
�
�����������
�������� 	
���
�� �����

User’s Guide

1997 Digital Signal Processing Solutions

Printed in U.S.A., March 1997
SDS

SPRU035C

19
97

Guide
User’s

�������� 	
���
�� �����
�
�����������

TMS320C3x/C4x
Assembly Language Tools

User’s Guide

Literature Number: SPRU035C
February 1998

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1997, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The TMS320C3x/C4x Assembly Language Tools User’s Guide tells you how
to use these assembly language tools:

� Assembler
� Archiver
� Linker
� Hex conversion utility

Before you can use this book, you should read the TMS320C3x/C4x Code
Generation Tools Getting Started Guide to install the assembly language
tools.

How to Use This Manual

The goal of this book is to help you learn how to use the Texas Instruments
assembly language tools specifically designed for the TMS320C3x/C4x
floating-point DSPs. This book is divided into four distinct parts:

� Part I: Introductory Information gives you an overview of the assembly
language development tools and also discusses common object file
format (COFF) which helps you to use the TMS320C3x and TMS320C4x
tools more efficiently. Read Chapter 2 before using the assembler and
linker.

� Part II: Assembler Description contains detailed information about
using the assembler. This section explains how to invoke the assembler
and discusses source statement format, valid constants and expressions,
assembler output, and assembler directives.

� Part III: Additional Assembly Language Tools describes in detail each
of the tools provided with the assembler to help you create assembly
language source files. For example, Chapter 8 explains how to invoke the
linker, how the linker operates, and how to use linker directives.
Chapter 10 explains how to use the hex conversion utility.

How to Use This Manual/Notational Conventions

iv

� Part IV: Reference Material provides supplementary information. This
section contains technical data about the internal format and structure of
COFF object files. It discusses symbolic debugging directives that the
TMS320C3x/C4x C compiler uses. Finally, it includes sample linker
command files, assembler and linker error messages, and a glossary.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of command line syntax:

asm30 filename

Here asm30 is a command. The command invokes the assembler and
has one parameter, indicated by filename. When you invoke the
assembler, you supply the name of the file that the assembler uses as
input.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

hex30 [–options] filename

The hex30 command has two parameters. The first parameter, –options,
is optional. Since options is plural, you may select several options. The
second parameter, filename, is required.

 Notational Conventions

v Read This First

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

� In assembler syntax statements, column one is reserved for the first
character of a label or symbol. If the label or symbol is optional , it is usually
not shown. If it is a required parameter, then it will be shown starting
against the left margin of the shaded box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or
label, should begin in column one.

symbol .usect ” section name”, size in bytes

The symbol is required for the .usect directive and must begin in column
one . The section name must be enclosed in quotes, and the section size in
bytes must be separated from the section name by a comma.

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the TMS320C3x/C4x and related support tools.
To obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C3x/C4x Code Generation Tools Getting Started Guide (literature
number SPRU119) describes how to install the TMS320C3x/C4x
assembly language tools and the C compiler. Installation instructions are
included for MS–DOS , Windows 3.x, Windows NT, Windows 95,
SunOS , Solaris, and HP–UX systems.

TMS320C3x/C4x Optimizing C Compiler User’s Guide (literature number
SPRU034) describes the TMS320 floating-point C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the ’C3x and ’C4x generations of
devices.

TMS320C3x C Source Debugger User’s Guide (literature number
SPRU053) tells you how to invoke the ’C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C4x C Source Debugger User’s Guide (literature number
SPRU054) tells you how to invoke the ’C4x emulator and simulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x
32-bit floating-point microprocessor (developed for digital signal
processing as well as general applications), its architecture, internal
register structure, instruction set, pipeline, specifications, and DMA and
serial port operation. Software and hardware applications are included.

TMS320C32 Addendum to the TMS320C3x User’s Guide (literature
number SPRU132) describes the TMS320C32 floating-point
microprocessor (developed for digital signal processing as well as
general applications). Discusses its architecture, internal register
structure, specifications, and DMA and serial port operation. Hardware
applications are also included.

 Related Documentation From Texas Instruments

vii Read This First

TMS320C4x User’s Guide (literature number SPRU063) describes the ’C4x
32-bit floating-point processor, developed for digital signal processing as
well as parallel processing applications. Covered are its architecture,
internal register structure, instruction set, pipeline, specifications, and
operation of its six DMA channels and six communication ports.

Parallel Processing with the TMS320C4x (literature number SPRA031)
describes parallel processing and how the ’C4x can be used in parallel
processing. Also provides sample parallel processing applications.

TMS320C4x General-Purpose Applications User’s Guide (literature
number SPRU159) describes software and hardware applications for
the ’C4x processor. Also includes development support information,
parts lists, and XDS510 emulator design considerations.

TMS320C30 Evaluation Module Technical Reference (literature number
SPRU069) describes board-level operation of the TMS320C30 EVM.

Digital Signal Processing Applications With the TMS320C30 Evaluation
Module Selected Application Notes (literature number SPRA021)
contains useful information for people who are preparing and debugging
code. The book gives additional information about the TMS320C30
EVM, as well as C coding tips.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Digital Signal Processing Applications with the TMS320 Family , Volumes
1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017)
Volumes 1 and 2 cover applications using the ’C10 and ’C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors, as well as the ’C30 floating-point processor.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using ’C2x,
’C3x, ’C4x, ’C5x, and other TI DSPs.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of ’320 digital signal processors. A myriad
of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise
cancellation, modems, etc.

Trademarks

viii

Trademarks

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS is a registered trademark of Microsoft Corporation.

PC-DOS is a trademark of International Business Machines Corporation.

Solaris is a trademark of Sun Microsystems, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

XDS is a trademark of Texas Instruments Incorporated.

 If You Need Assistance

ix Read This First

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

x

 Contents

xi

Contents

1 Introduction 1-1.
Provides an overview of the assembly language development tools, installation information,
and a walkthrough.

1.1 Software Development Tools Overview 1-2.
1.2 Tools Descriptions 1-3.

2 Introduction to Common Object File Format 2-1.
Discusses the basic COFF concept of sections and how they can help you use the assembler
and linker more efficiently. Common Object File Format, or COFF, is the object file format used
by the TMS320 family floating-point tools. Read Chapter 2 before using the assembler and
linker.

2.1 COFF File Types 2-2.
2.2 Sections 2-2.
2.3 How the Assembler Handles Sections 2-4.

2.3.1 Uninitialized Sections 2-4.
2.3.2 Initialized Sections 2-5.
2.3.3 Named Sections 2-6.
2.3.4 Subsections 2-8.
2.3.5 Section Program Counters 2-8.
2.3.6 An Example That Uses Sections Directives 2-9.

2.4 How the Linker Handles Sections 2-12.
2.4.1 Default Allocation 2-12.
2.4.2 Placing Sections in the Memory Map 2-15.

2.5 Relocation 2-18.
2.6 Runtime Relocation 2-20.
2.7 Loading a Program 2-21.
2.8 Symbols in a COFF File 2-22.

2.8.1 External Symbols 2-22.
2.8.2 The Symbol Table 2-22.

Contents

xii

3 Assembler Description 3-1.
Tells you how to invoke the assembler and discusses source statement format, valid constants
and expressions, and assembler output.

3.1 Assembler Overview 3-2.
3.2 Assembler Development Flow 3-3.
3.3 Invoking the Assembler 3-4.
3.4 Porting Upward Compatible Code 3-6.
3.5 Naming Alternate Directories for Assembler Input 3-7.

3.5.1 –i Assembler Option 3-7.
3.5.2 Environment Variable (A_DIR) 3-8.

3.6 Source Statement Format 3-10.
3.6.1 Label Field 3-10.
3.6.2 Mnemonic Field 3-11.
3.6.3 Operand Field 3-11.
3.6.4 Comment Field 3-11.

3.7 Constants 3-12.
3.7.1 Binary Integers 3-12.
3.7.2 Octal Integers 3-12.
3.7.3 Decimal Integers 3-12.
3.7.4 Hexadecimal Integers 3-13.
3.7.5 Character Constants 3-13.
3.7.6 Floating-Point Constants 3-13.
3.7.7 Assembly-Time Constants 3-14.

3.8 Character Strings 3-15.
3.9 Symbols 3-16.

3.9.1 Labels 3-16.
3.9.2 Constants 3-16.
3.9.3 Symbolic Constants 3-17.
3.9.4 Substitution Symbols 3-18.

3.10 Expressions 3-20.
3.10.1 Floating-Point Expressions 3-20.
3.10.2 Floating-Point to Integer Conversions 3-21.
3.10.3 Operators 3-22.
3.10.4 Expression Overflow or Underflow 3-22.
3.10.5 Well-Defined Expressions 3-22.
3.10.6 Conditional Expressions 3-23.
3.10.7 Relocatable Symbols and Legal Expressions 3-23.

3.11 Source Listings 3-25.
3.12 Cross-Reference Listings 3-27.

 Contents

xiii Contents

4 Assembler Directives 4-1.
Describes the directives according to function, and lists the directives in alphabetical order.

4.1 Directives Summary 4-2.
4.2 Directives That Define Sections 4-6.
4.3 Directives That Initialize Constants 4-7.
4.4 Directives That Align the Section Program Counter 4-10.
4.5 Directives That Format the Output Listing 4-11.
4.6 Directives That Reference Other Files 4-13.
4.7 Conditional Assembly Directives 4-14.
4.8 Assembly-Time Symbol Directives 4-15.
4.9 Miscellaneous Directives 4-16.
4.10 Directives Reference 4-17.

5 Instruction Set 5-1.
Summarizes the TMS320C3x and TMS320C4x instruction sets alphabetically and according
to function, with information on addressing modes, optional syntaxes, condition codes and
flags, abbreviations and symbols.

5.1 Using the Instruction Set Summary 5-2.
5.1.1 Addressing Modes 5-2.
5.1.2 Optional Syntax 5-3.
5.1.3 Condition Codes and Flags 5-4.
5.1.4 Symbols and Abbreviations 5-6.

5.2 Functional Summary of the Instruction Set 5-8.
5.2.1 Load-and-Store Instructions 5-8.
5.2.2 Arithmetic Instructions 5-10.
5.2.3 Logic Instructions 5-11.
5.2.4 Program-Control Instructions 5-11.
5.2.5 Interlocked-Operation Instructions 5-12.
5.2.6 Conversion Instructions 5-13.
5.2.7 Three-Operand Instructions 5-13.
5.2.8 Parallel Instructions 5-14.
5.2.9 TMS320C4x-Only Instructions 5-18.
5.2.10 LDP and LDPK Instructions 5-19.

5.3 Instruction Set Summary Table 5-20.

6 Macro Language 6-1.
Describes an easy way to create your own instructions to better automate repetitive machine
tasks. Included is information on macro directives and substitution symbols used as macro
parameters.

6.1 Using Macros 6-2.
6.2 Defining Macros 6-3.

Contents

xiv

6.3 Macro Parameters/Substitution Symbols 6-5.
6.3.1 Substitution Symbols 6-5.
6.3.2 Directives That Define Substitution Symbols 6-6.
6.3.3 Built-In Substitution Functions 6-7.
6.3.4 Recursive Substitution Symbols 6-9.
6.3.5 Forced Substitution 6-9.
6.3.6 Accessing Individual Characters of Subscripted Substitution Symbols 6-10.
6.3.7 Substitution Symbols as Local Variables in Macros 6-12.

6.4 Macro Libraries 6-13.
6.5 Using Conditional Assembly in Macros 6-14.
6.6 Using Labels in Macros 6-16.
6.7 Producing Messages in Macros 6-17.
6.8 Formatting the Output Listing 6-19.
6.9 Using Recursive and Nested Macros 6-20.
6.10 Macro Directives Summary 6-22.

7 Archiver Description 7-1.
Contains instructions for invoking the archiver, creating new archive libraries and modifying
existing libraries.

7.1 Archiver Development Flow 7-2.
7.2 Invoking the Archiver 7-3.
7.3 Archiver Examples 7-5.

8 Linker Description 8-1.
Describes the process of creating executable modules by combining COFF object files;
describes how to invoke and use the linker, and presents a detailed example.

8.1 Linker Development Flow 8-2.
8.2 Invoking the Linker 8-4.
8.3 Linker Options 8-6.

8.3.1 Relocation Capability (–a and –r Options) 8-7.
8.3.2 Disable Merge of Symbolic Debugging Information (–b Option) 8-9.
8.3.3 C Language Options (–c and –cr Options) 8-9.
8.3.4 Define an Entry Point (–e global symbol Option) 8-9.
8.3.5 Set Default Fill Value (–f cc Option) 8-10.
8.3.6 Make All Global Symbols Static (–h Option) 8-10.
8.3.7 Keep a Global Symbol (–g symbol Option) 8-11.
8.3.8 Define Heap Size

(–heap size, –heap8 size, and –heap16 size Options) 8-11.
8.3.9 Alter the Library Search Algorithm (–i dir & –l filename/C_DIR) 8-12.
8.3.10 –i Linker Option 8-13.
8.3.11 Environment Variable (C_DIR or A_DIR) 8-13.
8.3.12 Create a Map File (–m filename Option) 8-14.
8.3.13 Name an Output Module (–o filename Option) 8-14.
8.3.14 Specify a Quiet Run (–q Option) 8-14.

 Contents

xv Contents

8.3.15 Strip Symbolic Information (–s Option) 8-14.
8.3.16 Define Stack Size (–stack size Option) 8-15.
8.3.17 Introduce an Unresolved Symbol (–u symbol Option) 8-15.
8.3.18 COFF Format Version (–vn Option) 8-16.
8.3.19 Warning Switch (–w Option) 8-16.
8.3.20 Exhaustively Read Libraries (–x option) 8-17.

8.4 Linker Command Files 8-18.
8.5 Object Libraries 8-21.
8.6 The MEMORY Directive 8-23.

8.6.1 Default Memory Model 8-23.
8.6.2 MEMORY Directive Syntax 8-23.

8.7 The SECTIONS Directive 8-27.
8.7.1 Default Sections Configuration 8-27.
8.7.2 SECTIONS Directive Syntax 8-27.
8.7.3 Specifying the Address of Output Sections (Allocation) 8-29.
8.7.4 Specifying Input Sections 8-32.

8.8 Specifying a Section’s Runtime Address 8-35.
8.8.1 Specifying Two Addresses 8-35.
8.8.2 Uninitialized Sections 8-36.
8.8.3 Referring to a Load Address by Using the .label Directive 8-36.

8.9 Using UNION and GROUP Statements 8-39.
8.9.1 Overlaying Sections With the UNION Directive 8-39.
8.9.2 Grouping Output Sections Together 8-41.

8.10 Overlay Pages 8-42.
8.10.1 Using the MEMORY Directive to Define Overlay Pages 8-42.
8.10.2 Using Overlay Pages With the SECTIONS Directive 8-44.
8.10.3 Page Definition Syntax 8-45.

8.11 Default Allocation 8-47.
8.11.1 Allocation Algorithm 8-47.
8.11.2 General Rules for Output Sections 8-48.

8.12 Special Section Types (DSECT, COPY, and NOLOAD) 8-49.
8.13 Assigning Symbols at Link Time 8-50.

8.13.1 Syntax of Assignment Statements 8-50.
8.13.2 Assigning the SPC to a Symbol 8-50.
8.13.3 Assignment Expressions 8-51.
8.13.4 Symbols Defined by the Linker 8-53.

8.14 Creating and Filling Holes 8-54.
8.14.1 Initialized and Uninitialized Sections 8-54.
8.14.2 Creating Holes 8-54.
8.14.3 Filling Holes 8-56.
8.14.4 Explicit Initialization of Uninitialized Sections 8-57.

8.15 Partial (Incremental) Linking 8-58.

Contents

xvi

8.16 Linking C Code 8-60.
8.16.1 Runtime Initialization 8-60.
8.16.2 Object Libraries and Runtime Support 8-60.
8.16.3 Setting the Size of the Stack and Heap Sections 8-61.
8.16.4 Autoinitialization (ROM and RAM Models) 8-61.
8.16.5 The –c and –cr Linker Options 8-63.

8.17 Linker Example 8-64.

9 Absolute Lister Description 9-1.
Explains how to invoke the absolute lister to obtain a listing of the absolute addresses of an
object file.

9.1 Producing an Absolute Listing 9-2.
9.2 Invoking the Absolute Lister 9-3.
9.3 Absolute Lister Example 9-5.

10 Hex Conversion Utility Description 10-1.
Tells you how to use the hex conversion utility to translate a COFF object file into one of several
standard ASCII hexadecimal formats suitable for loading into an EPROM programmer.

10.1 Hex Conversion Utility Development Flow 10-2.
10.2 Invoking the Hex Conversion Utility 10-3.
10.3 Using Command Files 10-6.
10.4 Creating a Compatible File Format 10-7.

10.4.1 Defining Input Data in the ’C32 10-8.
10.4.2 Specifying the Width 10-9.
10.4.3 Partitioning Data Into Output Files 10-12.
10.4.4 A Memory Configuration Example 10-14.
10.4.5 Specifying Word Order for Output Files 10-14.

10.5 Using the ROMS Directive to Specify Memory Configuration 10-16.
10.5.1 When to Use the ROMS Directive 10-18.
10.5.2 An Example of the ROMS Directive 10-19.
10.5.3 Creating Map Files and the –map option 10-21.

10.6 Using the SECTIONS Directive to Convert COFF File Sections 10-22.
10.7 Output Filenames 10-24.
10.8 Image Mode and the –fill Option 10-26.

10.8.1 The –image Option 10-26.
10.8.2 Specifying a Fill Value 10-27.
10.8.3 Steps to Follow in Image Mode 10-27.

 Contents

xvii Contents

10.9 Building a Boot-Table From an On-Chip Boot Loader 10-28.
10.9.1 Description of the Boot Table 10-28.
10.9.2 The Boot Table Format 10-28.
10.9.3 How to Build the Boot Table 10-29.
10.9.4 Booting From a Device Peripheral 10-31.
10.9.5 Setting the Entry Point for the Boot Table 10-31.
10.9.6 Setting Control Registers 10-31.
10.9.7 Creating a Boot Loader Table for the ’C31 10-32.
10.9.8 TMS320C32 Boot Loader Table Generation 10-34.
10.9.9 TMS320C4x Boot Loader Table Generation 10-37.

10.10 Controlling the ROM Device Address 10-39.
10.10.1 Controlling the Starting Address 10-39.
10.10.2 Controlling the Address Increment Index 10-41.
10.10.3 Dealing With Address Holes 10-42.

10.11 Description of the Object Formats 10-43.
10.11.1 ASCII-Hex Object Format (–a Option) 10-44.
10.11.2 Intel MCS-86 Object Format (–i Option) 10-45.
10.11.3 Motorola-S Object Format (–m1, –m2, –m3 Options) 10-46.
10.11.4 TI-Tagged Object Format (–t Option) 10-47.
10.11.5 Extended Tektronix Object Format (–x Option) 10-48.

10.12 Hex Conversion Utility Error Messages 10-49.

A Common Object File Format A-1.
Contains supplemental technical data about the internal format and structure of COFF object
files.

A.1 How the COFF File Is Structured A-2.
A.1.1 Impact of Switching Operating Systems A-4.

A.2 File Header Structure A-5.
A.3 Optional File Header Format A-6.
A.4 Section Header Structure A-7.
A.5 Structuring Relocation Information A-10.
A.6 Line-Number Table Structure A-12.
A.7 Symbol Table Structure and Content A-14.

A.7.1 Special Symbols A-16.
A.7.2 Symbol Name Format A-18.
A.7.3 String Table Structure A-18.
A.7.4 Storage Classes A-19.
A.7.5 Symbol Values A-20.
A.7.6 Section Number A-21.
A.7.7 Type Entry A-21.
A.7.8 Auxiliary Entries A-23.

Contents

xviii

B Symbolic Debugging Directives B-1.
Lists several directives that the TMS320 floating-point C compiler uses for symbolic debugging.

C Assembler Error Messages C-1.
Lists the fatal, nonfatal and macro error messages that the assembler issues.

D Linker Error Messages D-1.
Lists all the types of error messages issued by the linker, including syntax and command errors,
allocation errors and I/O errors.

E Hex Conversion Utility Examples E-1.
Illustrates command file development for a variety of memory systems and situations.

E.1 Building a Command File for Two 16-Bit EPROMs E-3.
E.2 Building a Command File for Booting From the ’C4x Communications Port E-9.
E.3 Building a Command File to Convert Code for a ’C32 E-15.
E.4 Building a Command File for a Four 8-Bit EPROM System E-20.
E.5 Avoiding Holes Between Multiple Sections E-21.
E.6 Building a Command File for a ’C31 Serial Port Boot Load E-23.
E.7 Dealing With Three Different Addresses E-24.
E.8 Building a Command File to Generate a Boot Table for the ’C32 E-26.

F Glossary F-1.
Explains the terms and phrases and acronyms used in this book.

 Figures

xix Contents

Figures

1–1 TMS320 Family Assembly Language Development Flow 1-2.
2–1 Partitioning Memory Into Logical Blocks 2-3.
2–2 Object Code Generated by Example 2–1 2-11.
2–3 Default Allocation for the Object Code in Figure 2–2 2-13.
2–4 Combining Input Sections From Two Files (Default Allocation) 2-14.
2–5 Rearranging the Memory Map From Figure 2–3 2-17.
3–1 Assembler Development Flow 3-3.
4–1 The .align Directive 4-18.
4–2 The .space Directive 4-62.
4–3 The .usect Directive 4-71.
7–1 Archiver Development Flow 7-2.
8–1 Linker Development Flow 8-3.
8–2 Memory Map Defined in Example 8–3 8-26.
8–3 Section Allocation Defined by Example 8–4 8-29.
8–4 Runtime Execution of Example 8–6 8-38.
8–5 Memory Allocation for Example 8–7 and Example 8–8 8-40.
8–6 Section Allocation Defined by Example 8–9 8-41.
8–7 Overlay Pages Defined by Example 8–10 8-43.
8–8 RAM Model of Autoinitialization 8-62.
8–9 ROM Model of Autoinitialization 8-63.
8–10 Linker Command File, demo.cmd 8-65.
8–11 Output Map File, demo.map 8-66.
9–1 Absolute Lister Development Flow 9-2.
9–2 module1.lst 9-9.
9–3 module2.lst 9-10.
10–1 Hex Conversion Utility Development Flow 10-2.
10–2 Hex Conversion Utility Process Flow 10-7.
10–3 Target and Data Widths 10-9.
10–4 Target, Data, and Memory Widths 10-11.
10–5 Target, Memory, and ROM Widths 10-13.
10–6 ’C3x/’C4x Memory Configuration Example 10-14.
10–7 Varying the Word Order 10-15.
10–8 The infile.out File from Example 10–1 Partitioned Into Eight Output Files 10-20.
10–9 ASCII-Hex Object Format 10-44.
10–10 Intel Hex Object Format 10-45.
10–11 Motorola-S Format 10-46.

Figures

xx

10–12 TI-Tagged Object Format 10-47.
10–13 Extended Tektronix Hex Object Format 10-48.
A–1 COFF File Structure A-2.
A–2 Sample COFF Object File A-3.
A–3 An Example of Section Header Pointers for the .text Section A-9.
A–4 Line-Number Blocks A-12.
A–5 Line-Number Entries Example A-13.
A–6 Symbol Table Contents A-14.
A–7 Symbols for Blocks A-17.
A–8 Symbols for Functions A-17.
A–9 Sample String Table A-18.
E–1 System With Two 16-bit EPROMs E-3.
E–2 Linker Command File for Two 16-bit EPROMs E-4.
E–3 Data From Output File resulting from Example E–2 E-7.
E–4 A Sample EPROM System for a ’C4x E-9.
E–5 Data From Output File (boot.tbl) resulting from Example E–5 E-13.
E–6 Sample EPROM System for a ’C32 E-15.
E–7 Data from Hex Output File (tutor3.hex) Resulting From Example E–8 E-19.
E–8 Sample EPROM System for a ’C32 E-26.
E–9 Output File for Example 8 (example8.hex) Resulting From Example E–18 E-30.

 Tables

xxi Contents

Tables

3–1 Operators 3-22.
3–2 Expressions With Absolute and Relocatable Symbols 3-23.
3–3 Symbol Attributes 3-28.
4–1 Directives Summary 4-2.
5–1 Indirect Addressing 5-3.
5–2 Condition Codes and Flags 5-5.
5–3 Instruction Symbols 5-6.
5–4 Summary of Load-and-Store Instructions 5-9.
5–5 Summary of Arithmetic Instructions 5-10.
5–6 Summary of Logical Instructions 5-11.
5–7 Summary of Program-Control Instructions 5-11.
5–8 Summary of Interlocked-Operation Instructions 5-12.
5–9 Summary of Conversion Instructions 5-13.
5–10 Summary of Three-Operand Instructions 5-14.
5–11 Summary of Parallel Instructions 5-16.
5–12 Summary of TMS320C4x-Only Instructions 5-18.
6–1 Function Definitions 6-8.
6–2 Creating Macros 6-22.
6–3 Manipulating Substitution Symbols 6-22.
6–4 Conditional Assembly 6-22.
6–5 Producing Assembly-Time Messages 6-23.
6–6 Formatting the Listing 6-23.
8–1 Linker Options Summary 8-6.
8–2 Operators in Assignment Expressions 8-52.
10–1 Basic Options 10-4.
10–2 Boot-Loader Utility Options 10-29.
10–3 Control Register Options 10-32.
10–4 Options for Specifying Hex Conversion Formats 10-43.
A–1 File Header Contents A-5.
A–2 File Header Flags (Bytes 18 and 19) A-6.
A–3 Optional File Header Contents A-6.
A–4 Section Header Contents for COFF 0 and COFF1 Files A-7.
A–5 Section Header Contents for COFF2 Files A-7.
A–6 Section Header Flags A-8.
A–7 Relocation Entry Contents A-10.
A–8 Relocation Types (Bytes 8 and 9) A-11.

Tables

xxii

A–9 Line-Number Entry Format A-12.
A–10 Symbol Table Entry Contents A-15.
A–11 Special Symbols in the Symbol Table A-16.
A–12 Symbol Storage Classes A-19.
A–13 Special Symbols and Their Storage Classes A-20.
A–14 Symbol Values and Storage Classes A-20.
A–15 Section Numbers A-21.
A–16 Basic Types A-22.
A–17 Derived Types A-22.
A–18 Auxiliary Symbol Table Entries Format A-23.
A–19 Filename Format for Auxiliary Table Entries A-24.
A–20 Section Format for Auxiliary Table Entries A-24.
A–21 Tag Name Format for Auxiliary Table Entries A-24.
A–22 End-of-Structure Format for Auxiliary Table Entries A-25.
A–23 Function Format for Auxiliary Table Entries A-25.
A–24 Array Format for Auxiliary Table Entries A-26.
A–25 End-of-Blocks and Functions Format for Auxiliary Table Entries A-26.
A–26 Beginning-of-Blocks and Functions Format for Auxiliary Table Entries A-27.
A–27 Structure, Union, and Enumeration Names Format for Auxiliary Table Entries A-27.

 Examples

xxiii Contents

Examples

2–1 Using Section Directives 2-10.
2–2 MEMORY and SECTIONS Directives for Figure 2–5 2-16.
2–3 Code That Generates Relocation Entries 2-18.
3–1 An Assembler Listing 3-26.
3–2 An Assembler Cross-Reference Listing 3-27.
4–1 Initialization Directives 4-8.
4–2 The .field Directive 4-9.
4–3 The .space Directive 4-9.
4–4 The .align Directive 4-10.
4–5 The .even Directive 4-10.
4–6 The .even Directive 4-32.
4–7 The .field Directive 4-36.
4–8 Defining Two Uninitialized, Named Sections 4-71.
6–1 Macro Definition, Call, and Expansion 6-4.
6–2 Calling a Macro With Varying Numbers of Arguments 6-6.
6–3 Using the .asg Directive 6-7.
6–4 Using the .eval Directive 6-7.
6–5 Using Built-In Substitution Symbol Functions to Redefine an Instruction 6-8.
6–6 Recursive Substitution 6-9.
6–7 Using the Forced Substitution Operator 6-10.
6–8 Using Subscripted Substitution Symbols 6-11.
6–9 Using Subscripted Substitution Symbols to Find Substrings 6-11.
6–10 Using the .loop/.break/.endloop Directives 6-15.
6–11 Nested Conditional Assembly Directives 6-15.
6–12 Using the .if, .else, and .endif Directives 6-15.
6–13 Unique Labels in a Macro 6-16.
6–14 Producing Messages in a Macro 6-18.
6–15 Using Nested Macros 6-20.
6–16 Using Recursive Macros 6-21.
8–1 An Example of a Linker Command File 8-18.
8–2 A Command File With Linker Directives 8-19.
8–3 The MEMORY Directive 8-24.
8–4 The SECTIONS Directive 8-28.
8–5 The Most Common Method of Specifying Section Contents 8-32.
8–6 Copying a Section From ROM to RAM 8-37.
8–7 Illustrates the Form of the UNION Statement 8-39.

Examples

xxiv

8–8 Illustrates Separate Load Addresses for UNION Sections 8-39.
8–9 Using the GROUP Directive 8-41.
8–10 Overlay Pages 8-43.
8–11 SECTIONS Directive Definition for Figure 8–7 8-44.
10–1 A ROMS Directive Example 10-19.
10–2 Map File Output from Example 10–1 Showing Memory Ranges 10-21.
10–3 Using the TMS320C31 Boot Loader 10-33.
10–4 Using the TMS320C32 Boot Loader 10-36.
10–5 Using the ’C4x Boot Loader 10-38.
10–6 Hex Command File For Hole Avoidance 10-42.
E–1 Sample ASM Code E-2.
E–2 Command File for Two 16-bit EPROMs E-6.
E–3 Hex Conversion Map File Resulting From Example E–2 E-8.
E–4 Linker Command File for Booting From the ’C4x COMM Port E-10.
E–5 Command File for Booting From the ’C4x COMM Port E-12.
E–6 Map File Resulting From Example E–5 E-14.
E–7 Linker Command File for a ’C32 E-16.
E–8 Sample Hex Command File for a ’C32 E-18.
E–9 Code for Four 8-Bit EPROM Files E-20.
E–10 Linker Command File for Avoiding Holes: Method One E-21.
E–11 Hex Conversion Utility Command File for Avoiding Holes: Method One E-22.
E–12 Linker Command File for Avoiding Holes: Method Two E-22.
E–13 Hex Conversion Utility Command File for Avoiding Holes: Method Two E-22.
E–14 Command File for a ’C31 SERIAL Port Boot Load E-23.
E–15 Linker Command File for Dealing With Three Different Addresses E-24.
E–16 Hex Command File for Dealing With Three Different Addresses E-25.
E–17 Linker Command File for a ’C32 E-27.
E–18 Hex Command File For a ’C32 Boot Table E-28.

1-1Introduction

Introduction

The TMS320C3x/C4x DSPs are supported by the following assembly
language tools:

� Assembler
� Archiver
� Linker
� Hex conversion utility

This chapter shows how these tools fit into the general software tools develop-
ment flow and gives a brief description of each tool. For convenience, it also
summarizes the C compiler and debugging tools; however, the compiler and
debugger are not shipped with the assembly language tools. For detailed
information on the compiler and debugger and for complete descriptions of the
TMS320C3x/C4x devices, refer to books listed in Related Documentation
From Texas Instruments, page vi.

The assembly language tools create and use object files in common object file
format (COFF) to facilitate modular programming. Object files contain sepa-
rate blocks (called sections) of code and data that you can load into TMS320
memory spaces. You can program the TMS320 devices more efficiently if you
have a basic understanding of COFF. Chapter 2, Introduction to Common
Object File Format, discusses this object format in detail.

Topic Page

1.1 Software Development Tools Overview 1-2.

1.2 Tools Descriptions 1-3.

Chapter 1

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1–1 shows the assembly language development flow. The shaded
portion highlights the most common development path; the other portions are
optional.

Figure 1–1. TMS320 Family Assembly Language Development Flow

Assembler

Linker

C Compiler

Archiver

 Macro
Library

Macro
Source
Files

Archiver

Hex Conversion
Utility

EPROM
Programmer

Debugging
 Tools

C
Source
Files

Assembler
Source

 COFF
 Object
Files

TMS320C3x
TMS320C4x

Executable
COFF

File

Runtime
Support
Library

Library Build
 Utility

Library of
Object
Files

Tools Descriptions

1-3Introduction

1.2 Tools Descriptions

� The C compiler translates C source code into TMS320C3x or
TMS320C4x assembly language source code. The C compiler is not in-
cluded as part of the assembly language tools package.

� The assembler translates assembly language source files into machine
language object files. Source files can contain instructions, assembler
directives, and macro directives. You can use assembler directives to con-
trol various aspects of the assembly process, such as the source listing
format, data alignment, and section content.

� The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files (cre-
ated by the assembler) as input. It also accepts archiver library members
and output modules created by a previous linker run. Linker directives
allow you to combine object file sections, bind sections or symbols to ad-
dresses or within memory ranges, and define or redefine global symbols.

� The archiver allows you to collect a group of files into a single archive file.
For example, you can collect several macros together into a macro library.
The assembler will search through the library and use the members that
are called as macros by the source file. You can also use the archiver to
collect a group of object files into an object library. The linker will include
the members in the library that resolve external references during the link.

� The absolute lister accepts linked object files as input and creates .abs
files as output. You assemble .abs files to produce a listing that contains
absolute rather than relative addresses. Without the absolute lister, pro-
ducing such a listing would be tedious and require many manual opera-
tions.

� The main purpose of this development process is to produce a module that
can be executed in a system that contains a TMS320 device . There are
several debugging tools available for the various TMS320 devices:

� The simulator is a software program that simulates TMS320 instruc-
tions. The simulator can execute linked COFF object modules. The
simulator is not included with the assembly language package.

� The XDS (extended development support) emulator is a real–time,
in-circuit emulator with the same screen–oriented interface as the
software simulator. The emulator is not included with the assembly
language package.

Tools Descriptions

 1-4

� The evaluation module (EVM) is a low-cost development board that
provides full-speed in-circuit emulation and hardware debugging. The
EVM is available now for the TMS320C3x devices and will be avail-
able soon for the TMS320C4x devices.

� The C source debugger is a software interface to the simulator, emu-
lator, and EVM.

� The TMS320C3x/4x devices accept COFF files as input, but most
EPROM programmers do not. The hex conversion utility converts a
COFF object file into TI–tagged, Intel, Motorola S1/S2/S3, or Tektronix
object format. The converted file can be downloaded to an EPROM
programmer.

2-1Introduction to Common Object File Format

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a
TMS320C3x/C4x device. The format that these object files are in is called
common object file format, or COFF.

COFF makes modular programming easier because it encourages you to
think in terms of blocks of code and data when you write an assembly language
program. These blocks are known as sections . Both the assembler and the
linker provide directives that allow you to create and manipulate sections.

In addition to this chapter, Appendix A details COFF object file structure. For
example, it describes the fields in a file header and the structure of a symbol
table entry. Appendix A is useful mainly for those of you who are interested in
the internal format of object files.

Topic Page

2.1 COFF File Types 2-2.

2.2 Sections 2-2.

2.3 How the Assembler Handles Sections 2-4.

2.4 How the Linker Handles Sections 2-12.

2.5 Relocation 2-18.

2.6 Runtime Relocation 2-20.

2.7 Loading a Program 2-21.

2.8 Symbols in a COFF File 2-22.

Chapter 2

COFF File Types

 2-2

2.1 COFF File Types

The following types of COFF files exist:

� COFF0
� COFF1
� COFF2

Each COFF file type has a different header format. The data portions of the
COFF files are identical. For details about the COFF file structure, see
Appendix A, Common Object File Format.

The TMS320C3x/C4x assembler and C compiler create COFF2 files. The
linker can read and write all types of COFF files. By default, the linker creates
COFF2 files. Use the –v linker option to specify a different format. The linker
supports COFF0 and COFF1 files for older versions of the assembler and C
compiler only.

2.2 Sections

The smallest unit of an object file is called a section . A section is a block of
code or data that will ultimately occupy contiguous space in the
TMS320C3x/C4x memory map. Each section of an object file is separate and
distinct from the other sections. COFF object files always contain three default
sections:

.text usually contains executable code.

.data usually contains initialized data.

.bss usually reserves space for uninitialized variables.

In addition, the assembler and linker allow you to create, name, and link
named sections that are used similarly to the .data, .text, and .bss sections.

It is important to note that there are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the
.sect and .asect assembler directives are also in-
itialized.

Uninitialized sections reserve space in the memory map for uninitialized
data. The .bss section is uninitialized; named sec-
tions created with the .usect assembler directive
are also uninitialized.

Sections

2-3Introduction to Common Object File Format

The assembler provides several directives that allow you to associate various
portions of code and data with the appropriate sections. The assembler builds
these sections during the assembly process, creating an object file that is or-
ganized similarly to the object file shown in Figure 2–1.

One of the linker’s functions is to relocate sections into the target memory map;
this is called allocation . Because most systems contain several different
types of memory, using sections can help you to use target memory more effi-
ciently. All sections are independently relocatable; you can place different sec-
tions into various blocks of target memory. For example, you can define a sec-
tion that contains an initialization routine and then allocate the routine into a
portion of the memory map that contains EPROM.

Figure 2–1 shows the relationship between sections in an object file and a hy-
pothetical target memory.

Figure 2–1. Partitioning Memory Into Logical Blocks

.text

.data

.bss

Object File

External
EPROM

External
EPROM

on-chip
RAM

Initialized
Program Memory

Uninitialized
Data Memory

How the Assembler Handles Sections

 2-4

2.3 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that
belong in a section. The assembler has six directives that support this function:

� .bss
� .usect
� .text
� .data
� .sect
� .asect

The .bss and .usect directives create uninitialized sections; the .text, .data,
.sect, and .asect directives create initialized sections.

Note: Default Section Directive

If you don’t use any of the sections directives, the assembler assembles
everything into the .text section.

2.3.1 Uninitialized Sections

Uninitialized sections reserve space in TMS320C3x/C4x memory; they are
usually allocated into RAM. These sections have no actual contents in the
object file; they simply reserve memory. A program can use this space at run
time for creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler
directives. The .bss directive reserves space in the .bss section. The .usect
directive reserves space in a specific uninitialized named section. Each time
you invoke the .bss directive, the assembler reserves more space in the .bss
section. Each time you invoke the .usect directive, the assembler reserves
more space in the specified named section.

The syntax for each directive is

.bss symbol, size in words

symbol .usect ”section name ”, size in words [alignment flag]

How the Assembler Handles Sections

2-5Introduction to Common Object File Format

symbol points to the first byte reserved by this invocation of the .bss
or .usect directive. The symbol corresponds to the name of
the variable for which you’re reserving space. It can be ref-
erenced by any other section and can also be declared as
a global symbol (with the .global assembler directive).

size is an absolute expression. The .bss directive reserves size
words in the .bss section; the .usect directive reserves size
words in section name. There is no default size for the .bss
section.

section name tells the assembler which named section to reserve space
in. For more information about named sections, refer to
subsection 2.3.3.

blocking flag is an optional parameter. If present and nonzero, the flag
means that this section will be blocked. Blocking is an ad-
dress alignment mechanism similar to alignment, but
weaker. It means a section is guaranteed not to cross a
page boundary (128 words) if it is smaller than a page, and
to start on a page boundary if it is larger than a page. This
blocking applies to the section, not to the object declared
with this instance of the .usect directive.

alignment flag is an optional parameter. If present and nonzero, the sec-
tion will be aligned to a long word boundary.

The .text, .data, .sect, and .asect directives tell the assembler to stop
assembling into the current section and begin assembling into the indicated
section. The .bss and .usect directives, however, do not end the current
section and begin a new one; they simply escape from the current section
temporarily. The .bss and .usect directives can appear anywhere in an initial-
ized section without affecting the contents of the initialized section.

2.3.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in TMS320C3x/C4x
memory when the program is loaded. Each initialized section is separately
relocatable and may reference symbols that are defined in other sections. The
linker automatically resolves these section-relative references.

How the Assembler Handles Sections

 2-6

Three directives tell the assembler to place code or data into a section. The
syntax for each directive is

.text

.data

.sect ” section name” [, value]

When the assembler encounters one of these directives, it stops assembling
into the current section; the directive acts as an implied “end current section”
command. The assembler then assembles subsequent code into the section
designated by the directive until it encounters another .text, .data, or .sect
directive.

Sections are built up through an iterative process. For example, when the as-
sembler first encounters a .data directive, the .data section is empty. The state-
ments following this first .data directive are assembled into the .data section
(until the assembler encounters a .text, .sect, or .asect directive). If the assem-
bler encounters subsequent .data directives, it adds the statements following
these .data directives to the statements that are already in the .data section.
This creates a single .data section that can be allocated contiguously into
memory.

2.3.3 Named Sections

Named sections are sections that you create. You can use them like the default
.text, .data, and .bss sections, but they are assembled separately from the de-
fault sections.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as a
single unit. Suppose there is a portion of executable code (perhaps an initiali-
zation routine) that you don’t want allocated with .text. If you assemble this
segment of code into a named section, it will be assembled separately from
.text, and you will be able to allocate it into memory separately from .text. Note
that you can also assemble initialized data that is separate from the .data sec-
tion, and you can reserve space for uninitialized variables that is separate from
the .bss section.

Three directives let you create named sections:

� The .usect directive creates sections that are used like the .bss section.
These sections reserve space in RAM for variables.

� The .sect directive creates sections that can contain code or data, similar
to the default .text and .data sections. The .sect directive creates named
sections with relocatable addresses.

How the Assembler Handles Sections

2-7Introduction to Common Object File Format

The syntax for each directive is:

symbol .usect “ section name” , size in words [, alignment flag]

.sect “ section name” [, value]

The section name parameter is the name of the section. Section names are
significant to 8 characters. You can create up to 32,767 separate named sec-
tions.

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect direc-
tive and then try to use the same section with .sect.

How the Assembler Handles Sections

 2-8

2.3.4 Subsections

Subsections are smaller sections within larger sections. Like sections, sub-
sections can be manipulated by the linker. Subsections give you tighter control
of the memory map. You can create subsections by using the .sect or .usect
directive. The syntax for a subsection name is:

section name:subsection name

A subsection is identified by the base section name followed by a colon, then
the name of the subsection. A subsection can be allocated separately or
grouped with other sections using the same base name. For example, to
create a subsection called _func within the .text section, enter the following:

.sect ”.text:_func”

You can allocate _func separately or within all the .text sections.

You can create two types of subsections:

� Initialized subsections are created using the .sect directive. See subsec-
tion 2.3.2, Initialized Sections, on page 2-5.

� Uninitialized subsections are created using the .usect directive. See
subsection 2.3.1, Uninitialized Sections, on page 2-4.

Subsections are allocated in the same manner as sections. See Section 8.7,
The SECTIONS Directive, on page 8-27 for more information.

2.3.5 Section Program Counters

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data.
Initially, the assembler sets each SPC to 0. As the assembler fills a section with
code or data, it increments the appropriate SPC. If you resume assembling into
a section, the assembler remembers the appropriate SPC’s previous value
and continues incrementing the SPC at that point.

The assembler treats each section as if it begins at address 0; the linker relo-
cates each section according to its final location in the memory map.

How the Assembler Handles Sections

2-9Introduction to Common Object File Format

2.3.6 An Example That Uses Sections Directives

Figure 2–1 shows how you can build COFF sections incrementally, using the
sections directives to swap back and forth between the different sections. You
can use sections directives to

� Begin assembling into a section for the first time, or

� Continue assembling into a section that already contains code. In this
case, the assembler simply appends the new code to the code that is al-
ready in the section.

The format in this example is a listing file. Example 2–1 shows how the SPCs
are modified during assembly. A line in a listing file has four fields:

Field 1 contains the source code line counter.

Field 2 contains the section program counter.

Field 3 contains the object code.

Field 4 contains the original source statement.

How the Assembler Handles Sections

 2-10

Example 2–1. Using Section Directives

Field 2Field 1 Field 3 Field 4

1 **
2 ** Assemble an initialized table into data **
3 **
4 00000000 .data
5 00000000 00000011 coeff .word 011h, 022h, 033h

00000001 00000022
00000002 00000033

6 **
7 ** Reserve space in .bss for two variables **
8 ***
9 00000000 .bss var1,1

10 00000001 .bss buffer, 10
11
12 ***
13 ** Still in data **
14 ***
15 00000003 00000123 ptr .word 0123h
16
17 **
18 ** Assemble code into .text section **
19 **
20 00000000 .text
21 00000000 0869000a add: LDI 10,AR1
22 00000001 08610000 LDI 0,R1
23 00000002 aloop:
24 00000002 02412001 ADDI *AR0++,R1
25 00000003 6e46fffe DBNZ AR1,aloop
26 00000004 15210000– STI R1,@var1
27
28 **
29 ** Assemble another initialized table **
30 ** into the data section **
31 **
32 00000004 .data
33 00000004 000000aa ivals .word 0AAh, 0BBh, 0CCh

00000005 000000bb
00000006 000000cc

34 **
35 ** Define another section for more variables**
36 ***
37 00000000 var2 .usect ” newvars ”,1
38 00000001 inbuf .usect ” newvars ”,7
39
40 ***
41 ** Assemble more code into .text section **
42 **
43 00000005 .text
44 00000005 0869000a mpy: LDI 10,AR1
45 00000006 08610000 LDI 0,R1
46 00000007 mloop:
47 00000007 0ac12001 MPYI *AR0++,R1
48 00000008 6e46fffe DBNZ AR1,mloop
49 00000009 15210000– STI R1,@var2
50
51 **
52 ** Define a nameed section for int. vectors **
53 **
54 00000000 .sect ” vectors ”
55 00000000 00000000’ .word add,mpy

00000001 00000005’

How the Assembler Handles Sections

2-11Introduction to Common Object File Format

As Figure 2–2 shows, the file in Example 2–1 creates five sections:

.text contains 10 words of object code.

.data contains 7 words of object code.

vectors is a named section created with the .sect directive; it contains 2
words of initialized data.

.bss reserves 11 words in memory.

newvars is a named section created with the .usect directive; it reserves
8 words in memory.

The second column shows the object code that is assembled into these sec-
tions; the first column shows the source statements that generated the object
code.

Figure 2–2. Object Code Generated by Example 2–1

00000000
00000005

No data
11 words
reserved

No data 8
words

reserved

00000011
00000022
00000033
00000123
000000AA
000000BB
000000CC

0869000A
08610000
02412001
6E46FFFE
15210000
0869000A
0861000A
0AC12001
6E46FFFE
15210000

55
55

Line Numbers

21
22
24
25
26
44
45
47
48
49

5
5
5
15
33
37
33

9, 10

37, 38

Object Code

.data section

vectors

.bss

newvars

Section

.text section

How the Linker Handles Sections

 2-12

2.4 How the Linker Handles Sections

The linker has two main functions in regard to sections. First, the linker uses
the sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an exe-
cutable COFF output module. Second, the linker chooses memory addresses
for the output sections.

The linker provides two directives that support these functions:

� The MEMORY directive allows you to define the memory map of a target
system. You can name portions of memory and specify their starting ad-
dresses and their lengths.

� The SECTIONS directive tells the linker how to combine input sections
and where to place the output sections in memory.

It is not always necessary to use linker directives. If you don’t use them, the
linker uses the target processor’s default allocation algorithm described in
subsection 2.4.1. When you do use linker directives, you must specify them
in a linker command file.

Refer to the following sections for more information about linker command files
and linker directives:

Section Page
8.4 Linker Command Files 8-18.
8.6 The MEMORY Directive 8-23.
8.7 The SECTIONS Directive 8-27.
8.11 Default Allocation 8-47.

2.4.1 Default Allocation

You can link files without specifying a MEMORY or SECTIONS directive. The
linker uses a default model to combine sections (if necessary) and allocate
them into memory. When using the default model, the linker

1) Assumes that memory begins at address 0h.

2) Assumes that 232 words are available to allocate object code into.

3) Allocates .text into memory, beginning at address 0.

4) Allocates .data into memory, immediately following .text.

5) Allocates .bss into memory, immediately following .data.

6) Allocates all named sections into memory, immediately following .bss.
Named sections are allocated in the order that they’re encountered in the
input files.

How the Linker Handles Sections

2-13Introduction to Common Object File Format

Figure 2–3 shows how a single file would be allocated into memory by using
default allocation for the TMS320C3x/C4x. Note that the linker does not actu-
ally place object code into memory; it assigns addresses to sections so that
a loader can place the code in memory.

Figure 2–3. Default Allocation for the Object Code in Figure 2–2

Section

.data

vectors

.bss

newvars

.text

00000000h

0000000Ah

00000011h

00000024h

0000001Ch

size = 10
words

size = 7
words

size = 11
words

size = 8
words

size = 2
words

.data

vectors

.bss

newvars

.text

Object Code

00000000
00000005

No data
11 words
reserved

No data
 8 words
reserved

00000011
00000022
00000033
00000123
000000AA
000000BB
000000CC

0869000A
08610000
02412001
6E46FFFE
15210000
0869000A
0861000A
0AC12001
6E46FFFE
15210000

As Figure 2–3 shows, the linker:

1) Allocates the .text section first, beginning at address 0h. The .text section
contains 10 words of object code.

2) Allocates the .data section next, beginning at address Ah. The .data sec-
tion contains 7 words of object code.

3) Allocates the .bss section third, beginning at address 11h. The .bss sec-
tion reserves 11 words in memory.

How the Linker Handles Sections

 2-14

4) Allocates the named section, newvars, at address 1Ch. (newvars was the
first named section encountered in the original input file. See
Example 2–1.) The newvars section reserves 8 words in memory.

5) Allocates the named section vectors at address 24h. The vectors section
contains 2 words of object code.

Figure 2–4 shows a simple example of how two files would be linked together.
When you link several files using the default algorithm, the linker combines all
input sections that have the same name into one output section that has this
same name. For example, the linker combines the .text sections from two input
files to create one .text output section.

Figure 2–4. Combining Input Sections From Two Files (Default Allocation)

.text

.data

.bss

Memory

.text

.data

.bss

newvars
(named section)

newvars
(named section)

file1
.data

file1
.bss

file1
.text

file2
.text

file1
newvars

file2
.data

file2
.bss

file2
newvars

file1.obj

file2.obj

vectors
(named section)

file2
vectors

How the Linker Handles Sections

2-15Introduction to Common Object File Format

In Figure 2–4, file1.obj and file2.obj each contain the .text, .data, and .bss
default sections and a named section called newvars; file2.obj also contains
a named section called vectors. As Figure 2–4 shows, the linker:

1) Combines file1.text with file2.text to form one .text output section. The
.text output section is allocated at address 0h.

2) Combines file1 .data with file2 .data to form the .data output section. The
.data output section is allocated following the .text output section.

3) Combines file1.bss with file2.bss to form the .bss output section. The .bss
output section is allocated following the .data output section.

4) Combines file1 newvars with file2 newvars to form the newvars output
section. (The newvars section is the first named section that is encoun-
tered during the link, so it is allocated before the second named section,
vectors.) The newvars output section is allocated following the .bss output
section.

5) Allocates the vectors section from file2 after the newvars section.

For more information about default allocation algorithms, refer to Section 8.11
on page 8-47.

2.4.2 Placing Sections in the Memory Map

Figure 2–3 and Figure 2–4 illustrate the linker’s default methods for combining
sections and allocating them into memory. Sometimes you may not want to
use the default setup. For example, you may not want to combine all of the .text
sections into a single .text section. Or, you might want a named section placed
at address 40h instead of the .text section. Most memory maps are composed
of various types of memories (DRAM, ROM, EPROM, etc.) in varying
amounts; you may want to place a section in a particular type of memory.

The next two illustrations show another possible combination of the sections
from Figure 2–3:

Example 2–2 contains linker MEMORY and SECTIONS definitions.

Figure 2–5 shows how the sections from Example 2–2 are allocated into the
memory map.

How the Linker Handles Sections

 2-16

Example 2–2. MEMORY and SECTIONS Directives for Figure 2–5

/**/
/* Linker command file ****/
/**/

MEMORY
{

VECS: origin = 00000000h length = 40h
ROM: origin = 00000040h length = FC0h
RAM0: origin = 00801000h length = 400h
RAM1: origin = 00801400h length = 400h

}

SECTIONS
{

vectors : load = 0000000h
.text : load = ROM
.data : load = ROM
.bss : load = RAM0
newvars:load = RAM1

}

� The MEMORY directive in Example 2–2 defines four memory ranges:

VECS
ROM
RAM0
RAM1

The origin for each of these ranges identifies the range’s starting address
in memory. The length specifies the length of the range. For example,
memory range RAM0, with starting address 00801000h and length 400h,
defines the addresses 00801000h through 008013FFh in memory.

� The SECTIONS directive in Example 2–2 defines the order in which the
sections are allocated into memory. The vectors section must begin at
address 0. Both .text and .data are allocated into the ROM area that was
defined by the MEMORY directive. The .bss section is allocated into
RAM0, and newvars is allocated into RAM1.

How the Linker Handles Sections

2-17Introduction to Common Object File Format

Figure 2–5. Rearranging the Memory Map From Figure 2–3

.data

vectors

.bss

newvars

.text

Object Code

00000000
00000005

No data
11 words
reserved

No data 8
words

reserved

00000011
00000022
00000033
00000123
000000AA
000000BB
000000CC

0869000A
08610000
02412001
6E46FFFE
15210000
0869000A
0861000A
0AC12001
6E46FFFE
15210000

Section

.data

.bss

newvars

.text

00000000h

0000004Ah

00000051h

00801400h

(size = 10
words)

(size = 7
words)

(size = 11
words)

(size = 8
words)

2 words

.text

unused memory

unused memory

unused memory

unused memory

00000002h

vectors

00000040h

00801000h

00801408h

00801800h

(RAM block0)

(RAM block1)

(interrupt vectors)

(internal ROM)

Relocation

 2-18

2.5 Relocation

The assembler treats each section as if it begins at address 0. All relocatable
symbols (labels) are relative to address 0 in their sections. Of course, all
sections can’t actually begin at address 0 in memory, so the linker relocates
sections by:

� Allocating sections into the memory map so that they begin at the
appropriate address

� Adjusting symbol values to correspond to the new section addresses

� Adjusting references to relocated symbols to reflect the adjusted symbol
values

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is refer-
enced. The linker then uses these entries to patch the references after the
symbols are relocated. Example 2–3 contains a code segment that generates
relocation entries.

Example 2–3. Code That Generates Relocation Entries

1 .ref X
2 00000000 .text
3 00000000 60FFFFFF! BR X ; Generates a relocation entry
4 00000001 08200002’ LDI @Y,R0 ; Generates a relocation entry
5 00000002 06000000 Y: IDLE

In Example 2–3, both symbols X and Y are relocatable. X is defined in some
other module; Y is defined in the .text section of this module. When assembled,
X has a value of 0 (the assembler assumes all undefined external symbols
have values of 0) and Y has a value of 2 (relative to address 0 in the .text sec-
tion). The assembler generates two relocation entries, one for X and one for
Y. The reference to X is an external reference (indicated by the ! character in
the listing). The reference to Y is to an internally defined relocatable symbol
(indicated by the ’ character in the listing).

After linking, suppose that X is relocated to address 100h. Suppose also that
the .text section is relocated to begin at address 200h; Y now has a relocated
value of 204h. The linker uses the two relocation entries to patch the two refer-
ences in the object code:

60000000 BR X becomes 60000100
08200002 LDI @Y,R0 becomes 08200202

Relocation

2-19Introduction to Common Object File Format

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section. The
linker usually removes relocation entries after it uses them. This prevents the
output file from being relocated again (if it is relinked or when it is loaded). A
file that contains no relocation entries is an absolute file (all of its addresses
are absolute addresses). If you want the linker to retain relocation entries,
invoke the linker with the –r option.

Runtime Relocation

 2-20

2.6 Runtime Relocation

It may be necessary or desirable at times to load code into one area of memory
and run it in another. For example, you may have performance critical code in
a ROM-based system. The code must be loaded into ROM but would run much
faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive,
you can optionally direct the linker to allocate a section twice: once to set its
load address, and again to set its run address.

Use the load keyword for the load address and the run keyword for the run
address.

The load address determines where a loader will place the raw data for the
section. Any references to the section (such as labels in it) refer to its run ad-
dress. The application must copy the section from its load address to its run
address; this does not happen automatically just because you specify a sepa-
rate run address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is actually allocated as if it were two different sec-
tions of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only address of sig-
nificance is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and ig-
nores the load address.

For a complete description of runtime relocation, see Section 8.8 on
page 8-35.

Loading a Program

2-21Introduction to Common Object File Format

2.7 Loading a Program

The linker produces executable COFF object modules. An executable object
file has the same COFF format as object files that are used as linker input; how-
ever, the sections in an executable object file are combined and relocated to
fit into target memory.

In order to run a program, the data in the executable object module must be
transferred, or loaded , into target system memory.

Several methods can be used for loading a program, depending on the execu-
tion environment. Some of the more common situations are listed below.

� The TMS320C3x/C4x debugging tools, including the software simulator,
XDS emulator, and software development system, have built-in loaders.
Each of these tools has a LOAD command that invokes a COFF loader;
the loader reads the executable file and copies the program into target
memory.

� If you are using a ROM- or EPROM-based system, you can use the object
format converter, which is shipped as part of the assembly language pack-
age, to convert the executable COFF object module into one of several
hexadecimal object file formats. You can then use the converted file with
an EPROM programmer to burn the program into an EPROM.

� Some TMS320C3x/C4x programs are loaded under the control of an oper-
ating system or monitor software running directly on the target system. In
this type of application, the target system usually has an interface to the
file system on which the executable module is stored. You must write a
custom loader for this type of system. Refer to Appendix A for supplemen-
tary information about the internal format of COFF object files. The loader
must comprehend the file system (in order to access the file) as well as the
memory organization of the target system (to load the program into mem-
ory).

Source code for the TMS320C3x/C4x COFF loader is available through the
TI DSP bulletin board (call the DSP hotline listed in the front of this manual for
instructions). This loader provides all the basic mechanisms for reading a
TMS320C3x/C4x COFF file and loading it into a target system. A simple inter-
face allows customization to fit the requirements of most applications.

Symbols in a COFF File

 2-22

2.8 Symbols in a COFF File
A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debugging
tools can also use the symbol table to provide symbolic debugging.

2.8.1 External Symbols

External symbols are symbols that are defined in one module and referenced
in another module. You can use the .global directive to identify symbols as
external. In a source module, an external symbol can be either a ref or def:

Defined (DEF) Defined in the current module and used in another
module

Referenced (REF) Referenced in the current module, but defined in an-
other module

The following code segment illustrates these definitions.

.global x ; DEF of x

.global y ; REF of y
x: LDI R0,R1 ; Define x

LDI @y,R0 ; Reference y

The .global definition of x says that it is an external symbol defined in this mod-
ule and that other modules can reference x. The .global definition of y says that
it is an undefined symbol that is defined in some other module.

The assembler places both x and y in the object file’s symbol table. When the
file is linked with other object files, the entry for x defines unresolved refer-
ences to x from other files. The entry for y causes the linker to look through the
symbol tables of other files for y’s definition.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol’s definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

2.8.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encoun-
ters an external symbol (both definitions and references). The assembler also
creates special symbols that point to the beginning of each section; the linker
uses these symbols to relocate references to other symbols in a section.

The assembler does not usually create symbol table entries for any other type
of symbol, because the linker does not use them. For example, labels are not
included in the symbol table unless they are declared with .global. For sym-
bolic debugging purposes, it is sometimes useful to have entries in the symbol
table for each symbol in a program. To accomplish this, invoke the assembler
with the –s option.

3-1Assembler Description

Assembler Description

The assembler translates assembly-language source files into object files.
These files are in common object file format (COFF), which is discussed in
Chapter 2 and Appendix A. Source files can contain the following assembly
language elements:

Assembler directives described in Chapter 4

Assembly language instructions described in Chapter 5

Macro directives described in Chapter 6

Topic Page

3.1 Assembler Overview 3-2.

3.2 Assembler Development Flow 3-3.

3.3 Invoking the Assembler 3-4.

3.4 Porting Upward Compatible Code 3-6.

3.5 Naming Alternate Directories for Assembler Input 3-7.

3.6 Source Statement Format 3-10.

3.7 Constants 3-12.

3.8 Character Strings 3-15.

3.9 Symbols 3-16.

3.10 Expressions 3-20.

3.11 Source Listings 3-25.

3.12 Cross-Reference Listings 3-27.

Chapter 3

Assembler Overview

 3-2

3.1 Assembler Overview

The assembler does the following:

� Processes the source statements in a text file to produce a relocatable
object file

� Produces a source listing (if requested) and provides you with control over
this listing

� Allows you to segment your code into sections and maintain an SPC
(section program counter) for each section of object code

� Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

� Assembles conditional blocks

� Supports macros, allowing you to define macros inline or in a library

� Allows you to assemble TMS320C3x and TMS320C4x code

Assembler Development Flow

3-3Assembler Description

3.2 Assembler Development Flow

Figure 3–1 illustrates the assembler’s role in the assembly language develop-
ment flow. The assembler accepts assembly language source files as input.
The TMS320C3x/C4x floating-point assembler also accepts assembly
language files created by the TMS320C3x/C4x C compiler.

Figure 3–1. Assembler Development Flow

Linker

C Compiler

Archiver

Macro
Library

Macro
Source
Files

Archiver

Library of
Object
Files

Hex Conversion
Utility

EPROM
Programmer

Debugging
 Tools

C
Source
Files

Assembler
Source

COFF
Object
Files

TMS320C3x
TMS320C4x

Executable
COFF

File

Runtime
Support
Library

Assembler

Library Build
 Utility

Invoking the Assembler

 3-4

3.3 Invoking the Assembler

To invoke the assembler, enter the following:

asm30 [input file [object file [listing file]]] [–options]

asm30

input file

is the command that invokes the assembler.

names the assembly language source file. If you do not supply
an extension for input file, the assembler assumes that the in-
put file has the default extension .asm. If you do not supply an
input filename when you invoke the assembler, the assembler
will prompt you for one.

object file names the object file that the assembler creates. If you do not
supply an extension, the assembler uses .obj as a default ex-
tension. If you do not supply an object file, the assembler cre-
ates a file that uses the input file name with the .obj extension.

listing file names the optional listing file that the assembler can create.
If you do not supply a name for a listing file, the assembler does
not create one unless you use the –l option. In this case, the
assembler uses the input filename and, if you do not supply an
extension, the assembler uses .lst as a default extension.

options identify the assembler options that you want to use.

Options are not case sensitive and can appear anywhere on
the command line, following the command. Precede each op-
tion with a hyphen (–). You can string the options together; for
example, –lc is equivalent to –l –c . Note that the assembler ac-
cepts –mbir, which is equivalent to –mb –mi –mr. However, it
will not accept –mbirq, because the “q” is read as –mq and not
as –q. The valid assembler options are as follows:

–a creates an absolute listing. When you use
–a, the assembler does not produce an ob-
ject file. The –a option is used in conjunction
with the absolute lister.

–c makes case insignificant in the assembly
language files. For example, –c will make
the symbols ABC and abc equivalent. If you
do not use this option, case is significant
(default).

–dname[=def] predefines the constant name for the as-
sembler. This is equivalent to
inserting #define name def at the top of
each source file. If the optional def is
omitted, –dname sets name equal to 1.

Invoking the Assembler

3-5Assembler Description

–i specifies a directory where the assembler
can find files named by the .copy, .include,
or .mlib directives. The format of the –i op-
tion is –ipathname. You can specify up to 10
directories in this manner; each pathname
must be preceded by the –i option.

–l (lowercase “L”) produces a listing file.

–mb predefines the .BIGMODEL symbol. This
option is used when assembly code will be
linked with a C module that uses the large
memory runtime model.

–mi predefines the .C30INTERRUPT symbol.
This option is used when the assembly
code will be used with code compiled with
the shell’s –mi option.

–mr predefines the .REGPARM symbol. This
option is used when assembly code will be
linked with a C module that uses the regis-
ter-argument runtime model.

–mx predefines the .TMX320C40 symbol. This
option is used to support legacy assembly
code and may be removed in a future re-
lease.

–q (quiet) suppresses the banner and all pro-
gress information.

–s puts all defined symbols in the object file’s
symbol table. The assembler usually puts
only global symbols into the symbol table.
When you use –s, symbols that are defined
as labels or as assembly-time constants are
also placed in the symbol table. See also
subsection 2.8.2 on page 2-22.

–uname overrides any –d options for the specified
constant and undefines the predefined
constant name.

Porting Upward Compatible Code

 3-6

–v specifies a version. The version tells the as-
sembler which of the following
TMS320C3x/C4x devices it should produce
code for (The default is –v30):

–v30 selects the TMS320C30
–v31 selects the TMS320C31
–v32 selects the TMS320C32
–v40 selects the TMS320C40
–v44 selects the TMS320C44

–x produces a cross-reference table and ap-
pends it to the end of the listing file. If you do
not request a listing file, the assembler cre-
ates one anyway, but the listing contains
only the cross-reference table.

3.4 Porting Upward Compatible Code

The floating-point processors in the TMS320C3x/C4x family are upwardly
source code compatible. For example, code originally written for the
TMS320C30 can be assembled for the TMS320C40 with –v40 assembler op-
tion. The –v version option is explained in detail on page 3-6.

All of the processors are capable of handling upwardly ported code as long as
the target processor’s number is the same as or greater than the original target
processor. Porting code downward, however, produces undefined results; in
most cases the code will fail to assemble.

The TMS320C3x and TMS320C4x families are not object code compatible.
Code for the ’C3x must be reassembled in order to run on a ’C4x and vice
versa.

Invoking the Assembler/Porting Upward Compatible Code

Naming Alternate Directories for Assembler Input

3-7Assembler Description

3.5 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from
external files. The .copy and .include directives tell the assembler to read
source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 4, Assembler Directives, contains ex-
amples of the .copy, .include, and .mlib directives. The syntax for these direc-
tives is

.copy ”filename”

.include ”filename”

.mlib ”filename”

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. The filename may be
a complete pathname or a filename with no path information. If you provide a
pathname, the assembler uses that path and does not look for the file in any
other directories. If you do not provide path information, the assembler
searches for the file in the following directories:

1) The directory that contains the current source file. The current source file
is the file being assembled when the .copy, .include, or .mlib directive is
encountered.

2) Any directories named with the –i assembler option.

3) Any directories set with the environment variable A_DIR.

You can augment the assembler’s directory search algorithm by using the –i
assembler option or the environment variable.

3.5.1 –i Assembler Option

The –i assembler option names an alternate directory that contains copy/
include files or macro libraries. The format of the –i option is as follows:

asm30 –i pathname source filename

You can use up to 10 –i options per invocation; each –i option names one path-
name. In assembly source, you can use the .copy, .include, or .mlib directive
without specifying any path information. If the assembler doesn’t find the file
in the directory that contains the current source file, it searches the paths pro-
vided by the –i options.

Naming Alternate Directories for Assembler Input

 3-8

For example, assume that a file called source.asm is in the current directory;
source.asm contains the following directive statement:

.copy ”copy.asm”

Pathname for copy.asm Invocation Command

DOS c:\dsp\files\copy.asm asm30 –ic:\dsp\files source.asm

UNIX /dsp/files/copy.asm asm30 –i/dsp/files source.asm

The assembler first searches for copy.asm in the current directory because
source.asm is in the current directory. Then, the assembler searches in the di-
rectory named with the –i option.

3.5.2 Environment Variable (A_DIR)

An environment variable is a system symbol that you define and assign a string
to. The assembler uses the environment variable A_DIR to name alternate di-
rectories that contain copy/include files or macro libraries. The command for
assigning the environment variable is as follows:

Invocation Command

DOS set A_DIR= pathname;another pathname ...

UNIX setenv A_DIR ” pathname;another pathname ... ”

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or with blanks. In as-
sembly source, you can use the .copy, .include, or .mlib directive without speci-
fying any path information. If the assembler doesn’t find the file in the directory
that contains the current source file or in directories named by –i, it searches
the paths named by the environment variable.

Naming Alternate Directories for Assembler Input

3-9Assembler Description

For example, assume that a file called source.asm contains these statements:

.copy ”copy1.asm”

.copy ”copy2.asm”

Pathname Invocation Command

DOS c:\320\files\copy1.asm
c:\dsys\copy2.asm

set A_DIR=c:\dsys
asm30 –ic:\320\files source.asm

UNIX /320/files/copy1.asm
/dsys/copy2.asm

set A_DIR /dsys
asm30 –i/320/files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current
directory because source.asm is in the current directory. Then, the assembler
searches in the directory named with the –i option and finds copy1.asm. Fi-
nally, the assembler searches the directory named with A_DIR and finds
copy2.asm.

Note that the environment variable remains set until you reboot the system or
reset the variable by entering one of these commands:

DOS set A_DIR=

UNIX unsetenv A_DIR

Source Statement Format

 3-10

3.6 Source Statement Format

TMS320C3x/C4x assembly language source programs consist of source
statements that can contain assembler directives, assembly language instruc-
tions, macro directives, and comments. Source statement lines can be as long
as the source file format allows, but the assembler reads up to 200 characters
per line. If a statement contains more than 200 characters, the assembler trun-
cates the line and issues a warning.

The next several lines show examples of source statements:

SYM1 .set 0A5h ; Symbol SYM = 0A5h
Begin: ADDI SYM+5,R1 ; Add (SYM+5) to the contents of R1

LDI R1,R2 ; Move contents of R1 to R2

A source statement can contain four ordered fields. The general syntax for
source statements is as follows:

[label] [:] mnemonic [operand list] [;comment]

Follow these guidelines:

� All statements must begin with a label, a blank, an asterisk, or a semicolon.

� Labels are optional; if used, they must begin in column 1.

� One or more blanks must separate each field. Note that tab characters are
equivalent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

3.6.1 Label Field

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. When used, a label must begin in column 1 of
a source statement. A label can contain up to 32 alphanumeric characters (A–
Z, a–z, 0–9, _, and $). Labels are case sensitive, and the first character cannot
be a number. A label can be followed by a colon (:); the colon is not treated as
part of the label name. If you don’t use a label, then the first character position
must contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it’s associated with). If, for example,
you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 40h.

Source Statement Format

3-11Assembler Description

.

.

.

