Series 54L/74L Circuits

Series 54L/74L Low Power TTL Integrated Circuits

- Over 14 MSI Functions
- • All Popular Package Configurations
 - Fast Delivery to MIL-STD-883 for Military and Space Applications.

SERIES 54L, 74L LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

SERIES 54L, 74L REVISED JANUARY 1971

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC CIRCUITS FOR AEROSPACE, MILITARY, OR INDUSTRIAL COMPUTER AND CONTROL SYSTEM APPLICATIONS

description

Series 54L/74L integrated circuits have been designed for aerospace, military, and industrial applications where high d-c noise margin, low power dissipation, improved speed-power relationships, and high reliability are important system considerations. This logic family includes small-scale integration (SSI) circuits and medium-scale integration (MSI) circuits needed to perform most functions of general-purpose digital systems. Definitive specifications for Series 54L/74L SSI circuits (gates and flip-flops) are provided in this section, and 54L/74L MSI circuits are included in Section 9.

Series 54L circuits are characterized for operation over the full military temperature range of -55°C to 125°C, and Series 74L circuits are characterized for operation over the temperature range of 0°C to 70°C.

DIGITAL IC FAMILIES[†] 1000 Diagonal lines are lines V_{CC} = 5 V of constant speed-power 400 T_A = 25°C Average Propagation Delay Times for Logic Gates—ns product Series 100 15930 DTL C_L = 30 pF 40 Series -54L TTL C_L = 50 pF

10

4

0.1

Series 54 TT

0.4

C_L = 15 pF

SPEED-POWER RELATIONSHIPS OF

Typical Power Dissipation-mW

[†]Typical saturated logic gate from the indicated families

54H TTL

= 25 pF Cı

> 40 100

features

CHOICE OF PACKAGES

- available in flat (T) and dual-in-line package (J or N)
- maximum number of circuits per package through use of 14-lead package

OPTIMUM CIRCUIT PERFORMANCE

- very low power dissipation—typically 1 mW per gate at 50% duty cycle
- relatively high speed-typically gate propagation delay time of 33 ns
- high d-c noise margin-typically one volt at TA = 25°C
- low output impedance provides low a-c noise susceptibility
- waveform integrity over full range of loading and temperature conditions
- fan-out-10 Series 54L loads
 - -1 Series 54 load and 2 Series 54L loads
 - -1 Series 54H load
- a standard Series 54 output will drive 40 Series 54L loads
- logic levels are compatible with most bipolar saturated integrated circuits

SERIES 54L/74L FEATURING 1 mW AND 33 ns PER GATE PERFORMANCE SMALL SCALE INTEGRATION (SSI)

FUNCTION	OPERATING TEI		PA Dua	CKAC	ES*	
	–55°C to 125°C	0°C to 70°C	Lii	ne	Flat	SECPAGE
AND/NOR GATES			_			
Quadruple 2-Input Positive NAND Gates	SN54L00	SN74L00	J	N	Т	8-4
Quadruple 2-Input Positive NAND Gates						,
(with Open-Collector Output)	SN54L01	SN74L01	J .	N	T	8-5
Quadruple 2-Input Positive NOR Gates	SN54L02	SN74L02	J	N	Т	8-6
Quadruple 2-Input Positive NAND Gates						
(with Open-Collector Output)	SN54L03	SN74L03	j	N	Т	8-5
Hex Inverters	SN54L04	SN74L04	J	N	T	8-9
Triple 3-Input Positive NAND Gates	SN54L10	SN74L10	J	N	Т	8-10
Dual 4-Input Positive NAND Gates	SN54L20	SN74L20	J	N	T	8-11
8-Input Positive NAND Gates	SN54L30	SN74L30	J	N	T	8-12
ND-OR-INVERT GATES	SN54L51	SN74L51	J	N	т	T
Dual 2-Wide AND-OR-INVERT Gates					ı	8-13
	SN54L54	SN74L54	j	N	<u>'</u>	8-13 8-14
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates 2-Wide 4-Input AND-OR-INVERT Gates		SN74L54 SN74L55	J			
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates	SN54L54		+-	N	T	8-14
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates	SN54L54		+-	N	T	8-14
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates	SN54L54 SN54L55	SN74L55	J	N N	T	8-14 8-15
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates 2-Wide 4-Input AND-OR-INVERT Gates LIP-FLOPS R-S Master-Slave Flip-Flops	SN54L54 SN54L55 SN54L71	SN74L55 SN54L71	J	N N	T T	8-14 8-15 8-16
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates 2-Wide 4-Input AND-OR-INVERT Gates LIP-FLOPS R-S Master-Slave Flip-Flops J-K Master-Slave Flip-Flops	SN54L54 SN54L55 SN54L71 SN54L72	SN74L55 SN54L71 SN74L72	J	N N	T T	8-14 8-15 8-16 8-19
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates 2-Wide 4-Input AND-OR-INVERT Gates LIP-FLOPS R-S Master-Slave Flip-Flops J-K Master-Slave Flip-Flops Dual J-K Master-Slave Flip-Flops	SN54L54 SN54L55 SN54L71 SN54L72 SN54L73	SN74L55 SN54L71 SN74L72 SN74L73	J	N N N	T T T T	8-14 8-15 8-16 8-19 8-22
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates 2-Wide 4-Input AND-OR-INVERT Gates LIP-FLOPS R-S Master-Slave Flip-Flops J-K Master-Slave Flip-Flops Dual J-K Master-Slave Flip-Flops Dual D-Type Edge-Triggered Flip-Flops	SN54L54 SN54L55 SN54L71 SN54L72 SN54L73	SN74L55 SN54L71 SN74L72 SN74L73	J	N N N	T T T T	8-14 8-15 8-16 8-19 8-22

SEE PAGES 9-1, 9-2, AND 9-3 FOR LISTING OF TTL MSI CIRCUITS

-SEE ORDERING INSTRUCTIONS PAGE 1-1-

TEXAS INSTRUMENTS

^{*}For outline drawings of all packages, see Section 1.

SERIES 54L, 74L

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

Supply Voltage V _{CC} (See Note 1)															8 V
Input Voltage, Vin (See Notes 1 and 2)															5.5 V
Operating Free-Air Temperature Range:	Series 54L										<u>۔</u> و	55°	C to	o 1	25°C
	Series 74L											(°C	to	70°C
Storage Temperature Range											_6	ನಿಕಂ	C +	ຸ 1	50°C

- NOTES: 1. Voltage values are with respect to network ground terminal.
 - 2. Input signals must be zero or positive with respect to network ground terminal.

logic definition

Series 54L and 74L logic is defined in terms of standard POSITIVE LOGIC using the following definitions:

HIGH VOLTAGE = LOGICAL 1 LOW VOLTAGE = LOGICAL 0

unused gates

Inputs of unused gates should be connected to ground. This sets the gate output to logical 1 to ensure minimum power dissipation.

unused inputs of NAND/AND gates

Unused inputs, including preset and clear, must be maintained at a positive voltage greater than 2.4 V but not to exceed the absolute maximum rating of 5.5 V.

Some possible ways of handling unused inputs are:

- a. Connect unused inputs to an independent supply voltage. Preferably, this voltage should be between 2.4 V and 3.5 V
- b. Connect unused inputs, except preset or clear, to a used input of the same gate if maximum fan-out of the driving output will not be exceeded.
- c. Connect unused inputs to the logical 1 output of an unused gate.
- d. Connect unused inputs to VCC through a 1-k Ω resistor so that if a transient which exceeds the 5.5-V maximum rating should occur, the impedance vill be high enough to protect the input. One to 25 unused inputs may be connected to each $1-k\Omega$ resistc .

input-current requirements

Input-current requirements reflect worst-case VCC and temperature conditions. Each input of the multiple-emitter input transistor requires no more than a 0.18-mA flow out of the input at a logical 0 voltage level; therefore, one load (N=1) is -0.18 mA maximum. Each input, except the clock inputs of the flip-flops, requires current into the terminal at a logical 1 voltage level. This current is 10 µA maximum for each. See fan-out capabilities (below) and typical characteristics (page 8-47) for flip-flop clock input current requirements. Currents into the input terminals are specified as positive values.

fan-out capability

Fan-out (N) reflects the ability of an output to sink current from a number of Series 54L and 74L loads at a logical 0 voltage level and to supply current at a logical 1 voltage level. Each Serie, 3 to output is capable of sinking current or supplying current to 10 Series 54L loads (N=10), or one Series 54/74 load and two 54L loads. Each Series 74L output is capable of sinking current or supplying current to 20 Series 74L loads (N=20), or two Series 54/74 loads and two 74L loads. Load currents (out of the output terminal) are specified as negative values.

A Series 54 or 74 output is capable of sinking current or supplying current to 40 Series 54L or 74L loads (N=40). The Series 54/74 buffer gate circuit (SN5440/SN7440) is capable of driving 120 Series 54L/74L loads. The carry outputs of the Series 54/74 adders are capable of driving 20 Series 54L/74L loads and the A★ and B★ nodes of the SN5480/SN7480 may be used to drive 12 loads.

When fanning out into Series 54L/74L flip-flop clock inputs, no load current (I_{load}) is drawn at $V_{in(clock)} = 2.4 \text{ V}$. Therefore, the fan-out limitation is the I_{sink} capability of the driving output. A Series 54/74 output will sink sufficient current to drive 44 clock inputs (88 loads), and the SN5440/SN7440 circuit will sink sufficient current to drive 133 clock inputs (266 loads). The Series 54L output is capable of driving five 54L clock inputs and one additional load. The Series 74L output is capable of driving ten 74L clock inputs.

