
�	
������
�
����� �������

������ �����

SPRU053
November 1993

Printed on Recycled Paper

TMS320C3x C Source Debugger User’s Guide
Reader Response Card

November 1993

Texas Instruments wants to provide you with the best documentation possible—please help us by answering these
questions and returning this card.

How have you used this manual?

To look up specific information or procedures when needed (as a reference).

To read chapters about subjects of specific interest.

To read from front to back before using the product.

Did you use the Tutorial (Chapter 2)?

Yes No

Which additional subjects should be included in future versions of the Tutorial?

Please describe any mistakes or misleading information that you found (include page numbers).

Which topics should this document describe in greater detail?

Please list information that was difficult to find and why (not in index, not in a logical location, etc.).

Please provide any specific suggestions that you have for improving the content of this document.

Are there specific, useful features of this user’s guide that should be retained in future versions of this document?

Additional comments:

Thank you for taking the time to fill out this card.

Name Title

Company

Address

City State Zip/Country

May we call you to discuss your comments? If so, please include phone number

1

TMS320C3x C Source Debugger
Reference Card

Phone Number

DSP Hotline: (713) 274–2320

Invoking the Debugger

Emulator: emu3x [filename] [–options]
EVM: evm30 [filename] [–options]
Simulator: sim3x [filename] [–options]

Debugger Options

Option Description

–b[b] Select the screen size.
Option Characters.
none 80 × 25 (default)
–b 80 × 43 (EGA or VGA)
–bb 80 × 50 (VGA only)

–i pathname Identify additional directories. Identifies
directories that contain source files.

–mm0
–mm1

Select the mode. (simulator only) Tells de-
bugger to operate in microprocessor (0) or
microcomputer (1) mode (0 is the default).

–mv30
–mv31

Select the device version. (simulator
only) Identifies ’C30 or ’C31 memory map
(’C30 is the default).

–p port address Identify the port address. (emulator and
EVM) Identifies the I/O port address that the
debugger uses for communicating with the
device.

–profile Enter the profiling environment. (emula-
tor and simulator) Brings up the debugger
in a profiling environment.

–s Load symbol table only. Tells the debug-
ger to load filename’s symbol table only.

–t filename Identify new initialization file. Allows
you to specify an initialization file.

–v Load without symbol table. Loads only
global symbols; later, local symbols are
loaded as needed. Affects all loads.

–x Ignore D_OPTIONS. Ignores options sup-
plied with D_OPTIONS.

2

Summary of Debugger Commands
? expression [, display format] d

addr address
addr function name

d

alias [alias name [, ”command string”]] b

asm d

ba address d

bd address d

bl d

border [active] [, [inactive] [,resize]] d

br d

c d

calls d

cd [directory name]
chdir [directory name]

b

cls b

cnext [expression] d

color area, attr1 [,attr2 [,attr3 [,attr4]]] d

cstep [expression] d

dasm address
dasm function name

b

dir [directory] b

disp expression [, display format] d

dlog filename [, {a|w}] d

echo string b

else d

endif d

endloop d

eval expression
e expression

b

file filename b

fill address , length, data d

func function name
func address

b

go [address] d

halt d

if Boolean expression
debugger command list
[else
debugger command list]
endif

b

load object filename b

loop expression
debugger command list
endloop

b

ma address, length, type b

map {on | off } b

mc port address, filename, {READ | WRITE} b †

p = profiler only d = basic debugger only
b = both profiler and basic debugger † simulator only

3

Summary of Debugger Commands
md address b

mem expression [, display format] d

mi port address, {READ|WRITE} b †

mix d

ml b

move [X, Y [, width, length]] b

mr b

ms address, length, filename b

next [expression] d

patch address, assembly language instruction d

pf starting point [, update rate] p

pinc pinname filename d

pind pinname d

pinl d

pq starting point [, update rate] p

pr [clear data [, update rate]] p

prompt new prompt b

quit b

reload object filename b

reset b

restart
rest

b

return
ret

d

run [expression] d

runb d

runf d

sa address p

scolor area, attr1 [, attr2 [, attr3 [, attr4]]] d

sconfig [filename] b

sd address p

setf [data type, display format] d

size [width, length] b

sl p

sload object filename b

sound on | off d

sr p

ssave [filename] d

step [expression] d

system [operating-system command [, flag]] b

take batch filename [, suppress echo flag] b

unalias alias name b

use directory name b

vaa filename p

vac filename p

p = profiler only d = basic debugger only
b = both profiler and basic debugger † simulator only

4

Summary of Debugger Commands
version b

vr p

wa expression [, [label], display format] d

wd index number d

whatis symbol d

win WINDOW NAME b

wr d

zoom b

p = profiler only d = basic debugger only
b = both profiler and basic debugger † simulator only

Border Styles
(BORDER Command)

Index Style

0 Double-lined box
1 Single-lined box
2 Solid 1/2-tone top, double-lined sides/bottom

3 Solid 1/4-tone top, double-lined sides/bottom
4 Solid box, thin border
5 Solid box, heavy sides, thin top/bottom

6 Solid box, heavy borders
7 Solid 1/2-tone box
8 Solid 1/4-tone box

Colors and Attributes
(COLOR/SCOLOR Commands)

black blue green cyan
red magenta yellow white
bright blink

Area Names
(COLOR/SCOLOR Commands)

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

5

Memory Types

To identify this kind of
memory

Use this keyword as the
type parameter

read-only memory R, ROM, or READONLY

write-only memory W, WOM, or WRITEONLY

read/write memory R|W or RAM

no-access memory PROTECT

input port IPORT or IN PORT

output port OPORT or OUT PORT

input/output port IOPORT

Display Formats
(?, DISP, MEM, SETF, and WA Commands)

Para-
meter

Result Para-
meter

Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string †

e Exponential floating
point

u Unsigned decimal

f Decimal floating point x Hexadecimal

† ?, DISP, SETF, and WA commands only

Switching Modes

To do this
Use this
function key

Switch debugging modes in this order:

auto assembly mixed

Running Code

To do this
Use these
function keys

Run code from the current PC

Single-step from the current PC

Single-step code from the current PC; step
over function calls

6

Selecting or Closing a Window

To do this
Use these
function keys

Select the active window

Close the CALLS or DISP window

Editing Text on the Command Line

To do this
Use these
function keys

Enter the current command

Move back over text without erasing char-
acters or

Move forward through text without erasing
characters

Move back over text while erasing charac-
ters

Move forward through text while erasing
characters

Insert text into the characters that are al-
ready on the command line

Using the Command History

To do this
Use these
function keys

Repeat the last command that you entered

Move backward, one command at a time,
through the command history

Move forward, one command at a time,
through the command history

Editing Data or Selecting the Active Field

To do this
Use this
function key

FILE or DISASSEMBLY window: Set
or clear a breakpoint

CALLS window: Display the source to
a listed function

Any data-display window: Edit the con-
tents of the current field

DISP window: Open an additional
DISP window

7

Halting or Escaping From an Action

To do this
Use this
function key

Halt program execution

Close a pulldown menu

Undo an edit of the active field in a
data-display window

Halt the display of a long list of data

Displaying Pulldown Menus

To do this
Use these
function keys

Display the Load menu

Display the Break menu

Display the Watch menu

Display the Memory menu

Display the Color menu

Display the MoDe menu

Display the Pin menu P

Display an adjacent menu or

Execute any of the choices from a
displayed pulldown menu

Press the high-
lighted letter cor
sponding to you
choice

Moving or Sizing a Window

Enter the MOVE or SIZE command without parameters, then use
the arrow keys:

To do this
Use these
function keys

Move the window down one line

Make the window one line longer

Move the window up one line

Make the window one line shorter

Move the window left one character
position

Make the window one character nar-
rower

Move the window right one character
position

Make the window one character wid-
er

8

Scrolling the Active Window’s Contents

To do this
Use these
function keys

Scroll up through the window contents, one
window length at a time

Scroll down through the window contents,
one window length at a time

Move the field cursor up one line at a time

Move the field cursor down one line at a time

FILE window only: Scroll left 8 char-
acters at a time

Other windows: Move the field cur-
sor left 1 field; at the first field on a
line, wrap back to the last fully dis-
played field on the previous line

FILE window only: Scroll right 8 char-
acters at a time

Other windows: Move the field cur-
sor right 1 field; at the last field on a
line, wrap around to the first field on
the next line

FILE window only: Adjust the window’s con-
tents so that the first line of the text file is at
the top of the window

FILE window only: Adjust the window’s con-
tents so that the last line of the text file is at
the bottom of the window

DISP windows only: Scroll up through an
array of structures

DISP windows only: Scroll down through an
array of structures

TMS320C3x C Source Debugger
Profiler Reference Card

Basic Profiling Commands

Running a Profiling Session

Command Description

pf starting point [, update rate] Run a full profiling
session

pq starting point [, update rate] Run a quick profil-
ing session

pr [clear data [, update rate]] Resume a profilng
session that has
halted

pr [clear data [, update rate]] Resume a profilng
session that has
halted

Defining Stopping Points

Command Description

sa address Add a stopping
point

sd address Delete a stopping
point

sr Delete all the stop-
ping points

sl View a list of all
current stopping
points

Saving Profile Data to a File

Command Description

vac filename Save the contents
of the PROFILE
window to a sys-
tem file

vaa filename Save all data for
the current view

Phone Number
DSP Hotline: (713) 274–2320

Entering the Profiling Environment

The profiling evironment is supported under all platforms except
DOS.

Emulator: emu3x –profile
EVM: evm30 –profile
Simulator: sim3x –profile

Debugger Commands That Can Be Used in the
Profiling Environment

?

ALIAS

CD

CLS

DASM

DIR

EVAL

FILE

FUNC

LOAD

MA

MAP

MC

MD

MI

ML

MOVE

MR

PROMPT

QUIT

RELOAD

RESET

RESTART

SCONFIG

SIZE

SLOAD

SYSTEM

TAKE

UNALIAS

USE

VERSION

WIN

ZOOM

Debugger Commands That Can’t Be Used in the
Profiling Environment

ADDR

ASM

BA

BD

BL

BORDER

BR

C

CALLS

CNEXT

COLOR

CSTEP

DISP

FILL

GO

HALT

MEM

MIX

MS

NEXT

PINC

PIND

PINL

RETURN

RUN

RUNB

RUNF

SCOLOR

SSAVE

STEP

WA

WD

WHATIS

WR

Marking Areas

To mark this area C only Disassembly only

Lines
By line number, address
All lines in a function

MCLE filename, line number

MCLF function

MALE address

MALF function

Ranges
By line numbers MCRE filename, line number, line number MARE address, address

Functions
By function name
All functions in a module
All functions everyhwhere

MCFE function

MCFM filename

MCFG

not applicable

Disabling Marked Areas

To disable this area C only Disassembly only C and Disassembly

Lines
By line number, address
All lines in a function
All lines in a module
All lines everywhere

DCLE filename, line number

DCLF function

DCLM filename

DCLG

DALE address

DALF function

DALM filename

DALG

not applicable

DBLF function

DBLM filename

DBLG

Ranges
By line numbers, addresses
All ranges in a function
All ranges in a module
All ranges everywhere

DCRE filename, line number

DCRF function

DCRM filename

DCRG

DARE address

DARF function

DARM filename

DARG

not applicable

DBRF function

DBRM filename

DBRG

Functions
By function name
All functions in a module
All functions everyhwhere

DCFE function

DCFM filename

DCFG

not applicable not applicable

DBFM filename

DBFG

All areas
All areas in a function
All areas in a module
All areas everyhwhere

DCAF function

DCAM filename

DCAG

DAAF function

DAAM filename

DAAG

DBAF function

DBAM filename

DBAG

Enabling Disabled Areas

To disable this area C only Disassembly only C and Disassembly

Lines
By line number, address
All lines in a function
All lines in a module
All lines everywhere

ECLE filename, line number

ECLF function

ECLM filename

ECLG

EALE address

EALF function

EALM filename

EALG

not applicable

EBLF function

EBLM filename

EBLG

Ranges
By line numbers, addresses
All ranges in a function
All ranges in a module
All ranges everywhere

ECRE filename, line number

ECRF function

ECRM filename

ECRG

EARE address

EARF function

EARM filename

EARG

not applicable

EBRF function

EBRM filename

EBRG

Functions
By function name
All functions in a module
All functions everyhwhere

ECFE function

ECFM filename

ECFG

not applicable not applicable

EBFM filename

EBFG

All areas
All areas in a function
All areas in a module
All areas everyhwhere

ECAF function

ECAM filename

ECAG

EAAF function

EAAM filename

EAAG

EBAF function

EBAM filename

EBAG

Unmarking Areas

To disable this area C only Disassembly only C and Disassembly

Lines
By line number, address
All lines in a function
All lines in a module
All lines everywhere

UCLE filename, line number

UCLF function

UCLM filename

UCLG

UALE address

UALF function

UALM filename

UALG

not applicable

UBLF function

UBLM filename

UBLG

Ranges
By line numbers, addresses
All ranges in a function
All ranges in a module
All ranges everywhere

UCRE filename, line number

UCRF function

UCRM filename

UCRG

UARE address

UARF function

UARM filename

UARG

not applicable

UBRF function

UBRM filename

UBRG

Functions
By function name
All functions in a module
All functions everyhwhere

UCFE function

UCFM filename

UCFG

not applicable not applicable

UBFM filename

UBFG

All areas
All areas in a function
All areas in a module
All areas everyhwhere

UCAF function

UCAM filename

UCAG

UAAF function

UAAM filename

UAAG

UBAF function

UBAM filename

UBAG

Changing the PROFILE Window Display
Viewing specific areas

To disable this area C only Disassembly only C and Disassembly

Lines
By line number, address
All lines in a function
All lines in a module
All lines everywhere

VFCLE filename, line number

VFCLF function

VFCLM filename

VFCLG

VFALE address

VFALF function

VFALM filename

VFALG

not applicable

VFBLF function

VFBLM filename

VFBLG

Ranges
By line numbers, addresses
All ranges in a function
All ranges in a module
All ranges everywhere

VFCRE filename, line number

VFCRF function

VFCRM filename

VFCRG

VFARE address

VFARF function

VFARM filename

VFARG

not applicable

VFBRF function

VFBRM filename

VFBRG

Functions
By function name
All functions in a module
All functions everyhwhere

VFCFE function

VFCFM filename

VFCFG

not applicable not applicable

VFBFM filename

VFBFG

All areas
All areas in a function
All areas in a module
All areas everyhwhere

VFCAF function

VFCAM filename

VFCAG

VFAAF function

VFAAM filename

VFAAG

VFBAF function

VFBAM filename

VFBAG

Viewing different data Sorting the data

To view this information Use this
command

To sort on this data Use this
command

Count VDC Count VSC

Inclusive VDI Inclusive VSI

Inclusive, maximum VDN Inclusive, maximum VSN

Exclusive VDE Exclusive VSE

Exclusive, maximum VDX Exclusive, maximum VSX

Address VDA Address VSA

All VDL Data VSD

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and
can radiate radio frequency energy and has not been tested for compliance with the limits of
computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide
reasonable protection against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which case the user at his
own expense will be required to take whatever measures may be required to correct this
interference.

Copyright 1993, Texas Instruments Incorporated

iii

Preface

Read This First

What Is This Book About?
This book tells you how to use the TMS320C3x C source debugger with these
debugging tools:

� Emulator
� Evaluation module (EVM)
� Simulator

All three tools support code development for both the TMS320C30 and the
TMS320C31. Each tool has its own version of the debugger. These versions
operate almost identically; however, the executable files that invoke them are
very different. For example, the EVM version won’t work with the emulator or
simulator, and vice versa. Separate commands are provided for invoking each
version of the debugger.

There are two debugger environments: the basic debugger environment and
the profiling environment. The basic debugger environment is a
general-purpose debugging environment. The profiling environment is a
special environment for collecting statistics about code execution. Both
environments have the same easy-to-use interface.

Before you use this book, you should read the appropriate installation guide
to install the C source debugger and any necessary hardware.

How to Use This Manual
The goal of this book is to help you learn to use the Texas Instruments
advanced programmer’s interface for debugging. This book is divided into
three distinct parts:

� Part I: Hands-On Information is presented first so that you can start
using your debugger the same day you receive it.

� Chapter 1 lists the key features of the debugger, describes additional
’C3x software tools, tells you how to prepare a ’C3x program for
debugging, and provides instructions and options for invoking the
debugger.

� Chapter 2 is a tutorial that introduces you to many of the debugger
features.

How to Use This Manual

iv

� Part II: Debugger Description contains detailed information about using
the debugger.

The chapters in Part II detail the individual topics that are introduced in the
tutorial. For example, Chapter 3 describes all of the debugger’s windows
and tells you how to move them and size them; Chapter 4 describes
everything you need to know about entering commands.

� Part III: Reference Material provides supplementary information.

� Chapter 11 provides a complete reference to all the tasks introduced
in Parts I and II. This includes a functional and an alphabetical
reference of the debugger commands and a topical reference of
function key actions.

� Chapter 12 provides information about C expressions. The debugger
commands are powerful because they accept C expressions as
parameters; however, the debugger can also be used to debug
assembly language programs. The information about C expressions
will aid assembly language programmers who are unfamiliar with C.

� Part III also includes a glossary and an index.

The way you use this book should depend on your experience with similar
products. As with any book, it would be best for you to begin on page 1 and
read to the end. Because most people don’t read technical manuals from cover
to cover, here are some suggestions about what you should read.

� If you have used TI development tools or other debuggers before, then you
may want to:

� Read the introductory material in Chapter 1.
� Complete the tutorial in Chapter 2.
� Read through the alphabetical command reference in Chapter 11.

� If this is the first time that you have used a debugger or similar tool, then
you may want to:

� Read the introductory material in Chapter 1.
� Complete the tutorial in Chapter 2.
� Read all of the chapters in Part II.

 Notational Conventions

v Read This First

Notational Conventions

This document uses the following conventions.

� The TMS320C30 and TMS320C31 processors are referred to collectively
as the ’C3x .

� The C source debugger has a very flexible command-entry system; there
are a variety of ways to perform any specific action. For example, you may
be able to perform the same action by typing in a command, using the
mouse, or pressing function keys. There are three symbols to identify the
methods that you can use to perform an action:

Symbol Description

Identifies an action that you perform by using the mouse.

Identifies an action that you perform by using function keys.

Identifies an action that you perform by typing in a
command.

� The following symbols identify mouse actions. For simplicity, these
symbols represent a mouse with two buttons. However, you can use a
mouse with only one button or a mouse with more than two buttons.

Symbol Action

Point. Without pressing a mouse button, move the mouse to
point the cursor at a window or field on the display. (Note that
the mouse cursor displayed on the screen is not shaped like an
arrow; it’s shaped like a block.)

Press and hold. Press a mouse button. If your mouse has only
one button, press it. If your mouse has more than one button,
press the left button.

Release. Release the mouse button that you pressed.

Click. Press a mouse button and, without moving the mouse,
release the button.

Drag. While pressing the left mouse button, move the mouse.

Notational Conventions

vi

� Debugger commands are not case sensitive; you can enter them in
lowercase, uppercase, or a combination. To emphasize this fact,
commands are shown throughout this user’s guide in both uppercase and
lowercase.

� Program listings and examples, interactive displays, and window contents
are shown in a special font. Some examples use a bold version to identify
code, commands, or portions of an example that you enter. Here is an
example:

Command Result displayed in the COMMAND window

whatis giant struct zzz giant[100];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

In this example, the left column identifies debugger commands that you
type in. The right column identifies the result that the debugger displays in
the COMMAND window display area.

� In syntax descriptions, the instruction or command is in a bold face font,
and parameters are in italics. Portions of a syntax that are in bold face
should be entered as shown; portions of a syntax that are in italics
describe the kind of information that should be entered. Here is an
example of a command syntax:

mem expression [, display format]

mem is the command. This command has two parameters, indicated by
expression and display format. The first parameter must be an actual C
expression; the second parameter, which identifies a specific display
format, is optional.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

run [expression]

The RUN command has one parameter, expression, which is optional.

 Notational Conventions / Information About Cautions / Related Documentation From Texas Instruments

vii Read This First

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

sound {on | off }

This provides two choices: sound on or sound off .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Information About Cautions

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

Please read each caution statement carefully.

Related Documentation From Texas Instruments

The following books describe the TMS320C3x DSPs and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,
please identify the book by its title and literature number.

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x
32-bit floating-point microprocessor (developed for digital signal
processing as well as general applications), its architecture, internal
register structure, instruction set, pipeline, specifications, and DMA and
serial port operation. Software and hardware applications are included.

TMS320 Floating-Point DSP Assembly Language Tools User’s Guide
(literature number SPRU035) describes the assembly language tools
(assembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C3x and ’C4x generations of
devices.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide
(literature number SPRU024) describes the TMS320 floating-point C
compiler. This C compiler accepts ANSI standard C source code and
produces TMS320 assembly language source code for the ’C3x and
’C4x generations of devices.

If You Need Assistance / Trademarks

viii

Digital Signal Processing Applications With the TMS320C30 Evaluation
Module Selected Application Notes (literature number SPRA021)
contains useful information for people who are preparing and debugging
code. The book gives additional information about the TMS320C30 EVM,
as well as C coding tips.

TMS320C30 Evaluation Module Technical Reference (literature number
SPRU069) describes board-level operation of the TMS320C30 EVM.

If you are an assembly language programmer and would like more information
about C or C expressions, you may find this book useful:

The C Programming Language (second edition, 1988), by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice-Hall, Englewood
Cliffs, New Jersey.

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments Digital Signal
Processing (DSP) products

Write to:
Texas Instruments Incorporated
Market Communications Manager, MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477–8924

Ask questions about product
operation or report suspected
problems

Call the DSP hotline:
(713) 274–2320
FAX: (713) 274–2324

Report mistakes in this document
or any other TI documentation

Fill out and return the reader response card at
the end of this book, or send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

Trademarks
PC-DOS and OS/2 are trademarks of International Business Machines Corp.

MS-DOS and MS-Windows are registered trademarks of Microsoft Corp.

Motorola-S is a trademark of Motorola, Inc.

SunOS, Sun-3, Sun-4, and OpenWindows are trademarks of Sun
Microsystems, Inc.

Tektronix is a trademark of Tektronix, Inc.

UNIX is a registered trademark of Unix System Laboratories, Inc.

 Contents

ix Contents

Contents

Part I: Hands-On Information

1 Overview of a Code Development and Debugging System 1-1.
Discusses features of the debugger, describes additional software tools, and tells you how to
invoke the debugger.

1.1 Description of the ’C3x C Source Debugger 1-2.
Key features of the debugger 1-3.

1.2 Description of the Profiling Environment 1-5.
Key features of the profiling environment 1-5.

1.3 Developing Code for the ’C3x 1-7.
1.4 Preparing Your Program for Debugging 1-10.
1.5 Invoking the Debugger 1-12.

Selecting the screen size (–b option) 1-13.
Identifying additional directories (–i option) 1-13.
Selecting the operating mode (–mm option) 1-13.
Selecting the device version (–mv option) 1-14.
Identifying the port address (–p option) 1-14.
Entering the profiling environment (–profile option) 1-14.
Loading the symbol table only (–s option) 1-14.
Identifying a new initialization file (–t option) 1-15.
Loading without the symbol table (–v option) 1-15.
Ignoring D_OPTIONS (–x option) 1-15.

1.6 Exiting the Debugger 1-15.
1.7 Debugging ’C3x Programs 1-16.

2 An Introductory Tutorial to the C Source Debugger 2-1.
This chapter provides a step-by-step introduction to the debugger and its features.

How to use this tutorial 2-2.
A note about entering commands 2-2.
An escape route (just in case) 2-3.
Invoke the debugger and load the sample program’s object code 2-3.
Take a look at the display. . . 2-4.
What’s in the DISASSEMBLY window? 2-5.

Contents

x

Select the active window 2-5.
Size the active window 2-7.
Zoom the active window 2-8.
Move the active window 2-9.
Scroll through a window’s contents 2-10.
Display the C source version of the sample file 2-11.
Execute some code 2-11.
Become familiar with the three debugging modes 2-12.
Open another text file, then redisplay a C source file 2-14.
Use the basic RUN command 2-14.
Set some breakpoints 2-15.
Watch some values and single-step through code 2-16.
Run code conditionally 2-18.
WHATIS that? 2-19.
Clear the COMMAND window display area 2-20.
Display the contents of an aggregate data type 2-20.
Display data in another format 2-23.
Change some values 2-25.
Define a memory map 2-26.
Define your own command string 2-27.
Close the debugger 2-27.

Part II: Debugger Description

3 The Debugger Display 3-1.
Describes the default displays, tells you how to switch between assembly language and C
debugging, describes the various types of windows on the display, and tells you how to move
and size the windows.

3.1 Debugging Modes and Default Displays 3-2.
Auto mode 3-2.
Assembly mode 3-3.
Mixed mode 3-4.
Restrictions associated with debugging modes 3-4.

3.2 Descriptions of the Different Kinds of Windows and Their Contents 3-5.
COMMAND window 3-6.
DISASSEMBLY window 3-7.
FILE window 3-8.
CALLS window 3-9.
PROFILE window 3-11.
MEMORY windows 3-12.
CPU window 3-15.
DISP windows 3-16.
WATCH window 3-17.

 Contents

xi Contents

3.3 Cursors 3-18.
3.4 The Active Window 3-19.

Identifying the active window 3-19.
Selecting the active window 3-20.

3.5 Manipulating Windows 3-21.
Resizing a window 3-21.
Zooming a window 3-23.
Moving a window 3-24.

3.6 Manipulating a Window’s Contents 3-26.
Scrolling through a window’s contents 3-26.
Editing the data displayed in windows 3-28.

3.7 Closing a Window 3-29.

4 Entering and Using Commands 4-1.
Describes the rules for entering commands from the command line, tells you how to use the
pulldown menus and dialog boxes (for entering parameter values), describes general
information about entering commands from batch files, and describes the use of DOS-like
system commands.

4.1 Entering Commands From the Command Line 4-2.
How to type in and enter commands 4-3.
Sometimes, you can’t type a command 4-4.
Using the command history 4-5.
Clearing the display area 4-5.
Recording information from the display area 4-6.

4.2 Using the Menu Bar and the Pulldown Menus 4-7.
Pulldown menus in the profiling environment 4-8.
Using the pulldown menus 4-8.
Escaping from the pulldown menus 4-9.
Using menu bar selections that don’t have pulldown menus 4-10.

4.3 Using Dialog Boxes 4-11.
Entering text in a dialog box 4-11.

4.4 Entering Commands From a Batch File 4-12.
Echoing strings in a batch file 4-13.
Controlling command execution in a batch file 4-14.

4.5 Defining Your Own Command Strings 4-17.
4.6 Entering Operating-System Commands (DOS Only) 4-19.

Entering a single command from the debugger command line 4-19.
Entering several commands from a system shell 4-20.
Additional system commands 4-20.

Contents

xii

5 Defining a Memory Map 5-1.
Contains instructions for setting up a memory map that will enable the debugger to correctly
access target memory, includes hints about using batch files, and tells you how to simulate I/O
ports for use with the simulator version of the debugger.

5.1 The Memory Map: What It Is and Why You Must Define It 5-2.
Defining the memory map in a batch file 5-2.
Potential memory map problems 5-3.

5.2 Sample Memory Maps 5-4.
5.3 Identifying Usable Memory Ranges 5-7.

Memory mapping with the simulator 5-8.
5.4 Enabling Memory Mapping 5-9.
5.5 Checking the Memory Map 5-10.
5.6 Modifying the Memory Map During a Debugging Session 5-11.

Returning to the original memory map 5-12.
5.7 Using Multiple Memory Maps for Multiple Target Systems 5-12.
5.8 Simulating Serial Ports (Simulator Only) 5-13.
5.9 Simulating I/O Space (Simulator Only) 5-13.

Connecting an I/O port 5-13.
Configuring memory to use serial port simulation 5-15.
Disconnecting an I/O port 5-15.

5.10 Simulating External Interrupts (SImulator Only) 5-16.
Setting up your input file 5-16.
Programming the simulator 5-18.

6 Loading, Displaying, and Running Code 6-1.
Tells you how to use the three debugger modes to view the type of source files that you’d like
to see, how to load source files and object files, how to run your programs, and how to halt
program execution.

6.1 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both 6-2.
Selecting a debugging mode 6-3.

6.2 Displaying Your Source Programs (or Other Text Files) 6-4.
Displaying assembly language code 6-4.
Modifying assembly language code 6-5.
Additional information about modifying assembly language code 6-7.
Displaying C code 6-8.
Displaying other text files 6-9.

6.3 Loading Object Code 6-10.
Loading code while invoking the debugger 6-10.
Loading code after invoking the debugger 6-10.

6.4 Where the Debugger Looks for Source Files 6-11.

 Contents

xiii Contents

6.5 Running Your Programs 6-12.
Defining the starting point for program execution 6-12.
Running code 6-13.
Single-stepping through code 6-14.
Running code while disconnected from the target 6-16.
Running code conditionally 6-17.

6.6 Halting Program Execution 6-18.
6.7 Benchmarking 6-19.

7 Managing Data 7-1.
Describes the data-display windows and tells you how to edit data (memory contents, register
contents, and individual variables).

7.1 Where Data Is Displayed 7-2.
7.2 Basic Commands for Managing Data 7-2.
7.3 Basic Methods for Changing Data Values 7-4.

Editing data displayed in a window 7-4.
Advanced “editing”—using expressions with side effects 7-5.

7.4 Managing Data in Memory 7-6.
Displaying memory contents 7-6.
Displaying memory contents while you’re debugging C 7-8.
Saving memory values to a file 7-9.
Filling a block of memory 7-9.

7.5 Managing Register Data 7-10.
Displaying register contents 7-10.
Accessing extended-precision registers 7-11.

7.6 Managing Data in a DISP (Display) Window 7-12.
Displaying data in a DISP window 7-12.
Closing a DISP window 7-14.

7.7 Managing Data in a WATCH Window 7-14.
Displaying data in the WATCH window 7-15.
Deleting watched values and closing the WATCH window 7-16.

7.8 Monitoring the Pipeline (Simulator Only) 7-17.
7.9 Displaying Data in Alternative Formats 7-18.

Changing the default format for specific data types 7-18.
Changing the default format with ?, MEM, DISP, and WA 7-20.

8 Using Software Breakpoints 8-1.
Describes the use of software breakpoints to halt code execution.

8.1 Setting a Software Breakpoint 8-2.
8.2 Clearing a Software Breakpoint 8-4.
8.3 Finding the Software Breakpoints That Are Set 8-5.

Contents

xiv

9 Customizing the Debugger Display 9-1.
Contains information about the commands that you can use for customizing the display and
identifies the display areas that you can modify.

9.1 Changing the Colors of the Debugger Display 9-2.
Area names: common display areas 9-3.
Area names: window borders 9-4.
Area names: COMMAND window 9-4.
Area names: DISASSEMBLY and FILE windows 9-5.
Area names: data-display windows 9-6.
Area names: menu bar and pulldown menus 9-7.

9.2 Changing the Border Styles of the Windows 9-8.
9.3 Saving and Using Custom Displays 9-9.

Changing the default display for monochrome monitors 9-9.
Saving a custom display 9-9.
Loading a custom display 9-10.
Invoking the debugger with a custom display 9-11.
Returning to the default display 9-11.

9.4 Changing the Prompt 9-11.

10 Profiling Code Execution 10-1.
Describes the profiling environment and tells you how to collect statistics about code execution.

10.1 An Overview of the Profiling Process 10-2.
A profiling strategy 10-2.

10.2 Entering the Profiling Environment 10-3.
Restrictions of the profiling environment 10-3.
Using pulldown menus in the profiling environment 10-4.

10.3 Defining Areas for Profiling 10-5.
Marking an area 10-5.
Disabling an area 10-7.
Re-enabling a disabled area 10-10.
Unmarking an area 10-11.
Restrictions on profiling areas 10-12.

10.4 Defining a Stopping Point 10-13.
10.5 Running a Profiling Session 10-15.
10.6 Viewing Profile Data 10-17.

Viewing different profile data 10-17.
Data accuracy 10-19.
Sorting profile data 10-19.
Viewing different profile areas 10-19.
Interpreting session data 10-20.
Viewing code associated with a profile area 10-21.

10.7 Saving Profile Data to a File 10-22.

 Contents

xv Contents

Part III: Reference Material

11 Summary of Commands and Special Keys 11-1.
Provides a functional summary of the debugger commands, profiling commands, and function
keys; also provides a complete alphabetical summary of all debugger commands.

11.1 Functional Summary of Debugger Commands 11-2.
Changing modes 11-3.
Managing windows 11-3.
Displaying and changing data 11-3.
Performing system tasks 11-4.
Displaying files and loading programs 11-5.
Managing breakpoints 11-5.
Customizing the screen 11-5.
Memory mapping 11-6.
Running programs 11-7.
Profiling commands 11-8.

11.2 How the Menu Selections Correspond to Commands 11-8.
Program-execution commands 11-9.
File/load commands 11-9.
Breakpoint commands 11-9.
Watch commands 11-9.
Memory commands 11-10.
Screen-configuration commands 11-10.
Mode commands 11-10.
Interrupt-simulation commands 11-10.

11.3 Alphabetical Summary of Debugger Commands 11-11.
11.4 Summary of Profiling Commands 11-48.
11.5 Summary of Special Keys 11-52.

Editing text on the command line 11-52.
Using the command history 11-52.
Switching modes 11-53.
Halting or escaping from an action 11-53.
Displaying pulldown menus 11-53.
Running code 11-54.
Selecting or closing a window 11-54.
Moving or sizing a window 11-54.
Scrolling a window’s contents 11-55.
Editing data or selecting the active field 11-55.

Contents

xvi

12 Basic Information About C Expressions 12-1.
Many of the debugger commands accept C expressions as parameters. This chapter provides
general information about the rules governing C expressions and describes specific
implementation features related to using C expressions as command parameters.

12.1 C Expressions for Assembly Language Programmers 12-2.
12.2 Using Expression Analysis in the Debugger 12-4.

Restrictions 12-4.
Additional features 12-4.

A Specifications for Your Target System’s Connection to the Emulator A-1.
Contains information about constructing a 12-pin connector on your target system and
information about connecting the target system to the emulator.

A.1 Designing Your Target System’s Emulator Connector (12-Pin Header) A-2.
A.2 Buffering Signals Between the Emulator and the Target System A-3.
A.3 Buffer Delays A-4.
A.4 Mechanical Dimensions for the 12-Pin Emulator Connector A-6.

B Constraints When Using the Emulator B-1.
Covers cache control and command constraints when using the debugger with the emulator.

B.1 Cache Interaction With Software Breakpoint Commands B-2.
B.2 Cache Control for Memory Commands B-3.
B.3 Command Constraints B-4.

Software breakpoint constraints B-4.
Single-step constraints with repeated instructions B-5.
Constraints imposed when emulator is reset B-5.

C Troubleshooting When Using the Emulator C-1.
Contains information that is helpful when using the debugger with the emulator.

D What the Debugger Does During Invocation D-1.
In some circumstances, you may find it helpful to know the steps that the debugger goes
through during the invocation process; this appendix lists these steps.

E Debugger Messages E-1.
Describes progress and error messages that the debugger may display.

E.1 Associating Sound With Error Messages E-2.
E.2 Alphabetical Summary of Debugger Messages E-2.
E.3 Additional Instructions for Expression Errors E-20.
E.4 Additional Instructions for Hardware Errors E-20.

F Glossary F-1.
Defines acronyms and key terms used in this book.

 Running Title—Attribute Reference

xvii Contents

Figures

 1–1 The Basic Debugger Display 1-2.
 1–2 The Profiling-Environment Display 1-5.
 1–3 ’C3x Software Development Flow 1-7.
 1–4 Steps You Go Through to Prepare a Program 1-10.
 3–1 Typical Assembly Display (for Auto Mode and Assembly Mode) 3-2.
 3–2 Typical C Display (for Auto Mode Only) 3-3.
 3–3 Typical Mixed Display (for Mixed Mode Only) 3-4.
 3–4 The Default and Additional MEMORY Windows 3-13.
 3–5 Default Appearance of an Active and an Inactive Window 3-19.
 4–1 The COMMAND Window 4-2.
 4–2 The Menu Bar in the Basic Debugger Display 4-7.
 4–3 All of the Pulldown Menus (Basic Debugger Display) 4-7.
 5–1 Sample Memory Map for Use With a ’C3x Simulator 5-4.
 5–2 Sample Memory Map for Use With a ’C3x Application Board / Emulator 5-5.
 5–3 Sample Memory Map for Use With a ’C3x EVM 5-6.
10–1 An Example of the PROFILE Window 10-17.
 A–1 12-Pin Header Signals and Header Dimensions A-2.
 A–2 H3 Buffer Restrictions A-4.
 A–3 Emulator Pod Interface A-5.
 A–4 Pod/Connector Dimensions A-6.
 A–5 12-Pin Connector Dimensions A-7.

Running Title—Attribute Reference

xviii

Tables

 1–1 Summary of Debugger Options 1-12.
 1–2 Screen Size Options 1-13.
 4–1 Predefined Constants for Use With Conditional Commands 4-14.
 7–1 Pipeline Pseudoregisters 7-17.
 7–2 Display Formats for Debugger Data 7-18.
 7–3 Data Types for Displaying Debugger Data 7-19.
 9–1 Colors and Other Attributes for the COLOR and SCOLOR Commands 9-2.
 9–2 Summary of Area Names for the COLOR and SCOLOR Commands 9-3.
10–1 Debugger Commands That Can/Can’t Be Used in the Profiling Environment 10-3.
10–2 Menu Selections for Marking Areas 10-7.
10–3 Menu Selections for Disabling Areas 10-9.
10–4 Menu Selections for Enabling Areas 10-10.
10–5 Menu Selections for Unmarking Areas 10-12.
10–6 Types of Data Shown in the PROFILE Window 10-18.
10–7 Menu Selections for Displaying Areas in the PROFILE Window 10-20.
 11–1 Marking Areas 11-48.
 11–2 Disabling Marked Areas 11-48.
 11–3 Enabling Disabled Areas 11-49.
 11–4 Unmarking Areas 11-50.
 11–5 Changing the PROFILE Window Display 11-51.
 A–1 12-Pin Header Signal Description and Pin Numbers A-2.
 A–2 Maximum Buffer Delays A-4.

 Running Title—Attribute Reference

1-1 Chapter Title—Attribute Reference

Overview of a Code
Development and Debugging System

The TMS320C3x C source debugger is an advanced programmer’s interface
that helps you to develop, test, and refine ’C3x C programs (compiled with the
’C3x optimizing ANSI C compiler) and assembly language programs. The de-
bugger is the interface to the ’C3x simulator, EVM, and unique scan-based,
realtime emulator.

This chapter gives an overview of the programmer’s interface, describes the
’C3x code development environment, and provides instructions and options
for invoking the debugger.

Topic Page

1.1 Description of the ’C3x C Source Debugger 1-2
Key features of the debugger 1-3

1.2 Description of the Profiling Environment 1-5
Key features of the profiling environment 1-5

1.3 Developing Code for the ’C3x 1-7

1.4 Preparing Your Program for Debugging 1-10

1.5 Invoking the Debugger 1-12
Selecting the screen size (–b option) 1-13
Identifying additional directories (–i option) 1-13
Selecting the operating mode (–mm option) 1-13
Selecting the device version (–mv option) 1-14
Identifying the port address (–p option) 1-14
Entering the profiling environment (–profile option) 1-14
Loading the symbol table only (–s option) 1-14
Identifying a new initialization file (–t option) 1-15
Loading without the symbol table (–v option) 1-15
Ignoring D_OPTIONS (–x option) 1-15

1.6 Exiting the Debugger 1-15

1.7 Debugging ’C3x Programs 1-16

Chapter 1

Description of the ’C3x C Source Debugger

 1-2

1.1 Description of the ’C3x C Source Debugger

The ’C3x C source debugger interface improves productivity by allowing you
to debug a program in the language it was written in. You can choose to debug
your programs in C, assembly language, or both. And, unlike many other de-
buggers, the ’C3x debugger’s higher level features are available even when
you’re debugging assembly language code.

The Texas Instruments advanced programmer’s interface is easy to learn and
use. Its friendly window-, mouse-, and menu-oriented interface reduces learn-
ing time and eliminates the need to memorize complex commands. The de-
bugger’s customizable displays and flexible command entry let you develop
a debugging environment that suits your needs—you won’t be locked into a
rigid environment. A shortened learning curve and increased productivity re-
duce the software development cycle, so you’ll get to market faster.

Figure 1–1 identifies several features of the debugger display.

Figure 1–1. The Basic Debugger Display

pulldown
menus DISASSEMBLY

00002d 62f00042 CALL xcall
00002e 19840001 SUBI 1,SP
00002f 6a00000c BU call+30 90xf0003c)
000030 08510b02 LDI *_AR3(2),IR0
000031 02f10003 AND 3,IR0
000032 08282051 LDI @02051H,AR0
000033 04f10003 CMPI 3,IR0
000034 51f10004 LDIHI 4,IR0
000035 08484011 LDI *+AR0(IR0),AR0
000036 68000008 BU AR)
000037 00f00021 ABSI 33,DP
000038 00f00024 ABSI 36,DP
000039 00f0
00003a 00f0
00003b 00f0
00003c 0840
00003d 1520

Break Watch Memory

CALLS

MoDe

2: call()
1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
PC 00f00035
SP 00f0207c
R0 00000001
R1 00f00009
R2 00000007
R3 00000003
R4 00000003
R5 00000000
R6 00000000
R7 00000000
AR0 00f00037
AR1 00000008
AR2 00000000
AR3 00f0207c
AR4 00000000
AR5 00000000
AR6 00000000
AR7 00000000
IR0 00000003
IR1 00000000
ST 00000024
RC 00000000
RS 00f00064
RE 00f00064
DP 000000f0
BK 00000000
IE 00000000
IF 00000000
IOF 00000088

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

FILE: sample.c
00052 }
00053
00054 call(newvalue)
00055 int newvalue;
00056 {
00057 static int value = 0;
00058
00059 switch (newvalue & 3)
00060 {
00061 case 0 : str.a = newvalue ; break;
00062 case 1 : str.b = newvalue + 1; return
00063 case 2 : str.c = newvalue * 2;
00064 case 3 : xcall(newvalue); break;
00065 }
00066

COMMAND

>>>

whatis str

struct xxx str;

step

DISP: astr[7]
a 123
b 555
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: astr[7].f4
[0] 0
[1] 9
[2] 7
[3] 54
[4] 3
[5] 3
[6] 4
[7] 123
[8] 4
[9] 789

MEMORY
f0207c 00f02076
f0207d 00000002
f0207e 00f0002e
f0207f 00f0207c
f02080 d363ae8a
f02081 379d0aaa
f02082 fe3567bb
f02083 9bfa3b3a
f02084 fb6a2e2a
f02085 32bababa
f02086 9cb5a158
f02087 fabe82a8
f02088 8ea99a24
f02089 8644d8a1
f0208a 8ab705b5
f0208b 52b9188c

disassembly
display

C source
display

interactive
command
entry and
history
window

scrolling data
displays with

on-screen,
interactive

editing

function call
traceback

natural-format
data displays

Pin

 Description of the ’C3x C Source Debugger

1-3 Overview of a Code Development and Debugging System

Key features of the debugger

� Multilevel debugging . The debugger allows you to debug both C and as-
sembly language code. If you’re debugging a C program, you can choose
to view just the C source, the disassembly of the object code created from
the C source, or both. You can also use the debugger as an assembly lan-
guage debugger.

� Fully configurable, state-of-the-art, window-oriented interface. The
C source debugger separates code, data, and commands into manage-
able portions. Use any of the default displays. Or, select the windows you
want to display, size them, and move them where you want them.

� Comprehensive data displays. You can easily create windows for dis-
playing and editing the values of variables, arrays, structures, pointers—
any kind of data—in their natural format (float, int, char, enum, or pointer).
You can even display entire linked lists.

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

DISP: str
a 123
b 0
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: *str.f3
a 8327
b 666
c 87213
f1 45
f2 27
f3 0x00f000a
f4 [...]

DISP: *str.f3–>f3
a 75
b 3212
c 782
f1 7
f2 9
f3 0x00f000a
f4 [...]

� On-screen editing. Change any data value displayed in any window—
just point the mouse, click, and type.

� Continuous update. The debugger continuously updates information on
the screen, highlighting changed values.

� Powerful command set. Unlike many other debugging systems, this de-
bugger doesn’t force you to learn a large, intricate command set. The ’C3x
C source debugger supports a small but powerful command set that
makes full use of C expressions. One debugger command performs ac-
tions that would take several commands in another system.

Description of the ’C3x C Source Debugger

 1-4

� Flexible command entry. There are a variety of ways to enter com-
mands. You can type commands or use a mouse, function keys, or the
pulldown menus; choose the method that you like best. Want to re-enter
a command? No need to retype it—simply use the command history.

� Create your own debugger. The debugger display is completely confi-
gurable, allowing you to create the interface that is best suited for your use.

� If you’re using a color display, you can change the colors of any area
on the screen.

� You can change the physical appearance of display features such as
window borders.

� You can interactively set the size and position of windows in the dis-
play.

Create and save as many custom configurations as you like, or use the
defaults. Use the debugger with a color display or a black-and-white dis-
play. A color display is preferable; the various types of information on the
display are easier to distinguish when they are highlighted with color.

� Variety of screen sizes. The debugger’s default configuration is set up
for a typical PC display, with 25 lines by 80 characters. If you use a sophis-
ticated graphics card, you can take advantage of the debugger’s addition-
al screen sizes. A larger screen size allows you to display more informa-
tion and provides you with more screen space for organizing the display—
bringing the benefits of workstation displays to your PC.

� All the standard features you expect in a world-class debugger. The
debugger provides you with complete control over program execution with
features like conditional execution and single-stepping (including single-
stepping into or over function calls). You can set or clear a breakpoint with
a click of the mouse or by typing commands. You can define a memory
map that identifies the portions of target memory that the debugger can
access. You can choose to load only the symbol table portion of an object
file to work with systems that have code in ROM. The debugger can
execute commands from a batch file, providing you with an easy method
for entering often-used command sequences.

 Description of the Profiling Environment

1-5 Overview of a Code Development and Debugging System

1.2 Description of the Profiling Environment

In addition to the basic debugging environment, a second environment—the
profiling environment—is available. The profiling environment provides a
method for collecting execution statistics about specific areas in your code.
This gives you immediate feedback on your application’s performance. The
profiler is not available when you’re running the debugger under DOS.

Figure 1–2 identifies several features of the debugger display within the profil-
ing environment.

Figure 1–2. The Profiling-Environment Display

Load mAp Mark Enable Disable Unmark View Stop–points Profile

DISASSEMBLY
f00001 080b0014 RE> LDI SP,AR3
f00002 02750002 ADDI 2,SP
f00003 0f240000 PUSH R4
f00004 08640000 LDI 0,R4
f00005 15440301 STI R4,*+AR3(1)
f00006 15440302 STI R4,*+AR3(2)
f00007 62f00057 CALL meminit
f00008 08640000 LDI 0,R4
f00009 0f240000 << LDI 0,R4
f0000a 62f00020 PUSH R4

FILE: sample.c
00053 main()
00054 {
00055 register int i = 0;
00056 int j = 0, k = 0;
00057
00058 LE> meminit();
00059 RE> for (i = 0; i < 0x50000;
00060 {
00061 call(i);
00062 if (i & j) j += i;
00063 aai[k][k] = j;
00064 << if (!(i & 0xFFFF))
00065 }
00066 for (;;);

COMMAND

>>>

 65 symbols loaded

Done

file sample.c

PROFILE
 Area Name Count Inclusive Incl–Max Exclusive Excl–Max

AR 00f00001–00f00008 1 65 65 19 19

CL <sample>#58 1 50 50 7 7

CR <sample>#59–64 1 87 87 44 44

CF call() 24 1623 99 1089 55

AL meminit 1 3 3 3 3

AL 00f00059 disabled

PROFILE
window displays
execution
statistics

profiling areas
are clearly

marked

pulldown menu
provides access
to often-used
basic debugger
commands plus
special profiling
commands

profiling areas
are clearly
marked

Key features of the profiling environment

The profiling environment builds on the same easy-to-use interface available
in the basic debugging environment and provides these additional features:

� More efficient code. Within the profiling environment, you can quickly
identify busy sections in your programs. This helps you to direct valuable
development time toward streamlining the sections of code that most dra-
matically affect program performance.

Description of the Profiling Environment

 1-6

� Statistics on multiple areas. You can collect statistics about individual
statements in disassembly or C, about ranges in disassembly or C, and
about C functions. When you are collecting statistics on many areas, you
can choose to view the statistics for all the areas or a subset of the areas.

� Comprehensive display of statistics. The profiler provides all the in-
formation you need for identifying bottlenecks in your code:

� The number of times each area was entered during the profiling ses-
sion.

� The total execution time of an area, including or excluding the execu-
tion time of any subroutines called from within the area.

� The maximum time for one iteration of an area, including or excluding
the execution time of any subroutines called from within the area.

Statistics may be updated continuously during the profiling session or at
selected intervals.

� Configurable display of statistics. Display the entire set of data, or dis-
play one type of data at a time. Display all the areas you’re profiling, or dis-
play a selected subset of the areas.

� Visual representation of statistics. When you choose to display one
type of data at a time, the statistics will be accompanied by histograms for
each area, showing the relationship of each area’s statistics to those of the
other profiled areas.

� Disabled areas. In addition to identifying areas that you can collect statis-
tics on, you can also identify areas that you don’t want to affect the statis-
tics. This removes the timing impact from code such as a standard library
function or a fully optimized portion of code.

� Special profiling commands. The profiling environment supports a rich
set of commands to help you select areas and display information. Some
of the basic debugger commands—such as the memory map com-
mands—may be necessary during profiling and are available within the
profiling environment. Other commands—such as breakpoint commands
and run commands—are not necessary and are therefore not available
within the profiling environment.

 Developing Code for the ’C3x

1-7 Overview of a Code Development and Debugging System

1.3 Developing Code for the ’C3x
The ’C3x is well supported by a complete set of hardware and software devel-
opment tools, including a C compiler, assembler, and linker. Figure 1–3 illus-
trates the ’C3x code development flow. The most common paths of software
development are highlighted in grey; the other portions are optional.

Figure 1–3. ’C3x Software Development Flow

assembler
source

macro
library

library of
object
files

COFF
object
files

debugging
tools

C
source

files

’C3x
target

system

runtime
support
library

C compiler

assembler

linker

executable
COFF

file
hex conversion

utility

hexadecimal
object file

EPROM
programmer

Developing Code for the ’C3x

 1-8

These tools use common object file format (COFF), which encourages modu-
lar programming. COFF allows you to divide your code into logical blocks, de-
fine your system’s memory map, and then link code into specific memory
areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 1–3.

The ’C3x optimizing ANSI C compiler is a full-featured optimizing compiler
that translates standard ANSI C programs into ’C3x assembly language
source. Key characteristics include:

� Standard ANSI C. The ANSI standard is a precise definition of the C lan-
guage, agreed upon by the C community. The standard encompasses
most of the recent extensions to C. To an increasing degree, ANSI confor-
mance is a requirement for C compilers in the DSP community.

� Optimization. The compiler uses several advanced techniques for gener-
ating efficient, compact code from C source.

� Assembly language output . The compiler generates assembly lan-
guage source that you can inspect (and modify, if desired).

� ANSI standard runtime support. The compiler package comes with a
complete runtime library that conforms to the ANSI C library standard. The
library includes functions for string manipulation, dynamic memory alloca-
tion, data conversion, timekeeping, trigonometry, exponential operations,
and hyperbolic functions. Functions for I/O and signal handling are not in-
cluded, because they are application specific.

� Flexible assembly language interface. The compiler has straightfor-
ward calling conventions, allowing you to easily write assembly and C
functions that call each other.

� Shell program. The compiler package includes a shell program that en-
ables you to compile, assemble, and link programs in a single step.

� Source interlist utility. The compiler package includes a utility that
interlists your original C source statements into the assembly language
output of the compiler. This utility provides you with an easy method for
inspecting the assembly code generated for each C statement.

C compiler

 Developing Code for the ’C3x

1-9 Overview of a Code Development and Debugging System

The assembler translates ’C3x assembly language source files into machine
language object files.

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system’s
memory map and to associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module that can
be executed in a ’C3x target system. You can use one of several debugging
tools to refine and correct your code. Available products include:

� A realtime in-circuit emulator ,

� An evaluation module (EVM) , and

� A software simulator.

A hex conversion utility is also available; it converts a COFF object file into
an ASCII-Hex, Intel, Motorola-S, Tektronix, or TI-tagged object-format file that
can be downloaded to an EPROM programmer.

assembler

linker

debugging
tools

hex
conversion

utility

Preparing Your Program for Debugging

 1-10

1.4 Preparing Your Program for Debugging

Figure 1–4 illustrates the steps you must go through to prepare a program for
debugging.

Figure 1–4. Steps You Go Through to Prepare a Program

C Compiler

assembly
language

C
source

object
code

executable
object code

If you’re working with a C
program, start here

If you’re working with an
assembly language
program, start here

This is the file that you load
when you invoke the
debugger

Assembler

Linker

code

If you’re preparing to
debug a C program. . .

1) Compile the program; use the –g option. If you
plan to use the profiler, compile the program with
the –as option.

2) Assemble the resulting assembly language pro-
gram.

3) Link the resulting object file.

This produces an object file that you can load into the
debugger.

If you’re preparing to
debug an assembly
language program. . .

1) Assemble the assembly language source file.

2) Link the resulting object file.

This produces an object file that you can load into the
debugger.

You can compile, assemble, and link a program by invoking the compiler, as-
sembler, and linker in separate steps, or you can perform all three actions in
a single step by using the cl30 shell program. The TMS320 Floating-Point DSP
Assembly Language Tools User’s Guide and TMS320 Floating-Point DSP Op-
timizing C Compiler User’s Guide contain complete instructions for invoking
the tools individually and for using the shell program.

 Preparing Your Program for Debugging

1-11 Overview of a Code Development and Debugging System

For your convenience, here’s the command for invoking the shell program
when preparing a program for debugging:

cl30 [–options] –g [filenames] [–z [link options]]

cl30 is the command that invokes the compiler and assembler.

options affect the way the shell processes input files. If you plan to use
the debugger’s profiling environment, include the –as option.

filenames are one or more C source files, assembly language source files,
or object files. Filenames are not case sensitive.

–g is an option that tells the C compiler to produce symbolic debug-
ging information. When preparing a C program for debugging,
you must use the –g option.

