
Printed on Recycled Paper

TMS320C6000
Code Composer Studio

Tutorial

Literature Number: SPRU301A
May 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserves the right to make changes to their products or to
discontinue any product or service without notice, and advises customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL
RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE
(“CRITICAL APPLICATIONS). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR
SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH
APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty
or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

Code Composer Studio speeds and enhances the development process for
programmers who create and test real-time, embedded signal processing
applications. Code Composer Studio extends the capabilities of the Code
Composer Integrated Development Environment (IDE) to include full
awareness of the DSP target by the host and real-time analysis tools.

This tutorial assumes that you have Code Composer Studio, which includes
the TMS320C6000 Code Generation Tools and the DSP/BIOS and RTDX
APIs and plug-ins. This manual also assumes that you have installed a target
board in your PC containing the DSP device.

If you only have Code Composer Studio Simulator and the Code Generation
Tools, but not the complete Code Composer Studio, you can perform the
steps in Chapter 2 and Chapter 4.

If you are using the DSP simulator instead of a board, you are also limited to
performing the steps in Chapter 2 and Chapter 4.

This tutorial will introduce you to some of the key features of Code Composer
Studio. The intention is not to provide an exhaustive description of every
feature. Instead, the objective is to prepare you to begin DSP development
with Code Composer Studio.

iv

 Notational Conventions

Notational Conventions

This document uses the following conventions:

❏ The TMS320C6000 core is also referred to as ’C6000.

❏ Code Composer Studio generates files with extensions of .s62 and .h62.
These files can also be used with both the TMS320C6201 and the
TMS320C6701. DSP/BIOS does not use the floating-point instructions
that are supported by the TMS320C6701.

❏ Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that
the system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

❏ In syntax descriptions, the instruction, command, or directive is in a bold
typeface and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Syntax
that is entered on a command line is centered. Syntax that is used in a
text file is left-justified.

❏ Square brackets ([]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.

Read This First v

Related Documentation from Texas Instruments

Related Documentation from Texas Instruments
The following books describe the devices, related support tools, and Code
Composer Studio.

Most of these documents are available in Adobe Acrobat format after you
install Code Composer Studio. To open a document, from the Windows Start
menu, choose Programs−>Code Composer Studio ’C6000−>Documentation.

To obtain a printed copy of any of these documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

Code Composer Studio User’s Guide (literature number SPRU328)
explains how to use the Code Composer Studio development environment
to build and debug embedded real-time DSP applications.

DSP/BIOS User’s Guide (literature number SPRU303) describes how to use
DSP/BIOS tools and APIs to analyze embedded real-time DSP applications.

TMS320C6000 Assembly Language Tools User's Guide (literature
number SPRU186) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User's Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces
assembly language source code for the ’C6000 generation of devices.
The assembly optimizer helps you optimize your assembly code.

TMS320C62x/C67x Programmer's Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C62x/C67x DSPs and includes application program examples.

TMS320C62x/C67x CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C62x/C67x CPU architecture,
instruction set, pipeline, and interrupts for these digital signal
processors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/’C6701 digital signal processors. This book includes
information on the internal data and program memories, the external
memory interface (EMIF), the host port, multichannel buffered serial
ports, direct memory access (DMA), clocking and phase-locked loop
(PLL), and the power-down modes.

TMS320C62x Technical Brief (literature number SPRU197) gives an
introduction to the digital signal processor, development tools, and
third-party support.

vi

 Related Documentation

TMS320C6201 Digital Signal Processor Data Sheet (literature number
SPRS051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C6701 Digital Signal Processor Data Sheet (literature number
SPRS067) describes the features of the TMS320C6701 and provides
pinouts, electrical specifications, and timings for the device.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using ’C2x,
’C3x, ’C4x, ’C5x, and other TI DSPs.

Related Documentation

You can use the following books to supplement this user’s guide:

American National Standard for Information Systems-Programming
Language C X3.159-1989 , American National Standards Institute.

The C Programming Language (second edition) , by Brian W. Kernighan
and Dennis M. Ritchie. Prentice Hall Press, 1988.

Programming in ANSI C , Kochan, Steve G. Sams Publishing, 1994.

C: A Reference Manual , Harbison, Samuel and Guy Steele. Prentice Hall
Computer Books, 1994.

Trademarks

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation. Other Microsoft products referenced herein are either
trademarks or registered trademarks of Microsoft.

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, XDS, Code Composer Studio, Probe Point, Code Explorer, DSP/BIOS,
RTDX, Online DSP Lab, BIOSuite, and SPOX.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.

Read This First vii

If You Need Assistance . . .

If You Need Assistance . . .

Note: When calling a Literature Response Center to order documentation, please specify the literature number.

❏ World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-lineTM http://www.ti.com/sc/docs/dsps/support.htm

❏ North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email:dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

❏ Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
 Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
 Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
 English +33 1 30 70 11 65
 Français +33 1 30 70 11 64
 Italiano +33 1 30 70 11 67
EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

❏ Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

❏ Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type "Go TIASP"

❏ Documentation
When making suggestions or reporting errors in documentation, please include the following information that
is on the title page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
 Technical Documentation Services, MS 702
 P.O. Box 1443

Houston, Texas 77251-1443

ix

Contents

1 Code Composer Studio Overview .1-1
This chapter provides an overview of the Code Composer Studio software development process,
the components of Code Composer Studio, and the files and variables used by Code Composer
Studio.
1.1 Code Composer Studio Development .1-2
1.2 Code Generation Tools .1-4
1.3 Code Composer Studio Integrated Development Environment1-7

1.3.1 Program Code Editing Features. .1-7
1.3.2 Application Building Features. .1-8
1.3.3 Application Debugging Features .1-8

1.4 DSP/BIOS Plug-ins. .1-9
1.4.1 DSP/BIOS Configuration .1-10
1.4.2 DSP/BIOS API Modules .1-11

1.5 Hardware Emulation and Real-Time Data Exchange. .1-13
1.6 Third-Party Plug-ins .1-14
1.7 Code Composer Studio Files and Variables. .1-15

1.7.1 Installation Folders .1-15
1.7.2 File Extensions .1-16
1.7.3 Environment Variables .1-17
1.7.4 Increasing DOS Environment Space .1-17

2 Developing a Simple Program .2-1
This chapter introduces Code Composer Studio and shows the basic process used to create,
build, debug, and test programs.
2.1 Creating a New Project. .2-2
2.2 Adding Files to a Project. .2-3
2.3 Reviewing the Code .2-4
2.4 Building and Running the Program. .2-6
2.5 Changing Program Options and Fixing Syntax Errors .2-8
2.6 Using Breakpoints and the Watch Window .2-10
2.7 Using the Watch Window with Structures. .2-12
2.8 Profiling Code Execution Time .2-13
2.9 Things to Try. .2-15
2.10 Learning More .2-15

x

 Contents

3 Developing a DSP/BIOS Program . 3-1
This chapter introduces DSP/BIOS and shows how to create, build, debug, and test programs that
use DSP/BIOS.
3.1 Creating a Configuration File . 3-2
3.2 Adding DSP/BIOS Files to a Project . 3-4
3.3 Testing with Code Composer Studio. 3-6
3.4 Profiling DSP/BIOS Code Execution Time . 3-8
3.5 Things to Try . 3-10
3.6 Learning More . 3-10

4 Testing Algorithms and Data from a File . 4-1
This chapter shows the process for creating and testing a simple algorithm and introduces addi-
tional Code Composer Studio features.
4.1 Opening and Examining the Project . 4-2
4.2 Reviewing the Source Code . 4-4
4.3 Adding a Probe Point for File I/O . 4-6
4.4 Displaying Graphs. 4-8
4.5 Animating the Program and Graphs . 4-9
4.6 Adjusting the Gain. 4-10
4.7 Viewing Out-of-Scope Variables . 4-11
4.8 Using a GEL File . 4-13
4.9 Adjusting and Profiling the Processing Load. 4-14
4.10 Things to Try . 4-16
4.11 Learning More . 4-16

5 Debugging Program Behavior . 5-1
This chapter introduces techniques for debugging a program and several DSP/BIOS plug-ins and
modules.
5.1 Opening and Examining the Project . 5-2
5.2 Reviewing the Source Code . 5-3
5.3 Modifying the Configuration File . 5-6
5.4 Viewing Task Execution with the Execution Graph. 5-10
5.5 Changing and Viewing the Load . 5-12
5.6 Analyzing Task Statistics . 5-15
5.7 Adding Explicit STS Instrumentation. 5-17
5.8 Viewing Explicit Instrumentation . 5-18
5.9 Things to Try . 5-20
5.10 Learning More . 5-20

6 Analyzing Real-Time Behavior . 6- 1
This chapter introduces techniques for analyzing and correcting real-time program behavior.
6.1 Opening and Examining the Project . 6-2
6.2 Modifying the Configuration File . 6-3
6.3 Reviewing the Source Code Changes . 6-5
6.4 Using the RTDX Control to Change the Load at Run Time . 6-7
6.5 Modifying Software Interrupt Priorities . 6-11

Contents xi

Contents

6.6 Things to Try. .6-12
6.7 Learning More .6-12

7 Connecting to I/O Devices . .7-1
This chapter introduces RTDX and DSP/BIOS techniques for implementing I/O.
7.1 Opening and Examining the Project .7-2
7.2 Reviewing the C Source Code .7-3
7.3 Reviewing the Signalprog Application .7-6
7.4 Running the Application .7-7
7.5 Modifying the Source Code to Use Host Channels and Pipes7-10
7.6 More about Host Channels and Pipes .7-12
7.7 Adding Channels and an SWI to the Configuration File .7-13
7.8 Running the Modified Program. .7-17
7.9 Learning More .7-17

1-1

Chapter 1

Code Composer Studio Overview

This chapter provides an overview of the Code Composer Studio software
development process, the components of Code Composer Studio, and the
files and variables used by Code Composer Studio.

Code Composer Studio speeds and enhances the development process for
programmers who create and test real-time, embedded signal processing
applications. It provides tools for configuring, building, debugging, tracing,
and analyzing programs.

 1.1 Code Composer Studio Development . 1–2

1.2 Code Generation Tools . 1–4

1.3 Code Composer Studio Integrated Development Environment . . . 1–7

1.4 DSP/BIOS Plug-ins . 1–9

1.5 Hardware Emulation and Real-Time Data Exchange 1–13

1.6 Third-Party Plug-ins . 1–14

1.7 Code Composer Studio Files and Variables 1–15

Topic Page

Code Composer Studio Development

1-2

1.1 Code Composer Studio Development

Code Composer Studio extends the basic code generation tools with a set of
debugging and real-time analysis capabilities. Code Composer Studio
supports all phases of the development cycle shown here:

In order to use this tutorial, you should have already done the following:

❏ Install target board and driver software . Follow the installation
instructions provided with the board. If you are using the simulator or a
target board whose driver software is provided with this product you can
perform the steps in the Installation Guide for this product.

❏ Install Code Composer Studio . Follow the installation instructions. If you
have Code Composer Studio Simulator and the TMS320C6000 code
generation tools, but not the full Code Composer Studio, you can perform
the steps in Chapter 2 and in Chapter 4.

❏ Run Code Composer Studio Setup . The setup program allows Code
Composer Studio to use the drivers installed for the target board.

Design Debug AnalyzeCode & build

conceptual

planning

create project,
write source code,

configuration file

syntax checking,
probe points,

logging, etc.

real-time
debugging,

statistics, tracing

Code Composer Studio Development

Code Composer Studio Overview 1-3

Code Composer Studio includes the following components:

❏ TMS320C6000 code generation tools: see section 1.2

❏ Code Composer Studio Integrated Development Environment (IDE): see
section 1.3

❏ DSP/BIOS plug-ins and API: see section 1.4

❏ RTDX plug-in, host interface, and API: see section 1.5

These components work together as shown here:

TargetHost

Target hardware

DSP application program

DSP

Code Composer Studio

JTAG
RTDX

Code Composer debugger

DSP/BIOS
plug-ins

RTDX
plug-in

3rd party
plug-ins

cfg.cmd
cfg.s6x
cfg.h6x

.cdb
(Config

database)

Compiler,
assembler,

lnker...

Code
generation

tools
Code Composer project

.asm.h.c

Code Composer editor

source files

DSP/BIOS API

OLE
application

using RTDX

Configuration
Tool

executable

DSP/BIOS

Host emulation support

Code Generation Tools

1-4

1.2 Code Generation Tools

The code generation tools provide the foundation for the development
environment provided by Code Composer Studio. Figure 1–1 shows a typical
software development flow. The most common software development path
for C language programs is shaded. Other portions are peripheral functions
that enhance the development process.

Figure 1–1 Software Development Flow

Assembler

Linker

Macro
library

Library of
object
files

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C compiler

Library-build
utility

Debugging
tools

Runtime-
support
library

TMS320C6000

C
source

files

Assembly-
optimized

file

Assembly
optimizer

Linear
assembly

Hex conversion
utility

Cross-reference
lister

Executable
COFF

file

Absolute
lister

Code Generation Tools

Code Composer Studio Overview 1-5

The following list describes the tools shown in Figure 1-1:

❏ The C compiler accepts C source code and produces assembly
language source code. See the TMS320C6000 Optimizing C Compiler
User’s Guide for details.

❏ The assembler translates assembly language source files into machine
language object files. The machine language is based on common object
file format (COFF). See the TMS320C6000 Assembly Language Tools
User’s Guide.

❏ The assembly optimizer allows you to write linear assembly code
without being concerned with the pipeline structure or with assigning
registers. It assigns registers and uses loop optimization to turn linear
assembly into highly parallel assembly that takes advantage of software
pipelining. See the TMS320C6000 Optimizing C Compiler User’s Guide
and the TMS320C62x/C67x Programmer's Guide for details.

❏ The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files and
object libraries as input. See the TMS320C6000 Optimizing C Compiler
User’s Guide and the TMS320C6000 Assembly Language Tools User’s
Guide for details.

❏ The archiver allows you to collect a group of files into a single archive
file, called a library. The archiver also allows you to modify a library by
deleting, replacing, extracting, or adding members. See the
TMS320C6000 Assembly Language Tools User’s Guide for details.

❏ You can use the library-build utility to build your own customized
runtime-support library. See the TMS320C6000 Optimizing C Compiler
User’s Guide for details.

❏ The runtime-support libraries contain the ANSI standard
runtime-support functions, compiler-utility functions, floating-point
arithmetic functions, and I/O functions that are supported by the C
compiler. See the TMS320C6000 Optimizing C Compiler User’s Guide
for details.

❏ The hex conversion utility converts a COFF object file into TI-Tagged,
ASCII-hex, Intel, Motorola-S, or Tektronix object format. You can
download the converted file to an EPROM programmer. See the
TMS320C6000 Assembly Language Tools User’s Guide for details.

❏ The cross-reference lister uses object files to produce a
cross-reference listing showing symbols, their definitions, and their
references in the linked source files. See the TMS320C6000 Assembly
Language Tools User’s Guide for details.

Code Generation Tools

1-6

❏ The absolute lister accepts linked object files as input and creates .abs
files as output. You assemble the .abs files to produce a listing that
contains absolute addresses rather than relative addresses. Without the
absolute lister, producing such a listing would be tedious and require
many manual operations.

Code Composer Studio Integrated Development Environment

Code Composer Studio Overview 1-7

1.3 Code Composer Studio Integrated Development Environment

The Code Composer Studio Integrated Development Environment (IDE) is
designed to allow you to edit, build, and debug DSP target programs.

1.3.1 Program Code Editing Features

Code Composer Studio allows you to edit C and assembly source code. You
can also view C source code with the corresponding assembly instructions
shown after the C statements.

The integrated editor provides support for the following activities:

❏ Highlighting of keywords, comments, and strings in color

❏ Marking C blocks in parentheses and braces, finding matching or next
parenthesis or brace

❏ Increasing and decreasing indentation level, customizable tab stops

❏ Finding and replacing in one or more files, find next and previous, quick
search

❏ Undoing and redoing multiple actions

❏ Getting context-sensitive help

❏ Customizing keyboard command assignments

Code Composer Studio Integrated Development Environment

1-8

1.3.2 Application Building Features

Within Code Composer Studio, you create
an application by adding files to a project.
The project file is used to build the
application. Files in a project can include
C source files, assembly source files,
object files, libraries, linker command
files, and include files.

You can use a window to specify the
options you want to use when compiling,
assembling, and linking a project.

Using a project, Code Composer Studio
can create a full build or an incremental
build and can compile individual files. It
can also scan files to build an include file
dependency tree for the entire project.

Code Composer Studio’s build facilities can be used as an alternative to
traditional makefiles. If you want to continue using traditional makefiles for
your project, Code Composer Studio also permits that.

1.3.3 Application Debugging Features

Code Composer Studio provides support for the following debugging
activities:

❏ Setting breakpoints with a number of stepping options

❏ Automatically updating windows at breakpoints

❏ Watching variables

❏ Viewing and editing memory and registers

❏ Viewing the call stack

❏ Using Probe Point tools to stream data to and from the target and to
gather memory snapshots

❏ Graphing signals on the target

❏ Profiling execution statistics

❏ Viewing disassembled and C instructions executing on target

Code Composer Studio also provides the GEL language, which allows
developers to add functions to the Code Composer Studio menus for
commonly performed tasks.