CIRCUIT TYPES SN54L00, SN74L00 **QUADRUPLE 2-INPUT POSITIVE NAND GATES**

schematic (each gate)

NOTE: Component values shown

JOR N FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

recommended operating conditions

MIN NOM MAX UNIT 5.5 Supply Voltage Vcc: SN54L00 Circuits 4.75 5 5.25 SN74L00 Circuits Normalized Fan-Out From Each Output, N \cdots \cdots \cdots \cdots \cdots 25 125 °C Operating Free-Air Temperature Range, TA: SN54L00 Circuits . °c 70 SN74L00 Circuits

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

8

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
V.n(3)	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	1		2		v
	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	2			0.7	v
V _{out[1]}	Logical 1 output voltage	2	$V_{CC}=MIN$, $V_{in}=0.7 V$, $I_{load}=-100 \mu A$	2.4		٧
V _{out [0]}	Logical O output voltage	1	$V_{CC} = MIN$, $V_{in} = 2 V$, $I_{sink} = 2 mA$		0.3	٧
l _{infol}	Logical O level input current (each input)	3	$V_{cc} = MAX$, $V_{in} = 0.3 V$		-0.18	mA
L _{in(1)}	Logical 1 level input current (each input)	4	$V_{CC} = MAX$, $V_{in} = 2.4 \text{ V}$ $V_{CC} = MAX$, $V_{in} = 5.5 \text{ V}$		10 100	μA μA
los	Short-circuit output current	5	$V_{cc} = MAX$, $V_{in} = 0$, $V_{out} = 0$	-3	-15	mA
Icc(0)	Logical O level supply current (average per gate)	6	$V_{CC} = MAX$, $V_{in} = 5 V$		0.51	mA
lccn	Logical 1 level supply current (average per gate)	6	$V_{CC} = MAX$, $V_{in} = 0$		0.2	mA

switching characteristics, $V_{cc} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, N = 10

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpde	Propagation delay time to logical 0 level	35	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$	1	31	60	ns
-	Propagation delay time to logical 1 level	35	$C_L=50$ pF, $R_L=4$ $k\Omega$		35	60	ns

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L01, SN54L03, SN74L01, SN74L03 QUADRUPLE 2-INPUT POSITIVE-NAND GATES WITH OPEN-COLLECTOR OUTPUTS

schematic (each gate)

SN54L01, SN74L01 T FLAT PACKAGE (TOP VIEW) J OR N DUAL-IN-LINE PACKAGE (TOP VIEW) 3Y (8) (11) (12)

SN54L03, SN74L03

recommended operating conditions

		N54L0		_	N74L0		UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N			10			10	
Operating free-air temperature, TA	-55	25	125	0	25	70	°C

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS†	MIN	MAX	UNIT
VIH	High-level input voltage		2		V
VIL	Low-level input voltage			0.6	٧
lон	High-level output current	V _{CC} = MIN, V _{IL} = 0.6 V,		F0	
-OH	rigit-level output current	V _{OH} = 5.5 V		50	μΑ
VOL	Low-level output voltage	$V_{CC} = MIN$, $V_{IH} = 2 V$,		0,3	v
-02		I _{OL} = 2 mA		0.3	V
П	Input current at maximum input voltage	$V_{CC} = MAX$, $V_I = 5.5 V$		100	μΑ
ЧН	High-level input current	V _{CC} = MAX, V _I = 2.4 V		10	μΑ
կլ	Low-level input current	V _{CC} = MAX, V _I = 0.3 V		-0.18	mA
loo.	Supply current, high-level output	V- MAY Allinoide	1		
Іссн	(average per gate)	V _{CC} = MAX, All inputs ground	ea	0.2	mA
	Supply current, low-level output	V MAY All:		2.54	
ICCL	(average per gate)	V _{CC} = MAX, All inputs at 5 V		0.51	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, N = 10

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
*	Propagation delay time,				
[‡] PLH	low-to-high-level output	C _L = 50 pF,	1	90	
+	Propagation delay time,	$R_L = 4 k\Omega$,			ns
^t PHL	PHL high-to-low-level output	See Figure 35	1	60	

CIRCUIT TYPES SN54L02, SN74L02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

schematic (each gate) Vcc 40 k!! 20 k!! 20 k!! O Y

recommended operating conditions

Resistor values shown are nominal

A STATE OF THE STA	S	N54L)2	SN74L02			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	ONT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N			10			10	
Operating free-air temperature, TA	-55	25	125	0	25	70	°C

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS [†]	MIN	MAX	UNIT
VIH	High-level input voltage		2		V
VIL	Low-level input voltage			0.7	V
V _{OH}	High-level output current	$V_{CC} = MIN, V_{IL} = 0.7 \text{ V},$ $I_{OH} = -100 \mu\text{A}$	2.4		V
VOL	Low-level output voltage	$V_{CC} = MIN$, $V_{IH} = 2 V$, $I_{OL} = 2 \text{ mA}$		0.3	v
11	Input current at maximum input voltage	$V_{CC} = MAX$, $V_1 = 5.5 V$		100	μΑ
ЧН	High-level input current	V _{CC} = MAX, V _I = 2.4 V		10	μΑ
1 ₁ L	Low-level input current	V _{CC} = MAX, V ₁ = 0.3 V		-0.18	mA
los	Short-circuit output current	V _{CC} = MAX	-3	-15	mA
Іссн	Supply current, high-level output (average per gate)	V _{CC} = MAX, See Note 3		0.4	mA
ICCL	Supply current, low-level output (average per gate)	V _{CC} = MAX, See Note 4		0.65	mA

NOTES: 3. $I_{\mbox{\scriptsize CCH}}$ is measured with all inputs grounded and outputs open.

4. ICCL is measured with one input of each gate at 5 V, the remaining inputs grounded, and outputs open.

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

switching characteristics, V_{CC} = 5 V, T_A = 25°C, N = 10

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
*	Propagation delay time,	C ₁ = 50 pF,		31	60	
^t PLH	low-to-high-level output	$R_1 = 4 k\Omega$,				ns
	Propagation delay time,	See Figure 35		35	60	
^t PHL	PHL high-to-low-level output	See Figure 35			00	

APPLICATION DATA

combined fan-out and wire-AND capabilities

The open-collector TTL gate, when supplied with a proper load resistor (R_L), may be paralleled with other similar TTL gates to perform the wire-AND function, and simultaneously, will drive from one to nine Series 54L/74L loads. When no other open-collector gates are paralleled, this gate may be used to drive ten Series 54L/74L loads. For any of these conditions an appropriate load resistor value must be determined for the desired circuit configuration. A maximum resistor value must be determined which will ensure that sufficient load current (to TTL loads) and off current (through paralleled outputs) will be available while the output is high. A minimum resistor value must be determined which will ensure that current through this resistor and sink current from the TTL loads will not cause the output voltage to rise above the low level even if one of the paralleled outputs is sinking all the currents.

In both conditions (low and high level) the value of RL is determined by:

$$R_L = \frac{V_{RL}}{I_{RL}}$$

where VRL is the voltage drop in volts, and IRL is the current in amperes.

high-level (off-state) circuit calculations (see figure A)

The allowable voltage drop across the load resistor (V_{RL}) is the difference between V_{CC} applied and the V_{OH} level required at the load:

$$V_{RL} = V_{CC} - V_{OH min}$$

The total current through the load resistor (IRL) is the sum of the load currents (IIH) and off-state reverse currents (IOH) through each of the wire-AND-connected outputs:

$$I_{RL} = \eta \cdot I_{OH} + N \cdot I_{IH}$$
 to TTL loads

Therefore, calculations for the maximum value of \mbox{RL} would be:

$$R_{L(max)} = \frac{V_{CC} - V_{OH min}}{\eta \cdot I_{OH} + N \cdot I_{JH}}$$

where η = number of gates wire-AND-connected, and N = number of Series 54L/74L loads.

Q

The current through the resistor must be limited to the maximum sink current of one output transistor. Note that if several output transistors are wire-AND connected, the current through RL may be shared by those paralleled transistors. However, unless it can be absolutely guaranteed that more than one transistor will be on during low-level periods, the current must be limited to 2 mA, the maximum current which will ensure a low-level maximum of 0.3 volt.

Also, fan-out must be considered. Part of the 2 mA will be supplied from the inputs which are being driven. This reduces the amount of current which can be allowed through RL.

Therefore, the equation used to determine the minimum value of RL would be:

$$R_{L(min)} = \frac{V_{CC} - V_{OL} max}{I_{OL} capability - N \cdot I_{IL}}$$

driving series 54L/74L loads and combining outputs

Table 1 provides minimum and maximum resistor values, calculated from equations shown above, for driving one to ten Series 54L/74L loads and wire-AND connecting two to ten parallel outputs. Each value shown for one wire-AND output is determined by the fan-out plus the cutoff current of a single output transistor. Extension beyond ten wire-AND connections is permitted with fan-outs of five or less if a valid minimum and maximum R_L is possible. When fanning-out to ten Series 54L/74L loads, the calculation for the minimum value of RL indicates that a value greater than the maximum value of RL should be used; however, the use of a resistor having a value between 15.6 $k\Omega$ and 17.3 $k\Omega$ in this case will satisfy the high level condition and limit the low level to less than 0.31 volt.

