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IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any

semiconductor product or service without notice, and advises its customers to obtain the latest

version of relevant information to verify, before placing orders, that the information being relied

on is current.

TI warrants performance of its semiconductor products and related software to the specifications

applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality

control techniques are utilized to the extent TI deems necessary to support this warranty.

Specific testing of all parameters of each device is not necessarily performed, except those

mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,

personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES

OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.

Use of TI products in such applications requires the written approval of an appropriate TI officer.

Questions concerning potential risk applications should be directed to TI through a local SC

sales office.

In order to minimize risks associated with the customer’s applications, adequate design and

operating safeguards should be provided by the customer to minimize inherent or procedural

hazards.

TI assumes no liability for applications assistance, customer product design, software

performance, or infringement of patents or services described herein. Nor does TI warrant or

represent that any license, either express or implied, is granted under any patent right, copyright,

mask work right, or other intellectual property right of TI covering or relating to any combination,

machine, or process in which such semiconductor products or services might be or are used.

Copyright   1996, Texas Instruments Incorporated
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Introduction

A complete manufacturing package is available from Texas Instruments that describes the information in

this application note in detail, including electronic schematics on request. The manufacturing document

consists of three items: the specification document [7], a board-level description document [8], and an

FPGA-level document [9].

Historically, our card was defined as a board level prototype of the “Basara” concept. A description of this

concept is Texas Instruments classified information [3]. In order to verify this concept, a prototype was

specified. This prototype was code named SABRE1. SABRE1 is a generic coprocessor with a

standardized, memory-like interface and can serve as both a computing device and storage device. This

evolved to the next version called “Texblast”, a large development board with a separate daughter card for

a codec. This later evolved to the current DSP MediaCard version 1.0, with a DSP and on-board stereo

codec for sound and fax/modem applications.

DSP MediaCards can also be accessed by the PC as an I/O mapped device. These cards with their on board

DSP can be used either as standard memory or as multi-function peripheral cards. DSP algorithms can be

loaded by the host PC in the same manner that as it loads to any PCMCIA memory. Once the program is

loaded, the host may command the DSP to execute the algorithm as a co-processor. Two functional models

were concentrated upon for the DSP interface: the lower-rate single-data model as seen in a modem

Host/DSP/Communication System and the higher-rate block-data transfers as seen in a sound card Bus

Arbitration system.

To date TI had developed a form-factor showcase card called SABRE1 and a larger development card

called Texblast. Both of these cards use the Texas Instruments TMS320C51 DSP in 100-pin TQFP which

is a fixed-point 16-bit device running in this design at a maximum rate of 40 MIPs. A brief summary of

the PCMCIA bus can be found in a vast variety of articles including [4]. Meanwhile, specific information

regarding the Texblast board can be found in Appendix A of [7] for your reference. The final stage will be

called the Media Card.

The following features were designed into these cards:

• Card is mapped addressable as host PC memory or I/O device through PCMCIA card services

with medium speed (around 200–500 ns) access time of PCMCIA common memory

(read/write) when in standard mode.

• Smart mode operation for the PC to control DSP directly and share common memory with DSP

• The same memory is available to the DSP as a maximum speed (25 ns instruction cycle time),

zero wait state, DSP external memory configuration with expandibility designed in.

• Separate attribute memory to the PC per PCMCIA spec (slower 400–500-ns speed, read-only,

even-byte access), also available to the DSP in its global data memory

• On-board logic to arbitrate-memory bus between DSP and PC with software programmable

features

• Page control of DSP memory from DSP to increase its address space

• Direct PC control of active DSP tasks and memory pages

• PC control of DSP operating clock modes and DSP control of DSP speeds for power

management

• Bootload of code to the DSP from its global-data memory under PC control

• Dual-serial I/F and emulation pins to analog front end (AFE) boards.
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• Four general-purpose DSP inputs and eight outputs (bit I/O) to AFE boards

• Direct interrupt control and handshake between PC and DSP for PC/DSP communication

• DSP interrupts from AFE board

• PC interrupt from AFE cards to monitor external events

• Dedicated memory for real-time DSP operating systems with high-level language-based

interface

• Software interface based on PCMCIA socket and card services using direct mapping of

PCMCIA card into PC memory (under development)

System Architecture

The DSP MediaCard interfaces to the PC either as PCMCIA memory or I/O-mapped peripheral. This

translates to the DSP as 32M (16 bit) words of external program/data space and 32M (8 bit) bytes of

global-data space, both of which must obviously be paged in a 16 bit DSP. The specific memory

configuration of the Texblast card is described in [7]. The minimum common memory to the DSP is set

at 64K bytes to ensure that at least two 32K word pages of external program/data memory is available to

the ’C5x DSP. There is maximum flexibility in a combined program data space/separate program and data

space (CPD/SPD) paging feature that allows application adaptation in DSP memory configuration. The

entire common memory is accessible by PC in byte mode (8 bits) or in word (16 bits) mode. The entire

attribute memory is also addressable by PC in byte mode with even bytes being valid as per PCMCIA

specification [1]. The minimum amount of attribute memory available to the DSP as global-data memory

is 32K bytes. The host PC can also access the card as a 16-bit I/O device. The I/O address for the card is

selectable by PC in the card-configuration registers mentioned in 4.2, specified in [1], and detailed in [7].

Figure 1 shows a simple block diagram of an example system to visualize a card structure. The PCMCIA

connector appears on left side of the board. The FPGA/ASIC integrates all parts of the system; it is the

system traffic cop and more detail regarding its implementation can be seen in Section 7. There is an

address/data/control signal bus on the left side of the FPGA/ASIC that connects to the PCMCIA bus. On

the right side of the FPGA/ASIC is a second bus that connects to the memories, DSP, and any other

peripherals that can be chosen to be placed there (such as a parallel stereo codec [12]). There is an analog

front-end (AFE) board connector that has been defined and placed on the other side of the board for external

serial and slow I/O interface such as modem or scanner port. An oscillator supplies clocks to DSP and

FPGA/ASIC.
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Figure 1. System Architecture Block Diagram
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Part or all of the common memory can be shared by the on-board DSP for algorithm execution. This

memory has been optimized first for speed (25-ns instruction cycle when using a single bank) and next for

expandability for the DSP. Upon reset, the entire common memory is available to the PC. The host may

download any signal-processing algorithm into the common memory for execution by the on-board DSP

as explained in the software interface section. DSP accesses the memory as 16-bit words only and can use

a paging scheme to expand its address reach. The paging is under software control of the DSP. There are

also control and status registers used by both PC and DSP that are implemented on-board in a separate

FPGA/ASIC device. The read-only attribute memory similarly is shared by the PC and DSP, though the

read/write card configuration registers (CCRs) as defined by the PCMCIA spec are also located in the

FPGA/ASIC. The DSPs internal memory is not available for the PC (especially on the 100 pin TQFP

packages that do not have the IAQ signal required for accessing ’C5x SARAM. See [6] for a possible

workaround, even though this is not supported in this application design).

The arbitration of DSP and PC buses are performed on-board with PC access of the memory having higher

priority. There are a variety of configurations to maximize shared-memory efficiency, depending on the

application. There is also a communication channel between PC and DSP that is accomplished by way of

dedicated data, status, and control registers in the FPGA/ASIC and can be either interrupt or poll driven.

The optimum configuration for a system is heavily dependent on the DSP and somewhat on the PC software

running on the system. Alternate configurations are provided in this interface to give the programmer

alternatives based on their code. The PCMCIA spec there is only one interrupt line IREQ. Therefore, a

status register (DSPSR) must be polled on the host side to determine which interrupt is being registered.

