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IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any

semiconductor product or service without notice, and advises its customers to obtain the latest

version of relevant information to verify, before placing orders, that the information being relied

on is current.

TI warrants performance of its semiconductor products and related software to the specifications

applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality

control techniques are utilized to the extent TI deems necessary to support this warranty.

Specific testing of all parameters of each device is not necessarily performed, except those

mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,

personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES

OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.

Use of TI products in such applications requires the written approval of an appropriate TI officer.

Questions concerning potential risk applications should be directed to TI through a local SC

sales office.

In order to minimize risks associated with the customer’s applications, adequate design and

operating safeguards should be provided by the customer to minimize inherent or procedural

hazards.

TI assumes no liability for applications assistance, customer product design, software

performance, or infringement of patents or services described herein. Nor does TI warrant or

represent that any license, either express or implied, is granted under any patent right, copyright,

mask work right, or other intellectual property right of TI covering or relating to any combination,

machine, or process in which such semiconductor products or services might be or are used.

Copyright   1997, Texas Instruments Incorporated
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Preface

Read This First

About This Manual

This user’s guide serves as a reference book for developing hardware and/or

software applications for the TMS320C5x digital signal processors (DSPs).

How to Use This Manual

The following table summarizes the ’C5x information contained in this user’s

guide:

If you are looking for 

information about: Turn to:

Application reports Appendix C, Application Reports and
Designer’s Notebook Pages

Designer’s notebook pages Appendix C, Application Reports and
Designer’s Notebook Pages

DSP features Chapter 1, Introduction

External memory interfacing Chapter 3, External Memory interface

Extended-precision arithmetic

subroutines

Chapter 2, Software Applications

Fast Fourier transform subroutine Chapter 2, Software Applications

Floating-point arithmetic

subroutines

Chapter 2, Software Applications

Hardware applications Chapter 3, Analog Interface Peripherals and
Applications

Infinite impulse response (IIR)

filter subroutines

Chapter 2, Software Applications

Memory-to-memory block move

subroutines

Chapter 2, Software Applications

Modem applications Chapter 2, Software Applications

Chapter 4, Analog Interface Peripherals and
Applications
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If you are looking for 

information about: Turn to:

Multimedia applications Chapter 4, Analog Interface Peripherals and
Applications

PACK and UNPACK subroutines Chapter 2, Software Applications

Part order information Appendix B, Development Support and Part
Order Information

Processor initialization subroutine Chapter 2, Software Applications

Servo control/disk drive

applications

Chapter 4, Analog Interface Peripherals and
Applications

Software applications Chapter 2, Software Applications

Speech synthesis applications Chapter 4, Analog Interface Peripherals and
Applications

Telecommunications applications Chapter 4, Analog Interface Peripherals and
Applications

XDS510 emulator Appendix A, Design Considerations for Using
XDS510 Emulator

Notational Conventions

This document uses the following conventions:

� Program listings and program examples are shown in a special type-

face.

Here is a segment of a program listing:

OUTPUT:
LDP #6 ;data page 6
BLDD #300, 20h ;move data at address 300h to 320h
RET

� In syntax descriptions, the instruction is in a bold typeface and parame-

ters are in an italic typeface. Portions of a syntax in bold must be entered

as shown; portions of a syntax in italics describe the type of information

that you specify. Here is an example of an instruction syntax:

[label] BLDD src, dst

BLDD is the instruction and has two parameters, src and dst. When you

use BLDD, the first parameter must be an actual data memory source ad-

dress and dst a destination address. A comma and a space (optional)

must separate the two addresses.
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� The term OR is used in the assembly language instructions to denote a

Boolean operation. The term or is used to indicate selection. Here is an

example of an instruction with OR and or:

lk OR (src) � src or [, dst]

This instruction ORs the value of lk with the contents of src. Then, it stores

the result in src or dst, depending on the syntax of the instruction.

� Square brackets, [ and ], identify an optional parameter. If you use an op-

tional parameter, specify the information within the brackets; do not type

the brackets themselves. In the example above, instead of typing [label],

you specify a name for the label. When you specify more than one optional

parameter from a list, you separate them with a comma and a space.

� Braces, { and }, indicate a list. Unless the list is enclosed in square brack-

ets, you must choose one item from the list; do not type the braces them-

selves. Here’s an example of a list that provides seven choices:

ind: { * *+ *– *0+ *0– *BRO+ *BRO–}

� The term ’C5x refers to the TMS320C5x.

Related Documentation from Texas Instruments

The following books describe the ’C5x and related support tools. To obtain a

copy of any of these TI documents, call the Texas Instruments Literature

Response Center at (800) 477–8924. When ordering, please identify the book

by its title and literature number.

TMS320C5x User’s Guide (literature number SPRU056) describes the ’C5x

16-bit, fixed-point, general-purpose digital signal processors. Covered

are its architecture, internal register structure, instruction set, pipeline,

specifications, DMA, I/O ports, and on-chip peripherals.

TMS320C5x, TMS320LC5x Digital Signal Processors (literature number

SPRS030) data sheet contains the electrical and timing specifications for

these devices, as well as signal descriptions and pinouts for all of the

available packages.

Calculation of TMS320C5x Power Dissipation (literature number

SPRA030). This application report describes techniques for analyzing

system and device conditions to determine operating current levels.

From this analysis, power dissipation for the device can be determined.

Knowledge of power dissipation can, in turn, be used to determine ther-

mal management requirements for the device.
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Telecommunications Applications With the TMS320C5x DSPs (literature

number SPRA033). This application book is a collection of DSP applica-

tions related to the field of telecommunications and implemented on the

TMS320C5x. Topics covered are digital cellular systems, speech

synthesis, error-correction coding, baseband modulation and demodu-

lation, equalization and channel estimation, speech and character

recognition algorithms, and system design considerations.

PCMCIA TMS320 DSP MediaCard (literature number SPRA052). This

application report describes the DSP MediaCard, version 1.0, how it

operates, and how to use it. The DSP MediaCard is a card for sound and

fax/modem applications, and it uses a TMS320 DSP and on-board

stereo codec.

Use of the TMS320C5x Internal Oscillator With External Crystals or

Ceramic Resonators (literature number SPRA054). This application

report provides information about crystal and ceramic resonators, their

frequency characteristics, a general background on oscillators, and the

type of oscillator circuit used on the TMS320C5x. Covered are design

aspects of the ’C5x oscillator including appropriate configuration of the

external components, measured parameters for the on-board portion of

the circuitry, use of the oscillator with overtone crystals, and general

design considerations for choosing the external components for the

oscillator. This report presents some design solutions for common

frequencies.

Enhanced Control of an Alternating Current Motor Using Fuzzy Logic

and a TMS320 Digital Signal Processor (literature number SPRA057).

This application report describes how the use of a digital signal proces-

sor with a specialized fuzzy logic software kernel provides the required

computing performance for a control system design while maintaining a

low cost. This report presents a fuzzy logic design that enhances the

system’s ability to handle the abrupt momentum changes of an ac motor

controller and the software technology used to implement the fuzzy logic

design.

Improving 32-Channel DTMF Decoders Using the TMS320C5x (literature

number SPRA085). This application report discusses improvements that

you can make to a multichannel dual-tone multifrequency (DTMF)

decoder by using a TMS320C5x. PBX systems use multiple DTMF chips

to encode or decode tones. PBX systems also perform other functions,

such as voice compression or expansion and voice mail. By using a ’C5x,

you can increase the performance and flexibility of the PBX systems,

while decreasing the cost of the systems.
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Digital Signal Processing Applications with the TMS320 Family, Volumes

1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017) Vol-

umes 1 and 2 cover applications using the ’C10 and ’C20 families of

fixed-point processors. Volume 3 documents applications using both

fixed-point processors, as well as the ’C30 floating-point processor.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started

Guide (literature number SPRU121) describes how to install the

TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly

language tools and the C compiler for the ’C1x, ’C2x, ’C2xx, and ’C5x de-

vices. The installation for MS-DOS , OS/2 , SunOS , and Solaris
systems is covered.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-

erature number SPRU018) describes the assembly language tools (as-

sembler, linker, and other tools used to develop assembly language

code), assembler directives, macros, common object file format, and

symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-

erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature

number SPRU024) describes the ’C2x/C2xx/C5x C compiler. This C

compiler accepts ANSI standard C source code and produces TMS320

assembly language source code for the ’C2x, ’C2xx, and ’C5x genera-

tions of devices.

TMS320C5x C Source Debugger User’s Guide (literature number

SPRU055) tells you how to invoke the ’C5x emulator, evaluation module,

and simulator versions of the C source debugger interface. This book

discusses various aspects of the debugger interface, including window

management, command entry, code execution, data management, and

breakpoints. It also includes a tutorial that introduces basic debugger

functionality.

TMS320C5x Evaluation Module Technical Reference (literature number

SPRU087) describes the ’C5x evaluation module, its features, design

details and external interfaces.

TMS320C5x Evaluation Module Getting Started Guide (literature number

SPRU126) tells you how to install the MS-DOS , PC-DOS , and

Windows  versions of the ’C5x evaluation module.

XDS51x Emulator Installation Guide (literature number SPNU070)

describes the installation of the XDS510 , XDS510PP , and

XDS510WS  emulator controllers. The installation of the XDS511
emulator is also described.
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JTAG/MPSD Emulation Technical Reference (literature number SPDU079)

provides the design requirements of the XDS510  emulator controller,

discusses JTAG designs (based on the IEEE 1149.1 standard), and

modular port scan device (MPSD) designs.

TMS320 DSP Development Support Reference Guide (literature number

SPRU011) describes the TMS320 family of digital signal processors and

the tools that support these devices. Included are code-generation tools

(compilers, assemblers, linkers, etc.) and system integration and debug

tools (simulators, emulators, evaluation modules, etc.). Also covered are

available documentation, seminars, the university program, and factory

repair and exchange.

TMS320 Third-Party Support Reference Guide (literature number

SPRU052) alphabetically lists over 100 third parties that provide various

products that serve the family of TMS320 digital signal processors. A

myriad of products and applications are offered—software and hardware

development tools, speech recognition, image processing, noise can-

cellation, modems, etc.

Related Documents and Technical Articles

If you are an assembly language programmer and would like more information

about C or C expressions, you may find this book useful:

The C Programming Language (second edition, 1988), by Brian W. Kernig-
han and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey.

A wide variety of related documentation is available on DSPs. These refer-

ences fall into one of the following application categories:

� General-purpose DSP

� Graphics/imagery

� Speech/voice

� Control

� Multimedia

� Military

� Telecommunications

� Automotive

� Consumer

� Medical

� Development support
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In the following list, references appear in alphabetical order according to

author. The documents contain beneficial information regarding designs,

operations, and applications for signal-processing systems; all of the docu-

ments provide additional references.

General-Purpose DSP:

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY: McGraw-

Hill Company, Inc., 1979.

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1974.

3) Burrus, C.S., and T.W. Parks, DFT/FFT and Convolution Algorithms, New

York, NY: John Wiley and Sons, Inc., 1984.

4) Chassaing, R., Horning, D.W., “Digital Signal Processing with Fixed and

Floating-Point Processors.” CoED, USA, Volume 1, Number 1, pages 1–4,

March 1991.

5) Defatta, David J., Joseph G. Lucas, and William S. Hodgkiss, Digital

Signal Processing: A System Design Approach, New York: John Wiley,

1988.

6) Erskine, C., and S. Magar, “Architecture and Applications of a Second-

Generation Digital Signal Processor.” Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing, USA, 1985.

7) Essig, D., C. Erskine, E. Caudel, and S. Magar, “A Second-Generation

Digital Signal Processor.” IEEE Journal of Solid-State Circuits, USA,

Volume SC–21, Number 1, pages 86–91, February 1986.

8) Frantz, G., K. Lin, J. Reimer, and J. Bradley, “The Texas Instruments

TMS320C25 Digital Signal Microcomputer.” IEEE Microelectronics, USA,

Volume 6, Number 6, pages 10–28, December 1986.

9) Gass, W., R. Tarrant, T. Richard, B. Pawate, M. Gammel, P. Rajasekaran,

R. Wiggins, and C. Covington, “Multiple Digital Signal Processor Environ-

ment for Intelligent Signal Processing.” Proceedings of the IEEE, USA,

Volume 75, Number 9, pages 1246–1259, September 1987.

10) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York,

NY: McGraw-Hill Company, Inc., 1969.

11) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1977.

12) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal

Processing, New York, NY: IEEE Press, 1979.
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13) Jackson, Leland B., Digital Filters and Signal Processing, Hingham, MA:

Kluwer Academic Publishers, 1986.

14) Jones, D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using

the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

15) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing,

Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988.

16) Lin, K., G. Frantz, and R. Simar, Jr., “The TMS320 Family of Digital Signal

Processors.” Proceedings of the IEEE, USA, Volume 75, Number 9, pages

1143–1159, September 1987.

17) Lovrich, A., Reimer, J., “An Advanced Audio Signal Processor.” Digest of

Technical Papers for 1991 International Conference on Consumer

Electronics, June 1991.

18) Magar, S., D. Essig, E. Caudel, S. Marshall and R. Peters, “An NMOS

Digital Signal Processor with Multiprocessing Capability.” Digest of IEEE

International Solid-State Circuits Conference, USA, February 1985.

19) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada:

Carleton University, 1983.

20) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

21) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975 and 1988.

22) Oppenheim, A.V., A.N. Willsky, and I.T. Young, Signals and Systems,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

23) Papamichalis, P.E., and C.S. Burrus, “Conversion of Digit-Reversed to

Bit-Reversed Order in FFT Algorithms.” Proceedings of ICASSP 89, USA,

pages 984–987, May 1989.

24) Papamichalis, P., and R. Simar, Jr., “The TMS320C30 Floating-Point

Digital Signal Processor.” IEEE Micro Magazine, USA, pages 13–29,

December 1988.

25) Parks, T.W., and C.S. Burrus, Digital Filter Design, New York, NY: John

Wiley and Sons, Inc., 1987.

26) Peterson, C., Zervakis, M., Shehadeh, N., “Adaptive Filter Design and

Implementation Using the TMS320C25 Microprocessor.” Computers in

Education Journal, USA, Volume 3, Number 3, pages 12–16, July–

September 1993.
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27) Prado, J., and R. Alcantara, “A Fast Square-Rooting Algorithm Using a

Digital Signal Processor.” Proceedings of IEEE, USA, Volume 75, Number

2, pages 262–264, February 1987.

28) Rabiner, L.R. and B. Gold, Theory and Applications of Digital Signal

Processing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

29) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to

Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,

Volume D, page 1678, April 1988.

30) Simar, Jr., R., T. Leigh, P. Koeppen, J. Leach, J. Potts, and D. Blalock, “A

40 MFLOPS Digital Signal Processor: the First Supercomputer on a Chip.”

Proceedings of ICASSP 87, USA, Catalog Number 87CH2396–0, Volume

1, pages 535–538, April 1987.

31) Simar, Jr., R., and J. Reimer, “The TMS320C25: a 100 ns CMOS VLSI

Digital Signal Processor.” 1986 Workshop on Applications of Signal

Processing to Audio and Acoustics, September 1986.

32) Texas Instruments, Digital Signal Processing Applications with the

TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

33) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide

to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987.

Graphics/Imagery:

1) Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

2) Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

3) Papamichalis, P.E., “FFT Implementation on the TMS320C30.” Proceed-
ings of ICASSP 88, USA, Volume D, page 1399, April 1988.

4) Pratt, William K., Digital Image Processing, New York, NY: John Wiley and
Sons, 1978.

5) Reimer, J., and A. Lovrich, “Graphics with the TMS32020.” WESCON/85
Conference Record, USA, 1985.

Speech/Voice:

1) DellaMorte, J., and P. Papamichalis, “Full-Duplex Real-Time Implementa-
tion of the FED-STD-1015 LPC-10e Standard V.52 on the TMS320C25.”
Proceedings of SPEECH TECH 89, pages 218–221, May 1989.

2) Frantz, G.A., and K.S. Lin, “A Low-Cost Speech System Using the
TMS320C17.” Proceedings of SPEECH TECH ’87, pages 25–29, April
1987.
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3) Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY:
Springer-Verlag, 1976.

4) Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

5) Papamichalis, Panos, Practical Approaches to Speech Coding, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

6) Papamichalis, P., and D. Lively, “Implementation of the DOD Standard
LPC–10/52E on the TMS320C25.” Proceedings of SPEECH TECH ’87,
pages 201–204, April 1987.

7) Pawate, B.I., and G.R. Doddington, “Implementation of a Hidden Markov
Model-Based Layered Grammar Recognizer.” Proceedings of ICASSP
89, USA, pages 801–804, May 1989.

8) Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

9) Reimer, J.B. and K.S. Lin, “TMS320 Digital Signal Processors in Speech
Applications.” Proceedings of SPEECH TECH ’88, April 1988.

10) Reimer, J.B., M.L. McMahan, and W.W. Anderson, “Speech Recognition
for a Low-Cost System Using a DSP.” Digest of Technical Papers for 1987
International Conference on Consumer Electronics, June 1987.

Control:

1) Ahmed, I., “16-Bit DSP Microcontroller Fits Motion Control System

Application.” PCIM, October 1988.

2) Ahmed, I., “Implementation of Self Tuning Regulators with TMS320 Fami-

ly of Digital Signal Processors.” MOTORCON ’88, pages 248–262,

September 1988.

3) Ahmed, I., and S. Lindquist, “Digital Signal Processors: Simplifying High-

Performance Control.” Machine Design, September 1987.

4) Ahmed, I., and S. Meshkat, “Using DSPs in Control.” Control Engineering,

February 1988.

5) Allen, C. and P. Pillay, “TMS320 Design for Vector and Current Control of

AC Motor Drives.” Electronics Letters, UK, Volume 28, Number 23, pages

2188–2190, November 1992.

6) Bose, B.K., and P.M. Szczesny, “A Microcomputer-Based Control and

Simulation of an Advanced IPM Synchronous Machine Drive System for

Electric Vehicle Propulsion.” Proceedings of IECON ’87, Volume 1, pages

454–463, November 1987.
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7) Hanselman, H., “LQG-Control of a Highly Resonant Disc Drive Head Posi-

tioning Actuator.” IEEE Transactions on Industrial Electronics, USA,

Volume 35, Number 1, pages 100–104, February 1988.

8) Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel

Dekker, Inc., 1981.

9) Katz, P., Digital Control Using Microprocessors, Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1981.

10) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and

Winston, Inc., 1980.

11) Lovrich, A., G. Troullinos, and R. Chirayil, “An All-Digital Automatic Gain

Control.” Proceedings of ICASSP 88, USA, Volume D, page 1734, April

1988.

12) Matsui, N. and M. Shigyo, “Brushless DC Motor Control Without Position

and Speed Sensors.” IEEE Transactions on Industry Applications, USA,

Volume 28, Number 1, Part 1, pages 120–127, January–February 1992.

13) Meshkat, S., and I. Ahmed, “Using DSPs in AC Induction Motor Drives.”

Control Engineering, February 1988.

14) Panahi, I. and R. Restle, “DSPs Redefine Motion Control.” Motion Control

Magazine, December 1993.

15) Phillips, C., and H. Nagle, Digital Control System Analysis and Design,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Multimedia:

1) Reimer, J., “DSP-Based Multimedia Solutions Lead Way Enhancing Audio

Compression Performance.” Dr. Dobbs Journal, December 1993.

2) Reimer, J., G. Benbassat, and W. Bonneau Jr., “Application Processors:

Making PC Multimedia Happen.” Silicon Valley PC Design Conference,

July 1991.

Military:

1) Papamichalis, P., and J. Reimer, “Implementation of the Data Encryption

Standard Using the TMS32010.” Digital Signal Processing Applications,

1986.



Related Documents and Technical Articles

xiv  

Telecommunications:

1) Ahmed, I., and A. Lovrich, “Adaptive Line Enhancer Using the

TMS320C25.” Conference Records of Northcon/86, USA, 14/3/1–10,

September/October 1986.

2) Casale, S., R. Russo, and G. Bellina, “Optimal Architectural Solution

Using DSP Processors for the Implementation of an ADPCM Transcoder.”

Proceedings of GLOBECOM ’89, pages 1267–1273, November 1989.

3) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice

Echo Canceller on a SINGLE TMS32020.” Proceedings of ICASSP 86,

USA, Catalog Number 86CH2243–4, Volume 1, pages 429–432, April

1986.

4) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice

Echo Canceller on a Single TMS32020.” Proceedings of IEEE Internation-

al Conference on Acoustics, Speech and Signal Processing, USA, 1986.

5) Lovrich, A., and J. Reimer, “A Multi-Rate Transcoder.” Transactions on

Consumer Electronics, USA, November 1989.

6) Lovrich, A. and J. Reimer, “A Multi-Rate Transcoder.” Digest of Technical

Papers for 1989 International Conference on Consumer Electronics, June

7–9, 1989.

7) Lu, H., D. Hedberg, and B. Fraenkel, “Implementation of High-Speed

Voiceband Data Modems Using the TMS320C25.” Proceedings of

ICASSP 87, USA, Catalog Number 87CH2396–0, Volume 4, pages

1915–1918, April 1987.

8) Mock, P., “Add DTMF Generation and Decoding to DSP– µP Designs.”

Electronic Design, USA, Volume 30, Number 6, pages 205–213, March

1985.

9) Reimer, J., M. McMahan, and M. Arjmand, “ADPCM on a TMS320 DSP

Chip.” Proceedings of SPEECH TECH 85, pages 246–249, April 1985.

10) Troullinos, G., and J. Bradley, “Split-Band Modem Implementation Using

the TMS32010 Digital Signal Processor.” Conference Records of

Electro/86 and Mini/Micro Northeast, USA, 14/1/1–21, May 1986.
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Automotive:

1) Lin, K., “Trends of Digital Signal Processing in Automotive.” International

Congress on Transportation Electronic (CONVERGENCE ’88), October

1988.

Consumer:

1) Frantz, G.A., J.B. Reimer, and R.A. Wotiz, “Julie, The Application of DSP

to a Product.” Speech Tech Magazine, USA, September 1988.

2) Reimer, J.B., and G.A. Frantz, “Customization of a DSP Integrated Circuit

for a Customer Product.” Transactions on Consumer Electronics, USA,

August 1988.

3) Reimer, J.B., P.E. Nixon, E.B. Boles, and G.A. Frantz, “Audio Customiza-

tion of a DSP IC.” Digest of Technical Papers for 1988 International

Conference on Consumer Electronics, June 8–10 1988.

Medical:

1) Knapp and Townshend, “A Real-Time Digital Signal Processing System

for an Auditory Prosthesis.” Proceedings of ICASSP 88, USA, Volume A,

page 2493, April 1988.

2) Morris, L.R., and P.B. Barszczewski, “Design and Evolution of a Pocket-

Sized DSP Speech Processing System for a Cochlear Implant and Other

Hearing Prosthesis Applications.” Proceedings of ICASSP 88, USA,

Volume A, page 2516, April 1988.

Development Support:

1) Mersereau, R., R. Schafer, T. Barnwell, and D. Smith, “A Digital Filter

Design Package for PCs and TMS320.” MIDCON/84 Electronic Show and
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1-1Introduction

Introduction

This user’s guide provides applications for the TMS320C5x generation of

fixed-point digital signal processors (DSPs) in the TMS320 family. The ’C5x

DSP provides improved performance over earlier ’C1x and ’C2x generations

while maintaining upward compatibility of source code between the devices.

The ’C5x central processing unit (CPU) is based on the ’C25 CPU and incorpo-

rates additional architectural enhancements that allow the device to run twice

as fast as ’C2x devices. Future expansion and enhancements are expected

to heighten the performance and range of applications of the ’C5x DSPs.

The ’C5x generation of static CMOS DSPs consists of the following devices:

Device On-Chip RAM On-Chip ROM

TMS320C50/LC50 10K words 2K words

TMS320C51/LC51 2K words 8K words

TMS320C52/LC52 1K words 4K words

TMS320C53/LC53 4K words 16K words

TMS320C53S/LC53S 4K words 16K words

TMS320LC56 7K words 32K words

TMS320C57S 7K words 2K words

TMS320LC57 7K words 32K words
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1.1 TMS320 Family Overview

The TMS320 family consists of two types of single-chip DSPs: 16-bit fixed-

point and 32-bit floating-point. These DSPs possess the operational flexibility

of high-speed controllers and the numerical capability of array processors.

Combining these two qualities, the TMS320 processors are inexpensive alter-

natives to custom-fabricated very large scale integration (VLSI) and multichip

bit-slice processors. Refer to subsection 1.1.2, TMS320 Typical Applications,

for a detailed list of applications of the TMS320 family. The following character-

istics make this family the ideal choice for a wide range of processing applica-

tions:

� Very flexible instruction set

� Inherent operational flexibility

� High-speed performance

� Innovative, parallel architectural design

� Cost-effectiveness

1.1.1 History, Development, and Advantages of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010 — the first fixed-point

DSP in the TMS320 family. Before the end of the year, Electronic Products

magazine awarded the TMS32010 the title “Product of the Year”. The

TMS32010 became the model for future TMS320 generations.

Today, the TMS320 family consists of these generations (Figure 1–1): ’C1x,

’C2x, ’C2xx, ’C5x, ’C54x, and ’C6x fixed-point DSPs; ’C3x and ’C4x floating-

point DSPs; and ’C8x multiprocessor DSPs. Figure 1–1 illustrates the

performance gains that the TMS320 family has made over time with succes-

sive generations. Source code is upwardly compatible from one fixed-point

generation to the next fixed-point generation (except for the ’C54x), and from

one floating-point generation to the next floating-point generation. Upward

compatibility preserves the software generation of your investment, thereby

providing a convenient and cost-efficient means to a higher-performance,

more versatile DSP system.

Each generation of TMS320 devices has a CPU and a variety of on-chip

memory and peripheral configurations for developing spin-off devices. These

spin-off devices satisfy a wide range of needs in the worldwide electronics

market. When memory and peripherals are integrated into one processor, the

overall system cost is greatly reduced, and circuit board space is saved.
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Figure 1–1. Evolution of the TMS320 Family
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1.1.2 TMS320 Typical Applications

The TMS320 family of DSPs offers better, more adaptable approaches to tradi-
tional signal-processing problems, such as vocoding, filtering, and error
coding. Furthermore, the TMS320 family supports complex applications that
often require multiple operations to be performed simultaneously. Figure 1–2
shows many of the typical applications of the TMS320 family.

