

Generating Efficient
Code with TMS320
DSPs: Style Guidelines

APPLICATION REPORT: SPRA366

Karen Baldwin
Rosemarie Piedra
 Semiconductor Sales & Marketing

Digital Signal Processing Solutions
 25 July 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents

Abstract ... 7

Product Support ... 8
World Wide Web ... 8

General Guidelines ... 9

Variable Declaration ... 10
Local vs. Globals... 10

Initialization of Variables.. 16

Memory Alignment Requirements and Stack Management..................................... 18

Accessing Memory-mapped Registers ... 23

Looping ... 24
TMS320 Loop Implementation - Analysis .. 24
Initial Conditional Branch .. 27

Control Code and Switch Statements ... 29

Functions... 30

Math Operations.. 32
q15 arithmetic/MACs... 33

Acknowledgments .. 35

Appendix A. Summary of Guidelines ... 36

Appendix B. Instructions Used by the C54x Compiler .. 38

Appendix C. Instructions Used by the C5x/2xxCompiler .. 39

Appendix D. Instructions Used by the C3x/4x Compiler ... 40

Appendix E. A Dot Product Example: C54x Study Case ... 41

Tables

Table 1 Data Type Size (in bits) across TMS320 Compilers .. 15
Table 2 Loop Combinations ... 26
Table 3 Guideline Usability by Type and Version... 36
Table 4 Instructions Used by the C54x Compiler ... 38
Table 5 Instructions Used by the C5x/2xx Compiler... 39
Table 6 Instructions Used by the C3x/4x Compiler... 40

Generating Efficient Code with TMS320 DSPs: Style Guidelines 7

Generating Efficient Code with
TMS320 DSPs: Style Guidelines

Abstract

This report presents C-coding style guidelines to improve the
efficiency of the Texas Instruments (TI™)TMS320
C2x/C2xx/C5x/C54x/C3x C-compilers, indicating what to avoid or
what to promote when coding a TMS320 in C. For development
time savings, apply these guidelines before deciding to re-write a
time-critical portion in assembly.

To illustrate some of the guidelines a case study (vector dot
product) is presented in Appendix E.

 NOTE:
TI code generation tools have been designed to achieve
the best optimization possible for the entire application,
not for specific kernels. Since the tools look at the entire
code, not selected pieces, you may see inefficiencies in
a certain kernel of code that reflect efficient code
generation in another section of code.

This application note assumes that you are using the latest
releases of the TMS320 compilers (C3x/4x version 5.0, C2xx/c5x
version 6.65 Beta, C54x version 1.2). Any effect of future compiler
releases on the guidelines presented here will be documented in
future releases of this document, but such an effect is not
foreseen.

SPRA366

8 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 9

General Guidelines

Before looking at TMS320 specific coding style guidelines, let's
mention some general C guidelines to follow:

� TIP: (All) Avoid removing registers for C-compiler usage
(-r option). Register removal is costly because it removes
valuable resources for the compiler and produces overall code
generation quality degradation. Let the compiler allocate
register variables. Remove registers only for time-critical
interrupts for which that is the only option left for speed-up
improvement.

� TIP: (All) To selectively optimize functions place them into
separate files. This will allow you to compile the files
individually

� TIP: (All) Use the least possible volatile variables.
Compilers by default assume that they are the only entity
reading and writing to data. To avoid code removal, one option
is to declare the variable as volatile however be aware that a
volatile declaration might impact negatively the efficiency of
the code generation. For example, if you make volatile the
variable getting a partial sum, the compiler will not generate
optimal code because it cannot place a volatile variable into a
register. Also, volatile declaration will prevent inlining of the
function where the variable is declared or used.

� TIP: (All) For best optimization, use program-level
optimization (-pm option) in conjunction with file level
optimization (-oe option). TMS320 compilers offer a whole
program-level compilation (-pm) that when used with file level
optimization yields the best overall code for the complete
application. For this to take effect all the source code need to
be passed in one single command line (i.e. clxx -p -n *.c). By
viewing all the files before generating code for each, the
compiler gains valuable information on how the different code
blocks interact and optimize it accordingly. The only drawback
is an increased compilation time that may not be a concern
during the last stages of the software development process.

SPRA366

10 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Variable Declaration

Local vs. Globals

� (C2x/C5x/2xx) Prefer global over local variables or use the
-oe option

� (C54x) Prefer local over global variables

� (C3x) No special preference (assume preference for locals
as a default)

In general, without looking at any specific processor architecture,
local variables tend to be more C friendly. When handling locals a
compiler can usually assign registers to function-local variables
whether they are declared "register" or not. On the contrary, if you
declare a variable as global or static, a compiler can only try to
"cache" their values in registers over relatively small portions of
code. This will cause extra "stores back to memory" when the
compiler detects that an intervening function (for example function
f2 in the code below) might potentially modify the global variable
(variable a). Another point in favor of locals is good software
engineering: globals have more dedicated memory use and
functions will not be recursive.

int a;

void f1() {

for (i=0;i<n;i++) a ++;

f2();

a = a+3;

}

However, sometimes due to the specific processor architecture,
globals might be preferred over locals. Let's analyze this point
across TMS320 devices:

C2x/C2xx/C5x: In general, these use global variables instead of
local variables. The reason is that the compiler uses more efficient
direct addressing mode when accessing globals/statics, but uses
indirect addressing for accessing local variables. The exception is
when using the -oe optimizer option. Selecting this option tells the
optimizer/compiler that the code is not called by any interrupt
service routines and is non-recursive. Under these circumstances
the compiler is free to treat all local variables as statics, allocating
space for them in data memory. It can then use the faster direct
addressing mode and optimize usage of data page pointer since it
can guarantee that the variables are defined on the same page.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 11

C3x: C3x is efficient in both stack-relative addressing (used for
local accesses) and direct-memory addressing (used for global
accesses). The exception is when the global variables exceeds
64k words in which case compilation under large-memory model
is used to force DP register initialization at every access (big
memory model), potentially doubling the code size. To prevent this
case, prefer locals over globals.

