

TMS320 DSP
DESIGNER’S NOTEBOOK

Using a TMS320C30
Serial Port as an
Asynchronous RS-232
Port

APPLICATION BRIEF: SPRA240

 Corey Minyard
 Bell Northern Research

 Texas Instruments
 May 1994

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents

Abstract... 7

Design Problem.. 8

Solution... 8

Figures

Figure 1. Schematic Diagram ... 9

Examples

Example 1. Code Listing ... 10

Using a TMS320C30 Serial Port as an Asyncronous RS-232 Port 7

Using a TMS320C30 Serial Port as an
Asynchronous RS-232 Port

Abstract

Although the TMS320C30 serial ports were designed to be used as
synchronous ports, they can be used as asynchronous ports under
software control. This application note describes the hardware and
software to use a TMS320C30 serial port as an asynchronous port.
A schematic diagram and a lengthy code listing are provided to
illustrate the solution.

8 SPRA240

Design Problem

Although the TMS320C30 serial ports were designed to be used as
synchronous ports, they can be used as asynchronous ports with a
little creative software. This application note describes the hardware
and software to use a TMS320C30 serial port as an asynchronous
port.

Solution

How it works

This design relies on the fact that received RS-232 signals always
start with a “start bit” that is not part of the data and end with one or
more “stop bits” that are also not part of the data. This design keeps
the receiver turned off and an interrupt (also tied to the receive line)
turned on when not receiving a character. When the interrupt goes
off, this signals a start bit on the line. The code then turns the
interrupt off and the receiver on; the data comes in as a normal 8-bit
character. The stop bits assure the TMS320C30 has time to handle
the data before the next character.

The transmitter basically frames the data into 16-bit words, adding a
start bit, the character to send, and the stop bits. This will result in
up to 6 clock cycles (RS-232 clock rate) where bandwidth on the
channel is “wasted.” (Think of it as having 7 stop bits. That’s kind of
how it works.) A more efficient (but more complicated) design could
be done, but was not necessary for my project. Characters go in and
out the serial port “backwards” from the RS-232 method; they must
be bit-swapped to be correct.

The serial port is set up as a continuous transmit normal port. Frame
syncs are not used and internal clocks are used for the serial port
timing; these are timed of the TMS320C30 clock and need to be
adjusted if clock rates change.

Hardware

Little hardware design needs to be done to handle this, basically just
wire the serial port to the TMS320C30 properly.

Using a TMS320C30 Serial Port as an Asyncronous RS-232 Port 9

Figure 1. Schematic Diagram

Notice that the received signal is tied to DRx (Data Receive) and
also INTx (any of the TMS320C30 interrupts). DXx (Data
TRANSmit) must be pulled high to avoid having to have the
TMS320C30 constantly supply “1” on the line when it has nothing to
transmit. The clocks and frame syncs are not used.

Software

The real meat of this design lies in the software. It must handle the
interrupts and port setups and the queuing of the data. Actual code
and descriptions follow in this article. The code ran under an
operating system written by me, but the operation of the OS routines
should be obvious.

Transmitter

The transmitter does not do very much; just frames the data
properly, waits for the transmitter to be free, and sends the data.
The transmitter interrupt also drove the OS timer tick; therefore the
transmitter was constantly driven with data even when idle.

Receiver

10 SPRA240

The receiver does a lot more than the transmitter; some interrupt
tricks supply the necessary “sync to async” conversion. Normally the
serial port receiver is turned off. An interrupt comes in (the
rec_coming interrupt) when a start bit comes in the receiver. This
will turn off the rec_coming interrupt and start the receiver. The next
8 bits coming in the serial port should be the character desired. After
these 8 bits are received the rec0 interrupt goes off. This will handle
the received character; turn off the receiver, and turn back on the
rec_coming interrupt to wait for the next start bit.

Example 1. Code Listing

/**/

/*

 * io.c - The I/O routines and tasks to handle I/O to the C30 serial port.

 */

#include “monitor.h”

#include “debug.h”

#include “io.h”

Queue_Id gets_queue;

Queue_Id rec_int_queue;

Queue_Id io_state;

int rec_ready;

static Queue_Id wait_rec_int[2];

static Queue_Id wait_rec_cmd[2];

/*

 * invert_8 - swaps the bits in the 8 bit character supplied.

 */

char invert_8(inchar)

 char inchar;

{

 char outchar;

 outchar = 0;

 if (inchar & 0x01)

 {

 outchar |= 0x80;

 }

 if (inchar & 0x02)

 {

 outchar |= 0x40;

 }

 if (inchar & 0x04)

 {

 outchar |= 0x20;

 }

 if (inchar & 0x08)

 {

 outchar |= 0x10;

 }

 if (inchar & 0x10)

 {

 outchar |= 0x08;

 }

 if (inchar & 0x20)

 {

Using a TMS320C30 Serial Port as an Asyncronous RS-232 Port 11

 outchar |= 0x04;

 }

 if (inchar & 0x40)

 {

 outchar |= 0x02;

 }

 if (inchar & 0x80)

 {

 outchar |= 0x01;

 }

 return(outchar);

}

/*

 * The get string task. This receives request to receive strings then

 * receives them and sends the result back to the requesting task.

