
Printed on Recycled Paper

TMS320C54x

DSP/BIOS

User’s Guide

Literature Number: SPRU326A

September 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserves the right to make changes to their products or to

discontinue any product or service without notice, and advises customers to obtain the latest version of

relevant information to verify, before placing orders, that the information being relied on is current and

complete. All products are sold subject to the terms and conditions of sale at the time of order

acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale

in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the

extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is

not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL

RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE

(“CRITICAL APPLICATIONS). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,

AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR

SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH

APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or

represent that any license, either express or implied, is granted under any patent right, copyright, mask

work right, or other intellectual property right of TI covering or relating to any combination, machine, or

process in which such semiconductor products or services might be or are used. TI’s publication of

information regarding any third party’s products or services does not constitute TI’s approval, warranty

or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Copyright © 1999, portions of the DSP/BIOS plugin software provided by National Instruments

iii

Preface

Read This First

About This Manual

DSP/BIOS gives developers of mainstream applications on Texas

Instruments TMS320C54x DSP chips the ability to develop embedded real-

time software. DSP/BIOS provides a small firmware real-time library and

easy-to-use tools for real-time tracing and analysis.

Before you read this manual, you should follow the tutorials in the
TMS320C54x Code Composer Studio Tutorial (literature number SPRU327a)

to get an overview of DSP/BIOS. This manual discusses various aspects of

DSP/BIOS in depth and assumes that you have at least a basic

understanding of other aspects of DSP/BIOS.

Notational Conventions

This document uses the following conventions:

❏ The TMS320C54x core is also referred to as ’C54x.

❏ Program listings, program examples, and interactive displays are shown

in a special typeface. Examples use a bold version of the

special typeface for emphasis; interactive displays use a bold version

of the special typeface to distinguish commands that you enter from items

that the system displays (such as prompts, command output, error

messages, etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)

{

 PIP_Obj *in, *out;

 Uns *src, *dst;

 Uns size;

❏ Square brackets ([and]) identify an optional parameter. If you use an

optional parameter, you specify the information within the brackets.

Unless the square brackets are in a bold typeface, do not enter the

brackets themselves.

iv

 Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

The following books describe the TMS320C54x devices and related support

tools. To obtain a copy of any of these TI documents, call the Texas

Instruments Literature Response Center at (800) 477-8924. When ordering,

please identify the book by its title and literature number.

TMS320C54x Assembly Language Tools User’s Guide (literature number

SPRU102) describes the assembly language tools (assembler, linker, and

other tools used to develop assembly language code), assembler directives,

macros, common object file format, and symbolic debugging directives for

the ’C54x generation of devices.

TMS320C54x Optimizing C Compiler User’s Guide (literature number

SPRU103) describes the ’C54x C compiler. This C compiler accepts ANSI

standard C source code and produces TMS320 assembly language source

code for the ’C54x generation of devices.

TMS320C54x Simulator Getting Started (literature number SPRU137) de-

scribes how to install the TMS320C54x simulator and the C source debugger

for the ’C54x. The installation for MS-DOS, PC-DOS, SunOS, Solaris,

and HP-UX systems is covered.

TMS320C54x Evaluation Module Technical Reference (literature number

SPRU135) describes the ’C54x evaluation module, its features, design de-

tails and external interfaces.

TMS320C54x Simulator Getting Started Guide (literature number SPRU137)

describes how to install the TMS320C54x simulator and the C source de-

bugger for the ’C54x. The installation for Windows 3.1, SunOS, and HP-

UX systems is covered.

TMS320C54x Code Generation Tools Getting Started Guide (literature number

SPRU147) describes how to install the TMS320C54x assembly language

tools and the C compiler for the ’C54x devices. The installation for MS-DOS,

OS/2, SunOS, Solaris, and HP-UX 9.0x systems is covered.

TMS320C54x Simulator Addendum (literature number SPRU170) tells you how

to define and use a memory map to simulate ports for the ’C54x. This ad-

dendum to the TMS320C5xx C Source Debugger User’s Guide discusses

standard serial ports, buffered serial ports, and time division multiplexed

(TDM) serial ports.

Read This First v

Related Documentation

TMS320C5x C Source Debugger User’s Guide (literature number SPRU055)

tells you how to invoke the ’C5x emulator, evaluation module, and simulator

versions of the C source debugger interface. This book discusses various

aspects of the debugger interface, including window management, com-

mand entry, code execution, data management, and breakpoints. It also

includes a tutorial that introduces basic debugger functionality.

TMS320C5xx C Source Debugger User’s Guide (literature number SPRU099)

tells you how to invoke the ’C54x emulator, evaluation module, and simulator

versions of the C source debugger interface. This book discusses various

aspects of the debugger interface, including window management, com-

mand entry, code execution, data management, and breakpoints. It also

includes a tutorial that introduces basic debugger functionality.

TMS320C54x Code Composer Studio Tutorial (literature number

SPRU327a) introduces the Code Composer Studio integrated

development environment and software tools.

Related Documentation

You can use the following books to supplement this user's guide:

American National Standard for Information Systems-Programming
Language C X3.159-1989, American National Standards Institute (ANSI

standard for C)

The C Programming Language (second edition), by Brian W. Kernighan

and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New

Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Trademarks

MS-DOS, Windows, and Windows NT are trademarks of Microsoft

Corporation.

The Texas Instruments logo and Texas Instruments are registered

trademarks of Texas Instruments. Trademarks of Texas Instruments include:

TI, XDS, Code Composer, Probe Point, Code Explorer, DSP/BIOS, RTDX,

Online DSP Lab, BIOSuite, and SPOX.

All other brand or product names are trademarks or registered trademarks of

their respective companies or organizations.

Portions of the DSP/BIOS plug-in software are provided by National Instruments.

vii

Contents

1 About DSP/BIOS .1-1

DSP/BIOS gives developers of applications for DSP chips the ability to develop and analyze em-
bedded real-time software. DSP/BIOS includes a small firmware real-time library, the DSP/BIOS
API for using real-time library services, and easy-to-use tools for configuration and for real-time
tracing and analysis.

1.1 DSP/BIOS Features and Benefits .1-2

1.2 DSP/BIOS Components .1-3

1.2.1 DSP/BIOS Real-Time Library and API .1-3

1.2.2 The DSP/BIOS Configuration Tool. .1-4

1.2.3 The DSP/BIOS plugins. .1-5

1.3 Naming Conventions .1-8

1.3.1 Module Header Names .1-8

1.3.2 Object Names. .1-9

1.3.3 Operation Names .1-9

1.3.4 Data Type Names .1-10

1.3.5 Memory Segment Names. .1-11

1.4 For More Information .1-11

2 Program Generation .2-1

This chapter describes the process of generating programs with DSP/BIOS. It also explains which
files are generated by DSP/BIOS components and how they are used.

2.1 Development Cycle .2-2

2.2 Using the Configuration Tool .2-3

2.2.1 Creating a New Configuration .2-3

2.2.2 Creating a Custom Template .2-3

2.2.3 Setting Global Properties for a Module .2-4

2.2.4 Creating an Object and Specifying its Properties. .2-4

2.2.5 Files Generated by the Configuration Tool. .2-4

2.3 Files Used to Create DSP/BIOS Programs .2-5

2.3.1 Files Used by the DSP/BIOS Plugins. .2-6

2.4 Compiling and Linking Programs .2-7

2.4.1 Building with a Code Composer Project. .2-7

2.4.2 Makefiles .2-9

2.5 DSP/BIOS Startup Sequence. .2-11

viii

 Contents

3 Instrumentation . 3-1

DSP/BIOS provides both explicit and implicit ways to perform real-time program analysis. These
mechanisms are designed to have minimal impact on the application’s real-time performance.

3.1 Real-Time Analysis . 3-2

3.2 Software vs. Hardware Instrumentation . 3-2

3.3 Instrumentation Performance Issues . 3-3

3.4 Instrumentation APIs. 3-4

3.4.1 Explicit vs. Implicit Instrumentation . 3-4

3.4.2 Message Log Manager (LOG Module) . 3-5

3.4.3 Statistics Accumulator Manager (STS Module) . 3-7

3.4.4 Trace Control Manager (TRC Module) . 3-11

3.5 Implicit DSP/BIOS Instrumentation . 3-14

3.5.1 The Execution Graph . 3-14

3.5.2 The CPU Load . 3-15

3.5.3 CPU Load Accuracy . 3-18

3.5.4 Hardware Interrupt Count and Maximum Stack Depth 3-21

3.5.5 Monitoring Variables . 3-22

3.5.6 Interrupt Latency . 3-24

3.6 Instrumentation for Field Testing. 3-24

3.7 Real-Time Data Exchange . 3-25

3.7.1 RTDX Applications . 3-25

3.7.2 RTDX Usage. 3-26

3.7.3 RTDX Flow of Data . 3-26

3.7.4 RTDX Modes . 3-28

3.7.5 Special Considerations When Writing Assembly Code 3-28

3.7.6 Target Buffer Size . 3-29

3.7.7 Sending Data From Target to Host or Host to Target 3-29

4 Program Execution . 4-1

This chapter describes the types of functions that make up a DSP/BIOS application and their be-
havior and priorities during program execution.

4.1 Program Components . 4-2

4.2 Choosing Which Types of Threads to Use . 4-3

4.3 The Idle Loop . 4-5

4.4 Software Interrupts . 4-6

4.4.1 Setting Software Interrupt Priorities in the Configuration Tool 4-6

4.4.2 Execution of Software Interrupts. 4-7

4.4.3 Using an SWI Object’s Mailbox. 4-8

4.5 Hardware Interrupts . 4-14

4.5.1 Writing an HWI Routine . 4-14

4.5.2 Nesting Interrupts . 4-16

4.6 Preemption and Yielding . 4-17

4.6.1 Preventing Preemption by a Higher-Priority Thread 4-19

4.6.2 Saving Registers During Software Interrupt Preemption 4-20

4.6.3 Software Interrupt Priorities and Application Stack Size. 4-20

Contents ix

Contents

4.7 Clock Manager (CLK Module) .4-22

4.7.1 High- and Low-Resolution Clocks .4-22

4.8 Periodic Function Manager (PRD) and the System Clock .4-24

4.8.1 Invoking Functions for PRD Objects .4-25

4.9 Using the Execution Graph to View Program Execution .4-26

4.9.1 States in the Execution Graph Window .4-26

4.9.2 Threads in the Execution Graph Window. .4-26

4.9.3 Sequence Numbers in the Execution Graph Window 4-27

4.9.4 RTA Control Panel Settings for Use with the Execution Graph4-27

4.10 SWI and PRD Accumulators: Real-Time Deadline Headroom.4-29

5 Input/Output .5-1

This chapter discusses data transfer methods.

5.1 Objects Used for I/O .5-2

5.2 Data Pipe Manager (PIP Module). .5-3

5.2.1 Writing Data to a Pipe .5-4

5.2.2 Reading Data from a Pipe .5-5

5.2.3 Using a Pipe's Notify Functions .5-6

5.2.4 Calling Order for PIP APIs .5-7

5.3 Host Input/Output Manager (HST Module). .5-9

5.3.1 Transfer of HST Data to the Host. .5-10

5.4 I/O Performance Issues .5-10

6 API Functions .6-1

This chapter describes the DSP/BIOS API functions, which are alphabetized by name. In addition,
there are reference sections that describe the overall capabilities of each module.

6.1 DSP/BIOS Modules .6-2

6.2 Naming Conventions .6-2

6.3 List of Operations .6-3

6.4 Assembly Language Interface .6-6

7 Utility Programs .7-1

This chapter provides documentation for utilities that can be used to examine various files from
the MS-DOS command line. These programs are provided with DSP/BIOS in the bin subdirectory.

cdbprint utility .7-2

nmti utility .7-3

sectti utility .7-4

vers utility .7-5

1-1

Chapter 1

About DSP/BIOS

DSP/BIOS gives developers of applications for DSP chips the ability to

develop and analyze embedded real-time software. DSP/BIOS includes a

small firmware real-time library, the DSP/BIOS API for using real-time library

services, and easy-to-use tools for configuration and for real-time tracing and

analysis.

1.1 DSP/BIOS Features and Benefits . 1–2

1.2 DSP/BIOS Components . 1–3

1.3 Naming Conventions. 1–8

1.4 For More Information . 1–11

Topic Page

DSP/BIOS Features and Benefits

1-2

1.1 DSP/BIOS Features and Benefits

The DSP/BIOS API and host tools are designed to minimize the memory and

CPU requirements on the target. This design goal was accomplished in the

following ways:

❏ All DSP/BIOS objects are created in the Configuration Tool and bound

into an executable program image. This reduces code size and optimizes

internal data structures.

❏ All formatting of instrumentation data (such as logs and traces) is done

on the host.

❏ The API is modularized, so that only the parts of the API that are used by

the program need to be bound into the executable program.

❏ The API is optimized to require the smallest possible number of

instruction cycles.

❏ Communication between the target and the DSP/BIOS plugins is

performed within the background idle loop. This ensures that the

DSP/BIOS plugins do not interfere with the program’s tasks. If the target

CPU is too busy to perform background tasks, the DSP/BIOS plugins

stop receiving information from the target until the CPU is available.

The DSP/BIOS API standardizes DSP programming for a number of TI chips

and provides easy-to-use, powerful program development and testing tools.

The goal is to reduce the time required to create DSP programs. This goal

was accomplished in the following ways:

❏ The Configuration Tool generates code required to declare objects used

within the program.

❏ The Configuration Tool detects errors earlier by validating object

properties before program execution.

❏ The DSP/BIOS plugins allow real-time monitoring of program behavior.

❏ The DSP/BIOS API is a standard API. This allows DSP algorithm

developers to provide code that can be more easily integrated with other

program functions.

DSP/BIOS Components

About DSP/BIOS 1-3

1.2 DSP/BIOS Components

This figure shows the components of DSP/BIOS within the program

generation and debugging environment of Code Composer:

On the host PC, you write programs that use the DSP/BIOS API (in C or

assembly). The Configuration Tool lets you define objects to be used in your

program. You then compile or assemble and link the program. The DSP/BIOS

plugins let you test the program on the target chip from Code Composer while

monitoring CPU load, timing, logs, thread execution, and more. (Threads is a

general term used to refer to any thread of execution, e.g., a hardware ISR,

a software interrupt, an idle function, or a periodic function.)

The following sections give a brief overview of the DSP/BIOS components.

1.2.1 DSP/BIOS Real-Time Library and API

The small, firmware DSP/BIOS real-time library provides basic run-time

services to embedded programs that run on the target hardware. It includes

operations for capturing information generated by the application in real time,

I/O modules, a software interrupt manager, a clock manager, and more.

The DSP/BIOS API is divided into modules. Depending on what modules are

configured and used by the application, the size of DSP/BIOS ranges from

200 to 2000 words of code.

DSP/BIOS Components

1-4

Application programs use DSP/BIOS by making calls to the API. For C

programs, header files define the API. For applications that need assembly

language optimization, an optimized set of macros is provided. Using C with

DSP/BIOS is optional, as the real-time library itself is written in assembler to

minimize time and space.

1.2.2 The DSP/BIOS Configuration Tool

Using an interface similar to the Windows Explorer, the Configuration Tool

has two roles:

❏ It lets you set a wide range of parameters used by the DSP/BIOS

real-time library at run time.

❏ It serves as a visual editor for creating run-time objects that are used by

the target application’s DSP/BIOS API calls. These objects include

software interrupts, I/O streams, and event logs. You also use this visual

editor to set properties for these objects.

DSP/BIOS Components

About DSP/BIOS 1-5

Unlike systems that create objects at run time with API calls that require extra

target overhead (especially code space), all DSP/BIOS objects are

pre-configured and bound into an executable program image. In addition to

minimizing the target memory footprint by eliminating run-time code and

optimizing internal data structures, this static configuration strategy detects

errors earlier by validating object properties before program execution.

The Configuration Tool generates several files that are linked with the code

you write. See section 2.2.5, Files Generated by the Configuration Tool, page

2-4, for details.

1.2.3 The DSP/BIOS plugins

The DSP/BIOS plugins in Code Composer complement the program

debugging utilities by enabling real-time program analysis of a DSP/BIOS

application. You can visually probe, trace, and monitor a DSP application as

it runs with minimal impact on the application’s real-time performance.

DSP/BIOS Components

1-6

Unlike traditional debugging, which is external to the executing program,

program analysis requires that the target program contain real-time

instrumentation services. By using DSP/BIOS APIs and objects, developers

have automatically instrumented the target for capturing and uploading

real-time information to the host through the DSP/BIOS plugins in Code

Composer.

DSP/BIOS Components

About DSP/BIOS 1-7

Several broad real-time program analysis capabilities are provided:

❏ Program tracing. Displaying events written to target logs, reflecting

dynamic control flow during program execution

❏ Performance monitoring. Tracking summary statistics that reflect use

of target resources, such as processor load and timing

❏ File streaming. Binding target-resident I/O objects to host files

When used in tandem with the other debugging capabilities in Code

Composer, the DSP/BIOS real-time analysis tools provide critical views into

target program behavior in the area where traditional debugging techniques

that stop the target offer little or no insight—during program execution. Even

after the debugger halts the program, information already captured by the

host with the DSP/BIOS plugins can provide insights into the sequence of

events that led up to the current point of execution.

Later in the software development cycle, when regular debugging techniques

become ineffective for attacking problems arising from time-dependent

interactions, the DSP/BIOS plugins have an expanded role as the software

counterpart of the hardware logic analyzer.

Naming Conventions

1-8

1.3 Naming Conventions

Each DSP/BIOS module has a unique 3- or 4-letter name that is used as a

prefix for operations (functions), header files, and objects for the module.

All identifiers beginning with upper-case letters followed by an underscore

(XXX_*) should be treated as reserved words. Identifiers beginning with an

underscore are also reserved for internal system names.

1.3.1 Module Header Names

Each DSP/BIOS module has two header files containing declarations of all

constants, types, and functions made available through that module’s

interface.

❏ module.h. DSP/BIOS API header files for C programs. Your C source

files should include std.h and the header files for any modules the C

functions use.

❏ module.h54. DSP/BIOS API header files for assembly programs.

Assembly source files should include the *.h54 header file for any module

the assembly source uses. This file contains macro definitions specific to

this chip. Data structure definitions shared for all supported chips are

stored in the module.hti files, which are included by the *.h54 header files.

Your program must include the corresponding header for each module used

in a particular program source file. In addition, C source files must include

std.h before any module header files (see section 1.3.4, Data Type Names,

page 1-10, for more information). The std.h file contains definitions for

standard types and constants. Other than including std.h first, you may

include the other header files in any sequence. For example:

#include <std.h>

#include <pip.h>

#include <prd.h>

#include <swi.h>

DSP/BIOS includes a number of modules whose functions are for internal

use. These modules are consequently undocumented and subject to change

at any time. Header files for these internal modules are distributed as part of

DSP/BIOS and must be present on your system when compiling and linking

DSP/BIOS programs.

Naming Conventions

About DSP/BIOS 1-9

1.3.2 Object Names

System objects that are included in the configuration by default typically have

names beginning with a 3- or 4-letter code for the module that defines or uses

the object. For example, the default configuration includes a LOG object

called LOG_system.

Objects you create with the Configuration Tool should use a common naming

convention of your choosing. You might want to use the module name as a

suffix in object names. For example, a SWI object that encodes data might be

called encoderSwi.

1.3.3 Operation Names

The format for a DSP/BIOS API operation name is MOD_action where MOD

is the letter code for the module that contains the operation, and action is the

action performed by the operation. For example, the SWI_post function is

defined by the SWI module; it posts a software interrupt.

This implementation of the DSP/BIOS API also includes several built-in

functions that are run by various built-in objects. Here are some examples:

❏ CLK_F_isr. Run by the HWI_TINT object to provide the low-resolution

CLK tick

❏ PRD_F_tick. Run by the PRD_clock object to provide the system tick

❏ IDL_F_busy. Run by the IDL_cpuLoad object to compute the current

CPU load

❏ RTA_F_dispatch. Run by the RTA_dispatcher object to gather real-time

analysis data

❏ LNK_F_dataPump. Run by the LNK_dataPump object to transfer

real-time analysis and HST channel data to the host

❏ HWI_unused. Not actually a function name. This string is used in the

Configuration Tool to mark unused HWI objects.

Note: Your program code should not call any built-in functions whose

names begin with MOD_F_. These functions are intended to be called only

as function parameters specified within the Configuration Tool.

Operation names beginning with MOD_ and MOD_F_ (where MOD is any

letter code for a DSP/BIOS module) are reserved for internal use.

Naming Conventions

1-10

1.3.4 Data Type Names

The DSP/BIOS API does not explicitly use the fundamental types of C such

as int or char. Instead, to ensure portability to other processors that support

the DSP/BIOS API, DSP/BIOS defines its own standard data types. In most

cases, the standard DSP/BIOS types are simply capitalized versions of the

corresponding C types.

The following types are defined in the std.h header file:

Additional data types are defined in std.h, but are not used by the DSP/BIOS

API.

In addition, the standard constant NULL (0) is used by DSP/BIOS to signify

an empty pointer value. The constants TRUE (1) and FALSE (0) are used for

values of type Bool.

Object structures used by the DSP/BIOS API modules use a naming

convention of MOD_Obj, where MOD is the letter code for the object’s

module. If your program uses any such objects, it should include an extern

declaration for the object. For example:

extern LOG_Obj trace;

Type Description

Arg Type capable of holding both Ptr and Int arguments

Bool Boolean value

Char Character value

Int Signed integer value

LgInt Large signed integer value

LgUns Large unsigned integer value

Ptr Generic pointer value

String Zero-terminated (\0) sequence (array) of characters

Uns Unsigned integer value

Void Empty type

For More Information

About DSP/BIOS 1-11

1.3.5 Memory Segment Names

The memory segment names used by DSP/BIOS are described in the

following table.

You can change the origin, size, and name of the default memory segments

described above using the Configuration Tool.

The Configuration Tool defines standard memory sections and their default

allocations as follows:

You can change these default allocations by using the MEM manager in the

Configuration Tool. See MEM Module, page 6-49, for more details.

1.4 For More Information

For more information about the components of DSP/BIOS and the modules

in the DSP/BIOS API, see the TMS320C54x Code Composer Studio Tutorial.

Memory Segment Description

IDATA Internal (on-chip) data memory

EDATA Primary block of external data memory

EDATA1 Secondary block of external data memory (not contiguous with EDATA)

IPROG Internal (on-chip) program memory

EPROG Primary block of external program memory

EPROG1 Secondary block of external program memory (not contiguous with EPROG)

USERREGS Page 0 user memory (28 words)

BIOSREGS Page 0 reserved registers (4 words)

VECT Interrupt vector segment

Memory Segment Description

IDATA Application Stack Memory

EDATA Application Argument Memory

EDATA Application Constants Memory

IPROG BIOS Program Memory

EDATA BIOS Data Memory

IDATA BIOS Heap Memory

EPROG BIOS Startup Code Memory

2-1

Chapter 2

Program Generation

This chapter describes the process of generating programs with DSP/BIOS.

It also explains which files are generated by DSP/BIOS components and how

they are used.

2.1 Development Cycle . 2–2

2.2 Using the Configuration Tool . 2–3

2.3 Files Used to Create DSP/BIOS Programs . 2–5

2.4 Compiling and Linking Programs . 2–7

2.5 DSP/BIOS Startup Sequence . 2–11

Topic Page

Development Cycle

2-2

2.1 Development Cycle

DSP/BIOS supports iterative program development cycles. You can create

the basic framework for an application and test it with a simulated processing

load before the DSP algorithms are in place. You can easily change the

priorities and types of program components that perform various functions.

A sample DSP/BIOS development cycle would include the following steps,

though iteration could occur for any step or group of steps:

1) Write a framework for your program. You can use C or assembly code.

2) Use the Configuration Tool to create objects for your program to use.

3) Save the configuration file, which generates files to be included when you

compile and link your program.

4) Compile and link the program using a makefile or a Code Composer

project.

5) Test program behavior using a simulator or initial hardware and the

DSP/BIOS plugins. You can monitor logs and traces, statistics objects,

timing, software interrupts, and more.

6) Repeat steps 2-5 until the program runs correctly. You can add

functionality and make changes to the basic program structure.

7) When production hardware is ready, modify the configuration file to

support the production board and test your program on the board.

Using the Configuration Tool

Program Generation 2-3

2.2 Using the Configuration Tool

The Configuration Tool is a visual editor with an interface similar to Windows

Explorer. It allows you to initialize data structures and set various parameters.

When you save a file, the Configuration Tool creates assembly and header

files and a linker command file to match your settings. When you build your

application, these files are linked with your application programs.

2.2.1 Creating a New Configuration

1) Open the Configuration Tool. From Code Composer, open the

Configuration Tool by selecting File→New→DSP/BIOS Config.

2) Select the appropriate template and click OK. Alternatively, you can open

the Configuration Tool outside of Code Composer from the Start menu.

3) From the File menu, select New.

4) Double-click on the configuration template for the board you are using.

2.2.2 Creating a Custom Template

You can add a custom template by creating a configuration file and storing it

in your include folder. This saves time by allowing you to define configuration

settings for your hardware once and then reuse the file as a template.

For example, to build DSP/BIOS programs for the ’C54x fixed point DSP, you

may use settings as provided (for the ’C54x). Or you may instruct the

Configuration Tool to create a new custom template file for projects that

should take advantage of the fixed point run-time library.

To create a custom template, perform the following steps:

1) Invoke the Configuration Tool from outside Code Composer via

Start→Programs→Code Composer Studio ’C54x→Configuration Tool.

2) From the File menu, choose New.

3) In the New window select evm54.cdb and click OK.

4) Right-click on Global Settings and select Properties.

5) Set Target Board Name to evm54.

6) Set DSP Type to 54 and click OK.

7) Select File→Save As. In the Save As dialog box navigate to

ti\c5400\bios\include.

8) In the File Name box type evm54.cdb.

9) In the Save as type box select Seed files (*.cdb) and click Save.

10) In the Set Description Dialog type a description and click OK.

11) From the Configuration Tool's main menu select File→Exit.

Using the Configuration Tool

2-4

2.2.3 Setting Global Properties for a Module

1) When you select a module (by clicking on it), the right side of the window

shows the current properties for the module. (If you see a list of priorities

instead of a property list, right-click on the module and select

Property/value view. If the right side of the window is gray, this module

has no global properties.)

For help about a module, click and then click on the module.

2) Right-click the icon next to the module and select Properties from the

pop-up menu. This opens the property sheet.

3) Change properties as needed. For help on the module’s properties, click

Help in the property sheet.

2.2.4 Creating an Object and Specifying its Properties

1) Right-click on a module and select Insert MOD, where MOD is the name

of the module. This adds a new object for this module. (You cannot create

an object for the GBL, HWI, or RTDX modules.)

2) Rename the object. Right-click on the name and choose Rename from

the pop-up menu.

3) Right-click the icon next to the object and select Properties to open the

property sheet.

Note: When specifying C functions to be run by various objects, add an

underscore before the C function name. For example, type _myfunc to run

a C function called myfunc(). The underscore prefix is necessary because

the Configuration Tool creates assembly source, and C calling conventions

require an underscore before C functions called from assembly.

4) Change property settings and click OK. For help on specific properties,

click Help in any property sheet.

2.2.5 Files Generated by the Configuration Tool

When you save a configuration file for your program with the Configuration

Tool, the following files are created. These files are described in section 2.3,

Files Used to Create DSP/BIOS Programs, page 2-5.

❏ program.cdb
❏ programcfg.h54
❏ programcfg.s54
❏ programcfg.cmd

Files Used to Create DSP/BIOS Programs

Program Generation 2-5

2.3 Files Used to Create DSP/BIOS Programs

This diagram shows the files used to create DSP/BIOS programs. Files you

write are represented with a white background; generated files are

represented with a gray background.

A 54 in the file extension shown above indicates that the chip number

abbreviation is used here. (For ’C54x chips, the abbreviation is 54.)

❏ program.c. C program source file containing the main() function. You

may also have additional .c source files.

❏ *.asm. Optional assembly source file(s). One of these files can contain

an assembly language function called _main as an alternative to using a

C function called main().

❏ module.h. DSP/BIOS API header files for C programs. Your C source

files should include std.h and the header files for any modules the C

program uses.

❏ module.h54. DSP/BIOS API header files for assembly programs.

Assembly source files should include the *.h54 header file for any module

the assembly source uses.

❏ program.obj. Object file(s) compiled or assembled from your source

file(s)

❏ *.obj. Object files for optional assembly source file(s)

program .x54

com pile or
assem ble

assem ble

link

generateinc lude

program .c
program .cm d

program .cdb

program cfg.cm dprogram cfg.s54program cfg.h54

*.o54program .o54 program cfg.o54

*.s54 or *.c
(optiona l)

m odule.h54m odule.h

Files Used to Create DSP/BIOS Programs

2-6

❏ program.cdb. Configuration file, which stores configuration settings.

This file is created by the Configuration Tool and used by both the

Configuration Tool and the DSP/BIOS plugins.

❏ programcfg.h54. Header file generated by the Configuration Tool. This

header file is included by the programcfg.s54 file.

❏ programcfg.s54. Assembly source generated by the Configuration Tool

❏ programcfg.cmd. Linker command file created by the Configuration Tool

and used when linking the executable file. This file defines

DSP/BIOS-specific link options and object names, and generic data

sections for DSP programs (such as .text, .bss, .data, etc.).

❏ programcfg.obj. Object file created from source file generated by the

Configuration Tool.

❏ *.cmd. Optional linker command file(s) that contains additional sections

for your program not defined by the Configuration Tool.

❏ program.out. An executable program for the ’C54x target (fully compiled,

assembled, and linked). You can load and run this program with Code

Composer.

2.3.1 Files Used by the DSP/BIOS Plugins

The following files are used by the DSP/BIOS plugins:

❏ program.cdb. The DSP/BIOS plugins use the configuration file to get

object names and other program information.

❏ program.out. The DSP/BIOS plugins use the executable file to get

symbol addresses and other program information.

Compiling and Linking Programs

Program Generation 2-7

2.4 Compiling and Linking Programs

You can build your DSP/BIOS executables using a Code Composer project

or using your own makefile. Code Composer includes gmake.exe, GNU's

make utility, and sample makefiles for gmake to build the tutorial examples.

2.4.1 Building with a Code Composer Project

When building a DSP/BIOS application using a Code Composer project, you

must add the following files to the project in addition to your own source code

files:

❏ program.cdb (the configuration file)
❏ programcfg.cmd (the linker command file)

Code Composer adds programcfg.s54, the configuration source file,

automatically.

Note that in a DSP/BIOS application, programcfg.cmd is your project's linker

command file. programcfg.cmd already includes directives for the linker to

search the appropriate libraries (e.g., bios.a54, rtdx.lib, rts5401.lib), so you do

not need to add any of these library files to your project.

Code Composer automatically scans all dependencies in your project files,

adding the necessary DSP/BIOS and RTDX header files for your

configuration to your project's include folder.

For details on how to create a Code Composer project and build an

executable from it, refer to the Code Composer Studio User’s Guide or the

TMS320C54x Code Composer Studio Tutorial.

Compiling and Linking Programs

2-8

2.4.1.1 Building with Multiple Linker Command Files

For most DSP/BIOS applications the generated linker command file,

programcfg.cmd, suffices to describe all memory sections and allocations. All

DSP/BIOS memory sections and objects are handled by this linker command

file. In addition, most commonly used sections (such as .text, .bss, .data, etc.)

are already included in programcfg.cmd. Their locations (and sizes, when

appropriate) can be controlled from the MEM manager in the Configuration

Tool.

In some cases the application may require an additional linker command file

(app.cmd) describing application-specific sections that are not described in

the linker command file generated by the Configuration Tool

(programcfg.cmd).

Note: Code Composer allows only one linker command file per project.

When both programcfg.cmd and app.cmd are required by the application,

the project should use app.cmd (rather than programcfg.cmd) as the

project's linker command file. To include programcfg.cmd in the linking

process, you must add the following line to the beginning of app.cmd:

-lprogramcfg.cmd

Note that it is important that this line appear at the beginning, so that

programcfg.cmd is the first linker command file used by the linker.

Compiling and Linking Programs

Program Generation 2-9

2.4.2 Makefiles

As an alternative to building your program as a Code Composer project, you

can use a makefile.

In the following example, the C source code file is volume.c, additional

assembly source is in load.asm, and the configuration file is volume.cdb. This

makefile is for use with gmake, which is included with Code Composer. You

can find documentation for gmake on the product CD in PDF format. Adobe

Acrobat Reader is included. This makefile and the source and configuration

files mentioned are located in the volume2 subdirectory of the tutorial

directory of Code Composer.

A typical makefile for compiling and linking a DSP/BIOS program looks like

the following.

Makefile for creation of program named by the PROG variable

#

The following naming conventions are used by this makefile:

<prog>.asm - C54 assembly language source file

<prog>.obj - C54 object file (compiled/assembled source)

<prog>.out - C54 executable (fully linked program)

<prog>cfg.s54 - configuration assembly source file

generated by Configuration Tool

<prog>cfg.h54 - configuration assembly header file

generated by Configuration Tool

<prog>cfg.cmd - configuration linker command file

generated by Configuration Tool

#

include $(TI_DIR)/c5400/bios/include/c54rules.mak

#

Compiler, assembler, and linker options.

#

-g enable symbolic debugging

CC54OPTS = -g

AS54OPTS =

-q quiet run

LD54OPTS = -q

Every BIOS program must be linked with:

$(PROG)cfg.o54 - object resulting from assembling

$(PROG)cfg.s54

$(PROG)cfg.cmd - linker command file generated by

the Configuration Tool. If additional

linker command files exist,

$(PROG)cfg.cmd must appear first.

#

PROG = volume

OBJS = $(PROG)cfg.obj load.obj

LIBS =

CMDS = $(PROG)cfg.cmd

Compiling and Linking Programs

2-10

#

Targets:

#

all:: $(PROG).out

$(PROG).out: $(OBJS) $(CMDS)

$(PROG)cfg.obj: $(PROG)cfg.h54

$(PROG).obj:

$(PROG)cfg.s54 $(PROG)cfg.h54 $(PROG)cfg.cmd:

 @ echo Error: $@ must be manually regenerated:

 @ echo Open and save $(PROG).cdb within the BIOS

 Configuration Tool.

 @ check $@

.clean clean::

 @ echo removing generated configuration files ...

 @ remove -f $(PROG)cfg.s54 $(PROG)cfg.h54 $(PROG)cfg.cmd

 @ echo removing object files and binaries ...

 @ remove -f *.obj *.out *.lst *.map

You can copy an example makefile to your program folder and modify the

makefile as necessary.

Unlike the Code Composer project, makefiles allow for multiple linker

command files. If the application requires additional linker command files you

can easily add them to the CMDS variable in the example makefile shown

above. However, they must always appear after the programcfg.cmd linker

command file generated by the Configuration Tool.

DSP/BIOS Startup Sequence

Program Generation 2-11

2.5 DSP/BIOS Startup Sequence

When a DSP/BIOS application starts up, the startup sequence is determined

by the instructions in the boot.s54 file. A compiled version of this file is

provided with the bios.a54 library. You should not need to make any changes

to this file; nevertheless, the source file for boot.s54 is provided and

presented here to illustrate the DSP/BIOS startup sequence.

;

; ======== boot.s54 ========

;

 .include bios.h54

 .c_mode

 .mmregs

CONST_COPY .set 0

**

* *

* This module contains the following definitions : *

* *

* __stack - Stack memory area *

* _c_int00 - Boot function *

* _var_init - Function which processes initialization tables *

* *

**

 .ref cinit, pinit

 .global _c_int00

 .global _main, __STACK_SIZE

 ; alternate label for c_int00 -- referenced by HWI_RESET

 ; to pull in BIOS boot code instead of rts.lib

 .global BIOS_reset

**

* Declare the stack. Size is determined by the linker option -stack. The *

* default value is 1K words. *

**

__stack: .usect ".stack",0

args .sect ".args"

**

* FUNCTION DEF : _c_int00 *

* *

* 1) Set up stack *

* 2) Set up proper status *

* 3) If "cinit" is not -1, init global variables *

* 4) call users' program *

* *

**

 .sect ".sysinit"

BIOS_reset:

_c_int00:

 xc 1, unc

 ssbx intm ; set interrupt mask bit

 stm #0, imr ; disable all interrupts

DSP/BIOS Startup Sequence

2-12

**

* INIT STACK POINTER. REMEMBER STACK GROWS FROM HIGH TO LOW ADDRESSES. *

**

 STM #__stack,SP ; set to beginning of stack memory

 ADDM #(__STACK_SIZE-1),*(SP) ; add size to get to top

 ANDM #0fffeh,*(SP) ; make sure it is an even address

 SSBX SXM ; turn on SXM for LD #cinit,A

**

* SET UP REQUIRED VALUES IN STATUS REGISTER *

**

 SSBX CPL ; turn on compiler mode bit

 RSBX OVM ; clear overflow mode bit

**

* SETTING THESE STATUS BITS TO RESET VALUES. IF YOU RUN _c_int00 FROM *

* RESET, YOU CAN REMOVE THIS CODE *

**

 LD #0,ARP

 RSBX C16

 RSBX CMPT

 RSBX FRCT

**

* SETUP PMST - GBL_PMST is defined by DSP/BIOS Configuration Tool

*

* The PMST must be initialized before the .pinit section is processed since

* the RTDX initialization triggers an interrupt (IVTP is in PMST). If

* the Interrupt Vector Table Pointer is not correct, the processor will

* exececute an undefined interrupt vector.

