
TMS320 DSP Algorithm Standard
Developer’s Guide

Literature Number: SPRU424
June 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

Contents

iii

Contents

TMS320 DSP Algorithm Standard Developer’s Guide 1.
1 Preliminary Algo Standard Questions (Rules 1–10) 2.
2 Module-Specific Abstract Interface (IMODULE) 3.
3 Vendor-Specific Algorithm Interface (IALG) 6.
4 Consumer/System Integrator (CONCRETE API) 13.
5 OPTIONAL: Real-Time Trace Control Interface (IRTC) 15.
6 Algo Standard Library Creation (Rules 8, 11, 13, 15) 19.
7 Performance/Memory Characterization (Rules 19–24) 21.
8 Conclusion 22.

A Algo Standard Name Tables A-1.

B Template File Descriptions B-1.

C Algo Standard Performance Characterization C-1.

D Algo Standard Compliance Report D-1.

Figures

iv

Figures

1 Algo Standard Template Code Generator Tool Interface 7.

Tables

1 Example Table for Naming the Module, Vendor, Processor, and Variant 2.
2 Example Table for Naming Extended IALG Methods 3.
A–1 Name Selection A-1.
A–2 Instance Creation Parameters A-1.
A–3 Real-Time Status and Control Parameters A-2.
A–4 Extended IALG (IMODULE) Methods A-2.
C–1 Module C-1.
C–2 ROMable (Rule 5) C-1.
C–3 Heap Data Memory (Rule 19) C-1.
C–4 Stack Space Memory (Rule 20) C-1.
C–5 Static Data Memory (Rule 21) C-2.
C–6 Program Memory (Rule 22) C-2.
C–7 Interrupt Latency (Rule 23) C-2.
C–8 Period / Execution Time (Rule 24) C-2.

1

TMS320 DSP Algorithm Standard
Developer’s Guide

This document, along with the latest set of TMS320 DSP Algorithm Standard
(referred to as “Algo Standard” throughout the document) Rules and Guide-
lines (literature number SPRU352), will help assist the algorithm developer
with implementing the Algo Standard interface, as well as creating a test
application. When the Algo Standard conversion is complete, the algorithm
should conform to all the Algo Standard rules. Also required is the Algo Stan-
dard Code Gen Tool plug-in for Code Composer Studio. This greatly simplifies
the Algo Standard development effort. To download the latest Algo Standard
developer’s kit:

From the TI DSP Developer’s Village (http://dspvillage.ti.com), follow the link
to the TMS320 DSP Algorithm Standard, and look in the documentation sec-
tion for a link to the latest version of the standard.

The following procedure consists of seven sections. The first one requires the
developer to determine the present state of the algorithm, decide on module
names, and answer some preliminary questions. The second, third, fourth,
and fifth sections give the developer some detailed insight into the Algo Stan-
dard implementation details by leading him/her through the process of acting
as consumer, interface definer, and algorithm vendor. The sixth section
describes how to create the Algo Standard library deliverable. The seventh
section describes how to characterize the Algo Standard algorithm. Most of
the procedures contain examples based on a G.729 encoder algorithm devel-
oped by Texas Instruments.

Preliminary Algo Standard Questions (Rules 1–10)

 2

1 Preliminary Algo Standard Questions (Rules 1–10)

This part of the process focuses the algorithm developer on the operation of
the algorithm and how the Algo Standard interface ‘fits’ onto it. This section
verifies that the algorithm is in compliance with Rules 1–10 of the Algo Stan-
dard Rules and Guidelines document.

1) Is the testing environment already set up? There should be an application
program that calls the algorithm to process a test vector(s) and generates
an output vector(s). The output vector(s) is then compared to a known
‘good’ vector(s) for correctness. Make sure this test environment is set up
and the algorithm successfully passes the test process before proceeding.

2) The original algorithm must conform to the first 10 rules stated in the Algo
Standard Rules and Guidelines document. It is a good idea to verify this
step before proceeding, but it could be temporarily postponed for the sake
of expediting the Algo Standard process. Rule #8 (External Identifiers) can
be skipped for now—it will be addressed later in the build procedure.

3) What are the names for the module, version (optional), vendor, architecture,
and model? If there is more than one version of the algorithm, append it to
the module name (refer to Algo Standard Rules and Guidelines document,
section 3–18). Use Appendix A to record this information and refer to
Table 1 for an example. For the C54/55x architectures, it is recommended
to supply both near and far mode memory models. For the C6x architec-
tures, all algorithms must, as a minimum, be supplied in little endian format,
but it is recommended to supply a big endian model, as well. The different
variants/models should not produce different interfaces for the same algo-
rithm; the only difference will be the way the object files are compiled within
each library variant/model (and the file name of each library).

4) Construct the Memory Table (memTab[]). Go to Appendix C and create a
table based on the Instance Memory Table.

Table 1. Example Table for Naming the Module, Vendor, Variant, Architecture, and
Model

Module
Name

Vendor
Name Variant Architecture Variant (optional)

G729ENC TI None [54 | 55 | 62 | 64 | 67] [far (f) | mixed (m) | big endian (e)]

Module-Specific Abstract Interface (IMODULE)

3TMS320 DSP Algorithm Standard Developer’s Guide

2 Module-Specific Abstract Interface (IMODULE)

If there are sample APIs in the Algo Standard Developers Kit which exist for
your algorithm, please use them (these will be the i<MODULE>.[ch] files in
“c:\ti\xdas\src” directories). If not, you must act as the Interface Definer
(Service Provider) for your algorithm and create these files which are used by
the application. Determine what the extended methods of the IALG interface
will be for this algorithm. These are typically the module-specific “process and/
or control” functions. This interface must be extended by at least one process
method to allow the algorithm to be called, but any number of them can be
defined in this section. Typically, apply and mycontrol methods are defined
here, in this case we use encode and mycontrol . Use the following example
as a guideline for naming the extended methods for the Algo Standard algo-
rithm. These module-specific methods, along with the traditional IALG methods,
make up the SPI (Service Provider Interface) which is supplied to the consumer/
system integrator of the application.

