Series 54L/74L Circuits

Series 54L/74L Low Power TTL Integrated Circuits

- Over 14 MSI Functions
${ }^{8}$ • All Popular Package Configurations
- Fast Delivery to MIL-STD-883 for Military and Space Applications.

SERIES 54L, 74L LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC CIRCUITS FOR AEROSPACE, MILITARY, OR INDUSTRIAL COMPUTER AND CONTROL SYSTEM APPLICATIONS

description

Series 54L/74L integrated circuits have been designed for aerospace, military, and industrial applications where high d-c noise margin, low power dissipation, improved speed-power relationships, and high reliability are important system considerations. This logic family includes small-scale integration (SSI) circuits and medium-scale integration (MSI) circuits needed to perform most functions of general-purpose digital systems. Definitive specifications for Series 54L/74L SSI circuits (gates and flip-flops) are provided in this section, and 54L/74L MSI circuits are included in Section 9.

Series 54L circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and Series 74 L circuits are characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

features

${ }^{\dagger}$ Typical saturated logic gate from the indicated families

CHOICE OF PACKAGES

- available in flat (T) and dual-in-line package (J or N)
- maximum number of circuits per package through use of 14-lead package

OPTIMUM CIRCUIT PERFORMANCE

- very low power dissipation-typically 1 mW per gate at 50% duty cycle
- relatively high speed-typically gate propagation delay time of 33 ns
- high d-c noise margin-typically one volt at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
- low output impedance provides low a-c noise susceptibility
- waveform integrity over full range of loading and temperature conditions
- fan-out-10 Series 54L loads
-1 Series 54 load and 2 Series 54L loads
-1 Series 54H load
- a standard Series $\mathbf{5 4}$ output will drive $\mathbf{4 0}$ Series 54L loads
- logic levels are compatible with most bipolar saturated integrated circuits

SERIES 54L, 74L

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

SERIES 54L/74L
FEATURING 1 mW AND 33 ns PER GATE PERFORMANCE SMALL SCALE INTEGRATION (SSI)

FUNCTION	OPERATING TEMPERATURE RANGE		PACKAGES*			
			Dual-InLine		Flat	SEC.PAGE
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				
NAND/NOR GATES						
Quadruple 2-Input Positive NAND Gates	SN54L00	SN74L00	J	N	T	8-4
Quadruple 2-Input Positive NAND Gates (with Open-Collector Output)	SN54L01	SN74L01	J	N	T	8-5
Quadruple 2-Input Positive NOR Gates . .	SN54L02	SN74LO2	J	N	T	8-6
Quadruple 2-Input Positive NAND Gates (with Open-Collector Output)	SN54L03	SN74L03	J	N	T	8-5
Hex Inverters	SN54L04	SN74L04	J	N	T	8-9
Triple 3-Input Positive NAND Gates	SN54L10	SN74L10	J	N	T	8-10
Dual 4-input Positive NAND Gates	SN54L20	SN74L20	J	N	T	8-11
8-Input Positive NAND Gates .	SN54L30	SN74L30	J	N	T	$8-12$
AND-OR-INVERT GATES						
Dual 2-Wide AND-OR-INVERT Gates	SN54L51	SN74L51	J	N	T	8-13
4-Wide 3-2-2-3-Input AND-OR-INVERT Gates	SN54L54	SN74L54	J	N	T	8-14
2-Wide 4-Input AND-OR-INVERT Gates	SN54L55	SN74L55	J	N	T	8-15
FLIP-FLOPS						
R-S Master-Slave Flip-Flops	SN54L71	SN54L71	J	N	T	8-16
J-K Master-Slave Flip-Flops . .	SN54L72	SN74L72	J	N	T	8-19
Dual J-K Master-Slave Flip-Flops	SN54L73	SN74L73	J	N	T	8-22
Dual D-Type Edge-Triggered Flip-Flops	SN54L74	SN74L74	J	N	T	$8-25$
Dual J-K Master-Slave Flip-Flops (Common Clock)	SN54L78	SN74L 78	J	N	T	8-28
Retriggerable Monostable Multivibrators with Clear	SN54L122	SN74L122	J	N	T	8-31

SEE PAGES 9-1, 9-2, AND 9-3 FOR LISTING OF TTL MSI CIRCUITS
*For outline drawings of all packages, see Section 1.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply Voltage VCC (See Note 1) . 8 V
Input Voltage, $\mathrm{V}_{\text {in }}($ See Notes 1 and 2) . 5.5 V
Operating Free-Air Temperature Range: Series 54L $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Series 74 L . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input signals must be zero or positive with respect to network ground terminal.
logic definition
Series 54L and 74L logic is defined in terms of standard POSITIVE LOGIC using the following definitions:

$$
\begin{aligned}
& \text { HIGH VOLTAGE }=\text { LOGICAL } 1 \\
& \text { LOW VOLTAGE }=\text { LOGICAL } 0
\end{aligned}
$$

unused gates

Inputs of unused gates should be connected to ground. This sets the gate output to logical 1 to ensure minimum power dissipation.

unused inputs of NAND/AND gates

Unused inputs, including preset and clear, must be maintained at a positive voltage greater than 2.4 V but not to exceed the absolute maximum rating of 5.5 V .

Some possible ways of handling unused inputs are:
a. Connect unused inputs to an independent supply voltage. Preferably, this voltage should be between 2.4 V and 3.5 V .
b. Connect unused inputs, except preset or clear, to a used input of the same gate if maximum fan-out of the driving output will not be exceeded.
c. Connect unused inputs to the logical 1 output of an unused gate.
d. Connect unused inputs to $V_{C C}$ through a $1-k \Omega$ resistor so that if a transient which exceeds the $5.5-\mathrm{V}$ maximum rating should occur, the impedance, ill be high enough to protect the input. One to 25 unused inputs may be connected to each $1-\mathrm{k} \Omega$ resistc .

input-current requirements

Input-current requirements reflect worst-case $V_{C C}$ and temperature conditions. Each input of the multiple-emitter input transistor requires no more than a $0.18-\mathrm{mA}$ flow out of the input at a logical 0 voltage level; therefore, one load $(\mathrm{N}=1)$ is -0.18 mA maximum. Each input, except the clock inputs of the flip-flops, requires current into the terminal at a logical 1 voltage level. This current is $10 \mu \mathrm{~A}$ maximum for each. See fan-out capabilities (below) and typical characteristics (page 8-47) for flip-flop clock input current requirements. Currents into the input terminals are specified as positive values.

fan-out capability

Fan-out (N) reflects the ability of an output to sink current from a number of Series 54 L and 74 L loads at a logical 0 voltage level and to supply current at a logical 1 voltage level. Each Seriє. . output is capable of sinking current or supplying current to 10 Series 54 L loads ($N=10$), or one Series $54 / 74$ load and two 54 L loads. Each Series 74 L output is capable of sinking current or supplying current to 20 Series 74 L loads ($\mathrm{N}=20$) , or two Series $54 / 74$ loads and two 74L loads. Load currents (out of the output terminal) are specified as negative values.
A Series 54 or 74 output is capable of sinking current or supplying current to 40 Series 54 L or 74 L loads ($\mathrm{N}=40$). The Series 54/74 buffer gate circuit (SN5440/SN7440) is capable of driving 120 Series 54L/74L loads. The carry outputs of the Series $54 / 74$ adders are capable of driving 20 Series $54 \mathrm{~L} / 74 \mathrm{~L}$ loads and the $A \star$ and $B \star$ nodes of the SN5480/SN7480 may be used to drive 12 loads.

When fanning out into Series 54L/74L flip-flop clock inputs, no load current ($1_{\text {load }}$) is drawn at $\mathrm{V}_{\text {in }}$ (clock) $=2.4 \mathrm{~V}$. Therefore, the fan-out limitation is the $I_{\text {sink }}$ capability of the driving output. A Series $54 / 74$ output will sink sufficient current to drive 44 clock inputs (88 loads), and the SN5440/SN7440 circuit will sink sufficient current to drive 133 clock inputs (266 loads). The Series 54L output is capable of driving five 54 L clock inputs and one additional load. The Series 74L output is capable of driving ten 74L clock inputs.