C54x: C54x favors the use of local over global variables because
of the C54x stack addressing mode.

Local variables can be accessed either by stack-based addressing
(if the local variable is located in the first 128 16-bit words of local
frame space) or by indirect addressing using AR7-local frame
pointer (if the local variable is located after the first 128 16-bit
words of local frame space). The advantage of stack addressing is
that it doesn't add an extra word to the instruction to specify the
variable address.

Global variables, on the other hand, are accessed via dmad
addressing. This adds an extra word (the variable address) to the
instruction accessing the variable making the instruction a 2-word
instruction as a minimum. Note that even when the local frame
exceeds 128 words, the use of local variables will provide the
same performance as using globals. Even though the local
variables are being accessed via indirect addressing with long
constant indexing, it requires the same number of words as dmad
addressing used for globals.

Local pointers should also be preferred over global pointers.
The following example illustrates this point. Using global pointers
can produce larger code when global pointers are modified.
An operation like global_pointer++ is considered an operation with
a side effect that must be resolved before the next "sequence
point" (i.e. the next ; or ")") . This forces the immediate update of
the global pointer variable in memory. A typical case to avoid is
the usage of global pointers for MAC (multiply-and-accumulate)-
style instructions. Notice the savings in code size by simply using
local pointers in the following examples:

SPRA366

12 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Example 1 C54x Sample Code With Global Ptrs

unsigned *a,*b;

unsigned int i; unsigned int sum = 0;

unsigned int operands_global() {

for (i=0; i<= 10; i++) {

sum += *a++ * *b++;

}

return sum;

}

The code shown below requires 11 extra words and 15 more
cycles to execute, than is generated when local pointers are used.

000000 771A STM #10,BRC

000001 000A

000002 F272 RPTBD L3-1

000003 0013'

000004 4A11 PSHM AR1

000005 E800 LD #0,A 31

000006 7211 MVDM *(_a),AR1

000007 0000-

000008 F495 nop

000009 1191 LD *AR1+,B

00000a 7311 MVMD AR1,*(_a)

00000b 0000-

00000c 7211 MVDM *(_b),AR1

00000d 0001-

00000e F495 nop

00000f 3091 LD *AR1+,T

000010 28F8 MAC *(BL), A

000011 000B

000012 7311 MVMD AR1,*(_b)

000013 0001-

000014 L3:

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 13

Example 2 C54x Sample Code With Local Pointers (better)

unsigned int operands_local(unsigned *a, unsigned *b) {

unsigned int i; unsigned int sum = 0;

for (i=0; i<= 10; i++){

sum += *a++ * *b++;

}

return sum;

}

The code using local pointers does not require update and store of
the pointer variables resulting in smaller/faster code for this loop.

000000 8812 STLM A,AR2

000001 F495 nop

000002 7101 MVDK *SP(1),*(AR3)

000003 0013

000004 E800 LD #0,A 27

000005 EC0A RPT #10

000006 B098 MAC *AR3+, *AR2+, A, A

000007 F495 nop

000008 F495 nop

000009 L3:

TIP: (All) Declare globals in file where they are used the most,
or compile using -pm -oe options. In general, when using -o3
option file level optimization, this would allow the compiler to
optimize the use of globals by allocating them to registers across
functions inside the same file. In the specific case of the C2xx/c5x
compiler, there is an extra benefit. Because the C2xx/C5x
compiler initializes the DP to the beginning of the global variables
of the file, it knows if the variable is in a different 128-page or not.
This minimizes the need to set the DP register within the code
generated for the file. When compiling with -pm (whole program
mode) and -oe (no code is called by interrupt service routine nor
are there any director or indirect recursive calls) this optimization
translates into optimal usage of LDPK to load data page pointer.

SPRA366

14 Generating Efficient Code with TMS320 DSPs: Style Guidelines

TIP: (All) Allocate most often used elements of an structure,
array or bit-fields in the first element, the lowest address or
LSB respectively.

C3x: In the C3x, arrays and pointers are accessed via indirect
addressing. By following this recommendation, the compiler will be
allowed to use C3x instructions that support indirect addressing
with a 5 or 8-bit immediate displacement. This avoids the extra
math required to manipulate the value of ARn or the usage of IRn
registers. For global structures accessed via pointers the above
recommendation also holds true. However this is not the case for
global structures accessed directly (not via pointers) for which the
linker itself determines the direct offset of the element
(@label+offset) inside the structure that will always be valid and
efficient (except for big-memory model). Also by allocating bit-
fields to the lowest LSBits, the compiler can use C3x OR and AND
instructions with short immediate operands to efficiently mask
LSbits

C2x/C2xx/C5x/C54x: Because of the lack of offset addressing in
these processors, it is better to allocate your most often used data
to the first element of an array or an structure. This avoids the use
of additional instructions to calculate the correct address to access
the element.

TIP: (ALL) Prefer unsigned variables over signed. The
unnecessary use of int is many times a common inefficient coding
practice. However if you know that a variable will never be less
than zero, there is no reason to use a signed integer. An unsigned
variable will give you a larger dynamic range (16-bit vs 15-bit in
signed integers) and it will provide more information about the
variable to the compiler.

TIP: (C2x/ C2xx/C5x/C54x) Group together math operations
involving the same data type. The C2xx/C5x/C54x compilers
sets/resets the SXM bit as required to guarantee correct operation
and type casting. For this reason try to avoid the continuous
switching of data types in math operations. The SXM bit is set to 1
(signed-extension enabled) in boot.asm. This is irrelevant for the
C3x compiler because the C3x offers specific instructions to
handle unsigned arithmetic.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 15

TIP: (ALL) Pay attention to data type significance and
optimize code accordingly. The more information you pass to
the compiler about the variables the better the code the compiler
will produce. The following table lists the data type size in bits
across different TMS320 processors. As you can see data type
size is not the same across TMS320s, therefore portability issues
might arise.