–z is an option that invokes the linker. After compiling/assembling
your programs, you can invoke the linker in a separate step. If
you want the shell to automatically invoke the linker, however,
use –z.

link options affect the way the linker processes input files; use these options
only when you use –z.

Options and filenames can be specified in any order on the command line, but
if you use –z, it must follow all C/assembly language source filenames and
compiler options.

The shell identifies a file’s type by the filename’s extension.

Extension File Type File Description

.c C source compiled, assembled,
and linked

.asm assembly language
source

assembled and linked

.s* (any extension that
begins with s)

assembly language
source

assembled and linked

.o* (extension begins
with o)

object file linked

none (.c assumed) C source compiled, assembled,
and linked

Invoking the Debugger

 1-12

1.5 Invoking the Debugger

Here’s the basic format for the commands that invoke the debugger:

emulator: emu3x [filename] [–options]
EVM: evm30 [filename] [–options]
simulator: sim3x [filename] [–options]

emu3x, evm30
sim3x are the commands that invoke the debugger.

filename is an optional parameter that names an object file that the de-
bugger will load into memory during invocation. The debug-
ger looks for the file in the current directory; if the file isn’t in the
current directory, you must supply the entire pathname. If you
don’t supply an extension for the filename, the debugger as-
sumes that the extension is .out, unless you’re using multiple
extensions; you must specify the entire filename if the file-
name has more than one extension.

–options supply the debugger with additional information (Table 1–1
summarizes the available options).

You can also specify filename and option information with the D_OPTIONS en-
vironment variable (see Setting up the environment variables in the appropri-
ate installation guide). Table 1–1 lists the debugger options and specifies
which debugger tools use the options; the subsections following the table de-
scribe the options.

Table 1–1.Summary of Debugger Options

Option Brief description Debugger Tools

–b[b] Select the screen size All

–i pathname Identify additional directories All

–mmmode Select the operating mode Simulator

–mvversion Select the device version Simulator

–p port address Identify the port address EVM and emulator

–profile Enter the profiling environment All, except when running
under DOS

–s Load the symbol table only All

–t filename Identify a new initialization file All

–v Load without the symbol table All

–x Ignore D_OPTIONS All

 Invoking the Debugger

1-13 Overview of a Code Development and Debugging System

Selecting the screen size (–b option)

By default, the debugger uses an 80-character-by-25-line screen. You can use
one of the options in Table 1–2 to specify a different screen size. On Sun sys-
tems, you can resize the screen at runtime also.

Table 1–2.Screen Size Options

Option Description Display

none 80 characters by 25 lines Default display

–b 80 characters by 43 lines Any EGA or VGA display

–bb 80 characters by 50 lines VGA only

Note:

On Sun systems, the maximum size of the debugger screen is 132 charac-
ters by 60 lines.

Identifying additional directories (–i option)

The –i option identifies additional directories that contain your source files. Re-
place pathname with an appropriate directory name. You can specify several
pathnames; use the –i option as many times as necessary. For example:

emu3x –i pathname1 –i pathname2 –i pathname3 . . .

Using –i is similar to using the D_SRC environment variable (see Setting up
the environment variables in the appropriate installation guide). If you name
directories with both –i and D_SRC, the debugger first searches through direc-
tories named with –i. The debugger can track a cumulative total of 20 paths
(including paths specified with –i, D_SRC, and the debugger USE command).

Selecting the operating mode (–mm option)

The –mm option is valid only when you are using the simulator. The –mm op-
tion tells the simulator to operate in either the microprocessor or microcomput-
er mode:

–mm0 tells the simulator to operate in the microprocessor mode.
–mm1 tells the simulator to operate in the microcomputer mode (default).

If you don’t use the –mm option, the simulator operates in the microcomputer
mode.

Invoking the Debugger

 1-14

Selecting the device version (–mv option)

The –mv option is valid only when you are using the simulator. The –mv option
tells the simulator to simulate the ’C30 or the ’C31 memory map:

–mv30 tells the simulator to simulate the ’C30 memory map (default).
–mv31 tells the simulator to simulate the ’C31 memory map.

If you don’t use the –mv option, the simulator simulates the ’C30 memory map.

Identifying the port address (–p option)

The –p option is valid only when you are using the EVM or emulator. The –p
option identifies the I/O port address that the debugger uses for communicat-
ing with the emulator or EVM. If you used the default switch settings, you don’t
need to use the –p option. If you used nondefault switch settings, you must
use –p . Refer to your entries in the Your Settings table in the appropriate instal-
lation guide; depending on your switch settings, replace port address with one
of these values:

Switch 1 Switch 2 Option

on on –p 240 (optional)

on off –p 280

off on –p 320

off off –p 340

If you didn’t note the I/O switch settings, you can use a trial-and-error approach
to find the correct –p setting. If you use the wrong setting, you will see an error
message when you invoke the debugger. (See the appropriate installation
guide for more information.)

Entering the profiling environment (–profile option)

This option is not valid when you’re running the debugger under DOS. The –
profile option allows you to bring up the debugger in a profiling environment
so that you can collect statistics about code execution. Note that only a subset
of the basic debugger features is available in the profiling environment.

Loading the symbol table only (–s option)

If you supply a filename when you invoke the debugger, you can use the –s
option to tell the debugger to load only the file’s symbol table (without the file’s
object code). This is similar to loading a file by using the debugger’s SLOAD
command.

 Invoking the Debugger / Exiting the Debugger

1-15 Overview of a Code Development and Debugging System

Identifying a new initialization file (–t option)

The –t option allows you to specify an initialization command file that will be
used instead of init.cmd. The format for this option is:

–t filename

Loading without the symbol table (–v option)

The –v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory space.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger
environment.

Ignoring D_OPTIONS (–x option)

The –x option tells the debugger to ignore any information supplied with D_OP-
TIONS. For more information about D_OPTIONS, refer to the appropriate
installation guide.

1.6 Exiting the Debugger

To exit any version of the debugger and return to the operating system, enter
this command:

quit

You don’t need to worry about where the cursor is or which window is ac-
tive—just type. If a program is running, press ESC to halt program execution
before you quit the debugger.

If you are running the debugger under MS-Windows, you can also exit the de-
bugger by selecting the exit option from the MS-Windows menu bar.

Debugging ’C3x Programs

 1-16

1.7 Debugging ’C3x Programs
Debugging a program is a multiple-step process. These steps are described
below, with references to parts of this book that will help you accomplish each
step.

Once you have decided what changes must be made to your
program, exit the debugger, edit your source file, and return to
Step 1.

If you find minor problems in
your code, you can temporari-
ly solve them with patch as-
sembly.

See Modifying assembly lan-
guage code on page 6-5.

Step 6

Step 7

Prepare a C program or as-
sembly language program for
debugging.

See Section 1.4, Preparing
Your Program for Debug-
ging, page 1-10.

Step 1

Ensure that the debugger has
a valid memory map.

See Chapter 5, Defining a
Memory Map.

Load the program’s object file. See Section 6.3, Loading
Object Code, page 6-10.

Run the loaded file. You can run
the entire program, run parts of
the program, or single-step
through the program.

See Running Your Programs
on page 6-12.

Stop the program at critical
points and examine important
information.

See Chapter 8, Using
Software Breakpoints, and
Chapter 7, Managing Data.

Step 2

Step 3

Step 4

Step 5

2-1 An Introductory Tutorial to the C Source Debugger

An Introductory Tutorial
to the C Source Debugger

This chapter provides a step-by-step, hands-on demonstration of the ’C3x C
source debugger’s basic features. This is not the kind of tutorial that you can
take home to read—it is effective only if you’re sitting at your terminal, perform-
ing the lessons in the order that they’re presented. The tutorial contains two
sets of lessons (11 in the first, 13 in the second) and takes about one hour to
complete.

Topic Page

How to use this tutorial 2-2
A note about entering commands 2-2
An escape route (just in case) 2-3
Invoke the debugger and load the sample program’s object code 2-3
Take a look at the display... 2-4
What’s in the DISASSEMBLY window? 2-5
Select the active window 2-5
Size the active window 2-7
Zoom the active window 2-8
Move the active window 2-9
Scroll through a window’s contents 2-10
Display the C source version of the sample file 2-11
Execute some code 2-11
Become familiar with the three debugging modes 2-12
Open another text file, then redisplay a C source file 2-14
Use the basic RUN command 2-14
Set some breakpoints 2-15
Watch some values and single-step through code 2-16
Run code conditionally 2-18
WHATIS that? 2-19
Clear the COMMAND window display area 2-20
Display the contents of an aggregate data type 2-20
Display data in another format 2-23
Change some values 2-25
Define a memory map 2-26
Define your own command string 2-27
Close the debugger 2-27

Chapter 2

How to Use This Tutorial / A Note About Entering Commands

 2-2

How to use this tutorial

This tutorial contains three basic types of information:

Primary actions Primary actions identify the main lessons in the
tutorial; they’re boxed so that you can find them
easily. A primary action looks like this:

Make the CPU window the active window:

win CPU

Important information In addition to primary actions, important in-
formation ensures that the tutorial works cor-
rectly. Important information is marked like this:

Important! The CPU window should still be
active from the previous step.

Alternative actions Alternative actions show additional methods for
performing the primary actions. Alternative ac-
tions are marked like this:

Try This: Another way to display the current
code in MEMORY is to show memory begin-
ning from the current PC. . .

Important! This tutorial assumes that you have correctly and completely
installed your debugger (including invoking any files or DOS commands as
instructed in the installation guide).

A note about entering commands

Whenever this tutorial tells you to type a debugger command, just type—the
debugger automatically places the text on the command line. You don’t have
to worry about moving the cursor to the command line; the debugger takes
care of this for you. (There are a few instances when this isn’t true—for exam-
ple, when you’re editing data in the CPU or MEMORY window—but this is ex-
plained later in the tutorial.)

Also, you don’t have to worry about typing commands in uppercase or lower-
case—either is fine. There are a few instances when a command’s parameters
must be entered in uppercase, and the tutorial points this out.

 An Escape Route / Invoke the Debugger and Load the Sample Program’s Object Code

2-3 An Introductory Tutorial to the C Source Debugger

An escape route (just in case)

The steps in this tutorial create a path for you to follow. The tutorial won’t pur-
posely lead you off the path. But sometimes when people use new products,
they accidently press the wrong key, push the wrong mouse button, or mistype
a command. Suddenly, they’re off the path without any idea of where they are
or how they got there.

This probably won’t happen to you. But, if it does, you can almost always get
back to familiar ground by pressing ESC . If you were running a program when
you pressed ESC , you should also type RESTART . Then go back to the
beginning of whatever lesson you were in and try again.

Invoke the debugger and load the sample program’s object code

Included with the debugger is a demonstration program named sample. This
lesson shows you how to invoke the debugger and load the sample program.
You will use the –b option so that the debugger uses a larger display.

Note:

The –b option is not supported with the VAX/VMS version of the simulator.

Important! When using the emulator or EVM, this step assumes that you are
using the default I/O address or that you have identified the I/O address with
the D_OPTIONS environment variable (as described in the individual installa-
tion guides).

Invoke the debugger and load the sample program:

For the emulator , enter:

emu3x –b c:\c3xhll\sample

For the EVM, enter:

evm30 –b c:\c3xhll\sample

For the simulator , enter:

sim3x –b c:\sim3x\sample

Take a Look at the Display

 2-4

Take a look at the display. . .

Now you should see a display similar to this. The code should be the same on
your screen, but your window sizes may vary.

CPU

Load Break Watch Memory

DISASSEMBLY

MEMORYCOMMAND

>>>

Copyright (c) 1989, 1993 Texas In

TMS320C3x

Simulator Version 2.01

Loading sample.out

Done

MoDe Run=F5 Step=F8 Next=F10Colormenu bar with
pulldown menus

reverse assembly
of memory contents

register contents

memory contents

COMMAND window
display area

command line

current PC
(highlighted)

PC 0080985e
SP 00000755
R0 00000003
R1 00000005
R2 00000007
R3 00000000
R4 00000000
R5 00000000
R6 00000000
R7 00000000
AR0 00001802
AR1 00000000
AR2 00000000
AR3 00000000
AR4 00000000
AR5 00000000
AR6 00000000
AR7 00000000
IR0 00000000
IR1 00000000
ST 00000000
RC 00000000

 000000
 000004
 000008
 00000c
 000010
 000014
 000018
 00001c
 000020

0000004b
00000043
00000047
00000000
00000000
00000000
00000000
00000000
00000000

00000040
00000044
00000048
00000000
00000000
00000000
00000000
00000000
00000000

00000041
00000045
00000049
00000000
00000000
00000000
00000000
00000000
00000000

00000042
00000046
0000004a
00000000
00000000
00000000
00000000
00000000
00000000

80985d 00809938 ABS1 IOF,R0
80985e 08750000 c_int00: LDI 0,ST
80985f 50700080 LDIU 128,DP
809860 0834985c LDI &0f0985cH, SP
809861 080b0014 LDI SP,AR3
809862 50700080 LDIU 128,DP
809863 0828985d LDI &0f0985dH,AR0
809864 04e8ffff CMPI –1,AR0
809865 6a05000d BZ 0809873H
809866 08402001 LDI *AR0++(1),R0
809867 6a250009 BZD 0809873H
809868 081b0000 LDI R0,RC
809869 08492001 LDI *AR0++(1),AR1
80986a 08402001 LDI *AR0++(1),R0
80986b 187b0001 SUBI 1,RC
80986c 6480986d RPTB 080986dH
80986d da002120 LDI *AR0++(1),R0 || STI R0,*AR
80986e 04e00000 CMPI 0,R0
80986f 6a26fff9 BNZD 080986bH
809870 081b0000 LDI R0,RC
809871 08492001 LDI *AR0++(1),AR1
809872 08402001 LDI *AR0++(1),R0

Pin

� If you don’t see a display, then your debugger or board may not be
installed properly. Go back through the installation instructions and be
sure that you followed each step correctly; then reinvoke the debugger.

� If you do see a display, check the first few lines of the DISASSEMBLY win-
dow. If these lines aren’t the same—if, for example, they show ADD
instructions or say Invalid address—then enter the following commands
on the debugger command line. (Just type; you don’t have to worry about
where the cursor is.)

1) Reset the ’C3x processor:

reset

2) Load the sample program again:

load c:\c3xhll\sample (emulator and EVM)

load c:\sim3x\sample (simulator)

� After reset, if you see a display and the first few lines of the DISASSEMBLY
window still show ADD instructions or say Invalid address, your EVM or
emulator board may not be installed snugly. Check your board to see if it
is correctly installed, and re-enter the commands above.

 What’s in the DISASSEMBLY Window? / Select the Active Window

2-5 An Introductory Tutorial to the C Source Debugger

What’s in the DISASSEMBLY window?

The DISASSEMBLY window always shows the reverse assembly of memory
contents; in this case, it shows an assembly language version of sample.out.
The MEMORY window displays the current contents of memory. Because you
loaded the object file sample.out when you invoked the debugger, memory
contains the object code version of the sample file.

This tutorial step demonstrates that the code shown in the DISASSEMBLY
window corresponds to memory contents. Initially, memory is displayed start-
ing at address 0; if you look at the first line of the DISASSEMBLY window, you’ll
see that its display starts at address 0x0080 985d.

Modify the MEMORY display to show the same object code that is dis-
played in the DISASSEMBLY window:

mem 0x80985d

Notice that the first column in the DISASSEMBLY window corresponds to the
addresses in the MEMORY window; the second column in the DISASSEMBLY
window corresponds to the memory contents displayed in the MEMORY win-
dow.

Try This: The highlighted statement in the DISASSEMBLY window shows
that the PC is currently pointing to address 0x0080 985e. You can modify the
MEMORY display to show memory beginning from the current PC:

mem PC

Select the active window

This lesson shows you how to make a window the active window. You can
move and resize any window; you can close some windows. Whenever you
type a command or press a function key to move, resize, or close a window,
the debugger must have some method of understanding which window you
want to affect. The debugger does this by designating one window at a time
to be the active window. Any window can be the active window, but only one
window at a time can be active.

lesson continues on the next page →

Select the Active Window

 2-6

Make the CPU window the active window:

win CPU

Important! Notice the appearance of the CPU window (especially its bor-
ders) in contrast to the other, inactive windows. This is how you can tell which
window is active.

Important! If you don’t see a change in the appearance of the CPU window,
look at the way you entered the command. Did you enter CPU in uppercase
letters? For this command, it’s important that you enter the parameter in upper-
case, as shown.

Try This: Press the F6 key to “cycle” through the windows in the display,
making each one active in turn. Press F6 as many times as necessary until
the CPU window becomes the active window.

Try This: You can also use the mouse to make a window active:

1) Point to any location on the window’s border.

2) Click the left mouse button.

Be careful! If you point inside the window, the window becomes active when
you press the mouse button, but something else may happen as well:

� If you’re pointing inside the CPU window, then the register you’re pointing
at becomes active. The debugger then treats the text you type as a new
value for that register. Similarly, if you’re pointing inside the MEMORY win-
dow, the address you’re pointing at becomes active.

Press ESC to get out of this.

� If you’re pointing inside the DISASSEMBLY or FILE window, you’ll set a
breakpoint on the statement that you were pointing to.

To delete the breakpoint, point to the same statement and press the
mouse button again.

 Size the Active Window

2-7 An Introductory Tutorial to the C Source Debugger

Size the active window

This lesson shows you how to resize the active window.

Important! The CPU window should still be active from the previous step.

Make the CPU window as small as possible:

size 4,3

This tells the debugger to make the window 4 characters by 3 lines, which is
the smallest a window can be. (If it were any smaller, the debugger wouldn’t
be able to display all four corners of the window.) If you try to enter smaller val-
ues, the debugger will warn you that you’ve entered an Invalid window size.
The maximum width and length depend on which screen-size option you used
when you invoked the debugger.

Make the CPU window larger:

size Enter the SIZE command without parameters

Make the window 3 lines longer

Make the window 4 characters wider

Press this key when you finish sizing the window

You can use ↑ to make the window shorter and ← to make the window nar-
rower.

Try This: You can use the mouse to resize the window (note that this process
forces the selected window to become the active window).

1) If you examine any window, you’ll see a highlighted, backwards “L” in the
lower right corner. Point to the lower right corner of the CPU window.

2) Press the left mouse button, but don’t release it; move the mouse while
you’re holding in the button. This resizes the window.

3) Release the mouse button when the window reaches the desired size.

Zoom the Active Window

 2-8

Zoom the active window

Another way to resize the active window is to zoom it. Zooming the window
makes it as large as possible.

Important! The CPU window should still be active from the previous steps.

Make the active window as large as possible:

zoom

The window should now be as large as possible, taking up the entire display
(except for the menu bar) and hiding all the other windows.

“Unzoom” or return the window to its previous size by entering the ZOOM
command again:

zoom The ZOOMcommand will be recognized,
even though the COMMAND window is hidden

by the CPU window.

The window should now be back to the size it was before zooming.

Try This: You can use the mouse to zoom the window.

Zoom the active window:

1) Point to the upper left corner of the active window.

2) Click the left mouse button.

Return the window to its previous size by repeating these steps.

 Move the Active Window

2-9 An Introductory Tutorial to the C Source Debugger

Move the active window

This lesson shows you how to move the active window.

Important! The CPU window should still be active from the previous steps.

Move the CPU window to the upper left portion of the screen:

move 0,1 The debugger doesn’t let you move the window
to the very top—that would hide the menu bar

The MOVE command’s first parameter identifies the window’s new X position
on the screen. The second parameter identifies the window’s new Y position
on the screen. The maximum X and Y positions depend on which screen-size
option you used when you invoked the debugger and on the position of the win-
dow before you tried to move it.

Try This: You can use the MOVE command with no parameters and then use
arrow keys to move the window:

move
→ → → → Press → until the CPU window is back where it was

(it may seem like only the border is moving—this is normal)
ESC Press ESC when you finish moving the window

You can also use ↑ to move the window up, ↓ to move the window down,
and ← to move the window left.

Try This: You can use the mouse to move the window (note that this process
forces the selected window to become the active window).

1) Point to the top edge or left edge of the window border.

2) Press the left mouse button, but don’t release the button; move the mouse
while you’re holding in the button.

3) Release the mouse button when the window reaches the desired position.

Scroll Through a Window’s Contents

 2-10

Scroll through a window’s contents

Many of the windows contain more information than can possibly be displayed
at one time. You can view hidden information by moving through a window’s
contents. The easiest way to do this is to use the mouse to scroll the display
up or down.

If you examine most windows, you’ll see an up arrow near the top of the right
border and a down arrow near the bottom of the right border. These are scroll
arrows.

Scroll through the contents of the DISASSEMBLY window:

1) Point to the up or down scroll arrow.

2) Press the left mouse button; continue pressing it until the dis-
play has scrolled several lines.

3) Release the button.

Try This: You can use several of the keys to modify the display in the active
window.

Make the MEMORY window the active window:

win MEMORY

Now try pressing these keys; observe their effects on the window’s contents.

↓ ↑ PAGE DOWN PAGE UP

These keys don’t work the same for all windows; Section 11.5 (page 11-52)
summarizes the functions of all the special keys, key sequences, and how they
affect different windows.

 Display the C Source Version of the Sample File / Execute Some Code

2-11 An Introductory Tutorial to the C Source Debugger

Display the C source version of the sample file

Now that you can find your way around the debugger interface, you can be-
come familiar with some of the debugger’s more significant features. It’s time
to load some C code.

Display the contents of a C source file:

file sample.c

This opens a FILE window that displays the contents of the file sample.c
(sample.c was one of the files that contributed to making the sample object
file). You can always tell which file you’re displaying by the label in the FILE
window. Right now, the label should say FILE: sample.c.

Execute some code

Let’s run some code—not the whole program, just a portion of it.

Execute a portion of the sample program:

go main

You’ve just executed your program up to the point where main() is declared.
Notice how the display has changed:

� The current PC is highlighted in both the DISASSEMBLY and FILE win-
dows.

� The addresses and object codes of four statements in the DISASSEMBLY
window are highlighted; this is because these statements are associated
with the current C statement (line 33 in the FILE window).

� The CALLS window, which tracks functions as they’re called, now points
to main().

� The values of the PC and SP (and possibly some additional registers) are
highlighted in the CPU window because they were changed by program
execution.

Become Familiar With the Three Debugging Modes

 2-12

Become familiar with the three debugging modes

The debugger has three basic debugging modes:

� Mixed mode shows both disassembly and C at the same time.

� Auto mode shows disassembly or C, depending on what part of your pro-
gram happens to be running.

� Assembly mode shows only the disassembly, no C, even if you’re
executing C code.

When you opened the FILE window in a previous step, the debugger switched
to mixed mode; you should be in mixed mode now. (You can tell that you’re in
mixed mode if both the FILE and DISASSEMBLY windows are displayed.)

The following steps show you how to switch debugging modes.

Use the MoDe menu to select assembly mode:

1) Look at the top of the display: the first line shows a row of pull-
down menu selections.

2) Point to the word MoDe on the menu bar.

3) Press the left mouse button, but don’t release it; drag the
mouse downward until Asm (the second entry) is highlighted.

4) Release the button.

This switches to assembly mode. You should see the DISASSEMBLY window,
but not the FILE window.

Switch to auto mode:

1) Press . This displays and freezes the MoDe menu.

2) Now select C(auto). To do so, choose one of these methods:

Press the arrow keys to move up/down through the menu; when
C(auto) is highlighted, press .

Type C.

Point the mouse cursor at C(auto), then click the left mouse but-
ton.

 Become Familiar With the Three Debugging Modes

2-13 An Introductory Tutorial to the C Source Debugger

You should be in auto mode now, and you should see the FILE window but not
the DISASSEMBLY window (because you’re program is in C code). Auto
mode automatically switches between an assembly and a C display, depend-
ing on where you are in your program. Here’s a demonstration of that:

Run to a point in your program that executes assembly language code:

go meminit

You’re still in auto mode, but you should now see the DISASSEMBLY window.
The current PC should be at the statement that defines the meminit label.

Try This: You can also switch modes by typing one of these commands:

asm switches to assembly-only mode

c switches to auto mode

mix switches to mixed mode

Switch back to mixed mode before continuing:

mix

You’ve finished the first half of the tutorial and the
first set of lessons.

If you want to close the debugger, just type QUIT . When you come back,
reinvoke the debugger and load the sample program (page 2-3). Then turn
to page 2-14 and continue with the second set of lessons.

Open Another Text File, Then Redisplay a C Source File / Use the Basic RUN Command

 2-14

Open another text file, then redisplay a C source file

In addition to what you already know about the FILE window and the FILE com-
mand, you should also know that:

� You can display any text file in the FILE window.

� If you enter any command that requires the debugger to display a C source
file, it automatically displays that code in the FILE window (regardless of
whether the window is open or not and regardless of what is already dis-
played in the FILE window).

Display a file that isn’t a C source file:

file ..\autoexec.bat

This replaces sample.c in the FILE window with your autoexec.

Remember, you can tell which file you’re displaying by the label in the FILE
window. Right now, the label should say FILE: autoexec.bat.

Redisplay another C source file (sample.c):

func call

Now the FILE window label should say FILE: sample.c because the call() func-
tion is in sample.c.

Use the basic RUN command

The debugger provides you with several ways of running code, but it has one
basic run command.

Run your entire program:

run

Entered this way, the command basically means “run forever”. You may not
have that much time!

This isn’t very exciting: halt program execution:

 Set Some Breakpoints

2-15 An Introductory Tutorial to the C Source Debugger

Set some breakpoints

When you halted execution in the previous step, you should have seen
changes in the display similar to the changes you saw when you entered go
main earlier in the tutorial. When you pressed ESC , you had little control over
where the program stopped. Knowing that information changed was nice, but
what part of the program affected the information?

This information would be much more useful if you picked an explicit stopping
point before running the program. Then, when the information changed, you’d
have a better understanding of what caused the changes. You can stop pro-
gram execution in this way by setting software breakpoints.

Here’s an example of one of the debugger’s informative capabilities. In this ex-
ample, you’re going to benchmark some code; this means that you’ll ask the
debugger to count the number of CPU clock cycles that are consumed by a
certain portion of code.

Important! This lesson assumes that you’re displaying the contents of
sample.c in the FILE window. If you aren’t, enter:

file sample.c

Benchmark some code:

1) Scroll to line 38 in the FILE window (the meminit() statement) and set
a breakpoint at that line:

a) Point the mouse cursor at the statement on line 38.

b) Click the left mouse button. Notice how the line is highlighted;
this identifies a breakpointed statement.

2) Set another breakpoint at line 46 (the for (;;); statement).

3) Reset the program entry point:

restart

4) Enter the run command:

run This runs to the first breakpoint

lesson continues on the next page →

Set Some Breakpoints / Watch Some Values and Single-Step Through Code

 2-16

5) Enter the runb command:

runb This runs to the second breakpoint

6) Now use the ? command to examine the contents of the CLK pseudo-
register:

? clk

The debugger now shows a number in the display area; this is the number of
CPU clock cycles consumed by the portion of code between the two break-
pointed C statements.

Important! The value in the CLK pseudoregister is valid only when you
execute the RUNB command and when that execution is halted on break-
pointed statements.

Delete both software breakpoints:

br The BR (breakpoint reset) command deletes
all breakpoints that were set

Watch some values and single-step through code

Now you know how to update the display without running your entire program;
you can set breakpoints to obtain information at specific points in your pro-
gram. But what if you want to update the display after each statement? No, you
don’t have to set a breakpoint at every statement—you can use single-step
execution.

Set up for the single-step example:

restart
go main

The debugger has another type of window called a WATCH window that’s very
useful in combination with single-step execution. What’s a WATCH window
for? Suppose you are interested in only a few specific register values, not all
of the registers shown in the CPU window. Or suppose you are interested in
a particular memory location or in the value of some variable. You can observe
these data items in a WATCH window.

 Watch Some Values and Single-Step Through Code

2-17 An Introductory Tutorial to the C Source Debugger

Set up the WATCH window before you start the single-step execution.

Open a WATCH window:

wa sp
wa pc, Program Counter
wa *0x80981f, Call:
wa i

You may have noticed that the WA (watch add) command can have one or two
parameters. The first parameter is the item that you’re watching. The second
parameter is an optional label.

If the WATCH window isn’t wide enough to display the PC value, resize the win-
dow.

Now try out the single-step commands. Hint: Watch the PC in the FILE and
DISASSEMBLY windows; watch the value of i in the WATCH window.

Single-step through the sample program:

step 50

Observe the FILE, DISASSEMBLY, and WATCH windows.

Try This: Notice that the step command single-stepped each assembly lan-
guage statement (in fact, you single-stepped through 50 assembly language
statements). Did you also notice that the FILE window displayed the source
for the call() function when it was called? The debugger supports more single-
step commands that have a slightly different flavor.

� For example, if you enter:

cstep 50

you’ll single-step 50 C statements, not assembly language statements
(notice how the PC “jumps” in the DISASSEMBLY window).

� Reset the program entry point and run to main().

restart
go main

Now enter the NEXT command, as shown below. You’ll be single-stepping
50 assembly language statements, but the FILE window doesn’t display
the source for the call() function when call() is executed.

next 50

(There’s also a CNEXT command that “nexts” in terms of C statements.)

Run Code Conditionally

 2-18

Run code conditionally

Try executing this loop one more time. Take a look at this code; it’s doing a lot
of work with a variable named i. You may want to check the value of i at specific
points instead of after each statement. To do this, you set software breakpoints
at the statements you’re interested in and then initiate a conditional run.

First, clear out the WATCH window so that you won’t be distracted by any su-
perfluous data items.

Delete the first three data items from the WATCH window (don’t watch
them anymore).

wd 3
wd 2
wd 1

The variable i was the fourth item added to the WATCH window in the previous
tutorial step, and it should now be the only remaining item in the window. (The
sample program declares two variables named i: one is a global variable, and
the other is local to main(). Because you executed code and are now in main()
as a result of the previous step, you’re watching the i variable that’s local to
main ().

Set up for the conditional run examples:

1) Set software breakpoints at lines 38 and 44.

2) Set up for conditional run example:

restart

run

3) Initiate the conditional run:

run i<10

This causes the debugger to run through the loop as long as the value of i is
less than 10. Each time the debugger encounters the breakpoints in the loop,
it updates the value of i in the WATCH window.

 Run Code Conditionally / WHATIS That?

2-19 An Introductory Tutorial to the C Source Debugger

When the conditional run completes, close the WATCH window.

Close the WATCH window:

wr

WHATIS that?

At some point, you might like to obtain some information about the types of
data in your C program. Maybe things won’t be working quite the way you’d
planned, and you’ll find yourself saying something like “... but isn’t that sup-
posed to point to an integer?” Here’s how you can check on this kind of in-
formation: be sure to watch the COMMAND window display area as you enter
these commands.

Use the WHATIS command to find the types of some of the variables de-
clared in the sample program:

whatis genum
enum yyy genum; genum is an enumerated type

whatis tiny6
struct { tiny6 is a structure

int u;

int v;

int x;

int y;

int z;

} tiny6;

whatis call
int call(); call is a function that returns an integer

whatis s
short s; s is a short unsigned integer

whatis zzz
struct zzz { zzz is a very long structure

int b1;

int b2;

Press to halt long listings

Clear the COMMAND Window Display Area / Display the Contents of an Aggregate Data Type

 2-20

Clear the COMMAND window display area

After displaying all of these types, you may want to clear them away. This is
easy to do.

Clear the COMMAND window display area:

cls

Try This: CLS isn’t the only system-type command that the debugger sup-
ports.

cd .. Change back to the main directory
dir Show a listing of the current directory
cd c3xhll or cd sim3x Change back to the debugger directory

Display the contents of an aggregate data type

The WATCH window is convenient for watching single, or scalar, values. When
you’re debugging a C program, though, you may need to observe values that
aren’t scalar; for example, you might need to observe the effects of program
execution on an array. The debugger provides another type of window called
a DISP window, where you can display the individual members of an array or
structure.

Show a structure in a DISP window:

disp small

Close the DISP window:

Show another structure in a DISP window:

disp big1

 Display the Contents of an Aggregate Data Type

2-21 An Introductory Tutorial to the C Source Debugger

Now you should see a display like the one below. The newly opened DISP win-
dow becomes the active window. Like the FILE window, you can always tell
what’s being displayed because of the way the DISP window is labeled. Right
now, it should say DISP: big1.

DISP: big1
b1 0
b2 0
b3 0
b4 0
b5 0
q1 [...]
q2 {...}
q3 0x0000

(Note that the values displayed in this diagram may be different from what you
see on the screen.)

� Members b1, b2, b3, b4, and b5 are ints; you can tell because they’re dis-
played as integers (shown as plain numbers without prefixes).

� Member q1 is an array; you can tell because q1 shows [. . .] instead of a
value.

� Member q2 is another structure; you can tell because q2 shows {. . .}
instead of a value.

� Member q3 is a pointer; you can tell because it is displayed as a hexadeci-
mal address (indicated by a 0x prefix) instead of an integer value.

If a member of a structure or an array is itself a structure or an array, or even
a pointer, you can display its members (or the data it points to) in additional
DISP windows (referred to as the original DISP window’s children).

Display what q3 is pointing to:

1) Point at the address displayed next to the q3 label in big1’s
display.

2) Click the left mouse button.

This opens a second DISP window, named big1.q3, that shows what q3 is
pointing to (it’s pointing to another structure). Close this DISP window or move
it out of the way.

lesson continues on the next page →

Display the Contents of an Aggregate Data Type

 2-22

Display array q1 in another DISP window:

1) Point at the [. . .] displayed next to the q1 label in big1’s dis-
play.

2) Click the left mouse button.

This opens another DISP window labeled DISP: big1.q1.

Important! q1 is actually a two-member array of structures. To view the two
different structures, use CONTROL PAGE DOWN and CONTROL PAGE UP . (Look at
the name of this DISP window when you’re switching.)

Try This: Display structure q2 in another DISP window.

1) Close the additional DISP windows or move them out of the way so that
you can clearly see the original DISP window that you opened to display
big1.

2) Make big1’s DISP window the active window.

↓ ↑ 3) Use these arrow keys to move the field cursor (_) through the list of big1’s
members until the cursor points to q2.

F9 4) Now press F9 .

Close all of the DISP windows:

1) Make big1’s DISP window the active window.

2) Press .

When you close the main DISP window, the debugger closes all of its children
as well.

 Display Data in Another Format

2-23 An Introductory Tutorial to the C Source Debugger

Display data in another format

Usually, when you add an item to the WATCH window or open a DISP window,
the data is shown in its natural format. This means that ints are shown as inte-
gers, floats are shown as floating-point values, etc. Occasionally, you may
wish to view data in a different format. This can be especially important if you
want to show memory or register contents in another format.

One way to display data in another format is through casting (which is part of
the C language). In the expression below, the *(float *) portion of the expres-
sion tells the debugger to treat address 0x809c00 as type float (exponential
floating-point format).

Display memory contents in floating-point format:

disp *(float *)0x809c00

This opens a DISP window to show memory contents in an array format. The
array member identifiers don’t necessarily correspond to actual addresses—
they’re relative to the first address you request with the DISP command. In this
case, the item displayed as item [0] is the contents of address 0x0080 9c00—it
isn’t memory location 0. Note that you can scroll through the memory displayed
in the DISP window; item [1] is at 0x0080 9c01, and item [–1] is at 0x0080 9bff.

You can also change display formats according to data type. This affects all
data of a specific C data type.

Change display formats according to data types by using the SETF (set
format) command:

1) For comparison, watch the following variables. Their C data types are
listed on the right.

wa i Type int
wa f Type float
wa d Type double

2) You can list all the data types and their current display formats:

setf

lesson continues on the next page →

Display Data in Another Format

 2-24

3) Now display the following data types with new formats:

setf int, c Ints as characters
setf float, o Floats as octal integers
setf double, x Doubles as hex integers

4) List the data types to display formats again; note the changes in the
display:

setf

5) Add the variables to the WATCH window again; use labels to identify
the additions:

wa i, NEWi
wa f, NEWf
wa d, NEWd

Notice the differences in the display formats between the first versions
you added and these new versions.

6) Now reset all data types back to their defaults:

setf *

A third way to display data in another format is to use the DISP, ?, MEM, or WA
command with an optional parameter that identifies the new display format.
The following examples are for ? and WA—DISP and MEM work similarly.

Use display formats with the ? and WA commands:

1) Evaluate a variable and display it as a character:

? small.ra[1],c

2) Add a variable to the watch window and display it as an octal integer:

wa str.a,,o Notice that because no label was used
 with WA, an extra comma was inserted;

otherwise, the o parameter would have
been interpreted as a label.

 Display Data in Another Format / Change Some Values

2-25 An Introductory Tutorial to the C Source Debugger

Try This: You can also watch registers R0–R7 as floating-point values by us-
ing the special symbols F0–F7. You might also want to display memory con-
tents in floating-point format. For example, you can display the contents of
location 0x809800 in floating-point format:

disp *(float *)0x809800

To get ready for the next step, close the DISP and WATCH windows.

Change some values

You can edit the values displayed in the MEMORY, CPU, WATCH, and DISP
windows.

Change a value in memory:

1) Move or close the WATCH window if it’s obscuring the
MEMORY window; then display memory beginning with ad-
dress 0x0080 9800:

mem 0x809800

2) Point to the contents of memory location 0x0080 9800.

3) Click the left mouse button. Notice that this highlights and
identifies the field to be edited.

4) Type 00000000.

5) Press to enter the new value.

6) Press to conclude editing.

lesson continues on the next page →

Change Some Values / Define a Memory Map

 2-26

Try This: Here’s another method for editing data that lets you edit a few more
values at once.

1) Make the CPU window the active window:

win CPU

↑ ↓ 2) Press the arrow keys until the field cursor (_) points to the PC contents.

F9 3) Press F9 .

4) Type 0080985d.

↓ 5) Press ↓ twice. You should now be pointing at the contents of register R0.

6) Type 000174f9.

7) Press to enter the new value.

ESC 8) Press ESC to conclude editing.

Define a memory map

You can set up a memory map to tell the debugger which areas of memory it
can and can’t access. This is called memory mapping. When you invoked the
debugger for this tutorial, the debugger automatically read a default memory
map from the initialization batch file included in the c3xhll or sim3x directory.
For the purposes of the sample program, that’s fine (which is why this lesson
was saved for the end).

View the default memory map settings:

ml

Look in the COMMAND window display area—you’ll see a listing of the areas
that are currently mapped.

It’s easy to add new ranges to the map or delete existing ranges.

Change the memory map:

1) Use the MD (memory delete) command to delete the block of memory:

md 0x0

This deletes the block of memory beginning at address 0.

2) Use the MA (memory add) command to define a new block of memory:

ma 0x2000,0xfff,RAM

 Define Your Own Command String / Close the Debugger

2-27 An Introductory Tutorial to the C Source Debugger

Define your own command string

If you find that you often enter a command with the same parameters, or often
enter the same commands in sequence, you will find it helpful to have a short-
hand method for entering these commands. The debugger provides an alias-
ing feature that allows you to do this.

This lesson shows you how you can define an alias to set up a memory map,
defining the same map that was defined in the previous lesson.

Define an alias for setting up the memory map:

1) Use the ALIAS command to associate a nickname with the commands
used for defining a memory map:

alias mymap,”mr;ma 0x2000,0xfff,RAM;ml”

2) Now, to use this memory map, just enter the alias name:

mymap

This is equivalent to entering the following three commands:

mr
ma 0x2000,0xfff,RAM
ml

Close the debugger

This is the end of the tutorial—close the debugger.

Close the debugger and return to the operating system:

quit

 2-28

3-1 Chapter Title—Attribute Reference

The Debugger Display

The ’C3x C source debugger has a window-oriented display. This chapter
shows what windows can look like and describes the basic types of windows
that you’ll use.

Topic Page

3.1 Debugging Modes and Default Displays 3-2
Auto mode 3-2
Assembly mode 3-3
Mixed mode 3-4
Restrictions associated with debugging modes 3-4

3.2 Descriptions of the Different Kinds of Windows 3-5
and Their Contents
COMMAND window 3-6
DISASSEMBLY window 3-7
FILE window 3-8
CALLS window 3-9
PROFILE window 3-11
MEMORY windows 3-12
CPU window 3-15
DISP windows 3-16
WATCH window 3-17

3.3 Cursors 3-18

3.4 The Active Window 3-19
Identifying the active window 3-19
Selecting the active window 3-20

3.5 Manipulating Windows 3-21
Resizing a window 3-21
Zooming a window 3-23
Moving a window 3-24

3.6 Manipulating a Window’s Contents 3-26
Scrolling through a window’s contents 3-26
Editing the data displayed in windows 3-28

3.7 Closing a Window 3-29

Chapter 3

Debugging Modes and Default Displays

 3-2

3.1 Debugging Modes and Default Displays

The basic debugger environment has three debugging modes:

� Auto mode
� Assembly mode
� Mixed mode

Each mode changes the debugger display by adding or hiding specific win-
dows. Some windows, such as the COMMAND window, may be present in all
modes. The following figures show the default displays for these modes and
show the windows that the debugger automatically displays for these modes.

These modes cannot be used within the profiling environment; only the COM-
MAND, PROFILE, DISASSEMBLY, and FILE windows are available.

Auto mode

In auto mode , the debugger automatically displays whatever type of code is
currently running—assembly language or C. This is the default mode; when
you first invoke the debugger, you’ll see a display similar to Figure 3–1. Auto
mode has two types of displays:

� When the debugger is running assembly language code, you’ll see an as-
sembly display similar to the one in Figure 3–1. The DISASSEMBLY win-
dow displays the reverse assembly of memory contents.

Figure 3–1. Typical Assembly Display (for Auto Mode and Assembly Mode)

DISASSEMBLY CPU

MEMORYCOMMAND

>>>

PC 00f00076

R0 00000003

R2 00000007

R4 00000000

R6 00000000

AR0 00001802

AR2 00000000

AR4 00000000

AR6 00000000

IR0 00000000

ST 00000000

RS 00000000

DP 00000000

IE 00000000

SP 00000755

R1 00000005

R3 00000000

R5 00000000

R7 00000000

AR1 00000000

AR3 00000000

AR5 00000000

AR7 00000000

IR1 00000000

RC 00000000

RE 00000000

BK 00000000

IF 00000000

f00075 00f000b2 ABSI 178,DP

f00076 087000f0 c_int00: LDI 240,DP

f00077 08340074 LDI @074H,SP

f00078 080b0014 LDI SP,AR3

f00079 087000f0 LDI 240,DP

f0007a 08280075 LDI @075H,AR0

f0007b 04e8ffff CMPI –1,AR0

f0007c 6a05000c BZ f00089

f0007d 08412001 LDI *AR0++(1),R1

f0007e 6a250008 BZD f00089

f0007f 08492001 LDI *AR0++(1),AR1

f00080 08402001 LDI *AR0++(1),R0

f00081 18610001 SUBI 1,R1

f00082 139b9991 RPTS R1

f00083 da002120 LDI *AR0++(1),R0 || STI

 000000

 000004

 000008

 00000c

 000010

 000014

0000004b

00000043

00000047

00000000

00000000

00000000

00000040

00000044

00000048

00000000

00000000

00000000

00000041

00000045

00000049

00000000

00000000

00000000

00000042

00000046

0000004a

00000000

00000000

00000000

TMS3203x, Debugger Version 4.60

Copyright (c) 1989, 1993 Texas In

TMS320C3x

Loading sample.out

Done

Load Break Watch Memory MoDe Run=F5 Step=F8 Next=F10Color Pin

 Debugging Modes and Default Displays

3-3 The Debugger Display

� When the debugger is running C code, you’ll see a C display similar to the
one in Figure 3–2. (This assumes that the debugger can find your C
source file to display in the FILE window. If the debugger can’t find your
source, then it switches to mixed mode.)

Figure 3–2. Typical C Display (for Auto Mode Only)

COMMAND

FILE: sample.c

>>>

CALLS
TMS320C3x Debugger Version 4.60

(c) Copyright 1989, 1993 Texas Instruments Inc.

TMS320C3x

Loading sample.out

Load Break Watch Memory MoDe Run=F5 Step=F8 Next=F10Color

1: main()

00038 extern call();

00039 extern meminit();

00040 main()

00041 {

00042 register int i = 0;

00043 int j = 0, k = 0;

00044

00045 meminit();

00046 for (i = 0, i , 0x50000; i++)

00047 {

00048 call(i);

00049 if (i & 1) j += i;

00050 aai[k][k] = j;

00051 if (!(i & 0xFFFF)) k++;

00052 }

Pin

When you’re running assembly language code, the debugger automatically
displays windows as described for assembly mode.

When you’re running C code, the debugger automatically displays the
COMMAND, CALLS, and FILE windows. If you want, you can also open a
WATCH window and DISP windows.

Assembly mode

Assembly mode is for viewing assembly language programs only. In this
mode, you’ll see a display similar to the one shown in Figure 3–1. When you’re
in assembly mode, you’ll always see the assembly display, regardless of
whether C or assembly language is currently running.

Windows that are automatically displayed in assembly mode include the
MEMORY window, the DISASSEMBLY window, the CPU window, and the
COMMAND window. If you want, you can also open a WATCH window in as-
sembly mode.

Debugging Modes and Default Displays

 3-4

Mixed mode

Mixed mode is for viewing assembly language and C code at the same time.
Figure 3–3 shows the default display for mixed mode.

Figure 3–3. Typical Mixed Display (for Mixed Mode Only)

 000000

 000004

 000008

 00000c

0000004b

00000043

00000047

00000000

00000040

00000044

00000048

00000000

00000041

00000045

00000049

00000000

00000042

00000046

0000004a

00000000

DISASSEMBLY CPU

FILE: sample.c

COMMAND

>>>

CALLS

Loading sample.out

Done

file sample.c

Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorLoad

PC 00f00076

R0 00000003

R2 00000007

R4 00000000

R6 00000000

AR0 00001802

AR2 00000000

AR4 00000000

AR6 00000000

SP 00000755

R1 00000005

R3 00000000

R5 00000000

R7 00000000

AR1 00000000

AR3 00000000

AR5 00000000

AR7 00000000

400000 0f2b0000 main: PUSH AR3

400001 080b0014 LDI SP,AR3

400002 02740002 ADDI 2,SP

400003 0f240000 PUSH R4

400004 08640000 LDI 0,R4

400005 15440301 STI R4,*+AR3(1)

400006 15440302 STI R4,*+AR3(2)

400007 62400057 CALL meminit

400008 08640000 LDI 0,R4

00037 extern struct zzz *func():

00038 extern call();

00039 extern meminit();

00040 main()

00041 {

00042 register int i = 0;

00043 int j = 0, k = 0;

1: main()

Pin

MEMORY

 000000

 000004

 000008

 00000c

0000004b

00000043

00000047

00000000

00000040

00000044

00000048

00000000

00000041

00000045

00000049

00000000

00000042

00000046

0000004a

00000000

In mixed mode, the debugger displays all windows that can be displayed in
auto and assembly modes—regardless of whether you’re currently running
assembly language or C code. This is useful for finding bugs in C programs
that exploit specific architectural features of the ’C3x.

Restrictions associated with debugging modes

The assembly language code that the debugger shows you is the disassembly
(reverse assembly) of the memory contents. If you load object code into
memory, then the assembly language code is the disassembly of that object
code. If you don’t load an object file, then the disassembly won’t be very useful.

Some commands are valid only in certain modes, especially if a command ap-
plies to a window that is visible only in certain modes. In this case, entering the
command causes the debugger to switch to the mode that is appropriate for
the command. This applies to these commands:

dasm func mem

calls file disp

 Descriptions of the Different Kinds of Windows and Their Contents

3-5 The Debugger Display

3.2 Descriptions of the Different Kinds of Windows and Their Contents

The debugger can show several types of windows. This section lists the vari-
ous types of windows and describes their characteristics.

The name at the top of a window identifies the window’s name. Each type of
window serves a specific purpose and has unique characteristics. There are
nine different windows, divided into four general categories:

� The COMMAND window provides an area for typing in commands and
for displaying various types of information such as progress messages,
error messages, or command output.

� Code-display windows are for displaying assembly language or C code.
There are three code-display windows:

� The DISASSEMBLY window displays the disassembly (assembly lan-
guage version) of memory contents.

� The FILE window displays any text file that you want to display; its
main purpose, however, is to display C source code.

� The CALLS window identifies the current function traceback (when C
code is running).

� The PROFILE window displays statistics about code execution. This win-
dow is available only when you are in the profiling environment.

� Data-display windows are for observing and modifying various types of
data. There are four data-display windows:

� A MEMORY window displays the contents of a range of memory. You
can display up to four MEMORY windows at one time.

� The CPU window displays the contents of ’C3x registers.

� A DISP window displays the contents of an aggregate type such as an
array or structure, showing the values of the individual members. You
can display up to 120 DISP windows at one time.

� The WATCH window displays selected data such as variables, specif-
ic registers, or memory locations.

You can move or resize any of these windows; you can also edit any value in
a data-display window. Before you can perform any of these actions, however,
you must select the window you want to move, resize, or edit and make it the
active window. For more information about making a window active, see Sec-
tion 3.4, The Active Window, on page 3-19.

The remainder of this section describes the individual windows.

Descriptions of the Different Kinds of Windows and Their Contents

 3-6

COMMAND window

COMMAND

>>>

TMS3203x, Debugger Version 4.60

Copyright (c) 1989, 1993 Texas Instruments Inc

Loading sample.out

Done

file sample.c

go main

display
area

command
line

command line
cursor

Purpose � Provides an area for entering commands

� Provides an area for echoing commands and displaying
command output, errors, and messages

Editable? Command line is editable; command output isn’t

Modes All modes

Created Automatically

Affected by � All commands entered on the command line
� All commands that display output in the display area
� Any input that creates an error

The COMMAND window has two parts:

� Command line. This is where you enter commands. When you want to
enter a command, just type—no matter which window is active. The de-
bugger keeps a list of the last 50 commands that you entered. You can se-
lect and re-enter commands from the list without retyping them. (For more
information on using the command history, see Using the command histo-
ry, page 4-5.)

� Display area . This area of the COMMAND window echoes the command
that you entered, shows any output from the command, and displays de-
bugger messages.

For more information about the COMMAND window and entering commands,
refer to Chapter4 , Entering and Using Commands.

 Descriptions of the Different Kinds of Windows and Their Contents

3-7 The Debugger Display

DISASSEMBLY window

DISASSEMBLY

memory
address

object
code

disassembly
(assembly language
constructed from object code)

400063 0040009f ABSF *+AR0(159),R0

400064 087000040 c_int00: LDI 64,DP

400065 08340062 LDI @062H,SP

400066 080b0014 LDI SP,AR3

400067 08700040 LDI 64,DP

400068 08280063 LDI @063H,AR0

400069 04e8ffff CMPI –1,AR0

40006a 6a05000c BZ 400077

40006b 08412001 LDI *AR0++(1),R1

current PC

Purpose Displays the disassembly (or reverse assembly) of memory
contents

Editable? No; pressing the edit key (F9) or the left mouse button sets
a software breakpoint on an assembly language statement

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by � DASM and ADDR commands
� Breakpoint and run commands

Within the DISASSEMBLY window, the debugger highlights

� The statement that the PC is pointing to (if that line is in the current display)
� Any statements with software breakpoints
� The address and object code fields for all statements associated with the

current C statement, as shown below

DISASSEMBLY

400000 0f2b0000 main: PUSH AR3

400001 080b0014 LDI SP,AR3

400002 02740002 ADDI 2,SP

400003 0f240000 PUSH R4

400004 08640000 LDI 0,R4

current PC
FILE: t1.c

00038 extern call();

00039 exterm meminit();

00040 main()

00041 {

These assembly
language statements

are associated with
this C statement

Descriptions of the Different Kinds of Windows and Their Contents

 3-8

FILE window

FILE: sample.c

00001 struct xxx { int a,b,c; int f1 : 2; int f2 : 4; struct xx

00002 str, astr[10], aastr[

00003 union uuu { int u1, u2, u3, u4, u5[6]; struct xxx u6; }

00004 struct zzz { int b1,b2,be,b4,b5; struct xxx q1[2],q2; str

00005 big1, *big2, big3[6];

00006 struct { int x,y,z,; int **ptr; float *fptr; char ra[5

00007 enum yyy { RED, GREEN, BLUE } genum, *penum, aenum[5][4]

text
file

Purpose Shows any text file you want to display

Editable? No; if the FILE window displays C code, pressing the edit key
(F9) or the left mouse button sets a software breakpoint on
a C statement

Modes Auto (C display only) and mixed

Created � With FILE command
� Automatically when you’re in auto or mixed mode and

your program begins executing C code

Affected by � FILE, FUNC, and ADDR commands
� Breakpoint and run commands

You can use the FILE command to display the contents of any file within the
FILE window, but this window is especially useful for viewing C source files.
Whenever you single-step a program or run a program and halt execution, the
FILE window automatically displays the C source associated with the current
point in your program. This overwrites any other file that may have been dis-
played in the window.

Within the FILE window, the debugger highlights:

� The statement that the PC is pointing to (if that line is in the current display)
� Any statements where you’ve set a software breakpoint

 Descriptions of the Different Kinds of Windows and Their Contents

3-9 The Debugger Display

CALLS window

CALLS

3: subx()

2: call()

1: main() current function

order of functions called

names of functions called

is at top of list

Purpose Lists the function you’re in, its caller, and the caller’s caller,
etc., as long as each function is a C function

Editable? No; pressing the edit key (F9) or the left mouse button
changes the FILE display to show the source associated with
the called function

Modes Auto (C display only) and mixed

Created � Automatically when you’re displaying C code
� With the CALLS command if you closed the window

Affected by Run and single-step commands

The display in the CALLS window changes automatically to reflect the latest
function call.

CALLS

1: **UNKNOWN

CALLS

1: main()

If you haven’t run any code, then no func-
tions have been called yet. You’ll also see

this if you’re running an assembly func-
tion not written in C code.

In C programs, the first C function is main.

As your program runs, the contents of
the CALLS window change to reflect
the current routine that you’re in and

where the routine was called from.
When you exit a routine, its name is

popped from the CALLS list.

CALLS

2: xcall()

1: main()

CALLS

1: main()

Descriptions of the Different Kinds of Windows and Their Contents

 3-10

If a function name is listed in the CALLS window, you can easily display the
function in the FILE window:

1) Point the mouse cursor at the appropriate function name that is listed in
the CALLS window.

2) Click the left mouse button. This displays the selected function in the FILE
window.

1) Make the CALLS window the active window (see Section 3.4, The Active
Window, page 3-19).

↓ ↑ 2) Use the arrow keys to move up/down through the list of function names
until the appropriate function is indicated.