DSP/BIOS Plug-ins

Code Composer Studio Overview 1-9

1.4 DSP/BIOS Plug-ins

During the analysis phase of the software development cycle, traditional
debugging features are ineffective for diagnosing subtle problems that arise
from time-dependent interactions.

The Code Composer Studio plug-ins provided with DSP/BIOS support such
real-time analysis. You can use them to visually probe, trace, and monitor a
DSP application with minimal impact on real-time performance. For example,
the Execution Graph shown below displays the sequence in which various
program threads execute. (Threads is a general term used to refer to any
thread of execution, e.g., a hardware ISR, a software interrupt, an idle
function, or a periodic function.)

The DSP/BIOS API provides the following real-time analysis capabilities:

❏ Program tracing . Displaying events written to target logs and reflecting
dynamic control flow during program execution

❏ Performance monitoring . Tracking statistics that reflect the use of
target resources, such as processor loading and thread timing

❏ File streaming . Binding target-resident I/O objects to host files

DSP/BIOS also provides a priority-based scheduler that you can choose to
use in your applications. This scheduler supports periodic execution of
functions and multi-priority threading.

DSP/BIOS Plug-ins

1-10

1.4.1 DSP/BIOS Configuration

You can create configuration files in the Code Composer Studio environment
that define objects used by the DSP/BIOS API. This file also simplifies
memory mapping and hardware ISR vector mapping, so you may want to use
it even if you are not using the DSP/BIOS API.

A configuration file has two roles:

❏ It lets you set global run-time parameters.

❏ It serves as a visual editor for creating and setting properties for run-time
objects that are used by the target application’s DSP/BIOS API calls.
These objects include software interrupts, I/O pipes, and event logs.

When you open a configuration file in Code Composer Studio, a window like
the following one appears.

Unlike systems that create objects at run time with API calls that require extra
target overhead (especially code space), all DSP/BIOS objects are statically
configured and bound into an executable program image. In addition to
minimizing the target memory footprint by eliminating run-time code and
optimizing internal data structures, this static configuration strategy detects
errors earlier by validating object properties before program execution.

You can use a configuration file in both programs that use the DSP/BIOS API
and in programs that do not. A configuration file simplifies ISR vector and
memory section addressing for all programs.

Saving a configuration file generates several files that you must link with your
application. See section 1.7.2 for details about these files.

DSP/BIOS Plug-ins

Code Composer Studio Overview 1-11

1.4.2 DSP/BIOS API Modules

Unlike traditional debugging, which is external to the executing program, the
DSP/BIOS features require the target program to be linked with certain
DSP/BIOS API modules.

A program can use one or more DSP/BIOS modules by defining DSP/BIOS
objects in a configuration file, declaring these objects as external, and calling
DSP/BIOS API functions in the source code.

Each module has a separate C header file or assembly macro file you can
include in your program. This allows you to minimize the program size in a
program that uses some, but not all, DSP/BIOS modules.

The DSP/BIOS API calls (in C and assembly) are optimized to use minimal
resources on your target DSP.

The DSP/BIOS API is divided into the following modules. All the API calls
within a module begin with the codes shown here.

❏ CLK . The on-chip timer module controls the on-chip timer and provides
a logical 32-bit real-time clock with a high-resolution interrupt rate as fine
as the resolution of the on-chip timer register (4 instruction cycles) and a
low-resolution interrupt rate as long as several milliseconds or longer.

❏ HST. The host input/output module manages host channel objects, which
allow an application to stream data between the target and the host. Host
channels are statically configured for input or output.

❏ HWI. The hardware interrupt module provides support for hardware
interrupt routines. In a configuration file, you can assign functions that run
when hardware interrupts occur.

❏ IDL. The idle function module manages idle functions, which are run in a
loop when the target program has no higher priority functions to perform

❏ LOG. The log module manages LOG objects, which capture events in
real time while the target program executes. You can use system logs or
define your own logs. You can view messages in these logs in real time
with Code Composer Studio.

❏ MEM. The memory module allows you to specify the memory segments
required to locate the various code and data sections of a target program

❏ PIP. The data pipe module manages data pipes, which are used to buffer
streams of input and output data. These data pipes provide a consistent
software data structure you can use to drive I/O between the DSP device
and other real-time peripheral devices.

DSP/BIOS Plug-ins

1-12

❏ PRD. The periodic function module manages periodic objects, which
trigger cyclic execution of program functions. The execution rate of these
objects can be controlled by the clock rate maintained by the CLK module
or by regular calls to PRD_tick, usually in response to hardware interrupts
from peripherals that produce or consume streams of data.

❏ RTDX. Real-Time Data Exchange permits the data to be exchanged
between the host and target in real time, and then to be analyzed and
displayed on the host using any OLE automation client. See section 1.5
for more information.

❏ STS. The statistics module manages statistics accumulators, which store
key statistics while a program runs. You can view these statistics in real
time with Code Composer Studio.

❏ SWI. The software interrupt module manages software interrupts, which
are patterned after hardware interrupt service routines (ISRs). When a
target program posts an SWI object with an API call, the SWI module
schedules execution of the corresponding function. Software interrupts
can have up to 15 priority levels; all levels are below the priority level of
hardware ISRs.

❏ TRC. The trace module manages a set of trace control bits which control
the real-time capture of program information through event logs and
statistics accumulators

For details about each module, see the online help or the TMS320C6000
DSP/BIOS User’s Guide.

Hardware Emulation and Real-Time Data Exchange

Code Composer Studio Overview 1-13

1.5 Hardware Emulation and Real-Time Data Exchange

TI DSPs provide on-chip emulation support that enables Code Composer
Studio to control program execution and monitor real-time program activity.
Communication with this on-chip emulation support occurs via an enhanced
JTAG link. This link is a low-intrusion way of connecting into any DSP system.
An emulator interface, like the TI XDS510, provides the host side of the JTAG
connection. Evaluation boards like the C6x EVM provide an on-board JTAG
emulator interface for convenience.

The on-chip emulation hardware provides a variety of capabilities:

❏ Starting, stopping, or resetting the DSP

❏ Loading code or data into the DSP

❏ Examining the registers or memory of the DSP

❏ Hardware instruction or data-dependent breakpoints

❏ A variety of counting capabilities including cycle-accurate profiling

❏ Real-time data exchange (RTDX) between the host and the DSP

Code Composer Studio provides built-in support for these on-chip
capabilities. In addition, RTDX capability is exposed through host and DSP
APIs, allowing for bi-directional real-time communications between the host
and DSP.

RTDX provides real-time, continuous visibility into the way DSP applications
operate in the real world. RTDX allows system developers to transfer data
between a host computer and DSP devices without stopping their target
application. The data can be analyzed and visualized on the host using any
OLE automation client. This shortens development time by giving designers
a realistic representation of the way their systems actually operate.

Third-Party Plug-ins

1-14

RTDX consists of both target and host components. A small RTDX software
library runs on the target DSP. The designer’s DSP application makes
function calls to this library’s API in order to pass data to or from it. This library
uses the on-chip emulation hardware to move data to or from the host
platform via an enhanced JTAG interface. Data transfer to the host occurs in
real time while the DSP application is running.

On the host platform, an RTDX library operates in conjunction with Code
Composer Studio. Display and analysis tools can communicate with RTDX
via an easy-to-use COM API to obtain the target data or send data to the DSP
application. Designers may use standard software display packages, such as
National Instruments' LabVIEW, Quinn-Curtis' Real-Time Graphics Tools, or
Microsoft Excel. Alternatively, designers can develop their own Visual Basic
or Visual C++ applications.

1.6 Third-Party Plug-ins

Third-party software providers can create ActiveX plug-ins that complement
the functionality of Code Composer Studio. A number of third-party plug-ins
are available for a variety of purposes.

User display

TI display

Third party
display

Code Composer

RTDX host
library E

m
ul

at
io

n

R
T

D
X

 t
ar

ge
t

lib
ra

ry

A
pp

lic
at

io
n

PC TMS320 DSP

RTDX COM API RTDX target API

Live or recorded
data

JTAG

Code Composer Studio Files and Variables

Code Composer Studio Overview 1-15

1.7 Code Composer Studio Files and Variables

The following sections provide an overview of the folders that contain the
Code Composer Studio files, the types of files you use, and the environment
variables used by Code Composer Studio.

1.7.1 Installation Folders

The installation process creates the subfolders shown here in the folder
where you install Code Composer Studio (typically c:\ti). Additionally,
subfolders are created in the Windows directory (c:\windows or c:\winnt).

The c:\ti structure contains the following directories:

❏ bin . Various utility programs

❏ c6000\bios . Files used when building programs
that use the DSP/BIOS API

❏ c6000\cgtools . The Texas Instruments code
generation tools

❏ c6000\examples . Code examples

❏ c6000\rtdx . Files for use with RTDX

❏ c6000\tutorial . The examples you use in this
manual

❏ cc\bin . Program files for the Code Composer
Studio environment

❏ cc\gel . GEL files for use with Code Composer Studio

❏ docs . Documentation and manuals in PDF format

❏ myprojects . Location provided for your copies of the tutorial examples
and your project files

The following directory structure is added to the
Windows directory:

❏ ti\drivers . Files for various DSP board drivers

❏ ti\plugins . Plug-ins for use with Code Composer
Studio

❏ ti\uninstall . Files supporting Code Composer Studio software removal

Code Composer Studio Files and Variables

1-16

1.7.2 File Extensions

While using Code Composer Studio, you work with files that have the following
file-naming conventions:

❏ project.mak . Project file used by Code Composer Studio to define a
project and build a program

❏ program.c . C program source file(s)

❏ program.asm . Assembly program source file(s)

❏ filename.h . Header files for C programs, including header files for
DSP/BIOS API modules

❏ filename.lib . Library files

❏ project.cmd . Linker command files

❏ program.obj . Object files compiled or assembled from your source files

❏ program.out . An executable program for the target (fully compiled,
assembled, and linked). You can load and run this program with Code
Composer Studio.

❏ project.wks . Workspace file used by Code Composer Studio to store
information about your environment settings

❏ program.cdb . Configuration database file created within Code Composer
Studio. This file is required for applications that use the DSP/BIOS API,
and is optional for other applications. The following files are also
generated when you save a configuration file:

■ programcfg.cmd . Linker command file
■ programcfg.h62 . Header file
■ programcfg.s62 . Assembly source file

Although these files have extensions of .s62 and .h62, they can also be
used with the TMS320C6701. DSP/BIOS does not need to use the
floating-point instructions supported by the TMS320C6701, therefore
only one version of the software is required to support both DSPs.

Code Composer Studio Files and Variables

Code Composer Studio Overview 1-17

1.7.3 Environment Variables

The installation procedure defines the following variables in your
autoexec.bat file (for Windows 95 and 98) or as environment variables (for
Windows NT):

Table 1–1 Environment Variables

1.7.4 Increasing DOS Environment Space

If you are using Windows 95, you may need to increase your DOS shell
environment space to support the environment variables required to build
Code Composer Studio applications.

Add the following line to the config.sys file and then restart your computer:

shell=c:\windows\command.com /e:4096 /p

Variable Description

C6X_A_DIR A search list used by the assembler to find library and include
files for DSP/BIOS, RTDX, and the Code Generation Tools. See
the TMS320C6000 Assembly Language Tools User’s Guide for
details.

C6X_C_DIR A search list used by the compiler and linker to find library and
include files for DSP/BIOS, RTDX, and the Code Generation
Tools. See the TMS320C6000 Optimizing C Compiler User’s
Guide for details.

PATH A list of folders is added to your PATH definition. The default is to
add the c:\ti\c6000\cgtools\bin and c:\windows\ti\plugins\bios fold-
ers.

2-1

Chapter 2

Developing a Simple Program

This chapter introduces Code Composer Studio and shows the basic process
used to create, build, debug, and test programs.

In this chapter, you create and test a simple program that displays a hello
world message.

This tutorial introduces you to some of the key features of Code Composer
Studio. The intention is not to provide an exhaustive description of every
feature. Instead, the objective is to prepare you to begin DSP software
development with Code Composer Studio.

In order to use this tutorial, you should have already installed Code
Composer Studio according to the installation instructions. It is recommended
that you use Code Composer Studio with a target board rather than with the
simulator. If you have Code Composer and the Code Generation Tools, but
not Code Composer Studio, or if you are using the simulator, you can perform
the steps in Chapter 2 and Chapter 4 only.

2.1 Creating a New Project . 2–2

2.2 Adding Files to a Project . 2–3

2.3 Reviewing the Code . 2–4

2.4 Building and Running the Program . 2–6

2.5 Changing Program Options and Fixing Syntax Errors 2–8

2.6 Using Breakpoints and the Watch Window. 2–10

2.7 Using the Watch Window with Structures. 2–12

2.8 Profiling Code Execution Time . 2–13

2.9 Things to Try . 2–15

2.10 Learning More . 2–15

Topic Page

Creating a New Project

2-2

2.1 Creating a New Project

You begin by creating a project with Code Composer Studio and adding
source code files and libraries to that project. In this example, you use
standard C library functions to display a hello world message.

1) If you installed Code Composer Studio in c:\ti, create a folder called
hello1 in the c:\ti\myprojects folder. (If you installed elsewhere, create a
folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\hello1 folder to this new folder.

3) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→Code Composer Studio. (Or, double-click the Code
Composer Studio icon on your desktop.)

Note: Code Composer Studio Setup

If you get an error message the first time you try to start Code Composer
Studio, make sure you ran Code Composer Setup after installing Code
Composer Studio. If you have a target board other than the ones mentioned
in the instructions provided with the CD-ROM, see the documentation
provided with your target board for the correct I/O port address.

4) Choose the Project→New menu item.

5) In the Save New Project As window, select the working folder you
created. Type myhello as the File name and click Save. Code Composer
Studio creates a project file called myhello.mak. This file stores your
project settings and references the various files used by your project.

Adding Files to a Project

Developing a Simple Program 2-3

2.2 Adding Files to a Project

1) Choose Project→Add Files to Project. Select hello.c and click Open.

2) Choose Project→Add Files to Project. Select vectors.asm and click
Open. This file contains assembly instructions needed to set the RESET
interrupt service fetch packets (ISFPs) to branch to the program’s C entry
point, c_int00. (For more complex programs, you can define additional
interrupt vectors in vectors.asm, or you can use DSP/BIOS as shown in
section 3.1 to define all the interrupt vectors automatically.)

3) Choose Project→Add Files to Project. Select Linker Command File
(*.cmd) in the Files of type box. Select hello.cmd and click Open. This file
maps sections to memory.

4) Choose Project→Add Files to Project.
Go to the compiler library folder
(C:\ti\c6000\cgtools\lib). Select Library
Files (*.lib) in the Files of type box.
Select rts6201.lib and click Open. This
library provides run-time support for
the target DSP. (If you are using the
TMS320C6701 and floating point
values, select rts6701.lib instead.)

5) Expand the Project list by clicking the
+ signs next to Project,
MYHELLO.MAK, Libraries, and
Source. This list is called the Project
View.

Note: Opening Project View

If you do not see the Project View, choose View→Project. Click the File icon
at the bottom of the Project View if the Bookmarks icon is selected.

If you need to remove a file from the project, right click on the file in the Project
View and choose Remove from project in the pop-up menu.

When building the program, Code Composer Studio finds files by searching
for project files in the following path order:

❏ The folder that contains the source file

❏ The folders listed in the Include Search Path for the compiler or
assembler options (from left to right)

❏ The folders listed in the definitions of the C6X_C_DIR (compiler) and
C6X_A_DIR (assembler) environment variables (from left to right). The
C6X_C_DIR environment variable defined by the installation points to the
folder that contains the rts6201.lib file.

Reviewing the Code

2-4

2.3 Reviewing the Code

1) Double-click on the HELLO.C file in the Project View. You see the source
code in the right half of the window.

2) You may want to make the window larger so that you can see more of the
source code at once. You can also choose a smaller font for this window
by choosing Option→Font.

/* ======== hello.c ======== */
#include <stdio.h>
#include "hello.h"

#define BUFSIZE 30

struct PARMS str =
{
 2934,
 9432,
 213,
 9432,
 &str
};

/*
 * ======== main ========
 */
void main()
{
#ifdef FILEIO
 int i;
 char scanStr[BUFSIZE];
 char fileStr[BUFSIZE];
 size_t readSize;
 FILE *fptr;
#endif

 /* write a string to stdout */
 puts("hello world!\n");

#ifdef FILEIO
 /* clear char arrays */
 for (i = 0; i < BUFSIZE; i++) {
 scanStr[i] = 0 /* deliberate syntax error */
 fileStr[i] = 0;
 }

 /* read a string from stdin */
 scanf("%s", scanStr);

 /* open a file on the host and write char array */
 fptr = fopen("file.txt", "w");
 fprintf(fptr, "%s", scanStr);
 fclose(fptr);

Reviewing the Code

Developing a Simple Program 2-5

 /* open a file on the host and read char array */
 fptr = fopen("file.txt", "r");
 fseek(fptr, 0L, SEEK_SET);
 readSize = fread(fileStr, sizeof(char), BUFSIZE, fptr);
 printf("Read a %d byte char array: %s \n", readSize, fileStr);
 fclose(fptr);
#endif
}

When FILEIO is undefined, this is a simple program that uses the standard
puts() function to display a hello world! message. When you define FILEIO
(as you do in section 2.5), this program prompts for a string and prints it to a
file. It then reads the string from the file and prints it and a message about its
length to standard output.

