
SPNUOO7

TMS7000
Evaluation
Module
User’s Guide

8-Bit Microcomputer Family

TMS7000

Evaluation Module

User’s Guide

4
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T!) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer's product design,
or infringement of patents or copyrights of third parties by or arising
from use of semiconductor devices described herein. Nor does Tl
warrant or represent that any license, either express or implied, is
granted under any patent right, copyright, or other intellectual
property right of Tl covering or relating to any combination, machine,
or process in which such semiconductor devices might be or are
used.

Copyright © 1986, Texas Instruments Incorporated

Contents

Section

Manual Organization

Functional Overview

Operating System

EVM Configurations

1 Peripheral Mode

2 Standalone Mode

3

Other Applicable Documents

2 Installation And Operation

2.1 Upgrade to Support TMS70x2

2.2 Jumper Settings4.

2.3. Terminal, Printer, Host Connections (Ports 1 and 2)

2.4 Connecting the Audio Tape (Port3)

2.5 Applying Power0.004

2.6 RESET and ESCAPE

2.6.1 Using the Reset Switch to Start EVM Operation

2.6.2 Escape Key0. 00084

2.7 Memory 2...

272 EPROM0 0000.
2.8 System Access Commands

2.9 Crystal Frequency Dependent Constants

2.10 Software UART40.4

2.10.1 ElA Port Description

2.10.2 ElA Communications Protocol (HS Command)

2.10.3. Terminal Emulation Support

2.10.4 Upload/Download Procedures

2.11 TMS7000 Family Device Type Memory (DV Command)

2.11.1 RAM Usage by Device Type

2.11.2. Changing the Default Device Type

2.12 Changing the Default EPROM Programmer Destination

2.13 Changing Port 2 Default Baud Rate

2.14 Default Changes for Bell, Tab, and Buffer Timeout

2.15 Configuring Cursor Control2...

2.15.1 Display/Modify Cursor-Up Character(s) (CU)

2.15.2 Display/Modify Cursor-Left Character(s) (CL)

Combining Modes

Introduction to the RTC/EVM/7000 Evaluation Module

|

Cr

2.15.3. Changing the Default Cursor-Up and Cursor-Left Values

2.15.4 Adding Recognized Cursor Characters

3 Development Tools Example

3.1 Configuring the System

3.2 System Initialization

3.3 Entering Object by Memory Change

3.4 Source Entry Using the Text Editor

3.5 Assembling a Source File

=

4

=

—

—

—

w
z

—
_

—
_

O
D
W
D
O
N
D
O
U
N
N
O
D
D
R
B
R
A
W
W
N
H
N
A
G

'
'

1

A
D
M
D
A
I
A
A
N
O
I
W
N
 =

4 Text Editor 4-1

4.1 Text Editor Commands 0 0. ee 4-2

4.1.1 Autoincrement Line Number Mode (A)0.0 000808, 4-2

4.1.2 Change Line Number (CC) .. 1... 2. 4-3

4.1.3 Delete Line (<CR>) ©. 2... 0.2002 2 en 4-4

4.1.4 Duplicate Line (D) . 2. 2. 4-4

4.1.5 EditLine (E) wg 4-5

4.1.6 Find Character String (F) ww ww 4-8

4.1.7 Help (H) 6 ww 4-9

4.1.8 Input File to the Text Editor (I) 6 2 ww en 4-9

4.1.9 List Line(s) to Terminal (L) =. 2. 2 2 we ee 4-9

41.10 Display Free RAM Remaining (M) 4-10

4.1.11 Quit Editand Save File(Q) 0.2.00 00002 eee ee, 4-11

4.1.12 Resequence Line Numbers (R) 1. 2 ee 4-12

4.1.13 Display/Modify Tab (T) ... 2... ee 4-13

4.1.14 Initialize Text Editor (Z) 6 2 we 4-13

4.1.15 Line Number Pointer to EOF (+) 0... 0. eee ee ee eee 4-14

4.1.16 Line Number Pointerto BOF (-) 0.00.0. eee ee ee eee 4-14

4.1.17 Display Current Line Number (=) .. 2 2 2 2 4-14

4.2 TextEntry ... 1... ee 4-14

4.3. Monitor and Text Editor Debug Aids 5. 5 7 2 2 ow 4-16

4.4 Text Editor Errors ©... 0... 4-16

5 Assembling and Executing Programs 5-1

5.1 EVM Assembler .. 2... 1... 5-2

5.1.1 Assembling Files From a Host System2.. 00002 ee eens 5-3

5.1.2 Assembling Source Files From Audio Tape02.008. 5-5

5.1.3 Assembling from RAM.) dw ww 5-5

5.2. Object Code Loading and Dumping 2... 2 ee ee es 5-6

5.2.1 7000 Dump Format wg 6 www 5-6

5.2.2 Tektronix Dump Format... 2... 2 5-7

5.3. LBLA Assembler (XL). 6 2 we 5-7

5.4 Altering Programs After Assembly (Using XP)2.004 5-8

5.5 Instruction Format ... 2... 5-9

5.5.1 Constants 2... ww 5-10

5.5.2 Label Format... 2... 5-10

5.5.3 "$" Indicates PC Value... ww 5-11

5.5.4 Register/Peripheral File Requirements 2.28004 5-11

5.6 Assembler Directives ... 2.0... 0.000. ec 5-11

5.6.1 AORG wd dd 5-11

5.6.2 FQU 6 de 5-11

5.6.3 BYTE © fe 5-12

5.6.4 DATA 6 6 5-12

5.6.5 TEXT 6 ee 5-13

5.6.6 BSS 5-13

5.6.7 BES we 5-13

5.6.8 Comment 00.0000 0000 2 ee 5-13

5.6.9 END we ee 5-14

5.6.10 Additional Assembler Directives2.2.20.20.20202.. 2.0000 0 eae 5-14

5.7 Assembler Errors .. 1... 2... 5-14

5.8 Executing Programs0. 0000 ce eee ee ee ee 5-16

Debug Monitor
Command Parameters

Numerical Parameters 2.0.0.0... 000 be
Symbolic Parameters = = 0.000002 ee

Defining Registers ... 2... 0... . 0.
Command Termination0.0.00 00 00 0 ee
Display/Modify Procedures 0... 002 ee,
Additional Command Notes 2.2... 2.0.00 000 ee
Monitor Command Descriptions 0.002 ee eee,

+/- Hex Arithmetic (AR) 2... 2.000000
Display Assembler Label Table (AT)0.2.0.0000.,
Display/Modify Baud Rate (BR)0. 00.000,
Set Breakpoint on Trap (BT)0. 000200000000 000.4
Set Breakpoints 1 and 2 (B1 and B2)020.20020020..0040.,
Clear Breakpoints (CB) 0.00. 0000000 2 eee
Clear Processor Status (CP)0.0..0.0.0 00000000000,
Cycle Count Single Step (CS)... 2 2. en
Clear Breakpoint on Trap (CT) 2...
Display/Clear Cycle Counter (CY)0....00 000000000,
Clear Breakpoints Individually (C1 and C2)... 2... ee,
Display Breakpoints (DB)0.... 000000 ee
Decimal-Hex Byte Conversion (DC)0...00.000.0 00.4
Display Memory (DM) 0... 0... ee
Display Processor Status (DP)0. 00.0002. 00000.4
Audio Tape Directory (DR)0.. 0. 00000 0 ee
Display Machine State (DS)0.0.0. 0.00000 000000,
Display Breakpointon Trap (DT) 2... 2.2.2. 00 00000000084
Select TMS7000 Family Device (DV)0..00..0. 0.00000.
Execute Program with Breakpoints (EF,ET,EX,GO)
Find Byte in Memory (FB) 2... ee
FillMemory (FM) 6 gw 6 ww
Fill Register File (FR) 2... 00. ee
Single-Step Program with Fixed Display (FS)
Hex-Decimal Word Conversion (HC) 0.00008.
Help (HE) 6 6
Display |/O Status (IO) wg 2 we
Show Address of Line (LA) ... 2... 2.
List Lines from Text Editor (LL) 2... 0000000200.
Load Memory - 7000 Format (LM) 0.0.0.2 eae
Show Editor Line at Address (LN)0... 000.0000 2 0G
Load Machine State (LS)... 2... 2.
Load Memory - Tektronix Format (LT)2. 2.28004
Set Breakpoint 1 or 2 by Editor Line Number (L1/L2)2...
Display/Modify Registers Aand B(MAand MB)
Display/Modify Memory (MM)... . . 2 2 2 ee
Audio Tape MotorOn (MO) 0. 2 ee
Display/Modify Peripheral File(MP)0... 025048.

6.6.39 Display/Modify Register File(MR) 0.005050 Ge
6.6.40 Display/Modify PC, SP, RA and RB (MS, PC, SP,A,B)
6.6.41 Move (Copy) Memory (MV) 1... 6 ww
6.6.42 Fill Memory with NOPs (NP) .. 2... 2
6.6.43 Reset Target Processor(RT) 0... 0 ee
6.6.44 Execute Program without Breakpoints (RU)4.
6.6.45 Save Memory - 7000 Format(SM) 0022 eee eee

6.6.46 Status Register Display/Change Commands
6.6.47 Single-Step Program (SS)... . 2. 2
6.6.48 Save Memory - Tektronix Format (ST)-. 0505585
6.6.49 Instruction Trace Execution ... 0... 0.0.0.0 0. ee
6.6.50 Configure Single-Step Trace (TC) 2.00055 eee
6.6.51 Single-Step Program with Trace (TS)... 2...

N
=

W
R
R
R
N
V
Y
N
N
N
N
B
S
S
S
S
4

UU

ko

M
A
T
a

D
O
A
A
R
M
A
W
A
H
D
A
R
M
A
D
A
A
V
W
M
A
H
D
H
A
A
A
V
R
A
A
H
D
A
M
A
A
A
A
M
A
M
A
M
D
A
N
B
W
H
N

=
=

a

D
O
D
I
N
A
M
T
A
W
N
A
O
O
D
I
N
A
M
A
W
N
-
O

A
M
A

A
M
A
D
V
A
D
A
M
A
D
A
H
D
9
M
A
D
W
B
M
W
D
D
M
W
A
D
H
D
W
W
M
A
D
W
D
A
D
W
M
A
A
A
H
D
A
A
H
A
D
A
M
A
M
A
A
M
A
H
D
A
A
D
A
D
A
D
S

w —
_

M
A
R
A
A
A
A
D
H

W
W
W
W

W
W
W

O
N
H
D
H
B
W
N

'
l

O
D
I
N
H
H
O
M
A
M
A
b
D
A
R

6-9

6.6.52 Load Program Counter with TRAP 0 (Zero) Vector (TO)

6.6.53 Execute Assembler (XA)

6.6.54 Execute Text Editor (XE)

6.6.55 Execute Line Assemblers (XL and XP)

6.6.56 Execute Reverse Assembler (XR)

6.7 System Utilities and Access Commands

6.7.1 System Access Commands... ...

6.8 Object Code Loading and Dumping

6.8.1 7000 Dump Format

6.8.2 Tektronix Dump Format

6.9 Software Breakpoint TRAP 0

6.10 The Stack

6.11 Reset0..0 00200004

6.12 Reset During EVM Operation

6.13 Monitor Errors

7 In-Circuit Emulation

7.1. In-Circuit Emulation Hardware... ..

7.2 Powering a Target with the EVM Los

7.3. Connecting an External Clock to the EVM

7.4. Making a New Monitor EPROM

8 Audio Tape System

8.1 File Names and Audio Tape Commands

8.2 Audio Tape Connection

8.3 Cassette Recorder and Level Settings

8.4 Cassette Tapes

8.5 Abortinga Tape Session

8.6 Other Considerations

8.7 Creating Audio Tape Files

8.8 Loading Audio Tape Files

8.9 Audio Tape Directory

8.10 Motor Control Utility Command (MO)

8.11 Error Messages

9 EPROM Programmer

9.1 EPROM Programmer Commands Lo

9.1.1 Program EPROM from Memory (PE)

9.1.2 Compare EPROM to Memory (CE)

9.1.3 Read EPROM to RAM (RE)

9.1.4 Verify EPROM Erased (VE)

a SS

Cn SS i i

9.2 TMS2764 and TMS27128 EPROM Programming2004

9.3. Programming the TMS7742 with the RTC/PGM2764-06

9.4 Programming the SEEQ 727x0

9.4.1 Clearing the 727x0 (BC)

i

9.4.2 Assembling a Subroutine to Program the 727x0 ww ww ww ee

9.5 Calibrating VPP Voltage (12 or 21)

9.6 Copy Monitor EPROMS (43, 44, 45)

9.7 Making a New Monitor EPROM

9.8 EPROM Programmer Errors

vi

09

©
CO

CO

CO

CO

OO

OO

CO

MH
H&

&

N
O
O
O

P
P

HR
P
H
R
W
W
H

=
'

'
‘

'
‘

t
a

O
O
D
D
N
H
N
H
D
H
D
H
H
O
H
O
N
H

HO

O
W

O
n
N
N
A
D
A
O
A
I
A
U
A
A

B
W
W
N
h
H

10

11

12
12.1 Monitor Re-Entry Points
12.2 Monitor Command Development Aids
12.2.1

O
O

PY

1/0 Port Reconstruction

Diagnostic Input/Output Utilities

Creating Monitor Commands

Schematic
Command Format Summary
EVM Walkthrough
Crystal Frequency Dependent Constants

SLM andSLT 2... a,

1222 SRU ©... el
12.2.3 $KA,$XL,XP,and$XR0...0. 0.00004

vii

1. Introduction to the RTC/EVM7000 Evalu-

ation Module

The RTC/EVM7000 is a TMS7000 Evaluation Module, referred to throughout this
manual as the "EVM". It is designed to emulate the Single-Chip mode of the
TMS7000 NMOS and CMOS families. It provides all the signals that would be
available from masked ROM parts including the UART functions. The EVM provides
the ability to develop, debug, and test programs prior to factory masking.

Note:

The EVM does not support the expansion modes of the TMS7000 family of
processors.

Two different EVMs exist, one each to support the NMOS and CMOS technologies.
The EVM part numbers are as follows:

NMOS Family: RTC/EVM7000N-1
CMOS Family: RTC/EVM7000C-1

Organization of this section:

@ Section 1.1 is a manual overview, showing manual organization.

@ Section 1.2, Section 1.3, and Section 1.4 cover a genera! description of the
EVM and its different modes.

@ Section 1.5 is a list of additional documentation.

Introduction to the RTC/EVM7000 Evaluation Module

1.1 Manual Organization

1-2

This manual is organized as follows:

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

Section 10

Section 11

Section 12

Appendix A

Appendix B

Appendix C

Appendix D

Installation. How to set up the EVM, upgrade it (if necessary) to
support the TMS70x2, set jumpers, attach power,

attach cables (such as for terminals, printers, and

audio recorder), RESET switch, crystal options, UART

setup, 7000 family device selection, etc.

Development Tools Example. Example of using some of the EVM’s

software tools to load and execute a small program

that blinks the DATA LED when executed. Tools used

include the Monitor to hand insert the program by

changing memory, “writing” the program using the

Text Editor, assembling the program with the

Assembler, and executing the program. A more

extensive example is in the walkthrough in Appendix

C.

Text Editor. Using the editor to generate source programs.

Assembler. How to input programs into the assembler, assembler

fields, assembler directives.

Debug Monitor. Explanations of more than 50 commands used to

control program execution and debug. Also included

are commands to access the EVM system.

In-Circuit Emulation. Emulate a program in a target system. Signals

are transmitted via a 40-pin emulation cable between

the EVM and the target-system’s processor socket.

Audio Recorder Storage. How to set up to record digital programs

using an audio recorder. Includes cabling, tapes,

filing.

EPROM Programmer. Programming EPROMs using the onboard

EPROM sockets and programming software, check

for erased conditions, and verify for programming.

1/O Ports. |/O ports and corresponding Peripheral File registers.

Diagnostics. How to send messages or flags to the terminal during

program execution.

Creating Monitor Commands. How to develop your own commands.

Schematics of the EVM

Command Format Summary

EVM Walkthrough

Crystal Frequency Dependent Constants

Introduction to the RTC/EVM7000 Evaluation Module

1.2 Functional Overview

The EVM is a single- board development system capable of emulating the Single- Chip
mode of the TMS7000 family of microcomputers. Figure 1-1 shows the major
functional areas of the EVM.

AUDIO CASETTE RECORDER
A. lm \ JUMPER P7

J3: TAPE MOTOR ON/OFF (REM) 77x2 EPROM or
J4: AUDIO DATA OUT (MIC) 727x0 EEROM

2 AS-232 PORTS J5: AUDIO DATA IN (EAR-SPKR)
A EPROM

f N\

PORT 1 (J1) NEC TORS PROGRAMMING
(TERMINAL) PORT 2 co A SOCKETS

(J2) r \ U20: 40 PIN
(PRINTER) fT J6 i J7 U19: 28 PIN

-_ Lo ~7— WIRE-WRAP
ache p= » POWER

. a
: Ww ak . ul

: Oo _ 2
a

c _ a

me oe
wa 5 2
{- j a

[| °
kay e

. ale s

Ty. z
Z| 3

4 4

ay
a

po

iz
+

RESET
SWITCH WIRE-WRAP SIGNALS

($1)

TMS70xx (U12) CPU

JUMPERS P1 & P2 COVERED IN
P1: TARGET POWER SYMBOL PARAGRAPH
P2: EXTERNAL CLOCK — rs
(JUMPERS P3-P6 ya PORT 1 23
HARDWIRED) J2 PORT 2 2.3

J3-J5 AUDIO CASSETTE 2.4
IN-CIRCUIT JG/J7 POWER 2.5
EMULATION P1 TARGET POWER JUMPER 2.2
CABLE, P2 EXTERNAL CLOCK JUMPER 2.2
CONNECTOR P7 77x2 EPROM/727x0 EEROM 9.3, 9.4
J8 $1 RESET SWITCH 2.6

Figure 1-1. Major Functional Areas of RTC/EVM7000

1-3

Introduction to the RTC/EVM7000 Evaluation Module

The EVM can stand alone as a development system using its Text Editor for creation
of TMS7000 assembly language text files with storage on cassette tape. The tape
recorder has limited directory- and file-search capabilities. The EVM can also accept
text files from a host CPU through either of the two EIA ports. In both situations, the
resident assembler will convert the incoming text into executable code in the second
pass after resolving labels from the first assembly pass.

The EVM firmware supports three ports in the operations of loading and dumping
data (text and object code) for storage and/or display. Ports 1 and 2 conform to the
EIA RS-232-C standard, and Port 3 is the audio tape connection. Details about
connecting a device to these ports are contained in Section 2.

Port 1 User Terminal/Terminal Emulator
Port 2 Uplink/Downlink to/from Host CPU, or Line Printer
Port 3 Audio Tape

No UART is visible onboard; the EVM implements the UART function for both EIA
ports in software, supporting the following baud rates:

110, 150, 300, 600, 1200, 2400, 4800, 9600

The baud rate of Port 1 (terminal) is determined automatically at powerup by striking
the carriage return on the terminal (cabled to Port 1) after hitting the RESET switch
on the EVM. This feature is called “autobaud” and eliminates the need to select baud
rates. The baud rate of Port 2 defaults to 9600 baud at reset, and the baud rates of
both ports can be changed with the Monitor command BR.

The EVM firmware is contained in 24K bytes of EPROM. The unused portion of the
U45 EPROM is accessed with the Monitor commands UO through U9. The EVM
requires 2K bytes of system RAM, which is separate from the 32K bytes of user RAM.
A wire-wrap development area, with all required signals provided and labeled, is
available for additional logic.

Since the EVM is intended to be a development tool by using the emulation cable,
the crystal frequency of the EVM can be altered to fit the needs of the target system.
This procedure is detailed in Section 7 and Appendix D.

Introduction to the RTC/EVM7000 Evaluation Module

1.3 Operating System

The EVM operating system firmware resides in 24K bytes of EPROM and can be
divided into three major parts:

e Debug Monitor and EPROM Programmer (Section 6 and Section 9)
e Text Editor (Section 4)
e Assembler (Section 5)

All the software is designed to interact with the user to provide a complete, powerful,
and easy to use development tool.

During assembly and debug operations, the EVM RAM can be configured to emulate
all TMS7000 family members. For emulation of TMS7020 and TMS704x devices,
the EVM allows assembly of text files from RAM, leaving the text intact for immediate
editing after execution. After assembly of the Text Editor output, breakpoints can be
set based on either addresses or line numbers.

During execution, several modes of fixed displays are available, providing a hex
display of the entire register and peripheral files or a binary display of the peripheral
ports. During a fixed display, subsequent execution to a breakpoint or execution of
a single instruction step will overwrite the old data on the screen with new data. A
programmable line of up to six register or peripheral locations is provided for display
with breakpoints and instruction steps.

The Text Editor is cursor and line number oriented with autoincrement line numbers,
resequence line numbers, change line number, duplicate line, and find string
commands. The cursor-oriented edit capability simulates a screen editor by allowing
editing of the previous or next line by moving the cursor up or down.

1-5

Introduction to the RTC/EVM7000 Evaluation Module

1.4 EVM Configurations

The EVM can function as a peripheral to a host computer, or in a standalone

configuration using cassette tape as a mass storage device. Since the EVM’s mode

depends only on how it is connected, combinations of modes are also possible. All

modes support all TMS7000 family members.

1.4.1 Peripheral Mode

Peripheral mode highlights the ability of the EVM Assembler to accept an edited

source file from a host system. During the assembly on the EVM, the source listing

is sent to Port 1 (terminal connection). After assembly, the address, trap, and

interrupt breakpoints can be set. Figure 1-2 shows the peripheral devices in this

mode.

Host computers running TMS7000 cross-support software will produce either a 7000

object file that is loaded with the LM command or a Tektronix object file that is loaded

with the LT command.

HOST
CPU

TM990/51x
POWER
SUPPLY

TERMINAL

Helgi

Figure 1-2. EVM Configuration, Periperhal Mode

Introduction to the RTC/EVM7000 Evaluation Module

1.4.2 Standalone Mode

Standalone mode requires no external computer support for the EVM to function as

a development system. The file- structured cassette tape interface (with file search)

is the mass storage medium. The Text Editor provides for creation and modification

of large text files and, for emulation of TMS7020 and TMS704x devices, allows

assembly directly from the Text Editor as well as from cassette tape. Figure 1-3 shows

the peripheral devices in this mode.

A line printer is not necessary for the EVM to function effectively in Standalone mode

with assembly from the Editor. If used, it would be connected at the EVM’s Port 2.

A unique set of Monitor commands allow breakpoints to be set based on Text Editor

line numbers (such numbers are easier to remember and are quickly displayed from

the Text Editor as well as the Monitor).

LINE AUDIO
PRINTER TAPE

RECORDER

TM990/51x
TERMINAL POWER

| SUPPLY

eoo0o09g
eo00000

9000090

000000
e00000
eo0000

eo0000
eao0oo00

000000
eo0o0o0c”0

Figure 1-3. EVM Configuration, Standalone Mode

Introduction to the RTC/EVM7000 Evaluation Module

1.4.3 Combining Modes

To optimize the debug aids of the Standalone mode with the mass storage of the
Peripheral mode, the EVM can be operated in a way that combines the best features
of both. A hardware configuration similar to Peripheral mode places emphasis on
the disk storage of the host while still using the EVM Text Editor. A hardware
configuration similar to Standalone mode utilizes a personal computer or smart
terminal at Port 1 running terminal emulation software, thus allowing the EVM to
store data on disks tied to this device. In either instance, there are two options:

1) Use a text editor on the host system. Download the file to the EVM Text Editor
for assembly from RAM. This gives access to a full screen editor on the host
(if available) and allows storage of the file to disk without doing an upload from
the EVM Text Editor. In this configuration, the EVM Text Editor is used only to
hold source for the Assembler. Since the host editor does not have line numbers,
the No Line Numbers flag (N) is required in the download command string.

2) Use the Text Editor on the EVM. Download the file from the host to the EVM
Text Editor at the start of a debug session, and upload the file to the host for
storage at the end of the debug session. Since the EVM Text Editor is used for
editing in this configuration, the No Line Numbers flag (N) is not needed in the
download command string. Line numbers are stored with the file on the host
with the upload command.

1.5 Other Applicable Documents

Other documents that may be helpful when using the EVM include:

@ §TMS7000 Family Data Manual

@ TMS7000 Assembly Language Programmer's Guide

2. Installation And Operation

The EVM can be installed as received from the factory or it can be configured
according to custom requirements. Section 2.1 to Section 2.6 should be read before
attempting walkthroughs in either Section 3 or Appendix C. Covered in this section
are:

Upgrade to different TMS7xxx devices Section 2.1
Jumper settings Section 2.2
Cabling Section 2.3, Section 2.4
Power and initialization Section 2.5, Section 2.6
EVM, RAM, and EPROM memories Section 2.7
System access commands Section 6.7
Crystal frequencies Section 2.9
UART and data transmission Section 2.10
Configure device-type memory Section 2.11
Change default EPROM address Section 2.12
Change Port 2 default baud rate Section 2.13
Change defaults - bell, tab, buffer timeout Section 2.14
Configure cursor control Section 2.15

Section 3 and Appendix C contain walkthrough exercises to help in understanding
the installation and operation of the EVM and to become familiar with program
development. Covered in these “hands-on” walkthroughs are:

Board installation including cabling and initialization

Use of major commands

Program developing using the Text Editor and Assembler

EPROM programming (Appendix C only).

Installation And Operation

2.1 Upgrade to Support TMS70x2

The RTC/EVM7000N-1 and RTC/EVM7000C-1 EVM boards are designed to support
the Single-Chip mode of the TMS70x2 microcomputers without hardware or soft-
ware modification.

It is important that the EVM processor in U12 match the emulated processor in
Peripheral-File size and number of clocks. The easiest means to do this is to change
out the EVM processor with the processor-type being emulated.

In Single-Chip mode emulation, the difference between the TMS70x2 and other
TMS7000 family members is the addition of 128 bytes of RAM, designated R128
through R255 in the Register File. The EVM Debug Monitor commands that access
the Register File automatically sense the presence of the extended Register File and
set the upper limit of the commands to either R127 or R255.

Monitor commands affected are:

DS Display Machine State (Section 6.6.17 on page 6-15)
MR_ Display/Modify Register File (Section 6.6.39 on page 6-32)
FR Fill Register File With Value (Section 6.6.23 on page 6-22)

Prior to installing the TMS70x2, entry of a Register File value greater than 127 would
cause an address error. After installing the TMS70x2 the legal range of values is from
0 to 255. Entries greater than 255 will cause an address error.

The machine state display output by the DS Command effectively doubles in size for
the TMS70x2 with the addition of 128 registers. This display can be saved to a host
computer (Port 2) or audio tape (Port 3) and reloaded with the LS (Load Machine
State) command.

User programs are emulated from EVM RAM; however, the Peripheral File registers
and general-purpose RAM registers in emulated programs use these same register
areas on the EVM’s CPU chip. If a program for a 127-register TMS70x1 device is
reloaded onto an EVM with a 256-register CPU, the upper 128 registers are ignored
and unchanged. If a 256-register TMS70x2-device program is reloaded onto an EVM
with a 128-register TMS70x0 CPU, the 256-register contents are accepted with the
top 128 registers not stored; however, no error message will be issued.

The EVM firmware maintains a flag value to tell the Debug Monitor of the presence
of the additional 128 bytes of RAM. This flag is set at cold reset when the memory
is sized, and is toggled by the command "/R”.

With direct control of the Register File size flag, this command allows a TMS70x2
EVM to ignore the additional 128 bytes of RAM and to emulate all other NMOS
TMS7000 family members.

2.2 Jumper Settings

2-2

Caution:

Avoid possible board damage by removing power from the board
before connecting or disconnecting any jumpers or cables.

Hardware jumpers P1 and P2 control clock and Vcc sources for in-circuit emulation.
These are set prior to shipping. Their functions and settings are covered in Section

Installation And Operation

Jumpers P3 to P6 are hardwired as follows:
P3 B-C: to pin 23 of RAM socket U38:

- Connect A-B for 8K byte RAM, or
- Connect B-C for 2K byte RAM

P4 A-B: +5 Vdc to MC pin of TMS7000, sets Microprocesor mode
P5 A-B: A13 to A input of memory controller to sockets U38 and U40
P6 No connections

2.3 Terminal, Printer, Host Connections (Ports 1 and 2)

Using a standard EIA RS-232-C, type DB25P, Ports 1 and 2 can be connected as
follows. (The ports’ data configuration contains 10 data bits, no parity.)

e Port 1
- Connector J1
- Terminal, RS-232 connection

e Port 2
- Connector J2
- Printer, host system (uplink/downlink)

The EVM does not support a 20 mA current loop interface, but adapters can be
purchased from outside vendors to perform the conversion. Pins 9 and 10 on the
J1 and J2 connectors are provided with + 12V to power a converter.

The EVM supports terminals operating in the full-duplex mode. For operation with
a modem or mainframe computer, some RS-232-C lines need to be swapped, such
as pins 2 and 3. Typically, other handshaking lines may need to be changed in these
situations. Section 2.10 details the requirements of the EVM EIA structure.

2.4 Connecting the Audio Tape (Port 3)

When used in a standalone configuration, the EVM supports one audio tape recorder
as a mass storage device. Connections to the audio tape are detailed in Table 2-1.
The recommended tape recorder is a Radio Shack CTR-XX series or equivalent. The
audio tape is referred to throughout the manual as “Port 3”.

Table 2-1. Audio Tape Connections

EVM
FUNCTION CONNECTION CASSETTE CABLETt

Audio Tape Motor J3 Remote Submini - Submini
Audio Data Out J4 (OUT) Mic/Record Mini - Mini
Audio Data In J5 (IN) Ear/Monitor Mini - Mini

tCable connectors are male on each end. Cables are available at local electronics
vendors.

The motor control provided by the EVM insures proper starting of the tape during
multiple tape block operations. This connection is required. The proper setting of the
volume control when reading data from the tape is 5-7 on a scale of 10. Since the
optimum volume setting varies from recorder to recorder, you may need to exper-
iment. Recorders with a tone control should be set to 6 on a scale of 10 or to LO for
HI/LO settings.

2-3

Installation And Operation

2.5 Applying Power

The power supply must be UL approved with current limiting on all outputs and

should have the voltage/minimum current capabilities of +5V/1 A, +12V/0.1 A, and

-12V/0.1 A. An onboard connector, J7, is provided for power connection to a

TM990/519 power supply. Connector J7 is AMP 1-480702-0 (pins are 350550-1).

An assembled EVM/519 power cable is available from the Texas Instruments Atlanta

(Ga.) Regional Technology Center '. The J7 connections are:

Pins 4 2 3 4
GND +5V -12V +12V

Additionally, a screw terminal power connector (J6) is provided for use with a

TM990/518 or equivalent power supply. With the EVM positioned such that J6 is

at the upper right (component side up), the terminals are from left to right:

+5V +12V 12V GND Vpp output

Vpp is produced on the EVM from +5 V and changes under program control to match

the device being programmed. Vpp will be +5 V when not enabled. When power

is properly applied to the EVM, the “PWR” LED is lit.

2.6 RESET and ESCAPE

2.6.1 Using the Reset Switch to Start EVM Operation

Use the RESET switch (SW1) to initialize the EVM board:

1) Press RESET.

2) Press <CR> at the terminal connected to Port P1. The EVM automatically

determines the terminal baud rate for communication.

If the EVM starts properly, the reset banner message will appear as shown in Figure

2-1.

1 The address and phone of the T! Atlanta RTC is:

2-4

Atlanta Regional Technology Center
5515 Spalding Drive
Norcross, Ga. 30092
(404) 662-7945

installation And Operation

TMS7000 DEBUG MONITOR REV 2.X
DEVICE TYPE = 2 (704X)
SYSTEM RAM = 32256 BYTES
HELP : HE /H SHE
MODIFY : MM/IM MR/IR MP/IP A/MA B/MB MS-P/PC,SP
DISPLAY: DM/DH DS IO DV
STATE : C/CP D/DP xC,xN,xZ,xI (x=C/S) EI DI SR
SAVE : SM ST DS
LOAD : LM LT LS
MOVE : MV
FIND : FB
FILL : FM NP FR
RESET : RT TO
BRKPT : Bl B2 Cl C2 CB DB BT CT DT
TRACE : TO TF IT PT IS TC TR
DEBUG : SS TS FS CS CY GO EX ET EF RU
EDITOR : XE Ll L2 LL LA LN
ASSM : XA XL XP AT XR
EPROM : PE VE CE RE BC 12 2125 £43 44 45
MATH : HC DC AR
PORTS : BR DR MO
>

Figure 2-1. Command Menu at Reset

At this point (banner and Monitor cursor displayed), you can continue in this section

or go to one of the walkthroughs in either Section 3 or Appendix C.

If the EVM does not start properly, confirm proper connection of the terminal (see

Section 2.10). The RAM its mapped from >0200 to >7FFF, and the RAM size is

displayed after a memory check of user RAM. The results of the RAM sizing routine

are used throughout the EVM in contro! of the memory map for emulation of different

TMS7000 family members (see Table 2-5). Removal of one of the middle RAM chips

will cause addresses below it in the memory map to be ignored.

The EVM distinguishes between warm and cold resets and also knows whether

power has been cycled when a reset occurs. If power has been cycled, the following

things are done:

@ Determine RAM size

e Load default device type (listed in Table 2-5)

e Initialize Text Editor

e Reset assembler label table

e Clear breakpoints on address

e Clear breakpoints on TRAP

e Autobaud Port 1 baud rate

e Default Port 2 baud rate

e Disable software handshake

A power cycle reset can be done with the Monitor command “SRT”.

?$SRT

ARE YOU SURE? (N)

Press Y and <CR> for autobaud, and the reset banner will appear along with the

monitor prompt (?). Press only <CR> and only the monitor prompt will come up.

2-5

Installation And Operation

2.6.2 Escape Key

The Escape key (<ESC>) is used throughout the EVM firmware to abort the current

line being entered. In the Monitor and Text Editor, it aborts the command if it is

entered before all characters required to satisfy the command. In the Line-By-Line

Assembler (LBLA), it is used to abort the line of code currently being entered. In this

case, a label on the line is not placed in the label table.

2.7 Memory

2-6

The EVM can address 64K bytes of memory. The entire memory space of the EVM

is decoded and sockets provided for on the board in 8K-byte sections. Figure 2-2

shows EVM memory and its two general areas of EPROM and RAM. The explana-

tions of RAM and EPROM that follow describe how the EVM uses RAM in lower

memory for software development but has it logically reside in upper memory, the

same as on the device. Section 2.8 further explains this by describing the commands

used for system access, comparing one command (inspect/change memory) when

used for system access and when used for device memory access.

>0000
NOT AVAILABLE

>0200
USER RAM 4 (U42)

>2000
USER RAM 3 (U41)

>4000
USER RAM 2 (U40) ADDRESS OF OBJECT CODE

>6000 DURING MONITOR OPERATION
USER RAM 1 (U39) (PHYSICAL ADDRESS)

>8000
EVM RAM (U38)

>A000
EVM FIRMWARE (U45)

>C000

EVM FIRMWARE (U44
(44) ADDRESS OF OBJECT CODE

>E000 DURING EXECUTION
EVM FIRMWARE (U43) (LOGIC ADDRESS)

>FFFF

Figure 2-2. EVM Memory Map

Installation And Operation

2.7.1 RAM

The EVM is equipped with 32K bytes of RAM physically located in the lower

addresses of the 64K address map. Programs are developed and debugged in the

higher 16K bytes of this RAM. At the time of execution, the higher 16K bytes of this

RAM is moved logically to the higher-address end of the address map (bank select),

providing execution at the true microcomputer address range.

During Monitor operation, the higher-address 16K bytes of this RAM actually resides

from >4000 to >7FFF, but is interfaced to the user as though it was residing from

>C000 to >FFFF. This RAM provides storage for up to 16K bytes of object code,

allowing full emulation of the entire TMS7000 microcomputer family.

Figure 2-2 details the EVM memory map. Addresses below >200 (51219) are

automatically locked out by the address decoding since these locations are used in

the emulated register and peripheral files. Thus, USER RAM 4 actually adds only

7.5K bytes.

One 8K-byte socket (U38) is occupied by a 2K-byte static RAM. This RAMs used

as system RAM for storing user data during emulation and executing the program

to bank-select the user RAM during emulation. It also stores all operating system

constants and variables and contains the 512-byte I/O buffer.

Socket U38 is identical to all other 8K-byte sockets on the board with the exception

of hardware jumper P3, which allows use of either a 2K-byte or an 8K-byte RAM in

the socket. When pins A and B on P3 are connected the EVM expects an 8K-bytes

RAM, and when pins B and C are connected the EVM expects a 2K-byte RAM.

8K-BYTE RAM
P3

A - Alt
B - U38 PIN 23

/wW

2K-BYTE RAM

Figure 2-3. 2K/8K RAM Jumper (P3)

2.7.2 EPROM

The EVM firmware occupies 24K bytes (>AQO0->FFFF). A third socket is provided

for EPROM expansion (see Figure 2-2). The EVM firmware resides in three TMS2764

EPROMs (U43, U44, and U45).

2-7

Installation And Operation

2.8 System Access Commands

Special commands are used to access system memory (vs. device memory) and

registers on the EVM board. These are covered in the Debug Monitor section

(Section 6) as to function since they are similar to the Monitor commands but have

a dollar-sign ($) prefix. These commands are in the top of Table 2-2. (do not have
a parenthetical reference).

The EVM’s memory map is shown in Figure 2-2 on 2-6. The EVM firmware uses

memory addresses >4000 to >7FFF range for internal use while displaying these

addresses in the >CO00 to >FFFF range, which is the range that the RAM will occupy

after the memory bank swap that accompanies program execution. In this way, you

work in the true microcomputer address range (e.g., >FOOO to >FFFF for a

TMS7040).

For example, the Monitor MM command accesses addresses corresponding to the

memory on the microcomputer. The $MM command accesses addresses actually used

by the EVM. As shown in Figure 2-2, these areas are separated by >8009. Thus, a

value found by the MM command at >F010 will also be found by the $MM command

at >7010.

Table 2-2. System Access Command Summary

COMMAND DESCRIPTION

SDM Display Memory

$DS Display Machine State

SFB Find Byte in Memory

SFM Fill Memory

SMM Display/Modify Memory

SMP Display/Modify Peripheral File from PO-P255

SMR Display/Modify Register File

SMV Move Memory

SPE Program EPROM (see Section 9.1.1)

SRE Read EPROM (see Section 9.1.3)

SCE Compare EPROM (see Section 9.1.2)

SLM Load 7000 Object Code (see Section 12.2)

SLT Load Tektronix Object Code (see Section 12.2)

SXA For Creation of User Commands (see Section 12.2)

SXL For Creation of User Commands (see Section 12.2)

$XP For Creation of User Commands (see Section 12.2)

$RU Execute EVM Firmware in RAM (see Section 12.2)

$RT EVM Power Cycle Reset (see Section 2.6.1)

2.9 Crystal Frequency Dependent Constants

2-8

Crystal frequency dependent constants used in the EVM are listed in the tables in

Appendix D. These values reside in EPROM starting at location >FFB2 and are

accessible with the Monitor command $MM described in Section 6.7. If the crystal

frequency is changed, the appropriate values for that frequency must be placed in

the table by creating a new EPROM. This is further explained in Appendix D.

Installation And Operation

2.10 Software UART

The software UART transmits and receives data (via Ports 1 and 2) with a character
format of one start bit, eight data bits, one stop bit, and no parity.

2.10.1 EIA Port Description

The EVM EIA I/O structure communicates through P250 in the Peripheral File. This
port is referred to as “PIO”. The assignment of the bits is as follows:

PIO7 6 "5 "4 3 ‘2 1 PIOO

AUDIO; DSR EIA |AUDIO| EIA AUDIO| DTR EIA
USE IN DATA | USE DATA | USE OUT | PORT

IN OUT SEL.

Msb Lsb
EIA PORT P250

P!O0 (Lsb) EIA Port Select (O=Port 2, 1=Port 1)
PiO1 DTR-OUT to EIA
PIO2 FSK OUT to Port 3
PIO3 EIA Data Out
P!IO04 Tape Motor (O=ON, 1=OFF)
PiO5 EIA Data In
PIO6 DSR-IN from EIA
PIO7 (Msb) FSK Data In from Port 3

2.10.2 ELA Communications Protocol (HS Command)

The EVM uses handshaking in transmitting and receiving data through Port 1 and
Port 2. Before the EVM transmits data through the selected port it will place +12 V
on pin 6 (DTR) of the same port. The EVM will then wait until pin 20 (DSR) of the
selected port rises above +4 V (+4 V to +12 V). After the handshake signal is received
the data is transmitted. The EVM will check the handshake line before each byte of
data is transmitted. If at any time the DSR line is not satisfied, the EVM wil! wait in
a loop until it is satisfied. If the terminal has no handshaking, then pin 20 should
be left unconnected since the EVM pulls the handshake line to +12 V through a 2.2
kQ resistor.

The EVM downloads from Ports 1 and 2 through a 512-byte input buffer. While data
is loaded into the buffer, the DTR line from the EVM remains at +12 V. When 500
characters have been received, the DTR line is driven to -12 V after reception of the
stop bit of the 480th character. A character timer will continue to receive characters
transmitted within two character times of each other. This character timer is in effect
whenever buffer input is enabled and will terminate buffer input at any point if
transmission stops.

After buffer reception stops, the buffer is unloaded internally by the command
currently executing. Control! characters (outside the range >20 to >7E) are skipped
as the buffer is read internally.

The EVM supports several software handshake protocols via the HS command.
Software handshake protocols are disabled at reset. Hardware handshake as
described above is enabled at reset and remains enabled during the software proto-

cols selected by the HS command:

HS current value {O=Disabled, 1=XON, 2=ACK, 3=Both}<CR,SP>

2-9

Installation And Operation

If no entry is made, the current value of the software handshake flag is retained. If

0 is entered, software handshake is disabled. If both types are enabled (3 is entered),

the XON is transmitted first. If an entry out of the legal range is made, an error is

issued.

XON Handshake (1 or 3). The EVM indirectly supports XON/XOFF by transmit-

ting the XON character (>11) when input to the download buffer is expected. It then

expects 512 (the length of the buffer) or fewer characters. The software UART

prohibits transmission of a XOFF character while reading from Port 2. Figure 2-4

shows a FORTRAN routine to transmit 512 characters to a device and then wait for

a XON character.

ACK Handshake (2 or 3). The EVM indirectly supports ACK/NACK by trans-

mitting the ACK sequence (O<CR> -- Tektronix handshake) when input to the

download buffer is expected. After the record has been received, the buffer times

out and is processed internally. Re-entry in the buffer load routine will cause the

ACK to be transmitted for the next record. The EVM never transmits the NACK code

(7<CR> -- Tektronix handshake), but sends load error messages out Port 1 if input

is through Port 2 and out Port 2 if input is through Port 1.

SOURCE FILE NAME = UNIT 3

ERROR MESSAGE OUTPUT = UNIT 2

EVM = UNIT 5

A
A
A
A
R
A
A
A
N
A

DIMENSION ILINE(512)
INTEGER XON
DATA XON/>11/

4 READ (3,EOF=3) ILINE
READ (5,7) IXON
IF (IXON.EQ.XON)GOTOS
WRITE (2,2)

2 FORMAT ("CHARACTER RECEIVED NOT XON")
GOTO4

5 WRITE(5) ILINE
3 WRITE (2,7)
7 FORMAT ("DOWNLOAD COMPLETE")

STOP
END

Figure 2-4. Example FORTRAN Download Program

2.10.3 Terminal Emulation Support

Terminal Emulation mode is used when a host computer or an intelligent terminal ts

connected to the EVM at Port 1, the terminal connection. Input from Port 1 for the

commands listed below uses the 512-byte input buffer and hardware/software

handshake as described in the previous section.

Installation And Operation

COMMAND

LM Load Memory - 7000 Format

LT Load Memory - Tektronix Format

LS Load Machine State

XA Execute Assembler (only if output port is not Port 1)

XE Execute Text Editor

Any non-fatal download errors occurring during execution of these commands with

input from Port 1 will cause the error message to be transmitted out Port 2. These

error messages are transmitted out Port 1 when input is through Port 2.

2.10.4 Upload/Download Procedures

Once any handshake requirements for a given EVM host connection have been

resolved, upload/download operations will require a terminal on the EVM at Port 1

and a terminal on the host with the host connected to the EVM at Port 2. If the host

is a smart terminal or a personal computer running terminal emulation software, the

Port 2 connection is not required as all upload/download is done through Port 1.

The host EIA port must be handled by a device service routine (DSR) that allows

both reception (upload) and transmission (download). A common EIA port DSR

on a multi-user host is a keyboard service routine (KSR). Note that a KSR usually

permits download at baud rates up to 9600 baud, but will limit upload to 300 baud

or less since it is designed to handle relatively slow keyboard input. Before starting

an upload or download, ensure that all baud rates and character formats match.

Table 2-3 shows the signals associated with the pins on the EVM EIA port. Following

the table are cabling examples.

Table 2-3. EVM EIA Port Pin Description

PIN DESCRIPTION 1/0

1 PROTECTIVE GND

2 DATA RX |

3 DATA TX O

6 DTR (handshake output) O

7 SIGNAL GND

8 PDCD (+12V when power on) O

9 +12V (current limited)

10 -12V (current limited)

20 DSR (handshake input) |

2-11

installation And Operation

Example 2-1. EVM to 820 KSR Connections

@
2
N
@
O
a
N

20

7000 EVM | 820 KSRt

Ps
)

<<

“
@
Q
N

DCD 8
DSR «————— SCA(BUSY) 11

t CONNECT RTS (PIN 4) TO CTS (PIN 5)

Example 2-2. EVM to 743 KSR Connections

7000 EVM | 743 KSR
FIN SIGNAL SIGNAL PIN]

1 GND «+————>GnD_ 9
2 RX ¢ ™X 43
3 TX »>RX 12
7 GND € >GND 1
8 PDCD >DCD 11
20 DSR ¢ DIR 15

Example 2-3. EVM to 810 Printer Connections

7000 EVM 810 LINE PRINTER
IN~SIGNAL SIGNAL PIN
1 GND ¢——» GND 1
3 ™ —— > RX 3
6 DTR ———> DIR 6
7 GND ¢<——> GND 7
8 PDCD—— > DCD 8B
20 ~=sOSSRR ~~ praisuey) 11

Example 2-4. EVM to 990 EIA Card Connections

FIN SIGNAL "SIGNAL EN]
7000 EVM if 990 EIA CARD

nN

O
P
N
O
o
N
 RX ¢———— TX 3

™X ———> RX 2
OTR —————>* DSR 20
GND «————» GND 7
PDCD —————_> DCD 18
DSR «——— RTS 8

2-12

Installation And Operation

Example 2-5. EVM to Dumb CRT Connections

7000 EVM DUMB CRT

2 RX ¢<——— Ix
3 ™X ——» RX
7 GND «—————» GND 7

Example 2-6. EVM to FS990/4 Connections

7000 EVM | FS990/4
PIN SIGNAL SIGNAL PIN

Notes:

1. PDCD is +12V when EVM power is on.
2. Dumb CRT has all handshaking disabled.

Table 2-4 lists upload and download EVM commands and data file formats.