Table 1 Data Type Size (in bits) across TMS320 Compilers

Char
(8
significant
bits)

short
(16
significant
bits)

Int
(16
significant
bits)

long
(32
significant
bits)

Float
(32
significant
bits)

double
long
double

C2x/C2xx
C5x/C54x

16 16 16 32 32 (IEEE) 32 (IEEE) 32(IEEE)

C3x 32 32 32 32 32 (TI float) 32 (TI float) 40 (TI float)

C6x/C67x 8 16 32 40 32 (IEEE) 64 (IEEE) 64(IEEE)

The correct understanding of the number of significant bits each
data type carries can avoid inefficient code generation. Use long
only when the full 32-bits are required. Data type casting should
only be used when absolutely required because it might cost you
cycles. The following is a C2xx/C5x/C54x example in which, due
to wrong casting, the long-multiply RTS function is invoked when
in reality only a regular MPY is need. It's also worthwhile to notice
that the use of long data types in the C54x is more efficient than in
the C2xx/C5x because the C54x offers special instructions that
deal with double-word instructions.

Example 3 RTS Function Invoked when Regular MPY is Needed

char b,c; /* 8-bit significant data */

int a; /* 16-bit significant data */

long y; /* 32-bit significant data */

y = (long) a*b*c ; /* larger code size because of the casting of a to

 long (32-bits), call L$$MPY */

y = (long) (a* ((int)b*c)); /* smaller code size because everything is

 kept within the accumulator dynamic range */

SPRA366

16 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Initialization of Variables

TIP: (ALL) Initialize global vars with constants at load time.
Overall, initialization of variables with constant values are costly.
In the C2xx/C5x/C54x , the storage of a constant value in a
variable adds 1 extra word to the store instruction (ST) regardless
of the size of the constant. In the C3x, an extra cycle will be
required to store the constant value to a temporary register (this
will not be the case in the C4x if the constant is short enough). For
this reason, it's suggested to initialize variables at load time and
use -cr option to avoid DSP memory consumption by the .cinit
section

TIP: (C54x) When initializing different variables with the same
constant, rearrange your code. If you want to initialize multiple
variables with the same constant, the following re-arranging of
code helps to improve code generation. Notice that event though
the two pieces of code are not semantically identical, the overall
result is the same but with different code being generated. In the
C54x constant initialization of variables is expensive. The original
code produces an store immediate (2-word instruction) for each
variable initialization. The suggested code makes the compiler
load the constant in the accumulator and produce successive
stores into the different variables.

Example 4 C54x Sample Code with Constant

unsigned ag1, ag2;

main() {

ag2 = 3;

ag1 = 3;

}

The code below uses long constant, taking one extra word per
assignment.

000000 76F8 ST #3,*(_ag2)

000001 0001-

000002 0003

000003 76F8 ST #3,*(_ag1)

000004 0000-

000005 0003

000006 FC00 RET

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 17

Example 5 C54x Sample Code with Assign Expression (better)

unsigned ag1, ag2;

main() {

ag1 = ag2 = 3;

}

This code uses store from accumulator, saving an extra word per
assignment

000000 E803 LD #3,A

000001 80F8 STL A,*(_ag2)

000002 0001-

000003 80F8 STL A,*(_ag1)

000004 0000-

000005 FC00 RET

TIP: (ALL) Use memcopy when copying an array variable into
another. The RTS function, memcopy has been optimized across
TMS320 compilers. Memcopy is declared as "inline" in the string.h
(except in case of the C6x compiler) The usage of memcopy
should be restricted to copying arrays. Structure copying via
memcopy will not generate better code than regular structure1 =
structure2 assignment.

SPRA366

18 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Memory Alignment Requirements and Stack Management

TIP: (C54x) Group all like data declarations together, listing
16 bit data first. To ensure consistent treatment of all 32 bit data,
the C54x compiler pads memory when necessary to cause
alignment of all 32 bit quantities on an even address boundary.
This is necessary because double word operands are fetched
based on address boundaries. If the double word fetch is from an
odd address boundary, then the words are fetched LSW-MSW. If
they are fetched from an even address boundary they are
interpreted as MSW-LSW. Maintaining alignment of 32 bit
quantities guarantees the compiler that all 32 bit data is
interpreted in the same way.

To avoid wasted space due to 32 bit data alignment requirements,
group all like data declarations together, listing 16 bit data first.
This is especially true when defining local symbols in a function
definition. For global symbols the compiler may rearrange the
declarations to group for minimum space requirements. There
may still be some memory padding, but the difference will not be
as noticeable as in the case of local symbol declarations. This is
because the compiler does not rearrange the order of local
symbols. They are allocated space on the stack in the order in
which they are defined. For this reason, special care should be
taken in deciding the order in which local symbols are defined.

Example 6 Original code (no optimal local declaration)

func() {

int jk; /* 1 word */

long a; /* 2 words */

int qa; /* 1 word */

long jd; /* 2 words */

int xc; /* 1 words */

unsigned long c; /* 2 words */

int xb; /* 1 word */

long xyz; /* 2 words */

/* Total symbol size 12 words */

In this example, declaration for 16 bit data and 32 bit data is
interspersed without regard to alignment requirements. When
reserving stack space for the above declarations the compiler
generates the following FRAME instruction:

FRAME #-17

The compiler uses an extra 5 spaces to allow for alignment.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 19

Example 7 Suggested Code (rearranging declarations)

func() {

int jk; /* 1 word */

int qa; /* 1 word */

int xc; /* 1 word */

int xb; /* 1 word */

long a; /* 2 words */

long jd; /* 2 words */

unsigned long c; /* 2 words */

long xyz; /* 2 words */

/* Total symbol size 12 words */

Resulting in the following FRAME instruction to reserve space for
local symbols:

FRAME #-13

In this instance only one space is "wasted" to assure alignment of
the first 32 bit symbol. All others are assumed to be aligned on
correct boundary thereafter. This results in a savings of 4 words.