2 0000003F *Assume some other code was assembled
3 00000040 0000000A Start: .word 0Ah,3,7

00000041 00000003
00000042 00000007

A label on a line by itself is a valid statement. It assigns the current value of
the section program counter to the label; this is equivalent to the following
directive statement:

label .set $; $ provides the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

5 00000050 Here:
6 00000050 08010000 LDI R0, R1

3.6.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in
column 1, or it would be interpreted as a label. The mnemonic field can contain
one of the following opcodes:

� Machine-instruction mnemonic (such as ADDI, MPYF, LDI)

� Assembler directive (such as .data, .list, .set)

� Macro directive (such as .macro, .loop, .endloop)

� A macro invocation

3.6.3 Operand Field

The operand field is a list of operands that follow the mnemonic field. An
operand can be a constant (see Section 3.7), a symbol (see Section 3.9), or
a combination of constants and symbols in an expression. You must separate
operands with commas.

3.6.4 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column
1, it can start with a ; or a *. Comments that begin anywhere else on the line
must begin with a ;. The * symbol identifies a comment only if it appears in col-
umn 1.

Constants

 3-12

3.7 Constants

The assembler supports seven types of constants:

� Binary integer constants
� Octal integer constants
� Decimal integer constants
� Hexadecimal integer constants
� Floating-point constants
� Character constants
� Assembly-time constants

The assembler maintains each constant internally as a 32-bit quantity. Note
that constants are not sign extended . For example, the constant 0FFFFH is
equal to 0000FFFF16 or 65,53510; it does not equal –1.

3.7.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (0s and 1s) fol-
lowed by the suffix B (or b). If less than 32 digits are specified, the assembler
right-justifies the value and zero-fills the unspecified bits. Examples of valid
binary constants include:

00000000B Constant equal to 0

0100000b Constant equal to 3210 or 2016

01b Constant equal to 1

11111000B Constant equal to 24810 or 0F816

3.7.2 Octal Integers

An octal integer constant is a string of up to 11 octal digits (0 through 7) followed
by the suffix Q (or q). Examples of valid octal constants include:

10Q Constant equal to 8

100000Q Constant equal to 32,76810 or 800016

226Q Constant equal to 15010 or 9616

3.7.3 Decimal Integers

A decimal integer constant is a string of decimal digits, ranging from
–2,147,483,647 to 4,294,967,295. Examples of valid decimal constants
include:

1000 Constant equal to 100010 or 3E816

–32768 Constant equal to –32,76810 or 800016

25 Constant equal to 2510 or 1916

Constants

3-13Assembler Description

3.7.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to 8 hexadecimal digits fol-
lowed by the suffix H (or h). Hexadecimal digits include the decimal values 0–9
and the letters A–F and a–f. A hexadecimal constant must begin with a decimal
value (0–9). If less than 8 hexadecimal digits are specified, the assembler
right-justifies the bits. Examples of valid hexadecimal constants include:

78h Constant equal to 12010 or 007816

0Fh Constant equal to 1510 or 000F16

37ACH Constant equal to 14,25210 or 37AC16

3.7.5 Character Constants

A character constant is a string of 1 to 4 characters enclosed in single quotes.
The characters are represented internally as 8-bit ASCII characters. Two con-
secutive single quotes are required to represent each single quote within a
character constant. A character constant consisting only of two single quotes
(no letter) is valid and is assigned the value 0. If more than one character is
specified, the assembler packs them into a 32-bit word, starting with the least-
significant byte. If fewer than four characters is specified, the assembler right-
justifies the bits. Examples of valid character constants include:

’ab’ Represented internally as 0000626116

’C’ Represented internally as 0000004316

’’’D’ Represented internally as 0000442716

’abcd’ Represented internally as 6463626116

Note the difference between character constants and character strings
(Section 3.8 discusses character strings). A character constant represents a
single integer value; a string is a list of characters.

3.7.6 Floating-Point Constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion, and exponent portion. The syntax for a
floating-point number is:

[+|–] [nnn] . [nnn [E|e [+|–] nnn]]

where nnn is a string of decimal digits. A floating-point constant may be pre-
ceded with a + or a –. You must specify a decimal point; for example, 3.e5 is
valid, but 3e5 is illegal. The exponent indicates a power of 10.

Constants

 3-14

Valid floating-point constants include:

3.0

3.14

.3

–0.314e13

+314.59e–2

For more information about floating-point format, refer to the TMS320C3x
User’s Guide and the TMS320C4x User’s Guide.

3.7.7 Assembly-Time Constants

If you use the .set directive to assign a constant value to a symbol, the symbol
becomes an assembly-time constant. In order to use this constant in expres-
sions, the value that is assigned to it must be absolute. For example:

sym .set 3
LDI sym,R0 ; Load the constant 3 into R0

If you assign a floating-point constant to a symbol, then the symbol can be
used only as a floating-point constant. Similarly, if you assign an integer con-
stant to a symbol, then the symbol can be used only as an integer constant.
The following example is illegal:

sym .set 3 ; Integer constant
LDF sym,R0 ; Invalid – floating-point

; constant required

You can also use the .set directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

sym .set R0
LDI 10,sym

Character Strings

3-15Assembler Description

3.8 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes that are part of character strings are represented by two consecutive
double quotes. The maximum length of a string varies and is defined for each
directive that requires a character string. Characters are represented inter-
nally as 8-bit ASCII characters.

These are examples of valid character strings:

”sample program” defines a 14-character string, sample program

”PLAN ””C””” defines an 8-character string, PLAN ”C”

Character strings are used for the following:

� Filenames as in .copy ”filename”

� Section names as in .sect ”section name”

� Data initialization directives as in .byte ”charstring”

� Operand of .string directive

Symbols

 3-16

3.9 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to 32 alphanumeric characters (A–Z, a–z, 0–9, $, and
_). The first character in a symbol cannot be a number; symbols cannot con-
tain embedded blanks. The symbols you define are case sensitive; for
example, the assembler recognizes ABC, Abc, and abc as three unique sym-
bols. You can override case sensitivity with the –c assembler option. This type
of symbol is valid only during the assembly in which it is defined, unless you
use the .global directive to declare it as an external symbol.

Note: If You Use the –c Option

If you use the –c option, the assembler translates all symbols to uppercase.
If other modules that reference these symbols were not also assembled with
the –c option, the linker may fail to match global symbols.

3.9.1 Labels

Symbols that are used as labels become symbolic addresses that are asso-
ciated with locations in the program. A label used locally within a file must be
unique. Mnemonic opcodes and assembler directive names (without the ‘.’
prefix) are valid label names.

Labels can also be used as the operand of a .global, .ref, .def, or .bss directive;
for example,

.global label1

label2 nop
add label1
b label2

3.9.2 Constants

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .set and .struct/.tag/.endstruct
directives enable you to set constants to symbolic names. Symbolic constants
cannot be redefined. The following example shows how these directives can
be used:

Symbols

3-17Assembler Description

K .set 1024 ; constant definitions
maxbuf .set 2*K

item .struct ; item structure definition
.int value ; constant offsets value = 0
.int delta ; constant offsets delta = 1

i_len .endstruct ; constant offset i_len = 2

array .tag item ; array declaration
.bss array, i_len*K

LDI R0, array.delta ; array+1

The assembler also has several predefined symbolic constants; these are dis-
cussed in the next section.

3.9.3 Symbolic Constants

The assembler has several predefined symbols, including the following:

� $, the dollar sign character, represents the current value of the section
program counter (SPC).

� Register symbols :

AR0–AR7 IR0 RE R0–R7
BK IR1 RC SP
DP PC RS ST
and, for the ’C3x only;
IF IE IOF
plus, for the ’C4x only;
R8–R11 DIE IIE IIF IVTP
TVTP

� Version symbols are predefined assembler constants that you can use
to direct the assembler to produce code for various target processors. Use
the version symbols with the target version switch or the .version directive.

Symbols Value Description
.TMS320xx 30, 31, 32, 40, or 44 set according to –v flag
.C3X or .C3x 1 or 0 1 if –v30, –v31, or –v32
.C30 1 or 0 1 if –v30
.C31 1 or 0 1 if –v31
.C32 1 or 0 1 if –v32
.C4X or .C4x 1 or 0 1 if –v40 or –v44
.C40 1 or 0 1 if –v40
.C44 1 or 0 1 if –v44

Symbols

 3-18

The following symbols are currently supported, but are obsolete and will
be removed in a later release:

Symbols Value Description
.TMS320C30 1 or 0 1 if –v30, –v31, or –v32
.TMS320C31 1 or 0 1 if –v31
.TMS320C32 1 or 0 1 if –v32
.TMS320C40 1 or 0 1 if –v40 or –v44
.TMS320C44 1 or 0 1 if –v44

The .TMS320xx constant is set to the value of the version switch. For
example, if the assembler is invoked with the following command

asm30 –v30 filename

then .TMS320xx equals 30.

You can use the version symbols to direct the assembler to produce code
for specific target devices. For example, the following code can produce
code for differing target devices, depending on how you invoked the as-
sembler.

.if .TMS320xx = 30
.
.

.endif

.if .C40
.
.

.endif

� C Compiler Model Symbols are predefined assembler constants corre-
sponding to the code generation model of the C compiler. You can use
these to vary the source code to correctly interface to C code.

Symbols Value Description
.REGPARM 1 or 0 1 if –mr option used
.BIGMODEL 1 or 0 1 if –mb option used

3.9.4 Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias
strings of text by equating them to symbolic names. Symbols that represent
text strings are called substitution symbols. When the assembler encounters
a substitution symbol, its string value is substituted for the symbol name. Un-
like symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program;
for example,

.asg ”ar3”, FP ; frame pointer

.asg ”*–FP(2)”,PARM1
LDI PARM1, R0 ; expands to LDI *–FP(2), R0

Symbols

3-19Assembler Description

When you are using macros, substitution symbols are important because
macro parameters are actually substitution symbols that are assigned a macro
argument. The following code shows how substitution symbols are used in
macros:

SUMI .macro src1,src2,dest
LDI src1,dest
ADDI src2,dest
.endm

invocation:

SUMI @a, @b, R4

For more information about macros, refer to Chapter 6.

Expressions

 3-20

3.10 Expressions

An expression is an integer or floating-point constant, a symbol equated to an
integer or floating-point value, or a series of constants and symbols separated
by arithmetic operators. The range of valid expression values is
–2,147,483,647 to 4,294,967,295 (–(231–1) to (232–1)).

Three factors influence the order of expression evaluation:

Parentheses Expressions that are enclosed in parentheses are
always evaluated first.

Example: 8/(4/2) = 4, but 8/4/2 = 1

Note that you cannot substitute braces ({ }) or
brackets ([]) for parentheses.

Precedence groups Operators (listed in Table 3–1) are divided into
four precedence groups. When the order of ex-
pression evaluation is not determined by paren-
theses, the highest-precedence operation is
evaluated first.

Example: 8 + 4/2 = 10 (4/2 is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not
determine the order of expression evaluation, the
expressions are evaluated from left to right; note
that the highest precedence group is evaluated
from right to left.

Example: 8/4*2 = 4, but 8/(4*2) = 1

3.10.1 Floating-Point Expressions

A floating-point constant is a string of decimal digits, followed by a decimal
point, a fractional portion, and an exponent portion.

The syntax for a floating-point constant is as follows:

 [+|–] nnn.nnn [E|e [+|–] nnn]

nnn is a string of decimal digits.

Floating-point constants may be preceded by a + or a – sign; + is the default.
Floating-point constants may be assigned to symbols with the .set directive.
Symbols equated to floating-point values may be used freely in place of
floating-point constants.

Expressions

3-21Assembler Description

A floating-point expression is an expression with at least one floating-point
value in it. You can use a floating-point expression as an operand for the .set,
.float, and .double directives, and for any instruction that expects a floating-
point value as an operand. Integer values used in floating-point expressions
are converted to floating-point values automatically by the assembler. If you
use a floating-point expression in an instruction that expects an integer value,
the assembler will generate an error. You cannot use bitwise operators in
floating-point expressions. Floating-point expressions can be converted to
Integers using one of the conversion functions.

Here are some examples of legal floating-point expressions:

Examples

flt1 .set 1.23

This example attaches the constant 1.23 to the symbol flt1. This symbol
can be used in another floating-point expression:

flt2 .float 6.57 – flt1

After this example is executed, flt2 is the symbolic address of the value
5.34 in memory.

3.10.2 Floating-Point to Integer Conversions

The assembler provides four built-in functions which round floating-point
values to integer values:

$trunc returns the result of the expression rounded towards zero.

$round returns the result of the expression rounded to the nearest integer.

$floor returns the largest integer that is not greater than the expression.

$ceil returns the smallest integer that is not less than the expression.

Each function returns a signed integer value. Here are some examples that
use floating-point to integer conversions:

Examples

flt1 .set 1.23
flt2 .set 3.45/flt1
flt3 .set flt2 * $ceil(flt1)

This example attaches a value roughly equal to 5.61 to flt3.

Expressions

 3-22

3.10.3 Operators

Table 3–1 lists the operators that can be used in expressions. They are listed
according to precedence group.

Table 3–1. Operators

Group 1 (Highest Precedence)
Right-to-Left Evaluation

Group 3
Left-to-Right Evaluation

+
–
~

Unary plus (positive expression)
Unary minus (negative expression)
1s complement

+
–
^
|
&
| |
&&

Addition
Subtraction
Bitwise exclusive-OR
Bitwise OR
Bitwise AND
Logical OR
Logical AND

Group 2
Left-to-Right Evaluation

Group 4 (Relational Opera-
tors) Left-to-Right Evaluation

*
/
%
<<
>>

Multiplication
Division
Modulo
Left shift
Right shift

<
>
<=
>=
=
!=

Less than
Greater than
Less than or equal to
Greater than to equal to
(==) Equal to
Not equal to

Notes: 1) Operators within parentheses () indicate an alternate form.

2) Bitwise operations on floating-point constants will cause an error

3.10.4 Expression Overflow or Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. The assembler will issue a Value
Truncated warning whenever an overflow or underflow occurs. The assembler
does not check for overflow or underflow in multiplication.

3.10.5 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute. This is an example of a well-
defined expression:

1000h+X X has been previously defined as an absolute symbol.

Expressions

3-23Assembler Description

3.10.6 Conditional Expressions

The assembler supports relational operators that can be used in any expres-
sion; they are especially useful for conditional assembly. Relational operators
include the following:

>= Greater than or equal to != Not equal to
== Equal < Less than
<= Less than or equal to > Greater than

These operations have the lowest precedence; however, each has the same
precedence within the group, so they are evaluated left to right. Conditional
expressions evaluate to 1 if true and 0 if false.

3.10.7 Relocatable Symbols and Legal Expressions

Table 3–2 summarizes valid operations on absolute, relocatable, and external
symbols. An expression cannot multiply or divide by a relocatable or external
symbol. An expression cannot contain unresolved symbols that are
relocatable with respect to different sections.

Table 3–2. Expressions With Absolute and Relocatable Symbols

If A is... and B is... A+B is... A–B is...

absolute absolute absolute absolute

absolute external external illegal

absolute relocatable relocatable illegal

relocatable absolute relocatable relocatable

relocatable relocatable illegal absolute †

relocatable external illegal illegal

external absolute external external

external relocatable illegal illegal

external external illegal illegal

† A and B must be in the same section; otherwise, this is illegal.

Here are some examples of expressions that use relocatable and absolute
symbols. These examples use four symbols that are defined as follows:

.global extern_1 ;Defined in an external module
intern_1: .word 1234 ;Relocatable, defined in current module
LAB1: .set 2 ;absolute
intern_2: ;Relocatable, defined in current module

Expressions

 3-24

� Example 1

The statements in this example use an absolute symbol, LAB1. The first
statement puts the value 51 into register R0, the second statement puts
the value 8033h in R0, and the third puts 27 in memory address 8033h.

LDI LAB1 + ((4+3) * 7), AR0 ; AR0 = 51
LDI LAB1 + 4 + 3 * 7, AR0 ; AR0 = 27

� Example 2

All legal expressions can be reduced to one of two forms:

relocatable symbol ± absolute symbol
 or

absolute value

Unary operators can be applied only to absolute values; they cannot be
applied to relocatable symbols. Expressions that cannot be reduced to
contain only one relocatable symbol are illegal. The first statement in the
following example is legal; the statements that follow it are invalid.

LDI extern_1 – 10, AR0 ;Legal
LDI 10–extern_1, AR0 ;Can’t negate reloc. symbol
LDI –(intern_1), AR0 ;Can’t negate reloc. symbol
LDI extern_1/10, AR0 ;/isn’t an additive operator
LDI intern_1 + extern_1, AR0 ; Multiple relocatables

� Example 3

The first statement below is legal; although intern_1 and intern_2 are
relocatable, their difference is absolute because they’re in the same
section. Subtracting one relocatable symbol from another reduces the
expression to absolute value + relocatable symbol which is relocatable.
The second statement is illegal because the sum of two relocatable
symbols is not an absolute value.

LDI intern_1 – intern_2 + extern_1,AR0 ; Legal
LDI intern_1 + intern_2 + extern_1,AR0 ; Illegal

� Example 4

An external symbol’s placement in an expression is important to expres-
sion evaluation. Although the statement below is similar to the first
statement in the previous example, it is illegal. This is because of left-to-
right operator precedence; the assembler attempts to add intern_1 to
extern_1.

LDI intern_1 + extern_2 – intern_2,AR0 ; Illegal

Source Listings

3-25Assembler Description

3.11 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the –l (lowercase “L”) option.

At the top of each source listing page are two banner lines, a blank line, and
a title line. Any title supplied by a .title directive is printed on this line; a page
number is printed to the right of the title. If you don’t use the .title directive, the
title area is left blank. The assembler inserts a blank line below the title line.

Each line in the source file may produce a line in the listing file that shows a
source statement number, an SPC value, the object code assembled, and the
source statement. A source statement may produce more than one word of
object code. The assembler lists the SPC value and object code on a separate
line for each additional word. Each additional line is listed immediately follow-
ing the source statement line.

Field 1 Source Statement Number

Line Number

The source statement number is a decimal number. The assembler
numbers source lines as it encounters them in the source file; some
statements increment the line counter but are not listed (for exam-
ple, .title statements and statements following a .nolist are not
listed). The difference between two consecutive source line num-
bers indicates the number of statements in the source file that are
not listed.

Include File Letter

The assembler may precede a line with a letter; the letter indicates
that the line is assembled from an include file.

Nesting Level Number

The assembler may precede a line with a number; the number indi-
cates the nesting level of macro expansions and loop blocks.

Field 2 Section Program Counter

This field contains the section program counter, or SPC, value
(hexadecimal). Each section (.text, .data, .bss, and named sec-
tions) maintains a separate SPC. Some directives do not affect the
SPC; they leave this field blank.

Source Listings

 3-26

Field 3 Object Code
This field contains the hexadecimal representation of the object
code. All machine instructions and directives use this field to list
object code. This field also indicates the relocation type by append-
ing one of the following characters to the end of the field:

! undefined external reference ’ .text relocatable

” .data relocatable + .sect relocatable

– .bss, .usect relocatable ^ .asect relocatable

Field 4 Source Statement Field
This field contains the characters of the source statement as they
were scanned by the assembler. The assembler accepts a
maximum line length of 200 characters. Spacing in this field is de-
termined by the spacing in the source statement.

Example 3–1 shows an example of an assembler listing with each of the four
fields identified.

Example 3–1. An Assembler Listing

TMS320C3x/4x COFF Assembler Version x.xx Wed Jan 22 10:59:27 1997
 Copyright (c) 1987–1997 Texas Instruments Incorporated

PAGE 1

2 ***
3 * TMS320C30 32x32 Integer Multiply *
4 * *
5 * Inputs: x in R0, y in R1 *
6 * AR0 points to 2 words of temporary memory *
7 * *
8 * Outputs: x * y in R0 *
9 * *

10 * Operation: *
11 * Let x0 = 8 MSBs of x, y0 = 8 MSBs of y *
12 * *
13 * result = (x0 * y) + (y0 * x) + xy *
14 ***
15
16 .global mpy32
17
18 00000000 mpy32:
19 00000000 C20100C0 STI R0,*AR0 ; save x
20 || STI R1,*+AR0 ; save y
21 00000001 03E0FFE8 ASH –24,R0 ; x0 into R0
22 00000002 03E1FFE8 ASH –24,R1 ; y0 into R1
23 00000003 0AC00001 MPYI *+AR0,R0 ; mpy upper bytes: x0 * y
24 00000004 0AC1C000 MPYI *AR0,R1 ; y0 * x
25 00000005 880800C0 MPYI *AR0,*+AR0,R0 ; mpy lower words
26 || ADDI R0,R1,R2 ; add product MSBs
27 00000006 03E20018 ASH 24,R2 ; shift back to top of word
28 00000007 02000002 ADDI R2,R0 ; add to LSBs
29 00000008 78800000 RETS
30 .end

Field 1 Field 2 Field 3 Field 4

Cross-Reference Listings

3-27Assembler Description

3.12 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a
cross-reference listing, invoke the assembler with the –x option or use the
.option directive. The assembler will append the cross-reference to the end of
the source listing.

Example 3–2. An Assembler Cross-Reference Listing

TMS320C3x/4x COFF Assembler Version x.xx Wed Jan 22 10:59:27 1997
 Copyright (c) 1987–1997 Texas Instruments Incorporated
 PAGE 3
LABEL VALUE DEFN REF

K16 0000AABB 0007 0041
K24 00AABBCC 0008 0049
K32 AABBCCDD 0009 0057
K8 000000AA 0006 0071
KFLOAT E5541885 0010 0065
ext REF 0011 0026 0034 0042 0050

0058 0072
label0 00000002+ 0019 0028 0036 0044 0052 0060

0074
label1 00000003’ 0028 0027 0035 0043 0051 0059

0073

label column contains each symbol that was defined or referenced
during the assembly.

value column contains a 8-digit hexadecimal number, which is the
value assigned to the symbol or a name that describes the
symbol’s attributes. A value may also be followed by a character
that describes the symbol’s attributes. Table 3–3 lists these
characters and names.

definition (DEFN) column contains the statement number that defines the
symbol. This column is blank for undefined symbols.

reference (REF) column lists the line numbers of statements that reference
the symbol. A blank in this column indicates that the symbol was
never used.

Cross-Reference Listings

 3-28

Table 3–3. Symbol Attributes

Character or Name Meaning

REF External reference (global symbol)

UND Undefined

‘ Symbol defined in a .text section

” Symbol defined in a .data section

+ Symbol defined in a .sect section

– Symbol defined in a .bss or .usect section

4-1Assembler Directives

Assembler Directives

Assembler directives supply program data and control the assembly process.
Assembler directives allow you to:

� Assemble code and data into specified sections

� Reserve space in memory for uninitialized variables

� Control the appearance of listings

� Initialize memory

� Assemble conditional blocks

� Define global variables

� Specify libraries that the assembler can obtain macros from

� Examine symbolic debugging information

This section is divided into two parts: the first part (Sections 4.1 through 4.9)
describes the directives according to function, and the second part
(Section 4.10) is an alphabetical reference. This section includes:

Topic Page

4.1 Directives Summary 4-2.

4.2 Directives That Define Sections 4-6.

4.3 Directives That Initialize Constants 4-7.

4.4 Directives That Align the Section Program Counter 4-10.

4.5 Directives That Format the Output Listing 4-11.

4.6 Directives That Reference Other Files 4-13.

4.7 Conditional Assembly Directives 4-14.

4.8 Assembly-Time Symbol Directives 4-15.

4.9 Miscellaneous Directives 4-16.

4.10 Directives Reference 4-17.

Chapter 4

Directives Summary

 4-2

4.1 Directives Summary

Table 4–1 summarizes the assembler directives. All source statements that
contain a directive may have a label and a comment. To improve readability,
they are not shown as part of the directive’s syntax.

Table 4–1. Directives Summary

Directives That Define Sections

Mnemonic and Syntax Description

.asect ”section name”, address Assemble into an absolute named (initialized) section (This
directive is obsolete)

.bss symbol, size in words [, blocking flag] Reserve size words in the .bss (uninitialized data) section

.data Assemble into the .data (initialized data) section

.sect ”section name” Assemble into a named (initialized) section

.text Assemble into the .text (executable code) section

symbol .usect ”section name”, size in words,
 [blocking flag]

Reserve size words in a named (uninitialized) section

Directives That Initialize Constants (Data and Memory)

Mnemonic and Syntax Description

.byte value1 [, ... , valuen] Initialize one or more successive bytes in the current section

.double value1 [, ... , valuen] Initialize one or more 32-bit, TMS320 single precision,
floating-point constants

.field value [, size in bits] Initialize a variable-length field

.float value1 [, ... , valuen] Initialize one or more 32-bit, TMS320 single precision,
floating-point constants

.hword value1 [, ... , valuen] Initialize one or more 16-bit (half-word) values

.ieee value1 [, ... , valuen] Initialize one or more 32-bit, single precision, IEEE floating-
point constant

.int value1 [, ... , valuen] Initialize one or more16-bit integers

.ldouble value Initialize a 40-bit long double extended precision floating-
point constant in a compiler supported format

.long value1 [, ... , valuen] Initialize one or more 32-bit integers

.sfloat value1 [, ... , valuen] (C32 only) Initialize one or more 32-bit, single precision,
TMS320 floating-point constants

.space size in bits Reserve size bits in the current section; a label points to the
beginning of the reserved space

Directives Summary

4-3Assembler Directives

Table 4–1. Directives Summary (Continued)

Directives That Initialize Constants (Data and Memory)

Mnemonic and Syntax Description

.string ”string1” [, ... , ”stringn”] Initialize one or more text strings

.word value1 [, ... , valuen] Initialize one or more 16-bit integers

Directives That Align the Section Program Counter (SPC)

Mnemonic and Syntax Description

.align Align the SPC on a page boundary

.even Align the SPC on an even word boundary

Directives That Format the Output Listing

Mnemonic and Syntax Description

.drlist Enable listing of all directive lines (default)

.drnolist Inhibit listing of certain directive lines

.fclist Allow false conditional code block listing (default)

.fcnolist Inhibit false conditional code block listing

.length page length Set the page length of the source listing

.list Restart the source listing

.mlist Allow macro listings and loop blocks (default)

.mnolist Inhibit macro listings and loop blocks

.nolist Stop the source listing

.option {B | D | F | L | M | T | X} Select output listing options

.page Eject a page in the source listing

.sslist Allow expanded substitution symbol listing

.ssnolist Inhibit expanded substitution symbol listing (default)

.title ”string” Print a title in the listing page heading

.width page width Set the page width of the source listing

Directives Summary

 4-4

Table 4–1. Directives Summary (Continued)

Directives That Reference Other Files

Mnemonic and Syntax Description

.copy [”]filename[”] Include source statements from another file

.def symbol1 [, ... , symboln] Identify one or more symbols that are defined in the current
module and used in other modules

.global symbol1 [, ... , symboln] Identify one or more global (external) symbols

.include [”]filename[”] Include source statements from another file

.mlib [”]filename[”] Define macro library

.ref symbol1 [, ... , symboln] Identify one or more symbols that are used in the current mod-
ule but defined in another module

Conditional Assembly Directives

Mnemonic and Syntax Description

.break [well-defined expression] End .loop assembly if condition is true. The .break construct
is optional.

.else Assemble code block if the .if condition is false. The .else
construct is optional.

.elseif well-defined expression Assemble code block if the .if condition is false and the .elseif
condition is true. The .elseif construct is optional.

.endif End .if code block

.endloop End .loop code block

.if well-defined expression Assemble code block if the condition is true

.loop [well-defined expression] Begin repeatable assembly of a code block

Directives Summary

4-5Assembler Directives

Table 4–1. Directives Summary (Concluded)

Assembly-Time Symbols

Mnemonic and Syntax Description

.asg [”] character string [”], substitution symbol Assign a character string to a substitution symbol

.endstruct End structure definition

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols

.label ” symbol ” Define a load-time relocatable label in a section

.set Equate a value with a symbol

.struct Begin structure definition

.tag Assign structure attributes to a label

Miscellaneous Directives

Mnemonic and Syntax Description

.emsg string Send user-defined error messages to the output device

.end End program

.mmregs Enter memory-mapped registers into symbol table

.mmsg string Send user-defined messages to the output device

.regalias Use Fn registers as aliases for Rn registers

.version generation #number Set processor version

.wmsg string Send user-defined warning messages to the output device

Directives That Define Sections

 4-6

4.2 Directives That Define Sections

Six directives associate the various portions of an assembly language
program with the appropriate sections:

� The .bss directive reserves space in the .bss section for variables.

� The .usect directive reserves space in an uninitialized named section.
The .usect directive is similar to the .bss directive, but it allows you to re-
serve space separately from the .bss section.

� The .text directive identifies portions of code in the .text section. The .text
section usually contains executable code.

� The .data directive identifies portions of code in the .data section. The
.data section usually contains initialized data.

� The .sect directive defines initialized named sections, and associates
subsequent code or data with that section. Named sections are initialized
and contain code or data.

� The .asect directive creates initialized named sections that have absolute
addresses. You can use the .label directive to define labels with absolute
addresses.

Chapter 2 discusses COFF sections in detail.

Directives That Initialize Constants

4-7Assembler Directives

4.3 Directives That Initialize Constants

Several directives assemble values into the current section:

� The .byte directive places one or more 8-bit values into consecutive words
of the current section. This directive is similar to .word, except that the
width of each value is restricted to 8 bits.

� The .hword directive places one or more 16-bit half-word values into con-
secutive words in the current section. This directive is similar to .word, ex-
cept that the width of each value is restricted to 16 bits.

� The .word , .int , and .long directives place one or more 32-bit values into
consecutive locations in the current section.

� The .string directive places 8-bit characters from one or more character
strings into the current section. This directive is similar to .byte, except that
four 8-bit values are packed into each word. The last word in a string is
padded with null characters (0s) if necessary.

� The .float and .double directives calculate the single-precision (32-bit)
floating-point representations of specified floating-point values and store
them in consecutive words in the current section. Here’s an example of a
.float directive and the object code that it generates:

5 00000003 0274ED91 .float 7.654

� The .ieee directive is like the .float directive, but the floating-point values
are converted to single-precision IEEE floating-point format.

� The .ldouble directive calculates the extended–precision floating-point
representation of a long double floating-point constant and stores it into
two consecutive 32-bit words in the current section. Each constant is con-
verted to a floating-point value in 40-bit format.

� The .sfloat directive is available only with the –v32 assembler option. The
.sfloat directive calculates the single-precision (32-bit) floating-point
representations of specified floating-point values and stores them in
consecutive words in the current section. The format is the normal single-
precision format right shifted by 16 bits.

Note: How the Initializing Directives Function in a .struct/.endstruct
Sequence

The .byte, .word, .int, .long, .string, .float, ieee, .sfloat, and .field directives
do not initialize memory when they are part of a .struct/.endstruct sequence;
rather, they define a member’s size. For more information about the
.struct/.endstruct directives, refer to Section 4.8.

Directives That Initialize Constants

 4-8

Example 4–1 compares the .byte, .hword, .word, and .string directives; for this
example, assume the following code was assembled:

1 00000000 000000AB .byte 0ABh
2 00000001 0000CDEF .hword 0CDEFh
3 00000002 89ABCDEF .word 089ABCDEFh
4 00000003 706C6568 .string ”help”

Example 4–1. Initialization Directives

0 0 0 0 0 0 A B

31 0
Contents

.byte 0ABh1

Word Code

0 0 0 0 C D E F .hword
0CDEFh

2

1 byte

2 bytes (half word)

8 9 A B C D E F .word
089ABCDEFh

3

4

whole word

hp l e

70 6C 65 68 .string
”help”

� The .field directive places a single value into a specified number of bits
in the current word, starting with the least significant bits of the word. You
can pack multiple fields into a single word; the assembler will not incre-
ment the SPC until a word is filled.

Example 4–2 shows how fields are packed into a word. For this example,
assume the following code has been assembled; notice that the SPC
doesn’t change (the fields are packed into the same word):

6 00000004 00000003 .field 3,4
7 00000004 00000083 .field 8,5
8 00000004 00002083 .field 16,7

Directives That Initialize Constants

4-9Assembler Directives

Example 4–2. The .field Directive

3 2 1 0

0 0 1 1

4 bits

.field 3,4

31

0 0 1 1 .field 8, 5

31 8 7 6 5 4

0 1 0 0 0

0 0 1 1 .field 16,7

31

0 1 0 0 0

15 14 13 12 11 10 9

0 0 1 0 0 0 0

� The .space directive reserves a specified number of words in the current
section. The assembler fills these reserved words with 0s.

Example 4–3 shows the .space directive; assume the following code has
been assembled:

.

.

.
154 0000027A 080F000C LDI AR4,AR7
155 0000027B 00000000 .space 27
156 00000296 0000000F .word 15

Example 4–3. The .space Directive

(a) Current
SPC 27Ah

(b) New SPC = 296h
after assembling a
.space 27 directive

LDI AR4, AR7 LDI AR4, AR7

.word 15

27
words
of 0’s

Directives That Align the Section Program Counter

 4-10

4.4 Directives That Align the Section Program Counter

� The .align directive aligns the SPC on a 32-word (20 hex) boundary. This
ensures that the code following the .align directive begins on a cache
boundary. If the SPC is already aligned at a 32-word boundary, then it is
not incremented and .align has no effect. Example 4–4 shows the .align
directive; assume that the following code has been assembled:

202 00000C11 00000004 .byte 4
201 00000C11 00000000 .align
203 00000C20 00000003 .byte 3

Example 4–4. The .align Directive

(b) next cache
boundary =
0C20h

(a) Current
SPC = 0C11h

0C11h (b) New SPC = 0C20h
after assembling an
.align directive

0C20h

0C11h

0C20h

� The .even directive aligns the SPC so that it points to the next full word.
You should use .even between field directives when you want the next field
to start in a new word. Any unused bits in the current word are filled with
0s.

Example 4–5 shows the effect of assembling a .even directive after a .field
directive. Assume the following code has been assembled:

6 00000004 00000003 .field 3,4
7 00000004 00000083 .field 8,5
8 00000005 .even

Example 4–5. The .even Directive

0 1 0 0 0 0 0 1 1

031

These bits are filled with 0s
after assembling a .even directive

These bits were filled
by .field directives

Directives That Format the Output Listing

4-11Assembler Directives

4.5 Directives That Format the Output Listing

Several directives format the listing file:

� The source code contains a listing of false conditional blocks that do not
generate code. The .fclist and .fcnolist directives turn this listing on and
off. You can use the .fclist directive to list false conditional blocks exactly
as they appear in the source code. You can use the .fcnolist directive to
list only the conditional blocks that are actually assembled.

� The .drlist and .drnolist directives turn the printing of directive lines to the
listing file on and off. You can use the .drnolist directive to inhibit the
printing of the following directives:

.asg .eval, .length .mnolist .var

.break .fclist .mmsg .sslist, .width

.emsg .fcnolist .mlist .ssnolist .wmsg

� The .length directive controls the page length of the listing file. You can
use this directive to adjust listings for various output devices.

� The .width directive controls the page width of the listing file. You can use
this directive to adjust listings for various output devices.

� The .list and .nolist directives turn the output listing on and off. You can
use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the listing
back on.

� The .mlist and .mnolist directives allow and inhibit macro expansion list-
ings.

� The .option directive controls several features in the listing file. This direc-
tive has several operands:

B Limits the listing of .byte directives to one line.

H Limits the listing of .hword directives to one line.

F Resets the B, H, L, M, and T options.

L Limits the listing of .long, .int, and .word directives to one line.

M Limits macro expansions to one line.

T Limits the listing of .string directives to one line.

X Produces a cross-reference listing of symbols. (You can also ob-
tain a cross-reference listing by invoking the assembler with the -x
option.)

� The .page directive causes a page eject in the output listing.

Directives That Format the Output Listing

 4-12

The .sslist and .ssnolist directives allow and inhibit substitution symbol
expansion listing. These directives are useful for debugging substitution
symbols outside of macros.

The .title directive supplies a title that the assembler prints on the second
line of each page.

Directives That Reference Other Files

4-13Assembler Directives

4.6 Directives That Reference Other Files

These directives supply information for or about other files:

� The .copy and .include directives tell the assembler to begin reading
source statements from another file. When the assembler is finished read-
ing the source statements in the copy/include file, it resumes reading
source statements from the current file. The statements read from a
copied file are printed in the listing file; the statements read from an in-
cluded file are not printed in the listing file.

� The .global directive declares a symbol to be external so that it is available
to other modules at link time. The .global directive does double duty, acting
as a .def for defined symbols and as a .ref for undefined symbols. Note that
the linker will resolve an undefined global symbol only if it is used in the
program.

� The .def directive identifies a symbol that is defined in the current module
and can be used by other modules. The assembler puts the symbol in the
symbol table.

� The .ref directive identifies a symbol that is used in the current module but
defined in another module. The assembler marks the symbol as an unde-
fined external symbol and puts it in the object symbol table so that the
linker can resolve its definition.

� The .mlib directive supplies the assembler with the name of an archive
library that contains macro definitions. When the assembler encounters
a macro that is not defined in the current module, it will then be able to
search for it in the specified macro library.

Conditional Assembly Directives

 4-14

4.7 Conditional Assembly Directives

Conditional assembly directives enable you to instruct the assembler to
assemble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of
code:

� The .if/.elseif/.else/.endif directives tell the assembler to conditionally
assemble a block of code according to the evaluation of an expression.

.if expression Marks the beginning of a conditional block and
assembles code if the .if condition is true.

.elseif expression Marks a block of code to be assembled if .if is false
and .elseif is true.

.else Marks a block of code to be assembled if .if is false.

.endif Marks the end of a conditional block and terminates
the block.

� The .loop/.break/.endloop directives tell the assembler to repeatedly
assemble a block of code according to the evaluation of an expression.

.loop expression Marks the beginning a repeatable block of code.

.break expression Continue to repeatedly assemble when the .break
expression is false. Go to code immediately after
.endloop if expression is true.

.endloop Marks the end of a repeatable block.

The assembler supports several relational operators that are especially useful
for conditional expressions. For more information about relational operators,
refer to Section 3.10 on page 3-20.

Assembly-Time Symbol Directives

4-15Assembler Directives

4.8 Assembly-Time Symbol Directives
These directives equate meaningful symbol names to constant values or
strings.

� The .set directive sets a constant value to a symbol. The symbol is stored
in the symbol table and cannot be redefined; for example,

bval .set 0100h
.word bval, bval*2, bval+12
LDI bval, R0

Note that the .set directive produces no object code.

� The .struct/.endstruct directives set up C-like structure definitions, and
the .tag directive assigns the C-like structure characteristics to a label.

The .struct/.endstruct directives enable you to set up a C-like structure
definition so that similar elements can be grouped together. Element offset
calculation is then left up to the assembler. The .struct/.endstruct direc-
tives do not allocate memory. They simply create a symbolic template that
can be used repeatedly.

The .tag directive assigns structure characteristics to a label. This
simplifies the symbolic representation and also provides the ability to de-
fine structures that contain other structures.The .tag directive does not
allocate memory, and the structure tag (stag) must be defined before it is
used.

type .struct ; structure tag definition
x .int ; member x offset = 0
y .int ; member y offset = 1
t_len .endstruct ; end structure, symbol t_len = 2

coord .tag type ; associate coord w/ structure type

 ADDI @coord.y, R0

 .bss coord, t_len ; actual memory allocation

� The .asg directive assigns a text string to a substitution symbol. The value
is stored in the substitution symbol table. When the assembler encounters
a substitution symbol, it replaces the symbol with its character string value.
Substitution symbols can be redefined.

.asg ”10, 20, 30, 40”, coefficients

.word coefficients

� The .eval directive evaluates an expression, translates the results into a
text string and assigns the string to a substitution symbol. This directive
is most useful for manipulating counters; for example,

.asg 1 , x ; assigns “1” to x

.eval x+1, x ; assigns “2” to x

Miscellaneous Directives

 4-16

4.9 Miscellaneous Directives

This section discusses miscellaneous directives.

� The .version directive is the same as the –v assembler option. This tells
the assembler which generation processor the code is for. Valid
generation numbers are 30 and 40. The default is 30. The .version direc-
tive must appear before any other instruction or directive, or else an error
will occur.

� The .end directive terminates assembly. It should be the last source
statement of a program. This directive has the same effect as an end-of-
file.

� The .regalias directive allows Fn registers to be used as aliases for Rn
registers.

These three directives enable you to produce your own error and warning
messages:

� The .emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the assem-
bler does, incrementing the error count and preventing the assembler from
producing an object file.

� The .wmsg directive sends warning messages to the standard output de-
vice. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count.

� The .mmsg directive sends assembly-time messages to the standard out-
put device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not set the error count or the warning
count, and does not prevent an object file from being produced.

Directives Reference

4-17Assembler Directives

4.10 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are
organized alphabetically, one directive per page; however, related directives
(such as .if/.else/.endif) are presented together on one page. Here’s an alpha-
betical table of contents for the directives reference:

Directive Page Directive Page
.align 4-18.
.asect 4-19.
.asg 4-20.
.break 4-50.
.bss 4-22.

.byte 4-23.

.copy 4-24.

.data 4-26.

.def 4-39.

.double 4-37.

.drlist 4-27.

.drnolist 4-27.

.else 4-42.

.elseif 4-42.

.emsg 4-29.

.end 4-31.

.endloop 4-50.

.endif 4-42.

.endstruct 4-65.

.equ 4-61.

.eval 4-20.

.even 4-32.

.fclist 4-33.

.fcnolist 4-33.

.field 4-34.

.float 4-37.

.global 4-39.

.hword 4-41.

.ieee 4-37.

.if 4-42.

.include 4-24.

.int 4-44.

.label 4-45.

.ldouble 4-46.

.length 4-47.

.list 4-48.

.long 4-44.

.loop 4-50.

.mlib 4-52.

.mlist 4-54.

.mmsg 4-29.

.mnolist 4-54.

.newblock 4-55.

.nolist 4-48.

.option 4-56.

.page 4-58.

.ref 4-39.

.regalias 4-59.

.sect 4-60.

.set 4-61.

.sfloat 4-37.

.space 4-62.

.sslist 4-63.

.ssnolist 4-63.

.string 4-23.

.struct 4-65.

.tab 4-67.

.tag 4-65.

.text 4-68.

.title 4-69.

.usect 4-70.

.version 4-72.

.width 4-47.

.wmsg 4-29.

.word 4-44.

.align Align SPC on a 32-Word Boundary

4-18

Syntax .align

Description The .align directive aligns the section program counter on the next 32-word
boundary. If necessary, the assembler inserts words containing NOPs. If more
than 4 NOPs are inserted, the assembler also inserts a branch instruction
around the NOPs to the next instruction. This directive is useful for aligning
code on a cache boundary.

Using the .align directive has two effects:

� The assembler aligns the SPC on a 32-word boundary within the current
section.

� The assembler sets a flag that forces the linker to align the entire section
on a 32-word boundary. This ensures that individual alignments remain in-
tact when a section is loaded into memory.

Example This example aligns the SPC on the next 32-word boundary to ensure that the
code that follows it will start on a cache boundary. Figure 4–1 shows how this
code aligns the SPC.

 1 00000000 08010000 LDI R0,R1
 2 .align
 3 00000020 08020001 x: LDI R1,R2
 4 00000021 08030002 LDI R2,R3

Figure 4–1. The .align Directive

(a) Current
SPC = 0h

0h

20h

0h

20h

22h
(a) LDI R0, R1 (b) .align

(c) LDI R1,
R2

LDI R2, R3

 LDI R0, R1 LDI R0,
R1
B 20
NOP
NOP
NOP
…

(b) next cache
boundary =
20h

LDI R0, R1
B 20
NOP
NOP
NOP
…

LDI R1, R2
LDI R2, R3

 Define an Absolute Section .asect

4-19 Assembler Directives

Syntax .asect ” section name”, address

Description The .asect directive defines a named section whose addresses are absolute
with respect to address. This command is obsolete. Any section can now be
loaded and run at two separate addresses using the linker. The command
functions as before for compatibility.

section name a required parameter that identifies the name of the
absolute section. It be enclosed in double quotes.

address a required parameter that identifies the section’s absolute
starting address in target memory, which is required the first
time you assemble into a specific absolute section. If you
use .asect to continue an assembly into an a section that
contains code, you cannot use the address parameter.

Absolute sections are useful for loading sections of code from off-chip memory
into faster on-chip memory. In order to use an absolute section, you must know
which location you want the section to execute from and specify it as the
address parameter.

Most sections directives create sections with relocatable addresses. The
starting SPC value for these sections is always zero; the linker then relocates
them where appropriate. The starting SPC value for an absolute section,
however, is the specified address. The addresses of all code assembled into
an absolute section are offsets from the specified address. The linker does
relocate sections defined with .asect; however, any labels defined within an
absolute section retain their absolute (runtime) addresses. Thus, references
to these labels refer to their runtime addresses, even though the section is not
initially loaded at its runtime address.

All labels in an absolute section have absolute addresses. The .label directive
creates labels with relocatable addresses; this allows you to define a symbol
that points to the section’s loadtime location in off-chip memory.

Note that after you define a section with .asect, you can use the .sect directive
later in the program to continue assembling code into the absolute section.

Note: The .asect Directive Is Obsolete

The .asect directive is obsolete because the linker’s SECTIONS directive
now allows separate load and run addresses for any section. The .asect
directive is fully functional to allow compatibility with previous versions of the
assembler. For more information, refer to Section 8.7 on page 8-27.

.asg/.eval Control Substitution Symbols

4-20

Syntax .asg [”]character string[”], substitution symbol

.eval well-defined expression, substitution symbol

Description The .asg directive assigns character strings to substitution symbols. Substitu-
tion symbols are stored in the substitution symbol table.

The .asg directive can be used in many of the same ways as the .set directive,
but while .set assigns a constant value (cannot be redefined) to a symbol, .asg
assigns a string (can be redefined) to a substitution symbol.

The .eval directive performs arithmetic on substitution symbols. This directive
evaluates the expression and assigns the string value of the result to the sub-
stitution symbol. The .eval directive is especially useful as a counter in
.loop/.endloop blocks.

character string Is assigned to the substitution symbol by the
assembler. The quotation marks are optional. If
there are no quotation marks, the assembler
reads characters up to the first comma and
removes leading and trailing blanks. In either
case, a character string is read and assigned to
the substitution symbol.

substitution symbol Is a required parameter that must be a valid sym-
bol name. The substitution symbol may be 32
characters long and must begin with a letter.
Remaining characters of the symbol can be a
combination of alphanumeric characters, under-
scores, and dollar signs. When the assembler
encounters a substitution symbol in a source
statement, it substitutes the assigned string for
the symbol and rescans the line. In this way, sub-
stitution symbols provide a general text replace-
ment mechanism.

well-defined expression Is an alphanumeric expression consisting of
legal values that have been previously defined,
so that the result is an absolute.

 Control Substitution Symbols .asg/.eval

4-21 Assembler Directives

Example This example shows how .asg and .eval can be used.

 1 .sslist
 2 .asg AR3, FP
 3 .asg R0, TEMP
 4 00000000 02400302 ADDI *+FP(2), TEMP
ADDI *+AR3(2), R0
 5 00000001 02400301 ADDI *+AR3(1), R0
 6
 7 .asg 0,x
 8 .loop 5
 9 .eval x+1, x
 10 .word x
 11 .endloop
1 .eval x+1, x
.eval 0+1, x
1 00000002 00000001 .word x
.word 1
1 .eval x+1, x
.eval 1+1, x
1 00000003 00000002 .word x
.word 2
1 .eval x+1, x
.eval 2+1, x
1 00000004 00000003 .word x
.word 3
1 .eval x+1, x
.eval 3+1, x
1 00000005 00000004 .word x
.word 4
1 .eval x+1, x
.eval 4+1, x
1 00000006 00000005 .word x
.word 5

.bss Assemble Into .bss Section

4-22

Syntax .bss symbol, size in words

Description The .bss directive reserves space in the .bss section for variables. This direc-
tive is usually used to allocate variables in RAM.

symbol Is a required parameter. It defines a label that points
to the first location reserved by the directive. The sym-
bol name should correspond to the variable that you’re
reserving space for.

size in words Is a required parameter; it must be an absolute
expression. The assembler allocates size words in the
.bss section. There is no default size.

Note that the .usect directive is similar to the .bss directive; it also reserves
space in memory. However, .usect creates named uninitialized sections that
can be allocated separately from the .bss section.

Other section directives (.text, .data, .sect, and .asect) end the current section
and begin assembling into another section. The .bss directive, however, does
not affect the current section. The assembler assembles the .bss directive and
then resumes assembling code into the current section. For more information
about COFF sections, see Chapter 2.

Example This example uses the .bss directive to allocate space for the variable array.
The symbol array points to 100 words of uninitialized space (the .bss SPC =
0). Note that symbols declared with the .bss directive can be referenced in the
same manner as other symbols and can also be declared external.

 1 ***
 2 * Begin assembling into .text *
 3 ***
 4 00000000 .text
 5 00000000 08010000 LDI R0,R1
 6 ***
 7 * Allocate 100 words in .bss *
 8 ***
 9 00000000 .bss array,100
10 ***
11 * Still in .text *
12 ***
13 00000001 08020001 LDI R1,R2
14 ***
15 * Declare external .bss symbol *
16 ***
17 .global array

 Initialize Byte .byte

4-23 Assembler Directives

Syntax .byte value1 [, ... , valuen]

Description The .byte directive places one or more 8-bit values into consecutive words in
the current section. Each value can be either:

� An expression that the assembler evaluates and treats as an 8-bit signed
number, or

� A character string enclosed in double quotes. Each character represents
a separate value.

Values are not packed or sign extended; each byte value occupies the least
significant 8 bits of a full 32-bit word. The assembler truncates values that are
greater than 8 bits. You can define up to 100 values per .byte instruction, how-
ever, the line length, including label (if any), the .byte directive itself and all val-
ues, cannot exceed 200 characters. Each character in a string is counted as
a separate operand.

If you use a label, it points to the location at which the assembler places the
first byte.

Example This example places the 8-bit values 10, –1, abc and a into four consecutive
words in memory. The label strx has the value 64h, which is the location of the
first initialized word.

1
2 00000064 0000000A strx: .byte 10,–1,”abc”,’a’

00000065 000000FF
00000066 00000061
00000067 00000062
00000068 00000063
00000069 00000061

.copy/.include Copy Source File

4-24

Syntax .copy [”]filename[”]

.include [”]filename[”]

Description The .copy and .include directives tell the assembler to read source statements
from a different file. The statements that are assembled from a copy file are
printed in the assembly listing. The statements that are assembled from an in-
cluded file are not printed in the assembly listing, regardless of the number of
.list/.nolist directives that are assembled. The assembler:

1) Stops assembling statements in the current source file,

2) Assembles the statements in the copied/included file, and

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file; the filename
may be enclosed in double quotes. The filename must follow operating system
conventions. You can specify a full pathname (for example, .copy
c:\dsp\file1.asm). If you do not specify a full pathname, the assembler
searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the -i assembler option.
3) Any directories specified by the environment variable A_DIR.

For more information about the -i option and the environment variable, see
Section 3.5, Naming Alternate Directories for Assembler Input, on page 3-7.

The .copy and .include directives may be nested within a file being copied or
included. The assembler limits this type of nesting to ten levels; the host oper-
ating system may set additional restrictions. The assembler precedes the line
numbers of copied files with a letter code to identify the level of copying. An
A indicates the first copied file, B indicates a second copied file, etc.

Example 1 This example uses the .copy directive to read and assemble source state-
ments from other files, then resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file
byte.asm. When copy.asm assembles, the assembler copies byte.asm into its
place in the listing (note listing below). The copy file byte.asm contains a .copy
statement for a second file, word.asm.

When it encounters the .copy statement for word.asm, the assembler switches
to word.asm to continue copying and assembling. Then the assembler returns
to its place in byte.asm to continue copying and assembling. After completing
assembly of byte.asm, the assembler returns to copy.asm to assemble its
remaining statement.

 Copy Source File .copy/.include

4-25 Assembler Directives

copy.asm byte.asm word.asm

.space 29

.copy byte.asm
** Back in copy.asm

.string ”done”

** In byte.asm
.byte 32,1+’A’
.copy ”word.asm”

** Back in byte.asm
.byte 67h + 3q

** In word.asm
.word 0ABCDh, 56q

This is the listing file:

 1 00000000 00000000 .space 29
 2 .copy byte.asm
 A 1 ** In byte.asm
 A 2 0000001d 00000020 .byte 32,1+’A’
 0000001e 00000042
 A 3 .copy ”word.asm”
 B 1 ** In word.asm
 B 2 0000001f 0000abcd .word 0ABCDh, 56q
 00000020 0000002e
 A 4 ** Back in byte.asm
 A 5 00000021 0000006a .byte 67h + 3q
 3 ** Back in copy.asm
 4 00000022 656e6f64 .string ”done”

Example 2 This example uses the .include directive to read and assemble source state-
ments from other files, then resumes assembling into the current file.

include.asm byte2.asm word2.asm

.space 29

.include byte2.asm
** Back in include.asm

.string ”done”

** In byte2.asm
.byte 32,1+’A’
.include ”word2.asm”

** Back in byte2.asm
.byte 67h + 3q

** In word2.asm
.word 0ABCDh, 56q

This is the listing file:

 1 00000000 00000000 .space 29
 2 .include byte2.asm
 3 ** Back in include.asm
 4 00000022 656e6f64 .string ”done”

.data Assemble Into .data Section

4-26

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is nor-
mally used to contain tables of data or preinitialized variables.

Chapter 2 provides a detailed explanation about COFF sections.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the .text
section unless you specify an explicit section control directive.

Example This example assembles code into the .data and .text sections.

 1 **************************************
 2 ** Reserve space in .data **
 3 **************************************
 4 00000000 .data
 5 00000000 00000000 .space 0CCh
 6 **************************************
 7 ** Assemble into .text **
 8 **************************************
 9 00000000 .text
 10 00000000 00800000 ABSI R0
 11 **************************************
 12 ** Assemble into .data **
 13 **************************************
 14 000000cc table: .data
 15 000000cc ffffffff .word –1 ; Assemble 32–bit
 ; constant into .data
 16 000000cd 000000ff .byte 0FFh ; Assemble 8–bit
 ; constant into .data
 17 000000ce 08010000 LDI R0,R1 ; Assemble code into .data
 18 **************************************
 19 ** Assemble into .text **
 20 **************************************
 21 00000001 .text
 22 00000001 08010000 LDI R0,R1
 23 **************************************
 24 ** Resume assembling into .data**
 25 ** at address 0CFh **
 26 **************************************
 27 000000cf .data
 28

 Control Listing of Directives .drlist/.drnolist

4-27 Assembler Directives

Syntax .drlist

.drnolist

Description The .drlist directive causes the assembler to print to the listing file all directives
lines. By default the assembler behaves as if you had used .drlist. The .drnolist
directive suppress the printing of the followings directives in the listing file:

.asg .fclist .mmsg .var

.break .fcnolist .mnolist .wmsg

.emsg .length .sslist .width

.eval .mlist .ssnolist

Example This example shows how .drnolist inhibits the listing of the above named direc-
tives. By default, the assembler behaves as if you had used .drlist.

Source file:

*
* .drlist/.drnolist example
*
 .length 65
 .width 85
 .asg 0, x
 .loop 2
 .eval x+1, x
 .endloop

 .drnolist

 .length 55
 .width 95
 .asg 1, x
 .loop 3
 .eval x+1, x
 .endloop

.drlist/.drnolist Control Listing of Directives

4-28

Listing file:

 1 *
 2
* .drlist/.drnolist example
 3 *
 4 .length 65
 5 .width 85
 6 .asg 0, x
 7 .loop 2
 8 .eval x+1, x
 9 .endloop
1 .eval 0+1, x
1 .eval 1+1, x
 10
 12
 16 .loop 3
 17 .eval x+1, x
 18 .endloop

 Define Messages .emsg/.mmsg/.wmsg

4-29 Assembler Directives

Syntax .emsg string

.mmsg string

.wmsg string

Description Use these directives to produce your own error and warning messages. Note
that the assembler tracks the number of errors and warnings it encounters and
prints these numbers on the last line of the listing file.

� The .emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the assem-
bler does, incrementing the error count and preventing the assembler from
producing an object file.

� The .wmsg directive sends warning messages to the standard output de-
vice. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count.

� The .mmsg directive sends assembly-time messages to the standard out-
put device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not set the error count or the warning
count, and does not prevent the assembler from producing an object file.

Example In this example, the macro MSG_EX requires one parameter. The first time the
macro is invoked it has a parameter, PARAM, and it assembles normally. The
second time, the parameter is missing and an error is generated.

Source file:

MSG_EX .macro a
 .if $symlen(a) = 0
 .emsg ”ERROR –– MISSING PARAMETER”
 .else
 ADDI @a, R4
 .endif
 .endm

 .global param
 MSG_EX param

 MSG_EX

.emsg/.mmsg/.wmsg Define Messages

4-30

Listing file:

 1 MSG_EX .macro a
 2 .if $symlen(a) = 0
 3 .emsg ”ERROR –– MISSING PARAMETER”
 4 .else
 5 ADDI @a, R4
 6 .endif
 7 .endm
 8
 9 .global param
 10 00000000 MSG_EX param
1 .if $symlen(a) = 0
1 .emsg ”ERROR –– MISSING PARAMETER”
1 .else
1 00000000 02240000! ADDI @param, R4
1 .endif
 11
 12 00000001 MSG_EX
1 .if $symlen(a) = 0
1 .emsg ”ERROR –– MISSING PARAMETER”
 ********* USER ERROR – ERROR –– MISSING PARAMETER
1 .else
1 ADDI @a, R4
1 .endif
 13

 1 Error, No Warnings

The following message is sent to standard output when the file is assembled:

”emsg.asm” line 12: ** USER ERROR **
 ERROR –– MISSING PARAMETER

 1 Error, No Warnings

Errors in source – Assembler Aborted

 End Assembly .end

4-31 Assembler Directives

Syntax .end

Description The .end directive is an optional directive that terminates assembly. It should
be the last source statement of a program. The assembler will ignore any
source statements that follow an .end directive.

Note that this directive has the same effect as an end-of-file.

Note: Use .endm to End a Macro

Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.

Example This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

1 0000 Start: .space 300
2 000F temp .set 15
3 0000 .bss loc1,48h
4 0013 CE1B ABS
5 0014 000F ADD temp
6 0015 6000 SACL loc1
7 .end

.even Align SPC on a Word Boundary

4-32

Syntax .even

Description The .even directive aligns the section program counter (SPC) on the next full
word. When you use the .field directive, you can follow it with the .even direc-
tive. This forces the assembler to write out a partially filled word before initializ-
ing fields in the next word. The assembler will fill the unused bits with 0s. If the
SPC is already on a word boundary (no word is partially filled), .even has no
effect.

All directives that initialize memory other than .field (such as .word and .float)
perform an implicit .even. Therefore, it is necessary to use .even only after a
.field directive, and only when word alignment is required for another immedi-
ately following .field directive.

Note that when you use .even in a .struct/.endstruct sequence, .even aligns
structure members; it does not initialize memory. For more information about
.struct/.endstruct, refer to Section 4.8.

Example Here’s an example of the .even directive. Word 0 is initialized with several
fields; the .even directive causes the next field to be placed in word 1.

 1 00000000 00000003 .field 03h,2 ; Initialize a 2–bit field
 2 00000000 0000002f .field 0Bh,5 ; Initialize a 5–bit field
 3 00000001 .even ; Write out the word
 4 00000001 00000007 .field 07h,3 ; field is in the next word

Example 4–6 shows how this example initializes word 0. The first 7 bits are in-
itialized by .field directives; the remaining bits are set to 0 by the .even direc-
tive. The next 3-bit .field goes into word 1.

Example 4–6. The .even Directive

0 1 1 1 1 0 0 1 0 0 0 0 1 10 0

15 0

Filled by the .field directivesFilled by
the .even
directive

 Control the Listing of False Conditional Blocks .fclist/.fcnolist

4-33 Assembler Directives

Syntax .fclist

.fcnolist

Description Two directives enable you to control the listing of false conditional blocks.

� The .fclist directive allows the listing of conditional blocks that do not pro-
duce code (false blocks). By default, the assembler behaves as if you had
used .fclist.

� The .fcnolist directive inhibits the listing of false conditional blocks. Only
code in the conditional block that actually assembles appears in the listing.
The .if, .elseif, .else, and .endif directives do not appear.

Example This example shows the assembly language file and the listing file for code
with and without the conditional blocks listed. This is the unassembled file:

Source file:

a .set 1
b .set 0

.fclist ; list false
; conditional blocks

.if a
ADDI 5, R0
.else
ADDI 5*10, R0
.endif

.fcnolist ; do not list

.if a
ADDI 5, R0
.else
ADDI 5*10, R0
.endif

Listing file:

 1 00000001 a .set 1
 2 00000000 b .set 0
 3 .fclist ; list false
 4 ; conditional blocks
 5
 6 .if a
 7 00000000 02600005 ADDI 5, R0
 8 .else
 9 ADDI 5*10, R0
10 .endif
11
12 .fcnolist ; do not list
13
15 00000001 02600005 ADDI 5, R0

.field Initialize Field

4-34

Syntax .field value [, size in bits]

Description The .field directive initializes multiple-bit fields within a single word of memory.
This directive has two operands:

� The value is a required parameter; it is an expression that is evaluated and
placed in the field. If the value is relocatable, size must be 32.

� The size is an optional parameter; it specifies a number from 1–32, which
is the number of bits the field consists of. If you do not specify a size, the
assembler uses a default size of 32 bits. Note that the assembler will trun-
cate the value if you specify a field that is not wide enough to contain the
value. For example, .field 3,1 will cause the assembler to truncate the val-
ue 3 to1; the assemble also prints the message:

***warning – value truncated .

Successive field directives pack values into the specified number of bits in the
current word. Fields are packed starting at the least significant part of the word,
moving toward the most significant part as more fields are added. If the assem-
bler encounters a field size that does not fit into the current word, it writes out
the word, increments the SPC, and begins packing fields into the next word.

You can use the .even directive to force the next .field directive to begin pack-
ing into a new word. If you use a label, it points to the word that contains the
field.

Note also that when you use .field in a .struct/.endstruct sequence, .field de-
fines a member’s size; it does not initialize memory. For more information
about .struct/.endstruct, refer to Section 4.8.

 Initialize Field .field

4-35 Assembler Directives

Example This example shows how fields are packed into a word. Notice that the SPC
does not change until a word is filled and the next word is begun.

 1 ***************************************
 2 * Initialize a 24–bit field *
 3 ***************************************
 4 00000000 00bbccdd .field 0BBCCDDh,24
 5 ***************************************
 6 * Initialize a 5–bit field *
 7 ***************************************
 8 00000000 0abbccdd .field 0Ah,5
 9 ***************************************
 10 * Initialize a 4–bit field (new) word *
 11 ***************************************
 12 00000001 0000000c .field 0Ch,4
 13 ***************************************
 14 * Initialize a 3–bit field *
 15 ***************************************
 16 00000001 0000001c x: .field 01h,3
 17 **
 18 * Initialize a 32–bit relocatable *
 19 * field in the next word *
 20 **
 21 00000002 00000001’ .field x
 22

Example 4–7 shows how the directives in this example affect memory.

.field Initialize Field

4-36

Example 4–7. The .field Directive

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

24-bit field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word Code

(a) 0

(b) 0

(c) 0

(e) 1

2

.field 0BBCCDDh, 24

.field 0Ch, 4

.field x

1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 11 0 1 1 1 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

5-bit field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 10 1 0 1 0 1 0 1 1 1 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

.field 0Ah, 5

24-bit field
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 10 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

4-bit field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(d) 1 .field 01h, 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

3-bit field

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

 Initialize Floating-Point Value .float/.double/.ieee/.sfloat

4-37 Assembler Directives

Syntax .float value1 [, ... , valuen]

.double value1 [, ... , valuen]

.ieee value1 [, ... , valuen]

.sfloat value1 [, ... , valuen]

Description The .float directive places the floating-point representation of one or more
floating-point constants into successive words in the current section. Each
value must be either a floating-point constant or a symbol that has been
equated to a floating-point constant. Each constant is converted to a floating-
point value in TMS320 single-precision (32-bit) format.

The .double directive behaves just like the .float; it is generated by the
compiler for double variables.

The .ieee directive (available with the –v40 assembler option) also behaves
like the .float except that the value is converted to IEEE single-precision
(32-bit) format.

The IEEE floating-point format consists of three fields:

� A 1-bit sign field (s)

� An 8-bit biased exponent (exponent)

� A 23-bit normalized mantissa (mantissa)

31 30 23 22 16

15 0

s exponent mantissa

mantissa

value� (� 1)s
� (1.0� 0.mantissa)� 2exponent�127

The .sfloat directive is available only with the –v32 assembler option. The
.sfloat directive places the floating-point representation of one or more
floating-point constants into successive words in the current section. Each
value must be either a floating-point constant or a symbol that has been
equated to a floating-point constant. The format is the normal single-precision
format right-shifted by 16 bits so that:

� Bits 31 through 16 are zero
� Bits 15 through 8 are the 8-bit exponent
� Bit 7 is the sign bit
� Bits 6 through 0 are the 7-bit mantissa

15 8 7 6 0

exponent s mantissa

.float/.double/.ieee/.sfloat Initialize Floating–Point Value

4-38

The .sfloat directive can be used to place floating point values into 16-bit
external memory. When the values are loaded into the CPU registers (LDF),
the number will be loaded in the upper 16-bits with the lower 16-bits set to 0.
See page 4-2 of the 1995 TMS320C32 Addendum to the TMS320C3x User’s
Guide for more information.

Note that when you use .float in a .struct/.endstruct sequence, .float defines
a member’s size; it does not initialize memory. For more information about
.struct/.endstruct, refer to Section 4.8.

Example Here are some examples of the .float directive.

 1 00000000 53fba6af .float –1.0e25
 2 00000001 01400000 .float 3
 3 00000002 06760000 .float 123, 0.5
 00000003 ff000000
 4 0003243f PI: .set 3.14159
 5 0002b7e1 E: .set 2.71828
 6 00000004 01490fd0 .float PI,E
 00000005 012df84d

 Identify Global Symbols .global/.def/.ref

4-39 Assembler Directives

Syntax .global symbol1 [, ... , symboln]

.def symbol1 [, ... , symboln]

.ref symbol1 [, ... , symboln]

Description The .global, .def, and .ref directives identify global symbols, which are defined
externally, or can be referenced externally.

� The .def directive identifies a symbol that is defined in the current module
and can be accessed by other files. The assembler places this symbol in
the the symbol table.

� The .ref directive identifies a symbol that is used in the current module but
defined in another module. The linker resolves this symbol’s definition at
link time.

� The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .bss, or .usect directive. As with
all symbols, if a global symbol is defined more than once, the linker issues a
multiple-definition error. Note that .ref always creates an entry for a symbol,
whether the module uses the symbol or not; .global, however, creates a sym-
bol table entry only if the module actually uses the symbol.

A symbol may be declared global for two reasons:

1) If the symbol is not defined in the current module (including macro, .copy,
and include files), the .global or .ref directive tells the assembler that the
symbol is defined in an external module. This prevents the assembler from
issuing an unresolved reference error. At link time, the linker looks for the
symbol’s definition in other modules.

2) If the symbol is defined in the current module, the .global or .def directive
declares that the symbol and its definition can be used externally in other
modules. These types of references are resolved at link time.

Example This example uses four files:

� file1.lst and file3.lst are equivalent. Both files define the symbol Init and
make it available to other modules; both files use the external symbols x,
y, and z. file1.lst uses the .global directive to identify these global symbols;
file3.lst uses .ref and .def to identify the symbols.

� file2.lst and file4.lst are equivalent. Both files define the symbols x, y, and
z and make them available to other modules; both files use the external
symbol Init. file2.lst uses the .global directive to identify these global sym-
bols; file4.lst uses .ref and .def to identify the symbols.

.global/.def/.ref Identify Global Symbols

4-40

file1.lst:

.global Init ; Global symbol defined in this file

.global x, y, z ; Global symbols defined file2.lst
Init: ; Symbol definition

LDI R0,R1
.word x

; .
; .
; .

.end

file2.lst:

.global x, y, z ; Global symbols defined this file

.global Init ; Global symbol defined in file1.lst
x: .set 1 ; Symbol definitions
y: .set 2
z: .set x + y

.word Init
; .
; .
; .

.end

file3.lst:

.def Init ; Global symbol defined in this file

.ref x, y, z ; Global symbols defined in file4.lst
Init: ; Symbol definition

LDI R0,R1
.word x

; .
; .
; .

.end

file4.lst:

.def x, y, z ; Global symbols defined in this file

.ref Init ; Global symbol defined in file3.lst
x: .set 1 ; Symbol definitions
y: .set 2
z: .set x + y

.word Init
; .
; .
; .

.end

 Initialize Half Word .hword

4-41 Assembler Directives

Syntax .hword value1 [, ... , valuen]

Description The .hword directive places one or more 16-bit values into consecutive words
in the current section. Each value may be either:

� An expression that the assembler evaluates and treats as a 16-bit signed
number, or

� A character string enclosed in double quotes. Each character represents
a separate value.

Values are not packed or sign extended; each value occupies the least signifi-
cant 16 bits of a full 32-bit word.

The assembler truncates any value that is greater than 16 bits. The .hword di-
rective can have up to 100 operands, but they must fit on a single line.

If you use a label, it points to the location of the first word that is initialized.

Example This example assembles several 16-bit values into words in the current sec-
tion. The label vlist has the value 6Ah, which is the location of the first initialized
word.

1
2
3 0000006A 0000000A vlist: .hword 10,–1,”abc”,’ab ’

0000006B 0000FFFF
0000006C 00000061
0000006D 00000062
0000006E 00000063
0000006F 00006261

4
5

.if/.elseif/.else/.endif Assemble Conditional Blocks

4-42

Syntax .if well-defined expression

assemble code block when the expression is true

.elseif well-defined expression

assemble code block when the .if expression is false
and the .elseif expression is true

.else

assemble code block when the expression is false

.endif

terminate condition block

Description Four directives provide conditional assembly:

� The .if directive marks the beginning of a conditional block. The
expression is a required parameter.

� If the expression evaluates to true (nonzero), then the assembler as-
sembles the code that follows it (up to an .elseif, an .else, or an .endif).

� If the expression evaluates to false (0), then the assembler assembles
code that follows a .elseif (if present), a else (if present), or a .endif (if
no .elseif or .else is present).

� The .elseif directive identifies a block of code to be assembled when the
.if expression is false (0) and the .elseif expression is true (nonzero). When
the .elseif expression is false, the assembler continues to a .else (if pres-
ent) or an .endif. The .elseif directive is optional in the conditional block;
if an expression is false and there is no .elseif statement, the assembler
continues with the code that follows a .else (if present) or a .endif.