Figure 1–2. Typical Applications for the TMS320 Family
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1.2 TMS320C5x Overview

The ’C5x generation consists of the ’C50, ’C51, ’C52, ’C53, ’C53S, ’C56,  ’C57,

and ’C57S DSPs, which are fabricated by CMOS integrated-circuit technology.

Their architectural design is based on the ’C25. The operational flexibility and

speed of the ’C5x are the result of combining an advanced Harvard architec-

ture (which has separate buses for program memory and data memory), a

CPU with application-specific hardware logic, on-chip peripherals, on-chip

memory, and a highly specialized instruction set. The ’C5x is designed to ex-

ecute up to 50 million instructions per second (MIPS). Spin-off devices that

combine the ’C5x CPU with customized on-chip memory and peripheral con-

figurations may be developed for special applications in the worldwide elec-

tronics market.

The ’C5x devices offer these advantages:

� Enhanced TMS320 architectural design for increased performance and

versatility

� Modular architectural design for fast development of spin-off devices

� Advanced integrated-circuit processing technology for increased per-

formance and low power consumption

� Source code compatibility with ’C1x, ’C2x, and ’C2xx DSPs for fast and

easy performance upgrades

� Enhanced instruction set for faster algorithms and for optimized high-level

language operation

� Reduced power consumption and increased radiation hardness because

of new static design techniques

Table 1–1 lists the major characteristics of the ’C5x DSPs. The table shows the

capacity of on-chip RAM and ROM, number of serial and parallel input/output

(I/O) ports, power supply requirements, execution time of one machine cycle,

and package types available with total pin count. Use Table 1–1 for guidance

in choosing the best ’C5x DSP for your application.



TMS320C5x Overview

 1-6

Table 1–1. Characteristics of the ’C5x DSPs

TMS320

On-Chip Memory

(16-bit words) I/O Ports
Power

Supply

Cycle

Time PackageTMS320

Device ID DARAM† SARAM‡ ROM Serial Parallel ◊
Supply

(V)

Time

(ns)

Package

Type

’C50 PQ 1056 9K 2K§ 2¶ 64K 5 50/35/25 132 pin BQFP�

’LC50 PQ 1056 9K 2K§ 2¶ 64K 3.3 50/35/25 132 pin BQFP�

’C51 PQ 1056 1K 8K§ 2¶ 64K 5 50/35/25/20 132 pin BQFP�

’C51 PZ 1056 1K 8K§ 2¶ 64K 5 50/35/25/20 100 pin TQFP�

’LC51 PQ 1056 1K 8K§ 2¶ 64K 3.3 50/35/25 132 pin BQFP�

’LC51 PZ 1056 1K 8K§ 2¶ 64K 3.3 50/35/25 100 pin TQFP�

’C52 PJ 1056 — 4K§ 1 64K 5 50/35/25/20 100 pin QFP�

’C52 PZ 1056 — 4K§ 1 64K 5 50/35/25/20 100 pin TQFP�

’LC52 PJ 1056 — 4K§ 1 64K 3.3 50/35/25 100 pin QFP�

’LC52 PZ 1056 — 4K§ 1 64K 3.3 50/35/25 100 pin TQFP�

’C53 PQ 1056 3K 16K§ 2¶ 64K 5 50/35/25 132 pin BQFP�

’C53S PZ 1056 3K 16K§ 2 64K 5 50/35/25 100 pin TQFP�

’LC53 PQ 1056 3K 16K§ 2¶ 64K 3.3 50/35/25 132 pin BQFP�

’LC53S PZ 1056 3K 16K§ 2 64K 3.3 50/35/25 100 pin TQFP�

’LC56 PZ 1056 6K 32K 2# 64K 3.3 50/35/25 100 pin TQFP�

’C57S PGE 1056 6K 2K§ 2# 64K� 5 50/35/25 144 pin TQFP�

’LC57 PBK 1056 6K 32K 2# 64K� 3.3 50/35/25 128 pinTQFP�

† Dual-access RAM (DARAM)
‡ Single-access RAM (SARAM)
§ ROM bootloader available
¶ Includes time-division multiplexed (TDM) serial port
# Includes buffered serial port (BSP)
|| Includes host port interface (HPI)
� 20 × 20 × 3.8 mm bumpered quad flat-pack (BQFP) package
�14 × 14 × 1.4 mm thin quad flat-pack (TQFP) package
�14 × 20 × 2.7 mm quad flat-pack (QFP) package
� 20 × 20 × 1.4 mm thin quad flat-pack (TQFP) package
◊ Sixteen of the 64K parallel I/O ports are memory mapped.
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1.3 TMS320C5x Key Features

Key features of the ’C5x DSPs are listed below. Where a feature is exclusive

to a particular device, the device’s name is enclosed within parentheses and

noted after that feature.

� Compatibility: Source-code compatible with ’C1x, ’C2x, and ’C2xx devices

� Speed: 20-/25-/35-/50-ns single-cycle fixed-point instruction execution

time (50/40/28.6/20 MIPS)

� Power

� 3.3-V and 5-V static CMOS technology with two power-down modes

� Power consumption control with IDLE1 and IDLE2 instructions for

power-down modes

� Memory

� 224K-word × 16-bit maximum addressable external memory space

(64K-word program, 64K-word data, 64K-word I/O, and 32K-word

global memory)

� 1056-word × 16-bit dual-access on-chip data RAM

� 9K-word × 16-bit single-access on-chip program/data RAM (’C50)

� 2K-word × 16-bit single-access on-chip boot ROM (’C50, ’C57S)

� 1K-word × 16-bit single-access on-chip program/data RAM (’C51)

� 8K-word × 16-bit single-access on-chip program ROM (’C51)

� 4K-word × 16-bit single-access on-chip program ROM (’C52)

� 3K-word × 16-bit single-access on-chip program/data RAM (’C53,

’C53S)

� 16K-word × 16-bit single-access on-chip program ROM (’C53, ’C53S)

� 6K-word × 16-bit single-access on-chip program/data RAM (’LC56,

’C57S, ’LC57)

� 32K-word × 16-bit single-access on-chip program ROM (’LC56,

’LC57)
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� Central processing unit (CPU)

� Central arithmetic logic unit (CALU) consisting of the following:

� 32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and

32-bit accumulator buffer (ACCB)

� 16-bit × 16-bit parallel multiplier with a 32-bit product capability

� 0- to 16-bit left and right data barrel-shifters and a 64-bit incre-

mental data shifter

� 16-bit parallel logic unit (PLU)

� Dedicated auxiliary register arithmetic unit (ARAU) for indirect

addressing

� Eight auxiliary registers

� Program control

� 8-level hardware stack

� 4-deep pipelined operation for delayed branch, call, and return

instructions

� Eleven shadow registers for storing strategic CPU-controlled regis-

ters during an interrupt service routine (ISR)

� Extended hold operation for concurrent external direct memory

access (DMA) of external memory or on-chip RAM

� Two indirectly addressed circular buffers for circular addressing

� Instruction set

� Single-cycle multiply/accumulate instructions

� Single-instruction repeat and block repeat operations

� Block memory move instructions for better program and data man-

agement

� Memory-mapped register load and store instructions

� Conditional branch and call instructions

� Delayed execution of branch and call instructions

� Fast return from interrupt instructions

� Index-addressing mode

� Bit-reversed index-addressing mode for radix-2 fast Fourier trans-

forms (FFTs)
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� On-chip peripherals

� 64K parallel I/O ports (16 I/O ports are memory mapped)

� Sixteen software-programmable wait-state generators for program,

data, and I/O memory spaces

� Interval timer with period, control, and counter registers for software

stop, start, and reset

� Phase-locked loop (PLL) clock generator with internal oscillator or

external clock source

� Multiple PLL clocking option (x1, x2, x3, x4, x5, x9, depending on the

device)

� Full-duplex synchronous serial port interface for direct communica-

tion between the ’C5x and another serial device

� Time-division multiplexed (TDM) serial port (’C50, ’C51, ’C53)

� Buffered serial port (BSP) (’LC56, ’C57S, ’LC57)

� 8-bit parallel host port interface (HPI) (’C57, ’C57S)

� Test/emulation

� On-chip scan-based emulation logic

� IEEE JTAG Standard 1149.1 boundary scan logic (’C50, ’C51, ’C53,

’C57S)

� Packages

� 100-pin quad flat-pack (QFP) package (’C52)

� 100-pin thin quad flat-pack (TQFP) package (’C51, ’C52, ’C53S,

’LC56)

� 128-pin TQFP package (’LC57)

� 132-pin bumpered quad flat-pack (BQFP) package (’C50, ’C51, ’C53)

� 144-pin TQFP package (’C57S)
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Software Applications

The ’C5x devices maintain source-code compatibility with ’C1x and ’C2x gen-

erations and have architectural enhancements that improve performance and

versatility. An orthogonal instruction set is augmented by new instructions that

support additional hardware and handle data movement and memory-

mapped registers. Other features include an independent parallel logic unit

(PLU) for performing Boolean operations, a 32-bit accumulator buffer (ACCB),

and a set of registers that provide zero-latency context-switching capabilities

to interrupt service routines. The on-chip dual-access RAM and memory-

mapped register set are enhanced.

This chapter explains the use of the ’C5x instruction set with particular empha-

sis on its new features and special applications. For a complete discussion of

the assembler directives used in this chapter’s examples, consult the

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

Topic Page
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2.1 Processor Initialization

Before executing a ’C5x algorithm, it is necessary to initialize the processor.

Generally, initialization takes place anytime the processor is reset. The pro-

cessor is reset by applying a low level to RS input; the interrupt vector pointer

(IPTR) bits of the processor mode status register (PMST) are all cleared, thus

mapping the vectors to page 0 in program memory space. This means that the

reset vector always resides at program memory location 0. This location nor-

mally contains a branch instruction to direct program execution to the system

initialization routine. A hardware reset clears all pending interrupt flags and

sets the interrupt mode (INTM) bit in ST0, thereby disabling all interrupts. A

hardware reset also initializes various status bits and peripheral registers.

To configure the processor after the reset, the following internal functions must

be initialized:

� Memory-mapped core processor and peripheral control registers

� Interrupt structure (INTM bit)

� Mode control (OVM, SXM, PM, AVIS, NDX, TRM bits)

� Memory control (RAM, OVLY, CNF bits)

� Auxiliary registers and the auxiliary register pointer (ARP)

� Data memory page pointer (DP)

The OVM (overflow mode), TC (test/control flag), IMR (interrupt mask regis-

ter), auxiliary register pointer (ARP), auxiliary register buffer (ARB), and data

memory page pointer (DP) are not initialized by reset.

Example 2–1 shows coding for initializing the ’C5x to the following machine

state and for the initialization performed after hardware reset:

� Internal single-access RAM configured as program memory

� Interrupt vector table loaded in internal program memory

� Interrupt vector table pointer (IPTR)

� Internal dual-access RAM blocks filled with 0s

� Interrupts enabled
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Example 2–1. Initialization of TMS320C5x

.title ’PROCESSOR INITIALIZATION’

.mmregs

.ref ISR0,ISR1,ISR2,ISR3,ISR4,TIME

.ref RCV,XMT,TRX,TXMT,TRP,NMISR

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

* Processor initialization for TMS320C50.

*

* The memory mapping of S/A RAM in program space and data space is different for

* the ’C5x devices. Therefore, the memory location pointed to by address 0800h

* in data space is mapped to a different address in program space for different

* ’C5x devices. Hence, the IPTR should be loaded with the corresponding value

* to allocate the vector table to the correct program space.

*

*       |   C50   |   C51   |   C53   |   C56   |   C57  

*–––––––+–––––––––+–––––––––+–––––––––+–––––––––+––––––––

* PMST  |  0081E  |  0201E  |  0401E  |  0801E  |  0801E 

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

V_TBL .sect ”vectors”

RESET B INIT ;This section will be loaded in program

;memory address 0h.

INT0 B ISR0 ;INT0 – begins processing here

INT1 B ISR1 ;INT1 – begins processing here

INT2 B ISR2 ;INT2 – begins processing here

INT3 B ISR3 ;INT3 – begins processing here

TINT B TIME ;Timer interrupt processing

RINT B RCV ;Serial port receive interrupt

XINT B XMT ;Serial port transmit interrupt

TRNT B TRX ;TDM port receive interrupt

TXNT B TXMT ;TDM port transmit interrupt

INT4 B ISR4 ;INT4 – begins processing here

.space 14*16 ;14 words

TRAP B TRP

NMI B NMISR

.text

INIT LDP #0 ;Initialize data pointer

OPL #20h,PMST ;Configure S/A RAM in data memory

LAR AR7,#0800h ;Data space address for vector table

MAR *,AR7

RPT #39

BLPD #V_TBL,*+ ;Load vector table at 0800h

SPLK #0081Eh,PMST ;Now configure S/A RAM in program space

;and initialize vector table pointer

SPLK #01FFh,IMR ;Clear interrupt mask register

CLRC OVM ;Disable overflow saturation mode

LAR AR7,#60h ;Initialize B2 block

RPTZ #31

SACL *+
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Example 2–1. Initialization of TMS320C5x (Continued)

LAR AR7,#100h ;Initialize B0 block

RPTZ #511

SACL *+

LAR AR7,#300h ;Initialize B1 block

RPTZ #511

SACL *+

CLRC INTM ;Globally enable interrupts

B MAIN_PRG ;Return
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2.2 Interrupts

The ’C5x devices have four external, maskable, user interrupts (INT1–INT4)

and one nonmaskable interrupt (NMI) available for external devices. Internal

interrupts are generated by the serial ports, the timer, and by the software

interrupt instructions (INTR, TRAP, and NMI). The interrupt structure is

described in the TMS320C5x User’s Guide.

The ’C5x devices are capable of generating software interrupts using the INTR

instruction. This allows any of the 32 interrupt service routines (ISRs) to be

executed from your software. The first 20 ISRs are reserved for external inter-

rupts, peripheral interrupts, and future implementations. The remaining 12

locations in the interrupt vector table are user-definable. The INTR instruction

can invoke any of the 32 interrupts available on the ’C5x devices.

When an interrupt is executed, certain key CPU registers are saved automati-

cally. The PC is saved on an 8-deep hardware stack, which is also used for

subroutine calls. Therefore, the CPU supports subroutine calls within an ISR

as long as the 8-level stack is not exceeded. Also, there is a 1-deep stack (or

shadow register) for each of the following registers:

� Accumulator (ACC)

� Accumulator buffer (ACCB)

� Auxiliary register compare register (ARCR)

� Index register (INDX)

� Processor mode status register (PMST)

� Product register (PREG)

� Status register 0 (ST0)

� Status register 1 (ST1)

� Temporary register 0 (TREG0) for multiplier

� Temporary register 1 (TREG1) for shift count

� Temporary register 2 (TREG2) for bit test

When the interrupt trap is taken, the contents of all these registers are pushed

onto a 1-level stack, with the exception of the the INTM bit in ST0 and the XF

bit in ST1. On an interrupt, the INTM bit is always set to disable interrupts. The

values in the registers at the time of the interrupt trap are still available to the

ISR but are also protected in the shadow registers. The shadow registers are

copied back to the CPU registers when the RETI or RETE instruction is

executed. This function allows the CPU to be used for the ISR without requiring

the overhead of context save and restore in the ISR.
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Example 2–2 illustrates the use of the INTR instruction. The foreground pro-

gram sets up auxiliary registers and invokes user-defined interrupt number 20.

Since the context is saved automatically, the ISR is free to use any of the saved

registers without destroying the calling program’s variables. The routine

shown here uses the CRGT instruction to find the maximum value of 16 execu-

tions of the equation Y = aX2 + bX + c. AR1 points to the X values, AR2 points

to the coefficients, and AR3 points to the Y results. To return the result to the

calling routine, all the registers are restored by executing an RETI instruction.

The computed value is placed in the accumulator, and a standard return is

executed because the stack is already popped.

Example 2–2. Use of INTR Instruction

* Foreground Program

.mmregs

TEMP .set 63h ;Temporary storage.

X .set 64h

Y .set 65h

COEFF .set 66h

V_TBL .sect ”vectors”

RESET B INIT ;This section will be loaded in program

;memory address 0h.

.space 38*16 ;Skip the next 38 locations to interrupt #20

IN20 B ISR20 :Interrupt #20 – begins processing here

.text

INIT LDP #0 ;Initialize data pointer

LAR AR1,#X ;AR1 points to X values

LAR AR2,#COEFF ;AR2 points to coefficients b,a,c in that order

LAR AR3,#Y ;AR3 points to Y results

INTR 20 ;Invoke software interrupt #20

B $ ;Finish the program

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* This routine uses the block repeat feature of the ’C5x to find the maximum

* value of 16 executions of the equation Y=aX^2+bX+c. The X values are pointed

* at by AR1. The Y results are pointed at by AR3. The coefficients are pointed

* at by AR2. At the completion of the routine, ACC contains the maximum value.

* AR1, AR2, and AR3 are modified. All other registers are unaffected.

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ISR20 LDP #0 ;Use page 0 of data memory.

LACC #08000h

SACB ;Initialize AccB with min. possible value

MAR *,AR1 ;ARP <– AR1

*

* Load Block repeat count register with 15.

SPLK #0Fh,BRCR

*
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Example 2–2. Use of INTR Instruction (Continued)

* Repeat Block.

RPTB END_LOOP–1 ;For i=0; i<=15; i++.

 ZAP ;ACC = PREG = 0

 SQRA *+,AR2 ;TREG0 = X   PREG = X^2

 SPL TEMP ;Save X^2.

 MPY *+ ;PREG = b*X

 LTA TEMP ;TREG = X^2   ACC = b*X

 MPY *+ ;PREG = a*X^2

 APAC ;ACC = a*X^2 + b*X

 ADD *,0,AR3 ;ACC = A*X^2 + b*X + c

 SACL *+,0,AR1 ;Save Y.

 CRGT ;Save maximum Y.

END_LOOP

SACL TEMP ;Save the result temporarily

LACC #RE_ENTER

PUSH ;Push re-entry address onto stack

RETI ;Pop all registers

RE_ENTER

LACC TEMP ;Load ACC with the max. value

RET ;Return to interrupted code
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2.3 Software Stack

The ’C5x has an internal 8-deep hardware stack that is used to save and

restore return addresses for the subroutines and the ISRs. Provisions have

been made on the ’C5x to extend the hardware stack into the data memory.

The PUSH and POP instructions can access the hardware stack via the accu-

mulator. Two additional instructions, PSHD and POPD, are included in the

instruction set so that the stack may be directly stored to and recovered from

the data memory.

A software stack can be implemented by using the POPD instruction at the

beginning of each subroutine to save the PC in data memory. Then, before

returning, a PSHD is used to put the proper value back onto the top of the stack.

When the stack has seven values stored on it, and two or more values are to

be put on the stack before any other values are popped off, a subroutine that

expands the stack is needed. A routine to expand the stack is shown in

Example 2–3. In this example, the main program stores the stack, stores the

starting memory location in AR2, and indicates to the subroutine whether to

push the data from memory onto the stack or pop data from the stack to

memory. If a 0 is loaded into the accumulator before calling the subroutine, the

subroutine pushes data from memory to the stack. If the accumulator contains

a nonzero value, the subroutine pops data from the stack to memory.

Because the CALL instruction uses the stack to save the program counter, the

subroutine pops this value into the accumulator and uses the BACC instruction

to return to the main program. This prevents the program counter from being

stored into a memory location. The subroutine in Example 2–3 uses the

BCNDD (delayed conditional branch) instruction to determine whether a save

or restore operation is to be performed.

Example 2–3. Software Stack Operation
*

* This routine expands the stack while letting the main program determine where

* to store the stack contents, or from where to restore them. Entry Conditions:

* ACC = 0 (restore stack); 1 (save stack)

* AR2 –> Top of software stack in data memory

*

STACK: BCNDD POP,NEQ ;Delayed branch if POPD required

 MAR *,AR2 ;Use AR2 as stack pointer

 POP ;Get return address

RPT #6 ;Repeat 7 times

 PSHD *+ ;Put memory in stack

BACC ;Return to main program

POP: MAR *– ;Align AR2

RPT #6 ;Repeat 7 times

 POPD *– ;Put stack in memory

MAR *+ ;Realign stack pointer

BACC ;Return to main program
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2.4 Logical and Arithmetic Operations

The following subsections provide examples of logical and arithmetic

operations.

2.4.1 Parallel Logic Unit (PLU)

The PLU provides a direct logical path to data memory values without affecting

the contents of the accumulator or product register. The PLU allows direct

manipulation of bits in any location in data memory space. The source operand

can be either a long immediate value or the dynamic bit manipulation register

(DBMR). The use of a long immediate value is particularly effective in initializ-

ing data memory locations, including the memory-mapped registers. The use

of the DBMR as the source operand allows run-time computation of operands.

It also reduces instruction execution time to one cycle, which may be important

for time-critical routines.

Example 2–4 on page 2-10 and Example 2–5 on page 2-11 illustrate the use

of the PLU for initialization and logical operation. The UNPACK subroutine

(Example 2–4) extracts individual bits from a single word and stores them

separately in an array. The PACK subroutine (Example 2–5) does the opposite

of UNPACK by getting bits from different locations and packing them in a single

word. In Example 2–5, notice that a NOP instruction is inserted in the repeat-

block loop. A repeat-block loop must be at least three words long on ’C5x

devices.
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Example 2–4. Using PLU to Do Unpacking

.title ’Routine to extract bits from a single word’

* PCKD

* ––––––––––––––––

* |Bn  ––––––  B0|

* ––––––––––––––––

*

* UNPCKD

* ––––––––––––––––

* |0   ––   0 |Bn|

* ––––––––––––––––

* |0   ––  0|Bn–1|

* ––––––––––––––––

*       . . .

* ––––––––––––––––

* |0   ––    0|B0|

* ––––––––––––––––

.mmregs

NO_BITS .set 16 ;Number of packed bits in the word

PCKD .set 60h ;Input word

UNPCKD .set 61h ;Output buffer. Each word will have

;one bit in LSB location.

.text

UNPACK LDP #0 ;DP=0

MAR *,AR0

LAR AR0,#UNPCKD+NO_BITS–1 ;End of table address

SPLK #NO_BITS–1,BRCR ;Initialize the count register

SPLK #1,DBMR ;Load mask in DBMR register

LACC PCKD ;Packed bits –> Acc

RPTB LOOP–1 ;Begin looping

 SACL * ;Save remaining packed bits

 APL *– ;Keep the LSB only

 SFR ;Shift right to eliminate unpacked bit

LOOP RET ;Return back
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Example 2–5. Using PLU to Do Packing

.title ’Routine to pack input bits in a single word’

*

* PCKD

* ––––––––––––––––

* |Bn  ––––––  B0|

* ––––––––––––––––

*

* UNPCKD

* ––––––––––––––––

* |0   ––   0 |Bn|

* ––––––––––––––––

* |0   ––  0|Bn–1|

* ––––––––––––––––

*       . . .

* ––––––––––––––––

* |0   ––    0|B0|

* ––––––––––––––––

.data

NO_BITS .set 16 ;Number of bits to be packed

PCKD .set 60h ;Packed word

UNPCKD .set 61h ;Array of unpacked bits

.text

PACK LAR AR0,#UNPCKD ;AR0 points to start of UNPACKED array

MAR *,AR0

LDP #0 ;DP=0

SPLK #NO_BITS–2,BRCR ;Loop NO_BITS–1 times

LACC *+ ;Get the MSB

RPTB LOOP–1 ;Begin looping

 SFL ;Make space for next bit

 ADD *+ ;Put next bit

 NOP

LOOP

SACL PCKD ;Store the result

RET ;Return back
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2.4.2 Multiconditional Instructions

The ’C5x includes instructions that test multiple conditions before passing con-

trol to another section of the program. These instructions are: BCND, BCNDD,

CC, CCD, RETC, RETCD, and XC. These instructions can test the conditions

listed in Table 2–1 individually or in combination with other conditions.

Table 2–1. Conditions for Branch, Call, and Return Instructions

Mnemonic Condition Description

EQ ACC = 0 Accumulator equal to 0

NEQ ACC ≠ 0 Accumulator not equal to 0

LT ACC < 0 Accumulator less than 0

LEQ ACC ≤ 0 Accumulator less than or equal to 0

GT ACC > 0 Accumulator greater than 0

GEQ ACC ≥ 0 Accumulator greater than or equal to 0

NC C = 0 Carry bit cleared

C C = 1 Carry bit set

NOV OV = 0 No accumulator overflow detected

OV OV = 1 Accumulator overflow detected

BIO BIO is low BIO signal is low

NTC TC = 0 Test/control flag cleared

TC TC = 1 Test/control flag set

UNC none Unconditional operation

You can combine conditions from four groups (Table 2–2). Up to four condi-

tions can be selected; however, each of these conditions must be from

different groups. You cannot have two conditions from the same group. For

example, you can test EQ and TC at the same time but not NEQ and GEQ. For

example:

BCND BRANCH,LT,NOV,TC ; If ACC < 0, no overflow

; and TC bit set.

In this example, LT (ACC � 0), NOV (OV = 0), and TC (TC = 1) conditions must

be met for the branch to be taken.
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Table 2–2. Groups for Multiconditional Instructions

Group 1 Group 2 Group 3 Group 4

EQ OV C TC

NEQ NOV NC NTC

GT BIO

LT

GEQ

LEQ

Testing the status of the TC flag is mutually exclusive to testing the BIO pin.

The code in Example 2–6 simultaneously tests the carry (C) flag and the sign

bit of the accumulator to locate a zero bit (beginning from MSB) in a 64-bit

word, consisting of ACC and ACCB with ACC having the higher part. This

64-bit word could be the serial port output where the first 0 indicates the start

bit.

Example 2–6. Using Multiple Conditions With BCND Instruction

LDP #0

SPLK #63,BRCR ;No. of iterations – 1

.

. ;Code to get 64–bit input word and

. ;load it in ACC and ACCB

.