The compiler will also align structures on an even address
boundary when that structure contains any 32 bit data. So the
same consideration should be applied to the order in which these
are declared. In addition, it is possible to take advantage of
structure alignment in deciding in which order to declare structure
elements. Because the structure is already aligned on an even
address boundary, to avoid padding within the structure for
alignment of 32 bit data, declare these first and group like-sized
data together. For example, compare the size requirements
specified by the compiler for the following C54x declarations:

SPRA366

20 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Example 8 Size Requirements of C54x Declarations

typedef struct _sample1 {

unsigned long dum_a; /* 2 words */

int dum_b; /* 1 word */

int dum_c; /* 1 word */

 int dum_d; /* 1 word */

unsigned long dum_e; /* 2 words */

int dum_f; /* 1 word */

 unsigned long dum_h; /* 2 words */

} SAMPLE1_STRUC; /* Total size 10 words */

SAMPLE1_STRUC x1;

The compiler generates following .bss directives for the above
declarations:

.bss _x1,12,0,1 <== Reserves 12 words

typedef struct _sample2 {

int dum_b; /* 1 word */

 unsigned long dum_a; /* 2 words */

 int dum_c; /* 1 word */

unsigned long dum_e; /* 2 words */

 int dum_f; /* 1 word */

unsigned long dum_h; /* 2 words */

int dum_d; /* 1 word */

} SAMPLE2_STRUC; /* Total size 10 words */

SAMPLE2_STRUC x2;

The compiler generates following .bss directives for the above
declarations:

.bss _x2,14,0,1 <== Reserves 14 words

typedef struct _sample3 {

unsigned long dum_a; /* 2 words */

unsigned long dum_e; /* 2 words */

unsigned long dum_h; /* 2 words */

 int dum_b; /* 1 word */

int dum_c; /* 1 word */

 int dum_d; /* 1 word */

 int dum_f; /* 1 word */

} SAMPLE3_STRUC; /* Total size 10 words */

SAMPLE3_STRUC x3;

The compiler generates following .bss directives for the above
declarations:

..bss _x3,10,0,1 <== Reserves 10 words

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 21

TIP: (C54x) Use the .align linker directive to guarantee stack
alignment on an even address. As a consequence of
maintaining alignment for 32 bit data, the compiler needs to make
sure that the stack is initially aligned on an even address
boundary and seeks to maintain that alignment on entrance to any
defined function. Therefore it adjusts the initial stack address in
the C environment initialization routine ,c_int00 (contained in
boot.asm (boot.obj in RTS library), to align it on an even address
boundary. If the stack address is not aligned on an even boundary
the address is adjusted to the proper alignment. To avoid wasted
space due to padding of the starting address for the stack, it is
best to align the stack on an even address boundary when linking.
The linker "align" keyword may be used to accomplish this. For
example:

SECTIONS

{

.stack : { align(2) }

}

The compiler uses the following rules for establishing the size of
the local FRAME for a given function:

� The number of words required for all local symbol declarations
(including padding for alignment when necessary).

� The number of words required to store intermediate results
that could not otherwise be maintained in registers.

� The number of words required to pass the argument list for the
longest argument string among all functions called by the
current function.

� Extra word to store value of frame pointer if the size of the
local variable space exceed 127 words. (This limitation is
based on the fact that the compiler uses stack relative
addressing to access local variables. If the size of the local
frame exceed 127, then the compiler can no longer use stack
relative addressing because the offset will exceed the limit of
127. In this case the compiler will use ARn addressing and will
preserve the current ARn value in a temporary location when
performing nested function calls.)

� Padding to ensure stack is always aligned on even address
boundary when entering this and subsequent functions.

SPRA366

22 Generating Efficient Code with TMS320 DSPs: Style Guidelines

How the compiler reallocates space on the stack? On entering any
function, the compiler will first push the contents of any save on
entry registers that it may have used for performing calculations or
storing intermediate results. It then establishes space for the local
function frame, by using the FRAME instruction to adjust the
current stack pointer. The order in which space is used within the
local frame is:

� space for compiler temporaries

� space for local variables

� space for argument block (arguments passed to functions
called within this function)

� return address (for subsequently called functions)

� space to save local frame

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 23

Accessing Memory-mapped Registers

TIP: (C2x/ C2xx, C5x,C54x) Prefer C- macros or "asm"
statements versus pointers to access memory-mapped
registers. Using pointers to access memory-mapped registers
forces the compiler to create extra space to store the address and
extra cycles to load ARn for addressing. Using macros saves one
cycle and two words of memory (one in data space for storing the
address and one in program memory for nop instruction) due to
the capabilities for storage of immediate operands. This can be
seen in the following C54x example:

Using volatile pointers: (worse)

volatile unsigned *SPC0 = (unsigned *)0x22;*SPC0 = 0x0000;

Generates:

MVDM *(_SPC0),AR1

nop

ST #0,*AR1

===> 5 words

Using macro-defined pointers: (better)

#define SPC0 (volatile unsigned *)0x22

*SPC0 = 0x0000;

Generates:

STM #34,AR1

ST #0,*AR1

 ===> 4 words

Using asm statement: (best)

extern volatile unsigned SPC0; asm("_SPC0 .set 0x22");

SPC0 = 0x0000;

Generates:

ST #0,*(_SPC0)

The reference to _SPC0 is resolved correctly at assembly time.

===>3 words

C3x: C pointers is an efficient method to access memory-mapped
registers due to the well-supported ARn indirect addressing mode.