recommended operating conditions

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	$\begin{array}{\|c\|} \hline \text { TEST } \\ \text { FIGURE } \end{array}$	TEST CONDITIONS \dagger	MIN MAX	UNIT
Logical 1 input voltage required $V_{\text {(nin }}$ at all input terminals to ensure logical 0 level at output	1		2	V
Logical 0 input voltage required $V_{i n t o l}$ at any input terminal to ensure logical 1 level at output	2		0.7	V
$\mathrm{V}_{\text {outril }}$ Logical 1 output voltage	2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{in}}=0.7 \mathrm{~V}, \\ & \mathrm{I}_{\text {loed }}=-100 \mu \mathrm{~A} \end{aligned}$	2.4	V
Vout(0) Logical 0 output voltage	1	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\text {sink }}=2 \mathrm{~mA} \end{aligned}$	0.3	V
In(0) Logical 0 level input current (each input)	3	$V_{c c}=$ MAX, $\quad V_{\text {in }}=0.3 \mathrm{~V}$	-0.18	mA
infor Logical O		$V_{c c}=M A X, \quad V_{\text {in }}=2.4 \mathrm{~V}$	10	$\mu \mathrm{A}$
$1 \mathrm{I}_{\text {in }}$ L Logical 1 level input current (each input)	4	$V_{c c}=$ MAX, $\quad V_{\text {in }}=5.5 \mathrm{~V}$	100	$\mu \mathrm{A}$
los Short-circuit output current	5	$V_{c c}=M A X, \quad V_{\text {in }}=0, V_{\text {out }}=0$	$-3 \quad-15$	mA
Logical 0 level supply current lcc (0) (average per gate)	6	$V_{\mathrm{cc}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{in}}=5 \mathrm{~V}$	0.51	mA
Logical 1 level supply current ${ }^{l c c}{ }^{[1]}$ (average per gate)	6	$V_{c c}=M A X, \quad V_{\text {in }}=0$	0.2	$m A$

switching characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5} \mathbf{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

| PARAMETER | TEST
 FIGURE | TEST CONDITIONS | MIN | TYP | MAX |
| :---: | :---: | :---: | :---: | :---: | :---: | UNIT

[^0]
CIRCUIT TYPES SN54L01, SN54L03, SN74L01, SN74LO3 QUADRUPLE 2-INPUT POSITIVE-NAND GATES WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

	SN54L01 SN54L03			SN74L01 SN74L03			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N			10			10	
Operating free-air temperature, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$	MIN MAX	UNIT
$\mathrm{V}_{1 H} \quad$ High-level input voltage		2	V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage		0.6	V
${ }^{1} \mathrm{OH}$ High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.6 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} & \\ \hline \end{array}$	50	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} & \end{array}$	0.3	V
II Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IH}} \quad$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$	10	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.3 \mathrm{~V}$	-0.18	mA
$\text { ICCH } \begin{aligned} & \text { Supply current, high-level output } \\ & \text { (average per gate) } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs grounded	0.2	mA
$\begin{array}{\|l\|} \hline \text { ICCL } \\ \begin{array}{l} \text { Supply current, low-level output } \\ \text { (average per gate) } \end{array} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad$ All inputs at 5 V	0.51	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Propagation delay time, tPLH low-to-high-level output	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \end{aligned}$ See Figure 35	90	ns
tPHL $\begin{aligned} & \text { Propagation delay time, } \\ & \text { high-to-low-level output }\end{aligned}$		60	

CIRCUIT TYPES SN54L02, SN74L02
 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

schematic (each gate)

Resistor values shown are nominal.

T FLAT PACKAGE (TOP VIEW)

recommended operating conditions

	SN54LO2			SN74LO2	
	MIN	UNIT			
Uupply voltage, V_{CC}	4.5	5	5.5	4.75	5

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.7	V
V_{OH}	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \end{aligned}$	2.4		V
VOL	Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \end{array}$		0.3	v
$1 /$	Input current at maximum input voltage	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
${ }_{1}{ }_{\text {H }}$	High-level input current	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.3 \mathrm{~V}$		-0.18	mA
Ios	Short-circuit output current	$V_{C C}=$ MAX	-3	-15	mA
${ }^{1} \mathrm{CCH}$	Supply current, high-level output (average per gate)	$V_{C C}=$ MAX, \quad See Note 3		0.4	mA
${ }^{\text {I CCL }}$	Supply current, low-level output (average per gate)	$V_{C C}=$ MAX, \quad See Note 4		0.65	mA

NOTES: 3. ${ }^{1} \mathrm{CCH}$ is measured with all inputs grounded and outputs open
4. ${ }^{1} \mathrm{CCL}$ is measured with one input of each gate at 5 V , the remaining inputs grounded, and outputs open.
${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Propagation delay time, tPLH low-to-high-level output	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=4 \mathrm{k} \Omega, \end{aligned}$ See Figure 35	3160	ns
tPHL Propagation delay time, high-to-low-level output		$35 \quad 60$	

SERIES 54L/74L OPEN-COLLECTOR OUTPUT APPLICATION DATA

APPLICATION DATA

combined fan-out and wire-AND capabilities

The open-collector TTL gate, when supplied with a proper load resistor (R_{L}), may be paralleled with other similar TTL gates to perform the wire-AND function, and simultaneously, will drive from one to nine Series 54L/74L loads. When no other open-collector gates are paralleled, this gate may be used to drive ten Series $54 \mathrm{~L} / 74 \mathrm{~L}$ loads. For any of these conditions an appropriate load resistor value must be determined for the desired circuit configuration. A maximum resistor value must be determined which will ensure that sufficient load current (to TTL loads) and off current (through paralleled outputs) will be available while the output is high. A minimum resistor value must be determined which will ensure that current through this resistor and sink current from the TTL loads will not cause the output voltage to rise above the low level even if one of the paralleled outputs is sinking all the currents.

In both conditions (low and high level) the value of R_{L} is determined by:

$$
R_{L}=\frac{V_{R L}}{I_{R L}}
$$

where $V_{R L}$ is the voltage drop in volts, and $I_{R L}$ is the current in amperes.

high-level (off-state) circuit calculations (see figure A)

The allowable voltage drop across the load resistor $\left(\mathrm{V}_{\mathrm{RL}}\right)$ is the difference between V_{CC} applied and the V_{OH} level required at the load:

$$
V_{R L}=V_{C C}-v_{O H \text { min }}
$$

The total current through the load resistor ($I_{R L}$) is the sum of the load currents ($I_{\mid H}$) and off-state reverse currents $\left(I_{\mathrm{OH}}\right)$ through each of the wire-AND-connected outputs:

$$
\mathrm{I}_{\mathrm{RL}}=\eta \cdot \mathrm{I}_{\mathrm{OH}}+N \cdot \mathrm{I}_{\mathrm{IH}} \text { to TTL loads }
$$

Therefore, calculations for the maximum value of R_{L} would be:

$$
\mathrm{R}_{\mathrm{L}(\max)}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH} \min }}{\eta \cdot \mathrm{I}_{\mathrm{OH}}+\mathrm{N} \cdot \mathrm{I}_{\mathrm{IH}}}
$$

where $\eta=$ number of gates wire-AND-connected, and $N=$ number of Series 54L/74L loads.

SERIES 54L/74L

OPEN-COLLECTOR OUTPUT APPLICATION DATA

APPLICATION DATA

low-level (on-state) circuit calculations (see figure B)

The current through the resistor must be limited to the maximum sink current of one output transistor. Note that if several output transistors are wire-AND connected, the current through R_{L} may be shared by those paralleled transistors. However, unless it can be absolutely guaranteed that more than one transistor will be on during low-level periods, the current must be limited to 2 mA , the maximum current which will ensure a low-level maximum of 0.3 volt.

Also, fan-out must be considered. Part of the 2 mA will be supplied from the inputs which are being driven. This reduces the amount of current which can be allowed through R_{L}.

Therefore, the equation used to determine the minimum value of R_{L} would be:

$$
R_{\mathrm{L}(\min)}=\frac{v_{\mathrm{CC}}-V_{\mathrm{OL}} \max }{I_{\mathrm{OL}} \text { capability }-N \cdot I_{\mathrm{L}}}
$$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	TEST CONDITIONS ${ }^{\dagger}$	MIN	MAX	UNIT
$v_{\text {in }}(1)$	Logical 1 input voltage required at input terminal to ensure logical 0 level at output	7		2		V
$v_{\text {in }}(0)$	Logical 0 input voltage required at input terminal to ensure logical 1 level at output	8			0.7	V
Vout(1)	Logical 1 output voltage	8	$\begin{aligned} & V_{C C}=M I N, \quad V_{\text {in }}=0.7 \mathrm{~V}, \\ & \text { load }=-100 \mu \mathrm{~A} \end{aligned}$	2.4		V
Vout(0)	Logical 0 output voltage	7	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \quad V_{\text {in }}=2 \mathrm{~V}, \\ & \mathrm{I}_{\text {Sink }}=2 \mathrm{~mA} \end{aligned}$		0.3	\checkmark
$1 \mathrm{in}(0)$	Logical 0 level input current	9	$V_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$		-0.18	mA
$\mathrm{I}_{\text {in }}(1)$	Logical 1 level input current	10	$\begin{array}{ll} V_{C C}=\text { MAX, } & V_{\text {in }}=2.4 \mathrm{~V} \\ V_{C C}=M A X, & V_{\text {in }}=5.5 \mathrm{~V} \end{array}$		10	$\mu \mathrm{A}$
Ios	Short-circuit output current	11	$\begin{aligned} & V_{C C}=\text { MAX }, \quad V_{\text {in }}=0 \\ & V_{\text {out }}=0 \end{aligned}$	-3	-15	mA
${ }^{\text {I CCO }} 0$	Logical 0 level supply current (Average per inverter)	12	$V_{C C}=M A X, \quad V_{\text {in }}=5 \mathrm{~V}$		0.51	mA
ICC(1)	Logical 1 level supply current (Average per inverter)	12	$V_{C C}=M A X, \quad V_{\text {in }}=0$		0.2	mA