LAR AR0,#0 ;Initialize the bit counter

RPTB ENDLOOP–1 ;For I=0,I<=63,I++

 SFLB ;Shift left ACC+ACCB, MSB is shifted

* ;out in Carry flag

 MAR *+ ;Increment bit counter

 BCND ENDLOOP,NC,LT ;Exit if carry=0 and current MSB=1

ENDLOOP: ;ACC+ACCB contains aligned data now

APL #0FFFEh,PMST ;Clear BRAF flag
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2.4.3 Search Algorithm Using CRGT

Example 2–7 on page 2-15 shows how the CRGT and RPTB instructions find

the maximum value and its location by searching through a block of data. Loop

overhead is minimized by using the block-repeat function. The accumulator is

initialized with the minimum possible value (8000h) before the main search

loop is entered.

To find the minimum value, CRGT instruction may be replaced by CRLT, and

the accumulator is loaded with the maximum possible value (7FFFh) instead

of the smallest. The rest of the code remains the same.

2.4.4 Matrix Multiplication Using Nested Loops

The ’C5x provides three different types of instructions to implement code

loops. The RPT (single-instruction repeat) instruction allows the following

instruction to be executed N times. The RPTB (repeat block) instruction

repeatedly executes a block of instructions with the loop count determined by

the block repeat counter register (BRCR). The BANZ (branch if AR not 0)

instruction is another way of implementing for-next loops with the count speci-

fied by an auxiliary register.

Three-level-deep nested loops can be efficiently implemented by these three

instructions with each instruction controlling one loop. Example 2–8 on

page 2-16 shows this nested code structure to do N-by-N matrix multiplication.

Note the use of the BANZD (delayed BANZ) instruction to avoid flushing the

instruction pipeline. Also, note the use of the MADS (multiply-accumulate

using BMAR) instruction to dynamically switch between the rows of matrix A

to compute the elements of the product matrix C.
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Example 2–7. Using CRGT and CRLT Instructions

* This routine searches through a block of data in the data memory to store

* the maximum value and the address of that value in memory locations MAXVAL

* and MAXADR, respectively. The data block could be of any size defined by

* the Block Repeat Counter Register (BRCR).

*

* KEY ’C5X instructions:

*

* RPTB Repeat a block of code as defined by repeat counter BRCR.

* CRGT Compare ACC to ACCB. Store larger value in both ACC and ACCB,

* set CARRY bit if value larger than previously larger value found.

* XC Execute conditionally (1 or 2 words) if CARRY bit is set.

*

MAXADR .set 60h

MAXVAL .set 61h

.mmregs

.text

LDP #0 ;Point to data page 0

LAR AR0,#0300h ;AR= data memory addr

SETC SXM ;Set sign extension mode

LACC #08000h ;Load minimum value

* Use #07FFFh (largest possible) to check for minimum value

SACB ;Store into ACCB

SPLK #9,BRCR ;Rpt cont = 9 for 10 data values

RPTB endb –1 ;Repeat block from here to endb–1

startb:

 LACC * ;Load data from <(AR0)> into ACC

 CRGT ;Set carry if ACC > previous largest value

* Use CRLT to find minimum value

 SACL MAXVAL ;Save new largest which is in ACC & ACCB

 XC #1,C ;Save addr if current value > previous largest

 SAR AR0,MAXADR

 MAR *+

endb: RET

* At the end of routine, following registers contain:

* ACC = 32050

* ACCB = 32050

* (MAXVAL) = 32050

* (MAXADR) = 0307h

.data ;Data is expected to be in data RAM

.word 5000 ;Start address = 0300h

.word 10000

.word 320

.word 3200

.word –5600

.word –2105

.word 2100

.word 32050

.word 1000

.word –1

.end
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Example 2–8. Using Nested Loops

.title ”NxN Matrix Multiply Routine”

.mmregs

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* This routine performs multiplication of two NxN matrices.

* A x B = C where A,B, and C are NxN in size.

* Entry Conditions:

* AR1 –> element (0,0) of A (in program space)

* AR2 –> element (0,0) of B (in data space)

* AR3 –> element (0,0) of C (in data space)

* DP  =  0, NDX = 1

* ARP =  2

* Storage of matrix elements in memory (beginning from low memory):

* M(0,0),...,M(0,N–1),M(1,0),...,M(N–1,N–1)

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

LDP #0

SPLK #3Eh,PMST

SPLK #2000h,AR1

SPLK #0810h,AR2

SPLK #0820h,AR3

MAR *,AR2

MTRX_MPY:

LAR AR0,#(N–1) ;Set up loop count

SPLK #N,INDX ;Row size

SAR AR2,AR4 ;Save addr of B

* ;For i=0,i<N,++i

LOOP1: SMMR AR1,BMAR ;BMAR –> A(i,0)

SPLK #(N–1),BRCR ;Setup loop2 count

SAR AR4,AR5 ;AR5 –> B(0,0)

LOOP2: RPTB ELOOP2 ;For j=0,j<N,++j

 SAR AR5,AR2 ;AR2 –> B(0,j)

LOOP3:  RPTZ #(N–1) ;For k=0,k<N,++k

ELOOP3:   MADS *0+ ;Acc=A(i,k)xB(k,j)

 APAC ;Final accumulation

 MAR *,AR5 ;ARp = AR5

 MAR *+,AR3 ;AR5 –> B(0,j+1)

ELOOP2:  SACL *+,0,AR2 ;Save C(i,j)

MAR *,AR0 ;Loop back if

BANZD LOOP1,*–,AR1 ;Count != N

ADRK N ;AR1 –> A(i+1,0)

ELOOP1: MAR *,AR2 ;ARp = AR2
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2.5 Circular Buffers

Circular addressing is an important feature of the ’C5x instruction set. Algo-

rithms like convolution, correlation, and finite impulse response (FIR) filters

can make use of circular buffers in memory. The ’C5x supports two concurrent

buffers operating via the auxiliary registers. Five memory-mapped registers

control the circular buffer operation: CBSR1, CBSR2, CBER1, CBER2, and

CBCR.

The start and end addresses must be loaded in the corresponding buffer

registers (CBSRx and CBERx) before the circular buffer is enabled. Also, the

auxiliary register that acts as a pointer to the buffer must be initialized with the

proper value.

Example 2–9 on page 2-18 shows the use of a circular buffer to generate a

digital sine wave. A 256-word sine-wave table is loaded in the DARAM B1

block of internal data memory from external program memory. Accessing the

internal DARAM requires only one machine cycle. The block move address

register (BMAR) is loaded with the ROM address of the table. The block-move

instruction moves 256 samples of the sine wave to internal data memory,

which is then set up as a circular buffer.

The start and end addresses of this circular buffer are loaded into the corre-

sponding registers (CBSR1 and CBER1). The auxiliary register AR7 is also

initialized to the beginning of the sine-wave table. Note the use of the SAMM

instruction to update AR7 because all auxiliary registers are memory-mapped

at data page 0. Finally, circular buffer #1 is enabled and AR7 is mapped to that

buffer. The other circular buffer is disabled.

Whenever the next sample is to be pulled off from the table, postincrement

indirect addressing may be used with AR7 as the pointer. This ensures that the

pointer wraps around to the beginning of the table if the previous sample was

the last one on the table.
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Example 2–9. Use of Circular Addressing

.title ’Digital Sine–Wave Generator’

.mmregs

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* This routine illustrates the circular addressing capability of C5x devices.

* A digital sine–wave generator is implemented as circular buffer #1 with AR7

* as its pointer. XSINTBL is the location in external program memory where this

* table is stored. It is moved to internal data memory block B1 where it is

* setup as a circular buffer.

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

XSINTBL .set 03000h ;Program space address of sine table

.text

SINTBL LDP #0

LAR AR0,#0300h ;Address of B1 block

MAR *,AR0

LACC #XSINTBL ;Get sine table address in

* ;external program memory

SAMM BMAR ;Load source register

*

RPT #255 ;Move 256–word

BLPD BMAR,*+ ;Load table from external program

* ;memory to internal data memory

SAMM CBSR1 ;Start address of buffer=300h

SAMM AR7 ;AR7 points to start of buffer

ADD #255

SAMM CBER1 ;End address of buffer=3FFh

SPLK #0Fh,CBCR ;Enable CB#1, disable CB#2

. ;pointer for CB#1 is AR7

.

.

NXTSMP MAR *,AR7

LACC *+ ;Get next sample from table

. ;AR7 is updated to next valid sample

.

.

DISBLE APL #0FFF7h,CBCR ;Disable CB#1

.

.

.

RET
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If the step size must be greater than 1, check to see if an update to the auxiliary

register generates an address outside the range of the circular buffer. This may

happen if the same sine table is used to generate sine waves of different

frequencies by changing the step size. Modulo addressing can avoid such

problems. A simple way to perform modulo addressing on ’C5x devices is to

use the APL and OPL instructions. For example, to implement the modulo-256

counter, first load the dynamic bit manipulation register (DBMR) with 255 (the

maximum value allowed); when the auxiliary register is updated (by any

amount), it is ANDed with the DBMR and ORed with the start address of the

buffer. The start address of the modulo-2k buffer must have 0s in the k LSBs.

Hence, for modulo-256 addressing, the first eight LSBs of the start register

must be 0 (see Example 2–10).

Example 2–10. Modulo-256 Addressing

START .set 04000h ;Start address of the buffer

LDP #0

LACL #0FFh

SAMM DBMR ;Max value = 255

 .

 .

 .

MAR *0+ ;Increment AR7 by some amount

APL AR7 ;Extract lower 8 bits

OPL #START,AR7 ;Add the start address

 .

 .

 .
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2.6 Single-Instruction Repeat (RPT) Loops

The ’C5x provides two different types of repeat instructions. The repeat block

(RPTB) instruction implements code loops that can be 3 to 65 536 words in

size. These loops do not require any additional cycles to jump from the end-of-

block to the start-of-block address at the end of each iteration. In addition,

these zero-overhead loops are interruptible so that they can be used in back-

ground processing without affecting the latency of time-critical tasks.

On the other hand, the single-instruction repeat (RPT) pipelines the execution

of the next instruction to provide a high-speed repeat mode. A 16-bit repeat

counter register (RPTC) allows execution of a single instruction 65 536 times.

When this repeat feature is used, the instruction being repeated is fetched only

once. As a result, many multicycle instructions, such as MAC/MACD, BLDD/

BLDP, or TBLR/TBLW, become single-cycle when repeated.

Some of ’C5x instructions behave differently in the single-instruction repeat

mode to efficiently use the ’C5x multiple-bus architecture. The following

instructions fall in this category:

BLDD, BLDP, BLPD, IN, OUT, MAC, MACD, MADS, MADD, TBLR, TBLW,

LMMR, SMMR

Because the instruction is fetched and internally latched when in single-

instruction repeat mode, the program bus is used by these instructions to read

or write a second operand in parallel to the operations being done using the

data bus. With the instruction latched for repeated execution, the program

counter is loaded with the second operand address (which may be in data, pro-

gram, or I/O space) and incremented on succeeding executions to read/write

in successive memory locations. As an example, the MAC instruction fetches

the multiplicand from the program memory via the program bus. Simulta-

neously with the program bus fetch, the second multiplicand is fetched from

data memory via the data bus. In addition to these data fetches, preparation

is made for accesses in the following cycle by incrementing the program count-

er and by indexing the auxiliary register. The IN instruction is another example

of an instruction that benefits from simultaneous transfers of data on both the

program and data buses. In this case, data values from successive locations

in I/O space may be read and transferred to data memory. For complete details

of how the above-listed instructions behave in repeat mode, see the individual

description of each instruction in the TMS320C5x User’s Guide.

Example 2–11 through Example 2–17 demonstrate the implementation of

memory-to-memory block moves on the ’C5x using single-instruction repeat

(RPT) loops. There is no single instruction to move data from memory to

memory.
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Example 2–11. Memory-to-Memory Block Moves Using RPT with BLDD

*

* This routine uses the BLDD instruction to move external data memory to

* internal data memory.

*

MOVEDD:

LACC #4000h

SAMM BMAR ;BMAR –> source in data memory.

LAR AR7,#100h ;AR7 –> destination in data memory

MAR *,AR7 ;LARP = AR7.

RPT #1023 ;Move 1024 value to blocks B0 and B1

 BLDD BMAR,*+

RET

Example 2–12. Memory-to-Memory Block Moves Using RPT with BLDP

*

* This routine uses the BLDP instruction to move external data memory to

* internal program memory. This instruction could be used to boot load a

* program to the 8K on–chip program memory from external data memory.

*

MOVEDP:

LACC #800h

SAMM BMAR ;BMAR –> destination in program memory (’C50)

LAR AR7,#0E000h ;AR7 –> source in data memory.

RPT #8191 ;Move 8K to program memory space.

 BLDP *+

RET

Example 2–13. Memory-to-Memory Block Moves Using RPT with BLPD

*

* This routine uses the BLPD instruction to move external program memory to

* internal data memory. This routine is useful for loading a coefficient

* table stored in external program memory to data memory when no external

* data memory is available.

*

MOVEPD:

LAR AR7,#100h ;AR7 –> destination in data memory.

RPT #127 ;Move 128 values from external program

 BLPD #3800h,*+ ;to internal data memory B0.

RET
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Example 2–14. Memory-to-Memory Block Moves Using RPT with TBLR

*

* This routine uses the TBLR instruction to move external program memory to

* internal data memory. This differs from the BLPD instruction in that the

* accumulator contains the source program memory address from which to

* transfer. This allows for a calculated, rather than predetermined, location

* in program memory to be specified. The calling routine must contain the

* source program memory address in the accumulator.

*

TABLER:

MAR *,AR3 ;AR3 –> destination in data memory.

LAR AR3,#300h

RPT #127 ;Move 128 items to data memory block B1

 TBLR *+

RET

Example 2–15. Memory-to-Memory Block Moves Using RPT with TBLW

*

* This routine uses the TBLW instruction to move data memory to program memory.

* This differs from the BLDP instruction in that the accumulator contains the

* destination program memory address to which to transfer. This allows for a

* calculated, rather than predetermined, location in program memory to be

* specified. The calling routine must contain the destination program memory

* address in the accumulator.

*

TABLEW:

MAR *,AR4 ;ARP = AR4.

LAR AR4,#380h ;AR4 –> source address in data memory.

RPT #127 ;Move 128 items from data memory to

 TBLW *+ ;program memory.

RET

Example 2–16. Memory-to-Memory Block Moves Using RPT with SMMR

*

* This routine uses the SMMR instruction to move data from a memory–mapped

* I/O port to local data memory. Note that 16 I/O ports are mapped in data

* page 0 of the ’C5x memory map.

*

INPUT:

LDP #0

RPT #511 ;Input 512 values from port 51h to table beginning

 SMMR 51h,800h ;at 800h in data memory.

RET
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Example 2–17. Memory-to-Memory Block Moves Using RPT with LMMR

*

* This routine uses the LMMR instruction to move data from local data memory

* to a memory–mapped I/O port. Note that 16 I/O ports are mapped in data

* page 0 of the ’C5x memory map.

*

OUTPUT:

LDP #0 ;data page 0

RPT #63 ;Output 64 values from a table beginning at 800h

 LMMR 50h,800h ;in data memory to port 50h.

RET
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2.7 Subroutines

Example 2–18 shows the use of a subroutine to determine the square root of

a 16-bit number. The main routine executes to the point where the square root

of a number is needed. At this point, a delayed call (CALLD) is made to the

subroutine, transferring control to that section of the program memory for

execution and then returning to the calling routine via the delayed return

(RETD) instruction when execution has completed.

Example 2–18 shows several features of the ’C5x instruction set. In particular,

note the use of the delayed call (CALLD), delayed return (RETD), and condi-

tional execute (XC) instructions. Due to the four-level-deep pipeline on ’C5x

devices, normal branch instructions require four cycles to execute. Using

delayed branches, only two cycles are required for execution. The XC instruc-

tion is useful where only one or two instructions are to be executed conditional-

ly. In this example, notice how XC is used to avoid an extra cycle due to the

branch instruction. Use of the XC instruction also helps in keeping the execu-

tion time of a routine constant, regardless of input conditions. This is because

XC executes NOPs in place of instructions if conditions are not met.

Note that the restore is done with the LST instruction to prevent the ARP from

being overwritten. If indirect addressing is used, the order is reversed.

Example 2–18. Square Root Computation Using XC Instruction

* Autocorrelation

* This routine performs a correlation of two vectors and then calls a Square

* Root subroutine that will determine the RMS amplitude of the waveform.

*

AUTOC

.

.

.

CALLD SQRT ;Call square root subroutine after

 SST #0,ST0 ;executing next two instructions

 SST #1,ST1 ;Get the value to be passed to SQRT subroutine

.

.

.

*

* Square Root Computation

*

* This routine computes the square root of a number that is located

* in the higher half of accumulator. The number is in Q15 format.

*

BRCR .set 09h ;DP=0

ST0 .set 60h ;Internal RAM block B2

ST1 .set 61h
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Example 2–18. Square Root Computation Using XC Instruction (Continued)

NUMBER .set 62h

TEMPR .set 63h

GUESS .set 64h

.text

SQRT MAR *,AR0

LACC *

LDP #0

SETC SXM ;Set SXM=1

SPM 1 ;Set PM mode for fractional arithmetic

SACL NUMBER ;Save the number

LACL #0

SACB ;Clear accumulator buffer

SPLK #11,BRCR ;Initialize for 12 iterations

SPLK #800h,GUESS ;Set initial guess

LACC NUMBER

SUB #200h

BCNDD LOOP,LT ;If NUMBER<200h then begin looping

 SPLK #800h,TEMPR

LACC #4000h ;Otherwise set initial guess

SACL GUESS ;and temporary root to 4000h

SACL TEMPR

SPLK #14,BRCR ;and increase iterations to 15

LOOP RPTB ENDLP–1 ;Repeat block

 SQRA TEMPR ;Square temporary root

 LACC NUMBER,16

 SPAC ;Acc=NUMBER–TEMPR**2

 NOP ;Dead cycle for XC

 XC 2,GT ;If NUMBER>TEMPR**2 skip next 2 instr.

 LACC TEMPR,16

 SACB ;Otherwise ROOT <– TEMPR

 LACC GUESS,15

 SACH GUESS ;GUESS <– GUESS/2

 ADDB

 SACH TEMPR ;TEMPR <– GUESS+ROOT

ENDLP LACB ;High Acc contains square root of NUMBER

RETD

 LST #1,ST1

 LST #0,ST0 ;Restore context
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2.8 Extended-Precision Arithmetic

Numerical analysis, floating-point computations, or other operations may re-

quire arithmetic to be executed with more than 32 bits of precision. Since the

’C5x devices are 16/32-bit fixed-point processors, software is required for the

extended precision of arithmetic operations. Subroutines that perform the ex-

tended-precision arithmetic functions for the ’C5x are provided in the exam-

ples of this section. The technique consists of performing the arithmetic by

parts, similar to the way in which longhand arithmetic is done.

The ’C5x has several features that help make extended-precision calculations

more efficient. One of the features is the carry bit. The carry bit is affected by

all arithmetic operations of the accumulator, including addition and subtraction

with the accumulator buffer. This allows 32-bit-long arithmetic operations us-

ing the accumulator buffer as the second operand.

The carry bit is also affected by the rotate and shift accumulator instructions.

It may also be explicitly modified by the load status register ST1 and the set/reset

control bit instructions. For proper operation, the overflow mode bit should be

reset (OVM = 0) so that the accumulator result is not loaded with the saturation

value.

2.8.1 Addition

The carry bit is set (C = 1) whenever the input scaling shifter, the product regis-

ter (PREG), or the accumulator buffer value added to the accumulator con-

tents generates a carry out from bit 31. Otherwise, the carry bit is reset (C = 0)

because the carry out from bit 31 is a 0. One exception to this case is the addi-

tion to the accumulator with a shift of 16 instruction (ADD dma,16), which can

only set the carry bit. This allows the ALU to generate a proper single carry

when the addition either to the lower or the upper half of the accumulator actu-

ally causes the carry. Figure 2–1 demonstrates the significance of the carry bit

for additions.

Example 2–19 on page 2-28 shows an implementation of two 64-bit numbers

added to each other to obtain a 64-bit result.
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Figure 2–1. 32-Bit Addition

     C  MSB           LSB C  MSB           LSB

     X   F F F F F F F F (ACC) X   F F F F F F F F (ACC)

        +              1    +F F F F F F F F

     1   0 0 0 0 0 0 0 0 1   F F F F F F F E

     C  MSB           LSB C  MSB           LSB

     X   7 F F F F F F F (ACC) X   7 F F F F F F F (ACC)

        +              1    +F F F F F F F F

     0   8 0 0 0 0 0 0 0 1   7 F F F F F F E

     C  MSB           LSB C  MSB           LSB

     X   8 0 0 0 0 0 0 0 (ACC) 1   8 0 0 0 0 0 0 0 (ACC)

        +              1    +F F F F F F F F

     0   8 0 0 0 0 0 0 1 1   7 F F F F F F F

     C  MSB           LSB C  MSB           LSB

     1   0 0 0 0 0 0 0 0 (ACC) 1   F F F F F F F F (ACC)

       +               0 (ADDC)    +              0 (ADDC)

     0   0 0 0 0 0 0 0 1 1   0 0 0 0 0 0 0 0

     C  MSB           LSB C  MSB           LSB

     1   8 0 0 0 F F F F (ACC) 1   8 0 0 0 F F F F (ACC)

        +0 0 0 1 0 0 0 0 (ADD dma,16)    +7 F F F 0 0 0 0 (ADD dma,16)

     1   8 0 0 0 F F F F 1   F F F F F F F F
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Example 2–19. 64-Bit Addition

*

* Two 64–bit numbers are added to each other producing a 64–bit result.

* The number X (X3, X2, X1, X0) and Y (Y3, Y2, Y1, Y0) are added resulting in

* W (W3, W2, W1, W0). If the result is required in 64–bit ACC/ACCB pair,

* replace the instructions as indicated in the comments below.

*

* X3 X2 X1 X0

* + Y3 Y2 Y1 Y0

* –––––––––––

* W3 W2 W1 W0 –OR– ACC ACCB*

ADD64 LACC X1,16 ;ACC = X1 00

ADDS X0 ;ACC = X1 X0

ADDS Y0 ;ACC = X1 X0 + 00 Y0

ADD Y1,16 ;ACC = X1 X0 + Y1 Y0

SACL W0 ;THESE 2 INSTR ARE REPLACED BY

SACH W1 ;”SACB” IF RESULT IS DESIRED IN (ACC ACCB)

LACC X3,16 ;ACC = X3 00

ADDC X2 ;ACC = X3 X2 + C

ADDS Y2 ;ACC = X3 X2 + 00 Y2 + C

ADD Y3,16 ;ACC = X3 X2 + Y3 Y2 + C

SACL W2 ;THESE 2 INSTR ARE NOT REQUIRED IF

SACH W3 ;THE RESULT IS DESIRED IN (ACC ACCB)

RET
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2.8.2 Subtraction

The carry bit is reset (C = 0) whenever the input scaling shifter, the PREG, or

the accumulator buffer value subtracted from the accumulator contents

generates a borrow into bit 31. Otherwise, the carry bit is set (C = 1) because

no borrow into bit 31 is required. One exception to this case is the SUB dma,16

instruction, which can only reset the carry bit. This allows the ALU to generate

a proper single carry when the subtraction either from the lower or the upper

half of the accumulator actually causes the borrow. Figure 2–2 demonstrates

the significance of the carry bit for subtraction.

Example 2–20 on page 2-30 shows an implementation of two 64-bit numbers

subtracted from each other. A borrow is generated within the accumulator for

each of the 16-bit parts of the subtraction operation.

Figure 2–2. 32-Bit Subtraction

     C  MSB           LSB C  MSB           LSB

     X   0 0 0 0 0 0 0 0 (ACC) X   0 0 0 0 0 0 0 0 (ACC)

        –              1    –F F F F F F F F

     0   F F F F F F F F 0   0 0 0 0 0 0 0 1

     C  MSB           LSB C  MSB           LSB

     X   7 F F F F F F F (ACC) X   7 F F F F F F F (ACC)

        –              1    –F F F F F F F F

     1   7 F F F F F F E C   8 0 0 0 0 0 0 0

     C  MSB           LSB C  MSB           LSB

     X   8 0 0 0 0 0 0 0 (ACC) X   8 0 0 0 0 0 0 0 (ACC)

        –              1    –F F F F F F F F

     1   7 F F F F F F F 0   8 0 0 0 0 0 0 1

     C  MSB           LSB C  MSB           LSB

     0   0 0 0 0 0 0 0 0 (ACC) 0   F F F F F F F F (ACC)

        –              0 (SUBB)    –              0 (SUBB)

     0   F F F F F F F F 1   F F F F F F F E

     C  MSB           LSB C  MSB           LSB

     0   8 0 0 0 F F F F (ACC) 0   8 0 0 0 F F F F (ACC)

        –0 0 0 1 0 0 0 0 (SUB dma,16)    –F F F F 0 0 0 0 (SUB dma,16)

     0   7 F F F F F F F 0   8 0 0 1 F F F F
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Example 2–20. 64-Bit Subtraction

*

* Two 64–bit numbers are subtracted, producing a 64–bit result.

* The number Y (Y3, Y2, Y1, Y0) is subtracted from X (X3, X2, X1, X0) resulting

* in W (W3, W2, W1, W0). If the result is required in 64–bit ACC/ACCB pair,

* replace the instructions as indicated in the comments below.

*

* X3 X2 X1 X0

* – Y3 Y2 Y1 Y0

* –––––––––––

* W3 W2 W1 W0 –OR– ACC ACCB

*

SUB64 LACC X1,16 ; ACC = X1 00

ADDS X0 ; ACC = X1 X0

SUBS Y0 ; ACC = X1 X0 – 00 Y0

SUB Y1,16 ; ACC = X1 X0 – Y1 Y0

SACL W0 ; THESE 2 INSTR ARE REPLACED BY

SACH W1 ; ”SACB” IF RESULT IS DESIRED IN (ACC ACCB)

LACL X2 ; ACC = 00 X2

SUBB Y2 ; ACC = 00 X2 – 00 Y2 – C

ADD X3,16 ; ACC = X3 X2 – 00 Y2 – C

SUB Y3,16 ; ACC = X3 X2 – Y3 Y2 – C

SACL W2 ; THESE 2 INSTR ARE NOT REQUIRED IF

SACH W3 ; THE RESULT IS DESIRED IN (ACC ACCB)

RET

2.8.3 Multiplication

Another important feature that aids in extended-precision calculations is the

MPYU (unsigned multiply) instruction. The MPYU instruction allows two

unsigned 16-bit numbers to be multiplied and the 32-bit result placed in the

PREG in a single cycle. Efficiency is gained by generating partial products

from the 16-bit portions of a 32-bit or larger value, instead of having to split the

value into 15-bit or smaller parts.

