
TMS320C24x DSP Controllers
Reference Set

Volume 1: CPU, System, and Instruction Set

This document contains preliminary data

 current as of publication date and is subject

to change without notice.

Literature Number: SPRU160B

September 1997

Printed on Recycled Paper

 ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any

semiconductor product or service without notice, and advises its customers to obtain the latest

version of relevant information to verify, before placing orders, that the information being relied

on is current.

TI warrants performance of its semiconductor products and related software to the specifications

applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality

control techniques are utilized to the extent TI deems necessary to support this warranty.

Specific testing of all parameters of each device is not necessarily performed, except those

mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,

personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR

WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES

OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.

Use of TI products in such applications requires the written approval of an appropriate TI officer.

Questions concerning potential risk applications should be directed to TI through a local SC

sales office.

In order to minimize risks associated with the customer’s applications, adequate design and

operating safeguards should be provided by the customer to minimize inherent or procedural

hazards.

TI assumes no liability for applications assistance, customer product design, software

performance, or infringement of patents or services described herein. Nor does TI warrant or

represent that any license, either expressed or implied, is granted under any patent right,

copyright, mask work right, or other intellectual property right of TI covering or relating to any

combination, machine, or process in which such semiconductor products or services might be

or are used.

Copyright 1997, Texas Instruments Incorporated

iii

Preface

�������	���	
��

About This Manual

This manual (volume 1 of a 2-volume set) describes the architecture, central

processing unit (CPU), system hardware, assembly language instructions,

and general operation of the TMS320C24x digital signal processor (DSP) con-

trollers. In this document, the TMS320C24x is also referred to as the ’C24x.

The TMS320C24x DSP Controllers Reference Set, Volume 2: Peripheral

Library and Specific Devices (literature number SPRU161) describes the

peripherals available in the ’C24x family and their operation. Also described

are specific device configurations of the ’C24x family.

For a summary of updates in this book, see Appendix E, Summary of Updates

in This Document.

How to Use This Manual

The following table summarizes the ’C24x information contained in this

manual:

If you are looking for

information about Turn to

Addressing modes (for addressing data

memory)

Chapter 7, Addressing Modes

Assembly language instructions Chapter 8, Assembly Language
Instructions

Comparison of assembly language

instructions for TMS320C1x, ’C2x,

’C24x, and ’C5x

Appendix A, TMS320C1x/C2x/C24x/C5x
Instruction Set Comparisons

CPU Chapter 3, Central Processing Unit

Custom ROM from TI Appendix B, Submitting ROM Codes
to TI

Emulator Appendix C, Design Considerations
for Using XDS510 Emulator

Features Chapter 1, Introduction
Chapter 2, Architectural Overview

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY

How to Use This Manual / Notational Conventions PRELIMINARY

 iv PRELIMINARY

If you are looking for

information about Turn to

Input/output ports Chapter 4, Memory and I/O Spaces

Interrupts Chapter 6, System Functions

Memory configuration Chapter 4, Memory and I/O Spaces

Peripheral interface Chapter 6, System Functions

Pipeline Chapter 5, Program Control

Power-down modes Chapter 6, System Functions

Program control Chapter 5, Program Control

Program-memory address generation Chapter 5, Program Control

Reset Chapter 6, System Functions

Stack Chapter 5, Program Control

Status registers

Summary of Changes in This

Document

Chapter 6, System Functions

Appendix E, Summary of Updates
in This Document

Notational Conventions

This document uses the following conventions:

� Program listings and program examples are shown in a special

typeface.

Here is a segment of a program listing:

OUTPUT LDP #6 ;select data page 6
BLDD #300, 20h ;move data at address 300h to 320h
RET

� In syntax descriptions, the instruction is in a bold typeface and

parameters are in an italic typeface. Portions of a syntax in bold must be

entered as shown; portions of a syntax in italics describe the type of

information that you specify. Here is an example of an instruction syntax:

BLDD source, destination

BLDD is the instruction and has two parameters, source and destination.

When you use BLDD, the first parameter must be an actual data memory

source address and the second parameter must be a destination address.

A comma and a space (optional) must separate the two addresses.

� Square brackets, [], identify an optional parameter. If you use an optional

parameter, specify the information within the brackets; do not type the

brackets themselves. When you specify more than one optional parame-

ter from a list, you separate them with a comma and a space. Here is a

sample syntax:

Information About Cautions / Related Documentation From Texas InstrumentsPRELIMINARY

vPRELIMINARY

BLDD source, destination [, ARn]

BLDD is the instruction. The two required operands are source and

destination, and the optional operand is ARn. AR is bold and n is italic; if

you choose to use ARn, you must type the letters A and R and then supply

a chosen value for n (in this case, a value from 0 to 7). Here is an example:

BLDD *, #310h, AR3

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each

caution carefully.

Related Documentation From Texas Instruments

The following books describe the ’C24x and related support tools. To obtain

a copy of any of these TI documents, call the Texas Instruments Literature

Response Center at (800) 477–8924. When ordering, please identify the book

by its title and literature number.

TMS320C24x DSP Controllers Reference Set Volume 2: Peripheral

Library and Specific Devices (literature number SPRU161) describes

the peripherals available on the TMS320C24x digital signal processor

controllers and their operation. Also described are specific device

configurations of the ’C24x family.

TMS320C240, TMS320F240 DSP Controllers (literature number SPRS042)

data sheet contains the electrical and timing specifications for these

devices, as well as signal descriptions and pinouts for all of the available

packages.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started

Guide (literature number SPRU121) describes how to install the

TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly

language tools and the C compiler for the ’C1x, ’C2x, ’C2xx, and ’C5x de-

vices. The installation for MS-DOS , OS/2 , SunOS , and Solaris
systems is covered.

Read This First

Related Documentation From Texas Instruments PRELIMINARY

 vi PRELIMINARY

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-

erature number SPRU018) describes the assembly language tools (as-

sembler, linker, and other tools used to develop assembly language

code), assembler directives, macros, common object file format, and

symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-

erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature

number SPRU024) describes the ’C2x/C2xx/C5x C compiler. This C

compiler accepts ANSI standard C source code and produces TMS320

assembly language source code for the ’C2x, ’C2xx, and ’C5x genera-

tions of devices.

TMS320C2xx C Source Debugger User’s Guide (literature number

SPRU151) tells you how to invoke the ’C2xx emulator and simulator ver-

sions of the C source debugger interface. This book discusses various

aspects of the debugger interface, including window management, com-

mand entry, code execution, data management, and breakpoints. It also

includes a tutorial that introduces basic debugger functionality.

TMS320C2xx Simulator Getting Started (literature number SPRU137)

describes how to install the TMS320C2xx simulator and the C source

debugger for the ’C2xx. The installation for MS-DOS , PC-DOS ,

SunOS , Solaris , and HP-UX systems is covered.

TMS320C2xx Emulator Getting Started Guide (literature number

SPRU209) tells you how to install the Windows 3.1 and Windows 95

versions of the ’C2xx emulator and C source debugger interface.

XDS51x Emulator Installation Guide (literature number SPNU070)

describes the installation of the XDS510 , XDS510PP , and

XDS510WS emulator controllers. The installation of the XDS511
emulator is also described.

XDS522/XDS522A Emulation System Installation Guide (literature num-

ber SPRU171) describes the installation of the emulation system.

Instructions include how to install the hardware and software for the

XDS522 and XDS522A .

XDS522A Emulation System User’s Guide (literature number SPRU169)

tells you how to use the XDS522A emulation system. This book de-

scribes the operation of the breakpoint, tracing, and timing functionality

in the XDS522A emulation system. This book also discusses BTT

software interface and includes a tutorial that uses step-by-step

instructions to demonstrate how to use the XDS522A emulation system.

Related Documentation From Texas Instruments / Related Technical ArticlesPRELIMINARY

viiPRELIMINARY

XDS522A Emulation System Online Help (literature number SPRC002) is

an online help file that provides descriptions of the BTT software user in-

terface, menus, and dialog boxes.

JTAG/MPSD Emulation Technical Reference (literature number SPDU079)

provides the design requirements of the XDS510 emulator controller,

discusses JTAG designs (based on the IEEE 1149.1 standard), and

modular port scan device (MPSD) designs.

TMS320 DSP Development Support Reference Guide (literature number

SPRU011) describes the TMS320 family of digital signal processors and

the tools that support these devices. Included are code-generation tools

(compilers, assemblers, linkers, etc.) and system integration and debug

tools (simulators, emulators, evaluation modules, etc.). Also covered are

available documentation, seminars, the university program, and factory

repair and exchange.

Digital Signal Processing Applications with the TMS320 Family, Volumes

1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017) Vol-

umes 1 and 2 cover applications using the ’C10 and ’C20 families of

fixed-point processors. Volume 3 documents applications using both

fixed-point processors, as well as the ’C30 floating-point processor.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number

SPRT125) presents solutions to common design problems using ’C2x,

’C3x, ’C4x, ’C5x, and other TI DSPs.

TMS320 Third-Party Support Reference Guide (literature number

SPRU052) alphabetically lists over 100 third parties that provide various

products that serve the family of TMS320 digital signal processors. A

myriad of products and applications are offered—software and hardware

development tools, speech recognition, image processing, noise can-

cellation, modems, etc.

Related Technical Articles

The following technical articles contain beneficial information regarding

designs, operations, and applications for signal-processing systems; all of the

documents provide additional references.

“A Greener World Through DSP Controllers”, Panos Papamichalis, DSP &

Multimedia Technology, September 1994.

“A Single-Chip Multiprocessor DSP for Image Processing—TMS320C80”,

Dr. Ing. Dung Tu, Industrie Elektronik, Germany, March 1995.

“Application Guide with DSP Leading-Edge Technology”, Y. Nishikori,

M. Hattori, T. Fukuhara, R.Tanaka, M. Shimoda, I. Kudo, A.Yanagitani,

H. Miyaguchi, et al., Electronics Engineering, November 1995.

Read This First

Related Technical Articles PRELIMINARY

 viii PRELIMINARY

“Approaching the No-Power Barrier”, Jon Bradley and Gene Frantz, Electronic

Design, January 9, 1995.

“Beware of BAT: DSPs Add Brilliance to New Weapons Systems”, Panos

Papamichalis, DSP & Multimedia Technology, October 1994.

“Choose DSPs for PC Signal Processing”, Panos Papamichalis, DSP &

Multimedia Technology, January/February 1995.

“Developing Nations Take Shine to Wireless”, Russell MacDonald, Kara

Schmidt and Kim Higden, EE Times, October 2, 1995.

“Digital Signal Processing Solutions Target Vertical Application Markets”, Ron

Wages, ECN, September 1995.

“Digital Signal Processors Boost Drive Performance”, Tim Adcock, Data

Storage, September/October 1995.

“DSP and Speech Recognition, An Origin of the Species”, Panos

Papamichalis, DSP & Multimedia Technology, July 1994.

“DSP Design Takes Top-Down Approach”, Andy Fritsch and Kim Asal, DSP

Series Part III, EE Times, July 17, 1995.

“DSPs Advance Low-Cost ‘Green’ Control”, Gregg Bennett, DSP Series Part

II, EE Times, April 17, 1995.

“DSPs Do Best on Multimedia Applications”, Doug Rasor, Asian Computer

World, October 9–16, 1995.

“DSPs: Speech Recognition Technology Enablers”, Gene Frantz and Gregg

Bennett, I&CS, May 1995.

“Easing JTAG Testing of Parallel-Processor Projects”, Tony Coomes, Andy

Fritsch, and Reid Tatge, Asian Electronics Engineer, Manila, Philippines,

November 1995.

“Fixed or Floating? A Pointed Question in DSPs”, Jim Larimer and Daniel

Chen, EDN, August 3, 1995.

“Function-Focused Chipsets: Up the DSP Integration Core”, Panos

Papamichalis, DSP & Multimedia Technology, March/April 1995.

“GSM: Standard, Strategien und Systemchips”, Edgar Auslander, Elektronik

Praxis, Germany, October 6, 1995.

“High Tech Copiers to Improve Images and Reduce Paperwork”, Karl Guttag,

Document Management, July/August 1995.

Related Technical Articles / TrademarksPRELIMINARY

ixPRELIMINARY

“Host-Enabled Multimedia: Brought to You by DSP Solutions”, Panos

Papamichalis, DSP & Multimedia Technology, September/October 1995.

“Integration Shrinks Digital Cellular Telephone Designs”, Fred Cohen and

Mike McMahan, Wireless System Design, November 1994.

“On-Chip Multiprocessing Melds DSPs”, Karl Guttag and Doug Deao, DSP

Series Part III, EE Times, July 18, 1994.

“Real-Time Control”, Gregg Bennett, Appliance Manufacturer, May 1995.

“Speech Recognition”, P.K. Rajasekaran and Mike McMahan, Wireless

Design & Development, May 1995.

“Telecom Future Driven by Reduced Milliwatts per DSP Function”, Panos

Papamichalis, DSP & Multimedia Technology, May/June 1995.

“The Digital Signal Processor Development Environment”, Greg Peake,

Embedded System Engineering, United Kingdom, February 1995.

“The Growing Spectrum of Custom DSPs”, Gene Frantz and Kun Lin, DSP

Series Part II, EE Times, April 18, 1994.

“The Wide World of DSPs, ” Jim Larimer, Design News, June 27, 1994.

“Third-Party Support Drives DSP Development for Uninitiated and Experts

Alike”, Panos Papamichalis, DSP & Multimedia Technology, December

1994/January 1995.

“Toward an Era of Economical DSPs”, John Cooper, DSP Series Part I, EE

Times, Jan. 23, 1995.

Trademarks

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

OS/2, PC, and PC-DOS are trademarks of International Business Machines

Corporation.

PAL is a registered trademark of Advanced Micro Devices, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

320 Hotline On-line, TI, XDS510, XDS510PP, XDS510WS, XDS511, XDS522,

and XDS522A are trademarks of Texas Instruments Incorporated.

Read This First

If You Need Assistance PRELIMINARY

 x PRELIMINARY

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com

Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm

DSP Solutions http://www.ti.com/dsps

320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580

TI Literature Response Center U.S.A. (800) 477-8924

Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742

U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580

DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com

DSP Modem BBS (281) 274-2323

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com

Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68

English +33 1 30 70 11 65

Francais +33 1 30 70 11 64

Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99

European Factory Repair +33 4 93 22 25 40

Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200

Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002

Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828

Korea DSP Modem BBS +82 2 551 2914

Singapore DSP Hotline Fax: +65 390 7179

Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718

Taiwan DSP Modem BBS +886 2 376 2592

Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259

DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071

DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title

page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com

Technical Documentation Services, MS 702

P.O. Box 1443

Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

ContentsPRELIMINARY

xi

��������

1 Introduction 1-1.

Summarizes the TMS320 family of products. Introduces the TMS320C24x DSP controllers and
lists their key features.

1.1 TMS320 Family Overview 1-2.

1.2 TMS320C24x Series of DSP Controllers 1-4.

1.3 TMS320C240 Overview 1-6.

2 Architectural Overview 2-1.

Summarizes the TMS320C24x architecture. Provides an overview of the CPU, bus structure,
memory, program control logic, and scanning logic.

2.1 Architecture Summary 2-2.

2.2 Memory 2-5.

2.2.1 On-Chip Dual-Access RAM (DARAM) 2-5.

2.2.2 On-Chip Program/Data Single-Access RAM (SARAM) 2-6.

2.2.3 Flash EEPROM 2-6.

2.2.4 Factory-Masked ROM 2-7.

2.2.5 External Memory Interface Module 2-7.

2.3 Central Processing Unit 2-8.

2.3.1 Central Arithmetic Logic Unit (CALU) and Accumulator 2-8.

2.3.2 Scaling Shifters 2-8.

2.3.3 Multiplier 2-9.

2.3.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers 2-9.

2.4 Program Control 2-10.

2.5 On-Chip Peripherals 2-11.

2.6 Serial-Scan Emulation 2-11.

3 Central Processing Unit 3-1.

Describes the TMS320C24x CPU. Includes information about the central arithmetic logic unit,
the accumulator, the shifters, the multiplier, and the auxiliary register arithmetic unit. Concludes
with a description of the status register bits.

3.1 Input Scaling Section 3-3.

3.2 Multiplication Section 3-5.

3.2.1 Multiplier 3-5.

3.2.2 Product-Scaling Shifter 3-6.

PRELIMINARY

PRELIMINARY

Contents PRELIMINARY

 xii PRELIMINARY

3.3 Central Arithmetic Logic Section 3-8.

3.3.1 Central Arithmetic Logic Unit (CALU) 3-9.

3.3.2 Accumulator 3-9.

3.3.3 Output Data-Scaling Shifter 3-11.

3.4 Auxiliary Register Arithmetic Unit (ARAU) 3-12.

3.4.1 ARAU Functions 3-13.

3.4.2 Auxiliary Register Functions 3-14.

3.5 Status Registers ST0 and ST1 3-15.

4 Memory and I/O Spaces 4-1.

Describes TMS320C24x memory and I/O space configuration and operation. Includes a general
memory map.

4.1 Overview of the Memory and I/O Spaces 4-2.

4.2 Program Memory 4-3.

4.2.1 Program Memory Configuration 4-3.

4.3 Local Data Memory 4-5.

4.3.1 Data Page 0 Address Map 4-7.

4.3.2 Local Data Memory Configuration 4-8.

4.4 Global Data Memory 4-9.

4.5 I/O Space 4-11.

5 Program Control 5-1.

Describes the TMS320C24x hardware and software features used in controlling program flow,
including program-address generation logic.

5.1 Program-Address Generation 5-2.

5.1.1 Program Counter (PC) 5-3.

5.1.2 Stack 5-4.

5.1.3 Microstack (MSTACK) 5-6.

5.2 Pipeline Operation 5-7.

5.3 Branches, Calls, and Returns 5-8.

5.3.1 Unconditional Branches 5-8.

5.3.2 Unconditional Calls 5-8.

5.3.3 Unconditional Returns 5-9.

5.4 Conditional Branches, Calls, and Returns 5-10.

5.4.1 Using Multiple Conditions 5-10.

5.4.2 Stabilization of Conditions 5-11.

5.4.3 Conditional Branches 5-11.

5.4.4 Conditional Calls 5-12.

5.4.5 Conditional Returns 5-12.

5.5 Repeating a Single Instruction 5-14.

ContentsPRELIMINARY

xiiiContentsPRELIMINARY

6 System Functions 6-1.

Describes the device functions, including interrupts, that are not specific to any peripheral.

6.1 Peripheral Interface 6-2.

6.2 System Configuration Registers 6-4.

6.2.1 System Control Register (SYSCR) 6-5.

6.2.2 System Status Register (SYSSR) 6-6.

6.2.3 System Interrupt Vector Register (SYSIVR) 6-8.

6.3 Interrupts 6-9.

6.3.1 Interrupt Operation: Three Phases 6-11.

6.3.2 Nonmaskable Interrupt Operation 6-12.

6.3.3 Maskable Interrupt Structure 6-13.

6.3.4 CPU Interrupt Registers 6-16.

6.3.5 Maskable Interrupt Acknowledgement and Servicing 6-20.

6.3.6 Programming ISRs for Maskable Interrupts 6-25.

6.3.7 Programming an ISR for Nonmaskable Interrupt (NMI) 6-30.

6.3.8 Additional Tasks of ISRs 6-31.

6.3.9 Interrupt Latency 6-33.

6.3.10 Summary of Interrupt Operation 6-35.

6.3.11 External Interrupt Control Registers 6-37.

6.3.12 Type A, Type B, and Type C Interrupt Pins 6-39.

6.3.13 Power Module Interrupts 6-46.

6.4 Reset Operation 6-48.

6.5 Power-Down Modes 6-51.

6.5.1 Setting and Entering the Power-Down Modes 6-53.

6.5.2 Exiting the Power-Down Modes 6-53.

6.5.3 Summary of Power-Down Mode Operation 6-57.

7 Addressing Modes 7-1.

Describes the operation and use of the TMS320C24x data-memory addressing modes.

7.1 Immediate Addressing Mode 7-2.

7.2 Direct Addressing Mode 7-4.

7.2.1 Using Direct Addressing Mode 7-6.

7.2.2 Examples of Direct Addressing 7-6.

7.3 Indirect Addressing Mode 7-9.

7.3.1 Current Auxiliary Register 7-9.

7.3.2 Indirect Addressing Options 7-9.

7.3.3 Next Auxiliary Register 7-11.

7.3.4 Indirect Addressing Opcode Format 7-12.

7.3.5 Examples of Indirect Addressing 7-14.

7.3.6 Modifying Auxiliary Register Content 7-16.

Contents PRELIMINARY

 xiv PRELIMINARY

8 Assembly Language Instructions 8-1.

Describes the TMS320C24x assembly language instructions in alphabetical order. Begins with
a summary of the TMS320C24x instructions.

8.1 Instruction Set Summary 8-2.

8.2 How To Use the Instruction Descriptions 8-12.

8.2.1 Syntax 8-12.

8.2.2 Operands 8-14.

8.2.3 Opcode 8-14.

8.2.4 Execution 8-15.

8.2.5 Status Bits 8-15.

8.2.6 Description 8-15.

8.2.7 Words 8-16.

8.2.8 Cycles 8-16.

8.2.9 Examples 8-18.

8.3 Instruction Descriptions 8-19.

A TMS320C1x/C2x/C24x/C5x Instruction Set Comparison A-1.

Discusses the compatibility of program code among the following devices: TMS320C1x,
TMS320C2x, TMS320C2xx, TMS320C24x, and TMS320C5x.

A.1 Using the Instruction Set Comparison Table A-2.

A.1.1 An Example of a Table Entry A-2.

A.1.2 Symbols and Acronyms Used in the Table A-3.

A.2 Enhanced Instructions A-5.

A.3 Instruction Set Comparison Table A-6.

B Submitting ROM Codes to TI B-1.

Explains the process for submitting custom program code to TI for designing masks for the on-chip
ROM on a TMS320 DSP. Submitting ROM Codes to TI

C Design Considerations for Using the XDS510 Emulator C-1.

Describes the JTAG emulator cable and how to construct a 14-pin connector on your target system
and how to connect the target system to the emulator

C.1 Designing Your Target System’s Emulator Connector (14-Pin Header) C-2.

C.2 Bus Protocol C-4.

C.3 Emulator Cable Pod C-5.

C.4 Emulator Cable Pod Signal Timing C-6.

C.5 Emulation Timing Calculations C-7.

C.6 Connections Between the Emulator and the Target System C-10.

C.6.1 Buffering Signals C-10.

C.6.2 Using a Target-System Clock C-12.

C.6.3 Configuring Multiple Processors C-13.

ContentsPRELIMINARY

xvContentsPRELIMINARY

C.7 Physical Dimensions for the 14-Pin Emulator Connector C-14.

C.8 Emulation Design Considerations C-16.

C.8.1 Using Scan Path Linkers C-16.

C.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL) C-18.

C.8.3 Using Emulation Pins C-20.

C.8.4 Performing Diagnostic Applications C-24.

D Glossary D-1.

Explains terms, abbreviations, and acronyms used throughout this book.

E Summary of Updates in This Document E-1.

Provides a summary of the updates in this version of the document

Figures PRELIMINARY

 xvi PRELIMINARY

�������

1–1 TMS320 Family 1-3.

2–1 ’C24x High-Level Block Diagram 2-3.

2–2 ’C24x Address and Data Bus Structure 2-4.

3–1 Block Diagram of the Input Scaling, Central Arithmetic Logic, and Multiplication
Sections of the CPU 3-2.

3–2 Block Diagram of the Input Scaling Section 3-3.

3–3 Operation of the Input Shifter for SXM = 0 3-4.

3–4 Operation of the Input Shifter for SXM = 1 3-4.

3–5 Block Diagram of the Multiplication Section 3-5.

3–6 Block Diagram of the Central Arithmetic Logic Section 3-8.

3–7 Shifting and Storing the High Word of the Accumulator 3-11.

3–8 Shifting and Storing the Low Word of the Accumulator 3-11.

3–9 ARAU and Related Logic 3-12.

3–10 Status Register ST0 3-15.

3–11 Status Register ST1 3-15.

4–1 Program Memory Map for ’C24x 4-3.

4–2 Data Memory Map for ’C24x 4-5.

4–3 Pages of Local Data Memory 4-6.

4–4 GREG Register Set to Configure 8K for Global Data Memory 4-10.

4–5 Global and Local Data Memory for GREG = 11100000 4-10.

4–6 I/O-Space Address Map for ’C24x 4-11.

5–1 Program-Address Generation Block Diagram 5-2.

5–2 A Push Operation 5-5.

5–3 A Pop Operation 5-6.

5–4 Four-Level Pipeline Operation 5-7.

6–1 System Configuration Registers 6-4.

6–2 System Control Register (SYSCR) — Address 7018h 6-5.

6–3 System Status Register (SYSSR) — Address 701Ah 6-6.

6–4 System Interrupt Vector Register (SYSIVR) — Address 701Eh 6-8.

6–5 Example of Maskable Interrupt Structure 6-14.

6–6 Interrupt Flag Register (IFR) — Address 0006h 6-17.

6–7 Interrupt Mask Register (IMR) — Address 0004h 6-19.

6–8 Interrupt Service Routine Flow Chart 6-21.

6–9 Interrupt Operation Flow Chart 6-36.

6–10 External Interrupt Control Registers 6-37.

6–11 Type A Interrupt Control Register 6-40.

PRELIMINARYPRELIMINARY

FiguresPRELIMINARY

xviiContentsPRELIMINARY

6–12 Type B Interrupt Control Register 6-42.

6–13 Type C Interrupt Control Register 6-44.

6–14 PM INT Flag Bits 6-46.

6–15 PM INT Enable Bits 6-46.

6–16 Reset Signals 6-48.

7–1 Instruction Register Contents for Example 7–1 7-2.

7–2 Two Words Loaded Consecutively to the Instruction Register in Example 7–2 7-3.

7–3 Pages of Data Memory 7-4.

7–4 Instruction Register (IR) Contents in Direct Addressing Mode 7-5.

7–5 Generation of Data Addresses in Direct Addressing Mode 7-5.

7–6 Instruction Register Content in Indirect Addressing 7-12.

8–1 Bit Numbers and Their Corresponding Bit Codes for BIT Instruction 8-44.

8–2 Bit Numbers and Their Corresponding Bit Codes for BITT Instruction 8-46.

8–3 LST #0 Operation 8-86.

8–4 LST #1 Operation 8-87.

B–1 TMS320 ROM Code Procedural Flow Chart B-2.

C–1 14-Pin Header Signals and Header Dimensions C-2.

C–2 Emulator Cable Pod Interface C-5.

C–3 Emulator Cable Pod Timings C-6.

C–4 Emulator Connections Without Signal Buffering C-10.

C–5 Emulator Connections With Signal Buffering C-11.

C–6 Target-System-Generated Test Clock C-12.

C–7 Multiprocessor Connections C-13.

C–8 Pod/Connector Dimensions C-14.

C–9 14-Pin Connector Dimensions C-15.

C–10 Connecting a Secondary JTAG Scan Path to a Scan Path Linker C-17.

C–11 EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns C-21.

C–12 Suggested Timings for the EMU0 and EMU1 Signals C-22.

C–13 EMU0/1 Configuration With Additional AND Gate to Meet Timing Requirements
of Greater Than 25 ns C-23.

C–14 EMU0/1 Configuration Without Global Stop C-24.

C–15 TBC Emulation Connections for n JTAG Scan Paths C-25.

Tables PRELIMINARY

 xviii PRELIMINARY

������

2–1 Where to Find Information About Program Control Features 2-10.

3–1 Product Shift Modes for the Product-Scaling Shifter 3-7.

3–2 Bit Fields of Status Registers ST0 and ST1 3-16.

4–1 Data Page 0 Address Map 4-7.

4–2 Global Data Memory Configurations 4-9.

5–1 Program-Address Generation Summary 5-3.

5–2 Address Loading to the Program Counter 5-4.

5–3 Conditions for Conditional Calls and Returns 5-10.

5–4 Groupings of Conditions 5-11.

6–1 CPU Cycles to Complete Reads From and Writes to the Peripheral Bus 6-2.

6–2 ’C24x Interrupt Locations and Priorities 6-10.

6–3 Priorities of the Maskable Interrupt Levels in the DSP Core 6-15.

6–4 Priority Ranking Under INT1 6-16.

6–5 ’C24x Maskable Interrupt Vector Table 6-22.

6–6 Example Interrupt Locations and Priorities 6-23.

6–7 Example of Method 1 ISR 6-26.

6–8 Example of Method 2 ISR 6-28.

6–9 Example of Method 3 ISR 6-30.

6–10 One Implementation of an ISR for NMI 6-31.

6–11 External Interrupt Pin Types 6-40.

6–12 External Interrupt Pin Functions and Corresponding Bit Settings 6-45.

6–13 Power-Down Modes 6-52.

6–14 Setting the Power-Down Mode with the PLLPM Bits 6-53.

6–15 Power-Down Modes and Their Termination 6-55.

6–16 Power-Down Modes/Run Mode Summary 6-57.

7–1 Indirect Addressing Operands 7-10.

7–2 Effects of the ARU Code on the Current Auxiliary Register 7-12.

7–3 Field Bits and Notation for Indirect Addressing 7-13.

8–1 Accumulator, Arithmetic, and Logic Instructions 8-5.

8–2 Auxiliary Register Instructions 8-7.

8–3 TREG, PREG, and Multiply Instructions 8-8.

8–4 Branch Instructions 8-9.

8–5 Control Instructions 8-10.

8–6 I/O and Memory Instructions 8-11.

8–7 Product Shift Modes 8-36.

8–8 Product Shift Modes 8-166.

PRELIMINARY

TablesPRELIMINARY

xixContentsPRELIMINARY

A–1 Symbols and Acronyms Used in the Instruction Set Comparison Table A-3.

A–2 Summary of Enhanced Instructions A-5.

A–3 Instruction Set Comparison A-6.

C–1 14-Pin Header Signal Descriptions C-3.

C–2 Emulator Cable Pod Timing Parameters C-6.

Examples PRELIMINARY

 xx PRELIMINARY

��������

7–1 RPT Instruction Using Short-Immediate Addressing 7-2.

7–2 ADD Instruction Using Long-Immediate Addressing 7-2.

7–3 Using Direct Addressing with ADD (Shift of 0 to 15) 7-7.

7–4 Using Direct Addressing with ADD (Shift of 16) 7-7.

7–5 Using Direct Addressing with ADDC 7-8.

7–6 Selecting a New Current Auxiliary Register 7-11.

7–7 Indirect Addressing—No Increment or Decrement 7-14.

7–8 Indirect Addressing—Increment by 1 7-14.

7–9 Indirect Addressing—Decrement by 1 7-15.

7–10 Indirect Addressing—Increment by Index Amount 7-15.

7–11 Indirect Addressing—Decrement by Index Amount 7-15.

7–12 Indirect Addressing—Increment by Index Amount With Reverse Carry Propagation 7-15.

7–13 Indirect Addressing—Decrement by Index Amount With Reverse Carry Propagation 7-15.

C–1 Key Timing for a Single-Processor System Without Buffers C-8.

C–2 Key Timing for a Single-Processor System Without Buffering (SPL) C-19.

PRELIMINARY

1-1IntroductionPRELIMINARY

������	�����

The TMS320C24x (’C24x) series is a member of the TMS320 family of digital

signal processors (DSPs). The ’C24x series is designed to meet a wide range

of digital motor control (DMC) applications. This chapter provides an overview

of the current TMS320 family, describes the background and benefits of the

’C24x DSP controller products, and introduces the ’C240 device.

Topic Page

1.1 TMS320 Family Overview 1-2.

1.2 TMS320C24x Series of DSP Controllers 1-4.

1.3 TMS320C240 Overview 1-6.

Chapter 1

PRELIMINARY

PRELIMINARY

TMS320 Family Overview PRELIMINARY

 1-2 PRELIMINARY

1.1 TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, multiprocessor digi-

tal signal processors (DSPs), and fixed-point DSP controllers. TMS320 DSPs

have an architecture designed specifically for real-time signal processing. The

’C24x series of DSP controllers combines this real-time processing capability

with controller peripherals to create an ideal solution for control system

applications. The following characteristics make the TMS320 family the right

choice for a wide range of processing applications:

� Very flexible instruction set

� Inherent operational flexibility

� High-speed performance

� Innovative parallel architecture

� Cost-effectiveness

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point

DSP in the TMS320 family. Before the end of the year, Electronic Products

magazine awarded the TMS32010 the title “Product of the Year”. Today, the

TMS320 family consists of these generations (Figure 1–1): ’C1x, ’C2x, ’C2xx,

’C5x, ’C54x, and ’C6x fixed-point DSPs; ’C3x and ’C4x floating-point DSPs;

and ’C8x multiprocessor DSPs. The ’C24x is considered part of the ’C2xx

family of fixed-point DSPs.

Devices within a generation of the TMS320 family have the same CPU struc-

ture but different on-chip memory and peripheral configurations. Spin-off

devices use new combinations of on-chip memory and peripherals to satisfy

a wide range of needs in the worldwide electronics market. By integrating

memory and peripherals onto a single chip, TMS320 devices reduce system

costs and save circuit board space.

TMS320 Family OverviewPRELIMINARY

1-3IntroductionPRELIMINARY

Figure 1–1. TMS320 Family

TMS320C24x Series of DSP Controllers PRELIMINARY

 1-4 PRELIMINARY

1.2 TMS320C24x Series of DSP Controllers

Designers are recognizing the opportunity to redesign existing DMC systems

to use advanced algorithms, yielding better performance and reducing system

component count. DSPs are enabling:

� Design of robust controllers for a new generation of inexpensive motors,

such as AC induction, DC permanent magnet, and switched-reluctance

motors

� Full variable-speed control of brushless motor types that have lower

manufacturing cost and higher reliability

� Energy savings through variable-speed control, saving up to 25% of the

energy used by fixed-speed controllers

� Increased fuel economy, improved performance, and elimination of

hydraulic fluid in automotive electronic power steering (EPS) systems

� Reduced manufacturing and maintenance costs by eliminating hydraulic

fluids in automotive electronic braking systems

� More efficient and quieter operation due to less generation of torque

ripple, resulting in less loss of power, lower vibration, and longer life

� Elimination or reduction of memory lookup tables through real-time poly-

nomial calculation, thereby reducing system cost

� Use of advanced algorithms that can reduce the number of sensors

required in a system

� Control of power switching inverters along with control algorithm

processing

� Single-processor control of multimotor systems

The ’C24x DSP controllers are designed to meet the needs of control-based

applications. By integrating the high performance of a DSP core and the

on-chip peripherals of a microcontroller into a single-chip solution, the ’C24x

series yields a device that is an affordable alternative to traditional microcon-

troller units (MCUs) and expensive multichip designs. At 20 million instructions

per second (MIPS), the ’C24x DSP controllers offer significant performance

over traditional 16-bit microcontrollers and microprocessors.

The 16-bit, fixed-point DSP core of the ’C24x devices provides analog design-

ers a digital solution that does not sacrifice the precision and performance of

their systems. In fact, system performance can be enhanced through the use

TMS320C24x Series of DSP ControllersPRELIMINARY

1-5IntroductionPRELIMINARY

of advanced control algorithms for techniques such as adaptive control,

Kalman filtering, and state control. The ’C24x DSP controllers offer reliability

and programmability. Analog control systems, on the other hand, are hard-

wired solutions and can experience performance degradation due to aging,

component tolerance, and drift.

The high-speed central processing unit (CPU) allows the digital designer to

process algorithms in real time rather than approximate results with look-up

tables. The instruction set of these DSP controllers, which incorporates both

signal processing instructions and general-purpose control functions, coupled

with the extensive development support available for the ’C24x devices,

reduces development time and provides the same ease of use as traditional

8- and 16-bit microcontrollers. The instruction set also allows you to retain your

software investment when moving from other general-purpose TMS320 fixed-

point DSPs. It is source- and object-code compatible with the other members

of the ’C2xx generation, source code compatible with the ’C2x generation, and

upward source code compatible with the ’C5x generation of DSPs from Texas

Instruments.

The ’C24x architecture is also well-suited for processing control signals. A

16-bit word length is used along with 32-bit registers for storing intermediate

results, and two hardware shifters are available to scale numbers indepen-

dently of the CPU. This combination minimizes quantization and truncation

errors, and increases processing power for additional functions. Such func-

tions might include a notch filter that could cancel mechanical resonances in

a system or an estimation technique that could eliminate state sensors in a

system.

The ’C24x DSP controllers take advantage of an existing set of peripheral

functions that allow Texas Instruments to quickly configure various series

members for different price/performance points or for application optimization.

This library of both digital and mixed-signal peripherals includes:

� Timers

� Serial communications ports (SCI, SPI)

� Analog-to-digital converters (ADC)

� Event manager

� System protection, such as low-voltage detection and watchdog timers

The DSP controller peripheral library is continually growing and changing to

suit the needs of tomorrow’s embedded control marketplace.

TMS320C240 Overview PRELIMINARY

 1-6 PRELIMINARY

1.3 TMS320C240 Overview

The TMS320C240 is the first standard device introduced in the ’C24x series

of DSP controllers. It sets the standard for a single-chip digital motor controller.

The ’C240 can execute 20 MIPS. Almost all instructions are executed in a

single cycle of 50 ns. This high performance allows real-time execution of very

complex control algorithms, such as adaptive control and Kalman filters. Very

high sampling rates can also be used to minimize loop delays.

The ’C240 has the architectural features necessary for high-speed signal

processing and digital control functions, and it has the peripherals needed to

provide a single-chip solution for motor control applications. The ’C240 is

manufactured using submicron CMOS technology, achieving a low power

dissipation rating. Also included are several power-down modes for further

power savings.

Applications that benefit from the advanced processing power of the ’C240

include:

� Industrial motor drives

� Power inverters and controllers

� Automotive systems, such as electronic power steering, anti-lock brakes,

and climate control

� Appliance and HVAC blower/compressor motor controls

� Printers, copiers, and other office products

� Tape drives, magnetic optical drives, and other mass storage products

� Robotics and CNC milling machines

To function as a system manager, DSPs must have robust on-chip I/O and

other peripherals. The event manager of the ’C240 is unlike any other avail-

able on a DSP. This application-optimized peripheral unit, coupled with the

high-performance DSP core, enables the use of advanced control techniques

for high-precision and high-efficiency full variable-speed control of all motor

types. Included in the event manager are special pulse-width modulation

(PWM) generation functions, such as a programmable dead-band function

and a space vector PWM state machine for three-phase motors that provides

state-of-the-art maximum efficiency in the switching of power transistors.

Three independent up/down timers, each with it’s own compare register,

support the generation of asymmetric (noncentered) as well as symmetric

(centered) PWM waveforms. Two of the four capture inputs are direct connec-

tions for quadrature encoder pulse signals from an optical encoder.

TMS320C240 OverviewPRELIMINARY

1-7IntroductionPRELIMINARY

Here is a summary of ’C240 features:

� TMS320C2xx core CPU:

� 32-bit central arithmetic logic unit (CALU)

� 32-bit accumulator

� 16-bit × 16-bit parallel multiplier with a 32-bit product capability

� Three scaling shifters

� Eight 16-bit auxiliary registers with a dedicated arithmetic unit for

indirect addressing of data memory

� Memory:

� 544 words × 16 bits of on-chip data/program dual-access RAM

� 16K words × 16 bits of on-chip program ROM or flash EEPROM

� 224K words × 16 bits of maximum addressable memory space (64K

words of program space, 64K words of data space, 64K words of I/O

space, and 32K words of global space)

� External Memory Interface Module with a software wait-state

generator, a 16-bit address bus, and a 16-bit data bus

� Support of hardware wait-states

� Program control:

� Four-level pipeline operation

� Eight-level hardware stack

� Six external interrupts: power-drive protection interrupt, reset, NMI,

and three maskable interrupts

� Instruction set:

� Source code compatibility with ’C2x, ’C2xx, and ’C5x fixed-point

generations of the TMS320 family

� Single-instruction repeat operation

� Single-cycle multiply/accumulate instructions

� Memory block move instructions for program/data management

� Indexed-addressing capability

� Bit-reversed indexed-addressing capability for radix-2 fast Fourier

transforms (FFTs)

� Power:

� Static CMOS technology

� Four power-down modes to reduce power consumption

TMS320C240 Overview PRELIMINARY

 1-8 PRELIMINARY

� Emulation: IEEE Standard 1149.1 test access port interface to on-chip

scan-based emulation logic

� Speed: 50-ns (20 MIPS) instruction cycle time, with most instructions

single-cycle

� Event manager:

� 12 compare/pulse-width modulation (PWM) channels (9 independent)

� Three 16-bit general-purpose timers with six modes, including contin-

uous up counting and continuous up/down counting

� Three 16-bit full compare units with dead band capability

� Three 16-bit simple compare units

� Four capture units, two of which have quadrature encoder-pulse inter-

face capability

� Dual 10-bit analog-to-digital converter

� 28 individually programmable, multiplexed I/O pins

� Phase-locked loop (PLL)-based clock module

� Watchdog timer module with real-time interrupt

� Serial communication interface (SCI)

� Serial peripheral interface (SPI)

PRELIMINARY

2-1Architectural OverviewPRELIMINARY

�
��������
�	���
���

This chapter provides an overview of the architectural structure and compo-

nents of the ’C24x. The ’C24x uses an advanced, modified Harvard architec-

ture that maximizes processing power by maintaining separate bus structures

for program memory and data memory.

Topic Page

2.1 Architecture Summary 2-2.

2.2 Memory 2-5.

2.3 Central Processing Unit 2-8.

2.4 Program Control 2-10.

2.5 On-Chip Peripherals 2-11.

2.6 Serial-Scan Emulation 2-11.

Chapter 2

PRELIMINARY

PRELIMINARY

Architecture Summary PRELIMINARY

2-2 PRELIMINARY

2.1 Architecture Summary

A high-level block diagram of the ’C24x architecture is shown in Figure 2–1.

The ’C24x architecture is based on the modified Harvard architecture, which

supports separate bus structures for program space and data space. A third

space, the input/output (I/O) space, is also available and is accessible through

the external bus interface (shown at the bottom of the figure). To support a

large selection of peripherals, a peripheral bus is used. The peripheral bus is

mapped to the data space and interfaced to the data bus through the system

module. Thus, all the instructions that operate on the data space also operate

on all the peripheral registers.

Separate program and data spaces allow simultaneous access to program

instructions and data. For example, while data is multiplied, a previous product

can be added to the accumulator, and, at the same time, a new address can

be generated. Such parallelism supports a set of arithmetic, logic, and bit-ma-

nipulation operations that can all be performed in a single machine cycle. The

’C24x also includes control mechanisms to manage interrupts, repeated op-

erations, and function/subroutine calls.

The bus structure shown in Figure 2–1 forms the basis of the entire ’C24x gen-

eration of devices. In addition, the CPU is identical for all ’C24x devices. How-

ever, each different device configuration has a unique combination of memory

and peripheral modules. In the figure, the address ranges given for the

memory modules are for the maximum allowable memory sizes. Typically,

specific ’C24x devices have subsets of these ranges. The peripheral locations

shown in the figure are true for all ’C24x devices. If more than one instance of

a certain peripheral is on a device, each additional instance occupies one of

the slots labeled Spare in the figure. The exact memory and peripheral config-

urations for a specific ’C24x device are defined in the TMS320C24x DSP Con-

trollers Reference Set, Volume 2: Peripheral Library and Specific Devices and

in the device data sheet.

Architecture SummaryPRELIMINARY

2-3Architectural OverviewPRELIMINARY

Figure 2–1. ’C24x High-Level Block Diagram

System control register
7010h–701Fh

External interrupt control
7070h–707Fh

Flash/ROM
4/8/16/32K

0000h–7FFFh

Spare
7000h–700Fh

WD/RTI/PLL
7020h–702Fh

ADC(s)
7030h–703Fh

SPI
7040h–704Fh

SCI
7050h–705Fh

Spare
7060h–706Fh

Spare
7080h–708Fh

Digital I/O
7090h–709Fh

Spare
70A0h–70AFh

Spare
70B0h–70BFh

Spare
7100h–73FFh

System
module

DARAM (B0)
256/512 words†

FE00h–FFFFh
Prog. space

(CNF=1)

0100h–02FFh
Data space

(CNF=0)

DARAM (B1)
256/512 words†

0300h–04FFh

DARAM (B2)
32 words

0060h–007Fh

SARAM
1/2/4/8/16K words

‡6000h–9FFFh
Prog. space

0800h–6FFFh
Data space

Event
manager

7400h–743Fh

Test and
emulation

Wait state
generator

External bus interface

Peripheral bus

Data bus

Program bus
’C2xx
CPU

I/O bus

External buses

† Size of DARAM depends on device
‡ Start address of SARAM depends on end address of ROM/Flash

Spare
70C0h–70FFh

16 16 16 16

Architecture Summary PRELIMINARY

 2-4 PRELIMINARY

The internal data and program bus structure is further divided into six 16-bit

buses (see Figure 2–2):

� PAB. The program address bus provides addresses for both reads from

and writes to program memory.

� DRAB. The data-read address bus provides addresses for reads from

data memory.

� DWAB. The data-write address bus provides addresses for writes to data

memory.

� PRDB. The program read bus carries instruction code and immediate op-

erands, as well as table information, from program memory to the CPU.

� DRDB. The data-read bus carries data from data memory to the central

arithmetic logic unit (CALU) and the auxiliary register arithmetic unit

(ARAU).

� DWEB. The data-write bus carries data to both program memory and data

memory.

Having separate address buses for data reads (DRAB) and data writes

(DWAB) allows the CPU to read and write in the same machine cycle.

Figure 2–2. ’C24x Address and Data Bus Structure

B0
DARAM

Flash/
ROM

SARAM
B1, B2
DARAM

Memory-
mapped
registers

PAB

DRAB

DWAB

PRDB

DRDB

DWEB

Central processing unit (CPU)

External
address bus

External
data bus

System moduleExternal bus
interface

MemoryPRELIMINARY

2-5Architectural OverviewPRELIMINARY

2.2 Memory

The ’C24x can contain the following kinds of on-chip memory:

� Dual-access RAM (DARAM)

� Single-access RAM (SARAM)

� Flash EEPROM or ROM (masked)

The ’C24x memory is organized into four individually-selectable spaces:

� Program (64K words)

� Local data (64K words)

� Global data (32K words)

� Input/Output (64K words)

These spaces form an address range of 224K words. For a detailed descrip-

tion of the ’C24x memory and I/O spaces, see Chapter 4, Memory and I/O

Spaces.

