
Floating-Point 
Arithmetic 
with the TMS32020 

~ 
TEXAS . 

. INSTRUMENTS 

SPRA011 



Floating-Point Arithmetic 
with the TMS32020 

Charles Dana Crowell 
Digital Signal Processing 
Applications Engineering 

TEXAS 
INSTRUMENTS 



IMPORTANT NOTICE 

Texas Instruments (Tl) reserves the right to make changes in the 
devices or the device specifications identified in this publication 
without notice. Tl advises its customers to obtain the latest version 
of device specifications to verify, before placing orders, that the 
information being relied upon by the customer is current. 

Tl warrants performance of its semiconductor products, including SNJ 
and SMJ devices, to current specifications in accordance with Tl's 
standard warranty. Testing and other quality control techniques are 
utilized to the extent Tl deems such testing necessary to support this 
warranty. Unless mandated by government requirements, specific 
testing of all parameters of each device is not necessarily performed. 

In the absence of written agreement to the contrary, Tl assumes no 
liability for Tl applications assistance, customer's product design, or 
infringement of patents or copyrights of third parties by or arising from 
use of semiconductor devices described herein. Nor does Tl warrant 
or represent that any license, either express or implied, is granted 
under any patent right, copyright, or other intellectual property right 
of Tl covering or relating to any combination, machine, or process in 
which such semiconductor device might be or are used. 

Copyright © 1985, Texas Instruments Incorporated 



INTRODUCTION 

The TMS32020 Digital Signal Processor is a fixed-point 
16/32-bit microprocessor. However, it can also perform 
floating-point computations at a speed comparable to some 
dedicated floating-point processors. 

The purpose of this application report is to analyze an 
implementation of floating-point addition, multiplication, and 
division on the TMS32020. The floating-point single
precision standard proposed by the IEEE will be examined. 
Using this standard, the TMS32020 performs a floating-point 
multiplication in 7.8 microseconds, a floating-point addition 
in 15.4 microseconds, and a floating-point division in 22.8 
microseconds. 

To illustrate floating-point formats and the tradeoffs 
involved in making a choice between different floating-point 
formats, a review of floating-point arithmetic notation and 
of addition, multiplication, and division algorithms is first 
presented. 

FLOATING-POINT NOTATION 

The floating-point number f may be written in floating
point format as 

f = mxbe 

where 

m mantissa 
b base 
e exponent 

For example, 6,789,320 may be written as 

0.6789320 x 107 

In this case, 

m 0.6789320 
b 10 
e 7 

The two floating-point numbers fi and fz may be written as 

fi mi xbel 
fz mz xbe2 

Floating-point addition/subtraction, multiplication, and 
division for fi and fz are defined as follows: 

or 

(2) 

(3) 

A cursory examination of these expressions reveals 
some of the factors involved in the implementation of 
floating-point arithmetic. For addition, it is necessary to shift 
the mantissa of the floating-point number which has the 
smaller exponent to the right by the difference in the 
magnitude of the two exponents. This is shown in the 
multiplication by the terms 

b-(e1 -ez) and b-(e2-e1) 

This right shift can result in mantissa underflow. There 
are also possibilities for mantissa overflow. Addition and 
subtraction of exponents can lead to exponent underflow and 
overflow. To alleviate underflow and overflow, it is 
necessary to decide on some scheme for roundoff. For a 
detailed description and analysis ofunderflow and overflow 
conditions and rounding schemes, see reference 1. 

It is desirable to have all numbers normalized, i.e., the 
mantissas of fi and fz have the most significant digit in the 
leftmost position. This provides the representation with the 
greatest accuracy possible for a fixed mantissa length. The 
result of any floating-point operation must also be 
normalized. The factors associated with normalization, 
overflow, and other characteristics of floating-point 
implementations are best illustrated with a few examples. 

Consider the addition of two binary floating-point 
numbers fi and fz where 

fi = 0.10100 x 2011 
f2 = o.111oox2001 

Both of these numbers are normalized, i.e., the first 
bit after the binary point is a 1. Addition requires equal 
exponents, so the fractions are aligned by shifting right the 
one with the smaller exponent and adjusting the smaller 
exponent. This yields 

Then, 

0.10100 x2011 +0.00111 x2011 
0.11011 x2011 =f3 

1 



The sum may overflow the left end by one digit, thus 
requiring a postaddition adjustment or renormalization step. 
Since it is assumed that the register is only of a finite length, 
this renormalization will result in the loss of the lowest order 
bit. 

Another example illustrates the overflow past the most 
significant bit. With an assumed register length of five, let 

Then, 

0.11100 x 2011 
0.10101 x 2001 

0.11100 x2011 =f1 
+ 0.0010101 x 2011 = f1 

!.0000101 x2011 =f3 

The significance of the two digits underlined in the right 
part of the mantissa is suspect, since it is assumed that the 
corresponding bits of f1 are zero. The left underlined digit 
is the overflow past the most significant bit. To finish the 
addition, f3 is shifted to the right and the exponent adjusted 
accordingly. Thus, 

The shift of the fraction and the adjustment of the exponent 
yield 

The result may be rounded, giving 

or truncated, giving 

FLOATING-POINT ALGORITHMS 

Multiplication Algorithm 
The algorithm for normalized floating-point 

multiplication is illustrated in Figure 1. This algorithm is an 
implementation of Equation 2 in the section on floating-point 
notation. The floating-point numbers being multiplied are A 
and B written as 

The result is 

For the resulting me, there are three special cases. The 
me may be zero, in which case there is a branch to Step 
10 to set C = 0. If me ::¢:0, then the most significant bit will 

2 

me 

MULTIPLY MANTISSAS 
me= mA x me 

2 
ADD EXPONENTS 

ec = eA + ee 

3 TEST FOR SPECIAL CASES OF me 

ZERO 

4 ec =ZERO 

LEADING 
ZERO 

NORMALIZED 

LEFT SHIFT me ONE BIT 
5 ec = ec -1 

6 
DISPOSE OF EXTRA BITS: 

ROUNDING OR TRUNCATION 

7 TEST FOR OVERFLOW OF me 

NO OVERFLOW OVERFLOW 

8 RIGHT SHIFT me ONE BIT 
ec = ec - 1 

9 TEST FOR SPECIAL CASES OF ec 

OVERFLOW 
OR 

UNDERFLOW 

IN RANGE 

10 SET SPECIAL VALUES OF RESULT 

C=AxB 

Figure 1. Floating-Point Multiplication 

be in either the first or second leftmost bit. If the most 
significant bit is in the second leftmost bit, then a left shift 
of me is necessary (see Step 5). Otherwise, C is already in 
normalized form, and there is a branch to Step 6. 

In Step 6, the desired rounding scheme is implemented. 
After this rounding, it is possible that me will overflow (see 
Step 7). In this case, it is necessary to right-shift me one 
bit (see Step 8). Special cases of ec, are tested for in Step 9. 



If there is an overflow or underflow of ee, it is corrected 
in Step 10. Otherwise, the result is in range, and the 
calculation is complete. 

Addition Algorithm 
The implementation of normalized floating-point 

addition is more involved than for multiplication. This 
addition algorithm, outlined in Figure 2, is an implementation 
of Equation 1 in the section on floating-point notation. 