The system clock to the DSP is provided by the FPGA/ASIC to allow control of DSPs operating speeds

in two modes. These modes must be set while the DSP is in reset. In the default mode, the DSP can run at

a fixed 25-ns instruction cycle time. In the second mode, the DSP clock input frequency is at 50 ns and can

be reduced under DSP software control to reduce power for slow speed operation (such as external event

monitoring). This spec defines a divide by 1, 2, 4, and 8 that corresponds to 50 ns, 100 ns, 200 ns, and 400

ns. All these numbers assume the use of a 40-MIP device. In the standard mode of operation, the on-board

DSP is reset with clocks shutoff to minimize power consumption.

As previously mentioned, the card provides a separate 48-pin connector for the DSP to interface to analog

front-end cards (See Appendix B.2 of [7]). The DSP serial-port signals are available at this connector along

with the two ’C5x bit I/O signals XF and BIO. Also, eight outputs bit and four input bits are available on

this connector to monitor, configure, and control external A/Ds, D/As, and other peripherals. These are

controlled by the DSP using a register in its I/O space. Two external interrupts, and the DSP timer output

are provided. INT4 is combined with the AFE interrupt request signal. In other words, this signal goes to

the PC via the FPGA so that it can be recognized even if the DSP is in reset. The connector also provides

DSP-emulation control pins to help DSP algorithm development on the card. Thus a bare-boned AFE card

would require and XDS the emulation header configuration for connection to a TI XDS-510 emulation

system. Any pull-up resistors necessary for operation or to reduce power on inputs must be mounted on

the DSP MediaCard. Figure 2 provides more detail about the board-level wiring. See the schematic in [8]

for actual configuration.

XDS is a trademark of Texas Instruments Incorporated.
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Figure 2. System Board Level Block Diagram

Operation

Various aspects of the operation of the PCMCIA card should be understood that roughly coincide with the

Type I and Type II modes described in [1].

Operational Modes

According to PCMCIA specifications when the card is plugged into a slot, the card information structure

(CIS) is read out of attribute memory and informs the PCMCIA slot controller how to configure this card.

The DSP MediaCard operates in two modes.:

• Standard mode

• Smart mode

Standard Mode

In the standard mode the DSP is reset, clocks are off, and the DSP is off the bus completely (i.e. HOLDA

signal is asserted low) giving the PC low-power optimized access to the memories. This is the default mode

that occurs when the card is plugged in and is intended for the memory only mode of PCMCIA [1]. In this

mode, the card appears to the PC and is used by the PC as a standard-memory card only. When activated

by the host PC, the on-board DSP is not active. The size of the memory available on the card is specified

by the card information structure (CIS) in the attribute memory. The card configuration registers in attribute

memory are available in this mode. See PCMCIA standard rev 2.1 for details of this mode of operation.
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Smart Mode

In the smart mode, the DSP can be activated and share memory with the PC. In this mode, smart mode

registers become active and available to PC and DSP. The first 16 bytes of common memory are re-mapped

into physical locations in the ASIC for the PC (PC smart mode registers or PCSMMRs). PCSMMRs are

DSP-control and -status registers that become available to the PC. During activation or after activation DSP

smart mode memory registers (or DSPSMMRs or ’C51SMMRs) which are control and status registers to

the DSP become available to the DSP as eight words in DSP I/O space. Communication between DSP and

PC can be accomplished ? a set of other SMMRs called host-communication registers (DSPTXD,

DSPRXD) as either interrupt or polling driven. When PC accesses PCSMMRs, the DSP operation is not

halted since no bus arbitration is needed during these accesses. Depending on the application there are also

other bus-arbitration optimizing features that can be used. This mode complies with the PCMCIA memory

and I/O card mode of the PCMCIA spec [1].

Switching Between Standard Mode and Smart Mode

When the PC writes a DSP signature pattern A320 (Attention 320), four times consecutively to the SIGR,

the DSP is activated and card is switched from the standard mode to the smart mode.

A320 is valid X86 data and can occur as part of the normal PC operation. For the signature to be valid, PC

must write the same pattern to the same location in succession without any other reads or writes to any other

location in the PCMCIA card. Address 400h functions as normal common memory location, although it

is monitored.

Once the first signature code is detected, any of the following actions by the PC (before the signature stream

is completed), disqualifies the stream from being valid:

• Any read from any valid address on the card

• Any write to any address (other than the signature address) on the card

• A write to signature address with another pattern.

Once a valid signature is detected, the MODCTL bit is set in the DSP control register. The card is switched

from standard mode to smart mode and the first 16 bytes of the PC’s common memory is re-mapped into

the ASIC. Any subsequent PC access to this block of common memory is re-directed into the ASIC. To

switch out of smart mode, a 0 should be written to the MODCTL bit.

An alternate method of switching in and out of smart mode uses the mode bit in the CCSR which is located

in attribute memory. Writing a 1 causes the card to switch into smart mode while a 0 switches back to

standard. These two methods are ORed together, so either one active in smart mode supersedes the other

in standard mode. Note that a good method of testing whether the card is in smart mode is reading a

PCSMMR and checking for default values as shown in Figure 3.

Smart Mode Registers

Control of the card’s operating mode is accomplished via the control, status, and communication registers

in the FPGA/ ASIC. Some of these are accessible only by the PC, some only by the DSP, and some by both

PC and DSP. These registers are mapped in the common-memory space of the PC and I/O space of the DSP.

For both PC and DSP, some of these registers are reserved as marked. In the standard mode, only the

signature register (SIGR) is accessible to the PC. Other registers exist only when the card is in the smart

mode of operation. The communications registers are dual mapped into the PC’s I/O port also when I/O

is enabled.

On the PC, these registers are mapped into the first 16 bytes of common memory (000000h – 00000Fh)

address of the PC. This means that the PC will not change accidently the first few DSP interrupt vectors
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when the card is in smart mode and separate program and data space mode. However, avoiding overwrites

of these vectors must be maintained carefully for any other mode. In the smart mode, this block of common

memory is not available to the PC for shared-memory access. Even though the PCSMMs are evenly byte

addressed, they are 2-bytes long and should be accessed in PCMCIA word mode. When the PC accesses

the communication, control, and status registers, it is accessing the registers physically located in the ASIC

and not in the common memory.

The registers implemented in the FPGA/ASIC are as follows:

Register Memory Address Access Default

Name
PCMCIA Common

Memory

’C5x I/O

Space
Value PC DSP

SIGR 000400h — xxxx R/W —

Reserved 000000h — — — —

DSPCR 000002h — 0108h R/W —

DSPSR 000004h — 0xxxh R —

DSPTXD 000006h 0050h 0000h R W

DSPRXD 000008h 0051h 0000h W R

Reserved 00000Ah–00000Fh — — — —

PCSR — 0052h 000xh — R

BIOR — 0053h 000xh — R/W||R

SYSCFG — 0054h 0080h — R/W

Reserved — 0055h–005Fh —

Figure 3. Smart Registers

In the standard mode, only the SIGR register is defined and the card monitors all PC writes to this location

for valid signature pattern (while it writes to common memory). When the card operates in smart mode,

SIGR is not monitored and any write to SIGR writes to that location in common memory.

The following describes each register briefly more detail can be found in [7].

DSP Control Register (DSPCR):

The DSPCR is a 16-bit R/W register accessible only to the PC. It is located at common-memory address

00000002h when the card is in smart mode. This register is used to control DSP operation (such as reset,

clock modes, clock gating, and the MP/MC bit). It also enable/disables card interrupt (i.e., IREQ signal to

the PC, memory-bus arbitration features, standard-smart mode switching, and IREQ interrupt clear and

prime. Even though some protections have been included with the DSP-specific bits, the operation is not

fully automated. Thus the user must program DSPCR while taking into consideration DSP operation. For

example when individual writes should be done for turning on the DSP clock, taking the DSP out of reset,

etc.

DSP Status Register (DSPSR):

The DSPSR is a 16-bit register read-only register accessible only to the PC. It is located at

common-memory address 00000004h when the card is in smart mode. This register is used to monitor

card-interrupt event status for the PC-interrupt IREQ [1] and various memory/DSP bus arbitration signals

such as HOLDA [5].
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DSP Data Transmit Register (DSPTXD):

DSPTXD is a 16-bit register used by the DSP to communicate to the host PC. The PC has only read access

to this register and any PC write to this register is ignored. The DSP has only write access to this register

and any DSP read from this register causes invalid data to be read. DSPTXD is dual mapped into (a) PC

I/O address as specified by CCSR in attribute memory and (b) PCMCIA memory address 000006h.