2.2.1 On-Chip Dual-Access RAM (DARAM)

The ’C24x devices can have up to a maximum of 1056 words of on-chip

DARAM, which can be accessed twice per machine cycle. This memory is

primarily intended to hold data but, when needed, can also be used to hold pro-

grams. The memory can be configured in one of two ways, depending on the

state of the CNF bit of status register ST1.

If total DARAM is 1056 words:

� When CNF = 0, all 1056 words are configured as data memory.

� When CNF = 1, 544 words are configured as data memory and 512 words

are configured as program memory.

If total DARAM is 544 words:

� When CNF = 0, all 544 words are configured as data memory.

� When CNF = 1, 288 words are configured as data memory and 256 words

are configured as program memory.

For the DARAM configurations of a particular ’C24x device, see the

TMS320C24x DSP Controllers Reference Set, Volume 2: Peripheral Library

and Specific Devices and the device data sheet.

Memory PRELIMINARY

2-6 PRELIMINARY

Because DARAM can be accessed twice per cycle, it improves the speed of

the CPU. The CPU operates within a 4-cycle pipeline. In this pipeline, the CPU

reads data on the third cycle and writes data on the fourth cycle. However, DA-

RAM allows the CPU to write and read in one cycle; the CPU writes to DARAM

on the master phase of the cycle and reads from DARAM on the slave phase.

For example, suppose two instructions, A and B, store the accumulator value

to DARAM and load the accumulator with a new value from DARAM. Instruc-

tion A stores the accumulator value during the master phase of the CPU cycle,

and instruction B loads the new value to the accumulator during the slave

phase. Because part of the dual-access operation is a write, it only applies to

RAM.

2.2.2 On-Chip Program/Data Single-Access RAM (SARAM)

The ’C24x can have up to 16K 16-bit words of single-access RAM (SARAM),

starting at address 800h in data space and the top of ROM/Flash in program

space. These addresses can be used for both data memory and program

memory. For example, in Figure 2–1, the SARAM block is double mapped to

both program and data space. Code can be booted from off-chip ROM and

then executed at full speed once it is loaded into the on-chip SARAM.

SARAM is accessed only once per CPU cycle. When the CPU requests multi-

ple accesses, the SARAM schedules the accesses by providing a not-ready

condition to the CPU and then executing the accesses, one per cycle. For ex-

ample, if the instruction sequence involves storing the accumulator value and

then loading a value to the accumulator, it would take two cycles to complete

in SARAM, compared to one cycle in DARAM.

The SARAM block allows for more flexible address mapping than the DARAM

block because SARAM can be mapped to program and data memory at the

same time. Because of this, however, an instruction fetch and a data fetch that

could be performed in one cycle using DARAM may take two cycles with

SARAM.

2.2.3 Flash EEPROM

The ’C24x family supports from 4K words to 64K words of on-chip flash

EEPROM. The flash memory supports single cycle/single access in read

mode. In write mode (programming), the ’C24x requires the regular 5-V supply

on pin VCCP . The higher programming voltage is generated by on-chip charge

pumps.

Detailed descriptions of the control register and bit functions used to program

the flash block are given in the TMS320C24x DSP Controllers Reference Set,

Volume 2: Peripheral Library and Specific Devices.

MemoryPRELIMINARY

2-7Architectural OverviewPRELIMINARY

2.2.4 Factory-Masked ROM

For large-volume applications in which the software is stable and free of bugs,

low-cost, masked ROM is available. ROM sizes from 4K words to 32K words

are supported. If you want a custom ROM, you can provide the code or data

to be programmed into the ROM in object-file format, and Texas Instruments

will generate the appropriate process mask to program the ROM. See Appen-

dix B, Submitting ROM Codes to TI, for details.

2.2.5 External Memory Interface Module

In addition to full, on-chip memory support, the ’C24x can provide access to

external memory by way of the external memory interface module. This inter-

face provides 16 external address lines, 16 external data lines, and relevant

control signals to select data, program, and I/O spaces. A wait-state generator

allows interfacing with slower off-chip memory and peripherals. For a detailed

description of the external memory interface, see the TMS320C24x DSP Con-

trollers Reference Set, Volume 2: Peripheral Library and Specific Devices.

Central Processing Unit PRELIMINARY

2-8 PRELIMINARY

2.3 Central Processing Unit

The ’C2xx CPU is on all the ’C24x devices. It contains:

� A 32-bit central arithmetic logic unit (CALU)

� A 32-bit accumulator

� Input and output data-scaling shifters for the CALU

� A 16-bit × 16-bit multiplier

� A product-scaling shifter

� Data-address generation logic, which includes eight auxiliary registers

and an auxiliary register arithmetic unit (ARAU)

� Program-address generation logic

2.3.1 Central Arithmetic Logic Unit (CALU) and Accumulator

The ’C24x performs 2s-complement arithmetic using the 32-bit CALU. The

CALU uses 16-bit words taken from data memory or derived from an immedi-

ate instruction, or it uses the 32-bit result from the multiplier. In addition to arith-

metic operations, the CALU can perform Boolean operations.

The accumulator stores the output from the CALU; it can also provide a second

input to the CALU. The accumulator is 32 bits wide and is divided into a high-

order word (bits 31 through 16) and a low-order word (bits 15 through 0).

Assembly language instructions are provided for storing the high- and low-

order accumulator words to data memory.

2.3.2 Scaling Shifters

The ’C24x has three 32-bit shifters that allow for scaling, bit extraction,

extended arithmetic, and overflow-prevention operations:

� Input data-scaling shifter (input shifter). This shifter left shifts 16-bit in-

put data by 0 to 16 bits to align the data to the 32-bit input of the CALU.

� Output data-scaling shifter (output shifter). This shifter can left shift

output from the accumulator by 0 to 7 bits before the output is stored to

data memory. The content of the accumulator remains unchanged.

� Product-scaling shifter (product shifter). The product register (PREG)

receives the output of the multiplier. The product shifter shifts the output

of the PREG before that output is sent to the input of the CALU. The prod-

uct shifter has four product shift modes (no shift, left shift by one bit, left

shift by four bits, and right shift by six bits), which are useful for performing

multiply/accumulate operations, performing fractional arithmetic, or justi-

fying fractional products.

Central Processing UnitPRELIMINARY

2-9Architectural OverviewPRELIMINARY

2.3.3 Multiplier

The on-chip multiplier performs 16-bit × 16-bit 2s-complement multiplication

with a 32-bit result. In conjunction with the multiplier, the ’C24x uses the 16-bit

temporary register (TREG) and the 32-bit product register (PREG). The TREG

always supplies one of the values to be multiplied. The PREG receives the

result of each multiplication.

Using the multiplier, TREG, and PREG, the ’C24x efficiently performs funda-

mental DSP operations such as convolution, correlation, and filtering. The ef-

fective execution time of each multiplication instruction can be as short as one

CPU cycle.

2.3.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indi-

rect addressing (see Chapter 7, Addressing Modes) to access data memory.

The ARAU is supported by eight auxiliary registers (AR0 through AR7), each

of which can be loaded with a 16-bit value from data memory or directly from

an instruction word. Each auxiliary register value can also be stored to data

memory. The auxiliary registers are referenced by a 3-bit auxiliary register

pointer (ARP) embedded in status register ST0.

Program Control PRELIMINARY

2-10 PRELIMINARY

2.4 Program Control

Several hardware and software mechanisms provide program control:

� Program control logic decodes instructions, manages the 4-level pipeline,

stores the status of operations, and decodes conditional operations. Hard-

ware elements included in the program control logic are the program

counter, the status registers, the stack, and the address-generation logic.

� Software mechanisms used for program control include branches, calls,

conditional instructions, a repeat instruction, reset, interrupts, and power-

down modes.

Table 2–1 shows where you can find detailed information about these program

control features.

Table 2–1. Where to Find Information About Program Control Features

For information about See

Address-generation logic Chapter 5, Program Control

Branches, calls, and returns Chapter 5, Program Control

Conditional operations Chapter 5, Program Control

Interrupts Chapter 6, System Functions

Pipeline Chapter 5, Program Control

Power-down modes Chapter 6, System Functions

Program counter Chapter 5, Program Control

Repeat instruction Chapter 5, Program Control

Reset Chapter 6, System Functions

Stack Chapter 5, Program Control

Status registers Chapter 3, Central Processing Unit

On-Chip PeripheralsPRELIMINARY

2-11Architectural OverviewPRELIMINARY

2.5 On-Chip Peripherals

As shown in Figure 2–1 (page 2-3), the ’C24x bus structure supports access

to numerous peripherals. Two types of bus interfaces are used for the on-chip

peripherals. Most of the peripherals are accessed using the peripheral bus.

This bus is mapped to the data space through the control of the system mod-

ule. Each access to one of these peripherals requires more than one cycle.

However, the event manager fits directly onto the data bus and takes advan-

tage of the full speed of the DSP central processing unit (CPU). An access to

the event manager is made with zero wait states; a read takes one cycle and

a write takes two cycles.

Each individual ’C24x device has a unique combination of peripheral modules.

However, the address locations for the peripherals are fixed and are the same

for all ’C24x devices. If more than one instance of a particular peripheral is on

the device, each additional instance occupies one of the locations labeled

Spare in Figure 2–1.

For detailed descriptions of the peripherals, refer to the TMS320C24x DSP

Controllers Reference Set, Volume 2: Peripheral Library and Specific Devices.

2.6 Serial-Scan Emulation

The ’C24x has seven pins dedicated to the serial scan emulation port (JTAG

port). This port allows for nonintrusive emulation of the ’C24x devices and is

supported by Texas Instruments emulation tools and by many third party de-

bugger tools. For documentation on these emulation and debugger tools, see

Related Documentation From Texas Instruments on page v of the preface and

Appendix C, Design Considerations for Using XDS510 Emulator.

On-Chip Peripherals / Serial-Scan Emulation

PRELIMINARY

 2-12 PRELIMINARY

3-1

�����
�������	�����	�

This chapter describes the ’C24x central processing unit (CPU) operations.

The CPU can perform high-speed arithmetic operations within one instruction

cycle because of its parallel architectural design.

First, this chapter describes three fundamental sections of the CPU (see

Figure 3–1). The chapter then describes the auxiliary register arithmetic unit

(ARAU), which performs arithmetic operations independently of the central

arithmetic logic section. The chapter concludes with a description of status

registers ST0 and ST1, which contain bits for determining processor modes,

addressing pointer values, and indicating various processor conditions and

arithmetic logic results.

Topic Page

3.1 Input Scaling Section 3-3.

3.2 Multiplication Section 3-5.

3.3 Central Arithmetic Logic Section 3-8.

3.4 Auxiliary Register Arithmetic Unit (ARAU) 3-12.

3.5 Status Registers ST0 and ST1 3-15.

Chapter 3

PRELIMINARY

PRELIMINARY

PRELIMINARY

3-2 PRELIMINARY

Figure 3–1. Block Diagram of the Input Scaling, Central Arithmetic Logic, and
Multiplication Sections of the CPU

32

Input shifter (32 bits)

16

32

Output shifter (32 bits)

32

C Accumulator

CALU

32

32

MUX

32

16

MUX MUX

16 16

PREG

Multiplier
16 × 16

16

Data write bus (DWEB)

Data read bus (DRDB)

TREG

1616

Program read bus (PRDB)

16

16

Product shifter (32 bits)

16

Central arithmetic logic
section

Multiplication
section

31 016 15

32

Input scaling
section

Central Processing Unit

Input Scaling SectionPRELIMINARY

3-3Central Processing UnitPRELIMINARY

3.1 Input Scaling Section

A 32-bit input data-scaling shifter (input shifter) aligns a 16-bit value coming

from memory to the 32-bit central arithmetic logic unit (CALU). This data

alignment is necessary for data-scaling arithmetic, as well as aligning masks

for logical operations. The input shifter operates as part of the data path

between program or data space and the CALU and, thus, requires no cycle

overhead. Described directly below are the input, the output, and the shift

count of the input shifter. Throughout the discussion, refer to Figure 3–2.

Figure 3–2. Block Diagram of the Input Scaling Section

Input shifter (32 bits)

16

32

16

MUX

31 016 15

Input scaling
section

16

From data memory (DRDB)

From program memory (PRDB)

To CALU

Input. Bits 15 through 0 of the input shifter accept a 16-bit input from either of

two sources (see Figure 3–2):

� The data read bus (DRDB). This input is a value from a data memory loca-

tion referenced in an instruction operand.

� The program read bus (PRDB). This input is a constant value given as an

instruction operand.

Output. After a value has been accepted into bits 15 through 0, the input shifter

aligns the16-bit value to the 32-bit bus of the CALU as shown in Figure 3–2.

The shifter shifts the value left 0 to 16 bits and then sends the 32-bit result to

the CALU.

During the left shift, unused LSBs in the shifter are filled with 0s, and unused

MSBs in the shifter are either filled with 0s or sign extended, depending on the

value of the sign-extension mode bit (SXM) of status register ST1.

Input Scaling Section PRELIMINARY

 3-4 PRELIMINARY

Shift count. The shifter can left shift a 16-bit value by 0 to 16 bits. The size

of the shift (or the shift count) is obtained from one of two sources:

� A constant embedded in the instruction word. Putting the shift count in the

instruction word allows you to use specific data-scaling or alignment op-

erations customized for your program code.

� The four LSBs of the temporary register (TREG). The TREG-based shift

allows the data-scaling factor to be determined dynamically so that it can

be adapted to the system’s performance.

Sign-extension mode bit. For many but not all instructions, the sign-exten-

sion mode bit (SXM), bit 10 of status register ST1, determines whether the

CALU uses sign extension during its calculations. If SXM = 0, sign extension

is suppressed. If SXM = 1, the output of the input shifter is sign extended.

Figure 3–3 shows an example of an input value shifted left by eight bits for

SXM = 0. The MSBs of the value passed to the CALU are zero filled.

Figure 3–4 shows the same shift but with SXM = 1. The value is sign extended

during the shift.

Figure 3–3. Operation of the Input Shifter for SXM = 0

Output value
after left shift of 8

(SXM = 0)

X X X X A F 1 1

16

Input shifter
accepting the

value
32

0 0 A F 1 1 0 0

A F 1 1

Figure 3–4. Operation of the Input Shifter for SXM = 1

Output value
after left shift of 8

(SXM = 1)

X X X X A F 1 1

16

Input shifter
accepting the

value
32

F F A F 1 1 0 0

A F 1 1

Multiplication SectionPRELIMINARY

3-5Central Processing UnitPRELIMINARY

3.2 Multiplication Section

The ’C24x uses a 16-bit × 16-bit hardware multiplier that can produce a signed

or unsigned 32-bit product in a single machine cycle. As shown in Figure 3–5,

the multiplication section consists of:

� The 16-bit temporary register (TREG), which holds one of the multipli-

cands

� The multiplier, which multiplies the TREG value by a second value from

data memory or program memory

� The 32-bit product register (PREG), which receives the result of the multi-

plication

� The product shifter, which scales the PREG value before passing it to the

CALU

Figure 3–5. Block Diagram of the Multiplication Section

32

MUX

PREG

Multiplier
16 × 16

16

TREG

Product shifter (32 bits)

Multiplication
section

From data memory

16

From data
memory

16

From program memory

16

To CALU

32

From data memory

16

16
To data memory

To high word
of PREG

3.2.1 Multiplier

The 16-bit × 16-bit hardware multiplier can produce a signed or unsigned

32-bit product in a single machine cycle. The two numbers being multiplied are

treated as 2s-complement numbers, except during unsigned multiplication

(MPYU instruction). Descriptions of the inputs and output of the multiplier

follow.

Multiplication Section PRELIMINARY

3-6 PRELIMINARY

Inputs. The multiplier accepts two 16-bit inputs:

� One input is always from the 16-bit temporary register (TREG). The TREG

is loaded before the multiplication with a data-value from the data read bus

(DRDB).

� The other input is one of the following:

� A data-memory value from the data read bus (DRDB)

� A program memory value from the program read bus (PRDB)

Output. After the two 16-bit inputs are multiplied, the 32-bit result is stored in

the product register (PREG). The output of the PREG is connected to the 32-bit

product-scaling shifter. Through this shifter, the product may be transferred

from the PREG to the CALU or to data memory (by the SPH and SPL instruc-

tions).

3.2.2 Product-Scaling Shifter

The product-scaling shifter (product shifter) facilitates scaling of the product

register (PREG) value. The shifter has a 32-bit input connected to the output

of the PREG and a 32-bit output connected to the input of the CALU.

Input. The shifter has a 32-bit input connected to the output of the PREG.

Output. After the shifter completes the shift, all 32 bits of the result can be

passed to the CALU, or 16 bits of the result can be stored to data memory.

Shift Modes. This shifter uses one of four product shift modes, summarized

in Table 3–1. As shown in the table, these modes are determined by the prod-

uct shift mode (PM) bits of status register ST1. In the first shift mode (PM = 00),

the shifter does not shift the product at all before giving it to the CALU or to data

memory. The next two modes cause left shifts (of one or four), which are useful

for implementing fractional arithmetic or justifying products. The right-shift

mode shifts the product by six bits, enabling the execution of up to 128 consec-

utive multiply-and-accumulate operations without causing the accumulator to

overflow. Note that the content of the PREG remains unchanged; the value is

copied to the product shifter and shifted there.

Note:

The right shift in the product shifter is always sign extended, regardless of
the value of the sign-extension mode bit (SXM) of status register ST1.

Multiplication SectionPRELIMINARY

3-7Central Processing UnitPRELIMINARY

Table 3–1. Product Shift Modes for the Product-Scaling Shifter

ÁÁ
ÁÁ

PMÁÁÁÁ
ÁÁÁÁ

Shift ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Comments†

ÁÁ
ÁÁ

00
ÁÁÁÁ
ÁÁÁÁ

No shift
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Product sent to CALU or data write bus (DWEB) with no shift
ÁÁ
ÁÁ
ÁÁ

01
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Left 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Removes the extra sign bit generated in a 2s-complement multiply

to produce a Q31 product

ÁÁ
ÁÁ
ÁÁ
ÁÁ

10c
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Left 4
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Removes the extra four sign bits generated in a 16-bit × 13-bit

2s-complement multiply to produce a Q31 product when multiplying

by a 13-bit constant

ÁÁ
ÁÁ
ÁÁ
ÁÁ

11ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Right 6ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scales the product to allow up to 128 product accumulations without

overflowing the accumulator. The right shift is always sign extended,

regardless of the value of the sign-extension mode bit (SXM) of

status register ST1.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† A Q31 number is a binary fraction in which there are 31 digits to the right of the binary point

(the base 2 equivalent of the base 10 decimal point).

Central Arithmetic Logic Section PRELIMINARY

 3-8 PRELIMINARY

3.3 Central Arithmetic Logic Section

Figure 3–6 shows the main components of the central arithmetic logic section,

which are:

� The central arithmetic logic unit (CALU), which implements a wide range

of arithmetic and logic functions

� The 32-bit accumulator (ACC), which receives the output of the CALU and

is capable of performing bit shifts on its contents with the help of the carry

bit (C). Figure 3–6 shows the accumulator’s high word (ACCH) and low

word (ACCL).

� The output shifter, which can shift a copy of either the high word or low

word of the accumulator before sending it to data memory for storage

Figure 3–6. Block Diagram of the Central Arithmetic Logic Section

ACCH

32

32

Output shifter (32 bits)

32

C ACCL

CALU

MUXCentral arithmetic logic
section

32

From product shifter

From input shifter

3232

To data memory

16

Central Arithmetic Logic SectionPRELIMINARY

3-9Central Processing UnitPRELIMINARY

3.3.1 Central Arithmetic Logic Unit (CALU)

The CALU implements a wide range of arithmetic and logic functions, most of

which execute in a single clock cycle. These functions can be grouped into four

categories:

� 16-bit addition

� 16-bit subtraction

� Boolean logic operations

� Bit testing, shifting, and rotating

Because the CALU can perform Boolean operations, you can perform bit ma-

nipulation. For bit shifting and rotating, the CALU uses the accumulator. The

CALU is referred to as central because there is an independent arithmetic unit,

the auxiliary register arithmetic unit (ARAU), which is described in Section 3.4.

A description of the inputs, the output, and an associated status bit of the CALU

follows.

Inputs. The CALU has two inputs (see again Figure 3–6):

� One input is always provided by the 32-bit accumulator.

� The other input is provided by one of the following:

� The product-scaling shifter (see subsection 3.2.2)

� The input data-scaling shifter (see Section 3.1)

Output. Once the CALU performs an operation, it transfers the result to the

32-bit accumulator, which is capable of performing bit shifts of its contents. The

output of the accumulator is connected to the 32-bit output data-scaling shifter.

Through the output shifter, the accumulator’s upper and lower 16-bit words

can be individually shifted and stored to data memory.

Sign-extension mode bit. For many but not all instructions, the sign-exten-

sion mode bit (SXM), bit 10 of status register ST1, determines whether the

CALU uses sign extension during its calculations. If SXM = 0, sign extension

is suppressed. If SXM = 1, sign extension is enabled.

3.3.2 Accumulator

Once the CALU performs an operation, it transfers the result to the 32-bit accu-

mulator, which can then perform single-bit shifts or rotations on its contents.

Each of the accumulator’s upper and lower 16-bit words can be passed to the

output data-scaling shifter, where it can be shifted and then stored in data

memory. The following describes the status bits and branch instructions

associated with the accumulator.

Central Arithmetic Logic Section PRELIMINARY

 3-10 PRELIMINARY

Status bits. Four status bits are associated with the accumulator:

� Carry bit (C). C (bit 9 of status register ST1) is affected during:

� Additions to and subtractions from the accumulator:

C = 0 When the result of a subtraction generates a borrow

When the result of an addition does not generate a carry

(Exception: When the ADD instruction is used with a shift of 16

and no carry is generated, the ADD instruction has no effect on

C.)

C = 1 When the result of an addition generates a carry

When the result of a subtraction does not generate a borrow

(Exception: When the SUB instruction is used with a shift of 16

and no borrow is generated, the SUB instruction has no effect

on C.)

� Single-bit shifts and rotations of the accumulator value. During a left

shift or rotation, the MSB of the accumulator is passed to C; during a

right shift or rotation, the LSB is passed to C.

� Overflow mode bit (OVM). OVM (bit 11 of status register ST0) determines

how the accumulator reflects arithmetic overflows. When the processor is

in overflow mode (OVM = 1) and an overflow occurs, the accumulator is

filled with one of two specific values:

� If the overflow is in the positive direction, the accumulator is filled with

its most positive value (7FFF FFFFh).

� If the overflow is in the negative direction, the accumulator is filled with

its most negative value (8000 0000h).

� Overflow flag bit (OV). OV is bit 12 of status register ST0. When no accu-

mulator overflow is detected, OV is latched at 0. When overflow (positive

or negative) occurs, OV is set to 1 and latched.

� Test/control flag bit (TC). TC (bit 11 of status register ST1) is set to 0 or 1

depending on the value of a tested bit. In the case of the NORM instruction,

if the exclusive-OR of the two MSBs of the accumulator is true, TC is set

to 1.

A number of branch instructions are implemented, based on the status of bits

C, OV, and TC, and on the value in the accumulator (as compared to 0). For

more information about these instructions, see Section 5.4, Conditional

Branches, Calls, and Returns, on page 5-10.

Central Arithmetic Logic SectionPRELIMINARY

3-11Central Processing UnitPRELIMINARY

3.3.3 Output Data-Scaling Shifter

The output data-scaling shifter (output shifter) has a 32-bit input connected to

the 32-bit output of the accumulator and a 16-bit output connected to the data

bus. The shifter copies all 32 bits of the accumulator and then performs a left

shift on its content; it can be shifted from zero to seven bits, as specified in the

corresponding store instruction. The upper word (SACH instruction) or lower

word (SACL instruction) of the shifter is then stored to data memory. The con-

tent of the accumulator remains unchanged.

When the output shifter performs the shift, the MSBs are lost and the LSBs are

zero filled. Figure 3–7 shows an example in which the accumulator value is

shifted left by four bits and the shifted high word is stored to data memory.

Figure 3–8 shows the same accumulator value shifted left by six bits and then

the shifted low word stored.

Figure 3–7. Shifting and Storing the High Word of the Accumulator

Data-memory
location

0 0 F 0 F 0 A 1

0 F 0 F 0 A 1 0

32

Output shifter
(left shift by 4 bits)

Accumulator

16

0 F 0 F

Figure 3–8. Shifting and Storing the Low Word of the Accumulator

Data-memory
location

0 0 F 0 F 0 A 1

3 C 3 C 2 8 4 0

32

Output shifter
(left shift by 6 bits)

Accumulator

16

2 8 4 0

Auxiliary Register Arithmetic Unit (ARAU) PRELIMINARY

3-12 PRELIMINARY

3.4 Auxiliary Register Arithmetic Unit (ARAU)

The CPU also contains the ARAU, an arithmetic unit independent of the CALU.

The main function of the ARAU is to perform arithmetic operations on eight

auxiliary registers (AR7 through AR0) in parallel with operations occurring in

the CALU. Figure 3–9 shows the ARAU and related logic.

Figure 3–9. ARAU and Related Logic

16

3

16

16

16

16

16

16

16

16

Data write bus (DWEB)

ARAU

ARB

3

8 LSBs

3 LSBs

Instruction register

MUX

Data read bus (DRDB)

MUX

ARP

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

16

16

3

Data-read address bus (DRAB)

Data-write address bus (DWAB)

16

Auxiliary Register Arithmetic Unit (ARAU)PRELIMINARY

3-13Central Processing UnitPRELIMINARY

The eight auxiliary registers (AR7–AR0) provide flexible and powerful indirect

addressing. Any location in the 64K data memory space can be accessed us-

ing a 16-bit address contained in an auxiliary register. For the details of indirect

addressing, see Section 7.3 on page 7-9.

To select a specific auxiliary register, load the 3-bit auxiliary register pointer

(ARP) of status register ST0 with a value from 0 through 7. The ARP can be

loaded as a primary operation by the MAR instruction (which only performs

modifications to the auxiliary registers and the ARP) or by the LST instruction

(which can load a data-memory value to ST0 by way of the data read bus,

DRDB). The ARP can be loaded as a secondary operation by any instruction

that supports indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register

or current AR. During the processing of an instruction, the content of the cur-

rent auxiliary register is used as the address at which the data-memory access

will take place. The ARAU passes this address to the data-read address bus

(DRAB) if the instruction requires a read from data memory, or it passes the

address to the data-write address bus (DWAB) if the instruction requires a

write to data memory. After the instruction uses the data value, the contents

of the current auxiliary register can be incremented or decremented by the

ARAU, which implements unsigned 16-bit arithmetic.

3.4.1 ARAU Functions

The ARAU performs the following operations:

� Increments or decrements an auxiliary register value by 1 or by an index

amount (by way of any instruction that supports indirect addressing)

� Adds a constant value to an auxiliary register value (ADRK instruction) or

subtracts a constant value from an auxiliary register value (SBRK instruc-

tion). The constant is an 8-bit value taken from the eight LSBs of the

instruction word.

� Compares the content of AR0 with the content of the current AR and puts

the result in the test/control flag bit (TC) of status register ST1 (CMPR

instruction). The result is passed to TC by way of the data write bus

(DWEB).

Normally, the ARAU performs its arithmetic operations in the decode phase of

the pipeline (when the instruction specifying the operations is being decoded).

This allows the address to be generated before the decode phase of the next

instruction. There is an exception to this rule: During processing of the NORM

instruction, the auxiliary register and/or ARP modification is done during the

execute phase of the pipeline. For information on the operation of the pipeline,

see Section 5.2 on page 5-7.

Auxiliary Register Arithmetic Unit (ARAU) PRELIMINARY

 3-14 PRELIMINARY

3.4.2 Auxiliary Register Functions

In addition to using the auxiliary registers to reference data-memory address-

es, you can use them for other purposes. For example, you can:

� Use the auxiliary registers to support conditional branches, calls, and re-

turns by using the CMPR instruction. This instruction compares the con-

tent of AR0 with the content of the current AR and puts the result in the

test/control flag bit (TC) of status register ST1.

� Use the auxiliary registers for temporary storage by using the LAR instruc-

tion to load values into the registers and the SAR instruction to store AR

values to data memory

� Use the auxiliary registers as software counters, incrementing or decre-

menting them as necessary

Status Registers ST0 and ST1PRELIMINARY

3-15Central Processing UnitPRELIMINARY

3.5 Status Registers ST0 and ST1

The ’C24x has two status registers, ST0 and ST1, which contain status and

control bits. These registers can be stored into and loaded from data memory,

thus allowing the status of the machine to be saved and restored for subrou-

tines.

The LST (load status register) instruction writes to ST0 and ST1, and the SST

(store status register) instruction reads from ST0 and ST1 (with the exception

of the INTM bit, which is not affected by the LST instruction). Many of the indi-

vidual bits of these registers can be set and cleared using the SETC and CLRC

instructions. For example, the sign-extension mode is set with SETC SXM and

cleared with CLRC SXM.

Figure 3–10 and Figure 3–11 show the organization of status registers ST0

and ST1, respectively. Several bits in the status registers are reserved; they

are always read as logic 1s. The other bits are described in alphabetical order

in Table 3–2.

Figure 3–10. Status Register ST0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARP OV OVM

ÉÉÉ
ÉÉÉ
ÉÉÉ

1† INTM DP

R/W–x R/W–0 R/W–x R/W–1 R/W–x

Note: R = Read access; W = Write access; value following dash (–) is value after reset (x means value not affected by reset).

† This reserved bit is always read as 1. Writes have no effect on it.

Figure 3–11. Status Register ST1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARB CNF TC SXM C ÉÉ
ÉÉ

1†ÉÉÉ
ÉÉÉ

1† ÉÉ
ÉÉ

1†ÉÉ
ÉÉ

1† XF ÉÉ
ÉÉ

1†ÉÉ
ÉÉ

1† PM

R/W–x R/W–0 R/W–x R/W–1 R/W–1 R/W–1 R/W–00

Note: R = Read access; W = Write access; value following dash (–) is value after reset (x means value not affected by reset).

† These reserved bits are always read as 1s. Writes have no effect on them.

Status Registers ST0 and ST1 PRELIMINARY

 3-16 PRELIMINARY

Table 3–2. Bit Fields of Status Registers ST0 and ST1

Name Description

ARB Auxiliary register pointer buffer. Whenever the auxiliary register pointer (ARP) is loaded, the

previous ARP value is copied to the ARB, except during an LST (load status register) instruction.

When the ARB is loaded by an LST instruction, the same value is also copied to the ARP.

ARP Auxiliary register pointer. This 3-bit field selects which auxiliary register (AR) to use in indirect

addressing. When the ARP is loaded, the previous ARP value is copied to the ARB register, ex-

cept during an LST (load status register) instruction. The ARP may be modified by memory-refer-

ence instructions using indirect addressing, and by the MAR (modify auxiliary register) and LST

instructions. When the ARB is loaded by an LST instruction, the same value is also copied to the

ARP. For more details on the use of ARP in indirect addressing, see Section 7.3, Indirect Addres-
sing Mode, on page 7-9.

C Carry bit. This bit is set to 1 if the result of an addition generates a carry, or cleared to 0 if the result

of a subtraction generates a borrow. Otherwise, it is cleared after an addition or set after a subtrac-

tion, except if the instruction is ADD or SUB with a 16-bit shift. In these cases, ADD can only set

and SUB only clear the carry bit, but cannot affect it otherwise. The single-bit shift and rotate

instructions also affect this bit, as well as the SETC, CLRC, and LST instructions. The conditional

branch, call, and return instructions can execute, based on the status of C. C is set to 1 on reset.

CNF On-chip DARAM configuration bit. This bit determines whether reconfigurable dual-access

RAM blocks are mapped to data space or to program space. The CNF bit may be modified by the

SETC CNF, CLRC CNF, and LST instructions. Reset clears the CNF bit to 0. For more information

about CNF and the dual-access RAM blocks, see Chapter 4, Memory and I/O Spaces.

CNF = 0 Reconfigurable dual-access RAM blocks are mapped to data space.

CNF = 1 Reconfigurable dual-access RAM blocks are mapped to program space.

DP Data page pointer. When an instruction uses direct addressing, the 9-bit DP field is concatenated

with the seven LSBs of the instruction word to form a full 16-bit data-memory address. For more

details, see Section 7.2, Direct Addressing Mode, on page 7-4. The LST and LDP (load DP)

instructions can modify the DP field.

INTM Interrupt mode bit. This bit enables or disables all maskable interrupts. INTM is set and cleared

by the SETC INTM and CLRC INTM instructions, respectively. INTM has no effect on the non-

maskable interrupts RS and NMI or on interrupts initiated by software. INTM is unaffected by the

LST (load status register) instruction. INTM is set to 1 when an interrupt trap is taken (except in

the case of the TRAP instruction) and at reset.

INTM = 0 All unmasked interrupts are enabled.

INTM = 1 All maskable interrupts are disabled.

OV Overflow flag bit. This bit holds a latched value that indicates whether overflow has occurred in

the CALU. OV is set to 1 when an overflow occurs in the CALU. Once an overflow occurs, the OV

bit remains set until it is cleared by a reset, a conditional branch on overflow (OV) or no overflow

(NOV), or an LST instruction.

Status Registers ST0 and ST1PRELIMINARY

3-17Central Processing UnitPRELIMINARY

Table 3–2. Bit Fields of Status Registers ST0 and ST1 (Continued)

Name Description

OVM Overflow mode bit. OVM determines how overflows in the CALU are handled. The SETC and

CLRC instructions set and clear this bit, respectively. An LST instruction can also be used to

modify OVM.

OVM = 0 Results overflow normally in the accumulator.

OVM = 1 The accumulator is set to either its most positive or negative value upon encounter-

ing an overflow. (See subsection 3.3.2, Accumulator, on page 3-9.)

PM Product shift mode. PM determines the amount that the PREG value is shifted on its way to the

CALU or to data memory. Note that the content of the PREG remains unchanged; the value is

copied to the product shifter and shifted there. PM is loaded by the SPM and LST instructions.

The PM bits are cleared by reset.

PM = 00 The multiplier’s 32-bit product is passed to the CALU or to data memory with no shift.

PM = 01 The output of the PREG is left shifted one place (with the LSBs zero filled) before

being passed to the CALU or to data memory.

PM = 10 The output of the PREG is left shifted four bits (with the LSBs zero filled) before being

passed to the CALU or to data memory.

PM = 11 This mode produces a right shift of six bits, sign extended.

SXM Sign-extension mode bit. SXM does not affect the basic operation of certain instructions. For

example, the ADDS instruction suppresses sign extension regardless of SXM. This bit is set by

the SETC SXM instruction and cleared by the CLRC SXM instruction and may be loaded by the

LST instruction. SXM is set to 1 by reset.

SXM = 0 This mode suppresses sign extension.

SXM = 1 This mode produces sign extension on data as it is passed into the accumulator from

the input shifter.

TC Test/control flag bit. The TC bit is set to 1 if a bit tested by BIT or BITT is a 1, if a compare condi-

tion tested by CMPR exists between the current auxiliary register and AR0, or if the exclusive-OR

function of the two MSBs of the accumulator is true when tested by a NORM instruction. The

conditional branch, call, and return instructions can execute, based on the condition of the TC bit.

The TC bit is affected by the BIT, BITT, CMPR, LST, and NORM instructions.

XF XF pin status bit. This bit determines the state of the XF pin, which is a general-purpose output

pin. XF is set by the SETC XF instruction and cleared by the CLRC XF instruction. XF can also

be modified with an LST instruction. XF is set to 1 by reset.

PRELIMINARY

 3-18 PRELIMINARY

PRELIMINARY

4-1Memory and I/O SpacesPRELIMINARY

�
������	���������
�

Each ’C24x device has a 16-bit address line that accesses four individually se-

lectable spaces (224K words total):

� A 64K-word program space

� A 64K-word local data space

� A 32K-word global data space

� A 64K-word I/O space

This chapter describes these four spaces and shows generic memory maps

for the program, data, and I/O spaces. It also describes the ’C24x memory con-

figuration options.

Topic Page

4.1 Overview of the Memory and I/O Spaces 4-2.

4.2 Program Memory 4-3.

4.3 Local Data Memory 4-5.

4.4 Global Data Memory 4-9.

4.5 I/O Space 4-11.

Chapter 4

PRELIMINARY

PRELIMINARY

Overview of the Memory and I/O Spaces PRELIMINARY

4-2 PRELIMINARY

4.1 Overview of the Memory and I/O Spaces

The ’C24x design is based on an enhanced Harvard architecture. The ’C24x

has multiple memory spaces accessible on three parallel buses—the program

address bus (PAB), the data-read address bus (DRAB), and the data-write ad-

dress bus (DWAB). Each of the three buses access different memory spaces

for different aspects of the device’s operation. Because the bus operations are

independent, it is possible to access both the program and data spaces simul-

taneously. Within a given machine cycle, the CALU can execute as many as

three concurrent memory operations.

The ’C24x address map is organized into four individually selectable spaces:

� Program memory (64K words) contains the instructions to be executed,

as well as data used during program execution.

� Local data memory (64K words) holds data used by the instructions.

� Global data memory (32K words) shares data with other devices or

serves as additional data space.

� Input/output (I/O) space (64K words) interfaces to external peripherals

and may contain on-chip registers.

These spaces provide a total address space of 224K words. The ’C24x in-

cludes on-chip memory to aid in system performance and integration and a

considerable number of addresses that can be used for external memory and

I/O devices.

The advantages of operating from on-chip memory are:

� Higher performance than external memory (because the wait states re-

quired for slower external memories are avoided)

� Lower cost than external memory

� Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a

larger address space.

Program MemoryPRELIMINARY

4-3Memory and I/O SpacesPRELIMINARY

4.2 Program Memory

The program-memory space is where the application program code resides;

it can also hold table information and immediate operands. The program-

memory space addresses up to 64K 16-bit words. On all ’C24x devices, these

words include on-chip DARAM. On-chip SARAM and on-chip ROM/flash

EEPROM may be available on some of the devices. When the ’C24x gener-

ates an address outside the set of addresses configured to on-chip program

memory, the device automatically generates an external access, asserting the

appropriate control signals (if an external memory interface is present).

Figure 4–1 shows the program memory map.

Figure 4–1. Program Memory Map for ’C24x

0000h

003Fh
0040h

FDFFh
FE00h

FFFFh

0000h–0001h

0002h–0003h

0004h–0005h

0006h–0007h

0008h–0009h

000Ah–000Bh

000Ch–000Dh

000Eh–000Fh

0022h–0023h

0024h–0025h

Interrupt vectors and

Flash/ROM
4/8/16/24/32K words

SARAM
0/1/2/4/8/16K words

External

DARAM (B0)
256/512 words

Reset

Interrupt level 1

Interrupt level 2

Interrupt level 3

Interrupt level 4

Interrupt level 5

Interrupt level 6

TRAP

NMI

(CNF=1)

0010h–0021hSoftware interrupts

Software interrupts 0028h–003Fh

Reserved

Reserved 0026h–0027h

reserved addresses

(External if MP/MC = 1)

(External if RAMEN = 0)

(External if CNF = 0)

Note: Flash/ROM memory includes the address range 0000h–003Fh.

4.2.1 Program Memory Configuration

Depending on which types of memory are on board a particular ’C24x, up to

three factors contribute to the configuration of program memory:

� CNF bit. The CNF bit (bit 12) of status register ST1 determines whether

the addresses for DARAM B0 are available for program space:

� CNF = 0. There is no addressable on-chip program DARAM.

� CNF = 1. The 256 or 512 words of DARAM B0 are configured for pro-

gram use.

Program Memory PRELIMINARY

 4-4 PRELIMINARY

At reset, any words of program/data DARAM are mapped into local data

space (CNF = 0).

� MP/MC pin. The level on the MP/MC pin determines whether program

instructions are read from on-chip ROM/flash EEPROM (if available) after

reset:

� MP/MC = 0. The device is configured as a microcomputer. The on-

chip ROM/flash EEPROM is accessible. The device fetches the reset

vector from on-chip memory.

� MP/MC = 1. The device is configured as a microprocessor. The device

fetches the reset vector from external memory.

Regardless of the value of MP/MC, the ’C24x fetches its reset vector at

location 0000h of program memory.

� RAMEN pin. The RAMEN signal (if available—check device data sheet)

allows you to toggle a preset range of data/program addresses between

on-chip SARAM (if available) and external memory:

� RAMEN = 1. The preset range of addresses in both data space and

program space are mapped to the same physical locations in the on-

chip SARAM. For example, if 1000h were in the preset address range,

1000h in program memory and 1000h in data memory would point to

the same physical location in the on-chip SARAM. Thus, the full block

of on-chip SARAM is accessible for program and/or data space.

Note:

When RAMEN = 1, program memory and data memory share the same
range of addresses. When writing data to these locations, be careful not to
overwrite existing program instructions.

� RAMEN = 0. The preset range of addresses is not shared by data

memory and program memory. Instead, that range of addresses in

data memory and the same range in program memory are mapped to

external program memory. Thus, when RAMEN = 0, a block of ad-

dresses twice the size of the SARAM block is available for accessing

external memory.

Local Data MemoryPRELIMINARY

4-5Memory and I/O SpacesPRELIMINARY

4.3 Local Data Memory

The local data-memory space addresses up to 64K 16-bit words. Figure 4–2

shows the data memory map for the ’C24x. The ’C24x devices each have three

on-chip DARAM blocks: B0, B1, and B2. Block B0 is configurable as either

data memory or program memory. Blocks B1 and B2 are available for data

memory only. Some ’C24x devices also have an on-chip SARAM block that

can be used for program and/or data memory.

Figure 4–2. Data Memory Map for ’C24x

0000h

005Fh
0060h

007Fh
0080h

00FFh
0100h

02FFh
0300h

04FFh
0500h

07FFh
0800h

6FFFh
7000h

73FFh
7400h

743Fh
7440h

FFFFh

0000h–0003h

0004h

0005h

0006h

0007h–005Fh

7000h–700Fh

7010h–701Fh

7020h–702Fh

7030h–703Fh

7040h–704Fh

7050h–705Fh

7060h–706Fh

7070h–707Fh

7080h–708Fh

7090h–709Fh

70A0h–70AFh

70B0h–70BFh

70C0h–70FFh

7100h–73FFh

7400h–743Fh

Memory-mapped

DARAM (B2)
32 words

Reserved

DARAM (B0)
256/512 words

(CNF=0)

DARAM (B1)
256/512 words

Reserved

SARAM
1/2/4/8/16K words

Peripheral bus

Peripheral frame
data–bus

direct connect

Unused

Reserved

Interrupt mask register

Global memory

Interrupt flag register

Emulation registers
and reserved

Spare

System configuration and

WD/RTI/PLL

ADCs

SPI

SCI

Spare

External interrupt control

Spare

Digital I/O control

Spare

Spare

Spare

Event manager

External

7FFFh
8000h

Spare

registers

allocation register

control registers

† Device Dependent

†

†

Local Data Memory PRELIMINARY

 4-6 PRELIMINARY

Data memory can be addressed with either of two addressing modes: direct-

addressing or indirect-addressing. Addressing modes are described in detail

in Chapter 7.

When direct addressing is used, data memory is addressed in blocks of 128

words called data pages. Figure 4–3 shows how these blocks are addressed.

The entire 64K of data memory consists of 512 data pages labeled 0 through

511. The current data page is determined by the value in the 9-bit data page

pointer (DP) in status register ST0. Each of the 128 words on the current page

is referenced by a 7-bit offset, which is taken from the instruction that is using

direct addressing. Therefore, when an instruction uses direct addressing, you

must specify both the data page (with a preceding instruction) and the offset

(in the instruction that accesses data memory).

Figure 4–3. Pages of Local Data Memory

Data Memory

Page 0: 0000h–007Fh

Page 1: 0080h–00FFh

Page 2: 0100h–017Fh

Page 511: FF80h–FFFFh

.

000 0000

OffsetDP Value

0000 0000 0

111 11110000 0000 0

0000 0000 1

0000 0000 1

1111 1111 1

1111 1111 1

000 0000

111 1111

000 0000

111 1111

0000 0001 0

000 0000

111 1111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.0000 0001 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

Local Data MemoryPRELIMINARY

4-7Memory and I/O SpacesPRELIMINARY

4.3.1 Data Page 0 Address Map

The 64K words of local data memory include the device’s memory-mapped

registers, which reside at the top of data page 0 (addresses 0000h–007Fh).

Note the following:

� Three registers that can be accessed with zero wait states:

� Interrupt mask register (IMR)

� Global memory allocation register (GREG)

� Interrupt flag register (IFR)

� The test/emulation reserved area is used by the test and emulation sys-

tems for special information transfers.

Do Not Write to Test/Emulation Addresses

Writing to the test/emulation addresses can cause the device to
change its operational mode and, therefore, affect the operation of
an application.

� The scratch-pad RAM block (B2) includes 32 words of DARAM that pro-

vide for variable storage without fragmenting the larger RAM blocks,

whether internal or external. This RAM block supports dual-access opera-

tions and can be addressed via any data-memory addressing mode.

Table 4–1 shows the address map of data page 0.

Table 4–1. Data Page 0 Address Map

Address Name Description

0000h–0003h – Reserved

0004h IMR Interrupt mask register

0005h GREG Global memory allocation register

0006h IFR Interrupt flag register

0023h–0027h – Reserved

002Bh–002Fh – Reserved for test/emulation

0060h–007Fh B2 Scratch-pad RAM (DARAM B2)

Local Data Memory PRELIMINARY

 4-8 PRELIMINARY

4.3.2 Local Data Memory Configuration

Two factors may contribute to the configuration of data memory:

� CNF bit. The CNF bit (bit 12) of status register ST1 determines whether

the on-chip DARAM B0 is mapped into local data space or into program

space.

� CNF = 1. DARAM B0 is used for program space.

� CNF = 0. B0 is used for data space.

At reset, B0 is mapped into local data space (CNF = 0).

