DATA			
	$\mathrm{C}_{\mathrm{n}}=\mathrm{H}$	$\mathrm{c}_{\mathrm{n}}=\mathrm{L}$	ALU	ACTIVE-HIGH
AS2 AS1 AS0	(with carry)	(no carry)	SELECTION	
L L	$\mathrm{F}_{0}=\mathrm{L}, \mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{3}=\mathrm{H}$	$\mathrm{F}_{\mathrm{n}}=\mathrm{H}$	AS2 AS1 AS0	
L L H	$F=B$ MINUS A	$F=B$ MINUS A MINUS 1	L	$\mathrm{F}_{\mathrm{n}}=\mathrm{L}$
H L	$F=A$ Minus B	$F=A$ MINUS B MINUS 1	L X	$\mathrm{F}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}} \oplus \mathrm{B}_{\mathrm{n}}$
H H	$F=A$ PLUS B PLUS 1	$F=A$ PLUS B	L H	$\mathrm{F}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}} \oplus \mathrm{B}_{\mathrm{n}}$
H L	$F=B$ PLUS 1	$\mathrm{F}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}}$	H L	$\mathrm{F}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}}$
H L H	$F=\overline{\text { B PLUS }} 1$	$\bar{F}_{\mathrm{n}}=\bar{B}_{\mathrm{n}}$	H L H	$F_{n}=A_{n}+B_{n}$
H H L	$F=A$ PLUS 1	$\mathrm{F}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}}$	H H	$\mathrm{F}_{\mathrm{n}}=\overline{A_{n} \mathrm{~B}_{\mathrm{n}}}$
$\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$	$F=\bar{A} P L U S 1$	$F_{n}=\bar{A}_{n}$	H H	$F_{n}=A_{n}+B_{n}$

TABLE 3 - SHIFT-MODE FUNCTIONS

FUNCTION	INPUTS BEFORE \uparrow					CLOCK INPUT	OUTPUTS AFTER \uparrow					
	REGISTER SELECTION RSO RS 1	REGISTER CONTROL INPUT	INPUT/ OUTPUT RI/LO	SHIFT-MATRIX inputs F0 F1 F2 F3	INPUT/ OUTPUT LI/RO		INPUT/ output R1/LO	SHIFT-MATRIX OUTPUTS (ALU B INPUTS)				INPUT/ OUTPUT LI/RO
LOAD	L L	X	Z		z	\uparrow	z	f0	$f 1$	f2	f3	z
LSL	L H	L	${ }^{\text {a }}$	$\mathrm{a}_{\mathrm{A}} \mathrm{O}_{\mathrm{B}} \mathrm{o}_{\mathrm{C}} \mathrm{O}_{\mathrm{D}}$	li	\uparrow	a_{Bn}	$\mathrm{a}_{\text {Bn }}$	${ }^{0} \mathrm{C}_{n}$	${ }^{\text {D }}$ n	1 i	Ii
LSA	L H	H	$\mathrm{O}_{\text {A }}$		$1 i$	\dagger	O_{Bn}	O_{Bn}	O_{Cn}	ii	O_{DO}	li
RSL	H L	L	ri	$\begin{array}{llllll}\mathrm{a}_{A} & \mathrm{O}_{\mathrm{B}} & \mathrm{o}_{C} & \mathrm{o}_{\mathrm{D}}\end{array}$	${ }^{0}{ }_{D}$	\uparrow	ri	ri	${ }^{0_{A n}}$	a_{Bn}	${ }^{a_{C n}}$	${ }^{0} \mathrm{Cn}$
RSA	H	H	ri		o_{C}	\uparrow	ri	ri	$0_{\text {An }}$	Q_{Bn}	$\mathrm{o}_{\text {D } 0}$	o_{Bn}
	H H	X	X	$\begin{array}{llllll}\mathrm{O}_{\mathrm{A}} & \mathrm{O}_{\mathrm{B}} & \mathrm{O}_{C} & \mathrm{O}_{\mathrm{D}}\end{array}$	X	\uparrow	z	$\mathrm{a}_{\text {AO }}$	Q_{B0}	${ }^{\text {a }} 0$		z
		X	x		x	L	R1/LO	$\mathrm{a}_{\text {AO }}$			$\mathrm{O}_{\mathrm{D} 0}$	LI/RO

$H=$ high level (steady state)
L = low level (steady state)
$\mathrm{X}=$ irrelevant (any input, including transitions)
$\mathbf{Z}=$ high impedance (output off)
$\uparrow=$ transition from low to high level
$\mathrm{fO}, \mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3, \mathrm{ri}, \mathrm{If}=$ the level of steady-state conditions at FO, F1, F2, F3, R1/LO, or LI/RO respectively
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established $Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the most recent transition of the clock See explanation of function tables on page $3-8$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. An SN54S281 in the W package operating at free-air temperatures above $110^{\circ} \mathrm{C}$ requires a heat sink that provides thermal resistance from case to free-air, $\mathrm{R}_{\theta \mathrm{CA}}$, of not more than $20^{\circ} \mathrm{C} / \mathrm{W}$.

TYPES SN54S281, SN74S281

4-BIT PARALLEL BINARY ACCUMULATORS
recommended operating conditions

NOTE 2: An SN54S281 in the W package operating at free-air temperatures above $110^{\circ} \mathrm{C}$ requires a heat sink that provides thermal resistance from case to free-air, $\mathrm{R}_{\theta \mathrm{CA}}$, of not more than $20^{\circ} \mathrm{C} / \mathrm{W}$.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54S281			SN74S281			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2			2			V
$V_{1 L}$	Low-level input voltage						0.8			0.8	V		
$V_{\text {IK }}$	Input clamp voltage	Any input except LI/RO and RI/LO	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$I_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V		
V_{OH}	High-level output voltage	Any output except LI/RO and RI/LO	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=0.8 V, & I_{O H}=\text { MAX } \end{array}$		2.5	3.4		2.7	3.4		V		
		LI/RO, RI/LO			2.4	3.4		2.4	3.4				
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$			0.5			0.5	V		
11	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
$\mathrm{I}_{1} \mathrm{H}$	High-level input current	RSO, RS1	$V_{C C}=M A X, \quad V_{1}=2.7 \mathrm{~V}$ See Note 3				50			50	$\mu \mathrm{A}$		
		M, Clock					150			150			
		LI/RO, RI/LO					200			200			
		AS2					300			300			
		All others					250			250			
IIL	Low-level input current	RSO, RS1, LI/RO	$V_{C C}=\text { MAX, } \quad V_{1}=0.5 V$ See Note 3				-2			-2	mA		
		RI/LO					-3			-3			
		M, Clock					-4			-4			
		AS0, AS 1					-6			-6			
		All others					-8			-8			
Ios	Short-circuit output current ${ }^{\text {§ }}$		$V_{C C}=$ MAX		-40		-110	-40		-110	mA		
${ }^{\prime} \mathrm{Cc}$	Supply current		$\begin{aligned} & V_{C C}=M A X \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	W package only			190				mA		
			$V_{C C}=M A X$	All packages		144	230		144	230			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }_{8}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
NOTE 3. When testing input current at the RI/LO or LI/RO terminals, the output under test must be in the high-impedance (off) state.

TYPES SN54S281, SN74S281 4-BIT PARALLEL BINARY ACCUMULATORS
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	c_{n}	c_{n+4}	$C_{L}=15 \mathrm{pF}$, 1/O outputs: $\mathrm{R}_{\mathrm{L}}=560 \Omega$, Ōther outputs: $\mathrm{R}_{\mathrm{L}}=280 \mathrm{S2}$, See Figure 1	10	20	ns
tPHL				10	20	
tPLH	Any A	c_{n+4}		18	30	ns
tPHL				18	30	
tPLH	C_{n}	Any F		10	20	ns
tPHL				10	20	
tPLH	Any A	$\overline{\mathrm{G}}$		14	24	ns
tPHL				14	24	
tPLH	Any A	\bar{p}		12	20	ns
tPHL				12	20	
tPLH	A_{i}	F_{i}		20	35	ns
tPHL				20	35	
tPLH	A_{0}	RI/LO		30	45	ns
tPHL				30	45	
${ }^{\text {tPLH }}$	A_{3}	LI/RO		30	45	ns
${ }_{\text {tPHL }}$				30	45	
tPLH	F_{0}	RI/LO		7	11	ns
tPHL				7	11	
tPLH	F_{3}	LI/RO		7	11	ns
tPHL				7	11	
tPLH	Any AS	$\begin{gathered} \text { Any F or } \\ C_{n+4} \end{gathered}$		28	45	ns
tPHL				28	45	
tPLH	Any AS	$\overline{\mathrm{P}}$ or $\overline{\mathrm{G}}$		20	33	ns
tPHL				20	33	
tPLH	Ciock	Any F		30	45	ns
tPHL				30	45	
tPLH	Clock	RI/LO or LI/RO		35	55	ns
tPHL				35	55	

${ }_{\text {tpHL }} \equiv$ Propagation delay time, high-to-low-level output
PARAMETER MEASUREMENT INFORMATION

Voltage waveforms

NOTES: A. Input pulse is supplied by a generator having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$. B. C_{L} inlcudes probe and jig capacitance.
C. All diodes are 1 N 916 or 1 N 3064 .

TYPES SN54S281, SN74S281

4-BIT PARALLEL BINARY ACCUMULATORS

TYPICAL APPLICATION DATA				
	RI/LO LI/RO C_{n} c_{n+4} 'S281	RI/LO LI/RO C_{n} C_{n+4} S281	$\left\{\begin{array}{lr}\text { RI/LO } & \text { LI/RO } \\ C_{n} & c_{n+4} \\ & { }^{2} \text { S281 }\end{array}\right.$	LEFT DATA IN CARRY OUTPUT

ENTER AND STORE TIME:	38 ns typical
EACH SUCCESSIVE ADDITION TO STORED DATA:	44 ns typical

FIGURE A-16-BIT BINARY ACCUMULATOR USING FOUR SN54S281/SN74S281 CIRCUITS IN RIPPLE-CARRY MODE

ENTER AND STORE TIME: 37 ns typical EACH SUCCESSIVE ADDITION TO STORED DATA: 29 ns typical

FIGURE B-16-BIT BINARY ACCUMULATOR USING FOUR SN54S281/SN74S281 CIRCUITS AND ONE SN54S182/SN74S182 IN FULL LOOK-AHEAD CARRY MODE

7

ENTER AND STORE TIME:
42 ns typical
EACH SUCCESSIVE ADDITION TO STORED DATA: 34 ns typica!

FIGURE C-64-BIT BINARY ACCUMULATOR USING 16 SN54S281/SN74S281 CIRCUITS AND FIVE SN54S182/SN74S182 CIRCUITS FOR FULL CARRY LOOK-AHEAD

[^29]- Full-Carry Look-Ahead Across the Four Bits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple Carry
- Supply Voltage and Ground on Corner Pins to Simplify P-C Board Layout

TYPICAL ADD TIMES

	TWO	TWO	TYPICAL POWER
	8-BIT	16-BIT	DISSIPATION
TYPE	WORDS	WORDS	PER ADDER
'283	23 ns	43 ns	310 mW
'LS283	25 ns	45 ns	95 mW
'S283	15ns	30 ns	510 mW

description

The '283 and 'LS283 adders are electrically and functionally identical to the '83A and 'LS283, respectively; only the arrangement of the terminals has been changed. The 'S283 high performance versions are also functionally identical.

These improved fuil adders perform the addition of two 4-bit binary words. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look-ahead across all four bits generating the carry term in ten nanoseconds, typically, for the '283 and 'LS283, and 7.5 nanoseconds for the 'S283. This capability provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form. End around carry can be accomplished without the need for logic or level inversion.

Series 54, Series 54LS, and Series 54 S circuits are characterized for operation over the full temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Series 74 , Series 74 LS , and Series 74 S circuits are characterized for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operation.

SN54283, SN54LS283 . . . J OR W PACKAGE
SN54S283 . . . J PACKAGE
SN74283, SN74LS283, SN74S283 . . . J OR N PACKAGE
(TOP VIEW)

TYPES SN54283, SN54LS283, SN54S283,
SN74283, SN74LS283, SN74S283
4-BIT BINARY FULL ADDERS WITH FAST CARRY
functional block diagram and schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage,., are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the ' 283 and ' $\mathbf{S} 283$ only between the following pairs: $A 1$ and $B 1, A 2$ and $B 2, A 3$ and $B 3, A 4$ and $B 4$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\text {¢ }}$		SN54283			SN74283			UNIT		
			MIN	TYP ${ }_{\text {¢ }}$	MAX	MIN	TYP \ddagger	MAX					
$V_{i H}$	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{i}_{\mathrm{OH}}=\mathrm{VIAX} \end{aligned}$	2.4	3.6		2.4	3.6		V		
VOL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$		0.2	0.4		0.2	0.4	V		
$1 /$	Input current at maximum input vol tage		$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
IIL	Low-level input current		$V_{C C}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA		
Ios	Short-circuit output current \S	Any output except C4	$V_{C C}=$ MAX		-20		-55	-18		-55	mA		
		Output C4			-20		-70	-18		-70			
1 CC	Supply current		$V_{C C}=$ MAX, Outputs open	All B low, other inputs at 4.5 V	56			56			mA		
			All inputs at $4.5 \mathrm{~V}$		66	99		66	110				

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }_{\ddagger}^{\text {F }}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Only one output should be shorted at a time
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	CO	Any Σ	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega,$ See Note 3		14	21	ns
tPHL					12	21	
tPLH	A_{i} or B_{i}	Σ_{i}			16	24	ns
${ }^{\text {tPHL }}$					16	24	
tPLH	C0	C4	$C_{L}=15 \mathrm{pF}, \quad R_{\mathrm{L}}=780 \Omega,$ See Note 3		9	14	ns
tPHL					11	16	
${ }^{\text {tPLH }}$	A_{i} or B_{i}	C4			9	14	ns
tPHL					11	16	

${ }^{\text {tPLH }} \equiv$ Propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ Propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS283, SN74LS283
4-BIT BINARY FULL ADDERS WITH FAST CARRY

recommended operating conditions

	SN54LS283			SN74LS283			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I^{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

$\|_{\text {tpLH } \equiv \text { Propagation delay time, low-to-high-level output }}$
${ }^{\text {tPHL }} \equiv$ Propagation delay time, high-to-low-level outpu
NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.
recommended operating conditions

		SN54S283			SN74S283			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {C }}$ C		4.5	5	5.5	4.75	5	5.25	V
High-level output current, loh	Any output except C4			-1			-1	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
	Output C4			-500			-500	
Low-level output current, IOL	Any output except C4			20			20	mA
	Output C4			10			0	
Operating free-air temperature, $\mathrm{T}_{\text {A }}$		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			V
$v_{i L}$	Lewe-lovel input voltage							0.8	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	v
VOH	High-level output voltage		SN54S283	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	2.5	3.4		v
			SN74S283	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$,	$1 \mathrm{OH}^{\text {a }}$ MAX	2.7	3.4		
V_{OL}	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$			0.5	V
1	Input current at maximum input voltage			$V_{C C}=$ MAX,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
IIH	High-level input current			$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
IIL	Low-level input current			$\mathrm{V}_{\text {CC }}=$ MAX,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-2	mA
!os	Short-circuit output current§	Any	except C4	$V_{C C}=$ MAX		-40		-100	
		Outp				-20		-100	ma
Icc	Supply current			$V_{C C}=\operatorname{MAX},$ Outputs open	All B low, other inputs at 4.5 V		80		mA
				All inputs at $4.5 \mathrm{~V}$		95	160		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
fAll typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	co	Any $\mathrm{\Sigma}$	$C_{L}=15 \mathrm{pF}, R_{\mathrm{L}}=280 \Omega,$ See Note 3	11	18	
¢PHL				12	18	ns
tPLH	A_{i} or B_{i}	Σ_{i}		12	18	ns
tPHL				11.5	18	
tPLH	CO	C4	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=560 \Omega,$ See Note 3	6	11	ns
tPHL				7.5	11	
tPLH	A_{i} or B_{i}	C4		7.5	12	ns
tPHL				8.5	12	

$\int_{\text {tpLH }}=$ Propagation delay time, low-to-high-level output
tpHL = Propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

- Fast Multiplication of Two Binary Numbers 8-Bit Product in 40 ns Typical
- Expandable for N -Bit-by-n-Bit Applications: 16-Bit Product in 70 ns Typical 32-Bit Product in 103 ns Typical
- Fully Compatible with Most DTL and TTL Circuits
- Diode-Clamped Inputs Simplify System Design
description
These high-speed TTL circuits are designed to be used in high-performance parallel multiplication applications. When connected as shown in Figure A, these circuits perform the positive-logic multiplication of two 4-bit binary words. The eight-bit binary product is generated with typically only 40 nanoseconds delay.

This basic four-by-four muttiplier can be utilized as a fundamental building block for implementing larger multipliers. For example, the four-by-four building blocks can be connected as shown in Figure B to generate submultiple partial products. These results can then be summed in a Wallace tree, and, as illustrated, will produce a 16 -bit product for the two eight-bit words typically in 70 nanoseconds. SN54H183/SN74H183 carry-save adders and SN54S181/SN74S181 arithmetic logic units with the SN54S182/SN74S182 look-ahead generator are used to achieve this high performance. The scheme is expandable for implementing $N \times M$ bit multipliers.
schematics of inputs and outputs

SN54284 . . J OR W PACKAGE SN74284 ... J OR N PACKAGE

The SN54284 and SN54285 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74284 and SN74285 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TYPES SN54284, SN54285, SN74284, SN74285 4-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

TYPES SN54284, SN54285, SN74284, SN74285
 4-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54284 SN54285			SN74284SN74285			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}			5.5			5.5	V
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST	CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$ High-level input voltage			2			V
$\mathrm{V}_{1 \mathrm{~L}}$ L Low-level input voltage					0.8	V
$\mathrm{V}_{1} \quad$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$I_{1}=-12 \mathrm{~mA}$			-1.5	V
${ }^{1} \mathrm{OH}$ High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$			40	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{\text {IL }}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {OL }}=12 \mathrm{~mA}$			0.4	V
		${ }^{\prime} \mathrm{OL}=16 \mathrm{~mA}$			0.45	
II Input current at maximum input voltage	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$I_{\text {IL }}$ Low-level input current	$V_{C C}=M A X, V_{1}=0.4 \mathrm{~V}$				-1	mA
Supply current	$\begin{aligned} & V_{C C}=M A X \\ & T_{A}=125^{\circ} \mathrm{C}, \\ & \text { See Note } 2 \end{aligned}$	SN54284, SN54285 N package only			99	mA
	$V_{C C}=M A X,$ See Note 2	SN54284, SN54285		92	110	
		SN74284, SN74285		92	130	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device
type.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: With outputs open and both enable inputs grounded, lcc is measured first by selecting an output product which contains three or more high-level bits, then by selecting an output product which contains four low-level bits.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from enable	$C_{L}=30 \mathrm{pF}$ to GND, $R_{\mathrm{L} 1}=300 \Omega$ to V_{CC}, $R_{L 2}=600 \Omega$ to GND, See Note 3		20	30	ns
tPHL. Propagation delay time, high-to-low-level output from enable			20	30	
tPLH Propagation delay time, low-to-high-level output from word inputs			40	60	ns
tPHL Propagation delay time, high-to-low-level output from word inputs			40	60	

[^30]'290, 'LS290 . . . DECADE COUNTERS '293, 'LS293 . . . 4-BIT BINARY COUNTERS

- GND and VCC on Corner Pins (Pins 7 and 14 Respectively)

description

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.

All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in $B C D$ nine's complement applications.

To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the Q_{A} output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-byten count can be obtained from the ' 290 and 'LS290 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output C_{A}.