Contents of this register can be read by the PC either in the memory space or in the appropriate I/O space

(PC COM port 1 – 4 as specified by CCSR). A DSP write to this register generates a TXFULL interrupt

to the PC, if enabled. Similarly, a PC read from this register generates a TXEMPTY interrupt to the DSP

if enabled. See Section 6 for more detail.

DSP Data Receive Register (DSPRXD):

DSPRXD is a 16-bit register used by the PC to communicate to the DSP. The PC has only write access to

this register and any PC read from this register causes invalid data to be read. The DSP has only read access

to this register and any DSP write to this register is ignored. DSPRXD is dual mapped into (a) PC I/O

address as specified by CCSR in attribute memory and (b) PCMCIA memory address 000008h. PC can

write to this register either in the memory space or in the appropriate I/O space (PC COM Port 1 – 4 as

specified by CCR). A DSP read from this register generates a RXEMPTY interrupt to the PC enabled.

Similarly, a PC write to this register generates an RXFULL interrupt to the DSP, if enabled.

PC Status Register (PCSR):

The PCSR is a 16-bit read-only register to the DSP located at I/O address 0052h when the card is in smart

mode. It is used by the DSP space to determine status of the host communication registers and peripheral

status.

Bit I/O Register (BIOR):

The BIOR is a 16-bit read/write and/or read-only register accessible only to the DSP. It is located at I /O

address 0053h when the card is in smart mode. This register is used for bit I/O to control the AFE card. Bits

0–3 (I0–I3) are defined as read only input bits and bits 15–8 (O7–O0) are defined as read/write output bits.

The DSP writes and reads directly from this register to control and monitor external events. At power-up,

all output bits are set to 0.

System Configuration Register (SYSCFG):

The SYSCFG register is a 16-bit register containing four read-only input bits and eight read/write output

bits. It is accessible only the DSP and is located at I /O address 0053h when the card is in smart mode. This

register is used by the DSP to control the frequency of the clock input to the DSP when CLKMD1 = 0, bus

arbitration, global data memory paging, and external-memory configuration and paging.
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Operational Examples

The following few sections give some examples of card setup and use.

Setting Up DSP

After the card has been placed in a valid PCMCIA slot with a valid enabler for the PCMCIA ’C51 DSP

MediaCard and communication is being done through PCMCIA card/socket services:

1. Switch to smart mode by writing a 20h to location 10h in attribute memory (COR).

2. Read DSPCR (location 02h in common memory) for the default value (108h – configured as

DSP in reset, DSPCLK is off, CLKMD1 = 0) (i.e., divide-by-2-mode, microprocessor mode, all

interrupt enables off, manual hold is inactive, as is maximum overdrive).

3. Write 10Ah to DSPCR to turn on the clock (CLKOUT1 is 50 ns).

4. Write 10Bh to take DSP out of reset.

If switching to PLL (25 ns i.e., CLKMD1 = 1) mode from step 4 above, do the following:

1. Read DSPCR (should read 10Bh).

2. Write 10Ah to DSPCR (reset DSP).

3. Write 108h to DSPCR (turn off clock).

4. Write 10Ch to DSPCR (switch CLKMD1. Other changes such as MP/MC, MAXOD, etcetera

should be done during this step).

5. Write 10Eh to DSPCR to turn on clock. (CLKOUT1 is 25 ns).

6. Write 10Fh to DSPCR (to take DSP out of reset).

Loading and Executing Single Algorithm

Initially PC loads the desired algorithm to the DSP memory and initializes the DSP. This probably is done

using the PCMCIA card services protocol which is specified in [1] and described in [5].

Then PC enables the AFEINT by setting AINTEN bit allowing PC to be interrupted by the AFE card (voice

activated switch, ring detect, etc.). Following the enable, the PC can reduce power consumption and turn

the DSP clock off by setting CLKON bit to 0. This puts the DSP in hold mode, buses in 3-state, allowing

PC quicker access to remaining unused memory on the card. When the desired external event occurs

(indicated by AFEINT), PC turns the DSP clock on and DSP starts executing the algorithm. Since the

algorithm is already loaded into DSP memory, there is no delay in loading the algorithm. The code also

can be written into global-data memory, and the DSP can be bootloaded by the PC.

Loading and Executing Multiple Algorithms

PC initializes DSP and loads DSP operating system.

Operating system loads various DSP algorithms (first algorithm in page 1, second algorithm in page 2, etc.)

PC and DSP must follow a predetermined handshake protocol. Commands and data can be passed easily

by using the communication registers without halting DSP operation. DSP operating system controls

enabling of DSP program/data pages and transmission on processed data to the PC. The characteristics of

this operating system can greatly determine which data exchange protocol is more efficient: (1) the

lower-rate single-data model as in a modem or (2) the higher-rate block-data transfers as in a sound card.

Reset

When the card is powered on and hard reset occurs (i.e., a PCMCIA RESET signal is asserted and

deasserted), it is in standard mode (TMS320C51 inactive i.e., RS = 0 and no clocks are going to the DSP).

DSP control logic on the FPGA holds the TMS320C51 in reset by way of the RS signal and keeps the clock
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off until the host turns it on after a mode change. When a mode change is requested from standard to smart

mode, the PC can take the TMS320C51 out of reset. This can be done since the smart registers are available

to the PC when switched to smart mode. Initialization or operating system code could be loaded into the

SRAM starting at address 0h prior to the change to smart mode. Or the DSP code could be loaded into

FLASH EEPROM, allowing the DSP to boot load out of FLASH memory. When the host requests a mode

change from smart to standard, the TMS320C51 is once again reset and held in reset until the next mode

change.

The card can have a soft reset by writing to the SRESET bit in the COR of the CCSR in the attribute memory

as defined by the PCMCIA spec. This soft reset has the same effect as a hard reset, except that the CCSR

values are not cleared. The card does not have to be in smart mode to access the CCSRs.

Memory

The PCMCIA DSP MediaCards provide two separate memory spaces for the common memory and

attribute memory as defined by [1]. Both memory spaces are accessible by DSP and PC. DSP accesses the

common memory in its program and data space, and attribute memory in its global-data memory space.

The following sections contains the specs for a general ’C51 DSP MediaCard implementation. As

mentioned in Section 2.0, this DSP MediaCard spec supports up to 64M-bytes RAM as PCMCIA common

memory and 32M bytes (even bytes) of separate attribute memory (since all 26 PCMCIA address lines are

decoded). But this spec limits the paged DSP external program/data space to 9M words and global-data

space to 128K bytes (because of paging scheme given in SYSCFG in [7]).

Common Memory

The size of common memory that can be shared by the PC and the DSP depends on the number of address

lines pinned out to the memory bus, and, obviously, the amount of memory on the card. The CPD/SPD

feature allows for maximum memory flexibility depending on the application. In both modes, page 0 is

fixed and subsequent pages are enabled using SYSCFG (If either of these modes is not used, then the

appropriate bits can be RESERVED). As mentioned in Section 3.2 and specified in [7], the 32K pages are

enabled on an N–1 basis. The ’C5x DSP can access up to a maximum of 9M bytes of common memory

on the card starting at address 0 with the configuration shown in SYSCFG. This is calculated by using

32K-word blocks of memory with four bits of paging and two spaces with CPD/SPD = 0, and 32K-word

blocks of memory with eight bits of paging and one space with CPD/SPD = 0.