� RAMEN pin. The RAMEN signal allows you to toggle a preset range of

data/program addresses between on-chip SARAM (if available) and

external memory:

� RAMEN = 1. The preset range of addresses in both data space and

program space are mapped to the same physical locations in the on-

chip SARAM. For example, if 1000h were in the preset address range,

1000h in program memory and 1000h in data memory would point to

the same physical location in the on-chip SARAM. Thus, the full block

of on-chip SARAM is accessible for program and/or data space.

Note:

When RAMEN = 1, program memory and data memory share the same
range of addresses. When writing data to these locations, be careful not to
overwrite existing program instructions.

� RAMEN = 0. The preset range of addresses is not shared by data

memory and program memory. Instead, that range of addresses in

data memory and the same range in program memory are mapped to

external program memory. Thus, when RAMEN = 0, a block of ad-

dresses twice the size of the SARAM block is available for accessing

external memory.

Global Data MemoryPRELIMINARY

4-9Memory and I/O SpacesPRELIMINARY

4.4 Global Data Memory

Addresses in the upper 32K words (8000h–FFFFh) of local data memory can

be used for global data memory. The global memory allocation register

(GREG) determines the size of the global data-memory space, which is be-

tween 256 and 32K words. The GREG is connected to the eight LSBs of the

internal data bus and is memory-mapped to data-memory location 0005h.

Table 4–2 shows the allowable GREG values and shows the corresponding

address range set aside for global data memory. Any remaining addresses

within 8000h–FFFFh are available for local data memory.

Note:

Choose only the GREG values listed in Table 4–2. Other values lead to frag-
mented memory maps.

Table 4–2. Global Data Memory Configurations

GREG Value Local Memory Global Memory

High Byte Low Byte Range Words Range Words

XXXX XXXX 0000 0000 0000h–FFFFh 65�536 – 0

XXXX XXXX 1000 0000 0000h–7FFFh 32�768 8000h–FFFFh 32�768

XXXX XXXX 1100 0000 0000h–BFFFh 49�152 C000h–FFFFh 16�384

XXXX XXXX 1110 0000 0000h–DFFFh 57�344 E000h–FFFFh 8�192

XXXX XXXX 1111 0000 0000h–EFFFh 61�440 F000h–FFFFh 4�096

XXXX XXXX 1111 1000 0000h–F7FFh 63�488 F800h–FFFFh 2�048

XXXX XXXX 1111 1100 0000h–FBFFh 64�512 FC00h–FFFFh 1�024

XXXX XXXX 1111 1110 0000h–FDFFh 65�024 FE00h–FFFFh 512

XXXX XXXX 1111 1111 0000h–FEFFh 65�280 FF00h–FFFFh 256

Note: X = Don’t care

When a program accesses any data address, the ’C24x drives the DS signal

low. If that address is within the range defined by the GREG as a global ad-

dress, BR signal is also asserted. Because BR differentiates local and global

accesses, the addresses configured by the GREG value are an additional data

space. The external data-address range is extended by the selected amount

of global space (up to 32K words).

Global Data Memory PRELIMINARY

4-10 PRELIMINARY

As an example of configuring global memory, suppose you want to designate

8K data-memory addresses as global addresses. You would write the 8-bit val-

ue 11100000 to the GREG (see Figure 4–4). This would designate addresses

E000h–FFFFh of data memory as global data addresses (see Figure 4–5).

Figure 4–4. GREG Register Set to Configure 8K for Global Data Memory

8 MSBs 8 LSBs

X X X X X X X X 1 1 1 0 0 0 0 0

(Don’t cares) Set for 8K of global data memory

Figure 4–5. Global and Local Data Memory for GREG = 11100000

Data memory map

FFFFh

8000h

0000h

Upper 32K × 16
(local and/or global)

7FFFh

Lower 32K × 16
(always local)

GREG = 11100000

Global (8K × 16)

Local (24K × 16)

E000h

DFFFh

8000h

FFFFh

I/O SpacePRELIMINARY

4-11Memory and I/O SpacesPRELIMINARY

4.5 I/O Space

The I/O space memory addresses up to 64K 16-bit words. Figure 4–6 shows

the I/O-space address map for the ’C24x.

Figure 4–6. I/O-Space Address Map for ’C24x

0000h

FEFFh
FF00h

FFFFh

I/O mapped registers
or

both

External

External
or

Note: See device-specific data sheets for information on I/O mapped registers.

PRELIMINARY

 4-12 PRELIMINARY

5-1

�
	�
����	��
	�

This chapter discusses the processes and features involved in controlling the

flow of a program on the ’C24x.

Program control involves controlling the order in which one or more blocks of

instructions are executed. Normally, the flow of a program is sequential: the

’C24x executes instructions at consecutive program-memory addresses. At

times, a program must branch to a nonsequential address and then execute

instructions sequentially at that new location. For this purpose, the ’C24x sup-

ports branches, calls, returns, repeats, and interrupts. Interrupts are described

in Chapter 6, System Functions.

Topic Page

5.1 Program-Address Generation 5-2.

5.2 Pipeline Operation 5-7.

5.3 Branches, Calls, and Returns 5-8.

5.4 Conditional Branches, Calls, and Returns 5-10.

5.5 Repeating a Single Instruction 5-14.

Chapter 5

PRELIMINARY

PRELIMINARY

Program-Address Generation PRELIMINARY

5-2 PRELIMINARY

5.1 Program-Address Generation

Program flow requires the processor to generate the next program address

(sequential or nonsequential) while executing the current instruction. Pro-

gram-address generation is illustrated in Figure 5–1 and summarized in

Table 5–1.

Figure 5–1. Program-Address Generation Block Diagram

Interrupt,
branch, or call

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

MUX

Next program address
register (NPAR)

Program counter
(PC/NPAR + 1)

sequential operation

Program address
register (PAR)
dummy cycle

Micro stack
(MSTACK)

table/block move

MUX

Program read bus (PRDB)

Data read bus (DRDB)

Top of stack (TOS)

Program-address
stack

8� 16

Program address bus (PAB)

Data write bus (DWEB)

PSHD
instruction

Return
from
subroutine

POPD
instruction

Program
control

BACC or CALA
instruction

Program-Address GenerationPRELIMINARY

5-3Program ControlPRELIMINARY

Table 5–1. Program-Address Generation Summary

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Operation ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Program-Address Source

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Sequential operation ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PC (contains program address +1)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Dummy cycle
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

PAR (contains program address)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Return from subroutine

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Top of the stack (TOS)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Return from table move or block moveÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Microstack (MSTACK)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Branch or call to address specified in

instruction

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Branch or call instruction by way of the

program read bus (PRDB)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Branch or call to address specified in

lower half of the accumulator

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Low accumulator by way of the data

read bus (DRDB)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Branch to interrupt service routine ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Interrupt vector location by way of the

program read bus (PRDB)

The ’C24x program-address generation logic uses the following hardware:

� Program counter (PC). The ’C24x has a 16-bit program counter (PC) that

addresses internal and external program memory when fetching instruc-

tions.

� Program address register (PAR). The PAR drives the program address

bus (PAB). The PAB is a 16-bit bus that provides program addresses for

both reads and writes.

� Stack. The program-address generation logic includes a 16-bit-wide, 8-

level hardware stack for storing up to eight return addresses. In addition,

you can use the stack for temporary storage.

� Microstack (MSTACK). Occasionally, the program-address generation

logic uses the 16-bit-wide, 1-level MSTACK to store one return address.

� Repeat counter (RPTC). The 16-bit RPTC is used with the repeat (RPT)

instruction to determine how many times the instruction following RPT is

repeated.

5.1.1 Program Counter (PC)

The program-address generation logic uses the 16-bit program counter (PC)

to address internal and external program memory. The PC holds the address

of the next instruction to be executed. Through the program address bus

(PAB), an instruction is fetched from that address in program memory and

loaded into the instruction register. When the instruction register is loaded, the

PC holds the next address.

Program-Address Generation PRELIMINARY

5-4 PRELIMINARY

The ’C24x can load the PC in a number of ways, to accommodate sequential

and nonsequential program flow. Table 5–2 shows what is loaded to the PC

according to the code operation performed.

Table 5–2. Address Loading to the Program Counter

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Code Operation ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Address Loaded to the PC

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Sequential execution ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with PC + 1 if the current instruction has

one word or PC + 2 if the current instruction has two words.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Branch ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with the long immediate value directly fol-

lowing the branch instruction.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Subroutine call and

return

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

For a call, the address of the next instruction is pushed from

the PC onto the stack, and then the PC is loaded with the

long immediate value directly following the call instruction.

A return instruction pops the return address back into the PC

to return to the calling sequence of code.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Software or hardware

interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with the address of the appropriate inter-

rupt vector location. At this location is a branch instruction

that loads the PC with the address of the corresponding in-

terrupt service routine.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Computed GOTO
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The content of the lower 16 bits of the accumulator is loaded

into the PC. Computed GOTO operations can be performed

using the BACC (branch to address in accumulator) or

CALA (call subroutine at location specified by the accumula-

tor) instructions.

5.1.2 Stack

The ’C24x has a 16-bit-wide, 8-level-deep hardware stack. The program-ad-

dress generation logic uses the stack for storing return addresses when a sub-

routine call or interrupt occurs. When an instruction forces the CPU into a sub-

routine or an interrupt forces the CPU into an interrupt service routine, the re-

turn address is loaded to the top of the stack automatically; this event does not

require additional cycles. When the subroutine or interrupt service routine is

complete, a return instruction transfers the return address from the top of the

stack to the program counter.

When the eight levels are not used for return addresses, the stack may be used

for saving context data during a subroutine or interrupt service routine or for

other storage purposes.

You can access the stack with two sets of instructions:

� PUSH and POP. The PUSH instruction copies the 16 LSBs of the accumu-

lator to the top of the stack. The POP instruction copies the value on the

top of the stack to the 16 LSBs of the accumulator.

Program-Address GenerationPRELIMINARY

5-5Program ControlPRELIMINARY

� PSHD and POPD. These instructions allow you to build a stack in data

memory for the nesting of subroutines or interrupts beyond eight levels.

The PSHD instruction pushes a data-memory value onto the top of the

stack. The POPD instruction pops a value from the top of the stack to data

memory.

Whenever a value is pushed onto the top of the stack (by an instruction or by

the address-generation logic), the content of each level is pushed down one

level, and the bottom (eighth) location of the stack is lost. Therefore, data is

lost (stack overflow occurs) if more than eight successive pushes occur before

a pop. Figure 5–2 shows a push operation.

Figure 5–2. A Push Operation

Before Instruction After Instruction

Accumulator Accumulator
or memory 7h or memory 7h

location location

 2h 7h

 5h 2h

Stack 3h Stack 5h

 0h 3h

12h 0h

86h 12h

54h 86h

3Fh 54h

Pop operations are the reverse of push operations. A pop operation copies the

value at each level to the next higher level. Any pop after seven sequential

pops yields the value that was originally at the bottom of the stack because,

by then, the bottom value has been copied upward to all of the stack levels.

Figure 5–3 shows a pop operation.

Program-Address Generation PRELIMINARY

5-6 PRELIMINARY

Figure 5–3. A Pop Operation

Before Instruction After Instruction

Accumulator Accumulator
or memory 82h or memory 45h

location location

45h 16h

16h 7h

Stack 7h Stack 33h

33h 42h

42h 56h

56h 37h

37h 61h

61h 61h

5.1.3 Microstack (MSTACK)

The program-address generation logic uses the 16-bit-wide, 1-level-deep

MSTACK to store a return address before executing certain instructions.

These instructions use the program-address generation logic to provide a

second address in a 2-operand instruction. These instructions are: BLDD,

BLPD, MAC, MACD, TBLR, and TBLW. When repeated, these instructions

use the PC to increment the first operand address and can use the auxiliary

register arithmetic unit (ARAU) to generate the second operand address.

When these instructions are used, the return address (the address of the next

instruction to be fetched) is pushed onto the MSTACK. Upon completion of the

repeated instruction, the MSTACK value is popped back into the program-ad-

dress generation logic. The MSTACK operations are not visible to you. Unlike

the stack, the MSTACK can be used only by the program-address generation

logic; there are no instructions that allow you to use the MSTACK for storage.

Pipeline OperationPRELIMINARY

5-7Program ControlPRELIMINARY

5.2 Pipeline Operation

Instruction pipelining consists of a sequence of bus operations that occur dur-

ing the execution of an instruction. The ’C24x pipeline has four independent

stages: instruction-fetch, instruction-decode, operand-fetch, and instruction-

execute. Because the four stages are independent, these operations can

overlap. During any given cycle, one to four different instructions can be active,

each at a different stage of completion. Figure 5–4 shows the operation of the

4-level-deep pipeline for single-word, single-cycle instructions executing with

no wait states.

The pipeline is essentially invisible to you, except in the following cases:

� A single-word, single-cycle instruction immediately following a modifica-

tion of the global-memory allocation register (GREG) uses the previous

global map.

� The NORM instruction modifies the auxiliary register pointer (ARP) and

uses the current auxiliary register (the one pointed to by the ARP) during

the execute phase of the pipeline. If the next two instruction words change

the values in the current auxiliary register or the ARP, they will do so during

the instruction decode phase of the pipeline (before the execution of

NORM). This would cause NORM to use the wrong auxiliary register value

and the following instructions to use the wrong ARP value.

Figure 5–4. Four-Level Pipeline Operation

N – 2N – 3

N – 2

N – 1

N – 1

N

N N + 1

N + 1 N + 2NN – 1

N + 3N + 2N + 1N

Execute

Operand

Decode

Fetch

CLKOUT1

The CPU is implemented using 2-phase static logic. The 2-phase operation

of the ’C24x CPU consists of a master phase in which all commutation logic

is executed, and a slave phase in which results are latched. Therefore,

sequential operations require sequential master cycles. Although sequential

operations require a deeper pipeline, 2-phase operation provides more time

for the computational logic to execute. This allows the ’C24x to run at faster

clock rates, despite having a deeper pipeline that imposes a penalty on

branches and subroutine calls.

Branches, Calls, and Returns PRELIMINARY

5-8 PRELIMINARY

5.3 Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by trans-

ferring control to another location in program memory. A branch only transfers

control to the new location. A call also saves the return address (the address

of the instruction following the call) to the top of the hardware stack. Every

called subroutine or interrupt service routine is concluded with a return instruc-

tion, which pops the return address off the stack and back into the program

counter (PC).

The ’C24x has two types of branches, calls, and returns:

� Unconditional. An unconditional branch, call, or return is always

executed. The unconditional branch, call, and return instructions are de-

scribed in subsections 5.3.1, 5.3.2, and 5.3.3, respectively.

� Conditional. A conditional branch, call, or return is executed only if certain

specified conditions are met. The conditional branch, call, and return

instructions are described in detail in Section 5.4, Conditional Branches,

Calls, and Returns, on page 5-10.

5.3.1 Unconditional Branches

When an unconditional branch is encountered, it is always executed. During

the execution, the PC is loaded with the specified program-memory address

and program execution begins at that address. The address loaded into the

PC may come from either the second word of the branch instruction or the low-

er sixteen bits of the accumulator.

By the time the branch instruction reaches the execute phase of the pipeline,

the next two instruction words have already been fetched. These two instruc-

tion words are flushed from the pipeline so that they are not executed, and then

execution continues at the branched-to address. The unconditional branch

instructions are B (branch) and BACC (branch to location specified by accu-

mulator).

5.3.2 Unconditional Calls

When an unconditional call is encountered, it is always executed. When the

call is executed, the PC is loaded with the specified program-memory address

and program execution begins at that address. The address loaded into the

PC may come from either the second word of the call instruction or the lower

16 bits of the accumulator. Before the PC is loaded, the return address is saved

in the stack. After the subroutine or function is executed, a return instruction

loads the PC with the return address from the stack, and execution resumes

at the instruction following the call.

Branches, Calls, and ReturnsPRELIMINARY

5-9Program ControlPRELIMINARY

By the time the unconditional call instruction reaches the execute phase of the

pipeline, the next two instruction words have already been fetched. These two

instruction words are flushed from the pipeline so that they are not executed,

the return address is stored to the stack, and then execution continues at the

beginning of the called function. The unconditional call instructions are CALL

and CALA (call subroutine at location specified by accumulator).

5.3.3 Unconditional Returns

When an unconditional return (RET) instruction is encountered, it is always

executed. When the return is executed, the PC is loaded with the value at the

top of the stack, and execution resumes at that address.

By the time the unconditional return instruction reaches the execute phase of

the pipeline, the next two instruction words have already been fetched. The

two instruction words are flushed from the pipeline so that they are not

executed, the return address is taken from the stack, and then execution con-

tinues in the calling function.

Conditional Branches, Calls, and Returns PRELIMINARY

 5-10 PRELIMINARY

5.4 Conditional Branches, Calls, and Returns

The ’C24x provides branch, call, and return instructions that execute only if

one or more conditions are met. You specify the conditions as operands of the

conditional instruction. Table 5–3 lists the conditions that you can use with

these instructions and their corresponding operand symbols.

Table 5–3. Conditions for Conditional Calls and Returns

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Operand

Symbol
ÁÁÁÁÁ
ÁÁÁÁÁCondition

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

EQ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACC = 0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator equal to 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NEQ ÁÁÁÁÁ
ÁÁÁÁÁ

ACC ≠ 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator not equal to 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LT ÁÁÁÁÁ
ÁÁÁÁÁ

ACC < 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator less than 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LEQ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACC � 0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator less than or equal to 0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GT

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACC > 0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator greater than 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GEQ ÁÁÁÁÁ
ÁÁÁÁÁ

ACC � 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator greater than or equal to 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C ÁÁÁÁÁ
ÁÁÁÁÁ

C = 1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Carry bit set to 1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNC

ÁÁÁÁÁ
ÁÁÁÁÁC = 0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCarry bit cleared to 0ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

OV

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

OV = 1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator overflow detected

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOV ÁÁÁÁÁ
ÁÁÁÁÁ

OV = 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

No accumulator overflow detected

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

BIO
ÁÁÁÁÁ
ÁÁÁÁÁ

BIO low
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BIO pin is low
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TC
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TC = 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test/control flag set to 1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NTC ÁÁÁÁÁ
ÁÁÁÁÁ

TC = 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test/control flag cleared to 0

5.4.1 Using Multiple Conditions

Multiple conditions can be listed as operands of the conditional instructions.

If multiple conditions are listed, all conditions must be met for the instruction

to execute. Note that only certain combinations of conditions are meaningful.

See Table 5–4. For each combination, the conditions must be selected from

Group 1 and Group 2 as follows:

� Group 1. You can select up to two conditions. Each of these conditions

must be from a different category (A or B); you cannot have two conditions

from the same category. For example, you can test EQ and OV at the same

time, but you cannot test GT and NEQ at the same time.

Conditional Branches, Calls, and ReturnsPRELIMINARY

5-11Program ControlPRELIMINARY

� Group 2. You can select up to three conditions. Each of these conditions

must be from a different category (A, B, or C); you cannot have two condi-

tions from the same category. For example, you can test TC, C, and BIO

at the same time, but you cannot test C and NC at the same time.

Table 5–4. Groupings of Conditions

Group 1 Group 2

Category A Category B Category A Category B Category C

EQ OV TC C BIO

NEQ NOV NTC NC

LT

LEQ

GT

GEQ

5.4.2 Stabilization of Conditions

A conditional instruction must be able to test the most recent values of the sta-

tus bits. Therefore, the conditions cannot be considered stable until the fourth,

or execution, stage of the pipeline, one cycle after the previous instruction has

been executed. The pipeline controller stops the decoding of any instructions

following the conditional instruction until the conditions are stable.

5.4.3 Conditional Branches

A branch instruction transfers program control to any location in program

memory. Conditional branch instructions are executed only when one or more

user-specified conditions are met (see Table 5–3 on page 5-10). If all the

conditions are met, the PC is loaded with the second word of the branch

instruction, which contains the address to branch to, and execution continues

at this address.

By the time the conditions have been tested, the two instruction words follow-

ing the conditional branch instruction have already been fetched in the pipe-

line. If all the conditions are met, these two instruction words are flushed from

the pipeline so that they are not executed, and then execution continues at the

branched-to address. If the conditions are not met, the two instruction words

are executed instead of the branch. Because conditional branches use condi-

tions determined by the execution of the previous instructions, a conditional

branch takes one more cycle than an unconditional one.

Conditional Branches, Calls, and Returns PRELIMINARY

 5-12 PRELIMINARY

The conditional branch instructions are BCND (branch conditionally) and

BANZ (branch if currently selected auxiliary register is not equal to 0). The

BANZ instruction is useful for implementing loops.

5.4.4 Conditional Calls

The conditional call (CC) instruction is executed only when the specified condi-

tion or conditions are met (see Table 5–3 on page 5-10). This allows your pro-

gram to choose among multiple subroutines; based on the data being pro-

cessed. If all the conditions are met, the PC is loaded with the second word

of the call instruction, which contains the starting address of the subroutine.

Before branching to the subroutine, the processor stores the address of the

instruction following the call instruction—the return address—to the stack. The

function must end with a return instruction, which takes the return address off

the stack and forces the processor to resume execution of the calling program.

By the time the conditions of the conditional call instruction have been tested,

the two instruction words following the call instruction have already been

fetched in the pipeline. If all the conditions are met, these two instruction words

are flushed from the pipeline so that they are not executed, and then execution

continues at the beginning of the called function. If the conditions are not met,

the two instructions are executed instead of the call. Because there is a wait

cycle for conditions to become stable, the conditional call takes one more cycle

than the unconditional one.

5.4.5 Conditional Returns

Returns are used in conjunction with calls and interrupts. A call or interrupt

stores a return address to the stack and then transfers program control to a

new location in program memory. The called subroutine or the interrupt service

routine concludes with a return instruction, which pops the return address off

the top of the stack and into the program counter (PC).

The conditional return instruction (RETC) is executed only when one or more

conditions are met (see Table 5–3 on page 5-10). By using the RETC instruc-

tion, you can give a subroutine or interrupt service routine more than one pos-

sible return path. The path chosen then depends on the data being processed.

In addition, you can use a conditional return to avoid conditionally branching

to/around the return instruction at the end of the subroutine or interrupt service

routine.

Conditional Branches, Calls, and ReturnsPRELIMINARY

5-13Program ControlPRELIMINARY

If all the conditions are met for execution of the RETC instruction, the proces-

sor loads the return address from the stack to the PC and resumes execution

of the calling or interrupted program.

RETC, like RET, is a single-word instruction. However, because of the poten-

tial PC discontinuity, it operates with the same effective execution time as the

conditional branch (BCND) and the conditional call (CC). By the time the condi-

tions of the conditional return instruction have been tested, the two instruction

words following the return instruction have already been fetched in the pipe-

line. If all the conditions are met, these two instruction words are flushed from

the pipeline so that they are not executed, and then execution of the calling

program continues. If the conditions are not met, the two instructions are

executed instead of the return. Because there is a wait cycle for conditions to

become stable, the conditional return takes one more cycle than the uncondi-

tional one.

Repeating a Single Instruction PRELIMINARY

5-14 PRELIMINARY

5.5 Repeating a Single Instruction

The ’C24x repeat (RPT) instruction allows the execution of a single instruction

N + 1 times, where N is specified as an operand of the RPT instruction. When

RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then

decremented every time the repeated instruction is executed, until RPTC

equals 0. RPTC can be used as a 16-bit counter when the count value is read

from a data-memory location; if the count value is specified as a constant oper-

and, it is in an 8-bit counter.

The repeat feature is useful with instructions such as NORM (normalize con-

tents of accumulator), MACD (multiply and accumulate with data move), and

SUBC (conditional subtract). When instructions are repeated, the address and

data buses for program memory are free to fetch a second operand in parallel

with the address and data buses for data memory. This allows instructions

such as MACD and BLPD to effectively execute in a single cycle when

repeated.

6-1

�
����������	�

This chapter describes the device functions that are not specific to any

peripheral:

� The peripheral interface transfers data between the CPU data bus and the

peripheral bus, which is independent of the CPU.

� The system configuration registers provide software control and status

information for functions that affect both the DSP core and certain

peripherals.

� Hardware interrupts (including reset) require control by both CPU regis-

ters and peripheral registers.

� Power-down modes can affect both the CPU and the peripherals.

Topic Page

6.1 Peripheral Interface 6-2.

6.2 System Configuration Registers 6-4.

6.3 Interrupts 6-9.

6.4 Reset Operation 6-48.

6.5 Power-Down Modes 6-51.

Chapter 6

PRELIMINARY

PRELIMINARY

Peripheral Interface PRELIMINARY

 6-2 PRELIMINARY

6.1 Peripheral Interface

In order to support a large number of peripherals without compromising the

electrical performance of the ’C2xx DSP CPU’s data bus, ’C24x devices have

a separate peripheral bus which operates at a lower frequency than the CPU

buses. Most peripherals are attached to this peripheral bus, although a few (for

example, the event manager) interface directly to the CPU’s data bus. See the

individual peripheral specifications and device data sheets for details. Up to

16 peripherals may be connected to the peripheral bus.

One of the functions of the peripheral interface is to interface the CPU to the

peripheral bus.

The CPU is clocked at either two times (2� mode) or four times (4� mode)

the clock rate of the peripheral bus. Because the peripheral bus runs slower

than the CPU bus, peripheral bus reads and writes take multiple CPU cycles.

The exact number of CPU cycles a peripheral access takes to complete

depends on:

� Peripheral clock rate

� Phase of the peripheral clock in which the CPU initiates the peripheral

access

� Type of access: read or write

Table 6–1 shows how many CPU clock cycles it takes to complete read and

write accesses to peripherals connected to the peripheral bus. If, for example,

the clocks are in 4x mode, a single peripheral read may take 5, 6, 7, or 8 CPU

cycles, depending on the phase of the peripheral clock when the CPU initiates

the peripheral access. If back-to-back accesses are performed, all accesses

after the first will take eight cycles in 4� mode. Note that writes always take

one cycle longer than reads. This is consistent with zero-wait-state external

memory accesses and event manager accesses over the CPU’s data bus;

these accesses take one cycle for a read and two cycles for a write.

Table 6–1. CPU Cycles to Complete Reads From and Writes to the Peripheral Bus

2x Clock Mode 4x Clock Mode

Type of

Access

Single Accesses

(Cycles)

Back-to-Back

Accesses (Cycles)

Single Accesses

(Cycles)

Back-to-Back

Accesses (Cycles)

Read 3 or 4 4 5, 6, 7, or 8 8

Write 4 or 5 4 6, 7, 8, or 9 8

Peripheral InterfacePRELIMINARY

6-3System FunctionsPRELIMINARY

All CPU memory accesses are 16 bits wide. Reads from 8-bit peripherals are

LSB aligned. The most significant eight bits of a write to an 8-bit peripheral are

ignored. All peripherals are located in the CPU’s data space; this allows the

full instruction set to act upon the peripheral registers. I/O space is not used

by on-chip peripherals. A ’C24x device can have no more than 16 on-chip pe-

ripherals attached to the peripheral bus. There is no such limitation on periph-

erals that interface directly to the CPU.

System Configuration Registers PRELIMINARY

 6-4 PRELIMINARY

6.2 System Configuration Registers

The system configuration registers are shown in Figure 6–1 and described in

subsections 6.2.1 through 6.2.3. Note these points about the register loca-

tions:

� All unimplemented (reserved) bits are read as indeterminate values (un-

less otherwise stated).

� Bit 0 of the peripheral address bus is not decoded; therefore, these 16-bit

registers are accessible at each even address location and the following

(odd) address location. For example, the register SYSIVR is nominally at

location 701Eh, but it can also be accessed at address 701Fh.

Figure 6–1. System Configuration Registers

Address Register

15–0

7010h –
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉReservedÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ15–0

7012h – ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ15–0

7014h – ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ15–0

7016h – ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

15 14 13–8 7 6 5–0

7018h SYSCR RESET1 RESET0
ÉÉÉÉ
ÉÉÉÉ

Reserved CLKSRC1
ÉÉÉÉ
ÉÉÉÉ

CLKSRC0
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Reserved
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

15 14 13 12 11 10 9 8

PORST
ÉÉÉÉÉÉ
ÉÉÉÉÉÉReserved ILLADR

ÉÉÉÉ
ÉÉÉÉReserved SWRST WDRST

ÉÉÉÉ
ÉÉÉÉReserved

701Ah SYSSR 7 6 5 4 3 2 1 0ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Reserved HPO

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Reserved VCCAOR

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Reserved VECRD

ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

System Configuration RegistersPRELIMINARY

6-5System FunctionsPRELIMINARY

Figure 6–1. System Configuration Registers (Continued)

Address Register

15–0

701Ch – ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

15–0

701Eh SYSIVR System interrupt vector register

6.2.1 System Control Register (SYSCR)

Figure 6–2. System Control Register (SYSCR) — Address 7018h

15 14 13–8 7 6 5–0

RESET1 RESET0ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Reserved CLKSRC1 CLKSRC0ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Reserved

R/W–0 R/W–1 R/W–1* R/W–1*

Note: R = Read access, W = Write access, –n = Value after reset,

* = Not affected by reset, set to 1 by power-on reset

Bits 15–14 RESET1, RESET0. Software reset bits. These bits, which control the software
reset function of the device, must be written to at the same time. Writing a 1 to
RESET1 or a 0 to RESET0 causes a global reset to occur, as shown in the
following table.

RESET1 RESET0
Resulting

Action

0 0 Global reset

0 1 –

1 0 Global reset

1 1 Global reset

Bits 13–8 Reserved. Reads are indeterminate and writes have no effect.

System Configuration Registers PRELIMINARY

 6-6 PRELIMINARY

Bits 7–6 CLKSRC1, CLKSRC0. CLKOUT-pin source select. These bits control the
selection of the CLKOUT pin function.

CLKSRC1 CLKSRC0 CLKOUT Pin Function

0 0 Digital I/O mode (controlled by I/O register bits—see

device data sheet).

0 1 WDCLK: Watchdog Timer Clock output mode (nomi-

nally 16 kHz).

1 0 SYSCLK: system clock.

1 1 CPUCLK: CPU clock output mode.

Bits 5–0 Reserved. Reads are indeterminate and writes have no effect.

6.2.2 System Status Register (SYSSR)

Bits 15, 12, 10 and 9 of the system status register indicate the cause of a reset.

The reset service routine can read this register and use these bits to take the

appropriate action according to the cause of reset. For example, if a power-on

reset occurs, the clock module control registers may have to be reconfigured.

Figure 6–3. System Status Register (SYSSR) — Address 701Ah

15 14–13 12 11 10 9 8–6 5 4 3 2–1 0

PORSTÉÉÉ
ÉÉÉ

Res ILLADRÉÉÉ
ÉÉÉ

Res SWRST WDRSTÉÉÉÉ
ÉÉÉÉ

Res HPOÉÉ
ÉÉ

Res VCCAORÉÉÉÉ
ÉÉÉÉ

Res VECRD

R/C–x R/C–x R/C–x R/C–x R/C–i R–1 R–0

Note: R = Read access, C = Clear-only write access, –n = Value after reset (x means value unchanged by reset),

–i = Value of VCCP pin latch on rising edge of RESET

Bit 15 PORST. Power-on reset status bit. The occurrence of a power-on reset sets
this bit. Depending on the device configuration, a power-on reset may be
caused by either an on-chip low-voltage detect module indicating that VDD is
out of regulation, or from an off-chip power-on reset or low-voltage detection

source connected to the PORST pin.

0 =No reset has occurred due to power-on reset or VDD out of regulation.

1 =Reset due to power-on reset or VDD out of regulation.

Bits 14–13 Reserved. Reads are indeterminate and writes have no effect.

System Configuration RegistersPRELIMINARY

6-7System FunctionsPRELIMINARY

Bit 12 ILLADR. Illegal-address reset status bit. Illegal address reset occurs when an
unimplemented on-chip address location in data or program space is ac-
cessed. See the data sheet for each specific ’C24x device for details of which
addresses are illegal on that device.

0 =No illegal address conditions

1 =Reset due to illegal address

Bit 11 Reserved. Reads are indeterminate and writes have no effect.

Bit 10 SWRST. Software reset status bit.

0 =No software reset

1 =Software reset occurred. (A 1 was written to bit 15 of the SYSCR, or a
0 was written to bit 14 of the SYSCR.)

Bit 9 WDRST. Watchdog reset status bit.

0 =No reset

1 =Reset due to Watchdog Timer overflow

Bits 8–6 Reserved. Reads are indeterminate and writes have no effect.

Bit 5 HPO. Hardware protect override. If the flash programming voltage pin (VCCP)
is at 5V on the trailing edge of the reset pin (RS) and is held at that value, the
HPO bit is set. (This only applies to ’F24x devices, which have on-chip flash

EEPROM). This value is cleared by software or if the VCCP pin level changes to
0V.

0 =Normal mode

1 =HPO mode: Flash EEPROM programming is enabled and the Watch-
dog can be disabled by setting the WDDIS bit in the WD control regis-
ter. For details about this register, see TMS320C24x DSP Controllers
Reference Set, Volume 2: Peripheral Library and Specific Devices.

Bit 4 Reserved. Reads are indeterminate and writes have no effect.

Bit 3 VCCAOR. Analog VCC (VCCA) out-of-regulation bit. This bit is only valid if the

device has an on-chip low-voltage detect module.

0 =VCCA is on and in regulation.

1 =VCCA is off or out of regulation.

Bits 2–1 Reserved. Reads are indeterminate and writes have no effect.

System Configuration Registers PRELIMINARY

 6-8 PRELIMINARY

Bit 0 VECRD. Interrupt vector read pending bit. This bit is set when an interrupt vec-
tor is loaded into the SYSIVR (when the interrupt is acknowledged). It is
cleared when the SYSIVR is read. This bit is used by the service routine of non-
maskable interrupt NMI (see subsection 6.3.7, Programming an ISR for Non-
maskable Interrupt (NMI) on page 6-30).

0 = No read of the interrupt vector register is pending.

1 = An interrupt vector has been latched but has not been read yet.

6.2.3 System Interrupt Vector Register (SYSIVR)

The system interrupt vector register is a read-only register.

Figure 6–4. System Interrupt Vector Register (SYSIVR) — Address 701Eh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

System Interrupt Vector

R–0

Note: R = Read access, –n = Value after reset

Bits 15–8 Eight MSBs of the system interrupt vector. these bits are always read as 0s.

Bits 7–0 Eight LSBs of the system interrupt vector. These bits are loaded with the inter-
rupt vector address offset value. This value is generated by a peripheral
attached to the peripheral bus, in response to the acknowledgement of the
corresponding maskable interrupt.

InterruptsPRELIMINARY

6-9System FunctionsPRELIMINARY

6.3 Interrupts

Interrupts are hardware- or software-driven signals that cause the ’C24x to

suspend its main program and execute a subroutine. Typically, interrupts are

generated by hardware devices that need to give data to or take data from the

’C24x (for example, A/D and D/A converters and other processors). Interrupts

may also be used to signal that a particular event has taken place (for example,

a timer has finished counting).

The ’C24x supports both software and hardware interrupts:

� A software interrupt is requested by an instruction (INTR, NMI, or TRAP).

� A hardware interrupt is requested by a signal from a physical device. Two

types exist:

� External hardware interrupts are triggered by signals at external inter-

rupt pins. All these interrupts have programmable polarity and priority

and are controlled by the external interrupt control registers.

� Internal hardware interrupts are triggered by signals from the on-chip

peripherals.

If hardware interrupts are triggered at the same time, the ’C24x services them

according to a set priority ranking. Each of the ’C24x interrupts, whether hard-

ware or software, can be placed in one of the following two categories:

� Maskable interrupts. These are hardware interrupts that can be blocked

(masked) or enabled (unmasked) by software.

� Nonmaskable interrupts. These interrupts cannot be blocked. The

’C24x always responds to this type of interrupt and branches from the

main program to a subroutine. The ’C24x nonmaskable interrupts include

all software interrupts and two external hardware interrupts: reset (RS)

and NMI. Note that although RS is always active low, NMI has program-

mable polarity. For more information, see subsection 6.3.11, External

Interrupt Control Registers, on page 6-37.

For information about the reset signal and its effects on the ’C24x, see

Section 6.4, Reset Operation, on page 6-48. The control register for NMI

is described in subsection 6.3.2, Nonmaskable Interrupt Operation, on

page 6-12.

Table 6–2 summarizes the interrupts available on the CPU. Other maskable

interrupts are available through on-chip peripherals. The relationship between

the maskable CPU interrupts (INT1–INT6) and the maskable peripheral inter-

rupts is included in this section; however, for details on the peripheral interrupts

available on a specific ’C24x device, see the data sheet for that device.

Interrupts PRELIMINARY

6-10 PRELIMINARY

Table 6–2. ’C24x Interrupt Locations and Priorities

ÁÁÁÁ
ÁÁÁÁK†

ÁÁÁÁ
ÁÁÁÁ

Vector

Location
ÁÁÁÁÁ
ÁÁÁÁÁName

ÁÁÁÁ
ÁÁÁÁÁPriority

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁFunctionÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0h

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

RS

ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1 (highest)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Hardware reset (nonmaskable)

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

2h ÁÁÁÁÁ
ÁÁÁÁÁ

INT1 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Maskable interrupt level #1

ÁÁÁÁ
ÁÁÁÁ

2
ÁÁÁÁ
ÁÁÁÁ

4h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT2
ÁÁÁÁ
ÁÁÁÁ

5
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Maskable interrupt level #2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

3
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

6h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT3
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

6
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Maskable interrupt level #3

ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

8h ÁÁÁÁÁ
ÁÁÁÁÁ

INT4 ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Maskable interrupt level #4

ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

Ah ÁÁÁÁÁ
ÁÁÁÁÁ

INT5 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Maskable interrupt level #5

ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁ
ÁÁÁÁ

Ch
ÁÁÁÁÁ
ÁÁÁÁÁ

INT6
ÁÁÁÁ
ÁÁÁÁ

9
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Maskable interrupt level #6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

7
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Eh
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

10
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁ
ÁÁÁÁ

8 ÁÁÁÁ
ÁÁÁÁ

10h ÁÁÁÁÁ
ÁÁÁÁÁ

INT8 ÁÁÁÁ
ÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

12h ÁÁÁÁÁ
ÁÁÁÁÁ

INT9 ÁÁÁÁ
ÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

10
ÁÁÁÁ
ÁÁÁÁ

14h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT10
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

11

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

16h

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT11

ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

18h ÁÁÁÁÁ
ÁÁÁÁÁ

INT12 ÁÁÁÁ
ÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁ
ÁÁÁÁ

1Ah ÁÁÁÁÁ
ÁÁÁÁÁ

INT13 ÁÁÁÁ
ÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

14
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1Ch
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT14
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-defined software interruptÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

15

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1Eh

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT15

ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

16 ÁÁÁÁ
ÁÁÁÁ

20h ÁÁÁÁÁ
ÁÁÁÁÁ

INT16 ÁÁÁÁ
ÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

17
ÁÁÁÁ
ÁÁÁÁ

22h
ÁÁÁÁÁ
ÁÁÁÁÁ

TRAP
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
TRAP instruction vector

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

18
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

24h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

NMI
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

3
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Nonmaskable interrupt

ÁÁÁÁ
ÁÁÁÁ

19 ÁÁÁÁ
ÁÁÁÁ

26h ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Reserved

ÁÁÁÁ
ÁÁÁÁ

20 ÁÁÁÁ
ÁÁÁÁ

28h ÁÁÁÁÁ
ÁÁÁÁÁ

INT20 ÁÁÁÁ
ÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

21
ÁÁÁÁ
ÁÁÁÁ

2Ah
ÁÁÁÁÁ
ÁÁÁÁÁ

INT21
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

22

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2Ch

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT22

ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

23 ÁÁÁÁ
ÁÁÁÁ

2Eh ÁÁÁÁÁ
ÁÁÁÁÁ

INT23 ÁÁÁÁ
ÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† The K value is the operand used in an INTR instruction that branches to the corresponding

interrupt vector location.

InterruptsPRELIMINARY

6-11System FunctionsPRELIMINARY

Table 6–2. ’C24x Interrupt Locations and Priorities (Continued)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Function

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Priority

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Name

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Vector

Location

ÁÁÁ
ÁÁÁ
ÁÁÁ

K†

ÁÁÁ
ÁÁÁ

24ÁÁÁÁÁ
ÁÁÁÁÁ

30h ÁÁÁÁÁ
ÁÁÁÁÁ

INT24 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

25
ÁÁÁÁÁ
ÁÁÁÁÁ

32h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT25
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁ
ÁÁÁ
ÁÁÁ

26
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

34h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT26
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

27ÁÁÁÁÁ
ÁÁÁÁÁ

36h ÁÁÁÁÁ
ÁÁÁÁÁ

INT27 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

28ÁÁÁÁÁ
ÁÁÁÁÁ

38h ÁÁÁÁÁ
ÁÁÁÁÁ

INT28 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

29
ÁÁÁÁÁ
ÁÁÁÁÁ

3Ah
ÁÁÁÁÁ
ÁÁÁÁÁ

INT29
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁ
ÁÁÁ
ÁÁÁ

30
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

3Ch
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

31ÁÁÁÁÁ
ÁÁÁÁÁ

3Eh ÁÁÁÁÁ
ÁÁÁÁÁ

INT31 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† The K value is the operand used in an INTR instruction that branches to the corresponding

interrupt vector location.

6.3.1 Interrupt Operation: Three Phases

The ’C24x handles interrupts in three main phases:

1) Receive interrupt request. Suspension of the main program must be re-

quested by software (program code) or hardware (a pin or an on-chip de-

vice).

2) Acknowledge interrupt. The ’C24x must acknowledge the interrupt re-

quest. If the interrupt is maskable, certain conditions must be met in order

for the ’C24x to acknowledge it. For nonmaskable hardware interrupts and

for software interrupts, acknowledgment is immediate.

3) Execute interrupt service routine. Once the interrupt is acknowledged,

the ’C24x branches to its corresponding subroutine, called an interrupt

service routine (ISR). The ’C24x follows the branch instruction you place

at a predetermined address (the vector location) and executes the ISR you

have written.

Interrupts PRELIMINARY

 6-12 PRELIMINARY

6.3.2 Nonmaskable Interrupt Operation

Hardware nonmaskable interrupts can be requested through two pins:

� RS (reset). This interrupt stops program flow, returns the processor to a

predetermined state, and then begins program execution at address

0000h. For details of the reset operation, see Section 6.4, Reset Opera-

tion, on page 6-48.

� NMI. This interrupt is used as a soft reset. Unlike a hardware reset, NMI

neither affects any of the modes of the device nor aborts a currently active

instruction or memory operation. Although NMI uses the same logic as the

maskable interrupts, it is not maskable. NMI happens regardless of the

value of the INTM bit, and there is no mask bit for NMI. This interrupt can

only be locked out by an already executing NMI or a reset. When NMI is

activated (either by the NMI pin or by the NMI instruction), the processor

switches program control to vector location 24h. In addition, maskable in-

terrupts are disabled: the INTM bit of status register ST0 is set to 1.

Note that although RS is always active low, NMI has programmable polar-

ity. For more information, see subsection 6.3.11, External Interrupt Control

Registers, on page 6-37.

Software interrupts (which are inherently nonmaskable) are requested by the

following instructions:

� INTR. This instruction allows you to initiate any ’C24x interrupt, including

user-defined interrupts INT8–INT16 and INT20–INT31. The instruction

operand (K) indicates which interrupt vector location the CPU branches

to. Table 6–2 (page 6-10) shows the operand K that corresponds to each

vector location. When an INTR interrupt is acknowledged, the interrupt

mode (INTM) bit of status register ST1 is set to 1 to disable maskable

interrupts.

� NMI. This instruction forces a branch to interrupt vector location 24h, the

same location used for the nonmaskable hardware interrupt NMI. Thus,

you can either initiate NMI by driving the NMI pin active or by executing

an NMI instruction. When the NMI instruction is executed, INTM is set to

1 to disable maskable interrupts.

� TRAP. This instruction forces the CPU to branch to interrupt vector loca-

tion 22h. The TRAP instruction does not disable maskable interrupts

(INTM is not set to 1); thus when the CPU branches to the interrupt service

routine, that routine can be interrupted by the maskable hardware

interrupts.

InterruptsPRELIMINARY

6-13System FunctionsPRELIMINARY

After acknowledging a nonmaskable interrupt, the CPU:

1) Stores the program counter (PC) value (the return address) to the top of

the hardware stack.

2) Loads the PC with the address of the interrupt vector.

3) Fetches the branch instruction that you stored at the vector location.

If the interrupt was a hardware interrupt or was requested by either the

INTR or NMI instructions, the CPU also sets the INTM bit to 1 to disable

maskable interrupts.

4) Executes the branch, which leads it to the address of your ISR.

5) Executes the ISR until a return instruction concludes the ISR.

If INTM is 1, all maskable interrupts are disabled during the execution of

the ISR.

6) Pops the return address off the stack and into the PC.

7) Continues executing the main program.

To determine which vector address has been assigned to each of the inter-

rupts, refer to Table 6–2 (page 6-10). Each interrupt address has been spaced

apart by two locations so that 2-word branch instructions can be accommo-

dated in those locations.

6.3.3 Maskable Interrupt Structure

The CPU provides six maskable interrupt levels. Because a ’C24x device can

have more than six maskable interrupt sources, each of the six interrupt levels

can be shared by multiple interrupt sources. Figure 6–5 illustrates the struc-

ture used for receiving and acknowledging maskable interrupts. The figure

shows four interrupt sources (XINT1, XINT2, XINT3, and RTI) sharing the

interrupt level INT1. A similar situation exists for the other levels (INT2–INT6).