In Step 1, e A and eB are compared to determine ee. 
For this illustration of the algorithm, it is assumed that 
eA ::5eB. The right shift (d) required to align IDA is 
determined in Step 2. The procedure in Step 3 implements 
the right shift of IDA. In Step 4, the extra bits of IDA are 
discarded by using the desired rounding technique. The 
mantissas of A and B are then added in Step 5. 

A B 

COMPARE EXPONENTS ANO SET •c (ASSUME •A "' •el: •c = •e 

2 SUBTRACT EXPONENTS: d = ee ~ •A 

3 ALIGN MANTISSAS: SHIFT mA RIGHT d BITS 

4 OISPOSE OF EXTRA BITS: 
ROUNDING OR TRUNCATION 

5 ADD MANTISSAS me = mA + me 

6 TEST FOR SPECIAL CASES OF me 

ZERO OVERFLOW 
NORMALIZED 

k LEADING ZEROS 

RIGHT SHIFT me ONE BIT S LEFT SHIFT me k BITS 
ec=ec+1 ec=ec-k 

9 
FORCE EXPONENT 

ec = o 

11 TEST FOR OVERFLOW OF me 

NO OVERFLOW 

12 RIGHT SHIFT me ONE BIT 
ec=ec+1 

TEST FOR SPECIAL CASES OF ec 

OVERFLOW 
OR 
UNDERFLOW 

IN RANGE 

14 SET SPECIAL VALUES OF RESULT 

C =A+ B 

Figure 2. Floating-Point Addition 

Now, the procedure becomes somewhat more involv
ed. The me may be zero, in which case there is a branch to 
Step 9 which sets ee =0; a branch to Step 14 sets the special 
value of the result. The me may overflow, making a right 
shift of one necessary (see Step 7). The me may have k 
leading zeroes; therefore, a left shift of k is required. This 
normalization step is generally the most involved and time
consuming step to perform. The procedures in Steps 10, 11, 
and 12 round the me, test for a possible overflow due to 
the rounding, and adjust ee accordingly. The special case 
of ee is determined in Step 13. Finally, after Step 14, the 
sum C = A + B is formed. 

Division Agorithm 
Floating-point division is more sophisticated than 

multiplication and addition since fixed-point processors such 
as the TMS32020 are not inherently capable of performing 
division. For example, 1/3 = 0.3333 ... ; only an approx
imation can be calculated since 1/3 must be represented in 
a finite number of terms. Several algorithms can be im
plemented to find good approximations of such numbers. The 
algorithm implemented in this report is shown in Figure 3. 

Step 1 shows the equivalent of A/B. In Step 2, the latter 
term is expanded using a power series of 1/(1 + X), where 
E (BLO/BHI) is X (E simply denotes that the term is right
shifted 16 bits forming the least significant bits of a 32-bit 
number). The third term in the power series only affects the 
LSB of a 32-bit result; therefore, this term and all the 
following terms can be dropped, as shown in Step 3. 

The equation in Step 3 can be implemented on the 
TMS32020 in two steps. Assuming that the result is a 32-bit 
number Q and that it is composed ofa 16-bit QHI and a 16-bit 
QLO, think of the equation in Step 3 in the following 
manner: A/B = Q - 1:X. The first term is a fair approx
imation of the result Q, and the second term is a correction 
term to obtain a better approximation. With this in mind, 
it can be shown that (AHi + eALO)/BHI will give a 16-bit 
quotient and a 16-bit remainder. Due to the architecture of 
the TMS32020, the 16-bit quotient will be in the low word 
of the accumulator and the remainder will be in the high word 
of the accumulator after the division. Since it is desirable 

A divided by B 

where A = AHi + €ALO 

B = BHI + EBLO 

E = 1 , 1 

STEP 1: 

2WOROSIZE 216 

AHi + EALO 

BHI + EBLO 

AHi + EALO 

BHI 

STEP 2: AHi + EALO ( 1 _ E ( BLO ) + E 2 ( BLO ) 2 .. ) 
BHI BHI BHI 

STEP 3: = AHi + EALO _ E ( BLO ) ( AHi + EALO ) 

BHI BHI BHI 

Figure 3. Division Equation 

3 



to have a floating-point result, the remainder must be divid
ed by BHI to obtain the low word of the quotient. Now QHI 
and QLO have been calculated. When placing Q into the cor
rection term (equation in Step 3), note that Q is equal to QHI 
+ QLO. It can be shown that QLO will have no effect on 
the result since the correction term is multiplied by E. 

Therefore, to calculate A divided by B, simply implement 
the following equation: 

A A (BLO ) - = -- -e - x QHI 
B BHI BHI 

where the division is fixed binary (left-shifts and subtracts). 
Figure 4 shows the implementation of the division 

algorithm that was outlined in Figure 3. 
In Step 1, the dividend is right-shifted four times to 

prevent an overflow. Note that the result is not shifted left 
to compensate for this shift, because the normalization routine 
automatically does this. The shift causes the dividend to be 
limited to 27 significant bits instead of 31. In Step 2, a binary 
divide (left-shifts and subtracts) is implemented on the 
dividend by the high 16 bits of the divisor. The 32-bit result 
contains a quotient in the low 16 bits of the accumulator, 
and a remainder (RI) in the high 16 bits of the accumulator. 
Rl is left-shifted fifteen places in Step 3. The new Rl is 
divided by BHI in Step 4 to calculate the lower 16 bits of 
the quotient. 

The quotient has now been approximated. The 32-bit 
result is composed ofQHI and QLO, as shown in Figure 3. 
To obtain a better approximation, one term in the power 
series expansion must be added to the quotient. Therefore, 
the procedure in Step 5 calculates a 16-bit correction term, 
which is then added (or subtracted since it is the term 
following the "1" in the power series) to the 32-bit quotient. 

Testing for an overflow of the resulting mantissa is 
necessary. Since the dividend was left-shifted four places, 
the resulting quotient will not be negative if an overflow 
occurred. To detect an overflow, bit 28 in the quotient must 
be tested. If this bit is a 1, an overflow occurred; if it is a 
0, no overflow occurred. If an overflow has occurred, the 
exponent must be incremented. Finally, it is necessary to 
normalize the quotient and output the results. 

4 

A DIVIDED BY B 

7 

31 16 15 0 

WHERE A = .. , --A-H-1 --, , .. --A-L_O __ I 

5 

B = I BHI I _I __ BLo __ , 

SHIFT "A" RIGHT FOUR TIMES TO 
PROTECT FROM OVERFLOW. 

A/BHI = 32-BIT RESULT. 
2 HIGH 16 BITS ARE REMAINDER #1 {R1). 

4 

LOW 16 BITS ARE HIGH QUOTIENT {OHi). 

3 
SHIFT R1 LEFT FIFTEEN TIMES. 

EQUIVALENT TO R1 x 215. 

R1/BHI = 32-BIT RESULT. 
HIGH 16 BITS ARE REMAINDER #2 IR2). 

LOW 16 BITS ARE LOW QUOTIENT {OLO). 

MULTIPLY OHi BY BLO AND DIVIDE BY BHI. 
{OHi x BLOl/BHI = CORRECTION TERM. 