� The .else directive identifies a block of code that the assembler assembles
when the .if expression is false (0). This directive is optional in the condi-
tional block; if an expression is false and there is no .else statement, then
the assembler continues with the code that follows the .endif.

� The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly
block and can be used more than once within a conditional assembly block.

For information on the conditional operators that the assembler supports, refer
to subsection 3.10.6, Conditional Expressions, on page 3-23.

 Assemble Conditional Blocks .if/.elseif/.else/.endif

4-43 Assembler Directives

Example Here are some examples of conditional assembly:

 1 00000001 sym1 .set 1
 2 00000002 sym2 .set 2
 3 00000003 sym3 .set 3
 4 00000004 sym4 .set 4
 5 If_4: .if sym4 = sym2 * sym2
 6 00000000 00000004 .byte sym4 ; equal values
 7 .else
 8 .byte sym2 * sym2 ; unequal values
 9 .endif
 10 If_5: .if sym1 <= 10
 11 00000001 0000000a .byte 10 ; less than/equal
 12 .else
 13 .byte sym1 ; greater than
 14 .endif
 15 If_6: .if sym3 * sym2 != sym4 + sym2
 16 .byte sym3 * sym2 ; unequal values
 17 17 .else
 18 .byte sym4 + sym2 ; equal values
 19 .endif
 20 If_7: .if sym1 = 2
 21 .byte sym1
 22 .ifelse sym2 + sym3
 23 .endif
 24

.int/.long/.word Initialize a 32-Bit Integer

4-44

Syntax .int value1 [, ... , valuen]

.long value1 [, ... , valuen]

.word value1 [, ... , valuen]

Description The .int , .long, and .word directives are equivalent; they place one or more
values into consecutive 32-bit fields in the current section. Each value is either:

� An expression that the assembler evaluates and treats as a 32-bit signed
value, or

� A character string enclosed in double quotes. Each character represents
a separate value.

The values can be either absolute or relocatable expressions. If an expression
is relocatable, the assembler generates a relocation entry that refers to the ap-
propriate symbol; the linker can then correctly patch (relocate) the reference.
This allows you to initialize memory with pointers to variables or labels.

You can use as many values as fit on a single line. If you use a label, it points
to the first word that is initialized.

Example 3 This example uses the .int directive to initialize words. Notice that the symbol
symptr puts the symbol’s address in the object code and generates a relocat-
able reference (indicated by the ’ character appended to the object word).

5 00000070 08010000 symptr LDI R0,R1
6 00000071 0000000A .int 10,symptr,–1,”abc”,’abc’

00000072 00000070’
00000073 FFFFFFFF
00000074 00000061
00000075 00000062
00000076 00000063
00000077 00636261

Example 4 This example initializes two 32-bit fields and defines DAT1 to point to the first
location. The contents of the resulting 32-bit fields are FFFFABCDh and 141h.

1 00000000 FFFFABCD DAT1: .long 0FFFFABCDH,’A’+100h
00000001 00000141

Example 5 This example initializes five words. The symbol WordX points to the first word.

1 00000000 00000C80 WordX: .word 3200,1+’AB’,–’AF’,0F410h,’A’
00000001 00004242
00000002 FFFFB9BF
00000003 0000F410
00000004 00000041

 Create a Load Time Address Label .label

4-45 Assembler Directives

Syntax .label symbol

Description The .label directive defines a special symbol that refers to the loadtime ad-
dress rather than the runtime address within the current section. Most sections
created by the assembler have relocatable addresses. The assembler as-
sembles each section as if they start at zero, and the linker relocates them to
the address at which they load and run.

For some applications, it is desirable to have a section load at one address and
run at a different address. For example, you may wish to load a block of perfor-
mance-critical code into slower off-chip memory to save space, and then move
the code to high-speed on-chip memory to run it.

Such a section is assigned two addresses at link time: a load address and a
separate run address. All labels defined in the section are relocated to refer
to the runtime address so that references to the section (such as branches)
are correct when the code runs.

The .label directive creates a special “label” that refers to the loadtime ad-
dress. This is useful primarily so that the code that relocates the section knows
where the section was loaded. For example:

;–––
; .label Example
;–––

.sect ”.examp”

.label examp_load ; load address of section
start: ; run address of section <code>
finish: ; run address of section end

.label examp_end ; load address of section end

For more information about assigning runtime and loadtime addresses in the
linker, refer to Section 8.8 on page 8-35.

.ldouble Initialize Floating-Point Value

4-46

Syntax .ldouble value

Description The .ldouble directive places the floating-point representation of a long double
floating-point constant into two consecutive 32-bit words in the current section.
The value must be a floating-point constant. Each constant is converted to a
floating-point value in 40-bit LDF/LDI format with a 24-bit overlap.

32 bits of first word
39 31 7 0

32 bits of second word

Example Here are some examples of the .ldouble directive.

 1 00000 c520 .ldouble –1.0e25
 00002 8b2a
 00004 2c28
 00006 0291
 2 00008 4008 .ldouble 3
 0000a 0000
 0000c 0000
 0000e 0000
 3 00010 405e .ldouble 123
 00012 c000
 00014 0000
 00016 0000
 4

To load an .ldouble value, execute a LDF and then an LDI into the same data
register from successive memory locations:

LDF @var,R0 ;Load upper bits
LDI @var+1,R0 ;Load lower bits

The LDF must be performed first, as it clears the lower 8 bits of the register.

 Set Listing Page Size .length/.width

4-47 Assembler Directives

Syntax .length page length

.width page width

Description The .length directive sets the page length of the output listing file. It affects the
current page and following pages; you can reset the page length with another
.length directive.

� Default length: 60 lines
� Minimum length: 20 lines
� Maximum length: 32,767 lines

The .width directive sets the page width of the output listing file. It affects the
next line assembled and following lines; you can reset the page width with an-
other .width directive.

� Default width: 80 characters
� Minimum width: 80 characters
� Maximum width: 200 characters

Note that the width refers to a full line in a listing file; the line counter value, SPC
value, and object code are counted as part of the width of a line. Comments
and other portions of a source statement that extend beyond the page width
are truncated in the listing.

The assembler does not list the .width and .length directives.

Example The following example sets the page length and page width to various values.

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 1 09:55:52 1997
Copyright (c) 1987–1997 Texas Instruments Incorporated

***** Length and Width ***** PAGE 1

 2 ***
 3 ** The page length is limited to 60 **
 4 ** lines per page. The page width is **
 5 ** limited to 80 characters per line. **
 6 ***
 7 .length 60
 8 .width 80
 9 ***
 10 ** The page length is limited to 50 **
 11 ** lines per page. The page width is **
 12 ** limited to 200 characters per line. **
 13 ***
 14 .length 50
 15 .width 200
 16

.list/.nolist Start/Stop Source Listing

4-48

Syntax .list

.nolist

Description The .nolist directive suppresses the source listing output until a .list directive
is encountered. The .list directive tells the assembler to resume printing the
source listing after it has been stopped by a .nolist directive. By default, the
assembler acts as if a .list directive had been specified. The .nolist directive
can be used to reduce assembly time and the size of the source listing; it can
be used in macro definitions to inhibit the listing of the macro expansion.

Description The .nolist directive suppresses the source listing output until a .list directive
is encountered. The .list directive tells the assembler to resume printing the
source listing after it has been stopped by a .nolist directive. By default, the
assembler behaves as if a .list directive has been specified. The .nolist direc-
tive can be used to reduce assembly time and the size of the source listing;
it is frequently used in macro definitions to inhibit the listing of the macro expan-
sion.

The assembler does not print the .list or .nolist directives or the source state-
ments that appear after a .nolist directive; however, it continues to increment
the line counter. You can nest the .list/.nolist directives; each .nolist needs a
matching .list to restore the listing. At the beginning of an assembly, the assem-
bler acts as if it has assembled a .list directive.

Note: Using the .list Directive Without Requesting a Listing File

If you don’t request a listing file when you invoke the assembler, the assem-
bler ignores the .list directive.

Example This example uses the .copy directive to insert source statements from an-
other file. The first time this directive is encountered, the assembler lists the
copied source lines in the listing file. The second time .copy is encountered the
assembler does not list the copied source lines, because a .nolist directive was
assembled. Note that the .nolist, the second .copy, and .list directives do not
appear in the listing file; note also that the line counter is incremented even
when source statements are not listed.

Source file:

.copy byte.asm

.nolist

.copy byte.asm

.list
* Back in original file

.string ”Done”

 Start/Stop Source Listing .list/.nolist

4-49 Assembler Directives

Listing file:

1 .copy byte.asm
A 1 ** IN BYTE.ASM (copy file)
A 2 00000000 00000020 .byte 32, 1+ ’A’

00000001 00000042
5 * Back in original file
6 00000004 656e6f44 .string ”Done”

.loop/.break/.endloop Assemble Code Block Repeatedly

4-50

Syntax .loop [well-defined expression]

repeatedly assemble code block

.break [well-defined expression]

assemble repeatedly while the .break expression is false
(zero); go to code following .endloop if true (nonzero)

.endloop

execute when .break directive is true (nonzero) or when
number of loops performed equals loop count given
by .loop

Description Three directives enable you to repeatedly assemble a block of code:

� The .loop directive begins a repeatable block of code. The optional expres-
sion evaluates to the loop count (the number of loops to be performed).
If there is no expression, the loop count defaults to 1024, unless the assem-
bler first encounters a .break directive with an expression that is true
(nonzero) or omitted.

� The .break directive is optional, along with its expression. When the
expression is false (0), the loop continues. When the expression is true
(nonzero), or omitted, the assembler breaks the loop and assembles the
code after the .endloop directive.

� The .endloop directive terminates a repeatable block of code.

Example This example illustrates how these directives can be used with the .eval direc-
tive. The following assembly language code generates the listing shown on the
next page.

Source file:

 .eval 0, x
coef .loop ;coefficient table

 .word x * 2
 .eval x + 1, x
 .break x = 6
 .endloop

 Assemble Code Block Repeatedly .loop/.break/.endloop

4-51 Assembler Directives

Listing file:

 1 .eval 0, x
 2 coef .loop ;coefficient table
 3
 4 .word x * 2
 5 .eval x + 1, x
 6 .break x = 6
 7 .endloop
1
1 00000000 00000000 .word 0 * 2
1 .eval 0 + 1, x
1 .break 1 = 6
1
1 00000001 00000002 .word 1 * 2
1 .eval 1 + 1, x
1 .break 2 = 6
1
1 00000002 00000004 .word 2 * 2
1 .eval 2 + 1, x
1 .break 3 = 6
1
1 00000003 00000006 .word 3 * 2
1 .eval 3 + 1, x
1 .break 4 = 6
1
1 00000004 00000008 .word 4 * 2
1 .eval 4 + 1, x
1 .break 5 = 6
1
1 00000005 0000000a .word 5 * 2
1 .eval 5 + 1, x
1 .break 6 = 6

.mlib Define Macro Library

4-52

Syntax .mlib [”]filename[”]

Description The .mlib directive provides the assembler with the name of a macro library.
A macro library is a collection of files that contain macro definitions. These files
are bound into a single file (called an archive or library) by the archiver. Each
file in a macro library may contain one macro definition that corresponds to the
name of the file. Note that:

� Macro library members must be source files (not object files).

� The filename of a macro library member must be the same as the macro
name, and its extension must be .asm.

The filename must follow host operating system conventions; it may be en-
closed in double quotes. You can specify a full pathname (for example, .mlib
C:\dsp\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the -i assembler option.
3) Any directories specified by the environment variable A_DIR.

For more information about the -i option and the environment variable, see
Section 3.5, Naming Alternate Directories for Assembler Input, on page 3-7.

When the assembler encounters an .mlib directive, it opens the library and cre-
ates a table of its contents. The assembler enters the names of the individual
library members into the opcode table as library entries; this redefines any ex-
isting opcodes or macros that have the same name. If one of these macros is
called, the assembler extracts the entry from the library and loads it into the
macro table. The assembler expands the library entry in the same manner as
other macros, but it does not place the source code into the listing. Only mac-
ros that are actually called from the library are extracted.

 Define Macro Library .mlib

4-53 Assembler Directives

Example This example creates a macro library that defines two macros, inc1 and dec1.
The file inc1.asm contains the definition of inc1, and dec1.asm contains the
definition of dec1.

inc1.asm dec1.asm

** Macro for incrementing a register **
inc1 .macro reg

ADDI 1, reg
.endm

** Macro for decrementing a register **
dec1 .macro reg

SUBI 1, reg
.endm

Use the archiver to create a macro library:

ar30 –a mac inc1.asm dec1.asm

Now you can use the .mlib directive to reference the macro library and call the
inc1 and dec1 macros:

.mlist

.mlib ”mac.lib”
inc1 R0 ;macro call
dec1 R1 ;macro call

This is the resulting assembly:

 1 .mlist
 2 .mlib ”mac.lib”
 3 00000000 inc1 R0 ;macro call
1 00000000 02600001 ADDI 1, R0
 4 00000001 dec1 R1 ;macro call
1 00000001 18610001 SUBI 1, R1

.mlist/.mnolist Start/Stop Macro Expansion Listing

4-54

Syntax .mlist

.mnolist

Description Two directives provide you with the ability to control the listing of macro expan-
sions in the listing file:

� The .mlist directive allows macro expansions in the listing file (default.)

� The .mnolist directive inhibits macro expansions in the listing file.

By default, all macro expansions are listed. The line counter restarts counting
at 1 during a macro expansion; it resumes counting from its previous value
when the macro expansion is complete.

Example This example defines a macro named str_3. The first time the macro is called,
the macro expansion is listed (by default). The second time the macro is called,
the macro expansion is not listed because a .mnolist directive was assembled.
The third time the macro is called, the macro expansion is again listed because
a .mlist directive was assembled.

1 str_3 .macro parm1, parm2, parm3
2 .string ”:parm1:”, ”:parm2:”, ”:parm3:”
3 .endm
4
5 00000000 str_3 ”red”, ”green”, ”blue”

1 00000000 67646572 .string ”red”, ”green”, ”blue”
00000001 6e656572
00000002 65756c62

6 .mnolist
7 00000003 str_3 ”Raphael”, ”Michelangelo”, ”Donatello”
8 .mlist
9 0000000a str_3 ”Huron”, ”Michigan”, ”Superior”

1 0000000a 6f727548 .string ”Huron”, ”Michigan”, ”Superior”
0000000b 63694d6e
0000000c 61676968
0000000d 7075536e
0000000e 6f697265
0000000f 00000072

 Terminate Local Symbol Block .newblock

4-55 Assembler Directives

Syntax .newblock

Description The .newblock directive undefines any local labels currently defined. A local
label, by nature, is temporary; the .newblock directive resets local labels and
terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit. A local
label, like other labels, points to an instruction byte. Unlike other labels, local
labels cannot be used in expressions; they can be used only as the operand
in 8-bit jump instructions. Local labels are not included in the symbol table.

After a local label has been defined and (perhaps) used, you should use the
.newblock directive to reset it. Note that the .text, .data, and .sect directives
also reset local labels and that local labels that are defined within an include
file are not valid outside of the include file.

Example This example shows how the local label $1 is declared, reset, and then de-
clared again.

1 00000 0223 Label1: mov r2, r3
2 00002 ’c401 bne $1
3 00004 1a03 mov #–1, r3
 00006 ffff
4 00008 6031 $1 cmp r3, r1
5 .newblock ; undefine $1
6 0000a ’c400 bne $1
7 0000c 8213 inc r3
8 0000e 3034 $1 add r3, r4
9

.option Select Listing Options

4-56

Syntax .option option list

Description The .option directive selects several options for the assembler output listing.
The option list is a list of options separated by commas; each option selects
a listing feature. Valid options include:

B Limits the listing of .byte directives to one line.

F Resets the B, M, T, and W options.

H Limit the listing of .hword directives to one line.

L Limit the listing of .long, .int, and .word directives to one line.

M Turns off macro expansions in the listing.

T Limits the listing of .string directives to one line.

X Produces a symbol cross-reference listing.

Options are not case sensitive.

 Select Listing Options .option

4-57 Assembler Directives

Example This example limits the listings of the .byte, .hword, .long, .word, .int, and
.string directives to one line each.

1 **
2 * Limit the listing of .byte, .word, *
3 * .string directives to 1 line each *
4 **
5 .option B, W, T
6 0000 bd .byte –’C’, 0B0h, 5
7 0003 15aa .word 5546, 78h
8 0007 59 .string ”YES”
9 **

10 * Reset the listing options *
11 **
12 .option F
13 000a bd .byte –’C’, 0B0h, 5

000b b0
000c 05

14 000d 15aa .word 5546, 78h
000f 0078

15 0011 59 .string ”YES”
0012 45
0013 53

16 **
17 * Use the A option to ignore all *
18 * other options and directives *
19 **
20 .option A
21 .nolist
22 .option B, W, T
23 0014 bd .byte –’C’, 0B0h, 5

0015 b0
0016 05

24 0017 15aa .word 5546, 78h
0019 0078

25 001b 59 .string ”YES”
001c 45
001d 53

26 .list

.page Eject Page in Listing

4-58

Syntax .page

Description The .page directive produces a page eject in the listing file. The source state-
ment is not printed in the source listing, but the line counter is incremented.
Using the .page directive to divide the source listing into logical divisions im-
proves program readability.

Example This example causes the assembler to begin a new page of the source listing.

This is the source file:

 .title ”**** The PAGE DIRECTIVE ****”
 .string ”Page 1”
 .page ;the directive won’t be printed
 .string ”Page 2”

This is the listing file:

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 1 11:09:27 1997
Copyright (c) 1987–1997 Texas Instruments Incorporated

**** The PAGE DIRECTIVE **** PAGE 1

 2 00000000 65676150 .string ”Page 1”
 00000001 00003120

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 1 11:09:27 1997
Copyright (c) 1987–1997 Texas Instruments Incorporated

**** The PAGE DIRECTIVE **** PAGE 2

 4 00000002 65676150 .string ”Page 2”
 00000003 00003220
 5

 Use F Alias for Registers .regalias

4-59 Assembler Directives

Syntax .regalias

Description The .regalias directive allows registers named Fn to be aliases for
floating-point versions of Rn data registers. This type of aliasing makes
floating-point operations more obvious within the assembly code.

This directive should be placed near the beginning of an assembly file. The
assembler does not accept F register aliasing by default, since you may have
existing code that uses F aliases for other purposes.

The code generator uses this directive in every file it creates, because it always
refers to F registers in floating-point instructions.

Example The code below displays assembly instructions without F aliasing:

addi r1,r2,r3
sti r3,@C1
addf r4,r5,r6
stf r6,@C2
fix r3,r3

Here is the equivalent code that includes the .regalias directive and F aliasing:

.regalias
addi r1,r2,r3
sti r3,@C1
addf f4,f5,f6
stf f6,@C2
fix f3,r3

.sect Assemble Into Named Section

4-60

Syntax .sect ” section name” [, value]

Description The .sect directive defines named sections that are used like the default .text
and .data sections. The .sect directive begins assembling source code into the
named section. Named sections can be used for data or code that must be allo-
cated into memory separately from .text or .data.

The section name identifies a section that the assembler assembles code into.
The name is significant to 8 characters and may be enclosed in quotes.

Note that the .asect directive is similar to the .sect directive; however, .asect
creates a named section that has absolute addresses. If you use the .asect
directive to define an absolute named section, you can use the .sect directive
later in the program to continue assembling code into the absolute section.

Chapter 2 provides additional information about named sections.

Example This example defines a section, Sym_Defs, and assembles code into it.

 1 **
 2 ** Begin assembling into .text **
 3 **
 4 00000000 .text
 5 00000000 07020001 LDF R1,R2
 6 00000001 07040003 LDF R3,R4
 7 **
 8 ** Begin assembling into Sym_.Defs **
 9 **
 10 00000000 .sect ”Sym_Defs”
 11 00000000 0148f5c3 .float 3.14
 12 00000001 0000000f .hword 0Fh
 13 00000002 07060005 LDF R5,R6
 14 **
 15 ** Resume assembling into .text **
 16 **
 17 00000002 .text
 18 00000002 080a0009 LDI AR1,AR2
 19 00000003 00000003 .byte 3,4
 00000004 00000004
 20 **
 21 ** Resume assembling into Sym_.Defs **
 22 **
 23 00000003 .sect ”Sym_Defs”
 24 00000003 aabbccdd .long 0aabbccddh

 Define Assembly-Time Constant .set/.equ

4-61 Assembler Directives

Syntax symbol .set value

symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The symbol
can then be used in place of a value in assembly source. This allows you to
equate meaningful names with constants and other values. The .set and .equ
directives are identical and can be used interchangeably.

� The symbol must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the
expression must have been previously defined in the current module.

Undefined symbols or symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which
it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value
is not part of the actual object code and is not written to the output file.

Symbols defined with .set can be made externally visible with the .def or .global
directive. In this way you can define “global” absolute constants.

The .asg directive can be used in many of the same ways as the .set directive,
but while .set assigns a constant value (cannot be redefined) to a symbol, .asg
assigns a string (can be redefined) to a substitution symbol.

Example This example shows how symbols can be assigned with .set.

 1 ***
 2 ** Equate symbol FP with register AR3 **
 3 ***
 4 0000000b FP .set AR3
 5 00000000 0840c300 LDI *FP, R0
 6 ***
 7 ** Set symbol ”count” to an integer and **
 8 ** use it as an immediate operand **
 9 ***
 10 0000012c count .set 300
 11 00000001 0860012c LDI count, R0
 12 ***
 13 ** Set PI and use it as a constant **
 14 ***
 15 0003243f PI .equ 3.141592654
 16 00000002 01490fdb .float PI

.space Reserve Space

4-62

Syntax .space size in words

Description The .space directive reserves size number of words in the current section and
fills them with 0s. The section program counter is incremented to point to the
word following the reserved space.

The .space directive is equivalent to size number of .word 0 directives.

Example This example reserves 100 0-filled words in the .text section. Note that the
SPC equals 03h before the .space directive is assembled; after the .space di-
rective is assembled, the SPC is incremented to equal 067h.

 1 ***
 2 * Begin assembling into .text *
 3 ***
 4 00000000 .text
 5 00000000 0000000a .word 0Ah, 0Bh
 00000001 0000000b
 6 00000002 00305241 .string ”AR0”
 7 ***
 8 * Reserve a block of 100 words in .text *
 9 ***
 10 00000003 00000000 Sp_X: .space 100
 11 00000067 0000000c .word 0Ch ; Still in .text
 12 00000068 00000003’ .word Sp_X
 13

Figure 4–2. The .space Directive

0h 0000000A
0000000B
00305241

3h

0000000C67h

100 words
reserved

 Control Listing of Substitution Symbols .sslist/.ssnolist

4-63 Assembler Directives

Syntax .sslist

.ssnolist

Description Two directives enable you to control substitution symbol expansion in the list-
ing file:

� The .sslist directive allows substitution symbol expansion in the listing file.
The expanded line appears below the actual source line.

� The .ssnolist directive inhibits substitution symbol expansion in the listing
file.

By default, all substitution symbol expansion in the listing file is inhibited. The
lines with the pound (#) character denote expanded substitution symbols.

Example This example shows code that by default (.ssnolist directive) inhibits the listing
of substitution symbol expansion, and it shows the .sslist directive assembled,
which tells the assembler to list substitution symbol code expansion.

 1 00000000 .bss x, 1
 2 00000001 .bss y, 1
 3 ADDTWO .macro a, b, reg
 4 LDI @a, reg
 5 ADDI @b, reg
 6 STI reg, @98EAh
 7 .endm
 8
 9 00000000 ADDTWO x,y,R0
1 00000000 08200000– LDI @x, R0
1 00000001 02200001– ADDI @y, R0
1 00000002 152098ea STI R0, @98EAh
 10 .sslist
 11 00000003 ADDTWO x,y,R1
1 00000003 08210000– LDI @a, reg
LDI @x, R1
1 00000004 02210001– ADDI @b, reg
ADDI @y, R1
1 00000005 152198ea STI reg, @98EAh
STI R1, @98EAh

.string Initialize Text

4-64

Syntax .string ” string1 ” [, ... , ” stringn ”]

Description The .string directive places 8-bit characters from a character string into the cur-
rent section. The data is packed so that each word contains four 8-bit values.
Each string is either:

� An expression that the assembler will evaluate and treat as a 32-bit signed
number, or

� A character string enclosed in double quotes. Each character represents
a separate value.

Values are packed into words, starting with the least significant byte of the
word and moving toward the most significant portion as more bytes are added.
Any unused space is padded with null bytes (0s). This directive differs from
.byte in that .byte does not pack values into words.

The assembler truncates any values that are greater than 8 bits. You may have
up to 100 operands, but they must fit on a single source statement line.

If you use a label, it points to the first word that is initialized.

Example This example places 8-bit values into words in the current section.

1 00000000 44434241 Str_3: .string ”ABCD”
2 00000001 54535251 .string 51h, 52h, 53h, 54h
3 00000002 73756F48 .string ”Houston”

00000003 006E6F74
4 00000004 00000030 .string 36 + 12

 Structure Type .struct/.endstruct/.tag

4-65 Assembler Directives

Syntax [stag] .struct [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
[memn] .tag stag [exprn]
 . . .
[memN] element [exprN]
[size] .endstruct

 label .tag stag

Description The .struct directive assigns symbolic offsets to the elements of a data struc-
ture definition. This enables you to group similar data elements together and
then let the assembler do the element offset calculation. This is similar to a C
structure or a Pascal record. The .struct directive does not allocate any
memory; it merely creates a symbolic template that can be used repeatedly.

The .tag directive gives structure characteristics to a label, simplifying the sym-
bolic representation and providing the ability to define structures that contain
other structures. .tag does not allocate memory. The structure tag (stag) of a
.tag directive must have been previously defined.

[stag] Is the structure’s tag. Its value is associated with the beginning of
the structure. If no stag is present, this tells the assembler to put the
structure members in the global symbol table with their value being
their absolute offset from the top of the structure.

[expr] Is an expression indicating the beginning offset of the structure.
Structures default to start at 0.

[memn] Is a label for a member of the structure. This label is absolute and
equates to the present offset from the beginning of the structure.
A label for a member structure cannot be declared global.

element Is one of the following descriptors: .string, .byte, .word, .float, .tag,
.struct, and .field. All of these, except .tag, are typical directives that
initialize memory. Following a .struct directive, these directives de-
scribe the structure element’s size. They do not allocate memory.
A .tag directive is a special case because a stag must be specified
(as in the definition).

[exprn] Is an expression for the number of elements described. This value
defaults to 1. Note that a .string element is considered to be one
byte in size, and a .field element is one bit.

[size] Is a label for the total size of the structure.

.struct/.endstruct/.tag Structure Type

4-66

Note: The Types of Directives That Can Appear in a struct/.endstruct
 Sequence

The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on byte boundaries. Note that
empty structures are illegal.

Example 1 1 0000 real_rec .struct ; stag
2 0000 nom .byte ; member1 = 0
3 0001 den .byte ; member2 = 1
4 0002 real_len .endstruct ; real_len = 2
5
6 0000 –8a0001 mov &real+real_rec.den, A ; access
7
8 0000 .bss real, real_len ; allocate

Example 2 6 0000 cplx_rec .struct ; stag
7 0000 reali .tag real_rec ; member1 = 0
8 0002 imagi .tag real_rec ; member2 = 2
9 0004 cplx_len .endstruct ; cplx_len = 4

10
11 complex .tag cplx_rec
12 0000 .bss complex, cplx_len ; allocate
13
14 0000 –8a0002 mov &complex.imagi.nom, A
15 0003 –8d0001 cmp &complex.reali.den, A
16

Example 3 1 0000 .struct ; no stag puts memNs into
2 0000 ; global symbol table
3 0000 x .byte ; create 3 dim templates
4 0001 y .byte
5 0002 z .byte
6 .endstruct

Example 4 1 0000 bit_rec.struct ; stag
2 0000 stream .string 64
3 0040 bit7 .field 7
4 0040 bit1 .field 1
5 0041 bit5 .field 5
6 0042 x_int .byte
7 0043 bit_len.endstruct
8
9

10 bits .tag bit_rec
11 0000 .bss bits, bit_len
12
13 0000 –8a0040 mov &bits.bit7, A ; load field
14 0003 237f and #7fh, A ; mask off garbage

 Set Tab Size .tab

4-67 Assembler Directives

Syntax .tab size

Description The .tab directive defines the tab size. Tabs encountered in the source input
will be translated to size spaces in the listing. The default tab size is eight.

Example Each of the following lines consists of a single tab character followed by a NOP
instruction, another tab, and a comment.

 1 ; default tab size
 2 00000000 0c800000 nop ;no–op
 3 00000001 0c800000 nop ;no–op
 4 00000002 0c800000 nop ;no–op
 5 .tab 4
 6 00000003 0c800000 nop ;no–op
 7 00000004 0c800000 nop ;no–op
 8 00000005 0c800000 nop ;no–op
 9 .tab 16
 10 00000006 0c800000 nop ;no–op
 11 00000007 0c800000 nop ;no–op
 12 00000008 0c800000 nop ;no–op
 13

.text Assemble Into .text Section

4-68

Syntax .text

Description The .text directive tells the assembler to begin assembling into the .text sec-
tion, which typically contains executable code. The section program counter
is set to 0 if nothing has yet been assembled into the .text section. If code has
already been assembled into the .text section, the section program counter re-
sumes its previous value in the section.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the .text
section unless you specify one of the other initialized-section directives (.data,
.sect, or .asect).

For more information about COFF sections, see Chapter 2.

Example This example assembles code into the .text and .data sections. The .text sec-
tion contains bytes 1, 2, 3, and 4, and the .data section contains bytes 5, 6, 7,
and 8.

 1 ***
 2 ** .text section (default) **
 3 ***
 4 00000000 00000001 .byte 1
 5 00000001 00000002 .byte 2,3
 00000002 00000003
 6 ***
 7 ** switch to .data **
 8 ***
 9 00000000 .data
 10 00000000 00000007 .byte 7,8
 00000001 00000008
 11 ***
 12 ** Resume assembling into .text **
 13 ***
 14 00000003 .text
 15 00000003 00000004 .byte 4
 16

 Define Page Title .title

4-69 Assembler Directives

Syntax .title ” string”

Description The .title directive supplies a title that is printed in the heading on each listing
page. The source statement itself is not printed, but the line counter is incre-
mented. The string is a quote-enclosed title of up to 50 characters. If you sup-
ply more than 50 characters, the assembler truncates the string and issues a
warning.

The assembler prints the title on the page that follows the directive, and on sub-
sequent pages until another .title directive is processed. If you want a title on
the first page of a listing, then the first source statement must be a .title direc-
tive.

Example This example prints the title **** Floating Point Routines **** in the page head-
ings of the source listing.

Source file:

.title ”**** Floating Point Routines ****”

Listing file:

TMS320C3x/4x COFF Assembler Version x.xx Wed Feb 1 11:09:27 1997
Copyright (c) 1987–1997 Texas Instruments Incorporated

**** Floating Point Routines **** PAGE 1

.usect Reserve Uninitialized Section

4-70

Syntax symbol .usect ” section name”, size in words [, word alignment flag]

Description The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve space
for data and have no contents. However, .usect defines additional sections
that can be placed anywhere in memory, independently of the .bss section.

� The symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of the variable that
you’re reserving space for.

� Only the first 8 characters of the section name are significant. The section
name may be enclosed in quotes. This parameter names the uninitialized
section.

� The size is an expression that defines the number of words that will be re-
served in section name.

Other sections directives (.text, .data, .sect, and .asect) end the current sec-
tion and tell the assembler to begin assembling into another section. The
.usect and the .bss directives, however, do not affect the current section. The
assembler assembles the .usect and the .bss directives and then resumes as-
sembling into the current section.

You can repeat the .usect directive to define more than one variable in the
specified section. Variables that can be located contiguously in memory can
be defined in the same section by using multiple .usect directives with the
same section name.

For more information about COFF sections, see Chapter 2.

Example This example uses the .usect directive to define two uninitialized, named sec-
tions, var1 and var2. The symbol ptr points to the first word reserved in the var1
section. The symbol array points to the first word in a block of 100 words re-
served in var1, and dflag points to the first word in a block of 50 words in var1.
The symbol vec points to the first word reserved in the var2 section.

Figure 4–3 on page 4-71 shows how this example reserves space in two
uninitialized sections, var1 and var2.

 Reserve Uninitialized Section .usect

4-71 Assembler Directives

Example 4–8. Defining Two Uninitialized, Named Sections

 1 ***************************************
 2 * Assemble into .text *
 3 ***************************************
 4 00000000 .text
 5 00000000 08010000 LDI R0,R1
 6 ***************************************
 7 * Reserve 1 word in var1 *
 8 ***************************************
 9 00000000 ptr .usect ”var1”, 1
 10 ***************************************
 11 * Reserve 100 more words in var1 *
 12 ***************************************
 13 00000001 array .usect ”var1”, 100
 14 00000001 08020001 LDI R1,R2 ; Still in .text
 15 ***************************************
 16 * Reserve 50 more words in var1 *
 17 ***************************************
 18 00000065 dflag .usect ”var1”, 50
 19 00000002 08030002 LDI R2,R3 ; Still in .text
 20 ***************************************
 21 * Reserve 100 words in var2 *
 22 ***************************************
 23 00000000 vec .usect ”var2”, 100
 24 00000003 08200000– LDI @vec,R0 ; Still in .text
 25 ***************************************
 26 * Declare an external .usect symbol *
 27 ***************************************
 28 .global array
 29

Figure 4–3. The .usect Directive

1 word

100 words

50 words

100 words

section var1 section var2

151 words reserved in var1

100 words reserved in var2

ptr

array

dflag

vec

.version Generation Version

4-72

Syntax .version generation number

Description The .version directive tells the assembler which generation processor this
code is for. Valid generation numbers are 30, 31, 32, 40 and 44. The default
is 30.The version directive must appear before an instruction or directive, or
else an error will occur. The version directive can be used instead of the –v
command line option.

Example In this example, the code will always be assembled and linked for the ’C40 pro-
cessor unless overridden by a –v command line option:

.version 40 ; target is TMS320C40
ADDI 5, *+AR0(5), R0

5-1Instruction Set

Instruction Set

The TMS320C3x/C4x assembler supports a base set of general-purpose
instructions as well as arithmetic instructions that are particularly suited for
digital signal processing and other numeric-intensive applications.

This chapter does not cover topics such as opcodes or instruction timing; the
TMS320C3x User’s Guide and TMS320C4x User’s Guide discuss the
instruction set in detail. Those user’s guides also contain an alphabetical pre-
sentation, which is similar to the directives reference in Chapter 4 of this book.

This chapter provides a general summary of the TMS320C3x and
TMS320C4x instruction sets:

� Section 5.1 lists information that will help you use the instruction set,
including addressing modes, optional syntaxes, condition codes and
flags, and abbreviations and symbols.

� Section 5.2 describes the instructions according to function.

� Section 5.3 contains the instruction set summary table, which provides
each instruction’s syntax, operation, and description.

Topic Page

5.1 Using the Instruction Set Summary 5-2.

5.2 Functional Summary of the Instruction Set 5-8.

5.3 Instruction Set Summary Table 5-20.

Chapter 5

Using the Instruction Set Summary

 5-2

5.1 Using the Instruction Set Summary

This section summarizes addressing modes, optional syntaxes, condition
codes and flags, and symbols and abbreviations used in the summary table.

5.1.1 Addressing Modes

The TMS320C3x and TMS320C4x User’s Guides discuss addressing modes
in detail. In some cases, the addressing modes are different for the
TMS320C30 and TMS320C40:

� General addressing modes

Register mode: The operand is a CPU register. For floating-point
operations, use an extended register, (R0–R7) (R0–R11 on the C40). For
integer operations, use any register.

Direct mode: . The operand is the contents of a 32-bit address, specified
by @addr. The 16 MSBs of the address are specified by the DP register;
the 16 LSBs are specified by the instruction word. On the C30, addresses
are limited to 24 bits.

Indirect mode: An auxiliary register contains the address of the operand.
Table 5–1 lists the various forms that indirect operands may take. The
displacement may be specified as a value from 0–255 or as one of the
index registers (IR0 or IR1).

It is not necessary to specify the displacement if it is 1, because the
assembler assumes a default displacement of 1. For example, *++ARn is
equivalent to *++ARn(1).

Short immediate mode: The operand is a 16-bit immediate value. Short
immediate operands may be signed integers, unsigned integers, or
floating-point values, depending on the instruction.

� Three-operand addressing modes

All three-operand instructions are written OP3 src2, src1, dest

OP opcode, 3 is optional

src2, src1 operands (see Table 5–1 for legal combinations)

dest destination register

Register mode: Same as for general addressing modes. Must be R0–R7
for floating-point operations.

Indirect mode with 1-bit displacement: Same as for general addressing
modes, except the displacement is limited to 0, 1, IR0, or IR1.

Using the Instruction Set Summary

5-3Instruction Set

Immediate mode (C40 Only): The operand is a 5-bit signed integer
constant in the range –16 to15. This mode is available for integer opera-
tions only.

Indirect mode with 5-bit displacement (C40 only): *+AR (0 to 31)

� Parallel addressing modes

Register mode: The operand is an extended register (R0–R7). In some
cases, only R0/R1 or R2/R3 can be used as an operand.

Indirect mode: Same as for general addressing modes, except that the
displacement is limited to 0, 1, IR0, or IR1.

� Conditional-branch addressing modes

Register mode: The contents of the register are loaded into the PC.

PC-relative mode: A signed 16-bit or 24-bit displacement (LSBs of the
instruction word) is added to the PC. The destination address is usually
specified as a label; the assembler calculates the displacement.

Table 5–1. Indirect Addressing

Operand Description

*ARn Indirect with no displacement

*+ARn(disp) Indirect with predisplacement or preindex add

*–ARn(disp) Indirect with predisplacement or preindex subtract

*++ARn(disp) Indirect with predisplacement or preindex add and modification

*––ARn(disp) Indirect with predisplacement or preindex subtract and modification

*ARn++(disp)[%] † Indirect with postdisplacement or postindex add and modification

*ARn––(disp)[%] † Indirect with postdisplacement or postindex subtract and modification

*ARn++(IR0)B Indirect with postindex (IR0) and bit-reversed modification

† Optional circular modification (specified by %)

5.1.2 Optional Syntax

The assembler allows a relaxed syntax form for several instructions. These
optional forms simplify the assembly language so that you can ignore special-
case syntax for some instructions.

� If the source and destination register are the same, you need specify the
register only once. Instructions that can use this optional syntax include:
ABSF, ABSI , FIX, FLOAT, NEGB, NEGF, NEGI, NORM, NOT, RND,
RCPF, RSQRF, TOIEEE, FRIEEE, SIGI. For example,

Using the Instruction Set Summary

 5-4

ABSI R0,R0 can be written as ABSI R0

� You can omit the displacement for indirect operands; the assembler will
assume a displacement of 1. Instructions that use general addressing
modes, three-operand addressing modes, or parallel addressing modes
may have indirect address operands. For example,

LDI *AR0++(1),R0 can be written as LDI *AR0++,R0

� Immediate-mode operands can be written with an @ symbol. The branch
and call instructions can use this optional syntax. For example,

BR label can be written as BR @label

� All 3-operand instructions can be written without the 3. For example,

ADDI3 R0,R1,R2 can be written as ADDI R0,R1,R2

� All conditional instructions accept the suffix U to indicate unconditional
operation. Also, the U can be omitted from unconditional short branch
instructions. For example,

BU label can be written as B label

� Labels can be written with or without a trailing colon. For example,

label0: NOP can be written as label0 NOP

� STIK can be written as STI:

STIK 5, *AR1 can be written as STI 5, *AR1

� Any commutative 3-operand instruction can be written with the operands
in any order. This applies to ADDC, ADDI, MPYI, AND, OR, XOR, ADDF,
MPYF, MPYSHI, MPYUI, TSTB.

ADDI3 10,*AR3++(1),R2 can be written as ADDI *AR3+(1),10,R2

5.1.3 Condition Codes and Flags

The TMS320C3x/C4x assembler provides 20 condition codes (00000–10100
excluding 01011) and seven condition flags for use with the conditional instruc-
tions, such as RETScond or LDFcond.

The conditions include signed and unsigned comparisons, comparisons to
zero, and comparisons based on the status of individual condition flags. Note
that all conditional instructions can accept the suffix U to indicate unconditional
operation.

The seven condition flags supply information about properties of the result of
arithmetic and logical instructions. The condition flags are stored in the status

Using the Instruction Set Summary

5-5Instruction Set

register (ST) and are affected by an instruction according to the SET COND
bit of the status register.

Table 5–2 summarizes the condition codes and flags:

Table 5–2. Condition Codes and Flags

Unconditional Compares

Condition Code Description Flag

U 00000 Unconditional Don’t care

Unsigned Compares

LO
LS
HI
HS
EQ
NE

00001
00010
00011
00100
00101
00110

Lower than
Lower than or same as
Higher than
Higher than or same as
Equal to
Not Equal to

C
C OR Z
∼C AND ∼Z
∼C
Z
∼Z

Signed Compares

L
LE
GT
GE
EQ
NE

00111
01000
01001
01010
00101
00110

Less than
Less than or equal to
Greater than
Greater than or equal to
Equal to
Not equal to

N
N OR Z
∼N AND ∼Z
∼N
Z
∼Z

Compare to Zero

Z
NZ
P
N
NN

00101
00110
01001
00111
01010

Zero
Not zero
Positive
Negative
Nonnegative

Z
∼Z
∼N AND ∼Z
N
∼N

Using the Instruction Set Summary

 5-6

Table 5–2 Condition Codes and Flags (Continued)

Compare to Condition Flags

NN
N
NZ
Z
NV
V
NUF
UF
NC
C
NLV
LV
NLUF
LUF
ZUF

01010
00111
00110
00101
01100
01101
01110
01111
00100
00001
10000
10001
10010
10011
10100

Nonnegative
Negative
Nonzero
Zero
No overflow
Overflow
No underflow
Underflow
No carry
Carry
No latched overflow
Latched overflow
No latched floating-point underflow
Latched floating-point underflow
Zero or floating-point underflow

∼N
N
∼Z
Z
∼V
V
∼UF
UF
∼C
C
∼LV
LV
∼LUF
LUF
Z OR UF

Note: The ∼ means logical complement .

5.1.4 Symbols and Abbreviations

Table 5–3 lists the symbols and abbreviations used in the individual instruction
descriptions.

Table 5–3. Instruction Symbols

Symbol Meaning

src
src1
src2
src3
src4

Source operand
Source operand 1
Source operand 2
Source operand 3
Source operand 4

dst
dst1
dst2
disp
cond
count

Destination operand
Destination operand 1
Destination operand 2
Displacement
Condition
Shift count

G
T
P
B

General addressing modes
Three-operand addressing modes
Parallel addressing modes
Conditional-branch addressing modes

Using the Instruction Set Summary

5-7Instruction Set

Table 5–3 Instruction Symbols (Continued)

Symbol Meaning

ARn
IRn
Rn
RC
RE
RS
ST

Auxiliary register n
Index register n
Register address n
Repeat count register
Repeat end address register
Repeat start address register
Status register

C
GIE
N
PC
RM
SP

Carry bit
Global interrupt enable bit
Trap vector
Program counter
Repeat mode flag
System stack pointer

|x|
x → y
x(man)
x(exp)

Absolute value of x
Assign the value of x to destination y
Mantissa field (sign + fraction) of x
Exponent field of x

Functional Summary of the Instruction Set

 5-8

5.2 Functional Summary of the Instruction Set

The TMS320C3x/C4x instruction set is exceptionally well-suited to digital sig-
nal processing and other numeric-intensive applications. All instructions are
a single machine word long, and most instructions take a single cycle to ex-
ecute.

The instruction set contains 135 instructions organized into the following
functional groups:

Subject Page
Load and Store 5-8.
Arithmetic 5-10.
Logic 5-11.
Program Control 5-11.
Interlocked Operations 5-12.
Conversion 5-13.
Three Operand 5-13.
Parallel 5-14.
TMS320C40 only 5-18.
LDP and LDPK Instructions 5-19.

5.2.1 Load-and-Store Instructions

The TMS320C3x and TMS320C4x support 23 load and store instructions,
which are summarized in Table 5–4. These instructions:

� Load a word from memory into a register,

� Store a word from a register into memory, or

� Manipulate data on the system stack.

Two of these instructions can load data conditionally. This is useful for locating
the maximum or minimum value in a data set. See the TMS320C4x User’s
Guide for more information about the condition codes.

Functional Summary of the Instruction Set

5-9Instruction Set

Table 5–4. Summary of Load-and-Store Instructions

Instruction Description ’C4x Only

LBb Load byte (signed) √

LBUb Load byte (unsigned) √

LDA Load address register √

LDE Load floating-point exponent

LDF Load floating-point value

LDFcond Load floating-point value conditionally

LDHI Load 16-bit unsigned immediate into 16 MSBs √

LDI Load integer

LDIcond Load integer conditionally

LDM Load floating-point mantissa

LDPE Load integer,
primary register to expansion file register

√

LDPK Load DP register immediate √

LHW Load half-word signed √

LHUw Load half-word unsigned √

LWLct Load word left-shifted √

LWRct Load word right-shifted √

POPF Pop floating-point value from stack

PUSH Push integer on stack

PUSHF Push floating-point value on stack

STF Store floating-point value

STI Store integer

STIK Store integer immediate √

Functional Summary of the Instruction Set

 5-10

5.2.2 Arithmetic Instructions

The TMS320C3x and TMS320C4x support a complete set of arithmetic in-
structions. These instructions provide integer operations, floating-point
operations, and multiprecision arithmetic. Table 5–5 summarizes these in-
structions.

Table 5–5. Summary of Arithmetic Instructions

Instruction Description ’C4x Only

ABSF Absolute value of a floating-point number

ABSI Absolute value of an integer

ADDC † Add integers with carry

ADDF † Add floating-point values

ADDI † Add integers

ASH † Arithmetic shift

CMPF † Compare floating-point values

CMPI † Compare integers

FIX Convert floating-point value to integer

FLOAT Convert integer to floating-point value

MPYF † Multiply floating-point values

MPYI † Multiply integers

MPYSHI † Multiply signed integers; store 32 MSB product √

MPYUHI † Multiply unsigned integers; store 32 MSB product √

NEGB Negate integer with borrow

NEGF Negate floating-point value

NEGI Negate integer

NORM Normalize floating-point value

RCPR Reciprocal of floating point √

RND Round floating-point value

RSQRF Reciprocal of square root, floating point √

SUBB † Subtract integers with borrow

SUBC Subtract integers conditionally

SUBF † Subtract floating-point values

SUBRB Subtract reverse-integer with borrow

SUBRF Subtract reverse floating-point value

SUBRI Subtract reverse integer

† Two- and three-operand versions

Functional Summary of the Instruction Set

5-11Instruction Set

5.2.3 Logic Instructions

The TMS320C3x and TMS320C4x support a complete set of logical instruc-
tions, which are summarized in Table 5–6.

Table 5–6. Summary of Logical Instructions

Instruction Description ’C4x Only

AND † Bitwise logical AND

ANDN † Bitwise logical AND with complement

LSH † Logical shift

NOT Bitwise logical complement

OR † Bitwise logical OR

ROL Rotate left

ROLC Rotate left through carry

ROR Rotate right

RORC Rotate right through carry

TSTB † Test bit fields

 XOR † Bitwise exclusive OR
† Two- and three-operand versions

5.2.4 Program-Control Instructions

The program-control instruction group consists of all of those instructions (23)
that affect program flow. The repeat mode allows repetition of a block of code
(RPTB) or of a single line of code (RPTS). Both standard and delayed
(single-cycle) branching are supported. Several of the program control instruc-
tions are capable of conditional operations. Table 5–7 lists the program control
instructions.

Table 5–7. Summary of Program-Control Instructions

Instruction Description ’C4x Only

Bcond Branch conditionally (standard)

BcondAF Branch conditionally delayed and annul if false √

BcondAT Branch conditionally delayed and annul if true √

BcondD Branch conditionally, delayed

BR Branch unconditionally, standard

BRD Branch unconditionally, delayed

CALL Call subroutine

CALLcond Call subroutine conditionally

DBcond Decrement and branch conditionally, standard

Functional Summary of the Instruction Set

 5-12

Table 5–7 Summary of Program-Control Instructions(Continued)

Instruction Description ’C4x Only

DBcond[D] Decrement and branch conditionally, delayed

IDLE Idle until interrupt

IDLE2 Low–power idle

LAJ Link and jump √

LAJcond Link and jump conditional √

LATcond Link and trap conditional √

LOPOWER Divide clock by 16 (’C31 only)

MAXSPEED Restore clock to regular speed (’C31 only)

NOP No operation

RETIcond Return from interrupt conditionally

RETIcondD Return from trap or interrupt, delayed √

RETScond Return from subroutine conditionally

RPTB Repeat block of instructions

RPTBD Repeat block, delayed √

RPTS Repeat single instruction

SWI Software interrupt

TRAPcond Trap conditionally

5.2.5 Interlocked-Operation Instructions

The interlocked-operations instructions support multiprocessor
communication and the use of external signals to allow for powerful
synchronization mechanisms. They also guarantee the integrity of the
communication and result in a high-speed operation. Table 5–8 lists the inter-
locked-operation instructions.

Table 5–8. Summary of Interlocked-Operation Instructions

Instruction Description ’C4x Only

LDFI Load floating-point value, interlocked

LDII Load integer, interlocked

SIGI Signal, interlocked

STFI Store floating-point value, interlocked

STII Store integer, interlocked

Functional Summary of the Instruction Set

5-13Instruction Set

5.2.6 Conversion Instructions

The TMS320C40 supports two floating-point format conversion instructions:

Table 5–9. Summary of Conversion Instructions

Instruction Description ’C4x Only

FRIEEE Convert IEEE floating-point format to
2s-complement floating-point format

√

TOIEEE Convert 2s-complement format to
IEEE floating-point format

√

5.2.7 Three-Operand Instructions

Most instructions have only two operands; however, several arithmetic and
logical instructions have three-operand versions. Three-operand instructions
allow the TMS320C3x/C4x to read two operands from memory or the register
file in a single cycle. The following differentiates the two- and three-operand
instructions:

� Two-operand instructions have a single source operand (or shift count)
and a destination operand.

� Three-operand instructions may have two source operands (or one
source operand and a count operand) and a destination operand. A
source operand may be a memory word or a register. The destination of
a three-operand instruction is always a register.

Table 5–10 lists the instructions that have three-operand versions. Note that
the 3 in the mnemonic can be omitted from three-operand instructions.

Functional Summary of the Instruction Set

 5-14

Table 5–10. Summary of Three-Operand Instructions

Instruction Description ’C4x Only

ADDC3 Add with carry

ADDF3 Add floating-point values

ADDI3 Add integers

AND3 Bitwise logical AND

ANDN3 Bitwise logical AND with complement

ASH3 Arithmetic shift

CMPF3 Compare floating-point values

CMPI3 Compare integers

LSH3 Logical shift

MPYF3 Multiply floating-point values

MPYI3 Multiply integers

MPYSHI3 Multiply signed integer; store 32-MSB product √

MPYUHI3 Multiply unsigned integer; store 32-MSB product √

OR3 Bitwise logical OR

SUBB3 Subtract integers with borrow

SUBF3 Subtract floating-point values

SUBI3 Subtract integers

TSTB3 Test bit fields

XOR3 Bitwise exclusive-OR

5.2.8 Parallel Instructions
Some of the TMS320 instructions can occur in pairs that will be executed in
parallel. Table 5–11 lists the valid instruction pairs. These parallel
instructions allow:

� Parallel loading of register,
� Parallel arithmetic operations, and
� Arithmetic or logical instructions that can be used in parallel with a store

instruction.

Each instruction in a pair is entered as a separate source statement; the sec-
ond instruction must be preceded by two vertical bars (||). This example
shows the syntax for parallel instructions:

label: ADDI3 R0,*AR0,R1 ; Part 1 (label is
; optional)

|| STI R4,*+AR11. ; Part 2

Note that the first instruction in the pair may have a label, but the second in-
struction cannot have a label.

Functional Summary of the Instruction Set

5-15Instruction Set

The assembler allows several relaxed syntax forms for parallel instructions:

� The vertical bars can be placed in column 1 or anywhere between column
1 and the mnemonic. Here is another example of valid syntax for parallel
instructions:

label: MPYI3 R0,*AR1,R0
|| ADDI3 *AR2,R1,R2

� The instructions in a parallel instruction pair may be specified in either or-
der. For instance, the preceding example could also be specified as:

label: ADDI3 *AR2,R1,R2
|| MPYI3 R0,*AR1,R0

� Alternate forms of the parallel/load and store/store instructions allow you
to explicitly specify the execution order. These have the same syntax as
the normal forms but the mnemonics are suffixed with “1” and “2”. For ex-
ample, this is the normal form:

STI R0,*AR4 ; executes second
|| STI R1,*AR4 ; executes first

can be written as

STI1 R0,*AR4 ; executes first
|| STI2 R1,*AR4 ; executes second

� If one of the instructions in a pair uses a three-operand instruction, you can
omit the 3 for that instruction.

MPYI3 R0,*AR1,R0 can be MPYI R0,*AR1,R0
|| ADDI3 *AR2,R1,R2 written as || ADDI *AR2,R1,R2

� All commutative operations can be written in either order. For example,

ADDI *AR0,R1,R2 can be written as ADDI R1,*AR0,R2

� The third operand of a three-operand instruction specifies a destination
register. You can omit the third operand if it is the same as the second oper-
and. This allows you to use three-operand instructions that look like two-
operand instructions. For example,

ADDI3 *AR0,R2,R2 can be ADDI *AR0,R2
MPYI3 *AR1,R0,R0 written as MPYI *AR1,R0

� Instructions that can use the preceding two syntaxes include:
ADDC3 AND3 LSH3 OR3 SUBI3
ADDF3 ANDN3 MPYF3 SUBB3 XOR3
ADDI3 ASH3 MPYI3

Note that all registers are read at the beginning of the execution cycle and
loaded at the end of the execution cycle. If an instruction in a pair reads a regis-
ter and another instruction writes to the same register, then the former instruc-
tion uses the contents of the register before it is modified by the latter instruc-
tion.

Functional Summary of the Instruction Set

 5-16

Table 5–11. Summary of Parallel Instructions

Parallel Arithmetic With Store Instructions

Mnemonic Description ’C4x Only

ABSF || STF Absolute value of a floating-point number
and store floating-point value

ABSI || STI Absolute value of an integer and store integer

ADDF3 || STF Add floating-point values and store floating-point
value

ADDI3 || STI Add integers and store integer

AND3 || STI Bitwise logical-AND and store integer

ASH3 || STI Arithmetic shift and store integer

FIX || STI Convert floating-point to integer and store integer

FLOAT || STF Convert integer to floating-point value
and store floating-point value

FRIEEE || STF Convert IEEE floating point format and store √

LDF || STF Load floating-point value and store floating-point
value

LDI || STI Load integer and store integer

LSH3 || STI Logical shift and store integer

MPYF3 || STF Multiply floating-point values and store floating-
point value

MPYI3 || STI Multiply integer and store integer

NEGF || STF Negate floating-point value and store floating-point
value

NEGI || STI Negate integer and store integer

NOT3 || STI Complement value and store integer

OR3 || STI Bitwise logical-OR value and store integer

STF || STF Store floating-point values

STI || STI Store integers

SUBF3 || STF Subtract floating-point value and store floating-
point value

TOIEEE || STF Convert to IEEE format and store √

SUB3 || STI Subtract integer and store integer

XOR3 || STI Bitwise exclusive-OR values and store integer

Functional Summary of the Instruction Set

5-17Instruction Set

Table 5–11. Summary of Parallel Instructions (Continued)

Parallel Load Instructions

Mnemonic Description ’C4x Only

LDF || LDF Load floating-point

LDI || LDI Load integer

Parallel Multiply and Add/Subtract Instructions

Mnemonic Description ’C4x Only

MPYF3 || ADDF3 Multiply and add floating-point

MPYF3 || SUBF3 Multiply and subtract floating-point

MPYI3 || ADDI3 Multiply and add integer

MPYI3 || SUBI3 Multiply and subtract integer

Functional Summary of the Instruction Set

 5-18

5.2.9 TMS320C4x-Only Instructions

Some of the instructions work only on the TMS320C4x. Table 5–12 lists these
instructions.

Table 5–12. Summary of TMS320C4x-Only Instructions

Instruction Description

BcondAF Branch conditionally delayed and annul if false

BcondAT Branch conditionally delayed and annul if true

FRIEEE Convert from IEEE format

FRIEEE||STF Parallel FRIEEE and STF

LAJ Link and Jump (Single-cycle subroutine call)

LAJcond Link and jump conditionally (Single-cycle subroutine call)

LATcond Link and trap conditional delayed (delayed conditional trap)

LBb Load sign-extended byte

LBUb Load unsigned byte

LDA Load address register (faster than LDI for select registers)

LDEP Load integer from expansion register file to primary register file

LDHI Load 16 MSBs with 16-bit immediate

LDPE Load integer from primary register file to expansion register file

LDPK Load data-page pointer immediate

LHw Load sign-extended half-word

LHUw Load unsigned half-word

LWLct Load word left-shifted (ct = no. of bytes to shift left, 1, 2, or 3)

LWRct Load word right-shifted (ct = no. of bytes to shift right, 1, 2, or 3)

MBct Merge byte left-shifted (ct = no. of bytes to shift left, 1, 2, or 3)

MHct Merge half-word left-shifted (ct = no. of bytes to shift left)

MPYSHI Multiply signed integer and produce 32 MSBs

MPYSHI3 Multiply signed integer and produce 32 MSBs (3 operand)

MPYUHI Multiply unsigned integer and produce 32 MSBs

MPYUHI3 Multiply unsigned integer and produce 32 MSBs (3 operand)

Functional Summary of the Instruction Set

5-19Instruction Set

Table 5–12. Summary of TMS320C4x-Only Instructions (Continued)

Instruction Description

RCPF Reciprocal of floating-point value

RETIcondD Return from interrupt conditionally or trap conditionally delayed

RPTBD Repeat block delayed

RSQRF Reciprocal of the square root of a floating-point value

STIK Store integer immediate value

TOIEEE Convert to IEEE format

TOIEEE||STF Parallel TOIEEE and STF

5.2.10 LDP and LDPK Instructions

The LDP (load data page pointer) and LDPK (load data page pointer, immedi-
ate) instructions are special forms of the LDI (load integer) instruction.

LDP enables you to load a register (usually the DP register) with the page num-
ber of a relocatable address. A page number is represented by the eight MSBs
of a 24-bit address. The page number is combined with the 16 LSBs of an in-
struction word to form a direct address.

LDP is a pseudo-op on the C4x only. If the destination register is the DP (de-
fault value), this instruction actually generates an LDPK instruction. Other-
wise, it generates an LDIU instruction. Since the ’C30 does not have an LDPK
instruction, LDP always generates an LDIU instruction.

LDPK allows you to load a 16-bit unsigned immediate value into the DP regis-
ter. The value is loaded and ready for the next instruction for immediate ad-
dressing.

Instruction Set Summary Table

 5-20

5.3 Instruction Set Summary Table

Syntax Description ’C4x
Only

ABSF src,dst
[ABSF dst]

Absolute Value of a Floating-Point Number

Operation: |src| → dst

Load the absolute value of the source operand into the destination register.
The operands are floating-point numbers.

ABSI src,dst
[ABSI dst]

Absolute Value of an Integer

Operation: |src| → dst

Load the absolute value of the source operand into the destination register.
The operands are signed integers.

ADDC src,dst Add Integers With Carry

Operation: src + dst + C → dst

Add the contents of the source operand, the destination register, and the carry
bit together, and store the sum in the destination register. The operands are
signed integers.

ADDC3 src2,src1,dst
[ADDC src2,src1,dst]

Add Integers With Carry (3-Operand)

Operation: src1 + src2 + C → dst

Add source 1, source 2, and the carry bit together, and store the sum in the
destination register. The operands are signed integers.

ADDF src,dst Add Floating-Point Values

Operation: src + dst → dst

Add the contents of the source operand to the contents of destination register
and store the result in the destination register. The operands are floating-point
numbers.

ADDF3 src2,src1,dst
[ADDF src2,src1,dst]

Add Floating-Point Values (3-Operand)

Operation: src1 + src2 → dst

Add source 1 and source 2 together and store the sum in the destination regis-
ter. The operands are floating-point numbers.

ADDI src,dst Add Integers

Operation: src + dst → dst

Add the source operand to the contents of the destination register and store
the sum in the destination register. The operands are signed integers.

ADDI3 src2,src1,dst
[ADDI src2,src1,dst]

Add Integers (3-Operand)

Operation: src1 + src2 → dst

Add source 1 and source 2 together and store the sum in the destination regis-
ter. The operands are signed integers.

Instruction Set Summary Table

5-21Instruction Set

Syntax ’C4x
Only

Description

AND src,dst
[AND src,dst]

Bitwise Logical AND

Operation: dst AND src → dst

Perform a bitwise logical AND of the source operand and the destination
register and store the result in the destination register. The operands are un-
signed integers.

AND3 src2,src1,dst
[AND src2,src1,dst]

Bitwise Logical AND (3-Operand)

Operation: src1 AND src2 → dst

Perform a bitwise logical AND of source 1 and source 2 and store the result
in the destination register. All the operands are signed integers.

ANDN src, dst Bitwise Logical AND With Complement

Operation: dst AND ~ src → dst

Perform a bitwise logical AND of the destination register and the bitwise log-
ical complement (~) of the source operand, and store the result into the desti-
nation register. Both operands are unsigned integers.

ANDN3 src2,src1,dst
[ANDN src2,src1,dst]

Bitwise Logical ANDN (3-Operand)

Operation: src1 AND ~ src2 → dst

Perform a bitwise logical AND of source operand 1 and the bitwise logical
complement (~) of the source operand 2, and store the result into the destina-
tion register. All the operands are signed integers.

ASH count,dst Arithmetic Shift

Operation: If count ≥ 0
dst << count → dst

Else
dst >> |count| → dst

The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).

If count > 0, left-shift the contents of the destination register by count. Low-ord-
er bits are filled with 0s, and high-order bits are shifted out through the carry
bit.

If count < 0, right-shift the contents of the destination register by the absolute
value of count. High-order bits are sign-extended as they are right-shifted, and
low-order bits are shifted out through the carry bit.

If count = 0, no shift is performed and the carry bit is set to 0.

Both operands are signed integers.

Instruction Set Summary Table

 5-22

Syntax ’C4x
Only

Description

ASH3 count,src,dst
[ASH count,src,dst]

Arithmetic Shift (3-Operand)

Operation: If count ≥ 0
src << count → dst

Else
src >> |count| → dst

The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).

If count > 0, left-shift the source operand by count. Low-order bits will be filled
with 0s, and high-order bits are shifted out through the carry bit.

If count < 0, right-shift the contents of the destination register by the absolute
value of count. High-order bits are sign-extended as they are right-shifted, and
low-order bits are shifted out through the carry bit.

If count = 0, no shift is performed and the carry bit is set to 0.

Bcond src
[Bcond @src]

Branch Conditionally (Standard)

Operation: If cond = true
If src is a register, src → PC
If src is in PC-relative mode, displacement + PC + 1 → PC

Else, continue

Performs a branch if the condition is true.

If the source operand is a register, its contents are loaded into the PC. If the
source operand is expressed in PC-relative mode, the assembler generates
a displacement: displacement = label – (PC of branch instruction +1). The dis-
placement is stored as a 16-bit signed integer in the 16 least significant bits
of the branch instruction word. This displacement is added to the PC of the
branch instruction + 1 to generate the new PC.

The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.

Bcond AF src Branch Conditionally Delayed and Annul if False

Operation: If cond = true
If src is a register, src → PC
If src is in PC-relative mode, src + PC of branch + 3 → PC

Else
If cond is false

annul execute phase results of next three instructions
and continue

If the condition is true, the instruction performs a branch and the next three
instructions. If the condition is false, the instruction annuls the effect of the ex-
ecute phase of the next three instructions and continues.

If the source operand is a register, its contents are loaded into the PC. If the
source operand is an immediate value, then the sum of the PC (of the branch
instruction) + 3 and the src are loaded into the PC.

The three instructions following the BcondAF instruction may not modify the
program flow.

√

Instruction Set Summary Table

5-23Instruction Set

Syntax ’C4x
Only

Description

Bcond AT src Branch Conditionally Delayed and Annul if True

Operation: If cond = true
If src is a register, src → PC

annul execute phase results of next three instructions
If src is in PC-relative mode, src + PC of branch + 3 → PC

annul execute phase results of next three instructions
Else, continue

If the condition is true, the instruction performs a branch and annuls the effect
of the execute phase of the next three instructions.

If the source operand is a register, its contents are loaded into the PC. If the
source operand is an immediate value, then the sum of the PC (of the branch
instruction) + 3 and the src are loaded into the PC.

The three instructions following the BcondAT instruction may not modify the
program flow.

√

Bcond D src
[Bcond D @src]

Branch Conditionally (Delayed)

Operation: If cond = true
If src is a register, src → PC
If src is in PC-relative mode, displacement + PC + 3 → PC

Else, continue

Performs a delayed branch that allows the three instructions after the delayed
branch to be fetched before the condition is true if the condition is true.

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label – (PC of branch instruc-
tion +1). The displacement is stored as a 16-bit signed integer in the 16 least
significant bits of the branch instruction word.

The three instructions following the BcondD instruction may not modify the
program flow.

BR src
[BR @src]

Branch Unconditionally

Operation: src → PC C3x
PC + 1 + src → PC C4x

Performs an unconditional branch. The source operand is a 24-bit signed inte-
ger for the ’C4x only (in the PC-concatenation addressing mode). The source
operand is a 24-bit unsigned address for the ’C3x.

BRD src
[BRD @src]

Branch Unconditionally Delayed

Operation: src → PC C3x
PC + 3 + src → PC C4x

Perform an unconditional branch. The source operand is a 24-bit signed inte-
ger for the ’C4x only (in the PC-concatenation addressing mode). The source
operand is a 24-bit unsigned address for the ’C3x.

Instruction Set Summary Table

 5-24

Syntax ’C4x
Only

Description

CALL src
[Call @src]

Call Subroutine

Operation: Next PC → *(++SP)
PC + 1 + src → PC C4x
src → PC C3x

Calls a subroutine. The next PC value is pushed onto the system stack. The
source operand + 1 + PC (of the call) is loaded into the PC. The source oper-
and is a 24-bit signed immediate value for the ’C4x only. The source operand
is a 24-bit unsigned address for the ’C3x.

CALLcond src
[Callcond @src]

Call Subroutine Conditionally

Operation: If cond = true
Next PC → *++SP
If src is a register, src → PC
If src is in PC-relative mode, displacement + PC + 1 → PC

Else, continue

Call a subroutine if the condition is true.

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label – (PC of branch instruc-
tion +1). The displacement is stored as a 16-bit signed integer in the 16 LSBs
of the branch instruction word. The displacement is added to the PC of the call
instruction + 1 to generate the new PC.

The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.

CMPF src,dst Compare Floating-Point Values

Operation: dst – src

Compare the source and destination operands by subtracting the source from
the destination. The result of the subtraction is not stored; this is a nondestruc-
tive compare. Both operands are floating-point numbers.

CMPF3 src2,src1
[CMPF src2,src1]

Compare Floating-Point Values (3-Operand)

Operation: src1 – src2

Compare the source operands by subtracting source 2 from source 1. The re-
sult of the subtraction is not stored; this is a nondestructive compare. Both op-
erands are floating-point numbers.

CMPI src,dst Compare Integers

Operation: dst – src

Compare the source and destination operands by subtracting the source from
the destination. The result of the subtraction is not stored; this is a nondestruc-
tive compare. Both operands are integers.

Instruction Set Summary Table

5-25Instruction Set

Syntax ’C4x
Only

Description

CMPI3 src2,src1
[CMPI src2,src1]

Compare Integers (3-Operand)

Operation: src1 – src2

Compare the two source operands by subtracting source 2 from source 1. The
result of the subtraction is not stored; this is a nondestructive compare. Both
operands are integers.

DBcond ARn,src
[DBcond ARn,@src]

Decrement and Branch Conditionally (Standard)

Operation: ARn – 1 → ARn
If cond = true and ARn ≥ 0

If src is a register, src → PC
If src is in PC-relative mode, displacement + PC + 1 → PC

Else, continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. (Executes in four cycles.) The
auxiliary register is treated as a 24-bit signed integer (32 for ’C4x).

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label – (PC of branch instruc-
tion + 1). The displacement is stored as a 16-bit signed integer in the 16 least
significant bits of the branch instruction word. The displacement is added to
the PC of the call instruction + 1 to generate the new PC.

DBcond D ARn,src
[DBcond ARn,@src]

Decrement and Branch Conditionally (Delayed)

Operation: ARn – 1 → ARn
If cond = true and ARn ≥ 0

If src is a register, src → PC
If src is in PC-relative mode, displacement + PC + 3 → PC

Else, continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. The auxiliary register is treated
as a 24-bit signed integer (32 for ’C4x).

If the source operand is expressed as a register, its contents are loaded into
the PC. If the source operand is expressed in PC-relative mode, the assem-
bler generates a displacement: displacement = label – (PC of branch instruc-
tion + 3). The displacement is stored as a 16-bit signed integer in the 16 least
significant bits of the branch instruction word. The displacement is added to
the PC of the call instruction + 3 to generate the new PC.

The three instructions following the DBcondD instruction may not modify the
program flow.

FIX src,dst
[FIX dst]

Convert Floating-Point Value to Integer

Operation: fix(src) → dst

Convert a floating-point operand to the nearest integer that is less than or
equal to its absolute value and load the result into the destination register.

Instruction Set Summary Table

 5-26

Syntax ’C4x
Only

Description

FLOAT src,dst
[FLOAT dst]

Convert Integer to Floating-Point Value

Operation: float(src) → dst

Convert an integer into a floating-point value and load the result into the desti-
nation register.

FRIEEE src,dst Convert From IEEE Format

Operation: convert src from IEEE → dst

Convert the source operand from a IEEE floating-point format to the 2s-com-
plement floating-point format, and store the result into the destination (exten-
ded-precision) register. The source operand comes from memory. The con-
verted result is stored as a single-precision floating-point number.

√

IACK src Interrupt Acknowledge

Operation: Perform a dummy read operation with IACK = 0.
At end of dummy read, set IACK = 1.