Interrupts PRELIMINARY

 6-14 PRELIMINARY

Figure 6–5. Example of Maskable Interrupt Structure

INT1Reserved INT2INT3INT4INT5INT6

INT1Reserved INT2INT3INT4INT5INT6

MaskFlag

MaskFlag

MaskFlag

MaskFlag

Arbitrator

Interrupt
acknowledge

INTM

IMR

IFR

XINT1

XINT2

XINT3

RTI

XINT1
hardware
request

XINT2
hardware
request

XINT3
hardware
request

RTI
hardware
request

CPU interrupt registers and logic

Peripheral interrupt registers and logic

InterruptsPRELIMINARY

6-15System FunctionsPRELIMINARY

Path of a Maskable Interrupt Request

Each of the interrupt sources has its own control register with a flag bit and a

mask bit (see subsection 6.3.12, Type A, Type B, and Type C Interrupt Pins,

on page 6-39). When an interrupt signal is received, the flag bit in the corre-

sponding control register is set, indicating that the interrupt has been re-

quested. If the mask bit is also set, a signal is sent to arbitration logic, which

may simultaneously receive similar signals from one or more other control reg-

isters. The arbitration logic compares the priority level of competing interrupt

requests, and it passes the interrupt of highest priority to the CPU. The inter-

rupt flag in the CPU’s IFR that corresponds to the interrupt priority level on

which the request was received is set. This indicates that the interrupt is pend-

ing. If the corresponding IMR bit is 1 and the INTM bit is 0, the CPU acknowl-

edges the interrupt and executes the interrupt service routine (ISR).

Priorities of the Maskable Interrupts

All hardware interrupts are given a priority rank from 1 to 10 (1 being highest).

The priorities are shown in Table 6–2 on page 6-10. When more than one of

these hardware interrupts is pending, the interrupt of highest rank gets ser-

viced first. The others are serviced in priority order after that. The maskable

interrupt levels of the DSP core have the priorities shown in Table 6–3.

Table 6–3. Priorities of the Maskable Interrupt Levels in the DSP Core

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Maskable Interrupt

Level

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Priority in the

DSP Core

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁINT2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ5ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT3

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

6

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT5
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9

As an example of how the priority ranking is carried out, suppose INT1 and

INT2 were both pending and not masked. INT1 would be acknowledged first,

followed by INT2.

Interrupts PRELIMINARY

 6-16 PRELIMINARY

Each maskable interrupt level (INT1–INT6) is connected to multiple maskable

interrupt sources, which also have set priority ranks. The source with highest

priority has its interrupt request sent to the interrupt level first. Consider the in-

terrupt sources in the example in Figure 6–5: XINT1, XINT2, XINT3, and RTI.

Suppose they have the priority ranks with respect to INT1 listed in Table 6–4.

Table 6–4. Priority Ranking Under INT1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Maskable Interrupt

Source

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Priority

Under INT1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁXINT1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

XINT2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

XINT3 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

RTI
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4

If all these sources had generated interrupt requests at the same time, XINT1

would get serviced first, then XINT2, followed by XINT3, and finally RTI.

6.3.4 CPU Interrupt Registers

There are two CPU registers for controlling interrupts:

� The interrupt flag register (IFR) contains flag bits that indicate when mask-

able interrupt requests have reached the CPU on levels INT1 through

INT6.

� The interrupt mask register (IMR) contains mask bits that enable or dis-

able each of the interrupt levels (INT1 through INT6).

Interrupt Flag Register (IFR)

The interrupt flag register (IFR), a 16-bit, memory-mapped register at address

0006h in data-memory space, is used to identify and clear pending interrupts.

The IFR contains flag bits for all the maskable interrupts.

When a maskable interrupt is requested, the flag bit in the corresponding con-

trol register is set to 1. If the mask bit in that same control register is also 1, the

interrupt request is sent to the CPU, setting the corresponding flag in the IFR.

This indicates that the interrupt is pending or waiting for acknowledgement.

You can read the IFR to identify pending interrupts and write to the IFR to clear

pending interrupts. To clear a single interrupt, write a 1 to the corresponding

InterruptsPRELIMINARY

6-17System FunctionsPRELIMINARY

IFR bit. All pending interrupts can be cleared by writing the current contents

of the IFR back into the IFR. A device reset clears all IFR bits.

The following events also clear an IFR flag:

� The CPU acknowledges the interrupt.

� The ’C24x is reset.

Notes:

1) To clear an IFR bit, you must write a 1 to it, not a 0.

2) When a maskable interrupt is acknowledged, only the IFR bit is cleared

automatically. The flag bit in the corresponding control register is not

cleared. If an application requires that the control register flag be

cleared, the bit must be cleared by software.

3) When an interrupt is requested by an INTR instruction and the corre-

sponding IFR bit is set, the CPU does not clear the bit automatically. If

an application requires that the IFR bit be cleared, the bit must be cleared

by software.

The IFR is shown in Figure 6–6, and descriptions of the bits follow the figure.

Figure 6–6. Interrupt Flag Register (IFR) — Address 0006h

15–6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Reserved INT6 INT5 INT4 INT3 INT2 INT1

0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Note: 0 = Always read as zeros, R = Read access, W1C = Write 1 to this bit to clear it, –n = Value after reset

Bits 15–6 Reserved. These bits are always read as 0s.

Bit 5 INT6. Interrupt 6 flag. This bit is the flag for interrupts connected to interrupt
level INT6.

0 =No INT6 interrupt is pending.

1 =At least one INT6 interrupt is pending. Write a 1 to this bit to clear it to
0 and clear the interrupt request.

Bit 4 INT5. Interrupt 5 flag. This bit is the flag for interrupts connected to interrupt

level INT5.

0 =No INT5 interrupt is pending.

1 =At least one INT5 interrupt is pending. Write a 1 to this bit to clear it to
0 and clear the interrupt request.

Interrupts PRELIMINARY

 6-18 PRELIMINARY

Bit 3 INT4. Interrupt 4 flag. This bit is the flag for interrupts connected to interrupt

level INT4.

0 =No INT4 interrupt is pending.

1 =At least one INT4 interrupt is pending. Write a 1 to this bit to clear it to
0 and clear the interrupt request.

Bit 2 INT3. Interrupt 3 flag. This bit is the flag for interrupts connected to interrupt

level INT3.

0 =No INT3 interrupt is pending.

1 =At least one INT3 interrupt is pending. Write a 1 to this bit to clear it to
0 and clear the interrupt request.

Bit 1 INT2. Interrupt 2 flag. This bit is the flag for interrupts connected to interrupt

level INT2.

0 =No INT2 interrupt is pending.

1 =At least one INT2 interrupt is pending. Write a 1 to this bit to clear it to
0 and clear the interrupt request.

Bit 0 INT1. Interrupt 1 flag. This bit is the flag for interrupts connected to interrupt

level INT1.

0 =No INT1 interrupt is pending.

1 =At least one INT1 interrupt is pending. Write a 1 to this bit to clear it to
0 and clear the interrupt request.

Interrupt Mask Register (IMR)

The IMR is a 16-bit, memory-mapped register located at address 0004h in

data memory space. The IMR contains mask bits for all the maskable interrupt

levels (INT1–INT6). Neither NMI nor RS is included in the IMR; thus, IMR has

no effect on these interrupts.

You can read the IMR to identify masked or unmasked interrupt levels, and you

can write to the IMR to mask or unmask interrupt levels. To unmask an interrupt

level, set its corresponding IMR bit to 1. To mask an interrupt level, set its corre-

sponding IMR bit to 0. When an interrupt is masked, it is not acknowledged,

regardless of the value of the INTM bit. When an interrupt is unmasked, it is

acknowledged if the corresponding IFR bit is 1 and the INTM bit is 0. At reset,

the IMR bits are all set to 0, masking all the maskable interrupts.

The IMR is shown in Figure 6–7, and descriptions of the bits follow the figure.

InterruptsPRELIMINARY

6-19System FunctionsPRELIMINARY

Figure 6–7. Interrupt Mask Register (IMR) — Address 0004h

15–6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Reserved INT6 INT5 INT4 INT3 INT2 INT1

0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: 0 = Always read as zeros, R = Read access, W = Write access, –n = Value after reset

Bits 15–6 Reserved. These bits are always read as 0s.

Bit 5 INT6. Interrupt 6 mask. This bit masks or unmasks interrupt level INT6.

0 =Level INT6 is masked.

1 =Level INT6 is unmasked.

Bit 4 INT5. Interrupt 5 mask. This bit masks or unmasks interrupt level INT5.

0 =Level INT5 is masked.

1 =Level INT5 is unmasked.

Bit 3 INT4. Interrupt 4 mask. This bit masks or unmasks interrupt level INT4.

0 =Level INT4 is masked.

1 =Level INT4 is unmasked.

Bit 2 INT3. Interrupt 3 mask. This bit masks or unmasks interrupt level INT3.

0 =Level INT3 is masked.

1 =Level INT3 is unmasked.

Bit 1 INT2. Interrupt 2 mask. This bit masks or unmasks interrupt level INT2.

0 =Level INT2 is masked.

1 =Level INT2 is unmasked.

Bit 0 INT1. Interrupt 1 mask. This bit masks or unmasks interrupt level INT1.

0 =Level INT1 is masked.

1 =Level INT1 is unmasked.

Interrupts PRELIMINARY

 6-20 PRELIMINARY

6.3.5 Maskable Interrupt Acknowledgement and Servicing

After an interrupt has been requested by hardware or software, the CPU must

decide whether to acknowledge the request. If the CPU acknowledges the in-

terrupt, the CPU executes its ISR.

Acknowledging Maskable Interrupts

Software interrupts and nonmaskable hardware interrupts are acknowledged

immediately. Maskable hardware interrupts are acknowledged only after cer-

tain conditions are met:

� Priority is highest. When more than one hardware interrupt is requested

at the same time, the ’C24x services each interrupt according to a set

priority ranking (see Table 6–2 on page 6-10).

� INTM bit is 0. The interrupt mode (INTM) bit, bit 9 of status register ST0,

enables or disables all maskable interrupts:

� When INTM = 0, all unmasked interrupts are enabled.

� When INTM = 1, all maskable interrupts are disabled.

INTM is set to 1 automatically when the CPU acknowledges an interrupt

(except when initiated by the TRAP instruction). INTM can also be set to

1 by a hardware reset or by execution of a disable-interrupts instruction

(SETC INTM). INTM is reset to 0 by executing the enable-interrupts

instruction (CLRC INTM). INTM has no effect on reset, NMI, or software-

interrupts. Also, INTM is unaffected by the LST (load status register)

instruction.

INTM does not modify the interrupt mask register (IMR) or the interrupt flag

register (IFR).

� IMR mask bit is 1. Each of the maskable interrupt levels has a mask bit

in the IMR. To unmask an interrupt level, set its IMR bit to 1. For more de-

tails about the IMR, see Interrupt Mask Register (IMR) on page 6-18.

When the CPU acknowledges a maskable hardware interrupt, it jams the

instruction bus with the INTR instruction. This instruction forces the PC to the

appropriate address from which the CPU fetches the software vector.

InterruptsPRELIMINARY

6-21System FunctionsPRELIMINARY

Two-Part Interrupt Service Routine (ISR)

The ’C2xx CPU has six interrupt levels, but ’C24x devices provide a means of

creating more than six ISRs. Figure 6–8 illustrates the process of servicing an

interrupt request. For each of the six interrupt levels, the CPU branches to a

corresponding general interrupt service routine (GISR). For example, when an

interrupt request on priority level INT1 is responded to, the CPU branches to

and executes GISR1. The GISR, after performing any necessary context

saves, will identify and then branch to the specific interrupt service routine

(SISR). The SISR performs the actions specific to the triggering interrupt and

then returns program control to the interrupted program sequence.

Figure 6–8. Interrupt Service Routine Flow Chart

Maskable interrupt
acknowledged

Branch to interrupt
vector location

Main program continues

Branch to SISR
vector location

Branch to SISR

GISR

Perform actions specific to
the triggering interrupt

Return from ISR

SISR

ISR

Branch to general ISR (GISR)

Calculate specific ISR (SISR)
vector location

Interrupts PRELIMINARY

6-22 PRELIMINARY

Branching to the GISR. Table 6–5 shows the addresses and contents of the

interrupt vector locations for the maskable interrupt levels (for a table of all the

interrupt vector locations, see Table 6–2 on page 6-10). When an interrupt is

acknowledged through one of these interrupt levels, the CPU branches to the

corresponding vector address and follows the branch at that address to the

GISR. For example, if an interrupt is acknowledged through INT3, the program

counter (PC) value is stored to the stack, and then the PC is loaded with pro-

gram-memory address 0006h. Locations 0006h and 0007h contain a branch

instruction that takes the CPU to the GISR.

Table 6–5. ’C24x Maskable Interrupt Vector Table

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Interrupt

Level

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Interrupt Vector

Location

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Contents of

Vector LocationÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0002h

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Branch to GISR1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0004h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Branch to GISR2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0006h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Branch to GISR3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0008h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Branch to GISR4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT5 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

000Ah ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Branch to GISR5

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

000Ch ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Branch to GISR6

Branching to the SISR. When a peripheral interrupt request is acknowledged

(this includes the external interrupt control registers), the peripheral generates

a vector address offset (vector) that corresponds to this interrupt event. This

vector is usually latched in the system interrupt vector register (SYSIVR),

although some peripherals, including the event manager, may keep the vector

in a register in the peripheral. For details on the location of the interrupt vector

register (IVR) for each interrupt level and also the vector value for each inter-

rupt event, see the device data sheet. The GISR must read the value stored

in the IVR and use it to generate the branch target address to the SISR. Sever-

al methods of doing this are described in subsection 6.3.8, Additional Tasks

of ISRs, on page 6-31.

Interrupt Vectors

Table 6–6 shows an edited example of an interrupt vector table for a ’C24x

device. Note that most peripherals use the system interrupt vector register

(SYSIVR) to fetch the vector address offset, but the event manager has its own

register for each of its three interrupt priority level requests:

� EVIVRA for interrupts in Group A

� EVIVRB for interrupts in Group B

� EVIVRC for interrupts in Group C

InterruptsPRELIMINARY

6-23System FunctionsPRELIMINARY

Table 6–6. Example Interrupt Locations and Priorities

Interrupt
Name

Overall
Priority

DSP-Core
Interrupt
and
Address

Peripheral
Vector
Address

Peripheral
Vector
Address
Offset Maskable? Source Function

RS 1
Highest

RS
0000h

N/A No Pin, S/W,
Watchdog
Timer, etc.

External,
system reset
(RESET)

RESERVED 2 0026h N/A N/A No Core Emulator trap

NMI 3 NMI
0024h

N/A N/A No External
pin

External
user interrupt

XINT1

XINT2

XINT3

4

5

6

INT1
0002h

(System)

SYSIVR

701Eh

0002h

0011h

001Fh

Yes External
pins

High-priority
external user
interrupts

RTI 10 0010h Yes Watchdog
Timer

Watchdog
timer
interrupt

PDPINT 11 INT2
0004h

(EV INTA)

EVIVRA

7432h

0020h Yes External
pin

Power drive
protection
interrupt

CMP1INT 12 (Group A) 0021h Yes Event
Manager

Compare 1
interrupt

etc.

TPINT2 22 INT3
0006h

(EV INTB)

EVIVRB

7434h

002Bh Yes Event
Manager

Timer 2
period
interrupt

TCINT2 23 (Group B) 002Ch Yes Event
Manager

Timer 2
compare
interrupt

etc.

Interrupts PRELIMINARY

 6-24 PRELIMINARY

Table 6–6. Example Interrupt Locations and Priorities (Continued)

FunctionSourceMaskable?

Peripheral
Vector
Address
Offset

Peripheral
Vector
Address

DSP-Core
Interrupt
and
Address

Overall
Priority

Interrupt
Name

CAPINT1 30 INT4
0008h

(EV INTC)

EVIVRC

7431h

0033h Yes Event
Manager

Capture 1
interrupt

CAPINT2 31 (Group C) 0034h Yes Event
Manager

Capture 2
interrupt

CAPINT3 32 0035h Yes Event
Manager

Capture 3
interrupt

CAPINT4 33 0036h Yes Event
Manager

Capture 4
interrupt

etc.

ADCINT 37 INT6
000Ch

(System)

SYSIVR

701Eh

0004h Yes ADC Analog-to-
Digital
Converter
interrupt

XINT1

XINT2

XINT3

38

39

40

 0002h

0011h

001Fh

Yes

Yes

Yes

External
pins

Low-priority
external user
interrupts

RESERVED 41 –

000Eh

N/A Yes DSP core Used for
analysis

TRAP N/A –

0022h

 N/A N/A TRAP
 instruction
vector

Phantom Interrupt Vector

The phantom interrupt vector is an interrupt system-integrity feature. In the

event that an interrupt is acknowledged but no peripheral responds by loading

an interrupt vector address offset value into the interrupt vector register (IVR),

the phantom vector (0000h) is loaded into the IVR instead so that this fault can

be handled in a controlled manner.

InterruptsPRELIMINARY

6-25System FunctionsPRELIMINARY

Two causes of phantom interrupts are:

� Execution of the INTR instruction with an argument in the range of 1 to 6.

This is a software request to service one of the six maskable interrupt

levels (INT1, INT2, INT3, INT4, INT5, or INT6).

� A glitch on an interrupt request line.

In either case, when the interrupt is acknowledged, no peripheral loads a vec-

tor into the IVR. Loading the IVR with the phantom interrupt vector ensures that

the DSP branches to a known location.

6.3.6 Programming ISRs for Maskable Interrupts

This subsection lists three methods for creating an interrupt service routine

(ISR) for a maskable interrupt:

� Method 1: A typical ISR

� Method 2: An ISR that is designed to reduce the latency between the time

the interrupt is requested and the time the event-specific portion of the ISR

is executed

� Method 3: An ISR that has very little latency. It can be used only if one pe-

ripheral interrupt source is connected to an interrupt request priority level

or if only one of many interrupt sources connected to an interrupt request

priority level is enabled.

Method 1: Typical ISR

The method described here is the typical implementation of an ISR for the

’C24x. Methods 2 and 3, described below are slightly more difficult to program.

It is best to implement this typical ISR first and then develop a more complex

routine if the latency for certain events is too high.

In Method 1, the ISR for a maskable interrupt is divided into two segments:

1) General ISR (GISR). When an interrupt on one of the six maskable inter-

rupt levels (INT1–INT6) is acknowledged, the GISR reads the relevant in-

terrupt vector register (IVR), shifts the value left by one bit, adds an offset

to the value, and then branches to a peripheral interrupt vector table. From

this table, it fetches and executes the appropriate branch to the specific

ISR (SISR).

2) Specific ISR (SISR). The SISR performs actions specific to the event that

caused the interrupt and then returns program control to the interrupted

code sequence.

Table 6–7 shows an example of Method 1.

Interrupts PRELIMINARY

 6-26 PRELIMINARY

Table 6–7. Example of Method 1 ISR

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Cycle

Count

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Address

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Assembly Language Code

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

;CPU interrupt vector table

...

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0006h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

INT3 B ;Branch to address of general ISR

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0007h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GISR3 ;for INT3.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GISR3 Addr ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GISR3 LACC xIVR,1 ;Load accumulator with

;contents of interrupt vector

;register (xIVR) shifted by 1.

ÁÁÁÁ
ÁÁÁÁ

4+n† ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GISR3 Addr+1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ADD offset ;Add offset to accumulator.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5+n†
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GISR3 Addr+2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BACC ;Branch to address in accumulator

;(2*IVR+offset).

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

;Peripheral interrupt vector table

...

ÁÁÁÁ
ÁÁÁÁ

9+n† ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2*IVR+offset ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

B ;Branch to specific ISR for

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

(2*IVR+offset)+1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SISRx ;event that requested interrupt.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...

ÁÁÁÁ
ÁÁÁÁ

13+n† ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SISRx ... ;Perform event–specific actions.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr+1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

... ;...

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

... ;...

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr+n
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RET ;Return from ISR.

† For the peripheral interface, n = 2; for the event manager, n = 1

In the example, the following events take place:

1) An acknowledged peripheral interrupt asserts INT3 and causes the device

to enter its interrupt vector table at address 0006h.

2) From addresses 0006h and 0007h, the device reads a branch that leads

it to GISR3.

3) GISR3 loads the accumulator with the contents of the relevant IVR shifted

by 1 (that is, multiplied by 2). Note the following:

� The LACC instruction uses direct addressing to access the IVR value.

For this to work, the data page pointer (DP in status register ST0) must

be set to point to the page in data memory that contains the IVR.

InterruptsPRELIMINARY

6-27System FunctionsPRELIMINARY

� You may want to save the accumulator value before loading the accu-

mulator with the shifted IVR value.

� The incoming vector has been multiplied by two because a peripheral

interrupt vector table must support a 2-word branch instruction for

each peripheral interrupt.

4) GISR3 adds to the accumulator an offset that corresponds to the start of

the peripheral interrupt vector table. The accumulator now contains the

address that needs to be accessed in the peripheral interrupt vector table.

5) GISR3 branches to the address in the accumulator.

6) From the peripheral interrupt vector location, the device reads a branch

that leads to the SISR for the event that requested the interrupt.

7) The SISR is executed. The SISR concludes with a return instruction,

which returns program control to the interrupted code sequence.

Method 2: Minimum Latency ISR for Multiple Events per Interrupt Level

This method is similar to Method 1, but has reduced latency because one of

the branches (the branch to the peripheral interrupt vector table) is bypassed.

Instead, the general ISR (GISR) branches directly to the specific ISR (SISR)

To do this, the GISR shifts the value from the IVR by more than 2 and uses the

result as the branch target. It may be difficult to locate all the SISRs in program

space without leaving some holes in memory. It is best to use Method 1 initially

and then Method 2 for some interrupts if the higher latency of Method 1 is unac-

ceptable.

The Method 2 ISR is implemented as follows:

1) General ISR (GISR). When an interrupt on one of the six maskable inter-

rupt levels (INT1–INT6) is acknowledged, the GISR reads the relevant in-

terrupt vector register (IVR), shifts the value left by a predetermined

amount, and then branches to the specific ISR (SISR). The shift amount

is chosen such that the accumulator will contain the address of the SISR.

For example, if three interrupt sources were tied to INT2, and the SISR for

each of the events were not greater than 16 words long, then a shift of 4

would be suitable.

2) Specific ISR (SISR). The SISR performs actions specific to the event that

caused the interrupt and then returns program control to the interrupted

code sequence.

Table 6–8 shows an example of Method 2.

Interrupts PRELIMINARY

 6-28 PRELIMINARY

Table 6–8. Example of Method 2 ISR

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Cycle

Count

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Address

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Assembly Language Code

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

;CPU interrupt vector table

...

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0004h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

INT2 B ;Branch to GISR

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0005h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GISR2 ;for INT2.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GISR2 Addr
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

GISR2 LACC xIVR,shift ;Load accumulator with

;contents of interrupt vector

;register (xIVR) shifted by

;an amount that will result in

;SISRx address in accumulator.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4+n†
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GISR2 Addr+1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BACC ;Branch to address in

;accumulator.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

8+n†
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SISRx ... ;Perform event–specific actions.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr+1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

... ;...

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

... ;...

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr+n
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RET ;Return from ISR.

† For the peripheral interface, n = 2; for the event manager, n = 1.

In the example, the following events take place:

1) An acknowledged peripheral interrupt asserts INT2 and causes the device

to enter it’s interrupt vector table at address 0004h.

2) From addresses 0004h and 0005h, the device reads a branch that leads

it to GISR2.

3) GISR2 loads the accumulator with the contents of the relevant IVR shifted

by an amount that results in the accumulator’s holding the address of the

SISR. Note the following:

� The LACC instruction uses direct addressing to access the IVR value.

For this to work, the data page pointer (DP in status register ST0) must

be set to point to the page in data memory that contains the IVR.

� You may want to save the accumulator value before loading the accu-

mulator with the shifted IVR value.

InterruptsPRELIMINARY

6-29System FunctionsPRELIMINARY

4) GISR2 branches to the address in the accumulator (the start address of

the SISR).

5) The SISR is executed. The SISR concludes with a return instruction,

which returns program control to the interrupted code sequence.

Method 3: ISR for Single Event per Interrupt Level

A device can be configured such that only one event can assert a particular

maskable interrupt.

Either: Both of these conditions must be met:

� Only one peripheral is connected to the maskable interrupt level (INT1,

INT2, INT3, INT4, INT5, or INT6).

� That one peripheral has only one event that can cause an interrupt request

(and, thus, has only one interrupt vector).

Or: Only one of the many events tied to a particular interrupt priority level would

be enabled.

In either situation, there is no need for a 2-part ISR like the one in Method 1

or the one in Method 2. There is one simple ISR and, thus, only one branch

instruction. The address of the ISR is known; it does not have to be calculated

in a routine. The GISR and the SISR become one and the same.

Table 6–9 shows an example of Method 3. In the example, the following events

take place:

1) An acknowledged peripheral interrupt asserts INT1 and causes the device

to enter its interrupt vector table at address 0002h.

2) From addresses 0002h and 0003h, the device reads a branch that leads

it directly to the SISR.

3) The SISR is executed and concludes with a return instruction, which

returns program control to the interrupted code sequence.

Interrupts PRELIMINARY

 6-30 PRELIMINARY

Table 6–9. Example of Method 3 ISR

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Cycle

Count

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Address

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Assembly Language Code

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

;CPU interrupt vector table

...

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0002h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

INT1 B ;Branch to ISR1.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0003h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ISR1

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ISR1 ... ;Perform event–specific actions.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SISRx Addr+1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

... ;...

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

... ;...

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSISRx Addr+n

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRET ;Return from ISR.

6.3.7 Programming an ISR for Nonmaskable Interrupt (NMI)

Generally, there cannot be more than one event capable of generating an NMI

request, and in cases where they do, they all share the same ISR. Thus, NMI

does not require loading an interrupt vector register (IVR), and the branch at

vector location 24h is the only branch necessary for the ISR.

An NMI can interrupt a maskable ISR after the vector has been loaded into the

IVR but before the maskable ISR has read the IVR. Because NMI does not

cause a loading of the IVR, an NMI does not cause overwriting of the maskable

interrupt’s vector address offset. However, an enabled interrupt immediately

following the NMI ISR could overwrite the value in the IVR before the inter-

rupted ISR has read it. Therefore, the ISR for NMI must check the VECRD bit

(bit 0) in the system status register (SSR). If VECRD = 1, a read of the IVR is

pending, and the NMI ISR should not reenable maskable interrupts.

The ISR for NMI could be implemented as shown in Table 6–10.

InterruptsPRELIMINARY

6-31System FunctionsPRELIMINARY

Table 6–10. One Implementation of an ISR for NMI

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Address
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Assembly Language Code
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

; CPU interrupt vector table
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0024h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NMI B ;Branch to NMI ISR.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0025h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NMI_ISR

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

...ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NMI ISR Addr

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NMI_ISR ... ;Start of ISR

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

... ;Body of ISR

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BIT SSR,15 ;Test bit 0 (VECRD) of SYSSR0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RETC TC ;If set, return from ISR

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

;(without enabling interrupts)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . . ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CLRC INTM ;If not set, enable interrupts and

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

. . .
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RET ;return from ISR.

6.3.8 Additional Tasks of ISRs

While performing the tasks requested by an interrupt, the ISR may also be:

� Saving and restoring register values

� Managing ISRs within ISRs

Saving and Restoring Register Values

Only the incremented program counter value is stored automatically before

the CPU enters an ISR. You must design the ISR to save and then restore any

other important register values or control bit values. You can use a common

routine or routines individualized for each interrupt to secure the context of the

processor during interrupt processing.

You can manage stack storage as long as the stack does not exceed the

memory space. This stack is also used for subroutine calls; the ’C24x supports

subroutine calls within the ISR. The PSHD and POPD instructions can transfer

data-memory values to and from the stack.

Interrupts PRELIMINARY

 6-32 PRELIMINARY

Managing ISRs Within ISRs

The ’C24x hardware stack allows you to have ISRs within ISRs. When consid-

ering nesting ISRs like this, keep the following in mind:

� If you want the ISR to be interrupted by a maskable interrupt, the ISR must

unmask the interrupt by setting the appropriate individual mask bit and the

appropriate IMR bit and globally reenabling interrupts by clearing the

INTM bit (CLRC INTM).

� The appropriate interrupt vector register must have been read by the GISR

to obtain the vector address offset before globally reenabling interrupts.

Otherwise, a subsequent interrupt can cause the old vector value to be

overwritten.

� The hardware stack is limited to eight levels. Each time an interrupt is serv-

iced or a subroutine is entered, the return address is pushed onto the hard-

ware stack. This provides a way to return to the previous context after the

interrupt service routine. The stack contains eight locations, allowing inter-

rupts or subroutines to be nested up to eight levels deep. (One level of the

stack is reserved for debugging, to be used for break-point/single-step

operations. If debugging is not used, this extra level is available for internal

use.) If your software requires more than eight levels of stack, you can use

the POPD and PSHD instructions to extend the stack into data memory.

� If you do not nest ISRs, you can avoid stack overflow. The ’C24x has a fea-

ture that allows you to prevent unintentional nesting. If an interrupt occurs

during the execution of a CLRC INTM instruction, the device always com-

pletes CLRC INTM as well as the following instruction before the pending

interrupt is processed. This ensures that a return (RET) placed immediate-

ly after the CLRC INTM can be executed before the next interrupt is

processed. The processor removes the previous return address from the

stack before it adds the new return address.

� If you want an ISR to occur within the current ISR rather than after the

current ISR, place the CLRC INTM instruction more than one instruction

before the return (RET) instruction.

InterruptsPRELIMINARY

6-33System FunctionsPRELIMINARY

6.3.9 Interrupt Latency

The length of an interrupt latency—the delay between when an interrupt

request is made and when it is serviced—depends on many factors. This

subsection describes the factors that determine minimum latency and then

describes factors that may cause additional latency. The maximum latency is

a function of wait states and pipeline protection.

There are several components to interrupt latency on the ’C24x:

� Peripheral interface synchronization time

� CPU response time

� ISR branching time

Peripheral Interface Synchronization Time

Peripheral Interface synchronization time is the time it takes for the interrupt

request from the peripheral to be recognized by the peripheral interface, arbi-

trated and converted into a request to the DSP. This takes up to one SYSCLK

cycle for internal interrupts from on-chip peripherals (peripheral bus operates

at the SYSCLK rate); in other words, in divide-by-two clock mode, two

CPUCLK cycles, in divide-by-four mode, four CPUCLK cycles. External inter-

rupts (NMI, INTx) have a two-SYSCLK-cycle synchronization delay.

Interrupt requests from the event manager peripheral are not arbitrated by the

peripheral interface; there is a one-CPUCLK-cycle delay for the CPU to recog-

nize the interrupt.

CPU Response Time

CPU response time is the time it takes for the CPU to recognize the enabled

interrupt request, acknowledge the interrupt, clear its pipeline, and begin re-

trieving the first instruction from the CPU’s interrupt vector table. The minimum

CPU latency is four CPUCLK cycles. If a higher priority maskable interrupt is

requested during this minimum latency period, it is masked until the ISR for the

interrupt being serviced is completed. NMIs are not maskable and are serviced

before the current ISR is completed.

Latency is longer if the interrupt request occurs during multicycle operations

or other operations that cannot be interrupted. If a higher priority interrupt

occurs during this additional latency period, it is serviced before the original

lower priority interrupt, assuming both are enabled.

Interrupts PRELIMINARY

 6-34 PRELIMINARY

Here are details about the effects of multicycle instructions:

� Memory access using wait states. An instruction that writes to or reads

from external memory may be delayed by wait states caused by the exter-

nal READY pin or the on-chip wait-state generator. These wait states may

affect the instruction being executed at the time the interrupt is requested,

and they may affect the interrupt itself if the interrupt vector must be

fetched from external memory.

� Repeat loop. When repeated with RPT, instructions run parallel opera-

tions in the pipeline, and the context of these additional parallel operations

cannot be saved in an interrupt service routine. To protect the context of

the repeated instruction, the CPU locks out all interrupts except reset until

the RPT loop completes.

Note:

Reset (RS) is not delayed by multicycle instructions. An NMI can be delayed
by multicycle instructions.

If one interrupt is being serviced, there are other factors that delay the servicing

of a new interrupt:

� A return address (incremented program counter value) is forced onto the

hardware stack every time the CPU follows another interrupt service rou-

tine or other subroutine. The ’C24x has a feature that helps you keep the

hardware stack from overflowing. Interrupts cannot be processed

between the CLRC INTM (enable maskable interrupts) instruction and the

next instruction in a program sequence. This ensures that a return instruc-

tion that directly follows CLRC INTM is executed before an interrupt is

processed. The return instruction pops the previous return address off the

top of the stack before the new return address is pushed onto the stack.

If the interrupt were to occur before the return, the new return address

would be added to the hardware stack, even if the stack were already full.

� Interrupts are also blocked after a RET instruction until at least one instruc-

tion at the return address is executed.

ISR Branching Time

ISR branching time is the time it takes to execute all the necessary branches

to get to the event-specific portion of the ISR. This length of time varies de-

pending on how you have implemented the ISR. For the simplest situation in

which only one branch to the ISR is required, the minimum branching time is

four DSP cycles. See subsection 6.3.8, Additional Tasks of ISRs, on page 6-31

for three different methods of implementing ISRs for maskable interrupts.

InterruptsPRELIMINARY

6-35System FunctionsPRELIMINARY

6.3.10 Summary of Interrupt Operation

Once an interrupt has been passed to the CPU, the CPU operates in the follow-

ing manner (see Figure 6–9):

� If a maskable interrupt is requested:

1) The flag bit in the individual control register is set. If the individual

mask bit is also set, the corresponding IFR bit is set.

2) Once the IFR bit is set, the acknowledgement conditions

(INTM bit = 0 and IMR bit = 1) are tested. If the conditions are true,

the CPU services the interrupt, generating an interrupt acknowledge

signal; otherwise, it ignores the interrupt and continues with the cur-

rent code sequence.

3) When the interrupt has been acknowledged, the IFR bit is cleared to 0

and the INTM bit is set to 1 (to block other maskable interrupts). The

flag bit in the corresponding control register is not cleared.

4) The return address (incremented PC value) is saved on the stack.

5) The CPU branches to and executes the interrupt service routine (ISR).

The ISR is concluded by a return instruction, which pops the return ad-

dress off the stack. The CPU continues with the interrupt code se-

quence.

� If a nonmaskable interrupt is requested:

1) The CPU immediately acknowledges the interrupt, generating an in-

terrupt acknowledge signal.

Note:

When an interrupt is requested by an INTR instruction and the corresponding
IFR bit is set, the CPU does not clear the bit automatically. If an application
requires that the IFR bit be cleared, the bit must be cleared by software.

2) If the interrupt was requested by the RS pin, the NMI pin, the NMI

instruction, or the INTR instruction, the the INTM bit is set to 1 to block

maskable hardware interrupts. If the interrupt was requested by the

TRAP instruction, the INTM bit is not set to 1.

3) The return address (incremented PC value) is saved on the stack.

4) The CPU branches to and executes the ISR. The ISR is concluded by

a return instruction, which pops the return address of the stack. The

CPU continues with the interrupted code sequence.

Interrupts PRELIMINARY

 6-36 PRELIMINARY

Figure 6–9. Interrupt Operation Flow Chart

Interrupt requested

Interrupt
maskable?

Interrupts
enabled

(INTM bit = 0)?

Interrupt acknowledged

TRAP
instruction?

Yes

Yes

Yes

Yes

No

No

No

No

INTM bit set to 1

PC saved on software stack

Interrupt service routine run

Return instruction restores PC

Main program continues

IMR bit
set?

Individual
mask bit

set?

No

IFR bit set

Individual flag bit set

Yes

InterruptsPRELIMINARY

6-37System FunctionsPRELIMINARY

6.3.11 External Interrupt Control Registers

A ’C24x device has up to six external interrupt pins with software program-

mable polarity and, in most cases, priority. These pins are programmed using

Type A, B, and C interrupt control registers. Up to 14 additional interrupt pins

can be supported using the two power module interrupt registers. In some

’C24x device configurations, the power module control registers may be used

to generate interrupts in response to events occurring in certain peripherals.

In all cases, refer to the device data sheet for details about the implementation

of external interrupts on a particular ’C24x device.

There are three types of external interrupts: Type A, Type B, and Type C. A

device will typically have two of each type, although they may not all be used.

The actual number and type of external interrupt pins is dependent upon the

device configuration. Figure 6–10 shows the available external interrupt con-

trol registers, including the Power Module interrupt registers.

Figure 6–10. External Interrupt Control Registers

Address Register

15 14 13 12 11 10 9 8

C

XINTA1

Flag

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

7070h
XINTA1CR

(Type A)
7 6 5 4 3 2 1 0

(Type A)

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Res
XINTA1

Pin data

XINTA1

NMI†
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Reserved
XINTA1

Polarity

XINTA1

Priority

XINTA1

Enable

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ† This bit is fixed at logic 0, which means a pin connected to this register cannot generate an NMI.ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ15 14 13 12 11 10 9 8

XINTA NMICR

XINTA–NMI

Flag

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

7072h
XINTA–NMICR

(Type A–NMI)
7 6 5 4 3 2 1 0

(Type A–NMI)

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Res
XINTA–NMI

Pin data

XINTA–NMI

NMI†
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Reserved
XINTA–NMI

Polarity

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Reserved

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

† This bit is fixed at logic 1, which means a pin connected to this register can only generate an NMI.

Interrupts PRELIMINARY

 6-38 PRELIMINARY

Figure 6–10. External Interrupt Control Registers (Continued)

Address Register

15 14 13 12 11 10 9 8

XINTB1

Flag

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

7074h
XINTB1CR

(Type B)
7 6 5 4 3 2 1 07074h

(Type B)
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Res
XINTB1

Pin data

XINTB1

NMI

XINTB1

Data dir

XINTB1

Data out

XINTB1

Polarity

XINTB1

Priority

XINTB1

Enable

ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

15 14 13 12 11 10 9 8

XINTB2

Flag

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

7076h XINTB2CR

(T pe B)
7 6 5 4 3 2 1 07076h

(Type B)ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Res
XINTB2

Pin data

XINTB2

NMI

XINTB2

Data dir

XINTB2

Data out

XINTB2

Polarity

XINTB2

Priority

XINTB2

Enable

ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

15 14 13 12 11 10 9 8

XINTC1

Flag

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

7078h
XINTC1CR

(Type C)
7 6 5 4 3 2 1 07078h

(Type C)ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Res
XINTC1

Pin data

ÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Res
XINTC1

Data dir

XINTC1

Data out

XINTC1

Polarity

XINTC1

Priority

XINTC1

Enable

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

InterruptsPRELIMINARY

6-39System FunctionsPRELIMINARY

Figure 6–10. External Interrupt Control Registers (Continued)

Address Register

15 14 13 12 11 10 9 8

XINTC2

Flag

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved

707Ah
XINTC2CR

(Type C)
7 6 5 4 3 2 1 0707Ah

(Type C)

ÉÉÉ
ÉÉÉ
ÉÉÉ

Res
XINTC2

Pin data
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Res
XINTC2

Data dir

XINTC2

Data out

XINTC2

Polarity

XINTC2

Priority

XINTC2

Enable

ÉÉÉ
ÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ15 14 13 12 11 10 9 8

PMINT1

Flag

PM INT

STS 13

PM INT

STS 12

PM INT

STS 11

PM INT

STS 10

PM INT

STS 9

PM INT

STS 8

PM INT

STS 7

707Ch PMINT1CR 7 6 5 4 3 2 1 0707Ch PMINT1CR

PMINT1

Enable

PM INT

ENA 13

PM INT

ENA 12

PM INT

ENA 11

PM INT

ENA 10

PM INT

ENA 9

PM INT

ENA 8

PM INT

ENA 7

ÉÉÉ
ÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

15 14 13 12 11 10 9 8

PMINT2

Flag

PM INT

STS 6

PM INT

STS 5

PM INT

STS 4

PM INT

STS 3

PM INT

STS 2

PM INT

STS 1

PM INT

STS 0

707Eh PMINT2CR 7 6 5 4 3 2 1 0707Eh PMINT2CR

PMINT2

Enable

PM INT

ENA 6

PM INT

ENA 5

PM INT

ENA 4

PM INT

ENA 3

PM INT

ENA 2

PM INT

ENA 1

PM INT

ENA 0

ÉÉÉ
ÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

6.3.12 Type A, Type B, and Type C Interrupt Pins

Table 6–11 summarizes the external interrupt pin types. Note the following:

� Type A interrupt pins allow for digital input only.

� One Type A pin is a maskable interrupt pin, the other is a nonmaskable

interrupt pin.

� Type B pins can be programmed as maskable or nonmaskable interrupts.

� Type C inputs can only be maskable.

� Type B and Type C interrupt pins can be used as digital input or output.

Interrupts PRELIMINARY

 6-40 PRELIMINARY

� All three types can be active on rising or falling edges; the polarity is

programmable.

� All three types of interrupts can be configured for low or high priority

interrupt requests.

� All interrupt pins are configured to digital inputs on reset.

Table 6–11. External Interrupt Pin Types
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁPin Type

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNMI Capability?

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNumber Available

ÁÁÁÁÁ
ÁÁÁÁÁDigital I/OÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Type A – NMI

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Yes – hardwired

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Input only

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Type A ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

No – hardwired ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

Input only

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Type B
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Yes – programmable
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2
ÁÁÁÁÁ
ÁÁÁÁÁ

I/O
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Type C
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

No
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

I/O

Type A Interrupt Pins

Type A interrupt pins can be used as nonmaskable interrupts, normal mask-

able interrupts, or digital input pins. Type A control registers have the general

form shown in Figure 6–11.

Figure 6–11.Type A Interrupt Control Register

15 14–7 6 5 4–3 2 1 0

INTx

Flag

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Reserved
INTx

Pin data

INTx

NMI

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

Reserved
INTx

Polarity

INTx

Priority

INTx

Enable

R/C–0 R–p R–x R/W–0 R/W–0 R/W–0

Note: R = Read access, W = Write access, C = Clear-only write access, –n = Value after reset (x means value unchanged by

reset), –p = Logic level of pin

Bit 15 INTx Flag. Interrupt x flag. This read/clear bit indicates whether the selected
transition has been detected on the pin for interrupt x. This bit is set whether or

not the interrupt is enabled. You can use this bit for software polling to see if the
selected edge has occurred. This bit is cleared by software or a system reset.
This bit need not be cleared when this pin is used as an interrupt; the interrupt
occurs once for each selected edge on the interrupt pin, even though this bit is
already set. Clearing this bit, however, clears a pending request from the pin.

0 =No transition detected

1 =Transition detected

Bits 14–7 Reserved. Reads are undefined; writes have no effect.

InterruptsPRELIMINARY

6-41System FunctionsPRELIMINARY

Bit 6 INTx Pin data. Interrupt pin data bit. This read-only bit reflects the current level
on the interrupt pin, regardless of how the interrupt pin is configured.

0 =Pin is a logic 0

1 =Pin is a logic 1

Bit 5 INTx NMI. Nonmaskable interrupt enable bit. This read-only bit determines
whether this pin can generate a nonmaskable interrupt. On most ’C24x
devices, one Type A interrupt register has this bit hardwired to a logic 0 level;
the other register has this bit hardwired to a logic 1 level.

0 =Pin is for a regular interrupt or a digital input

1 =Pin is for a nonmaskable interrupt

Bits 4–3 Reserved. Reads are undefined; writes have no effect.

Bit 2 INTx Polarity. Interrupt polarity bit. This read/write bit determines whether
interrupts are generated on the rising edge or the falling edge of a signal on the
pin.

0 =Interrupt generated on a falling edge (high to low transition)

1 =Interrupt generated on a rising edge (low to high transition)

Bit 1 INTx Priority. Interrupt priority bit. This read/write bit determines which inter-
rupt priority is requested. This bit has no effect if the NMI bit is set. See the
device data sheet for details about which interrupt level corresponds to high
priority and which interrupt level corresponds to low priority.

0 =High priority

1 =Low priority

Bit 0 INTx Enable. Interrupt enable bit. This read/write bit enables or disables the
maskable interrupt. This bit has no effect if the NMI bit is set.

0 =Disable interrupt (use pin as digital input)

1 =Enable interrupt

Interrupts PRELIMINARY

 6-42 PRELIMINARY

Type B Interrupt Pins

Type B interrupt pins can be used as nonmaskable interrupts, normal inter-

rupts, digital output or digital input pins. The general form for a Type B control

registers is shown in Figure 6–12.

Figure 6–12. Type B Interrupt Control Register

15 14–7 6 5 4 3 2 1 0

INTx

Flag

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Reserved
INTx

Pin data

INTx

NMI

INTx

Data dir

INTx

Data out

INTx

Polarity

INTx

Priority

INTx

Enable

R/C–0 R–p R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R = Read access, W = Write access, C = Clear-only write access, –n = Value after reset, –p = Logic level of pin

Bit 15 INTx Flag. Interrupt flag. This read/clear bit indicates if the selected transition
has been detected. This bit is set whether or not the interrupt is enabled. You
can use this bit for software polling to see if the selected edge has occurred.

This bit can only be cleared by software or a system reset. This bit need not be
cleared when this pin is used as an interrupt. The interrupt occurs once for
each selected edge on the interrupt pin, even though this bit is already set.
Clearing this bit, however, clears a pending request from the pin.

0 =No transition detected

1 =Transition detected

Bits 14–7 Reserved. Reads are undefined; writes have no effect.

Bit 6 INTx Pin data. Interrupt pin data bit. This read-only bit reflects the current level
on the interrupt pin, regardless of how the interrupt pin is configured.

0 =Pin is a logic 0

1 =Pin is a logic 1

Bit 5 INTx NMI. Nonmaskable interrupt enable bit. This read/write bit determines
whether this pin can generate a nonmaskable interrupt.

0 =Pin is for a regular interrupt or a digital I/O

1 =Pin is for a nonmaskable interrupt

Bit 4 INTx Data dir. Interrupt pin data direction bit. When the interrupt pin is not en-

abled for interrupts, this read/write bit determines whether the pin is a digital
input or a digital output.

0 =Pin is an input

1 =Pin is an output

InterruptsPRELIMINARY

6-43System FunctionsPRELIMINARY

Bit 3 INTx Data out. Interrupt pin output data bit. This read/write bit determines
whether the logic level on the pin is low or high when the pin is used as a digital
output pin.

0 =Pin level is low (when pin used as digital output)

1 =Pin level is high (when pin used as digital output)

Bit 2 INTx Polarity. Interrupt polarity bit. This read/write bit determines whether
interrupts are generated on the rising edge or the falling edge of a signal on the
pin.

0 =Interrupt generated on a falling edge (high to low transition)

1 =Interrupt generated on a rising edge (low to high transition)

Bit 1 INTx Priority. Interrupt priority bit. This read/write bit determines which inter-
rupt priority is requested. This bit has no effect if the NMI bit is set. See the
device data sheet for details about which interrupt level corresponds to high
priority and which interrupt level corresponds to low priority.