Table 2 shows an example of how to enter the newly named methods in
Table A–4 of Appendix A. Also, note that the IALG_Handle parameter does not
need to be entered in this table (the code generation tool will add it to all func-
tions automatically as the first parameter). “XDAS” types are encouraged for the
module-specific interface (most likely located in “c:\ti\xdas\include\xdas.h”).

Table 2. Example Table for Naming Extended IALG Methods

No.
Return
Type

Method
Name Param1 Type and Name Param2 Type and Name

Param3 Type
and Name

1 XDAS_Bool mycontrol IG729_Cmd cmd IG729ENC_Status *status N/A

2 XDAS_Int8 encode XDAS_Int16 *in XDAS_Int8 *out N/A

Determine the interaction of the algorithm with the application (or framework).
In particular, what are the instance creation parameters and what are the real-
time status/control parameters? The instance creation parameters are values
passed to the algorithm when it is instantiated (i.e., only one time) and the
status/control parameters are algorithm status information that is read and/or
written while the algorithm is in operation. The complex types that deal with
these parameters are automatically generated by the “Algo Standard Code
Generation plug-in tool” using the names specified by the user. The source
code listed below is an example output of the Algo Standard Code Generation
Tool. The developer simply supplies the structure member names. Determine
the appropriate parameter names and enter Instance Creation Parameters in
Table A–2 and the Real-Time Status and Control Parameters in Table A–3 in
Appendix A. In both cases, the size parameter does not need to be entered

Module-Specific Abstract Interface (IMODULE)

 4

in the table because it is automatically generated by the Algo Standard Code
Gen Tool as the first field of all Params and Status structures.

The size field must be the first field of all Params and Status structures. This
variable is typically used to determine whether a Params or Status structure
has been extended by the Interface Definer. When Params and Status struc-
tures are extended (i.e., more fields are added), the original set of members
must still work, so any IALG function will be able to tell which structure (original
or extended) to use based on the value stored in the size field.

/* ig729enc.h */

#ifndef IG729ENC_

#define IG729ENC_

#include <ialg.h>

#include <ig729.h>

/*

 * ======== IG729ENC_Obj ========

 * This structure must be the first field of all G729ENC instance objects.

 */

typedef struct IG729ENC_Obj {

 struct IG729ENC_Fxns *fxns;

} IG729ENC_Obj;

/*

 * ======== IG729ENC_Handle ========

 * This handle is used to reference a G729ENC instance object.

 */

typedef struct IG729ENC_Obj *IG729ENC_Handle;

/*

 * ======== IG729ENC_Params ========

 * This structure defines the creation parameters for all G729ENC instance ob-
jects.

 */

typedef struct IG729ENC_Params {

Int size; /* MUST be the first field */

Int frameLen;

Int pfo;

Int vad;

} IG729ENC_Params;

/*

Module-Specific Abstract Interface (IMODULE)

5TMS320 DSP Algorithm Standard Developer’s Guide

 * ======== IG729ENC_Status ========

 * This structure defines the status parameters or values that can be

 * read and/or written while the algorithm is ‘live’.

 */

typedef struct IG729ENC_Status {

Int size; /* MUST be the first field */

Int maxChannels; /* Can be read/write */

Int frameLen; /* Can be read/write */

Int signalStatus; /* Read only */

} IG729ENC_Status;

/*

 * ======== IG729ENC_Fxns ========

 * This structure defines all of the operations on G729ENC objects.

 */

typedef struct IG729ENC_Fxns {

 IALG_Fxns ialg;

 XDAS_Bool (*mycontrol)(IG729ENC_Handle handle, IG729_Cmd cmd, IG729ENC_Status
*status);

 XDAS_Int8 (*encode)(IG729ENC_Handle handle, XDAS_Int16 *in, XDAS_Int8 *out);

} IG729ENC_Fxns;

#endif /* IG729ENC_ */

Vendor-Specific Algorithm Interface (IALG)

 6

3 Vendor-Specific Algorithm Interface (IALG)

When properly followed, the steps outlined in this section automatically enforce
Rules 11–17 of the Algo Standard Rules and Guidelines document. When finished
with this section, review Rules 11–17 to make sure that they are all satisfied.

1) Create the build directory and copy the existing test application source files
and algorithm object files into this directory. This directory name will also be
used as the Project Location entry in the Algo Standard Code Gen Tool.

2) Now we have all the necessary information to generate the Algo Standard
template code using the Algo Standard Code Gen Tool. A representation
of the Algo Standard Gen Tool Dialog box is shown in Figure 1 on page 7
with some sample entries. If not already launched, start Code Composer
Studio. Launch the Algo Standard Code Gen Tool plug-in by following this
link on the CCS toolbar: Tools –> XDAIS –> Template Code Generator .
Use the following seven guidelines for entering the information for your
particular algorithm. The Create Template button invokes the plug-in to
generate the template code and create a Code Composer Studio project
based on the information in the Dialog box.

a) Algorithm Name – comes from Appendix A, Table A–1, Module name
entry

b) Vendor Name – comes from Appendix A, Table A–1, Vendor name
entry

c) Project Location – comes from step 2 above

d) Instance Creation Parameters – comes from Appendix A, Table A–2
entries

Note:

When entering this information, do not use semicolons because the tool
adds them automatically.

e) Status Creation Parameters – comes from Appendix A, Table A–3 entries

f) Algorithm Methods – comes from Appendix A, Table A–4 entries

g) If you are using the TI-supplied recommended module-specific interface
for your algorithm (IMODULE), check ONLY the “Algorithm Implementa-
tion Stubs” checkbox. Otherwise, check all 3 boxes at the bottom of the
dialog window.