SPRA366

24 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Looping

Looping is one of the most common operations in DSPs. Some
general suggestions before looking into TMS320 specific C-coding
style guidelines for loops.

� The usage of -o3 option in TMS320 compilers achieves time-
efficient code generation for loops by enabling loop unrolling
and delayed instructions. However this will increase your loop
code size. If code size is a major concern, use the -ms option
together with the -o3 option to disable loop unrolling and
delayed instructions but still keep the other optimizations that
the -o3 offers.

� In TMS320 compilers up or down-loops don't affect code
generation efficiency. The compiler will automatically convert
all the up-count loops to down-count loops to facilitate the
usage of repeat instructions and branch conditionals.

� Avoid function calls or control statements inside critical
loops: Even when a function call is controlled by an IF inside
a loop, the fact that it might be called inhibits useful code
optimization. Also, remember that the more deeply nested a
loop is the less efficient loop mechanism would implement.
Avoid deeply nested loops.

� Split-up loops comprised of two unrelated operations: This
is specially true if the loop split could become repeat single
loops.

TMS320 Loop Implementation - Analysis

FOR loops can be implemented by a TMS320 compiler via repeat
instructions or conditional branches. Ideally a FOR loop should be
reduced to a simple RPT instruction (repeat block or repeat
single). However many times this is not the case and the
inefficiencies may be partially caused by the code style itself..
Let's illustrate this point with the following C54x dot-product
example in Appendix E (Code 1).

Option -o3 to optimize loops was used , but we still end up with
non-optimal code. Two inefficiencies are noted: no repeat single
instruction is being generated and also an initial conditional
branch precedes the loop implementation. Following, an analysis
of why this happens is presented.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 25

No generation of repeat instruction : In the dot-product case
study, the C54x compiler generates a repeat block even when
potentially could generate a repeat single. Typically generation of
repeat blocks in TMS320 compilers is easier than generation of
repeat singles. TMS320 code generation tools always generate
"intermediate repeat blocks" first and then try to replace repeat
blocks with repeat singles. This replacement process involves
pattern matching techniques that attempt to locate where the RC
(repeat counter) register is loaded so that the appropriate operand
is used for the counter in the repeat single instruction. This pattern
matching is easier to implement in load/store architectures like the
C3x (just search for an "LDI xx,RC" . In the C54x, this search is
more difficult because it has more instructions that could
potentially initialize the RC register. Based on this, it's advised to
write FOR loops the simplest way possible. One solution is
presented in the following guideline:

TIP: (All) For the upper limit of a FOR loop, use a constant or
a variable with a "const" attribute. If you have to use a regular
variable, try function inlining to achieve equivalent results. As
mentioned before, the use of a constant value (either a number,
#define or a variable with a const attribute) for the upper limit in a
FOR loop facilitates the generation of repeat instructions. This is
specially true for repeat singles because the value for the repeat
counter can be determined at compile time.

Basically, the more friendly loop construct for RPT singles is : for
(i=constant; i<= constant; i++)

If you want to maintain the FOR upper limit as a variable (for
example if you want to maintain the dot product as a function), you
could make the loop an inlined-function and passing a constant
as a parameter (functionally equivalent to a const). This is
illustrated in Appendix E for a C54x dot product. Also, you could
try making the FOR upper limit a global variable. The pattern
matching techniques described above work better on global
variables (global variables patterns are easier to recognize
because they have unique labels)..

SPRA366

26 Generating Efficient Code with TMS320 DSPs: Style Guidelines

So far we have been just analyzing very simple loops . The
following table illustrates some other possible combinations:

Table 2 Loop Combinations

Sample Code RPTS (repeat single) RPTB (repeat block)

for (i=constant; i<=
constant; i++)

Yes,C3x/C4x, C54x

No, C2x/C2xx/C5x

Yes, C3x/C4x, C5x, C54x

No, C2x/C2xx (Note 1)

for(i=constant; i<= constant;
i+=constant)

Yes, C3x/C4x, C54x<if loop
code doesn't depend on i or if
the compiler is able to
remove the code dependence
on i>

No, C2x/C2xx/C5x

Yes, C3x/C4x, C5x, C54x

No, C2x/C2xx (Note 1)

for (i=0; i<= global_var; i++) Yes, C54x, C3x/C4x
No, C2x/C2xx/C5x

Yes, C3x/C4x, C5x, C54x
No, C2x/C2xx (Note 1)

for(i=0; i<= local_var; I++) No, C2xx/C5x/C54x
Yes, C3x/C4x

Yes, C3x/C4x, C5x, C54x
No, C2x/C2xx (Note 1)

for(i=non_zero_constant;
i<= var; i++)

No, C2xx/C5x/C54x
Yes, C3x/C4x

Yes, C3x/C4x, C5x, C54x
No, C2x/C2xx (Note 1)

for(i=var; I<= var; i++) No, C2xx/C5x/C54x
Yes, C3x/C4x

Yes, C3x/C4x, C5x, C54x
No, C2x/C2xx (Note 1)

Note 1. C2x and C2xx devices lack of a repeat block instruction.

TIP: (C3x) Use signed integer types in FOR upper limit and
iteration counter. In the C3x case the RC register is a signed
register (in the C2xx/C5x/C54x is unsigned). If you use unsigned
variables for FOR loops, the compiler will not be able to produce a
RPTB because the unsigned dynamic range(16 bits) might exceed
the signed dynamic range(15 bits) . The compiler can't prove that
it will never exceed the highest positive value.

One it's recommended to use <= instead of < because the
compiler can load the block repeat counter automatically without
an additional subtract by one being required. This doesn't apply
when using a constant as the upper limit because the compiler is
smart enough to produce a repeat instruction with one counter
less.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 27

Initial Conditional Branch

The generation of the initial conditional branch is due to the way
the FOR loop is written. Given the information that the code
provides (data type for variable n is signed int) there is no way that
the compiler can guarantee that the FOR loop will execute at least
once ... therefore the compiler has to add a conditional branch to
check if n equals 0 to bypass the loop. The solution? modify your
code around to guarantee that to the compiler as explained in the
following code generation tip.