0 =High priority

1 =Low priority

Bit 0 INTx Enable. Interrupt enable bit. This read/write bit enables or disables the

maskable interrupt. This bit has no effect if the NMI bit is set.

0 =Disable interrupt (use pin as digital input or output)

1 =Enable interrupt

Interrupts PRELIMINARY

 6-44 PRELIMINARY

Type C Interrupt Pins

Type C interrupt pins can be used as normal interrupts, digital output, or digital

input pins. Figure 6–13 shows the general form of a Type C control register.

Figure 6–13. Type C Interrupt Control Register

15 14–7 6 5 4 3 2 1 0

INTx

Flag

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Reserved
INTx

Pin data

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Reserved
INTx

Data dir

INTx

Data out

INTx

Polarity

INTx

Priority

INTx

Enable

R/C–0 R–p R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R = Read access, W = Write access, C = Clear-only write access, –n = Value after reset, –p = Logic level of pin

Bit 15 INTx Flag. Interrupt flag. This read/clear bit indicates if the selected transition

has been detected. This bit is set whether or not the interrupt is enabled. You
can use this bit for software polling to see if the selected edge has occurred.
This bit can only be cleared by software or a system reset. This bit need not be
cleared when this pin is used as an interrupt. The interrupt occurs once for
each selected edge on the interrupt pin, even though this bit is already set.
Clearing this bit, however, clears a pending request from the pin.

0 =No transition detected

1 =Transition detected

Bits 14–7 Reserved. Reads are undefined; writes have no effect.

Bit 6 INTx Pin data. Interrupt pin data bit. This read-only bit reflects the current level
on the interrupt pin, regardless of how the interrupt pin is configured.

0 =Pin is a logic 0

1 =Pin is a logic 1

Bits 5 Reserved. Reads are undefined; writes have no effect.

Bit 4 INTx Data dir. Interrupt pin data direction bit. When the interrupt pin is not
enabled for interrupts, this read/write bit determines whether the pin is a digital
input or a digital output.

0 =Pin is an input

1 =Pin is an output

Bit 3 INTx Data out. Interrupt pin output data bit. This read/write bit determines
whether the logic level on the pin is low or high when the pin is used as a digital
output pin.

0 =Pin level is low (when pin used as digital output)

1 =Pin level is high (when pin used as digital output)

InterruptsPRELIMINARY

6-45System FunctionsPRELIMINARY

Bit 2 INTx Polarity. Interrupt polarity bit. This read/write bit determines whether
interrupts are generated on the rising edge or the falling edge of a signal on the
pin.

0 =Interrupt generated on a falling edge (high to low transition)

1 =Interrupt generated on a rising edge (low to high transition)

Bit 1 INTx Priority. Interrupt priority bit. This read/write bit determines which inter-
rupt priority is requested. See the device data sheet for details about which
interrupt level corresponds to high priority and which interrupt level corre-
sponds to low priority.

0 =High priority

1 =Low priority

Bit 0 INTx Enable. Interrupt enable bit. This read/write bit enables or disables the
maskable interrupt.

0 =Disable interrupt (use pin as digital input or output)

1 =Enable interrupt

Summary of External Interrupt Pin Functions

Table 6–12. External Interrupt Pin Functions and Corresponding Bit Settings

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Control Register Bit Values
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁPin Used As

ÁÁÁÁ
ÁÁÁÁ

NMI Bit†
ÁÁÁÁÁ
ÁÁÁÁÁ

Data Out
ÁÁÁÁÁ
ÁÁÁÁÁ

Data Dir‡
ÁÁÁÁ
ÁÁÁÁ

Polarity§
ÁÁÁÁÁ
ÁÁÁÁÁ

Priority
ÁÁÁÁÁ
ÁÁÁÁÁ

Int Enable
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Nonmaskable interrupt
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

X
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

X
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0, 1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

X
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

X

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Interrupt high priority ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

0, 1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Interrupt low priority
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

X
ÁÁÁÁÁ
ÁÁÁÁÁ

X
ÁÁÁÁ
ÁÁÁÁ

0, 1
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Digital output – 0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

X

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

X

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Digital output – 1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Digital input
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

X
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

X
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

X
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0

† Type C interrupts do not have an NMI bit; assume a value of 0.
‡ Type A interrupts do not have a data direction bit.
§ A polarity value of 1 indicates rising edge and a value of 0 indicates falling edge.

Interrupts PRELIMINARY

 6-46 PRELIMINARY

6.3.13 Power Module Interrupts

Power module interrupts may be used to interface to signals from internal

peripherals such as linear module fault condition signals (high or low active)

that need to request an interrupt. These interrupts may also be used with

signals coming from external pins.

Each interrupt signal has one enable bit and one interrupt flag. Each set of

seven internal interrupts has a single interrupt vector. The interrupt priority

level is determined at device fabrication; it is not programmable. Each power

module interrupt flag can have either an active high input or an active low input.

See the device data sheet for details.

The bits available in a power module interrupt register are shown in

Figure 6–14 and Figure 6–15.

Figure 6–14. PM INT Flag Bits

15 14 13 12 11 10 9 8

PM INT

Flag

PM INT

Status 6

PM INT

Status 5

PM INT

Status 4

PM INT

Status 3

PM INT

Status 2

PM INT

Status 1

PM INT

Status 0

R/C–0 R/C–0 R/C–0 R/C–0 R/C–0 R/C–0 R/C–0 R/C–0

Note: R = Read access, W = Write access, C = Clear-only write access, –n = Value after reset

Figure 6–15. PM INT Enable Bits

7 6 5 4 3 2 1 0

PM INT

ENA

PM INT

Enable 6

PM INT

Enable 5

PM INT

Enable 4

PM INT

Enable 3

PM INT

Enable 2

PM INT

Enable 1

PM INT

Enable 0

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R = Read access, W = Write access, –n = Value after reset

Bit 15 PM INT Flag. Power module interrupt flag. This bit is set any time one of the
power module interrupt sources sees the appropriate edge when the corre-
sponding PM INT Enable x bit is set. This flag can only be cleared by writing a 0;
writing a 1 has no effect.

0 =Power module interrupt event has not occurred since the flag was last
cleared

1 =Power module interrupt event has occurred since the flag was last
cleared

InterruptsPRELIMINARY

6-47System FunctionsPRELIMINARY

Bits 14–8 PM INT Status x. Power module interrupt status flags. These read-only bits
reflect the status of the input source signals to the power module interrupts. If
the source is in its active state, causing an interrupt, this bit contains a 1; other-
wise, it contains a 0.

0 =Power module interrupt is inactive

1 =Power module interrupt is active

Bit 7 PM INT ENA. Power module interrupt enable bit. This bit designates whether
the seven power module interrupts associated with this register are able to
generate an interrupt request to the CPU. If this bit is cleared, none of the
seven related interrupts in bits 14–8 can cause an interrupt request to be gen-

erated. If this bit is set, an active and enabled interrupt can be acknowledged.
This bit provides a quick means to disable all power module interrupts associ-
ated with a register. The wakeup signal associated with this interrupt is also
disabled when the interrupt is disabled (see Section 6.5, Power-Down Modes,
on page 6-51).

0 =All power module interrupts are disabled

1 =All power module interrupts are enabled

Bits 6–0 PM INT Enable x. Power module interrupt enable bits. These bits specify
whether the power module interrupt sources are enabled to set the PM INT
Flag (bit 15). To allow an interrupt from a particular power module interrupt
input, the corresponding PM INT Enable x bit must be set, as well as the PM
INT ENA bit.

0 =Power module interrupt x is disabled

1 =Power module interrupt x is enabled

Reset Operation PRELIMINARY

 6-48 PRELIMINARY

6.4 Reset Operation

The reset (RS) pin generates a nonmaskable external interrupt that can be

used at any time to put the ’C24x into a known state. Reset is the highest prior-

ity interrupt; no other interrupt takes precedence over a reset. Reset is typically

applied after power up when the machine is in an unknown state. Because the

reset signal aborts memory operations and initializes status bits, the system

should be reinitialized after each reset. The NMI interrupt can be used for soft

resets because it neither aborts memory operations nor initializes status bits.

Depending on the device configuration, there are up to five causes of a device

reset, as shown in Figure 6–16. Four of these causes are internally generated;

the other cause, the RS pin, is controlled externally.

Figure 6–16. Reset Signals

Reset
signal

Watchdog timer reset

Software reset

Power-on reset/VDD out of regulation

Illegal address

Reset pin active

To device

To reset pin

The five possible reset signals are generated as follows:

� Watchdog timer reset. A Watchdog timer-generated reset occurs if the

Watchdog timer (if present) overflows or an improper value is written to

either the Watchdog key register or the Watchdog control register. (Note

that when the device is powered on, the Watchdog timer is automatically

active.)

� Software-generated reset. This is implemented with the system control

register (SCR). Clearing the RESET0 bit (bit 14) or setting the RESET1

bit (bit 15) causes a system reset.

� Power-on reset/VDD out of regulation. This reset action is generated by

either of two sources:

� The external power-on reset pin (PORESET)

� The low voltage detect circuitry, if present on the device. This circuitry

sends a reset signal if the ’C24x device is operating with VDD outside

the recommended operating range.

� Illegal address. The system and peripheral module control register frame

address map contains unimplemented address locations in the ranges

labeled ‘Illegal’ in a device data sheet. Any access to an address located

in the Illegal ranges generates an illegal-address reset.

Reset OperationPRELIMINARY

6-49System FunctionsPRELIMINARY

� Reset pin active. To generate an external reset pulse on the RS pin, a low

level pulse duration of as little as a few nanoseconds is usually effective;

however, pulses of one SYSCLK cycle are necessary to ensure that the

device recognizes the reset signal. A typical reset circuit required for a

’C24x device consists of a 10-k� pull-up resistor from the RS pin to VDD.

Once a reset source is activated, the external RS pin is driven (active) low for

a minimum of eight SYSCLK cycles. This allows the ’C24x to reset external

devices connected to the RS pin. (The RS pin is an open collector I/O pin and

should have a pull-up resistor attached.) Additionally, if a VDD out-of-regulation

condition occurs or this RS pin is held low, the reset logic holds the device in

a reset state for as long as these actions are active.

When a reset signal is received, the program determines the source of the

reset by reading the contents of the system status register (SYSSR). The

SYSSR contains one status bit for each of the five internal sources that can

cause a reset.

The occurrence of a reset condition causes the ’C24x to terminate execution

and affects various registers and status bits. During a reset, RAM contents re-

main unchanged, and all control bits that are affected by a reset are initialized.

Then processor execution begins at location 0, which normally contains a

branch instruction to the system initialization routine.

When a ’C24x reset occurs, the following actions take place:

� A logic 0 is loaded into the CNF (configuration control) bit in status register

ST1; this maps dual-access RAM block 0 into the data space.

� The program counter is cleared to 0.

� The INTM (interrupt mode) bit is set to 1, disabling all maskable interrupts.

(RS and NMI are not maskable.) Also, the interrupt flag register (IFR) and

interrupt mask register (IMR) are cleared.

� The status bits are loaded with the following values: OV = 0, XF = 1,

SXM = 1, PM = 0, CNF = 0, INTM = 1, and C = 1. (The other status bits

remain undefined and should be initialized after a reset.)

� The global memory allocation register (GREG) is cleared to make all

memory local.

� The repeat counter (RPTC) is cleared.

� The wait states (if the device has an external memory interface) are set

for the maximum duration.

Reset Operation PRELIMINARY

 6-50 PRELIMINARY

� The peripheral register bits are initialized as described in the

TMS320C24x DSP Controllers Reference Set, Volume 2: Peripheral

Library and Specific Devices.

No other CPU registers or status bits (such as the accumulator, the DP, the

ARP, and the auxiliary registers) are initialized.

Power-Down ModesPRELIMINARY

6-51System FunctionsPRELIMINARY

6.5 Power-Down Modes

A ’C24x device can have up to four power-down modes that reduce the operat-

ing power of the ’C24x device by stopping the clocks (and, thus, the activity

and power consumption) of the CPU and various on-chip peripherals. While

the ’C24x is in a power-down mode, all of its internal contents are maintained

and operation continues unaltered when the power-down mode is terminated

with an interrupt. The content of all on-chip RAM remains unchanged. Howev-

er, if the power-down mode is terminated with a reset, the contents of some

registers are changed (the register contents that are always changed during

a reset).

There are three different clock domains that can be shut off during power

down:

� CPU clock domain. All clocks in the CPU and memories, except the inter-

rupt control registers

� System clock domain. All peripheral clocks (CPUCLK or SYSCLK), the

clocks for the CPU’s interrupt control registers and the analog module

clock (ACLK)

� Watchdog clock. The nominally 16 kHz clock used to increment the

Watchdog Timer and Real Time Interrupt module (WDCLK)

Note:

The terms CPUCLK and CPU clock domain, SYSCLK and system clock
domain are not interchangeable.

The four types of possible power-down modes on a ’C24x device have

decreasing levels of power consumption and increasing delays to exit the low

power mode. All of the possible power-down modes may not be implemented

on a ’C24x device. A low-power mode is entered when the CPU executes an

IDLE instruction. Which of the four possible low power modes is entered is

determined by the PLLPM(1:0) bits in the CKCR0 register in the clock module.

See the TMS320C24x DSP Controllers Reference Set, Volume 2: Peripheral

Library and Specific Devices for more details on this register and on the power-

down modes. The power-down modes in order of decreasing power and

increasing startup time are:

� Idle1 mode stops the clocks to the CPU (CPU clock domain) but the clocks

for all peripherals (system clock domain) continue to run. Exit from Idle1

occurs immediately following any interrupt or a reset.

Power-Down Modes PRELIMINARY

 6-52 PRELIMINARY

� Idle2 mode stops the clocks in both the CPU clock domain and the system

clock domain. Exit from Idle2 occurs immediately following a wakeup inter-

rupt or a reset. The Watchdog clock continues to run and eventually times

out, causing a reset.

� PLL power-down mode powers down the PLL (if enabled). The Watch-

dog clock continues to run. Exit from this mode can be caused by a wakeup

interrupt or a reset. The Watchdog clock continues to run and eventually

times out, causing a reset. The device does not start full-speed operation

until the PLL has powered up and reattained lock (this can be hundreds

of microseconds; see the TMS320C24x DSP Controllers Reference Set,

Volume 2: Peripheral Library and Specific Devices for more details).

� Oscillator power-down mode shuts off power to the oscillator (if enabled)

and is the lowest power mode available. No clocks are running on the

device. A wakeup interrupt or reset causes the device to exit this low-

power mode. No clock runs until the oscillator has powered back up (the

power-up time is on the order of milliseconds; see the TMS320C24x DSP

Controllers Reference Set, Volume 2: Peripheral Library and Specific

Devices for more details). The device does not start full-speed operation

until the PLL has powered up and reattained lock (this can be additional

hundreds of microseconds).

See the relevant device data sheet for details of low-power mode power

consumption for each device. Table 6–13 shows the status of the CPU and

peripheral clocks during each of the four power-down modes.

Table 6–13. Power-Down Modes

Mode

CPU

Clock

Domain

System

Clock

Domain
Watchdog

Clock Oscillator

Idle1 Off On On On

Idle2 Off Off On On

PLL power down Off Off On On

Oscillator power down Off Off Off Off

Power-Down ModesPRELIMINARY

6-53System FunctionsPRELIMINARY

6.5.1 Setting and Entering the Power-Down Modes

All the power-down modes are initiated by the execution of the IDLE instruc-

tion. The mode entered then depends on the value in the PLLPM field of clock

module control register 0 (CKCR0). Table 6–14 shows how the two PLLPM

bits of CKCR0 determine the power-down mode.

Table 6–14. Setting the Power-Down Mode with the PLLPM Bits

PLLPM bits Power-Down Mode

00 Idle1

01 Idle2

10 PLL power down

11 Oscillator power down

6.5.2 Exiting the Power-Down Modes

In any one of the four power-down modes (Idle1, Idle2, PLL power down, and

oscillator power down), the CPU clock domain is off. Therefore, software inter-

rupts cannot be generated to take the processor out of power-down. Interrupts

can only be generated at external pins or by on-chip peripherals.

Reset. Reset signals terminate power-down modes as follows:

� The reset pin (RS) causes the device to exit any power-down mode.

� Watchdog timeout reset causes the device to exit Idle1, Idle2, or PLL pow-
er down. The Watchdog timer is not incrementing during oscillator power
down because the Watchdog clock is stopped.

External interrupts. Any of the power-down modes terminate when the CPU

receives any one of these interrupts at a pin:

� NMI

� XINTn (any external interrupt controlled by the external interrupt control

registers, if unmasked).

Wakeup interrupts. The external interrupts XINTn and NMI are also wakeup

interrupts. This means that when the clocks are shut off, there is a combinato-

rial logic path from these pins to restart the clocks.

The external interrupts, XINTn, are maskable interrupts and can only com-

pletely bring the processor out of the power-down mode if they are unmasked.

If they are masked, they wake up the device by starting all clocks, but the

device remains in the IDLE state.

Power-Down Modes PRELIMINARY

 6-54 PRELIMINARY

Certain peripherals are also able to generate wakeup interrupts when the

clocks in the system clock domain are shut off. For example, some commu-

nication ports may be able to generate a wakeup interrupt in response to

receiving a character.

Oscillator power down mode is only terminated by an external interrupt (NMI

or XINTn). In this mode, the oscillator is off (no clocks on the device are active);

thus, no interrupts can be generated by on-chip peripherals, and the Watchdog

timer cannot generate a time-out signal.

Peripheral interrupts. The Idle1, Idle2, and PLL power-down modes can be

terminated by various peripheral interrupts under the right conditions. In Idle1

mode, all the clocks for the peripheral devices are still running; therefore, any

unmasked peripheral interrupt terminates Idle1 mode. In the Idle2 and PLL

power-down modes, the clocks in the system clock domain are off. As a result,

only unmasked peripheral interrupts not timed by the system clock can bring

the processor out of the Idle2 and PLL power-down modes.

In oscillator power-down mode, the peripheral clocks and the Watchdog timer

clocks are off. Only unmasked peripheral interrupts not timed by either of those

clocks can terminate oscillator power-down mode.

Table 6–15 summarizes the state of processors in each power-down mode

and lists the interrupts that do and do not terminate each mode.

Power-Down ModesPRELIMINARY

6-55System FunctionsPRELIMINARY

Table 6–15. Power-Down Modes and Their Termination

Mode

CPU
Clock
Domain

System
Clock
Domain

Watchdog
Clock PLL Oscillator Terminated By

Not Terminated
By

Idle1 Off On On On On Reset (RS)
Watchdog reset

NMI (at pin)

XINT’s (at pin,
unmasked)

Any peripheral
interrupt (unmasked)

Masked interrupts

Idle2 Off Off On On On Reset (RS)
Watchdog reset

NMI (at pin)

XINT’s (at pin,
unmasked)

Peripheral wakeup
interrupts.

Masked interrupts

Peripheral inter-
rupts dependent
on the system
clock.

PLL
power
down
(PPD)

Off Off On Off On Reset (RS)
Watchdog reset

NMI (at pin)

XINT’s (at pin,
unmasked)

Peripheral wakeup
interrupts

Masked interrupts

Peripheral inter-
rupts dependent
on the system
clock

Oscillator
power
down
(OPD)

Off Off Off Off Off Reset (RS)

NMI (at pin)

XINT’s (at pin,
unmasked)

Peripheral wakeup
interrupts

Masked interrupts

Peripheral inter-
rupts

Power-Down Modes PRELIMINARY

 6-56 PRELIMINARY

After Exiting Power-Down

There are two items to consider when deciding how to wake the processor:

� If you use reset or NMI, the CPU immediately executes the corresponding
interrupt service routine.

� If you use a maskable hardware interrupt, the next action depends on the
interrupt mode (INTM) bit of status register ST0:

� INTM = 0: The interrupt is enabled, and the CPU executes the

corresponding interrupt service routine.

� INTM = 1: The interrupt is disabled, and the CPU continues with

the instruction after IDLE.

If you do not want the CPU to take an interrupt service routine before continu-
ing with the interrupted program sequence:

� Do not use reset or NMI to bring the processor out of power-down.

� Make sure your program sets INTM to 1 (SETC INTM) before IDLE is
executed.

If you want the CPU to take the interrupt service routine before continuing:

� Make sure your program clears INTM to 0 (CLRC INTM) before IDLE is
executed.

� Make sure you enable all relevant interrupt sources, both locally (in the

peripheral mask/enable registers) and globally (in the CPU’s interrupt

mask register).

Power-Down ModesPRELIMINARY

6-57System FunctionsPRELIMINARY

6.5.3 Summary of Power-Down Mode Operation

When the IDLE instruction is executed:

1) The program counter is incremented once, so that when the power-down

mode is exited, the next instruction is the one that follows the IDLE instruc-

tion, except in the case of reset.

2) The ’C24x enters the power-down mode selected by the PLLPM bits and

remains in that low-power state until it receives a proper hardware inter-

rupt (as described in subsection 6.5.2, Exiting the Power-Down Modes, on

page 6-53).

3) Upon receipt of the proper interrupt, the ’C24x exits the power-down

mode.

4) If you use NMI to wake the processor, the CPU executes the correspond-

ing interrupt service routine before continuing with the interrupted

program sequence.

If you use a maskable interrupt, the next action depends on the value of the

INTM bit:

� INTM = 0: Maskable interrupts are enabled; the CPU first executes the

interrupt service routine of the interrupt that brought it out of power-

down. Then it continues with the instruction after the IDLE instruction.

� INTM = 1: Maskable interrupts are disabled; the CPU continues exe-

cution at the instruction after IDLE.

Table 6–16 summarizes the four power-down modes, including the approxi-

mate power level for each. (For more accurate power values, see the data

sheet for your particular ’C24x device.) In addition, the table shows the status

of the ’C24x when not in a power-down mode. See Table 6–15 for the list of

interrupts that do and do not terminate each mode.

Table 6–16. Power-Down Modes/Run Mode Summary

Mode PLLPM + IDLE
Power

Level

CPU

Clock

Domain

System

Clock

Domain
Watchdog

Clock PLL Oscillator

Run XX + No
IDLE

> 40 mA On On On On On

Idle 1 00 + IDLE ~15 mA Off On On On On

Idle 2 01 + IDLE ~4 mA Off Off On On On

PPD 10 + IDLE ~1 mA Off Off On Off On

OPD 11 + IDLE < 30 µA Off Off Off Off Off

PRELIMINARY

 6-58 PRELIMINARY

7-1Addressing ModesPRELIMINARY

���
��������	���

This chapter explains the three basic memory addressing modes used by the

’C24x instruction set. The three modes are:

� Immediate addressing mode

� Direct addressing mode

� Indirect addressing mode

In immediate addressing, a constant to be manipulated by the instruction is

supplied directly as an operand of that instruction. Two types of immediate

addressing are available—short and long. In short-immediate addressing, an

8-, 9-, or 13-bit operand is included in the instruction word. Long-immediate

addressing uses a 16-bit operand.

When you need to access data memory, you can use direct or indirect addres-

sing. Direct addressing concatenates seven bits of the instruction word with

the nine bits of the data-memory page pointer (DP) to form the 16-bit data

memory address. Indirect addressing accesses data memory through one of

eight 16-bit auxiliary registers.

Topic Page

7.1 Immediate Addressing Mode 7-2.

7.2 Direct Addressing Mode 7-4.

7.3 Indirect Addressing Mode 7-9.

Chapter 7

PRELIMINARY

PRELIMINARY

Immediate Addressing Mode PRELIMINARY

7-2 PRELIMINARY

7.1 Immediate Addressing Mode

In immediate addressing, the instruction word contains a constant to be ma-

nipulated by the instruction. The ’C24x supports two types of immediate ad-

dressing:

� Short-immediate addressing. Instructions that use short-immediate ad-

dressing take an 8-bit, 9-bit, or 13-bit constant as an operand. Short-im-

mediate instructions require a single instruction word, with the constant

embedded in that word.

� Long-immediate addressing. Instructions that use long-immediate ad-

dressing take a 16-bit constant as an operand and require two instruction

words. The constant is sent as the second instruction word. This 16-bit val-

ue can be used as an absolute constant or as a 2s-complement value.

In Example 7–1, the immediate operand is contained as a part of the RPT

instruction word. For this RPT instruction, the instruction register will be loaded

with the value shown in Figure 7–1. Immediate operands are preceded by the

symbol #.

Example 7–1. RPT Instruction Using Short-Immediate Addressing

RPT #99 ;Execute the instruction that follows RPT

;100 times.

Figure 7–1. Instruction Register Contents for Example 7–1

0123456789101112131415

1100011011011101

8-bit constant = 99RPT opcode for immediate addressing

In Example 7–2, the immediate operand is contained in the second instruction

word. The instruction register receives, consecutively, the two 16-bit values

shown in Figure 7–2.

Example 7–2. ADD Instruction Using Long-Immediate Addressing

ADD #16384,2 ;Shift the value 16384 left by two bits

;and add the result to the accumulator.

Immediate Addressing ModePRELIMINARY

7-3Addressing ModesPRELIMINARY

Figure 7–2. Two Words Loaded Consecutively to the Instruction Register in Example 7–2

0123456789101112131415

100111111101

shift = 2

16-bit constant = 16�384 = 4000h

First instruction word:

Second instruction word:

0100

ADD opcode for long-immediate addressing

000000000010 0000

0123456789101112131415

Direct Addressing Mode PRELIMINARY

7-4 PRELIMINARY

7.2 Direct Addressing Mode

In the direct addressing mode, data memory is addressed in blocks of 128

words called data pages. The entire 64K of data memory consists of 512 data

pages labeled 0 through 511, as shown in Figure 7–3. The current data page

is determined by the value in the 9-bit data page pointer (DP) in status register

ST0. For example, if the DP value is 0 0000 00002, the current data page is

0. If the DP value is 0 0000 00102, the current data page is 2.

Figure 7–3. Pages of Data Memory

1111 1111 1

0000 0000 1

0000 0001 0

0000 0001 0

0000 0000 0

Data Memory

Page 0: 0000h–007Fh

Page 1: 0080h–00FFh

Page 2: 0100h–017Fh

Page 511: FF80h–FFFFh

.

000 0000

OffsetDP Value

0000 0000 0

111 1111

0000 0000 1

1111 1111 1

000 0000

111 1111

000 0000

111 1111

000 0000

111 1111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

In addition to the data page, the processor must know the particular word being

referenced on that page. This is determined by a 7-bit offset (see Figure 7–3).

The offset is supplied by the seven least significant bits (LSBs) of the instruc-

tion register, which holds the opcode for the next instruction to be executed.

In direct addressing mode, the content of the instruction register has the format

shown in Figure 7–4.

Direct Addressing ModePRELIMINARY

7-5Addressing ModesPRELIMINARY

Figure 7–4. Instruction Register (IR) Contents in Direct Addressing Mode

0123456789101112131415

7 LSBs08 MSBs

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
ADD) and also contain any information regarding a shift of
the data value to be accessed by the instruction.

0 Direct/indirect indicator. Bit 7 contains a 0 to define the ad-
dressing mode as direct.

7 LSBs Bits 6 through 0 indicate the offset for the data-memory ad-
dress referenced by the instruction.

To form a complete 16-bit address, the processor concatenates the DP value

and the seven LSBs of the instruction register, as shown in Figure 7–5. The

DP supplies the nine most significant bits (MSBs) of the address (the page

number), and the seven LSBs of the instruction register supply the seven LSBs

of the address (the offset). For example, to access data address 003Fh, you

specify data page 0 (DP = 0000 0000 0) and an offset of 011 1111. Concatenat-

ing the DP and the offset produces the 16-bit address 0000 0000 0011 1111,

which is 003Fh or decimal 63.

Figure 7–5. Generation of Data Addresses in Direct Addressing Mode

7 LSBs from IR

16-bit data-memory address

All 9 bits from DP

Data page pointer (DP)

Page (9 MSBs) Offset (7 LSBs)

Instruction register (IR)

8 MSBs 7 LSBs9 bits 0

Initialize the DP in All Programs

It is critical that all programs initialize the DP. The DP is not
initialized by reset and is undefined after power up. The ’C24x
development tools use default values for many parameters,
including the DP. However, programs that do not explicitly initialize
the DP can execute improperly, depending on whether they are
executed on a ’C24x device or with a development tool.

Direct Addressing Mode PRELIMINARY

 7-6 PRELIMINARY

7.2.1 Using Direct Addressing Mode

When you use direct addressing mode, the processor uses the DP to find the

data page and uses the seven LSBs of the instruction register to find a particu-

lar address on that page. Always do the following:

1) Set the data page. Load the appropriate value (from 0 to 511) into the DP.

The DP register can be loaded by the LDP instruction or by any instruction

that can load a value to ST0. The LDP instruction loads the DP directly

without affecting the other bits of ST0, and it clearly indicates the value

loaded into the DP. For example, to set the current data page to 32 (ad-

dresses 1000h–107Fh), you can use:

LDP #32 ;Initialize data page pointer

2) Specify the offset. Supply the 7-bit offset as an operand of the instruction.

For example, if you want the ADD instruction to use the value at the second

address of the current data page, you would write:

ADD 1h;Add to accumulator the value in the current

;data page, offset of 1.

You do not have to set the data page prior to every instruction that uses direct

addressing. If all the instructions in a block of code access the same data page,

you can simply load the DP at the front of the block. However, if various data

pages are being accessed throughout the block of code, be sure the DP is

changed whenever a new data page should be accessed.

7.2.2 Examples of Direct Addressing

In Example 7–3, the first instruction loads the DP with 0 0000 01002 to set the

current data page to 4. The ADD instruction then references a data memory

address that is generated as shown following the program code. Before the

ADD instruction is executed, the opcode is loaded into the instruction register.

Together, the DP and the seven LSBs of the instruction register form the com-

plete 16-bit address, 0000 0010 0000 10012 (0209h).

Direct Addressing ModePRELIMINARY

7-7Addressing ModesPRELIMINARY

Example 7–3. Using Direct Addressing with ADD (Shift of 0 to 15)

LDP #4 ;Set data page to 4 (addresses 0200h–027Fh).

ADD 9h,5 ;The contents of data address 0209h are

;left shifted 5 bits and added to the

;contents of the accumulator.

7 LSBs from IR

16-bit data address 0209h

All 9 bits from DP

DP = 4 Instruction register (IR)

0 0 1 0 0 0 0 1 0 0 10 0 0 0 0 0 1 0 0 00 0 1 0

ADD
opcode

Shift of 5

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

9h

In Example 7–4, the ADD instruction references a data memory address that

is generated as shown following the program code. For any instruction that

performs a shift of 16, the shift value is not embedded directly in the instruction

word; instead, all eight MSBs contain an opcode that not only indicates the

instruction type, but also a shift of 16. The eight MSBs of the instruction word

indicate an ADD with a shift of 16.

Example 7–4. Using Direct Addressing with ADD (Shift of 16)

LDP #5 ;Set data page to 5 (addresses 0280h–02FFh).

ADD 9h,16 ;The contents of data address 0289h are

;left shifted 16 bits and added to the

;contents of the accumulator.

7 LSBs from IR

16-bit data address 0289h

All 9 bits from DP

DP = 5 Instruction register (IR)

0 0 0 1 0 0 10 0 0 0 0 0 1 0 1 0

ADD with shift of 16
opcode

0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1

9h

0 1 1 0 0 0 0 1

Direct Addressing Mode PRELIMINARY

7-8 PRELIMINARY

In Example 7–5, the ADDC instruction references a data memory address that

is generated as shown following the program code. Note that if an instruction

does not perform shifts, like the ADDC instruction does not, all eight MSBs of

the instruction contain the opcode for the instruction type.

Example 7–5. Using Direct Addressing with ADDC

LDP #500 ;Set data page to 500 (addresses FA00h–FA7Fh).

ADDC 6h ;The contents of data address FA06h

 ;and the value of the carry bit (C) are

;added to the contents of the accumulator.

7 LSBs from IR

16-bit data address FA06h

All 9 bits from DP

DP = 500 Instruction register (IR)

0 0 0 0 1 1 01 1 1 1 1 0 1 0 0 0

ADDC opcode

1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0

6h

0 1 1 0 0 0 0 0

Indirect Addressing ModePRELIMINARY

7-9Addressing ModesPRELIMINARY

7.3 Indirect Addressing Mode

Eight auxiliary registers (AR0–AR7) provide flexible and powerful indirect

addressing. Any location in the 64K data memory space can be accessed

using a 16-bit address contained in an auxiliary register.

7.3.1 Current Auxiliary Register

To select a specific auxiliary register, load the 3-bit auxiliary register pointer

(ARP) of status register ST0 with a value from 0 to 7. The ARP can be loaded

as a primary operation by the MAR instruction or by the LST instruction. The

ARP can be loaded as a secondary operation by any instruction that supports

indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register

or current AR. During the processing of an instruction, the content of the cur-

rent auxiliary register is used as the address at which the data-memory access

takes place. The ARAU passes this address to the data-read address bus

(DRAB) if the instruction requires a read from data memory, or it passes the

address to the data-write address bus (DWAB) if the instruction requires a

write to data memory. After the instruction uses the data value, the contents

of the current auxiliary register can be incremented or decremented by the

ARAU, which implements unsigned 16-bit arithmetic.

Normally, the ARAU performs its arithmetic operations in the decode phase of

the pipeline (when the instruction specifying the operations is being decoded).

This allows the address to be generated before the decode phase of the next

instruction. There is an exception to this rule: during processing of the NORM

instruction, the auxiliary register and/or ARP modification is done during the

execute phase of the pipeline. For information on pipeline operation, see Sec-

tion 5.2 on page 5-7.

7.3.2 Indirect Addressing Options

The ’C24x provides four types of indirect addressing options:

� No increment or decrement. The instruction uses the content of the cur-

rent auxiliary register as the data memory address but neither increments

nor decrements the content of the current auxiliary register.

� Increment or decrement by 1. The instruction uses the content of the

current auxiliary register as the data memory address and then incre-

ments or decrements the content of the current auxiliary register by one.

� Increment or decrement by an index amount. The value in AR0 is the

index amount. The instruction uses the content of the current auxiliary reg-

ister as the data memory address and then increments or decrements the

content of the current auxiliary register by the index amount.

Indirect Addressing Mode PRELIMINARY

 7-10 PRELIMINARY

� Increment or decrement by an index amount using reverse carry. The

value in AR0 is the index amount. After the instruction uses the content of

the current auxiliary register as the data-memory address, that content is

incremented or decremented by the index amount. The addition or sub-

traction, in this case, is done with the carry propagation reversed for fast

Fourier transforms (FFTs).

These four option types provide the seven indirect addressing options listed

in Table 7–1. The table also shows the instruction operand that corresponds

to each indirect addressing option and gives an example of how each option

is used.

Table 7–1. Indirect Addressing Operands

Operand Option Example

* No increment or decrement LT * loads the temporary register (TREG) with the content of the

data memory address referenced by the current AR.

*+ Increment by 1 LT *+ loads the temporary register (TREG) with the content of

the data memory address referenced by the current AR and

then adds 1 to the content of the current AR.

*– Decrement by 1 LT *– loads the temporary register (TREG) with the content of

the data memory address referenced by the current AR and

then subtracts 1 from the content of the current AR.

*0+ Increment by index amount LT *0+ loads the temporary register (TREG) with the content of

the data memory address referenced by the current AR and

then adds the content of AR0 to the content of the current AR.

*0– Decrement by index amount LT *0– loads the temporary register (TREG) with the content of

the data memory address referenced by the current AR and

then subtracts the content of AR0 from the content of the

current AR.

*BR0+ Increment by index amount,

adding with reverse carry

LT *BR0+ loads the temporary register (TREG) with the con-

tent of the data memory address referenced by the current AR

and then adds the content of AR0 to the content of the current

AR, adding with reverse carry propagation.

*BR0– Decrement by index amount,

subtracting with reverse carry

LT *BR0– loads the temporary register (TREG) with the con-

tent of the data memory address referenced by the current AR

and then subtracts the content of AR0 from the content of the

current AR, subtracting with bit reverse carry propagation.

Indirect Addressing ModePRELIMINARY

7-11Addressing ModesPRELIMINARY

All increments or decrements are performed by the auxiliary register arithmetic

unit (ARAU) in the same cycle during which the instruction is being decoded

in the pipeline.

The bit-reversed indexed addressing allows efficient I/O operations by

resequencing the data points in a radix-2 FFT program. The direction of carry

propagation in the ARAU is reversed when the address is selected, and AR0

is added to or subtracted from the current auxiliary register. A typical use of this

addressing mode requires that AR0 first be set to a value corresponding to half

of the array’s size, and that the current AR value be set to the base address

of the data (the first data point).

7.3.3 Next Auxiliary Register

In addition to updating the current auxiliary register, a number of instructions

can also specify the next auxiliary register or next AR. This register will be the

current auxiliary register when the instruction execution is complete. The

instructions that allow you to specify the next auxiliary register load the ARP

with a new value. When the ARP is loaded with that value, the previous ARP

value is loaded into the auxiliary register pointer buffer (ARB). Example 7–6

illustrates the selection of a next auxiliary register, as well as other indirect ad-

dressing features discussed so far.

Example 7–6. Selecting a New Current Auxiliary Register

MAR*,AR1 ;Load the ARP with 1 to make AR1 the

;current auxiliary register.

LT *+,AR2 ;AR2 is the next auxiliary register.

;Load the TREG with the content of the

;address referenced by AR1, add one to

;the content of AR1, then make AR2 the

;current auxiliary register.

MPY* ;Multiply TREG by content of address

;referenced by AR2.

Indirect Addressing Mode PRELIMINARY

7-12 PRELIMINARY

7.3.4 Indirect Addressing Opcode Format

Figure 7–6 shows the format of the instruction word loaded into the instruction

register when you use indirect addressing. The opcode fields are described

following Figure 7–6.

Figure 7–6. Instruction Register Content in Indirect Addressing

0123456789101112131415

NARNARU18 MSBs

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
LT) and also contain any information regarding data shifts.

1 Direct/indirect indicator. Bit 7 contains a 1 to define the ad-
dressing mode as indirect.

ARU Auxiliary register update code. Bits 6 through 4 determine
whether and how the current auxiliary register is increm-
ented or decremented. See Table 7–2.

N Next auxiliary register indicator. Bit 3 specifies whether
the instruction changes the ARP value.

N = 0 The content of the ARP remains unchanged.

N = 1 The content of NAR is loaded into the ARP, and
the old ARP value is loaded into the auxiliary
register buffer (ARB) of status register ST1.

NAR Next auxiliary register value. Bits 2 through 0 contain the
value of the next auxiliary register. NAR is loaded into the
ARP if N = 1.

Table 7–2. Effects of the ARU Code on the Current Auxiliary Register

ARU Code

6 5 4 Arithmetic Operation Performed on Current AR

0 0 0 No operation on current AR

0 0 1 Current AR – 1 → current AR

0 1 0 Current AR + 1 → current AR

0 1 1 Reserved

1 0 0 Current AR – AR0 → current AR [reverse carry propagation]

1 0 1 Current AR – AR0 → current AR

1 1 0 Current AR + AR0 → current AR

1 1 1 Current AR + AR0 → current AR [reverse carry propagation]

Indirect Addressing ModePRELIMINARY

7-13Addressing ModesPRELIMINARY

Table 7–3 shows the opcode field bits and the notation used for indirect

addressing. It also shows the corresponding operations performed on the

current auxiliary register and the ARP.

Table 7–3. Field Bits and Notation for Indirect Addressing

Instruction Opcode Bits

15 – 8 7 6 5 4 3 2 1 0 Operand(s) Operation

← 8 MSBs → 1 0 0 0 0 ←NAR→ * No manipulation of current AR

← 8 MSBs → 1 0 0 0 1 ←NAR→ *,ARn NAR → ARP

← 8 MSBs → 1 0 0 1 0 ←NAR→ *– Current AR – 1 → current AR

← 8 MSBs → 1 0 0 1 1 ←NAR→ *–,ARn Current AR – 1 → current AR

NAR → ARP

← 8 MSBs → 1 0 1 0 0 ←NAR→ *+ Current AR + 1 → current AR

← 8 MSBs → 1 0 1 0 1 ←NAR→ *+,ARn Current AR + 1 → current AR

NAR → ARP

← 8 MSBs → 1 1 0 0 0 ←NAR→ *BR0– Current AR – rcAR0 → current AR †

← 8 MSBs → 1 1 0 0 1 ←NAR→ *BR0–,ARn Current AR – rcAR0 → current AR

NAR → ARP †

← 8 MSBs → 1 1 0 1 0 ←NAR→ *0– Current AR – AR0 → current AR

← 8 MSBs → 1 1 0 1 1 ←NAR→ *0–,ARn Current AR – AR0 → current AR

NAR → ARP

← 8 MSBs → 1 1 1 0 0 ←NAR→ *0+ Current AR + AR0 → current AR

← 8 MSBs → 1 1 1 0 1 ←NAR→ *0+,ARn Current AR + AR0 → current AR

NAR → ARP

← 8 MSBs → 1 1 1 1 0 ←NAR→ *BR0+ Current AR + rcAR0 → current AR †

← 8 MSBs → 1 1 1 1 1 ←NAR→ *BR0+,ARn Current AR + rcAR0 → current AR

NAR → ARP †

† Bit-reversed addressing mode

Legend: rc Reverse carry propagation
NAR Next AR
n 0, 1, 2, ..., or 7
8 MSBs Eight bits determined by instruction type and (sometimes) shift information
→ Is loaded into

Indirect Addressing Mode PRELIMINARY

7-14 PRELIMINARY

7.3.5 Examples of Indirect Addressing

In Example 7–7, when the ADD instruction is fetched from program memory,

the instruction register is loaded with the value shown.

Example 7–7. Indirect Addressing—No Increment or Decrement

ADD *,8 ;Add to the accumulator the content of the

;data-memory address referenced by the

;current auxiliary register. The data

;is left shifted 8 bits before being added.

0123456789101112131415

N = No next AR specified

ARU = No operation on current AR

1

Shift = 8

0 0 0 0 X X X

ADD opcode

0 0 1 0 1 0 0 0

Addressing mode = indirect

NAR = don’t cares

In Example 7–8, when the ADD instruction is fetched from program memory,

the instruction register is loaded with the value shown.

Example 7–8. Indirect Addressing—Increment by 1

ADD *+,8,AR4 ;Operates as in Example 7–7, but

;in addition, the current auxiliary

;register is incremented by one, and

;AR4 is chosen as the next auxiliary

;register.

0123456789101112131415

NAR = 4

N = next AR specified

ARU = increment current AR by 1

1

Shift = 8

0 1 0 0 1 0 0

ADD opcode

0 0 1 0 1 0 0 0

Addressing mode = indirect

Indirect Addressing ModePRELIMINARY

7-15Addressing ModesPRELIMINARY

Example 7–9. Indirect Addressing—Decrement by 1

ADD *–,8 ;Operates as in Example 7–7, but in

;addition, the current auxiliary register

;is decremented by one.

Example 7–10. Indirect Addressing—Increment by Index Amount

ADD *0+,8 ;Operates as in Example 7–7, but in

;addition, the content of register AR0

;is added to the current auxiliary

;register.

Example 7–11. Indirect Addressing—Decrement by Index Amount

ADD *0–,8 ;Operates as in Example 7–7, but in

;addition, the content of register AR0

;is subtracted from the current auxiliary

;register.

Example 7–12. Indirect Addressing—Increment by Index Amount With Reverse Carry
Propagation

ADD *BR0+,8 ;Operates as in Example 7–10, except that

;the content of register AR0 is added to

;the current auxiliary register with

;reverse carry propagation.

Example 7–13. Indirect Addressing—Decrement by Index Amount With Reverse Carry
Propagation

ADD *BR0–,8 ;Operates as in Example 7–11, except that

;the content of register AR0 is subtracted

;from the current auxiliary register with

;reverse carry propagation.

Indirect Addressing Mode PRELIMINARY

7-16 PRELIMINARY

7.3.6 Modifying Auxiliary Register Content

The LAR, ADRK, SBRK, and MAR instructions are specialized instructions for

changing the content of an auxiliary register (AR):

� The LAR instruction loads an AR.

� The ADRK instruction adds an immediate value to an AR; SBRK subtracts

an immediate value.

� The MAR instruction can increment or decrement an AR value by 1 or by

an index amount.

However, you are not limited to these four instructions. Auxiliary registers can

be modified by any instruction that supports indirect addressing operands.

(Indirect addressing can be used with all instructions except those that have

immediate operands or no operands.)

PRELIMINARY

8-1Assembly Language InstructionsPRELIMINARY

�����������	��	���������
��

Note:

The instruction set for the TMS320C24x is identical to that of the
TMS320C2xx. All references to ’C2xx devices in this chapter also apply to
’C24x devices.

This chapter describes the ’C24x assembly language instructions. This

instruction set supports numerically intensive signal-processing operations as

well as general-purpose applications, such as multiprocessing and high-

speed control. The ’C2xx instruction set is compatible with the ’C2x instruction

set; code written for the ’C2x can be reassembled to run on the ’C2xx. The ’C5x

instruction set is a superset of that of the ’C2xx; thus, code written for the ’C2xx

can be upgraded to run on a ’C5x.

Topic Page

8.1 Instruction Set Summary 8-2.

8.2 How To Use the Instruction Descriptions 8-12.

8.3 Instruction Descriptions 8-19.

Chapter 8

PRELIMINARY

PRELIMINARY

Instruction Set Summary PRELIMINARY

8-2 PRELIMINARY

8.1 Instruction Set Summary

This section provides six tables (Table 8–1 to Table 8–6) that summarize the

instruction set according to the following functional headings:

� Accumulator, arithmetic, and logic instructions (see Table 8–1 on page

8-5)

� Auxiliary register and data page pointer instructions (see Table 8–2 on

page 8-7)

� TREG, PREG, and multiply instructions (see Table 8–3 on page 8-8)

� Branch instructions (see Table 8–4 on page 8-9)

� Control instructions (see Table 8–5 on page 8-10)

� I/O and memory operations (see Table 8–6 on page 8-11)

Within each table, the instructions are arranged alphabetically. The number of

words that an instruction occupies in program memory is specified in column

three of each table; the number of cycles that an instruction requires to execute

is in column four. All instructions are assumed to be executed from internal

program memory (RAM) and internal data dual-access memory. The cycle

timings are for single-instruction execution, not for repeat mode. Additional

information about each instruction is presented in the individual instruction

descriptions in Section 8.2 on page 8-12.