Perform a dummy read operation with IACK = 0. IACK is set to 1 at the end
of the dummy read. This instruction can be used to generate an external inter-
rupt acknowledge.

If the specified address is off-chip, the processor reads the data at that
address. Then, the IACK signal and the address can be used to signal an inter-
rupt acknowledge to external devices. The data read by the processor is not
used.

IDLE Idle Until Interrupt

Operation: 1 → ST(GIE)
Next PC → PC
Idle until interrupt

Load the next PC value into the PC, and the CPU idles until an interrupt is re-
ceived. When an interrupt is received, the contents of the PC are pushed onto
the system stack.

IDLE2 Low–power Idle (’C31, ’C40, ’C44 only)

Operation: 1 → ST(GIE)
Next PC → PC
Idle until interrupt

Performs the same function as IDLE, except that it removes the functional
clock input from the internal device. This allows for extremely low power
mode. The PC is incremented once, and the device remains in an idle state
until one of the external interrupts (INT0–3) is asserted.

Instruction Set Summary Table

5-27Instruction Set

Syntax ’C4x
Only

Description

LAJ src Link and Jump

Operation: PC of LAJ + 4 → R31 (extended-precision register R11)
src [+ 3 + PC of LAJ] → PC

Performs a single-cycle subroutine call. The three instructions following the
LAJ instruction are performed. The return address (address of LAJ instruction
+ 4) is placed in extended-precision register R11. The source operand is a
24-bit signed integer (in the PC-concatenation addressing mode).

The three instructions following the DBcondD instruction may not modify the
program flow.

√

LAJ cond src Link and Jump Conditionally

Operation: If cond = true
If src is a register

PC of LAJcond + 4 → extended-precision register R11
src → PC

If src is in PC-relative mode
PC of LAJcond + 4 → extended-precision register R11
src + PC of LAJ + 3 → PC

Else, continue

Performs a conditional single-cycle subroutine call. The three instructions fol-
lowing the LAJcond instruction are performed. The return address (address
of LAJ instruction + 4) is placed in extended-precision register R11.

The three instructions following the LAJcond instruction may not modify the
program flow.

√

LATcond N Link and Trap Conditionally

Operation: If cond = true
[ST(GIE) → ST (PGIE)
ST(CF) → ST(PCF)]
0 → ST(GIE)
1 → ST(CF)
PC of LATcond + 4 → R31 (extend-precision register R11)
trap vector N → PC

Else, continue

Performs a delayed conditional trap. If you nest the traps, you may have to
save the status register before executing LATcond.

If the condition is true:
GIE and CF are saved in PGIE and PCF in the status register,
all interrupts are disabled,
the cache is frozen,
the contents of the PC (of LATcond + 4) are placed in R31, and
the PC is loaded with the contents of the specified trap vector (N).

If the condition is not true, then normal execution continues.

The three instructions following LATcond are fetched and executed. None of
these three instructions may modify the program flow.

√

Instruction Set Summary Table

 5-28

Syntax ’C4x
Only

Description

LBb (0,1,2,3) src,dst Load Byte, Signed

Operation: sign-extended byte (0,1,2,3) of src → dst

Sign-extend and right-shift the specified byte of the source operand, and then
load it into the 8 LSBs of the destination register. The source operand is
signed.

√

LBUb (0,1,2,3) src,dst Load Byte, Unsigned

Operation: byte (0,1,2,3) of src → dst

Right-shift the specified byte of the source operand and load it into the 8 LSBs
of the destination register. The source operand is unsigned.

√

LDA src,dst Load Address Register

Operation: src → dst

Load the source operand into the destination register. The destination register
may be any of these address registers: AR0–AR7, IR0, IR1, DP, BK, or SP.
The load is finished by the end of the read phase of the pipeline; therefore,
LDA is one cycle faster than LDI for loading these registers. All the operands
are treated as signed integers.

√

LDE src,dst Load Floating-Point Exponent

Operation: src(exponent) → dst(exponent)

Load the exponent portion of a word into the exponent field of an extended-
precision register. The operands are floating-point values.

LDEP src,dst Load Integer From Expansion-Register File to Primary-Register File

Operation: src → dst

Load the source operand (from expansion-register file) into the destination
register (from the primary-register file). The destination register is an integer.

√

LDF src,dst Load Floating-Point

Operation: src → dst

Load the source operand into the destination operand. Both operands are as-
sumed to be floating-point numbers.

LDFcond src,dst Load Floating-Point, Conditionally

Operation: If cond = true
src → dst

Else, dst is not changed

If the specified condition is true, load the source operand into the destination
operand. If the condition is false, the value is not loaded. Both operands are
assumed to be floating-point numbers.

Instruction Set Summary Table

5-29Instruction Set

Syntax ’C4x
Only

Description

LDFI src,dst Load Floating-Point Value, Interlocked

Operation: Signal interlocked operation
src → dst

Load the source operand into the destination register. An interlocked opera-
tion is signaled over the LOCK and LLOCK pins. Only direct and indirect
modes are allowed. The operands are floating-point values.

LDHI src,dst Load 16 MSBs With 16-Bit Immediate

Operation: src → 16 MSBs of dst
0 → 16 LSBs of dst

Load the 16-bit unsigned immediate value into the 16 MSBs of the destination
register. Load 0 into the 16 LSBs of the destination register. The destination
register is an integer.

√

LDI src,dst Load Integer

Operation: src → dst

Load the contents of the source operand into the destination register. The op-
erands are signed integers.

LDIcond src,dst Load Integer Conditionally

Operation: If cond = true
src → dst

Else, dst is not changed

If the specified condition is true, load the contents of the source operand into
the destination register. If the condition is false, the source operand is not
loaded. The operands are signed integers.

The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.

LDII src,dst Load Integer, Interlocked

Operation: Signal interlocked operation
src → dst

The source operand is loaded into the destination register, and an interlocked
operation is signaled over the LOCK and LLOCK pins. Only direct and indirect
modes are allowed. The operands are signed integers.

LDM src,dst Load Floating-Point Mantissa

Operation: src(mantissa) → dst(mantissa)

Load the mantissa field of the source operand into the mantissa field of an the
destination register. The source and destination operands are floating-point
numbers.

Instruction Set Summary Table

 5-30

Syntax ’C4x
Only

Description

LDP src,dst Load Data Page Pointer

Operation: src → DP

LDP is an alternate form of LDI, except that LDP is always in the immediate
addressing mode. The source operand field contains the 16 MSBs of the ab-
solute value 32-bit source address. These 16 bits are loaded into the 16 LSBs
of the data page pointer.

LDPE src,dst Load Integer From Primary-Register File to Expansion-Register File

Operation: src → dst

Load the source operand (from the primary-register file) into the destination
(from the expansion-register file). The destination register is an integer.

√

LDPK src,dst Load Data Page Pointer Immediate

Operation: src → DP

Load the 16-bit unsigned immediate into the DP register. This operation is
completed by the end of the read phase of the pipeline; thus, the value loaded
is ready for the next instruction for direct addressing.

√

LHw (0,1) src,dst Load Half-Word

Operation: sign-extended half-word (0,1) of src → dst

The specified half-word of the source operand is sign-extended and right-
shifted into the 16 LSBs of the destination register. The half-word is signed.

√

LHUw (0,1) src,dst Load Half-Word Unsigned

Operation: unsigned half-word (0,1) of src → dst

The specified half-word of the source operand (unsigned) is right-shifted into
the 16 LSBs of the destination register. The half-word is unsigned.

√

LOPOWER Divide Clock by 16 (’C31 only)

Operation: H1/16 → H1

The device continues to execute instructions, but at the reduced rate of the
CLKIN frequency divided by 16. This allows for low–power operations. See
also MAXSPEED.

Instruction Set Summary Table

5-31Instruction Set

Syntax ’C4x
Only

Description

LSH count,dst Logical Shift

Operation: If count > 0
dst << count → dst

Else,
dst >> |count| → dst

The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).

If count is greater than zero, left-shift the contents of the destination register
by count. Low-order bits are filled with 0s, and high-order bits are shifted out
through the carry bit.

If count is less than zero, right-shift the contents of the destination register by
the absolute value of count. High-order bits are filled with 0s, and low-order
bits are shifted out through the carry bit.

If count is equal to zero, no shift is performed and the carry bit is set to 0.

The count operand is a signed integer; dst is an unsigned integer.

LSH3 count,src,dst
[LSH count,src,dst]

Logical Shift (3-Operand)

Operation: If count > 0
src << count → dst

Else,
src >> |count| → dst

The seven LSBs of count are used to generate the 2s-complement shift count
(up to 32 bits).

If count is greater than zero, left-shift the source operand by count. Low-order
bits are filled with 0s, and high-order bits are shifted out through the carry bit.
The result is stored in the destination register.

If count is less than zero, right-shift the source operand by the absolute value
of count. High-order bits are filled with 0s, and low-order bits are shifted out
through the carry bit.

If count is equal to zero, no shift is performed and the carry bit is set to 0.

The count operand is a signed integer; the source operand is an unsigned
integer. The result is stored in the destination register.

LWLct (0,1,2,3) src,dst Load Word Left-Shifted

Operation: src << (0,1,2,3) and merged with dst → dst

The source operand is left-shifted the specified number of bytes and merged
with the bytes of the destination register that are below the left-shifted LSBs
of the source register.

√

LWRct (0,1,2,3) src,dst Load Word Right-Shifted

Operation: src >> (0,1,2,3) and merged with dst → dst

The source operand is right-shifted the specified number of bytes and merged
with the bytes of the destination register that are below the right-shifted LSBs
of the source register.

√

Instruction Set Summary Table

 5-32

Syntax ’C4x
Only

Description

MAXSPEED Restore Clock to Regular Speed (’C31 only)

Operation: H1 → H1

Exits LOPOWER power–down mode. The ’LC31 resumes full–speed opera-
tion during the read phase of this instruction. See also LOPOWER.

MBct (0,1,2,3) src,dst Merge Byte

Operation: 8 LSBs of src << (0,1,2,3) bytes merged with dst → dst

The 8 LSBs of source operand are left-shifted the specified number of bytes
and merged with the destination register.

√

MHct (0,1) src,dst Merge Half-Word

Operation: 16 LSBs of src << (0,1) half-words merged with dst → dst

The 16 LSBs of source operand are left-shifted the specified number of half-
words and merged with the destination register.

√

MPYF src,dst Multiply Floating-Point Values

Operation: src × dst → dst

Multiply the source operand by the contents of the destination operand and
store the result in the destination register. The source operand is a single-pre-
cision floating-point number, and the destination is an extended-precision
floating-point number.

MPYF3 src2,src1,dst
[MPYF src2,src1,dst]

Multiply Floating-Point Values (3-Operand)

Operation: src1 × src2 → dst

Multiply source 1 by source 2 and store the result in the destination register.
All the operands are extended-precision floating-point numbers.

MPYI src,dst Multiply Integers

Operation: src × dst → dst

Multiply the source operand by the contents of the destination operand and
store the result in the destination register. The source and destination oper-
ands are 32-bit signed integers for the ’C4x and 24-bit signed integers for the
’C3x. The result is a 64-bit integer. The output to the destination register is the
32 LSBs of the product.

MPYI3 src2,src1,dst
[MPYI src2,src1,dst]

Multiply Integers (3-Operand)

Operation: src1 × src2 → dst

Multiply source 1 by source 2 and store the result in the destination register.
The source operands are 32-bit signed integers for the ’C4x, 24-bit signed in-
tegers for the ’C3x. The result is a 64-bit integer. The output to the destination
register is the 32 LSBs of the product.

Instruction Set Summary Table

5-33Instruction Set

Syntax ’C4x
Only

Description

MPYSHI src,dst Multiply Signed Integers and Produce 32 MSBs

Operation: dst × src → dst

Multiply the source operand by the destination operand and store the 32
MSBs of the result in the destination register. Both operands are 32-bit signed
integers. The result is a 64-bit integer. The output to the destination register
is the 32 MSBs of the product.

√

MPYISHI3 src2,src1,dst Multiply Signed Integers and Produce 32 MSBs (3 Operand)

Operation: src1 × src2 → dst

Multiply source 1 by source 2 and store the 32 MSBs of the result in the desti-
nation register. The source operands are 32-bit signed integers. The result is
a 64-bit signed integer. The output to the destination register is the 32 MSBs
of the product.

√

MPYUHI src,dst Multiply Unsigned Integers and Produce 32 MSBs

Operation: dst × src → dst

Multiply the source operand by the destination operand and store the 32
MSBs of the result in the destination register. Both operands are 32-bit un-
signed integers. The result is a 64-bit unsigned integer. The output to the desti-
nation register is the 32 MSBs of the product.

√

MPYUHI3 src1, src2, dst Multiply Unsigned Integers and Produce 32 MSBs, 3 Operand

Operation: src1 × src2 → dst

Multiply source 1 by source 2 and store the 32 MSBs of the result in the desti-
nation register. The source operands are 32-bit unsigned integers. The result
is a 64-bit unsigned integer. The output to the destination register is the 32
MSBs of the product.

√

NEGB src,dst
[NEGB dst]

Negate Integer With Borrow

Operation: 0 – src – C → dst

Subtract the source operand from zero, subtract the carry bit from that result,
and load the final result into the destination register. The operands are signed
integers.

NEGF src,dst
[NEGF dst]

Negate Floating-Point Value

Operation: 0 – src → dst

Load the difference between 0 and the source operand into the extended-pre-
cision register. The operands are floating-point numbers.

NEGI src,dst
[NEGI dst]

Negate Integer

Operation: 0 – src → dst

Load the difference between 0 and the source operand into the destination
register. The operands are signed integers.

Instruction Set Summary Table

 5-34

Syntax ’C4x
Only

Description

NOP
[NOP src]

No Operation

Operation: No ALU or multiplier operations.
ARn is modified if src is specified in indirect mode.

If the source operand is specified in the indirect mode, the specified address-
ing operation is performed and a dummy memory read occurs. If the source
operand is omitted, no operation is performed.

NORM src,dst
[NORM dst]

Normalize Floating-Point Value

Operation: normalize(src) → dst

Normalize a floating-point number and load the result into an extended-preci-
sion register.

NOT src,dst
[NOT dst]

Bitwise Logical Complement

Operation: ~src → dst

Load the bitwise logical complement (~) of the source operand into the desti-
nation register. The operands are unsigned integers.

OR src,dst Bitwise Logical OR

Operation: dst OR src → dst

Load the bitwise logical OR between the source and the destination into the
destination register. The operands are unsigned integers.

OR3 src2,src1,dst
[OR src2,src1,dst]

Bitwise Logical OR (3-Operand)

Operation: src1 OR src2 → dst

Load the bitwise logical OR between source 1 and source 2 into the destina-
tion register. The operands are unsigned integers.

POP dst Pop Integer From Stack

Operation: *SP-- → dst

Pop the contents of the top of the system stack into the destination register.
The top of the stack is an integer.

POPF dst Pop Floating-Point Value From Stack

Operation: *SP-- → dst

Pop the contents of the top of the system stack into the destination register.
The top of the stack is a floating-point number.

PUSH src Push Integer Onto Stack

Operation: src → *++SP

Push the contents of the source register onto the top of the system stack. The
value pushed on the stack is a signed integer.

Instruction Set Summary Table

5-35Instruction Set

Syntax ’C4x
Only

Description

PUSHF src Push Floating-Point Value on Stack

Operation: src → *++SP

Push the contents of an extended-precision register onto the top of the system
stack. The value pushed on the stack is a floating-point number.

RCPF src,dst Reciprocal Floating-Point Value

Operation: 16-bit reciprocal of src → dst

Load the 16-bit approximation of the reciprocal of the source operand into the
destination register. Both operands are floating-point numbers.

√

RETIcond Return From Interrupt Conditionally or Trap Conditionally

Operation: If cond = true
*(SP--) → PC
ST(PGIE) → ST(GIE)
ST(PCF) → ST(CF)

Else, continue

Performs a return from an interrupt or a trap. If the condition is true, pop the
top of the stack to the PC, copy GIE to PGIE, and copy CF to PCF. If the condi-
tion is false, continue normal operation.

RETIcond D Return From Interrupt Conditionally or Trap Conditionally Delayed

Operation: If cond = true
*(SP--) → PC
ST(PGIE) → ST(GIE)
ST(PCF) → ST(CF)

Else, continue

Performs a delayed return from an interrupt or a trap. If the condition is true,
pop the top of the stack to the PC, copy GIE to PGIE, and copy CF to PCF.
Because this is a delayed return, the three instructions following RETIcondD
are fetched and executed. If the condition is false, continue normal operation.

The three instructions following the RETIcondD instruction may not modify
the program flow.

RETScond
[RETS]

Return From Subroutine Conditionally

Operation: If cond = true
*SP-- → PC

Else, continue

Perform a conditional return. If the condition is true, pop the top of the system
stack into the PC.

The TMS320C40 provides 20 condition codes for use with this instruction.
See the TMS320C4x User’s Guide for more information.

RND src,dst
[RND dst]

Round Floating-Point Value

Operation: round(src) → dst

Round the source operand to the nearest single-precision floating-point num-
ber and load it into an extended-precision destination register.

Instruction Set Summary Table

 5-36

Syntax ’C4x
Only

Description

ROL dst Rotate Left

Operation: dst is left-rotated 1 bit → dst

Rotate the contents of the destination register left one bit and store the result
back into the destination register. The carry bit is set to the original value of
the MSB.

ROLC dst Rotate Left Through Carry

Operation: dst is left-rotated 1 bit through carry → dst

Rotate the contents of the destination register left one bit through the carry bit
and store the result back into the destination register. The carry bit is set to
the original value of the MSB, and the new LSB value is set to the original value
of the carry bit.

ROR dst Rotate Right

Operation: dst is right-rotated 1 bit through carry bit → dst

Rotate the contents of the destination register right one bit and store the result
back into the destination register. The carry bit is set to the original value of
the LSB.

RORC dst Rotate Right Through Carry

Operation: dst is right-rotated 1 bit through carry → dst

Rotate the contents of the destination register right one bit through the carry
bit and store the result back into the destination register. The carry bit is set
to the original value of the LSB, and the new MSB value is set to the original
value of the carry bit.

RPTB src Repeat Block of Instructions

Operation: If src is an immediate value
src + PC + 1 → RE

Else if src is a register
src → RE

1 → ST(RM)
next PC → RS

Repeats a block of instructions a number of times without penalty for looping.
Activates the block-repeat mode for updating the PC. The source operand can
be a 24-bit immediate value or a 32-bit register that is loaded into the repeat
end address (RE) register. The RM (repeat mode) status bit is set to 1, and
the address of the next instruction is loaded into the repeat start address (RS)
register.

Instruction Set Summary Table

5-37Instruction Set

Syntax ’C4x
Only

Description

RPTBD src Repeat Block of Instructions Delayed

Operation: if src is an immediate value
src + PC + 1 → RE

else if src is a register
src → RE

1 → ST(RM)
PC of RPTBD + 4 → RS

Repeats a block of instructions a number of times without penalty for looping.
Activates the block-repeat mode for updating the PC. The source operand can
be a 24-bit immediate value or a 32-bit register that is loaded into the repeat
end address (RE) register. The RM (repeat mode) status bit is set to 1, and
the address of the next instruction + 3 is loaded into the repeat start address
(RS) register.

The three instructions following the RPTBD instruction may not modify the
program flow, nor may the instructions be part of the block that is repeated and
cannot modify RC, RS, or RE.

√

RPTS src Repeat Single Instruction

Operation: src → RC
1 → ST(RM)
1 → S
next PC → RS
next PC → RE

Repeat a single instruction by the number in the RC (repeat counter) register.
The source operand is loaded into the RC (repeat counter) register. A one is
written into the repeat mode bit (RM) of the status register (ST) A one is also
written into the repeat single bit (S). This indicates that the program fetches
are to be performed only from the instruction register. The next PC is loaded
into the repeat start address (RS) and repeat end address (RE) registers.

RSQRF src,dst Reciprocal of Square Root Floating-Point

Operation: 16-bit reciprocal of the square root of src → dst

Load the 16-bit approximation of the reciprocal of the square root of the source
operand into the destination register. The source operand is positive; the oper-
ation for negative inputs is undefined. Both operands are floating-point num-
bers.

√

SIGI src,dst ’C4x
SIGI ’C3x

Signal and Read Integer Interlocked

Operation: LOCK (or LLOCK) pin brought low
src → dst
LOCK (or LLOCK) pin brought high

An interlocked operation is signaled using the appropriate bus-lock signal
(LOCK or LLOCK) if and only if external memory access is performed. After
the read, the bus-lock signal is deasserted. If an internal memory access is
performed, SIGI will perform the read but will not assert a bus-lock signal. The
source and destination operands are signed integers. Operation differs for
’C3x. Refer to TMS320C3x User’s Guide.

Instruction Set Summary Table

 5-38

Syntax ’C4x
Only

Description

STF src,dst Store Floating-Point Value

Operation: src → dst

Store the contents of the source register into the destination memory location.
The operands are floating-point values.

STFI src,dst Store Floating-Point Value, Interlocked

Operation: src → dst
Signal end of interlocked operation

Store the contents of the source register into the destination memory location.
An interlocked operation is signaled over LOCK and LLOCK. The operands
are floating-point values.

STI src,dst Store Integer

Operation: src → dst

Store the contents of the source register into the destination memory location.
The operands are signed integers.

STII src,dst Store Integer, Interlocked

Operation: src → dst
Signal end of interlocked operation

The contents of the source operand are stored at the destination. An inter-
locked operation is signaled over LOCK and LLOCK. The operands are
signed integers.

STIK src,dst Store Integer Immediate Value

Operation: src → dst

Store the 5-bit signed integer (in the source register field) into the destination
memory location. The operands are signed integers.

√

SUBB src,dst Subtract Integers With Borrow

Operation: dst – src – C → dst

Subtract the source operand from the destination register, subtract the carry
bit from the result, and load the final result into the destination register. The
operands are signed integers.

SUBB3 src2,src1,dst
[SUBB src2,src1,dst]

Subtract Integers With Borrow (3-Operand)

Operation: src1 – src2 – C → dst

Subtract source operand 2 from source operand 1, subtract the carry bit from
the result, and load the final result into the destination register. The operands
are signed integers.

Instruction Set Summary Table

5-39Instruction Set

Syntax ’C4x
Only

Description

SUBC src,dst Subtract Integers Conditionally

Operation: If dst – src > 0
(dst – src << 1) OR 1 → dst

Else
dst <<1 → dst

If the difference between the destination and the source operands is greater
than or equal to 0, then shift the difference left 1 bit, set the LSB to 1, and store
the result in the destination register.

If the difference between the destination and source is less than zero, left-shift
the contents of the destination register by 1 bit.

The operands are signed integers.

SUBF src,dst Subtract Floating-Point Values

Operation: dst – src → dst

Subtract the source operand from the contents of the destination operand and
store the result in the destination register. Both operands are floating-point
numbers.

SUBF3 src2,src1,dst
[SUBF src2,src1,dst]

Subtract Floating-Point Values (3-Operand)

Operation: src1 – src2→ dst

Subtract source 2 from source 1 and store the result in the destination register.
All the operands are floating-point numbers.

SUBI src,dst Subtract Integers

Operation: dst – src → dst

Subtract the source operand from the contents of the destination register and
store the result in the destination register. Both operands are signed integers.

SUBI3 src2,src1,dst
[SUBI src2,src1,dst]

Subtract Integers (3-Operand)

Operation: src1 – src2 → dst

Subtract source 2 from source 1 and store the result in the destination register.
All the operands are signed integers.

SUBRB src,dst Subtract Reverse Integer With Borrow

Operation: src – dst – C → dst

Subtract the destination register from the source register, subtract the carry
bit from the result, and load the final result into the destination register. Both
operands are signed integers.

SUBRF src,dst Subtract Reverse Floating-Point Value

Operation: src – dst → dst

Subtract the contents of the destination register from the source operand and
store the result into the destination register. Both operands are floating-point
numbers.

Instruction Set Summary Table

 5-40

Syntax ’C4x
Only

Description

SUBRI src,dst Subtract Reverse Integer

Operation: src – dst → dst

Subtract the contents of the destination register from the source operand and
store the result into the destination register. Both operands are signed inte-
gers.

SWI Software Interrupt

Operation: Perform emulator interrupt sequence.

Performs an emulator interrupt. This is a reserved instruction and should not
be used in normal programming.

TOIEEE src,dst Convert To IEEE Format

Operation: convert src to IEEE → dst

Convert the source operand (single-precision floating-point) from 2s-comple-
ment floating-point format to IEEE floating-point format, and store the result
into the 32 MSBs of the destination register. You can use STF to store the re-
sult in memory.

√

TRAPcond N
[TRAP N]

Trap Conditionally

Operation: if cond is true
[ST(GIE) → ST (PGIE)
ST(CF) → ST(PCF)]
0 → ST(GIE)
1 → ST(CF)
next PC → *(++SP)
trap vector N → PC

Else, continue

Performs a conditional trap. If you nest the traps, you may have to save the
status register before executing TRAPcond N.

If the condition is true:
GIE and CF are saved in PGIE and PCF in the status register,
all interrupts are disabled,
the cache is frozen,
the contents of the PC are pushed on the system stack, and
PC is loaded with the contents of the specified trap vector (N).

If the condition is false, then continue normal operation.

TSTB src,dst Test Bit Fields

Operation: dst AND src

Perform a bitwise logical AND of the source and destination and set the appro-
priate flags on the result. This is a nondestructive compare; the results of the
compare are not stored. The operands are unsigned integers.

Instruction Set Summary Table

5-41Instruction Set

Syntax ’C4x
Only

Description

TSTB3 src1,src2
[TSTB src1,src2]

Test Bit Fields (3-Operand)

Operation: src1 AND src2

Perform a bitwise logical AND of source 1 and source 2 and set the appropri-
ate flags on the result. This is a nondestructive compare; the results of the
compare are not stored. The source operands are signed integers.

XOR src,dst Bitwise Exclusive OR

Operation: dst XOR src → dst

Perform a bitwise exclusive OR of the source and destination operands and
store the result in the destination register. The operand are unsigned integers.

XOR3 src2,src1,dst
[XOR src2,src1,dst]

Bitwise Exclusive OR (3-Operand)

Operation: src1 XOR src2 → dst

Perform a bitwise exclusive OR of source 1 and source 2 and store the result
in the destination register. The source operands are signed integers.

 5-42

6-1Macro Language

Macro Language

The TMS320C3x/C4x assembler supports a macro language that enables you
to create your own “instructions”. This is especially useful when a program
executes a particular task several times. The macro language enables you to
do the following:

� Define your own macros and redefine existing macros,

� Simplify long or complicated assembly code,

� Access macro libraries created with the archiver,

� Define conditional and repeatable blocks within a macro,

� Manipulate strings within a macro, and

� Control expansion listing.

This chapter discusses the following topics:

Topic Page

6.1 Using Macros 6-2.

6.2 Defining Macros 6-3.

6.3 Macro Parameters/Substitution Symbols 6-5.

6.4 Macro Libraries 6-13.

6.5 Using Conditional Assembly in Macros 6-14.

6.6 Using Labels in Macros 6-16.

6.7 Producing Messages in Macros 6-17.

6.8 Formatting the Output Listing 6-19.

6.9 Using Recursive and Nested Macros 6-20.

6.10 Macro Directives Summary 6-22.

Chapter 6

Using Macros

 6-2

6.1 Using Macros

Programs often contain routines that are executed several times. Instead of
repeating the source statements for a routine, you can define the routine as
a macro, then call the macro in the places where you would normally repeat
the routine. This simplifies and shortens your source program.

If you want to call a macro several times, but with different data each time, you
can assign parameters to a macro. This enables you to pass different informa-
tion to the macro each time you call it. The macro language supports a special
symbol called a substitution symbol , which is used for macro parameters.
In this chapter, we use the terms macro parameters and substitution symbols
interchangeably.

Using a macro is a three-step process.

Step 1: Define the macro. You must define macros before you can use them
in your program. There are two methods for defining macros:

� Macros can be defined at the beginning of a source file or in an
.include/.copy file. Refer to Section 6.2 for more information.

� Macros can also be defined in a macro library. A macro library
is a collection of files in archive format, created by the archiver.
Each member of the archive file (macro library) may contain one
macro definition corresponding to the member name. You can
access a macro library by using the .mlib directive. Macro li-
braries are discussed in Section 6.4 on page 6-13.

Step 2: Call the macro. After you have defined a macro, you can call it by
using the macro name as an opcode in the source program. This is
referred to as a macro call.

Step 3: Expand the macro. The assembler expands your macros when the
source program calls them. During expansion, the assembler
passes arguments by variable to the macro parameters, replaces
the macro call statement with the macro definition, then assembles
the source code. By default, the macro expansions are printed in the
listing file. You can turn off expansion listing by using the .mnolist
directive. For more information, refer to Section 6.8 on page 6-19.

When the assembler encounters a macro definition, it places the macro name
in the opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the encountered
macro. This allows you to expand the functions of directives and instructions,
as well as add new instructions.

Defining Macros

6-3Macro Language

6.2 Defining Macros

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined at the beginning of a
source file or in an .include/.copy file; they can also be defined in a macro
library. For more information about macro libraries, refer to Section 6.4 on
page 6-13.

The contents of a macro definition must be contained in the same file. Macro
definitions can be nested, and they can call other macros. Nested macros are
discussed in Section 6.9 on page 6-20.

macname .macro [parameter1] [, ... , parametern]

model statements or macro directives

[.mexit]

.endm

macname names the macro. You must place the name in the
source statement’s label field. Only the first 32
characters of a macro name are significant. The
assembler places the macro name in the internal
opcode table, replacing any instruction or previous
macro definition with the same name.

.macro is a directive that identifies the source statement as
the first line of a macro definition. You must place
.macro in the opcode field.

[parameters] are optional substitution symbols that appear as
operands for the .macro directive. Parameters are
discussed in Section 6.3, page 6-5.

model statements are instructions or assembler directives that are
executed each time the macro is called.

macro directives are used to control macro expansion.

[.mexit] functions as a “goto .endm”. The .mexit directive is
useful when error testing confirms that macro ex-
pansion will fail.

.endm terminates the macro definition.

Defining Macros

 6-4

The following example shows the definition, call, and expansion of a macro.

Example 6–1. Macro Definition, Call, and Expansion

Macro Definition: The following code defines a macro, add4, with 4 parame-
ters:

6 ADD4 .MACRO p1, p2, p3, p4 ; macro definition
7
8 ! add4 p1, p2, p3, p4
9 ! p4 = p1 + p2 + p3 + p4
10 ! requires R0
11 !
12
13 LDI p4, R0
14 ADDI p1, R0
15 ADDI p2, R0
16 ADDI p3, R0
17 STI R0, p4
18
19 .ENDM

Macro Call: The following code calls the ADD4 macro with 4 arguments:

22 00000000 ADD4 @l1,@l2,@l3,@l4 ; macro invocation

Macro Expansion: The following code shows the substitution of the macro
definition for the macro call. The assembler passes the arguments (supplied
in the macro call) by variable to the parameters (substitution symbols).

1
1
1 00000000 08200003– LDI @l4,R0
1 00000001 02200000– ADDI @l1,R0
1 00000002 02200001– ADDI @l2,R0
1 00000003 02200002– ADDI @l3,R0
1 00000004 15200003– STI R0,@l4
1

If you want to include comments with your macro definition but don’t want
those comments to appear in the macro expansion, use an exclamation point
to precede your comments. If you do want your comments to appear in the
macro expansion, use an asterisk or semicolon. For more information about
macro comments, refer to Section 6.7 on page 6-17.

Macro Parameters/Substitution Symbols

6-5Macro Language

6.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times, but with different data each time, you
can assign parameters to the macro. The macro language supports a special
symbol, called a substitution symbol , which is used for macro parameters.

6.3.1 Substitution Symbols

Macro parameters are substitution symbols. Substitution symbols are sym-
bols that represent a character string. Besides being used as macro
parameters, these symbols can also be manipulated by .asg or .eval, outside
of macros, to equate a character string to a symbol name.

Valid substitution symbols may be 32 characters long and must begin with a
letter. The remainder of the symbol can be a combination of alphanumeric
characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they
are defined in. You can define up to 32 local substitution symbols (including
substitution symbols defined with the .var directive) per macro. For more
information about the .var directive, refer to page 6-12.

During macro expansion, the assembler passes arguments by variable to the
macro parameters. The character-string equivalent of each argument is
assigned to the corresponding parameter. Parameters without corresponding
arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string
equivalent of all remaining arguments.

If you pass a list of arguments to one parameter, or if you pass a comma or
semicolon to a parameter, you must surround the arguments with quotation
marks.

At assembly time, the assembler first replaces the substitution symbol with its
corresponding character string, then translates the source code into object
code.

Macro Parameters/Substitution Symbols

 6-6

Example 6–2 shows the expansion of a macro with varying numbers of argu-
ments.

Example 6–2. Calling a Macro With Varying Numbers of Arguments

Macro Definition

Parms .macro a,b,c
; a = :a:
; b = :b:
; c = :c:

.endm

Calling the Macro, Parms

Parms 100,label Parms 100,label,x,y
; a = 100 ; a = 100
; b = label ; b = label
; c = ” ” ; c = x,y

Parms 100, , x Parms ”100,200,300”,x,y
; a = 100 ; a= 100,200,300
; b = ” ” ; b = x
; c = x ; c = y

Parms ”””string”””,x,y
; a = ”string”
; b = x
; c = y

6.3.2 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.

� The .asg directive assigns a character string to a substitution symbol.

The syntax of the .asg directive is:

.asg [”]character string[”], substitution symbol

The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading
and trailing blanks. In either case, a character string is read and assigned
to the substitution symbol.

Macro Parameters/Substitution Symbols

6-7Macro Language

Example 6–3 shows character strings being assigned to substitution symbols.

Example 6–3. Using the .asg Directive

.asg R1, RETURN ; return register

.asg IR0, INDEX0 ; index register

.asg ”””Version 4.0”””, version

.asg ”p1, p2, p3”, list

� The .eval directive performs arithmetic on numeric substitution symbols.

The syntax of the .eval directive is:

.eval well-defined expression, substitution symbol

The .eval directive evaluates the expression and assigns the string value
of the result to the substitution symbol. If the expression is not well defined,
the assembler generates an error and assigns the null string to the symbol.

Example 6–4 shows arithmetic being performed on substitution symbols.

Example 6–4. Using the .eval Directive

.asg 1,counter

.loop 100

.word counter

.eval counter + 1,counter

.endloop

In Example 6–4, the .asg directive could be replaced with the .eval directive
(.eval 1, counter) without changing the output. In simple cases like this,
you can use .eval and .asg interchangeably. However, if you want to calculate
a value from an expression, you must use the .eval directive.

The .asg directive only assigns a character string to a substitution symbol,
while the .eval directive evaluates an expression and then assigns the charac-
ter string equivalent to a substitution symbol.

6.3.3 Built-In Substitution Functions

The following built-in substitution symbol functions enable you to make deci-
sions based on the string value of substitution symbols. These functions al-
ways return a value, and they can be used in expressions. Built-in substitution
symbol functions are especially useful in conditional assembly expressions.
Parameters to these functions are substitution symbols or character-string
constants.

Macro Parameters/Substitution Symbols

 6-8

In Table 6–1, a and b are parameters that represent substitution symbols or
character string constants. The term string, used below, refers to the string
value of the parameter.

Table 6–1. Function Definitions

Function Return Value

$symlen (a) length of string a

$symcmp (a,b)
< 0 if a < b 0 if a = b
> 0 if a > b

$firstch (a,ch) index of the first occurrence of character constant ch
in string a

$lastch (a,ch) index of the last occurrence of character constant ch
in string a

$isdefed (a) 1 if string a is defined in the symbol table
0 if string a is not defined in the symbol table

$ismember (a,b) top member of list b is assigned to string a
0 if b is a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

$isreg (a) 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

Example 6–5 shows built-in substitution symbol functions.

Example 6–5. Using Built-In Substitution Symbol Functions to Redefine an Instruction

PUSHX .MACRO list
!
! Push more than one item
! $ismember removes the first item in the list

.var item

.loop

.break ($ismember (item, list) = 0)
PUSH item
.endloop
.ENDM

Macro Parameters/Substitution Symbols

6-9Macro Language

6.3.4 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to
substitute the corresponding character string. If that string is also a substitution
symbol, the assembler performs substitution again. The assembler continues
doing this until it encounters a token that is not a substitution symbol or until
it encounters a substitution symbol that it has already encountered during this
evaluation.

In Example 6–6, the x is substituted for z; z is substituted for y; and y is
substituted for x. The assembler recognizes this as infinite recursion and
ceases substitution.

Example 6–6. Recursive Substitution

.asg ”x”,z ; declare z and assign z = ”x”

.asg ”z”,y ; declare y and assign y = ”z”

.asg ”y”,x ; declare x and assign x = ”y”
add x ; recursive expansion

6.3.5 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler.
The forced substitution operator, which is a set of colons, enables you to force
the substitution of a symbol’s character string. Simply surround a symbol with
colons to force the substitution. Do not include any spaces between the colons
and the symbol.

The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before it
expands any other substitution symbols.

You can use the forced substitution operator only inside macros, and you
cannot nest a forced substitution operator within another forced substitution
operator.

Macro Parameters/Substitution Symbols

 6-10

Example 6–7. Using the Forced Substitution Operator
force .macro x

.asg 0,x

.loop 8 ;.loop/.endloop are discussed
;on page 6-14

AUX:x: .set x
.eval x+1,x
.endloop
.endm

The force macro would generate the following source code:

AUX0 .set 0
AUX1 .set 1

.

.

.
AUX7 .set 7

6.3.6 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a
substitution symbol with subscripted substitution symbols. You must use the
forced substitution operator for clarity. You can access substrings in two ways.

� :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one char-
acter.

� :symbol (well-defined expression1, well-defined expression2):

In this method, expression1 represents the substring’s starting position,
and expression2 represents the substring’s length. You can specify
exactly where to begin subscripting and the exact length of the resulting
character string. The index of substring characters begins with 1, not 0.

Example 6–8 and Example 6–9 show built-in substitution symbol functions
used with subscripted substitution symbols.

Macro Parameters/Substitution Symbols

6-11Macro Language

Example 6–8. Using Subscripted Substitution Symbols

MODE .MACRO in, out
!
! Parse addressing mode

.if ($symcmp(”:in(1):”, ”*”) = 0)
.asg ”IND”, out

.elseif ($symcmp(”:in(1):”, ”@”) = 0)
 .asg ”DIR”, out

.elseif $isreg(in)
.asg ”REG”, out

.elseif $isname(in)
.asg ”DIR”, out

.endif

.ENDM

Invocation of MODE:

.asg ”NONE”, type
MODE *+ar7,type

In Example 6–8, subscripted substitution symbols are used to determine the
addressing mode of a macro parameter.

Example 6–9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strg1,strg2,pos
.var len1,len2,i,tmp
.if $symlen(start) = 0
.eval start,1
.endif
.eval 0,pos
.eval 1,i
.eval $symlen(strg1),len1
.eval $symlen(strg2),len2
.loop
.break i = (len2 – len1 + 1)
.asg ”:strg2(i,len1):”,tmp
.if $symcmp(strg1,tmp) = 0
.eval i,pos
.break
.else
.eval i + 1,i
.endif
.endloop
.endm

.asg 0,pos

.asg ”ar1 ar2 ar3 ar4”,regs
substr 1,”ar2”,regs,pos
.word pos ; pos has value 5

Macro Parameters/Substitution Symbols

 6-12

In Example 6–9, the subscripted substitution symbol is used to find a substring
strg1 beginning at position start in the string strg2. The position of the substring
strg1 is assigned to the substitution symbol pos.

6.3.7 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you
can use the .var directive to define up to 32 local macro substitution symbols
(including parameters) per macro. The .var directive creates temporary sub-
stitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and, after expansion, these symbols are lost.

.var sym1 [,sym2] ... [,symn]

.var sym1 [,sym2] ... [,symn]

The .var directive is used in Example 6–9.

Macro Libraries

6-13Macro Language

6.4 Macro Libraries

One of the ways you can define macros is in a macro library. A macro library
is a collection of files that contain macro definitions. You must use the archiver
to collect these files, or members, into a single file (called an archive). Each
member of a macro library contains one macro definition. The files in a macro
library must be unassembled source files. The macro name and the member
name must be the same, and the macro filename’s extension must be .asm.
For example,

Macro Name Filename in Macro Library

simple simple.asm

mode mode.asm

 You can access the macro library by using the .mlib assembler directive.

.mlib macro library filename

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the
individual members within the library into the opcode tables as library entries;
this redefines any existing opcodes or macros that have the same name. If one
of these macros is called, the assembler extracts the entry from the library and
loads it into the macro table. The assembler expands the library entry in the
same manner as other macros. You can control the listing of library entry ex-
pansions with the .mlist directive. For more information about the .mlist
directive, refer to Section 6.8 on page 6-19. Only macros that are actually
called from the library are extracted, and they are extracted only once. For
more information about the .mlib directive, refer to page 4-52.

You can create a macro library with the archiver by simply including the desired
files in an archive. A macro library is no different from any other archive, except
that the assembler expects the macro library to contain macro definitions. The
assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable
effects.

Using Conditional Assembly in Macros

 6-14

6.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and
.loop/.break/.endloop . They can be nested within each other up to 32 levels
deep. The format of a conditional block is

.if well-defined expression

code block to execute when the .if expression is true (nonzero)

[.elseif well-defined expression]

code block to execute when the if expression is false and the .elseif
expression is true (nonzero)

[.else]

code block to execute when the .if expression and the .elseif
expression are false (zero)

.endif

The .elseif and .else directives are optional, and they can be used more than
once within a conditional assembly code block. When they are omitted, and
when the .if expression is false (zero), the assembler continues to the code
following the .endif directive.

The .loop/.break/.endloop directives enable you to assemble a code block
repeatedly. The format of a repeatable block is

.loop [well-defined expression]

code block to repeatedly assemble

[.break [well-defined expression]]

continue to repeatedly assemble when the .break expression is false
(zero)

.endloop

code block to execute when the .break expression is true (nonzero)
or when the .break expression is omitted and the loop count equals
expression.

The .loop directive’s optional expression evaluates to the loop count. If the
expression is omitted, the loop count defaults to 1024, unless the assembler
encounters a .break directive.

The .break directive and its expression are optional. If the expression evalu-
ates to false, the loop continues. The assembler breaks the loop when the
.break expression evaluates to true or when the .break expression is omitted
and the loop count equals expression. When the loop is broken, the assembler
continues with the code after the .endloop directive.

Using Conditional Assembly in Macros

6-15Macro Language

The following examples show the .loop/.break/.endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol func-
tions used in a conditional assembly code block.

Example 6–10. Using the .loop/.break/.endloop Directives

.asg 1,x

.loop ; ”infinite”

.break (x == 10) ; if x == 10, quit loop/break with
* expression

.eval x+1,x

.endloop

Example 6–11. Nested Conditional Assembly Directives

.asg 1,x

.loop ; ”infinite”

.if (x == 10) ; if x == 10 quit loop

.break ; force break

.endif

.eval x+1,x

.endloop

Example 6–12. Using the .if, .else, and .endif Directives

ADDK3 .MACRO k, src, dst
!
! dst = dst + src +k

.if .tms320C30
LDIsrc, dst
ADDI k, dst
.else
ADDI k, src, dst
.endif

.ENDM

For more information about conditional assembly directives, refer to
Section 6.5 on page 6-14.

Using Labels in Macros

 6-16

6.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes
labels in macros. If a macro is expanded more than once, its labels are defined
more than once. Defining a label more than once is illegal. The macro
language provides a method of defining labels in macros so that the labels are
unique. Simply follow the label with a question mark, and the assembler will
replace the question mark with a unique number. When the macro is expand-
ed, you will not see the unique number in the listing file. Your label will appear
with the question mark like it did in the macro definition. The syntax for a unique
label is:

label?

The following figure shows unique label generation in a macro.

Example 6–13. Unique Labels in a Macro

MIN.MACRO src, dst
!
! dst = minimum(src, dst)

CMPI src, dst
BHS L?
LDI src, dst

L? ; unique label
.ENDM

MINR0, R1

Producing Messages in Macros

6-17Macro Language

6.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your
own assembly-time error and warning messages. These directives are espe-
cially useful when you want to create messages specific to your needs. The
last line of the listing file shows the error and warning counts. These counts
alert you to problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive gen-
erates errors in the same manner as the assembler does, incre-
menting the error count and preventing the assembler from pro-
ducing an object file.

.wmsg sends warning messages to the listing file. The .wmsg directive
functions in the same manner as the .emsg directive but also in-
crements the warning count.

.mmsg sends warnings or assembly-time messages to the listing file.
The .mmsg directive functions in the same manner as the .emsg
directive but does not set the error count.

Macro comments are comments that appear in the definition of the macro but
do not show up in the expansion of the macro. An exclamation point in column
1 identifies a macro comment. If you want your comments to appear in the
macro expansion, precede your comment with an asterisk or semicolon.

Producing Messages in Macros

 6-18

Example 6–14 shows user messages in macros and macro comments that will
not appear in the macro expansion.

Example 6–14. Producing Messages in a Macro

TEST .MACRO x,y
!
! This macro checks for the correct number of parameters.
! The macro generates an error message
! if x and y are not present.
!

.if ($symlen(x) == 0|$symlen(y) == 0) ; Test for
; proper input

.emsg ”ERROR – missing parameter in call to TEST”

.mexit

.else
 .
 .
.endif
.if
 .
 .
.endif
.endm

1 error, no warnings

Formatting the Output Listing

6-19Macro Language

6.8 Formatting the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide
information. You may need to see this hidden information, so the macro lan-
guage supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional
blocks in the list output file. You may want to turn this listing off or on within your
listing file. The assembler provides three sets of directives that enable you to
control the listing of this information.

� Macro and Loop Expansion Listing

.mlist expands macros and .loop/.endloop blocks. The .mlist
directive prints to the listing all code encountered in those
blocks. By default, the assembler behaves as if you had used
.mlist.

.mnolist suppresses the listing expansion of macros and .loop/
.endloop blocks.

� False Conditional Block Listing

.fclist causes the assembler to print to the listing file all false condi-
tional blocks that do not generate code. Conditional blocks
appear in the listing exactly as they appear in the source
code. By default, the assembler behaves as if you had used
.fclist.

.fcnolist suppresses the listing of false conditional blocks. Only the
code in conditional blocks that actually assembles appears in
the listing. The .if, .elsif, .else, and .endif directives do not
appear in the listing.

� Substitution Symbol Expansion Listing

.sslist expands substitution symbols in the listing. This is useful for
debugging the expansion of substitution symbols. The
expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing. By
default, the assembler behaves as if you had used .ssnolist.

Using Recursive and Nested Macros

 6-20

6.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means
that you can call other macros from inside a macro definition. When you use
nested macros, you can call different macros from your macro definition. You
can nest macros up to 32 levels deep. When you use recursive macros, you
call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention
to the arguments that you pass to macro parameters because the assembler
uses dynamic scoping for parameters. This means that the called macro uses
the environment of the macro from which it was called.

In the following example of nested macros, notice that the y in the in_block
macro hides the y in the out_block macro. However, the x and z from the
out_block macro are accessible to the in_block macro.

Example 6–15. Using Nested Macros

in_block .macro y,a
. ; visible parameters are y,a and
. ; x,z from the calling macro

.endm

out_block .macro x,y,z
. ; visible parameters are x,y,z
.

in_block x,y ; macro call with x and y as
 ; arguments

.

.
.endm
out_block ; macro call

In the following example of recursive macros, the fact macro produces assem-
bly code necessary to calculate the factorial of n where n is an immediate
value. The fact macro stores that value at data memory address loc. The fact
macro accomplishes this by calling fact1, which calls itself recursively.

Using Recursive and Nested Macros

6-21Macro Language

Example 6–16. Using Recursive Macros

FACT .MACRO n, reg
!
! Compute factorial
! n = integer constant
! reg = dst register

.if n < 2
LDI 1, reg
.else
LDI n, reg
.eval n–1, n
FACT1
.endif

.ENDM

FACT1 .MACRO
!
! Use calling environment of FACT macro

.if n > 1
MPYI n, reg
.eval n–1,n
FACT1 ; RECURSIVE CALL
.endif

.ENDM

Invocation of FACT:

 FACT 7, R0

Macro Directives Summary

 6-22

6.10 Macro Directives Summary

Table 6–2. Creating Macros

Mnemonic and Syntax Description

macname .macro [parameter1]...[,parametern] Define macro

.mlib filename Identify library containing macro definitions

.mexit Go to .endm

.endm End macro definition

Table 6–3. Manipulating Substitution Symbols

Mnemonic and Syntax Description

.asg [“]character string[”], substitution symbol Assign character string to substitution symbol

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols

.var substitution symbol [1...,substitution symboln] Define local macro symbols

Table 6–4. Conditional Assembly

Mnemonic and Syntax Description

.if well-defined expression Assemble code block if the condition is true

.elseif well-defined expression Assemble code block if the .if condition is false and the
.elseif condition is true. The .elseif construct is optional.

.else Assemble code block if the .if condition is false. The
.else construct is optional.

.endif End .if code block

.loop [well-defined expression] Begin repeatable assembly of a code block

.break [well-defined expression] End .loop assembly if condition is true. The .break
construct is optional.

.endloop End .loop code block

Macro Directives Summary

6-23Macro Language

Table 6–5. Producing Assembly-Time Messages

Mnemonic and Syntax Description

.emsg Send error message to standard output

.wmsg Send warning message to standard output

.mmsg Send assembly-time message to standard output

Table 6–6. Formatting the Listing

Mnemonic and Syntax Description

.fclist Allow false conditional code block listing (default)

.fcnolist Inhibit false conditional code block listing

.mlist Allow macro listings (default)

.mnolist Inhibit macro listings

.sslist Allow expanded substitution symbol listing

.ssnolist Inhibit expanded substitution symbol listing (default)

 6-24

7-1Archiver Description

Archiver Description

The TMS320C3x/C4x archiver lets you combine several individual files into a
single file called an archive or a library . Each file within the archive is called
a member. Once you have created an archive, you can use the archiver to add
more files to the library, delete or replace existing members, or extract mem-
bers.

You can build libraries out of any type of files. Both the assembler and the linker
accept archive libraries as input; the assembler can use libraries that contain
individual source files, and the linker can use libraries that contain individual
object files.

One of the most useful applications of the archiver is to build a library of object
modules. For example, you could write several arithmetic routines, assemble
them, and then use the archiver to collect the object files into a single, logical
group. You can then specify an object library as linker input. The linker will
search through the library and include any members that resolve external ref-
erences.

You can also use the archiver to build macro libraries. You can create several
separate source files, each of which contains a single macro, and then use the
archiver to collect these macros into a single, functional group. The .mlib
assembler directive lets you specify the name of a macro library to the
assembler; during the assembly process, the assembler will search the speci-
fied library for the macros that you call. Chapter 6 discusses macros and macro
libraries in detail.

These are the topics covered in this chapter:

Topic Page

7.1 Archiver Development Flow 7-2.

7.2 Invoking the Archiver 7-3.

7.3 Archiver Examples 7-5.

Chapter 7

Archiver Development Flow

 7-2

7.1 Archiver Development Flow

Figure 7–1 shows the archiver’s role in the assembly language development
process. Both the assembler and the linker accept libraries as input.

Figure 7–1. Archiver Development Flow

Assembler

Linker

C Compiler

Macro
Library

Macro
Source
Files

Library of
Object
Files

Hex Conversion
Utility

EPROM
Programmer

Debugging
 Tools

C
Source
Files

Assembler
Source

COFF
Object
Files

TMS320C3x
TMS320C4x

Executable
COFF

File

Runtime
Support
Library

Archiver

Archiver Library Build
 Utility

Invoking the Archiver

7-3Archiver Description

7.2 Invoking the Archiver

The archiver can be invoked with command line options:

ar30 [–]command [option] libname [filename1 ... filenamen]

or with a command file:

ar30 @command_file

ar30 is the command that invokes the archiver.

libname names an archive library. If you don’t specify an extension for
libname, the archiver uses the default extension .lib .

filename names individual member files that are associated with the
library. If you don’t specify an extension for a filename, the
archiver uses the default extension .obj .

command tells the archiver how to manipulate the library members. A
command can be preceded by an optional hyphen. You must
use one of the following commands when you invoke the
archiver, but you can use only one command per invocation.

–a adds the specified files to the library. Note that this
command does not replace an existing member that
has the same name as an added file; it simply ap-
pends new members to the end of the archive. It is
possible to have several members with the same
name in an archive. If you want to replace existing
members, use the r command.

–d deletes the specified members from the library.

–r replaces the specified members in the library. If you
don’t specify any filenames, the archiver replaces the
library members with files of the same name in the
current directory. If the specified file is not found in the
library, the archiver adds it instead of replacing it.

–t prints a table of contents of the library. If you specify
filenames, only those files are listed. If you don’t spec-
ify any filenames, the archiver lists all library mem-
bers.

Invoking the Archiver

 7-4

–u only replaces the specified members in the library if
the replacements are newer (have a more recent
modification date). This command should be used in
conjunction with the r command.

–x extracts the specified files. If you don’t specify mem-
ber names, the archiver extracts all library members.
When the archiver extracts a member, it simply copies
the member into the current directory; it doesn’t re-
move it from the library.

In addition to one of the commands, you can specify the following options:

–e tells the archiver not to use the default extension .obj
for member names.

–q (quiet) suppresses the banner and status messages.

–s prints a list of the global symbols that are defined in the
library. (This option is valid only with the –a, –r, and –d
commands.)

–v (verbose) provides a file-by-file description of the
creation of a new library from an old library and its
constituent members.

When invoking the archiver with a command file, the @ character must be spe-
cified before the command file name. The command file can specify archiver
commands, options, library names, and file names. Comments can only ap-
pear in the command file on a separate line beginning with a semicolon (;). The
command file should be of the form:

; comments
[command][option][...]
libname
filename1
.
.
filenamen

Note: Naming Library Members

It is possible (but not desirable) for a library to contain several members with
the same name. If you attempt to delete, replace, or extract a member, and
the library contains more than one member with the specified name, then the
archiver deletes, replaces, or extracts the first member with that name.

Archiver Examples

7-5Archiver Description

7.3 Archiver Examples

Here are some examples of using the archiver.

� Example 1

This example creates a library called function.lib that contains the files
sine.obj, cos.obj, and flt.obj.

ar30 –a function sine cos flt
TMS320C3x/4x Archiver Version x.xx
Copyright (c) 1987–1997 Texas Instruments Incorporated

==> new archive ’function.lib’
==> building archive ’function.lib’

Because these examples use the default extensions (.lib for the library and
.obj for the members), it is not necessary to specify them.

� Example 2

You can print a table of contents of function.lib with the –t option:

ar30 –t function
TMS320C3x/4x Archiver Version x.xx
Copyright (c) 1987–1997 Texas Instruments Incorporated

FILE NAME SIZE DATE
––––––––––––––––– ––––– –––––––––––––––––––––––

sine.obj 248 Mon Nov 19 01:25:44 1997
cos.obj 248 Mon Nov 19 01:25:44 1997
flt.obj 248 Mon Nov 19 01:25:44 1997

� Example 3

You can explicitly specify extensions if you don’t want the archiver to use
the default extensions; for example:

ar30 –av function.fn sine.asm cos.asm flt.asm
TMS320C3x/4x Archiver Version x.xx
Copyright (c) 1987–1997 Texas Instruments Incorporated

==> add ’sine.asm’
==> add ’cos.asm’
==> add ’flt.asm’
==> building archive ’function.fn’

This creates a library called function.fn that contains the files sine.asm,
cos.asm, and flt.asm. (–v is the verbose option.)

� Example 4

If you want to add new members to the library, specify

ar30 –as function tan.obj arctan.obj area.obj
TMS320C3x/4x Archiver Version x.xx
Copyright (c) 1987–1997 Texas Instruments Incorporated

==> symbol defined: ’K2’
==> symbol defined: ’Rossignol’
==> building archive ’function.lib’

Archiver Examples

 7-6

Because this example doesn’t specify an extension for the libname, the
archiver adds the files to the library called function.lib. If function.lib didn’t
exist, the archiver would create it. (The –s option tells the archiver to list the
global symbols that are defined in the library.)

� Example 5

If you want to modify a member in a library, you can extract it, edit it, and
replace it. In this example, assume there’s a library named macros.lib that
contains the members push.asm, pop.asm, and swap.asm.

ar30 –x macros push.asm

The archiver makes a copy of push.asm and places it in the current direc-
tory; it doesn’t remove push.asm from the library, though. Now you can edit
the extracted file. To replace the copy of push.asm that’s in the library with
the edited copy, enter

ar30 –r macros push.asm

8-1Linker Description

Linker Description

The TMS320C3x/C4x linker creates executable modules by combining COFF
object files. As the linker combines object files, it performs the following tasks:

� It allocates sections into the target system’s configured memory.
� It relocates symbols and sections to assign them to final addresses.
� It resolves undefined external references between input files.

The linker supports a command language that controls memory configuration,
output section definition, and address binding. The language supports
expression assignment and evaluation and provides two powerful directives,
MEMORY and SECTIONS, that allow you to:

� Define a memory model that conforms to target system memory,
� Combine object file sections,
� Allocate sections into specific areas of memory, and
� Define or redefine global symbols at link time.

Topic Page

8.1 Linker Development Flow 8-2.
8.2 Invoking the Linker 8-4.
8.3 Linker Options 8-6.
8.4 Linker Command Files 8-18.
8.5 Object Libraries 8-21.
8.6 The MEMORY Directive 8-23.
8.7 The SECTIONS Directive 8-27.
8.8 Specifying a Section’s Runtime Address 8-35.
8.9 Using UNION and GROUP Statements 8-39.
8.10 Overlay Pages 8-42.
8.11 Default Allocation 8-47.
8.12 Special Section Types (DSECT, COPY, and NOLOAD) 8-49.
8.13 Assigning Symbols at Link Time 8-50.
8.14 Creating and Filling Holes 8-54.
8.15 Partial (Incremental) Linking 8-58.
8.16 Linking C Code 8-60.
8.17 Linker Example 8-64.

Chapter 8

Linker Development Flow

 8-2

8.1 Linker Development Flow

Figure 8–1 illustrates the linker’s role in the assembly language development
process. The linker accepts several types of files as input, including object
files, command files, libraries, and partially linked files. The linker creates an
executable COFF object module that can be downloaded to one of several de-
velopment tools or executed by a TMS320C3x/C4x device.

Input files generated by TMS320C3x/C4x tools can be created on any sup-
ported host machine and then linked by the TMS320C3x/C4x linker on a
different machine. For example, an input file assembled by the
TMS320C3x/C4x assembler on a PC can be linked by the TMS320C3x/C4x
linker on a SPARCstation. If a TMS320C3x/C4x tool was not used to create
an input file, the file must have the appropriate byte–swapping done before it
can be linked on a different machine.

Linker Development Flow

8-3Linker Description

Figure 8–1. Linker Development Flow

Assembler

C Compiler

Archiver

Macro
Library

Macro
Source
Files

Archiver

Library of
Object
Files

Hex Conversion
Utility

EPROM
Programmer

Debugging
 Tools

C
Source
Files

Assembler
Source

COFF
Object
Files

TMS320C3x
TMS320C4x

Executable
COFF

File

Runtime
Support
LibraryLinker

Library Build
 Utility

Invoking the Linker

 8-4

8.2 Invoking the Linker
The general syntax for invoking the linker is:

lnk30 [–options] filename1 ... filenamen

lnk30 is the command that invokes the linker.

options can appear anywhere on the command line or in a linker
command file. (Options are discussed in Section 8.3.)

filenames can be object files, linker command files, or archive libraries.
The default extension for all input files is .obj ; any other exten-
sion must be explicitly specified. The linker can determine
whether the input file is an object file or an ASCII file that con-
tains linker commands. The default output filename is a.out.

There are three methods for invoking the linker:

� Specify options and filenames on the command line. This example links
two files, file1.obj and file2.obj, and uses the –o option to create an output
module named link.out.

lnk30 file1.obj file2.obj –o link.out

� Enter the lnk30 command with no filenames and no options; the linker will
prompt for them:

Command files :
Object files [.obj] :
Output files [] :
Options :

For command files, enter one or more command file names.

For object files, enter one or more object file names. The default extension
is .obj. Separate the filenames with spaces or commas; if the last
character is a comma, the linker will prompt for an additional line of object
file names.

The output file is the name of the linker output module. This overrides any
–o options entered with any of the other prompts. If there are no –o options
and you do not answer this prompt, the linker will create an object file with
the default filename of a.out .

The options prompt is for additional options, although you can also enter
options in a command file. Enter them with hyphens, just as you would on
the command line.

� Put filenames and options in a linker command file. For example, assume
the file linker.cmd contains the following lines:

–o link.out
file1.obj
file2.obj

Invoking the Linker

8-5Linker Description

Now you can invoke the linker from the command line; specify the com-
mand file name as an input file:

lnk30 linker.cmd

When you use a command file, you can also specify other options and files
on the command line. For example, you could enter:

lnk30 –m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters it
on the command line, so it links the files in this order: file1.obj, file2.obj, and
file3.obj. This example creates an output file called link.out and a map file
called link.map.

Note: Version Number Not Required for Linker

The linker does not have a version option to specify the target CPU. The
target CPU type is encoded in the object files and the linker automatically
links for the correct processor. The linker will issue an error message if you
attempt to link object files assembled for different processors.

Linker Options

 8-6

8.3 Linker Options

Linker options control linking operations. They can be placed on the command
line or in a command file. All linker options must be preceded by a hyphen (–).
The order in which options are specified is unimportant, except for the –l and
–i options. Options are separated from arguments (if they have them) by an
optional space. Table 8–1 summarizes the linker options.

Table 8–1. Linker Options Summary

Option Description

–a Produce an absolute, executable module. This is the default; if neither
–a nor –r is specified, the linker acts as if –a is specified.

–ar Produce a relocatable, executable object module.

–b The linker will not merge any duplicate symbol table entries that may ex-
ist from multiple files. This has the effect of making the linker run faster
at the expense of a larger COFF output file.

–c Use linking conventions defined by the ROM autoinitialization model of
the C compiler.

–cr Use linking conventions defined by the RAM autoinitialization model of
the C compiler.

–e Defines a global symbol that specifies the primary entry point for the out-
put module.

–f fill value Set the default fill value for holes within output sections; fill value is a
4-byte constant.

–g symbol Maintain the specified symbol as a global symbol, regardless of the use
of the –h option.

–h Make all global symbols static.

–heap size Set heap size (for the C memory pool command malloc()) to size words
and define the global symbol _SYSMEM_SIZE to specify heap size.
Default = 1K words

–heap8 size Set the size for the ’C32’s 8–bit memory heap, and define the global
symbol _SYSMEM8_SIZE to that value. The size and the symbol are
used by the 8–bit memory routines. Defaults to 0 words and an unde-
fined symbol if the 8–bit memory routines are not used.

–heap16 size Set the size for the ’C32’s 16–bit memory heap, and define the global
symbol _SYSMEM16_SIZE to that value. The size and the symbols are
used by the 16–bit memory routines. Defaults to 0 words and an unde-
fined symbol if the 16–bit memory routines are not used.

–i dir Alter the library-search algorithm to look in dir before looking in the
default location. This option must appear before the –l option.

–l filename † Name an archive library file as linker input; filename is an archive library
name.

–m filename † Produce a map or listing of the input and output sections, including
holes, and place the listing in filename.

–o filename † Name the executable output module. The default filename is a.out.

Linker Options

8-7Linker Description

–q Request a quiet run (suppress the banner). Must be the first argument
on the command line.

–r Retain relocation entries in the output module.

–s Strip symbol table information and line number entries from the output
modules.

–stack size Sets C system stack size to size words and defines a global symbol that
specifies the stack size. Default = 1K words

–u symbol Place an unresolved external symbol into the output module’s symbol
table.

–vn Generate version n COFF format, where n is 0, 1, or 2. The default is
2.

–w Generate a warning when an output section that is not specified with the
SECTIONS directive is created.

–x Forces rereading of libraries. Resolves “back” references.

† The filename must follow operating system conventions

8.3.1 Relocation Capability (–a and –r Options)

One of the tasks the linker performs is relocation. Relocation is the process of
adjusting all references to a symbol when the symbol’s address changes. The
linker supports two options (–a and –r) that allow you to choose whether you
will produce an absolute or a relocatable output module. Default is –a.

� Producing an Absolute Output Module (–a Option)

When you use the –a option without the –r option, the linker produces an
executable, absolute output module. Absolute files contain no relocation
entries. Executable files contain the following:

� special symbols defined by the linker (subsection 8.13.4 on page 8-53
describes these symbols),

� an optional header that describes information such as the program
entry point, and

� no unresolved references.

This example links file1.obj and file2.obj and creates an absolute output
module called a.out:

lnk30 –a file1.obj file2.obj

� Producing a Relocatable Output Module (–r Option)

When you use the –r option without the –a option, the linker retains reloca-
tion entries in the output module. If the output module will be relocated (at
loadtime) or relinked (by another linker execution), use –r to retain the relo-
cation entries.

The linker produces an unexecutable file when you use the –r option with-
out –a. A file that is not executable does not contain special linker symbols

Linker Options

 8-8

or an optional header. The file may contain unresolved references, but
these references do not prevent creation of an output module.

This example links file1.obj and file2.obj and creates a relocatable output
module called a.out:

lnk30 –r file1.obj file2.obj

The output file a.out can be relinked with other object files or relocated at
loadtime. (Linking a file that will be relinked with other files is called partial
linking. For more information, see Section 8.15 on page 8-58.)

� Producing an Executable Relocatable Output Module (–ar)

If you invoke the linker with both the –a and –r options, the linker produces
an executable, relocatable object module. The output file contains the
special linker symbols and an optional header. All symbol references are
resolved (this is normal for a relocatable file); however, the relocation
information is retained.

This example links file1.obj and file2.obj and creates an executable,
relocatable output module called xr.out:

lnk30 –ar file1.obj file2.obj –o xr.out

Note that you can string the options together (lnk30 –ar) or you can enter
them separately (lnk30 –a –r).

� Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can be successful only if each input file contains
no information that needs to be relocated (that is, each file has no
unresolved references and is bound to the same virtual address that it was
bound to when the linker created it).

Linker Options

8-9Linker Description

8.3.2 Disable Merge of Symbolic Debugging Information (–b Option)

By default, the linker eliminates duplicate entries of symbolic debugging
information. Such duplicate information is commonly generated when a C pro-
gram is compiled for debugging. For example:

– [header.h] –
typedef struct
{
 <define some structure members>
} XYZ;

– [fl.c] –
#include “header.h”
...

– [f2.c] –
#include “header.h”
...

When these files are compiled for debugging, both f1.obj and f2.obj will have
symbolic debugging entries to describe type XYZ. For the final output file, only
one set of these entries is necessary. The linker will eliminate the duplicate en-
tries automatically.

Using the –b option causes the linker to keep such duplicate entries. Keeping
these entries allows the linker to run faster and use less machine memory at
the expense of producing a larger COFF output file.

8.3.3 C Language Options (–c and –cr Options)

The –c and –cr options cause the linker to use linking conventions that are
required by the TMS320C3x/C4x C compiler.

� The –c option tells the linker to use the ROM autoinitialization model.

� The –cr option tells the linker to use the RAM autoinitialization model.

For more information about linking C code, see Section 8.16 on page 8-60.

8.3.4 Define an Entry Point (–e global symbol Option)

The memory address that a program begins executing from is called the entry
point. When a loader loads a program into target memory, the program
counter must be initialized to the entry point; the PC then points to the begin-
ning of the program.

The linker can assign one of four possible values to the entry point. These val-
ues are listed below in the order in which the linker tries to use them. If you use

Linker Options

 8-10

one of the first three values, it must be an external symbol in the symbol table.
Possible entry point values include:

� The value specified by the –e option. The syntax is –e global symbol where
global symbol defines the entry point and must appear as an external sym-
bol in one of the input files to be linked.

� The value of symbol _c_int00 (if present). _c_int00 must be the entry
point if you are linking code produced by the C compiler.

� The value of symbol _main (if present).

� Zero (default value).

This example links file1.obj and file2.obj and sets the entry point to the value
of the symbol begin. This symbol must be defined as external in file1 or file2.

lnk30 –e begin file1.obj file2.obj

8.3.5 Set Default Fill Value (–f cc Option)

The –f option fills the holes formed within output sections or initializes uninitial-
ized sections when they are combined with initialized sections. This allows you
to initialize memory areas during link time without reassembling a source file.
The argument cc is a 4-byte constant (up to eight hexadecimal digits). If you
do not use –f, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value AABBCCDDh:

lnk30 –f 0AABBCCDDh file1.obj file2.obj

For more information about holes, see Section 8.14 on page 8-54.

8.3.6 Make All Global Symbols Static (–h Option)

The –h option makes output global symbols static. This is useful when you are
using partial linking to link related object files into self-contained modules, then
relinking the modules into a final system. If there are global symbols in one
module that have the same name as global symbols in other modules, but you
want to treat them as separate symbols, use the –h option when building the
modules. The global symbols in the modules, which would normally be visible
to the other modules and cause possible redefinition problems in the final link,
are made static so that they are not visible to the other modules.

For example, assume b1.obj, b2.obj, and b3.obj are related and reference a
global variable GLOB. Also assume that d1.obj, d2.obj, and d3.obj are related
and also reference a separate global variable GLOB. You can link the related
files with the following commands:

Linker Options

8-11Linker Description

lnk30 –h –r b1.obj b2.obj b3.obj –o bpart.out
lnk30 –h –r d1.obj d2.obj d3.obj –o dpart.out

The –h option guarantees that bpart.out and dpart.out will not have global
symbols and therefore two distinct versions of GLOB exist. The –r option is
used to allow bpart.out and dpart.out to retain their relocation entries. These
two partially linked files can then be safely linked with the following command:

lnk30 bpart.out dpart.out –o system.out

For more information about partial linking, see Section 8.15 on page 8-58.

8.3.7 Keep a Global Symbol (–g symbol Option)

The –g option allows you to keep the named symbol as a non–static global
symbol, despite the use of the –h option. This allows the sharing of specific
symbols across multiple object files with variables of the same name. Any sym-
bols of the specified name will be visible to all modules, and an error will result
if the symbol has a definition in more than one file.