Vendor-Specific Algorithm Interface (IALG)

7TMS320 DSP Algorithm Standard Developer’s Guide

Figure 1. Algo Standard Template Code Generator Tool Interface

3) The Algo Standard files will be generated and put into the newly created
project specified by the Project Location field. The default location is
“c:\ti\myprojects\<MODULE>_<VENDOR>” directory if nothing is typed in
this field. Refer to Appendix B for a description of the files generated by
the Template Generator. Place a copy of the following files in the project
directory (the alg_<xxx>.c files are usually found in “c:\ti\xdas\src\api”):
alg_create.c, alg_malloc.c, and the file(s) that contain the main() applica-
tion code to the project directory. If implementing the sample APIs in the
Algo Standard Developer’s Kit, copy the corresponding i<MODULE>.[ch]

Vendor-Specific Algorithm Interface (IALG)

 8

& <MODULE>.[ch] files (e.g. ig729enc.[ch] and g729enc.[ch]) into the
project directory (since they were not generated by the tool).

4) Add all the following files to the newly created project:

� alg_create.c and alg_malloc.c
� The object files containing the original vendor algorithm
� rts[dsp].lib (the DSP-specific run time system library)
� The framework or application containing the main() function

5) Change the build options so the ‘Include Search Path’ contains the following
paths; order is important: <path for project directory>, <path for any
header files required for original algorithm>, and “c:\ti\xdas\include”. Follow
Project –> Options and add these project build changes.

6) Edit the i<MODULE>.c file. This contains the Params structure default va-
lues. Fill in each default value with a reasonable value as the tool puts in
zero by default for each parameter.

7) Rename the <MODULE>_<VENDOR>.c file to <MODULE>_<VENDOR>
_ialg.c, and edit the file:

� Add the following #pragma statements to the existing group of #pragma
statements at the top if the algorithm implements these interfaces:

#pragma CODE_SECTION(<MODULE>_<VENDOR>_activate,
”.text:algActivate”)

#pragma CODE_SECTION(<MODULE>_<VENDOR>_deactivate,
”.text:algDeactivate”)

#pragma CODE_SECTION(<MODULE>_<VENDOR>_moved,
”.text:algMoved”)

� Go to the <MODULE>_<VENDOR>_Obj structure and add the object
data types required by the algorithm. This is usually the existing algo-
rithm handle, but can include other items.

� Complete the <MODULE>_<VENDOR>_alloc() function by entering
the algorithm memory requirements. A code sample gives an exam-
ple of how to do this. If memory alignment is needed, set mem-
Tab[].align = (byte_boundary * 8) / (BITS_PER_CHAR); for c54/55x,
BITS_PER_CHAR = 16, for c6x, BITS_PER_CHAR = 8. If memory
alignment for a particular block is not needed, set the align field to 0.
The units for the memTab[].align field are in Minimum Addressable

Vendor-Specific Algorithm Interface (IALG)

9TMS320 DSP Algorithm Standard Developer’s Guide

Units (MAUs). Each memTab[] record should map to an entry in the
Instance Memory Table created from Appendix C.

/* Request memory for a G729ENC object */

memTab[0].size = sizeof(G729ENC_TI_Obj);

memTab[0].alignment = 0;

memTab[0].space = IALG_EXTERNAL;

memTab[0].attrs = IALG_PERSIST;

/* Request aligned scratch memory */

memTab[1].size = 256; /* size in bytes */

memTab[1].alignment = 32;/* [(byte_boundary * 8) /
BITS_PER_CHAR] */

memTab[1].space = IALG_DARAM0;

memTab[1].attrs = IALG_SCRATCH;

<additional memTab[] entries>

return(MEMTAB_NRECS); /* The return value must match
the memTab array size */

This function is used by the framework to get the memory require-
ments from the algorithm. Each memTab[] record contains the
memory requirements for a block of memory which is needed by the
algorithm. The first entry in the memTab[] array (index 0) is always
reserved for the memory requirements for a single algorithm instance
object. The remaining entries can be used to communicate memory
requirements for aligned working/scratch/history buffers, etc. that the
algorithm instance needs in addition to itself in order to execute correct-
ly. This function returns the number of records in the memTab[] array
so that the framework knows how many blocks of memory it needs to
allocate. Once the framework has successfully allocated the required
block(s) of memory, it needs to update the base fields in each of the re-
cords and then pass this updated memTab[] into the <MOD-
ULE>_<VENDOR>_initObj() function.

� Complete the <MODULE>_<VENDOR>_initObj() function by placing
calls to the vendor algorithm initialization routines. Also, initialize the
algorithm state with data from the incoming Params structure and
memTab[].base fields:

g729enc–>frameLen = params–>frameLen;

g729enc–>workBuf = memTab[1].base;

� The <MODULE>_<VENDOR>_free() function has the minimum code
required. Add any other clean up code for the algorithm after the ‘n =
alloc(…)’ statement. It is the application’s responsibility to perform any
memory allocation/deallocation, and this function is used by the applica-

Vendor-Specific Algorithm Interface (IALG)

 10

tion only to ”query” the memory resources previously allocated and
assigned to the algorithm instance object, which may subsequently be
reclaimed. This IALG function cannot actually free any algorithm
instance memory. These statements will most likely look like the reverse
of the statements in initObj():

memTab[1].base = g729enc–>workBuf;

This is how the algorithm communicates which blocks of memory can
be freed by the framework. This function updates the base fields of the
memTab[] array records and passes them back to the framework via
the pointer to memTab[].

� Implementing the <MODULE>_<VENDOR>_moved() function is not
required by the Standard, however, if implemented it can be used by
the system integrator to more flexibly manage application memory re-
sources by moving algorithm instance data. This basically contains
the same memTab[].base statements as the ones found in initObj(),
for example:

g729enc–>workBuf = memTab[1].base;

This function is called by the framework to inform the algorithm instance
that a particular block (or blocks) or memory has (have) been moved.
The framework communicates these updated base addresses by pass-
ing a memTab[] array with updated base fields into the moved() function.

� Implementing the <MODULE>_<VENDOR>_activate() function is not
required by the Standard, however, it may be needed to set up scratch
memory from persistent memory which was saved during the last
process function call. For example, a vocoder processing function may
need to do its calculations based on the results of the last process call. It
is the framework’s responsibility to make sure that the scratch/persistent
memories do not get corrupted during the lifetime of the algorithm
instance. The algorithm must assume that memory is uncorrupted at all
times.