3 16.2 15.3 14.5 13.7	11.8 11.3 10.8	9.63 9.29 8.96	8.13 7.88 7.65	7.03 6.85	6.20 6.05	5.53 5.42	5.00 4.90	
15.3 14.5 13.7	11.8 11.3 10.8	9.63 9.29 8.96	8.13 7.88 7.65	7.03 6.85	6.20 6.05	5.53 5.42	5.00 4.90	2.87 3.22
14.5 13.7	11.3 10.8	9,29 8.96	7.88 7.65	6.85	6.05	5.42	4,90	3.22
13.7	10.8	8.96	7.65					
	<u> </u>			6.67	5.91	5.31	4.82	267
13.0	40.4	Section 1	2000000000000				5 Sec. 200	3.07
EXP. (425.4)	10.4	8.56	7.44	6.50	5.78	5.20	4.73	4.29
12.4	10.0	8.38	7.22	6.34	5.65	×	X	5.20
11.8	9.63	8.13	7,03	Х	Х	×	Х	6.35
11.3	9.29	Х	×	×	Х	Х	Х	8.40
X	Х	Х	Х	Х	Х	Х	Х	12:4
Х	Х	Х	Х	Х	Х	×	' X	15.6§
		MAXI	MUM	4.5	111		jar.	MIN
	× ×	X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X

All values in the table are based on:

High-level condition: $V_{CC} = 5 \text{ V}, V_{OH \text{ min}} = 2.4 \text{ V}$ Low-level condition: $V_{CC} = 5 \text{ V}, V_{OL \text{ max}} = 0.3 \text{ V}$

X-Not recommended or not possible

 \S The theoretical value is 23.5 k $\Omega.$ See explanation in text.

CIRCUIT TYPES SN54L04, SN74L04 HEX INVERTERS

recommended operating conditions

 MIN NOM MAX UNIT 4.5 ٧ 5 5.5 v 4.75 5.25 10 -55 25 125 °C

25

0

70

Normalized Fan-Out From Each Output, N $\,$ Operating Free-Air Temperature Range, T_A :

SN54L04 Circuits SN74L04 Circuits

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
V _{in(1)}	Logical 1 input voltage required at input terminal to ensure logical 0 level at output	7		2		٧
V _{in(0)}	Logical 0 input voltage required at input terminal to ensure logical 1 level at output	8			0.7	٧
V _{out(1)}	Logical 1 output voltage	8	V_{CC} = MIN, V_{in} = 0.7 V, I_{load} = $-100 \mu A$	2.4		٧
V _{out(0)}	Logical 0 output voltage	7	V _{CC} = MIN, V _{in} = 2 V, I _{sink} = 2 mA		0.3	٧
¹ in(0)	Logical 0 level input current	9	V _{CC} = MAX, V _{in} = 0.3 V		-0.18	mΑ
l _{in(1)}	Logical 1 level input current	10	V _{CC} = MAX, V _{in} = 2.4 V V _{CC} = MAX, V _{in} = 5.5 V		10 100	μΑ
los	Short-circuit output current	11	V _{CC} = MAX, V _{in} = 0 V _{out} = 0	-3	-15	mA
¹ CC(0)	Logical 0 level supply current (Average per inverter)	12	V _{CC} = MAX, V _{in} = 5 V		0.51	mA
Icc(1)	Logical 1 level supply current (Average per inverter)	. 12	V _{CC} = MAX, V _{in} = 0		0.2	mA

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_{\Delta} = 25^{\circ} \text{C}$, N = 10

	PARAMETER	TEST FIGURE	TEST CO	NDITIONS [†]	MIN	TYP	MAX	UNIT
t _{pd0}	Propagation delay time to logical 0 level	35	C _L = 50 pF,	R _L = 4 kΩ		31	60	ns
tpd1	Propagation delay time to logical 1 level	35	C _L = 50 pF,	R _L = 4 kΩ		35	60	ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

0

°C

CIRCUIT TYPES SN54L10, SN74L10 TRIPLE 3-INPUT POSITIVE NAND GATES

schematic (each gate)

V_Cc

40 kΩ 20 kΩ 500 Ω

OUTPUT

A B C

INPUTS 12 kΩ

GND

NOTE: Component values shown are nominal.

T JOR N FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply Voltage Vcc: SN54L10 Circuits	4.5	5	5.5	V
SN74L10 Circuits	4.75	5	5.25	٧
Normalized Fan-Out From Each Output, N			10	
Operating Free-Air Temperature Range, Ta: SN54L10 Circuits	-55	25	125	°C
SN74L10 Circuits	0	25	70	°C

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
Logical 1 input voltage required V _{.n[1]} at all input terminals to ensure logical 0 level at output	ī		2		V.
Logical 0 input voltage required V _{in[0]} at any input terminal to ensure logical 1 level at output	2			0.7	٧
V _{out[1]} Logical 1 output voltage	2	$V_{CC}=MIN$, $V_{in}=0.7 V$, $I_{load}=-100 \mu A$	2.4		٧
V _{out(0)} Logical 0 output voltage	1	$V_{CC} = MIN$, $V_{in} = 2 V$, $I_{sink} = 2 mA$		0.3	v
lin(0) Logical O level input current (each input)	3	$V_{CC} = MAX$, $V_{in} = 0.3 V$		-0.18	mA
l _{in(1)} Logical 1 level input current (each input)	4	$V_{CC} = MAX$, $V_{in} = 2.4 \text{ V}$ $V_{CC} = MAX$, $V_{in} = 5.5 \text{ V}$		10 100	μ Α
los Short-circuit output current	5	$V_{CC} = MAX, \qquad V_{in} = 0, V_{out} = 0$	-3	-15	mA
Logical 0 level supply current (average per gate)	6	$V_{cc} = MAX$, $V_{in} = 5 V$		0.51	mA
Logical 1 level supply current lcc(1) (average per gate)	6	$V_{CC} = MAX$, $V_{in} = 0$		0.2	mA

switching characteristics, $V_{cc} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, N = 10

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TY	P MAX	UNIT	
t _{pd0} Propagation delay time to logical 0 level	35	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$	31	60	ns	
t _{pd1} Propagation delay time to logical 1 level	35	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$	35	60	ns	

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L20, SN74L20 **DUAL 4-INPUT POSITIVE NAND GATES**

J OR N

schematic (each gate)

NOTES: 1. Component values shown are nominal.

2. NC - No internal connection.

 $Y = \overline{ABCD}$

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply Voltage Vcc: SN54L20 Circuits	4.5	5	5.5	V
SN74L20 Circuits	4.75	5	5.25	V
Normalized Fan-Out From Each Output, N			10	
Operating Free-Air Temperature Range, Tx: SN54L20 Circuits	-55	25	125	°C
SN74L20 Circuits	0	25	70	°C

T

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
V _{in{1}}	Logical 1 input voltage required (1) at all input terminals to ensure logical 0 level at output	1		2		٧
Vin(0)	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	2			0.7	٧
V _{out(1)}	Logical 1 output voltage	2	$V_{CC}=MIN$, $V_{in}=0.7 V$, $I_{load}=-100 \mu A$	2.4		v
Vout(0)	Logical O output voltage	1	$V_{CC} = MIN$, $V_{in} = 2 V$, $I_{sink} = 2 mA$		0.3	٧
l _{in(0)}	Logical O level input current (each input)	3	$V_{CC} = MAX$, $V_{in} = 0.3 V$		0.18	mA
Lan	Logical 1 level input current (each input)	4	$V_{CC} = MAX$, $V_{in} = 2.4 V$		10	μA
**n(1)	Logical i level input corrent (each input)	•	$V_{CC} = MAX$, $V_{in} = 5.5 V$		100	μA
los	Short-circuit output current	5	$V_{CC} = MAX$, $V_{in} = 0$, V_{out}	= 0 -3	-15	mA
l _{cc(0)}	Logical 0 level supply current (average per gate)	6	$V_{CC} = MAX$, $V_{in} = 5 V$		0.51	mA
Icc(1)	Logical 1 level supply current (average per gate)	6	$V_{\text{cc}} = MAX$, $V_{\text{in}} = 0$		0.2	mA

switching characteristics, $V_{cc} = 5 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$, N = 10

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{pd0}	Propagation delay time to logical 0 level	35	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		31	60	ns
t _{pd1}	Propagation delay time to logical 1 level	35	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		35	60	ns

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L30, SN74L30 8-INPUT POSITIVE NAND GATES

schematic

NOTES: 1. Component values shown are nominal.

