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Bootload of C Code for the
TMS320C5x

Abstract 

This document discusses how boot code can be generated using C
code. Specifically addressed is how to use the -c option in the linker
to build a single code section that includes the .text, .cinit,
.bss, etc., sections that you want to be in the boot code.
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Design Problem 

How can I generate my boot code with C?

Solution 

Use the -c (not -cr) option in the linker and build a single section
that includes the .text, .cinit, .bss, etc., sections that you
want to be in the boot code. Then use DSPHEX to convert this
single section into boot code. Following is an example linker
command file to link several sections and .cinit into one output
section.

-c

-o filename.out

-m filename.map

filename.obj

-stack 64

-l rts50.lib

-l flib50.lib

MEMORY

{

PAGE 0: PROG: origin = 0x0800, length = 0x1a00

PAGE 1: DATA: origin = 0x0060, length = 0x0020

}

SECTIONS

{

bootsect: {

rts50.lib(.text) = 0800h

*(.text)

.=e00h;

.cinit=.;

*(.cinit)

.+= 1;

.=00f00h;

*(.const)

.=01000h;

*(.stack)

.=01040h;

*(.bss) } load=0800h PAGE 0

}

The command file for the DSPHEX will be:

filename.out

-t

-bootorg 08000h

SECTIONS { bootsect = boot }

The program entry point of C code is _c_int0. Therefore, in the
linker command file the _c_int0 has to be assigned the starting
address. This was done by first line in the SECTIONS:
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rts50.lib(.text) = 0800h

Since the .cinit section was hidden in another section, we need
to make it visible to the linker by:

cinit=.;

*(.cinit)

.+=1;

The commands in the SECTIONS assign a starting address to each
input section and it is relative to the starting address of first section.
This means that .cinit starts from 0x1600, .const starts from
0x1700, .stack starts from 0x1800, and .bss starts from
0x1840. If you don’t want to generate unused space in between
each section, you can remove the “.=0xxxxh;” command and all
the sections will be placed consecutively. When you link the file with
the example linker command file above, you will get the following
warning messages “out-put file has no .text section” and “output
file has no .bss section.” You can ignore these messages.