F9 3) Press F9 . This displays the selected function in the FILE window.

You can close and reopen the CALLS window.

� Closing the window is a two-step process:

1) Make the CALLS window the active window.

2) Press F4 .

� To reopen the CALLS window after you’ve closed it, enter the CALLS com-
mand. The format for this command is:

calls

 Descriptions of the Different Kinds of Windows and Their Contents

3-11 The Debugger Display

PROFILE window

PROFILE
 Area Name Count Inclusive Incl–Max Exclusive Excl–Max

AR 00f00001–00f00008 1 65 65 19 19

CL <sample>#58 1 50 50 7 7

CR <sample>#59–64 1 87 87 44 44

CF call() 24 1623 99 1089 55

AL meminit 1 3 3 3 3

AL 00f00059 disabled

profile
areas

profile data

Purpose Displays statistics collected during a profiling session

Editable? No

Modes Auto

Created By invoking the debugger with the –profile option

Affected by � The PF and PQ commands
� Any commands on the View menu
� Clicking in the header area of the window

The PROFILE window is visible only when you are in the profiling environment.
The illustration above shows the window with a default set of data, but the dis-
play can be modified to show specific sets of data collected during a profiling
session.

Note that within the profiling environment, the only other available windows are
the COMMAND window, the DISASSEMBLY window, and the FILE window.

For more information about the PROFILE window (and about profiling in gen-
eral), refer to Chapter 10, Profiling Code Execution.

Descriptions of the Different Kinds of Windows and Their Contents

 3-12

MEMORY windows

MEMORY

addresses data

 000000

 000004

 000008

 00000c

 000010

 000014

00000000

00000004

00000008

0000000c

00000010

00000014

00000001

00000005

00000009

0000000d

000000011

00000015

00000002

00000006

0000000a

0000000e

00000012

00000016

00000003

00000007

0000000b

0000000f

00000013

00000017

Purpose Displays the contents of memory

Editable? Yes—you can edit the data (but not the addresses)

Modes Auto (assembly display only), assembly, and mixed

Created � Automatically (the default MEMORY window only)

� With the MEM# commands (up to three additional
MEMORY windows)

Affected by MEM commands: MEM, MEM1, MEM2, and MEM3

A MEMORY window has two parts:

� Addresses. The first column of numbers identifies the addresses of the
first column of displayed data. No matter how many columns of data you
display, only one address column is displayed. Each address in this col-
umn identifies the address of the data immediately to its right.

� Data. The remaining columns display the values at the listed addresses.
You can display more data by making the window wider and/or longer.

The MEMORY window above has four columns of data, so each new ad-
dress is incremented by four. Although the window shows four columns of
data, there is still only one column of addresses; the first value is at ad-
dress 0x000000, the second at address 0x000001, etc.; the fifth value
(first value in the second row) is at address 0x000004, the sixth at address
0x000005, etc.

As you run programs, some memory values change as the result of program
execution. The debugger highlights the changed values. Depending on how
you configure memory for your application, some locations may be invalid/un-
configured. The debugger also highlights these locations (by default, it shows
these locations in red).

 Descriptions of the Different Kinds of Windows and Their Contents

3-13 The Debugger Display

Three additional MEMORY windows called MEMORY1, MEMORY2, and
MEMORY3 are available. The default MEMORY window does not have an ex-
tension number in its name; this is because MEMORY1, MEMORY2, and
MEMORY3 are optional windows and can be opened and closed throughout
your debugging session. Having four windows allows you to view four different
memory ranges. Refer to Figure 3–4.

Figure 3–4. The Default and Additional MEMORY Windows

 000060

 000064

 000008

 00000c

 000010

 000014

00000000

000000004

00000008

0000000c

00000010

00000014

00000000

00000000

00000009

0000000d

000000011

00000015

00000000

00000000

0000000a

0000000e

00000012

00000016

00000000

00000000

0000000b

0000000f

00000013

00000017

MEMORY2MEMORY2

 000058

 00005c

 000008

 00000c

 000010

 000014

0820005b

0000000f

00000008

0000000c

00000010

00000014

10150000

00000001

00000009

0000000d

000000011

00000015

78000000

00000000

0000000a

0000000e

00000012

00000016

00002000

00000000

0000000b

0000000f

00000013

00000017

MEMORY1MEMORY1

 000050

 000054

 000008

 00000c

 000010

 000014

0820005b

0820005b

00000008

0000000c

00000010

00000014

10150000

10150000

00000009

0000000d

000000011

00000015

78000000

78000000

0000000a

0000000e

00000012

00000016

0223005d

0224005d

0000000b

0000000f

00000013

00000017

MEMORY

 000000

 000004

 000008

 00000c

 000010

 000014

00000000

00000004

00000008

0000000c

00000010

00000014

00000001

00000005

00000009

0000000d

000000011

00000015

00000002

00000006

0000000a

0000000e

00000012

00000016

00000003

00000007

0000000b

0000000f

00000013

00000017

The default
MEMORY window

Additional
MEMORY windows

MEMORY3

To create an additional MEMORY window or to display another range of
memory in the current window, use the MEM command.

� Creating a new MEMORY window.

If the default MEMORY window is the only MEMORY window open and
you want to open another MEMORY window, enter the MEM command
with the appropriate extension number:

mem[#] address

For example, if you want to create a new memory window starting at ad-
dress 0x8000, you would enter:

mem1 0x8000

This displays a new window, MEMORY1, showing the contents of memory
starting at address 0x8000.

Descriptions of the Different Kinds of Windows and Their Contents

 3-14

� Displaying a new memory range in the current MEMORY window.

Displaying another block of memory identifies a new starting address for
the memory range shown in the current MEMORY window. The debugger
displays the contents of memory at address in the first data position in your
MEMORY window. The end of the range is defined by the size of the win-
dow.

If the only memory window open is the default MEMORY window, you can
view different memory locations by entering:

mem address

To view different memory locations in the optional MEMORY windows, use
the MEM command with the appropriate extension number on the end. For
example:

To do this. . . Enter this. . .

View the block of memory starting at address
0x0000 8000 in the MEMORY1 window

mem1 0x8000

View another block of memory starting at address
0x0000 002f in the MEMORY2 window

mem2 0x002f

Note:

If you want to view a different block of memory explicitly in the default
MEMORY window, you can use the alias command MEM0. This works ex-
actly the same as the MEM command. To use this command, enter:

mem0 address

You can close and reopen additional MEMORY windows as often as you like.

� Closing an additional MEMORY window.

Closing a window is a two-step process:

1) Make the appropriate MEMORY window the active window (see Sec-
tion 3.4, on page 3-19).

2) Press F4 .

Remember, you cannot close the default MEMORY window.

� Reopening an additional MEMORY window.

To reopen an additional MEMORY window after you’ve closed it, enter the
MEM command with its appropriate extension number.

 Descriptions of the Different Kinds of Windows and Their Contents

3-15 The Debugger Display

CPU window

CPU
PC 00f00076

R0 00000003

R2 00000007

R4 00000000

R6 00000000

AR0 00001802

AR2 00000000

AR4 00000000

AR6 00000000

IR0 00000000

ST 00000000

RS 00000000

DP 00000000

IE 00000000

SP 00000755

R1 00000005

R3 00000000

R5 00000000

R7 00000000

AR1 00000000

AR3 00000000

AR5 00000000

AR7 00000000

IR1 00000000

RC 00000000

RE 00000000

BK 00000000

IF 00000000

register
name

register
contents

CPU
PC 00f00076

R1 00000005

R4 00000000

R7 00000000

SP 00000755

R2 00000007

R5 00000000

AR0 00001802

R0 00000003

R3 00000000

R6 00000000

AR1 00000000

The display
changes when you
resize the window

Purpose Displays the contents of the ’C3x registers

Editable? Yes—you can edit the value of any displayed register

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by Data-management commands

As you run programs, some values displayed in the CPU window change as
the result of program execution. The debugger highlights the changed values.

Descriptions of the Different Kinds of Windows and Their Contents

 3-16

DISP windows

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18740001

f4 [...]

structure
members

member
values

This member is an array, and
you can display its contents in

a second DISP window

DISP: str.f4

[0] 44276127

[1] 1778712578

[2] 555492660

[3] 356713217

[4] 138412802

[5] 182452229

[6] 35659888

[7] 37749506

[8] 134742016

[9] 138412801

Purpose Displays the members of a selected structure, array, or point-
er, and the value of each member

Editable? Yes—you can edit individual values

Modes Auto (C display only) and mixed

Created With the DISP command

Affected by The DISP command

A DISP window is similar to a WATCH window, but it shows the values of an
entire array or structure instead of a single value. Use the DISP command to
open a DISP window; the basic syntax is:

disp expression

By default, data is displayed in its natural format:

� Integer values are displayed in decimal.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

If any of the displayed members are arrays, structures, or pointers, you can
bring up additional DISP windows to display their contents—up to 120 DISP
windows can be open at once.

 Descriptions of the Different Kinds of Windows and Their Contents

3-17 The Debugger Display

WATCH window

WATCH

1: AR0 0x00001802

2: X+X 4

3: PC 0x00400064

watch index

label current value

Purpose Displays the values of selected expressions

Editable? Yes—you can edit the value of any expression whose value
corresponds to a single storage location (in registers or
memory). In the window above, for example, you could edit
the value of PC but couldn’t edit the value of X+X.

Modes Auto, assembly, and mixed

Created With the WA command

Affected by WA, WD, and WR commands

The WATCH window helps you to track the values of arbitrary expressions,
variables, and registers. Use the WA command for this; the syntax is:

wa expression [, label]

WA adds expression to the WATCH window. (If there’s no WATCH window,
then WA also opens a WATCH window).

To delete individual entries from the WATCH window, use the WD command.
To delete all entires at once and close the WATCH window, use the WR com-
mand.

Although the CPU window displays register contents, you may not be inter-
ested in the values of all these registers. In this situation, it is convenient to use
the WATCH window to track the values of the specific registers you’re inter-
ested in.

Cursors

 3-18

3.3 Cursors

The debugger display has three types of cursors:

� The command-line cursor is a block-shaped cursor that identifies the
current character position on the command line. Arrow keys do not affect
the position of this cursor.

COMMAND

>>>

TMS3203x

Simulator Version 2.01

Loading sample.out

Done

file sample.c

go main

command line cursor

� The mouse cursor is a block-shaped cursor that tracks mouse move-
ments over the entire display. This cursor is controlled by the mouse driver
installed on your system; if you haven’t installed a mouse, you won’t see
a mouse cursor on the debugger display.

� The current-field cursor identifies the current field in the active window.
On PCs, this is the hardware cursor that is associated with your graphics
card. Arrow keys do affect this cursor’s movement.

CPU
PC 00f00076

R1 00000005

R4 00000000

R7 00000000

SP 00000755

R2 00000007

R5 00000000

AR0 00001802

R0 00000003

R3 00000000

R6 00000000

AR1 00000000

current field cursor

 The Active Window

3-19 The Debugger Display

3.4 The Active Window

The windows in the debugger display aren’t fixed in their position or in their
size. You can resize them, move them around, and, in some cases, close
them. The window that you’re going to move, resize, or close must be active .

You can move, resize, zoom, or close only one window at a time; thus, only one
window at a time can be the active window . Whether or not a window is active
doesn’t affect the debugger’s ability to update information in a window—it af-
fects only your ability to manipulate a window.

Identifying the active window

The debugger highlights the active window. When windows overlap on your
display, the debugger pops the active window to be on top of other windows.

You can alter the active window’s border style and colors if you wish;
Figure 3–5 illustrates the default appearance of an active window and an inac-
tive window.

Figure 3–5. Default Appearance of an Active and an Inactive Window

COMMAND

>>>

COMMAND

>>>

This window is not
highlighted and is

not active

An active window (default appearance)

An inactive window (default appearance)

Loading sample.out

 36 Symbols loaded

Done

file sample.c

go main

TMS320C3x Debugger Version 4.60

Copyright (a) 1989, 1993 Texas Instrument

TMS320C3x

Simulator Version 2.01

Loading sample.out
This window is high-

lighted to show that it
is active

Note: On monochrome monitors , the border and selection corner are highlighted as shown in
the illustration. On color monitors , the border and selection corner are highlighted as
shown in the illustration, but they also change color (by default, they change from white to
yellow when the window becomes active).

The Active Window

 3-20

Selecting the active window

You can use one of several methods for selecting the active window.

1) Point to any location within the boundaries or on any border of the desired
window.

2) Click the left mouse button.

Note that if you point within the window, you might also select the current field.
For example,

� If you point inside the CPU window, then the register you’re pointing at be-
comes active, and the debugger treats any text that you type as a new reg-
ister value. If you point inside the MEMORY window, then the address val-
ue you’re pointing at becomes active, and the debugger treats any text that
you type as a new memory value.

Press ESC to get out of this.

� If you point inside the DISASSEMBLY or FILE window, you’ll set a break-
point on the statement you’re pointing to.

Press the button again to clear the breakpoint.

F6 This key cycles through the windows on your display, making each one active
in turn and making the previously active window inactive. Pressing this key
highlights one of the windows, showing you that the window is active. Pressing

F6 again makes a different window active. Press F6 as many times as nec-
essary until the desired window becomes the active window.

win The WIN command allows you to select the active window by name. The for-
mat of this command is

win WINDOW NAME

Note that the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need to
specify only enough letters to identify the window.

 The Active Window / Manipulating Windows

3-21 The Debugger Display

For example, to select the DISASSEMBLY window as the active window, you
can enter either of these two commands:

win DISASSEMBLY
or win DISA

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them.

If you supply an ambiguous name (such as C, which could stand for CPU or
CALLS), the debugger selects the first window it finds whose name matches
the name you supplied. If the debugger doesn’t find the window you asked for
(because you closed the window or misspelled the name), then the WIN com-
mand has no effect.

3.5 Manipulating Windows

A window’s size and its position in the debugger display aren’t fixed—you can
resize and move windows.

Note:

You can resize or move any window, but first the window must be active . For
information about selecting the active window, refer to Section 3.4 (page
3-19).

Resizing a window

The minimum window size is three lines by four characters. The maximum win-
dow size varies, depending on which screen size you’re using, but you can’t
make a window larger than the screen.

There are two basic ways to resize a window:

� By using the mouse
� By using the SIZE command

Manipulating Windows

 3-22

1) Point to the lower right corner of the window. This corner is highlighted—
here’s what it looks like.

COMMAND

>>>

TMS3203x Debugger Version 4.60

(Copyright (c) 1989, 1993 Texas Instru

TMS320C3x

Loading sample.out

Done lower right corner
(highlighted)

2) Grab the highlighted corner by pressing one of the mouse buttons; while
pressing the button, move the mouse in any direction. This resizes the win-
dow.

3) Release the mouse button when the window reaches the desired size.

size The SIZE command allows you to size the active window. The format of this
command is:

size [width, length]

You can use the SIZE command in one of two ways:

Method 1 Supply a specific width and length.

Method 2 Omit the width and length parameters and use arrow keys to
interactively resize the window.

SIZE, method 1: Use the width and length parameters. Valid values for the
width and length depend on the screen size and the window position on the
screen. If the window is in the upper left corner of the screen, the maximum
size of the window is the same as the screen size minus one line. (The extra
line is needed for the menu bar.) For example, if the screen size is 80 charac-
ters by 25 lines, the largest window size is 80 characters by 24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, as de-
scribed on page 3-23.

For example, If you want to use commands to make the CALLS window 8 char-
acters wide by 20 lines long, you could enter:

win CALLS
size 8, 20

 Manipulating Windows

3-23 The Debugger Display

SIZE, method 2: Use arrow keys to interactively resize the window. If you
enter the SIZE command without width and length parameters, you can use
arrow keys to size the window.

↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the cursor keys, you must press or .

For example, if you want to make the CPU window three lines longer and two
characters narrower, you can enter:

win CPU
size

↓ ↓ ↓ ← ← ESC

Zooming a window

Another way to resize the active window is to zoom it. Zooming a window
makes it as large as possible so that it takes up the entire display (except for
the menu bar) and hides all the other windows. Unlike the SIZE command,
zooming is not affected by the window’s position in the display.

To “unzoom” a window, repeat the same steps you used to zoom it. This will
return the window to its prezoom size and position.

There are two basic ways to zoom or unzoom a window:

� By using the mouse
� By using the ZOOM command

1) Point to the upper left corner of the window. This corner is highlighted—
here’s what it looks like:

COMMAND

>>>

TMS3203x Debugger Version 4.60

(Copyright (c) 1989, 1993 Texas Instru

TMS320C3x

Loading sample.out

Done

upper left corner
(highlighted)

2) Click the left mouse button.

Manipulating Windows

 3-24

zoom You can also use the ZOOM command to zoom/unzoom the window. The for-
mat for this command is:

zoom

Moving a window

The windows in the debugger display don’t have fixed positions—you can
move them around.

There are two ways to move a window:

� By using the mouse
� By using the MOVE command

1) Point to the left or top edge of the window.

COMMAND

>>>

TMS3203x Debugger Version 4.60

COpyright (a) 1989, 1993 Texas Instru

TMS320C3x

Loading sample.out

Done

Point to the top edge
or the left edge

2) Press the left mouse button, but don’t release it; now move the mouse in
any direction.

3) Release the mouse button when the window is in the desired position.

move The MOVE command allows you to move the active window. The format of this
command is:

move [X position, Y position [, width, length]]

You can use the MOVE command in one of two ways:

Method 1 Supply a specific X position and Y position.

Method 2 Omit the X position and Y position parameters and use arrow
keys to interactively resize the window.

 Manipulating Windows

3-25 The Debugger Display

MOVE, method 1: Use the X position and Y position parameters. You can
move a window by defining a new XY position for the window’s upper left cor-
ner. Valid X and Y positions depend on the screen size and the window size.
X positions are valid if the X position plus the window width in characters is less
than or equal to the screen width in characters. Y positions are valid if the Y
position plus the widow height is less than or equal to the screen height in lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 would be valid in this example.

Note:

If you choose, you can resize a window at the same time you move it. To do
this, use the width and length parameters in the same way that they are used
for the SIZE command.

MOVE, method 2: Use arrow keys to interactively move the window. If you
enter the MOVE command without X position and Y position parameters, you
can use arrow keys to move the window:

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the cursor keys, you must press or .

For example, if you want to move the COMMAND window up two lines and
right five characters, you can enter:

win COM
move

↑ ↑ → → → → → ESC

Manipulating a Window’s Contents

 3-26

3.6 Manipulating a Window’s Contents

Although you may be concerned with changing the way windows appear in the
display—where they are and how big/small they are—you’ll usually be inter-
ested in something much more important: what’s in the windows. Some win-
dows contain more information than can be displayed on a screen; others con-
tain information that you’d like to change. This section tells you how to view
the hidden portions of data within a window and which data can be edited.

Note:

You can scroll and edit only the active window . For information about select-
ing the active window, refer to Section 3.4 (page 3-19).

Scrolling through a window’s contents

If you resize a window to make it smaller, you may hide information. Some-
times, a window may contain more information than can be displayed on a
screen. In these cases, the debugger allows you to scroll information up and
down within the window.

There are two ways to view hidden portions of a window’s contents:

� You can use the mouse to scroll the contents of the window.

� You can use function keys and arrow keys.

You can use the mouse to point to the scroll arrows on the righthand side of
the active window. This is what the scroll arrows look like:

FILE: sample.c
00038 extern call();

00039 extern meminit();

00040 main()

00041 {

00042 register int i = 0;

00043 int j = 0, k = 0;

00044

00045 meminit();

00046 for (i = 0, i , 0x50000; i++)

00047 {

00048 call(i);

00049 if (i & 1) j += i;

00050 aai[k][k] = j;

00051 if (!(i & 0xFFFF)) k++;

00052 }

scroll up

scroll up

 Manipulating a Window’s Contents

3-27 The Debugger Display

To scroll window contents up or down:

1) Point to the appropriate scroll arrow.

2) Press the left mouse button; continue to press it until the information you’re
interested in is displayed within the window.

3) Release the mouse button when you’re finished scrolling.

You can scroll up/down one line at a time by pressing the mouse button and
releasing it immediately.

In addition to scrolling, the debugger supports the following methods for mov-
ing through a window’s contents.

PAGE UP

The page-up key scrolls up through the window contents, one window length
at a time. You can use CONTROL PAGE UP to scroll up through an array of struc-
tures displayed in a DISP window.

PAGE DOWN

The page-down key scrolls down through the window contents, one window
length at a time. You can use CONTROL PAGE DOWN to scroll down through an
array of structures displayed in a DISP window.

HOME When the FILE window is active, pressing HOME adjusts the window’s con-
tents so that the first line of the text file is at the top of the window. You can’t
use HOME outside of the FILE window.

END When the FILE window is active, pressing END adjusts the window’s contents
so that the last line of the file is at the bottom of the window. You can’t use END

outside of the FILE window.

↑ Pressing this key moves the field cursor up one line at a time.

↓ Pressing this key moves the field cursor down one line at a time.

← In the FILE window, pressing this key scrolls the display left eight characters
at a time. In other windows, moves the field cursor left one field; at the first field
on a line, wraps back to the last fully displayed field on the previous line.

→ In the FILE window, pressing this key scrolls the display right eight characters
at a time. In other windows, moves the field cursor right one field; at the last
field on a line, wraps around to the first field on the next line.

Manipulating a Window’s Contents

 3-28

Editing the data displayed in windows

You can edit the data displayed in the MEMORY, CPU, DISP, and WATCH win-
dows by using an overwrite “click and type” method or by using commands that
change the values. (This is described in detail in Section 7.3, Basic Methods
for Changing Data Values, page 7-4.)

Note:

In the following windows, the “click and type” method of selecting data for edit-
ing—pointing at a line and pressing F9 or the left mouse button—does not
allow you to modify data.

� In the FILE and DISASSEMBLY windows, pressing F9 or the mouse but-
ton sets or clears a breakpoint on any line of code that you select. You can’t
modify text in a FILE or DISASSEMBLY window.

� In the CALLS window, pressing F9 or the mouse button shows the source
for the function named on the selected line.

� In the PROFILE window, pressing F9 has no effect. Clicking the mouse
button in the header displays a different set of data; clicking the mouse but-
ton on an area name shows the code associated with the area.

 Closing a Window

3-29 The Debugger Display

3.7 Closing a Window

The debugger opens various windows on the display according to the debug-
ging mode you select. When you switch modes, the debugger may close some
windows and open others. Additionally, you may choose to open DISP and
WATCH windows and additional MEMORY windows.

Most of the windows remain open—you can’t close them. However, you can
close the CALLS, DISP, WATCH, and additional MEMORY windows. To close
one of these windows:

1) Make the appropriate window active.

2) Press F4 .

Note:

You cannot close the default MEMORY window.

You can also close the WATCH window by using the WR command:

wr

When you close a window, the debugger remembers the window’s size and
position. The next time you open the window, it will have the same size and
position. That is, if you close the CALLS window, then reopen it, it will have the
same size and position as it did before you closed it. Since you can open nu-
merous DISP and MEMORY windows, when you open one, it will occupy the
same position as the last one of that type that you closed.

 3-30

4-1 Chapter Title—Attribute Reference

Entering and Using Commands

The debugger provides you with several methods for entering commands:

� From the command line
� From the pulldown menus (using keyboard combinations or the mouse)
� With function keys
� From a batch file

Mouse use and function key use differ from situation to situation and are de-
scribed throughout this book whenever applicable. This chapter includes spe-
cific rules that apply to entering commands and using pulldown menus. Also
included is information about entering DOS commands and defining your own
command strings.

Some restrictions apply to command entry for VAX and Sun versions of the
simulator. For descriptions of these restrictions, refer to the installation guide.

Topic Page

4.1 Entering Commands From the Command Line 4-2
How to type in and enter commands 4-3
Sometimes, you can’t type a command 4-4
Using the command history 4-5
Clearing the display area 4-5
Recording information from the display area 4-6

4.2 Using the Menu Bar and the Pulldown Menus 4-7
Pulldown menus in the profiling environment 4-8
Using the pulldown menus 4-8
Escaping from the pulldown menus 4-9
Using menu bar selections that don’t have pulldown menus 4-10

4.3 Using Dialog Boxes 4-11
Entering text in a dialog box 4-11

4.4 Entering Commands From a Batch File 4-12
Echoing strings in a batch file 4-13
Controlling command execution in a batch file 4-14

4.5 Defining Your Own Command Strings 4-17

4.6 Entering Operating-System Commands (DOS Only) 4-19
Entering a single command from the debugger command line 4-19
Entering several command from a system shell 4-20
Additional system commands 4-20

Chapter 4

Entering Commands From the Command Line

 4-2

4.1 Entering Commands From the Command Line

The debugger supports a complete set of commands that help you to control
and monitor program execution, customize the display, and perform other
tasks. These commands are discussed in the various sections throughout this
book, as they apply to the current topic. Chapter 11 summarizes all of the de-
bugger commands with an alphabetic reference.

Although there are a variety of methods for entering most of the commands,
all of the commands can be entered by typing them on the command line in
the COMMAND window. Figure 4–1 shows the COMMAND window.

Figure 4–1. The COMMAND Window

COMMAND

>>>

Copyright (c) 1989, 1993, Texas Instruments Incorporated

Loading sample.out

Done

file sample.c

go main

display
area

command
line

The COMMAND window serves two purposes.

� The command line portion of the window provides you with an area for
entering commands. For example, the command line in Figure 4–1 shows
that a GO command was typed in (but not yet entered).

� The display area provides the debugger with a space for echoing com-
mands, displaying command output, or displaying errors and messages
for you to read. For example, the command output in Figure 4–1 shows
the messages that are displayed when you first bring up the debugger and
also shows that a FILE command was entered.

If you enter a command through an alternate method (using the mouse, a
pulldown menu, or function keys), the COMMAND window doesn’t echo
the entered command.

 Entering Commands From the Command Line

4-3 Entering and Using Commands

How to type in and enter commands

You can type a command at almost any time; the debugger automatically
places the text on the command line when you type. When you want to enter
a command, just type—no matter which window is active. You don’t have to
worry about making the COMMAND window active or moving the field cursor
to the command line. When you start to type, the debugger usually assumes
that you’re typing a command and puts the text on the command line (except
under certain circumstances, which are explained on the next page). Com-
mands themselves are not case sensitive, although some parameters (such
as window names) are.

To execute a command that you’ve typed, just press . The debugger then:

1) Echoes the command to the display area,
2) Executes the command and displays any resulting output, and
3) Clears the command line when command execution completes.

Once you’ve typed a command, you can edit the text on the command line with
these keystrokes.

To... Press...

Move back over text without erasing characters CONTROL H or
BACK SPACE

Move forward through text without erasing characters CONTROL L

Move back over text while erasing characters DELETE

Move forward through text while erasing characters SPACE

Insert text into the characters that are already on the INSERT

command line

Note:

� You cannot use the arrow keys to move through or edit text on the com-
mand line.

� Typing a command doesn’t make the COMMAND window the active win-
dow.

� If you press when the cursor is in the middle of text, the debugger trun-
cates the input text at the point where you press .

Entering Commands From the Command Line

 4-4

Sometimes, you can’t type a command

At most times, you can press any alphanumeric or punctuation key on your
keyboard (any printable character); the debugger interprets this as part of a
command and displays the character on the command line. In a few instances,
however, pressing an alphanumeric key is not interpreted as information for
the command line.

� When you’re pressing the ALT key, typing certain letters causes the de-
bugger to display a pulldown menu.

� When a pulldown menu is displayed, typing a letter causes the debugger
to execute a selection from the menu.

� When you’re pressing the CONTROL key, pressing H or L moves the
command-line cursor backward or forward through the text on the com-
mand line.

� When you’re editing a field, typing enters a new value in the field.

� When you’re using the MOVE or SIZE command interactively, pressing
keys affects the size or position of the active window. Before you can enter
any more commands, you must press ESC to terminate the interactive
moving or sizing.

� When you’ve brought up a dialog box, typing enters a parameter value at
the current field in the box. Refer to Section 4.3 on page 4-11 for more in-
formation on dialog boxes.

 Entering Commands From the Command Line

4-5 Entering and Using Commands

Using the command history

The debugger keeps an internal list, or command history , of the commands
that you enter. It remembers the last 50 commands that you entered. If you
want to re-enter a command, you can move through this list, select a command
that you’ve already executed, and re-execute it.

Use these keystrokes to move through the command history.

To... Press...

Repeat the last command that you entered F2

Move forward through the list of executed commands, one by one SHIFT TAB

Move backward through the list of executed commands, one by one TAB

As you move through the command history, the debugger displays the com-
mands, one by one, on the command line. When you see a command that you
want to execute, simply press to execute the command. You can also edit
these displayed commands in the same manner that you can edit new com-
mands.

Clearing the display area

Occasionally, you may want to completely blank out the display area of the
COMMAND window; the debugger provides a command for this:

cls Use the CLS command to clear all displayed information from the display area.
The format for this command is:

cls

Entering Commands From the Command Line

 4-6

Recording information from the display area

The information shown in the display area of the COMMAND window can be
written to a log file. The log file is a system file that contains commands you’ve
entered, their results, and error or progress messages. To record this informa-
tion in a log file, use the DLOG command.

You can execute log files by using the TAKE command. When you use DLOG
to record the information from the COMMAND window display area, the de-
bugger automatically precedes all error or progress messages and command
results with a semicolon to turn them into comments. This way, you can easily
re-execute the commands in your log file by using the TAKE command.

� To begin recording the information shown in the COMMAND window dis-
play area, use:

dlog filename

This command opens a log file called filename that the information is re-
corded into.

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [,{a | w}]

The optional parameters of the DLOG command control how the log file is
created and/or used:

� Creating a new log file. If you use the DLOG command without one of
the optional parameters, the debugger creates a new file that it records the
information into. If you are recording to a log file already, entering a new
DLOG command and filename closes the previous log file and opens a
new one.

� Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
options; you will lose the contents of an existing file if you don’t use the ap-
pend (a) option.

 Using the Menu Bar and the Pulldown Menus

4-7 Entering and Using Commands

4.2 Using the Menu Bar and the Pulldown Menus

In all three of the debugger modes, you’ll see a menu bar at the top of the
screen. The menu selections offer you an alternative method for entering
many of the debugger commands. Figure 4–2 points out the menu bar in a
mixed-mode display. There are several ways to use the selections on the
menu bar, depending on whether the selection has a pulldown menu or not.

Figure 4–2. The Menu Bar in the Basic Debugger Display

Break Watch Memory

DISASSEMBLY CPU

MEMORY

PC 00f00076

R0 00000003

R2 00000007

R4 00000000

R6 00000000

AR0 00001802

AR2 00000000

AR4 00000000

AR6 0000000

SP 00000755

R1 00000005

R3 00000000

R5 00000000

R7 00000000

AR1 00000000

AR3 00000000

AR5 00000000

AR7 00000000

400000 0f2b0000 main: PUSH AR3

400001 080b0014 LDI SP,AR3

400002 02740002 ADDI 2,SP

400003 0f240000 PUSH R4

400004 08640000 LDI 0,R4

400005 15440301 STI R4,*+AR3(1)

400006 15440302 STI R4,*+AR3(2)

400007 62400057 CALL meminit

400008 08640000 LDI 0,R4

 000000

 000004

 000008

 00000c

0000004b

00000043

00000047

00000000

00000040

00000044

00000048

00000000

00000041

00000045

00000049

00000000

00000042

00000046

0000004a

00000000

FILE: sample.c

COMMAND

>>>

Loading sample.out

Done

file sample.c

00037 extern struct zzz *func():

00038 extern call();

00039 extern meminit();

00040 main()

00041 {

00042 register int i = 0;

00043 int j = 0, k = 0;

CALLS

MoDe

1: **UNKNOWN

Run=F5 Step=F8 Next=F10ColorLoad

menu bar

Pin

Several of the selections on the menu bar have pulldown menus; if they could
all be pulled down at once, they’d look like Figure 4–3.

Figure 4–3. All of the Pulldown Menus (Basic Debugger Display)

Load
Load
Reload
Symbols

REstart
ReseT

File

Break
Add
Delete
Reset
List

Watch
Add
Delete
Reset

Color
Load
Save
Config

Border
Prompt

Mode
C (auto)
Asm
Mixed

Memory
Add
Delete
Reset
List
Enable

Fill
Save

Connect
Di sConn

Pin
Connect
Disconnect
List

Note: The Connect and DisConn entries are available for the simulator only.

Using the Menu Bar and the Pulldown Menus

 4-8

Note that the menu bar and associated pulldown menus occupy fixed positions
on the display. Unlike windows, you can’t move, resize, or cover the menu bar
or pulldown menus.

Pulldown menus in the profiling environment

The debugger displays a different menu bar in the profiling environment:

mAp Mark Enable Disable Unmark View Stop–points ProfileLoad

The Load menu corresponds to the Load menu in the basic debugger environ-
ment. The mAp menu provides memory map commands available from the
basic Memory menu. The other entries provide access to profiling commands.

Using the pulldown menus

There are several ways to display the pulldown menus and then execute your
selections from them. Executing a command from a menu is similar to execut-
ing a command by typing it in.

� If you select a command that has no parameters, then the debugger
executes the command as soon as you select it.

� If you select a command that has one or more parameters, the debugger
displays a dialog box when you make your selection. A dialog box offers
you the chance to type in the parameter values for the command.

The following paragraphs describe several methods for selecting commands
from the pulldown menus.

Mouse method 1

1) Point the mouse cursor at one of the appropriate selections in the menu
bar.

2) Press the left mouse button, but don’t release the button.

3) While pressing the mouse button, move the mouse downward until your
selection is highlighted on the menu.

4) When your selection is highlighted, release the mouse button.

 Using the Menu Bar and the Pulldown Menus

4-9 Entering and Using Commands

Mouse method 2

1) Point the cursor at one of the appropriate selections in the menu bar.

2) Click the left mouse button. This displays the menu until you are ready to
make a selection.

 3) Point the mouse cursor at your selection on the pulldown menu.

4) When your selection is highlighted, click the left mouse button.

Keyboard method 1

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

X 3) Press and release the key that corresponds to the highlighted letter of your
selection in the menu.

Keyboard method 2

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

↓ ↑ 3) Use the arrow keys to move up and down through the menu.

4) When your selection is highlighted, press .

Escaping from the pulldown menus

� If you display a menu and then decide that you don’t want to make a selec-
tion from this menu, you can:

� Press ESC

or

� Point the mouse outside of the menu; press and then release the left
mouse button.

� If you pull down a menu and see that it is not the menu you wanted, you
can point the mouse at another entry and press the left mouse button, or
you can use the ← and → keys to display adjacent menus.

Using the Menu Bar and the Pulldown Menus

 4-10

Using menu bar selections that don’t have pulldown menus

These three menu bar selections are single-level entries without pulldown me-
nus:

Run=F5 Step=F8 Next=F10

There are two ways to execute these choices.

1) Point the cursor at one of these selections in the menu bar.

2) Click the left mouse button.

This executes your choice in the same manner as typing in the associated
command without its optional expression parameter.

F5 Pressing this key is equivalent to typing in the RUN command without an ex-
pression parameter.

F8 Pressing this key is equivalent to typing in the STEP command without an ex-
pression parameter.

F10 Pressing this key is equivalent to typing in the NEXT command without an ex-
pression parameter.

 Using Dialog Boxes

4-11 Entering and Using Commands

4.3 Using Dialog Boxes

Many of the debugger commands have parameters. When you execute these
commands from pulldown menus, you must have some way of providing pa-
rameter information. The debugger allows you to do this by displaying a dialog
box that asks for this information.

Entering text in a dialog box

Entering text in a dialog box is much like entering commands on the command
line. For example, the Add entry on the Watch menu is equivalent to entering
the WA command. This command has three parameters:

wa expression [,[label] [, display format]]

When you select Add from the Watch menu, the debugger displays a dialog
box that asks you for this parameter information. The dialog box looks like this:

Label

Expression

Format

Watch Add

<<OK>> <C ancel>

You can enter an expression just as you would if you were to type the WA com-
mand; then press TAB or ↓ . The cursor moves down to the next parameter:

Label

Expression

Format

Watch Add

<<OK>> <C ancel>

MY_VAR

When the dialog box displays more than one parameter, you can use the arrow
keys to move from parameter to parameter. You can omit entries for optional
parameters, but the debugger won’t allow you to skip required parameters.

In the case of the WA command, the two parameters, label and format, are op-
tional. If you want to enter a parameter, you may do so; if you don’t want to use
these optional parameters, don’t type anything in their fields—just continue to
the next parameter.

Using Dialog Boxes / Entering Commands From a Batch File

 4-12

Modifying text in a dialog box is similar to editing text on the command line:

� When you display a dialog box for the first time during a debugging ses-
sion, the parameter fields are empty. When you bring up the same dialog
box again, though, the box displays the last values that you entered. (This
is similar to having a command history.) If you want to use the same value,
just press TAB or ↓ to move to the next parameter.

� You can edit what you type (or values that remain from a previous entry)
in the same way that you can edit text on the command line. See Section
4.1 for more information on editing text on the command line.

When you’ve entered a value for the final parameter, point and click on <OK>
to save your changes, or <Cancel> to discard your changes; the debugger
closes the dialog box and executes the command with the parameter values
you supplied. You can also choose between the <OK> and <Cancel> options
by using the arrow keys and pressing on your desired choice.

4.4 Entering Commands From a Batch File

You can place debugger commands in a batch file and execute the file from
within the debugger environment. This is useful, for example, for setting up a
memory map that contains several MA commands followed by a MAP com-
mand that enables memory mapping.

take Use the TAKE command to tell the debugger to read and execute commands
from a batch file. A batch file can call another batch file; they can be nested
in this manner up to 10 deep. To halt the debugger’s execution of a batch file,
press ESC .

The format for this command is:

take batch filename [, suppress echo flag]

� The batch filename parameter identifies the file that contains commands.

� If you supply path information with the filename, the debugger looks
for the file in the specified directory only.

� If you don’t supply path information with the filename, the debugger
looks for the file in the current directory.

� On PC systems, if the debugger can’t find the file in the current directo-
ry, it looks in any directories that you identified with the D_DIR environ-
ment variable. You can set D_DIR within the DOS environment; the
command for doing this is:

SET D_DIR=pathname;pathname

 Entering Commands From a Batch File

4-13 Entering and Using Commands

This allows you to name several directories that the debugger can
search. If you often use the same directories, it may be convenient to
set D_DIR in your autoexec.bat file or initdb.bat file. On DOS systems,
you can also set D_DIR from within the debugger by using the SYS-
TEM command (see Section 4.6, Entering Operating-System Com-
mands, page 4-19).

� By default, the debugger echoes the commands in the COMMAND win-
dow display area and updates the display as it reads commands from the
batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but
supply a nonzero value, then the debugger behaves in the default
manner.

� If you would like to suppress the echoing and updating, use the value 0
for the suppress echo flag parameter.

Echoing strings in a batch file

When executing a batch file, you can display a string to the COMMAND win-
dow by using the ECHO command. The syntax for the command is:

echo string

This displays the string in the COMMAND window display area.

For example, you may want to document what is happening during the execu-
tion of a certain batch file. To do this, you could use the following line in your
batch file to indicate that you are creating a new memory map for your device:

echo Creating new memory map

(Notice that the string should not be in quotes.)

When you execute the batch file, the following message appears:

.

.
Creating new memory map
.
.

Note that any leading blanks in your string are removed when the ECHO com-
mand is executed.

Entering Commands From a Batch File

 4-14

Controlling command execution in a batch file

In batch files, you can control the flow of debugger commands. You can
choose to execute debugger commands conditionally or set up a looping situa-
tion by using IF/ELSE/ENDIF or LOOP/ENDLOOP, respectively.

� To conditionally execute debugger commands in a batch file, use the
IF/ELSE/ENDIF commands. The syntax is:

if Boolean expression
debugger command
debugger command
.
.
[else
debugger command
debugger command
.
.]
endif

The debugger includes some predefined constants for use with IF. These
constants evaluate to 0 (false) or 1 (true). Table 4–1 shows the constants
and their corresponding tools.

Table 4–1.Predefined Constants for Use With Conditional Commands

Constant Debugger Tool

$$EMU$$ emulator

$$EVM$$ evaluation module

$$SIM$$ simulator

If the Boolean expression evaluates to true (1), the debugger executes all
commands between the IF and ELSE or ENDIF. Note that the ELSE por-
tion of the command is optional. (See Chapter 12 for more information
about expressions and expression analysis.)

 Entering Commands From a Batch File

4-15 Entering and Using Commands

One way you can use these predefined constants is to create an initializa-
tion batch file that works for any debugger tool. This is useful if you are us-
ing, for example, both the emulator and the EVM. To do this, you can set up
the following batch file:

if $$EMU$$
echo Invoking initialization batch file for emulator.
use \c3xhll
take emuinit.cmd
.
.
.
endif

if $$EVM$$
echo Invoking initialization batch file for EVM.
use \c3xhll
take evminit.cmd
.
.
.
endif
.
.
.

In this example, the debugger will execute only the initialization com-
mands that apply to the debugger tool that you invoke.

� To set up a looping situation to execute debugger commands in a batch
file, use the LOOP/ENDLOOP commands. The syntax is:

loop expression
debugger command
debugger command
.
.
endloop

Entering Commands From a Batch File

 4-16

These looping commands evaluate in the same method as in the run
conditional command expression. (See Chapter 12 for more information
about expressions and expression analysis.)

� If you use an expression that is not Boolean, the debugger evaluates
the expression as a loop count. For example, if you wanted to execute
a sequence of debugger commands ten times, you would use the fol-
lowing:

loop 10
runb
.
.
.
endloop

The debugger treats the 10 as a counter and executes the debugger
commands ten times.

� If you use a Boolean expression, the debugger executes the com-
mands repeatedly as long as the expression is true. This type of ex-
pression has one of the following operators as the highest precedence
operator in the expression:

> >= <
<= == !=
&& || !

For example, if you want to trace some register values continuously,
you can set up a looping expression like the following:

loop !0
step
? PC
? AR0
endloop

The IF/ELSE/ENDIF and LOOP/ENDLOOP commands work with the follow-
ing conditions:

� You can use conditional and looping commands in a batch file only.

� You must enter each debugger command on a separate line in the batch
file.

� You can’t nest conditional and looping commands within the same batch
file.

 Defining Your Own Command Strings

4-17 Entering and Using Commands

4.5 Defining Your Own Command Strings

The debugger provides a shorthand method of entering often-used com-
mands or command sequences. This process is called aliasing. Aliasing en-
ables you to define an alias name for the command(s) and then enter the alias
name as if it were a debugger command.

To do this, use the ALIAS command. The syntax for this command is:

alias [alias name [, “command string”]]

The primary purpose of the ALIAS command is to associate the alias name
with the debugger command you’ve supplied as the command string. Howev-
er, the ALIAS command is versatile and can be used in several ways:

� Aliasing several commands. The command string can contain more
than one debugger command—just separate the commands with semico-
lons.

For example, suppose you always began a debugging session by loading
the same object file, displaying the same C source file, and running to a
certain point in the code. You could define an alias to do all these tasks at
once:

alias init,”load test.out;file source.c;go main”

Now you could enter init instead of the three commands listed within the
quote marks.

� Supplying parameters to the command string. The command string
can define parameters that you’ll supply later. To do this, use a percent
sign and a number (%1) to represent the parameter that will be filled in lat-
er. The numbers should be consecutive (%1, %2, %3) unless you plan to
reuse the same parameter value for multiple commands.

For example, suppose that every time you filled an area of memory you
also wanted to display that block in the MEMORY window:

alias mfil,”fill %1, %2, %3;mem %1”

Then you could enter:

mfil 0x014,0x18,0x11112222

The first value (0x014) would be substituted for the first FILL parameter
and the MEM parameter (%1). The second and third values would be sub-
stituted for the second and third FILL parameters (%2 and %3).

� Listing all aliases. To display a list of all the defined aliases, enter the
ALIAS command with no parameters. The debugger will list the aliases
and their definitions in the COMMAND window.

Defining Your Own Command Strings

 4-18

For example, assume that the init and mfil aliases had been defined as
shown in the previous two examples. If you entered:

alias

you’d see:

Alias Command
–––
INIT ––> load test.out;file source.c;go main
MFIL ––> fill %1,%2,%3;mem %1

� Finding the definition of an alias. If you know an alias name but are not
sure of its current definition, enter the ALIAS command with just an alias
name. The debugger will display the definition in the COMMAND window.

For example, if you had defined the init alias as shown in the first example
above, you could enter:

alias init

Then you’d see:

”INIT” aliased as ”load test.out; file source.c;go main”

� Nesting alias definitions. You can include a defined alias name in the
command string of another alias definition. This is especially useful when
the command string would be longer than the debugger command line.

� Redefining an alias. To redefine an alias, re-enter the ALIAS command
with the same alias name and a new command string.

� Deleting aliases. To delete a single alias, use the UNALIAS command:

unalias alias name

To delete all aliases, enter the UNALIAS command with an asterisk
instead of an alias name:

unalias *

Note that the * symbol does not work as a wildcard.

Note:

� Alias definitions are lost when you exit the debugger. If you want to reuse
aliases, define them in a batch file.

� Individual commands within a command string are limited to an expand-
ed length of 132 characters. The expanded length of the command in-
cludes the length of any substituted parameter values.

 Entering Operating-System Commands (DOS Only)

4-19 Entering and Using Commands

4.6 Entering Operating-System Commands (DOS Only)

The debugger provides a simple method for entering DOS commands without
explicitly exiting the debugger environment. To do this, use the SYSTEM com-
mand. The format for this command is:

system [DOS command [, flag]]

The SYSTEM command behaves in one of two ways, depending on whether
or not you supply an operating-system command as a parameter:

� If you enter the SYSTEM command with a DOS command as a parameter,
then you stay within the debugger environment.

� If you enter the SYSTEM command without parameters, the debugger
opens a system shell. This means that the debugger will blank the debug-
ger display and temporarily exit to the operating-system prompt.

Use the first method when you have only one command to enter; use the se-
cond method when you have several commands to enter.

Entering a single command from the debugger command line

If you need to enter only a single DOS command, supply it as a parameter to
the SYSTEM command. For example, if you want to copy a file from another
directory into the current directory, you might enter:

system ”copy a:\backup\sample.c sample.c”

If the DOS command produces a display of some sort (such as a message),
the debugger will blank the upper portion of the debugger display to show the
information. In this situation, you can use the flag parameter to tell the debug-
ger whether or not it should hesitate after displaying the results of the DOS
command. Flag may be a 0 or a 1:

0 The debugger immediately returns to the debugger environment after
the last item of information is displayed.

1 The debugger does not return to the debugger environment until you
press . (This is the default.)

In the example above, the debugger would open a system shell to display the
following message:

1 File(s) copied
Type Carriage Return To Return To Debugger

The message would be displayed until you pressed .

If you wanted the debugger to display the message and then return immediate-
ly to the debugger environment, you could enter the command in this way:

system ”copy a:\backup\sample.c sample.c”,0

Entering Operating-System Commands (DOS Only)

 4-20

Entering several commands from a system shell

If you need to enter several commands, enter the SYSTEM command without
parameters. The debugger will open a system shell and display the DOS
prompt. At this point, you can enter any DOS command.

When you are finished entering commands and are ready to return to the de-
bugger environment, enter:

exit

Note:

Available memory limits the DOS commands that you can enter from a sys-
tem shell. For example, you will not be able to invoke another version of the
debugger.

Additional system commands

The debugger also provides separate commands for changing directories and
for listing the contents of a directory.

cd Use the CHDIR (CD) command to change the current working directory. The
format for this command is:

chdir directory name
or cd directory name

This changes the current directory to the specified directory name. You can
use relative pathnames as part of the directory name. Note that this command
can affect any command whose parameter is a filename (such as the FILE,
LOAD, and TAKE commands).

dir Use the DIR command to list the contents of a directory. The format for this
command is:

dir [directory name]

This command displays a directory listing in the display area of the COMMAND
window. If you use the optional directory name parameter, the debugger dis-
plays a list of the specified directory’s contents. If you don’t use this parameter,
the debugger lists the contents of the current directory.

You can use wildcards as part of the directory name.

5-1 Chapter Title—Attribute Reference

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a
memory map. The memory map tells the debugger which areas of memory it
can and can’t access. Note that the commands described in this chapter can
also be entered by using the Memory pulldown menu.

Topic Page

5.1 The Memory Map: What It Is and Why You Must Define It 5-2
Defining the memory map in a batch file 5-2
Potential memory map problems 5-3

5.2 Sample Memory Maps 5-4

5.3 Identifying Useable Memory Ranges 5-7
Memory mapping with the simulator 5-8

5.4 Enabling Memory Mapping 5-9

5.5 Checking the Memory Map 5-10

5.6 Modifying the Memory Map During a Debugging Session 5-11
Returning to the original memory map 5-12

5.7 Using Multiple Memory Maps for Multiple Target Systems 5-12

5.8 Simulating Serial Ports (Simulator Only) 5-13

5.9 Simulating I/O Space (Simulator Only) 5-13
Connecting an I/O port 5-13
Configuring memory to use serial port simulation 5-15
Disconnecting an I/O port 5-15

5.10 Simulating External Interrupts (SImulator Only) 5-16
Setting up your input file 5-16
Programming the simulator 5-18

Chapter 5

The Memory Map: What It Is and Why You Must Define It

 5-2

5.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and can’t ac-
cess. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger can’t pre-
vent your program from attempting to access nonexistent memory.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger provides a complete set of memory-mapping commands that let you
modify the default memory map or define a new memory map.

You can define the memory map interactively by entering the memory-map-
ping commands while you’re using the debugger. This can be inconvenient be-
cause, in most cases, you’ll set up one memory map before you begin debug-
ging and will use this map for all of your debugging sessions. The easiest meth-
od for defining a memory map is to put the memory-mapping commands in a
batch file.

Defining the memory map in a batch file

There are two methods for defining the memory map in a batch file:

� You can redefine the memory map defined in the initialization batch file.

� You can define a memory map in a separate batch file of your own.

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) It checks to see whether you’ve used the –t debugger option. The –t option
allows you to specify a batch file other than the initialization batch file
shipped with the debugger. If it finds the –t option, the debugger reads and
executes the specified file.

2) If you don’t use the –t option, the debugger looks for the default initializa-
tion batch file called init.cmd. If the debugger finds this file, it reads and
executes the commands.

 The Memory Map: What It Is and Why You Must Define It

5-3 Defining a Memory Map

Potential memory map problems

You may experience these problems if the memory map isn’t correctly defined
and enabled:

� Accessing invalid memory addresses. If you don’t supply a batch file
containing memory-map commands, then the debugger is initially unable
to access any target memory locations. Invalid memory addresses and
their contents are highlighted in the data-display windows. (On color moni-
tors, invalid memory locations, by default, are displayed in red.)

� Accessing an undefined or protected area. When memory mapping is
enabled, the debugger checks each of its memory accesses against the
memory map. If you attempt to access an undefined or protected area, the
debugger displays an error message.

� Loading a COFF file with sections that cross a memory range. Be sure
that the map ranges you specify in a COFF file match those that you define
with the MA command (described on page 5-7). Alternatively, you can
turn memory mapping off during a load by using the MAP OFF command
(see page 5-9).

Sample Memory Maps

 5-4

5.2 Sample Memory Maps

Because you must define a memory map before you can run any programs,
it’s convenient to define the memory map in the initialization batch files.
Figure 5–1 (a), Figure 5–2 (a), and Figure 5–3 (a) show the memory com-
mands that are redefined in the initialization batch file that accompanies the
simulator, emulator, and EVM, respectively. You can use any of the files as they
are, edit them, or create your own memory map batch files.

The MA (map add) commands define valid memory ranges and identify the
read/write characteristics of the memory ranges. The MAP command enables
mapping (note that by default, mapping is enabled when you invoke the de-
bugger). Figure 5–1 (b), Figure 5–2 (b), and Figure 5–3 (b) illustrate the
memory map defined by the default initialization batch file.

Figure 5–1. Sample Memory Map for Use With a ’C3x Simulator

(a) Memory map commands (init.cmd) (b) Memory map for ’C3x local memory

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

0x000000
to 0x000FFF

0x001000
to 0x807FFF

0x808020
to 0x80841F

Internal ROM

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Memory Map Register 2

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved0x808010
to 0x80801F

MA 0x000000,0x1000,ROM
MA 0x808000,0x0010,RAM
MA 0x808020,0x0400,RAM
MA 0x809800,0x0800,RAM
MAP ON

0x808420
to 0x8097FF

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

0x809800
to 0x809FFF

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Internal RAM

0x808000
to 0x80800F Memory Map Register 1

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

0x80A000
to 0xFFFFFF

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

The ’C3x application board can be used as a target system with the ’C3x emu-
lator. Figure 5–2 (page 5-5) shows a sample memory map for the application
board.