Void G729ENC_TI_activate(IALG_Handle handle)

/* Copy encoder history from external slow memory
into working buffer */

{

 G729ENC_TI_Obj *g729enc = (Void *)handle;

 /* copy saved history to working buffer */

 memcpy((Void *)g729enc–>workBuf, (Void *)g729enc–>histo-
ry, g729enc–>frameLen * sizeof(Int));

}

Void G729ENC_TI_deactivate(IALG_Handle handle)

Vendor-Specific Algorithm Interface (IALG)

11TMS320 DSP Algorithm Standard Developer’s Guide

/* Copy encoder history from working buffer to ex-
ternal slow memory */

{

 G729ENC_TI_Obj *g729enc = (Void *)handle;

 /* copy history to external history buffer */

 memcpy((Void *)g729enc–>history, (Void *)g729enc–>work-
Buf, g729enc–>frameLen * sizeof(Int));

}

The same can be said for the <MODULE>_<VENDOR>_deactivate()
function. Its only purpose is to save the current contents of any scratch
memory to persistent memory needed for the next processing func-
tion call. Think of algActivate() and algDeactivate() as the “context
switching functions” at the algorithm level. The algActivate() will pre-
pare the scratch memory before the actual processing function is
called, and the algDeactivate() will save the scratch memory after the
processing call exits for the next iteration. In other words, the frame-
work needs to call algActivate() before calling the process function
and then call algDeactivate() after the process function exits:

XDAS_Int16 G729ENC_apply(G729ENC_Handle handle,
XDAS_Int8 *in, XDAS_Int16 *out)

{

ALG_activate((IALG_Handle)handle);

handle–>fxns–>encode(handle, in, out);

ALG_deactivate((IALG_Handle)handle);

}

� Complete the extended IALG methods at the end of this file. The ap-
ply method (or in this case, encode) is where the vendor’s original al-
gorithm code is called from. Usually, the mycontrol method also
needs to be completed and an example of how to do this follows:

XDAS_Bool G729ENC_TI_mycontrol(IG729ENC_Handle han-
dle, IG729ENC_Cmd cmd, IG729ENC_Status *status)

{

 G729ENC_TI_Obj *g729enc = (Void *)handle;

 if (cmd == IG729ENC_GETSTATUS)

 {

 status–>maxChannels = g729enc–>maxChannels;

status–>signalStatus = g729enc–>signalStatus;

 }

 else if (cmd == IG729ENC_SETSTATUS)

Vendor-Specific Algorithm Interface (IALG)

 12

 {

 g729enc–>maxChannels = status–>maxChannels;

 g729enc–>frameLen = status–>frameLen;

 }

 else /* Invalid command */

 {

 return (XDAS_FALSE);

 }

 return (XDAS_TRUE);

}

8) Rename the <MODULE>_<VENDOR>_vtab.c file to <MODULE>_<VEN-
DOR>_ialgvt.c.

9) Add the following function definitions to the bottom of the <MOD-
ULE>_<VENDOR>.h file, before the final #endif statement:

/*

 * ======== <MODULE>_<VENDOR>_init ========

 * Initialize the <MODULE>_<VENDOR> module as a whole.

 */

Void <MODULE>_<VENDOR>_init(Void);

/*

 * ======== <MODULE>_<VENDOR>_exit ========

 * Exit the <MODULE>_<VENDOR> module as a whole.

 */

Void <MODULE>_<VENDOR>_exit(Void);

Consumer/System Integrator (CONCRETE API)

13TMS320 DSP Algorithm Standard Developer’s Guide

4 Consumer/System Integrator (CONCRETE API)

This section describes how to create sample consumer (framework) files to
build a client application to test our Algo Standard interface. These files make
up the Concrete API and are not required for Compliance Testing submission,
but are definitely helpful. Algo Standard Rules 25–30 will be addressed.

1) Modify the test application main() function to call into the Algo Standard
interface functions rather than the algorithm directly. We can use the type
definitions and functions defined in our sample <MODULE>.[ch] files to help
us manage Algo Standard objects. The following is a common example:

#include <std.h>

#include “g729enc.h”

#include “g729enc_ti.h”

G729ENC_Params params;

G729ENC_Handle alg;

G729ENC_Status status;

G729ENC_Cmd cmd;

Int* sample;

Short* output;

/* Create an instance of an Algo Standard object */

if ((alg = G729ENC_create(&G729ENC_TI_IG729ENC, &pa-
rams)) != NULL)

G729ENC_encode(alg, sample, output);

/* To check the status, make the following call */

cmd = G729ENC_GETSTATUS;

G729ENC_mycontrol(alg, cmd, &status);

/* To set a control parameter, make the following call
*/

cmd = G729ENC_SETSTATUS;

status–>maxChannels = 32;

G729ENC_mycontrol(alg, cmd, &status);

/* To delete this instance, make the following call */

G729ENC_delete(alg);

2) Before building the project, there is a set of processor-specific rules that
must be followed. The goal is to verify that Rules 25 – 27 are followed for
C6x; Rules 28–30 are followed for C54/55x. The following step(s) address
how to configure your project to satisfy these DSP-specific rules:

� For C6x, Rule 26: “All C6x algorithms must access all static and global
data as far data”. The ‘–ml3’ cl6x compiler option defaults all data and
functions to far.

Consumer/System Integrator (CONCRETE API)

 14

� For C54/55x, do the following extra steps if a ‘far’ model is desired: In
the Compiler build options, check the “Use Far Calls” box and type
“548” in the Processor Version field under the Code Gen (II) Category.
In the Assembler build options, check the “Define __far_mode Sym-
bol” box and type “548” for Processor Version.

3) Replace all instances of CALL with [.if __far_mode FCALL .else CALL .endif]
in all assembly source files.

4) Replace all instances of RET with [.if __far_mode FRET .else RET .endif]
in all assembly source files.

5) For far mode run-time support, include the library “rts_ext.lib” into the
project.