For your reference, here are the definitions of the symbols used in the six

summary tables:

ACC The accumulator

AR The auxiliary register

ARX A 3-bit value used in the LAR and SAR instructions to desig-
nate which auxiliary register will be loaded (LAR) or have its
contents stored (SAR)

BITX A 4-bit value (called the bit code) that determines which bit of
a designated data memory value will be tested by the BIT
instruction

CM A 2-bit value. The CMPR instruction performs a comparison
specified by the value of CM:

If CM = 00, test whether current AR = AR0
If CM = 01, test whether current AR < AR0
If CM = 10, test whether current AR > AR0

If CM = 11, test whether current AR ≠ AR0

Instruction Set SummaryPRELIMINARY

8-3Assembly Language InstructionsPRELIMINARY

IAAA AAAA (One I followed by seven As) The I at the left represents a bit
that reflects whether direct addressing (I = 0) or indirect ad-
dressing (I = 1) is being used. When direct addressing is used,
the seven As are the seven least significant bits (LSBs) of a
data memory address. For indirect addressing, the seven As
are bits that control auxiliary register manipulation (see Sec-
tion 7.3, Indirect Addressing Mode, on page 7-9).

IIII IIII (Eight Is) An 8-bit constant used in short immediate addres-
sing

I IIII IIII (Nine Is) A 9-bit constant used in short immediate addressing
for the LDP instruction

I IIII IIII IIII (Thirteen Is) A 13-bit constant used in short immediate
addressing for the MPY instruction

I NTR# A 5-bit value representing a number from 0 to 31. The INTR
instruction uses this number to change program control to one
of the 32 interrupt vector addresses.

PM A 2-bit value copied into the PM bits of status register ST1 by
the SPM instruction

SHF A 3-bit left-shift value

SHFT A 4-bit left-shift value

TP A 2-bit value used by the conditional execution instructions to
represent four conditions:

BIO pin low TP = 00
TC bit =1 TP = 01
TC bit = 0 TP = 10
No condition TP = 11

Instruction Set Summary PRELIMINARY

8-4 PRELIMINARY

ZLVC ZLVC Two 4-bit fields — each representing the following conditions:

ACC = 0 Z
ACC < 0 L
Overflow V
Carry C

A conditional instruction contains two of these 4-bit fields. The
4-LSB field of the instruction is a mask field. A 1 in the corre-
sponding mask bit indicates that condition is being tested. For

example, to test for ACC ≥ 0, the Z and L fields are set, and
the V and C fields are not set. The Z field is set to test the condi-
tion ACC = 0, and the L field is reset to test the condition

ACC ≥ 0.The second 4-bit field (bits 4 – 7) indicates the state
of the conditions to test. The conditions possible with these
eight bits are shown in the descriptions for the BCND, CC, and
RETC instructions.

+ 1 word The second word of a 2-word opcode. This second word
contains a 16-bit constant. Depending on the instruction, this
constant is a long immediate value, a program memory ad-
dress, or an address for an I/O port or an I/O-mapped register.

Instruction Set SummaryPRELIMINARY

8-5Assembly Language InstructionsPRELIMINARY

Table 8–1. Accumulator, Arithmetic, and Logic Instructions

Mnemonic Description Words Cycles Opcode

ABS Absolute value of ACC 1 1 1011 1110 0000 0000

ADD Add to ACC with shift of 0 to 15, direct or indirect 1 1 0010 SHFT IAAA AAAA

Add to ACC with shift 0 to 15, long immediate 2 2 1011 1111 1001 SHFT

+ 1 word

Add to ACC with shift of 16, direct or indirect 1 1 0110 0001 IAAA AAAA

Add to ACC, short immediate 1 1 1011 1000 IIII IIII

ADDC Add to ACC with carry, direct or indirect 1 1 0110 0000 IAAA AAAA

ADDS Add to low ACC with sign-extension suppressed,

direct or indirect

1 1 0110 0010 IAAA AAAA

ADDT Add to ACC with shift (0 to 15) specified by TREG,

direct or indirect

1 1 0110 0011 IAAA AAAA

AND AND ACC with data value, direct or indirect 1 1 0110 1110 IAAA AAAA

AND with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1011 SHFT

+ 1 word

AND with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0001

+ 1 word

CMPL Complement ACC 1 1 1011 1110 0000 0001

LACC Load ACC with shift of 0 to 15, direct or indirect 1 1 0001 SHFT IAAA AAAA

Load ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1000 SHFT

+ 1 word

Load ACC with shift of 16, direct or indirect 1 1 0110 1010 IAAA AAAA

LACL Load low word of ACC, direct or indirect 1 1 0110 1001 IAAA AAAA

Load low word of ACC, short immediate 1 1 1011 1001 IIII IIII

LACT Load ACC with shift (0 to 15) specified by TREG,

direct or indirect

1 1 0110 1011 IAAA AAAA

NEG Negate ACC 1 1 1011 1110 0000 0010

NORM Normalize the contents of ACC, indirect 1 1 1010 0000 IAAA AAAA

OR OR ACC with data value, direct or indirect 1 1 0110 1101 IAAA AAAA

Instruction Set Summary PRELIMINARY

8-6 PRELIMINARY

Table 8–1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic OpcodeCyclesWordsDescription

OR with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1100 SHFT

+ 1 word

OR with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0010

+ 1 word

ROL Rotate ACC left 1 1 1011 1110 0000 1100

ROR Rotate ACC right 1 1 1011 1110 0000 1101

SACH Store high ACC with shift of 0 to 7,

direct or indirect

1 1 1001 1SHF IAAA AAAA

SACL Store low ACC with shift of 0 to 7,

direct or indirect

1 1 1001 0SHF IAAA AAAA

SFL Shift ACC left 1 1 1011 1110 0000 1001

SFR Shift ACC right 1 1 1011 1110 0000 1010

SUB Subtract from ACC with shift of 0 to 15,

direct or indirect

1 1 0011 SHFT IAAA AAAA

Subtract from ACC with shift of 0 to 15,

long immediate

2 2 1011 1111 1010 SHFT

+ 1 word

Subtract from ACC with shift of 16,

direct or indirect

1 1 0110 0101 IAAA AAAA

Subtract from ACC, short immediate 1 1 1011 1010 IIII IIII

SUBB Subtract from ACC with borrow, direct or indirect 1 1 0110 0100 IAAA AAAA

SUBC Conditional subtract, direct or indirect 1 1 0000 1010 IAAA AAAA

SUBS Subtract from ACC with sign-extension

suppressed, direct or indirect

1 1 0110 0110 IAAA AAAA

SUBT Subtract from ACC with shift (0 to 15) specified

by TREG, direct or indirect

1 1 0110 0111 IAAA AAAA

XOR Exclusive OR ACC with data value, direct or indirect 1 1 0110 1100 IAAA AAAA

Exclusive OR with ACC with shift of 0 to 15,

long immediate

2 2 1011 1111 1101 SHFT

+ 1 word

Exclusive OR with ACC with shift of 16, long

immediate

2 2 1011 1110 1000 0011

+ 1 word

ZALR Zero low ACC and load high ACC with rounding,

direct or indirect

1 1 0110 1000 IAAA AAAA

Instruction Set SummaryPRELIMINARY

8-7Assembly Language InstructionsPRELIMINARY

Table 8–2. Auxiliary Register Instructions

Mnemonic Description Words Cycles Opcode

ADRK Add constant to current AR,

short immediate

1 1 0111 1000 IIII IIII

BANZ Branch on current AR not 0,

indirect

2 4 (condition true)

2 (condition false)

0111 1011 1AAA AAAA

+ 1 word

CMPR Compare current AR with AR0 1 1 1011 1111 0100 01CM

LAR Load specified AR from

specified data location,

direct or indirect

1 2 0000 0ARX IAAA AAAA

Load specified AR with

constant, short immediate

1 2 1011 0ARX IIII IIII

Load specified AR with

constant, long immediate

2 2 1011 1111 0000 1ARX

+ 1 word

MAR Modify current AR and/or ARP,

indirect (performs no operation

when direct)

1 1 1000 1011 IAAA AAAA

SAR Store specified AR to specified

data location, direct or indirect

1 1 1000 0ARX IAAA AAAA

SBRK Subtract constant from current

AR, short immediate

1 1 0111 1100 IIII IIII

Instruction Set Summary PRELIMINARY

8-8 PRELIMINARY

Table 8–3. TREG, PREG, and Multiply Instructions

Mnemonic Description Words Cycles Opcode

APAC Add PREG to ACC 1 1 1011 1110 0000 0100

LPH Load high PREG, direct or indirect 1 1 0111 0101 IAAA AAAA

LT Load TREG, direct or indirect 1 1 0111 0011 IAAA AAAA

LTA Load TREG and accumulate previous product,

direct or indirect

1 1 0111 0000 IAAA AAAA

LTD Load TREG, accumulate previous product,

and move data, direct or indirect

1 1 0111 0010 IAAA AAAA

LTP Load TREG and store PREG in accumulator,

direct or indirect

1 1 0111 0001 IAAA AAAA

LTS Load TREG and subtract previous product,

direct or indirect

1 1 0111 0100 IAAA AAAA

MAC Multiply and accumulate, direct or indirect 2 3 1010 0010 IAAA AAAA

+ 1 word

MACD Multiply and accumulate with data move, direct or

indirect

2 3 1010 0011 IAAA AAAA

+ 1 word

MPY Multiply TREG by data value, direct or indirect 1 1 0101 0100 IAAA AAAA

Multiply TREG by 13-bit constant, short immediate 1 1 110I IIII IIII IIII

MPYA Multiply and accumulate previous product, direct or

indirect

1 1 0101 0000 IAAA AAAA

MPYS Multiply and subtract previous product, direct or in-

direct

1 1 0101 0001 IAAA AAAA

MPYU Multiply unsigned, direct or indirect 1 1 0101 0101 IAAA AAAA

PAC Load ACC with PREG 1 1 1011 1110 0000 0011

SPAC Subtract PREG from ACC 1 1 1011 1110 0000 0101

SPH Store high PREG, direct or indirect 1 1 1000 1101 IAAA AAAA

SPL Store low PREG, direct or indirect 1 1 1000 1100 IAAA AAAA

SPM Set product shift mode 1 1 1011 1111 0000 00PM

SQRA Square and accumulate previous product, direct or

indirect

1 1 0101 0010 IAAA AAAA

SQRS Square and subtract previous product, direct or

indirect

1 1 0101 0011 IAAA AAAA

Instruction Set SummaryPRELIMINARY

8-9Assembly Language InstructionsPRELIMINARY

Table 8–4. Branch Instructions

Mnemonic Description Words Cycles Opcode

B Branch unconditionally, indirect 2 4 0111 1001 1AAA AAAA

+ 1 word

BACC Branch to address specified by

ACC

1 4 1011 1110 0010 0000

BANZ Branch on current AR not 0,

indirect

2 4 (condition true)

2 (condition false)

0111 1011 1AAA AAAA

+ 1 word

BCND Branch conditionally 2 4 (conditions true)

2 (any condition false)

1110 00TP ZLVC ZLVC

+ 1 word

CALA Call subroutine at location

specified by ACC

1 4 1011 1110 0011 0000

CALL Call subroutine, indirect 2 4 0111 1010 1AAA AAAA

+ 1 word

CC Call conditionally 2 4 (conditions true)

2 (any condition false)

1110 10TP ZLVC ZLVC

+ 1 word

INTR Soft interrupt 1 4 1011 1110 011I NTR#

NMI Nonmaskable interrupt 1 4 1011 1110 0101 0010

RET Return from subroutine 1 4 1110 1111 0000 0000

RETC Return conditionally 1 4 (conditions true)

2 (any condition false)

1110 11TP ZLVC ZLVC

TRAP Software interrupt 1 4 1011 1110 0101 0001

Instruction Set Summary PRELIMINARY

8-10 PRELIMINARY

Table 8–5. Control Instructions

Mnemonic Description Words Cycles Opcode

BIT Test bit, direct or indirect 1 1 0100 BITX IAAA AAAA

BITT Test bit specified by TREG, direct or indirect 1 1 0110 1111 IAAA AAAA

CLRC Clear C bit 1 1 1011 1110 0100 1110

Clear CNF bit 1 1 1011 1110 0100 0100

Clear INTM bit 1 1 1011 1110 0100 0000

Clear OVM bit 1 1 1011 1110 0100 0010

Clear SXM bit 1 1 1011 1110 0100 0110

Clear TC bit 1 1 1011 1110 0100 1010

Clear XF bit 1 1 1011 1110 0100 1100

IDLE Idle until interrupt 1 1 1011 1110 0010 0010

LDP Load data page pointer,

direct or indirect

1 2 0000 1101 IAAA AAAA

Load data page pointer,

short immediate

1 2 1011 110I IIII IIII

LST Load status register ST0, direct or indirect 1 2 0000 1110 IAAA AAAA

Load status register ST1, direct or indirect 1 2 0000 1111 IAAA AAAA

NOP No operation 1 1 1000 1011 0000 0000

POP Pop top of stack to low ACC 1 1 1011 1110 0011 0010

POPD Pop top of stack to data memory, direct or indirect 1 1 1000 1010 IAAA AAAA

PSHD Push data memory value on stack, direct or

indirect

1 1 0111 0110 IAAA AAAA

PUSH Push low ACC onto stack 1 1 1011 1110 0011 1100

RPT Repeat next instruction, direct or indirect 1 1 0000 1011 IAAA AAAA

Repeat next instruction, short immediate 1 1 1011 1011 IIII IIII

SETC Set C bit 1 1 1011 1110 0100 1111

Set CNF bit 1 1 1011 1110 0100 0101

Set INTM bit 1 1 1011 1110 0100 0001

Set OVM bit 1 1 1011 1110 0100 0011

Set SXM bit 1 1 1011 1110 0100 0111

Set TC bit 1 1 1011 1110 0100 1011

Set XF bit 1 1 1011 1110 0100 1101

SPM Set product shift mode 1 1 1011 1111 0000 00PM

SST Store status register ST0, direct or indirect 1 1 1000 1110 IAAA AAAA

Store status register ST1, direct or indirect 1 1 1000 1111 IAAA AAAA

Instruction Set SummaryPRELIMINARY

8-11Assembly Language InstructionsPRELIMINARY

Table 8–6. I/O and Memory Instructions

Mnemonic Description Words Cycles Opcode

BLDD Block move from data memory to data memory,

direct/indirect with long immediate source

2 3 1010 1000 IAAA AAAA

+ 1 word

Block move from data memory to data memory,

direct/indirect with long immediate destination

2 3 1010 1001 IAAA AAAA

+ 1 word

BLPD Block move from program memory to data memory,

direct/indirect with long immediate source

2 3 1010 0101 IAAA AAAA

+ 1 word

DMOV Data move in data memory, direct or indirect 1 1 0111 0111 IAAA AAAA

IN Input data from I/O location, direct or indirect 2 2 1010 1111 IAAA AAAA

+ 1 word

OUT Output data to port, direct or indirect 2 3 0000 1100 IAAA AAAA

+ 1 word

SPLK Store long immediate to data memory location,

direct or indirect

2 2 1010 1110 IAAA AAAA

+ 1 word

TBLR Table read, direct or indirect 1 3 1010 0110 IAAA AAAA

TBLW Table write, direct or indirect 1 3 1010 0111 IAAA AAAA

How To Use the Instruction Descriptions PRELIMINARY

8-12 PRELIMINARY

8.2 How To Use the Instruction Descriptions

Section 8.3 contains detailed information on the instruction set. The descrip-

tion for each instruction presents the following categories of information:

� Syntax

� Operands

� Opcode

� Execution

� Status Bits

� Description

� Words

� Cycles

� Examples

8.2.1 Syntax

Each instruction begins with a list of the available assembler syntax expres-

sions and the addressing mode type(s) for each expression. For example, the

description for the ADD instruction begins with:

ADD dma [, shift] Direct addressing

ADD dma, 16 Direct with left shift of 16

ADD ind [, shift [, ARn]] Indirect addressing

ADD ind, 16 [, ARn] Indirect with left shift of 16

ADD #k Short immediate addressing

ADD #lk [, shift] Long immediate addressing

These are the notations used in the syntax expressions:

italic
symbols

Italic symbols in an instruction syntax represent variables.
Example: For the syntax

ADD dma
you may use a variety of values for dma.
Samples with this syntax follow:
ADD DAT

ADD 15

boldface
characters

Boldface characters in an instruction syntax must be typed as
shown.
Example: For the syntax

ADD dma, 16
you may use a variety of values for dma, but the
word ADD and the number 16 must be typed
as shown. Samples with this syntax follow:
ADD 7h, 16

ADD X, 16

How To Use the Instruction DescriptionsPRELIMINARY

8-13Assembly Language InstructionsPRELIMINARY

[, x] Operand x is optional.
Example: For the syntax

ADD dma, [, shift]
you must supply dma, as in the instruction:
ADD 7h

and you have the option of adding a shift value,
as in the instruction:
ADD 7h, 5

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot include x2
without also including x1.
Example: For the syntax

ADD ind, [, shift [, ARn]]
you must supply ind, as in the instruction:
ADD *+

You have the option of including shift,
as in the instruction:
ADD *+, 5

If you wish to include ARn, you must also
include shift, as in:
ADD *+, 0, AR2

The # symbol is a prefix for constants used in immediate
addressing. For short- or long- immediate operands, it is
used in instructions where there is ambiguity with other
addressing modes.
Example: RPT #15 uses short immediate addressing. It

causes the next instruction to be repeated
16 times. But RPT 15 uses direct addressing.
The number of times the next instruction
repeats is determined by a value stored in
memory.

Finally, consider this code example:

MoveData BLDD DAT5, #310h ;move data at address

;referenced by DAT5 to address

;310h.

Note the optional MoveData label is used as a reference in front of the instruc-

tion mnemonic. Place labels either before the instruction mnemonic on the

same line or on the preceding line in the first column. (Be sure there are no

spaces in your labels.) An optional comment field can conclude the syntax

expression. At least one space is required between fields (label, mnemonic,

operand, and comment).

How To Use the Instruction Descriptions PRELIMINARY

 8-14 PRELIMINARY

8.2.2 Operands

Operands can be constants, or assembly-time expressions referring to

memory, I/O ports, register addresses, pointers, shift counts, and a variety of

other constants. The operands category for each instruction description de-

fines the variables used for and/or within operands in the syntax expressions.

For example, for the ADD instruction, the syntax category gives these syntax

expressions:

ADD dma [, shift] Direct addressing

ADD dma, 16 Direct with left shift of 16

ADD ind [, shift [, ARn]] Indirect addressing

ADD ind, 16 [, ARn] Indirect with left shift of 16

ADD #k Short immediate addressing

ADD #lk [, shift] Long immediate addressing

The operands category defines the variables dma, shift, ind, n, k, and lk. For

ind, an indirect addressing variable, you supply one of the following seven

symbols:

* *+ *– *0+ *0– *BR0+ *BR0–

These symbols are defined in subsection 7.3.2, Indirect Addressing Options,

on page 7-9.

8.2.3 Opcode

The opcode category breaks down the various bit fields that make up each

instruction word. When one of the fields contains a constant value derived

directly from an operand, it has the same name as that operand. The contents

of fields that do not directly relate to operands have other names; the opcode

category either explains these names directly or refers you to a section of this

book that explains them in detail. For example, these opcodes are given for

the ADDC instruction:

ADDC dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 dma

ADDC ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in Section 7.3, Indirect Addressing Mode (page 7-9).

How To Use the Instruction DescriptionsPRELIMINARY

8-15Assembly Language InstructionsPRELIMINARY

The field called dma contains the value dma, which is defined in the operands

category. The contents of the fields ARU, N, and NAR are derived from the op-

erands ind and n but do not directly correspond to those operands; therefore,

a note directs you to the appropriate section for more details.

8.2.4 Execution

The execution category presents an instruction operation sequence that de-

scribes the processing that takes place when the instruction is executed. If the

execution event or events depend on the addressing mode used, the execu-

tion category specifies which events are associated with which addressing

modes. Here are notations used in the execution category:

(r) The content of register or location r.
Example: (ACC) represents the value in the accumulator.

x → y Value x is assigned to register or location y.

Example: (data-memory address) → ACC means:
The content of the specified data-memory
address is put into the accumulator.

r(n:m) Bits n through m of register or location r.
Example: ACC(15:0) represents bits 15 through 0 of the

accumulator.

(r(n:m)) The content of bits n through m of register or location r.
Example: (ACC(31:16)) represents the content of bits 31

through 16 of the accumulator.

nnh Indicates that nn represents a hexadecimal number.

8.2.5 Status Bits

The bits in status registers ST0 and ST1 affect the operation of certain instruc-

tions and are affected by certain instructions. The status bits category of each

instruction description states which of the bits (if any) affect the execution of

the instruction and which of the bits (if any) are affected by the instruction.

8.2.6 Description

The description category explains what happens during instruction execution

and its effect on the rest of the processor or on memory contents. It also dis-

cusses any constraints on the operands imposed by the processor or the as-

sembler. This description parallels and supplements the information given in

the execution category.

How To Use the Instruction Descriptions PRELIMINARY

 8-16 PRELIMINARY

8.2.7 Words

The words category specifies the number of memory words required to store

the instruction (one or two). When the number of words depends on the ad-

dressing mode used for an instruction, the words category specifies which ad-

dressing modes require one word and which require two words.

8.2.8 Cycles

The cycles category of each instruction description contains tables showing

the number of processor machine cycles (CLKOUT1 periods) required for the

instruction to execute in a given memory configuration when executed as a

single instruction or when repeated with the RPT instruction. For example:

Cycles for a Single Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1 1+p

External 1+d 1+d 1+d 2+d+p

Cycles for a Repeat (RPT) Execution of an Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n n+p

External n+nd n+nd n+nd n+1+p+nd

The column headings in these tables indicate the program source location,

defined as follows:

ROM The instruction executes from internal program ROM.

DARAM The instruction executes from internal dual-access program
RAM.

SARAM The instruction executes from internal single-access program
RAM.

External The instruction executes from external program memory.

How To Use the Instruction DescriptionsPRELIMINARY

8-17Assembly Language InstructionsPRELIMINARY

If an instruction requires memory operand(s), the rows in the table indicate the

location(s) of the operand(s), as defined here:

DARAM The operand is in internal dual-access RAM.

SARAM The operand is in internal single-access RAM.

External The operand is in external memory.

For the RPT mode execution, n indicates the number of times a given instruc-

tion is repeated by an RPT instruction. Additional cycles (wait states) can be

generated for program-memory, data-memory, and I/O accesses by the wait-

state generator or by the external READY signal. These additional wait states

are represented in the tables by the following variables:

p Program-memory wait states. Represents the number of addition-
al clock cycles the device waits for external program memory to
respond to a single access.

d Data-memory wait states. Represents the number of additional
clock cycles the device waits for external data memory to respond
to a single access.

io I/O wait states. Represents the number of additional clock cycles
the device waits for an external I/O device to respond to a single
access.

n Number of repetitions (where n > 2 to fill the pipeline). Represents
the number of times a repeated instruction is executed.

If there are multiple accesses to one of the spaces, the variable is preceded

by the appropriate integer multiple. For example, two accesses to external pro-

gram memory would require 2p wait states. The above variables may also use

the subscripts src, dst, and code to indicate source, destination, and code,

respectively.

The internal single-access memory on each ’C24x processor is divided into

2K-word blocks contiguous in address space. All ’C24x processors support

parallel accesses to these internal single-access RAM blocks. Furthermore,

one single access block allows only one access per cycle. Thus, the processor

can read/write on single-access RAM block while accessing another single-

access RAM block at the same time.

How To Use the Instruction Descriptions PRELIMINARY

 8-18 PRELIMINARY

All external reads take at least one machine cycle while all external writes take

at least two machine cycles. However, if an external write is immediately fol-

lowed or preceded by an external read cycle, then the external write requires

three cycles. If the wait state generator or the READY pin is used to add m

(m > 0) wait states to an external access, then external reads require m + 1

cycles, and external write accesses require m + 2 cycles.

The instruction-cycle timings are based on the following assumptions:

� At least the next four instructions are fetched from the same memory sec-

tion (internal or external) that was used to fetch the current instruction (ex-

cept in the case of PC discontinuity instructions, such as B, CALL, etc.)

� In the single-execution mode, there is no pipeline conflict between the cur-

rent instruction and the instructions immediately preceding or following

that instruction. The only exception is the conflict between the fetch phase

of the pipeline and the memory read/write (if any) access of the instruction

under consideration. See Section 5.2, Pipeline Operation, on page 5-7 for

more information about pipeline operations.

� In the repeat execution mode, all conflicts caused by the pipelined execu-

tion of an instruction are considered.

8.2.9 Examples

Example code is included for each instruction. The effect of the code on

memory and/or registers is summarized. Consider this example of the ADD

instruction:

ADD*+,0,AR0
Before Instruction After Instruction

ARP 4 ARP 0

AR4 0302h AR4 0303h

Data Memory Data Memory
302h 2h 302h 2h

ACC X 2h ACC 0 04h

C C

Here are the facts and events represented in this example:

� The auxiliary register pointer (ARP) points to the current auxiliary register.

Because ARP = 4, the current auxiliary register is AR4.

� When the addition takes place, the CPU follows AR4 to data-memory

address 0302h. The content of that address, 2h, is added to the content

of the accumulator, also 2h. The result (4h) is placed in the accumulator.

(Because the second operand of the instruction specifies a left shift of 0,

the data-memory value is not shifted before being added to the accumula-

tor value.)

Instruction DescriptionsPRELIMINARY

8-19Assembly Language InstructionsPRELIMINARY

� The instruction specifies an increment of 1 for the contents of the current

auxiliary register (*+); therefore, after the addition is performed, the con-

tent of AR4 is incremented to 0303h.

� The instruction also specifies that AR0 is the next auxiliary register; there-

fore, after the instruction ARP = 0.

� Because no carry is generated during the addition, the carry bit (C) is

cleared to 0.

8.3 Instruction Descriptions

This section contains detailed information on the instruction set for the ’C24x.

A summary of the instruction set is shown in Section 8.1 on page 8-2. The

instructions are presented alphabetically, and the description for each instruc-

tion presents the following categories of information:

� Syntax

� Operands

� Opcode

� Execution

� Status Bits

� Description

� Words

� Cycles

� Examples

For a description of how to use each of these categories, see Section 8.2 on

page 8-12.

How To Use the Instruction Descriptions / Instruction Descriptions

ABS Absolute Value of Accumulator PRELIMINARY

8-20 PRELIMINARY

Syntax ABS

Operands None

Opcode 0123456789101112131415

0000000001111101

Execution Increment PC, then ...

|(ACC)| → ACC; 0 → C

Status Bits Affected by Affects

OVM C and OV

This instruction is not affected by SXM

Description If the contents of the accumulator are greater than or equal to 0, the accumula-

tor is unchanged by the execution of ABS. If the contents of the accumulator

are less than 0, the accumulator is replaced by its 2s-complement value. The

carry bit (C) on the ’C24x is always reset to 0 by the execution of this instruc-

tion.

Note that 8000 0000h is a special case. When the overflow mode is not set

(OVM = 0), the ABS of 8000 0000h is 8000 0000h. When the overflow mode

is set (OVM = 1), the ABS of 8000 0000h is 7FFF FFFFh. In either case, the

OV status bit is set.

Words 1

Cycles for a Single ABS Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ABS Instruction

ROM DARAM SARAM External

n n n n+p

Cycles

 Absolute Value of Accumulator ABSPRELIMINARY

8-21 Assembly Language InstructionsPRELIMINARY

Example 1 ABS

Before Instruction After Instruction

 ACC X 1234h ACC 0 1234h

C C

Example 2 ABS

Before Instruction After Instruction

ACC X 0FFFFFFFFh ACC 0 1h

C C

Example 3 ABS ;(OVM = 1)

Before Instruction After Instruction

ACC X 80000000h ACC 0 7FFFFFFFh

C C

X 1

OV OV

Example 4 ABS ;(OVM = 0)

Before Instruction After Instruction

ACC X 80000000h ACC 0 80000000h

C C

X 1

OV OV

ADD Add to Accumulator PRELIMINARY

8-22 PRELIMINARY

Syntax ADD dma [, shift] Direct addressing

ADD dma, 16 Direct with left shift of 16

ADD ind [, shift [, ARn]] Indirect addressing

ADD ind, 16 [, ARn] Indirect with left shift of 16

ADD #k Short immediate addressing

ADD #lk [, shift] Long immediate addressing

Operands dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

k: 8-bit short immediate value

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADD dma [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 shift 0 dma

ADD dma, 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 0 dma

ADD ind [�, shift �[�, ARn�]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

ADD ind, 16 [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

ADD #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 k

ADD #lk [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 0 1 shift

lk

Opcode

 Add to Accumulator ADDPRELIMINARY

8-23 Assembly Language InstructionsPRELIMINARY

Execution Increment PC, then ...

Event Addressing mode

(ACC) + (�(data-memory address) � 2shift) → ACC Direct or indirect

(ACC) + (�(data-memory address) � 216) → ACC Direct or indirect

(shift of 16)

(ACC) + k → ACC Short immediate

(ACC) + lk � 2shift → ACC Long immediate

Status Bits Affected by Affects Addressing mode

SXM and OVM C and OV Direct or indirect

OVM C and OV Short immediate

SXM and OVM C and OV Long immediate

Description The content of the addressed data memory location or an immediate constant

is left-shifted and added to the accumulator. During shifting, low-order bits are

zero filled. High-order bits are sign extended if SXM = 1 and zero filled if

SXM = 0. The result is stored in the accumulator. When short immediate

addressing is used, the addition is unaffected by SXM and is not repeatable.

If you are using indirect addressing and update the ARP, you must specify a

shift operand. However, if you do not want a shift to occur, enter a 0 for this

operand. For example:

ADD *+,0,AR2

Normally, the carry bit is set (C = 1) if the result of the addition generates a carry

and is cleared (C = 0) if it does not generate a carry. However, when adding

with a shift of 16, the carry bit is set if a carry is generated but otherwise, the

carry bit is unaffected. This allows the accumulator to generate the proper

single carry when adding a 32-bit number to the accumulator.

Words Words Addressing mode

1 Direct, indirect, or

short immediate

2 Long immediate

ADD Add to Accumulator PRELIMINARY

8-24 PRELIMINARY

Cycles for a Single ADD Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADD Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single ADD Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Single ADD Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

 Add to Accumulator ADDPRELIMINARY

8-25 Assembly Language InstructionsPRELIMINARY

Example 1 ADD 1,1 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
301h 1h 301h 1h

ACC X 2h ACC 0 04h

C C

Example 2 ADD *+,0,AR0

Before Instruction After Instruction

ARP 4 ARP 0

AR4 0302h AR4 0303h

Data Memory Data Memory
302h 2h 302h 2h

ACC X 2h ACC 0 04h

C C

Example 3 ADD #1h ;Add short immediate

Before Instruction After Instruction

ACC X 2h ACC 0 03h

C C

Example 4 ADD #1111h,1 ;Add long immediate with shift of 1

Before Instruction After Instruction

ACC X 2h ACC 0 2224h

C C

ADDC Add to Accumulator With Carry PRELIMINARY

8-26 PRELIMINARY

Syntax ADDC dma Direct addressing

ADDC ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADDC dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 dma

ADDC ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) + (data-memory address) + (C) → ACC

Status Bits Affected by Affects

OVM C and OV

This instruction is not affected by SXM.

Description The contents of the addressed data-memory location and the value of the

carry bit are added to the accumulator with sign extension suppressed. The

carry bit is then affected in the normal manner: the carry bit is set (C = 1) if the

result of the addition generates a carry and is cleared (C = 0) if it does not

generate a carry.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Words 1

Opcode

 Add to Accumulator With Carry ADDCPRELIMINARY

8-27 Assembly Language InstructionsPRELIMINARY

Cycles for a Single ADDC Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADDC Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDC DAT300 ;(DP = 6: addresses 0300h–037Fh;

;DAT300 is a label for 300h)

Before Instruction After Instruction

Data Memory Data Memory
300h 04h 300h 04h

ACC 1 13h ACC 0 18h

C C

Example 2 ADDC *–,AR4 ;(OVM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 300h AR0 299h

Data Memory Data Memory
300h 0h 300h 0h

ACC 1 0FFFFFFFFh ACC 1 0h

C C

X 0

OV OV

Cycles

ADDS Add to Accumulator With Sign Extension Suppressed PRELIMINARY

8-28 PRELIMINARY

Syntax ADDS dma Direct addressing

ADDS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADDS dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 0 dma

ADDS ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) + (data-memory address) → ACC

Status Bits Affected by Affects

OVM C and OV

This instruction is not affected by SXM.

Description The contents of the specified data-memory location are added to the accumu-

lator with sign extension suppressed. The data is treated as an unsigned 16-bit

number, regardless of SXM. The accumulator contents are treated as a signed

number. Note that ADDS produces the same results as an ADD instruction

with SXM = 0 and a shift count of 0.

The carry bit is set (C = 1) if the result of the addition generates a carry and

is cleared (C = 0) if it does not generate a carry.

Words 1

Opcode

 Add to Accumulator With Sign Extension Suppressed ADDSPRELIMINARY

8-29 Assembly Language InstructionsPRELIMINARY

Cycles for a Single ADDS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADDS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDS 0 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
300h 0F006h 300h 0F006h

ACC X 00000003h ACC 0 0000F009h

C C

Example 2 ADDS *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0300h AR0 0300h

Data Memory Data Memory
300h 0FFFFh 300h 0FFFFh

ACC X 7FFF0000h ACC 0 7FFFFFFFh

C C

Cycles

ADDT Add to Accumulator With Shift Specified by TREG PRELIMINARY

8-30 PRELIMINARY

Syntax ADDT dma Direct addressing

ADDT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADDT dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1 0 dma

ADDT ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) + [(data-memory address) � 2(TREG(3:0))] → (ACC)

Status Bits Affected by Affects

SXM or OVM C and OV

Description The data-memory value is left shifted and added to the accumulator, and the

result replaces the accumulator contents. The left shift is defined by the four

LSBs of the TREG, resulting in shift options from 0 to 15 bits. Sign extension

on the data-memory value is controlled by SXM. The carry bit (C) is set when

a carry is generated out of the MSB of the accumulator; if no carry is generated,

the carry bit is cleared.

Words 1

Opcode

 Add to Accumulator With Shift Specified by TREG ADDTPRELIMINARY

8-31 Assembly Language InstructionsPRELIMINARY

Cycles for a Single ADDT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an ADDT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDT 127 ;(DP = 4: addresses 0200h–027Fh,

;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG 0FF94h TREG 0FF94h

ACC X 0F715h ACC 0 0F7A5h

C C

Example 2 ADDT *–,AR4 ;(SXM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 027Fh AR0 027Eh

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG 0FF94h TREG 0FF94h

ACC X 0F715h ACC 0 0F7A5h

C C

Cycles

ADRK Add Short-Immediate Value to Auxiliary Register PRELIMINARY

8-32 PRELIMINARY

Syntax ADRK #k Short immediate addressing

Operands k: 8-bit short immediate value

ADRK #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 k

Execution Increment PC, then ...

(current AR) + 8-bit positive constant → current AR

Status Bits None

Description The 8-bit immediate value is added, right justified, to the current auxiliary regis-

ter (the one specified by the current ARP value) and the result replaces the

auxiliary register contents. The addition takes place in the ARAU, with the

immediate value treated as an 8-bit positive integer. All arithmetic operations

on the auxiliary registers are unsigned.

Words 1

Cycles for a Single ADRK Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example ADRK #80h

Before Instruction After Instruction

ARP 5 ARP 5

AR5 4321h AR5 43A1h

Opcode

Cycles

 AND With Accumulator ANDPRELIMINARY

8-33 Assembly Language InstructionsPRELIMINARY

Syntax AND dma Direct addressing

AND ind [, ARn] Indirect addressing

AND #lk [, shift] Long immediate addressing

AND #lk, 16 Long immediate with left

shift of 16

Operands dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

AND dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 0 dma

AND ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

AND #lk [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 1 1 shift

lk

AND #lk, 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1

lk

Execution Increment PC, then ...

Event(s) Addressing mode

(ACC(15:0)) AND (data-memory address) → ACC(15:0) Direct or indirect

0 → ACC(31:16)

(ACC(31:0)) AND lk � 2shift → ACC Long immediate

(ACC(31:0)) AND lk � 216→ ACC Long immediate

with left shift of 16

Status Bits None

Opcode

AND AND With Accumulator PRELIMINARY

8-34 PRELIMINARY

This instruction is not affected by SXM.

Description If direct or indirect addressing is used, the low word of the accumulator is

ANDed with a data-memory value, and the result is placed in the low word

position in the accumulator. The high word of the accumulator is zeroed. If

immediate addressing is used, the long-immediate constant can be shifted.

During the shift, low-order and high-order bits not filled by the shifted value are

zeroed. The resulting value is ANDed with the accumulator contents.

Words Words Addressing mode

1 Direct or indirect

2 Long immediate

Cycles for a Single AND Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an AND Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single AND Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

 AND With Accumulator ANDPRELIMINARY

8-35 Assembly Language InstructionsPRELIMINARY

Example 1 AND 16 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

Data Memory Data Memory
0210h 00FFh 0210h 00FFh

ACC 12345678h ACC 00000078h

Example 2 AND *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0301h AR0 0301h

Data Memory Data Memory
0301h 0FF00h 0301h 0FF00h

ACC 12345678h ACC 00005600h

Example 3 AND #00FFh,4

Before Instruction After Instruction

ACC 12345678h ACC 00000670h

APAC Add PREG to Accumulator PRELIMINARY

8-36 PRELIMINARY

Syntax APAC

Operands None

APAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0

Execution Increment PC, then ...

(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects

PM and OVM C and OV

This instruction is not affected by SXM.

Description The contents of PREG are shifted as defined by the PM status bits of the ST1

register (see Table 8–7) and added to the contents of the accumulator. The

result is placed in the accumulator. APAC is not affected by the SXM bit of the

status register. PREG is always sign extended. The task of the APAC instruc-

tion is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and

SQRA instructions.

Table 8–7. Product Shift Modes

PM Bits

Bit 1 Bit 0 Resulting Shift

0 0 No shift

0 1 Left shift of 1 bit

1 0 Left shift of 4 bits

1 1 Right shift of 6 bits

Words 1

Cycles for a Single APAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an APAC Instruction

ROM DARAM SARAM External

n n n n+p

Opcode

Cycles

 Add PREG to Accumulator APACPRELIMINARY

8-37 Assembly Language InstructionsPRELIMINARY

Example APAC ;(PM = 01)

Before Instruction After Instruction

PREG 40h PREG 40h

ACC X 20h ACC 0 A0h

C C

B Branch Unconditionally PRELIMINARY

8-38 PRELIMINARY

Syntax B pma [, ind [, ARn]�] Indirect addressing

Operands pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

B pma [, ind [, ARn]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution pma → PC

Modify (current AR) and (ARP) as specified.

Status Bits None

Description The current auxiliary register and ARP contents are modified as specified, and

control is passed to the designated program-memory address (pma). The pma

can be either a symbolic or numeric address.

Words 2

Cycles for a Single B Instruction

ROM DARAM SARAM External

4 4 4 4+4p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two

instruction words are discarded.

Example B 191,*+,AR1

The value 191 is loaded into the program counter, and the program continues

to execute from that location. The current auxiliary register is incremented by

1, and ARP is set to point to auxiliary register 1 (AR1).

Opcode

Cycles

 Branch to Location Specified by Accumulator BACCPRELIMINARY

8-39 Assembly Language InstructionsPRELIMINARY

Syntax BACC

Operands None

Opcode 0123456789101112131415

0000010001111101

Execution ACC(15:0) → PC

Status Bits None

Description Control is passed to the 16-bit address residing in the lower half (16 LSBs) of

the accumulator.

Words 1

Cycles for a Single BACC Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two

instruction words are discarded.

Example BACC ;(ACC contains the value 191)

The value 191 is loaded into the program counter, and the program continues

to execute from that location.

Cycles

BANZ Branch on Auxiliary Register Not Zero PRELIMINARY

8-40 PRELIMINARY

Syntax BANZ pma [, ind [, ARn]�] Indirect addressing

Operands pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BANZ pma [, ind [,ARn]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution If (current AR) ≠ 0

Then pma → PC

Else (PC) + 2 → PC

Modify (current AR) and (ARP) as specified

Status Bits None

Description Control is passed to the designated program-memory address (pma) if the

contents of the current auxiliary register are not 0. Otherwise, control passes

to the next instruction.The default modification to the current AR is a

decrement by 1. N loop iterations can be executed by initializing an auxiliary

register (as a loop counter) to N–1 prior to loop entry. The pma can be either

a symbolic or a numeric address.

Words 2

Cycles for a Single BANZ Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The ’C24x performs speculative fetching by reading two additional instruction words. If

the PC discontinuity is taken, these two instruction words are discarded.

Opcode

Cycles

 Branch on Auxiliary Register Not Zero BANZPRELIMINARY

8-41 Assembly Language InstructionsPRELIMINARY

Example 1 BANZ PGM0 ;(PGM0 labels program address 0)

Before Instruction After Instruction

ARP 0 ARP 0

AR0 5h AR0 4h

Because the content of AR0 is not 0, program address 0 is loaded into the pro-

gram counter (PC) and the program continues executing from that location.

The default auxiliary register operation is a decrement of the current auxiliary

register content; thus, AR0 contains 4h at the end of the execution.

or

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0h AR0 FFFFh

Because the content of AR0 is 0, the branch is not executed; instead, the PC

is incremented by 2, and execution continues with the instruction following the

BANZ instruction. Because of the default decrement, AR0 is decremented by

1, becoming –1.

Example 2 MAR *,AR0 ;Set ARP to point to AR0.

LAR AR1,#3 ;Load AR1 with 3.

LAR AR0,#60h ;Load AR0 with 60h.

PGM191 ADD *+,AR1 ;Loop: While AR1 not zero,

BANZ PGM191,AR0 ;add data referenced by AR0

;to accumulator and increment

;AR0 value.

The contents of data-memory locations 60h–63h are added to the accumula-

tor.

BCND Branch Conditionally PRELIMINARY

8-42 PRELIMINARY

Syntax BCND pma, cond�1 [,cond�2] [,...]

Operands pma: 16-bit program-memory address

cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C = 1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

Opcode 0123456789101112131415

ZLVCZLVCTP000111

pma

Note: The TP and ZLVC fields are defined on pages 8-3 and 8-4.

Execution If cond�1 AND cond�2 AND ...

Then pma → PC

Else increment PC

Status Bits None

Description A branch is taken to the specified program-memory address (pma) if the speci-

fied conditions are met. Not all combinations of conditions are meaningful. For

example, testing for LT and GT is contradictory. In addition, testing BIO is

mutually exclusive to testing TC.

Words 2

Cycles for a Single BCND Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The ’C24x performs speculative fetching by reading two additional instruction words. If

the PC discontinuity is taken, these two instruction words are discarded.

Cycles

 Branch Conditionally BCNDPRELIMINARY

8-43 Assembly Language InstructionsPRELIMINARY

Example BCND PGM191,LEQ,C

If the accumulator contents are less than or equal to 0 and the carry bit is set,

program address 191 is loaded into the program counter, and the program

continues to execute from that location. If these conditions do not hold, execu-

tion continues from location PC + 2.

BIT Test Bit PRELIMINARY

8-44 PRELIMINARY

Syntax BIT dma, bit code Direct addressing

BIT ind, bit code [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

bit code: Value from 0 to 15 indicating which bit to test (see Figure 8–1)

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BIT dma, bit code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 bit code 0 dma

BIT ind, bit code �[�,ARn�]�

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 bit code 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data bit number (15 – bit code)) → TC

Status Bits Affects

TC

Description The BIT instruction copies the specified bit of the data-memory value to the TC

bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM in-

structions also affect the TC bit in ST1. A bit code value is specified that corre-

sponds to a certain bit number of the data-memory value, as shown in

Figure 8–1.

Figure 8–1. Bit Numbers and Their Corresponding Bit Codes for BIT Instruction

Bit code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LSB

Words 1

Opcode

 Test Bit BITPRELIMINARY

8-45 Assembly Language InstructionsPRELIMINARY

Cycles for a Single BIT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BIT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BIT 0h,15 ;(DP = 6). Test LSB at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TC 0 TC 0

Example 2 BIT *,0,AR1 ;Test MSB at 310h, then set ARP = 1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 310h AR0 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TC 0 TC 1

Cycles

BITT Test Bit Specified by TREG PRELIMINARY

8-46 PRELIMINARY

Syntax BITT dma Direct addressing

BITT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BITT dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1 0 dma

BITT ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data bit number (15 –TREG(3:0))) → TC

Status Bits Affects

TC

Description The BITT instruction copies the specified bit of the data-memory value to the

TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM

instructions also affect the TC bit in status register ST1. The bit number is spe-

cified by a bit code value contained in the four LSBs of the TREG, as shown

in Figure 8–2.

Figure 8–2. Bit Numbers and Their Corresponding Bit Codes for BITT Instruction

Bit code (in 4 LSBs of

TREG)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LSB

Words 1

Opcode

 Test Bit Specified by TREG BITTPRELIMINARY

8-47 Assembly Language InstructionsPRELIMINARY

Cycles for a Single BITT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an BITT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BITT 00h ;(DP = 6) Test bit 14 of data

;at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TREG 1h TREG 1h

TC 0 TC 1

Example 2 BITT * ;Test bit 1 of data at 310h

Before Instruction After Instruction

ARP 1 ARP 1

AR1 310h AR1 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TREG 0Eh TREG 0Eh

TC 0 TC 0

Cycles

BLDD Block Move From Data Memory to Data Memory PRELIMINARY

8-48 PRELIMINARY

Syntax General syntax: BLDD source, destination

BLDD #lk, dma Direct with long immediate

source

BLDD #lk, ind [, ARn] Indirect with long

immediate source

BLDD dma, #lk Direct with long immediate

destination

BLDD ind, #lk [, ARn] Indirect with long immediate

destination

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BLDD #lk, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0 0 dma

lk

BLDD #lk, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

BLDD dma, #lk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 0 dma

lk

BLDD ind, #lk [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Opcode

 Block Move From Data Memory to Data Memory BLDDPRELIMINARY

8-49 Assembly Language InstructionsPRELIMINARY

Execution Increment PC, then ...