TIP: (ALL) Select the correct data type of your FOR loop
control variables to guarantee the loop will execute at least
once. You can remove the conditional check for a no loop by:

� Using constant upper limits (guideline given above to produce
RPT instructions). Notice that that guideline also solves our
other inefficiency problem: the condition branch to check if the
loop will execute at least once because by handling constants
the compiler knows in advance how many times the loop
should execute.

� Manipulating the variable data type and the loop end-condition
to check. For example let's analyze how you can achieve it in
a simple loop of the type for (i=0; i<n;i++) :

SPRA366

28 Generating Efficient Code with TMS320 DSPs: Style Guidelines

TIP: (C2x/C2xx/C5x/C54x) Use unsigned variables for the
upper limit (n) and use <= instead of < This guarantees that the
loop will be repeated at least once. To illustrate this
recommendation, compare the following pieces of code that at first
look to be similar:

FOR (i=0;i<n;i++) : (original code)

if n is signed (a regular int), the compiler cannot make any
assumptions on the value of n. Therefore it will generate extra
code to bypass the loop when required.

FOR (i=0;i<n;i++) : (one step toward the solution)

if n is unsigned the compiler knows that n>=0. Because i=0 , the
loop may not repeat at least once, therefore extra code is still
required to bypass the loop is required increasing code size.

FOR (i=0;i<=n1;i++) : (suggested code: n1 = n-1)

if n1 is unsigned the compiler knows that n1>=0. Because i=0 , the
loop will be repeated at least once, therefore no extra code to
bypass the loop is required.

(C3x) No clean solution. In the case of the C3x, we cannot apply
the same suggestion given above because the usage of unsigned
variables will prevent the generation of repeat blocks. Fortunately,
the cycle overhead of an extra branch outside the loop is in most
cases minimum.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 29

Control Code and Switch Statements

Code generation for switch and if-then-else statements is highly
dependent on the how dense the compare operations are and on
the compare capabilities of the device architecture itself. If-then-
else statement always use a branch and compare method. In the
case of the switch statement, the TMS320 compilers may use one
of the following 3 methods to implement it:

� look-up tables (that store the switch labels)

� substract operations on the switch variable selector (check first
the smallest selection value and keep substracting to check
every path)

� compare and branch

TMS320 compilers will determine the most appropriate method
according to how dense the code is.. For highly dense compare
code, using switches typically produce better code than an if-then-
else implementation.

TIP: (ALL) For switch statements, assign the smallest
selection value to your most commonly used path. For if-
then-else statements, place the more common path at the
start of the if-then-else chain. Regardless of the method the
compiler uses for switch code generation (see discussion above),
assigning the smallest selection value to your most commonly
used path will give you overall the best code. This becomes
significant when the compiler uses substract operations on the
switch variable selector to determine which path to follow. In this
case, the checking starts with the smallest selection value.
Therefore, you will save instruction cycles if you assign the most
probable path to the smallest selection value. Even in the case of
the compiler using another switch generation method, following
this suggestion will not produce worse code.

SPRA366

30 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Functions

TIP: (ALL) Use "static inline"or use -pm -oe options
performing whole program compilation. When a function is
called only by other functions in the same file, make the function
static. Likewise, if a global variable is only accessed from
functions in the same file, declare the variable static. These
declarations are particularly helpful to the compiler at optimization
level -o3 because if the instruction is small enough, it helps to
exploit the in-lining full potential. It's a good idea to organize
source files in such a way that minor functions and variables are
grouped with the functions that use them and can therefore be
declared static.

Another compiler feature that positively affects code generation
efficiency is function inlining. Inlining saves the function call
overhead and allows the compiler to optimize the function body
within the context from which it was called. For example when the
function contains a FOR loop, this facilitates the use of RPTBD
because there is more code around it that the compiler can take
advantage of.

The compiler provides the following options associated with
inlining:

� -o3: inlines any small-enough function regardless if it's
declared as inlined or not.. What is small? the compiler has a
set threshold level for the function size that you can change to
your own <value> with the -oi<value> option. <value> is given
in an unit size that is only meaningful to the compiler. You can
find out the size of your functions by using the -on1 option.

 NOTE:
Do not declare or use volatile variables in a function to
be inlined as this will prohibit inlining by the compiler.

� -x2: inlines only the functions declared with the inline attribute.

There are 2 types of inlining: static and normal. Static inlining
specifies that the function is to be expanded inline and that no
code is generated for the function declaration itself. In normal
inlining, the function will get inlined but the compiler will also
produce a function definition because it assumes that the function
can be called from another file. If the function is only used within
the file context declare the function static inline.

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 31

A similar effect to function inlining can be achieved by
implementing functions as macros. C macros will always produce
"function inling" regardless the optimization level that you use. On
the other hand, with macros you have no protection against
duplicated macro name (avoid this by using a cryptic function
name for example _$$_myfunction). Another drawback of macros
is that they make C-level source debugging difficult. This is
because macros are expanded by the C preprocessor and so their
definition is not carried through to the code generation process.

SPRA366

32 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Math Operations

TIP: (ALL) If your code contains a MAC-style operation, make
the variable accumulating the result and the MAC operands
local variables. MAC (multiply and accumulate) -type operations
are widely used in common DSP algorithms such in dot products,
correlations, convolutions, and filtering. The C54x and the C3x/4x
compilers are capable of producing optimal code for those
algorithms. The C2xx/C5x compiler is not capable to generate
MAC-type instructions. This is due to the fact that a C2xx/C5x
MAC requires one of the operands to be in program memory. By
default the compiler assumes that all variables reside in data
memory.