SUBTRACT 16-BIT CORRECTION TERM 
6 FROM 32-BIT QUOTIENT. 

{OHi I QLO) - {0 I CT) = RESULT. 

OVERFLOW NO OVERFLOW 

Cexp = Aexp - Bexp + 1 8 Cexp = Aexp - Bexp 

9 NORMALIZE RESULT. 

10 OUTPUT Csign• Cexp• CHI, AND CLO. 

Figure 4. Floating-Point Division 



IEEE FLOATING-POINT 
SINGLE-PRECISION FORMAT 

Of interest is a set of formats known as the IEEE 
standard. This IEEE recommended format consists of a 
variety of precision formats (single, double, single-extended, 
and double-extended). The IEEE has also proposed several 
techniques for handling special cases such as overflow, 
underflow, ± oo, and rounding. For complete details, the 
reader is referred to the proposed IEEE standard.2 

The single-precision format is a 32-bit format consisting 
of a 1-bit sign field s, an 8-bit biased exponent e, and a 23-bit 
fraction f (see Figure 5). The value of a binary floating-point 
number X is determined as follows: 

X = (-l)S X 2(e-127) X 1.f 

31 30 23 22 0 

Figure 5. IEEE Floating-Point Single-Precision Format 

The advantage of this format is that it is structured in 
such a way as to provide easy storage and straightforward 
input/output operations on 8-, 16- and 32-bit processors. The 
disadvantage with this format is that the large mantissa will 
generally span several words of memory. 

FLOATING-POINT IMPLEMENTATION 

IEEE Implementation 
The IEEE single-precision format is described here as 

it applies to the addition, multiplication, and division 
algorithms. In these floating-point routines written for the 
TMS32020, all results are truncated to 31 bits to provide 
more flexibility in the user's development of a rounding 
scheme suitable for his application. The representations of 
± oo are ignored so that the user can decide how to handle 
these exceptions in a manner that is appropriate for his 
particular application. 

I/O Considerations 
The first consideration is the internal representation of 

the binary floating-point number. If the number is read into 
the TMS32020 as two 16-bit words, some processing is then 
necessary to put the floating-point number into a 
representation which is easier to process. The representation 
used in the TMS32020 programs in the appendices is shown 
in Figure 6. This internal representation may be arrived at 
by a simple manipulation of the IEEE bit fields. For this 
particular algorithm, it is assumed that the floating-point 
number is input to the TMS32020 as the four 16-bit fields 
shown in Figure 6. However, the user can easily supply his 

own routine to arrive at this format from two 16-bit inputs 
to the TMS32020 where the inputs contain the IEEE single
precision format. 

The format in Figure 6 was chosen to minimize the 
execution time of the floating-point addition, multiplication, 
and division routines. The format of the result is shown in 
Figure 7. Notice that it is identical to the format in Figure 
5 except for CLO. CLO has its 16 most significant bits valid 
for both the addition, multiplication, and division routines. 

Normalization 
Since the floating-point routines require normalization, 

a partial binary search algorithm is implemented in the 
addition and division routines in the appendices. To begin 
the normalization routine, note that all mantissas can be 
considered to be positive with the format used for the result 
shown in Figure 7. The binary search for the most significant 
bit (the leftmost 1 since the mantissa is positive) is illustrated 
in Figure 8. 

The first move is to split the result into CHI and CLO. 
If CHI * 0, the most significant bit (MSB) is the CHI; 
otherwise, it is the CLO. For this example, it is in CLO. 

ASIGN 
10 IF POSITIVE, 

OR - 1 IF NEGATIVE) 

AHi 
(NORMALIZED) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

f (most significant 14 bits) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ALO I 0 I (least significant 9 bits) o o o o o al 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

AEXP 

Figure 6. Floating-Point Representation 

CSIGN 
10 OR -11 

CHI 
(NORMALIZED) 

CLO 

CEXP 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 

15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 

15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 

Figure 7. Result Representation 

5 



31 c 0 

loo o o o o o o o o o o o o o o o o o 1 o 1 o o 1 1 o o o 1 1 1 I 
31 CHI 16 i 15 CLO 0 

f o o o o o o o o o o o o o o o o 00010100110001111 

31 15 0 

lo 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 
+ 

BLZ NOFLOW GOTO NOFLOW ON OVERFLOW. 
RPT TTEEN TTEEN = 13, PERFORM 14 "NORM". 
NORM 

31 16 • 15 0 

lo 0 1 0 0 1 1 0 0 0 1 1 1 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ol 

Figure 8. Partial Binary Search 

The next step is to form a 32-bit result with CLO in the most 
significant word position. It is now possible for the MSB 
to be in the highest bit location since CLO has been left
shifted 16 times. If this is the case, an overflow has occurred, 
and the result must be right-shifted once. The normalization 
routine tests this by branching to NOFLOW if the result is 
negative. If the number is not negative, the normalization 
can continue. 

The NORM instruction is used in the repeat mode to 
complete the normalization. Note that this whole 
normalization routine can be replaced by the following two 
instructions: RPTK 29 and NORM. The RPTK instruction 
causes the NORM instruction to be repeated 30 times, thus 
normalizing a 32-bit number. This method is not 
implemented here due to the timing. These two instructions 
always take 31 cycles to normalize a 32-bit number. The 
normalization routine here takes only 22 cycles (worst case) 
.for normalizing a 32-bit number. Therefore, if program space 
is more important than timing efficiency, it is best to replace 
the normalization routine with these two instructions. 

Added Precision 
As illustrated in Figure 7, the 16 most significant bits 

of CLO are valid, i.e., C is valid for 31 places beyond the 

6 

binary point. Oftentimes the user is not as concerned with 
the IEEE standard as in being certain that he has enough 
accuracy for his particular application. Since the TMS32020 
uses 16-bit words, the routines in the appendices implicitly 
maintain a 30-bit mantissa. They also implicitly use a 16-bit 
exponent. If the user desires this added accuracy and dynamic 
range, then it is readily implementable with no additional 
cost in execution time. The normalization for the addition, 
as mentioned previously, operates over the entire 32-bit 
accumulator. For the strict IEEE format, the user will only 
want to normalize over the 25 most significant bits of the 
accumulator. The structure of the normalization routine 
makes this modification simple. 

The routines in the appendices make no provision for 
the representation of ± cxi and exponent underflow and 
overflow. The user of the routines should consider the degree 
of significance of these results and the way they should be 
handled for his particular application. Since these routines 
are written to operate at maximum speed, truncation of results 
is used. If the user desires to implement a rounding scheme, 
then he will also need to check for the possibility of overflow 
due to the rounding scheme. This step is shown in the 
multiplication, addition, and division flowcharts (see Figures 
1, 2, and 3). 



SUMMARY 

The TMS32020 may be used to perform floating-point 
operations with great accuracy, wide dynamic range, and 
high-speed execution. The design engineer has the 
responsibility of deciding what type of floating-point format 
is best for his application. To aid in understanding floating
point operations, several examples have been given that 
illustrate the manipulations necessary to implement floating
point addition, multiplication, and division algorithms. 
Flowcharts for these algorithms are also included. The 
appendices contain the TMS32020 code for the IEEE 
floating-point single-precision format used in addition, 
multiplication, and division. The addition and multiplication 
routines may also be used without modification to implement 
a format with up to a 30-bit mantissa and a 16-bit exponent 
without any increase in execution time. 