 */

void

gets_task()

{

 unsigned int my_tid;

 unsigned int msg;

 unsigned int tid;

 unsigned int qid;

 unsigned int dummy1;

 unsigned int dummy2;

 Buffer_Id buf;

 void *bufptr;

 char outbuf[3];

 char *out_loc;

 unsigned int count;

 unsigned int max_size;

 int finished;

 unsigned int c;

 io_state = NODEBUG_STATE;

 my_tid = 0;

 os_task_inquiry(&my_tid, NULL); /* Get my task id (and therefore my) */

/* main queue id. */

 os_create_queue(&gets_queue); /* Create another queue for requests */

/* to get data. */

 rec_int_queue = my_tid; /* My main queue same as tid */

 wait_rec_int[0] = rec_int_queue; /* Set up queue lists for wait queues * /

 wait_rec_int[1] = END_QUEUE;

 wait_rec_cmd[0] = gets_queue;

 wait_rec_cmd[1] = END_QUEUE;

 while (TRUE)

 {

 rec_ready = FALSE; /* Not receiving any data here */

/* Wait for someone to request a string */

 os_wait_fetch(wait_rec_cmd, &msg, &buf, &bufptr, &tid, &qid);

 if (buf != NO_BUFFER)

 {

 os_free_buffer(buf);

 }

12 SPRA240

 rec_ready = TRUE; /* Now we are receiving data */

 /*

 * The following is not 32-bit clean, but it doesn’t matter for

 * ’C30s

 */

 max_size = (msg > 24) & 0xff; /* Get the num bytes to receive */

 out_loc = ((char *) (msg & 0xffffff)); /* Get the address to put */

/* the string in. */

 count = 0;

 finished = FALSE;

 while (!finished)

 {

 if (count = max_size) /* If all the data is in, send a msg */

 { /* back to the requestor */

 *out_loc = ’\0’;

 finished = TRUE;

 os_put_queue(REC_FINISHED, NO_BUFFER, tid);

 }

 else

 {

 /* Wait for the receiver to send me some data */

 os_wait_fetch(wait_rec_int, &c, &buf, &bufptr, &dummy1, &dummy2);

 if (buf != NO_BUFFER)

 {

 os_free_buffer(buf);

 }

 outbuf[0] = c; /* Put the received data into a buf */

 outbuf[1] = ’\0’; /* so it can be echoed. */

 puts(outbuf); /* Echo the data */

 if (c == ’\n’) /* If a newline is received, finish */

 { /* the receive. */

 *out_loc = ’\0’;

 finished = TRUE;

 os_put_queue(REC_FINISHED, NO_BUFFER, tid);

 }

 else /* else put the character into the */

 { /* buffer. */

 *out_loc = c;

 out_loc++;

 count++;

 }

 }

 }

 }

}

/*

 * Receive handler. This routine is called by the interrupt handler that

 * is called when a byte is received from the com port.

 */

void

rec_hndl()

{

 int rec_char;

 regioncount = 1;

 /* Data from RS-232 is backwards, flip it around */

 rec_char = invert_8((*RECLOC) & 0xff);

 if (rec_char == 0x0d) /* Map ctrl-m to newline (No raw mode!) */

 {

 rec_char = ’\n’;

Using a TMS320C30 Serial Port as an Asyncronous RS-232 Port 13

 }

 if (io_state == DEBUG_STATE) /* If the debugger is on, send all */

 { /* data to it. */

 os_put_queue(rec_char, NO_BUFFER, debug_q);

 }

 else if (rec_char == 0x03) /* A ctrl-c activates the debugger. */

 {

 io_state = DEBUG_STATE;

 os_start_task(debug_tid);

 }

 else if (rec_ready) /* Send data to the gets task if it wants it. */

 {

 os_put_queue(rec_char, NO_BUFFER, rec_int_queue);

 }

 regioncount = 0;

}

#define XMTLOC ((int *) 0x808048)

#define RECLOC ((int *) 0x80804c)

#define XMT_PRT_CTL ((int *) 0x808042)

Queue_Id puts_queue;

Queue_Id xmt_int_queue;

static Queue_Id wait_xmt_int[2];

static Queue_Id wait_xmt_cmd[2];

int xmt_data;

/*

 * The put string routine. This task will put strings out to the serial port.