 Sample Memory Maps

5-5 Defining a Memory Map

Figure 5–2. Sample Memory Map for Use With a ’C3x Application Board / Emulator

(a) Memory map commands (init.cmd) (b) Memory map for ’C3x local memory

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

0x000000
to 0x0007FF

0x000800
to 0x3FFFFF

0x400000
to 0x47FFFF

0x480000
to 0x7FFFFF

0x800000
to 0x801FFF

0x802000
to 0x803FFF

0x804000
to 0x804FFF

0x805000
to 0x805FF6

0x805FF7
to 0x805FFF

0x806000
to 0x807FFF

EPROMÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

DRAM
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

SRAM1

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

DPRAMÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

DPSEM
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉreserved

’C3x Internal RAM Block 0

’C3x Internal RAM Block 1

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

SRAM0

0x809800
to 0x809BFF

0x809C00
to 0x809FFF

0x80A000
to 0xEFFFFF

0xF00000
to 0xF03FFF

MA 0x000000,0x000800,ROM
MA 0x400000,0x080000,RAM
MA 0x800000,0x002000,RAM
MA 0x804000,0x001000,RAM
MA 0x805ff7,0x000009,RAM
MA 0x808000,0x000010,RAM
MA 0x808020,0x000010,RAM
MA 0x808030,0x000010,RAM
MA 0x808040,0x000010,RAM
MA 0x808050,0x000010,RAM
MA 0x808060,0x000001,RAM
MA 0x808064,0x000001,RAM
MA 0x809800,0x000400,RAM
MA 0x809C00,0x000400,RAM
MA 0xF00000,0x004000,RAM
MAP ON

0x808065
to 0x8097FF

0x808000
to 0x80800F

0x808010
to 0x80801F

0x808020
to 0x80802F

0x808030
to 0x80803F

0x808040
to 0x80804F

0x808050
to 0x80805F

0x808060

0x808061
to 0x808063

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

DMA

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

Timer 0

Timer 1

Serial Port 0

Serial Port 1

XBUSCTL

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

reserved

PBUSCTL0x808064

reserved0xF04000
to 0xFFFFFF

Sample Memory Maps

 5-6

Figure 5–3. Sample Memory Map for Use With a ’C3x EVM

(a) Memory map commands (init.cmd) (b) Memory map for ’C3x local memory

0x000000
to 0x003FFF

0x004000
to 0x803FFF

0x804000
to 0x804FFF

0x805000
to 0x807FFF

0x809800
to 0x809BFF

0x809C00
to 0x809FFF

SRAM
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

Communication Port
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

’C3x Internal RAM Block 0

’C3x Internal RAM Block 1

MA 0x000000,0x004000,RAM
MA 0x804000,0x001000,RAM
MA 0x808000,0x000010,RAM
MA 0x808020,0x000010,RAM
MA 0x808030,0x000010,RAM
MA 0x808040,0x000010,RAM
MA 0x808050,0x000010,RAM
MA 0x808060,0x000001,RAM
MA 0x808064,0x000001,RAM
MA 0x809800,0x000400,RAM
MA 0x809C00,0x000400,RAM
MAP ON

0x808065
to 0x8097FF

0x808000
to 0x80800F

0x808010
to 0x80801F

0x808020
to 0x80802F

0x808030
to 0x80803F

0x808040
to 0x80804F

0x808050
to 0x80805F

0x808060

0x808061
to 0x808063

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

DMA

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

Timer 0

Timer 1

Serial Port 0

Serial Port 1

XBUSCTL

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

PBUSCTL0x808064

0x80A000
to 0xFFFFFF

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

reserved

 Identifying Usable Memory Ranges

5-7 Defining a Memory Map

5.3 Identifying Usable Memory Ranges

ma The debugger’s MA (memory add) command identifies valid ranges of target
memory. The syntax of the MA command is:

ma address, length, type

� The address parameter defines the starting address of a range. This pa-
rameter can be an absolute address, any C expression, the name of a C
function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the COMMAND window display
area:

Conflicting map range

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory,
Use this keyword as the type
parameter

Read-only memory R or ROM
Write-only memory W or WOM
Read/write memory R|W or RAM
No-access memory PROTECT
Input port IPORT
Output port OPORT
Input/output port IOPORT

Identifying Usable Memory Ranges

 5-8

Notes:

� The debugger caches memory that is not defined as a port type (IPORT,
OPORT, or IOPORT). For ranges that you don’t want cached, be sure
to map them as ports.

� When you are using the simulator, you can use the parameter values
IPORT, OPORT, and IOPORT to simulate I/O ports. See Section 5.9,
Simulating I/O Space.

� Be sure that the map ranges that you specify in a COFF file match those
that you define with the MA command. Moreover, a command sequence
such as:

ma x,y,ram; ma x+y,z,ram

doesn’t equal

ma x,y+z,ram

If you were planning to load a COFF block that spanned the length of
y + z, you should use the second MA command example. Alternatively,
you could turn memory mapping off during a load by using the MAP OFF
command.

Memory mapping with the simulator

Unlike the emulator and EVM, the ’C3x simulator has memory cache capabili-
ties that allow you to allocate as much memory as you need. However, to use
memory cache capabilities effectively with the ’C3x, do not allocate more than
20K words of memory in your memory map. For example, the following
memory map allocates 64K words of ’C3x program memory.

Example 5–1.Sample Memory Map for the TMS320C3x Using Memory Cache Capabilities

MA 0,0,R|W
MA 0x5000,0x5000,R|W
MA 0xa000,0x5000,R|W
MA 0xf000,0x5000,R|W

The simulator creates temporary files in a separate directory on your disk. For
example, when you enter an MA (memory add) command, the simulator
creates a temporary file in the root directory of your current disk. Therefore,
if you are currently running your simulator on the C drive, temporary files are
placed in the C:\ directory. This prevents the processor from running out of
memory space while you are executing the simulator.

 Identifying Usable Memory Ranges / Enabling Memory Mapping

5-9 Defining a Memory Map

Note:

If you execute the simulator from a floppy drive (for example, drive A), the
temporary files will be created in the A:\ directory.

All temporary files are deleted when you leave the simulator via the QUIT com-
mand. If, however, you exit the simulator with a soft reboot of your computer,
the temporary files will not be deleted; you must delete these files manually.
(Temporary files usually have numbers for names.)

Your memory map is restricted only by your PC’s capabilities. As a result, there
should be sufficient free space on your disk to run any memory map you want
to use. If you use the MA command to allocate 20K words (80K bytes) of
memory in your memory map, then your disk should have at least 80K bytes
of free space available. To do this, you can enter:

ma 0x80a000, 0x5000, ram

5.4 Enabling Memory Mapping

map By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to explicitly enable or disable memory. You can use
the MAP command to do this; the syntax for this command is:

map on
or map off

Note that disabling memory mapping can cause bus fault problems in the tar-
get because the debugger may attempt to access nonexistent memory.

Note:

When memory mapping is enabled, you cannot:

� Access memory locations that are not defined by an MA command.

� Modify memory areas that are defined as read only or protected.

If you attempt to access memory in these situations, the debugger displays
this message in the COMMAND window display area:

Error in expression

Checking the Memory Map

 5-10

5.5 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML command.
The syntax for this command is:

ml

The ML command lists the starting address, ending address, and read/write
characteristics of each defined memory range. For example, if you’re using the
default memory map for the emulator and you enter the ML command, the de-
bugger displays this:

starting
address

ending
address

Memory Range Attributes
00000000 – 000007ff READ
00400000 – 0047ffff READ WRITE
00800000 – 00801fff READ WRITE
00804000 – 00804fff READ WRITE
00805ff7 – 00805fff READ WRITE
00808000 – 0080800f READ WRITE
00808020 – 0080802f READ WRITE
00808030 – 0080803f READ WRITE
00808040 – 0080804f READ WRITE
00808050 – 0080805f READ WRITE
00808060 – READ WRITE
00808064 – READ WRITE
00809800 – 00809bff READ WRITE

 Modifying the Memory Map During a Debugging Session

5-11 Defining a Memory Map

5.6 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory de-
lete) command. The syntax for this command is:

md address

The address parameter identifies the starting address of the range of memory.
If you supply an address that is not the starting address of a range, the debug-
ger displays this error message in the COMMAND window display area:

Specified map not found

Note:

If you are using the simulator and want to use the MD command to remove
a simulated I/O port, you must first disconnect the port with the MI command.
Refer to Section 5.9, page 5-13.

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, length, type

The MA command is described in detail on page 5-7.

Modifying the Memory Map / Using Multiple Memory Maps for Multiple Target Systems

 5-12

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you had set up your memory map in a batch file
named mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

5.7 Using Multiple Memory Maps for Multiple Target Systems

If you’re debugging multiple applications, you may need a memory map for
each target system. Here’s the simplest method for handling this situation.

Step 1: Let the initialization batch file define the memory map for one of your
applications.

Step 2: Create a separate batch file that defines the memory map for the
additional target system. The filename is unimportant, but for the
purposes of this example, assume that the file is named filename.x.
The general format of this file’s contents should be:

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping

(Of course, you can include any other appropriate commands in this
batch file.)

Step 3: Invoke the debugger as usual.

Step 4: The debugger reads initialization batch file as usual. Before you be-
gin debugging, read in the commands from the new batch file:

take filename.x

This redefines the memory map for the current debugging session.

You can also use the –t option instead of at the TAKE command
when you invoke the debugger. The –t option allows you to specify
a new batch file to be used instead of the default initialization batch
file.

 Simulating Serial Ports (Simulator Only) / Simulating I/O Space (Simulator Only)

5-13 Defining a Memory Map

5.8 Simulating Serial Ports (Simulator Only)

The simulator supports serial port simulation with the global port control regis-
ter, the FSX/DX/CLKX port control register, and the FSR/DR/CLKR port con-
trol register.

The simulator supports serial port I/O transfers on a limited basis. Because the
simulator does not support any external signals, you can simulate serial port
operations only by using the internal serial clocks. You must also enable the
DR and DX pins as the serial receive pin and serial transmit pin, respectively.

To enable the internal clocks for both transmit and receive operations, you
must ensure that the XCLKSRCE and RCLKSRCE bits of the global port con-
trol register are set to 1. To enable the DX and DR pins for serial transmit and
receive, set both the DXFUNC bit (in the FSX port control register) and the
DRFUNC bit (in the FSR port control register) to 1.

5.9 Simulating I/O Space (Simulator Only)

In addition to adding memory ranges to the memory map, you can use the MA
command to add I/O ports to the memory map. To do this, use IPORT (input
port), OPORT (output port), or IOPORT (input/output port) as the memory
type. Then, you can use the MC command to connect a port to an input or out-
put file. This simulates external I/O cycle reads and writes by allowing you to
read data in from a file and/or write data out to a file.

Connecting an I/O port

mc The MC (memory connect) command connects IPORT, OPORT, or IOPORT
to an input or output file. Before you can connect the port, you must add it to
the memory map with the MA command. The syntax for this command is:

mc port address, filename, {READ | WRITE}

� The port address parameter defines the address of the I/O port. This pa-
rameter can be an absolute address, any C expression, the name of a C
function, or an assembly language label.

� The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist, or the MC command will fail.

� The final parameter is specified as READ or WRITE and defines how the
file will be used (for input or output, respectively).

Simulating I/O Space (Simulator Only)

 5-14

The file is accessed as an LDI or STI instruction accesses the associated port
address. Any port in I/O space can be connected to a file. A maximum of one
input and one output file can be connected to a single port; multiple ports can
be connected to a single file. Memory-mapped ports can also be connected
to files; any instruction that reads or writes to the memory-mapped port will
read or write to the associated file.

Note:

When using the MS-DOS version of the simulator, you can connect a maxi-
mum of 15 ports.

Example 5–2 shows how an input port can be connected to an input file named
in.dat.

Example 5–2.Connecting an Input Port to an Input File

Assume that the file in.dat contains words of data in hexadecimal format,
one per line, like this:

0x0A000000
0x10000000
0x20000000

.

.

.

These two debugger instructions set up and connect an input port:

MA 0x50,0x1,IPORT Configure port address 50h
as an input port

MC 0x50,in.dat,READ Open file in.dat and
connect to port address 50h

Assume that this ’C3x instruction is part of your ’C3x program. This reads
the data from the file in.dat.

LDI @50h,R0 LDI instruction reads from the file

 Simulating I/O Space (Simulator Only)

5-15 Defining a Memory Map

Configuring memory to use serial port simulation

In order to use the serial port simulation, you must configure memory with the
MA and MC commands. The following example adds the transmit and receive
registers to the memory map and then connects their input and output to a file:

Example 5–3. Adding Serial Port 0 Transmit and Receive Registers; Connecting Their
Input and Output to a File

ma 0x808020,0x27,RAM ;Configure all control registers
ma 0x808048,0x1,OPORT ;Configure DTR as output port
ma 0x80804C,0x1,IPORT ;Configure DRR as input port
ma 0x808050,0x350,RAM ;Configure other MMR registers
mc 0x808048,xdat,WRITE ;Open file xdat and connect to port address

;0x808048h
mc 0x80804C,rdat,READ ;Open file rdat and connect to port address

;0x80804C

The following commands configure the global port control, FSX/DX/CLKX port
control register, and FSR/DR/CLKR port control register of serial port 0 for a
8-bit transmit and receive operations:

?*0x808040=0x000000C0
?*0x808042=0x00000010
?*0x808043=0x00000010

The input and output file formats for the standard serial port operation require
one hexadecimal number per line. The following is an acceptable format for
an input file to the standard serial port:

0x00000000
0xA4450000
0x099F0000
 .
 .
 .

Disconnecting an I/O port

Before you can use the MD command to delete a port from the memory map,
you must use the MI command to disconnect the port.

mi The MI (memory disconnect) command disconnects a file from an I/O port. The
syntax for this command is:

mi port address, {READ | WRITE}

The port address identifies the port that will be closed. The read/write charac-
teristics must match the parameter used when the port was connected.

Simulating External Interrupts (Simulator Only)

 5-16

5.10 Simulating External Interrupts (SImulator Only)

The ’C3x simulator allows you to simulate and monitor external interrupt
signals and to specify at what clock cycle you want an interrupt to occur. To do
this, you create a data file and connect it to one of the four interrupt pins,
INT0–INT3.

Note:

The time interval is expressed as a function of CPU clock cycles. Simulation
begins at the first clock cycle.

Setting up your input file

In order to simulate interrupts, you must first set up an input file that lists inter-
rupt intervals. Your file must contain a clock cycle in the following format:

clock cycle... [(clock cycle...) rpt {n | EOS}]

� The clock cycle parameter represents the CPU clock cycle where you
want an interrupt to occur.

You can have two types of CPU clock cycles:

� Absolute . To use an absolute clock cycle, your cycle value must rep-
resent the actual CPU clock cycle where you want to simulate an inter-
rupt. For example:

12 34 56

Interrupts are simulated at the 12th, 34th, and 56th CPU clock cycles.
Notice that no operation is done to the clock cycle value; the interrupt
occurs exactly as the clock cycle value is written.

� Relative . You can also select a clock cycle that is relative to the time at
which the last event occurred. For example:

12 +34 55

In this example, a total of three interrupts are simulated at the 12th,
46th (12+34), and 55th CPU clock cycles. A plus sign (+) before a
clock cycle adds that value to the total clock cycles preceding it.
Notice that you can mix both relative and absolute values in your input
file.

 Simulating External Interrupts (Simulator Only)

5-17 Defining a Memory Map

� The rpt {n | EOS} parameter is optional and represents a repetition value.

You can have two forms of repetition to simulate interrupts:

� Repetition on a fixed number of times . You can format your input
file to repeat a particular pattern for a fixed number of times. For
example:

5 (+10 +20) rpt 2

The values inside of the parenthesis represent the portion that is
repeated. Therefore, an interrupt is simulated at the 5th CPU cycle,
then the15th (5+10), 35th (15+20), 45th (35+10), and 65th (45+20)
CPU clock cycles.

Note that n is a positive integer value.

� Repetition to the end of simulation . To repeat the same pattern
throughout the simulation, add the string EOS to the line. For example:

10 (+5 +20) rpt EOS

Interrupts are simulated at the 10th CPU cycle, then the 15th (10+5),
35th (15+20), 40th (35+5), 60th (40+20), 65th (60+5), and 85th
(65+20) CPU cycles, continuing in that pattern until the end of
simulation.

Simulating External Interrupts (Simulator Only)

 5-18

Programming the simulator

After you have created your input file, you can use debugger commands to:

� Connect the interrupt pin to your input file
� List the interrupt pins
� Disconnect the interrupt pin from your input file

Use these commands as described below, or use them from the PIN pulldown
menu.

pinc To connect your input file to the interrupt pin, use the following command:

pinc pinname, filename

� The pinname parameter identifies the pin and must be one of the four ex-
ternal interrupt pins (INT0–INT3).

� The filename parameter is the name of your input file.

Example 5–4 shows you how to connect your input file by using the PINC com-
mand.

Example 5–4.Connecting the Input File With the PINC Command

Suppose you want to simulate external interrupts at the 12th, 34th, 56th,
and 89th clock cycles.

First, create a input file with an arbitrary name such as myfile that contains
the following line:

12 34 56 89

Then use the PINC command in the pin pulldown menu to connect the in-
put file to the INT2 pin.

pinc myfile, int2 Connects your data file
to the specific interrupt pin

This command connects myfile to the INT2 pin. As a result, the debugger
simulates an INT2 external interrupt at the 12th, 34th, 56th, and 89th clock
cycles.

 Simulating External Interrupts (Simulator Only)

5-19 Defining a Memory Map

pinl To verify that your input file is connected to the correct pin, use the PINL
command. The syntax for this command is:

pinl

The PINL command displays all of the unconnected pins first, followed by the
connected pins. For a connected pin, the simulator displays the name of the
pin and the absolute pathname of the file in the COMMAND window.