*

**

 .ref GBL_PMST

 stm #GBL_PMST, pmst

**

* IF cinit IS NOT -1, PROCESS INITIALIZATION TABLES *

* TABLES ARE IN PROGRAM MEMORY IN THE FOLLOWING FORMAT: *

* *

* .word <length of init data in words> *

* .word <address of variable to initialize> *

* .word <init data> *

* .word ... *

* *

* The cinit table is terminated with a zero length *

* *

**

 .if __far_mode

 LDX #cinit,16,A

 OR #cinit,A,A

 .else

 LD #cinit,A ; Get pointer to init tables

 .endif

 ADD #1,A,B

 BC DONE_CINIT,BEQ ; if (cinit == -1) no init tables

DSP/BIOS Startup Sequence

Program Generation 2-13

**

* PROCESS INITIALIZATION TABLES. TABLES ARE IN PROGRAM MEMORY IN THE *

* FOLLOWING FORMAT: *

* *

* .word <length of init data in words> *

* .word <address of variable to initialize> *

* .word <init data> *

* .word ... *

* *

* The init table is terminated with a zero length *

* *

**

 BD START_CINIT ; start processing

 RSBX SXM ; do address arithmetic unsignedly

 nop

LOOP_CINIT:

 READA *(AR2) ; AR2 = address

 ADD #1,A ; A += 1

 RPT *(AR1) ; repeat length+1 times

 READA *AR2+ ; copy from table to memory

 ADD *(AR1),A ; A += length (READA doesn't change A)

 ADD #1,A ; A += 1

START_CINIT:

 READA *(AR1) ; AR1 = length

 ADD #1,A ; A += 1

 BANZ LOOP_CINIT,*AR1- ; if (length-- != 0) continue

DONE_CINIT:

DSP/BIOS Startup Sequence

2-14

* IF pinit IS NOT -1, PROCESS INITIALIZATION TABLES *

* TABLES ARE IN PROGRAM MEMORY IN THE FOLLOWING FORMAT: *

* *

* .if __far_mode *

* .long <32-bit address of initialization routine to call> *

* .else *

* .word <16-bit address of initialization routine to call> *

* .endif *

* ... *

* *

* The pinit table is terminated with a NULL pointer *

* *

 SSBX SXM

 FRAME -4

; NOP

 .if __far_mode

 LDX #pinit,16,A

 OR #pinit,A,A ; A = &pinit table

 .else

 LD #pinit,A ; A = &pinit table

 .endif

 ADD #1,A,B ; B = A + 1

 BC DONE_PINIT,BEQ ; if (pinit == -1) no pinit tables

 BD START_PINIT

 DST A, @2 ; save 32-bit PGM pointer on stack

 NOP

LOOP_PINIT:

 .if __far_mode

 FCALA B ; call function

 .else

 CALA B ; call function

 .endif

 DLD @2, A ; put 32-bit PINIT pointer in A

START_PINIT:

 READA @0 ; "push" (MSB) address of function

 .if __far_mode

 ADD #1, A

 READA @1 ; "push" LSB address of function

 .endif

 .if __far_mode

 ADD #1, A

 DST A, @2

 DLD @0, B

 BC LOOP_PINIT,BNEQ

 .else

 LD @0, B ; "pop" address of function

 BCD LOOP_PINIT,BNEQ ; if not NULL, loop.

 ADDM #1,@3 ; move PINIT pointer (in stack)

 .endif

DONE_PINIT:

 RSBX SXM

 FRAME 4

DSP/BIOS Startup Sequence

Program Generation 2-15

**

* COPY .CONST SECTION

**

 .if CONST_COPY

 .if __far_mode ; Use far calls for C548 in far mode

 FCALL _const_init ; move .const section to DATA mem

 .else

 CALL _const_init

 .endif

 .endif

**

* CALL BIOS_init

**

 call BIOS_init ; initialize the BIOS

 ; cpl = 1 when return from BIOS_init

**

* Set up C environment before calling main(argc, argv, envp). *

**

 ld #args,b

 stlm b,ar1

 nop ; these 2 nops are necessary for

 nop ; the latency of "stlm b, ar1"

 ld *ar1+,a ; a = argc

 frame -2

 ld *ar1+,b

 stl b,*sp(0) ; sp(0) = argv

 ld *ar1,b

 stl b,*sp(1) ; sp(1) = envp

**

* CALL main()

**

 .if __far_mode ; Use far calls for C548 in far mode

 FCALL _main ; far call to the user's entry point

 .else

 CALL _main

 .endif

 frame 2

**

* CALL BIOS_start()

**

 call BIOS_start ; 'start' the BIOS

**

* DROP INTO IDL LOOP

**

 rsbx cpl ; cpl = 0 is precond of IDL_loop

 IDL_loop ; fall into BIOS "idle task", never

 ; return

 .if CONST_COPY

DSP/BIOS Startup Sequence

2-16

**

* FUNCTION DEF : __const_init *

* *

* COPY .CONST SECTION FROM PROGRAM TO DATA MEMORY *

* *

* The function depends on the following variables *

* defined in the linker command file *

* *

* __c_load ; global var containing start *

* of .const in program memory *

* __const_run ; global var containing run *

* address in data memory *

* __const_length ; global var length of .const *

* section *

* *

**

 .global __const_length,__c_load

 .global __const_run

_const_init:

 .sect ".c_mark" ; establish LOAD adress of

 .label __c_load ; .const section

 .sect ".sysinit"

**

* C54x VERSION *

**

 LD #__const_length, A

 BC __end_const,AEQ

 STM #__const_run,AR2 ; Load RUN address of .const

 RPT #__const_length-1

 MVPD #__c_load,*AR2+ ; Copy .const from program to data

**

* AT END OF .CONST SECTION RETURN TO CALLER *

**

__end_const:

 .if __far_mode

 .if __no_fret

 FB _freti549

 .else

 FRET

 .endif

 .else

 RET

 .endif

 .endif

 .end

DSP/BIOS Startup Sequence

Program Generation 2-17

The steps followed in the startup sequence are:

1) Initialize the DSP. A DSP/BIOS program starts at the C environment

entry point c_int00. The reset interrupt vector is set up to branch to

c_int00 after reset. At the beginning of c_int00, the software stack pointer

(SP) is set up to point to the end of .stack. Status registers such as st0

and st1 are also initialized. Once the SP is set up, the initialization routine

is called to initialize the variables from the .cinit records.

2) Call BIOS_init to initialize the DSP/BIOS modules. BIOS_init is

generated by the Configuration Tool and is located in the programcfg.s54

file. BIOS_init is responsible for basic module initialization. BIOS_init

invokes the MOD_init macro for each DSP/BIOS module.

■ HWI_init clears the IFR. See Chapter 6, API Functions, for more

information.

■ HST_init initializes the host I/O channel interface. The specifics of

this routine depend on the particular implementation used for the

host to target link.

■ If the Auto calculate idle loop instruction count box was selected in

the Idle Function Manager in the Configuration Tool, IDL_init

calculates the idle loop instruction count at this point in the startup

sequence. The idle loop instruction count is used to calibrate the

CPU load displayed by the CPU Load Graph (see also section 3.5.2,

The CPU Load, page 3-15).

3) Call your program’s main routine. After all DSP/BIOS modules have

completed their initialization procedures, your main routine is called. This

routine can be written in assembly or C. Because the C compiler adds an

underscore prefix to function names, this can be a C function called main

or an assembly function called _main. The boot routine passes three

parameters to main: argc, argv, and envp, which correspond to the C

command line argument count, command line arguments array, and

environment variables array.

Since neither hardware or software interrupts are enabled yet, you can

take care of initialization procedures for your own application (such as

calling your own hardware initialization routines) from the main routine.

DSP/BIOS Startup Sequence

2-18

4) Call BIOS_start to start DSP/BIOS. Like BIOS_init, BIOS_start is also

generated by the Configuration Tool and is located in the programcfg.s54

file. BIOS_start is called after the return from your main routine.

BIOS_start is responsible for enabling the DSP/BIOS modules and

invoking the MOD_startup macro for each DSP/BIOS module. For

example:

■ CLK_startup sets up the PRD register, enables the bit in the IMR for

the timer selected in the CLK manager, and finally starts the timer.

(This macro is only expanded if you enable the CLK manager in the

Configuration Tool.)

■ PIP_startup calls the notifyWriter function for each created pipe

object.

■ SWI_startup enables software interrupts.

■ HWI_startup enables hardware interrupts by clearing the INTM bit in

the st1 register.

5) Drop into the idle loop. By calling IDL_loop the boot routine falls into the

DSP/BIOS idle loop forever. At this point hardware and software

interrupts can occur and preempt idle execution. Since the idle loop

manages communication with the host, data transfer between the host

and the target can now take place.

3-1

Chapter 3

Instrumentation

DSP/BIOS provides both explicit and implicit ways to perform real-time

program analysis. These mechanisms are designed to have minimal impact

on the application’s real-time performance.

3.1 Real-Time Analysis . 3–2

3.2 Software vs. Hardware Instrumentation . 3–2

3.3 Instrumentation Performance Issues . 3–3

3.4 Instrumentation APIs . 3–4

3.5 Implicit DSP/BIOS Instrumentation . 3–14

3.6 Instrumentation for Field Testing. 3–24

3.7 Real-Time Data Exchange. 3–25

Topic Page

Real-Time Analysis

3-2

3.1 Real-Time Analysis

Real-time analysis is the analysis of data acquired during real-time operation

of a system. The intent is to easily determine whether the system is operating

within its design constraints, is meeting its performance targets, and has

room for further development.

The traditional debugging method for sequential software is to execute the

program until an error occurs. You then stop the execution, examine the

program state, insert breakpoints, and reexecute the program to collect

information. This kind of cyclic debugging is effective for non-real-time

sequential software. However, cyclic debugging is rarely as effective in

real-time systems because real-time systems require continuous operation,

nondeterministic execution, and stringent timing constraints.

The DSP/BIOS instrumentation APIs and the DSP/BIOS plugins are

designed to complement cyclic debugging tools to enable you to monitor

real-time systems as they run. This real-time monitoring data lets you view

the real-time system operation so that you can effectively debug and

performance-tune the system.

3.2 Software vs. Hardware Instrumentation

Software monitoring consists of instrumentation code that is part of the target

application. This code is executed at run time, and data about the events of

interest is stored in the target system’s memory. Thus, the instrumentation

code uses both the computing power and memory of the target system.

The advantage of software instrumentation is that it is flexible and that no

additional hardware is required. Unfortunately, because the instrumentation

is part of the target application, performance and program behavior can be

affected. Without using a hardware monitor, you face the problem of finding

a balance between program perturbation and recording sufficient information.

Limited instrumentation provides inadequate detail, but excessive

instrumentation perturbs the measured system to an unacceptable degree.

DSP/BIOS provides a variety of mechanisms that allow you to precisely

control the balance between intrusion and information gathered. In addition,

the DSP/BIOS instrumentation operations all have fixed, short execution

times. Since the overhead time is fixed, the effects of instrumentation are

known in advance and can be factored out of measurements.

Instrumentation Performance Issues

Instrumentation 3-3

3.3 Instrumentation Performance Issues

When all implicit instrumentation is enabled, the CPU load increases less

than 1 percent in a typical application. Several techniques have been used to

minimize the impact of instrumentation on application performance:

❏ Instrumentation communication between the target and the host is

performed in the background (IDL) thread, which has the lowest priority,

so communicating instrumentation data does not affect the real-time

behavior of the application.

❏ From the host you can control the rate at which the host polls the target.

You can stop all host interaction with the target if you want to eliminate all

unnecessary external interaction with the target.

❏ The target does not store Execution Graph or implicit statistics

information unless tracing is enabled. You also have the ability to enable

or disable the explicit instrumentation of the application by using the TRC

module and one of the reserved trace masks (TRC_USER0 and

TRC_USER1).

❏ Log and statistics data are always formatted on the host. The average

value for an STS object and the CPU load are computed on the host.

Computations needed to display the Execution Graph are performed on

the host.

❏ LOG, STS, and TRC module operations are very fast and execute in

constant time, as shown in the following list:
■ LOG_printf and LOG_event: approximately 30 instructions
■ STS_add: approximately 30 instructions
■ STS_delta: approximately 40 instructions
■ TRC_enable and TRC_disable: approximately four instructions

❏ Each STS object uses only eight words of data memory. This means that

the host transfers only eight words to upload data from a statistics object.

❏ Statistics are accumulated in 32-bit variables on the target and in 64-bit

variables on the host. When the host polls the target for real-time

statistics, it resets the variables on the target. This minimizes space

requirements on the target while allowing you to keep statistics for long

test runs.

❏ You can specify the buffer size for LOG objects. The buffer size affects

the program’s data size and the time required to upload log data.

❏ For performance reasons, implicit hardware interrupt monitoring is

disabled by default. When disabled, there is no effect on performance.

When enabled, updating the data in statistics objects consumes between

20 and 30 instructions per interrupt for each interrupt monitored.

Instrumentation APIs

3-4

3.4 Instrumentation APIs

Effective instrumentation requires both operations that gather data and

operations that control the gathering of data in response to program events.

DSP/BIOS provides the following three API modules for data gathering:

❏ LOG (Message Log Manager). Log objects capture information about

events in real time. System events are captured in the system log. You

can create additional logs using the Configuration Tool. Your program can

add messages to any log.

❏ STS (Statistics Manager). Statistics objects capture count, maximum,

and total values for any variables in real time. Statistics about SWI

(software interrupt), PRD (period), HWI (hardware interrupt), and PIP

(pipe) objects can be captured automatically. In addition, your program

can create statistics objects to capture other statistics.

❏ HST (Host Input/Output Manager). The host channel objects described

in Chapter 5, Input/Output, allow a program to send raw data streams to

the host for analysis.

LOG and STS provide an efficient way to capture subsets of a real-time

sequence of events that occur at high frequencies or a statistical summary of

data values that vary rapidly. The rate at which these events occur or values

change may be so high that it is either not possible to transfer the entire

sequence to the host (due to bandwidth limitations) or the overhead of

transferring this sequence to the host would interfere with program operation.

Therefore, DSP/BIOS also provides an API module for controlling the data

gathering mechanisms provided by the other modules:

❏ TRC (Trace Manager). Controls which events and statistics are captured

either in real time by the target program or interactively through the

DSP/BIOS plugins.

Controlling data gathering is important because it allows you to limit the

effects of instrumentation on program behavior, ensure that LOG and STS

objects contain the necessary information, and start or stop recording of

events and data values at run time.

3.4.1 Explicit vs. Implicit Instrumentation

The instrumentation API operations are designed to be called explicitly by the

application. The LOG module operations allow you to explicitly write

messages to any log. The STS module operations allow you to store statistics

about data variables or system performance. The TRC module allows you to

enable or disable log and statistics tracing in response to a program event.

Instrumentation APIs

Instrumentation 3-5

The LOG and STS APIs are also used internally by DSP/BIOS to collect

information about program execution. These internal calls in DSP/BIOS

routines provide implicit instrumentation support. As a result, even

applications that do not contain any explicit calls to the DSP/BIOS

instrumentation APIs can be monitored and analyzed using the DSP/BIOS

plugins. For example, the execution of a software interrupt is recorded in a

LOG object called LOG_system. In addition, worst-case ready-to-completion

times for software interrupts and overall CPU load are accumulated in STS

objects. The occurrence of a system tick can also be recorded in the

Execution Graph. See section 3.4.4.2, Control of Implicit Instrumentation,

page 3-12, for more information about what implicit instrumentation can be

collected.

3.4.2 Message Log Manager (LOG Module)

This module manages LOG objects, which capture events in real time while

the target program executes. You can use the Execution Graph, or create

user-defined logs with the Configuration Tool.

User-defined logs contain any information your program stores in them using

the LOG_event and LOG_printf operations. You can view messages in these

logs in real time with the Message Log.

The Execution Graph can also be viewed as a graph of the activity for each

program component.

A log can be either fixed or circular. This distinction is valuable in applications

that enable and disable logging programmatically (using the TRC module

operations as described in section 3.4.4, Trace Control Manager (TRC
Module), page 3-11).

❏ Fixed. The log stores the first messages it receives and stops accepting

messages when its message buffer is full. As a result, a fixed log stores

the first events that occur since the log was enabled.

❏ Circular. The log automatically overwrites earlier messages when its

buffer is full. As a result, a circular log stores the last events that occur.

Instrumentation APIs

3-6

You create LOG objects using the Configuration Tool, in which you assign

properties such as the length and location of the message buffer.

You can specify the length of each message buffer in words. Individual

messages use four words of storage in the log’s buffer. The first word holds a

sequence number. The remaining three words of the message structure hold

event-dependent codes and data values supplied as parameters to

operations such as LOG_event, which appends new events to a LOG object.

As shown in the following figure, LOG buffers are read from the target and

stored in a much larger buffer on the host. Records are marked empty as they

are copied up to the host.

LOG_printf uses the fourth word of the message structure for the offset or

address of the format string (e.g., %d, %d). The host uses this format string

and the two remaining words to format the data for display. This minimizes

both the time and code space used on the target since the actual printf

operation (and the code to perform the operation) are handled on the host.

LOG_event and LOG_printf both operate on logs atomically. This allows ISRs

and other threads of different priorities to write to the same log without having

to worry about synchronization.

H o stTa rge t

LO G o b jec t

LO G b uffe r

rea d
&

cle ar

Instrumentation APIs

Instrumentation 3-7

Using the RTA Control Panel Property Page for each message log, you can

control how frequently the host polls the target for information on a particular

log. Right-click on the RTA Control Panel and choose the Property Page to

set the refresh rate. If you set the refresh rate to 0, the host does not poll the

target for log information unless you right-click on a log window and choose

Refresh Window from the pop-up menu. You can also use the pop-up menu

to pause and resume polling for log information.

Log messages shown in a message log window are numbered (in the left

column of the trace window) to indicate the order in which the events

occurred. These numbers are an increasing sequence starting at 0. If your log

never fills up, you can use a smaller log size. If a circular log is not long

enough or you do not poll the log often enough, you may miss some log

entries that are overwritten before they are polled. In this case, you see gaps

in the log message numbers. You may want to add an additional sequence

number to the log messages to make it clear whether log entries are being

missed.

The online help in the Configuration Tool describes LOG objects and their

parameters. See LOG Module, page 6–36, for reference information on the

LOG module API calls.

3.4.3 Statistics Accumulator Manager (STS Module)

This module manages objects called statistics accumulators, which store key

statistics while a program runs.

Instrumentation APIs

3-8

You create individual statistics accumulators using the Configuration Tool.

Each STS object accumulates the following statistical information about an

arbitrary 32-bit wide data series:

❏ Count. The number of values in an application-supplied data series

❏ Total. The arithmetic sum of the individual data values in this series

❏ Maximum. The largest value already encountered in this series

❏ Average. Using the count and total, the Statistics View plugin also

calculates the average

Calling the STS_add operation updates the statistics accumulator of the data

series being studied. For example, you might study the pitch and gain in a

software interrupt analysis algorithm or the expected and actual error in a

closed-loop control algorithm.

DSP/BIOS statistics accumulators are also useful for tracking absolute CPU

use of various routines during execution. By bracketing appropriate sections

of the program with the STS_set and STS_delta operations, you can gather

real-time performance statistics about different portions of the application.

You can view these statistics in real time with the Statistics View.

Although statistics are accumulated in 32-bit variables on the target, they are

accumulated in 64-bit variables on the host. When the host polls the target for

real-time statistics, it resets the variables on the target. This minimizes space

requirements on the target while allowing you to keep statistics for long test

runs. The Statistics View may optionally filter the data arithmetically before

displaying it.

Ta rge t H o st

rea d
&

cle ar

Accum ula te F ilte r = (A *x + B) / C D isp la y

C o unt

(A x to ta l + B) / C

(A x m ax + B) / C

C o unt

T o ta l

M a xim um

C o unt

T o ta l

0 M a x

32

Previo us

C o unt

T o ta l

M a x

Averag e(A x to ta l + B) /
(C x co unt)

64

Instrumentation APIs

Instrumentation 3-9

By clearing the values on the target, the host allows the values displayed to

be much larger without risking lost data due to values on the target wrapping

around to 0. If polling of STS data is disabled or very infrequent there is a

possibility that the STS data wraps around, resulting in incorrect information.

While the host clears the values on the target automatically, you can clear the

64-bit accumulators stored on the host by right-clicking on the STS Data

window and choosing Clear from the shortcut menu.

The host read and clear operations are performed atomically to allow any

thread to update any STS object reliably. For example, an HWI function can

call STS_add on an STS object and no data is missing from any STS fields.

This instrumentation process provides minimal intrusion into the target

program. A call to STS_add requires approximately 20 instructions and an

STS object uses only eight words of data memory. Data filtering, formatting,

and computation of the average is done on the host.

You can control the polling rate for statistics information with the Statistics

View Property Page. If you set the polling rate to 0, the host does not poll the

target for information about the STS objects unless you right-click on the

Statistics View window and choose Refresh Window from the pop-up menu.

3.4.3.1 Statistics About Varying Values

STS objects can be used to accumulate statistical information about a time

series of 32-bit data values.

For example, let Pi be the pitch detected by an algorithm on the ith frame of

audio data. An STS object can store summary information about the time

series {Pi}. The following code fragment includes the current pitch value in the

series of values tracked by the STS object:

pitch = `do pitch detection`

STS_add(&stsObj, pitch);

The Statistics View displays the number of values in the series, the maximum

value, the total of all values in the series, and the average value.

Instrumentation APIs

3-10

3.4.3.2 Statistics About Time Periods

In any real-time system, there are important time periods. Since a period is

the difference between successive time values, STS provides explicit support

for these measurements.

For example, let Ti be the time taken by an algorithm to process the ith frame

of data. An STS object can store summary information about the time series

{Ti}. The following code fragment illustrates the use of CLK_gethtime

(high-resolution time), STS_set, and STS_delta to track statistical information

about the time required to perform an algorithm:

STS_set(&stsObj, CLK_gethtime());

`do algorithm`

STS_delta(&stsObj, CLK_gethtime());

STS_set saves the value of CLK_gethtime as the previous value in the STS

object. STS_delta subtracts this saved value from the value it is passed. The

result is the difference between the time recorded before the algorithm

started and after it was completed; i.e., the time it took to execute the

algorithm (Ti). STS_delta then invokes STS_add and passes this result as the

new value to be tracked.

The host can display the count of times the algorithm was performed, the

maximum time to perform the algorithm, the total time performing the

algorithm, and the average time.

The previous field is the fourth component of an STS object. It is provided to

support statistical analysis of a data series that consist of value differences,

rather than absolute values.

3.4.3.3 Statistics About Value Differences

Both STS_set and STS_delta update the previous field in an STS object.

Depending on the call sequence, you can measure specific value differences

or the value difference since the last STS update. The following example

gathers information about a difference between specific values.

 STS_set(&sts, targetValue);

 "processing"

 STS_delta(&sts, currentValue);

 "processing"

 STS_delta(&sts, currentValue);

 "processing"

 STS_delta(&sts, currentValue);

Instrumentation APIs

Instrumentation 3-11

The next example gathers information about a value’s difference from a base

value.

 STS_set(&sts, baseValue);

 "processing"

 STS_delta(&sts, currentValue);

 STS_set(&sts, baseValue);

 "processing"

 STS_delta(&sts, currentValue);

The online help in the Configuration Tool describes statistics accumulators

and their parameters. See STS Module, page 6–88, for reference information

on the STS module API calls.

3.4.4 Trace Control Manager (TRC Module)

The TRC module allows an application to enable and disable the acquisition

of analysis data in real time. For example, the target can use the TRC module

to stop or start the acquisition of data when it discovers an anomaly in the

application’s behavior.

Control of data gathering is important because it allows you to limit the effects

of instrumentation on program behavior, ensure that LOG and STS objects

contain the necessary information, and start or stop recording of events and

data values at run time.

For example, by enabling instrumentation when an event occurs, you can use

a fixed log to store the first n events after you enable the log. By disabling

tracing when an event occurs, you can use a circular log to store the last n

events before you disable the log.

3.4.4.1 Control of Explicit Instrumentation

You can use the TRC module to control explicit instrumentation as shown in

this code fragment:

if (TRC_query(TRC_USER0) == 0) {

`LOG or STS operation`

}

Note: TRC_query returns 0 if all trace types in the mask passed to it are

enabled, and is not 0 if any trace types in the mask are disabled.

The overhead of this code fragment is just a few instruction cycles if the tested

bit is not set. If an application can afford the extra program size required for

the test and associated instrumentation calls, it is very practical to keep this

code in the production application simplifying the development process and

enabling field diagnostics. This is, in fact, the model used within DSP/BIOS

itself.

Instrumentation APIs

3-12

3.4.4.2 Control of Implicit Instrumentation

The TRC module manages a set of trace bits that control the real-time

capture of implicit instrumentation data through logs and statistics

accumulators. For greater efficiency, the target does not store log or statistics

information unless tracing is enabled. (You do not need to enable tracing for

messages explicitly written with LOG_printf or LOG_event and statistics

added with STS_add or STS_delta.)

The trace bits allow the target application to control when to start and stop

gathering system information. This can be important when trying to capture

information about a specific event or combination of events.

DSP/BIOS defines the following constants for referencing specific trace bits:

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Logs low-resolution clock interrupts off

TRC_LOGPRD Logs system ticks and start of periodic functions off

TRC_LOGSWI Logs posting, start, and completion of software interrupt functions off

TRC_STSHWI Gathers statistics on monitored register values within HWIs off

TRC_STSPIP Counts the number of frames read from or written to data pipe off

TRC_STSPRD
Gathers statistics on the number of ticks elapsed during execution of peri-

odic functions
off

TRC_STSSWI
Gathers statistics on number of instruction cycles or time elapsed from post

to completion of software interrupt
off

TRC_USER0
and

TRC_USER1

Enables or disables sets of explicit instrumentation actions. You can use

TRC_query to check the settings of these bits and either perform or omit

instrumentation calls based on the result. DSP/BIOS does not use or set

these bits.

off

TRC_GBLHOST

Simultaneously starts or stops gathering all enabled types of tracing. This bit

must be set in order for any implicit instrumentation to be performed. This

can be important if you are trying to correlate events of different types. This

bit is usually set at run time on the host with the RTA Control Panel.

off

TRC_GBLTARG
This bit must also be set in order for any implicit instrumentation to be per-

formed. This bit can only be set by the target program and is enabled by

default.

on

Instrumentation APIs

Instrumentation 3-13

You can enable and disable these trace bits in the following ways:

❏ From the host, use the RTA Control

Panel. This window allows you to

adjust the balance between infor-

mation gathering and time intrusion

at run time. By disabling various im-

plicit instrumentation types, you

lose information but reduce over-

head of processing.

You can control the refresh rate for

trace state information by

right-clicking on the Property Page

of the RTA Control Panel. If you set

the refresh rate to 0, the host does

not poll the target for trace state

information unless you right-click on the RTA Control Panel and choose

Refresh Window from the pop-up menu.

❏ From the target code, enable and disable trace bits using the

TRC_enable and TRC_disable operations, respectively. For example, the

following C code would disable tracing of log information for software

interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);

For example, in an overnight run you might be looking for a specific

circumstance. When it occurs, your program can perform the following

statement to turn off all tracing so that the current instrumentation

information is preserved:

TRC_disable(TRC_GBLTARG);

Any changes made by the target program to the trace bits are reflected in the

RTA Control Panel. For example, you could cause the target program to

disable the tracing of information when an event occurs. On the host, you can

simply wait for the global target enable check box to be cleared and then

examine the log.

Implicit DSP/BIOS Instrumentation

3-14

3.5 Implicit DSP/BIOS Instrumentation

The instrumentation needed to allow the DSP/BIOS plugins to display the

Execution Graph, system statistics, and CPU load are all automatically built

into a DSP/BIOS program to provide implicit instrumentation. You can enable

different components of DSP/BIOS implicit instrumentation by using the RTA

Control Panel plugin in Code Composer, as described in section 3.4.4.2,

Control of Implicit Instrumentation, page 3-12.

DSP/BIOS instrumentation is efficient—when all implicit instrumentation is

enabled, the CPU load increases less than one percent for a typical

application. See section 3.3, Instrumentation Performance Issues, page 3-3,

for details about instrumentation performance.

3.5.1 The Execution Graph

The Execution Graph is a special log used to store information about SWI,

PRD, and CLK processing. You can enable or disable logging for each of

these object types at run time using the TRC module API or the RTA Control

Panel in the host. The Execution Graph window in the host shows the

Execution Graph information as a graph of the activity of each object.

CLK and PRD events are shown to provide a measure of time intervals within

the Execution Graph. Rather than timestamping each log event, which is

expensive (because of the time required to get the timestamp and the extra

log space required), the Execution Graph simply records CLK events along

with other system events.

In addition to SWI, PRD, and CLK events, the Execution Graph shows

additional information in the graphical display. Errors are indications that

either a real-time deadline has been missed or an invalid state has been

detected (either because the system log has been corrupted or the target has

performed an illegal operation).

Implicit DSP/BIOS Instrumentation

Instrumentation 3-15

See section 4.9, Using the Execution Graph to View Program Execution,

page 4-26, for details on how to interpret the Execution Graph information in

relation to DSP/BIOS program execution.

3.5.2 The CPU Load

The CPU load is defined as the percentage of instruction cycles that the CPU

spends doing application work; i.e., the percentage of the total time that the

CPU is:

❏ Running ISRs, software interrupts, or periodic functions
❏ Performing I/O with the host
❏ Running any user routine

When the CPU is not doing any of

these, it is considered idle, even if the

CPU is not in a power-save or

hardware-idle mode.

All CPU activity is divided into work

time and idle time. To measure the

CPU load over a time interval T, you

need to know how much time during

that interval was spent doing

application work (tw) and how much of it was idle time (ti). From this you can

calculate the CPU load as follows:

Since the CPU is always either doing work or in idle it is represented as

follows:

You can rewrite this equation:

You can also express CPU load using instruction cycles rather than time

intervals:

In a DSP/BIOS application, the CPU is doing work when hardware interrupts

are serviced, software interrupts and periodic functions are run, user

functions are executed from the idle loop, HST channels are transferring data

to the host, or real-time analysis information is being uploaded to the

DSP/BIOS plugins. When the CPU is not performing any of those activities, it

is going through the idle loop, executing the IDL_cpuLoad function, and

CPUload
tw
T
----- 100×=

T tw ti+=

CPUload
tw

tw ti+
-------------- 100×=

CPUload
cw

cw ci+
----------------- 100×=

Implicit DSP/BIOS Instrumentation

3-16

calling the other DSP/BIOS IDL objects. In other words, the CPU idle time in

a DSP/BIOS application is the time that the CPU spends doing the following

routine.

To measure the CPU load in a DSP/BIOS application over a time interval T, it

is sufficient to know how much time was spent going through the loop, shown

in the IDL_loop example below, and how much time was spent doing

application work; i.e., doing any other activity not included in the example:

Idle_loop:

 Perform IDL_cpuLoad

 Perform all other IDL functions (these return without doing

 work)

 Goto IDL_loop

Over a period of time T, a CPU with M MIPS (million instructions per second)

executes M x T instruction cycles. Of those instruction cycles, cw are spent

doing application work. The rest are spent executing the idle loop shown

above. If the number of instruction cycles required to execute this loop once

is l1, the total number of instruction cycles spent executing the loop is N x l1
where N is the number of times the loop is repeated over the period T. Hence

you have total instruction cycles equals work instruction cycles plus idle

instruction cycles.

From this expression you can rewrite cw as:

Using previous equations, you can calculate the CPU load in a DSP/BIOS

application as:

To calculate the CPU load you need to know l1 and the value of N for a chosen

time interval T, over which the CPU load is being measured.

The IDL_cpuLoad object in the DSP/BIOS idle loop updates an STS object,

IDL_busyObj, that keeps track of the number of times the IDL_loop runs, and

the time as kept by the DSP/BIOS low-resolution clock (see section 4.7, Clock
Manager (CLK Module), page 4-22). This information is used by the host to

calculate the CPU load according to the equation above.

The host uploads the STS objects from the target at time intervals that you

determine (the time interval between updates of the IDL_cpuLoad STS

object, set in its Property Page). The information contained in IDL_busyObj is

used to calculate the CPU load over the period of time between two uploads

of IDL_busyObj. The IDL_busyObj count provides a measure of N (the

MT cw Nl1+=

cw MT Nl1–=

CPUload
cw

MT
--------- 100×

MT NI1–

MT
------------------------ 100× 1

NI1
MT
---------–

 100×= = =

Implicit DSP/BIOS Instrumentation

Instrumentation 3-17

number of times the idle loop ran). The IDL_busyObj maximum is not used in

CPU load calculation. The IDL_busyObj total provides the value T in units of

the low-resolution clock.

To calculate the CPU load you still need to know l1 (the number of instruction

cycles spent in the idle loop). When the Auto calculate idle loop instruction

count box is checked in the Idle Function Manager in the Configuration Tool,

DSP/BIOS calculates l1 at initialization from BIOS_init.

The host uses the values described for N, T, l1, and the CPU MIPS to

calculate the CPU load as follows:

Since the CPU load is calculated over the STS polling rate period, the value

displayed is the average CPU load during that time. As the polling period

increases, it becomes more likely that short spikes in the CPU load are not

shown on the graph.

Considering the definition of idle time and work time used to calculate the

CPU load, it follows that a DSP/BIOS application that performs only the loop

shown in the previous IDL_loop example displays 0% CPU load. Since each

IDL function runs once in every idle loop cycle, adding IDL objects to such an

application dramatically increases the measure of CPU load. For example,

adding an IDL function that consumes as many cycles as the rest of the

components in the IDL_loop example results in a CPU load display of 50%.

This increase in the CPU load is real, since the time spent executing the new

IDL user function is, by definition, work time. However, this increase in CPU

load does not affect the availability of the CPU to higher priority threads such

as software or hardware interrupts.

In some cases you may want to consider one or more user IDL routines as

CPU idle time, rather than CPU work time. This changes the CPU idle time to

the time the CPU spends doing the following routine:

Idle_loop:

 Perform IDL_cpuLoad

 Perform user IDL function(s)

 Perform all other IDL functions

 Goto IDL_loop

The CPU load can now be calculated in the same way as previously

described. However, what is considered idle time has now changed, and you

need a new instruction cycle count for the idle loop described above. This

new value must be provided to the host so that it can calculate the CPU load.

To do this, enter the new cycle count in the Idle Function Manager Properties

in the Configuration Tool. The IDL_loop cycle count can be calculated using

the Code Composer Profiler to benchmark one pass through the IDL_loop

when there is no host I/O or real-time analysis information transfer to the host,

CPUload 1
Nl1
MT
---------– 100=

Implicit DSP/BIOS Instrumentation

3-18

and the only routines executed are the IDL_cpuLoad function and any other

user functions you want to include as idle time. (See the TMS320C54x Code
Composer Studio Tutorial manual for a description on how to use the Profiler.)

3.5.3 CPU Load Accuracy

The accuracy of the CPU load value measured as described above is affected

by the accuracy in the measurements of T, N, and l1.

❏ To measure T you use the low resolution clock, so you can only know T

with the accuracy of the resolution of this clock. If the measured time is T

ticks, but the real time elapsed is ticks + ε, with 0 < ε < 1, the error

introduced is as follows:

Error = | actual load – measured load |

Since (N x l1)/(M x T) can be 1 at the most (when the CPU load is 0), the

error is bounded:

 0 < ε < 1

In a typical application, the CPU load is measured at time intervals on the

order of 1 second. The timer interrupt, which gives the resolution of the

tick used to measure T, is triggered at time intervals on the order of 1

millisecond. Hence T is 1000 in low-resolution ticks. This results in a

bounded error of less than 0.1% for the CPU load.