(PC) → MSTACK

lk → PC

(source) → destination

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

While (repeat counter) ≠ 0:

(source) → destination

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

(repeat counter) –1 → repeat counter

(MSTACK) → PC

Status Bits None

Description The word in data memory pointed to by source is copied to a data-memory

space pointed at by destination. The word of the source and/or destination

space can be pointed at with a long-immediate value or by a data-memory

address. Note that not all source/destination combinations of pointer types are

valid.

Note:

BLDD does not work with core memory-mapped registers such as IMR, IFR,
and GREG.

RPT can be used with the BLDD instruction to move consecutive words in data

memory. The number of words to be moved is one greater than the number

contained in the repeat counter (RPTC) at the beginning of the instruction.

When the BLDD instruction is repeated, the source (destination) address spe-

cified by the long immediate constant is stored to the PC. Because the PC is

incremented by 1 during each repetition, it is possible to access a series of

source (destination) addresses. If you use indirect addressing to specify the

destination (source) address, a new destination (source) address can be

accessed during each repetition. If you use the direct addressing mode, the

specified destination (source) address is a constant; it is not modified during

each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.

Interrupts are inhibited during a BLDD operation used with the RPT instruction.

When used with RPT, BLDD becomes a single-cycle instruction once the RPT

pipeline is started.

BLDD Block Move From Data Memory to Data Memory PRELIMINARY

8-50 PRELIMINARY

Words 2

Cycles

Cycles for a Single BLDD Instruction

Operand ROM DARAM SARAM External

Source: DARAM

Destination: DARAM

3 3 3 3+2p

Source: SARAM

Destination: DARAM

3 3 3 3+2p

Source: External

Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+2p

Source: DARAM

Destination: SARAM

3 3 3

4†
3+2p

Source: SARAM

Destination: SARAM

3 3 3

4†
3+2p

Source: External

Destination: SARAM

3+dsrc 3+dsrc 3+dsrc
4+dsrc

†
3+dsrc+2p

Source: DARAM

Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: SARAM

Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: External

Destination: External

4+dsrc+ddst 4+dsrc+ddst 4+dsrc+ddst 6+dsrc+ddst+2p

† If the destination operand and the code are in the same SARAM block.

 Block Move From Data Memory to Data Memory BLDDPRELIMINARY

8-51 Assembly Language InstructionsPRELIMINARY

Cycles for a Repeat (RPT) Execution of a BLDD Instruction

Operand ROM DARAM SARAM External

Source: DARAM

Destination: DARAM

n+2 n+2 n+2 n+2+2p

Source: SARAM

Destination: DARAM

n+2 n+2 n+2 n+2+2p

Source: External

Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc+2p

Source: DARAM

Destination: SARAM

n+2 n+2 n+2

n+4†
n+2+2p

Source: SARAM

Destination: SARAM

n+2

2n‡
n+2

2n‡
n+2

2n‡

n+4†

2n+2§

n+2+2p

2n+2p‡

Source: External

Destination: SARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc
n+4+ndsrc

†
n+2+ndsrc+2p

Source: DARAM

Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2p

Source: SARAM

Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2p

Source: External

Destination: External

4n+ndsrc+nddst
‡ 4n+ndsrc+nddst 4n+ndsrc+nddst 4n+2+ndsrc+nddst+2p

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

BLDD Block Move From Data Memory to Data Memory PRELIMINARY

8-52 PRELIMINARY

Example 1 BLDD #300h,20h ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h 0h 300h 0h

320h 0Fh 320h 0h

Example 2 BLDD *+,#321h,AR3

Before Instruction After Instruction

ARP 2 ARP 3

AR2 301h AR2 302h

Data Memory Data Memory
301h 01h 301h 01h

321h 0Fh 321h 01h

 Block Move From Program Memory to Data Memory BLPDPRELIMINARY

8-53 Assembly Language InstructionsPRELIMINARY

Syntax General syntax: BLPD source, destination

BLPD #pma, dma Direct with long immediate

source

BLPD #pma, ind [, ARn] Indirect with long immediate

source

Operands pma: 16-bit program-memory address

dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BLPD #pma, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1 0 dma

pma

BLPD #pma, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(PC) → MSTACK

pma → PC

(source) → destination

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

While (repeat counter) ≠ 0:

(source) → destination

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

(repeat counter) –1 → repeat counter

(MSTACK) → PC

Status Bits None

Opcode

BLPD Block Move From Program Memory to Data Memory PRELIMINARY

8-54 PRELIMINARY

Description A word in program memory pointed to by the source is copied to data-memory

space pointed to by destination. The first word of the source space is pointed

to by a long-immediate value. The data-memory destination space is pointed

to by a data-memory address or auxiliary register pointer. Not all source/des-

tination combinations of pointer types are valid.

RPT can be used with the BLPD instruction to move consecutive words. The

number of words to be moved is one greater than the number contained in the

repeat counter (RPTC) at the beginning of the instruction. When the BLPD in-

struction is repeated, the source (program-memory) address specified by the

long immediate constant is stored to the PC. Because the PC is incremented

by 1 during each repetition, it is possible to access a series of program-

memory addresses. If you use indirect addressing to specify the destination

(data-memory) address, a new data-memory address can be accessed during

each repetition. If you use the direct addressing mode, the specified data-

memory address is a constant; it is not modified during each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.

Interrupts are inhibited during a repeated BLPD instruction. When used with

RPT, BLPD becomes a single-cycle instruction once the RPT pipeline is

started.

Words 2

Cycles

Cycles for a Single BLPD Instruction

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: DARAM

3 3 3 3+2pcode

Source: SARAM

Destination: DARAM

3 3 3 3+2pcode

Source: External

Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+2pcode

Source: DARAM/ROM

Destination: SARAM

3 3 3

4†
3+2pcode

Source: SARAM

Destination: SARAM

3 3 3

4†
3+2pcode

Source: External

Destination: SARAM

3+psrc 3+psrc 3+psrc
4+psrc

†
3+psrc+2pcode

Source: DARAM/ROM

Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

† If the destination operand and the code are in the same SARAM block

 Block Move From Program Memory to Data Memory BLPDPRELIMINARY

8-55 Assembly Language InstructionsPRELIMINARY

Cycles for a Single BLPD Instruction (Continued)

Operand ExternalSARAMDARAMROM

Source: SARAM

Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

Source: External

Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+2pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BLPD Instruction

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: SARAM

Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: External

Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+2pcode

Source: DARAM/ROM

Destination: SARAM

n+2 n+2 n+2

n+4†
n+2+2pcode

Source: SARAM

Destination: SARAM

n+2

2n‡
n+2

2n‡
n+2

2n‡

n+4†

2n+2§

n+2+2pcode
2n+2pcode

‡

Source: External

Destination: SARAM

n+2+npsrc
† n+2+npsrc n+2+npsrc

n+4+npsrc
†

n+2+npsrc+2pcode

Source: DARAM/ROM

Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: SARAM

Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: External

Destination: External

4n+npsrc+nddst
‡ 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst+

2pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

BLPD Block Move From Program Memory to Data Memory PRELIMINARY

8-56 PRELIMINARY

Example 1 BLPD #800h,00h ;(DP=6)

Before Instruction After Instruction

Program Memory Program Memory
800h 0Fh 800h 0Fh

Data Memory Data Memory
300h 0h 300h 0Fh

Example 2 BLPD #800h,*,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 310h AR0 310h

Program Memory Program Memory
800h 1111h 800h 1111h

Data Memory Data Memory
310h 0100h 310h 1111h

 Call Subroutine at Location Specified by Accumulator CALAPRELIMINARY

8-57 Assembly Language InstructionsPRELIMINARY

Syntax CALA

Operands None

Opcode 0123456789101112131415

0000110001111101

Execution PC + 1 → TOS

ACC(15:0) → PC

Status Bits None

Description The current program counter (PC) is incremented and pushed onto the top of

the stack (TOS). Then, the contents of the lower half of the accumulator are

loaded into the PC. Execution continues at this address.

The CALA instruction is used to perform computed subroutine calls.

Words 1

Cycles for a Single CALA Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two

instruction words are discarded.

Example CALA

Before Instruction After Instruction

PC 25h PC 83h

ACC 83h ACC 83h

TOS 100h TOS 26h

Cycles

CALL Call Unconditionally PRELIMINARY

8-58 PRELIMINARY

Syntax CALL pma [, ind [, ARn]�] Indirect addressing

Operands pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

CALL pma [, ind [, ARn]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution PC + 2 → TOS

pma → PC

Modify (current AR) and (ARP) as specified.

Status Bits None

Description The current program counter (PC) is incremented and pushed onto the top of

the stack (TOS). Then, the contents of the pma, either a symbolic or numeric

address, are loaded into the PC. Execution continues at this address. The cur-

rent auxiliary register and ARP contents are modified as specified.

Words 2

Cycles for a Single CALL Instruction

ROM DARAM SARAM External

4 4 4 4+4p†

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two

instruction words are discarded.

Example CALL 191,*+,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 05h AR1 06h

PC 30h PC 0BFh

TOS 100h TOS 32h

Program address 0BFh (191) is loaded into the program counter, and the pro-

gram continues executing from that location.

Opcode

Cycles

 Call Conditionally CCPRELIMINARY

8-59 Assembly Language InstructionsPRELIMINARY

Syntax CC pma, cond�1 [,cond�2] [,...]

Operands pma: 16-bit program-memory address

cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C = 1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

Opcode 0123456789101112131415

ZLVCZLVCTP010111

pma

Note: The TP and ZLVC fields are defined on pages 8-3 and 8-4.

Execution If cond�1 AND cond�2 AND ...
Then

PC + 2 → TOS
pma → PC

Else
Increment PC

Status Bits None

Description Control is passed to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is
mutually exclusive to testing TC. The CC instruction operates like the CALL
instruction if all conditions are true.

Words 2

Cycles for a Single CC Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p†

False 2 2 2 2+2p

† The processor performs speculative fetching by reading two additional instruction words. If the

PC discontinuity is taken, these two instruction words are discarded.

Cycles

CC Call Conditionally PRELIMINARY

8-60 PRELIMINARY

Example CC PGM191,LEQ,C

If the accumulator contents are less than or equal to 0 and the carry bit is set,
0BFh (191) is loaded into the program counter, and the program continues to
execute from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.

 Clear Control Bit CLRCPRELIMINARY

8-61 Assembly Language InstructionsPRELIMINARY

Syntax CLRC control bit

Operands control bit: Select one of the following control bits:

C Carry bit of status register ST1

CNF RAM configuration control bit of status register ST1

INTM Interrupt mode bit of status register ST0

OVM Overflow mode bit of status register ST0

SXM Sign-extension mode bit of status register ST1

TC Test/control flag bit of status register ST1

XF XF pin status bit of status register ST1

CLRC C

0123456789101112131415

0111001001111101

CLRC CNF

0123456789101112131415

0010001001111101

CLRC INTM

0123456789101112131415

0000001001111101

CLRC OVM

0123456789101112131415

0100001001111101

CLRC SXM

0123456789101112131415

0110001001111101

CLRC TC

0123456789101112131415

0101001001111101

CLRC XF

0123456789101112131415

0011001001111101

Execution Increment PC, then ...

0 → control bit

Status Bits None

Description The specified control bit is cleared to 0. Note that the LST instruction can also

be used to load ST0 and ST1. See subsection 3.5, Status Registers ST0 and

ST1, on page 3-15 for more information about these control bits.

Opcode

CLRC Clear Control Bit PRELIMINARY

8-62 PRELIMINARY

Words 1

Cycles for a Single CLRC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a CLRC Instruction

ROM DARAM SARAM External

n n n n+p

Example CLRC TC ;(TC is bit 11 of ST1)

Before Instruction After Instruction

ST1 x9xxh ST1 x1xxh

Cycles

 Complement Accumulator CMPLPRELIMINARY

8-63 Assembly Language InstructionsPRELIMINARY

Syntax CMPL

Operands None

Opcode 0123456789101112131415

1000000001111101

Execution Increment PC, then ...

(ACC) → ACC

Status Bits None

Description The contents of the accumulator are replaced with its logical inversion (1s

complement). The carry bit is unaffected.

Words 1

Cycles for a Single CMPL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an CMPL Instruction

ROM DARAM SARAM External

n n n n+p

Example CMPL

Before Instruction After Instruction

ACC X 0F7982513h ACC X 0867DAECh

C C

Cycles

CMPR Compare Auxiliary Register With AR0 PRELIMINARY

8-64 PRELIMINARY

Syntax CMPR CM

Operands CM: Value from 0 to 3

Opcode 0123456789101112131415

CM10001011111101

Execution Increment PC, then ...

Compare (current AR) to (AR0) and place the result in the TC bit of status

register ST1.

Status Bits Affects

TC

This instruction is not affected by SXM. It does not affect SXM.

Description The CMPR instruction performs a comparison specified by the value of CM:

If CM = 00, test whether (current AR) = (AR0)

If CM = 01, test whether (current AR) < (AR0)

If CM = 10, test whether (current AR) > (AR0)

If CM = 11, test whether (current AR) ≠ (AR0)

If the condition is true, the TC bit is set to 1. If the condition is false, the TC bit

is cleared to 0.

Note that the auxiliary register values are treated as unsigned integers in the

comparisons.

Words 1

Cycles for a Single CMPR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an CMPR Instruction

ROM DARAM SARAM External

n n n n+p

Example CMPR 2 ;(current AR) > (AR0)?

Before Instruction After Instruction

ARP 4 ARP 4

AR0 0FFFFh AR0 0FFFFh

AR4 7FFFh AR4 7FFFh

TC 1 TC 0

Cycles

 Data Move in Data Memory DMOVPRELIMINARY

8-65 Assembly Language InstructionsPRELIMINARY

Syntax DMOV dma Direct addressing

DMOV ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

DMOV dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 0 dma

DMOV ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → data-memory address + 1

Status Bits Affected by

CNF

Description The contents of the specified data-memory address are copied into the

contents of the next higher address. When data is copied from the addressed

location to the next higher location, the contents of the addressed location

remain unaltered.

DMOV works only within on-chip data RAM blocks. It works within any confi-

gurable RAM block if that block is configured as data memory. In addition, the

data move function is continuous across block boundaries. The data move

function cannot be performed on external data memory. If the instruction spec-

ifies an external memory address, DMOV reads the specified memory location

but performs no operations.

The data move function is useful in implementing the z–1 delay encountered

in digital signal processing. The DMOV function is a subtask of the LTD and

MACD instructions (see the LTD and MACD instructions for more information).

Words 1

Opcode

DMOV Data Move in Data Memory PRELIMINARY

8-66 PRELIMINARY

Cycles for a Single DMOV Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External‡ 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block
‡ If used on external memory, DMOV reads the specified memory location but performs no

operations.

Cycles for a Repeat (RPT) Execution of a DMOV Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2, 2n+1† 2n–2+p

External‡ 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block
‡ If used on external memory, DMOV reads the specified memory location but performs no

operations.

Example 1 DMOV DAT8 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
308h 43h 308h 43h

Data Memory Data Memory
309h 2h 309h 43h

Example 2 DMOV *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 30Ah AR0 30Ah

Data Memory Data Memory
30Ah 40h 30Ah 40h

Data Memory Data Memory
30Bh 41h 30Bh 40h

Cycles

 Idle Until Interrupt IDLEPRELIMINARY

8-67 Assembly Language InstructionsPRELIMINARY

Syntax IDLE

Operands None

Opcode 0123456789101112131415

0100010001111101

Execution Increment PC, then wait for unmasked or nonmaskable hardware interrupt.

Status Bits Affected by

INTM

Description The IDLE instruction forces the program being executed to halt until the CPU

receives a request from an unmasked hardware interrupt (external or internal),

NMI, or reset. Execution of the IDLE instruction causes the ’C24x to enter a

power-down mode. The PC is incremented once before the ’C24x enters pow-

er down; it is not incremented during the idle state. On-chip peripherals remain

active; thus, their interrupts are among those that can wake the processor.

The idle state is exited by an unmasked interrupt even if INTM is 1. (INTM, the

interrupt mode bit of status register ST0, normally disables maskable

interrupts when it is set to 1.) When the idle state is exited by an unmasked

interrupt, the CPU’s next action, however, depends on INTM:

� If INTM is 0, the program branches to the corresponding interrupt service

routine.

� If INTM is 1, the program continues executing at the instruction following

the IDLE.

NMI and reset are not maskable; therefore, if the idle state is exited by NMI or

reset, the corresponding interrupt service routine is executed, regardless of

INTM.

Words 1

Cycles for a Single IDLE Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example IDLE ;The processor idles until a hardware reset,

;a hardware NMI, or an unmasked interrupt

;occurs.

Cycles

IN Input Data From Port PRELIMINARY

8-68 PRELIMINARY

Syntax IN dma, PA Direct addressing

IN ind, PA [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

PA: 16-bit I/O port or I/O-mapped register address

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

IN dma , PA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 0 dma

PA

IN ind ,PA [,ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 1 ARU N NAR

PA

Note: ARU, N, and NAR are defined in Section 7.3, Indirect Addressing Mode (page 7–12).

Execution Increment PC, then ...

PA → address bus lines A15–A0

Data bus lines D15–D0 → data-memory address

(PA) → data-memory address

Status Bits None

Description The IN instruction reads a 16-bit value from an I/O location into the specified

data-memory location. The IS line goes low to indicate an I/O access. The

STRB, RD, and READY timings are the same as for an external data-memory

read.

The repeat (RPT) instruction can be used with the IN instruction to read in

consecutive words from I/O space to data space.

Words 2

Opcode

 Input Data From Port INPRELIMINARY

8-69 Assembly Language InstructionsPRELIMINARY

Cycles for a Single IN Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 2+iosrc 2+iosrc 2+iosrc 3+iosrc+2pcode

Destination: SARAM 2+iosrc 2+iosrc 2+iosrc
3+iosrc

†
3+iosrc+2pcode

Destination: External 3+ddst+iosrc 3+ddst+iosrc 3+ddst+iosrc 6+ddst+iosrc+2pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an IN Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 2n+niosrc 2n+niosrc 2n+niosrc 2n+1+niosrc+2pcode

Destination: SARAM 2n+niosrc 2n+niosrc 2n+niosrc
2n+2+niosrc

†
2n+1+niosrc+2pcode

Destination: External 4n–1+nddst+

niosrc

4n–1+nddst+niosrc 4n–1+nddst+niosrc 4n+2+nddst+niosrc+

2pcode

† If the operand and the code are in the same SARAM block

Example 1 IN 7,1000h ;Read in word from peripheral on

;port address 1000h. Store word in

;data memory location 307h (DP=6).

Example 2 IN *,5h ;Read in word from peripheral on

;port address 5h. Store word in

;data memory location specified by

;current auxiliary register.

Cycles

INTR Software Interrupt PRELIMINARY

8-70 PRELIMINARY

Syntax INTR K

Operands K: Value from 0 to 31 that indicates the interrupt vector location

to branch to

Opcode 0123456789101112131415

K11001111101

Execution (PC) + 1 → stack

corresponding interrupt vector location → PC

Status Bits Affects

INTM

This instruction is not affected by INTM.

Description The processor has locations for 32 interrupt vectors; each location is repre-

sented by a value K from 0 to 31. The INTR instruction is a software interrupt

that transfers program control to the program-memory address specified by

K. The vector at that address then leads to the corresponding interrupt service

routine. Thus, the instruction allows any one of the interrupt service routines

to be executed from your software. For a list of interrupts and their correspond-

ing K values, see Table 6–2 on page 6-10. During execution of the instruction,

the value PC + 1 (the return address) is pushed onto the stack. Neither the

INTM bit nor the interrupt masks affect the INTR instruction. An INTR for the

external interrupts looks exactly like an external interrupt (an interrupt

acknowledge is generated, and maskable interrupts are globally disabled by

setting INTM = 1).

Words 1

Cycles for a Single INTR Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The processor performs speculative fetching by reading two additional instruction words. If the

PC discontinuity is taken, these two instruction words are discarded.

Example INTR 3 ;PC + 1 is pushed onto the stack.

;Then control is passed to program

;memory location 6h.

Cycles

 Load Accumulator With Shift LACCPRELIMINARY

8-71 Assembly Language InstructionsPRELIMINARY

Syntax LACC dma [, shift] Direct addressing

LACC dma, 16 Direct with left shift of 16

LACC ind [, shift [, ARn]�] Indirect addressing

LACC ind, 16[, ARn] Indirect with left shift of 16

LACC #lk [, shift] Long immediate addressing

Operands dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LACC dma [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 shift 0 dma

LACC dma, 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 0 0 dma

LACC ind [�, shift�[�, ARn�]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

LACC ind, 16[, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

LACC #lk [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 0 0 shift

lk

Opcode

LACC Load Accumulator With Shift PRELIMINARY

8-72 PRELIMINARY

Execution Increment PC, then ...

Event Addressing mode

(data-memory address) × 2shift → ACC Direct or indirect

(data-memory address) × 216 → ACC Direct or indirect (shift of 16)

lk × 2shift → ACC Long immediate

Status Bits Affected by

SXM

Description The contents of the specified data-memory address or a 16-bit constant are

left shifted and loaded into the accumulator. During shifting, low-order bits are

zero filled. High-order bits are sign extended if SXM = 1 and zeroed if SXM = 0.

Words Words Addressing mode

1 Direct or indirect

2 Long immediate

Cycles for a Single LACC Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACC Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles

 Load Accumulator With Shift LACCPRELIMINARY

8-73 Assembly Language InstructionsPRELIMINARY

Cycles for a Single LACC Instruction (Using Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Example 1 LACC 6,4 ;(DP = 8: addresses 0400h–047Fh,

;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
406h 01h 406h 01h

ACC X 012345678h ACC X 10h

C C

Example 2 LACC *,4 ;(SXM = 0)

Before Instruction After Instruction

ARP 2 ARP 2

AR2 0300h AR2 0300h

Data Memory Data Memory
300h 0FFh 300h 0FFh

ACC X 12345678h ACC X 0FF0h

C C

Example 3 LACC #0F000h,1 ;(SXM = 1)

Before Instruction After Instruction

ACC X 012345678h ACC X FFFFE000h

C C

LACL Load Low Accumulator and Clear High Accumulator PRELIMINARY

8-74 PRELIMINARY

Syntax LACL dma Direct addressing

LACL ind [, ARn] Indirect addressing

LACL #k Short immediate

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

k: 8-bit short immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LACL dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 0 dma

LACL ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

LACL #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 1 k

Execution Increment PC, then ...

Events Addressing mode

0 → ACC(31:16) Direct or indirect

(data-memory address) → ACC(15:0)

0 → ACC(31:8) Short immediate

k → ACC(7:0)

Status Bits This instruction is not affected by SXM.

Description The contents of the addressed data-memory location or a zero-extended 8-bit

constant are loaded into the 16 low-order bits of the accumulator. The upper

half of the accumulator is zeroed. The data is treated as an unsigned 16-bit

number rather than a 2s-complement number. There is no sign extension of

the operand with this instruction, regardless of the state of SXM.

Words 1

Opcode

 Load Low Accumulator and Clear High Accumulator LACLPRELIMINARY

8-75 Assembly Language InstructionsPRELIMINARY

Cycles for a Single LACL Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACL Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single LACL Instruction (Using Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 LACL 1 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
301h 0h 301h 0h

ACC X 7FFFFFFFh ACC X 0h

C C

Example 2 LACL *–,AR4

Before Instruction After Instruction

ARP 0 ARP 4

AR0 401h AR0 400h

Data Memory Data Memory
401h 00FFh 401h 00FFh

ACC X 7FFFFFFFh ACC X 0FFh

C C

Cycles

LACL Load Low Accumulator and Clear High Accumulator PRELIMINARY

8-76 PRELIMINARY

Example 3 LACL #10h

Before Instruction After Instruction

ACC X 7FFFFFFFh ACC X 010h

C C

 Load Accumulator With Shift Specified by TREG LACTPRELIMINARY

8-77 Assembly Language InstructionsPRELIMINARY

Syntax LACT dma Direct addressing

LACT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LACT dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1 0 dma

LACT ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) × 2(TREG(3:0)) → ACC

If SXM = 1:

Then (data-memory address) is sign extended.

If SXM = 0:

Then (data-memory address) is not sign extended.

Status Bits Affected by

SXM

Description The LACT instruction loads the accumulator with a data-memory value that

has been left shifted. The left shift is specified by the four LSBs of the TREG,

resulting in shift options from 0 to 15 bits. Using the four LSBs of the TREG as

a shift code provides a dynamic shift mechanism. During shifting, the

high-order bits are sign extended if SXM = 1 and zeroed if SXM = 0.

LACT may be used to denormalize a floating-point number if the actual expo-

nent is placed in the four LSBs of the TREG register and the mantissa is refer-

enced by the data-memory address. This method of denormalization can be

used only when the magnitude of the exponent is four bits or less.

Words 1

Opcode

LACT Load Accumulator With Shift Specified by TREG PRELIMINARY

8-78 PRELIMINARY

Cycles for a Single LACT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LACT 1 ;(DP = 6: addresses 0300h–037Fh,

;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
301h 1376h 301h 1376h

TREG 14h TREG 14h

ACC X 98F7EC83h ACC X 13760h

C C

Example 2 LACT *–,AR3 ;(SXM = 1)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 310h AR1 30Fh

Data Memory Data Memory
310h 0FF00h 310h 0FF00h

TREG 11h TREG 11h

ACC X 098F7EC83h ACC X 0FFFFFE00h

C C

Cycles

 Load Auxiliary Register LARPRELIMINARY

8-79 Assembly Language InstructionsPRELIMINARY

Syntax LAR ARx, dma Direct addressing

LAR ARx, ind [, ARn] Indirect addressing

LAR ARx, #k Short immediate addressing

LAR ARx, #lk Long immediate addressing

Operands x: Value from 0 to 7 designating the auxiliary register to be loaded

dma: 7 LSBs of the data-memory address

k: 8-bit short immediate value

lk: 16-bit long immediate value

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LAR ARx, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 x 0 dma

LAR ARx, ind [�, ARn�]�

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 x 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

LAR ARx, #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 x k

LAR ARx, #lk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 1 x

lk

Execution Increment PC, then ...

Event Addressing mode

(data-memory address) → ARx Direct or indirect

k → ARx Short immediate

lk → ARx Long immediate

Status Bits None

Opcode

LAR Load Auxiliary Register PRELIMINARY

8-80 PRELIMINARY

Description The contents of the specified data-memory address or an 8-bit or 16-bit

constant are loaded into the specified auxiliary register (ARx). The specified

constant is acted upon like an unsigned integer, regardless of the value of

SXM.

The LAR and SAR (store auxiliary register) instructions can be used to load

and store the auxiliary registers during subroutine calls and interrupts. If an

auxiliary register is not being used for indirect addressing, LAR and SAR en-

able the register to be used as an additional storage register, especially for

swapping values between data-memory locations without affecting the con-

tents of the accumulator.

Words Words Addressing mode

1 Direct, indirect or

short immediate

2 Long immediate

Cycles for a Single LAR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LAR Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrcpcode

† If the operand and the code are in the same SARAM block

Cycles for a Single LAR Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+pcode

Cycles

 Load Auxiliary Register LARPRELIMINARY

8-81 Assembly Language InstructionsPRELIMINARY

Cycles for a Single LAR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Example 1 LAR AR0,16 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
310h 18h 310h 18h

AR0 6h AR0 18h

Example 2 LAR AR4,*–

Before Instruction After Instruction

ARP 4 ARP 4

Data Memory Data Memory
300h 32h 300h 32h

AR4 300h AR4 32h

Note:

LAR in the indirect addressing mode ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

Example 3 LAR AR4,#01h

Before Instruction After Instruction

AR4 0FF09h AR4 01h

Example 4 LAR AR6,#3FFFh

Before Instruction After Instruction

AR6 0h AR6 3FFFh

LDP Load Data Page Pointer PRELIMINARY

8-82 PRELIMINARY

Syntax LDP dma Direct addressing

LDP ind [, ARn] Indirect addressing

LDP #k Short immediate

addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

k: 9-bit short immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LDP dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 dma

LDP ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

LDP #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 k

Execution Increment PC, then ...

Event Addressing mode

Nine LSBs of (data-memory address) → DP Direct or indirect

k → DP Short immediate

Status Bits Affects

DP

Description The nine LSBs of the contents of the addressed data-memory location or a

9-bit immediate value is loaded into the data page pointer (DP) of status regis-

ter ST0. The DP can also be loaded by the LST instruction.

In direct addressing, the 9-bit DP and the 7-bit value specified in the instruction

(dma) are concatenated to form the 16-bit data-memory address accessed by

the instruction. The DP provides the 9 MSBs, and dma provides the 7 LSBs.

Words 1

Opcode

 Load Data Page Pointer LDPPRELIMINARY

8-83 Assembly Language InstructionsPRELIMINARY

Cycles for a Single LDP Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LDP Instruction (Using Direct and

Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrcpcode

† If the operand and the code are in the same SARAM block

Cycles for a Single LDP Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+pcode

Example 1 LDP 127 ;(DP = 511: addresses FF80h–FFFFh)

Before Instruction After Instruction

Data Memory Data Memory
FFFFh FEDCh FFFFh FEDCh

DP 1FFh DP 0DCh

Example 2 LDP #0h

Before Instruction After Instruction

DP 1FFh DP 0h

Example 3 LDP *,AR5

Before Instruction After Instruction

ARP 4 ARP 5

AR4 300h AR4 300h

Data Memory Data Memory
300h 06h 300h 06h

DP 1FFh DP 06h

Cycles

LPH Load Product Register High Word PRELIMINARY

8-84 PRELIMINARY

Syntax LPH dma Direct addressing

LPH ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LPH dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 1 0 dma

LPH ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → PREG (31:16)

Status Bits None

Description The 16 high-order bits of the PREG are loaded with the content of the specified

data-memory address. The low-order PREG bits are unaffected.

The LPH instruction can be used for restoring the high-order bits of the PREG

after interrupts and subroutine calls.

Words 1

Opcode

 Load Product Register High Word LPHPRELIMINARY

8-85 Assembly Language InstructionsPRELIMINARY

Cycles for a Single LPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LPH DAT0 ;(DP = 4)

Before Instruction After Instruction

Data Memory Data Memory
200h 0F79Ch 200h 0F79Ch

PREG 30079844h PREG 0F79C9844h

Example 2 LPH *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 200h AR5 200h

Data Memory Data Memory
200h 0F79Ch 200h 0F79Ch

PREG 30079844h PREG 0F79C9844h

Cycles

LST Load Status Register PRELIMINARY

8-86 PRELIMINARY

Syntax LST #m, dma Direct addressing

LST #m, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

m: Select one of the following:

0 Indicates that ST0 will be loaded

1 Indicates that ST1 will be loaded

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LST #0, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 0 dma

LST #0, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

LST #1, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 dma

LST #1, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → status register STm

For details about the differences between an LST #0 operation and an LST #1

operation, see Figure 8–3, Figure 8–4, and the description paragraph.

Figure 8–3. LST #0 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST0 ARP OV OVM 1 INTM DP

Opcode

 Load Status Register LSTPRELIMINARY

8-87 Assembly Language InstructionsPRELIMINARY

Figure 8–4. LST #1 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST0 ARP OV OVM 1 INTM DP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST1 ARB CNF TC SXM C 1 1 1 1 XF 1 1 PM

Status Bits Affects

ARB, ARP, OV, OVM, DP, CNF, TC, SXM, C, XF, and PM

This instruction does not affect INTM.

Description The specified status register (ST0 or ST1) is loaded with the addressed data-

memory value. Note the following points:

� The LST #0 operation does not affect the ARB field in the ST1 register,

even though a new ARP is loaded.

� During the LST #1 operation, the value loaded into ARB is also loaded into

ARP.

� If a next AR value is specified as an operand in the indirect addressing

mode, this operand is ignored. ARP is loaded with the three MSBs of the

value contained in the addressed data-memory location.

� Reserved bit values in the status registers are always read as 1s. Writes

to these bits have no effect.

The LST instruction can be used for restoring the status registers after subrou-

tine calls and interrupts.

Words 1

LST Load Status Register PRELIMINARY

8-88 PRELIMINARY

Cycles for a Single LST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrc+pcode

† If the operand and the code are in the same SARAM block

Example 1 MAR *,AR0

LST #0,*,AR1 ;The data memory word addressed by the

;contents of auxiliary register AR0 is

;loaded into status register ST0,except

;for the INTM bit. Note that even

;though a next ARP value is specified,

;that value is ignored. Also note that

;the old ARP is not loaded into the

;ARB.

Example 2 LST #0,60h ;(DP = 0)

Before Instruction After Instruction

Data Memory Data Memory
60h 2404h 60h 2404h

ST0 6E00h ST0 2604h

ST1 05ECh ST1 05ECh

Cycles

 Load Status Register LSTPRELIMINARY

8-89 Assembly Language InstructionsPRELIMINARY

Example 3 LST #0,*–,AR1

Before Instruction After Instruction

ARP 4 ARP 7

AR4 3FFh AR4 3FEh

Data Memory Data Memory
3FFh EE04h 3FFh EE04h

ST0 EE00h ST0 EE04h

ST1 F7ECh ST1 F7ECh

Example 4 LST #1,00h ;(DP = 6)

;Note that the ARB is loaded with

;the new ARP value.

Before Instruction After Instruction

Data Memory Data Memory
300h E1BCh 300h E1BCh

ST0 0406h ST0 E406h

ST1 09ECh ST1 E1FCh

LT Load TREG PRELIMINARY

8-90 PRELIMINARY

Syntax LT dma Direct addressing

LT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LT dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 0 dma

LT ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → TREG

Status Bits None

Description TREG is loaded with the contents of the specified data-memory address. The

LT instruction may be used to load TREG in preparation for multiplication. See

also the LTA, LTD, LTP, LTS, MPY, MPYA, MPYS, and MPYU instructions.

Words 1

Opcode

 Load TREG LTPRELIMINARY

8-91 Assembly Language InstructionsPRELIMINARY

Cycles for a Single LT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LT 24 ;(DP = 8: addresses 0400h–047Fh)

Before Instruction After Instruction

Data Memory Data Memory
418h 62h 418h 62h

TREG 3h TREG 62h

Example 2 LT *,AR3

Before Instruction After Instruction

ARP 2 ARP 3

AR2 418h AR2 418h

Data Memory Data Memory
418h 62h 418h 62h

TREG 3h TREG 62h

Cycles

LTA Load TREG and Accumulate Previous Product PRELIMINARY

8-92 PRELIMINARY

Syntax LTA dma Direct addressing

LTA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTA dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 0 dma

LTA ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → TREG

(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects

PM and OVM C and OV

Description TREG is loaded with the contents of the specified data-memory address. The

contents of the product register, shifted as defined by the PM status bits, are

added to the accumulator, and the result is placed in the accumulator.

The carry bit is set (C = 1) if the result of the addition generates a carry and

is cleared (C = 0) if it does not generate a carry.

The function of the LTA instruction is a subtask of the LTD instruction.

Words 1

Opcode

 Load TREG and Accumulate Previous Product LTAPRELIMINARY

8-93 Assembly Language InstructionsPRELIMINARY

Cycles for a Single LTA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LTA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTA 36 ;(DP = 6: addresses 0300h–037Fh,

;PM =0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Example 2 LTA *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 324h AR4 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Cycles

LTD Load TREG, Accumulate Previous Product, and Move Data PRELIMINARY

8-94 PRELIMINARY

Syntax LTD dma Direct addressing

LTD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTD dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 0 0 dma

LTD ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → TREG

(data-memory address) → data-memory address + 1

(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects

PM and OVM C and OV

Description TREG is loaded with the contents of the specified data-memory address. The

contents of the PREG, shifted as defined by the PM status bits, are added to

the accumulator, and the result is placed in the accumulator. The contents of

the specified data-memory address are also copied to the next higher data-

memory address.

This instruction is valid for all blocks of on-chip RAM configured as data

memory. The data move function is continuous across the boundaries of

contiguous blocks of memory but cannot be used with external data memory

or memory-mapped registers. The data move function is described under the

instruction DMOV.

Note:

If LTD is used with external data memory, its function is identical to that of
LTA; that is, the previous product is accumulated, and the TREG is loaded
from external data memory, but the data move does not occur.

The carry bit is set (C = 1) if the result of the addition generates a carry and

is cleared (C = 0) if it does not generate a carry.

Opcode

 Load TREG, Accumulate Previous Product, and Move Data LTDPRELIMINARY

8-95 Assembly Language InstructionsPRELIMINARY

Words 1

Cycles for a Single LTD Instruction

Program

Operand ROM DARAM SARAM External‡

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block
‡ If the LTD instruction is used with external memory, the data move does not occur. (The

previous product is accumulated, and the TREG is loaded.)

Cycles for a Repeat (RPT) Execution of an LTD Instruction

Program

Operand ROM DARAM SARAM External‡

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2, 2n+1† 2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block
‡ If the LTD instruction is used with external memory, the data move does not occur. (The

previous product is accumulated, and the TREG is loaded.)

Example 1 LTD 126 ;(DP = 7: addresses 0380h–03FFh,

;PM = 0: no shift of product).

Before Instruction After Instruction

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Cycles

LTD Load TREG, Accumulate Previous Product, and Move Data PRELIMINARY

8-96 PRELIMINARY

Example 2 LTD *,AR3 ;(PM = 0)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 3FEh AR1 3FEh

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Note: The data move function for LTD can occur only within on-chip data memory RAM blocks.

 Load TREG and Store PREG in Accumulator LTPPRELIMINARY

8-97 Assembly Language InstructionsPRELIMINARY

Syntax LTP dma Direct addressing

LTP ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTP dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 0 dma

LTP ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → TREG

shifted (PREG) → ACC

Status Bits Affected by

PM

Description The TREG is loaded with the content of the addressed data-memory location,

and the PREG value is stored in the accumulator. The shift at the output of the

PREG is controlled by the PM status bits.

Words 1

Opcode

LTP Load TREG and Store PREG in Accumulator PRELIMINARY

8-98 PRELIMINARY

Cycles for a Single LTP Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LTP Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTP 36 ;(DP = 6: addresses 0300h–037Fh,

;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C

Example 2 LTP *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 2 ARP 5

AR2 324h AR2 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C

Cycles

 Load TREG and Subtract Previous Product LTSPRELIMINARY

8-99 Assembly Language InstructionsPRELIMINARY

Syntax LTS dma Direct addressing

LTS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTS dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 0 dma

LTS ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → TREG

ACC – shifted (PREG) → ACC

Status Bits Affected by Affects

PM and OVM C and OV

Description TREG is loaded with the contents of the addressed data-memory location. The

contents of the product register, shifted as defined by the contents of the PM

status bits, are subtracted from the accumulator. The result is placed in the

accumulator.

The carry bit is cleared (C = 0) if the result of the subtraction generates a bor-

row and is set (C = 1) if it does not generate a borrow.

Words 1

Opcode

LTS Load TREG and Subtract Previous Product PRELIMINARY

8-100 PRELIMINARY

Cycles for a Single LTS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LTS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTS DAT36 ;(DP = 6: addresses 0300h–037Fh,

;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 0FFFFFFF6h

C C

Example 2 LTS *,AR2 ;(PM = 0)

Before Instruction After Instruction

ARP 1 ARP 2

AR1 324h AR1 324h

324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 0FFFFFFF6h

C C

 Multiply and Accumulate MACPRELIMINARY

8-101 Assembly Language InstructionsPRELIMINARY

Syntax MAC pma, dma Direct addressing

MAC pma, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MAC pma, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 0 0 dma

pma

MAC pma, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 0 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then . . .

(PC) → MSTACK

pma → PC

(ACC) + shifted (PREG) → ACC

(data-memory address) → TREG

(data-memory address) × (pma) → PREG

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

While (repeat counter) ≠ 0:

(ACC) + shifted (PREG) → ACC

(data-memory address) → TREG

(data-memory address) × (pma) → PREG

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

(repeat counter) – 1 → repeat counter

(MSTACK) → PC

Opcode

MAC Multiply and Accumulate PRELIMINARY

8-102 PRELIMINARY

Status Bits Affected by Affects

PM and OVM C and OV

Description The MAC instruction:

� Adds the previous product, shifted as defined by the PM status bits, to the

accumulator. The carry bit is set (C = 1) if the result of the addition gener-

ates a carry and is cleared (C = 0) if it does not generate a carry.

� Loads the TREG with the content of the specified data-memory address.

� Multiplies the data-memory value in the TREG by the contents of the

specified program-memory address.

The data and program memory locations on the ’C24x may be any non-

reserved on-chip or off-chip memory locations. If the program memory is block

B0 of on-chip RAM, the CNF bit must be set to 1.

When the MAC instruction is repeated, the program-memory address

contained in the PC is incremented by 1 during each repetition. This makes

it possible to access a series of operands in program memory. If you use

indirect addressing to specify the data-memory address, a new data-memory

address can be accessed during each repetition. If you use the direct address-

ing mode, the specified data-memory address is a constant; it is not modified

during each repetition.

MAC is useful for long sum-of-products operations because, when repeated,

it becomes a single-cycle instruction once the RPT pipeline is started.

Words 2

 Multiply and Accumulate MACPRELIMINARY

8-103 Assembly Language InstructionsPRELIMINARY

Cycles

Cycles for a Single MAC Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/

ROM

Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: SARAM

Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: External

Operand 2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/

ROM

Operand 2: SARAM

3 3 3 3+2pcode

Operand 1: SARAM

Operand 2: SARAM

3

4†
3

4†
3

4†
3+2pcode
4+2pcode

†

Operand 1: External

Operand 2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/

ROM

Operand 2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: SARAM

Operand 2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: External

Operand 2: External

4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

† If both operands are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MAC Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/

ROM

Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM

Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: External

Operand 2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

† If both operands are in the same SARAM block

MAC Multiply and Accumulate PRELIMINARY

8-104 PRELIMINARY

Cycles for a Repeat (RPT) Execution of an MAC Instruction (Continued)

Operand ExternalSARAMDARAMROM

Operand 1: DARAM/

ROM

Operand 2: SARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM

Operand 2: SARAM

n+2

2n+2†
n+2

2n+2†
n+2

2n+2†
n+2+2pcode
2n+2†

Operand 1: External

Operand 2: SARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

Operand 1: DARAM/

ROM

Operand 2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: SARAM

Operand 2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: External

Operand 2: External

2n+2+npop1+

ndop2

2n+2+npop1+ndop2 2n+2+npop1+ndop2 2n+2+npop1+ndop2+

2pcode

† If both operands are in the same SARAM block

Example 1 MAC 0FF00h,02h ;(DP = 6, PM = 0, CNF = 1)

Before Instruction After Instruction

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 08Ch

ACC X 723EC41h ACC 0 76975B3h

C C

Example 2 MAC 0FF00h,*,AR5 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 302h AR4 302h

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C

 Multiply and Accumulate With Data Move MACDPRELIMINARY

8-105 Assembly Language InstructionsPRELIMINARY

Syntax MACD pma, dma Direct addressing

MACD pma, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MACD pma, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1 0 dma

pma

MACD pma, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then . . .

(PC) → MSTACK

pma → PC

(ACC) + shifted (PREG) → ACC

(data-memory address) → TREG

(data-memory address) × (pma) → PREG

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

(data-memory address) → data-memory address + 1

While (repeat counter) ≠ 0:

(ACC) + shifted (PREG) → ACC

(data-memory address) → TREG

(data-memory address) × (pma) → PREG

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

(data-memory address) → data-memory address + 1

(repeat counter) – 1 → repeat counter

(MSTACK) → PC

Opcode

MACD Multiply and Accumulate With Data Move PRELIMINARY

8-106 PRELIMINARY

Status Bits Affected by Affects

PM and OVM C and OV

Description The MACD instruction:

� Adds the previous product, shifted as defined by the PM status bits, to the

accumulator. The carry bit is set (C = 1) if the result of the addition gener-

ates a carry and is cleared (C = 0) if it does not generate a carry.

� Loads the TREG with the content of the specified data-memory address.

� Multiplies the data-memory value in the TREG by the contents of the

specified program-memory address.

� Copies the contents of the specified data-memory address to the next

higher data-memory address.

The data- and program-memory locations on the ’C24x may be any non-

reserved, on-chip or off-chip memory locations. If the program memory is

block B0 of on-chip RAM, the CNF bit must be set to 1. If MACD addresses one

of the memory-mapped registers or external memory as a data-memory loca-

tion, the effect of the instruction is that of a MAC instruction; the data move

does not occur (see the DMOV instruction description on page 8-65).

When the MACD instruction is repeated, the program-memory address

contained in the PC is incremented by 1 during each repetition. This makes

it possible to access a series of operands in program memory. If you use in-

direct addressing to specify the data-memory address, a new data-memory

address can be accessed during each repetition. If you use the direct address-

ing mode, the specified data-memory address is a constant; it will not be modi-

fied during each repetition.

MACD functions in the same manner as MAC, with the addition of a data move

for on-chip RAM blocks. This feature makes MACD useful for applications

such as convolution and transversal filtering. When used with RPT, MACD

becomes a single-cycle instruction once the RPT pipeline is started.

Words 2

 Multiply and Accumulate With Data Move MACDPRELIMINARY

8-107 Assembly Language InstructionsPRELIMINARY

Cycles

Cycles for a Single MACD Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/

ROM

Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: SARAM

Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: External

Operand 2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/

ROM

Operand 2: SARAM

3 3 3 3+2pcode

Operand 1: SARAM

Operand 2: SARAM

3 3 3

4†

5‡

3+2pcode
4+2pcode

†

Operand 1: External

Operand 2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/

ROM

Operand 2: External§

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: SARAM

Operand 2: External§
3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: External

Operand 2: External§
4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

† If both operands are in the same SARAM block
‡ If both operands and code are in the same SARAM block
§ Data move operation is not performed when operand2 is in external data memory.