8.3.8 Define Heap Size (–heap size, –heap8 size, and –heap16 size Options)

The TMS320C3x/C4x C compiler uses an uninitialized section called .sysmem
for the C runtime memory pool used by malloc(). You can set the size of this
memory pool at link time by using the –heap option. Specify the size in words
as a four byte constant immediately after the option:

lnk30 –heap 0x4000 /* defines a 256K byte heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in
an input file.

The linker also creates a global symbol __SYSMEM_SIZE and assigns it a
value equal to the size of the heap. The default size is 1K words.

To support the TMS320C32, the ’C3x runtime support library adds 8-bit and
16-bit versions of the dynamic memory management functions. These func-
tions are analogous to the 32-bit versions described in Chapter 5, Runtime
Support Functions, of the TMS320C3x/C4x Optimizing C Compiler User’s
Guide. The only difference is that the 8-bit and 16-bit versions allocate space
from the .sysm8 and .sysm16 uninitialized sections rather than the .sysmem
section.

Linker Options

 8-12

void *calloc8(size_t _num, size_t _size);
void free8(void *_ptr);
void *malloc8(size_t _size);
void *bmalloc8(size_t _size);
void minit8(void);
void *realloc8(void *_ptr, size_t _size);

void *calloc16(size_t _num, size_t _size);
void free16(void *_ptr);
void *malloc16(size_t _size);
void *bmalloc16(size_t _size);
void minit16(void);
void *realloc16(void *_ptr, size_t _size);

The sizes of the .sysm8 and .sysm16 sections can be set by using the –heap8
and –heap16 linker options, respectively. If the memory management func-
tions are used but the –heap8 and –heap16 options are not used, the default
size of each heap is 1K words. If the memory management functions are not
used, the linker will not allocate the .sysm8 and .sysm16 sections. If the
sections are created, the linker sets the constant heap size values in the
_SYSMEM8_SIZE and _SYSMEM16_SIZE symbols, respectively. The
stdlib.h header file should be included in any file that uses these new functions.

For more information about linking C code, see Section 8.16 on page 8-60.

8.3.9 Alter the Library Search Algorithm (–i dir & –l filename /C_DIR)

Usually when you want to specify a library input, you simply enter the library
name as you would any other input filename; the linker looks for the library in
the current directory. For example, suppose the current directory contains the
library object.lib. Assume that this library defines symbols that are referenced
in the file file1.obj. This is how you link the files:

lnk30 file1.obj object.lib

If you want to use a library that is not in the current directory, use the –l (lower-
case “L”) linker option. The syntax for this option is –l filename. The filename
is the name of an archive library; the space between –l and the filename is op-
tional.

You can augment the linker’s directory search algorithm by using the –i linker
option or the environment variable. The linker searches for any file specified
with –l in the following order:

1) It searches directories named with the –i linker option.
2) It searches directories named with the environment variable C_DIR.
3) If C_DIR is not set, it searches directories named with the assembler’s en-

vironment variable, A_DIR.
4) It searches the current directory.

Linker Options

8-13Linker Description

8.3.10 –i Linker Option

The –i option names an alternate directory that contains object libraries. The
syntax for this option is –i dir. dir names a directory that contains object librar-
ies; the space between –i and the directory name is optional. When the linker
is searching for object libraries named with the –l option, it searches through
directories named with –i first. Each –i option specifies only one directory, but
you can use several –i options per invocation. When you use the –i option to
name an alternate directory, it must precede the –l option on the command line
or in a command file.

As an example, assume that there are two archive libraries called r.lib and
lib2.lib. The table below shows the directories that r.lib and lib2.lib reside in,
how to set environment variable, and how to use both libraries during a link.
Select the row for your operating system:

Sample Pathname Invocation Command

DOS \c30 and \c302 lnk30 f1.obj f2.obj –i\c30 –i\c302 –l r.lib –l lib2.lib

UNIX /c30 and /c302 lnk30 f1.obj f2.obj –i/c30 –i/c302 –l r.lib –l lib2.lib

8.3.11 Environment Variable (C_DIR or A_DIR)

An environment variable is a system symbol that you define and assign a string
to. The linker uses an environment variable named C_DIR to name alternate
directories that contain object libraries. The command for assigning the envi-
ronment variable is:

Sample Pathname Invocation Command

DOS \dsp and \dsp2 set C_DIR=\dsp;\dsp2
lnk30 f1.obj f2.obj –l r.lib –l lib2.lib

UNIX /dsp and /dsp2 setenv C_DIR /dsp:/dsp2
lnk30 f1.obj f2.obj –l r.lib –l lib2.lib

The pathnames are directories that contain object libraries. Use the –l option
on the command line or in a command file to tell the linker which libraries to
search for.

The assembler uses an environment variable named A_DIR to name alternate
directories that contain copy/include files or macro libraries. If C_DIR is not set,
the linker will search for object libraries in the directories named with A_DIR.
Section 8.5 (page 8-21) contains more information about object libraries.

Linker Options

 8-14

8.3.12 Create a Map File (–m filename Option)

The –m option creates a link map listing and puts it in filename. This map de-
scribes:

� Memory configuration

� Input and output section allocation

� The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it may
also contain up to three tables:

� A table showing the memory configuration, if any nondefault memory is
specified.

� A table showing the linked addresses of each output section and the input
sections that make up the output sections.

� A table showing each external symbol and its address. This table has two
columns: the left column contains the symbols sorted by name, and the
right column contains the symbols sorted by address.

This example links file1.obj and file2.obj and creates a map file called map.out:

lnk30 file1.obj file2.obj –m map.out

Section 8.17 (page 8-64) shows an example of a map file.

8.3.13 Name an Output Module (–o filename Option)

The linker creates an executable output module. If you do not specify a file-
name for the output module, the linker gives it the default name a.out . If you
want to the output module to have another name, use the –o option. The file-
name is the new output module name.

This example links file1.obj and file2.obj and creates an output module named
run.out:

lnk30 –o run.out file1.obj file2.obj

8.3.14 Specify a Quiet Run (–q Option)

The –q option suppresses the linker’s banner when –q is the first option on the
command line or in a command file. This option is useful for batch operation.

8.3.15 Strip Symbolic Information (–s Option)

The –s option creates a smaller output module by omitting symbol table infor-
mation and line number entries. The –s option is useful for production applica-
tions when you must create the smallest possible output module.

Linker Options

8-15Linker Description

This example links file1.obj and file2.obj and places them in an output module,
stripped of line numbers and symbol table information, named nolink.out:

lnk30 –o nolink.out –s file1.obj file2.obj

Note that using the –s option limits later use of a symbolic debugger and may
prevent a file from being relinked.

8.3.16 Define Stack Size (–stack size Option)

The TMS320C3x/C4x C compiler uses an uninitialized section, .stack, to
allocate space for the runtime stack. You can set the size of the .stack section
at link time with the –stack option. Specify the size in words as a constant
immediately after the option:

lnk30 –stack 0x1000 /* defines a 4K stack (.stack section) */

If you specified a different stack size in an input section, the input section stack
size is ignored. Any symbols defined in the input section remain valid; only the
stack size will be different.

When the linker defines the .stack section, it also defines a global symbol,
_ _STACK_SIZE, and assigns it a value equal to the size of the section. The
default stack size is 1K words.

8.3.17 Introduce an Unresolved Symbol (–u symbol Option)

The –u option introduces an unresolved symbol into the linker’s symbol table.
This forces the linker to search through a library and include the module that
defines the symbol. Note that the linker must encounter the –u option before
it links in the member that defines the symbol.

For example, suppose a library named sym.lib contains a member that defines
the symbol symtab; none of the object files you are linking reference to symtab.
However, suppose you plan to relink the output module, and you would like to
include the library member that defines symtab in this link. Using the –u option
as shown below forces the linker to search sym.lib for the member that defines
symtab and to link in the member.

lnk30 –u symtab file1.obj file2.obj sym.lib

If you do not use –u, this member would not be included because there is no
explicit reference to it from file1.obj or file2.obj.

Linker Options

 8-16

8.3.18 COFF Format Version (–v n Option)

The –v option allows you to specify the version of COFF used in the created
executable. n can be 0, 1, or 2, with 2 as the default. Previous versions of the
tools supported only COFF version 0. This option is available for backward
compatibility and may be removed in a future release. For a description of
COFF, see Appendix A.

The COFF version used to create the executable must also be supported by
any debugger or simulator used. Note that the current simulators only support
COFF version 0. The following debuggers support COFF versions 1 and 2:

Debugger Version

C3x XDS510 5.20

C3x EVM 5.20

C4x XDS510 2.50

If you are not using using one of these debuggers, you must use the –v0 option
when creating your final executable. To attain a debugger or simulator, see the
Microprocessor Development Systems Customer Support Guide provided
with this product.

8.3.19 Warning Switch (–w Option)

The –w option generates a warning message if an output section is created
that is not explicitly specified with the SECTIONS directive. For example:

– [fl.asm] –

.sect “xsect”

.word 0

– [link.cmd] –

SECTIONS
{
 <no output section specifications reference xsect>
}

The linker creates an output section called xsect that consists of the input sec-
tion xsect from other object files; the linker then uses the default allocation
rules to allocate this output section into memory. If you used the –w switch
when linking, the preceding example would generate the message:

>> warning: creating output section xsect without SECTIONS specification

Linker Options

8-17Linker Description

8.3.20 Exhaustively Read Libraries (–x option)

The linker normally reads input files, archive libraries included, only once when
they are encountered on the command line or in the command file. When an
archive is read, any members that resolve references to undefined symbols
are included in the link. If an input file later references a symbol defined in a
previously read archive library (this is called a back reference), the reference
will not be resolved.

You can force the linker to repeatedly reread all libraries with the –x option. The
linker will continue to reread libraries until no more references can be resolved.
For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib
contains a reference to a symbol defined in a.lib, you can resolve the mutual
dependencies by listing one of the libraries twice, as in:

lnk30 –la.lib –lb.lib –la.lib

or you can force the linker to do it for you:

lnk30 –x –la.lib –lb.lib

Linker Command Files

 8-18

8.4 Linker Command Files

Linker command files allow you to put linking information in a file; this is useful
when you often invoke the linker with the same information. Linker command
files are also useful because they allow you to use the MEMORY and
SECTIONS directives to customize your application. You must use these di-
rectives in a command file; you cannot use them on the command line.
Command files are ASCII files that contain one or more of the following:

� Input filenames, which specify object files, archive libraries, or other com-
mand files. (If a command file calls another command file as input, this
statement must be the last statement in the calling command file. The
linker does not return from called command files.)

� Linker options, which can be used in the command file in the same manner
that they are used on the command line.

� The MEMORY and SECTIONS linker directives. The MEMORY directive
allows you to specify the target memory configuration. The SECTIONS di-
rective controls how sections are built and allocated.

� Assignment statements, which define and assign values to global
symbols.

To invoke the linker with a command file, enter the lnk30 command and follow
it with the name of the command file:

lnk30 command file name

The linker processes input files in the order that it encounters them. If the linker
recognizes a file as an object file, it links the file. Otherwise, it assumes that
a file is a command file and begins reading and processing commands from
it. Note that command filenames are upper/lower-case sensitive, regardless
of the system used.

Example 8–1 shows a sample linker command file called link.cmd.
(Subsection 2.4.2 on page 2-15 contains another example of a linker com-
mand file.)

Example 8–1. An Example of a Linker Command File

/***/
/* Sample Linker Command File */
/***/
a.obj /* First input filename */
b.obj /* Second input filename */
–o prog.out /* Option to specify output file */
–m prog.map /* Option to specify map file */

Linker Command Files

8-19Linker Description

Example 8–1 contains only filenames and options. (Note that you can place
comments in a command file by delimiting them with /* and */.) To invoke the
linker with this command file, enter:

lnk30 link.cmd

You can also place other parameters on the command line when you use a
command file:

lnk30 –r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters it, so a.obj and
b.obj are linked into the output module before c.obj and d.obj.

You can also specify multiple command files. If, for example, you have a file
called names.lst that contains filenames and another file called dir.cmd that
contains linker directives, you can enter:

lnk30 names.lst dir.cmd

A command file can call another command file; this type of nesting is limited
to 16 levels. If a command file names another command file as input, this state-
ment must be the last statement in the calling command file.

Blanks and blank lines that appear in a command file are insignificant except
as delimiters. This also applies to the format of linker directives in a command
file. Example 8–2 shows a sample command file that contains linker direc-
tives. (Linker directive formats are discussed in later sections.)

Example 8–2. A Command File With Linker Directives

/**/
/* Sample Linker Command File with Directives */
/**/
a.obj b.obj c.obj /* Input filenames */
–o prog.out –m prog.map /* Options */

MEMORY /* MEMORY directive */
{

RAM: o = 100h 1 = 0100h
ROM: o = 01000h 1 = 0100h

}

SECTIONS /* SECTIONS directive */
{

.text: > ROM

.data: > ROM

.bss: > RAM
}

Linker Command Files

 8-20

Note: Command Files Are Always Case Sensitive

Within a command file, all filenames are case sensitive, even on systems
where case sensitivity does not apply to filenames (DOS,VMS.) If an input
file appears more than once in a command file, its case must be the same
in all instances.

The following names are reserved as key words for linker directives. Do not
use them as symbol or section names in a command file.

Reserved Keywords

align GROUP origin
attr l (lowercase “L”) ORIGIN
ATTR len page
ALIGN length PAGE
block LENGTH run
BLOCK load RUN
COPY LOAD SECTIONS
DSECT MEMORY type
f NOLOAD TYPE
fill o UNION
FILL org

Object Libraries

8-21Linker Description

8.5 Object Libraries

An object library is a partitioned archive file that contains complete object files
as members. Usually, a group of related modules are grouped together into
a library. When you specify an object library as linker input, the linker includes
any members of the library that define existing unresolved symbol references.
You can use the TMS320C3x/C4x archiver to build and maintain archive
libraries; Chapter 7 contains more information about the archiver.

Using object libraries can reduce linking time and can reduce the size of the
executable module. If a normal object file is specified at link time, it is linked
whether it is used or not; however, if that same file is placed in an archive
library, it is included only if it is referenced.

The order in which libraries are specified is important because the linker
includes only those members that resolve symbols that are undefined when
the library is searched. The same library can be specified as often as neces-
sary; it is searched each time it is included. An alternative is to use the –x
option, which continually searches all libraries until all references are resolved.
A library has a table that lists all external symbols defined in the library; the
linker searches through the table until it determines that it cannot use the
library to resolve any more references.

The following example links several object files and libraries; assume the fol-
lowing:

� Input files f1.obj and f2.obj both reference an external function named
clrscr.

� Input file f1.obj references the symbol origin.
� Input file f2.obj references the symbol fillclr.
� Library libc.lib, member 0, contains a definition of origin.
� Library liba.lib, member 3, contains a definition of fillclr.
� Member 1 of both libraries defines clrscr.

If you enter

lnk30 f1.obj liba.lib f2.obj libc.lib

then:

� Member 1 of liba.lib satisfies both references to clrscr, because the library
is searched and clrscr is defined before f2.obj references it.

� Member 0 of libc.lib satisfies the reference to origin.
� Member 3 of liba.lib satisfies the reference to fillclr.

Object Libraries

 8-22

If, however, you enter:

lnk30 f1.obj f2.obj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use
the –u option to force the linker to include a library member. The next example
creates an undefined symbol rout1 in the linker’s global symbol table:

lnk30 –u rout1 libc.lib

If any members of libc.lib define rout1, then the linker includes those members.
Note that it is not possible to control the allocation of individual library mem-
bers; members are allocated according to the SECTIONS directive default al-
location algorithm.

Subsection 8.3.9 (page 8-12) describes methods for specifying directories that
contain object libraries.

The MEMORY Directive

8-23Linker Description

8.6 The MEMORY Directive

The linker determines where output sections should be allocated into memory;
the linker must have a model of target memory to accomplish this task. The
MEMORY directive allows you to specify a model of target memory, so you can
define the types of memory your system contains and the address ranges they
occupy. The linker maintains the model as it allocates output sections, and
uses the model to determine which memory locations in the target system can
be used for object code.

The memory configurations of TMS320 systems differ from application to ap-
plication. The MEMORY directive allows you to specify a variety of configura-
tions to meet all applications. After you use the MEMORY directive to define
a memory model, you can use the SECTIONS directive to allocate output sec-
tions into defined memory.

8.6.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory
model that is based on the TMS320C3x/C4x architecture. This model as-
sumes that the full 32-bit address space (232 locations) is present in the system
and available for use.

8.6.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically pre-
sent in the target system and can be used by a program. Each memory range
has a name, a starting address, and a length.

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available to load object code into. Memory that is defined by
the MEMORY directive is configured memory; any memory that you do not ex-
plicitly account for with the MEMORY directive is unconfigured memory. The
linker does not place any part of a program into unconfigured memory. You can
represent nonexistent memory spaces by simply not including an address
range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. The MEMORY directive in Example 8–3 defines a system that has 4K
words of ROM at address 0 and 8K of RAM at address 0E000h.

The MEMORY Directive

 8-24

Example 8–3. The MEMORY Directive

/***/
/* Sample command file with MEMORY directive */
/***/
file1.obj file2.obj /* Input files */
–o prog.out /* Options */

MEMORY
{

ROM: origin = 00000h , length = 1000h

RAM: origin = 0E000h , length = 2000h
}

origins lengths

MEMORY
directive

Now you could use the SECTIONS directive to tell the linker where to link the
sections. For example, you could allocate the .text and .data sections into the
area named ROM and allocate the .bss section into the area named RAM.

The general syntax for the MEMORY directive is:

MEMORY

{

PAGE 0 : name 1 [(attr)] :origin = constant, length = constant

PAGE n : name n [(attr)] :origin = constant, length = constant

}

PAGE identifies a memory space. You can specify up to 255
pages, depending on your configuration; usually, PAGE
0 specifies program memory, and PAGE 1 specifies data
memory. If you do not specify a PAGE, the linker acts as
if you specified PAGE 0. Each PAGE represents a com-
pletely independent address space. Configured memory
on PAGE 0 can overlap configured memory on PAGE 1.

name Names a memory range. A memory name may be 1 to
8 characters; valid characters include A–Z, a–z, $, ., and
_. The names have no special significance to the linker;
they simply identify memory ranges. Memory range
names are internal to the linker and are not retained in
the output file or in the symbol table. Memory ranges on
separate pages can have the same name; within a page,
however, all memory ranges must have unique names
and must not overlap.

The MEMORY Directive

8-25Linker Description

attr Specifies one to four attributes associated with the
named range. Attributes are optional; when used, they
must be enclosed in parentheses. Attributes can restrict
the allocation of output sections into certain memory
ranges. If you do not use any attributes, you can allocate
any output section into any range with no restrictions.
Any memory for which no attributes are specified (includ-
ing all memory in the default model) has all four attrib-
utes. Valid attributes include:

R specifies that the memory can be read
W specifies that the memory can be written to
X specifies that the memory can contain executable

code
I specifies that the memory can be initialized

If you do not specify any attributes for a memory
range, then the range has all four attributes. All mem-
ory in the default model has all four attributes. The fol-
lowing example defines a memory range that is read-
able and executable:

MEMORY
{ ROM (RX) : o = 0, l = 01000h }

origin Specifies the starting address of a memory range; enter
as origin, org, or o. The value, specified in bytes, is a
16-bit constant and may be decimal, octal, or hexadeci-
mal.

length Specifies the length of a memory range; enter as length,
len, or l. The value, specified in bytes, is a 16 bit constant
and may be decimal, octal, or hexadecimal.

fill Specifies a fill character for the memory range; enter as
fill or f. Fills are optional. The value is a two-byte integer
constant and may be decimal, octal, or hexadecimal.
The fill value will be used to fill areas of the memory range
that are not allocated to a section.

The MEMORY Directive

 8-26

Figure 8–2 illustrates the memory map defined by Example 8–3.

Figure 8–2. Memory Map Defined in Example 8–3

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

0h

1000h

0E000h

10000h

0FFFFFFh

ROM

unconfigured

RAM

Unconfigured

Memory

The SECTIONS Directive

8-27Linker Description

8.7 The SECTIONS Directive

The SECTIONS directive tells the linker how to combine sections from input
files into sections in the output module and where to place the output sections
in memory. In summary, the SECTIONS directive:

� Describes how input sections are combined into output sections,

� Defines output sections in the executable program,

� Specifies where output sections are placed in memory (in relation to each
other and to the entire memory space), and

� Permits renaming of output sections.

8.7.1 Default Sections Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 8.11 (page 8-47) describes
this algorithm in detail.

8.7.2 SECTIONS Directive Syntax

Note: Compatibility With Previous Versions

In previous versions of the linker, many of these constructs were specified
differently. The linker accepts any of the older forms.

The SECTIONS directive is specified in a command file by the word
SECTIONS (uppercase), followed by a list of output section specifications en-
closed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS

 {

 name : [property, property, property, ...]

name : [property, property, property, ...]

name : [property, property, property, ...]

}

Each section specification, beginning with name, defines an output section.
(An output section is a section in the output file.) After the section name is a
list of properties that define the sections contents and how it is allocated. The

The SECTIONS Directive

 8-28

properties may be separated by optional commas. Possible properties for a
section are:

LOAD ALLOCATION Defines where in memory the section is to be loaded.
Syntax: load = allocation or

allocation or
 > allocation

RUN ALLOCATION defines where in memory the section is to be run.
Syntax: run = allocation or

run > allocation

INPUT SECTIONS defines the input sections comprising the section.
Syntax: { input_sections }

SECTION TYPE defines flags for special section types.
Syntax: type = COPY or

type = DSECT or
type = NOLOAD

For more information on section types, see Section 8.12.

FILL VALUE defines the value used to fill uninitialized ”holes”
Syntax: fill = value or

name: ... { ... } = value
For more information on creating and filling holes, see Section 8.14.

Example 8–4 shows a SECTIONS directive in a sample linker command file.
Figure 8–3 shows how these sections are allocated in memory.

Example 8–4. The SECTIONS Directive

/***/
/* Sample command file with SECTIONS directive */
/***/
file1.obj file2.obj /* Input files */
–o prog.out /* Options */

SECTIONS
{

.text: load = ROM

.const: load = ROM, run = 0809800h

.bss: load = RAM, block = 010000h
vectors: load = 0h

{
t1.obj(.intvec1)
t2.obj(.intvec2)
endvec = .;

}
.data: align = 32

}

SECTIONS
directive

section
specifications

The SECTIONS Directive

8-29Linker Description

Figure 8–3 shows the five output sections defined by the sections directive in
Example 8–4; .vectors, .text, .const, .bss, and .data.

Figure 8–3. Section Allocation Defined by Example 8–4

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.vectors

.text

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

– bound at 0

– allocated in ROM

.const – allocated in ROM

.bss – allocated in RAM

.data – aligned on
32-bit boundary

00h

The .text section combines the .text sections from
file1.obj and file2.obj. The linker combines all sec-
tions named .text into this section.

The .const section combines the .const sections
from file1.obj and file2.obj. The application must
relocate the section to run at 0809800h.

The .bss section combines the .bss sections from
file1.obj and file2.obj. The .bss section is blocked
into a space in RAM that is 10000h words long.

The .vectors section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.obj.

The .data section combines the .data sections from
file1.obj and file2.obj. The linker will place it any-
where there is space for it (in RAM in this illustration)
and align it to a 32-bit boundary.

8.7.3 Specifying the Address of Output Sections (Allocation)

The linker assigns each output section two locations in target memory: the lo-
cation where the section will be loaded and the location where it will be run.
Usually, these are the same and you can think of each section as having only
a single address. In any case, the process of locating the output section in the
target’s memory and assigning its address(es) is called allocation. For more
information about using separate load and run allocation, see Section 8.8 on
page 8-35.

If you do not tell the linker how a section is to be allocated, it uses a default
algorithm to allocate the section. Generally, the linker puts sections wherever
they fit into configured memory. You can override this default allocation for a
section by defining it within a SECTIONS directive and providing instructions
on how to allocate it.

The SECTIONS Directive

 8-30

You control allocation by specifying one or more allocation parameters. Each
parameter consists of a keyword, an optional equals sign or greater-than sign,
and a value optionally enclosed in parentheses. If load and run allocation is
separate, all parameters following the keyword LOAD apply to load allocation,
and those following RUN apply to run allocation. Possible allocation parame-
ters are:

BINDING allocates a section at a specific address
.text: load = 0x1000

MEMORY allocates the section into a range defined in the MEMORY di-
rective with the specified name or attributes
.text: load > ROM

ALIGNMENT specifies that the section should start on an address bound-
ary
.text: align = 0x100

BLOCKING provides another method of section alignment
.text: block(0x10000)

PAGE specifies the memory page to be used (see Section 8.10 on
page 8-42)
.text: PAGE 0

For the load (usually the only) allocation, you may simply use a greater-than
sign and omit the LOAD keyword:

.text: > ROM .text: {...} > ROM

.text: > 0x1000

If more than one parameter is used, you can string them together as follows:

.text: > ROM align 16 page 2

Or if you prefer, use parentheses for readability:

.text: load = (ROM align(16) page (2))

Binding

You can supply a specific starting address for an output section by following
the section name with an address:

.text: 0x1000

This example specifies that the .text section must begin at location 1000h. The
binding address must be a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming
there is enough space), but they cannot overlap. If there is not enough space
to bind a section to a specified address, the linker issues an error message.

The SECTIONS Directive

8-31Linker Description

Note: Binding and Alignment or Named Memory Are Incompatible

You cannot bind a section to an address if you use alignment or named mem-
ory. If you try to do this, the linker issues an error message.

Memory

You can allocate a section into a memory range that is defined by the
MEMORY directive. This example names ranges and links sections into them:

MEMORY
{

ROM (RIX) : origin = 0h, length = 1000h
RAM (RWIX): origin = 3000h, length = 1000h

}
SECTIONS
{

.text : > ROM

.data ALIGN(64) : > RAM

.bss : > RAM
}

In this example, the linker places .text into the area called ROM. The .data and
.bss output sections are allocated into RAM. You can align a section within a
named memory range; the .data section is aligned on a 64-word boundary
within the RAM range.

Similarly, you can link a section into an area of memory that has particular
attributes. To do this, specify a set of attributes (enclosed in parentheses) in-
stead of a memory name. Using the same MEMORY directive declaration, you
can specify:

SECTIONS
{

.text: > (X) /* .text ––> executable memory */

.data: > (RI) /* .data ––> read or init memory */

.bss : > (RW) /* .bss ––> read or write memory */
}

In this example, the .text output section can be linked into either the ROM or
RAM area because both areas have the X attribute. The .data section can also
go into either ROM or RAM because both areas have the R and I attributes.
The .bss output section, however, must go into the RAM area because only
RAM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, al-
though the linker uses lower memory addresses first and avoids fragmentation

The SECTIONS Directive

 8-32

when possible. In the preceding examples, assuming no other sections had
been bound to addresses that would interfere with this allocation process, the
.text section would start at address 0. If a section must start on a specific ad-
dress, use binding instead of named memory.

Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an
n-word boundary, where n is a power of 2. For example,

.text: load = align(32)

allocates .text so that it falls on a cache boundary.

Blocking is a weaker form of alignment. As with alignment, n must be a power
of 2. For example,

bss: load = block(0x10000)

tells the linker to

� Make sure that the output section does not cross a 0x10000 page if it is
smaller than 0x10000 in length, or

� Make sure that it is aligned to start at the beginning of a 0x10000 page if
it is larger than 0x10000 in length.

The block keyword does not tell the linker to make sure that the output section
is not longer than 0x10000.

You can use alignment or blocking alone or in conjunction with a memory area,
but alignment and blocking cannot be used together.

8.7.4 Specifying Input Sections

An input section specification identifies the sections from input files that are
combined to form an output section. The linker combines input sections by
concatenating them in the order in which they are specified. The size of an out-
put section is the sum of the sizes of the input sections that make up the output
section.

Example 8–5 shows the most common type of section specification; note that
no input sections are listed.

Example 8–5. The Most Common Method of Specifying Section Contents
SECTIONS
{

.text:

.data:

.bss:
}

The SECTIONS Directive

8-33Linker Description

In Example 8–5, the linker takes all the .text sections from the input files and
combines them into the .text output section. The linker concatenates the .text
input sections in the order that it encounters them in the input files. The linker
performs similar operations with the .data and .bss sections. You can use this
type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS
{
 .text : /* Build .text output section */
 {

f1.obj(.text) /* Link .text section from f1.obj */
f2.obj(sec1) /* Link sec1 section from f2.obj */
f3.obj /* Link ALL sections from f3.obj */
f4.obj(.text,sec2) /* Link .text and sec2 from f4.obj */

 }
}

Note that it is not necessary for input sections to have the same name as each
other or as the output section they become part of. If a file is listed with no sec-
tions, all of its sections are included in the output section. If any additional input
sections have the same name as an output section but are not explicitly speci-
fied by the SECTIONS directive, they are automatically linked in at the end of
the output section. For example, if the linker found more .text sections in the
preceding example, and these .text sections were not specified anywhere in
the SECTIONS directive, then the linker would concatenate these extra sec-
tions after f4.obj(sec2).

The specifications in Example 8–5 are actually a shorthand method for the fol-
lowing:

SECTIONS
{

.text: { *(.text) }

.data: { *(.data) }

.bss: { *(.bss) }
}

The *(.text) means the unallocated .text sections from all the input files.
This format is useful when:

� You want the output section to contain all input sections that have a certain
name, but the output section name is different from the input sections’
name.

� You want the linker to allocate the input sections before it processes addi-
tional input sections or commands within the braces.

The SECTIONS Directive

 8-34

Here’s an example that uses this method:

SECTIONS
{

.text : {
abc.obj(xqt)

*(.text)
}

.data : {
*(.data)
fil.obj(table)

}
}

In this example, the .text output section contains a named section xqt from file
abc.obj, which is followed by all the .text input sections. The .data section con-
tains all the .data input sections, followed by a named section table from the
file fil.obj. Note that this method includes all the unallocated sections. For ex-
ample, if one of the .text input sections was already included in another output
section when the linker encountered *(.text) , the linker could not include
that first .text input section in the second output section.

Specifying a Section’s Runtime Address

8-35Linker Description

8.8 Specifying a Section’s Runtime Address

It may be necessary or desirable at times to load code into one area of memory
and run it in another. For example, you may have performance-critical code
in a ROM-based system. The code must be loaded into ROM but would run
much faster if it were in RAM.

The linker provides a simple way to specify this. In the SECTIONS directive,
you can optionally direct the linker to allocate a section twice: once to set its
load address and again to set its run address. For example:

.fir: load = ROM, run = RAM

Use the load keyword for the load address and the run keyword for the run ad-
dress.

8.8.1 Specifying Two Addresses

The load address determines where a loader will place the raw data for the
section. Any references to the section (such as labels in it) refer to its run ad-
dress. The application must copy the section from its load address to its run
address; this does not happen automatically just by specifying a separate run
address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is actually allocated as if it were two different sec-
tions of the same size. This means that both allocations occupy space in the
memory map and cannot overlay each other or other sections. (The UNION
directive provides a way to overlay sections; see subsection 8.9.1.)

If either the load or run address has additional parameters, such as alignment
or blocking, list them after the appropriate keyword. Everything having to do
with allocation after the keyword load affects the load address until the key-
word run is seen, after which everything affects the run address. The load and
run allocations are completely independent, so any qualification of one (such
as alignment) has no effect on the other. You may also specify run first, then
load. Use parentheses to improve readability. Examples:

.data: load = ROM, align = 32, run = RAM

(align applies only to load)

.data: load = (ROM align 32), run = RAM

(identical to previous example)

.data: run = RAM, align 32,
load = align 16

(align 32 in RAM for run, align 16 anywhere for load)

Specifying a Section’s Runtime Address

 8-36

8.8.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so the only address of sig-
nificance is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and ig-
nores the load address. Otherwise, if you specify only one address, the linker
treats it as a run address, regardless of whether you call it load or run. Exam-
ples:

.bss: load = 0x1000, run = RAM

A warning is issued, load is ignored, space is allocated in RAM. All of the fol-
lowing examples have the same effect. The .bss section is allocated in RAM.

.bss: load = RAM

.bss: run = RAM

.bss: > RAM

8.8.3 Referring to a Load Address by Using the .label Directive

Any reference to a normal symbol in a section refers to its runtime address.
However, it may be necessary at runtime to refer to a load-time address. In
particular, the code that copies a section from its load address to its run ad-
dress must know where it was loaded. The .label directive in the assembler
defines a special type of symbol that refers to the load address of the section.
Thus, whereas normal symbols are relocated with respect to the run address,
.label symbols are relocated with respect to the load address. For more infor-
mation on the .label directive, see page 4-45.

Note: The .asect Directive Is Obsolete

Allowing separate allocation of run addresses in the linker makes the .asect
directive obsolete. Any .asect section can be written as a normal section
(with .sect) and given an absolute run address at link time. However, the
.asect directive continues to work exactly as before and can still be used.
Also, the .label directive in an asect works exactly as it did before: it defines
a relocatable symbol. Now, however, .label can ALSO be used in ANY sec-
tion to define a (relocatable) symbol that refers to the load address.

Specifying a Section’s Runtime Address

8-37Linker Description

Example 8–6. Copying a Section From ROM to RAM

;––
; define a section to be copied from ROM to RAM
;––

.sect ”.fir”

.label fir_src ; load address of section
fir: ; run address of section

<code here> ; code for the section

.label fir_end ; load address of section end

;––
; copy .fir section into on–chip RAM
;––

.text
src .word fir_src ; src = load address
dest .word fir ; run address

LDI @src,AR0 ; fetch load address
LDI @dest,AR1 ; fetch run address
LDI *AR0++,R0 ; block copy
RPTS fir_end – fir_src –1
LDI *AR0++,R0

|| STI R0,AR1++

;––
; jump to section, now on–chip
;––

CALL fir ; jump to (runtime) address

Linker Command File

/**/
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
/**/
MEMORY
{

ROM: origin = 01000h, length = 0F000h
RAM: origin = 0809800h, length = 0400h

}

SECTIONS
{

.text: load = ROM

.fir: load = ROM, run = RAM
}

Figure 8–4 illustrates the runtime execution of this example.

Specifying a Section’s Runtime Address

 8-38

Figure 8–4. Runtime Execution of Example 8–6

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ROM

RAM

Application copies
section at runtime

fir_src:

fir_end:

fir: .fir (relocated to
run here)

.text

.fir (loads here)

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Using UNION and GROUP Statements

8-39Linker Description

8.9 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory by GROUPing or
UNIONing output sections together. Unioning sections causes the linker to al-
locate the same run address to the sections. Grouping sections causes the
linker to allocate them contiguously in memory.

8.9.1 Overlaying Sections With the UNION Directive

For some applications, you may wish to allocate more than one section to run
at the same address; for example, you may have several routines you want
in on-chip RAM at various stages of the program’s execution. Or you may want
several data objects that you know will not be active at the same time to share
a block of memory. The UNION statement within the SECTIONS directive pro-
vides a way to allocate several sections at the same run address.

Example 8–7. Illustrates the Form of the UNION Statement

 SECTIONS
 {
 .text: load = ROM
 UNION: run = RAM
 {

.bss1: { file1.obj(.bss) }

.bss2: { file2.obj(.bss) }
 }
 .bss3: run = RAM { globals.obj(.bss) }
 }

In Example 8–7, the .bss sections from file1.obj and file2.obj are allocated at
the same address in RAM. The union occupies as much space in the memory
map as its largest component. The components of a union remain indepen-
dent sections; they are simply allocated together as a unit.

Allocation of a section as part of a union affects only its run address. Under
no circumstances can sections be overlaid for loading . If an initialized
section is a union member (an initialized section has raw data, such as .text),
its load allocation must be separately specified. For example:

Example 8–8. Illustrates Separate Load Addresses for UNION Sections

 UNION run = RAM
 {
 .text1: load = ROM, { file1.obj(.text) }
 .text2: load = ROM, { file2.obj(.text) }
 }

Using UNION and GROUP Statements

 8-40

Figure 8–5. Memory Allocation for Example 8–7 and Example 8–8

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ROM

RAM

.text 2 (run)

.text 1 (load)

.text 1 (run)

.text 2 (load)

copies at runtime

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ROM

RAM

.text

.bss2
.bss1

.bss3

Illustration of Example 8–7 Illustration of Example 8–8

Sections cannot
load as a union.

Sections can
run as a union.
This is runtime
allocation only.

Since the .text sections contain data, they cannot load as a union, although
they can be run as a union. Therefore, they each require their own load ad-
dress. If you fail to provide a load allocation for an initialized section within a
UNION, the linker issues a warning and allocates load space anywhere it fits
in configured memory.

Uninitialized sections do not require load addresses. Uninitialized sections are
not loaded.

The UNION statement applies only to allocation of run addresses, so it is re-
dundant to specify a load address for the union itself. For purposes of alloca-
tion, the union is treated as an uninitialized section: any one allocation speci-
fied is considered a run address, and if both are specified, the linker issues a
warning and ignores the load address.

Note: Unions and Overlay Pages Are Not the Same

The UNION capability and the overlay page capability (Section 8.10) may
sound similar, since they both deal with “overlays”. They are, in fact, quite
different. UNION allows multiple sections to be overlaid within the same
memory space. Overlay pages, on the other hand, define multiple memory
spaces. It is possible to use the page facility to approximate the function of
UNION, but this is cumbersome.

Using UNION and GROUP Statements

8-41Linker Description

8.9.2 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces several output sec-
tions to be allocated contiguously. For example, assume that a section named
term_rec contains a termination record for a table in the .data section. You can
force the linker to allocate .data and term_rec together:

Example 8–9. Using the GROUP Directive

SECTIONS
{

.text /* Normal output section */

.bss /* Normal output section */
GROUP 1000h : /* Specify a group of sections

*/
{

.data /* First section in the group */
term_rec /* Allocated immediately after .data */

}
}

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section, as shown in Figure 8–6.

Figure 8–6. Section Allocation Defined by Example 8–9

.text

.bss

.data

00h

term_rec

The .data section is bound to address 1000h and
term_rec follows it in memory.

1000h

Note: You Cannot Specify Addresses for Sections Within a GROUP

When you use the GROUP option, binding, alignment, or allocation into
named memory can be specified for the group only. You cannot use binding,
named memory, or alignment for sections within a group.

Overlay Pages

 8-42

8.10 Overlay Pages

Some target systems use an overlay memory configuration in which all or part
of the memory space is overlaid by shadow memory. This allows the system
to map different banks of physical memory in and out of a single address range
in response to hardware selection signals. In this situation, multiple areas of
physical memory overlay each other at one address. You may want the linker
to load various output sections into each of these areas or into areas that are
not mapped at loadtime.

The linker supports this feature by providing overlay pages. Overlay pages
allow you to define a memory model that has multiple address spaces. To the
linker, each possible overlay configuration represents a separate address
space. Each address range is treated as a separate page and must be confi-
gured separately with the MEMORY directive. You can then use the
SECTIONS directive to specify which sections will be mapped into various
pages.

8.10.1 Using the MEMORY Directive to Define Overlay Pages

Each separately configured address space is called a page. To the linker, each
page represents a completely separate memory that has the full 32-bit range
of addressable locations. This allows you to link two or more sections at the
same (or overlapping) addresses if they are on different pages.

Pages are numbered sequentially, beginning with 0. Page 0 represents the
normal address space of the TMS320C3x/C4x. The default memory model re-
sides entirely on page 0. If a memory range is specified without a page number,
the linker assumes it is in page 0. This allows you to ignore the page feature
for most cases; usually, all sections can be linked in page 0 with no overlays.

For example, assume that your system can select among three 4K-word long
banks of physical memory to map into the address space from 1000h to 2000h.
Although only one bank can be selected at a time, you can initialize each bank
with different data. Assume you have three output sections called sect0, sect1,
and sect2 that must be linked into the three banks of memory. This is how you
would use the MEMORY directive to obtain this configuration:

Overlay Pages

8-43Linker Description

Example 8–10. Overlay Pages

/**/
/* Example of MEMORY directive with overlay pages */
/**/
MEMORY
{

PAGE 0 : ROM : origin = 0h, length = 1000h
RAM : origin = 100000h, length = 0F0000

0h
OVR_MEM : origin = 1000h, length = 1000h

PAGE 1 : OVR_MEM : origin = 1000h, length = 1000h
PAGE 2 : OVR_MEM : origin = 1000h, length = 1000h

}

This example defines three separate address spaces. Page 0 is the normal
address space of the TMS320C3x/C4x. It contains the memory ranges ROM
and RAM; suppose they represent all the memory in the normal address
space. Page 0 also contains the first bank of overlay memory (OVR_MEM).
The other two address spaces contain only the additional banks of overlay
memory, both labeled OVR_MEM. Note that all three OVR_MEM ranges cover
the same address range. This is possible because each range is on a different
page and therefore represents a different memory space.

Figure 8–7. Overlay Pages Defined by Example 8–10

Overlay 0
(sect0)

ROM
 (.text)

RAM
(.data, .bss)

0000h

0FFFh
1000h

1FFFh

100000h

0FFFFF0h

PAGE 0 PAGE 1 PAGE 2

Overlay 1
(sect1)

Overlay 2
(sect2)

Overlay Pages

 8-44

8.10.2 Using Overlay Pages With the SECTIONS Directive

The SECTIONS directive allows you to tell the linker which page an output sec-
tion should be linked into. Each output section of the program is assigned a
page as well as an address. You can assign an output section to an overlay
page by following the section specification with the PAGE option and a page
number. Assume the use of the MEMORY directive from Example 8–10, the
SECTIONS definition would be:

Example 8–11. SECTIONS Directive Definition for Figure 8–7

SECTIONS
{

.text: load = ROM /* Link .text in ROM on page 0 */

.data: load = RAM /* Link .data in RAM on page 0 */

.bss : load = RAM /* Link .bss in RAM on page 0 */
sect0: load = OVR_MEM, page = 0 /* Link sect0 into bank 0 */
sect1: load = OVR_MEM, page = 1 /* Link sect1 into bank 1 */
sect2: load = OVR_MEM, page = 2 /* Link sect2 into bank 2 */}

If you don’t specify a page number for an output section, the linker assumes
page 0. In this example, .text, .data, and .bss are all linked into the named
memory areas on page 0. (The PAGE 0 could have been omitted from the
sect0 definition as well.)

The PAGE specifications for sect0, sect1, and sect2 tell the linker to link these
output sections into the corresponding overlay pages. As a result, they all are
linked to address 1000h, but in different memory spaces. When the program
is loaded, a loader can configure hardware in such a way that each of these
sections is loaded into the appropriate bank of memory.

Within a page, you can bind output sections or use named memory areas in
the usual way. In the preceding example, notice how sect1 is allocated into the
memory range OVR_MEM. This allows you to define the allocation of sections
within a page, just as you can in a single memory space.

Overlay Pages

8-45Linker Description

For example, the following statement:

sect1 : load = 1200h, page = 1

links sect1 at address 1200h in page 1. You can also use page as a “qualifier”
on the address. For example:

sect1 : load = (1200 PAGE 1)

If you do not specify any binding or named memory range for the section, the
linker allocates the section into the page wherever it can (just as it normally
does with a single memory space). For example, sect2 could also be specified
as:

sect2 : PAGE 2

Because OVR_MEM is the only memory on page 2, it is not necessary (but
acceptable) to specify = OVR_MEM for the section.

8.10.3 Page Definition Syntax

As illustrated in the preceding examples, overlay pages are specified in the
MEMORY directive by using the following syntax:

MEMORY
{

PAGE 0 : memory range
memory range

PAGE n : memory range
memory range

}

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges the page contains. Memory ranges are
specified in the normal way. You can define up to 255 overlay pages. Because
each page represents a completely independent address space, memory
ranges on different pages can have the same name. Configured memory on
any page can overlap configured memory on any other page. Within a single
page, however, all memory ranges must have unique names and must not
overlap.

Overlay Pages

 8-46

Any memory ranges listed outside the scope of a PAGE specification default
to page 0. Consider the following example:

MEMORY
{

ROM : org = 0h len = 1000h
EPROM : org = 1000h len = 1000h
RAM : org = 2000h len = 0E000h

PAGE 1: XROM : org = 0h len = 1000h
XRAM : org = 2000h len = 0E000h

}

The memory ranges ROM, EPROM, and RAM are all on page 0 (because no
page is specified). XROM and XRAM are on page 1. Note that XROM on page
1 overlays ROM on page 0, and XRAM on page 1 overlays RAM on page 0.

In the output link map (obtained with the –m linker option), the listing of the
memory model is keyed by pages. This provides you with an easy method of
verifying that you specified the memory model correctly. Also, the listing of out-
put sections has a PAGE column that identifies the memory space into which
each section will be loaded.

Default Allocation

8-47Linker Description

8.11 Default Allocation

The MEMORY and SECTIONS directives provide flexible methods for build-
ing, combining, and allocating sections. However, any memory locations or
sections that you choose not to specify must still be handled by the linker.
Within the specifications you supply, the linker uses default algorithms to build
and allocate sections. Subsections 8.11.1 and 8.11.2 describe default alloca-
tion algorithms.

8.11.1 Allocation Algorithm

If you do not use the MEMORY directive the linker assumes that the full 32-bit
address space is configured and allocates output sections into memory, begin-
ning at address 0.

If you do not use the SECTIONS directive, the linker allocates the output sec-
tions as though the following SECTIONS directive was specified:

SECTIONS
{

.text :

.data :

.bss :
}

All .text input sections are concatenated to form a .text output section in the
executable output file. All .data input sections are combined to form a .data out-
put section, and all .bss sections are combined to form a .bss output section.
Each output section is then allocated into configured memory.

If the input files contain named sections, the linker links them in after the .bss
section. Input sections that have the same name are combined into a single
output section with this name.

Note: Using the SECTIONS Directive Affects Allocation

When you use the SECTIONS directive, the linker performs no part of the
default allocation. Allocation is performed according to the rules specified by
the SECTIONS directive and the rules discussed in subsection 8.11.2.

Default Allocation

 8-48

8.11.2 General Rules for Output Sections

An output section can be formed in one of two ways:

Rule 1 As the result of a SECTIONS directive definition.

Rule 2 By combining input sections with the same names into output sec-
tions that are not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this
definition completely determines its contents. (See Section 8.7, page 8-27, for
examples of how to specify the contents of output sections.)

An output section can also be formed when input sections are encountered
that are not specified by any SECTIONS directive (rule 2). In this case, the
linker combines all such input sections that have the same name into an output
section with this name. For example, suppose that the files f1.obj and f2.obj
both contain named sections called Vectors and that the SECTIONS directive
does not define an output section to contain them. The linker will combine the
two Vectors sections from the input files into a single output section named
Vectors, allocate it into memory, and include it in the output file.

After the linker determines the composition of all the output sections, it must
allocate them into configured memory. The MEMORY directive specifies
which portions of memory are configured, or if there is no MEMORY directive,
the linker uses the default configuration.

The linker’s allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. This is the algorithm:

1) Any output section for which you have listed a specific binding address is
placed in memory at that address.

2) Any output section that is included in a specific named memory range or
that has memory attribute restrictions is allocated. Each output section is
placed into the first available space within the named area, considering
alignment where necessary.

3) Any remaining sections are allocated in the order in which they were de-
fined. Sections not defined in a SECTIONS directive are allocated in the
order in which they were encountered. Each output section is placed into
the first available memory space, considering alignment or blocking where
necessary.

Special Section Types (DSECT, COPY, and NOLOAD)

8-49Linker Description

8.12 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and
NOLOAD. These types affect the way that the section is treated when it is
linked and loaded. You can assign a type to a section by using the type property
in the section definition. For example:

SECTIONS
{

sec1: load = 200000h, type = DSECT {f1.obj}
sec2: load = 400000h, type = COPY {f2.obj}
sec3: load = 600000h, type = NOLOAD {f3.obj}

}

� The DSECT type creates a dummy section with the following qualities:

� It is not included in the output section memory allocation. It takes up no
memory and is not included in the memory map listing.

� It can overlay other output sections, other DSECTs, and unconfigured
memory.

� Global symbols defined in a dummy section are relocated normally.
They appear in the output module’s symbol table with the same value
they would have if the DSECT had actually been loaded. These sym-
bols can be referenced by other input sections.

� Undefined external symbols found in a DSECT cause specified
archive libraries to be searched.

� The section’s contents, relocation information, and line number infor-
mation are not placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated,
but all the symbols are relocated as though the sections were linked at ad-
dress 200000h. The other sections can refer to any of the global symbols
in sec1.

� A COPY section is similar to a DSECT section, except that its contents and
associated information are written to the output module. The .cinit section
that contains initialization tables for the C compiler has this attribute under
the RAM model.

� A NOLOAD section differs from a normal output section in one respect: the
section’s contents, relocation information, and line number information
are not placed in the output module. The linker allocates space for the sec-
tion, the section is listed in the memory map listing, etc.

Assigning Symbols at Link Time

 8-50

8.13 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to assign an
allocation-dependent value to a variable or a pointer.

8.13.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of C assign-
ment statements:

symbol = expression; Assigns the value of expression to symbol

symbol += expression; Adds the value of expression to symbol

symbol –= expression; Subtracts the value of expression from symbol

symbol *= expression; Multiplies symbol by expression

symbol /= expression; Divides symbol by expression

The symbol should be defined externally in the program. If it is not, the linker
defines a new symbol and enters it into the symbol table. The expression must
follow the rules defined in subsection 8.13.3. Assignment statements must be
terminated with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Thus, if an expression contains a symbol, the address used for that
symbol reflects the symbol’s address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Table1 and Table2. The program uses the symbol
cur_tab as the address of the current table; cur_tab must point to either Table1
or Table2. You could accomplish this in the assembly code, but you would need
to reassemble the program in order to change tables. Instead, you can use a
linker assignment statement to assign cur_tab at link time:

prog.obj /* Input file */
cur_tab = Table1; /* Assign cur_tab to one of the tables */

8.13.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the SPC
during allocation. The linker’s dot (.) symbol is analogous to the assembler’s
dollar sign ($) symbol. The dot (.) symbol can be used only in assignment

Assigning Symbols at Link Time

8-51Linker Description

statements within a SECTIONS directive, because dot (.) is meaningful only
during allocation, and the SECTIONS directive controls the allocation process.

For example, suppose a program needs to know the address of the beginning
of the .data section. You can create an external undefined variable called
Dstart in the program by using the .global directive. Then, assign the value of
“.” to Dstart:

SECTIONS
{

.text:

.data: { Dstart = .; } /* Dstart = current SPC value */

.bss :
}

This defines Dstart to be the ultimate linked address of the .data section. The
linker will relocate all references to Dstart. If the section has separate load and
run addresses, “.” refers to the run address.

A special type of assignment assigns a value to the “.” symbol. This adjusts
the location counter within an output section and creates a hole between two
input sections. Any value assigned to “.” to create a hole is relative to the begin-
ning of the section, not to the address actually represented by “.”. Assignments
to “.” and holes are described in Section 8.14.

8.13.3 Assignment Expressions

These rules apply to linker expressions:

� Expressions can contain global symbols, constants, and the C language
operators listed in Table 8–2.

� All numbers are treated as long (32-bit) integers.

� Constants are identified in the same manner as they are by the assembler.
That is, numbers are recognized as decimals unless they have a suffix (H
or h for hexadecimal and Q or q for octal). C language prefixes are also
recognized (0 for octal and 0x for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

� Symbols within an expression have only the value of the symbol’s
address. No type checking is performed.

� Linker expressions can be absolute or relocatable. If an expression con-
tains any relocatable symbols (and zero or more constants or absolute
symbols), it is relocatable. Otherwise, the expression is absolute. If a sym-
bol is assigned the value of a relocatable expression, the symbol is

Assigning Symbols at Link Time

 8-52

relocatable; if assigned the value of an absolute expression, the symbol
is absolute.

The linker supports the C language operators listed in Table 8–2 in order of
precedence. Operators in the same group have the same precedence.

Besides the operators listed in Table 8–2, the linker also has an align operator
that allows a symbol to be aligned on an n-word boundary within an output sec-
tion (n is a power of 2). For example, the expression:

. = align(16);

aligns the SPC within the current section on the next 16-word boundary. Be-
cause the align operator is a function of the current SPC, it can be used only
in the same context as “.” — that is, within a SECTIONS directive.

Table 8–2. Operators in Assignment Expressions

Group 1 (Highest Precedence) Group 6

!
~
–

Logical not
Bitwise not
Negative

& Bitwise AND

Group 2 Group 7

*
/

%

Multiplication
Division
Mod

| Bitwise OR

Group 3 Group 8

+
–

Addition
Minus

&& Logical AND

Group 4 Group 9

>>
<<

Arithmetic right shift
Arithmetic left shift

|| Logical OR

Group 5 Group 10 (Lowest Precedence)

==
! =
>
<

< =
> =

Equal to
Not equal to
Greater than
Less than
Less than or equal to
Greater than or equal to

=
+ =
– =
* =
/ =

Assignment
A + = B → A = A + B
A – = B → A = A – B
A * = B → A = A * B
A / = B → A = A / B

Assigning Symbols at Link Time

8-53Linker Description

8.13.4 Symbols Defined by the Linker

The linker automatically defines six symbols that a program can use at runtime
to determine where a section is linked. These symbols are external, so they
appear in the link map. They can be accessed in any assembly language mod-
ule if they are declared with a .global directive.

Values are assigned to these symbols as follows:

.text is assigned the first address following the .text output section. (It
marks the beginning of executable code.)

etext is assigned the first address following the .text output section. (It
marks the end of executable code.)

.data is assigned the first address following the .data output section. (It
marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section. (It
marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section. (It marks the
beginning of uninitialized data.)

end is assigned the first address following the .bss output section. (It
marks the end of uninitialized data.)

Symbols Defined Only for C Support (–c or –cr option)

cinit is assigned the first address of the .cinit section (–l for
–cr).

_ _STACK_SIZE is assigned the size of the .stack section.

__SYSMEM_SIZE is assigned the size of the .sysmem section.

_SYSMEM8_SIZE is assigned the size of the .sysm8 section (’C32 only).

_SYSMEM16_SIZE is assigned the size of the .sysm16 section (’C32 only).

Creating and Filling Holes

 8-54

8.14 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes . In special
cases, uninitialized sections can also be treated as holes. This section de-
scribes how the linker handles such holes and how you can fill holes (and
uninitialized sections) with a value.

8.14.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of an output section. An
output section contains either:

� An output section contains raw data for the entire section, or

� An output section contains no raw data.

A section that has raw data is referred to as initialized. This means that the
object file contains the actual memory image contents of the section. When the
section is loaded, this image is loaded into memory at the section’s specified
starting address. The .text and .data sections always have raw data if anything
was assembled into them. Named sections defined with the .sect or .asect as-
sembler directives also have raw data.

By default, the .bss section and .usect sections have no raw data (they are
uninitialized). They occupy space in the memory map but have no actual con-
tents. Uninitialized sections typically reserve space in RAM for variables. In the
object file, an uninitialized section has a normal section header and may have
symbols defined in it; however, no memory image is stored in the section.

8.14.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections when building
an output section. When such a hole is created, the linker must follow the first
guideline and supply raw data for the hole.

Holes can be created only within output sections. There can also be space be-
tween output sections, but such spaces are not holes. There is no way to fill
or initialize the space between output sections.

To create a hole in an output section, you must use a special type of linker as-
signment statement within an output section definition. The assignment state-
ment modifies the SPC (denoted by “.”) by adding to it, assigning a greater
value to it, or aligning it on an address boundary. The operators, expressions,
and syntax of assignment statements are described in Section 8.13 (page
8-50).

Creating and Filling Holes

8-55Linker Description

The following example shows how holes can be created in output sections
using assignment statements:

SECTIONS
{

outsect:
{

file1.obj(.text)
. += 100h; /* Create a hole with size 100h */
file2.obj(.text)
. = align(16); /* Create a hole to align the SPC */
file3.obj

}
}

The output section outsect is built as follows:

� The .text section from file1.obj is linked in.
� The linker creates a 256-word hole.
� The .text section from file2.obj is linked in after the hole.
� The linker creates another hole by aligning the SPC on a 16-word bound-

ary.
� Finally, the .text section from file3.obj is linked in.

All values assigned to the “.” symbol within a section refer to the relative
address within the section. The linker handles assignments to the “.” symbol
as if the section started at address 0 (even if you specify a binding address).
Consider the statement . = align(16) in the preceding example. This statement
effectively aligns file3.obj .text to start on a 16-word boundary within outsect.
If outsect is ultimately allocated to start on an address that is not aligned, then
file3.text will not be aligned either.

Expressions that decrement “.” are illegal. For example, it is invalid to use the
–= operator in an assignment to “.”. The most common operators used in
assignments to “.” are += and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section:

.text: { .+= 100h; } /* Hole at the beginning */

.data: {
 *(.data)

. += 100h; } /* Hole at the end */

Creating and Filling Holes

 8-56

Another way to create a hole in an output section is to combine an uninitialized
section with initialized sections to form a single output section. In this case, the
linker treats the uninitialized section as a hole and supplies data for it. An ex-
ample of creating a hole in this way is:

SECTIONS
{

outsect:
{

file1.obj(.text)
file1.obj(.bss) /* This becomes a hole */

}
}

Because the .text section has raw data, all of outsect must also contain raw
data (first guideline). Therefore, the uninitialized .bss section becomes a hole.

Note that uninitialized sections become holes only when they are combined
with initialized sections. If multiple uninitialized sections are linked together,
the resulting output section is also uninitialized.

8.14.3 Filling Holes

Whenever there is a hole in an initialized output section, the linker must supply
raw data to fill it. The linker fills holes with a 4-byte fill value that is replicated
through memory until it fills the hole. The linker determines the fill value as fol-
lows:

1) If the hole is formed by combining an uninitialized section with an initialized
section, you can specify a fill value for that specific initialized section. Fol-
low the section name with an = symbol and a 4-byte constant:

SECTIONS
{

outsect:
{

file1.obj(.text)
file2.obj(.bss) = 0FFh /* Fill this hole */

} /* with 000000FFh */
}

2) You can also specify a fill value for all the holes in an output section by us-
ing the fill keyword. For example,

SECTIONS
{

outsect: fill = 0FF00h /* fills holes with 0FF00h */
{

. += 10h; /* This creates a hole */
file1.obj(.text)
file1.obj(.bss) /* This creates another hole */

}
}

Creating and Filling Holes

8-57Linker Description

3) If you do not specify an initialization value for a hole, the linker fills the hole
with the value specified with –f. For example, suppose the command file
link.cmd contains the following SECTIONS directive:

SECTIONS
{

.text: { .= 100; } /* Create a 100 - word hole*/
}

Now invoke the linker with the –f option:

lnk30 –f 0FFFFFFFFh link.cmd

This fills the hole with 0FFFFFFFFh.

4) If you do not invoke the linker with –f, the linker fills holes with 0s.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

8.14.4 Explicit Initialization of Uninitialized Sections

An uninitialized section becomes a hole only when it is combined with an initial-
ized section. When uninitialized sections are combined with each other, the
resulting output section remains uninitialized and has no raw data in the output
file.

However, you can force the linker to initialize an uninitialized section simply by
specifying an explicit fill value for it in the SECTIONS directive. This causes
the entire section to have raw data (the fill value). For example,

SECTIONS
{

.bss: fill = 11223344h /* Fills .bss with 11223344h */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for
the entire section in the output file, your output file will be very large if you
specify fill values for large sections or holes.

Partial (Incremental) Linking

 8-58

8.15 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules.
This is known as partial linking or incremental linking. Partial linking allows
you to partition large applications, link each part separately, and then link all
the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

� Intermediate files must have relocation information. Use the –r option
when you link the file the first time.

� Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the –s option if you
plan to relink a file, because –s strips symbolic information from the output
module.

� Intermediate link steps should be concerned only with the formation of out-
put sections and not with allocation. All allocation, binding, and MEMORY
directives should be performed in the final link.

� If the intermediate files have global symbols that have the same name as
global symbols in other files and you wish them to be treated as static (vis-
ible only within the intermediate file), you must link the files with the –h op-
tion (See subsection 8.3.6 on page 8-10.)

� If you are linking C code, don’t use –c or –cr until the final link step. Every
time you invoke the linker with the –c or –cr option the linker will attempt
to create an entry point.

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the –r option to retain relocation informa-
tion in the output file tempout1.out.

lnk30 –r –o tempout1 file1.com

file1.com contains:

SECTIONS
{

ss1: {
f1.obj
f2.obj
 .
 .
 .
fn.obj
}

}

Partial (Incremental) Linking

8-59Linker Description

Step 2: Link the file file2.com; use the –r option to retain relocation informa-
tion in the output file tempout2.out.

lnk30 –r –o tempout2 file2.com

file2.com contains:

SECTIONS
{

ss2: {
g1.obj
g2.obj
 .

 .
 .
gn.obj
}

}

Step 3: Link tempout1.out and tempout2.out:

lnk30 –m final.map –o final.out tempout1.out tempout2.out

Linking C Code

 8-60

8.16 Linking C Code

The TMS320C3x/C4x C compiler produces assembly language source code
that can be assembled and linked. For example, a C program consisting of
modules prog1, prog2, etc., can be assembled and then linked to produce an
executable file called prog.out:

lnk30 –c –o prog.out prog1.obj prog2.obj ... rts.lib

The –c option tells the linker to use special conventions that are defined by the
C environment. The archive library rts.lib contains C runtime support func-
tions.

For more information about C, including the runtime environment and runtime
support functions, see the TMS320C3x/C4x Optimizing C Compiler User’s
Guide.

8.16.1 Runtime Initialization

All C programs must be linked with an object module called boot.obj, which
contains code and data for initializing the runtime environment.

When a program begins running, this code is executed first and performs the
following actions:
� Sets up the system stack
� Processes the runtime initialization table and autoinitializes global vari-

ables (in the ROM model).
� Disables interrupts and calls _main

The runtime support source library, rts.src, contains boot.obj. You can:
� Use the archiver to extract boot.obj from the library and then link it in di-

rectly, or
� Include a library created from rts.src (such as rts30.lib or rts40.lib) as an

input file, and the linker will extract boot.obj when you use the –c or –cr
option.

8.16.2 Object Libraries and Runtime Support

The TMS320C3x/C4x Optimizing C Compiler User’s Guide describes addi-
tional runtime support functions that are included in rts.src. If your program
uses any of these functions, you must link a library created from rts.src with
your object files.

You can also create your own object libraries and link them. The linker will in-
clude and link only those modules in a library that resolve undefined
references.

Linking C Code

8-61Linker Description

8.16.3 Setting the Size of the Stack and Heap Sections

For 32–bit memory widths, C uses the uninitialized section called .sysmem
for the memory pool used by malloc().

For the ’C32’s 8–bit and 16–bit memory widths, the uninitialized sections
.sysm8 and .sysm16 are used for the memory pool used by malloc8() and
malloc16(), respectively.

In any memory width, the uninitialized section called .stack is used for the
memory pool used by the runtime stack.

You can set the size of these sections by using the –heap, –heap8, –heap16,
or –stack option and specifying the size of the section as a four byte constant
immediately after the option. The default size for the .stack and .heap sections
is 1K words.

The .sysm8 and .sysm16 sections are not created unless the 8–bit or 16–bit
memory allocation functions are used in the executable. In this case, the
sections default to 1K 8–bit words or 1K 16–bit words, respectively. Specifying
the –heap8 or –heap16 option when the memory functions are not used has
no effect.

If the –w option has been specified, a warning will be issued when one of these
sections is created with its default size.

8.16.4 Autoinitialization (ROM and RAM Models)

The C compiler produces tables of data that are used to autoinitialize global
variables. These are contained in a special section called .cinit. The initializa-
tion tables can be used for autoinitialization in either of two ways.

� RAM Model (–cr option)

Variables are initialized at loadtime. This can enhance performance by re-
ducing boot time and can save memory used by the initialization tables.
(Note that you must use a smart loader to take advantage of the RAM
model of autoinitialization.)

When you use –cr, the linker marks the .cinit section with a special attrib-
ute. This attribute tells the linker not to load the .cinit section into memory.
The linker also sets the cinit symbol to –1; this informs the C boot routine
that initialization tables are not present in memory. Thus, no runtime in-
itialization is performed at boot time.

When the program is loaded, the loader must be able to:

� Detect the presence of the .cinit section in the object file.

Linking C Code

 8-62

� Detect the presence of the attribute that tells it not to copy the .cinit
section.

� Understand the format of the initialization tables (this is described in
the TMS320C3x/C4x Optimizing C Compiler User’s Guide).

The loader then uses the initialization tables directly from the object file to
initialize variables in .bss.

Figure 8–8 illustrates the RAM autoinitialization model.

Figure 8–8. RAM Model of Autoinitialization

.cinit

Object File

.bss

loader

Memory

� ROM Model (–c option)

Variables are initialized at runtime. The .cinit section is loaded into mem-
ory along with all the other sections. The linker defines a special symbol
called cinit that points to the beginning of the tables in memory. When the
program begins running, the C boot routine copies data from the tables
into the specified variables in the .bss section. This allows initialization
data to be stored in ROM and then copied to RAM each time the program is
started.

Figure 8–9 illustrates the ROM autoinitialization model.

Linking C Code

8-63Linker Description

Figure 8–9. ROM Model of Autoinitialization

.cinit

Object File

.bss

loader

Memory

boot
routine

initialization
tables

(possibly ROM)

8.16.5 The –c and –cr Linker Options

The following list outlines what happens when you invoke the linker with the
–c or –cr option.

� The symbol _c_int00 is defined as the program entry point. _c_int00 is the
start of the C boot routine in boot.obj; referencing _c_int00 ensures that
boot.obj will automatically be linked in from the runtime support library.

� The .cinit output section is padded with a termination record so that the
boot routine (ROM model) or the loader (RAM model) knows when to stop
reading the initialization tables.

� In the ROM model (–c option), the linker defines the symbol cinit as the
starting address of the .cinit section. The C boot routine uses this symbol
as the starting point for autoinitialization.

� In the RAM model (–cr option):

� The linker sets the symbol cinit to –1. This indicates that the initializa-
tion tables are not in memory, so no initialization is performed at boot
time.

� The STYP_COPY flag (010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into memory.
The linker does not allocate space in memory for the .cinit section.

Linker Example

 8-64

8.17 Linker Example

This example links three object files named demo.obj, fft.obj, and tables.obj
and creates a program called demo.out. The symbol SETUP is the program
entry point.

Assume that target memory has the following configuration:

Address Range: Contents:
000000h to 000FFFh 4K on-chip ROM
809800h to 809BFFh Internal RAM block B0
809C00h to 809FFFh Internal RAM block B1
80A000h to 10087FFh External RAM

The output sections are constructed from the following input sections:

� A set of interrupt vectors from section int_vecs in the file tables.obj must
be linked at address 0 in ROM.

� Executable code, contained in the .text sections of demo.obj and fft.obj,
must also be linked into ROM.

� Two tables of coefficients, which are in the .data sections of the files
tables.obj and fft.obj, must be linked into RAM block B0. The remainder
of block B0 must be initialized to the value 0FFCC1122h.

� The .bss section from fft.obj, which contains variables, must be linked into
block B1 of data RAM. The unused part of this RAM must be initialized to
0FFFFFFFFh.

� The .bss section from demo.obj, which contains buffers and variables,
must be linked into external RAM.

Figure 8–10 shows the linker command file for this example; Figure 8–11
shows the map file.

Linker Example

8-65Linker Description

Figure 8–10. Linker Command File, demo.cmd

/**/
/**** Specify Linker Options ****/
/**/

–e SETUP /* Define the entry point */
–o demo.out /* Name the output file */
–m demo.map /* Create a load map */

/**/
/**** Specify the Input Files ****/
/**/

demo.obj
fft.obj
tables.obj

/**/
/**** Specify the Memory Configuration ****/
/**/

MEMORY
{

ROM: origin = 0000000h length = 01000h
RAM_B0: origin = 0809800h length = 0400h
RAM_B1: origin = 0809C00h length = 0400h
RAM origin = 080A000h length = 07FE800h

}
/**/
/**** Specify the Output Section ****/
/**/

SECTIONS
{

text: load = ROM /* Link all .text sections into ROM */

int_vecs: load = 0h /* Link interrupts at 0 */

.data: load = RAM_B0 /* Link the .data sections into B0 */
{

tables.obj(.data) /* .data input section */
fft.obj(.data) /* .data input section */
. = 400h; /* Create a hole to end of block */

}, fill = 0FFCC1122h /* and fill with 0FFCC1122h */

fftvars: load = RAM_B1 /* Create a new fftvars section */
{

fft.obj(.bss)
}, fill = 0FFFFFFFFh /* link into B1 and fill w/0FFFFFFFFh */

.bss: load = RAM /* Link all remaining .bss sections */
}

/**/
/**** End of Command File ****/
/**/

Invoke the linker with the following command:

lnk30 demo.cmd

This creates the map file shown in Figure 8–11 and an output file called
demo.out that can be run on the TMS320C3x.

Linker Example

 8-66

Figure 8–11.Output Map File, demo.map

TMS320C3x/4x COFF Linker Version x.xx

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: ”SETUP” address: 00000028

MEMORY CONFIGURATION

 name origin length attributes fill
 –––––––– –––––––– ––––––––– –––––––––– ––––––––
 ROM 00000000 000001000 RWIX
 RAM_B0 00809800 000000400 RWIX
 RAM_B1 00809c00 000000400 RWIX
 RAM 0080a000 0007fe800 RWIX

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
text 0 00000000 00000000 UNINITIALIZED

int_vecs 0 00000000 00000028
 00000000 00000028 tables.obj (int_vecs)

.data 0 00809800 00000400
 00809800 00000064 tables.obj (.data)
 00809864 00000014 fft.obj (.data)
 00809878 00000388 ––HOLE–– [fill = ffcc1122]

fftvars 0 00809c00 00000080
 00809c00 00000080 fft.obj (.bss) [fill = ffffffff]

.bss 0 0080a000 00000020 UNINITIALIZED
 0080a000 00000020 demo.obj (.bss)

.text 0 00000028 000000ff
 00000028 000000ee demo.obj (.text)
 00000116 00000011 fft.obj (.text)
GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
0080a000 .bss 00000028 .text
00809800 .data 00000028 SETUP
00000028 .text 00000047 main
00000028 SETUP 000000ec sub
00809864 coeff 00000116 fft
00809c00 data_in 00000127 etext
00809c00 edata 00809800 tables
0080a020 end 00809800 .data
00000127 etext 00809864 coeff
00000116 fft 00809c00 edata
00000047 main 00809c00 data_in
000000ec sub 0080a000 vars
00809800 tables 0080a000 .bss
0080a000 vars 0080a020 end

[14 symbols]

9-1Absolute Lister Description

Absolute Lister Description

The absolute lister is a debugging tool that accepts linked object files as input
and creates .abs files as output. These .abs files can be assembled to produce
a listing that shows the absolute addresses of object code. Manually, this could
be a tedious process requiring many operations; however, the absolute lister
utility performs these operations automatically.