DSP common (external) mem = (32K X 2^4 X 2) + (32K X 2^8 X 1)

= 9M words= 18M bytes

Any additional memory on the card is only accessible by the PC. The ’C5x DSP accesses the memory in

pages of 32K x 16 each. The 288 pages are divided as 16 pages of program memory and 16 pages of data

memory and 256 pages of combined program and data. Only four or two pages can be active at any time

(four if CPD/SPD = 0, two if CPD/SPD = 1). Page 0 is always active. This allows DSP operating systems

to use page 0 as system memory and additional pages as application-specific memory. Page 0 and 1 are

selected with CPD/SPD = 0 as default upon power up.

Figure 4 is a typical memory map of the PCMCIA common memory for separate program and data spaces.
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Separate Program and Data Spaces

64K x 16
’C5x Program

Memory

8000

FFFFPage n

Page n–1

Page 3

Page 2

0000

7FFF

8000

FFFF

Page 1

fixed
Page 0

Memory
Common
PCMCIA
2M x 8

000000

0FFFFF
100000

1FFFFF

Memory
’C5x Data
64K x 16

fixed
Page 0

Page 1

0000

7FFF

8000

8000

FFFF

Page 2

Page 3

Page n–1

Page n

FFFF

Figure 4. Typical PC/DSP Common Memory Map (Separate Program and Data)

In separate program-data space mode (CPD/SPD = 0), there are separate program and data spaces. This

is similar to how the TI software development systems (SWDSs) were designed. The bits 11–8 in SYSCFG

are defined as EXPP bits to page through program memory and the bits 15–8 in SYSCFG are defined as

EXDP bits to page through data memory. Figure 4 details the specific configuration of the memory map

of this particular DSP MediaCard. According to PCMCIA specs common memory is the main shared

memory from which code is run, data is stored, etc. The PCMCIA spec also contains an execute-in-place

(XIP) standard that allows code to be run from the PCMCIA bus.
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Figure 5 is a typical memory map of the PCMCIA common memory for combined program/data space.

Memory

200000

2FFFFF

64K x 16
’C5x Combined

Program and Data

8000

FFFFPage n

Page n–1

Page 3

Page 2

0000

7FFF

8000

FFFF

Page 1

fixed

Page 0

Memory

Common

PCMCIA
1M x 8

Combined Program and Data Spaces

Figure 5. Typical PC/DSP Common Memory Map (Combined Program Data)

In combined program-data space mode (CPD/SPD = 1), the program and data spaces are ORed together

to give the flexibility in assigning program and data memory. However, the user must be careful not to

overlap program and data assignments since one of the spaces is overwritten. This is similar to how the TI

evaluation modules (EVMs) are designed. The bits 15–8 of SYSCFG are defined as EXC bits to page

through combined program and data memory. ORing the program and data space together reduces in half

the memory addressability range for the part, and the additional bits for paging increases it. Reference [7]

shows the configuration for a specific card.
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Attribute Memory

Again, the size of attribute memory that can be shared by the PC and the DSP depends on the amount of

address lines pinned out to the memory bus, and the amount of memory on the card. The ’C5x DSP can

access up to a maximum of 128K bytes of attribute memory on the card starting at address 0000 with the

configuration shown in SYSCFG (assuming that the ’C5x global-memory register (GREG) is configured

correctly. This is calculated by using 32K word blocks of memory, and 2 bits of paging:

DSP attribute (global data) mem = 32K × 2^2 = 128K bytes

Any additional memory on the card is only accessible by the PC. Most of attribute memory (except CCSRs)

is located in non-volatile read-only memory (such as ? and EPROM). Cards can decide to use a FLASH

EEPROM which would allow user reprogramability under special conditions.

Figure 6 shows a typical memory map of the PCMCIA attribute/global data memory. The actual memory

map for a particular implementation can be found in Figure 6 of [7].

000000

0FFFFF

32K x 8

DSP Global

Memory

8000

FFFFPage n

Page n–1

Page 2

Page 1

8000

FFFF

Page 0

Memory

Attribute

PCMCIA

1M x 8

Figure 6. Typical PC/DSP Attribute/Global-Data Memory Map
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According to PCMCIA specs the lower part of the attribute memory (starting at location 00000000h)

contains the CIS. These are configuration bytes, called tuples, are read by the PCMCIA controller in a

computer when a card is inserted to determine the cards configuration. As specified by PCMCIA, four 8-bit

read/write registers are located in the FPGA/ASIC and called the card configuration registers (CCR). These

bytes are used for storing card configuration information (PC I/O interrupt, I/O address, etc.) and are

physically located in the FPGA/ASIC. Figure 7 describes the beginning of a typical CIS (The actual one

for this board can be seen in Appendix B.2 of [7]):

0000000h NULL ; beginning of CIS

0000002h long-link tuple

0000004h offset to next tuple

0000006h  address of target tuple ”00”

0000006h ”01h ”

0000008h ”00h”

000000Ah NULL

000000Ch NULL

000000Eh NULL

0000010h Configuration option register

0000012h Card configuration and status register

0000014h Pin replacement register organization

0000016h Socket and copy registers

0000018h

00000FEh
Reserved

0000100h Target tuple

Figure 7. Example of a Typical Attribute Memory Map

More detail on the CCRs as defined can be seen in [1] while implemented in [7]. They are only reset by

a hard reset from the PCMCIA bus. They are not affected by a soft reset.
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Memory Interface Signals

The primary goal was to get fast DSP instruction cycle (25 ns) with relatively affordable SRAMs (15 ns).

This required the use of a no-decode interface since the data access time of a TMS320C5x-80 is 15 ns. Other

motivational factors included getting highly dense memories (causing the need for paged memory) and thin

packages for the PCMCIA size-form factors. Also low power was a major consideration. The following

few sections describe how various memory interfaces should work and where they were used in the

PCMCIA card. The memory map section shows a figure of the final memory map and describes how it is

configured.

No Decode Memory Interface (SRAMs)

The memory interface has been optimized for maximum DSP performance. Since address access time (taa).

(see [10]) in a 25 ns ’C5x is 15 ns and 15 ns SRAMs are being used, the memories must be accessed by

the DSP with no address decode. Thus, RAMs that have WE controllable access are needed. This allows

the RAM OE to be tied low, the DSP memory strobe (STRB) to be connected to a memory chip select (CS

or CE), and DSP read-write signal (R/W) to be connected to RAM write enable (WE). The ’C51 timing

shows that this configuration allows for no decode zero wait-state 25-ns instruction-cycle external-memory

accesses (this can be seen in p. 6–? of [11]). Figure 8 shows an example of the ’C5x no-code SRAM

interface.

R/W

STRB

PAL/FPGA/ASIC

C51

(WE controlled)

SRAM

Other_CS

OE

WE

CS1

CS2

Figure 8. ’C5x No Decode SRAM Interface

One aspect of zero decode logic that should be introduced is the use of address and memory strobes in the

configuration shown in Figure 8. In Figure 8, address lines, PS and DS are not shown. One possible

configuration is if the RAM is 64K (i.e., address lines A0 to A15) and that corresponding DSP and RAM

address lines are connected. PS and DS are left unconnected. This gives the combined program and data

scheme that is seen in a ’C5x EVM. This means that program and data spaces overlaps in the external RAM.

This is how the Toshiba RAM is configured on this card. This gives flexible program/data allocation and

also makes memory paging quite easy (assuming the user gets higher density SRAMs. If the user needs

to cascade SRAMs, then chip-selects need to be used. In either case, it is assumed that paging is not zero

wait state). The disadvantage is that the address range of the DSP has been cut in half.
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Another method of no decode logic address mapping is to use 128K memories (like the IDTs), and to

connect A16 to one of the memory space strobes PS or DS. In the case of this board, PS is connected to

A16. Thus the single bank of 2 IDT RAMs (8 bytes each) are divided into separate 64K blocks of program

and data which allows full speed operation.

A disadvantage of both these schemes is seen in the name, no decode. This means that sub-64K (or whatever

maximum size) blocks cannot be paged, enabled, etc. Also the disadvantage of having both configurations

on one memory bus is that PS is connected to SRAMA16. This makes paging impossible beyond page 0

for either SRAM or Flash EEPROM. But this card is also a showcase card, and was meant to show all sorts

of configurations. In reality it allows a bank switch between combined program/data and separate

program/data, but does not let the user page either one.