ACKNOWLEDGEMENTS 

Major portions of this application report were taken 
from ''Floating-Point Arithmetic with the TMS32010,'' an 
application report written by Ray Simar, Jr. The author 
would also like to thank Gwyn Guidy for her assistance with 
the floating-point division algorithm. 

REFERENCES 

1. D.J. Kuck, The Structure of Computers and 
Computations, Vol 1, John Wiley & Sons (1978). 

2. J. Coonen et al, "A Proposed Standard for Binary 
Floating-Point Arithmetic," ACM Signum Newsletter, 
4-12 (October 1979). 

3. Donald E. Knuth, Seminumerical Algorithms, Vol 2, 2nd 
Edition, Addison-Wesley (1981). 

7 





APPENDIX A 

NO$IDT 32020 FAMILY MACRO ASSEMBLER 
*** PRERELEASE *** 

15:24:29 03-27-85 

0001 
0002 
OOc):~: 

0004 
0005 
0006 
0007 
(!(H):3 

0009 
0010 
0011 
0012 
0013 
0014 
(H)15 

0016 
0017 
001::: 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
002::: 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
(H)3:'.:: 

0039 
0040 
0041 
0042 
004:~: 

0044 
0045 
0046 
0047 
004:;:: 
0 0 4 9 (H)(H) 

0050 0000 
0051. 0001 
0052 0002 
005:?:: (!(H):~: 

0054 0004 
0055 0005 
0056 ooo,~. 

PAGE 0001 

********************************************************* 
* 
* 
* 
* 
* 

* THIS IS A FLOATING-POINT ADDITION ROUTINE WHICH * 
IMPLEMENTS THE IEEE PROPOSED FLOATING-POINT FORMAT * 

* 
* 

********************************************************* 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
-li· 

* 
* 
* 
* 
* 
* 
-li· 

* 
* 
* 
* 

INITIAL FORMAT CALL 16-BIT WORDSl 

ALL 0 OR 1 A::: I ON ( 0 OR -1 l 

ro: .. 15 BIT:::; AHi (NORMALIZED> 

:a: 9 BITS :--a-: ALO 

AEXP (-127 TO 1281 

TO CORRESPOND WITH IEEE FORMAT, 
INPUT 0.1F * 2 ** IE+ 11 
INSTEAD OF 1.F * 2 **E, AND SUBTRACT 127 FROM E. 

THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT 
EXCEPT THAT FOR CLO WE HAVE: 

CLO 

ALL 16 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS 
BEEN TF~UNCA TED. 

* 
********************************************************* 
* 
* 
* 
* 
* 
* 

WORST CASE !EXCLUDING INITIALIZATION AND I/Ol: 
15.4 MICROSECONDS. 
THIS TIMING INCLUDES THE NORMALIZATION. 
WORDS OF PROGRAM MEMORY: 170 

* 
* 
* 
* 
~· 

* 
********************************************************* 
* 

AOF:G 
A:::IGN EOU 0 
AEXP EOU 1 
AHI EOU 2 
ALO EOU :::: 
B::; I ON EOU 4 
BEXP EOU "' --' 
BHI EOU 6 

A-1 



NO$IDT 

0057 
0058 
0059 
0060 
0061 
0062 
006:3 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 0000 
0076 0001 
0077 0002 
007::: 0003 

0004 
0079 0005 
0080 0006 
0081 0007 
0082 0008 
008:3 0009 
0084 OOOA 
0085 OOOB 
0086 oooc 
0087 OOOD 
0088 OOOE 
008':7> OOOF 
0090 0010 
0091 
0092 
0093 
0094 
0095 
0096 0011 
0097 0012 
0098 0013 
0099 0014 

0015 
0100 0016 

0017 
0101 
0102 001::: 
01.03 0.019 
0104 OOlA 
0105 001B 
0106 001C 
0107 001[1 
010:?. 001E 
Oi.09 001F 

A-2 

:32020 FAMILY MACRO ASSEMBLER 
*** PRERELEASE *** 

0007 BLO 
0008 CSIGN 
0009 CEXP 
OOOA CHI 
OOOB CLO 
oooc D 
OOOD ONE 
OOOE TEMP 
OOOF THREE 
0010 SIXT 
0011 RES ID 
0012 TTEEN 

* 
* 
* 
* 
* 
* C804 

CE07 
5589 
D100 
0200 
CB07 
80AO 
55:::8 
cooo 
CAO! 
600D 
CA10 
6010 
CA<Y::: 
600F 
CAOD 
6012 

* 
* 

EfiU 7 
EWJ 8 
EG!U 9 
EQU 10 
Ef~U 11 
EQU 12 
EG!U 1 ·~· ~· 

EG!U 14 
EG!U 15 
EQU l.6 
EG!U 1.7 
EOU 18 

INITIAL! ZATION 

LDPK 
SSXM 
LARP 
LRLK 

4 

ARl,)200 

RPTK 7 
IN 
LARP 
LARK 
LACK 
SACL 
LACK 
SACL 
LACK 
SACL 
LACK 
SACL 

*+,PAO 
0 
ARO,O 
1 
ONE 
1 t• 
SIXT 

THREE 
13 
TTEEN 

PC0.7 84.34S 15:24:29 03-27-85 

BEGIN ON PAGE 4. 
SET SIGN EXTENSION. 

PAGE 0002 

CLEAR EXPONENT REGISTER. 

ONE = 

* BEGIN FLOATING POINT ADD 

* 
* 2001 UP LAC 

1005 SUB 
600C SACL 
F680 BZ 
002[1 
F:380 BLZ 
00::::7 

* 
CE2'.:: AGTB NEG 
0010 ADD 
600C ::;ACL 
::::coc LT 
2000 LAC 
6008 SACL 
2001 LAC 
6009 ::;ACL 

AEXP 
BEXP 
D 
AEG<B 

ALTB 

::;I XT 
D 
D 
A:::; I GN 
CSIGN 
AEXP 
CEXP 

FIND LARGEST NUMBER. 

IF EXPONENTS ARE THE SAME, JUMP TO AEQB. 

IF A IS LESS THAN B, ~JMP TO ALTB. 

[I ::: ( 16·-[1) 

A IS LARGER THAN B. 
THEREFORE, CSIGN = ASIGN. 
ALIGN THE B MANTISSA. 