Table 2-4. Upload/Download Commands and File Markers

COMMANDS
FORMAT UPLOAD DOWNLOAD BOF EOF

7000 Object SM LMt K <CR>:
TEK Object ST LT <CR>/ | /O0O0000000<CR>
Machine State DS LS none none

Execute Assembler XA *> "<
Quit Text Editor 0 XE *> "<

t The LM command also accepts "O” as a BOF marker (9900 format).

Upload. At the host terminal, configure the host to accept whatever data will be
uploaded (open an edit file for write or execute a copy from the EIA port to a file).
Then execute the desired EVM command (Table 2-4) at the EVM terminal, specifying

either Port 1 or 2 for the configuration.

Download. Execute the desired EVM command at the EVM terminal (Table 2-4),
specifying either input Port 1 or 2 for the configuration above. Then execute a utility
at the host terminal to copy or print the file to the EIA port to which the EVM is

connected.

Installation And Operation

2.11 TMS7000 Family Device Type Memory (DV Command)

The EVM can be configured to support the various onboard ROM requirements of
the TMS7000 family members, from 2K bytes to 16K bytes. This is referred to as
“device type”. Note that a device type is not restrictive in reality to that family member,
but is used within the EVM to establish default PC values and AORG values and to
optimize RAM to best support the family member.

The Monitor command DV is used to change device type:

?DV
current device-type index <device type index><CR,SP>
PC, ST, SR, RA, & RB contents for device

After “DV” is entered, the current device type index is displayed. Legal values for
the device-type index are 1 to 5 (listed in Table 2-5). Entering a value out of this
range will cause an error and return control to the Monitor without causing any
change. If any of the RAM chips have been removed, entering an index for a device
requiring more RAM than is on the EVM will cause the device type to default to 1
(see Table 2-5 for device types and required RAM).

After entry, the current device type is displayed. Entering a <CR,SP> will return to
the Monitor and save the last digit entered as the new device type if no error occurs.
If the device type is changed (or if the present device type is re-entered), the Text
Editor will be initialized to adjust for the new memory map and the Monitor CP
command will be automatically executed to adjust the program counter. The device
type defaults at reset to a value stored in EPROM at >FFB1.

Table 2-5. TMS7000 Family Device Types

MINIMUM
DEFAULT RAM

INDEX DEVICE PC/AORG REQUIRED

1 TMS702x, TMS70C2x >F806 8K
2 TMS704x, TMS70C4x >FO0O6 16K
3 Reserved > E006 16K
4 Reserved > D006 16K
5 Reserved > C006 24K

Notes: 1. The default PC/AORG value is offset by six bytes to allow for mask identification.
2. EPROM address >FFB1 contains device-type default.

2.11.1 RAM Usage by Device Type

2-14

Device types 1 and 2 (TMS702x and TMS704x) allow assembling directly from the
EVM Text Editor without affecting its contents. This allows for rapid debug of text
files limited in size only by the amount of RAM left after the Assembler sets aside
space for object code and label table storage. For device types 1 and 2, the RAM
memory map is automatically configured as follows:

TYPE:DEVICE MEMORY MAP CONFIGURATION
1: TMS7020x, Upper 2K bytes: Object code storage

TMS70C2x Next lower 3K bytes: Label table storage
Balance: Text Editor text storage

Installation And Operation

2: TMS7040x, Upper 4K bytes: Object code storage

TMS70C4x Next lower 6K bytes: Label table storage

Balance: Text Editor text storage

0000

0200 »

TEXT
STORAGE

| FILL UPPER ADDRESS
TO LOWER ADDRESS

57FF

LABEL STORAGE

6FFF -
FILL LOWER ADDRESS

OBJECT CODE 7FEF TO UPPER ADDRESS

Figure 2-5. Assembly Map for TMS704x/TMS70C4x

For device types 3, 4, and 5, the size of the EVM RAM reserved for object code

storage is so large that assembly from RAM is not feasible. These modes are intended

to assemble text files sourced external to the EVM, either from a host computer

connected at Port 2 or an audio tape connected at Port 3. Device types 1 and 2 can

also have files sourced externally.

TYPE:DEVICE MEMORY MAP CONFIGURATION

3:Reserved Upper 8K bytes: Object code storage at >6000->7FFF,

and labels stored from low end of RAM to >5FFF

4:Reserved Upper 12K bytes: Object code storage at

>5000->7FFF, and labels stored from low

end of RAM to >4FFFF

5:Reserved Upper 16K bytes: Object code storage at

>4000->7FFF, and labels stored from low

end of RAM to >3FFF

Note that no mechanism exists to stop the label table from expanding into the first

part of the text file. The label table uses eight bytes per label, or 1K bytes per 128

labels. Unresolved labels are removed from the label table when resolved and the

entire table moved up, providing efficient use of memory. Overflows will be rare, and

loss of text can be minimized by starting a file with comments.

2-15

Installation And Operation

2.11.2 Changing the Default Device Type

EPROM address >FFB1 contains the default device type. This location is initially

>01 (TMS7020) but can be changed to one of the types listed above by burning

another Monitor EPROM with this location modified. The procedure to create a new

EPROM is detailed in Section 9.6. If the value is changed to one outside the legal

range of 1 to 5, it is treated as a value of 1.

2.12 Changing the Default EPROM Programmer Destination

EPROM address >FFBO contains the default EPROM type used in place of the last

parameter in the Monitor EPROM Programmer commands. This location is initially

>04 (TMS2764) but can be changed to one of the values listed in Table 2-6 by

burning another Monitor EPROM with this location modified. The procedure to create

a new EPROM is detailed in Section 9.6. If the value is changed to one out of the

legal range, it is treated as a value of >04.

Table 2-6. Default EPROM Programmer Destinations

DESTINATION EPROM

>04 TMS2764
>08 TMS27128

2.13 Changing Port 2 Default Baud Rate

2-16

The location in EPROM at address >FFAF contains the default Port 2 baud rate. This

location is initially >08 (9600 baud) but can be changed to one of the values listed

in Table 2-7 by burning another Monitor EPROM with this location modified. The

procedure to create a new EPROM is detailed is Section 9.6. If the value is changed

to one outside the legal range, it is treated as a value of >08.

Table 2-7. Default Port 2 Baud Rate Values

VALUE BAUD RATE

1 110

O
n

O
o

ff

W
h

—
_

NO

oO

io
)

installation And Operation

2.14 Default Changes for Bell, Tab, and Buffer Timeout

Defaults can be modified for these three functions by changing values in EPROM

U43 as shown in the following table. Addresses are EPROM addresses. A comparable

system memory address is EPROM address plus >E000. Thus, for example, the

unmodified bell value (ASCII >07) can be inspected with a SMM FECA.

DESCRIPTION U43 ADDRESS

Disable terminal bell >1ECA

Expanded TAB character CNTL(1I) >1ECB

Default buffer timeout >1ED5

2.15 Configuring Cursor Control

The EVM supports cursor operations for the Text Editor and the Monitor fixed display

commands EF (Fixed Display) and FS (Single Step with Fixed Display). The tasks

of recognizing cursor characters and sending the appropriate response to the terminal

are handled separately.

Cursor transmission to the terminal can be of sequences from one to three characters

in length and is limited to cursor up (Monitor fixed display) and cursor left (Text

Editor). Cursor right is done by overprinting the display and cursor down is done

with line feeds. Therefore, only the first two values (or sequences) must absolutely

match the terminal used. The Monitor CU command allows modification of the

cursor-up character(s) from the default value. The Monitor CL command allows

modification of the cursor-left character(s) from the default value. Section 2.15.3

discusses the method of changing the default value.

Cursor character recognition is done by table lookup, and it recognizes the set of

Lear/Siegler, Televideo, Adds, and Hazeltine single control characters and the VT-52

type two character <ESC> sequences. Section 2.15.4 discusses the lookup tables

and how to add additional characters for recognition.

2.15.1 Display/Modify Cursor-Up Character(s) (CU)

FORMAT: CU current cursor up <cursor-up><CR>

PARAMETERS: Cursor up keystroke

Purpose: to set the cursor-up character or character sequence to be recognized by

the terminal.

The current cursor up is displayed first (four bytes). If the terminal recognizes a

cursor-up character or sequence other than the default value, then execution of this

command is necessary before fixed display execution commands (EF and FS) can

be executed. The cursor sequence can be up to three characters long. If more than

three characters are loaded before reception of a <CR>, then the default value is

reloaded. If a <CR> is the first character entered, the cursor value is not changed.

Installation And Operation

2.15.2 Display/Modify Cursor-Left Character(s) (CL)

FORMAT: CL current cursor left <cursor-left> <CR>

PARAMETERS: Cursor-left keystroke

Purpose: to set the cursor-left character or character sequence to be recognized by
the terminal.

The current cursor-left is displayed first (four bytes). If the terminal recognizes a
cursor-left character or sequence other than the default value, then execution of this
command is necessary before several Text Editor functions can be executed. The
cursor sequence can be up to three characters long. If more than three characters
are loaded before reception of a <CR>, then the default value is reloaded. If a <CR>
is the first character entered, the cursor value is not changed.

2.15.3 Changing the Default Cursor-Up and Cursor-Left Values

The cursor-up and cursor-left default values are each stored in four successive bytes
in EPROM. The cursor sequence can be one, two, or three characters long and must
be followed immediately by at least one zero byte. Method for changing values in
the Monitor EPROM is discussed in Section 9.6.

Table 2-8. Default Cursor-Up and Cursor-Left Locations

CURSOR-UP CURSOR-LEFT

>FF98 = OB CNTL-K >FF9C = 08 CNTL-H
>FF99 = 00 >FF9D = 00
>FF9A = 00 >FF9E = 00
>FF9B = 00 >FF9OF = 00

2.15.4 Adding Recognized Cursor Characters

Two lookup tables reside in EPROM with spare locations for recognition of:

@ single control characters, and

@ single characters following an <ESC> if received within two character times
after the <ESC> (see Table 2-9 and Table 2-10).

These tables are used by the Text Editor. The format of both tables in memory is:

BYTE >XX Cursor Character XX
BYTE >YY Cursor Character YY

BYTE >ZZ Last Spare Cursor Character

DATA >xxxx Address of Handler for Character XX
DATA >yyyy Address of Handler for Character YY

installation And Operation

DATA >2z2zzz Address of Handler for Last Spare Character

In Table 2-9 and Table 2-10, BYTE statements containing the control character are

conveniently placed on the same line with their corresponding DATA statement
containing the function vector.

Entries are added to the table by placing the new cursor character in the first spare

location in the appropriate table (non-<ESC> and <ESC>), and placing the address

of the proper handler (from those already in the tables) in the corresponding address

section of the table. Section 7 describes the procedure for creating a new Monitor

EPROM. After creation of a new EPROM, the added cursor characters will be
recognized automatically.

Table 2-9. Cursor Single Control Characters

ADDRESS IN | CHARACTER ASCII!

CHARACTER OR VALUE FUNCTION

TABLE HEX VALUE |MSB ADDR VECTOR FUNCTION

>FF20 CNTL-F >06 >FF38 Cursor-right

>FF21 CNTL-L >OC >FF3A Cursor-right

>FF22 CNTL-P >10 >FF3C Cursor-right

>FF23 CNTL-H >08 >FF3E Cursor-left

>FF24 CNTL-N >OE >FF40 Insert char(s)

>FF25 CNTL-D >04 >FF42 Delete char(s)

>FF26 <CR> >0OD >FF44 Terminator

>FF27 <LF> >0A >FF46 Cursor down

>FF28 CNTL-V >16 >FF48 Cursor down

>FF29 CNTL-K >0B >FF4A Cursor up

>FF2A CNTL-Z >1A >FFAC Cursor up

>FF2B CNTL-I >09 >FF4E Tab

>FF2C CNTL-A >01 >FF50 Home

>FF2D CNTL-7 >1E >FF52 Home

>FF2E CNTL-E >05 >FF54 Undo line

>FF2F <RUB> >7F >FF56 Delete char

>FF30 >FF >FF >FF58 Spare

>FF31 >FF >FF >FF5A Spare

>FF32 >FF >FF >FF5C Spare

>FF33 >FF >FF >FF5E Spare

>FF34 >FF >FF >FF60 Spare

>FF35 >FF >FF >FF62 Spare

>FF36 >FF >FF >FF64 Spare

>FF37 >FF >FF >FF66 Spare

For example, pressing the <CNTL> (CONTROL) key and F key creates an ASCII

>06 (from address >FF20) which causes a cursor-right move via a subroutine at the

vector in EPROM address >FF38. EPROM addresses can be checked with the SMM

command.

Installation And Operation

Table 2-10. Cursor <ESC> Sequence Characters

ADDRESS IN | CHARACTER ASCII
CHARACTER OR VALUE FUNCTION

TABLE HEX VALUE |MSB ADDR | VECTOR FUNCTION

>FF68 A >41 >FF78 Cursor-up
>FF69 B >42 >FF7A Cursor-down
>FF6A C >43 >FF7C Cursor-right
>FF6B D >44 >FF7E Cursor-left
> FF6C H >48 >FF80
>FF6D CNTL-R >12 >FF82
>FF6E | >49 >FF84
> FF6F CNTL-L >0C >FF86 Cursor-up
>FF70 > FF > FF >FF88
>FF71 > FF > FF >FF8A
>FF72 >FF > FF >FF8C
>FF73 >FF > FF >FF8E
>FF74 >FF > FF >FF90O
>FF75 >FF > FF >FF92
>FF76 >FF > FF >FF94
>FF77 >FF >FF >FF96

NOTE: Cursor controls result from <ESC> pressed before the designated character
is pressed.

Table 2-11. Recognized Cursor Character Summary

Cursor-up: CNTL-K

CNTL-Z
<ESC>A
<ESC>CNTL-L

Cursor-down: CNTL-J
CNTL-V
<ESC>B

Cursor-right: CNTL-F
CNTL-L

CNTL-P
<ESC>C

Cursor-left: CNTL-H

<ESC>D

Home: CNTL-A
CNTL-7
<ESC>H
<ESC>CNTL-R

Tab: CNTL-I

Back tab: <ESC>|

Installation And Operation

Note:

Cursor reaction also depends upon terminal type and any intermediate software
(e.g., Ccross-communication).

2-21

3. Development Tools Example

The walkthrough in this section:

Initializes the system

Enters program object into memory

Runs the program which causes the DATA LED on the EVM to blink

Uses the Text Editor to generate the same program

Uses the Assembler to generate object

This is an abbreviated walkthrough which goes through board powerup and use of
several commands such as memory change, set PC, and execute program. In addition,
the same program is entered using the Text Editor and assembled with the Assembler.

A more extensive walkthrough is provided in Appendix C that demonstrates addi-
tional debugging commands, and shows in more detail the workings of the Text
Editor, Assembler, and EPROM Programmer.

For this walkthrough, the following are assumed:

e Special cursor control characters do not have to be defined (such as with the
CU or CL commands).

e All default values at the time of EVM board powerup are in effect (e.g., device
type is 2; thus the DV command is not used).

@ = The board confuguration is as installed at the factory.

@ Nomenclature used:

<CR> = RETURN key

<SP> = SPACE key

Underlined characters are those input at the keyboard.

3-1

Development Tools Example

3.1 Configuring the System

As specified in Section 2, the following procedures must be completed to set up a
minimum system configuration:

1) Connect EVM Port 1 to a terminal using a standard RS-232 cable.

2) Connect a power supply to port J6 or J7.

3.2 System Initialization

1) Apply power to terminal and EVM. The EVM’s POWER LED (upper right) will
light.

2) Toggle the RESET switch and enter <CR>. The command menu in Figure 3-1
will come up on the terminal followed by a "?” prompt.

TMS7000 DEBUG MONITOR REV 2.X
DEVICE TYPE = 2 (704X)
SYSTEM RAM = 32256 BYTES
HELP : HE /H SHE
MODIFY : MM/IM MR/IR MP/IP A/MA B/MB MS-P/PC,SP
DISPLAY : DM/DH DS IO DV
STATE : C/CP D/DP xC,xN,xZ,xI (x=C/S) EI DI SR
SAVE SM ST DS
LOAD : LM LT LS
MOVE : MV
FIND : FB
FILL FM NP FR
RESET. : RT TO
BRKPT : Bl B2 Cl C2 CB DB BT CT DT
TRACE : TO TF IT PT IS TC TR
DEBUG : SS TS FS CS CY GO EX ET EF RU
EDITOR : XE Ll L2 LL LA LN
ASSM : XA XL XP AT XR
EPROM : PE VE CE RE BC 12 21 25 43 44 45
MATH : HC DC AR
PORTS : BR DR MO

Figure 3-1. Command Menu at Reset

3.3 Entering Object by Memory Change

3-2

Figure 3-2 is a listing of the LED blink program. The third column of the listing
contains the object values (one byte, hexadecimal) for the memory addresses shown
in the second column. Do the following to set up the object values in memory:

1) Enter:

?MM_FOO6<CR>

to display and change values beginning at memory address >FOO6.

2) The display should show the memory address and both the hex value and binary
value at that address. For example:

Development Tools Example

3)

4)

5)

6)

7)

0010
0020

0030

0040

0050

0060

0070

0080

?MM_ FOOQ6<CR>
FOO6=99 (10011001) °

Enter the value “A2”. This is the hex value of the first line of the LED blink
program as shown in Figure 3-2.

?MM_ FOO6<CR>
FOO6=99 (10011001) A2<SP>

By using the SPACE bar, you can display successive memory addresses for

updating. Thus, the entire program can be loaded between the addresses > FO06

and >F015 as shown in Figure 3-3.

Finish the last memory change with a <CR> as shown in Figure 3-3.

Enter the RU command to execute the program. The EVM’s DATA LED should

blink.

lf the DATA LED does not blink, check program values using the MM command

(you may have to call the Monitor first by toggling the RESET switch). If

necessary, verify that the program counter is set to program start (FOO6) using

the PC command. Then reissue the RU command.

F006 AORG >FO06
FOO6 A2 LOOP MOVP %>01,P254 LEAVE RAM BIT SET
FOO7 O1
FOO8 FE
FOO9 DB Dl DECD R20 TIME OUT
FOOA 14
FOOB E3 JC D1
FOOC FC
FOOD A2 MOVP %>03,P254 SET LED, RAM BIT
FOOE 03
FOOF FE
FO10 DB D2 DECD R20 TIME OUT
FO11 14
FO12 E3 Jc D2
FO13 FC
F014 EO JUMP LOOP REPEAT SINGLE BLINK
FO15 FO

Figure 3-2. Blink Program Assembler Listing

3-3

Development Tools Example

?MM_ FOQO6
FOO6=99 (10011001) A2<SP>
FOO7=99 (10011001) 01<SP>
FOO8=99 (10011001) FE<SP>
FOO9=99 (10011001) DB<SP>
FOOA=99 (10011001) 14<SP>
FOOB=99 (10011001) E3<SP>
FOOC=99 (10011001) FC<SP>
FOOD=99 (10011001) A2<SP>
FOOE=99 (10011001) 03<SP>
FOOF=99 (10011001) FE<SpP>
FO10=99 (10011001) DB<SP>
FO11=99 (10011001) 14<SP>
FO12=99 (10011001) E3<SP>
FO13=99 (10011001) FC<SP>
FO14=99 (10011001) EQ<SP>
FO15=99 (10011001) FOQ<CR>

?RU

Figure 3-3. Entering Blink Program Into Memory

3.4 Source Entry Using the Text Editor

3-4

This example uses the Text Editor to enter text and the Assembler to get object code.

1) Call the Text Editor with the XE command:

?XE <CR>

2) Set automatic line number increment (default increment is 10) using the editor

command “A”:

?XE_<CR>
EVM TEXT EDITOR

"HO" HELP

EDITOR RAM = 22016 BYTES

*A

0010

Enter the first source line (shown in Figure 3-3). End with a <CR>, and line

number 0020 is printed automatically:

?XE_<CR>
EVM TEXT EDITOR

"H" HELP

EDITOR RAM = 22016 BYTES

*R

0010 AORG >FO0O6<CR>

0020 LOOP MOVP %>01,P254 LEAVE RAM BIT SET <CR>

0030

The label field starts next to the line number. The mnemonic field starts (at least)

one space to the right of the line number. Operand and comment fields continue

to the right, separated by at least one space. Continue to input the eight source

lines (those numbered 0010 to 0080 in Figure 3-2). When complete, press

<CR> twice and then "Q” (quit) to exit the editor and call the Monitor.

Development Tools Example

3.5 Assembling a Source File

Call the Assembler with the XA command (without parameters - the most recently
edited file will be the source file).

0070 gc D2<CR>
0080 JMP LOOP<CR>
0090 <CcR> |
*Q <CR>
TMS7000 DEBUG MONITOR REV 2.X
?XA <CR>
INITIALIZE? (Y) <CR>
TMS7000 ASSEMBLER
>

0010 FO06 AORG >FOO06
0020 FOO6 A2 LOOP MOVP %>01,P254 LEAVE RAM BIT SET

Because of the AORG directive, object is loaded by the assembler beginning at
address >FOO6 (if you had preset values at these addresses, you could check the
entry of the new object code with the "MM >FOQ06” command and compare the new
code to the third column of Figure 3-2).

If you re-execute the editor (XE command), the same source program will be in
memory for editing. Other features of the Text Editor are described in Section 4 and
the walkthrough in Appendix C.

3-5

4. Text Editor

The EVM Text Editor is line-number oriented and is entered from the Monitor with
the XE command. The Text Editor may be used to build assembly language source
files as well as general text files. These source files can be uploaded to a host
computer for storage or saved on cassette tape. To identify beginning-of-file and
end-of-file for the Assembler, the Text Editor brackets the file with ”*>" and "*<”
signs respectively (each is preceded by an asterisk -- like a comment). The format
for calling the Text Editor and its banner message is:

FORMAT: XE {port 0,1,2,3}

PARAMETERS: _ Initial source input port
(default = 0 = keyboard/editor RAM)

For example:

?XE<CR>
EVM TEXT EDITOR
"H" HELP
EDITOR RAM = 22016 BYTES

* (editor command prompt)

The number in the banner is the number of bytes available for text storage and
depends on the device type being emulated by the EVM. As text is entered, this
number will decrease. The editor command-input prompt is "*”. As in the Monitor,
<ESC> is used to abort the current activity and return control to the Text Editor top
level.

Besides dedicated keys, the cursor can be controlled during text entry with the
following keys and key combinations (the Edit command has further controls covered
in Section 4.1.5):

Cursor left CNTL-H or BACKSPACE
Cursor right CNTL-F
Tab right TAB
Insert character CNTL-N
Delete character CNTL-D
To left margin CNTL-A

This sample Text Editor session is referred to in examples in this section.

*0010 LABEL EQU R25 PROGRAM TO OUTPUT
*0020 BPORT EQU P6 A SQUARE WAVE ON
*0030 START EQU $ ALL BITS OF PORT B
*0040 CLR LABEL
*0050 CALL @OUT
*0060 INV LABEL
*2
0070 CALL @OUT
0080 JMP START
0090 OUT MOV LABEL,A
0100 MOVP A,BPORT
0110 RETS
0120 END
0130

Text Editor

4.1 Text Editor Commands

The Text Editor commands are listed below:

COMMAND DESCRIPTION SECTION

A Autoincrement Line Mode Section 4.1.1
Cc Change Line Number Section 4.1.2

<CR> Delete Line Section 4.1.3
D Duplicate Line Section 4.1.4
E Edit Line Section 4.1.5
F Find Character String Section 4.1.6
H Help Menu Section 4.1.7

| Input File to Editor Section 4.1.8
L List (Print) Lines to Terminal Section 4.1.9
M Display Free RAM Section 4.1.10
0 Quit Editor, Save File Section 4.1.11
R Resquence Line Numbers Section 4.1.12
T Display/Modify Tab Value Section 4.1.13
Z Initialize Editor Section 4.1.14
+ Line Number Pointer to EOF Section 4.1.15
- Line Number Pointer to BOF Section 4.1.16
= Display Current Line Number Pointer Section 4.1.17

Note:

The following applies to entering line numbers:

If more than four digits are entered, the last four digits will be used, and leading
zeros are assumed if less than four digits are entered. If no line number is entered,
the current line number is assumed.

4.1.1 Autoincrement Line Number Mode (A)

4-2

FORMAT: [start line numberJA

PARAMETER: Line number (optional; default=last line number plus increment)

Purpose: After a source line is entered, automatically print the next line number to
the terminal, incremented by a set value, ready for input of the next source line.

The Autoincrement command initially uses the default line-number increment (10)
set at the Text Editor initialization. A Resequence Line Numbers command (R) can
change the increment. When a line number precedes the "A”, the Autoincrement
mode starts with the given line number. If no line number is entered, the Text Editor
positions the Autoincrement pointer at the end of the text file and starts with the last
used line number plus the current increment.

To leave Autoincrement mode, enter a carriage return immediately after the line
number. If a line of text with that line number already exists, the text will not be
deleted. Entering and immediately exiting Autoincrement mode will cause the pointer
to point to the last line in the file.

EXAMPLES:

1) *A

Text Editor

3)

0010

Autoincrement mode is entered after memory has been initialized (first line
number ts 10).

*A
0860

Autoincrement mode is entered after a file has been downloaded. The pointer

is automatically positioned to the line following the last line of text (line number

860).

*500A
0500

Autoincrement mode is entered starting at line 500.

4.1.2 Change Line Number (C) *

FORMAT: <line number to change>C <new line number><CR,SP>

PARAMETERS: 1) Line number to be changed

2) New number of line

Purpose: to change the line number of a line of text in memory.

This command will execute properly only if two conditions are satisfied: 1) the line

number to be changed must already exist in the text file and 2) the new line number

must not already exist in the text file.

EXAMPLES:

1)

2)

3)

*50C 70<CR>

LINE NUMBER ERROR
*

A line number cannot be changed to one that already exists.

*55C
LINE NUMBER ERROR
*

A non-existent line number was specified.

*60C 45<CR>

*40C 60<CR>

*R<CR>
*

The “CLR LABEL” and “INV LABEL” statements in the sample program have

been swapped by changing the line numbers, and resequenced back to incre-

ments of 10 by the "R” command. The sample session is shown on 4-1.

4-3

Text Editor

4.1.3 Delete Line (<CR>)

FORMAT: <number of line to delete><CR>

PARAMETERS: 1) Number of the line to be deleted

2) “Y” (yes) to enable deletion

Purpose: to delete a line of text in memory.

lf the line does not exist, LINE NUMBER ERROR is issued. If the line exists, it is

deleted from the text file.

EXAMPLE:

*70<CR>
ARE YOU SURE? (N) Y
*

Line 70 is deleted.

4.1.4 Duplicate Line (D)

FORMAT: <line to duplicate>D <new line no.><CR,SP>

PARAMETERS: 1) Line number to be duplicated

2) New fine number

Purpose: to duplicate a line of text in memory.

The first line number specified must already exist, and the target line number must

not exist.

EXAMPLES:

1) *65D
LINE NUMBER ERROR
*

The first line must exist in order to be duplicated.

2) *60D 80<CR>
LINE NUMBER ERROR
*

The second line number cannot already exist.

3) *60D 150<CR>
*60<CR>
ARE YOU SURE? (N) Y¥
*150C 60<CR>
*

Line 60 was duplicated at line 150. The original line was then deleted and line

150 was changed back to 60.

4-4

Text Editor

4.1.5 Edit Line (E)

FORMAT: <line number>E

PARAMETERS: Line number (default=current line)

Purpose: to insert, delete, replace and add characters to an existing line.

The Edit command dumps the current line to the terminal with the cursor (7) posi-
tioned at the end of the line. If only the “E” is entered, the current line is displayed.
If a line number is specified, that line becomes the current line displayed for edit.

EXAMPLE:

1OE x

0010 LABEL EQU R257

In the Edit mode, the Text Editor will accept characters from the keyboard and store
them at the cursor position, moving the cursor one position to the right for each
character entered. The character input routine does not accept control cheracters
as text and will send an audible beep to the terminal when one is entered that is not
a legal sub-command.

The following sub-commands are available within the Edit mode:

KEYBOARD INPUT RESULT

CNTL-F/-L/-P Cursor-right
CNTL-H, BACKSPACE Cursor-left
CNTL-A Home
Tab Tab right
Back Tab Tab left
CNTL-E Undo line
CNTL-N Insert character(s)
CNTL-D Delete character(s)
<RUB> or Delete previous character
<CR> Save line
Cursor-down/CNTL-J Save line/edit next line
Cursor-up/CNTL-K/-Z Save line/edit previous line

The Insert (CNTL-N) and Delete (CNTL-D) commands function in one of two modes
depending on the baud rate of the terminal. Manual mode is for terminal baud rates
of 1200 baud and below; it expects a count parameter to be entered after an insert
or delete command and displays the results on a new line. Interactive mode is for
terminal baud rates of 2400 baud and above and automatically inserts or deletes one
character for each entry of the command, redisplaying the new line on top of the old
line. Manual mode is used for printing terminals, and interactive mode is used for
video terminals.

Characters recognized for cursor control are stored in tables in EPROM. Cursor
control can be either single control characters or escape sequences. See Section
2.15.3 for a list of default cursor characters and the procedure for adding new
characters.

Cursor-Right. The Text Editor will not allow the cursor to be positioned beyond
the right end of the text with this command. The cursor-right character is not trans-
mitted to the terminal, but is simulated with overprinting of the current character.

Example cursor-right keys are CNTL-F, CNTL-L, and CNTL-P.

4-5

Text Editor

4-6

Cursor-Left. The Text Editor will not allow the cursor to be positioned beyond the
left end of the text with this command. An audible beep is issued to the terminal
when the cursor encounters the left end of the line. The cursor-left character must
be transmitted to the terminal. If the terminal recognizes a cursor character other than
the default value, the Monitor command CL (Modify Cursor-Left Character) must
be executed. Section 2.15.3 discusses changing the default cursor-left value. An
example of a cursor-left character is CNTL-H.

Home. This moves the cursor to the first (leftmost) character on the line. The home
character is not transmitted to the terminal, but is simulated with a computed number
of cursor left character. Examples of HOME characters are CNTL-A and CNTL-7*
(the “7” character is found as the “upper-case” 6 on some keyboards).

Tab (CNTL-1I). This sends the cursor to the next tab location. Only four right tabs
are allowed, all of a length equal to the tab value. Attempting to tab further will move
the cursor to the first character on the line. A tab is not a specific character location
on a line; instead it is a single value set by the “T” command which designates how
many characters to space for a tab input.

Back Tab (<ESC>-I). This sends the cursor back to the previous tab position.
If in the process of performing a back tab the Home character position is encountered,
an audible beep sent to the terminal.

Undo Line (CNTL-E). This causes all changes to the current line to be ignored
and the same line reloaded from memory onto the screen. The reloaded (without
changes) line is displayed on the next line.

Insert Up to 9 Characters (CNTL-N).

FORMAT: CNTL-N {<ESC>, 1-9} (manual mode)
CNTL-N (interactive mode)

PARAMETERS (manual mode): Number of characters to insert. This is used to insert
up to nine characters in manual mode or one character in interactive mode starting
at the cursor position.

In interactive mode (for terminal baud rates of 2400 baud and above), one space is
automatically inserted at the cursor position and the line is redisplayed with the cursor
in the original position.

In manual mode (rates of 1200 baud and below), the CNTL-N command does not
echo. After it is entered, the legal entries are <ESC> ora digit from 0 to 9. Any other
entry will cause an audible beep and wait for legal input. Entering O aborts the
command and returns control to the cursor level, with no visible action occurring.

If a digit from 1 to 9 is entered, the line is dumped with that number of spaces inserted
at the original cursor position, and the cursor will be positioned at the first blank
character. Text can be entered in the blank spaces. If the blanks created by the Insert
command are filled, continued typing will replace the characters already existing. The
Text Editor will not accept and store as text any contro! character.

If a digit is entered that would cause the line to exceed 64 characters, an audible
beep is issued and another digit input is expected. If <ESC> is entered, the entire
edit is aborted.

Text Editor

EXAMPLE:

*10E (display line for edit)
0010 LEL EQU R25 (put cursor after first "L”)

TCNTL-N_ 2 (insert 2 spaces)
0010 L EL EQU R25

AB<CR> (fill spaces, exit)
*L<CR> (check changes)
0010 LABEL EQU R25

“LEL” has been changed to “LABEL.”

Delete Up to 9 Characters (CNTL-D).

FORMAT: CNTL-D<# of characters to delete> (manual mode)
CNTL-D (interactive mode)

This deletes up to nine characters in manual mode or one character in intétactive
mode starting at the cursor position.

In interactive mode (terminal baud rates 2400 baud and above), one character is
automatically deleted at the cursor position and the line is redisplayed with the cursor
in the original position. <ESC> aborts the entire edit (including changes).

In manual mode (terminal baud rates of 1200 baud or lower), the CNTL-D command
does not echo. After it is entered, the legal entries are <ESC> or a digit from 0 to
9. Any other entry will cause an audible beep and a wait for legal input. Entering 0
aborts the command and returns control to the cursor level, with no visible action
occurring. If a digit from 1 to 9 is entered, the new line is redisplayed on the next line
with the cursor in the original position.

lf the cursor is at the start of the line and a digit is entered that would delete all
characters in the line, an audible beep is issued and another digit input is expected.
<ESC> aborts the entire edit (including changes).

EXAMPLE:

*10E (display line for edit)
0010 LABELXYZ EQU R25

TCNTL-D 3 (cursor at “X”"; delete 3 chars)
0010 LABEL EQU R25 (3 characters deleted; close up)

1<CR> (exit)
*

The “XYZ” in "LABELXYZ” is deleted.

Delete Previous Character (<RUB> or). This deletes the character
before the cursor. Entry of either the RUBout or DELete key will replace the character
before the cursor with a space. This will not shorten the line because no characters

are removed.

Save Edited Line (<CR>). This exits the Edit mode and saves the edited line.
If the newly edited line is the same length or shorter than the old version of the line,
the Text Editor stores it in the same place in the text buffer, so that the byte count
of a long file can be shortened before collecting the text together with the Quit
command. A <CR> can be entered with the cursor at any position in the line.

4-7

Text Editor

Save Line/Edit the Next Line (Cursor-Down). This saves the line being
currently edited and displays the next line for edit. This command is a quick way
of scrolling through a file. If the last line is encountered, scrolling will stop. When
this command is used while editing a line from the Find command, the next line is
displayed until a <CR> is entered, returning control to the Find command starting
at the last line displayed. The relative position of the cursor stays the same as
successive lines are displayed. Example cursor-down keys are CNTL-J and CNTL-V.

Save Line/Edit the Previous Line (Cursor-Up). This saves the line being
currently edited and displays the previous line for edit. This command is the opposite
of the cursor-down command described above. if the first line in the file is
encountered, scrolling will stop. Example cursor-up keys are CNTL-K and CNTL-Z.

4.1.6 Find Character String (F)

4-8

FORMAT: [start line number]F <string>

PARAMETERS: 1) Line number to begin search (optional)
2) String (up to 8 characters)

Purpose: to quickly locate for edit a string of up to eight characters in the text file.

The F command matches the specified string with its occurrence in the text file and
prints the line to the terminal for edit. A <CR> continues the search for further
occurrences of the string. The characters in the string can only be within the range
of >20 to >7E of ASCII! values (no control characters).

lf the F command is not preceded with a line number, the entire text file is searched.
\f a line number is entered, searching begins at that line or the first line that exists
after that line number.

If the string is found, the command enters the Edit mode with the cursor over the
start of the string in the line. If the string occurs more than once in the line, entering
a <CR> to save the line will cause the line to be redisplayed, with the cursor over
the next occurrence. Once in the edit mode, the entire contents of the line can be
altered. Lines before or after the one displayed can also be changed using the
Cursor-up and cursor-down commands (see Section 4.1.5). When finished with the
edit, entering <CR> will return to the Find mode at the last line displayed and search
for the next occurrence of the string.

If the Edit mode is terminated by <ESC>, control returns to the Text Editor and the
“*" prompt is printed. Note that any changes made to a line from which <ESC> is
entered will not be saved. If searching continues to the end of the file either while
searching with a <CR> or failure to find the string at all, the message “END OF TEXT”
is printed.

EXAMPLES:

1) *F BPORT
0020 BPORT EQU P6<CR>
0100 MOVP A,BPORT<CR>
END OF TEXT
*

Two occurrences of "BPORT” were found.

Text Editor

2) *35F LABEL
0040 CLR LABEL<ESC>
*

The first occurrence of “LABEL” after line 35 was found.

3) *F_APORT
END OF TEXT
*

END-OF-TEXT was encountered before finding the string "“APORT.”

4.1.7 Help (H)

FORMAT: H {port 1,2}

PARAMETERS: Output port (default=1)

Legal values for the output port are 1 (terminal) and 2 (printer). This command
displays a list of the Text Editor commands to the specified port.

4.1.8 Input File to the Text Editor (1)

FORMAT: | {port 1,2,3}
LINE NUMBERS? (N)

PARAMETERS: _ Input port to load file from (default=3)

Purpose: to load the Text Editor with a file.

The current contents of the Text Editor are discarded only after input data is detected.
Values for the input port are 1 (terminal emulator), 2 (host download), or 3 (audio
tape). ~

When downloading a file from a host system, the file must contain a beginning-of-file
character (>) and an end-of-file character (<). These are used by the EVM Text
Editor and Assembler to mark the beginning and end of the incoming ASCII string
during download.

Also, the Text Editor inserts a space between the line number and the text when
dumping a file, and strips off the first character after the last line number (expecting
it to be a space) during download.

4.1.9 List Line(s) to Terminal (L)

FORMAT: <start line number>L <no. of lines><CR,SP>

PARAMETERS: 1) First line to be listed (default=current line)
2) Number of lines to list (default=1)

Purpose: to list lines of text in order of ascending line numbers.

The number of lines that can be listed is in the range of 1 to 9999. Entering 0 is the
same as entering 1. If no line number is entered, the first line listed is the current line.
The current line is pointed to by the line number most recently displayed. If a line

4-9

Text Editor

number is entered, listing starts with that line. In either case, listing continues until
either the given number of lines are dumped or the end of the text file is encountered.

While the command is dumping to the terminal, the display can be stopped and
started by keyboard input. Any key will stop the display at the end of the current line
of output. After the display is stopped, <ESC> will abort the command, <SP> will
cause display of successive lines one at a time for each <SP> entry, and any other
key will restart the display.

EXAMPLES:

1) *1L 2<CR>
0010 LABEL EQU R25
0020 BPORT EQU P6é
*

Two lines are requested beginning with line 1. Since line number 1 does not
exist, the list begins with the first line found after line number 1.

2) *10L 2<CR>
0010 LABEL EQU R25
0020 BPORT EQU P6
*

Two lines are listed beginning with line 10.

3) *L<CR>
0020 BPORT EQU P6
*

The current line is displayed.

4) *1L 9999<CR>
0010 LABEL EQU R25 PROGRAM TO OUTPUT
0020 BPORT EQU P6 A SQUARE WAVE ON
0030 START EQU $ ALL BITS OF PORT B
0040 CLR LABEL
0050 CALL @OUT
0060 INV LABEL
0070 CALL @OUT
0080 JMP START
0090 OUT MOV LABEL,A
0100 MOVP A,BPORT
0110 RETS
0120 END
*

An attempt to list 9999 lines starting with line number 1 was made. The end of
the text file was encountered first.

4.1.10 Display Free RAM Remaining (M)

FORMAT: M

PARAMETERS: None

Purpose: to display the number of bytes of RAM available for text storage.

The maximum RAM space available for text storage occurs just after execution of the
Z command. This space is equal to the total amount of RAM detected by the memory
sizing routine at power-up reset (less the RAM set aside by the Assembler for object

4-10

Text Editor

code and label table storage for device types 1 and 2). When the Text Editor is
entered with a download of text from either Port 1 or 2, the remaining free RAM value
is printed out on the line above the “*” prompt.

EXAMPLES:

1) *M
EDITOR RAM = 21637 BYTES
x

The Text Editor has 21637 bytes of available RAM.

2) *M EDITOR RAM = 21592 BYTES
*

A line of text 38 characters long has been entered. Each line stored requires 2
bytes for Text Editor use, 2 bytes for the line number, the text, the <CR> ending
the line, and 2 bytes for the Assembler address tag. In all, 45 bytes were used.

4.1.11 Quit Edit and Save File (Q)

FORMAT: Q {port 0,1,2,3}

PARAMETERS: Output port (default=0)

Purpose: to exit the Text Editor and enter the Monitor. If an output port is specified,
the text file is dumped to that port prior to entering the Monitor.

Because the Text Editor does not destroy its internal pointers, it can be exited and
entered at will as long as nothing occurs to alter the contents of Text Editor RAM.
For example, the text file can be saved to audio tape (output port = 3); then the Text
Editor can be entered specifying Port 2, so that when it is exited, the program listing
will be dumped to the printer.

If either Port 1 or 2 is specified, a “LINE NUMBERS? (N)” prompt asks if the text
lines are to be dumped with or without line numbers. An "N” (or <CR> for default)
response dumps without numbers. Any other response causes line numbers to be
dumped with the file.

If no port is specified, Port O is assumed. If 0 is entered for the port number, no dump
takes place and the control returns directly to the Monitor. When the Q command
is entered, the Text Editor will immediately return to the Monitor if RAM is empty.

Quitting the Text Editor with output to the terminal allows the display to be stopped
and started by keyboard input. Any key will stop the display at the end of the current
line of output. After the display is stopped, <ESC> will abort the command with
control remaining in the Text Editor, <SP> will cause display of successive lines one
at a time for each <SP> entry, and any other key will restart the display.

EXAMPLES:

1) *Q <CR>

TMS7000 DEBUG MONITOR’ REV 2.X
?

The Text Editor is exited without dumping the text, and control returns to the
Monitor. The text remains intact in RAM. You can continue editing the text file

with the XE command.

4-11

Text Editor

2) *Q 3
FILENAME: A<CR>
READY TO RECORD? <CR>

TMS7000 DEBUG MONITOR REV 2.X 5

The Text Editor is exited and the text is dumped to Port 3 (cassette tape) to file
“A”. The text also remains intact in RAM.

3) *O.1 LINE NUMBERS? (N) Y
EVM TEXT EDITOR

*>

0010 LABEL EQU R25 PROGRAM TO OUTPUT
0020 BPORT EQU P6 A SQUARE WAVE ON
0030 START EQU $ ALL BITS OF PORT B
0040 CLR LABEL
0050 CALL @OUT
0060 INV LABEL
0070 CALL @OUT
0080 JMP START
0090 OUT MOV LABEL,A
0100 MOVP A,BPORT
0110 RETS
0120 END
*<

TMS7000 DEBUG MONITOR REV 2.X 5

The Text Editor is exited and the text is dumped to Port 1 (terminal) with line
numbers. The text remains intact in RAM.

4.1.12 Resequence Line Numbers (R)

4-12

FORMAT: [No. of 1st line after resequence]R <increment>

PARAMETERS: 1) No. of first line (optional)
2) Increment between lines (0-9; default=10)

Purpose: to resequence line numbers of text in memory.

Legal increments are from 1 to 9. If a line number is entered, it will be the first number
of the resequenced lines (e.g., 400R 3 results in line numbers of 0400, 0403, 0406,
etc). If no line number is entered, the first resequenced line will be the same as the
increment (e.g., R 4 causes line numbers of 0004, 0008, etc.). If no increment or
a zero (0) is entered, 10 is assumed. If only an “R” is entered (no start line or
increment given), lines will be incremented by 10 starting at line 10.

If execution of the command causes a line number to exceed the maximum of 9999,
a LINE NUMBER ERROR is issued and the command is automatically re-executed
with an increment equal to 1 starting with line number 0001.

EXAMPLES:

1) *R<CR>
*

All lines of text in memory are resequenced by the default value of 10, and the
first line number is 0010.

Text Editor

2) *SOOR<CR>
*

All line numbers are resequenced with the first line starting at 500 and a default
increment of 10.

3) *R5 *

*

All lines are resequenced by a default increment of 5, starting at line 0005.

4) *9000R<CR>
LINE NUMBER ERROR
*

The line number register has exceeded 9999. When this occurs, file is rese-
quenced by 1 starting at 1.

4.1.13 Display/Modify Tab (T)

FORMAT: T current tab value <tab value><CR,SP>

PARAMETERS: Tab value (4 to 12; default=8)

Purpose: to display and/or modify the tab value.

Only one tab value is defined. “Tab” is not a column location on the screen; it is the
distance in characters the cursor moves when the TAB key is pressed. The value is
displayed immediately after entry of the command. The tab defaults at reset to 8. Legal
range of values is from 4 to 12. Entering <CR> or <SP> in place of data will return
to the Text Editor prompt without changing the tab. The last two digits entered before
the <CR> or <SP> are saved as the tab value.

4.1.14 Initialize Text Editor (Z)

FORMAT: Z

PARAMETERS: "Y” (yes) to enable initialization

Purpose: to clear all text from memory and to initialize the Text Editor workspace
pointers.

Caution:

This command destroys all contents of the text buffer.

This command executes automatically prior to loading text from Ports 2 or 3 when
the Text Editor is executed. This command is also automatically executed when
entering the Text Editor from Port 1 for the first time after power-up (but not reset).
This command may be executed at any time to cause the Text Editor to “forget” the
contents of the text file in memory.

EXAMPLE:

*Z

4-13

Text Editor

ARE YOU SURE? Y
27136
*

The Text Editor responds by printing out a warning message, giving you a chance
to not initialize. The only response that will echo and initialize is "Y”. After
initialization the number of bytes of useable RAM is displayed.

4.1.15 Line Number Pointer to EOF (+)

FORMAT: +

PARAMETERS: None

Purpose: to set the value of the current line number to the last line in the file and
display the line number.

By pointing to the last line in the file, the Edit command can be entered from the end
of the file without knowing the last line number in the file.

4.1.16 Line Number Pointer to BOF (-)

FORMAT: (minus sign)

PARAMETERS: None

Purpose: to set the value of the current line number to the first line in the file and
display the line number.

By pointing to the first line in the file, the Edit command can be entered from the
beginning of the file without knowing the first line number in the file.

4.1.17 Display Current Line Number (=)

FORMAT: =

PARAMETERS: None

Purpose: to display the current line number.

4.2 Text Entry

The format for text entry is:

XXXX<SP><text><CR>

where:

XXXX All lines begin with a 4-digit line number from 0001 to 9999. Line
number 0000 is illegal. The line number can be entered manually,
followed by a space, or is provided automatically in Autoincrement mode
(A). Entering more than four digits results in the last four entered used
as the line number. If less than four digits are entered, leading zeros are
assumed.