Decoded Memory Interface (Flash and Other Slow Devices)

The memory interface for the FLASH EEPROM works differently. Since the Flash EEPROM is slow and

accesses are not so time critical, accesses use wait states and use decode in the FPGA. This particular

interface appears more like a standard-memory interface (similar to Figure 6–13 in [10] except that there

is no decode logic there since there is only one device on the external bus). It uses read, write, and select

signals (OE_MEM, WE_MEM, and FLASH_CS) from the FPGA to the FLASH EEPROM (these memory

strobes have also been used in other cards for slow peripherals such as a parallel stereo codec). These

signals are decoded through the FPGA from either the PCMCIA bus and/or DSP read, write, and select

signals. In the case of PCMCIA, OE, WE, REG, CE1, and CE2 are used. The later three signals select

attribute memory and byte/word access. In the case of the DSP, the redundant DSP signals RD and WE are

used along with BR to indicate global-data memory. Other devices, such as stereo codecs or UARTs also

can be put on this bus and the memory strobes used. A separate CS is needed for each device.

Memory Paging

Since a ’C5x is a 16-bit machine with a 16-bit address, memory paging is needed if more than 64 K of

memory needs to be addressed in a particular space. Some external device needs to supply the upper

addresses for the denser than 16-bit memory. Often this paging is controlled by the processor. This can be

done by having the DSP write to a register located in its I/O space whose data lines are the higher address

bits (Figure 9).
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Register

DQFP–Type

Q3–Q0

D3–D0

EN

SRAM

D15–D0

A15–A0

A19–A16

CS
C51

D15–D0

A15–A0

IS

Figure 9. ’C5x Paging Hardware

In the PCMCIA card design (shown in Figure 9) this register was located in the FPGA and allowed a pretty

simple paging scheme. This scheme works well with the FPGA since it is still no decode and the SRAMs

share the same bus with the DSP. On the PCMCIA card, this is a non-zero wait-states page-swap paging

scheme. This means that when banks of memory are paged through (by the DSP writing to an FPGA register

located in its I/O space), a few wait states are required for the swap to the other bank. After reaching this

bank, subsequent accesses will again be 0 wait state. This paging involves no decode and some

manipulation was done to gain the desired memory configurations (see memory map section) and the

paging is static. In dynamic paging, some decode would be done on each memory access, probably on

address lines and space strobes (PS, DS, IS) thus allowing a wide range of memory configurations. The

FPGA register selects the upper address bits coming from the FPGA for the paging of the SRAM. On the

PC side, the upper bits are determined by the address accessed selected by the PCMCIA.

Shared Memory Interface (Chip Select)

The schematics in Appendix A of [7] show that the SRAMs used have two chip selects, one from the PC

through the FPGA and one from the DSP (STRB). This means that the accesses can be enabled/disabled

from either DSP or PCMCIA. It allows a quasi-dual port memory scheme, sharing one address bus. Thus

when the DSP is accessing an SRAM (its STRB is asserted), the FPGA/PC chip select must also be asserted.

The FPGA logic can tell if DSP is active, if the DSP HOLD line is high. Similarly when the PC accesses

the SRAMs, the DSPs chip select must be asserted. The indication for the FPGA logic that the DSP is not

on the bus is that HOLDA is low. But if HOLDA is low, then all DSP memory interface signals including

STRB are in the high-impedance state. One solution might be to put a pull-down resistor on the STRB line,

but this is not a good idea since the ground plane could get noisier. Rather the FPGA logic configures STRB

line as a bidirectional signal and asserts STRB low when necessary. A pullup is placed on STRB as a

precaution to compensate for delays through the logic when 3-state/driving switching is occurring.

Shared Memory Interface (Bus Arbitration)

The bus arbitration scheme in the PCMCIA card was probably the most difficult to achieve. It was desired

to make the PC have absolute priority over the shared memory.
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The HOLD/HOLDA operation of the DSP can cause a locked state in a worst-case situation. Thus, the

FPGA was designed around this and various features added to optimize arbitrating operation. HOLD is the

signal that is used by the bus arbiter on the FPGA to request the memory bus from the TMS320C51.

HOLDA is used by the TMS320C51 to grant the use of the memory bus to another device. The bus arbiter

asserts HOLD whenever the card is in standard mode, when the host wants access to memory on the card,

and if the PC asserts a manual hold. The TMS320C51 asserts HOLDA in response to the asserted HOLD

signal to acknowledge that it is not using the bus. If the TMS320C51 is on the bus, it completes its current

access before it releases the bus and asserts HOLDA. In smart mode, host accesses are not allowed until

HOLDA is asserted by the TMS320C51. In standard mode, HOLDA has no effect on host accesses.

On important issue regarding the HOLDA is the possibility of it taking longer than the PC timeout (1.2 µs

maximum). Exceeding this wait could cause main memory DRAM refresh to not take place and crash the

machine in certain PCs (most should have a timeout built into their PCMCIA bus controller). The FPGA

will timeout the access if it takes to long to indicate with a bit interrupt in DSPSR. HOLDA delay is possible

if long wait states are used, especially if the DSP clock has been slowed considerably (HOLDA when clocks

are shut off).

Another issue involves control signal behavior in the HOLD mode. STRB goes into the high-impedance

state when HOLDA is asserted; therefore, the FPGA must assert STRB which is connected to one of the

two chip selects on each of the SRAMs when HOLDA is asserted. READY is a TMS320C51 input signal

that is used to extend a memory bus cycle (add wait states). The TMS320C51 wait state generator on the

FPGA must supply the READY signal if the TMS320C51 external memory transaction cannot be

completed in the current cycle. There are some subtleties in the operation of the bus arbitration. But since

the READY timing on the ’C5x is difficult to meet, the ’C5x software wait-state generators must be set up

for multiple wait states for non-SRAM (i.e., I/O or global data). The default upon reset is 7.

Another important issue that affects bus arbitration is the turn-off time of non-SRAM devices (such as the

slow FPGA). P 3–5 of the [13] discusses this issue in a simple design. A turn-off problem occurs with 0

workstation SRAM while accessing something besides SRAM in program or data space (I/O, global-data

memory, etc.) due to the slowness of the FPGA. If the last non-SRAM access turn off is slow, then the next

0 workstation program/data access can be corrupted. If this access is a program fetch, then the DSP may

jump out of normal code. If this access is data, then obviously bad data is exchanged. One dead cycle seems

to be enough to prevent any conflicts even with a 25-ns DSP. This can be done with I/O by purposely using

a IN/OUT instructions instead of memory-mapped I/O. Otherwise, the software workstation generator

should be used to flip SRAM accesses to at least 1 wait state before the access (and then switch back to 0

workstation after the access).

Bus Arbitration

As mentioned in the Operation section, the FPGA/ASIC arbitrates accesses to the memory bus and its

on-board registers (i.e., the PC/DSP shared resources). This arbitration is done with the PC having priority,

though any bus cycle started by one device must be completed before giving bus/FPGA access to the other

party. There is also a high level of software programmability from the PC that allows the optimizing of bus

arbitration to a specific application (using MANUAL HOLD, MAXOD, DEVBUSYINT, DSP HOLDA,

and PDH bits). This architecture allows zero wait-state access to external memory for the DSP since it lies

on the same bus. This was the prime directive of this design. The disadvantage of this architecture is that

any other access requires FPGA/ASIC involvement and requires a few wait states. An alternative method

of data exchange is using the host-communication registers DSPTXD and DSPRXD. But interrupt or

polling latencies do apply in this operation. Thus, PC access of common memory, attribute memory, and
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SMMs require wait-states as do DSP access of global-data memory and SMMRs. The PC cannot access

DSP internal memory.