COMMAND

>>>

INT0 NULL

INT1 NULL

INT3 NULL

INT2 /320hll/myfile

PIN FILENAME
~~~~~~~~~~~~~~~~~~~~~~~~~~~

When you want to connect another file to an interrupt pin, the PINL command
is useful for looking up an unconnected pin.

pind To end the interrupt simulation, you must disconnect the pin. You can do this
with the following command:

pind pinname

The pinname parameter identifies the interrupt pin and must be one of the four
interrupt pins ( INT0–INT3 ). The PIND command detaches the file from the
interrupt pin. After executing this command, you can connect another file to the
same pin.



 5-20



6-1  Chapter Title—Attribute Reference

Loading, Displaying, and
Running Code

The main purpose of a debugging system is to allow you to load and run your
programs in a test environment. This chapter tells you how to load your pro-
grams into the debugging environment, run them on the target system, and
view the associated source code. Many of the commands described in this
chapter can also be executed from the Load pulldown menu.

Topic Page

6.1 Code-Display Windows: 6-2
Viewing Assembly Language Code, C Code, or Both
Selecting a debugging mode 6-3

6.2 Displaying Your Source Programs (or Other Text Files) 6-4
Displaying assembly language code 6-4
Modifying assembly language code 6-5
Additional information about modifying assembly language code 6-7
Displaying C code 6-8
Displaying other text files 6-9

6.3 Loading Object Code 6-10
Loading code while invoking the debugger 6-10
Loading code after invoking the debugger 6-10

6.4 Where the Debugger Looks for Source Files 6-11

6.5 Running Your Programs 6-12
Defining the starting point for program execution 6-12
Running code 6-13
Single-stepping through code 6-14
Running code while disconnected from the target 6-16
Running code conditionally 6-17

6.6 Halting Program Execution 6-18

6.7 Benchmarking 6-19

Chapter 6



Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

 6-2

6.1 Code-Display Windows:
Viewing Assembly Language Code, C Code, or Both

The debugger has three code-display windows:

� The DISASSEMBLY window displays the reverse assembly of program
memory contents.

� The FILE window displays any text file; its main purpose is to display C
source files.

� The CALLS window identifies the current function (when C code is run-
ning).

You can view code in several different ways. The debugger has three different
code displays that are associated with the three debugging modes. The de-
bugger’s selection of the appropriate display is based on two factors:

� The mode you select, and

� Whether your program is currently executing assembly language code or
C code.

Here’s a summary of the modes and displays; for a complete description of the
three debugging modes, refer to Section 3.1, Debugging Modes and Default
Displays (page 3-2).

Use this mode To view
The debugger uses these
code-display windows

assembly mode assembly language code only
(even if your program is 
executing C code)

DISASSEMBLY

auto mode assembly language code 
(when that’s what your 
program is running)

DISASSEMBLY

auto mode C code only
(when that’s what your 
program is running)

FILE
CALLS

mixed mode both assembly language and
C code

DISASSEMBLY
FILE
CALLS

You can switch freely between the modes. If you choose auto mode, then the
debugger displays C code or  assembly language code, depending on the type
of code that is currently executing.



 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

6-3  Loading, Displaying, and Running Code

Selecting a debugging mode

When you first invoke the debugger, it automatically comes up in auto mode.
You can then choose assembly or mixed mode. There are several ways to do
this.

The Mode pulldown menu provides an easy method for
switching modes. There are several ways to use the
pulldown menus; here’s one method.

1) Point to the menu name.

2) Press the left mouse button; do not release the button. Move the mouse
down the menu until your choice is highlighted.

3) Release the mouse button.

For more information about the pulldown menus, refer to Section 4.2, Using
the Pulldown Menus, on page 4-7.

F3 Pressing this key causes the debugger to switch modes in this order:

auto assembly mixed

Enter any of these commands to switch to the desired debugging mode:

c Changes from the current mode to auto mode.

asm Changes from the current mode to assembly mode.

mix Changes from the current mode to mixed mode.

If the debugger is already in the desired mode when you enter a mode com-
mand, then the command has no effect.

C

A

Mixed

sm

 (auto)
MoDe



Displaying Your Own Source Programs (or Other Text Files)

 6-4

6.2 Displaying Your Source Programs (or Other Text Files)

The debugger displays two types of code:

� It displays assembly language code  in the DISASSEMBLY window in
auto, assembly, or mixed mode.

� It displays C code  in the FILE window in auto and mixed modes.

The DISASSEMBLY and FILE windows are primarily intended for displaying
code that the PC points to. By default, the FILE window displays the C source
for the current function (if any), and the DISASSEMBLY window shows the cur-
rent disassembly.

Sometimes it’s useful to display other files or different parts of the same file;
for example, you may want to set a breakpoint at an undisplayed line. The DIS-
ASSEMBLY and FILE windows are not large enough to show the entire con-
tents of most assembly language and C files, but you can scroll through the
windows. You can also tell the debugger to display specific portions of the dis-
assembly or C source.

Displaying assembly language code

The assembly language code in the DISASSEMBLY window is the reverse as-
sembly of memory contents. (This code doesn’t come from any of your text
files or from the intermediate assembly files produced by the compiler.)

MEMORY
00001c 6a07ffea

00001d 6a00ffff

00001e 0f2b0000

00001f 080b0014

000020 6a000015

000021 08400b02

00001c 6a07ffea BN main+7 (0xf00007)

00001d 6a00ffff BU main+29 (0xf0001d)

00001e 0f2b0000 call: PUSH AR3

00001f 080b0014 LDI SP,AR3

000020 6a000015 BU call+24 (0xf00036)

000021 08400b02 LDI *–AR3(2),R0

DISASSEMBLY

addresses memory contents
(object code)

disassembly of object
code in memory



 Displaying Your Own Source Programs (or Other Text Files)

6-5  Loading, Displaying, and Running Code

When you invoke the debugger, it comes up in auto mode. If you load an object
file when you invoke the debugger, then the DISASSEMBLY window displays
the reverse assembly of the object file that’s loaded into memory. If you don’t
load an object file, the DISASSEMBLY window shows the reverse assembly
of whatever happens to be in memory.

In assembly and mixed modes, you can use these commands to display a dif-
ferent portion of code in the DISASSEMBLY window.

dasm Use the DASM command to display code beginning at a specific point. The
syntax for this command is:

dasm address
or dasm function name

This command modifies the display so that address or function name is dis-
played within the DISASSEMBLY window. The debugger continues to display
this portion of the code until you run a program and halt it.

addr Use the ADDR command to display assembly language code beginning at a
specific point. The syntax for this command is:

addr address
or addr function name

In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the DIS-
ASSEMBLY window. In mixed mode, ADDR affects both the DISASSEMBLY
and FILE windows.

Modifying assembly language code

You can modify the code in the disassembly window on a statement-by-state-
ment basis. The method for doing this is called patch assembly. Patch assem-
bly provides a simple way to temporarily correct minor problems by allowing
you to change individual statements and instruction words.

You can patch-assemble code by using a command or by using the mouse.

patch Use the PATCH command to identify the address of the statement you want
to change and the new statement you want to use at that address. The format
for this command is:

patch address, assembly language statement



Displaying Your Own Source Programs (or Other Text Files)

 6-6

For patch assembly, use the right  mouse button instead of the left. (Clicking
the left mouse button sets a software breakpoint.)

1) Point to the statement that you want to modify.

2) Click the right button. The debugger will open a dialog box so that you can
enter the new statement. The address field will already be filled in; clicking
on the statement defines the address. The statement field will already be
filled in with the current statement at that address (this is useful when only
minor edits are necessary).

Patch assembly may, at times, cause undesirable side effects:

� Patching a multiple-word instruction with an instruction of lesser length will
leave “garbage” or an unwanted new instruction in the remaining old
instruction fragment. This fragment must be patched with either a valid
instruction or a NOP, or else unpredictable results may occur when run-
ning code.

� Substituting a larger instruction for a smaller one will partially or entirely
overwrite the following instruction; you will lose the instruction and may be
left with another fragment.

If you want to insert a large amount of new code or if you want to skip over a
section of code, you can use a different patch assembly technique:

� To insert a large section of new code, patch a branch instruction to go to
an area of memory not currently in use. Using the patch assembler, add
new code to this area of memory and branch back to the statement follow-
ing the initial branch.

� To skip over a portion of code, patch a branch instruction to go beyond that
section of code.

The patch assembler changes only the disassembled assembly
language code—it does not change your source code. After
determining the correct solution to problems in the disassembly, edit
your source file, recompile or reassemble it, and reload the new
object file into the debugger.



 Displaying Your Own Source Programs (or Other Text Files)

6-7  Loading, Displaying, and Running Code

Additional information about modifying assembly language code

When using patch assembly to modify code in the disassembly window, keep
these things in mind:

� Directives.  You cannot use directives (such as .global or .word).

� Expressions.  You can use constants, but you cannot use arithmetic
expressions. For example, an expression like 12 + 33 is not valid in patch
assembly, but a constant such as 12 is allowed.

� Labels.  You cannot define labels. For example, a statement such as the
following is not allowed:

LOOP: B LOOP

However, an instruction can refer to a label, as long as it is defined in a
COFF file that is already loaded.

� Constants.  You can use hexadecimal, octal, decimal, and binary
constants. The syntax to input constants is the same as that for the DSP
assembler. (Refer to the TMS320 Floating-Point DSP Assembly
Language Tools User’s Guide.)

� Parallel instructions.  You can use parallel instructions. The syntax of
these instructions is the same as that for the DSP assembler. (Refer to the
TMS320 Floating-Point DSP Assembly Language Tools User’s Guide.)

� Error messages. The error messages for the patch assembler are the
same as the corresponding DSP assembler error messages. Refer to the
TMS320 Floating-Point DSP Assembly Language Tools User’s Guide for
a detailed list of these messages.



Displaying Your Own Source Programs (or Other Text Files)

 6-8

Displaying C code

Unlike assembly language code, C code isn’t reconstructed from memory con-
tents—the C code that you view is your original C source. You can display C
code explicitly or implicitly:

� You can force the debugger to show C source by entering a FILE, FUNC,
or ADDR command.

� In auto and mixed modes, the debugger automatically opens a FILE win-
dow if you’re currently running C code.

These commands are valid in C and mixed modes.

file Use the FILE command to display the contents of any text file. The syntax for
this command is:

file filename

This uses the FILE window to display the contents of filename. The debugger
continues to display this file until you run a program and halt in a C function.
Although this command is most useful for viewing C code, you can use the
FILE command for displaying any text file. You can view only one text file at
a time. You can also access this command from the Load pulldown menu.

(Note that displaying a file doesn’t  load that file’s object code. If you want to
be able to run the program, you must load the file’s associated object code as
described in Section 6.3 on page 6-10.)

func Use the FUNC command to display a specific C function. The syntax for this
command is:

func function name
or func address

FUNC modifies the display so that function name or address is displayed with-
in the window. If you supply an address instead of a function name, the FILE
window displays the function containing address and places the cursor at that
line.

Note that FUNC works similarly to FILE, but you don’t need to identify the name
of the file that contains the function.



 Displaying Your Own Source Programs (or Other Text Files)

6-9  Loading, Displaying, and Running Code

addr Use the ADDR command to display C code beginning at a specific point. The
syntax for this command is:

addr address
or addr function name

In a C display, ADDR works like the FUNC command, positioning the code
starting at address or at function name as the first line of code in the FILE win-
dow. In mixed mode, ADDR affects both the FILE and DISASSEMBLY win-
dows.

Whenever the CALLS window is open, you can use the mouse or function keys
to display a specific C function. This is similar to the FUNC or ADDR command
but applies only to the functions listed in the CALLS window.

1) In the CALLS window, point to the name of C function.

2) Click the left mouse button.

(If the CALLS window is active, you can also use the arrow keys and F9  to
display the function; see the CALLS window discussion on page 3-9 for de-
tails.)

Displaying other text files

The DISASSEMBLY window always displays the reverse assembly of memory
contents, no matter what is in memory.

The FILE window is primarily for displaying C code, but you can use the FILE
command to display any text file within the FILE window. You may, for example,
wish to examine system files such as autoexec.bat or an initialization batch file.
You can also view your original assembly language source files in the FILE
window.

You are restricted to displaying files that are 65,518 bytes long or less.



Loading Object Code

 6-10

6.3 Loading Object Code
In order to debug a program, you must load the program’s object code into
memory. You can do this as you’re invoking the debugger, or you can do it after
you’ve invoked the debugger. (Note that you create an object file by compiling,
assembling, and linking your source files; see Section 1.4, Preparing Your Pro-
gram for Debugging, on page 1-10.)

Loading code while invoking the debugger

You can load an object file when you invoke the debugger (this has the same
effect as using the debugger’s LOAD command). To do this, enter the ap-
propriate debugger-invocation command along with the name of the object
file.

If you want to load a file’s symbol table only, use the –s option (this has the
same effect as using the debugger’s SLOAD command). To do this, enter the
appropriate debugger-invocation command along with the name of the object
file and specify –s.

Loading code after invoking the debugger

After you invoke the debugger, you can use one of three commands to load
object code and/or the symbol table associated with an object file. Use these
commands as described below, or use them from the Load pulldown menu.

load Use the LOAD command to load both an object file and its associated symbol
table. In effect, the LOAD command performs both a RELOAD and an SLOAD.
The format for this command is:

load object filename

If you don’t supply an extension, the debugger will look for filename.out.

reload Use the RELOAD command to load only an object file without  loading its
associated symbol table. This is useful for reloading a program when memory
has been corrupted. The format for this command is:

reload  [object filename]

If you enter the RELOAD command without specifying a filename, the debug-
ger reloads the file that you loaded last.

sload Use the SLOAD command to load only a symbol table. The format for this com-
mand is:

sload object filename

SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point.



 Where the Debugger Looks for Source Files

6-11  Loading, Displaying, and Running Code

6.4 Where the Debugger Looks for Source Files

Some commands (FILE, LOAD, RELOAD, and SLOAD) expect a filename as
a parameter. If the filename includes path information, the debugger uses the
file from the specified directory and does not search for the file in any other di-
rectory. If you don’t supply path information, though, the debugger must
search for the file. The debugger first looks for these files in the current directo-
ry. You may, however, have your files in several different directories.

� If you’re using LOAD, RELOAD, or SLOAD, you have only two choices for
supplying the path information:

� Specify the path as part of the filename.

cd � Alternatively, you can use the CD command to change the current di-
rectory from within the debugger. The format for this command is:

cd directory name

� If you’re using the FILE command, you have several options:

� Within the DOS environment, you can name additional directories with
the D_SRC environment variable. The format for doing this is:

SET D_SRC=pathname;pathname

This allows you to name several directories that the debugger can
search. If you use the same directories often, it may be convenient to
set the D_SRC environment variable in your autoexec.bat or in-
itdb.bat file. If you do this, then the list of directories is always available
when you’re using the debugger.

� When you invoke the debugger, you can use the – i option to name
additional source directories for the debugger to search. The format
for this option is –i pathname.

You can specify multiple pathnames by using several –i options (one
pathname per option). The list of source directories that you create
with –i options is valid until you quit the debugger.

use � Within the debugger environment, you can use the USE command to
name additional source directories. The format for this command is:

use directory name

You can specify only one directory at a time.

In all cases, you can use relative pathnames such as ..\csource or ..\..\code.
The debugger can recognize a cumulative total of 20 paths specified with
D_SRC, –i, and USE.



Running Your Programs

 6-12

6.5 Running Your Programs

To debug your programs, you must execute them on one of the three ’C3x de-
bugging tools (emulator, evaluation module, or simulator). The debugger pro-
vides two basic types of commands to help you run your code:

� Basic run commands  run your code on the target system without updat-
ing the display until you explicitly halt execution. There are several ways
to halt execution:

� Set a breakpoint.
� When you issue a run command, define a specific stopping point.
� Press ESC .
� Press the left mouse button.

� Single-step  commands execute assembly language or C code, one
statement at time, and update the display after each execution.

Defining the starting point for program execution

All run and single-step commands begin executing from the current PC (pro-
gram counter). When you load an object file, the PC is automatically set to the
starting point for program execution. You can easily identify the current PC by:

� Finding its entry in the CPU window

or
� Finding the appropriately highlighted line in the FILE or DISASSEMBLY

window. To do this, execute one of these commands:

dasm PC
or addr PC
Sometimes you may want to modify the PC to point to a different position in
your program. There are two ways to do this:

rest If you executed some code and would like to rerun the program from the
original program entry point, use the RESTART (REST) command. The
format for this command is:

restart
or rest

Note that you can also access this command from the Load pulldown
menu.

?/eval � You can directly modify the PC’s contents with one of these commands:

?PC=new value
or eval pc = new value

After halting execution, you can continue from the current PC by reissuing any
of the run or single-step commands.



 Running Your Programs

6-13  Loading, Displaying, and Running Code

Running code

The debugger supports several run commands.

run The RUN command is the basic command for running an entire program. The
format for this command is:

run [expression]

The command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press ESC  or the left mouse button.

� If you supply a logical or relational expression, this becomes a conditional
run (see page 6-17).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, then updates the display.

go Use the GO command to execute code up to a specific point in your program.
The format for this command is:

go [address]

If you don’t supply an address  parameter, then GO acts like a RUN command
without an expression  parameter.

ret The RETURN (RET) command executes the code in the current C function
and halts when execution returns to its caller. The format for this command is:

return
or ret

Breakpoints do not affect this command, but you can halt execution by press-
ing ESC  or the left mouse button.

runb Use the RUNB (run benchmark) command to execute a specific section of
code and count the number of clock cycles consumed by the execution. The
format for this command is:

runb

Using the RUNB command to benchmark code is a multistep process, de-
scribed in Section 6.7, Benchmarking, on page 6-19.

F5 Pressing this key runs code from the current PC. This is similar to entering a
RUN command without an expression  parameter.



Running Your Programs

 6-14

Single-stepping through code

Single-step execution is similar to running a program that has a breakpoint set
on each line. The debugger executes one statement, updates the display, and
halts execution. (You can supply a parameter that tells the debugger to single-
step more than one statement; the debugger updates the display after each
statement.) You can single-step through assembly language code or C code.

The debugger supports several commands for single-stepping through a pro-
gram. Command execution may vary, depending on whether you’re single-
stepping through C code or assembly language code.

Note:

The single-stepping debugger commands (STEP, CSTEP, and NEXT) turn
off the global interrupt bit GIE and prevent stepping through an interrupt ser-
vice routine. If you want to step into an interrupt service routine, set a break-
point in the interrupt service routine and use one of the run commands.

Each of the single-step commands has an optional expression parameter that
works like this:

� If you don’t supply an expression, the program executes a single state-
ment, then halts.

� If you supply a logical or relational expression, this becomes a conditional
single-step execution (see page 6-17).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger single-steps count  C or assem-
bly language statements (depending on the type of code you’re in).

step Use the STEP command to single-step through assembly language or C code.
The format for this command is:

step [expression]

If you’re in C code, the debugger executes one C statement at a time. In as-
sembly or mixed mode, the debugger executes one assembly language state-
ment at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.



 Running Your Programs

6-15  Loading, Displaying, and Running Code

cstep The CSTEP command is similar to STEP, but CSTEP always single-steps in
terms of a C statement. If you’re in C code, STEP and CSTEP behave identi-
cally. In assembly language code, however, CSTEP executes all assembly
language statements associated with one C statement before updating the
display. The format for this command is:

cstep [expression]

next
cnext

The NEXT and CNEXT commands are similar to the STEP and CSTEP com-
mands. The only difference is that NEXT/CNEXT never show single-step
execution of called functions—they always step to the next consecutive state-
ment. The formats for these commands are:

next [expression]
cnext [expression]

You can also single-step through programs by using function keys.

F8 Acts as a STEP command.

F10 Acts as a NEXT command.

The debugger allows you to execute several single-step commands from the
selections on the menu bar.

To execute a STEP:

1) Point  to Step=F8 in the menu bar.

2) Press and release the left mouse button.

To execute a NEXT:

1) Point  to Next=F10 in the menu bar.

2) Press and release the left mouse button.



Running Your Programs

 6-16

Running code while disconnected from the target

runf Use the RUNF command to disconnect the emulator or EVM from the target
system while code is executing. The format for this command is:

runf

When you enter RUNF, the debugger clears all breakpoints, disconnects the
emulator or EVM from the target system, and causes the processor to begin
execution at the current PC. You can quit the debugger, or you can continue
to enter commands. However, any command that causes the debugger to ac-
cess the target at this time will produce an error.

RUNF is useful in a multiprocessor system. It’s also useful in a system in which
several target systems share an emulator; RUNF enables you to disconnect
the emulator from one system and connect it to another.

halt Use the HALT command to halt the target system after you’ve entered a RUNF
command. The format for this command is:

halt

When you invoke the debugger, it automatically executes a HALT command.
Thus, if you enter a RUNF, quit the debugger, and later reinvoke the debugger,
you will effectively reconnect the emulator to the target system and run the de-
bugger in its normal mode of operation. When you invoke the debugger, use
the –s option to preserve the current PC and memory contents.

reset The RESET command resets the target system. This is a software reset. The
format for this command is:

reset

If you are using the simulator and execute the RESET command, the simulator
simulates the ’C3x processor and peripheral reset operation, putting the pro-
cessor in a known state.

EVM &
emulator



 Running Your Programs

6-17  Loading, Displaying, and Running Code

Running code conditionally

The RUN, STEP, CSTEP, NEXT, and CNEXT commands all have an optional
expression parameter that can be a relational or logical expression. This type
of expression has one of the following operators as the highest precedence
operator in the expression:

> > = <
< = = = ! =
&& | | !

When you use this type of expression with these commands, the command
becomes a conditional run. The debugger executes the command repeatedly
for as long as the expression evaluates to true.

You must use software breakpoints with conditional runs; the expression is
evaluated each time the debugger encounters a breakpoint. Each time the de-
bugger evaluates the conditional expression, it updates the screen. The de-
bugger applies this algorithm:

top:
if (expression = = 0), go to end;
run or single-step (until breakpoint, ESC , or mouse button halts execution)
if (halted by breakpoint, not by ESC  or mouse button), go to top

end:

Generally, you should set the breakpoints on statements that are related in
some way to the expression. For example, if you’re watching a particular vari-
able in a WATCH window, you may want to set breakpoints on statements that
affect that variable and use that variable in the expression.



Halting Program Execution

 6-18

6.6 Halting Program Execution

Whenever you’re running or single-stepping code, program execution halts
automatically if the debugger encounters a breakpoint or if it reaches a particu-
lar point where you told it to stop (by supplying a count or an address). If you’d
like to explicitly halt program execution, there are two ways to accomplish this:

Click the left mouse button.

ESC Press the escape key.

After halting execution, you can continue program execution from the current
PC by reissuing any of the run or single-step commands.



 Benchmarking

6-19  Loading, Displaying, and Running Code

6.7 Benchmarking

The debugger allows you to keep track of the number of CPU clock cycles con-
sumed by a particular section of code. The debugger maintains the count in
a pseudoregister named CLK.

Benchmarking code is a multiple-step process:

Step 1: Set a software breakpoint at the statement that marks the beginning
of the section of code you’d like to benchmark.

Step 2: Set a software breakpoint at the statement that marks the end of the
section of code you’d like to benchmark.

Step 3: Enter any RUN command to execute code up to the first breakpoint.

Step 4: Now enter the RUNB command:

runb 

When the processor halts at the second breakpoint, the value of CLK is valid.
To display it, use the ? command or enter it into the WATCH window with the
WA command. This value is valid until you enter another RUN command.

Note:

� The RUNB command counts CPU clock cycles from the current PC to
the breakpoint. This count is not cumulative. You cannot add the number
of clock cycles from point A to point B to the number of cycles from point
B to point C to learn the number of cycles from point A to point C. This
error occurs because of pipeline filling and flushing.

� The value in CLK is valid only after using a RUNB command that is termi-
nated by a software breakpoint.



 6-20



7-1  Chapter Title—Attribute Reference

Managing Data

The debugger allows you to examine and modify many different types of data
related to the ’C3x and to your program. You can display and modify the values
of:

� Individual memory locations or a range of memory
� ’C3x registers
� Variables, including scalar types (ints, chars, etc.) and aggregate types

(arrays, structures, etc.)

Topic Page

7.1 Where Data Is Displayed 7-2

7.2 Basic Commands for Managing Data 7-2

7.3 Basic Methods for Changing Data Values 7-4
Editing data displayed in a window 7-4
Advanced “editing”—using expressions with side effects 7-5

7.4 Managing Data in Memory 7-6
Displaying memory contents 7-6
Displaying memory contents while you’re debugging C 7-8
Saving memory values to a file 7-9
Filling a block of memory 7-9

7.5 Managing Register Data 7-10
Displaying register contents 7-10
Accessing extended-precision registers 7-11

7.6 Managing Data in a DISP (Display) Window 7-12
Displaying data in a DISP window 7-12
Closing a DISP window 7-14

7.7 Managing Data in a WATCH Window 7-14
Displaying data in a WATCH window 7-15
Deleting watched values and closing the WATCH window 7-16

7.8 Monitoring the Pipeline (Simulator Only) 7-17

7.9 Displaying Data in Alternative Formats 7-18
Changing the default format for specific data types 7-18
Changing the default format with ?, MEM, DISP, and WA 7-20

Chapter 7



Where Data is Displayed / Basic Commands for Managing Data

 7-2

7.1 Where Data Is Displayed

Four windows are dedicated to displaying the various types of data.

Type of data Window name and purpose

memory locations MEMORY window s
Display the contents of a range of
memory

register values CPU window
Displays the contents of ’C3x registers

pointer data or selected variables of
an aggregate type

DISP windows
Display the contents of aggregate types
and show the values of individual
members

selected variables (scalar types or
individual members of aggregate
types) and specific memory loca-
tions or registers

WATCH window
Displays selected data

This group of windows is referred to as data-display windows .

7.2 Basic Commands for Managing Data

The debugger provides special-purpose commands for displaying and modify-
ing data in dedicated windows. The debugger also supports several general-
purpose commands that you can use to display or modify any type of data.

whatis If you want to know the type of a variable, use the WHATIS command. The syn-
tax for this command is:

whatis symbol

This lists symbol’s data type in the COMMAND window display area. The sym-
bol can be any variable (local, global, or static), a function name, structure tag,
typedef name, or enumeration constant.

Command Result displayed in the COMMAND window

whatis giant struct zzz giant[100];

whatis xxx struct xxx  {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}



 Basic Commands for Managing Data

7-3  Managing Data

? The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The basic syntax for this
command is:

? expression

The expression can be any C expression, including an expression with side
effects. However, you cannot use a string constant or function call in the ex-
pression.

If the result of expression is scalar, then the debugger displays the result as
a decimal value in the COMMAND window. If expression is a structure or array,
? displays the entire contents of the structure or array; you can halt long listings
by pressing ESC .

Here are some examples that use the ? command:

Command Result displayed in the COMMAND window

? giant giant[0].b1 436547877
giant[0].b2 –791051538
giant[0].b3 1952557575
giant[0].b4 –1555212096
etc.

? j 4194425

? j=0x5a 90

? i –12635

? i,x 0x000cea5

Note that the DISP command (described in detail on page 7-12) behaves like
the ? command when its expression parameter does not identify an aggregate
type.

eval The EVAL (evaluate expression) command behaves like the ? command but
does not show the result in the COMMAND window display area. The syntax
for this command is:

eval expression
or e expression

EVAL is useful for assigning values to registers or memory locations in a batch
file (where it’s not necessary to display the result).



Basic Methods for Changing Data Values

 7-4

7.3 Basic Methods for Changing Data Values

The debugger provides you with a great deal of flexibility in modifying various
types of data. You can use the debugger’s overwrite editing capability, which
allows you to change a value simply by typing over its displayed value. You can
also use the data-management commands for more complex editing.

Editing data displayed in a window

Use overwrite editing to modify data in a data-display window; you can edit:

� Registers displayed in the CPU window
� Memory contents displayed in a MEMORY window
� Elements displayed in a DISP window
� Values displayed in the WATCH window

There are two similar methods for overwriting displayed data:

This method is sometimes referred to as the “click and type” method.

1) Point to the data item that you want to modify.

2) Click the left button. The debugger highlights the selected field. (Note that
the window containing this field becomes active when you press the
mouse button.)

ESC 3) Type the new information. If you make a mistake or change your mind,
press ESC  or move the mouse outside the field and press/release the left
button; this resets the field to its original value.

4) When you finish typing the new information, press  or any arrow key.
This replaces the original value with the new value.

1) Select the window that contains the field you’d like to modify; make this the
active window. (Use the mouse, the WIN command, or F6 . For more de-
tail, see Section 3.4, The Active Window, on page 3-19.)

2) Use arrow keys to move the cursor to the field you’d like to edit.

↑ Moves up 1 field at a time.

↓ Moves down 1 field at a time.

← Moves left 1 field at a time.

→ Moves right 1 field at a time.



 Basic Methods for Changing Data Values

7-5  Managing Data

F9 3) When the field you’d like to edit is highlighted, press F9 . The debugger
highlights the field that the cursor is pointing to.

ESC 4) Type the new information. If you make a mistake or change your mind,
press ESC ; this resets the field to its original value.

5) When you finish typing the new information, press  or any arrow key.
This replaces the original value with the new value.

Advanced “editing”—using expressions with side effects

Using the overwrite editing feature to modify data is straightforward. However,
there are additional data-management methods that take advantage of the
fact that C expressions are accepted as parameters by most debugger com-
mands, and that C expressions can have side effects. When an expression
has a side effect, it means that the value of some variable in the expression
changes as the result of evaluating the expression.

This means that you can coerce many commands into changing values for
you. Specifically, it’s most helpful to use ? and EVAL to change data as well
as display it.

For example, if you want to see what’s in register R3, you can enter:

? R3 

However, you can also use this type of command to modify R3’s contents.
Here are some examples of how you might do this:

? R3++ Side effect: increments the contents of R3 by 1
eval ––R3 Side effect: decrements the contents of R3 by 1
? R3 = 8 Side effect: sets R3 to 8
eval R3/=2 Side effect: divides contents of R3 by 2

Note that not all expressions have side effects. For example, if you enter
? R3+4, the debugger displays the result of adding 4 to the contents of R3 but
does not modify R3’s contents. Expressions that have side effects must con-
tain an assignment operator or an operator that implies an assignment. Opera-
tors that can cause a side effect are:

= += –= *= /=

%= &= ^= |= <<=

>>= ++ – –



Managing Data in Memory

 7-6

7.4 Managing Data in Memory

In mixed and assembly modes, the debugger maintains a MEMORY window
that displays the contents of memory. For details concerning the MEMORY
window, see the MEMORY windows discussion (page 3-12).

 000000

 000005

 00000a

 00000f

 000014

 000019

0000004b

00000043

00000047

00000000

00000000

00000000

00000040

00000044

00000048

00000000

00000000

00000000

00000041

00000045

00000049

00000000

00000000

00000000

00000042

00000046

0000004a

00000000

00000000

00000000

MEMORY

addresses

data

The debugger has commands that show the data values at a specific location
or that display a different range of memory in the MEMORY window. The de-
bugger allows you to change the values at individual locations; refer to Section
7.3 (page 7-4), for more information.

Displaying memory contents

The main way to observe memory contents is to view the display in a
MEMORY window. Four MEMORY windows are available: the default window
is labeled MEMORY, and the three additional windows are called MEMORY1,
MEMORY2, and MEMORY3. Notice that the default window does not have an
extension number in its name; this is because MEMORY1, MEMORY2, and
MEMORY3 are pop-up windows that can be opened and closed throughout
your debugging session. Having four windows allows you to view four different
memory ranges.

The amount of memory that you can display is limited by the size of the individ-
ual MEMORY windows (which is limited only by the screen size). During a de-
bugging session, you may need to display different areas of memory within a
window. You can do this by typing a command or using the mouse.



 Managing Data in Memory

7-7  Managing Data

mem If you want to display a different memory range in the MEMORY window, use
the MEM command. You can do this by entering:

mem expression

To view different memory locations in an additional MEMORY window, use the
MEM command with the appropriate extension number. For example:

To do this. . . Enter this. . .

View the block of memory starting at address 0x8000
in the MEMORY1 window

mem1 0x8000

View the same block of memory (starting at address
0x8000) but in the MEMORY2 window

mem2 0x8000

Note:

If you want to view a different block of memory explicitly in the default
MEMORY window, you can use the aliased command MEM0. This works ex-
actly the same as the MEM command. To use this command, enter:

mem0  address

For more information, see the MEMORY windows discussion on page 3-12.

The expression you type in represents the address of the first entry in the
MEMORY window. The end of the range is defined by the size of the window:
to show more memory locations, make the window larger; to show fewer loca-
tions, make the window smaller. (See Resizing a window, page 3-21, for more
information.)

Expression can be an absolute address, a symbolic address, or any C expres-
sion. Here are several examples:

� Absolute address.  Suppose that you want to display memory, beginning
from the very first address. You might enter this command:

mem 0x00 

Hint:  MEMORY window addresses are shown in hexadecimal format. If
you want to specify a hex address, be sure to prefix the address number
with 0x; otherwise, the debugger treats the number as a decimal address.

� Symbolic address . You can use any defined C symbol. For example, if
your program defined a symbol named SYM, you could enter this com-
mand:

mem &SYM 

Hint: Prefix the symbol with the & operator to use the address of the sym-
bol.



Managing Data in Memory

 7-8

� C expression.  If you use a C expression as a parameter, the debugger
evaluates the expression and uses the result as a memory address:

mem SP – R0 + label 

You can also change the display of any data-display window—including the
MEMORY window—by scrolling through the window’s contents. See the
Scrolling through a window’s contents discussion (page 3-26) for more details.

Displaying memory contents while you’re debugging C

If you’re debugging C code in auto mode, you won’t see a MEMORY window—
the debugger doesn’t show the MEMORY window in the C-only display. How-
ever, there are several ways to display memory in this situation.

Hint:  If you want to use the contents of an address as a parameter, be sure
to prefix the address with the C indirection operator (*).

� If you have only a temporary interest in the contents of a specific memory
location, you can use the ? command to display the value at this address.
For example, if you want to know the contents of memory location 26
(hex), you could enter:

? *0x26 

The debugger displays the memory value in the COMMAND window dis-
play area.

� If you want the opportunity to observe a specific memory location over a
longer period of time, you can display it in a WATCH window. Use the WA
command to do this:

wa *0x26 

� You can also use the DISP command to display memory contents. The
DISP window shows memory in an array format with the specified address
as “member” [0]. In this situation, you can also use casting to display
memory contents in a different numeric format:

disp *(float *)0x26 



 Managing Data in Memory

7-9  Managing Data

Saving memory values to a file

ms Sometimes it’s useful to save a block of memory values to a file. You can use
the MS (memory save) command to do this; the files are saved in COFF for-
mat. The syntax for the MS command is:

ms address, length, filename

� The address parameter identifies the first address in the block.

� The length parameter defines the length, in words, of the block. This pa-
rameter can be any C expression.

� The filename is a system file. If you don’t supply an extension, the debug-
ger adds an .obj extension.

For example, to save the values in data memory locations 0x0–0x10 to a file
named memsave, you could enter:

ms 0x0,0x10,memsave 

To reload memory values that were saved in a file, use the LOAD command.
For example, to reload the values that were stored in memsave, enter:

load memsave.obj 

Filling a block of memory

fill Sometimes it’s useful to be able to fill an entire block of memory at once. You
can do this by using the FILL command. The syntax for this command is:

fill address, length, data

� The address parameter identifies the first address in the block.
� The length parameter defines the number of words to fill.
� The data parameter is the value that is placed in each word in the block.

For example, to fill locations 0x0080 0000 to 0x0080 0300 with the value
0x1234 ABCD, you would enter:

fill 0x800000,0x301,0x1234abcd 

If you want to check to see that memory has been filled correctly, you can enter:

mem 0x800000 

This changes the MEMORY window display to show the block of memory be-
ginning at address 0x0080 0000.

Note that the FILL command can also be executed from the Memory pulldown
menu.



Managing Register Data

 7-10

7.5 Managing Register Data

In mixed and assembly modes, the debugger maintains a CPU window that
displays the contents of individual registers. For details concerning the CPU
window, see the CPU window discussion (page 3-15).

CPU

PC 00f00076

R0 00000003

R2 00000007

R4 00000000

R6 00000000

AR0 00001802

AR2 00000000

AR4 00000000

AR6 00000000

IR0 00000000

ST 00000000

RS 00000000

DP 00000000

IE 00000000

SP 00000755

R1 00000005

R3 00000000

R5 00000000

R7 00000000

AR1 00000000

AR3 00000000

AR5 00000000

AR7 00000000

IR1 00000000

RC 00000000

RE 00000000

BK 00000000

IF 00000000

register
name

register
contents

The debugger provides commands that allow you to display and modify the
contents of specific registers. Remember, you can use the data-management
commands or the debugger’s overwrite editing capability to modify the con-
tents of any register displayed in the CPU or WATCH window. Refer to Section
7.3, Basic Methods for Changing Data Values (page 7-4), for more informa-
tion.

Displaying register contents

The main way to observe register contents is to view the display in the CPU
window. However, you may not be interested in all of the registers—if you’re
interested in only two registers, you might want to make the CPU window small
and use the extra screen space for the DISASSEMBLY or FILE display. In this
type of situation, there are several ways to observe the contents of the selected
registers.

� If you have only a temporary interest in the contents of a register, you can
use the ? command to display the register’s contents. For example, if you
want to know the contents of the SP, you could enter:

? SP 

The debugger displays the SP’s current contents in the COMMAND win-
dow display area.



 Managing Register Data

7-11  Managing Data

� If you want to observe a register over a longer period of time, you can use
the WA command to display it in a WATCH window.  For example, if you
want to observe the status register, you could enter:

wa ST,Status Reg 

This adds the ST to the WATCH window and labels it as Status Reg. The
register’s contents are continuously updated, just as if you were observing
the register in the CPU window.

When you’re debugging C in auto mode, these methods are also useful be-
cause the debugger doesn’t show the CPU window in the C-only display.

Accessing extended-precision registers

The simulator represents extended-precision registers in the register file with
a set of registers, En and Rn. The n represents the register number. The regis-
ter ranges are:

Range Description

E0–E7 Represent the exponent of the floating-point number.

R0–R7 Represent the mantissa of the floating-point number or a 32-bit integer.

For example, if you loaded the 40-bit floating-point number 0x0003 4000 0000
into extended-precision register R1, the simulator will load it as:

E1 = 03h (exponent)
R1 = 40000000h (mantissa)

Register E1 is essentially a pseudoregister provided by the simulator. Float-
ing-point instructions affect both the exponent and mantissa fields (Rn and
En), but inters instructions affect only the mantissa field (Rn).

The CPU window displays all of the registers in the primary register and expan-
sion register files; however, the display window displays only the mantissa
(Rn) portion of the register in the extended-precision register file. To display
the exponent (En) portion, either use the EVAL command, or add the exponent
portion to the WATCH window.



Managing Data in a DISP (Display) Window

 7-12

7.6 Managing Data in a DISP (Display) Window

The main purpose of the DISP window is to display the values of members of
complex, aggregate data types such as arrays and structures. The debugger
shows DISP windows only when you specifically request to see DISP windows
with the DISP command (described below). Note that you can have up to 120
DISP windows open at once. For additional details about DISP windows, see
the DISP window discussion (page 3-16).

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18740001

f4 [...]

structure
members

member
values

This member is an array, and
you can display its contents in

a second DISP window

DISP: str.f4

[0] 44276127

[1] 1778712578

[2] 555492660

[3] 356713217

[4] 138412802

[5] 182452229

[6] 35659888

[7] 37749506

[8] 134742016

[9] 138412801

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in a
DISP window. Refer to Section 7.3, Basic Methods for Changing Data Values
(page 7-4), for more information.

Displaying data in a DISP window

disp To open a DISP window, use the DISP command. The basic syntax is:

disp expression

If the expression is not an array, structure, or pointer (of the form *pointer
name), the DISP command behaves like the ? command. However, if expres-
sion is  one of these types, the debugger opens a DISP window to display the
values of the members.

If a DISP window contains a long list of members, you can use PAGE DOWN ,
PAGE UP , or arrow keys to scroll through the window. If the window contains an

array of structures, you can use CONTROL PAGE DOWN  and CONTROL PAGE UP  to
scroll through the array.



 Managing Data in a DISP (Display) Window

7-13  Managing Data

Once you open a DISP window, you may find that a displayed member is
another one of these types. This is how you identify the members that are ar-
rays, structures, or pointers:

A member that is an array looks like this: [. . .]
A member that is a structure looks like this: {. . .}
A member that is a pointer looks like an address: 0x00000000

You can display the additional data (the data pointed to or the members of the
array or structure) in additional DISP windows (these are referred to as chil-
dren). There are three ways to do this.

Use the DISP command again; this time, expression must identify the member
that has additional data. For example, if the first expression identifies a struc-
ture named str and one of str’s members is an array named f4, you can display
the contents of the array by entering this command:

disp str.f4 

This opens a new DISP window that shows the contents of the array. If str has
a member named f3 that is a pointer, you could enter:

disp *str.f3 

This opens a window to display what str.f3 points to.

Here’s another method of displaying the additional data:

1) Point to the member in the DISP window.

2) Now click the left button.

Here’s the third method:

↑  ↓ 1) Use the arrow keys to move the cursor up and down in the list of members.

F9 2) When the cursor is on the desired field, press F9 .

When the debugger opens a second DISP window, the new window may at
first be displayed on top of the original DISP window; if so, you can move the
windows so that you can see both at once. If the new windows also have mem-
bers that are pointers or aggregate types, you can continue to open new DISP
windows.



Managing Data in a DISP (Display) Window / Managing Data in a WATCH Window

 7-14

Closing a DISP window

Closing a DISP window is a simple, two-step process.

Step 1: Make the DISP window that you want to close active (see Section
3.4, The Active Window, on page 3-19).

Step 2: Press F4 .

Note that you can close a window and all of its children by closing the original
window.

Note:

The debugger automatically closes any DISP windows when you execute a
LOAD or SLOAD command.

7.7 Managing Data in a WATCH Window

The debugger doesn’t maintain a dedicated window that tells you about the
status of all the symbols defined in your program. Such a window might be so
large that it wouldn’t be useful. Instead, the debugger allows you to create a
WATCH window that shows you how program execution affects specific ex-
pressions, variables, registers, or memory locations.

WATCH

1: AR0 0x00001802

2: X+X 4

3: PC 0x00400064

watch index

label current value

The debugger displays a WATCH window only when you specifically request
a WATCH window with the WA command (described below). Note that there
is only one WATCH window. For additional details concerning the WATCH win-
dow, see the WATCH window discussion (page 3-17).



 Managing Data in a WATCH Window

7-15  Managing Data

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in the
WATCH window. Refer to Section 7.3, Basic Methods for Changing Data Val-
ues (page 7-4), for more information.

Note:

All of the watch commands described can also be accessed
from the Watch pulldown menu. For more information about
using the the pulldown menus, refer to Section 4.2, Using the
Menu Bar and the Pulldown Menus (page 4-7).

Watch
Add
Delete
Reset

Displaying data in the WATCH window

The debugger has one command for adding items to the WATCH window.

wa To open the WATCH window, use the WA (watch add) command. The basic
syntax is:

wa expression [, label]

When you first execute WA, the debugger opens the WATCH window. After
that, executing WA adds additional values to the WATCH window.

� The expression parameter can be any C expression, including an expres-
sion that has side effects. It’s most useful to watch an expression whose
value will change over time; constant expressions provide no useful func-
tion in the watch window.

� If you want to use the contents of an address as a parameter, be sure to
prefix the address with the C indirection operator (*). Use the WA com-
mand to do this:

wa *0x26 

� The label parameter is optional. When used, it provides a label for the
watched entry. If you don’t use a label, the debugger displays the expres-
sion in the label field.



Managing Data in a WATCH Window

 7-16

Deleting watched values and closing the WATCH window

The debugger supports two commands for deleting items from the WATCH
window.

wr If you’d like to close the WATCH window and delete all of the items in a single
step, use the WR (watch reset) command. The syntax is:

wr

wd If you’d like to delete a specific item from the WATCH window, use the WD
(watch delete) command. The syntax is:

wd index number

Whenever you add an item to the WATCH window, the debugger assigns it an
index number. (The illustration of the WATCH window on page 7-14 points to
these watch indexes.) The WD command’s index number parameter must cor-
respond to one of the watch indexes in the WATCH window.

Note that deleting an item (depending on where it is in the list) causes the re-
maining index numbers to be reassigned. Deleting the last remaining item in
the WATCH window closes the WATCH window.

Note:

The debugger automatically closes the WATCH window when you execute
a LOAD or SLOAD command.



 Monitoring the Pipeline (Simulator Only)

7-17  Managing Data

7.8 Monitoring the Pipeline (Simulator Only)

The simulator allows you to monitor the pipeline through pseudoregisters that
you can query with ? or DISP or add to the WATCH window.

The instruction pipeline consists of four phases: instruction fetch, decode, op-
erand fetch, and execution. During any cycle, one to four instructions can be
active, each at a different stage of completion. Instruction operation occurs
during the appropriate stages of the pipeline. For example, the instruction ARn
(n=0–7) updates of auxiliary registers occur during the decode phase.

The simulator provides eight pseudoregisters that display the opcode or ad-
dress of the instructions in each phase of the pipeline. The following table iden-
tifies these registers.

Table 7–1.Pipeline Pseudoregisters

Pipeline phase Opcode pseudoregister Address pseudoregister

Instruction fetch fins faddr

Decode dins daddr

Operand fetch rins raddr

Execution xins xaddr

For example, if you wanted to observe the decode phase during program
execution, you could watch the dins and daddr pseudoregisters in the WATCH
window:

wa dins,Decode–Opcode 
wa daddr,Decode–Address 

This adds dins and daddr to the WATCH window and labels them as Decode-
Opcode and Decode-Address, respectively.



Displaying Data in Alternative Formats

 7-18

7.9 Displaying Data in Alternative Formats

By default, all data is displayed in its natural format. This means that:

� Integer values are displayed as decimal numbers.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

However, any data displayed in the COMMAND, MEMORY, WATCH, or DISP
window can be displayed in a variety of formats.

Changing the default format for specific data types

To display specific types of data in a different format, use the SETF command.
The syntax for this command is:

setf [data type, display format ]

The display format parameter identifies the new display format for any data of
type data type. Table 7–2 lists the available formats and the corresponding
characters that can be used as the display format parameter.

Table 7–2.Display Formats for Debugger Data

Display Format Parameter Display Format Parameter

Default for the data type * Octal o

ASCII character (bytes) c Valid address p

Decimal d ASCII string s

Exponential floating point e Unsigned decimal u

Decimal floating point f Hexadecimal x

Table 7–3 lists the C data types that can be used for the data type parameter.
Only a subset of the display formats applies to each data type, so Table 7–3
also shows valid combinations of data types and display formats.



 Displaying Data in Alternative Formats

7-19  Managing Data

Table 7–3.Data Types for Displaying Debugger Data

Valid Display Formats

Data Type c d o x e f p s u Default Display Format

char √ √ √ √ √ ASCII (c)

uchar √ √ √ √ √ Decimal (d)

short √ √ √ √ √ Decimal (d)

int √ √ √ √ √ Decimal (d)

uint √ √ √ √ √ Decimal (d)

long √ √ √ √ √ Decimal (d)

ulong √ √ √ √ √ Decimal (d)

float √ √ √ √ Exponential floating point (e)

double √ √ √ √ Exponential floating point (e)

ptr √ √ √ √ Address (p)

Here are some examples:

� To display all data of type short as unsigned decimals, enter:

setf short, u 

� To return all data of type short to its default display format, enter:

setf short, * 

� To list the current display formats for each data type, enter the SETF com-
mand with no parameters:

setf 

You’ll see a display that looks something like this:

Display Format Defaults
Type char: ASCII
Type unsigned char: Decimal
Type int: Decimal
Type unsigned int: Decimal
Type short: Decimal
Type unsigned short: Decimal
Type long: Decimal
Type unsigned long: Decimal
Type float: Exponential floating point
Type double: Exponential floating point
Type pointer: Address

� To reset all data types back to their default display formats, enter:

setf * 



Displaying Data in Alternative Formats

 7-20

Changing the default format with ?, MEM, DISP, and WA

You can also use the ?, MEM, DISP, and WA commands to show data in alter-
native display formats. (The ? and DISP commands can use alternative for-
mats only for scalar types, arrays of scalar types, and individual members of
aggregate types.)

Each of these commands has an optional display format  parameter that works
in the same way as the display format parameter of the SETF command.

When you don’t use a display format parameter, data is shown in its natural
format (unless you have changed the format for the data type with SETF).

Here are some examples:

� To watch the PC in decimal, enter:

wa pc,,d 

� To display memory contents in octal, enter:

mem 0x0,o 

� To display an array of integers as characters, enter:

disp ai,c 

The valid combinations of data types and display formats listed for SETF also
apply to the data displayed with DISP, ?, WA, and MEM. For example, if you
want to use display format e or f, the data that you are displaying must be of
type float or type double. Additionally, you cannot use the s display format pa-
rameter with the MEM command.



8-1  Chapter Title—Attribute Reference

Using Software Breakpoints

During the debugging process, you may want to halt execution temporarily so
that you can examine the contents of selected variables, registers, and
memory locations before continuing with program execution. You can do this
by setting software breakpoints  at critical points in your code. You can set
software breakpoints in assembly language code and in C code. A software
breakpoint halts any program execution, whether you’re running or single-
stepping through code.

Software breakpoints are especially useful in combination with conditional
execution (described on page 6-17) and benchmarking (described on page
6-19).

Topic Page

8.1 Setting a Software Breakpoint 8-2

8.2 Clearing a Software Breakpoint 8-4

8.3 Finding the Software Breakpoints That Are Set 8-5

Chapter 8



Setting a Software Breakpoint

 8-2

8.1 Setting a Software Breakpoint

When you set a software breakpoint, the debugger highlights the breakpointed
line in two ways:

� It prefixes the statement with the character >.

� It shows the line in a bolder or brighter font. (You can use screen-custo-
mization commands to change this highlighting method.)

If you set a breakpoint in the disassembly, the debugger also highlights the
associated C statement. If you set a breakpoint in the C source, the debugger
also highlights the associated statement in the disassembly. (If more than one
assembly language statement is associated with a C statement, the debugger
highlights the first of the associated assembly language statements.)

000006 15440302 STI R4,*+AR3(2)
000007 62f00057 > CALL MEMINIT
000008 08640000 LDI 0,R4

000045 > meminit();
000046 for(i=0;i<0x50000;i++)
000047
000048 call(i);

A breakpoint is set at
this C statement;

notice how the line is
highlighted.

A breakpoint is also
set at the associated

assembly language
statement (it’s

highlighted, too).

FILE: sample.c

DISASSEMBLY

Note:

� After execution is halted by a breakpoint, you can continue program
execution by reissuing any of the run or single-step commands.

� Up to 200 breakpoints can be set.



 Setting a Software Breakpoint

8-3  Using Software Breakpoints

There are several ways to set a software breakpoint:

1) Point to the line of assembly language code or C code where you’d like to
set a breakpoint.

2) Click the left button.

Repeating this action clears the breakpoint.

1) Make the FILE or DISASSEMBLY window the active window.

↑ ↓ 2) Use the arrow keys to move the cursor to the line of code where you’d like
to set a breakpoint.

F9 3) Press the F9  key.

Repeating this action clears the breakpoint.

ba If you know the address where you’d like to set a software breakpoint, you can
use the BA (breakpoint add) command. This command is useful because it
doesn’t require you to search through code to find the desired line. The syntax
for the BA command is:

ba address

This command sets a breakpoint at address. This parameter can be an abso-
lute address, any C expression, the name of a C function, or the name of an
assembly language label. You cannot set multiple breakpoints at the same
statement.



Clearing a Software Breakpoint

 8-4

8.2 Clearing a Software Breakpoint

There are several ways to clear a breakpoint. If you clear a breakpoint from
an assembly language statement, the breakpoint is also cleared from any
associated C statement; if you clear a software breakpoint from a C statement,
the software breakpoint is also cleared from the associated statement in the
disassembly.

1) Point to a breakpointed assembly language or C statement.

2) Click the left button.

↑ ↓ 1) Use the arrow keys or the DASM command to move the cursor to a break-
pointed assembly language or C statement.

F9 2) Press the F9  key.

br If you want to clear all  the software breakpoints that are set, use the BR (break-
point reset) command. This command is useful because it doesn’t require you
to search through code to find the desired line. The syntax for the BR command
is:

br

bd If you’d like to clear one specific software breakpoint and you know the address
of this breakpoint, you can use the BD (breakpoint delete) command. The syn-
tax for the BD command is:

bd address

This command clears the breakpoint at address. This parameter can be an ab-
solute address, any C expression, the name of a C function, or the name of
an assembly language label. If no breakpoint is set at address, the debugger
ignores the command.



 Finding the Software Breakpoints That Are Set

8-5  Using Software Breakpoints

8.3 Finding the Software Breakpoints That Are Set

bl Sometimes you may need to know where software breakpoints are set. For
example, the BD command’s address parameter must correspond to the ad-
dress of a breakpoint that is set. The BL (breakpoint list) command provides
an easy way to get a complete listing of all the software breakpoints that are
currently set in your program. The syntax for this command is:

bl

The BL command displays a table of software breakpoints in the COMMAND
window display area. BL lists all the software breakpoints that are set, in the
order in which you set them. Here’s an example of this type of list:

 Address Symbolic Information
00400065
00400007 in main, at line 45, ”c:\c3xhll\sample.c”
00400066

The address is the memory address of the breakpoint. The symbolic informa-
tion identifies the function, line number, and filename of the breakpointed C
statement:

� If the breakpoint was set in assembly language code, you’ll see only an
address unless the statement defines a symbol.

� If the breakpoint was set in C code, you’ll see the address together with
symbolic information.



 8-6



9-1  Chapter Title—Attribute Reference

Customizing the Debugger Display

The debugger display is completely configurable; you can create the interface
that is best suited for your use. Besides being able to size and position individu-
al windows, you can change the appearance of many of the display features,
such as window borders, how the current statement is highlighted, etc. In addi-
tion, if you’re using a color display, you can change the colors of any area on
the screen. Once you’ve customized the display to your liking, you can save
the custom configuration for use in future debugging sessions.

Topic Page

9.1 Changing the Colors of the Debugger Display 9-2
Area names: common display areas 9-3
Area names: window borders 9-4
Area names: COMMAND window 9-4
Area names: DISASSEMBLY and FILE windows 9-5
Area names: data-display windows 9-6
Area names: menu bar and pulldown menus 9-7

9.2 Changing the Border Styles of the Windows 9-8

9.3 Saving and Using Custom Displays 9-9
Changing the default display for monochrome monitors 9-9
Saving a custom display 9-9
Loading a custom display 9-10
Invoking the debugger with a custom display 9-11
Returning to the default display 9-11

9.4 Changing the Prompt 9-11

Chapter 9



Changing the Colors of the Debugger Display

 9-2

9.1 Changing the Colors of the Debugger Display

You can use the debugger with a color or a monochrome display; the com-
mands described in this section are most useful if you have a color display. If
you are using a monochrome display, these commands change the shades on
your display. For example, if you are using a black-and-white display, these
commands change the shades of gray that are used.

color
scolor

You can use the COLOR or SCOLOR command to change the colors of areas
in the debugger display. The format for these commands is:

color area name, attribute1 [, attribute2 [, attribute3 [, attribute4 ] ] ]
scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4 ] ] ]

These commands are similar. However, SCOLOR updates the screen im-
mediately, and COLOR doesn’t update the screen (the new colors/attributes
take effect as soon as the debugger executes another command that updates
the screen). Typically, you might use the COLOR command several times, fol-
lowed by an SCOLOR command to put all of the changes into effect at once.

The area name parameter identifies the areas of the display that are affected.
The attributes identify how the areas are affected. Table 9–1 lists the valid val-
ues for the attribute parameters.

Table 9–1.  Colors and Other Attributes for the COLOR and SCOLOR Commands

(a) Colors

black blue green cyan

red magenta yellow white

(b) Other attributes

bright blink

The first two attribute parameters usually specify the foreground and back-
ground colors for the area. If you do not supply a background color, the debug-
ger uses black as the background.

Table 9–2 lists valid values for the area name parameters. This is a long list;
the subsections following the table further identify these areas.



 Changing the Colors of the Debugger Display

9-3  Customizing the Debugger Display

Table 9–2.  Summary of Area Names for the COLOR and SCOLOR Commands

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

Note: Listing order is left to right, top to bottom.

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify either parameter. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed in Table 9–2 (left to right, top to bottom).

The remainder of this section identifies these areas.

Area names: common display areas

blanks

CPU
PC 00f00076 SP 00000755 R0 00000003

R1 00000005 R2 00000007 R3 00000000

R4 00000000 R5 00000000 R6 00000000

R7 00000000 AR0 00001802 AR1 00000000

background

Area identification Parameter name

Screen background (behind all windows) background

Window background (inside windows) blanks



Changing the Colors of the Debugger Display

 9-4

Area names: window borders

COMMAND

>>>

TMS320C3x Debugger Version 4.60

Copyright (a) 1989, 1993 Texas 

TMS320C3x

Loading sample.out

Done

win_hiborder

WATCH

1: AR0 0x00001802

2: X+X 4

3: PC 0x00400064

win_border

win_resize

an inactive
window

an active
window

Area identification Parameter name

Window border for any window that isn’t active win_border

The reversed “L” in the lower right corner of a resizable
window

win_resize

Window border of the active window win_hiborder

Area names: COMMAND window

COMMAND

>>> go main

cmd_echo

cmd_inputcmd_prompt cmd_cursor

Done

file sample.c

wa eee

Name ”eee” not found
error_msg

Area identification Parameter name

Echoed commands in display area cmd_echo

Errors shown in display area error_msg

Command-line prompt cmd_prompt

Text that you enter on the command line cmd_input

Command-line cursor cmd_cursor



 Changing the Colors of the Debugger Display

9-5  Customizing the Debugger Display

Area names: DISASSEMBLY and FILE windows

DISASSEMBLY

400000 0f2b0000 main: PUSH AR3

400001 080b0014 LDI SP,AR3

400002 02740002 ADDI 2,SP

400003 0f240000 PUSH R4

400004 08640000 LDI 0,R4

asm_data

FILE: t1.c

asm_clabel

asm_label file_brk

file_line

file_text

file_pc

file_pc_brk

00038 extern call();

00039 extern meminit():

00040 main()

00041 {

*eof

asm_cdata

file_eof

Area identification Parameter name

Object code in DISASSEMBLY window that is associated
with current C statement

asm_cdata

Object code in DISASSEMBLY window asm_data

Addresses in DISASSEMBLY window asm_label

Addresses in DISASSEMBLY window that are associated
with current C statement

asm_clabel

Line numbers in FILE window file_line

End-of-file marker in FILE window file_eof

Text in FILE or DISASSEMBLY window file_text

Breakpointed text in FILE or DISASSEMBLY window file_brk

Current PC in FILE or DISASSEMBLY window file_pc

Breakpoint at current PC in FILE or DISASSEMBLY win-
dow

file_pc_brk



Changing the Colors of the Debugger Display

 9-6

Area names: data-display windows

field_textfield_label

field_edit field_error

field_hilite
MEMORY

000000 0000004b 00000040 00000041 00000000

000004 00000043 00000044 00000045 00000046

000008 00000047 00000048 00000049 0000004a

00000c 00000000 00000000 00000000 00000000

000010 00000000 00000000 00000000 00000000

000014 0000 0000 00000000 00000000 00000000

Area identification Parameter name

Label of a window field (includes register names in CPU
window, addresses in MEMORY window, index numbers
and labels in WATCH window, member names in DISP
window)

field_label

Text of a window field (includes data values for all data-
display windows) and of most command output messages