NO$IDT 3:~20 FAMILY MACRO ASSEMBLER 
*** PRERELEASE *** 

0110 0020 4206 
0111 0021 6806 
0112 0022 6011 
0113 002:::: 4207 
0114 0024 CE18 
0115 0025 6807 
0116 0026 2007 
0117 0027 4D11 
0118 0028 6007 
0119 0029 2103 
0120 002A 6003 
0121 0028 FF80 

002C 0049 

LACT 
SACH 
SACL 
LACT 
SFL 
SACH 
LAC 
OR 
SACL 
LAC 
SACL 
8 

0122 * 
0123 002D 2000 AEQ8 
0124 002E 6008 

LAC 
SACL 
LAC 
SACL 
LAC 
SACL 
LAC 
SACL 
8 

0125 002F 2103 
012~. 0030 6003 
0127 00:31 2107 
0128 0032 6007 
0129 00:33 2001 
0130 00:34 6009 
0 Dl 0035 FF80 

0036 0049 

* 
0133 0037 0010 ALT8 
01 ::;:4 00:38 600C 

ADD 
:3ACL 
LT 
LAC 
SACL 
LAC 
SACL 
LACT 
SACH 
SACL 
LACT 
SFL 
SACH 
LAC 
OR 
SACL 
LAC 
::O;ACL 

0 1 :35 0039 3COC 
01 ::::6 oo:3A 2004 
0137 0038 6008 
0138 003C 2005 
o 139 oo::::D 6009 
0140 00:3E 4202 
o 141 oo:3F 6802 
0142 0040 6011 
014:::: 0041 42C):3 
0144 0042 CE18 
0145 004:3 6803 
0146 0044 2003 
0147 0045 4D11 
0148 0046 6003 
0149 0047 2107 
0150 0048 6007 
0151 
0152 004'7 2000 
0153 004A 1004 
0154 004B F680 

004C 007A 
0155 004D F380 

004E 005D 
0156 004F 4002 
(lJ 57 0050 49C):3 
0158 0051 4507 
0159 0052 4406 
0160 0053 F680 

0054 006B 

* CHKSGN LAC 
:::UB 
8Z 

BLZ 

BISNEG ZALH 
ADDS 
SUBS 
:::UBH 
BZ 

BHI 
BHI 
RES ID 
BLO 

BLO 
BLO 
RES ID 
BLO 
ALO, 1 
ALO 
CHKSGN 

ASIGN 
CSIGN 
AL0,1 
ALO 
BL0,1 
BLO 
AEXP 
CEXP 
CHICSGN 

SIXT 
D 
D 
BSIGN 
CSIGN 
BEXP 
CEXP 
AH! 
AHI 
RES ID 
ALO 

ALO 
ALO 
RES ID 
ALO 
BL0,1 
BLO 

ASIGN 
BSIGN 
AD NOW 

AISNEG 

AHI 
ALO 
BLO 
BHI 
CZ ERO 

PCO. 7 84. :34:::: 15:24:29 03-27-85 

PAGE 000:3 

BHI IS SHIFTED RIGHT "D" TIMES. 

RESIDUAL BITS MUST BE MAINTAINED. 
BLO rs SHIFTED RIGHT "[I" TIMES. 
MSB <THE 0) IS SHIFTED AWAY. 

GET BITS THAT WERE SHIFTED FROM BHI. 

GET RID OF EXTRA BIT. 

DO BOTH NUMBERS HAVE THE SAME SIGN? 

IF SIGNS ARE THE SAME, CSIGN = ASIGN 

ALIGN MANTISSAS. 

SET C EXPONENT = A EXPONENT. 

DO BOTH NUMBERS HAVE THE SAME SIGN? 

D = (16-D> 

B IS THE BIGGEST NUMBER. 
THEREFORE, LET THE SIGN OF C 
SET C EXPONENT = B EXPONENT. 

AH I GETS :::HI FTED "D 11 TI ME~3. 

MAINTAIN EXTRA BITS. 
ALO GETS SHIFTED "D" TIMES. 
MSB <THE 0) IS SHIFTED AWAY. 

GET RESIDUAL BITS. 

GET RID OF EXTRA BIT. 

CHECK THE SIGNS. 

IF THEY ARE THE SAME, JUST ADD. 

DO < : A : - : B : l , 
SINCE B .,.- 0 AND p, ) o. 

BSIGN. 

A-3 



NO$IDT :32020 FAMILY MACRO ASSEMBLER PC0.7 :34. :34::: 15:24:29 03-27-:35 

*** PRERELEASE *** 
PAGE 0004 

0161 0055 F:380 BLZ CNEG 
0056 0072 

01e:.2 0057 680A SACH CHI 
016:3 0058 600B SACL CLO 
0164 0059 CAOO ZAC 
01e:.5 005A 6008 SACL CSICiN 
0166 005B FF80 B NORMAL GO AND NORMAL! ZE RE:3ULT. 

005C 0084 
0167 005D 4ooe:. AISNEG ZALH BHI DO ( IB: - :Ail, 
0168 005E 4907 ADDS BLO SINCE A ( 0 AND B ) o. 
0169 005F 4503 SUBS ALO 
0170 0060 4402 SUBH AH! 
0171 0061 F C.::::Ci BZ CZ ERO 

0062 006B 
0172 006:3 F:380 BLZ CNEG 

0064 0072 
0173 0065 680A SACH CHI 
0174 0066 600B SACL CLO 
0175 0067 CAOO ZAC 
0176 0068 6008 SACL CSIGN 
0177 0069 FF80 B NORMAL GO AND NORMALIZE RESULTS. 

OOt.A 0084 
0178 * 0179 006B CAOO CZ ERO ZAC HERE, ONLY IF RESULT = o. 
0180 006C 6009 SACL CEXP 
0181 006D 6008 SACL CSIGN 
0182 006E 600A SACL CHI 
01.8:3 006F 600B SACL CLO 
0184 0070 FF80 B AROUND OUTPUT A ZERO. 

0071 OOA7 
0185 * 018e:. 0072 CE1B CNEG ABS HEF:E, IF RESULT IS NEGATIVE. 
0187 007:3 680A SACH CHI 
0188 0074 600B SACL CLO 
0189 0075 D001 LALK >FFFF 

0076 FFFF 
0190 0077 6008 SACL CSIGN 
0191 0078 FF80 B NORMAL GO NORMALIZE RESULT. 

0079 0084 
0192 * 
Ol.93 007A 4002 AD NOW ZALH AHI IF SIGNS ARE THE SAME, .JUST ADD. 
0194 007B 4903 ADDS ALO 
0195 007C 4907 ADDS BLO 
0196 007D 480C. ADDH BHI 
0197 007E C;.80A SACH CHI 
0198 007F 600B SACL CLO 
0199 0080 F080 BV OVFLOW DID AN OVERFLOW OCCUVi' 

0081 0095 
0200 0082 F680 BZ CZ ERO I·=· ·-· RESULT = 0 ·-::· 

oos:::: ooe:.B 
0201 * 0202 * NORMALIZE 
020:3 * 
0:204 0084 200A NORMAL.. LAC CHI DOE::: CHI HAVE THE MSB? 
0205 00:35 F680 BZ L.Ol. 

0086 008[1 

A-4 



NO$IDT 

0206 0087 
0207 oo:::::: 
0208 0089 
0209 OOSA 
0210 oo:::e 

008C 
0211 008D 
0212 oo:::E 
0:213 008F 

0090 
0214 0091 
0215 0092 
0216 0093 

0094 

32020 FAMILY MACRO ASSEMBLER 
*** PRERELEASE *** 

400A 
490B 
4B12 
CEA2 
FF80 
OOA1 
400B 
C010 
F::::8o 
009E 
4B12 
CEA2 
FF80 
OOA1 

L01 

* 
* 

ZALH CHI 
ADDS CLO 
RPT TTEEN 
NORM 
B OUTPUT 

ZALH CLO 
LARK ARO, 16 
BLZ NO FLOW 

RPT TTEEN 
NORM 
B OUTPUT 

PCO. 7 84. ::::48 15:24:29 03-27-85 

PAGE 0005 

IF YE::;, NORMALIZE RESULT. 

l.JILL PERFORM 14 "NORMS" 

GO OUTPUT RE::::;UL T::;. 