Both DSP and PC can access the shared memory on the card. PC always has higher priority for accessing

the memory bus on the card (after a concurrent DSP cycle is completed), except for a situation explained

in the next paragraph where the PC may override. During PC accesses to the memory bus, the DSP

operation is held using the DSP HOLD line. See [10] for latencies of this process and also the HM bit =

0 feature that allows the DSP to continue executing out of internal memory when held. The arbitration logic

asserts the HOLD signal to the DSP and extends the PC memory-bus access cycle by asserting the WAIT

signal. A maximum timeout is set on the WAIT from the FPGA. Once the DSP acknowledges the hold by

asserting HOLDA, the PC WAIT is released and access to shared memory is completed. As soon as the PC

completes its access, control of the shared memory is returned to the DSP.

In the default mode, any PC access of the FPGA/memory bus applies HOLD to the DSP (i.e.,

MAXOD = 0 in DSPCR). But since communication, control, and status registers are not resident in the

shared memory PC access to these registers can be configured to not HOLD the DSP operation. When

MAXOD = 1 in DSPCR, the DSP is not halted on PC accesses of its SMM registers on the FPGA/ASIC.

If the DSP tries to access its SMMRs while the PC is accessing its SMMRs, the DSP READY line is held

low (hardware wait-state) until the PC SMM access is completed. But if the PC tries to access the memory

bus and the DSP tries to access its SMMRs (in DSP I/O) or global-data memory (anything that must use

the FPGA) at that same time, the ASIC/FPGA is forced to extend the WAIT until the DSP is off. This mode

of operation is done to prevent a lock-up of the system due to DSP operation. This is because the DSP cannot

return HOLDA until the bus cycle is over. If while the PC requests the memory bus by asserting HOLD

and the DSP tries to access the FPGA, the system could be hung. To prevent this situation, a PC memory

access timeout has been added that causes a DEVBUSY interrupt in DSPSR. This interrupt is not cleared

until a valid memory access occurs. Another situation that might cause this interrupt is if the DSP is run

very slow and does not give back HOLDA fast enough. The solution to assure PC access to the memory

bus is to assert the manual hold bit in DSPCR. MANUAL HOLD is also useful for copying blocks of data.

The clock to the DSP (DSP CLKON in DSPCR) must be running for the DSP to be able to return HOLDA.

The value of HOLDA can be polled in DSPSR. If MAXOD = 0, DSP HOLDA is always 0.

A feature added to optimize DSP external-memory usage is a non-binding please-don’t-hold-me (PDH)

bit located in the PCs DSPSR that the DSP can assert in its SYSCFG to request the PC to stay off the

memory bus. When the DSP is doing critical external memory operations, it can write a 1 to this location

and the PC can poll this bit (with MAXOD = 1) and choose to stay off the memory bus. But again the PC

has priority and can ignore this request.

Memory Access by PC

When PC accesses the shared memory, the DSP is put on hold (HOLD signal asserted) to grant control of

the bus to the PC. PCs memory access is extended using wait signal until DSP 3-states its bus as indicated

by HOLDA signal. There is a timeout if HOLDA is not granted in time indicated by the DEVBUSYINT

bit. This is a dumb clock that just begins counting at the beginning of a PC bus access cycle. If software

wait states are used and/or WAIT signal is ignored (as can be done per the PCMCIA spec), this bit becomes

meaningless. Running certain configurations of the DSP causes HOLDA to not be returned low in time

(such as shutting the clock off (DSP CLKON = 0) when HOLDA = 1 or running the DSP very slow).

When the card is in smart mode, PC cannot access the first 16 bytes of the shared memory (also note that

the PC cannot access DSP internal memory). This could be used as protected memory for the DSP. PC

accesses to this block do not cause DSP to be put on hold. PC must load the DSP reset and interrupt vectors,

and application algorithm prior to taking the DSP out of reset if in DSP microprocessor mode or the code
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must be programmed into the DSP global memory for bootload if in the DSP microcomputer mode. Since

PC can access the entire memory on the card without consideration of DSP page sizes, memory pages not

used by DSP can be dedicated exclusively for PC.

Memory Access by DSP

The ’C5x versions of the DSP MediaCards can address a maximum of 9M words of common memory. The

DSP address range is expanded using page selects. Page sizes for ’C5x DSP is 32K (x16). Page 0 (both

separate program and data memory in CPD/SPD = 0 or combined program and data in CPD/SPD = 1) is

always enabled and can not be deselected using page select bits in SYSCFG register . This allows DSP

operating systems to use this memory without affecting any memory dedicated for DSP applications.

The ’C5x version of the DSP MediaCard can address a maximum of 128K byte of global-data memory.

At least part of the PCMCIA attribute memory should be available to the DSP in its global-data memory.

This allows a non-volatile memory for bootload of the DSP by the PC, thus allowing code to remain

on-board. This bootload should always be from page 0 of global-data memory. After bootloading in a

kernel, DSP functionality can be engaged. This space is also available for data storage, though accesses

are typically slow due to the nature of non-volatile memory.

Host/DSP Communication

DSP communicates to the host PC via its dedicated communication registers DSPTXD and DSPRXD.

These registers reside in the I/O space of the DSP. For the PC they are located in common memory, but also

dual-mapped into PC I/O space. The I/O location is selectable in the COR register. Both PC and DSP can

use hardware interrupts or software polling for communicating to the other device. Figure 10 shows a block

diagram of the structure of this communication.

DSP
TMS320

DSP Read
RXEMPTY=1 (DSPSR)

RXFULL=0 (PCSR)

PC Write
RXEMPTY=0 (DSPSR)

RXFULL=1 (PCSR)

TXEMPTY=0 (PCSR)
TXFULL=1 (DSPSR)

DSP Write

TXEMPTY=1 (PCSR)
TXFULL=0 (DSPSR)

PC Read
FPGA/ASIC

0051h00000008h

0050h00000006h
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Figure 10. Host Communication Structure

PC must enable the communication interrupts by setting RXINTEN or TXINTEN to 1 to be interrupted.

A 1 in either TXFULL or RXEMPTY (in DSPSR) generates an interrupt to the DSP. The PCMCIA standard

only defines 1 interrupt line; therefore, after an interrupt is detected, DSPSR must be read to determine the

source. The interrupt is cleared by PC reading DSPTXD or writing to DSPRXD respectively. Writing 0 to

the interrupt enables disables, but does not clear the interrupt.

A 1 in either RXFULL or TXEMPTY bits (PCSR) generates an interrupt signal to the DSP (such as INT1).

This interrupt can be masked off in the DSP algorithm if not used. The interrupt signals stay valid until the

DSP reads from the DSPRXD or writes to the DSPTXD. Reading or writing to the data register clears the

appropriate interrupts to the DSP. Writing 0 to the interrupt enables (’C5x IMR register) only disables the
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interrupt, not clear it The clearing/priming protocol required to enable the next IREQ is described in detail

under Bit 12 in Section 4.41 of [7]. Through this protocol, the shaping of the IREQ signal is controlled

completely by the host programmer. This was done due to the variability of PC IRQ specifications over

different PCs. Communication between DSP and PC can also be done via software polling as shown in

Figure 10. Two other sources of interrupts to the host are discussed in the next section.

Interrupts

An interrupt to the PC (called IREQ on the PCMCIA bus) can be generated by three different sources on

the card. PC must read the DSP status register DSPSR, to determine the source(s) of the interrupt.

The three sources of interrupt to the PC are:

• Communication interrupts, when enabled by the PC. Communication interrupts are generated

when:

– Either one is enabled by PC (TXINTEN or RXINTEN is set to 1)

– The DSPTXD is full (DSP has sent new data to PC) or DSPRXD is empty (DSP has read old

data from PC)

• Analog front end card, when enabled by the PC. AFE interrupt is generated when:

– It is enabled by PC (AINTEN is set to 1)

– The AFE card generates an interrupt (INT4 to DSP)

• Device busy (memory-bus access timeout), when enabled by the PC. DEVBUSY interrupt is

generated when:

– It is enabled by PC (DEVBUSYINTEN is set to 1)

– The timeout counter times out on a memory bus access

IREQ=(TXFULL and TXINTEN)+(RXEMPTY and RXINTEN)+(AFEINT and

AINTEN)+(DEVBUSYINT and DEVBUSYINTEN)

Figure 11. PC Interrupt Control Logic

The sources of interrupt to the DSP are:

• Communication interrupts.