1
Nl1

M T ε+()----------------------–

= 1
Nl1
MT
---------–

–

Nl1
M

1

T

1

T ε+
------------–

=

Nl1
MT
---------=

ε
T ε+
------------×

Error
ε

T ε+
------------≤

Error
1

T
---<

Implicit DSP/BIOS Instrumentation

Instrumentation 3-19

❏ To obtain a measurement of N, the host uses the integer value provided

by the accumulated count in the IDL_busyObj STS object. However, the

value of N could be overestimated or underestimated by as much as 1.

The error introduced by this is:

 Error = | actual load – measured load |

 0 < ε < 1

For a measurement period on the order of 1 second and a typical idle

loop cycle count on the order of 200 instruction cycles, the additional

error due to the approximation of N is far below the 0.1% error due to the

resolution in the measure of T.

❏ Finally, there may also be an error in the calculation of l1, the idle cycle

instruction count, that affects the CPU load accuracy. This error depends

on how l1 is measured. When l1 is autocalculated, BIOS_init uses the

on-chip timer with CLKSRC = CPU/4 and the timer counter register value

to estimate the idle loop instruction cycles count. Since the timer counter

register increases at a rate of CPU/4 (one increase for every four CPU

cycles), the resolution that can be achieved when measuring instruction

cycles by reading the timer counter is worse than a single instruction

cycle. This causes an uncertainty in the value estimated for l1 that

introduces a corresponding error in the value of the CPU load. This error

is:

 ∆I1 = error in the measured value of l1

1
Nl1
MT
---------–

= 1

N(ε) l1+

MT
-----------------------–

–

N ε N–+()
l1

MT

=

ε l1×
MT

-------------=

K
l1

MT
---------<

Error ∆I1
N

MT

=

Implicit DSP/BIOS Instrumentation

3-20

This error is the greatest when N is large; i.e., for CPU loads close to 0%.

For this value, the error equals ∆l1/l1; i.e., the maximum error in the CPU

load calculation equals the percentage that ∆I1 represents in total idle

cycle count l1. ∆l1 is six instruction cycles when BIOS_init auto-calculates

l1 using the on-chip timer counter. Hence, the maximum CPU load error

for a typical application with l1 = 200 instruction cycles is 2.8% for a CPU

load of 0.1%, and it decreases to less than 0.1% error for a CPU load of

99%, as shown in the following table.

The host calculates all the error components for each CPU load reported and

displays the total accuracy for the CPU load value currently reported in the

CPU load display. However, when you enter a value for l1 manually, the last

component of the error (due to l1) is not added to the total error displayed.

CPU Load CPU Load Error due to ∆I1

99% <0.1%

80% 0.6%

75% 0.7%

50% 1.4%

25% 2.1%

10% 2.5%

1% 2.8%

0.1% 2.8%

Implicit DSP/BIOS Instrumentation

Instrumentation 3-21

3.5.4 Hardware Interrupt Count and Maximum Stack Depth

You can track the number of times an individual HWI function has been

triggered by using the Configuration Tool to set the monitor parameter for an

HWI object to monitor the stack pointer. An STS object is automatically

created for each hardware ISR that is monitored.

For hardware interrupts that are not monitored, there is no overhead—control

passes directly to the HWI function. For interrupts that are monitored, control

first passes to a stub function generated by the Configuration Tool. This

function reads the selected data location, passes the value to the selected

STS operation, and finally branches to the HWI function.

The enable HWI accumulators check box in the RTA Control Panel must be

selected in order for HWI function monitoring to take place. If this type of

tracing is not enabled, the stub function branches to the HWI function without

updating the STS object.

The number of times an interrupt is triggered is recorded in the Count field of

the STS object. When the stack pointer is monitored, the maximum value

reflects the maximum position of the top of the application stack when the

interrupt occurs; this can be useful for determining the application stack size

needed by an application. To determine the maximum depth of the stack,

follow these steps:

1) Using the Configuration Tool right-click on the HWI object and select

Properties, and change the monitor field to Stack Pointer. Leave the

default setting of unsigned for true and STS_add(-*addr) for operation.

2) Link your program and use the nmti program described in Chapter 7,

Utility Programs, page 7–3, to find the address of the base of the

application stack. Or, you can find the address of the base of the

application stack in Code Composer by using a Memory window or the

map file to find the address referenced by the GBL_stackbeg symbol.

(The GBL_stackend symbol references the top of the stack.)

3) Run your program and view the STS object that monitors the stack

pointer for this HWI function in the Statistics View window.

IVT

00 : br isr0

02 : br isr1

2n : br isrn

isr0

isr1

isrn

IVT

00 : br isr0

02 : br stub1

2n : br isrn

isr0

stub1

isrn

isr1

Default Configuration Monitoring isr1

Implicit DSP/BIOS Instrumentation

3-22

4) Subtract the address of the base of the application stack from the

maximum value of the stack pointer to find the maximum depth of the

stack.Subtract the minimum value of the stack pointer (maximum field in

the STS object) from the end of the application stack to find the maximum

depth of the stack.

3.5.5 Monitoring Variables

In addition to counting hardware interrupt occurrences and monitoring the

stack pointer, you can monitor any register or data value each time a

hardware interrupt is triggered.

This implicit instrumentation can be enabled for any HWI object. Such

monitoring is not enabled by default; the performance of your interrupt

processing is not affected unless you enable this type of instrumentation in

the Configuration Tool. The statistics object is updated each time hardware

interrupt processing begins. Updating such a statistics object consumes

between 20 and 30 instructions per interrupt for each interrupt monitored.

To enable implicit HWI instrumentation:

1) Open the properties window for any HWI object and choose a register to

monitor in the monitor field.

You can monitor any of the following values. When you choose a register

or data value to monitor, the Configuration Tool automatically creates an

STS object which stores statistics for any one of these values:

Data Value

(type in addr field)

Stack Pointer

Top of SW Stack

ag

ah

al

ar0

ar1

ar2

ar3

ar4

ar5

ar6

ar7

bg

bh

bk

bl

brc

ifr

imr

pmst

rea

rsa

st0

st1

treg

tim

trn

Implicit DSP/BIOS Instrumentation

Instrumentation 3-23

2) Set the operation parameter to the STS operation you want to perform on

this value.

You can perform one of the following operations on the value stored in the

data value or register you select. For all these operations, the count

stores a count of the number of times this hardware interrupt has been

executed. The max and total values are stored in the STS object on the

target. The average is computed on the host.

3) You may also set the properties of the corresponding STS object to filter

the values of this STS object on the host.

For example, you might want to watch the top of the software stack to see

whether the application is exceeding the allocated stack size. The top of the

software stack is initialized to 0xBEEF when the program is loaded. If this

value ever changes, the application has either exceeded the allocated stack

or some error has caused the application to overwrite the application’s stack.

STS Operation Result

STS_add(*addr) Stores maximum and total for the data value or register value

STS_delta(*addr)
Compares the data value or register value to the prev property of the STS object

(or a value set consistently with STS_set) and stores the maximum and total differ-

ences.

STS_add(-*addr)
Negates the data value or register value and stores the maximum and total. As a

result, the value stored as the maximum is the negated minimum value. The total

and average are the negated total and average values.

STS_delta(-*addr)

Negates the data value or register value and compares the data value or register

value to the prev property of the STS object (or a value set programmatically with

STS_set). Stores the maximum and total differences. As a result, the value stored

as the maximum is the negated minimum difference.

STS_add(|*addr|)
Takes the absolute value of the data value or register value and stores the maximum

and total. As a result, the value stored as the maximum is the largest negative or

positive value. The average is the average absolute value.

STS_delta(|*addr|)

Compares the absolute value of the register or data value to the prev property of the

STS object (or a value set programmatically with STS_set). Stores the maximum

and total differences. As a result, the value stored as the maximum is the largest

negative or positive difference and the average is the average variation from the

specified value.

Instrumentation for Field Testing

3-24

One way to watch for this condition is to follow these steps:

1) In the Configuration Tool, enable implicit instrumentation on any regularly

occurring HWI function. Right-click on the HWI object, select Properties,

and change the monitor field to Top of SW Stack with STS_delta(*addr)

as the operation.

2) Set the prev property of the corresponding STS object to 0xBEEF.

3) Load your program in Code Composer and use the Statistics View to view

the STS object that monitors the stack pointer for this HWI function.

4) Run your program. Any change to the value at the top of the stack is seen

as a non-zero total (or maximum) in the corresponding STS object.

3.5.6 Interrupt Latency

Interrupt latency is the maximum time between the triggering of an interrupt

and when the first instruction of the ISR executes. You can measure interrupt

latency for the timer interrupt by following these steps:

1) Configure the HWI_TINT object to monitor the tim register.

2) Set the operation parameter to STS_add(-*addr).

3) Set the host operation parameter of the HWI_TINT_STS object to A*x +

B. Set A to 1 and B to the value of the PRD Register (shown in the global

CLK properties list).

The STS object HWI_TINT_STS then displays the maximum time (in

instruction cycles) between when the timer interrupt was triggered and when

the Timer Counter Register was able to be read. This is the interrupt latency

experienced by the timer interrupt. The interrupt latency in the system is at

least as large as this value. You can follow the same steps with a different HWI

object to measure interrupt latency for the corresponding interrupt.

3.6 Instrumentation for Field Testing

The embedded DSP/BIOS run-time library and DSP/BIOS plugins support a

new generation of testing and diagnostic tools that interact with programs

running on production systems. Since DSP/BIOS instrumentation is so

efficient, your production program can retain explicit instrumentation for use

with manufacturing test and field diagnostic tools, which can be designed to

interact with both implicit and explicit instrumentation.

Real-Time Data Exchange

Instrumentation 3-25

3.7 Real-Time Data Exchange

Real-Time Data Exchange (RTDX) provides real-time, continuous visibility

into the way DSP applications operate in the real world. RTDX allows system

developers to transfer data between a host computer and DSP devices

without interfering with the target application. The data can be analyzed and

visualized on the host using any OLE automation client. This shortens

development time by giving you a realistic representation of the way your

system actually operates.

RTDX consists of both target and host components. A small RTDX software

library runs on the target DSP. The DSP application makes function calls to

this library’s API in order to pass data to or from it. This library makes use of

a scan-based emulator to move data to or from the host platform via a JTAG

interface. Data transfer to the host occurs in real time while the DSP

application is running.

On the host platform, an RTDX host library operates in conjunction with Code

Composer Studio. Displays and analysis tools communicate with RTDX via

an easy-to-use COM API to obtain the target data and/or to send data to the

DSP application. Designers may use their choice of standard software display

packages, including:

❏ National Instruments' LabVIEW
❏ Quinn-Curtis' Real-Time Graphics Tools
❏ Microsoft Excel

Alternatively, you can develop your own Visual Basic or Visual C++

applications. Instead of focusing on obtaining the data, you can concentrate

on designing the display to visualize the data in the most meaningful way.

3.7.1 RTDX Applications

RTDX is well suited for a variety of control, servo, and audio applications. For

example, wireless telecommunications manufacturers can capture the

outputs of their vocoder algorithms to check the implementations of speech

applications.

Embedded control systems also benefit from RTDX. Hard disk drive

designers can test their applications without crashing the drive with improper

signals to the servo-motor. Engine control designers can analyze changing

factors (like heat and environmental conditions) while the control application

is running.

For all of these applications, you can select visualization tools that display

information in a way that is most meaningful to you. Future TI DSPs will

enable RTDX bandwidth increases, providing greater system visibility to an

even larger number of applications.

Real-Time Data Exchange

3-26

3.7.2 RTDX Usage

RTDX can be used within DSP/BIOS or, alternatively, without DSP/BIOS. The

examples presented throughout the online help are written without

DSP/BIOS.

RTDX is available with the PC-hosted Code Composer running Windows 95,

Windows 98, or Windows NT version 4.0. RTDX is not currently available with

the Code Composer Simulator.

This document assumes that the reader is familiar with C, Visual Basic or

Visual C++, and OLE/ActiveX programming.

3.7.3 RTDX Flow of Data

Code Composer controls the flow of data between the host (PC) and the

target (TI processor).

3.7.3.1 Target to Host Data Flow

To record data on the target, you must declare an output channel and write

data to it using routines defined in the user interface. This data is immediately

recorded into an RTDX target buffer defined in the RTDX target library. The

data in the buffer is then sent to the host via the JTAG interface.

The RTDX host library receives this data from the JTAG interface and records

it. The host records the data into either a memory buffer or to an RTDX log

file (depending on the RTDX host recording mode specified).

H ost T arget

JTA G
in te rfaceO LE

autom ation
clien t

(op tiona l)
log file

R TD X T arge t
L ibra ry

T arget D SP
app lica tion

C ode
C om poserO LE

in te rface U ser in te rface
R TD X host

lib ra ry

Real-Time Data Exchange

Instrumentation 3-27

The recorded data can be retrieved by any host application that is an OLE

automation client. Some typical examples of OLE-capable host applications

are:

❏ Visual Basic applications
❏ Visual C++ applications
❏ Lab View
❏ Microsoft Excel

Typically, an RTDX OLE automation client is a display that allows you to

visualize the data in a meaningful way.

3.7.3.2 Host to Target Data Flow

For the target to receive data from the host, you must first declare an input

channel and request data from it using routines defined in the user interface.

The request for data is recorded into the RTDX target buffer and sent to the

host via the JTAG interface.

An OLE automation client can send data to the target using the OLE

Interface. All data to be sent to the target is written to a memory buffer within

the RTDX host library. When the RTDX host library receives a read request

from the target application, the data in the host buffer is sent to the target via

the JTAG interface. The data is written to the requested location on the target

in real time. The host notifies the RTDX target library when the operation is

complete.

3.7.3.3 RTDX Target Library User Interface

The user interface provides the safest method of exchanging data between a

target application and the RTDX host library.

The data types and functions defined in the user interface:

❏ Enable a target application to send data to the RTDX host library

❏ Enable a target application to request data from the RTDX host library

❏ Provide data buffering on the target. A copy of your data is stored in a

target buffer prior to being sent to the host. This action helps ensure the

integrity of the data and minimizes real-time interference.

❏ Provide interrupt safety. You can call the routines defined in the user

interface from within interrupt handlers.

❏ Ensures correct utilization of the communication mechanism. It is a

requirement that only one datum at a time can be exchanged between the

host and target using the JTAG interface. The routines defined in the user

interface handle the timing of calls into the lower-level interfaces.

Real-Time Data Exchange

3-28

3.7.3.4 RTDX Host OLE Interface

The OLE interface describes the methods that enable an OLE automation

client to communicate with the RTDX host library.

The functions defined in the OLE interface:

❏ Enable an OLE automation client to access the data that was recorded in

an RTDX log file or is being buffered by the RTDX Host Library

❏ Enable an OLE automation client to send data to the target via the RTDX

host library

3.7.4 RTDX Modes

The RTDX host library provides the following modes of receiving data from a

target application.

❏ Noncontinuous. In noncontinuous mode, data is written to a log file on

the host.

Noncontinuous mode should be used when you want to capture a finite

amount of data and record it in a log file.

❏ Continuous. In continuous mode, the data is simply buffered by the

RTDX host library; it is not written to a log file.

Continuous mode should be used when you want to continuously obtain

and display the data from a DSP application, and you don't need to store

the data in a log file.

Note: To drain the buffer(s) and allow data to continuously flow up from the

target, the OLE automation client must read from each target output

channel on a continual basis. Failure to comply with this constraint may

cause data flow from the target to cease, thus reducing the data rate, and

possibly resulting in channels being unable to obtain data. In addition, the

OLE automation client should open all target output channels on startup to

avoid data loss to any of the channels.

3.7.5 Special Considerations When Writing Assembly Code

The RTDX functionality in the user library interface can be accessed by a

target application written in assembly code.

See the Texas Instruments C compiler documentation for information about

the C calling conventions, run-time environment, and runtime-support

functions.

Real-Time Data Exchange

Instrumentation 3-29

3.7.6 Target Buffer Size

The RTDX target buffer is used to temporarily store data that is waiting to be

transferred to the host. You may want to reduce the size of the buffer if you

are transferring only a small amount of data or you may need to increase the

size of the buffer if you are transferring blocks of data larger than the default

buffer size.

Using the Configuration Tool you can change the RTDX buffer size by

right-clicking on the RTDX module and selecting Properties.

3.7.7 Sending Data From Target to Host or Host to Target

The user library interface provides the data types and functions for:

❏ Sending data from the target to the host
❏ Sending data from the host to the target

The following data types and functions are defined in the header file rtdx.h.

They are available via DSP/BIOS or standalone.

❏ Declaration Macros

■ RTDX_CreateInputChannel
■ RTDX_CreateOutputChannel

❏ Functions

■ RTDX_channelBusy
■ RTDX_disableInput
■ RTDX_disableOutput
■ RTDX_enableOutput
■ RTDX_enableInput
■ RTDX_read
■ RTDX_readNB
■ RTDX_sizeofInput
■ RTDX_write

❏ Macros

■ RTDX_isInputEnabled
■ RTDX_isOutputEnabled

See Chapter 6, API Functions, for detailed descriptions of all RTDX

functions.

4-1

Chapter 4

Program Execution

This chapter describes the types of functions that make up a DSP/BIOS

application and their behavior and priorities during program execution.

4.1 Program Components. 4–2

4.2 Choosing Which Types of Threads to Use . 4–3

4.3 The Idle Loop . 4–5

4.4 Software Interrupts . 4–6

4.5 Hardware Interrupts . 4–14

4.6 Preemption and Yielding . 4–17

4.7 Clock Manager (CLK Module). 4–22

4.8 Periodic Function Manager (PRD) and the System Clock 4–24

4.9 Using the Execution Graph to View Program Execution. 4–26

4.10 SWI and PRD Accumulators: Real-Time Deadline Headroom. . . . 4–29

Topic Page

Program Components

4-2

4.1 Program Components

There are three major types of threads in a DSP/BIOS program:

❏ Background thread. Has the lowest priority in a DSP/BIOS application

and executes the idle loop (IDL). After main() returns, a DSP/BIOS

application calls the startup routine for each DSP/BIOS module and then

falls into the idle loop. The idle loop is a continuous loop that calls all

functions for the objects in the IDL module. Each function must wait for all

others to finish executing before it is called again. The idle loop runs

continuously except when it is preempted by higher-priority threads. Only

functions that do not have hard deadlines should be executed in the idle

loop.

❏ Software interrupts (SWIs). Patterned after hardware ISRs. While ISRs

are triggered by a hardware interrupt, software interrupts are triggered by

calling SWI functions from the program. Software interrupts provide

additional priority levels between hardware interrupts and the

background thread. SWIs handle tasks subject to time constraints that

preclude them from being run from the idle loop, but whose deadlines are

not as severe as those of hardware ISRs. Software interrupts should be

used to schedule events with deadlines of 100 microseconds or more.

SWIs allow HWIs to defer less critical processing to a lower-priority

thread, minimizing the time the CPU spends inside an ISR, where other

HWIs may be disabled.

❏ Hardware interrupts (HWIs). Triggered in response to external

asynchronous events that occur in the DSP environment. An HWI

function (also called an interrupt service routine or ISR) is executed after

a hardware interrupt is triggered, to perform a critical task that is subject

to a hard deadline. HWI functions are the threads with the highest priority

in a DSP/BIOS application. HWIs should be used for application tasks

that may need to run at frequencies approaching 200 kHz, and that need

to be completed within deadlines of 2 to 100 microseconds.

There are several other kinds of functions that can be performed in a

DSP/BIOS program:

❏ Clock (CLK) functions. Triggered regularly at the rate of the on-chip

timer interrupt. By default, these functions are triggered by the HWI_TINT

hardware interrupt and are performed as HWI functions.

❏ Periodic (PRD) functions. Performed based on a multiple of either the

on-chip timer interrupt or some other regular occurrence. Periodic

functions are a special type of software interrupt.

❏ Data notification functions. Performed when you use pipes (PIP) or

host channels (HST) to transfer data. The functions are triggered when a

frame of data is read or written to notify the writer or reader that a frame

is free or data is available. These functions are performed as part of the

context of the function that called PIP_alloc, PIP_get, PIP_free, or

PIP_put.

Choosing Which Types of Threads to Use

Program Execution 4-3

4.2 Choosing Which Types of Threads to Use

The type of thread and the priority level that you choose for each routine in an

application program has an impact on whether the program tasks are

scheduled on time and executed correctly. The Configuration Tool makes it

easy to change a routine from one thread type to another.

Here are some rules for deciding which type of object to use for each task to

be performed by a program:

❏ HWI. Perform only critical

processing within a hardware

interrupt service routine. Your HWI

function should post a software

interrupt to perform any

lower-priority processing. If this

lower-priority processing is still

high-priority, give the software

interrupt a high priority relative to

other software interrupts. This

allows other hardware interrupts

to occur. HWIs can run at

frequencies approaching 200 kHz.

❏ SWI. Use software interrupts to

schedule events with deadlines of

100 microseconds or more. Using

an SWI thread instead of an HWI thread in this case minimizes the length

of time interrupts are disabled (interrupt latency). HWIs may defer

less-critical processing to an SWI.

❏ IDL. Create background functions to perform noncritical housekeeping

tasks when no other processing is necessary. IDL functions do not

typically have hard deadlines; instead they run whenever the system has

unused processor time.

❏ CLK. Use CLK functions when you want a function to be triggered directly

by a timer interrupt. These functions are run as HWI functions and should

take minimal processing time. The default CLK object, PRD_clock,

causes a tick for the periodic functions. You can add additional CLK

objects to be run at the same rate. However, you should minimize the time

required to perform all CLK functions because they all run as HWI

functions.

❏ PRD. Use PRD functions when you want a function to run at a rate based

on a multiple of either the on-chip timer’s low-resolution rate or by some

event (such as an external interrupt). These functions run as SWI

functions.

H ardw are
in te rrup ts

(H W I)

Softw are
in te rrup ts

(SW I)

Background
threads

(ID L)

>=2
m icroseconds

Deadline

no dead line

>=100
m icroseconds

Choosing Which Types of Threads to Use

4-4

❏ PRD vs. SWI. All PRD functions are run at the same SWI priority, so one

PRD function cannot preempt another. However, PRD functions can post

lower-priority software interrupts to take care of lengthy processing

routines. This ensures that the PRD_swi software interrupt can preempt

those routines when the next system tick occurs and PRD_swi is posted

again.

All DSP/BIOS threads run to completion. While some threads may be

preempted, they cannot be suspended to wait for another event. Therefore,

all input needed by a thread’s function should be ready when the program

posts the thread. The flexible mailbox structure used by SWI functions

provides an efficient way to determine when a software interrupt is ready to

run.

The Idle Loop

Program Execution 4-5

4.3 The Idle Loop

The idle loop is the background thread of DSP/BIOS, which runs continuously

when no hardware interrupt service routines or software interrupts are

running. Any hardware or software interrupt can preempt the idle loop at any

point.

The IDL manager in the Configuration Tool allows you to insert functions that

execute within the idle loop. The idle loop runs the IDL functions that you

configured with the Configuration Tool. IDL_loop() calls the functions

associated with each one of the IDL objects one at a time, and then starts

over again in a continuous loop. The functions are called in the same order in

which they were created in the Configuration Tool. Therefore, an IDL function

must run to completion before the next IDL function can start running. When

the last idle function has completed, the idle loop starts the first IDL function

again. Idle loop functions are often used to poll non-real-time devices that do

not (or cannot) generate interrupts, monitor system status, or perform other

background activities.

The idle loop is the thread with lowest priority in a DSP/BIOS application. The

idle loop functions run only when no other hardware or software interrupts

need to run. Communication between the target and the DSP/BIOS plugins

is performed within the background idle loop. This ensures that the DSP/BIOS

plugins do not interfere with the program's tasks. If the target CPU is too busy

to perform background tasks, the DSP/BIOS plugins stop receiving

information from the target until the CPU is available.

By default, there are three DSP/BIOS IDL objects in the idle loop:

❏ LNK_dataPump manages transfer of real-time analysis data (e.g., LOG

and STS data), and HST channel data between the target DSP and the

host. Different variants of LNK_dataPump support different target/host

links; e.g., JTAG (via RTDX), shared memory, etc.

❏ RTA_dispatcher is a real-time analysis server on the target that accepts

commands from DSP/BIOS plugins, gathers instrumentation information

from the target, and uploads it at run time. RTA_dispatcher sits at the end

of two dedicated HST channels; its commands/responses are routed

from/to the host via LNK_dataPump.

❏ IDL_cpuLoad uses an STS object (IDL_busyObj) to calculate the target

load. The contents of this object are uploaded to the DSP/BIOS plugins

through RTA_dispatcher to display the CPU load.

Software Interrupts

4-6

4.4 Software Interrupts

Software interrupts are patterned after hardware interrupt service routines.

Software interrupts are triggered programmatically, through a call to a

DSP/BIOS API such as SWI_post. Software interrupts provide a range of

threads that have intermediate priority between HWI functions and the

background idle loop.

These threads are suitable to handle application tasks that recur with slower

rates or are subject to less severe real-time deadlines than those of hardware

interrupts.

The DSP/BIOS APIs that can trigger or post a software interrupt are:

❏ SWI_andn
❏ SWI_dec
❏ SWI_inc
❏ SWI_or
❏ SWI_post

The SWI manager controls the execution of all software interrupts. When one

of the APIs above is called by the application code, the SWI manager

schedules the function corresponding to the software interrupt for execution.

To handle all software interrupts in an application, the SWI manager uses

SWI objects. To add a new software interrupt to an application, create a new

SWI object from the SWI manager in the Configuration Tool. From the

Property Page of each SWI object, you can set the function associated with

each software interrupt that runs when the corresponding SWI object is

triggered by the application. The Configuration Tool also allows you to enter

two arguments for each SWI function. From the Property Page of the SWI

manager, you can determine from which memory segment SWI objects are

allocated. SWI objects are accessed by the SWI manager when software

interrupts are posted and scheduled for execution.

The online help in the Configuration Tool describes SWI objects and their

parameters. See SWI Module, page 6–99, for reference information on the

SWI module API calls.

4.4.1 Setting Software Interrupt Priorities in the Configuration Tool

There are different priority levels among software interrupts. You can create

as many software interrupts as your memory constraints allow for each

priority level. You can choose a higher priority for a software interrupt that

handles a thread with a shorter real-time deadline, and a lower priority for a

software interrupt that handles a thread with a less critical execution deadline.

Software Interrupts

Program Execution 4-7

Notes

❏ You can create up to 15 priority levels. See section 4.6.3, Software
Interrupt Priorities and Application Stack Size, page 4-20, for stack size

restrictions.

❏ You cannot sort software interrupts within a single priority level.

❏ Priority levels automatically disappear if you drag all the software

interrupts out of a priority level.

❏ The Property window for an SWI object shows its numeric priority level

(from 1 to 15; 15 is the highest level). You cannot set a numeric priority in

this window.

To set software interrupt priorities with the Configuration Tool, follow these

steps:

1) In the Configuration Tool, highlight the Software

Interrupt Manager.

Notice the SWI objects in the right half of the

window. If you have not added priority levels, all

SWI objects have the same priority level. (If you

do not see a list of SWI objects in the right half of

the window, choose View→Ordered collection

view.)

2) To add a priority level, drag a software interrupt to

the bottom or top of the list or between two

existing priority levels.

3) Drag the highest priority software interrupts up to the highest numbered

level. Drag any lower priority software interrupts down to a lower

numbered level.

4) Continue adding levels and sorting software interrupts.

4.4.2 Execution of Software Interrupts

Software interrupts can be scheduled for execution with a call to SWI_andn,

SWI_dec, SWI_inc, SWI_or, and SWI_post. These calls can be used virtually

anywhere in the program—interrupt service routines, periodic functions, idle

functions, or other software interrupt functions.

When an SWI object is posted, the SWI manager adds it to a list of posted

software interrupts that are pending execution. Then the SWI manager

checks whether software interrupts are currently enabled. If they are not, as

is the case inside an HWI function, the SWI manager returns control to the

current thread.

Software Interrupts

4-8

If software interrupts are enabled, the SWI manager checks the priority of the

posted SWI object against the priority of the thread that is currently running.

If the thread currently running is the background idle loop or a lower priority

SWI, the SWI manager removes the SWI from the list of posted SWI objects

and switches the CPU control from the current thread to start execution of the

posted SWI function.

If the thread currently running is an SWI of the same or higher priority, the

SWI manager returns control to the current thread, and the posted SWI

function runs after all other SWIs of higher priority or the same priority that

were previously posted finish execution.

Note: When an SWI starts executing it must run to completion without

blocking.

SWI functions can be preempted by threads of higher priority (such as an

HWI or an SWI of higher priority). However, SWI functions cannot block. You

cannot suspend a software interrupt while it waits for something—like a

device—to be ready.

If an SWI is posted multiple times before the SWI manager has removed it

from the posted SWI list, its SWI function executes only once, much like an

ISR is executed only once if the hardware interrupt is triggered multiple times

before the CPU clears the corresponding interrupt flag bit in the interrupt flag

register. (See section 4.4.3, Using an SWI Object’s Mailbox, page 4-8, for

more information on how to handle SWIs that are posted multiple times before

they are scheduled for execution.)

4.4.3 Using an SWI Object’s Mailbox

Each SWI object has a 32-bit mailbox, which is used either to determine

whether to post the software interrupt or as a value that can be evaluated

within the SWI function.

SWI_post, SWI_or, and SWI_inc post an SWI object unconditionally:

❏ SWI_post does not modify the value of the SWI object mailbox when it is

used to post a software interrupt.

❏ SWI_or sets the bits in the mailbox determined by a mask that is passed

as a parameter, and then posts the software interrupt.

❏ SWI_inc increases the SWI's mailbox value by one before posting the

SWI object.

Software Interrupts

Program Execution 4-9

SWI_andn and SWI_dec post the SWI object only if the value of its mailbox

becomes 0:

❏ SWI_andn clears the bits in the mailbox determined by a mask passed

as a parameter.

❏ SWI_dec decreases the value of the mailbox by one.

The following table summarizes the differences between these functions:

The SWI mailbox allows you to have a tighter control over the conditions that

should cause an SWI function to be posted or the number of times the SWI

function should be executed once the software interrupt is posted and

scheduled for execution.

To access the value of its mailbox, an SWI function can call SWI_getmbox.

SWI_getmbox can be called only from the SWI's object function. The value

returned by SWI_getmbox is the value of the mailbox before the SWI object

was removed from the posted SWI queue and the SWI function was

scheduled for execution. When the SWI manager removes a pending SWI

object from the posted objects queue, its mailbox is reset to its initial value.

The initial value of the mailbox is set from the Property Page when the SWI

object is created with the Configuration Tool. If while the SWI function is

executing it is posted again, its mailbox is updated accordingly. However, this

does not affect the value returned by SWI_getmbox while the SWI functions

execute. That is, the mailbox value that SWI_getmbox returns is the latched

mailbox value when the software interrupt was removed from the list of

pending SWIs. The SWI's mailbox however, is immediately reset after the

SWI is removed from the list of pending SWIs and scheduled for execution.

This gives the application the ability to keep updating the value of the SWI

mailbox if a new posting occurs, even if the SWI function has not finished its

execution.

For example, if an SWI object is posted multiple times before it is removed

from the queue of posted SWIs, the SWI manager schedules its function to

execute only once. However, if an SWI function must always run multiple

times when the SWI object is posted multiple times, SWI_inc should be used

to post the SWI. When an SWI has been posted using SWI_inc, once the SWI

Trea t m a ilbox

as b itm ask

Trea t m a ilbox

as coun te r

A lw ays post

P ost if
becom es 0

S W I_or

S W I_andn S W I_dec

S W I_ inc

D oes no t m od ify

m a ilbox

S W I_post

Software Interrupts

4-10

manager calls the corresponding SWI function for execution, the SWI function

can access the SWI object mailbox to know how many times it was posted

before it was scheduled to run, and proceed to execute the same routine as

many times as the value of the mailbox.

Figure 4–1 Using SWI_inc to Post an SWI

† myswiFxn()

 { . . .

 repetitions = SWI_getmbox();

 while (repetitions --){

 ‘run SWI routine‘

 }

 . . .

 }

P rogram co n fig u ra tion

SW I ob jec t m ysw i Fun ction m ysw iF xn()

P rogram

execu tio n · C a lls S W I_ inc(&m ysw i)
· m ysw i is posted

· C a lls SW I_ inc (&m ysw i)
· m ysw i is posted a ga in
 b e fo re it is schedu led
 fo r execu tion

· S W I m an age r rem ove s
 m ysw i fro m th e po ste d
 S W I q ueu e
· m ysw iFxn () is
 sched u le d fo r exe cu tion

· m ysw iFxn () s ta rts
 e xecu tion †

M ailb ox

va lue

V a lue re tu rn ed by

S W I_ ge tm b ox

0

1

2

0 2

0 2

· m ysw iFxn () is
 p reem pte d by ISR tha t
 ca lls SW I_ inc (&m ysw i)
· m ysw i is adde d to the
 p oste d SW I q ueu e

· m ysw iFxn () con tin ues
 e xecu tion

1 2

1 2

Software Interrupts

Program Execution 4-11

If more than one event must always happen for a given software interrupt to

be triggered, SWI_andn should be used to post the corresponding SWI

object. For example, if a software interrupt must wait for input data from two

different devices before it can proceed, its mailbox should have two set bits

when the SWI object was created with the Configuration Tool. When both

routines that provide input data have completed their tasks, they should both

call SWI_andn with complementary bitmasks that clear each of the bits set in

the SWI mailbox default value. Hence, the software interrupt is posted only

when data from both processes is ready.

Figure 4–2 Using SWI_andn to Post an SWI

P rogram co n fig u ra tion

SW I ob jec t m ysw i Fun ction m ysw iF xn()

P rogram

execu tio n · C a lls
 SW I_a ndn (&m ysw i, 0x1)
· m ysw i is no t po ste d

· C a lls
 S W I_ and n(&m ysw i, 0 x2)
· m ysw i is posted

· S W I m an age r rem ove s
 m ysw i fro m th e po ste d
 S W I q ueu e
· m ysw iFxn () is sch edu led
 fo r execu tion

· m ysw iFxn () s ta rts
 e xecu tion

M ailb ox

va lue

V a lue re tu rn ed by

S W I_ ge tm b ox

0 ... 1 1 ...

0 ... 1 0

0 ... 0 0

0 ... 1 1

0 ... 1 1

...

...

0 ... 0 0

0 ... 0 0

Software Interrupts

4-12

In some situations the SWI function may call different routines depending on

the event that posted it. In that case the program can use SWI_or to post the

SWI object unconditionally when an event happens. The value of the bitmask

used by SWI_or encodes the event type that triggered the post operation, and

can be used by the SWI function as a flag that identifies the event and serves

to choose the routine to execute

Figure 4–3 Using SWI_or to Post an SWI.

† myswiFxn()

 {

 ...

 eventType = SWI_getmbox();

 switch (eventType) {

 case '0x1':

 'run processing algorithm 1'

 case '0x2':

 'run processing algorithm 2'

 case '0x4':

 'run processing algorithm 3'

 ...

 }

 ...

 }

P rogram co n fig u ra tion

SW I ob jec t m ysw i Fun ction m ysw iF xn()

P rogram

execu tio n · C a lls
 S W I_ or(& m ysw i, 0x1)
· m ysw i is po sted

· m ysw iFxn () is exe cu te d †

· C a lls
 S W I_ or(& m ysw i, 0x2)
· m ysw i is posted

· m ysw iFxn () is exe cu te d †

M ailb ox

va lue

V a lue re tu rn ed by

S W I_ ge tm b ox

0 ... 0 0 ...

0 ... 0 1

0 ... 0 0

0 ... 1 0

0 ... 0 0

...

0 ... 0 1

...

0 ... 1 0

Software Interrupts

Program Execution 4-13

If the program execution requires that multiple occurrences of the same event

must take place before an SWI is posted, SWI_dec should be used to post

the SWI. By configuring the SWI mailbox to be equal to the number of

occurrences of the event before the SWI should be posted and calling

SWI_dec every time the event occurs, the SWI is posted only after its mailbox

reaches 0; i.e., after the event has occurred a number of times equal to the

mailbox value.