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP	MAX	UNIT
${ }^{\text {t }}$ pdo	Propagation delay time to logical 0 level	35	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		31	60	ns
${ }^{4} \mathrm{pd} 1$	Propagation delay time to logical 1 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		35	60	ns

[^1]
schematic (each gate)

NOTE: Component values shown are nominal.

recommended operating conditions

> Supply Voltage Vcc: SN54L10 Circuits SN74L10 Circuits
Normalized Fan-Out From Each Output, N Operating Free-Air Temperature Range, T_{A} : SN54L10 Circuits SN74[10 Circuits

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	V
		10	
-55	25	125	${ }^{\circ} \mathrm{C}$
0	25	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	TEST CONDITIONS \dagger	MIN MAX	UNIT
Logical 1 input voltage required $V_{\text {in(1) }}$ at all input terminals to ensure logical 0 level at output	1		2	V
Logical 0 input voltage required $V_{\text {infol }}$ at any input terminal to ensure logical 1 level at output	2		0.7	V
$\mathrm{V}_{\text {out }}$ [1] Logical 1 output voltage	2	$\begin{aligned} & V_{c c}=M \mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{in}}=0.7 \mathrm{~V}, \\ & \mathrm{I}_{\text {lood }}=-100 \mu \mathrm{~A} \end{aligned}$	2.4	V
$V_{\text {out (0) }}$ Logical 0 output voltage	1	$\begin{aligned} & V_{c c}=M I N, \quad V_{i n}=2 \mathrm{~V}, \\ & I_{\text {sink }}=2 \mathrm{~mA} \end{aligned}$	0.3	V
$\mathrm{linfol}^{\text {in }}$ Logical 0 level input current (each input)	3	$\mathrm{V}_{c c}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$	-0.18	mA
		$V_{C C}=$ MAX, $\quad V_{\text {in }}=2.4 \mathrm{~V}$	10	$\mu \mathrm{A}$
Iinil Logical 1 level input current (each input)	4	$\mathrm{V}_{c c}=\mathrm{MAX}, \quad \mathrm{V}_{\text {In }}=5.5 \mathrm{~V}$	100	$\mu \mathrm{A}$
los Short-circuit output current	5	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=0, \mathrm{~V}_{\text {out }}=0$	$-3 \quad-15$	mA
Logical 0 level supply current \|cci0] (average per gate)	6	$V_{c c}=M A X, \quad V_{\text {in }}=5 \mathrm{~V}$	0.51	mA
Icc\|י1 Logical I level supply current (average per gate)	6	$V_{c c}=M A X, \quad V_{\text {in }}=0$	0.2	mA

switching characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Propagation delay time to logical 0 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		31	60	ns
	Propagation delay time to logical 1 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k}$!		35	60	ns

†For conditions shown os MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuif type.

CIRCUIT TYPES SN54L20, SN74L20 DUAL 4-INPUT POSITIVE NAND GATES

schematic (each gate)

NOTES: 1. Component vaives shown are nominal.
2. NC - No internal connection.

recommended operating conditions

Supply Voltage Vcc: SN54L20 Circuits . .
Normalized Fan-Out From Each Output, N.
Operating Free-Air Temperature Range, $T_{A}: S N 54120$ Circuits
SN74L20 Circuits

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	V
		10	
-55	25	125	${ }^{\circ} \mathrm{C}$
0	25	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	test conditions \dagger		MIN	MAX	UNIT
Vr ${ }^{1}$	Logical 1 input voltage required at all input terminals to ensure. logical 0 level at output	1			2		v
$V_{\text {inf(0) }}$	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	2				0.7	v
$\mathrm{V}_{\text {outif1 }}$	Logical I output voltage	2	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \\ \mathrm{l}_{\text {lood }}=-100 \mu \mathrm{~A} \end{array} \end{aligned}$	$\mathrm{V}_{\mathrm{in}}=0.7 \mathrm{~V},$	2.4		V
$V_{\text {outio) }}$	Logical 0 output voltage	1	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \\ & \mathrm{l}_{\text {sink }}=2 \mathrm{~mA} \end{aligned}$	$\mathbf{v}_{\mathrm{in}}=\mathbf{2 v},$		0.3	V
Iin(0)	Logical 0 level input current (each input)	3	$V_{c c}=$ MAX,	$\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$		-0.18	mA
		4	$V_{c c}=$ MAX,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$,
$1 \mathrm{in}(3)$	Logical 1 level input current (each input)	4	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
los	Short-circuit output current	5	$V_{\text {cc }}=$ MAX,	$\mathrm{V}_{\text {in }}=0, \mathrm{~V}_{\text {out }}=0$	-3	-15	mA
${ }^{1 c c} 101$	Logical 0 level supply current (average per gate)	6	$\mathrm{V}_{\mathrm{cc}}=\mathrm{mAX}$,	$\mathrm{V}_{\text {in }}=5 \mathrm{~V}$		0.51	mA
$1 \mathrm{cc}(1)$	Logical 1 level supply current (average per gate)	6	$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=0$		0.2	mA

switching characteristics, $\mathbf{V}_{\mathrm{CC}}=\mathbf{5} \mathbf{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN	TYP	MaX	UNIT
Toso Propagation delay time to logical 0 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		31	60	ns
tedr Propagation delay time to logical 1 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RL}^{2}=4 \mathrm{k} \Omega$		35	60	ns

[^2]
CIRCUIT TYPES SN54L30, SN74L30

8 -INPUT POSITIVE NAND GATES

schematic
T
JOR N
FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

NOTES: 1. Component values shown are nominal. 2. NC - No intemal connection

recommended operating conditions

Supply Voltage Vcc: SN54L30 Circuits
SN74L30 Circuits
Normalized Fan-Out From Each Output, N .
Operating Free-Air Temperature Range, T_{A} : SN54L30 Circuits
SN74L30 Circuits

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	V
		10	
-55	25	125	${ }^{\circ} \mathrm{C}$
0	25	70	${ }^{\circ} \mathrm{C}$

ectrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS \dagger		MIN	MAX	UNIT
Logical 1 input voltage required $V_{\text {in(1) }}$ at all input terminals to ensure logical 0 level at output	1			2		V
Logical 0 input voltage required $\mathrm{V}_{\text {inf01 }}$ at any input terminal to ensure logical 1 level at output	2				0.7	v
$\mathrm{V}_{\text {outl(1) }}$ Logical 1 output voltage	2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \quad \mathrm{~V}_{\text {in }}=0.7 \\ & \mathrm{~V}_{\text {lood }}=-100 \mu \mathrm{~A} \end{aligned}$		2.4		V
$V_{\text {outal }}$ Logical 0 output voltage	1	$\begin{aligned} & V_{\mathrm{cc}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{in}}=2 \mathrm{I} \\ & \mathrm{l}_{\mathrm{sink}}=2 \mathrm{~mA} \end{aligned}$			0.3	\checkmark
Iin(0) Logical 0 level input current (each input)	3	$V_{c c}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=0.3$			-0.18	mA
		$\mathrm{V}_{\mathrm{cc}}=\mathbf{M A X} \quad \mathrm{V}_{\text {in }}=2.4$			10	$\mu \mathrm{A}$
Inin(1) Logical 1 level input current (each input)	4	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{n}}=5.5$			100	$\mu \mathrm{A}$
los Short-circuit output current	5	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=0, V^{\prime}$	$=0$	-3	-15	mA
lcc(0) Logical 0 level supply current	6	$V_{c c}=M A X, \quad V_{\text {in }}=5 \mathrm{~V}$			0.51	mA
			SN54130		0.33	
(1cc(1) Logical 1 level supply current	6	$V_{c c}=M A X, \quad V_{\text {in }}=0$	SN74130		0.2	mA

switching characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}, \mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYP	max	UNIT
$\mathrm{t}_{\text {dot }}$ Propagation delay time to logical 0 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k}!$	70	100	ns
dr Propagation delay time to logical 1 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}$ L $=4 \mathrm{k} \Omega 2$	35	60	ns

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L51, SN74L51 DUAL 2-WIDE AND-OR-INVERT GATES

schematic (each gate)
T
J OR N
FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

NOTES: 1. Component values shown are nominal. 2. Inputs C and F are availoble on gate 1 only

recommended operating conditions

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		$\begin{array}{\|c\|} \hline \text { TEST } \\ \hline \text { FIGURE } \\ \hline \end{array}$	TEST CONDITIONS \dagger		MIN	MAX	UNIT
$V_{\text {InII }}$	Logical 1 input voltage required at all input terminals of either AND section to ensure logical 0 at output	13			2		V
$V_{\text {info] }}$	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	14				0.7	V
$\mathrm{V}_{\text {outly }}$	Logical 1 output voltage	14	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \\ & \mathrm{l}_{\text {load }}=-100 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{in}}=0.7 \mathrm{~V},$	2.4		v
$\mathrm{V}_{\text {out } 101}$	Logical 0 output voltage	13	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \\ & \mathrm{t}_{\mathrm{sink}}=2 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{in}}=2 \mathrm{~V},$		0.3	v
1 Im 0 O	Logical 0 level input current (each input)	15	$V_{c c}=$ MAX,	$\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$		-0.18	mA
			$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{in}}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
	Logical 1 level input current (each input)		$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
los	Short-circuit output current	17	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{v}_{\text {in }}=0, \mathrm{v}_{\text {out }}=0$	-3	-15	mA
$1 \mathrm{lcc}(0)$	Logical 0 level supply current (average per gate)	18	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$V_{\text {in }}=5 \mathrm{~V}$		0.65	mA
Icce[1]	Logical 1 level supply current (average per gate)	18	$V_{c c}=M A X$,	$V_{\text {in }}=0$		0.4	mA