Text Editor

<SP> Entering a space after the line number tells the Text Editor that text will
follow, as opposed to a line number preceding a command. This space
is provided automatically in the Autoincrement mode. It is not stored
with the text.

<CR> A carriage return signifies the end of the line of text and tells the Text
Editor to store the line from the I/O buffer to RAM in order of increasing
line number.

The Text Editor fills RAM from the highest address down. When text storage uses
RAM to within 64 characters of the bottom of RAM, the RAM FULL error is issued
after any operation that involves storing text to RAM. The M command can be used
to make best use of the remaining space. The Text Editor will quit storing lines when
they are too long to fit in the remaining RAM, but lines can still be entered as usual,
and the RAM FULL error will continue to be issued. Figure 4-1 shows the Text Editor
memory map.

a——-— RAM END ADDRESS - DEPENDS ON DEVICE TYPE:
FIRST LINE STARTS HERE | 1 (TMS7020) >6BFF

2 (TMS7040) >S7FF
3 (RESERVED) >7FFF
4 (RESERVED) >7FFF
5 (RESERVED) >7FFF

v

LINES FILL MEMORY
DOWNWARD

_. RAM START ADDRESS PLUS 64 BYTES
“RAM FULL” ERROR MESSAGE STARTS

RAM START ADDRESS >0200

Figure 4-1. Text Editor Memory Map

Three limitations are placed on the content of the text.

1) The Text Editor will not allow control characters to be entered as text. If a control
character that is not a command is entered, an audible beep is issued to the
terminal.

2) ~=If the text of a line consists only of spaces, the line will not be stored.
3) The maximum number of characters allowed in a line is 64. If 64 characters

are entered, further entry is inhibited to allow editing of the line. A <CR> will

save the line.

Cursor control and character insert and delete capability are available during text
entry. The functions are identical to those in the Edit Line command described in
Section 4.1.5. The Undo Line command (CNTL-E) deletes all characters on the line,
allowing the line to be started over. If done in Autoincrement mode, the same line

Text Editor

number is dumped. This command differs from <ESC> in that pressing <ESC> will
abort the Autoincrement mode also.

4.3 Monitor and Text Editor Debug Aids

In the Standalone mode of EVM operation (Section 1.4.2), the most rapid way to
assemble a file from the Text Editor is with suppressed listing ("XA 0 0”). A disad-
vantage to this approach is that breakpoint addresses are unknown without an
assembled source listing. To minimize this disadvantage, when a file is assembled
from the Text Editor with any listing port, the location in program memory at which
the first byte (for a multiple-byte instruction) is stored is appended to the line in the
Text Editor. This “tag” address is used by a group of Monitor commands that allows
the file in the Text Editor to be used as the assembled source listing, linking line
numbers to memory addresses for setting breakpoints and tracking program flow.
With the ability to set a breakpoint only by entering a line number, the need for an
assembled listing is minimized. The appropriate commands are shown in Table 4-1.

Table 4-1. Monitor and Text Editor Debug Aids

MONITOR
COMMAND DESCRIPTION

L1 Set Breakpoint 1 with a Line Number

L2 Set Breakpoint 2 with a Line Number

LA List Tag Address of a Line Number

LN Show a Line with a Given Tag Address

LL List Line(s) to the Terminal

During fixed-display debug operations (EF and FS), the line in the Text Editor with
a tag address equal to the Program Counter is displayed above the fixed display. For
execution to breakpoint (EF), the line at which the breakpoint has been set is
displayed. This line will be the first line executed after the breakpoint is displayed.
For single-step execution (FS), the line to be executed next is displayed. Therefore
the data output in the fixed display leads the Text Editor line by a single step, allowing
the user to anticipate the results of the next step.

When a file is loaded into the Text Editor, all address tags are 0000. After assembly,
only comment lines will retain the address tag of 0000. Subsequent execution of the
Text Editor will clear the address tag of a line only if the line is altered. Lines added
from the terminal will also be tagged as 0000. Further assembly will correct all address
tags.

4.4 Text Editor Errors

ERROR This is the general error message issued by the Text
Editor when an illegal character is entered as a parameter
in a command string.

INPUT ERROR This error is issued after a character has been input that
is not within the legal range of 0-9 and A-F when
hexadecimal input is expected.

RAM FULL This error is issued whenever the amount of available
RAM for text storage (as displayed with the M

Text Editor

LINE NUMBER ERROR

command) drops below 64 bytes. The error will continue
to be issued until RAM is exhausted, although lines can
still by edited or added to the text file. If a file is loaded
into the Text Editor, this error is issued only when the
RAM is full, at which point the load is aborted and
control returned to the Text Editor command handler.

This error is issued whenever an operation involving line
numbers causes the line number holding register to
underflow below 0001 or overflow above 9999. This
error is also issued for line number violations involving
already-used line numbers and in the _ following
instances:

1) During download with the Text Editor creating line
numbers, this error will terminate the load opera-
tion.

2) Deleting, changing, and duplicating lines in
violation of the line number rules for each command
will cause this error and terminate of the command.

3) In Autoincrement mode, this error will terminate the
mode.

4) During execution of a resequence line numbers
command, issuance of this error will automatically
resequence the file by 1 starting with line number
0001.

4-17

5. Assembling and Executing Programs

The EVM has two types of assemblers:

1) EVM Assembler (XA):

FORMAT: XA [0,1,2,3] [1,2,3]

PARAMETERS: 1) Port no. of source input (default = O = text editor RAM)
2) Port no. of listing output (default = 1)

This assembler can assemble an edited source file either from the EVM Text Editor,
from audio cassette, or downloaded from a host. It can provide a listing file. Prompts
ask to initialize the system and if line numbers are included in the source file
(responses are covered in Section 5.1). Absolute (untagged) object is placed in
memory starting at the AORG directive value or default value for the processor
specified in Table 2-5. Assembly starts following the first greater-than sign (>) and
is complete upon reaching an END directive or an end-of-file mark (<). Then control
goes back to the Monitor.

2) Two Line-by-Line Assemblers (XL and XP)

FORMAT: XL

PARAMETERS: None

This line-by-line assembler (LBLA) creates a new label table for the program under
assembly, and immediately assembles each line as input from the keyboard. Absolute
(untagged) object is placed at memory starting at the AORG directive value or default
value for the processor specified in Table 2-5 END directive in code completes
assembly, gives control back to the Monitor.

FORMAT: XP

PARAMETERS: None

The XP command assembles programs without destroying the present label table in
memory. This allows assembling code to be used with a program in memory while
being debugged. The XP command use Is described in Section 5.4.

Note: The reverse assembler (XR) is described in Section 6.6.56 on page 6-46.

5-1

Assembling and Executing Programs

5.1 EVM Assembler

5-2

In the below example, the EVM Assembler is executed with the Monitor XA
command, with source coming from Port 2 and listing going to Port 1:

?XA 2 1<CR>

LINE NUMBERS? (N) Y<CR>

INITIALIZE? (Y)<CR>

TMS7000 ASSEMBLER
>

0010 F006 AORG > F006
0020 F006 A2 LOOP MOVP %>01,P254

FOO7 O1
F008 FE

0080 F014 EO JMP LOOP
FO15 FO

0090 F016 END

O ERRORS

TMS7000 DEBUG MONITOR REV 2.X
?

If the source is to come from Port 1 or 2, a "LINE NUMBERS? (N)” prompt asks if

incoming source has a line number and space at the beginning of each source line.

Ifa ”“N” (or <CR> for default), the assembler will automatically generate these for

use with error messages. Any other response indicates line numbers present.

The “INITIALIZE? (Y)” prompt makes a new label table with a “Y” (or <CR> for

default “Y”) for yes, or it keeps and uses the latest-generated label table with an "N”.

Contents of this current label table are printed by the Monitor AT command. A "Y"

response also fills device memory with >FF (TRAP O opcode); otherwise, memory

contents are retained except for newly assembled object.

The Assembler accepts the registers RO to R255, even though this range does not

exist on all TMS7000 devices.

During EVM Assembler execution with the listing output sent to the terminal,

execution (and the listing display) can be stopped and started by keyboard input.

The <ESC> key stops the display at a point where a <CR> is to be printed. After

the display is stopped, the <ESC> key aborts the Assembler and returns control to

the Monitor, the <SP> key causes assembly and display of text one line at a time

for each <SP> entry, and any other key restarts Assembler execution.

Files from editors on the EVM or on a different computer will be accepted by the

Assembler. If the text is sourced from a separate system, the text file must be
bracketed with the “>” and the ”<” symbols (the editor precedes these with an

asterisk, like a comment). For example:

*>
REG EQU. R10
PER EQU P30

AORG >F006
MOV %>30,REG

* COMMENT LINE
INC R40
END

Lind

Assembling and Executing Programs

The > and < in the “*>” and “*<” character sets are the beginning-of-file (BOF)
and end-of-file (EOF) markers recognized by the EVM Text Editor and EVM
Assembler. If an END directive is the last line, the *< is not necessary.

The EVM Assembler accepts both forward- and backward-referenced labels. All
equate statements (EQU) must be read before the equated labe! is used. The
assembled source listing will show “OO” for relative jumps and “OOQO” for absolute
jumps for all forward referenced labels. These locations are resolved when the label
is assembled and the correct values are placed into the appropriate RAM locations.
The object code in RAM may be inspected with the DM or MM commands described
in Section 6 (program start indicated by AORG operand or by device PC value).

After the Assembler receives the END directive, it lists all forward referenced relative
jumps in which the displacement was out of range. All relative jumps must be
between -128 and 127 bytes. The output listing will list the label, the address of the
label, and the out-of-range indicator (“OR”). Unresolved labels are also listed. The
format of an unresolved label listing is the label, the address of the label, and the
unresolved label indicator ("UL"). These labels are printed as they occur in the
Assembler label table, three on a line. Also, an error count is printed. This number
is a decimal number from 0 to 255 and does not include a count of the labet errors
mentioned above. The following is an example of the listing:

LABEL F820 OR
LABEL2 F83A UL

12 ERRORS

A complete listing of the label table after assembly is available with the Monitor AT
command. The label table remains intact until another assembly is performed.

When the number of errors in the assembly exceeds 255, the assembly is aborted,
and the above display is given for the assembly to that point. Then the Monitor is
entered.

Any time a file is assembled, only the absolute object code is loaded into RAM. The
original source and listing are not saved. The assembled listing is generated only

during the assembly and sent to the output port.

For emulation of device types 1 and 2 (TMS7020, TMS70C20, TMS704x, and
TMS70C4x), execution of the Assembler in any form will not destroy the contents
of the Text Editor. If the device type is other than 1 or 2, execution of the Assembler
automatically initializes the Text Editor (resets internal flags and editor contents are
lost as the editor and assembler use the same memory space).

5.1.1 Assembling Files From a Host System

Once a file is edited with the proper beginning-of-file and end-of-file markers (as
described earlier in this section), the EVM is ready to assemble the file.

Two methods exist for entering files into the EVM Assembler: download and terminal
emulation. Download mode involves source input at Port 2 and listing output at Port
1. This mode allows the EVM to function as a peripheral to a host system. In order
to get a hard copy of the listing, a printing terminal (or a printer daisy chained onto
the terminal) must be used at Port 1. The segand.method, terminal emulation, involves
input at Port 1 and listing output at either Port 7 or Port 2. This mode allows an
intelligent terminal running terminal emulation software to be connected to the EVM

at Port 1. The commands for assembling files from a host system are:

5-3

Assembling and Executing Programs

Example 5-1.

Example 5-2.

5-4

XA 2 1<CR> Download (source input: Port 2,

listing output: Port 1)

XA 1 2<CR> Terminal Emulation (source input:

XA 11<CR> Port 1, listing output: Port 2,1)

Since these command strings specify source input from Port 1 or 2, the “LINE

NUMBERS? (N)” prompt will be issued. Any response other than “N” means that

line numbers are included in the file and none need be created by the file-input

routine.

File With Line Numbers

*>
0001 LABEL EQU R20
0002 INC A
0003 LOOP CLR R30
0004 JMP LOOP
0005 END
*<

Note: If there is to be a label in the label field, then there must be only one space between the line number
and the label. There must also be at least one space between the label and the mnemonic, or at

least two spaces between the last digit in the line number and the mnemonic if there is no Jabel.

File Without Line Numbers

*>
LABEL EQU R20

INC A
LOOP CLR R30

JMP LOOP
END

eC

Another option is the ability to suppress the assembled listing. If any errors are

detected, they are output to the terminal in the standard error format:

XXXX ****ERROR YYY

where XXXX is the line number and YYY is the error code. To suppress the listing,

use a O (zero) as the XA second parameter:

XA 2 0<CR>

XA 1 0<CR>

Remember that since the source listing is not stored by the EVM; suppressing it during

assembly will require another assembly to generate it.

Assembling and Executing Programs

5.1.2 Assembling Source Files From Audio Tape

The EVM accepts files from tape which were loaded to tape by the EVM Text Editor.

When the text file is loaded to tape, the EVM will automatically include the begin-

ning-of-file and end-of-file markers previously mentioned. The format of the tape
assembly command is as follows:

XA 3 {output port 1,2}<CR>

The output port can be Port 1 or 2 and is for the listing. There is not a line number

option in the assembly from tape command because all files from tape have line

numbers, since they were created by the EVM Text Editor. The EVM Text Editor also

automatically provides the space after the line numbers required by the Assembler.

There is also a suppress-listing option with the command to assemble from tape:

XA 3 0

Concatenation of Audio Tape Files. For software development with the EVM

Text Editor and audio tape, file concatenation allows text files to be created, stored,

manipulated, and assembled. When the Text Editor issues the RAM FULL error, save

the file to tape, initialize the Text Editor and continue entering text. This process can

be repeated as necessary, but the last file created must have the END assembler

directive. When the Assembler is executed with input from tape, it will assemble until

it finds the END directive. If it finds the end-of-file mark first (as automatically

provided for each section by the Text Editor) it assumes file concatenation and

responds with:

FILENAME:

at the terminal, accompanied by a beep. A filename may now be specified for the

next section of text. If the user does not intend to concatenate files but simply forgot

to put an END directive in the text, the <ESC> key should be pressed, causing the

Assembler to proceed to the Assembler termination routine as though an END

directive had been present. By using this method of file concatenation, long text files

can be broken up into smaller, more manageable parts, edited and stored in any order,

and assembled in the proper order automatically using the built-in file search capa-

bility of the EVM.

5.1.3 Assembling from RAM

Assembling a text file stored in RAM by the EVM Text Editor provides a way to quickly

debug programs of moderate size. The error messages are the same as when

assembling from an external source. This feature is for device types 1 (TMS702x,

'70C2x) and 2 (TMS704x, '70C42) only. The format is:

XA 0 {output port 0,1,2}

where the output port can be: 0 (no listing), 1 (terminal), or 2 (line printer).

5-5

Assembling and Executing Programs

5.2 Object Code Loading and Dumping

The EVM accepts object code in three formats (7000, 9900, and Tektronix) and

outputs object code in two formats (7000 and Tektronix). Input files must be at

absolute or load module level. For an explanation of each of these formats, see the

appropriate assembler manual (a listing of these assembler manuals is given in

Section 1.5). Object files other than load level may cause the EVM to generate an

error for that file. Note that the EVM assemblers do not output tagged object, merely

absolute values loaded at set memory locations.

5.2.1 7000 Dump Format

5-6

lf a dump is performed from locations >FF34 to >FF46, then the 7000 dump format

would appear as follows:

KOOOOPROGRAM 9FF34BDEADBDEADBDEADBDEADBDEADBDEADBDEADBDEAD7FOBFF
BDEAD*DE7FDC6F
:<CR>

If adump is performed from locations >FF34 to >FF47, then the 7000 dump format

would appear as follows:

KOOOOPROGRAM 9FF34BDEADBDEADBDEADBDEADBDEADBDEADBDEADBDEAD7FOBFF

BDEADBDEAD7FD29F

:<CR>

The 7000 format tags are explained below:

K 4-digit count of relocatable bytes followed by 8-character program

identifier (this is a “O” for 9900 format).

Load address:

9 4-digit origin address follows the “9”.

Object code data:

B 4-digit word follows a ”B”.

* 2-digit byte follows an asterisk (*) (7000 format only).

End of line:

7 4-digit checksum follows - compare the checksums.

8 4-digit checksum follows - ignore the checksum.

F ignore all characters until <CR>.

The 7000 checksum is the 2’s complement of the 16-bit sum of the ASCII values

of all characters on the line between carriage returns, excluding all control characters

such as <CR>, <LF>, and <FF>.

Assembling and Executing Programs

§.2.2 Tektronix Dump Format

The two previous dumps (in Section 5.2.1 above) would be represented in Tektronix
format as follows:

/FF34130EDEADDEADDEADDEADDEADDEADDEADDEADDEADDEDD
/O0000000<CR><LF>

and:

/FF34140FDEADDEADDEADDEADDEADDEADDEADDEADDEADDEADF4
/OQ0000000<CR><LF>

respectively.

The Tektronix fine starts with a "/” that is never included in checksum calculations.
The next four digits are the address to store the first byte of data on that line. The
next two bytes are the number bytes of data on that line. The next two bytes is the
first checksum, an 8-bit value consisting of the sum of the hex values of each digit
in the address and byte count fields. The data bytes follow, equal to the count given
at the start of the line, followed by another checksum, an 8-bit value equal to the
sum of the hex values of each digit of the data bytes only. The dump is terminated
with a line of zeros in the first three fields.

5.3 LBLA Assembler (XL)

The Line- By-Line-Assembler (LBLA) is entered any time the user wants to assemble
code a line at a time with input and output at Port 1 (terminal). The LBLA is entered
with the XL command (start new label table) or the XP command (use old label
table).

Upon entering the LBLA, a banner message will appear followed a line number and
memory location (default AORG). The cursor (shown here as ”"”) will then be
positioned for entry of a line of code (in the start of the label field of the source line).
For example:

?XL

INITIALIZE? (Y)

TMS7000 ASSEMBLER

0001 F806 7

In response to the “INITIALIZE? (Y)” prompt:

@ An"N" response keeps all memory locations unchanged (i.e., maintains previ-

ous programs in memory).

e Any other response (e.g., <CR> or "Y”) initializes all processor-addressable

memory to the value >FF (TRAP 0 opcode).

Contents of the current label table are inspected with the AT command.

The LBLA will indicate errors as they occur. If an error is detected, an error message
is printed on the next line and the entire line containing the error is ignored. After
printing the error number, a new line number and memory location are printed on
the next line, but the memory location is unchanged from the line with the error. For

example:

5-7

Assembling and Executing Programs

0001 F806 LOOP CLB
OOOL ****ERROR 5
0001 F806 7

Error 5 indicates that “CLB” is an illegal mnemonic. The label “LOOP” is not stored
as a label because the entire line has been ignored.

The ESC key, entered while inputting a source line, will delete all inputs made for

the line and reprompt the same line number, ready for new inputs. Any labels defined

in the deleted line (i.e, in the label field) will not be placed in the label table.

As each line is entered and properly terminated, it is assembled and the opcode(s)

stored in RAM. All forward-referenced labels will assemble as “00” for byte values

or “0000” for address values. All forward reference labels are resolved as the label

is encountered and the value is put in RAM. If a previously defined label is referenced,

the LBLA will calculate the relative offset (if it is a relative jump) and place it in RAM.

The offset will appear in the listing. If the instruction is an absolute jump, the value

of the label will be placed in RAM and in the listing.

Registers from RO to R255 are accepted by the LBLA.

0001 F806 B5 LOOP CLR A
0002 F807 D3 INC R10

F808 OA
0003 F809 8C BR @LOOP

F80A F806
0004 F80B EO JMP LOOP

F80C F8
0005 F80D END

The END directive terminates the LBLA, and control returns to the Monitor. The END

directive is discussed in Section 5.6.

5.4 Altering Programs After Assembly (Using XP)

5-8

Once the program is entered and completed with the END assembler directive, object

code can be changed two ways. First, code in RAM can be changed directly using

the Monitor command MM. Second, code can be added to a program using the LBLA

Patch command XP. The new code can reference any labels used in the initial

program. When the XP command is entered, the EVM responds in the same manner.

as it does in the LBLA except that the label table is not reset. The following

restrictions apply:

1) Patching can be done only on the most recently assembled program.

2) The first line of the patch must be an AORG assembler directive. The AORG

directive points to the location in the program where the patch is to be inserted.

The AORG directive is discussed in Section 5.6.

The patch writes over the existing code. To insert a block of code in the program, a

Branch (BR) statement should be patched into the existing program to branch to a

location outside of the existing program limits. Code the patch at that location and

branch back into the existing program. Any instructions overwritten by the first

branch must be included at the start of the patch.

For example, assume that the following is the existing program:

Assembling and Executing Programs

FA34 0035 B3 INC A
0036 FA35 D5 CLR R10

FA36 OA
0037 FA37 C2 DEC B
0038 FA38 CC RR B

0097 END FBO3

To insert a patch between the “INC A” and “CLR R10”, do the following:

1)

2)

3)

4)

5)

This process can be repeated as necessary.

Enter the LBLA Patch mode with the XP command.

Use the AORG >FA35 assembler directive to place the branch (BR) statement

at Program Counter location >FA35. ~

Code in the branch statement to branch around the end of the existing program

(>FBO3 or greater).

Use the AORG assembler directive again to place the Program Counter location

at the point you choose to branch to.

Code in the patch, remembering to include the code eliminated by the branch

statement, and include another branch statement to jump back into the original

program. Use the END assembler directive to terminate the patch.

0001 F806 AORG >FA35 (set up assemble address)
0002 FA35 8C BR @>FBO3

FA36 FBO3

0003 FA38 AORG >FBO3 (set up patch start address)

0004 FBO3 (patch code start)

. (end of new instructions)

0043 FB91 D5 CLR R10 (repeat 2 instructions

FB92 OA overwritten by the

0044 FB93 C2 DEC B branch to the patch)

0045 FB94 8C BR @>FA38 (to rest of main program)
FB95 FA38

0046 FB97 END (end patch)

5.5 Instruction Format

The TMS7000 Assembler instructions are described in the TMS7000 Assembly

Lanquage Programmer’s Guide and TMS7000 Family Data Manual.

5-9

Assembling and Executing Programs

5.5.1 Constants

Hexadecimal constants are preceded by “>”. For example:

0001 F806 8C BR @>10FF
F807 10FF

0002 F809

a“

. Binary constants are preceded by ”?” or “<". For example:

0001 F806 22 MOV %?0101,A
F807 O05

0002 F808

Octal constants are preceded by an exclamation mark (!). For example:

0001 F806 22 MOV %$!10,A

F807 08

0002 F808

Decimal constants are not preceded by a special character. For example:

OOO1l F806 A8 MOVD %100(B) ,R3
F807 0064
F809 03

0002 F80A

String constants must be enclosed in single quotes and must be printable characters

with ASCII character code representation. The null string is also a legal entry. For

example:

0001 F806 29 ADC S'A',A

F807 41

0002 F808 29 ADC S'', A

F809 00

0003 F80A

5.5.2 Label Format

In the operand field, labels are preceded by the "@” symbol:

HERE LDA @LABEL

Labels can be equated to labels:

HERE EQU THERE (provided THERE is predefined)

LABEL1 EQU LABEL2+X (provided LABEL2 is predefined;

offset of X is 0 to 65535)

LABEL3 EQU LABEL1+LABEL2 (LABEL1 & LABEL2 predefined)

Assembling and Executing Programs

§.5.3 “S$” Indicates PC Value

. Examples are:

JEQ $+6 IF EQUAL, SKIP NEXT 6 BYTES

JMP $ CONTINUOUS LOOP, WAIT FOR RESET

5.5.4 Register/Peripheral File Requirements

The number following the "R” or “P” designations must be an unsigned decimal

number in the range 0 to 255. For example:

0001 F806 48 ADD R5,R6
F807 O05
F808 06

0002 F809 94 ORP B,P7
F80A 07

0003 F80B

5.6 Assembler Directives

Both the EVM Assembler and LBLA support the following directives.

5.6.1 AORG

Format: AORG >XXXX

The AORG command allows a program or piece of a program to be placed at a

specific location in memory. During assembly, all references to memory locations

(BR, JMP, Jcnd, LDA, STA, etc.) are based on the AORG statement. For each device

type, the AORG defaults to a specified value but can be set to any value greater than

the default.

5.6.2 EQU

Format: <label> EQU {value, register, or peripheral register}

The ECU directive assigns a label to a decimal or hex value, a register, or a peripheral

register. An equate to a register or peripheral register must be defined before that label

is used. For example:

REG EQU R25
OUTPUT EQU P4

CLR REG CLEAR REG 25
MOVP %>FO,OUTPUT SET P4

ONES EQU >FFFF
MOVD %ONES,REG+1 SET R25, R26 ALL ONES

See label usage in Section 5.5.2 on page 5-10.

5-11

Assembling and Executing Programs

5.6.3 BYTE

5.6.4 DATA

5-12

The operand of the BYTE directive is a one-byte constant (any format) to be loaded

into the next byte of memory. Constants must be positive or negative values in the

range of >00 to >FF, and can be entered in hex, decimal, or binary form. The operand

can also be the sum of labels previously defined by EQU statements, with an

unlimited number of terms. The last term can be a hex or decimal value. Values greater

than 8 bits are truncated. For example:

0001 F806 FF BYTE >FF (hexadecimal)

0002 F807 OA BYTE 20001010 (binary)

0003 F808 FF BYTE -1 (decimal)

0004 F809 41 BYTE 'A' (string)
0005 *

0005 F80A 20 TST1 EQU >20
0006 F80A 10 TST2 EQU >10
0007 F80A OE TST3 EQU 14
0008 F80A OD TST4 EQU 13
0009 F80A 00 TST5 EQU 0
0010 *
0010 F80A 30 BYTE TST1+TST2
0011 F80B 4D BYTE TST1+TST2+TST5+TST3+TST4+2

The operand of the DATA directive is a two-byte constant (any format) that is to

be loaded into the next two bytes of memory. Only the last four valid hexidecimal

digits entered are stored. Data may be entered as positive or negative values. DATA

statements can be the the sum of previously defined EQU statements, with an

unlimited number of terms, and the last term can be a hex or decimal value. DATA

statements can be used with labels and when assembled will be equal to the address

of the label. Values greater than 16 bits are truncated. For example:

0001 F806 DD DATA >DDAD (hexadecimal)
F807 AD

0002 F808 04 DATA ?10011000100 _ = (binary)

F809 C4

0003 F80A 00 DATA 32 (decimal)

F80B 20

0004 F8s0C 41 DATA ‘AB! (string)
F80D 42

0005 *

0005 F80D TABLE EQU >FCOO
0006 F80D TAB1lL EQU >0100

0007 *

0007 F80D FC DATA TABLE+2
F80E 02

0008 F80F FD DATA TABLE+TAB1
F810 00

Assembling and Executing Programs

5.6.5 TEXT

5.6.6 BSS

5.6.7 BES

The operand of the TEXT directive is a string of arbitrary length. The string must be

enclosed in single quotes and follow the format for string entries. Null strings are
not allowed.

0001 F806 53 TEXT "STRING'
0002 F80C

Note that the ASCII values of the TEXT string are not printed. This is a space-saving

measure for listings. The next address printed indicates the next available byte after

the TEXT string. The Monitor commands MM and DM can be used to display and
modify assembled contents.

Format: [label] BSS <value>

The BSS directive reserves a block of memory the size of the value. The value can

be hex or decimal. If no label is present, then the location counter is advanced an

amount equal to the value. If a label is present, it is assigned the value of the location

of the first byte in the block, and the location counter is advanced an amount equal

to the value. For example:

LABEL BSS >20 SAVE A BUFFER OF 32 BYTES

Format: [label] BES <value>

The BES directive reserves a block of memory the size of the value. The value can

be hex or decimal. If no label is present, then the location counter is advanced an

amount equal to the value. If a label is present, it is assigned the value of the location

of the next byte following the block, and the location counter is advanced an amount

equal to the value. For example:

LABEL BES >20 SAVE A BUFFER OF 32 BYTES

5.6.8 Comment

If ”*” is the first character on a line, the entire line is a comment, and the LBLA ignores

assembling any characters following the ”*”. Comments can also be included on any

line if separated from the last field by at least one space. For example:

OOOL F806 KKEKKKRKEKKEEKRKEKKEKKKKKEKKKEKEKEKKKKKKE KKK KKKEKKKK

0001 F806 * (these three lines are comments)

0001 F806 *

0001 F806

5-13

Assembling and Executing Programs

5.6.9 END

The END directive prints unresolved labels, out-of-range labels, and the total error

count. Control is then returned to the Monitor.

5.6.10 Additional Assembler Directives

The following assembler directives are not processed by the Assembler, but will be

ignored without error: TITL, |IDT, and PAGE. All other directives will cause an error.

5.7 Assembler Errors

5-14

When using the LBLA or the Assembler, the error listing will occur on a new line

and will contain the line number the error occurred on. The LBLA will indicate an

error immediately after it occurs, while the Assembler will wait until the entire line

is input, including comments. A label defined on the line containing the error /s

ignored, as is the assembly mnemonic. Also, in the Assembler mode (downlink from

a host system or input from tape) the EVM Assembler will store in RAM four

consecutive NOP instructions each time it encounters an error. This allows error

correction after the rest of the file is assembled, using the MM or XP commands.

Errors are indicated by:

XXXX ****ERROR YYY

where “XXXX" is the line number where the error occurred and “YYY” is the error

number. Error numbers and explanations are given in Table 5-1.

Assembling and Executing Programs

Table 5-1. Error Codes

ERROR
NUMBER EXPLANATION

1

The object code for user program has exceeded the available RAM for

storage of object code for that device type (see Section 2.11).

Unable to AORG at location specified due to RAM limits (see Section
2.11).

Mnemonic entered not found in TMS7000 instruction set.

Expression is not proper for the specified TMS7000 instruction.

Not a printable character.

Expected a character A-Z, did not receive.

Register/peripheral value greater than 255.

Comma expected but was not found.

Premature <CR> detected.

Duplicate label definition.

Operand should be an absolute address or a label equating to an

absolute address.

<CR> detected as first character in mnemonic field.

Greater than 6 characters in label.

200 Operand must be Register A, Register B, a register number (RO-R255),

or a label equating to a register. In the case of a PUSH or POP command

the operand may also be ST (Status Register).

203 Jump displacement too large (acceptable values are -128 to +127).

205 Operand must be Register A, Register B, a register number (RO-R255),

or a label equating to a register.

207 Addressing must be direct, indirect, or indexed.

208 TRAP number must be less than 24.

209 The operand source must be Register A, Register B, a register number

(RO-R255), a label equating to a register, or an absolute value.

210 If the operand source is Register A then the destination must be Register

B, a register number (RO-R255), or a label equating to a register. If the

operand source is Register B then the destination must be Register A,

a register number (RO-R255), or a label equating to a register.

Assembling and Executing Programs

Table 5-1. Error Codes (Concluded)

ERROR
NUMBER EXPLANATION

212 The operand source must be Register A, Register B, a register number
(RO-R255), or a label equating to a register.

219 The operand source must be Register A, Register B, or an absolute value:
If the instruction is MOVP then the operand source may also be a
peripheral register (PO-P255) or a label equating to a peripheral register:

220 The operand destination must be a peripheral register.

223 The operand destination must be Register A or Register B.

224 Improper format in the operand.

245 Index register must be Register B.

254 Format is improper for an equate statement.

5.8 Executing Programs

This section describes a sample debug session. The user-entered commands and keys

are underscored throughout the example. First, the program below is assembled using
the XA command.

?XA<CR>

TMS7000 ASSEMBLER
INITIALIZE? (Y)<CR>
0001 FOO06 MOV %>55,A

FOO7 55
0002 FOO08 DO MOV A,R2

FOO9 02
0003 FOOA D3 INC R2

FOOB 02
0004 FOOC 18 ADD R2,A

FOOD 02
0005 FOOE O01 IDLE
0006 FOOF END

Once the program has been loaded into memory, the PC, ST, and SP registers must
be set using the MS command.

?MS
PC=FF16 FOO6<SP>
SP=R1 02<CR>

The program begins at >FOO6; therefore, the PC must be set to >FOQ6. For this
example, the Status Register (ST) may be set to zero. The Stack Pointer (SP) has
been set at R2 to preserve register space. The EX command may now be used to run
the program to the breakpoint address >FOOE as shown:

?Bl FOOE<CR>

BP1=FOOE BP2=xxxx

?EX<CR>

NEXT INST---> 0080 IDLE
PC=FOOE C=0 N=1 Z=0 I=0 SP=R2 A=AB- B=00<CR>

Assembling and Executing Programs

Checking the registers shows that the program has executed properly:

?MR
RO=AB
R1=00
R2=56
R3=F8
R4=0E
R5=40
R6=00 +

+
t
e
e
e
e
t

Note that the current memory address and status of the program were saved within

the user register file in registers R3, R4, and R5, respectively. R6 is an undefined user
register.

Once the MS command has been reset as shown below, single-stepping the previous

program with the SS command results in the following displays. The MR command
is used between single-steps to examine the registers.

?XACCR>
INITIALIZE? (Y)<CR>
TMS7000 ASSEMBLER
>

0010 FOO06 22 MOV %>55,A
FOO7 55

0020 F008 DO MOV A,R2
FOO9 02

0030 FOOA D3 INC R2
FOOB 02

0040 FOOC 18 ADD R2,A
FOOD 02

0050 FOOE O1 IDLE
0060 FOOF END

0 ERRORS

TMS7000 DEBUG MONITOR REV 2 X (assembler returns to Monitor)
?

Execute MS command.

?MS

PC=FO06

SP=R1 R2<CR>

In the upcoming examples, Register A (RO) and R2 are used for data manipulation.

Register B (R1) is not used. R3, R4, and R5 are used to process the single-step (SS
command) breakpoint. R3 and R4 contain the address of the last byte of the next

instruction, and R5 contains the Status Regsiter contents after the single step.

In these examples, the program is single stepped starting at >FOO6 (Text Editor

source statement 0010). Stack Pointer has been set to R2; thus R3/R4 = last byte
of next instruction, and R5 = Status Register contents, updated after each SS

instruction.

?SS
LAST INST---> 0010 MOV %>55,A

CYCLE COUNT = 000171

NEXT INST---> 0020 MOV A,R2

PC=FO08 C=0 N=0 Z=0 I=0 SP=R2 A=55 B=00

Assembling and Executing Programs

Check register contents to match just-executed step. A >55 has been moved into
RA (RO). R3/R4 contain the last-byte address of the next instruction. R5 contains
Status Register contents.

?MR
RO=55 (01010101) <SP>
R1=00 (00000000) <SP>
R2=00 (00000000) <SP>
R3=FO (11110000) <SP>
R4=09 (00001001) <SP>
R5=00 (00000000) K<CR>

+
+
+
4
+
4

Single step next address.

?SS
LAST INST---> 0020 MOV A,R2
CYCLE COUNT = 000179

NEXT INST---> 0030 INC R2
PC=FOOA C=0 N=0 Z=0 I=0 SP=R2 A=55 B=00

Check register contents. R2 now contains a copy of RO (RA) contents.

?MR
+ RO=55 (01010101) <SP>
+ R1=00 (00000000) <SP>
+ R2=55 (01010101) <SP>
+ R3=FO (11110000) <SP>
+ R4=0B (00001011) <SP>

R5=00 (00000000) <CR>

Single step next address.

?SS
LAST INST---> 0030 INC R2
CYCLE COUNT = 000186

NEXT INST---> 0040 ADD R2,A
PC=FOOC C=0 N=0 Z=0 I=0 SP=R2 A=55 B=00

Check registers. R2 has been incremented.

?MR
+ RO=55 (01010101) <SP>
+ R1=00 (00000000) <SP>
+ R2=56 (01010110) <SP>
+
+

R3=FO (11110000) <SP>
R4=0D (00001101) <SP>
R5=00 (00000000) <CR>

Single step next address.

?SS
LAST INST---> 0040 ADD R2,A
CYCLE COUNT = 000194

NEXT INST---> 0050 IDLE
PC=FOOE C=0 N=1 Z=0 I=0 SP=R2 A=55 B=00

Check registers. RO contains R2+RO.

?MR
+ RO=AB (10101011) <SP>
+ R1=00 (00000000) <SP>
+ R2=56 (01010110) <SP>
+ R3=FO (11110000) <SP>
+ R4=OF (00001111) <SP>
+ R5=40 (01100000) <SP>

R6O=FE (11111110) <CR>

6. Debug Monitor

This section contains a description of each Monitor command, presented in alpha-
betical order, except for EPROM programmer commands covered in Section 9.1.
Covered in this section:

SECTION PAGE

Monitor commands Table 6-1, Section 6.6 6-6
Commands to access system Section 6.7 6-47
Object code formats Section 6.8 6-50
Software breakpoint TRAP 0 Section 6.9 6-52
Reset Section 6.11 6-54
Monitor errors Section 6.13 6-55

Debug Monitor

Table 6-1. Monitor Commands, Alphabetical Summary

COMMAND DESCRIPTION SECTION PAGE

AR +/- Hex Arithmetic Section 6.6.1 6-7

AT Display Assembler Label Table Section 6.6.2 6-7

BR Display/Modify Baud Rate Section 6.6.3 6-8

BT Set Breakpoint on Trap Section 6.6.4 6-8

B1/B2 Set Breakpoints 1 and 2 Section 6.6.5 6-9

CB Clear Breakpoints Section 6.6.6 6-10-

CC Clear SR Carry Bit Section 6.6.46 6-36

CE Compare EPROM to Memory Section 9.1.2 9-3

Cl Clear SR Interrupt Bit Section 6.6.46 6-36

CL Designate Cursor-Left Key Section 2.15.3 2-18

CN Clear SR Negative Bit Section 6.6.46 6-36

cpt Clear Processor Status Section 6.6.7 6-10

CS Designate Cursor-Up Key Section 2.15.3 2-18

CT Clear Breakpoint on TRAP Section 6.6.9 6-11

CY Display/Clear Cycle Counter Section 6.6.10 6-11

CZ Clear SR Zero Bit Section 6.6.46 6-36

C1/C2 Clear Breakpoints Individually Section 6.6.11 6-12

DB Display Breakpoints Section 6.6.12 6-12

DC Decimal-Hex Byte Conversion Section 6.6.13 6-12

DI Disable (Clear) SR Bits Section 6.6.46 6-36

DM Display Memory Section 6.6.14 6-13

DPt Display Processor Status Section 6.6.15 6-14

DR Audio Tape Directory Section 6.6.16 6-14

DS Display Machine State Section 6.6.17 6-15

DT Display Breakpoint on Trap Section 6.6.18 6-15

DV Select TMS7000 Family Device Section 6.6.19 6-16

EF Execute to Breakpoint with Fixed Display Section 6.6.20 6-17

El Enable (Set) SR Bits Section 6.6.46 6-36

ET Execute to Breakpoint with Trace Section 6.6.20 6-18

EX Execute to Breakpoints Section 6.6.20 6-18

FB Find Byte in Memory Section 6.6.21 6-20

FM Fill Memory Section 6.6.22 6-21

FR Fill Register File Section 6.6.23 6-22

FS Single Step with Fixed Display Section 6.6.24 6-23

GO Go Execute at Address Section 6.6.20 6-20

HC Hex-Decimal Word Conversion Section 6.6.25 6-24

HE Help Section 6.6.26 6-24

TThe following are five commands (and their shortened versions) that can be used: CP (C), DP

(D), MA (A), MB (B), and PC (P).

6-2

Debug Monitor

Table 6-1. Monitor Commands, Alphabetical Summary (Concluded)

COMMAND DESCRIPTION SECTION PAGE

1O Display 1/O Status Section 6.6.27 6-24

IS Inspect Instruction Trace Sample Count Section 6.6.49 6-40

IT Inspect instruction Trace Samples Section 6.6.49 6-40

LA Show Address of Line Section 6.6.28 6-25

LL List Lines from Text Editor Section 6.6.29 6-25

LM Load Memory - 7000 Format Section 6.6.30 6-26

LN Show Editor Line at Address Section 6.6.31 6-26

LS Load Machine State Section 6.6.32 6-27

LT Load Memory - Tektronix Format Section 6.6.33 6-28

L1/L2 Set Breakpoint 1 or 2 by Line Number Section 6.6.34 6-28

MA/MBt Display/Modify Registers A and B Section 6.6.35 6-29

MM Display/Modify Memory Section 6.6.36 6-29

MO Audio Tape Motor On Section 6.6.37 6-30

MP Display/Modify Peripheral File Section 6.6.38 6-31

MR Display/Modify Register File Section 6.6.39 6-32

MS Display/Modify PC, SP, Regs. A and B Section 6.6.40 6-33

MV Move (Copy) Memory Section 6.6.41 6-33

NP Fill Memory With NOPs Section 6.6.42 6-34

Pct Display/Modify PC, SP, Regs. A and B Section 6.6.40 6-33

PE Program EPROM From Memory Section 9.1.1 9-2

PT Print Trace Contents to Port 1 or 2 Section 6.6.49 6-41

RE Read EPROM to RAM Section 9.1.3 9-4

RT Reset Target Processor Section 6.6.43 6-34

RU Execute Program Without Breakpoints Section 6.6.44 6-35

SC Set SR Carry Bit Section 6.6.46 6-36

S| Set SR Interrupt Bit Section 6.6.46 6-36

SM Save Memory - 7000 Format Section 6.6.45 6-36

SN Set SR Negative Bit Section 6.6.46 6-36

SP Display/Modify PC, ST, SP; start at SP Section 6.6.40 6-33

SR Display Status Register Section 6.6.46 6-36

SS Single Step Program Section 6.6.47 6-37

ST Save Memory - Tektronix Format Section 6.6.48 6-38

SZ Set SR Zero Bit Section 6.6.46 6-36

TC Configure Single-Step Trace Section 6.6.50 6-42

TF Turn Off Instruction Trace Section 6.6.49 6-41

TO Turn On Instruction Trace Section 6.6.49 6-41

TS Single-Step Program With Trace Section 6.6.51 6-42

TO Load PC With Trap O (Zero) Vector Section 6.6.52 6-43

VE Verify EPROM Erased Section 9.1.4 9-4

XA Execute Assembler Section 6.6.53 6-44

XE Execute Text Editor Section 6.6.54 6-45

XL/XP Execute Line Assembler Section 6.6.55 6-46

XR Execute Reverse Assembler Section 6.6.56 6-46

tThe following are five commands (and their shortened versions) that can be used: CP (C), DP

(D), MA (A), MB (B), and PC (P).

6-3

Debug Monitor

6.1 Command Parameters

Except for noted default values, command parameters must be entered in the order
shown in this section. Failure to enter the required number of parameters will result
in termination of the command. The default values for these commands are defined
in more detail in the command descriptions that follow.

After command entry, the Monitor prints a space. The first parameter must be entered
immediately following this space. When more than one parameter is required, enter
one space before the next parameter(s). The general command format is:

?CMD PARM1 PARM2 PARM3 PARM4<CR,SP>

6.1.1 Numerical Parameters

When the Monitor is accepting numerical input data, any entry other than valid hex
or decimal digits (or their symbolic equivalents) will cause the command to abort
with no change made to effect any memory location. All address and data inputs are
in hexadecimal format only. File and Peripheral File locations and modifications to
the Stack Pointer can be either in decimal or in hex if preceded by “>”.

For the following two-address commands, a” +” can be used as the second parameter
to define a byte offset from the first parameter:

DM FM MV FB SM ST XR

For example, the command

?FM >F800 +>100 >AA<CR>

means to fill memory from >F800 to >F900 (>F800+>100) with the value >AA.
If only the “+” is used in the above example, it means one byte or fill byte address
>F800 with >AA. The sum of the byte offset and the start address cannot exceed
>FFFF.

6.1.2 Symbolic Parameters

6-4

The $ (dollar sign) and source-statement symbols can be used in Monitor commands.
The dollar sign indicates current Program Counter (PC) value. The following are
examples:

?HC_ $<CR> (display PC in hex and decimal)
>F300=62208 (current PC = F300 hex)
?Bl $<CR> (set breakpoint 1 to PC value)
BP1=F300 BP2=0000

Source-statement symbols currently in the Assembler symbol table can be used in
Monitor commands. (To view the symbol table, issue AT command.) For example:

?MM_ @START (display address labeled START)
FCAO=FE (11111110)

?MM_ @START+6 (show memory at START + 6 bytes)
FCA6=AA (10101010)

Note: Offsets (like the “6” above) must be in the range of 1 to 9.

?DM S$ @TABLE (dump from PC to address of TABLE)

Debug Monitor

?DM @HERE @TABLE (dump from addresses of HERE to TABLE)

6.2 Defining Registers

On initial powerup, register contents will be undefined. Afterwards, the register
contents will remain intact regardless of reset or execution breakpoint operations.
The only exception involves TRAP 0 discussed in Section 6.9.

6.3 Command Termination

If the Escape key (<ESC>) is pressed during entry of a command string, the
command will immediately terminate and return control to the Monitor top level. This
escape mechanism is invalid during program execution because the Monitor is no
longer performing keyboard polling. Use RESET to halt the program.

Where a carriage return (<CR>) or space (<SP>) can be used interchangeably to
terminate a command, the notation <CR,SP> will be used.

6.4 Display/Modify Procedures

The EVM display/modify commands:

MA and MB (Registers A and B, Program Counter, and Stack Pointer)
MS, PC, and SP (Program Counter, Stack Pointer, and Registers A and B)
MM (Program Memory)
MR (Register File)
MP (Peripheral File)
SR (Status Register - display only)

When a display/modify command is entered, there are six options for proceeding:

e Change by entering hex digits (0-255 decimal or hex preceded by “>” for the
Stack Pointer)

@ Carriage return (<CR>) to terminate
e Space (<SP>) to continue
@ Plus sign (+) except for MA and MS (same as <SP>)
e Minus sign (-) except for MA and MS
@ = The redisplay command (<)

After data is displayed, valid digits can be entered to replace those currently displayed.
Any number of digits may be entered, but only the last two (four in the case of
Program Counter modification) are retained at the current memory location. If only
one digit is entered (or less than four in the case of the Program Counter), then
leading zeros are assumed.

A <CR>, <SP>, "<”, or "-” may be entered, regardless of whether new data has
been entered. A <CR> terminates the command and control returns to the Monitor
command processor. A <SP> proceeds to the next display/modify location. If "<"
is entered, the value currently at the location is redisplayed for further update or
continuation of the command. If "-” is entered, the command goes back to the

previous display/modify location.

The MA, MB, MS, PC, and SP commands, will continue to display all four locations
in a round-robin fashion using <SP>. A <CR> will return to the Monitor command

entry level.