Further efficiency is gained by using the accumulator buffer to hold partial

results, instead of using a temporary location in data memory. The ability of the

’C5x devices to barrel shift the accumulator by 1 to 16 bits in only one cycle

is also useful for scaling and justifying operands.

For 16-bit integer multiplication, in which one operand is a 2s-complement

signed integer and the other is an unsigned integer, the algorithm shown in

Figure 2–3 can be used.
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Figure 2–3. 16-Bit Integer Multiplication Algorithm

Signed integer

X

Unsigned integer

Y

×
X × Y

Signed multiplication

Add X if Y 15 = 1

X

X × Y

Final 32-bit result

Steps required:

1) Multiply two operands X and Y as if they are signed integers.

2) If MSB of the unsigned integer Y is 1, add X to the upper half of the 32-bit

signed product.

The correction factor must be added to the signed multiplication result be-

cause the bit weight of the MSB of any 16-bit unsigned integer is 215.

Consider the following representation of a signed integer X and an unsigned

integer Y:

X = –215x15 + 214x14 + 213x13 + ... + 21x1 + 20x0

Y =  215y15 + 214y14 + 213y13 + ... + 21y1 + 20y0

Multiplication of X and Y yields:

X × Y = X × (215y15 + 214y14 + 213y13 + ... + 21y1 + 20y0)

 = 215y15X + 214y14X + 213y13X + ... + 21y1X + 20y0X (1)

However, if X and Y are considered signed integers, their multiplication yields:

X × Y = X ×  (–215y15 + 214y14 + 213y13 + ... + 21y1 + 20y0)

 = –215y15X + 214y14X + 213y13X + ... + 21y1X + 20y0X (2)
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The difference between equations (1) and (2) is in the first term on the right-

hand side of the two equations.

Hence, if we add the correction term, 216y15X, to equation (2), the result would

be identical to that of equation (1) and is the correct result.

This method of multiplying a signed integer with an unsigned integer can be

used to implement extended-precision multiplication on the ’C5x. Figure 2–4

shows a 32-bit multiplication algorithm based on this method. Example 2–21

on page 2-33 implements this algorithm. The product is a 64-bit integer num-

ber. Note the use of BSAR and XC instructions.

Example 2–22 on page 2-34 performs fractional multiplication. The operands

are in Q31 format, while the product is in Q30 format.

Figure 2–4. 32-Bit Multiplication Algorithm

X1

Y1×
X0 × Y0

Unsigned multiplication

X0 × Y1

Signed multiplication

X0

Y0

X1 × Y0

Signed multiplication

If MSB of Y0 = 1

X1

If MSB of X0 = 1

Y1

X1 × Y1

Signed multiplication+

W1 W0W3 W2

Final 64-bit result
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Example 2–21. 32-Bit Integer Multiplication

.title ”32–bit Optimized Integer Multiplication”

.def MPY32

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* This routine multiplies two 32–bit signed integers resulting in a 64–bit

* product. The operands are fetched from data memory and the result is

* written back to data memory.

* Data Storage:

* X1,X0 32–bit operand

* Y1,Y0 32–bit operand

* W3,W2,W1,W0 64–bit product

*

* Entry Conditions:

* DP  = 6, SXM = 1

* OVM = 0

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

X1 .set 300h ;DP=6

X0 .set 301h ;DP=6

Y1 .set 302h ;DP=6

Y0 .set 303h ;DP=6

W3 .set 304h ;DP=6

W2 .set 305h ;DP=6

W1 .set 306h ;DP=6

W0 .set 307h ;DP=6

.text

MPY32:

BIT X0,0 ;TC = X0 bit#15

LT X0 ;T = X0

MPYU Y0 ;P = X0Y0

SPL W0 ;Save W0

SPH W1 ;Save partial W1

MPY Y1 ;P = X0Y1

LTP X1 ;ACC = X0Y1, T = X1

MPY Y0 ;P = X1Y0

MPYA Y1 ;ACC = X0Y1+X1Y0, P=X1Y1

ADDS W1 ;ACC = X0Y1+X1Y0+X0Y02^–16

SACL W1 ;Save final W1

BSAR 16 ;Shift ACC right by 16

XC 1,TC ;If MSB of X0 is 1

 ADD Y1 ;Add Y1

BIT Y0,0 ;TC = Y0 bit#15

APAC ;ACC = X1Y1 + (X0Y1+X1Y0)2^–16

XC 1,TC ;If MSB of Y0 is 1

 ADD X1 ;Add X1

SACL W2 ;Save W2

SACH W3 ;Save W3
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Example 2–22. 32-Bit Fractional Multiplication

.title ”32–bit Fractional Multiplication”

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* This routine multiplies two Q31 signed integers resulting in a Q30 product.

* The operands are fetched from data memory and the result is written back

* to data memory.

* Data Storage:

* X1,X0 Q31 operand

* Y1,Y0 Q31 operand

* W1,W0 Q30 product

* Entry Conditions:

* DP  = 6, SXM = 1

* OVM = 0

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

X1 .set 300h ;DP=6

X0 .set 301h ;DP=6

Y1 .set 302h ;DP=6

Y0 .set 303h ;DP=6

W1 .set 304h ;DP=6

W0 .set 305h ;DP=6

.text

BIT X0,0 ;TC = X0 bit#15

LT X0 ;TREG0 = X0

MPY Y1 ;P = X0*Y0

LTP X1 ;ACC = X0*Y0

MPY Y0 ;P = X1*Y0

MPYA Y1 ;ACC = X0*Y0 + X1*Y0

BSAR 16 ;Throw away low 16 bits

XC 1,TC ;If MSB of X0 is 1

 ADD Y1 ;then add Y1

BIT Y0,0 ;TC = Y0 bit#15

APAC ;ACC = ACC + X1*Y1

XC 1,TC ;If MSB of Y0 is 1

 ADD X1 ;then add X1

SACL W0 ;Save lower product

SACH W1 ;Save upper product
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2.8.4 Division

Integer and fractional division is implemented on the ’C5x by repeated subtrac-

tions executed with SUBC, a special conditional subtract instruction. Given a

16-bit positive dividend and divisor, the repetition of the SUBC command 16

times produces a 16-bit quotient in the low accumulator and a 16-bit remainder

in the high accumulator.

SUBC implements binary division in the same manner as long division is done

(Figure 2–5). The dividend is shifted until subtracting the divisor no longer

produces a negative result. For each subtract that does not produce a negative

answer, a 1 is put in the LSB of the quotient and then shifted. The shifting of

the remainder and quotient after each subtract produces the separation of the

quotient and remainder in the low and high halves of the accumulator, respec-

tively.

Both the dividend and the divisor must be positive when using the SUBC

command. Thus, the sign of the quotient must be determined and the quotient

computed by using the absolute value of the dividend and divisor.

Integer division can be implemented with the SUBC instruction, as shown in

Example 2–23 on page 2-37. For integer division, the absolute value of the

numerator must be greater than the absolute value of the denominator.

Fractional division can also be implemented with the SUBC instruction as

shown in Example 2–24 on page 2-38. When implementing a division

algorithm, it is important to know if the quotient can be represented as a

fraction and the degree of accuracy to which the quotient is to be computed.

For fractional division, the absolute value of the numerator must be less than

the absolute value of the denominator. Note that the dividend is loaded into the

high accumulator and that only N–1 iterations are required for an N-bit fraction.
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Figure 2–5. 16-Bit Integer Division

0000 0000 0000 0101 000 0000 0010 0001

 110

–101

11

–1 01

000 0000 0000 0110 QUOTIENT

REMAINDER

LONG DIVISION:

0000 0000 0000 0000
–10

0000 0000 0010 0001
1000 0000 0000 0000

–10 0111 1111 1101 1111

0000 0000 0000 0000
–10

0000 0000 0100 0010
1000 0000 0000 0000

–10 0111 1111 1011 1110

.

.

.

0000 0000 0000 0100
–10

0010 0000 0000 0000
1000 0000 0000 0000

0000 0000 0000 0001 1010 0000 0000 0000

0000 0000 0000 0011
–10

0100 0000 0000 0001
1000 0000 0000 0000

0000 0000 0000 0000 1100 0000 0000 0001

0000 0000 0000 0001
–10

1000 0000 0000 0011
1000 0000 0000 0000

–1111 1111 1111 1101

0000 0000 0000 0011 0000 0000 0000 0110

32 01516HIGH ACC LOW ACC

REMAINDER QUOTIENT

(1) Dividend is loaded into ACC. The divisor is left-shifted

15 and subtracted from ACC. The result is negative,

so discard the result, shift ACC left one bit, and re-

place LSB with 0.

COMMENT

(2) Second SUBC command. The result is negative, so

discard the result, shift ACC (dividend) left one bit,

and replace LSB with 0.

(14) 14th SUBC command. The result is positive. Shift

result left one bit and replace LSB with 1.

(15) 15th SUBC command. The result is again positive.

Shift result left one bit and replace LSB with 1.

(16) 16th SUBC command. The result is negative, so dis-

card the result, shift ACC left one bit, and replace

LSB with 0.

Answer reached after 16 SUBC commands stored in

ACC.

.

.

.

_______________

SUBC METHOD:______________
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Example 2–23. 16-Bit Integer Division Using SUBC Instruction

*

* This routine implements integer division with the SUBC instruction. For this

* integer division routine, the absolute value of the numerator must be greater

* than the absolute value of the denominator. In addition, the calling routine

* must check to verify that the divisor does not equal 0.

*

* The 16–bit dividend is placed in the low accumulator, and the high accumulator

* is zeroed. The divisor is in data memory. At the completion of the last SUBC,

* the quotient of the division is in the lower–order 16–bits of the accumulator.

* The remainder is in the higher–order 16–bits.

*

* Key C5x Instruction:

* RETCD return if conditions true – after executing next 2–word instruction or

*  two single–word instructions

*

DENOM .set 60h

NUMERA .set 61h

QUOT .set 62h

REM .set 63h

TEMSGN .set 64h

*

INTDIV LDP #0

LT NUMERA ;Determine sign of quotient.

MPY DENOM

*

SPH TEMSGN ;Save the sign

LACL DENOM

ABS ;Make denominator and numerator positive.

SACL DENOM ;Save absolute value of denominator

LACL NUMERA

ABS

*

* If divisor and dividend are aligned, division can start here.

*

RPT #15 ;16 cycle division. Low accumulator contains

 SUBC DENOM ;the quotient and high accumulator contains

* ;the remainder at the end of the loop.

BIT TEMSGN,0 ;Test sign of quotient.

RETCD NTC ;Return if sign positive, else continue.

 SACL QUOT ;Store quotient and remainder during delayed

 SACH REM ;return.

*

LACL #0 ;If sign negative, negate quotient and return

RETD

 SUB QUOT

 SACL QUOT
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Example 2–24. 16-Bit Fractional Division Using SUBC Instruction

*

* This routine implements fractional division with the SUBC instruction. For

* this division routine, the absolute value of the denominator must be

* greater than the absolute value of the numerator. In addition, the

* calling routine must check to verify that the divisor does not equal 0.

*

* The 16–bit dividend is placed in the high accumulator, and the low accumulator

* is zeroed. The divisor is in data memory.

*

DENOM .set 60h

NUMERA .set 61h

QUOT .set 62h

REM .set 63h

TEMSGN .set 64h

*

FRACDIV LDP #0

LT NUMERA ;Determine sign of quotient.

*

MPY DENOM

SPH TEMSGN

LACL DENOM

ABS ;Make denominator and numerator positive.

SACL DENOM

LACC NUMERA,16 ;Load high accumulator, zero low accumulator.

ABS

*

* If divisor and dividend are aligned, division can start here.

*

RPT #14 ;15-cycle division. Low accumulator contains

 SUBC DENOM ;the quotient and high accumulator contains the

;remainder at the end of the loop.

*

BIT TEMSGN,0 ;Test sign of quotient.

RETCD NTC ;Return if sign positive, else continue.

 SACL QUOT ;Store quotient and remainder during delayed

 SACH REM ;return.*

LACL #0 ;If sign negative, negate quotient and return

RETD

 SUB QUOT

 SACL QUOT
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2.9 Floating-Point Arithmetic

To implement floating-point arithmetic on the ’C5x, operands must be

converted to fixed point for arithmetic operations and then converted back to

floating point. Conversion to floating-point notation is performed by normaliz-

ing the input data.

To multiply two floating-point numbers, the mantissas are multiplied and the

exponents added. The resulting mantissa must be renormalized. Floating-

point addition or subtraction requires shifting the mantissa so that the

exponents of the two operands match. The difference between the exponents

is used to left shift the lower power operand before adding. Then, the output

of the add must be renormalized.

The ’C5x instructions used in floating-point operations are NORM, SATL,

SATH, and XC. NORM may be used to convert fixed-point numbers to floating-

point numbers. SATL in combination with SATH provides a 2-cycle 0 through

31-bit right shift. XC helps avoid extra cycles caused by branch instructions.

Example 2–25 on page 2-40 and Example 2–26 on page 2-44 show how to

implement floating-point arithmetic on the ’C5x. Floating-point numbers are

generally represented by mantissa and exponent values. Single-precision

IEEE floating-point numbers are represented by a 24-bit mantissa, an 8-bit

exponent, and a sign bit. In order to simplify the routines, a format slightly

different from the IEEE format is used. Four words are occupied by each float-

ing-point number. One sign word, one word for the exponent, and two words

for the mantissa are reserved in memory as shown in the examples.
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Example 2–25. Floating-Point Addition Using SATL and SATH Instructions

.title ’Floating Point Addition Algorithm’

.def FL_ADD

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* THIS SUBROUTINE ADDS TWO FLOATING–POINT NUMBERS PRODUCING A NORMALIZED

* FLOATING–POINT PRODUCT. THE FORMAT OF FLOATING–POINT NUMBERS IS

* SPECIFIED BELOW.

*

* INPUT / OUTPUT FORMAT

* =====================

* ––––––––––––––––

* |  ALL 0 OR 1  | SIGN WORD

* ––––––––––––––––

*

* ––––––––––––––––

* |   16 BITS    | EXPONENT

* ––––––––––––––––

*

* ––––––––––––––––

* |0|   15 BITS  | HIGH PART OF MANTISSA

* ––––––––––––––––

*

* ––––––––––––––––

* |    16 BITS   | LOW PART OF MANTISSA

* ––––––––––––––––

*

* Key C5x Instructions:

*

* SAMM save the accumulator contents in a memory–mapped register

* LACB accumulator is loaded with contents of accumulator buffer

* SACB contents of accumulator are copied in accumulator buffer

* SATL accumulator is barrel–shifted right by the value specified

* in the 4 LSBs of TREG1

* SATH accumulator is barrel–shifted right by 16 bits if bit 4 of

* TREG1 is a one.

* SPLK store immediate long constant in data memory

* CPL compare long immediate value (or DBMR) with data memory

* TC=1 if two values are same

* TC=0 otherwise

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

TREG1 .set 0dh

ASIGN .set 60h ;Sign, exponent, high and low part of mantissa

AEXP .set 61h ;of input number A

AHI .set 62h

ALO .set 63h

BSIGN .set 64h ;Sign, exponent, high and low part of mantissa

BEXP .set 65h ;of input number B

BHI .set 66h

BLO .set 67h
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Example 2–25. Floating-Point Addition Using SATL and SATH Instructions (Continued)

CSIGN .set 68h ;Sign, exponent, high and low part of mantissa

CEXP .set 69h ;of the resulting floating point number C

CHI .set 6Ah

CLO .set 6Bh

DIFFEXP .set 6Ch

.text

FL_ADD LDP #0 ;Initialization

SETC SXM ;Set sign extension mode

MAR *,AR0 ;ARP <– AR0

LAR AR0,#0 ;AR0 is used by NORM instruction

CMPEXP LACL BLO ;Load low Acc with BLO

ADD BHI,16 ;Add BHI to high Acc

SACB ;AccB = BHIBLO

LACC AEXP

SUB BEXP ;Acc = AEXP=BEXP

SACL DIFFEXP ;Save the difference

BCND AEQB,EQ ;If |A| == |B|

BCND ALTB,LT ;If |A| < |B|

AGTB LACC DIFFEXP ;If |A| > |B|

SAMM TREG1 ;Load TREG1 with # of right shifts reqd.

SUB #32

BCND AGRT32,GEQ ;If difference > 32

LACB ;Acc = BHIBLO

SATL

SATH ;Right justify BHIBLO

SACB ;Store the result back in AccB

AEQB LACC ASIGN ;Copy sign and exponent values of

SACL CSIGN ;A in C (i.e. the result)

LACC AEXP

SACL CEXP

CHKSGN LACC ASIGN ;Acc=ASIGN–BSIGN

SUB BSIGN

CLRC TC ;Clear TC flag

XC 1,LT ;If A<0 and B>0

 SETC TC ;Set TC flag

BCNDD ADNOW,EQ ;If both A and B have same sign

LACL ALO

ADD AHI,16 ;Acc = AHIALO

SBB ;Acc=A–B

XC 1,TC ;If A<0 and B>0

 NEG ;then Acc=B–A

BCND CZERO,EQ ;If A–B == 0

XC 2,LT ;If A–B < 0

 SPLK #0FFFFh,CSIGN ;then CSIGN=–1

XC 2,GT ;If A–B > 0

 SPLK #0,CSIGN ;then CSIGN=0

XC 1,LT ;If A–B<0

 ABS ;then Acc=|A–B|

BD NORMAL ;delayed branch

 SACH CHI ;Save the result

 SACL CLO
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Example 2–25. Floating-Point Addition Using SATL and SATH Instructions (Continued)

CZERO LACL #0 ;If A–B == 0

SACL CEXP ;then result is zero

SACL CSIGN ;Make sign positive

RETD ;Return delayed

SACL CHI

SACL CLO ;Clear CHICLO

ADNOW ADDB ;If signs are same

BCNDD OVFLOW,OV ;then add two numbers

 SACH CHI

 SACL CLO ;Save it in CHICLO

BCND CZERO,EQ ;If CHICLO is zero, goto CZERO

NORMAL CPL #0,CHI ;Compare CHI with 0

NOP ;Dead cycle for XC

XC 2,TC ;If CHI is 0

 LACC CLO,16 ;then normalize only the CLO part

LAR AR0,#16 ;AR0 has exponent value

XC 2,NTC ;If CHI != 0

 LACC CHI,16 ;Acc=CHICLO

 ADDS CLO

CLRC SXM ;Disable sign extension mode

XC 2,LT ;If MSB of CLO is 1

 SBRK 1 ;then shift right once

 SFR ;and decrement exponent.

SETC SXM ;Enable sign extension mode

RPT #13 ;Repeat 14 times

 NORM *+ ;Normalize

OUTPUT SACH CHI ;Store high part

SACL CLO ;Store low part of the result

LACC CEXP

SAR AR0,CEXP ;Save exponent

RETD ;Return delayed

 SUB CEXP

 SACL CEXP ;CEXP=CEXP–AR0

OVFLOW CLRC SXM ;Disable sign extension mode

SFR ;Shift Acc right

SACH CHI

SACL CLO ;Save the result

LACC CEXP

ADD #1 ;Increment exponent by one

SACL CEXP ;Save it

ALTB LACC BSIGN ;Copy sign of B in C

SACL CSIGN

LACC BEXP ;Copy exponent of B in C

SACL CEXP

LACC DIFFEXP

NEG ;since A–B < 0 here

SAMM TREG1 ;No. of shifts reqd. for right–justification

SUB #32

BCND BGRT32,GEQ ;difference in exponent >= 32

LACL ALO

ADD AHI,16 ;Acc=AHIALO
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Example 2–25. Floating-Point Addition Using SATL and SATH Instructions (Continued)

SATL

SATH ;Right–justify ALOAHI

BD CHKSGN ;Jump back after next two instructions

 SACL ALO ;Save normalized value

 SACH AHI ;in ALO and AHI

BGRT32 LACC BHI ;If exponent of B > 32

SACL CHI ;then C <– B.

RETD ;Return after

 LACC BLO ;saving CHI and CLO

 SACL CLO

AGRT32 LACC AHI ;If exponent of A > 32

SACL CHI ;then C <– A.

LACC ALO

SACL CLO ;Copy ALO to CLO

LACC ASIGN

SACL CSIGN ;Copy ASIGN to CSIGN

RETD ;Return after

 LACC AEXP ;copying AEXP to CEXP

 SACL CEXP
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Example 2–26. Floating-Point Multiplication Using BSAR Instruction

.title ’Floating Point Multiplication Routine’

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* THIS SUBROUTINE MULTIPLIES TWO FLOATING–POINT NUMBERS PRODUCING

* A NORMALIZED FLOATING–POINT PRODUCT. THE FORMAT OF FLOATING–

* POINT NUMBERS IS SPECIFIED BELOW.

*

* INPUT / OUTPUT FORMAT

* =====================

* ––––––––––––––––

* |  ALL 0 OR 1  | SIGN WORD

* ––––––––––––––––

*

* ––––––––––––––––

* |   16 BITS    | EXPONENT

* ––––––––––––––––

*

* ––––––––––––––––

* |0|   15 BITS  | HIGH PART OF MANTISSA

* ––––––––––––––––

*

* ––––––––––––––––

* |   16 BITS    | LOW PART OF MANTISSA

* ––––––––––––––––

*

* NOTE THAT EVEN IF THE PRODUCT IS ZERO, SIGN OF THE PRODUCT MAY

* EITHER BE POSITIVE OR NEGATIVE DEPENDING ON THE INPUTS.

*

* Key C5x Instructions:

* BSAR 1–16 bit right barrel arithmetic shift in one cycle

* CLRC reset control bit

* SETC set control bit

* BD branch after executing next two one–word instructions

* or one two–word instruction

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ASIGN .set 60h ;Sign, exponent, high and low parts of mantissa

AEXP .set 61h ;of input number A

AHI .set 62h

ALO .set 63h

BSIGN .set 64h ;Sign, exponent, high and low parts of mantissa

BEXP .set 65h ;of input number B

BHI .set 66h

BLO .set 67h

CSIGN .set 68h ;Sign, exponent, high and low parts of mantissa

CEXP .set 69h ;of the resulting floating point number C

CHI .set 6ah

CLO .set 6bh
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Example 2–26. Floating-Point Multiplication Using BSAR Instruction (Continued)

.text

MULT LDP #0

MAR *,AR0 ;ARP <– AR0

LAR AR0,#0 ;Reset exponent counter

SPM 0 ;No left shift of P register

LACC AEXP

ADD BEXP

SACL CEXP ;CEXP = AEXP + BEXP

CLRC SXM ;for barrel shift, disable sign extension

LT ALO ;T = ALO

MPYU BHI ;P = ALO*BHI

LTP AHI ;Acc=ALO*BHI, T=AHI

MPYU BLO ;P=AHI*BLO

MPYA BHI ;Acc=ALO*BHI + AHI*BLO, P=AHI*BHI

BSAR 16 ;Retain upper 16 bits plus 1 additional

APAC ;bit due to zero MSBs of BLO & ALO

BCND NZERO,NEQ ;If the product is not zero

SACH CHI ;If the product is zero

BD SIGN ;then clear CHI,CLO and CEXP

 SACL CLO ;and jump to SIGN

 SACL CEXP

NZERO SFL ;Discard additional sign bit (Q63)

NORM *+ ;Remove leading zero if any

SACH CHI ;Save product

SACL CLO

SETC SXM ;Enable sign extension mode

LACC CEXP

SAR AR0,CEXP ;CEXP<–AR0

SUB CEXP

SACL CEXP ;CEXP=CEXP–AR0

SIGN LACL ASIGN ;If signs are same then product is +ve

RETD ;Return after next two instructions

 XOR BSIGN ;otherwise it is –ve.

 SACL CSIGN
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2.10 Application-Oriented Operations

The following subsections provide application-oriented operations for:

� modem applications

� adaptive filtering

� infinite impulse response (IIR) filters

� dynamic programming

2.10.1 Modem Application

Digital signal processors are especially appropriate for modem applications.

The ’C5x devices with their enhanced instruction set and reduced instruction

cycle time are particularly effective in implementing encoding and decoding

algorithms. Features like circular addressing, repeat block, and single-cycle

barrel shift reduce the execution time of such routines.

Example 2–27 on page 2-47 shows a differential and convolutional encoder

for a 9600-bit/second V.32 modem. This encoder uses trellis coding with 32

carrier states. The data stream to be transmitted is divided into groups of four

consecutive data bits. The first two bits in time Q1n and Q2n in each group are

differentially encoded into Y1n and Y2n according to the following equations:

Y1n = Q1n ⊕  Y1n–1

Y2n = (Q1n •  Y1n–1) ⊕  Y2n–1 ⊕  Q2n

This is done by a subroutine called DIFF. The two differentially encoded bits

Y1n and Y2n are used as inputs to a convolutional encoder subroutine

ENCODE, which generates a redundant bit Y0n. These five bits are packed

into a single word by the PACK subroutine.
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Example 2–27. V.32 Encoder Using Accumulator Buffer

.title ’Convolutional Encoding for a V.32 Modem’

.mmregs

STATMEM .set 60h ;(60h – 62h) Delay States S1,S2,S3

INPUT .set 64h ;(64h – 67h) Four input bits

YPAST .set 68h ;(68h – 69h) Past values of Y1 and Y2

OUTPUT .set 63h ;Y0, the redundant bit

LOCATE .set 6ah ;Temporary storage for current input word

PCKD_IP .set 1000h ;Input buffer (4 bits packed per word)

PCKD_OP .set 2000h ;Output buffer (5 bits packed per word)

COUNT .set 50 ;# of input data words

.text

INIT LAR AR1,#PCKD_IP

LAR AR2,#PCKD_OP

LAR AR3,#COUNT–1 ;COUNT contains # of input words

LDP #0

START MAR *,AR1

LACC *+,0,AR0

SACL LOCATE ;Temporary storage for current input word

LAR AR0,#INPUT+3

LACL #3 ;Loop 4 times

SAMM BRCR

LACL #1

SAMM DBMR ;Load DBMR with the mask for LSB

UNPACK LACC LOCATE ;Acc = packed input bits

RPTB LOOP1–1 ;for I=0,I<=3,I++

 SACL * ;Save it

 APL *– ;Mask off all bits except LSB

 SFR ;Shift right to get next bit

LOOP1

CALL DIFF ;Call differential encoder

CALL ENCODE ;Call convolutional encoder

PACK LAR AR0,#INPUT

LACL #3 ;Loop 4 times only

SAMM BRCR

LACC *+ ;Get first bit (MSB)

RPTB LOOP2–1 ;for I=0,I<=2,I++

 SFL ;make space by left–shifting once

 ADD *+ ;Pack next bit by left–shifting other

 NOP

LOOP2

MAR *,AR2 ;ARP <– AR2

SACL *+,0,AR3 ;Save it in packed form

BANZ START ;Loop if COUNT is not zero

RET ;Return
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Example 2–27. V.32 Encoder Using Accumulator Buffer (Continued)

; This subroutine differentially encodes Q1n and Q2n (INPUT buffer)

; according to previous output values Y1n–1 and Y2n–1 (YPAST buffer).