2. NC — No internal connection

T JOR N
FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

THE NOM MAY HAIT

recommended operating conditions

	WIN	NOM	MAA	01411
Supply Voltage Vcc: SN54L30 Circuits	4.5	5	5.5	٧
SN74L30 Circuits	4.75	5	5.25	٧
Normalized Fan-Out From Each Output, N			10	
Operating Free-Air Temperature Range, TA: SN54L30 Circuits	55	25	125	°c
SN74L30 Circuits			70	° C

lectrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	TEST FIGURE	TEST COM	NDITIONS†		MIN	MAX	UNIT
Logical 1 input voltage required V _{in(1)} at all input terminals to ensure logical 0 level at output	1				2		v
Logical 0 input voltage required V _{in(0)} at any input terminal to ensure logical 1 level at output	2					0.7	٧
V _{out[1]} Logical 1 output voltage	2	$V_{CC} = MIN,$ $I_{load} = -100 \mu A$	V _{in} = 0.7 V	,	2.4		٧
V _{out(0)} Logical 0 output voltage	1	V _{CC} = MIN, I _{sink} = 2 mA	$V_{in} = 2 V$,			0.3	٧
linto Logical O level input current (each input)	3	Vcc = MAX,	$V_{in} = 0.3 V$			-0.18	mA
		Vcc = MAX,	$V_{in} = 2.4 V$			10	μA
l _{in(1)} Logical 1 level input current (each input)	4	Vcc = MAX,	V _{in} = 5.5 V			100	μA
los Short-circuit output current	5	V _{CC} = MAX,	$V_{in} = 0, V_{ox}$	₊ = 0	-3	-15	mA
Iccio Logical O level supply current	6	Vcc = MAX,	$V_{in} = 5 V$			0.51	mA
	-			SN54L30		0.33	١.
locii) Logical 1 level supply current	6	Vcc = MAX,	$V_{in} = 0$	SN74L30		0.2	mA

switching characteristics, $V_{\rm CC} = 5$ V, $T_{\rm A} = 25\,{\rm ^{\circ}C}$, N = 10

PARAMETER	TEST	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{pd0} Propagation delay time to logical 0 level		$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		70	100	ns
t Propagation delay time to logical 1 level		$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		35	60	ns

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L51, SN74L51 DUAL 2-WIDE AND-OR-INVERT GATES

V_{CC}

500 Ω

OUTPUT

OUTPUT

INPUTS

NOTES: 1. Component values shown are nominal.
2. Inputs C and F are available on gate 1 only.

recommended operating conditions MIN NOM MAX UNIT Supply Voltage Vcc: \$N54L51 Circuits 4.5 5 5.5 V SN74L51 Circuits 4.75 5 5.25 V Normalized Fan-Out From Each Output, N - 5.5 10 V Operating Free-Air Temperature Range, Ta: \$N54L51 Circuits - 5.5 25 125 °C \$N74L51 Circuits 0 25 70 °C

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CO	NDITIONS†	MIN	мах	UNIT
V:n(1)	Logical 1 input voltage required at all input terminals of either AND section to ensure logical 0 at output	13			2		٧
V.n(0)	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	14				0.7	v
Vout(1)	Logical 1 output voltage	14	$V_{CC} = MIN,$ $I_{load} = -100 \mu A$	V _{in} = 0.7 V,	2.4		٧
Vout(0)	Logical 0 output voltage	13	V _{CC} = MIN, I _{sink} = 2 mA	$V_{in} = 2 V$,		0.3	٧
I.n(0)	Logical O level input current (each input)	15	Vcc = MAX,	$V_{in} = 0.3 \text{ V}$		-0.18	mA
		16	Vcc = MAX,	V _{in} = 2.4 V		10	μΑ
Lin(1)	Logical 1 level input current (each input)	10	Vcc = MAX,	$V_{in} = 5.5 V$		100	μА
los	Short-circuit output current	17	Vcc = MAX,	$V_{in}=0$, $V_{out}=0$	-3	-15	mA
Iccioi	Logical O level supply current (average per gate)	18	Vcc = MAX,	V _{in} = 5 V		0.65	mA
Icciil	Logical 1 level supply current (average per gate)	18	Vcc = MAX,	$V_{in}=0$		0.4	mA

switching characteristics, $V_{\text{CC}} = 5 \text{ V}$, $T_{\text{A}} = 25 ^{\circ}\text{C}$, N = 10

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
†pd0 Propagation delay time to logical O level	35	$C_L = 50 \text{ pF, } R_L = 4 \text{ k}\Omega$		35	60	ns
† _{pd1} Propagation delay time to logical 1 level	35	$C_L = 50$ pF, $R_L = 4$ k Ω		50	90	ns

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L54, SN74L54 4-WIDE 3-2-2-3-INPUT AND-OR-INVERT GATES

schematic

NOTE: 1. Component values shown are nominal.

2. NC - No internal connection

J OR N

MIN

4.5

4.75

NOM MAX UNIT

5.5 V

recommended operating conditions

- •							
Supply Voltage Vcc: SN54L54 Circuits							
SN74L54 Circuits							
Normalized Fan-Out From Each Output, N							
Operating Free-Air Temperature Range, TA: SN54L54 Circuits							. 1
SN74L54 Circuits							į

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
V:n(1)	Logical 1 input voltage required at all input terminals of one AND section to ensure logical 0 at output	13		2		٧
V:n(0)	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	14			0.7	v
V _{ouf{1}	Logical 1 output voltage	14	$V_{CC} = MIN$, $V_{in} = 0.7 V$, $I_{load} = -100 \mu A$	2.4		٧
V _{out(0)}	Logical 0 output voltage	13			0.3	٧
1,,,(0)	Logical O level input current (each input)	15	$V_{CC} = MAX$, $V_{in} = 0.3 V$		-0.18	mA
tions	Logical 1 level input current (each input)	16	$V_{CC} = MAX, \qquad V_{in} = 2.4 \text{ V}$		10	μА
(.)	g (each input)		$V_{CC} = MAX$, $V_{in} = 5.5 V$		100	μА
los	Short-circuit output current	17	$V_{CC} = MAX$, $V_{in} = 0$, $V_{out} = 0$	-3	-15	mA
I _{CC(0)}	Logical 0 level supply current	18	$V_{CC} = MAX$, $V_{in} = 5 V$		0.99	mA
Icc(1)	Logical 1 level supply current	18	$V_{cc} = MAX$, $V_{in} = 0$		0.8	mA

switching characteristics, $V_{\text{CC}} = 5$ V, $T_{\text{A}} = 25$ °C, N = 10

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{pd0}	Propagation delay time to logical 0 level	35	$C_L = 50 \text{ pF, } R_L = 4 \text{ k}\Omega$		35	60	ns
tpd1	Propagation delay time to logical 1 level	35	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		50	90	ns

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L55, SN74L55 2-WIDE 4-INPUT AND-OR-INVERT GATES

schematic

J OR N T FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

NOTE: 1. Component values shown are nominal.

2. NC — No internal connection

recommended operating conditions

Supply Voltage Vcc: SN54L55 Circuits . SN74L55 Circuits . Normalized Fan-Out From Each Output, N . . Operating Free-Air Temperature Range, TA: SN54L55 Circuits . SN74L55 Circuits .

MIN	NOM	MAX	UNIT
4.5	5	5.5	٧
4.75	5	5.25	V
		10	
-55	25	125	°C
0	25	70	°C

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CO	NDITIONS†	MIN	MAX	UNIT
Viarri	Logical 1 input voltage required at all input terminals of either AND section to ensure logical 0 at output	13			2		٧
Vin(0)	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	14		ı		0.7	٧
V _{out(1)}	Logical 1 output voltage	14	$V_{CC} = MIN,$ $I_{load} = -100 \mu A$	V _{in} = 0.7 V,	2.4		\ \ \
V _{out[0]}	Logical 0 output voltage	13	V _{CC} = MIN, I _{sink} = 2 mA	$V_{in} = 2 V$,		0.3	٧
1 _{in(0)}	Logical O level input current (each input)	15	V _{CC} = MAX,	V _{in} = 0.3 V		-0.18	mA
			Vcc = MAX,	V _{in} = 2.4 V		10	μΑ
l in(1)	Logical 1 level input current (each input)	16	Vcc = MAX,	V _{in} = 5.5 V		100	μΑ
los	Short-circuit output current	17	Vcc = MAX,	$V_{in}=0$, $V_{out}=0$	-3	-15	mA
Iccioi		18	Vcc = MAX,	$V_{in} = 5 V$		0.65	m/
	Logical 1 level supply current	18	Vcc = MAX,	$V_{in}=0$		0.4	m/

switching characteristics, $V_{\text{cc}} = 5 \, \, \text{V}, \, T_{\text{A}} = 25 \, ^{\text{o}}\text{C}, \, N = 10 \,$

PARAMETER 1100 t_{odd} Propagation delay time to logical 0 level 35 $C_L = 50$ pF, $R_L = 4$ k Ω 35	TEST FIGURE TEST CONDITIONS MIN TYP MAX	UNIT
todo Propagation delay time to logical o texts.	35 60	ns
ton Propagation delay time to logical 1 level 35 Ct = 50 pF, Rt = 4 kt/2	50 90	ns

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

logic

	TRUTH TABLE								
	t _n	t _{n+1}							
R	S	Q							
0	0	Q,							
0	1	1							
1	0	0							
1	1	Indeterminate							

CIRCUIT TYPES SN54L71, SN74L71
R-S MASTER-SLAVE FLIP-FLOPS

NOTES: 1. R = R1 • R2 • R3

2. $s = s1 \cdot s2 \cdot s3$

3. t_n = Bit time before clock pulse.

4. $t_{n+1} = Bit$ time after clock pulse.