6-5

Debug Monitor

6.5 Additional Command Notes

The Program Counter, Status Register and Stack Pointer hardware registers contain
the following default values upon powerup:

Program Counter: default for device type (see Table 2-5 on page 2-14)
Status Register: >00
Stack Pointer: R1 (B register)

Two breakpoints on address can be set using the commands B1 and B2. The
commands DB, CB, C1, and C2 display or clear the address breakpoints. Also, up
to 24 breakpoints on TRAP (or interrupt) locations can be enabled using the BT
command, and the commands DT and CT display or clear these breakpoints.

Commands that load RAM (LM, LT, XA, and XL) will initialize the RAM to >FF before
loading. The initialized RAM is the RAM designated as object code storage for the
device type selected. There are two reasons for initializing RAM:

e >FF is the unprogrammed EPROM state, and the programming routine skips
memory locations with >FF (assuming the device being programmed already
has >FF at that location). It also insures that only the user’s program gets
programmed into the EPROM.

e >FF is the TRAP O (software breakpoint) opcode. Surrounding the program
with >FF will automatically return control to the Monitor if execution jumps
outside the program memory range of the emulated device type.

Commands that prompt for “FILENAME” when dealing with Port 3 will allow more
than one character but will use the last character entered as the file name. Commands
that read from tape will also accept “*”, which will load the first file encountered of
the proper type.

All memory dump, display, or modify commands restrict address entry to the range
from the Program Counter (PC) default value to >FFFF.

6.6 Monitor Command Descriptions

6-6

The Monitor commands are presented here in alphabetical order. The EPROM
programmer commands are discussed in the next section. The formats of the
commands use the following symbols:

<> Angle brackets enclosing a parameter in lower case means that
the parameter must be entered. Upper case letters
indicate that the specified key must be pressed.
<CR,SP> indicates that either carriage return or
space may be used.

{} Braces enclose a list from which the user must choose one option.
The value printed in boldface is the default for the
parameter.

(] Brackets indicate that the parameter is optional.

underscore An underscored parameter is one displayed on the terminal by the
Monitor. (In an examp/e, underscore represents
user inputs.)

Debug Monitor

boldface A boldfaced parameter is the default.

italics The value of a parameter in italics is a command response.

In the examples, the user enters the characters or keys that are underscored.

6.6.1 +/- Hex Arithmetic (AR)

FORMAT: AR <hex number> <hex number><CR,SP>

PARAMETERS: 1) hexadecimal number (a), 4-digits maximum
2) hexadecimal number (b), 4-digits maximum

Purpose: to compute the sum (a+b) and difference (a-b) of the numbers entered
and display the results.

This command allows quick hex arithmetic for address or offset computation or for
determining the length of programs, subroutines, etc., by entering address values.
For each data entry, if more than four numbers are entered, the last four entered are
used. If less than four numbers are entered, leading zeros are assumed. Legal entries
are 0-9 and A-F. If <SP> is entered for the first parameter, that parameter is assumed
to be zero and the subtraction part of the command forms a 2’s complement of the
second number. If <CR> is entered instead of the first parameter, the command
aborts. If <CR> or <SP> is entered for the second parameter, it is assumed to be
zero.

EXAMPLES:

1) ?AR_20 10<CR>
0020+0010=0030 0020-0010=0010
?

2) ?AR <SP>FFFF<CR>
OOOO+FFFF=FFFF OOOO-FFFF=0001
>?

6.6.2 Display Assembler Label Table (AT)

FORMAT: AT {port 1,2}

PARAMETERS: Output port (default=1)

Purpose: to list the label table of the most recent assembly.

If no output port is entered, the terminal is assumed. Legal values for the output port
are 1 and 2. If this command is executed without a label table existing, nothing will
be displayed. The resolved labels are printed first, followed by unresolved or out-
of-range labels. Unresolved labels are denoted by “UL”, and out-of-range labels for
jumps are denoted by “OR”.

While the command is dumping to the terminal, the display can be stopped and
started by keyboard input. Any key will stop the display at the end of the current line
of output. While the display is stopped, <ESC> will abort the command, <SP> will
cause display of successive lines one at a time for each <SP> entry, and any other

key will restart the display.

EXAMPLE:

Debug Monitor

?AT 1

LOOP >F808 LOOP1 >F812

?

The label table is listed on the terminal.

6.6.3 Display/Modify Baud Rate (BR)

FORMAT: BR

(BR1-index,BR2-index) <port> <index>

PARAMETERS: 1) EIA port number (1 or 2)

2) Baud rate index (1-8)

Purpose: to examine and change the baud rates of both EIA Ports.

Legal port numbers are 1 and 2, and legal baud rate indices are:

INDEX BAUD RATE

4800

9600 (Port 2 pcwerup default) O
n

O
O
B
R
W
N
D

—
_

NO

o>
)

©

Immediately after BR is entered, the current values of the baud rate indices are

displayed in parentheses on the next line, the first number for Port 1, the second for

Port 2. Entering <CR,SP> here will terminate the command. Using this command

to change the baud rate of Port 1 (terminal) will require the baud rate at the terminal

also to be changed before Monitor execution can continue. At reset, the baud rate

of Port 1 is determined automatically, and the baud rate of Port 2 defaults to 9600.

Table 2-7 and Section 2.13 detail the steps necessary for changing the Port 2 default

value to any of the legal baud rates.

EXAMPLES:

1)

The baud rates for both ports are displayed.

2) ?BR
(8,8) 2 3
?

The baud rate of Port 2 is changed from 9600 baud to 300 baud.

6-8

Debug Monitor

6.6.4 Set Breakpoint on Trap (BT)

FORMAT: BT <vector> ... <vector> <CR>

PARAMETERS: | Trap vector number(s), 0 to 23

Purpose: to set breakpoint(s) to occur when a TRAP location is accessed.

The range of legal vectors is from 0 to 23 and the vectors are entered in decimal.
When a breakpoint on trap location is set, the execution of a TRAP in a program
will cause a breakpoint at the first location in the TRAP routine. For those trap
locations that are also interrupt vector locations, the breakpoint can also be consid-
ered a breakpoint on serviced interrupt.

After the space printed by the Monitor, an unlimited number of locations can be
entered, separated by spaces. Entering locations already set will cause the terminal
to beep. Not entering locations already set will not clear them. Entering <CR> will
terminate the command and execute the DT (Display Breakpoints on TRAP)
command. Only the CT command can clear breakpoint on trap locations.

EXAMPLE:

?BT 1 3<CR>
1359
?

Breakpoints on TRAP 1 and TRAP 3 are set. Breakpoints on TRAPS 5 and 9
were previously set.

6.6.5 Set Breakpoints 1 and 2 (B1 and B2)

FORMAT: B1 <addr><CR,SP>
B2 <addr><CR,SP>

PARAMETERS: Breakpoint address

Purpose: to set Breakpoint 1 or 2 on address.

Note:

1) Breakpoint addresses must be on an instruction boundary.

2) When a breakpoint is set, the TRAP 0 opcode (>FF) will be inserted into
the breakpoint address. For instance, in the example below, >FF will be
inserted at location >F882. This may cause problems when the “CHECK-
SUMS” algorithm (see Section 6.8.1) is executed.

3) When executing to an event counter value (number of breakpoints to
encounter before stopping), only BP1 can be used. See descriptions of the
breakpoint commands in Section 6.6.20.

Breakpoint 1 is used with the event counter in the EX command. If no address is
entered, the breakpoint remains unchanged. The last four hex digits entered are used
for the address. If the breakpoint is changed, the DB command (Display Breakpoints)
is executed. The address entered must be in the range of the PC default for that device
(see Table 2-5) to >FFFF. The CB command clears both breakpoints.

6-9

Debug Monitor

EXAMPLES:

1) ?B1 F882<CR>
BP1=F882 BP2=F903
?

Breakpoint 1 is set to >F882.

2) ?B2_F977<CR>
BP1=F882 BP2=F977
5

Breakpoint 2 is set to >F977.

6.6.6 Clear Breakpoints (CB)

FORMAT: CB

PARAMETERS: None

Purpose: to clear both address breakpoints (B1 and B2).

The CB command is a quick way of clearing both address breakpoints. Breakpoints

can also be cleared with the C1 and C2 commands below. Before clearing the

breakpoints, the old breakpoint values are displayed. After clearing the breakpoints

they are displayed as “0000”.

EXAMPLE:

?CB
BP1=F882 BP2=F997
BP1=0000 BP2=0000
?

Both address breakpoints are cleared.

6.6.7 Clear Processor Status (CP)

FORMAT: cP (or C)

PARAMETERS: None

Purpose: to clear and display the processor status.

The Program Counter is reset to the default for the current device type being emulated

(see Table 2-5). After clearing the processor status, the status is redisplayed. This

command is executed automatically after the device type is altered with the DV

command. This command can be abbreviated as “C.”

EXAMPLE:

?CP
PC=F806 C=0 N=0 Z=0 I=0 SP=R1 A=00 B=00

Debug Monitor

6.6.8 Cycle Count Single Step (CS)

FORMAT: CS <start address> <stop address>
CLEAR CYCLE COUNT? (Y){N.Y)

PARAMETERS: 1) Address to start single step execution

2) Address of next instruction after single step completed
3) “N” to use present cycle-counter contents; otherwise, start at zero

Purpose: Single step program from PC start to the instruction before the stop
address; then display cycle counter contents.

Instruction single stepping will begin at “start address” and continue until “stop
address" is reached; the instruction at the stop address will not be executed. The only
display will be the cycle counter start value (before single stepping) and final value
after execution. Counter can be started at present contents by a “N” response to
“CLEAR CYCLE COUNT? (Y)”. Any other response will cause the default (counter
set to zero) before starting.

Because actual single steps take place with necessary execution overhead, “large
programs may take minutes to execute. The command can be aborted by the board
RESET switch. Then use the CY command to show cycles accumulated to that point.

EXAMPLE:

?CS F810 F815<CR>

CLEAR CYCLE COUNT? (Y) N (don’t clear counter)
CYCLE COUNT = 000674 (beginning cycle counter value)
CYCLE COUNT = 000876 (ending cycle counter value)
?

?CS F810 F815<CR>

CLEAR CYCLE COUNT? (Y) <CR> (take default)
CYCLE COUNT = 000000
CYCLE COUNT = 000202
?

6.6.9 Clear Breakpoint on Trap (CT)

FORMAT: CT {vector numbers, A}

PARAMETERS: Trap vector number(s) 0 to 23 or “A” (all)

Purpose: to clear as many of the breakpoint on trap locations as desired.

Vector locations are cleared by entering the vector number as displayed by the DT
command - a decimal number from 0 to 23. After the space printed by the Monitor,
successive vectors can be entered, separated by spaces. Entering locations already
cleared will cause the terminal to beep. Entering a <CR> will terminate the command
and execute the DT command. If ”A” is entered, all locations are cleared and the
DT command is bypassed. The “A” must be the first item entered or it is interpreted
as an error, since it is a hex value.

EXAMPLE:

?CT A
?

All breakpoints on trap locations are cleared.

6-11

Debug Monitor

6.6.10 Display/Clear Cycle Counter (CY)

FORMAT: CY

PARAMETERS: None

Purpose: to clear to zero the Cycle Counter (used in single step modes to show

instruction cycles executed).

After executing the command, the cycle count is printed. A "0" (zero) input resets

the count to zero. Any other entry (e.g., <CR> or <SP>) returns to the Monitor

with the count unchanged. For example:

?CY
CYCLE COUNT = 003762 <CR> (don't change counter)

?CY
CYCLE COUNT = 003762 0
CYCLE COUNT = 000000 (counter set to zero)
?

6.6.11 Clear Breakpoints Individually (C1 and C2)

FORMAT: C1 or C2

PARAMETERS: none

Address breakpoint 1 can be cleared by entering C1, and address breakpoint 2 can

be cleared by entering C2. In both cases, the breakpoint values are redisplayed.

6.6.12 Display Breakpoints (DB)

6-12

FORMAT: DB

PARAMETERS: None

Purpose: to display the current values of the two breakpoints on address (B1 and

B2).

Breakpoints can be modified only with the B1 and B2 commands and cleared with

the CB, C1, and C2 commands below.

EXAMPLE:

?DB
BP1=F882 BP2=F977
?

The address breakpoints are displayed.

Debug Monitor

6.6.13 Decimal-Hex Byte Conversion (DC)

FORMAT: DC <decimal number, 0-255><CR,SP>

PARAMETERS: Up to three decimal digits for conversion (maximum value is 255)

Purpose: to convert a decimal number to hex.

This command is a quick way to convert decimal register numbers, peripheral!
numbers, or data to hex equivalents. If more than three numbers are entered, the last
three numbers are used. If less than three numbers are entered, leading zeros are
assumed.

EXAMPLE:

?DC_ 100<CR,SP>
100=>64 5

6.6.14 Display Memory (DM)

FORMAT: DM <start addr> <stop addr> {port 1,2,3}

PARAMETERS: 1) Memory start address (at reset, default=PC default; otherwise,
default=previous value)

2) Memory stop address (default=start address + 127)
3) Output port (default=1)

Note:

Addresses must be within the device default range.

Purpose: to display memory in hexadecimal! format.

Memory is displayed 16 bytes on a line. The 16 bytes are preceded by the address
of the first byte on the line. The first address dumped is at the zero nibble boundary,
so that all lines start at >XXXO.

The command remembers all address values entered for use as defaults when the
command is executed again. At reset, the start address defaults to the PC default value
for the device type being emulated. The end address defaults to the start address plus
>7F (decimal 127) bytes. When entering new address values, the end address will
always default to the start address plus >7F bytes unless a stop address is entered.
This provides a default display of 8 lines (i.e., subsequent entry of a start address
only will default the command to the 8-line display). If both values are entered, both

values are used for defaults for further execution of the command.

While the command is dumping to the terminal, the display can be stopped and
started by keyboard input. Any key will stop the display at the end of the current line
of output. After the display is stopped, <ESC> will abort the command, <SP> will
cause display of successive lines one at a time for each <SP> entry, and any other

key wil! restart the display.

EXAMPLES:

Debug Monitor

1) ?DM F806 F810<CR>
F800 31 44 45 6F D9 EO 33 4A 55 44 55 8F F9 D9 Cl AB
F810 44

2) ?DM F806 +2<CR>
F800 31 44 45 6F D9 EO 33 4A 55
?

Memory is displayed up to >F808 (>F806 +2).

3) ?DM F806 F810 2
?

Dump memory to Port 2.

4) ?DM F810 F806<SP>
ADDRESS ERROR
?

No operation has been performed because the dump end address is less that the
dump start address.

6.6.15 Display Processor Status (DP)

FORMAT: DP (or D)

PARAMETERS: None

Purpose: to display the processor status.

“D” is the abbreviated version of this command. The processor status is defined as:

Program Counter
Status Register (C, N, Z, and | bits)
Stack Pointer
Register A
Register B

The display is the same as the breakpoint line (see examples in Section 6.6.20).

EXAMPLE:

2DP
PC=F773 C=0 N=O0 Z=0 I=O0 SP=R20 A=00 B=04

6.6.16 Audio Tape Directory (DR)

FORMAT: DR {port 1,2}

PARAMETERS: Output port (default=1)

Purpose: to display the files stored on a cassette tape to either Port 1 or Port 2.

Audio tape use is discussed in detail in Section 8. The display consists of filename,
file type, and length in 512-byte blocks. The tape must be at the scan-start position,
and the tape recorder set to PLAY before the command.

EXAMPLE:

?DR_ 1

6-14

Debug Monitor

TAPE DIRECTORY

A SOURCE 05

A 7000 02
A STATE 02

R SOURCE 04
R TEK 01<RESET>
>

The audio tape directory is listed to the terminal. Since cassette tape cannot

support logical "END OF TAPE” (last file), a reset must be performed to exit the
DR command.

6.6.17 Display Machine State (DS)

FORMAT: DS {port 1,2,3}

PARAMETERS: Output port (default=1)

Purpose: to dump the machine state for display to terminal or storage. The command
dumps the following items:

Processor Status line (same as DP command)

Register File contents

Peripheral File contents

Register and Peripheral File displays are grouped 16 on a line and start with the

decimal register or peripheral number and the hex address of the start of the line. This

display is also the fixed display type 2 used by the EF and FS commands. The size

of the Register File display is determined automatically by the size of the Register

File in the TMS7000 on the EVM (either 128 or 256 registers).

While the command is dumping to the terminal, the display can be stopped and

started by keyboard input. Any key will stop the display at the end of the current line

of output. After the display is stopped, <ESC> will abort the command, <SP> will

cause display of successive lines one at a time for each <SP> entry, and any other

key will restart the display. The machine state can also be dumped to audio tape (Port

3) or uplinked to a file (Port 2) and restored (see LS command) for execution of a

program without having to reinitialize registers.

EXAMPLE:

?DS_ 1
PC=0000 C=1 N=1 Z=1 I=1 SP=R1 A=00 B=00

RO =0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
R16 =0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
R32 =0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

R224=0060 00 00 00 00 00 00 00 00 00 00 00 00 O00 00 00 00
R240=0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

PO =0100 A2 A2 00 00 21 21 02 F3 FF OO FF 00 FF FF FF FF
P16 =0110 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
P32 =0110 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

6-15

Debug Monitor

6.6.18 Display Breakpoint on Trap (DT)

FORMAT: DT

PARAMETERS: None

Purpose: to display the current values of the breakpoint on trap locations.

Breakpoints on trap can be modified with the BT command only, and can be cleared
with the CT command.

EXAMPLE:

The breakpoints are set on trap locations 1, 3, 5, and 9.

6.6.19 Select TMS7000 Family Device (DV)

FORMAT: DV

PARAMETERS: None

Purpose: to display/designate the device being emulated so that ROM size can be
correctly configured for the device. Index numbers are 1 to 5:

702x, 70C2x
704x, 7O0C4x
Reserved
Reserved
Reserved O

h
W
N

This command is also discussed in Section 2.11.

EXAMPLE:

?DV
DEVICE TYPE (704X) 1<CR,SP>
DEVICE TYPE (702X
PC=FO06 C=0 N=0 Z=0 I=0 SP=R1 A=00 B=00
?

wo
u

r
N

6.6.20 Execute Program with Breakpoints (EF,ET,EX,GO)

Four breakpoint execution commands can be used:

e EF (Execute Breakpoint with Terminal Fixed Display)
e ET (Execute to Breakpoint with Trace)
e EX (Execute to Breakpoint)
e GO (Execute to Breakpoint; Optional Start Address, BP1 Value)

When using these commands, remember that the program will stop execution and
display the breakpoint line before execution of the instruction at the breakpoint
address. Subsequent EX commands using the existing breakpoints will begin
execution at the instruction displayed.

Debug Monitor

Breakpoint commands also use a slow-speed event counter (EC) that functions with
Breakpoint 1 (BP1) only (not BP2). If an EC value is not given, the default is one.
At a breakpoint display, <SP> continues execution with the last EC value: entry of
<CR> clears the EC value and returns control to the Monitor. Or, execution will begin
at a value entered (1-9; any other key will cause an EC value of key ASCII value
minus >30).

When the program executes with an EC value, the instruction at BP1 will be executed
the number of times in the event counter before issuing the breakpoint. Note that
to actually count the events, the program is suspended for approximately 20 milli-
seconds every time the breakpoint occurs, but execution then resumes and the cycle
repeats until the event count expires.

Other breakpoints on address or trap can be encountered before the event count
expires. As execution continues from breakpoint to breakpoint, the event count is
displayed in decimal in parentheses at the point where input is expected. When the
event count expires, the format of the breakpoint display is:

PC=xxxx C=x N=x Z=x I=x SP=Ryyy A=xx B=xx EVC1 (count)

Note that “EVC1” replaces "BP1” and that the event count value is reloaded. The
event count is a decimal number from 1 to 255. An entry of 0 means no event count
and an entry of 1 will break on the first occurrence of BP1. If more than three numbers
are entered, the last three before <CR> will be used as the event count. Entering a
number greater than 255 will cause “ERROR”.

Note:

For the EF, ET, and EX commands, the following are defined:

1) Breakpoint display:

NEXT INST---> 0060 D2 DECD R20
PC=F010 C=1 N=1 Z=0 I=0 SP=R4 A=AA B=EE BPl

(17)

2) Breakpoint/trace display (example):

NEXT INST---> 0060 D2 DECD R20
PC=FO10 C=1 N=1 Z=0 I=0 SP=R4 A=AA_ B=EE BP1l
P6=FF (11111111) >0777=00 (00000000) R4=CO (11000000)
>EEOO=FO (11110000) P33=FF (11111111) P5=00 (00000000)

This is a combination of the breakpoint display and the trace display values
set by the TC command.

Execute to Breakpoint with Terminal Fixed Display (EF).

FORMAT: EF <display type> [event count] <CR>

PARAMETERS: 1) Display type 1, 2, or 3 (default=1; see list below)
2) Optional event count (default=1)

Purpose: to execute a program to a breakpoint and show one of three updated fixed
displays (1, 2, or 3; see list below) on the terminal screen:

Display

1 Breakpoint/Trace-Line -- trace as set by TC command (default)

Debug Monitor

2 Machine State (Breakpoint display, register display, Peripheral File display)

3 1/O Status (Breakpoint/trace-line display and Peripheral File display.

The Trace Line is that set by the TC command. When a breakpoint is encountered,
the breakpoint display is dumped to the terminal. Entry of a <CR> returns control

to the Monitor. Entry of a <SP> continues execution. Occurrence of the next

breakpoint causes the new data to overwrite the old data, giving a stable, easy to read
display. If more than one display-type number is entered, the last number entered is

used as the display type.

Note:

The fixed display is produced by printing to the terminal a number of cursor-up

characters equal to the number of line feeds in the display. This requires that the
cursor-up character output by the EVM is recognizable by the terminal. The

default value is listed in Section 2.15.3 and can be changed with the CU

command.

Execute to Breakpoint with Trace (ET).

FORMAT: ET [event count] <CR,SP>

PARAMETERS: Optional event count (default=1) Purpose: to execute a program

to a breakpoint and show an updated breakpoint/trace line.

This command is identical to the EF 1 command. If no trace line is set by the TC

command, a blank line is printed after the breakpoint line.

Execute to Breakpoints (EX).

FORMAT: EX [event count] <CR,SP>

PARAMETERS: Optional event count (default=1) Purpose: to execute a program

to a breakpoint and show an updated breakpoint display. The instruction at the

breakpoint address can be executed the number of times in the optional event count

before the breakpoint occurs.

Note:

The EVM software breakpoints are accomplished by placing ‘TRAP 0’ opcodes
(>FF) at desired addresses, saving the user reset (TRAP 0) vector, and placing

the Monitor breakpoint processing address in >FFFE and >FFFF. During normal
in-circuit emulation operation, this is transparent to the user since the proper data
is restored when the Monitor is running. But if the program is accessing itself

as data, such as in a "CHECKSUM" operation, and a breakpoint is set, an >FF

is read. This can be overcome by using the RU command, which executes without

breakpoints.

If a breakpoint is encountered (either on address or call through trap vector), the

program breaks before the code at the breakpoint address and returns control to the
Monitor.

Debug Monitor

Note:

Breakpoint addresses must be:

1)
2)

greater than >OOFF, and

set on an instruction boundary.

Two breakpoints on address and up to 24 breakpoints on trap are allowed, and

execution will continue until either is encountered. When a breakpoint is encount-

ered, the cursor will stay at the end of the display. Entering a <CR> will return control

to the Monitor. Entering anything else will automatically execute to the next break-
point. The format of the address breakpoint display is:

PC=xxxx C=x N=x Z=x I=x SP=Ryyy A=xx B=xx BPl

if Breakpoint 1 is encountered (BP2 for Breakpoint 2).

The format of the breakpoint on trap display is:

PC=xxxx C=x N=x Z=x I=x SP=Ryyy A=xx B=xx TRAP nn

where “nn” is the trap location encountered. The current PC, ST, SP, A, and B

registers are printed.

EXAMPLES:

1)

2)

3)

Before execution, PC = >F64E.

?EX <CR>

Begins execution at location >F64E. No breakpoint is defined so execution

continues. Program execution can be terminated and the Monitor re-entered by

pushing the RESET switch (Section 6.11).

Before execution, PC = >F64E and BP1 = >F681.

?EX <CR>

PC=F681 C=0 N=0 Z=0 I=1 SP=R20 A=00 B=05 BP1l <SP>

PC=F681 C=O N=1 Z=0 I=1 SP=R20 A=14 B=12 BPl <CR>
?

Execution begins at location >F64E. When location >F681 is encountered,

program execution is halted, and the PC, ST, and SP are displayed. A space is

entered, causing execution to begin again. The same breakpoint is encountered

again, and the Monitor is entered.

?EX 11<CR>

PC=F681 C=1 N=0 Z2=0 I=0 SP=R23 A=22 B=01 EC1 (11)<SP>
PC=F681 C=1 N=0 Z2=0 I=0 SP=R23 A=44 B=31 EC1l (11) <CR>
?

The program is executed to BP1 with an event count of 11. The process was

repeated with a <SP>. After the second occurrence of BP1, <CR> terminated

execute mode.

6-19

Debug Monitor

Go Execute at Address (GO).

FORMAT: GO [start execution address] [BP1 event count]

PARAMETERS: 1) Memory address to start execution (default=PC value)
2) Optional event count (default=1) Purpose: Execute to

breakpoint with trace with starting address specified.

This command is identical to ET with the added options of specifying an execution
start address (instead of the default PC address). As with EF, ET, and EX, an optional
even count can be specified for BP1.

EXAMPLES:

1) ?GOQ @LOOP<CR>

Begin execution at the address labeled LOOP. Event count before breakpoint is
the default 1.

2) ?GOQ F336 10<CR>

Begin execution at address >F336, execute a breakpoint display after 10
occurrances of BP1.

6.6.21 Find Byte in Memory (FB)

6-20

FORMAT: FB <start addr> <stop addr> <value> [mask] <CR,SP>

PARAMETERS: 1) Memory start address
2) Memory stop address
3) Value in hex to be searched for (default=>FF)
4) Optional mask value to specify which bits to check

(default=>FF)

Purpose: to find the occurrences of the byte specified in the memory limits specified.

Following are examples of the FB command:

FB ADDR1 ADDR2<CR> finds >FF
FB ADDR1 ADDR2<SP><CR> finds >00
FB ADDR1 ADDR2 OA<CR,SP> finds >OA
FB ADDR1 ADDR2 'A'<CR,SP> finds the ASCII value of “A” (>41)
FB ADDR1 ADDR2 F5 3 finds binary 01 (1s in value AND mask)

When entering a hexadecimal value, only the last two characters entered before the
<CR,SP> will be used. An ASCII character can be entered for <value>, by enclosing
the character in single quotes.

When the value is found, the address and value are printed in a format similar to the
MM command. At this point, the value can be changed. The following can be entered:

<SP> or + displays successive locations for access.

- displays previous locations for access.

< redisplays the same location.

<CR> restarts the search.

Debug Monitor

<new data>Q_— enters new data, then displays it

<ESC> exits search, returns to Monitor.

Any occurrence of one of the boundary addresses will cause the command to

terminate and return control to the Monitor. Data changed on the same line can be

redisplayed by finishing the entry with a "Q.” <ESC> aborts the FB command and

data entered on the same line is not retained.

EXAMPLES:

1) ?FB F006 FFFF 83<CR>
FOE1=83 84<CR>
F682=83<CR>
FAB3=83 84<SP>
FAB4=7F 800
FAB4=80<CR>

?

The “ANDP” opcode (>83) was found, and the first and third occurrences were

changed to “ORP” (>84). Location >FAB4 was changed from >7F to >80. No >83

values were found after the last <CR>.

2) ?FB $ _+>300 83<CR>

This instruction searches for the value >83 from the PC value to PC + >300.

3) ?FB F800 F900 B6é 83<CR>
F810 C2 (11000010)
F812 D3 (11010011) <ESC>
?

The value (B7) is first ANDed with the mask (82). The result is then the mask to

match with bytes being searched. For example:

B6 = 1011 0110 (byte value in command)

83 = 1000 0011 (mask in command)

(AND above)

1000 0010 (resulting mask to compare with bytes in memory)

The last line shows the mask to identify bytes with desired value. The command

will identify bytes that have ones corresponding to the ones in the final mask. For

example, the following bytes would be selected using the above mask:

1000 1110 (ones correspond to ones in mask above)

1011 1111

1100 1011

1110 0111

1111 1110

6-21

Debug Monitor

6.6.22 Fill Memory (FM)

FORMAT: FM <start addr> <stop addr> <value><CR,SP>

PARAMETERS: 1) Memory start address
2) Memory stop address
3) Fill value (default=>FF)

Purpose: to fill RAM or a part of RAM with a specified value.

Following are examples of the FM command:

FM ADDR1 ADDR2<CR> fills RAM with >FF

FM ADDR1 ADDR2<SP><CR> fills RAM with 0O

FM ADDR1 ADDR2 OA<CR,SP> fills RAM with >0A

FM ADDR1 ADDR2 'A'<CR,SP> fills RAM with the ASCII value of “A” (>41)

When entering a hexadecimal value, only the last two characters entered before the
<CR,SP> will be used. Attempting to fill RAM below the PC default address will
cause an error. For device types 3, 4, and 5, this command resets flags to indicate
no text in the Text Editor.

EXAMPLES:

1) ?FM_FOFF F006
ADDRESS ERROR
?

Error occurred because the start address is greater than the end address.

2) ?FM_FOO6 FOFF 'B'
?

Locations >FO0O6 to >FOFF are filled with the ASCII value of "B” (>42).

3) ?FM F006 FOFF FFDD<CR>
?

Locations >FOO6 to >FOFF are filled with >DD.

6.6.23 Fill Register File (FR)

FORMAT: FR <start reg> <stop reg> <value><CR,SP>

PARAMETERS: 1) Start register
2) Stop register
3) Fill character (default=> FF)

Purpose: to fill the portion of the Register File with the value specified.

This command is similar to the FM command. Following are examples of the FR
command:

FR REG1 REG2<CR> fills with >FF
FR REG1 REG2<SP><CR> fills with 00
FR REG1 REG2 OA<CR,SP> fills with value >OA
FR REG1 REG2 'A'<CR,SP> fills with ASCII value of “A”

Debug Monitor

When entering a hexadecimal value, only the last two characters entered before the
<CR,SP> will be used. After execution, control returns to the Monitor. Do not enter
an "R” in front of the register value. Entering a register value in excess of 127 or 255
(depending on the member of the TMS7000 family on the EVM) will cause an error.
Entering a start register value greater than the stop register value will cause ADDRESS
ERROR. During entry of the register value, the last three digits entered will be used.
If less than three digits are entered, leading zeros are assumed.

EXAMPLE:

?FR 0 127 FF
?

The Register File is filled with >FF.

6.6.24 Single-Step Program with Fixed Display (FS)

FORMAT: FS <display type> <step count><CR,SP>

PARAMETERS: 1) _ Display type 1, 2, or 3 (default=1)
2) Number of fixed steps from 1 to 255 (default=1)

Purpose: to single-step the program and display one of three updated fixed displays.

The three types of fixed displays:

Type

1) Single-step breakpoint display.

?ES_<CR>
LAST INST---> FO10 DECD R20
CYCLE COUNT = 000148
NEXT INST---> FO12 JC >FO10
PC=FO12 C=1 N=0 Z=0 I=0 SP=R1 A=FO B=13

2) Single-step breakpoint display, Register File and Peripheral File contents.

3) Single-step breakpoint display and Peripheral File contents.

If more than one display type number is entered, the last number entered is used.
The number of fixed steps entered is the “step count”. The step count parameter is
the decimal number from 1 to 255 of instruction steps to be executed before stopping.
After each step, the display selected is updated and dumped to the terminal.

After the initial step count has expired, the following can be entered:

<SP> executes one step
<CR> returns control to the Monitor
1-9 executes number of steps entered
A-Z executes steps equal to letter ASCII value minus >30 (e.g., “A”

executes >42->30 or >12 steps) -- ASCII values less than
>30 execute one step

O (zero) executes one step after setting cycle counter to OO0000
. asterisk means execute continuously until a key is pressed

*ADDR executes until PC = ADDR or until a key is pressed

The Monitor command CY clears the cycle count. If the cycle count exceeds 999999,
it will “roll over” (i.e., increment to 000000 and continue from there).

Debug Monitor

The fixed display is produced by printing to the terminal a number of cursor-up
characters equal to the number of line feeds in the display. This requires that the
cursor-up character output by the EVM is recognizable by the terminal. The default
value is listed in Section 2.15.3 and can be changed with the CU command.

6.6.25 Hex-Decimal Word Conversion (HC)

FORMAT: HC <1-4 hex digits><CR,SP>

PARAMETERS: Up to four hex digits for conversion

Purpose: to convert a hex number to decimal.

lf more than four numbers are entered, the last four are used. If less than four numbers
are entered, leading zeros are assumed. Legal entries are 0-9 and A-F.

EXAMPLE:

?HC 345FFFF<CR>
>FFFF=65535
?

>FFFF is displayed in decimal.

6.6.26 Help (HE)

FORMAT: HE {M,E} {port 1,2}

PARAMETERS: 1) Monitor (M) or Text Editor (E) commands (default=M)
2) Output port (default=1)

Purpose: to list the Monitor commands or the Text Editor commands.

lf no parameter or the “M” parameter is entered, the Monitor commands are displayed
on the terminal. If the first parameter is “E”, the Text Editor commands are listed. The
default output port is 1 (terminal); Port 2 (printer) can also be specified.

EXAMPLE:

?HE M 2
?

The Monitor commands are listed to Port 2 (printer).

6.6.27 Display I/O Status (10)

6-24

FORMAT: lO {port 1,2}

PARAMETERS Output port (default=1)

Purpose: to display the Peripheral File locations from PO to P31 in hex and binary
along with the processor status line of the SP command and trace parameters of the
TC command.

The Output port can be either 1 (terminal) or 2 (printer). The Peripheral File is
displayed in two columns, the contents displayed in hex followed by binary in

Debug Monitor

6.6.28 Show

parentheses. This display is also the fixed display type 3 used by the EF and FS
commands.

While the command is dumping to the terminal, the display can be stopped and
started by keyboard input. Any key will stop the display at the end of the current line
of output. After the display is stopped, <ESC> will abort the command, <SP> will
cause display of the next lines, and any other key will restart the display.

EXAMPLE:

?IO <CR>
PC=F7F1 C=1 N=1 Z=0 I=O0 SP=R44 A=21 B=63
R4=17 R5=81 R6=72 R7=73

PO =2A (00101010) P16=FF (11111111) P32=FF (11111111)

P15=FF (11111111) P31=FF (11111111) PA7=FF (11111111)

Address of Line (LA)

FORMAT: LA <line number><CR,SP>

PARAMETERS: Text Editor line number

Purpose: to display the address containing the opcode(s) assembled from a line in
the Text Editor.

When a file is assembled from the Text Editor, the address at which the opcodes are
stored is remembered. After assembly, this command displays the address for possible
use with the MM command to change a value in program memory associated with
a line in the Text Editor without having to reassemble. A comment line always has
address “0000”. New lines in the Text Editor have address “0000” prior to assembly.
If the line number entered does not exist, no address is output.

EXAMPLE:

?LA 450<CR> F882
?

The first byte assembled for line 450 is stored at >F882.

6.6.29 List Lines from Text Editor (LL)

FORMAT: LL <line number> <line count><CR,SP>

PARAMETERS: 1) Starting line number (default=first line)
2) Number of lines to list (default=1)

Purpose: to display selected source lines from the Text Editor.

All entries are decimal, from 1 to 9999 with leading zeroes assumed. If more than four
digits are entered, the last four entered are used. If the line number entered does not
exist, the next existing line starts the display. The count parameter is the number of
lines to be displayed and defaults to one. Entering zero causes one line to be

displayed.

Debug Monitor

If this command is entered and the Text Editor is empty, no display occurs.

While the command is dumping to the terminal, the display can be stopped and

started by keyboard input. Any key will stop the display at the end of the current line

of output. After the display is stopped, <ESC> will abort the command, <SP> will

cause display of successive lines one at a time for each <SP> entry, and any other

key will restart the display.

EXAMPLE:

?LL 40 3<CR>
0040 CLR SUM2
0050 CALL @OUT
0060 INV SUM2
?

Three lines from the program in the Text Editor are listed, starting with line 40.

6.6.30 Load Memory - 7000 Format (LM)

FORMAT: LM {port 1,2,3}

PARAMETERS: Input port (default=3)

Purpose: to load memory from Port 1, 2, or 3. Data to be loaded is in 7000 (or 9900)

object format. Object code RAM will be initialized to >FF.

The object file must be at load module (absolute) level (see Section 6.8). An object

file at any other level may produce an error during loading operations. !f an error

occurs, the LM command sends a message to the EIA port that is not the source of

the input; the message includes the approximate location of the error. This command

can be aborted with a reset.

Since the LM command, when executed with input from Port 1 or 2, loads data

through the |/O buffer, the DATA LED will go on when the buffer is being filled and

go off when the buffer is being emptied into RAM. This command waits until input

data is detected before initializing object code RAM to >FF.

EXAMPLES:

1) ?LM<CR>
FILENAME: A<CR> 5 see

After execution, memory has been loaded with a 7000 or 9900 object file from

file “A” on cassette tape (Port 3).

2) ?LM 2
CHECKSUM ERROR F901
5

A checksum error was found in the object file. The operation does not abort at

the point of the error.

Debug Monitor

6.6.31 Show Editor Line at Address (LN)

FORMAT: LN <addr><CR,SP>

PARAMETERS: Memory address

Purpose: to display the complete source line that produced the opcode found at the
specified address.

Functionally the opposite of the LA command, the LN command displays the Text
Editor line associated with a known memory address. If the address is not at an
instruction boundary, no equivalent Text Editor line will be found.

This command is useful when the contents of the stack are examined after a break-
point on trap or interrupt (BT) because the break occurs after the service routine is
entered. The old PC LSB is at the SP location and the old PC MSB is at the SP-1
location. Since the old PC value is placed on the stack, executing the LN command
in the Standalone mode displays the line from the Text Editor that was executed prior
to the breakpoint. Breakpoint displays that include stack locations are enabled with
the TC command and fixed display commands (EF and FS).

EXAMPLE:

?LN F806<CR>
0040 CLR SUMREG
?

The equivalent Text Editor line is displayed for the opcode at address >F806.

6.6.32 Load Machine State (LS)

FORMAT: LS {port 1,2,3}

PARAMETERS: Input port (default=3)

Purpose: to restore a machine state produced by the execution of a program and
stored with the DS command.

This command restores the items listed in the display format in the DS command
description (PC, ST, SP, Register File, and Peripheral File values).

Since the LS command, when executed with input from Ports 1 and 2, loads data
through the I/O buffer, the DATA LED will go on when the buffer is being filled and
go off when the buffer is being emptied into RAM.

The LS command does not care whether the machine state file being loaded has 128
or 256 register locations. Regardless of which member of the TMS7000 family is on
the EVM, any size machine state file will load without error.

EXAMPLES:

1) ?LS<CR>
FILENAME: A<CR> 5 ae

After execution, the machine state is restored to the contents found in file “A
loaded from Port 3 (tape). Execution of “DS 1” will display results.

Debug Monitor

2) ?LS 2
INPUT ERROR
?

During the load operation, an unrecognizable character was loaded when a hex
value was expected. The command is aborted.

6.6.33 Load Memory - Tektronix Format (LT)

FORMAT: LT {port 1,2,3}

PARAMETERS: _ Input port (default=3)

Purpose: to load memory from Port 1, 2, or 3. Data to be loaded is in Tektronix object
format. Object code RAM will be initialized to >FF.

The object file must be at load module (absolute) level. An object file at any other
level may produce an error during loading operations. If an error occurs, the LT
command sends a message to the EIA port that ts not the source of the input; the
message includes the approximate location of the error. Since the LT command, when
executed with input from Port 1 or 2, loads data through the |/O buffer, the DATA
LED will go on when the buffer is being filled and go off when the buffer is being
emptied into RAM. This command waits until input data is detected before initializing
object code RAM to >FF.

EXAMPLES:

1) ?LT<CR>
FILENAME: A<CR>
-)

After execution, memory has been loaded with Tektronix object file from file “A”
On Cassette tape (Port 3).

2) ?LT 2
CHECKSUM ERROR F901
?

A checksum error was found in the object file. The operation does not abort at
the point of the error.

6.6.34 Set Breakpoint 1 or 2 by Editor Line Number (L1/L2)

6-28

FORMATS: L1 <line number><CR,SP>
L2 <line number><CR,SP>

PARAMETERS: Text Editor line number

Purpose: to set Breakpoint 1 or 2 on address using a Text Editor line number.

If no line number is entered, the breakpoint value remains unchanged. The last four
decimal digits entered are used for the line number. Breakpoint 1 is used with the
event counter in the EX command. If the breakpoint is changed, the DB (Display
Breakpoints) command is executed. The line number must exist in the Text Editor
and the file must have been assembled for an address to be associated with the line.

EXAMPLES:

Debug Monitor

1) ?L1 450<CR>
BP1=F882 BP2=F903

Breakpoint 1 is set on line 450 (>F882).

2) ?L2 620<CR>
BP1=F882 BP2=F977
?

Breakpoint 2 is set on line 620 (>F977).

6.6.35 Display/Modify Registers A and B (MA and MB)

FORMAT: MA and MB(or A and B)

PARAMETERS: None

Purpose: to display the contents of Register A and/or Register B and allow modifi-
cation of their contents.

Command inputs MA and MB can be abbreviated as A or B.

When the MA command is entered, the contents of Register A are displayed. A new
value can be entered, or a <SP> displays the contents of Register B. Entering MB
will display the contents of Register B. The contents of A can be modified by keying
in the desired hexadecimal value. Pressing <SP> will continue to B and pressing
<CR> will terminate the command and return control to the Monitor. To leave the
register contents intact, press <SP> or <CR> after the register contents have been
displayed. Registers A and B can also be modified as RO and R1 with the MR
command.

For either register, entry of ”<” will redisplay the value just entered. New hex digits
entered on the line that a command termination takes place will be retained if a <CR>
or <SP> is pressed but will not be retained if <ESC> is entered. INPUT ERROR
caused by entry of an illegal character is non-fatal, redisplaying the line the error
occurred on for update. After display/modify of Register B, the command continues
to the MS command.

EXAMPLES:

1) Before execution, A = >34 and B = >F6.

?MA
A=34 (00110100) 123456<SP>
B=F6 (11110110) <CR>
?

After execution, A = >56 and B = >F6.

2) Before execution, A = >34 and B = >F6.

?B
=F6 (11110110) 9<CR>

After execution, A = >34 and B = >09.

Debug Monitor

6.6.36 Display/Modify Memory (MM)

6-30

FORMAT: MM <start addr><CR,SP>

PARAMETERS: Memory address (at reset, default=PC default; otherwise,
default=previous entry)

Purpose: to display and allow modification of program memory. An optional memory
start location may be specified for initial displacement.

The memory address defaults after reset to the PC default value for the current device

type. Addresses must be in the legal memory display/modify range for the device type.
The new address becomes the default for the next command.

Once displayed, memory address contents may be modified by entering valid hexa-

decimal digits. Only the last two hex digits entered will be retained.

The command line terminator controls the continuation of the command, whether

or not data is entered. The command continues to the next location if <SP> ora "+"

is pressed or goes to the previous location if ”-” is entered. In either case, the "+”

or “-" is displayed to denote direction. Entry of ”<” will cause the value just entered

to be redisplayed. The command is terminated if <CR> is entered. The last hex digits

entered will be retained if <CR> is pressed, but will not be retained if <ESC> is

pressed. Following address >FFFF, the MM command will terminate. INPUT ERROR

caused by an illegal character is non-fatal, redisplaying the line for update.

EXAMPLES:

1) Before execution, location >FFO6 contains value >56, >FFO7 contains >45, and

>FFO8 contains >A5. Last MM command was to address >FFO6.

?MM<CR>

+ FFO6=56 (01010110) <SP>
+ FFO7=45 (01000101) 5676<SP>

FFO8=A5 (10100101) 6<CR>
?

After execution, location >FFO6 contains >56, >FFO7 contains >76, and >FFO8

contains >06. Default start address after reset remains >FFO6.

2) Before execution, >FFFE contains >F8 and >FFFF contains >06.

?MM FFFE<CR>

+ FFFE=F8 (11111000) FOFO<SP>

+ FFFF=06 (00000110) <SP>
?

After execution, > FFFE contains >FO and >FFFF contains >06. This is the reset

vector. >FFFE is the new default start address.

3) Before execution, >0200 contains >AA.

?MM_ 200<SP>

ADDRESS ERROR
>

No operation is performed since the requested memory location is outside the

legal memory display/modify range.

Debug Monitor

6.6.37 Audio Tape Motor On (MQ)

FORMAT: MO

PARAMETERS: None

Purpose: to allow using cassette tape motor control keys while the cable is inserted
between J3 and REM input.

With the cassette motor under program control, this command turns on the motor
to allow use of the recorder keys (rewind, fast forward, etc.). Execution continues
until any subsequent terminal keyboard input, which stops the motor and resumes
Monitor execution. This command is discussed in Section 8.

EXAMPLE:

?MO<SP>
>

The tape motor was enabled with the MO command, then turned off by hitting
<SP>.

6.6.38 Display/Modify Peripheral File (MP)

FORMAT: MP <peripheral register no.><CR,SP>

PARAMETERS: Peripheral register number (at reset, default=0; otherwise,
default=previous entry)

Purpose: to display and allow modification of peripheral registers PO to P47 inclusive.
The peripheral number is the start location.

The start location defaults to PO at reset. If a location is specified, it must be in the
legal file display/modify range. The last location input is the default for the next
command. Entry of "P” is optional. The entry can be in hexadecimal if preceded by
%>"

The entry terminator controls the command continuation. whether or not data is
entered. The command continues to the next location if <SP> or "+” is pressed or
goes to the previous location if "-” is entered. In either case, the "+" or “-”" is
displayed to denote direction. Entry of ”<” will cause the value just entered to be

redisplayed. <CR> terminates the command.

The command terminates following display/modify of the last location. New hex
digits entered will be retained if <CR> is pressed but will not be retained if <ESC>
is entered. INPUT ERROR caused by entry of an illegal character is non-fatal,

redisplaying the line for update.

EXAMPLES:

1) Before execution, location P8 contains value >09, and P10 contains >BC.

?MP_ 8<CR>
+ P8=09 (00001001) 5432<SP>
+ P9=FF (11111111) <SP>

P10=BC (10111100) <CR>
?

6-31

Debug Monitor

After execution, P8 contains >32 and P10 contains >BC. P8 is now the default
start location.

2) ?MP_249<CR>
ADDRESS ERROR
?

No operation is performed since the requested memory location is outside the
legal Peripheral File display/modify range.