Figure 4–4 Using SWI_dec to Post an SWI

P rogram co n fig u ra tion

SW I ob jec t m ysw i Fun ction m ysw iF xn()

P rogram

execu tio n · C a lls SW I_dec(&m ysw i)
· m ysw i is no t po ste d

· C a lls SW I_de c(&m ysw i)
· m ysw i is posted

· S W I m an age r rem ove s
 m ysw i fro m th e po ste d
 S W I q ueu e
· m ysw iFxn () is sch edu led
 fo r execu tion

· m ysw iFxn () s ta rts
 e xecu tion

M ailb ox

va lue

V a lue re tu rn ed by

S W I_ ge tm b ox

2

1

0

2 0

2 0

Hardware Interrupts

4-14

4.5 Hardware Interrupts

Hardware interrupts handle critical processing that the application must

perform in response to external asynchronous events. The DSP/BIOS HWI

module is used to manage hardware interrupts. Using the HWI manager in

the Configuration Tool, you can configure the ISR for each hardware interrupt

in the DSP. The HWI manager contains an HWI object for each hardware

interrupt in your DSP. All HWI objects are listed in the Configuration Tool in

order of priority, from the highest to the lowest priority interrupt.

You need to enter only the name of the ISR that is called in response to a

hardware interrupt in the Property Page of the corresponding HWI object in

the Configuration Tool. DSP/BIOS takes care of setting up the interrupt vector

table so that each hardware interrupt is handled by the appropriate ISR. The

Configuration Tool also allows you to select the memory segment where the

interrupt vector table is located.

The online help in the Configuration Tool describes HWI objects and their

parameters. See HWI Module, page 6–22, for reference information on the

HWI module API calls.

4.5.1 Writing an HWI Routine

When a hardware interrupt preempts the function that is currently executing,

the HWI function must save and restore any registers it uses or modifies. This

gives the function that resumes running when the HWI function completes the

same context it had when it was preempted.

HWI functions are usually written in assembly language for efficiency.

DSP/BIOS provides two assembly macros to be used as preamble and

postamble to an ISR: HWI_enter and HWI_exit. HWI_enter saves the register

context for a DSP/BIOS ISR. HWI_exit restores the register context for a

DSP/BIOS ISR. Both macros use the input parameter MASK, which specifies

the set of registers that must be saved and restored.

If you want to write your ISR in C, you need to write a minimal assembly

routine to call HWI_enter and HWI_exit to save the required registers around

the call to your C function. You must save all registers that might be used in

C before calling a C function from assembly. You can use HWI_enter with the

C54_ABTEMPS mask to save these registers. This mask and others are

defined in the c54.h54 file, which is in the bios\include folder provided with

Code Composer.

Hardware Interrupts

Program Execution 4-15

;

; ======== _DSS_isr ========

;

; Calls the C ISR code after setting cpl

; and saving C54_CNOTPRESERVED

;

_DSS_isr:

 HWI_enter C54_CNOTPRESERVED, 0fff7h

 ; cpl = 0

 ; dp = GBL_A_SYSPAGE

 ; We need to set cpl bit when going to C

 ssbx cpl

 nop ; cpl latency

 nop ; cpl latency

 call _DSS_cisr

 rsbx cpl ; HWI_exit precondition

 nop ; cpl latency

 nop ; cpl latency

 ld #GBL_A_SYSPAGE, dp

 HWI_exit C54_CNOTPRESERVED, 0fff7h

The HWI_enter and HWI_exit macros also ensure that no software interrupts

preempt the ISR, even if they are posted from the HWI function. Hence, within

an HWI function, the HWI_enter macro must be called previous to any

DSP/BIOS API call that could post or affect a software interrupt. HWI_enter

guarantees that any software interrupt posted during the execution of an ISR

does not run until the HWI function calls the HWI_exit macro. The DSP/BIOS

API calls that require an HWI function to use HWI_enter and HWI_exit are:

❏ SWI_andn
❏ SWI_dec
❏ SWI_inc
❏ SWI_or
❏ SWI_post
❏ PRD_tick

If your ISR is written in C and calls any of the functions listed above, you must

write a minimal assembly routine to call HWI_enter and HWI_exit around the

calls to your C function.

Note that if an HWI function calls any of the PIP APIs—PIP_alloc, PIP_free,

PIP_get, PIP_put—the pipe's notifyWriter or notifyReader functions run as

part of the HWI context. Any HWI function must use HWI_enter if it indirectly

runs a function containing any of the SWI or PRD calls listed above. Also, any

registers that the notification functions might change should also be saved

and restored with HWI_enter and HWI_exit.

HWI_enter and HWI_exit macros must coordinate the disabling and enabling

of the SWI manager to ensure that software interrupts do not run until the HWI

function has completed execution.

Hardware Interrupts

4-16

4.5.2 Nesting Interrupts

When an interrupt is triggered, the processor disables interrupts globally (by

setting the INTM bit in the status register ST1) and then jumps to the ISR set

up in the interrupt vector table. The HWI_enter macro reenables interrupts by

clearing the INTM bit in the ST1 register. Before doing so, HWI_enter

selectively disables some interrupts by clearing the appropriate bits in the

interrupt mask register (IMR). The bits that are cleared in the IMR are

determined by the IMRDISABLEMASK input parameter passed to the

HWI_enter macro. Hence, HWI_enter gives you control to select what

interrupts can and cannot preempt the current HWI function.

When HWI_exit is called, you can also provide an IMRRESTOREMASK

parameter. The bit pattern in the IMRRESTOREMASK determines what

interrupts are restored by HWI_exit, by setting the corresponding bits in the

IMR. Of the interrupts in IMRRESTOREMASK, HWI_exit restores only those

that were disabled with HWI_enter. If upon exiting the ISR you do not wish to

restore one of the interrupts that was disabled with HWI_enter, do not set that

interrupt bit in IMRRESTOREMASK in HWI_exit. HWI_exit does not affect the

status of interrupt bits that are not in IMRRESTOREMASK.

Preemption and Yielding

Program Execution 4-17

4.6 Preemption and Yielding

Within DSP/BIOS, hardware interrupts have the highest priority. Software

interrupts have lower priority than hardware interrupts. The background idle

loop is the thread with the lowest priority of all.

Figure 4–5 Thread Priorities

C lo ck
fu n ction s

(C L K)

H ardw are
in te rrup ts

(H W I)

P erio d ic
fu n ction s

(P R D)

Softw are
in te rrup ts

(SW I)

Background
threads

(ID L)

P
ri
o
ri
ty

Preemption and Yielding

4-18

This figure shows what happens when one type of thread is running (left

column) and another thread is posted (top row). When a software interrupt or

background thread is running, the results depend on whether or not hardware

interrupts or software interrupts have been disabled. (The action indicated in

the boxes is that of the posted thread.)

Figure 4–6 Thread Preemption

B
a
c
k
g
ro

u
n

d
S

o
ftw

a
re

 in
te

rru
p

t - - SW Is d isab led

-- SW Is en ab led

-- H W Is d isab led

P = P ree m p ts
W = W aits
-- = N o such ob jec t o f th is p rio rity

W

P

W

P

P

P

P

W

P

W

W

W

W

W

-- SW Is en ab led

-- H W Is d isab led W

P

P

P

P

P

P

W-- SW Is d isab led

--

--

--

--

--

S
W

I
(lo

w
er

 p
ri
or

ity
)

S
W

I
(h

ig
he

r

pr
io

ri
ty

)T hre ad
ru nn in g

T hre ad
p os ted

H ard w a re in te rru p t

-- H W Is en ab led

-- H W Is en ab led
H

W
I

(a
n
y

p
rio

rit
y)

Preemption and Yielding

Program Execution 4-19

The figure below shows the thread of execution for a scenario in which SWIs

and HWIs are enabled (the default), and a hardware interrupt routine posts a

software interrupt whose priority is higher than that of the software interrupt

running when the interrupt occurs. Also, a higher priority hardware interrupt

occurs while the first ISR is running. The second ISR is held off because the

first ISR masks off (i.e., disables) the higher priority interrupt during the first

ISR.

Figure 4–7 Preemption Scenario

The low priority software interrupt is asynchronously preempted by the

hardware interrupts. The first ISR posts a higher priority software interrupt,

which is executed after both hardware interrupt routines finish executing.

4.6.1 Preventing Preemption by a Higher-Priority Thread

Within an idle loop function or a software interrupt function, you can

temporarily prevent preemption by a higher priority software interrupt by

calling SWI_disable, which disables all SWI preemption. To reenable SWI

preemption you must call SWI_enable.

Calls to SWI_disable can be nested. When a series of SWI_disable calls

occur contiguously, the same number of SWI_enable calls must occur before

SWI preemption is enabled again.

Th rea d
prio rity

Ba ckgroun d

 S oftw a re in te rrup t B
(S W I B)

 S o ftw a re in te ru p t A
(S W I A)

H a rdw are in te rrup t
2

(H W I 2)

T im e

B
a
ck

gr
ou

n
d

po
st

s

 S

W
I
B

H
W

I
2

oc
cu

rs
H

W
I
2

po
st

s
S

W
I
A

H
W

I
2

fin
is

he
s

S
W

I
A

 f
in

is
he

s
S

W
I
B

 f
in

is
he

s

H a rdw are in te rrup t
1

(H W I 1)

E ven ts

H
W

I
1

oc
cu

rs

H
W

I
1

fin
is

he
s

Preemption and Yielding

4-20

You can also protect any thread from being preempted by a hardware

interrupt. By calling HWI_disable, interrupts are globally disabled in your

application. HWI_disable sets the INTM bit in the ST1 register, preventing the

CPU from taking any maskable hardware interrupt. To reenable interrupts,

call HWI_enable. HWI_enable clears the INTM bit in the ST1 register.

4.6.2 Saving Registers During Software Interrupt Preemption

When a software interrupt preempts another software interrupt or the

background idle loop, DSP/BIOS preserves the context of the preempted

thread by automatically saving all of the following CPU registers onto the

application stack:

Your SWI function does not need to save and restore all these registers, even

if the SWI function is written in assembly.

However, SWI functions that are written in assembly must follow C register

usage conventions: they must save and restore registers ar1, ar6, and ar7.

(See the TMS320C54x Optimizing C Compiler User’s Guide for more details

on C register conventions.)

The context is not saved automatically within an HWI function. You must use

the HWI_enter and HWI_exit macros to preserve the interrupted context

when an HWI function is triggered.

4.6.3 Software Interrupt Priorities and Application Stack Size

All threads in DSP/BIOS, including hardware interrupts, software interrupts,

and the functions of the background idle loop, are executed using the same

software stack (the application stack).

The application stack stores the register context when a software interrupt

preempts another thread. To allow the maximum number of preemptions that

may occur at run time, the required stack size grows each time you add a

software interrupt priority level. Thus, giving software interrupts the same

priority level is more efficient in terms of stack size than giving each software

interrupt a separate priority.

ar0

ar1

ar2

ar3

ar4

ar5

ar6

ar7

ag

ah

al

bg

bh

bl

bk

brc

pmst

rea

rsa

sp

st0

st1

t

trn

Preemption and Yielding

Program Execution 4-21

The default application stack size for the MEM module is 256 words. You can

change the sizes in the Configuration Tool. The estimated sizes required are

shown in the status bar at the bottom of the Configuration Tool.

You can create up to 15 software interrupt priority levels, but each level

requires a larger application stack. If you see a pop-up message that says

“the application stack size is too small to support a new software interrupt

priority level,” increase the Application Stack Size property of the Memory

Section Manager.

Creating the first PRD object creates a new SWI object called PRD_swi (see

section 4.8, Periodic Function Manager (PRD) and the System Clock, page

4-24, for more information on PRD). If no SWI objects have been created

before the first PRD object is added, adding PRD_swi creates the first priority

level, producing a corresponding increase in the required application stack.

Clock Manager (CLK Module)

4-22

4.7 Clock Manager (CLK Module)

DSPs typically have one or more on-chip timers that generate a hardware

interrupt at periodic intervals. DSP/BIOS normally uses one of the available

on-chip timers as the source for its own real-time clocks.

The CLK module provides two 32-bit real-time clocks with different

resolutions: the high-resolution and low-resolution clocks. These clocks can

be used to measure the passage of time in conjunction with STS accumulator

objects, as well as to add time stamp messages to message logs. Using the

on-chip timer hardware present on most TMS320 DSPs, the CLK module

supports time resolutions close to the single instruction cycle.

The following figure shows the relationship between the on-chip timer,

configuration properties, and timer interrupt rates

Figure 4–8 CLK Module Properties

The CLK manager also allows you to create an arbitrary number of clock

functions. Clock functions are executed by the CLK manager each time a

timer interrupt occurs.

4.7.1 High- and Low-Resolution Clocks

Using the CLK manager in the Configuration Tool, you can disable or enable

DSP/BIOS to use an on-chip timer to drive high- and low-resolution times.

The TMS320C54x has one general-purpose timer. The Configuration Tool

allows you to enter the period at which the timer interrupt is triggered. See

CLK Module, page 6–7, for more details about these properties. By entering

the period of the timer interrupt, DSP/BIOS automatically sets up the

appropriate value for the period register.

If the CLK manager is enabled in the Configuration Tool, the timer counter

register is decremented every instruction cycle. When this register reaches 0,

the counter is reset to the value in the period register and a timer interrupt

occurs.

PR D In te rru p t pe riodProperty :

80 M H z (40 M IPS) 39 999 1 m illisecon dExam p le :

CPUO n -ch ip
C P U c lock

D iv ide by o n-ch ip tim er
d iv ide-dow n reg is te r

D iv ide by o n-ch ip tim er
pe riod reg is te r

(re su lt = h igh -reso lu tion tim e) (re su lt = lo w -re so lu tion tim e)

TD D R

0

Clock Manager (CLK Module)

Program Execution 4-23

When a timer interrupt occurs, the HWI object for the timer runs the

CLK_F_isr function. This function causes these events to occur:

❏ The low-resolution time is incremented by 1.

❏ All the functions specified by CLK objects are performed in sequence in

the context of that ISR.

Therefore, the low-resolution clock ticks at the timer interrupt rate and the

clock’s time is equal to the number of timer interrupts that have occurred. To

obtain the low-resolution time, you can call CLK_getltime from your

application code.

The CLK functions performed when a timer interrupt occurs are performed in

the context of the hardware interrupt that caused the system clock to tick.

Therefore, the amount of processing performed within CLK functions should

be minimized and these functions may invoke only DSP/BIOS calls that are

allowable from within a hardware ISR. (They should not call HWI_enter and

HWI_exit as these are called internally from CLK_F_isr before and after CLK

functions are called.)

The high-resolution clock ticks at the same rate the timer counter register is

decremented. Hence, the high-resolution time is the number of times the

timer counter register has been decremented. Given the high CPU clock rate,

the 16-bit timer counter register may reach 0 very quickly. The 32-bit

high-resolution time is actually calculated by multiplying the low-resolution

time (i.e., the interrupt count) by the value of the period register and adding

the difference between the period register value and the value of the timer

counter register. To obtain the value of the high-resolution time you can call

CLK_gethtime from your application code.

The value of the clock restarts at the value in the period register when 0 is

reached.

Other CLK module APIs are CLK_getprd, which returns the value set for the

period register in the Configuration Tool; and CLK_countspms, which returns

the number of timer counter register decrements per millisecond.

Modify the properties of the CLK manager with the Configuration Tool to

configure the low-resolution clock. For example, to make the low-resolution

clock tick every millisecond (.001 sec), type 1000 in the CLK manager’s

Microseconds/Int field. The Configuration Tool automatically calculates the

correct value for the period register.

You can directly specify the period register value if you put a checkmark in the

Directly configure on-chip timer registers box. To generate a 1 millisecond

(.001 sec) system clock period on a 40 MIPS processor using the CPU to

drive the clock, the period register value is:

Period = 0.001 sec * 40,000,000 cycles per second = 40,000

Periodic Function Manager (PRD) and the System Clock

4-24

4.8 Periodic Function Manager (PRD) and the System Clock

Many applications need to schedule functions based on I/O availability or

some other programmed event. Other applications can schedule functions

based on a real-time clock.

The PRD manager allows you to create objects that schedule periodic

execution of program functions. To drive the PRD module, DSP/BIOS

provides a system clock. The system clock is a 32-bit counter that ticks every

time PRD_tick is called. You can use the timer interrupt or some other

periodic event to call PRD_tick and drive the system clock.

There can be several PRD objects but all are driven by the same system

clock. The period of each PRD object determines the frequency at which its

function is called. The period of each PRD object is specified in terms of the

system clock time; i.e., in system clock ticks.

To schedule functions based on certain events, use the following procedures:

❏ Based on a real-time clock. Put a check mark in the Use CLK Manager

to Drive PRD box by right-clicking on the PRD manager and selecting

Properties in the Configuration Tool. By doing this you are setting the

timer interrupt used by the CLK manager to drive the system clock. Note

that when you do this a CLK object called PRD_clock is added to the CLK

module. This object calls PRD_tick every time the timer interrupt goes off,

advancing the system clock by one tick.

Note: When the CLK manager is used to drive PRD, the system clock that

drives PRD functions ticks at the same rate as the low-resolution clock. The

low-resolution and system time coincide.

❏ Based on I/O availability or some other event. Remove the check mark

from the Use the CLK Manager to Drive PRD box for the PRD manager.

Your program should call PRD_tick to increment the system clock. In this

case the resolution of the system clock equals the frequency of the

interrupt from which PRD_tick is called.

Periodic Function Manager (PRD) and the System Clock

Program Execution 4-25

4.8.1 Invoking Functions for PRD Objects

When PRD_tick is called two things occur:

❏ PRD_D_tick, the system clock counter, increases by one; i.e., the system

clock ticks.

❏ An SWI called PRD_swi is posted.

Note that when a PRD object is created with the Configuration Tool, a new

SWI object is automatically added called PRD_swi.

When PRD_swi runs, its function executes the following type of loop:

for ("Loop through period objects") {

 if ("time for a periodic function")

 "run that periodic function";

}

Hence, the execution of periodic functions is deferred to the context of

PRD_swi, rather than being executed in the context of the ISR where

PRD_tick was called. As a result, there may be a delay between the time the

system tick occurs and the execution of the periodic objects whose periods

have expired with the tick. If these functions run immediately after the tick, you

should configure PRD_swi to have a high priority with respect to other threads

in your application.

Using the Execution Graph to View Program Execution

4-26

4.9 Using the Execution Graph to View Program Execution

You can use the Execution Graph in Code Composer to see a visual display

of thread activity by choosing Tools→DSP/BIOS→Execution Graph.

4.9.1 States in the Execution Graph Window

This window examines the information in the system log (LOG_system in the

Configuration Tool) and shows the thread states in relation to the timer

interrupt (Time) and system clock ticks (PRD Ticks).

White boxes indicate that a thread has been posted and is ready to run.

Blue-green boxes indicate that the host had not yet received any information

about the state of this thread at that point in the log. Dark blue boxes indicate

that a thread is running.

Bright blue boxes in the Errors row indicate that an error has occurred. For

example, an error is shown when the Execution Graph detects that a thread

did not meet its real-time deadline. It also shows invalid log records, which

may be caused by the program writing over the system log. Double-click on

an error to see the details.

4.9.2 Threads in the Execution Graph Window

The SWI and PRD functions listed in the left column are listed from highest

to lowest priority. However, for performance reasons, there is no information

in the Execution Graph about interrupt and background threads (aside from

the CLK ticks, which are normally performed by an interrupt). Time not spent

within an SWI or PRD thread must be within an HWI or IDL thread, so this

time is shown in the Other Threads row.

Functions run by PIP (notify functions) run as part of the thread that called the

PIP API. The LNK_dataPump object runs a function that manages the host’s

end of an HST (Host Channel manager) object. This object and other IDL

objects run from the IDL background thread, and are included in the Other

Threads row.

Using the Execution Graph to View Program Execution

Program Execution 4-27

Note: The Time marks and the PRD Ticks are not equally spaced. This

graph shows a square for each event. If many events occur between two

Time interrupts or PRD Ticks, the distance between the marks is wider than

for intervals during which fewer events occurred.

4.9.3 Sequence Numbers in the Execution Graph Window

The numbers below the bottom scroll bar show the sequence numbers in the

Execution Graph for the events.

Note: Circular logs (the default for the Execution Graph) contain only the

most recent n events. Normally, there are events that are not listed in the

log because they occur after the host polls the log and are overwritten

before the next time the host polls the log. The Execution Graph shows a

red vertical line and a break in the log sequence numbers at the end of each

group of log events it polls.

You can view more log events by increasing the size of the log to hold the full

sequence of events you want to examine. You can also set the RTA Control

Panel to log only the events you want to examine.

4.9.4 RTA Control Panel Settings for Use with the Execution Graph

The TRC module allows you to control

what events are recorded in the

Execution Graph at any given time

during the application execution. The

recording of SWI, PRD, and CLK

events in the Execution Graph can be

controlled from the host (using the RTA

Control Panel; Tools→DSP/BIOS→
RTA Control Panel in Code Composer)

or from the target code (through the

TRC_enable and TRC_disable APIs).

See section 3.4.4.2, Control of Implicit
Instrumentation, page 3-12, for details

on how to control implicit

instrumentation.

Using the Execution Graph to View Program Execution

4-28

When using the Execution Graph, turning off automatic polling stops the log

from scrolling frequently and gives you time to examine the graph. You can

use either of these methods to turn off automatic polling:

❏ Right-click on the Execution Graph and choose Pause from the shortcut

menu.

❏ Right-click on the RTA Control Panel and choose Property Page. Set the

Message Log/Execution Graph refresh rate to 0. Click OK.

You can poll log data from the target whenever you want to update the graph:

❏ Right-click on the Execution Graph and choose Refresh Window from the

shortcut menu.

You can choose Refresh Window several times to see additional data.

The shortcut menu you see when you right-click on the graph also allows

you to clear the previous data shown on the graph.

If you plan to use the Execution Graph and your program has a complex

execution sequence, you can increase the size of the Execution Graph in the

Configuration Tool. Right-click on the LOG_system LOG object and select

Properties to increase the buflen property. Each log message uses four

words, so the buflen should be at least the number of events you want to store

multiplied by four.

SWI and PRD Accumulators: Real-Time Deadline Headroom

Program Execution 4-29

4.10 SWI and PRD Accumulators: Real-Time Deadline Headroom

Many tasks in a real-time system are periodic; that is, they execute

continuously and at regular intervals. It is important that such tasks finish

executing before it is time for them to run again. A failure to complete in this

time represents a missed real-time deadline. While internal data buffering can

be used to recover from occasional missed deadlines, repeated missed

deadlines eventually result in an unrecoverable failure.

The implicit statistics gathered for SWI functions measure the time from when

a software interrupt is ready to run and the time it completes. This timing is

critical because the processor is actually executing numerous hardware and

software interrupts. If a software interrupt is ready to execute but must wait

too long for other software interrupts to complete, the real-time deadline is

missed. Additionally, if a task starts executing, but is interrupted too many

times for too long a period of time, the real-time deadline is also missed.

The maximum ready-to-complete time is a good measure of how close the

system is to potential failure. The closer a software interrupt’s maximum

ready-to-complete time is to its period, the more likely it is that the system

cannot survive occasional bursts of activity or temporary data-dependent

increases in computational requirements. The maximum ready-to-complete

time is also an indication of how much headroom exists for future product

enhancements (which invariably require more MIPS).

Note: DSP/BIOS does not implicitly measure the amount of time each

software interrupt takes to execute. This measurement can be determined

by running the software interrupt in isolation using either the simulator or

the emulator to count the precise number of execution cycles required.

It is important to realize even when the sum of the MIPS requirements of all

routines in a system is well below the MIPS rating of the DSP, the system may

not meet its real-time deadlines. It is not uncommon for a system with a CPU

load of less than 70% to miss its real-time deadlines due to prioritization

problems. The maximum ready-to-complete times monitored by DSP/BIOS,

however, provide an immediate indication when these situations exist.

SWI and PRD Accumulators: Real-Time Deadline Headroom

4-30

When statistics accumulators for software interrupts and periodic objects are

enabled, the host automatically gathers the count, total, maximum, and

average for the following types of statistics:

❏ SWI. Statistics about the period elapsed from the time the software

interrupt was posted to its completion.

❏ PRD. The number of periodic system ticks elapsed from the time the

periodic function is ready to run until its completion. By definition, the i x

period execution of a periodic function is ready to run when i x period ticks

have occurred, where period is the period parameter for this periodic

object.

You can set the units for the SWI completion period measurement by setting

global SWI and CLK parameters. This period is measured in instruction

cycles if the CLK module’s Use high resolution time for internal timings

parameter is set to True (the default) and the SWI module’s Statistics Units

parameter is set to Raw (the default). If this CLK parameter is set to False and

the Statistics Units is set to Raw, SWI statistics are displayed in units of timer

interrupt periods. You can also choose milliseconds or microseconds for the

Statistics Units parameter.

For example, if the maximum value for a PRD object increases continuously,

the object is probably not meeting its real-time deadline. In fact, the maximum

value for a PRD object should be less than or equal to the period (in system

ticks) property of this PRD object. If the maximum value is greater than the

period, the periodic function has missed its real-time deadline.

5-1

Chapter 5

Input/Output

This chapter discusses data transfer methods.

5.1 Objects Used for I/O . 5–2

5.2 Data Pipe Manager (PIP Module) . 5–3

5.3 Host Input/Output Manager (HST Module) . 5–9

5.4 I/O Performance Issues. 5–10

Topic Page

Objects Used for I/O

5-2

5.1 Objects Used for I/O

DSP/BIOS provides the following modules for data transfer:

❏ PIP. Manages data pipes, which are used to buffer streams of input and

output data. These data pipes provide a consistent software data

structure you can use to drive I/O between threads and between the DSP

chip and all kinds of real-time peripheral devices.

❏ HST. For simplified I/O between the target and the host, DSP/BIOS

provides host channel objects. Pipes are used internally to implement

and interface with host channels. The Host Channel Control in Code

Composer simplifies the process by managing one end of the pipe.

During early development—especially when testing processing algorithms—

programs can use host channels to input canned data sets and to output the

results to the host for analysis.

Once the algorithm appears sound, you can replace host channel objects

with I/O drivers for production hardware built around DSP/BIOS pipe objects.

Data Pipe Manager (PIP Module)

Input/Output 5-3

5.2 Data Pipe Manager (PIP Module)

Pipes are designed to manage block I/O (also called stream-based or

asynchronous I/O). Each pipe object maintains a buffer divided into a fixed

number of fixed length frames, specified by the numframes and framesize

properties. All I/O operations on a pipe deal with one frame at a time.

Although each frame has a fixed length, the application may put a variable

amount of data in each frame (up to the length of the frame).

A pipe has two ends. The writer end is where the program writes frames of

data. The reader end is where the program reads frames of data.

Data notification functions (notifyReader and notifyWriter) are performed to

synchronize data transfer. These functions are triggered when a frame of data

is read or written to notify the program that a frame is free or data is available.

These functions are performed in the context of the function that calls

PIP_free or PIP_put. They may also be called from the thread that calls

PIP_get or PIP_alloc. When PIP_get is called, DSP/BIOS checks whether

there are more full frames in the pipe. If so, the notifyReader function is

executed. When PIP_alloc is called, DSP/BIOS checks whether there are

more empty frames in the pipe. If so, the notifyWriter function is executed.

A pipe should have a single reader and a single writer. Often, one end of a

pipe is controlled by a hardware ISR and the other end is controlled by a

software interrupt function. Pipes can also be used to transfer data within the

program between two application threads.

During program startup (which is described in detail in section 2.5, DSP/BIOS
Startup Sequence, page 2-11), the BIOS_start function enables the

DSP/BIOS modules. As part of this step, the PIP_startup function calls the

notifyWriter function for each pipe object, since at startup all pipes have

available empty frames.

There are no special format or data type requirements for the data to be

transferred by a pipe.

The online help in the Configuration Tool describes data pipe objects and their

parameters. See PIP Module, page 6–51, for reference information on the

PIP module API.

ReaderW riter

1 . P IP _a lloc
2 . P u ts d a ta in to fra m e
3. P IP _p u t (ru ns no tifyR ead er)

1 . P IP _g e t
2 . U ses da ta

3 . P IP _ free (ru ns no tifyW rite r)

Data Pipe Manager (PIP Module)

5-4

5.2.1 Writing Data to a Pipe

The steps that a program should perform to write data to a pipe are as follows:

1) A function should first check the number of empty frames available to be

filled with data. To do this, the program must check the return value of

PIP_getWriterNumFrames. This function call returns the number of

empty frames in a pipe object.

2) If the number of empty frames is greater than 0, the function then calls

PIP_alloc to get an empty frame from the pipe.

3) Before returning from the PIP_alloc call, DSP/BIOS checks whether there

are additional empty frames available in the pipe. If so, the notifyWriter

function is called at this time.

4) Once PIP_alloc returns, the empty frame can be used by the application

code to store data. To do this the function needs to know the frame's start

address and its size. The API function PIP_getWriterAddr returns the

address of the beginning of the allocated frame. The API function

PIP_getWriterSize returns the number of words that can be written to the

frame. (The default value for an empty frame is the configured frame

size.)

5) When the frame is full of data, it can be returned to the pipe. If the number

of words written to the frame is less than the frame size, the function can

specify this by calling the PIP_setWriterSize function. Afterwards, call

PIP_put to return the data to the pipe.

6) Calling PIP_put causes the notifyReader function to run. This enables the

writer thread to notify the reader thread that there is data available in the

pipe to be read.

Data Pipe Manager (PIP Module)

Input/Output 5-5

The following code fragment demonstrates the previous steps:

extern far PIP_Obj writerPipe; /* pipe object created with

 the Configuration Tool */

writer()

{

 Uns size;

 Uns newsize;

 Ptr addr;

 if (PIP_getWriterNumFrames(&writerPipe) > 0) {

 PIP_alloc(&writerPipe); /* allocate an empty frame */

 }

 else {

 return; /* There are no available empty frames */

 }

 addr = PIP_getWriterAddr(&writerPipe);

 size = PIP_getWriterSize(&writerPipe);

 ' fill up the frame '

 /* optional */

 newsize = 'number of words written to the frame';

 PIP_setWriterSize(&writerPipe, newsize);

 /* release the full frame back to the pipe */

 PIP_put(&writerPipe);

}

5.2.2 Reading Data from a Pipe

To read a full frame from a pipe, a program should perform the following

steps:

1) The function should first check the number of full frames available to be

read from the pipe. To do this, the program must check the return value

of PIP_getReaderNumFrames. This function call returns the number of

full frames in a pipe object.

2) If the number of full frames is greater than 0, the function then calls

PIP_get to get a full frame from the pipe.

3) Before returning from the PIP_get call, DSP/BIOS checks whether there

are additional full frames available in the pipe. If so, the notifyReader

function is called at this time.

4) Once PIP_get returns, the data in the full frame can be read by the

application. To do this the function needs to know the frame's start

address and its size. The API function PIP_getReaderAddr returns the

address of the beginning of the full frame. The API function

PIP_getReaderSize returns the number of valid data words in the frame.

Data Pipe Manager (PIP Module)

5-6

5) When the application has finished reading all the data, the frame can be

returned to the pipe by calling PIP_free.

6) Calling PIP_free causes the notifyWriter function to run. This enables the

reader thread to notify the writer thread that there is a new empty frame

available in the pipe.

The following code fragment demonstrates the previous steps:

extern far PIP_Obj readerPipe; /* created with the

 Configuration Tool */

reader()

{

 Uns size;

 Ptr addr;

 if (PIP_getReaderNumFrames(&readerPipe) > 0) {

 PIP_get(&readerPipe); /* get a full frame */

 }

 else {

 return; /* There are no available full frames */

 }

 addr = PIP_getReaderAddr(&readerPipe);

 size = PIP_getReaderSize(&readerPipe);

 ' read the data from the frame '

 /* release the empty frame back to the pipe */

 PIP_free(&readerPipe);

}

5.2.3 Using a Pipe's Notify Functions

The reader or writer threads of a pipe can operate in a polled mode and

directly test the number of full or empty frames available before retrieving the

next full or empty frame. The example code in section 5.2.1, Writing Data to
a Pipe, page 5-4, and section 5.2.2, Reading Data from a Pipe, page 5-5,

demonstrates this type of polled read and write operation.

When used to buffer real-time I/O streams written (read) by a hardware

peripheral, pipe objects often serve as a data channel between the HWI

routine triggered by the peripheral itself and the program function that

ultimately reads (writes) the data. In such situations, the application can

effectively synchronize itself with the underlying I/O stream by configuring the

pipe's notifyReader (notifyWriter) function to automatically post a software

interrupt that runs the reader (writer) function. When the HWI routine finishes

filling up (reading) a frame and calls PIP_put (PIP_free), the pipe’s notify

function can be used to automatically post a software interrupt. In this case,

rather than polling the pipe for frame availability, the reader (writer) function

runs only when the software interrupt is triggered; i.e., when frames are

available to be read (written).

Data Pipe Manager (PIP Module)

Input/Output 5-7

Such a function would not need to check for the availability of frames in the

pipe, since it is called only when data is ready. As a precaution, the function

may still check whether frames are ready, and if not, cause an error condition,

as in the following example code:

if (PIP_getReaderNumFrames(&readerPipe) = 0) {

 error(); /* writer function should not have been posted! */

}

Hence, the notify function of pipe objects can serve as a flow-control

mechanism to manage I/O to other threads and hardware devices.

5.2.4 Calling Order for PIP APIs

Each pipe object internally maintains a list of empty frames and a counter with

the number of empty frames on the writer side of the pipe, and a list of full

frames and a counter with the number of full frames on the reader side of the

pipe. The pipe object also contains a descriptor of the current writer frame

(i.e., the last frame allocated and currently being filled by the application) and

the current reader frame (i.e., the last full frame that the application got and

that is currently reading).

When PIP_alloc is called, the writer counter is decreased by 1. An empty

frame is removed from the writer list and the writer frame descriptor is

updated with the information from this frame. When the application calls

PIP_put after filling the frame, the reader counter is increased by one, and the

writer frame descriptor is used by DSP/BIOS to add the new full frame to the

pipe's reader list.

Note: Every call to PIP_alloc must be followed by a call to PIP_put before

PIP_alloc can be called again: the pipe I/O mechanism does not allow

consecutive PIP_alloc calls. Doing so would overwrite previous descriptor

information and would produce undetermined results.

/* correct */ /* error! */

PIP_alloc(); PIP_alloc();

... ...

PIP_put(); PIP_alloc();

... ...

PIP_alloc(); PIP_put();

... ...

PIP_put(); PIP_put();

Data Pipe Manager (PIP Module)

5-8

Similarly when PIP_get is called, the reader counter is decreased by 1. A full

frame is removed from the reader list and the reader frame descriptor is

updated with the information from this frame. When the application calls

PIP_free after reading the frame, the writer counter is increased by 1, and the

reader frame descriptor is used by DSP/BIOS to add the new empty frame to

the pipe's writer list. Hence, every call to PIP_get must be followed by a call

to PIP_free before PIP_get can be called again: the pipe I/O mechanism does

not allow consecutive PIP_get calls. Doing so would overwrite previous

descriptor information and would produce undetermined results.

/* correct */ /* error! */

PIP_get(); PIP_get();

... ...

PIP_free(); PIP_get();

... ...

PIP_get(); PIP_free();

... ...

PIP_free(); PIP_free();

5.2.4.1 Avoiding Recursion Problems

Care should be applied when a pipe's notify functions call PIP APIs for the

same pipe.

Consider the following example: A pipe's notifyReader function calls PIP_get

for the same pipe. The pipe's reader is an HWI routine. The pipe's writer is an

SWI routine. Hence the reader has higher priority than the writer. (Calling

PIP_get from the notifyReader in this situation may make sense because this

allows the application to get the next full buffer ready to be used by the

reader—the HWI routine—as soon as it is available and before the hardware

interrupt is triggered again.)

The pipe's reader function, the HWI routine, calls PIP_get to read data from

the pipe. The pipe's writer function, the SWI routine, calls PIP_put. Since the

call to the notifyReader happens within PIP_put in the context of the current

routine, a call to PIP_get also happens from the SWI writer routine.

Hence, in the example described two threads with different priorities call

PIP_get for the same pipe. This could have catastrophic consequences if one

thread preempts the other and as a result, PIP_get is called twice before

calling PIP_free, or PIP_get is preempted and called again for the same pipe

from a different thread.

Note: As a general rule to avoid recursion, you should avoid calling PIP

functions as part of notifyReader and notifyWriter. If necessary for

application efficiency, such calls should be protected to prevent reentrancy

for the same pipe object and the wrong calling sequence for the PIP APIs.