 */

void

puts(string)

 char *string;

{

 Task_Id my_tid;

 Queue_Id wait_fini[2];

 unsigned int msg;

 Task_Id tid;

 Queue_Id qid;

 Buffer_Id buf;

 void *bufptr;

 my_tid = 0;

 os_task_inquiry(&my_tid, NULL); /* Get my task id. */

 wait_fini[0] = my_tid; /* Use my task id as the queue to */

 wait_fini[1] = END_QUEUE; /* receive xmit ready messages. */

 /* Send a pointer to the string to the transmit task. */

 os_put_queue((unsigned int) string, NO_BUFFER, puts_queue);

 /* Wait for it to respond. */

 os_wait_fetch(wait_fini, &msg, &buf, &bufptr, &tid, &qid);

 if (buf != NO_BUFFER)

 {

 os_free_buffer(buf);

 }

 /* Ignore all messages that are not a send finished from the xmit task */

 while (msg != SEND_FINISHED)

 {

14 SPRA240

 os_wait_fetch(wait_fini, &msg, &buf, &bufptr, &tid, &qid);

 if (buf != NO_BUFFER)

 {

 os_free_buffer(buf);

 }

 }

}

/*

 * The put string task. This task will wait for strings on its input queue

 * and transmit them to the serial port.

 */

puts_task()

{

 Task_Id my_tid;

 char *msg;

 Task_Id tid;

 Queue_Id qid;

 unsigned int dummy1, dummy2, dummy3;

 int newline_flag;

 Buffer_Id buf;

 void *bufptr;

 my_tid = 0;

 os_task_inquiry(&my_tid, NULL); /* Get my task id. */

 os_create_queue(&puts_queue); /* Create a queue to get send requests*/

 xmt_int_queue = my_tid; /* My queue to get transmitter */

/* interrupt messages. */

 wait_xmt_int[0] = xmt_int_queue; /* Set up receive queues. */

 wait_xmt_int[1] = END_QUEUE;

 wait_xmt_cmd[0] = puts_queue;

 wait_xmt_cmd[1] = END_QUEUE;

 newline_flag = FALSE;

 xmt_data = FALSE;

 while(TRUE)

 {

 /* Wait for a string to transmit. */

 os_wait_fetch(wait_xmt_cmd, (unsigned int *) &msg, &buf, &bufptr, &tid,

&qid);

 if (buf != NO_BUFFER)

 {

 os_free_buffer(buf);

 }

 /*

 * Ok, now I am transmitting. Wait for the transmitter to tell me

 * that I can send some data.

 */

 xmt_data = TRUE;

 os_wait_fetch(wait_xmt_int, &dummy1, &buf, &bufptr, &dummy2, &dummy3);

 if (buf != NO_BUFFER)

 {

 os_free_buffer(buf);

 }

 /*

 * Send the whole message. Make sure to send the last new line

Using a TMS320C30 Serial Port as an Asyncronous RS-232 Port 15

 * even if currently pointing to the EOS character.

 */

 while ((*msg != ’\0’) || (newline_flag))

 {

 if (newline_flag) /* If transmitting a newline, (ctrl-j), also */

 { /* send a cariage return (ctrl-m). */

 *XMTLOC = (((int) invert_8((char)0x0d)) & 0xfeff) | 0xfe00;

 newline_flag = FALSE;

 }

 else

 {

 if (*msg == ’\n’) /* If a newline, set up to send a */

 { /* ctrl-m next. */

 newline_flag = TRUE;

 }

 /*

 * Put the character into the output buffer. The first

 * 7 bits are transmitted as 1, the next is the start bit,

 * the rest is the character.

 */

 *XMTLOC = (((int) invert_8(*msg)) & 0xfeff) | 0xfe00;

 msg++;

 }

 /*Wait for the transmitter to tell me I can send the next char*/

 os_wait_fetch(wait_xmt_int,&dummy1,&buf,&bufptr,&dummy2,&dummy3);

 if (buf != NO_BUFFER)

 {

 os_free_buffer(buf);

 }

 }

 xmt_data = FALSE; /* No longer receiveing data. */

 XMTLOC = 0xffff; / Prime the transmitter to send ones. */

 /* Inform the requestor that the send is finished. */

 os_put_queue(SEND_FINISHED, NO_BUFFER, tid);

 }

 }

 /*

 * transmit interrupt handler. This routine is called whenever the transmit

 * interrupt for the serial port goes off. It continuously keeps the

 * transmitter primed because the transmit interrupt is also used as the

 * clock interrupt.

 */

void

xmt_hndl()

{

 if (xmt_data) /* If the puts task is waiting interrupt info... */

 {

 regioncount = 1; /* Interrupts should already be turned off, */

/* set the critical region count to */

/* reflect that. */

 /*

 * Send a message to the puts task to tell it to send the next

 * char. If the send fails, go ahead and prime the transmitter.