5. NC — No internal connection.

description

These R-S flip-flop circuits are based on the master-slave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

- 1. Isolate slave from master
- 2. Enter information from AND gate inputs to master
- 3. Disable AND gate inputs
- 4. Transfer information from master to slave.

recommended operating conditions

Supply Voltage Vcc: 5	SN54L71	Circuits														
5	SN74L71	Circuits														
Normalized Fan-Out Fro	om Each (Output, N	١.												i	
Width of Clock Pulse, t	p[clock] (Se	e figure	36)													
Width of Preset Pulse,	tp(preset) (S	See figur	e 37	7)												
Width of Clear Pulse, t	p(clear) (Se	e figure	37)									Ċ	Ċ		i	
Input Setup Time, tsetup	(See fig	ure 36)														
Input Hold Time, thold											Ċ	Ĭ.		Ċ		
Operating Free-Air Tem	perature	Range, 1	r _A : 5	SN:	4L	71	Ci	rcui	ts	٠.						
							Ci									

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	٧
		10	
200			ns
100			ns
100			ns
100			ns
0			
55	25	125	°C
0	25	70	°C

CIRCUIT TYPES SN54L71, SN74L71 R-S MASTER-SLAVE FLIP-FLOPS

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
V:n[1]	Input voltage required to ensure logical 1 at any input terminal	19 and 20		2		v
V _{in(0)}	Input voltage required to ensure logical 0 at any input terminal except clock	19 and 20			0.7	v
V _{in[0]}	Input voltage required to ensure logical 0 at clock input terminal	19 and 20			0.6	v
V _{out[1]}	Logical 1 output voltage	19	$V_{CC} = MIN$, $I_{load} = -100 \mu A$	2.4		٧
V _{out (0)}	Logical O output voltage	20	Vcc = MIN, Isink = 2 mA		0.3	٧
l _{in(0)}	Logical O level input current at R1, R2, R3, S1, S2, or S3	21	$V_{CC} = MAX$, $V_{in} = 0.3 V$		-0.18	mA
l _{in(0)}	Logical O level input current at preset, clear, or clock	21	Vcc = MAX, Via = 0.3 V		-0.36∫	mA
l _{in(1)}	Logical 1 level input current at R1, R2, R3, S1, S2, or S3	22	$V_{CC} = MAX$, $V_{in} = 2.4 \text{ V}$ $V_{CC} = MAX$, $V_{in} = 5.5 \text{ V}$		10 100	μ Α
l _{in(1)}	Logical 1 level input current at preset or clear	22	$V_{CC} = MAX$, $V_{in} = 2.4 \text{ V}$ $V_{CC} = MAX$, $V_{in} = 5.5 \text{ V}$		20 200	μ Α
l _{in(1)}	Logical 1 level input current at clock	22	$V_{CC} = MAX$, $V_{in} = 2.4 \text{ V}$ $V_{CC} = MAX$, $V_{in} = 5.5 \text{ V}$	oʻl	0.2∫ 200∫	mA μA
los	Short-circuit output current	23	Vcc = MAX, Vin = 0, Vout = 0	-3	-15	mA
Icc	Supply current	22	Vcc = MAX, Vin(clock) = 0		1,44	mA

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type. For typical clock input current see page 8-47.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, N = 10

PARAMETER		PARAMETER TEST TEST CONDITIONS		MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency	36	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		3		MHz
t _{pd1}	Propagation delay time to logical 1 level from clear or preset to output	37	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		35	75	ns
t _{ed0}	Propagation delay time to logical O level from clear or preset	37	$C_L = 50$ pF, $R_L = 4$ k Ω , $V_{in(clock)} = 2.4$ V		60	150	ns
-pau	to output	37	$C_L = 50$ pF, $R_L = 4$ k Ω , $V_{in(clock)} = 0$ V			200	ns
† _{pd1}	Propagation delay time to logical 1 level from clock to output	36.	$C_L=50$ pF, $R_L=4$ k Ω	10	35	75	ns
† _{pd0}	Propagation delay time to logical O level from clock to output	36	$C_L=50$ pF, $R_L=4$ k Ω	10	60	150	ns

CIRCUIT TYPES SN54L71, SN74L71 R-S MASTER-SLAVE FLIP-FLOPS

functional block diagram

schematic

Component values shown are nominal.

CIRCUIT TYPES SN54L72, SN74L72 J-K MASTER-SLAVE FLIP-FLOPS

logic

	TRUTH TABLE										
	*	tn + 1									
	J	K	Q								
Γ	0	0	Q,								
	0	1	0								
	1	0	1								
	1	1	Q,								

NOTES: 1. J = J1 • J2 • J3

2. K = K1 • K2 • K3

3. t_n = Bit time before clock pulse.

4. $t_{n+1} = Bit$ time after clock pulse.

5. NC — No internal connection.

description

These J-K flip-flop circuits are based on the master-slave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

- 1. Isolate slave from master
- 2. Enter information from AND gate inputs to master
- 3. Disable AND gate inputs
- 4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

c

recommended operating conditions

								MI	NOM	MAX	UNIT
Supply Voltage Vcc: SN54L72 Circuits								. 4.	5 5	5.5	٧
SN74L72 Circuits										5.25	٧
Normalized Fan-Out From Each Output, N										10	
Width of Clock Pulse, tp[clock] (See figure 36))		ns
Width of Preset Pulse, tp[preset] (See figure 37)											ns
Width of Clear Pulse, tp[clear] (See figure 37)								. 10)		ns
Input Setup Time, tsetup (See figure 36)								. ≥	tp(clock)		<u> </u>
Input Hold Time, thold	 								0		
Operating Free-Air Temperature Range, TA: SN54L72									5 25	125	°C
SN74L72								- 1	0 25	70	°C

CIRCUIT TYPES SN54L72, SN74L72 J-K MASTER-SLAVE FLIP-FLOPS

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UNIT
V :n[1]	Input voltage required to ensure logical 1 at any input terminal	24 and 25		2		v
V.n(0)	Input voltage required to ensure logical 0 at any input terminal except clock	24 and 25			0.7	v
V,n(0)	Input voltage required to ensure logical 0 at clock input terminal	24 and 25			0.6	v
$V_{out[1]}$	Logical 1 output voltage	24	Vcc = MIN, I load = -100 μA	2.4		٧
V _{ou1(0)}	Logical 0 output voltage	25	Vcc = MIN, Isink = 2 mA		0.3	v
lin(0)	Logical O level input current at J1, J2, J3, K1, K2, or K3	26	$V_{cc} = MAX$, $V_{in} = 0.3 V$		-0.18	mA
l _{in(0)}	Logical O level input current at preset, clear, or clock	26	$V_{cc} = MAX$, $V_{in} = 0.3 V$		-0.36‡	mA
I.n(1)	Logical 1 level input current at J1, J2, J3, K1, K2, or K3	27	$V_{CC} = MAX$, $V_{in} = 2.4 \text{ V}$ $V_{CC} = MAX$, $V_{in} = 5.5 \text{ V}$		10	μ Α
l ₁₀ (1)	Logical 1 level input current at preset or clear	27	V _{CC} = MAX, V _{in} = 2.4 V V _{CC} = MAX, V _{in} = 5.5 V		20 200	μ Α
Lin(1)	Logical 1 level input current at clock	27	$V_{CC} = MAX$, $V_{in} = 2.4 \text{ V}$ $V_{CC} = MAX$, $V_{in} = 5.5 \text{ V}$		-0.2‡ 200‡	
los	Short-circuit output current	28	Vcc = MAX, Vin = 0, Vout =	0 -3	-15	mA
Icc	Supply current	27	Vcc = MAX, Vin(clock) = 0		1.44	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

switching characteristics, $V_{cc} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, N = 10

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency	36	$C_L=50$ pF, $R_L=4~k\Omega$		3		мна
t _{pd1}	Propagation delay time to logical 1 level from clear or preset to output	37	$C_L=50$ pF, $R_L=4$ k?		35	75	ns
t _{pd0}	Propagation delay time to logical O level from clear or preset	37	$C_L = 50$ pF, $R_L = 4$ k Ω , $V_{in(clock)} = 2.4$ V		60	150	ns
	to output	3/	$C_L = 50$ pF, $R_L = 4$ k Ω , $V_{in{clock}} = 0$ V			200	RS
t _{pd1}	Propagation delay time to logical 1 level from clock to output	36	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$	10	35	75	ns
t _{pd0}	Propagation delay time to logical O level from clock to output	36	$C_L=50$ pF, $R_L=4$ k Ω	10	60	150	ns

[‡]For typical clock input current see page 8-47.

TYPES SN54L72, SN74L72 J-K MASTER-SLAVE FLIP-FLOPS

PRESET CLOCK

schematic

Component values shown are nominal.

CIRCUIT TYPES SN54L73, SN74L73 DUAL J-K MASTER-SLAVE FLIP-FLOPS

logic

NOTES: 1. t_n = Bit tîme before clock pulse.

2. t_{n+1} = Bit time after clock pulse.

description

These J-K flip-flop circuits are based on the masterslave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

- 1. Isolate slave from master
- 2. Enter information from AND gate inputs to master
- 3. Disable AND gate inputs
- 4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

recommended operating conditions

		SN54L73					
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage V _{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N			10	†		10	
Width of clock pulse, tp(clock) (See Figure 36)	200			200			ns
Width of preset pulse, tp(preset) (See Figure 37)	100			100			ns
Width of clear pulse, tp(clear) (See Figure 37)	100			100			ns
Input setup time, t _{setup} (See Figure 36)	≥tp(clock)			≥ tp(clock)			
Input hold time, thold	0			0			
Operating free-air temperature range, TA	-55	25	125	0	25	70	°C

CIRCUIT TYPES SN54L73, SN74L73 DUAL J-K MASTER-SLAVE FLIP-FLOPS

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	FIGURE	TEST	CONDITIONS†	MIN	MAX	UN
V _{in(1)}	Input voltage required to ensure logical 1 at any input terminal	29 and 30			2		٧
V _{in(0)}	Input voltage reguired to ensure logical 0 at any input terminal except clock	29 and 30	:			0.7	v
V in {0}	Input voltage reguired to ensure logical 0 at clock input terminal	29 and 30	·			0.6	٧
Vout(1)	Logical 1 output voltage	29	Vcc = MIN,	$I_{load} = -100 \mu A$	2.4		٧
V _{out(0)}	Logical 0 output voltage	30	Vcc = MIN,	l _{sink} = 2 mA	Made and the same of the same	0.3	٧
l _{in(0)}	Logical O level input current at J or K	31	Vcc = MAX,	$V_{in}=0.3~V$		-0.18	m
l _{in(0)}	Logical O level input current at clear or clock	31	Vcc = MAX,	$V_{in}=0.3~V$		–0.3 6∫	m.
l _{in(1)}	Logical 1 level input current at J or K	32	Vcc = MAX,	V _{in} = 2.4 V V _{in} = 5.5 V		100	μ.
	1		Vcc = MAX,			20	μ
l _{in(t)}	Logical 1 level input current at clear	32	Vcc = MAX,	V _{in} = 5.5 V		200	μ.
l _{in(1)}	Logical 1 level input current	32	Vcc = MAX,	V _{in} = 2.4 V	oſ	–0.2 ∫	m
	at clock		Vcc = MAX,	V _{in} = 5.5 V		200∫	μ
los	Short-circuit output current	33	Vcc = MAX,	$V_{in}=0$, $V_{out}=0$	-3	.–15	m
lcc	Supply current (average per flip-flop)	32	Vcc = MAX,	$V_{in{clock}} = 0$		1.44	m