SN54290, SN54LS290 . . . J OR W PACKAGE
SN74290, SN74LS290 . . . J OR N PACKAGE (TOP VIEW)

SN54293, SN54LS293 . . . J OR W PACKAGE SN74293, SN74LS293 . . . J OR N PACKAGE (TOP VIEW)

$\mathrm{NC}-\mathrm{No}$ internal connection

TYPES SN54290, SN54293, SN54LS290, SN54LS293,
SN74290, SN74293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS

functional block diagrams

'293, 'LS293

TYPES SN54290, SN54293, SN74290, SN74293 DECADE AND 4-BIT BINARY COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the two R_{0} inputs, and for the ' 290 circuit, it also applies between the two R_{g} inputs.
recommended operating conditions
 DECADE AND 4-BIT BINARY COUNTERS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}{ }^{\text {For }}$ conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\S_{\text {Not }}$ more than one output should be shorted at a time
TOA Outputs are tested at $I_{O L}=16 \mathrm{~mA}$ plus the limit value of I_{L} for the B input. This permits driving the B input while maintaining full fan-out capability.
NOTE 3: ${ }^{\prime} \mathrm{CC}$ is measured with all outputs open, both R_{O} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.
switching characteristics, $\mathrm{VCC}_{\mathrm{C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\circ}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'290			'293			UNIT
				MIN	TYP	max	MIN	TYP	max	
${ }^{\text {f max }}$	A	$\mathrm{a}_{\text {A }}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \text { See Note } 4 \end{aligned}$	32	42		32	42		MHz
	B	O_{B}		16			16			
tpli.	A	a_{A}			10	16		10	16	ns
tPHL					12	18		12	18	
tPLH	A	$Q^{\text {D }}$			32	48		46	70	ns
tPHL					34	50		46	70	
tPLH	B	O_{B}			10	16		10	16	ns
tPHL					14	21		14	21	
tPLH	B	${ }^{\circ} \mathrm{C}$			21	32		21	32	ns
tPHL					23	35		23	35	
tPLH	B	$0_{\text {D }}$			21	32		34	51	ns
tPHL					23	35		34	51	
tPHL	Set-to-0	Any			26	40		26	40	ns
tPLH	Set-to-9	$\mathrm{O}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{D}}$			20	30				ns
tPHL		$\mathrm{O}_{\mathrm{B}}, \mathrm{O}_{C}$			26	24				ns

${ }^{\delta_{f_{\text {max }}} \equiv \text { maximum count frequency }}$
tpLH \equiv propagation delay time, low-to-high-level outpu
${ }^{\text {t PHL }} \equiv$ propagation delay time, high-to-low-level outpu
NOTE 4: Load circuit and voltage waveforms are the same as those shown for the '90A and '93A, page 3-10.
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 5: Voltage values are with respect to network ground terminal.
recommended operating.conditions

		SN54LS'			SN74LS ${ }^{\text {r }}$			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{1} \mathrm{OH}$				-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}				4			8	mA
Count frequency, $\mathrm{f}_{\text {count }}$	A input	0		32	0		32	MHz
	B input	0		16	0		16	
Pulse width, t_{w}	A input	15			15			ns
	B input	30			30			
	Reset inputs	15			15			
Reset inactive-state setup time, $\mathrm{t}_{\text {su }}$		25			25			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

TYPES SN54LS290, SN54LS293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS
REVISED OCTOBER 1976
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS'			SN74LS'			UNIT			
			MIN	TYP ${ }^{\text {+ }}$	MAX	MIN	TYP \ddagger	MAX							
$\mathrm{V}_{1} \mathrm{H}$	High-level input voltage								2			2			V
$V_{\text {IL }}$	Low-level input voltage		$V_{C C}=\operatorname{MIN}, \quad I_{I}=-18 \mathrm{~mA}$					0.7			0.8	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage							-1.5			-1.5	V			
V_{OH}	High-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=-400 \mu \mathrm{~A} \end{array}$			2.5	3.4		2.7	3.4		V			
VOL Low-level output voltage			$\begin{array}{ll} V_{C C}=M_{I N}, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \max & \\ \hline \end{array}$		IOL $=4 \mathrm{mAd}$		0.25	0.4		0.25	0.4	V			
			$1 \mathrm{OL}=8 \mathrm{~mA}$!					0.35	0.5						
11	Input current at maximum input voltage	Any reset			$V_{C C}=$ MAX, $\quad V_{1}=7 \mathrm{~V}$					0.1			0.1	mA	
		A input	$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				0.2			0.2				
		B of 'LS290						0.4			0.4				
		B of 'LS293						0.2			0.2				
$\mathrm{IIH}^{\text {H }}$	High-level input current	Any reset	$V_{C C}=M A X$,	$V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
		A input						40			40				
		B of 'LS290						80			80				
		B of 'LS293						40			40				
1 IL	Low-level output current	Any reset	$V_{C C}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
		A input						-2.4			-2.4				
		B of 'LS290						-3.2			-3.2				
		B of 'LS293						-1.6			-1.6				
los	Short-circuit output current ${ }^{\S}$		$V_{C C}=M A X$			-20		-100	-20		-100	mA			
ICC Supply current			$V_{C C}=$ MAX, \quad See Note 3		'LS290		9	15		9	15	mA			
			'LS293		9	15		9	15						

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\Delta}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
$1 Q_{A}$ outputs are tested at specified $I_{O L}$ plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.
NOTE 3: ICC is measured with all outputs open, both \mathbf{R}_{0} inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {® }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS290			'LS293			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	A	Q_{A}	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 6	32	42		32	42		MHz
	B	O_{B}		16			16			
${ }^{\text {tPLH }}$	A	O_{A}			10	16		10	16	ns
tPHL					12	18		12	18	
tPLH	A	Q_{D}			32	48		46	70	ns
tPHL					34	50		46	70	
tPLH	B	0_{B}			10	16		10	16	ns
tPHL					14	21		14	21	
tPLH	B	${ }^{0} \mathrm{C}$			21	32		21	32	ns
tPHL					23	35		23	35	
tPLH	B	Q_{D}			21	32		34	51	ns
tPHL					23	35		34	51	
tPHL	Set-to-0	Any			26	40		26	40	ns
tPLH	Set-to-9	Q_{A}, Q_{D}			20	30				ns
tPHL		$\mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}$			26	40				

$\diamond_{f_{\text {max }}} \equiv$ maximum count frequency
${ }^{\text {t P L H }} \equiv$ propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
NOTE 6: Load circuit and voltage waveforms are the same as those shown for the 'LS90 and 'LS93, pages 7-80.

- 'LS295B Offers Three Times the Sink-Current Capability of 'LS295A
- Schottky-Diode-Clamped Transistors
- Low Power Dissipation . . . 80 mW Typical (Enabled)
- Applications:

N-Bit Serial-To-Parallel Converter N -Bit Parallel-To-Serial Converter N -Bit Storage Register

description

These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, mode, and output contro! inputs. The registers have three modes of operation:
Parallel (broadside) load
Shift right (the direction Q_{A} toward Q_{D})
SN54LS295B . . . J OR W PACKAGE SN74LS295B . . . J OR N PACKAGE

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.
Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (Q_{D} to input C, etc.) and serial data is entered at input D .

When the output control is high, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the registers is not affected.

The SN54LS295B is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74LS295B is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

INPUTS							OUTPUTS			
MODE CONTROL	CLOCK	SERIAL		PARA	LLEL					
			A	B	C	D	A	O_{B}	${ }_{C}$	D
H	H	X	X	X	X	X	$\mathrm{Q}_{\text {A0 }}$	O_{BO}	O_{CO}	Q_{DO}
H	\downarrow	x	a	b	c	d	a	b	c	d
H	\downarrow	x	$\mathrm{O}_{\mathrm{B}}{ }^{\text {t }}$	$\mathrm{O}_{\mathrm{C}}{ }^{\dagger}$	$Q_{\text {d }}{ }^{+}$	d	O_{Bn}	O_{Cn}	$Q_{\text {Dn }}$	d
L	H	X	X	X	X	X	O_{AO}	O_{BO}	$Q_{\text {Co }}$	$Q_{\text {DO }}$
L	\downarrow	H		X	X	x	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}
L	\downarrow	L	x	X	X	X	L	$Q_{\text {An }}$	Q_{Bn}	Q_{Cn}
When the output control is low, the outputs are disabled to the high-impedance state; however, sequential operation of the registers is not affected.										

Shifting left requires external connection of Q_{B} to A, Q_{C} to B, and Q_{D} to C. Serial data is entered at input D.
$H=$ high level (steady state), $L=$ low level (steady state), $X=$ irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level.
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}=$ the level of steady-state input at inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D , respectively.
$\alpha_{A O}, \alpha_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established. $\mathrm{O}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{Bn}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{Dn}}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, or Q_{D}, respectively, before the most-recent \downarrow transition of the clock.

See explanation of function tables on page 3-8.

TYPES SN54LS295B, SN74LS295B
 4-BIT RIGHT-SHIFT LEFT-SHIFT REGISTERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS295B			SN74LS295B			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{1} \mathrm{OH}$			-1			-2.6	mA
Low-level output current, IOL			12			24	mA
Clock frequency, $f_{\text {clock }}$	0		20	0		20	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)	25			25			ns
Setup time, high-level or low-level data, $\mathrm{t}_{\text {su }}$	20			20			ns
Hold time, high-level or low-level data, t_{h}	20			20			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS295B			SN74LS295B			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\text {+ }}$	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \bar{V}, \\ V_{I L}=V_{I L} \max , & I_{O H}=M A X \end{array}$		2.4	3.4		2.4	3.1		V
VOL Low-level output voltage	$V_{C C}=M I N$, $V_{I H}=2 \mathrm{~V}$, $V_{\text {IL }}=V_{I L} \max$ $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ $=24 \mathrm{~mA}$			0.25	0.4		0.25	0.4	V
							0.35	0.5	
Off-state output current, ${ }^{\mathrm{I}} \mathrm{OZH}$ high-level voltage applied	$\begin{array}{ll} V_{C C}=M A X & V_{I L}=V_{I L} \max \\ V_{O}=2.7 V & \\ \end{array}$				20			20	$\mu \mathrm{A}$
$\begin{aligned} & \text { Off-state output current. } \\ & \text { IOZL } \text { low-level voltage applied } \end{aligned}$	$\begin{array}{ll} V_{C C}=M A X & V_{I H}=2 V \\ V_{\mathrm{O}}=0.4 \mathrm{~V} \end{array}$				-20			-20	$\mu \mathrm{A}$
II $\begin{aligned} & \text { Input current at } \\ & \text { maximum input voltage }\end{aligned}$	$V_{C C}=M A X, \quad V_{1}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\mathrm{IH}} \quad$ High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
$\mathrm{I}_{\text {OS }}$ Short-circuit output current ${ }^{8}$	$V_{C C}=$ MAX		-30		-130	-30		-130	mA
${ }^{\text {I CC }}$ Supply current	$V_{C C}=$ MAX, \quad See Note 2	Condition A		16	27		16	27	mA
		Condition B		17	29		17	29	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: I CC is measured with the outputs open, the serial input and mode control at 4.5 V , and the data inputs grounded under the following conditions:
A. Output control at 4.5 V and a momentary 3 V , then ground, applied to clock input.
B. Output control and clock input grounded.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}, \mathrm{R}_{\mathrm{L}}=667 \Omega$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {f max }}$ Maximum clock frequency	$C_{L}=45 \mathrm{pF},$ See Note 3	25	35		MHz
tpLH Propagation delay time, low-to-high-level output			20	30	ns
tPHL Propagation delay time, high-to-low-level output			23	35	ns
${ }^{\text {t }}$ PZH Output enable time to high level			17	26	ns
${ }^{\text {t P Z }}$ (Output enable time to low level			28	42	ns
tPHZ Output disable time from high level	$C_{L}=5 \mathrm{pF},$ See Note 3		13	20	ns
tpLZ Output disable time from low level			17	26	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-11.
functional block diagram

schematics of inputs and outputs

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Applications:

Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data
Implement Separate Registers Capable of Parallel Exchange of Contents Yet Retain External Load Capability
Universal Type Register for Implementing Various Shift Patterns; Even Has Compound Left-Right Capabilities
description
These monolithic quadruple two-input multiplexers with storage provide essentially the equivalent functional capabilities of two separate MSI functions (SN54157/SN74157 or SN54LS157/SN74LS157 and SN54175/SN74175 or SN54LS175/SN74LS175) in a single 16 -pin package.

When the word-select input is low, word 1 (A1, B1, C1, D1) is applies to the flip-flops. A high input to word select will cause the selection of word 2 (A2, $\mathrm{B} 2, \mathrm{C} 2, \mathrm{D} 2$). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

Typical power dissipation is 195 milliwatts for the '298 and 65 milliwatts for the 'LS298. SN54298 and SN54LS298 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; SN74298 and SN74LS298 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS		OUTPUTS			
WORD SELECT	CLOCK	Q_{A}	Q_{B}	Q_{C}	Q_{D}
L	\downarrow	$a 1$	$b 1$	$c 1$	$d 1$
H	\downarrow	a2	$b 2$	$c 2$	$d 2$
X	H	$Q_{A 0}$	$Q_{B 0}$	$Q_{C 0}$	$Q_{D 0}$

$H=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$\downarrow=$ transition from high to low level
a1, a2, etc. $=$ the level of steady-state input at $A 1, A 2$, etc.
$Q_{A O}, Q_{B O}$, etc. $=$ the level of Q_{A}, Q_{B}, etc. entered on the most-recent \downarrow transition of the clock input.

functional block diagram

schematics of inputs and outputs

TYPES SN54298, SN74298

QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54298			SN74298			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL				16			16	mA
Width of clock pulse, high or low level, t_{w}		20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	Data	15			15			ns
	Word select	25			25			
Hold time, th_{h}	Data	5			5			ns
	Word select	0			0			
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{\text {IH }}$ High-level input voltage		2		V
$\mathrm{V}_{1 \mathrm{~L}}$ Low-level input voltage			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{OH}_{\mathrm{H}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.2	v
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.4	\checkmark
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
IIH High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	mA
Short-circuit output current§	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-20	-57	mA
		-18	-57	
ICC Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, See Note 2		$39 \quad 65$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time.
NOTE 2: With all outputs open and all inputs except clock low, ICC is measured after applying a momentary 4.5 V , followed by ground, to the clock input.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega \text {. }$ See Note 3		18	27	ns
tPHL Propagation delay time, high-to-low-level output			21	32	

NOTE 3: Load circuit and waveforms are shown on page 3-10

TYPES SN54LS298. SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS298			SN74LS298			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-tevel output current, I_{OH}				-400			-400	$\mu \mathrm{A}$
Low-level output current, I_{OL}				4			8	mA
Width of clock pulse, high or low level, t_{w}		20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	Data	15			15			ns
	Word select	25			25			
Hold time, th	Data	5			5			ns
	Word select	0			0			
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS298			SN74LS298			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
V_{IH} High-level input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max , & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$		2.5	3.4		2.7	3.4		V
VOL Low-level output voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max & \\ \hline \end{array}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
IIInput current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad V_{i}=7 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{I}_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current \S	$V_{C C}=M A X$		-20		-100	-20		-100	mA
ICC Supply current	$\mathrm{V}_{\text {CC }}=$ MAX, \quad See Note 2			13	21		13	21	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{+}$All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open and all inputs except clock low, I CC is measured after applying a momentary 4.5 V , followed by ground, to the clock input.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,$ See Note 4		18	27	ns
tPHL Propagation delay time, high-to-low-level output			21	32	

NOTE 4: Load circuit and waveforms are shown on page 3-11.

TYPES SN54298, SN54LS298, SN74298, SN74LS298 OUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

TYPICAL APPLICATION DATA

This versatile multiplexer/register can be connected to operate as a shift register that can shift N -places in a single clock pulse.

The following figure illustrates a $B C D$ shift register that will shift an entire 4-bit $B C D$ digit in one clock pulse.

When the word-select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2 and etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered in the entire register with one clock pulse. This arrangement can be modified to perform the shifting of binary data for any number of bit locations.

Another function that can be implemented with the " 298 or 'LS298 is a register that can be designed specifically for supporting multiplier or division operations. The example below is a one place/two-place shift register.

When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALU's) are shifted one place. When word select is high and the registers are clocked, the data is shifted two places.

- Multiplexed Inputs/Outputs Provide Improved Bit Density
- Four Modes of Operation:

Hold (Store) Shift Left
Shift Right Load Data

- Operates with Outputs Enabled or at High Z
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- SN54LS323 and SN74LS323 Are Similar But Have Synchronous Clear
- Applications:

Stacked or Push-Down Registers.
Buffer Storage, and
Accumulator Registers

	GUARANTEED	TYPICAL
TYPE	SHIFT iCLOCKi	POWEE
	FREQUENCY	DISSIPATION
'LS299	35 MHz	175 mW
'S299	50 MHz	700 mW

description
These Schottky TTL eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight bit data handling in a single 20 -pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.
function table

MODE	INPUTS								INPUTS/OUTPUTS								OUTPUTS	
	CLEAR	FUNCTIONSELECT		OUTPUT CONTROL		CLOCK	SERIAL SL SR		$\mathrm{A}^{\prime} \mathrm{O}_{\mathrm{A}}$	B/OB	${ }^{\text {c/a }}$ c	D/OD	$\mathrm{E}^{\text {/ }}$ E	${ }_{\text {F/ }} \mathrm{O}_{\mathrm{F}}$	G/0 $\mathbf{O}_{\text {G }}$	H/OH	$\mathrm{a}_{A^{\prime}}$	$\mathrm{O}_{\mathbf{H}^{\prime}}$
		S1	so	$\overline{\mathrm{G}}^{1}{ }^{\text { }}$	$\overline{\mathbf{G}} \mathbf{2}^{\dagger}$													
Clear	L	x	L		L	x				L	L	L	L	L	L	L	L	L
	L	L	x	L	L	x	x	x	L	L	L	L	L	L	L	L	L	L
Hold	H	L	L	L	L	\times	x		$\square_{\text {a }}$	$\mathrm{a}_{\text {B0 }}$	${ }^{\circ} \mathrm{Co}$	$O_{\text {D }}$	$\mathrm{Q}_{\text {EO }}$	$\mathrm{O}_{\text {FO }}$	a_{GO}	O_{Ho}	${ }^{\text {a }}$ A	O_{HO}
	H	x	X	L	L	L	x	\times	$\mathrm{Q}_{\text {A0 }}$	$\mathrm{O}_{\text {B0 }}$	${ }^{\circ} \mathrm{CO}$	a_{D}	Q_{E}	Q_{FO}	O_{GO}	Q_{HO}	$\mathrm{Q}^{\text {AO }}$	Q_{HO}
Shift Right	H	L	H		L	\uparrow			H	$\mathrm{O}_{\text {An }}$	O_{Bn}	${ }^{0} \mathrm{C}$	$Q_{\text {Dn }}$	O_{E}	O_{Fn}	O_{Gn}	H	O_{Gn}
	H	L	H	L	L	\uparrow	X	L	L	$\mathrm{O}_{\text {An }}$	O_{Bn}	O_{Cn}	O_{Dn}	O_{En}	Q_{Fn}	O_{Gn}	L	O_{Gn}
Shift Left	H	H	L	L	L	\uparrow	H		O_{Bn}	${ }^{\text {Q }}$ Cn	${ }^{\text {a }}$ D	O_{En}	O_{F}	Q_{Gn}	O_{Hn}	H	O_{Bn}	H
	H	H	L	L	L	\uparrow	L	x	O_{Bn}	${ }^{0} \mathrm{C}$ n	$\mathrm{O}_{\text {Dn }}$	O_{En}	O_{Fn}	O_{Gn}	O_{Hn}	L	a_{Bn}	L
Load	H	H	H	X	X	\dagger	X	x	a	b	c	d	e	f	g	h	a	h

a.. . $h=$ the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals. See explanation of function tables on page 3-8.

TYPES SN54LS299, SN54S299, SN74LS299, SN74S299

8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

functional block diagram

schematics of inputs and outputs

EQUIVALENT OF EACH INPUT	TYPICAL OF OUTPUTS $\mathbf{o}_{\mathbf{A}}$ THRU $\mathbf{o}_{\mathbf{H}}$	

absolute maximum ratings over operating frec-air temperature range funiess ôtherwise nouedu)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS299			SN74LS299			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH	$\mathrm{Q}_{\text {A }}$ thru Q_{H}			-1			-2.6	mA
	$\mathrm{Q}_{A^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$			-0.4			-0.4	
Low-level output current, IOL	Q_{A} thru Q_{H}			12			24	mA
	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$			4			8	
Clock frequency, f clock		0		35	0		35	MHz
Width of clock pulse, ${ }_{\text {w }}$ (clock)	Clock high	20			20			ns
	Clock low	20			20			
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear)	Clear low	20			20			ns
Setup time, $\mathrm{t}_{\text {su }}$	Select	$10 \uparrow$			101			ns
	High-level data ${ }^{\circ}$	$20 \uparrow$			201			
	Low-level data ${ }^{\circ}$	$20 \uparrow$			$20 \uparrow$			
	Clear inactive-state	$20 \uparrow$			$20 \uparrow$			
Hoid time, $\mathrm{th}^{\text {h }}$	Select	$10 \uparrow$			$10 \uparrow$			
	Data ${ }^{\circ}$	$0 \uparrow$			$0 \uparrow$			s
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

[^31]TYPES SN54LS299, SN74LS299
8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\#All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
7

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$			See Note 2	35	50		MHz
${ }^{\text {tPLH }}$	Clock	$Q_{A^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}} \mathrm{H}^{\prime}$	$C_{L}=15 \mathrm{pF}, \quad R_{L}=2 \mathrm{k} \Omega,$ See Note 2		15	25	nsns
tPHL					15	25	
tPHL	Clear	$\mathrm{O}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$			20	35	
tPLH	Clock	$\mathrm{a}_{\text {A }}$ thru Q_{H}	$C_{L}=45 \mathrm{pF}, \quad R_{\mathrm{L}}=665 \Omega,$$\text { See Note } 2$		15	25	ns
tPHL					15	25	
tPHL	Clear	O_{A} thru O_{H}			20	35	ns
tPZH	$\overline{\mathrm{G}} 1 \mathrm{l}_{1} \overline{\mathrm{G}} 2$	a_{A} thru O_{H}			20	35	ns
tPZL					20	35	
tPHZ	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$	Q_{A} thru Q_{H}	$\begin{array}{ll} \hline \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, & \mathrm{R}_{\mathrm{L}}=665 \Omega, \\ \text { See Note } 2 \end{array}$		15	25	ns
tPLZ					15	25	

$\mathbb{I}_{f_{\text {max }}} \equiv$ maximum clock frequency
tpLH \equiv propagation delay time, low-to-high-level output.
tPHL \equiv propagation delay time, high-to-low-level output
tpZH \equiv output enable time to high level
tpZL \equiv output enable time to low level
${ }_{\text {tPHZ }} \equiv$ output disable time from high level
TPLZ $=$ output disable time from low level
NOTE 2: For testing $f_{\text {max }}$, all outputs are loaded simultaneously, each with C_{L} and R_{L} as specified for the propagation times. See toad circuits and waveforms on page 3-11.

TEXAS INSTRRUMENTS

schematics of inputs and outputs		
EOUIVALENT OF CLOCK AND CLEAR INPUTS $\begin{aligned} \text { Clock: } R_{\text {eq }} & =2.8 \mathrm{k} \Omega \text { NOM } \\ \text { Clear: } R_{\text {eq }} & =3.5 \mathrm{k} \Omega \text { NOM } \end{aligned}$	EQUIVALENT OF $\overline{\mathbf{G}} 1$ AND $\overline{\mathrm{G}} 2$ INPUTS	EQUIVALENT OF A THRU H ${ }^{\dagger}$, SO, S1, SHIFT RIGHT, AND SHIFT LEFT INPUTS ${ }^{\dagger}$ When 3-state outputs are disabled.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54S299			SN74S299			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, ${ }^{\text {I }} \mathrm{OH}$	Q_{A} thru Q_{H}			-2			-6.5	mA
	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$			-0.5			-0.5	
Low-level output current, IOL	Q_{A} thru Q_{H}			20			20	mA
	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$			6			6	
Clock frequency, felock		0		50	0		50	MHz
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock)	Clock high	10			10			ns
	Clock low	10			10			
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear)	Clear low	10			10			ns
Setup time, $\mathrm{t}_{\text {su }}$	Select	$15 \uparrow$			$15 \uparrow$			ns
	High-level data ${ }^{\circ}$	$7 \uparrow$			$7 \uparrow$			
	Low-level data ${ }^{\circ}$	$5 \uparrow$			$5 \uparrow$			
	Clear inactive-state	$10 \uparrow$			$10 \uparrow$			
Hold time, th_{h}	Select	$5 \uparrow$			$5 \uparrow$			
	Data ${ }^{\circ}$	$5 \uparrow$			$5 \uparrow$			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

${ }^{\circ}$ Data includes the two serial inputs and the eight input/output data lines.