; The resulting values Y1n and Y2n overwrite previous Q1n and Q2n.

DIFF LACC YPAST ;Acc=Y1n–1

AND INPUT ;Q1n & Y1n–1

XOR INPUT+1 ;(Q1n & Y1n–1) xor Q2n

XOR YPAST+1 ;(Q1n & Y1n–1) xor Q2n xor Y2n–1

SACL INPUT+1

SACL YPAST+1 ;Save Y2n

LACC YPAST

XOR INPUT ;Q1n xor Y1n–1

RETD ;Delayed return

 SACL INPUT ;Save Y1n

 SACL YPAST ;save Y1n–1

; This subroutine generates a redundant bit Y0n by convolutional encoding,

; taking Y1n and Y2n as input. Three delay states S1, S2 and S3 are

; located in STATMEM buffer.

ENCODE LACC STATMEM

SACL OUTPUT ;Y0 <– S1

LACC INPUT+1

XOR STATMEM+1 ;Y2 xor S2

SACB ;Save in AccB

LACC OUTPUT

AND INPUT ;Y0 & Y1

XORB ;(Y0 & Y1) xor (Y2 xor S2)

SACL STATMEM ;Save it in S1

LACC OUTPUT

ANDB ;Y0 & (Y2 xor S2)

SACB

LACC INPUT

XOR INPUT+1 ;Y1 xor Y2

XOR STATMEM+2 ;(Y1 xor Y2) xor S3

XORB ;((Y1 xor Y2) xor S3) xor (Y0 & (Y2 xor S2))

SACL STATMEM+1 ;Update S2

RETD ;Delayed return

 LACC OUTPUT

 SACL STATMEM+2 ;Update S3
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2.10.2 Adaptive Filtering

There are many practical applications of adaptive filtering; one example is in

the adapting or updating of coefficients. This can become computationally

expensive and time-consuming. The MPYA, ZALR, and RPTB instructions on

the ’C5x can reduce execution time.

A means of adapting the coefficients on the ’C5x is the least-mean-square

algorithm given by the following equation:

bk(i� 1) � bk(i) � 2Be(i)x(i–k)

where e (i) = x(i) – y(i)
and

y(i) � �
N–1

k�0

bkx(i–k)

Quantization errors in the updated coefficients can be minimized if the result

is obtained by rounding rather than truncating. For each coefficient in the filter

at a given point in time, the factor 2Be(i) is a constant. This factor can then be

computed once and stored in the TREG0 for each of the updates.

MPYA and ZALR instructions help in reducing the number of instructions in the

main adaptation loop. Furthermore, the RPTB (repeat block) instruction allows

the block of instructions to be repeated without any penalty for looping.

Example 2–28 on page 2-50 shows a routine that implements a 128-tap finite

impulse response (FIR) filter and an LMS adaptation of its coefficients. The

SARAM of the ’C5x can be mapped in both the program and data spaces at

the same time by setting the OVLY and RAM control flags to 1. This feature

can be used to locate the coefficient table in SARAM so that the table can be

accessed by the MACD and MPY instructions without modifying the RAM

configuration. Note that the MACD instruction requires one of its operands to

be in program space.

If the address of the coefficient table is to be determined in runtime, load the

BMAR (block move address register) with the address computed dynamically

and replace the instruction MACD COEFFP,*– with MADD *– .
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Example 2–28. Adaptive FIR Filter Using RPT and RPTB Instructions

.title ’Adaptive Filter’

.def ADPFIR

.def X,Y

.mmregs

*

* This 128–tap adaptive FIR filter uses on–chip memory block B0 for

* coefficients and block B1 for data samples. The newest input should be in

* memory location X when called. The output will be in memory location Y

* when returned.

*

* OVLY =1 , RAM =1 when this routine is called.

*

COEFFP .set 02000h ;Program memory address of the coeff. in S/A RAM

COEFFD .set 02000h ;Data memory address of the coeff. in S/A RAM

* For ’C51,’C53,’C56,’C57, COEFFD is 0800h instead of 02000h

ONE .set 7Ah ;Constant one. (DP=0).

BETA .set 7Bh ;Adaptation constant. (DP=0).

ERR .set 7Ch ;Signal error. (DP=0).

ERRF .set 7Dh ;Error function. (DP=0).

Y .set 7Eh ;Filter output. (DP=0).

X .set 037Fh ;Newest data sample.

FRSTAP .set 0380h ;Next newest data sample.

LASTAP .set 03FFh ;Oldest data sample.

*

* Finite impulse response (FIR) filter.

*

ADPFIR ZPR ;Clear P register.

LACC #1,14 ;Load output rounding bit.

MAR *,AR3

LAR AR3,#LASTAP ;Point to oldest sample.

FIR RPT #127

 MACD COEFFP,*– ;128–tap FIR filter.

APAC

SACH Y,1 ;Store the filter output.

NEG ;Acc = –y(n)

LAR AR3,#X

ADD *,15 ;Add the newest input sample.

SACH ERR,1 ;err(n) = x(n) – y(n)

DMOV * ;Include newest sample

*

* LMS Adaption of Filter Coefficients.

*

LT ERR ;T = err

MPY BETA ;P = beta*err(i)

PAC ;errf(i) = beta * err(i)

ADD ONE,14 ;Round the results.

SACH ERRF,1 ;Save errf(i)

LACC #126

SAMM BRCR ;127 coefficients to update in the loop.

LAR AR2,#COEFFD ;Point to the coefficients.

LAR AR3,#LASTAP+1 ;Point to the data samples.
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Example 2–28. Adaptive FIR Filter Using RPT and RPTB Instructions (Continued)

LT ERRF

MPY *–,AR2 ;P = 2*beta*err(i)*x(i–255)

*

RPTB LOOP–1 ;For I=0,I<=126,I++

ADAPT  ZALR *,AR3 ;Load ACCH with ak(i).

 MPYA *–,AR2 ;P = 2*beta*err(i)*x(i–k–1)

* Acc = ak(i) + 2*beta*err(i)*x(i–k)

 SACH *+ ;Store ak(i+1)

*

LOOP ZALR *,AR3 ;Finally update last coeff. a0(i)

RETD ;Delayed return

 APAC ;Acc = a0(i) + 2*beta*err(i)*x(i)

 SACH *+ ;Save a0(i+1)
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2.10.3 Infinite Impulse Response (IIR) Filters

Infinite impulse response (IIR) filters are widely used in digital signal proces-

sing applications. The transfer function of an IIR filter is given by:

H(z) �
b0� b1z

�1� ...� bMz�M

1� a1z
�1� ...� aNz�N

�
Y(z)

X(z)

Figure 2–6 shows a block diagram of an Nth-order, direct-form, type II, IIR filter.

In the time domain, an Nth-order IIR filter is represented by the following two

difference equations:

At time interval n:

x(n) is the current input sample

y(n) is the output of the IIR filter

d(n) = x(n) – d(n – 1)a1 – ... – d(n – N + 1)aN – 1
y(n) = d(n)b0 + d(n – 1)b1 + ... + d(n – N + 1)bN – 1

The two equations above can easily be implemented on the ’C5x using the

multiply-accumulate instructions (MAC, MACD, MADS, MADD). Note that the

second equation also requires a data-move operation to update the state

variable sequence d(n). Example 2–29 on page 2-53 implements an Nth-order

IIR filter using single-instruction repeat (RPT) and multiply-accumulate (MAC,

MACD) instructions.

Figure 2–6. Nth-Order, Direct-Form, Type II, IIR Filter

+ +

z–1 ++

++ z–1

++ z–1

y(n)x(n)

d(n)
b0

–a1 b1

–a2 b2

–aN–1 bN–1
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Example 2–29. Nth-Order IIR Filter Using RPT and MACD Instructions

.title ”Nth Order IIR Type II Filter”

.mmregs

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* This routine implements an N–th order type II IIR filter.

* d(n) = x(n) – d(n–1)a1 – d(n–2)a2 –...– d(n–N+1)aN–1

* y(n) = d(n)b0 + (dn–1)b1 +...+ d(n–N+1)bN–1

*

* Memory Requirement:

*   State variables (low to high data memory):

* d(n) d(n–1) ... d(n–N+1)

*

* Coefficient (low to high program memory):

* –a(N–1) –a(N–2) ... –a(1) b(N–1) b(N–2) ... b(1) b(0)

*

* Entry Conditions:

* AR0 –> Input

* AR1 –> d(n–N+1)

* AR2 –> Output

* COEFFA –> –a(N–1)

* COEFFB –> b(N–1)

* ARP = AR0

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

IIR_N: ZPR ;Clear P register

LACC *,15,AR1 ;Get Q15 input

RPT #(N–2) ;For i=1,i<=N–1,++i

 MAC COEFFA,*– ;Acc+=–a(N–i))*d(n–N+i)

APAC ;Final accumulation

SACH *,1 ;Save d(n)

ADRK N–1 ;AR1 –> d(n–N+1)

LAMM BMAR ;Acc –> a(N–1)

ADD #N–1 ;Acc –> b(N–1)

SAMM BMAR ;BMAR –> b(N–1)

RPTZ #(N–1) ;For i=1,i<=N,++i

 MACD COEFFB,*– ;Acc+=b(N–i)*d(n–N+i)

LTA *,AR2 ;Final accumulation

SACH *,1 ;Save Yn

Due to the recursive nature of an IIR filter, quantization of filter coefficients may

cause significant variation from the desired frequency response. To avoid this

problem, the desired filter transfer function can be broken up into lower order

sections that are cascaded with each other. Example 2–30 on page 2-54

shows an implementation of N cascaded second-order IIR sections (also

called biquad sections). The filter coefficients and the state variables are

stored in data memory. Note the use of LTD and MPYA instructions to perform

multiply-accumulate and data-move operations.
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Example 2–30. N Cascaded BiQuad IIR Filter Using LTD and MPYA Instructions

.title ”N Cascaded BiQuad IIR Filters”

.mmregs

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

*

* This routine implements N cascaded blocks of biquad IIR canonic type II

* filters. Each biquad requires 3 data memory locations d(n),d(n–1),d(n–2),

* and 5 coefficients –a1,–a2,b0,b1,b2.

* For each block: d(n) = x(n)–d(n–1)a1–d(n–2)a2

* y(n) = d(n)b0+d(n–1)b1+d(n–2)b2

*

* Coefficients Storage (low to high data memory):

* –a2,–a1,b2,b1,b0, ... ,–a2,–a1,b2,b1,b0

* 1st biquad Nth biquad

*

* State Variables (low to high data memory):

* d(n),d(n–1),d(n–2), ... ,d(n),d(n–1),d(n–2)

* Nth biquad 1st biquad

*

* Entry Conditions:

* AR1 –> d(n–2) of 1st biquad

* AR2 –> –a2 of 1st biquad

* AR3 –> input sample (Q15 number)

* AR4 –> output sample (Q15 number)

* DP = 0, PM = 0, ARP = 3

*

*;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

BIQUAD: ;Setup variables

ZPR ;Clear P register

LACC *,15,AR1 ;Get Q15 input

SPLK #2,INDX ;Setup index register

SPLK #N–1,BRCR ;Setup count

;Begin computation;

RPTB ELOOP–1 ;Repeat for N biquads

LOOP:

LT *–,AR2 ;T = d(n–2)

MPYA *+,AR1 ;Acc = x(n), P = –d(n–2)a2

LTA *–,AR2 ;Acc += –d(n–2)a2, T = d(n–1)

MPY *+ ;P = –d(n–1)a1

LTA *+,AR1 ;Acc += –d(n–1)a1, T = b2

SACH *0+,1 ;Save d(n)

MPY *– ;P = d(n–2)b2

LACL #0 ;Acc = 0

LTD *–,AR2 ;T = d(n–1), d(n–2) = d(n–1)

MPY *+,AR1 ;Acc += d(n–2)b2, P = d(n–1)b1

LTD *–,AR2 ;T = d(n), d(n–1) = d(n)

MPY *+,AR1 ;Acc += d(n–1)b1, P = d(n)b0

ELOOP:

LTA *,AR4 ;Final accumulation

SACH *,1 ;Save output in Q15 format
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2.10.4 Dynamic Programming

Dynamic programming techniques are widely used in optimal search algo-

rithms. Applications such as speech recognition, telecommunications, and

robotics use dynamic programming algorithms. The ’C5x devices have an

enhanced instruction set for efficient implementation of dynamic programming

methods.

Most real-time search algorithms use the basic dynamic programming princi-

ple that the final optimal path from the start state to the goal state always

passes through an optimal path from the start state to an intermediate state.

Identifying intermediate paths reduces a long, time-consuming search to the

final goal. An integral part of any optimal search scheme based on the dynamic

programming principle is the backtracking operation. The backtracking is

necessary to retrace the optimal path when the goal state is reached.

Example 2–31 on page 2-56 shows an implementation of the backtracking

algorithm in which the path history consists of four independent path traces for

N time periods. This path history is stored in a circular buffer. After each back-

tracking operation, the path history is updated by a search algorithm (not

shown) for the next time period. The path history buffer is shown in Figure 2–7

for N equal to 4. Each group of four consecutive memory locations in the buffer

corresponds to the expansion of the four paths by one node (or by one time

period). Each element of a group corresponds to one of the four states in that time

period. In addition, each element of a group points to an element in the

previous time period that belongs to that path.

Using the path history buffer shown in Figure 2–7, the element corresponding

to state #0 at the current time period contains a 1. This points to the second

element of the previous time period that contains a 0. In this way, beginning

from the current time period and using pointers to step back in time, this path

is traced back as 1–0–2–1. Note that this simplified backtracking approach is

taken here to illustrate ’C5x programming techniques. Most real applications

would require more complex backtracking algorithms.
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Example 2–31. Backtracking Algorithm Using Circular Addressing

*

* Backtracking Example

* This program back–tracks the optimal path expanded by a dynamic programming

* algorithm. The path history consists of four paths expanded N times.

* It is set up as a circular buffer of length N*4. Note that decrement

* type circular buffer is used. The start and end address of the circular

* buffer are initialized this way because of two reasons:

* 1– to avoid skipping the end–address of circ buffer

* 2– to ensure that wrap–around is complete before next iteration.

*

LAR AR0,#BUFFER ;Get buffer address

LMMR INDX,PATH ;Get the selected path [0..3]

SPLK #N–1,BRCR ;Trace back N time periods

* init. AR0 as pointer to circular buffer#1; length=N*4 words

SPLK #BUFFER+(N–1)*4,CBSR1

SPLK #BUFFER–3,CBER1

SPLK #08h,CBCR

*

RPTB TLOOP–1 ;For i=0,i<N,i++

MAR *0+ ;Offset by state#

LACC *0– ;Get next pointer & reset to state#0

SAMM INDX ;Save next state#

SBRK 3 ;Decrement AR0 to avoid skipping CBER1

SBRK 1 ;Now AR0 is correctly positioned 1 time

TLOOP: ;period back (circular addressing)

Figure 2–7. Backtracking With Path History
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2.11 Fast Fourier Transforms

Fourier transforms are an important tool often used in digital signal processing

systems. The purpose of the transform is to convert information from the time

domain to the frequency domain. The inverse Fourier transform converts

information back to the time domain from the frequency domain. Computation-

ally efficient implementations of the Fourier transforms are known as fast Four-

ier transforms (FFT).

The ’C5x reduces the execution time of all FFTs by virtue of its 50-ns instruction

cycle time. Also, the bit-reversed addressing mode helps reduce execution

time for radix-2 FFTs. As demonstrated in Figure 2–8 and Figure 2–9, the

inputs or outputs of an FFT are not in sequential order. This scrambling of data

locations is a direct result of the radix-2 FFT derivation. Observation of the

figures and the relationship of the input and output addressing reveal that the

address indexing is in bit-reversed order, as shown in Table 2–3. As a result,

either the input data sequence or the output data sequence must be scrambled

in association with the execution of the FFT. In Example 2–32 on page 2-59,

the input data is scrambled before the execution of the FFT algorithm so that

the output is in order.

Figure 2–8. An In-Place DIT FFT With In-Order Outputs and Bit-Reversed Inputs
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Figure 2–9. An In-Place DIT FFT With In-Order Inputs but Bit-Reversed Outputs
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Table 2–3. Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT

Index Bit Pattern Bit-Reversed Pattern Bit-Reversed Index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7
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Example 2–32. 16-Point Radix-2 Complex FFT

.file ”c5cx0016.asm”

.title ”0016 point DIT Radix–2, Complex FFT”

.width 120

N .set 16 ;NUMBER OF POINTS FOR FFT

.mmregs

pmstmask .set 0110b ;ndx=trm=1

*

******************************************************************************

*                                                                            *

*     16 – POINT COMPLEX, RADIX–2 DIF FFT WITH THE TMS320C5x / LOOPED CODE   *

*     –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  *

******************************************************************************

* THE PROGRAM IS BASED ON THE BOOK ’DIGITAL SIGNAL PROCESSING APPLICATIONS’  *

* FROM TEXAS INSTRUMENTS P. 69. IT IS OPTIMIZED FOR THE TMS320C5x INCLUDING  *

* BIT REVERSAL ADDRESSING MODE.                                              *

*                                                                            *

******************************************************************************

*                                                                            *

*    USED REGISTERS: INDX,AR1,AR2,AR3,AR4,AR5,ACCU,PREG,TREG0, PMST, BRCR    *

*                    2 Stacklevel, Block B2 for temp variables               *

*                                                                            *

*    PROGRAM MEMORY:  164 WORDS (’END’ – ’FFT’) WITHOUT INITIALIZATION       *

*                                                                            *

*    COEFFICIENTS  :   16 BITS  (Q15 Format)  SCALING:   1/2^4               *

*                                                                            *

*    PROGRAM SEQUENCE:0.   INITIALIZATION FOR FFT/COEFF    ADD: 240H –  20BH *

*                     1.   INPUT NEW DATA INTO ’INPUT’     ADD: 220H –  23FH *

*                     2.   CALL SUBROUTINE FFT             ADD: 600H –  6A3H *

*                     2.1. BITREVERSAL FROM INPUT TO DATA  ADD: 200H –  21FH *

*                     2.2. FFT WITH WORK SPACE DATA        ADD: 200H –  21FH *

*                     3.   OUTPUT THE RESULTS FROM DATA    ADD: 200H –  21FH *

*                                                                            *

*    INPUT DATA AT ADDRESS 0220h–023fh:                                      *

*    ––––––––––––––––––––––––––––––––––                                      *

*    THE DATA IS STORED IN ’INPUT’ AS THE SEQUENCE: X(0),X(1),...,X(15)      *

*                                                   Y(0),Y(1),...,Y(15)      *

*                                                                            *

*    OUTPUT DATA AT ADDRESS 0200h–021fh:                                     *

*    –––––––––––––––––––––––––––––––––––                                     *

*    THE DATA IS STORED IN ’DATA’ AS THE SEQUENCE:                           *

*    X(0),Y(0),X(1),Y(1),... ... ,X(15),Y(15)                                *

******************************************************************************

*                                                                            *

*    THIS PROGRAM INCLUDES FOLLOWING FILE:                                   *

*    ––––––––––––––––––––––––––––––––––––                                    *

*    THE FILE ’TWIDDLES.Q15’ CONSISTS OF TWIDDLE FACTORS IN Q15 FORMAT       *

*    THE FILE ’C5CXRAD2.MAC’ macro files                                     *

*    THE FILE ’INIT–FFT.ASM’ for initialization                              *

******************************************************************************

*
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Example 2–32. 16-Point Radix-2 Complex FFT (Continued)

.include C5CXRAD2.MAC

.def TWIDLEN,FFTLEN,TEMP,WAIT,cos45

.def INIT,FFT,TWIDSTRT,TWIDEND

.def STAGE1,STAGE3,STAGE4,INPUT,DATA,TWID

;

.sect ”twiddles”

; table of twiddle factors for the FFT

TWIDSTRT .set $

.include twiddles.q15

TWIDEND .set $

TWIDLEN .set TWIDEND–TWIDSTRT

*

INPUT .usect ”input”,N*2 ;input data array

DATA .usect ”data”,N*2 ;working data array

TWID .usect ”twid”,N*2 ;reserve space for twiddles

*

* .include init–fft.asm

*

.sect ”fftprogram”

*

* FFT CODE WITH BIT–REVERSED INPUT SAMPLES / ARP=AR3

*

FFT: LAR AR3,DATAADD ;TRANSFER  32 WORDS FROM ’input’ to ’data’

LACC NN

SAMM INDX ;indexregister=7

RPT NN2 ;N TIMES

BLDD #INPUT,*BR0+

*

* FFT CODE for STAGES 1 and 2

*

STAGE1: SPLK #7,INDX ;index register = 7

LAR AR1,DATAADD ;pointer to DATA r1,i1

LAR AR2,#DATA+2 ;pointer to DATA + 2 r2,i2

LAR AR3,#DATA+4 ;pointer to DATA + 4 r3,i3

LAR AR4,#DATA+6 ;pointer to DATA + 6 r4,i4

COMBO5X 4 ;repeat 4 times

*

* FFT CODE FOR STAGE 3  /  ARP=AR2

*

STAGE3: SPLK #9,INDX ;index register = 9

LAR AR1,DATAADD ;ar1 –> DATA

LAR AR2,#DATA+8 ;ar2 –> DATA+8

stage3 2 ;repeat 2 times

*

* FFT CODE FOR STAGE 4  / ARP=ARP

*
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Example 2–32. 16-Point Radix-2 Complex FFT (Continued)

STAGE4: SPLK #1,INDX ;index register = 1

LAR AR1,DATAADD

LAR AR2,#DATA+16

LAR AR3,cos4 ;start of cosine in stage 4

LAR AR4,sin4 ;start of sine in stage   4

SPLK #6,BRCR

ZEROI ;execute ZEROI

BUTTFLYI ;execute 7 times BUTTFLYI

RET

END: .set $

FFTLEN .set END–FFT+1

.end

The bit-reversed addressing mode is part of the indirect addressing imple-

mented with the auxiliary registers and the associated arithmetic unit. In this

mode, a value (index) contained in INDX is either added to or subtracted from

the auxiliary register being pointed to by the ARP. However, the carry bit is not

propagated in the forward direction; instead, it is propagated in the reverse

direction. The result is a scrambling in the address access.

The procedure for generating the bit-reversed address sequence is to load

INDX with a value corresponding to one-half the length of the FFT and to load

another auxiliary register—for example, AR1—with the base address of the

data array. However, implementations of FFTs involve complex arithmetic; as

a result, two data memory locations (one real and one imaginary) are

associated with each data sample. For ease of addressing, the samples are

stored in workspace memory in pairs with the real part in the even address

locations and the imaginary part in the odd address locations. This means that

the offset from the base address for any given sample is twice the sample

index. If the incoming data is in the following form:

XR(0), XR(1), ..., XR(7), XI(0), XI(1), ..., XI(7)

where

XR – real component of input sample

XI – imaginary component of input sample

then it is easily transferred into the data memory and stored in the scrambled

order:

XR(0), XI(0), XR(4), XI(4), XR(2), XI(2), ..., XR(7), XI(7)

by loading INDX register with the size of FFT and by using bit-reversed addres-

sing to save each input word. Example 2–33 on page 2-62 shows the contents

of auxiliary register AR1 when INDX is initialized with a value of 8.
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Example 2–33. Bit-Reversed Addressing for an FFT

MSB LSB

INDX 0 0 0 0  0 0 0 0  0 0 0 0  1 0 0 0 FOR 8-POINT FFT

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 0 0 0 BASE ADDRESS

RPT 15

BLDD #INPUT,*BR0+

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 0 0 0 XR(0)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 0 0 0 XR(4)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 1 0 0 XR(2)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 1 0 0 XR(6)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 0 1 0 XR(1)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 0 1 0 XR(5)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 1 1 0 XR(3)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 1 1 0 XR(7)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 0 0 1 XI(0)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 0 0 1 XI(4)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 1 0 1 XI(2)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 1 0 1 XI(6)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 0 1 1 XI(1)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 0 1 1 XI(5)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  0 1 1 1 XI(3)

AR1 0 0 0 0  0 0 1 0  0 0 0 0  1 1 1 1 XI(7)

Example 2–34 on page 2-63 provides macros for a 16-point FFT.