NOTE for far mode compilation: The FCALL instruction pushes two words
onto the stack, as opposed to one word for the near CALL instruction. If
you have any C run-time convention code in assembly that pops items off
the stack during the return of an assembly function that has been called by
a C function, make sure to modify all your assembly modules to account
for this.

� Finally, for all C54/55x object files, make sure the size of each object
file is less than or equal to 32K words .

6) Build the project. Run the program with the same test vectors you normally
use to test your algorithm. The newly “Algo Standardized” algorithm
should execute with the same results as before.

OPTIONAL: Real-Time Trace Control Interface (IRTC)

15TMS320 DSP Algorithm Standard Developer’s Guide

5 OPTIONAL: Real-Time Trace Control Interface (IRTC)

Now that we have implemented the IALG interface and created a test client to
check it, we can now implement an additional interface that will allow the algo-
rithm to take advantage of the Real Time Analysis capabilities of DSP/BIOS.
IRTC defines an interface, that when implemented, allows a module’s various
RTA modes to be enabled, disabled, and controlled in real time.

1) Make a copy of the file “rtc.c” from the Algo Standard Developers Kit direc-
tory (normally c:\ti\xdas\src\api). Add this file to the project.

2) Copy over “fir_ti_irtcvt.c” and “fir_ti_irtc.c” from c:\ti\xdas\src\filter, and
then copy over “fir_ti_priv.h” from c:\ti\xdas\include. Rename each file to
reflect <MODULE>_<VENDOR> and replace all internal references in all
3 files (make sure to match the case in each operation):

� “fir_ti” to lower case <module>_<vendor>” (do not match whole word)

� “FIR_TI” to upper case <MODULE>_<VENDOR>

� “fir” to lower case <module>

� “FIR” to upper case <MODULE>

� “FIR filter” & “Filter” to upper case <MODULE>

� “ti” to lower case <vendor> (match whole word)

� “TI” to upper case <VENDOR> (do not match whole word)

� “mask” to “biosMask”

Add the 2 C source files that were just modified to the project. Also, in “irtc.h”,
make sure IRTC_Handle points to IALG_Obj type, NOT IRTC_Obj type.

3) In the current <MODULE>_<VENDOR>.h file, add the following:
#include <irtc.h>

#include <log.h>

/*

 * ======== <MODULE>_<VENDOR>_IRTC ========

 * <VENDOR>’s implementation of the IRTC interface for
<MODULE>

 */

extern IRTC_Fxns <MODULE>_<VENDOR>_IRTC;

4) In the current <MODULE>_<VENDOR>_ialg.c file, add the following
lines to the top of the file and to the <MODULE>_<VENDOR>_Obj
structure, respectively:
#include <<MODULE>_<VENDOR>_priv.h>

IRTC_Mask biosMask; /* Current DSP/BIOS RTA mask setting
*/

OPTIONAL: Real-Time Trace Control Interface (IRTC)

 16

Move the entire structure definition to the top of the “<MODULE>_<VEN-
DOR>_priv.h” file (in place of the existing <MODULE>_<VENDOR>_Obj),
and then add “#include” statement for the original algorithm’s header file.
Delete the external function declarations for “filter” and “tst”.

1) Create a DSP/BIOS LOG Object. If no DSP/BIOS CDB file exists for the
project, under the CCS toolbar, go to the link: File –> New –> DSP/BIOS
Configuration . Create a LOG Object by right-clicking the LOG Event
Manager and select “Insert LOG”, then rename the object to “trace”.

2) If a linker command file already exists for your project, comment out the
MEMORY sections in the original linker command file. In the DSP/BIOS
configuration tool, select the Memory Section Manager (MEM Module).
Edit the IPRAM and IDRAM sections to match those defined in the original
linker command file by right-clicking on each of the MEM Objects and
selecting “Properties” (if needed). Define additional MEMORY sections by
right-clicking on the MEM Module and selecting “Insert MEM”.

3) Save this DSP/BIOS configuration file as “<MODULE>_<VENDOR>.cdb”
(or whatever name is desired), and then close the file. Add this DSP/BIOS
CDB file to the project, and then add “<MODULE>_<VENDOR>cfg.cmd”
to the project; if a linker command file already exists, make the following
changes to it:

� Add “–l <MODULE>_<VENDOR>cfg.cmd” at the top of the original
linker command file.

� Comment out the MEMORY section (<MODULE>_<VEN-
DOR>cfg.cmd already specifies its own memory map based on DSP/
BIOS config tool). If there are memory section conflicts, they need to
be resolved between the two linker command files.

� Comment out the SECTIONS in the original linker command file.

� Close the file and save the changes.

� Remove the “rts[dsp].lib” file from the project, since the DSP/BIOS
CMD file automatically links in the C-run time support library.

4) Add the <MODULE>_<VENDOR>_trace() macro anywhere in the original
algorithm source code where it makes sense to output diagnostic mes-
sages to the LOG Object. Customize the diagnostic messages at each
point in the algorithm so that the diagnostic messages that appear on the
Host are useful to the application for real-time analysis purposes. You may
want to use the biosMask field of the instance object to set different levels
of debugging in the trace() macro. Refer to the “<MODULE>_<VEN-
DOR>_irtc.c” file for an example of how the trace() macro is called.

OPTIONAL: Real-Time Trace Control Interface (IRTC)

17TMS320 DSP Algorithm Standard Developer’s Guide

5) We can use the type definitions and functions defined in our sample rtc.[ch]
files to help us manage real-time trace descriptors. Each active module
can only bind to one instance type of DSP/BIOS object (e.g. 10 active
instances of an algorithm all must reference a single DSP/BIOS object).