[†]For conditons shown as MIN or MAX, use the appropriate value specified under recommended operating conditons for the applicable circuit type.

switching characteristics, $V_{cc} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, N = 10

	PARAMETER	TEST FIGURE	TES	CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency	36	C _L = 50 pF,	$R_L = 4 k\Omega$		3		MHz
t _{pd1}	Propagation delay time to logical 1 level from clear to output	37	C _L = 50 pF,	$R_L=4~k\Omega$		35	75	ns
	Propagation delay time to logical		C _L = 50 pF,	Vin(clock) = 2.4 V		60	150	1
t _{pd0}	O level from clear to output	37	$R_L = 4 k\Omega$,	V _{in{clock}} = 0 V			200	ns
t _{pd0}	Propagation delay time to logical O level from clock to output	36	$C_L = 50 pF$,	$R_L=4~k\Omega$	10	60	150	ns
t _{pd1}	Propagation delay time to logical 1 level from clock to output	36	$C_L=50$ pF,	$R_L = 4 k\Omega$	10	35	75	ns

For typical clock input current see page 8-47.

CIRCUIT TYPES SN54L73, SN74L73 DUAL J-K MASTER-SLAVE FLIP-FLOPS

functional block diagram (each flip-flop)

schematic (each flip-flop)

CIRCUIT TYPES SN54L74, SN74L74 DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

- Typical Maximum Clock Frequency . . . 3 MHz
- Positive-Edge Triggering

Fully Compatible with Most TTL and DTL Circuits

 High-Fan-Out, Low-Impedance, Totem-Pole Outputs

logic

TRUTH TABLE (Each Flip-Flop)

t _n	t _n	+1
INPUT	OUT	PUTS
D	Q	ō
L	L	Н
н	Н	L

H = high level, L = low level

NOTES: A. t_n = bit time before clock pulse.

B. t_{n+1} = bit time after clock pulse.

description

These monolithic, low-power, dual, edge-triggered flip-flops utilize TTL circuitry to perform D-type flip-flop logic. Each flip-flop has individual clear and preset inputs, and complementary Q and \overline{Q} outputs.

Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D-input signal has no effect.

These circuits are fully compatible for use with most TTL or DTL circuits. A full fan-out to 10 normalized Series 54L/74L loads is available from each of the outputs. Maximum clock frequency is typically 3 megahertz, with a typical power dissipation of 4.25 milliwatts per flip-flop.

The SN54L74 is characterized for operation over the full military temperature range of -55° C to 125° C; the SN74L74 is characterized for operation from 0° C to 70° C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage VCC (see Note 1)													8 V
Input voltage (see Notes 1 and 2)												. 5	5.5 V
Operating free-air temperature range:	SN54L74 Circuits									-55	°C t	o 1:	25°C
	SN74L74 Circuits										0°C	to	70°C
Storage temperature range										-65	°C t	o 1	50°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. Input voltage must be zero or positive with respect to network ground terminal.

CIRCUIT TYPES SN54L74, SN74L74 DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

recommended operating conditions

		SN54L74			SN74L74			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage V _{CC}	4.5	5	5.5	4.75	5	5.25	V	
Normalized fan-out from each output, N			10			10		
Width of clock pulse, tw(clock) (see Figure 7 or 8)	200			200			ns	
Width of preset pulse, tw(preset) (see Figure 6)	100			100			ns	
Width of clear pulse, tw(clear) (see Figure 6)	100			100			ns	
Input setup time for either high- or low-level data,	30			30			ns	
t _{setup} (see Note 3 and Figure 7 and 8)	. 30			30			,,,,	
Input hold time, thold (See Note 3 and Figure 7 and 8)	0			. 0			ns	
Operating free-air temperature range, TA	-55	25	125	0	25	70	°C	

- NOTES: 3. Setup time is the interval immediately preceding the positive-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
 - 4. Hold time is the interval immediately following the positive-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its continued recognition.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS‡	MIN	MAX	UNIT
VIH	High-level input voltage	35, 36		2		V
VIL	Low-level input voltage	35, 36			0.7	V
VOH	High-level output voltage	35	$V_{CC} = MIN$, $I_{OH} = -100 \mu A$	2.4		V
VOL	Low-level output voltage	36	V _{CC} = MIN, I _{OL} = 2 mA		0.3	V
1	High Israel Secret comment into D	37	V _{CC} = MAX, V ₁ = 2.4 V		10	μΑ
¹ HH	High-level input current into D	37	V _{CC} = MAX, V _I = 5.5 V		100	μΑ
			V _{CC} = MAX, V _I = 2.4 V		20	μА
ЧH	High-level input current into preset or clock	37	V _{CC} = MAX, V _I = 5.5 V		200	μΑ
			V _{CC} = MAX, V _I = 2.4 V		30	μА
IН	High-level input current into clear	37	V _{CC} = MAX, V _I = 5.5 V		300	μΑ
IIL	Low-level input current into preset or D	38	V _{CC} = MAX, V _I = 0.3 V		0.18	mΑ
TIL	Low-level input current into clear or clock	38	V _{CC} = MAX, V ₁ = 0.3 V	h	-0.36	mA
los	Short-circuit output current§	39	V _{CC} = MAX	-3	-15	mA
¹cc	Supply current (each flip-flop)	37	V _{CC} = MAX		1.5	mA

[‡]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. § Not more than one output should be shorted at a time,

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, N = 10

	PARAMETER	TEST FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency	44, 45		•		3		MHz
to	Propagation delay time, low-to-high-level	43				50	75	ns
tPLH	output, from clear or preset inputs	45				50	75	115
tmill	Propagation delay time, high-to-low-level	43	$C_1 = 50 pF$,	$R_1 = 4 k\Omega$		80	150	ns
^t PHL	output, from clear or preset inputs	45	о[- 50 рг ,	11 - 4 K32		00	150	113
+	Propagation delay time, low-to-high-level	44, 45			10	65	100	ns
^t PLH	output, from clock input	44,45			'0	05	100	113
	Propagation delay time, high-to-low-level	44, 45			10	65	150	ns
^t PHL	output, from clock input	44, 45			10	05	150	115

CIRCUIT TYPES SN54L74, SN74L74 DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

functional block diagram (each flip-flop)

schematic (each flip-flop)

NOTE: Component values shown are nominal.

CIRCUIT TYPES SN54L78, SN74L78 DUAL J-K MASTER-SLAVE FLIP-FLOPS

logic

	TR	UTH TA	ABLE
	t	n	tn + 1
	J	K	Q
	,0	0	Q,
	0	1	0
	1	0	1
1	1	1	Q,

NOTES: 1. $t_n = Bit$ time before clock pulse. 2. $t_{n+1} = Bit$ time after clock pulse.

T JOR N FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

description

These J-K flip-flop circuits are based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

- 1. Isolate slave from master
- 2. Enter information from J and K inputs to master
- 3. Disable J and K inputs
- 4. Transfer information from master to slave.

recommended operating conditions

												MIN	NOM	MAX	UNIT
Supply Voltage Vcc: SN54L78 Circuits .												4.5	5	5.5	٧
SN74L78 Circuits .												4.75	5	5.25	٧
Normalized Fan-Out From Each Output, N .														10	
Width of Clock Pulse, tp(clock) (See Figure 36)	١											200			ns
Width of Preset Pulse, tp(preset) (See Figure 37)	٠.										100			ns
Width of Clear Pulse, tp[clear] (See Figure 37)												100			ns
Input Setup Time, tsetup (See Figure 36) .													lock)		
Input Hold Time, thold												0			
Operating Free-Air Temperature Range, TA: 5													25	125	°C
	N74	L78	Ci	rcui	ts							0	25	70	°C