6.6.39 Display/Modify Register File (MR)

FORMAT: MR <register><CR,SP>

PARAMETERS: Register number (at reset, default=0; otherwise, default=previous
entry)

Purpose: to display and allow modification of internal registers in the range RO to
R127 (R255 for TMS7042) inclusive. Start location is specified by entering a register
number.

The start location defaults after reset to RO and afterward to the last address entered.

Locations must be a decimal number in the legal Register File display/modify range
(0 to 127 or 255 inclusive) (note that the contents of Register A (RO) and Register
B (R1) can be read and modified using the MA, MB, or MR command. Entry of the
"“R” is optional. The entry can be in hexadecimal if preceded by ">”. At reset, the
EVM sets the upper limit of the MR command to either R127 or R255.

"

The command continues to the next location if <SP> or “+” is pressed or goes to

the previous location if ”-” is entered. Entry of a ”<” will cause the value just entered
to be redisplayed. The command is terminated if a <CR> is entered. INPUT ERROR
caused by entry of an illegal character is non-fatal, redisplaying the line the error
occurred on for update.

EXAMPLES:

1) Before execution, RO contains >56, R1 contains >45, and R2 contains >A5.

?MR<CR>
+ RO=56 (01010110) <SP>
+ R1=45 (01000101) 5676<SP>

R2=A5 (10100101) 6<CR>
?

After execution, location RO contains value >56, R1 contains >76, and R2
contains >06. Default start location after reset is RO.

2) ?MR_ 88<CR>

+ R88=09 5432<SP>
R89=BC <CR>

?

After execution, R88 contains >32 and R89 contains >BC. R88 is now the
default start location.

3) ?MR 256<SP>
ADDRESS ERROR
?

Debug Monitor

No operation is performed since the requested memory location is outside the
legal Register File display/modify range.

6.6.40 Display/Modify PC, SP, RA and RB (MS, PC, SP, A, B)

6.6.41 Move

FORMAT: MS or PC (or P) or SP or Aor B

PARAMETERS: None

Purpose: to display and allow modification of the Program Counter, Stack Pointer,
and Registers A and B.

The registers are displayed in the order of PC, SP, RA, and RB (program counter,
stack pointer, and Registers A and B). The next register is displayed when <SP> is
entered. Displayed values can be changed to a value within the legal range for the
register. INPUT ERROR from entry of an illegal value will result in redisplay of the
register. A "<”" following the change value will redisplay the changed contents.
Values will be used for upcoming program execution. Entry of a <CR> or <ESC>
will terminate the display and return to the Monitor.

EXAMPLES:

1) Before execution, PC = >F773 and SP = R50.

?MS
PC=F773 F123<SP>
SP=R50 20<CR>
?

After execution, PC = >F123 and SP = R20.

2) Before execution, PC = >F773 and SP = R50.

?MS
PC=F773 <SP>

?

After execution, PC = >F773 and SP = R50.

(Copy) Memory (MV)

FORMAT: MV <start addr> <stop addr> <dest addr><CR,SP>

PARAMETERS: 1) Move source start address
2) Move source stop address
3) Move destination start address

Purpose: to move (copy) a block of memory. This command will not read from the

EPROM programming sockets.

Address parameters are limited to the range from the PC default to > FFFF. The source
locations are not changed except where they are overwritten by the copied data.

EXAMPLES:

1) ?MV_FO76 F876 FOO6<CR>
?

6-33

Debug Monitor

After execution, locations >FOO6 to >F806 inclusive contain a copy of what
was contained in locations >FO76 to >F876 inclusive.

2) ?MV_FOO6 F806 FO76<SP>
?

After execution, locations >FO76 to >F876 inclusive contain a copy of what

was contained in locations >FO0O6 to >F806 inclusive.

3) ?MV_CO00 C400<CR>
ADDRESS ERROR
?

No operation was performed because the destination start address is missing.

?MV F800 F802 FAO0<SP>

b bof
F800 | AA AA | F800

Fe01 | 01 01

F802 | AA AA

4 4 4 4
FAOO | FF AA | FAOO

FF 01

FF AA

4 4 4 @

(A) BEFORE MOVE (8) AFTER MOVE

Figure 6-1. Block Memory Move

6.6.42 Fill Memory with NOPs (NP)

FORMAT: NP

PARAMETERS: None

Purpose: to fill program memory with the NOP opcode (>00).

The program memory range from default PC to >FFFF is determined by the current

device type. Table 2-5 lists default PCs for each device. The NOP opcode is >00.

For device types 3 to 5, this command resets flags in the Text Editor, indicating no

text in the editor.

6-34

Debug Monitor

6.6.43 Reset Target Processor (RT)

FORMAT: RT

PARAMETERS: None

Purpose: to reset the emulated processor.

The RT command simulates a target reset. Due to differences in the peripheral file
map of TMS7000 family members, the command requests that the EVM RESET
switch be toggled to ensure proper initialization of the TMS7000. It then prints out
values of the PC, ST, SR, RA, and RB. Results of initialization are:

LOCATION VALUE

PC contents of user’s TRAP 0 vector location, >FFFE & >FFFF
ST >00
SP R1 (Register B)
A PC MSB
B PC LSB
Port A inputs (P5 = 00)
Port B >FF
Port C inputs (P9 = 00)
Port D inputs (P11= 00)

EXAMPLE:

?RT
PRESS RESET<RESET>
PC=FO06 N=0 R=O0 Z=0 I=O ST=R1 RA=F8 RB=00
?

After the RESET switch is toggled, the processor status is displayed, the PC
contains the RESET vector taken from >FFFE and >FFFF, and the A and B
registers contain the MSB and LSB of the previous PC value. Note that the PC
value taken from >FFFE and >FFFF must agree with the processor device type
PC value or ADDRESS ERROR will be given. ADDRESS ERROR will be
displayed after setting SP to R1, and RA and RB to the MSB and LSB of the
current PC value.

6.6.44 Execute Program without Breakpoints (RU)

FORMAT: RU

PARAMETERS: None

Purpose: to execute a program without breakpoints, without having to clear all
currently set breakpoints. Execution begins at the current PC location.

The only way to terminate the RU command is by reset. This will yield the message:

STOP AT PC=xxxx

where “xxxx” is the interrupted Program Counter. If no breakpoints of any kind are
set, the EX command will function much like the RU command with one exception:
the RU command does not swap the Monitor TRAP 0 for the user TRAP 0, allowing
a program to emulate software reset in real time (see Section 6.6.20 for further

explanation of the EX command).

6-35

Debug Monitor

EXAMPLE:

?RU
<RESET>

STOP AT PC=F448
5

The RESET switch terminated the RU command.

6.6.45 Save Memory - 7000 Format (SM)

FORMAT: SM <start addr> <stop addr> {port 1,2,3}

PARAMETERS: 1) Memory start address
2) Memory stop address
3) Output port (default=3)

Purpose: to dump memory to Port 1, 2, or 3. Data will be dumped in 7000 object
format.

The object file must be at load module (absolute) level as outlined in load/dump
formats in Section 6.8.

EXAMPLES:

1) ?SM F806 FFFF<CR>
FILENAME: A<CR>
READY TO RECORD?<CR>
?

Memory at locations > F806 to >FFFF inclusive was dumped to tape to filename
“A” in 7000 object file format.

2) ?SM F806 FFFF 2
?

These locations are dumped to Port 2.

3) ?SM _FFFF F806<SP>
ADDRESS ERROR
?

No operation has been performed because the dump end address is less than
the dump start address.

6.6.46 Status Register Display/Change Commands

6-36

Display Status Register (SR).

FORMAT: SR

PARAMETERS: None

This command displays the status register contents.

EXAMPLE:

Debug Monitor

Set/Reset Status Register Bits. Individual or all Status Register bits can be set
(to one) or cleared using the following ten commands:

Command Results
EI Enable (set) SR bits C=1 N=1 Z=1 |=1

(If all bits=1)
CC Clear Carry (C) bit C=0 N=1 Z=1 |=1
CN Clear Negative (N) bit C=1 N=0 Z=1 |=1
CZ Clear Zero (Z) bit C=1 N=1 Z=0 |=1
Cl Clear Interrupt (1) bit C=1 N=1 Z=1 I=0
DI Disable (clear) SR bits C=0 N=0 Z=0 !=0

(If all bits=0)
SC Set Carry (C) bit C=1 N=0 Z=0 I=0
SN Set Negative (N) bit C=0 N=1 Z=0 1=0
SZ Set Zero (Z) bit C=0 N=0 Z=1 1=0
Sl Set Interrupt (I) bit C=0 N=0 Z=0 |=1

6.6.47 Single-Step Program (SS)

FORMAT: SS <count> {port 1,2}

PARAMETERS: 1) Number of single-steps (1 to 155; default=1)
2) Output port (default=1)

Purpose: to single step a program from the initial conditions specified by the PC,
ST, and SP registers and give the single-step display for each step.

For each count, one program step is executed beginning at the PC value. A count
value of O (zero), 1, or no entry (default) specifies one step. As each step (up to 255
max.) is executed, the display (example below) shows the contents of PC, SR (status
register), and registers A and B as well as instruction executed, cycle count, next
instruction, parameters selected by the TC command (single-step trace), and next-
step number.

After the initial step count has expired, the following can be entered:

<SP> executes one step
<CR> returns control to the Monitor
1-9 executes number of steps entered
A-Z executes steps equal to letter ASCII value minus >30

(e.g., “A” executes >42->30 or >12 steps) -- ASCII
values less than >30 execute one step

O (zero) executes one step after setting cycle counter to 000000
* asterisk means execute until a key is pressed
“ADDR executes until PC = ADDR or until a key is pressed

The Monitor command CY clears the cycle count. If the cycle count exceeds 999999,
it will “roll over” (i.e., increment to 000000 and continue incrementing).

6-37

Debug Monitor

The display can be sent to Port 1 or 2. If to Port 2 (printer), the count must be 3 or
higher.

EXAMPLE:

One step requested; then three more asked:

?SS<CR>
LAST INST---> FOO9 DECD R20
CYCLE COUNT = 000519
NEXT INST---> FOOB JC >FOO9
PC=FOOB cC=1 N=1 Z=0 I=0 SP=R1 A=FO B=0C 2<CR>
CYCLE COUNT = 000526
NEXT INST---> FOO9 DECD R20
PC=FO09 C=1 N=1 Z=0 I=0O0 SP=R1 A=FO B=0C (1)
CYCLE COUNT = 000537
NEXT INST---> FOOB JC >FOO9
PC=FOOB C=1 N=1 Z=0 I=0 SP=R1 A=FO B=0C <SP>
CYCLE COUNT = 000544
NEXT INST---> FOO9 DECD R20
PC=FO09 C=1 N=1 Z=0 I=O SP=R1 A=FO B=0C <CR> P

Four single-steps were taken. The first was from the SS command. Then the
number ”2” was entered, executing two more single-steps. Then <SP> caused
the fourth to be taken. Finally <CR> returned control to the Monitor.

6.6.48 Save Memory - Tektronix Format (ST)

6-38

FORMAT: ST <start addr> <stop addr> {port 1,2,3}

PARAMETERS: 1) Memory start address
2) Memory stop address
3) Output port (default=3)

Purpose: to dump memory to Port 1, 2, or 3. Data will be dumped in Tektronix object
format.

The object file must be at load module (absolute) level (see Section 6.8).

EXAMPLES:

1)

2)

3)

27ST F806 FFFF<SP>
FILENAME: A<CR>
READY TO RECORD?<SP>
>

Memory at locations >F806 to >FFFF inclusive are dumped to file “A” on
cassette tape tn Tektronix object file format.

?ST F806 FFFF 2
?

Locations are dumped to Port 2.

?ST_ F8FF F500<CR>
ADDRESS ERROR
?

No operation occurs because the dump end address is less than the dump start
address.

Debug Monitor

4) ?ST_F806<CR>
ADDRESS ERROR 5

No operation occurs because the dump end address is missing.

6.6.49 Instruction Trace Execution

The EVM provides two means of tracing program execution. One is by entering the

TC command (Section 6.6.50) so that one-to-six different values (registers, memory

addresses) are printed when one of the following program/single-step commands
are executed:

EF Execute to breakpoint with trace and fixed display
ET Execute to breakpoint with trace

FS Single step with fixed display

TS Single step with trace

In addition to that above, another form of trace can be employed that accumulates

a record of the source statements executed. Besides working with the above four
commands, this trace also works with:

EX Execute to breakpoint, and

SS Single step execution

Using the latter form of trace with one of these six commands, execution continues
until the breakpoint is reached or trace memory is filled (with source-statement data).

lf the breakpoint is reached, the breakpoint display is issued along with the amount
of instructions executed in a "SAMPLE COUNT = ” message. If memory containing

the trace steps is exceeded before reaching the breakpoint, a "TRACE MEMORY

FULL” message is issued and execution stops.

In order to use this accummulated trace sample, the following commands are used.

These are described in the following paragraphs.

Page

IS Print count of trace samples (qty. of
instructions) 6-40

IT Inspect trace (view instructions executed) 6-40
PT Print trace memory contents to port 1 or 2 6-41

TF Turn off trace 6-41

TO Turn on trace 6-41

Capacity to accumulate sample counts is limited by the RAM in socket U38:

In U38,
2K static RAM 500 trace-sample capacity

8K static RAM 3500 trace-sample capacity

If it is necessary to modify U38 memory, observe the following:

U38 RAM Size Set Jumper P3
2K RAM P3 B-C

8K RAM P3 A-B

Debug Monitor

6-40

Inspect Trace Sample Counts Accummulated (IS).

FORMAT: IS

PARAMETERS: None

Purpose: to display the hexadecimal amount of sample counts (instructions)
executed under trace.

The hexadecimal number of sample counts taken during trace is displayed. This

command is automatically executed (i.e., message displayed) when trace is on and
a breakpoint reached or trace memory is full.

EXAMPLE:

?IS
SAMPLE COUNT = >O0O0C (12 samples recorded)
?

Inspect Trace Samples (IT).

FORMAT: IT <trace number or prgm. memory addr.> <CR,SP>

PARAMETERS: Trace sample number (hex) to start display (default = 000), or
Program memory address to start display specified by:

- hexadecimal memory address, or
- label preceded by @ Purpose: To display up to 22 trace

samples of executed source lines.

EXAMPLE:

?IT @D1 (start trace at label D1)
OAA S PC=FAEO Dl DECD R20

OBF B - PC=F904 MOV = 3, R1
(J (wait for keyboard input)

The [] at the bottom of the display means a keyboard input can be made to do one
of the following:

<SP> display the next 22 samples
<sample number> display 22 samples beginning at a sample number
<memory addr> display 22 samples beginning at a memory address

- hexadecimal value (e.g., F99A)
- source label (e.g., @SUM)

<CR> exit to Monitor

If less than 22 samples are available beginning with the first location to be displayed,
all remaining samples will be displayed. If no samples are at the location, the
“SAMPLE COUNT =” message will be issued. A display dump can be stopped by
any key. When stopped, any key will restart and <ESC> will return to the Monitor.

Trace-line fields are explained in this trace example:

Debug Monitor

OAA S PC=FAEO Dl DECD R20
(1) (2) ==(3)-- 0 -4------ (4) -------

(1) trace sample number
(2) S = single step

B = first instruction or breakpoint
(3) PC address of statement executed
(4) Source statement (label has to be in label table)

Print Trace Sample (PT).

FORMAT: PT <output port>

PARAMETER: Output port (default=1)

Purpose: To print entire trace memory to an output port (1 = terminal, 2 = printer).
An output port parameter other than 1 or 2 will cause an error message. The trace
must be on (TO command). If the trace is empty, the "SAMPLE COUNT=000" will
be displayed.

EXAMPLE:

2PT 1
000 S PC=F800 STRT MOVD %>100,R1
001 S PC=F802 MOV %>FF,R2

AAA PC=FAEO S4 DECD R4
AAB PC=FAE2 INC Sl
AAC B PC=FAE4 D4 DECD R20

The trace shows execution (with trace on or TO command issued) of a program
starting at > F800 and interrupted by a breakpoint at >FAE4.

Turn Off Trace Sample (TF).

FORMAT: TF

PARAMETERS: None

Purpose: To turn off trace function.

Turn On Trace Sample (TO).

FORMAT: TO

PARAMETERS: None

Purpose: To turn on trace and clear trace-sample memory.

EXAMPLE:

?TO SAMPLE COUNT = >000

The sample-count display of >000 indicates trace-sample memory is cleared. It is
not necessary to execute TF before TO in order to clear trace-sample memory.

6-41

Debug Monitor

6.6.50 Configure Single-Step Trace (TC)

6-42

FORMAT: TC

PARAMETERS: None

Purpose: to set the values to be displayed by four program-execute and single-step

commands.

Up to six “fields” can be defined with this command. Legal range of register locations

is RO to R127 or R255, depending on the size of the Register File. These values will

be displayed when using the following commands:

EF Execute to breakpoint with trace and fixed display

ET Execute to breakpoint with trace

FS Single step with fixed display

TS Single step with trace

When the command is first executed, the cursor is positioned at the start of the next

line. You can enter three types of data:

e Register locations (RO to R127 or R255)

Peripheral File locations (PO to P255)

e Memory locations (hex address preceded by > or label preceded by @ if label

table exists -- use AT command to check)

An <SP> moves the cursor to the next field after entering data. A <CR> concludes

the command. Entering the command when field(s) contain data, the fields are

printed and you can:

e Enter a new value below the value shown, or

e Enter "S" to “skip” to the next field without changes, or

e Enter “B” to delete (blank) the field directly above.

Each field is 11 characters long and as each field is entered, the cursor will be

positioned at the start of the next field. If six “S” commands are entered, the command

will terminate. If a “B” command is used on a blank field, the command will terminate.

If <SP> is entered immediately after “R”, “P”, or “>”, then “RO”, “PO” or >0000 is

assumed.

Any time a <CR> is entered, the command terminates. The trace line is redisplayed

if any changes have been made. If an error occurs during the command, no change

is made to any field.

EXAMPLE:

Three trace areas are designated, then the EF command is executed with values

at each area printed out.

?TC<CR>
R20<SP> P254<SP> >F9AA<CR>

R20=DA P254=FF >F 9AA=FF

?EF_1<CR>
NEXT INST-~---> 0030 Dl DECD R20

PC=FO09 C=1 N=1 Z=0 I=0 SP=R1 A=00 B=00 BPl

R20=D9 (11011001) P254=FF (11111111) >FOAA=FF (11111111)

?

Debug Monitor

6.6.51 Single-Step Program with Trace (TS)

FORMAT: TS <count> {port 1,2}

PARAMETERS: 1) Number of trace steps (default=1)
2) Output port (default=1)

Purpose: to single-step a program providing the single-step display used by the
Monitor SS command as well as the memory trace display entered with the TC

command. Except for the expanded display, this is the same as the SS command.

For each count, one program step is executed beginning at the PC value. A count
of 0, 1, or no entry (default) specifies one step. As each step (up to 255 maximum)
is executed, a display is output.

After the initial step count has expired, the following can be entered:

<SP> executes one step
<CR> returns control to the Monitor

1-9 executes number of steps entered

A-Z executes steps equal! to letter ASCII value minus >30
(e.g., “A” executes >42->30 or >12 steps) -- ASCII

values less than >30 execute one step.

O (zero) executes one step after setting cycle counter to 000000

* asterisk means execute until a key is pressed

*“ADDR executes until PC = ADDR or until a key is pressed

The display can be sent to Port 1 or 2. If sent to Port 2 (printer), the count must be

3 or higher.

EXAMPLE:

One step requested; then two more asked:

?TS<CR>
LAST INST---> FOO9 DECD R20

CYCLE COUNT = 000519
NEXT INST---> FOOB JC >FOOS
PC=FOOB C=1 N=1 Z=0 I=0 SP=R1 A=FO B=0C
>FFFF=FO (11110000) R20=25 (00100101)
P254=FF (11111111)
P9=00 (00000000) P9=00 (00000000)

2<SP>
CYCLE COUNT = 000526
NEXT INST---> FOO9 DECD R20
PC=FO09 C=1 N=1 Z=0 I=O0 SP=R1 A=FO B=OC
>FFFF=FO (11110000) R20=25 (00100101)
P254=FF (11111111)
P9=00 (00000000) P9=00 (00000000)
(1)
CYCLE COUNT = 000537
NEXT INST---> FOOB JC >FOO09
PC=FOOB C=1 N=1 Z=0 I=0 SP=R1 A=FO B=0C
>FFFF=FO (11110000) R20=24 (00100100)
P254=FF (11111111)
P9=00 (00000000) PO=00 (00000000)

<CR>

?

The Monitor command CY clears the cycle count. If the cycle count exceeds 999999,
it will “roll over” (i.e., increment to 000000 and continue from there).

Debug Monitor

6.6.52 Load Program Counter with TRAP 0 (Zero) Vector (TO)

FORMAT: TO (T-zero)

PARAMETERS: None

Purpose: to load the PC with the reset vector.

This command is a subset of the RT command (Reset Target Processor)

EXAMPLE:

?TO
PC=FFFF C=0 N=0 Z=1 I=0 SP=R1 A=FF B=FF

6.6.53 Execute Assembler (XA)

6-44

FORMAT: XA {port 0,1,2,3} {port 0,1,2}

PARAMETERS: 1) Source input port (default=0)
2) Listing output port (default=1)

Purpose: to execute the Assembler.

The Assembler is discussed in Section 5. The source input port can be O (internal
RAM), 1 (terminal), 2 (host download), or 3 (audio tape). If the input port is 2, the
download mode is selected. If the input port is 1, terminal emulator mode is selected.
For TMS7020 and TMS7040 devices, assembly from RAM is allowed. Input port 0
enables assembly from RAM. If the Text Editor is empty, the command will terminate
after entry of the 0. Specifying O for the output port suppresses the listing except
for error messages. The error messages are sent to the terminal if the input port is 2
or 3, and they are sent to Port 2 if the input port is 1. The listing scroll can be stopped
and restarted with <SP>.

lf source input is from Ports 1 or 2, a “LINE NUMBERS? (N)” prompt is issued. An
“N” (or <CR> for default) response means the source file has no line numbers. Any
other response means the Assembler must expect a line number and a space at the
beginning of each source statement. If a "N” response is given before receiving a file
with line numbers, the numbers will be mistakenly assembled as if part of the state-
ment.

An “INITIALIZE? (Y)” prompt asks if program memory should be filled with >FF
values and clear the label table before assembly. This will be done with a “Y” (or
<CR> for default). A”N” will leave program memory unchanged except for locations
containing the new assembled object code.

The Assembler does not output tagged object code. Instead, absolute values are
loaded into respective memory locations. Assembled object code is saved using SM
or ST commands (Save Memory, 7000 or Tektronix format), and reloaded with the
LM or LT commands (Load Memory, 7000 or Tektronix format). When data is loaded
in download or terminal emulator mode and during assembly from RAM, the DATA
LED is on when data is being loaded into the buffer and off when it is being
assembled into RAM.

EXAMPLES:

1) ?XA<CR>
INITIALIZE? (Y)<CR>
TMS7000 ASSEMBLER

Debug Monitor

A file is assembled from the Text Editor.

2) ?XA 21
LINE NUMBERS? (N) <CR> INITIALIZE? (Y) <CR>
TMS 7000 ASSEMBLER

The Assembler is entered with source incoming on Port 2, listing on Port 1
(terminal), and no line numbers with the text.

6.6.54 Execute Text Editor (XE)

FORMAT: XE {port 0,1,2,3}

PARAMETERS: _ Initial source input port (default=0)

Purpose: to execute the Text Editor.

The Text Editor commands are described in detail in the Text Editor section (Section
4). :

The input port can be 0 (user RAM), 1 (terminal emulator), 2 (host download), or
3 (audio tape). If no input port is specified, Port O is assumed and text entry from
the terminal keyboard is enabled. After display of the Text Editor banner message
“EVM TEXT EDITOR”, the Text Editor will do one of two things depending upon the
input port specification. If Port O (terminal) is specified, the number of bytes of
available text storage space is printed out (in decimal) on the next line, and the Text
Editor prompt ”*” is displayed on the following line. If Ports 1,2 or 3 are given, the
banner message is displayed and the Text Editor waits until the download is finished
before printing out the remaining free RAM on the line and printing the prompt on
the following line.

When data is loaded in download or terminal emulator mode from Ports 1 or 2, the
DATA LED is on when data is being loaded into the buffer and off when it is being
linked into RAM.

Data downloaded through Ports 1 or 2 that has been created with another editor
must be bracketed with “>” and ”<” characters that signify the beginning and end
of file (BOF and EOF) to the EVM Text Editor. These characters must be the first and
only character on the first and last lines of the file with each one being bracketed
by a <CR>. Line feed characters (<LF>) can optionally follow a <CR>.

Like the XA command, the Text Editor can accept an input text file without line
numbers and create line numbers with an increment of 1 during download. This
feature is available only with input from Ports 1 and 2 and is achieved by using the
"N” or <CR> (default) answer to the "LINE NUMBERS? (N)” prompt. An “N” (or
<CR>) response tells the Text Editor that no line numbers precede lines in the
incoming file; thus the editor creates a four-digit line number as text lines are received.
Otherwise, any other entry means the Text Editor should expect a _ four-digit line
number followed by a space at the start of each line in the file.

EXAMPLES:

1) ?XE<CR>

EVM TEXT EDITOR
"H" HELP
EDITOR RAM = 21777 BYTES
*

6-45

Debug Monitor

The Text Editor is entered with initial text input from Port O (terminal). This is
mode used for initial entry of text.

2) ?XE_3<CR>
FILENAME: *<CR>
EVM TEXT EDITOR
A
16432
*

The Text Editor is entered with initial text input from the cassette tape. The first
SOURCE file encountered (”*” after "FILENAME:”) is to be loaded. The file name
("A") is displayed after load is complete.

3) ?XE 2
LINE NUMBERS? (N) <CRD>
EVM TEXT EDITOR
11014
*

A file is loaded from a host computer and line numbers are created.

6.6.55 Execute Line Assemblers (XL and XP)

FORMAT: XL or XP

PARAMETERS: None

Purpose: to enter the Line-By-Line Assembler (LBLA).

The XL command creates a new symbol table, and the XP command uses the old
(present) symbol table. These commands are described in detail in Section 5.3 and
Section 5.4, respectively.

The XL command fills memory with >FF starting at the device default PC address.
It also clears the label table.

6.6.56 Execute Reverse Assembler (XR)

6-46

FORMAT: XR <start addr><end addr><port 1,2,3>

PARAMETERS: 1) Address to start reverse assemble
2) Address to end reverse assemble
3) Port to receive listing (default = 1)

Purpose: to enter the Reverse Assembler.

The Reverse Assembler allows reassembling from object code, using the present
assembler label table (shown by the AT command), to generate comparable source
code. Memory between the start-address and end-address parameters are decoded
into source statements to be sent to the port selected. If no parameters are entered,
defaults equal previous values used. If no values have been entered since reset, 128
bytes starting at device PC default are reverse assembled with source sent to port
1.

Object values equated to labels (in the label table) will be represented by labels in
the source statements; otherwise, these will be represented by absolute values.

Debug Monitor

A single line describes each source line with 1) execution cycles followed in
parentheses by additional cycles if conditional jumps were executed, 2) one to four
bytes of object, 3) address 4) source statement consisting of label, mnemonic, and
operand. For example, a one-line reverse assembly:

?XR F812 F812<CR>
5

cycles

jump)

E3FC F812 LABEL JC D2
Opcode Mem. Source statement

addr.

To reverse assemble one line at the PC value, enter:

?XR_$ +<CR>
(+2) E3FC F812 LABEL JC D2

A single “+” in the second parameter reverse assembles one line at the PC value ("$”
= PC). For multiple-line assembly, use a number with the plus sign to specify bytes
(e.g.,XR $ +>20 reverse assembles from the PC address to PC+>20).

6.7 System Utilities and Access Commands

System utilities can be used to enhance program debug and execution while system
access commands allow access to the EVM system (vs. the emulated system).

The following one-letter (preceded by slash) commands can be used to assist in
program development and debug:

Command

/A

/C

/D

/E

/H

/I

/M

/N

Use

Reset the assembler label table. This will disable the table used in reverse
assembly used in displays for single step and breakpoint commands.
The table is set by the assemblers.

Return cursor-left and cursor-up key inputs to default values stored in
PROM U43. These values can be changed by the CL and CU commands
(described in Section 2.15)

Demo mode where dumps are made to both port 1 and port 2 simul-
taneously. The enabling/disabling of port 2 is toggled by each entry
of the /D command.

Reset the assemble-from-Text-Editor flag. After assembling with XA
0, execution by single step and to breakpoints will display source lines
from the Text Editor. This command causes displays to come instead
from the reverse assembler (do not have comments, etc.)

Displays help menu of system utility commands.

Toggle Port 1 baud rate. For each "/I” entry, the baud rate is set to
110-1200 baud (printer mode) or to 2400-9600 baud (terminal mode).

Resets response of five commands to default value: DM (128 bytes from
default PC), MM (default PC for device), MP (PO), MR (RO), and XR
(128 bytes from default PC).

Display/modify number of nulls transmitted after a carriage return. This
defualts to 00 at reset and can be any number from 00 to >FF. This

6-47

Debug Monitor

number of nulls is transmitted after a CR is sent to the currently enabled

EIA port (1 or 2). In the demo mode, the nulls are transmitted to the

terminal before the CR is echoed to port 2.

/R Toggle size of register file. File sizes are 128 and 256, toggled for each

entry of the /R command. File size is determined by processor and set

at reset.

/W Change buffer timeout delay. This sets the delay after raising the

handshake line or the receipt of the last character in a download buffer

before the buffer is unloaded internally. This is the number of 40 ms

delays and can be a number from 00 to >FF. Powerup default value is

>20. When using the ‘HS 1’ (XON) and the line-wait feature of a

terminal emulator, this number can be lowered to speed the download.

6.7.1 System Access Commands

6-48

Listed in Table 6-2 are the System Access commands. Each command is similar to

the equivalent Monitor command except it is preceded by a "$” character, and each

has the same parameters as the appropriate Monitor command.

The EVM firmware scales all memory address inputs to the >4000 to >7FFF range

for internal use while displaying these addresses in the >CO0O0 to >FFFF range, which

is the range that the >4000 to >7FFF RAM will occupy after the memory bank swap

that accompanies program execution. In this way, you work in the true microcom-

puter address range. (EVM memory map is shown in Figure 6-2.) The System Access

commands provide a mechanism to bypass this address scaling for selected Monitor

commands in order to utilize the entire memory map, including the EVM firmware

that resides from >COQ00O to >FFFF when the Monitor is running.

For example, the Monitor MM command accesses addresses corresponding to the

RAM of the microcomputer. The $MM command accesses addresses actually used

by the EVM. As shown in Figure 6-2, these areas are separated by >8000. Thus, a

value found by the MM command at >F010 will also be found by the SMM command

at >7010.

Debug Monitor

Table 6-2. System Access Command Summary

COMMAND DESCRIPTION:t

SCE Compare EPROM (see page 9-3)
DM/SDH Display Memory

$DS Display Machine State
SFB Find Byte in Memory
SFM Fill Memory
SHE Help Menu

SLM Load 7000 Object Code (see page 12-2)
SLT Load Tektronix Object Code (see page 12-2)
SMM Display/Modify Memory

SMR Display/Modify Register File

SMP Display/Modify Peripheral File from PO-P255
SMV Move Memory

SPE Program EPROM (see page 9-2)

SRE Read EPROM (see page 9-4)

SRT EVM Power Cycle Reset (see page 2-4)

$RU Execute EVM Firmware in RAM (see page 12-2)

SSM Save Tektronix Object to Audio Tape (see page 8-1)

SST Save 7000-Format Object to Audio Tape (see page 8-1)

SXA For Creation of User Commands (see page 12-2)

SVE Verify Erased PROM (see page 9-4)
$XL For Creation of User Commands (see page 12-2)

$XP For Creation of User Commands (see page 12-2)

$XR For Creation of User Commands (see page 12-2)

TThese are described in Section 6 except where noted otherwise.

>0000
NOT AVAILABLE

>0200
USER RAM 4 (U42)

>2000
USER RAM 3 (U41)

>4000

USER RAM 2 (U40) ADDRESS OF OBJECT CODE
DURING MONITOR OPERATION >6000

USER RAM 1 (U39) (PHYSICAL ADDRESS)

>8000

EVM RAM (U38)

>A000

EVM FIRMWARE (U45)

>C000

EVM FIRMWARE (U44) ADDRESS OF OBJECT CODE
>E000

>FFFF

DURING EXECUTION
EVM FIRMWARE (U43) (LOGIC ADDRESS)

Figure 6-2. EVM Memory Map

6-49

Debug Monitor

6.8 Object Code Loading and Dumping

The EVM accepts object code in three formats (7000, 9900, and Tektronix) and

outputs object code in two formats (7000 and Tektronix). Input files must be at

absolute or load module level. For an explanation of each of these formats, see the

appropriate assembler manual (a listing of these assembler manuals is given in

Section 1.5). Object files other than load level may cause the EVM to generate an

error for that file. Note that the EVM assemblers do not output tagged object, merely

absolute values loaded at set memory locations.

6.8.1 7000 Dump Format

If a dump is performed from locations >FF34 to >FF46, then the 7000 dump format

would appear as follows:

KOOOOPROGRAM 9FF34BDEADBDEADBDEADBDEADBDEADBDEADBDEADBDEAD7FOBFF

BDEAD*DE7FDC6F

:<CR>

If a dump is performed from locations >FF34 to >FF47, then the 7000 dump format

would appear as follows:

KOOOOPROGRAM 9FF34BDEADBDEADBDEADBDEADBDEADBDEADBDEADBDEAD7FOBFF

BDEADBDEAD7FD29F

: <CR>

The 7000 format tags are explained below:

“K" 4-digit count of relocatable bytes followed by 8-character

program identifier (this is a “O” for 9900 format).

Load address:

“9” 4-digit origin address follows the “9”.

Object code data:

"B” 4-digit word follows a “B”.

wee

2-digit byte follows a ”*” (7000 format only).

End of line:

“q" 4-digit checksum follows - compare the checksums.

‘8” 4-digit checksum follows - ignore the checksum.

a ignore all characters until <CR>.

The 7000 checksum is the 2’s complement of the 16-bit sum of the ASCII values

of all characters on the line between carriage returns, excluding all control characters

such as <CR>, <LF>, and <FF>.

Debug Monitor

6.8.2 Tektronix Dump Format

The two previous dumps would be represented in Tektronix format as follows:

/FF34130EDEADDEADDEADDEADDEADDEADDEADDEADDEADDEDD
/O0000000<CR><LF>

and:

/FF34140FDEADDEADDEADDEADDEADDEADDEADDEADDEADDEADF4
/O00000000<CR><LF>

respectively.

The Tektronix line starts with a "/” that is never included in checksum calculations.

The next four digits are the address to store the first byte of data on that line. The

next two bytes are the number bytes of data on that line. The next two bytes is the

first checksum, an 8-bit value consisting of the sum of the hex values of each digit

in the address and byte count fields. The data bytes follow, equal to the count given

at the start of the line, followed by another checksum, an 8-bit value equal to the
sum of the hex values of each digit of the data bytes only. The dump is terminated
with a line of zeros in the first three fields.

6.9 Software Breakpoint TRAP 0

The TRAP 0 location is “borrowed” at execution time and used to re-enter the

Monitor from a program. In the process of borrowing the vector, the contents of

>FFFE and >FFFF are saved in EVM system RAM and replaced by the address of

the breakpoint handler. When a breakpoint is encountered, the original vector

contents are restored. This is not the case for the execute without breakpoints

command (RU). Since this command provides emulation of 100% of the instruction

set in real time, it does not borrow the user’s TRAP O vector contents. Execution

commands other than the RU command will execute a TRAP 0 in the user’s program

but will require some processing time to determine that a breakpoint was not

encountered.

6.10 The Stack

The breakpoint routine pushes the PC and ST onto the stack, which allows the

Monitor to save the state of the interrupted program. The PC and ST define this state

and require three stack locations. Therefore, in addition to the stack locations
implemented in the program, three additional stack bytes must be reserved for

Monitor execution of breakpoints and/or single-steps. The Monitor uses these three

additional stack bytes as temporary storage to transfer the current PC and ST registers

of the program to the Monitor's local storage. This does not affect the execution
with the stack, since the correct stack pointer value is restored and displayed by the

Monitor. The next three register locations beyond the stack cannot be used as work
registers, since their contents will be written over by the Monitor upon execution of

a breakpoint or single-step.

For example, if the program is known to use 12 stack locations, and the Stack Pointer
is initialized to R1, the registers R14, R15, and R16 should be reserved for Monitor

use, as shown in Figure 6-3. Figure 6-4 demonstrates the procedure for placing the

stack at the end of the Register File.

6-51

Debug Monitor

R1 > STACK POINTER IS INITIALIZED TO R1

R2 |)

>? USER STACK

R18 USED BY MONITOR

$ > R17-R127 MAY BE USED AS WORK REGISTERS

R127 J

\ ™48S7042/'70C42 DEVICES

Figure 6-3. Example of Setting the Stack

Debug Monitor

6.11 Reset

R115 \ STACK POINTER IS INITIALIZED TO R115

R120 | p USER STACK

R126 USED BY MONITOR

™S7042/'70C42 DEVICES

Figure 6-4. Example of Setting the Stack to the Register File Limit

The EVM is designed to distinguish between a “cold” reset (one performed at

powerup) and various types of “warm” resets (performed at various points during

EVM operation). The reset switch may be toggled at any time during program

execution to halt the program, causing the Program Counter at the time of the reset

to be displayed:

STOP AT PC=xxxx

where xxxx is Program Counter value at reset.

The disadvantage to this approach is that the RESET interrupt initializes the Stack

Pointer to R1 and stores the interrupted Program Counter in RO and R1. Therefore,

you cannot start executing from the point of the RESET interrupt. To make the best

use of the displayed PC, the program can be executed again with a breakpoint equal

to the interrupted PC. When this “warm” reset occurs, after the PC is displayed the

Monitor will set the PC and the SP and ST registers to their default values (shown

Debug Monitor

in Section 6.5). The advantage of the warm reset is that the program can be stopped
at any time to check for proper execution to that point.

Distinguished from the RESET interrupt, which forces execution of TRAP 0 after
initializing the processor, is the execution of the TRAP 0 instruction opcode (>FF).
If executed within the legal range of addresses during emulation (PC default to
>FFFF), it is emulated like any other instruction. If executed outside the legal address
range, emulation halts and the “STOP AT PC=xxxx” message is issued, where xxxx
is the address of the >FF opcode. This message is also issued any time a PC value
outside the legal range is detected prior to execution.

6.12 Reset During EVM Operation

If reset is performed during Monitor command or Assembler execution, control! will
immediately return to the Monitor top level and the "?” prompt will be printed. A
subsequent reset will require a <CR> from the terminal and print the Monitor banner
message.

If reset is performed during Text Editor command execution, control will immediately
return to the Text Editor top level and the "*” prompt will be printed. A subsequent
reset will require a <CR> from the terminal and print the Monitor banner message.
Except for the first reset after powerup and execution of $RT (see Section 2.6.1), reset
never affects the contents of the Text Editor.

6.13 Monitor Errors

6-54

ERROR This is the general error indicator used when
an error condition exists that is not covered
by a specified error message:

1) Presence of an invalid tag character or
control character during LM or LT
execution. ERROR is not fatal and load-
ing continues. The approximate address
of the error is sent to the EIA port that is
not used for input.

2) Entry of a parameter that is out of legal!
range. Example is entry of an input or
output port for a load or dump that ts out
of the range 0 to 3. This is a fatal error.

INPUT ERROR This error is issued immediately after a char-
acter has been input that is not within the legal
range for the operation involved:

1) Attempting to input a character other that
0-9 or A-F when hexadecimal input is
expected or 0-9 when decimal input Is
expected will cause immediate INPUT
ERROR.

2) During LM, LT, or LS execution, only
hexadecimal data is expected. If charac-
ters other than 0-9, A-F are encountered,
INPUT ERROR is issued. In this case, the
error is fatal.

Debug Monitor

ADDRESS ERROR

CHECKSUM ERROR

TAPE ERROR

This error is issued immediately after entry of
start and stop address parameters in a
command string when the start address is
greater than the stop address. Also, failure to
enter all required address parameters or entry
of an address that is out of the legal range for
that command will cause ADDRESS ERROR.

During LM and LT execution, occurrence of a
load address outside the range of PC default
for the current device type to >FFFF will cause
ADDRESS ERROR. In this case, the error is
fatal.

This error is a checksum error for LM and LT
commands. The error is not fatal and loading
continues. Along with the error message, the
approximate address of the error is printed. The
address in this case is only approximate
because any character on the line that was
input could have caused CHECKSUM ERROR.

This error is the checksum error for the audio
tape read operation. Any time audio tape is
used, this error indicates that the checksum
written at the end of a block of tape has disa-
greed with the checksum generated when the
block is read. This error is not fatal, and
loading will continue. This error can also occur
when executing the Text Editor from tape or
assembling a file from tape.

6-55

7. In-Circuit Emulation

The EVM is designed to emulate a program in Single-Chip mode with the program
being executed from the onboard RAM. Emulation is achieved through a detachable
40-pin emulation cable connecting the EVM with your prototype. The emulation
cable has 40-pin connectors at both ends equipped with test points for each line.
Use of a low profile socket at the target end as a pin protector is recommended. Figure
7-1 shows connector and connector-pin orientation on the board.

Ci
7

PIN ™ y

PIN 1 COLORED
STRIPE = \ EMULATION

CABLE

Figure 7-1. In-Circuit Emulation Cable and Connectors

7-1

In-Circuit Emulation

7.1 In-Circuit Emulation Hardware

During in-circuit emulation, the onboard TMS7Oxx is functioning in Full Expansion

mode, thus disabling Ports C and D and the most significant nibble (MSN) of Port

B. Any ROM on the part used on the EVM will be ignored since the Mode Control

pin is tied to +5 V. The disabled Ports C and D I/O pins are replaced by a RAM

Input/Output Timer (RIOT) chip (Rockwell 6522 or 6532 on the NMOS EVM,

National NSC810 on the CMOS EVM). Port B pins that are disabled in the Full

Expansion mode are replaced by a 4-bit D-type register (74LS175 on the NMOS

EVM, 74C175 on the CMOS EVM), so that the most significant nibble of Port B is

a TTL output for the NMOS EVM. This will cause a drive-capability difference

between the emulated TMS70xx and the actual onboard TMS70Oxx. All other features

are emulated exactly, because the onboard TMS70xx is doing the emulation.

7.2 Powering a Target with the EVM

Pin 25 of the emulation cable is the +5 V target Vcc. (Pin numbers are shown on

cable connectors -- see Figure 7-1.) This pin is not directly connected to +5 V on

the EVM. The B-C connection on hardware jumper P1 connects the EVM +5 V to

the target Vcc to allow the EVM to power a small prototype. If the prototype supplies

its own power, the A-B connection on P1 will isolate the EVM +5 V from the target

Vcc.

For the CMOS EVM, the target Vcc must be supplied to the EVM via pin 25 of the

emulation cable because the buffer chips are actually powered by the target, allowing

Vcc to vary over its full range.

EVM Voc ISOLATED
P1

L, A - NO CONNECTION
B - EVM Vcc

h C - EMULATION CABLE PIN 25

EVM Voc TO TARGET

Figure 7-2. EVM/Prototype Power Isolation (P1)

7.3: Connecting an External Clock to the EVM

7-2

Hardware jumper P2 selects the clock input for the TMS70xx on the EVM as shown

in Figure 7-3. When positions B and C are connected, the EVM is clocked by the

onboard crystal. When positions A and B are connected, the EVM is clocked by the

TTL clock signal input at pin 17 on the emulation cable.

In-Circuit Emulation

EXTERNAL CLOCK
P2

A - EMULATION CABLE PIN 17
B - TMS70XX PIN 17
C - CRYSTAL

INTERNAL CLOCK

Figure 7-3. Internal/External Clock Configuration (P2)

Whether the EVM is clocked internally or externally, the frequency at the P2 jumper
must not be below 1 MHz for the NMOS EVM in order to satisfy the minimum
frequency requirements of the Rockwell 6532 RIOT chip.

7.4 Making a New Monitor EPROM

During emulation with internal clock selected, the clock used for operation is the
same one that drives the Monitor EPROMs. If a different internal clock frequency is
needed, the crystal on the EVM must be changed and the >E000 to > FFFF EPROM
(U43) must be reprogrammed with the new values in the frequency-dependent
constant table (these are in Appendix D). This can be accomplished by transferring
the contents of the EPROM to RAM with the SMV command, changing the values
in the table, and programming a new EPROM. After putting this EPROM in place
of the original, change the crystal; the EVM is then ready to run at the new frequency.
For example:

?S$MV EOOO FFFF 4000 MOVE TO RAM
?$MM 5SFBx MODIFY IN RAM

2$PE QO 1FFF 4000 PROGRAM BLANK EPROM
PROGRAMMING COMPLETE
? REPLACE NEW EPROM

7-3

8. Audio Tape System

An audio tape peripheral can be attached to the EVM to record the following types
of files on cassette tape:

e Source programs
@ Object programs in TMS7000 format
@ Object programs in Tektronix format
e Machine-state data (EVM current register values)

8-1

Audio Tape System

8.1 File Names and Audio Tape Commands

File type (listed on 8-1) is set by the command used to create it. Files in each file

type can be given a single-letter (A to Z) file name. To avoid errors, file names should

be different within each file type. Because files are identified by type as well as name,

files of different types can have the same name without confusion (i.e., both a

TMS7000 source and TMS7000 object program on the same cassette could be

named “A” without creating a tape search problem). Table 8-1 lists the file types

and the commands used to access them. Table 8-2 lists the commands used with

the audio tape system.

Table 8-1. Tape File Types and Associated Commands

FILE TYPE SAVE A FILE ON TAPE FROM TAPE
COMMAND TO CREATE AND COMMAND TO READ A FILE

“Q 3” (Quit Editor) "XE 3” (Execute Editor)

“KA 3 1” (Execute Assm)

7000 Object “SM 3” (Save 7000 Object) “LM 3” (Load 7000/9900 Object)

Tek Object “ST 3” (Save Tek Object) “LT 3” (Load Tek Object)

Machine State “DS 3” (Display State) “LS 3” (Load State)

8-2

Commands that prompt form “FILENAME” when dealing with Port 3 will allow more

than one character but will use the last character entered as the file name. Commands

that read from tape will also accept “*”, which will load the first file encountered of

the proper type. For example:

?XE_3<CR>
EVM TEXT EDITOR

FILENAME: *<CR>

A

16432
*®

The Text Editor is entered with initial text input from the cassette tape. The first

SOURCE file encountered (“*”) is to be loaded. The name of the file found (“A”) is

displayed after load is complete.