Topic Page

9.1 Producing an Absolute Listing 9-2.

9.2 Invoking the Absolute Lister 9-3.

9.3 Absolute Lister Example 9-5.

Chapter 9

Producing an Absolute Listing

 9-2

9.1 Producing an Absolute Listing

Figure 9–1 illustrates the steps required to produce an absolute listing.

Figure 9–1. Absolute Lister Development Flow

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Assembler

Object
file

Linked object
file

Linker

First, assemble a source file.

Link the resulting object file.

Invoke the absolute lister; use the linked object
file as input. This creates a file with an .abs
extension.

Step 1:

Step 2:

Step 3:

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Absolute

Assembler

lister

Absolute

.abs
file

Finally, assemble the .abs file; you must
invoke the assembler with the –a option. This
produces a listing file that contains absolute
addresses.

Step 4:

Assembler
source file

listing

Invoking the Absolute Lister

9-3Absolute Lister Description

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs30 [–options] input file

abs30 is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use.
Options are not case sensitive and can appear anywhere on the
command line following the command. Precede each option
with a hyphen (–). The absolute lister options are as follows:

–e enables you to change the default naming conventions
for filename extensions on assembly files, C source files,
and C header files. The three options are listed below.

� –ea [.]asmext for assembly files (default is .asm)
� –ec [.]cext for C source files (default is .c)
� –eh [.]hext for C header files (default is .h)

The “.” in the extensions and the space between the
option and the extension are optional.

–q (quiet) suppresses the banner and all progress infor-
mation.

input file names the linked object file. If you do not supply an extension,
the absolute lister assumes that the input file has the default
extension .out. If you do not supply an input filename when you
invoke the absolute lister, the absolute lister will prompt you for
one.

The absolute lister produces an output file for each file that was linked. These
files are named with the input filenames and an extension of .abs. Header files,
however, do not generate a corresponding .abs file.

Assemble these files with the –a assembler option as follows to create the
absolute listing:

asm30 –a filename .abs

The –e options affect both the interpretation of filenames on the command line
and the names of the output files. They should always precede any filename
on the command line.

Invoking the Absolute Lister

 9-4

The –e options are particularly useful when:

� the linked object file is created from C files compiled with the debugging
option (–g compiler option) and

� the source files do not use the standard extensions (.c for C source files,
.h for header files, and .asm for assembly files).

The absolute lister uses file extensions to determine how to treat the source
files listed in the linked object file.

For example, suppose the C source file hello.csr is compiled with debugging
set; this generates the assembly file hello.s. hello.csr also includes hello.hsr.
Assuming the executable file created is called hello.out, the following
command will generate the proper .abs file:

abs30 –ea s –ec csr –eh hsr hello.out

With the –e options appropriately specified in this example, the absolute lister
will:

� recognize hello.hsr as a header file and therefore not create an .abs file
for it

� create hello.abs for the hello.csr file

� use the .copy directive within the hello.abs file to include assembly file
hello.s, rather than hello.asm

Note that you need to use the –k compiler option when compiling the original
source file so that you retain the assembly files for inclusion when you re-
assemble the .abs files.

Absolute Lister Example

9-5Absolute Lister Description

9.3 Absolute Lister Example

This example uses three source files. module1.asm and module2.asm both
include the file globals.def.

module1.asm

 .text
 .bss array,100
 .bss dflag, 2
 .copy globals.def
 ldp offset, DP
 ldi @offset, R1
 ldp dflag, DP
 ldi @dflag, R1

module2.asm

 .bss offset, 2
 .copy globals.def
 ldp offset, DP
 ldi @offset, R1
 ldp array, DP
 ldi @array, R1

globals.def

 .global dflag
 .global array
 .global offset

The following steps create absolute listings for the files module1.asm and
module2.asm:

Step 1: First, assemble module1.asm and module2.asm:

asm30 module1
asm30 module2

This creates two object files called module1.obj and module2.obj.

Absolute Lister Example

 9-6

Step 2: Next, link module1.obj and module2.obj. using the following linker
command file, called bttest.cmd:

/**/
/* File bttest.cmd –– COFF linker command file */
/* for linking TMS320C3x modules */
/*********************************** ************/
–o bttest.out /* Name the output file */
–m bttest.map /* Create an output map */

/**/
/* Specify the Input Files */
/**/
module1.obj
module2.obj

/**/
/* Specify the Memory Configurations */
/**/
MEMORY
{
 RAM0: org=0x809800 len=0x400 /* RAM BLOCK 0*/
 RAM1: org=0x809c00 len=0x400 /* RAM BLOCK 1*/
}

/**/
/* Specify the Output Sections */
/**/
SECTIONS
{
 .data: > RAM0 /* Initialize Data */
 .text: > RAM0 /* Variables */
 .bss: > RAM1 /* Code */
}

Invoke the linker:

lnk30 bttest.cmd

This creates an executable object file called bttest.out; use this new
file as input for the absolute lister.

Absolute Lister Example

9-7Absolute Lister Description

Step 3: Now, invoke the absolute lister:

abs30 bttest.out

This creates two files called module1.abs and module2.abs:

module1.abs:

 .nolist
array .setsym 000809800h
dflag .setsym 000809864h
offset .setsym 000809866h
.data .setsym 000809800h
edata .setsym 000809800h
.bss .setsym 000809800h
end .setsym 000809868h
.text .setsym 0008098c00h
etext .setsym 0008098c08h
 .setsect ”.text”,0008098c00h
 .setsect ”.data”,000809800h
 .setsect ”.bss”,000809800h
 .list
 .text
 .copy ”module1.asm”

module2.abs:

 .nolist
array .setsym 000809800h
dflag .setsym 000809864h
offset .setsym 000809866h
.data .setsym 000809800h
edata .setsym 000809800h
.bss .setsym 000809800h
end .setsym 000809868h
.text .setsym 0008098c00h
etext .setsym 0008098c08h
 .setsect ”.text”,0008098c04h
 .setsect ”.data”,000809800h
 .setsect ”.bss”,000809866h
 .list
 .text
 .copy ”module2.asm”

Absolute Lister Example

 9-8

These files contain the following information that the assembler
needs when you invoke it in step 4:

� They contain .setsym directives, which equate values to global
symbols. Both files contain global equates for the symbol dflag.
The symbol dflag was defined in the file globals.def, which was
included in module1.asm and module2.asm.

� They contain .setsect directives, which define the absolute
addresses for sections.

� They contain .copy directives, which tell the assembler which
assembly language source file to include.

The .setsym and .setsect directives are not useful in normal assem-
bly; they are useful only for creating absolute listings.

Absolute Lister Example

9-9Absolute Lister Description

Step 4: Finally, assemble the .abs files created by the absolute lister
(remember that you must use the –a option when you invoke the
assembler):

asm30 –a module1.abs
asm30 –a module2.abs

This creates two listing files called module1.lst and module2.lst; no
object code is produced. These listing files are similar to normal list-
ing files; however, the addresses shown are absolute addresses.

The absolute listing files created are module1.lst (see Figure 9–2)
and module2.lst (see Figure 9–3).

Figure 9–2. module1.lst

TMS320C3x/C4x COFF Assembler Version x.xx Wed Oct 16 12:00:05 1997
 Copyright (c) 1987–1997 Texas Instruments Incorporated

module1.abs PAGE 1

 15 00809c00 .text
 16 .copy ”module1.asm”
 A 1 00809c00 .text
 A 2 00809800 .bss array, 100
 A 3 00809864 .bss dflag, 2
 A 4 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset
 B 4
 A 5 00809c00 08700080! ldp offset, DP
 A 6 00809c01 08219866! ldi @offset, R1
 A 7 00809c02 08700080– ldp dflag, DP
 A 8 00809c03 08219864– ldi @dflag, R1

 No Errors, No Warnings

Absolute Lister Example

 9-10

Figure 9–3. module2.lst

TMS320C3x/C4x COFF Assembler Version x.xx Wed Oct 16 12:00:17 1997
 Copyright (c) 1987–1997 Texas Instruments Incorporated

module2.abs PAGE 1

 15 00809c04 .text
 16 .copy ”module2.asm”
 A 1 00809866 .bss offset, 2
 A 2 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset
 B 4
 A 3 00809c04 08700080– ldp offset, DP
 A 4 00809c05 08219866– ldi @offset, R1
 A 5 00809c06 08700080! ldp array, DP
 A 6 00809c07 08219800 ldi @array, R1

 No Errors, No Warnings

10-1Hex Conversion Utility Description

Hex Conversion Utility Description

The TMS320C3x/C4x assembler and linker create object files that are in
common object file format (COFF), a binary object file format that encourages
modular programming and provides flexible methods for managing code
segments.

Most EPROM programmers do not accept COFF object files as input. The hex
conversion utility translates a COFF object file into one of several standard
ASCII hexadecimal formats, suitable for loading into an EPROM programmer.
The utility is also useful in other applications that require a hexadecimal
translation of a COFF object file (for example, debuggers and loaders). This
utility also supports the on-chip boot loader built into the ’C3x or ’C4x,
automating the code creation process for the ’C3x and ’C4x.

The hex conversion utility can produce these output file formats:
� ASCII-Hex, supporting 16-bit addresses
� Extended Tektronix Hexadecimal (Tektronix), supporting 32-bit addresses
� Intel MCS-86 Hexadecimal (Intel) supporting 32-bit addresses
� Motorola Exorciser (Motorola-S), supporting 16-bit, 24-bit, and 32-bit

addresses
� Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

Topic Page

10.1 Hex Conversion Utility Development Flow 10-2.
10.2 Invoking the Hex Conversion Utility 10-3.
10.3 Using Command Files 10-6.
10.4 Creating a Compatible File Format 10-7.
10.5 Using the ROMS Directive to Specify Memory

Configuration 10-16.
10.6 Using the SECTIONS Directive to Convert COFF File

Sections 10-22.
10.7 Output Filenames 10-24.
10.8 Image Mode and the –fill Option 10-26.
10.9 Building a Boot Table From an On-Chip Boot Loader 10-28.
10.10 Controlling the ROM Device Address 10-39.
10.11 Description of the Object Formats 10-43.
10.12 Hex Conversion Utility Error Messages 10-49.

Chapter 10

Hex Conversion Utility Development Flow

 10-2

10.1 Hex Conversion Utility Development Flow

Figure 10–1 highlights the role of the hex conversion utility in the assembly
language development process.

Figure 10–1. Hex Conversion Utility Development Flow

Assembler

Linker

Macro
Library

Library of
Object
Files

Hex Conversion
Utility

EPROM
Programmer

Assembler
Source

COFF
Object
Files

Archiver

Macro
Source
Files

Archiver

C
Source
Files

TMS320C3x
TMS320C4x

C Compiler

Assembler
Source

Library-Build
Utility

Debugging
Tools

Runtime-
Support
Library

Executable
COFF

File

Invoking the Hex Conversion Utility

10-3Hex Conversion Utility Description

10.2 Invoking the Hex Conversion Utility

Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

hex30 [–options] filename

hex30 is the command that invokes the hex conversion utility.

–options supply additional information that controls the hex conversion
process. You can use options on the command line or in a com-
mand file.

� All options are preceded by a dash and are not case-
sensitive.

� Several options have an additional parameter that must be
separated from the option by at least one space.

� Options with multicharacter names must be spelled exactly
as shown in this document; no abbreviations are allowed.

� Options are not affected by the order in which they are
used. The exception to this rule is the –q option, which must
be used before any other options.

filename names a COFF object file or a command file (for more infor-
mation on command files, see Section 10.3, page 10-6).

Table 10–1 lists basic options and also bootloader options for the ’C3x and
’C4x on-chip bootloaders. The bootloader is discussed in more detail on page
10-28.

Invoking the Hex Conversion Utility

 10-4

Table 10–1. Basic Options

General
Options

Option Description Page

Control overall –map filename Generate a map file 10-21
operation –o filename Specify an output filename 10-24

–q Run quietly (when used, it
must appear before other
options)

10-6

Image Options Option Description Page

Allow you to
create a continu-

–byte Number bytes sequentially 10-41

ous image of a
range of target
memory.

–fill value Fill holes with value (default
value =0)

10-26

–image Specify image mode 10-26

–zero Reset the address origin to
zero

10-40

Memory
Options

Option Description Page

Allow you to con-
figure the
memory widths
for output files.

–datawidth value Define the logical data word
width (default = 32 bits)

10-8

–memwidth
value

Define the system memory
word width (default 32)

10-9

–order {LS | MS} Specify the memory
word ordering

10-14

–romwidth value Specify the ROM
device width (default de-
pends on format used)

10-12

Format Options Option Description Page

Allow you to –a ASCII-Hex format 10-44
specify the out-
put format

–i Intel format 10-45
put format.

–m1 Motorola-S1 format 10-46

–m2 or –m Motorola-S2 format 10-46

–m3 Motorola-S3 format 10-46

–t TI-Tagged format 10-47

–x Tektronix format 10-48

Invoking the Hex Conversion Utility

10-5Hex Conversion Utility Description

Table 10–1. Basic Options (Continued)

Bootloader
 Options

Option Description Page

Allow you to
control the ’C3x
and ’C4x on-chip
bootloaders

–boot Convert all sections into boot-
able form (use instead of a
SECTIONS directive)

10-29

–bootorg value Specify the source address of
the boot loader table

10-31

–bootpage value Specify the target page num-
ber of the boot loader table

10-30

–cg value Set the primary bus global
control register (’C31 only)

10-32

–cg value Set the global memory config-
uration register (’C4x only)

10-37

–cl value Set the local memory configu-
ration register (’C4x only)

10-37

–e value Specify the PC value after
loading

10-31

–iack value Specify the IACK memory
location (’C4x only)

10-37

–ivtp value Set the interrupt vector table
pointer (’C4x only)

10-37

–tvtp value Set the trap vector table point-
er (’C4x only)

10-37

–iostrb value Set the IOSTRB control regis-
ter (’C32 only)

10-34

–strb0 value Set the STRB0 control regis-
ter (’C32 only)

10-34

–strb1 value Set the STRB1 control regis-
ter (’C32 only)

10-34

Using Command Files

 10-6

10.3 Using Command Files

Using a command file is useful if you plan to invoke the utility more than once
with the same input files and options. It is also useful if you want to use the
ROMS and SECTIONS hex conversion utility directives to customize the con-
version process.

Command files are ASCII files that contain one or more of the following:

� Options and filenames. These are specified in a command file in exactly
the same manner as on the command line.

� ROMS directives. The ROMS directive defines the physical memory con-
figuration of your system as a list of address-range parameters.

� SECTIONS directives. The SECTIONS directive specifies which sec-
tions from the COFF object file should be selected. You can also use this
directive to identify specific sections that will be initialized by an on-chip
boot loader. For more information about the ROMS or SECTIONS direc-
tives, see Section 10.5 or 10.6, respectively. For more information on the
on-chip boot loader, see Section 10.9, page 10-28.

� Comments. You can add comments to your command file by using the /*
and */ delimiters. For example: /* this is a comment */

To invoke the utility and use the options you defined in a command file, enter:

hex30 commandfilename

You can also specify other options and files on the command line. You could
invoke the utility using both a command file and command line options:

hex30 firmware.cmd –map firmware.mxp

The order in which these options and file names appear is not important. The
utility reads all input from the command line and all information from the
command file before starting the conversion process. However, if you are us-
ing the –q option, it must appear as the first option on the command line or in
a command file.

The –q option suppresses the utility’s normal banner and progress
information.

hex30 –t firmware –o firm.lsb –o firm.msb

Creating a Compatible File Format

10-7Hex Conversion Utility Description

10.4 Creating a Compatible File Format

The hex conversion utility means full flexibility for different memory
architectures. In order to use the hex conversion utility, you must understand
how the utility treats word widths . [A word width is the number of bits in a
word.] Four widths are important in the conversion process: target width, data
width, memory width, and ROM width. When we refer to these terms, we refer
to a word of such a width.

Figure 10–2 illustrates the three separate and distinct phases of the hex
conversion utility’s process flow.

Figure 10–2. Hex Conversion Utility Process Flow

Raw data in COFF files is
represented in target-width-
sized words. For ’C3x and
’C4x, this is 32 bits. The
target width is fixed and
cannot be changed.

Phase III

Phase II

Phase I

Output File(s)

specified (Intel, Tektronix hex, etc.).
according to the format

option and are written to a file(s)
to the size specified by the romwidth
sized words are broken up according

The memwidth-

the –memwidth option.
according to the the size specified by

is divided into words
datawidth-sized internal representation

The

by the datawidth option
in the COFF file to the size specified

The utility truncates the raw data

COFF Input File

–datawidth

–memwidth

–romwidth

Creating a Compatible File Format

 10-8

� Target Width. Target width is the unit size (in bits) of raw data fields in the
COFF file. This corresponds to the size of an opcode on the target proces-
sor. The width is fixed for each target and cannot be changed. The ’C3x
and ’C4x are 32 bits wide.

� Data Width. Data width is the logical width (in bits) of the data words
stored in a particular section of a COFF file.

� Memory Width. Memory width is the physical width (in bits) of the memory
system.

� ROM width. The ROM width specifies the physical width (in bits) of each
ROM device and corresponding output file (usually one byte or eight bits).

10.4.1 Defining Input Data in the ’C32

Usually, the data width is the same as the target width. In the ’C32, however,
data words can be narrower than the width of the processor.

Do not change the data width unless you are using the ’C32 processor.

The ’C32 processor can access values narrower than the processor
target width. The ’C32 device can access data that is 8, 16, or 32 bits wide.
The hex conversion utility can extract the appropriate number of bits from the
COFF file for each data word and store only those bits, even though the COFF
file uses 32 bits to store each data word. The hex conversion utility simply trun-
cates the COFF word to the specified length, preserving only the least signifi-
cant bits of the COFF word.

You can change the data width by:

� Using the –datawidth option. This changes the size of data words inside
all sections in a COFF file. For example, –datawidth 8 changes the size
of the data words to 8 bits.

� Setting the data width parameter of the SECTIONS directive. This
changes the size of data words for the specific section and overrides the
–datawidth option for that section. Refer to Section 10.6 for details.

Figure 10–3 shows how the data width is related to the target width.

Creating a Compatible File Format

10-9Hex Conversion Utility Description

Figure 10–3. Target and Data Widths

–datawidth 32 (default)

0AABBCCDDh

AABBCCDD

Target Width = 32 (fixed)

Data Widths (variable)

Source File .word 0AABBCCDDh
.word 011223344h

. . .

011223344h

11223344

. . .

.

–datawidth 16

CCDD
3344

–datawidth 8

DD
44

. . .

} row data in COFF file

Data After
Phase I

of hex30

10.4.2 Specifying the Width

Usually, the memory system is physically the same width as the target
processor width: a 32-bit processor has a 32-bit memory architecture.
However, some applications, such as boot loaders, require target words to be
broken up into multiple, consecutive, narrower memory words.

Moreover, with certain processors like the ’C32, the memory width can be nar-
rower than the target width. In that case, the hex conversion utility defaults
memory width to the target width (in this case, 32 bits).

You can change the memory width by:

� Using the –memwidth option. This changes the memory width value for
the entire file, or

� Setting the memwidth parameter of the ROMS directive. This changes
the memory width for the address range specified in the ROMS directive
and overrides the –memwidth option for that range. See Section 10.5,
page 10-16.

Creating a Compatible File Format

 10-10

The value used must be a power of two greater than or equal to eight.

You should change the memory width default value of 32 only in exceptional
situations:

Single target words broken into consecutive, narrower memory words.
Situations in which memory words are narrower than target words are most
common when you use on-chip boot loaders—several of which support boot-
ing from narrower memory. For example, a 32-bit TMS320C31 can be booted
from 8-bit memory, with each 32-bit value occupying four memory locations
(this would be specified as –memwidth 8).

Figure 10–4 demonstrates how the memory width is related to the target width.

Creating a Compatible File Format

10-11Hex Conversion Utility Description

Figure 10–4. Target, Data, and Memory Widths

–memwidth 32 (default) –memwidth 16 –memwidth 8

AABBCCDDh

AABBCCDD CCDD

AA

BB

CC

DD

AABB

Data Widths (variable)

Memory Widths (variable)
Data Width = 32

Source File
.word 0AABBCCDDh
.word 011223344h

. . .

11223344h

11223344

3344

1122

11

22

33

44

. . .

. . .

. . .

. . .

–datawidth 32 (default) –datawidth 16 –datawidth 8

CCDDh DDh
3344h
. . .

44h
. . .

–memwidth 32 (default) –memwidth 16 –memwidth 8

CCDD3344 CCDD

CC

DD

Memory Widths (variable)
Data Width = 16

3344

33

44.

. . .

Data After
Phase I

of hex30

Data After
Phase II
of hex30

Data After
Phase III
of hex30

Creating a Compatible File Format

 10-12

10.4.3 Partitioning Data Into Output Files

The ROM width determines how the hex conversion utility partitions the data
into output files. After the target words are mapped to the memory words, the
memory words are broken into one or more output files. The number of output
files is determined by the following formula:

number of files = memory width � ROM width

where memory width > ROM width

For example, for a memory width of 32, you could specify a ROM width value
of 32 and get a single output file containing 32-bit words. Or you can use a
ROM width value of 16 to get two files, each containing 16 bits of each word.

The default ROM width that the hex conversion utility uses depends on the out-
put format:

� All hex formats except TI-Tagged are oriented as lists of 8-bit bytes; the
default ROM width for these formats is 8 bits.

� TI’s format is 16-bit; the default ROM width for TI-Tagged format is 16 bits.

Note: The TI Format is 16 Bits Wide

You cannot change the ROM width of the TI-Tagged format. The TI-Tagged
format supports a 16-bit ROM width only.

You can change the ROM width by:

� Using the –romwidth option. This changes the ROM width value for the
entire COFF file

� Setting the romwidth parameter of the ROMS directive. Setting this
parameter changes the ROM width value for a specific ROM address
range and overrides the –romwidth option for that range. See Section
10.5, page 10-16.

For both, use a value that is a multiple of eight and power of two.

If you select a ROM width that is wider than the natural size of the output format
(16 bits for TI-Tagged or 8 bits for all others), the utility simply writes multibyte
fields into the file.

Figure 10–5 illustrates how the target, memory, and ROM widths are related
to one another.

Creating a Compatible File Format

10-13Hex Conversion Utility Description

Figure 10–5. Target, Memory, and ROM Widths

–memwidth 32 –memwidth 16 –memwidth 8

0AABBCCDDh

AABBCCDD CCDD

AA
BB
CC
DD

AABB

Data Width = 32

Memory Widths (variable)

Source File
.word 0AABBCCDDh
.word 011223344h

. . .

011223344h

11223344
3344
1122

11
22
33
44

Output Files

–romwidth 8

–romwidth 16

–romwidth 8

–romwidth 8

–o file.b0

–o file.b1

–o file.b2

–o file.b3

CC 33

BB 22

DD 44

AA 11

–o file.wrd CCDDAABB33441122

–o file.b0

–o file.b1 CC AA 33 11

DD BB 44 22

–o file.byt DDCCBBAA44332211

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Data After
Phase I

of hex30

Data After
Phase II
of hex30

Data After
PhaseIII
of hex30

Creating a Compatible File Format

 10-14

10.4.4 A Memory Configuration Example

Figure 10–6 shows a typical memory configuration example. This memory
system consists of two 128K x 16-bit ROM devices.

Figure 10–6. ’C3x/’C4x Memory Configuration Example

Upper 16 Bits (data)

Lower 16 Bits (data)

System Memory Width 32 Bits

ROM Width
16 Bits16 Bits

ROM Width

ROM1
128K x 16

ROM0
128K x 16

’C3x/’C4x
CPU

Source File
word AABBCCDDh

AABBCCDDh

AABBh CCDDh

Data Width = 32 Bits

10.4.5 Specifying Word Order for Output Files

When memory words are narrower than target words (memory width < 32) tar-
get words are split into multiple consecutive memory words. There are two
ways to split a wide word into consecutive memory locations in the same hex
conversion utility output file:

� –order MS specifies big-endian ordering, in which the most significant
part of the wide word occupies the first of the consecutive locations

� –order LS specifies little-endian ordering, in which the the least
significant part occupies the first location

Creating a Compatible File Format

10-15Hex Conversion Utility Description

By default, the utility uses little-endian format, because the ’C3x/’C4x boot
loaders expect the data in this order. Unless you are using your own boot load-
er program, avoid using –order MS.

Note: When the –order Option Applies

� This option applies only when you use a memory width with a value less
than 32. Otherwise, the –order is ignored.

� The option does not affect the way memory words are split into output
files. Think of the files as a set: the set contains a least significant file and
a most significant file. When you list filenames for a set of files, you always
list the least significant first, regardless of the –order option.

Figure 10–7 demonstrates how –order LS and –order MS affect the conver-
sion process. (This figure, and Figure 10–5, explain the condition of the data
in the hex conversion utility output files.)

Figure 10–7. Varying the Word Order

0AABBCCDDh

Target Width = 32 (fixed)

Memory Widths (variable)

Source File
.word 0AABBCCDDh
.word 011223344h

. . .

011223344h
. . .

. . .

. . .

–memwidth 16
–order LS (default)

CCDD
AABB
3344
1122

–memwidth 16
–order MS

AABB
CCDD
1122
3344
. . .

. . .

–memwidth 8
–order LS (default)

AA
BB
CC
DD

11
22
33
44

–memwidth 8
–order MS

DD
CC
BB
AA

44
33
22
11

Using the ROMS Directive to Specify Memory Configuration

 10-16

10.5 Using the ROMS Directive to Specify Memory Configuration

The ROMS directive specifies the physical memory configuration of your
system as a list of address-range parameters.

Each address range will produce one set of files containing the hex conversion
utility output data corresponding to that address range. Each file will then be
used to program a single ROM device.

The ROMS directive is similar to the MEMORY directive of the TMS320 linker:
both define the memory map of the target address space. Each line entry in
the ROMS directive defines a specific address range. The general syntax is:

ROMS
{

[PAGE n:]
romname: [origin =value,] [length =value,] [romwidth =value,]

[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

romname: [origin =value,] [length =value,] [romwidth =value,]
[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

...
}

ROMS begins the directive definition.

PAGE identifies a memory space for processors that use multiple
address spaces or memory overlay pages. Each memory
range you define after the PAGE command belongs to that
page until you specify another page. If you don’t include PAGE,
all ranges belong to page 0. Note that the ’C3x/’C4x processors
do not offer multiple address spaces.

romname identifies a memory range. The name of the memory range
may be one to eight characters in length. The name has no
significance to the program; it simply identifies the range. (Du-
plicate memory range names are allowed.)

origin specifies the starting address of a memory range. It may be
typed as origin, org, or o. The associated value must be a
decimal, octal, or hexadecimal constant. If you omit the origin
value, the origin defaults to 0.

Using the ROMS Directive to Specify Memory Configuration

10-17Hex Conversion Utility Description

The following table summarizes the notation you can use to specify a decimal,
octal, or hexadecimal constant:

Constant Notation Example

Hexadecimal 0x prefix or h suffix 0x77 or 077h

Octal 0 prefix 077

Decimal No prefix or suffix 77

length specifies the length of a memory range as a physical length of
the ROM device. It may be entered as length, len, or l. The val-
ue must be a decimal, octal, or hexadecimal constant. If you
omit the length value, it defaults to fill the rest of the address
space.

romwidth specifies the physical ROM width of this range in bits (see page
10-12). Any value you specify here overrides the –romwidth op-
tion. The value must be a decimal, octal, or hexadecimal
constant that is a power of two greater than or equal to eight.

memwidth specifies the memory width of this range in bits (see page
10-9). Any value you specify here overrides the –memwidth
option. The value must be a decimal, octal, or hexadecimal
constant that is a power of two greater than or equal to eight.
When using –memwidth, you must also specify the paddr pa-
rameter for each section in the SECTIONS directive.

fill specifies a fill value to use for this range. In image mode, the
hex conversion utility uses this value to fill any holes between
sections in a range. The value must be a decimal, octal, or
hexadecimal constant with a width equal to the target width.
Any value you specify here overrides the –fill option. [You must
also use the –image option when using fill.] See page 10-26.

files identify the names of the output files that correspond to this
range. Enclose the list of names in curly braces and order them
from least significant to most significant output file.

The number of file names should equal the number of output
files that the range will generate. The utility warns you if you list
too many or too few filenames.

Unless you are using the –image option, all of the parameters defining a range
are optional. A range with no origin or length defines the entire address space.
In image mode, an origin and length are required for all ranges. The commas
and equals signs are also optional.

Ranges on the same page must not overlap and must be listed in order of
ascending address.

Using the ROMS Directive to Specify Memory Configuration

 10-18

10.5.1 When to Use the ROMS Directive

If you don’t use a ROMS directive, the utility defines a single default range that
includes the entire program address space (PAGE 0). This is equivalent to a
ROMS directive with a single range without origin or length.

Use the ROMS Directive when you want to:

� Program large amounts of data into fixed-size ROMs . When you speci-
fy memory ranges corresponding to the length of your ROMs, the utility au-
tomatically breaks the output into blocks that fit into the ROMs.

� Restrict output to certain segments . You can also use the ROMS direc-
tive to restrict the conversion to a certain segment or segments of the tar-
get address space. The utility does not convert the data that falls outside
of the ranges defined by the ROMS directive. Sections can span range
boundaries; the utility splits them at the boundary into multiple ranges. If
a section falls completely outside any of the ranges you define, the utility
does not convert that section and issues no messages or warnings. In this
way, you can exclude sections without listing them by name with the
SECTIONS directive. However, if a section falls partially in a range and
partially in unconfigured memory, the utility issues a warning and converts
only the part within the range.

� Use the –image option. When you use this option, you must use a ROMS
directive. Each range is filled completely so that each output file in a range
contains data for the whole range. Gaps before, between or after sections
are filled with the fill value from the ROMS directive, with the value speci-
fied with the –fill option, or with the default value of zero.

Using the ROMS Directive to Specify Memory Configuration

10-19Hex Conversion Utility Description

10.5.2 An Example of the ROMS Directive

The ROMS directive in Example 10–1 shows how 16K words of 32-bit memory
could be partitioned for eight 8K x 8-bit EPROMs.

Example 10–1. A ROMS Directive Example

/***/
/* Sample command file with ROMS directive */
/***/
infile.out
–image
–memwidth 32

ROMS
{
 EPROM1: org = 04000h, len = 02000h, romwidth = 8
 files = { rom4000.b0, rom4000.b1,

 rom4000.b2, rom4000.b3 }

 EPROM2: org = 06000h, len = 02000h, romwidth = 8,
 fill = 0FFh,
 files = { rom6000.b0, rom6000.b1,

 rom6000.b2, rom6000.b3 }
}

In this example, EPROM1 defines the address range from 4000h through
5FFFh. The range contains the following sections:

This section Has this range

.text 4000h through 487Fh

.data 5B80H through 5FFFh

The rest of the range is filled with 0h (the default fill value). The data from this
range is converted into four output files:

� rom4000.b0 contains bits 0 through 7
� rom4000.b1 contains bits 8 through 15
� rom4000.b2 contains bits 16 through 23
� rom4000.b3 contains bits 24 through 31

EPROM2 defines the address range from 6000h through 7FFFh. The range
contains the following section:

This section Has this range

.data 6000h through 633Fh

.table 6700h through 7C7Fh

Using the ROMS Directive to Specify Memory Configuration

 10-20

The rest of the range is filled with 0FFh (from the specified fill value). The data
from this range is converted into four output files:

� rom6000.b0 contains bits 0 through 7
� rom6000.b1 contains bits 8 through 15
� rom6000.b2 contains bits 16 through 23
� rom6000.b0 contains bits 24 through 31

Figure 10–8 shows how the ROMS directive partitions the infile.out file into
eight output files.

Figure 10–8. The infile.out File from Example 10–1 Partitioned Into Eight Output Files

ÉÉÉÉ

rom4000.b0

rom6000.b0

rom4000.b1

rom6000.b1

04000h
(org)

06000h

.text

.data

.table

.text .text

.data .data

.table

.data

0h

infile.out

 memwidth = 32 bits

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h

0Fh

04000h

0487Fh

05B80h

0633Fh

06700h

07C7Fh

04880h

05B80h

06340h
06700h

07C80h
07FFFh

EPROM1

EPROM2

05FFFh

ÉÉÉÉ
ÉÉÉÉ

0h

rom4000.b2

.text

.data

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h

rom4000.b3

.text

.data

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h

OUTPUT FILES:COFF FILE:

.data
ÉÉÉÉFFh

.table

ÉÉÉÉFFh

rom6000.b3rom6000.b2

 width = 8 bits len = 2000h (8K)

ÉÉÉÉ

.table

.data

0h

0FhÉÉÉÉ
ÉÉÉÉ

0h

ÉÉÉÉ

.table

.data

0h

0FhÉÉÉÉ0h

Using the ROMS Directive to Specify Memory Configuration

10-21Hex Conversion Utility Description

10.5.3 Creating Map Files and the –map option

The map file (specified with the –map option) is very useful when you use the
ROMS directive with multiple ranges. The map file shows each range, its
parameters, names of associated output files, and a list of contents (section
names and fill values) broken down by address. Here’s a segment of the map
file resulting from the example in Example 10–1.

Example 10–2. Map File Output from Example 10–1 Showing Memory Ranges

–––
00004000..00005fff Page=0 Width=8 ”EPROM1”
–––

OUTPUT FILES: rom4000.b0 [b0..b7]
rom4000.b1 [b8..b15]
rom4000.b2 [b16..b23]
rom4000.b3 [b24..b31]

CONTENTS: 00004000..0000487f .text
00004880..00005b7f FILL = 00000000
00005b80..00005fff .data

–––
00006000..00007fff Page=0 Width=8 ”EPROM2”
–––

OUTPUT FILES: rom6000.b0 [b0..b7]
rom6000.b1 [b8..b15]
rom6000.b2 [b16..b23]
rom6000.b3 [b24..b31]

CONTENTS: 00006000..0000633f .data
00006340..000066ff FILL = 000000ff
00006700..00007c7f .table
00007c80..00007fff FILL = 000000ff

Using the SECTIONS Directive to Convert COFF File Sections

 10-22

10.6 Using the SECTIONS Directive to Convert COFF File Sections

You may convert specific sections of the COFF file by name with the
SECTIONS directive. You can also specify those sections you want the utility
to configure for loading from an on-chip boot loader, and those sections that
you wish to locate in ROM at a different address than the load address speci-
fied in the linker command file.

If you:

� Use a SECTIONS directive, the utility converts only the sections that you
list in the directive; the utility ignores any other sections in the COFF file
that you don’t specify in the directive.

� Don’t use a SECTIONS directive, the utility converts any initialized section
that falls within the configured memory. TMS320C3x/C4x compiler-
generated initialized sections include: .text, .const, and .cinit.

Note: Sections Generated by the C Compiler

Uninitialized sections are never converted, whether or not you specify them
in a SECTIONS directive. TMS320C3x/C4x compiler uninitialized sections
include: .bss, .stack, and .sysmem.

Use the SECTIONS directive in a command file. (For more information about
using a command file, see Section 10.3, page 10-6.) The general syntax for
the SECTIONS directive is:

SECTIONS
{

sname: [paddr =value] [datawidth=value],
sname: [paddr=boot]
sname [= boot] ,
...

}

SECTIONS begins the directive definition.

sname identifies a section in the COFF input file. If you specify a
section that doesn’t exist, the utility issues a warning and
ignores the name.

datawidth =value specifies the logical width of the data in the section (see
page 10-8).

Using the SECTIONS Directive to Convert COFF File Sections

10-23Hex Conversion Utility Description

paddr =value specifies the physical ROM address at which this section
should be located. This value overrides the section load ad-
dress given by the linker. (Refer to Section 10.10).This val-
ue must be a decimal, octal, or hexadecimal constant; it can
also be the word boot to indicate a boot table section for use
with the on-chip boot loader. [Boot sections have a physical
address determined both by the target processor type and
by the various boot-loader-specific command line options.]
If your file contains multiple sections, and if one section
uses a –paddr option, then all sections must use a –paddr
option.

= boot configures a section for loading by the on-chip boot loader.
This is equivalent to using paddr=boot.

The commas are optional. For more similarity with the linker’s SECTIONS
directive, you can use colons after the section names and in place of the equals
sign on the boot keyboard. For example,

SECTIONS { .text: .data: boot }

SECTIONS { .text, .data = boot }

are equivalent.

For example, suppose a COFF file contains six initialized sections: .text, .data,
.const, .vectors, .coeff, and .tables. If you want only .text and .data to be con-
verted, use a SECTIONS directive to specify this:

SECTIONS { .text, .data }

To configure both of these sections for boot loading, add the boot keyword:

SECTIONS { .text = boot, .data = boot }

Note: Using the –boot Option and the SECTIONS Directive

When you use the SECTIONS directive with the on-chip boot loader, note
that the –boot option is ignored. You must explicitly specify any boot sections
in the SECTIONS directive. For more information about –boot and other
command line options associated with the on-chip boot loader, see
Table 10–2, Boot Loader Utility Options, page 10-29.

Output Filenames

 10-24

10.7 Output Filenames

When the hex conversion utility translates your COFF object file into a data for-
mat, it partitions the data into one or more output files. When multiple files are
formed by splitting data into byte-wide or word-wide files, filenames are always
assigned in order from least to most significant. This is true regardless of target
or COFF endian ordering, or of any –order option.

Assigning Output Filenames

The hex conversion utility follows this sequence when assigning output file-
names:

1) It looks for the ROMS directive. If the file is associated with a range in
the ROMS directive, and you have included a list of files (files = {. . .}) on
that range, the utility takes the filename from the list.

For example, assume that the target data is 32-bit words being converted
to four files, eight bits wide. To name the output files using the ROMS direc-
tive, you could use specify:

ROMS
{
 RANGE1: romwidth=8, files={ xyz.b0 xyz.b1 xyz.b2 xyz.b3}
}

The utility creates the output files by writing the least significant bits (LSBs)
to xyz.b0 and the most significant bits (MSBs) to xyz.b3.

2) It looks for the –o options. The hex conversion utility often splits the
target data from the COFF object file on byte, word, or half-word bound-
aries. It also partitions the data into files of fixed length according to the
configuration you specify. This results in multiple output files. You can
specify names for the output files by using the –o option. The following line
has the same effect as the example above using the ROMS directive:

–o xyz.b0 –o xyz.b1 –o xyz.b2 –o xyz.b3

Note that if both the ROMS directive and –o options are used together, the
ROMS directive overrides the –o options.

3) It assigns a default filename. If you specify no file names or fewer names
than output files, the utility assigns a default filename.

Output Filenames

10-25Hex Conversion Utility Description

A default filename consists of the base name from the COFF input file plus a
2- to 3-character extension. The extension has three parts:

� A format character, based on the output format:

a for ASCII-Hex
i for Intel
t for TI-Tagged
m for Motorola-S
x for Tektronix

� The range number in the ROMS directive. Ranges are numbered starting
with 0. If there is no ROMS directive, or only one range, the utility omits
this character.

� The file number in the set of files for the range, starting with 0 for the least
significant file.

For example, assume coff.out is for a 32-bit target processor and you are
creating Intel-format output. With no output file names specified, the utility pro-
duces four output files named coff.i0, coff.i1, coff.i2, and coff.i3:

If you include the following ROMS directive when you invoke the hex
conversion utility, you would have eight output files:

ROMS
{

range1: o = 1000h 1 = 1000h
range2: o = 2000h 1 = 1000h

}

These Output Files Contain this data

coff.i00, coff.i01, coff.i02, and coff.i03 1000h through 1FFFh

coff.i10, coff.i11, coff.i12, and coff.i13 2000h through 2FFFh

Image Mode and the –fill Option

 10-26

10.8 Image Mode and the –fill Option

This section explains the advantages of operating in image mode, and details
the method of producing output files with a precise, continuous image of a
target memory range.

10.8.1 The –image Option

With the –image option, the utility generates a memory image by completely
filling all of the mapped ranges specified in the ROMS directive.

A COFF file consists of blocks of memory (sections) with assigned memory
locations. Typically, all sections are not adjacent: there are gaps between
sections in the address space for which there is no data. When such a file is
converted without the use of image mode, the hex conversion utility bridges
these gaps by using the address records in the output file to skip ahead to the
start of the next section. In other words, there may be discontinuities in the out-
put file addresses. Some EPROM programmers do not support address dis-
continuities.

In image mode, there are no discontinuities. Each output file contains a
continuous stream of data that corresponds exactly to an address range in tar-
get memory. Any gaps before, between, or after sections are filled with a fill
value that you supply.

An output file converted by using image mode still has address records
because many of the hex formats require an address on each line. However,
in image mode, these addresses will always be contiguous.

Note: Defining the Ranges of Target Memory

If you use image mode, you must also use a ROMS directive. In image mode,
each output file corresponds directly to a range of target memory. You must
define the ranges. If you don’t supply the ranges of target memory, the utility
tries to build a memory image of the entire target processor address
space—potentially a huge amount of output data. To prevent this situation,
the utility requires you to explicitly restrict the address space with the ROMS
directive.

Image Mode and the –fill Option

10-27Hex Conversion Utility Description

10.8.2 Specifying a Fill Value

The –fill option specifies a value for filling the holes between sections. The fill
value must be specified as an integer constant following the –fill option. The
width of the constant is assumed to be that of a word on the target processor.
For example, on the ’C3x, specifying –fill 0FFFFh results in a fill pattern of
0000FFFFh. The constant value is not sign-extended.

Note: If You Do Not Specify A Value With The Fill Option

The hex conversion utility uses a default fill value of 0 if you don’t specify a
value with the fill option. The –fill option is valid only when you use –image;
otherwise it is ignored.

10.8.3 Steps to Follow in Image Mode

Step 1: Define the ranges of target memory with a ROMS directive (see
Section 10.5).

Step 2: Invoke the hex conversion utility with the –image option. You can op-
tionally use the –byte option to number the bytes sequentially and
the –zero option to reset the address origin to zero for each output
file. If you don’t specify a fill value with the ROMS directive and you
want a value other than the default, use the –fill option.

Building a Boot-Table From an On-Chip Boot Loader

 10-28

10.9 Building a Boot-Table From an On-Chip Boot Loader

Some DSP devices such as the ’C31, ’C32, and ’C4x have a built-in boot
loader that initializes memory with one or more blocks of code or data. The
boot loader uses a special table (a boot table) stored in memory (such as
EPROM) or loaded from a device peripheral (such as a serial or communica-
tions port) to initialize the code or data. The hex conversion utility supports the
boot loader by automatically building the boot table.

10.9.1 Description of the Boot Table

The input for a boot loader is called the boot table (also known as a source
program). The boot table contains records that instruct the on-chip loader to
copy blocks of data contained in the table to specified destination addresses.
Some boot tables also contain values for initializing various processor control
registers. The boot table can be stored in memory or read in through a device
peripheral.

The hex conversion utility automatically builds the boot table for the boot load-
er. Using the utility, you specify the COFF sections you want the boot loader
to initialize, the table location, and the values for any control registers. The hex
conversion utility identifies the target device type from the COFF file, builds a
complete image of the table according to the format required by that device,
and converts it into hexadecimal in the output files. Then, you can burn the
table into ROM or load it by other means.

Boot loaders support loading from memory that is narrower than the normal
width of memory. For example, you can boot a 32-bit TMS320C31,
TMS320C32, or TMS320C40 from a single eight-bit EPROM by using the
–memwidth option to configure the width of the boot table. The hex conversion
utility automatically adjusts the table’s format and length.

10.9.2 The Boot Table Format

The boot table format includes a header record containing the width of the
table and possibly some values for various control registers. Each subsequent
block has a header containing the size and destination address of the block
followed by data for the block. Multiple blocks can be entered; a termination
block follows the last block. Finally, the table can have a footer containing more
control register values. Refer to the boot-loader section in the specific device
user’s guide for more information.

Building a Boot-Table From an On-Chip Boot Loader

10-29Hex Conversion Utility Description

10.9.3 How to Build the Boot Table

Table 10–2 summarizes the hex conversion utility options available for the
boot loader. You can choose from these options in addition to the options listed
in Table 10–1, page 10-4.

Table 10–2. Boot-Loader Utility Options

Option Description

–boot Convert all sections into bootable form (use instead of a
SECTIONS directive)

–bootorg value Specify the source address of the boot loader table

–bootpage value Specify the target page number of the boot loader table

–cg value Set the primary bus global control register (’C31 only)

–cg value Set the global memory configuration register (’C4x only)

–cl value Set the local memory configuration register (’C4x only)

–e value Specify the PC value after loading

–iack value Specify the IACK memory location (’C4x only)

–ivtp value Set the interrupt vector table pointer (’C4x only)

–tvtp value Set the trap vector table pointer (’C4x only)

–iostrb value Set the IOSTRB control register (’C32 only)

–strb0 value Set the STRB0 control register (’C32 only)

–strb1 value Set the STRB1 control register (’C32 only)

To build the boot table, follow these steps below:

Step 1: Link the file . Each block of the boot table data corresponds to an
initialized section in the COFF file. Uninitialized sections are not con-
verted by the hex conversion utility, see Section 10.6, page 10-22.

When you select a section for placement in a boot-loader table, the
hex conversion utility places its load address in the destination
address field for the block in the boot table. The section content is
then treated as raw data for that block.

Step 2: Identify the bootable sections . You can use the –boot option to tell
the hex conversion utility to configure all sections for boot loading.
Or you can use a SECTIONS directive with the utility to select specif-
ic sections to be configured. Refer to Section 10.6. Note that if you
use a SECTIONS directive, the –boot option is ignored.

Building a Boot-Table From an On-Chip Boot Loader

 10-30

Step 3: Set the ROM address of the boot table . Use the –bootorg option
to set the source address of the complete table. For example, if you
are using the ’C4x and booting from memory location 40000000h,
specify –bootorg 40000000h. The address field in the the hex
conversion utility output file will then start at 4000000h.

If you use –bootorg SERIAL or –bootorg COMM, or if you do not use
the –bootorg option at all, the utility places the table at the origin of
the first memory range in a ROMS directive. If you do not use a
ROMS directive, the table will start at the first section load address.
There is also a –bootpage option for starting the table somewhere
other than page 0.

Step 4: Set boot-loader-specific options , such as entry point, memory
control registers, as needed.

Step 5: Describe your system memory configuration . Refer to Section
10.4, page 10-7, and Section 10.5, page 10-16 for details.

The complete boot table is similar to a single section containing all of the head-
er records and data for the boot loader. The address of this “section” is the boot
table origin. As part of the normal conversion process, the hex conversion util-
ity converts the boot table to hexadecimal format and maps it into the output
files like any other section.

Be sure to leave room in the memory map for the boot table, especially when
you are using the ROMS directive. The boot table cannot overlap other non-
boot sections or unconfigured memory. Usually, this is not a problem; typically,
a portion of memory in your system is reserved for the boot table. Simply con-
figure this memory as one or more ranges in the ROMS directive, and use the
–bootorg option to specify the starting address.

Building a Boot-Table From an On-Chip Boot Loader

10-31Hex Conversion Utility Description

10.9.4 Booting From a Device Peripheral

You can choose to boot from a serial or other port by using the SERIAL or
COMM keyword with the –bootorg option. Your selection of a keyword de-
pends on the target device and the channel you want to use. For example, to
boot a ’C31 or ’C32 from its serial port, specify –bootorg SERIAL on the
command line or in a command file. To boot a TMS320C4x from one of its com-
munication ports, specify –bootorg COMM .

Notes:

q Possible Memory Conflicts When you boot from a device peripheral,
the boot table is not actually in memory; it is being received through the
device peripheral. However, as explained in Step Three, page 10-30, a
memory address is assigned.

q Why the System Might Require an EPROM Format for a Peripheral
Boot Loader Address In a typical system, a parent processor boots a
a child processor through that child’s peripheral. The boot loader table
itself may occupy space in the memory map of the child processor. The
EPROM format and ROMS directive address used correspond to the
one used by the parent processor, not the one that is used by the child.

10.9.5 Setting the Entry Point for the Boot Table

After completing the boot load process, program execution starts at the
address of the first block loaded (default entry point). By using the –e option
with the hex conversion utility, you can set the entry point to a different address.

For example, if you want your program to start running at address 0123456h
after loading, specify –e 0123456h on the command line or in a command file.
The value must be a constant; the hex conversion utility cannot evaluate
symbolic expressions, like c_int00 (default entry point assigned by the
C compiler). You can determine the –e address by looking at the map file
that the linker generates.

When you use the –e option, the utility builds a dummy block of length 1 and
data value 0 that loads at the specified address. Your blocks follow this dummy
block. Since the dummy block is boot-loaded first, the dummy value of 0 is
overwritten by the subsequent blocks. Then, the boot loader jumps to its ad-
dress after the boot load is completed.

10.9.6 Setting Control Registers

In addition to loading data into memory, some boot loaders can also initialize
processor control registers from values in the boot table. The hex conversion
utility provides special options that you can use to set the values for these reg-
isters. Table 10–3 lists the control register options. Each of these options
requires a constant value as its argument.

Building a Boot-Table From an On-Chip Boot Loader

 10-32

Table 10–3. Control Register Options

Option Register

–cg value Primary bus global control register (’C31 and ’C32 only)

–cg value Global memory configuration register (’C4x only)

–cl value Local memory configuration register (’C4x only)

–iack value IACK memory location (’C4x only)

–ivtp value Interrupt vector table pointer (’C4x only)

–tvtp value Trap vector table pointer (’C4x only)

–iostrb value IOSTRB control register (’C32 only)

–strb0 value STRB0 control register (’C32 only)

–strb1 value STRB1 control register (’C32 only)

10.9.7 Creating a Boot Loader Table for the ’C31

The ’C31 boot loader has two modes: external memory and serial port.
External memory can be 8, 16, or 32 bits wide. The serial port assumes 32-bit
burst mode. The ’C31 can boot multiple blocks, so you can specify more than
one section to boot. (For detailed information on the ’C31 boot loader, refer to
the TMS320C3x User’s Guide.) Furthermore, you can use the –e option to set
the entry point where execution begins after loading ends.

Booting From External Memory

If you are booting from external memory, the boot table has a two-word header:

� The first word defines the width of the memory, which the utility sets to the
memory width selected. (Refer to Section 10.4, page 10-7.)

� The second word is the primary memory configuration register value,
which you can set with the –cg option. Because the memory configuration
register controls how external memory is being accessed, a –cg with an
incorrect value may cause problems in the boot load process.

Following the header are blocks of data, each preceded with a size and des-
tination address. A size field of 0 terminates the list. If the memory width is less
than 32, the data must be ordered from least to most significant. The
conversion utility automatically builds the table in the correct format.

To configure one or more sections to boot from external memory, link each sec-
tion with a load address equal to its destination address. Refer to page 10-29
for details on the basic steps to follow to build a boot-loader table.

Building a Boot-Table From an On-Chip Boot Loader

10-33Hex Conversion Utility Description

Booting From a Serial Port

Booting from the serial port is similar to booting from external memory. Here,
however, you specify –bootorg SERIAL. In serial mode, the two-word boot
table header is omitted and the table immediately starts with the size of the first
block. Refer to page 10-31.

An Example: Booting the ’C31 From Memory

Suppose you want to boot the ’C31 from a 16-bit memory system at location
1000h with the following conditions:

� The 16-bit memory system consists of two side-by-side 8K x 8-bit
EPROMs, specified in the ROMS directive.

� You have three sections to load: .text, .cinit, and .const, specified in the
SECTIONS directive.

� You want the program to start running at address 0809802h after loading
(use –e 0809802h).

� You want to set the primary bus control register to zero wait-states, no
bank switching and external ready.

Example 10–3 uses the ROMS directive to define the EPROMs as memory
ranges and the –image option to fill all 8K locations of each output file.

Example 10–3. Using the TMS320C31 Boot Loader

/***/
/* Sample command file for C31 EPROM Boot */
/***/
abc.out /* input file */
–i /* Intel format */
–memwidth 16 /* 16-bit memory system */
–bootorg 1000h /* location of the external boot memory */
–cg 0h /*primary bus configuration */
ROMS
{
 EPROM: org = 01000h, len = 02000h, romwidth = 8,/* 8K x 8 */
 files = { abc.lsb, abc.msb }
}

SECTIONS { .text: BOOT, .cinit: BOOT, .const: BOOT }

This example produces two output files, one for each EPROM, each contain-
ing 8-bit wide data. If you want a single output file with all 16 bits (one single
8K x 16-bit ROM device used), use ROMwidth=16 instead of ROMwidth = 8.

Building a Boot-Table From an On-Chip Boot Loader

 10-34

10.9.8 TMS320C32 Boot Loader Table Generation

The ’C32 boot loader has two modes: external memory and serial port. Exter-
nal memory can be 8, 16, or 32 bits wide. The serial port assumes 32-bit burst
mode. The ’C32 can boot multiple blocks, so you can specify more than one
section to boot. Furthermore, you can use the –e option to set the entry point
where execution begins after loading ends. For more detailed information on
the ’C32 boot loader, refer to the TMS320C3x User’s Guide and the ’C32
User’s Guide.

Booting From External Memory

If you are booting from external memory, the boot table has a four-word
header:
� The first word defines the width of the memory system, which the utility

sets to the memory width selected, as explained in Section 10.4, page
10-7.

� The second word is the configuration value for the IOSTRB control
register, which you can set with the –iostrb option.

� The third word is the configuration value for the STRB0 control register,
which you can set with the –strb0 option.

� The fourth word is the configuration value for the STRB1 control register,
which you can set with the –strb1 option.

Following the header are blocks of data, each block preceded with a header
that defines a size, a destination address, and a strobe-control register value.
A size field of zero terminates the list. If the memory width is less than 32, the
data is ordered from least to most significant. If the data width is less than 32
for any section in the boot table, only the least significant datawidth bits are
stored in the output files. The conversion utility automatically builds the table
in the correct format.

To configure one or more sections to boot from external memory, link each sec-
tion with a load address equal to its destination address. Refer to page 10-29
for the steps required in boot-loader table generation.

If there are multiple data widths in the boot table, you can use the data width
parameter of the SECTIONS directive to specify data width, or the –datawidth
option to specify the global data width. The data width for any section con-
taining code or address values must always be set to 32. Otherwise, the
boot loading process may fail.

Building a Boot-Table From an On-Chip Boot Loader

10-35Hex Conversion Utility Description

Booting From a Serial Port

Booting from the serial port is similar. Specify –bootorg SERIAL. In serial
mode, the first word of the boot table header is omitted and the table
immediately starts with the configuration value for the IOSTRB control register.

Booting the ’C32 from Memory

Suppose you want to boot the ’C32 from 16-bit memory at location 1000h with
the following conditions:

� The 16-bit memory consists of two side-by-side 8K x 8 EPROMs, specified
in the ROMS directive.

� You have four sections to load:

Section Data width

.text 32

.cinit 32

.const 32

.userdata 8

� The program will start running at 0809802h after loading (use –e
0809802h).

� You want to set the IOSTRB global control register to 0 wait state

� You want to set STRB0 to 0 wait state, no bank switching, external ready,
and 32-bit data width in 32-bit wide memory

� You want to set STRB1 to 0 wait state, no bank switching, external ready
and 8-bit data in 8-bit wide memory.

Example 10–4 shows a command file that uses the ROMS directive to define
the EPROMs as a memory range and the –image option to fill all 8K locations
of each output file.

Building a Boot-Table From an On-Chip Boot Loader

 10-36

Example 10–4. Using the TMS320C32 Boot Loader

/**/
/* Sample command file for C32 EPROM Boot */
/**/
abc.out /* input file */
–i /* Intel format */
–memwidth 16 /* 16-bit memory */
–bootorg 1000h /* external memory boot */
–iostrb 0h /* IOSTRB configuration */
–strb0 0F0000h /* STRBO configuration */
–strb1 050000h /* STRB1 configuration */
ROMS
{
 EPROM: org = 01000h, len = 02000h, romwidth = 8,/* 8K x 8 */
 files = { abc.lsb, abc.msb }
}

SECTIONS {
.text: BOOT
.cinit: BOOT
.const: BOOT
.userdata: BOOT
datawidth = 8

}

This example produces two output files, one for each EPROM, each contain-
ing 8-bit wide data. If you want a single output file with all 16 bits, use
ROMwidth = 16 instead of ROMwidth = 8.

Building a Boot-Table From an On-Chip Boot Loader

10-37Hex Conversion Utility Description

10.9.9 TMS320C4x Boot Loader Table Generation

The ’C4x boot loader can boot through either external memory or one of the
communication ports. External memory can be 8, 16, or 32 bits wide. The com-
munication ports are 8-bit channels that use internal buffering to effect 32-bit
transfers. The ’C4x can boot multiple blocks, so you can specify more than one
section to boot. Furthermore, you can use the –e option to set the entry point
where execution begins after loading ends. Refer to the TMS320C4x User’s
Guide for details on boot loader operation.

Booting From External Memory

The boot table has a three-word header:

� The first word defines the width of the memory, which the utility sets to the
memory width value. See Section 10.4.

� The second and third words are the configuration values for global and
local memory, which you can set with the –cg and –cl options, respectively.

Following the header are blocks of data, each preceded with a size and des-
tination address. A size field of 0 terminates the list. Following the table are
three more configuration values for the IVTP register, TVTP register, and IACK
memory location. You can set these with the –ivtp, –tvtp, and –iack options.
If the memory width is less than 32, the partial words are ordered from least
to most significant. The hex conversion utility automatically builds the table in
the correct format.

To configure one or more sections to boot from external memory, link each
section with a load address equal to its destination address. Refer to page
10-29 for the basic steps to follow when building a boot loader table. For in-
formation on how to describe your external memory system, refer to Section
10.7, page 10-24.

Booting From a Communications Port

Booting from a communications port is similar to booting from external
memory. Simply specify –bootorg COMM. In comm port mode, the first word
of the boot table header (the memory width) is omitted. Refer to page 10-31
for more information.

Building a Boot-Table From an On-Chip Boot Loader

 10-38

An Example: Booting a ’C4x From a Communications Port

Suppose you want to boot a ’C4x child processor from a communications port
connected to a parent C4x processor. The following conditions apply:

� You want to set the child global memory control register to a 1D78C9F0h
value.

� You want to set the child local memory control register to a 1D739250h
value.

� You want to set the location of the interrupt vector table and the trap vector
table of the child processor in location 2ff800h.

� You want all of the initialized sections to boot automatically (use –boot).

� You want the program to start running in the child processor at 40000000h
after loading (use –e 40000000h).

� The parent processor will have the child boot loader table information
stored in its own memory at address 0x300000 (one single eight-bit ROM
device)

The command file is shown in Example 10–5.

Example 10–5. Using the ’C4x Boot Loader

/***/
/* Sample command file for C40 COMM Boot */
/***/
abc.out /* input file (child processor executable) */
–o abc.i /* output file (parent processor ROM) */
–i /* Intel format (parent processor) */
–memwidth 8 /* parent processor memory system width */
–romwidth 8 /* physical width of each ROM device */
–boot /* boot all initialized sections of the child processor */
–bootorg COMM /* boot from comm port (child processor) */
–cg 01D7BC9F0h /* global memory config (child processor) */
–cl 01D739250h /* local memory config (child processor) */

–ivtp 02FF800h /* IVTP initializer (child processor) */
–tvtp 02FF800h /* TVTP initializer (child processor) */
–iack 0300000h /* IACK memory location (child processor) */
ROMS
{
EPROM: org= 0300000h, len = 2000h /* parent memory */
}

This example produces a single file, called abc.i, to be burned in the parent
processor EPROM, with a list of bytes; four per word. If you want the file to con-
tain 32-bit words instead, use –memwidth 32 and –romwidth 32.

Controlling the ROM Device Address

10-39Hex Conversion Utility Description

10.10 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device
address. The EPROM programmer burns the data in the location specified by
the hex conversion utility output file address field. The hex conversion utility
offers some mechanisms to control the starting address in ROM of each sec-
tion and/or control the address index used to increment the address field. How-
ever many EPROM programmers offer direct control of the location in ROM
in which the data is burned.

10.10.1 Controlling the Starting Address

Depending on the condition of the boot loader, the the hex conversion utility
output file controlling mechanisms are different.

� Non Boot-loader mode

The address field of the hex conversion utility output file is controlled by the
following mechanisms listed from low to high priority:

1. The linker command file:

By default, the address field of a the hex conversion utility output file
is a function of the load address (as given in the linker command file)
and the hex conversion utility parameter values. The relationship is
summarized as follows:

out_file_addr† = load_addr � (data_width � mem_width)

out_file_addr The address of the output file.

load_addr The linker-assigned load address

data_width Data width can be specified by the –datawidth
command or the datawidth option inside the
SECTIONS directive. See Section 10.4.

mem_width The memory width of the memory system. You
can specify the memory width by the –memwidth
command or the memwidth option inside the
ROMS directive. See Section 10.4.

† If paddr is not specified

Consider the value of data width divided by memory width a
correction factor for address generation. If data width is larger than
memory width, then the correction factor expands the address
space.

Controlling the ROM Device Address

 10-40

For example, if the load address is 0x1 and datawidth divided by
memory width is 4, the output file address field would be 0x4. The
data is split into four consecutive locations of size memory width.

When data width is less than memory width, then the correction fac-
tor compresses the address space.

For example, assume that a section in the COFF input file contains
four words of 8-bit data width with linker-assigned load addresses of
0x0, 0x1, 0x2, and 0x3, respectively. If memory width is equal to 32,
then data width divided by memory width is equal to 1/4. Therefore,
the four 8-bit data words will be packed into one single 32-bit memory
word with an address of 0x0. (Notice that the address is truncated
to an integer.)

2. The –paddr option inside the SECTIONS directive:

When –paddr is specified for a section, the hex conversion utility by-
passes the section load address and places the section in the
address specified by –paddr. The relation between the hex conver-
sion utility output file address field and –paddr can be summarized
as follows:

out_file_addr† = paddr_val + (load_addr – sect_beg_load_addr) � (data_width � mem_width)

out_file_addr The address of the output file

paddr_val The value supplied with the –paddr option inside
the SECTIONS directive

sec_beg_load
_addr

Section beginning load address assigned by
linker

†If paddr is specified

The value of data width divided by memory width is a correction fac-
tor for address generation. The load address – section beginning
load address factor is an offset from the beginning of the section.

3. The zero option

When you use the –zero option, the utility resets the address origin
to zero for each output file. Since each file starts at zero and counts
upward, any address records represent offsets from the beginning
of the file (the address within the ROM) rather than actual target ad-
dresses of the data.

You must use this option in conjunction with the –image option to
force the starting address in each output file to be zero. If you specify
the –zero option without the –image option, the utility issues a warn-
ing and ignores the option.

Controlling the ROM Device Address

10-41Hex Conversion Utility Description

� Boot-Loader Mode

In the boot-loader case, the hex conversion utility places the different
COFF sections inside the boot loader table in consecutive memory loca-
tions. Each COFF section becomes a boot loader table block whose des-
tination address is equal to the section linker-assigned load address.

The address field of the the hex conversion utility output file is not related to
the section load addresses assigned by the linker. The address fields are
simply offsets to the beginning of the table, multiplied by the correction fac-
tor (data width divided by memory width, as previously explained.)

The beginning of the boot loader table defaults to the linked load address
of the first bootable section in the COFF input file, unless you use one of
the following mechanisms, listed here from low- to high-priority. Higher
priority mechanisms override the values set by low priority options in the
overlapping range.

1. The ROM origin specified in the ROMS directive:

The hex conversion utility places the boot loader table at the origin
of the first memory range in a ROMS directive.

2. The –bootorg option:

The hex conversion utility places the boot loader table at the address
specified by the –bootorg option if you select boot loading from
memory. Neither –bootorg COMM nor –bootorg SERIAL affect the
address field.

10.10.2 Controlling the Address Increment Index

By default, the hex conversion utility increments the output file address field
based on memory width value. If the memory width equals 16 bits, the address
will increment based on how many 16-bit words are present in each line of the
output file.

� The –byte option

Some EPROM programmers may require the address field of the hex con-
version utility output file increments in a byte basis. If you use the –byte
option, the output file address is incremented once for each byte. In an ex-
ample in which the starting address is 0h and the first line contains eight
words, with –byte, the second line would start at address 32 (020h). The
data is the the same; –byte affects only the calculation of the output file
address field, not the actual target processor address of the converted
data.

The –byte option causes the address records in an output file to refer to
byte locations within the file, whether the target processor is byte-
addressable or not.

Controlling the ROM Device Address

 10-42

10.10.3 Dealing With Address Holes

When memory width is different from data width, the automatic multiplication
of the load address by the correction factor might create holes at the beginning
of a section or between sections.

For example, assume you wanted to load a COFF section (.sec1) at address
0x0100 of an 8-bit EPROM. If you specify the load address in the linker com-
mand file at location 0x100, the hex conversion utility will multiply the address
by four (data width divided by memory width = 32/8 = 4), giving the output file
a starting address of 0x400. Unless you control the starting address of the
EPROM with your EPROM programmer, you could create holes within the
EPROM. The EPROM will burn the data starting at location 0x400 instead of
0x100. You can solve this by:

� Using the paddr command parameter of the SECTIONS directive.

This forces a section to start at the provided value. Example 10–6 shows a
hex command file that can be used to avoid the hole at the beginning of
.sec1.

Example 10–6. Hex Command File For Hole Avoidance

–i
a.out
–map a.map

ROMS
{
 ROM : org = 0x0100, length = 0x200, romwidth = 8, memwidth = 8,
}

SECTIONS
 {

sec1: paddr = 0x100
}

Note: Conditions for Using the paddr Parameter

If one section uses a paddr parameter, then all sections must use the paddr
parameter.

� Using the bootorg command line, or using the ROMS origin option

As described on page 10-42, the EPROM address of the entire boot-load-
er table can be controlled by the –bootorg option or by the ROMs directive.

Description of the Object Formats

10-43Hex Conversion Utility Description

10.11 Description of the Object Formats

The hex conversion utility converts a COFF object file into one of five object
formats that most EPROM programmers accept as input: ASCII-Hex, Intel
MCS-86, Motorola-S, Extended Tektronix, and TI-Tagged. This section de-
scribes each object format.

You can use one of the options in Table 10–4 to specify the hex format you
want to use for the output files.

� If you use more than one of these options, the last one you list overrides
the others.

� The default output format is Tektronix (–x option).

Table 10–4. Options for Specifying Hex Conversion Formats

Option Format
Address

Bits
Default
Width

–a ASCII-Hex 16 8

–i Intel 32 8

–m1 Motorola-S1 16 8

–m2 or –m Motorola-S2 24 8

–m3 Motorola-S3 32 8

–t TI-Tagged 16 16

–x Tektronix 32 8

Address bits determine how many bits of the address information the format
supports. The formats with 16-bit addresses only support addresses up to
64K. The utility truncates target addresses to fit in the number of bits available.

The default width determines the default output width of the format. You can
change the default width by using the –romwidth option or by specifying the
–romwidth option in the ROMS directive. You cannot change the default width
of the TI-Tagged format. The TI-Tagged format supports a 16-bit width only.

Note: Using the Intel Format

The Intel format has been extended to support 32-bit addresses. Special lin-
ear address records (record type = 04h) are used to represent the upper 16
bits of any address requiring more than 16 bits.

Description of the Object Formats

 10-44

10.11.1 ASCII-Hex Object Format (–a Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists
of a byte stream with bytes separated by spaces. Figure 10–9 illustrates the
ASCII-Hex format.

Figure 10–9. ASCII-Hex Object Format

^B $AXXXX,
 XX XX XX XX XX XX XX XX XX XX. . .^C

Nonprintable
Start Code

Nonprintable
End CodeAddress

Data Byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an
ASCII ETX character (ctrl-C, 03h). Address records are indicated with
$AXXXX, where XXXX is a four-digit (16-bit) hexadecimal address. The ad-
dress records are present only in the following situations:

� When discontinuities occur

� When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the –image
and –zero options. This creates output that is simply a list of byte values.

Description of the Object Formats

10-45Hex Conversion Utility Description

10.11.2 Intel MCS-86 Object Format (–i Option)

The Intel object format supports 16-bit addresses and 32-bit extended
addresses. Intel format consists of a nine-character (four-field) prefix, which
defines the start of record, byte count, load address, and record type, and a
two-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record

01 End-of-file record

04 Extended linear address record

Record type 00, the data record, begins with a colon (:) and is followed by the
byte count, the address of the first data byte, the record type (00), and the
checksum. Note that the address is the least significant 16 bits of a 32-bit ad-
dress; this value is concatenated with the value from the most recent 04
(extended linear address) record to create a full 32-bit address. The checksum
is the 2s complement (in binary form) of the preceding bytes in the record, in-
cluding byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed
by the byte count, the address, the record type (01), and the checksum.

Record type 04, the extended linear address record, is used to specify the
upper 16 address bits. It begins with a colon (:), followed by the byte count,
a dummy address of 0h, the record type (04), the most significant 16 bits of the
address, and the checksum. The subsequent address fields in the data re-
cords contain the least significant bits of the address.

Figure 10–10 illustrates the Intel hex object format.

Figure 10–10. Intel Hex Object Format

:02000004FFEEE0
:10334400112233445566778899FFFFFFFFFFFFFFFF
:10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0
:10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
:10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD0
:00000001FF

Start
Character

Byte
Count

Checksum

Data
Records

Record
Type

Address Most Significant 16 Bits
Checksum

Extended Linear
Address Record

End-of-File
Record

Description of the Object Formats

 10-46

10.11.3 Motorola-S Object Format (–m1, –m2, –m3 Options)

The Motorola S1, S2 and S3 formats support 16-bit (S1), 24-bit (S2), and 32-bit
(S3) addresses. The formats consist of a start-of-file (header) record, data re-
cords, and an end-of-file (termination) record. Each record is made up of five
fields: record type, byte count, address, data, and checksum. The record types
are:

Record Type Description

S0 Header record

S1 Code/data record for 16-bit addresses (S1 format)

S2 Code/data record for 24-bit addresses (S2 format)

S3 Code/data record for 32-bit addresses (S3 format)

S7 Termination record for 32-bit addresses (S3 format)

S8 Termination record for 24-bit addresses (S2 format)

S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and
byte count itself.

The checksum is the least significant byte of the 1s complement of the sum
of the values represented by the pairs of characters making up the byte count,
address, and the code/data fields.

Figure 10–11 illustrates the tag characters in Motorola-S object formats.