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\dagger}$ pdo Propagation delay time to logical 0 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		35	60	ns
${ }^{\dagger}{ }_{\text {pdı }}{ }^{\text {Propagation }}$ Prolay time to logical 1 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		50	90	ns

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L54, SN74L54
 4-WIDE 3-2-2-3-INPUT AND-OR-INVERT GATES

schematic

T
FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

NOIE: 1. Component values shown are nominal.
2. NC - No intemal connection

recommended operating conditions

Supply Voltage Vcc: SN54L54 Circuits SN74L54 Circuits
Normalized Fan-Out From Each Output, N
Operating Free-Air Temperature Range, T_{A} : SN54L54 Circuits
SN74L54 Circuits

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	V
		10	
-55	25	125	${ }^{\circ} \mathrm{C}$
0	25	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	TEST CONDITIONS \dagger	MIN MAX	UNIT
logical 1 input voltage required at $V_{\text {inf1) }}$ all input terminals of one AND section to ensure logical 0 at output	13		2	V
Logical 0 input voltage required af $\mathrm{V}_{\text {In(0) }}$ one input terminal of each AND section to ensure logical 1 at output	14	-	0.7	V
$\mathrm{V}_{\text {outil }}$ Logical 1 output voltage	14	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \quad \mathrm{~V}_{\text {in }}=0.7 \mathrm{~V}, \\ & \mathrm{I}_{\text {food }}=-100 \mu \mathrm{~A} \end{aligned}$	2.4	V
$\mathrm{V}_{\text {out }(0)}$ Logical 0 output voltage	13	$\begin{aligned} & V_{c c}=M I N, \quad V_{i n}=2 V \\ & I_{\text {sink }}=2 \mathrm{~mA} \end{aligned}$	0.3	V
$I_{\text {iniol }}$ Logical 0 level input current (each input)	15	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$	-0.18	mA
$1 \mathrm{In}(1)$	16	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{in}}=2.4 \mathrm{~V}$	10	$\mu \mathrm{A}$
		$V_{c c}=M A X, \quad V_{\text {in }}=5.5 \mathrm{~V}$	100	$\mu \mathrm{A}$
los Short-circuit output current	17	$V_{C c}=M A X, \quad V_{\text {in }}=0, V_{\text {out }}=0$	$-3 \quad-15$	mA
Icciol Logical 0 level supply current	18	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=5 \mathrm{~V}$	0.99	mA
Icci11 Logical 1 level supply current	18	$V_{\text {cc }}=M A X, \quad V_{\text {in }}=0$	0.8	mA

switching characteristics, $\mathbf{V}_{\mathrm{CC}}=\mathbf{5} \mathbf{V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{N}=\mathbf{1 0}$

PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	TEST CONDITIONS	MIN TYP	MAX	UNIT
$t_{\text {poo }}$ Propagation delay time to logical 0 level	35	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$	35	60	ns
$t_{\text {pdi }}$ Propagation delay time to logical 1 level	35	$\mathrm{C}_{\mathrm{l}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k}$?	50	90	ns

[^3]
CIRCUIT TYPES SN54L55, SN74L55 2-WIDE 4-INPUT AND-OR-INVERT GATES

schematic

nOTE: 1. Component values shown are nominal.
2. NC - No internal connection

recommended operating conditions

> Supply Voltage Vcc: SN54L55 Circuits SN74L55 Circuits
Normalized Fan-Out From Each Output, N Operating Free-Air Temperature Range, T_{A} : SN54L55 Circuits SN74L55 Circuits

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	V
		10	
-55	25	125	${ }^{\circ} \mathrm{C}$
0	25	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	$\begin{array}{c\|} \hline \text { TEST } \\ \text { FIGURE } \\ \hline \end{array}$	TEST CONDITIONS \dagger	MIN	MAX	UNIT
Logical 1 input voltage required at $V_{\text {in(1) }}$ all input terminals of either AND section to ensure logical 0 at output	13		2		V
Logical 0 input voltage required at $V_{i n(0)}$ one input terminal of each AND section to ensure logical 1 at output	14			0.7	V
$V_{\text {out }}(1)$ Logical 1 output voltage	14	$\begin{aligned} & V_{c c}=M I N, \quad V_{\text {in }}=0.7 \mathrm{~V}, \\ & l_{\text {load }}=-100 \mu \mathrm{~A} \end{aligned}$	2.4		v
$V_{\text {out }}(0)$ Logical 0 output voltage	13	$\begin{aligned} & V_{c c}=M I N, \quad V_{\text {in }}=2 V \\ & \mathrm{I}_{\text {sink }}=2 \mathrm{~mA} \end{aligned}$		0.3	V
Iin(0) Logical 0 level input current (each input)	15	$V_{c c}=$ MAX, $\quad V_{\text {in }}=0.3 \mathrm{~V}$		-0.18	mA
		$V_{c c}=M A X, \quad V_{i n}=2.4 V$		10	$\mu \mathbf{A}$
$\mathrm{I}_{\text {in(i) }} \quad$ Logical 1 level input current (each input)	16	$V_{c c}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
los Short-circuit output current	17	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \quad \mathrm{V}_{\text {in }}=0, \mathrm{~V}_{\text {out }}=0$	-3	-15	mA
Icc(0) Logical 0 level supply current	18	$V_{c c}=M A X, \quad V_{\text {in }}=5 V$		0.65	mA
Icc(1) Logical 1 level supply current	18	$V_{C C}=M A X, \quad V_{\text {in }}=0$		0.4	mA

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\wedge}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {tose }}$ Propagation delay time to logical 0 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		35	60	ns
topo Propagation delay time to logical 1 level	35	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		50	90	ns

FF or conditions shown as MIM or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

CIRCUIT TYPES SN54L71, SN74L71
 R-S MASTER-SLAVE FLIP-FLOPS

logic

TRUTH TABLE		
t_{n}		t_{n+1}
R	S	Q
0	0	Q_{n}
0	1	1
1	0	0
1	1	indeierminate

NOTES: $\mathbf{1 .} \mathbf{R}=\mathbf{R 1} \cdot \mathbf{R 2} \bullet \mathbf{R 3}^{2}$
2. $\mathrm{s}=\mathrm{Sl}$ • $52 \cdot \mathrm{~s} 3$
3. $\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
4. $\mathrm{I}_{\mathrm{n}+1}=$ Bit time after clock pulse.
5. MC - Mo internal connection.

T
J OR N
FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

These R-S flip-flop circuits are based on the master-slave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.

recommended operating conditions

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	V
		10	
200			ns
100			ns
100			ns
100			ns
0			
-55	25	125	${ }^{\circ} \mathrm{C}$
0	25	70	${ }^{\circ} \mathrm{C}$

CIRCUIT TYPES SN54L71, SN74L71 R-S MASTER-SLAVE FLIP-FLOPS

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS ${ }^{\dagger}$	MIN	MAX	UNIT
$V_{\text {in! }}$	Input voltage required to ensure logical I at any input terminal	$\begin{array}{r} 19 \\ \text { and } \\ 20 \end{array}$		2		V
$V_{\text {in }}$ (0)	Input voltage required to ensure logical 0 at any input terminal except clock	19 and 20			0.7	V
$V_{\text {in }}$ (0)	Input voltage required to ensure logical 0 at clock input terminal	$\begin{array}{r} 19 \\ \text { and } \\ 20 \end{array}$			0.6	V
$V_{\text {out }}$	Logical 1 output voltage	19	$V \mathrm{cc}=\mathrm{MIN}, \quad \mathrm{H}_{\text {load }}=-100 \mu \mathrm{~A}$	2.4		V
$V_{\text {out }(0)}$	Logical 0 output voltage	20	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}, \quad \mathrm{I}_{\text {sint }}=2 \mathrm{~mA}$		0.3	V
$1 \mathrm{Inf0}$)	Logical 0 level input current at R1, R2, R3, S1, S2, or S3	21	$V_{c c}=M A X, \quad V_{\text {in }}=0.3 \mathrm{~V}$		-0.18	mA
$\mathrm{I}_{\text {in }}$ 0]	Logical 0 level input current at preset, clear, or clock	21	$V_{c c}=M A X, \quad V_{\text {in }}=0.3 \mathrm{~V}$		-0.36f	mA
$\mathrm{lin}(1)$	Logical 1 level input current at R1, R2, R3, S1, S2, or S3	22	$V_{\text {cc }}=M A X, \quad V_{\text {in }}=2.4 V$		10	$\mu \mathrm{A}$
			$V_{c c}=$ MAX,,$\quad V_{\text {in }}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
tin(1)	Logical I level input current at preset or clear	22	$V_{c c}=M A X, \quad V_{\text {in }}=2.4 \mathrm{~V}$		20	$\mu \mathrm{A}$
			$V_{c c}=M A X, \quad V_{\text {in }}=5.5 \mathrm{~V}$		200	$\mu \mathrm{A}$
Liath	Logical 1 level input current of clock	22	$V_{c c}=M A X, \quad V_{i n}=2.4 V$	Of	-0.2§	mA
			$V_{c c}=M A X, \quad V_{i n}=5.5 \mathrm{~V}$		200 f	$\mu \mathrm{A}$
los	Short-circuit output current	23	$V_{c c}=$ MAX $, \quad V_{\text {in }}=0, V_{\text {out }}=0$	-3	-15	mA
Icc	Supply current	22	$V_{c c}=M A X, \quad V_{\text {infeloct }}=0$		1.14	mA