Building and Running the Program

2-6

2.4 Building and Running the Program

Code Composer Studio automatically saves changes to the project setup as
you make them. In case you exited from Code Composer Studio after the
previous section, you can return to the point where you stopped working by
restarting Code Composer Studio and using Project→Open.

Note: Resetting the Target DSP

If you can start Code Composer Studio the first time, but a subsequent time
you get an error message that says it cannot initialize the target DSP,
choose the Debug→Reset DSP menu item. If this does not correct the
problem, you may need to run a reset utility provided with your target board.

1) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.
Code Composer Studio recompiles, reassembles, and relinks all the files
in the project. Messages about this process are shown in a frame at the
bottom of the window.

2) Choose File→Load Program. Select the program you just rebuilt,
myhello.out, and click Open. (It should be in the c:\ti\myprojects\hello1
folder unless you installed Code Composer Studio elsewhere.) Code
Composer Studio loads the program onto the target DSP and opens a
dis-assembly window that shows the disassembled instructions that
make up the program. (Notice that Code Composer Studio also
automatically opens a tabbed area at the bottom of the window to show
output the program sends to stdout.)

3) Click on an assembly instruction in the Dis-Assembly window. (Click on
the actual instruction, not the address of the instruction or the fields
passed to the instruction.) Press the F1 key. Code Composer Studio
searches for help on that instruction. This is a good way to get help on an
unfamiliar assembly instruction.

4) Choose Debug→Run or click the (Run) toolbar button.

Note: Screen Size and Resolution

Depending on the size and resolution of your screen, part of the toolbar
may be hidden by the Build window. To view the entire toolbar, right-click in
the Build window and deselect Allow Docking.

Building and Running the Program

Developing a Simple Program 2-7

You see the hello world! message in the Stdout tab.

5) Click (Halt) or press Shift F5 to stop the program.

Changing Program Options and Fixing Syntax Errors

2-8

2.5 Changing Program Options and Fixing Syntax Errors

In the previous section, the portion of the program enclosed by the
preprocessor commands (#ifdef and #endif) did not run because FILEIO was
undefined. In this section, you set a preprocessor option with Code
Composer Studio. You also find and correct a syntax error.

1) Choose Project→Options.

2) In the Compiler tab of the Build Options window, type FILEIO in the
Define Symbols box. Press the Tab key.

Notice that the compiler command at the top of the window now includes
the -d option. The code after the #ifdef FILEIO statement in the program
is now included when you recompile the program. (The other options may
vary depending on the DSP board you are using.)

Changing Program Options and Fixing Syntax Errors

Developing a Simple Program 2-9

3) If you are programming for the TMS320C6701 and your program uses
floating point values, go to the Target Version field and select 67xx from
the pull-down list.

4) Click OK to save your new option settings.

5) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.
You need to rebuild all the files whenever the project options change.

6) A message says the program contains compile errors. Click Cancel.
Scroll up in the Build tab area. You see a syntax error message.

7) Double-click on the red text that describes the location of the syntax error.
Notice that the hello.c source file opens, and your cursor is on the line
that says fileStr[i] = 0;.

8) Fix the syntax error in the line above the cursor location. (The semicolon
is missing.) Notice that an asterisk (*) appears next to the file name in the
Edit window’s title bar, indicating that the source file has been modified.
The asterisk disappears when the file is saved.

9) Choose File→Save or press Ctrl+S to save your changes to hello.c.

10) Choose Project→Build or click the (Incremental Build) toolbar button.
Code Composer Studio rebuilds files that have been updated.

Using Breakpoints and the Watch Window

2-10

2.6 Using Breakpoints and the Watch Window

When you are developing and testing programs, you often need to check the
value of a variable during program execution. In this section, you use
breakpoints and the Watch Window to view such values. You also use the
step commands after reaching the breakpoint.

1) Choose File→Reload Program.

2) Double-click on the hello.c file in the Project View. You may want to make
the window larger so that you can see more of the source code at once.

3) Put your cursor in the line that says:

fprintf(fptr, "%s", scanStr);

4) Click the (Toggle Breakpoint) toolbar button or press F9. The line is
highlighted in magenta. (If you like, you can change this color using
Option→Color.)

5) Choose View→Watch Window. A separate area in the lower-right corner
of the Code Composer Studio window appears. At run time, this area
shows the values of watched variables.

6) Right-click on the Watch Window area and choose Insert New
Expression from the pop-up list.

7) Type *scanStr as the Expression and click OK.

8) Choose Insert New Expression from the pop-up list again. This time, type
*fileStr as the Expression and click OK. Both of the expressions you
typed are listed in the Watch Window. Currently, the expressions are
undefined because the program is not running the main function within
which these variables are declared locally.

9) Choose Debug→Run or press F5.

Using Breakpoints and the Watch Window

Developing a Simple Program 2-11

10) At the prompt, type goodbye and click OK. Notice that the Stdout tab
shows the input text in blue.

Also notice that the Watch Window now shows the value of *scanStr.

After you type an input string, the program runs and stops at the
breakpoint. The next line to be executed is highlighted in yellow.

11) Click the (Step Over) toolbar button or press F10 to step over the call
to fprintf().

12) Experiment with the step commands Code Composer Studio provides:

■ Step Into (F8)

■ Step Over (F10)

■ Step Out (Shift F7)

■ Run to Cursor (Ctrl F10)

13) Click (Run) or press F5 to finish running the program when you have
finished experimenting.

Using the Watch Window with Structures

2-12

2.7 Using the Watch Window with Structures

In addition to watching the value of a simple variable, you can watch the
values of the elements of a structure.

1) Right-click on the Watch Window area and choose Insert New
Expression from the pop-up list.

2) Type str as the Expression and click OK. A line that says +str = {...}
appears in the Watch Window. The + sign indicates that this is a
structure. Recall from section 2.3 that a structure of type PARAMS was
declared globally and initialized in hello.c. The structure type is defined in
hello.h.

3) Click once on the + sign. Code Composer Studio expands this line to list
all the elements of the structure and their values. (The address shown for
Link may vary.)

4) Double-click on any element in the structure to open the Edit Variable
window for that element.

5) Change the value of the variable and click OK. Notice that the value
changes in the Watch Window. The value also changes color to indicate
that you have changed it manually.

6) Click (Halt) or press Shift F5 to stop the program.

7) Select the str variable in the Watch Window. Right-click in the Watch
Window and choose Remove Current Expression from the pop-up list.

8) Choose Debug→Breakpoints. In the Breakpoints tab, click Delete All and
then click OK.

Profiling Code Execution Time

Developing a Simple Program 2-13

2.8 Profiling Code Execution Time

In this section, you use the profiling features of Code Composer Studio to
gather statistics about the execution of the standard puts() function. In
Chapter 3, page 3–10, you compare these results to the results for using the
DSP/BIOS API to display the hello world message.

1) Choose File→Reload Program.

2) Choose Profiler→Enable Clock. A check mark appears next to this item
in the Profiler menu. This clock counts instruction cycles. It must be
enabled for profile-points to count instruction cycles.

3) Double-click on the hello.c file in the Project View.

4) Choose View→Mixed Source/ASM. Assembly instructions are listed in
gray following each C source code line.

5) Put your cursor in the line that says:

puts("hello world!\n");

6) Click the (Toggle Profile-point) toolbar button. The C source code line
and the first assembly instruction are highlighted in green.

7) Scroll down and put your cursor in the line that says:
for (i = 0; i < BUFSIZE; i++) {

8) Click the (Toggle Profile-point) toolbar button. (Or, right-click on the
code line and choose Toggle Profile Pt from the pop-up menu.)

Profiling Code Execution Time

2-14

Profile-points are handled before the profile-point line is executed. They
report the number of instruction cycles since the previous profile-point or
since the program started running. As a result, the statistics for the
second profile-point report the number of cycles from when puts() started
executing until it finished executing.

9) Choose Profiler→View Statistics. An area appears at the bottom of the
window that displays statistics about the profile-points.

10) Resize this area by dragging its edges so that you can see all the
columns.

Note: Line Numbers May Vary

Line numbers displayed in screen shots in this manual may vary from those
displayed in the current release of the software.

11) Click the (Run) toolbar button or press F5 to run the program. Type
an input string in the prompt window.

12) Notice the number of cycles shown for the second profile-point. It should
be about 1700 cycles. (The actual numbers shown may vary.) This is the
number of cycles required to execute the call to puts().

The average, total, maximum, and minimum are the same for these
profile-points because these instructions are executed only one time.

13) Click (Halt) or press Shift F5 to stop the program.

Things to Try

Developing a Simple Program 2-15

Note: Target Halts at Profile-Points

Code Composer Studio temporarily halts the target whenever it reaches a
profile-point. Therefore, the target application may not be able to meet
real-time deadlines when you are using profile-points. (Real-time
monitoring can be performed using RTDX. See section 1.5.)

14) Before proceeding to the next chapter (after completing section 2.9),
perform the following steps to free the resources used in your profiling
session:

■ Go to the Profiler menu and uncheck Enable Clock.

■ Close the Profile Statistics window by right-clicking and choosing
Hide from the pop-up menu.

■ Go to Debug→Breakpoints. Select Delete All and click OK.

■ Go to Profiler→Profile-points. Select Delete All and click OK.

■ Go to the View menu and uncheck Mixed Source/ASM.

2.9 Things to Try

To further explore Code Composer Studio, try the following:

❏ In the Build Options window, examine the fields on the Compiler,
Assembler, and Linker tabs. Notice how changing the values in the field
affects the command line shown. You can see the online help to learn
about the various command line switches.

❏ Set some breakpoints. Choose Debug→Breakpoints. In the Breakpoint
type box, notice that you can also set conditional breakpoints that break
only if an expression is true. You can also set a variety of hardware
breakpoints.

2.10 Learning More

To learn more about using Code Composer Studio, see the online help for
Code Composer Studio or the Code Composer Studio User’s Guide (which
is provided as an Adobe Acrobat file).

3-1

Chapter 3

Developing a DSP/BIOS Program

This chapter introduces DSP/BIOS and shows how to create, build, debug,
and test programs that use DSP/BIOS.

In this chapter, you optimize the hello world program you created in Chapter
2 by using DSP/BIOS.

3.1 Creating a Configuration File . 3–2

3.2 Adding DSP/BIOS Files to a Project . 3–4

3.3 Testing with Code Composer Studio. 3–6

3.4 Profiling DSP/BIOS Code Execution Time . 3–8

3.5 Things to Try . 3–10

3.6 Learning More . 3–10

Topic Page

Creating a Configuration File

3-2

3.1 Creating a Configuration File

Another way to implement the hello world program is to use the LOG module
provided with the DSP/BIOS API. You can use the DSP/BIOS API to provide
basic run-time services within your embedded programs. This API is
optimized for use on real-time DSPs. A program can use one or more of the
DSP/BIOS modules as desired.

In this chapter, you modify the files you used in Chapter 2 to use the
DSP/BIOS API. (If you skipped Chapter 2, create a folder called hello1 in the
c:\ti\myprojects folder. Copy all files from the c:\ti\c6000\tutorial\hello1 folder
to this new folder.)

In order to use the DSP/BIOS API, a program must have a configuration file
that defines the DSP/BIOS objects used by the program. In this section, you
create a configuration file.

1) If you have closed Code Composer Studio, restart it and use
Project→Open to reopen the myhello.mak project in the
c:\ti\myprojects\hello1 folder. (If you installed elsewhere, create a folder
within the myprojects folder in the location where you installed.)

2) Choose File→New→DSP/BIOS Configuration.

3) Select the template for your DSP board and click OK.

You see a window like the following. You can expand and contract the list
by clicking the + and - symbols on the left. The right side of the window
shows properties of the object you select in the left side of the window.

Creating a Configuration File

Developing a DSP/BIOS Program 3-3

4) Right-click on the LOG - Event Log Manager and choose the Insert LOG
from the pop-up menu. This creates a LOG object called LOG0.

5) Right-click on the name of the LOG0 object and choose Rename from the
pop-up menu. Change the object’s name to trace.

6) Choose File→Save. Move to your working folder (usually
c:\ti\myprojects\hello1) and save the configuration as myhello.cdb.
Saving this configuration actually creates the following files:

■ myhello.cdb . Stores configuration settings

■ myhellocfg.cmd . Linker command file

■ myhellocfg.s62 . Assembly language source file

■ myhellocfg.h62 . Assembly language header file included by
myhellocfg.s62

Although these files have extensions of .s62 and .h62, they can also be
used with the TMS320C6701. DSP/BIOS does not need to use the
floating-point instructions supported by the TMS320C6701, therefore
only one version of the software is required to support both DSPs. If you
are using the TMS320C6701 with DSP/BIOS, open the Global Settings
property page in the configuration and change the DSP Type property.
This controls the libraries with which the program is linked.

Adding DSP/BIOS Files to a Project

3-4

3.2 Adding DSP/BIOS Files to a Project

1) Choose Project→Add Files to Project. Select Configuration File (*.cdb) in
the Files of type box. Select the myhello.cdb file and click Open. Notice
that the Project View now contains myhello.cdb in a folder called
DSP/BIOS Config. In addition, the myhellocfg.s62 file is now listed as a
source file.

2) The output file name must match the .cdb file name (myhello.out and
myhello.cdb). Go to Project→Options and choose the Linker tab. In the
Output Filename field, type myhello.out.

3) Choose Project→Add Files to Project again. Select Linker Command File
(*.cmd) in the Files of type box. Select the myhellocfg.cmd file and click
Open. This causes Code Composer Studio to display the following
warning:

4) Click Yes. This replaces the previous command file (HELLO.CMD) with
the new one that was generated when you saved the configuration.

5) In the Project View area, right-click on the vectors.asm source file and
choose Remove from project in the pop-up menu. The hardware interrupt
vectors are automatically defined by the configuration file.

6) Right-click on the RTS6201.lib library file and remove it from the project.
This library is automatically included by the myhellocfg.cmd file.

7) Double-click on the hello.c program to open it for editing. If the assembly
instructions are shown, choose View→Mixed Source/ASM to hide the
assembly code.

Adding DSP/BIOS Files to a Project

Developing a DSP/BIOS Program 3-5

8) Change the source file’s contents to the following. (You can copy and
paste this code from c:\ti\c6000\tutorial\hello2\hello.c if you like.) Make
sure you replace the existing main function (which has the puts()
function) with the main shown below, because puts() and LOG_printf use
the same resources.

/* ======== hello.c ======== */

/* DSP/BIOS header files*/
#include <std.h>
#include <log.h>

/* Objects created by the Configuration Tool */
extern far LOG_Obj trace;

/* ======== main ======== */
Void main()
{
 LOG_printf(&trace, "hello world!");

 /* fall into DSP/BIOS idle loop */
 return;
}

9) Notice the following parts of this code:

■ The code includes the std.h and log.h header files. All programs that
use the DSP/BIOS API must include the std.h file and header files for
any modules the program uses. The log.h header file defines the
LOG_Obj structure and declares the API operations in the LOG
module. The std.h file must be included first. The order of the
remaining modules you include is not important.

■ The code then declares the LOG object you created in the
configuration file.

■ Within the main function, this example calls LOG_printf and passes
it the address of the LOG object (&trace) and the hello world!
message.

■ Finally main returns, which causes the program to enter the
DSP/BIOS idle loop. Within this loop, DSP/BIOS waits for software
interrupts and hardware interrupts to occur. Chapter 5 through
Chapter 7 explain these types of events.

10) Choose File→Save or press Ctrl+S to save your changes to hello.c.

11) Choose Project→Options. Remove FILEIO from the Define Symbols box
in the Compiler tab. Then click OK.

12) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.

Testing with Code Composer Studio

3-6

3.3 Testing with Code Composer Studio

Now you can test the program. Since the program writes only one line to a
LOG, there is not much to analyze. Chapter 5 through Chapter 7 show more
ways to analyze program behavior.

1) Choose File→Reload Program.

2) Choose Debug→Go Main.

3) Choose Tools→DSP/BIOS→Message Log. A Message Log area appears
at the bottom of the Code Composer Studio window.

4) Right-click on the Message Log area and choose Property Page from the
pop-up window.

5) Select trace as the name of the log to monitor and click OK. The default
refresh rate is once per second. (To change refresh rates, choose
Tools→DSP/BIOS→RTA Control Panel, then right-click on the RTA
Control Panel and choose Property Page.)

6) Choose Debug→Run or press F5.

The hello world! message appears in the Message Log area.

7) Choose Debug→Halt or press Shift F5 to stop the program. After the
main function returns, your program is in the DSP/BIOS idle loop, waiting
for an event to occur. See section 3.5 to learn more about the idle loop.

8) Close the Message Log by right-clicking and selecting Close. This is
necessary because in the next section we will be profiling.

Testing with Code Composer Studio

Developing a DSP/BIOS Program 3-7

Note: Profiling and RTDX Cannot Be Used Together on Some Targets

On some DSP targets (for example, the TMS320C6201) you cannot use
both profiling and RTDX at the same time. Close any tool that uses RTDX,
such as the Message Log or any other DSP/BIOS plug-ins, before using
profiling. To ensure that RTDX is disabled, especially after using DSP/BIOS
plug-ins, go to Tools→RTDX to launch the RTDX plug-in. Select RTDX
disable from the pull-down list, then right-click and select Hide. Conversely,
after profiling, free the profiler resources before using RTDX, as described
in section 2.8, page 2–15.