Figure 10–11. Motorola-S Format

S1130000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
S1130010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED
S1130020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDC
S1130030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S1130040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBC
S9030000FC

Byte
Count

Checksum

Data
Records

Address

Header
Record

Termination
Record

S00B00004441544120492F4FF3

Type

Description of the Object Formats

10-47Hex Conversion Utility Description

10.11.4 TI-Tagged Object Format (–t Option)

The TI-Tagged object format supports 16-bit addresses. It consists of a start-
of-file record, data records, and end-of-file record. Each of the data records is
made up of a series of small fields and is signified by a tag character. The sig-
nificant tag characters are:

Tag Character Description

K followed by the program identifier

7 followed by a checksum

8 followed by a dummy checksum (ignored)

9 followed by a 16-bit load address

B followed by a data word (four characters)

F identifies the end of a data record

* followed by a data byte (two characters)

Figure 10–12 illustrates the tag characters in TI-Tagged object format.

Figure 10–12. TI-Tagged Object Format

K000COFFTOTI
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F234F
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F
90040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF
90050BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FDF
:

Tag Characters
Program
Identifier

Load
Address

Data
Words

Checksum

Data
Records

End of File
Record

In the example above, each of the lines begin with a load address. Note that
this is not always the case; a line can begin with a data word (specified by the
B tag).

If any data fields appear before the first address, the first field is assigned ad-
dress 0000h. Address fields may be expressed for any data byte, but none is
required. The checksum field, which is preceded by the tag character 7, is a
2s complement of the sum of the 8-bit ASCII values of characters, beginning
with the first tag character and ending with the checksum tag character (7 or
8). The end-of-file record is a colon (:).

Description of the Object Formats

 10-48

10.11.5 Extended Tektronix Object Format (–x Option)

The Tektronix object format supports 32-bit addresses and has two types of
records:

data record contains the header field, the load address, and the
object code.

termination record signifies the end of a module.

The header field in the data record contains the following information:

Item

Number of
ASCII

Characters Description

% 1 Data type is Extended Tektronix hex format

Block
length

2 Number of characters in the record, minus the %

Block type 1 6 = data record
8 = termination record

Checksum 2 A two-digit hex sum modulo 256 of all values in the
record except the % and the checksum itself.

The load address in the data record specifies where the object code will be
located. The first digit specifies the address length; this is always 8. The re-
maining characters of the data record contain the object code, two characters
per byte.

Figure 10–13 illustrates the Tektronix object format.

Figure 10–13. Extended Tektronix Hex Object Format

%15621810000000202020202020

Block Length
15h = 21

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+0+
2+0+2+0+2+0+2+0+2+0+2+0

Load Address: 10000000h

Header
Character

Block Type:
6 (data)

Object Code: 6 bytes

Length of
Load Address

Hex Conversion Utility Error Messages

10-49Hex Conversion Utility Description

10.12 Hex Conversion Utility Error Messages

section mapped to reserved memory message

Description A section or a boot-loader table is mapped into a reserved
memory area as listed in the processor memory map.

Action Correct section or boot-loader address. For valid memory loca-
tions, refer to the user’s guide for the specific processor .

sections overlapping

Description Two or more COFF section load addresses overlap or a boot
table address overlaps another section.

Action This problem may be caused by an incorrect translation from
load address to hex output file address that is performed by the
hex conversion utility when memory width is less than data
width. Refer to Section 10.4, page 10-7 and Section 10.10,
page 10-39.

unconfigured memory

Description This error could have one of two causes:

� The COFF file contains a section whose load address falls
outside the memory range defined in the ROMS directive.

� The boot-loader table address is not within the memory
range defined by the ROMS directive.

Action Correct your ROM range as defined in your ROMS directive to
cover the memory range as needed, or modify the section load
address or boot-loader table address. Remember that if the
ROMS directive is not used, the memory range defaults to the
entire processor address space. For this reason, removing the
ROMS directive could also be a workaround.

 10-50

 Running Title—Attribute Reference

A-1 Chapter Title—Attribute Reference

Appendix A

Common Object File Format

The TMS320C3x/C4x assembler and linker create object files that are in com-
mon object file format (COFF). COFF is an implementation of an object file for-
mat of the same name that was developed by AT&T for use on UNIX-based
systems. This object file format has been chosen because it encourages mod-
ular programming and provides more powerful and flexible methods for man-
aging code segments and target system memory.

One of the basic COFF concepts is sections. Chapter 2, Introduction to Com-
mon Object File Format, discusses COFF sections in detail. If you understand
section operation, you will be able to use the TMS320 assembly language
tools more efficiently.

This appendix contains technical details about COFF object file structure.
Most of this information pertains to the symbolic debugging information that
is produced by the TMS320C3x/C4x C compiler. The main purpose of this ap-
pendix is to provide supplementary information for those of you who are inter-
ested in the internal format of COFF object files.

Topics in this appendix include:

Topic Page

A.1 How the COFF File Is Structured A-2.

A.2 File Header Structure A-5.

A.3 Optional File Header Format A-6.

A.4 Section Header Structure A-7.

A.5 Structuring Relocation Information A-10.

A.6 Line-Number Table Structure A-12.

A.7 Symbol Table Structure and Content A-14.

Appendix A

How the COFF File is Structured

A-2

A.1 How the COFF File Is Structured

The elements of a COFF object file describe the file’s sections and symbolic
debugging information. These elements include:

� A file header
� Optional header information
� A table of section headers
� Raw data for each initialized section
� Relocation information for each initialized section
� Line number entries for each initialized section
� A symbol table
� A string table

The assembler and linker produce object files with the same COFF structure;
however, a program that is linked for the final time will not contain relocation
entries. Figure A–1 illustrates the overall object file structure.

Figure A–1. COFF File Structure

file header

optional file header

section 1 header

section n header

section 1
raw data

section n
raw data

section 1
relocation information

section n
relocation information

section 1
line numbers

section n
line numbers

symbol table

string table

section headers

raw data
(executable code
and initialized data)

relocation
information

line number
entries

 How the COFF File is Structured

A-3 Common Object File Format

Figure A–2 shows a typical example of a COFF object file that contains the
three default sections, .text, .data, and .bss, and a named section (referred to
as <named>). By default, the tools place sections into the object file in the fol-
lowing order: .text, .data, initialized named sections, .bss, and uninitialized
named sections. Although uninitialized sections have a section headers, they
have no raw data, relocation information, or line number entries. This is be-
cause the .bss and .usect directives simply reserve space for uninitialized
data; uninitialized sections contain no actual code.

Figure A–2. Sample COFF Object File

file header

.text
section header

.data
section header

.bss
section header

<named> section
section header

.text
raw data

.data
raw data

<named> section
raw data

.text
relocation information

.data
relocation information

<named> section
relocation information

.text
line numbers

.data
line numbers

<named> section
line numbers

symbol table

string table

section headers

raw data

relocation
information

line number
entries

How the COFF File is Structured

A-4

A.1.1 Impact of Switching Operating Systems

The TMS320C3x/C4x COFF files are recognized by all operating system ver-
sions of the development tools. When you switch from one operating system
to another, only the file header information in the COFF files needs to be byte
swapped. The raw data in the COFF files does not need any changes.

The development tools can detect the difference in the file headers and auto-
matically compensate for it. This is true if using only TMS320C3x/C4x devel-
opment tools.

To tell the difference between COFF files, you can look at the magic number
in the optional file header. Bytes 0 and 1 contain the magic number. For the
SunOS� or HP-UX� operating systems, the magic number is 108h. For the
DOS operating system, the magic number is 801h.

 File Header Structure

A-5 Common Object File Format

A.2 File Header Structure

The file header contains 20 (COFF 0) or 22 (COFF 1 and 2) bytes of informa-
tion that describe the general format of an object file. Table A–1 shows the
structure of the file header.

Table A–1. File Header Contents

Byte
Numbers Type Description

0–1 Unsigned short integer COFF 0: Contains magic number (093h) to
indicate the file can be executed in a
TMS320C3x/C4x system.

COFF 1 and 2: Contains COFF version
number, either 0c1h (COFF1) or 0c2h
(COFF 2)

2–3 Unsigned short integer Number of section headers

4–7 Long integer Time and date stamp; indicates when the file
was created

8–11 Long integer File pointer; contains the symbol table’s
starting address

12–15 Long integer Number of entries in the symbol table

16–17 Unsigned short integer Number of bytes in the optional header. This
field is either 0 or 28; if it is 0, there is no op-
tional file header.

18–19 Unsigned short integer Flags (see Table A–2)

20–21 Unsigned short integer Included for COFF 1 and 2 only. Contains
magic number (093h) to indicate the file
can be executed in a TMS320C3x/C4x
system.

Table A–2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h, F_RELFLG and F_EXEC are
both set).

Optional File Header Format

A-6

Table A–2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description

F_VERS0 0000h TMS320C30/C31 object code

F_RELFLG 0001h Relocation information was stripped from the file

F_EXEC 0002h The file is executable (it contains no unresolved external
references)

F_LNNO 0004h Line numbers were stripped from the file

F_LSYMS 0008h Local symbols were stripped from the file

F_VERS1 0010h TMS320C40/C44 object code

F_VERS2 0020h TMS320C32 object code

F_LITTLE 0100h Object data LSB first

A.3 Optional File Header Format

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.
Table A–3 illustrates the optional file header format.

Table A–3. Optional File Header Contents

Byte
Number Type Description

0–1 Short integer Magic number (0108h)

2–3 Short integer Version stamp

4–7 Long integer Size (in words) of executable code

8–11 Long integer Size (in words) of initialized data

12–15 Long integer Size (in bits) of uninitialized data

16–19 Long integer Entry point

20–23 Long integer Beginning address of executable code

24–27 Long integer Beginning address of initialized data

File Header Structure/Optional File Header Format

 Section Header Structure

A-7 Common Object File Format

A.4 Section Header Structure

COFF object files contain a table of section headers that specify where each
section begins in the object file. Each section has its own section header. The
COFF0, COFF1, and COFF2 file types contain different section header infor-
mation. Table A–4 shows the section header contents for COFF0 and COFF1
files. Table A–5 shows the section header contents for COFF2 files.

Table A–4. Section Header Contents for COFF 0 and COFF1 Files

Byte
Number Type Description

0–7 Character 8-character section name, padded with nulls

8–11 Long integer Section’s physical address

12–15 Long integer Section’s virtual address

16–19 Long integer Section size in words

20–23 Long integer File pointer to raw data

24–27 Long integer File pointer to relocation entries

28–31 Long integer File pointer to line number entries

32–33 Unsigned short integer Number of relocation entries

34–35 Unsigned short integer Number of line number entries

36–37 Unsigned short integer Flags (see Table A–6)

38 Character Reserved

39 Unsigned character Memory page number

Table A–5. Section Header Contents for COFF2 Files

Byte Type Description

0–7 Character 8-character section name, padded with nulls

8–11 Long integer Section’s physical address

12–15 Long integer Section’s virtual address

16–19 Long integer Section size in words

20–23 Long integer File pointer to raw data

24–27 Long integer File pointer to relocation entries

28–31 Long integer File pointer to line-number entries

32–35 Unsigned long Number of relocation entries

36–39 Unsigned long Number of line-number entries

40–43 Unsigned long Flags (see Table A–6)

44–45 Short Reserved

46–47 Unsigned short Memory page number

Section Header Structure

A-8

Table A–6 lists the flags that can appear in the section header.

Table A–6. Section Header Flags

Mnemonic Flag Description

STYP_REG 0000h Regular section (allocated, relocated, loaded)

STYP_DSECT 0001h Dummy section (relocated, not allocated, not loaded)

STYP_NOLOAD 0002h Noload section (allocated, relocated, not loaded)

STYP_GROUP 0004h Grouped section (formed from several input sections)

STYP_PAD 0008h Padding section (loaded, not allocated, not relocated)

STYP_COPY 0010h Copy section (relocated, loaded, but not allocated; re-
location and line-number entries are processed normal-
ly)

STYP_TEXT 0020h Section that contains executable code

STYP_DATA 0040h Section that contains initialized data

STYP_BSS 0080h Section that contains uninitialized data

STYP_ALIGN 0700h Section that is aligned on a page boundary

Note: The term loaded means that the raw data for this section appears in the object file.

The flags listed in Table A–6 can be combined; for example, if the flags word
is set to 024h, then both STYP_GROUP and STYP_TEXT are set. Bits 8–11
of the section header flags specify alignment. The alignment is 2n where n is
the value in bits 8–11.

The flags are in:

Bytes For This COFF Format

36 and 37 COFF1

40 to 43 COFF2

 Section Header Structure

A-9 Common Object File Format

Figure A–3 illustrates how the pointers in a section header would point to the
various elements in an object file that are associated with the .text section.

Figure A–3. An Example of Section Header Pointers for the .text Section

.text

.text
Section
Header

.text
raw data

.text
relocation information

.text
line number entries

• • •
0–7 8–11 12–15 16–19 20–23 24–27 28–31 32–33 34–35 36–37 38 39

As Figure A–2 on page A-3, shows, uninitialized sections (created with .bss
and .usect directives) vary from this format. Although uninitialized sections
have section headers, they have no raw data, relocation information, and line
number information. They occupy no actual space in the object file. Therefore,
the number of relocation entries, the number of line number entries, and the
file pointers are 0 for an uninitialized section. The header of an uninitialized
section simply tells the linker how much space for variables it should reserve
in the memory map.

Structuring Relocation Information

A-10

A.5 Structuring Relocation Information

A COFF object file has one relocation entry for each relocatable reference.
The assembler automatically generates relocation entries. The linker reads
the relocation entries as it reads each input section and performs relocation.
The relocation entries determine how references within an input section are
treated.

The relocation information entries use the format shown in Table A–7.

Table A–7. Relocation Entry Contents

Bytes Type Description

COFF 0:

0–3 Long integer Virtual address of the reference

4–5 Unsigned short integer Symbol table index (0–65535)

6–7 Unsigned short integer 16 LSBs of reference, for R_PARTMS8

8–9 Unsigned short integer Relocation type (see Table A–8)

COFF 1 and COFF 2:

0–3 Long integer Virtual address of the reference

4–7 Unsigned long integer Symbol table index (0–65535)

8–9 Unsigned short integer COFF 1: Reserved
COFF 2: Additional byte used for ex-
tended address calculations

10–11 Unsigned short integer Relocation type (see Table A–8)

The virtual address is the symbol’s address in the current section before re-
location; it specifies where a relocation must occur. (This is the address of the
field in the object code that must be patched.)

Following is an example of code that generates a relocation entry:

0002 .global X
0003 0000 FF80 B X

0001 0000!

In this example, the virtual address of the relocatable field is 0001.

The symbol table index is the index of the referenced symbol. In the
preceding example, this field would contain the index of X in the symbol table.
The amount of the relocation is the difference between the symbol’s current
address in the section and its assembly-time address. The relocatable field
must be relocated by the same amount as the referenced symbol. In the
example, X has a value of 0 before relocation. Suppose X is relocated to
address 2000h. This is the relocation amount (2000h – 0 = 2000h), so the
relocation field at address 1 is patched by adding 2000h to it.

 Structuring Relocation Information

A-11 Common Object File Format

You can determine a symbol’s relocated address if you know which section it
is defined in. For example, if X is defined in .data and .data is relocated by
2000h, X is relocated by 2000h.

If the symbol table index in a relocation entry is –1 (0FFFFh), this is called an
internal relocation. In this case, the relocation amount is simply the amount by
which the current section is being relocated.

The relocation type specifies the size of the field to be patched and describes
how the patched value should be calculated. The type field depends on the ad-
dressing mode that was used to generate the relocatable reference. In the pre-
ceding example, the actual address of the referenced symbol (X) will be placed
in a 16-bit field in the object code. This is a 16-bit direct relocation, so the re-
location type is R_RELWORD. Table A–8 lists the relocation types.

Table A–8. Relocation Types (Bytes 8 and 9)

Mnemonic Flag Relocation Type

R_ABS 0 Absolute address, no relocation

R_REL24 05 24-bit direct reference to symbol’s address

R_RELWORD 020 16-bit direct reference to symbol’s address

R_RELLONG 021 32-bit direct reference to symbol’s address

R_PCRWORD 023 16-bit PC-relative reference

R_PCR24 025 24-bit PC-relative reference

R_PARTLS16 040 16-bit offset of 24-bit address

R_PARTMS8 041 8-bit page of 24-bit address (16-bit data page
reference)

Line-Number Table Structure

A-12

A.6 Line-Number Table Structure

The object file contains a table of line number entries that are useful for sym-
bolic debugging. When the C compiler produces several lines of assembly lan-
guage code, it creates a line number entry that maps these lines back to the
original line of C source code that generated them. Each single line number
entry contains 6 bytes of information. Table A–9 shows the format of a line-
number entry.

Table A–9. Line-Number Entry Format

Byte
Number Type Description

0–3 Long integer This entry may have one of two values:

1) If it is the first entry in a block of line-number entries,
it points to a symbol entry in the symbol table.

2) If it is not the first entry in a block, it is the physical ad-
dress of the line indicated by bytes 4–5.

4–5 Unsigned
short integer

This entry may have one of two values:

1) If this field is 0, this is the first line of a function entry.

2) If this field is not 0, this is the line number of a line of
C source code.

Figure A–4 shows how line number entries are grouped into blocks.

Figure A–4. Line-Number Blocks

Symbol Index 1

physical address

physical address

Symbol Index n

physical address

physical address

0

line number

line number

0

line number

line number

As Figure A–4 shows, each entry is divided into halves:

� For the first line of a function, bytes 0–3 point to the name of a symbol or
a function in the symbol table and bytes 4–5 contain a 0, which indicates
the beginning of a block.

 Line-Number Table Structure

A-13 Common Object File Format

� For the remaining lines in a function, bytes 0–3 show the physical address
(the number of words created by a line of C source) and bytes 4–5 show
the address of the original C source, relative to its appearance in the C
source program.

The line entry table can contain many of these blocks.

Figure A–5 illustrates the line number entries for a function named XYZ. As
shown, the function name is entered as a symbol in the symbol table. The first
portion on XYZ’s block of line number entries points to the function name in the
symbol table. Assume that the original function in the C source contained three
lines of code. The first line of code produces 4 words of assembly language
code, the second line produces 3 words, and the third line produces 10 words.

Figure A–5. Line-Number Entries Example

0

1

2

3

0

4

7

XYZ

•

•

Line Num-
ber
Entries

Symbol Table

(Note that the symbol table entry for XYZ has a field that points back to the be-
ginning of the line number block.)

Because line numbers are not often needed, the linker provides an option (-s)
that strips line number information from the object file; this provides a more
compact object module.

Symbol Table Structure and Content

A-14

A.7 Symbol Table Structure and Content

The order of symbols in the symbol table is very important; they appear in the
sequence shown in Figure A–6.

Figure A–6. Symbol Table Contents

filename 1

function 1

local symbols
for function 1

function 2

local symbols for
function 2

filename 2

function 1

local symbols
for function 1

static variables

defined global symbols

undefined global symbols

Static variables refer to symbols defined in C that have storage class static out-
side any function. If you have several modules that use symbols with the same
name, making them static confines the scope of each symbol to the module
that defines it (this eliminates multiple-definition conflicts).

 Symbol Table Structure and Content

A-15 Common Object File Format

The entry for each symbol in the symbol table contains the symbol’s:

� Name (or a pointer into the string table)
� Type
� Value
� Section it was defined in
� Storage class
� Basic type (integer, character, etc.)
� Derived type (array, structure, etc.)
� Dimensions
� Line number of the source code that defined the symbol

Section names are also defined in the symbol table.

All symbol entries, regardless of class and type, have the same format in the
symbol table. Each symbol table entry contains the 18 bytes of information
listed in Table A–10. Each symbol may also have an 18-byte auxiliary entry;
the special symbols listed in Table A–11 on page A-16, always have an auxilia-
ry entry. Some symbols may not have all the characteristics listed above; if a
particular field is not set, it is set to null.

Table A–10. Symbol Table Entry Contents

Byte
Number Type Description

0–7 Character This field contains one of the following:

1) An 8-character symbol name, padded with nulls

2) An offset into the string table if the symbol name is
longer than 8 characters

8–11 Long integer Symbol value; storage class dependent

12–13 Short integer Section number of the symbol

14–15 Unsigned
short integer

Basic and derived type specification

16 Character Storage class of the symbol

17 Character Number of auxiliary entries (always 0 or 1)

Symbol Table Structure and Content

A-16

A.7.1 Special Symbols

The symbol table contains some special symbols that are generated by the
compiler, assembler, and linker. Each special symbol contains ordinary sym-
bol table information and an auxiliary entry. Table A–11 lists these symbols.

Table A–11. Special Symbols in the Symbol Table

Symbol Description

.file File name

.text Address of the .text section

.data Address of the .data section

.bss Address of the .bss section

.bb Address of the beginning of a block

.eb Address of the end of a block

.bf Address of the beginning of a function

.ef Address of the end of a function

.target Pointer to a structure or union that is returned by a function

.nfake Dummy tag name for a structure, union, or enumeration

.eos End of a structure, union, or enumeration

etext Next available address after the end of the .text output section

edata Next available address after the end of the .data output section

end Next available address after the end of the .bss output section

Several of these symbols appear in pairs:

� .bb/.eb indicate the beginning and end of a block.

� .bf/.ef indicate the beginning and end of a function.

� nfake/.eos name and define the limits of structures, unions, and enumera-
tions that were not named. The .eos symbol is also paired with named
structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler as-
signs it a name so that it can be entered into the symbol table. These names
are of the form nfake, where n is an integer. The compiler begins numbering
these symbol names at 0.

 Symbol Table Structure and Content

A-17 Common Object File Format

Symbols and Blocks

In C, a block is a compound statement that begins and ends with braces. A
block always contains symbols. The symbol definitions for any particular block
are grouped together in the symbol table, and are delineated by the .bb/.eb
special symbols. Blocks can be nested in C, and their symbol table entries can
be nested correspondingly. Figure A–7 shows how block symbols are grouped
in the symbol table.

Figure A–7. Symbols for Blocks

.bb

Symbols for
block 1

.eb

.bb

Symbols for
block 2

.eb

Symbol Table

Block 1:

Block 2:

Symbols and Functions

The symbol definitions for a function appear in the symbol table as a group,
delineated by .bf/.ef special symbols. The symbol table entry for the function
name precedes the .bf special symbol. Figure A–8 shows the format of symbol
table entries for a function.

Figure A–8. Symbols for Functions

Function Name

.bf

Symbols for
the function

.ef

If a function returns a structure or union, then a symbol table entry for the spe-
cial symbol .target will appear between the entries for the function name and
the .bf special symbol.

Symbol Table Structure and Content

A-18

A.7.2 Symbol Name Format

The first 8 bytes of a symbol table entry (bytes 0–7) indicate a symbol’s name:

� If the symbol name is 8 characters or less, this field has type character.
The name is padded with nulls (if necessary) and stored in bytes 0–7.

� If the symbol name is greater than 8 characters, this field is treated as two
long integers. The entire symbol name is stored in the string table. Bytes
0–3 contain 0, and bytes 4–7 are an offset into the string table.

A.7.3 String Table Structure

Symbol names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the sym-
bol’s name contains, instead, a pointer to the symbol’s name in the string table.
Names are stored contiguously in the string table, delimited by a null byte. The
first four bytes of the string table contain the size of the string table in bytes;
thus, offsets into the string table are greater than or equal to four.

Figure A–9 is a string table that contains two symbol names, Adaptive–Filter
and Fourier–Transform. The index in the string table is 4 for Adaptive–Filter
and 20 for Fourier–Transform.

Figure A–9. Sample String Table

‘A’ ‘d’ ‘a’ ‘p’

‘t’ ‘i’ ‘v’ ‘e’

‘—’ ‘F’ ‘i’ ‘l’

‘t’ ‘e’ ‘r’ ‘\0’

‘F’ ‘o’ ‘u’ ‘r’

‘i’ ‘e’ ‘r’ ‘—’

‘T’ ‘r’ ‘a’ ‘n’

‘s’ ‘f’ ‘o’ ‘r’

‘m’ ‘\0’ \0’ \0’

40

 Symbol Table Structure and Content

A-19 Common Object File Format

A.7.4 Storage Classes

Byte 16 of the symbol table entry indicates the storage class of the symbol.
Storage classes refer to the method in which the C compiler accesses a sym-
bol. Table A–12 lists valid storage classes.

Table A–12. Symbol Storage Classes

Mnemonic Value Storage Class Mnemonic Value Storage Class

C_NULL 0 No storage class C_USTATIC 14 Uninitialized static

C_AUTO 1 Automatic variable C_ENTAG 15 Enumeration tag

C_EXT 2 External symbol C_MOE 16 Member of an enumeration

C_STAT 3 Static C_REGPARM 17 Register parameter

C_REG 4 Register variable C_FIELD 18 Bit field

C_EXTDEF 5 External definition C_UEXT 19 Tentative definition

C_LABEL 6 Label C_STATLAB 20 Static .label symbol

C_ULABEL 7 Undefined label C_EXTLAB 21 External .label symbol

C_MOS 8 Member of a structure C_BLOCK 100 Beginning or end of a block;
used only for the .bb and .eb
special symbols

C_ARG 9 Function argument C_FCN 101 Beginning or end of a func-
tion; used only for the .bf and
.ef special symbols

C_STRTAG 10 Structure tag C_EOS 102 End of structure; used only
for the .eos special symbol

C_MOU 11 Member of a union C_FILE 103 Filename; used only for the
.file special symbol

C_UNTAG 12 Union tag C_LINE 104 Used only by utility programs

C_TPDEF 13 Type definition

Some special symbols are restricted to certain storage classes. Table A–13
lists these symbols and their storage classes.

Symbol Table Structure and Content

A-20

Table A–13. Special Symbols and Their Storage Classes

Special
Symbol

Restricted to This
Storage Class

Special
Symbol

Restricted to This
Storage Class

.file C_FILE .eos C_EOS

.bb C_BLOCK .text C_STAT

.eb C_BLOCK .data C_STAT

.bf C_FCN .bss C_STAT

.ef C_FCN

A.7.5 Symbol Values

Bytes 8–11 of a symbol table entry indicate a symbol’s value. A symbol’s value
depends on the symbol’s storage class; Table A–14 summarizes the storage
classes and related values.

Table A–14. Symbol Values and Storage Classes

Storage Class Value Description Storage Class Value Description

C_AUTO Stack offset in bits C_UNTAG 0

C_EXT Relocatable address C_TPDEF 0

C_UEXT 0 C_NULL none

C_EXTDEF Relocatable address C_USTATIC 0

C_STAT Relocatable address C_ENTAG 0

C_REG Register number C_MOE Enumeration value

C_LABEL Relocatable address C_REGPARM Register number

C_ULABLE Relocatable address C_STATLAB Relocatable address

C_MOS Offset in bits C_FIELD Bit displacement

C_ARG Stack offset in bits C_BLOCK Relocatable address

C_STRTAG 0 C_FCN Relocatable address

C_EOS 0 C_LINE 0

C_MOU Offset in bits C_FILE 0

C_EXTLAB Relocatable address

If a symbol’s storage class is C_FILE, the symbol’s value is a pointer to the next
.file symbol. Thus, the .file symbols form a one-way linked list in the symbol
table. When there are no more .file symbols, the final .file symbol points back
to the first .file symbol in the symbol table.

 Symbol Table Structure and Content

A-21 Common Object File Format

The value of a relocatable symbol is its virtual address. When the linker relo-
cates a section, the value of a relocatable symbol changes accordingly.

A.7.6 Section Number

Bytes 12–13 of a symbol table entry contain a number that indicates which sec-
tion the symbol was defined in. Table A–15 lists these numbers and the sec-
tions they indicate.

Table A–15. Section Numbers

Mnemonic
Section
Number Description

N_DEBUG –2 Special symbolic debugging symbol

N_ABS –1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1 .text section (typical)

N_SCNUM 2 .data section (typical)

N_SCNUM 3 .bss section (typical)

N_SCNUM 4–32,767 Section number of a named section, in the order in
which the named sections are encountered

If there were no .text, .data, or .bss sections, the numbering of named sections
would begin with 1.

If a symbol has a section number of 0, –1, or –2, then it is not defined in a sec-
tion. A section number of –2 indicates a symbolic debugging symbol, which
includes structure, union, and enumeration tag names; type definitions; and
filenames. A section number of –1 indicates that the symbol has a value but
is not relocatable. A section number of 0 indicates a relocatable external sym-
bol that is not defined in the current file.

A.7.7 Type Entry

Bytes 14–15 of the symbol table entry define the symbol’s type. Each symbol
has one basic type and one to six derived types.

Following is the format for this 16-bit type entry:

Derived
Type

6

Derived
Type

5

Derived
Type

4

Derived
Type

3

Derived
Type

2

Derived
Type

1

Basic
Type

2 2 2 2 2 2 4
Size
(in bits):

Symbol Table Structure and Content

A-22

Bits 0–3 of the type field indicate the basic type. Table A–16 lists valid basic
types.

Table A–16. Basic Types

Mnemonic Value Type

T_NULL 0 Type not assigned

T_CHAR 2 Character

T_SHORT 3 Short integer

T_INT 4 Integer

T_LONG 5 Long integer

T_FLOAT 6 Floating point

T_DOUBLE 7 Double word

T_STRUCT 8 Structure

T_UNION 9 Union

T_ENUM 10 Enumeration

T_MOE 11 Member of an enumeration

T_UCHAR 12 Unsigned character

T_USHORT 13 Unsigned short integer

Bits 4–15 of the type field are arranged as six 2-bit fields, which can indicate
1 to 6 derived types. Table A–17 lists the possible derived types.

Table A–17. Derived Types

Mnemonic Value Type

DT_NON 0 No derived type

DT_PTR 1 Pointer

DT_FCN 2 Function

DT_ARY 3 Array

An example of a symbol with several derived types would be a symbol with a
type entry of 00000000110100112. This entry indicates that the symbol is a
pointer to an array of short integers.

 Symbol Table Structure and Content

A-23 Common Object File Format

A.7.8 Auxiliary Entries

Each symbol table entry may have one or no auxiliary entry. An auxiliary sym-
bol table entry contains the same number of bytes as a symbol table entry (18),
but the format of an auxiliary entry depends on the symbol’s type and storage
class. Table A–18 summarizes these relationships.

Table A–18. Auxiliary Symbol Table Entries Format

Storage
Type Entry

Name
Storage
Class Derived

Type 1
Basic
Type

Auxiliary Entry Format

.file C_FILE DT_NON T_NULL Filename (see Table A–19)

.text, .data, .bss C_STAT DT_NON T_NULL Section (see Table A–20)

tagname C_STRTAG
C_UNTAG
C_ENTAG

DT_NON T_NULL Tag name (see Table A–21)

.eos C_EOS DT_NON T_NULL End of structure (see Table A–22)

fcname C_EXT
C_STAT

DT_FCN (See note 1) Function (see Table A–23)

arrname (See note 2) DT_ARY (See note 1) Array (see Table A–24)

.bb, .eb C_BLOCK DT_NON T_NULL Beginning and end of a block (see
Table A–25 and Table A–26)

.bf, .ef C_FCN DT_NON T_NULL Beginning and end of a function (see
Table A–25 and Table A–26)

Name related to a
structure, union, or
enumeration

(See note 2) DT_PTR
DT_ARR
DT_NON

T_STRUCT
T_UNION
T_ENUM

Name related to a structure, union,
or enumeration (see Table A–27)

Notes: 1) Any except T_MOE
2) C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF

In Table A–18, tagname refers to any symbol name (including the special sym-
bol nfake). Fcname and arrname refer to any symbol name.

A symbol that satisfies more than one condition in Table A–18 should have a
union format in its auxiliary entry. A symbol that satisfies none of these condi-
tions should not have an auxiliary entry.

Symbol Table Structure and Content

A-24

Filenames

Each of the auxiliary table entries for a filename contains a 14-character file
name in bytes 0–13. Bytes 14–17 are not used.

Table A–19. Filename Format for Auxiliary Table Entries

Byte
Number Type Description

0–13 Character File name

14–17 — Unused

Sections

Table A–20 illustrates the format of the auxiliary table entries.

Table A–20. Section Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Section length

4–6 Unsigned short integer Number of relocation entries

7–8 Unsigned short integer Number of line number entries

9–17 — Unused (zero filled)

Tag Names

Table A–21 illustrates the format of auxiliary table entries for tag names.

Table A–21. Tag Name Format for Auxiliary Table Entries

Byte
Number Type Description

0–5 — Unused (zero filled)

6–7 Unsigned short integer Size of structure, union, or enumeration

8–11 — Unused (zero filled)

12–15 Long integer Index of next entry beyond this structure,
union, or enumeration

16–17 — Unused (zero filled)

 Symbol Table Structure and Content

A-25 Common Object File Format

End of Structure

Table A–22 illustrates the format of auxiliary table entries for ends of struc-
tures.

Table A–22. End-of-Structure Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 — Unused (zero filled)

6–7 Unsigned short integer Size of structure, union, or enumeration

8–17 — Unused (zero filled)

Functions

Table A–23 illustrates the format of auxiliary table entries for functions.

Table A–23. Function Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–7 Long integer Size of function (in bits)

8–11 Long integer File pointer to line number

12–15 Long integer Index of next entry beyond this function

16–17 — Unused (zero filled)

Symbol Table Structure and Content

A-26

Arrays

Table A–24 illustrates the format of auxiliary table entries for arrays.

Table A–24. Array Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 Unsigned short integer Line number declaration

6–7 Unsigned short integer Size of array

8–9 Unsigned short integer First dimension

10–11 Unsigned short integer Second dimension

12–13 Unsigned short integer Third dimension

14–15 Unsigned short integer Fourth dimension

16–17 — Unused (zero filled)

End of Blocks and Functions

Table A–25 illustrates the format of auxiliary table entries for the ends of blocks
and functions.

Table A–25. End-of-Blocks and Functions Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 — Unused (zero filled)

4–5 Unsigned short integer C source line number

6–17 — Unused (zero filled)

 Symbol Table Structure and Content

A-27 Common Object File Format

Beginning of Blocks and Functions

Table A–26 illustrates the format of auxiliary table entries for the beginnings
of blocks and functions.

Table A–26. Beginning-of-Blocks and Functions Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 — Unused (zero filled)

4–5 Unsigned short integer C source line number of block begin

6–11 — Unused (zero filled)

12–15 Long integer Index of next entry past this block

16–17 — Unused (zero filled)

Names Related to Structures, Unions, and Enumerations

Table A–27 illustrates the format of auxiliary table entries for the names of
structures, unions, and enumerations.

Table A–27. Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 — Unused (zero filled)

6–7 Unsigned short integer Size of the structure, union, or enumeration

8–17 — Unused (zero filled)

A-28

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

Appendix A

Symbolic Debugging Directives

The TMS320C3x/C4x assembler supports several directives that the
TMS320C3x/C4x C compiler uses for symbolic debugging:

� The .sym directive defines a global variable, a local variable, or a function.
Several parameters allow you to associate various debugging information
with the symbol or function.

� The .stag , .etag , and .utag directives define structures, enumerations,
and unions, respectively. The .member directive specifies a member of a
structure, enumeration, or union. The .eos directive ends a structure, enu-
meration, or union definition.

� The .func and .endfunc directives specify the bounds of C blocks.

� The .block and .endblock directives specify the bounds of C blocks.

� The .file directive defines a symbol in the symbol table that identifies the
current source file name.

� The .line directive identifies the line number of a C source statement.

These symbolic debugging directives are not usually listed in the assembly
language file that the compiler creates. If you want them to be listed, invoke
the compiler with the -g option, as shown below:

cl30 –g <input file>

This appendix contains an alphabetical directory of the symbolic debugging
directives. Each directive contains an example of C source and the resulting
assembly language code.

Appendix B

.block / .endblock Define a Block

B-2

Syntax .block beginning line number

.endblock ending line number

Description The .block and .endblock directives specify the beginning and end of a C block.
The line numbers are optional; they specify the location in the source file where
the block is defined.

Note that block definitions can be nested. The assembler will detect improper
block nesting.

Example Here is an example of C source that defines a block, and the resulting
assembly language code.

C source:

 .
 .
 .
 { /* Beginning of a block */
 int a,b;
 a = b;
 } /* End of a block */
 .
 .
 .

Resulting assembly language code:

 .block 12
 .sym _a,6,4,1,32
 .sym _b,7,4,1,32
 .line 13
 LDI *+FP(2), R0
 STI R0,*+FP(1)
 .endblock 14

 Supply a File Identifier .file

B-3 Symbolic Debugging Directives

Syntax .file ”filename”

Description The .file directive allows a debugger to map locations in memory back to lines
in a C source file. The filename is the name of the file that contains the original
C source program. The first 14 characters of the filename are significant.

You can also use the .file directive in assembly code to provide a name in the
file and improve program readability.

Example Here is an example of the .file directive. The filename named text.c contained
the C source that produced this directive.

.file ”text.c”

.func/.endfunc Define a Function

B-4

Syntax .func beginning line number

.endfunc ending line number [, save on entry mask,
 local frame size]

Description The .func and .endfunc directives specify the beginning and end of a C func-
tion. The parameters are optional; the line numbers specify the location in the
source file where the function is defined. The save–on–entry mask and local
frame size are generated by the compiler. The save–on–entry mask is used
to identify (for debugging purposes) the registers that have been pushed on
the stack at the start of this function. The local frame size value, if given, is also
used by the debugger to locate auto variables, and the value listed in this direc-
tive equals the amount of space set aside on the stack for local variables of
the corresponding function.

Note that function definitions cannot be nested.

Example Here is an example of C source that defines a function, and the resulting
assembly language code.

C source:

add1 (int x)
{

int y;

y = x+1;
return y;

}

 Define a Function .func/.endfunc

B-5 Symbolic Debugging Directives

Resulting assembly language code:

23 .global _add1
24 .sym _add1,_add1,36,2,0
25 .func 1
26 ;***
27 ; * FUNCTION NAME : _add1 *
28 ; * *
29 ; * Architecture :TMS320C30 *
30 ; * Calling Convention: Stack Parameter Convention *
31 ; * Function Uses Regs: r0 *
32 ; * Regs Saved : *
33 ; * Stack Frame : Full (w/ debug) *
34 ; * Total Frame Size : 1 Parm + 1 Auto + 0 SOE = 3 bytes*
35 ;***

36 00000000 _add1:
37 .line 1
38 00000000 0f2b0000 PUSH FP
39 00000001 500b0014 LDIU SP,FP
40 00000002 02740001 ADDI 1, SP
41 .sym _x,–1,4,9,32
42 .sym _y,1,4,1,32
43 .line 2
44 .line 5
45 00000003 50600001 LDIU 1,R0
46 00000004 02400B02 ADDI *–FP(2),R0
47 00000005 15400301 STI R0,*+FP(1)
48 .line 6
49 .line 7
51 00000006 50410b01 LDIU *–FP(1),R1
52 00000007 504bc300 LDIU *FP,FP
54 00000008 50440003 SUBI 3,SP
55 00000009 68000001 BU R1
57 .endfunc 7,000000000H,0

.line Create a Line Number Entry

B-6

Syntax .line line number [, address]

Description The .line directive creates a line number entry in the object file. Line number
entries are used in symbolic debugging to associate addresses in the object
code with the lines in the source code that generated them.

The .line directive has two operands:

� Line number indicates the line of the C source that generated a portion of
code. Line numbers are relative to the beginning of the current function.
This is a required parameter.

� Address is an expression that is the address associated with the line
number. This is an optional parameter; if you don’t specify an address, the
assembler will use the current SPC value.

Example The .line directive is followed by the assembly language source statements
that are generated by the indicated line of C source. For example, assume that
the lines of C source below are lines 4 and 5 in the original C source; these lines
may produce the assembly language statements shown below.

C source:

for (i = 1; i <= n; ++i)
 p = p * x;

Resulting assembly language code:

64 .line 4
68 0000000c 50600001 ldiu 1,R0
69 0000000d 15400301 sti R0,*+fp(1)
70 0000000e 04c00304 cmpi *+fp(4),R0
71 0000000f 6a090009 bgt L3
73 00000010 L2:
74 .line 5
78 00000010 50400305 ldiu *+fp(5),R0
79 0000011 50410306 ldiu *+fp(6),R1
80 00000012 62000000! call MPY_I30
82 00000013 15400305 sti R0,*+fp(5)
83 .line 4
84 00000014 50600001 ldiu 1,R0
85 00000015 02400301 addi *+fp(1),R0
86 00000016 15400301 sti R0,*+fp(1)
87 00000017 04c00304 cmpi *+fp(4),R0
88 00000018 6a08fff7 ble L2
90 00000019 L3:
91 .line 6

 Define a Member .member

B-7 Symbolic Debugging Directives

Syntax .member name, value [, type, storage class, size, tag, dims]

Description The .member directive defines a member of a structure, union, or
enumeration. It is valid only when it appears in a structure, union, or
enumeration definition.

� Name is the name of the member that is put in the symbol table. The first
32 characters of the name are significant.

� Value is the value associated with the member. Any legal expression (ab-
solute or relocatable) is acceptable.

� Type is the C type of the member. Appendix A contains more information
about C types.

� Storage class is the C storage class of the member. Appendix A contains
more information about C storage classes.

� Size is the number of bits of memory required to contain this member.

� Tag is the name of the type (if any) or structure of which this member is a
type. This name must have been previously declared by a .stag, .etag, or
.utag directive.

� Dims may be one to four expressions separated by commas. This allows
up to four dimensions to be specified for the member.

The order of parameters is significant. Name and value are required
parameters. All other parameters may be omitted or empty (adjacent commas
indicate an empty entry). This allows you to skip a parameter and specify a pa-
rameter that occurs later in the list. Operands that are omitted or empty as-
sume a null value.

Example Here is an example of a C structure definition and the corresponding assembly
language statements:

C source:

struct doc {
 char title;
 char group;
 int job_number;
} doc_info;

Resulting assembly language code:

 .stag doc,48
 .member _title ,0,2,8,8
 .member _group ,8,2,8,8
 .member _job_number ,16,4,8,32
 .eos

.stag/.etag/.utag/.eos Define a Structure

B-8

Syntax .stag name [, size]

member definitions

.eos

.etag name [, size]

member definitions

.eos

.utag name [, size]

member definitions

.eos

Description The .stag directive begins a structure definition. The .etag directive begins an
enumeration definition. The .utag directive begins a union definition. The .eos
directive ends a structure, enumeration, or union definition.

� Name is the name of the structure, enumeration, or union. The first 32
characters of the name are significant. This is a required parameter.

� Size is the number of bits the structure, enumeration, or union occupies
in memory. This is an optional parameter; if omitted, the size is
unspecified.

The .stag, .etag, or .utag directive should be followed by a number of .member
directives, which define members in the structure. The .member directive is
the only directive that can appear inside a structure, enumeration, or union
definition.

The assembler does not allow nested structures, enumerations, or unions.
The C compiler unwinds nested structures by defining them separately and
then referencing them from the structure they are referenced in.

Example 1 Here is an example of a structure definition.

C source:

struct doc
{
 char title;
 char group;
 int job_number;
} doc_info;

Resulting assembly language code:

 .stag _doc,96
 .member _title,0,2,8,32
 .member _group,32,2,8,32
 .member _job_number,64,4,8,32
 .eos

 Define a Structure .stag/.etag/.utag/.eos

B-9 Symbolic Debugging Directives

Example 2 Here is an example of a union definition.

C source:

union u_tag {
int val1;
float val2;
char valc;

} valu;

Resulting assembly language code:

 .utag _u_tag,96
 .member _val1,0,2,8,32
 .member _val2,32,4,8,32
 .member _valc,64,4,8,32
 .eos

Example 3 Here is an example of an enumeration definition.

C Source:

{
 enum o_ty { reg_1, reg_2, result } optypes;
}

Resulting assembly language code:

 .etag _o_ty32
 .member _reg_1,10,11,16,32
 .member _reg_2,1,11,16,32
 .member _result,2,11,16,32
 .eos

.sym Define a Symbol

B-10

Syntax .sym name, value [, type, storage class, size, tag, dims]

Description The .sym directive specifies symbolic debug information about a global vari-
able, local variable, or a function.

� Name is the name of the variable that is put in the object symbol table. The
first 32 characters of the name are significant.

� Value is the value associated with the variable. Any legal expression
(absolute or relocatable) is acceptable.

� Type is the C type of the variable. Appendix A contains more information
about C types.

� Storage class is the C storage class of the variable. Appendix A contains
more information about C storage classes.

� Size is the number of words of memory required to contain this variable.

� Tag is the name of the type (if any) or structure of which this variable is a
type. This name must have been previously declared by a .stag, .etag, or
.utag directive.

� Dims may be up to four expressions separated by commas. This allows
up to four dimensions to be specified for the variable.

The order of parameters is significant. Name and value are required parame-
ters. All other parameters may be omitted or empty (adjacent commas indicate
an empty entry). This allows you to skip a parameter and specify a parameter
that occurs later in the list. Operands that are omitted or empty assume a null
value.

Example These lines of C source produce the .sym directives shown below:

C source:

struct s { int member1, member2; } str;
int ext;
int array[5][10];
long *ptr;
int strcmp();

main(arg1,arg2)
int arg1;
char *arg2;

{
register r1;

}

 Define a Symbol .sym

B-11 Symbolic Debugging Directives

Resulting assembly language code:

.sym _str,_str,8,2,64,_s

.sym _ext,_ext,4,2,32

.sym _array,_array,244,2,1600,,5,10

.sym _ptr,_ptr,21,2,32

.sym _main,_main,36,2,0

.sym _arg1,_arg1,–2,4,9,32

.sym _arg2,_arg2,–3,18,9,32

.sym _r1,4,4,4,32

B-12

 Alphabetical Summary of Debugger Messages

C-1 Chapter Title—Attribute Reference

Appendix A

Assembler Error Messages

The assembler issues several types of error messages:

� Fatal
� Nonfatal
� Macro

When the assembler completes its second pass, it reports any errors that it
encountered during the assembly. It also prints these errors in the listing file
(if one is created). An error is printed following the source line that incurred it.

This appendix discusses the three types of assembler error messages. They
are listed in alphabetical order. Most errors are fatal; if an error is not fatal or
if it is a macro error, this is noted in the list. Most error messages have a
description of the problem and an action that suggests possible remedies.
Where the error message itself is an adequate description, you may find only
the action suggested. Where the action is obvious from the description
(inspect and correct code), the action is omitted.

A

absolute value required

Description A relocatable symbol was used where an absolute symbol
was expected.

Action Use an absolute symbol.

a component of the expression is invalid

Description Something other than a constant identifier or operator was
used in the expression.

Action Identify and eliminate the offending component.

address register required: SP, DP, IRX, or ARX

Description The operand of the LDA instruction must be one of these reg-
isters.

Appendix C

Assembler Error Messages

C-2

address required
Description This instruction requires an address as an operand.

an identifier in the expression is invalid
Description A character-matching function requires a character constant

operand.

Action Use a character constant.

argument must be character constant
Description A character-matching function requires a character constant

Action Use a character constant.

auxiliary register required for indirect
Description This instruction requires an auxiliary register as an operand.

B

bad macro library format
Description The macro library specified was not in the format expected.

Action Macro libraries must be unassembled assembler source files.
The macro name and member name must be the same, and
the extension of the file must be .asm.

blank missing
Description A blank or blanks must separate each field of the source

statement.

.break encountered outside loop block
Description The .break directive is valid only inside a loop block.

Action Examine code for a misplaced .endloop directive or remove
the .break directive.

C

cannot equate an external to an external
Description Both of the operands of this .set directive are used with .global

directives.

Action One and only one of the operands may be .global.

 Assembler Error Messages

C-3 Assembler Error Messages

cannot open library

Description A library name specified with the .mlib directive does not exist
or is already being used.

Action Check spelling, pathname, environment variables, etc.

cannot open listing file : filename

Description The specified filename is inaccessible for some reason.

Action Check spelling, pathname, environment variables, etc.

cannot open object file : filename

Description The specified filename is inaccessible for some reason.

Action Check spelling, pathname, environment variables, etc.

cannot open source file : filename

Description The specified filename is inaccessible for some reason.

Action Check spelling, pathname, environment variables, etc.

cannot redefine register

Description An attempt was made to redefine a register name.

Action Register names cannot be used as labels.

character constant overflows a word

Description Character constants should be limited to four characters.

close ()) missing

Description Mismatched parentheses.

close (]) missing

Description Mismatched brackets.

close quote missing

Description Mismatched or missing quotes.

Action All strings must be enclosed in quotes.

Assembler Error Messages

C-4

comma missing

Description The assembler expected a comma but did not find one.

Action In most cases, the instruction requires more operands than
were found.

conditional block nesting level exceeded

Description Conditional block nesting cannot exceed 32 levels.

conflicts with previous section definition

Description A section defined with .sect or .usect cannot be redefined
with the other directive.

Action Change the directives to match or rename one of the
sections.

copy file open error

Description A file specified by a .copy directive does not exist or is already
being used.

Action Check spelling, pathname, environment variables, etc.

D

directive only valid if (–a) option used

Description The .setsect and .setsym directives can be used only if the –a
(absolute list) option is specified.

Action Remove statements or invoke assembler with –a.

divide by zero

Description An expression or well-defined expression contains invalid
division.

duplicate definition

Description The symbol appears as an operand of a REF statement, as
well as in the the label field of the source, or the symbol
appears more than once in the label field of the source.

Action Examine code for above. Use .newblock to reuse local labels.

 Assembler Error Messages

C-5 Assembler Error Messages

duplicate definition of a structure component

Description A structure tag, member, or size symbol was defined
elsewhere or used in a .global directive.

E

.else or .elseif needs corresponding .if

Description An .else or .elseif directive was not preceded by an .if
directive.

empty structure

Description A .struct/.endstruct sequence must have at least one
member.

expansion register required

Description This instruction requires a ’C4x expansion file register.

expression changed values due to branch expansion

Description An expression is dependent on the amount of code between
two labels. If the assembler expands a branch in the code
between these two labels, this expression will evaluate to
different values in pass1 and pass2.

Action Manually expand any branches between the two labels in
your source code that were automatically expanded by the
assembler.

expression not terminated properly

Description Expressions must be delimited by commas, parentheses, or
blanks.

expression out of bounds

Description The value specified is too large for this particular instruction or
directive.

extended register R0–R7 required

Description Parallel instructions operate only on these registers.

Assembler Error Messages

C-6

F

filename missing

Description The specified filename cannot be found.

Action Check spelling, pathname, environment variables, etc.

floating-point number not valid in expression

Description A floating-point expression was used where an integer
expression is required.

G

garbage on command line

Description The specified options are illegal or unrecognized.

I

illegal label

Description A label cannot be used for the second instruction of a parallel
instruction pair.

illegal operation in expression

Description This message is usually generated by an illegal combination
of relocatable or external operands.

Action Consult Table 3–2 on page 3-23.

illegal structure definition

Description The .stag/.eos structure definition cannot be nested and
cannot contain any debugging directives other than member.

illegal structure member

Description Only directives that reserve space are allowed in structure
definitions.

Action Consult Directives that Initialize Constants in beginning on
page 4-7.

 Assembler Error Messages

C-7 Assembler Error Messages

illegal structure, union, or enumeration tag

Description The operands of .stag must be identifiers.

illegal use of local label

Description Local labels are not allowed in expressions.

incompatible addressing modes

Description Although each operand is correctly formed, the combination
is not valid for this instruction.

index register required for displacement

Description Indirect displacement must be a constant, IR0, or IR1.

indirect address required

Description This instruction expects an indirect address as an operand.

indirect displacement must be 0 or 1

Description This message applies to several 3-operand and parallel
instructions.

indirect displacement out of bounds

Description Range must be 0–255.

invalid binary constant

Description The only valid binary integers are 0 and 1; the constant must
be suffixed with b or B.

invalid bit-reversed modification

Description Bit-reversed modification is legal only with *AR++(IR0)
addressing mode.

invalid branch displacement

Description PC relative branch destination is too far away.

Assembler Error Messages

C-8

invalid circular modification

Description Circular modification legal with *AR++(disp), *AR––(disp),
*AR++(IR), or *AR––(IR) only.

invalid decimal constant

Description The only valid decimal integers are 0–9.

Action This error is most commonly caused by failure to use h or H as
the postfix on a hexadecimal number.

invalid expression

Description This may indicate invalid use of a relocatable symbol in
arithmetic.

invalid floating-point constant

Description Either the floating-point constant is incorrectly formed, or an
integer constant is used where a floating-point constant is
required.

invalid hexadecimal constant

Description The only valid hexadecimal digits are the integers are 0–9 and
the letters A–F. The constant must be suffixed with h or H, and
it must begin with an integer.

invalid octal constant

Description The only valid octal digits are the integers are 0–8; the
constant must be suffixed with q or Q.

invalid opcode

Description The command field of the source record has an entry that is
not a defined instruction, directive, or macro name.

invalid opcode for selected version

Description An illegal instruction is used for selected CPU. Check the –v
option or .version directive.

 Assembler Error Messages

C-9 Assembler Error Messages

invalid operand combination–check version

Description An illegal instruction is used for selected CPU. Check the –v
option or .version directive.

invalid option

Description An option specified by the .option directive is invalid.

invalid parallel instruction combination

Description These two instructions cannot be combined as one parallel
instruction. Only certain combinations are legal.

invalid symbol qualifier

Description A symbol name is a string of up to 32 alphanumeric
characters (A–Z (either case), 0–9, $, and _) and cannot
begin with a number.

L

label required

Description The flagged directive must have a label.

library not in archive format

Description A file specified with an .mlib directive is not an archive file.

Action Macro libraries must be unassembled assembler source files.
The macro name and member name must be the same, and
the extension of the file must be .asm.

local label multiply defined in block

Description Local labels cannot be defined more than once in the current
block.

Action Use the .newblock directive to reuse local labels in the same
block.

Assembler Error Messages

C-10

local label not defined in block

Description A local label is used outside the block that it is defined in, or it
is not defined at all.

local macro variable is not a valid symbol

Description The operand of .var must be a valid symbol.

Action Consult subsection 6.3.7 on page 6-12.

M

macro parameter is not a valid symbol

Description The macro parameter must be a valid identifier.

Action Section 6.3, beginning on page 6-5, discusses macro
parameters.

maximum macro nesting level exceeded

Description The maximum nesting level is 32.

maximum number of copy files exceeded

Description The maximum nesting level for .copy or .include files is 10.

.mexit directive encountered outside macro

Description The .mexit directive is valid only inside macros.

missing .endif directive

Description An .if directive has no matching .endif.

missing .endloop directive

Description A .loop directive has no matching .endloop.

missing .endm directive

Description A .macro directive has no matching .endmacro directive.

 Assembler Error Messages

C-11 Assembler Error Messages

missing first half of parallel instruction

Description The || symbol was used on the first statement in a section or
the first instruction was badly formed.

missing macro name

Description The .macro directive requires a name.

missing structure tag

Description The .tag directive requires a symbol name.

N

no include/copy files in macro or loop blocks

Description .include and .copy directives are not allowed inside macros
(.macro/.endm) or loop blocks (.loop/.break/.endloop).

no parameters for macro arguments

Description A macro was called with arguments, but no matching
parameters were found in the macro definition.

O

open “(“ expected

Description A built-in function was used improperly, or mismatched
parentheses were found.

operand missing

Action An operand must be supplied.

operand must be an immediate value

Description The operand for this instruction must be an immediate value.

Assembler Error Messages

C-12

operand must be register or indirect

Description For 3-operand or parallel instructions.

out of memory, aborting

Description The assembler has run out of memory and cannot continue.

Action Break the assembly language file into smaller files that can be
assembled at one time.

overflow in floating-point constant

Description Floating-point value too large to be represented.

P

pass1/pass2 operand conflict

Description A symbol in the symbol table did not have the same value in
pass1 and pass2.

Action This is an internal assembler error. If it occurs repeatedly, the
assembler may be corrupt.

positive value required

Description Negative or zero value not allowed.

R

redefinition of local substitution symbol

Description Local substitution symbols can be defined only once in a
macro.

register required

Description This instruction requires a register as an operand.

 Assembler Error Messages

C-13 Assembler Error Messages

S

string required

Description You must supply a string that is enclosed in double quotes.

string table larger than PC segment size

Description The maximum size for a string table is 64 K bytes.

substitution symbol stack overflow

Description Maximum number of nested substitution symbols is 10.

substitution symbol string too long

Description Maximum substitution symbol length is 200 characters.

subtraction of labels not allowed

Description Subtraction of labels or relationals involving the amount of
code between labels is not allowed in expressions used in
some contexts.

Action Refer to Table 3–2 on page 3-23.

symbol required

Description The .global directive requires a symbol as an operand.

symbol used in both REF and DEF

Description A REFed symbol is already defined.

syntax error

Description An expression is improperly formed.

T

too many local substitution symbols

Description The maximum number of local substitution symbols is �
64,000.

Assembler Error Messages

C-14

U

unable to open temp macro library filename

Description The assembler uses a temporary file for holding macro
definitions. It was unable to create/open this file.

Action Check disk space and protection.

unbalanced symbol table entries

Description Incorrectly scoped .block and .func directives.

undefined structure member

Description A symbol referenced with structure reference notation (a.b) is
not declared in a .struct/.endstruct sequence.

undefined structure tag

Description The operand of .tag must be defined with a .struct directive.

undefined substitution symbol

Description The operand of a substitution symbol must be defined either
as a macro parameter or with a .asg or .eval directive.

undefined symbol

Description An undefined symbol was used where a well-defined
expression is required.

underflow in floating-point constant

Description Floating-point value is too small to represent.

unexpected .endif encountered

Description An .endif directive was not preceded by a .loop directive.

unexpected .endloop encountered

Description An .endloop directive was not preceded by a .loop directive.

 Assembler Error Messages

C-15 Assembler Error Messages

unexpected .endm directive encountered

Description An .endm directive was not preceded by a .macro directive.

unexpected .endstruct directive encountered

Description An .endstruct directive was not preceded by a .struct
directive.

unknown model option [–m_], ignored

Description Unrecognized –m option.

USER ERROR

Description Output from an .emsg directive.

USER MESSAGE

Description Output from a .mmsg directive.

USER WARNING

Description Output from a .wmsg directive.

V

value is out of range

Description The value specified is outside the legal range.

.var directive encountered outside macro

Description The .var directive is legal inside macros (.macro/.endm) only.

version number changed

Description The operand of the .version directive does not match a
previous .version directive or the –v command line option.

Assembler Error Messages

C-16

W

warning — block open at end of file

Description A .block or .func directive is missing its corresponding
.endblock or .endfunc.

warning — function .sym required before .func

Description A .sym directive defining the function should appear before
the .func directive.

warning — immediate operand not absolute

Description Immediate operands should be absolute expressions.

Action Refer to Table 3–2 on page 3-23.

warning — line truncated

Description Any characters after the 200th on an input line are ignored.

warning — null string defined

Description An empty string (one whose length = 0) is defined for string
input for directives that require a null string operand.

warning — register converted to immediate

Description A constant was expected as an operand.

warning — string length exceeds maximum limit

Description The maximum length of the .title directive is 64 characters.

warning — symbol truncated

Description The maximum length for a symbol is eight characters. The
assembler ignores the extra characters.

 Assembler Error Messages

C-17 Assembler Error Messages

warning — trailing operand(s)

Description The assembler found fewer or more operands than expected
in the flagged instruction.

warning — value out of range

Description The value specified is outside the legal range.

warning — value truncated

Description The expression given was too large to fit within the instruction
opcode or the required number of bits.

C-18

 Alphabetical Summary of Debugger Messages

D-1 Chapter Title—Attribute Reference

Appendix A

Linker Error Messages

The linker issues several types of error messages:

� Syntax and command errors
� Allocation errors
� I/O errors

This appendix discusses the three types of errors; they are listed
alphabetically within each category. In these listings, the symbol (...)
represents the name of an object that the linker is attempting to interact with
when an error occurs.

Syntax/Command Errors

These errors are caused by incorrect use of linker directives, misuse of an
input expression, or invalid options. Check the syntax of all expressions, and
check the input directives for accuracy. Review the various options you are
using and check for conflicts.

A

absolute symbol (...) being redefined

Description An absolute symbol cannot be redefined.

adding name (...) to multiple output sections

Description The input section is mentioned twice in the SECTIONS
directive.

ALIGN illegal in this context

Description Alignment of a symbol can be performed only within a
SECTIONS directive.

Appendix D

Syntax/Command Errors

D-2

attempt to decrement DOT

Description Statements such as .–= value are illegal. Assignments to dot
can be used only to create holes.

B

bad fill value

Description The fill value must be a 16-bit constant.

binding address for (...) redefined

Description Only one binding value is allowed for each section.

blocking for (...) redefined

Description Only one blocking value is allowed for each section.

C

–c requires fill value of 0 in .cinit (... overridden)

Description C runtime conventions require the .cinit tables to be
terminated with 0.

can’t open filename

Description Specified filename cannot be opened for some reason; file
doesn’t exist, wrong file type, etc.

Action Check spelling, pathname, environment variables, etc.

cannot resize (...), section has initialized definition in (...)

Description An initialized input section named .stack or .heap exists,
preventing the linker from resizing the section.

 Syntax/Command Errors

D-3 Linker Error Messages

cannot specify a page for a section within a GROUP

Description The SECTIONS directive GROUP option forces several
output sections to be allocated contiguously. Therefore, you
cannot specify a page for a section within a GROUP.

cannot specify both binding and memory area for (...)

Description The two are mutually exclusive. If you wish the code to be
placed at a specific address, use binding only.

command file nesting exceeded with file (...)

Description Command file nesting is allowed up to 16 levels.

E

–e flag does not specify a legal symbol name (...)

Description The –e option requires a valid symbol name as an operand.

entry point other than _c_int00 specified

Description For –c or –cr option only. The runtime conventions of the
compiler assume that _c_int00 is the one and only entry point.

entry point symbol (...) undefined

Description The symbol used with the –e option is not defined.

errors in input – (...) not built

Description Previous errors prevent the creation of an output file.

F

fill value for (...) redefined

Description Only one fill value is allowed per output section. Individual
holes can be filled with different values with the section
definition.

Syntax/Command Errors

D-4

I

–i path too long (...)

Description The maximum number of characters in an –i path is 256.

illegal input character

Description There is a control character or other unrecognized character
in the command file.

illegal memory attributes for (...)

Description The attributes must be some combination of R, W, I, and X.

illegal operator in expression

Description Review legal expression operators.

illegal option within SECTIONS

Description The –l (lowercase L) is the only option allowed within a
SECTIONS directive.

invalid path specified with –i flag

Description The operand of the –i flag must be a valid file or pathname.

invalid value for –f flag

Description The value for –f must be a 2-byte constant.

invalid value for –heap flag

Description The value for –heap must be a 2-byte constant.

invalid value for –stack flag

Description The value for –stack must be a 2-byte constant.

 Syntax/Command Errors

D-5 Linker Error Messages

invalid value for –v flag

Description The value for –v must be a constant.

L

length redefined for memory area (...)

Description Each memory area in a MEMORY directive can have only one
length.

M

–m flag does not specify a valid filename

Description You must specify a valid filename for the file you are writing
the output map file to.

memory area for (...) redefined

Description Only one named memory allocation is allowed for each output
section.

memory page for (...) redefined

Description Only one page allocation is allowed for each section.

memory attributes redefined for (...)

Description Only one set of memory attributes is allowed for each output
section.

missing filename on –l; use –l <filename>

Description The –l (lowercase L) option requires the use of a filename
operand.

Syntax/Command Errors

D-6

misuse of DOT symbol in assignment instruction

Description The dot symbol cannot be used in assignment statements
that are outside SECTIONS directives.

N

no input files

Description The linker cannot operate without at least one input COFF file.

O

–o flag does specify a valid file name : string

Description The filename must follow the operating system conventions.

output file has no .bss section

Description This is a warning. This section is usually present in a COFF
file. There is no real requirement for it to be present.

output file has no .data section

Description This is a warning. This section is usually present in a COFF
file. There is no real requirement for it to be present.

output file has no .text section

Description This is a warning. This section is usually present in a COFF
file. There is no real requirement for it to be present.

origin missing for memory area (...)

Description The origin is the beginning address for a memory range. Both
the origin and length are required.

origin redefined for memory area (...)

Description The origin of a memory range has been redefined.

Action Check to make sure that you haven’t named two memory
ranges with the same name.

 Syntax/Command Errors

D-7 Linker Error Messages

R

–r incompatible with –s (–s ignored)
Description Since the –s option strips the relocation information and –r

requests a relocatable object file, these options are in conflict
with each other.

S

section (...) not built
Description The most likely cause of this is a syntax error in the

SECTIONS directive.

semicolon required after assignment
Description There is a syntax error in the command file.

statement ignored
Description Caused by a syntax error in an expression.

symbol referencing errors — (...) not built
Description Symbol references could not be resolved. Therefore, an

object module could not be built.

symbol (...) from file (...) being redefined
Description A defined symbol cannot be redefined in an assignment

statement.

T

too many arguments – use a command file
Description You are limited to ten arguments on a command line or in

response to prompts.

too many –i options, 7 allowed
Action Additional search directories can be specified with a C_DIR or

A_DIR environment variable.

Syntax/Command Errors

D-8

type flags for (...) redefined

Description Only one section type is allowed per section. Note that type
COPY has all of the attributes of type DSECT, so DSECT
need not be specified separately.

type flags not allowed for GROUP or UNION

Description Special section types apply to individual sections only.

U

–u does not specify a legal symbol name

Description The –u option must specify a legal symbol name that exists in
one of the files that you are linking.

undefined symbol in expression

Description An assignment statement contains an undefined symbol.

unexpected EOF (end of file)

Description Syntax error in the linker command file.

unrecognized option (...)

Action Check the list of valid options.

Z

zero or missing length for memory area (...)

Description Each memory range defined with the MEMORY directive
must have a nonzero length.

 Allocation Errors

D-9 Linker Error Messages

Allocation Errors

These error messages appear during the allocation phase of linking. They
generally appear if a section or group does not fit at a certain address or if the
MEMORY and SECTIONS directives conflict in some way.

A

alignment for (...) must be a power of 2

Description Section alignment must be a power of 2.

Action In hexadecimal, all powers of 2 consist of the integers 1, 2, 4,
or 8 followed by a series of zero or more 0s.

alignment for (...) redefined

Description Only one alignment is allowed for each section.

B

binding address (...) for section (...) is outside all memory on page
(...)

Description Each section must fall within memory configured with the
MEMORY directive.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

binding address (...) for section (...) overlays (...) at (...)

Description Two sections overlap and cannot be allocated.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

Allocation Errors

D-10

binding address (...) incompatible with alignment for section (...)

Description The section has an alignment requirement from an .align
directive or previous link. The binding address violates this
requirement.

blocking for (...) must be a power of 2

Description Section blocking must be a power of 2.

Action In hexadecimal, all powers of 2 consist of the integers 1, 2, 4,
or 8 followed by a series of zero or more 0s.

C

can’t align a section within GROUP – (...) not aligned

Description The entire GROUP is treated as one unit, so the GROUP can
be aligned or bound to an address, but the sections making up
the GROUP cannot be handled individually.

can’t align within UNION – section (...) not aligned

Description The entire UNION is treated as one unit, so the UNION can be
aligned or bound to an address, but the sections making up
the UNION cannot be handled individually.

can’t allocate (...), size ... (page ...)

Description A section can’t be allocated, because no configured memory
area exists that is large enough to hold it.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

 Allocation Errors

D-11 Linker Error Messages

L

load address for uninitialized section (...) ignored

Description Uninitialized sections have no load addresses—only run
addresses.

load address for UNION ignored

Description UNION refers only to the section’s run address.

load allocation required for uninitialized UNION member (...)

Description UNIONs refer to runtime allocation only. You must specify the
load address for all sections within a UNION separately.

M

memory types (...) and (...) on page (...) overlap

Description Memory ranges on the same page cannot overlap.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

N

no allocation allowed for uninitialized UNION member

Description An uninitialized section with a UNION gets its run allocation
from the UNION and has no load address, so no allocation is
valid for the member.

no allocation allowed with a GROUP–allocation for section (...)
ignored

Description The entire group is treated as one unit, so the group can be
aligned or bound to an address, but the sections making up
the group cannot be handled individually.

Allocation Errors

D-12

no load address specified for (...); using run address

Description If an initialized section has a run address only, the section is
allocated to run and load at the same address.

no run allocation allowed for union member (...)

Description A UNION defines the run address for all of its members;
therefore, individual run allocations are illegal.

O

output file (...) not executable

Description The output file created may have unresolved symbols or other
problems stemming from other errors. This condition is not
fatal.

P

PC-relative displacement overflow at address (...) in file (...)

Description relocation of a PC-relative jump resulted in a jump
displacement too large to encode in the instruction.

S

section (...) at (...) overlays at address (...)

Description The two sections overlap and cannot be allocated.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections overlap.

section (...) enters unconfigured memory at address (...)

Description A section can’t be allocated because no configured memory
area exists that is large enough to hold it.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

 Allocation Errors

D-13 Linker Error Messages

section (...) not found

Description An input section specified in a SECTIONS directive was not
found in the input file.

section (...) won’t fit into configured memory

Description A section can’t be allocated, because no configured memory
area exists that is large enough to hold it.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

U

undefined symbol (...) first referenced in file (...)

Description Unless the –r option is used, the linker requires that all refer-
enced symbols be defined. This condition prevents the cre-
ation of an executable output file.

Action Link using the –r option or define the symbol.

I/O and Internal Overflow Errors

D-14

I/O and Internal Overflow Errors:

The following error messages indicate that the input file is corrupt, nonexistent,
or unreadable, or that the output file cannot be opened or written to. Messages
in this category may also indicate that the linker is out of memory or table
space.

C

cannot complete output file (...), write error

Description Usually means that the file system is out of space.

cannot create output file (...)

Description Usually indicates an illegal filename.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t create map file (...)

Description Usually indicates an illegal filename.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t find input file filename

Description The file, filename, is not in your PATH, is misspelled, etc.

Action Check spelling, pathname, environment variables, etc.

can’t open (...)

Description The specified file does not exist.

Action Check spelling, pathname, environment variables, etc.

can’t read (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

 I/O and Internal Overflow Errors

D-15 Linker Error Messages

can’t seek (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

can’t write (...)

Description Disk may be full or protected.

Action Check disk volume and protection.

F

fail to copy (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to read (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to seek (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to skip (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to write (...)

Description Disk may be full or protected.

Action Check disk volume and protection.

I/O and Internal Overflow Errors

D-16

file (...) has no relocation information

Description You have attempted to relink a file that was not linked with –r.

file (...) is of unknown type, magic number = (...)