For conditions shown os MIN or MAX, use the appropriate valve specified under recommended operoting conditions for the applicable circuit type. ffor typical clock input current see page 8-47.
switching characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	Parameter	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {fmax }}$	Maximum clock frequency	36	$C_{L}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		3		MHz
${ }^{\text {pal }}$	Propagation delay time to logical 1 level from clear or preset to output	37	$C_{L}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		35	75	ns
$t_{\text {pada }}$	Propagation delay time to logical 0 level from clear or preset to output	37	$\begin{aligned} & C_{\llcorner }=50 \mathrm{pF}, \quad \mathrm{R}_{\llcorner }=4 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {in }[\text { cloch }]}=2.4 \mathrm{~V} \end{aligned}$		60	150	ns
			$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega_{r} \\ & \mathrm{~V}_{\text {in(clock) }}=0 \mathrm{~V} \end{aligned}$			200	ns
$t_{\text {pet }}$	Propagation delay time to logical 1 level from clock to output	36	$\mathrm{C}_{\mathrm{t}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$	10	35	75	ns
$t_{\text {pob }}$	Propagation delay time to logical 0 level from clock to output	36	$\mathrm{C}_{\mathrm{t}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$	10	60	150	ns

functional block diagram

schematic

Component values shown are nominal
iogic

TRUTH TABLE		
t_{n}		t_{n+1}
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	\bar{Q}_{n}

NOTES: $1 . \mathrm{J}=\mathrm{Jl} \bullet \mathrm{J2} \bullet \mathrm{J3}$
2. $\mathbf{k}=\mathbf{k} \cdot \mathbf{k} \mathbf{2} \bullet \mathbf{k} \mathbf{3}$
3. $\mathrm{t}_{\mathrm{n}}=$ Dit time before clock pulse.
4. $\mathrm{I}_{\mathrm{n}+1}=$ bit time after clock pulse.
5. MC - Mo internal connection.
T JOR N
FLAT PACKAGE (TOP VIEW) DUAL-IN-LINE PACKAGE (TOP VIEW)

description

These J-K flip-flop circuits are based on the master-slave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

recommended operating conditions

CIRCUIT TYPES SN54L72, SN74L72

J-K MASTER-SLAVE FLIP-FLOPS

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		$\begin{array}{c\|} \hline \text { TEST } \\ \text { FIGURE } \end{array}$	TEST CONDITIONS \dagger		MIN	MAX	UNIT
$V_{\text {(n(1) }}$	Input voltage required to ensure logical 1 at any input terminal	24 and 25			2		V
$V_{\text {In }}$ (0)	Input voltage required to ensure logical 0 at any input terminal except clock	24 and 25				0.7	\checkmark
$V_{\text {n }}(0)$	Input voltage required to ensure logical 0 at clock input terminal	24 and 25				0.6	V
Voutil	Logical 1 output voltage	24	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$	$\mathrm{I}_{\text {lood }}=-100 \mu \mathrm{~A}$	2.4		\checkmark
$V_{\text {out }}(0)$	Logical 0 output valtage	25	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$.	$\mathrm{l}_{\mathrm{sint}}=2 \mathrm{~mA}$		0.3	V
Inf(0)	Lagical 0 level input current at J1, J2, J3, K1, K2, or K3	26	$\mathrm{Vcc}=\mathrm{MAX}$	$\mathrm{V}_{1 \mathrm{n}}=0.3 \mathrm{~V}$		-0.18	mA
$I_{\text {infiol }}$	Logical 0 level input current at preset, clear, or clock	26	$V_{c c}=$ MAX	$\mathrm{V}_{\text {In }}=0.3 \mathrm{~V}$		-0.36 \ddagger	mA
1 ln 19	Logical 1 level input current at J1, J2, J3, K1, K2, or K3	27	$V_{c c}=M A X$	$V_{\text {in }}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
			Vce $=$ MAX	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
$\operatorname{lin}(1)$	Logical 1 level input current at preset or clear	27	$V_{c c}=M A X$	$V_{\text {in }}=2.4 \mathrm{~V}$		20	$\mu \mathrm{A}$
			$V_{c c}=$ MAX	$V_{\text {in }}=5.5 \mathrm{~V}$		200	$\mu \mathrm{A}$
$\ln (1)$	Logical 1 level input current at clock	27	$V_{C C}=$ MAX	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		-0.2 \ddagger	mA
			$\mathrm{Vcc}=$ MAX ,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		200і̣	$\mu \mathrm{A}$
los	Short-circuit output current	28	$V_{c c}=$ MAX	$\mathrm{v}_{\text {in }}=0, \mathrm{v}_{\text {out }}=0$	-3	-15	mA
Icc	Supply current	27	$V_{c c}=$ MAX	$V_{\text {in } \mid \text { loct }]}=0$		1.44	mA

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
\ddagger For typical clock input current see page 8-47.
switching characteristics, $\mathbf{V}_{\mathrm{cc}}=\mathbf{5} \mathbf{V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{N}=\mathbf{1 0}$

	Parameter	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN	TY	max	UNIT
$f_{\text {max }}$	Maximum clock frequency	36	$C_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		3		MHz
$t_{\text {pat }}$	Propagation delay time to logical 1 level from clear or preset to output	37	$\mathrm{Cl}_{\mathrm{l}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k}!$		35	75	ns
$t_{\text {pob }}$	Propagation delay time to logical 0 level from clear or preset to output	37	$\begin{aligned} & C_{1}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {ing (clocti) }}=2.4 \mathrm{~V} \end{aligned}$		60	150	m
			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {inf }[\text { cloct }]}=0 \mathrm{O} \end{aligned}$			200	ns
${ }^{\text {pod }}$	Propagation delay time to logical 1 level from clock to output	36	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$	10	35	75	n
$t_{\text {pob }}$	Propagation delay time to logical 0 level from clock to output	36	$C_{\mathrm{l}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$	10	60	150	ns

TYPES SN54L72, SN74L72 J-K MASTER-SLAVE FLIP-FLOPS

functional block diagram

schematic

CIRCUIT TYPES SN54L73, SN74L73 DUAL J-K MASTER-SLAVE FIIP-FLOPS

logic

TRUTH TABLE		
$\mathrm{t}_{\mathbf{n}}$		$\mathrm{t}_{\mathrm{n}}+1$
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	$\overline{\mathrm{O}}_{\mathrm{n}}$

NOTES: 1. $t_{n}=$ Bit time before clock pulse.
2. $t_{n+1}=$ Bit time after clock puise

description

These J-K flip-flop circuits are based on the masterslave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

recommended operating conditions

CIRCUIT TYPES SN54L73, SN74L73 DUAL J-K MASTER-SLAVE FLIP-FLOPS

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

Parameter		$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	TEST CONDITIONS \dagger		MIN	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$\begin{gathered} 29 \\ \text { and } \\ 30 \end{gathered}$			2		V
$V_{\text {infor }}$	Input voltage reguired to ensure logical 0 at any inpút terminal except clock	$\begin{gathered} 29 \\ \text { and } \\ 30 \end{gathered}$				0.7	v
$V_{\text {infol }}$	Input voltage reguired to ensure logical $0 . a t$ clock input terminal	$\begin{aligned} & 29 \\ & \text { and } \\ & 30 \end{aligned}$				0.6	v
$\mathrm{V}_{\text {outa }}$	Logical 1 output voltage	29	$V_{c c}=\mathrm{MIN}$,	$\mathrm{l}_{\text {load }}=-100 \mu \mathrm{~A}$	2.4		V
$\mathrm{V}_{\text {outiol }}$	Logical 0 output voltage	30	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$,	$\mathrm{l}_{\text {sink }}=2 \mathrm{~mA}$		0.3	v
Int0)	Logical 0 level input current of Jor K	31	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$		-0.18	mA
Inita)	Logical 0 level input current at clear or clock	31	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$		-0.36f	mA
Iin(1)	Logical I level input current at J or K	32	$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
			$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
$1 \mathrm{ln}(1)$	Logical 1 level input current at clear	32	$V_{c c}=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$		20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$V_{\text {in }}=5.5 \mathrm{~V}$		200	$\mu \mathrm{A}$
Iin(1)	Logical 1 level input current ot clock	32	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$	0f	-0.2 \int	mA
			$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		2005	$\mu \mathrm{A}$
los	Short-circuit output current	33	$V_{c c}=\mathrm{MAX}$,	$\mathrm{v}_{\text {in }}=0, \mathrm{v}_{\text {out }}=0$	-3	-15	mA
Icc	Supply current (average per flip-flop)	32	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in(clock }}=0$		1.44	mA