Host Input/Output Manager (HST Module)

Input/Output 5-9

5.3 Host Input/Output Manager (HST Module)

The HST module manages host channel objects, which allow an application

to stream data between the target and the host. Host channels are configured

for input or output. Input streams read data from the host to the target. Output

streams transfer data from the target to the host.

Note:

HST channel names cannot start with a leading underscore (_).

You dynamically bind channels to files on the PC host by right-clicking on the

Host Channel Control in Code Composer. Then you start the data transfer for

each channel.

Each host channel is internally implemented using a pipe object. To use a

particular host channel, the program uses HST_getpipe to get the

corresponding pipe object and then transfers data by calling the PIP_get and

PIP_free operations (for input) or PIP_alloc and PIP_put operations (for

output).

The code for reading data might look like the following:

extern far HST_Obj input;

readFromHost()

{

 PIP_Obj *pipe;

 Uns size;

 Ptr addr;

 pipe = HST_getpipe(&input) /* get a pointer to the host

 channel's pipe object */

 PIP_get(pipe); /* get a full frame from the

 host */

 size = PIP_getReaderSize(pipe);

 addr = PIP_getReaderAddr(pipe);

 ' read data from frame '

 PIP_free(pipe); /* release empty frame to the host */

}

I/O Performance Issues

5-10

Each host channel can specify a data notification function to be performed

when a frame of data for an input channel (or free space for an output

channel) is available. This function is triggered when the host writes or reads

a frame of data.

HST channels treat files as 16-bit words of raw data. The format of the data

is application-specific, and you should verify that the host and the target

agree on the data format and ordering. For example, if you are reading 32-bit

integers from the host, you need to make sure the host file contains the data

in the correct byte order. Other than correct byte order, there are no special

format or data type requirements for data to be transferred between the host

and the target.

While you are developing a program, you may want to use HST objects to

simulate data flow and to test changes made to canned data by program

algorithms. During early development, especially when testing signal

processing algorithms, the program would explicitly use input channels to

access data sets from a file for input for the algorithm and would use output

channels to record algorithm output. The data saved to a file with the output

host channel can be compared with expected results to detect algorithm

errors. Later in the program development cycle, when the algorithm appears

sound, you can change the HST objects to PIP objects communicating with

other threads or I/O drivers for production hardware.

5.3.1 Transfer of HST Data to the Host

While the amount of usable bandwidth for real-time transfer of data streams

to the host ultimately depends on the choice of physical data link, the HST

Channel interface remains independent of the physical link. The HST

manager in the Configuration Tool allows you to choose among the physical

connections available.

The actual data transfer to the host occurs during the idle loop, from the

LNK_dataPump idle function.

5.4 I/O Performance Issues

If you are using an HST object, the host PC reads or writes data using the

function specified by the LNK_dataPump object. This is a built-in IDL object

that runs its function as part of the background thread. Since background

threads have the lowest priority, software interrupts and hardware interrupts

preempt data transfer.

Note that the polling rates you set in the LOG, STS, and TRC controls do not

control the data transfer rate for HST objects. (Faster polling rates actually

slow the data transfer rate somewhat because LOG, STS, and TRC data also

need to be transferred.)

6-1

Chapter 6

API Functions

This chapter describes the DSP/BIOS API functions, which are alphabetized

by name. In addition, there are reference sections that describe the overall

capabilities of each module.

6.1 DSP/BIOS Modules . 6–2

6.2 Naming Conventions. 6–2

6.3 List of Operations . 6–3

6.4 Assembly Language Interface . 6–6

Topic Page

DSP/BIOS Modules

6-2

6.1 DSP/BIOS Modules

These are the DSP/BIOS modules:

6.2 Naming Conventions

The format for a DSP/BIOS operation name is a 3- or 4-letter prefix for the

module that contains the operation, an underscore, and the action.

In the Assembly Interface section for each macro, Preconditions lists registers

that must be set before using the macro. Postconditions lists the registers set

by the macro that you may want to use. Modifies lists all individual registers

modified by the macro, including registers in the Postconditions list. Several

macros modify a 32-bit register. In these cases, the Modifies list includes both

the high and low registers that make up the 32-bit register.

Module Description

CLK System clock manager

GBL Global setting manager

HST Host input/output manager

HWI Hardware interrupt manager

IDL Idle function and processing loop manager

LOG Message Log manager

MEM Memory manager

PIP Data pipe manager

PRD Periodic function manager

RTDX Real-Time Data Exchange manager

STS Statistics accumulator manager

SWI Software interrupt manager

TRC Trace manager

List of Operations

API Functions 6-3

6.3 List of Operations

This is a list of the DSP/BIOS operations.

Function Operation

CLK_countspms Number of hardware timer counts per millisecond

CLK_gethtime Get high-resolution time

CLK_getltime Get low-resolution time

CLK_getprd Get period register value

HST_getpipe Get corresponding pipe object

HWI_disable Globally disable hardware interrupts

HWI_enable Globally enable hardware interrupts

HWI_enter Hardware interrupt service routine prolog

HWI_exit Hardware interrupt service routine epilog

HWI_restore Restore global interrupt enable state

IDL_run Make one pass through idle functions

LOG_disable Disable a log

LOG_enable Enable a log

LOG_error/LOG_message Write a message to the system log

LOG_event Append an unformatted message to a log

LOG_reset Reset a log

PIP_alloc Get an empty frame from a pipe

PIP_free Recycle a frame that has been read back into a pipe

PIP_get Get a full frame from a pipe

List of Operations

6-4

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe

PIP_getReaderNumFrames Get the number of pipe frames available for reading

PIP_getReaderSize Get the number of words of data in a pipe frame

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe

PIP_getWriterNumFrames Get the number of pipe frames available to be written to

PIP_getWriterSize Get the number of words that can be written to a pipe frame

PIP_put Put a full frame into a pipe

PIP_setWriterSize Set the number of valid words written to a pipe frame

PRD_getticks Get the current tick counter

PRD_start Arm a periodic function for one-time execution

PRD_stop Stop a periodic function from execution

PRD_tick Advance tick counter, dispatch periodic functions

RTDX_channelBusy Return status indicating whether a channel is busy

RTDX_CreateInputChannel Declare an input channel

RTDX_CreateOutputChannel Declare an output channel

RTDX_disableInput Disable an input channel

RTDX_disableOutput Disable an output channel

RTDX_enableInput Enable an input channel

RTDX_enableOutput Enable an output channel

RTDX_isInputEnabled Return true if the input channel is enabled

RTDX_isOutputEnabled Return true if the output channel is enabled

RTDX_read Read from an input channel

RTDX_readNB Read from an input channel without blocking

RTDX_sizeofInput Return the number of sizeof() units read from an input channel

Function Operation

List of Operations

API Functions 6-5

RTDX_write Write to an output channel

STS_add Add a value to a statistics accumulator

STS_delta Add computed value of an interval to accumulator

STS_reset Reset the values stored in an STS object

STS_set Store initial value of an interval to accumulator

SWI_andn Clear bits from SWI’s mailbox and post if becomes 0

SWI_dec Decrement SWI’s mailbox and post if becomes 0

SWI_disable Disable software interrupts

SWI_enable Enable software interrupts

SWI_getmbox Return SWI’s mailbox value

SWI_getpri Return a SWI’s priority mask

SWI_inc Increment SWI’s mailbox and post

SWI_or Set or mask in SWI’s mailbox and post

SWI_post Post a software interrupt

SWI_raisepri Raise a SWI’s priority

SWI_restorepri Restore a SWI’s priority

SWI_self Return address of currently executing SWI object

TRC_disable Disable a set of trace controls

TRC_enable Enable a set of trace controls

TRC_query Test whether a set of trace controls is enabled

Function Operation

Assembly Language Interface

6-6

6.4 Assembly Language Interface

When calling DSP/BIOS APIs from assembly source code, you should

include the module.h54 header file for any API modules used. This modular

approach reduces the assembly time of programs that do not use all the

modules.

Where possible, you should use the DSP/BIOS API macros instead of using

assembly instructions directly. The DSP/BIOS API macros provide a portable,

optimized way to accomplish the same task. For example, use HWI_disable

instead of the equivalent instruction to temporarily disable interrupts. On

some chips, disabling interrupts in a threaded interface is more complex than

it appears.

Most of the DSP/BIOS API macros do not have parameters. Instead they

expect parameter values to be stored in specific registers when the API

macro is called. This makes your program more efficient. A few API macros

accept constant values as parameters. For example, HWI_enter and

HWI_exit accept constants defined as bitmasks identifying the registers to

save or restore.

The Preconditions section for each DSP/BIOS API macro in this chapter lists

registers that must be set before using the macro.

The Postconditions section lists registers set by the macro.

Modifies lists all individual registers modified by the macro, including registers

in the Postconditions list.

Example:

Assembly Interface

Syntax HWI_enter MASK IMRDISABLE

Preconditions intm = 1

Postconditions dp = GBL_A_SYSPAGE

cpl = ovm = c16 = frct = cmpt = 0

Modifies c, cpl, dp, sp

Assembly functions can call C functions. Remember that the C compiler adds

an underscore prefix to function names, so when calling a C function from

assembly, add an underscore to the beginning of the C function name. For

example, call _myfunction instead of myfunction. See the TMS320C54x
Optimizing C Compiler User’s Guide for more details.

By default, the Configuration Tool creates two names for each object: one

beginning with an underscore, and one without. This allows you to use the

name without the underscore in both C and assembly language functions.

You can turn off this feature by clicking off the box called Generate C Names

for All Objects in the Properties box of the Project Manager in the

Configuration Tool.

CLK Module

API Functions 6-7

Functions

❏ CLK_countspms. Timer counts per millisecond
❏ CLK_gethtime. Get high resolution time
❏ CLK_getltime. Get low resolution time
❏ CLK_getprd. Get period register value

Description

The CLK module provides a method for invoking functions periodically.

DSP/BIOS provides two separate timing methods—the high- and

low-resolution times managed by the CLK module and the system clock. In

the default configuration, the low-resolution time and the system clock are the

same.

The CLK module provides a real-time clock with functions to access this clock

at two resolutions. This clock can be used to measure the passage of time in

conjunction with STS accumulator objects, as well as to add timestamp

messages to event logs. Both the low-resolution and high-resolution times are

stored as 32-bit values. The value restarts at the value in the period register

when 0 is reached.

If the CLK manager is enabled in the Configuration Tool, the timer counter

register is decremented every instruction cycle. When this register reaches 0,

the counter is reset to the value set for the period register property of the CLK

module and a timer interrupt occurs.

The TMS320C54x has one general-purpose timer. When a timer interrupt

occurs, the HWI object for the timer runs the CLK_F_isr function. This

function causes these events to occur:

❏ The low-resolution time is incremented by 1

❏ All the functions specified by CLK objects are performed in sequence in

the context of that ISR

Therefore, the low-resolution clock ticks at the timer interrupt rate and the

clock’s value is equal to the number of timer interrupts that have occurred. You

can use the CLK_getltime function to get the low-resolution time and the

CLK_getprd function to get the value of the period register property.

The high-resolution time is the number of times the timer counter register has

been decremented (number of instruction cycles). Given the high CPU clock

rate, the 16-bit timer counter register wraps around quite fast. The 32-bit

high-resolution time is actually calculated by multiplying the low-resolution

time by the value of the period register property and adding the difference

between the value in the period register and the current value of the timer

CLK Module System clock manager

CLK Module

6-8

counter register. You can use the CLK_gethtime function to get the

high-resolution time and the CLK_countspms function to get the number of

hardware timer counter register ticks per millisecond.

The CLK functions performed when a timer interrupt occurs are performed in

the context of the hardware interrupt that caused the system clock to tick.

Therefore, the amount of processing performed within CLK functions should

be minimized and these functions may only invoke DSP/BIOS calls that are

allowable from within a hardware ISR. (They should not call HWI_enter and

HWI_exit as these are called internally before and after CLK functions.)

If you do not want the on-chip timer to drive the system clock, delete the CLK

object named CLK_system.

CLK Manager Properties

The following global parameters can be set for the CLK module:

❏ Object Memory. The memory segment that contains the CLK objects

created with the Configuration Tool

❏ Enable CLK Manager. If checked, the on-chip timer hardware is used to

drive the high- and low-resolution times and to trigger execution of CLK

functions

❏ Use high resolution time for internal timings. If checked, the

high-resolution timer is used to monitor internal periods; otherwise the

less intrusive, low-resolution timer is used

❏ Microseconds/Int. The number of microseconds between timer

interrupts. The period register is set to a value that achieves the desired

period as closely as possible.

❏ Directly configure on-chip timer registers. If checked, the timer’s

hardware registers, PRD and TDDR, can be directly set to the desired

values. In this case, the Microseconds/Int field is computed based on the

values in PRD and TDDR and the CPU clock speed.

❏ Fix TDDR. If checked, the value in the TDDR field will not be modified by

changes to the Microseconds/Int field.

❏ TDDR Register. The on-chip timer divide-down register.

❏ PRD Register. The on-chip timer period register.

The following informational fields are also displayed for the CLK module:

❏ CPU Interrupt. Shows which HWI interrupt is used to drive the timer

services.

❏ Instructions/Int. The number of instruction cycles represented by the

period specified above

CLK Module

API Functions 6-9

CLK Object Properties

The Clock manager allows you to create an arbitrary number of clock

functions. Clock functions are functions executed by the Clock Manager every

time a timer interrupt occurs. These functions may invoke any DSP/BIOS

operations allowable from within a hardware ISR except HWI_enter or

HWI_exit.

The following fields can be set for a clock function object:

❏ comment. Type a comment to identify this CLK object

❏ function. The function to be executed when the timer hardware interrupt

occurs. This function must be written like an HWI function; it must be

written in assembly and must save and restore any registers this function

modifies. However, this function may not call HWI_enter or HWI_exit

because DSP/BIOS calls them internally before and after this function

runs.

These functions should be very short as they are performed frequently.

Since all functions are performed using the same periodic rate, functions

that need to occur at a multiple of that rate should count the number of

interrupts and perform their activities when the counter reaches the

appropriate value.

If this function is written in C, use a leading underscore before the C

function name. (The Configuration Tool generates assembly code which

must use the leading underscore when referencing C functions or labels.)

CLK - DSP/BIOS Plug-ins Interface

To enable CLK logging, choose Tools→DSP/BIOS→RTA Control Panel and

put a check in the appropriate box. You see indicators for low resolution clock

interrupts in the Time row of the Execution Graph, which you can open by

choosing Tools→DSP/BIOS→Execution Graph.

CLK_countspms

6-10

C Interface

Syntax ncounts = CLK_countspms();

Parameters Void

Return Value Uns ncounts;

Assembly Interface

Syntax CLK_countspms

Preconditions none

Postconditions a

Modifies ag, ah, al, c

Reentrant yes

Description

CLK_countspms returns the number of hardware timer register ticks per

millisecond. This corresponds to the number of high-resolution ticks per

millisecond.

CLK_countspms may be used to compute an absolute length of time from the

number of hardware timer counts. For example, the following returns the

number of milliseconds since the 32-bit high-resolution time last wrapped

back to the value in the period register:

timeAbs = CLK_gethtime() / CLK_countspms();

See Also

CLK_gethtime

CLK_getprd

STS_delta

CLK_countspms Number of hardware timer counts per millisecond

CLK_gethtime

API Functions 6-11

C Interface

Syntax currtime = CLK_gethtime(Void);

Parameters Void

Return Value LgUns currtime /* high-resolution time */

Assembly Interface

Syntax CLK_gethtime

Preconditions intm = 1

cpl = ovm = c16 = frct = cmpt = 0

Postconditions ah = bits 32 - 16 of high-resolution time

al = bits 15 - 0 of high-resolution time

Modifies ag, ah, al, ar5, bg, bh, bl, c, dp, t, tc

Reentrant no

Description

CLK_gethtime returns the number of high resolution clock cycles that have

occurred as a 32-bit time value. When the number of cycles reaches the

maximum value that can be stored in 32 bits, the value wraps back to 0.

The timer counter is incremented every four CPU cycles. The high-resolution

time is the number of times the timer counter has been incremented (number

of instruction cycles divided by 4).

The high-resolution time is actually calculated by multiplying the

low-resolution time by the value of the period register property and adding the

current value of the timer counter.

In contrast, CLK_getltime returns a value that is also affected by the period

register value. CLK_gethtime provides a value with greater accuracy than

CLK_getltime, but which wraps back to 0 more frequently.

For example, if the chip’s clock rate is 200 MHz, then regardless of the period

register value, the CLK_gethtime value wraps back to 0 approximately every

86 seconds.

CLK_gethtime can be used in conjunction with STS_set and STS_delta to

benchmark code. CLK_gethtime can also be used to add a time stamp to

event logs.

CLK_gethtime Get high-resolution time

CLK_gethtime

6-12

Example
/* ======== showTime ======== */

 Void showTicks()

 {

 LOG_printf(&trace, "time = %d", (Int)CLK_gethtime());

 }

See Also

CLK_getltime

PRD_getticks

STS_delta

CLK_getltime

API Functions 6-13

C Interface

Syntax currtime = CLK_getltime(Void);

Parameters Void

Return Value LgUns currtime /* low-resolution time */

Assembly Interface

Syntax CLK_getltime

Preconditions none

Postconditions ah = bits 32 - 16 of low-resolution time

al = bits 15 - 0 of low-resolution time

Modifies ag, ah, al, c

Reentrant yes

Description

CLK_getltime returns the number of timer interrupts that have occurred as a

32-bit time value. When the number of interrupts reaches the maximum value

that can be stored in 32 bits, value wraps back to 0 on the next interrupt.

The low-resolution time is the number of timer interrupts that have occurred.

The timer counter is decremented every instruction cycle. When this register

reaches 0, the counter is reset to the value set for the period register property

of the CLK module and a timer interrupt occurs. When a timer interrupt

occurs, all the functions specified by CLK objects are performed in sequence

in the context of that ISR.

The default low resolution interrupt rate is 1 millisecond/interrupt. By

adjusting the period register, you can set rates from less than 1

microsecond/interrupt to more than 1 second/interrupt.

If you use the default configuration, the system clock rate matches the

low-resolution rate.

CLK_getltime Get low-resolution time

CLK_getltime

6-14

In contrast, CLK_gethtime returns a value that is not affected by the period

register value. Therefore, CLK_gethtime provides a value with greater

accuracy than CLK_getltime, but which wraps back to 0 more frequently. For

example, if the chip’s clock rate is 80 MHz (40 MIPS), and you use the default

period register value of 40000, the CLK_gethtime value wraps back to 0

approximately every 107 seconds, while the CLK_getltime value wraps back

to 0 approximately every 49.7 days.

CLK_getltime is often used to add a time stamp to event logs for events that

occur over a relatively long period of time.

Example
/* ======== showTicks ======== */

 Void showTicks()

 {

 LOG_printf(&trace, "time = %d", (Int)CLK_getltime());

 }

See Also

CLK_gethtime

PRD_getticks

STS_delta

CLK_getprd

API Functions 6-15

C Interface

Syntax period = CLK_getprd(Void);

Parameters Void

Return Value Uns period /* period register value */

Assembly Interface

Syntax CLK_getprd

Preconditions none

Postconditions a

Modifies ag, ah, al, c

Reentrant yes

Description

CLK_getprd returns the value set for the period register property of the CLK

manager in the Configuration Tool. CLK_getprd can be used to compute an

absolute length of time from the number of hardware timer interrupts. For

example, the following returns the number of milliseconds since the 32-bit

low-resolution time last wrapped back to 0:

timeAbs = (CLK_getltime() * CLK_getprd()) / CLK_countspms();

See Also

CLK_countspms

CLK_gethtime

STS_delta

CLK_getprd Get period register value

Global Settings

6-16

Functions

None

Description

This module does not manage any individual objects, but rather allows you to

control global or system-wide settings used by other modules.

Global Settings Properties

The following Global Settings can be made:

❏ Target Board Name. The type of board on which your target chip is

mounted

❏ DSP MIPS (CLKOUT). This number, times 1000000, is the number of

instructions the processor can execute in 1 second. This value is used by

the CLK manager to calculate register settings for the on-chip timers.

❏ PMST(6-0). The low seven bits of the PMST register (MP/MC, OVLY,

AVIS, DROM, CLKOFF, SMUL, and SST). Only the low seven bits can be

directly modified. The high nine bits (IPTR) of the PMST are computed

based on the base address of the VECT memory section.

❏ PMST(15-0). The entire PMST register. PMST(6-0) can be modified

directly. PMST(15-7) are computed based on the base address of the

VECT memory section.

❏ DSP Type. The target CPU type. If you are using a custom board, you

can type a value in this field. Type the number after the C in the chip

model. For example, type 54 for a ’C54x chip.

❏ Function Call Model. This setting controls which libraries are used to

link the application. If you change this setting, you must set the compiler

and linker options to correspond. Use the far option only with ’C54x chips

that support extended addressing (e.g., 5402, 549, 5410).

❏ C Autoinitialization Model. Select the run-time initialization model

Global Settings Global settings manager

HST Module

API Functions 6-17

Functions

❏ HST_getpipe. Get corresponding pipe object

Description

The HST module manages host channel objects, which allow an application

to stream data between the target and the host. Host channels are statically

configured for input or output. Input channels (also called the source) read

data from the host to the target. Output channels (also called the sink)

transfer data from the target to the host.

Note:

HST channel names cannot start with a leading underscore (_).

Each host channel is internally implemented using a data pipe (PIP) object.

To use a particular host channel, the program uses HST_getpipe to get the

corresponding pipe object and then transfers data by calling the PIP_get and

PIP_free operations (for input) or PIP_alloc and PIP_put operations (for

output).

During early development—especially when testing software interrupt

processing algorithms—programs can use host channels to input canned

data sets and to output the results. Once the algorithm appears sound, you

can replace these host channel objects with I/O drivers for production

hardware built around DSP/BIOS pipe objects. By attaching host channels as

probes to these pipes, you can selectively capture the I/O channels in real

time for off-line and field-testing analysis.

The notify function is called from the context of the code that calls PIP_free

or PIP_put. This function may be written in C or assembly. The code that calls

PIP_free or PIP_put should preserve any necessary registers.

The other end of the host channel is managed by the LNK_dataPump IDL

object. Thus, a channel can only be used when some CPU capacity is

available for IDL thread execution.

HST Manager Properties

The following global parameters can be set for the HST module:

❏ Object Memory. The memory segment that contains the HST objects

❏ Host Link Type. The underlying physical link to be used for host-target

data transfer

HST Module Host input/output manager

HST Module

6-18

HST Object Properties

A host channel maintains a buffer partitioned into a fixed number of fixed

length frames. All I/O operations on these channels deal with one frame at a

time; although each frame has a fixed length, the application may put a

variable amount of data in each frame.

The following fields can be set for a host file object:

❏ comment. Type a comment to identify this HST object

❏ mode. The type of channel: input or output. Input channels are used by

the target to read data from the host; output channels are used by the

target to transfer data from the target to the host.

❏ bufseg. The memory segment from which the buffer is allocated; all

frames are allocated from a single contiguous buffer (of size framesize x

numframes).

❏ bufalign. The alignment (in words) of the buffer allocated within the

specified memory segment

❏ framesize. The length of each frame (in words)

❏ numframes. The number of frames

❏ statistics. Check this box if you want to monitor this channel with an STS

object. You can display the STS object for this channel to see a count of

the number of frames transferred with the Statistics View plug-in.

❏ notify. The function to execute when a frame of data for an input channel

(or free space for an output channel) is available. To avoid problems with

recursion, this function should not directly call any of the PIP module

functions for this HST object.

❏ arg0, arg1. Two 16-bit arguments passed to the notify function. They can

be either unsigned 16-bit constants or symbolic labels.

HST Module

API Functions 6-19

HST - Host Channel Control Interface

If you are using host channels, you need to use the Host Channel Control to

bind each channel to a file on your host computer and start the channels.

1) Choose the Tools→DSP/BIOS→Host Channel Control menu item. You

see a window that lists your host input and output channels.

2) Right-click on a channel and choose Bind from the pop-up menu.

3) Select the file to which you want to bind this channel. For an input

channel, select the file that contains the input data. For an output

channel, you can type the name of a file that does not exist or choose any

file that you want to overwrite.

4) Right-click on a channel and choose Start from the pop-up menu. For an

input channel, this causes the host to transfer the first frame of data and

causes the target to run the function for this HST object. For an output

channel, this causes the target to run the function for this HST object.

HST_getpipe

6-20

C Interface

Syntax PIP_Obj *HST_getpipe(HST_Obj *hst);

Parameters HST_Obj *host /* host object */

Return Value PIP_Obj *pipe /* corresponding pipe */

Assembly Interface

Syntax HST_getpipe

Preconditions ar2 = address of the host channel object

Postconditions ar2 = address of the pipe object

Modifies ar2, c

Reentrant yes

Description

HST_getpipe gets the address of the pipe object for the specified host

channel object.

Example

Void copy(HST_Obj *input, HST_Obj *output)

{

 PIP_Obj *in, *out;

 Uns *src, *dst;

 Uns size;

 in = HST_getpipe(input);

 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames() == 0 || PIP_getWriterNumFrames() == 0) {

 error();

 }

 /* get input data and allocate output frame */

 PIP_get(in);

 PIP_alloc(out);

 /* copy input data to output frame */

 src = PIP_getReaderAddr(in);

 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize;

 out->writerSize = size;

HST_getpipe Get corresponding pipe object

HST_getpipe

API Functions 6-21

 for (; size > 0; size--) {

 *dst++ = *src++;

 }

 /* output copied data and free input frame */

 PIP_put(out);

 PIP_free(in);

}

See Also

PIP_alloc

PIP_free

PIP_get

PIP_put

HWI Module

6-22

Functions

❏ HWI_disable. Disable hardware interrupts
❏ HWI_enable. Enable hardware interrupts
❏ HWI_enter. Hardware ISR prolog
❏ HWI_exit. Hardware ISR epilog
❏ HWI_restore. Restore hardware interrupt state

Description

The HWI module manages hardware interrupts. Using the Configuration Tool,

you can assign routines that run when specific hardware interrupts occur.

Some routines are assigned to interrupts automatically by the HWI module.

For example, the interrupt for the timer is automatically configured to run a

macro that increments the low-resolution time. See the CLK module for more

details.

Interrupt routines can be written in assembly language, or a mix of assembly

and C. Within an HWI function, the HWI_enter assembly macro must be

called prior to any DSP/BIOS API calls that could post or affect a software

interrupt. HWI functions can post software interrupts, but they do not run until

your HWI function calls the HWI_exit assembly macro, which must be the last

statement in any HWI function that calls HWI_enter.

Note: Do not call SWI_disable or SWI_enable within an HWI function.

Note: Do not call HWI_enter, HWI_exit, or any other DSP/BIOS functions

from a non-maskable interrupt (NMI) service routine.

Note: You must use HWI_disable and HWI_enable to bracket a block of

code that atomically makes DSP/BIOS API calls.

The DSP/BIOS API calls that require an HWI function to use HWI_enter and

HWI_exit are:

❏ SWI_andn
❏ SWI_dec
❏ SWI_inc
❏ SWI_or
❏ SWI_post
❏ PIP_alloc
❏ PIP_free
❏ PIP_get
❏ PIP_put
❏ PRD_tick

HWI Module Hardware interrupt manager

HWI Module

API Functions 6-23

Note: Any PIP API call can cause the pipe’s notifyReader or notifyWriter

function to run. If an HWI function calls a PIP function, the notification

functions run as part of the HWI function.

Note: An HWI function must use HWI_enter if it indirectly runs a function

containing any of the API calls listed above.

If your HWI function and the functions it calls do not call any of these API

operations, you do not need to disable software interrupt scheduling by calling

HWI_enter and HWI_exit.

The mask argument to HWI_enter and HWI_exit allows you to save and

restore registers used within the function.

Hardware interrupts always interrupt software interrupts unless hardware

interrupts have been disabled with HWI_disable.

Note: By using HWI_enter and HWI_exit as an HWI function’s prolog and

epilog, an HWI function can be interrupted; i.e., a hardware interrupt can

interrupt another interrupt. You can use the IMRDISABLEMASK parameter

for the HWI_enter API to prevent this from occurring.

HWI Manager Properties

DSP/BIOS manages the hardware interrupt vector table and provides basic

hardware interrupt control functions; e.g., enabling and disabling the

execution of hardware interrupts.

The following global parameter can be set for the HWI module:

❏ Function Stub Memory. Select the memory segment where the dispatch

code should be placed for interrupt service routines that are configured

to be monitored

❏ Interrupt Vector Memory. Select the memory segment where the

interrupt vector should be placed.

HWI Object Properties

The following fields can be set for a hardware interrupt service routine object:

❏ comment. A comment is provided to identify each HWI object

❏ interrupt source. Select the pin, DMA channel, timer, or other source of

the interrupt

❏ function. The function to execute. Interrupt routines must be written in

assembly language. Within an HWI function, the HWI_enter assembly

HWI Module

6-24

macro must be called prior to any DSP/BIOS API calls that could post or

affect a software interrupt. HWI functions can post software interrupts, but

they do not run until your HWI function calls the HWI_exit assembly

macro, which must be the last statement in any HWI function that calls

HWI_enter.

❏ monitor. If set to anything other than Nothing, an STS object is created

for this ISR that is passed the specified value on every invocation of the

interrupt service routine. The STS update occurs just before entering the

ISR.

❏ addr. If the monitor field above is set to Data Address, this field lets you

specify a data memory address to be read; the word-sized value is read

and passed to the STS object associated with this HWI object

❏ type. The type of the value to be monitored: unsigned or signed. Signed

quantities are sign extended when loaded into the accumulator; unsigned

quantities are treated as word-sized positive values.

❏ operation. The operation to be performed on the value monitored. You

can choose one of several STS operations.

Although it is not possible to create new HWI objects, most interrupts

supported by the chip architecture have a precreated HWI object. Your

application may require that you select interrupt sources other than the

default values in order to rearrange interrupt priorities or to select previously

unused interrupt sources.

The following table lists, in priority order (highest to lowest), these precreated

objects and their default interrupt sources. The HWI object names are the

same as the interrupt names.

HWI Module

API Functions 6-25

HWI interrupts for the TMS320C54x:

HWI - DSP/BIOS Plug-ins Interface

Time spent performing HWI functions is not directly traced for performance

reasons. However, the Other Threads row in the Execution Graph, which you

can open by choosing Tools→DSP/BIOS→Execution Graph, includes time

spent performing both HWI and IDL functions.

In addition, if you set the HWI object properties to perform any STS

operations on a register, address, or pointer, you can track time spent

performing HWI functions in the Statistics View window, which you can open

by choosing Tools→DSP/BIOS→Statistics View.

Name intrid Interrupt Type

HWI_RS 0 Reset interrupt.

HWI_NMI 1 Nonmaskable interrupt.

HWI_SINT17-30 2-15

User defined software interrupts #17 through #30.

These interrupt service routines are only triggered

by the intr instruction from within the application.

These software interrupts are executed immedi-

ately upon being triggered.

HWI_INT0 16 External user interrupt #0.

HWI_INT1 17 External user interrupt #1.

HWI_INT2 18 External user interrupt #2.

HWI_TINT 19 Internal timer interrupt.

HWI_SINT4-15 20-31
These interrupts can be used by various ’C54x

peripherals.

HWI_disable

6-26

C Interface

Syntax oldST1 = HWI_disable(Void);

Parameters Void

Return Value Uns oldST1;

Assembly Interface

Syntax HWI_disable

Preconditions none

Postconditions intm = 1 (with 2 cycles of latency)

Modifies c, intm

Reentrant yes

Description

HWI_disable disables hardware interrupts by setting the intm bit in the status

register. Call HWI_disable before a portion of a function that needs to run

without interruption. When critical processing is complete, call HWI_enable to

reenable hardware interrupts.

Interrupts that occur while interrupts are disabled are postponed until

interrupts are reenabled. However, if the same type of interrupt occurs several

times while interrupts are disabled, the interrupt’s function is executed only

once when interrupts are reenabled.

Constraints and Calling Context

❏ HWI_disable cannot be called from an ISR context.

Example
old = HWI_disable();

 'do some critical operation'

HWI_restore(old);

See Also

HWI_enable

SWI_disable

SWI_enable

HWI_disable Disable hardware interrupts

HWI_enable

API Functions 6-27

C Interface

Syntax Void HWI_enable(Void);

Parameters Void

Return Value Void

Assembly Interface

Syntax HWI_enable

Preconditions none

Postconditions intm = 0 (with 2 cycles of latency)

Modifies c, intm, tc

Reentrant yes

Description

HWI_enable enables hardware interrupts by clearing the intm bit in the status

register.

Hardware interrupts are enabled unless a call to HWI_disable disables them.

Interrupts that occur while interrupts are disabled are postponed until

interrupts are reenabled. However, if the same type of interrupt occurs several

times while interrupts are disabled, the interrupt’s function is executed only

once when interrupts are reenabled.

Any call to HWI_enable enables interrupts, even if HWI_disable has been

called several times.

Constraints and Calling Context

❏ HWI_enable cannot be called from an ISR context.

Example
HWI_disable();

"critical processing takes place"

HWI_enable();

"non-critical processing"

See Also

HWI_disable

SWI_disable

SWI_enable

HWI_enable Enable interrupts

HWI_enter

6-28

C Interface

Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_enter MASK IMRDISABLEMASK

Preconditions intm = 1

Postconditions dp = GBL_A_SYSPAGE

cpl = ovm = c16 = frct = cmpt = 0

Modifies c, cpl, dp, sp

Reentrant yes

Description

HWI_enter is an API (assembly macro) used to save the appropriate context

for a DSP/BIOS interrupt service routine (ISR). HWI_enter must be used in

an ISR before any DSP/BIOS API calls which could trigger a software

interrupt; e.g., SWI_post. HWI_enter is used in tandem with HWI_exit to

ensure that the DSP/BIOS SWI manager is called at the appropriate time.

Normally, HWI_enter and HWI_exit must surround all statements in any

DSP/BIOS assembly language ISRs.

One common mask, C54_CNOTPRESERVED, is defined in c54.h54. This

mask specifies the C temporary registers and should be used when saving

the context for an ISR that is written in C.

Constraints and Calling Context

❏ This API should not be used for the NMI HWI function.

❏ This API must be called within any hardware interrupt function (except

NMI’s HWI function) before the first operation in an ISR that uses any

DSP/BIOS API calls that might post or affect a software interrupt. Such

functions must be written in assembly language.

❏ If an interrupt function calls HWI_enter, it must end by calling HWI_exit.

HWI_enter Hardware ISR prolog

HWI_enter

API Functions 6-29

Example

CLK_isr:

HWI_enter C54_CNOTPRESERVED, 0008h

HWI_exit C54_CNOTPRESERVED, 0008h

See Also

HWI_exit

HWI_exit

6-30

C Interface

Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_exit MASK IMRRESTOREMASK

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

intm = 1 (i.e., interrupts are disabled)

Postconditions intm = 0

Modifies Restores all registers saved with the HWI_enter mask

Reentrant yes

Description

HWI_exit is an API (assembly macro) which is used to restore the context that

existed before a DSP/BIOS interrupt service routine (ISR) was invoked.

HWI_exit must be the last statement in an ISR that uses DSP/BIOS API calls

which could trigger a software interrupt; e.g., SWI_post.

HWI_exit restores the registers specified by MASK. MASK is used to specify

the set of registers that were saved by HWI_enter.

HWI_enter and HWI_exit must surround all statements in any DSP/BIOS

assembly language ISRs that call C functions.

HWI_exit calls the DSP/BIOS Software Interrupt manager if DSP/BIOS itself

is not in the middle of updating critical data structures, if no currently

interrupted ISR is also in a HWI_enter/ HWI_exit region. The DSP/BIOS SWI

manager services all pending SWI handlers (functions).

Of the interrupts in IMRRESTOREMASK, HWI_exit only restores those that

were enabled upon entering the ISR. HWI_exit does not affect the status of

interrupt bits that are not in IMRRESTOREMASK.

If upon exiting an ISR you do not wish to restore one of the interrupts that

were disabled with HWI_enter, do not set that interrupt bit in the

IMRRESTOREMASK in HWI_exit.

HWI_exit Hardware ISR epilog

HWI_exit

API Functions 6-31

If upon exiting an ISR you do wish to enable an interrupt that was disabled

upon entering the ISR, set the corresponding bit in IMRRESTOREMASK

before calling HWI_exit. (Including the IMR bit in the IMRRESTOREMASK of

HWI_exit does not have the effect of enabling the interrupt if it was disabled

when the ISR was entered.)

Constraints and Calling Context

❏ This API should not be used for the NMI HWI function.