Audio Tape System

Table 8-2. Audio Tape Command Summary

COMMAND M/Et FUNCTION PAGE

OR 1or2 M Display directory of files on tape 6-14

DS 3 M Save machine state on audio tape 6-15

LM 3 M Load 7000 object format from audio tape 6-26

LS 3 M Load machine state from audio tape 6-27

LT 3 M Load Tektronix format from audio tape 6-28

MO M Cassette motor control circuit is closed 6-30

to allow control at cassette keys

Q3 E Quit edit, store file on audio tape 4-11

SM 3 M Save 7000 object format on audio tape 6-36

ST 3 M Save Tektronix object format on audio tape 6-38

XA 3 M Execute Assembler, input source file 6-44

from audio tape

XE 3 M Execute Text Editor, input file from 6-45

audio tape

t M = Monitor command, E = Text Editor command

8.2 Audio Tape Connection

Connections from the EVM to audio cassette recorder are through Port 3 which

consists of the following jacks:

JACK NOMENCLATURE
EVM JACK ATEVM AT RECORDER USE

J3 Motor Control REMote Cassette recorder motor on/off

J4 OUT MIC Data in

J5 IN EAR Data out

Connectors can be built with two submini plugs for J3 and two mini plugs each for

J4 and J5. These plugs are carried by most home electronics vendors. Connect

tip-to-tip and barrel!-to-barrel. There is no requirement for shielded or twisted pair.

8.3 Cassette Recorder and Level Settings

A cassette recorder that is the equivalent of Radio Shack series CTR-XX is recom-

mended. At first, experiment by recording and playing back a practice file until you

obtain the best settings of the recorder’s VOLUME and TONE controls. Start with the

controls approximately two-thirds high. The optimum setting should be within the

bandwidth between the high and low settings that cause an error message when the

practice file is read back from the recorder. Because settings vary from machine to

machine, each has to be calibrated separately. Mark or note the optimum settings for

further reference.

8-3

Audio Tape System

8.4 Cassette Tapes

High-quality conventional cassette tapes of 20 minutes are recommended; however,
tapes up to 60 minutes can be used. Longer tapes are thinner and provide less fidelity.
Some special-formula tapes such as chromium oxide and metal-particle tapes are
not recommended. Use /eaderless data-grade tape.

Make sure tapes are not write protected (i.e., be sure the write protect tab on the
bottom has not been removed; if it has, cover the hole with a piece of tape).

8.5 Aborting a Tape Session

To stop the recorder in the middle of a playback or recording session, use the EVM
RESET switch. Following this, the Monitor prompt is displayed (or the Text Editor
prompt with the XE command executing). Use of this feature in the directory oper-
ation is discussed in Section 8.9.

8.6 Other Considerations

For recording, usually the PLAY and RECORD cassette keys are pressed at the same
time. Make sure that files are not accidently written over; this can happen when the
MO command is issued while the recorder keys are still in the record mode.

Be sure the VOLUME and TONE dials are at their optimum settings. Run through
several test record/playback sessions to verify settings before making a lengthy
recording.

The CHECKSUM ERROR and TAPE ERROR messages occur when the computed
and the read checksums for a record differ during a read operation. These are
discussed in Section 6.13.

8.7 Creating Audio Tape Files

When a command is executed with output port 3, a file is created and the EVM
responds with:

FILENAME:

A single alphabetic character filename must be entered, followed by a <CR>. The
EVM will allow more than one character to be entered, but will accept only the last
character entered before the <CR> as the file name. Next, the EVM will turn on the
tape motor, giving a chance to position the tape and/or press the record button. The
prompt is:

READY TO RECORD?

At this time, any keyboard input will continue with command execution. Dumping
of data to tape begins after a time delay to allow the motors to get up to speed
(approximately 1.5 seconds).

Two LEDs, DATA and RLY, support the tape operation. The former is, the data indi-
cator and the latter indicates the status of the motor. In the record mode, the RLY
LED Is illuminated while the motor is on, and the DATA LED is illuminated while the
data is being output. After the dump is finished, control will return to the Monitor
command handler.

8-4

Audio Tape System

8.8 Loading Audio Tape Files

When a command is executed with input port 3, a file is loaded and the EVM responds
with:

FILENAME:

A single alphabetic character file name must be entered, followed by a <CR>. The
EVM will allow more than one character to be entered, but will accept only the last
character entered before the <CR> as the file name. After the <CR>, the EVM begins
searching the tape for a file with the given name that is of the type required by the
command being executed (see Table 8-1). If the file is not found, reset will have to
be performed. If reset is performed during a tape operation, command returns
immediately to the Monitor and the “?” prompt will appear. If the Text Editor is being
entered from Port 3, control remains in the Text Editor and the ”*” prompt is displayed.
The “FILENAME” entry can be responded to with a “*”, which is the wildcard file
name. This will cause the first file encountered of the proper type to be loaded.

During the load operation, the RLY LED will act the same way as in the dump
operation above, but the DATA LED will light only when the file in question has. been
found and loading data from the tape into the buffer has begun. Since the tape load
routine starts to look for the file beginning with the current position of the tape, file
names of the same name and type can be stored on the tape and the tape can be
positioned past the first file, either by the Directory operation or using the tape
counter, before starting the load operation. Also, since a given load operation looks
for a file type in addition to file name, a source file and its assembled version can
be stored to tape with the same name for reference. The XE command will only
respond to a “SOURCE?” file, while the LM command will look for a "MLP OBJECT”
file.

8.9 Audio Tape Directory

The Tape Directory command DR allows you to keep a record of files stored to tape.
Executing DR with Port 2 produces hard copy for storage with the tape. All blocks
of data stored to tape contain a block descriptor byte that is written just before the
first data byte. This byte contains the file name, the file type, and whether the block
is the last block of the file:

LAST BLOCK
BLOCK | DESCRIPTOR FILENAME (ASCII CODE minus >41)

7 6 5 4 3 2 1 0

where BLOCK DESCRIPTOR for each type is:

00 (Machine State)
01 (Tek Object)
10 (7000 Object)
11 (Source)

During a Directory operation, the file name and type are printed out as they are first
encountered. The number of blocks in the file is printed out last, as the last block is
encountered. In this way, the Directory command can be used to position the tape

at the logical end-of-tape for storage of a file.

As the block count of the last file is printed, watch the DATA LED, which is lit while
the Directory command is reading a block. As soon as this LED goes out, that portion
of the file is now completely past the read heads of the cassette player. If a short file

8-5

Audio Tape System

is written over a part of a longer file, the Directory command will terminate the longer
file entry with the current block count and initialize a new entry with the new file

name. When the shorter file is past, the remainder of the old, longer file will be

displayed. Since no motor control other than ON/OFF is available to the EVM, the

Monitor has no way of maintaining logical end-of-tape marks for purposes of

terminating the Directory command; it must be terminated with a reset. When a reset

is performed from the Directory, control is passed directly to the Monitor command

handler, and a "?” is printed to the terminal.

Example 8-1. Example of Directory Output

AUDIO TAPE DIRECTORY

A SOURCE 05
A 7000 03
A STATE 02
D TEK Ol
F SOURCE 03
F 7000 02<RESET>
>

8.10 Motor Control Utility Command (MO)

8-6

Since the cassette motor is under program control, it is only enabled when the EVM

is trying to create or load a file. To enable the motor without disconnecting the motor

control cable, the Monitor MO command enables the motor until another key is

pressed. This provides a direct way to rewind tapes for storage or to fast-forward a

tape past the clear leader prior to storing a file to the beginning of a tape.

<+——- FILL (ALTERNATING 1'S AND 0'S)

+#——_ SYNC BYTE = >70
<«——— FILE DESCRIPTOR AND FILE NAME

TAPE
MOTION

«——_ 512 DATA BYTES

+——_ CHECKSUM BYTE (INCLUDES ONLY DATA BYTES)

Figure 8-1. Typical Audio Tape Data Block

Audio Tape System

8.11 Error Messages

ERROR

INPUT ERROR

ADDRESS ERROR

CHECKSUM ERROR

TAPE ERROR

This is the general error indicator used when
an error condition exists that is not covered
by a specified error message:

1) Presence of an invalid tag character or
control character during LM or LT
execution. ERROR is not fatal and load-
ing continues. The approximate address
of the error is sent to the terminal.

2) Entry of a parameter that is out of legal
range. Example is entry of an input or
Output port for a load or dump that is out
of the range 0 to 3.

This error is issued immediately after a char-
acter has been input that is not within the legal
range for the operation involved:

1) Attempting to input a character other that
0-9 or A-F when hexadecimal! input is
expected or 0-9 when decimal input is
expected will cause immediate INPUT
ERROR.

2) During LM, LT, or LS execution, only
hexadecimal data is expected. If charac-
ters other the 0-9, A-F are encountered,
INPUT ERROR is issued. In this case, the
error is fatal.

This error is issued immediately after entry of
start and stop address parameters in a
command string when the start address is
greater than the stop address. Also, failure to
enter all required address parameters or entry
of an address that is out of the legal range for
that command will cause ADDRESS ERROR.

During LM and LT execution, occurrence of a
load address outside the range of PC default
for the current device type to >FFFF will cause
ADDRESS ERROR. In this case, the error is
fatal.

This error is a checksum error for LM and LT
commands. The error is not fatal and loading
continues. Along with the error message, the
approximate address of the error is printed. The
address in this case is only approximate
because any character on the line that was
input could have caused the CHECKSUM

ERROR.

This error is the checksum error for the audio
tape read operation. Any time audio tape is
used, issuance of this error indicates that the
checksum written at the end of a block of tape

8-7

Audio Tape System

8-8

has disagreed with the checksum generated
when the block is read. This error is not fatal,
and loading will continue. This error can also
occur when executing the Text Editor from
tape or assembling a file from tape.

9. EPROM Programmer

The EVM is equipped to program the following EPROMs:

TMS2732 (4K x 8 EPROM)
TMS2764 (8K x 8 EPROM)
TMS27128 (16K x 8 EPROM)
TMS27C64 (8K x 8 CMOS EPROM)
TMS27C128 (16K x 8 CMOS EPROM)
TMS7742 (4K x.8 microcomputer)
SEEQ 72710 (1K x 8 microcomputer)
SEEQ 72720 (2K x 8 microcomputer)

It is good practice to check the voltage at the terminal strip power
connector (Vpp Out) periodically to ensure good programming. The
Monitor command “21” is provided to aid in Vpp calibration. Entering
the command will set Vpp to that value until any keyboard input, which
will return Vpp to +5 volts.

The LED near the EPROM sockets (PGM) is lit anytime a Vpp other than
+5 volts is applied to the programming sockets.

Caution:

1. Do not insert an EPROM if the PGM LED is lit.

2. Do not have a device in both U19 and U20 at the same time as signals
are enabled to both sockets at the same time.

9-1

EPROM Programmer

9.1 EPROM Programmer Commands

9-2

The EPROM programmer commands are similar in format.

COMMAND FUNCTION PAGE

PE Program EPROM with data from EVM RAM 9-2

CE Compare EPROM contents with RAM 9-3
RE Read EPROM contents into RAM 9-4

VE Verify EPROM contents with RAM 9-4
BC Clear the 727x0 EPROM 9-6
12 Adjust VPP in 12 V area 9-6

21 Adjust VPP in 21 V area 9-6

4x Program EPROM with data from U43, U44, or U45— 9-7

For each command, the EPROM and memory parameters assume leading zeros and

will use the last four digits if more than four are entered. Entry is in hexadecimal,

and the range restriction on the RAM start address allows entry of an even page

boundary. For example, for device type 1 (TMS7020 and '70C20) with default PC

= >F806, the lowest legal RAM start address is >F800. Execution of any EPROM

command will automatically terminate if the memory address increments from >FFFF

to >0000.

Each command also contains a destination parameter that specifies the device that

is to be programmed. This parameter enables an out-of-range address check of the

EPROM start and stop locations. In all cases, this parameter has a default. The default

value in stored in EPROM at location >FFBO and can be changed to any of the legal

device types in Table 9-1. The value is initially >O04 (TMS2764) and if it is changed

to an illegal! value, then >04 is assumed. Section 9.7 describes how to program the

EPROM.

Table 9-1 lists the destination-code parameters and the EPROM start and stop

minimum and maximum values used by the EPROM programmer commands

described below for that destination.

Table 9-1. EPROM Destination Parameters

DESTINATION EPROM START| EPROM STOP
CODE EPROM ADDRESS ADDRESS SOCKET

>02 TMS7742 >0000 >OFFF U19*

>04 TMS2764 >0000 >1FFF U19

>08 TMS27128 >0000 >3FFF U19

>C4 TMS27C64 >0000 > 1FFF U19

>C8 TMS27C128 >0000 >3FFF U19

>42 TMS7742 >0000 >OFFF U20t

>71 727104 >0000 >O3FF U20

>72 727204 > 0000 >O7FF U20

“Requires adapter RTC/PGM2764-06

TRev. A EVM boards only
* SEEQ microcomputer.

EPROM Programmer

9.1.1 Program EPROM from Memory (PE)

FORMAT: PE <EPROM start> <EPROM stop> <mem start> <dest>

PARAMETERS: 1) EPROM start address
2) EPROM stop address

3) Memory start address of data to be programmed
4) Destination (default=4; see Table 9-1)

Purpose: to program the specified device.

Locations are compared immediately after programming. When a miscompare occurs,
programming can be aborted with <CR> or continued by pressing any other key.
Section 9.8 discusses the compare error format and procedure.

EXAMPLES:

1)

2)

?PE 1800 1IFFF F800 <CR> COMPLETE
?

This example shows successful programming of a TMS2764. If errors occurred,
the display could show the following (EPROM address and value followed by
corresponding memory address and value):

?PE_ 1800 iIFFF F800<CR>
ERROR E:19FE 80 M:F9FE D1<SP>
ERROR E:1A00 00 M:FAOO FF<SP>
PROGRAM COMPLETE<SP>
ERROR E:19FE 80 M:F9OFE D1<SP>
ERROR E:1A00 00 M:FAOO FF<SP>

COMPARE COMPLETE
?

9.1.2 Compare EPROM to Memory (CE)

FORMAT: CE <EPROM start> <EPROM stop> <mem start> <dest>

PARAMETERS: 1) EPROM start address
2) EPROM stop address
3) Memory start address
4) Destination (default=4; see Table 9-1)

Purpose: to compare the contents of the specified device with memory.

When locations do not compare successfully, the routine prints out both addresses
and both values and stops. At this point, <CR> terminates the compare operation,
and hitting any other key continues with the compare operation. Section 9.8
discusses the compare error format and procedure.

EXAMPLES:

1)

2)

?CE 1800 1IFFF F800<CR>
COMPARE COMPLETE
?

The contents of a TMS2764 EPROM were successfully compared to the contents

of memory.

?CE Q000 OFFF FOOO 8<CR>
ERROR E:0019 CD M:FO19 CA<SP>

9-3

EPROM Programmer

ERROR E:0110 FF M:F110 OO<SP>

COMPARE COMPLETE
?

The compare operation found two bad comparisons.

9.1.3 Read EPROM to RAM (RE)

FORMAT: RE <EPROM start> <EPROM stop> <mem start> <dest>

PARAMETERS: 1) EPROM start address

2) EPROM stop address

3) Memory start address

4) Destination (default=4; see Table 9-1)

Purpose: to read the contents of the specified device into RAM.

EXAMPLE:

?RE 1800 1FFF F800 4<CR>
COMPLETE
?

The upper 2K bytes of a TMS2764 are read into RAM starting at address >F800.

9.1.4 Verify EPROM Erased (VE)

9-4

FORMAT: VE <EPROM start> <EPROM stop> <dest>

PARAMETERS: 1) EPROM start address

2) EPROM stop address

3) Destination (default=4; see Table 9-1)

Purpose: to verify whether the specified device is empty (>FF in all locations).

Section 9.8 discusses the verify error format and procedure.

EXAMPLES:

1) ?VE_ 0 IFFF<CR>

COMPLETE
?

A TMS2764 is successfully verified.

?VE_ QO IFFF<CR>

ERROR E:0019 CD<CR>

?

The VE operation is aborted when the first location not containing >FF was

found. An <SP> instead of the <CR> would have continued the verify opera-

tion.

EPROM Programmer

9.2 TMS2764 and TMS27128 EPROM Programming

The TMS2764 and TMS27128 EPROMS use the 28-pin programming socket (U19).
The programming algorithm provides for 50 ms programming pulses and will skip
over any location which is to be programmed with the value >FF, the erased state.

Locations are compared immediately after programming, showing errors as they
occur. If any errors are detected, the location in the EPROM and the data at that
location will be printed along with the corresponding location in memory and its data,
and the cursor will stop at the end of the line. To continue the program/compare
process, press <SP>. If a <CR> is entered, the process is terminated. Repeating this
procedure will show all errors. The “PROGRAMMING COMPLETE” message will
be printed at completion whether or not any errors occurred.

9.3 Programming the TMS7742 with the RTC/PGM2764-06

The TMS7742 can be programmed with the aid of the programming adapter module
(RTC/PGM2764-06 or TMDS7080001). The module plugs into the the EPROM
programming socket and treats the TMS7742 as a TMS2732A EPROM. (A rev. A
board with 2.X software (or later) does not need the adapter; otherwise the adapter
is necessary.) To compare the EPROM contents to RAM immediately after
programming, several on-adapter switch settings must be made. Before any
command is executed (except PE), place the adapter module switch in the READ
position. Before programming, place the switch in the PGM position. Prompts will
remind you to make these settings.

When programming a TMS7742, jumper P7 must be set to ”77X2”".

After programming is comptete and the PROGRAMMING COMPLETE message
issued, place the switch in the READ position (also reminded by a prompt) in order
to proceed with the compare operation. Along with the switch prompts, a terminal
key must be pressed to continue command execution.

9.4 Programming the SEEQ 727x0

The EVM is designed to program the 727x0 EEPROM devices in U20, the 40-pin
socket (socket U19 is for TMS2764/'27128 devices). The same commands used to
program TMS2764/'27128 devices (Section 9.1.1 to Section 9.1.4) are used to
program 727x0 devices. Section 9.4.1 covers erasing the 727x0.

When programming the 727x0, jumper P7 must be set to ”727X0”.

Examples of programming commands:

?VE O 3FF 71<CR> (verify all locations = >FF)

?PE_O 7FF F800 C4<CR> (program 2K algorithm from
>F800 to >FFFF into 72720)

?CE QO 3FF FCOO C4<CR> (compare 72720 contents with

memory addr >FCOO to >FFFF)

?RE O 7FF F800 72<CR> (read contents of 72720 into
memory addr >F800 to >FFFF)

The above examples assume that the 72720 security lock at P127 is not set at
program execution. This feature prohibits programming or reading the program

9-5

EPROM Programmer

memory of the microcomputer. To remove this security lock, it is necessary to erase
the entire 72720 memory which can be done with the BC command described below.
If the security lock is not set, the EEPROM memory can be programmed and read
at will on a byte-by-byte basis as is the case with all EEPROM devices.

9.4.1 Clearing the 727x0 (BC)

FORMAT: BE

PARAMETERS: None

Purpose: to remove the security lock at P127 and erase the entire EEPROM memory
contents of the 727x0 (perform a “block clear”).

Before 727x0 memory can be written to or read, the security lock must be removed.
This command (whether or not previously set) the security lock, erases entire
memory, and also disables a 727x0 locked into microprocessor mode. This operation
requires that +12 V be applied to the 727x0 for 50 ms. Calibrating this voltage is
described in Section 9.5

9.4.2 Assembling a Subroutine to Program the 727x0

A subroutine that uses the PRG instruction to program the SEEQ 727X0 microcom-
puters can be assembled, but not executed, on the EVM. The PRG instruction writes
the data in Register A to the location specified by a register pair Rn and Rn-1 (using
indirect addressing). The format is:

[LABEL] <PRG> <‘registerno.> [comment]

EXAMPLE:

LABEL PRG *RO CONTENTS OF REGISTER A TO R5/R6 ADDR

The above example programs the contents of Register A into the address pointed to
by R5 (MSB) and R6 (LSB). Note that the PRG instruction can only be assembled
-- not executed -- on the EVM board.

9.5 Calibrating VPP Voltage (12 or 21)

VPP programming voltages of 12 V and 21 V are selected for the specific device
according to the destination code in Table 9-1. These voltages can be calibrated
with the “12” and ”21” commands for the optimum setting in these two voltage areas.

1) Attach a voltmeter to the two rightmost posts (GND and VPP) of
power connector J6 (shown in upper right of Figure 1-1).

2) Enter the command “12” for 12 V or “21” for 21 V calibration.

3) R32 is located in the center of the board (3 inches below connector
J5). Now adjust this for the optimum voltage.

4) Hit any key. The VPP reading returns to 5 V, and cantrol returns
to the Monitor.

For example, to adjust the 12 V power:

9-6

EPROM Programmer

?12 (enter 12 V calibrate command)
ARE YOU SURE? (N) Y (enter Y, adjust R32 for VPP)
<any key> (any key = return to Monitor)
?

The same procedure can be used for 21 V adjustment with the ”"21”
command.

Caution:

Do not insert an EPROM if the PGM LED is lit.

9.6 Copy Monitor EPROMS (43, 44, 45)

FORMAT: 43 or 44 or 45

PARAMETERS: None

Purpose: to copy EPROM contents at EVM sockets U43, U44, or U45 into an erased
TMS2764 EPROM in programming socket U19.

COMMAND REPLACES COMMAND PURPOSE
43 $PEQ1FFFEOOO Copy U43 EPROM into U19 EPROM
44 $PEQ1FFFCO0O0 Copy U44 EPROM into U19 EPROM
45 $PEQ1FFF A000 Copy U45 EPROM into U19 EPROM

9.7 Making a New Monitor EPROM

This section repeats parts of Appendix D. Sometimes a modified version of the
Monitor is needed with the new software reprogrammed into EPROM and inserted
in U43 (or U44 or U45 as shown in Figure 2-2). This can be accomplished by reading
the EPROM contents into memory, modifying the addresses needed, then program-
ming the modified code back into an erased EPROM.

For example, if a different internal clock frequency is needed for your operation, the
crystal on the EVM must be changed and the >E000 to >FFFF EPROM (U43) must
be reprogrammed with the new values in the frequency-dependent constant table
(described in Section 2.9). Do this by transferring the contents of the EPROM to
RAM with the $MV command, changing the values in the table, and programming
the results into a new EPROM. Then replace the original EPROM with the new

version. For example:

?SMV_EOOO FFFF 4000 (move to RAM)
?SMM_ 5FBx (modify in RAM)

2$PE Q 1FFF 4000 (program blank EPROM)
PROGRAMMING COMPLETE
? (replace new EPROM)

This same procedure is followed for changing the EVM default values described in

Section 2.

9-7

EPROM Programmer

9.8 EPROM Programmer Errors

When an error occurs during EPROM operations, execution stops with the cursor at
the end of the error display. Entering a <CR> will terminate the process immediately.
Entering anything else will continue the process until it is completed or until the next
error is encountered.

The format of a verify error is:

ERROR E:XXXX xx

where “XXXX” is the EPROM address and “xx” is the data at that location.

The format of a compare error is:

ERROR E:XXXX xx M:YYYY yy

where “XXXX” is the EPROM address and “xx” is the data at that location, and
"“YYYY” is the memory address and “yy” is the data at that location.

9-8

10. 1/O Port Reconstruction

As shown on the EVM schematic (in Appendix A), numerous addresses are decoded
within the Peripheral File address range to reconstruct Ports B, C, and D, and to
construct the ports used by the EVM for firmware operation (P250-P254). Table
10-1 lists all decoded addresses and functions in the Peripheral File.

Table 10-1. Decoded Peripheral File 1/O Ports

PORT FUNCTION

P6 Reconstructed top half of Port B

P8-P11 Reconstructed C/CDR and D/DDR ports

P248 Spare

P249 Spare

P250 Port !/O: Read/Write
(Lsb) 100 - EIA Port Select (O=Port 2, 1=Port 1)

101 - DTR Out to EIA
102 - FSK Data Out to Port 3
103 - EIA Data Out
104 - Tape Motor (O=OFF, 1=ON)
105 - EIA Data In
106 - DSR In from EIA

(Msb) 107 - FSK Data In from Port 3

P251 Port Z: Write only, EPROM programmmer Address (Z0-Z5)
EPROM Programmer Vpp control (Z6, 27)

P252 Port Y: Write only, EPROM programmer address - LSB

P253 Port X: Read/Write, EPROM programmer data

P254 Port W: Write only, Control
WO - Bank Select (O=EPROM, 1=RAM)
W1 - DATA LED _
W2 - EPROM Programmer OE
W3 - EPROM Programmer PGM Data Window
W4 - EPROM Programmer PGM
W5 - Vpp Control (O=OFF, 1=ON)
W6 - EPROM Programmer 727X0 Reset
W7 - EPROM Programmer 727X0 Mode

P255 Spare

10-1

11. Diagnostic Input/Output Utilities

Subroutine calls can be embedded in a program to access terminal |/O routines during

emulation. This allows messages to be sent or flags and calculation results to be

printed to the terminal without stopping program execution. During execution of

fixed display debug commands in the Monitor, user |/O is disabled.

Access to the I/O utilities is with the statement

CALL @>4000

in the program. The function performed is dependent on the contents of Registers

A and B, and in the case of utility number 5, the contents of the stack.

B=>00_ (or any value not listed below) Print the contents of the A register to

the terminal. The contents of Register A is assumed to be an

ASCII value.

B = >01 Convert the contents of Register A from two hex nibbles to two ASCII

characters and print the result to the terminal.

B=>02 Stop program execution until a key on the terminal is struck. When this

is done, load the ASCII value of the key into Register A.

B=>03 _ £=©Print a new line (<CR><LF>) to the terminal.

B= >04 _‘~ Print a space to the terminal.

B= >05 _ Print a message to the terminal on a new line. The address of the

message is pushed onto the stack by the program prior to the

subroutine call. The subroutine call pops both values (even if

disabled during fixed display debug), restoring the stack to Its

original content.

Diagnostic Input/Output Utilities

Example 11-1. Sample Output Utilities

(a) MOV %>35,A LOAD ASCII "5"
CLR B PRINT "5"
CALL @>4000 TO THE TERMINAL

(b) MOV %>35,A LOAD HEX >35
MOV 3%1,B PRINT "35"
CALL @>4000 TO THE TERMINAL

(c) MOVD %MESG,B LOAD ADDRESS OF MESSAGE
PUSH A PUSH MSB
PUSH B PUSH LSB
MOV %5,B INDICATE MESSAGE
CALL @>4000 PRINT "TEST 1" ON A NEW LINE

MESG TEXT 'TEST 1! MESSAGE BODY
BYTE 0 MESSAGE TERMINATOR

Example 11-2. Sample Input Utility

WAIT MOV %2,B STOP PROGRAM
CALL @>4000 EXECUTION AND WAIT
CMP %'Q',A FOR ENTRY OF
JNE WAIT Hon

12. Creating Monitor Commands

The Monitor nas ten commands that branch to entry points in EPROM socket U45,
allowing you to create Monitor commands. These commands are designated “Ux”
where “x” is a number from O - 9. Any command preceded by "$” will be treated as
a System Access command (no address restriction).

When the command is entered, it loads and branches to an address stored in the
appropriate two bytes (determined by the value of ”x”) in the top 20 bytes of the
EPROM. Table 12-1 lists the commands and entry point vector locations in EPROM.

Table 12-1. Monitor Command-Location Vectors in Expansion EPROM
(U45)

ENTRY POINT
COMMAND | VECTOR LOCATION

UO >BFFF LSB
>BFFE MSB

U1 >BFFD LSB
>BFFC MSB

U2 >BFFB LSB
>BFFA MSB

U3 >BFF9 LSB
>BFF8 MSB

U4 >BFF7 LSB
>BFF6 MSB

US >BFFS5 LSB
>BFF4 MSB

U6 >BFF3 LSB
>BFF2 MSB

U7 >BFF1 LSB
>BFFO MSB

U8 >BFEF LSB
>BFEE MSB

US >BFED LSB
>BFEC MSB

Creating Monitor Commands

12.1 Monitor Re-Entry Points

Table 12-2 lists the locations of Monitor entry point addresses located for easy

Monitor re-entry from a command executing in expansion EPROM. These addresses

must be loaded and branched to with a routine like the following:

LDA @>FFAB LOAD LSB OF BANNER ENTRY

XCHB A PUT LSB IN B

LDA @>FFAA LOAD MSB OF BANNER ENTRY

BR *B BRANCH THRU A/B PAIR

Table 12-2. Monitor Entry Points

ADDRESS ENTRY POINT

>FFAO MSB Spare

>FFA1 LSB

>FFA2 MSB Spare

>FFA3 LSB

>FFA4 MSB ADDRESS ERROR

>FFA5 LSB

>FFA6 MSB INPUT ERROR

>FFA7 LSB

>FFA8 MSB ERROR

>FFA9 LSB

>FFAA MSB Banner

>FFAB LSB

>FFAC MSB ?

>FFAD LSB

12.2 Monitor Command Development Aids

Several development aids are built in to the EVM firmware to allow use of the EVM

Text Editor and Assembler to develop custom Monitor commands:

$LM Load 7000 object code

SLT Load Tektronix object code

$RU Execute from address specified

SXA Execute Assembler without address restriction

$XL Execute LBLA without address restriction

$XP Execute Patch Assembler without address restriction

$XR Execute Reverse Assembler

12-2

Creating Monitor Commands

12.2.1 SLM and SLT

The EVM object code load commands each have system access counterparts allowing
the EVM to load up to 16K bytes of object code originating at any address. These
commands will store incoming data in RAM between >4000 and >7FFF in a location
relative to the true origin address.

12.2.2 $RU

The format of the $RU command is:

$RU <addr>

where the address parameter is the address of the routine to be executed (defaults
to >4000). $RU differs from the Monitor command RU in that no bank select of
RAM occurs, leaving the Monitor in control, and no restoration of the TMS70x0 state
is performed. The command is a simple branch, executing the subsequent code as
though it were EVM firmware.

When a command has been written and debugged, it can be programmed into an
EPROM with its entry address in two of the top 20 bytes in the EPROM and
subsegently executed as "Ux", where x” is a number that indicates the entry point
vector location (see Table 12-1).

12.2.3 $XA, SXL, XP, and $XR

The $XA command has the same parameters as the Monitor XA command. The
difference between the two assemblers is the disabling of the address format
conversion used by the Assembler to store code in the > 4000 to > 7 FFF RAM address
range while creating code executable at the >COOO to >FFFF address range. By
removing this restriction, the Assembler can create code executable at the RAM
address range for execution with the $RU command. The AORG for the $XA and $XL
commands defaults to >4000. The $XL, $XP, and $XR commands are otherwise
identical to the XL, XP, and XR commands respectively except for the removal of
address restrictions.

The Monitor TRAP vectors are useful during creation of Monitor commands. These
TRAPs are used by the Monitor for various |/O functions in command entry and
execution. Table 12-3 lists these TRAPs, their functions, and the registers needed
to use them. To determine the registers used by each TRAP and how all routines
interact, an assembled source listing is required.

12-3

Creating Monitor Commands

12-4

Table 12-3. Monitor TRAP Vectors

TRAP FUNCTION

TRAP 23 | Convert nibble to ASCII and print

TRAP 22 | Print <CR>

TRAP 21 Wait for “=" in input stream

TRAP 20 | Print <SP>

TRAP 19 | Print 16-bit address

TRAP 18 | Print 8-bit data, <SP>, wait for input

TRAP 17 | Print <SP>, wait for input

TRAP 16 Print message

TRAP 15 | Input start and end address pair

TRAP 14 | Load Register A from memory

TRAP 13 | Input 8-bit decimal number (data)

TRAP 12 | Reserved for assembler

TRAP 11 Reserved for assembler

TRAP 10 | Input hex characters until <CR> or <SP>

TRAP 9 Accumulate MLP checksum

TRAP 8 Print <CR><LF>

TRAP 7 Convert byte to 2 nibbles

TRAP 6 Load ASCII character to Register A

TRAP 5 Print ASCII character in Register A

TRAP 4 Store Register A to memory

TRAP 3 Load default Program Counter/AORG

TRAP 2 Bell

TRAP 1 Input hexadecimal character after error

TRAP O Reset

A. Schematic

PW1 3K 4 v —

4 & Vppon - PP Ci +5V VecT 7 _

pwi in 2] ee 3302 fis 1 “SV)
rev PB4 3 1104 D4 4 2 pea } DO 3 20] 2 PYO LSO6 RCV CLK | b1 a1———=-“ ——— | nN

~ ~ L PBS 4 10 05 St5> gaz PBSY D1 4 5 PY1 _ -
60 | pB6 S| 9 06 12] 5 3/12 PEE D274 yoy [6__PY2) k_

XTALQT l25 PBT «6 8 07 13} 04 gaLtsP87/ Y 03 8] S374 [9 PY3Y kK

4 I ROTO6 _1 wspve 9 WOT06 D413 12, PY4y k_
A Voc pao Lo / YDS 14 lis pys \ 7 9 U8 U7 ——= XN

XTAL2 PAI 16 PY6 8 A | Hots243 13 7 HCLS175 8 SS | XN
PA2E- ae 0718 19 PY7¥ VC
PA3F— se = 10,1) 711
PAat— 4) D,
PAS ay ~ _— WPY

pas t— = f |: - XTA 11 N
tT par 3 ALATCH 3] 11 ALATCH a q)

P80 = “(AW 4 10 RW —. PBT F “| VENABLE 5] U1 [9 ENABLE a
P82 —|Yctock 6{|s243 [fg cLock F

/RESET PB3 —/ 4 ADO 18 1 205 po +5 V
38 ALATCH Bi Al /

PB4 14] J ADI 17 3 b1 J 1 RAW A +5V — B2 a2 ‘ PBS AD2 16 4 D2 J ALATCH 5
39 ENABLE J = 83 A3

P86 CI - AD3__15 5 D3 U32 2
paz p2_ CLOCK B44 / 1 @—iu

AD4 14 6 pa J 3 4
28 ADO BS AS sv" 1 U12 PCO ADS 13] 5, neh ay, , 3

TMS7000 pc1 429401 AD6 12] 4, 8 D6 LS86 ad 1K
CPU 30. AD2 AD] 11 ATS D7 —

PC2 BBA / U30 31 AD3 PC3 U29 aioe A LS109
pc4 pe2_—_A04 < LS245 <L le »

5V = ENABLE
PCS ~~ . y,
PC6 |20 35 ADT +5. Vv { ALATCH
PC7 U13 20 {11

27. AB 2 18 AB . ADO 8 | 9 AG
ined F Ag 7]! "'B ‘ apt 13f-0 >»
Pp! oe A10 rie v2 6 at wor eed a PD2 A3 y3po———") fk Jto2 a2 =~
pp3fz3—_ A 15] ag vale All . AD3 14 033 15 A3 Vecl
pp4tez2__Al2 6) as ys {4 A112) k AD4 4154 aalfe Aa N — [20

ppsp2t_—At3 8} 6 vez Als) KADS 17/56 gel 16 As \ W900 33
INTS 12 20. Al4__11 9 A114) k AD6 3 2 AB . D1 = 32

"4 INT3 PD6 A7 Y7 -——--——~ D6 a6 ~ DB1
INTT 13] ry po7{19__A1S 134 ag val A15 \AD7___ 184 57 97 L194? 0231) a

4 R37 MC Vss LS244 » 10 17. U2! > . D3 30 DB3
1k? A BS aOT ToTT Tio yo J LS$373 04-29

+5 Vv -Wiko = Ue + ps 2e|eee
Pa ge = Seo] 85

= = N = O86
O87

4 7 \ 4 N ~ |
_/

d (
]4 s| =

19 19 +SV KR] As 3 ee To L15.0100-03
L AI5 17 18 A817 13 | Kf azx 2 3 ¥7 [4010407
L A14 = 15 16 LAT 15 16 NS Ye voh3 0108-0B \
L A13. 13 14 A613 14 U37 vq L2.010C-OF
L A122 11] U14 [12 LAS 11) U22 [12 LS138),[110110-13 —
aii 8] $S688 fg g} 'S688 fg 10 0114-17 — YS
A106 7 6 7 9
AQ 4 5 4 5 Md By?’

2 3 2 3 “ err 3
8 16] 5 Vv _Ad

"4 I" |20 10 20] LT 12. 24 ; °

+5 V xn paw ay +S V _L 2 L
= => = = = = 18 —

3 WPIO UMA N
| 19 +5 V 4 WP2

A8 17 18 ENABLE 5 Wey VA

A7 15 16 19 5 6 WRX YVR
oo : ul A6 13 14 LAW 20 Lsi54 |7__WPW , N
. AS 11h y23 [2 8 > — U24
Aa 8] Ls6ss {9 9 N L$27:
\ A3 6 7 10 Ne

4 5 11 RPIO \
2 3 13 NA

14 N
20 —

{ l K A2 26 15 RPX 1
— ° = KAI 22], 16 ‘ a

K AO 23}, 17

\

N aaan~ F Z N

RTC/EVM700ON-1 (Page 1 of 2)

f 2)

Ct ’ ; ———_—— —_ J8
$$ _/ PAO 6 /—_ -5V » sv -5V » PAY 7

20] >of 30 PA2 5
Do 3 2 PYO _DO 3 2 =PXO PXO 2 18 DO J PA: f) Yor 4 5 PY1 Dla - PAG 0 ————— | NOT 4 PAS 16 D2 7} u27 [8 PY2 _02 7] u26 {6 PAG 15

f 03 8}LS374 [9 PY3 ¥ AK_D3 8 | LS374 PA? 11
5 f 04 13 12 PY4Y kK 04 13 . PBO 3

05 14 15 PYS K OS t4l . PBI 4
i 06 17 16 PY6) kh D6 17 . PB2 5
Y 07 18 19 PY7% \ D7 48 . PB3 37

1071] 111 > 1077 | PB4 38
| . PBS 1

¢ = WPY ae pW . PBE 39

xX \ PB7 2

4) PCO. 28 h__DO >
\ f pci _29 m0 1

Y pC2 _30 n__D2

y pc3. 31 N23
= 04 +5 V - PC4 32 a

Z y CLOCK [- Pcs 33 Ne . ALATCH 5 11415 pcé6_ 34 N06 D2 YS P
a - \ 07 03 | , v32 eis V2] 2a Po er

O04 2 3 4 10 14 PO1 y AO

DS Y +5 V 3 13 24 9 PD2_ 2 f Al
D6 LS86 Ld 1K U30 2K PD3 23 are | A ‘’aLS109 PD4 22
caw, U30 = [8 |'6 POS _o yA3

% LS109 ~ SS .sv PD6 20) y Aa
- »

PO? 9 4 AS

/ Y AG
nnn

1 4 ann.~d
A7 CH Voct

AO
y 5V | AQ Ai \ f eee 40 YA10

A3 VectT = = 4 = = A12

AS) . DO 33 8 PCO J RST 14 y
080 2 A14 ans N . 91 32] 58; 9 PCI J INT 1 13 YA15

A7 \ . D2 31 10 PC2 J INT 3 12 Va — —~A DB2 eee RiW
21 03 30 DB3 SCA /

f RESET 373 . D4 29 pB4 12 ——~
Y ALATCH

KS 28 DB5 = SCE / Y CLOCK

N S 24 086 15 sar, 5 Vv +5V wero Ww 26]o87 34 a | : y PZ6 / ~ R10T so xo 71 L'4 28| Se | 0 25 Y_ INH (PWS) AQ 7}ao «8532 / ~ DO +§V / RAM/EPIPWO) —~/ Al 6 22 P02 , PxX1 12 O41 29 IG
=A 71 D3 Px? 13] 5) 30 12 / P27

oe 19 POS J PX3 15 31 13 = 03 Y ENABLE 18 POS) RPXS 16) 0 32 18 YRCV CLK 17. P06 KW PXS 17 Ds 33 16 ——

16 PO? 4 W PX6 18 D6 34 P7

25 \PXT 19] 57 19 35 U20 bc — 7 NC \ PYO 10 TMS 7 TMS
5 AO 2764: 7OE40/ 17

2 > paael Al 27128 26] 727x0 [oes
PY2 8 aw A2 24 A LL PY3 71 43 23
PY4 6

Vs =] A4 22 CLOCK]
peeks AS 2) 7742 L PYG 4] 6 20 727X0

PY? \ \ 3] 7 19

Ss » 25
am AB 6 +5V

24 7
aN 21149 3 R38
2 pws 23 ae r rke

2b at2 i4
26] 4,

3 A7 A4 MC
27 20] 22 1 11 710 | 3€
vt = AN N ht ©

= [z| ze] z| 2 =
_

PW1 Vpp J

C d J
LSO6 GM

PWS

> TO SHEET 2

NS SS —-
N TTISSSSSSSS

RW 5V GND 5V GNU \ tl + + .
RESET A +5V GND BRI<OlS| olelalelefolole| ol-lalelelu

ALATCH A | 1.26.28 | 14 | 1.26.28 14 | 1.26.28 [14 ZKialols|] Alafalalalalalol alelialalaie

CLOCK / RW 27f ow 27 27
NX DO W501 11 11 WIRE WRAP AREA

00 J) N01 12 12 3

53 /) Me 75] 003 15 15 { pa4 < = i
03 y— N04 16 pa5 . +5 V +12 Vy _
04 T4 X05 TH 06 7 17 on) eo
DS N06 18 18 18 -}| oc +5V DQ7 <q] a] 4 D6 N07 13] 508 19 19
07 “/ 3 2 |i 16

NN A0 10 10 10 ——

AO A h* 9 9 3 ENABLE 5] 4° g

Al I a2 : ; = (one Lsi38

= /) NS ; CONTAOL 5 U39 5 a Tey G2a }4
U40 YY Aa Ws a5 = RAM = RAM : ua0 YO Y1 Y2 Y3 Y4 Y5 Y6 Y7

A4 W4 WG a1 ™MS4016 a rn 15]14/13}12]11}1099 | 7 ae

~ 4, NCAT 3 3 3 -
we 25 25 25 A7 f) ‘

- NAS 24 24 24
rr A8 /) ; oo NATO 21 21 21
x “ SY, 22 22 22 w < A10 Wi ad G

2 aah /) 1 23]2 120 2302 | 20 23]2 20 © Al2 W4 = - - :
we A13 /) Ne

Al4 |
Al5 Wi

ee]

\ | arr 8K ; N Le

XN RW 2K E E

em | | C 15 $14 413. $12 $11 J 10] 9 47 a
YO Y1 Y2 Y3 Y4 Y5 Y6 Y7

WO 1 |S VMK +5V
a, N ENABLE 5 U33 | U1
RAM/EP__/ G28 LS138 con tt 20009F 144 443 I] 220 uH
Pee C10 3 StS Tio
P27 / A B Cc 5 U32 FC Cc :

WMA sv | J2 Jie Je 176 73 = m1 ca iF A
RCV CLK / 8 +5V 6

ENABLE _/ os 8 C 4|, CA --
—/ od ——o +t — C A- 5 R214

\ gz "Fi < 5V +5V GND 5 ko > Lc:
= < / Al5 13. 11 8 U16 | >F 0.

12] — TL497 | R27
’ S 33 ko

RAM/EP U32 P °
IN cl

3 R28 >
1.8 kf

| 1 MOTOR
4 a KT CONTROL

R8
820 2 CR | \

IN914B l | _ 7
U11

XN. MTR 9 8 | I | R33

LSO6 IN914B +5V +5 V

+5V = R30 $1.5 k0 R34 R31 R35
R22 20 ko — 120

1 5 1 5
11229 & R26 R25 7

NN AOUT 5 6 4.7 kO 4700 AUDIO P26 2 | U17 4 P27 2 U18 4

f>o5 — _ | —9 OUT +12V | +21 V

LSO6 $ R23 C24 =
> 4702 T 0.047 uF q ”

R15 CR7 22 MO RQ 1k?
> pM 12

~ PWR J6 JT
C6

0.01 uF js auDIO 1 +5 V s 2ry, —

ew \ oo ©) 'N vw
LAA ai + +

R16 _
10 k0 R10 * c7 ater

CRS 1k2 1.5 kQ 4 O- GND 1 22/15 !