– DSP receive-interrupt is generated when:

1)  It is enabled by DSP masking its INT1

2) The RXFULL bit in PCSR is set indicating DSPRXD is full (PC has written new data)

– DSP transmit-interrupt is generated when:

1)  It is enabled by DSP masking its INT[1 or 2]

2) The TXEMPTY bit in PCSR is set indicating DSPTXD is empty (PC has read previous

     data)

(These interrupts are connected to DSP INT1 and optionally the second one can be connected to INT2 if

there are no parallel device interrupts needed.)

• Parallel device interrupt (optionally INT2)

• Analog front end card, when enabled by DSP (INT3 and INT4). AFE card must generate proper

interrupt signal to the DSP as specified in the C5x User’s Guide (literature number SPRU056).

The AFEINT which comes from the AFE connector is connected to both DSP INT4 and the FPGA logic

to the PC IREQ. This interrupt can be recognized by either PC or DSP. Also this configuration allows the

PC to handle the interrupt if the DSP is asleep.
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Host Communication via Software Polling or Interrupts

While servicing a PC interrupt (IREQ), the interrupt must be cleared and primed for the next interrupt to

occur. This means that when PC is servicing an interrupt, a 0 must be written to this bit to clear it. Then

a 1 must be written to this bit to prime it for the next interrupt. Otherwise IREQ will not toggle again. This

puts the time between IREQs (pulsed interrupts pulse only once) fully in control of the PC programmer.

PC Read:

• PC reads DSPSR to verify DSP has written a new data word into DSPTXD. PC waits until

TXFULL is set to 1.

• PC reads data from DSPTXD register. This reading:

– Clears the TXFULL bit in DSPSR (read by PC

– Sets the TXEMPTY bit in the PCSR (read by DSP)

PC Write:

• PC reads DSPSR to verify DSP has read previous data (indicated by RXEMPTY bit). Waits until

RXEMPTY is 1.

• PC writes data into DSPRXD register. This writing by PC:

– Clears the RXEMPTY bit in DSPSR (read by PC)

– Sets RXFULL bit in PCSR (read by DSP)

DSP Read:

• DSP reads PCSR to verify PC has written a new data word into DSPRXD. Waits until RXFULL

is set to 1.

• DSP reads data from DSPRXD register. This reading:

– Clears the RXFULL bit in PCSR (read by DSP)

– Sets the RXEMPTY bit in DSPSR (read by PC)

DSP Write:

• DSP reads PCSR to verify PC has read previous data (indicated by TXEMPTY bit). Wait until

TXEMPTY is 1.

• DSP writes data into DSPTXD register. This writing by DSP:

– Clears the TXEMPTY bit in PCSR (read by DSP),

– Sets TXFULL bit in DSPSR (read by PC).

If interrupts are used, PC must read the appropriate bits in DSPSR to determine whether the interrupts were

generated by transmit or receive operation. After reading or writing, it must then clear and prime

IREQSERV as specified in section ? for subsequent interrupts to occur. DSP knows which interrupt by the

particular interrupt taken.

FPGA

The following FPGA description gives an outline of the resources and functions provided by the single

TPC1280 FPGA on the TMS320C51-based PCMCIA DSP MediaCard. More detailed information can be

found in [9].

Overview

The block diagram shown on Figure 12 illustrates functionally how the various functional blocks in the

FPGA are distributed. The PCMCIA address and data buses are assumed on the left side while the ’C51

data and address buses are located on the right side of the figure.
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The alpha characters [(A), (B), . . .] in the block diagram correspond to the Roman numerals

(see Figure 12) which correspond to their sheet name in the hierarchical OrCad schematic.

BLOCK

DIAGRAM NO.

OrCad SHEET

NAME

BLOCK

DIAGRAM NO.

OrCad SHEET

NAME

BLOCK

DIAGRAM NO.

OrCad SHEET

NAME

A ∅ H VII S XIV

B I J VIII T XV

C II L IX U XVI

D III M X V XVII

E IV N XI W XVIII

F V P XII X XIX

G VI R XIII

IOSP

[0–15]
C51AO

COMMONMEM

ATTMEM

FRESET

PCAI[0–15]

C51AI[0–15]

READY

INT1–2

CLKIN1/2

RS

CLKMD1

(U) C51READY.SCH
C51 Ready Generation

Wait

IREQ

SC

C51AI/O[0–15]

C51DI/O[0–15]PCDI/O[0–15]

C51SMMD[0–15]

PCDO[0–15] C51DO[0–15]

C51DL[0–15]

CCRD[0–15]

PCLD[0–15]

PCSMMD[0–15]

HI PCADDZERO

(T) I REQGEN.SCH
I REQ Generation

(V) STSMMODE.SCH
Mode

Standard/Smart

(W) HIPCAZ.SCH
HI PCADDZERO

(M) RESETCON.SCH
Reset Control

(X) PCMEMACC.SCH
Access

PC Memory/SMM

(H) IOSPACE.SCH
PC I/O space decode

Control)
(G). FLASH EPROM

(F) DSP SRAM Control
(E) PC SRAM Control

(E) MEMCON.SCH
Memory Control

(D) BUSARB.SCH
Arbitration

Bus

(B) DSPCON.SCH
DSP Control

(A) BIDPAD.SCH
Bus Block

Bi–directional

(A) BIDPAD.SCH
Bus Block

Bi–directional
(P) DBUSCON SCH

(L) CCR SCH

Card Configuration
Register’s

(J) C51SMARMM
SCH

Memory
C51 Smart Mode

(T) Flag FF’s
(O) C51SMM decode
((N) PCSMM decode

(C) PCSMARMM.SCH

Memory
PC Smart Mode

(R) Data MUX decode)
((P) Data MUX’s

Control
PCMCIA Data Bus

Figure 12. FPGA Block Diagram

The blocks highlighted show how data lines from PC and DSP flow through the FPGA. The rest of the

blocks are control blocks. In each block is a descriptive title with an alpha designator and a filename. Next

to the alpha characters in capitals is the file name for the particular sheet with the .SCH extension. Some

of the sheets have more than one functional block in them and they are correspondingly labeled inside the

block within parentheses. These names along with their descriptive titles are mere text in the actual OrCAD

schematic and have no OrCAD function. Some of the important signals from each block are shown, but

this is not a complete list.

Beginning with the highlighted data blocks, block (A), contains bidirectional buffers that allow the FPGA

to read or write both data buses. The ’C51 address is also bidirectional, but PC address is not. It is only an

FPGA input. This is because the FPGA can never drive the PC address since PCMCIA bus does not have
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the address as an input. On the memory bus, the FPGA needs to drive the address on PC SRAM accesses

and flash accesses. On DSP SRAM and Flash EEPROM accesses, the DSP drives address.

Block (V) controls the driving of the data and address buses in (A), based on various control signals from

blocks (B), (L), and (X) The data comes from blocks (B), (J), and (L) that contain the FPGA registers that

are read and written using the previously mentioned blocks. All of these blocks contain multiplexor arrays

which direct FPGA data buses through the FPGA and to the appropriate bus for output. This multiplexing

of buses is necessary since 3-state buffers do not exist in internal FPGA/ASIC logic. Block (B) contains

PC smart memory registers, (J) contains ’C51 smart mode memory registers, and (L) contains the CCRs.