Typical MAC operation:

for (i=0;i<N;i++) result += *p1++ * *p2++;

The usage of local variables will facilitate allocation of variable to
registers (or to an accumulator) (i.e. result, p1, p2 should be local
variables). If for example "result" is required to be global, use a
temporary local variable and update "result" outside the loop. Also
if using pointers, use local pointers instead of global pointers
because the modification of global pointers (i.e. *p1++),
compliance with ANSI C might force the intermediate update of
the pointer variable p1 inside the loop creating unnecessary code
(see variable declaration section)

Remember to combine this recommendation with the
recommendations for LOOPS to produce the most efficient code
for MAC operations. Appendix E presents a case study illustrating
the type of C-coding style guidelines to apply to optimize a C54x
dot-product .

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 33

q15 arithmetic/MACs

TMS320 compilers don't offer direct support for fractional data
types (i.e. Q15,..). One solution is to use integer types as a
replacement to Q formats as follows:

tms320.h file

#ifdef _c5x /* includes c2x/c2xx/c5x/c54x */
typedef short q15;
typedef long q30;
#elif _c6x
typedef short q15;
typedef int q30;
#endif

The following examples illustrate basic q15 math operations using
the C54x compiler:

/* q15 arithmetic/accumulation examples */

#define N 100

extern int dotp(int *x, int *y, int n);

main(){

int i;

int sum;

int *x, *y, *z, *w;

int n = N;

/* CASE 1: typical Q15*Q15=Q30 multiply */

*w = ((long)*x * (long)*y)>>15;

/* Method 1: good: ansi compliant q15 *q15=q30 and store in z the

upper 16MSbits */

dummy(w);

*w = (int) (*x * *y)>>15;

/* Method 2: generates the same code due to a non-ansi compliant

feature of TMS320 compilers. Prefer method 1 */

dummy(w);

*w = ((long) (*x * *y)) >>15;

/* Method 3: generates the same code due to a non-ansi compliant

feature of TMS320 compilers. Prefer method 1 */

dummy(w);

SPRA366

34 Generating Efficient Code with TMS320 DSPs: Style Guidelines

/* CASE 2: typical Qxx accumulation */

*z = dotp(x,y,n);

dummy(z);

}

static inline int dotp (int *x,int *y,int n) {

int sum=0;

int i;

long longsum;

#if 0

for (i=0;i<n;i++) /* good: int accumulation: RPT MAC in version 1.2

*/

sum += (*x++ * *y++);

#endif

#if 0

for (i=0;i<n;i++) /* q15 accumulation: RPTB (MPY,add/shift) */

sum += (*x++ * *y++)>>15;

#endif

for (i=0;i<n;i++) /* q30 accumulation : might not be as code

efficient but more precise: */

longsum += (long) (*x++ * *y++);

sum = (int)(longsum >>15); /* q15 storage */

return sum;

}

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 35

Acknowledgments

Special thanks to George Mock , Chris Vick and Chris Wolf for
their valuable inputs during the development and review process
of this application report. Also, we acknowledge the contribution of
previous related work by Alex Tessarolo, Mark Paley and David
Bartley.

SPRA366

36 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Appendix A. Summary of Guidelines

Table 3 Guideline Usability by Type and Version

C2xx/C5x
(version xx)

C54x
(version 1.2)

C3x
(version 5.0)

1. General Guidelines

Avoid removing registers for C-compiler usage
(-r option)

yes yes yes

To selectively optimize functions - Place into
separate files

yes yes yes

Use the least possible volatile variables yes yes yes

For best optimization , use program level
optimization (-pm option) in conjunction with file
level optimization (-oe option)

yes yes yes

2. Variable declaration

<See also Loops section for specific
recommendations for variables associated with
loops>

Local vs. Globals variables - preference global local
(NR) but
somewhat
toward locals

Declare globals in file where they are used the
most

yes yes yes

Allocate most often used elements of an
structure, array or bit-fields in the first element,
the lowest address or LSB respectively

yes yes yes

Prefer unsigned variables over signed. yes yes yes

Group together math operations involving the
same data type.

yes yes no

Pay attention to data type significance and
optimize code accordingly

yes yes yes

3. Initialization of variables

Initialize global vars with constants at load time yes yes yes

When initializing different variables with the
same constant, rearrange your code

yes yes yes

Use memcopy when copying an array variable
into another

yes yes yes

4. Memory alignment and Stack management

Group all like data declarations together, listing
16 bit data first.

yes (NR) (NR)

Use the .align linker directive to guarantee stack
alignment on an even address

yes (NR) (NR)

5. Accessing memory-mapped registers

Prefer C- macros or "asm" statements versus
pointers to access memory-mapped registers.

yes yes (NR)

NR = irrelevant

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 37

C2xx/C5x
(version xx)

C54x
(version 1.2)

C3x
(version 5.0)

6. Loops

Split-up loops comprised of two unrelated
operations:

yes yes yes

Avoid function calls inside critical loops yes yes yes

Select the type of your FOR loop control
variables to guarantee the loop will execute at
least once.

yes yes yes

For the upper limit of a FOR loop, use a
constant or a variable with a "const" attribute. If
you have to use a regular variable, try function
inlining

yes yes yes

Use signed integer types in FOR upper limit and
iteration counters

no no yes

7. Control functions

For switch statements, assign the smallest
selection value to your most commonly used
path

For if-then-else statements, place the more
common path at the start of the if-then-else
chain

yes yes yes

8. Functions

Use "static inline" yes yes yes

9. Math Operations

If your code contains a MAC-style operation,
make the variable accumulating the result and
the MAC operands local variables

yes yes yes

NR = irrelevant

SPRA366

38 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Appendix B. Instructions Used by the C54x Compiler