Make a backup copy of “main.c”. Now, all of the processing functionality
must be taken out of main() and put into a separate function (main() is only
called once in DSP/BIOS). Use the Config Tool to set up a PRD, CLK, SWI,
or IDL Object to call your function via the DSP/BIOS scheduler. Modify the
main() function to initialize the RTC trace descriptor:

#include <rtc.h>

extern LOG_Obj trace; /* Created by the DSP/BIOS Con-
figuration Tool */

RTC_Desc rtc;

/* Bind output log to G729ENC_TI module */

RTC_bind(&G729ENC_TI_IRTC, &trace);

/* if the instance creation succeeded, create a trace
descriptor */

if (alg != NULL && RTC_create(&rtc, alg,
&G729ENC_TI_IRTC) != NULL)

RTC_set(&rtc, RTC_ENTER);

6) Build and load the program to the target. Go to Tools –> DSP/BIOS –>
Message Log to open a Message Log window and configure it to display
the LOG Object messages by right-clicking on the window, selecting
“Properties”, and selecting “trace” from the pull-down menu. Go to Tools
–> DSP/BIOS –> RTA Control Panel , right-click the panel and select
“Enable All”. Run the program. The program should still run with the same
results as before Algo Standard conversion, and the LOG_printf() mes-
sages from the <MODULE>_<VENDOR>_trace() calls in the algorithm
should show up in the DSP/BIOS Message Log window. This verifies that
the ITRC interface and DSP/BIOS calls are working properly. The Algo
Standard algorithm is now officially “BIOSized”. If an application does not
elect to use DSP/BIOS, the <MODULE>_<VENDOR>_trace() macro has
the logic to detect if a LOG Object exists. If no LOG Object exists, then the
DSP/BIOS calls are never initiated during run-time. Therefore, the algo-
rithm works in any environment (DSP/BIOS & non-DSP/BIOS).

7) The other type of DSP/BIOS object that can be used in Algo Standard
instances is the Statistics (STS) Object. The IRTC interface can be modi-
fied to work with STS Objects, as well as LOG Objects. The BIOS mask
can be divided into two regions (e.g., upper half and lower half) to corre-
spond to either STS or LOG diagnostics levels. For example, the <MOD-
ULE>_<VENDOR>_bind() function can be altered to accept two DSP/

OPTIONAL: Real-Time Trace Control Interface (IRTC)

 18

BIOS Object handles, one for LOG and one for STS Objects. Refer to the
latest DSP/BIOS Users Guide for additional information on how to use
STS Objects and API’s.

Algo Standard Library Creation (Rules 8, 11, 13, 15)

19TMS320 DSP Algorithm Standard Developer’s Guide

6 Algo Standard Library Creation (Rules 8, 11, 13, 15)

Now that the algorithm runs correctly with the Algo Standard interfaces imple-
mented, the actual Algo Standard library deliverable can be created. To be in
compliance with Rule 15 of the Algo Standard Rules and Guidelines document,
follow the naming convention described in section 3–17. The files listed below
need to be partially linked into a single, relocatable, non-executable object, and
then archived as a file that is named using the typical Algo Standard naming
convention:

<module>v<vers>_<vendor>_<variant>.a<arch><model>
(e.g. g729enc_ti.a54f).

This name comes directly from Table 1, where module, vers, vendor, processor,
and variant are entered (<vers> is required if there are different versions of the
Algo Standard algorithm available).

Since multiple algorithms and system control code are often integrated into a
single executable, the only external identifiers defined by an algorithm should
be those specified by the algorithm API definition (Rule 8). The way to achieve
this is to hide all symbols of the object code, and then expose only the symbols
the application needs to see (i.e. the v-tables and init/exit functions). Use the
–h & –g _<symbol> options. Do not forget the underscore ‘_’ before the symbols
(assembler symbols are prefixed with it).

To give the single relocatable object file a unique name, use the –o <object_file-
name> option.

To specify partial linking (build a single, relocatable, non-executable object file),
use the –r option.

To generate a MAP file for documenting the memory characteristics in the next
section, use –m option.

Combining all of our desired linker options together, we can create a separate
linker command file, e.g. “enclib.cmd” (file must have the .cmd suffix to work
with the linker), that consists of the following:

–r

–m g729enc_ti.map
–o g729enc_ti.o54f
–h
–g _G729ENC_TI_IG729ENC

–g _G729ENC_TI_IALG

–g _G729ENC_TI_init

–g _G729ENC_TI_exit

g729enc_ti_ialg.obj
g729enc_ti_ialgvt.obj

Algo Standard Library Creation (Rules 8, 11, 13, 15)

 20

<original algorithm object file(s)>

SECTIONS
{
 .text
 {
 g729enc_ti_ialgvt.obj (.text)
 <original algorithm object files(s)> (.text)
 }

 .text:algAlloc {}
 .text:algInit {}
 .text:algFree {}
 .text:algActivate {}
 .text:algMoved {}
 .text:algDeactivate {}
 .text:init {}
 .text:exit {}
}

From the DOS command prompt, create the relocatable, non-executable ob-
ject file:

> lnk500 enclib.cmd

> lnk6x enclib.cmd

Then create the final library file in an archived format:

> ar500 –r g729enc_ti.a54f g729enc_ti.o54f

> ar6x –r g729enc_ti.a62 g729enc_ti.o62

To test the newly created Algo Standard library, remove all the source files from
the project which are already included as part of the Algo Standard library. To
link the library into the project, go to the CCS Toolbar and follow the link: Project
–> Options . Select the Linker tab. Locate the “Include Libraries” field, type in
the full name of the Algo Standard library file, and hit the OK button. Build the
project and run the program. The program should still execute with the same
results as expected.

To check the Algo Standard Library symbols, run the nmti.exe utility on the re-
locatable OBJECT file from DOS:

> nmti g729enc_ti.o54f | more

Each symbol listed will have a ’type letter’ to the left of it. If it is in upper case,
then it is exposed, if lower case, then it is hidden. Make sure that the v-table
symbol(s) is/are exposed with the upper case letter. Then make sure the rest
of the symbols have a lower case type letter. Ignore the upper case ’S’s
because those are the section names and they need to be exposed (you have
no control over them; they cannot be hidden).