❏ This API must be the last operation in an ISR that uses any DSP/BIOS

API calls. Basically, this API must be called at the end of a function used

to process a hardware interrupt. Such functions must be written in

assembly language.

❏ The MASK parameter must match the corresponding parameter used for

HWI_enter.

Example

CLK_isr:

HWI_enter C54_CNOTPRESERVED, 0008h

PRD_tick

HWI_exit C54_CNOTPRESERVED, 0008h

See Also

HWI_enter

HWI_restore

6-32

C Interface

Syntax Void HWI_restore(oldST1);

Parameters Uns oldST1;

Returns Void

Assembly Interface

Syntax HWI_restore

Preconditions al = mask (intm is set to the value of bit 11)

intm = 1

Postconditions none

Modifies c, intm

Reentrant no

Description

HWI_restore sets the intm bit in the ST1 register using bit 11 of the oldST1

parameter. If bit 11 is 1, the intm bit is not modified. If bit 11 is 0, the intm bit

is set to 0, which enables interrupts.

When you call HWI_disable, the previous contents of the ST1 register are

returned. You can use this returned value with HWI_restore.

Constraints

❏ HWI_restore cannot be called from an ISR context.

Example
oldST1 = HWI_disable(); /* disable interrupts */

 'do some critical operation'

HWI_restore(oldST1); /* re-enable interrupts if

 they were enabled at the

 start of the critical

 section */

See Also

HWI_enable

HWI_disable

HWI_restore Restore global interrupt enable state

IDL Module

API Functions 6-33

Functions

❏ IDL_run. Make one pass through idle functions

Description

The IDL module manages the lowest-level task in the application. This task

executes functions that communicate with the host.

There are three kinds of threads that can be executed by DSP/BIOS

programs: hardware interrupts (HWI module), foreground software interrupts

(SWI module), and background threads (IDL module). Background threads

have the lowest priority, and execute only if no hardware interrupts or software

interrupts need to run.

An application’s main function must return before any software interrupts can

run. After the return, DSP/BIOS runs the idle loop. Once an application is in

this loop, hardware ISRs, SWI software interrupts, PRD periodic functions,

and IDL background threads are all enabled.

The functions for IDL objects registered with the Configuration Tool are run in

sequence each time the idle loop runs. IDL functions are called from the IDL

context. IDL functions can be written in C or assembly and must follow the C

calling conventions described in the compiler manual.

An application always has an IDL_cpuLoad object, which runs a function that

provides data about the CPU utilization of the application. In addition, the

LNK_dataPump function handles host I/O in the background.

The IDL function manager allows you to insert additional functions that are

executed in a loop whenever no other processing (such as hardware ISRs or

higher-priority tasks) is required.

IDL Manager Properties

The following global parameters can be set for the IDL module:

❏ Auto calculate idle loop instruction count. When this box is checked,

the program runs one pass through the IDL functions at system startup

to get an approximate value for the idle loop instruction count. This value,

saved in the global variable CLK_D_idletime, is read by the host and used

in CPU load calculation. The instruction count takes into account all IDL

functions, not just LNK_dataPump, RTA_dispatcher, and IDL_cpuLoad. If

this box is checked, it is important to make sure that the IDL functions do

not block on this first pass, otherwise your program never gets to main.

❏ Object Memory. The memory segment that contains the IDL objects

IDL Module Idle function and processing loop manager

IDL Module

6-34

The following informational field is also displayed for the IDL module:

❏ Idle Loop Instruction Count. The number of instruction cycles required

to perform the IDL loop and the default IDL functions (LNK_dataPump

and IDL_cpuLoad) that communicate with the host.

Since these functions are performed whenever no other processing is

needed, background processing is subtracted from the CPU load before

it is displayed.

IDL Object Properties

Each idle function runs to completion before another idle function can run. It

is important, therefore, to insure that each idle function completes (i.e.,

returns) in a timely manner.

The following fields can be set for an IDL object:

❏ comment. Type a comment to identify this IDL object

❏ function. The function to be executed.

If this function is written in C, use a leading underscore before the C

function name. (The Configuration Tool generates assembly code which

must use the leading underscore when referencing C functions or labels.)

IDL- Execution Graph Interface

Time spent performing IDL functions is not directly traced. However, the Other

Threads row in the Execution Graph, which you can open by choosing

Tools→DSP/BIOS→Execution Graph, includes time spent performing both

HWI and IDL functions.

IDL_run

API Functions 6-35

C Interface

Syntax Void IDL_run(Void)

Parameters Void

Return Value Void

Assembly Interface none

Description

IDL_run makes one pass through the list of configured IDL objects, calling

one function after the next. IDL_run returns after all IDL functions have been

executed one time. IDL_run is not used by most DSP/BIOS applications since

the IDL functions are executed in a loop when the user application returns

from main. IDL_run is provided to allow easy integration of the real-time

analysis features of DSP/BIOS (e.g., LOG and STS) into existing

applications.

IDL_run must be called to transfer the real-time analysis data to and from the

host computer. Though not required, this is usually done during idle time

when no HWI or SWI threads are running.

Note: BIOS_init and BIOS_start must be called before IDL_run to ensure

that DSP/BIOS has been initialized. For example, the DSP/BIOS boot file

contains the following system calls around the call to main:
BIOS_init();/* initialize DSP/BIOS */

main();

BIOS_start();/* start DSP/BIOS */

IDL_loop();/* call IDL_run() in an infinite loop */

IDL_run Make one pass through idle functions

LOG Module

6-36

Functions

❏ LOG_disable. Disable the system log
❏ LOG_enable. Enable the system log
❏ LOG_error. Write a user error event to the system log
❏ LOG_event. Append unformatted message to message log
❏ LOG_message. Write a user message event to the system log
❏ LOG_printf. Append formatted message to message log
❏ LOG_reset. Reset the system log

Description

The Message Log manager is used to capture events in real time while the

target program executes. You can use the system log or create user-defined

logs. If the logtype is circular, the log buffer of size buflen contains the last

buflen elements. If the logtype is fixed, the log buffer contains the first buflen

elements.

The system log stores messages about system events for the types of log

tracing you have enabled. See the TRC Module, page 6-120, for a list of

events that can be traced in the system log.

You can add messages to user logs or the system log by using LOG_printf or

LOG_event. To reduce execution time, log data is always formatted on the

host. Calls that access LOG objects return in less than 2 microseconds.

LOG_error writes a user error event to the system log. This operation is not

affected by any TRC trace bits; an error event is always written to the system

log. LOG_message writes a user message event to the system log, provided

that both TRC_GBLHOST and TRC_GBLTARG (the host and target trace

bits, respectively) traces are enabled.

When a problem is detected on the target it is valuable to put a message in

the system log. This allows you to correlate the occurrence of the detected

event with the other system events in time. LOG_error and LOG_message

can be used for this purpose.

Log buffers are of a fixed size and reside in data memory. Individual

messages use four words of storage in the log’s buffer. The first word holds a

sequence number that allows the Message Log to display logs in the correct

order. The remaining three words contain data specified by the call that wrote

the message to the log.

See the TMS320C54x Code Composer Studio Tutorial for examples of how

to use the LOG manager.

LOG Module Message Log manager

LOG Module

API Functions 6-37

LOG Manager Properties

The following global parameter can be set for the LOG module:

❏ Object Memory. The memory segment that contains the LOG objects

LOG Object Properties

The following fields can be set for a log object:

❏ comment. Type a comment to identify this LOG object

❏ bufseg. The name of a memory segment to contain the log buffer

❏ buflen. The length of the log buffer (in words)

❏ logtype. The type of the log: circular or fixed. Events added to a full

circular log overwrite the oldest event in the buffer, whereas events added

to a full fixed log are dropped.

■ Fixed. The log stores the first messages it receives and stops

accepting messages when its message buffer is full

■ Circular. The log automatically overwrites earlier messages when its

buffer is full. As a result, a circular log stores the last events that

occur.

❏ datatype. Choose printf if you use LOG_printf to write to this log and

provide a format string.

Choose raw data if you want to use LOG_event to write to this log and

have the Message Log apply a printf-style format string to all records in

the log.

❏ format. If you choose raw data as the datatype, type a printf-style format

string in this field. Provide up to three (3) conversion characters (such as

%d) to format words two, three, and four in all records in the log. Do not

put quotes around the format string. The format string can use %d, %x,

%o, %s, and %r conversion characters; it cannot use other types of

conversion characters.

See LOG_printf, page 6-45, and LOG_event, page 6-43, for information

about the structure of a log record.

LOG Module

6-38

LOG - DSP/BIOS Plug-ins Interface

You can view log messages in real time while your program is running with

the Message Log. To see the system log as a graph, choose

Tools→DSP/BIOS→Execution Graph. To see a user log, choose

Tools→DSP/BIOS→Message Log and select the log or logs you want to see.

You can also control how frequently the host polls the target for log

information. Right-click on the RTA Control Panel and choose the Property

Page to set the refresh rate. If you set the refresh rate to 0, the host does not

poll the target unless you right-click on the log window and choose Refresh

Window from the pop-up menu.

LOG_disable

API Functions 6-39

C Interface

Syntax Void LOG_disable(LOG_Obj *log);

Parameters LOG_Obj *log /* log to be disabled */

Return Value Void

Assembly Interface

Syntax LOG_disable

Preconditions ar2 = address of the LOG object

Postconditions none

Modifies c

Reentrant no

Description

LOG_disable disables the logging mechanism and prevents the log buffer

from being modified.

Example
LOG_disable(&trace);

See Also

LOG_enable

LOG_reset

LOG_disable Disable a message log

LOG_enable

6-40

C Interface

Syntax Void LOG_enable(LOG_Obj *log);

Parameters LOG_Obj *log /* log to be enabled */

Return Value Void

Assembly Interface

Syntax LOG_enable

Preconditions ar2 = address of the LOG object

Postconditions none

Modifies c

Reentrant no

Description

LOG_enable enables the logging mechanism and allows the log buffer to be

modified.

Example
LOG_enable(&trace);

See Also

LOG_disable

LOG_reset

LOG_enable Enable a message log

LOG_error, LOG_message

API Functions 6-41

C Interface

Syntax Void LOG_error(String format, Arg arg0);

Void LOG_message(String format, Arg arg0);

Parameters String format; /* printf-style format string */

Arg arg0; /* copied to second word of log record */

Return Value Void

Assembly Interface

Syntax LOG_error format [section]; LOG_message format [section]

Preconditions bh = arg0

dp = GBL_A_SYSPAGE

Postconditions none (see the description of the section argument below)

Modifies ag, ah, al, ar0, ar2, ar3, bl, c, t, tc

Reentrant yes

Description

LOG_error writes a program-supplied error message to the system log, which

is defined in the default configuration by the LOG_system object. LOG_error

is not affected by any TRC bits; an error event is always written to the system

log.

LOG_message writes a program-supplied message to the system log,

provided that both the host and target trace bits are enabled.

The format argument passed to LOG_error and LOG_message may contain

any of the conversion characters supported for LOG_printf. See LOG_printf,
page 6-45, for details.

The LOG_error and LOG_message assembly macros take an optional

section argument. If you do not specify a section argument, assembly code

following the macros is assembled into the .text section by default. If you do

not want your program to be assembled into the .text section, you should

specify the desired section name when calling the macros.

LOG_error,
LOG_message

Write a message to the system log

LOG_error, LOG_message

6-42

Example
/* ======== UTL_doError ======== */

Void UTL_doError(String s, Int errno)

{

 LOG_error("SYS_error called: error id = 0x%x", errno);

 LOG_error("SYS_error called: string = '%s'", s);

}

See Also

LOG_event

LOG_printf

TRC_disable

TRC_enable

LOG_event

API Functions 6-43

C Interface

Syntax Void LOG_event(LOG_Obj *log, Arg arg0, Arg arg1, Arg arg2);

Parameters LOG_Obj *log; /* log handle */

Arg arg0; /* copied to second word of log record */

Arg arg1; /* copied to third word of log record */

Arg arg2; /* copied to fourth word of log record */

Return Value Void

Assembly Interface

Syntax LOG_event

Preconditions ar2 = address of the LOG object

bh = arg0

bl = arg1

t = arg2

Postconditions none

Modifies ag, ah, al, ar0, ar2, ar3, c, tc

Reentrant yes

Description

LOG_event copies a sequence number and three arguments to the specified

log’s buffer. Each log message uses four words. The contents of these four

words written by LOG_event are shown here:

You can format the log by using LOG_printf instead of LOG_event.

If you want the Message Log to apply the same printf-style format string to all

records in the log, use the Configuration Tool to choose raw data for the Data

type property of this log object and typing a format string for the Format

property.

If the logtype is circular, the log buffer of size buflen contains the last buflen

elements. If the logtype is fixed, the log buffer contains the first buflen

elements.

LOG_event Append an unformatted message to a message log

S e qu ence # arg0 arg1 arg2LO G _ eve n t

LOG_event

6-44

Any combination of threads can write to the same log. Internally, hardware

interrupts are temporarily disabled during a call to LOG_event. Log messages

are never lost due to thread preemption.

Example
LOG_event(&trace, value1, value2, (Arg)CLK_gethtime());

See Also

LOG_error

LOG_printf

TRC_disable

TRC_enable

LOG_printf

API Functions 6-45

C Interface

Syntax Void LOG_printf(LOG_Obj *log, String format);

 or

Void LOG_printf(LOG_Obj *log, String format, Int arg0);

 or

Void LOG_printf(LOG_Obj *log, String format, Int arg0, Int arg1);

Parameters LOG_Obj *log; /* log handle */

String format; /* printf format stringb */

Arg arg0; /* value for first format string token */

Arg arg1; /* value for second format string token */

Return Value Void

Assembly Interface

Syntax LOG_printf format [section]

Preconditions ar2 = address of the LOG object

bh = arg0

bl = arg1

Postconditions none

Modifies ag, ah, al, ar0, ar2, ar3, c, t, tc

Reentrant yes

Description

As a convenience for C (as well as assembly language) programmers, the

LOG module provides a variation of the ever-popular printf. LOG_printf copies

a sequence number, the format address, and two arguments to the specified

log’s buffer.

To reduce execution time, log data is always formatted on the host. The format

string is stored on the host and accessed by the Message Log.

LOG_printf Append a formatted message to a message log

LOG_printf

6-46

The arguments passed to LOG_printf must be integers, strings, or a pointer

if the special %r conversion character is used. The format string can use the

following conversion characters:

If you want the Message Log to apply the same printf-style format string to all

records in the log, use the Configuration Tool to choose raw data for the Data

type property of this log object and typing a format string for the Format

property.

Conversion

Character Description

%d Signed integer

%x Unsigned hexadecimal integer

%o Unsigned octal integer

%s

Character string

This character can only be used with constant string pointers. That is, the string must

appear in the source and be passed to LOG_printf. For example, the following is sup-

ported:

char *msg = "Hello world!";

LOG_printf(&trace, "%s", msg);

However, the following example is not supported:

char msg[100];

strcpy(msg, "Hello world!");

LOG_printf(&trace, "%s", msg);

If the string appears in the COFF file and a pointer to the string is passed to LOG_printf,

then the string in the COFF file is used by the Message Log to generate the output.

If the string can not be found in the COFF file, the format string is replaced with ***

ERROR: 0x%x 0x%x ***\n, which displays all arguments in hexadecimal.

%r

Symbol from symbol table

This is an extension of the standard printf format tokens. This character treats its param-

eter as a pointer to be looked up in the symbol table of the executable and displayed.

That is, %r displays the symbol (defined in the executable) whose value matches the

value passed to %r. For example:

Int testval = 17;

LOG_printf("%r = %d", &testval, testval);

displays:

testval = 17

If no symbol is found for the value passed to %r, the Message Log uses the string

<unknown symbol>.

LOG_printf

API Functions 6-47

The LOG_printf assembly macro takes an optional section parameter. If you

do not specify a section parameter, assembly code following the LOG_printf

macro is assembled into the .text section by default. If you do not want your

program to be assembled into the .text section, you should specify the desired

section name as the second parameter to the LOG_printf call.

Each log message uses 4 words. The contents of these four words written by

LOG_printf are shown here:

You configure the characteristics of a log in the Configuration Tool. If the

logtype is circular, the log buffer of size buflen contains the last buflen

elements. If the logtype is fixed, the log buffer contains the first buflen

elements.

Any combination of threads can write to the same log. Internally, hardware

interrupts are temporarily disabled during a call to LOG_printf. Log messages

are never lost due to thread preemption.

Constraints and Calling Context

❏ LOG_printf (even the C version) supports 0, 1, or 2 arguments after the

format string.

Example
LOG_printf(&trace, "hello world");

LOG_printf(&trace, "Current time: %d", (Arg)CLK_getltime());

See Also

LOG_error

LOG_event

TRC_disable

TRC_enable

S e qu ence #
Fo rm a t
ad dre ss

arg0 arg1LO G _ prin tf

LOG_reset

6-48

C Interface

Syntax Void LOG_reset(LOG_Obj *log);

Parameters LOG_Obj *log /* log to be reset */

Return Value Void

Assembly Interface

Syntax LOG_reset

Preconditions ar2 = address of the LOG object

Postconditions none

Modifies ag, ah, al, ar3, ar4, c

Reentrant no

Description

LOG_reset enables the logging mechanism and allows the log buffer to be

modified starting from the beginning of the buffer, with sequence number

starting from 0.

LOG_reset does not disable interrupts or otherwise protect the log from being

modified by an ISR or other thread. It is therefore possible for the log to

contain inconsistent data if LOG_reset is preempted by an ISR or other

thread that uses the same log.

Example
LOG_reset(&trace);

See Also

LOG_disable

LOG_enable

LOG_reset Reset a message log

MEM Module

API Functions 6-49

Functions

None

Description

The MEM manager allows you to specify the memory sections required to

locate the various code and data sections of a DSP/BIOS application.

MEM Manager Properties

The DSP/BIOS memory section manager allows you to specify the memory

segments required to locate the various code and data sections of a

DSP/BIOS application.

The following global parameters can be set for the MEM module:

❏ Reuse startup code space. If this box is checked, the startup code

section (.sysinit) can be reused after startup is complete

❏ Stack Size (MAUs). The size of the software stack in MAUs. This value

is shown in hex.

The Configuration Tool status bar shows the estimated minimum stack

size required for this application (as a decimal number).

❏ Stack Section (.stack). The memory segment containing the software

stack

❏ Constant Section (.const). The memory segment containing the .const

section generated by the C compiler to hold program constants such as

string constants; if the C compiler is not used, this parameter is unused.

❏ Text Section (.text). The memory segment containing the application

code

❏ BIOS Code Section (.bios). The memory segment containing the

DSP/BIOS code

❏ Data Sections (.data, .switch, .cio, .sysmem). These data sections

contain program data, C switch statements, C standard I/O buffers, and

the memory heap used by malloc and free.

❏ Startup Code Section (.sysinit). The memory segment containing

DSP/BIOS startup initialization code; this memory may be reused after

main() starts executing

❏ C Initialization Section (.cinit). The memory segment containing the

.cinit section, to hold initialization records for C run-time autoinitialization

❏ Uninitialized Sections (.bss, .far). The memory segment containing the

.bss, .far, and .sysdata sections

MEM Module Memory section manager

MEM Module

6-50

MEM Object Properties

A memory segment represents a contiguous length of code or data memory

in the address space of the processor. A MEM object has the following fields.

The values in these fields cannot be changed; they are set automatically to

match the board you choose for the Global Settings.

❏ comment. Type a comment to identify this MEM object

❏ base. The address at which this memory segment begins. This value is

shown in hex.

❏ len. The length of this memory segment in words. This value is shown in

hex.

❏ space. Type of memory segment. This is set to code for memory

segments that store programs, and data for memory segments that store

program data.

The following memory segments are predefined:

Name Memory Segment Type

VECT Interrupt vector memory

EPROG0 External program memory

EPROG1 External program memory

IPROG Internal program memory

USERREGS
Application on-chip page 0 memory mapped registers;

this segment cannot be moved or resized.

BIOSREGS
DSP/BIOS on-chip page 0 memory mapped registers;

this segment cannot be moved or resized.

BIOSDATA DSP/BIOS data page

IDATA On-chip data memory

EDATA External data memory

PIP Module

API Functions 6-51

Functions

❏ PIP_alloc. Get an empty frame from the pipe
❏ PIP_free. Recycle a frame back to the pipe
❏ PIP_get. Get a full frame from the pipe
❏ PIP_getReaderAddr. Get the value of the readerAddr pointer of the pipe
❏ PIP_getReaderNumFrames. Get the number of pipe frames available

for reading
❏ PIP_getReaderSize. Get the number of words of data in a pipe frame
❏ PIP_getWriterAddr. Get the value of the writerAddr pointer of the pipe
❏ PIP_getWriterNumFrames. Get the number of pipe frames available to

write to
❏ PIP_getWriterSize. Get the number of words that can be written to a

pipe frame
❏ PIP_put. Put a full frame into the pipe
❏ PIP_setWriterSize. Set the number of valid words written to a pipe frame

PIP_Obj Structure Members

❏ Ptr readerAddr. Pointer to the address to begin reading from after calling

PIP_get
❏ Uns readerSize. Number of words of data in the frame read with PIP_get
❏ Uns readerNumFrames. Number of frames available to be read
❏ Ptr writerAddr. Pointer to the address to begin writing to after calling

PIP_alloc
❏ Uns writerSize. Number of words available in the frame allocated with

PIP_alloc
❏ Uns writerNumFrames. Number of frames available to be written to

Description

The PIP module manages data pipes, which are used to buffer streams of

input and output data. These data pipes provide a consistent software data

structure you can use to drive I/O between the DSP chip and all kinds of

real-time peripheral devices.

Each pipe object maintains a buffer divided into a fixed number of fixed length

frames, specified by the numframes and framesize properties. All I/O

operations on a pipe deal with one frame at a time; although each frame has

a fixed length, the application may put a variable amount of data in each frame

up to the length of the frame.

PIP Module Data pipe manager

PIP Module

6-52

A pipe has two ends, as shown in the following figure. The writer end (also

called the producer) is where your program writes frames of data. The reader

end (also called the consumer) is where your program reads frames of data.

Internally, pipes are implemented as a circular list; frames are reused at the

writer end of the pipe after PIP_free releases them.

The notifyReader and notifyWriter functions are called from the context of the

code that calls PIP_put or PIP_free. These functions may be written in C or

assembly. To avoid problems with recursion, the notifyReader and

notifyWriter functions should not directly call any of the PIP module functions

for the same pipe. Instead, they should post a software interrupt that uses the

PIP module functions.

Note: When DSP/BIOS starts up, it calls the notifyWriter function internally

for each created pipe object to initiate the pipe’s I/O.

The code that calls PIP_free or PIP_put should preserve any necessary

registers.

Often one end of a pipe is controlled by a hardware ISR and the other end is

controlled by a SWI function.

HST objects use PIP objects internally for I/O between the host and the

target. Your program only needs to act as the reader or the writer when you

use an HST object, because the host controls the other end of the pipe.

Pipes can also be used to transfer data within the program between two

application threads.

ReaderW riter

1 . P IP _a lloc
2 . P u ts d a ta in to fra m e
3. P IP _p u t (ru ns no tifyR ead er)

1 . P IP _g e t
2 . U ses da ta

3 . P IP _ free (ru ns no tifyW rite r)

PIP Module

API Functions 6-53

PIP Manager Properties

The pipe manager manages objects that allow the efficient transfer of frames

of data between a single reader and a single writer. This transfer is often

between a hardware ISR and an application software interrupt, but pipes can

also be used to transfer data between two application threads.

The following global parameter can be set for the PIP module:

❏ Object Memory. The memory segment that contains the PIP objects.

PIP Object Properties

A pipe object maintains a single contiguous buffer partitioned into a fixed

number of fixed length frames. All I/O operations on a pipe deal with one

frame at a time; although each frame has a fixed length, the application may

put a variable amount of data in each frame (up to the length of the frame).

The following fields can be set for a pipe object:

❏ comment. Type a comment to identify this PIP object

❏ bufseg. The memory segment that the buffer is allocated within; all

frames are allocated from a single contiguous buffer (of size framesize x

numframes)

❏ bufalign. The alignment (in words) of the buffer allocated within the

specified memory segment

❏ framesize. The length of each frame (in words)

❏ numframes. The number of frames

❏ monitor. The end of the pipe to be monitored by a hidden STS object.

Can be set to reader, writer, or nothing. In the Statistics View plug-in, your

choice determines whether the STS display for this pipe shows a count

of the number of frames handled at the reader or writer end of the pipe.

❏ notifyWriter. The function to execute when a frame of free space is

available. This function should notify (e.g., by calling SWI_andn) the

object that writes to this pipe that an empty frame is available.

The notifyWriter function is performed as part of the thread that called

PIP_free or PIP_alloc. To avoid problems with recursion, the notifyWriter

function should not directly call any of the PIP module functions for the

same pipe.

❏ nwarg0, nwarg1. Two 16-bit arguments passed to notifyWriter; these

arguments can each be either an unsigned 16-bit constant or a symbolic

label

PIP Module

6-54

❏ notifyReader. The function to execute when a frame of data is available.

This function should notify (e.g., by calling SWI_andn) the object that

reads from this pipe that a full frame is ready to be processed.

The notifyReader function is performed as part of the thread that called

PIP_put or PIP_get. To avoid problems with recursion, the notifyReader

function should not directly call any of the PIP module functions for the

same pipe.

❏ nrarg0, nrarg1. Two 16-bit arguments passed to notifyReader; these

arguments can each be either an unsigned 16-bit constant or a symbolic

label

PIP - DSP/BIOS Plug-ins Interface

To enable PIP accumulators, choose Tools→DSP/BIOS→RTA Control Panel

and put a check in the appropriate box. Then choose

Tools→DSP/BIOS→Statistics View, which lets you select objects for which

you want to see statistics. If you choose a PIP object, you see a count of the

number of frames read from or written to the pipe.

PIP_alloc

API Functions 6-55

C Interface

Syntax Void PIP_alloc(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe to be allocated */

Return Value Void

Assembly Interface

Syntax PIP_alloc

Preconditions ar2 = address of the pipe object

the pipe must contain empty frames before calling PIP_alloc

Postconditions none

Modifies ag, ah, al, ar2, ar3, ar4, ar5, asm, bg, bh, bl, braf, brc, c, ovb, rea, rsa, sxm

Reentrant no

Description

PIP_alloc allocates an empty frame from the pipe object you specify. You can

write to this frame and then use PIP_put to put the frame into the pipe.

If empty frames are available after PIP_alloc allocates a frame, PIP_alloc

runs the function specified by the notifyWriter property of the PIP object. This

function should notify (e.g., by calling SWI_andn) the object that writes to this

pipe that an empty frame is available. The notifyWriter function is performed

as part of the thread that calls PIP_free or PIP_alloc. To avoid problems with

recursion, the notifyWriter function should not directly call any PIP module

functions for the same pipe.

Constraints and Calling Context

❏ Before calling PIP_alloc, a function should check the writerNumFrames

member of the PIP_Obj structure by calling PIP_getWriterNumFrames to

make sure it is greater than 0 (i.e., at least one empty frame is available).

❏ PIP_alloc can only be called one time before calling PIP_put. You cannot

operate on two frames from the same pipe simultaneously.

Example

Void copy(HST_Obj *input, HST_Obj *output)

{

 PIP_Obj *in, *out;

 Uns *src, *dst;

 Uns size;

PIP_alloc Allocate an empty frame from a pipe

PIP_alloc

6-56

 in = HST_getpipe(input);

 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames(in) == 0 || PIP_getWriterNumFrames(out) == 0) {

 error();

 }

 /* get input data and allocate output frame */

 PIP_get(in);

 PIP_alloc(out);

 /* copy input data to output frame */

 src = PIP_getReaderAddr(in);

 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize(in);

 PIP_setWriterSize(out, size);

 for (; size > 0; size--) {

 *dst++ = *src++;

 }

 /* output copied data and free input frame */

 PIP_put(out);

 PIP_free(in);

}

The example for HST_getpipe, page 6-20, also uses a pipe with host channel

objects.

See Also

PIP_free

PIP_get

PIP_put

HST_getpipe

PIP_free

API Functions 6-57

C Interface

Syntax Void PIP_free(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe to be freed */

Return Value Void

Assembly Interface

Syntax PIP_free

Preconditions ar2 = address of the pipe object

Postconditions none

Modifies ag, ah, al, ar2, ar3, ar4, ar5, asm, bg, bh, bl, braf, brc, c, ovb, rea, rsa, sxm,

and any registers modified by the notifyWriter function

Reentrant no

Description

PIP_free releases a frame after you have read the frame with PIP_get. The

frame is recycled so that PIP_alloc can reuse it.

After PIP_free releases the frame, it runs the function specified by the

notifyWriter property of the PIP object. This function should notify (e.g., by

calling SWI_andn) the object that writes to this pipe that an empty frame is

available. The notifyWriter function is performed as part of the thread that

called PIP_free or PIP_alloc. To avoid problems with recursion, the

notifyWriter function should not directly call any of the PIP module functions

for the same pipe.

Example

See the example for PIP_alloc, page 6-55. The example for HST_getpipe,

page 6-20, also uses a pipe with host channel objects.

See Also

PIP_alloc

PIP_get

PIP_put

HST_getpipe

PIP_free Recycle a frame that has been read to a pipe

PIP_get

6-58

C Interface

Syntax Void PIP_get(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe giving a frame */

Return Value Void

Assembly Interface

Syntax PIP_get

Preconditions ar2 = address of the pipe object

the pipe must contain full frames before calling PIP_get

Postconditions none

Modifies ag, ah, al, ar2, ar3, ar4, ar5, asm, bg, bh, bl, braf, brc, c, ovb, rea, rsa, sxm

Reentrant no

Description

PIP_get gets a frame from the pipe after some other function puts the frame

into the pipe with PIP_put.

If full frames are available after PIP_get gets a frame, PIP_get runs the

function specified by the notifyReader property of the PIP object. This

function should notify (e.g., by calling SWI_andn) the object that reads from

this pipe that a full frame is available. The notifyReader function is performed

as part of the thread that calls PIP_get or PIP_put. To avoid problems with

recursion, the notifyReader function should not directly call any PIP module

functions for the same pipe.

Constraints and Calling Context

❏ Before calling PIP_get, a function should check the readerNumFrames

member of the PIP_Obj structure by calling PIP_getReaderNumFrames

to make sure it is greater than 0 (i.e., at least one full frame is available).
❏ PIP_get can only be called one time before calling PIP_free. You cannot

operate on two frames from the same pipe simultaneously.

Example See the example for PIP_alloc, page 6-55. The example for HST_getpipe,

page 6-20, also uses a pipe with host channel objects.

See Also PIP_alloc

PIP_free

PIP_put

HST_getpipe

PIP_get Get a full frame from the pipe

PIP_getReaderAddr

API Functions 6-59

C Interface

Syntax Ptr PIP_getReaderAddr(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Ptr ra

Assembly Interface none

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Description

PIP_getReaderAddr is a C function that returns the value of the readerAddr

pointer of a pipe object.

The readerAddr pointer is normally used following a call to PIP_get, as the

address to begin reading from.

Example
/*

 * ======== audio ========

 */

Void audio(PIP_Obj *in, PIP_Obj *out)

{

 Uns *src, *dst;

 Uns size;

 if (PIP_getReaderNumFrames(in) == 0 ||

 PIP_getWriterNumFrames(out) == 0) {

 error();

 }

 /* get input data and allocate output buffer */

 PIP_get(in);

 PIP_alloc(out);

 /* copy input data to output buffer */

 src = PIP_getReaderAddr(in);

 dst = PIP_getWriterAddr(out);

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe

PIP_getReaderAddr

6-60

 size = PIP_getReaderSize(in);

 PIP_setWriterSize(out,size);

 for (; size > 0; size--) {

 *dst++ = *src++;

 }

 /* output copied data and free input buffer */

 PIP_put(out);

 PIP_free(in);

}

PIP_getReaderNumFrames

API Functions 6-61

C Interface

Syntax Uns PIP_getReaderNumFrames(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of filled frames to be read */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Description

PIP_getReaderNumFrames is a C function that returns the value of the

readerNumFrames element of a pipe object.

Before a function attempts to read from a pipe it should call

PIP_getReaderNumFrames to ensure at least one full frame is available.

Example

See the example for PIP_getReaderAddr, page 6-59.

PIP_getReaderNumFrames Get the number of pipe frames available for reading

PIP_getReaderSize

6-62

C Interface

Syntax Uns PIP_getReaderSize(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of words to be read from filled frame */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Description

PIP_getReaderSize is a C function that returns the value of the readerSize

element of a pipe object.

As a function reads from a pipe it should use PIP_getReaderSize to

determine the number of valid words of data in the pipe frame.

Example

See the example for PIP_getReaderAddr, page 6-59.

PIP_getReaderSize Get the number of words of data in a pipe frame

PIP_getWriterAddr

API Functions 6-63

C Interface

Syntax Ptr PIP_getWriterAddr(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Ptr wa

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Description

PIP_getWriterAddr is a C function that returns the value of the writerAddr

pointer of a pipe object.

The writerAddr pointer is normally used following a call to PIP_alloc, as the

address to begin writing to.

Example

See the example for PIP_getReaderAddr, page 6-59.

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe

PIP_getWriterNumFrames

6-64

C Interface

Syntax Uns PIP_getWriterNumFrames(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of empty frames to be written */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Description

PIP_getWriterNumFrames is a C function that returns the value of the

writerNumFrames element of a pipe object.

Before a function attempts to write to a pipe it should call

PIP_getWriterNumFrames to ensure at least one empty frame is available.

Example

See the example for PIP_getReaderAddr, page 6-59.

PIP_getWriterNumFrames Get the number of pipe frames available to be written to

PIP_getWriterSize

API Functions 6-65

C Interface

Syntax Uns PIP_getWriterSize(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of words to be written in empty frame */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Description

PIP_getWriterSize is a C function that returns the value of the writerSize

element of a pipe object.

As a function writes to a pipe it can use PIP_getWriterSize to determine the

maximum number words that can be written to a pipe frame.

Example
if (PIP_getWriterNumFrames(rxPipe) > 0) {

 PIP_alloc(rxPipe);

 DSS_rxPtr = PIP_getWriterAddr(rxPipe);

 DSS_rxCnt = PIP_getWriterSize(rxPipe);

}

PIP_getWriterSize Get the number of words that can be written to a pipe frame

PIP_put

6-66

C Interface

Syntax Void PIP_put(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe accepting a frame */

Return Value Void

Assembly Interface

Syntax PIP_put

Preconditions ar2 = address of the pipe object

Postconditions none

Modifies ag, ah, al, ar2, ar3, ar4, ar5, asm, bg, bh, bl, braf, brc, c, ovb, rea, rsa, sxm,

and any registers modified by the notifyReader function

Reentrant no

Description

PIP_put puts a frame into a pipe after you have allocated the frame with

PIP_alloc and written data to the frame. The reader can then use PIP_get to

get a frame from the pipe.

After PIP_put puts the frame into the pipe, it runs the function specified by the

notifyReader property of the PIP object. This function should notify (e.g., by

calling SWI_andn) the object that reads from this pipe that a full frame is

ready to be processed. The notifyReader function is performed as part of the

thread that called PIP_get or PIP_put. To avoid problems with recursion, the

notifyReader function should not directly call any of the PIP module functions

for the same pipe.

Example

See the example for PIP_alloc, page 6-55. The example for HST_getpipe,

page 6-20, also uses a pipe with host channel objects.

See Also

PIP_alloc

PIP_free

PIP_get

HST_getpipe

PIP_put Put a full frame into the pipe

PIP_setWriterSize

API Functions 6-67

C Interface

Syntax Void PIP_setWriterSize(PIP_Obj *pipe, Uns size);

Parameters PIP_Obj *pipe /* relevant pipe */

Uns size /* size to be set */

Return Value Void

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant no

Description

PIP_setWriterSize is a C function that sets the value of the writerSize element

of a pipe object.

As a function writes to a pipe it can use PIP_setWriterSize to indicate the

number of valid words being written to a pipe frame.

Example

See the example for PIP_getReaderAddr, page 6-59.

PIP_setWriterSize Set the number of valid words written to a pipe frame

PRD Module

6-68

Functions

❏ PRD_getticks. Get the current tick count
❏ PRD_start. Arm a periodic function for one-time execution
❏ PRD_stop. Stop a periodic function from continuous execution
❏ PRD_tick. Advance tick counter, dispatch periodic functions

Description

While some applications can schedule functions based on a real-time clock,

many applications need to schedule functions based on I/O availability or

some other programmatic event.