Table 4 Instructions Used by the C54x Compiler

ABS ADD ADDM

AND ANDM B

BACC BANZ BC

BITF CALA CALL

CMPL CMPM CMPR

DADD DLD DRSUB

DST DSUB FCALA

FCALL FRAME FRET

FRETE LD LDM

LDU MAC MAR

MPY MPYA MPYU

MVDD MVDK MVDM

MVMM NEG OR

ORM POPM PORTR

PORTW PSHM READA

RET RETE RETF

RPT RPTB RSBX

SFTA SFTL SSBX

ST STH STL

STLM STM SUB

XOR XORM

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 39

Appendix C. Instructions Used by the C5x/2xxCompiler

Table 5 Instructions Used by the C5x/2xx Compiler

ABS ACC ACCL

ADD ADDB ADDH

ADDK ADDS ADLK

ADRK ADRK AND

ANDB ANDK APAC

APL B BACC

BANZ BIT BLDD

BLKD BNV BSAR

CALA CALL CMPL

IN LAC LACB

LACK LACT LALK

LAMM LAR LARK

LDPK LMMR LRLK

LT MAR MPY

MPYK MPYU NEG

NOP OPL OR

ORB ORK OUT

PAC PSHD RET

RPTB RPTK SACB

SACH SACL SAMM

SAR SATH SATL

SBB SBLK SBRK

SFL SFR SPAC

SPH SPL SPL

SPLK SUB SUB

SUBH SUBK SUBK

SUBS TBLR XOR

XORB XORK XPL

ZAC ZALH ZALS

SPRA366

40 Generating Efficient Code with TMS320 DSPs: Style Guidelines

Appendix D. Instructions Used by the C3x/4x Compiler

Table 6 Instructions Used by the C3x/4x Compiler

absf absi addf

addf3 addi addi3

and and3 andn

andn3 ash ash3

b bu call

cmpf cmpf3 cmpi

cmpi3 dbu fix

float frieee lbu

ldf ldfge ldflt

ldi ldige ldile

ldilt ldp load

lsh lsh3 mb

mb0 mh0 mh1

mpyf mpyf3 mpyi

mpyi3 negf negi

nop not or

or3 pop popf

push pushf rcpf

reti rets rnd

rol ror rpts

stf sti stik

subf subf3 subi

subi3 subrf subri

toieee tstb tstb3

xor xor3

SPRA366

Generating Efficient Code with TMS320 DSPs: Style Guidelines 41

Appendix E. A Dot Product Example: C54x Study Case

C code Corresponding Assembly Code (-o3 option)

/* CODE 1: asm code have initial

branch conditional and no MAC

generation */

#define N 1000

int x[N],y[N];

int sum;

main(){

int i;

int n;

for (i = 0; i < n; i++) sum +=

x[i] * y[i];

}

Main:

SSBX SXM

LD *(AL),A

BC L4,ALEQ

; branch occurs

SUB #1,A,A

STLM A,BRC

STM #_x,AR2

RPTBD L4-1

STM #_y,AR3

; loop starts

L3:

MPY *AR3+,*AR2+,A

ADD *(_sum),A

STL A,*(_sum)

; loop ends

L4:

RET

/*CODE 2: by making the variable

accumulating the result a local a

MAC is generated but still have

the conditional branch and a RPTB

*/

#define N 1000

int x[N],y[N];

int sum;

main()

{

int i;

int n;

int sum_local;

for (i = 0; i < n; i++)

sum_local += x[i] * y[i];

sum = sum_local;

}

_main:

SSBX SXM

LD *(AL),A

BC L4,ALEQ

; branch occurs

SUB #1,A,A

STLM A,BRC

STM #_x,AR2

RPTBD L4-1

STM #_y,AR3

; loop starts

L3:

MAC *AR3+, *AR2+, A, A

nop

nop

; loop ends

L4:

RETD

STL A,*(_sum)

; return occurs

SPRA366

42 Generating Efficient Code with TMS320 DSPs: Style Guidelines

C code Corresponding Assembly Code (-o3 option)

/* CODE 3: change the upper limit

to a constant to force RPT single.

Notice that the initial branch

conditional also went away */

#define N 1000

int x[N],y[N];

int sum;

main()

{

int i;

int n;

int sum_local;

for (i = 0; i < N; i++)

sum_local += x[i] * y[i];

sum = sum_local;

}

_main:

STM #_x,AR3

STM #_y,AR2

RPT #999

; loop starts

L2:

MAC *AR2+, *AR3+, A, A

nop

nop

; loop ends

L3:

RETD

STL A,*(_sum)

; return occurs

/* CODE 4: this will also be

possible by making the loop an

inlined function */

#define N 1000

int x[N],y[N];

int sum;

int n;

main()

{

sum = dotp(x,y,N);

}

inline int dotp (int x[], int y[],

int n)

{

int i;

int sum_local;

for (i = 0; i < n; i++)

sum_local += x[i] * y[i];

return (sum_local);

}

_main:

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>

ENTERING dotp()

STM #_x,AR3

STM #_y,AR2

RPT #999

; loop start

L2:

MAC *AR2+, *AR3+, A, A

nop

nop

; loop ends

L3:

;

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<<<<

LEAVING dotp()

RETD

STL A,*(_sum)

; return occurs

	IMPORTANT NOTICE
	TRADEMARKS
	CONTACT INFORMATION
	Contents
	Tables
	Abstract
	Product Support
	World Wide Web

	General Guidelines
	Variable Declaration
	Local vs. Globals

	Initialization of Variables
	Memory Alignment Requirements and Stack Management
	Accessing Memory-mapped Registers
	Looping
	TMS320 Loop Implementation - Analysis
	Initial Conditional Branch

	Control Code and Switch Statements
	Functions
	Math Operations
	q15 arithmetic/MACs

	Acknowledgments
	Summary of Guidelines
	Instructions Used by the C54x Compiler
	Instructions Used by the C5x/2xxCompiler
	Instructions Used by the C3x/4x Compiler
	A Dot Product Example: C54x Study Case