The control blocks, blocks (B) and (L) mentioned above, have some control functionality in them. Block

(B) contains all the address and bus control signal decode/selects for both PC and ’C51 smart memory

registers. Block (L) contains the decode/selects for the CCRs. Starting from the top left and moving

counter-clockwise, block (W) checks for the upper PC bits (PCA16–25) to be 0 for PC smart memory

decode. This eliminates the need for repeated decode of these lines. Block (V) contains the logic that

switches the card between standard and smart modes. Block (S) is used to generate the PCMCIA interrupt

(IREQ) from various sources. Block (H) decodes I/O accesses to COM1–COM4. Block (X) decodes

PCMCIA bus control signals for use in enabling FPGA registers for writes. Block (M) handles the reset

of the FPGA. Block (E) manages all control signals going to the memory bus to access SRAM or Flash

EEPROM. This includes all multilpexing needed between PCMCIA and DSP memory interface signals.

Block (V) controls the hardware wait states to the DSP via the READY input on the DSP, while block (D)

controls the bus arbitration of the memory bus. The PC always has priority to the memories, but

HOLD/HOLDA signals of the DSP must be used to ensure that the DSP is off the bus. Block (D) also

generates the WAIT hardware wait state to the PCMCIA bus. Block (B) controls a variety of DSP functions

(such as clock, DSP reset, and interrupt generations).

The FPGA system clock is run at 50 ns as it goes through one of the TPC1280’s two global-clock networks.

The design is minimally synchronous meaning that flip-flops are placed on critical control signals only.

None of the inputs or outputs are registered (this asynchronicity is compensated by extending the FPGA

cycle count). The guideline of three logic-gate levels before each flip-flop is followed (except for post

HIPCADDZERO logic). Each logic level becomes an FPGA cycle count.

Concerning pure data flow for FPGA access latency, any write to an FPGA internal register requires a

minimum of 2 FPGA cycles (not counting HIPCADDZERO latency which would add 1 cycle). Reads

would also take 2 cycles (going through local and global – in (O) – mux arrays, again not counting

HIPACADDZERO). But in (E), a great deal of signal shaping is needed to have the memory control signals

work correctly. This block’s maximum requirement is three logic levels meaning three cycles and adding

one cycle for asynchronous uncertainty means four cycles or 200 ns (also, repeated observation with a logic

analyzer on FPGA latency showed that 200 ns was a good number, and that 150 ns could be unreliable).

Example FPGA Functions

Some examples of the operation of FPGA logic which provide an idea of how these modules interact for

data control follow.

• PC SRAM Access:

The address and control signals from the PCMCIA bus are input to the FPGA, decoded in block

(E) for memory control signal output, decoded in (P) to send the appropriate read/write and

address signals to the buffers in (0) then to the memory bus, and the SRAMs respectively. These

are bi-directional buffers that must be enabled. Based on the PCMCIA control signals, Block

(X) sends a common memory strobe to (P) to enable these buffers in (0) and drive the appropriate

line. The data meanwhile flows directly through the MUXes in (P).
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• Smart Memory Access:

If the card is in smart mode and an access is done to a memory location that corresponds to a

smart mode register, the strobe still goes from (X) to (P). But the decode in (C) recognizes this

condition and send a select signal to (P) to enable the appropriate address/data buffers.

Meanwhile, (C)s signal selects the correct register and executes a write or read. In the case of

a write, the data is directly written into (C) and nothing’s driven on (A). But in a read, the data

is selected through two layers of multiplexers – one in (C) [or (J) if ’C51SMM or (L) if CCR],

and one in (P), and the enable logic drives the PC data buffers in 0.

Conclusion

The PCMCIA DSP MediaCard system has been proven successful in various systems such as sound

generation and modems. Future expansion and applications for this general-purpose card is seriously being

examined. The programmability of the FPGA makes prototyping these systems easy. For production

systems, cost reduction into an ASIC or CDSP should be possible. The synchronous nature of the design

scales down in faster technology, removing the flip-flops and taking advantage of the short propagation

delays. A 100-ns access PCMCIA card with 40- or even 50-MIP DSP in a CDSP ASIC should be no

problem.

Some thought should be given to some of the trends of the PCMCIA standard. Power maximums can be

specified at a number as low as 300 mA operating current. This would make less power consuming 3-V

parts more attractive. The whole-host software interface of card services and support from PC operating

systems such as Windows 95 , OS /2, etc. is at issue. A subtle issue that has not been explored greatly

is the impact of these high overhead multi-tasking systems (along with Windows 95) on an

inherently-efficient low-overhead DSP code. A final possible problem for the system is multi-tasking

operating systems being run on DSPs.

Finally, a great deal of this overhead could be eliminated by the adoption of the BASAVA concept of smart

memory for the execution of a variety of multimedia applications such as text-to-speech, sound, etc.

Future Expansion

Various features have been identified for future expansion.

• Buffered Host Comm (Top-of-the-Line FPGA)

Buffers can be added to the host communication registers DSPTXD and DSPRXD so that

packets of data can be transferred. Presently these would look like straight FIFOs and require

very little modification to this spec. The most important information would be the size of the

FIFO. Full and empty flags would be set and cleared when the entire FIFO was empty or full.

Any further operation would require modification of this spec.

Windows 95 is a trademark of Microsoft, Inc., OS/2 is a trademark of IBM.
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• PC/DSP Write of Attribute Memory

User programmable writes to the attribute memory/DSP global-data memory would allow hard

coding of PC/DSP code in non-volatile memory. Presently this is not envisioned in a standard

slot, but would require other hardware (Databook TMI-140 Board). The biggest danger of this

feature is loss of the CIS.

• Expanding Memory Size

A sizable amount of possible memory on both PC and DSP sides has been specified. Any further

expansion would involve the addition of pins and bits in registers. Since fast SRAM needed for

a 40-MIP DSP is expensive, slower SRAM could be placed on the PCMCIA bus (with

appropriate buffers) to make a real DSP/memory card.

• Decoded memories (Dynamic Page/Bank Switching)

This spec does not specify the method of page/bank switching of DSP external memory (This

is discussed some in [7], but in detail in the manufacturing package). The reality of 25-ns zero

wait-state operation is that it is static. This means that there is zero decode memory interface

between the DSP and the RAMs. This allows zero wait-state operation within a page/bank, but

switching pages/banks of memory requires wait states. Zero decode allows reasonable

speed/cost memories to be used in a design. With faster/cheaper memories, DSPs, or logic,

dynamic page/bank switching is possible. This requires no wait states when switching

pages/banks of memory since the interface is decoded.

• Modem Emulation/UART (Pure I/O addressability)

The present PCMCIA spec does not define the type of mixed memory I /O card that this card

is in specific enough terms. It mentions straight memory and recently a tuple 21h that is a modem

card identifier. In this mode, the card is used only with PCMCIA I/O strobes and assuming the

Hayes Comapatible Modem registers exist. Until the PCMCIA specification catches up,

enabler/drivers such as the one described in [?] needs to be used. Another option is configuring

this card to look like a pure modem card. This would involve some work in the dual mapping

of SMM registers into PC I/O, emulation of Hayes Modem Standard Registers and automation

of DSP configuration.

• Daughter Cards

With the full ’C51 address and data buses along with other signals offered on a Texblast board,

it would be easy to build parallel bus daughter cards for added I/O. These could include stereo

codec, LAN/WAN, high performance A/Ds, etc. As a matter of fact a nice a TI show case

daughter card could be built with a TLC320AD65 stereo codec and SN74ACT7808 FIFO to

speed up DSP data access. This coupled with TLC320AC01 on the AFE card for modem/speaker

and the general PCMCIA card would combine nine TI parts in a super audio/modem board.

• Software is under development for fully blown DOS  and Windows  VxDs to interface the

host/DSP in multitasking, multi-processing environment.

DOS and Windows 95 are trademarks of Microsoft, Inc.
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• Miscellaneous

These include parallel I/O bus located on the AFE addressable by either PC, DSP, or both. Also

the ability for the AFE to write the Flash. Bidirectional DSPTXD/DSPRXD would make five

easier and bidirectional bit I/O would make it more flexible.
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