in command window

field_text

Text of a highlighted field field_hilite

Text of a field that has an error (such as an invalid
memory location)

field_error

Text of a field being edited (includes data values for all
data-display windows)

field_edit



 Changing the Colors of the Debugger Display

9-7  Customizing the Debugger Display

Area names: menu bar and pulldown menus

menu_bar

menu_border

Load Break Watch
Add
Delete
Reset

Memory Color Mode

menu_entrymenu_cmd

menu_hilite
menu_hicmd

Area identification Parameter name

Top line of display screen; background to main menu
choices

menu_bar

Border of any pulldown menu menu_border

Text of a menu entry menu_entry

Invocation key for a menu or menu entry menu_cmd

Text for current (selected) menu entry menu_hilite

Invocation key for current (selected) menu entry menu_hicmd



Changing the Border Styles of the Windows

 9-8

9.2 Changing the Border Styles of the Windows

In addition to changing the colors of areas in the display, the debugger allows
you to modify the border styles of the windows.

border Use the BORDER command to change window border styles. The format for
this command is:

border [active window style] [, [ inactive window style] [, resize style] ]

This command can change the border styles of the active window, the inactive
windows, and any window that is being resized. The debugger supports nine
border styles. Each parameter for the BORDER command must be one of the
numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides and bottom

3 Solid 1/4-tone top, double-lined sides and bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top and bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Here are some examples of the BORDER command. Note that you can skip
parameters, if desired.

border 6,7,8 Change style of active, inactive, and resize windows
border 1,,2 Change style of active and resize windows
border ,3 Change style of inactive window

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.



 Saving and Using Custom Displays

9-9  Customizing the Debugger Display

9.3 Saving and Using Custom Displays

The debugger allows you to save and use as many custom configurations as
you like.

When you invoke the debugger, it looks for a screen configuration file called
init.clr. The screen configuration file defines how various areas of the display
will appear. If the debugger doesn’t find this file, it uses the default screen con-
figuration. Initially, init.clr defines screen configurations that exactly match the
default configuration.

The debugger supports two commands for saving and restoring custom
screen configurations into files. The filenames that you use for restoring con-
figurations must correspond to the filenames that you used for saving configu-
rations. Note that these are binary files, not text files, so you can’t edit the files
with a text editor.

Changing the default display for monochrome monitors

The default display is most useful with color monitors. The debugger highlights
changed values, messages, and other information with color; this may not be
particularly helpful if you are using a monochrome monitor.

The debugger package includes another screen configuration file named
mono.clr, which defines a screen configuration that can be used with
monochrome monitors. The best way to use this configuration is to rename the
file:

1) Rename the original init.clr file—you might want to call it color.clr.

2) Next, rename the mono.clr file. Call it init.clr. Now, whenever you invoke
the debugger, it will automatically come up with a customized screen
configuration for monochrome monitors.

If you aren’t happy with the way that this file defines the screen configuration,
you can customize it.

Saving a custom display

ssave Once you’ve customized the debugger display to your liking, you can use the
SSAVE command to save the current screen configuration to a file. The format
for this command is:

ssave [filename]



Saving and Using Custom Displays

 9-10

This saves the screen resolution, border styles, colors, window positions, win-
dow sizes, and (on PCs) video mode (EGA, VGA, CGA, etc.) for all debugging
modes.

The filename parameter names the new screen configuration file. You can in-
clude path information (including relative pathnames); if you don’t specify path
information, the debugger places the file in the current directory. If you don’t
supply a filename, the debugger saves the current configuration into a file
named init.clr.

Note that you can execute this command as the Save selection on the Color
pulldown menu.

Loading a custom display

sconfig You can use the SCONFIG command to restore the display to a particular con-
figuration. The format for this command is:

sconfig [filename]

This restores the screen resolution,  colors, window positions, window sizes,
border styles, and (on PCs) video mode (EGA, CGA, MDA, etc.) saved in file-
name. Screen resolution and video mode are restored either by changing the
mode (on video cards with switchable modes) or by resizing the debugger
screen (on other hosts).

If you don’t supply a filename, the debugger looks for init.clr. The debugger
searches for the file in the current directory and then in directories named with
the D_DIR environment variable.

Note that you can execute this command as the Load selection on the Color
pulldown menu.

Note:

The file created by the SSAVE command in this version of the debugger
saves positional, screen size, and video mode information that was not
saved by SSAVE in previous versions of the debugger. The format of this new
information is not compatible with the old format. If you attempt to load an
earlier version’s SCONFIG file, the debugger will issue an error message
and stop the load.



 Saving and Using Custom Displays / Changing the Prompt

9-11  Customizing the Debugger Display

Invoking the debugger with a custom display

If you set up the screen in a way that you like and always want to invoke the
debugger with this screen configuration, you have two choices for accomplish-
ing this:

� Save the configuration in init.clr.

� Add a line to the batch file that the debugger executes at invocation time
(init.cmd). This line should use the SCONFIG command to load the cus-
tom configuration.

Returning to the default display

If you saved a custom configuration into init.clr but don’t want the debugger to
come up in that configuration, then rename the file or delete it. If you are in the
debugger, have changed the configuration, and would like to revert to the de-
fault, just execute the SCONFIG command without a filename.

9.4 Changing the Prompt

prompt The debugger enables you to change the command-line prompt by using the
PROMPT command. The format of this command is:

prompt new prompt

The new prompt can be any string of characters, excluding semicolons and
commas. If you type a semicolon or a comma, it terminates the prompt string.

Note that the SSAVE command doesn’t save the command-line prompt as part
of a custom configuration. The SCONFIG command doesn’t change the com-
mand-line prompt. If you change the prompt, it stays changed until you change
it again, even if you use SCONFIG to load a different screen configuration.

If you always want to use a different prompt, you can add a PROMPT
statement to the init.cmd file that the debugger executes at invocation time.

You can also execute this command as the Prompt selection on the Color pull-
down menu.



 9-12



10-1  Chapter Title—Attribute Reference

Profiling Code Execution

The profiling environment is a special debugger environment that lets you col-
lect execution statistics for your code. This environment is available on all de-
bugger platforms except for DOS.

Note that the profiling environment is separate from the basic debugging envi-
ronment; the only way to switch between the two environments is by exiting
and then reinvoking the debugger.

Topic Page

10.1 An Overview of the Profiling Process 10-2
A profiling strategy 10-2

10.2 Entering the Profiling Environment 10-3
Restrictions of the profiling environment 10-3
Using pulldown menus in the profiling environment 10-4

10.3 Defining Areas for Profiling 10-5
Marking an area 10-5
Disabling an area 10-7
Re-enabling a disabled area 10-10
Unmarking an area 10-11
Restrictions on profiling areas 10-12

10.4 Defining the Stopping Point 10-13

10.5 Running a Profiling Session 10-15

10.6 Viewing Profile Data 10-17
Viewing different profile data 10-17
Data accuracy 10-19
Sorting profile data 10-19
Viewing different profile areas 10-19
Interpreting session data 10-20
Viewing code associated with a profile area 10-21

10.7 Saving Profile Data to a File 10-22

Chapter 10



An Overview of the Profiling Process

 10-2

10.1 An Overview of the Profiling Process
Profiling consists of five simple steps:

Enter the profiling environment. See Entering the Profiling Envi-
ronment, page 10-3.

Identify the areas of code where
you’d like to collect statistics.

See Defining Areas for Profiling,
page 10-5.

Identify the profiling session
stopping points.

See Defining a Stopping Point,
page 10-13.

Step 2

Step 3

Step 1

Begin profiling. See Running a Profiling Ses-
sion, page 10-15.

Step 4

View the profile data. See Viewing Profile Data, page
10-17.

Step 5

Note:

When you compile a program that will be profiled, you must use the –g and
the –as options. The –g option includes symbolic debugging information; the
–as option ensures that you will be able to include ranges as profile areas.

A profiling strategy
The profiling environment provides a method for collecting execution statistics
about specific areas in your code. This gives you immediate feedback on your
application’s performance. Here’s a suggestion for a basic approach to opti-
mizing the performance of your program.

1) Mark all the functions in your program as profile areas.

2) Run a profiling session; find the busiest functions.

3) Unmark all the functions.

4) Mark the individual lines in the busy functions and run another profiling
session.



 Entering the Profiling Environment

10-3  Profiling Code Execution

10.2 Entering the Profiling Environment
The profiling environment is available on all debugger platforms except DOS.
To enter the profiling environment, invoke the debugger with the –profile  op-
tion. At the system command line, enter the appropriate command:

emulator: emu3x –profile 

simulator: sim3x –profile 

EVM: evm30 –profile 

Use any additional debugger options that you desire (–b, –p, etc.).

Restrictions of the profiling environment

Some restrictions apply to the profiling environment:

� You’ll always be in mixed mode.

� COMMAND, DISASSEMBLY, FILE, and PROFILE are the only windows
available; additional windows, such as the WATCH window, cannot be
opened.

� Breakpoints cannot be set. (However, you can use a similar feature called
stopping points when you mark sections of code for profiling.)

� The profiling environment supports only a subset of the debugger com-
mands. Table 10–1 lists the debugger commands that can and can’t be
used in the profiling environment.

Table 10–1. Debugger Commands That Can/Can’t Be Used in the Profiling Environment

Can be used Can’t be used

?
ALIAS
CD
CLS
DASM
DIR
DLOG
ECHO
EVAL
FILE
FUNC
IF/ELSE/ENDIF
LOAD
LOOP/ENDLOOP
MA
MAP
MC
MD
MI

ML
MOVE
MR
PROMPT
QUIT
RELOAD
RESET
RESTART
SCONFIG
SIZE
SLOAD
SYSTEM
TAKE
UNALIAS
USE
VERSION
WIN
ZOOM

ADDR
ASM
BA
BD
BL
BORDER
BR
C
CALLS
CNEXT
COLOR
CSTEP
DISP
FILL
GO
HALT
MEM

MIX
MS
NEXT
PATCH
RETURN
RUN
RUNB
RUNF
SCOLOR
SETF
SOUND
SSAVE
STEP
WA
WD
WHATIS
WR

Be sure you don’t use any of the “can’t be used” commands in your initial-
ization batch file.



Entering the Profiling Environment

 10-4

Using pulldown menus in the profiling environment

The debugger displays a different menu bar in the profiling environment:

mAp Mark Enable Disable Unmark View Stop–points ProfileLoad

The Load menu corresponds to the Load menu in the basic debugger environ-
ment. The mAp menu provides memory map commands available from the
basic Memory menu. The other entries provide access to profiling commands
and features.

The profiling environment’s pulldown menus operate similarly to the basic de-
bugger pulldown menus. However, several of the menus have additional sub-
menus. A submenu is indicated by a > character following a menu item. For
example, here’s one of the submenus for the Mark menu:

Mark

C level >
Asm level > Line areas >

Range areas >
Function areas >

Explicitly
in one Function

C level >
Line areas >

in one Function

Chapter 11, Summary of Commands and Special Keys, shows which debug-
ger commands are associated with the menu items in the basic debugger pull-
down menus. Because the profiling environment supports over 100 profile-
specific commands, it’s not practical to show the commands associated with
the menu choices. Here’s a tip to help you with the profiling commands: the
highlighted menu letters form the name of the corresponding debugger com-
mand. For example, if you prefer the function-key approach to using menus,
the highlighted letters in Mark→ C level→Line areas→in one Function show
that you could press ALT M , C , L , F . This also shows that the correspond-
ing debugger command is MCLF.



 Defining Areas for Profiling

10-5  Profiling Code Execution

10.3 Defining Areas for Profiling

Within the profiling environment, you can collect statistics on three types of
areas:

� Individual lines  in C or disassembly
� Ranges  in C or disassembly
� Functions  in C only

To identify any of these areas for profiling, mark the line, range, or function. You
can disable areas so that they won’t affect the profile data, and you can re-en-
able areas that have been disabled. You can also unmark areas that you are
no longer interested in.

The mouse is the simplest way to mark, disable, enable, and unmark tasks.
The pulldown menus also support these tasks and more complex tasks.

The following subsections explain how to mark, disable, re-enable, and un-
mark profile areas by using the mouse or the pulldown menus. The individual
commands are summarized in Restrictions of the profiling environment on
page 10-3. Restrictions on profiling areas are summarized on page 10-12.

Marking an area

Marking an area qualifies it for profiling so that the debugger can collect timing
statistics about the area.

Remember, to display C code, use the FILE or FUNC command; to display dis-
assembly, use the DASM command.

Notes:

� Marking an area in C does not mark the associated code in disassembly.

� Areas can be nested; for example, you can mark a line within a marked
range. The debugger will report statistics for both the line and the func-
tion.

� Ranges cannot overlap, and they cannot span function boundaries.



Defining Areas for Profiling

 10-6

Marking a line.  These instructions apply to both C and disassembly.

1) Point to the line you want to mark.

2) Click the left mouse button.

The beginning of the line will be highlighted with a blinking >>.

3) Click the left mouse button again.

The beginning of the line will be highlighted with Le> (line enabled).

Marking a range.  These instructions apply to both C and disassembly.

1) Point to the first line of the range you want to mark.

2) Click the left mouse button.

The beginning of the line will be highlighted with a blinking >>.

3) Point to the last line of the range.

4) Click the left mouse button again.

The beginning of the line will be highlighted with Re> (range enabled),
marking the beginning of the range. The last line will be highlighted with
<<, marking the end of the range.

Marking a function.  These instructions apply to C only.

1) Point to the statement that declares the function you want to mark.

2) Click the left mouse button.

The beginning of the line will be highlighted with Fe> (function enabled).



 Defining Areas for Profiling

10-7  Profiling Code Execution

Table 10–2 lists the menu selections for marking areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

Table 10–2.Menu Selections for Marking Areas

To mark this area
C only:
Mark→C level

Disassembly only:
Mark→Asm level

Lines
� By line number†

� All lines in a function

→Line areas
→Explicitly
→in one Function

→Line areas
→Explicitly
→in one Function

Ranges
� By line numbers†

→Range areas
→Explicitly

→Range areas
→Explicitly

Functions
� By function name
� All functions in a module
� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

† C areas are identified by line number; disassembly areas are identified by address.

Disabling an area

At times, it is useful to identify areas that you don’t want to impact profile statis-
tics. To do this, you should disable the appropriate area. Disabling effectively
subtracts the timing information of the disabled area from all profile areas that
include or call the disabled area. Areas must be marked before they can be
disabled.

For example, if you have marked a function that calls a standard C function
such as malloc(), you may not want malloc() to affect the statistics for the call-
ing function. You could mark the line that calls malloc(), and then disable the
line. This way, the profile statistics for the function would not include the statis-
tics for malloc().

Note:

If you disable an area after you’ve already collected statistics on it, that in-
formation will be lost.



Defining Areas for Profiling

 10-8

The simplest way to disable an area is to use the mouse, as described below.

Disabling a line area:

1) Point to the marked line.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Ld> (line disabled).

Disabling a range area:

1) Point to the marked line.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Rd> (range disabled).

Disabling a function area:

1) Point to the marked statement that declares the function.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Fd> (function disabled).



 Defining Areas for Profiling

10-9  Profiling Code Execution

Table 10–3 lists the menu selections for disabling areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

Table 10–3.Menu Selections for Disabling Areas

To disable this area
C only:
Disable→C level

Disassembly only: 
Disable→Asm level

C and disassembly:
Disable→Both levels

Lines
� By line number†

� All lines in a function
� All lines in a module
� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges
� By line numbers†

� All ranges in a function
� All ranges in a module
� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions
� By function name
� All functions in a module
� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas
� All areas in a function
� All areas in a module
� All areas everywhere

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

† C areas are identified by line number; disassembly areas are identified by address.



Defining Areas for Profiling

 10-10

Re-enabling a disabled area

When an area has been disabled and you would like to profile it once again,
you must enable the area. To use the mouse, just point to the line, the function,
or the first line of a range, and click the left mouse button; the range will once
again be highlighted in the same way as a marked area.

In addition to using the mouse, you can enable an area by using one of the
commands listed in Table 10–4. However, the easiset way to enter these com-
mands is by accessing them from the Enable menu.

Table 10–4.Menu Selections for Enabling Areas

To enable this area
C only:
Enable→C level

Disassembly only:
Enable→Asm level

C and disassembly:
Enable→Both levels

Lines
� By line number†

� All lines in a function
� All lines in a module
� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges
� By line numbers†

� All ranges in a function
� All ranges in a module
� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions
� By function name
� All functions in a module
� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas
� All areas in a function
� All areas in a module
� All areas everywhere

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

† C areas are identified by line number; disassembly areas are identified by address.



 Defining Areas for Profiling

10-11  Profiling Code Execution

Unmarking an area

If you want to stop collecting information about a specific area, unmark it. You
can use the mouse or key method.

Unmarking a line area:

1) Point to the marked line.

2) Click the right mouse button once.

The line will no longer be highlighted.

Unmarking a range area:

1) Point to the marked line.

2) Click the right mouse button once.

The line will no longer be highlighted.

Unmarking a function area:

1) Point to the marked statement that defines the function.

2) Click the right mouse button once.

The line will no longer be highlighted.



Defining Areas for Profiling

 10-12

Table 10–5 lists the selections on the Unmark menu.

Table 10–5.Menu Selections for Unmarking Areas

To unmark this area
C only:
Unmark→C level

Disassembly only:
Unmark→Asm level

C and disassembly:
Unmark→Both levels

Lines
� By line number†

� All lines in a function
� All lines in a module
� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges
� By line numbers†

� All ranges in a function
� All ranges in a module
� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions
� By function name
� All functions in a module
� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas
� All areas in a function
� All areas in a module
� All areas everywhere

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

† C areas are identified by line number; disassembly areas are identified by address.

Restrictions on profiling areas

The following restrictions apply to profiling areas:

� There must be a minimum of three instructions between a delayed branch
and the beginning of an area.

� An area cannot begin or end on the RPTS instruction or on the instruction
to be repeated.

� An area cannot begin or end on the last instruction of a repeat block.



 Defining a Stopping Point

10-13  Profiling Code Execution

10.4 Defining a Stopping Point

Before you run a profiling session, you must identify the point where the debug-
ger should stop collecting statistics. By default, C programs contain an exit la-
bel, and this is defined as the default stopping point when you load your pro-
gram. (You can delete exit as a stopping point, if you wish.) If your program
does not contain an exit label, or if you prefer to stop at a different point, you
can define another stopping point. You can set multiple stopping points; the
debugger will stop at the first one it finds.

Each stopping point is highlighted in the FILE or DISASSEMBLY window with
a *  character at the beginning of the line. Even though no statistics can be
gathered for areas following a stopping point, the areas will be listed in the
PROFILE window.

You can use the mouse or commands to add or delete a stopping point; you
can also use commands to list or reset all the stopping points.

Note:

You cannot set a stopping point on a statement that has already been defined
as a part of a profile area.

To set a stopping point:

1) Point to the statement that you want to add as a stopping point.

2) Click the right mouse button.

To remove a stopping point:

1) Point to the statement marking the stopping point that you want to delete.

2) Click the right mouse button.



Defining a Stopping Point

 10-14

The debugger supports several commands for adding, deleting, resetting, and
listing stopping points (described below); all of these commands can also be
entered from the Stop-points menu.

sa To add a stopping point, use the SA (stop add) command. The syntax for this
command is:

sa address

This adds address as a stopping point. The address parameter can be a label,
a function name, or a memory address.

sd To delete a stopping point, use the SD (stop delete) command. The syntax for
this command is:

sd address

This deletes address as a stopping point. As for SA, the address can be a label,
a function name, or a memory address.

sr To delete all the stopping points at once, use the SR (stop reset) command.
The syntax for this command is:

sr

This deletes all stopping points, including the default exit (if it exists).

sl To see a list of all the stopping points that are currently set, use the SL (stop
list) command. The syntax for this command is:

sl



 Running a Profiling Session

10-15  Profiling Code Execution

10.5 Running a Profiling Session

Once you have defined profile areas and a stopping point, you can run a profil-
ing session. You can run two types of profiling sessions:

� A full profile  collects a full set of statistics for the defined profile areas.

� A quick profile  collects a subset of the available statistics (it doesn’t col-
lect exclusive or exclusive max data, which are described in Section 10.6).
This reduces overhead because the debugger doesn’t have to track enter-
ing/exiting subroutines within an area.

The debugger supports commands for running both types of sessions. In addi-
tion, the debugger supports a command that helps you to resume a profiling
session. All of these commands can also be entered from the Profile menu.

pf To run a full profiling session, use the PF (profile full) command. The syntax
for this command is:

pf starting point [, update rate]

pq To run a quick profiling session, use the PQ (profile quick) command. The syn-
tax for this command is:

pq starting point [, update rate]

The debugger will collect statistics on the defined areas between the starting
point and the stopping point. The starting point parameter can be a label, a
function name, or a memory address. There is no default starting point.

The update rate is an optional parameter that determines how often the statis-
tics listed in the PROFILE window will be updated. The update rate parameter
can have one of these values:

0 An update rate of 0 means that the statistics listed in the PROFILE
window are not updated until the profiling session is halted. A “spin-
ning wheel” character will be shown at the beginning of the PROFILE
window label line to indicate that a profiling session is in progress. 0 is
the default value.

≥1 If a number greater than or equal to 1 is supplied, the statistics in the
PROFILE window are updated during the profiling session. If a value
of 1 is supplied, the data will be updated as often as possible. When
larger numbers are supplied, the data is updated less often.

<0 If a negative number is supplied, the statistics listed in the PROFILE
window are not updated until the profiling session is halted. The “spin-
ning wheel” character is not displayed.



Running a Profiling Session

 10-16

No matter which update rate you choose, you can force the PROFILE window
to be updated during a profiling session by pointing to the window header and
clicking a mouse button.

After you enter a PF or PQ command, your program restarts and runs to the
defined starting point. Profiling begins when the starting point is reached and
continues until a stopping point is reached or until you halt the profiling session
by pressing ESC .

pr Use the PR command to resume a profiling session that has halted. The syntax
for this command is:

pr [clear data [, update rate]]

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

0 The profiler will continue to collect data (adding it to the existing
data for the profiled areas) and to use the previous internal profile
stacks. 0 is the default value.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.



 Viewing Profile Data

10-17  Profiling Code Execution

10.6 Viewing Profile Data

The statistics collected during a profiling session are displayed in the PRO-
FILE window. Figure 10–1 shows an example of this window.

Figure 10–1. An Example of the PROFILE Window

PROFILE
 Area Name Count Inclusive Incl–Max Exclusive Excl–Max

AR 00f00001–00f00008 1 65 65 19 19

CL <sample>#58 1 50 50 7 7

CR <sample>#59–64 1 87 87 44 44

CF call() 24 1623 99 1089 55

AL meminit 1 3 3 3 3

AL 00f00059 disabled

profile
areas

profile data

The example in Figure 10–1 shows the PROFILE window with some default
conditions:

� Column headings show the labels for the default set of profile data, includ-
ing Count, Inclusive, Incl-Max, Exclusive, and Excl-Max.

� The data is sorted on the address of the first line in each area.

� All marked areas are listed, including disabled areas.

You can modify the PROFILE window to display selected profile areas or differ-
ent data; you can also sort the data differently. The following subsections ex-
plain how to do these things.

Note:

To reset the PROFILE display back to its default characteristics, use
View→Reset.

Viewing different profile data

By default, the PROFILE window shows a set of statistics labeled as Count,
Inclusive, Incl-Max, Exclusive, and Excl-Max. The address, which is not part
of the default statistics, can also be displayed. Table 10–6 describes the statis-
tic that each field represents.



Viewing Profile Data

 10-18

Table 10–6.Types of Data Shown in the PROFILE Window

Label Profile data

Count The number of times a profile area is entered during a session.

Inclusive The total execution time (cycle count) of a profile area, including the execution time
of any subroutines called from within the profile area.

Incl-Max
(inclusive maximum)

The maximum inclusive time for one iteration of a profile area.

If the profiled code contains no flow control (such as conditional processing), inclu-
sive-maximum will equal the inclusive timing divided by the count.

Exclusive The total execution time (cycle count) of a profile area, excluding the execution time
of any subroutines called from within the profile area.

In general, the exclusive data provides the best statistics for comparing the execution
time of one profile area to another area.

Excl-Max
(exclusive maximum)

The maximum exclusive time for one iteration of a profile area.

Address The memory address of the line. If the area is a function or range, the Address field
shows the memory address of the first line in the area.

In addition to viewing this data in the default manner, you can view each of
these statistics individually. The benefit of viewing them individually is that in
addition to a cycle count, you are also supplied with a percentage indication
and a histogram.

In order to view the fields individually, you can use the mouse—just point to the
header line in the PROFILE window and click a mouse button. You can also
use the View→Data menu to select the field you’d like to display. When you
use the left mouse button to click on the header, fields are displayed individual-
ly in the order listed below on the left. (Use the right mouse button to go in the
opposite direction.) On the right are the corresponding menu selections.

Count

Inclusive

Incl-max

Exclusive

Excl-max

Address

Default

View→Data →Count

→Inclusive

→Inclusive Max

→Exclusive

→Exclusive Max

→Address

→All

One advantage of using the mouse is that you can change the display while
you’re profiling.



 Viewing Profile Data

10-19  Profiling Code Execution

Data accuracy

During a profiling session, the debugger sets many internal breakpoints and
issues a series of RUNB commands. As a result, the processor is momentarily
halted when entering and exiting profiling areas. This stopping and starting
can affect the cycle count information (due to pipeline flushing and the me-
chanics of software breakpoints) so that it varies from session to session. This
method of profiling is referred to as intrusive profiling.

Treat the data as relative, not absolute. The percentages and histograms are
relevant only to the cycle count from the starting point to the stopping point—
not to overall performance. Even though the cycle counts may change if you
profiled the same area twice, the relationship of that area to other profiled
areas should not change.

Sorting profile data

By default, the data displayed in the PROFILE window is sorted on the memory
addresses of the displayed areas. The area with the least significant address
is listed first, followed by the area with the most significant address, etc. When
you view fields individually, the data is automatically sorted from highest cycle
count to lowest (instead of by address).

You can sort the data on any of the data fields by using the View→Sort menu.
For example, to sort all the data based on the values of the Inclusive field, use
View→Sort→Inclusive; the area with the highest Count field will display first,
and the area with the lowest Count field will display last. This applies even
when you are viewing individual fields.

Viewing different profile areas

By default, all marked areas are listed in the PROFILE window. You can modify
the window to display selected areas. To do this, use the selections on the
View→Filter pulldown menu; these selections are summarized in Table 10–7.



Viewing Profile Data

 10-20

Table 10–7.Menu Selections for Displaying Areas in the PROFILE Window

To view these areas
C only:
View→Filter→C level

Disassembly only:
View→Filter→Asm level

C and disassembly:
View→Filter→Both levels

Lines
� By line number
� All lines in a function
� All lines in a module
� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges
� By line numbers
� All ranges in a function
� All ranges in a module
� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions
� By function name
� All functions in a module
� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas
� All areas in a function
� All areas in a module
� All areas everywhere

→Range areas
→in one Function
→in one Module
→Globally

→Range areas
→in one Function
→in one Module
→Globally

→Range areas
→in one Function
→in one Module
→Globally

Interpreting session data

General information about a profiling session is displayed in the COMMAND
window during and after the session. This information identifies the starting
and stopping points. It also lists statistics for three important areas:

� Run cycles  shows the number of execution cycles consumed by the pro-
gram from the starting point to the stopping point.

� Profile cycles  equals the run cycles minus the cycles consumed by dis-
abled areas.

� Hits  shows the number of internal breakpoints encountered during the
profiling session.



 Viewing Profile Data

10-21  Profiling Code Execution

Viewing code associated with a profile area

You can view the code associated with a displayed profile area. The debugger
will update the display so that the associated C or disassembly statements are
shown in the FILE or DISASSEMBLY windows.

Use the mouse to select the profile area in the PROFILE window and display
the associated code:

1) Point to the appropriate area name in the PROFILE window.

2) Click the left mouse button.

The area name and the associated C or disassembly statement will be high-
lighted. To view the code associated with another area, point and click again.

If you are attempting to show disassembly, you may have to make several at-
tempts because program memory can be accessed only when the target is not
running.



Saving Profile Data to a File

 10-22

10.7 Saving Profile Data to a File

You may want to run several profiling sessions during a debugging session.
Whenever you start a new profiling session,the results of the previous session
are lost. However, you can save the results of the current profiling session to
a system file.There are two commands that you can use to do this:

vac To save the contents of the PROFILE window to a system file, use the VAC
(view save current) command. The syntax for this command is:

vac filename

This saves only the current view; if, for example, you are viewing only the
Count field, then only that information will be saved.

vaa To save all data for the currently displayed areas, use the VAA (view save all)
command. The syntax for this command is:

vaa filename

This saves all views of the data—including the individual count, inclusive,
etc.—with the percentage indications and histograms.

Both commands write profile data to filename. The filename can include path
information. There is no default filename. If filename already exists, the com-
mand will overwrite the file with the new data.

Note that if the PROFILE window displays only a subset of the areas that are
marked for profiling, data is saved only for those areas that are displayed. (For
VAC, the currently displayed data will be saved for the displayed areas. For
VAA, all data will be saved for the displayed areas.) If some areas are hidden
and you want to save all the data, be sure to select View→Reset before saving
the data to a file.

The file contents are in ASCII and are formatted in exactly the same manner
as they are displayed (or would be displayed) in the PROFILE window. The
general profiling-session information that is displayed in the COMMAND win-
dow is also written to the file.



11-1  Chapter Title—Attribute Reference

Summary of Commands
 and Special Keys

This chapter summarizes the debugger’s basic and profiling commands and
special key sequences.

Topic Page

11.1 Functional Summary of Debugger Commands 11-2
Changing modes 11-3
Managing windows 11-3
Displaying and changing data 11-3
Performing system tasks 11-4
Displaying files and loading programs 11-5
Managing breakpoints 11-5
Customizing the screen 11-5
Memory mapping 11-6
Running programs 11-7
Profiling commands 11-8

11.2 How the Menu Selections Correspond to Commands 11-8
Program-execution commands 11-9
File/load commands 11-9
Breakpoint commands 11-9
Watch commands 11-9
Memory commands 11-10
Screen-configuration commands 11-10
Mode commands 11-10
Interrupt-simulation commands 11-10

11.3 Alphabetical Summary of Debugger Commands 11-11
11.4 Summary of Profiling Commands 11-48
11.5 Summary of Special Keys 11-52

Editing text on the command line 11-52
Using the command history 11-52
Switching modes 11-53
Halting or escaping from an action 11-53
Displaying pulldown menus 11-53
Running code 11-54
Selecting or closing a window 11-54
Moving or sizing a window 11-54
Scrolling through a window’s contents 11-55
Editing data or selecting the active field 11-55

Chapter 11



Functional Summary of Debugger Commands

 11-2

11.1 Functional Summary of Debugger Commands

This section summarizes the debugger commands according to these catego-
ries:

� Changing modes.  These commands enable you to switch freely between
the three debugging modes (auto, mixed, and assembly). You can also se-
lect these commands from the Mode pulldown menu.

� Managing windows.  These commands enable you to select the active
window and move or resize the active window. You can also perform these
functions with the mouse.

� Displaying and changing data.  These commands enable you to display
and evaluate a variety of data items. Some of these commands are also
available on the Watch pulldown menu.

� Performing system tasks.  These commands enable you to perform sev-
eral DOS-like functions and provide you with some control over the target
system.

� Displaying files and loading programs.  These commands enable you
to change the displays in the FILE and DISASSEMBLY windows and to
load object files into memory. Several of these commands are available
on the Load pulldown menu.

� Managing breakpoints.  These commands provide you with a command-
line method for controlling software breakpoints and are also available
through the Break pulldown menu. You can also set/clear breakpoints in-
teractively.

� Customizing the screen.  These commands allow you to customize the
debugger display, then save and later reuse the customized displays. You
can also use the Color pulldown menu to access these commands.

� Memory mapping.  These commands enable you to define the areas of
target memory that the debugger can access. You can also use the
Memory pulldown menu to access these commands.

� Running programs.  These commands provide you with a variety of
methods for running your programs in the debugger environment. The
basic run and single-step commands are available on the menu bar.

� Profiling commands. These commands enable you to collect execution
statistics for your code. Commands can be entered from the pulldown
menus or on the command line.



 Functional Summary of Debugger Commands

11-3  Summary of Commands and Special Keys

Changing modes

To do this
Use this
command See page

Put the debugger in assembly mode asm 11-13

Put the debugger in auto mode for debugging C code c 11-15

Put the debugger in mixed mode mix 11-28

Managing windows

To do this
Use this
command See page

Reposition the active window move 11-29

Resize the active window size 11-39

Select the active window win 11-46

Make the active window as large as possible zoom 11-47

Displaying and changing data

To do this
Use this
command See page

Evaluate and display the result of a C expression ?setf 11-11

Display the values in an array or structure or display
the value that a pointer is pointing to

disp 11-18

Evaluate a C expression without displaying the results eval 11-21

Display a different range of memory in the MEMORY
window

mem 11-27

Display an pop-up MEMORY window mem1,mem2,
mem3

11-27

Change the default format for displaying data values setf 11-38

Continuously display the value of a variable, register,
or memory location within the WATCH window

wa 11-45

Delete a data item from the WATCH window wd 11-46

Show the type of a data item whatis 11-46

Delete all data items from the WATCH window and
close the WATCH window

wr 11-47



Functional Summary of Debugger Commands

 11-4

Performing system tasks

To do this
Use this
command See page

Define your own command string alias 11-12

Change the current working directory from within the
debugger environment

cd/chdir 11-15

Clear all displayed information from the COMMAND
window display area

cls 11-16

List the contents of the current directory or any other
directory

dir 11-18

Record the information shown in the COMMAND
window display area

dlog 11-20

Display a string to the COMMAND window while
executing a batch file

echo 11-21

Conditionally execute debugger commands in a
batch file

if/else/endif 11-23

Loop debugger commands in a batch file loop/endloop 11-24

Exit the debugger quit 11-34

Reset the target system (emulator only), the simula-
tor, or the EVM.

reset 11-34

Associate a beeping sound with the display of error
messages

sound 11-40

Enter any operating-system command or exit to a
system shell

system 11-42

Execute commands from a batch file take 11-43

Delete an alias definition unalias 11-43

Name additional directories that can be searched
when you load source files

use 11-44



 Functional Summary of Debugger Commands

11-5  Summary of Commands and Special Keys

Displaying files and loading programs

To do this
Use this
command See page

Display C and/or assembly language code at a specif-
ic point

addr 11-12

Reopen the CALLS window calls 11-15

Display assembly language code at a specific ad-
dress

dasm 11-18

Display a text file in the FILE window file 11-22

Display a specific C function func 11-22

Load an object file load 11-24

Modify disassembly with the patch assembler patch 11-31

Load only the object-code portion of an object file reload 11-34

Load only the symbol-table portion of an object file sload 11-40

Managing breakpoints

To do this
Use this
command See page

Add a software breakpoint ba 11-13

Delete a software breakpoint bd 11-13

Display a list of all the software breakpoints that are
set

bl 11-13

Reset (delete) all software breakpoints br 11-14

Customizing the screen

To do this
Use this
command See page

Change the border style of any window border 11-14

Change the screen colors, but don’t update the
screen immediately

color 11-16

Change the command-line prompt prompt 11-33

Change the screen colors and update the screen im-
mediately

scolor 11-36

Load and use a previously saved custom screen con-
figuration

sconfig 11-37

Save a custom screen configuration ssave 11-41



Functional Summary of Debugger Commands

 11-6

Memory mapping

To do this
Use this
command See page

Initialize a block of memory fill 11-22

Add an address range to the memory map ma 11-25

Enable or disable memory mapping map 11-26

Connect a simulated I/O port to an input or output file
(simulator only)

mc 11-26

Delete an address range from the memory map md 11-27

Disconnect a simulated I/O port (simulator only) mi 11-28

Display a list of the current memory map settings ml 11-28

Reset the memory map (delete all ranges) mr 11-30

Save a block of memory to a system file ms 11-30

Connect an input file to the pin pinc 11-32

Disconnect the input file from the pin pind 11-32

List the pins that are connected to the input files pinl 11-32



 Functional Summary of Debugger Commands

11-7  Summary of Commands and Special Keys

Running programs

To do this
Use this
command See page

Single-step through assembly language or C code
one C statement at a time; step over function calls

cnext 11-16

Single-step through assembly language or C code,
one C statement at a time

cstep 11-17

Run a program up to a certain point go 11-23

Halt the target system after executing a RUNF com-
mand (emulator and EVM only)

halt 11-23

Single-step through assembly language or C code;
step over function calls

next 11-30

Reset the target system (emulator only), simulator, or
EVM

reset 11-34

Reset the program entry point restart 11-34

Execute code in a function and return to the function’s
caller

return 11-35

Run a program run 11-35

Run a program with benchmarking (count the number
of CPU clock cycles consumed by the executing por-
tion of code)

runb 11-35

Disconnect the emulator from the target system and
run free (emulator and EVM only)

runf 11-36

Single-step through assembly language or C code step 11-41

Execute commands from a batch file take 11-43



Functional Summary of Debugger Commands / How the Menu Selections Correspond to Commands

 11-8

Profiling commands

All of the profiling commands can be entered from the pulldown menus. In
many cases, using the pulldown menus is the easiest way to enter some of
these commands. For this reason and also because there are over 100 profil-
ing commands, most of these commands are not described individually in this
chapter (as the basic debugger commands are).

Listed below are some of the profiling commands that you might choose to en-
ter from the command line instead of from a menu; these commands are also
described in the alphabetical command summary. The remaining profiling
commands are summarized in Section 11.4 on page 11-48.

To do this
Use this
command See page

Run a full profiling session pf 11-31

Run a quick profiling session pq 11-33

Resume a profiling session pr 11-33

Add a stopping point sa 11-36

Delete a stopping point sd 11-37

List all the stopping points sl 11-39

Delete all the stopping points sr 11-40

Save all the profile data to a file vaa 11-44

Save currently displayed profile data to a file vac 11-44

Reset the display in the PROFILE window to show
all areas and the default set of data

vr 11-45

11.2 How the Menu Selections Correspond to Commands

The following sample screens illustrate the relationship of the basic debugger
commands to the menu bar and pulldown menus.

Remember, you can use the menus with or without a mouse. To access a menu
from the keyboard, press the ALT  key and the letter that’s highlighted in the
menu name. (For example, to display the Load menu, press ALT  L .) Then,
to make a selection from the menu, press the letter that’s highlighted in the
command you’ve selected. (For example, on the Load menu, to execute FIle,
press F .) If you don’t want to execute a command, press SC  to close the
menu.



 How the Menu Selections Correspond to Commands

11-9  Summary of Commands and Special Keys

Note:

Because the profiling environment supports over 100 profile-specific com-
mands, it’s not practical to show the commands associated with the profile
menu choices.

Program-execution commands

Run=F5

Step=F8

Next=F10

RUN command
(without a parameter)

NEXT command
(without a parameter)

STEP command
(without a parameter)

File/load commands

Load
Load
Reload
Symbols

REstart
ReseT

File

RELOAD command

SLOAD command

RESTART command

RESET command

FILE command

LOAD command

Breakpoint commands

Break
Add
Delete
Reset
List

BA command

BD command

BR command

BL command

Watch commands

Watch
Add
Delete
Reset

WA command

WD command

WR command



How the Menu Selections Correspond to Commands

 11-10

Memory commands

Memory
Add
Delete
Reset
List
Enable

Fill
Save

Connect
Di sConn

MA command

MD command

MR command

ML command

MAP command

FILL command

MS command

MC command
MI command

Screen-configuration commands

Color
Load
Save
Config

Border
Prompt

SCONFIG command

SSAVE command

SCOLOR command

BORDER command

PROMPT command

Mode commands

Mode
C (auto)
Asm
Mixed

C command

ASM command

MIX command

Interrupt-simulation commands

Mode
Connect
Disconnect
List

PINC command

PIND command

PINL command



 Alphabetical Summary of Debugger Commands ?

11-11  Summary of Commands and Special Keys

11.3 Alphabetical Summary of Debugger Commands

There are two debugger environments: the basic debugger environment and
the profiling environment. Some debugger commands can be used in both en-
vironments; some can be used in only one of the environments. Each com-
mand description identifies the applicable environments for the command.

Commands are not case sensitive; to emphasize this, command names are
shown in both uppercase and lowercase throughout this book.

Evaluate Expression?

Syntax ? expression [, display format]

Menu selection none

Environments basic debugger profiling

Description The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The expression can be any
C expression, including an expression with side effects. However, you cannot
use a string constant or function call in the expression. If the result of expres-
sion is not an array or structure, then the debugger displays the results in the
COMMAND window. If expression is a structure or array, ? displays the entire
contents of the structure or array; you can halt long listings by pressing ESC .

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal



addr, alias Alphabetical Summary of Debugger Commands

 11-12

 

Display Code at Selected Addressaddr

Syntax addr address
addr function name

Menu selection none

Environments basic debugger profiling

Description Use the ADDR command to display C code or the disassembly at a specific
point. ADDR’s behavior changes, depending on the current debugging mode:

� In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window.

� In a C display, ADDR works like the FUNC command, displaying the code
starting at address or at function name in the FILE window.

� In mixed mode, ADDR affects both the DISASSEMBLY and FILE win-
dows.

Note:

ADDR affects the FILE window only if the specified address is in a C function.

Define Custom Command Stringalias

Syntax alias [alias name [, ”command string” ] ]

Menu selection none

Environments basic debugger profiling

Description The ALIAS command allows you to associate one or more debugger com-
mands with a single alias name. You can include as many debugger com-
mands in the command string as you like, as long you separate them with
semicolons and enclose the entire string of commands in quotation marks. You
can also identify debugger-command parameters by a percent sign followed
by a number (%1, %2, etc.). The total number of characters for an individual
command (expanded to include parameter values) is limited to 132.

Previously defined alias names can be included as part of the definition for a
new alias.

To find the current definition of an alias, enter the ALIAS command with the
alias name only. To see a list of all defined aliases, enter the ALIAS command
with no parameters.



 Alphabetical Summary of Debugger Commands asm, ba, bd, bl

11-13  Summary of Commands and Special Keys

Enter Assembly Modeasm

Syntax asm

Menu selection MoDe→Asm

Environments basic debugger profiling

Description The ASM command changes from the current debugging mode to assembly
mode. If you’re already in assembly mode, the ASM command has no effect.

Add Software Breakpointba

Syntax ba address

Menu selection B reak→Add

Environments basic debugger profiling

Description The BA command sets a software breakpoint at a specific address. This com-
mand is useful because it doesn’t require you to search through code to find
the desired line. The address can be an absolute address, any C expression,
the name of a C function, or the name of an assembly language label.

Delete Software Breakpointbd

Syntax bd address

Menu selection B reak→ Delete

Environments basic debugger profiling

Description The BD command clears a software breakpoint at a specific address. The ad-
dress can be an absolute address, any C expression, the name of a C function,
or the name of an assembly language label.

List Software Breakpointbl

Syntax bl

Menu selection B reak→List

Environments basic debugger profiling

Description The BL command provides an easy way to get a complete listing of all the soft-
ware breakpoints that are currently set in your program. It displays a table of
breakpoints in the COMMAND window display area. BL lists all the break-
points that are set, in the order in which you set them.



border, br Alphabetical Summary of Debugger Commands

 11-14

Change Style of Window Borderborder

Syntax border [active window style] [, [ inactive window style] [,resize window style] ]

Menu selection C olor→Border

Environments basic debugger profiling

Description The BORDER command changes the border style of the active window, the
inactive windows, and the border style of any window that you’re resizing. The
debugger supports nine border styles. Each parameter for the BORDER com-
mand must be one of the numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides/bottom

3 Solid 1/4-tone top, double-lined sides/bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top/bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

Reset Software Breakpointsbr

Syntax br

Menu selection B reak→Reset

Environments basic debugger profiling

Description The BR command clears all software breakpoints that are set.



 Alphabetical Summary of Debugger Commands c, calls, cd, chdir

11-15  Summary of Commands and Special Keys

Enter Auto Modec

Syntax c

Menu selection MoDe→C (auto)

Environments basic debugger profiling

Description The C command changes from the current debugging mode to auto mode. If
you’re already in auto mode, then the C command has no effect.

Open CALLS Windowcalls

Syntax calls

Menu selection none

Environments basic debugger profiling

Description The CALLS command displays the CALLS window. The debugger displays
this window automatically when you are in auto/C or mixed mode. However,
you can close the CALLS window; the CALLS command opens the window
again.

Change Directorycd, chdir

Syntax cd [directory name]
chdir [directory name]

Menu selection none

Environments basic debugger profiling

Description The CD or CHDIR command changes the current working directory from within
the debugger. You can use relative pathnames as part of the directory name.
If you don’t use a pathname, the CD command displays the name of the current
directory. Note that this command can affect any other command whose pa-
rameter is a filename, such as the FILE, LOAD, and TAKE commands, when
it is used with the USE command. You can also use the CD command to
change the current drive. For example,

cd c:
cd d:\csource 
cd c:\c3xhll



cls, cnext, color Alphabetical Summary of Debugger Commands

 11-16

Clear Screencls

Syntax cls

Menu selection none

Environments basic debugger profiling

Description The CLS command clears all displayed information from the COMMAND win-
dow display area.

Single-Step C, Next Statementcnext

Syntax cnext [expression]

Menu selection Next=F10 (in C code)

Environments basic debugger profiling

Description The CNEXT command is similar to the CSTEP command. It runs a program
one C statement at a time, updating the display after executing each state-
ment. If you’re using CNEXT to step through assembly language code, the de-
bugger won’t update the display until it has executed all assembly language
statements associated with a single C statement. Unlike CSTEP, CNEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number statements that you want to
single-step. You can also use a conditional expression for conditional single-
step execution (the Running code conditionally discussion, page 6-17, dis-
cusses this in detail).

Change Screen Colorscolor

Syntax color area name, attribute1 [,attribute2 [,attribute3 [,attribute4] ] ]

Menu selection none

Environments basic debugger profiling

Description The COLOR command changes the color of specified areas of the debugger
display. COLOR doesn’t update the display; the changes take effect when
another command, such as SCOLOR, updates the display. The area name pa-
rameter identifies the area of the display that is affected. The attributes identify
how the area is affected. The first two attribute parameters usually specify the
foreground and background colors for the area. If you do not supply a back-
ground color, the debugger uses black as the background.



 Alphabetical Summary of Debugger Commands color, cstep

11-17  Summary of Commands and Special Keys

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright blink

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous attrib-
ute names, the debugger interprets the names in this order: black, blue, bright,
blink. If you supply ambiguous area names, the debugger interprets them in
the order that they’re listed above (left to right, top to bottom).

Single-Step Ccstep

Syntax cstep [expression]]

Menu selection Step=F8 (in C code)

Environments basic debugger profiling

Description The CSTEP single-steps through a program one C statement at a time, updat-
ing the display after executing each statement. If you’re using CSTEP to step
through assembly language code, the debugger won’t update the display until
it has executed all assembly language statements associated with a single C
statement.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug op-
tion). When function execution completes, single-step execution returns to the
caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.



cstep, dasm, dir, disp Alphabetical Summary of Debugger Commands

 11-18

The expression parameter specifies the number statements that you want to
single-step. You can also use a conditional expression for conditional single-
step execution (the Running code conditionally discussion, page 6-17, dis-
cusses this in detail).

Display Disassembly at Specified Addressdasm

Syntax dasm address
dasm function name

Menu selection none

Environments basic debugger profiling

Description The DASM command displays code beginning at a specific point within the
DISASSEMBLY window.

List Directory Contentsdir

Syntax dir [directory name]

Menu selection none

Environments basic debugger profiling

Description The DIR command displays a directory listing in the display area of the
COMMAND window. If you use the optional directory name parameter, the
debugger displays a list of the specified directory’s contents. If you don’t use
the parameter, the debugger lists the contents of the current directory.

Open DISP Windowdisp

Syntax disp expression [, display format]

Menu selection none

Environments basic debugger profiling

Description The DISP command opens a DISP window to display the contents of an array,
structure, or pointer expression to a scalar type (of the form *pointer). If the
expression is not one of these types, then DISP acts like a ? command.



 Alphabetical Summary of Debugger Commands disp

11-19  Summary of Commands and Special Keys

Once you open a DISP window, you may find that a displayed member is itself
an array, structure, or pointer:

A member that is an array looks like this: [. . .]
A member that is a structure looks like this: {. . .}
A member that is a pointer looks like an address: 0x00000000

You can display the additional data (the data pointed to or the members of the
array or structure) in another DISP window by using the DISP command again,
using the arrow keys to select the field and then pressing F9 , or pointing the
mouse cursor to the field and pressing the left mouse button. You can have up
to 120 DISP windows open at the same time.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

The display format parameter can be used only when you are displaying a sca-
lar type, an array of scalar type, or an individual member of an aggregate type.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0
disp *(float *)123
disp *(char *)0x111

This shows memory in the DISP window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other
locations are offset from that location.



dlog Alphabetical Summary of Debugger Commands

 11-20

 

Record COMMAND Window Displaydlog

Syntax dlog  filename [,{a | w}]
or
dlog close

Menu selection none

Environments basic debugger profiling

Description The DLOG command allows you to record the information displayed in the
command window into a log file.

� To begin recording the information shown in the COMMAND window dis-
play area, use:

dlog  filename

Log files can be executed by using the TAKE command. When you use
DLOG to record the information from the COMMAND window display area
into a log file called filename, the debugger automatically precedes all er-
ror or progress messages and command results with a semicolon to turn
them into comments. This way, you can easily re-execute the commands
in your log file by using the TAKE command.

� To end the recording session, enter:

dlog close  

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The optional parameters of the DLOG command control
how existing log files are used:

� Appending to an existing file.  Use the a parameter to open an existing
file to which to append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
options; you will lose the contents of an existing file if you don’t use the ap-
pend (a) option.



 Alphabetical Summary of Debugger Commands echo, else, endif, endloop, eval

11-21  Summary of Commands and Special Keys

Echo String to COMMAND Windowecho

Syntax echo  string

Menu selection none

Environments basic debugger profiling

Description The ECHO command displays string in the COMMAND window display area.
This command works only in a batch file, and you can’t use quote marks
around the string. Note that any leading blanks in your command string are re-
moved when the ECHO command is executed.

Execute Alternative Debugger Commandselse

Description ELSE provides an alternative list of debugger commands in the IF/ELSE/EN-
DIF command sequence. See page 11-23 for more information about the IF/
ELSE/ENDIF commands.

Terminate Conditional Sequenceendif

Description ENDIF identifies the end of the IF/ELSE/ENDIF command sequence. See
page 11-23 for more information about the IF/ELSE/ENDIF commands.

Terminate Looping Sequenceendloop

Description ENDLOOP identifies the end of the LOOP/ENDLOOP command sequence.
See page 11-24 for more information about the LOOP/ENDLOOP commands.

Evaluate Expressioneval

Syntax eval expression
e expression

Menu selection none

Environments basic debugger profiling

Description The EVAL command evaluates an expression like the ? command does but
does not show the result in the COMMAND window display area. EVAL is use-
ful for assigning values to registers or memory locations in a batch file (where
it’s not necessary to display the result).



file, fill, func Alphabetical Summary of Debugger Commands

 11-22

Display Text Filefile

Syntax file filename

Menu selection L oad→File

Environments basic debugger profiling

Description The FILE command displays the contents of any text file in the FILE window.
The debugger continues to display this file until you run a program and halt in
a C function. This command is primarily intended for displaying C source code.
You can view only one text file at a time.

You are restricted to displaying files that are 65,518 bytes long or less.

Fill Memoryfill

Syntax fill address, length, data

Menu selection M emory→Fill

Environments basic debugger profiling

Description The FILL command fills a block of memory with a specified value. This com-
mand has three parameters:

� The address parameter identifies the beginning of the block.

� The length parameter defines the number of 32-bit words that will be filled.

� The data parameter is the value that is placed in each word in the block.

Display Functionfunc

Syntax func function name
func address

Menu selection none

Environments basic debugger profiling

Description The FUNC command displays a specified C function in the FILE window. You
can identify the function by its name or its address. Note that FUNC works the
same way FILE works, but with FUNC you don’t need to identify the name of
the file that contains the function.



 Alphabetical Summary of Debugger Commands go, halt, if/else/endif

11-23  Summary of Commands and Special Keys

Run to Specified Addressgo

Syntax go [address]

Menu selection none

Environments basic debugger profiling

Description The GO command executes code up to a specific point in your program. If you
don’t supply an address  parameter, then GO acts like a RUN command with-
out an expression  parameter.

Halt Target System EVM & Emulator Onlyhalt

Syntax halt

Menu selection none

Environments basic debugger profiling

Description The HALT command halts the target system after you’ve entered a RUNF
command. When you invoke the debugger, it automatically executes a HALT
command. Thus, if you enter a RUNF, quit the debugger, and later reinvoke
the debugger, you will effectively reconnect the emulator to the target system
and run the debugger in its normal mode of operation.

Conditionally Execute Debugger Commandsif/else/endif

Syntax if  expression
debugger commands
[else
debugger commands]
endif

Menu selection none

Environments basic debugger profiling

Description These commands allow you to execute debugger commands conditionally in
a batch file. If the expression is nonzero, the debugger executes the com-
mands between the IF and the ELSE or ENDIF. Note that the ELSE portion of
the command is optional.



if/else/endif, load, loop/endloop Alphabetical Summary of Debugger Commands

 11-24

You can substitute a keyword for the expression. Keywords evaluate to true
(1) or false (0). You can use the following keywords with the IF command:

� $$EMU$$ (tests for the emulator version of the debugger)
� $$SIM$$ (tests for the simulator version of the debugger)
� $$EVM$$ (tests for the EVM version of the debugger)

The conditional commands work with the following provisions:

� You can use conditional commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You can’t nest conditional commands within the same batch file.

Load Executable Object Fileload

Syntax load object filename

Menu selection L oad→ Load

Environments basic debugger profiling

Description The LOAD command loads both an object file and its associated symbol table
into memory. In effect, the LOAD command performs both a RELOAD and an
SLOAD. If you don’t supply an extension, the debugger looks for filename.out.
Note that the LOAD command clears the old symbol table and closes the
WATCH and DISP windows.

Loop Through Debugger Commandsloop/endloop

Syntax loop  expression
debugger commands
endloop

Menu selection none

Environments basic debugger profiling

Description The LOOP/ENDLOOP commands allow you to set up a looping situation in a
batch file. These looping commands evaluate in the same method as in the run
conditional command expression:

� If you use an expression that is not Boolean, the debugger evaluates the
expression as a loop count.

� If you use a Boolean expression, the debugger executes the command re-
peatedly as long as the expression is true.



 Alphabetical Summary of Debugger Commands loop/endloop, ma

11-25  Summary of Commands and Special Keys

The LOOP/ENDLOOP commands work under the following conditions:

� You can use LOOP/ENDLOOP commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You can’t nest LOOP/ENDLOOP commands within the same batch file.

Add Block to Memory Mapma

Syntax ma  address, length, type

Menu selection M emory→Add

Environments basic debugger profiling

Description The MA command identifies valid ranges of target memory. A new memory
map must not overlap an existing entry. If you define a range that overlaps an
existing range, the debugger ignores the new range.

� The address parameter defines the starting address of a range. This pa-
rameter can be an absolute address, any C expression, the name of a C
function, or an assembly language label.

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory
Use this keyword as the type
parameter

read-only memory R, ROM, or READONLY

write-only memory W, WOM, or WRITEONLY

read/write memory WR or RAM

no-access memory PROTECT

input port IPORT

output port OPORT

input/output port IOPORT



map, mc Alphabetical Summary of Debugger Commands

 11-26

Enable Memory Mappingmap

Syntax map {on | off }

Menu selection M emory→Enable

Environments basic debugger profiling

Description The MAP command enables or disables memory mapping. In some instances,
you may want to explicitly enable or disable memory. Note that disabling
memory mapping can cause bus fault problems in the target because the de-
bugger may attempt to access nonexistent memory.

Connect a Simulated I/O Port to a File Simulator Onlymc

Syntax mc port address, page, filename, {READ | WRITE}

Menu selection M emory→Connect

Environments basic debugger profiling

Description The MC command connects IPORT, OPORT, or IOPORT to an input or output
file. Before you can connect the port, you must add it to the memory map with
the MA command.

� The port address parameter defines the address of the I/O port. This pa-
rameter can be an absolute address, any C expression, the name of a C
function, or an assembly language label.

� The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist, or the MC command will fail.

� The final parameter is specified as READ or WRITE and defines how the
file will be used (for input or output, respectively).

The file is accessed during an LDI or STI instruction to the associated port ad-
dress. A maximum of one input and one output file can be connected to a single
port; multiple ports can be connected to a single file.

This port-connect feature can also be used for simulation of serial ports. The
data transmit and data receive registers of serial port 0 and serial port 1 can
be connected to files.



 Alphabetical Summary of Debugger Commands md, mem

11-27  Summary of Commands and Special Keys

Delete Block From Memory Mapmd

Syntax md address

Menu selection M emory→Delete

Environments basic debugger profiling

Description The MD command deletes a range of memory from the debugger’s memory
map. The address parameter identifies the starting address of the range of
memory. Note that if you are attempting to delete a simulated I/O port, you
must first disconnect it.

Modify MEMORY Window Displaymem

Syntax mem [#] expression [, display format]

Menu selection none

Description The MEM command identifies a new starting address for the block of memory
displayed in a MEMORY window. The optional extension number (#) opens an
additional MEMORY window, allowing you to view a separate block of
memory. The debugger displays the contents of memory at expression in the
first data position in the MEMORY window. The end of the range is defined by
the size of the window. The expression can be an absolute address, a symbolic
address, or any C expression.

When you use the optional display format parameter, memory will be dis-
played in one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal u Unsigned decimal

e Exponential floating point x Hexadecimal

f Decimal floating point



mi, mix, ml Alphabetical Summary of Debugger Commands

 11-28