The following error message results when you attempt simultaneous use:

Profiling DSP/BIOS Code Execution Time

3-8

3.4 Profiling DSP/BIOS Code Execution Time

Earlier, you used the profiling features of Code Composer Studio to find the
number of cycles required to call puts(). Now, you can do the same for the call
to LOG_printf().

1) Choose File→Reload Program.

2) Choose Profiler→Enable Clock. Make sure you see a check mark next to
this item in the Profiler menu.

3) Double-click on the hello.c file in the Project View.

4) Choose View→Mixed Source/ASM. Assembly instructions are listed in
gray following each C source code line.

5) Put your cursor in the line that says:

LOG_printf(&trace, "hello world!");

6) Click the (Toggle Profile-point) toolbar button. This line and the
assembly language instruction that follows it are highlighted in green.

7) Scroll down and put your cursor in the line for the final curly brace of the
program, and click the (Toggle Profile-point) toolbar button.

You might think that you should set the second profile-point on the line
that says return; since that is the last statement in the program.
However, notice that there are no assembly language equivalents shown
until after the curly brace. If you set the profile-point at the line that says
return;, Code Composer Studio automatically corrects the problem at
run time.

8) Choose Profiler→View Statistics.

9) Click the (Run) toolbar button or press F5 to run the program.

10) Notice the number of instruction cycles shown for the second
profile-point. It should be about 36. (The actual numbers shown may
vary.) This is the number of cycles required to execute the call to
LOG_printf().

Profiling DSP/BIOS Code Execution Time

Developing a DSP/BIOS Program 3-9

Calls to LOG_printf() are efficient because the string formatting is
performed on the host PC rather than on the target DSP. LOG_printf()
takes 36 instruction cycles compared to over 1700 for puts(). You can
leave calls to LOG_printf() in your code for system status monitoring with
very little impact on code execution.

11) Click (Halt) or press Shift F5 to stop the program.

12) Before proceeding to the next chapter (after completing section 3.5),
perform the following steps to free the resources used in your profiling
session:

■ Go to the Profiler menu and uncheck Enable Clock.

■ Close the Profile Statistics window by right-clicking and choosing
Hide from the pop-up menu.

■ Go to Debug→Breakpoints. Select Delete All and click OK.

■ Go to Profiler→Profile-points. Select Delete All and click OK.

■ Go to the View menu and uncheck Mixed Source/ASM.

Things to Try

3-10

3.5 Things to Try

To explore Code Composer Studio, try the following:

❏ Load myhello.out and put a breakpoint on the line that calls LOG_printf().
Use Debug→Breakpoints to add a breakpoint at IDL_F_loop. (Type
IDL_F_loop in the Location box and click Add.)

Run the program. At the first breakpoint, use View→CPU
Registers→CPU Register to see a list of register values. Notice that GIE
is 0, indicating that interrupts are disabled while the main function is
executing.

Run to the next breakpoint. Notice that GIE is now 1, indicating that
interrupts are now enabled. Notice that if you run the program, you hit this
breakpoint over and over.

After the startup process and main are completed, a DSP/BIOS
application drops into a background thread called the idle loop. This loop
is managed by the IDL module and continues until you halt the program.
The idle loop runs with interrupts enabled and can be preempted at any
point by any ISR or software interrupt triggered to handle the application’s
real-time tasks. Chapter 5 through Chapter 7 explain more about using
ISRs and software interrupts with DSP/BIOS

❏ In an MS-DOS window, run the sectti.exe utility by typing the following
command lines. Change the directory locations if you installed Code
Composer Studio in a location other than c:\ti.
cd c:\ti\c6000\tutorial\hello1
sectti hello.out > hello1.prn
cd ..\hello2
sectti hello.out > hello2.prn

Compare the hello1.prn and hello2.prn files to see the differences in
memory sections and sizes when using stdio.h calls and DSP/BIOS.

3.6 Learning More

To learn more about using Code Composer Studio and DSP/BIOS, see the
online help for Code Composer Studio. In addition, see the Code Composer
Studio User’s Guide and the TMS320C6000 DSP/BIOS User’s Guide (which
are provided as Adobe Acrobat files).

4-1

Chapter 4

Testing Algorithms and Data from a File

This chapter shows the process for creating and testing a simple algorithm
and introduces additional Code Composer Studio features.

In this chapter, you create a program that performs basic signal processing.
You expand on this example in the following two chapters.

You create and test a simple algorithm using data stored in a file on your PC.
You also use Probe Points, graphs, animation, and GEL files with Code
Composer Studio.

4.1 Opening and Examining the Project . 4–2

4.2 Reviewing the Source Code . 4–4

4.3 Adding a Probe Point for File I/O . 4–6

4.4 Displaying Graphs. 4–8

4.5 Animating the Program and Graphs . 4–9

4.6 Adjusting the Gain. 4–10

4.7 Viewing Out-of-Scope Variables . 4–11

4.8 Using a GEL File . 4–13

4.9 Adjusting and Profiling the Processing Load. 4–14

4.10 Things to Try . 4–16

4.11 Learning More . 4–16

Topic Page

Opening and Examining the Project

4-2

4.1 Opening and Examining the Project

You begin by opening a project with Code Composer Studio and examining
the source code files and libraries used in that project.

1) If you installed Code Composer Studio in c:\ti, create a folder called
volume1 in the c:\ti\myprojects folder. (If you installed elsewhere, create
a folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\volume1 folder to this new
folder.

3) If Code Composer Studio is not already running, from the Windows Start
menu, choose Programs→Code Composer Studio ’C6000→Code
Composer Studio.

4) Choose Project→Open. Select the volume.mak file in the folder you
created and click Open.

5) Code Composer Studio displays a dialog box indicating the library file
was not found. This is because the project was moved. To locate this file,
click the Browse button, navigate to c:\ti\c6000\cgtools\lib, and select
rts6201.lib.

Opening and Examining the Project

Testing Algorithms and Data from a File 4-3

6) Expand the Project View by clicking the
+ signs next to Project, VOLUME.MAK,
Include, Libraries, and Source.

The files used in this project are:

■ volume.c . This is the source code
for the main program. You examine
the source code in the next section.

■ volume.h . This is a header file
included by volume.c to define
various constants and structures

■ load.asm . This file contains the
load routine, a simple assembly
loop routine that is callable from C
with one argument. It consumes
(9*argument) + 18 instruction
cycles.

■ vectors.asm . This is the same file
used in Chapter 2 to define a reset
entry point in the DSP’s interrupt
vector table

■ volume.cmd . This linker command file maps sections to memory

■ rts6201.lib . This library provides run-time support for the target DSP

Reviewing the Source Code

4-4

4.2 Reviewing the Source Code

Double-click on the volume.c file in the Project View to see the source code
in the right half of the Code Composer Studio window.

Notice the following parts of this example:

❏ After the main function prints a message, it enters an infinite loop. Within
this loop, it calls the dataIO and processing functions.

❏ The processing function multiplies each value in the input buffer by the
gain and puts the resulting values into the output buffer. It also calls the
assembly load routine, which consumes instruction cycles based on the
processingLoad value passed to the routine.

❏ The dataIO function in this example does not perform any actions other
than to return. Rather than using C code to perform I/O, you can use a
Probe Point within Code Composer Studio to read data from a file on the
host into the inp_buffer location.

#include <stdio.h>

#include "volume.h"

/* Global declarations */
int inp_buffer[BUFSIZE]; /* processing data buffers */
int out_buffer[BUFSIZE];

int gain = MINGAIN; /* volume control variable */
unsigned int processingLoad = BASELOAD; /* processing load */

/* Functions */
extern void load(unsigned int loadValue);

static int processing(int *input, int *output);
static void dataIO(void);

/* ======== main ======== */
void main()
{
 int *input = &inp_buffer[0];
 int *output = &out_buffer[0];

 puts("volume example started\n");

Reviewing the Source Code

Testing Algorithms and Data from a File 4-5

 /* loop forever */
 while(TRUE)
 {
 /* Read using a Probe Point connected to a host file. */
 dataIO();

 /* apply gain */
 processing(input, output);
 }
}

/* ======== processing ======== *
 * FUNCTION: apply signal processing transform to input signal.
 * PARAMETERS: address of input and output buffers.
 * RETURN VALUE: TRUE. */
static int processing(int *input, int *output)
{
 int size = BUFSIZE;

 while(size--){
 *output++ = *input++ * gain;
 }

 /* additional processing load */
 load(processingLoad);

 return(TRUE);
}

/* ======== dataIO ======== *
 * FUNCTION: read input signal and write output signal.
 * PARAMETERS: none.
 * RETURN VALUE: none. */
static void dataIO()
{
 /* do data I/O */
 return;
}

Adding a Probe Point for File I/O

4-6

4.3 Adding a Probe Point for File I/O

In this section, you add a Probe Point, which reads data from a file on your
PC. You also open a run-time graphical view of your input and output data.

Probe Points are a useful tool for algorithm development. You can use them
to send data from a file on the PC to a buffer on the target that is acted upon
by the algorithm. Chapter 7 shows two other ways to manage input and
output streams.

You can also use Probe Points to write data from memory to a file or to cause
a window to be updated at a particular point in program execution.

1) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.

2) Choose File→Load Program. Select the program you just rebuilt,
volume.out, and click Open.

3) Double-click on the volume.c file in the Project View.

4) Put your cursor in the line of the main function that says:

dataIO();

The dataIO function acts as a placeholder. You add to it later. For now, it
is a convenient place to connect a Probe Point that injects data from a PC
file.

5) Click the (Toggle Probe Point) toolbar button. The line is highlighted
in blue.

6) Choose File→File I/O. The File I/O dialog appears so that you can select
input and output files.

7) In the File Input tab, click Add File.

8) Choose the sine.dat file.

Notice that you can select the format of the data in the Files of Type box.
The sine.dat file contains hex values for a sine waveform.

9) Click Open to add this file to the list in the File I/O dialog.

A control window for the sine.dat file appears. (It may be covered by the
Code Composer Studio window.) Later, when you run the program, you
can use this window to start, stop, rewind, or fast forward within the data
file.

Adding a Probe Point for File I/O

Testing Algorithms and Data from a File 4-7

10) In the File I/O dialog, change the Address to inp_buffer and the Length to
100. Also, put a check mark in the Wrap Around box.

■ The Address field specifies where the data from the file is to be
placed. The inp_buffer is declared in volume.c as an integer array of
BUFSIZE.

■ The Length field specifies how many samples from the data file are
read each time the Probe Point is reached. You use 100 because that
is the value set for the BUFSIZE constant in volume.h (0x64).

■ The Wrap Around option causes Code Composer Studio to start
reading from the beginning of the file when it reaches the end of the
file. This allows the data file to be treated as a continuous stream of
data even though it contains only 1000 values and 100 values are
read each time the Probe Point is reached.

11) Click Add Probe Point. The Probe Points tab of the Break/Probe/Profile
Points dialog appears.

12) Highlight the Probe Point you created in step 5.

13) In the Connect To field, click the down arrow and select the sine.dat file
from the list.

14) Click Replace. The fields change to show that this Probe Point is
connected to the sine.dat file.

15) Click OK. The File I/O dialog shows that the file is now connected to a
Probe Point.

16) Click OK in the File I/O dialog.

Displaying Graphs

4-8

4.4 Displaying Graphs

If you ran the program now, you would not see much information about what
the program was doing. You could set watch variables on addresses within
the inp_buffer and out_buffer arrays, but you would need to watch a lot of
variables and the display would be numeric rather than visual.

Code Composer Studio provides a way to graph signals being processed by
your program. You open the graphs in this section and run the program in the
next section.

1) Choose View→Graph→Time/Frequency.

2) In the Graph Property Dialog, change the Graph Title, Start Address,
Acquisition Buffer Size, Display Data Size, Autoscale, and Maximum
Y-value properties to the values shown here. Scroll down or resize the
dialog box to see all the properties.

3) Click OK. A graph window for the Input Buffer appears.

4) Right-click on the Input Buffer window and choose Clear Display from the
pop-up menu.

5) Choose View→Graph→Time/Frequency again.

6) This time, change the Graph Title to Output Buffer and the Start Address
to out_buffer. All the other settings are correct.

7) Click OK to display the graph window for the Output Buffer. Right-click on
the graph window and choose Clear Display from the pop-up menu.

Animating the Program and Graphs

Testing Algorithms and Data from a File 4-9

4.5 Animating the Program and Graphs

Code Composer Studio can display a wide variety of graph types. In this
example, you view a signal plotted against time.

1) In the Volume.c window, put your cursor in the line that calls dataIO.

2) Click the (Toggle Breakpoint) toolbar button or press F9. The line is
highlighted in both magenta and blue to indicate that both a breakpoint
and a Probe Point are set on this line.

3) Arrange the windows so that you can see both graphs.

4) Click the (Animate) toolbar button or press F12 to run the program.

Each time the program reaches the Probe Point, Code Composer Studio
updates the Probe Point by getting 100 values from the sine.dat file and
writing them to the inp_buffer address. The graph windows are
automatically updated when the program reaches a breakpoint. Then,
the program runs to the next breakpoint. The graph windows show the
input signal and the output signal. At this point, the signals are identical.

Notice that each buffer contains 2.5 sine waves and the signs are reversed in
these graphs. This is because the input buffer contains the values just read
from sine.dat, while the output buffer contains the last set of values processed
by the processing function.

Note: Target Halts at Probe Points

Code Composer Studio briefly halts the target whenever it reaches a Probe
Point. Therefore, the target application may not meet real-time deadlines if
you are using Probe Points. At this stage of development, you are testing
the algorithm. Later, you analyze real-time behavior using RTDX and
DSP/BIOS.

Adjusting the Gain

4-10

4.6 Adjusting the Gain

Recall from section 4.2 that the processing function multiplies each value in
the input buffer by the gain and puts the resulting values into the output buffer.
It does this by performing the following statement within a while loop.

*output++ = *input++ * gain;

This statement multiplies a value in inp_buffer by the gain and places it in the
corresponding location in the out_buffer. The gain is initially set to MINGAIN,
which is defined as 1 in volume.h. To modify the output, you need to change
gain. One way to do this is to use a watch variable.

1) Choose View→Watch Window.

2) Right-click on the Watch window area and choose Insert New Expression
from the pop-up list.

3) Type gain as the Expression and click OK.

The value of this variable appears in the Watch window area.

4) If you have halted the program, click the (Animate) toolbar button to
restart the program.

5) Double-click on gain in the Watch window area.

6) In the Edit Variable window, change the gain to 10 and click OK.

7) Notice that the amplitude of the signal in the Output Buffer graph changes
to reflect the increased gain.

Viewing Out-of-Scope Variables

Testing Algorithms and Data from a File 4-11

4.7 Viewing Out-of-Scope Variables

You have used the Watch Window to view and change the values of
variables. Sometimes you want to examine variables when they are not
currently in scope at the current breakpoint. You can do this by using the call
stack.

1) Click (Halt) or press Shift F5 to stop the program.

2) Review the volume.c program within Code Composer Studio or by
looking at section 4.2). Notice that *input is defined in both the main and
processing functions. However, it is not defined within the dataIO
function.

3) In the Volume.c window, put your cursor on the line that says return;
within the dataIO function.

4) Click the (Toggle Breakpoint) toolbar button or press F9. The line is
highlighted in magenta to indicate that a breakpoint is set.

5) Press F5 to run the program. Code Composer Studio automatically
moves the breakpoint to the next line within that function that
corresponds to an assembly instruction. It displays a message telling you
that it has moved the breakpoint.

6) Click OK.

7) Press F5 until the program stops at the breakpoint inside the dataIO
function (instead of at the breakpoint on the call to the dataIO function).

8) Right-click on the Watch window area and choose Insert New Expression
from the pop-up list.

9) Type *input as the Expression and click OK.

Viewing Out-of-Scope Variables

4-12

10) Notice that the Watch window area says this variable is an unknown
identifier. This shows that *input is not defined within the scope of the
dataIO function.

11) Choose View→Call Stack. You see the call stack area next to the Watch
window area.

12) Click on main() in the call stack area to see the value of *input within the
scope of the main function. (The actual value varies depending on your
current location within the sine.dat file.)

13) You can also click on the address at the bottom of the call stack, to see
that gain is defined globally, but *input is not. (The address varies
depending on the DSP you are using.)

14) Right-click on the call stack area and choose Hide from the pop-up menu.

15) Remove the breakpoint that you added at the end of the dataIO()
subroutine in step 4):

a) Put the cursor on the line after return; in dataIO().

b) Click the (Toggle Breakpoint) toolbar button or press F9.

Using a GEL File

Testing Algorithms and Data from a File 4-13

4.8 Using a GEL File

Code Composer Studio provides another way of modifying a variable. This
method uses GEL, an extension language, to create small windows that allow
you to modify variables.

1) Choose File→Load GEL. In the Open dialog box, select
the volume.gel file and click Open.

2) Choose GEL→Application Control→Gain. This item was
added to your menus when you loaded the GEL file.