= mens = -O- +i2N ~O- © +12V i

318 wee —12¥ 5o- —— -12Vv
P2.2k2 5

i
(- —— Vpp

RTC/EVM700OON-1 (Page 2 of 2)

A erceeenmeee

—
Wynn < _

-5V -~5V +5 V ~5V +

eeeeicic ala Dy RW — 27 = 27 27 7
Ii<Iiciaic 27 — —

|
11 11 11 1

WIRE WRAP AREA 00 N44 amas —
01 12 12 12 p12 | P12 |

| 01 3) 3 T3 3 N02 13 52 13 13 13 ;

| ey 03 7 > 16 61
+5V +12V _ 04 16} 54 | | = —

12 V Vpp O05 17 17 17 17 7

7 7 +5 V \ "06 18 18 18
q{ < | O06 Tyo" 19 9

| X07 19} 57 19 19

3 j2 |i 16 |
: ‘ A AO 10 10 10 10 10

Cc BUA 8 MS a1 °° 2 [9] © fo] v45. [937 ro
} ar oR eq gh Fy EPROM Pat C42

U31 NEY Bla> So{8}) $5 [is] exean-| 8) ram 8) ram
L$138 ww 5 = 7] s 71 SION 7 7

G2ate : = ee r re 6, 6]
) ¥1 Y2 Y3 Y4 Y5 Y6 Y7 Ve = 44 oa — — —

= A6 oo prenenenaanend =e peameienasaad

A? 3} a7 3 3 =z 3 |
WEE 25| ag 25 25 25 25 |

| NEE 24] as 4 74 24 24
| NATO 21 ag 21 21 21 L 21

| NCAT! 23} any 23 23 23 23
NO AT2 24 ai 2 2 2
NSE) 26 26 26 26 a

A13 — —— —s —

14.22] 20 "4.221 20 14,22] 20 ae %° 1422] 20

” EPL

‘SY DATA OUT J
V

: ie

" 14-113 220 uH a {5
mle CLs 10 5 DTR 17

2
—! A PORT ‘4 SELECT

i 6

5 Ree 1 | ;
== GND 5 kQ yo 5

L C14
8 U16 AR 0.1 uF 5 DATA IN

hf £6 TL497 4 R27 5
> 33 ko RCV CLK 17

Cl U9 > R122.2k2 49

$ R28 Be C13 LS374 N

Veke 0.1 uF '>R142.2k2 g
° Nd
if >+R111k2

N

= 10 | 1 . POCD 1

2 7

R33
100 k2 = =

R35
; 120k2s,

52

4

-5

~ | 20
O00 18] Pra 6

Kor 3] ne
N02 16 On 6

' \.03 5 3 17

N 0a 14] PFI

+ —O +5V N05 12 uo
4 06 9

+ a7] «S244
7K C7 x ca -

22/1 22:15
)- — RPO | re LS RE 2.2 kO 9

5
a L L419) 13 +12V

Y+12Vv PFT | 5

. ~O -12v a ; +12 V Wn

< -

3K 4 y
4 | Fn PP (Pf

U11 Vepon R7 VecT aw
Pw US 21 Gv sv [14

LSO6 DATA RCV CLK PBO 3 11 PBO Ak pea 3 11
Va f PBI 4 10 PBI Ak PBS 4 10

Y PB2 5]HC243 [9 PB2 Ak PBB 5 9 f
+o Y PB3 6 8 PB3 /\ PB7 6 8 f

4 1 f
Vee — pao 8 / 1]7)13 / U8
XTAL2 pay Ay HC243

pa2te y, = wey
PAs}? / =)
pagLlo /

16 y PAS ~
pas E> / = if {13 \

XTAL1 11 y, ‘ "a
PAT 3) ALATCH 3 11

PBO (RW 4 10
PB1 P /\ VENABLE 51 U1 [9 RW weelt 2 19 _—~O0, D!

pB2 be —| clock 6|'S243 fe +5V hn 01 3 18-01 D

RESET PB3 p> JY ADO) 1g pe! | 20 9 D2 4 ¢ Li7_02)4 LO
38 ALATCH B Al DO \ D3 5 = [16 03) D

PB4 — 14 7 /AD1 17,8) 3 D1 $A 1 R/W +5 V — | B2 A2 . D4 6] £23 115 04 D
PBS ee r | Yano 16 4 D2 -¢ ppg Loo ENABLE__ = | B30 A / DS 7 ¢ [14 D5 D
pay PZ Chock i Ld yy oo D3 DE 13. D6 LoD

U12 AD4 14 6 D4 J S B AS D7 9 12. D7, D
TMS7000 poop 28_ A00 fADS 13 - abl D5
CPU pc |. 29_AD1 fade 12), a8 D6 J 1 1

pc2}30_Ab2 YAD?11 9 pb7 A N
31 AD3 BB AS PC3 4 u29 TT
32 AD4 y, fio [19 = PC4 < Ls245 == — lewanre

PC5 +5V y, DOE
pce |.34_AD6 |

20 +5V. [ALATCH pc7 P3o_AD? a __

epot 228 2|,, “? \,[18__as / ADO 8 ane 9 AO ~; Us 16 COE
ppi}-26_A9 7] A> y2/3 AQ) ADI 13 - i 12 at Bl 19 17 CCLK

24 A10 4 16 A110} , AD2 7 6 A2 PD2 A3 Y3 D2 a2
23. All 15 5 A11¥ (AD3_ 14 15 A3 \

SF 22 at2. 64 Ta ar2§ apa 4{o2> \ Al
hed CELE ni a EF EX wr 7 3 ae Nae ; a @
PD5 AG Y6 \ D5 a5 ENABLE 2S AO

INTS 12 | rs 20 A114 WaJ 9 A14 \ AD6 3 2 A6 NE 2 -zZ aX

13 19 A15 13 7 AS AD7 18 19 A7 A2
y— INT 1 PD7 A8 Ys! D7 Q7 ~ 010B 1 ——

R37 MC Vss LS244 10 ; = ; A3
1kQ A B 36 40 19] 1] 10 2) — \ aay +5 V=W-0 © LS373 AO 9 12 —?

page = AS
—_ a aC. = = = rol 20 ro

an Nw = +5V —?

4 Y \ 1 |
__”.

f aa»

la ie +5V +5V .

li 1 [19 +5V RKJA4 31 5}18.0100-010: u S 45
KAI5 17 18 LAB 17 18 . 1 A3 2153 y1)140104-010 0104-0107 4 Yoruz”
LA14 15 16 A715 16 AZ 14, — ya J 13_0108-0108 ENABLE __5 Al ce
Als 13 14 LAG 13 14 v3 1 2010¢-0108 RW 6 Y2--—
KAI2 11 f 14 [12 RAB 11} U22 [12 U37 v4 1 sac.0114 Y3R>
ail 8 |Lsess [9 3) Lsess [5 (S138 [100 aot) Ya — 5

A10 6 7 6 7 vel? YS
Y6 AQ 4 5 4 5 +5 V——4G1 v7 Al 2 7 '

2 3 2 3 Y7}-—-——
a 16] SV AO u U36

d ————— + "4 {1 {20 |" 20 Lo Ji2 24 “Te S138
= 1 ——

+5V —L +5V JJ > ~-
=> > = => > = 18 — N

3 WPIO

qi 9 +8V 4 WP2Z \
KAS 18 5 WPY YY A020 2.
VAT 15 16 1 6 WRX ¥Y AOL 5 |

NAG 13 14 R/W__20 7 Wwew \ A22 6 |
LAS 11 secs 12 uis [8 > — 24 9 |

WAS 8 9 Ls154 19 ww 1273 12 «1

. A3 6 7 10 . D5 15 |

4 5 11 RPIO Na 16
2 3 13 _ D7 19 |

10 |20 “ weuizs 10
il | | A2 ral 15 APX 10 7 aE

tb ¢+*V i im 22]. 16 ™ ¢ =
ai <a WV 23], 17 = RESET

t N Z wea \.

RTC/EVM7000C-1 (Page 1 of 2)

V

TO

S
H
E
E
T

2

J8
VecT 4 PAO _6
jis AM > +5V +5V ’ PAI J

20 20 PA2
' Dt at 2 PpB4) Ipo 3 2 PYO {bo 3 2 pxo Pxo 2-—22L., po y DA »
SIpo a2) _PBSA [01 4 5 PY1) Ki 4 5 __PX1Y PX1_(‘17 3 Diy | NPAC 1 A200
153 a3 ploPee [/o2 7 6 PY2¥ 4 D2 7 6 PX2Y PX2. 4 16 D2) TT weed
3104 galls PBZ, 03 8} yor [9__PY3 D3 81 u26 19 Px3 Y PX3 15} u2s [5 D3 / PAT _1° N02

19 WOT0G D4 _134is374 [12 PY4 4 D4 _1341s374]12 PX4 VY PX4 G6 J LS2441 14 —+D4_) A PBO 3 n_D3
HC175 \ ps5 14 15 PYS5SN (DS 14 15 PX5 ¥Y PxX5 13 D5 2 hk Pat 4 N04

7 /D6~«417 16. PYeN Kk D6 17 16 PX6 Y PX6 8 12. D6) 4 PB2 5 ADS
aE D7 —s«18 19 PY7N (D7 18 19 PX7 YY Px7. 11 9 D7) pB3. 37 D6

‘ Y | . PB4 38 Dy
10 }1 11 10} 1jm 711 19 1

Z S KPBS 1 AO
=z 7T-N i {wry 1. | E RPX PBG 39 at

LZ. “ \ PB7 2 YA2
PCO 28 Y A3

5 / PCI 29 av

he : 2 > YPC2 30 a
7 a 18 Y PC3 331 Y AG

Ni 16 5 n ~~ Y PC4 32 4 A7

Oe er: a1 34 be RESET yPCs 33 a 2 18 . S a b> Y PC6 34 fy Ag
N 3 5 ae y PC7 35 YAl0

12 9 12 om zi aX
e429)

— 7 yy. Y A12
1 1 11 +5V 5l4 PD3 23 Y A13.

U6 a y Ala
‘ LSOO 5G Y Ais

; PD7 1S y RIW
f RESET

= 18 Y ALATCH
Vec 36 — 6 ~ 16 COE TARGET PI oe

~n +5 V-@
17 CCLK PZ6

cc INH (PWS) —
ALATCH] .¢ [40 4 RAM/EP(PWO)

a 111 50 RESET RPIO
AO 8 12, 400 AT 12d ano 21 PCO, P27

a (a4 13 6 D1 A2 1340, 22. PC1, Y ENABLE
yr A2 7 9 D2. AO 14 AD2 [23 PC2 Y RCVCLK
YA3 2 147 vag [15 f03 A315 AD3 24 PC3, UMA

16 2 PC4 /

A5] 17 a WE 26 PC5,
T20 AG 3 2 Dé AG 18} Ang 27. PC6,
4 AT 18 19 Qo7 a7 194 28 PC7 } +5V sv

a = EE | oa = | 40 es

- NSC810 31 PD2, LPXT 12) 0, 29
= = +5V 32. PD3, KPX2_ 13d 55 30 12

U32 , 33. PD4, KW PX3 15] 53 31 13
3 34 PDS J LPX4 16 32 15

2 D4
35 PDE J A PXS 171 55 33 16

LS86 36 PD7/ LPX6 184 4, 34 py 2242
PX7 = _ J AlaTcH ti}... 7 sy \PX7__ 19), 35 =

‘A0 20 \ PYO 10] ao - 27 ° 7
i. PY 1 91a; N 26 N ——8 B

— — ~ 24 ~ CE WR _RD wat Sfaz a8 2S |o@a
8 10 9 ppv Zin3 28 23 > wl x

rv. Slaa 22 Us S clockt’ S PY5 5 pe 21 4 y iS r AS = =

° PY6 4tng 20
o PY7 3 19 =. LSOoO A7

wa © 10

3 2 PWO 91 us be |
4 5 Pw +5V pz0
7 6 PW2 \ R/ 1 P71

8 u24 9 PW3 x ENABLE 2 } PZ2
Le A

— 3] 15273 12__Pwa R/W 1 | U30 P23 14 15 PW5 — 3 4 P
— 2 : 6 24

17 16 PWE 5 PZ5

18 19 PW7\ LS0O ENABLE S32
™“ 7 144 10

$
= 1 = o - | }

RESET) |
Pw1

pws | -S06 a24
10 +5V

1 330 2 PGM A-7

N Ws
\ 1a SSSSSNN

(ae +5V GND +5V GNU ‘ Sol Be . v RESET. A, +8 GVO | BEI <IS ol-lafrfefofoln| ofclafeo}e ALATCH / 1,26,28 | 14 1,26,28 | 14 1,26,28 [14 | epalafojs| Sfafajajajajala| <j=jaies
CLOCK _// \ RW 27 RW 27 27

DO i 11 11 WIRE WRAP AREA
DO Ne! 12 72 72
Di D2 13 13 13
D2 I EES Poo 15 15 i
D3 y—} [04 16J 00 16 16 =

Das +5V +:
D4 / NDS 17 17 17

DQ6 Ys) +] ™
D5 X06 18] 507 18 18 <| =i & +5V
D6 \ D7 19 19 19
D7 008 3 42 44 16

\ AO 10 10 10 ,
yy, NEw 9 9 9 ENABIE 5}. © 8 A 8

i rr an
A3 “/ \ AS 6 CONTROL 6 U39 6 U40 YO Y1 Y2 Y3 Y4 Y5 Y6 Y7

NAS 5 RAM 5 RAM 5 RAM
A4 W4 TMS4016 15 114/13112/11}1019 | 7 \ AG 4 4 4
A5 f/f) mG S, NCAT 3 3 3

\ A8 25 25 25
- AT YN aS f, AS 24 24 24
to = NCAT0 21 21 21
5 aS /) 22 22 22
~” < A10 Y, — G

= ai J L 23qJ2 120 23N2 120 2312 120

a Al3 9 s
Ai4
Ai5

KK pan 8

XN RW 2K E E
P3

c lis [1a 13 ali [10 [s 17 /
YO Y1 Y2 Y3 Y4 YS Y6 Y7

WO, G1 |S WMA +5
INH /\ ENABLE 5 U33 L1
RAM/EP__/ G2B LS138 con tt 200PF |4, 443 220 nH
PZ 6 y, Cloy 3 CLS 10
P27 / A B c 5 U32 FC Cc

YMA / +5V 1 2 16 8 16 3 = 4 6 2 " A U

RCV CLK A B +5V 6
RUABLE /) 4 4 CA —?

/ P6 . +o —__“o S
vt =

c AS 5 R21

\ i ne ie “J 45v +5V GND 5 ko
= <_/ A115 13, 1 8 U16

12 } E TL497 R27

RAMTEP = 32 33 k0
AN. Wa cl —

3 R28

l -—| K1 MOTOR
as ° — l CONTROL

820 2 CR1 |
IN914B | |

U11]
\ MTR 9 f>o2 . | |

er we vu

LSO6 Filan
+5V =

R22
u11 220 & R26 R25 4

\. AOUT 5 S08 4.7 k0 4702 © AUDIO
_ wey LAA OUT

LSo6 $ R23 af C24 =
$470 Q T 0.047 uF -

CR7 R15 RO 1k2 “L 2.2 MO
— WN 12 V

IN914B 2
IN914B C6 J6 PWR J7

] 1 +5V 2 . . CR8 2 0.01 uF ys AUDIO O- -C-

R16 + |
10 k2 R10 C7 cE

ae 1.5 kD 4 GND 1 22/15 22

~ = 2 Oo 12V -
= -O —O+12V

3 _ o> ~O- —O -12V
5
O-+— Yep

RTC/EVM7000C-1 (Page 2 of 2)

SNS +5V +5V +5V +5 V +5V

aa olla) ¢}in [1.28 |i.2s | 26.28 | 1.26.28 | 1,26,28
tT hOloin OIE NIM OPM IDIDief—lefe-f-f—

alololo 2d eee RiW 27 27 27 27 27,

11
WIRE WRAP AREA pote ais as mas Bis

\"p1__12 12 12 12 12 D1 are ars 12 |
T nN D2 13 13 13 13 13

: D2 —_ acs as mcs
XN D315 15 15 15 15

= D4. ~«16 - 16 "16 16 16
+5V 4+12V -12V Vpp DS 715 17 a7] 7 7

D6 18 18 18 18 18
+5V \op7 19] 26 13) cry 3, 19 D7 a 19 | ty L19 |

1 16 ee) 1}no gt 0 ¢ Ll uss 10 10
WET 9 wel 9 © 9 9 5

U31 WE Sla2 Swit 8} Su [8] EXPAN-| 8] pay L8I ram
; =f 7 s _ SION 7 7

G2A XAG 6 6 6 6 6
A4 premanrmenet —_ —a_ ee

Y3 Y4 Y5 Y6 Y7 WEG 5 5 5 5 5
si2la1fiolo 47 AG aye 4 we 4 a

) 3 3

| N a rE A? 25 33 25 3
\ AS 4 24 24 24 24
NXA10 21 21 21 21 21
\ At 23) 943 3 23 3 23

XN EB 36] 412 26 = 26 4

14.22] 20 14.22] 20 0] 20]. 14 “1% 14 22] 20

~— = = =

EPH EPL

Vppon ‘ » \ DATA OUT

3

- U11

CLS JIO 4 = ro DOTR 17

7 +5V <
A 5600 | PORT % SELECT

6 11 [20
CA _ » ~ -_ —f\f-

%4W \ 203) pra Lt2 —_
ND1 4 6

Vep| “p27 PF2T5
cg - PF3 = DATA IN

ye
35V 0413) Pro}? RCV CLK 17

ug > RIZZ2k2 49
L$374 ee

'>R1IA2Z2K2 g
Np ——_———

> +R111k2

- 1 ". PDCD

bnerepeeeed

J2

+5V

20

Nome Be):
N D2. 16 hs 15

D3 § 17
\D4_14 PFIFS

? —— —© +5Vv NOD5_12 v10
+ [+ D6 9 Ls2aa

C7 T 2 NCTE, - -a2V 10
22/15 22/15 PF6 R6 2.2 kQ y RPIO 8 9

L Tr) PF5 13 +12 V—V—————

—0O +12v " Lis) PF7 R51k2 poco 8
——O -12v To +12V

EI
A

P
O
R
T

NO
.

1
EI
A

P
O
R
T

NO
.

2

B. Command Format Summary

Appendix B

B.1 Debug Monitor Command Format Summary

In all Monitor command strings, the Monitor prints the space immediately after the
command to indicate recognition of the command. All other spaces are user-entered.
Default values are given in parentheses.

B.1.1 General Utilities

COMMAND | FUNCTION
AR <number> <number> +/- Hex Arithmetic

CL cursor-left<cursor-left> <CR> Display/Modify Cursor-Left

CU cursor-up<cursor-up><CR> Display/Modify Cursor-Up

DC <decimal number><CR,SP> Decimal-Hex Byte Conversion

DV device type index <device index><CR,SP> Display/Modify Device Type

HC <hex number> Hex-Decimal Word Conversion

HE {M,E} {port 1,2} Help

HS current value {0=Disable, 1=XON, 2=ACK, 3=Both} Display/Modify Software Handshake

B.1.2 Memory Load/Dump Commands

e Address entries are in hexadecimal notation
e Port selection can be defaulted by entering <CR> or <SP> in

place of a port number

COMMAND FUNCTION

DS {port 1,2,3} Display/Save Machine State

LM {port 1,2,3} Load Memory - 7000 Format

LS {port 1,2,3} Load Machine State

LT {port 1,2,3} Load Memory - Tektronics Format

SM <start addr> <stop addr> {port 1,2,3} Save Memory - 7000 Format

ST <start addr> <stop addr> {port 1,2,3} Save Memory - Tektronics Format

B-2

Appendix B

B.1.3 General Memory/Register Manipulation Commands

e Address entries are in hexadecimal notation
e Default values are given in parentheses

COMMAND FUNCTION

DM <start addr> <stop addr> {port 1,2,3} Display Memory

FB <start addr> <stop addr> <value><CR,SP> Find Byte in Memory

FM <start addr> <stop addr> <value><CR,SP> Fill Memory

FR <start reg> <stop reg> <value><CR,SP> Fill Register File

10 {port 1,2} Display |/O Status

MV <start addr> <stop addr> <dest addr><CR,SP> Move Memory

NP Fill Memory with NOPs

B.1.4 Register Modify/Display Commands

Register/peripheral entries are in decimal notation
Program Counter (PC) and Status (ST) entries are in hexadecimal
notation
Stack Pointer (SP) entries are in decimal (register) notation
Memory entries are in hexadecimal notation

After the command is executed:

e <SP> accesses subsequent locations
e “+” accesses subsequent locations (except MA, MS)
e “."" accesses previous locations (except MA, MS)
@ <CR> returns to the Monitor

COMMAND FUNCTION

CP Clear Processor Status

DP Display Processor Status

MA Display/Modify A Register

MB Display/Modify B Register

MM <start addr><CR,SP> Display/Modify Memory

MP <peripheral register><CR,SP> Display/Modify Peripheral File

MR <register><CR,SP> Display/Modify Register File

MS/PC/SR/SP Display/Modify PC, ST, and SP

B-3

Appendix B

B.1.5 Program Support Commands

COMMAND FUNCTION

BT <vector> ... <vector> <CR> Set Breakpoints on TRAP

B1 <addr><CR,SP> Set Breakpoint 1

B2 <addr><CR,SP> Set Breakpoint 2

CB Clear Breakpoints

CT {vector numbers,A} Clear Breakpoint on Trap

C1 Clear Breakpoint 1

C2 Clear Breakpoint 2

DB Display Breakpoints

DT Display Breakpoint on Trap

EF <display type> [event count] <CR> Execute Program with Fixed Display

ET [event count] <CR,SP> Execute Program with Breakpoints/Trace

EX [event count] <CR,SP> Execute Program with Breakpoints

FS <display type> <step count><CR,SP> Single-Step Program with Fixed Display

LA <line number><CR,SP> Show Address of Line

LL <line number> <count><CR,SP> List Line(s) from Editor

LN <addr><CR,SP> Show Line at Address

L1 <line number><CR,SP> Set Breakpoint 1 by Line Number

L2 <line number><CR,SP> Set Breakpoint 2 by Line Number

RT Reset Target Processor

RU Execute Program Without Breakpoints

SS <count> {port 1,2} Single-Step Program

TC Configure Single-Step Trace

TR Display Trace Line

TS <count> {port 1,2} Single-Step Program with Trace

TO Load Program Counter with TRAP 0 Vector

B.1.6 EIA Support Command

The Port 1 baud rate is determined automatically at power-up/reset by entering

<CR>. Port 2 baud rate defaults to 9600 at power-up.

COMMAND | FUNCTION

BR

(br1,br2) <port> <index>
Display/Modify Baud Rate

B-4

Appendix B

B.1.7 Audio Tape Commands

COMMAND | FUNCTION
DR {port 1,2} Audio Tape Directory

MO Enable Cassette Motor

B.1.8 EPROM Programmer Commands

e Address entries are in hexadecimal notation
e Destination ts ‘4’ for TMS2764 (default) and ‘8’ for TMS27128.

COMMAND | FUNCTION
CE <EPROM start> <EPROM stop> <mem start> {4,8}<CR,SP> Compare EPROM

PE <EPROM start> <EPROM stop> <mem start> {4,8}<CR,SP> Program EPROM

RE <EPROM start> <EPROM stop> <mem start> {4,8}<CR,SP> Read EPROM

VE <EPROM start> <EPROM stop> {4,8}<CR,SP> Verify EPROM

Clear 727x0 EPROM BC

12 Calibrate 12 VPP

21 Calibrate 21 VPP

ax Copy U4x-into U19

B.1.9 TMS7000 Assembler Support Commands

COMMAND FUNCTION

AT {port 1,2} Display Assembler Label Table

XA {port 0,1,2,3} {port 0,1,2} [N] Execute Assembler

XL Execute Line-by-Line Assembler

XP Execute Patch Assembler

B.1.10 TMS7000 Text Editor Support Command

COMMAND FUNCTION

XE {port 0,1,2,3} [N] Execute Text Editor

Appendix B

B.2 Text Editor Command Format Summary

In all Text Editor Command Strings, the Text Editor prints the space immediately after

the command to indicate recognition of the command. All other spaces are user-

entered.

B.2.1 General Utilities

COMMAND | FUNCTION
H {port 1,2} Help

| {port 1,2,3} Input File to the Editor

M Display Free RAM Remaining

Q {port 0,1,2,3} [N Quit Edit and Save File

T current tab value <tab value><CR,SP> Display/Modify Tab

Z Initialize Text Editor

B.2.2 Line Manipulation Commands

e Line numbers are optional

e If no line number is entered, then the current line is assumed (except “A”, “R”,

and "F”)

e For “A”, the highest unused line number is assumed

e For "F” and “R”, the lowest used line number is assumed

COMMAND | FUNCTION

+ Line Number Pointer to EOF

Line Number Pointer to BOF

Display Current Line Number

[line number]A Autoincrement Line Number Mode

[line number]R <increment> Resequence Line Numbers

<line number>L <# of lines><CR,SP> List Line(s) to Terminal

<line number>C <line number> Change Line Number

<line number>D <line number> Duplicate Line

[line number] F <string> Find Character String

<line number><CR> Delete Line

<line number>E Edit Line

B-6

Appendix B

B.2.3 Edit Line Commands

For Insert and Delete commands, 110 to 1200 baud manual Insert/Delete allows up
to 9 characters. For 2400 to 9600 baud interactive Insert/Delete, only one character
is allowed.

COMMAND FUNCTION

<cursor-right> Cursor- Right Character

<cursor-left> Cursor-Left Character

<home> Cursor Home Character

<tab> Tab Right

<back tab> Tab Left

CNTL-E Undo Line

CNTL-N{<ESC>,1-9} Insert Character(s)

CNTL-D<# or characters> Delete Character(s)

<RUB> or Delete Previous Character

<CR> Save Line

<cursor-down> Save Line/Edit Next Line

<cursor-up> Save Line/Edit Previous Line

B-7

C. EVM Walkthrough

This section helps you install and operate the EVM. Topics covered include instal-
lation and initialization, command operations, program development and debug, and
EPROM programming.

Appendix C

C.1 Notation

C-2

The syntax conventions described below are used throughout this section to simplify

the use of the commands.

Parentheses () placed before “Enter” statements are provided to

check off the steps as you progress.

Angle brackets (<>) mean keys to press or parameters to enter:

UPPER CASE letters = press indicated key (e.g., <CR> means

press Carriage return)

lower case letters = parameter to enter (e.g., <reg> means enter

a register number).

The “7” symbol represents the position of the cursor in the display.

A parameter in italics indicates that the current value of the

parameter is displayed.

Information to be entered from the keyboard is preceded by

”Enter:”. If this entry requires a space or carriage return as the final

character, the <SP> or <CR> symbol will follow the text to be

entered.

Information following the ”Display:” banner should appear on your

monitor after entering commands and parameters.

The following are some examples of formats which will be used

throughout this section.

CMD

CMD previous value <new value>

CMD <addr 1> <addr 2> <value>

For example, a Fill Memory (FM) command used to fill RAM locations

>F600 to >FAOO with the value >33. The following is the format:

FM <addr 1> <addr 2> <value><CR>

The command you would enter:

FM F600 FAOQO 33<CR>

Note:

The space between the command (e.g., FM) and the first parameter (e.g., F600)

will be provided by the EVM Monitor for all commands which require additional

parameters. Do not enter this space.

Appendix C

C.2 Walkthrough Exercises

The following Walkthrough Exercises introduce you to the TMS7000 EVM and to
some of the following commonly used features of the EVM system:

C.2.1 EVM Installation

Installation

Device initialization

Status commands

Memory manipulation commands

Arithmetic logic commands

Program development

1)
2)

Editing and assembling
Breakpoint and trace functions

EPROM control commands

Use the following procedure to power up the EVM (see Section 2.5 for suggested
power supply and Figure 1-1 for the port configuration).

()

()

()

()

()

()

Connect power supply to EVM port J7 or J6.

Connect terminal to EVM Port 1 (J1) using a standard RS-232-C
cable.

Turn on power supply. The “Power” LED (next to J7) should light
if the power supply is properly connected.

Turn on video terminal.

Toggle the EVM RESET switch (SW1).

Enter: <CR>

Display:

TMS7000 DEBUG MONITOR REV 2.X
DEVICE TYPE = 2 (704X)
SYSTEM RAM = 32256 BYTES
HELP HE /H SHE
MODIFY : MM/IM MR/IR MP/IP A/MA B/MB MS-P/PC,SP
DISPLAY: DM/DH DS IO DV
DEVICE : C/CP D/DP EI DI. DV
STATE C/CP D/DP xC,xN,xZ,xI (x=C/S) EI DI SR
SAVE SM ST DS
LOAD LM LT LS
MOVE MV
FIND FB
FILL FM NP FR
RESET RT TO
BRKPT Bl B2 Cl C2 CB DB’ BT CT DT
TRACE TO TF IT PT IS TC TR
DEBUG : SS TS FS CS CY GO EX ET EF RU
EDITOR : XE Ll L2 LL LA LN
ASSM XA XL XP AT XR
EPROM PE VE CE RE BC 12 21 25 43 44 45
MATH HC DC AR

C-3

Appendix C

C.2.2 Device

C-4

PORTS : BR DR MO
?

If this display does not appear, confirm proper terminal and power
supply connections and execute the installation procedure again. If your
system ts a revision less than 1.4, the display will not appear.

Initialization

This section of the Walkthrough Exercises is designed to demonstrate the commands
that are used to initialize the EVM.

DV (Device Type).
emulated by the EVM.

This command is used to display or modify the device being

() Enter: DV

4

Display: DEVICE TYPE x (7xxx)

The type (represented by “x” after the "=") should be 2 for a TMS704x device type.
If the default value is not 2, changed it to 2 to emulate a TMS704x or a TMS70C4x
(see Table C-1).

Table C-1. TMS7000 Family Device Types

MINIMUM
MEMORY START RAM

INDEX DEVICE FOR PC/AORG REQUIRED

1 TMS7020,'70C20 >F806 8K bytes
2 TMS704x,'70C4x >FO0O6 16K bytes
3 Reserved >E006 16K bytes
4 Reserved > D006 16K bytes
5 Reserved > C006 24K bytes

lf the present default value is 2 then:

() Enter: <CR>

If the default value is not 2 then:

() Enter: 2<CR>

Display: DV
DEVICE TYPE = x (7xxx) 2 <CR>
PC=FO06 C=0 N=0 Z=0 I=0O SP=R1 A=00 B=00

If you wish to change the default values for the cursor-up and the cursor-left char-
acters, continue with this section. Otherwise, go to Section C.2.3.

All alphanumeric and most control keys can be entered for cursor control. New
characters entered will not be displayed (echoed) during entry. The next CU or CL
command will display the ASCII code of current ASCII character(s) used. An error
can cause the command to revert back to the original defaults of “OB” (vertical tab)
for CU and ”08” (back space) for CL.

Appendix C

C.2.3 Status

CU (Display/Modify Cursor-Up Character). This command allows you to set
the character or character sequence to be recognized by the terminal as a cursor up.

() Enter: CU

Display: CU OBOOOOOO 7

The display shows the ASCII code of the current character used. You may change

the code by entering one character or a string of up to three characters. “Arrow” keys
are usually chosen for simplicity. If you don’t want to change the cursor-up character,
enter <CR>.

() Enter: <chosen character(s)> <CR>

CL (Display/Modify Cursor-Left Character). This command allows you to set

the character or character sequence to be recognized by the terminal as a cursor left.

() Enter: CL

Display: CL 08000000 7°

You may enter a single character or a string of three characters. “Arrow” keys are

usually chosen for simplicity. If you don’t want to change the cursor-left character,
enter <CR>.

() Enter: <chosen character(s)> <CR>

Commands

This section demonstrates the commands that verify and manipulate processor status.

DP (Display Processor Status). This command displays the contents of the
Program Counter (PC), Status Register (ST), Stack Pointer (SP), and Registers A

and B of the presently selected default device.

() Enter: DP

Display: PC=FO06 C=O N=0 Z=0 I=0 SP=R1 A=XX B=XX
27

MS (Modify Processor Status). This command is used to display and modify

the processor status (PC, ST, SP, and Registers A and B).

We will now change the values of the processor status:

() Enter: MS

Display: PC=FO06 7

() Enter: F806<SP> (set PC to >F806)

C-5

Appendix C

Note:

If a space is entered at the end of an MS line, the next entry line will be displayed.
If a <CR> is entered, control returns to the ? prompt.

Display: SP=R1 7

() Enter: 66<SP> (set Stack Pointer to R66)

Note: If more than two hex digits are entered, the Monitor will recognize only

the last two digits entered.

Display: A=00 7

() Enter: 7C<SP> (set Reg. A to >7C)

Display: B=00 7

() Enter: 8<CR> (set Reg. B to 8)

lf the <SP> is used instead of the <CR> to terminate MS command, the PC would

be displayed again.

To verify the changes made to the processor status, re-execute the DP (Display

Processor Status) command:

() Enter: DP

Display: PC=F806 C=0 N=1 Z=0 I=1 SP=R66 A=7C B=08
a7

CP (Clear Processor Status). This command restores the PC, ST, SP, and

Registers A and B to their default values.

() Enter: CP

Display: PC=FO06 C=0 N=0 Z=0 I=0 SP=R1 A=00 B=00
27

10 (Display 10 Status). The !O0 command is used to display the values in the

Peripheral File locations PO to P31, in hex and binary.

() Enter: 1O<CR>

Your display may differ from what is shown.

Appendix C

Display:
?I0

PC=FO06 C=O N=0 Z=0 I=QO SP=R1 A=00 - B=00

PO= 00 (00000000) P16=00 (00000000)
P1l= 00 (00000000) P17=05 (00000101)
P2= 00 (00000000) P18=00 (00000000)
P3= 00 (00000000) P19=00 (00000000)
P4= 3F (00111111) P20=08 (00001000)
P5= 00 (00000000) P21=FF (11111111)
P6= FF (11111111) P22=00 (00000000)
P7= FF (11111111) P23=F6 (11110110)
P8= FF (11111111) P24=F7 (11110111)
P9= 00 (00000000) P25=F6 (11110110)
P1O=FF (11111111) P26=F7 (11110111)
P11=00 (00000000) P27=F6 (11110110)
P12=F6 (11110110) P28=F7 (11110111)
P13=F7 (11110111) P29=F6 (11110110)
P14=F6 (11110110) P30=F7 (11110111)
P15=F7 (11110111) P31=FF (11111111)

ma]

C.2.4 Memory Manipulation Commands

This section demonstrates the commands that display and/or modify the processor
memory locations.

FR (Fill Register File). This command is used to fill registers in the Register File
with a hex value.

Fill Registers 0 through 127 with >AA:

() Enter: FR 0127 AA<CR>

MA (Modify Register A). This command is used to display/modify the contents
of Register A (also called Register 0).

() Enter: MA

Display: A=AA 7

() Enter: A8<CR> (set RA to >A8)

MB (Modify Register B). This command is used to display/modify the contents
of Register B (also called Register B).

() Enter: MB

Display: B=AA 7

() Enter: 3C<CR> (set RB to >3C)

Now, display the processor status to see the changes made by the MA and MB

instructions:

() Enter: DP

C-7

Appendix C

Display: PC=FO06 C=O N=0 Z=0 I=0 SP=R1 A=A8 B=3C
97

MR (Modify/Display Register File). This command is used to display/modify

internal registers.

Change the value in Registers 37 and 38:

() Enter: MR 37<CR>

Display: ?MR 37
R37=AA (10101010) 7

() Enter: 7TA<SP> (set R37 to >7A)

If <SP> is used, the value >7A will be entered into R37 and the display will prompt

for R38. If the <CR> is used instead of <SP>, the MR function will be exited.

Display: ?MR 37

+ R37=AA (10101010) 7A <SP>

R38=AA (10101010) 7

() Enter: 34<CR> (set R38 to >34)

Display: ?MR 37

+ R37=AA (10101010) 7A <SP>

R38=AA (10101010) 34 <SP>
7071

MP (Display/Modify Peripheral File). This command is used to display and

optionally modify any peripheral register in the range of PO to P31.

Enter a value in timer 1 data latch (P2):

() Enter: MP 2<CR>

Display: ?MP 2
P2=00 (00000000)

() Enter: 3F<CR> (set P2 to >3F)

Display: ?MP 2

P2=00 (00000000) 3F <CR>
>?

NP (Fill Memory with NOPs). This command is used to fill the program memory

with the NOP opcode (>00).

() Enter: NP

Display: ?NP
ARE YOU SURE? (N) 7

() Enter: Y

C-8

Appendix C

DM (Display Memory). This command is used to display the hexidecimal
contents of memory.

Display the contents of memory between >FOO6 and >F024 inclusive:

() Enter: DM F006 FO024<CR>

Display:

FOOO OO 00 00 00 00 00 00 00 O00 00 00 00 O00 00 00 OO
FO10 00 00 00 00 00 00 00 00 O00 00 00 00 O00 00 00 00
FO20 00 00 00 00 OO

77

As you can see, the memory display does not start at > F006, but at >FOOO. This is

because the memory dumps always start on the zero nibble boundary of the start

address (>XXX0O). Therefore, when >FOO6 was entered, >FOOO was interpreted as

the first address. However, the DM command will stop on whatever address is given

as the stop address in the command, and not necessarily on the zero nibble boundary.

FM (Fill Memory). This command is used to fill program memory locations with

any hex value.

Fill memory between >FOO6 and >FO20 with >41:

() Enter: FM F006 F020 41<CR>

T.o see the changes made by the FM command, display the memory dump by entering

the following:

() Enter: DM F006 FO30<CR>

Display:

FOOO XX XX XX XX XX XX 41 41 41 41 41 41 41 41 41 421

FO1O 41 414141 41 414141 «421 41 41 41 «+341 41 41 421

FO20 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FO30 00

2741

MV (Move/Copy Memory). This command is used to move (copy) a block of

memory specified by the start address and the stop address, inclusive, to memory

specified by the destination start address.

Copy the memory between >FO06 and >F030 inclusive to memory starting at > F806:

() Enter: MV FOO6 FO30 F806<CR>

To see if the MV command worked correctly, display memory with the DM command:

() Enter: DM F806 F840<CR>

C-9

Appendix C

Display:

F800 00 00 00 00 O00 00 41 41 41 41 41 41 41 41 41 421
F810 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 421
F820 41 00 00 00 O00 00 00 00 O00 00 00 00 OO 00 00 O00
F830 00 00 00 00 00 00 00 00 O00 00 00 00 OO OO OO 0D
F840 00

?7

MM (Modify Memory).
program memory.

This command is used to display and optionally modify

Modify memory location >F810.

() Enter: MM F810<CR>

Display: ?MM F810
F810=41 (01000001) 7

() Enter: 42<SP>

Note: If a <SP> or <+> is used as as the entry terminator, the command
continues on the next memory location. If a <-> is used, the command continues
to the previous memory location. If the <CR> is used, the command will be
terminated after performing the operation.

Display: ?MM F810
+ F810=41 (01000001) 42

F811=41 (01000001) 7

() Enter: 43<CR>

Display: ?MM F810
+ F810=41 (01000001) 42
811-41 (01000001) 43 <CR>

?

To see the changes made by the MM command, display memory using the following:

() Enter: DM F800 F812<CR>

Display:

F800 00 00 00 00 00 00 41 41 41 41 41 41 41 41 41 421
F810 42 43 41

271

FB (Find Byte). This command is used to find the occurance(s) of a value in the
memory limits specified in the command parameters.

Find the hex value >42 between >F800 and >F840:

() Enter: FB F800 F840 42<CR>

Display: ?FB F800 F840 42
F810=42 (01000010) °

Appendix C

The value at >F810 can now be changed:

() Enter: 44<CR>

Display: ?FB F800 F840 42
F810=42 (01000010) 44 _

When the FB command is entered, the command displays the first location of the

byte value. Subsequent <CR> entries will display further locations of the byte (to
address >F840).

C.2.5 Arithmetic Logic Commands

This section of the Walkthrough Exercises shows the commands that provide arith-

metic operations.

HC (Hex-Decimal Word Conversion). This command converts a hex value (up

to four digits in length) to decimal format.

Convert >D3A8 to decimal:

() Enter: HC D3A8<CR>

Display: ?HC D3A8
>D3A8=54184

27

DC (Decimal-Hex Byte Conversion). This command converts a decimal number

(up to 255) to hex format.

Convert 183 to hex:

() Enter: DC 183<CR>

Display: ?DC 183
183=>B7
27

AR (Hex Arithmetic +/-). This command displays the sum and the difference

of numbers entered. The numbers are in hex and have up to four digits.

Hexidecimally add and subtract >34C1 and >6F2A:

() Enter: AR 34C1 6F2A<CR>

Display: ?AR 34Cl1 6F2A
34C1+6F2A=A3EB 34C1-6F2A=C597
27

Appendix C

C.2.6 Use Text Editor to Develop Program

This section of the Walkthrough Exercises demonstrates commands for developing,
editing, and saving TMS7000 programs. The sample program is a real-time clock that

counts seconds, minutes, and hours, and will be used to demonstrate the breakpoint

and trace functions of the EVM.

XE (Execute Text Editor). This command is used to enter the EVM Text Editor.

To exit from the Editor back to the Monitor, press <ESC>. Enter the EVM Text Editor:

() Enter: XE<CR>

Display: EVM TEXT EDITOR (Text Editor banner)

22016 (Bytes available for text storage)

x7 (* = Text Editor command prompt)

Z (initialize Text Editor). This Text Editor command clears all text from memory

and initializes the Text Editor workspace pointers.

Initialize the Text Editor:

() Enter: Z

Display: *Z
ARE YOU SURE? (N) 7

() Enter: Y

Display: *Z
ARE YOU SURE? (N) Y

22016
* 7

Caution:

The Z command clears text in memory. The XE (Execute Editor)

command does not destroy values in memory. To exit the Text Editor

and go to the Monitor, press "Q” and <CR>. To re-enter at the line

addressed at exit, enter "XE<CR>”, then “A”.

A (Autoincrement Line Number Mode). This Text Editor command allows entry

of text beginning at a specified line number. A new number, incremented by a set

value, is printed for each text line.

Enter the Autoincrement mode:

() Enter: A

Display: *A
0010 7

Appendix C

Walkthrough Test Program. The following Walkthrough test program - a real-
time clock which counts seconds, minutes, and hours - will now be entered. This
program will demonstrate the editing, assembling, and debug commands. Comments
have been added to help explain this program, although these comments do not need
to be entered. The label, mnemonic, and opcode fields must be included. By omitting
comments, the effective number of code lines will decrease from 75 to 31. The first
line continues after the “A” Text Editor command was issued. The 0010 is the first
line number. Enter the label as the first entry on a line; if no label, enter a <SP> or
tab over to the mnemonic field, as applicable.

() Enter:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270

+
+

+

TART

+
4
)

+
+

+
+

4
F

HECK

IDT "CLOCK'

AORG >FOO06 THIS IS WHERE THE ASSEMBLER
WILL ORIGINATE THIS PROGRAM.

REORIENT THE STACK FROM R1 TO R100

MOV %>64,B LOAD REGISTER B WITH >64.
LDSP ORIENT STACK POINTER TO R100.

*INITIALIZE TIMERS AND REGISTER STORAGE AREAS:
THE 'SECONDS' COUNT WILL BE STORED IN 'R3'.
THE 'MINUTES' COUNT WILL BE STORED IN 'R4'.
THE 'HOURS' COUNT WILL BE STORED IN 'RS'.

MOVP %>08,P0 MODE IS SINGLE CHIP
AND INTERRUPT 2
IS CLEARED.

MOVP %>08,P16 INT4 DISABLED, ENABLE INTS5.
MOVP %>63,P2 STORE >63 IN Tl DATA

REGISTER.
MOVP %>7C,P18 STORE >7C IN T2 DATAREG;

TIMERS ARE NOW INITIALIZED.
CLR R3 ERASE R3 AND R4 -- INITIALIZES
CLR R4 MINUTE AND SECOND COUNTERS.
MOV %>12,R5 R5 INTIIALIZED FOR HOUR COUNT.
MOV %>3C,R6 TEST REGISTERS R6 AND R7
MOV %>3C,R7 TO EQUAL 60.

LOAD TIMER PRESCALES, AND START TIMERS

MOVP %>98,P3 LOAD TIMER 1 PRESCALE WITH
>18, AND START TIMER 1.

MOVP %>A0,P19 START TIMER 2.

* BEGIN CHECKING FOR TIMER 2 INTERRUPT, WHICH WILL
* SIGNAL THE LAPSE OF ONE (1) SECOND.

BTJZP %>08,P16,CHECK TEST TO SEE WHEN TIMER 2
COUNTS DOWN TO ZERO (0).

MOVP %>08,P16 CLEAR TIMER 2 INT. FLAG.

* MODIFY THE 'SECONDS' STORAGE REGISTER (R3).

DAC %>01,R3 ADD 1 TO REGISTER 3,
WHICH IS THE 'SECONDS'
STORAGE AREA.

DJINZ R6,CHECK JUMP TO 'CHECK' UNTIL R6
HAS COUNTED DOWN FROM >3C.

CLR R3 RESET THE 'SECONDS' REGISTER

TO ZERO (0).
MOV %>3C,R6 RELOAD R6 WITH >3C.

* MODIFY THE 'MINUTES' STORAGE REGISTER (R4).

C-13

Appendix C

0540 *
0550 MIN DAC %>01,R4 ADD DECIMAL 1 TO REGISTER 4,

0560 * WHICH IS THE 'MINUTES'
0570 * STORAGE REGISTER.

0580 DJNZ R7,CHECK JUMP TO 'CHECK' UNTIL R7

0590 * HAS COUNTED DOWN FROM >3C.
0600 CLR R4 RESET THE 'MINUTES' REGISTER
0610 * TO ZERO (0).

0620 MOV %>3C,R7 RELOAD R7 WITH >3C.

0630 *
0640 * * MODIFY THE 'HOURS' STORAGE REGISTER (R5).

0650 *
0660 HOUR DAC %>01,R5 ADD DECIMAL 1 TO REGISTER

0670 * FIVE (5) WHICH IS THE 'HOURS'

0680 * STORAGE REGISTER.

0690 CMP %$>13,R5 HAS THE 'HOURS' REGISTER

0700 * COUNTED TO BCD >13?

0710 JNE CHECK IF NOT, JUMP TO 'CHECK'.

0720 MOV %$>01,R5 IF SO, CHANGE THE 'HOURS'

0730 * REGISTER TO BCD >01.

0740 BACK JMP CHECK JUMP TO 'CHECK’'.

0750 END END END OF PROGRAM.

0760 Q<CR>

Display: 7

Now return to the Monitor by entering a ‘Q’ and <CR>:

() Enter: Q<CR>

Display: TMS7000 DEBUG MONITOR REV 2.X
71

This program will be used in further command demonstrations.

C.2.7 Assemble Program

XA (Execute Assembler). This command is used to execute the assembler on a
specified file.

Execute the assembler:

() Enter: XA<CR>

INITIALIZE? (Y)<CR>

The following should appear after the scrolling of a successful assembly of the above
program:

Display: 0740 FOS5SO EO BACK JMP CHECK JUMP TO CHECK

FO51 D6

0750 F052 END END END OF PROGRAM

OQ ERRORS

TMS7000 DEBUG MONITOR REV 2.X
27

The assembled program will scroll! on the Monitor. When the assembly is finished,

the error statement should read zero if no errors occurred.

Appendix C

C.2.8 Program Debug

TC (Configure Single-Step Trace). This command sets values to be displayed
by the Trace Step (TS) command. These values (up to six) may be registers,
peripheral registers, or memory addresses.

Set up a trace line showing R5, R4, R3, P16, and >F048.

() Enter: TC

Display: 7

() Enter with a space between each entry:

R5 R4 R3 P16 >FO048<CR>

Note:

When entering an address, it must be preceded by a hex symbol (>) and be in
the device memory default range (>FO06 to >FFFF for the TMS7041).

Display: R5 R4 R3 P16 >FO048
R5=xx R4=xx R3=xx P16=xx FO48=xx

<CR>
71

Now that traces have been entered, you will run the clock program in the single-step
mode, requiring the use of the TS command. You will also run the program without

breakpoints. To accomplish this, an RU, EX, or ET command must be entered. You

will use the RU command in this demonstration.

TS (Single-Step Program with Trace). This command is used to display the

trace line while single-stepping through the user program.

Begin the single-step program with trace:

() Enter: TS<CR>

Display:

LAST INST---> 0010 IDT 'CLOCK'

CYCLE COUNT = 000007
NEXT INST---> 0080 LDSP ORIENT STACK POINTER TO R100.
PC=FOO8 C=0 N=0 Z=0 I=0 SP=R1 A=00 B=FO

R5=AA (10101010) R4=00 (00000000) R3=09 (00001001)

P16=08 (00001000) >F0O48=7D (01111101) "7

Continue to step through the program by pressing the space bar. Do this until the

0380 CHECK BTJZP %>08,P16,CHECK

instruction appears under the "LAST INST--->” banner. To escape from the TS

command hit <CR>.

() Enter: <CR>

Appendix C

RU (Execute Program without Breakpoints). This command is used to
execute a program while ignoring any previously entered breakpoints.

If you would like to check the accuracy of this program, look at a stop watch or clock
with a second hand and note the time when you strike the <CR> after 'RU’
command. First, however, the processor should be reset to its default values. To do
this, use the (CP) Clear Processor Status command.

() Enter: CP

Display: PC=FO06 C=0 N=0O Z=0 I=0 SP=R1 A=00 B=00

Now, Start the program:

() Enter: RU<CR>

Display: ?RU
om |

To stop the timer, toggle the RESET switch on the EVM. If you are timing this
program, note the time when you toggle the RESET switch.