Disconnecting I/O Port Simulator Onlymi

Syntax mi port address, {READ | WRITE}

Menu selection M emory→DisConn

Environments basic debugger profiling

Description The MI command disconnects a simulated I/O port from its associated system
file.

The port address parameter identifies the address of the I/O port, which must
have been previously defined with the MC command.

Enter Mixed Modemix

Syntax mix

Menu selection MoDe→Mixed

Environments basic debugger profiling

Description The MIX command changes from the current debugging mode to mixed mode.
If you’re already in mixed mode, the MIX command has no effect.

List Memory Mapml

Syntax ml

Menu selection M emory→List

Environments basic debugger profiling

Description The ML command lists the memory ranges that are defined for the debugger’s
memory map. The ML command lists the starting address, ending address,
and read/write characteristics of each defined memory range.



 Alphabetical Summary of Debugger Commands move

11-29  Summary of Commands and Special Keys

Move Active Windowmove

Syntax move [X position, Y position [, width, length ] ]

Menu selection none

Environments basic debugger profiling

Description The MOVE command moves the active window to the specified XY position.
If you choose, you can resize the window while you move it (see the SIZE com-
mand for valid width and length values). You can use the MOVE command in
one of two ways:

� By supplying a specific X position and Y position or
� By omitting the X position and Y position parameters and using function

keys to interactively move the window.

You can move a window by defining a new XY position for the window’s upper
left corner. Valid X and Y positions depend on the screen size and the window
size. X positions are valid if the X position plus the window width in characters
is less than or equal to the screen width in characters. Y positions are valid if
the Y position plus the widow height is less than or equal to the screen height
in lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20  would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 would be valid in this example.

If you enter the MOVE command without X position and Y position parameters,
you can use arrow keys to move the window.

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the arrow keys, you must press          or         .



mr, ms, next Alphabetical Summary of Debugger Commands

 11-30

Reset Memory Mapmr

Syntax mr

Menu selection M emory→Reset

Environments basic debugger profiling

Description The MR command resets the debugger’s memory map by deleting all defined
memory ranges from the map.

Save Memory Block to Filems

Syntax ms address, length, filename

Menu selection M emory→Save

Environments basic debugger profiling

Description The MS command saves the values in a block of memory to a system file; files
are saved in COFF format.

� The address parameter identifies the beginning of the block.

� The length parameter defines the length, in words, of the block. This pa-
rameter can be any C expression.

� The filename is a system file.  If you don’t supply an extension, the debug-
ger adds an .obj extension.

Single-Step, Next Statementnext

Syntax next [expression]

Menu selection Next=F10 (in disassembly)

Environments basic debugger profiling

Description The NEXT command is similar to the STEP command. If you’re in C code, the
debugger executes one C statement at a time. In assembly or mixed mode,
the debugger executes one assembly language statement at a time. Unlike
STEP, NEXT never updates the display when executing called functions;
NEXT always steps to the next consecutive statement. Unlike STEP, NEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.



 Alphabetical Summary of Debugger Commands patch, pf

11-31  Summary of Commands and Special Keys

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (the Running code conditionally discussion, page 6-17, dis-
cusses this in detail).

Patch Assemblepatch

Syntax patch address, assembly language instruction

Menu selection none

Environments basic debugger profiling

Description The PATCH command allows you to patch-assemble disassembly state-
ments. The address parameter identifies the address of the statement you
want to change. The assembly language instruction parameter is the new
statement you want to use at address.

Profile, Fullpf

Syntax pf starting point [, update rate]

Menu selection P rofile→Full

Environments basic debugger profiling

Description The PF command initiates a RUN and collects a full set of statistics on the de-
fined areas between the starting point and the first-encountered stopping
point. The starting point  parameter can be a label, a function name, or a
memory address.

The optional update rate parameter determines how often the PROFILE win-
dow will be updated. The update rate parameter can have one of these values:

Value Description

0 This is the default. Statistics are not updated until the session is halted
(although you can force an update by clicking the mouse in the window
header). A “spinning wheel” character is shown to indicate that a profiling
session is in progress.

≥1 Statistics are updated during the session. A value of 1 means that data
is updated as often as possible.

<0 Statistics are not updated until the profiling session is halted, and the
“spinning wheel” character is not displayed.



pinc, pind, pinl Alphabetical Summary of Debugger Commands

 11-32

Connect Pin Simulator Onlypinc

Syntax pinc pinname, filename

Menu selection P in→Connect

Environments basic debugger profiling

Description The PINC command connects an input file to interrupt pin.

� The pinname parameter identifies the interrupt pin and must be one of the
four interrupt pins (INT0–INT3).

� The filename parameter is the name of your input file.

Disconnect Pin Simulator Onlypind

Syntax pind pinname

Menu selection P in→Disconnect

Environments basic debugger profiling

Description The PIND command disconnects an input file from an interrupt pin. The
pinname parameter identifies the interrupt pin and must be one of the four
interrupt pins, (INT0–INT3).

List the Interrupt Pins Simulator Onlypinl

Syntax pinl

Menu selection P in→List

Environments basic debugger profiling

Description The PINL command displays all of the pins—unconnected pins first, followed
by the connected pins. For a connected pin, the simulator displays the name
of the pin and the absolute pathname of the file in the COMMAND window.



 Alphabetical Summary of Debugger Commands pq, pr, prompt

11-33  Summary of Commands and Special Keys

Profile, Quickpq

Syntax pq starting point [, update rate]

Menu selection P rofile→Quick

Environments basic debugger profiling

Description The PQ command initiates a RUN command and collects a subset of the avail-
able statistics on the defined areas between the starting point and the first-en-
countered stopping point. PQ is similar to PF, except that PQ doesn’t collect
exclusive or exclusive max data.

The update rate parameter is the same as for the PF command.

Resume Profile Sessionpr

Syntax pr [clear data [, update rate] ]

Menu selection P rofile→Resume

Environments basic debugger profiling

Description The PR command resumes the last profiling session (initiated by PF or PQ),
starting from the current program counter.

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

Value Description

0 This is the default. The profiler will continue to collect data, adding it to
the existing data for the profiled areas, and to use the previous internal
profile stacks.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Change Command-Line Promptprompt

Syntax prompt new prompt

Menu selection C olor→Prompt

Environments basic debugger profiling

Description The PROMPT command changes the command-line prompt. The new prompt
can be any string of characters (note that a semicolon or comma ends the
string).



quit, reload, reset, restart Alphabetical Summary of Debugger Commands

 11-34

Exit Debuggerquit

Syntax quit

Menu selection none

Environments basic debugger profiling

Description The QUIT command exits the debugger and returns to the operating system.

Reload Object Codereload

Syntax reload [object filename]

Menu selection L oad→Reload

Environments basic debugger profiling

Description The RELOAD command loads only an object file without  loading its
associated symbol table. This is useful for reloading a program when target
memory has been corrupted. If you enter the RELOAD command without
specifying a filename, the debugger reloads the file that you loaded last.

Reset Target Systemreset

Syntax reset

Menu selection L oad→ReseT

Environments basic debugger profiling

Description The RESET command resets the target system (emulator only),  simulator, or
EVM and reloads the monitor. Note that this is a software reset.

Reset PC to Program Entry Pointrestart

Syntax restart
rest

Menu selection L oad→REstart

Environments basic debugger profiling

Description The RESTART or REST command resets the program to its entry point. (This
assumes that you have already used one of the load commands to load a pro-
gram into memory.)



 Alphabetical Summary of Debugger Commands return, run, runb

11-35  Summary of Commands and Special Keys

Return to Function’s Callerreturn

Syntax return
ret

Menu selection none

Environments basic debugger profiling

Description The RETURN or RET command executes the code in the current C function
and halts when execution reaches the caller. Breakpoints do not affect this
command, but you can halt execution by pressing the left mouse button or
pressing ESC .

Run Coderun

Syntax run [expression]

Menu selection Run=F5

Environments basic debugger profiling

Description The RUN command is the basic command for running an entire program. The
command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page 6-17).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, and updates the display.

Benchmark Coderunb

Syntax runb

Menu selection none

Environments basic debugger profiling

Description The RUNB command executes a specific section of code and counts the num-
ber of CPU clock cycles consumed by the execution. In order to operate cor-
rectly, execution must be halted by a software breakpoint. After RUNB execu-
tion halts, the debugger stores the number of cycles into the CLK pseudoregis-
ter. For a complete explanation of the RUNB command and the benchmarking
process, read Section 6.7, Benchmarking, on page 6-19.



runf, sa, scolor Alphabetical Summary of Debugger Commands

 11-36

Run Free EVM & Emulator Onlyrunf

Syntax runf

Menu selection none

Environments basic debugger profiling

Description The RUNF command disconnects the emulator or EVM from the target system
while code is executing. When you enter RUNF, the debugger clears all break-
points, disconnects the emulator or EVM from the target system, and causes
the processor to begin execution at the current PC. You can quit the debugger,
or you can continue to enter commands. However, any command that causes
the debugger to access the target at this time produces an error.

The HALT command stops a RUNF; note that the debugger automatically
executes a HALT when the debugger is invoked.

Add Stopping Pointsa

Syntax sa address

Menu selection S top-points→Add

Environments basic debugger profiling

Description The SA command adds a stopping point at address. The address can be a la-
bel, a function name, or a memory address.

Change Screen Colorsscolor

Syntax scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4 ] ] ]

Menu selection C olor→Config

Environments basic debugger profiling

Description The SCOLOR command changes the color of specified areas of the debugger
display and updates the display immediately. The area name parameter identi-
fies the area of the display that is affected. The attributes identify how the area
is affected. The first two attribute parameters usually specify the foreground
and background colors for the area. If you do not supply a background color,
the debugger uses black as the background.



 Alphabetical Summary of Debugger Commands scolor, sconfig, sd

11-37  Summary of Commands and Special Keys

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright blink

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous attrib-
ute names, the debugger interprets the names in this order: black, blue, bright,
blink. If you supply ambiguous area names, the debugger interprets them in
the order that they’re listed above (left to right, top to bottom).

Load Screen Configurationsconfig

Syntax sconfig [filename]

Menu selection C olor→Load

Environments basic debugger profiling

Description The SCONFIG command restores the display to a specified configuration.
This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for the init.clr file. The debugger
searches for the specified file in the current directory and then in directories
named with the D_DIR environment variable.

Delete Stopping Pointsd

Syntax sd address

Menu selection S top-points→Delete

Environments basic debugger profiling

Description The SD command deletes the stopping point at address.



setf Alphabetical Summary of Debugger Commands

 11-38

Set Default Data-Display Formatsetf

Syntax setf [data type, display format ]

Menu selection none

Environments basic debugger profiling

Description The SETF command changes the display format for a specific data type. If you
enter SETF with no parameters, the debugger lists the current display format
for each data type.

� The data type parameter can be any of the following C data types:

char short uint ulong double
uchar int long float ptr

� The display format parameter can be any of the following characters:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Only a subset of the display formats can be used for each data type. Listed
below are the valid combinations of data types and display formats.

Data Valid Display Formats Data Valid Display Formats

Type c d o x e f p s u Type c d o x e f p s u

char (c) √ √ √ √ √ long (d) √ √ √ √ √

uchar (d) √ √ √ √ √ ulong (d) √ √ √ √ √

short (d) √ √ √ √ √ float (e) √ √ √ √

int (d) √ √ √ √ √ double (e) √ √ √ √

uint (d) √ √ √ √ √ ptr (p) √ √ √ √

To return all data types to their default display format, enter:

setf *  



 Alphabetical Summary of Debugger Commands size, sl

11-39  Summary of Commands and Special Keys

Size Active Windowsize

Syntax size [width, length ]

Menu selection none

Environments basic debugger profiling

Description The SIZE command changes the size of the active window. You can use the
SIZE command in one of two ways: 

� By supplying a specific width and length or
� By omitting the width and length parameters and using function keys to in-

teractively resize the window.

Valid values for the width and length depend on the screen size and the win-
dow position on the screen. If the window is in the upper left corner of the
screen, the maximum size of the window is the same as the screen size minus
one line. (The extra line is needed for the menu bar.) For example, if the screen
size is 80 characters by 25 lines, the largest window size is 80 characters by
24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, as de-
scribed on page 3-23.

If you enter the SIZE command without width and length parameters, you can
use arrow keys to size the window.

↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the arrow keys, you must press          or         .

List  Stopping Pointsl

Syntax sl

Menu selection S top-points→List

Environments basic debugger profiling

Description The SL command lists all of the currently set stopping points.



sload, sound, sr Alphabetical Summary of Debugger Commands

 11-40

Load Symbol Tablesload

Syntax sload object filename

Menu selection L oad→Symbols

Environments basic debugger profiling

Description The SLOAD command loads the symbol table of the specified object file.
SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point. Note that SLOAD closes the
WATCH and DISP windows.

Enable Error Beepsound

Syntax sound {on | off }

Menu selection none

Environments basic debugger profiling

Description You can cause a beep to sound every time a debugger error message is dis-
played. This is useful if the COMMAND window is hidden (because you
wouldn’t see the error message). By default, sound is off.

Reset Stopping Pointsr

Syntax sr

Menu selection S top-points→Reset

Environments basic debugger profiling

Description The SR command resets (deletes) all currently set stopping points.



 Alphabetical Summary of Debugger Commands ssave, step

11-41  Summary of Commands and Special Keys

Save Screen Configurationssave

Syntax ssave [filename]

Menu selection C olor→Save

Environments basic debugger profiling

Description The SSAVE command saves the current screen configuration to a file. This
saves the screen colors, window positions, window sizes, and border styles.
The filename parameter names the new screen configuration file. You can in-
clude path information (including relative pathnames); if you don’t supply path
information, the debugger places the file in the current directory. If you don’t
supply a filename, then the debugger saves the current configuration into a file
named init.clr and places the file in the current directory.

Single-Stepstep

Syntax step [expression]

Menu selection Step=F8 (in disassembly)

Environments basic debugger profiling

Description The STEP command single-steps through assembly language or C code. If
you’re in C code, the debugger executes one C statement at a time. In assem-
bly or mixed mode, the debugger executes one assembly language statement
at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug op-
tion). When function execution completes, single-step execution returns to the
caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (the Running code conditionally discussion, page 6-17, dis-
cusses this in detail).



system Alphabetical Summary of Debugger Commands

 11-42

Enter DOS Commandsystem

Syntax system [DOS command [, flag] ]

Menu selection none

Environments basic debugger profiling

Description The SYSTEM command allows you to enter DOS commands without explicitly
exiting the debugger environment.

If you enter SYSTEM with no parameters, the debugger will open a system
shell and display the operating-system prompt. At this point, you can enter any
DOS command. (In MS-DOS, available memory may limit the commands that
you can enter.) When you finish, enter:

exit

If you prefer, you can supply the DOS command as a parameter to the
SYSTEM command. If the result of the command is a message or other
display, the debugger will blank the top of the debugger display to show the
information. In this case, you can use the flag parameter to tell the debugger
whether or not it should hesitate after displaying the information. Flag may be
a 0 or a 1.

0 If you supply a value of 0 for flag, the debugger immediately returns to
the debugger environment after the last item of information is dis-
played.

1 If you supply a value of 1 for flag, the debugger does not return to the
debugger environment until you press . (This is the default.)



 Alphabetical Summary of Debugger Commands take, unalias

11-43  Summary of Commands and Special Keys

Execute Batch Filetake

Syntax take batch filename [, suppress echo flag]

Menu selection none

Environments basic debugger profiling

Description The TAKE command tells the debugger to read and execute commands from
a batch file. The batch filename parameter identifies the file that contains com-
mands.

By default, the debugger echoes the commands to the output area of the
COMMAND window and updates the display as it reads the commands from
the batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but supply
a nonzero value, then the debugger behaves in the default manner.

� If you would like to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

Delete Alias Definitionunalias

Syntax unalias alias name 
unalias *

Menu selection none

Environments basic debugger profiling

Description The UNALIAS command deletes defined aliases.

� To delete a single  alias , enter the UNALIAS command with an alias name.
For example, to delete an alias named NEWMAP, enter:

unalias NEWMAP 

� To delete all aliases , enter an asterisk instead of an alias name:

unalias * 

Note that the * symbol does not work as a wildcard.



use, vaa, vac, version Alphabetical Summary of Debugger Commands

 11-44

Use New Directoryuse

Syntax use [directory name]

Menu selection none

Environments basic debugger profiling

Description The USE command allows you to name an additional directory that the debug-
ger can search when looking for source files. You can specify only one directo-
ry at a time.

If you enter the USE command without specifying a directory name, the debug-
ger lists all of the current directories.

Save All Profile Data to a Filevaa

Syntax vaa filename

Menu selection V iew→Save→All views

Environments basic debugger profiling

Description The VAA command saves all statistics collected during the current profiling
session. The data is stored in a system file.

Save Currently Displayed Profile Data to a Filevac

Syntax vac filename

Menu selection V iew→Save→Current view

Environments basic debugger profiling

Description The VAC command saves all statistics currently displayed in the PROFILE
window. (Statistics that aren’t displayed aren’t saved.) The data is stored in a
system file.

Display the Current Debugger Versionversion

Syntax version

Menu selection none

Environments basic debugger profiler

Description The VERSION command displays the debugger’s copyright date and the cur-
rent version number of the debugger, silicon, etc.



 Alphabetical Summary of Debugger Commands vr, wa

11-45  Summary of Commands and Special Keys

Reset PROFILE Window Displayvr

Syntax vr

Menu selection V iew→Reset

Environments basic debugger profiling

Description The VR command resets the display in the PROFILE window so that all
marked areas are listed and statistics are displayed with default labels and in
the default sort order.

Add Item to WATCH Windowwa

Syntax wa expression [,[ label], display format]

Menu selection W atch→Add

Environments basic debugger profiling

Description The WA command displays the value of expression in the WATCH window. If
the WATCH window isn’t open, executing WA opens the WATCH window. The
expression parameter can be any C expression, including an expression that
has side effects. It’s most useful to watch an expression whose value changes
over time; constant expressions serve no useful function in the watch window.
The label parameter is optional. When used, it provides a label for the watched
entry. If you don’t use a label, the debugger displays the expression in the label
field.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

If you want to use a display format parameter without a label parameter, just
insert an extra comma. For example:

wa PC,,d 



wd, whatis, win Alphabetical Summary of Debugger Commands

 11-46

Delete Item From WATCH Windowwd

Syntax wd index number

Menu selection W atch→Delete

Environments basic debugger profiling

Description The WD command deletes a specific item from the WATCH window. The WD
command’s index number parameter must correspond to one of the watch in-
dexes listed in the WATCH window.

Find Data Typewhatis

Syntax whatis symbol

Menu selection none

Environments basic debugger profiling

Description The WHATIS command shows the data type of symbol in the COMMAND win-
dow display area. The symbol can be any variable (local, global, or static), a
function name, structure tag, typedef name, or enumeration constant.

Select Active Windowwin

Syntax win WINDOW NAME

Menu selection none

Environments basic debugger profiling

Description The WIN command allows you to select the active window by name. Note that
the WINDOW NAME is in uppercase (matching the name exactly as dis-
played). You can spell out the entire window name, but you really need to spec-
ify only enough letters to identify the window.

If several of the same types of window are visible on the screen, don’t use the
WIN command to select one of them. If you supply an ambiguous name (such
as C, which could stand for CPU or CALLS), the debugger selects the first win-
dow it finds whose name matches the name you supplied. If the debugger
doesn’t find the window you asked for (because you closed the window or mis-
spelled the name), then the WIN command has no effect.



 Alphabetical Summary of Debugger Commands wr, zoom

11-47  Summary of Commands and Special Keys

Reset WATCH Windowwr

Syntax wr

Menu selection W atch→Reset

Environments basic debugger profiling

Description The WR command deletes all items from the WATCH window and closes the
window.

Zoom Active Windowzoom

Syntax zoom

Menu selection none

Environments basic debugger profiling

Description The ZOOM command makes the active window as large as possible. To “un-
zoom” a window, enter the ZOOM command a second time; this returns the
window to its prezoom size and position.



Summary of Profiling Commands

 11-48

11.4 Summary of Profiling Commands

The following tables summarize the profiling commands that are used for
marking, enabling, disabling, and unmarking areas and for changing the dis-
play in the PROFILE window. These commands are easiest to use from the
pulldown menus, so they are not included in the alphabetical command sum-
mary. The syntaxes for these commands are provided here so that you can
include them in batch files.

Table 11–1. Marking Areas

To mark this area C only Disassembly only

Lines

� By line number, address

� All lines in a function

MCLE filename, line number

MCLF function

MALE address

MALF function

Ranges

� By line numbers MCRE filename, line number, line number MARE address, address

Functions

� By function name

� All functions in a module

� All functions everywhere

MCFE function

MCFM filename

MCFG

not applicable

Table 11–2. Disabling Marked Areas

To disable this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

DCLE filename, line number

DCLF function

DCLM filename

DCLG

DALE address

DALF function

DALM filename

DALG

not applicable

DBLF function

DBLM filename

DBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

DCRE filename, line number

DCRF function

DCRM filename

DCRG

DARE address

DARF function

DARM filename

DARG

not applicable

DBRF function

DBRM filename

DBRG



 Summary of Profiling Commands

11-49  Summary of Commands and Special Keys

Table 11–2. Disabling Marked Areas (Continued)

To disable this area C only Disassembly only C and disassembly

Functions

� By function name

� All functions in a module

� All functions everywhere

DCFE function

DCFM filename

DCFG

not applicable not applicable

DBFM filename

DBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

DCAF function

DCAM filename

DCAG

DAAF function

DAAM filename

DAAG

DBAF function

DBAM filename

DBAG

Table 11–3. Enabling Disabled Areas

To enable this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

ECLE filename, line number

ECLF function

ECLM filename

ECLG

EALE address

EALF function

EALM filename

EALG

not applicable

EBLF function

EBLM filename

EBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

ECRE filename, line number

ECRF function

ECRM filename

ECRG

EARE address

EARF function

EARM filename

EARG

not applicable

EBRF function

EBRM filename

EBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

ECFE function

ECFM filename

ECFG

not applicable not applicable

EBFM filename

EBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

ECAF function

ECAM filename

ECAG

EAAF function

EAAM filename

EAAG

EBAF function

EBAM filename

EBAG



Summary of Profiling Commands

 11-50

Table 11–4. Unmarking Areas

To unmark this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

UCLE filename, line number

UCLF function

UCLM filename

UCLG

UALE address

UALF function

UALM filename

UALG

not applicable

UBLF function

UBLM filename

UBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

UCRE filename, line number

UCRF function

UCRM filename

UCRG

UARE address

UARF function

UARM filename

UARG

not applicable

UBRF function

UBRM filename

UBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

UCFE function

UCFM filename

UCFG

not applicable not applicable

UBFM filename

UBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

UCAF function

UCAM filename

UCAG

UAAF function

UAAM filename

UAAG

UBAF function

UBAM filename

UBAG

Table 11–5. Changing the PROFILE Window Display

(a) Viewing specific areas

To view this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

VFCLE filename, line number

VFCLF function

VFCLM filename

VFCLG

VFALE address

VFALF function

VFALM filename

VFALG

not applicable

VFBLF function

VFBLM filename

VFBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

VFCRE filename, line number

VFCRF function

VFCRM filename

VFCRG

VFARE address

VFARF function

VFARM filename

VFARG

not applicable

VFBRF function

VFBRM filename

VFBRG



 Summary of Profiling Commands

11-51  Summary of Commands and Special Keys

Table 11–5. Changing the PROFILE Window Display (Continued)

To view this area C only Disassembly only C and disassembly

Functions

� By function name

� All functions in a module

� All functions everywhere

VFCFE function

VFCFM filename

VFCFG

not applicable not applicable

VFBFM filename

VFBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

VFCAF function

VFCAM filename

VFCAG

VFAAF function

VFAAM filename

VFAAG

VFBAF function

VFBAM filename

VFBAG

(b) Viewing different data (c) Sorting the data

To view this information
Use this
command To sort on this data

Use this
command

Count VDC Count VSC

Inclusive VDI Inclusive VSI

Inclusive, maximum VDN Inclusive, maximum VSN

Exclusive VDE Exclusive VSE

Exclusive, maximum VDX Exclusive, maximum VSX

Address VDA Address VSA

All VDL Data VSD



Summary of Special Keys

 11-52

11.5 Summary of Special Keys

The debugger provides function key, cursor key, and command key se-
quences for performing a variety of actions:

� Editing text on the command line
� Using the command history
� Switching modes
� Halting or escaping from an action
� Displaying the pulldown menus
� Running code
� Selecting or closing a window
� Moving or sizing a window
� Scrolling through a window’s contents
� Editing data or selecting the active field

Editing text on the command line

To do this
Use these
function keys

Enter the current command (note that if you press the return key
in the middle of text, the debugger truncates the input text at the 
point where you press this key)

Move back over text without erasing characters CONTROL H

or
BACK SPACE

Move forward through text without erasing characters CONTROL L

Move back over text while erasing characters DELETE

Move forward through text while erasing characters SPACE

Insert text into the characters that are already on the command INSERT

line

Using the command history

To do this
Use these
function keys

Repeat the last command that you entered F2

Move backward, one command at a time, through the command TAB

history

Move forward, one command at a time, through the command SHIFT TAB

history



 Summary of Special Keys

11-53  Summary of Commands and Special Keys

Switching modes

To do this
Use this
function key

Switch debugging modes in this order: F3

auto assembly mixed

Halting or escaping from an action

The escape key acts as an end or undo key in several situations.

To do this
Use this
function key

� Halt program execution ESC

� Close a pulldown menu

� Undo an edit of the active field in a data-display window 
(pressing this key leaves the field unchanged)

� Halt the display of a long list of data in the display area of 
the COMMAND window

Displaying pulldown menus

To do this
Use these
function keys

Display the Load menu ALT L

Display the Break menu ALT B

Display the Watch menu ALT W

Display the Memory menu ALT M

Display the Color menu ALT C

Display the MoDe menu ALT D

Display the Pin menu ALT P

Display an adjacent menu ←  or →

Execute any of the choices from a displayed pulldown menu Press the high-
lighted letter
corresponding
to your choice



Summary of Special Keys

 11-54

Running code

To do this
Use these
function keys

Run code from the current PC (equivalent to the RUN command F5

without an expression parameter)

Single-step code from the current PC (equivalent to the STEP F8

command without an expression parameter)

Single-step code from the current PC; step over function calls F10

(equivalent to the NEXT command without an expression 
parameter)

Selecting or closing a window

To do this
Use these
function keys

Select the active window (pressing this key makes each window F6

active in turn; stop pressing the key when the desired window 
becomes active)

Close the CALLS, WATCH, DISP, or additional MEMORY window F4

(the window must be active before you can close it)

Moving or sizing a window

You can use the arrow keys to interactively move a window after entering the
MOVE or SIZE command without parameters.

To do this
Use these
function keys

� Move the window down one line ↓

� Make the window one line longer

� Move the window up one line ↑

� Make the window one line shorter

� Move the window left one character position ←

� Make the window one character narrower

� Move the window right one character position →

� Make the window one character wider



 Summary of Special Keys

11-55  Summary of Commands and Special Keys

Scrolling a window’s contents

These descriptions and instructions for scrolling apply to the active window.
Some of these descriptions refer to specific windows; if no specific window is
named, then the description/instructions refer to any window that is active.

To do this
Use these
function keys

Scroll up through the window contents, one window length at PAGE UP

a time

Scroll down through the window contents, one window length PAGE DOWN

at a time

Move the field cursor up, one line at a time ↑

Move the field cursor down, one line at a time ↓

� FILE window only: Scroll left 8 characters at a time ←

� Other windows: Move the field cursor left 1 field; at the first
field on a line, wrap back to the last fully displayed field on 
the previous line

� FILE window only: Scroll right 8 characters at a time →

� Other windows: Move the field cursor right 1 field; at the last 
field on a line, wrap around to the first field on the next line

FILE window only: Adjust the window’s contents so that the first HOME

line of the text file is at the top of the window

FILE window only: Adjust the window’s contents so that the last END

line of the text file is at the bottom of the window

DISP windows only: Scroll up through an array of structures CONTROL

PAGE UP

DISP windows only: Scroll down through an array of structures CONTROL

PAGE DOWN

Editing data or selecting the active field

The F9 function key makes the current field (the field that the cursor is pointing
to) active. This has various effects, depending on the field.

To do this
Use these
function keys

� FILE or DISASSEMBLY window: Set or clear a breakpoint F9

� CALLS window: Display the source to a listed function

� Any data-display window: Edit the contents of the current field

� DISP window: Open an additional DISP window to display a 
member that is an array, structure, or pointer



 11-56



12-1  Chapter Title—Attribute Reference

Basic Information
About C Expressions

Many of the debugger commands take C expressions as parameters. This al-
lows the debugger to have a relatively small yet powerful instruction set. Be-
cause C expressions can have side effects—that is, the evaluation of some
types of expressions can affect existing values—you can use the same com-
mand to display or to change a value. This reduces the number of commands
in the command set.

This chapter contains basic information that you’ll need to know in order to use
C expressions as debugger command parameters.

Topic Page

12.1 C Expressions for Assembly Language Programmers 12-2

12.2 Using Expression Analysis in the Debugger 12-4
Restrictions 12-4
Additional features 12-4

Chapter 12



C Expressions for Assembly Language Programmers

 12-2

12.1 C Expressions for Assembly Language Programmers

It’s not necessary for you to be an experienced C programmer in order to use
the debugger. However, in order to use the debugger’s full capabilities, you
should be familiar with the rules governing C expressions. You should obtain
a copy of The C Programming Language  (first or second edition) by Brian
W. Kernighan and Dennis M. Ritchie, published by Prentice-Hall, Englewood
Cliffs, New Jersey. This book is referred to in the C community, and in Texas
Instruments documentation, as K&R.

Note:

A single value or symbol is a legal C expression.

K&R contains a complete description of C expressions; to get you started,
here’s a summary of the operators that you can use in expression parameters.

� Reference operators

–> indirect structure reference . direct structure reference
[ ] array reference * indirection (unary)
& address (unary)

� Arithmetic operators

+ addition (binary) – subtraction (binary)
* multiplication / division
% modulo – negation (unary)
(type) typecast

� Relational and logical operators

> greater than >= greater than or equal to
< less than <= less than or equal to
= = is equal to != is not equal to
&& logical AND || logical OR
! logical NOT (unary)



 C Expressions for Assembly Language Programmers

12-3  Basic Information About C Expressions

� Increment and decrement operators

++ increment – – decrement

These unary operators can precede or follow a symbol. When the operator
precedes a symbol, the symbol value is incremented/decremented before
it is used in the expression; when the operator follows a symbol, the sym-
bol value is incremented/decremented after it is used in the expression.
Because these operators affect the symbol’s final value, they have side
effects.

� Bitwise operators

& bitwise AND | bitwise OR
^ bitwise exclusive-OR << left shift
>> right shift ~ 1s complement (unary)

� Assignment operators

= assignment += assignment with addition
–= assignment with subtraction /= assignment with division
%= assignment with modulo &= assignment with bitwise AND
^= assignment with bitwise XOR |= assignment with bitwise OR
<<= assignment with left shift >>= assignment with right shift
*= assignment with multiplication

These operators support a shorthand version of the familiar binary expres-
sions; for example, X = X + Y can be written in C as X += Y. Because these
operators affect a symbol’s final value, they have side effects.



Using Expression Analysis in the Debugger

 12-4

12.2 Using Expression Analysis in the Debugger

The debugger’s expression analysis is based on C expression analysis. This
includes all mathematical, relational, pointer, and assignment operators. How-
ever, there are a few limitations, as well as a few additional features not de-
scribed in K&R C.

Restrictions

The following restrictions apply to the debugger’s expression analysis fea-
tures.

� The size of operator is not supported.

� The comma operator (,) is not supported (commas are used to separate
parameter values for the debugger commands).

� Function calls and string constants are currently not supported in expres-
sions.

� The debugger supports a limited number of type casts; the following forms
are allowed:

( basic type )
( basic type * ...)
( [ structure/union/enum]  structure/union/enum tag )
( [ structure/union/enum]  structure/union/enum tag * ... )

Note that you can use up to six *s in a cast.

Additional features

� All floating-point operations are performed in double precision using stan-
dard widening. (This is transparent.) Floats are represented in IEEE float-
ing-point format.

� All registers can be referenced by name. The ’C3x’s extended-precision
registers (R0–R7) are treated as integers. You can use the names F0–F7
to access the registers as floating-point values.

� Void expressions are legal (treated like integers).

� The specification of variables and functions can be qualified with context
information. Local variables (including local statics) can be referenced
with the expression form:

function name.local name



 Using Expression Analysis in the Debugger

12-5  Basic Information About C Expressions

This expression format is useful for examining the automatic variables of a
function that is not currently being executed. Unless the variable is static,
however, the function must be somewhere in the current call stack. If you
want to see local variables from the currently executing function, you need
not use this form; you can simply specify the variable name (just as in your
C source).

File-scoped variables (such as statics or functions) can be referenced with
the following expression form:

filename.function name
                                or filename.variable name

This expression format is useful for accessing a file-scoped static variable
(or function) that may share its name with variables in other files.

In this expression, filename does not include  the file extension; the de-
bugger searches the object symbol table for any source filename that
matches the input name, disregarding any extension. Thus, if the variable
ABC is in file source.c, you can specify it as source.ABC.

These expression forms can be combined into an expression of the form:

filename.function name.variable name

� Any integral or void expression can be treated as a pointer and used with
the indirection operator (*). Here are several examples of valid use of a
pointer in an expression:

*123
*R5
*(R2 + 123)
*(I*J)

By default, the values are treated as integers (that is, these expressions
point to integer values).

� Any expression can be typecast to a pointer to a specific type (overriding
the default of pointing to an integer, as described above).

Hint:  You can use casting with the WA and DISP commands to display
data in a desired format.

For example, the expression:

*(float *)10

treats 10 as a pointer to a floating-point value at location 10 in memory. In
this case, the debugger fetches the contents of memory location 10 and
treats the contents as a floating-point value. If you use this expression as a
parameter for the DISP command, the debugger displays memory con-
tents as an array of floating-point values within the DISP window, begin-
ning with memory location 10 as array member [0].



Using Expression Analysis in the Debugger

 12-6

Note how the first expression differs from the expression:

(float)*10

In this case, the debugger fetches an integer from address 10 and con-
verts the integer to a floating-point value.

You can also typecast to user-defined types such as structures. For exam-
ple, in the expression:

((struct STR *)10)–>field

the debugger treats memory location 10 as a pointer to a structure of type
STR (assuming that a structure is at address 10) and accesses a field from
that structure.



A-1  Chapter Title—Attribute Reference

Appendix A

Specifications for Your Target
System’s Connection to the Emulator

This appendix contains information about connecting your target system with
the emulator.

Topic Page

A.1 Designing Your Target System’s A-2
Emulator Connector (12-Pin Header)

A.2 Buffering Signals Between the Emulator and the Target System A-3

A.3 Buffer Delays A-4

A.4 Mechanical Dimensions for the 12-Pin Emulator Connector A-6

Appendix A



Designing Your Target System’s Emulator Connector (12-Pin Header)

A-2

A.1 Designing Your Target System’s Emulator Connector (12-Pin Header)

The ’C3x uses a revolutionary technology to allow complete emulation via a
serial scan path of the ’C3x. To perform realtime emulation, your target sys-
tem must have a 12-pin header  (2 rows of 6 pins) with the connections that
are shown in Figure A–1.

To use the target cable, supply the signals shown in Figure A–1 to a 12-pin
header (two rows of six pins) with pin 8 cut out to provide keying.

Figure A–1.12-Pin Header Signals and Header Dimensions

EMU1† 1 2 GND

EMU0† 3 4 GND

EMU2† 5 6 GND

PD(+5V) 7 8 no pin (key)

EMU3 9 10 GND

   H3 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

Use a BergStik II header or
equivalent.

† These signals should always be pulled up with separate 20-kΩ resistors to +5 volts on the ’C3x.

Table A–1.12-Pin Header Signal Description and Pin Numbers

Signal Description
’C30
Pin Number

’C31
Pin Number

EMU0 Emulation pin 0 F14 124

EMU1 Emulation pin 1 E15 125

EMU2 Emulation pin 2 F13 126

EMU3 Emulation pin 3 E14 123

H3 ’C3x H3 A1 82

PD Presence detect. Indicates that the cable is connected and tar-
get system is powered up. PD should be tied to +5 volts in the
target system.

Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part number 67996–112

right-angle header, unshrouded DuPont Connector Systems
part number 68405–112

right-angle header, 4-wall
shrouded

AMP, Incorporated
part number 103167–3
or part number 103166–4



 Buffering Signals Between the Emulator and the Target System

A-3  Specifications for Your Target System’s Connection to the Emulator

A.2 Buffering Signals Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the ’C3x on the target system. In many cases, the signal must be buffered
to produce a high-quality signal. The need for signal buffering and placement
of the emulation header can be divided into 3 categories:

� No signal buffering. In this situation, the distance between the header
and the ’C3x should be no more than 2 inches.

H
ea

de
r

EMU0, EMU1, EMU2

H3, EMU3

3

2

0 to 2 inches

� Buffered transmission signals. In this situation, the distance between
the emulation header and the ’C3x is greater than 2 inches but less than
6 inches. The transmission signals—H3 and EMU3—are buffered through
the same package.

H
ea

de
r

EMU0, EMU1, EMU2

H3, EMU3

3

2

2 to 6 inches

� All signals buffered. The distance between the emulation header and the
’C3x is greater than 6 inches but less than 12 inches. All ’C3x emulation
signals—EMU0, EMU1, EMU2, and EMU3—are buffered through the
same package.

6 to 12 inches

H
ea

de
rEMU0, EMU1, EMU2

H3, EMU3

3

2



Buffer Delays

A-4

A.3 Buffer Delays

The emulator is designed to support a TMS320C3x with H3 clock periods
down to 40 ns. Table A–2 lists the maximum buffer delay for various H3 peri-
ods. The buffer is noninverting.

Table A–2.Maximum Buffer Delays

H3 Period Maximum Buffer Delay

60 ns 8 ns

50 ns 6 ns

40 ns 4 ns

The distance between the ’C3x and the buffers depends on the printed-wire-
board layout and loading on H3. However, Texas Instruments suggests that
the distance be as short as possible and less than 4 inches.

When you buffer H3, don’t place another device between the buffer output and
the header (see Figure A–2). Connecting another device to this signal could
cause false triggering of the device due to cable reflections.

Figure A–2.H3 Buffer Restrictions

H
ea

de
r

H3

Don’t connect any devices be-
tween the buffered H3 output
and the header!



 Buffer Delays

A-5  Specifications for Your Target System’s Connection to the Emulator

Figure A–3 shows a portion of logic in the emulator pod. Note that 33-Ω resis-
tors are added to EMU0, EMU1, and EMU2; this minimizes cable reflections.

Figure A–3.Emulator Pod Interface

33 Ω

33 Ω

D Q
74F74

1Q

74F175

2Q

3Q

33 Ω

74AS1004

74AS1004

100 Ω

EMU1 (pin 1)

EMU0 (pin 3)

EMU2 (pin 5)

EMU3 (pin 9)

H3 (pin 11)

PD (+ 5 V, pin 7)

GND (pins 2, 4, 6, 10, 12)

no pin (key, pin 8)



Mechanical Dimensions for the 12-Pin Emulator Connector

A-6

A.4 Mechanical Dimensions for the 12-Pin Emulator Connector

The ’C3x emulator target cable consists of a 3-foot section of jacketed cable,
an active cable pod, and a short section of jacketed cable that connects to the
target system. The overall cable length is approximately 3 feet,10 inches.
Figure A–4 and Figure A–5 show the mechanical dimensions for the target
cable pod and short cable. Note that the pin-to-pin spacing on the connector
is 0.100 inches in both the X and Y planes. The cable pod box is nonconductive
plastic with 4 recessed metal screws.

Figure A–4.Pod/Connector Dimensions

0.90

2.70

4.50

9.50

Please refer to Figure A–5.

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.



 Mechanical Dimensions for the 12-Pin Emulator Connector

A-7  Specifications for Your Target System’s Connection to the Emulator

Figure A–5.12-Pin Connector Dimensions

0.100
key, pin 8

0.100

0.70

0.38

0.20

pin 2,4,6,8,10,12pin 1,3,5,7,9,11

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.



A-8



B-1  Chapter Title—Attribute Reference

Appendix A

Constraints When Using the Emulator

This appendix covers constraints concerning cache control when you are us-
ing certain commands and restraints for software breakpoint and execution
commands. This information applies only when you are using the debugger
with the emulator.

Topic Page

B.1 Cache Interaction With Software Breakpoint Commands B-2

B.2 Cache Control for Memory Commands B-3

B.3 Command Constraints B-4
Software breakpoint constraints B-4
Single-step constraints with repeated instructions B-5
Constraints imposed when emulator is reset B-5

Appendix B



Cache Interaction With Software Breakpoint Commands

B-2

B.1 Cache Interaction With Software Breakpoint Commands

This section explains how cache control works with the software breakpoint
commands as discussed in Chapter 8.

� BA command

When the breakpoint address equals a cache instruction address, the
cache p-flags are modified according to the following conditions:

Cache Control

Cache Enable Cache Freeze Description

0 0 Place SWI in memory, no cache modification.

0 1 Place SWI in memory, no cache modification.

1 0 Place SWI in memory. If breakpoint address equals
cache address and p-flag is set, the p-flag clears at
the corresponding cache address.

1 1 Place SWI in memory.

Clearing the flag in the third case ensures that the SWI will always be
executed, whether from cache or memory.

� BD and BR commands

When the breakpoint address equals a cache instruction address, the
cache p-flags are modified according to the following conditions:

Cache Control

Cache Enable Cache Freeze Description

0 0 Restores instruction to memory, no cache modifica-
tion.

0 1 Restores instruction to memory, no cache modifica-
tion.

1 0 Restores instruction to memory. If breakpoint ad-
dress equals cache address and p-flag is set, the p-
flag clears at the corresponding cache address.

1 1 Restores instruction in memory.



 Cache Control for Memory Commands

B-3  Constraints When Using the Emulator

B.2 Cache Control for Memory Commands

This section explains how the cache control works with the memory modifica-
tion commands discussed in Chapter 5.

When a memory modify address is equal to a cache control address, the cache
p-flags are modified according to the following conditions:

Cache Control

Cache Enable Cache Freeze Description

0 0 No cache modification.

0 1 No cache modification.

1 0 Clears p-flag.

1 1 No cache modification.

Clearing the p-flag in the third case ensures that the emulator executes the
most current instruction.



Command Constraints

B-4

B.3 Command Constraints

The following section discusses constraints that apply to software breakpoint
and run commands and gives a correct (valid) and an incorrect (not valid) pro-
gramming example for each rule.

This section also describes constraints imposed when the target system is in
a reset condition.

Software breakpoint constraints

� There must be a minimum of three instructions between a delayed
branch  and a breakpoint.

Valid Not Valid

BRD TEST BRD TEST

LDI O,R0 LDI O,R0

LDI 1,R1 > LDI 1,R1

LDI 2,R2 LDI 2,R2

> LDI 3,R3 LDI 3,R3

� Do not place a breakpoint on the repeat single instruction  or the instruc-
tion to be repeated.

Valid Not Valid

RPTS 5 > RPTS 5

LDI 0,R0 > LDI 0,R0

> LDI 1,R1 LDI 1,R1

� Do not place a breakpoint on the last instruction of a repeat block .

Valid Not Valid

RPTB TEST RPTB TEST

LDI O,R0 LDI O,R0

> LDI 1,R1 LDI 1,R1

TEST: LDI 2,R2 > TEST: LDI 2,R2

> LDI 3,R3 LDI 3,R3



 Command Constraints

B-5  Constraints When Using the Emulator

Single-step constraints with repeated instructions

The repeat single (RPTS) instruction is an indivisible instruction and cannot
be single-stepped. However, the RPTS instruction can be replaced with the
repeat block (RPTB) instruction with a block size of one.

Example 1: RPTS 10
STI R0,*AR0++

Example 2: LDI 10,RC
RTPB ONE

ONE: STI R0,*AR0++

Both instruction sequence examples perform the same function. However, the
second example can be single-stepped to trace the execution.

Constraints imposed when emulator is reset

When the target system is in the reset condition or when the ’C3x RESET pin
is held low, the emulator can still read and write to target memory. Under this
condition, the ’C3x memory interface signals will become active. This may
cause problems in systems that use the ’C3x RESET signal to put the memory
interface in a 3-state condition.

The ’C3x HOLD signal should be used to put the primary bus in a 3-state condi-
tion. If the expansion bus is required to remain in the 3-state condition, it cannot
be put in a 3-state condition with the HOLD signal and should not be accessed
when the ’C3x is in the reset state.



B-6



C-1  Chapter Title—Attribute Reference

Appendix A

Troubleshooting When Using the Emulator

This appendix answers frequently asked questions about the ’C3x emulator.
For other questions about the emulator, call the DSP hotline at (713)
274-2320.

Q Why does the CLK register on my emulator always read 0?

A The CLK register is updated only by the RUNB (run benchmark) command
(described on page 6-19). Other run commands set the CLK register to 0.

Note: CLK Register Operation

The ’C3x emulator CLK register operates differently than the CLK register
for the ’C3x simulator.

Q Can I get a pipeline status with my ’C3x emulator?

A No. The emulator does not provide a pipeline status, because it halts only
on instruction boundaries with the pipeline flushed. All instructions in the
pipeline are guaranteed to be executed when the emulator issues a halt
command to the ’C3x.

Q I have executed the RESET command on my ’C3x emulator and at-
tempted to run code. Why does the PC remain unchanged and still contain
my RESET vector?

A The ’C3x device RESET signal is still at a logic 0. If you attempt to execute
code, the PC register remains unchanged, and the SP register incre-
ments. If you are using the application board, you must execute the
emurst.exe file in order to take the ’C3x device RESET signal to a logic 1.
If you are operating the emulator with your own target system, you must
set the ’C3x device’s reset signal to a logic 1 to run code.

Appendix C



Troubleshooting When Using the Emulator

C-2

Q Does the ’C3x emulator show the last instruction executed or the next
instruction to be executed?

A The emulator always shows the next instruction to be executed. All pre-
vious instructions have completed before the emulator halts.

Q Can I display or directly modify the ’C3x cache?

A No. The cache is not accessible. However, the emulator keeps the pro-
gram memory and cache coherent by manipulating the appropriate p-
flags.

Q Does DMA continue to operate when the ’C3x is halted?

A No. The DMA finishes its current memory cycle and halts. The DMA picks
up where it left off when the processor starts running again.

Q When the ’C3x halts, can other devices gain access to the parallel bus?

A Yes. When the ’C3x is halted, the HOLD and HOLDA signals continue to
function. If you attempt to perform an external memory access via the
emulator while the ’C3x is in the HOLD state, you may get a memory error
or reduced emulator performance. The emulator always attempts to gain
access to the external memory bus. When an attempt fails, the emulator
begins a retry and time-out sequence.



 Troubleshooting When Using the Emulator

C-3  Troubleshooting When Using the Emulator

Q I cannot determine or find the I/O address requirements of my PC in any
of my product or PC documentation. How can I figure out where to map
my ’C3x emulator?

A The following procedure works but should be used only as a last resort be-
cause it may cause I/O bus conflicts if the emulator and another card are
mapped to the same I/O address.

Find an open location in the PC I/O map:

Set the emulator’s I/O
switches and the init.cmd file
to the default configuration.

Reboot the PC to execute
the emulator.

Did the PC 
boot and operate

correctly?

You have found a valid I/O
configuration area.

Set the emulator’s I/O
switches and the init.cmd file
to the next configuration.

Yes

No



Troubleshooting When Using the Emulator

C-4

The following questions and answers pertain to the interfacing of the
’C3x emulator and the ’C3x application board or to the modification of
the ’C3x application board.

Q I have purchased the ’C3x XDS1000 Development Environment. Must the
’C3x emulator and the ’C3x application board be installed in the same host
system?

A No. The emulator and the application board may be in different host sys-
tems. In fact, if you are trying to debug code on the application board and
the host at the same time, it is preferable to use two systems because DOS
is not a multitasking environment.

Q I have written a small loader program for the ’C3x application board to load
data from the host through the dual port RAM. How can I start to execute
the program on the application board and test my host program?

A There are two methods;

� Perform an xreset command followed by an emurst command to dis-
able the emulator and reset the application board. If your loader pro-
gram is initiated from reset, this method will work.

� The second and preferred method is to load the debugger, enter a RE-
SET command to initiate the debugger, and then enter a RUNF com-
mand. The RUNF command will start to execute the ’C3x at the cur-
rent address of the program counter.

To suspend the debugger interface, use the SYSTEM command. The
SYSTEM command allows you to enter operating-system com-
mands. To re-enter the debugger, type exit. Now that you are back in
the debugger interface, you can use the HALT command to resume
the program from the point of suspension, or you can type RESET to
start over.

Q When accessing the dual port RAM on the ’C3x application board via the
’C3x emulator, I read trash on the upper bits of the data bus. Why?

A The dual port RAM on the application board is only 8 bits wide. The upper
24 bits of the data bus are left floating. Thus, their value is undetermined
on read cycles. The emulator does not mask off the unused data bits be-
fore displaying memory.



 Troubleshooting When Using the Emulator

C-5  Troubleshooting When Using the Emulator

Q I have purchased the ’C3x XDS1000 Development Environment. Does
this system require 1.5 or 3 slots in my PC?

A The development environment requires 3 slots in your PC. However, if the
emulator is installed in front of the application board, then half of a slot is
open between the two boards.

Ê
Ê
Ê
Ê

’C3x emulator board’C3x application board

1/2 Open Slot

Top View

Q How can I change the ’C3x vectors on the ’C3x application board?

A There are two methods:

� One way is to replace the supplied EPROMs with your own EPROMs.

� The second way is to set the applications board MSWAP bit to a logic
1. This causes the EPROM and SRAM to swap address ranges.
Modify the SRAM to set up a different set of vectors.

Note:

� The MSWAP bit is located at address 805FF7h, bit 7.

� The MSWAP bit is cleared to a logic 0 when the application board is reset
via the emurst.exe.

� The emulator does not clear the MSWAP bit when executing the RESET
command.

Q I want to write my own reset/initialization routine for the ’C3x application
board. Are there any special requirements?

A Yes. Set the memory ports to use external wait states and set the block
size to the default of 256 words. The file c30exam.asm, included with the
application board software package, contains an example setup.



Troubleshooting When Using the Emulator

C-6

Q I am using the examples in the TMS320 Family Floating-Point DSP Opti-
mizing C Compiler User’s Guide to write C code for the ’C3x application
board. When I try to load my program using the ’C3x emulator, I get a re-
served peripheral error message.

A The most likely problem is that the memory map used in the TMS320 Fam-
ily Floating-Point DSP Optimizing C Compiler User’s Guide is not compat-
ible with the applications board. Included with the application board is a
memory map template for the program c30exam.asm. The template file-
name is c30exam.cmd; use it as an example and modify it to meet your
needs.

Q I get the error message CANNOT INITIALIZE TARGET SYSTEM when I
try to execute emu3x or evm3x.

A The port address of the emulator or EVM was not been specified correctly
when you started the task. Verify the switch settings in your hardware (re-
fer to your installation guide) and then verify that you have used the correct
port address option when you invoked the debugger. (Also check to see
whether you specified a different address with the environment variable
D_OPTIONS.)

If you continue to have the error, verify that your target system is powered
up and that the emulator connector is properly connected. If you are bring-
ing up the target hardware for the first time, verify that the correct signals
are active from the ’C3x to the emulator connector. You should check to
see if the EMU4/SHZ pin on the ’C3x device is pulled high.



D-1  Chapter Title—Attribute Reference

Appendix A

What the Debugger Does
During Invocation

In some circumstances, you may find it helpful to know the steps that the de-
bugger goes through during the invocation process. These are the steps, in
order, that the debugger performs when you invoke it. (For more information
on the environment variables mentioned below, refer to the appropriate instal-
lation guide.)

1) Reads options from the command line.

2) Reads any information specified with the D_OPTIONS environment vari-
able.

3) Reads information from the D_DIR and D_SRC environment variables.

4) Looks for the init.clr screen configuration file.

(The debugger searches for the screen configuration file in directories
named with D_DIR.)

5) Initializes the debugger screen and windows but initially displays only the
COMMAND window.

6) Finds the batch file that defines your memory map by searching in directo-
ries named with D_DIR. The debugger expects this file to set up the
memory map and follows these steps to look for the batch file:

a) When you invoke the debugger, it checks to see if you’ve used the –t
debugger option. If it finds the –t option, the debugger reads and
executes the specified file.

b) If you don’t use the –t option, the debugger looks for the default initial-
ization batch file called init.cmd. If the debugger finds this file, it reads
and executes the commands.

7) Loads any object filenames specified with D_OPTIONS or specified on the
command line during invocation.

8) Determines the initial mode (auto, assembly, or mixed) and displays the
appropriate windows on the screen.

At this point, the debugger is ready to process any commands that you enter.

Appendix D



D-2



E-1  Chapter Title—Attribute Reference

Appendix A

Debugger Messages

This appendix contains an alphabetical listing of the progress and error mes-
sages that the debugger might display in the COMMAND window display area.
Each message contains both a description of the situation that causes the
message and an action to take if the message indicates a problem or error.

Topic Page

E.1 Associating Sound With Error Messages E-2

E.2 Alphabetical Summary of Debugger Messages E-2

E.3 Additional Instructions for Expression Errors E-20

E.4 Additional Instructions for Hardware Errors E-20

Appendix E



Associating Sound With Error Messages / Alphabetical Summary of Debugger Messages

E-2

E.1 Associating Sound With Error Messages

You can associate a beeping sound with the display of error messages. To do
this, use the SOUND command. The format for this command is:

sound {on | off }

By default, no beep is associated with error messages (SOUND OFF). The
beep is helpful if the COMMAND window is hidden behind other windows.

E.2 Alphabetical Summary of Debugger Messages

Symbols

‘]’ expected

Description This is an expression error—it means that the parameter con-
tained an opening “[” but didn’t contain a closing “]”.

Action See Section E.3 (page E-20).

‘)’ expected

Description This is an expression error—it means that the parameter con-
tained an opening “(” but didn’t contain a closing “)”.

Action See Section E.3 (page E-20).

A

Aborted by user

Description The debugger halted a long COMMAND display listing (from
WHATIS, DIR, ML, or BL) because you pressed the ESC  key.

Action None required; this is normal debugger behavior.



 Alphabetical Summary of Debugger Messages

E-3  Debugger Messages

B

Breakpoint already exists at address

Description During single-step execution, the debugger attempted to set
a breakpoint where one already existed. (This isn’t necessari-
ly a breakpoint that you set—it may have been an internal
breakpoint that was used for single-stepping).

Action None should be required; you may want to reset the program
entry point (RESTART) and re-enter the single-step com-
mand.

Breakpoint table full

Description 200 breakpoints are already set, and there was an attempt to
set another. The maximum limit of 200 breakpoints includes
internal breakpoints that the debugger may set for single-
stepping. Under normal conditions, this should not be a prob-
lem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where software breakpoints are
set in your program. Use the BR command to delete all soft-
ware breakpoints, or use the BD command to delete individu-
al software breakpoints.

C

Cannot allocate host memory

Description This is a fatal error—it means that the debugger is running out
of memory.

Action You might try invoking the debugger with the –v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Cannot allocate system memory

Description This is a fatal error—it means that the debugger is running out
of memory.

Action You might try invoking the debugger with the –v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.



Alphabetical Summary of Debugger Messages

E-4

Corrupt call stack

Description The debugger tried to update the CALLS window and
couldn’t. This may be because a function was called that
didn’t return. Or it could be that the program stack was over-
written in target memory. Another reason you may have this
message is that you are debugging code that has optimiza-
tion enabled (for example, you did not use the –g compile
switch); if this is the case, ignore this message—code execu-
tion is not affected.

Action If your program called a function that didn’t return, then this is
normal behavior (as long as you intended for the function not
to return). Otherwise, you may be overwriting program
memory.

Cannot change directory

Description The directory name specified with the CD command either
doesn’t exist or is not in the current or auxiliary directories.

Action Check the directory name that you specified. If this is really
the directory that you want, re-enter the CD command and
specify the entire pathname for that directory (for example,
specify C:\c3xhll, not just c3xhll).

Cannot edit field

Description Expressions that are displayed in the WATCH window cannot
be edited.

Action If you attempted to edit an expression in the WATCH window,
you may have actually wanted to change the value of a sym-
bol or register used in the expression. Use the ? or EVAL com-
mand to edit the actual symbol or register. The expression
value will automatically be updated.

Cannot find/open initialization file

Description The debugger can’t find the init.cmd file.

Action Be sure that init.cmd is in the appropriate directory. If it isn’t,
copy it from the debugger product diskette. If the file is already
in the correct directory, verify that the D_DIR environment
variable is set up to identify the directory. See Setting Up the
Debugger Environment in the appropriate installation guide.



 Alphabetical Summary of Debugger Messages

E-5  Debugger Messages

Cannot halt the processor

Description This is a fatal error—for some reason, pressing ESC  didn’t
halt program execution.

Action Exit the debugger. Invoke emurst (emulator only), then invoke
the debugger again.

Cannot map into reserved memory: ?

Description The debugger tried to access unconfigured/reserved/nonex-
istent memory.

Action Remap the reserved memory accesses.

Cannot map port address

Description You attempted to do a connect/disconnect on an illegal port
address.

Action Verify that the address you specified is a valid primary bus,
expansion bus, or serial port address.

Cannot open config file

Description The SCONFIG command can’t find the screen-customization
file that you specified.

Action Be sure that the filename was typed correctly. If it wasn’t, re-
enter the command with the correct name. If it was, re-enter
the command and specify full path information with the file-
name.

Cannot open “ filename”

Description The debugger attempted to show filename in the FILE win-
dow but could not find the file.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Cannot open object file: “ filename”

Description The file specified with the LOAD, SLOAD, or RELOAD com-
mand is not an object file that the debugger can load.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run cl30 again to create an
executable object file).



Alphabetical Summary of Debugger Messages

E-6

Cannot open new window

Description A maximum of 127 windows can be open at once. The last re-
quest to open a window would have made 128, which isn’t
possible.

Action Close any unnecessary windows. Windows that can be
closed include WATCH, CALLS, DISP, and additional
MEMORY windows. To close the WATCH window, enter WD.
To close the CALLS, DISP, or a MEMORY window, make the
desired window active and press F4 .

Cannot read processor status

Description This is a fatal error—for some reason, pressing ESC  didn’t
halt program execution.

Action Exit the debugger. Invoke emurst (emulator only), then invoke
the debugger again.

Cannot reset the processor

Description This is a fatal error—for some reason, pressing ESC  didn’t
halt program execution.

Action Exit the debugger. Invoke emurst (emulator only), then invoke
the debugger again.

Cannot restart processor

Description If a program doesn’t have an entry point, then RESTART
won’t reset the PC to the program entry point.

Action Don’t use RESTART if your program doesn’t have an explicit
entry point.

Cannot set/verify breakpoint at address

Description Either you attempted to set a breakpoint in read-only or pro-
tected memory, or there are hardware problems with the tar-
get system or EVM. This may also happen when you enable
or disable on-chip memory while using breakpoints.

Action Check your memory map. If the address that you wanted to
breakpoint wasn’t in ROM, see Section E.4 (page E-20).



 Alphabetical Summary of Debugger Messages

E-7  Debugger Messages

Cannot step

Description There is a problem with the target system.

Action See Section E.4 (page E-20).

Cannot take address of register

Description This is an expression error. C does not allow you to take the
address of a register.

Action See Section E.3 (page E-20).

Command “ cmd” not found

Description The debugger didn’t recognize the command that you typed.

Action Re-enter the correct command. Refer to Chapter 11 or the
Quick Reference Card for a list of valid debugger commands.

Command timed out, emulator busy

Description There is a problem with the target system.

Action See Section E.4 (page E-20).

Conflicting map range

Description A block of memory specified with the MA command overlaps