Example 2–35 on page 2-69  provides an initialization routine.
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Example 2–34. Macros for 16-Point DIT FFT

********************************************************************************

* FILE: c5cxrad2.mac ––> macro file for radix 2 fft’s based on 320c5x *

* *

* COPYRIGHT TEXAS INSTRUMENTS INC. 1990 *

********************************************************************************

* *

* MACRO ’COMBO2X’ FOR THE COMPLEX, RADIX–2 DIT FFT *

* *

* ORGANIZATION OF THE INPUT DATA MEMORY: R1,I1,R2,I2,R3,I3,R4,I4 *

* *

********************************************************************************

* *

* THE MACRO ’COMBO2x’ PERFORMS FOLLOWING CALCULATIONS: *

* *

* R1 := [(R1+R2)+(R3+R4)]/4 INPUT OUTPUT *

* R2 := [(R1–R2)+(I3–I4)]/4 –––––––––––––––––– –––––––––––––––––– *

* R3 := [(R1+R2)–(R3+R4)]/4 AR0 = 7 *

* R4 := [(R1–R2)–(I3–I4)]/4 AR1 –> R1,I1 AR1 – > R5,I5 *

* I1 := [(I1+I2)+(I3+I4)]/4 AR2 –> R2,I2 AR2 – > R6,I6 *

* I2 := [(I1–I2)–(R3–R4)]/4 ARP–> AR3 –> R3,I3 ARP – > AR3 – > R7,I7 *

* I3 := [(I1+I2)–(I3+I4)]/4 AR4 –> R4,I4 AR4 – > R8,I8 *

* I4 := [(I1–I2)+(R3–R4)]/4 *

* *

* For a 16–point Radix 2 complex FFT the Macro ’COMBO2x’ has to be *

* repeated N/4 times (e.g. 4 times for a 16 point FFT). *

* *

********************************************************************************

COMBO5x $MACRO num ; REPEAT MACRO ’COMBO5x’: N/4 times

SPLK #:num:–1,BRCR ; execute ’num’ times ’COMBO5x’

*

RPTB comboend ; ARP AR1 AR2 AR3 AR4 AR5

* ––– ––– ––– ––– ––– –––

LACC *,14,AR4 ;ACC :=(R3)/4 4 R1 R2 R3 R4 T1

SUB *,14,AR5 ;ACC :=(R3–R4)/4 5 R1 R2 R3 R4 T1

SACH *+,1,AR4 ;T1  =(R3–R4)/2 4 R1 R2 I3 R4 T2

*

ADD *+,15,AR5 ;ACC :=R3+R4)/4 5 R1 R2 R3 I4 T2

SACH *,1,AR2 ;T2  =(R3+R4)/2 2 R1 R2 R3 I4 T2

*

ADD *,14,AR1 ;ACC :=(R2+R3+R4)/4 1 R1 R2 R3 I4 T2

ADD *,14 ;ACC :=(R1+R2+R3+R4)/4 1 R1 R2 R3 I4 T2

SACH *+,0,AR5 ;R1 :=(R1+R2+R3+R4)/4 5 I1 R2 R3 I4 T2

SUB *,16,AR3 ;ACC :=(R1+R2–(R3+R4))/4 3 I1 R2 R3 I4 T2

SACH *+,0,AR5 ;R3 :=(R1+R2–(R3+R4))/4 5 I1 R2 I3 I4 T2
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*

ADD *,15,AR2 ;ACC :=(R1+R2)/4 2 I1 R2 I3 I4 T2

SUB *,15,AR3 ;ACC :=(R1–R2)/4 3 I1 R2 I3 I4 T2

ADD *,14,AR4 ;ACC :=((R1–R2)+(I3))/4 4 I1 R2 I3 I4 T2

SUB *,14,AR2 ;ACC :=((R1–R2)+(I3–I4))/4 2 I1 R2 I3 I4 T2

SACH *+,0,AR4 ;R2 :=((R1–R2)+(I3–I4))/4 4 I1 I2 I3 I4 T2

ADD *–,15,AR3 ;ACC :=((R1–R2)+I3+I4)/4 3 I1 I2 I3 R4 T2

SUB *,15,AR4 ;ACC :=((R1–R2)–(I3–I4))/4 4 I1 I2 I3 R4 T2

SACH *+,0,AR1 ;R4 :=((R1–R2)–(I3–I4))/4 1 I1 I2 I3 I4 T2

*

LACC *,14,AR2 ;ACC :=(I1)/4 2 I1 I2 I3 I4 T2

SUB *,14,AR5 ;ACC :=(I1–I2)/4 5 I1 I2 I3 I4 T2

SACH *,1,AR2 ;T2 :=(I1–I2)/2 2 I1 I2 I3 I4 T2

ADD *,15,AR3 ;ACC :=((I1+I2))/4 4 I1 I2 I3 I4 T2

ADD *,14,AR4 ;ACC :=((I1+I2)+(I3))/4 4 I1 I2 I3 I4 T2

ADD *,14,AR1 ;ACC :=((I1+I2)+(I3+I4))/4 1 I1 I2 I3 I4 T2

SACH *0+,0,AR3 ;I1 :=((I1+I2)+(I3+I4))/4 3 R5 I2 I3 I4 T2

SUB *,15,AR4 ;ACC :=((I1+I2)–(I3+I4))/4 4 R5 I2 I3 I4 T2

SUB *,15,AR3 ;ACC :=((I1+I2)–(I3+I4))/4 3 R5 I2 I3 I4 T2

SACH *0+,0,AR5 ;I3 :=((I1+I2)–(I3+I4))/4 5 R5 I2 R7 I4 T2

*

LACC *–,15 ;ACC :=(I1–I2)/4 5 R5 I2 R7 I4 T1

SUB *,15,AR2 ;ACC :=((I1–I2)–(R3–R4))/4 2 R5 I2 R7 I4 T1

SACH *0+,0,AR5 ;I2 :=((I1–I2)–(R3–R4))/4 5 R5 R6 R7 I4 T1

ADD *,16,AR4 ;ACC :=((I1–I2)+(R3–R4))/4 4 R5 R6 R7 I4 T1

comboend:

SACH *0+,0,AR3 ;I4 :=((I1–I2)+(R3–R4))/4 3 R5 R6 R7 R8 T1

*

MAR *,AR2 ;ARP=AR2

$ENDM

********************************************************************************

* *

* MACRO ’ZEROI’ number of words : 10 *

* *

* ARP=2 FOR INPUT AND OUTPUT *

* AR2 –> QR,QI,QR+1,... *

* AR3 –> PR,PI,PR+1,... *

* *

* CALCULATE Re[P+Q] AND Re[P–Q] *

* QR’=(PR–QR)/2 *

* PR’=(PR+QR)/2 *

* PI’=(PI+QI)/2 *

* PI’=(PI–QI)/2 *

* *

*********************************************************************************

ZEROI $MACRO ; AR1 AR2 ARP

* ––– ––– –––

LACC *,15,AR1 ;ACC :=(1/2)(QR) PR QR 1

ADD *,15 ;ACC :=(1/2)(PR+QR) PR QR 1

SACH *+,0,AR2 ;PR :=(1/2)(PR+QR) PI QR 2

SUB *,16 ;ACC :=(1/2)(PR+QR)–(QR) PI QR 2

SACH *+ ;QR :=(1/2)(PR–QR) PI QI 2
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*

LACC *,15,AR1 ;ACC :=(1/2)(QI) PI QI 1

ADD *,15 ;ACC :=(1/2)(PI+QI) PI QI 1

SACH *+,0,AR2 ;PI :=(1/2)(PI+QI) PR+1 QI 2

SUB *,16 ;ACC :=(1/2)(PI+QI)–(QI) PR+1 QI 2

SACH *+ ;QI :=(1/2)(PI–QI) PR+1 QR+1 2

$ENDM

*********************************************************************************

* *

* MACRO ’PBY2I’ number of words: 12 *

* *

* PR’=(PR+QI)/2 PI’=(PI–QR)/2 *

* QR’=(PR–QI)/2 QI’=(PI+QR)/2 *

* *

* *

*********************************************************************************

PBY2I $MACRO ; AR1 AR2 ARP

* ––– ––– –––

LACC *+,15,AR5 ; PR QI 5

SACH *,1,AR2 ;TMP=QR PR QI 2

*

LACC *,15,AR1 ;ACC :=QI/2 PR QI 1

ADD *,15 ;ACC :=(PR+QI)/2 PR QI 1

SACH *+,0,AR2 ;PR :=(PR+QI)/2 PI QI 2

SUB *–,16 ;ACC :=(PR–QI)/2 PI QR 2

SACH *+,0,AR1 ;QR :=(PR–QI)/2 PI QI 1

*

LACC *,15,AR5 ;ACC :=(PI)/2 PI QI 5

SUB *,15,AR1 ;ACC :=(PI–QR)/2 PI QI 1

SACH *+,0,AR5 ;PI :=(PI–QR)/2 PR+1 QI 5

ADD *,16,AR2 ;ACC :=(PI+QR)/2 PR+1 QI 2

SACH *+ ;QI :=(PI+QR)/2 PR+1 QI+1 2

$ENDM

*********************************************************************************

* *

* MACRO ’PBY4J’ number of words: 16 *

* *

* T=SIN(45)=COS(45)=W45 *

* *

* PR’= PR + (W*QI + W*QR) = PR + W * QI + W * QR (<– AR1) *

* QR’= PR – (W*QI + W*QR) = PR – W * QI – W * QR (<– AR2) *

* PI’= PI + (W*QI – W*QR) = PI + W * QI – W * QR (<– AR1+1) *

* QI’= PI – (W*QI – W*QR) = PI – W * QI + W * QR (<– AR1+2) *

* *

*********************************************************************************
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PBY4J $MACRO ;TREG =W AR5  PREG   AR1 AR2  ARP

* –––  ––––   ––– –––  –––

MPY *+,AR5 ;PREG =W*QR/2  –  W*QR/2  PR QI   5

SPH *,AR1 ;TMP =W*QR/2 W*QR/2  W*QR/2  PR QI   1

LACC *,15,AR2 ;ACC =PR/2 W*QR/2  W*QR/2  PR QI   2

MPYS *– ;ACC =(PR–W*QR)/2 W*QR/2  W*QI/2  PR QR   2

SPAC ;ACC =(PR–W*QI–W*QR)/2 W*QR/2  W*QI/2  PR QR   2

SACH *+,0,AR1 ;QR =(PR–W*QI–W*QR)/2 W*QR/2  W*QI/2  PR QI   1

SUB *,16 ;ACC =(–PR–W*QI–W*QR)/2 W*QR/2  W*QI/2  PR QI   1

NEG ;ACC =(PR+W*QI+W*QR)/2 W*QR/2  W*QI/2  PR QI   1

SACH *+ ;QR =(PR+W*QI+W*QR)/2 W*QR/2  W*QI/2  PI QI   1

*

LACC *,15,AR5 ;ACC =(PI)/2 W*QR/2  W*QI/2  PI QI   5

SPAC ;ACC =(PI–W*QI)/2 W*QR/2   –      PI QI   5

ADD *,16,AR2 ;ACC =(PI–W*QI+W*QR)/2  –   –      PI QI   2

SACH *+,0,AR1 ;QI =(PI–W*QI+W*QR)/2  –   –      PI QR1   1

SUB *,16 ;ACCU =(–PI–W*QI+W*QR)/2  –   –      PI QR1   1

NEG ;ACCU =(PI+W*QI–W*QR)/2  –   –      PI QR1   1

SACH *+,0,AR2 ;PI =(PI+W*QI–W*QR)/2  –   –      PR1 QR1   2

$ENDM

*********************************************************************************

* *

* MACRO ’P3BY4J’ number of words: 16 *

* *

* ENTRANCE IN THE MACRO: ARP=AR2 *

* AR1–>PR,PI *

* AR2–>QR,QI *

* TREG=W=COS(45)=SIN(45) *

* *

* PR’= PR + (W*QI – W*QR) = PR + W * QI – W * QR (<– AR1) *

* QR’= PR – (W*QI – W*QR) = PR – W * QI + W * QR (<– AR2) *

* PI’= PI – (W*QI + W*QR) = PI – W * QI – W * QR (<– AR1+1) *

* QI’= PI + (W*QI + W*QR) = PI + W * QI + W * QR (<– AR1+2) *

* *

* EXIT OF THE MACRO: ARP=AR2 *

* AR1–>PR+1,PI+1 *

* AR2–>QR+1,QI+1 *

* *

*********************************************************************************

P3BY4J $MACRO ;TREG =W AR5  PREG   AR1 AR2  ARP

* –––  ––––   ––– –––  –––

MPY *+,AR5 ;PREG =W*QR/2  –  W*QR/2  PR QI   5

SPH *,AR1 ;TMP =W*QR/2 W*QR/2  W*QR/2  PR QI   1

LACC *,15,AR2 ;ACC =PR/2 W*QR/2  W*QR/2  PR QI   2

MPYA *– ;ACC =(PR+W*QR)/2 W*QR/2  W*QI/2  PR QR   2

SPAC ;ACC =(PR–W*QI+W*QR)/2 W*QR/2  W*QI/2  PR QR   2

SACH *+,0,AR1 ;QR’ =(PR–W*QI+W*QR)/2 W*QR/2  W*QI/2  PR QI   1

SUB *,16 ;ACC =(–PR–W*QI+W*QR)/2 W*QR/2  W*QI/2  PR QI   1

NEG ;ACC =(PR+W*QI–W*QR)/2 W*QR/2  W*QI/2  PR QI   1

SACH *+ ;PR’ =(PR+W*QI–W*QR)/2 W*QR/2  W*QI/2  PI QI   1
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*

LACC *,15,AR5 ;ACC =(PI)/2 W*QR/2  W*QI/2  PI QI   5

APAC ;ACC =(PI+W*QI)/2 W*QR/2   –      PI QI   5

ADD *,16,AR2 ;ACC =(PI+W*QI+W*QR)/2  –   –      PI QI   2

SACH *0+,0,AR1 ;QI’ =(PI+W*QI+W*QR)/2  –   –      PI QR5   1

SUB *,16 ;ACCU =(–PI+W*QI+W*QR)/2  –   –      PI QR5   1

NEG ;ACCU =(PI–W*QI–W*QR)/2  –   –      PI QR5   1

SACH *0+,0,AR2 ;PI’ =(PI–W*QI–W*QR)/2  –   –      PR5 QR5   2

$ENDM

*********************************************************************************

* *

* MACRO ’stage3’ number of words: 54 *

* *

*********************************************************************************

stage3 $macro num

SPLK #:num:–1,BRCR ;execute ’num’–1 times ’stage3’

LT cos45

RPTB stage3e

ZEROI

PBY4J

PBY2I

P3BY4j

stage3e: .set $–1

$ENDM

*********************************************************************************

* *

* MACRO: ’BUTTFLYI’ general butterfly radix 2 for 320C5x *

* *

* THE MACRO ’BUTTFLYI’ REQUIRES 18 WORDS *

* *

* Definition: ARP –> AR2 (input) ARP –> AR2 (output) *

* *

* Definition: AR1 –> QR (input) AR1 –> QR+1 (output) *

* Definition: AR2 –> PR (input) AR2 –> PR+1 (output) *

* Definition: AR3 –> Cxxx (input) AR3 –> Cxxx+1 (output) ––> WR=cosine *

* Definition: AR4 –> Sxxx (input) AR4 –> Sxxx+1 (output) ––> WI=sine *

* Definition: AR5 –> temporary variable (unchanged) *

* *

* uses index register *

* *

* PR’ = (PR+(QR*WR+QI*WI))/2 WR=COS(W) WI=SIN(W) *

* PI’ = (PI+(QI*WR–QR*WI))/2 *

* QR’ = (PR–(QR*WR+QI*WI))/2 *

* QI’ = (PI–(QI*WR–QR*WI))/2 *

* *

*********************************************************************************
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BUTTFLYI $MACRO

* (contents of register after exec.)

*  TREG AR1  AR2 AR3 AR4 ARP

RPTB btflyend ;  –––– –––  ––– ––– ––– –––

LT *+,AR3 ;TREG :=QR  QR PR   QI   C   S   3

MPY *,AR2 ;PREG :=QR*WR/2  QR PR   QI   C   S   2

LTP *–,AR4 ;ACC :=QR*WR/2  QI PR   QR   C   S   4

MPY *,AR3 ;PREG :=QI*WI/2  QI PR   QR   C   S   3

MPYA *+,AR2 ;ACC :=(QR*WR+QI*WI)/2  QR PR   QR   C+1 S   2

;PREG :=QI*WR

LT *,AR5 ;TREG  =QR  QR PR   QR   C+1 S   5

SACH *,1,AR1 ;H0 :=(QR*WR+QI*WI)  QR PR   QR   C+1 S   1

*

ADD *,15 ;ACC :=(PR+(QR*WR+QI*WI))/2  QR PR   QR   C+1 S   1

SACH *+,0,AR5 ;PR :=(PR+(QR*WR+QI*WI))/2  QR PI   QR   C+1 S   5

SUB *,16,AR2 ;ACC :=(PR–(QR*WR+QI*WI))/2  QR PI   QR   C+1 S   2

SACH *+,0,AR1 ;QR :=(PR–(QR*WR+QI*WI))/2  QR PI   QI   C+1 S   1

*

LACC *,15,AR4 ;ACC :=PI/PREG=QI*WR  QI PI   QI   C+1 S   4

MPYS *+,AR2 ;PREG :=QR*WI/2  QI PI   QI   C+1 S+1 2

;ACC :=(PI–QI*WR)/2

APAC ;ACC :=(PI–(QI*WR–QR*WI))/2  QI PI   QI   C+1 S+1 2

SACH *+,0,AR1 ;QI :=(PI–(QI*WR–QR*WI))/2  QI PI   QR+1 C+1 S+1 1

NEG ;ACC :=(–PI+(QI*WR–QR*WI))/2  QI PI   QR+1 C+1 S+1 1

ADD *,16 ;ACC :=(PI+(QI*WR–QR*WI))/2  QI PI   QR+1 C+1 S+1 1

btflyend:

SACH *+,0,AR2 ;PI :=(PI+(QI*WR–QR*WI))/2  QI PR+1 QR+1 C+1 S+1 2

$ENDM

; end of file
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Example 2–35. Initialization Routine

* file: INIT–FFT.ASM

*

* Initialized  variables

*

.bss NN,1 ;Number of fft–points

.bss NN2,1 ;2*N–1

.bss DATAADD,1 ;Start address of data

.bss cos45,1

.bss sin4,1 ;Start of sine in stage    4

.bss cos4,1 ;Start of cosine in stage  4

* Temp variables

*

.bss TEMP,2 ;Used for temporary numbers

*

.sect ”vectors”

B INIT,*,AR0

.sect ”init”

TABINIT: .word N,N–1,2*N–1,DATA

.word 5A82h ;cos(45)=sin(45)

.word TWID,TWID+4

TABEND: .set $

*

INIT: LDP #0 ;Use only B2 and mmregs for direct addressing

SPM 0 ;No shift from PREG to ALU

CLRC OVM ;Disable overflowmode

SETC SXM ;Enable sign extension mode

SPLK #pmstmask,PMST  ;ndx=trm=1

*

* INIT Block B2

*

LAR AR0,#NN ;ARP is already pointing to AR0

LACC #TABINIT

RPT #TABEND–TABINIT

TBLR *+

*

* INIT TWIDDLE FACTORS

*

LAR AR0,#TWID ;ARP is already pointing to AR0

LACC #TWIDSTRT

RPT #TWIDLEN

TBLR *+

*

* EXECUTE THE FFT

*

LAR AR5,#TEMP ;Pointer to 2 temp register

CALL FFT,*,AR3 ;ARP=AR3 FOR MACRO COMBO

*

WAIT RET ;Return
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External Memory Interface

This chapter provides a general description of the external interface to

memory. Also included is a description of the direct memory access (DMA) in

a portable computer configuration.
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3.1 External Interface to Program Memory

The ’C5x devices can address up to 64K words of program memory off-chip.

The following key signals interface to off-chip memory:

A0–A15 16-bit bidirectional address bus

D0–D15 16-bit bidirectional data bus

PS Program memory select

STRB External memory access active strobe

RD Read select (external device output enable)

WE Write enable

IACK Interrupt acknowledge

READY Memory ready to complete cycle

HOLD Request for control of memory interface

HOLDA Acknowledge HOLD request

BR Bus request

IAQ Acknowledge bus request (when HOLDA is low)

In the example of an external EPROM interface shown in Figure 3–1, the ’C5x

device interfaces to an external 8K-byte � 8-bit EPROM. The use of 8-bit-

wide memories saves power, board space, and cost over 16-bit-wide memory

banks. The 16-bit-wide memory banks can be used with the same basic inter-

face as the 8-bit-wide memories. Note that the ’C5x cannot directly execute

code from 8-bit-wide memory. An on-chip program (such as a boot-loader

program) is required to read 8-bit-wide memory to form 16-bit long instruction

words and transfer them to on-chip RAM.

The program select (PS) signal is connected directly to the chip select (CS)

pin to select the EPROM on any external program access. The EPROM is

addressed in any 8K-word address block in program space. If you want to

interface multiple blocks of memory in program space, you can use a decode

circuit that gates the PS signal and the appropriate address bits to drive the

memory block chip selects.

The read select (RD) signal is connected directly to the output enable (OE) pin

of the EPROM. The OE signal enables the output drivers of the EPROM. The

drivers are turned off in time to prevent data bus conflicts with an external write

by the ’C5x device.
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Figure 3–1. ’C5x Interfacing to External EPROM
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3.2 External Interface to Local Data Memory

The ’C5x devices can address up to 64K words of local data memory off-chip.

The following key signals interface to off-chip memory:

A0–A15 16-bit bidirectional address bus

D0–D15 16-bit bidirectional data bus

DS Data memory select

STRB External memory access active strobe

RD Read select (external device output enable)

WE Write enable

READY Memory ready to complete cycle

HOLD Request for control of memory interface

HOLDA Acknowledge HOLD request

BR Bus request

IAQ Acknowledge bus request (when HOLDA is low)

In the example of an external RAM interface shown in Figure 3–2, the ’C5x

device interfaces to four 16K-byte � 4-bit RAM devices. The data memory

select (DS) signal is connected directly to the chip select (CS) of the devices.

This allows the external RAM block to be addressed in any of the four 16K-byte

banks of local data space. If there are additional banks of off-chip data

memory, you can use a decode circuit that gates the DS signal with the

appropriate address bits to drive the memory block chip select.

The RD signal is connected directly to the output enable (OE) pin of the RAMs.

The OE signal enables the output drivers of the RAM. The drivers are turned

off in time to prevent data bus conflicts with an external write by the ’C5x

device. If the RAM device does not have an OE pin, then the DS signal must

be gated with STRB and connected to the CS pin of the RAM to implement the

same function.

The WE signal is connected directly to the WE pin of the RAMs. The ’C5x

device requires at least two cycles on all external writes, including a half cycle

before WE goes low and a half cycle after WE goes high; this prevents buffer

conflicts on the external buses. Additional write cycles can be obtained by

modifying the software wait-state generator registers.
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Figure 3–2. ’C5x Interfacing to External RAM
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3.3 External Interface to Global Data Memory

Global memory can be used in digital signal processing tasks, such as filters

or modems, in which the algorithm being implemented is divided into sections

with a distinct processor dedicated to each section. With multiple processors

dedicated to distinct sections of the algorithm, throughput may be increased

via pipelined execution. Figure 3–3 illustrates an example of a global memory

interface. Since the processors can be synchronized by using the BR pin, the

arbitration logic can be simplified and the address and data bus transfers

made more efficient.

The global memory interface can also extend the data memory address map

beyond the reach of the 16-bit address bus by paging in an additional 32K

words. Loading the GREG with the appropriate value can overlay the local

data memory with additional memory, starting at the highest memory address

(FFFFh) and moving down. This additional memory is differentiated from local

memory accesses by the BR pin going low. The rest of the memory interface

control signals (STRB, DS, etc.) behave identically on a local or global data

access.

Figure 3–3. Global Memory Interface
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3.5 Direct Memory Access (DMA) in a Personal Computer Configuration

You can implement DMA in a personal computer (PC) environment by using

the PC system bus for data transfer to external ’C5x memory. Figure 3–4 illus-

trates a DMA access in a PC environment. In this configuration, either the

master CPU or a disk controller places data onto the PC system bus, which

can be downloaded into the local memory of the ’C5x. In this configuration, the

’C5x functions like a peripheral processor with multifunction capability. In a

speech application, for example, the master CPU can load the ’C5x program

memory with algorithms to perform such tasks as speech analysis, synthesis,

or recognition, and can fill the ’C5x data memory with the required speech

templates. In another application, the ’C5x can serve as a dedicated graphics

engine. Programs can be downloaded via the PC system bus into program

RAM. Data can come from PC disk storage or can be provided directly by the

master CPU.

In Figure 3–4, decode/arbitration logic control the DMA. When the address on

the PC system bus resides in the local memory of the peripheral ’C5x, the logic

control asserts the HOLD signal of the ’C5x while sending the master CPU a

not-ready indication to allow wait states. After the ’C5x acknowledges the

direct memory access by asserting HOLDA, READY is asserted and the

information is transferred.

Figure 3–4. Direct Memory Access in a PC Environment
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Analog Interface Peripherals and
Applications

Texas Instruments offers many products for total system solutions, including

memory options, data acquisition, and analog input/output devices. This chap-

ter describes a variety of devices that interface directly to the TMS320 DSPs

in rapidly expanding applications.
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4.1 Multimedia Applications

Multimedia applications integrate different media through a centralized com-

puter. These media can be visual or audio and can be input to or output from

the central computer via a number of technologies. The technologies can be

digital or analog based (such as audio or video tape recorders). The integra-

tion and interaction of media enhances the transfer of information and can

accommodate both analysis of problems and synthesis of solutions.

Figure 4–1 shows both the central role of the multimedia computer and its abil-

ity to integrate the various media to optimize information flow and processing.

4.1.1 System Design Considerations

Multimedia systems can include various grades of audio and video quality. The

most popular video standard currently used (VGA) covers 640 × 480 pixels

with 1, 2, 4, and 8-bit memory-mapped color. Also, 24-bit true color is

supported, and 1024 × 768 (beyond VGA) resolution has emerged. There are

two grades of audio. The lower grade accommodates 11.25-kHz sampling for

8-bit monaural systems, while the higher grade accommodates 44.1-kHz

sampling for 16-bit stereo.

Audio specifications include a musical instrument digital interface (MIDI) with

compression capability, which is based on keystroke encoding, and an input/

output port with a 3-disc voice synthesizer. In the media control area, video

disc, CD audio, and CD ROM player interfaces are included. Figure 4–2

shows a multimedia subsystem.