Description The binary input file is not a COFF file.

I

illegal relocation type (...) found in section(s) of file (...)

Description The binary file is corrupt.

internal error (...)

Description Indicates an internal error in the linker.

invalid archive size for file (...)

Description The archive file is corrupt.

I/O error on output file (...)

Description Disk may be full or protected.

Action Check disk volume and protection.

L

library (...) member (...) has no relocation information

Description Library members may not have relocation information;
however, then they cannot satisfy unresolved references in
other files when linking.

line number entry found for absolute symbol

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

 I/O and Internal Overflow Errors

D-17 Linker Error Messages

M

making aux entry filename for symbol n out of sequence

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

N

no string table in file filename
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

no symbol map produced – not enough memory

Description This is a nonfatal condition that prevents the generation of the
symbol list in the map file.

O

overwriting aux entry filename of symbol n

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

out of memory, aborting

Description Your system does not have enough memory to perform all
required tasks.

Action Try breaking the assembly language files into multiple smaller
files and do partial linking. Refer to Section 8.15 on page 8-58.

R

relocation entries out of order in section (...) of file (...)

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

I/O and Internal Overflow Errors

D-18

relocation symbol not found: index (...), section (...), file (...)

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

S

seek to (...) failed

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

T

too few symbol names in string table for archive n

Description The archive file may be corrupt.

Action If the input file is corrupt, try recreating the archive.

 Running Title—Attribute Reference

E-1 Chapter Title—Attribute Reference

Appendix A

Hex Conversion Utility Examples

This section contains eight examples that will illustrate the development of
command files for a variety of memory systems and situations.

Topic Page

E.1 Building a Command File for Two 16-Bit EPROMS E-3.

E.2 Building a Command File for Booting From the ’C4x
Communications Port E-9.

E.3 Building a Command File to Convert Code for a ’C32 E-15.

E.4 Building a Command File for a Four 8-Bit EPROM System E-20.

E.5 Avoiding Holes Between Multiple Sections E-21.

E.6 Building a Command File for a ’C31 Serial Port Boot Load E-23.

E.7 Dealing With Three Different Addresses E-24.

E.8 Building a Command File to Generate a Boot Table for a ’C32 E-26. . .

Appendix E

Sample ASM Code

E-2

All examples use the assembly code in Example E–1.

Example E–1. Sample ASM Code

;–––;

; Sample ASM file ;

;–––;

;–––;

; Assemble two words into section sec1 ;

;–––;

.sect ”sec1”

.word 12345678h

.word 12345678h

;–––;

; Assemble two words into section sec2 ;

;–––;

.sect ”sec2”

.word 0aabbccddh

.word 0aabbccddh

.end

 Building a Command File for Two 16-Bit EPROMs

E-3 Hex Conversion Utility Examples

E.1 Building a Command File for Two 16-Bit EPROMs

This example illustrates how to build the hex command file necessary to
convert a COFF object for the memory system shown in Figure E–1. In this
system, there are two external 128K x16-bit EPROMs interfacing with a
’C3x/’C4x target processor. Each EPROM contributes 16 bits toward making
a single, 32-bit word for the target processor.

Figure E–1. System With Two 16-bit EPROMs

Lower 16 Bits

Upper 16 Bits

EPROM System Memory Width 32 Bits

ROM Width
16 Bits16 Bits

ROM Width

ROM1
128Kx16

ROM0
128Kx16

Width 32 Bits

’C3x or ’C4x
CPU

As an added requirement for this application, code linked at load address
0x300000 must actually reside in physical EPROM address 0x10. The
circuitry of the target board handles the translation of this address space.

By default, the hex conversion utility will use the linker load address to
generate addresses in the converted output file. For this application, the code
will reside at an address (0x10) that is different than the one specified by the
linker (0x300000). The paddr parameter places a section at a location different
than the linker load address. This will effect the burn of code at EPROM ad-
dress 0x10. When using paddr, you must use it for all sections and ensure that
the specified addresses do not cause overlap of the linker-assigned section
load addresses of sections that follow.

In this example, two sections are defined: sec1 and sec2. Therefore, it is not
difficult to add a paddr option for each of these sections. However, the task
may become unmanageable for large applications with many sections, or in
cases where section sizes may change often during code development.

Building a Command File for Two 16-Bit EPROMs

E-4

To work around this problem, you can combine the sections at link stage,
creating a single section for conversion. The linker command file that accom-
plishes this is shown in Figure E–2.

Figure E–2. Linker Command File for Two 16-bit EPROMs

/*––*/
/* Sample Linker Command file for Example 1 */
/*––*/

 test.obj
 –o a.out
 –m test.map

 /* SPECIFY THE SYSTEM MEMORY MAP */

 MEMORY
 {
 RAM: org = 0x300000 len = 0x100
 }

 /* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

 SECTIONS
 {
 outsec: {*(sec1)

 *(sec2) } > RAM
 }

The EPROM programmer used in this application requires Intel format and
byte addressing. Application requirements include:

� Data in a COFF file that is 32 bits wide
� The EPROM system memory width must be 32
� ROM1 contains the upper 16 bits of the words
� ROM0 contains the lower 16 bits of the words
� Locate code starting at EPROM address 0x10
� Intel format for EPROM programmer
� Byte addresses must be used in the output file

To satisfy the requirements of the EPROM programmer, use the –i and –byte
options. The –i option selects conversion to Intel format. The –byte option
causes addresses to be incremented by byte rather than by the system
memory width.

 Building a Command File for Two 16-Bit EPROMs

E-5 Hex Conversion Utility Examples

To meet the requirements of the memory system, select the following options:

–datawidth 32 /* This is default and refers to relevant size of raw data
contained in the COFF input file */

–byte /* use byte increment for addresses in converted output file */

–memwidth 32 /* Physical width of EPROM system */

–romwidth 16 /* Physical width of ROM device */

The –memwidth 32 option tells the hex conversion utility that the system
memory width is 32 bits. This corresponds to the EPROM system memory
width, as described in Figure E–1. The –romwidth option specifies the width
(in bits) of the physical ROM device. You can set the option globally since the
width of both ROM devices is the same.

With the memory width and ROM width values above, the utility will automati-
cally generate two output files. The ratio of memory width to ROM width deter-
mines the number of output files. One file contains the lower 16 of the 32 bits
of raw data and the other contains the upper 16 bits of the corresponding data.

Example E–2 shows the command file with all of the selected options.

Building a Command File for Two 16-Bit EPROMs

E-6

Example E–2. Command File for Two 16-bit EPROMs

a.out /* COFF object input file */
–map tutor1.mxp /* Create a map of converted output */

/*––*/
/* Set parameters for EPROM programmer */
/*––*/

–i /* Select Intel format */
–byte /* Select byte addressing for output file*/

/*–––*/
/* Set options required to describe EPROM system */
/*–––*/

–datawidth 32 /* Set relevant data width for COFF file*/
–memwidth 32 /* Set EPROM system memory width */
–romwidth 16 /* Set physical width of ROM devices */

ROMS
{

 EPROM: origin = 0x10, length = 0x30,
 files = { low16.byt , upp16.byt }
}

SECTIONS
{
 outsec: paddr=0x10
}

Figure E–3 shows the contents of the converted file for ROM0 (low16.bit)
which contains the lower 16 bits, and the contents of the converted file for
ROM1 (upp16.bit) containing the upper 16 bits of data. Note that the
addresses specified in the hex output files have been multiplied by a factor of
two because of the –byte option. With byte addressing, the hex conversion
utility expanded the 16-bit word address provided by paddr to the appropriate
byte address. For more information, see Section 10.10.

 Building a Command File for Two 16-Bit EPROMs

E-7 Hex Conversion Utility Examples

Figure E–3. Data From Output File resulting from Example E–2

(a) low16.bit:(Lower Bits)

Data from converted output file

:0800200056785678CCDDCCDDEA
:00000001FF

Corresponding Map in EPROM – ROM0 (See Example E–1)

CCDD

CCDD

5678

56780x20

(b) upp16.bit: (upper bits)

0x20

AABB

AABB

1234

1234

Data from converted output file

:0800200012341234AABBAABB82
:00000001FF

Corresponding Map in EPROM – ROM1 (See Example E–1)

Building a Command File for Two 16-Bit EPROMs

E-8

To illustrate precisely how the utility performs the conversion, specify the –map
option. Although not required, the –map option generates useful information
about the output. The resulting map is shown in Example E–3.

Example E–3. Hex Conversion Map File Resulting From Example E–2

**
TMS320C3x/4x Hex Converter Version X.XX
**
Mon Nov 14 15:00:56 1997

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
 Default data width: 32
 Default memory width: 32
 Default output width: 16

OUTPUT TRANSLATION MAP
–––
00000010..0000003f Page=0 ROM Width=16 Memory Width=32 ”EPROM”
–––
 OUTPUT FILES: low16.byt [b0..b15]
 upp16.byt [b16..b31]

 CONTENTS: 00000010..00000013 Data Width=4 outsec

 Building a Command File for Booting From the ’C4x Communications Port

E-9 Hex Conversion Utility Examples

E.2 Building a Command File for Booting From the
’C4x Communications Port

This example uses the same sample code given in Example E–1, but will be
converting the code for the EPROM system shown in Figure E–4.

Figure E–4. A Sample EPROM System for a ’C4x

Port 0
COMM

Port 1
COMM

Width 8 Bits
EPROM System Memory

ROM Width 8 Bits

CPU
’C4x
Child

128Kx8

CPU
’C4x

Parent

This application involves two ’C4x devices. One acts as a parent and boots
the second (child) processor via the communications port. The child
processor’s boot table is stored in an external EPROM connected to the
parent.

The parent processor reads the boot table for the child processor from the
EPROM and writes this data to communications port 0. The child’s on-chip
boot loader reads the code from communications port 1 and writes it starting
at location 0x4000 0000.

Once the boot process has completed on the child processor, the child code
located in section sec1 copies section sec2 to location 0x2ff800 for faster
execution.

The parent ’C4x device, as shown in Figure E–4, requires the boot table to
load at ROM address 0x100.

Building a Command File for Booting From the ’C4x Communications Port

E-10

The linker command file in Example E–4 specifies the appropriate run and
load addresses for the code. In the command file, the load address and run
address for sec1 is set to >= 0x40000000. Section sec2 will load at address
>= 0x40000000 but it will run at location 0x2ff800.

Example E–4. Linker Command File for Booting From the ’C4x COMM Port

/*––*/
/* Sample Linker file for Example 2 */
/*––*/

test.obj
–o a.out
–m test.map

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 INT: org = 0x2ff800 len = 0x400
 EXT: org = 0x40000000 len = 0x400
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 sec1: {} > EXT
 sec2: {} load = EXT, run = INT
}

The EPROM programmer requires only that the Intel format be used. To
satisfy this requirement, use the –i option.

System requirements include:

� A boot table suitable for the communications port boot load
� 32-bit wide data in the COFF file
� 8-bit wide EPROM system memory
� Single output file containing converted data for a 128K x 8-bit EPROM
� Boot table location at parent ROM address 0x100
� Intel format for converted file

 Building a Command File for Booting From the ’C4x Communications Port

E-11 Hex Conversion Utility Examples

To satisfy the conditions for boot table generation and the requirements for the
EPROM system, select the following options:

–datawidth 32 /* This default value refers to the */
/* relevant size of the raw data */
/* contained in the COFF input file */

–memwidth 8 /* Physical width of EPROM system */

–romwidth 8 /* Physical width of each EPROM device */

–boot /* Generate a Boot Table */

–bootorg COMM /* Use Boot Table format suitable for */
/* communications port boot load */

The –memwidth option sets the EPROM system memory width. According to
the system memory configuration shown in Figure E–4, this value is eight bits
wide. Similarly, using the –romwidth option sets the physical width of the
EPROM device. The –boot option tells the hex conversion utility to generate
a boot table and –bootorg COMM creates a boot table suitable for comm port
loading.

Using these values for memory width and ROM width, the utility creates a
single output file, since the number of output files is determined by the ratio
of memory width to ROM width.

Finally, the converted file must initiate boot-table loading at address 0x100 in
the ROM device. Use the ROMS directive to control the placement of the boot
table in the EPROM connected to the parent processor. The hex conversion
utility will use the origin specified in the ROMS directive as the base address
for the boot table.

Example E–5 shows the command file that includes all of the selected options.
Note the command file also shows options –cg, –cl, ivtp, and –iack, which
define values for control registers.

The values used in this example are not real; they are not valid quantities for
any real physical system. These options are used only to provide an
illustration. Each individual target board and application require unique values.

To define the entry point, the address to which the boot loader will branch for
execution upon completing the boot process, use the –e option.

Building a Command File for Booting From the ’C4x Communications Port

E-12

Example E–5. Command File for Booting From the ’C4x COMM Port

/*––*/
/* Sample Hex Conversion Utility Command File for Example 2 */
/*––*/

a.out /* COFF object input file */
–map tutor2.mxp /* Create a map of converted output */

/*––*/
/* Set parameters for EPROM programmer */
/*––*/

–i /* Select Intel format */

/*––*/
/* Set options required to describe EPROM system */
/*––*/

–datawidth 32 /* Set raw data size from COFF */
–memwidth 8 /* Set parent EPROM system memory width */
–romwidth 8 /* Set physical width of ROM devices */

/*––*/
/* Set options for Boot Table generation */
/*––*/

–boot /* Generate boot table */
–bootorg COMM /* Use Boot Table format suitable for load

from communications port */

–cg 0x11111111 /* Set child Global Bus Control Register*/
–cl 0x22222222 /* Set child Local Bus COntrol Register */

–ivtp 0x00300000 /* Set child Interrupt Vector Location */
–tvtp 0x00400000 /* Set child Trap Vector Location */
–iack 0x00500000 /* Set child IACK acknowledge location */

–e 0x40000000 /* Set entry point */

/*––*/
/* Use ROMS directive to set load location for boot table */
/* on ROM device (parent processor) */
/*––*/

ROMS
{
 EPROM: origin = 0x100, length = 0x1FF00, files = { boot.tbl }
}

SECTIONS
{
 sec1:paddr=boot
 sec2:paddr=boot
}

/* If SECTIONS directive is used, –boot option is ignored and you need to specify
= boot; refer to section 10.6. */

 Building a Command File for Booting From the ’C4x Communications Port

E-13 Hex Conversion Utility Examples

Figure E–5 shows the converted output generated by the command file. The
linker-assigned load address is used as the destination address for each of the
sections included in the boot table. The boot loader places the code at the
linker load address. Notice that although a run address is specified for sec2,
the run address does not appear anywhere in the file. This is because the hex
conversion utility operates on load addresses only. It ignores run addresses
because they have no meaning in the context of the converted file.

Figure E–5. Data From Output File (boot.tbl) resulting from Example E–5

(a) Data from converted output file

:18010000111111112222222202000000000000407856341278563412B1
:200118000200000002000040DDCCBBAADDCCBBAA00000000000003000000400000005000A7
:00000001FF

(b) Corresponding Map in EPROM – ROM1 (See Example E–1)

0x100

12

34

56

78

40

00

00

00

00

00

22

22

22

11

11

11

00

02

22

11

Building a Command File for Booting From the ’C4x Communications Port

E-14

Example E–6. Map File Resulting From Example E–5

**
* TMS320C3x/4x Hex Converter Version X.XX *
**
Tue Nov 15 10:34:43 1997

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
 Default data width: 32
 Default memory width: 8 (LS––>MS)
 Default output width: 8

BOOT LOADER PARAMETERS
 Table Address: COMM PORT
 Entry Point: 40000000
 Global Memory Configuration: 11111111
 Local Memory Configuration: 22222222
 Interrupt Vector Table Pointer (IVTP): 00300000
 Trap Vector Table Pointer (TVTP): 00400000
 IACK Location: 00500000

OUTPUT TRANSLATION MAP
–––
00000100..0001ffff Page=0 ROM Width=8 Memory Width=8 ”EPROM”
–––
 OUTPUT FILES: boot.tbl [b0..b7]

 CONTENTS: 00000100..00000137 BOOT TABLE
 sec1 : dest=40000000 size=00000002 width=00000004

 Building a Command File to Convert Code for a ’C32

E-15 Hex Conversion Utility Examples

E.3 Building a Command File to Convert Code for a ’C32

This example creates a hex command file to convert code for a ’C32. A ’C32
can access 8-, 16-, or 32-bit external data. Figure E–6 shows a memory
system that with a ’C32 processor that accesses memory on a single, 16-bit
EPROM using STRB0 and STRB1. The EPROM will contain applications
code stored as 32-bit data (STRB0) and a set of coefficient tables used by the
applications code that is stored as 8-bit data (STRB1).

Figure E–6. Sample EPROM System for a ’C32

16K x 16

8-bit data

32-bit data

EPROM System Memory Width 16 Bits

ROM Width 16 Bits

C32 strb1

strb0

Sample code in Example E–1 is used here. However, in this situation, it has
been linked so that code and data in sec1 is allocated in an address space
starting at address 0x0 where STRB0 is active and sec2 is allocated at ad-
dress 0x9000000 where STRB1 is active. The linker command file used is
shown in Example E–7.

Building a Command File to Convert Code for a ’C32

E-16

Example E–7. Linker Command File for a ’C32

/*––*/
/* Sample Linker Command file for Example 3 */
/*––*/

test.obj
–o a.out
–m test.map

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 STRB0: org = 0x0000 len = 0x1000
 STRB1: org = 0x900000 len = 0x1000
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 sec1: {} > STRB0
 sec2: {} > STRB1
}

System requirements include:

� 16-bit wide system memory
� Physical EPROM width of 16 bits
� Data width of application code measuring 32 bits (sec1)
� Data width of coefficient tables measuring 8 bits (sec2)
� Applications code is loaded at EPROM address 0 (STRB0)
� 8-bit data tables loaded at EPROM address 0x2000 (STRB1)
� Intel format for EPROM programmer

The data widths for sec1 and sec2 are not the same. Because these sections
will be loaded at EPROM addresses different than those specified at link time,
you must use a ROMS and SECTIONS directive.

The data widths and load addresses can be specified for each section using
datawidth and paddr attributes for the sections.

 Building a Command File to Convert Code for a ’C32

E-17 Hex Conversion Utility Examples

SECTIONS
{

sec1 : datawidth=32, paddr=0x0

sec2 : datawidth=8, paddr=0x2000
}

This SECTIONS directive sets the EPROM load address via paddr and sets
the data width size using – datawidth for each of the sections. Note that select-
ing the datawidth effects the output. The datawidth determines the size of the
data that is considered relevant in the raw data contained in the COFF input
file. All raw data in the COFF input file is 32 bits wide, the native width of the
target ’C32.

When data width is set to 32, the hex conversion utility uses the entire 32 bits
of raw data in the COFF input. When data width is set to a value <32, then the
raw data is truncated to the appropriate size before translation into the re-
quired data format. The assembly code for sec2 is:

.sect ”sec2”

.word 0aabbccddh

.word 089abcdefh

With the data width set to 8, the utility will take only the lower 8 bits of the data
word for translation. The upper 24 bits bits are discarded. Therefore, each of
the words defined will be truncated to 0xdd,0xef, respectively.

The data width value also affects the addresses in the output file. The 32-bit
data words for sec1 are broken up into successive 16-bit words for loading on
the EPROM. The 8-bit data words for the tables in sec2 will be packed into the
16-bit words of the EPROM.

In the load of sec1, the addresses in the hex output file will be expanded by
a factor of two, determined by the ratio of data width to memory width.
Whereas for the load of sec2, the address space will be divided by a factor of
two, again determined by the ratio of data width to memory width. For a
detailed explanation of the effects of data width and memory width on the ad-
dress space, please refer to Section 10.10.

The –memwidth option sets the system memory width. For the memory sys-
tem described in Figure E–6, this is 16 bits (–memwidth 16). The –romwidth
option sets the physical EPROM width, which is also 16 bits (–romwidth 16).

Building a Command File to Convert Code for a ’C32

E-18

Example E–8 shows the resulting command file with all the options necessary
to convert the COFF file for the EPROM system in Figure E–6.

Example E–8. Sample Hex Command File for a ’C32

/*––*/
/* Sample Command File for Example 3 */
/*––*/

a.out /* COFF object input file */
–map tutor23.mxp /* Create a map of converted output */

/*––*/
/* Set parameters for EPROM programmer */
/*––*/

–i /* Select Intel format */

/*––*/
/* Set options required to describe EPROM system */
/*––*/

–memwidth 16 /* Set EPROM system memory width */
–romwidth 16 /* Set physical width of ROM devices */

ROMS
{
 EPROM: origin = 0x000, length = 0x4000, files = { tutor3.hex }
}

SECTIONS
{
 sec1:paddr=0x0, datawidth=32
 sec2:paddr=0x2000, datawidth=8
}

Figure E–7 displays the contents of the hex output file tutor3.hex.

 Building a Command File to Convert Code for a ’C32

E-19 Hex Conversion Utility Examples

Figure E–7. Data from Hex Output File (tutor3.hex) Resulting From Example E–8

:00000001FF
:02200000DDDD24
:080000005678123456781234D0

0x2000

0x0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

efdd

1234

5678

1234

5678

Note that the 32-bit words in section sec1 have been broken into successive
words for loading to the EPROM. Note also that the truncated data from sec2
has been packed into a single 16-bit EPROM word.

Building a Command File for a Four 8-Bit EPROM System

E-20

E.4 Building a Command File for a Four 8-Bit EPROM System

This example provides a set of commands for generating conversion files for
four 8-bit EPROMs

The command file in Example E–9 will generate separate files for four 8-bit
EPROMs that will be used to form the 32-bit data for a ’C3x or ’C4x processor.

� Note that the load address becomes the output file address, and

� The EPROM address for each of the files is the same because the
processor will fetch one byte from each of the four EPROMs simulta-
neously to form one 32-bit word.

Example E–9. Code for Four 8-Bit EPROM Files

–i /* Intel format */
a.out /* COFF file input */
–map example.mxp /* Generate a map file ROMS */
{
 ROM : org = 0x0, length = 0xffffffff,

/*––*/
/* Set Physical Width of EPROM to 8 bits */
/*––*/

 romwidth = 8,

/*––*/
/* Set Memory Width of EPROM system to 32 bits */
/*––*/

 memwidth = 32,
/*––*/
/* The following directive specifies the names of */
/* the output files where converted data is to be */
/* stored. The hex conversion utility will store byte 0 in the */
/* first file , byte 1 in the next, etc.. Use of */
/* this directive is optional. */
/*––*/

 files = {
example.b0, example.b1, example.b2, example.b3 }
}

 Avoiding Holes Between Multiple Sections

E-21 Hex Conversion Utility Examples

E.5 Avoiding Holes Between Multiple Sections

When the memory width is less than the data width, holes may appear at
the beginning of a section or between sections. This is caused by multi-
plication of the load address by a correction factor.

If it is necessary to eliminate the holes between converted sections, they
can be made contiguous in one of two ways.

� Specify a paddr for each section listed in a SECTIONS directive. This
forces the hex conversion utility to use that specific address for the output
file address field. A sample command file to do this is shown in
Example E–11.

� If there are many sections, this can become tedious as it is necessary also
to ensure that the addresses will not overlap. To avoid this problem, link
the sections together into one output section for conversion.

Example E–12 shows a sample linker command file that illustrates how
this can be done. The linker should be executed using this command file
before executing the hex conversion utility with the set of commands that
appear in Example E–13.

Example E–10. Linker Command File for Avoiding Holes: Method One

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 RAM: org = 0x2ff800 len = 0x0400
 SRAM: org = 0x80000000 len = 0x1000
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 sec1 : load = SRAM
 sec2 : load = SRAM, run = RAM
}

Avoiding Holes Between Multiple Sections

E-22

Example E–11. Hex Conversion Utility Command File for Avoiding Holes: Method One

–i
a.out
–map example.mxp

ROMS
{
 ROM : org = 0x000, length = 0x800, romwidth = 16, memwidth = 16
}

SECTIONS
{
 sec1 : paddr = 0x000
 sec2 : paddr = 0x004
}

Example E–12. Linker Command File for Avoiding Holes: Method Two

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 ROM: org = 0x000004 len = 0x1000 /* INTERNAL ROM */

}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 outsec : { *(sec1)
 *(sec2) } > ROM
}

Example E–13. Hex Conversion Utility Command File for Avoiding Holes: Method Two

–i
a.out
–map example.mxp

ROMS
{
 ROM : org = 0x100, length = 0x800, romwidth = 16, memwidth = 16,
 files = {example.hex}
}

SECTIONS
{
 outsec : paddr = 0x100
}

 Building a Command File for a ’C31 Serial Port Boot Load

E-23 Hex Conversion Utility Examples

E.6 Building a Command File for a ’C31 Serial Port Boot Load

Example E–14 shows a hex command file for generating a boot load table
for the ’C31 serial port.

Example E–14. Command File for a ’C31 SERIAL Port Boot Load

a.out /* COFF file input */
–i /* Intel format */
–romwidth 32
–map example.mxp /* Generate a map file */
–boot
–bootorg SERIAL
–cg 0x12345678 /* This value is board specific */
–o example.hex

In this example, the output file locates the start of the boot table at the load
address of the first bootable section in the COFF input file. This is because no
ROMS directive was specified.

Dealing With Three Different Addresses

E-24

E.7 Dealing With Three Different Addresses

Building a boot table may require that you specify three different
addresses:

� Boot Table Load Address
� Applications Code Load Address
� Applications Code Run Address

Some applications may require that after the booting process completes,
you move the code loaded into one area of memory (applications code
load address) to a different memory location for execution (applications
code run address). For example, for faster code execution, you may move
code that was boot loaded into an external memory location to internal
memory.

The linker is used to define the load and run addresses for the applications
code. You can use the hex conversion utility to build the boot table and as-
sign its address in the output file.

Example E–15 shows the linker command file needed to specify the load
and run addresses for the applications code. The linker load address
serves as the destination address for the section that will appear in the hex
conversion utility’s boot table. The linker resolves all symbol references
with respect to the run address specified, but this address will not appear
in the hex output file. Notice that the linker command file defines two sec-
tions. Section sec1 contains the code that will copy sec2 to on-chip
memory.

Example E–15. Linker Command File for Dealing With Three Different Addresses

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 RAM: org = 0x2ff800 len = 0x0400
 SRAM: org = 0x80000000 len = 0x1000
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 sec1 : load = SRAM
 sec2 : load = SRAM, run = RAM
}

 Dealing With Three Different Addresses

E-25 Hex Conversion Utility Examples

Example E–16 shows the command file that will build the boot table. The
address for the boot table can be controlled by either using a ROMS direc-
tive or using the –bootorg option. We are using the –bootorg option.

Example E–16. Hex Command File for Dealing With Three Different Addresses

a.out /* COFF file input */

–i /* Intel format */
–memwidth 8
–romwidth 8
–map sample.mxp /* Generate a map file */
–boot
–bootorg 0x4000000
–cg 0x11111111 /* Target Board Dependent */
–cl 0x22222222 /* Target Board Dependent */
–ivtp 0x06000000 /* Target Board Dependent */
–tvtp 0x06200000 /* Target Board Dependent */
–iack 0x04000000 /* Target Board Dependent */

Building a Command File to Generate a Boot Table for the ’C32

E-26

E.8 Building a Command File to Generate a Boot Table for the ’C32

This example illustrates a command file that generates a boot table and a
coefficient/data table for a sample EPROM system (shown in Figure E–8).
This example is applicable to ’C32 only, since it requires varying data widths.

Figure E–8. Sample EPROM System for a ’C32

Coefficients
(16-Bit data)

(32-bit data)
Boot Table

EPROM System Memory Width 32 Bits

ROM Width 32 Bits

’C32
128Kx32

STRB1

(sec1)

(sec2)
10000

0

In this example, the boot table is treated as 32-bit data, but the coefficient data
table is treated as 16-bit data. Both boot and coefficient tables will be in
memory where STRB1 is active. The boot table header contains records for
each STRB control register that sets the desired value for that register at boot.
The boot loader resets the control registers to these values once boot load
completes.

The values for these registers can be set using the –strb0, –strb1, and –iostrb
options to set the STRB0, STRB1, and IOSTRB registers, respectively. In
addition to the STRB values given in the boot table header, there is also a word
at the start of each source block that contains the proper STRB configuration
for that block. This enables you to configure a STRB control register for each
source block, since the destination and data sizes vary for each block. The hex
conversion utility will create this word automatically, basing it on the EPROM
system memory width and data width of each bootable section. For a more
detailed explanation of the on-chip boot loader process, refer to the
TMS320C32 User’s Guide, Section 3.4.

Example E–17 shows the linker command file used to build the application.
Both applications code and data will be accessed via STRB1.

 Building a Command File to Generate a Boot Table for the ’C32

E-27 Hex Conversion Utility Examples

Example E–17. Linker Command File for a ’C32

test.obj
–o a.out
–m test.map

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{

STRB0: org = 0x00000 len = 0x1000
STRB1: org = 0x900000 len = 0x200000

}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{

sec1: {} load = 0x900000
sec2: {} load = 0x910000

}

Example E–18 displays the command file used to convert the COFF file for
Intel format, creating a boot table for the applications code contained in sec1
and converting the coefficient/table data in sec2. Note that the 16-bit data val-
ues in sec2 will be packed into the 32-bit words of the EPROM.

Building a Command File to Generate a Boot Table for the ’C32

E-28

Example E–18. Hex Command File For a ’C32 Boot Table

/*–––*/
/* Sample Hex Conversion Utility Command File for Example 8 */
/* This hex command file creates a boot table */
/* and also converts a data section for burning */
/* on a32-bit wide EPROM. This example is */
/* valid for ’C32 only since variable datawidths */
/* are used. */
/*––*/

a.out /* COFF object input file */
–map example8.mxp /* Create a map of converted output */
–o example8.hex /* output file name */

/*–––*/
/* Set parameters for EPROM programmer */
/*–––*/

–i /* Select Intel format */

/*–––*/
/* Set options required to describe EPROM system */
/*–––*/

–memwidth 32 /* Set EPROM system memory width */
–romwidth 32 /* Set physical width of ROM devices */

––/
/* Set options required for boot table generation */
/*–––*/

–bootorg 0x000000 /* Aet address origin for boot table */
–strb1 0xD0000 /* Set value for STRB1

ROMS
{
 EPROM: origin = 0x000, length = 0x4000, files = { tutor3.hex }
}

SECTIONS
{
 sec1:paddr=boot, datawidth = 32
 sec2:paddr=0x10000, datawidth = 16
}

 Building a Command File to Generate a Boot Table for the ’C32

E-29 Hex Conversion Utility Examples

Note: Values and data sizes

In this example, that the value of STRB1 is set to 0xD0000. This implies a
memory size of 32 bits and a data size of 16. This will be the setting for
STRB1 after the boot load is complete. For program fetches to occur correct-
ly, the PRGW pin must be set to 1 so that two consecutive 16-bit reads are
done to form a single program word. For more information about the PRGW
pin strobe control registers, refer to the TMS320C32 User’s Guide.

Figure E–9 shows the contents of the output file, example8.hex. Note that the
hex conversion utility automatically created the correct data word for the
STRB setting for the source block containing sec1.

Building a Command File to Generate a Boot Table for the ’C32

E-30

Figure E–9. Output File for Example 8 (example8.hex) Resulting From Example E–18

:02000000400001F9
:0800008001234567800000000DC

:20000000000000200000000000000000000D000000000002009000000F0000681234567896

0x2000

0x0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0000 0000

1234 5678

1234 5678

0F00 0068

0090 0000

0000 0002

CCDD CCDD

000D 0000

0000 0000

00000 0000

000000020:04000000CCDDCCDDAA

. . .

. . .

. . .

. . .

. . .

. . .

. . .

:00000001FF

 Running Title—Attribute Reference

F-1 Chapter Title—Attribute Reference

Appendix A

Glossary

A
absolute address: An address that is permanently assigned to a memory

location.

absolute section: A named section defined with the .asect directive. All
addresses except those defined with .label in an absolute section are ab-
solute.

alignment: A process in which the linker places an output section at an ad-
dress that falls on an n-bit boundary, where n is a power of 2. You can
specify alignment with the SECTIONS linker directive.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

archiver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows
you to delete, extract, or replace members of the archive library, as well
as add new members.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions,
directives, and macro directives. The assembler substitutes absolute op-
eration codes for symbolic operation codes, and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant: A symbol that is assigned a constant value with
the .set directive.

assignment statement: A statement that assigns a value to a variable.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before beginning program execution.

Appendix F

Glossary

F-2

auxiliary entry: The extra entry that a symbol may have in the symbol table
and that contains additional information about the symbol (whether the
symbol is a filename, a section name, a function name, etc.).

B
binding: A process in which you specify an address for an output section or

a symbol.

block: A set of declarations and statements that are grouped together with
braces.

.bss: One of the default COFF sections. You can use the .bss directive to
reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is normally uninitialized.

C
C compiler: A program that translates C source statements into floating-

point assembly language source statements.

command file: A file that contains linker options and names input files for
the linker.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not compiled, assembled, or linked; they have no effect on the object file.

common object file format (COFF): A binary object file format that
promotes modular programming by supporting the concept of sections.

conditional processing: A method of processing one block of source code
or an alternate block of source code, based upon the evaluation of a
specified expression.

configured memory: Memory that the linker has specified for allocation.

constant: A numeric value that can be used as an operand.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, what line they were defined on, which
lines referenced them, and their final values.

D
.data: One of the default COFF sections. The .data section is an initialized

section that contains initialized data. You can use the .data directive to
assemble code into the .data section.

 Glossary

F-3 Glossary

directive: Special-purpose commands that control the actions and
functions of a software tool (as opposed to assembly language
instructions, which control the actions of a device).

E
emulator: A hardware development system that emulates

TMS320C3x/C4x operation.

entry point: The starting execution point in target memory.

executable module: An object file that has been linked and can be
executed in a TMS320C3x/C4x system.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A kind of symbol that is either 1) defined in the current
module and accessed in another, or 2) accessed in the current module
but defined in another.

F
field: For the TMS320C3x/C4x, a software-configurable data type whose

length can be programmed to be any value in the range of 1-16 bits.

file header: A portion of a COFF object file that contains general information
about the object file (such as the number of section headers, the type of
system the object file can be downloaded to, the number of symbols in
the symbol table, and the symbol table’s starting address).

G
global: A kind of symbol that is either 1) defined in the current module and

accessed in another, or 2) accessed in the current module but defined
in another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

H
hex conversion utility: A utility that converts COFF object files into one of

several standard ASCII hexadecimal formats, suitable for loading into an
EPROM programmer.

Glossary

F-4

high-level language debugging: The ability of a compiler to retain sym-
bolic and high-level language information (such as type and function
definitions) so that a debugging tool can use this information.

hole: An area between the input sections that compose an output section
that contains no actual code or data.

I
incremental linking: Linking files that have already been linked.

initialized section: A COFF section that contains executable code or
initialized data. An initialized section can be built up with the .data, .text,
or .sect directive.

input section: A section from an object file that will be linked into an
executable module.

L
label: A symbol that begins in column 1 of a source statement and corre-

sponds to the address of that statement.

line number entry: An entry in a COFF output module that maps lines of
assembly code back to the original C source file that created them.

linker: A software tool that combines object files to form an object module
that can be allocated into system memory and executed by the device.

listing file: An output file created by the assembler that lists source state-
ments, their line numbers, and their effects on the SPC.

load address: The address that a section loads at.

loader: A device that loads an executable module into system memory.

M
macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the
macro call and are subsequently assembled.

 Glossary

F-5 Glossary

macro library: An archive library composed of macros. Each file in the
library must contain one macro; its name must be the same as the macro
name it defines, and it must have an extension of .asm.

magic number: A COFF file header entry that identifies an object file as a
module that can be executed by the TMS320C3x/C4x.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, and section allocation, as well as
symbols and the addresses at which they were defined.

member: The elements or variables of a structure, union, archive, or enu-
meration.

memory map: A map of target system memory space, which is partitioned
into functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

model statement: Instructions or assembler directives in a macro definition
that are assembled each time a macro is invoked.

N
named section: An initialized section that is defined with a .sect directive.

O
object file: A file that has been assembled or linked and contains machine-

language object code.

object format converter: A program that converts COFF object files into
Intel-format or Tektronix-format object files.

object library: An archive library made up of individual object files.

operand: The arguments, or parameters, of an assembly language
instruction, assembler directive, or macro directive.

optional header: A portion of a COFF object file that the linker uses to
perform relocation at download time.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded
and executed on a target system.

Glossary

F-6

overlay page: A section of physical memory that is mapped into the same
address range as another section of memory. A hardware switch deter-
mines which range is active.

P

partial linking: The linking of a file that will be linked again.

R

RAM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the -cr
option. The RAM model allows variables to be initialized at load time in-
stead of runtime.

raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts all the references to a sym-
bol when the symbol’s address changes.

ROM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the -c
option. In the ROM model, the linker loads the .cinit section of data tables
into memory, and variables are initialized at runtime.

run address: The address that a section runs at.

S

section: A relocatable block of code or data that will ultimately occupy con-
tiguous space in the TMS320C3x/C4x memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header
points to the section’s starting address, contains the section’s size, etc.

section program counter: See SPC.

sign-extend: To fill the unused MSBs of a value with the value’s sign bit.

simulator: A software development system that simulates
TMS320C3x/C4x operation.

source file: A file that contains C code or assembly language code that will
be compiled or assembled to form an object file.

 Glossary

F-7 Glossary

SPC: An element of the assembler that keeps track of the current location
within a section; each section has its own SPC.

static: A kind of variable whose scope is confined to a function or a program.
The values of static variables are not discarded when the function or pro-
gram is exited; their previous value is resumed when the function or pro-
gram is re-entered.

storage class: Any entry in the symbol table that indicates how a symbol
should be accessed.

string table: A table that stores symbol names that are longer than 8 charac-
ters (symbol names of 8 characters or longer cannot be stored in the
symbol table; instead, they are stored in the string table). The name por-
tion of the symbol’s entry points to the location of the string in the string
table.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic infor-
mation so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

T
tag: An optional “type” name that can be assigned to a structure, union, or

enumeration.

target memory: Physical memory in a system into which executable object
code is loaded.

.text: One of the default COFF sections. The .text section is an initialized
section that contains executable code. You can use the .text directive to
assemble code into the .text section.

U
unconfigured memory: Memory that is not defined as part of the

TMS320C3x/C4x memory map and cannot be loaded with code or data.

Glossary

F-8

uninitialized section: A COFF section that reserves space in the
TMS320C3x/C4x memory map but that has no actual contents. These
sections are built up with the .bss and .usect directives.

union: A variable that may hold (at different times) objects of different types
and sizes.

UNION: Allocating multiple sections to run at the same address.

unsigned: A kind of value that is treated as a positive number, regardless
of its actual sign.

W

well-defined expression: An expression that contains only symbols or as-
sembly-time constants that have been defined before they appear in the
expression.

word: A 16-bit addressable location in target memory.

Index

Index-1

Index

A
–a archiver command 7-3

–a assembler option 3-4

–a hex conversion utility option 10-4, 10-44

–a linker option 8-7 to 8-8

A_DIR assembler environment variable 3-7, 3-8,
8-13

absolute lister
creating the absolute listing file 9-2
described 1-3
development flow 9-2
example 9-5 to 9-10
invoking 9-3
options 9-3

absolute listing
producing 9-2

absolute output module 8-7

absolute symbols 3-23

addressing modes 5-2 to 5-42

.align assembler directive 4-10, 4-18

alignment 4-10, 4-18, 4-32, 8-32

allocation 2-12, 4-22, 8-29 to 8-32
alignment 4-18, 4-32, 8-32
binding 8-30
blocking 8-32
default algorithm 8-47
GROUP 8-41
named memory 8-31
UNION 8-39

alternate directories
assembler 3-7 to 3-28
C_DIR 8-12
linker 8-12

ar30 7-3

archive libraries 3-7, 4-52, 7-1 to 7-6, 8-12, 8-15,
8-21 to 8-22
back referencing 8-17

archiver 1-3, 7-1 to 7-6
examples 7-5
in the development flow 7-2
input 7-1
invocation 7-3
invoking with command file 7-3
options 7-3
output 7-1

arithmetic instructions 5-10 to 5-42

arithmetic operators 8-52

array definitions A-26

ASCII-Hex object format 10-44

.asect assembler directive 2-4 to 2-11, 4-6, 4-19,
8-36

.asg assembler directive 4-15, 4-20, 6-6
listing control 4-11, 4-27

asm30 command 3-4

assembler 1-3
character strings 3-15
constants 3-12, 3-13, 3-14 to 3-16
cross-reference listings 3-27
error messages C-1 to C-18
expressions 3-20

conditional expressions 3-23
legal expressions 3-23 to 3-28
operators 3-22
overflow/underflow 3-22
relocatable symbols 3-23 to 3-28
well-defined 3-22

in the development flow 3-3
invocation 3-4
macros 6-1 to 6-24

Index

Index-2

assembler (continued)
output 3-25, 4-11

listing
enable 4-48
length 4-11
page control 4-58
page size 4-47
suppress 4-48
title 4-69
width 4-11, 4-47

overview 3-2
relocation 2-18 to 2-22
runtime relocation 2-20 to 2-22
section program counters 2-8
sections 2-4 to 2-11
sections directives

.asect 2-4

.bss 2-4 to 2-11

.data 2-4

.sect 2-4

.text 2-4

.usect 2-4
source listings 3-25
source statement format 3-10 to 3-28
symbols 2-22, 3-16

assembler directives
assembly-time directives

.asg 4-15

.endstruct 4-15

.eval 4-15

.set 4-15

.struct 4-15

.tag 4-15
conditional assembly directives

.break 4-14

.elseif 4-14

.endloop 4-14

.loop 4-14

.else 4-14

.endif 4-14

.if 4-14
miscellaneous directives

.emsg 4-16

.end 4-16

.mmsg 4-16

.regalias 4-16

.version 4-16, 4-72

.wmsg 4-16

assembler directives (continued)
sections directives

.asect 4-6, 4-19

.bss 4-6

.data 4-6

.label 4-6

.sect 4-6

.text 4-6

.usect 4-6
summary table 4-2 to 4-5
symbolic debugging directives B-1

.utag/.eos B-8

.block/.endblock B-1, B-2, B-6

.etag/.eos B-1, B-8

.file B-1, B-3

.func/.endfunc B-1, B-4

.line B-1, B-6

.member B-1, B-7

.stag/.eos B-1, B-8

.sym B-1, B-10

.utag/.eos B-1
that align the SPC 4-10

.align 4-10

.even 4-10
that format the output listing 4-11 to 4-12

.sslist 4-12

.ssnolist 4-12

.list 4-11

.mlist 4-11

.mnolist 4-11

.nolist 4-11

.option 4-11

.page 4-11

.title 4-12
that initialize constants 4-7 to 4-9

.hword 4-7

.byte 4-7

.field 4-8

.float 4-7

.hword 4-41

.int 4-7, 4-44

.long 4-7, 4-44

.space 4-9

.string 4-7, 4-64

.word 4-7, 4-44

Index

Index-3

assembler directives (continued)
that reference other files 4-13

.copy 4-13

.def 4-13

.global 4-13

.include 4-13

.mlib 4-13

.ref 4-13
assembler output 3-25, 4-11
assembly language development flow 1-2, 3-3,

7-2, 8-2
assembly language instructions

categories 5-8
symbols used to define 5-6 to 5-42

assembly-time constants 3-14, 4-61
assembly-time directives 4-15
assigning a value to a symbol 4-61
assigning symbols at link time 8-50 to 8-53
assigning the SPC to a symbol 8-50 to 8-51
assignment expressions 8-51 to 8-52
autoinitialization 8-61

RAM model 8-9, 8-61
ROM model 8-9, 8-62

auxiliary entries A-23 to A-28

B
–b linker option 8-9
big-endian ordering 10-14
binary integers 3-12
binding 8-30
.block assembler directive B-1, B-2
block definitions A-17, A-26, A-27, B-2
blocking 8-32
–boot hex conversion utility option 10-5, 10-29
boot loader. See on-chip boot loader
boot table

See also on-chip boot loader, boot table
building using the hex conversion

utility 10-28 to 10-31
format 10-28

boot.obj 8-60, 8-63
–bootorg hex conversion utility option 10-5, 10-29,

10-31
–bootpage hex conversion utility option 10-5,

10-29

.break assembler directive 4-14, 4-50, 6-14
listing control 4-11, 4-27

.bss assembler directive 2-4 to 2-11, 4-6, 4-22

.bss section 2-4 to 2-11, 4-6, 8-47, 8-54, A-3
holes 8-57
initialization 8-57

byte alignment 4-18
.byte assembler directive 4-7, 4-23
–byte hex conversion utility option 10-4, 10-27

C
–c assembler option 3-4
C compiler 8-9, 8-60, A-1, B-1

block definitions B-2
enumeration definitions B-8
file identification B-3
function definitions B-4
line number entries A-12, B-6
line number information A-12
linking C code 8-9
member definitions B-7
model symbols 3-18
special symbols A-16
storage classes A-19 to A-20
structure definitions B-8
symbol table entries B-10
union definitions B-8

–c linker option 8-9, 8-63
C memory pool 8-11, 8-61
C system stack 8-15, 8-61
C_DIR linker environment variable 8-12, 8-13
.C30 3-17
.C31 3-17
.C32 3-17
.C3x 3-17
.C40 3-17
.C44 3-17
.C4x 3-17
cache alignment 4-10, 4-18
–cg hex conversion utility option 10-5, 10-29,

10-32, 10-35
character constants 3-13
character strings 3-15
.cinit section 8-47, 8-61
–cl hex conversion utility option 10-5, 10-29,

10-32, 10-35

Index

Index-4

COFF 2-1 to 2-22, 8-1, A-1 to A-28
auxiliary entries A-23 to A-28
default sections 2-2
file structure A-2 to A-4
file types 2-2
initialized sections 2-2
line number entries A-12 to A-28, B-6
line-number table A-12 to A-13
named sections 2-2, 2-6
optional file header format A-6
relocation information A-10 to A-11

relocation type A-11
symbol table index A-10
virtual address A-10

section headers A-7 to A-9
section program counters 2-8
sections 2-1 to 2-22
special symbols A-16
storage classes A-19 to A-20
string table A-18
subsections 2-8
symbol table A-14 to A-28
symbolic debugging A-12 to A-28
uninitialized sections 2-2

command files (hex conversion utility) 10-6
invoking 10-6
ROMS directive 10-6
SECTIONS directive 10-6

command files (linker) 2-15, 8-4, 8-18 to 8-20
example 8-64
reserved words 8-20

comments
in a linker command file 8-19
in assembly language source code 3-11, 8-19
that extend past page width 4-47

common object file format. See COFF

compatibility 3-6

compiler 1-3

condition codes
for the instruction set 5-4 to 5-42

conditional assembly directives 4-14

conditional blocks
assembler directives 4-14, 4-42
in macros 6-14

conditional expressions 3-23

configured memory 8-23, 8-47

constants 3-12, 3-16
assembly-time constants 3-14, 4-61
binary integers 3-12
character constants 3-13
decimal integers 3-12
floating-point 3-12, 4-37, 4-46
hexadecimal integers 3-13
octal integers 3-12

conversion instructions 5-13

.copy assembler directive 3-7, 4-13, 4-24

copy files 3-7, 4-24

COPY section 8-49

–cr linker option 8-9, 8-61, 8-63

creating holes 8-54 to 8-57

cross-reference listings 3-27

D
–d archiver command 7-3

–d assembler option 3-4

.data assembler directive 2-4 to 2-11, 4-6, 4-26

data memory 8-23, 8-47

.data section 2-4 to 2-11, 4-6, 4-26, 8-47, A-3

decimal integers 3-12

.def assembler directive 4-13, 4-39

default allocation 2-12, 8-47 to 8-48

default fill value for holes 8-10

default sections 2-2, 4-22, 4-68

defining macros 6-3 to 6-4

directives
See also assembler directives
assembler

absolute lister 9-8
assembly-time symbols

.equ 4-61

.asg 4-20

.eval 4-20

.newblock 4-55

.set 4-61
conditional assembly

.break 4-50

.else 4-42

.elseif 4-42

.endif 4-42

.endloop 4-50

.if 4-42

.loop 4-50

Index

Index-5

directives, assembler (continued)
miscellaneous

.emsg 4-29

.end 4-31

.label 4-45

.mmsg 4-29

.wmsg 4-29
symbolic debugging directives

.sym B-10
that align the section program counter (SPC)

.align 4-18

.even 4-32
that define sections

.bss 4-22

.data 4-26

.sect 4-60

.text 4-68

.usect 4-70
that format the output listing

.drlist 4-11

.drnolist 4-11

.fclist 4-11, 4-33

.fcnolist 4-11, 4-33

.length 4-11, 4-47

.list 4-48

.mlist 4-54

.mnolist 4-54

.nolist 4-48

.option 4-56

.page 4-58

.sslist 4-63

.ssnolist 4-63

.tab 4-67

.title 4-69

.width 4-11, 4-47
that initialize constants

.double 4-37

.ieee 4-37

.sfloat 4-37

.byte 4-23

.field 4-34

.float 4-37

.ldouble 4-46

.space 4-62
that reference other files

.copy 4-24

.def 4-39

.global 4-39

.include 4-24

.mlib 4-52

.ref 4-39

directives that align the section program
counter 4-10

directives that define sections 4-6

directives that format the output listing 4-11 to 4-12
directives that initialize constants 4-7 to 4-9
directives that reference other files 4-13
.double assembler directive 4-7, 4-37
.drlist assembler directive 4-11
.drnolist assembler directive 4-11
DSECT section 8-49
dummy section 8-49

E
–e absolute lister option 9-3
–e archiver option 7-4
–e hex conversion utility option 10-5, 10-29, 10-31
–e linker option 8-9
.else assembler directive 4-14, 4-42, 6-14
.elseif assembler directive 4-14, 4-42, 6-14
.emsg assembler directive 4-16, 4-29, 6-17

listing control 4-11, 4-27
emulator 1-3
.end assembler directive 4-16, 4-31
.endblock assembler directive B-1, B-2
.endfunc assembler directive B-1, B-4
.endif assembler directive 4-14, 4-42, 6-14
.endloop assembler directive 4-14, 4-50, 6-14
.endm assembler directive 6-3
.endstruct assembler directive 4-15
entry points

_c_int00 8-9, 8-63
for C code 8-63
for the linker 8-9
_main 8-9

enumeration definitions B-8
environment variables

A_DIR 3-7, 3-8
C_DIR (linker) 8-12

.eos assembler directive B-1, B-8

.equ assembler directive 4-61
error messages

assembler C-1 to C-18
linker D-1

.etag assembler directive B-1, B-8

.eval assembler directive 4-15, 4-20, 6-7
listing control 4-11, 4-27

evaluation module 1-4
.even assembler directive 4-10, 4-32

Index

Index-6

examples
hex conversion utility E-1

expressions 3-20, 8-50
conditional 3-23
legal 3-23
underflow/overflow 3-22
well-defined 3-22

Extended Tektronix Hexadecimal object
format 10-48

external symbols 4-13, 4-39, 4-61

F
–f linker option 8-10

.fclist assembler directive 4-11, 4-33, 6-19
listing control 4-11, 4-27

.fcnolist assembler directive 4-11, 4-33, 6-19
listing control 4-11, 4-27

.field assembler directive 4-8, 4-34

.file assembler directive B-1, B-3

file header A-5 to A-6
COFF A-5 to A-6
contents A-5
flags A-5

file identification B-3

file structure A-2 to A-4

filenames
See also hex conversion utility, output filenames
copy/include files 3-7
extensions

changing defaults 9-3
fill

MEMORY specification 8-25

–fill hex conversion utility option 10-4, 10-27

filling holes 8-54 to 8-57

.float assembler directive 4-7, 4-37

floating-point constants 3-13 to 3-28, 4-37, 4-46

.func assembler directive B-1, B-4

function definitions A-17, A-26, A-27, B-4

G
–g linker option 8-11

.global assembler directive 2-22, 4-13, 4-39

GROUP (SECTIONS directive) 8-41

H
–h linker option 8-10 to 8-11

heap definition 8-11, 8-61

–heap linker option 8-11, 8-61

–heap16 linker option 8-11, 8-61

–heap8 linker option 8-11, 8-61

hex conversion utility 10-1 to 10-49
command files 10-6

invoking 10-6
ROMS directive 10-6
SECTIONS directive 10-6

configuring memory widths
defining memory word width

(memwidth) 10-4
ordering memory words 10-4
specifying output width (romwidth) 10-4

description F-3
development flow 10-2
examples E-1
generating a map file 10-4
generating a quiet run 10-4
hex30 command 10-3
image mode

defining the target memory 10-27
filling holes 10-4, 10-27
invoking 10-4, 10-27
numbering bytes sequentially 10-4, 10-27
resetting address origin 10-4, 10-27

invoking 10-3 to 10-5
in a command file 10-6

memory width (memwidth) 10-9 to 10-11
exceptions 10-9

object formats
address bits 10-43
ASCII-Hex 10-44

selecting 10-4
descriptions 10-39 to 10-49
Extended Tektronix Hexadecimal 10-48

selecting 10-4
Intel MCS-86 Hexadecimal 10-45

selecting 10-4
Motorola-S 10-46
output width 10-43
TI-Tagged 10-47

selecting 10-4
on-chip boot loader

See also on-chip boot loader
options 10-5, 10-29

Index

Index-7

hex conversion utility (continued)
options 10-4 to 10-5

See also on-chip boot loader, options
–a 10-4, 10-44
–byte 10-4, 10-27
–fill 10-4, 10-27
–i 10-4, 10-45
–image 10-4, 10-27
–m 10-46
–map 10-4
–memwidth 10-4
–o 10-4
–order 10-4

restrictions 10-15
–q 10-4
–romwidth 10-4
–t 10-4, 10-47
–x 10-4, 10-48
–zero 10-4, 10-27

ordering memory words 10-14 to 10-15
big-endian ordering 10-14
little-endian ordering 10-14

output filenames 10-4
default filenames 10-24

ROMS directive
defining the target memory 10-27
effect 10-19 to 10-20

SECTIONS directive 10-28 to 10-38
syntax 10-28

target width 10-8

hex30 command 10-3
options 10-3

See also hex conversion utility, options

hexadecimal integers 3-13

holes 8-10, 8-54 to 8-57
fill values 8-56
in output sections 8-54

.hword assembler directive 4-7, 4-41

I
–i assembler option 3-5, 3-7

–i hex conversion utility option 10-4, 10-45

–i linker option 8-13

I MEMORY attribute 8-25

–iack hex conversion utility option 10-5, 10-29,
10-32, 10-35

.ieee assembler directive 4-7, 4-37

.if assembler directive 4-14, 4-42, 6-14
–image hex conversion utility option 10-4, 10-27
image mode. See hex conversion utility, image

mode
.include assembler directive 3-7, 4-13, 4-24
include files 3-7, 4-24
incremental linking 8-58 to 8-59
initialized sections 2-2, 2-5 to 2-22, 4-26, 4-60,

4-68, 8-47, 8-54
input

archiver 7-1
assembler 7-1
linker 7-1, 8-2, 8-18

instruction set summary
function listing 5-8
table 5-20 to 5-42

instructions
arithmetic 5-10 to 5-42
conversion 5-13
interlocked-operation 5-12
load 5-8 to 5-42
logic 5-11
parallel 5-14
program-control 5-11
store 5-8 to 5-42
three-operand 5-13

.int assembler directive 4-7, 4-44
Intel MCS-86 Hexadecimal object format 10-45
interlocked-operation instructions 5-12
invoking the ...

absolute lister 9-3
archiver 7-3 to 7-4
assembler 3-4
hex conversion utility 10-3 to 10-5
linker 8-4 to 8-5

–ivtp hex conversion utility option 10-5, 10-29,
10-32

K
key words linker 8-20

L
–l assembler option 3-5
–l linker option 8-12
.label assembler directive 4-6, 4-45

Index

Index-8

labels 3-10, 3-16
local labels (resetting) 4-55
using with .byte directive 4-23

.ldouble assembler directive 4-7, 4-46

LDPK Instruction 5-19

legal expressions 3-23 to 3-28

.length assembler directive 4-11, 4-47
listing control 4-11, 4-27

length MEMORY specification 8-25

.line assembler directive B-1, B-6

line number entries A-12 to A-28, B-6

line-number table A-12 to A-13

linker 1-3
COFF 2-12 to 2-22, 8-1
command files 8-4, 8-18

example 8-64
command options summary 8-6
configured memory 8-23, 8-47
development flow 8-2 to 8-3
error messages D-1
example 8-64
expressions 8-50
in the development flow 8-2
incremental linking 4-60, 8-58
input 8-18
input from different host machine 8-2
invocation 8-4
linking C code 8-60 to 8-63
lnk30 command 8-4
loading a program 2-21
map file

example 8-65
operators 8-51
options summary 8-6
output 8-64
relocation 2-18 to 2-22
runtime relocation 2-20 to 2-22
sections 2-12 to 2-22
SECTIONS directive 8-27 to 8-34
symbols 2-22
unconfigured memory 8-23, 8-47

linker command options 8-6 to 8-17

linker input 8-2

linker output 8-2, 8-14

linking C code 8-9, 8-60 to 8-63

.list assembler directive 4-11, 4-48

lister, absolute 9-1 to 9-10

listing
control 4-48, 4-56, 4-58
page size 4-47

listing control 4-48, 4-54, 4-56, 4-58, 4-69
listing file 4-11
listing page size 4-47
little-endian ordering 10-14
lnk30 command 8-4

–a option 8-7 to 8-8
–b option 8-9
–c option 8-9, 8-60, 8-62, 8-63
–cr option 8-9, 8-60, 8-61, 8-63
–e option 8-9
–l option 8-12
–m option 8-14
–o option 8-14
–r option 8-7 to 8-8
–s option 8-14
–ar option 8-8
–f option 8-10
–g option 8-11
–h option 8-10
options summary 8-6
–q option 8-14
–u option 8-15
–v option 8-16
–w option 8-16

load instructions 5-8 to 5-42
load linker keyword 2-20, 8-35
loading a program 2-21
local labels 4-55
logic instructions 5-11
.long assembler directive 4-7, 4-44
.loop assembler directive 4-14, 4-50, 6-14

M
–m assembler option 3-5
–m hex conversion utility option 10-46
–m linker option 8-14
.macro assembler directive 6-3
macro comments 6-4
macro libraries 3-7, 4-52, 7-1
macros 6-1 to 6-24

conditional assembly 6-14 to 6-15
defining a macro 6-3
description 6-2
directives summary 6-22 to 6-24

Index

Index-9

macros (continued)
formatting the output listing 6-19
labels 6-16
macro comments 6-4, 6-17
macro libraries 4-52, 6-13
.mlib assembler directive 3-7, 4-52
.mlist assembler directive 4-54
nested macros 6-20 to 6-21
parameters 6-5 to 6-12
producing messages 6-17 to 6-18
recursive macros 6-20 to 6-21
substitution symbols 6-5 to 6-12

malloc() 8-11, 8-61

malloc16() 8-61

malloc8() 8-61

map file 8-14
example 8-65

–map hex conversion utility option 10-4

.member assembler directive B-1, B-7

member definitions B-7

MEMORY linker directive 2-12, 8-23 to 8-26
default model 2-12 to 2-22, 8-23, 8-47
examples 2-15 to 2-22
overlay pages 8-42 to 8-43
PAGE option 8-23, 8-47
syntax 8-23 to 8-27

memory pool
C language 8-11, 8-61

memory width (memwidth) 10-9 to 10-11
exceptions 10-9

memory widths
memory width (memwidth) 10-9 to 10-11

exceptions 10-9
ordering memory words 10-14 to 10-15

big-endian ordering 10-14
little-endian ordering 10-14

target width 10-8

memory words, ordering 10-14 to 10-15
big-endian 10-14
little-endian 10-14

.MEMPARM 3-18

–memwidth hex conversion utility option 10-4

messages 4-29

.mexit macro directive 6-3

–mi assembler option 3-5

.mlib assembler directive 3-7, 4-13, 4-52, 6-13
use in macros 3-7

.mlist assembler directive 4-11, 4-54, 6-19
listing control 4-11, 4-27

.mmsg assembler directive 4-16, 4-29, 6-17
listing control 4-11, 4-27

mnemonic field 3-11
.mnolist assembler directive 4-11, 4-54, 6-19

listing control 4-11, 4-27
Motorola-S object format 10-46
–mr assembler option 3-5
–mx assembler option 3-5

N
named memory 8-31
named sections 2-2, 2-6 to 2-7, 4-6, 4-70, 8-47,

8-54, A-3
.asect 2-4 to 2-11, 4-6, 4-19
.sect 2-4 to 2-11, 4-6, 4-60
.usect 2-4 to 2-11, 4-6, 4-70

naming an output module 8-14
.newblock assembler directive 4-55
.nolist assembler directive 4-11, 4-48
NOLOAD section 8-49

O
–o hex conversion utility option 10-4
–o linker option 8-14
object code 3-26
object file format. See COFF
object formats

address bits 10-43
ASCII-Hex 10-44
descriptions 10-39 to 10-49
Extended Tektronix Hexadecimal 10-48
Intel MCS-86 Hexadecimal 10-45
Motorola-S 10-46
output width 10-43
TI-Tagged 10-47

object libraries 7-1, 8-12, 8-21 to 8-22, 8-60
octal integers 3-12
on-chip boot loader

boot table
building using the hex conversion util-

ity 10-29
format 10-28

booting from communications port 10-31

Index

Index-10

on-chip boot loader (continued)
description 10-28
options 10-5, 10-29

–boot 10-5, 10-29
–bootorg 10-5, 10-29, 10-31
–bootpage 10-5, 10-29
–cg 10-5, 10-29, 10-32, 10-35
–cl 10-5, 10-29, 10-32, 10-35
–e 10-5, 10-29, 10-31
–iack 10-5, 10-29, 10-32, 10-35
–ivtp 10-5, 10-29, 10-32
–tvtp 10-5, 10-29, 10-32

setting the entry point 10-31
operands 3-11
operators 3-22
.option assembler directive 4-11, 4-56
optional file header format A-6
options, absolute lister 9-3
–order hex conversion utility option 10-4

restrictions 10-15
ordering memory words 10-14 to 10-15

big-endian ordering 10-14
little-endian ordering 10-14

origin MEMORY specification 8-25
output 8-2

archiver 7-1
assembler 4-11
linker 8-14, 8-64

output filenames. See hex conversion utility, output
filenames

output listing 4-11
overflow

expression overflow 3-22
overlay pages 8-42 to 8-46
overlaying sections 8-39 to 8-40

P
page

control 4-58
length 4-47
title 4-69
width 4-47

.page assembler directive 4-11, 4-58
page definition syntax 8-45 to 8-47
PAGE option (MEMORY directive) 8-47
parallel instructions 5-14

partial linking 8-58 to 8-59

partially linked files 8-58

predefined symbols 3-17

program memory 8-23, 8-47

program-control instructions 5-11

Q
–q absolute lister option 9-3

–q archiver option 7-4

–q assembler option 3-5

–q hex conversion utility option 10-4

–q linker option 8-14

R
–r archiver command 7-3

–r linker option 8-7 to 8-8, 8-58

R MEMORY attribute 8-25

RAM model of autoinitialization (C compiler) 8-9,
8-61

.ref assembler directive 4-13, 4-39

.regalias assembler directive 4-16, 4-59

.REGPARM 3-18

relinking 8-7, 8-8, 8-14
affected by –s 8-14

relocatable output module 8-7

relocatable symbols 3-23 to 3-28

relocation 2-18 to 2-22, 3-14, 8-7
runtime 2-20

relocation information A-10 to A-11

reserved words 8-20

ROM model of autoinitialization (C compiler) 8-9,
8-62

ROMS directive hex conversion utility. See hex
conversion utility, ROMS directive

–romwidth hex conversion utility option 10-4

run linker keyword 2-20, 8-35

runtime initialization 8-60

runtime relocation 2-20 to 2-22

runtime support 8-60

Index

Index-11

S
–s archiver option 7-4
–s assembler option 3-5
–s linker option 8-14
.sect assembler directive 2-4 to 2-11, 4-6, 4-60
section headers A-7 to A-9
section program counter 3-25
section specifications 8-27
sections 2-1 to 2-22

.bss section 4-22
converting specified sections 10-28 to 10-38
.data section 4-26
default sections 2-2, 4-22, 4-26, 4-60
directives 4-6

example 2-9 to 2-12
initialized sections 2-2, 4-26, 4-60, 4-68
named sections 2-2, 2-6, 4-60, 4-68, 4-70
section program counters 2-8
special section types 8-49
subsections 2-8
.text section 4-68
uninitialized sections 2-2, 4-22, 4-70

SECTIONS directive (hex conversion utility). See
hex conversion utility, SECTIONS directive

sections directives
.bss 4-22

SECTIONS linker directive 2-12, 8-27 to 8-34
alignment 8-32
allocation 8-27, 8-29 to 8-32
binding 8-30
blocking 8-32
default allocation 2-12 to 2-22, 8-47
default model 8-25, 8-27
examples 2-15 to 2-22
GROUP 8-41
named memory 8-31
overlay pages 8-44 to 8-45
section specifications 8-27
specifying runtime address 2-20, 8-35
specifying two addresses 2-20, 8-35
syntax 8-27
UNION 8-39

.set assembler directive 4-15, 4-61

.setsect assembler directive 9-8

.setsym assembler directive 9-8

.sfloat assembler directive 4-7, 4-37
simulator 1-3

software development tools 1-2

source listings 3-25

source statement field 3-26

source statement format 3-10 to 3-28
comment field 3-11
label field 3-10
mnemonic field 3-11
operand field 3-11
optional syntaxes 5-3 to 5-42
parallel instructions 5-14

source statement number 3-25

.space assembler directive 4-9, 4-62

SPC 2-8, 8-50
aligning

to byte boundaries 4-18, 4-32
to word boundaries 4-32

assembler symbol 3-11
linker symbol 8-50, 8-54

special section types 8-49

special symbols in the symbol table A-16 to A-28

.sslist assembler directive 4-12, 4-63, 6-19
listing control 4-11, 4-27

.ssnolist assembler directive 4-12, 4-63, 6-19
listing control 4-11, 4-27

stack
definition (C system) 8-15, 8-61

–stack linker option 8-15, 8-61

.stack section 8-15, 8-61

__STACK_SIZE 8-15, 8-53, 8-61

.stag assembler directive B-1, B-8

static variables A-14

storage classes A-19 to A-20

store instructions 5-8 to 5-42

.string assembler directive 4-7, 4-64

string table A-18

stripping line number entries 8-14

stripping symbolic information 8-14

.struct assembler directive 4-15

structure definitions A-25, B-8

subsections
overview 2-8

Index

Index-12

substitution symbols
built-in functions 6-7
directives 6-6
expansion listing 4-63
forcing substitution 6-9
in macros 6-5 to 6-12

substitution symbols
local macro symbols 6-12
recursive substitution 6-9
subscripted substitution 6-10
.var (macro directive) 6-12

support tools 1-2

.sym assembler directive B-1

.sym symbolic debugging directive B-10

symbol table
entry from .sym directive B-10
index A-10

symbol names A-18
reserved words 8-20

symbol table 2-22, A-14 to A-28

symbol values A-20 to A-21

symbolic constants 3-17

symbolic debugging 8-14, A-12 to A-28, B-1
assembler directives B-1
block definitions B-2
directives

.sym B-10
enumeration definitions B-8
file identification B-3
function definitions B-4
line number entries B-6
member definitions B-7
–s assembler option 3-5
structure definitions B-8
union definitions B-8

symbols 2-22, 3-16, 6-6
assigning values to 4-61
at link time 8-50
C compiler model

.MEMPARM 3-18

.REGPARM 3-18
character strings 3-15
predefined 3-17
substitution 3-18, 6-5 to 6-12

symbols (continued)
version

.C30 3-17

.C31 3-17

.C32 3-17

.C3x 3-17

.C40 3-17

.C44 3-17

.C4x 3-17

.TMS320C30 3-18

.TMS320C31 3-18

.TMS320C32 3-18

.TMS320C40 3-18

.TMS320C44 3-18

.TMS320xx 3-17
symbols defined by the linker 8-53 to 8-54
.sysm16 section 8-11, 8-61
.sysm8 section 8-11, 8-61
.sysmem section 8-11, 8-61
__SYSMEM_SIZE 8-11, 8-53, 8-61
_SYSMEM16_SIZE 8-53
_SYSMEM8_SIZE 8-53
system stack

C language 8-15, 8-61

T
–t archiver command 7-3
–t hex conversion utility option 10-4, 10-47
.tab assembler directive 4-67
.tag assembler directive 4-15
target width 10-8
Tektronix object format 10-48
.text assembler directive 2-4 to 2-11, 4-6, 4-68
.text section 2-4 to 2-11, 4-6, 8-47, A-3
three-operand instructions 5-13
TI-Tagged object format 10-47
.title assembler directive 4-12, 4-69
TMS320 archiver. See archiver
.TMS320C30 3-18
.TMS320C31 3-18
.TMS320C32 3-18
.TMS320C40 3-18
.TMS320C44 3-18
.TMS320xx 3-17
–tvtp hex conversion utility option 10-5, 10-29,

10-32

Index

Index-13

U
–u archiver command 7-4
–u assembler option 3-5
–u linker option 8-15
unconfigured memory 8-23, 8-47
underflow

expression underflow 3-22
uninitialized sections 2-2, 2-4 to 2-5, 4-22, 4-70,

8-47, 8-54
holes 8-57
initialization 8-57

UNION (SECTIONS directive) 8-39
union definitions B-8
upward compatibility 3-6
.usect assembler directive 2-4 to 2-11, 4-6, 4-70
.utag assembler directive B-1, B-8

V
–v archiver option 7-4
–v assembler option 3-6
–v linker option 8-16
.var assembler directive

listing control 4-11, 4-27
.var macro directive 6-12
.version assembler directive 4-16, 4-72

W
–w linker option 8-16

W MEMORY attribute 8-25

well-defined expressions 3-22

.width assembler directive 4-11, 4-47
listing control 4-11, 4-27

widths. See memory widths

.wmsg assembler directive 4-16, 4-29, 6-17
listing control 4-11, 4-27

word alignment 4-32

.word assembler directive 4-7, 4-44

X
–x archiver command 7-4

–x assembler option 3-6

–x hex conversion utility option 10-4, 10-48

–x linker option 8-17

X MEMORY attribute 8-25

XDS emulator 1-3

Z
–zero hex conversion utility option 10-4, 10-27

Index-14