an existing memory map entry. Blocks cannot overlap.

Action Use the ML command to list the existing memory map; this will
help you find that existing block that the new block would
overlap. If the existing block is not necessary, delete it with the
MD command and re-enter the MA command. If the existing
block is necessary, re-enter the MA command with parame-
ters that will not overlap the existing block.

E

Emulator I/O address is invalid

Description The debugger was invoked with the –p option, and an invalid
port address was used.

Action For valid port address values, refer to the TMS320C3x Emu-
lator Installation Guide.



Alphabetical Summary of Debugger Messages

E-8

Error in expression

Description This is an expression error.

Action See Section E.3 (page E-20).

Execution error

Description There is a problem with the target system.

Action See Section E.4 (page E-20).

F

File already tied to port

Description You attempted to connect to an address that already has a file
connected to it.

Action Connect the file to a mapped port that is not connected to a
file.

File already tied to this pin

Description You attempted to connect an input file to an interrupt pin that
already has a file connected to it.

Action Use the PINC command to connect the file to another inter-
rupt pin that is not connected to a file.

File does not exist

Description The port file could not be opened for reading.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Files must be disconnected from ports

Description You attempted to delete a memory map that has files con-
nected to it.

Action You must disconnect a port with the MI command before you
can delete it from the memory map.



 Alphabetical Summary of Debugger Messages

E-9  Debugger Messages

File not found
Description The filename specified for the FILE command was not found

in the current directory or any of the directories identified with
D_SRC.

Action Be sure that the filename was typed correctly. If it was, re-en-
ter the FILE command and specify full path information with
the filename.

File not found : “ filename”
Description The filename specified for the LOAD, RELOAD, SLOAD, or

TAKE command was not found in the current directory or any
of the directories identified with D_SRC.

Action Be sure that the filename was typed correctly. If it was, re-en-
ter the command and specify full path information with the file-
name.

File too large ( filename)
Description You attempted to load a file that was more than 65,518 bytes

long.

Action Try loading the file without the symbol table (SLOAD), or use
cl30 to relink the program with fewer modules.

Float not allowed
Description This is an expression error—a floating-point value was used

incorrectly.

Action See Section E.3 (page E-20).

Function required
Description The parameter for the FUNC command must be the name of a

function in the program that is loaded.

Action Re-enter the FUNC command with a valid function name.

I

Illegal addressing mode
Description An illegal ’C3x addressing mode was encountered.

Action Refer to the TMS320C3x User’s Guide for valid addressing
modes.



Alphabetical Summary of Debugger Messages

E-10

Illegal cast

Description This is an expression error—the expression parameter uses
a cast that doesn’t meet the C language rules for casts.

Action See Section E.3 (page E-20).

Illegal control transfer instruction

Description The instruction following a delayed branch/call instruction
was modifying the program counter.

Action Modify your source code.

Illegal left hand side of assignment

Description This is an expression error—the lefthand side of an assign-
ment expression doesn’t meet C language assignment rules.

Action See Section E.3 (page E-20).

Illegal memory access

Description Your program tried to access unmapped memory.

Action Modify your source code.

Illegal opcode

Description An invalid ’C3x instruction was encountered.

Action Modify your source code.

Illegal operand of &

Description This is an expression error—the expression attempts to take
the address of an item that doesn’t have an address.

Action See Section E.3 (page E-20).

Illegal pointer math

Description This is an expression error—some types of pointer math are
not valid in C expressions.

Action See Section E.3 (page E-20).



 Alphabetical Summary of Debugger Messages

E-11  Debugger Messages

Illegal pointer subtraction
Description This is an expression error—the expression attempts to use

pointers in a way that is not valid.

Action See Section E.3 (page E-20).

Illegal structure reference
Description This is an expression error—either the item being referenced

as a structure is not a structure, or you are attempting to refer-
ence a nonexistent portion of a structure.

Action See Section E.3 (page E-20).

Illegal use of structures
Description This is an expression error—the expression parameter is not

using structures according to the C language rules.

Action See Section E.3 (page E-20).

Illegal use of void expression
Description This is an expression error—the expression parameter does

not meet the C language rules.

Action See Section E.3 (page E-20).

Integer not allowed
Description This is an expression error—the command did not accept an

integer as a parameter.

Action See Section E.3 (page E-20).

Invalid address
––– Memory access outside valid range: address
Description The debugger attempted to access memory at address,

which is outside the memory map.

Action Check your memory map to be sure that you access valid
memory.

Invalid argument
Description One of the command parameters does not meet the require-

ments for the command.

Action Re-enter the command with valid parameters. Refer to the
appropriate command description in Chapter 11.



Alphabetical Summary of Debugger Messages

E-12

Invalid attribute name

Description The COLOR and SCOLOR commands accept a specific set
of area names for their first parameter. The parameter en-
tered did not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid area
name parameter. Valid area names are listed in Table 9–2
(page 9-3).

Invalid color name

Description The COLOR and SCOLOR commands accept a specific set
of color attributes as parameters. The parameter entered did
not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid color
parameter. Valid color attributes are listed in Table 9–1 (page
9-2).

Invalid memory attribute

Description The third parameter of the MA command specifies the type, or
attribute, of the block of memory that MA adds to the memory
map. The parameter entered did not match one of the valid
attributes.

Action Re-enter the MA command. Use one of the following valid pa-
rameters to identify the memory type:

R, ROM, READONLY (read-only memory)
W, WOM, WRITEONLY (write-only memory)
R|W, RAM (read/write memory)
PROTECT (no-access memory)
OPORT (I/O memory)
IPORT (I/O memory)
IOPORT (I/O memory)



 Alphabetical Summary of Debugger Messages

E-13  Debugger Messages

Invalid object file

Description Either the file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load, or it
has been corrupted.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run cl30 again to create an
executable object file). If the file you attempted to load was a
valid executable object file, then it was probably corrupted; re-
compile, assemble, and link with cl30.

Invalid watch delete

Description The debugger can’t delete the parameter supplied with the
WD command. Usually, this is because the watch index
doesn’t exist or because a symbol name was typed in instead
of a watch index.

Action Re-enter the WD command. Be sure to specify the watch in-
dex that matches the item you’d like to delete (this is the num-
ber in the left column of the WATCH window). Remember, you
can’t delete items symbolically—you must delete them by
number.

Invalid window position

Description The debugger can’t move the active window to the XY posi-
tion specified with the MOVE command. Either the XY param-
eters are not within the screen limits, or the active window
may be too large to move to the desired position.

Action � You can use the mouse to move the window.

� If you don’t have a mouse, enter the MOVE command
without parameters; then use the arrow keys to move the
window. When you’re finished, you must press ESC  or

.

� If you prefer to use the MOVE command with parameters,
the minimum XY position is 0,1; the maximum position
depends on which screen size you’re using.



Alphabetical Summary of Debugger Messages

E-14

Invalid window size

Description The width and length specified with the SIZE or MOVE com-
mand may be too large or too small. If valid width and length
were specified, then the active window is already at the far
right or bottom of the screen and so cannot be made larger.

Action � You can use the mouse to size the window.

� If you don’t have a mouse, enter the SIZE command with-
out parameters; then use the arrow keys to move the win-
dow. When you’re finished, you must press ESC  or .

� If you prefer to use the SIZE command with parameters,
the minimum size is 4 by 3; the maximum size depends
on which screen size you’re using.

L

Load aborted

Description This message always follows another message.

Action Refer to the message that preceded Load aborted.

Lost power (or cable disconnected)

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section E.4 (page E-20).

Lost processor clock

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section E.4 (page E-20).

Lval required

Description This is an expression error—an assignment expression was
entered that requires a legal left-hand side.

Action See Section E.3 (page E-20).



 Alphabetical Summary of Debugger Messages

E-15  Debugger Messages

M

Memory access error at address

Description Either the processor is receiving a bus fault, or there are prob-
lems with target system memory.

Action See Section E.4 (page E-20).

Memory map table full

Description Too many blocks have been added to the memory map. This
rarely happens unless blocks are added word by word (which
is inadvisable).

Action Stop adding blocks to the memory map. Consolidate any ad-
jacent blocks that have the same memory attributes.

N
Name “ name” not found

Description The command cannot find the object named name.

Action � If name is a symbol, be sure that it was typed correctly. If it
wasn’t, re-enter the command with the correct name. If it
was, then be sure that the associated object file is loaded.

� If name was some other type of parameter, refer to the
command’s description for a list of valid parameters.

Nesting of repeats cannot exceed 100

Description The debugger cannot simulate more than 100 levels of repeat
nesting in an input data file. If this happens, the debugger dis-
connects the input file from the pin.

Action Correct  the input file so that the data does not include nesting
repetition exceeding 100 levels. Use the PINC command to
reconnect the input file to the desired pin.

No file connected to this pin

Description You tried to disconnect the input file from a pin that was not
previously connected to that pin.

Action Use the PINL command to list all of the pins and the files con-
nected to them. Use the PIND command to re-enter the cor-
rect pinname and filename.



Alphabetical Summary of Debugger Messages

E-16

Nonrepeatable instruction

Description The instruction following the RPT instruction is not a repeat-
able instruction.

Action Modify your code.

P
Pinname not valid for this chip

Description You attempted to connect or disconnect an input file to an
invalid interrupt pin.

Action Either reconnect the input file to an unused interrupt pin
(INT0, INT1, INT2, or INT3), or disconnect the input file from
the interrupt pin.

Pointer not allowed

Description This is an expression error.

Action See Section E.3 (page E-20).

Processor is already running

Description One of the RUN commands was entered while the debugger
was running free from the target system.

Action Enter the HALT command to stop the free run, then re-enter
the desired RUN command.

R

Read not allowed for port

Description You attempted to connect a file for input operation to an ad-
dress that is not configured for read.

Action Remap the port of correct the access in your source code.

Register access error

Description Either the processor is receiving a bus fault, or there are prob-
lems with target-system memory.

Action See Section E.4 (page E-20).



 Alphabetical Summary of Debugger Messages

E-17  Debugger Messages

S

Specified map not found

Description The MD command was entered with an address or block that
is not in the memory map.

Action Use the ML command to verify the current memory map.
When using MD, you can specify only the first address of a
defined block.

Structure member not found

Description This is an expression error—an expression references a non-
existent structure member.

Action See Section E.3 (page E-20).

Structure member name required

Description This is an expression error—a symbol name followed by a pe-
riod but no member name.

Action See Section E.3 (page E-20).

Structure not allowed

Description This is an expression error—the expression is attempting an
operation that cannot be performed on a structure.

Action See Section E.3 (page E-20).

Syntax error at line number

Description The debugger will not simulate interrupts from the input data
file and disconnects the input file.

Action Correct the syntax in the input data file. Reconnect the input
file to the pin using the PINC command.



Alphabetical Summary of Debugger Messages

E-18

T

Take file stack too deep

Description Batch files can be nested up to 10 levels deep. Batch files can
call other batch files, which can call other batch files, and so
on. Apparently, the batch file that you are TAKEing calls batch
files that are nested more than 10 levels deep.

Action Edit the batch file that caused the error. Instead of calling
another batch file from within the offending file, you may want
to copy the contents of the second file into the first. This will
remove a level of nesting.

Too few instruction words in RPTB

Description The length of the repeat block was less than three instruction
words.

Action Modify your code.

Too many breakpoints

Description 200 breakpoints are already set, and there was an attempt to
set another. Note that the maximum limit of 200 breakpoints
includes internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where you have breakpoints set
in your program. Use the BR command to delete all break-
points, or use the BD command to delete individual software
breakpoints.

Too many paths

Description More than 20 paths have been specified cumulatively with the
USE command, D_SRC environment variable, and –i debug-
ger option.

Action Don’t enter the USE command before entering another com-
mand that has a filename parameter. Instead, enter the se-
cond command and specify full path information for the file-
name.



 Alphabetical Summary of Debugger Messages

E-19  Debugger Messages

U

Undeclared port address

Description You attempted to do a connect/disconnect on an address that
isn’t declared as a port.

Action Verify the address of the port to be connected or discon-
nected.

User halt

Description The debugger halted program execution because you
pressed the ESC  key.

Action None required; this is normal debugger behavior.

W

Window not found

Description The parameter supplied for the WIN command is not a valid
window name.

Action Re-enter the WIN command. Remember that window names
must be typed in uppercase letters. Here are the valid window
names; the bold letters show the smallest acceptable ab-
breviations:

CALLS CPU DISP

COMMAND DISASSEMBLY FILE

MEMORY PROFILE WATCH

Write not allowed for port

Description You attempted to connect a file for output operation to an ad-
dress that is not configured for write.

Action Either change the ’C3x software to write to a port that is con-
figured for write, or change the attributes of the port.



Additional Instructions for Expression Errors / Additional Instructions for Hardware Errors

E-20

E.3 Additional Instructions for Expression Errors

Whenever you receive an expression error, you should re-enter the command
and edit the expression so that it follows the C language expression rules. If
necessary, refer to a C language manual such as The C Programming Lan-
guage  by Brian W. Kernighan and Dennis M. Ritchie.

E.4 Additional Instructions for Hardware Errors

If you continue to receive the messages that send you to this section, this indi-
cates persistent hardware problems.

� If a bus fault occurs, the emulator may not be able to access memory.

� The ’C3x must be reset before you can use the emulator. Most target sys-
tems reset the ’C3x at power-up; your target system may not be doing this.



F-1  Glossary

Appendix A

Glossary

A

active window: The window that is currently selected for moving, sizing,
editing, closing, or some other function.

aggregate type: A C data type such as a structure or array in which a vari-
able is composed of multiple variables, called members.

aliasing: A method of customizing debugger commands; aliasing provides
a shorthand method for entering often-used command strings.

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

assembly mode: A debugging mode that shows assembly language code
in the DISASSEMBLY and doesn’t show the FILE window, no matter
what type of code is currently running.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

auto mode: A context-sensitive debugging mode that automatically
switches between showing assembly language code in the
DISASSEMBLY window and C code in the FILE window, depending on
what type of code is currently running.

B

batch file: One of two different types of files. One type contains DOS com-
mands for the PC to execute. A second type of batch file contains debug-
ger commands for the debugger to execute. The PC doesn’t execute de-
bugger batch files, and the debugger doesn’t execute PC batch files.

Appendix F



Glossary

F-2

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

breakpoint: A point within your program where execution will halt because
of a previous request from you.

C

C: A high-level, general-purpose programming language useful for writing
compilers and operating systems and for programming microproces-
sors.

CALLS window: A window that lists the functions called by your program.

casting: A feature of C expressions that allows you to use one type of data
as if it were a different type of data.

children: Additional windows opened for aggregate types that are members
of a parent aggregate type displayed in an existing DISP window.

cl30: A shell utility that invokes the TMS320 floating-point DSP compiler, as-
sembler, and linker to create an executable object file version of your pro-
gram.

click: To press and release a mouse button without moving the mouse.

CLK: A pseudoregister that shows the number of CPU cycles consumed
during benchmarking. The value in CLK is valid only after you enter a
RUNB command but before you enter another RUN command.

code-display windows: Windows that show code, text files, or code-specif-
ic information. This category includes the DISASSEMBLY, FILES, and
CALLS windows.

COFF: Common Object File Format. An implementation of the object file for-
mat of the same name developed by AT&T. The TMS320 floating-point
DSP compiler, assembler, and linker use and generate COFF files.

command line: The portion of the COMMAND window where you can enter
commands.

command-line cursor: A block-shaped cursor that identifies the current
character position on the command line.

COMMAND window: A window that provides an area for you to enter com-
mands and for the debugger to echo command entry, show command
output, and list progress or error messages.



 Glossary

F-3  Glossary

CPU window: A window that displays the contents of ’C3x on-chip registers,
including the program counter, status register, A-file registers, and B-file
registers.

current-field cursor: A screen icon that identifies the current field in the ac-
tive window.

cursor: An icon on the screen (such as a rectangle or a horizontal line) that
is used as a pointing device. The cursor is usually under mouse or key-
board control.

D

data-display windows: Windows for observing and modifying various
types of data. This category includes the MEMORY, CPU, DISP, and
WATCH windows.

D_DIR: An environment variable that identifies the directory containing the
commands and files necessary for running the debugger.

debugger: A window-oriented software interface that helps you to debug
’C3x programs running on a ’C3x emulator, EVM, or simulator.

disassembly: Assembly language code formed from the reverse-assembly
of the contents of memory.

DISASSEMBLY window: A window that displays the disassembly of
memory contents.

DISP window: A window that displays the members of an aggregate data
type.

display area: The portion of the COMMAND window where the debugger
echoes command entry, shows command output, and lists progress or
error messages.

D_OPTIONS: An environment variable that you can use for identifying often-
used debugger options.

drag: To move the mouse while pressing one of the mouse buttons.

D_SRC: An environment variable that identifies directories containing pro-
gram source files.



Glossary

F-4

E

EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

EISA: Extended Industry Standard Architecture. A standard for PC buses.

emulator: A debugging tool that is external to the target system and pro-
vides direct control over the ’C3x processor that is on the target system.

emurst: A utility that resets the emulator.

environment variable: A special system symbol that the debugger uses for
finding directories or obtaining debugger options.

EVM: Evaluation Module. A development tool that lets you execute and de-
bug applications programs by using the ’C3x debugger.

evmrst: A utility that resets the EVM.

F

FILE window: A window that displays the contents of the current C code.
The FILE window is intended primarily for displaying C code but can be
used to display any text file.

I

init.cmd: A batch file that contains debugger-initialization commands. If this
file isn’t present when you first invoke the debugger, then all memory is
invalid.

initdb.bat: A batch file created to contain DOS commands to set up the de-
bugger environment.

I/O switches: Hardware switches on the emulator or EVM  board that identi-
fy the PC I/O memory space used for emulator-debugger or EVM-debug-
ger communications.

ISA: Industry Standard Architecture. A subset of the EISA standard.

M

memory map: A map of memory space that tells the debugger which areas
of memory can and can’t be accessed.



 Glossary

F-5  Glossary

MEMORY window: A window that displays the contents of memory.

menu bar: A row of pulldown menu selections found at the top of the debug-
ger display.

mixed mode: A debugging mode that simultaneously shows both assembly
language code in the DISASSEMBLY window and C code in the FILE
window.

mouse cursor: A block-shaped cursor that tracks mouse movements over
the entire display.

P
PC: Personal computer or program counter, depending on the context and

where it’s used in this book: 1) In installation instructions or information
relating to hardware and boards, PC means Personal Computer (as in
IBM PC). 2) In general debugger and program-related information, PC
means Program Counter, which is the register that identifies the current
statement in your program.

point: To move the mouse cursor until it overlays the desired object on the
screen.

port address: The PC I/O memory space that the debugger uses for com-
municating with the emulator or EVM. The port address is selected via
switches on the emulator or EVM board and communicated to the debug-
ger with the –p debugger option.

pulldown menu: A command menu that is accessed by name or with the
mouse from the menu bar at the top of the debugger display.

S
scalar type: A C type in which the variable is a single variable, not composed

of other variables.

scrolling: A method of moving the contents of a window up, down, left, or
right to view contents that weren’t originally shown.

side effects: A feature of C expressions in which using an assignment oper-
ator in an expression affects the value of one of the components used
in the expression.

simulator: A development tool that simulates the operation of the ’C3x and
lets you execute and debug applications programs by using the ’C3x de-
bugger.



Glossary

F-6

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display win-
dows.

symbol table: A file that contains the names of all variables and functions
in your ’C3x program.

system shell: A utility invoked with the SYSTEM command, which makes
it possible for the debugger to blank the debugger display and temporari-
ly exit to the DOS prompt. This allows you to enter DOS commands or
allows the debugger to display information resulting from a DOS com-
mand.

T

target system: A ’C3x board that works with the emulator; the emulator
doesn’t contain a ’C3x device, so it must use a ’C3x target board. Usually,
the target system is a board that you have designed; you use the emula-
tor and debugger to help you debug your design.

V

VGA: Video Graphics Array. An industry standard for video cards.

W

WATCH window: A window that displays the values of selected expres-
sions, symbols, addresses, and registers.

window: A defined rectangular area of virtual space on the display.



 Index

Index-1

Index

Note: All page numbers preceded by the word EMU refer to the TMS320C3x Emulator Installation
Guide; page numbers preceded by SIM refer to the TMS320C3x Simulator Getting Started Guide, and
page numbers preceded by EVM refer to the TMS320C3x EVM Installation Guide. All other references
refer to this user’s guide.

? command 7-3, 11-11
display formats 2-24, 7-20, 11-11
examining register contents 2-16, 7-10
modifying PC 6-12
side effects 7-5

$$EMU$$ constant 4-14

$$EVM$$ 4-14

$$SIM$$ 4-14

A

absolute addresses 7-7, 8-3

active window 3-19 to 3-21
breakpoints 8-3
current field 2-6, 3-18
customizing its appearance 9-4
default appearance 3-19
definition F-1
effects on command entry 4-3
identifying 2-6, 3-19
moving 2-9, 3-24 to 3-26
selecting 3-20, 11-46

function key method 2-6, 3-20, 11-54
mouse method 2-6, 3-20
WIN command 2-5, 3-20

sizing 2-7, 3-21 to 3-23
zooming 2-8, 3-23 to 3-30, 11-47

ADDR command 6-5, 6-9, 11-12
effect on DISASSEMBLY window 3-7
effect on FILE window 3-8
finding current PC 6-12

addresses
absolute addresses 7-7, 8-3
accessible locations 5-1, 5-2
contents of (indirection) 7-8, 7-15
hexadecimal notation 7-7
I/O address space  EMU 4 to 5, 12;  EVM 4, 5, 10

simulator 5-13 to 5-19
in MEMORY window 2-5, 3-12, 7-7
invalid memory 5-3
nonexistent memory locations 5-2
pointers in DISP window 2-21
protected areas 5-3
symbolic addresses 7-7
undefined areas 5-3

aggregate types
definition F-1
displaying 2-20, 3-16, 7-12 to 7-14

ALIAS command 2-27, 4-17 to 4-18, 11-12
supplying parameters 4-17

aliasing 4-17 to 4-18
ALIAS command 2-27, 4-17 to 4-18
definition F-1
deleting aliases 4-18
finding alias definitions 4-18
limitations 4-18
listing aliases 4-17
redefining an alias 4-18

ANSI C
definition F-1



Index

Index-2

area names (for customizing the display)
code-display windows 9-5
COMMAND window 9-4
common display areas 9-3
data-display windows 9-6
menus 9-7
summary of valid names 9-3
window borders 9-4

arithmetic operators 12-2
arrays

displaying/modifying contents 7-12
format in DISP window 2-21, 7-13, 11-19
member operators 12-2

arrow keys
COMMAND window 4-3
editing 7-4
moving a window 2-9, 3-25, 11-54
moving adjacent windows 4-9
scrolling 2-10, 3-27, 11-56
sizing a window 2-7, 3-23, 11-55

–as shell option 10-2
ASM command 2-13, 6-3, 11-13

menu selection 11-10
assembler 1-9, 1-10;  EMU 3;  EVM 3;  SIM 1-3,

2-2, 3-2
assembly language code

displaying 3-2 to 3-3, 6-4
modifying 6-5 to 6-6

assembly mode 2-12, 2-13, 3-3 to 3-30, 6-2
ASM command 2-13, 6-3, 11-13
definition F-1
selection 6-3

assignment operators 7-5, 12-3
attributes 9-2
auto mode 2-12, 2-13, 3-2 to 3-3, 6-2

C command 2-13, 6-3, 11-15
definition F-1
selection 6-3

autoexec.bat file  EMU 9 to 12;  EVM 7 to 10;
 SIM 1-5 to 1-7
definition F-1
invoking  EMU 10;  EVM 8;  SIM 1-6
sample  EMU 10;  EVM 8;  SIM 1-5

auxiliary registers 7-10

B

–b debugger option 1-12, 1-13
effect on window positions 3-25
effect on window sizes 3-22
with D_OPTIONS environment variable  EMU 12;

EVM 9;  SIM 1-7

BA command 8-3, 11-13
menu selection 11-9

background 9-3

batch files 4-12
autoexec.bat  EMU 9 to 12;  EVM 7 to 10;

 SIM 1-5 to 1-7
sample  EMU 10;  EVM 8

controlling command execution 4-14 to 4-20
conditional commands 4-14 to 4-20, 11-4,

11-23
looping commands 4-15 to 4-20, 11-4, 11-24

definition F-1
displaying 6-9
displaying text when executing 4-13, 11-4,

11-21
echoing messages 4-13, 11-4, 11-21
emurst  EMU 3, 12
evmrst  EVM 3, 10
execution 11-43
halting execution 4-12
init.clr 9-9;  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

init.cmd 5-2, D-1;  EMU 3;  EVM 3
definition F-4
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

initdb.bat  EMU 9 to 12;  EVM 7 to 10;  SIM 1-5 to
1-7
sample  EMU 10;  EVM 8

initialization 5-2 to 5-20, D-1
init.cmd 5-2, D-1;  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2



 Index

Index-3

batch files (continued)
invoking

autoexec.bat  EMU 10;  EVM 8;  SIM 1-6
initdb.bat  EMU 10;  EVM 8;  SIM 1-6
memory maps 5-12

mono.clr  EMU 3;  EVM 3
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

TAKE command 4-12, 5-12, 11-43
-bb debugger option. See -b debugger option
BD command 8-4, 11-13

menu selection 11-9
benchmarking 6-19

constraints 6-19
definition F-2

bitwise operators 12-3
BL command 8-5, 11-13

menu selection 11-9
blanks 9-3
BORDER command 9-8, 11-14

menu selection 11-10
borders

colors 9-4
styles 9-8

BR command 2-16, 8-4, 11-14
menu selection 11-9

breakpoints, software 8-1
active window 2-6
adding 8-2, 11-13

command method 8-3
function key method 8-3, 11-55
mouse method 8-3

benchmarking with RUNB 6-19
clearing 2-16, 8-4, 11-13, 11-14

command method 8-4
function key method 8-4, 11-55
mouse method 8-4

commands 11-2, 11-5
BA command 8-3, 11-13
BD command 8-4, 11-13
BL command 8-5, 11-13
BR command 2-16, 8-4, 11-14
cache interaction B-2
menu selections 11-9

constraints B-4 to B-6
delayed branches B-4
repeat block B-4
repeat single B-4

breakpoints, software (continued)
definition F-2
highlighting 8-2
listing set breakpoints 8-5, 11-13
restrictions 8-2
setting 2-15 to 2-28, 8-2

command method 8-3
function key method 8-3, 11-55
mouse method 8-3

buffer delays for emulator connections A-4

C
C command 2-13, 6-3, 11-15

menu selection 6-3, 11-10
C expressions 7-5, 12-1 to 12-6

See also expressions
C language

definition F-2
C source

displaying 2-11, 3-2 to 3-3, 6-4, 11-22
managing memory data 7-8

c3xhll directory  EMU 9, 11;  EVM 7, 9
cache

See also memory cache
control

memory commands B-3
interaction

breakpoint commands B-2
P-flags B-2

CALLS command 3-9, 3-10, 6-9, 11-15
effect on debugging modes 3-4

CALLS window 2-11, 3-5, 3-9 to 3-30, 6-2, 6-9
closing 3-10, 3-29, 11-54
definition F-2
opening 3-10, 11-15

casting 2-23, 12-4
definition F-2

CHDIR (CD) command 2-20, 4-20, 6-11, 11-15
children

See also DISP window, children
definition F-2

cl30 shell 1-11
clearing the display area 2-20, 4-5, 11-16
“click and type” editing 2-25, 3-28, 7-4 to 7-5
clicking

definition F-2
CLK pseudoregister 6-19

definition F-2



Index

Index-4

closing
a window 3-29
CALLS window 3-10, 11-54
debugger 1-15, 2-27, 11-34
dialog box 4-12
DISP window 2-22, 7-14, 11-54
log files 4-6, 11-20
MEMORY window 3-14
WATCH window 7-16, 11-47

CLS command 2-20, 4-5, 11-16

CNEXT command 6-15, 11-16

code
debugging 1-16

code-display windows 3-5, 6-2
CALLS window 2-11, 3-5, 3-9 to 3-30, 6-2, 6-9
definition F-2
DISASSEMBLY window 2-5, 3-5, 3-7, 6-2, 6-4
effect of debugging modes 6-2
FILE window 2-11, 3-5, 3-8, 6-2, 6-4, 6-8

code-execution (run) commands. See run com-
mands

COFF
definition F-2
loading 5-3

COLOR command 9-2, 11-16 to 11-17

color.clr file 9-9

colors 9-2 to 9-7
area names 9-3 to 9-7

comma operator 12-4

command history 4-5
function key summary 11-52

command line 3-6, 4-2
changing the prompt 9-11, 11-33
cursor 3-18

customizing its appearance 9-4, 9-11
definition F-2
editing 4-3

function key summary 11-52

COMMAND window 3-5, 3-6, 4-2
colors 9-4
command line 2-4, 3-6, 4-2

editing keys 11-52
customizing 9-4
definition F-2
display area 2-4, 3-6, 4-2

clearing 11-16
recording information from the display area 4-6

to 4-8, 11-4, 11-20

commands
alphabetical summary 11-11 to 11-47
batch files 4-12

controlling command execution
conditional commands 4-14 to 4-20, 11-4, 11-23
looping commands 4-15 to 4-20, 11-4, 11-24

breakpoint commands 8-1, 11-2, 11-5
See also breakpoints (software), commands

code-execution (run) commands 6-12
See also run commands

command line 4-2
command strings 4-17 to 4-18
customizing 4-17 to 4-18
data-management commands 7-2 to 7-20, 11-2,

11-3
See also data-management commands

entering and using 4-1 to 4-20
file-display commands 6-4 to 6-9, 11-2, 11-5

See also file/load commands
load commands 6-10, 11-2, 11-5

See also file/load commands
memory commands 5-7 to 5-19

See also memory, commands
memory-map commands 11-2, 11-6

See also memory, mapping
menu selections 4-7
mode commands 6-2 to 6-3, 11-2, 11-3

See also debugging modes, commands
notation v to vii
profiling commands 11-2, 11-8

See also profiling commands
run commands 11-2, 11-7

See also run commands
screen-customization commands 9-1 to 9-12,

11-2, 11-5
See also screen-customization commands

system commands 4-19 to 4-20, 11-2, 11-4
See also system commands

window commands 11-2, 11-3
See also window commands

compiler 1-8, 1-10;  EMU 3;  EVM 3;  SIM 1-3, 2-2,
3-2
key characteristics 1-8

conditional commands 4-14 to 4-20, 11-23

connector
12-pin header A-2
mechanical dimensions A-6 to A-7
target system to emulator A-1 to A-8;  EMU 7

CPU clock cycles
simulating interrupts 5-16 to 5-19



 Index

Index-5

CPU window 3-5, 3-15, 7-2, 7-10 to 7-11
colors 9-6
customizing 9-6
definition F-3
editing registers 7-4

CSTEP command 2-17, 6-15, 11-17

current directory
changing 4-20, 6-11, 11-15

current field
cursor 3-18
editing 7-4 to 7-5

current PC 2-4, 3-7
finding 6-12
selecting 6-12

cursors 3-18
command-line cursor 3-18

definition F-2
current-field cursor 3-18

definition F-3
definition F-3
mouse cursor 3-18

definition F-5

customizing the display 9-1 to 9-12
changing the prompt 9-11
colors 9-2 to 9-7
init.clr file 9-11, 11-37;  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

loading a custom display 9-10
mono.clr file  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

saving a custom display 9-9
window border styles 9-8

D
D_DIR environment variable 4-12, 9-10, 11-37;

EMU 11;  EVM 9;  SIM 1-7
definition F-3
effects on debugger invocation D-1

D_OPTIONS environment variable  EMU 12;
 EVM 9;  SIM 1-7
definition F-3
effects on debugger invocation D-1

D_SRC environment variable 6-11;  EMU 11; 
EVM 9;  SIM 1-7
definition F-3
effects on debugger invocation D-1

DASM command 6-5, 11-18
effect on debugging modes 3-4
effect on DISASSEMBLY window 3-7
finding current PC 6-12

data
in MEMORY window 3-12

data formats 7-18
data types 7-19

data memory
adding to memory map 5-7
deleting from memory map 5-11
filling 7-9
saving 7-9

data types 7-19
See also display formats

data-display windows 2-20, 3-5, 7-2
colors 9-6
CPU window 3-5, 3-15, 7-2, 7-10
definition F-3
DISP window 2-20, 3-5, 3-16, 7-2, 7-12 to 7-14
MEMORY window 2-5, 3-5, 3-12 to 3-14, 7-2,

7-6 to 7-9
WATCH window 2-16, 3-5, 3-17, 7-2, 7-14 to

7-16

data-management commands 7-2, 11-2, 11-3
? command 2-16, 6-12, 7-3, 11-11
controlling data format 2-23 to 2-28
data-format control 7-18 to 7-20
DISP command 2-20, 7-12, 11-18
EVAL command 6-12, 7-3, 11-21
FILL command 7-9, 11-22
MEM command 2-5, 3-13, 3-14, 7-7, 11-27
MS command 7-9, 11-30
SETF command 2-23, 7-18 to 7-20, 11-38
side effects 7-5
WA command 2-16, 4-11 to 4-13, 7-15, 11-45
WD command 2-18, 7-16, 11-46
WHATIS command 2-19, 7-2, 11-46
WR command 2-19 to 2-28, 7-16, 11-47

debugger
definition F-3
description 1-2 to 1-4
display 2-4

basic 1-2
profiling-environment 1-5



Index

Index-6

debugger (continued)
environment setup  EMU 9 to 12;  EVM 7 to 10;

SIM 1-5 to 1-7
exiting 1-15
installation  EMU 1 to 15;  EVM 7

error messages  EMU 14;  EVM 12
EVM  EVM 1 to 12
simulator

PC systems  SIM 1-1 to 1-9
Sun systems  SIM 3-1 to 3-4
VAX systems  SIM 2-1 to 2-5

verifying  EMU 13;  EVM 11;  SIM 1-8, 2-4, 3-3
to 3-4

invocation 1-12 to 1-15, 2-3
options 1-12 to 1-15
task ordering D-1

key features 1-3 to 1-4
messages E-1 to E-20
using with MS-Windows  EMU 9, 15;  EVM 7, 12;

SIM 1-4, 1-9
exiting 1-15

debugging modes 2-12 to 2-28, 3-2 to 3-4, 6-2 to
6-3
assembly mode 2-12, 3-3 to 3-30, 6-2
auto mode 2-12, 3-2 to 3-3, 6-2
commands

ASM command 2-13, 11-13
C command 2-13, 6-3, 11-15
menu selections 2-13, 6-3, 11-8
MIX command 2-13, 6-3, 11-28

default mode 3-2, 6-2
menu selections 2-13, 6-3
mixed mode 2-12, 3-4
restrictions 3-4
selection 2-12

command method 6-3
commands 2-13
function key method 6-3, 11-53
mouse method 6-3

decrement operator 12-3

default
data formats 7-18
debugging mode 3-2, 6-2
display 2-4, 3-2, 6-2, 9-11
I/O address space  EMU 4 to 5;  EVM 4, 5

default (continued)
memory map 2-26, 5-4;  EMU 3;  EVM 3

emulator 5-5
EVM 5-6
PC systems  SIM 1-3
simulator 5-4
Sun systems  SIM 3-2
VAX systems  SIM 2-2

screen configuration file 9-9;  EVM 3
color displays  EMU 3;  EVM 3;  SIM 1-3, 2-2,

3-2
monochrome displays 9-9;  EMU 3;  EVM 3;

SIM 1-3, 2-2, 3-2
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

switch settings  EMU 4 to 5;  EVM 4
defining areas for profiling 10-5 to 10-12

disabling areas 10-7 to 10-22
enabling areas 10-10 to 10-22
marking areas 10-5 to 10-22
restrictions 10-12 to 10-22
unmarking areas 10-11 to 10-22

dialog boxes 4-11 to 4-12
entering parameters 4-11 to 4-13
modifying text in 4-12
using 4-11 to 4-12

DIR command 2-20, 4-20, 11-18
directories

c3xhll directory  EMU 9, 11;  EVM 7, 9
changing current directory 4-20, 11-15
for auxiliary files  EMU 11;  EVM 9;  SIM 1-7
for debugger software  EMU 9, 11;  EVM 7, 8

PC systems  SIM 1-4, 1-6
Sun systems  SIM 3-3
VAX systems  SIM 2-3

identifying additional source directories 11-44;
EMU 11;  EVM 9;  SIM 1-7
USE command 11-44

identifying current directory 6-11
listing contents of current directory 4-20, 11-18
relative pathnames 4-20, 11-15
search algorithm 4-12, 6-11, D-1
sim3x directory

PC systems  SIM 1-4, 1-7
Sun systems  SIM 3-3
VAX systems  SIM 2-3

disabling areas 10-7 to 10-22



 Index

Index-7

disassembly
definition F-3

DISASSEMBLY window 2-5, 3-5, 3-7, 6-2, 6-4
colors 9-5
customizing 9-5
definition F-3
modifying display 11-18

DISP command 2-20, 3-16, 7-12, 11-18
display formats 2-23, 2-24, 7-20, 11-19
effect on debugging modes 3-4

DISP window 2-20, 3-5, 3-16, 7-2, 7-12 to 7-14
children

closing 2-22
definition F-2

closing 2-20, 2-22, 3-29 to 3-30, 7-14
colors 9-6
customizing 9-6
definition F-3
effects of LOAD command 7-14
effects of SLOAD command 7-14
identifying arrays, structures, pointers 11-19
opening 7-12
opening another DISP window 7-13

command method 7-13
function key method 2-22, 7-13, 11-55
mouse method 2-21

display area 3-6, 4-2
clearing 2-20, 4-5, 11-16
definition F-3
recording information from 4-6 to 4-8, 11-4,

11-20

display formats 2-23 to 2-28, 7-18 to 7-20
? command 2-24, 7-20, 11-11
casting 2-23
data types 7-19
DISP command 2-23, 2-24, 7-20, 11-19
enumerated types 3-16
floating-point values 3-16
integers 3-16
MEM command 2-24, 7-20, 11-27
pointers 3-16
SETF command 2-23, 7-18 to 7-20, 11-38
WA command 2-23, 7-20, 11-45

display requirements  EMU 2;  EVM 2
PC systems  SIM 1-2
Sun systems  SIM 3-2
VAX systems  SIM 2-2

displaying
assembly language code 6-4
batch files 6-9
C code 6-8
data in nondefault formats 7-18 to 7-20
source programs 6-4 to 6-9
text files 6-9
text when executing a batch file 4-13, 11-4,

11-21

DLOG command 4-6 to 4-8, 11-4, 11-20
ending recording session 4-6
starting recording session 4-6

DOS
See also MS-DOS
display requirements  EMU 2
error messages

installation  EMU 14
graphics card requirements  EMU 2
hardware requirements  EMU 2
host system  EMU 2
memory requirements  EMU 2
mouse requirements  EMU 2
operating system  EMU 3
power requirements  EMU 2
setting up debugger environment  EMU 9 to 12;

EVM 7 to 10;  SIM 1-5 to 1-7
software requirements  EMU 3
target system  EMU 2
using MS-Windows  EMU 9, 15

dragging
definition F-3

E
E command 11-21

See also EVAL command

ECHO command 4-13, 11-4, 11-21

“edit” key (F9) 3-28, 7-4, 7-5, 11-55
See also F9 key

editing
“click and type” method 2-25, 3-28, 7-4 to 7-5
command line 4-3, 11-52
data values 7-4 to 7-5, 11-55
dialog boxes 4-11 to 4-12
disassembly 6-5 to 6-9, 11-31 to 11-47
FILE, DISASSEMBLY, CALLS 3-28
function key method 2-26, 7-4, 11-55



Index

Index-8

editing (continued)
MEMORY, CPU, DISP, WATCH 3-28
mouse method 7-4
overwrite method 7-4 to 7-5
window contents 3-28

EGA
definition F-4

EISA
definition F-4

ELSE command 4-14 to 4-20, 11-4, 11-23
See also IF/ELSE/ENDIF commands

$$EMU$$ constant 4-14

emu3x command 1-12, 2-3, 6-10
options 1-12 to 1-15

–b 1-12, 1-13
D_OPTIONS environment variable D-1;

EMU 12
–i 1-12, 1-13, 6-11
–p 1-12, 1-14
–profile 1-12, 1-14, 10-3
–s 1-12, 1-14, 6-10
–t 1-12, 1-15
–v 1-12, 1-15
–x 1-12, 1-15

verifying the installation  EMU 13

emulator
additional tools  EMU 3
buffer delays A-4
connection to target system  EMU 8
connector

mechanical dimensions A-6 to A-7
constraints B-1 to B-5
custom switch settings  EMU 5
debugger environment  EMU 9 to 12
debugger installation  EMU 1 to 15

error messages  EMU 14
verifying  EMU 13

definition F-4
$$EMU$$ constant 4-14
host system  EMU 2
I/O address space  EMU 4 to 5, 12
installation

board  EMU 4 to 7, 8
debugger software  EMU 9
error messages  EMU 14
into PC  EMU 6 to 7
preparation  EMU 4 to 5
verifying  EMU 13

invoking the debugger 1-12, 2-3

emulator (continued)
memory

default map  EMU 3
operating system  EMU 3
requirements

display  EMU 2
graphics card  EMU 2
hardware  EMU 2
memory  EMU 2
mouse  EMU 2
power  EMU 2
software  EMU 3

resetting  EMU 3, 12
constraints B-5

screen
configuration files  EMU 3

signal buffering A-3
switch settings  EMU 4 to 5, 12
target cable  EMU 7
target system  EMU 2
troubleshooting C-1 to C-6

emurst file  EMU 3, 12
definition F-4

enabling areas 10-10 to 10-22

end key
scrolling 3-27, 11-56

ENDIF command 4-14 to 4-20, 11-4, 11-23
See also IF/ELSE/ENDIF commands

ENDLOOP command 4-15 to 4-20, 11-4, 11-24
See also LOOP/ENDLOOP commands

entering commands
from menu selections 4-7 to 4-10
on the command line 4-2 to 4-6

entry point 6-12

enumerated types
display format 3-16

environment variables
D_DIR 4-12, 9-10;  EMU 11;  EVM 9;  SIM 1-7
D_OPTIONS 1-12, D-1;  EMU 12;  EVM 9;

 SIM 1-7
D_SRC 6-11;  EMU 11;  EVM 9;  SIM 1-7
definition F-4
for debugger options 1-12;  EMU 12;  EVM 9;

SIM 1-7
identifying auxiliary directories  EMU 11;  EVM 9;

SIM 1-7
identifying source directories  EMU 11;  EVM 9;

SIM 1-7



 Index

Index-9

error messages
beeping 11-40, E-2
installation  EMU 14;  EVM 12

EVAL command 7-3, 11-21
modifying PC 6-12
side effects 7-5

EVM
additional tools  EVM 3
custom switch settings  EVM 5
debugger environment  EVM 7 to 10
debugger installation  EVM 1 to 12

error messages  EVM 12
verifying  EVM 11

definition F-4
$$EVM$$ constant 4-14
host system  EVM 2
I/O address space  EVM 4, 5, 10
installation

board  EVM 4 to 6
debugger software  EVM 7
error messages  EVM 12
into PC  EVM 6
preparation  EVM 4
verifying  EVM 11

invoking the debugger 1-12, 2-3
operating system  EVM 3
requirements

display  EVM 2
graphics card  EVM 2
hardware  EVM 2
memory  EVM 2
mouse  EVM 2
power  EVM 2
software  EVM 3

resetting  EVM 3, 10
switch settings  EVM 4, 5, 10

$$EVM$$ constant 4-14

evm30 command 1-12, 2-3, 6-10
options 1-12 to 1-15

–b 1-12, 1-13
D_OPTIONS environment variable D-1;

EVM 9
–i 1-12, 1-13, 6-11
–p 1-12, 1-14
–profile 1-12, 1-14
–s 1-12, 1-14, 6-10

evm30 command, options (continued)
–t 1-12, 1-15
–v 1-12, 1-15
–x 1-12, 1-15

verifying the installation  EVM 11
evmrst file  EVM 3, 10

definition F-4
executing code 2-11, 6-12 to 6-17

See also run commands
benchmarking 6-13
conditionally 2-18, 6-17
function key method 11-54
halting execution 2-14, 6-18
program entry point 2-15 to 2-28, 6-12 to 6-17
single-stepping 2-17, 11-16, 11-17, 11-30, 11-41
while disconnected from the target system 6-16,

11-36
executing commands 4-3
exiting the debugger 1-15, 2-27, 11-34
expressions 12-1 to 12-6

addresses 7-7
evaluation

with ? command 7-3, 11-11
with DISP command 11-18
with EVAL command 7-3, 11-21
with LOOP command 4-16, 11-24

expression analysis 12-4
operators 12-2 to 12-3
restrictions 12-4
side effects 7-5
void expressions 12-4

extended-precision registers (R0–R7) 12-4
extensions

filename 1-11
external interrupts

connecting input file 5-18, 11-32
disconnecting pins 5-19, 11-32
listing pins 5-19, 11-32
PINC command 5-18, 11-32
PIND command 5-19, 11-32
PINL command 5-19, 11-32
programming simulator 5-18
setting up input files 5-16

absolute clock cycle 5-16
relative clock cycle 5-16
repetition 5-17



Index

Index-10

F
F0–F7 (floating-point registers) 12-4

F2 key 4-5

F3 key 6-3, 11-53

F4 key 2-22, 3-14, 3-29, 7-14, 11-54

F5 key 4-10, 6-13, 11-9

F6 key 2-6, 3-20

F8 key 4-10, 6-15, 11-9

F9 key 2-26, 3-7, 3-8, 3-9, 3-10, 3-28, 6-9, 7-5,
7-13, 8-4

F10 key 4-10, 6-15, 11-9

FILE command 2-11, 2-14, 6-8, 11-22
changing the current directory 4-20, 11-15
effect on debugging modes 3-4
effect on FILE window 3-8
menu selection 11-9

FILE window 2-11, 2-14, 3-5, 3-8, 6-2, 6-4, 6-8
colors 9-5
customizing 9-5
definition F-4

file/load commands 11-2, 11-5
ADDR command 6-5, 6-9, 6-12, 11-12
CALLS command 3-9, 3-10, 6-9, 11-15
DASM command 6-5, 6-12, 11-18
FILE command 2-11, 2-14, 6-8, 11-22
FUNC command 2-14, 6-8, 11-22
LOAD command 2-4, 6-10, 11-24
menu selections 11-9
PATCH command 6-5, 11-31
RELOAD command 6-10, 11-34
SLOAD command 6-10, 11-40

files
connecting to I/O ports 5-13 to 5-20, 11-26
disconnecting from I/O ports 5-15, 11-28
log files 4-6 to 4-8, 11-20
saving memory to a file 7-9

FILL command 7-9, 11-22
menu selection 11-10

floating-point
display format 2-23, 3-16
operations 12-4
registers (F0–F7) 12-4

FUNC command 2-14, 6-8, 11-22
effect on debugging modes 3-4
effect on FILE window 3-8

function calls
displaying functions 11-22

keyboard method 3-10
mouse method 3-10

executing function only 11-35
in expressions 12-4
stepping over 11-16, 11-30
tracking in CALLS window 3-9 to 3-30, 6-9,

11-15

G
–g shell option 1-10, 1-11, 10-2

GO command 2-11, 6-13, 11-23

graphics card requirements  EMU 2;  EVM 2; 
SIM 1-2

grouping/reference operators 12-2

H
HALT command 6-16, 11-23

halting
batch file execution 4-12
debugger 1-15, 2-27, 11-34
program execution 1-15, 2-14, 6-12, 6-18

function key method 6-18, 11-53
mouse method 6-18

target system 11-23

hardware checklist  EMU 2;  EVM 2
PC systems  SIM 1-2
Sun systems  SIM 3-2
VAX systems  SIM 2-2

header
12-pin A-2
mechanical dimensions A-6 to A-7

hex conversion utility 1-9

hexadecimal notation
addresses 7-7
data formats 7-18

history
of commands 4-5

home key
scrolling 3-27, 11-55

host system  EMU 2;  EVM 2
PC systems  SIM 1-2
Sun systems  SIM 3-2
VAX systems  SIM 2-2



 Index

Index-11

I
–i debugger option 1-12, 1-13, 6-11

with D_OPTIONS environment variable  EMU 12;
EVM 9;  SIM 1-7

I/O address space  EMU 4 to 5, 12;  EVM 4, 5, 10

I/O memory
simulating 5-13 to 5-19, 11-26, 11-28
configuring memory 5-15
connecting port 5-13 to 5-20
disconnecting port 5-15

I/O switch settings
default settings  EMU 4 to 5;  EVM 4, 5
definition F-4

icons
method identification v
mouse actions v

IF/ELSE/ENDIF commands 4-14 to 4-20, 11-4,
11-23
conditions 4-16, 11-24
creating initialization batch file 4-15
predefined constants 4-14

increment operator 12-3

index numbers
for data in WATCH window 3-17, 7-16

indirection operator (*) 7-8, 7-15

init.clr file 9-9, 9-10, 11-37, D-1;  EMU 3;  EVM 3
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

init.cmd file 5-2, D-1;  EMU 3;  EVM 3
definition F-4
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

initdb.bat file  EMU 9 to 12;  EVM 7 to 10;  SIM 1-5 to
1-7
definition F-4
invoking  EMU 10;  EVM 8;  SIM 1-6
sample  EMU 10;  EVM 8;  SIM 1-5

initialization batch files 5-2 to 5-20, D-1
creating using IF/ELSE/ENDIF 4-15
creating using LOOP/ENDLOOP 4-15 to 4-20
init.cmd 5-2, D-1;  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

naming an alternate file 1-12, 1-15

installation
board  EVM 4 to 6
debugger software  EMU 9;  EVM 7

PC systems  SIM 1-4
Sun systems  SIM 3-3
VAX systems  SIM 2-3

emulator  EMU 4 to 7
error messages  EMU 14;  EVM 12
verifying  EMU 13;  EVM 11

PC systems  SIM 1-8
Sun systems  SIM 3-3 to 3-4
VAX systems  SIM 2-4

integer
display format 3-16
SETF command 7-18

interrupt pins 5-16 to 5-19

interrupts
See also external interrupts
receiving 11-26
transmitting 11-26

invalid memory addresses 5-3

invoking
autoexec.bat file  EMU 10;  EVM 8;  SIM 1-6
custom displays 9-11
debugger 1-12 to 1-15, 2-3
initdb.bat file  EMU 10;  EVM 8;  SIM 1-6
shell program 1-11

ISA
definition F-4

K
key sequences

displaying functions 11-55
displaying previous commands (command histo-

ry) 11-52
editing

command line 4-3, 11-52
data values 3-28, 11-55

halting actions 11-53
menu selections 11-53
moving a window 3-25, 11-54
opening additional DISP windows 11-55
restrictions

Sun systems  SIM 3-4
VAX systems  SIM 2-5



Index

Index-12

key sequences (continued)
running code 11-54
scrolling 3-27, 11-55
selecting the active window 3-20, 11-54
setting/clearing breakpoints 11-55
single stepping 6-15
sizing a window 3-23, 11-54
switching debugging modes 11-53

keyboard mapping  SIM 2-5

L
labels,

for data in WATCH window 2-17, 3-17, 7-15
limits

breakpoints 8-2
file size 6-9
open DISP windows 3-16
paths 6-11
window positions 3-25, 11-29
window sizes 3-22, 11-39

linker 1-9, 1-10;  EMU 3;  EVM 3;  SIM 1-3, 2-2, 3-2
command files

MEMORY definition 5-2 to 5-20
LOAD command 2-4, 6-10, 11-24

effect on DISP window 7-12
effect on WATCH window 7-12

load/file commands 11-2, 11-5
ADDR command 6-5, 6-9, 6-12, 11-12
CALLS command 3-9, 3-10, 6-9, 11-15
DASM command 6-5, 6-12, 11-18
FILE command 2-11, 2-14, 6-8, 11-22
FUNC command 2-14, 6-8, 11-22
LOAD command 2-4, 6-10, 11-24
menu selections 11-9
PATCH command 6-5, 11-31
RELOAD command 6-10, 11-34
SLOAD command 6-10, 11-40

loading
batch files 4-12
COFF files

restrictions 5-3
custom displays 9-10
object code 2-3, 6-10

after invoking the debugger 6-10
symbol table only 6-10, 11-40
while invoking the debugger 1-12, 6-10
without symbol table 6-10, 11-34

log files 4-6 to 4-8, 11-20

logical operators 12-2
conditional execution 6-17

LOOP/ENDLOOP commands 4-15 to 4-20, 11-4,
11-24
conditions 4-16, 11-25

looping commands 4-15 to 4-20, 11-24

M
MA command 2-26, 5-4, 5-7, 5-11, 11-25 to 11-26

menu selection 11-10
managing data 7-1 to 7-20

basic commands 7-2 to 7-3
MAP command 5-9, 11-26

menu selection 11-10
mapping

modifying 5-11
simulating

memory cache. See memory, mapping
marking areas 10-5 to 10-22
MC command 5-13 to 5-20, 11-26

menu selection 11-10
MD command 2-26, 5-11, 11-27

menu selection 11-10
MEM command 2-5, 3-12, 3-13, 3-14, 7-7, 11-27

display formats 2-24, 7-20, 11-27
effect on debugging modes 3-4

MEM1 command 3-12
See also MEM command

MEM2 command 3-12
See also MEM command

MEM3 command 3-12
See also MEM command

memory
batch file search order 5-2, D-1
cache. See memory, mapping
commands 11-2, 11-6

cache control B-3
FILL command 7-9, 11-22
MA command 11-25
MAP command 11-26
MC 5-13 to 5-20
MD command 11-27
menu selections 11-10
MI 5-15, 11-28
ML command 11-28
MR command 11-30
MS command 7-9, 11-30

data formats 7-18



 Index

Index-13

memory (continued)
data memory 2-26
default map 2-26, 5-4;  EMU 3;  EVM 3

emulator 5-5
EVM 5-6
PC systems  SIM 1-3
simulator 5-4
Sun systems  SIM 3-2
VAX systems  SIM 2-2

displaying in different numeric format 2-23
filling 7-9, 11-22, 11-30
invalid addresses 5-3
map

adding ranges 5-7, 11-25
connecting an input port to input file 5-14
defining 5-2 to 5-20

in a batch file 5-2
interactively 5-2

definition F-4
deleting ranges 11-27
modifying 5-2 to 5-20
potential problems 5-3
reading multiple maps 5-12
resetting 11-30
returning to default 5-12

mapping 2-26, 2-27, 5-1 to 5-19;  EVM 3
commands

MA command 2-26, 5-4, 5-7, 5-11
MAP command 5-9
MD command 2-26, 5-11
menu selections 11-10
ML command 2-26, 5-10
MR command 5-11

deleting ranges 5-11
disabling 5-9
init.cmd file  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

listing current map 5-10
multiple maps 5-12
PC systems  SIM 1-3
resetting 5-11
simulating

I/O memory 11-28
I/O ports 5-13 to 5-19, 11-28
serial ports 5-13

simulating I/O ports 11-26
Sun systems  SIM 3-2
VAX systems  SIM 2-2

nonexistent locations 5-2
program memory 2-26

memory (continued)
protected areas 5-3
requirements  EMU 2;  EVM 2;  SIM 1-2
saving 7-9
simulating

I/O memory 11-26, 11-28
I/O ports 5-13 to 5-19, 11-28
ports, MC command 11-26
serial ports 5-13

undefined areas 5-3
valid types 5-7

MEMORY window 2-5, 3-5, 3-12 to 3-14, 7-2, 7-6
to 7-9, 11-27
additional MEMORY windows 3-13 to 3-14
address columns 3-12
closing 3-14
colors 9-6
customizing 9-6
data columns 3-12
definition F-5
displaying

different memory range 3-14
memory contents 7-6 to 7-8

modifying display 11-27
opening additional windows 3-13, 3-14

memory-map commands
cache control B-3
MA command 7-9
MC command 5-13 to 5-17
MI command 5-15

MEMORY1 window 3-13 to 3-14
closing 3-14
opening 3-13

MEMORY2 window 3-13 to 3-14
closing 3-14
opening 3-13

MEMORY3 window 3-13 to 3-14
See also MEMORY window
closing 3-14
opening 3-13

memory-map commands 11-2, 11-6
FILL command 11-22
MA command 11-25 to 11-26
MAP command 11-26
MD command 11-27
menu selections 11-10
MI command 11-28
ML command 11-28
MR command 11-30
MS command 11-30



Index

Index-14

menu bar 2-4, 4-7
customizing its appearance 9-7
definition F-5
items without menus 4-10
using menus 4-7 to 4-10

menu selections 4-7, 11-8 to 11-10
colors 9-7
customizing their appearance 9-7
definition (pulldown menu) F-5
entering parameter values 4-11
escaping 4-9
function key methods 4-9
list of menus 4-7
mouse methods 4-8 to 4-9
moving to another menu 4-9
profiling 4-8, 10-4
usage 4-8 to 4-9

messages E-1 to E-20
installation errors  EMU 14;  EVM 12

MI command 5-15, 11-28
menu selection 11-10

MIX command 2-13, 6-3, 11-28
menu selection 6-3, 11-10

mixed mode 2-12, 2-13, 3-4
definition F-5
MIX command 2-13, 6-3, 11-28
selection 6-3

ML command 2-26, 5-10, 11-28
menu selection 11-10

–mm debugger option 1-12

modes
assembly mode 2-12, 3-3 to 3-30
auto mode 2-12
commands 11-2

ASM command 2-13, 6-3, 11-13
C command 2-13, 6-3, 11-15
menu selections 11-10
MIX command 2-13, 6-3, 11-28

during debugger invocation D-1
menu selections 2-12, 2-13
mixed mode 2-12, 3-4
selection 2-12

commands 2-13, 6-3
function key method 6-3, 11-53
mouse method 6-3

modifying
assembly language code 6-5 to 6-6
colors 9-2 to 9-7
command line 4-3

modifying (continued)
command-line prompt 9-11
current directory 4-20, 11-15
data values 7-4 to 7-5
memory map 5-2 to 5-20
window borders 9-8

mono.clr file  EMU 3;  EVM 3
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

monochrome monitors 9-9
mouse

cursor 3-18
icon identification v
requirements  EMU 2;  EVM 2

PC systems  SIM 1-2
Sun systems  SIM 3-2

restrictions, VAX systems  SIM 2-5
MOVE command 2-9, 3-24, 11-29

effect on entering other commands 4-4
moving a window 3-24 to 3-26, 11-29

function key method 2-9, 3-25, 11-54
mouse method 2-9, 3-24
MOVE command 2-9, 3-24
XY screen limits 3-25, 11-29

MR command 5-11, 11-30
menu selection 11-10

MS command 7-9, 11-30
menu selection 11-10

MS-DOS
See also DOS
entering from the command line 4-19
exiting from system shell 11-42
SYSTEM command. See DOS

MS-Windows
exiting the debugger 1-15
using with the debugger  EMU 9, 15;  EVM 7, 12;

SIM 1-4, 1-9
–mv debugger option 1-12, 1-14

with D_OPTIONS environment variable  SIM 1-7

N
natural format 2-23, 12-5
NEXT command 2-17, 6-15, 11-30

from the menu bar 4-10
function key entry 4-10, 11-54

nonexistent memory locations 5-2
notational conventions v



 Index

Index-15

O
object files

creating 6-10
loading 1-12, 11-24

after invoking the debugger 6-10
symbol table only 1-12, 1-14, 11-40
while invoking the debugger 1-12, 2-3, 6-10
without symbol table 6-10, 11-34

operating system  EMU 3;  EVM 3
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

operators 12-2 to 12-3
& operator 7-7
* operator (indirection) 7-8, 7-15
side effects 7-5

optional files  EMU 3;  EVM 3
PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

overwrite editing 7-4 to 7-5

P
–p debugger option 1-12, 1-14

with D_OPTIONS environment variable  EMU 12,
14;  EVM 9

page-up/page-down keys
scrolling 3-27, 11-55

parameters
cl30 shell 1-11
emu3x command 1-12
entering in a dialog box 4-11 to 4-13
evm30 command 1-12
notation vi
patch assembly 6-5
sim3x command 1-12

PATCH command 6-5, 11-31

PATH statement  EMU 11;  EVM 8;  SIM 1-6

PC 6-12
definition F-5
finding the current PC 3-7

PF command 10-15, 11-31
effect on PROFILE window 3-11

pin commands 5-18 to 5-19, 11-6
menu selections 11-10

PINC command 5-18, 11-32
menu selection 11-10

PIND command 5-19, 11-32
menu selection 11-10

PINL command 5-19, 11-32
menu selection 11-10

pins
connecting to a file 5-18, 11-32
disconnecting a file 5-19, 11-32
listing the pins 5-19, 11-32

pointers
displaying/modifying contents 2-21, 7-12
format in DISP window 2-21, 3-16, 7-13, 11-19
natural format 12-5
typecasting 12-5

pointing
definition F-5

port address 1-12, 1-14;  EMU 14;  EVM 9
D_OPTIONS  EMU 12;  EVM 9
definition F-5
simulator 5-13 to 5-19

ports
connecting 5-13 to 5-20
disconnecting 5-15
simulating 5-13 to 5-20, 11-26

configuring memory 5-15 to 5-20
power requirements, board  EMU 2;  EVM 2
PQ command 10-15, 11-33

effect on PROFILE window 3-11
PR command 10-16, 11-33
–profile debugger option 1-12, 1-14

with D_OPTIONS environment variable  EMU 12;
SIM 1-7

PROFILE window 3-5, 3-11, 10-17 to 10-21
associated code 10-21
data accuracy 10-19
displaying areas 10-19 to 10-22
displaying different data 10-17 to 10-22
sorting data 10-19

profiling 10-1 to 10-22
collecting statistics

full statistics 10-15, 11-31
subset of statistics 10-15, 11-33

commands 11-2, 11-8
PF command 10-15, 11-31
PQ command 10-15, 11-33
PR command 10-16, 11-33
SA command 10-14, 11-36
SD command 10-14, 11-37



Index

Index-16

profiling, commands (continued)
SL command 10-14, 11-39
SR command 10-14, 11-40
summary 11-48 to 11-51
VAA command 10-22, 11-44
VAC command 10-22, 11-44
VR command 11-45

compiling a program for profiling 10-2
defining areas 10-5 to 10-12

disabling areas 10-7 to 10-22
function key method 10-9
mouse method 10-8

enabling areas 10-10 to 10-22
function key method 10-10

marking areas 10-5 to 10-22
function key method 10-7
mouse method 10-6

restrictions 10-12 to 10-22
unmarking areas 10-11 to 10-22

function key method 10-12
description 1-5 to 1-6
entering environment 10-3
key features 1-5 to 1-6
menu selections 4-8, 10-4
overview 10-2
resetting PROFILE window 11-45
restrictions

available windows 10-3
batch files 10-3
breakpoints 10-3
commands 10-3
modes 10-3

resuming a session 10-16, 11-33
running a session 10-15 to 10-16

full 10-15, 11-31
quick 10-15, 11-33

saving data to a file 10-22
saving statistics

all views 10-22, 11-44
current view 10-22, 11-44

stopping points 10-13 to 10-14
adding 10-14, 11-36
command method 10-14
deleting 10-14, 11-37, 11-40
listing 10-14, 11-39
mouse method 10-13
resetting 10-14, 11-40

strategy 10-2

profiling commands (continued)
viewing data 10-17 to 10-21

associated code 10-21
data accuracy 10-19
displaying areas 10-19 to 10-22
displaying different data 10-17 to 10-22
sorting data 10-19

program
debugging 1-16
entry point 6-12

resetting 11-34
execution

commands 2-11, 11-2, 11-7
CNEXT command 6-15, 11-16
conditional parameters 2-18
CSTEP command 2-17
GO command 2-11, 11-23
HALT command 11-23
menu bar selections 11-54
NEXT command 2-17, 6-15, 11-30
RESET command 2-4, 11-34
RESTART command 2-16, 6-12, 11-34
RETURN command 11-35
RUN command 2-14, 11-35
RUNB command 2-16, 6-13, 6-19, 11-35
RUNF command 11-36
STEP command 2-17, 6-14, 11-41
TAKE command 4-12, 5-12, 11-43

constraints, repeat single B-5
halting 1-15, 2-14, 6-12, 6-18, 11-53

preparation for debugging 1-10

program counter (PC) 7-10

program memory
adding to memory map 5-11, 11-25
adding to the memory map 5-7
deleting from memory map 5-11, 11-27
displaying 7-7
filling 7-9
saving 7-9

PROMPT command 9-11, 11-33
menu selection 11-10

pseudoregisters
daddr 7-17
dins 7-17
faddr 7-17
fins 7-17
raddr 7-17
rins 7-17
xaddr 7-17
xins 7-17



 Index

Index-17

pulldown menus
See also menu selections
definition F-5
function key methods 11-53

Q
QUIT command 1-15, 2-27, 11-34

R
re-entering commands 4-5, 11-52
recording COMMAND window displays 4-6 to 4-8,

11-4, 11-20
registers

CLK pseudoregister 6-19
displaying/modifying 7-10 to 7-11
extended-precision (R0–R7) 12-4
floating-point (F0–F7) 12-4
program counter (PC) 7-10
referencing by name 12-4

relational operators 12-2
conditional execution 6-17

relative pathnames 4-20, 6-11, 11-15
RELOAD command 6-10, 11-34

menu selection 11-9
repeating commands 4-5, 11-52
required files  EMU 3;  EVM 3
required tools  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

RESET command 2-4, 6-16, 11-34
menu selection 11-9

reset vector files  EVM 3
resetting  EVM 3, 10

emulator, constraints B-5
emurst file  EMU 3, 12
memory map 11-30
program entry point 11-34
target system 2-4, 6-16, 11-34

RESTART (REST) command 2-16, 6-12, 11-34
menu selection 11-9

restrictions
See also limits; constraints
breakpoints 8-2
C expressions 12-4

restrictions (continued)
debugging modes 3-4
PC systems  SIM 1-9
profiling environment 10-3
Sun systems  SIM 3-4
VAX systems  SIM 2-5

resvct files  EVM 3

RETURN (RET) command 6-13, 11-35

RUN command 2-14, 6-13, 11-35
from the menu bar 4-10
function key entry 4-10, 6-13, 11-54
menu bar selections 4-10
with conditional expression 2-18

run commands 2-11, 11-2, 11-7
CNEXT command 6-15, 11-16
conditional parameters 2-18
constraints, repeat single B-5
CSTEP command 2-17, 6-15, 11-17
GO command 2-11, 6-13, 11-23
HALT command 6-16, 11-23
menu bar selections 4-10, 11-55
menu selections 11-9
NEXT command 2-17, 6-15, 11-30
RESET command 2-4, 6-16, 11-34
RESTART command 2-16, 6-12, 11-34
RETURN command 6-13, 11-35
RUN command 2-14, 6-13, 11-35
RUNB command 2-16, 6-13, 6-19, 11-35
RUNF command 6-16, 11-36
STEP command 2-17, 6-14, 11-41
TAKE command 4-12, 5-12, 11-43

RUNB command 2-16, 6-13, 6-19, 11-35

RUNF command 6-16, 11-36

running programs 6-12 to 6-17
conditionally 6-17
halting execution 6-18
program entry point 6-12 to 6-17
while disconnected from the target system 6-16

S
–s debugger option 1-12, 1-14, 6-10

with D_OPTIONS environment variable  EMU 12;
EVM 9;  SIM 1-7

SA command 10-14, 11-36

saving custom displays 9-9

scalar type
definition F-5



Index

Index-18

SCOLOR command 9-2, 11-36
menu selection 11-10

SCONFIG command 9-10, 11-37
menu selection 11-10
restrictions 9-10

screen-customization commands 11-2, 11-5
BORDER command 9-8, 11-14
COLOR command 9-2, 11-16 to 11-17
menu selections 11-10
PROMPT command 9-11, 11-33
SCOLOR command 9-2, 11-36
SCONFIG command 9-10, 11-37
SSAVE command 9-9, 11-41

scrolling 2-10, 3-26
definition F-5
function key method 2-10, 3-27, 11-55
mouse method 2-10, 3-26 to 3-27, 7-8

SD command 10-14, 11-37

serial ports
receive registers 11-26
serial port 0 11-26
serial port 1 11-26
simulation 5-13 to 5-16, 11-26
transmit registers 11-26

SETF command 2-23, 7-18 to 7-20, 11-38

shell program 1-11

side effects 7-5, 12-3
definition F-5
valid operators 7-5

signal buffering for emulator connections A-3

$$SIM$$ constant 4-14

sim3x command 1-12, 2-3, 6-10
options 1-12 to 1-15

–b 1-12, 1-13
D_OPTIONS environment variable D-1;

SIM 1-7
–i 1-12, 1-13, 6-11
–mm 1-12
–mv 1-12, 1-14
–profile 1-12, 1-14, 10-3
–s 1-12, 1-14, 6-10
–t 1-12, 1-15
–v 1-12, 1-15
–x 1-12, 1-15

verifying the installation  SIM 1-8, 2-4, 3-3 to 3-4

sim3x directory
PC systems  SIM 1-4, 1-7
Sun systems  SIM 3-3
VAX systems  SIM 2-3

simulating interrupts
See also external interrupts
PINC command 11-32
PIND command 11-32
PINL command 11-32

simulator
definition F-5
I/O memory 5-13 to 5-19, 11-26, 11-28

configuring memory 5-15 to 5-20
connecting port 5-13 to 5-20

invoking the debugger 1-12, 2-3
PC systems

additional tools  SIM 1-3
debugger environment  SIM 1-5 to 1-7
debugger installation  SIM 1-1 to 1-9

verifying  SIM 1-8
host system  SIM 1-2
installation

software  SIM 1-4
verifying  SIM 1-8

operating system  SIM 1-3
requirements

display  SIM 1-2
graphics card  SIM 1-2
hardware  SIM 1-2
memory  SIM 1-2
mouse  SIM 1-2
software  SIM 1-3

restrictions  SIM 1-9
restrictions

color displays
Sun systems  SIM 3-4
VAX systems  SIM 2-5

keyboard mapping
Sun systems  SIM 3-4
VAX systems  SIM 2-5

memory map size, PC systems  SIM 1-9
mouse use, VAX systems  SIM 2-5
PC systems  SIM 1-9
Sun systems  SIM 3-4
VAX systems  SIM 2-5

serial ports 5-13
$$SIM$$ constant 4-14
simulating

I/O memory 11-28
I/O space 5-13 to 5-19, 11-28
serial ports 5-13



 Index

Index-19

simulator (continued)
Sun systems

additional tools  SIM 3-2
debugger installation  SIM 3-1 to 3-4

verifying  SIM 3-3 to 3-4
host system  SIM 3-2
installation

software  SIM 3-3
verifying  SIM 3-3 to 3-4

operating system  SIM 3-2
requirements

display  SIM 3-2
hardware  SIM 3-2
mouse  SIM 3-2
software  SIM 3-2

restrictions  SIM 3-4
VAX systems

additional tools  SIM 2-2
debugger installation  SIM 2-1 to 2-5

verifying  SIM 2-4
host system  SIM 2-2
installation

software  SIM 2-3
verifying  SIM 2-4

operating system  SIM 2-2
requirements

display  SIM 2-2
hardware  SIM 2-2
software  SIM 2-2

restrictions  SIM 2-5

single-step
commands

CNEXT command 6-15, 11-16
CSTEP command 2-17, 6-15, 11-17
menu bar selections 4-10
NEXT command 2-17, 6-15, 11-30
STEP command 2-17, 6-14, 11-41

definition F-6
execution 6-14

assembly language code 6-14, 11-41
C code 6-15, 11-17
function key method 6-15, 11-54
mouse methods 6-15
over function calls 6-15, 11-16, 11-30

SIZE command 2-7, 3-22 to 3-24, 11-39
effect on entering other commands 4-4

size of operator 12-4

sizes
display 3-25, 11-29
displayable files 6-9
windows 3-22, 11-39

sizing a window 3-21 to 3-23
function key method 2-7, 3-23, 11-54
mouse method 2-7, 3-22
SIZE command 2-7, 3-22 to 3-30
size limits 3-22, 11-39
while moving it 3-25, 11-29

SL command 10-14, 11-39
SLOAD command 6-10, 11-40

menu selection 11-9
–s debugger option 1-12, 1-14

software breakpoints. See breakpoints (software)
software checklist  EMU 3;  EVM 3

PC systems  SIM 1-3
Sun systems  SIM 3-2
VAX systems  SIM 2-2

SOUND command 11-40, E-2
SR command 10-14, 11-40
SSAVE command 9-9, 11-41

menu selection 11-10
STEP command 2-17, 6-14, 11-41

from the menu bar 4-10
function key entry 4-10, 11-54

stopping points 10-13 to 10-14
adding 10-14, 11-36
deleting 10-14, 11-37, 11-40
listing 10-14, 11-39
resetting 10-14, 11-40

structures
direct reference operator 12-2
displaying/modifying contents 7-12
format in DISP window 2-22, 7-13, 11-19
indirect reference operator 12-2

switch settings
default settings  EMU 4 to 5;  EVM 4, 5
I/O address space 1-12, 1-14;  EMU 4 to 5, 12;

EVM 5, 10
your settings  EMU 5;  EVM 5

symbol table
definition F-6
loading without object code 1-12, 1-15, 6-10,

11-40
symbolic addresses 7-7
SYSTEM command 4-19 to 4-20, 11-42
system commands 4-19 to 4-20, 11-2, 11-4

ALIAS command 2-27, 4-17 to 4-18, 11-12
CD command 2-20, 4-20, 6-11, 11-15
CLS command 2-20, 4-5, 11-16
DIR command 2-20, 4-20, 11-18
DLOG command 4-6 to 4-8, 11-4, 11-20



Index

Index-20

system commands (continued)
ECHO command 4-13, 11-4, 11-21
from debugger command line 4-19
IF/ELSE/ENDIF commands 4-14 to 4-20, 11-4,

11-23
conditions 4-16, 11-24
predefined constants 4-14

LOOP/ENDLOOP commands 4-15 to 4-20,
11-4, 11-24
conditions 4-16, 11-25

QUIT command 2-27, 11-34
RESET command 2-4, 11-34
SOUND command 11-40, E-2
SYSTEM command 4-19 to 4-20, 11-42
system shell 4-20
TAKE command 4-12, 5-12, 11-43
UNALIAS command 4-18, 11-43
USE command 6-11, 11-44

system overview iii
system shells 4-19 to 4-20

definition F-6

T
–t debugger option 1-12, 1-15

during debugger invocation 5-2, D-1
with D_OPTIONS environment

variable  EMU 12;  EVM 9;  SIM 1-7
TAKE command 4-12, 5-12, 11-43

executing log file 4-6
reading new memory map 5-12

target cable connections  EMU 7
target system  EMU 2

connection to emulator A-1 to A-8;  EMU 8
definition F-6
memory definition for debugger 5-1 to 5-19
resetting 2-4, 11-34

terminating the debugger 11-34
text files

displaying 2-14, 6-9
troubleshooting

when using the emulator C-1 to C-6
tutorial

introductory 2-1 to 2-27
type casting 2-23, 12-4
type checking 2-19, 7-2

U
UNALIAS command 4-18, 11-43

UNIX
exiting from system shell 11-42

unmarking areas 10-11 to 10-22

USE command 6-11, 11-44

V
–v debugger option 1-12, 1-15

with D_OPTIONS environment variable  EMU 12;
EVM 9

VAA command 10-22, 11-44

VAC command 10-22, 11-44

variables
aggregate values in DISP window 2-20, 3-16,

7-12 to 7-14, 11-18
determining type 7-2
displaying in different numeric format 2-23, 12-5
displaying/modifying 7-14 to 7-16
scalar values in WATCH window 3-17, 7-14 to

7-16

verifying
installation  EMU 13;  EVM 11
PC systems  SIM 1-8
Sun systems  SIM 3-3 to 3-4
VAX systems  SIM 2-4

VGA
definition F-6

viewing profile data 10-17 to 10-21
associated code 10-21
data accuracy 10-19
displaying areas 10-19 to 10-22
displaying different data 10-17 to 10-22
sorting data 10-19

void expressions 12-4

VR command 11-45

W
WA command 2-16, 3-17, 4-11 to 4-13, 7-15, 11-45

display formats 2-23, 11-45
menu selection 11-9



 Index

Index-21

watch commands
menu selections 11-9
pulldown menu 7-15
WA command 2-16, 4-11 to 4-13, 7-15, 11-45
WD command 2-18, 7-16, 11-46
WR command 2-19 to 2-28, 7-16, 11-47

WATCH window 2-16, 3-5, 3-17, 7-2, 7-14 to 7-16,
11-45, 11-46, 11-47
adding items 7-15, 11-45
closing 3-29 to 3-30, 7-16
colors 9-6
customizing 9-6
definition F-6
deleting items 7-16
editing values 7-4
effects of LOAD command 7-14
effects of SLOAD command 7-14
labeling watched data 7-15, 11-45
opening 7-15, 11-45

WD command 2-18, 3-17, 7-16, 11-46
menu selection 11-9

WHATIS command 2-19, 7-2, 11-46

WIN command 2-5, 3-20, 11-46

window commands 11-2, 11-3
MOVE command 11-29
SIZE command 3-22 to 3-30, 11-39
WIN command 2-5, 3-20, 11-46
ZOOM command 2-8, 3-23 to 3-30, 11-47

windows 3-5 to 3-17
active window 3-19 to 3-21
border styles 9-8, 11-14
CALLS window 3-5, 3-9, 6-2, 6-9
closing 3-29
COMMAND window 3-5, 3-6, 4-2
commands 11-2, 11-3

MOVE command 2-9, 3-24, 11-29
SIZE command 2-7, 3-22 to 3-30, 11-39
WIN command 2-5, 3-20, 11-46
ZOOM command 2-8 to 2-28, 3-23 to 3-30,

11-47

windows (continued)
CPU window 3-5, 3-15, 7-2, 7-10
definition F-6
DISASSEMBLY window 3-5, 3-7, 6-2, 6-4
DISP window 3-5, 3-16, 7-2, 7-12 to 7-14
editing 3-28
FILE window 3-5, 3-8, 6-2, 6-4, 6-8
MEMORY window 3-5, 3-12 to 3-14, 7-2, 7-6 to

7-9
moving 2-9, 3-24 to 3-26, 11-29

function keys 3-25, 11-54
mouse method 3-24
MOVE command 3-24
XY positions 3-25, 11-29

PROFILE window 3-5, 3-11
resizing 2-7, 3-21 to 3-23

function keys 3-23, 11-54
mouse method 3-22
SIZE command 3-22 to 3-30
size limits 3-22
while moving 3-25, 11-29

scrolling 2-10, 3-26
size limits 3-22
WATCH window 3-5, 3-17, 7-2, 7-14 to 7-16
zooming 2-8, 3-23 to 3-25

WR command 2-19 to 2-28, 3-17, 7-16, 11-47
menu selection 11-9

X
–x debugger option 1-12, 1-15;  EMU 12;  EVM 10;

SIM 1-7

Z
–z shell option 1-11
ZOOM command 2-8, 3-23 to 3-30, 11-47
zooming a window

mouse method 2-8, 3-23
ZOOM command 2-8, 3-24



Index-22