 */

 if (os_put_queue(0, NO_BUFFER, xmt_int_queue) != 0)

 {

 *XMTLOC = 0xffff;

 }

 regioncount = 0;

 }

 else /* If the puts task is not sending, prime the transmitter */

16 SPRA240

 {

 *XMTLOC = 0xffff;

 }

}

/**/

;ioasm.asm - the assembly langage support routines for I/O handling for the

; C30 serial port.

 .global xmt0

 .global rec0

 .global rec_coming

 .global _init_io

 .global _rec_hndl

 .global _xmt_hndl

 .global _os_tick, save_task, restore_task

;* xmt0 - handle an interrupt from the serial port transmitter. This also

;* calls the OS tick routine. Note that the save and restore tasks

;* are called because this can result in a task switch.

 .text

xmt0

 CALL save_task

 CALL _xmt_hndl

 CALL _os_tick

 CALL restore_task

 RETI

rec_ser_cnt .word 808040h ; Address of serial port status register

s_recc_int .word 000000002h ; Mask for the receive interrupt

c_recc_int .word 0fffffffdh ; Inverted mask to clear the rec int.

reset_rec .word 0f7ffffffh ; Mask to write a 0 to the rec reset

unreset_rec .word 008000000h ; Unreset the receiver.

;* rec0 - Handle an interrupt from the serial port receiver to inform it

;* of the receipt of a byte on the serial port. This routine will

;* turn off the receiver and restore the interrupt telling it that

;* a byte is about to come.

rec0

 CALL save_task

 LDP @rec_ser_cnt,DP

 LDI @rec_ser_cnt,AR0

 LDI *+AR0(0),R0 ;Reset the receiver

 AND @reset_rec,R0

 STI R0,*+AR0(0)

 AND @c_recc_int,IF ;clear receive coming interrupt

 OR @s_recc_int,IE ;enable the interrupt for the next byte

 CALL _rec_hndl

 CALL restore_task

 RETI

;* rec_coming - This interrupt handle is called by INT1. It is tied to the

;* receive data line, it will be called when the start bit is received

;* for a character of information. It will turn on the serial receiver

;* (and the serial receiver interrupt) and turn its own interrupt off.

Using a TMS320C30 Serial Port as an Asyncronous RS-232 Port 17

rec_coming

 PUSH ST

 PUSH R0

 PUSH DP

 PUSH AR0

 LDP @rec_ser_cnt,DP

 LDI @rec_ser_cnt,AR0

 AND @c_recc_int,IE ;do not allow the receive coming interrupt

 LDI *+AR0(0),R0 ;Ready the receiver

 OR @unreset_rec,R0

 STI R0,*+AR0(0)

 POP AR0

 POP DP

 POP R0

 POP ST

 RETI

gl_prt_cnt .word 0068400c4h ; Initial setup for the serial port

; status register. This sets the

; following things:

; FSX is output.

; Fixed data rate signalling

; Standard frame sync mode

; Internal xmit clk

; Internal rec clk

; Active high DX and DR

; XLEN - 16 bits

; RLEN - 8 bits

; Transmitter interrupt enabled

; Receive interrupt enabled

; Activate the transmitter

; Deactivate the receiver

x_prt_cnt .word 000000111h ; Setup for the transmit port control

; register. Set all the transmit

; pins as serial port pins.

r_prt_cnt .word 000000111h ; Setup for the receive port control

; register. Set all the receive

; pins as serial port pins.

tmr_cnt .word 0000003cfh ; Setup for the timer control reg.

; Starts the timer

; Free run the timer (no hold)

; Clock mode

; Internal clock source

tmr_per .word 00434042Ah ; Timer periods. This is 1076 for

; the receiver, which is a little

; slow. This makes sure we don’t

; shift in time before the bits.

; These also assume a 20.48MHZ clock

; in the C30; these values will have

; to be adjusted for different clock

; rates.

enab_int .word 000000032h ; Enable serial xmit, serial recieve,

; and int 1 for serial port stuff.

18 SPRA240

first_xmt .word 00000ffffh

_init_io

 LDP @rec_ser_cnt,DP

 LDI @rec_ser_cnt,AR0

 LDI @x_prt_cnt,R0 ; Set up the transmit control port.

 STI R0,*+AR0(2)

 LDI @r_prt_cnt,R0 ; Set up the receive control port.

 STI R0,*+AR0(3)

 LDI @tmr_per,R0 ; Set the timer period register.

 STI R0,*+AR0(6)

 LDI @tmr_cnt,R0 ; Set the timer control register.

 STI R0,*+AR0(4)

 LDI @gl_prt_cnt,R0 ; Set the global serial control register.

 STI R0,*+AR0(0)

 OR @enab_int,IE ; Enable interrupts.

 LDI @first_xmt,R0 ; Start the transmitter sending 1’s

 STI R0,*+AR0(8)

 RETS