TYPES SN54S299, SN74S299

8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
$\mathrm{VOH}^{\text {O }}$	High-level output voltage	Q_{A} thru Q_{H}	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{array}$	2.4	3.2		V
		$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$		2.7	3.4		
VOL	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOL}_{\mathrm{OL}}=\mathrm{MAX} \end{array}$			0.5	V
IOZH	Off-state output current, high-level voltage applied	Q_{A} thru Q_{H}	$\begin{aligned} & V_{C C}=M A X, \quad V_{I H}=2 \mathrm{~V}, \\ & V_{O}=2.4 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
IOZL	Off-state output current, low-level voltage applied	O_{A} thru O_{H}	$\begin{aligned} & V_{C C}=\overline{M A X}, \quad V_{I H}=2 V \\ & V_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$			-250	$\mu \mathrm{A}$
$1!$	Input current at maximum input voltage		$V_{C C}=M A X, ~ V_{1}=5.5 \mathrm{~V}$			1	mA
$\mathbf{I f ~}_{\text {H }}$	High-level input current	A thru H, S0, S1	$V_{C C}=\mathrm{MAX}, \quad V_{1}=2.7 \mathrm{~V}$			100	$\mu \mathrm{A}$
		Any other				50	
IIL	Low-level input current	Clock or clear	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.5 \mathrm{~V}$			-2	mA
		Any other				-250	$\mu \mathrm{A}$
Ios	Short-circuit output current §	Q_{A} thru Q_{H}	$V_{C C}=\mathrm{MAX}$	-40		-100	mA
		$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{O}_{H^{\prime}}$		-20		-100	
ICC	Supply current		$V_{C C}=$ MAX		140	225	mA

f For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\ddagger All typical velues are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
switching characteristics, VCC $=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$			See Note 2	50	70		MHz
tPLH	Clock	$\mathrm{a}_{\mathrm{A}^{\prime}}$ or OH^{\prime}	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$,See Note 2		12	20	ns
tPHL					13	20	
tPHL	Clear	$\mathrm{a}_{\mathrm{A}^{\prime}}$ or $\mathrm{O}_{\mathrm{H}^{\prime}}$			14	21	ns
tPLH	Clock	a_{A} thru O_{H}	$C_{L}=45 \mathrm{pF}, \quad R_{L}=280 \Omega,$ See Note 2		15	21	ns
tPHL					15	21	
tPHL	Clear	$\mathrm{a}_{\text {A }}$ thru O_{H}			16	24	ns
tPZH	$\overline{\mathrm{G}} 1 . \overline{\mathrm{G}} 2$	$\mathrm{a}_{\text {A }}$ thru $\mathrm{a}_{\mathbf{H}}$			10	18	ns
tPZL					12	18	
tPHZ	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$	$\mathrm{a}_{\text {A }}$ thru O_{H}	$C_{\mathrm{L}}=5 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=280 \Omega,$ See Note 3		7	12	ns
tPLZ					7	12	

$\mathrm{If}_{\text {max }} \equiv$ maximum clock frequency
पLLH \equiv propagation delay time, low-to-high-level output.
LPHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
tpZL \equiv output enable time to low level
TPHZ \equiv output disable time from high level
tpl $Z \equiv$ output disable time from low level
NOTE 3: For testing $f_{\text {max }}$, all outputs are loaded simultaneously, each with C_{L} and R_{L} as specified for the propagation times, See load circuits and waveforms on page 3-10.

- Multiplexed Inputs/Outputs Provide Improved Bit Density
- Four Modes of Operation:

Hold (Store) Shift Left	
Shift Right	Load Data

- Operates with Outputs Enabled or at High Z
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- Typical Power Dissipation ... 175 mW
- Guaranteed Shift (Clock) Frequency . . . 35 MHz
- Applications:

Stacked or Push-Down Registers,
Buffer Storage, and
Accumulator Registers

- SN54LS299 and SN74LS299 Are Similar But Have Diréct Overriding Clear
description

```
SN54LS323 . . . J PACKAGE
SN74LS323 . . . J OR N PACKAGE (TOP VIEW)
```


These Low-Power Schottky eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight-bit data handling in a single 20 -pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table. Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. The clear function is synchronous and a low level at the clear input clears the register on the next low-to-high transition of the clock.

FUNCTION TABLE

				INPU								PUTS/O	UTPUT				OUT	PUTS
MODE	CLEAR	$\begin{array}{r} \text { FUNO } \\ \text { SEL } \end{array}$	$\begin{aligned} & \text { TION } \\ & \text { CT } \end{aligned}$	$\begin{gathered} \text { OUT } \\ \text { CONT } \end{gathered}$		CLOCK			A/ Q_{A}	B / O_{B}	${ }^{C /} \mathbf{O}_{C}$	D/ $\mathbf{O}_{\text {D }}$	E/QE	F/OF	$\mathbf{G} / \mathbf{Q}_{\mathbf{G}}$	$\mathrm{H}^{\left(\mathrm{O}_{\mathbf{H}}\right.}$	$\mathbf{Q}^{\prime}{ }^{\prime}$	$\mathrm{O}_{\mathrm{H}^{\prime}}$
		S1	SO	$\overline{\mathbf{G}}{ }^{\text { }}$	$\overline{\mathrm{G}}{ }^{\text { }}$		SL	SR										
Cle	L	X	L	L	L	\uparrow	X	X	L	L	L	L	L	L	L	L	L	L
Clis	L	L	X	L	L	\uparrow	x	x	L	L	L	L	L	L	L	L	L	L
	H	L	L	L	L	X	X	X	$\mathrm{Q}_{\text {A0 }}$	Q_{BO}	Q_{CO}	QDo	Q_{E}	$\mathrm{O}_{\text {F0 }}$	Q_{GO}	O_{HO}	$\mathrm{Q}_{\text {AO }}$	Q_{HO}
	H	x	X	L	L	L	x	X	$\mathrm{Q}_{\text {AO }}$	O_{BO}	Q_{CO}	Q ${ }_{\text {D }}$	QE0	$\mathrm{Q}_{\text {Fo }}$	Q_{GO}	Q_{HO}	$\mathrm{Q}_{\text {AO }}$	Q_{HO}
Shift Right	H				L	\uparrow			H	$\mathrm{Q}_{\text {An }}$	O_{Bn}	${ }^{0} \mathrm{C}$	Q ${ }_{\text {n }}$	Q_{En}	Q_{F}	O_{Gn}	H	Q_{Gn}
	H	L	H	L	L	\uparrow	X	L	L	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	O_{Cn}	$Q_{\text {D }}$	O_{En}	Q_{Fn}	Q_{Gn}	L	O_{Gn}
Shift Left	H	H	L		L	\uparrow			Q_{Bn}	Q_{Cn}	Q_{Dn}	O_{En}	Q_{Fn}	$Q_{\text {G }}$	Q_{Hn}	H	O_{Bn}	H
Shift Left	H	H	L	L	L	\uparrow	L	X	O_{Bn}	Q_{Cn}	$\mathrm{O}_{\text {Dn }}$	Q_{En}	Q_{Fn}	O_{Gn}	Q^{Hn}	L	O_{Bn}	L
Load	H	H	H	X	X	\uparrow	X	X	a	b	c	d	e	f	g	h	a	h

twhen one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.
a . . . $h=$ the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals. See explanation of function tables on page 3-8
schematics of inputs and outputs, absolute maximum ratings, recommended operating conditions, and electrical characteristics

Same as SN54LS299 and SN74LS299, see page 7-439.

TYPES SN54LS323, SN74LS323

8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

functional block diagram

switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$			See Note 1	35	50		MHz
tPLH	Clock	$\mathrm{Q}_{A^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$	$C_{L}=15 \mathrm{pF}, \quad R_{L}=2 \mathrm{k} \Omega$ See Note 1		15	25	ns
tPHL					15	25	
tPLH	Clock	Q_{A} thru Q_{H}	$C_{L}=45 \mathrm{pF}, \quad R_{L}=665 \Omega$ See Note 1		15	25	ns
tPHL					15	25	
tPZH	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$	Q_{A} thru Q_{H}			20	35	ns
tPZL					20	35	ns
tPhZ	$\overline{\mathrm{G}} 1 . \overline{\mathrm{G}} 2$	$\mathrm{Q}_{\mathbf{A}}$ thru $\mathrm{Q}_{\mathbf{H}}$	$C_{L}=5 p F, \quad R_{L}=665 \Omega$ See Note 1		15	25	ns
tPLZ					15	25	

$f_{\text {max }} \equiv$ maximum clock frequency
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
$t_{P H L} \equiv$ propagation delay time, high-to-low-level output
PZH output enable time to high level
$t_{P Z L} \equiv$ output enable time to low level
tp $\mathrm{HZ} \equiv$ output disable time from high level
بLZ \equiv output disable time from low level
NOTE 1: For testing ${ }^{\text {max }}$, all outputs are loaded simultaneously, each with C_{L} and R_{L} as specified for the propagation times. See toad circuits and waveforms on page 3-11.

- 'LS325, 'LS326 and 'LS327 Have Two Independent VCO's in a Single Package
- Output Frequency Set by Single External Component:

Crystal for High-Stability FixedFrequency Operation Capacitor for Fixed- or VariableFrequency Operation

- Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Output Circuitry
- Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges
description

With the exception of 'LS324, all of these devices feature two independent voltage-controlled oscillators (VCO) in a single monolithic chip. The 'LS324, 'LS325 and 'LS326 have complementary outputs. The output frequency of each VCO is established by a single external component, either a capacitor or a crystal, in combination with the voltage-sensitive inputs, one for frequency control and on the 'LS324, another one for frequency range. These inputs can be used to vary the output frequency by changing the voltage applied to them. These highly stable oscillattors can be set to operate at any frequency typically between 0.12 Hz and 30 MHz . With 2 volts applied to the frequency control input and also to the range input of the 'LS324, the output frequency can be approximated as follows:

$$
\mathrm{f}_{\mathrm{o}}=\frac{1 \times 10^{-4}}{\mathrm{C}_{\mathrm{ext}}}
$$

where: $f_{0}=$ output frequency in hertz
$\mathrm{C}_{\text {ext }}=$ external capacitance in farads.

These devices can operate from a single 5 -volt supply. However, one set of supply-voltage and ground pins (VCC and GND) is provided for the enable, synchronization-gating, and output sections, and a separate set ($\odot V_{C C}$ and $\left.\odot G N D\right)$ is provided for the oscillator and associated frequency-control circuits so that effective isolation can be accomplished in the system. Disabling either VCO of the 'LS325 and 'LS327 can be accomplished by removing the appropriate $\circlearrowleft V_{\text {CC. }}$. An enable input is provided on the 'LS324 and 'LS326. While this input is low, the output is enabled. While the enable input is high, Y is high and \bar{Y} is low.

SN54LS' . . J OR W PACKAGE SN74LS' . . J OR N PACKAGE LS324 (TOP VIEW)

TYPES SN54LS324 THRU SN54LS327, SN74LS324 THRU SN74LS327 VOLTAGE-CONTROLLED OSCILLATORS

description (continued)

The internal oscillator runs continuously even while the output is disabled via the enable input. The enable input is one standard load, and it and the buffered output operate at standard Schottky-clamped TTL levels.

The pulse synchronization-gating section ensures that the first output pulse is neither clipped nor extended. Duty cycle of the square-wave output is fixed at approximately 50 percent. Simultaneous operation of both VCO's in the same package is not recommended.

The SN54LS324 thru SN54LS327 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74LS324 thru SN74LS327 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
schematics of inputs and outputs

EQUIVALENT OF EACH ENABLE INPUT ('LS324 AND 'LS326)	EQUIVALENT OF EACH FREQUENCY CONTROL OR ('LS324 ONLY) RANGE INPUT				TYPICAL OF ALL OUTPUTS
	v_{cc}		3 AL VA R2 $14 \mathrm{k} \Omega$ $6 \mathrm{k} \Omega$	JES R3 $27 \mathrm{k} \Omega$ $24 \mathrm{k} \Omega$	

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

$$
\begin{aligned}
& \text { Supply voltage, } \mathrm{V}_{\mathrm{CC}} \text { (see Notes } 1 \text { and 2) . } 7 \mathrm{~V} \\
& \text { Input voltage: Enable input ('LS324 and 'LS326) . } 7 \text { V } \\
& \text { Frequency control or range input . VCC } \\
& \text { Operating free-air temperature range: SN54LS' Circuits }-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\
& \text { SN74LS' Circuits } 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \text { NOTES: 1. Voltage values are with respect to the appropriate ground terminal. } \\
& \text { 2. Throughout this data sheet, the symbol } \mathrm{v}_{\mathrm{Cc}} \text { is used for the voltage applied to both the } \mathrm{v}_{\mathrm{cc}} \text { and } \Theta_{\mathrm{cc}} \text { terminals, unless } \\
& \text { otherwise noted. }
\end{aligned}
$$

TYPES SN54LS324 THRU SN54LS327, SN74LS324 THRU SN74LS327 VOLTAGE-CONTROLLED OSCILLATORS

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS'			SN74LS'			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$V_{\text {IH }}$	High-level input voitage at enable*						2			2			V
$V_{\text {IL }}$	Low-level input voltage at enable ${ }^{*}$						0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage at enable*		$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & { }^{1} \mathrm{OH}=-1.2 \mathrm{~mA}, \text { See Note } 3 \end{aligned}$		2.5	3.4		2.7	3.4		V		
VOL Low-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN, } \quad \Theta V_{\mathrm{CC}} \text { open } \\ & V_{\mathrm{IL}}=V_{\mathrm{IL}} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{IOL}^{\text {a }}=24 \mathrm{~mA}$					0.35	0.5	v			
$1 /$	Input current	Freq control		$\mathrm{V}_{C C}=\mathrm{MAX}$	$V_{1}=5 \mathrm{~V}$		50	250		50	250	$\mu \mathrm{A}$	
		or range \triangle	$V_{1}=1 \mathrm{~V}$			10	50		10	50			
$1 /$	Input current at maximum input voltage	Enable	$V_{C C}=\operatorname{MAX}, \quad V_{1}=7 \mathrm{~V}$				0.1			0.1	mA		
IIH	Hight-level input current	Enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
${ }_{1} \mathrm{IL}$	Low-level input current	Enable	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA		
Ios	Short-circuit output current ${ }^{\text {§ }}$		$V_{\text {CC }}=$ MAX		-40		-225	-40		-225	mA		
ICC	Supply current, total into $V_{C C}$ and $\Theta V_{C C}$ pins		$V_{C C}=\operatorname{Max}$ See Note 4	'LS324, 'LS326		18	30		18	30	mA		
			'LS325, 'LS327		30	50		30	50				

${ }^{+}$For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\ddagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second
*The characteristics involving an enable input are applicable to 'LS324 and 'LS326 only.
NOTES: 3. V_{OH} is measured for Y outputs by connecting a $1-\mathrm{k} \Omega$ resistor from CX 1 to V_{CC} and another $1-\mathrm{k} \Omega$ resistor from CX 2 to GND . This procedure is reversed for testing V_{OH} of $\overline{\mathrm{Y}}$ outputs (not applicable to 'LS327). That is, a $1-\mathrm{k} \Omega$ resistor is connected from CX 2 to V_{CC} and another 1-k Ω resistor from CX 1 to $G N D$. During the V_{OH} tests of 'LS324 and 'LS326, the enable pin should be at $V_{1 L}$ max.
4. For 'LS 324 and 'LS326, ${ }^{1} \mathrm{CC}$ is measured with the outputs disabled and open, and $\Theta V_{C C}=$ MAX. For 'LS325 and 'LS327, ICC is measured with one $\Theta \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, and with the other $\Theta \mathrm{V}_{\mathrm{CC}}$ and outputs open.
switching characteristics, $\mathrm{VCC}_{C C}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{0} \quad$ Output frequency	$\mathrm{C}_{\text {ext }}=2 \mathrm{pF}$	$\mathrm{V}_{1(\text { freq })}=5 \mathrm{~V}, \mathrm{~V}_{1(\mathrm{rng})}=0 \mathrm{~V}$	20	30		MHz
		$\mathrm{V}_{1(\text { freq) }}=0 \mathrm{~V}, \mathrm{~V}_{1(\mathrm{rng})}=5 \mathrm{~V}$	11	20		
$\mathrm{f}_{\mathrm{O}} \quad$ Output frequency (crystal controlled)	$\Theta \mathrm{V}_{\text {cc }}=3 \mathrm{~V}, \mathrm{~V}_{1(\text { freq })}=\mathrm{V}_{1(\mathrm{rng})}=0 \mathrm{~V}$		10	20		MHz
Output duty cycle	$\mathrm{C}_{\text {ext }}=8.3 \mathrm{pF}$ to $500 \mu \mathrm{~F}$			50\%		
Propagation delay time, tPHL high-to-low-level output from enable	$\mathrm{f}_{0} \geqslant 1 \mathrm{~Hz}$			$30{ }^{*}$		ns

The range input is provided only on the 'LS324.
*The delay will typically be 30 ns pulse up to one period of one cycle (l.e. $30 \mathrm{~ns}+\frac{1 \times 10^{9}}{\mathrm{f}_{\mathrm{o}}(\mathrm{Hz})}$ pulse with respect to the signal generated by the internal oscilfator.

TTL

TYPES SN54LS348, SN74LS348 (TIM9908) 8-LINE-TO-3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS BULLETIN NO. DL-S 7612469, OCTOBER 1976

- 3-State Outputs Drive Bus Lines Directly
- Encodes 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:

N-Bit Encoding
Code Converters and Generators

- Typical Data Delay . . . 15 ns
- Typical Power Dissipation . . . 60 mW

description

These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 'LS348 circuits encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input EI and enable output EO) has been provided to allow octal expansion. Outputs AO, A1, and A2 are implemented in three-state logic for easy expansion up to 64 lines without the need for external circuitry. See Typical Application Data.

FUNCTION TABLE

INPUTS									OUTPUTS				
EI	0	1	2	3	4	5	6	7	A2	A1	AO	GS	EO
H	X	X	X	X	X	X	X	X	Z	Z	Z	H	H
L	H	H	H	H	H	H	H	H	z	Z	z	H	L
L	X	X	\times	X	X	X	X	L	L	L	L	L	H
L	X	X	X	X	X	x	L	H	L	L	H	L	H
L	x	X	X	x	X	L	H	H	L	H	L	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	H	L	L	L	H
L	X	X	L	H	H	H	H	H	H	L	H	L	H
L	x	L	H	H	H	H	H	H	H	H	L	L	H
L	L	H	H	H	H	H	H	H	H	H	H	L	H

$H=$ high logic level, $L=$ low logic level, $X=$ irrelevant Z = high-impedance state

SN54LS348 . . . J OR W PACKAGE SN74LS348 . . . J OR N PACKAGE

functional block diagram

schematic of inputs and outputs

TYPES SN54LS348, SN74LS348 (TIM9908) 8-LINE-TO-3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

			54LS3			74LS3		
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
Hish-level outmut curront ! ${ }^{\text {ar }}$	A0, A1, A2			-1			-2.6	mA
High-level ouput carrent, $\mathrm{OH}_{\text {a }}$	EO, GS			-400			-400	$\mu \mathrm{A}$
	A0, A1, A2			12			24	mA
Low-level output current, IOL	EO: GS			4			8	mA
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54LS348		SN74LS348			UNIT		
			MIN	TYP \ddagger MAX	MIN		MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\mathrm{MIN}$,	$I_{1}=-18 \mathrm{~mA}$		-1.5			-1.5	V		
V OH	High-level output voltage	A0, A1, A2	$\begin{aligned} & V_{C C}=\text { MIN }, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{\text {IL }}=V_{I L} \text { max } \end{aligned}$	$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4					V		
				$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$			2.43 .1					
		EO, GS		$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.5	3.4	2.7	3.4				
$\mathrm{VOL}_{\text {OL }}$	Low-level output vol tage	A0, A1, A2	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I H}=2 V, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.250 .4		0.25	0.4	V		
				$1 \mathrm{OL}=24 \mathrm{~mA}$				0.35	0.5			
		EO, GS		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.250 .4		0.25	0.4			
				$1 \mathrm{OL}=8 \mathrm{~mA}$				0.35	0.5			
11	Input current at maximum input voltage	Inputs 1 thru 7	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$		0.2			0.2	mA		
		All other inputs				0.1			0.1			
IIH	High-level input current	Inputs 1 thru 7	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$		40			40	$\mu \mathrm{A}$		
		All other inputs				20			20			
1 IL	Low-level input current	Inputs 1 thru 7	$V_{C C}=M A X$	$V_{1}=0.4 \mathrm{~V}$		-0.8			-0.8	mA		
		All other inputs				-0.4			-0.4			
Ios	Short-circuit output current \S	Outputs A0, A1, A2	$V_{C C}=M A X$		-30	-130	-30		-130	mA		
		Outputs EO, GS			-20	-100	-20		-100			
ICC Supply			$V_{C C}=M A X,$ See Note 2	Condition 1		$13 \quad 25$		13	25	mA		
				Condition 2		$12 \quad 23$		12	23			

NOTE 2: ICC (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open. ICC (condition 2) is measured with all inputs and outputs open.
${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.

TYPES SN54LS348, SN74LS348 (TIM9908)
8-LINE-TO-3-LINE PRIORITY ENCODERS WITH 3-STATE OUTPUTS

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
PARAMETER ${ }^{\text {d }}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {tPLH }}$	0 thru 7	A0, A1, or A2	In-phase output	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \text { See Note } 3 \end{aligned}$	11	17	ns
tPHL					20	30	
tPLH	0 thru 7	A0, A1, or A2	Out-of-phase output		23	35	ns
tPHL					23	35	
tPLH	0 thru 7	EO	Out-of-phase output		12	18	ns
tPHL					6	15	
tple	0 thru 7	GS	In-phase output		15	23	ns
tPHL					14	21	
tPLH	EI	GS	In-phase output		11	17	ns
tPHL					24	36	
tPLH	EI	EO	In-phase output		14	21	ns
tPHL					17	25	
tPZH	EI	A0, A1, or A2			26	39	ns
tPZL					27	41	
tPHZ	EI	A0, A1, or A2		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$,	18	27	ns
tPLZ				$\mathrm{R}_{\mathrm{L}}=667 \Omega$	23	35	

$\int_{\text {tPLH }}=$ propagation delay time, low-to-high-level output
फHL = propagation delay time, high-to-low-level output
tPZH = output enable time to high level
tPL = output enable time to low level
tPHZ $=$ output disable time from high level
tpLZ $=$ output disable time from low level
NOTE 3: Load circuits and waveforms are shown on page 3-11.

TYPICAL APPLICATION DATA
7

FIGURE 1-PRIORITY ENCODER WITH UP TO 64 INPUTS.