Figure 4–1. System Block Diagram
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The TLC32047 wide-band analog interface circuit (AIC) is well suited for multi-

media applications because it features wide-band audio and up to 25-kHz

sampling rates. The TLC32047 is a complete analog-to-digital and digital-to-

analog interface system for the TMS320 DSPs. The nominal bandwidths of the

filters accommodate 11.4 kHz, and this bandwidth is programmable. The

application circuit shown in Figure 4–2 handles both speech encoding and

modem communication functions, which are associated with multimedia

applications.

Figure 4–3 shows how the ’C25 DSP interfaces to the TLC32047 AIC — com-

prising the building blocks of the 9600-bps V.32bis modem shown in

Figure 4–2.

Figure 4–2. Multimedia Speech Encoding and Modem Communication
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Figure 4–3. TMS320C25 to TLC32047 Interface
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4.1.2 Multimedia-Related Devices

As listed in Table 4–1 and Table 4–2, TI provides a complete array of analog

and graphics interface devices. These devices support the TMS320 DSPs for

complete multimedia solutions. For application assistance or additional

information, call the Semiconductor Product Information Center (PIC) as listed

in If You Need Assistance on page xvii.

Table 4–1. Data Converter ICs

Device Description I/O
Resolution

(Bits)

Conversion

CLK Rate Application

TLC320AC01 Analog interface

(5 V only)

Serial 14 43.2 kHz Portable modem and

speech, multimedia

TLC32040 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems

TLC32044 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems

TLC32046 Analog interface (AIC) Serial 14 25 kHz Speech and modems

TLC32047 Analog interface

(11.4-kHz BW) (AIC)

Serial 14 25 kHz Speech, modem, and

multimedia

TLC32071 Analog interface (AIC) Parallel 8 1 MHz Servo control/disk drive

TLC34058 Video palette Parallel Triple 8 135 MHz Graphics

TLC34075/6 Video palette Parallel Triple 8 135 MHz Graphics

TLC5501 Flash ADC Parallel 6 20 MHz Video

TLC5502/3 Flash ADC Parallel 8 20 MHz Video

TLC5601 Video DAC Parallel 6 20 MHz Video

TLC5602 Video DAC Parallel 8 20 MHz Video

TLC1550/1 ADC Parallel 10 150 kHz Servo control/speech

TMS57013/4 Dual audio DAC + digital

filter

Serial 16/18 32, 37.8,

44.1, 48 kHz

Digital audio

Table 4–2. Switched-Capacitor Filter ICs

Device Function Order Roll-Off Power Out Power Down

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes

TLC10/20 General-purpose dual filter 2 CLK ÷ 50

CLK ÷ 100

N/A No

TLC04/14 Low pass, Butterworth filter 4 CLK ÷ 50

CLK ÷ 100

N/A No
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4.2 Telecommunications Applications

The TI linear product line focuses on three primary telecommunications

application areas: subscriber instruments (telephones, modems, etc.), central

office line card products, and personal communications. Subscriber instru-

ments include the TCM508x dual-tone multiple frequency (DTMF) encoder

family, the TCM150x tone ringer family, the TCM1520 ring detector, and the

TCM3105 frequency shift keying (FSK) modem. Central office line card prod-

ucts include the TCM29Cxx combo (combined PCM filter plus codec) family,

the TCM420x subscriber-line control circuit family, and the TCM1030/60 line

card transient protector. Personal communication (PCN) and cellular products

include the TCM320AC3x family of 5-V voice-band audio processors (VBAP).

TI continues to develop new telecom integrated circuits, such as a high-perfor-

mance 3-volt combo family for personal communications applications, and a

radio frequency (RF) power amplifier family for hand-held and mobile cellular

phones.

Figure 4–4 shows a block diagram of a generic telecom application using a

DSP with analog-to-digital converters (ADCs) and digital-to-analog converters

(DACs). Figure 4–5 illustrates a general telecom application.

Figure 4–4. Generic Telecom Application
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Figure 4–5. General Telecom Applications
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4.2.1 System Design Considerations

The size, network complexity, and compatibility requirements of telecommu-

nications central office systems create demanding performance require-

ments. Combo voice-band filter performance is typically ± 0.15 dB in the pass-

band. Idle channel noise must be on the order of 15 dBrnc0. Gain tracking

(S/Q) and distortion must also meet stringent requirements. The key parame-

ters for a subscriber line interface circuit (SLIC) device are gain, longitudinal

balance, and return loss.

The TCM320AC36 combo interfaces directly to the ’C25 serial port with a mini-

mum of external components, as shown in Figure 4–6. Half of hex inverter U3

and crystal Y1 form an oscillator that provides clock timing to the

TCM320AC36. The synchronous 4-bit counters U1 and U2 generate an 8-kHz

frame sync signal. DCLKR on the TCM320AC36 is connected to VDD, placing

the combo in fixed data-rate mode. Two 20-kΩ resistors connected to ANLGIN

and MIC_GS set the gain of the analog input amplifier to 1. The timing is shown

in Figure 4–7.
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Figure 4–6. Typical DSP/Combo Interface
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Figure 4–7. DSP/Combo Interface Timing
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4.2.2 Telecommunications-Related Devices

As listed in Table 4–2, Table 4–3, and Table 4–4, TI provides a complete array

of devices. These devices support the TMS320 DSPs for complete telecom-

munications solutions. Data sheets for the telecom devices listed in Table 4–3

and Table 4–4 are available. To request your copy, for application assistance,

or additional information, call the Semiconductor Product Information Center

(PIC) as listed in If You Need Assistance on page xvii.
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Table 4–3. Telecom Devices—Codec/Filter ICs

Device Number Coding Law Clock Rates (MHz)† # of Bits Comments

TCM29C13 A and µ 1.544, 1.536, 2.048 8 C.O. and PBX line cards

TCM29C14 A and µ 1.544, 1.536, 2.048 8 Includes 8th-bit signal

TCM29C16 µ 2.048 8 16-pin package

TCM29C17 A 2.048 8 16-pin package

TCM29C18 µ 2.048 8 Low-cost DSP interface

TCM29C19 µ 1.536 8 Low-cost DSP interface

TCM29C23 A and µ Up to 4.096 8 Extended frequency range

TCM29C26 A and µ Up to 4.096 8 Low-power TCM29C23

TCM320AC36 µ and linear Up to 4.096 8 and 13 Single voltage (5) VBAP

TCM320AC37 A and linear Up to 4.096 8 and 13 Single voltage (5) VBAP

TCM320AC38 µ and linear Up to 4.096 8 and 13 Single voltage (5) GSM

TCM320AC39 A and linear Up to 4.096 8 and 13 Single voltage (5) GSM

TP3054/64 µ 1.544, 1.536, 2.048 8 National Semiconductor

second source

TP3054/67 A 1.544, 1.536, 2.048 8 National Semiconductor

second source

TLC320AC01 Linear 43.2 kHz 14 5-V-only analog interface

TLC32040/1 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity

TLC32044/5 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity

TLC32046 Linear Up to 25-kHz sampling 14 For high-dynamic linearity

TLC32047 Linear Up to 25-kHz sampling 14 For high-dynamic linearity

† Clock rate in MHz, unless otherwise noted

Table 4–4. Telecom Devices—Transient Suppressor ICs

Device Function Comments

TCM1030 Transient suppressor for SLIC-based line card (30 A max)

TCM1060 Transient suppressor for SLIC-based line card (60 A max)
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4.3 Dedicated Speech Synthesis Applications

For dedicated speech synthesis applications, TI offers a family of dedicated

speech synthesizer chips. This speech technology has been used in a wide

range of products including games, toys, burglar alarms, fire alarms, automo-

biles, airplanes, answering machines, voice mail, industrial control machines,

office machines, advertisements, novelty items, exercise machines, and

learning aids.

4.3.1 System Design Considerations

Dedicated speech synthesis chips are effective in low-cost applications. The

speech synthesis technology provided by the dedicated chips is either LPC

(linear-predictive coding) or CVSD (continuously variable slope delta modula-

tion). Table 4–5 shows the characteristics of the TI voice synthesizers.

Table 4–5. Voice Synthesizers

Device Microprocessor
Synthesis

Method I/O Pins

On-Chip

Memory

(Bits)
External

Memory

Data Rate

(Bits/Sec)

TSP50C4x 8-bit LPC–10 20/32 64K/128K VROM 1200–2400

TSP50C1x 8-bit LPC–12 10 64K/128K VROM 1200–2400

TSP53C30 8-bit LPC–10 20 N/A From host

microprocessor

1200–2400

TSP50C20 8-bit LPC–10 32 N/A EPROM 1200–2400

TMS3477 N/A CVSD 2 None DRAM 16K–32K
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4.3.2 Speech Synthesis-Related Devices

TI has low-cost memories that are ideal for use with speech synthesizers

chips. TI can also be of assistance in developing and processing the speech

data that is used in these speech synthesis systems. Table 4–6 lists the

TSP60Cxx family of speech memory devices. Additionally, audio filters are

listed in Table 4–2 on page 4-4.

Table 4–6. Speech Memories

Device Size No. of Pins Interface For use with

TSP60C18 256K 16 Parallel 4-bit TSP50C1x

TSP60C19 256K 16 Serial TSP50C4x

TSP60C20 256K 28 Parallel/serial 8-bit TSP50C4x

TSP60C80 1M 28 Serial TSP50C4x

TSP60C81 1M 28 Parallel 4-bit TSP50C1x

Speech Synthesis Development Tools

Software:

EVM Code development tool

Speech:

SAB Speech audition board

SD85000 PC-based speech analysis system

System:

SEB System emulator board

SEB60Cxx System emulator boards for speech memories

For further information on these speech synthesis products, call the Semicon-

ductor Product Information Center (PIC) as listed in If You Need Assistance

on page xvii.
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4.4 Servo Control/Disk Drive Applications

Several years ago, most servo control systems used only analog circuitry.

However, the growth of digital signal processing has made digital control

theory a reality.

In a DSP-based control system, the control algorithm is implemented via soft-

ware. No component aging or temperature drift is associated with digital con-

trol systems. Additionally, sophisticated algorithms can be implemented and

easily modified to upgrade system performance.

Figure 4–8 shows a block diagram of a generic digital control system using a

DSP, along with an ADC and DAC.

Figure 4–8. Generic Servo Control Loop
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4.4.1 System Design Considerations

TMS320 DSPs have facilitated the development of high-speed digital servo

control for disk drive and industrial control applications. Disk drives have

increased storage capacity from 5 MB to over 1 GB in the past decade, which

equates to a 23 900 percent growth in capacity. To accommodate these

increasingly higher densities, the data on the servo platters, whether servo-

positioning or actual storage information, must be converted to digital electron-

ic signals at increasingly closer points in relation to the platter “pick-off” point.

The ADC must have increasingly higher conversion rates and greater resolu-

tion to accommodate the increasing bandwidth requirements of higher storage

densities. In addition, the ADC conversion rates must increase to accommo-

date the shorter data retrieval access time.

Figure 4–9 shows a block diagram of a disk drive control system. Figure 4–10

shows the interfacing of the ’C14 and the TLC32071.
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Figure 4–9. Disk Drive Control System Block Diagram
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4.4.2 Servo Control/Disk Drive-Related Devices

As listed in Table 4–7, TI provides a complete array of analog and digital inter-

face devices. These devices support the TMS320 DSPs for servo control

applications. For application assistance or additional information, call the

Semiconductor Product Information Center (PIC) as listed in If You Need

Assistance on page xvii.

Table 4–7. Control Related Devices

Function Device Bits Speed Channels Interface

ADC TLC1550 10 3–5 µs 1 Parallel

TLC1551 10 3–5 µs 1 Parallel

TLC5502/3 8 50 ns (Flash) 1 Parallel

TLC0820 8 1.5 µs 1 Parallel

TLC1225 13 12 µs 1 (diff.) Parallel

TLC1558 10 3–5 µs 8 Parallel

TLC1543 10 21 µs 11 Serial

TLC1549 10 21 µs 1 Serial

DAC TLC7524 8 9 MHz 1 Parallel

TLC7628 8 9 MHz (dual) Parallel

TLC5602 8 30 MHz 1 Parallel

AIC TLC32071 8 (ADC) 1 µs

9 MHz

8

1

Parallel
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4.5 Modem Applications

High-speed modems (9600 bps and above) require a great deal of analog

signal processing in addition to digital signal processing. Designing both high-

speed capabilities and slower fall-back modes poses significant engineering

challenges. TI offers a number of analog front-end (AFE) circuits to support

various high-speed modem standards.

The TLC32040, TLC32044, TLC32046, TLC32047, and TLC320AC01 analog

interface circuits (AIC) are especially suited for modem applications by the

integration of an input multiplexer, switched capacitor filters, high resolution

14-bit ADC and DAC, a four-mode serial port, and control and timing logic.

These converters feature adjustable parameters, such as filtering characteris-

tics, sampling rates, gain selection, (sin x)/x correction (TLC32044,

TLC32046, and TLC32047 only), and phase adjustment. All these parameters

are software programmable, making the AIC suitable for a variety of applica-

tions. Table 4–8 provides the description and characteristics of these devices.

Table 4–8. Modem AFE Data Converters

Device Description I/O
Resolution

(Bits)

Conversion

Rate

TLC32040 Analog interface chip (AIC) Serial 14 19.2 kHz

TLC32041 AIC without on-board VREF Serial 14 19.2 kHz

TLC32044 Telephone speed/modem AIC Serial 14 19.2 kHz

TLC32045 Low-cost version of the TLC32044 Serial 14 19.2 kHz

TLC32046 Wide-band AIC Serial 14 25 kHz

TLC32047 AIC with 11.4-kHz BW Serial 14 25 kHz

TLC320AC01 5-volt-only AIC Serial 14 43.2 kHz

TCM29C18 Companding codec/filter PCM 8 8 kHz

TCM29C23 Companding codec/filter PCM 8 16 kHz

TCM29C26 Low-power codec/filter PCM 8 16 kHz

TCM320AC36 Single-supply codec/filter PCM and

linear

8 25 kHz
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The AIC interfaces directly with serial-input TMS320 DSPs, which execute the

modem’s high-speed encoding and decoding algorithms. The TLC3204x fami-

ly performs level shifting, filtering, and A/D and D/A data conversion. The

DSP’s many software-programmable features provide the flexibility required

for modem operations and make it possible to modify and upgrade systems

easily. Under DSP control, the AIC’s sampling rates permit designers to in-

clude fall-back modes without additional analog hardware in most cases.

Phase adjustments can be made in real time so that the A/D and D/A conver-

sions can be synchronized with the upcoming signal. In addition, the chip has

a built-in loopback feature to support modem self-test requirements.

Figure 4–11 shows a V.32bis modem implementation using the ’C25 and a

TLC320AC01. The upper ’C25 performs echo cancellation and transmit data

functions, while the lower ’C25 performs receive data and timing recovery

functions. The echo canceler simulates the telephone channel and generates

an estimated echo of the transmit data signal. The TLC320AC01 performs the

following functions:

Upper TLC320AC01 D/A path: Converts the estimated echo, as

computed by the upper ’C25, into an

analog signal, which is subtracted from

the receive signal

Upper TLC320AC01 A/D path: Converts the residual echo to a digital sig-

nal for purposes of monitoring the residu-

al echo and continuously training the echo

canceler for optimum performance. The

converted signal is sent to the upper ’C25.

Lower TLC320AC01 D/A path: Converts the upper ’C25 transmit output

to an analog signal, performs a smoothing

filter function, and drives the DAC

Lower TLC320AC01 D/A path: Converts the echo-free receive signal to

a digital signal, which is sent to the lower

’C25 to be decoded

For application assistance or additional information, call the Semiconductor

Product Information Center (PIC) as listed in If You Need Assistance on

page xvii.

Note:

The example in Figure 4–11 is for illustration only. In reality, one single ’C5x
DSP can implement high-speed modem functions.
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Figure 4–11.High-Speed V.32bis and Multistandard Modem With the TLC320AC01 AIC
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4.6 Advanced Digital Electronics Applications for Consumers

With the extensive use of the TMS320 DSPs in consumer electronics, much

electromechanical control and signal processing can be done in the digital

domain. Digital systems generally require some form of analog interface,

usually in the form of high-performance ADCs and DACs. Figure 4–12 shows

the general performance requirements for a variety of applications.

Figure 4–12. Applications Performance Requirements
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4.6.1 Advanced Television System Design Considerations

Advanced Digital Television (ADTV) is a technology that uses digital signal

processing to enhance video and audio presentations and to reduce noise and

ghosting. Because of these DSP techniques, a variety of features can be im-

plemented, including frame store, picture-in-picture, improved sound quality,

and zoom. The bandwidth requirements remain at the existing 6-MHz televi-

sion allocation. From the intermediate frequency (IF) output, the video signal

is converted by an 8-bit video ADC. The digital output can be processed in the

digital domain to provide noise reduction, interpolation or averaging for digital-

ly increased sharpness, and higher quality audio. The DSP digital output is

converted back to analog by a video DAC, as shown in Figure 4–13.
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Figure 4–13. Video Signal Processing Basic System
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Videocassette recorders, compact disc (CD) players, digital audio tape (DAT)

players, and PCs are a few of the products that have taken a major position

in the marketplace in the last ten years. The audio channels for CD and DAT

require 16-bit A/D resolution to meet the distortion and noise standards. See

Figure 4–14 for a block diagram of a typical digital audio system.

The motion and motor control systems usually use 8- to 10-bit ADCs for the

lower frequency servo loop. Tape or disc systems use motor or motion control

for proper positioning of the record or playback heads. With the storage

medium compressing data into an increasingly smaller physical size, the

positioning systems require more precision.

The audio processing becomes more demanding as higher fidelity is required.

Better fidelity translates into lower noise and distortion in the output signal.

Figure 4–14. Typical Digital Audio Implementation
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The TMS57013DW/57014DW 1-bit DACs include an 8-times over-sampling

digital filter designed for digital audio systems, such as CD players, DAT play-

ers, CDIs, LDPs, digital amplifiers, car stereos, and BS tuners. They are also

suitable for all systems that include digital sound processing like TVs, VCRs,

musical instruments, NICAM systems, multimedia, and so forth.

The converters have dual channels so that the right and left stereo signals can

be transformed into analog signals with only one chip. There are some func-

tions that allow the customers to select the conditions according to their

applications, such as muting, attenuation, deemphasis, and zero data detec-

tion. These functions are controlled by external 16-bit serial data from a

controller like a microcomputer.

The TMS5703DW/57014DW adopt 129-tap FIR filter and third-order ∆ Σ mod-

ulation to get –75-dB stop band attenuation and 96-dB signal-to-noise ratio

(SNR). The output is a pulse-width modulated (PWM) waveform, which facili-

tates an analog signal through a low-pass filter.

4.6.2 Advanced Digital Electronics-Related Devices

As listed in Table 4–9, TI provides a complete array of analog interface

devices. These devices support the TMS320 DSPs for digital system applica-

tions. For application assistance or additional information, call the Semicon-

ductor Product Information Center (PIC) as listed in If You Need Assistance

on page xvii.

Table 4–9. Audio/Video Analog/Digital Interface Devices

Function Device Bits Speed Channels Interface

Dual audio DAC + digital filter TMS57013/4 16/18 32, 37.8, 44.1,

48 kHz

2 Serial

Analog interface

ADC

DAC

TLC32071

8

8

2 µs

15 µs

8

1

Parallel

Parallel

ADC TLC1225 12 12 µs 1 Parallel

ADC TLC1550 10 6 µs 1 Parallel

Flash ADC TLC5502 8 50 ns 1 Parallel

Flash ADC TLC5503 8 100 ns 1 Parallel

Triple video DAC TL5632 8 16 ns 3 Parallel

Triple Flash ADC TLC5703 8 70 ns 3 Parallel

Video DAC TL5602 8 50 ns 1 Parallel

Video DAC TLC5602 8 50 ns 1 Parallel
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Appendix A

Design Considerations for
Using XDS510 Emulator

The ’C5x DSPs support emulation through a dedicated emulation port. The

emulation port is a superset of the IEEE JTAG standard 1149.1 and can be

accessed by the XDS510 emulator. This appendix provides information

pertaining to the XDS510 cable #2563988-001 revision B.

The term JTAG, as used in this book, refers to TI scan-based emulation, which

is based on the IEEE standard 1149.1. For more information concerning the

IEEE standard 1149.1, contact IEEE Customer Service:

Address: IEEE Customer Service

445 Hoes Lane, PO Box 1331

Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada

(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667         Telex:       833233
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A.1 Cable Header and Signals

To perform emulation with the XDS510, your target system must have a 14-pin

header (two 7-pin rows) with connections as shown in Figure A–1. Table A–1

describes the emulation signals. Although you can use other headers, recom-

mended parts include:

Straight header, unshrouded DuPont Electronics part number
67996–114

Right-angle header, unshrouded DuPont Electronics part number
68405–114

Figure A–1. Header Signals and Header Dimensions
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Header Dimensions:
Pin-to-pin spacing:  0.100 inch (X,Y)
Pin width: 0.025 inch square post
Pin length: 0.235 inch, nominal

Table A–1. XDS510 Header Signal Description

Pin Signal State
Target

State Description

1 TMS O I JTAG test mode select

2 TRST O I JTAG test reset

3 TDI O I JTAG test data input

5 PD I O Presence detect. Indicates that the emulation

cable is connected and that the target is

powered up. PD must be tied to 5 volts in the

target system.

7 TDO I O JTAG test data output

9 TCK_RET I O JTAG test clock return. Test clock input to the

XDS510 emulator. May be a buffered or

unbuffered version of TCK.

11 TCK O I JTAG test clock. TCK is a 10-MHz clock

source from the emulation cable pod. This

signal can be used to drive the system test

clock.

13 EMU0 I I/O Emulation pin 0

14 EMU1 I I/O Emulation pin 1
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A.2 Bus Protocol

The IEEE standard 1149.1 covers the requirements for JTAG bus slave

devices (’C5x) and provides certain rules, summarized as follows:

� The TMS and TDI inputs are sampled on the rising edge of the TCK signal

of the device.

� The TDO output is clocked from the falling edge of the TCK signal of the

device.

When JTAG devices are daisy-chained together, the TDO of one device has

approximately a half TCK cycle setup time before the next device’s TDI signal.

This timing scheme minimizes race conditions that would occur if both TDO

and TDI were timed from the same TCK edge. The penalty for this timing

scheme is a reduced TCK frequency.

The IEEE standard 1149.1 does not provide rules for JTAG bus master

(XDS510) devices. Instead, it states that it expects a bus master to provide

bus-slave compatible timings. The XDS510 provides timings that meet the bus

slave rules and also provides an optional timing mode that allows you to run

the emulation at a much higher frequency for improved performance.
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A.3 Emulator Cable Pod

Figure A–2 shows a portion of the XDS510 emulator cable pod. The functional

features of the emulator pod are:

� TDO and TCK_RET can be parallel-terminated inside the pod if required

by the application. By default, these signals are not terminated.

� TCK is driven with a 74AS1034 device. Because of the high-current drive

(48 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied to

TCK_RET, you can use the parallel terminator in the pod.

� TMS and TDI can be generated from the falling edge of TCK_RET, accord-

ing to the IEEE (JTAG) standard 1149.1 bus-slave device timing rules.

They can also be driven from the rising edge of TCK_RET, which allows

a higher TCK_RET frequency. The default is to match the IEEE standard

1149.1 slave device timing rules. This is an emulator software option that

can be selected when the emulator is invoked. In general, single-processor

applications can benefit from the higher clock frequency. However, in mul-

tiprocessing applications, you may wish to use the IEEE standard 1149.1

bus slave timing mode to minimize emulation system timing constraints.

� TMS and TDI are series-terminated to reduce signal reflections.

� A 10-MHz test clock source is provided. You can also provide your own

test clock for greater flexibility.
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Figure A–2. Emulator Cable Pod Interface
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A.4 Emulator Cable Pod Signal Timings

Figure A–3 shows the signal timings for the emulator cable pod. Table A–2

defines the timing parameters illustrated in the figure. These timing parame-

ters are calculated from values specified in the standard data sheets for the

cable pod and are for reference only. Texas Instruments does not test or guar-

antee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchroniza-

tion. TCK is provided as an optional target system test clock source.

Figure A–3. Emulator Cable Pod Timings
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Table A–2. Emulator Cable Pod Timing Parameters

No. Paramter Description Min Max Unit

1
tTCKmin
tTCKmax

TCK_RET period 35 200 ns

2 tTCKhighmin TCK_RET high pulse duration 15 ns

3 tTCKlowmin TCK_RET low pulse duration 15 ns

4
td(XTMXmin)
td(XTMXmax)

TMS/TDI valid from TCK_RET low (default timing) 6 20 ns

5
td(XTMSmin)
td(XTMSmax)

TMS/TDI valid from TCK_RET high (optional timing) 7 24 ns

6 tsu(XTDOmin) TDO setup time to TCK_RET high 3 ns

7 thd(XTDOmin) TDO hold time from TCK_RET high 12 ns
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A.5 Target System Test Clock

Figure A–4 shows an application with the system test clock generated in the

target system. In this application the TCK signal is left unconnected. There are

two benefits to having the target system generate the test clock:

1) You can set the test clock frequency to match your system requirements.

The emulator provides only a single 10-MHz test clock.

2) You may have other devices in your system that require a test clock when

the emulator is not connected.

Figure A–4. Target-System Generated Test Clock
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A.6 Configuring Multiple Processors

Figure A–5 shows a typical daisy-chained multiprocessor configuration that

meets the minimum requirements of the IEEE (JTAG) standard 1149.1. The

emulation signals are buffered to isolate the processors from the emulator and

provide adequate signal drive for the target system. One of the benefits of this

test interface is that you can slow down the test clock to eliminate timing prob-

lems. Several key points to multiprocessor support are as follows:

� The processor TMS, TDI, TDO, and TCK signals should be buffered

through the same physical device package for better control of timing

skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-

nected to 5 V to hold these signals at a known value when the emulator

is not connected. A pullup resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide

isolation. These are not critical signals and do not have to be buffered

through the same physical package as TMS, TCK, TDI, and TDO.

Figure A–5. Multiprocessor Connections
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A.7 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator

and the target system. You must supply the correct signal buffering, test clock

inputs, and multiple processor interconnections to ensure proper emulator and

target system operation.