() Enter: Toggle the RESET switch.

Display: STOP AT PC=Fxxx
im

To display the traces, enter TC again:

() Enter: TC

Display: R5=xx R4=xx R3=xx P16=xx >FO048=7D
<CR>
71

The display will list the BCD contents of the hours in R5 (starting with hour 12),
minutes in R4, seconds in R3, condition of the Timer 2 control register in P16, and
contents of >F048. Unless the program has run for an hour or more, R5 should
contain >12.

Now you need to enter breakpoints. Set breakpoints using the B1 and B2 (Set
Breakpoint on Address) commands. However, there are two other ways to set
breakpoints. To see how, refer to the L1, L2, and BT commands in this manual.

B1 and B2 (Set Breakpoint on Address 1 and 2). Use these commands to set
the two breakpoints on addresses. The address entered must be within the range of
the default values of the device being emulated. In this case (TMS704x), the range
is >FOO6 to >FFFF.

Set up first breakpoint on address:

() Enter: B1 FO3D<CR>

Display: BP1=FO3D BP2=0000
?

Set up second breakpoint on address:

Appendix C

() Enter: B2 F045<CR>

Display: BP1=FO3D BP2=F045
7

DB (Display Breakpoints). This command is used to display the current values
of the two breakpoints.

Display the breakpoints:

() Enter: DB

Display: ?DB
BP1=FO3D BP2=F045
?71

Now execute the program. using breakpoints. The first breakpoint is at > FO3D, which
is the point where minutes are counted. Execute the program and list the trace line
after the breakpoint is recognized. To do this, use the EF command.

EF (Execute Program with Fixed Display). This command is used to execute
the program to a breakpoint and update a display in a fixed place on the terminal
screen.

Execute the EF command. For this example, the breakpoint was set on the one minute
boundary. Therefore, it will take approximately one minute for this example to end.

() Enter: EF<CR>

After the breakpoint is recognized, the following should be displayed on your
terminal:

Display:

NEXT INST---> 0580 DJNZ R7,CHECK JUMP TO 'CHECK' UNTIL R7
PC=FO3D C=0 N=0 Z=0 I=0 SP=R100 A=FO B=64 BP1
R5=12 (00010010) R4=01 (00000001) R3=00 (00000000)
P16=00 (00000000) >FO48=7D (01111101) "°

Enter <CR> to enable the EVM to accept another command; then enter the CP
command to set the PC back to the default value of >FOO6:

() Enter: <CR>

() Enter: CP

Display: PC=FO06 C=O N=0 Z=0 I=0 SP=R1 A=00 B=00
97

You will now change Breakpoint 1 to >FO32 (seconds counter) and set up an event
counter to cause the breakpoint to be ignored until it has occurred a number of times

equal to the event counter.

() Enter: B1 FO032<CR>

Display: ?B1
BP1=FO32 BP2=F045
?7

Appendix C

ET (Execute Program with Breakpoints/Trace). This command displays a
trace line whenever a breakpoint is detected. An event count feature of this command
is used to cycle over a breakpoint for a specified number of times.

Execute of the ET command. Set the event count to 8, which will cause the processor
to recognize the breakpoint after the breakpoint’s eighth occurrence.

() Enter: ET 8<CR>

The following should appear on your monitor:

Display:

NEXT INST---> 0470 DJNZ R6,CHECK JUMP TO 'CHECK' UNTIL R6
PC=FO032 C=0 N=0 Z=0 I=0 SP=R100 A=00 B=64 EV
R5=12 (00010010) R4=00 (00000000) R3=08 (00001000)
P16=00 (00000000) >FO48=7D (01111101) 4

() Enter: <CR>

Please refer to Section 6 to obtain more information on the parameter options
available for the breakpoint and trace commands.

C.2.9 EPROM Control Commands

This section of the Walkthrough Exercises is designed to show the uses of the
EPROM programmer functions of the TMS7000 EVM. When complete with this
section, an EPROM should have been programmed with the program you entered
in the last section.

To program an EPROM, one must first be inserted into the 28-pin Zero Insertion Force
socket (U19). Any standard TMS2764 EPROM will work.

VE (Verified EPROM Erased). This command is used to verify whether the
specified device is empty (>FF in all locations).

Verify that the EPROM is erased:

() Enter: VE 0000 1FFF<CR>

Display: VERIFY COMPLETE
?

If the EPROM is empty, the COMPLETE message will appear in a few seconds. If
an ERROR message appears, insert anew EPROM or erase the present EPROM, and
verify it again.

PE (Program EPROM from Memory). This command is used to program the
specified EPROM.

Begin programming the EPROM:

() Enter: PE 1000 1FFF FOOO<CR>

Display: PROGRAM COMPLETE
VERIFY COMPLETE 5

Appendix C

The EPROM has now been programmed with the total contents of the EVM desig-
nated memory.

CE (Compare EPROM to Memory). This command is used to compare the
contents of the specified device with the EVM memory.

Compare the contents of the EPROM to the contents of memory:

() Enter: CE 1000 1FFF FOOO0<CR>

Display: COMPARE COMPLETE
?

The COMPLETE statement will appear if the contents of the EPROM compare exactly
with the contents of the EVM memory. If an ERROR message appears, the contents
do not compare, and the EPROM must be erased and reprogrammed.

This completes the TMS7000 EVM Walkthrough Exercises.

D. Crystal Frequency Dependent Constants

Crystal frequency dependent constants used in the EVM are listed in the following
tables. These values reside in EPROM starting at location >FFB2 and are accessible
with the Monitor command $MM described in Section 6.7. If the crystal frequency
is changed, the appropriate values for that frequency must be placed in the table by
creating a new EPROM.

The table starts with the software UART triplets stored. in registers R122-R127 during
Monitor operation.

The three constants called “ONEHI”, “ZERHI”, and “MIDCYC” are for the audio tape
timing. If these values are not changed with the crystal frequency, the EVM will still
be able to read tapes that it generates, but may not keep tape compatibility with other
EVMs.

The constant “EPCNT” is used in the EPROM programming routines to insure proper
delay during programming cycles.

The length of the machine cycle that the EVM is executing is determined by the crystal
frequency divided by the built-in divider (either 2 or 4). As the machine cycle gets
longer, with a lower frequency crystal or a divide-by-4 part, the resolution of the
software UART and the audio tape interface are affected and at certain points
rendered inoperable. Table entries for audio tape constants are given as “XX” when
the audio tape will not accurately work for the given crystal or divider combination
used. Likewise, software UART table entries that will not function properly are given
as:

XXXX BYTE >01
XXXX BYTE >01
XXXX BYTE >01

These entries must be set to >01 so that the autobaud routine can pass them to select
one of the lower baud rates.

Appendix D

D.1 Making a New Monitor EPROM

During emulation with internal clock selected, the clock used for operation is the

same one that drives the Monitor EPROMs. If a different internal clock frequency is

needed, the crystal on the EVM must be changed and the >E000 to > FFFF EPROM

(U43) must be reprogrammed with the new values in the frequency-dependent

constant table.

For example, suppose that a system was upgraded by substituting a TMS 70CxOAN2L

for a TMS70CxON2L (on a non-Rev. A board). The crystal frequency is raised from

3.579 MHz to 5 MHz. Replace the crystal and reprogram PROM U43 with the values

listed in the applicable software UART table, Table D-7.

This can be accomplished by transferring the contents of the EPROM to RAM with

the $MV command, changing the values in the table, and programming a new

EPROM (similar to that for changing the Monitor in Section 9.7.) After putting this

EPROM in place of the original, change the crystal; the EVM is then ready to run at

the new frequency. For example:

?SMV EOOO FFFF 4000 (move to RAM)
?SMM 5FBx (modify in RAM)

?$PE 0 1FFF 4000 (program blank EPROM)
PROGRAMMING COMPLETE

? (replace with new EPROM)

This procedure is similar to that described in Section 9.7 on 9-7 and used to change

the EVM default values listed in Section 2 (e.g., change EPROM programmer desti-

nation in Section 2.12 and change Port 2 default baud rate in Section 2.13).

Appendix D

Table D-1. Crystal Dependent Constants: 1 MHz Crystal with Divide-by-2
Oscillator

FFB2 BYTE >C8 110 BAUD

FFB3 BYTE >02

FFB4 BYTE >76

FFB5 BYTE >91 150 BAUD

FFB6 BYTE >02

FFB7 BYTE >56

FFB8 BYTE >45 300 BAUD

FFB9 BYTE >02

FFBA BYTE >27

FFBB BYTE >1F 600 BAUD

FFBC BYTE >02

FFBD BYTE >11

FFBE BYTE >0C 1200 BAUD

FFBF BYTE >02

FFCO BYTE >08

FFC1l BYTE >07 2400 BAUD

FFC2 BYTE >01

FFC3 BYTE »>04

FFC4 BYTE >01 4800 BAUD

FFC5 BYTE >01

FFC6 BYTE >01

FFC7 BYTE >01 9600 BAUD

FFC8 BYTE >01

FFC9 BYTE >01

FFCA BYTE >01 AUTO BAUD

FFCB BYTE >01

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >XX ZERHI OUTPUT WAIT COUNT FOR ZERO HIGH
FFCD BYTE >XX ONEHI OUTPUT WAIT COUNT FOR ONE HIGH
FFCE BYTE >XX MIDCYC MID CYCLE THRESH FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >2D EPCNT PROGRAMMING DELAY COUNTER

D-3

Appendix D

Table D-2. Crystal Dependent Constants: 1 MHz Crystal with Divide-by-4
Oscillator

FFB2 BYTE >61 110 BAUD

FFB3 BYTE >02

FFB4 BYTE 3A

FFB5 BYTE »>45 150 BAUD

FFB6 BYTE >02

FFB7 BYTE >2A

FFB8 BYTE Ol1F 300 BAUD

FFB9 BYTE >02

FFBA BYTE >11

FFBB BYTE >0C 600 BAUD

FFBC BYTE >02

FFBD BYTE >08

FFBE BYTE >01 1200 BAUD

FFBF BYTE >01

FFCO BYTE >01

FFClL BYTE >01 2400 BAUD

FFC2 BYTE >01

FFC3 BYTE >01

FFC4 BYTE >0O1 4800 BAUD

FFC5 BYTE >01

FFC6 BYTE >01

FFC7 BYTE >01 9600 BAUD

FFC8 BYTE >0O1

FFC9 BYTE >0O1

FFCA BYTE >01 AUTO BAUD

FFCB BYTE >01

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >XX ZERHI OUTPUT WAIT COUNT FOR ZERO HIGH
FFCD BYTE >XX ONEHI OUTPUT WAIT COUNT FOR ONE HIGH
FFCE BYTE >XxX MIDCYC MID CYCLE THRESH FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >16 EPCNT PROGRAMMING DELAY COUNTER

Appendix D

Table D-3. Crystal Dependent Constants: 2 MHz Crystal with Divide-by-2

Oscillator, or 4 MHz Crystal with Divide-by-4 Oscillator

FFB2 BYTE >CA 110 BAUD

FFB3 BYTE »>04

FFB4 BYTE >ED

FFB5 BYTE >C5 150 BAUD

FFB6 BYTE >03

FFB? BYTE >AE

FFB8 BYTE »>60 300 BAUD

FFB9 BYTE >03

FFBA BYTE >52

FFBB BYTE >45 600 BAUD

FFBC BYTE >02

FFBD BYTE >27

FFBE BYTE oO1F 1200 BAUD

FFBF BYTE >02

FFCO BYTE >11l

FFC1l BYTE >0C 2400 BAUD

FFC2 BYTE >02

FFC3 BYTE >08

FFC4 BYTE >07 4800 BAUD

FFC5 BYTE >01

FFC6 BYTE >04

FFC7 BYTE >01 9600 BAUD

FFC8 BYTE >01

FFC9 BYTE >O1

FFCA BYTE >01 AUTO BAUD

FFCB BYTE >01

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >XX ZERHI OUTPUT WAIT COUNT FOR ZERO HIGH

FFCD BYTE >XX ONEHI OUTPUT WAIT COUNT FOR ONE HIGH

FFCE BYTE >XX MIDCYC MID CYCLE THRESH FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >59 EPCNT PROGRAMMING DELAY COUNTER

D-5

Appendix D

D-6

Table D-4. Crystal Dependent Constants: 3.579 MHz Crystal (Color Burst)
with Divide-by-2 Oscillator

FFB2 BYTE OFF 110 BAUD

FFB3 BYTE »>06

FFB4 BYTE OFF

FFB5 BYTE >D5 150 BAUD

FFB6 BYTE >05

FFB7 BYTE OFF

FFB8 BYTE >83 300 BAUD

FFB9 BYTE >04

FFBA BYTE >9B

FFBB BYTE >55 600 BAUD

FFBC BYTE >03

FFBD BYTE >4D

FFBE BYTE >28 1200 BAUD

FFBF BYTE >03

FFCO BYTE >25

FFCl BYTE >1B 2400 BAUD

FFC2 BYTE >02

FFC3 BYTE >12

FFC4 BYTE >OA 4800 BAUD

FFC5 BYTE >02

FFC6 BYTE >08

FFC7 BYTE >05 9600 BAUD

FFC8 BYTE >01

FFC9 BYTE >04

FFCA BYTE >09 AUTO BAUD

FFCB BYTE >0O1

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >3B ZERHI OUTPUT WAIT COUNT FOR ZERO HIGH
FFCD BYTE >1C ONEHI OUTPUT WAIT COUNT FOR ONE HIGH
FFCE BYTE >CC MIDCYC MID CYCLE THRESH FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >Al1 EPCNT PROGRAMMING DELAY COUNTER

Appendix D

Table D-5. Crystal Dependent Constants: 3.579 MHz Crystal (Color Burst)
with Divide-by-4 Oscillator

FFB2 BYTE >B5 110 BAUD

FFB3 BYTE >04

FFB4 BYTE >D4

FFB5 BYTE >BO 150 BAUD

FFB6 BYTE >03

FFB7 BYTE >9B

FFB8 BYTE >55 300 BAUD

FFB9 BYTE >03

FFBA BYTE >O4A

FFBB BYTE >28 600 BAUD

FFBC BYTE >03

FFBD BYTE >23

FFBE BYTE >18 1200 BAUD

FFBF BYTE >02

FFCO BYTE >OF

FFC1l BYTE >OA 2400 BAUD

FFC2 BYTE >02

FFC3 BYTE >08

FFC4 BYTE >05 4800 BAUD

FFC5 BYTE >01

FFC6 BYTE >04

FFC7 BYTE >01 9600 BAUD

FFC8 BYTE >01

FFC9 BYTE >01

FFCA BYTE >01 AUTO BAUD

FFCB BYTE >01

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >XX ZERHI OUTPUT WAIT COUNT FOR ZERO HIGH
FFCD BYTE >XX ONEHI OUTPUT WAIT COUNT FOR ONE HIGH
FFCE BYTE >XX MIDCYC MID CYCLE THRESH FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >50 EPCNT PROGRAMMING DELAY COUNTER

Appendix D

D-8

Table D-6. Crystal Dependent Constants: 4 MHz Crystal with Divide-by-2

Oscillator, or 8 MHz Crystal with Divide-by-4 Oscillator

FFB2 BYTE OEA 110 BAUD

FFB3 BYTE >07

FFB4 BYTE OFF

FFB5 BYTE OAA 150 BAUD

FFB6 BYTE »>07

FFB7 BYTE OFF

FFB8 BYTE >C5 300 BAUD

FFB9 BYTE >03

FFBA BYTE >AB

FFBB BYTE >60 600 BAUD

FFBC BYTE >03

FFBD BYTE >52

FFBE BYTE >45 1200 BAUD

FFBF BYTE >02

FFCO BYTE >27

FFC1l BYTE oO1F 2400 BAUD

FFC2 BYTE >02

FFC3 BYTE >11

FFC4 BYTE >0C 4800 BAUD

FFC5 BYTE >02

FFC6 BYTE >08

FFC7 BYTE >07 9600 BAUD

FFC8 BYTE >01

FFC9 BYTE >04

FFCA BYTE >09 AUTO BAUD

FFCB BYTE >0O1

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >43 ZERHI OUTPUT WAIT COUNT FOR ZERO HIGH
FFCD BYTE >20 ONEHI OUTPUT WAIT COUNT FOR ONE HIGH
FFCE BYTE >C6 MIDCYC MID CYCLE THRESHOLD FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >B5 EPCNT PROGRAMMING DELAY COUNTER

Appendix D

Table D-7. Crystal Dependent Constants: 5 MHz Crystal with Divide-by-2

Oscillator, or 10 MHz Crystal with Divide-by-4 Oscillator

FFB2 BYTE >EF 110 BAUD

FFB3 BYTE >09

FFB4 BYTE OFF

FFB5 BYTE >F9 150 BAUD

FFB6 BYTE >06

FFB? BYTE OFF

FFB8 BYTE >B9 300 BAUD

FFB9 BYTE »>04

FFBA BYTE >D7

FFBB BYTE >O7E 600 BAUD

FFBC BYTE >03

FFBD BYTE >67

FFBE BYTE >B4 1200 BAUD

FFBF BYTE >01

FFCO BYTE >32

FFC1l BYTE >53 2400 BAUD

FFC2 BYTE >0O1

FFC3 BYTE >16

FFC4 BYTE >23 4800 BAUD

FFC5 BYTE >0O1

FFC6 BYTE >09

FFC7 BYTE >05 9600 BAUD

FFC8 BYTE >02

FFC9 BYTE >05

FFCA BYTE >09 AUTO BAUD

FFCB BYTE >02

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >53 ZERHI OUTPUT WAIT COUNT FOR ZERC HIGH
FFCD BYTE >28 ONEHI OUTPUT WAIT COUNT FOR ONE HIGH
FFCE BYTE >B7 MIDCYC MIC CYCLE THRESH FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >E1 EPCNT PROGRAMMING DELAY COUNTER

D-9

Appendix D

Table D-8. Crystal Dependent Constants: 5 MHz Crystal with Divide-by-4
Oscillator

FFB2 BYTE >CB 110 BAUD

FFB3 BYTE >05

FFB4 BYTE OFF

FFB5 BYTE >OF8 150 BAUD

FFB6 BYTE >03

FFB7 BYTE >DA

FFB8 BYTE O7E 300 BAUD

FFB9 BYTE >03

FFBA BYTE >67

FFBB BYTE >B4 600 BAUD

FFBC BYTE >0O1

FFBD BYTE >32

FFBE BYTE >53 1200 BAUD

FFBF BYTE >0O1

FFCO BYTE >16

FFC1l BYTE >23 2400 BAUD

FFC2 BYTE >0O1

FFC3 BYTE >09

FFC4 BYTE >05 4800 BAUD

FFC5 BYTE >02

FFC6 BYTE >05

FFC7 BYTE >01 9600 BAUD

FFC8 BYTE >O1

FFC9 BYTE >0O1

FFCA BYTE >03 AUTO BAUD

FFCB BYTE >01

CASSETTE TAPE TIME CONSTANTS

FFCC BYTE >XxX ZERHI OUTPUT WAIT COUNT FOR ZERO HIGH
FFCD BYTE >XxX ONEHI OUTPUT WAIT COUNT FOR ONE HIGH
FFCE BYTE >XxX MIDCYC MID CYCLE THRESH FOR BYTE READ

EPROM PROGRAMMER TIME DELAY VALUE

FFCF BYTE >70 EPCNT PROGRAMMING DELAY COUNTER

Appendix D

Table D-9. Crystal Dependent Constants: 6 MHz Crystal with Divide-by-2

Oscillator, or 12 MHz Crystal with Divide-by-4 Oscillator

FFB2 BYTE >5F 110 BAUD

FFB3 BYTE >OA

FFB4 BYTE OFF

FFB5 BYTE >EO 150 BAUD

FFB6 BYTE >08

FFB7 BYTE OFF

FFB8 BYTE >DF 300 BAUD

FFB9 BYTE >04

FFBA BYTE OFF

FFBB BYTE >DD 600 BAUD

FFBC BYTE >02

FFBD BYTE >82

FFBE BYTE >D8 1200 BAUD

FFBF BYTE >01

FFCO BYTE »>40

FFCl BYTE »>66 2400 BAUD

FFC2 BYTE >01

FFC3 BYTE >O1F

FFC4 BYTE >2E 4800 BAUD

FFC5 BYTE >01

FFC6 BYTE >OOF

FFC7 BYTE >11 9600 BAUD

FFC8 BYTE >01

FFC9 BYTE »>06

FFCA BYTE >O1F AUTO BAUD

FFCB BYTE >01

FFCC BYTE >XX

FFCD BYTE >XX

FFCE BYTE >XX

FFCF BYTE >FO EPROM PROGRAMMER

Appendix D

Table D-10. Crystal Dependent Constants: 7.158 MHz Crystal with

Divide-by-2 Oscillator, or 14.316 MHz Crystal with Divide-by-4 Oscillator

FFB2 BYTE >oF4 110 BAUD

FFB3 BYTE >0C

FFB4 BYTE OFF

FFB5 BYTE >EE 150 BAUD

FFB6 BYTE >09

FFB7 BYTE OFF

FFB8 BYTE >D5 300 BAUD

FFB9 BYTE >05

FFBA BYTE OFF

FFBB BYTE >BO 600 BAUD

FFBC BYTE >03

FFBD BYTE >9B

FFBE BYTE >81 1200 BAUD

FFBF BYTE >02

FFCO BYTE >4D

FFC1 BYTE >7C 2400 BAUD

FFC2 BYTE >01

FFC3 BYTE >25

FFC4 BYTE >39 4800 BAUD

FFC5 BYTE >0O1

FFC6 BYTE >12

FFC7 BYTE >17 9600 BAUD

FFC8 BYTE >0O1

FFC9 BYTE >08

FFCA BYTE >28 AUTO BAUD

FFCB BYTE >0O1

FFCC BYTE >XX

FFCD BYTE >XxX

FFCE BYTE >XxX

FFCF BYTE OFF EPROM PROGRAMMER

Appendix D

Table D-11. Crystal Dependent Constants: 7.5 MHz Crystal with

Divide-by-2 Oscillator, or 15 MHz Crystal with Divide-by-4 Oscillator

FFB2 BYTE >FO 110 BAUD

FFB3 BYTE >OD

FFB4 BYTE OFF

FFB5 BYTE >FA 150 BAUD

FFB6 BYTE >09

FFB7 BYTE OFF

FFB8 BYTE >EO 300 BAUD

FFB9 BYTE >05

FFBA BYTE OFF

FFBB BYTE >B8 600 BAUD

FFBC BYTE >03

FFBD BYTE >A3

FFBE BYTE >88 1200 BAUD

FFBF BYTE >02

FFCO BYTE >50

FFCl BYTE >83 2400 BAUD

FFC2 BYTE >01

FFC3 BYTE >27

FFC4 BYTE >3C 4800 BAUD

FFC5 BYTE >01

FFC6 BYTE >13

FFC7 BYTE >18 9600 BAUD

FFC8 BYTE >0O1

FFC9 BYTE >08

FFCA BYTE >2A AUTO BAUD

FFCB BYTE >01

FFCC BYTE >XX

FFCD BYTE >XX

FFCE BYTE >XX

FFCF BYTE OFF EPROM PROGRAMMER

Appendix D

Table D-12. Crystal Dependent Constants: 8 MHz Crystal with
Divide-by-2 Oscillator, or 16 MHz Crystal with Divide-by-4 Oscillator

FFB2 BYTE >FC 110 BAUD
FFB3 BYTE >OD
FFB4 BYTE OFF
FFB5 BYTE >FO 150 BAUD
FFB6 BYTE >OA
FFB7 BYTE OFF
FFB8 BYTE >OEF 300 BAUD
FFB9 BYTE >05
FFBA BYTE OFF
FFBB BYTE >C5 600 BAUD
FFBC BYTE >03
FFBD BYTE >OAE
FFBE BYTE >91 1200 BAUD
FFBF BYTE >02
FFCO BYTE >56
FFC1l BYTE >8C 2400 BAUD
FFC2 BYTE >01
FFC3 BYTE >2A
FFC4 BYTE >40 4800 BAUD
FFC5 BYTE >01
FFC6 BYTE >14
FFC7 BYTE >1B 9600 BAUD
FFC8 BYTE >0O1
FFC9 BYTE >09
FFCA BYTE >2D AUTO BAUD
FFCB BYTE >01

FFCC BYTE >XX
FFCD BYTE >XX
FFCE BYTE >XxX
FFCF BYTE OFF EPROM PROGRAMMER

D-14

index

A

A (Display/Modify Register A) 6-33

AORG_ 5-11

AR (+/- Hex Arithmetic) 6-7

assembler directives
AORG_ 5-11

BES 5-13

BSS 5-13

BYTE 5-12

DATA 5-12

END 5-14

EQU 5-11

TEXT 5-13

assemblers 5-1

assembling files

download 5-3

from audio tape 5-5

from RAM 5-5

LBLA 5-7

No Line Numbers flag 5-4

patching 5-8

suppressed listing 5-4

terminal emulation 5-3

AT (Display Assembler Label Table) 6-7

audio tape 8-1

assembling files 5-5

creating files 8-4

directory 8-5

file concatenation 5-5

loading files 8-5

motor control 8-6

operation 2-3

autobaud 1-5

B (Display/Modify Register B) 6-33

BES 5-13

BR (Display/Modify Baud Rate) 6-8

BSS 5-13

BT (Set Breakpoint on Trap) 6-9

BYTE 5-12

Bi (Set Breakpoint1) 6-9

B2 (Set Breakpoint 2) 6-9

C

CB (Clear Breakpoints) 6-10
comments 5-13
Copy Memory (MV) 6-33
CP (Clear Processor Status) 6-10
crystal frequency dependent constants
D-14

CS (Cycle Count Single Step) 6-11
CT (Clear Breakpoint on Trap) 6-11
cursor control 2-17

adding cursor characters 2-18
cursor-left character 2-18
cursor-up character 2-17
default locations 2-18

D-1-

CY (Display/Clear Cycle Counter) 6-12
C1 (Clear Breakpoint1) 6-12
C2 (Clear Breakpoint 2) 6-12

D

DATA directive 5-12
DB (Display Breakpoints) 6-12
DC (Decimal-Hex Byte Conversion)
device type

changing the default 2-16
DV command 2-14
RAM usage 2-14

DM (Display Memory) 6-13
download 2-13
DP (Display Processor Status) 6-14
DR (Audio Tape Directory)
DS (Display Machine State) 6-15
DT (Display Breakpoint on Trap) 6-1
DV (Select TMS7000 Family Device)
6-16

E

EF (Execute Program with Fixed
Display) 6-17

END 5-14
EPROM 2-7
EPROM programmer

errors 9-8

6-13

6-14, 8-5.

6
2-14,

Index-1

Index

PRG instruction for 727x0

programming 9-6

SEEQ 727x0 9-5

TMS2764, TMS27128 9-5

TMS7742 using adapter 9-5

EPROM programmer destination

default 2-16

default baud rate 2-16

EPROM programming commands

BC (Clearing the 727x0) 9-6

CE (Compare EPROM to Memory 9-3

PE (Program EPROM from Memory) 9-3

RE (Read EPROM to RAM) 9-4

VE (Verify EPROM Erased) 9-4

12 (Calibrate VPP to12 V) 9-6

21 (Calibrate VPP to 21 V) 9-6

43, 44, 45 (Copy Sockets U43-45) 9-7

EQU 5-11

errors

assembler 5-14

EPROM programmer 9-8

Monitor 6-54

Text Editor 4-16

ET (Execute to Breakpoint with Trace) 6-18

EX (Execute to Breakpoints) 6-18

external clock 7-2

F

FB (Find Byte in Memory) 6-20

filenames 6-6

fixed displays 6-15, 6-17, 6-23

FM (Fill Memory) 6-22

FR (Fill Register File) 6-22

FS (Single-Step Program with Fixed

Display) 6-23

G

GO (Go Execute at Address) 6-20

H

HC (Hex-Decimal Word Conversion) 6-24

HE (Help) 6-24

HS (Display/Modify Software

Handshake) 2-9

Index-2

1/O utilities 11-1

in-circuit emulation 7-1

Instruction Trace Execution 6-39

10 (Display |/O Status) 6-24

IS (Inspect Trace Sample Count) 6-40

IT (Inspect Trace Samples) 6-40

L

LA (Show Address of Line) 6-25

labels 5-10

Line-by-Line assembler 5-7

patching 5-8

LL (List Lines from Text Editor) 6-25

LM (Load Memory - 7000 Format) 6-26

LN (Show Editor Line at Address) 6-27

LS (Load Machine State) 6-27

LT (Load Memory - Tektronix Format) 6-28

L1 (Set Breakpoint 1 by Line Number) 6-28

L2 (Set Breakpoint 2 by Line Number) 6-28

M

MA (Display/Modify Registers Aand B) 6-29

MM (Display/Modify Memory) 6-30

MO (Audio Tape Motor On) 6-31, 8-6

Monitor commands

creating 12-1

descriptions 6-6-6-47

Monitor EPROM 7-3

MP (Display/Modify Peripheral File) 6-31

MR (Display/Modify Register File) 6-32

MS (Display/Modify PC, ST, and SP) 6-33

MV (Move Memory) 6-33

N

NP (Fill Memory with NOPs) 6-34

O

object code
Tektronix dump format 6-51

7000 dump format 6-50

Index

p

P (Display/Modify Program Counter) 6-33
PC (Display/Modify Program Counter) 6-33
Peripheral File assignments 2-9, 10-1
Peripheral mode 1-6
Port 3 (audio tape)

connection 2-3
tape recorder operation 2-3

power supply 2-4
PT (Print Trace Sample) 6-41

R

RAM 2-7
Reprogramming New Frequencies into an
EPROM D-2

reset 6-35
command and assembler execution 6-54

program execution 6-53
switch 2-4

RT (Reset Target Processor) 6-35
RU (Execute Program Without
Breakpoints) 6-35

S

SM (Save Memory - 7000 Format) 6-36
software handshake protocols 2-9

SP (Display/Modify Stack Pointer) 6-33
SR (Display Status Register) 6-36
SS (Single-Step Program) 6-37
ST (Save Memory - Tektronix Format) 6-38
stack 6-51
Standalone mode 1-7
Status Register Commands 6-36

CC (Clear SR Carry Bit) 6-37
Cl (Clear SR Interrupt Bit) 6-37
CN (Clear SR Negative Bit) 6-37
CZ (Clear SR Zero Bit) 6-37
DI (Clear all SR Status Bits) 6-37
El (Set all SR Status Bits) 6-37

SC (Set SR Carry Bit) 6-37
SI (Set SR Interrupt Bit) 6-37
SN (Set SR Negative Bit) 6-37
SR (Display Status Register) 6-36
SZ (Set SR Zero Bit) 6-37

System Access commands 6-48
System Utilities 6-47

T

TC (Configure Single-Step Trace) 6-42
terminal emulation 2-10

connection 2-11
TEXT 5-13
Text Editor 4-1

errors 4-16
memory map 4-15

Text Editor commands
<CR> (Delete Line) 4-4
- (Line Number Pointer to BOF) 4-14
+ (Line Number Pointer to EOF) 4-14
= (Display Current Line Number) 4-14
A (Autoincrement Line Numbers) 4-2
C (Change Line Number) 4-3
D (Duplicate Line) 4-4
E (Edit Line) 4-5
F (Find Character String) 4-8
H (Help) 4-9
! (Input File) 4-9
L (List Lines to Terminal) 4-9
M (Display Free RAM Remaining) 4-10
Q (Quit Edit and Save File) 4-11
R (Resequence Line Number) 4-12
T (Display/Modify Tab) 4-13
Z (Initialize Text Editor) 4-13

TF (Turn Off Trace Sample) 6-41
TMS70x2 upgrade 2-2
TO (Turn On Trace Sample) 6-41
TRAP O 6-51, 6-54
TS (Single-Step Program with Trace) 6-43
TO (Load Program Counter with TRAP 0
Vector) 6-44

U

UART 2-9
upload 2-13

V

VPP calibration 9-6

X

XA (Execute Assembler) 6-44
XE (Execute Text Editor) 6-45
XL (Execute Line-by-Line Assembler) 6-46
XP (Execute Patch LBLA Assembler) 6-46
XR (Execute Reverse Assembler) 6-46

Index-3

Reader Response Card May 1986

TMS7000 Evaluation Module User’s Guide

Please use this form to communicate your comments about this document, its
organization and subject matter, for the purpose of improving technical documen-
tation.

1) Is the Installation section clear and complete? If not, why?

2) ls the Debug Monitor section clear and complete? If not, why?

3) Is the In-Circuit Emulation section clear and complete? If not, why?

4) Is the Audio Tape section clear and complete? If not, why?

5) What additions do you think would enhance the structure and subject matter?

6) What deletions could be made without affecting overall usefulness?

7) Is there any incorrect or misleading information?

8) How would you improve this document?

SPNUO0O7

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PEAMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADORESSEE

Texas Instruments Incorporated

M/S 640

P.O. Box 1443

Houston, Texas 77001

MONITOR COMMANDS (Concluded)

COMMAND DESCRIPTION

MP Oisplay/Modify Peripheral File
MR Display/Modify Register File

MS Display/Modify PC. SP, Registers A and B

MV Move (Copy) Memory
NP Fill Memory with NOPs

PC Display/Modify PC, SP, Registers A and B

PE Program EPROM from Memory
PT Print Instruction Trace Memory

RE Read EPROM to RAM

AT Reset Target Processor

RU Execute Program Without Breakpoints

SA Save 7000 Format Object to Port

Sc Set SR Carry Bit

St Set SR Interrupt Bit

SM Save Memory - 7000 Format

SN Set SR Negative Bit
SP Display/Modify PC, SP, Registers A and B
SR Display Status Register

ss Single Step Program
ST Save Memory - Tektronix Format

$Z Set SR Zero Bit
Tc Configure Single-Step Trace
TF Turn Off Instruction Trace

TO Turn On Instruction Trace
TR Display Trace Line

Ts Single Step Program With Trace
TO Load PC With TRAP 0 Vector
VE Verify EPROM Erased
XA Execute Assembler

XE Execute Text Editor

XL Execute Line Assembler (new symbol table)
xP Execute Line Assembler (old symbol table)

XR Execute Reverse Assembler

ASSEMBLER DIRECTIVES

AORG Absolute Origin
AORG allows a program or piece of a program to be placed at a
specified location in memory.

AORG >XXXX

BES Biock Ending with Symbol
BES reserves a block of memory, and the label is assigned the value
of the location of the last byte in the block.

[label] BES <value>

BSS Block Starting with Symbol
BSS reserves a block tf memory, and the label is assigned the value

of the location of the first byte in the block.

{label]) BSS <value>

BYTE Initialize Byte
BYTE loads a one-byte constant into the next byte of memory.

BYTE <value>

DATA Initialize Word
DATA loads a two-byte constant into the next two bytes of memory.

DATA <value>

END Program End
END prints unresolved labels, out-of-range labels, and the total error
count, and returns control to the Monitor.

EQU Define Assembly-Time Constant
EQU assigns a label to a decimal or hex value, register, or peripheral
register.

<label> EQU {value, register, or peripheral register}

TEXT Initialize Text
TEXT places the characters of a string in successive bytes of program
memory.

TEXT ‘<string>’

TMS7000 EVALUATION MODULE
Quick Reference Card

For help with the TMS7000 EVM, contact the TI! Atlanta
Regional Technology Center.

Atlanta Regional Technology Center
5515 Spalding Drive
Norcross, GA 30092

(404) 662-7945

MONITOR COMMANDS

COMMAND DESCRIPTION

AR +/- Hex Arithmetic

AT Display Assembler Label Table

BC Clear 727x0 EEPROM in U20
BR Display/Modify Baud Rate
BT Set Breakpoint on Traps.

B1,B2 Set Breakpoints 1 and 2

CB Clear Breakpoints
cc Clear SR Carry Bit
CE Compare EPROM to Memory
Cl Clear SR Interrupt Bit

CL Display/Modify Cursor- Left
CN Clear SR Negative Bit
CP Clear Processor Status
CS Cycle Count Single Step
CT Clear Breakpoint on TRAP

cu Display/Modify Cursor-Up
CY Cycle Count Display/Clear
CZ Clear SR Zero Bit

C1,C2 Clear Breakpoints Individually
DB Display Breakpoints

DC Decimal-Hex Byte Conversion
DI Clear All SR Bits
DM Display Memory

OP Display Processor Status
DR Audio Tape Directory

DS Display Machine State
OT Display Breakpoint on Trap

DV Select TMS7000 Family Device
EF Execute to Breakpoint with Terminal Fixed Display
El Set All SR Bits

ET Execute to Breakpoint with Trace
EX Execute to Breakpoints

FB Find Byte in Memory
FM Fit! Memory

FR Fill Register File

FS Single Step with Fixed Display

GO Go Execute at User Program
HC Hex-Decimal Word Conversion
HE Help

Te) Display 1/O Status

Is Inspect Instruction Trace Count
IT Inspect Instruction Trace Samples
LA Show Address of Line
LL List Lines from Text Editor
LM Load Memory - 7000 Format

LN Show Editor Line at Address
LS Load Machine State
LT Load Memory - Tektronix Format

L1,L2 Set Breakpoint 1 or 2 by Line Number
MA,MB Display/Modify Registers A and B

MM Display/Modify Memory
MO Audio Tape Motor On

ASCII CHARACTER CODES ASCIl CHARACTER CODES (Concluded)

BINARY HEX
CHARACTER CODE CODE

Space 010 0000 20
010 0001 21

. 010 0010 22
010 0011 23
$ 010 0100 24
% 010 0101 25
& 010 0110 26
’ (single quote) 010 0111 27
(010 1000 28
) 010 1001 29
. 010 1010 2A
+ 010 1011 2B

, (comma) 010 1100 2c
- 010 1101 2D

010 1110 2E
/ 010 1111 2F

0 011 0000 30
1 011 0001 31
2 011 0010 32
3 011 0011 33
4 011 0100 34
5 011 0101 35
6 011 0110 36
7 011 0111 37
8 011 1000 38
9 011 1001 39
: 011 1010 3A
: 011 1011 3B
< 011 1100 3c
= 011 1101 3D
> 011 1110 3E
? 011 1111 3F

@ 100 0000 40
A 100 0001 4
B 100 0010 42
c 100 0011 43
D 100 0100 44
E 100 0101 45
F 100 0110 46
G 100 0111 47
H 100 1000 48
| 100 1001 49
J 100 1010 4A
K 100 1011 4B
L 100 1100 4c
M 100 1101 4D
N 100 1110 4E
e) 100 1111 4F

P 101 0000 50
Qa 101 0001 51
R 101 0010 52
S 101 0011 53
T 101 0100 54
U 101 0101 55
V 101 0110 56
Ww 101 0111 57
x 101 1000 58
Y 101 1001 59
Zz 101 1010 5A

[101 1011 5B
\ 101 1100 5C
} 101 1101 5D
A 101 1110 5E
- 101 1111 5F

BINARY HEX
CHARACTER » CODE CODE

110 0000 60
a 110 0001 61
b 110 0010 62
c 110 0011 63
d 110 0100 64
) 110 0101 65
f 110 0110 66
9g 110 0111 67
h 110 1000 68
i 110 1001 69
j 110 1010 6A
k 110 1011 6B
| 110 1100 6C
m 110 1101 6D
n 110 1110 6E
o 110 1111 6F

p 111 0000 70
q 111 0001 71
r 111 0010 72
$s 111 0011 73
t 111 0100 74
u 111 0101 75
v 111 0110 76
Ww 111 0111 77
x 111 1000 78
Yy 111 1001 79
z 111 1010 7A
{ 111 1011 7B
I 111 1100 7C
} 111 1101 7D
~ 111.1110 7E

SYSTEM UTILITIES

COMMAND DESCRIPTION

/A Reset Assembier Label Table
/B Recover Monitor Registers After Reset
/C Reset Cursor Up and Cursor Left to Default Values
/D Toggle Demo Mode

/E Reset Assembly from Text Editor Flag
/H Display System Utilities
/M Reset Parameter Default Values

/N Display/Modify Nulls Transmitted After <CR>

/R Toggle Register File Size
/W Change Buffer Timeout Delay

TEXT EDITOR COMMANDS

COMMAND DESCRIPTION

A Autoincrement Line Number Mode

Cc Change Line Number

D Duplicate Line
E Edit Line
F Find Character String
H Help

I Input File to Text Editor
L List Line(s) to Terminal

M | Display Free RAM Remaining
Qa Quit Edit and Save File
R Resequence Line Numbers
T Display/Modify Tab

Zz Initialize Text Editor
<CR> Delete Line

+ Line Number Pointer to EOF
_ Line Number Pointer to BOF
= Display Current Line Number

wy
Revision * TEXAS

Printed in U.S.A. INSTRUMENTS SPNUOO7

	t7emug_00_0001
	t7emug_00_0002
	t7emug_00_0003
	t7emug_00_0004
	t7emug_00_0005
	t7emug_00_0006
	t7emug_00_0007
	t7emug_00_0008
	t7emug_00_0009
	t7emug_00_0010
	t7emug_01_0001
	t7emug_01_0002
	t7emug_01_0003
	t7emug_01_0004
	t7emug_01_0005
	t7emug_01_0006
	t7emug_01_0007
	t7emug_01_0008
	t7emug_02_0001
	t7emug_02_0002
	t7emug_02_0003
	t7emug_02_0004
	t7emug_02_0005
	t7emug_02_0006
	t7emug_02_0007
	t7emug_02_0008
	t7emug_02_0009
	t7emug_02_0010
	t7emug_02_0011
	t7emug_02_0012
	t7emug_02_0013
	t7emug_02_0014
	t7emug_02_0015
	t7emug_02_0016
	t7emug_02_0017
	t7emug_02_0018
	t7emug_02_0019
	t7emug_02_0020
	t7emug_02_0021
	t7emug_03_0001
	t7emug_03_0002
	t7emug_03_0003
	t7emug_03_0004
	t7emug_03_0005
	t7emug_03_0006
	t7emug_03_0007
	t7emug_04_0001
	t7emug_04_0002
	t7emug_04_0003
	t7emug_04_0004
	t7emug_04_0005
	t7emug_04_0006
	t7emug_04_0007
	t7emug_04_0008
	t7emug_04_0009
	t7emug_04_0010
	t7emug_04_0011
	t7emug_04_0012
	t7emug_04_0013
	t7emug_04_0014
	t7emug_04_0015
	t7emug_04_0016
	t7emug_04_0017
	t7emug_04_0018
	t7emug_05_0001
	t7emug_05_0002
	t7emug_05_0003
	t7emug_05_0004
	t7emug_05_0005
	t7emug_05_0006
	t7emug_05_0007
	t7emug_05_0008
	t7emug_05_0009
	t7emug_05_0010
	t7emug_05_0011
	t7emug_05_0012
	t7emug_05_0013
	t7emug_05_0014
	t7emug_05_0015
	t7emug_05_0016
	t7emug_05_0017
	t7emug_05_0018
	t7emug_06_0001
	t7emug_06_0002
	t7emug_06_0003
	t7emug_06_0004
	t7emug_06_0005
	t7emug_06_0006
	t7emug_06_0007
	t7emug_06_0008
	t7emug_06_0009
	t7emug_06_0010
	t7emug_06_0011
	t7emug_06_0012
	t7emug_06_0013
	t7emug_06_0014
	t7emug_06_0015
	t7emug_06_0016
	t7emug_06_0017
	t7emug_06_0018
	t7emug_06_0019
	t7emug_06_0020
	t7emug_06_0021
	t7emug_06_0022
	t7emug_06_0023
	t7emug_06_0024
	t7emug_06_0025
	t7emug_06_0026
	t7emug_06_0027
	t7emug_06_0028
	t7emug_06_0029
	t7emug_06_0030
	t7emug_06_0031
	t7emug_06_0032
	t7emug_06_0033
	t7emug_06_0034
	t7emug_06_0035
	t7emug_06_0036
	t7emug_06_0037
	t7emug_06_0038
	t7emug_06_0039
	t7emug_06_0040
	t7emug_06_0041
	t7emug_06_0042
	t7emug_06_0043
	t7emug_06_0044
	t7emug_06_0045
	t7emug_06_0046
	t7emug_06_0047
	t7emug_06_0048
	t7emug_06_0049
	t7emug_06_0050
	t7emug_06_0051
	t7emug_06_0052
	t7emug_06_0053
	t7emug_06_0054
	t7emug_06_0055
	t7emug_006_0056
	t7emug_07_0001
	t7emug_07_0002
	t7emug_07_0003
	t7emug_07_0004
	t7emug_08_0001
	t7emug_08_0002
	t7emug_08_0003
	t7emug_08_0004
	t7emug_08_0005
	t7emug_08_0006
	t7emug_08_0007
	t7emug_08_0008
	t7emug_09_0001
	t7emug_09_0002
	t7emug_09_0003
	t7emug_09_0004
	t7emug_09_0005
	t7emug_09_0006
	t7emug_09_0007
	t7emug_09_0008
	t7emug_10_0001
	t7emug_10_0002
	t7emug_11_0001
	t7emug_11_0002
	t7emug_12_0001
	t7emug_12_0002
	t7emug_12_0003
	t7emug_12_0004
	t7emug_A_0001
	t7emug_A_0002
	t7emug_A_0003
	t7emug_A_0004
	t7emug_A_0005
	t7emug_A_0006
	t7emug_A_0007
	t7emug_A_0008
	t7emug_A_0009
	t7emug_A_0010
	t7emug_B_0001
	t7emug_B_0002
	t7emug_B_0003
	t7emug_B_0004
	t7emug_B_0005
	t7emug_B_0006
	t7emug_B_0007
	t7emug_B_0008
	t7emug_C_0001
	t7emug_C_0002
	t7emug_C_0003
	t7emug_C_0004
	t7emug_C_0005
	t7emug_C_0006
	t7emug_C_0007
	t7emug_C_0008
	t7emug_C_0009
	t7emug_C_0010
	t7emug_C_0011
	t7emug_C_0012
	t7emug_C_0013
	t7emug_C_0014
	t7emug_C_0015
	t7emug_C_0016
	t7emug_C_0017
	t7emug_C_0018
	t7emug_C_0019
	t7emug_C_0020
	t7emug_D_0001
	t7emug_D_0002
	t7emug_D_0003
	t7emug_D_0004
	t7emug_D_0005
	t7emug_D_0006
	t7emug_D_0007
	t7emug_D_0008
	t7emug_D_0009
	t7emug_D_0010
	t7emug_D_0011
	t7emug_D_0012
	t7emug_D_0013
	t7emug_D_0014
	t7emug_I_0001
	t7emug_I_0002
	t7emug_I_0003
	t7emug_I_0004
	t7emug_Z_0001
	t7emug_Z_0002
	t7emug_Z_0003
	t7emug_Z_0004
	t7emug_Z_0005
	t7emug_Z_0006