CIRCUIT TYPES SN54L78, SN74L78 DUAL J-K MASTER-SLAVE FLIP-FLOPS

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

		<u> </u>			,	
	PARAMETER	TEST FIGURE	TEST CONDITIONS†	MIN	MAX	UN
	Input voltage required to	29				
Vin(1)	ensure logical 1 at any	and		1 .		l
▼ in{1}				2		Y
	input terminal	30				1
	Input voltage reguired to	29				П
Vin(0)	ensure logical 0 at any	and			0.7	١v
* in(u)	input terminal except clock	30	1		0.7	ľ
	inporterminal except clock	30				L
	Input voltage required to	29				
V in [0]	ensure logical 0 at	and			0.6	l۷
* ///(0)	clock input terminal	30		1	0.6	,
	Clock inporteriminar					L
$V_{out\{1\}}$	Logical 1 output voltage	29	Vcc = MIN, I _{load} = -100 μA	2.4		V
V _{out(0)}	Logical O output voltage	30	Vcc = MIN, I _{sint} = 2 mA		0.3	v
* 041(0)	Logical o corpor vollage	30	VCC — MIN, Ising — 2 MA		0.3	L
	Logical O level input current					
lin{0}	at J or K	31	$V_{cc} = MAX$, $V_{in} = 0.3 V$		-0.18	m/
l _{in(0)}	Logical O level input current	31	Vcc = MAX, V _{in} = 0.3 V		0.36	mA
						<u> </u>
l _{in(0)}	Logical O level input current at clear or clock	31	Vcc = MAX, V _{in} = 0.3 V		-0.72	mА
	Logical 1 level input current	32	$V_{cc} = MAX$, $V_{in} = 2.4 V$		10	μ.
l _{in(1)}	at J or K	32	V _{CC} = MAX, V _{in} = 5.5 V		100	μА
	Indianal I level in an amount		V _{CC} = MAX, V _{in} = 2.4 V		20	μ/
$I_{in\{1\}}$	Logical 1 level input current at preset	32	V _{cc} = MAX, V _{in} = 5.5 V			Ė
	· · · · · · · · · · · · · · · · · · ·				200	μ
I _{in(1)}	Logical 1 level input current	32	$V_{CC} = MAX$, $V_{in} = 2.4 V$		40	μ#
* in(1)	at clear	32	$V_{cc} = MAX$, $V_{in} = 5.5 V$		400	μ
	Logical 1 level input current		Vcc = MAX, Vin = 2.4 V	o§	-0.4§	m/
l _{in(1)}	at clock	32	V _{CC} = MAX, V _{in} = 5.5 V		400§	μ/
los	Short-circuit output current	34	$V_{cc} = MAX, V_{in} = 0, V_{out} = 0$	-3	-15	m
		ļ				
lcc	Supply current (average për flip-flop)	32	Vcc = MAX, Vin(clock) = 0		1.44	m

TFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type. SFor typical clock input current see page 8-47.

switching characteristics, $V_{cc} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, N = 10

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency	36	$C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$		3		MHz
t _{pd0}	Propagation delay time to logical O level from clear to output	37	$C_L = 50$ pF, $R_L = 4$ k Ω , $V_{in[clock]} = 2.4$ V $C_L = 50$ pF, $R_L = 4$ k Ω , $V_{in[clock]} = 0$ V		60	150 200	ns
t _{pd} 1	Propagation delay time to logical 1 level from clear to output	37	$C_L=50$ pF, $R_L=4$ k Ω		35	75	ns
t _{pd1}	Propagation delay time to logical 1 level from clock to output	36	$C_L=50$ pF, $R_L=4$ k Ω	10	35	75	ns
t _{pd0}	Propagation delay time to logical O level from clock to output	36	$C_L=$ 50 pF, $R_L=$ 4 $k\Omega$	10	60	150	ns

CIRCUIT TYPES SN54L78, SN74L78
DUAL J-K MASTER-SLAVE FLIP-FLOPS

functional block diagram (each flip-flop)

schematic (each flip-flop)

Component values shown are nominal.

- Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- D-C Triggered from High- or Low-Level Gated Logic inputs
- Typical Power Dissipation, 50% Duty Cycle 55 mW
- Typical Average Propagation Delay to Output Q 40 ns
- Diode-Clamped Inputs
- Fully Compatible with Most TTL and DTL Circuits

TRUTH TABLE (See Note A)

	INP	UTS		OUT	PUTS
A1	A2	В1	B2	Q	₫
Н	Н	Х	Х	L	Н
Х	Х	L	Х	L	Н
х	Х	Х	L	L	Н
L	Х	Н	Н	L	Н
L	Х	1	Н	Л	Ţ
L	Х	Н	1	V	T
Х	L	Н	Н	L	Н
Х	L	1	Н	V	T
x	L	Н	1	л	Л
Н		н	Н	T	T
1	1	Н	Н	л	几
1	Н	Н	Н	T	IJ

J OR N DUAL-IN-LINE OR T FLAT PACKAGE (TOP VIEW)[†] (See Note B thru F)

†Pin assignments for these circuits are the same for all packages.

- B. NC = no internal connection.
- C. To use the internal timing resistor of SN54L122/SN74L122 (20 k Ω), connect R int to V CC.
- D. An external timing capacitor may be connected between C_{ext} and R_{ext}/C_{ext} (positive).
- E. For accurate repeatable pulse widths, connect an external resistor between R_{ext}/C_{ext} and V_{CC} with R_{int} open-circuited.
- F. To obtain variable pulse width, connect external variable resistance between R_{int} or R_{ext}/C_{ext} and V_{CC} .

These monolithic TTL retriggerable monostable multivibrators feature d-c triggering from gated low-level-active (A) and high-level-active (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. A full fan-out to 40 normalized Series 54L/74L gate loads is available from each of the outputs. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components R and C.

Figure A below illustrates triggering the one-shot with the high-level-active (B) inputs.

OUTPUT PULSE CONTROL USING RETRIGGER PULSE

OUTPUT PULSE CONTROL USING CLEAR INPUT

FIGURE A-TYPICAL INPUT/OUTPUT PULSES

NOTE: Retrigger pulse must not start before 0.22 C_{ext} (in picofarads) nanoseconds after previous trigger pulse.

description (continued)

These monostables are designed to provide the system designer with complete flexibility in controlling the pulse width, either to lengthen the pulse by retriggering, or to shorten by clearing. The SN54L122/SN74L122 has an internal timing resistor which allows the circuit to be operated with only an external capacitor, if so desired.

The output pulse is primarily a function of the external capacitor and resistor. For $C_{\text{ext}} > 1000 \, \text{pF}$, the output pulse width (t_{W}) is defined as:

$$t_{\rm W} = 0.32 \, R_{\rm T} C_{\rm ext} \, \left(1 + \frac{0.7}{R_{\rm T}} \, \right)$$

where

 R_T is in $k\Omega$ (either internal or external timing resistor) C_{ext} is in pF t_w is in ns

For pulse widths when $C_{ext} \le 1000 \text{ pF}$, see Figure 2.

These circuits are fully compatible with most TTL or DTL families. Inputs are diode-clamped to minimize reflections due to transmission-line effects, which simplifies design. Typical power dissipation per one-shot is 55 milliwatts; typical average propagation delay time to the Q output is 40 nanoseconds. The SN54L122 is characterized for operation over the full military temperature range of -55°C to 125°C; the SN74L122 is characterized for operation from 0°C to 70°C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC} (see Note 1) .													7 V
Input voltage (see Note 1)													5.5 V
Interemitter voltage, SN54L122 Circu	its only (see Note 2)												5.5 V
Operating free-air temperature range:	SN54L122 Circuits				٠					-5	5°6ز	O to	125°C
	SN74L122 Circuits										0	°C t	to 70°C
Storage temperature range										-6	5°6	C to	150°C

recommended operating conditions

			S	N54L12	22	SI	N74L12	22	UNIT
			50 50 50 50	NOM	MAX	MIN	NOM	MAX	ONI
Supply voltage, V _{CC}			4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output. N	Series 54L/74L Gates	Series 54L/74L Gates						40	
	Series 54L/74L Gates with 8-kΩ	High logic level			20			20	
·	base resistors¶	Low logic level			10			MAX 5.25 40 20 10	
Input data setup time, t _{setup} (see Note 3 a	and Figure 1)		50			50			ns
Input data hold time, thold (see Note 4 an	d Figure 1)		50			50			ns
Width of clear pulse, tw(clear)			50			50			ns
External timing resistance			5		25	5		50	kΩ
External capacitance			No	restric	tion	No	restric	tion	
Wiring capacitance at R _{ext} /C _{ext} terminal					50			50	рF
Operating free-air temperature, TA			-55		125	0		70	°C

This applies for all data inputs of circuit types SN54L122 and SN74L122.

- NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. For the SN54L122/SN74L122 circuit, this rating applies to each A input with respect to the other and to each B input with respect to the other.
 - Setup time for a dynamic input is the interval immediately preceding the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure recognition of the transition.
 - 4. Hold time for a dynamic input is the interval immediately following the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure continued recognition of the transition.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST C	CONDITIONS†	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	٧
Vι	Input clamp voltage		V _{CC} = MIN,	I _I = -12 mA			-1.5	٧
VOH	High-level output voltage		V _{CC} = MIN, See Note 5	I _{OH} =400 μA,	2.4			v
VOL	Low-level output voltage		V _{CC} = MIN, See Note 5	1 _{OL} = 8 mA,			0.4	v
I ₁	Input current at maximum input voltage	•	V _{CC} = MAX,	V ₁ = 5.5 V			1	mA
ΙΗ	High-level input current	data inputs clear input	V _{CC} = MAX,	V _I = 2.4 V			20 40	μА
ΊL	Low-level input current	data inputs	V _{CC} = MAX,	V ₁ = 0.4 V			-0.8 -1.6	mA
los	Short-circuit output current §		V _{CC} = MAX,	See Note 5	-5		-2.0	mA
Icc	Supply current (quiescent or triggered)		V _{CC} = MAX,	See Notes 6 and 7		11	14	mA

[†] For conditions shown as MIN or MAX, use the value specified under recommended operating conditions for the applicable device type. \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C.

 \S Not more than one output should be shorted at a time.