3) If you have halted the program, click the (Animate)
toolbar button.

4) In the Gain window, use the slider to change the gain. The
amplitude changes in the Output Buffer window. In
addition, the value of the gain variable in the Watch
window area changes whenever you move the slider.

5) Click (Halt) or press Shift F5 to stop the program.

6) To see how the Gain GEL function works, click the + sign next to GEL
Files in the Project View. Then, double-click on the VOLUME.GEL file to
see its contents:

menuitem "Application Control"
dialog Load(loadParm "Load")
{
 processingLoad = loadParm;
}
slider Gain(0, 10 ,1, 1, gainParm)
{
 gain = gainParm;
}

The Gain function defines a slider with a minimum value of 0, a maximum
value of 10, and an increment and page up/down value of 1. When you
move the slider, the gain variable is changed to the new value of the slider
(gainParm).

Adjusting and Profiling the Processing Load

4-14

4.9 Adjusting and Profiling the Processing Load

In Chapter 2, you used profile-points to measure the number of cycles
required to call puts(). Now, you use profile-points to see the effect of
changing the processingLoad variable, which is passed to the assembly load
routine. The processingLoad is initially set to BASELOAD, which is defined
as 1 in volume.h.

1) Choose Profiler→Enable Clock. Make sure you see a check mark next to
this item in the Profiler menu.

2) Double-click on the volume.c file in the Project View.

3) Choose View→Mixed Source/ASM to view both the C source and the
equivalent assembly instructions.

4) Put your cursor in the assembly instruction after the line that says:

load(processingLoad);

5) Click the (Toggle Profile-point) toolbar button or right-click and select
Toggle Profile Pt.

6) Put your cursor in the assembly instruction after the line that says:

return(TRUE);

7) Click the (Toggle Profile-point) toolbar button.

8) Choose Profiler→View Statistics. You may want to resize the Statistics
area so that you can see the Maximum column. Or, you can right-click on
the Statistics area and deselect Allow Docking to display the statistics in
a separate window.

9) Click the (Animate) toolbar button or press F12.

10) Notice the maximum number of cycles shown for the second profile-point.
It should be about 27 cycles. (The actual numbers shown may vary.) This
is the number of cycles required to execute the load routine when the
processingLoad is 1.

Adjusting and Profiling the Processing Load

Testing Algorithms and Data from a File 4-15

11) Choose GEL→Application Control→Load.

12) Type 2 as the new load and click Execute. The maximum number of
cycles for the second profile-point changes to 36. The number of cycles
increases by 9 when you increment the processingLoad by 1. These
instruction cycles are performed within the load function, which is stored
in load.asm.

13) Right-click on the Profile Statistics area and choose Clear All from the
pop-up menu. This resets the statistics to 0. The average, maximum, and
minimum are equal to the number of instruction cycles for the current
processingLoad.

14) Click (Halt) or press Shift F5 to stop the program.

15) Close the Load and Gain controls.

16) Before proceeding to Chapter 3 (after completing section 4.10), perform
the following steps to free the resources used in your profiling session:

■ Go to the Profiler menu and uncheck Enable Clock.

■ Close the Profile Statistics window by right-clicking and choosing
Hide from the pop-up menu.

■ Go to Debug→Breakpoints. Select Delete All and click OK.

■ Go to Profiler→Profile-points. Select Delete All and click OK.

■ Go to the View menu and uncheck Mixed Source/ASM.

Things to Try

4-16

4.10 Things to Try

To explore using Code Composer Studio, try the following:

❏ Add processingLoad to the Watch window. When you use the Load GEL
control, the processingLoad value is updated in the Watch window.

❏ Right-click on the Watch window area and choose Insert New
Expression. Click the Help button and read about the display formats you
can use. Experiment with various display formats. For example, you can
type *input,x as the expression to view the sine input in hexadecimal
format.

❏ Change BUFSIZE in volume.h to 0x78 and rebuild, then reload the
program. Change the Length in the File I/O dialog to 0x78 and the
Acquisition Buffer Size for both graphs to 0x78. This causes a buffer to
contain 3 full sine waves rather than 2.5 waves. Animate the program and
notice that the input and output buffer graphs are now in phase. (You may
need to halt the program to see whether the graphs are in phase.)

❏ Instead of using profile-points to gather statistics, try using the clock.
Replace the profile-points with breakpoints. Choose Profiler→View
Clock. Run the program to the first breakpoint. Double-click on the clock
area to clear it. Run the program again. The clock shows the number of
cycles it takes to reach the second breakpoint.

❏ To practice using the project-building capabilities of Code Composer
Studio, copy all files from the c:\ti\c6000\tutorial\volume1 folder to a new
folder. Delete the volume.mak file. Then, use Code Composer Studio to
recreate the project. You need to use the Project→New menu item and
the Project→Add Files to Project menu item. See section 4.1 for a list of
the files to add to the project.

4.11 Learning More

To learn more about Probe Points, graphs, animation, and GEL files, see the
online help for Code Composer Studio or the Code Composer Studio User’s
Guide (which is provided as an Adobe Acrobat file).

5-1

Chapter 5

Debugging Program Behavior

This chapter introduces techniques for debugging a program and several
DSP/BIOS plug-ins and modules.

In this chapter, you modify the example from Chapter 4 to create a program
that schedules its functions and allows for multi-threading. You view
performance information for debugging purposes. You also use more
features of DSP/BIOS, including the Execution Graph, the real-time analysis
control panel (RTA Control Panel), the Statistics View, and the CLK, SWI,
STS, and TRC modules.

This chapter requires a physical board and cannot be carried out using a
software simulator. Also, this chapter requires the DSP/BIOS components of
Code Composer Studio.

5.1 Opening and Examining the Project . 5–2

5.2 Reviewing the Source Code . 5–3

5.3 Modifying the Configuration File . 5–6

5.4 Viewing Task Execution with the Execution Graph 5–10

5.5 Changing and Viewing the Load . 5–12

5.6 Analyzing Task Statistics . 5–15

5.7 Adding Explicit STS Instrumentation . 5–17

5.8 Viewing Explicit Instrumentation . 5–18

5.9 Things to Try . 5–20

5.10 Learning More . 5–20

Topic Page

Opening and Examining the Project

5-2

5.1 Opening and Examining the Project

You begin by opening a project with Code Composer Studio and examining
the source code files and libraries used in that project.

1) If you installed Code Composer Studio in c:\ti, create a folder called
volume2 in the c:\ti\myprojects folder. (If you installed elsewhere, create
a folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\volume2 folder to this new
folder.

3) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→Code Composer Studio.

4) Choose Project→Open. Select the
volume.mak file in the folder you
created and click Open.

5) Expand the Project View by clicking
the + signs next to Project,
VOLUME.MAK, DSP/BIOS Config,
and Source. The volumecfg.cmd
file, which was created along with a
configuration file, includes a large
number of DSP/BIOS header files.
(You do not need to examine all
these header files.)

The files used in this project include:

■ volume.cdb . This is the configuration file for the project

■ volume.c . This is the source code for the main program. It has been
revised from the version you used in the previous chapter to support
using DSP/BIOS in this program. You examine the source code in the
next section.

■ volume.h . This is a header file included by volume.c to define
various constants and structures. It is identical to the volume.h file
used in the previous chapter.

■ load.asm . This file contains the load routine, a simple assembly loop
routine that is callable from C with one argument. It is identical to the
load.asm file used in the previous chapter.

■ volumecfg.cmd . This linker command file is created when saving
the configuration file

■ volumecfg.s62 . This assembly file is created when saving the
configuration file

■ volumecfg.h62 . This header file is created when saving the
configuration file

Reviewing the Source Code

Debugging Program Behavior 5-3

5.2 Reviewing the Source Code

This example modifies the example from Chapter 4 to introduce real-time
behavior. Rather than having the main function loop forever, the data I/O in
the real application is likely to happen as a result of a periodic external
interrupt. A simple way to simulate a periodic external interrupt in the example
is to use the timer interrupt from the on-chip timer.

1) Double-click on the volume.c file in the Project View to see the source
code in the right half of the Code Composer Studio window.

2) Notice the following aspects of the example:

■ The data types for declarations have changed. DSP/BIOS provides
datatypes that are portable to other processors. Most types used by
DSP/BIOS are capitalized versions of the corresponding C types.

■ The code uses #include to reference three DSP/BIOS header files:
std.h, log.h, and swi.h. The std.h file must be included before other
DSP/BIOS header files.

■ The objects created in the configuration file are declared as external.
You examine the configuration file in the next section.

■ The main function no longer calls the dataIO and processing
functions. Instead, the main function simply returns after calling
LOG_printf to display a message. This drops the program into the
DSP/BIOS idle loop. At this point, the DSP/BIOS scheduler manages
thread execution.

■ The processing function is now called by a software interrupt called
processing_SWI, which yields to all hardware interrupts.
Alternatively, a hardware ISR could perform the signal processing
directly. However, signal processing may require a large number of
cycles, possibly more than the time until the next interrupt. Such
processing would prevent the interrupt from being handled.

■ The dataIO function calls SWI_dec, which decrements a counter
associated with a software interrupt object. When the counter
reaches 0, the software interrupt schedules its function for execution
and resets the counter.

The dataIO function simulates hardware-based data I/O. A typical
program accumulates data in a buffer until it has enough data to
process. In this example, the dataIO function is performed 10 times
for each time the processing function is performed. The counter
decremented by SWI_dec controls this.

Reviewing the Source Code

5-4

#include <std.h>
#include <log.h>
#include <swi.h>

#include "volume.h"

/* Global declarations */
Int inp_buffer[BUFSIZE]; /* processing data buffers */
Int out_buffer[BUFSIZE];

Int gain = MINGAIN; /* volume control variable */
Uns processingLoad = BASELOAD; /* processing load value */

/* Objects created by the Configuration Tool */
extern far LOG_Obj trace;
extern far SWI_Obj processing_SWI;

/* Functions */
extern Void load(Uns loadValue);

Int processing(Int *input, Int *output);
Void dataIO(Void);

/* ======== main ======== */
Void main()
{
 LOG_printf(&trace,"volume example started\n");
 /* fall into DSP/BIOS idle loop */
 return;
}

/* ======== processing ======== *
 * FUNCTION: Called from processing_SWI to apply signal
 * processing transform to input signal.
 * PARAMETERS: Address of input and output buffers.
 * RETURN VALUE: TRUE. */
Int processing(Int *input, Int *output)
{
 Int size = BUFSIZE;
 while(size--){
 *output++ = *input++ * gain;
 }
 /* additional processing load */
 load(processingLoad);

 return(TRUE);
}

Reviewing the Source Code

Debugging Program Behavior 5-5

/* ======== dataIO ======== *
 * FUNCTION: Called from timer ISR to fake a periodic
 * hardware interrupt that reads in the input
 * signal and outputs the processed signal.
 * PARAMETERS: none
 * RETURN VALUE: none */
Void dataIO()
{
 /* do data I/O */

 /* post processing_SWI software interrupt */
 SWI_dec(&processing_SWI);
}

Modifying the Configuration File

5-6

5.3 Modifying the Configuration File

A DSP/BIOS configuration file has already been created for this example. In
this section, you examine the objects that have been added to the default
configuration.

1) In the Project View, double-click on the volume.cdb file (in the DSP/BIOS
Config folder) to open it.

2) Click the + signs next to the CLK, LOG, and SWI managers. This
configuration file contains objects for these modules in addition to the
default set of objects in the configuration file.

3) Highlight the LOG object called trace. You see the properties for this log
in the right half of the window. This object’s properties are the same as
those of the trace LOG you created in section 3.1. The volume.c program
calls LOG_printf to write volume example started to this log.

Modifying the Configuration File

Debugging Program Behavior 5-7

4) Right-click on the LOG object called LOG_system. From the pop-up
menu, select Properties.

You see the properties dialog for this object. At run time, this log stores
events traced by the system for various DSP/BIOS modules.

5) Change the buflen property to 512 words and click OK.

6) Highlight the CLK object called dataIO_CLK. Notice that the function
called when this CLK object is activated is _dataIO. This is the dataIO
function in volume.c.

Note: Underscores and C Function Names

This C function name is prefixed by an underscore because saving the
configuration generates assembly language files. The underscore prefix is
the convention for accessing C functions from assembly. (See the section
on Interfacing C with Assembly Language in the TMS320C6000 Optimizing
C Compiler User’s Guide for more information.)

This rule applies only to C functions you write. You do not need to use the
underscore prefix with configuration-generated objects or DSP/BIOS API
calls because two names are automatically created for each object: one
prefixed with an underscore and one without.

Modifying the Configuration File

5-8

7) Since the dataIO function is no longer run within main, what causes this
CLK object to run its function? To find out, right-click on the CLK - Clock
Manager object. From the pop-up menu, select Properties. You see the
Clock Manager Properties dialog.

Notice that the CPU Interrupt for the Clock Manager is HWI_INT14. This
property is gray because it is actually set by the HWI_INT14 object.

8) Click Cancel to close the Clock Manager Properties dialog without
making any changes.

9) Expand the list of HWI objects and examine the properties of the
HWI_INT14 object. Its interrupt source is Timer 0 on the DSP and it runs
a function called CLK_F_isr when the on-chip timer causes an interrupt.

The CLK object functions run from the context of the CLK_F_isr hardware
interrupt function. Therefore, they run to completion without yielding and
have higher priority than any software interrupts. (The CLK_F_isr saves
the register context, so the CLK functions do not need to save and restore
context as would normally be required within a hardware ISR function.)

Modifying the Configuration File

Debugging Program Behavior 5-9

10) Right-click on the processing_SWI software interrupt object. From the
pop-up menu, select Properties.

■ function . When this software interrupt is activated, the processing
function runs. This function is shown in section 5.2, page 5–4.

■ mailbox . The mailbox value can control when a software interrupt
runs. Several API calls affect the value of the mailbox and may post
the software interrupt depending on the resulting value. When a
software interrupt is posted, it runs when it is the highest priority
software or hardware interrupt task that has been posted.

■ arg0, arg1 . The inp_buffer and out_buffer addresses are passed to
the processing function

11) Click Cancel to close this properties dialog without making any changes.

12) Since the processing function is no longer run within main, what causes
this SWI object to run its function? In volume.c, the dataIO function calls
SWI_dec, which decrements the mailbox value and posts the software
interrupt if the new mailbox value is 0. So, this SWI object runs its function
every tenth time the dataIO_CLK object runs the dataIO function.

13) Choose File→Close. You are asked whether you want to save your
changes to volume.cdb. Click Yes. Saving this file also generates
volumecfg.cmd, volumecfg.s62, and volumecfg.h62.

14) Choose Project→Build or click the (Incremental Build) toolbar button.

Viewing Task Execution with the Execution Graph

5-10

5.4 Viewing Task Execution with the Execution Graph

While you could test the program by putting a Probe Point within the
processing function and view graphs of input and output data (as you did in
the previous chapter), you have already tested the signal processing
algorithm. At this stage of development, your focus is on making sure the
tasks can meet their real-time deadlines.

1) Choose File→Load Program. Select the program you just built,
volume.out, and click Open.

2) Choose Debug→Go Main. The program runs to the first statement in the
main function.

3) Choose Tools→DSP/BIOS→RTA Control
Panel. You see several check boxes at the
bottom of the Code Composer Studio
window.

4) Right-click on the area that contains the
check boxes and deselect Allow Docking,
or select Float in Main Window, to display
the RTA Control Panel in a separate
window. Resize the window so that you
can see all of the check boxes shown
here.

5) Put check marks in the boxes shown here
to enable SWI and CLK logging and to
globally enable tracing on the host.

6) Choose Tools→DSP/BIOS→Execution Graph. The Execution Graph
appears at the bottom of the Code Composer Studio window. You may
want to resize this area or display it as a separate window.

7) Right-click on the RTA Control Panel and choose Property Page from the
pop-up menu.

8) Verify that the Refresh Rate for Message Log/Execution Graph is 1
second and click OK.

Viewing Task Execution with the Execution Graph

Debugging Program Behavior 5-11

9) Choose Debug→Run or click the (Run) toolbar button. The Execution
Graph should look similar to this:

10) The marks in the Time row show each time the Clock Manager ran the
CLK functions. Count the marks between times the processing_SWI
object was running. There should be 10 marks. This indicates that the
processing_SWI object ran its function every tenth time the dataIO_CLK
object ran its function. This is as expected because the mailbox value that
is decremented by the dataIO function starts at 10.

10 time marks

Changing and Viewing the Load

5-12

5.5 Changing and Viewing the Load

Using the Execution Graph, you saw that the program meets its real-time
deadlines. However, the signal processing functions in a typical program
must perform more complex and cycle consuming tasks than multiplying a
value and copying it to another buffer. You can simulate such complex tasks
by increasing the cycles consumed by the load function.

1) Choose Tools→DSP/BIOS→CPU Load Graph. A blank CPU Load Graph
appears.

2) Right-click on the RTA Control Panel and choose Property Page from the
pop-up menu.

3) Change the Refresh Rate for Statistics View/CPU Load Graph to 0.5
seconds and click OK. Notice that the CPU load is currently very low.

The Statistics View and the CPU Load transfer very little data from the
target to the host, so you can set these windows to update frequently
without causing a large effect on program execution. The Message Log
and Execution Graph transfer the number of words specified for the
buflen property of the corresponding LOG object in the configuration file.
Since more data is transferred, you may want to make these windows
update less frequently.