HERE IF CLO HAS MSB. 
OFF::;ET EXPONENT BY 16. 
DID BIT SEARCH CAUSE OVERFLOW? 

IF NOT, NORMALIZE RESULT. 

GO OUTPUT RESULT. 

0217 
021::: 
0219 
0220 
0221 
0222 
022:3 
0224 
0225 
0226 
0227 

* 
* 

FINISHED WITH NORMALIZATION 

0228 
0229 
0230 
0231 

02:32 
023:::: 
0234 

0095 CE06 
0096 CEJ.9 
0097 680A 
0098 600B 
0099 2009 
009A 000[! 
009B 6009 
009C FFBO 
009[1 OOA7 

0235 009E 5590 
0231'.:. 009F CE06 
0237 OOAO CE19 
02:38 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
0248 
0249 
0250 

OOA1 700E 
OOA2 6BOA 
OOA3 600B 
OOA4 2009 
OOA5 100E 
OOA6 6009 

* 
* 
* 

HERE ONLY IF OVERFLOW OCCURRED DURING ADDITION 

OVFLOW RSXM RESET SIGN EXTENSION TO SHIFT RIGHT. 
SHIFT RIGHT. 

* 

SFR 
:3ACH 
SACL 
LAC 
ADD 
SACL 
B 

CHI 
CLO 
CEXP 
ONE 
CEXP 
AROUND 

STORE NORMALIZED MANTISSA. 

DECREMENT EXPONENT. 

GO OUTPUT RESULTS. 

* OVERLOW OCCURRED DURING BIT SEARCH 

* NOFLOW MAR DECREMENT EXPONENT. 

* 
* 
-~ 

* 
* 
* OUTPUT 

* 

RSXM 
SFR 

RSXM FOR LOGICAL RIGHT SHIFT. 
PERFORM RIGHT SHIFT. 

TAKE CARE OF EXPONENT & NORMALIZED MANTISSA, 
THEN OUTPUT RESULTS. 

SAR 
SACH 
SACL 
LAC 
:::uB 
SACL 

ARO, TEMP 
CHI 
CLO 
CEXP 
TEMP 
CEXP 

HERE AFTER NORMALIZATION. 
SAVE NORMALIZED MANTISSA. 

ADJUST EXPONENT. 

0251 OOA7 55:::9 AROUND LA,RP 1 
THREE 
*+,PAO 

RESET POINTER. 
0252 OOA8 4BOF RPT 
0253 OOA9 EOAO 
0254 OOAA CE1F 

NO EF<RORS, NO WARNINGS 

OUT 
IDLE WAIT FOR INTERRUPT. 

A-5 





NO$IDT 

(H)Ol 

0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
003:3 
0034 
0035 
00::::6 
0037 
oo::::::: 
0039 
0040 
0041 
0042 
004:::: 
0044 
0045 
0046 
0047 
0048 
0049 0000 
0050 
0051 
0052 
005:::: 
0054 
0055 
0056 

APPENDIX B 

32020 FAMILY MACRO ASSEMBLER 
*** PRERELEASE *** 

PCO. 7 84. ::::48 15:24:53 03-27-85 

0000 
(H)(l 1 
0002 
0003 
0004 
0005 
0006 

F'AGE 0001 

****************************************************'******** 
* * * THIS IS A FLOATING-POINT MULTIPLICATION ROUTINE WHICH * 
* IMPLEMENTS THE IEEE PROPOSED FLOATING-POINT FORMAT * 

* 
* 

ON THE TMS::::2020. * 
* 

************************************************************ 
* * INITIAL FORMAT <ALL 16-BIT WORDS! 
* ------------------
* ALL 0 OR 1 
* ------------------
* 
* 
* : 0:. 15 BITS 
* ------------------
* * ------------------
* 
* 
* 

:o: 9 BITS :--0-: 

* ------------------
* 
* 
* 

A::; I GN ( 0 OR -1 I 

AHI <NORMALIZED> 

ALO 

AEXP (-127 TO 1281 

* TO CORRESPOND WITH IEEE FORMAT, 
* INPUT 0.1F * 2 ** <E + ll 
* INSTEAD OF 1.F * 2 **E, AND SUBTRACT 127 FROM E. 

* * THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT 
* EXCEPT THAT FOR CLO WE HAVE: 

* * ------------------
* it. BITS CLO 
* ------------------
* * ALL 16 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS 
* BEEN TRUNCATED. 

* 
*********************************************************** 
* 
* 
* 
* 
* 
* 

WORST CASE <EXCLUDING INITIALIZATION AND I/Ol: 
7.8 MICROSECONDS. 
THIS TIMING INCLUDES THE NORMALIZATION. 
WORDS OF PROGRAM MEMORY: 60 

* 
* 
* 
* 
* 
* 

**********************************************************'* 
* 

AORG 
ASIGN EG!U I) 

AEXP EOU 
AHI EOU 2 
ALO EGllJ :;: 
B::;IGN EOU 4 
BEXP EOU ·=-·-' 
BHI EG!U 6 

B-1 



NO$IDT 32020 FAMILY MACRO ASSEMBLER PC0.7 84. :348 15:24:53 03-27-85 
*** PRERELEASE *** 

PAGE 0002 

0057 0007 BLO EQU 7 
0058 0008 CSIGN EG!U p -· 
0059 0009 CEXP EG!U 9 
0060 OOOA CHI EG!U 10 
0061 OOOB CLO EQU u 
0062 oooc THI EG!U 12 
006:3 OOOD NEGONE EG!U 1 ·-. -.:> 

0064 OOOE TLO EG!U 14 
0065 OOOF TEMP EG!U 15 
0066 * 
0067 * 0068 * INITIALIZATION 
0069 * 
0070 * 0071 * 0072 0000 C804 LDPI< 4 BEGIN ON PAGE 4. 
0073 0001 CE07 SSXM SET SIGN EXTENSION. 
0074 0002 5589 LARP 
0075 000:3 DlOO LRLI< ARl,)200 

0004 0200 
0076 0005 CB07 RPTI< 7 READ NUMBERS INTO BLOCf< BO. 
0077 0006 80AO IN *+,PAO 
0078 0007 cooo LARI< ARO,O CLEAR EXPONENT REGISTER. 
0079 0008 5588 LARP 0 
0080 0009 DOOl LALi< >FFFF 

OOOA FFFF 
0081 OOOB MOD SACL NEGONE NEGONE = -1 
0082 * 008:3 * 
0084 * BEGIN FLOATING-POINT MULTIPLICATION. 
0085 * 
0086 * 
0087 oooc 2001 UP LAC AEXP ADD EXPONENTS. 
0088 OOOD 0005 ADD BEXP 
0089 OOOE 6009 SACL CEXP 
0090 * 0091 OOOF :3C03 LT ALO FIRST PRODUCT <ALO * BHI> 
0092 0010 3806 MPV BHI 
(H)9~: 0011 CE14 PAC 
0094 0012 680C SACH THI 
0095 0013 600E SACL TLO 
0096 * 0097 0014 3C02 LT AHI SECOND PRODUCT <AHI * BLO) 
0098 0015 3807 MPV BLO 
0099 * 0100 0016 CE15 APAC HAS EFFECT OF \AH! * BLO + ALO * BHI> * 

~. 