${ }^{\dagger}$ For conditons shown as MIN or MAX, use the appropriate value specified under recommended operating conditons for the applicable circuit type.
\int For typical clock input current see page 8-47.
switching characteristics, $\mathbf{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	Parameter	$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	test conditions		MIN	TYP	MAX	UNIT
${ }^{f}$ max	Maximum clock frequency	36	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{RL}=4 \mathrm{k} \Omega$	3			MHz
$t_{\text {pal }}$	Propagation delay time to logical 1 level from clear to output	37	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$			35	75	ns
$\mathrm{t}_{\mathrm{pdo}}$	Propagation delay time to logical 0 level from clear to output	37	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \end{aligned}$	$\mathrm{V}_{\text {indcloct }}=2.4 \mathrm{~V}$		60	150	ns
				$\mathrm{v}_{\text {inflctock }}=0 \mathrm{~V}$		200		
$t_{\text {podo }}$	Propagation delay time to logical 0 level from clock to output	36	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$	10	60	150	ns
${ }_{\text {pod }}$	Propagation delay time to logical 1 level from clock to output	36	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$	10	35	75	ns

functional block diagram (each flip-flop)

schematic (each flip-flop)

CIRCUIT TYPES SN54L74, SN74L74 DUAL D-TYPE EDGE-TRIGGERED FIIP-FLOPS

- Typical Maximum Clock Frequency . . . 3 MHz
- Fully Compatible with Most TTL and DTL Circuits
- Positive-Edge Triggering
- High-Fan-Out, Low-Impedance, Totem-Pole Outputs
logic

TRUTH TABLE (Each Flip-Flop)

$t_{\mathbf{n}}$	$\mathbf{t}_{\mathbf{n}+1}$	
INPUT	OUTPUTS	
D	\mathbf{Q}	$\overline{\mathbf{O}}$
L	L	H
H	H	L

$H=$ high level, $L=$ low level

NOTES: A. $t_{n}=$ bit time before clock pulse.
B. $t_{n+1}=$ bit time after clock pulse.

description
These monolithic, low-power, dual, edge-triggered flip-flops utilize TTL circuitry to perform D-type flip-flop logic. Each flip-flop has individual clear and preset inputs, and complementary Q and $\overline{\mathrm{O}}$ outputs.

Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D -input signal has no effect.

These circuits are fully compatible for use with most TTL or DTL circuits. A full fan-out to 10 normalized Series 54L/74L loads is available from each of the outputs. Maximum clock frequency is typically 3 megahertz, with a typical power dissipation of 4.25 milliwatts per flip-flop.

The SN54L74 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74L74 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input voltage must be zero or positive with respect to network ground terminal

CIRCUIT TYPES SN54L74, SN74174

DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

recommended operating conditions

	SN54L74			SN74L74			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N			10			10	
Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock) (see Figure 7 or 8)	200			200			ns
Width of preset pulse, $\mathrm{t}_{\text {w }}$ (preset) ((see Figure 6)	100			100			ns
Width of clear pulse, $\mathrm{t}_{\text {w }}$ (clear) (see Figure 6)	100			100			ns
Input setup time for either high- or low-level data, $\mathrm{t}_{\text {setup }}$ (see Note 3 and Figure 7 and 8)	30			30			ns
Input hold time, thold (See Note 3 and Figure 7 and 8)	0			0			ns
Operating free-air temperature range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

NOTES: 3. Setup time is the interval immediately preceding the positive-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
4. Hold time is the interval immediately following the positive-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its continued recognition.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	$\begin{array}{\|c\|} \text { TEST } \\ \text { FIGURE } \end{array}$	TEST CONDITIONS ${ }^{\text {+ }}$	MIN	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage	35, 36		2		V
$V_{\text {IL }}$	Low-level input voltage	35, 36			0.7	V
V_{OH}	High-level output voltage	35	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad 1 \mathrm{OH}=-100 \mu \mathrm{~A}$	2.4		V
V_{OL}	Low-level output voltage	36	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{IOL}=2 \mathrm{~mA}$		0.3	V
I_{IH}	High-level input current into D	37	$V_{C C}=M A X, \quad V_{1}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
			$V_{C C}=M A X, \quad V_{1}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
${ }^{1 / H}$	High-level input current into preset or clock	37	$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		20	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		200	$\mu \mathrm{A}$
IIH	High-level input current into clear	37	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$		30	$\mu \mathrm{A}$
			$\mathrm{V}_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		300	$\mu \mathrm{A}$
1 IL	Low-level input current into preset or D	38	$V_{C C}=M A X, \quad V_{1}=0.3 \mathrm{~V}$		-0.18	mA
1 IL	Low-level input current into clear or clock	38	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.3 \mathrm{~V}$		-0.36	mA
Ios	Short-circuit output current§	39	$V_{C C}=$ MAX	-3	-15	mA
${ }^{1} \mathrm{cc}$	Supply current (each flip-flop)	37	$V_{C C}=\mathrm{MAX}$		1.5	mA

$\stackrel{+}{+}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
§ Not more than one output should be shorted at a time
switching characteristics, $\mathrm{V} C \mathrm{CC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum clock frequency	44, 45	$C_{L}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$			3		MHz
tPLH	Propagation delay time, low-to-high-level output, from clear or preset inputs	43				50	75	ns
tPHL	Propagation delay time, high-to-low-level output, from clear or preset inputs	43				80	150	ns
tPLH	Propagation delay time, low-to-high-leve! output, from clock input	44, 45			10	65	100	ns
tPHL	Propagation delay time, high-to-low-level output, from clock input	44, 45			10	65	150	ns

functional block diagram (each flip-flop)

schematic (each flip-flop)

logic

TRUTH TABEE		
\mathbf{t}_{n}		$\mathbf{t}_{\mathrm{n}+1}$
J	K	\mathbf{Q}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	\bar{Q}_{n}

NOTES: 1. $\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
2. $t_{n+1}=$ Bit time after clock pulse.
T
JOR N
fLAT PACKAGE (TOP VIEW) dUAL-IN-LINE PACKAGE (TOP VIEW)

description

These J-K flip-flop circuits are based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from J and K inputs to master

3. Disable J and K inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.
recommended operating conditions

electrical characteristics (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	TEST CONDITIONS \dagger		MIN	MAX	UNIT
$V_{\text {in }}$ [1]	Input voltage required to ensure logical 1 at any input terminal	29 and 30			2		V
$V_{\text {in(0) }}$	Input voltage reguired to ensüre logical 0 at any input terminal except clock	29 and 30			0.7		V
$V_{\text {inf(0) }}$	Input voltage reguired to ensure logical 0 at clock input terminal	$\begin{gathered} 29 \\ \text { and } \\ 30 \end{gathered}$			0.6		V
$V_{\text {out }}$ (1)	Logical 1 output voltage	29	$\mathrm{V} \mathrm{cc}=\mathrm{MIN}$,	$\mathrm{l}_{\text {load }}=-100 \mu \mathrm{~A}$	2.4		V
$V_{\text {out }}(0)$	Logical 0 output voltage	30	$\mathbf{V} \mathrm{cc}=\mathbf{M I N}$,	$\mathrm{I}_{\text {sint }}=2 \mathrm{~mA}$		0.3	V
$\mathrm{I}_{\text {inf0 }}$	Logical 0 level input current af Jor K	31	$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$		-0.18	mA
$\mathrm{Jinf}_{\text {(0) }}$	Logical 0 level input current at preset	31	$V_{c c}=M A X$	$\mathrm{v}_{\mathrm{in}}=0.3 \mathrm{~V}$		-0.36	mA
I in(0]	Logical 0 level input current of clear or clock	31	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{in}}=0.3 \mathrm{~V}$		-0.72	mA
l in(1)	Logical 1 level input current of J or K	32	$V_{c c}=\mathrm{MAX}$	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
			$V C C=M A X$,	$\mathrm{V}_{\mathrm{in}}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
$\operatorname{Iin}(1)$	Logical 1 level input current ot preset	32	$\mathrm{V}_{\text {cc }}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		20	$\mu \mathbf{A}$
			$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{in}}=5.5 \mathrm{~V}$		200	$\mu \mathrm{A}$
$1 \mathrm{In}(1)$	Logical 1 level input current at clear	32	$\mathbf{V}_{\text {cc }}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{it}}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
			$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		400	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at clock	32	$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$	0§	-0.4§	mA
			$\mathbf{V c c}=$ MAX	$\mathrm{V}_{\mathrm{in}}=5.5 \mathrm{~V}$		400§	$\mu \mathrm{A}$
los	Short-circuit output current	34	$V_{c c}=M A X$,	$\mathrm{V}_{\text {in }}=0, \mathrm{~V}_{\text {out }}=0$	-3	-15	mA
Icc	Supply current (average per flip-flop)	32	$\mathrm{Vcc}=\mathrm{MAX}$,	$V_{\text {indclock }}=0$		1.44	mA