- Dual 8-Line-to-1-Line Multiplexer That Can Replace Two SN54151, SN74151 Multiplexers in Some Applications
- Four Common Data Lines Permit Simultaneous Interdigitation with Parallel-to-Serial Conversion
- 4-Bit Organization Is Easily Adapted to Handle Binary or BCD
- Three-State Outputs Can Be Connected Directly to System Bus Lines
- Enable Input Controls Impedance Levels of the 12 Data Inputs and Two Outputs

description

The SN74351 comprises two 8-line-to-1-line data selectors/multiplexers with full decoding on one monolithic chip. Symmetrically switching, complementary decode generators minimize decoder skew during changes at the select inputs and ensure that potentially erroneous effects are minimized at the data outputs. Four data inputs are exclusive to each multiplexer and four are common to both. A common enable input is provided which, when high, causes both outputs to assume the high-impedance (off) state and simultaneously diverts the majority of the inpuit current, which reduces the load significantly on the data input drivers. A low logic level at the enable input activates both outputs so that each will assume the complement of the level of the selected input.
function table

INPUTS				OUTPUTS	
$\begin{array}{\|c\|} \hline \text { ENABLE } \\ \overline{\mathbf{G}} \\ \hline \end{array}$	SELECT				
	c	B	A	19	2 Y
H	X	x	x	Z	Z
L	L	L	L	$\overline{\text { 100 }}$	200
L	L	L	H	$\overline{\mathrm{D} 1}$	$\overline{2 D 1}$
L	L	H	L	$\overline{1 D 2}$	$\overline{2 D 2}$
L	L	H	H	103	2D3
L	H	L	L	$\overline{\text { D4 }}$	$\overline{\text { D4 }}$
L	H	L	H	$\overline{\text { D }}$	$\overline{\text { D5 }}$
L	H	H	L	$\overline{\text { D6 }}$	$\overline{\mathrm{D} 6}$
L	H	H	H	$\overline{\text { D7 }}$	$\overline{\mathrm{D7}}$

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant
Z = high impedance (off)
$\overline{1 D 0}, \overline{1 D 1}, \ldots \overline{\mathrm{D7}}=$ The complement of the level of the respective D input

functional block diagram

TYPE SN74351 DUAL DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS

REVISED OCTOBER 1976
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TVP ${ }^{\text {¢ }}$	MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
$\mathrm{V}_{1 \mathrm{~K}}$	Input clamp voltage		$V_{C C}=$ MIN, $\quad I_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-0.8 \mathrm{~mA} \end{array}$	2.4	3.4		V
$\mathrm{VOL}_{\text {OL }}$	Low-level output voltage		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & 1_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4	V
IOZH	Off-state output current, high-level voltage applied		$\begin{aligned} & V_{C C}=M A X, \quad V_{1 H}=2 V \\ & V_{O}=2.4 \mathrm{~V} \end{aligned}$			40	$\mu \mathrm{A}$
IOZL	'Off state output current, low level voltage applied		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} & \end{array}$			-40	$\mu \mathrm{A}$
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I H	High-level input current	Enable, any select, any D0 thru D3	$V_{C C}=$ MAX, $V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
		D4 thru D7				80	
IIL	Low-level input current	Enable, any select, any D0 thru D3	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
		D4 thru D7				-3.2	
		Any D	$\begin{aligned} & V_{C C}=M A X, \quad V_{1}=0.5, \\ & V_{1 \text { (enable) }}=2 V \end{aligned}$			-40	$\mu \mathrm{A}$
Ios	Short-circuit output current§		$V_{C C}=M A X$	-18		-55	mA
ICC Supply current	Supply current		$V_{C C}=$ MAX, See Note 2		44	66	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with the enable input grounded, other inputs and both outputs open

TYPE SN74351
DUAL DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
tPLH	A, B, or.C	Y	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Note } 3 \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega$,	20		ns
tpHL					20		
tPLH	Any D	Y			10		
tpHL					10		ns
tZH	$\overline{\mathrm{G}}$	Y			13		ns
tZL					20		
thz	$\overline{\mathrm{G}}$	Y	$\begin{array}{\|ll} \hline \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ \text { See Note 3 } \end{array}$		6		ns
tLZ					10		

$I_{I_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\mathrm{t}_{\mathrm{ZH}} \equiv$ output enable time to high level
${ }_{\mathrm{t} 2 \mathrm{t}} \equiv$ output enable time to low level
${ }_{\mathrm{Z}}^{2} \mathrm{~L}$
$\mathrm{t}_{\mathrm{H}} \equiv$ output enable
output disable time from high level
${ }^{{ }^{\mathrm{t}} \mathrm{HZ}}{ }_{\mathrm{t}}^{\mathrm{t} Z} \equiv$ output disable time from high level
$\begin{aligned} &{ }^{\mathrm{L}} \mathrm{LZ} \equiv \text { output disable time from low level } \\ & \text { NOTE 3: Load circuit and voltage waveforms are shown on page 3-10 }\end{aligned}$

TYPICAI APPLICATION DATA

This application illustrates how common data can be interdigitated onto two serial data lines. It is useful for transmitting prefixes, suffixes, addresses, or similar functions.

- Inverting Versions of SN54LS153, SN74LS153
- Schottky-Diode-Clamped Transistors
- Permits Multiplexing from \mathbf{N} lines to 1 line
- Performs Parallel-to-Serial Conversion
- Typical Average Propagation Delay Times: Data Input to Output . . . 15 ns Strobe Input to Output . . . 19 ns Select Input to Output . . . 22 ns
- Fully Compatible with most TTL and DTL Circuits
- Low Poner Dissipation . . . 31 mW Typical (Enabled)
- Inverted Data

description

Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

SELECT INPUTS	DATA INPUTS							STROBE	OUTPUT
B	A	CO	C1	C2	C3	G			
X	X	X	X	X	X	H			
L	L	L	X	X	X	L			
L	L	H	X	X	X	L			
L	H	X	L	X	X	L			
L	H	X	H	X	X	L			
H	L	X	X	L	X	L			
H	L	X	X	H	X	L			
H	H	X	X	X	L	L			
H	H	X	X	X	H	L			

Select inputs A and B are common to both sections.
$\mathrm{H}=$ high tevel, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1)
Input voltage.

NOTE 1: Voltage values are with respect to network ground terminal.
functional block diagram

schematics of inputs and outputs

TYPES SN54LS352, SN74LS352

DUAL 4-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	SN54LS352			SN74LS352			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {cc }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS352			SN74LS352			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
V_{IH} High-level input voltage			2			2			V
VIL Low-level input voltage					0.7			0.8	V
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ MIN, $\quad \mathrm{l}_{1}=-18 \mathrm{~m}$				-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=-40 \end{array}$		2.5	3.4		2.7	3.4		v
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ MIN, $\quad \mathrm{V}_{\mathrm{iH}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}$ max	$\mathrm{I}^{\mathrm{OLL}}=8 \mathrm{~mA}$					0.35	0.5	
II $\begin{aligned} & \text { Input current at } \\ & \text { maximum input voltage }\end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$		0.1			0.1			mA
IIH High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-evel input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IoS Short-circuit output current ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-20		-100	-20		-100	mA
${ }^{\text {I CCL }}$ Supply current, output low	$\mathrm{V}_{\text {CC }}=$ MAX, \quad See Note 2			6.2	10		6.2	10	mA

$\dagger{ }^{\text {For }}$ conditions shown as MIN or MAX, use the appropriate value specified under recommended operating .
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 2: ICCL is measured with the outputs open and all inputs grounded.
switching characteristics, $\mathrm{VCC}_{\mathrm{C}}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

PARAMETER 4	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Data	Y	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$$\text { See Note } 3$		13	20	ns
tPHL	Data	Y			17	26	ns
tPLH	Select	Y			19	29	ns
tPHL	Select	Y			25	38	ns
tPLH	Strobe	Y			16	24	ns
tPHL	Strobe	Y			21	32	ns

Itplu $^{\text {tpl }_{\text {L }}} \equiv$ propagation delay tirne, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown on page 3-11

- Inverting Versions of SN54LS253, SN74LS253
- Schottky-Diode-Clamped Transistors
- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Typical Average Propagation Delay Times: Data Input to Output . . . 12 ns Control Input to Output . . . 16 ns Select Input to Output . . . 21 ns
- Fully Compatible with Most TTL and DTL Circuits
- Low Power Dissipation . . . 35 mW Typical (Enabled)
- Inverted Data

description
Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate output control inputs are provided for each of the two four-line sections.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level.
logic

SELECT INPUTS		DATA INPUTS				$\left\lvert\, \begin{gathered} \text { OUTPUT } \\ \text { CONTROI } \end{gathered}\right.$	OUTPUT
B	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	Z
L	L	L	X	x	x	L	H
L	L	H	X	X	x	L	L
L	H	X	L	x	x	L	H
L	H	X	H	X	x	L	L
H	L	X	X	L	x	L	H
H	L	X	X	H	\times	L	L
H	H	x	X	X	L	L	H
H	H	X	X	X	H	L	L

Select inputs A and B are common to both sections.
$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high impedance (off)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54LS353, SN74LS353
DUAL 4-LINE-TO-1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS
functional block diagram

schematics of inputs and outputs

recommended operating conditions

	SN54LS353			SN74LS353			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, loh			-1			-2.6	mA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54LS353			SN74LS353			UNIT		
		MIN	TYP \ddagger	max	MIN	TYP \ddagger	MAX					
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage					2			2			v
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.7			0.8	v		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	v		
${ }^{\mathrm{V}} \mathrm{OH}$	High-ievei output voitage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=\text { MAX } \end{array}$		2.4	3.4		2.4	3.1		v		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V, \\ & V_{i L}=V_{i L}, \end{aligned}$	$\mathrm{IOL}^{2}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	\checkmark		
			OUL $=8$ min					0.35	0.5			
loz	Off-State (high-impedance	$V_{C C}=M A X, \quad V_{i i}=2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	;		
	state) output current		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20			
1	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA		
IIH	High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4			-0.4	mA		
Ios	Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=$ MAX		-30		-130	-30		-130	mA		
Icc	Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad$ See Note 2	Condition A		7	12		7	12	mA		
			Condition B		8.5	14		8.5	14			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}{ }^{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 2: I CC is measured with the outputs open under the following conditions:
A. All inputs grounded.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	то (OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Data	Y	$C_{L}=15 \mathrm{pF},$$\text { See Note } 3$	$R_{L}=2 \mathrm{ks} \Omega$		11	25	ns
tPHL						13	20	
tPLH.	Select	Y				20	45	ns
tPHL						21	32	
tPZH	Output	Y				11	23	ns
tPZL	Control					15	23	
tPHZ	Output Control	Y	$C_{L}=5 \mathrm{pF},$ See Note 3	$R_{L}=2 k \Omega,$		27	41	ns
tplZ						12	27	

It $_{\text {t LH }} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ Propagation delay time, high-to-low-level output
tPZH $=$ Output enable time to high level
tPZL \equiv Output enable time to low level
tPHZ \equiv Output disable time from high level
${ }^{\text {t }} \mathrm{PL} Z \overline{ } \equiv$ Output disable time from low level
NOTE 3: Load circuit and waveforms are shown on page 3-11.

TYPE SN74LS362 (TIM9904)

- Clock Generator/Driver for The TMS 9900 or Other Microprocessors
- High-Level 4-Phase Outputs
- Complementary TTL 4-Phase Outputs
- Self-Contained Oscillator Can be Crystal or Capacitor Controlled
- External Oscillator Can Be Used
- Clocked D-Type Flip-Flop With Schmitt-Trigger Input For Reset Signal Synchronization

description

The 'LS362 consists of an oscillator, divide-by-four counter, a second divide-by-four counter with gating to generate four clock phases, high-level (12 -volt) output drivers, low-level (5 -volt) complementary output drivers, and a D-type flip-flop controlled by an external signal and the $\phi 3$ clock. The four high-level clock phases provide clock inputs to a TMS 9900 microprocessor. The four complementary TTL-level clocks can be used to time memory or other logic functions in a TMS 9900 computer system. The D-type flip-flop can be used to provide (for example) a reset signal to a TMS 9900 , timed by $\phi 3$, on receipt of an input to the FFD input from power turn-on or a manual switch closure. Other applications are possible. A safety feature has been incorporated in the ϕ outputs such that if an open occurs in the $V_{C C}$ supply common to 'LS362 and TMS 9900, the ϕ outputs will go low thus protecting the TMS 9900.

The frequency of the internal oscillator can be established by a quartz crystal or capacitor and LC circuit. Either a fundamental or overtone crystal may be used. The LC circuit connected to the tank inputs selects the desired crystal overtone or establishes the internal oscillator frequency when a capacitor is used instead of a crystal. An LC circuit must always be used at the tank inputs when using the internal oscillator. An external oscillator can be used, if desired, see "Applications Information" for details.
typical phase relationships of inputs and outputs (OSC is internal)

functional block diagram

7

TYPE SN74LS362 (TIM9904)

four-phase clock generator/driver
schematics of inputs and outputs
EQUIVALENT OF D INPUT
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to the network ground terminals connected together.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltages	$\mathrm{V}_{\text {CC }}$	4.75	5	5.25	V
	V_{DD}	11.4	12	12.6	V
High-level output current, IOH	$\phi 1, \phi 2, \phi 3, \phi 4$			-100	$\mu \mathrm{A}$
High-leveloutput current, OH	All others			-400	$\mu \mathrm{A}$
Low-level output current, IOL	$\phi 1, \$ 2, \phi 3, \phi 4$			4	mA
Low-level output current, IoL	All others			8	mA
Internal oscillator frequency, fosc			48	54	MHz
External oscillator pulse width, $\mathrm{t}_{\text {w }}$ (osc)		25			ns
Setup time, FFD input (with respect to falling edge of $\phi 3$), $\mathrm{t}_{\text {su }}$		50			ns
Hold time, FFD input (with respect to falling edge of $\phi 3$), th		-30			ns
Operating free-air temperature, T_{A}		0		70	C

TYPE SN74LS362 (TIM9904) FOUR-PHASE CLOCK GENERATOR/DRIVER

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. Outputs $\phi 1, \phi 2, \phi 3$, and $\phi 4$ do not have short-circuit protection.
switching characteristics, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC1}^{2}=5 \mathrm{~V}, \mathrm{VCC2}^{2}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{OSc}}=48 \mathrm{MHz}$, see figure 1

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {out }}$	Output frequency, any ϕ or $\bar{\phi}$ TTL	Output loads: $\phi 1, \phi 3, \phi 4: 100 \mathrm{pF}$ to GND \$2: 200 pF to GND Others: $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ See Note 2		3		MHz
fout	Output frequency, OSCOUT			12		MHz
${ }_{\mathrm{t}}^{\mathrm{c}}$ ((${ }^{\text {d }}$	Cycle time, any ϕ output			333		ns
$\mathrm{tr}_{(}(\phi)$	Rise time, any ϕ output		10		20	ns
$\mathrm{t}_{\mathrm{f}}(\phi)$	Fall time, any ϕ output		10		20	ns
${ }_{\text {tw }}(\phi)$	Pulse width, any ϕ output high		40			ns
$\mathrm{t}_{\phi} 1 \mathrm{~L}, \phi 2 \mathrm{H}$	Delay time, $\phi 1$ low to $\phi 2$ high		0	5	15	ns
	Delay time, $\phi 2$ low to $\phi 3$ high		0	5	15	ns
	Delay time, $\phi 3$ low to $\phi 4$ high		0	5	15	ns
	Delay time, $\phi 4$ low to $\phi 1$ high		0	5	15	ns
	Delay time, $\phi 1$ high to $\phi 2$ high		70	83		ns
${ }_{\text {t }}^{\text {¢ }}$ 2 $2 \mathrm{H}, \phi 3 \mathrm{H}$	Delay time, $\phi 2$ high to $\phi 3$ high		70	83		ns
${ }_{\text {t }}^{\text {¢ }}$ \% $3 \mathrm{H}, \phi 4 \mathrm{H}$	Delay time, $\phi 3$ high to $\phi 4$ high		70	83		ns
	Delay time, $\phi 4$ high to $\phi 1$ high		70	83		ns
$\mathrm{t}_{\text {¢ }} \mathrm{H}_{\mathrm{L}}$, $\bar{\phi}$ TL	Delay time, ϕ_{n} high to ϕ_{n} TTL low			-8		ns
${ }_{\text {t }}{ }_{\text {¢ }} \mathrm{L}, \overline{\text { ¢ }}$ TH	Delay time, ϕ_{n} low to $\bar{\phi}_{\mathrm{n}}$ TTL high			-19		ns
${ }^{\text {t }}$ ¢ ${ }_{\text {L }}$, OH	Delay time, $\phi 3$ low to FFQ output high			-7		ns
	Delay time, $\phi 3$ low to FFQ output low			-12		ns
$\mathrm{t}_{\text {¢ }} \mathrm{L}$, OSOH	Delay time, ϕ low to OSCOUT high			-5		ns
${ }_{\text {t }}{ }_{\text {¢ }} \mathrm{H}^{\text {, OSOL }}$	Delay time, FFQ high to OSCOUT low			-13		ns

NOTE 2: Use load circuit for bi-state totem-pole outputs, page 3-11.

NOIL $\forall W Y O U N I ~ \perp N \exists W \exists Y \cap S \forall \exists W$ पヨコヨWVY甘d

four－Phase clock generator／driver

APPLICATION INFORMATION

Figure 2 shows the 'LS362 connected to a TMS9900. The oscillator is shown operating with a quartz crystal and an LC circuit connected to the tank terminals.

For operation of the TMS 9900 microprocessor at 3 MHz , the frequency reference will need a resonant frequency of $48 \mathrm{MHz}(16 \times 3 \mathrm{MHz})$. A quartz crystal used as a frequency reference should be made for series-mode operation with a resistance in the 20 - to 75 -ohm range and be capable of a minimum of 2 mW power dissipation. Typical frequency tolerance is $\pm 0.005 \%$. For $48-\mathrm{MHz}$ operation a third-overtone crystal is used. The inductance L connected across the tank terminals should be $0.47 \mu \mathrm{H} \pm 10 \%$, and the capacitance C (including board capacity) should be $22 \mathrm{pF} \pm 5 \%$. The LC circuit should be tuned to the third-overtone crystal frequency for best results. A $0.1-\mu \mathrm{F}$ capacitor can be substituted for the quartz crystal. With a capacitor rather than a crystal, the LC tuned circuit establishes the operating frequencies. LC component values for operation at any frequency can be computed from $f_{\text {osc }}=1 /(2 \pi \sqrt{ } \mathrm{LC})$ where $f_{\text {osc }}$ is the oscillator frequency, L is the inductance value in henries, and C is the capacitance value in farads.

When the internal oscillator is being used, OSCIN should be connected to V_{CC} through a resistor ($1 \mathrm{k} \Omega$ nominal) and an IC tank circuit must be connected to the tank inputs. An external oscillator can be used by connecting it to OSCIN and disabling the internal oscillator by connecting the crystal terminals to V_{CC} and leaving the tank inputs open. An external oscillator must have a frequency four times the desired output clock frequency and a 25% duty cycle. See Figure 3.
The first iow-ievei externai ciock puise will preset the divide-by-four counter, allowing the external oscillator signal to directly drive the phase generator. Figure 3 is a timing diagram illustrating operation with an external oscillator.
Resistors between $\phi 1, \phi 2, \phi 3$, and $\phi 4$ outputs of the 'LS362 and the corresponding clock input terminals of the TMS 9900 should be in the 10 - to 20 -ohm range (See Figure 2). Their purpose is to minimize overshoot and undershoot. The required resistance value is dependent on circuit layout. Clock signal interconnections should be as short as possible.

The D-type flip-flop associated with pins FFD and FFO can be used to provide a power-on reset and a manual reset to the TMS 9900 as shown in Figure 4. A Schmitt-trigger circuit driving the D input generates a fast-rising waveform when the input voltage rises to a specific value. At power turn-on, voltage across the $0.1 \mu \mathrm{~F}$ capacitor in Figure 4 will rise towards $V_{C C}$. This circuit provides a delay that resets the TMS 9900 after $V_{C C}$ has stabilized. An optional manual reset switch can be connected to the delay circuit for resetting the TMS 9900 at any time. The TMS 9900 HOLD signal could alternately be actuated by FFD.
The ground terminals GND1 and GND2 should be connected together and to system ground.

TYPE SN74LS362 (TIM9904) four-phase clock generator/driver

FIGURE 3-EXTERNAL OSCILLATOR TIMING

OPTIONAL MANUAL RESET SWITCH

FIGURE 4-POWER-ON RESET

- High VOH . . . 3.65 V Min (74LS')
- Choice of 8 Latches or 8 D-Type Flip-Flops In a Single Package
- 3-State Bus-Driving Outputs
- Full Parallel-Access for Loading and Reloading
- Buffered Control Inputs
- Clock/Enable Input Has Hysteresis to Improve Noise Rejection and P-N-P Inputs To Reduce D-C Loading
- SN54LS373/SN74LS373 and SN54LS374/ SN74LS374 Are Similar But Have Standard V_{OH} of 2.4 V Min
'LS363
FUNCTION TABLE

OUTPUT	ENABLE		
CONTROL	G	D	OUTPUT
L	H	H	H
L	H	L	L
L	L	X	Q_{O}
H	X	X	Z

'LS364
function table

| FUNCTION TABLE |
| :---: | :---: | :---: | :---: |
| OUTPUT
 CONTROL CLOCK D OUTPUT
 L \uparrow H H
 L \uparrow L L
 L L X $\mathrm{Q}_{\mathbf{O}}$
 H X X Z |

See explanation of function tables on page 3-8.

