

TMS320 DSP
DESIGNER’S NOTEBOOK

Bootload of C Code for
the TMS320C5x

APPLICATION BRIEF: SPRA235

 Jason Chyan
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 May 1994

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents

Abstract... 7

Design Problem.. 8

Solution... 8

Bootload of C Code for the TMS320C5x 7

Bootload of C Code for the
TMS320C5x

Abstract

This document discusses how boot code can be generated using C
code. Specifically addressed is how to use the -c option in the linker
to build a single code section that includes the .text, .cinit,
.bss, etc., sections that you want to be in the boot code.

8 SPRA235

Design Problem

How can I generate my boot code with C?

Solution

Use the -c (not -cr) option in the linker and build a single section
that includes the .text, .cinit, .bss, etc., sections that you
want to be in the boot code. Then use DSPHEX to convert this
single section into boot code. Following is an example linker
command file to link several sections and .cinit into one output
section.

-c

-o filename.out

-m filename.map

filename.obj

-stack 64

-l rts50.lib

-l flib50.lib

MEMORY

{

PAGE 0: PROG: origin = 0x0800, length = 0x1a00

PAGE 1: DATA: origin = 0x0060, length = 0x0020

}

SECTIONS

{

bootsect: {

rts50.lib(.text) = 0800h

*(.text)

.=e00h;

.cinit=.;

*(.cinit)

.+= 1;

.=00f00h;

*(.const)

.=01000h;

*(.stack)

.=01040h;

*(.bss) } load=0800h PAGE 0

}

The command file for the DSPHEX will be:

filename.out

-t

-bootorg 08000h

SECTIONS { bootsect = boot }

The program entry point of C code is _c_int0. Therefore, in the
linker command file the _c_int0 has to be assigned the starting
address. This was done by first line in the SECTIONS:

Bootload of C Code for the TMS320C5x 9

rts50.lib(.text) = 0800h

Since the .cinit section was hidden in another section, we need
to make it visible to the linker by:

cinit=.;

*(.cinit)

.+=1;

The commands in the SECTIONS assign a starting address to each
input section and it is relative to the starting address of first section.
This means that .cinit starts from 0x1600, .const starts from
0x1700, .stack starts from 0x1800, and .bss starts from
0x1840. If you don’t want to generate unused space in between
each section, you can remove the “.=0xxxxh;” command and all
the sections will be placed consecutively. When you link the file with
the example linker command file above, you will get the following
warning messages “out-put file has no .text section” and “output
file has no .bss section.” You can ignore these messages.