fFor conditions shown as MIN or MAX, use the appropriate valua specified under recommended operating conditions for the applicable circuit type. §for typical clock input current see poge 8-47.
switching characteristics, $\mathbf{V}_{\mathrm{CC}}=\mathbf{5} \mathbf{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	Parameter	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	36	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		3		M Hz
$t_{\text {poso }}$	Propagation delay time to logicai 0 level from clear to output	37	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{V}_{\text {inf[tiock }]}=2.4 \mathrm{~V}$		60	150	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{V}_{\text {infelecect }}=0 \mathrm{~V}$			200	ns
$t_{\text {pal }}$	Propagation delay time to logical 1 level from clear to output	37	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$		35	75	ns
$t_{\text {pat }}$	Propagation delay time to logical 1 level from clock to output	36	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k}$?	10	35	75	ns
$t_{\text {poso }}$	Propagation delay time to logical 0 level from clock to output	36	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=4 \mathrm{k}$ /	10	60	150	ns

CIRCUIT TYPES SN54L78, SN74L78
DUAL J-K MASTER-SLAVE FLIP-FLOPS
functional block diagram (each flip-flop)

schematic (each flip-flop)

Component values shown are nominal.

CIRCUIT TYPES SN54L122, SN74L122 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

- Retriggerable for Very Long Output Pulses, Up to 100\% Duty Cycle
- Overriding Clear Terminates Output Pulse
- D-C Triggered from High- or Low-Level Gated Logic inputs
- Typical Power Dissipation, 50\% Duty Cycle 55 mW
- Typical Average Propagation Delay to Output Q 40 ns
- Diode-Clamped Inputs
- Fully Compatible with Most TTL and DTL Circuits

> J OR N DUAL-IN-LINE OR T FLAT PACKAGE (TOP VIEW) \dagger (See Note B thru F)

TRUTH TABLE
(See Note A)

INPUTS				OUTPUTS
A1	A2	B1	B2	Q $\overline{\mathbf{Q}}$
H	H	X	X	L H
X	X	L	X	L H
X	X	X	L	L H
L	x	H	H	L H
L	x	\uparrow	H	$\Omega \square$
L	X	H	\uparrow	Ω U"
x	L	H	H	L H
x	L	\uparrow	H	Ω U
X	L	H	\uparrow	$\Omega \square$
H	\downarrow	H	H	\Perp 凹
\downarrow	\downarrow	H	H	$\Omega \square$
\downarrow	H	H	H	\checkmark J

${ }^{\dagger}$ Pin assignments for these circuits are the same for all packages.

NOTES: A. $H=$ high level (steady state), $L=$ low level (steady state), $\uparrow=$ transition from low to high level, $\downarrow=$ transition from high to low level, $\Omega=$ one high-level pulse, $\mathcal{J}=$ one low-level pulse, $X=$ irrelevant (any input, including transitions).
B. $N C=$ no internal connection.
C. To use the internal timing resistor of SN54L122/SN74L122 ($20 \mathrm{k} \Omega$), connect $R_{\text {int }}$ to $V_{\text {CC. }}$.
D. An external timing capacitor may be connected between $\mathrm{C}_{\text {ext }}$ and $\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$ (positive).
E. For accurate repeatable pulse widths, connect an external resistor between $R_{\text {ext }} / C_{\text {ext }}$ and $V_{C C}$ with $R_{\text {int }}$ open-circuited.
F. To obtain variable pulse width, connect external variable resistance between $R_{\text {int }}$ or $R_{\text {ext }} / C_{\text {ext }}$ and $V_{\text {cc }}$.

CIRCUIT TYPES SN54L122, SN74L122
 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

Abstract

description

These monolithic TTL retriggerable monostable multivibrators feature d-c triggering from gated low-level-active (A) and high-level-active (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. A full fan-out to 40 normalized Series 54L/74L gate loads is available from each of the outputs. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components R and C .

Figure A below illustrates triggering the one-shot with the high-level-active (B) inputs.

OUTPUT PULSE CONTROL USING RETRIGGER PULSE

OUTPUT PULSE CONTROL USING CLEAR INPUT

FIGURE A-TYPICAL INPUT/OUTPUT PULSES

[^4]
CIRCUIT TYPES SN54L122, SN74L122
 retriggerable monostable multivibrators with clear

description (continued)

These monostables are designed to provide the system designer with complete flexibility in controlling the pulse width, either to lengthen the pulse by retriggering, or to shorten by clearing. The SN54L122/SN74L122 has an internal timing resistor which allows the circuit to be operated with only an external capacitor, if so desired.

The output pulse is primarily a function of the external capacitor and resistor. For $C_{\text {ext }}>1000 \mathrm{pF}$, the output pulse width $\left(t_{w}\right)$ is defined as:

$$
t_{w}=0.32 R_{T} C_{e x t}\left(1+\frac{0.7}{R_{T}}\right)
$$

where
R_{T} is in $k \Omega$ (either internal or external timing resistor)
$C_{e x t}$ is in pF
t_{w} is in ns

For pulse widths when $\mathrm{C}_{\text {ext }} \leqslant 1000 \mathrm{pF}$, see Figure 2.
These circuits are fully compatible with most TTL or DTL families. Inputs are diode-clamped to minimize reflections due to transmission-line effects, which simplifies design. Typical power dissipation per one-shot is 55 milliwatts; typical average propagation delay time to the Q output is 40 nanoseconds. The SN54L 122 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the SN74L 122 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

IThis applies for all data inputs of circuit types SN54L122 and SN74L122.
NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-mitter transistor. For the SN54L122/SN74L122 circuit, this rating applies to each A input with respect to the other and to each B input with respect to the other.
3. Setup time for a dynamic input is the interval imınediately preceding the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure recognition of the transition.
4. Hold time for a dynamic input is the interval immediately following the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure continued recognition of the transition.

CIRCUIT TYPES SN54L122, SN74L122 retriggerable monostable Multivibrators with clear

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage				2		V
V_{IL}	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN},$ See Note 5	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$,	2.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN},$ $\text { See Note } 5$	$\mathrm{IOL}=8 \mathrm{~mA} \text {, }$		0.4	V
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=$ MAX,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		1	mA
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	data inputs	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$		20	$\mu \mathrm{A}$
		clear input				40	
IIL	Low-level input current	data inputs	$V_{C C}=$ MAX	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.8	mA
		clear input				-1.6	
Ios	Short-circuit output current§		$V_{C C}=$ MAX,	See Note 5	-5	-2.0	mA
ICC	Supply current (quiescent or triggered)		$V_{C C}=M A X$,	See Notes 6 and 7		$11 \quad 14$	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the value specified under recommended operating conditions for the applicable device type.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTES: 5. Ground $c_{e x t}$ to measure $V_{O H}$ at $Q, V_{O L}$ at $\bar{\alpha}$, or $I_{O S}$ at Q. $c_{e x t}$ is open to measure $V_{O H}$ at $\bar{\alpha}, V_{O L}$ at Q, or los at $\bar{\alpha}$.
6. Quiescent ${ }^{1} \mathrm{CC}$ is measured (after clearing) with 2.4 V applied to all ciear and A inputs, B inputs grounded, all outputs open, $C_{\text {ext }}=0.02 \mu \mathrm{~F}$, and $R_{\text {ext }}=25 \mathrm{k} \Omega . R_{\text {int }}$ is open.
7. ${ }^{1} \mathrm{CC}$ is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $\mathrm{C}_{\text {ext }}=0.02 \mu \mathrm{~F}$, and $R_{\text {ext }}=25 \mathrm{k} \Omega$. $R_{\text {int }}$ is open.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

CIRCUIT TYPES SN54L122, SN74L122 retriggerable monostable multivibrators With clear

PARAMETER MEASUREMENT INFORMATION
switching characteristics

NOTES: A. The pulse generators have the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}(10 \%$ to 90% level $), \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%, z_{\text {out }} \approx 50 \Omega$.
B. See Test Conditions, switching characteristics table, page 3 , for values of $R_{\text {ext }}$ and $C_{\text {ext }}$
C. All diodes are 1 N 916 .
D. C_{L} includes probe and jig capacitance.

CIRCUIT TYPES SN54L122, SN74L122
 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

TYPICAL CHARACTERISTICS
OUTPUT PULSE WIDTH
vs
EXTERNAL TIMING CAPACITANCE

${ }^{\dagger}$ These values of resistance exceed the maximums recom mended for use over the full temperature range of the SN54L122.