..::.. ** -15. 
0101 0017 CE15 APAC 
Ol.02 * 0103 0018 480C ADDH .THI 
0104 0019 490E ADDS TL.Ct 
0105 001A 680C SACH THI 
0106 -!!· 

0107 0018 ::::806 MPV BHI (AHI * BH!) 
0108 001C CE14 PAC 
0109 001D 490C ADDS THI 
0110 * 

B-2 



NO$IDT 32020 FAMILY MACRO ASSEMBLER PC0.7 84.348 15:24:53 03-27-85 
*** PRERELEASE *** 

PAGE 0(H)3 

(J 1 1 1 001E 690A '.::::ACH CHI 
' 

1 GET RID OF EXTRA SIGN BITS. 
01 12 001F 6108 ·::ACL CLO, 1 
i) 1 1 ·:· ·-· * 
01 14 0020 F5BO BNZ Of::: 

0021 002/:., 
01 15 0022 CAOO ZAC 
01 16 0023 6009 SACL CEXP 
01 17 0024 FFBO 8 '.::::ETSIN 

0025 002F 
I) 1 1 ·=· ,_, * 
01 19 0026 400A Of< ZALH CHI NORMALIZE AND WRAP UP. 
0120 0027 4908 ADD'.:::: CLO 
0121 0028 CEA2 NORM 
0122 0029 680A SACH CHI 
0123 002A 6008 :::::ACL CLO 
0124 0028 700F :::::AF: ARO., TEMP 
0125 002C 2009 LAC CEXP 
0126 002[1 100F :::::UB TEMF' 
0127 00:2E 6009 '.::::ACL CEXP 
0128 * 
0129 002F 4100 :::::ET:::::IN ZAL::::: A::::: I GN WHAT IS SIGN OF RESULT? 
01:::0 0030 4C04 XOR B::::: I CiN 
0131 0<)::: 1 FS:::::o 8NZ NEG 

0032 0037 
0132 (H)33 CAOO ZAC 
01::=:3 0034 6008 SACL c:::::IGN 
0134 0035 FFBO 8 OUTPUT 

(H):::(:. 0039 
0135 0037 200[1 NEG LAC NE GONE 
013(:. 0038 600::::: :::::ACL c:::::IGN 
(J 137 00:39 C"t:'r,,-, 

._1._1c1 ~' OUTPUT LARP 1 OUTPUT RE:::uL T·::::. 
013::::: 003A CB03 RPTf:: ·:· ·-· 
0139 0038 EOAO OUT *+ 

' 
PAO 

0140 (H):::C CElF IDLE 
NO ERROR:::, NO WARN I ~~G::::; 

B-3 





APPENDIX C 

NO$IDT 32020 FAMILY MACRO ASSEMBLER 
*** PRERELEASE *** 

15:25:17 03-27-85 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
000::: 
0009 
0010 
0011 
OOl.2 
001:3 
0014 
0015 
001(;. 
0017 
001::: 
0019 
0020 
0021 
0022 
00'.:'.3 
0024 
0025 
0026 
0027 
002::: 
002·::1 

0030 
0031 
0032 
0033 
OOJ4 
00:35 
003(;. 
0037 
(H)3::: 

0039 
0040 
0041 
0042 
0043 
0044 
0045 
004f::.. 
0047 
OO·'f::: 
0049 0000 
0050 0000 
0051 0001 
0052 0002 
005.3 000:::: 
0054 0004 
0055 0005 
005::~. 000/:.. 

***************************"****************************** 
* * 
* 
* 
i1· 

* 

THIS IS A FLOATING-POINT DIVISION ROUTINE WHICH * 
IMPLEMENTS THE IEEE PROPOSED FLOATING-POINT FORMAT * 

* 
* 

********************************************************* 
* 
* 
* 
* 
* 
'"* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
i1· 

* 
* 
~· 

* 
i1· 

* 
* 

INITIAL FORMAT CALL 16-BIT WORDS! 

!~LL 0 OR 1 A::; I GN ( 0 OR -1 ) 

:o:. 1s Brr:; AHI !NORMALIZED) 

:o: 9 BITS :--o-: ALO 

AEXP 1-127 TO 1281 

TO CORRESPOND WITH IEEE FORMAT, 
INPUT O.iF * 2 **IE+ 11 
INSTEAD OF 1.F * 2 **E, AND SUBTRACT 127 FROM E. 

THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT 
EXCEPT THAT FOR CLO WE HAVE: 

CLO 

ALL 16 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS 
BEEN TRUNCATED. 

* 
********************************************************* 
* 
* 
* 

* 
* 

WORST CASE !EXCLUDING INITIALIZATION AND I/0): 
22.8 MICROSECONDS. 
THIS TIMING INCLUDES THE NORMALIZATION. 
WORDS OF PROGRAM MEMORY: 92 

* 
* 
* 
* 
* 
* 

********************************************************* 
* 

P10F.'.Ci 0 
A:C:;ICiN EOU 0 
AEXP EOU 
AHI EOU :2 
ALO EOU 3 
B::::;IGN EOU 4 
BEXF' EOU C" 

·-' 
BHI EOU ; 

c 

C-1 



NO$IDT :32020 FAMILY MACRO ASSEMBLER PC0.7 84.348 15:25:17 0:~:--27-B5 

*** PRERELEASE *** 
PAGE 0002 

0057 0007 BLO EOU 7 
0058 0008 CSIGN EOU ::: 
0059 0009 CEXP EOU 9 
0060 OOOA CHI EOU 10 
0061 OOOB CLO EOU l1 
0062 oooc NE GONE EOU 12 
0063 OOOD TEMP EOU 13 
0064 OOOE FOUR EOU 1.4 
0065 OOOF G!M EG!U 15 
0066 0010 OL EOU 16 
0067 0011 R1 EC!U 17 
0068 0012 R2 EOU 18 
0069 0013 CL EOU 19 
0070 0014 MlOOO EC!U 20 
0071 0015 ONE EOU 21 
0072 0016 THREE EOU .-..-. 

.t:.t.. 

0073 0017 FI TEEN EOU -~ .. 'j ..,_..., 
0074 0018 THIRTY EQU 24 
0075 0(>19 TTEEN EQU 25 
0076 * 
0077 * 
0078 * INITIALIZATION 
0079 * 0080 * 
0081 * 0082 0000 C804 LDPK 4 BEGIN ON PAGE 4. 
0083 0001 CEO? SSXM SET SIGN EXTENSION. 
0084 0002 5589 LARP 1 
0085 0003 DlOO LRLK AR1, )200 

0004 0200 
0086 0005 CB07 RPTI< 7 READ NUMBERS INTO BLOCK BO. 
0087 C)(H)t:. 80AO IN *+,PAO 
0088 0007 5588 LARP 0 
0089 0008 cooo LARI< ARO,O CLEAR EXPONENT REGISTER. 
0090 0009 0001 LALi< :>FFFF 

OOOA FFFF 
0091 OOOB 600C SACL NEG ONE NEGONE = -1 
0092 oooc [1001 LALK )1000 

000[1 1000 
0093 OOOE 6014 8ACL M1000 M1000 = )1000 
0094 OOOF CA04 LACK 4 
0<)'?5 0010 600E SACL FOUR FOUR = 4 
00'?6 0011 CA01 LACK 1 
0097 0012 6015 SACL ONE ONE = 
0098 0013 CAO::: LACK ~. 