The PRD module allows you to create PRD objects that schedule periodic

execution of program functions. The period may be driven by the CLK module

or by calls to PRD_tick whenever a specific event occurs. There can be

several PRD objects, but all are driven by the same period counter. Each PRD

object can execute its functions at different intervals based on the period

counter.

❏ To schedule functions based on a real-time clock. Set the clock

interrupt rate you want to use in the Clock Manager property sheet. Put

a check mark in the Use On-chip Clock (CLK) box for the Periodic

Function Manager. Set the frequency of execution (in number of ticks) in

the period field for the individual period object.

❏ To schedule functions based on I/O availability or some other event.

Remove the check mark from the Use On-chip Clock (CLK) property field

for the Periodic Function Manager. Set the frequency of execution (in

number of ticks) in the period field for the individual period object. Your

program should call PRD_tick to increment the tick counter.

The function executed by a PRD object is statically defined in the

Configuration Tool. PRD functions are called from the context of the PRD_swi

SWI. PRD functions can be written in C or assembly and must follow the C

calling conventions described in the compiler manual.

The PRD module uses an SWI object (called PRD_swi by default) which itself

is triggered on a periodic basis to manage execution of period objects.

Normally, this SWI object should have the highest software interrupt priority

to allow this software interrupt to be performed once per tick. This software

interrupt is automatically created (or deleted) by the Configuration Tool if one

or more (or no) PRD objects exist.

See the TMS320C54x Code Composer Studio Tutorial for an example that

demonstrates the interaction between the PRD module and the SWI module.

PRD Module Periodic function manager

PRD Module

API Functions 6-69

When the PRD_swi object runs its function, the following actions occur:

for ("Loop through period objects") {

 if ("time for a periodic function")

 "run that periodic function";

}

PRD Manager Properties

The DSP/BIOS Periodic Function Manager allows the creation of an arbitrary

number of objects that encapsulate a function, two arguments, and a period

specifying the time between successive invocations of the function. The

period is expressed in ticks, where a tick is defined as a single invocation of

the PRD_tick operation. The time between successive invocations of

PRD_tick defines the period represented by a tick.

The following global parameters can be set for the PRD module:

❏ Object Memory. The memory segment that contains the PRD objects

❏ Use CLK Manager to drive PRD. If this field is checked, the on-chip

timer hardware (managed by CLK) is used to advance the tick count;

otherwise, the application must invoke PRD_tick on a periodic basis.

❏ Microseconds/Tick. The number of microseconds between ticks. If the

Use CLK Manager to drive PRD field above is checked, this field is

automatically set by the CLK module; otherwise, you must explicitly set

this field.

PRD Object Properties

The following instance fields can be set for each PRD object:

❏ comment. Type a comment to identify this PRD object

❏ period (ticks). The function executes after period ticks have elapsed

❏ mode. If continuous is selected the function executes every period ticks;

otherwise it executes just once after each call to PRD_tick

❏ function. The function to be executed

❏ arg0, arg1. Two 16-bit arguments passed to function; these arguments

can be either an unsigned 16-bit constant or a symbolic label

The following informational field is also displayed for each PRD object:

❏ period (ms). The number of milliseconds represented by the period

specified above

PRD Module

6-70

PRD - DSP/BIOS Plug-ins Interface

To enable PRD logging, choose Tools→DSP/BIOS→RTA Control Panel and

put a check in the appropriate box. You see indicators for PRD ticks in the

PRD ticks row of the Execution Graph, which you can open by choosing

Tools→DSP/BIOS→Execution Graph. In addition, you see a graph of activity,

including PRD function execution.

You can also enable PIP accumulators in the RTA Control Panel. Then you

can choose Tools→DSP/BIOS→Statistics View, which lets you select objects

for which you want to see statistics. If you choose a PRD object, you see

statistics about the number of ticks that elapsed during execution of the PRD

function.

PRD_getticks

API Functions 6-71

C Interface

Syntax LgUns PRD_getticks(Void);

Parameters Void

Return Value LgUns num /* current tick counter */

Assembly Interface

Syntax PRD_getticks

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

Postconditions ah = upper 16 bits of the 32-bit tick counter

al = lower 16 bits of the 32-bit tick counter

Modifies ag, ah, al, c

Reentrant yes

Description

PRD_getticks returns the current period tick count as a 32-bit value.

If the periodic functions are being driven by the on-chip timer, the tick value is

the number of low resolution clock ticks that have occurred since the program

started running. When the number of ticks reaches the maximum value that

can be stored in 32 bits, the value wraps back to 0. See the CLK Module, page

6-7, for more details.

If the periodic functions are being driven programmatically, the tick value is

the number of times PRD_tick has been called.

Example
/* ======== showTicks ======== */

Void showTicks()

 {

 LOG_printf(&trace, "ticks = %d", PRD_getticks());

 }

See Also

PRD_start

PRD_tick

CLK_gethtime

CLK_getltime

STS_delta

PRD_getticks Get the current tick count

PRD_start

6-72

C Interface

Syntax Void PRD_start(PRD_Obj *period);

Parameters PRD_Obj *prd /* periodic object *

Return Value Void

Assembly Interface

Syntax PRD_start

Preconditions ar2 = address of the PRD object

Postconditions none

Modifies c

Reentrant no

Description

PRD_start starts a period object that has its mode property set to one-shot in

the Configuration Tool.

Unlike PRD objects that are configured as continuous, one-shot PRD objects

do not automatically continue to run. A one-shot PRD object runs its function

only after the specified number of ticks have occurred after a call to

PRD_start.

For example, you might have a function that should be executed a certain

number of periodic ticks after some condition is met.

When you use PRD_start to start a period object, the exact time that function

runs can vary by nearly one tick cycle. As this figure shows, PRD ticks occur

at a fixed rate and the call to PRD_start may occur at any point between ticks:

Due to implementation details, if a PRD function calls PRD_start for a PRD

object that is lower in the list of PRD objects, the function sometimes runs a

full tick cycle early.

PRD_start Arm a periodic function for one-time (or continuous) execution

T ick T ick T ick

T im e to firs t tick a fte r P R D _ sta rt is ca lled .

PRD_start

API Functions 6-73

Example
/* ======== startClock ======== */

Void startPrd(Int periodID)

 {

 if ("condition met") {

 PRD_start(&periodID);

 }

 }

See Also

PRD_tick

PRD_getticks

PRD_stop

6-74

C Interface

Syntax Void PRD_stop(PRD_Obj *period);

Parameters PRD_Obj *prd /* periodic object */

Return Value Void

Assembly Interface

Syntax PRD_stop

Preconditions ar2 = address of the PRD object

Postconditions none

Modifies c

Reentrant no

Description

PRD_stop stops a period object to prevent its function execution. In most

cases, PRD_stop is used to stop a period object that has its mode property

set to one-shot in the Configuration Tool.

Unlike PRD objects that are configured as continuous, one-shot PRD objects

do not automatically continue to run. A one-shot PRD object runs its function

only after the specified numbers of ticks have occurred after a call to

PRD_start.

PRD_stop is the way to stop those one-shot PRD objects once started and

before their period counters have run out.

Example
PRD_stop(&prd);

See Also

PRD_getticks

PRD_start

PRD_tick

PRD_stop Stop a period object to prevent its function execution

PRD_tick

API Functions 6-75

C Interface

Syntax Void PRD_tick(Void);

Parameters Void

Return Value Void

Assembly Interface

Syntax PRD_tick

Preconditions intm = 1

cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

Postconditions dp = GBL_A_SYSPAGE

Modifies ag, ah, al, bg, bh, bl, c, tc

Reentrant no

Description

PRD_tick advances the period counter by one tick. Unless you are driving

PRD functions using the on-chip clock, PRD objects execute their functions

at intervals based on this counter.

For example, a hardware ISR could perform PRD_tick to notify a periodic

function when data is available for processing.

Constraints and Calling Context

❏ This API should be invoked from interrupt service routines. All the

registers that are modified by this API should be saved and restored,

before and after the API is invoked, respectively.

See Also

PRD_start

PRD_getticks

PRD_tick Advance tick counter, enable periodic functions

RTDX Module

6-76

Syntax #include <rtdx.h>

RTDX Data Declaration Macros

❏ RTDX_CreateInputChannel
❏ RTDX_CreateOutputChannel

Functions

❏ RTDX_channelBusy
❏ RTDX_disableInput
❏ RTDX_disableOutput
❏ RTDX_enableInput
❏ RTDX_enableOutput
❏ RTDX_read
❏ RTDX_readNB
❏ RTDX_sizeofInput
❏ RTDX_write

Macros

❏ RTDX_isInputEnabled
❏ RTDX_isOutputEnabled

Description

The RTDX module provides the data types and functions for:

❏ Sending data from the target to the host.
❏ Sending data from the host to the target.

Data channels are represented by globally declared structures. A data

channel may be used either for input or output, but not both. The contents of

an input or output structure are not known to the user. A channel structure

contains two states: enabled and disabled. When a channel is enabled, any

data written to the channel is sent to the host. Channels are initialized to be

disabled.

RTDX Manager Properties

The following settings refer to target configuration parameters:

❏ Enable Real-Time Data Exchange (RTDX). This box should be checked

if you want to link RTDX support into your application

❏ RTDX Data Segment. The memory segment used for buffering

target-to-host data transfers. The RTDX message buffer and state

variables are placed in this segment.

❏ RTDX Buffer Size (MAUs). The size of the RTDX target-to-host

message buffer, in minimum addressable units (MAUs). The default size

RTDX Module Real-Time Data Exchange manager

RTDX Module

API Functions 6-77

is 1032 to accommodate a full 1024 byte block and two control words.

HST channels that use RTDX are limited by this parameter

❏ RTDX Text Segment. The code sections for the RTDX module are

placed in this segment

For comprehensive information about RTDX, you can choose

Help→Tools→RTDXclick .

RTDX_CreateInputChannel, RTDX_CreateOutputChannel

6-78

C Interface

Syntax RTDX_CreateInputChannel(name);

RTDX_CreateOutputChannel(name);

Parameters name /* Label of the channel. */

Return Value none

Description

These macros declare and initialize RTDX data channels for input and output,

respectively.

Data channels must be declared as global objects. A data channel may be

used either for input or output, but not both. The contents of an input or output

data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are

initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They can

also be enabled or disabled remotely from Code Composer or its OLE

interface.

RTDX_CreateInputChannel,
RTDX_CreateOutputChannel

Declare channel structure

RTDX_channelBusy

API Functions 6-79

C Interface

Syntax int RTDX_channelBusy(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Status: 0 = Channel is not busy. non-zero = Channel is busy. */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C54x
Optimizing C Compiler User’s Guide for more information.

Description

RTDX_channelBusy is designed to be used in conjunction with

RTDX_readNB. The return value indicates whether the specified data

channel is currently in use or not.

See Also

RTDX_readNB

RTDX_channelBusy Return status indicating whether data channel is busy

RTDX_disableInput, RTDX_disableOutput, RTDX_enableInput, RTDX_enableOutput

6-80

C Interface

Syntax void RTDX_disableInput(RTDX_inputChannel *ichan);

void RTDX_disableOutput(RTDX_outputChannel *ochan);

void RTDX_enableInput(RTDX_inputChannel *ichan);

void RTDX_enableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */

ichan /* Identifier for the input data channel */

Return Value void

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C54x
Optimizing C Compiler User’s Guide for more information.

Description

A call to an enable function causes the specified data channel to be enabled.

Likewise, a call to a disable function causes the specified channel to be

disabled.

See Also

RTDX_read

RTDX_write

RTDX_disableInput, RTDX_disableOutput,
RTDX_enableInput, RTDX_enableOutput

Enable or disable a data channel

RTDX_read

API Functions 6-81

C Interface

Syntax int RTDX_read(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */

buffer /* A pointer to the buffer that receives the data */

bsize /* The size of the buffer in address units */

Return Value > 0 /* The number of address units of data actually

supplied in buffer. */

0 /* Failure. Cannot post read request because the

target buffer is full. */

RTDX_READ_ERROR /* Failure. Channel currently busy or not enabled. */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C54x
Optimizing C Compiler User’s Guide for more information.

Description

RTDX_read causes a read request to be posted to the specified input data

channel. If the channel is enabled, RTDX_read busy waits until the data has

arrived. On return from the function, the data has been copied into the

specified buffer and the number of address units of data actually supplied is

returned. The function returns RTDX_READ_ERROR immediately if the

channel is currently busy reading or is not enabled.

When RTDX_read is used, the target application notifies the RTDX Host

Library that it is ready to receive data and then waits for the RTDX Host

Library to write data into the target buffer. When the data is received, the

target application continues execution.

RTDX_read Read from an input channel

RTDX_read

6-82

When the function RTDX_readNB is used, the target application notifies the

RTDX Host Library that it is ready to receive data but the target application

does not wait. Execution of the target application continues immediately. Use

the RTDX_channelBusy and RTDX_sizeofInput functions to determine when

the RTDX Host Library has written data into the target buffer.

See Also

RTDX_channelBusy

RTDX_readNB

RTDX_sizeofInput

RTDX_readNB

API Functions 6-83

C Interface

Syntax int RTDX_readNB(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */

buffer /* A pointer to the buffer that receives the data */

bsize /* The size of the buffer in address units */

Return Value RTDX_OK /* Success. */

0 (zero) /* Failure. The target buffer is full. */

RTDX_READ_ERROR /* Channel is currently busy reading. */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C54x
Optimizing C Compiler User’s Guide for more information.

Description

RTDX_readNB is a nonblocking form of the function RTDX_read.

RTDX_readNB issues a read request to be posted to the specified input data

channel and immediately returns. If the channel is not enabled or the channel

is currently busy reading, the function returns RTDX_READ_ERROR. The

function returns 0 if it cannot post the read request due to lack of space in the

RTDX target buffer.

When the function RTDX_readNB is used, the target application notifies the

RTDX Host Library that it is ready to receive data but the target application

does not wait. Execution of the target application continues immediately. Use

the RTDX_channelBusy and RTDX_sizeofInput functions to determine when

the RTDX Host Library has written data into the target buffer.

When RTDX_read is used, the target application notifies the RTDX Host

Library that it is ready to receive data and then waits for the RTDX Host

Library to write data into the target buffer. When the data is received, the

target application continues execution.

See Also

RTDX_channelBusy

RTDX_read

RTDX_sizeofInput

RTDX_readNB Read from input channel without blocking

RTDX_sizeofInput

6-84

C Interface

Syntax int RTDX_sizeofInput(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Number of sizeof() units of data actually supplied in buffer */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C54x
Optimizing C Compiler User’s Guide for more information.

Description

RTDX_sizeofInput is designed to be used in conjunction with RTDX_readNB

after a read operation has completed. The function returns the number of

sizeof() units actually read from the specified data channel.

See Also

RTDX_readNB

RTDX_sizeofInput Return the number of bytes read from a data channel

RTDX_write

API Functions 6-85

C Interface

Syntax int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize);

Parameters ochan /* Identifier for the output data channel */

buffer /* A pointer to the buffer containing the data */

bsize /* The size of the buffer in address units */

Return Value int /* Status: non-zero = Success. 0 = Failure. */

Assembly Interface

Syntax none

Preconditions none

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C54x
Optimizing C Compiler User’s Guide for more information.

Description

RTDX_write causes the specified data to be written to the specified output

data channel, provided that channel is enabled. On return from the function,

the data has been copied out of the specified user buffer and into the RTDX

target buffer. If the channel is not enabled, the write operation is suppressed.

If the RTDX target buffer is full, Failure is returned.

See Also

RTDX_read

RTDX_write Write to an output channel

RTDX_isInputEnabled, RTDX_isOutputEnabled

6-86

C Interface

Syntax #include<rtdx.h>

RTDX_isInputEnabled(c);

RTDX_isOutputEnabled(c);

Parameter c /* Identifier for an input/output channel. */

Return Value 0 /* Not enabled. */

non-zero /* Enabled. */

Description

The RTDX_isInputEnabled and RTDX_isOutputEnabled macros return the

enabled status of a data channel.

RTDX_isInputEnabled,
RTDX_isOutputEnabled

Return status of the data channel

STS Module

API Functions 6-87

Syntax #include <sts.h>

Functions struct STS_Obj {

 LgInt num; /* count */

 LgInt acc; /* total value */

 LgInt max; /* maximum value */

}

❏ STS_add. Update statistics using provided value
❏ STS_delta. Update statistics using difference between provided value

and setpoint
❏ STS_reset. Reset values stored in STS object
❏ STS_set. Save a setpoint value

Note: STS objects should not be shared across threads. Therefore,

STS_add, STS_delta, STS_reset, and STS_set are not reentrant.

Description

The STS module manages objects called statistics accumulators. Each STS

object accumulates the following statistical information about an arbitrary

32-bit wide data series:

❏ Count. The number of values in an application-supplied data series
❏ Total. The sum of the individual data values in this series
❏ Maximum. The largest value already encountered in this series

Using the count and total, the Statistics View plug-in calculates the average

on the host.

Statistics are accumulated in 32-bit variables on the target and in 64-bit

variables on the host. When the host polls the target for real-time statistics, it

resets the variables on the target. This minimizes space requirements on the

target while allowing you to keep statistics for long test runs.

Default STS Tracing

In the RTA Control Panel, you can enable statistics tracing for the following

modules by right-clicking on them. You can also set the HWI object properties

to perform various STS operations on registers, addresses, or pointers.

STS Module Statistics accumulator manager

STS Module

6-88

Your program does not need to include any calls to STS functions in order to

gather these statistics. The units for the statistics values are controlled by the

Statistics Units property of the manager for the module being traced:

Custom STS Objects

You can create custom STS objects using the Configuration Tool. The
STS_add operation updates the count, total, and maximum using the value

you provide. The STS_set operation sets a previous value. The STS_delta

operation accumulates the difference between the value you pass and the

previous value and updates the previous value to the value you pass.

By using custom STS objects and the STS operations, you can do the

following:

❏ Count the number of occurrences of an event. You can pass a value

of 0 to STS_add. The count statistic tracks how many times your program

calls STS_add for this STS object.

❏ Track the maximum and average values for a variable in your

program. For example, suppose you pass amplitude values to STS_add.

The count tracks how many times your program calls STS_add for this

STS object. The total is the sum of all the amplitudes. The maximum is

the largest value. The Statistics View calculates the average amplitude.

❏ Track the minimum value for a variable in your program. Negate the

values you are monitoring and pass them to STS_add. The maximum is

the negative of the minimum value.

❏ Time events or monitor incremental differences in a value. For

example, suppose you want to measure the time between hardware

interrupts. You would call STS_set when the program begins running and

STS_delta each time the interrupt routine runs, passing the result of

CLK_gethtime each time. STS_delta subtracts the previous value from

the current value. The count tracks how many times the interrupt routine

was performed. The maximum is the largest number of clock counts

between interrupt routines. The Statistics View also calculates the

average number of clock counts.

Module Units

HWI Gather statistics on monitored values within HWIs

PIP Number of frames read from or written to data pipe (count only)

PRD Number of ticks elapsed from start to end of execution

SWI Instruction cycles elapsed from time posted to completion

STS Module

API Functions 6-89

❏ Monitor differences between actual values and desired values. For

example, suppose you want to make sure a value stays within a certain

range. Subtract the midpoint of the range from the value and pass the

absolute value of the result to STS_add. The count tracks how many

times your program calls STS_add for this STS object. The total is the

sum of all deviations from the middle of the range. The maximum is the

largest deviation. The Statistics View calculates the average deviation.

You can further customize the statistics data by setting the STS object

properties to apply a printf format to the Total, Max, and Average fields in the

Statistics View window and choosing a formula to apply to the data values on

the host.

Statistics Data Gathering by the Statistics View Plug-in

The statistics manager allows the creation of any number of statistics objects,

which in turn can be used by the application to accumulate simple statistics

about a time series. This information includes the 32-bit maximum value, the

last 32-bit value passed to the object, the number of samples (up to 232 - 1

samples), and the 32-bit sum of all samples.

These statistics are accumulated on the target in real time until the host reads

and clears these values on the target. The host, however, continues to

accumulate the values read from the target in a host buffer which is displayed

by the Statistics View real-time analysis tool. Provided that the host reads and

clears the target statistics objects faster than the target can overflow the

32-bit wide values being accumulated, no information loss occurs.

Using the Configuration Tool, you can select a Host Operation for an STS

object. The statistics are filtered on the host using the operation and variables

you specify. This figure shows the effects of the (A x X + B) / C operation.

STS Manager Properties

The following global parameter can be set for the STS module:

❏ Object Memory. The memory segment that contains the STS objects

Ta rge t H o st

R e ad
&

cle ar

Accum ula te F ilte r = (A *x + B) / C D isp la y

C o unt

(A x to ta l + B) / C

(A x m ax + B) / C

C o unt

T o ta l

M a xim um

C o unt

T o ta l

0 M a x

32

Previo us

C o unt

T o ta l

M a x

Averag e(A x to ta l + B) /
(C x co unt)

64

STS Module

6-90

STS Object Properties

The following fields can be set for a statistics object:

❏ comment. Type a comment to identify this STS object

❏ prev. The initial 32-bit history value to use in this object

❏ format. The printf-style format string used to display the data for this

object

❏ Host Operation. The expression evaluated (by the host) on the data for

this object before it is displayed by the Statistics View real-time analysis

tool. The operation can be:

■ A x X
■ A x X + B
■ (A x X + B) / C

❏ A, B, C. The integer parameters used by the expression specified by the

Host Operation field above

STS - Statistics View Interface

You can view statistics in real time with the Statistics View plug-in by choosing

the Tools→DSP/BIOS→Statistics View menu item.

To pause the display, right-click on this window and choose Pause from the

pop-up menu. To reset the values to 0, right-click on this window and choose

Clear from the pop-up menu.

STS Module

API Functions 6-91

You can also control how frequently the host polls the target for statistics in-

formation. Right-click on the RTA Control Panel and choose the Property

Page to set the refresh rate. If you set the refresh rate to 0, the host does not

poll the target unless you right-click on the Statistics View window and choose

Refresh Window from the pop-up menu.

See the TMS320C54x Code Composer Studio Tutorial for more information

on how to monitor statistics with the Statistics View plug-in.

STS_add

6-92

C Interface

Syntax Void STS_add(STS_Obj *sts, LgInt value);

Parameters STS_Obj *sts; /* statistics object handle */

LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_add

Preconditions ar2 = address of the STS object

a = 32-bit value

sxm = 1

Postconditions none

Modifies ag, ah, al, ar2, bg, bh, bl, c, ovb

Reentrant no

Description

STS_add updates a custom STS object’s Total, Count, and Max fields using

the data value you provide.

For example, suppose your program passes 32-bit amplitude values to

STS_add. The Count field tracks how many times your program calls

STS_add for this STS object. The Total field tracks the total of all the

amplitudes. The Max field holds the largest value passed to this point. The

Statistics View plug-in calculates the average amplitude.

You can count the occurrences of an event by passing a dummy value (such

as 0) to STS_add and watching the Count field.

You can view the statistics values with the Statistics View plug-in by enabling

statistics in the Tools→DSP/BIOS→RTA Control Panel window and choosing

your custom STS object in the Tools→DSP/BIOS→Statistics View window.

See Also

STS_delta

STS_reset

STS_set

TRC_disable

TRC_enable

STS_add Update statistics using the provided value

STS_delta

API Functions 6-93

C Interface

Syntax Void STS_delta(STS_Obj *sts, LgInt value);

Parameters STS_Obj *sts; /* statistics object handle */

LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_delta

Preconditions ar2 = address of the STS object

a = 32-bit value

sxm = 1

Postconditions none

Modifies ag, ah, al, ar2, bg, bh, bl, c, ovb

Reentrant no

Description

Each STS object contains a previous value that can be initialized with the

Configuration Tool or with a call to STS_set. A call to STS_delta subtracts the

previous value from the value it is passed and then invokes STS_add with the

result to update the statistics. STS_delta also updates the previous value with

the value it is passed.

STS_delta can be used in conjunction with STS_set to monitor the difference

between a variable and a desired value or to benchmark program

performance.

STS_set(&sts, CLK_gethtime());

 "processing to be benchmarked"

STS_delta(&sts, CLK_gethtime());

You can benchmark your code by using paired calls to STS_set and

STS_delta that pass the value provided by CLK_gethtime.

STS_set(&sts, CLK_getltime());

 "processing to be benchmarked"

STS_delta(&sts, CLK_getltime());

STS_delta Update statistics using the difference between the provided value and
the setpoint

STS_delta

6-94

Constraints and Calling Context

❏ Before the first call to STS_delta is made, the previous value of the STS

object should be initialized either with a call to STS_set or by setting the

prev property of the STS object using the Configuration Tool.

Example
STS_set(&sts, targetValue);

 "processing"

STS_delta(&sts, currentValue);

 "processing"

STS_delta(&sts, currentValue);

 "processing"

STS_delta(&sts, currentValue);

See Also

STS_add

STS_reset

STS_set

CLK_gethtime

CLK_getltime

PRD_getticks

TRC_disable

TRC_enable

STS_reset

API Functions 6-95

C Interface

Syntax Void STS_reset(STS_Obj *sts);

Parameters STS_Obj *sts; /* statistics object handle */

Return Value Void

Assembly Interface

Syntax STS_reset

Preconditions ar2 = address of the STS object

Postconditions none

Modifies ag, ah, al, ar2, c

Reentrant no

Description

STS_reset resets the values stored in an STS object. The Count and Total

fields are set to 0 and the Max field is set to the largest negative number.

STS_reset does not modify the value set by STS_set.

After the Statistics View plug-in polls statistics data on the target, it performs

STS_reset internally. This keeps the 32-bit total and count values from

wrapping back to 0 on the target. The host accumulates these values as

64-bit numbers to allow a much larger range than can be stored on the target.

Example
STS_reset(&sts);

STS_set(&sts, value);

See Also

STS_add

STS_delta

STS_set

TRC_disable

TRC_enable

STS_reset Reset the values stored in an STS object

STS_set

6-96

C Interface

Syntax Void STS_set(STS_Obj *sts, LgInt value);

Parameters STS_Obj *sts; /* statistics object handle */

LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_set

Preconditions ar2 = address of the STS object

a = 32-bit value

Postconditions none

Modifies none

Reentrant no

Description

STS_set can be used in conjunction with STS_delta to monitor the difference

between a variable and a desired value or to benchmark program

performance. STS_set saves a value as the previous value in an STS object.

STS_delta subtracts this saved value from the value it is passed and invokes

STS_add with the result.

STS_delta also updates the previous value with the value it was passed.

Depending on what you are measuring, you may need to use STS_set to

reset the previous value before the next call to STS_delta.

You can also set a previous value for an STS object in the Configuration Tool.
STS_set changes this value.

See STS_delta for details on how to use the value you set with STS_set.

Example

This example gathers performance information for the processing between

STS_set and STS_delta.

STS_set(&sts, CLK_getltime());

 "processing to be benchmarked"

STS_delta(&sts, CLK_getltime());

This example gathers information about a value’s deviation from the desired

value.

STS_set Save a value for STS_delta

STS_set

API Functions 6-97

STS_set(&sts, targetValue);

 "processing"

STS_delta(&sts, currentValue);

 "processing"

STS_delta(&sts, currentValue);

 "processing"

STS_delta(&sts, currentValue);

This example gathers information about a value’s difference from a base

value.

STS_set(&sts, baseValue);

 "processing"

STS_delta(&sts, currentValue);

STS_set(&sts, baseValue);

 "processing"

STS_delta(&sts, currentValue);

STS_set(&sts, baseValue);

See Also

STS_add

STS_delta

STS_reset

TRC_disable

TRC_enable

SWI Module

6-98

Functions

❏ SWI_andn. Clear bits from SWI's mailbox; post if becomes 0
❏ SWI_dec. Decrement SWI's mailbox value; post if becomes 0
❏ SWI_disable. Disable software interrupts
❏ SWI_enable. Enable software interrupts
❏ SWI_getmbox. Return a SWI's mailbox value
❏ SWI_getpri. Return a SWI’s priority mask
❏ SWI_inc. Increment SWI's mailbox value
❏ SWI_or. Or mask with value contained in SWI's mailbox field
❏ SWI_post. Post a software interrupts
❏ SWI_raisepri. Raise a SWI’s priority
❏ SWI_restorepri. Restore a SWI’s priority
❏ SWI_self. Return address of currently executing SWI object

Description

The SWI module manages software interrupt service routines, which are

patterned after HWI hardware interrupt service routines.

DSP/BIOS manages three distinct levels of execution threads: background

idle functions, hardware interrupt service routines, and software interrupts. A

software interrupt is an object that encapsulates a function to be executed

and a priority. Software interrupts are prioritized, preempt background tasks,

and are preempted by hardware interrupt service routines.

Note: SWI functions are called after the processor register state has been

saved. SWI functions can be written in C or assembly and must follow the

C calling conventions described in the compiler manual.

Note: All processor registers are saved before calling SWI functions. This

includes st0, st1, a, b, ar0-ar7, the T registers, bk, brc, rsa, rea, and pmst.

The following status register bits are set to 0 before calling the user

function: ARP, C16, CMPT, CPL, FRCT, and OVM. If the function is a C

function, specified with a leading underscore in the Configuration Tool, CPL

is set to 1 before calling the function.

Each software interrupt has a priority level. A software interrupt of one priority

preempts any lower priority software interrupt currently executing.

SWI Module Software interrupt manager

SWI Module

API Functions 6-99

A target program uses an API call to post a SWI object. This causes the SWI

module to schedule execution of the software interrupt’s function. When a

software interrupt is posted by an API call, the SWI object’s function is not

executed immediately. Instead, the function is scheduled for execution.

DSP/BIOS uses the software interrupt’s priority to determine whether to

preempt the thread currently running. Note that if a software interrupt is

posted several times before it begins running, because HWIs and higher

priority interrupts are running, the software interrupt only runs one time.

Software interrupts can be scheduled for execution with a call to SWI_post or

a number of other SWI functions. Each SWI object has a 16-bit mailbox which

is used either to determine whether to post the software interrupt or as a value

that can be evaluated within the software interrupt’s function. SWI_andn and

SWI_dec post the software interrupt if the mailbox value transitions to 0.

SWI_or and SWI_inc also modify the mailbox value. (SWI_or sets bits, and

SWI_andn clears bits.)

The SWI_disable and SWI_enable operations allow you to post several

software interrupts and enable them all for execution at the same time. The

software interrupt priorities then determine which software interrupt runs first.

All software interrupts run to completion; you cannot suspend a software

interrupt while it waits for something—e.g., a device—to be ready. So, you can

use the mailbox to tell the software interrupt when all the devices and other

conditions it relies on are ready. Within a software interrupt processing

function, a call to SWI_getmbox returns the value of the mailbox when the

software interrupt started running. The mailbox is automatically reset to its

original value when a software interrupt runs.

A software interrupt preempts any currently running software interrupt with a

lower priority. Software interrupts can have up to 15 priority levels. If two

software interrupts with the same priority level have been posted, the

software interrupt that was posted first runs first. Hardware interrupts in turn

preempt any currently running software interrupt, allowing the target to

respond quickly to hardware peripherals. For information about setting

software interrupt priorities, you can choose Help→Help Topics in the

Configuration Tool, click the Index tab, and type priority.

Trea t m a ilbox
as b itm ask

Trea t m a ilbox
as coun te r

A lw ays post

P ost if
becom es 0

S W I_or

S W I_andn S W I_dec

S W I_ inc

D oes no t m od ify
m a ilbox

S W I_post

SWI Module

6-100

Threads—including hardware interrupts, software interrupts, and background

threads—are all executed using the same stack. A context switch is

performed when a new thread is added to the top of the stack. The SWI

module automatically saves the processor’s registers before running a

higher-priority software interrupt that preempts a lower-priority software

interrupt. After the higher-priority software interrupt finishes running, the

registers are restored and the lower-priority software interrupt can run if no

other higher-priority software interrupts have been posted.

See the TMS320C54x Code Composer Studio Tutorial for more information

on how to post software interrupts and scheduling issues for the Software

Interrupt manager.

SWI Manager Properties

The following global parameters can be set for the SWI module:

❏ Object Memory. The memory segment that contains the SWI objects

❏ Statistics Units. The units used to display the elapsed instruction cycles

or time from when a software interrupt is posted to its completion within

the Statistics View plug-in. Raw causes the STS Data to display the

number of instruction cycles if the CLK module’s Use high resolution time

for internal timings parameter is set to True (the default). If this CLK

parameter is set to False and the Statistics Units is set to Raw, SWI

statistics are displayed in units of timer interrupt periods. You can also

choose milliseconds or microseconds.

SWI Object Properties

The following fields can be set for a SWI object:

❏ comment. Type a comment to identify this SWI object

❏ priority. This field shows the numeric priority level for this SWI object.

Priority levels range from 1 to 15, with 15 being the highest priority.

Instead of typing a number in this field, you change the relative priority

levels of SWI objects.

❏ function. The function to execute

❏ mailbox. The initial value of the 16-bit word used to determine if this

software interrupt should be posted

❏ arg0, arg1. Two 16-bit arguments passed to function; these arguments

can be either an unsigned 16-bit constant or a symbolic label

SWI Module

API Functions 6-101

SWI - DSP/BIOS Plug-ins Interface

To enable SWI logging, choose Tools→DSP/BIOS→RTA Control Panel and

put a check in the appropriate box. To view a graph of activity that includes

SWI function execution, choose Tools→DSP/BIOS→Execution Graph.

You can also enable SWI accumulators in the RTA Control Panel. Then you

can choose Tools→DSP/BIOS→Statistics View, which lets you select objects

for which you want to see statistics. If you choose an SWI object, you see

statistics about the number of instruction cycles elapsed from the time the

SWI was posted to the SWI function’s completion.

SWI_andn

6-102

C Interface

Syntax Void SWI_andn(SWI_Obj *swi, Uns mask);

Parameters SWI_Obj *swi /* SWI object */

Uns mask /* value to be ANDed */

Return Value Void

Assembly Interface

Syntax SWI_andn

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

ar2 = address of the SWI object

al = mask

intm = 0 (if called outside the context of an ISR)

Postconditions none

Modifies ag, ah, al, ar0, ar2, ar3, ar4, ar5, bg, bh, bl, c, dp, t, tc

Reentrant yes

Description

SWI_andn is used to conditionally post a software interrupt. SWI_andn clears

the bits specified by a mask from SWI’s internal mailbox. If SWI’s mailbox

becomes 0, SWI_andn posts the software interrupt. The bitwise logical

operation performed is:

mailbox = mailbox AND (NOT MASK)

For example, if there are multiple conditions that must all be met before a

software interrupt can run, you should use a different bit in the mailbox for

each condition. When a condition is met, clear the bit for that condition.

You specify a software interrupt’s initial mailbox value in the Configuration

Tool. The mailbox value is automatically reset when the software interrupt

executes.

SWI_andn Clear bits from SWI’s mailbox and post if mailbox becomes 0

SWI_andn

API Functions 6-103

The following figure shows an example of how a mailbox with an initial value

of 3 can be cleared by two calls to SWI_andn with values of 2 and 1. The

entire mailbox could also be cleared with a single call to SWI_andn with a

value of 3.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service

routine, interrupts must be enabled.

Example
/* ======== ioReady ======== */

 Void ioReady(unsigned int mask)

 {

 SWI_andn(©SWI, mask); /* clear bits of "ready mask" */

 }

See Also

SWI_dec

SWI_getmbox

SWI_inc

SWI_or

SWI_post

SWI_self

SWI_dec

6-104

C Interface

Syntax Void SWI_dec(SWI_Obj *swi);

Parameters SWI_Obj *swi /* SWI object */

Return Value Void

Assembly Interface

Syntax SWI_dec

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

ar2 = address of the SWI object

intm = 0 (if called outside the context of an ISR)

Postconditions none

Modifies ag, ah, al, ar0, ar2, ar3, ar4, ar5, bg, bh, bl, c, dp, t, tc

Reentrant yes

Description

SWI_dec is used to conditionally post a software interrupt. SWI_dec

decrements the value in SWI’s mailbox by 1. If SWI’s mailbox value becomes

0, SWI_dec posts the software interrupt. You can increment a mailbox value

by using SWI_inc, which always posts the software interrupt.

For example, you would use SWI_dec if you wanted to post a software

interrupt after a number of occurrences of an event.

You specify a software interrupt’s initial mailbox value in the Configuration

Tool. The mailbox value is automatically reset when the software interrupt

executes.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service

routine, interrupts must be enabled.