TYPICAL APPLICATION DATA

To prevent reverse voltage across $C_{\text {ext }}$, it is recommended that the method shown in Figure C be employed when using electrolytic capacitors and in applications utilizing the clear function. In all applications using the diode, the pulse width is:
where

$$
t_{w}=0.28 R_{e x t} C_{e x t}\left(1+\frac{0.7}{R_{e x t}}\right)
$$

$R_{\text {ext }}$ is in $k \Omega$
$\mathrm{C}_{\text {ext }}$ is in pF
t_{w} is in ns

PARAMETER MEASUREMENT INFORMATION

SERIES 54L, 74 L

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

PARAMETER MEASUREMENT INFORMATION

d-c test circuits §

8

PARAMETER MEASUREMENT INFORMATION

d-c test circuits§ (continued)
(

[^5]SERIES 54L, 74L
LOW-POWER TRANSISTOR-TRANSISTOR LOGIC
PARAMETER MEASUREMENT INFORMATION
$d-c$ test circuits§ (continued)

8

TEST TABLE	
Apply $V_{\text {in }}$ (Test Aintol)	Apply 4.5 V
Clock	Preset, R1, R2, R3, S1, S2, and S3
Clock	Clear, R1, R2, R3, S1, S2, and S3
Preset	R1, R2, R3, S1, S2, and S3
Clear	R1, R2, R3, S1, S2, and S3
R1	Preset, Clock, R2, and R3
R2	Preset, Clock, R1, and R3
R3	Preset, Clock, R1, and R2
S1	Clear, Clock, S2, and S3
S2	Clear, Clock, S1, and S3
S3	Clear, Clock, S1, and S2

I. Eoch inpul is tested separately.

FIGURE 21

1. Each input is tested separately.

FIGURE 22
§Arrows indicate actual direction of current flow.
d-c test circuits§ (continued)

TEST TABLE		
Apply $\mathbf{V}_{\text {in }}$ (Test $\mathrm{I}_{\mathrm{in}[0 \mid 0}$)	Apply Momentary GND, then 4.5 V	$\begin{aligned} & \text { Apply } \\ & 4.5 \mathrm{~V} \end{aligned}$
Clock	Preset	J1, J2, J3, K1, K2, and K3
Clock	Clear	J1, J2, J3, K1, K2, and K3
Preset	None	J1, J2, J3, K1, K2, and K3
Clear	None	J1, J2, J3, K1, K2, and K3
J1	Clear	Clock, J2, and 13
J2	Clear	Clock, J1, and J3
13	Clear	Clock, J1, and J2
K1	Preset	Clock, K2, and K3
K2	Preset	Clock, K1, and K3
K3	Preset	Clock, K1, and K2

1. Each input is tested separately.

SERIES 54L, 74L

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

d-c test circuits § (continued)

8

FIGURE 27

1. Each output is tested separatoly.

FIGURE 28

[^6]
PARAMETER MEASUREMENT INFORMATION

d-c test circuits§ (continued)

PARAMETER MEASUREMENT INFORMATION

d-c test circuits ${ }^{\dagger}$

NOTES: A. Each flip-flop is tested separately.
B. Each output is tested separately.

FIGURE $36-V_{\text {IH }}, V_{I L}, V_{O L}$

$\begin{aligned} & \text { APPLY } V_{1} \\ & \text { (TEST } I_{I H} \text {) } \end{aligned}$	APPLY 4.5 V	APPLY GND
Clock	Clear and D	Preset
Clock	Preset and D	Clear
Preset	Clear and D	Clock (See Note B)
Clear	Preset	Clock, D, and Q
Clear	Preset	D and Clock (See Note B)
D	Preset and Clock	Clear

NOTES: A. Each input of each flip-flop is tested separately for $\mathbf{I}_{1} \mathrm{H}$.
B. GND is momentarily applied to Clock, then 4.5 V .
C. ICC is measured simultaneously for both flip-flops with D, Clock, and Preset at GND; then with D, Clock, and Clear at GND.

$$
\text { FIGURE } 37-I_{I H}, \text { ICC }
$$

${ }^{\dagger}$ Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

PARAMETER MEASUREMENT INFORMATION

d-c test circuits ${ }^{\dagger}$ (continued)

TEST TABLE		
APPLY V (TEST IIL)	APPLY 4.5 V	APPLY GND
Clock	Clear	Preset and D
Preset	Clear	Clock and D
Clear	Clock, D, and Preset	None
D	Clear and Clock	Preset

NOTES: A. Each flip-flop is tested separately.
B. Each input is tested separately.

FIGURE 38-IIL

NOTE: Each output is tested separately.
FIGURE 39-los

[^7]
SERIES 54L, 74L

LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

Parameter measurement information
switching characteristics (continued)

TEST CIRCUIT

 2. C_{1} includes probe and jig capacitance.
3. For SN54L73/SN74L73 and SNS4L78/SN74L78, J $=k=2.4 \mathbf{V}$.
4. Load is applied only to output under test.

FIGURE 41-FLIP-FLOP CIRCUITS SYNCHRONOUS INPUTS SWITCHING TIMES

PARAMETER MEASUREMENT INFORMATION
switching characteristics (continued)

NOTES: 1. Clear of preset inputs dominate regardless of the state of clock or logit inputs.

3. See applicable circuit type for actual synchronous and asynchronous input configurations.
4. C_{L} includes probe and iig capacitance.

FIGURE 42-FLIP-FLOP CIRCUITS ASYNCHRONOUS INPUTS SWITCHING TIMES

SERIES 54L, 74L
 LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

NOTES: A. Clear or Preset input pulse characteristics: $t_{w(c l e a r)}=t_{w}$ (preset) $\geqslant 100 \mathrm{~ns}, P R R \leqslant 500 \mathrm{kHz}$.
B. Clear and Preset inputs dominate regardless of the state of Clock or D inputs.
C. All diodes are 1 N 916.
D. C_{L} includes probe and jig capacitance.

FIGURE 43-ASYNCHRONOUS INPUTS SWITCHING CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

NOTES: A. Clock input pulse has the following characteristics: t_{w} (clock) $\geqslant 200 \mathrm{~ns}$ and $P R R \leqslant 500 \mathrm{kHz}$. When testing $\mathrm{f}_{\text {max }}$, vary $P R R$.
B. D input (pulse A) has the following characteristics: $t_{\text {setup }}=\mathbf{3 0} \mathrm{ns}, \mathrm{t}_{\mathrm{w}}=\mathbf{1 0 0} \mathrm{ns}$, and $P R R$ is 50% of the clock PRR. D input (pulse B) has the following characteristics: $t_{\text {hold }}=0 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=80 \mathrm{~ns}$, and PRR is 50% of the clock PRR
C. All diodes are 1 N916.
D. C_{L} includes probe and jig capacitance.

FIGURE 44--SWITCHING CHARACTERISTICS, CLOCK AND SYNCHRONOUS INPUTS (HIGH-LEVEL DATA)

SERIES 54L, 74L LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

NOTES: A. Clock input pulse has the following characteristics: $t_{w} \geqslant 200 \mathrm{~ns}$ and $P R R \leqslant 500 \mathrm{kHz}$. When testing $f_{\text {max }}$, vary $P R R$.
B. D input (pulse A) has the following characteristics: $t_{\text {setup }}=30 \mathrm{~ns}, t_{w}=100 \mathrm{~ns}$, and PRR is 50% of the clock PRR. D input (pulse B) has the following characteristics: $\mathrm{t}_{\text {hold }}=0 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=80 \mathrm{~ns}$, and PRR is 50% of the clock PRR.
C. All diodes are 1 N916.
D. C_{L} includes probe and jig capacitance.

FIGURE 45-SWITCHING CHARACTERISTICS, CLOCK AND SYNCHRONOUS INPUTS (LOW-LEVEL DATA)

TYPICAL CHARACTERISTICS \dagger

†SNS4LOO/SN74LOO, SNS4LIO/SM74LIO, and SNS4L20/SN74L2O. Data for temperafures belaw $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ is applicable to Series 54 L circuits only.

SERIES 54L, 74L LOW-POWER TRANSISTOR-TRANSISTOR LOGIC

TYPICAL CHARACTERISTICS ${ }^{\dagger}$

OUTPUT VOLTAGE

OUTPUT VOLTAGE

\dagger Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ is applicable to
Series 54 L circuits only.

PRINTED IN U.S.A
It cannot assume any responsibility for ony circuils shown
or represent that they are free from patent infringement
texas instruments reserves the right to make changes at any time IN ORDER to Improve design and to supply the best product possible.

AVERAGE TOTAL D-C POWER DISSIPATION $\ddagger \S$

\ddagger Each flip-Flop

Svalue of $\mathrm{I}_{\text {in }}$ for SN54L78 and SN74L78 is twice the amount shown

[^0]: †For conditions shown as MIN or MAX, use the oppropriate vaive specified under recommended operating conditions for the applicable circuit type.

[^1]: \dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

[^2]: †For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

[^3]: †For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

[^4]: NOTE: Retrigger pulse must not start before $0.22 \mathrm{C}_{\mathrm{ext}}$ (in picofarads) nanoseconds after previous trigger pulse.

[^5]: §Arrows indicafe octual direction of current flow

[^6]: §Arrows indicate actual direction of current flow.

[^7]: †Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