Performance/Memory Characterization (Rules 19–24)

21TMS320 DSP Algorithm Standard Developer’s Guide

7 Performance/Memory Characterization (Rules 19–24)

1) The last step produces the performance and memory characterization
data required for the compliance process. The required information can
be entered in the tables of Appendix C. For an explanation of the details,
refer to Algo Standard Rules and Guidelines, Chapter 4. The best thing to
do is to create an electronic copy of these tables using the name <MOD-
ULE>_<VENDOR>.doc.

2) A DSP/BIOS framework could be developed to gather the performance
information.

Conclusion

 22

8 Conclusion

This document helps the Algo Standard algorithm developer through the entire
Algo Standard conversion process. When completed, the algorithm should be
submitted immediately for compliance testing. Make sure all header files that are
submitted (file names and contents) follow the Alfo Standard naming conventions
and header file rules. A minimum of five items must be submitted:

� <Algo Standard library name>.doc (see Appendix C for an example)

� The Algo Standard Library file

� <MODULE>_<VENDOR>.h (and any other header files included in this file)

� i<MODULE>.h (and any other header files inclluded in this file)

� ialg.h (unmodified system header file usually found in c:\ti\xdas\include)

A-1

Appendix A

Algo Standard Name Tables

Table A–1. Name Selection

Module
Name

Vendor
Name Variant Architecture Variant (optional)

Cores: ‘54’, ‘55’, ‘62’, ’64’, ‘67’ ‘f’ = far calls/returns
‘e’ = big endian
‘m’ = mixed calls

Table A–2. Instance Creation Parameters

typedef struct I<MODULE>_Params {

No. Params Type Params Name

1.

2.

3.

4.

} I<MODULE>_Params;

Appendix A

Algo Standard Name Tables

 A-2

Table A–3. Real-Time Status and Control Parameters

typedef struct I<MODULE>_Status {

No. Status/Control Type Status/Control Name

1.

2.

3.

4.

} I<MODULE>_Status;

Table A–4. Extended IALG (IMODULE) Methods

No. Return Type Method Name
Param1 Type and
Name†

Param2 Type and
Name

Param3 Type and
Name

1

2

3

4

5

† The IALG_Handle parameter does not need to be specified as the Standard Gen tool will insert it by default

B-1

Appendix A

Template File Descriptions

The Algo Standard Code Gen Tool (with all GUI checkboxes checked) gener-
ates most of the following files that make up the Algo Standard layers of ab-
straction:

APPLICATION FRAMEWORK Concrete Interface (API)

(framework-specific set of sample

functions for framework to manage

algorithm instance objects)

<MODULE>.c (implementation of client API functions)

<MODULE>.h (client API interface definitions)

rtc.c (used as is from Algo Standard Developers Kit –– client API functions for
real-time trace control)

rtc.h (used as is from Algo Standard Developers Kit –– client API definitions for
real-time trace control)

MODULE –– PUBLIC Module-Specific Interface (IMODULE)

(abstract interface)

i<MODULE>.c (definition of default parameter structure settings)

i<MODULE>.h (abstract interface definition header –– PUBLIC data types & methods)

ALGORITHM –– PRIVATE Vendor Specific Interface (IALG / IRTC)

(algorithm-specific)

<MODULE>_<VENDOR>.h (vendor implementation header file; used by application)

<MODULE>_<VENDOR>_ialg.c (vendor-specific algorithm functions)

<MODULE>_<VENDOR>_ialgvt.c (function v-table definitions)

Appendix B

Template File Descriptions

 B-2

The following files, which are modified versions of sample source files in the
Algo Standard Developer’s Kit, make up the IRTC interface which can be
viewed at the same level as the IALG interface:

<MODULE>_<VENDOR>_irtc.c

<MODULE>_<VENDOR>_irtcvt.c

<MODULE>_<VENDOR>_priv.h (PRIVATE data used by both IALG &
IRTC)

C-1

Appendix A

Algo Standard Performance Characterization

This section contains a set of tables that help characterize the Algo Standard
algorithm. This information can be extremely useful to the system integrator
who is trying to integrate algorithms into a system that has limited memory. Re-
fer to the Algo Standard Rules and Guidelines document, for details on how
to fill in the correct information for the following tables.

Table C–1. Module

Module Vendor Variant Arch Model Version Doc Date Library Name

G729ENC TI none 54 far none 05.05.2000 g729enc_ti.a54f

Table C–2. ROMable (Rule 5)

Yes No

X

Table C–3. Heap Data Memory (Rule 19)

memTab Attribute Size (bytes) Align (MAUs) Space

0 Persist 54 0 External

1 Scratch 256 32 DARAM0

2 Scratch 130 4 SARAM0

3 Persist 712 0 External

4 Scratch 656 64 DARAM1

5 Persist 256 16 SARAM1

Notes: 1) The unit for size is (8–bit) byte and the unit for align is Minimum Addressable Unit
(MAUs).

Table C–4. Stack Space Memory (Rule 20)

Size (bytes) Align (MAUs)

Worst Case 256 0

Appendix C

Algo Standard Performance Characterization

 C-2

Table C–5. Static Data Memory (Rule 21)

.data .bss

Object File
Size

(bytes)
Align

(MAUs)
Read/
Write Scratch Object File

Size
(bytes)

Align
(MAUs)

Read/
Write Scratch

g729encTI.obj 325 0 R No g729enc_ti_
ialgvt.obj

22 0 R No

Table C–6. Program Memory (Rule 22)

Code

Code Sections Size (bytes) Align (MAUs)

.text 7,782 0

.text:algAlloc 128 0

.text:algInit 209 0

.text:algFree 86 0

.text:algActivate 7 0

.text:algMoved 9 0

.text:algDeactivate 7 0

.text:init 3 0

.text:exit 3 0

.cinit 24 0

Table C–7. Interrupt Latency (Rule 23)

Operation
Typical Call Frequency

(microsec)
Worst-Case

(Instruction Cycles)

encode() 2,000 50

control() 2,000 0

Table C–8. Period / Execution Time (Rule 24)

Operation
Typical Call Frequency

(microsec)
Worst-Case

Cycles/Period
Worst-case

Cycles/Period
Worst-case

Cycles/Period

encode() 2,000 16,000 No periodic execution No periodic execution

control() 2,000 200 No periodic execution No periodic execution

Algo Standard Performance Characterization

C-3Algo Standard Performance Characterization

Notes:

� This algorithm follows the run-time conventions imposed by TI’s imple-
mentation of the C programming language.