4) Choose File→Load GEL. In the Open dialog, select the volume.gel file
and click Open.

5) Choose GEL→Application Control→Load.

6) Type 10000 as the new load and
click Execute. Notice that the
CPU load increases to about 9%.

7) Right-click on the Execution
Graph and choose Clear from the
pop-up menu. Notice that the
program still meets its real-time
deadline. There are 10 time
marks between each execution
of the processing_SWI function.

8) Using the GEL control, change the load to 20000 and click Execute.

Changing and Viewing the Load

Debugging Program Behavior 5-13

9) Right-click on the Execution Graph and choose Clear from the pop-up
menu. Notice that one of the time marks occurs while the
processing_SWI function is executing. Does this mean the program is
missing its real-time deadline? No, it shows that the program is
functioning correctly. The hardware interrupt that runs the CLK object
functions can interrupt the software interrupt processing, and the
software interrupt still completes its task before it needs to run again.

10) Using the GEL control, change
the load to 140000 and click
Execute. Notice that the CPU
load increases to about 95%.

11) Right-click on the Execution
Graph and choose Clear from
the pop-up menu. Notice that
the program still meets its
real-time deadline because
processing_SWI completes
before 10 time marks have occurred.

12) Using the GEL control, change the load to 160000 and click Execute.
Notice that the CPU Load Graph and the Execution Graph stop updating.
This is because these updates are performed within an idle task, which
has the lowest execution priority within the program. Because the
higher-priority threads are using all the processing time, there is not
enough time for the host control updates to be performed. The program
is now missing its real-time deadline.

Changing and Viewing the Load

5-14

13) Using the GEL control, change
the load to 10 and click Execute.
Notice that the CPU load and
Execution Graph begin updating
again.

Note:

Using the Load GEL control temporarily halts the target. If you are
analyzing a real-time system and do not want to affect system
performance, modify the load using a Real-Time Data Exchange (RTDX)
application. The next chapter shows how to modify the load in real-time
using RTDX.

Analyzing Task Statistics

Debugging Program Behavior 5-15

5.6 Analyzing Task Statistics

You can use other DSP/BIOS controls to examine the load on the DSP and
the processing statistics for the processing_SWI object.

1) Choose Tools→DSP/BIOS→Statistics View. A Statistics View area that
says Load DSP/BIOS program and/or set property to use control
appears. It says this because you need to select the statistics you want
to view.

2) Right-click on the Statistics View area and choose Property Page from
the pop-up menu. Highlight the items shown here and click OK.

3) Click OK. You see the statistics fields for the processing_SWI objects.
You may want to make this area a separate window (by deselecting Allow
Docking in the pop-up menu) and resize the window so that you can see
all four fields.

4) In the RTA Control Panel, put a check mark in the enable SWI
accumulators box.

Analyzing Task Statistics

5-16

5) If you have halted the program, click the (Run) toolbar button.

6) Notice the Max value in the Statistics View.

7) Using the GEL control, increase the load and click Execute. Notice the
change in the Max value for the number of instructions performed from
the beginning to the end of processing_SWI increases.

8) Experiment with different load values. If you decrease the load, right-click
on the Statistics View and select Clear from the pop-up menu.

This resets the fields to their lowest possible values, allowing you to see
the current number of instruction cycles in the Max field.

9) Click the (Halt) toolbar button and close all the DSP/BIOS and GEL
controls you have opened.

Adding Explicit STS Instrumentation

Debugging Program Behavior 5-17

5.7 Adding Explicit STS Instrumentation

In the previous section, you used the Statistics View to see the number of
instructions performed during a software interrupt’s execution. If you use a
configuration file, DSP/BIOS supports such statistics automatically. This is
called implicit instrumentation. You can also use API calls to gather other
statistics. This is called explicit instrumentation.

1) In the Project View, double-click on the volume.cdb file (in the DSP/BIOS
Config folder) to open it.

2) Right-click on the STS manager and choose Insert STS from the pop-up
menu.

3) Rename the new STS0 object to processingLoad_STS. The default
properties for this object are all correct.

4) Choose File→Close. You are asked whether you want to save your
changes to volume.cdb. Click Yes.

5) In the Project View, double-click on the volume.c program to open it for
editing. Make the following changes to the program:

■ Add the following lines below the line that includes the swi.h file:

#include <clk.h>
#include <sts.h>
#include <trc.h>

■ Add the following to the declarations in the section labeled with the
comment “Objects created by the Configuration Tool”:

extern far STS_Obj processingLoad_STS;

■ Add the following lines within the processing function before the call
to the load function:

/* enable instrumentation only if TRC_USER0 is set */
if (TRC_query(TRC_USER0) == 0) {
 STS_set(&processingLoad_STS, CLK_gethtime());
}

■ Add the following lines within the processing function after the call to
the load function:

if (TRC_query(TRC_USER0) == 0) {
 STS_delta(&processingLoad_STS, CLK_gethtime());
}

6) Choose File→Save to save your changes to volume.c.

7) Choose Project→Build or click the (Incremental Build) toolbar button.

Viewing Explicit Instrumentation

5-18

5.8 Viewing Explicit Instrumentation

To view the information provided by the explicit instrumentation calls you
added, you use the Statistics View and the RTA Control Panel.

1) Choose File→Load Program. Select the program you just rebuilt,
volume.out, and click Open.

2) Choose Tools→DSP/BIOS→RTA Control
Panel.

3) Right-click on the RTA Control Panel area
and deselect Allow Docking to display the
RTA Control Panel in a separate window.
Resize the window so that you can see all
of the check boxes shown here.

4) Put check marks in the boxes shown here
to enable SWI and USER0 logging and to
globally enable tracing on the host.

Enabling USER0 tracing causes the calls
to TRC_query(TRC_USER0) to return 0.

5) Choose Tools→DSP/BIOS→Statistics View.

6) Right-click on the Statistics View area and choose Property Page from
the pop-up menu. Highlight the processing_SWI and
processingLoad_STS objects. Also, highlight all four statistics.

7) Click OK. You see the statistics fields for both objects. You may want to
make this area a separate window (by deselecting Allow Docking in the
pop-up menu) and resize the window so that you can see all the fields.

8) Choose Debug→Run or click the (Run) toolbar button.

Viewing Explicit Instrumentation

Debugging Program Behavior 5-19

9) Notice the difference between the Max values for processing_SWI and
processingLoad_STS. You used the CLK_gethtime function to
benchmark the processing load. On TMS320C6000 DSPs, the
high-resolution time is incremented every 4 instruction cycles. Multiply
the Max value for processingLoad_STS by 4 and subtract the result from
the processing_SWI Max value. The result should be about 3308
instructions. (The actual numbers shown may vary.) These instructions
are performed within the processing function, but not between the calls
to STS_set and STS_delta.

For example, when the load is 10, the processingLoad_STS Max is about
49 and the processing_SWI Max is about 3504. (The actual numbers
shown may vary.) To calculate the instruction cycles performed within the
processing function but outside the calls to STS_set and STS_delta, the
equation is:

3504 - (49 * 4) = 3308

10) Choose GEL→Application Control→Load. (If you have closed and
restarted Code Composer Studio, you must reload the GEL file.)

11) Change the Load and click Execute.

12) Notice that while both Max values increase, the difference between the
two Max values (after you multiply the processingLoad_STS Max by 4)
stays the same.

13) Remove the check mark from the enable USER0 trace box in the RTA
Control Panel.

14) Right-click on the Statistics View and choose Clear from the pop-up
menu.

15) Notice that no values are updated for processingLoad_STS. This is
because disabling the USER0 trace causes the following statement in the
program to be false:

if (TRC_query(TRC_USER0) == 0)

As a result, the calls to STS_set and STS_delta are not performed.

16) Before proceeding to the next chapter (after completing section 5.9),
perform the following steps to prepare for the next chapter:

■ Click (Halt) or press Shift F5 to stop the program.

■ Close all GEL dialog boxes, DSP/BIOS plug-ins, and source
windows.

Things to Try

5-20

5.9 Things to Try

To further explore DSP/BIOS, try the following:

❏ Change the Statistics Units property of the SWI Manager in the
configuration file to milliseconds or microseconds. Rebuild the program
and notice how the values in the Statistics View change.

❏ Change the Host Operation property of the processingLoad_STS object
in the configuration file to A * x and the A property to 4. This Host
Operation multiplies the statistics by 4. The calls to CLK_getltime cause
statistics to be measured in high-resolution timer increments, which
occur every 4 CPU cycles. So, changing the Host Operation converts the
timer increments to CPU cycles. Rebuild the program and notice how the
values in the Statistics View change.

❏ Modify volume.c by using the CLK_getltime function instead of the
CLK_gethtime function. Rebuild the program and notice how the values
in the Statistics View change. The CLK_getltime function gets a
low-resolution time that corresponds to the timer marks you saw in the
Execution Graph. You must increase the load significantly to change the
Statistics View values when using CLK_getltime.

5.10 Learning More

To learn more about the CLK, SWI, STS, and TRC modules, see the online
help or the TMS320C6000 DSP/BIOS User’s Guide (which is provided as an
Adobe Acrobat file).

6-1

Chapter 6

Analyzing Real-Time Behavior

This chapter introduces techniques for analyzing and correcting real-time
program behavior.

In this chapter, you analyze real-time behavior and correct scheduling
problems using the example from Chapter 5. You use RTDX (Real-Time Data
Exchange) to make real-time changes to the target, use DSP/BIOS periodic
functions, and set software interrupt priorities.

This chapter requires a physical board and cannot be carried out using a
software simulator. Also, this chapter requires the DSP/BIOS and RTDX
components of Code Composer Studio.

6.1 Opening and Examining the Project . 6–2

6.2 Modifying the Configuration File . 6–3

6.3 Reviewing the Source Code Changes . 6–5

6.4 Using the RTDX Control to Change the Load at Run Time 6–7

6.5 Modifying Software Interrupt Priorities . 6–11

6.6 Things to Try . 6–12

6.7 Learning More . 6–12

Topic Page

Opening and Examining the Project

6-2

6.1 Opening and Examining the Project

In this chapter, you’ll modify the example you worked on in the previous
chapter.

Note:

If you did not complete the previous chapter, you can copy example files
from the volume3 folder that reflect the state of the example at the end of
the previous chapter. Copy all the files from c:\ti\c6000\tutorial\volume3 (or
the location where you installed Code Composer Studio) to your working
folder.

1) Copy only the following files from the c:\ti\c6000\tutorial\volume4\ folder
to your working folder. (Note that you should not copy all the files from the
volume4 folder. In particular, do not copy the volume.cdb file.)

■ volume.c . The source code has been modified to allow you to use
the RTDX module to change the load without stopping the target
program. You examine the changes in section 6.3.

■ loadctrl.exe . This is a simple Windows application written in Visual
Basic 5.0. It sends load values to the target in real time using RTDX.

■ loadctrl.frm, loadctrl.frx, loadctrl.vbp . If you have Visual Basic,
you can use it to examine these source files for the loadctrl
application

2) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→Code Composer Studio.

3) Choose Project→Open. Select the volume.mak file in your working folder
and click Open.

Modifying the Configuration File

Analyzing Real-Time Behavior 6-3

6.2 Modifying the Configuration File

For this example, you need to add one new object to the configuration file.
(The volume.cdb file in the c:\ti\c6000\tutorial\volume4\ folder already
contains this object.)

1) In the Project View, double-click on the volume.cdb file to open it.

2) Select LOG_system, change the buflen property to 512 words, and click
OK (as you did on page 5–7).

3) Right-click on the PRD manager and choose Insert PRD from the pop-up
menu.

4) Rename the PRD0 object to loadchange_PRD.

5) Right-click on the loadchange_PRD object and choose Properties from
the pop-up menu.

6) Set the following properties for the loadchange_PRD object and click OK.

■ Change the period to 2. By default, the PRD manager uses the CLK
manager to drive PRD execution. The default properties for the CLK
class make a clock interrupt trigger a PRD tick each millisecond. So,
this PRD object runs its function every 2 milliseconds.

■ Change the function to _loadchange. This PRD object executes the
loadchange C function each time the period you chose elapses.
(Recall that you need to use an underscore prefix for C functions in
the configuration file.) You look at this function in the next section.

Change
these
properties

Modifying the Configuration File

6-4

7) Click the + sign next to the SWI manager. Notice that a SWI object called
PRD_swi was added automatically. This software interrupt executes
periodic functions at run time. Therefore, all PRD functions are called
within the context of a software interrupt and can yield to hardware
interrupts. In contrast, CLK functions run in the context of a hardware
interrupt.

8) Click the + sign next to the CLK manager. Notice that the CLK object
called PRD_clock runs a function called PRD_F_tick. This function
causes the DSP/BIOS system clock to tick (by calling the PRD_tick API
function) and the PRD_swi software interrupt to be posted if any PRD
functions need to run. PRD_swi runs the functions for all the PRD objects
whose period has elapsed.

9) Your own programs can call PRD_tick from some other event, such as a
hardware interrupt, to drive periodic functions. Notice that the PRD
manager has a property called Use CLK Manager to drive PRD. If you
remove the check mark from this box, the PRD_clock object is
automatically deleted. Make sure this box is checked for this example.

10) Recall that the processing_SWI object has a mailbox value of 10 and that
the mailbox value is decremented by the dataIO_CLK object, which runs
every millisecond. As a result, the processing_SWI runs its function every
10 milliseconds. In contrast, the loadchange_PRD object should run its
function every 2 milliseconds.

11) Choose File→Close. You are asked whether you want to save your
changes to volume.cdb. Click Yes. Saving this file also generates
volumecfg.cmd, volumecfg.s62, and volumecfg.h62.

12) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.

Reviewing the Source Code Changes

Analyzing Real-Time Behavior 6-5

6.3 Reviewing the Source Code Changes

Double-click on the volume.c file in the Project View to see the source code
in the right half of the Code Composer Studio window.

Since you copied the volume.c file from the c:\ti\c6000\tutorial\volume4\
folder to your working folder, the source code now contains the following
differences from the source code used in the previous chapter:

❏ Added the following to the list of included header files:

#include <rtdx.h>

❏ Added the following to the declarations:

RTDX_CreateInputChannel(control_channel);

Void loadchange(Void);

❏ Added the following call to the main function:

RTDX_enableInput(&control_channel);

❏ The following function is called by the PRD object you created in the
previous section. This is where the processor is controlled.

/* ======== loadchange ========
 * FUNCTION: Called from loadchange_PRD to
 * periodically update load value.
 * PARAMETERS: none.
 * RETURN VALUE: none.
 */
Void loadchange()
{
 static Int control = MINCONTROL;

 /* Read new load control when host sends it */
 if (!RTDX_channelBusy(&control_channel)) {
 RTDX_readNB(&control_channel, &control,
 sizeof(control));
 if ((control < MINCONTROL) || (control > MAXCONTROL)) {
 LOG_printf(&trace,"Control value out of range");
 }
 else {
 processingLoad = BASELOAD << control;
 LOG_printf(&trace,"Load value = %d",processingLoad);
 }
 }
}

Reviewing the Source Code Changes

6-6

This function uses RTDX API functions to change the load of the processing
signal in real time. Notice the following aspects of these changes:

❏ The call to RTDX_enableInput enables the input channel called
control_channel so that data can flow on it from the host to the target. At
run time, a Visual Basic host client writes a load control value on that
channel, thereby sending it to the target application.

❏ The call to RTDX_readNB asks the host to send a load control value on
the control_channel and stores it in the variable called control. This call
is non-blocking; it returns without waiting for the host to send the data.
The data is delivered when the host client writes to control_channel.
From the time of the call to RTDX_readNB until the data is written to the
variable control, this channel is busy, and no additional requests can be
posted on this channel (that is, calls to RTDX_readNB do not succeed).
During that time, the call to RTDX_channelBusy returns TRUE for
control_channel.

❏ The processingLoad = BASELOAD << control; statement shifts the bits
in BASELOAD (1) to the left by the number of digits specified by the
control. Because MAXCONTROL is set to 31, the RTDX control allows
you to set an exponentially scaled value for the load up to the maximum
value that can be stored in a 32-bit variable.

Using the RTDX Control to Change the Load at Run Time

Analyzing Real-Time Behavior 6-7

6.4 Using the RTDX Control to Change the Load at Run Time

While you could test the program by putting a Probe Point within the
processing function and view graphs of input and output data (as you did in
section 4.3), you have already tested the signal processing algorithm. At this
stage of development, your focus is on making sure the tasks you have added
can still meet their real-time deadlines. Also, Probe Points halt the target and
interfere with the real-time aspects of the test.

1) Choose File→Load Program. Select the program you just rebuilt,
volume.out, and click Open.

2) Choose Tools→DSP/BIOS→RTA Control
Panel.

3) Right-click on the RTA Control Panel and
deselect Allow Docking to display the RTA
Control Panel in a separate window.
Resize the window so that you can see all
of the check boxes shown here.

4) Put check marks in the boxes shown here
to enable SWI, PRD, and CLK logging;
SWI and PRD accumulators; and global
tracing on the host.

5) Choose Tools→DSP/BIOS→Execution
Graph. The Execution Graph area
appears at the bottom of the Code Composer Studio window. You may
want to resize this area or display it as a separate window.