EMU0 and EMU1 are I/O pins on the ’C5x; however, they are only inputs to the

XDS510. In general, these pins are used in multiprocessor systems to provide

global run/stop operations.

A.7.1 Emulation Signals Not Buffered

If the distance between the emulation header and the target device is less than

6 inches, no buffering is necessary. Figure A–6 shows the no-buffering config-

uration.

The EMU0 and EMU1 signals must have pullup resistors connected to 5 V to

provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for

most applications.

Figure A–6. Emulator Connections Without Signal Buffering
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A.7.2 Emulation Signals Buffered

If the distance between the emulation header and the JTAG target device is

greater than 6 inches, the emulation signals must be buffered. Figure A–7

shows the buffering configuration. Emulation signals TMS, TDI, TDO, and

TCK_RET are buffered through the same device package.

The EMU0 and EMU1 signals must have pullup resistors connected to 5 V to

provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for

most applications.

To have high-quality signals (especially the processor TCK and the emulator

TCK_RET signals), you may have to employ special care when routing the

printed wiring board trace. You also may have to use termination resistors to

match the trace impedance. The emulator pod provides optional internal paral-

lel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series

termination.

Figure A–7. Buffered Signals
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A.8 Emulation Timing Calculations

The following are a few examples of how to calculate the emulation timings in

your system. For actual target timing parameters, see the appropriate device

data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

th(TTMS) Target TMS/TDI hold from TCK high 5 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay maximum 10 ns

td(bufmin) Target buffer delay minimum 1 ns

t(bufskew) Target buffer skew between two devices in the same

package: [td(bufmax) – td(bufmin)] × 0.15

1.35 ns

ttckfactor A 40/60 duty cycle clock 0.4

Given in Table A–2 (page A-6):

td(XTMSmax) XDS510 TMS/TDI delay from TCK_RET low, maximum 20 ns

td(XTMX) XDS510 TMS/TDI delay from TCK_RET low, minimum 6 ns

td(XTMSmax) XDS510 TMS/TDI delay from TCK_RET high, maximum 24 ns

td(XTMXmin) XDS510 TMS/TDI delay from TCK_RET high, minimum 7 ns

tsu(XTDOmin) TDO setup time to XDS510 TCK_RET high 3 ns

There are two key timing paths to consider in the emulation design:

1) The TCK_RET/TMS/TDI (tprdtck_TMS) path

2) The TCK_RET/TDO (tprdtck_TDO) path

In each case, the worst-case path delay is calculated to determine the maxi-

mum system test clock frequency.
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Case 1: Single processor, direct connection, TMS/TDI timed from TCK_RET low
(default timing).

tprdtck_TMS = [t(d(XTMSmax) + tsu(TTMS)] / ttckfactor

= (20 ns + 10 ns) / 0 .4

= 75 ns (13.3 MHz)

tprdtck_TDO = [t(d(TTDO) + tsu(XTDOmin)] / ttckfactor

= (15 ns + 3 ns) / 0.4

= 45 ns (22.2 MHz)

In Case 1, the TCK/TMS path is the limiting factor.

Case 2: Single processor, direct connection, TMS/TDI timed from TCK_RET high
(optional timing).

tprdtck_TMS = td(XTMSmax) + tsu(TTMS)

= (24 ns + 10 ns)

= 34 ns (29.4 MHz)

tprdtck_TDO = [td(TTDO) + tsu(XTDOmin)] / ttckfactor

= (15 + 3) / 0.4

= 45 ns (22.2 MHz)

In Case 2, the TCK/TDO path is the limiting factor. One other thing to consider

in this case is the TMS/TDI hold time. The minimum hold time for the XDS510

cable pod is 7 ns, which meets the 5-ns hold time of the target device.

Case 3: Single/multiple processor, TMS/TDI buffered input; TCK_RET/TDO buffered
output, TMS/TDI timed from TCK_RET high (optional timing).

tprdtck_TMS = td(XTMSmax) + tsu(TTMS) + 2td(bufmax)

= 24 ns + 10 ns + 2 (10)

= 54 ns (18.5 MHz)

tprdtck_TDO = [td(TTDO) + tsu(XTDOmin) + t(bufskew)] / ttckfactor

= (15 ns + 3 ns + 1.35 ns) / 0.4

= 58.4 ns  (20.7 MHz)

In Case 3, the TCK/TMS path is the limiting factor. The hold time on TMS/TDI

is also reduced by the buffer skew (1.35 ns) but still meets the minimum device

hold time.
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Case 4: Single/multiprocessor, TMS/TDI/TCK buffered input; TDO buffered output,
TMS/TDI timed from TCK_RET low (default timing).

tprdtck_TMS = [td(XTMSmax) + tsu(TTMS) + tbufskew] / tckfactor

= (24 ns + 10 ns + 1.35 ns) / 0.4

= 88.4 ns (11.3 MHz)

tprdtck_TDO = [td(TTDO) + tsu(XTDOmin) + td(bufmax)] / tckfactor

= (15 ns + 3 ns + 10 ns) / 0.4

= 70 ns (14.3 MHz)

In Case 4, the TCK/TMS path is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMU0 and

EMU1 lines can go from a logic low level to a logic high level in less than 10

µs. This can be calculated as follows (remember that t = 5 RC):

trise = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 kΩ × 16 × 15 pF)

= 5.64 µs
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Appendix A

Development Support and Part Order Information

This appendix provides development support information, device part num-

bers, and support tool ordering information for the ’C5x.

Each ’C5x support product is described in the TMS320 DSP Development

Support Reference Guide. In addition, more than 100 third-party developers

offer products that support the TI TMS320 family. For more information, refer

to the TMS320 Third-Party Support Reference Guide.

For information on pricing and availability, contact the nearest TI Field Sales

Office or authorized distributor. See the list at the back of this book.
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B.1 Development Support

This section describes the development support provided by Texas Instru-

ments.

B.1.1 Software and Hardware Development Tools

TI offers an extensive line of development tools for the ’C5x generation of

DSPs, including tools to evaluate the performance of the processors, generate

code, develop algorithm implementations, and fully integrate and debug soft-

ware and hardware modules. The following products support development of

’C5x-based applications:

� Software development tools:

� Assembler/linker

� Simulator

� Optimizing ANSI C compiler

� Application algorithms

� C/Assembly debugger and code profiler

� Hardware development tools:

� Emulator XDS510

� ’C5x Evaluation Module (EVM)

� ’C5x DSP Starter Kit (DSK)

B.1.2 Third-Party Support

The TMS320 family is supported by products and services from more than 100
independent third-party vendors and consultants. These support products
take various forms (both as software and hardware), from cross-assemblers,

simulators, and DSP utility packages to logic analyzers and emulators. The
expertise of those involved in support services ranges from speech encoding
and vector quantization to software/hardware design and system analysis.

To ask about third-party services, products, applications, and algorithm
development packages, contact the third party directly. Refer to the TMS320
Third-Party Support Reference Guide for addresses and phone numbers.
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B.1.3 TMS320C5x DSP Design Workshop

This workshop is tailored for hardware and software design engineers and

decision-makers who design and utilize the ’C5x generation of DSP devices.

Hands-on exercises throughout the course give participants a rapid start in

developing ’C5x design skills. Microprocessor/assembly language experience

is required. Experience with digital design techniques and C language

programming experience is desirable.

These topics are covered in the ’C5x workshop:

� DSP fundamentals

� ’C5x architecture/instruction set

� Use of the PC-based software simulator

� Use of the ’C5x assembler/linker

� C programming environment

� System architecture considerations

� Memory and I/O interfacing

� Serial ports and multiple processor features

For registration information, pricing, or to enroll, call (972) 644–5580.

B.1.4 Assistance

For assistance to TMS320 questions on device problems, development tools,
documentation, software upgrades, and new products, you can contact TI.
See If You Need Assistance on page xvii for information.
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B.2 Part Order Information

This section describes the part numbers of ’C5x devices, development support

hardware, and software tools.

B.2.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes

to the part numbers of all TMS320 devices and support tools. Each TMS320

member has one of three prefix designators: TMX, TMP, or TMS. Each support

tool has one of two possible prefix designators: TMDX or TMDS. These pre-

fixes represent evolutionary stages of product development, from engineering

prototypes (TMX/TMDX) through fully qualified production devices and tools

(TMS/TMDS). This development flow is defined below.

Device Development Flow:

TMX The part is an experimental device that is not necessarily representa-
tive of the final device’s electrical specifications.

TMP The part is a device from a final silicon die that conforms to the device’s
electrical specifications but has not completed quality and reliability
verification.

TMS The part is a fully qualified production device.

Support Tool Development Flow:

TMDX The development-support product that has not yet completed Texas
Instruments internal qualification testing.

TMDS The development-support product is a fully qualified development
support product.

TMX and TMP devices, and TMDX development-support tools are shipped

with the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development-support tools have been fully charac-

terized, and the quality and reliability of the device has been fully demon-

strated. Texas Instruments standard warranty applies to these products.

Note:

It is expected that prototype devices (TMX or TMP) have a greater failure rate
than standard production devices. Texas Instruments recommends that
these devices not be used in any production system, because their expected
end-use failure rate is still undefined. Only qualified production devices
should be used.
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B.2.2 Device Nomenclature

TI device nomenclature includes the device family name and a suffix.

Figure B–1 provides a legend for reading the complete device name for any

TMS320C5x family member.

Figure B–1. TMS320C5x Device Nomenclature

Prefix

Temperature range

TMS 320 C 51 PQ (L)

TMX = Experimental device
TMP = Prototype device
TMS = Qualified device
SM = High reliability (non 883C)
SMJ = MIL-STD-883C

Device family
320 = DSP Family

Technology

H = 0 to 50°C
L = 0 to 70°C
A = -40 to 85°C
S = -55 to 100°C
M = -55 to 125°C

Package type

FD = Ceramic leadless CC
FN = Plastic leaded CC
FZ = Ceramic CER-QUAD
GB = Ceramic PGA
J = Ceramic CER-DIP
JD = Ceramic DIP side-brazed
N = Plastic DIP
PJ  = 100-pin plastic EIAJ QFP
PQ = 100/132-pin plastic BQFP
PZ = 100-pin plastic TQFP
PBK = 120/128-pin plastic TQFP
PGE = 144-pin plastic TQFP

C = CMOS
E = CMOS EPROM

Device

Boot loader option

’C5x DSP:
50
51
52
53
53S
56
57
57S

(B) –100

MHz

(L)

Low voltage (3.3 V) option



Part Order Information

B-6  

B.2.3 Development Support Tools

Figure B–2 provides a legend for reading the part number for any TMS320

hardware or software development tool. Table B–1 lists the development sup-

port tools available for the ’C5x, the platform on which they run, and their part

numbers.

Figure B–2. TMS320 Development Tool Nomenclature

TMDS 32 4 28 1 0 – 0 2

Qualification status Medium†

2 = 5.25-inch floppy disk
8 = 1600 BPI magnetic tape

TMDX = Prototype
TMDS = Qualified

Device family S/W format†

32 = TMS320 family 0 = Object code
1 = Source code

Product type Sequence number‡

4 = Software
6 = Hardware
8 = Upgrade

Model‡ Generation‡

11 = XDS/11
22 = XDS/22
88 = Upgrade kits

1 = ’C1x
2 = ’C2x
3 = ’C3x
4 = ’C4x
5 = ’C5x

Operating system† Format†

02 = ’C1x VAX/VMS�
08 = ’C1x IBM MS/PC-DOS�
22 = ’C2x VAX/VMS
25 = ’C2x/’C2xx/’C5x SPARC�
28 = ’C2x or ’C1x/’C2x/’C2xx/’C5x IBM MS/PC-DOS
32 = ’C3x VAX/VMS
38 = ’C3x IBM MS/PC-DOS
42 = ’C4x VAX/VMS
48 = ’C4x IBM MS/PC-DOS
52 = ’C5x VAX/VMS
55 = ’C5x or ’C2xx/’C5x SPARC
58 = ’C5x or ’C2xx/’C5x IBM MS/PC-DOS

1 = TI-tagged
5 = COFF

 

† Software only
‡ Hardware only
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Table B–1. TMS320C5x Development Support Tools Part Numbers

Development Tool Platform Part Number

Assembler/linker PC (DOS, OS/2) TMDS3242850-02

C Compiler/assembler/linker PC (DOS, OS/2) TMDS3242855-02

C Compiler/assembler/linker HP (HP-UX) / SPARC (Sun OS) TMDS3242555-08

Digital Filter Design Package PC (DOS) DFDP

DSP Starter Kit (DSK) PC (DOS) TMDS3200051

Evaluation Module (EVM) PC (DOS, Windows 3.xx) TMDS3260050

Simulator (C language) PC (DOS, Windows 3.xx) TMDS3245851-02

Simulator (C language) SPARC (Sun OS) TMDS3245551-09

XDS510 debugger/emulation software PC (DOS, Windows 3.xx, OS/2) TMDS3240150

XDS510xl emulator† PC (DOS, OS/2) TMDS00510

XDS510WS debugger/emulation software SPARC (Sun OS) TMDS3240650

XDS510WS emulator‡ SPARC (Sun OS) TMDS00510WS

3 V/5 V PC/SPARC JTAG emulation cable XDS510 / XDS510WS TMDS3080002

† Includes XDS510 board and JTAG cable
‡ Includes XDS510WS box and JTAG cable
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B.3 Hewlett-Packard E2442A Preprocessor ’C5x Interface

The Hewlett-Packard E2442A preprocessor ’C5x interface provides a

mechanical and electrical connection between your target system and an HP

logic analyzer. Preprocessor hardware captures processor signals and

passes them to the logic analyzer at the appropriate time, depending on the

type of measurement you are making. With the preprocessor plugged in, both

state and timing analysis is available. Two connectors are loaded onto the pre-

processor to facilitate communications with other debugging tools. A BNC

connector, when used with the sequencer of the logic analyzer halts the pro-

cessor on a condition. Then you can use the ’C5x HLL debugger to examine

the state of the system (for example, microprocessor registers). Likewise, a

14-pin connector is available to receive signals from the XDS510 development

system. These signals can be used when defining a trigger condition for the

analyzer.

The preprocessor includes software that automatically labels address, data,

and status lines. Additionally, a disassembler is included. The disassembler

processes state traces and displays the information on TMS320 mnemonics.

B.3.1 Capabilities

The preprocessor supports three modes of operation: in the first mode, state

per transfer, the preprocessor clocks the logic analyzer only when a bus trans-

fer is complete. In this mode, wait and halt states are filtered out. In the second

mode, CLKOUT1 clocks the logic analyzer every time the microprocessor is

clocked. This mode captures all bus states. An example application would be

to locate memory locations that do not respond to requests for data. In the third

mode, you can use the preprocessor to make timing measurements.

The JTAG TAP (test access port) controller can be monitored in realtime. TAP

state can be viewed under the predefined label TAP.

B.3.2 Logic Analyzers Supported

The preprocessor ’C5x interface supports the following logic analyzers:

� HP 1650A/B

� HP 16510B

� HP 16511B

� HP 16540/41(A/D)

� HP 16550A

� HP 1660A/61A/62A
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B.3.3 Pods Required

There are eight pod connectors on the preprocessor. Three are terminated

and best used for state analysis, as all signals needed for disassembly are

available. The other five connectors are not terminated and contain all proces-

sor signals, including a second set of the signals needed for disassembly. This

allows you to double probe these signals, making simultaneous state and tim-

ing measurements.

B.3.4 Termination Adapters (TAs)

Of the eight pods, three are terminated. You may need to order up to five ter-

mination adapters, depending on how many pods are connected at the same

time.

B.3.5 Availability

For more information and availability of the Hewlett-Packard E2442A, contact:

Hewlett-Packard Company

2000 South Park Place

Atlanta, GA 30339

(404) 980–7351
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Appendix A

Application Reports and Designer’s
Notebook Pages

This appendix lists the TMS320C5x application reports in Table C–1 and the

TMS320C5x designer’s notebook pages (DNP) in Table C–2 available to you.

To obtain a copy of any application report, call the Texas Instruments Literature

Response Center at (800) 477–8924. When ordering, please identify the book

by its title and literature number. To view a copy of any designer’s notebook

pages, refer to the world-wide web site at:

http://www.ti.com/sc/docs/dsps/dnp/pdftoc.htm.

Table C–1. TMS320C5x Application Reports

Application Report

Literature Number Title

SPRA030 Calculation of TMS320C5x Power Dissipation

SPRA033 Telecommunications Applications With the TMS320C5x DSPs

SPRA052 PCMCIA TMS320 DSP Media Card

SPRA054 Use of the TMS320C5x Internal Oscillator With External Crystals or

Ceramic Resonators

SPRA057 Enhanced Control of an Alternating Current Motor Using Fuzzy Logic and a

TMS320 Digital Signal Processor

SPRA085 Improving 32-Channel DTMF Decoders Using the TMS320C5x

Appendix C
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Table C–2. TMS320C5x Designer’s Notebook Pages 

DNP Number Title

4 Optimizing Control Algorithms on ’C5x

6 ’C5x EVM Provides for Audio Processing

10 Initializing the Fixed-Point EVM’s AIC

15 Efficient Coding on the TMS320C5x

19 Dual-Access Into Single-Access RAM on a ’C5x Device

21 TMS320C5x Interrupts

24 TMS320C5x Interrupt Response Time

25 TMS320C2x/C5x EVM AIC Initialization and Configuration

35 TMS320C5x Interrupts and the Pipeline

39 Bootload of C Code for the TMS320C5x

41 Supporting External DMA Activity to Internal RAM for TMS320C5x

42 Binary Search Algorithm on the TMS320C5x

43 Random Number Generation on a TMS320C5x

45 Fast TMS320C5x External Memory Interface

46 TMS320C5x Memory Paging (Expanding its Address Reach)

47 TMS320C5x Clock Modes

48 TMS320C5x Wait States

49 Clocking Options on the TMS320C5x

50 TMS320C5x DSK Analog I/O

54 Accessing TMS320C5x Memory-Mapped Register in C–C5xREGS.H

55 C Routines for Setting Up the AIC on the TMS320C5x EVM

57 Initializing the TMS320C5x DSK Board

59 Designing Macros for the TMS320C5x

63 Shared Memory Interface with a TMS320C5x DSP

65 Interfacing External Memory to the TMS320C5x DSK

66 Interfacing a TMS320C2x, ’C2xx, ’C5x DSP to a TLC548 8-bit A/D Convertor
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Table C–2. TMS320C5x Designer’s Notebook Pages (Continued)

DNP Number Title

67 Interfacing a TMS320C2x, ’C2xx, ’C5x DSP to an 8-bit Boot EEPROM

68 Using the Circular Buffer on the TMS320C5x

72 Interfacing Two Analog Interface Circuits to One TMS320C5x Serial Port

74 Reading a 16-bit Bus With the TMS320C5x Serial Port

76 Interfacing 20-MSPS TLC5510 Flash A/D Converter to TMS320C2xx and TMS320C5x

Fixed-Point DSPs

77 IDLE2 Instruction on a TMS320C51 When Using a Divide-by-One Clock Option

78 Initializing the TLC32046 AIC on the TMS320C5x EVM Board

79 Initializing the TLC320040 AIC on the TMS320C5x DSK

81 Setting up and Simulating Interrupts on the TMS320C5x
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Index

A
adaptive filtering 2-49 to 2-51

ADC devices 4-20

ADTV 4-18

analog interface

converters 4-4

peripherals 4-1

application reports C-1

application-oriented operations 2-46 to 2-56

adaptive filtering 2-49

dynamic programming 2-55

infinite impulse response (IIR) filtering 2-52

modem application 2-46

applications 1-4

architecture 1-5

arithmetic

extended-precision 2-26

floating-point 2-39

assistance B-3

B
backtracking algorithm 2-56

BCND example 2-13

bit-reversed addressing 2-61

BLDD example 2-21

BLDP example 2-21

block moves 2-20 to 2-22

block repeat 2-20

BLPD example 2-21

boot loader 3-2

BSAR example 2-44

buffered signals, JTAG A-10

buffers, circular 2-17

bus protocol A-3

C
C bit 2-26, 2-29

’C14 to TLC32071 interface 4-13

’C25 to TLC32047 interfacing 4-3

’C5x

applications 1-4

characteristics 1-6

key features 1-7

overview 1-5

cable, target system to emulator A-1 to A-14

circular buffer registers 2-17 to 2-19

combo interface timing 4-8

consumer electronics 4-18 to 4-20

context save/restore 2-6

context switching 2-6

CRGT example 2-14, 2-15

CRLT example 2-14, 2-15

D
DAC devices 4-20

data memory interface 3-4, 3-6

delayed branches 2-24

designer’s notebook pages C-2

development tool nomenclature B-6

development tools B-2

device nomenclature B-5

digital audio 4-19

digital electronics applications 4-18

advanced television system design 4-18

digital electronics-related devices 4-20

direct memory access 3-7

DS pin 3-4
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dynamic bit manipulation  register (DBMR) 2-9

dynamic programming 2-55 to 2-70

E

emulator A-1

buffered signals A-10

bus protocol A-3

cable header A-2

cable pod A-4

designing the JTAG cable A-2

header signals A-2

signal buffering A-9 to A-10

signal timings A-6

timing A-11

timings A-6

unbuffered signals A-9

emulator cable pod, interface A-5

extended-precision arithmetic 2-26 to 2-38

addition 2-26 to 2-28

division 2-35 to 2-46

multiplication 2-30 to 2-34

subtraction 2-29 to 2-30

external interfacing

global data memory 3-6

I/O space 3-6

local data memory 3-4

program memory 3-2

external memory interface 3-2, 3-4, 3-5

F

fast Fourier transforms (FFT) 2-57 to 2-70

filters

adaptive 2-49

FIR 2-50

IIR 2-52 to 2-54

switched capacitor 4-4

floating-point, arithmetic 2-39 to 2-45

fractional division 2-35 to 2-37

G

global data memory, external interfacing 3-6

global memory allocation register (GREG) 3-6

H
hardware development tools B-2, B-7

hardware stack 2-5

Harvard architecture 1-5

HDTV 4-18

Hewlett-Packard interface B-8

I
I/O, external interfacing 3-6

I/O space, external interfacing 3-6

IACK pin 3-2

IEEE 1149.1 A-3

infinite impulse response (IIR) filtering 2-52 to 2-54

initialization, processor 2-2

initialization routine 2-69

instruction conditions

branch 2-12

call 2-12

return 2-12

integer division 2-35 to 2-37

interfacing memories

EPROM 3-3

global data memory 3-6

RAM 3-4, 3-5

interrupt service routine (ISR) 2-5

interrupt trap 2-5

interrupts 2-5 to 2-7

INTR example 2-6

introduction 1-1

TMS320 family overview 1-2

TMS320C5x key features 1-7

TMS320C5x overview 1-5

J
JTAG A-1

signals A-3

JTAG emulator

buffered signals A-10

connection to target system A-1 to A-14

no signal buffering A-9

K
key features 1-7 to 1-9
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LMMR example 2-23

local data memory, external interfacing 3-4, 3-5

logical and arithmetic operations 2-9 to 2-16

matrix multiplication 2-14

multiconditional branch 2-12 to 2-13

parallel logic unit (PLU) 2-9 to 2-11

search algorithm 2-14

LTD example 2-54

M
MACD example 2-53

matrix multiplication 2-14

memory interface 3-2, 3-4

modem AFE data converters 4-15

modem application 2-46 to 2-48

modem applications 4-15

MPYA example 2-54

multiconditional branch 2-12

multimedia applications 4-2

multimedia-related devices 4-4

system design 4-2

multiplication

16-bit algorithm 2-31

32-bit algorithm 2-32

multiprocessor configuration A-8

N
nested loops 2-14, 2-16

nomenclature B-4, B-5

P
parallel logic unit (PLU) 2-9

part numbers, tools B-7

part-order information B-4

PC environment (DMA) 3-7

preprocessor interface B-8

processor initialization 2-2 to 2-4

program memory, external interfacing 3-2

PS pin 3-2

R
RD pin 3-2, 3-4

repeat counter register (RPTC) 2-20

repeat loops 2-20 to 2-23

RMS routine 2-24

RPT example 2-21, 2-22, 2-23

RS pin 2-2

S
SATH example 2-40

SATL example 2-40

search algorithm 2-14

seminars B-3

servo control-related devices 4-14

servo control/disk drive applications 4-12

servo control/disk drive-related devices 4-14

system design 4-12

shadow registers 2-5

signals

buffered A-10

buffering for emulator connections A-9 to A-10

SMMR example 2-22

software applications

application-oriented operations 2-46

circular buffers 2-17

extended-precision arithmetic 2-26

fast Fourier transforms (FFT) 2-57

floating-point arithmetic 2-39

interrupts 2-5

logical and arithmetic operations 2-9

processor initialization 2-2

single-instruction repeat loops 2-20

software stack 2-8

subroutines 2-24

software development tools B-2, B-7

software stack 2-8

speech encoding 4-3

speech memories 4-11

speech synthesis applications 4-10

speech synthesis-related devices 4-11

system design 4-10

stack, hardware 2-5

status register 1 (ST1), C bit 2-26, 2-29

STRB pin 3-2, 3-4

SUBC example 2-37, 2-38
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subroutines 2-24 to 2-25

support tools

development B-6

device B-6

nomenclature B-4

T

target system, connection to emulator A-1 to A-14

target system clock A-7

TBLR example 2-22

TBLW example 2-22

technical training B-3

telecommunications applications 4-5

DSP/combo interface 4-7

system design 4-6

telecommunications-related devices 4-8

third-party support B-2

timing

combo interface 4-8

emulator A-11

TMS320

advantages 1-2

development 1-2

evolution 1-3

family overview 1-2

history 1-2

roadmap 1-3

typical applications 1-4

TMS320C5x

applications 1-4

characteristics 1-6

key features 1-7

compatibility 1-7
CPU 1-8
instruction set 1-8
memory 1-7
on-chip peripherals 1-9
packages 1-9
power 1-7
program control 1-8
speed 1-7
test/emulation 1-9

overview 1-5

tools, part numbers B-7

V
V.32 encoder example 2-47

video signal processing 4-19

voice synthesizers 4-10

W
WE pin 3-2, 3-4

workshops B-3

X
XC example 2-24

XDS510 emulator A-1 to A-14