� This algorithm is re-entrant within a preemptive environment (including
time-sliced preemption).

� All algorithm data references are fully relocatable.

� All algorithm code is fully relocatable.

� This algorithm does not directly access any peripheral device.

� This algorithm does not include definitions specific to a debug variant.

� This algorithm accesses all static and global data as far data (c6x only).

� This algorithm operates properly with program memory operated in
cache mode (c6x only).

� This algorithm was compiled in little endian mode (c6x only).

D-1

Appendix A

Algo Standard Compliance Report

This section contains the official checklist used during compliance testing. It
is recommended to go through the entire checklist before submission.

TMS320 DSP Algorithm Interoperability Standard

Algo Standard Compliance Testing

Compliance Test Report (preliminary)

Note: All references to Rules and Guidelines are from the February 2000 revision of SPRU352.

Date:

Vendor:

Algorithm

Incoming Inspection –––

documentation:

header file(s):

Rule 1: All algorithms must follow the run-time conventions imposed by TI’s implementation of the
C programming language.’

Report: Vendor should supply statement that this is correct.

Rule 2: All algorithms must be reentrant within a preemptive environment (including time-sliced
preemption).

Report: Vendor must state that algorithm is reentrant according to the definition of the DSP
Algorithm Standard

Rule 3: All algorithm data references must be fully relocatable (subject to alignment require-
ments). That is, there must be no “hard coded” data memory locations.

Report:

Appendix D

Algo Standard Compliance Report

 D-2

Rule 4: All algorithm code must be fully relocatable. That is, there can be no hard coded program
memory locations.

Report:

Rule 5: Algorithms must characterize their ROM-ability; i.e., state whether they are ROM-able or
not.

Report: Vendor must document that their code is ROM-able

Rule 6: Algorithms must never directly access any peripheral device. This includes but is not limit-
ed to on-chip DMAs, timers, I/O devices, and cache control registers.

Report:

Rule 7: All header files must support multiple inclusions within a single source file.

Report:

Rule 8: All external definitions must be either API identifiers or API and vendor prefixed.

Report:

Rule 9: All undefined references must refer either to the operations specified in Appendix B (a
subset of C runtime support library functions and the DSP/BIOS) or other Algo Standard-com-
pliant modules.

Report:

Rule 10: All modules must follow the naming conventions of the DSP/BIOS for those external dec-
larations disclosed to the client.

Report:

Rule 11: All modules must supply an initialization and finalization method.

Report:

Rule 12: All algorithms must implement the IALG interface.

Report:

Rule 13: Each of the IALG methods implemented by an algorithm must be independently relocat-
able.

Report:

Rule 14: All abstract algorithm interfaces must derive from the IALG interface.

Report:

Fxns:

Params:

Status:

Algo Standard Compliance Report

D-3Algo Standard Compliance Report

Rule 15: Each Algo Standard-compliant algorithm must be packaged in an archive which has a
name that follows a uniform naming convention.

Note: Refer to section 3.4 of the eXpressDSP Algorithm Standard Rules and Guidelines
(SPRU352) for further guidance on file naming conventions.

Report:

Rule 16: Each Algo Standard-compliant algorithm header must follow a uniform naming conven-
tion.

Header file name should be of the form:
<module><vers>_<vendor>_<variant>.h

Report:

Rule 17: Different versions of an Algo Standard-compliant algorithm from the same vendor must
follow a uniform naming convention.

Report:

Rule 18: If a module’s header includes definitions specific to a “debug” variant, it must use the
symbol _DEBUG to select the appropriate definitions;

_DEBUG is defined for debug compilations and only for debug compilations.

Report:

Rule 19: All algorithms must characterize their worst-case heap data memory requirements (in-
cluding alignment).

Report:

Rule 20: All algorithms must characterize their worst-case stack space memory requirements (in-
cluding alignment).

Report:

Rule 21: Algorithms must characterize their static data memory requirements.

Report:

Rule 22: All algorithms must characterize their program memory requirements.

Report:

Rule 23: All algorithms must characterize their worst-case interrupt latency for every operation.

Report:

Rule 24: All algorithms must characterize the typical period and worst-case execution time for
each operation.

Report:

Algo Standard Compliance Report

 D-4

DSP-specific Rules ––

Rule 25: All C6x algorithms must be supplied in little endian format.

Report:

Rule 26: All C6x algorithms must access all static and global data as far data.

Report:

Rule 27: C6x algorithms must never assume placement in on-chip program memory; i.e., they
must properly operate with program memory operated in cache mode.

Report:

Rule 28: On processors that support large program model compilation, all core run-time support
functions must be accessed as far functions; for example, on the C54x, the calling function must
push both the XPC and the current PC.

Report:

Rule 29: On processors that support large program model compilation, all algorithm functions
must be declared as far functions; for example, on the C54x, callers must push both the XPC and
the current PC and the algorithm functions must perform a far return.

Report:

Rule 30: On processors that support an extended program address space (paged memory), the
code size of any object file should never exceed the code space available on a page when over-
lays are enabled.

Report:

End Report ––

	IMPORTANT NOTICE
	Contents
	Figures
	Tables
	TMS320 DSP Algorithm Standard Developer s Guide
	Preliminary Algo Standard Questions (Rules 1–10)
	Module-Specific Abstract Interface (IMODULE)
	Vendor-Specific Algorithm Interface (IALG)
	Consumer/System Integrator (CONCRETE API)
	OPTIONAL: Real-Time Trace Control Interface (IRTC)
	Algo Standard Library Creation (Rules 8, 11, 13, 15)
	Performance/Memory Characterization (Rules 19–24)
	Conclusion

	Algo Standard Name Tables
	Template File Descriptions
	Algo Standard Performance Characterization
	Algo Standard Compliance Report
	TMS320 DSP Algorithm Interoperability Standard