6) Choose Tools→DSP/BIOS→Statistics View.

Using the RTDX Control to Change the Load at Run Time

6-8

7) Right-click on the Statistics View area, which says Load program and/or
set property to use control. Choose Property Page from the pop-up
menu. Highlight the items shown here.

8) Click OK.

9) Resize the Statistics area to see the fields for the statistics you selected.

10) Right-click on the RTA Control Panel and choose Property Page from the
pop-up menu.

11) Set the Refresh Rate for Message Log/Execution Graph to 1 second and
the Refresh Rate for Statistics View/CPU Load Graph to 0.5 seconds.
Then click OK.

12) Choose Tools→RTDX.

13) Notice that RTDX is already enabled. This happened behind-the-scenes
in Step 2 when you opened a DSP/BIOS control. DSP/BIOS controls
configure and enable RTDX in continuous mode. In continuous mode,
RTDX does not record data received from the target in a log file (as it
does in non-continuous mode). This allows continuous data flow. (If your
program does not use DSP/BIOS, you can use the RTDX area to
configure and enable RTDX directly.)

Using the RTDX Control to Change the Load at Run Time

Analyzing Real-Time Behavior 6-9

14) Using the Windows Explorer, run loadctrl.exe, which is located in your
working folder. The Load Control window appears.

This simple Windows application was written using Visual Basic and
RTDX. If you have Visual Basic, you can examine the source files for the
loadctrl application stored in the c:\ti\c6000\tutorial\volume4\ folder. This
application uses the following RTDX functions:

■ rtdx.Open("control_channel", "W") . Opens a control channel to
write information to the target when you open the application

■ rtdx.Close() . Closes the control channel when you close the
application

■ rtdx.WriteI4(dataI4, bufstate) . Writes the current value of the slider
control to control_channel so that the target program can read this
value and use it to update the load

15) Choose Debug→Run or click the (Run) toolbar button.

Notice that processing_SWI occurs once every 10 time ticks (and PRD
ticks). PRD_swi runs once every 2 PRD ticks. The loadchange_PRD runs
within the context of PRD_swi. These are the expected execution
frequencies.

Using the RTDX Control to Change the Load at Run Time

6-10

PRD statistics are measured in PRD ticks. SWI statistics are measured
in on-chip timer counter increments. Notice that the Max and Average
fields for loadchange_PRD show that there is less than a full PRD tick
between the time this function needs to start running and its completion.
(The actual numbers shown may vary.)

16) Use the Load Control window to gradually increase the processing load.
(If you move the slider in the Load Control window while the DSP
program is halted, the new load control values are buffered on the host
by RTDX. These have no effect until the DSP application runs again and
calls RTDX_readNB to request updated load values from the host.)

17) Repeat step 16) until you see the Max and Average values for
loadchange_PRD increase and blue squares appear in the Assertions
row of the Execution Graph. Assertions indicate that a thread is not
meeting its real-time deadline.

What is happening? Notice that the Max value for loadchange_PRD
increases when you increase the load beyond a certain point. With the
increased load, the processing_SWI takes so long to run that the
loadchange_PRD cannot begin running until long past its real-time deadline.

When you increase the load so much that the low-priority idle loop is no
longer executed, the host stops receiving real-time analysis data and the
DSP/BIOS plug-ins stop updating. Halting the target updates the plug-ins with
the queued data.

Modifying Software Interrupt Priorities

Analyzing Real-Time Behavior 6-11

6.5 Modifying Software Interrupt Priorities

To understand why the program is not meeting its real-time deadline, you
need to examine the priorities of the software interrupt tasks.

1) Select Debug→Halt to halt the target.

2) In the Project View, double-click on the volume.cdb file to open it.

3) Highlight the SWI manager. Notice the SWI
object priorities shown in the right half of the
window.

4) Because PRD_swi and processing_SWI have
the same priority, PRD_swi cannot preempt processing_SWI. The
processing_SWI needs to run once every 10 milliseconds and PRD_swi
needs to run every 2 milliseconds. When the load is high,
processing_SWI takes longer than 2 milliseconds to run, and so it
prevents PRD_swi from meeting its real-time deadline.

5) To correct this problem, you need give
PRD_swi the highest priority. Drag
processing_SWI down. This adds a second
priority level. Now, PRD_swi has the highest
priority.

6) Select File→Save to save your changes.

7) Select File→Close to close volume.cdb.

8) Choose Project→Build or click the (Incremental Build) toolbar button.

9) Run the example again using the RTDX-enabled Windows application
loadctrl.exe to change the load at run time (as in section 6.4).

10) Notice that you can now increase the load without causing PRD_swi to
miss its real-time deadline.

Note: Starving Idle Loop

It is still possible to starve the idle loop by increasing the processing load to
maximum.

11) Before proceeding to the next chapter (after completing section 6.6),
perform the following steps to prepare for the next chapter:

■ Click (Halt) or press Shift F5 to stop the program.

■ Close all GEL dialog boxes, DSP/BIOS plug-ins, and source
windows.

Things to Try

6-12

6.6 Things to Try

To further explore DSP/BIOS, try the following:

❏ When you increase the load, the Execution Graph shows that
processing_SWI requires more than one PRD tick to run. Does this mean
that processing_SWI is missing its real-time deadline? Recall that
processing_SWI must run every 10 milliseconds, while PRD ticks occur
every millisecond.

❏ What would happen if the processing function were called directly from a
hardware ISR rather than being deferred to a software interrupt?
Hardware ISR run at a higher priority than the highest priority SWI object.

❏ View the CPU Load Graph. Use the RTA Control Panel to turn the
statistics accumulators on and off. How much does this affect the CPU
load? How much does this affect the statistics for processing_SWI?

❏ Add calls to STS_set and STS_delta in the loadchange function like the
ones you added in section 5.7. How does this change affect the CPU
load? Now, add calls to STS_set and STS_delta in the dataIO function.
How does this change affect the CPU load? Why? Consider the
frequency at which each function is executed. Even small increases to
the processing requirements for functions that run frequently can have
dramatic effects on CPU load.

6.7 Learning More

To learn more about the software interrupt priorities and the RTDX and PRD
modules, see the Code Composer Studio and RTDX online help or the
TMS320C6000 DSP/BIOS User’s Guide (which is provided as an Adobe
Acrobat file).

7-1

Chapter 7

Connecting to I/O Devices

This chapter introduces RTDX and DSP/BIOS techniques for implementing
I/O.

In this chapter, you connect a program to an I/O device using RTDX and
DSP/BIOS. You also use the HST, PIP, and SWI modules of the DSP/BIOS
API.

This chapter requires a physical board and cannot be carried out using a
software simulator. Also, this chapter requires the DSP/BIOS and RTDX
components of Code Composer Studio.

7.1 Opening and Examining the Project . 7–2

7.2 Reviewing the C Source Code . 7–3

7.3 Reviewing the Signalprog Application . 7–6

7.4 Running the Application . 7–7

7.5 Modifying the Source Code to Use Host Channels and Pipes . . . 7–10

7.6 More about Host Channels and Pipes . 7–12

7.7 Adding Channels and an SWI to the Configuration File 7–13

7.8 Running the Modified Program . 7–17

7.9 Learning More . 7–17

Topic Page

Opening and Examining the Project

7-2

7.1 Opening and Examining the Project

You begin by opening a project with Code Composer Studio and examining
the source code files and libraries used in that project.

1) If you installed Code Composer Studio in c:\ti, create a folder called
hostio in the c:\ti\myprojects folder. (If you installed elsewhere, create a
folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\hostio1 folder to this new folder.

3) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→Code Composer Studio.

4) Choose Project→Open. Select the hostio.mak file in the folder you
created and click Open.

5) Expand the Project View by clicking
the + signs next to Project,
HOSTIO.MAK, and Source. The
hostiocfg.cmd file, which was created
when the configuration was saved,
includes a large number of
DSP/BIOS header files. You don’t
need to examine all these header
files.

The files used in this project include:

■ hostio.c . This is the source code
for the main program. You
examine the source code in the
next section.

■ signalprog.exe . A Visual Basic application that generates a sine
wave and displays the input and output signals

■ slider.exe . A Visual Basic application that allows you to control the
volume of the output signal

■ hostiocfg.cmd . This linker command file is created when saving the
configuration file. The only object that has been add to the default
configuration is a LOG object called trace.

■ hostiocfg.s62 . This assembly file is created when saving the
configuration file

■ hostiocfg.h62 . This header file is created when saving the
configuration file

Reviewing the C Source Code

Connecting to I/O Devices 7-3

7.2 Reviewing the C Source Code

The example in this chapter simulates a DSP application that digitizes an
audio signal, adjusts its volume, and produces an analog output at the
adjusted volume.

For simplicity, no actual device is used to send and receive analog data in this
example. Instead, the example tests the algorithm using host-generated
digital data. Input and output data and volume control are transferred
between the host and the target using RTDX.

A Visual Basic application running on the host uses RTDX to generate the
input signal and display the input and output signals. This application allows
developers to test the algorithm without stopping the target. Similar methods
can be used to create display controls for real-time testing of other
applications. You examine the Visual Basic application in the next section.

1) Double-click on the hostio.c file in the Project View to see the source
code.

2) Notice the following aspects of this example:

■ Three RTDX channels are declared globally. The first input channel
controls the volume. The second input channel receives the input
signal from the host. The output channel sends the output signal from
the target to the host. (Input and output channels are named from the
perspective of the target application: input channels receive data
from the host, and output channels send data to the host.)

■ The call to RTDX_channelBusy returns FALSE if the channel is not
currently waiting for input. This indicates that the data has arrived
and can be read. As in the previous chapter, the call to
RTDX_readNB is non-blocking; it returns control to the DSP
application without waiting to receive the data from the host. The data
is delivered asynchronously when the host client writes it to the
control_channel.

■ The call to RTDX_read waits for data if the channel is enabled.

■ The call to RTDX_write writes the contents of the buffer to the output
RTDX channel if the channel is enabled.

Reviewing the C Source Code

7-4

■ Notice that while control_channel is enabled by the target via a call
to RTDX_enableInput, the other RTDX channels are not enabled
from this program. Instead, a host program described in the next
section enables these channels. This is because the slider control,
which uses the control_channel, is viewed as an integral part of the
application. By enabling this channel in the target program, you know
the channel is enabled while the application is running. In contrast,
the A2D and D2A channels are used to test the algorithm. Hence,
these channels are enabled and disabled by the host application.

#include <std.h>
#include <log.h>
#include <rtdx.h>
#include <target.h>

#define BUFSIZE 64
#define MINVOLUME 1
typedef Int sample; /* representation of a data sample from A2D */

/* Global declarations */
sample inp_buffer[BUFSIZE];
sample out_buffer[BUFSIZE];
Int volume = MINVOLUME; /* the scaling factor for volume control */

/* RTDX channels */
RTDX_CreateInputChannel(control_channel);
RTDX_CreateInputChannel(A2D_channel);
RTDX_CreateOutputChannel(D2A_channel);

/* Objects created by the Configuration Tool */
extern far LOG_Obj trace;

/*
 * ======== main ========
 */
Void main()
{
 sample *input = inp_buffer;
 sample *output = out_buffer;
 Uns size = BUFSIZE;

 TARGET_INITIALIZE(); /* Enable RTDX interrupt */

 LOG_printf(&trace,"hostio example started");

 /* enable volume control input channel */
 RTDX_enableInput(&control_channel);

Reviewing the C Source Code

Connecting to I/O Devices 7-5

 while (TRUE) {
 /* Read a new volume when the hosts send it */
 if (!RTDX_channelBusy(&control_channel))
 RTDX_readNB(&control_channel, &volume, sizeof(volume));

 /* A2D: get digitized input (get signal from the host through RTDX).
 * If A2D_channel is enabled, read data from the host.
 */
 RTDX_read(&A2D_channel, input, size*sizeof(sample));

 /* Vector Scale: Scale the input signal by the volume factor to
 * produce the output signal.
 */
 while(size--){
 *output++ = *input++ * volume;
 }
 size = BUFSIZE;
 input = inp_buffer;
 output = out_buffer;

 /* D2A: produce analog output (send signal to the host through RTDX).
 * If D2A_channel is enabled, write data to the host.
 */
 RTDX_write(&D2A_channel, output, size*sizeof(sample));
 }
}

Reviewing the Signalprog Application

7-6

7.3 Reviewing the Signalprog Application

The source code for the signalprog.exe application is available in the
signalfrm.frm file. Details about this application are provided in the
signalprog.pdf Adobe Acrobat file. In this section, you examine a few of the
routines and functions that are important for this example.

❏ Test_ON . This routine runs when you click the Test_ON button. It creates
instances of the RTDX exported interface for the input channel (toDSP)
and for the output channel (fromDsp). Then it opens and enables both of
these channels. The channels in the signalprog application are the same
channels declared globally in the hostio.c source code.

This routine also clears the graphs and starts the timer used to call the
Transmit_Signal and Receive_Signal functions.

The following global declarations earlier in the Visual Basic source code
connect the READ_CHANNEL and WRITE_CHANNEL used in the
Test_ON routine to the D2A_channel and A2D_channel used in hostio.c:

’ Channel name constants
Const READ_CHANNEL = "D2A_channel"
Const WRITE_CHANNEL = "A2D_channel"

❏ Test_OFF. This routine disables, closes, and releases the RTDX objects
created by Test_ON. It also disables the timer.

❏ Transmit_Signal . This function generates a sine wave signal and
displays it in the Transmitted Signal graph. Then, the function attempts to
transmit the signal to the target using the Write method of the toDSP
channel.

❏ Receive_signal . This function uses the ReadSAI4 method of the
fromDSP channel to read a signal from the target. It displays the signal
in the Received Signal graph.

❏ tmr_MethodDispatch_Timer . This routine calls the Transmit_Signal
and Receive_Signal functions. This routine is called at 1 millisecond
intervals after the timer object is enabled by the Test_ON routine.

Running the Application

Connecting to I/O Devices 7-7

7.4 Running the Application

1) Choose File→Load Program. Select the program, hostio.out, and click
Open.

2) Choose Tools→RTDX.

3) Click Configure in the RTDX area of the window. In the General Settings
tab of the RTDX Properties dialog, select Continuous RTDX mode. Then,
click OK.

4) Change RTDX Disable to RTDX Enable in the RTDX area.

Note:

Changing RTDX Disable to RTDX Enable changes the Configure button to
Diagnostics.

5) Choose Debug→Run or click the (Run) toolbar button.

6) Using the Windows Explorer, run signalprog.exe and slider.exe. You see
these two Visual Basic applications.

Running the Application

7-8

The slider.exe program must be started after RTDX is enabled and the
program is running because it creates and opens the RTDX control
channel when you run the program. If RTDX is not enabled at this point,
slider.exe cannot open the channel.

The signalprog.exe program can be started at any point. It does not use
RTDX until you click the Test On button.

7) Resize the signalprog window so that it is taller. This allows you to see
the axis labels.

8) Click Test On in the signalprog window. This starts the input and output
channels.

Running the Application

Connecting to I/O Devices 7-9

9) Slide the control in the Volume Slider window. This changes the volume
of the output signal. Watch the amplitude of the Received Signal graph
change.

Note:

The received signal graph changes the scale labels rather than changing
the displayed size of the sine waves.

10) Close the Volume Slider application. This stops the input and output
channels.

11) Click Test OFF in the signalprog window. This closes the control channel.

12) Click (Halt) or press Shift F5 to stop the program.

Modifying the Source Code to Use Host Channels and Pipes

7-10

7.5 Modifying the Source Code to Use Host Channels and Pipes

Now you modify the example to use the host channels and pipes provided
with DSP/BIOS. The modified example still tests your DSP algorithm in real
time. Rather than generating a sine wave on the host, this time the data
comes from a host file.

The HST module provides a more direct path toward implementing I/O with
peripheral devices. The HST module uses the PIP module for host I/O. You
can use the PIP module API with minimal modifications to the source code
once the I/O devices and ISRs are ready for testing.

1) Copy only the following files from the c:\ti\c6000\tutorial\hostio2\ folder to
your working folder. (Note that you should not copy all the files from the
hostio2 folder. In particular, do not copy the hostio.cdb file.)

■ hostio.c . The source code has been modified to use the HST and
PIP modules of the DSP/BIOS API instead of RTDX to transfer the
input and output signals

■ input.dat . This file contains input data

2) Double-click on the hostio.c file in the Project View to see the source code
in the right half of the Code Composer Studio window. The source code
now contains the following differences from the source code used earlier
in this chapter:

■ Added the following to the list of included header files:

#include <hst.h>
#include <pip.h>

■ Removed the BUFSIZE definition, the global declarations of
inp_buffer and out_buffer, and the RTDX input and output channel
declarations. This example retains the RTDX channel used to control
the volume.

■ Moved the input and output functionality from a while loop in the main
function to the A2DscaleD2A function. This function is called by the
A2DscaleD2A_SWI object, which you create in the next section.