- NOTES: 5. Ground C_{ext} to measure V_{OH} at Q, V_{OL} at \overline{Q} , or I_{OS} at Q. C_{ext} is open to measure V_{OH} at \overline{Q} , V_{OL} at Q, or I_{OS} at \overline{Q} .
 6. Quiescent I_{CC} is measured (after clearing) with 2.4 V applied to all clear and A inputs, B inputs grounded, all outputs open, $C_{\rm ext}$ = 0.02 μ F, and $R_{\rm ext}$ = 25 k Ω . $R_{\rm int}$ is open.
 - 7. ICC is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $\rm C_{\rm ext}$ = 0.02 $\mu\rm F$, and $\rm R_{\rm ext}$ = 25 k $\Omega.$ $\rm R_{\rm int}$ is open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, N = 10

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level Q output, from either A input				44	66	ns
tPLH	Propagation delay time, low-to-high-level Q output, from either B input		•		38	56	ns
^t PHL	Propagation delay time, high-to-low-level $\overline{\Omega}$ output, from either A input	• • • • • • • • • • • • • • • • • • • •	$R_{ext} = 5 k\Omega$,		60	80	ns
^t PHL	Propagation delay time, high-to-low-level $\overline{\Omega}$ output, from either B input		R _L = 800 Ω,		54	72	ns
[‡] PHL	Propagation delay time, high-to-low-level Q output, from clear input				36	54	ns
^t PLH	Propagation delay time, low-to-high-level $\overline{\Omega}$ output, from clear input				60	80	ns
tw(min)	Minimum width of Q output pulse]			90	130	ns
t _w	Width of Q output pulse	C _{ext} = 400 pF, C _L = 15 pF,	$R_{ext} = 10 \text{ k}\Omega,$ $R_L = 800 \Omega$	1.7	1.9	2.1	μs

CIRCUIT TYPES SN54L122, SN74L122 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

PARAMETER MEASUREMENT INFORMATION

switching characteristics

NOTES: A. The pulse generators have the following characteristics: $t_r \le 10$ ns (10% to 90% level), $t_f \le 10$ ns, PRR ≤ 1 MHz, duty cycle $\le 50\%$, $Z_{\rm out} \approx 50$ Ω .

- B. See Test Conditions, switching characteristics table, page 3, for values of R_{ext} and C_{ext}.
- C. All diodes are 1N916.
- D. C_L includes probe and jig capacitance.

FIGURE 1-SWITCHING TIMES

CIRCUIT TYPES SN54L122, SN74L122 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

TYPICAL CHARACTERISTICS

OUTPUT PULSE WIDTH

EXTERNAL TIMING CAPACITANCE

[†]These values of resistance exceed the maximums recommended for use over the full temperature range of the SN54L122,

TYPICAL APPLICATION DATA

To C_{ext}
terminal

VCC
RT
To R_{ext}/C_{ext}
terminal

TIMING COMPONENT CONNECTIONS WHEN $c_{\text{ext}} \leqslant$ 1000 pF

TIMING COMPONENT CONNECTIONS WHEN $C_{ext} > 1000 \; \text{pf} \; \text{AND CLEAR IS USED}$

FIGURE B

FIGURE C

To prevent reverse voltage across C_{ext} , it is recommended that the method shown in Figure C be employed when using electrolytic capacitors and in applications utilizing the clear function. In all applications using the diode, the pulse width is:

 $t_w = 0.28 R_{ext} C_{ext} \left(1 + \frac{0.7}{R_{ext}} \right)$

where

 R_{ext} is in $k\Omega$ C_{ext} is in pF t_w is in ns

PARAMETER MEASUREMENT INFORMATION

d-c test circuits§

FIGURE 11

§Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION d-c test circuits § V_{out(1)} V_{out(0)} FIGURE 8 FIGURE 7 v_{cc} v_{cc} OPEN OPEN ¹in(1) I_{in(0)} FIGURE 10 FIGURE 9 OPEN 2. For SN54L04/SN74L04 the average-per-inverter value = 1. Each inverter is tested separately. ICC total

number of inverters in package

FIGURE 12

PARAMETER MEASUREMENT INFORMATION

PARAMETER MEASUREMENT INFORMATION

8

SERIES 54L, 74L LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

PARAMETER MEASUREMENT INFORMATION

PARAMETER MEASUREMENT INFORMATION

d-c test circuits§ (continued)

SERIES 54L, 74L

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

PARAMETER MEASUREMENT INFORMATION

d-c test circuits†

- - FIGURE 35-VIH, VIL, VOH

NOTES: A. Each flip-flop is tested separately.

B. Each output is tested separately.

FIGURE 36– V_{IH} , V_{IL} , V_{OL}

				_
۱Ŀ	SI	TA	ВL	E

APPLY V _I (TEST I _{IH})	APPLY 4.5 V	APPLY GND
Clock	Clear and D	Preset
Clock	Preset and D	Clear
Preset	Clear and D	Clock
rieset	Clear and D	(See Note B)
Clear	Preset	Clock, D, and Q
Clear	Preset	D and Clock
Clear	rieset	(See Note B)
D	Preset and Clock	Clear

- NOTES: A. Each input of each flip-flop is tested separately for I i H.

 B. GND is momentarily applied to Clock, then 4.5 V.

 C. I_{CC} is measured simultaneously for both flip-flops with D, Clock, and Preset at GND; then with D, Clock, and Clear at GND.

FIGURE 37-I_{IH}, I_{CC}

 $^{^\}dagger$ Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

PARAMETER MEASUREMENT INFORMATION

d-c test circuits† (continued)

TEST TABLE

APPLY V _I (TEST I _{IL})	APPLY 4.5 V	APPLY GND
Clock	Clear	Preset and D
Preset	Clear	Clock and D
Clear	Clock, D, and Preset	None
D	Clear and Clock	Preset

NOTES: A. Each flip-flop is tested separately.

B. Each input is tested separately.

FIGURE 38-IIL

NOTE: Each output is tested separately.

FIGURE 39-IOS

[†]Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

PARAMETER MEASUREMENT INFORMATION

switching characteristics

TEST CIRCUIT FOR SN54L00, SN54L02, SN54L04, SN54L10, SN54L20, SN54L30, SN54L51, SN54L54, SN54L55, SN74L00, SN74L02, SN74L04, SN74L10, SN74L20, SN74L30, SN74L51, SN74L54, AND SN74L55

TEST CIRCUIT FOR SN54L01, SN54L03, SN74L01, SN74L03

NOTES: 1. The generator has the following characteristic: $V_{gen} = 3 \text{ V}$, $t_0 = 60 \text{ ns}$, $t_1 = 60 \text{ ns}$, $t_p = 1 \mu \text{s}$, PRR $\leq 500 \text{ kHz}$, $Z_{out} \approx 50 \Omega$.

- 2. All diodes are 1N916 or equivalent.
- 3. $t_{pd} = \frac{t_{pd0} + t_{pd1}}{2}$
- 4. C_L includes probe and jig capacitance.
- 5. When testing the SN54L00/SN74L00 through SN54L30/SN74L30 (except SN54L02/SN74L02), connect all unused inputs to 2.4 V. When testing the SN54L02/SN74L02 or SN54L51/SN74L51 through SN54L55/SN74L55, apply the input pulse to one input of one AND section and 2.4 V to all unused inputs of that AND section. All inputs of unused AND sections are grounded.

FIGURE 40-GATE PROPAGATION DELAY TIMES

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

NOTES: A. Clear or Preset input pulse characteristics: $t_{w(clear)} = t_{w(preset)} \ge 100$ ns, PRR ≤ 500 kHz.

- B. Clear and Preset inputs dominate regardless of the state of Clock or D inputs.
- C. All diodes are 1N916.
- D. C_L includes probe and jig capacitance.

FIGURE 43-ASYNCHRONOUS INPUTS SWITCHING CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

- NOTES: A. Clock input pulse has the following characteristics: $t_{w(clock)} \ge 200$ ns and PRR ≤ 500 kHz. When testing f_{max} , vary PRR.
 - B. D input (pulse A) has the following characteristics: t_{setup} = 30 ns, t_w = 100 ns, and PRR is 50% of the clock PRR. D input (pulse B) has the following characteristics: t_{hold} = 0 ns, t_w = 80 ns, and PRR is 50% of the clock PRR.
 - C. All diodes are 1N916.
 - D. C_L includes probe and jig capacitance.

FIGURE 44-SWITCHING CHARACTERISTICS, CLOCK AND SYNCHRONOUS INPUTS (HIGH-LEVEL DATA)

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

NOTES: A. Clock input pulse has the following characteristics: $t_W \ge 200$ ns and PRR ≤ 500 kHz. When testing f_{max} , vary PRR.

- B. D input (pulse A) has the following characteristics: t_{setup} = 30 ns, t_w = 100 ns, and PRR is 50% of the clock PRR. D input (pulse B) has the following characteristics: t_{hold} = 0 ns, t_w = 80 ns, and PRR is 50% of the clock PRR.
- C. All diodes are 1N916.
- D. CL includes probe and jig capacitance.

FIGURE 45-SWITCHING CHARACTERISTICS, CLOCK AND SYNCHRONOUS INPUTS (LOW-LEVEL DATA)

TYPICAL CHARACTERISTICS †

T_A — Free-Air Temperature — °C

†SN54L00/SN74L00, SN54L10/SN74L10, and SN54L20/SN74L20. Data for temperatures below 0°C and above 70°C is applicable to Series 54L circuits only.

TYPICAL CHARACTERISTICS †

† Data for temperatures below 0°C and above 70°C is applicable to Series 54L circuits only.

TOTAL POWER DISSIPATION \$

AVERAGE TOTAL D-C POWER DISSIPATION\$ §

CLOCK INPUT CURRENT \$ 8

‡Each flip-flop. §Value of $I_{\rm in}$ for SN54L78 and SN74L78 is twice the amount shown.

PRINTED IN U.S.A.

II cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.