SN54LS363 . . . J PACKAGE SN74LS363 . . J OR N PACKAGE

SN54LS364 : = J PACKAGE SN74LS364 . . J OR N PACKAGE (TOP VIEW)

description

TYPES SN54LS363, SN54LS364, SN74LS363, SN74LS364
OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS
functional block diagram
Same as SN54LS373/SN74LS373 and SN54LS374/SN74LS374
schematics of inputs and outputs
'LS363

EQUIVALENT OF DATA AND OUTPUT CONTROL INPUTS Data: $R_{\text {eq }}=20 \mathrm{k} \Omega$ NOM Output control: $\mathrm{R}_{\mathrm{eq}}=18 \mathrm{k} \Omega$ NOM	EQUIVALENT OF ENABLE INPUT	TYPICAL OF ALL OUTPUTS

EQUIVALENT OF
DATA INPUTS

EQUIVALENT OF OUTPUT
CONTROL INPUT

EOUIVALENT OF
CLOCK INPUT
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltoge values are with respect to network ground terminal.
recommended operating conditions

$\uparrow \downarrow$ The arrow indicates the transition of the clock/enable input used for reference: \uparrow for the low-to-high transition, \downarrow for the high-to-low transi tion. OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54LS'			SN74LS'			UNIT		
		MIN	TYP ${ }^{\text {\# }}$	MAX	MIN	TYP ${ }^{\text {¢ }}$	MAX					
$\mathrm{V}_{\text {iH }}$	High -evel input voltage					2			2			v
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.7			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage	$\begin{array}{ll} V_{C C}=M I N, \quad V_{I H}=2 V, \\ V_{I L}=V_{I L} \text { max }, & I_{O H}=M A X \end{array}$		3.45			3.65			v		
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	${ }^{1} \mathrm{OL}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v		
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5			
IOZH	Off-state output current, high-level voltage applied	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=3.65 \mathrm{~V} \end{aligned}$				20			20	$\mu \mathrm{A}$		
${ }^{\text {I ORL }}$	Off-state output current, low-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				-20			-20	$\mu \mathrm{A}$		
1	input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA		
${ }_{1 / \mathrm{H}}$	High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-400			-400	$\mu \mathrm{A}$		
los	Short-circuit output current§	$V_{C C}=$ MAX		-30		-130	-30		-130	mA		
Icc	Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, Output control at 4.5 V			42	70		42	70	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	'LS363			'LS364			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{f}_{\text {max }}$			$C_{L}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$ See Notes 2 and 3				35	50		MHz
tPLH	Data	Any 0			15	23				ns
tPHL					18	27				
tPLH	Clock or enable	Any Q			19	30		21	33	ns
tPHL					24	36		22	34	
tPZH	Output	Any 0			16	28		16	28	ns
tPZL	Control				22	36		22	36	
${ }_{\text {tPHZ }}$	Output Control	Any 0	$C_{L}=5 p F, \quad R_{L}=667 \Omega$ See Note 3		12	20		10	18	ns
tPLZ					16	25		14	24	

TYPES SN54LS363, SN54LS364, SN74LS363, SN74LS3E4
OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

7

- Choice of 8 Latches or 8 D-Type Flip-Flops In a Single Package
- 3-State Bus-Driving Outputs
- Full Parallel-Access for Loading
- Buffered Control Inputs
- Clock/Enable Input Has Hysteresis to Improve Noise Rejection
- P-N-P Inputs Reduce D-C Loading on Data Lines ('S373 and 'S374)
- SN54LS363 and SN74LS364 Are Similar But Have Higher V_{OH} For MOS Interface

LS373, 'S373
FUNCTION TABLE

OUTPUT CONTROL	ENABLE G	D	OUTPUT
L	H	H	H
L	H	L	L
L	L	X	O $_{0}$
H	X	X	Z

'LS374, 'S374 FUNCTION TABLE

OUTPUT CONTROL	CLOCK	D	OUTPUT
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{0}
H	X	X	Z

See explanation of function tables on page 3-8.

SN54LS373, SN54S373 . . . J PACKAGE SN74LS373, SN74S373 . . . J OR N PACKAGE (TOP VIEW)

SN54LS374, SN54S374 . . . J PACKAGE SN74LS374, SN74S374 . . . J OR N PACKAGE (TOP VIEW)

description
These 8 -bit registers feature totem-pole three-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance third state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight latches of the 'LS373 and 'S373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was setup.

TYPES SN54LS373, SN54LS374, SN54S373, SN54S374,
SN74LS373, SN74LS374, SN74S373, SN74S374
OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS
description (continued)
The eight flip-flops of the 'LS374 and 'S374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were setup at the D inputs.

Schmitt-trigger buffered inputs at the enable/clock lines simplify system design as ac and dc noise rejection is improved by typically 400 mV due to the input hysteresis. A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.
The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are off.
'LS373, 'S373
TRANSPARENT LATCHES

'LS374, 'S374 POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

absoiute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS ${ }^{\prime}$			SN74LS'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V_{OH}				5.5			5.5	V
High-level output current, 1 OH				-1			-2.6	mA
Width of clock/enable pulse, t_{w}	High	15			15			ns
	Low	15			15			
Data setup time, $\mathrm{t}_{\text {su }}$	${ }^{\text {L LS373 }}$	- \downarrow			O \downarrow			ns
	‘LS374	$20 \uparrow$			$20 \uparrow$			
Data hold time, th_{h}	${ }^{\prime}$ LS373	$10 \downarrow$			$10 \downarrow$			ns
	${ }^{\text {'LS374 }}$	$0 \uparrow$			$0 \uparrow$			
Operating free-air temperature, T_{A}		-55		125	0	70		${ }^{\circ} \mathrm{C}$

$\uparrow \downarrow$ The arrow indicates the transition of the clock/enable input used for reference: \uparrow for the fow-to-high transition, \downarrow for the high-to-low transition.

TYPES SN54LS373, SN54LS374, SN74LS373, SN74LS374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		SN54LS'			SN74LS'			UNIT		
		MIN	TYP \ddagger	MAX	MIN	TYP ${ }_{\text {¢ }}$	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.7			0.8	V		
$V_{\text {IK }}$	Input clamp voltage	$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V		
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 V \\ & V_{I L}=V_{I L} \max , I_{O H}=\text { MAX } \end{aligned}$		2.4	3.4		2.4	3.1		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=\text { MIN, } \quad V_{I H}=2 V, \\ & V_{I L}=V_{I L} \max \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{IOL}^{\prime}=24 \mathrm{~mA}$					0.35	0.5			
IOZH	Off-state output current, high-level voltage applied	$\begin{aligned} & V_{C C}=M A X, \quad V_{I H}=2 V \\ & V_{O}=2.7 V \end{aligned}$				20			20	$\mu \mathrm{A}$		
IOZL	Off-state output current, low-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				-20			-20	$\mu \mathrm{A}$		
11	Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA		
IIH	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
${ }_{1 / 2}$	Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA		
Ios	Short-circuit output current ${ }^{\S}$	$V_{C C}=M A X$		-30		-130	-30		-130	mA		
ICC	Supply current	$V_{C C}=M A X$ Output control at 4.5 V	'LS373		24	40		24	40	mA		
			'LS374		27	45		27	45			

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \top_{A}=25 \mathrm{C}$
§ Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second
switching characteristics, $\mathrm{V}_{\mathbf{C C}}=\mathbf{5} \mathrm{V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS373			'LS374			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$			$C_{L}=45 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=667 \Omega$ See Notes 2 and 3				35	50		MHz
tPLH	Data	Any 0			10	18				
tPHL					18	27				ns
${ }^{\text {tPLH }}$	Clock or enabie	Any Q			14	25		16	28	
tphi					24	36		22	34	ns
tpz H	Output Control	Any Q			16	28		16	28	ns
tPZL					22	36		22	36	ns
tPHZ	Output Control	Any 0	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=667 \Omega$ See Note 3		12	20		10	18	ns
tPLZ					16	25		14	24	ns

NOTES: 2. Maximum clock frequency is tested with all outputs loaded,
3. See load circuits and waveforms on page 3-11,
$f_{\text {max }} \equiv$ maximum clock frequency
$\mathbf{t}_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
${ }^{t_{P Z H}} \equiv$ output enable time to high level
$t_{P Z L} \equiv$ output enable time to low level
tPHZ \equiv output disable time from high level
${ }^{\text {tpLZ }} \equiv$ output disable time from low level

TYPES SN54S373, SN54S374, SN74S373, SN74S374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

schematic of inputs and outputs

absolute maximuim ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54S'			SN74S'			UN:T
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, $\mathrm{VOH}_{\mathrm{OH}}$				5.5			5.5	V
High-level output current, 1 OH				-2			-6.5	mA
Width of clock/enable pulse, $\mathrm{t}_{\text {w }}$	High	6			6			ns
	Low	7.3			7.3			
Data setup time, $\tau_{\text {su }}$	'S373	$0 \downarrow$			O \downarrow			ns
	'S374	$5 \uparrow$			$5 \uparrow$			
Data hold time, th	${ }^{\text {s }}$ S373	$10 \downarrow$			$10 \downarrow$			
	'S374	$2 \uparrow$			$2 \uparrow$			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

$\uparrow \downarrow$ The arrow indicates the transition of the clock/enable input used for reference: \uparrow for the low-to-high transition, \downarrow for the high-to-low transition.

TYPES SN54S373, SN54S374, SN74S373, SN74S374
OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8	V
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
VOH	High-level output voltage	SN54S'	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{OH}=\mathrm{MAX} \end{aligned}$	2.4	3.4		V
		SN74S'			2.4	3.1		
VOL	Low-fevel output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{IH}} & =2 \mathrm{~V}, \\ \mathrm{IOL}^{\prime} & =20 \mathrm{~mA} \end{aligned}$			0.5	V
IOZH	Off-state output current, high-level voltage applied		$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{O}=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,			50	$\mu \mathrm{A}$
IOZL	Off-state output current, low-level voltage applied		$\begin{aligned} & V_{C C}=\mathrm{MAX}, \\ & V_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,			-50	$\mu \mathrm{A}$
11	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I_{IH}	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
$1{ }_{12}$	Low-level input current		$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-250	$\mu \mathrm{A}$
Ios	Short-circuit output current \S		$V_{C C}=$ MAX		-40		-100	mA
${ }^{\prime} \mathrm{CC}$	Supply current		$V_{C C}=M A X$	'S373		105	160	m
			'S374		90	140	mA	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25 \mathrm{C}^{\circ}$
§ Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	S373			'S374			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$			$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$ See Notes 2 and 4				75	100		MHz
tPLH	Data	Any 0			5	9				ns
tPHL					9	13				ns
tPLH	Clock or enable	Any 0			7	14		8	15	ns
tPHL					12	18		11	17	
${ }^{\text {tPZ }}$	Output	Any 0			8	15		8	15	ns
$\pm \mathrm{P} \mathrm{Z} \mathrm{L}$	Control				11	18		11	18	
tPHZ	Output	Any Q	$C_{L}=5 p F, \quad R_{L}=280 \Omega$ See Note 3		6	9		5	9	ns
tPLZ	Control				8	12		7	12	

NOTES: 2. Maximum clock frequency is tested with all outputs loaded
4. See load circuits and waveforms on page 3-10
${ }^{f_{\text {max }}}=$ maximum clock frequency
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level outpu
${ }^{t} \mathrm{ZzH}_{\mathrm{H}} \equiv$ output enable time to high level
${ }^{\text {t }} \mathrm{PZ} \mathrm{L} \equiv$ output enable time to low level
tPHZ \equiv output disable time from high level
tpLZ \equiv output disable time from low leve

TYPES SN54LS374, SN54S374, SN74LS374, SN74S374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

CLOCK CIRCUIT FOR DUS EXCHANGE

- Supply Voltage and Ground on Corner Pins To Simplify P-C Board Layout
logic
FUNCTION TABLE
(EACH LATCH)

INPUTS	OUTPUTS		
D	G	Q	$\overline{\text { Q }}$
L	H	L	H
H	H	H	L
X	L	O $_{0}$	\bar{Q}_{0}

$H=$ high level, $L=$ low level, $X=$ irrelevant
$Q_{0}=$ the level of Q before the high-to-low transition of G.
functional block diagram (each latch)

SN54LS375 . . . J OR W PACKAGE
SN74LS375 . . J OR N PACKAGE
SN74LS375 . . . J OR N PACKAGE (TOP VIEW)

description

The SN54LS375 and SN74LS375 bistable latches are electrically and functionally identical to the SN54LS75 and SN74LS75, respectively. Only the arrangement of the terminals has been changed in the SN54LS375 and SN74LS375.

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable goes high.

These circuits are completely compatible with all popular TFL or DTL families. All inputs are diodeclamped to minimize transmission-line effects and simplify system design. The SN54LS375 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; SN74LS375 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions, electrical characteristics, and switching characteristics
Same as SN54LS75 and SN74LS75, see page 7-39.
schematics of inputs and outputs

- Four J-K Flip-Flops in a Single Package ... Can Reduce FF Package Count by 50\%
- Common Positive-Edge-Triggered Clocks with Hysteresis . . Typically 200 mV
- Fully Buffered Outputs
- Typical Clock Input Frequency . . . 45 MHz

description

These quadruple TTL J- \bar{K} flip-flops incorporate a number of third-generation IC features that can simplify system design and reduce flip-flop package count by as much as 50%. They feature hysteresis at the clock input, fully buffered outputs, and direct clear capability. The positive-edge-triggered SN54376 and SN74376 are directly compatible with most Series 54/74 MSI registers.
The SN54376 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74376 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

COMMON INPUTS				
CLEAR	CLOCK	INPUTS		JUTPUT
L	X	$\overline{\text { K }}$	Q	
H	\uparrow	X	X	L
H	\uparrow	L	H	Q_{0}
H	\uparrow	H	H	H
H	\uparrow	H	L	L
H	L	X	L	TOGGLE

See explanation of function tables on page 3-8.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54376, SN74376 QUADRUPLE J-K FLIP-FLOPS
recommended operating conditions

		SN54376			SN74376			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL				16			16	mA
Clock frequency		0		30	0		30	MHz
Pulse width, $\mathrm{t}_{\mathbf{w}}$	Clock high	22			22			ns
	Clock low	12			12			
	Preset or clear low	12			12			
Setup time, ${ }_{\text {su }}$	$J, \overline{\mathrm{~K}}$ inputs	$0 \uparrow$			$0 \uparrow$			ns
	Clear inactive state	$10 \uparrow$			$10 \uparrow$			
Input hold time, th		$20 \uparrow$			$20 \uparrow$			ns
Operating free-air temperature, T_{A}		55		125	0		70	${ }^{\circ} \mathrm{C}$

$\uparrow \downarrow$ The arrow indicates the edge of the clock pulse used for reference: \uparrow for the rising edge, \downarrow for the falling edge.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text {+ }}$		MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
VOH	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.4	\cdot	V
$V_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{I H}=2 \mathrm{~V}, \\ & I_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
11	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{1} \mathrm{H}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}_{\text {r }}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
Ios	Short-circuit output current \S	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-30		-85	mA
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{C C}=\mathrm{MAX}$			52	74	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output shoutd be shorted at a time.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$ See Note 2	30	45		MHz
tPHL	Propagation delay time, high-to-low-level output from clear			17	30	ns
tPLH	Propagation delay time, low-to-high-level output from clock			22	35	ns
tPHL	Propagation delay time, high-to-fow-level output from clock			24	35	ns

NOTE 2: Load circuit and voltage waveforms are shown on page 310.

TYPES SN54LS377, SN54LS378, SN54LS379, SN74LS377, SN74LS378, SN74LS379 OCTAL, HEX, AND QUAD D-TYPE FLIP-FLOPS WITH ENABLE BULLETIN NO. DL-S 7612474, ОСTOBER 1976

- 'LS377 and ‘LS378 Contain Eight and Six Flip-Flops, Respectively, with SingleRail Outputs
 - ‘LS379 Contains Four Flip-Flops with Double-Rail Outputs
 - Individual Data Input to Each Flip-Flop
 - Applications Include:
 Buffer/Storage Registers
 Shift Registers
 Pattern Generators
 description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic with an enable input. The 'LS377, 'LS378, and 'LS379 devices are similar to 'LS273, 'LS174, and 'LS175, respectively, but feature a common enable instead of a common clear.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the enable input $\overline{\mathrm{G}}$ is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the $\overline{\mathrm{G}}$ input.

These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 30 MHz while maximum clock frequency is typically 40 megahertz. Typical power dissipation is 10 milliwatts per flip-flop.
FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS				OUTPUTS
$\overline{\mathrm{G}}$	CLOCK	DATA	Q	$\overline{\mathrm{O}}$
H	X	X	Q_{0}	$\overline{\mathrm{O}} 0$
L	\uparrow	H	H	L
L	\uparrow	L	L	H
X	L	X	Q_{0}	$\overline{\mathrm{O}}_{0}$

See explanation of function tables on page 3-8.

SN74LS377 ... JOR N PACKAGE (TOP VIEW)

SN54LS378 . . J OR W PACKAGE SN74LS378 . . . J OR N PACKAGE

SN54LS379 . . . J OR W PACKAGE SN74LS379 . . . J OR N PACKAGE

TYPES SN54LS377, SN54LS378, SN54LS379, SN74LS377, SN74LS378, SN74LS379 OCTAL, HEX, AND QUAD D-TYPE FLIP-FLOPS WITH ENABLE

functional block diagram

schematics of inputs and outputs

absolute maximum rating over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

${ }^{\uparrow}$ The arrow indicates that the rising edge of the clock pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			SN54LS ${ }^{\prime}$			SN74LS ${ }^{\prime}$			UNIT			
		MIN	TYP \ddagger	MAX	MIN	TYP宰	MAX							
V_{IH}	High-level input voltage				2			2			V			
V_{11}	Low-level input voltage						0.7			0.8	V			
V_{IK}	Input clamp voltage				$\mathrm{V}_{\text {CC }}=$ MIN, $\quad 11=-18 \mathrm{~mA}$					-1.5			-1.5	V
VOH High-level output voltage		$\begin{array}{\|ll\|} \hline V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \hline \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max, } & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ \hline \end{array}$			2.5	3.5		2.7	3.5		V			
V_{OL}	Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{array}$		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5				
$1 /$	Input current at maximum input voltage	$V_{C C}=\operatorname{MAX}, \quad V_{i}=7 V$					0.1			0.1	mA			
IIH	High-level input current	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$					20			20	$\mu \mathrm{A}$			
IIL	Low-level input current	$V_{C C}=M A X$,					-0.4		$\%$	-0.4	mA			
Ios	Short-circuit output current ${ }^{\S}$	$V_{C C}=$ MAX			-20		-100	-20		-100	mA			
${ }^{\prime} \mathrm{CC}$	Supply current	$V_{C C}=M A X$,	See Note 2	'LS377		17	28		17	28	mA			
				'LS378		13	22.		13	22	mA			
				'LS379		9	15		9	15	mA			

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Note more than one input should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: With all outputs open and ground applied to all data and enable inputs, I CC is measured after a momentary ground, then 4.5 V , is applied to clock.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	$\begin{aligned} & \hline C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega \\ & \text { See Note } 3 \end{aligned}$	30	40		MHz
tPLH Propagation delay time, low-to-high-level output from clock			17	27	ns
tPHL Propagation delay time, high-to-ow-level output from clock			18	27	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-11.

PIN DESIGNATIONS

DESIGNATION	PIN NOS.	FUNCTION					
A3, A2, A1, A0	$17,19,1,3$	WORD A INPUTS					
B3, B2, B1, B0	$16,18,2,4$	WORD B INPUTS					
S2, S1, S0	$7,6,5$	FUNCTION-SELECT INPUTS					
C_{n}	15	CARRY INPUT FOR ADDITION, INVERTED CARRY INPUT FOR SUBTRACTION					
F3, F2, F1, F0	$12,11,9,8$	FUNCTION OUTPUTS	$	$	\bar{P}	14	INVERTED CARRY PROPAGATE OUTPUT
:---:	:---:	:---:					
\bar{G}	13	INVERTED CARRY GENERATE OUTPUT					
$V_{\text {CC }}$	20	SUPPLY VOLTAGE					
GND	10	GROUND					

- A Fully Parallel 4-Bit ALU in 20-Pin Package for 0.300-Inch Row Spacing
- Ideally Suited for High-Density Economical Processors
- Parallel Inputs and Outputs and Full Look-Ahead Provide System Flexibility
- Arithmetic and Logic Operations Selected Specifically to Simplify System Implementation:

A Minus B
B Minus A
A Plus B
and Five Other Functions

- Schottky-Clamped for High Performance 16-Bit Add Time . . . 26 ns Typ Using

Look-Ahead 32-Bit Add Time . . . 34 ns Typ Using

Look-Ahead

FUNCTION TABLE

SELECTION			ARITHMETIC/LOGIC
S2	S1	SO	
OPERATION			
L	L	L	CLEAR
L	L	H	B MINUS A
L	H	L	A MINUS B
L	H	H	A PLUS B
H	L	L	A P B
H	L	H	A + B
H	H	L	AB
H	H	H	PRESET
H = high level.	L = low tevel		

description
The 'S381 is a Schottky TTL arithmetic logic unit (ALU)/function generator that performs eight binary arithmetic/ logic operations on two 4 -bit words as shown in the function table. These operations are selected by the three function-select lines (S0, S1, S2). A full carry look-ahead circuit is provided for fast, simultaneous carry generation by means of two cascade outputs ($\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$) for the four bits in the package. The method of cascading SN54182/ SN74182 or SN54S182/SN74S182 look-ahead carry generators with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the '182 and 'S182. The typical addition times shown above illustrate the short delay time required for addition of longer words when full look-ahead is employed. The exclusive-OR, AND, or OR function of two Boolean variables is provided without the use of external circuitry. Also, the outputs can be either cleared (low) or preset (high) as desired.

functional block diagram and schematics of inputs and outputs

7

TYPES SN54S381, SN74S381
 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

REVISED OCTOBER 1976

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies to each A input in conjunction with its respective B input; for example AO with BO, etc.
recommended operating conditions

	SN54S381			SN74S381			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature,	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
V_{IH}	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
$V_{\text {IK }}$	Input clamp voltage		$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$			-1.2	V
VOH	High-level output voltage	SN54S381	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \overline{\mathrm{~V}} \mathrm{IH}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	2.4	3.4		V
		SN74S381		2.7	3.4		
V_{OL}	Low-level output voltage		$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ V_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$			0.5	V
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I / H	High-level input current	Any S input	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
		C_{n}				250	
		All others				200	
$1 / \mathrm{L}$	Low-level input current	Any S input	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.5 \mathrm{~V}$			-2	mA
		C_{n}				-8	
		All others				-6	
Ios	Short-circuit output current §		$V_{C C}=M A X$	-40		-100	mA
${ }^{\text {ICC }}$	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		105	160	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time.
switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {f }}$	FROM (inPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	C_{n}	Any F	$C_{L}=15 \mathrm{pF}, \quad R_{L}=280 \Omega$ See Note 3	10	17	
tPHL				10	17	ns
tPLH	Any A or B	$\overline{\mathrm{G}}$		12	20	ns
tPHL				12	20	
tPLH	Any A or B	$\overline{\mathbf{P}}$		11	18	
tPHL				11	18	n
tPLH	$\mathrm{A}_{\boldsymbol{i}}$ or $\mathrm{B}_{\mathbf{i}}$	F_{i}		18	27	ns
tPHL				16	25	ns
tPLH	Any S	Any		18	30	
tpHL				18	30	

${ }^{\text {I }}{ }_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54LS386, SN74LS386

QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

REVISED OCTOBER 1976
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS386			SN74LS386			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voitage, $\mathrm{V}_{\text {C }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, $\mathrm{IOL}_{\mathrm{OL}}$			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54LS386			SN74LS386			UNIT
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{1 H}$ High-level input voltage			2			2			V
$V_{\text {IL }}$ Low-level input voltage			0.7			0.8			V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$I_{1}=-18 \mathrm{~mA}$	-1.5			-1.5			V
VOH High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O H}=-400 \mu \mathrm{~A} \end{aligned}$	2.5	3.4		2.73 .4			V
VOL Low-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I H}=2 \mathrm{~V} \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$					0.35	0.5	
II Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad V_{1}=7 \mathrm{~V}$				0.2			0.2	mA
$\mathrm{I}_{\text {IH }} \quad$ High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				40			40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\quad V_{1}=0.4$				-0.8			-0.8	mA
IOS Short-circuit output current §	$V_{C C}=M A X$		-6		-40	-5	6.1	-42	mA
$\mathrm{I}_{\text {CC }}$ Supply current	$V_{C C}=$ MAX, See Note 2		$6.1-10$					10	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Not more than one output should be shorted at a time.
NOTE 2: ICC is measured with the inputs grounded and the outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	A or B	Other input low	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 3		12	23	ns
${ }^{\text {PPHL }}$					10	17	ns
tPLH	A or B	Other input high			20	30	ns
tPHL					13	22	

$\|_{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level outpu
NOTE 3: Load circuit and voltage waveforms are shown on page 3-11

- Dual Versions of the Popular '90A, 'LS90 and '93A, 'LS93
- '390, 'LS390. . Individual Clocks for A and B Flip-Flops Provide Dual $\div 2$ and $\div 5$ Counters
- '393, 'LS393. . .Dual 4-Bit Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Package Count by 50%
- Typical Maximum Count Frequency . . . 35 MLHz
- Buffered Outputs Reduce Possibility of Collector Commutation

description

SN54390, SN54LS390 . . . J OR W PACKAGE
SN74390, SN74LS390 . . J J OR N PACKAGE
(TOP VIEW)

SN54393, SN54LS393 . . . J OR W PACKAGE SN74393, SN54LS393 . . . J OR N PACKAGE (TOP VIEW) master-slave flip-flops and additional gating to implement two individual four-bit counters in a single package. The '390 and 'LS390 incorporate dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The '393 and 'LS393 each comprise two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide-by-256. The '390, 'LS390, '393, and 'LS393 have parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.
Series 54 and Series 54LS circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 and Series 74 LS circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TYPES SN54390, SN54LS390, SN54393, SN54LS393, SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS


```
NOTES: A. Output }\mp@subsup{Q}{A}{}\mathrm{ is connected to input B for BCD count.
    B. Output }\mp@subsup{Q}{D}{}\mathrm{ is connected to input A for bi-quinary
    C. H = high level, L = low level.
```

functional block diagrams

7

'390, 'LS390

'393, 'LS393

TYPES SN54390, SN54LS390, SN54393, SN54LS393,

 SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERSschematics of inputs and outputs

EQUIVALENT OF EACH InPut INPUT $\mathrm{R}_{\text {eq }} \mathrm{NOM}$ A ('390) \qquad $3 \mathrm{k} \Omega$ B ('390) \qquad $1.5 \mathrm{k} \Omega$ A ('393) \qquad Any clear $8 \mathrm{k} \Omega$	TYPICAL OF ALL OUTPUTS

TYPES SN54390, SN54393, SN74390, SN74393 DUAL 4-BIT DECADE AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

\downarrow The arrow indicates that the falling edge of the clock pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^32]| switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}_{\text {A }}=25^{\circ} \mathrm{C}$ | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER! | FROM (INPUT) | TO (OUTPUT) | test Conditions | '390 | | | '393 | | | UNIT |
| | | | | MIN | TYP | MAX | MIN | TYP | MAX | |
| $f_{\text {max }}$ | A | $\mathrm{a}_{\text {A }}$ | $\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=400 \Omega, \end{aligned}$
 See Note 3
 and
 Figure 1 | 25 | 35 | | 25 | 35 | | MHz |
| | B | a_{B} | | 20 | 30 | | | | | |
| tPLH | A | $\mathrm{a}_{\text {A }}$ | | | 12 | 20 | | 12 | 20 | ns |
| tPHL | | | | | 13 | 20 | | 13 | 20 | |
| tPLH | A | $0^{\text {c of '390 }}$ | | | 37 | 60 | | 40 | 60 | ns |
| tPHL | | O_{D} of '393 | | | 39 | 60 | | 40 | 60 | |
| tPLH | B | a_{B} | | | 13 | 21 | | | | ns |
| tpHL | | | | | 14 | 21 | | | | |
| tPLH | B | ${ }^{\circ} \mathrm{C}$ | | | 24 | 39 | | | | ns |
| tPHL | | | | | 26 | 39 | | | | |
| tPLH | B | $0_{\text {D }}$ | | | 13 | 21 | | | | ns |
| tPHL | | | | | 14 | 21 | | | | |
| tPHL | Clear | Any | | | 24 | 39 | | 24 | 39 | ns |

$I_{f_{\text {max }}} \equiv$ maximum count frequency
${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit is shown on page 3-10.
PARAMETER MEASUREMENT INFORMATION

NOTE A: Input pulses are supplied by a generator having the following characteristics $\mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=50 \%$, $z_{\text {out }} \approx 50$ ohms.

FIGURE 1
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) . 7 V
Clear input voltage . 7 V
Any A or B clock input voltage . 5.5 V
Operating free-air temperature range: SN54LS390, SN54LS393 $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74LS390, SN74LS393
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

\downarrow The arrow indicates that the falling edge of the clock pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS ${ }^{\prime}$			SN74LS'			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$V_{1 H}$	High-level input voltage								2			2			V
$V_{\text {IL }}$	Low-level input voltage							0.7			0.8	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~m}$					-1.5			-1.5	V			
V_{OH}	High-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{I L} \text { max }, & V_{O H}=-400 \mu \mathrm{~A} \end{array}$			2.5	3.4		2.7	3.4		V			
VOL Low-level output voltage			$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \end{array}$		$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
			$\mathrm{IOL}=8 \mathrm{mAl}$					0.35	0.5						
11	Input current at maximum input voltage	Clear			$V_{C C}=$ MAX		$V_{1}=7 \mathrm{~V}$			0.1			0.1	mA	
		Input A	$V_{1}=5.5 \mathrm{~V}$					0.2			0.2				
		Input B						0.4			0.4				
IIH	High-level input current	Clear	$V_{C C}=\mathrm{MAX}, \quad V_{1}=2.7 \mathrm{~V}$					20			20	$\mu \mathrm{A}$			
		Input A						40			40				
		Input B						80			80				
$\mathrm{IIL}^{\text {I }}$	Low-level input current	Clear	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$					-0.4			-0.4	mA			
		Input A						-1.6			-1.6				
		Input B						-2.4			-2.4				
los	Short-circuit output current §		$V_{C C}=M A X$			-20		-100	-20		-100	mA			
ICC	Supply current		$V_{C C}=M A X,$ See Note 2		'LS390		15	26		15	26	mA			
			'LS393		15	26		15	26						

[^33]
TENTATIVE DATA

This page provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER I	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS		LS39			LS393		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	A	Q_{A}	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \end{aligned}$ See Note 4 and Figure 2	25	35		25	35		MHz
	B	Q_{B}		20	30					
tPLH	A	$\mathrm{Q}_{\text {A }}$			12	20		12	20	ns
tPHL					13	20		13	20	
tPLH	A	$\begin{aligned} & \mathrm{Q}_{\mathrm{C}} \text { of 'LS390 } \\ & \mathrm{Q}_{\mathrm{D} \text { of }} \mathrm{LS} 393 \\ & \hline \end{aligned}$			37	60		40	60	ns
tPHL					39	60		40	60	
tPLH	B	O_{B}			13	21				ns
tPHL					14	21				
tPLH	B	${ }^{\circ} \mathrm{C}$			24	39				ns
tPHL					26	39				
tPiH	B	a_{D}			13	21				ns
tPHL					14	21				
tPHL	Clear	Any			24	39		24	39	ns

$I_{f_{\text {max }}} \equiv$ maximum count frequency
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 4: Load circuit is shown on page 3-11

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTE A: Input pulses are supplied by a generator having the following characteristics $t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty $\mathrm{cycle}=50 \%$, $Z_{\text {out }} \approx 50$ ohms.

- Three-State, 4 Bit, Cascadable, Parallel-In, Parallel-Out Registers
- 'LS395A Offers Three Times the Sink-Current Capability of 'LS395
- Low Power Dissipation . . . 75 mW Typical (Enabled)
- Applications:

N-Bit Serial-To-Parallel Converter N-Bit Parallel-To-Serial Converter N-Bit Storage Register

description

These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, load/shift, output control and direct overriding clear inputs.

Shifting is accomplished when the load/shift control is low. Parallel loading is accomplished by applying the four bits of data and taking the load/shift control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

When the output control is low, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the registers is not affected. During the high-impedance mode, the output at $Q_{D}{ }^{\prime}$ is still available for cascading.

FUNCTION TABLE

See explanation of function tables on page 3-8.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal. instruments reserves the right to change or discontinue this product without notice. ordis-

TYPES SN54LS395A, SN74LS395A 4-BIT CASCADABLE SHIFT REGISTERS WITH 3-STATE OUTPUTS

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAAviETER		TEST CONDITIONS ${ }^{\text {a }}$			SN54LS395A			SN74LS395A			Uivit			
		MIN	TYP ${ }_{\text {+ }}^{\text {+ }}$	MAX	MIN	TYP ${ }^{\text {¢ }}$	MAX							
$\mathrm{V}_{\text {IH }}$	High-level input voltage							2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.7			0.8	V			
VIK	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V			
V_{OH}	High-level output voltage	$\begin{array}{ll} V_{C C}=\text { MIN }, & V_{I H}=2 V \\ V_{I L}=V_{I L} \max , & l_{O H}=\text { MAX } \end{array}$		$\begin{aligned} & \mathrm{Q}_{A}, \mathrm{a}_{B}, \\ & \mathrm{a}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}} \end{aligned}$	2.4	3.4		2.4	3.1		V			
				$\mathrm{Q}^{\prime}{ }^{\prime}$	2.5	3.4		2.7	3.4		V			
V_{OL}	Low-levei output voitage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \max , \\ & V_{I H}=2 V \end{aligned}$	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$,	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
			Q_{C}, Q_{D}	$\mathrm{I}^{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5				
			$Q_{D}{ }^{\prime}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
				$!\mathrm{OL}^{\prime}=8 \mathrm{~mA}$					0.35	0.5				
IOZH	Off-state output current, high-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$	$V_{I H}=2 \mathrm{~V},$	$\begin{aligned} & \mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \\ & \mathrm{a}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}} \end{aligned}$			20			20	$\mu \mathrm{A}$			
IOZL	Off-state output current, low-level voltage applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$	$V_{I H}=2 \mathrm{~V}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{A}}, \mathrm{a}_{\mathrm{B}}, \\ & \mathrm{a}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}} \end{aligned}$			-20			-20	$\mu \mathrm{A}$			
11	Input current at maximum input vol tage	$V_{C C}=$ MAX	$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA			
$\mathrm{IIH}^{\text {l }}$	High-level input current	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
IIL	Low-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA			
Ios	Short-circuit output current§	$V_{C C}=$ MAX		$\begin{aligned} & Q_{A}, Q_{B}, \\ & Q_{C}, Q_{D} \end{aligned}$	-30		-130	-30		-130	mA			
				$\mathrm{Q}_{\mathrm{D}}{ }^{\prime}$	-20		-100	-20		-100	mA			
ICC	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 2	Condition A		18	29		18	29	mA			
				Condition B		15	25		15	25				

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 2: ${ }^{\mathrm{I}} \mathrm{CC}$ is measured with the outputs open, the serial input and mode control at 4.5 V , and the data inputs grounded under the following conditions:
A. Output control at 4.5 V and a momentary 3 V , then ground, applied to clock input.
B. Output control and clock input grounded.

TYPES SN54LS395A, SN74LS395A
4-BIT CASCADABLE SHIFT REGISTERS WITH 3-STATE OUTPUTS
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$ Maximum clock frequency	See Note 3, $a_{A}, a_{B}, a_{C}, a_{D}$ outputs: $R_{L}=667 \Omega, C_{L}=45 \mathrm{pF}$ $\mathrm{a}_{\mathrm{D}}{ }^{\prime}$ output: $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	25	35		MHz
tPHL Propagation delay time, high-to-low-level output from clear			23	35	ns
tPLH Propagation delay time, low-to-high-level output			23	35	ns
tPHL Propagation delay time, high-to-low-level output			20	30	ns
tPZH Output enable time to high level			13	20	ns
tPZL Output enable time to low level			24	36	ns
tPHZ Output disable time from high level	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},$$\text { See Note } 3$		11	17	ns
tplz Output disable time from low level			15	23	ns

NOTE 3: Load circuit and voltage waveforms are shown on page 3-11.
functional block diagram

schematics of inputs and outputs

EQUIVALENT OF SERIAL AND DATA INPUTS $\text { Serial: } R_{\mathrm{eq}}=30 \mathrm{k} \Omega \text { NOM }$ $\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}: \mathrm{R}_{\mathrm{eq}}=20 \mathrm{k} \Omega \mathrm{NOM}$	EQUIVALENT OF OTHER INPUTS	TYPICAL OF $a_{A}, a_{B}, a_{C}, a_{D}$ OUTPUTS	TYPICAL OF O $^{\prime}{ }^{\prime}$ OUTPUTS

- Double-Rail Outputs on 'LS398
- Single-Rail Outputs on 'LS399
- 'LS398 is Similar to 'LS298, Which Has Inverted Clock
- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Applications:

Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data
Implement Separate Registers Capable of Parallel Exchange of Contents Yet Retain External Load Capability

Üniversal Type Register for Implementing Various Shift Patterns; Even Has Compound Left-Right Capabilities
description
These monolithic quadruple two-input multiplexers with storage provide essentially the equivalent functional capabilities of two separate MSI functions (SN54LS157/SN74LS157 and SN54LS175/ SN74LS175) in a single 16-pin or 20-pin package.

When the word-select input is low, word 1 (A1, B1, $\mathrm{C} 1, \mathrm{D} 1$) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the positive-going edge of the clock pulse.

Typical power dissipation is 37 milliwatts. SN54LS398 and SN54LS399 are characterized for operation over the full military range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, SN74LS398 and SN74LS399 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54LS398 . . . J OR W PACKAGE
SN74LS398 . . . J OR N PACKAGE (TOP VIEW)

SN54LS399 . . . J OR W PACKAGE SN74LS399 . . . J OR N PACKAGE
(TOP VIEW)

FUNCTION TABLE

INPUTS		OUTPUTS			
WORD SELECT	CLOCK	$\mathbf{a}_{\mathbf{A}}$	$\mathbf{o}_{\mathbf{B}}$	$\mathbf{o}_{\mathbf{C}}$	$\mathbf{o}_{\mathbf{D}}$
L	\uparrow	a 1	b 1	c 1	d 1
H	\uparrow	a 2	b 2	c 2	d 2
x	L	a_{AO}	o_{BO}	o_{CO}	a_{DO}

See explanation of function tables on page 3-8.

TYPES SN54LS398, SN54LS399, SN74LS398, SN74LS399 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE
functional block diagram

7

schematics of inputs and outputs

TYPES SN54LS398, SN54LS399, SN74LS398, SN74LS399 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54LS'			SN74LS'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	\checkmark
High-level output current, I_{OH}				-400			-400	$\mu \mathrm{A}$
Low-ievei output current, IOL				4			8	mA
Width of clock pulse, high or low level, t_{w}		20			20			ns
Setup time, isu	Data	20			20			ns
	Word select	25			25			
Hold time, $\mathrm{th}^{\text {h }}$	Data	0			0			ns
	Word select	0			0			
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$			SN54LS'			SN74LS'			UNIT
				MIN	TYP ${ }^{+}$	MAX	MIN	TYP	MAX	
$\mathrm{V}_{1 \mathrm{H}}$ High-level input voltage				2 '			2			V
V_{iL} Low-level inpuit voltaỹe				0.7					0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5					-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \max & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$			2.5	3.4		2.7	3.4		V
VOL Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			${ }^{\prime} \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	
II Input current at maximum input voltage	$V_{C C}=$ MAX ,	$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
${ }^{1} \mathrm{IH}$ High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
IOS Short-circuit output current §	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-20		-100	-20		-100	mA
ICC Supply current	$V_{C C}=M A X$,	See Note 2			7.3	13		7.3	13	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\frac{1}{+}} \mathrm{All}$ typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, duration of the short-circuit should not exceed one second
NOTE 2: With all outputs open and all inputs except clock low, I CC is measured after applying a momentary 4.5 V , followed by ground, to the clock input.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	$C_{L}=15 \mathrm{pF}$,	$R_{\mathrm{L}}=2 \mathrm{k} \Omega$,		18	27	
tPHL	Propagation delay time, high-to-low-level output	See Note 3			21	32	ns

NOTE 3: Load circuit and waveforms are shown on page 3-11

- P-N-P Inputs and 3-State Outputs Maximize I/O and Data Bus Capabilities
- Data Latch Transparency Permits Asynchronous or Latched Receiver Modes
- Mode and Select Inputs Permit Storing With Outputs Enabled or Disabled
- Strobe-Controlled Flag Flip-Flop Indicates Status or Interrupt
- Asynchronous Clear Sets All Eight Data Lines Low and Initializes Status Flag
- High-Level Output Voltage, Typically 4 V , Drives Most MOS Functions Directly
- Direct Replacement for Intel 3212 or 8212

SN54S412... JPACKAGE
SN74S412 . . J OR N PACKAGE

description
This high-performance eight-bit parallel expandable buffer register incorporates package and mode selection inputs and an edge-triggered status flip-flop designed specifically for implementing bus-organized input/output ports. The three-state data outputs can be connected to a common data bus and controlled from the appropriate select inputs to receive or transmit data. An integral status flip-flop provides package busy or request interrupt commands. The outputs, with a 4 -volt typical high-level voltage, are compatible for driving low-threshold MOS directly.
dAta latches
The eight data latches are fully transparent when the internal gate enable, G , input is high and the outputs are enabled $(O E=H)$. Latch transparency is selected by the mode control (M), select ($\vec{S} 1$ and $S 2$), and the strobe (STB) inputs and during transparency each data output $\left(D O_{j}\right)$ follows its respective data input $\left(D I_{i}\right)$. This mode of operation can be terminated by clearing, de-selecting, or holding the data latches. See data latches function table.

MODE SELECTION
An input mode or an output mode is selectable from this single input line. In the input mode, MD=L, the eight data latch inputs are enabled when the strobe is high regardless of device selection. If selected during an input mode, the outputs will follow the data inputs. When the strobe input is taken low, the latches will store the most-recently setup data.

In the output mode, $M=H$, the output buffers are enabled regardless of any other control input. During the output mode the content of the register is under control of the select ($\overline{\mathrm{S} 1}$ and S 2) inputs. See data latches function table.

STATUS FLIP-FLOP

The status flip-flop provides a low-level output signal when:
a. the package is selected
b. a strobe input is received.

This status signal can be used to indicate that the register is busy or to initiate an interrupt type command.

TYPES SN54S412, SN74S412 (TIM8212) MULTI-MODE BUFFERED LATCHES

functional block diagram

schematics of inputs and outputs

TEXAS INSTRUMENTS

data latches function table							
FUNCTION	CLEAR	M	S1	S2	STB	DATA IN	DATA OUT
Clear	L	H	H	\times	X	X	L
Clear	L	L	L	H	L	X	L
De-select	X	L	\times	L	X	X	2
De-select	x	L	H	X	x	x	z
Hold	H	H	H	L	X	X	0
Hold	H	L	L	H	L	X	0
Data Bus	H	H	L	H	X	L	L
	H	H	L	H	x	H	H
	H	L	L	H	H	L	L
Data Bus	H	L	L	H	H	H	H
		ATUS F	LIP-F	Lop F	unctio	N TABLE	
		CLEAR	S̄1	S2	STB	$\overline{\text { INT }}$	
		L	H	\times	X	H	
		L	X	L	X	H	
		H	x	x	\downarrow	L	
		H	L	H	X	L	

$\mathrm{H} \equiv$ high level (steady state)
L 三low level (steady state)
$X \equiv$ irrelevant (any input, including transitions)
$Z \equiv$ high impedance (off)
$\downarrow \equiv$ transition from low to high level
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $\mathrm{V}_{\mathrm{CC}}($ see Note 1$)$
Input voltage.

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

			54S41			N4S4		
		MIN	NOM	MAX	MIN	NOM	MAX	NT
Supply voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
Pulse width, t_{w} (see Figures 1, 2, and 4)	STB or S1 - S2	25			25			ns
	Clear low	25			25			
Setup time, $\mathrm{t}_{\text {SU }}$ (see Figure 3)		15 \downarrow			15 \downarrow			ns
Hold time, t_{h} (see Figures 1 and 3)		20 \downarrow			20 \downarrow			ns
Operating free-air temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

\downarrow The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN54S412		SN74S412		UNIT		
			MIN	TYP \ddagger MAX	MIN	TYP才 MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage						2		2		V
$V_{\text {IL }}$	Low-level input voltage					0.85		0.85	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$:	$\mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.2		-1.2	V		
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	3.65	4	3.65	4	V		
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{IOL}^{\prime}=15 \mathrm{~mA}$	0.45		0.45		V		
			$1 \mathrm{OL}=20 \mathrm{~mA}$		0.5		0.5				
IOZH	Off-state output current, high-level voltage applied	$\begin{aligned} & \text { DO } 1 \text { thru } \\ & \text { DO } 8 \end{aligned}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$		50		50		$\mu \mathrm{A}$	
IOZL	Off-state output current, low-level voltage applied	$\begin{aligned} & \text { DO } 1 \text { thru } \\ & \text { DO } 8 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-50		-50	$\mu \mathrm{A}$		
11	Input current at maximum input voitage		$\mathrm{V}_{\text {CC }}=$ MAX	$v_{1}=5.5 \mathrm{~V}$		1		$!$	mA		
I_{H}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.25 \mathrm{~V}$		20		10	$\mu \mathrm{A}$		
IIL	Low-level input current	$\overline{\mathrm{S}} 1$	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$			-1		-1	mA		
		M				-0.75		-0.75			
		All others				-0.25		-0.25			
Ios	Short-circuit output current§		$V_{C C}=$ MAX		-20	-65	-20	-65	mA		
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, see Note 2		82			$82 \quad 130$	mA		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
NOTE 2: ' CC is measured with ail outputs open, clear input at 4.5 V , and all other inputs grounded.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	FROM	TO	FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	STB, $\overline{\mathbf{S}} 1$, or S2	Any	1	$C_{L}=30 \mathrm{pF}$ See Note 3		18	27	ns
tPHL		DO				15	25	
${ }^{\text {tPHL }}$	$\overline{\mathrm{CLR}}$	Any DO	2			18	27	ns
tPLH	$\mathrm{DI}_{\mathbf{i}}$	DOi	3			12	20	ns
${ }^{\text {tPHL }}$						10	20	
tPLH	$\overline{\mathrm{S}} 1$ or S2	INT	4	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$,		12	20	
tPHL	STB	INT	4	See Note 3		16	25	ns
${ }^{\text {Z }} \mathrm{ZH}$	$\overline{\mathrm{S}} 1, \mathrm{~S} 2$, or M	Any DO	5	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF},$ See Note 3		21	35	ns
${ }^{\text {t }} \mathrm{Z}$ L						25	40	
t Hz	$\overline{\mathrm{S}} 1, \mathrm{~S} 2$, or M	Any DO	5	$C_{L}=5 \mathrm{pF},$ See Note 3		9	20	ns
${ }_{\text {t }} \mathrm{L}$ Z						12	20	

tpLH \equiv propagation delay time, low-to-high-level output
$t_{p H L}$ 푸 propagation delay time, high-to-low-level output
ZHH \equiv output enable time to high level
${ }_{\mathrm{Z}}^{\mathrm{ZL}}$ 三output enable time to low level
$\mathrm{H}_{\mathrm{H}} \equiv$ output disable time from high level
$t_{l} Z \equiv$ output disable time from low level
NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

TYPES SN54S412, SN74S412 (TIM8212) MULTI-MODE BUFFERED LATCHES

- Designed to be Interchangeable With Intel 8224
- Single-Chip Clock Driver With Self-Contained Oscillator
- Specifically Designed to Drive All 8080A Microprocessors

description

This clock generator is capable of driving 12 -volt lines. It contains a crystal-controlled oscillator, a divide-by-nine clock phase generator, two high-level drivers, and auxiliary circuitry.