/* ======== A2DscaleD2A ======== */
/* FUNCTION: Called from A2DscaleD2A_SWI to get digitized data
 * from a host file through an HST input channel,
 * scale the data by the volume factor, and send
 * output data back to the host through an HST
 * output channel.
 * PARAMETERS: Address of input and output HST channels.
 * RETURN VALUE: None. */

Modifying the Source Code to Use Host Channels and Pipes

Connecting to I/O Devices 7-11

Void A2DscaleD2A(HST_Obj *inpChannel, HST_Obj *outChannel)
{
 PIP_Obj *inp_PIP;
 PIP_Obj *out_PIP;
 sample *input;
 sample *output;
 Uns size;

 inp_PIP = HST_getpipe(inpChannel);
 out_PIP = HST_getpipe(outChannel);

 if ((PIP_getReaderNumFrames(inp_PIP) <= 0) ||
 (PIP_getWriterNumFrames(out_PIP) <= 0)) {
 /* Software interrupt should not have been triggered! */
 error();
 }

 /* Read a new volume when the hosts send it */
 if (!RTDX_channelBusy(&control_channel))
 RTDX_readNB(&control_channel, &volume, sizeof(volume));

 /* A2D: get digitized input (get signal from the host
 * through HST). Obtain input frame and allocate output
 * frame from the host pipes. */

 PIP_get(inp_PIP);
 PIP_alloc(out_PIP);

 input = PIP_getReaderAddr(inp_PIP);
 output = PIP_getWriterAddr(out_PIP);
 size = PIP_getReaderSize(inp_PIP);

 /* Vector Scale: Scale the input signal by the volume
 * factor to produce the output signal. */
 while(size--){
 *output++ = *input++ * volume;
 }

 /* D2A: produce analog output (send signal to the host
 * through HST). Send output data to the host pipe and
 * free the frame from the input pipe. */
 PIP_put(out_PIP);
 PIP_free(inp_PIP);
}

The A2DscaleD2A function is called by the A2DscaleD2A_SWI
object. You create this SWI object in the next section and make it call
the A2DscaleD2A function.

The A2DscaleD2A_SWI object passes two HST objects to this
function. This function then calls HST_getpipe to get the address of
the internal PIP object used by each HST object.

More about Host Channels and Pipes

7-12

Calls to PIP_getReaderNumFrames and PIP_getWriterNumFrames
then determine whether there is at least one frame in the input pipe
that is ready to be read and one frame in the output pipe that can be
written to.

Using the same RTDX calls used earlier in this chapter, the function
gets the volume setting from the RTDX control channel.

The call to PIP_get gets a full frame from the input pipe. The call to
PIP_getReaderAddr gets a pointer to the beginning of the data in the
input pipe frame and PIP_getReaderSize gets the number of words
in the input pipe frame.

The call to PIP_alloc gets an empty frame from the output pipe. The
call to PIP_getWriterAddr gets a pointer to the location to begin
writing data to in the output pipe frame.

The function then multiplies the input signal by the volume and writes
the results to the frame using the pointer provided by
PIP_getWriterAddr.

The call to PIP_put puts the full frame into the output pipe. The call
to PIP_free recycles the input frame so that it can be reused the next
time this function runs.

■ Added an error function, which writes an error message to the trace
log and then puts the program in an infinite loop. This function runs if
A2DscaleD2A runs when there are no frames of data available for
processing.

7.6 More about Host Channels and Pipes

Each host channel uses a pipe internally. When you are using a host channel,
your target program manages one end of the pipe and the Host Channel
Control plug-in manages the other end of the pipe.

When you are ready to modify your program to use peripheral devices other
than the host PC, you can retain the code that manages the target’s end of
the pipe and add code in functions that handle device I/O to manage the other
end of the pipe.

Adding Channels and an SWI to the Configuration File

Connecting to I/O Devices 7-13

7.7 Adding Channels and an SWI to the Configuration File

The A2DscaleD2A function is called by an SWI object and uses two HST
objects. You create these objects in this section. (The hostio.cdb file in the
c:\ti\c6000\tutorial\hostio2\ folder already contains these objects.)

The A2DscaleD2A function also references two PIP objects, but these
objects are created internally when you create the HST objects. The
HST_getpipe function gets the address of the internal PIP object that
corresponds to each HST object.

1) In the Project View, double-click on the HOSTIO.CDB file to open it.

2) Right-click on the HST manager and choose Insert HST.

Notice that there are HST objects called RTA_fromHost and RTA_toHost.
These objects are used internally to update the DSP/BIOS controls.

3) Rename the new HST0 object to input_HST.

4) Right-click on the input_HST object and choose Properties from the
pop-up menu. Set the following properties for this object and click OK.

Change
these

properties

Adding Channels and an SWI to the Configuration File

7-14

■ mode . This property determines which end of the pipe the target
program manages, and which end the Host Channel Control plug-in
manages. An input channel sends data from the host to the target.
An output channel sends data from the target to the host.

■ framesize . This property sets the size of each frame in the channel.
Use 64 words—the same value as the BUFSIZE used earlier in this
chapter

■ notify, arg0, arg1 . These properties specify the function to run when
this input channel contains a full frame of data and the arguments to
pass to that function. The SWI_andn function provides another way
to manipulate a SWI object’s mailbox.

In Chapter 5, you used the SWI_dec function to decrement the
mailbox value and run the SWI object’s function when the mailbox
value reached zero.

The SWI_andn function treats the mailbox value as a bitmask. It
clears the bits specified by the second argument passed to the
function. So, when this channel contains a full frame (because the
target filled a frame), it calls SWI_andn for the A2DscaleD2A_SWI
object and causes it to clear bit 1 of the mailbox.

Mailbox value = 3

A2DscaleD2A_SWI
SWI object

Mailbox value = 2

A2DscaleD2A_SWI
SWI object

input_HST object
performs

SWI_andn with
mask=1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Adding Channels and an SWI to the Configuration File

Connecting to I/O Devices 7-15

5) Insert another HST object and rename it output_HST.

6) Set the following properties for the output_HST object and click OK.

When this output channel contains an empty frame (because the target
read and released a frame), it uses SWI_andn to clear the second bit of
the mailbox.

Change
these

properties

Mailbox value = 2

Mailbox value = 0

output_HST object
performs

SWI_andn with
mask=2

SWI is
posted

A2DscaleD2A_SWI
SWI object

A2DscaleD2A_SWI
SWI object

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Adding Channels and an SWI to the Configuration File

7-16

7) Right-click on the SWI manager and choose Insert SWI.

8) Rename the new SWI0 object to A2DscaleD2A_SWI.

9) Set the following properties for A2DscaleD2A_SWI and click OK.

■ function . This property causes the object to call the A2DscaleD2A
function when this software interrupt is posted and runs

■ mailbox . This is the initial value of the mailbox for this object. The
input_HST object clears the first bit of the mask and the output_HST
object clears the second bit of the mask. When this object runs the
A2DscaleD2A function, the mailbox value is reset to 3.

■ arg0, arg1 . The names of the two HST objects are passed to the
A2DscaleD2A function

10) Choose File→Close. You are asked whether you want to save your
changes to hostio.cdb. Click Yes. Saving the configuration also
generates hostiocfg.cmd, hostiocfg.s62, and hostiocfg.h62.

Change
these

properties

Running the Modified Program

Connecting to I/O Devices 7-17

7.8 Running the Modified Program

1) Choose Project→Build or click the (Incremental Build) toolbar button.

2) Choose File→Load Program. Select the program you just rebuilt,
hostio.out, and click Open.

3) Choose Tools→DSP/BIOS→Host Channel Control. The Host Channel
Control lists the HST objects and allows you to bind them to files on the
host PC and to start and stop the channels.

4) Choose Debug→Run or click the (Run) toolbar button.

5) Right-click on the input_HST channel and choose Bind from the pop-up
menu.

6) Select the input.dat file in your working folder and click Bind.

7) Right-click on the output_HST channel and choose Bind from the pop-up
menu.

8) Type output.dat in the File Name box and click Bind.

9) Right-click on the input_HST channel and choose Start from the pop-up
menu.

10) Right-click on the output_HST channel and choose Start from the pop-up
menu. Notice that the Transferred column shows that data is being
transferred.

11) When the data has been transferred, click (Halt) or press Shift F5 to
stop the program.

7.9 Learning More

To learn more about the RTDX, HST, PIP, and SWI modules, see the online
help or the TMS320C6000 DSP/BIOS User’s Guide (which is provided as an
Adobe Acrobat file).

Index-1

Index

A
animating program 4-9
archiver 1-5
asm file 1-16
assembler 1-5
assembly optimizer 1-5
assembly vs. C 5-7
assembly, viewing with C source 2-13
assertions 6-10

B
bin folder 1-15
bios folder 1-15
breakpoint

creating 2-10
deleting 2-12
stepping from 2-11

building application 2-6

C
C compiler 1-5
c file 1-16
C vs. assembly 5-7
c6201 vs. c6701 iv
C6X_A_DIR environment variable 1-17, 2-3
C6X_C_DIR environment variable 1-17, 2-3
cdb file 1-16, 3-3
cgtools folder 1-15
chip type 3-3
CLK module 1-11

manager properties 5-8
CLK_gethtime function 5-17
CLK_getltime function 5-20
clock

viewing 4-16
clock manager 5-8
clock, enabling 2-13
cmd file 1-16, 2-3, 3-3

Code Composer Studio
vs. Code Composer Studio Simulator 1-2

COFF file 1-5
color, modifying 2-10
command file 2-3
configuration file

adding to project 3-4
creating 3-2
generated files 3-3
opening 5-6
saving 3-3

CPU Load Graph 5-12
cross-reference utility 1-5

D
datatypes for DSP/BIOS 5-3
development cycle 1-2
development flow diagram 1-4
directories 1-15

search path 2-3
docs folder 1-15
DOS environment space, increasing 1-17
drivers folder 1-15
DSP type 3-3
DSP/BIOS

API modules 1-9
datatypes 5-3
header files 3-5

E
edit variable 2-12
enable clock 2-13
environment variables

C6X_A_DIR 1-17
C6X_C_DIR 1-17
PATH 1-17

EPROM programmer 1-5
examples folder 1-15
Execution Graph 5-10

Index-2

 Index

explicit instrumentation 5-17

F
file I/O 4-6
file streaming 1-9
floating-point support iv
folders 1-15

search path 2-3
font, setting 2-4
function names 5-7

G
GEL

functions 4-13
gel folder 1-15
generated files 3-3
graph

clearing 4-8
viewing 4-8

H
h file 1-16
halting program 2-7

at breakpoint 2-10
header files 3-5
hello1 example 2-2
hello2 example 3-2
hello.c 2-4, 3-4
hex conversion utility 1-5
Host Channel Control 7-17
host operation 5-20
hostio1 example 7-2
hostio2 example 7-10
hostio.c 7-3, 7-10
HST module 1-11, 7-10

creating object 7-13
HST_getpipe function 7-11
HWI module 1-11

object properties 5-8

I
IDL module 1-11, 3-10
idle loop 3-5, 5-3
ifdef symbols 2-8
implicit instrumentation 5-15
include files 3-5

inserting an object 3-3
instruction cycles 2-13

profiling 2-14
integrated development environment 1-7
interrupts

disabled vs. enabled 3-10
software 5-3

L
lib file 1-16
libraries

adding to project 2-3
runtime-support 1-5

library-build utility 1-5
linker 1-5
linker command file 2-3, 3-3
loading program 2-6
LOG module 1-11
LOG object

creating 3-3
declaring 3-5

LOG_printf function 3-5

M
mailbox value 5-9
main function 3-5
mak file 1-16
MEM module 1-11
Message Log 3-6
mixed source/ASM 2-13
modules, list of 1-11
myprojects folder 1-15

N
naming conventions 5-7
new project 2-2

O
obj file 1-16
object

editing properties 5-7
inserting 3-3
renaming 3-3

options
color 2-10
font 2-4

Index-3

Index

options for project 2-8
out file 1-16

P
PATH environment variable 1-17
performance monitoring 1-9
PIP module 1-11, 7-10
PIP_alloc function 7-11
PIP_free function 7-11
PIP_get function 7-11
PIP_getReaderAddr function 7-11
PIP_getReaderNumFrames function 7-11
PIP_getReaderSize function 7-11
PIP_getWriterAddr function 7-11
PIP_getWriterNumFrames function 7-11
PIP_put function 7-11
plug-ins

DSP/BIOS 1-9
RTDX 1-13
third party 1-14

plugins folder 1-15
PRD module 1-12

adding object 6-3
PRD_clock CLK object 6-4
PRD_swi object 6-4
PRD_tick function 6-4
preprocessor symbols 2-8
priorities of software interrupts 6-11
Probe Point

connecting 4-7
creating 4-6

profile clock 2-13
profile-point

creating 2-13
viewing statistics 2-14

program
halting 2-7
loading onto target 2-6
running 2-6

program tracing 1-9
project

adding files 2-3
building 2-6
creating new 2-2
options 2-8
viewing files in 2-3

project management 1-8
properties

changing 5-7
viewing 5-6

R
real-time deadlines 5-12, 6-10
renaming an object 3-3
resetting DSP 2-6
RTDX

channel declaration 7-3
rtdx folder 1-15
RTDX host interface 1-13
RTDX module 1-12

configuring 6-8, 7-7
RTDX_channelBusy function 6-5, 7-3
RTDX_enableInput function 6-5, 7-4
RTDX_read function 7-3
RTDX_readNB function 6-5
RTDX_write function 7-3
rtdx.Close 6-9
rtdx.Open 6-9
rtdx.WriteI4 6-9
rts6201.lib 2-3
rts6701.lib 2-3
running 2-6

animation 4-9
to cursor 2-11
to main 5-10

running Code Composer Studio 2-2
runtime-support libraries 1-5

S
saving 2-9
search path 2-3
sectti utility 3-10
signalprog.exe 7-6
simulator iii, 1-2
slider.exe 7-7
source files

adding to project 2-3
mixed C/assembly view 2-13

starting Code Composer Studio 2-2
statistics

units 5-20, 6-10
viewing with profile-points 2-14

Statistics View 5-15
step commands 2-11
stopping program 2-7
structure

watch variables 2-12
STS module 1-12

adding instrumentation 5-17
Statistics View 5-15

STS_delta function 5-17
STS_set function 5-17
SWI module 1-12

Index-4

 Index

object properties 5-9
priorities 6-11

SWI_andn function 7-14
SWI_dec function 5-3
symbols, defining 2-8
syntax errors 2-9

T
time/frequency graph 4-8
TRC module 1-12
TRC_query function 5-17
troubleshooting 2-6
tutorial folder 1-15

U
underscore 5-7
uninstall folder 1-15
USER0 tracing 5-18
utility folder (bin) 1-15

V
variables, editing 2-12
vectors.asm 2-3
view statistics 2-14
Visual Basic application 6-2
volume1 example 4-2
volume2 example 5-2
volume3 example 6-2
volume4 example 6-2
volume.c 4-4, 5-3, 6-5

W
watch variable

adding 2-10
changing value 2-12
removing 2-12
structures 2-12

wks file 1-16

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation from Texas Instruments
	Related Documentation
	Trademarks
	If You Need Assistance . . .

	Contents
	Code Composer Studio Overview
	Code Composer Studio Development
	Code Generation Tools
	Code Composer Studio Integrated Development En...
	Program Code Editing Features
	Application Building Features
	Application Debugging Features

	DSP/BIOS Plug-ins
	DSP/BIOS Configuration
	DSP/BIOS API Modules

	Hardware Emulation and Real-Time Data Exchange...
	Third-Party Plug-ins
	Code Composer Studio Files and Variables
	Installation Folders
	File Extensions
	Environment Variables
	Increasing DOS Environment Space

	Developing a Simple Program
	Creating a New Project
	Adding Files to a Project
	Reviewing the Code
	Building and Running the Program
	Changing Program Options and Fixing Syntax Err...
	Using Breakpoints and the Watch Window
	Using the Watch Window with Structures
	Profiling Code Execution Time
	Things to Try
	Learning More

	Developing a DSP/BIOS Program
	Creating a Configuration File
	Adding DSP/BIOS Files to a Project
	Testing with Code Composer Studio
	Profiling DSP/BIOS Code Execution Time
	Things to Try
	Learning More

	Testing Algorithms and Data from a File
	Opening and Examining the Project
	Reviewing the Source Code
	Adding a Probe Point for File I/O
	Displaying Graphs
	Animating the Program and Graphs
	Adjusting the Gain
	Viewing Out-of-Scope Variables
	Using a GEL File
	Adjusting and Profiling the Processing Load
	Things to Try
	Learning More

	Debugging Program Behavior
	Opening and Examining the Project
	Reviewing the Source Code
	Modifying the Configuration File
	Viewing Task Execution with the Execution Grap...
	Changing and Viewing the Load
	Analyzing Task Statistics
	Adding Explicit STS Instrumentation
	Viewing Explicit Instrumentation
	Things to Try
	Learning More

	Analyzing Real-Time Behavior
	Opening and Examining the Project
	Modifying the Configuration File
	Reviewing the Source Code Changes
	Using the RTDX Control to Change the Load at R...
	Modifying Software Interrupt Priorities
	Things to Try
	Learning More

	Connecting to I/O Devices
	Opening and Examining the Project
	Reviewing the C Source Code
	Reviewing the Signalprog Application
	Running the Application
	Modifying the Source Code to Use Host Channels...
	More about Host Channels and Pipes
	Adding Channels and an SWI to the Configuratio...
	Running the Modified Program
	Learning More

	Index