.,:. 

0099 0014 6016 SACL THREE THREE .-·, 
·=· 

01.00 0015 CAOF LACK 15 
0101 0016 6017 SACL FI TEEN FI TEEN 15 
0102 0017 CA1E LACY ·::::o 
0 :t<):3 0018 6018 SACL THIRTY THIRTY :::o 
0104 0019 CAOD LACK 1:::: 
0105 001.A 6019 SACL TTEEN TTEEN = 13 
OlOt:. 0018 CAOO ZAC 
Ol.07 OOlC 6009 SACL CEXP CLEAR CEXP 
010::: * 01.09 * 

C-2 



NO$IDT 32020 FAMILY MACRO ASSEMBLER 
*** PRERELEASE *** 

PCO. 7 84. ::::48 15:25:17 03-27-85 

PAGE 0(H):3 

0110 
0111 
0112 

* 
* 

FINISHED WITH INITIALIZATION 

0113 001[1 2000 
0114 001E 6008 
01 l!::i 001F 1004 
0116 0020 FC:.80 

0021 002:3 
0117 0022 200C 

* 

0118 * 
0119 0023 4002 OK 
0120 0024 49<):3 
0121 0025 4B16 
0122 0026 CE19 
0123 * 
0124 0027 4B17 
0125 0028 4706 
01 26 0029 6811 
0127 002A 600F 
0128 002B 2F11 
0129 002C 4B17 
0130 002D 4706 
0131 002E 6812 
0132 002F C:.010 
013:3 
0134 0030 3COF 
0135 00:31 :::::307 
0136 00::::2 CE14 
0137 00::::3 4B 17 
0138 0034 4706 
0139 0035 6013 
0140 0036 400F 
0141 0<):37 4910 
0142 0038 101:3 
014:3 0039 600B 
0144 OtBA 680A 
0145 003B 200A 
0146 003C 4E14 
0147 003D F680 

003E 0041 

* 

LAC 
SACL 
SUB 
BZ 

LAC 
SACL 
ZALH 
ADDS 
RPT 
SFR 

RPT 
SUBC 
SACH 
SACL 
LAC 
RPT 
SUBC 
SACH 
SACL 

LT 
MPV 
PAC 
RPT 
SUBC 
SACL 
ZALH 
ADDS 
SUB 
SACL 
SACH 
LAC 
AND 
BZ 

0148 003F 2015 LAC 
0149 0040 6009 SACL 
0150 0041 2001 NOOVF LAC 
0151 0042 1005 SUB 
0152 0043 0009 ADD 
0153 0044 6009 SACL 
0154 * 

ASIGN 
CSIGN 
BSIGN 
OK 

NE GONE 
CSIGN 
AHI 
ALO 
THREE 

FITEEN 
BHI 
Rl 
G!M 
Rl, 15 
FI TEEN 
BHI 
R2 
G!L 

QM 
BLO 

FITEEN 
BHI 
CL 
G:!M 
G!L 
CL 
CLO 
CHI 
CHI 
M1000 
NOOVF 

ONE 
CEXP 
AEXP 
BEXP 
CEXP 
CEXP 

0155 
0156 
0157 

* 
* 
* 

NORMAL.I ZE 

0158 0045 200A NORMAL LAC 
0159 0046 F680 BZ 

0047 004E 
0160 0048 400A ZALH 
0161 0049 4908 ADDS 
0162 004A 4819 RPT 

CHI 
L01 

CHI 
CLO 
TTEEN 

CSIGN = ASIGN, IF ASIGN - BSIGN. 

ELSE, CSIGN = -1. 

SHIFT DIVIDEND TO PROTECT FROM OVERFLOW. 

G!M = AHIIALO I BHI, Rl =REMAINDER. 

HIGH ACCUMULATOR RETAINS REMAINDER. 

CR1 * 2**151 I BHI GIVES QL, AND R2. 
COMPUTES CRl * 2**151 I BHI. 

HIGH ACCUMULATOR RETAINS REMAINDER. 

CORRECTION TERM = (QM * BLOJ I BHI. 
COMPUTES CQM * BLO). 

COMPUTES IQM * BLOl I BHI. 

OM:G!L - o:cL CHI: CLO 

DID AN OVERFLOW OCCUR? 

IF NOT, GOTO NOOVF. 

ELSE, INCREMENT CEXP. 

COMPUTE RESULTING EXPONENT. 

DOES CHI HAVE THE MSB? 

IF YES, NORMALIZE RESULT. 

WILL PERFORM 14 "NORMS". 

C-3 



C-4 

NO$IDT :32020 FAMILY MACRO ASSEMBLER PCO. 7 84. 348 
*** PRERELEASE *** 

15:25:17 03-27-85 

016:3 004B CEA2 
0164 004C FF80 

004[1 0057 

NORM 
B OUTPUT 

PAGE 0004 

GO OUTPUT RESULTS. 

0165 004E 400B L01 
011;.6 004F F380 

ZALH 
BLZ 

CLO 
NOFLOW 

HERE, IF CLO HAS MSB. 
DID BIT SEARCH CAUSE OVERFLOW? 

0050 0055 
0167 0051 4B19 
0168 0052 CEA2 
0169 005:3 FF80 

0170 
0171 
0172 
017:3 
0174 
0175 

0054 0057 

0176 0055 CE06 
0177 0056 CE19 
0178 
0179 
0180 
0181 
0182 
0183 
0184 0057 680A 
0185 0058 600B 
0186 0059 5589 
0187 005A 4B16 

* 
* 

RPT 
NORM 
B 

TTEEN 

OUTPUT 

IF NOT, NORMALIZE RESULT. 

GO OUTPUT RESULT. 

* FINISHED WITH NORMAL! ZATION 

* * OVERFLOW OCCURRED DURING BIT SEARCH 

* NOFLOW RSXM RSXM FOR LOGICAL RIGHT SHIFT. 

* 
* 
* 
* 
* 
* 

SFR PERFORM RIGHT SHIFT. 

TAKE CARE OF EXPONENT & NORMALIZED MANTISSA, 
THEN OUTPUT RESULTS. 

OUTPUT SACH CHI 
CLO 

SAVE NORMALIZED MANTISSA. 
SACL 
LARP 
RPT 

RESET POINTER. 
OUTPUT RESULTS, CSIGN, CEXP, CHI, AND CLO. 

0188 005B EOAO OUT 

1 
THREE 
*+,PAO 

0189 005C CE1F IDLE WA IT FOR I NTEF:RUPT. 
NO EF(RORS, NO WARNINGS 



Printed in U.S.A . 

• TEXAS 
INSTRUMENTS 

Creating useful products 
and services for you. 

SPRA011 
1602265-9701 