The internal oscillator is designed to operate with fundamental-mode crystals, or with overtone-mode crystals when using a parallel-tuned circuit connected to the tanik teiminal, pini 13. The oscillatô outpuit appears on pin 12 and drives the divide-by-nine counter. The $\div 9$ clock phase generator output consists of phases $\phi 2$ for driving MOS inputs and $\phi 2$ TTL for driving TTL. Three other TTL outputs, status strobe, reset, and ready, are coupled to the divide-by-nine counter. A sync input from the 8080A is AND'ed with $\phi 1 \mathrm{~A}$ to produce the status strobe. The power-on reset also generates the status strobe signal through an output NOR gate. The reset input works on a voltage-level basis by use of a Schmitt

trigger. A rising voltage waveform is triggered at a particular voltage. A synchronized ready output is obtained by clocking with a $\phi 2$ signal.

The SN74LS424 is characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

TYPE SN74LS424 (TIM8224)

TWO-PHASE CLOCK GENERATOR/DRIVER

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

$$
\begin{aligned}
& \text { Supply voltage, VCC (see Note 1) } \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.75	5	5.25	V
Supply voltage, $\mathrm{V}_{\text {D }}$	11.4	12	12.6	V
Ready input setup time, $\mathrm{t}_{\text {su (RDYIN) }}$)	$50-\frac{4 t_{c}}{9}$			ns
Ready input hold time, th(RDYIN)	$\frac{4 t_{c}}{9}$			ns
Operating free-air temperature range, T_{A}	0	25	70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

7

[^34]TYPE SN74LS424 (TIM8224)
TWO-PHASE CLOCK GENERATOR/DRIVER
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see figure 1

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum oscillator frequency	$\phi 1$ and $\phi 2$: $C_{L}=20 \mathrm{pF} \text { to } 110 \mathrm{pF},$ See Figure 2		27			MHz
${ }^{\mathrm{t}}$ c (osc)	Oscillator cycle time			$\frac{t_{c}{ }^{\dagger}}{9}$			ns
$t_{w}(\underline{1}$)	Pulse width, $\phi 1$ high			$\frac{2 t_{c}}{9}-20$			ns
${ }^{t}{ }_{W}(\phi)$	Pulse width, $\phi 2$ high			$\frac{5 t_{c}}{9}-35$			ns
t_{w} (SS)	Pulse width, status strobe low			$\frac{\mathrm{t}_{\mathrm{c}}}{9}-15$			ns
$\mathrm{t}_{\mathrm{r}}(\phi)$	Rise time, clock outputs	ф 2 TTL:$\begin{array}{ll} C_{L}=30 \rho F, & R 1=300 \Omega, \\ R 2=600 \Omega, & \text { See Figure } 3 \end{array}$				20	ns
${ }^{\text {t }}$ f (ϕ)	Fall time, clock outputs					20	ns
$\mathrm{t}_{\phi} 1 \mathrm{~L}, \phi 2 \mathrm{H}$	Delay time, $\phi 1$ low to $\phi 2$ high	Status Strobe:$\begin{array}{ll} C_{L}=15 \mathrm{pF}, & R 1=2 \mathrm{k} \Omega, \\ R 2=4 \mathrm{k} \Omega, & \text { See Figure } 3 \end{array}$		0			ns
${ }^{\text {t }}$ ¢ $2 \mathrm{~L}, \phi 1 \mathrm{H}$	Delay time, $\phi 2$ low to $\phi 1$ high			$\frac{2 t_{c}}{9}-14$			ns
${ }^{\text {t }}$ ¢ $1 \mathrm{H}, \phi 2 \mathrm{H}$	Delay time, $\phi 1$ high to $\phi 2$ high			$\frac{2 t_{4}}{9}$		$\frac{2 \mathrm{t}_{\mathrm{c}}}{9}+20$	ns
${ }^{\text {t }}$ ¢ $2, \phi 2 \mathrm{~T}$	Delay time, $\phi 2$ to $\phi 2$ TTL	OSC, Ready, Reset:$\begin{array}{ll} C_{L}=10 \mathrm{pF}, & R 1=2 \mathrm{k} \Omega, \\ R 2=4 \mathrm{k} \Omega, & \text { See Figure } 3 \end{array}$		-5		15	ns
${ }^{t_{\phi} 2 \mathrm{H}, \mathrm{SSL}}$	Delay time, $\phi 2$ high to status strobe low			$\frac{6 t^{c}}{9}-30$		$\frac{6 t_{c}}{9}$	ns
${ }^{t} \mathrm{RV},{ }^{\text {, }} \mathbf{2 L}$	Delay time, ready or reset output valid to phase 2 low			$\frac{4 t_{c}}{9}-25$			ns

${ }^{\dagger} \mathrm{t}_{\mathrm{c}} \equiv \mathrm{t}_{\mathrm{c}(\phi 1)}=\mathrm{t}_{\mathrm{c}(\phi 2)}$
EXAMPLE: switching times for $\mathrm{f}_{\mathrm{osc}}=20 \mathrm{MHz}\left(\mathrm{t}_{\mathrm{c}(\phi 1)}=\mathrm{t}_{\mathrm{c}(\phi 2)}=450 \mathrm{~ns}\right)$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {osc }}$	Oscillator frequency	Same as above		20		MHz
$\mathrm{t}_{\text {c (osc) }}$	Oscillator cycle time			50		ns
$\left.t_{w}(\phi) 1\right)$	Pulse width, $\phi 1$ high		80			ns
${ }^{\text {tw }}$ ($¢ 2$)	Pulse width, $\phi 2$ high		215			ns
${ }^{t}$ w (SS)	Pulse width, status strobe		35			ns
$\mathrm{t}_{\phi} 1 \mathrm{~L}, \phi 2 \mathrm{H}$	Delay time, $\phi 1$ low to $\phi 2$ high		0			ns
${ }^{\text {t }}$ ¢ $2 \mathrm{~L}, \phi 1 \mathrm{H}$	Delay time, $\phi 2$ low to $\phi 1$ high		86			ns
${ }^{\text {t }}$ ¢ $1 \mathrm{H}, \phi 2 \mathrm{H}$	Delay time, $\phi 1$ high to $\phi 2$ high		100		120	ns
${ }^{\text {t }}{ }_{\phi 2 \mathrm{H}, \mathrm{SSL}}$	Delay time, $\phi 2$ high to status strobe low		270		300	ns
${ }^{\text {t }} \mathrm{RV}, \mathrm{C} 2 \mathrm{~L}$	Delay time, ready or reset output valid to $\phi 2$ low		175			ns

NOTE: Transistion times, pulse widths, and interpulse relationships are distorted in this diagram in order to define various intervals, See Figure 5 for correct relative relationships.

VOLTAGE WAVEFORMS
FIGURE 1

LOAD CIRCUIT FIGURE 2

LOAD CIRCUIT FIGURE 3

TWO-PHASE CLOCK GENERATOR/DRIVER

TYPICAL APPLICATION DATA

The 'LS424 is a single-chip clock generator/driver for 8080A CPU's, furnishing three clocks ($\phi 1, \phi 2$ and $\phi 2$ TTL), status strobe, reset, and ready signals. The 'LS424 contains a crystal-controlled oscillator, a divide-by-nine counter, two high-level drivers, and several auxiliary logic functions. Figure 4 is a functional block diagram of the SN74LS424. Figure 5 shows the relationship between $\phi 1, \phi 2$, and the oscillator frequency period.

oscillator

A high order of clock frequency stability is provided by use of an external quartz crystal to set the oscillator frequency which is nine times the operating frequency of the 8080A. The quartz crystal is operated in a series-resonant mode. A fundamental-mode crystal requires no auxiliary circuitry, but an overtone-mode crystal requires an ac-coupled parallel-resonant circuit to be connected to the tank connection (pin 13). The parallel-resonant circuit, tuned to the oscillator frequency, compensates for the lower Q of the overtone-mode crystal. The required size of the circuit components can be calculated from $f=1 / 2 \pi \sqrt{L C}$ where f is the oscillator frequency, L is inductance value, and C is capacitance value. Figure 6 shows an ac-coupled parallel-tuned circuit used with the SN74LS424

clock phase generator

The divide-by-nine clock phase generator contains a divide-by-nine counter, logic required to shape the clock pulses as shown under parameter measurement information, gates and flip-flops to generate auxiliary signals, and output drivers. The divide-by-nine counter waveforms are combined with gates to form a $\phi 1$ pulse with a width of two periods of the oscillator frequency, repeating at intervals of nine oscillator periods. Similarly, the $\phi 2$ pulse, having a width of five oscillator frequency periods, is formed lagging the $\phi 1$ pulse by two oscillator periods.
$\phi 1$ and $\phi 2$ outputs are provided by high-level drivers for direct connection to the 8080A CPU. $\phi 2$ TTL is derived in a manner similar to $\phi 1$ and $\phi 2$, but the output driver output is at TTL voltage levels. The $\phi 2$ TTL pulse width is the same as $\phi 2$. A $\phi 2$ TTL application is clocking in direct memory access activities. Figure shows the 'LS424 connected to an 8080A, quartz crystal, and LC circuits.

status strobe

The 8080A CPU puts status information on its data bus at the beginning of each machine cycle that defines the nature of the machine operation for that cycle. A sync signal from the 8080A is gated by an internal timing signal $(\phi 1 \mathrm{~A})$ and becomes a status strobe to notify system components that the status data is present on 8080A status output lines. The status strobe signal connects directly to the 'S428 system controller.

The status strobe signal is alternatively generated by the reset input. An external RC series network connected to VCC and the reset input will provide a rising voltage waveform when $V_{C C}$ is turned on. An internal Schmitt trigger circuit generates a sharp, fast-rising waveform when the reset input reaches a particular voltage value. The Schmitt trigger is connected to the D input of a flip-flop clocked by $\phi 2 \mathrm{D}$. When power is turned on, the combination of internal and external circuitry will produce a status strobe signal. A manual reset switch can be connected as in figure 6 to the RC network to produce reset and status strobe signals for the 8080A.

The ready signal indicates to the 8080A that an external device has completed transfer of data to or from the data bus. A ready signal input to the 'LS424 drives the D input of a flip-flop clocked by an internal $\phi 2 \mathrm{D}$ signal. Timing requirements of the 8080A machine cycle are met by the synchronization with the system clocks provided by the flip-flop. This implementation saves about 200 ns of system time during memory cycles (as contrasted with generating a "wait request" within the 8080A's MOS logic) since the bipolar logic of the 'LS424 has much less delay.

Example: 8080 A cycle $=450 \mathrm{~ns}$ $\mathrm{f}_{\mathrm{osc}}: 20 \mathrm{MHz}$ (unit $=50 \mathrm{~ns}$) $\left.{ }^{t} w i \varphi i\right)=100 \mathrm{~ns}(2 \times 50 \mathrm{~ns})$ $\mathrm{t}_{\mathrm{w}}(\phi 2)=250 \mathrm{~ns}(5 \times 50 \mathrm{~ns})$ ${ }^{\mathrm{t}} \phi 2 \mathrm{~L}, \phi 1 \mathrm{H}=100 \mathrm{~ns}(2 \times 50 \mathrm{~ns})$
figure 4
figure 5

- Designed to Be Interchangeable with Intel 8228 and 8238

DESIGNATION	PIN NOS.	FUNCTION
DO thru D7	$15,17,12,10$, $6,19,21,8$	BIDIRECTIONAL DATA PORT ITO TMS 8080A)
DBO thru DB7	$13,16,11,9$, $5,18,20,7$	BIDIRECTIONAL DATA PORT (TO SYSTEM BUS)
$\overline{\text { I/OR }}$	25	READ OUTPUT TO I/O (ACTIVE LOW)
$\overline{\text { IO/W }}$	27	WRITE OUTPUT TO I/O (ACTIVE LOW)
$\overline{\text { MEMR }}$	24	READ OUTPUT TO MEMORY (ACTIVE LOW)
$\overline{\text { MEMW }}$	26	WRITE OUTPUT TO MEMORY (ACTIVE LOW)
DBIN	4	INPUT TO INDICATE TMS 8O8OA IS IN INPUT MODE (ACTIVE HIGH)
INTA	23	INTERRUPT ACKNOWLEDGE OUTPUT (ACTIVE LOW)
HLDA	2	HOLD ACKNOWLEDGE INPUT (ACTIVE HIGH) FROM TMS 8O80A
$\overline{\text { WR }}$	3	INPUT TO INDICATE TMS 8OBOA IS IN WRITE MODE (ACTIVE LOW)
$\overline{\text { BUSEN }}$	22	SYSTEM DATA PORT ENABLE INPUT (ACTIVE LOW)
$\overline{\text { STSTB }}$	1	SYNCHRONIZING STATUS STROBE INPUT FROM SN74LS424 (TIM8224)
GCC	28	SUPPLY VOLTAGE (5 V) GROUND

N PACKAGE
(TOP VIEW)

functional block diagram

description
These monolithic Schottky-clamped TTL system controllers are designed specifically to provide bus-driving and peripheral-control capabilities for interfacing memory and I/O devices with the 8080 A in small to medium-large microcomputer systems.

A bidirectional eight-bit parallel bus driver is provided that isolates the 8080A bus from the memory and I/O data bus allowing the system designed to utilize costeffective memory and peripheral devices while obtaining the maximum efficiency from the microprocessor. The TTL system drivers also provide increased fan-out with a lower impedance that enhances noise margins on the system bus.

Implementation of the status latches and control decoding array of the SN74S428/SN74S438 provides for using either a single-level interrupt vector RST7 for small systems, or multiple-byte call instructions for systems needing unlimited interrupt levels.

TYPES SN74S428(TIM8228), SN74S438(TIM8238) CONTROLLER AND BUS DRIVER FOR 8080A SYSTEMS

description (continued)

With respect to the system clocks, the SN74S438 is configured to generate an advanced response for I/O or memory write output signals to further simplify peripheral control implementation of complex systems. See Figure 3.

8-bit parrallel bus transceiver

The 8-bit parallel bus transceiver buffers the 8080A data bus from the memory and I/O system bus by providing one port (DO through D7) to interface with the 8080A and another port (DBO through DB7) to interface with the system devices. The 8080A side of the transceiver is designed specifically to interface with the microprocessor data bus ensuring not only that the processor output drive capabilities are adequate, but also that the inputs are driven with enhanced noise margins. The system bus side features high fan-out buffers designed to drive a number of system devices simultaneously and directly. The system port is rated to sink ten milliamperes of current and to source one milliampere of current at standard low-threshold voltage levels.

Status lines from the 8080A instruction-status decoder and the system bus enable input (BUSEN) provide complete transceiver directional and enable control to ensure integrity of both the processor data and the system bus data.
status latches

During the beginning of each machine cycle, the six status latches receive status information from the 8080A data bus indicating the type of operation that will be performed. When the STSTB input goes low, the latches store the status data and generate the signals needed to enable and sequence the memory and I/O control outputs. The status words and types of machine cycles are enumerated in Table A.
table a - status words

STATUS WORD	8080ASTATUS OUTPUT								TYPE OF MACHINE CYCLE	'S428/'S438 COMMAND GENERATED
	DO	D1	D2	D3	D4	D5	D6	D7		
1	L	H	L	L	L	H	L	H	Instruction fetch	$\overline{\text { MEMR }}$
2	L	H	L	L	L	L	L	H	Memory read	$\overline{\text { MEMR }}$
3	L	L	L	L	L	L	L	L	Memory write	MEMW
4	L	H	H	L	L	L	L	H	Stack read	$\overline{\text { MEMR }}$
5	L	L	H	L	L	L	L	L	Stack write	MEMW
6	L	H	L	L	L	L	H	L	Input read	$\stackrel{\text { I/OR }}{ }$
7	L	L	L	L	H	L	L	L	Output write	I/OW
8	H	H	L	L	L	H	L	L	Interrupt acknowledge	INTA
9	L	H	L	H	L	L	L	H	Halt acknowledge	NONE
10	H	H	L	H	L	H	L	L	Interrupt acknowledge at halt	INTA
	$\stackrel{\mathbb{1}}{\mathbf{~}}$	3	$\begin{aligned} & \text { y } \\ & \text { K } \\ & \text { K } \end{aligned}$ TATU	$\stackrel{\text { ¢ }}{\text { ¢ }}$	5 0 ORM	Σ TION		$\sum_{\underset{\Sigma}{\pi}}^{\Sigma}$		

decoding array

The decoding array receives enabling commands from the status latches and sequencing commands from the 8080A and generates memory and I / O read/write commands and an interrupt acknowledgement.

TYPES SN74S428(TIM8228), SN74S438(TIM8238)
 CONTROLLER AND BUS DRIVER FOR 8080A SYSTEMS

description (continued)

The read commands ($\overline{M E M R}, \overline{\mathrm{IOR}}$) and the interrupt acknowledgement ($\overline{\mathrm{INTA})}$ are derived from the status bit(s) and the data bus input mode (DBIN) signal. The write commands (MEMW, I/OW) are derived from the status bit(s) and the write mode ($\overrightarrow{W R}$) signal. (See Table A.) All control commands are active low to simplify interfacing with memory and I/O controllers.

The interrupt acknowledgement ($\overline{\text { INTA }}$) command output is actually a dual function pin. As an output, its function is to provide the $\overline{I N T A}$ command to the memory and I/O peripherals as decoded from the status inputs and latches. When CALL is used as an interrupt instruction, the SN74S428/SN74S428 generates the proper sequence of control signals. Additionally, the terminal includes high-threshold decoding logic that permits it to be biased through a onekilohm series resistor to the 12 -volt supply to implement an interrupt structure that automatically inserts an RST7 instruction on the bus when the DBIN input is active and an interrupt is acknowledged. This capability provides a single-level interrupt vector with minimal hardware.

The asynchronous bus enable ($\overline{\mathrm{BUSEN}}$) input to the decoding array is a control signal that protects the system bus. The system bus can be accessed and driven'from the SN74S428/SN74S428 controller only when the BUSEN input is at a low voltage level.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

$$
\begin{aligned}
& \text { Supply voltage, } \mathrm{V}_{\mathrm{CC}}\left(\text { see } \mathrm{Note}^{1} \text {) . } 7\right. \text { V } \\
& \text { Input voltage . } 7 \text { V } \\
& \text { Operating free-air temperature range . } 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
High-level output current, ${ }^{\prime} \mathrm{OH}$	D0 thru 07			-10	$\mu \mathrm{A}$
	All others			-1	mA
Low-level output current, IOL	D0 thru D7			2	mA
	All others			10	
Status strobe puise width, ${ }_{\text {w }}$ (STSTB) (see Figure 3)		22			ns
Setup time, $\mathrm{t}_{\text {su }}$ (see Figure 3)	Status inputs D0 thru D7	8			ns
	System bus inputs to HLDA	10			
Hold time, th (see Figure 3)	Status inputs D0 thru D7	5			
	System bus inputs to HLDA	20			,
Operating free-air temperature, T_{A}		0		70	${ }^{\circ} \mathrm{C}$

TYPES SN74S428(TIM8228), SN74S438(TIM8238) CONTROLLER AND BUS DRIVER FOR 8080A SYSTEMS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP \ddagger	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-5 \mathrm{~mA}$			-1	V
${ }^{\text {VOH }}$	High-level output voltage	D0 thru D7	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ \hline \end{array}$	3.6	4		V
		All other outputs		2.4			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \\ \hline \end{array}$			0.45	\checkmark
Iozh	Off-state output current, high-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$			100	$\mu \mathrm{A}$
${ }^{\text {I OzL }}$	Off-state output current, low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
IH_{1}	High-level input current	$\overline{\text { INTA }}$	$\mathrm{V}_{C C}=$ MIN, \quad See Figure 1			5	mA
		DO thru D7	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.25 \mathrm{~V}$			20	$\mu \mathrm{A}$
		All other inputs				100	
IIL	Low-level input current	̄̄2 or $\overline{\text { ®̄ }}$	$V_{C C C}=$ MAX,$\quad V_{1}=0.45 \mathrm{~V}$			-750	$\mu \mathrm{A}$
		STSTE				-500	
		All other inputs				-250	
Ios	Short-circuit output current§		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	-15		-90	mA
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		140	190	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ Not more than one output should be shorted at a time.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see figure 3

PARAMETER ${ }^{\text {f }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS		MIN	TYP MAX	UNIT
tPD	D0 thru D7	DB0 thru DB7	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$,	See Figure 2	5	40	ns
tPD	DB0 thru DB7	D0 thru D7	$C_{L}=25 \mathrm{pF}$,	See Figure 2		30	ns
tPHL.	$\overline{\text { STSTB }}$	$\overline{\text { INTA }}, \overline{\text { IOR }}, \overline{M E M R}$, I/OW, MEMW	$C_{L}=100 \mathrm{pF}$,	See Figure 2	20	60	ns
tPD	$\overline{\mathrm{WR}}$	TOW, MEMW			5	45	ns
tPLH	DBIN	प-1NTA, TOR, MEMR				30	ns
tPLH	HLDA	$\overline{\text { INTA }}$, $\overline{/ O R}, \overline{M E M R}$				25	ns
tPZX	DBIN	D0 thru D7	$C_{L}=25 \mathrm{pF}$,	See Figure 2		45	ns
tpx 2	DBIN	D0 thru D7				45	ns
tPZX	STSTB, BUSEN	DB0 thru DB7	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$,	See Figure 2		30	ns
tPXZ	BUSEN	DB0 thru DB7				30	ns

tPHL \equiv propagation delay time, high-to-low-level output
TPLH \equiv propagation delay time, low-to-high-level output
tPZX \equiv output enable time from high-impedance state
tpx $X=$ output disable time to high-impedance state

TYPES SN74S428(TIM8228), SN74S438(TIM8238) CONTROLLER AND BUS DRIVER FOR 8080A SYSTEMS

PARAMETER MEASUREMENT INFORMATION

NOTE A: Advanced response of $\overline{1 / O W}$ or $\overline{M E M W}$ for the SN74S438 is indicated by the dashed line.
FIGURE 3-VOLTAGE WAVEFORMS

7

FIGURE 4-SYSTEM INTERFACING WITH CENTRAL PROCESSING UNIT

- Dual Versions of Popular SN5490A, SN54LS90, SN7490A, and SN74LS90 Counters
- Individual Clock, Direct Clear, and Set-to-9 Inputs for Each Decade Counter
- Dual Counters Can Significantly Improve System Densities as Package Count Can Be Reduced by 50\%
- Maximum Count Frequency . . . 35 MHz Typical
- Buffered Outputs Reduce Possibility of Collector Commutation

description

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual 4-bit decade counters in a single package. Each decade counter has individual clock, clear, and set-to-9 inputs. BCD count sequences of any length up to divide-by- 100 may be implemented with a single ' 490 or 'LS490. Buffering on each output is provided to ensure that susceptibility to collector cummutation is
reduced significantly. All inputs are diode-clamped to reduce the effects of line ringing. The counters have ' 490 or 'LS490. Buffering on each output is provided to ensure that susceptibility to collector cummutation is
reduced significantly. All inputs are diode-clamped to reduce the effects of line ringing. The counters have parallel outputs from each counter stage so that submultiples of the input count frequency are available for system timing signals.
The SN54490 and SN54LS490 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74490 and SN74LS490 are characterized for use in industrial systems operating from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
(TOP VIEW)

positive logic: High input to clear resets all four outputs low; high input to set-to -9 sets Q_{A} and Q_{D} high, Q_{B} and Q_{C} low.