SWI_dec Decrement SWI’s mailbox value and post if mailbox becomes 0

SWI_dec

API Functions 6-105

Example
/* ======== strikeOrBall ======== */

 Void strikeOrBall(unsigned int call)

 {

 if (call == 1) {

 SWI_dec(&strikeoutSwi); /* initial mailbox value is 3 */

 }

 if (call == 2) {

 SWI_dec(&walkSwi); /* initial mailbox value is 4 */

 }

 }

See Also

SWI_andn

SWI_getmbox

SWI_inc

SWI_or

SWI_post

SWI_self

SWI_disable

6-106

C Interface

Syntax Void SWI_disable(Void);

Parameters Void

Return Value Void

Assembly Interface

Syntax SWI_disable

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

Postconditions none

Modifies c

Reentrant yes

Description

SWI_disable and SWI_enable control SWI software interrupt processing.

SWI_disable disables all other SWI functions from running until SWI_enable

is called. Hardware interrupts can still run.

SWI_disable and SWI_enable allow you to ensure that statements that must

be performed together during critical processing are not interrupted. In the

following example, the critical section is not preempted by any software

interrupts.

SWI_disable();

 `critical section`

SWI_enable();

You can also use SWI_disable and SWI_enable to post several software

interrupts and allow them to be performed in priority order. See the example

that follows.

SWI_disable calls can be nested—the number of nesting levels is stored

internally. Software interrupt handling is not reenabled until SWI_enable has

been called as many times as SWI_disable.

SWI_disable Disable software interrupts

SWI_disable

API Functions 6-107

Constraints and Calling Context

❏ The calls to HWI_enter and HWI_exit required in any hardware ISRs that

schedules software interrupts automatically disable and reenable

software interrupt handling. You should not call SWI_disable or

SWI_enable within a hardware ISR.

Example
/* ======== postEm ======== */

 Void postEm()

 {

 SWI_disable();

 SWI_post(&encoderSwi);

 SWI_andn(©Swi, mask);

 SWI_dec(&strikeoutSwi);

 SWI_enable();

 }

See Also

HWI_disable

HWI_enable

SWI_enable

SWI_enable

6-108

C Interface

Syntax Void SWI_enable(Void);

Parameters Void

Return Value Void

Assembly Interface

Syntax SWI_enable

Preconditions can only be called if SWI_disable was called before

cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

Postconditions none

Modifies ag, ah, al, c

Reentrant yes

Description

SWI_disable and SWI_enable control SWI software interrupt processing.

SWI_disable disables all other software interrupt functions from running until

SWI_enable is called. Hardware interrupts can still run. See the SWI_disable

section for details.

SWI_disable calls can be nested—the number of nesting levels is stored

internally. Software interrupt handling is not be reenabled until SWI_enable

has been called as many times as SWI_disable.

Constraints and Calling Context

❏ The calls to HWI_enter and HWI_exit required in any hardware ISRs that

schedules software interrupts automatically disable and reenable

software interrupt handling. You should not call SWI_disable or

SWI_enable within a hardware ISR.

See Also

HWI_disable

HWI_enable

SWI_disable

SWI_enable Enable software interrupts

SWI_getmbox

API Functions 6-109

C Interface

Syntax Uns SWI_getmbox(Void);

Parameters Void

Return Value Uns num /* mailbox value */

Assembly Interface

Syntax SWI_getmbox

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

Postconditions al = current software interrupt’s mailbox value

Modifies ag, ah, al, c

Reentrant yes

Description SWI_getmbox returns the value that SWI’s mailbox had when the software

interrupt started running. DSP/BIOS saves the mailbox value internally so

that SWI_getmbox can access it at any point within a SWI object’s function.

DSP/BIOS then automatically resets the mailbox to its initial value (defined

with the Configuration Tool) so that other threads can continue to use the

software interrupt’s mailbox.

SWI_getmbox should only be called within a function run by a SWI object.

The value returned by SWI_getmbox may be non-zero if the SWI was posted

by a call to SWI_andn or SWI_dec. Therefore, SWI_getmbox provides

relevant information only if the SWI was posted by a call to SWI_or, SWI_inc,

or SWI_post.

Example This example could be used within a SWI object’s function to use the value of

the mailbox within the function. For example, if you use SWI_or or SWI_inc to

post a software interrupt, different mailbox values may require different

processing.

/* get current SWI mailbox value */

swicount = SWI_getmbox();

See Also SWI_andn

SWI_dec

SWI_inc

SWI_or

SWI_post

SWI_self

SWI_getmbox Return a SWI’s mailbox value

SWI_getpri

6-110

C Interface

Syntax key = SWI_getpri(SWI_Obj *swi);

Parameters SWI_Obj *swi /* SWI object */

Return Value Uns key /* Priority mask of swi */

Assembly Interface

Syntax SWI_getpri

Preconditions ar2 = address of the SWI object

Postconditions a = SWI object’s priority mask

Modifies ag, ah, al, c

Reentrant yes

Description

SWI_getpri returns the priority mask of the SWI passed in as the argument.

Example
/* Get the priority key of swi1 */

key = SWI_getpri(&swi1);

/* Get the priorities of swi1 and swi3 */

key = SWI_getpri(&swi1) | SWI_getpri(&swi3);

See Also

SWI_raisepri

SWI_restorepri

SWI_getpri Return a SWI’s priority mask

SWI_inc

API Functions 6-111

C Interface

Syntax Void SWI_inc(SWI_Obj *swi);

Parameters SWI_Obj *swi /* SWI object */

Return Value Void

Assembly Interface

Syntax SWI_inc

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

ar2 = address of the SWI object

intm = 0 (if called outside the context of an ISR)

Postconditions none

Modifies ag, ah, al, ar0, ar2, ar3, ar4, ar5, bg, bh, bl, c, dp, t, tc

Reentrant no

Description

SWI_inc increments the value in SWI’s mailbox by 1 and posts the software

interrupt regardless of the resulting mailbox value. You can decrement a

mailbox value by using SWI_dec, which only posts the software interrupt if the

mailbox value is 0.

If a software interrupt is posted several times before it has a chance to begin

executing, because HWIs and higher priority software interrupts are running,

the software interrupt only runs one time. If this situation occurs, you can use

SWI_inc to post the software interrupt. Within the software interrupt’s

function, you could then use SWI_getmbox to find out how many times this

software interrupt has been posted since the last time it was executed.

You specify a software interrupt’s initial mailbox value in the Configuration

Tool. The mailbox value is automatically reset when the software interrupt

executes. To get the mailbox value, use SWI_getmbox.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service

routine, interrupts must be enabled.

SWI_inc Increment SWI’s mailbox value

SWI_inc

6-112

Example
/* ======== AddAndProcess ======== */

 Void AddAndProcess(int count)

 {

 int i;

 for (i = 1; I <= count; ++i)

 SWI_inc(&MySwi);

 SWI_post(&MySwi);

 }

See Also

SWI_andn

SWI_dec

SWI_getmbox

SWI_or

SWI_post

SWI_self

SWI_or

API Functions 6-113

C Interface

Syntax Void SWI_or(SWI_Obj *swi, Uns mask);

Parameters SWI_Obj *swi /* SWI object */

Uns mask /* value to be ORed */

Return Value Void

Assembly Interface

Syntax SWI_or

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

ar2 = address of the SWI object

al = mask

intm = 0 (if called outside the context of an ISR)

Postconditions none

Modifies ag, ah, al, ar0, ar2, ar3, ar4, ar5, bg, bh, bl, c, dp, t, tc

Reentrant no

Description SWI_or is used to post a software interrupt. SWI_or sets the bits specified by

a mask in SWI’s mailbox. SWI_or posts the software interrupt regardless of

the resulting mailbox value. The bitwise logical operation performed on the

mailbox value is:

mailbox = mailbox OR mask

You specify a software interrupt’s initial mailbox value in the Configuration

Tool. The mailbox value is automatically reset when the software interrupt

executes. To get the mailbox value, use SWI_getmbox.

For example, you might use SWI_or to post a software interrupt if any of three

events should cause a software interrupt to be executed, but you want the

software interrupt’s function to be able to tell which event occurred. Each

event would correspond to a different bit in the mailbox.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service

routine, interrupts must be enabled.

See Also SWI_andn

SWI_dec

SWI_getmbox

SWI_inc

SWI_post

SWI_self

SWI_or OR mask with the value contained in SWI’s mailbox field

SWI_post

6-114

C Interface

Syntax Void SWI_post(SWI_Obj *swi);

Parameters SWI_Handle swi; /* software interrupt object handle */

Return Value Void

Assembly Interface

Syntax SWI_post

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

ar2 = address of the SWI object

intm = 0 (if called outside the context of an ISR)

Postconditions none

Modifies ag, ah, al, ar0, ar2, ar3, ar4, ar5, bg, bh, bl, c, dp, t, tc

Reentrant no

Description

SWI_post is used to post a software interrupt regardless of the mailbox value.

No change is made to SWI’s mailbox value.

To have a PRD object post a SWI object’s function, you can set _SWI_post

as the function property of a PRD object and the name of the software

interrupt object you want to post its function as the arg0 property.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service

routine, interrupts must be enabled.

See Also

SWI_andn

SWI_dec

SWI_getmbox

SWI_inc

SWI_or

SWI_self

SWI_post Post a software interrupt

SWI_raisepri

API Functions 6-115

C Interface

Syntax key = SWI_raisepri(Uns mask);

Parameters Uns mask /* mask of desired priority level */

Return value Uns key /* key for use with SWI_restorepri */

Assembly Interface

Syntax SWI_raisepri

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

a = priority mask of desired priority level

Postconditions a = old priority mask

Modifies ag, ah, al, bg, bh, bl, c

Reentrant yes

Description

SWI_raisepri is used to raise the priority of the currently running SWI to the

priority mask passed in as the argument.

SWI_raisepri can be used in conjunction with SWI_restorepri to provide a

mutual exclusion mechanism without disabling software interrupts.

SWI_raisepri should be called before the shared resource is accessed, and

SWI_restorepri should be called after the access to the shared resource.

A call to SWI_raisepri not followed by a SWI_restorepri will keep the SWI's

priority for the rest of the processing at the raised level. A SWI_post of the

SWI will post the SWI at its original priority level.

SWI_raisepri will never lower the current SWI priority.

Example
/* raise priority to the priority of swi_1 */

key = SWI_raisepri(SWI_getpri(&swi_1));

--- access shared resource ---

SWI_restore(key);

See Also

SWI_getpri

SWI_restorepri

SWI_raisepri Raise a SWI’s priority

SWI_restorepri

6-116

C Interface

Syntax Void SWI_restorepri(Uns key);

Parameters Uns key /* key to restore original priority level */

Return Value Void

Assembly Interface

Syntax SWI_restorepri

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

a = old priority mask

intm = 0

SWI_D_lock < 0

not in an ISR

Postconditions none

Modifies ag, ah, al, c, intm, tc

Reentrant yes

Description

SWI_restorepri restores the priority to the SWI's priority prior to the

SWI_raisepri call returning the key. SWI_restorepri can be used in

conjunction with SWI_raisepri to provide a mutual exclusion mechanism

without disabling all software interrupts.

SWI_raisepri should be called right before the shared resource is referenced,

and SWI_restorepri should be called after the reference to the shared

resource.

Constraints and Calling Context

❏ This macro (API) must not be invoked from an ISR.

Example
/* raise priority to the priority of swi_1 */

key = SWI_raisepri(SWI_getpri(&swi_1));

--- access shared resource ---

SWI_restore(key);

See Also

SWI_getpri

SWI_raisepri

SWI_restorepri Restore a SWI’s priority

SWI_self

API Functions 6-117

C Interface

Syntax SWI_Obj *SWI_self(Void);

Parameters Void

Return Value SWI_Obj *swi /* currently executing SWI */

Assembly Interface

Syntax SWI_self

Preconditions cpl = ovm = c16 = frct = cmpt = 0

dp = GBL_A_SYSPAGE

Postconditions al = address of the current SWI object

Modifies ag, ah, al, c

Reentrant yes

Description

SWI_self returns the address of the currently executing software interrupt.

Within a hardware ISR, SWI_self returns the address of the software interrupt

highest in the processing stack—i.e., the software interrupt that yielded to the

hardware interrupt. If no software interrupt is running or yielding, SWI_self

returns NULL.

Example

You can use SWI_self if you want a software interrupt to repost itself:

SWI_post(SWI_self());

See Also

SWI_andn

SWI_dec

SWI_getmbox

SWI_inc

SWI_or

SWI_post

SWI_self Return address of currently executing SWI object

TRC Module

6-118

Functions

❏ TRC_disable. Disable trace class(es)
❏ TRC_enable. Enable trace type(s)
❏ TRC_query. Query trace class(es)

Description

The TRC module manages a set of trace control bits which control the

real-time capture of program information through event logs and statistics

accumulators. For greater efficiency, the target does not store log or statistics

information unless tracing is enabled.

The following events and statistics can be traced. The constants defined in

trc.h and trc.h54 are shown in the left column:

TRC Module Trace manager

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Log timer interrupts off

TRC_LOGPRD Log periodic ticks and start of periodic functions off

TRC_LOGSWI Log events when a software interrupt is posted and completes off

TRC_STSHWI Gather statistics on monitored values within HWIs off

TRC_STSPIP Count number of frames read from or written to data pipe off

TRC_STSPRD Gather statistics on number of ticks elapsed during execution off

TRC_STSSWI Gather statistics on length of SWI execution off

TRC_USER0

 and

TRC_USER1

Your program can use these bits to enable or disable sets of explicit instru-

mentation actions. You can use TRC_query to check the settings of these

bits and either perform or omit instrumentation calls based on the result.

DSP/BIOS does not use or set these bits.

off

TRC_GBLHOST

This bit must be set in order for any implicit instrumentation to be performed.

Simultaneously starts or stops gathering of all enabled types of tracing. This

can be important if you are trying to correlate events of different types. This

bit is usually set at run time on the host in the RTA Control Panel.

off

TRC_GBLTARG

This bit must also be set in order for any implicit instrumentation to be per-

formed. This bit can only be set by the target program and is enabled by

default.

on

TRC Module

API Functions 6-119

All trace constants except TRC_GBLTARG are switched off initially. To enable

tracing you can use calls to TRC_enable or the Tools→DSP/BIOS→RTA

Control Panel, which uses the TRC module internally. You do not need to

enable tracing for messages written with LOG_printf or LOG_event and

statistics added with STS_add or STS_delta.

Your program can call the TRC_enable and TRC_disable operations to

explicitly start and stop event logging or statistics accumulation in response

to conditions encountered during real-time execution. This enables you to

preserve the specific log or statistics information you need to see.

TRC - DSP/BIOS Plug-ins Interface

You can choose Tools→DSP/BIOS→RTA

Control Panel to open a window that allows you

to control run-time tracing.

Once you have enabled tracing, you can use

Tools→DSP/BIOS→Execution Graph and

Tools→DSP/BIOS→Message Log to see log

information, and Tools→DSP/BIOS→Statistics

View to see statistical information.

TRC Module

6-120

You can also control how frequently the host polls the target for trace

information. Right-click on the RTA Control Panel and choose the Property

Page to set the refresh rate. If you set the refresh rate to 0, the host does not

poll the target unless you right-click on the RTA Control Panel and choose

Refresh Window from the pop-up menu.

See the TMS320C54x Code Composer Studio Tutorial for more information

on how to enable tracing in the RTA Control Panel.

TRC_disable

API Functions 6-121

C Interface

Syntax Void TRC_disable(Uns mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Assembly Interface

Syntax TRC_disable mask

Inputs mask (see the TRC Module for a list of constants to use in the mask)

Preconditions constant - mask for trace types (TRC_LOGSWI, TRC_LOGPRD, ...)

Postconditions none

Modifies c

Reentrant no

Description

TRC_disable disables tracing of one or more trace types. Trace types are

specified with a 32-bit mask. The following C code would disable tracing of

statistics for software interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);

Internally, DSP/BIOS uses a bitwise AND NOT operation to disable multiple

trace types.

The full list of constants you can use to disable tracing is included in the

description of the TRC module.

For example, you might want to use TRC_disable with a circular log and

disable tracing when an unwanted condition occurs. This allows test

equipment to retrieve the log events that happened just before this condition

started.

See Also

TRC_enable

TRC_query

LOG_printf

LOG_event

STS_add

STS_delta

TRC_disable Disable trace class(es)

TRC_enable

6-122

C Interface

Syntax Void TRC_enable(Uns mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Assembly Interface

Syntax TRC_enable mask

Inputs mask (see the TRC Module for a list of constants to use in the mask)

Preconditions constant - mask for trace types (TRC_LOGSWI, TRC_LOGPRD, ...)

Postconditions none

Modifies c

Reentrant no

Description

TRC_enable enables tracing of one or more trace types. Trace types are

specified with a 32-bit mask. The following C code would enable tracing of

statistics for software interrupts and periodic functions:

TRC_enable(TRC_STSSWI | TRC_STSPRD);

Internally, DSP/BIOS uses a bitwise OR operation to enable multiple trace

types.

The full list of constants you can use to enable tracing is included in the

description of the TRC module.

For example, you might want to use TRC_enable with a fixed log to enable

tracing when a specific condition occurs. This allows test equipment to

retrieve the log events that happened just after this condition occurred.

See Also

TRC_disable

TRC_query

LOG_printf

LOG_event

STS_add

STS_delta

TRC_enable Enable trace type(s)

TRC_query

API Functions 6-123

C Interface

Syntax result = TRC_query(Uns mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Int result /* indicates whether all trace types enabled */

Assembly Interface

Syntax TRC_query mask

Inputs mask (see the TRC Module for a list of constants to use in the mask)

Preconditions constant - mask for trace types

Postconditions a == 0 if all trace types in the mask are enabled

a != 0 if any trace type in the mask is disabled

Modifies ag, ah, al, c

Reentrant yes

Description

TRC_query determines whether particular trace types are enabled.

TRC_query returns 0 if all trace types in the mask are enabled. If any trace

types in the mask are disabled, TRC_query returns a value with a bit set for

each trace type in the mask that is disabled.

Trace types are specified with a 16-bit mask. The full list of constants you can

use is included in the description of the TRC module.

For example, the following C code returns 0 if statistics tracing for the PRD

class is enabled:

result = TRC_query(TRC_STSPRD);

The following C code returns 0 if both logging and statistics tracing for the

SWI class are enabled:

result = TRC_query(TRC_LOGSWI | TRC_STSSWI);

Note that TRC_query does not return 0 unless the bits you are querying and

the TRC_GBLHOST and TRC_GBLTARG bits are set. TRC_query returns

non-zero if either TRC_GBLHOST or TRC_GBLTARG are disabled. This is

because no tracing is done unless these bits are set.

TRC_query Query trace class(es)

TRC_query

6-124

For example, if the TRC_GBLHOST, TRC_GBLTARG, and TRC_LOGSWI

bits are set, the following C code returns the results shown:

result = TRC_query(TRC_LOGSWI) /* returns 0 */

result = TRC_query(TRC_LOGPRD) /* returns non-zero */

However, if only the TRC_GBLHOST and TRC_LOGSWI bits are set, the

same C code returns the results shown:

result = TRC_query(TRC_LOGSWI) /* returns non-zero */

result = TRC_query(TRC_LOGPRD) /* returns non-zero */

See Also

TRC_enable

TRC_disable

7-1

Chapter 7

Utility Programs

This chapter provides documentation for utilities that can be used to examine

various files from the MS-DOS command line. These programs are provided

with DSP/BIOS in the bin subdirectory.

cdbprint utility

7-2

cdbprint utility

Syntax cdbprint [-a] [-l] [-w] cdb-file

Description

This utility reads a .cdb file created with the Configuration Tool and creates a

list of all the objects and parameters. This tool can be used to compare two

configuration files or to simply review the values of a single configuration file.

The -a flag causes cdbprint to list all objects and fields including those that

are normally not visible (i.e., unconfigured objects and hidden fields). Without

this flag, cdbprint ignores unconfigured objects or modules as well as any

fields that are hidden.

The -l flag causes cdbprint to list the internal parameter names instead of the

labels used by the Configuration Tool. Without this flag, cdbprint lists the

labels used by the Configuration Tool.

The -w flag causes cdbprint to list only those parameters that can also be

modified in the Configuration Tool. Without this flag, cdbprint lists both

read-only and read-write parameters.

Example

The following sequence of commands can be used to compare a

configuration file called test54.cdb to the default configuration provided with

DSP/BIOS:

cdbprint ../../include/bios54.cdb > original.txt

cdbprint test54.cdb > test54.txt

diff original.txt test54.txt

cdbprint Prints a listing of all parameters defined in a configuration file

nmti utility

Utility Programs 7-3

nmti utility

Syntax nmti [file1 file2 ...]

Description

nmti prints the symbol table (name list) for each TI executable file listed on the

command line. Executable files must be stored as COFF (Common Object

File Format) files.

If no files are listed, the file a.out is searched. The output is sent to stdout.

Note that both linked (executable) and unlinked (object) files can be examined

with nmti.

Each symbol name is preceded by its value (blanks if undefined) and one of

the following letters:

A absolute symbol

B bss segment symbol

D data segment symbol

E external symbol

S section name symbol

T text segment symbol

U undefined symbol

The type letter is upper case if the symbol is external, and lower case if it is

local.

nmti Display symbols and values in a TI COFF file

sectti utility

7-4

sectti utility

Syntax sectti [-a] [file1 file2 ...]

Description

sectti displays location and size information for all the sections in a TI

executable file. Executable files must be stored as COFF (Common Object

File Format) files.

All values are in hexadecimal. If no file names are given, a.out is assumed.

Note that both linked (executable) and unlinked (object) files can be examined

with sectti.

Using the -a flag causes sectti to display all program sections, including

sections used only on the target by the DSP/BIOS plugins. If you omit the -a

flag, sectti displays only the program sections that are loaded on the target.

sectti Display information about sections in TI COFF files

vers utility

Utility Programs 7-5

vers utility

Syntax vers [file1 file2 ...]

Description

The vers utility displays the version number of DSP/BIOS files installed in your

system. For example, the following command checks the version number of

the bios.a54 file in the lib sub-directory.

..\bin\vers bios.a54

bios.a54:

 *** library

 *** "date and time"

 *** bios-c05

 *** "version number"

The actual output from vers may contain additional lines of information. To

identify your software version number to Technical Support, use the version

number shown.

Note that both libraries and source files can be examined with vers.

vers Display version information for a DSP/BIOS source or library file

Index-1

Index

A
application stack

measuring 3-21
application stack size 4-21
assembly header files 2-5
assembly language

calling C functions from 6-6
assembly source files 2-6
assertions 4-26
average 6-88

B
background loop 6-33
background processes 4-2
background threads

suggested use 4-3
BIOSREGS memory segment 1-11
boards

setting 6-16

C
.c files 2-5
C functions

calling from assembly language 6-6
.cdb files 2-6
cdbprint utility 7-2
channels 5-2, 5-9, 6-17
CLK module 6-7

trace types 6-121
CLK_countspms() 6-10
CLK_F_isr function 1-9
CLK_gethtime 6-11
CLK_getltime 6-13
CLK_getprd 6-15
clock 4-22

See also CLK module
clock functions 4-2

suggested use 4-3

clocks
real time vs. data-driven 4-24, 6-69

.cmd files 2-6
compiling 2-9
components 1-3
configuration files 2-6

creating 2-3
custom templates 2-3
printing 7-2
See Also custom template files

Configuration Tool 1-4, 2-3
constants

trace enabling 3-12
conventions 1-8
count 6-88
counts per millisecond 6-10
CPU load

tracking 3-10
creating configuration files 2-3
creating custom template files 2-3
custom template files

creating 2-3
See Also configuration files

D
data access 5-2
data analysis 3-10
data channels 6-17
data notification functions 4-2
data pipes 5-2
data transfer 5-10, 6-51
data types 1-10
design philosophy 1-2
development cycle 2-2
disable

HWI 6-26, 6-32
LOG 6-39
SWI 6-107
TRC 6-124

disabling
hardware interrupts 4-18, 6-26, 6-32
software interrupts 4-18

Index-2

 Index

DSP/BIOS 1-3
DSP/BIOS Configuration Tool 1-4

files generated 2-4
DSP/BIOS plugins 1-5

files used 2-6

E
EDATA memory segment 1-11
EDATA1 memory segment 1-11
enable

HWI 6-27
LOG 6-40
SWI 6-109
TRC 6-125

enabling
hardware interrupts 6-27

endian mode 6-16
EPROG memory segment 1-11
EPROG1 memory segment 1-11
Event Log Manager 3-5
executable files 2-6
explicit instrumentation 3-4

F
field testing 3-24
file access 5-2
file names 2-5
file streaming 1-7
files

generated by Configuration Tool 2-4
used by DSP/BIOS plugins 2-6

frequencies
typical for HWI vs. SWI

function names 1-9
functions

list of 6-3

G
global settings 6-16
gmake 2-9

H
.h files 1-8, 2-5
.h54 file 1-8, 2-5

hardware interrupts 4-2, 6-22
counting 3-21
disabling 6-26, 6-32
enabling 6-27
statistics 3-22
typical frequencies

header files 2-5
including 1-8

high-resolution time 6-11
host channels 5-2, 5-9
host data interface 6-17
HST module 5-9, 6-17

for instrumentation 3-4
HST_getpipe 6-20
HWI interrupts. See hardware interrupts
HWI module 6-22

implicit instrumentation 3-21
statistics units 6-89
trace types 6-121

HWI_disable 6-26, 6-32
preemption diagram 4-18
vs. instruction 6-6

HWI_enable 6-27
preemption diagram 4-18

HWI_enter 6-28
HWI_exit 6-30
HWI_TINT hardware interrupt 4-2
HWI_unused 1-9

I
I/O 5-2

performance 5-10
IDATA memory segment 1-11
IDL module 6-33
IDL_F_busy function 1-9
IDL_run 6-35
idle loop 4-5
implicit instrumentation 3-14
input 5-2
instrumentation 3-1

explicit vs. implicit 3-4
hardware interrupts 3-22
implicit 3-14
software vs. hardware 3-2
System Log 3-14

interrupt latency 3-24
interrupt service routines 6-22
IPROG memory segment 1-11
ISRs 6-22

Index-3

Index

L
linker command files 2-6
linking 2-9
LNK_dataPump object 5-10
LNK_F_dataPump 1-9
LOG module 6-36

explicit instrumentation 3-5
implicit instrumentation 3-14
overview 3-5

LOG_disable 6-39
LOG_enable 6-40
LOG_error 6-41
LOG_event 6-43
LOG_printf 6-45
LOG_reset 6-48
LOG_system object 4-28
logged events 6-121
logs

objects 3-14
performance 3-3
sequence numbers 4-27

low-resolution time 6-13

M
mailbox

clear bits 6-103
decrement 6-105
get value 6-110
increment 6-113
set bits 6-115

makefiles 2-9
maximum 6-88
MEM module 6-49
memory

segment names 1-11
modifies registers 6-2
modules

list of 6-2

N
naming conventions 1-8, 6-2
nmti utility 7-3
notify function 5-10
notifyReader function 5-3

use of HWI_enter 6-23
notifyWriter function 5-3

O
.o54 files 2-5
object files 2-5
object names 1-9
object structures 1-10
on-chip timer 6-7
operations

list of 6-3
names 1-9

optimization 1-2
instrumentation 3-3

output 5-2
overview 1-3

P
parameters

listing 7-2
vs. registers 6-6

performance 1-2
I/O 5-10
instrumentation 3-3
real-time statistics 3-10

performance monitoring 1-7
period register 6-15
periodic functions 4-2

suggested use 4-3
PIP module 6-51

statistics units 6-89
PIP_alloc 6-55
PIP_free 6-57
PIP_get 6-58
PIP_getReaderAddr 6-60
PIP_getReaderNumFrames 6-62
PIP_getReaderSize 6-63
PIP_getWriterAddr 6-64
PIP_getWriterNumFrames 6-65
PIP_getWriterSize 6-66
PIP_put 6-67
PIP_setWriterSize 6-68
pipe object 6-20
pipes 5-2, 6-51
postconditions 6-2, 6-6
posting software interrupts 6-100, 6-117
PRD module 6-69

implicit instrumentation 4-30
statistics units 6-89
trace types 6-121

PRD register 6-8
PRD_F_tick function 1-9
PRD_getticks 6-72
PRD_start 6-73
PRD_stop 6-75

Index-4

 Index

PRD_tick 6-76
preconditions 6-2, 6-6
preemption 4-18
printing configuration file 7-2
priorities 6-100

setting for software interrupts 4-7
processes 4-2
program analysis 3-1
program tracing 1-7

R
read data 6-52
real-time analysis 3-2
Real-Time Data Exchange

See RTDX
real-time deadline 4-29
registers

modified 6-6
monitoring in HWI 3-22
vs. parameters 6-6

reserved function names 1-9
RTA_F_dispatch function 1-9
RTDX 3-25
RTDX_bytesRead 6-85
RTDX_channelBusy 6-80
RTDX_CreateInputChannel 6-79
RTDX_CreateOutputChannel 6-79
RTDX_disableInput 6-81
RTDX_disableOutput 6-81
RTDX_enableInput 6-81
RTDX_enableOutput 6-81
RTDX_isInputEnabled 6-87
RTDX_isOutputEnabled 6-87
RTDX_read 6-82
RTDX_readNB 6-84
RTDX_write 6-86

S
.s54 files 2-6
sections

in executable file 7-4
sectti utility 7-4
software interrupts 4-2, 6-99

setting priorities 4-7
suggested use 4-3

software interrupts. See interrupts
source files 2-5
stack, execution 6-101
standardization 1-2

statistics
gathering 4-30
performance 3-3
units 4-30, 6-89, 6-121

Statistics Manager 3-7
std.h header file 1-10
STS manager 6-77, 6-88
STS module

explicit instrumentation 3-7
implicit instrumentation 4-30
operations on registers 3-23
overview 3-7

STS_add 3-9, 6-93
uses of 3-23

STS_delta 3-10, 6-94
uses of 3-23

STS_reset 6-96
STS_set 3-10, 6-97
SWI module 6-99

implicit instrumentation 4-30
statistics units 6-89
trace types 6-121

SWI_andn 6-103
SWI_dec 6-105
SWI_disable 6-107

preemption diagram 4-18
SWI_enable 6-109

preemption diagram 4-18
SWI_getmbox 6-110
SWI_getpri 6-112
SWI_inc 6-113
SWI_or 6-115
SWI_post 6-117
SWI_raisepri 6-118
SWI_restorepri 6-119
SWI_self 6-120
symbol table 7-3
System Log 3-14

viewing graph 4-26

T
target board 6-16
target executable 2-6
TDDR register 6-8
threads

choosing types 4-3
viewing execution graph 4-26
viewing states 4-26

timer 6-7
total 6-88
trace state 3-12

for System Log 4-28
performance 3-3

Index-5

Index

trace types 6-121
TRC module 6-121

control of implicit instrumentation 3-12
explicit instrumentation 3-11

TRC_disable 6-124
constants 3-12

TRC_enable 6-125
constants 3-12

TRC_query 6-126

U
underscores in function names 6-6
units for statistics 6-89
USER traces 3-12, 6-121
user-defined logs 3-5
USERREGS memory segment 1-11
utilities

cdbprint 7-2
nmti 7-3
sectti 7-4
vers 7-5

V
variables

watching 3-22
VECT memory segment 1-11
vers utility 7-5
version information 7-5

W
write data 6-52

X
.x54 files 2-6

Y
yielding 4-18

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	About DSP/BIOS
	DSP/BIOS Features and Benefits
	DSP/BIOS Components
	DSP/BIOS Real-Time Library and API
	The DSP/BIOS Configuration Tool
	The DSP/BIOS plugins

	Naming Conventions
	Module Header Names
	Object Names
	Operation Names
	Data Type Names
	Memory Segment Names

	For More Information

	Program Generation
	Development Cycle
	Using the Configuration Tool
	Creating a New Configuration
	Creating a Custom Template
	Setting Global Properties for a Module
	Creating an Object and Specifying its Properties
	Files Generated by the Configuration Tool

	Files Used to Create DSP/BIOS Programs
	Files Used by the DSP/BIOS Plugins

	Compiling and Linking Programs
	Building with a Code Composer Project
	Building with Multiple Linker Command Files

	Makefiles

	DSP/BIOS Startup Sequence

	Instrumentation
	Real-Time Analysis
	Software vs. Hardware Instrumentation
	Instrumentation Performance Issues
	Instrumentation APIs
	Explicit vs. Implicit Instrumentation
	Message Log Manager (LOG Module)
	Statistics Accumulator Manager (STS Module)
	Statistics About Varying Values
	Statistics About Time Periods
	Statistics About Value Differences

	Trace Control Manager (TRC Module)
	Control of Explicit Instrumentation
	Control of Implicit Instrumentation

	Implicit DSP/BIOS Instrumentation
	The Execution Graph
	The CPU Load
	CPU Load Accuracy
	Hardware Interrupt Count and Maximum Stack Depth
	Monitoring Variables
	Interrupt Latency

	Instrumentation for Field Testing
	Real-Time Data Exchange
	RTDX Applications
	RTDX Usage
	RTDX Flow of Data
	Target to Host Data Flow
	Host to Target Data Flow
	RTDX Target Library User Interface
	RTDX Host OLE Interface

	RTDX Modes
	Special Considerations When Writing Assembly Code
	Target Buffer Size
	Sending Data From Target to Host or Host to Target

	Program Execution
	Program Components
	Choosing Which Types of Threads to Use
	The Idle Loop
	Software Interrupts
	Setting Software Interrupt Priorities in the Configuration Tool
	Execution of Software Interrupts
	Using an SWI Object•s Mailbox

	Hardware Interrupts
	Writing an HWI Routine
	Nesting Interrupts

	Preemption and Yielding
	Preventing Preemption by a Higher-Priority Thread
	Saving Registers During Software Interrupt Preemption
	Software Interrupt Priorities and Application Stack Size

	Clock Manager (CLK Module)
	High- and Low-Resolution Clocks

	Periodic Function Manager (PRD) and the System Clock
	Invoking Functions for PRD Objects

	Using the Execution Graph to View Program Execution
	States in the Execution Graph Window
	Threads in the Execution Graph Window
	Sequence Numbers in the Execution Graph Window
	RTA Control Panel Settings for Use with the Execution Graph

	SWI and PRD Accumulators: Real-Time Deadline Headroom

	Input/Output
	Objects Used for I/O
	Data Pipe Manager (PIP Module)
	Writing Data to a Pipe
	Reading Data from a Pipe
	Using a Pipe's Notify Functions
	Calling Order for PIP APIs
	Avoiding Recursion Problems

	Host Input/Output Manager (HST Module)
	Transfer of HST Data to the Host

	I/O Performance Issues

	API Functions
	DSP/BIOS Modules
	Naming Conventions
	List of Operations
	Assembly Language Interface
	CLK Module
	CLK_countspms
	CLK_gethtime
	CLK_getltime
	CLK_getprd
	Global Settings
	HST Module
	HST_getpipe
	HWI Module
	HWI_disable
	HWI_enable
	HWI_enter
	HWI_exit
	HWI_restore
	IDL Module
	IDL_run
	LOG Module
	LOG_disable
	LOG_enable
	LOG_error, LOG_message
	LOG_event
	LOG_printf
	LOG_reset
	MEM Module
	PIP Module
	PIP_alloc
	PIP_free
	PIP_get
	PIP_getReaderAddr
	PIP_getReaderNumFrames
	PIP_getReaderSize
	PIP_getWriterAddr
	PIP_getWriterNumFrames
	PIP_getWriterSize
	PIP_put
	PIP_setWriterSize
	PRD Module
	PRD_getticks
	PRD_start
	PRD_stop
	PRD_tick
	RTDX Module
	RTDX_CreateInputChannel, RTDX_CreateOutputChannel
	RTDX_channelBusy
	RTDX_disableInput, RTDX_disableOutput, RTDX_enableInput, RTDX_enableOutput
	RTDX_read
	RTDX_readNB
	RTDX_sizeofInput
	RTDX_write
	RTDX_isInputEnabled, RTDX_isOutputEnabled
	STS Module
	STS_add
	STS_delta
	STS_reset
	STS_set
	SWI Module
	SWI_andn
	SWI_dec
	SWI_disable
	SWI_enable
	SWI_getmbox
	SWI_getpri
	SWI_inc
	SWI_or
	SWI_post
	SWI_raisepri
	SWI_restorepri
	SWI_self
	TRC Module
	TRC_disable
	TRC_enable
	TRC_query

	Utility Programs
	cdbprint
	nmti
	sectti
	vers

	Index