TYPES SN54490, SN54LS490, SN74490, SN74LS90 DUAL 4-BIT DECADE COUNTERS
schematics of inputs and outputs

functional block diagram (each counter)

7

TYPES SN54490, SN74490

DUAL 4-BIT DECADE COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54490			SN74490			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {c }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	$\mu \mathrm{A}$
Low-level output current, IOL			16			16	mA
Count frequency, fcount	0		25	0		25	MHz
Pulse width, t_{w} (any input)		20			20		ns
Clear or set-to-9 inactive-state setup time, $\mathrm{t}_{\text {su }}$	25」			25 \downarrow			ns
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

The arrow indicates that the falling edge of the clock pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger	MAX	UNIT
High-level input voltage			2			V
Low-level input voltage					0.8	V
Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$	2.4	3.4		V
Low-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V} & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.2	0.4	V
Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
High-level input current	Clear, set-to-9	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
	Clock				80	
Low-level input current	Clear, set-to-9	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1	mA
	Clock				-3.2	
'OS Short-circuit output current §		$*$ V SC MAX SN4490	-20		-57	mA
		$V_{\text {CC }}=$ MAX ${ }^{\text {a }}$	-18		-57	
Supply current		$V_{C C}=$ MAX, See Note 2		45	70	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time.
NOTE 2: I CC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.

TYPES SN54490, SN74490 dUAL 4-bit decade counters

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETERI	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Clock	O_{A}	$C_{L}=15 \mathrm{pF}, \quad R_{L}=400 \Omega$ See Figure 1 and Note 3	25	35		MHz
tPLH	Clock	a_{A}			12	20	ns
tPHL					13	20	
tPLH	Clock	$\mathrm{a}_{\mathrm{B}}, \mathrm{a}_{\mathrm{D}}$			24	39	ns
tPHL					26	39	
tPLH	Clock	${ }^{0} \mathrm{C}$			32	54	ns
tPHL					36	54	
tPHL	Clear	Any			24	39	ns
tPLH	Set-to-9	$\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{D}}$			24	39	ns
tPHL		$\mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}$			20	36	

$I_{\text {max }}=$ maximum count frequency
${ }^{\mathrm{t}} \mathrm{pLH} \equiv$ propagation delay time, low-to-high-level outpu
$t_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
NOTE 3: Load circuit is shown on page 3-10.

NOTES: A. Input pulses are supplied by a generator having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$, $\mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=50 \%, Z_{\text {out }} \approx 50$ ohms.

FIGURE 1

TYPES SN54LS490 SN74LS490

 dUAL 4-BIT DECADE COUNTERSabsolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

	SN54LS490			SN74LS490			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			- 400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Count frequency, fount	0		25	0		25	MHz
Pulse width, t_{w} (any input)	20			20			ns
Clear or set-to-9 inactive-state setup time, $\mathrm{t}_{\text {su }}$	25 \downarrow			25 \downarrow			ns
Operating free-air temperature, T_{A}	-55		125	0		70	C

\downarrow The arrow indicates that the falling edge of the clock pulse is used for reference.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			test conditions ${ }^{\dagger}$		SN54LS490			SN74LS490			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
V_{IH}	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
$V_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-1 \mathrm{~mA}$			-1.5			-1.5	V		
VOH	High-level output voltage		$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$		2.5	3.4		2.7	3.4		v		
VoL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \text { max } \end{aligned}$	$1 \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v		
			$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5				
1	Input current at maximum input voltage	Clear, set-to-9		$\mathrm{V}_{\text {cc }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1	mA	
		Clock	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				0.2			0.2			
${ }_{\text {If }}$	High-level input current	Clear, set-to-9	$V_{C C}=\mathrm{MAX}$,	$V_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
		Clock					40			40			
IIL	Low-level input current	Clear, set-to-9	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4			-0.4	mA		
		Clock					-1.6			-1.6			
Ios	Short-circuit output current§		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-20		-100	-20		-100	mA		
Icc	Supply current		$V_{C C}=$ MAX, \quad See Note 2			15	26		15	26	mA		

[^35]switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$	Clock	a_{A}	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { See Figure } 2 \text { and } \text { Note } 4 \end{aligned}$	25	35		MHz
${ }^{\text {tPLH }}$	Clock	a_{A}			12	20	ns
tpHL					13	20	
tPLH	Clock	a_{B}, a_{D}			24	39	ns
tPHL					26	39	
tPLH	Clock	${ }^{0} \mathrm{C}$			32	54	ns
tPHL					36	54	
tPHL	Clear	Any			24	39	ns
tPLH	Set-to-9	$\mathrm{a}_{A}, \mathrm{a}_{\mathrm{D}}$			24	39	ns
tPHL		$\mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}$			20	36	

$\|_{f_{\text {max }}} \equiv$ maximum count frequency
$t_{p L H} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
NOTE 4: Load circuit is shown on page 3-11.
 $=50 \%, Z_{\text {out }} \approx 50$ ohms

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing
- Fast Access Times . . . Typically 20 ns
- Organized as 4 Words of 4 Bits
- Expandable to 512 Words of \mathbf{n}-Bits
- For Use as:

Scratch-Pad Memory
Buffer Storage between Processors
Bit Storage in Fast Multiplication Designs

- 3-State Outputs
- SN54LS170 and SN74LS170 Are Similar But Have Open-Collector Outputs

description

SN54LS670 . . . J OR W PACKAGE
SN74LS670 . . . J OR N PACKAGE
(TOP VIEW)

The SN54LS670 and SN74LS670 MSI 16 -bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4 -bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G_{w}, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the readenable input, G_{R}, is high, the data outputs are inhibited and go into the high-impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement-dataentry addressing separate from data-read addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 54LS/74LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and have high-sink-current, three-state outputs. Up to 12 L of these outputs may be wire-AND connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

The SN54LS670 characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74LS670 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
logic
WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)

WRITE INPUTS			WORD			
W_{B}	W_{A}	G_{W}	0	1	2	3
L	L	L	$\mathrm{Q}=\mathrm{D}$	Q_{0}	Q_{0}	Q_{0}
L	H	L	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q_{0}	Q_{0}
H	L	L	Q_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q_{0}
H	H	L	Q_{0}	Q_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$
X	X	H	Q_{0}	Q_{0}	Q_{0}	Q_{0}

READ FUNCTION TABLE (SEE NOTES A AND D)

READ INPUTS			OUTPUTS			
$\mathbf{R}_{\mathbf{B}}$	RA $_{\mathbf{A}}$	GR $_{\mathbf{R}}$	Q1	Q2	O3	Q4
L	L	L	WOB1	WOB2	WOB3	W0B4
L	H	L	W1B1	W1B2	W1B3	W1B4
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
\mathbf{X}	\mathbf{X}	H	\mathbf{Z}	\mathbf{Z}	\mathbf{Z}	\mathbf{Z}

NOTES: A. $H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)
B. $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
C. $\mathrm{O}_{0}=$ the tevel of Q before the indicated input conditions were established
W. WOB1 $=$ The first bit of word O , etc.
functional block diagram

7

4-BY-4 REGISTER FILES WITH 3-STATE OUTPUTS

schematics of inputs and outputs

Any D, R, or W: $R_{\text {eq }}=20 \mathrm{k} \Omega$ NOM $G_{R}: R_{e q}=6.67 \mathrm{k} \Omega$ NOM $G_{W}: R_{e q}=10 \mathrm{k} \Omega$ NOM

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions
7

NOTES: 1. Voltage values are with respect to network ground terminal
2. Write select setup time will protect the data writton into the previous address. If protection of data in the previous address is not required, $t_{s u}(W)$ can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during $t^{(}(W)$ will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data.

TYPES SN54LS670, SN74LS670 4-BY-4 REGISTER FILES WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$			SN54LS670		SN74LS670			UNIT
				MIN	TYP \ddagger MAX	MIN	TYP \ddagger	MAX	
$\mathrm{V}_{\text {IH }}$ High-level input voltage				2		2			V
$V_{\text {IL }}$ Low-level input voltage					0.7			0.8	V
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$\begin{array}{ll} \hline V_{C C}=\text { MIN }_{i} & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=V_{1 L} \text { max } & \\ \hline \end{array}$		$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.4				V
			$1 \mathrm{OH}^{\prime}=-2.6 \mathrm{~mA}$			2.4	3.1		
VOL Low-level output voltage	$\begin{array}{ll} \hline V_{C C}=M I N, & V_{I H}=2 V, \\ V_{I L}=V_{I L} \max & \end{array}$		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		$0.25 \quad 0.4$		0.25	0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.35	0.5	
$\mathrm{I}^{\mathrm{OZH}} \begin{gathered}\text { Off-state output current, } \\ \text { high-level voltage applied }\end{gathered}$	$\mathrm{V}_{\mathrm{CC}}=$ MAX ,	$V_{1 H}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		20			20	$\mu \mathrm{A}$
Off-state output current, l OZL low-level voltage applied	$V_{C C}=$ MAX	$\mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-20			-20	$\mu \mathrm{A}$
Input current at maximum input voltage	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{1}=7 \mathrm{~V} \end{aligned}$	Any D, R, or			0.1			0.1	mA
		Gw			0.2			0.2	
		G_{R}			0.3			0.3	
High-level input current	$\begin{aligned} & V_{C C}=\mathrm{MAX}, \\ & V_{1}=2.7 \mathrm{~V} \end{aligned}$	Any D, R, or			20			20	$\mu \mathrm{A}$
		Gw			40			40	
		G_{R}			60			60	
Low-level input current	$V_{C C}=\mathrm{MAX}$	Any D, R, or			-0.4			-0.4	mA
		GW			-0.8			-0.8	
		G_{R}			-1.2			-1.2	
IOS Short-circuit output current§	$V_{C C}=M A X$			-30	-130	-30		-130	mA
ICC Supply current	$V_{C C}=$ MAX	See Note 4			$30 \quad 50$		30	50	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 4: Maximum I CC is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs are open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER I	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Read select	Any 0	$C_{L}=15 \mathrm{pF}, R_{\mathrm{L}}=2 \mathrm{k} \Omega$ See Figures 1 and 2		23	40	ns
tPHL					25	45	
${ }^{\text {P PLH }}$	Write enable	Any Q	$C_{L}=15 \mathrm{pF}, \quad R_{L}=2 \mathrm{k} \Omega$ See Figures 1 and 3		26	45	ns
tPHL					28	50	
tPLH	Data	Any 0			25	45	ns
tPHL					23	40	
${ }^{\text {t }} \mathrm{ZH}$	Read enable	Any Q	$C_{L}=5 \mathrm{pF}, \quad R_{L}=2 \mathrm{k} \Omega$ See Figures 1 and 4		15	35	ns
t_{ZL}					22	40	
thz					30	50	ns
tLZ					16	35	

${ }^{I_{\text {PLH }}}{ } \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }}$ ㄹ propagation delay time, high-to-low-level output
$\mathbf{t}_{\mathbf{Z H}} \equiv$ output enable time to high level
$t_{71} \equiv$ output enable time to low level
$\mathrm{t}_{\mathrm{HZ}} \equiv$ output disable time from high level
${ }^{\mathrm{t}} \mathrm{LZ} \equiv$ output disable time from low level

TYPES SN54LS670, SN74LS670
4-BY-4 REGISTER FILES WITH 3-STATE OUTPUTS

PARAMETER MEASUREMENT INFORMATION

Voltage waveforms (S1 AND S2 ARE CLOSED)

NOTES: A. High-level input pulses at the select and data inputs are illustrated; however, times associated with low-level pulses are measured from the same reference poins.
B. When measuring delay times from a read-select input, the read-enable input is low
C. Input waveforms are supplied by generators having the following characteristics: PRR $\leqslant 2 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$, duty cycle $\leqslant 50 \%$, $t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}} \leqslant 6 \mathrm{~ns}$

7

[^0]: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 NOTE 2: ICC is measured with all outputs open and all inputs at 4.5 V .
 switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T} A=25^{\circ} \mathrm{C}$

[^1]: \dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 2: ICC is measured with all outputs open and all inputs at 4.5 V .

[^2]: ${ }^{{ }^{\text {tPLH }}}{ }^{\text {P }} \equiv$ propagation delay time, low-to-high-level output
 ${ }^{\mathrm{t}_{\mathrm{PHL}}} \equiv$ propagation delay time, high-to-low-level output
 IThese parameters are not applicable for the SN5477.

[^3]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 $\S_{\text {Nor more than one output should be shorted at a time. }}$
 NOTE 3: 'CC is tested with aii inputs grounded and aii outputs open.

[^4]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 § Not more than one output should be shorted at a time.
 NOTE 3: ${ }^{\prime} \mathrm{CC}$ is measured with outputs open, B1 and B2 grounded, and 4.5 V applied to A1, A2, and C0.

[^5]: ${ }^{\mathrm{t}_{\mathrm{PLH}}} \equiv \mathrm{propagation} \mathrm{delay} \mathrm{time}, \mathrm{low-to-high-level} \mathrm{output}$
 tPHI \equiv propagation delay time, high-to-low-level output
 NOTE 5: Load circuit and voltage waveforms are shown on page 3-10

[^6]: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating condition
 FAll typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$.
 NOTES: 5. ${ }^{1} \mathrm{CCH}$ is measured with all outputs open, one input of each gate at 4.5 V , and the other inputs grounded
 6. ICCL is measured with all outputs open and all inputs at 4.5 V .

[^7]: $\mathbb{I}_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
 ${ }^{\text {tPM }} \mathrm{L} L \equiv$ propagation delay time, high-to-low-level output
 NOTE 7: Load circuit and voltage waveforms are shown on page 3-11.

[^8]: \rightarrow i . . . dynamic input activated by transition from a high level to a low level.

[^9]: $I_{t_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
 ${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level outpu
 NOTE 4: Test circuit and voltage waveforms are the same as those shown for the '75, '77, 'L75, and 'L77 on page 7-40.

[^10]: $\|_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
 $\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level outpu

[^11]: $H=$ high level (steady state)
 $\mathrm{L}=$ low level (steady state)
 $\downarrow=$ transition from H to L
 $\mathrm{X}=$ irrelevant
 ${ }^{\dagger}$ Operation initiated by last \downarrow transition continues.

[^12]: ItPLH $=$ Propagation delay time, low-to-high-level output

[^13]: The enable input of these devices starts or stops the output pulses when it is low or high, respectively. The internal oscillator of the 'LS124 runs continuously even while the output is disabled, whereas the internal oscillator of the 'S124 is itself started and stopped by the enable input. The enable input is one standard load in each series. The enable input and the buffered output operate at standard Schottky-clamped TTL levels.

 The pulse synchronization-gating section ensures that the first output pulse is neither clipped nor extended. Duty cycle of the square-wave output is fixed at approximately 50 percent. Simultaneous operation of both VCO's in the same package is not recommended.

 The SN54LS124 and SN54S124 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74LS124 and SN74S124 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

[^14]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \ddagger This typical value is at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 2: I CC is measured with all inputs grounded and outputs open.
 schematics of inputs and outputs

 Input A: $\mathrm{R}_{\text {eq }}=6 \mathrm{k} \Omega \mathrm{NOM}$ Inputs B, C, D: $R_{\text {eq }}=2 \mathrm{k} \Omega$ NOM

[^15]: ${ }^{\dagger}$ Trademark of RCA

[^16]: NOTE 1: Votage values are win respect to not ground

[^17]: If $_{\text {max }} \equiv$ maximum clock frequency
 $t_{\text {pLH }} \equiv$ propagation delay time, low-to-high-level output
 ${ }^{\text {t PHL }} \equiv$ propagation delay time, high-to-low-level output NOTE 5: Load circuit is shown on page 3-10.

[^18]:
 \ddagger All typical values are at $\mathrm{V} C C=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 §Not more than one output should be shorted at a time

[^19]: $\mathrm{H}=$ high level (steady state)
 $L=$ low level (steady state)
 $\mathrm{X}=$ irrelevant
 $\uparrow=$ transition from low to high level
 $Q_{0}=$ the level of Q before the indicated steady-state
 input conditions were established.
 $\dagger=$ '175, 'LS175, and 'S175 only

[^20]: $\diamond_{f_{\text {max }}} \equiv$ maximum count frequency
 PLH \equiv propagation delay time, low-to-high-level output
 $\mathrm{tPHL} \equiv$ propagation delay time, high-to-low-level output

[^21]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
 \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § Not more than one output should be shorted at a time.
 NOTE 3: With outputs open, ICC is measured for the following conditions:
 A. So through $S 3, M$, and \bar{A} inputs are at 4.5 V , all other inputs are grounded.
 B. SO through S 3 and M are at 4.5 V , all other inputs are grounded.

[^22]: ${ }^{1} \mathrm{t}_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
 3-10

[^23]: NOTE 3: Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the

[^24]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
 NOTE 3: ${ }^{\mathrm{I} C C}$ is measured with the outputs open and all data and select inputs at 4.5 V under the following conditions: A. Strobe grounded.
 B. Strobe at 4.5 V .

[^25]: ${ }^{\text {tpLH } \equiv \text { Propagation delay time, low-to-high-level output }}$
 Propagation delay time high-to-low-level output
 ${ }^{\text {t }} \mathrm{ZH} \equiv$ Output enable time to high level
 ${ }^{2} \mathrm{ZH} \equiv$ Output enable time to high level
 ${ }^{\mathrm{t}} \mathrm{H} \equiv$ Output enable time to low level
 ${ }^{t_{H Z}} \equiv$ Output disable time from high leve
 ${ }^{{ }^{H}} \mathrm{HZ} \equiv$ Output disable time from high level
 ${ }_{\mathrm{t}}^{\mathrm{L} Z} \equiv$ Output disable time from low level
 ${ }^{\mathrm{t}} \mathrm{LZ} \equiv$ Output disable time from low level
 NOTE 2; See load circuits and waveforms on page 3-10.

[^26]: ${ }^{I_{\text {PLH }}} \equiv$ propagation delay time, low-to-high-level output
 $t_{P H L} \equiv$ propagation delay time, high-to-low-level output
 ${ }_{\mathrm{t}_{\mathrm{P}}} \mathrm{PH} \equiv$ output enable time to high level

[^27]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \ddagger All typical values are at $\vee_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
 $\mathbb{I}_{\text {tPLH } \equiv \text { Propagation delay time, low-to-high-level output }}$
 tPHL \equiv Propagation delay time, high-to-low-level output
 $t_{P Z H} \equiv$ Output enable time to high level
 $t_{P Z L} \equiv$ Output enable time to low level
 ${ }^{\text {tPHZ }} \equiv$ Output disable time from high level
 ${ }^{{ }^{\text {P PLZ }}} \equiv$ Output disable time from low level
 NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

[^28]: It $_{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output; $\mathrm{t}_{\mathrm{PH}} \equiv$ propagation delay time, high-to-low-level output
 NOTE 3: Load circuit and voltage waveforms are shown on page 3-11.

[^29]: A inputs and F outputs of 'S281 are not shown.

[^30]: NOTE 3: Load circuit is as described above; waveforms are shown on page 3-10.

[^31]: ${ }^{\circ}$ Data includes the two serial inputs and the eight input/output data lines.

[^32]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
 \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 The O_{A} outputs of the 390 are tested at $\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ plus the limit value for I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability
 Not more than one output should be shorted at a time.
 NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V , and all other inputs grounded

[^33]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,
 \ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 IThe Q_{A} outputs of the 'LS390 are tested at $I_{O L}=M A X$ plus the timit value for $I_{I L}$ for the clock B input. This permits driving the clock B input while maintaining full fan-out capability.
 §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
 NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V , and all other inputs grounded

[^34]: ${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § Not more than one output should be shorted at a time. $\phi 1$ and $\phi 2$ do not have short-circuit protection.
 NOTE 2: I^{CC} and IDD are measured with outputs disabled and open.

[^35]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
 § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
 NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V , and all other inputs grounded