MACD Multiply and Accumulate With Data Move PRELIMINARY

8-108 PRELIMINARY

Cycles for a Repeat (RPT) Execution of an MACD Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/

ROM

Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM

Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: External

Operand 2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

Operand 1: DARAM/

ROM

Operand 2: SARAM

2n 2n 2n

2n+2†
2n+2pcode

Operand 1: SARAM

Operand 2: SARAM

2n

3n‡
2n

3n‡
2n

2n+2†

3n‡

3n+2§

2n+2pcode
3n‡

Operand 1: External

Operand 2: SARAM

2n+npop1 2n+npop1 2n+npop1
2n+2+npop1

†
2n+npop1+2pcode

Operand 1: DARAM/

ROM

Operand 2: External¶

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: SARAM

Operand 2: External¶
n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: External

Operand 2: External¶
2n+2+npop1+

ndop2

2n+2+npop1+ndop2 2n+2+npop1+ndop2 2n+2+npop1+ndop2+

2pcode

† If operand 2 and code are in the same SARAM block
‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.

 Multiply and Accumulate With Data Move MACDPRELIMINARY

8-109 Assembly Language InstructionsPRELIMINARY

Example 1 MACD 0FF00h,08h ;(DP = 6: addresses 0300h–037Fh,

;PM = 0: no shift of product,

;CNF = 1: RAM B0 configured to

;program memory).

Before Instruction After Instruction

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C

Example 2 MACD 0FF00h,*,AR6 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 5 ARP 6

AR5 308h AR5 308h

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C

Note: The data move function for MACD can occur only within on-chip data memory RAM

blocks.

MAR Modify Auxiliary Register PRELIMINARY

8-110 PRELIMINARY

Syntax MAR dma Direct addressing

MAR ind [, ARn] Indirect addressing

Operands n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MAR dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 1 0 dma

MAR ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Event(s) Addressing mode

Increment PC Direct

Increment PC Indirect

Modify (current AR) and (ARP) as specified

Status Bits Affects Addressing mode

None Direct

ARP and ARB Indirect

Description In the direct addressing mode, the MAR instruction acts as a NOP instruction.

In the indirect addressing mode, an auxiliary register value and the ARP value

can be modified; however, the memory being referenced is not used. When

MAR modifies the ARP value, the old ARP value is copied to the ARB field of

ST1. Any operation that MAR performs with indirect addressing can also be

performed with any instruction that supports indirect addressing. In addition,

the ARP can also be loaded by an LST instruction.

The LARP instruction from the ’C25 instruction set is a subset of MAR. For

example, MAR *, AR4 performs the same function as LARP 4, which loads the

ARP with 4.

For loading an auxiliary register, see the description for the LAR instruction on

page 8-79. For storing an auxiliary register value to data memory, see the SAR

instruction on page 8-151.

Opcode

 Modify Auxiliary Register MARPRELIMINARY

8-111 Assembly Language InstructionsPRELIMINARY

Words 1

Cycles for a Single MAR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an MAR Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 MAR *,AR1 ;Load the ARP with 1.

Before Instruction After Instruction

ARP 0 ARP 1

ARB 7 ARB 0

Example 2 MAR *+,AR5 ;Increment current auxiliary

;register (AR1) and load ARP

;with 5.

Before Instruction After Instruction

AR1 34h AR1 35h

ARP 1 ARP 5

ARB 0 ARB 1

Cycles

MPY Multiply PRELIMINARY

8-112 PRELIMINARY

Syntax MPY dma Direct addressing

MPY ind [, ARn] Indirect addressing

MPY #k Short immediate addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

k: 13-bit short immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPY dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 0 dma

MPY ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

MPY #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 k

Execution Increment PC, then ...

Event Addressing mode

(TREG) × (data-memory address) → PREG Direct or indirect

(TREG) × k → PREG Short immediate

Status Bits None

Description The contents of TREG are multiplied by the contents of the addressed data

memory location. The result is placed in the product register (PREG). With

short immediate addressing, TREG is multiplied by a signed 13-bit constant.

The short-immediate value is right justified and sign extended before the multi-

plication, regardless of SXM.

Words 1

Opcode

 Multiply MPYPRELIMINARY

8-113 Assembly Language InstructionsPRELIMINARY

Cycles for a Single MPY Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPY Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single MPY Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 MPY DAT13 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Dh 7h 40Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

Cycles

MPY Multiply PRELIMINARY

8-114 PRELIMINARY

Example 2 MPY *,AR2

Before Instruction After Instruction

ARP 1 ARP 2

AR1 40Dh AR1 40Dh

Data Memory Data Memory
40Dh 7h 40Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

Example 3 MPY #031h

Before Instruction After Instruction

TREG 2h TREG 2h

PREG 36h PREG 62h

 Multiply and Accumulate Previous Product MPYAPRELIMINARY

8-115 Assembly Language InstructionsPRELIMINARY

Syntax MPYA dma Direct addressing

MPYA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPYA dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 0 dma

MPYA ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) + shifted (PREG) → ACC

(TREG) × (data-memory address) → PREG

Status Bits Affected by Affects

PM and OVM C and OV

Description The contents of TREG are multiplied by the contents of the addressed data

memory location. The result is placed in the product register (PREG). The pre-

vious product, shifted as defined by the PM status bits, is also added to the

accumulator.

Words 1

Opcode

MPYA Multiply and Accumulate Previous Product PRELIMINARY

8-116 PRELIMINARY

Cycles for a Single MPYA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPYA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYA DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C

Example 2 MPYA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 30Dh AR3 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C

Cycles

 Multiply and Subtract Previous Product MPYSPRELIMINARY

8-117 Assembly Language InstructionsPRELIMINARY

Syntax MPYS dma Direct addressing

MPYS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPYS dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 0 dma

MPYS ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) – shifted (PREG) → ACC

(TREG) × (data-memory address) → PREG

Status Bits Affected by Affects

PM and OVM C and OV

Description The contents of TREG are multiplied by the contents of the addressed data

memory location. The result is placed in the product register (PREG). The pre-

vious product, shifted as defined by the PM status bits, is also subtracted from

the accumulator, and the result is placed in the accumulator.

Words 1

Opcode

MPYS Multiply and Subtract Previous Product PRELIMINARY

8-118 PRELIMINARY

Cycles for a Single MPYS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPYS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYS DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C

Example 2 MPYS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 30Dh AR4 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C

Cycles

 Multiply Unsigned MPYUPRELIMINARY

8-119 Assembly Language InstructionsPRELIMINARY

Syntax MPYU dma Direct addressing

MPYU ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPYU dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 dma

MPYU ind [,ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

Unsigned (TREG) × unsigned (data-memory address) → PREG

Status Bits None

This instruction is not affected by SXM.

Description The unsigned contents of TREG are multiplied by the unsigned contents of the

addressed data-memory location. The result is placed in the product register

(PREG). The multiplier acts as a signed 17 × 17-bit multiplier for this instruc-

tion, with the MSB of both operands forced to 0.

When another instruction passes the resulting PREG value to data memory

or to the CALU, the value passes first through the product shifter at the output

of the PREG. This shifter always invokes sign extension on the PREG value

when PM = 3 (right-shift-by-6 mode). Therefore, this shift mode should not be

used if unsigned products are desired.

The MPYU instruction is particularly useful for computing multiple-precision

products, such as when multiplying two 32-bit numbers to yield a 64-bit prod-

uct.

Words 1

Opcode

MPYU Multiply Unsigned PRELIMINARY

8-120 PRELIMINARY

Cycles for a Single MPYU Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPYU Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYU 16 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

Data Memory Data Memory
210h 0FFFFh 210h 0FFFFh

TREG 0FFFFh TREG 0FFFFh

PREG 1h PREG 0FFFE0001h

Example 2 MPYU *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 210h AR5 210h

Data Memory Data Memory
210h 0FFFFh 210h 0FFFFh

TREG 0FFFFh TREG 0FFFFh

PREG 1h PREG 0FFFE0001h

Cycles

 Negate Accumulator NEGPRELIMINARY

8-121 Assembly Language InstructionsPRELIMINARY

Syntax NEG

Operands None

Opcode 0123456789101112131415

0100000001111101

Execution Increment PC, then ...

(ACC) × –1 → ACC

Status Bits Affected by Affects

OVM C and OV

Description The content of the accumulator is replaced with its arithmetic complement (2s

complement). The OV bit is set when taking the NEG of 8000 0000h. If

OVM = 1, the accumulator content is replaced with 7FFF FFFFh. If OVM = 0,

the result is 8000 0000h. The carry bit (C) is cleared to 0 by this instruction for

all nonzero values of the accumulator, and is set to 1 if the accumulator equals

0.

Words 1

Cycles for a Single NEG Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an NEG Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 NEG ;(OVM = X) Convert –3544 to +3544

Before Instruction After Instruction

ACC X 0FFFFF228h ACC 0 0DD8h

C C

X X

OV OV

Example 2 NEG ;(OVM = 0)

Before Instruction After Instruction

ACC X 080000000h ACC 0 080000000h

C C

X 1

OV OV

Cycles

NEG Negate Accumulator PRELIMINARY

8-122 PRELIMINARY

Example 3 NEG ;(OVM = 1)

Before Instruction After Instruction

ACC X 080000000h ACC 0 7FFFFFFFh

C C

X 1

OV OV

 Nonmaskable Interrupt NMIPRELIMINARY

8-123 Assembly Language InstructionsPRELIMINARY

Syntax NMI

Operands None

Opcode 0123456789101112131415

0100101001111101

Execution (PC) + 1 → stack

24h → PC

1 → INTM

Status Bits Affects

INTM

This instruction is not affected by INTM.

Description The NMI instruction forces the program counter to the nonmaskable interrupt

vector located at 24h. This instruction has the same effect as the hardware

nonmaskable interrupt NMI.

Words 1

Cycles for a Single NMI Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The ’C24x performs speculative fetching by reading two additional instruction words. If the PC

discontinuity is taken, these two instruction words are discarded.

Example NMI ;PC + 1 is pushed onto the stack, and then

;control is passed to program memory location

;24h.

Cycles

NOP No Operation PRELIMINARY

8-124 PRELIMINARY

Syntax NOP

Operands None

Opcode 0123456789101112131415

0000000011010001

Execution Increment PC

Status Bits None

Description No operation is performed. The NOP instruction affects only the PC. The NOP

instruction is useful to create pipeline and execution delays.

Words 1

Cycles for a Single NOP Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an NOP Instruction

ROM DARAM SARAM External

n n n n+p

Example NOP ;No operation is performed.

Cycles

 Normalize Contents of Accumulator NORMPRELIMINARY

8-125 Assembly Language InstructionsPRELIMINARY

Syntax NORM ind Indirect addressing

Operands ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

NORM ind

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

If (ACC) = 0:

Then TC → 1;

Else, if (ACC(31)) XOR (ACC(30)) = 0:

Then TC → 0,

(ACC) × 2 → ACC

Modify (current AR) as specified;

Else TC → 1.

Status Bits Affects

TC

Description The NORM instruction normalizes a signed number that is contained in the

accumulator. Normalizing a fixed-point number separates it into a mantissa

and an exponent. By finding the magnitude of the sign-extended number. An

exclusive-OR operation is performed on accumulator bits 31 and 30 to deter-

mine if bit 30 is part of the magnitude or part of the sign extension. If they are

the same, they are both sign bits, and the accumulator is left shifted to elimi-

nate the extra sign bit.

The current AR is modified as specified to generate the magnitude of the

exponent. It is assumed that the current AR is initialized before normalization

begins. The default modification of the current AR is an increment.

Multiple executions of the NORM instruction may be required to completely

normalize a 32-bit number in the accumulator. Although using NORM with

RPT does not cause execution of NORM to fall out of the repeat loop automati-

cally when the normalization is complete, no operation is performed for the

remainder of the repeat loop. NORM functions on both positive and negative

2s-complement numbers.

Opcode

NORM Normalize Contents of Accumulator PRELIMINARY

8-126 PRELIMINARY

Notes:

For the NORM instruction, the auxiliary register operations are executed dur-
ing the fourth phase of the pipeline, the execution phase. For other instruc-
tions, the auxiliary register operations take place in the second phase of the
pipeline, in the decode phase. Therefore:

1) The auxiliary register values should not be modified by the two

instruction words following NORM. If the auxiliary register used in the

NORM instruction is to be affected by either of the next two instruction

words, the auxiliary register value is modified by the other instructions

before it is modified by the NORM instruction.

2) The value in the auxiliary register pointer (ARP) should not be mo-

dified by the two instruction words following NORM. If either of the

next two instruction words specify a change in the ARP value, the ARP

value is changed before NORM is executed; the ARP does not point to

the correct auxiliary register when NORM is executed.

Words 1

Cycles for a Single NORM Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a NORM Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 NORM *+

Before Instruction After Instruction

ARP 2 ARP 2

AR2 00h AR2 01h

ACC X 0FFFFF001h ACC X 0FFFE002h

C C

X 0

TC TC

Example 2 31-Bit Normalization:

MAR *,AR1 ;Use AR1 to store the exponent.

LAR AR1,#0h ;Clear out exponent counter.

LOOP NORM *+ ;One bit is normalized.

BCND LOOP,NTC ;If TC = 0, magnitude not found yet.

Cycles

 Normalize Contents of Accumulator NORMPRELIMINARY

8-127 Assembly Language InstructionsPRELIMINARY

Example 3 15-Bit Normalization:

MAR *,AR1 ;Use AR1 to store the exponent.

LAR AR1,#0Fh ;Initialize exponent counter.

RPT #14 ;15-bit normalization specified (yielding

;a 4-bit exponent and 16-bit mantissa).

NORM *– ;NORM automatically stops shifting when first

;significant magnitude bit is found,

;performing NOPs for the remainder of the

;repeat loops.

The method used in Example 2 normalizes a 32-bit number and yields a 5-bit

exponent magnitude. The method used in Example 3 normalizes a 16-bit num-

ber and yields a 4-bit magnitude. If the number requires only a small amount

of normalization, the Example 2 method may be preferable to the Example 3

method because the loop in Example 2 runs only until normalization is com-

plete. Example 3 always executes all 15 cycles of the repeat loop. Specifically,

Example 2 is more efficient if the number requires three or fewer shifts. If the

number requires six or more shifts, Example 3 is more efficient.

OR OR With Accumulator PRELIMINARY

8-128 PRELIMINARY

Syntax OR dma Direct addressing

OR ind [, ARn] Indirect addressing

OR #lk [, shift] Long immediate addressing

OR #lk, 16 Long immediate with left

shift of 16

Operands dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

OR dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 1 0 dma

OR ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

OR #lk [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 0 0 shift

lk

OR #lk [, 16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0

lk

Execution Increment PC, then ...

Event(s) Addressing mode

(ACC(15:0)) OR (data-memory address) → ACC(15:0) Direct or indirect

(ACC(31:16)) → ACC(31:16)

(ACC) OR lk � 2shift → ACC Long immediate

(ACC) OR lk � 216 → ACC Long immediate

with left shift of 16

Opcode

 OR With Accumulator ORPRELIMINARY

8-129 Assembly Language InstructionsPRELIMINARY

Status Bits None

This instruction is not affected by SXM.

Description An OR operation is performed on the contents of the accumulator and the con-

tents of the addressed data-memory location or a long-immediate value. The

long-immediate value may be shifted before the OR operation. The result

remains in the accumulator. All bit positions unoccupied by the data operand

are zero filled, regardless of the value of the SXM status bit. Thus, the high

word of the accumulator is unaffected by this instruction if direct or indirect

addressing is used, or if immediate addressing is used with a shift of 0. Zeros

are shifted into the least significant bits of the operand if immediate addressing

is used with a nonzero shift count.

Words Words Addressing mode

1 Direct or indirect

2 Long immediate

Cycles for a Single OR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OR Instruction (Using Direct and

Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single OR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

OR OR With Accumulator PRELIMINARY

8-130 PRELIMINARY

Example 1 OR DAT8 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
408h 0F000h 408h 0F000h

ACC X 100002h ACC X 10F002h

C C

Example 2 OR *,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 300h AR1 300h

Data Memory Data Memory
300h 1111h 300h 1111h

ACC X 222h ACC X 1333h

C C

Example 3 OR #08111h,8

Before Instruction After Instruction

ACC X 0FF0000h ACC X 0FF1100h

C C

 Output Data to Port OUTPRELIMINARY

8-131 Assembly Language InstructionsPRELIMINARY

Syntax OUT dma, PA Direct addressing

OUT ind, PA [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

PA: 16-bit I/O address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

OUT dma, PA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 dma

PA

OUT ind, PA [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1 ARU N NAR

PA

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

PA → address bus A15–A0

(data-memory address) → data bus D15–D0

(data-memory address) → PA

Status Bits None

Description The OUT instruction writes a 16-bit value from a data-memory location to the

specified I/O location. The IS line goes low to indicate an I/O access. The

STRB, R/W, and READY timings are the same as for an external data-memory

write.

RPT can be used with the OUT instruction to write consecutive words from

data memory to I/O space.

Words 2

Opcode

OUT Output Data to Port PRELIMINARY

8-132 PRELIMINARY

Cycles

Cycles for a Single OUT Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM 3+iodst 3+iodst 3+iodst 5+iodst+2pcode

Source: SARAM 3+iodst 3+iodst 3+iodst
4+iodst

†
5+iodst+2pcode

Source: External 3+dsrc+iodst 3+dsrc+iodst 3+dsrc+iodst 6+dsrc+iodst+2pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OUT Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2pcode

Destination: SARAM 3n+niodst 3n+niodst 3n+niodst
3n+1+niodst

†
3n+3+niodst+2pcode

Destination: External 5n–2+ndsrc+

niodst

5n–2+ndsrc+niodst 5n–2+ndsrc+niodst 5n+1+ndsrc+niodst+

2pcode

† If the operand and the code are in the same SARAM block

Example 1 OUT DAT0,100h ;(DP = 4) Write data word stored in

;data memory location 200h to

;peripheral at I/O port address

;100h.

Example 2 OUT *,100h ;Write data word referenced by

;current auxiliary register to

;peripheral at I/O port address

;100h.

 Load Accumulator With Product Register PACPRELIMINARY

8-133 Assembly Language InstructionsPRELIMINARY

Syntax PAC

Operands None

Opcode 0123456789101112131415

1100000001111101

Execution Increment PC, then ...

shifted (PREG) → ACC

Status Bits Affected by

PM

Description The content of PREG, shifted as specified by the PM status bits, is loaded into

the accumulator.

Words 1

Cycles for a Single PAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a PAC Instruction

ROM DARAM SARAM External

n n n n+p

Example PAC ;(PM = 0: no shift of product)

Before Instruction After Instruction

PREG 144h PREG 144h

ACC X 23h ACC X 144h

C C

Cycles

POP Pop Top of Stack to Low Accumulator PRELIMINARY

8-134 PRELIMINARY

Syntax POP

Operands None

Opcode 0123456789101112131415

0100110001111101

Execution Increment PC, then ...

(TOS) → ACC(15:0)

0 → ACC(31:16)

Pop stack one level

Status Bits None

Description The content of the top of the stack (TOS) is copied to the low accumulator, and

then the stack values move up one level. The upper half of the accumulator

is set to all 0s.

The hardware stack functions as a last-in, first-out stack with eight locations.

Any time a pop occurs, every stack value is copied to the next higher stack

location, and the top value is removed from the stack. After a pop, the bottom

two stack words have the same value. Because each stack value is copied,

if more than seven stack pops (using the POP, POPD, RETC, or RET instruc-

tions) occur before any pushes occur, all levels of the stack contain the same

value. No provision exists to check stack underflow.

Words 1

Cycles for a Single POP Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a POP Instruction

ROM DARAM SARAM External

n n n n+p

Cycles

 Pop Top of Stack to Low Accumulator POPPRELIMINARY

8-135 Assembly Language InstructionsPRELIMINARY

Example POP

Before Instruction After Instruction

ACC X 82h ACC X 45h

C C

Stack 45h Stack 16h

16h 7h

 7h 33h

33h 42h

42h 56h

56h 37h

37h 61h

61h 61h

POPD Pop Top of Stack to Data Memory PRELIMINARY

8-136 PRELIMINARY

Syntax POPD dma Direct addressing

POPD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

POPD dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0 0 dma

POPD ind [,ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(TOS) → data-memory address

Pop stack one level

Status Bits None

Description The value from the top of the stack is transferred into the data-memory location

specified by the instruction. In the lower seven locations of the stack, the

values are copied up one level. The stack operation is explained in the descrip-

tion for the POP instruction. No provision exists to check stack underflow.

Words 1

Cycles for a Single POPD Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Pop Top of Stack to Data Memory POPDPRELIMINARY

8-137 Assembly Language InstructionsPRELIMINARY

Cycles for a Repeat (RPT) Execution of a POPD Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 POPD DAT10 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Ah 55h 40Ah 92h

Stack 92h Stack 72h

72h 8h

 8h 44h

44h 81h

81h 75h

75h 32h

32h 0AAh

0AAh 0AAh

Example 2 POPD *+,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 301h

Data Memory Data Memory
300h 55h 300h 92h

Stack 92h Stack 72h

72h 8h

 8h 44h

44h 81h

81h 75h

75h 32h

32h 0AAh

0AAh 0AAh

PSHD Push Data-Memory Value Onto Stack PRELIMINARY

8-138 PRELIMINARY

Syntax PSHD dma Direct addressing

PSHD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

PSHD dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 0 dma

PSHD ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → TOS

Push all stack locations down one level

Status Bits None

Description The value from the data-memory location specified by the instruction is trans-

ferred to the top of the stack. In the lower seven locations of the stack, the

values are also copied one level down, as explained in the description for the

PUSH instruction. The value in the lowest stack location is lost.

Words 1

Cycles for a Single PSHD Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Push Data-Memory Value Onto Stack PSHDPRELIMINARY

8-139 Assembly Language InstructionsPRELIMINARY

Cycles for a Repeat (RPT) Execution of a PSHD Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+nd+p

† If the operand and the code are in the same SARAM block

Example 1 PSHD 127 ;(DP = 3: addresses 0180–01FFh)

Before Instruction After Instruction

Data Memory Data Memory
1FFh 65h 1FFh 65h

Stack 2h Stack 65h

33h 2h

78h 33h

99h 78h

42h 99h

50h 42h

 0h 50h

 0h 0h

Example 2 PSHD *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 1FFh AR0 1FFh

Data Memory Data Memory
1FFh 12h 1FFh 12h

Stack 2h Stack 12h

33h 2h

78h 33h

99h 78h

42h 99h

50h 42h

 0h 50h

 0h 0h

PUSH Push Low Accumulator Onto Stack PRELIMINARY

8-140 PRELIMINARY

Syntax PUSH

Operands None

Opcode 0123456789101112131415

0011110001111101

Execution Increment PC, then...

Push all stack locations down one level

ACC(15:0) → TOS

Status Bits None

Description The stack values move down one level. Then, the content of the lower half of

the accumulator is copied onto the top of the hardware stack.

The hardware stack operates as a last-in, first-out stack with eight locations.

If more than eight pushes (due to a CALA, CALL, CC, PSHD, PUSH, TRAP,

INTR, or NMI instruction) occur before a pop, the first data values written are

lost with each succeeding push.

Words 1

Cycles for a Single PUSH Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a PUSH Instruction

ROM DARAM SARAM External

n n n n+p

Example PUSH

Before Instruction After Instruction

ACC X 7h ACC X 7h

C C

Stack 2h Stack 7h

 5h 2h

 3h 5h

 0h 3h

12h 0h

86h 12h

54h 86h

3Fh 54h

Cycles

 Return From Subroutine RETPRELIMINARY

8-141 Assembly Language InstructionsPRELIMINARY

Syntax RET

Operands None

Opcode 0123456789101112131415

0000000011110111

Execution (TOS) → PC

Pop stack one level.

Status Bits None

Description The contents of the top stack register are copied into the program counter. The

remaining stack values are then copied up one level. RET concludes subrou-

tines and interrupt service routines to return program control to the calling or

interrupted program sequence.

Words 1

Cycles for a Single RET Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two

instruction words are discarded.

Example RET

Before Instruction After Instruction

PC 96h PC 37h

Stack 37h Stack 45h

45h 75h

75h 21h

21h 3Fh

3Fh 45h

45h 6Eh

6Eh 6Eh

6Eh 6Eh

Cycles

RETC Return Conditionally PRELIMINARY

8-142 PRELIMINARY

Syntax RETC cond�1 [, cond�2] [,...]

Operands cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C =1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

Opcode 0123456789101112131415

ZLVCZLVCTP110111

Note: The TP and ZLVC fields are defined on pages 8-3 and 8-4.

Execution If cond�1 AND cond�2 AND ...

(TOS) → PC

Pop stack one level

Else, continue

Status Bits None

Description If the specified condition or conditions are met, a standard return is executed

(see the description for the RET instruction on page 8-141). Note that not all

combinations of conditions are meaningful. For example, testing for LT and GT

is contradictory. In addition, testing BIO is mutually exclusive to testing TC.

Words 1

Cycles for a Single RETC Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The processor performs speculative fetching by reading two additional instruction

words. If the PC discontinuity is taken, these two instruction words are discarded.

Example RETC GEQ,NOV ;A return is executed if the

;accumulator content is positive

;or zero and if the OV (overflow)

;-bit is zero.

Cycles

 Rotate Accumulator Left ROLPRELIMINARY

8-143 Assembly Language InstructionsPRELIMINARY

Syntax ROL

Operands None

Opcode 0123456789101112131415

0011000001111101

Execution Increment PC, then ...

C → ACC(0)

(ACC(31)) → C

(ACC(30:0)) → ACC(31:1)

Status Bits Affects

C

This instruction is not affected by SXM.

Description The ROL instruction rotates the accumulator left one bit. The value of the carry

bit is shifted into the LSB, then the MSB is shifted into the carry bit.

Words 1

Cycles for a Single ROL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ROL Instruction

ROM DARAM SARAM External

n n n n+p

Example ROL

Before Instruction After Instruction

ACC 0 B0001234h ACC 1 60002468h

C C

Cycles

ROR Rotate Accumulator Right PRELIMINARY

8-144 PRELIMINARY

Syntax ROR

Operands None

Opcode 0123456789101112131415

1011000001111101

Execution Increment PC, then ...

C → ACC(31)

(ACC(0)) → C

(ACC(31:1)) → ACC(30:0)

Status Bits Affects

C

This instruction is not affected by SXM.

Description The ROR instruction rotates the accumulator right one bit. The value of the

carry bit is shifted into the MSB of the accumulator, then the LSB of the accu-

mulator is shifted into the carry bit.

Words 1

Cycles for a Single ROR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ROR Instruction

ROM DARAM SARAM External

n n n n+p

Example ROR

Before Instruction After Instruction

ACC 0 B0001235h ACC 1 5800091Ah

C C

Cycles

 Repeat Next Instruction RPTPRELIMINARY

8-145 Assembly Language InstructionsPRELIMINARY

Syntax RPT dma Direct addressing

RPT ind [, ARn] Indirect addressing

RPT #k Short immediate

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

k: 8-bit short immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

RPT dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 dma

RPT ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

RPT #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 1 k

Execution Increment PC, then ...

Event Addressing mode

(data-memory address) → RPTC Direct or indirect

k → RPTC Short immediate

Status Bits None

Description The repeat counter (RPTC) is loaded with the content of the addressed data-

memory location if direct or indirect addressing is used; it is loaded with an 8-bit

immediate value if short immediate addressing is used. The instruction follow-

ing the RPT is repeated n times, where n is the initial value of the RPTC plus

1. Since the RPTC cannot be saved during a context switch, repeat loops are

regarded as multicycle instructions and are not interruptible. The RPTC is

cleared to 0 on a device reset.

RPT is especially useful for block moves, multiply/accumulates, and normal-

ization. The repeat instruction itself is not repeatable.

Opcode

RPT Repeat Next Instruction PRELIMINARY

8-146 PRELIMINARY

Words 1

Cycles for a Single RPT Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Single RPT Instruction (Using Short Immediate

Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 RPT DAT127 ;(DP = 31: addresses 0F80h–0FFFh)

;Repeat next instruction 13 times.

Before Instruction After Instruction

Data Memory Data Memory
0FFFh 0Ch 0FFFh 0Ch

RPTC 0h RPTC 0Ch

Example 2 RPT *,AR1 ;Repeat next instruction 4096 times.

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 300h

Data Memory Data Memory
300h 0FFFh 300h 0FFFh

RPTC 0h RPTC 0FFFh

Example 3 RPT #1 ;Repeat next instruction two times.

Before Instruction After Instruction

RPTC 0h RPTC 1h

Cycles

 Store High Accumulator With Shift SACHPRELIMINARY

8-147 Assembly Language InstructionsPRELIMINARY

Syntax SACH dma [, shift2] Direct addressing

SACH ind [, shift2 [, ARn]�] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

shift2: Left shift value from 0 to 7 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SACH dma [, shift2]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 shift2 0 dma

SACH ind [�, shift��[�, ARn�]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 shift2 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

16 MSBs of ((ACC) � 2shift2) → data-memory address

Status Bits This instruction is not affected by SXM

Description The SACH instruction copies the entire accumulator into the output shifter,

where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the

upper 16 bits of the shifted value into data memory. During the shift, the low-

order bits are filled with 0s, and the high-order bits are lost. The accumulator

itself remains unaffected.

Words 1

Opcode

SACH Store High Accumulator With Shift PRELIMINARY

8-148 PRELIMINARY

Cycles for a Single SACH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SACH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SACH DAT10,1 ;(DP = 4: addresses 0200h–027Fh,

;left shift of 1)

Before Instruction After Instruction

ACC X 4208001h ACC X 4208001h

C C

Data Memory Data Memory
20Ah 0h 20Ah 0841h

Example 2 SACH *+,0,AR2 ;(No shift)

Before Instruction After Instruction

ARP 1 ARP 2

AR1 300h AR1 301h

ACC X 4208001h ACC X 4208001h

C C

Data Memory Data Memory
300h 0h 300h 0420h

Cycles

 Store Low Accumulator With Shift SACLPRELIMINARY

8-149 Assembly Language InstructionsPRELIMINARY

Syntax SACL dma [, shift2] Direct addressing

SACL ind [, shift2 [, ARn]�] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

shift2: Left shift value from 0 to 7 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SACL dma [, shift2]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 shift2 0 dma

SACL ind [�, shift�2 [�, ARn�]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 shift2 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

16 LSBs of ((ACC) � 2shift2) → data-memory address

Status Bits This instruction is not affected by SXM.

Description The SACL instruction copies the entire accumulator into the output shifter,

where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the

lower 16 bits of the shifted value into data memory. During the shift, the

low-order bits are filled with 0s, and the high-order bits are lost. The

accumulator itself remains unaffected.

Words 1

Opcode

SACL Store Low Accumulator With Shift PRELIMINARY

8-150 PRELIMINARY

Cycles for a Single SACL Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SACL Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block.

Example 1 SACL DAT11,1 ;(DP = 4: addresses 0200h–027Fh,

;left shift of 1)

Before Instruction After Instruction

ACC X 7C63 8421 ACC X 7C63 8421h

C C

Data Memory Data Memory
20Bh 05h 20Bh 0842h

Example 2 SACL *,0,AR7 ;(No shift)

Before Instruction After Instruction

ARP 6 ARP 7

AR6 300h AR6 300h

ACC X 00FF 8421h ACC X 00FF 8421h

C C

Data Memory Data Memory
300h 05h 300h 8421h

Cycles

 Store Auxiliary Register SARPRELIMINARY

8-151 Assembly Language InstructionsPRELIMINARY

Syntax SAR ARx, dma Direct addressing

SAR ARx, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

x: Value from 0 to 7 designating the auxiliary register value to be

stored

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SAR ARx, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 x 0 dma

SAR ARx, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 x 0 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ARx) → data-memory address

Status Bits None

Description The content of the designated auxiliary register (ARx) is stored in the specified

data-memory location. When the content of the designated auxiliary register

is also modified by the instruction (in indirect addressing mode), SAR copies

the auxiliary register value to data memory before it increments or decrements

the contents of the auxiliary register.

Words 1

Opcode

SAR Store Auxiliary Register PRELIMINARY

8-152 PRELIMINARY

Cycles for a Single SAR Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SAR Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SAR AR0,DAT30 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

AR0 37h AR0 37h

Data Memory Data Memory
31Eh 18h 31Eh 37h

Example 2 SAR AR0,*+

Before Instruction After Instruction

ARP 0 ARP 0

AR0 401h AR0 402h

Data Memory Data Memory
401h 0h 401h 401h

Cycles

 Subtract Short-Immediate Value From Auxiliary Register SBRKPRELIMINARY

8-153 Assembly Language InstructionsPRELIMINARY

Syntax SBRK #k Short immediate addressing

Operands k: 8-bit positive short immediate value

SBRK #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 k

Execution Increment PC, then ...

(current AR) – k → current AR

Note that k is an 8-bit positive constant.

Status Bits None

Description The 8-bit immediate value is subtracted, right justified, from the content of the

current auxiliary register (the one pointed to by the ARP) and the result

replaces the contents of the auxiliary register. The subtraction takes place in

the auxiliary register arithmetic unit (ARAU), with the immediate value treated

as an 8-bit positive integer. All arithmetic operations on the auxiliary registers

are unsigned.

Words 1

Cycles for a Single SBRK Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example SBRK #0FFh

Before Instruction After Instruction

ARP 7 ARP 7

AR7 0h AR7 FF01h

Opcode

Cycles

SETC Set Control Bit PRELIMINARY

8-154 PRELIMINARY

Syntax SETC control bit

Operands control bit: Select one of the following control bits:

C Carry bit of status register ST1

CNF RAM configuration control bit of status register ST1

INTM Interrupt mode bit of status register ST0

OVM Overflow mode bit of status register ST0

SXM Sign-extension mode bit of status register ST1

TC Test/control flag bit of status register ST1

XF XF pin status bit of status register ST1

SETC C

0123456789101112131415

1111001001111101

SETC CNF

0123456789101112131415

1010001001111101

SETC INTM

0123456789101112131415

1000001001111101

SETC OVM

0123456789101112131415

1100001001111101

SETC SXM

0123456789101112131415

1110001001111101

SETC TC

0123456789101112131415

1101001001111101

SETC XF

0123456789101112131415

1011001001111101

Execution Increment PC, then ...

1 → control bit

Status Bits None

Description The specified control bit is set to 1. Note that LST may also be used to load

ST0 and ST1. See Section 3.5, Status Registers ST0 and ST1, on page 3-15

for more information on each control bit.

Opcode

 Set Control Bit SETCPRELIMINARY

8-155 Assembly Language InstructionsPRELIMINARY

Words 1

Cycles for a Single SETC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SETC Instruction

ROM DARAM SARAM External

n n n n+p

Example SETC TC ;TC is bit 11 of ST1

Before Instruction After Instruction

ST1 x1xxh ST1 x9xxh

Cycles

SFL Shift Accumulator Left PRELIMINARY

8-156 PRELIMINARY

Syntax SFL

Operands None

Opcode 0123456789101112131415

1001000001111101

Execution Increment PC, then ...

(ACC(31)) → C

(ACC(30:0)) → ACC(31:1)

0 → ACC(0)

Status Bits Affects

C

This instruction is not affected by SXM.

Description The SFL instruction shifts the entire accumulator left one bit. The LSB is filled

with a 0, and the MSB is shifted into the carry bit (C). SFL, unlike SFR, is un-

affected by SXM.

Words 1

Cycles for a Single SFL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SFL Instruction

ROM DARAM SARAM External

n n n n+p

Example SFL

Before Instruction After Instruction

ACC X B0001234h ACC 1 60002468h

C C

Cycles

 Shift Accumulator Right SFRPRELIMINARY

8-157 Assembly Language InstructionsPRELIMINARY

Syntax SFR

Operands None

Opcode 0123456789101112131415

0101000001111101

Execution Increment PC, then ...

If SXM = 0

Then 0 → ACC(31).

If SXM = 1

Then (ACC(31)) → ACC(31)

(ACC(31:1)) → ACC(30:0)

(ACC(0)) → C

Status Bits Affected by Affects

SXM C

Description The SFR instruction shifts the accumulator right one bit.

� If SXM = 1, the instruction produces an arithmetic right shift. The sign bit

(MSB) is unchanged and is also copied into bit 30. Bit 0 is shifted into the

carry bit (C).

� If SXM = 0, the instruction produces a logic right shift. All of the accumula-

tor bits are shifted right by one bit. The LSB is shifted into the carry bit, and

the MSB is filled with a 0.

Words 1

Cycles for a Single SFR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SFR Instruction

ROM DARAM SARAM External

n n n n+p

Cycles

SFR Shift Accumulator Right PRELIMINARY

8-158 PRELIMINARY

Example 1 SFR ;(SXM = 0: no sign extension)

Before Instruction After Instruction

ACC X B0001234h ACC 0 5800091Ah

C C

Example 2 SFR ;(SXM = 1: sign extend)

Before Instruction After Instruction

ACC X B0001234h ACC 0 D800091Ah

C C

 Subtract PREG From Accumulator SPACPRELIMINARY

8-159 Assembly Language InstructionsPRELIMINARY

Syntax SPAC

Operands None

Opcode 0123456789101112131415

1010000001111101

Execution Increment PC, then ...

(ACC) – shifted (PREG) → ACC

Status Bits Affected by Affects

PM and OVM C and OV

This instruction is not affected by SXM.

Description The content of PREG, shifted as defined by the PM status bits, is subtracted

from the content of the accumulator. The result is stored in the accumulator.

SPAC is not affected by SXM, and the PREG value is always sign extended.

The function of the SPAC instruction is a subtask of the LTS, MPYS, and SQRS

instructions.

Words 1

Cycles for a Single SPAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SPAC Instruction

ROM DARAM SARAM External

n n n n+p

Example SPAC ;(PM = 0)

Before Instruction After Instruction

PREG 10000000h PREG 10000000h

ACC X 70000000h ACC 1 60000000h

C C

Cycles

SPH Store High PREG PRELIMINARY

8-160 PRELIMINARY

Syntax SPH dma Direct addressing

SPH ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SPH dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 0 dma

SPH ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

16 MSBs of shifted (PREG) → data-memory address

Status Bits Affected by

PM

Description The 16 high-order bits of the PREG, shifted as specified by the PM bits, are

stored in data memory. First, the 32-bit PREG value is copied into the product

shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6

mode is selected, the high-order bits are sign extended and the low-order bits

are lost. If a left shift is selected, the high-order bits are lost and the low-order

bits are zero filled. If PM = 00, no shift occurs. Then the 16 MSBs of the shifted

value are stored in data memory. Neither the PREG value nor the accumulator

value is modified by this instruction.

Words 1

Opcode

 Store High PREG SPHPRELIMINARY

8-161 Assembly Language InstructionsPRELIMINARY

Cycles for a Single SPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SPH DAT3 ;(DP = 4: addresses 0200h–027Fh,

;PM = 0: no shift)

Before Instruction After Instruction

PREG FE079844h PREG FE079844h

Data Memory Data Memory
203h 4567h 203h FE07h

Example 2 SPH *,AR7 ;(PM = 2: left shift of four)

Before Instruction After Instruction

ARP 6 ARP 7

AR6 203h AR6 203h

PREG FE079844h PREG FE079844h

Data Memory Data Memory
203h 4567h 203h E079h

Cycles

SPL Store Low PREG PRELIMINARY

8-162 PRELIMINARY

Syntax SPL dma Direct addressing

SPL ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SPL dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 0 dma

SPL ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

16 LSBs of shifted (PREG) → data-memory address

Status Bits Affected by

PM

Description The 16 low-order bits of the PREG, shifted as specified by the PM bits, are

stored in data memory. First, the 32-bit PREG value is copied into the product

shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6

mode is selected, the high-order bits are sign extended and the low-order bits

are lost. If a left shift is selected, the high-order bits are lost and the low-order

bits are zero filled. If PM = 00, no shift occurs. Then the 16 LSBs of the shifted

value are stored in data memory. Neither the PREG value nor the accumulator

value is modified by this instruction.

Words 1

Opcode

 Store Low PREG SPLPRELIMINARY

8-163 Assembly Language InstructionsPRELIMINARY

Cycles for a Single SPL Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SPL Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SPL DAT5 ;(DP = 4: addresses 0200h–027Fh,

;PM = 2: left shift of four)

Before Instruction After Instruction

PREG 0FE079844h PREG 0FE079844h

Data Memory Data Memory
205h 4567h 205h 08440h

Example 2 SPL *,AR3 ;(PM = 0: no shift)

Before Instruction After Instruction

ARP 2 ARP 3

AR2 205h AR2 205h

PREG 0FE079844h PREG 0FE079844h

Data Memory Data Memory
205h 4567h 205h 09844h

Cycles

SPLK Store Long-Immediate Value to Data Memory PRELIMINARY

8-164 PRELIMINARY

Syntax SPLK #lk, dma Direct addressing

SPLK #lk, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SPLK #lk, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 0 0 dma

lk

SPLK #lk, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 0 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

lk → data-memory address

Status Bits None

Description The SPLK instruction allows a full 16-bit pattern to be written into any data

memory location.

Words 2

Cycles for a Single SPLK Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+2p

SARAM 2 2 2, 3† 2+2p

External 3+d 3+d 3+d 5+d+2p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Store Long-Immediate Value to Data Memory SPLKPRELIMINARY

8-165 Assembly Language InstructionsPRELIMINARY

Example 1 SPLK #7FFFh,DAT3 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
303h FE07h 303h 7FFFh

Example 2 SPLK #1111h,*+,AR4

Before Instruction After Instruction

ARP 0 ARP 4

AR0 300h AR0 301h

Data Memory Data Memory
300h 07h 300h 1111h

SPM Set PREG Output Shift Mode PRELIMINARY

8-166 PRELIMINARY

Syntax SPM constant

Operands constant: Value from 0 to 3 that determines the product shift mode

Opcode
constant00000011111101

0123456789101112131415

Execution Increment PC, then ...

constant → product shift mode (PM) bits

Status Bits Affects

PM

This instruction is not affected by SXM.

Description The two LSBs of the instruction word are copied into the product shift mode

(PM) bits of status register ST1 (bits 1 and 0 of ST1). The PM bits control the

mode of the shifter at the output of the PREG. This shifter can shift the PREG

output either one or four bits to the left or six bits to the right. The possible PM

bit combinations and their meanings are shown in Table 8–8. When an instruc-

tion accesses the PREG value, the value first passes through the shifter,

where it is shifted by the specified amount.

Table 8–8. Product Shift Modes

PM Field Specified Product Shift

00 No shift of PREG output

01 PREG output to be left shifted 1 place

10 PREG output to be left shifted 4 places

11 PREG output to be right shifted 6 places and sign extended

The left shifts allow the product to be justified for fractional arithmetic. The

right-shift-by-six mode allows up to 128 multiply accumulate processes with-

out the possibility of overflow occurring. PM may also be loaded by an LST #1

instruction.

Words 1

Cycles for a Single SPM Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example SPM 3 ;Product register shift mode 3 (PM = 11)

;is selected causing all subsequent

;transfers from the product register (PREG)

;to be shifted to the right six places.

Cycles

 Square Value and Accumulate Previous Product SQRAPRELIMINARY

8-167 Assembly Language InstructionsPRELIMINARY

Syntax SQRA dma Direct addressing

SQRA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SQRA dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 0 0 dma

SQRA ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) + shifted (PREG) → ACC

(data-memory address) → TREG

(TREG) � (data-memory address) → PREG

Status Bits Affected by Affects

OVM and PM OV and C

Description The content of the PREG, shifted as defined by the PM status bits, is added

to the accumulator. Then the addressed data-memory value is loaded into the

TREG, squared, and stored in the PREG.

Words 1

Opcode

SQRA Square Value and Accumulate Previous Product PRELIMINARY

8-168 PRELIMINARY

Cycles for a Single SQRA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SQRA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRA DAT30 ;(DP = 6: addresses 0300h–037Fh,

;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory

31Eh 0Fh 31Eh 0Fh

TREG 3h TREG 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C

Example 2 SQRA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 31Eh AR3 31Eh

Data Memory Data Memory
31Eh 0Fh 31Eh 0Fh

TREG 3h TREG 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C

Cycles

 Square Value and Subtract Previous Product SQRSPRELIMINARY

8-169 Assembly Language InstructionsPRELIMINARY

Syntax SQRS dma Direct addressing

SQRS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SQRS dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 0 dma

SQRS ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) – shifted (PREG) → ACC

(data-memory address) → TREG

(TREG) � (data-memory address) → PREG

Status Bits Affected by Affects

OVM and PM OV and C

Description The content of the PREG, shifted as defined by the PM status bits, is sub-

tracted from the accumulator. Then the addressed data-memory value is

loaded into the TREG, squared, and stored in the PREG.

Words 1

Opcode

SQRS Square Value and Subtract Previous Product PRELIMINARY

8-170 PRELIMINARY

Cycles for a Single SQRS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SQRS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRS DAT9 ;(DP = 6: addresses 0300h–037Fh,

;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
309h 08h 309h 08h

TREG 1124h TREG 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C

Example 2 SQRS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 5

AR3 309h AR3 309h

Data Memory Data Memory
309h 08h 309h 08h

TREG 1124h TREG 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C

Cycles

 Store Status Register SSTPRELIMINARY

8-171 Assembly Language InstructionsPRELIMINARY

Syntax SST #m, dma Direct addressing

SST #m, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

m: Select one of the following:

0 Indicates that ST0 will be stored

1 Indicates that ST1 will be stored

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SST #0, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 0 0 dma

SST #0, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

SST #1, dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 0 dma

SST #1, ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(status register STm) → data-memory address

Status Bits None

Description Status register ST0 or ST1 (whichever is specified) is stored in data memory.

In direct addressing mode, the specified status register is always stored in

page 0, regardless of the value of the data page pointer (DP) in ST0. Although

the processor automatically accesses page 0, the DP is not physically modi-

fied; this allows the DP value to be stored unchanged when ST0 is stored. The

specific storage location within page 0 is given in the instruction.

In indirect addressing mode, the storage address is obtained from the auxiliary

register selected; thus, the specified status register contents can be stored to

an address on any page in data memory.

Opcode

SST Store Status Register PRELIMINARY

8-172 PRELIMINARY

Status registers ST0 and ST1 are defined in Section 3.5, Status Registers ST0

and ST1, on page 3-15.

Words 1

Cycles for a Single SST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SST Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SST #0,96 (Direct addressing: data page 0

;accessed automatically)

Before Instruction After Instruction

ST0 0A408h ST0 0A408h

Data Memory Data Memory
60h 0Ah 60h 0A408h

Example 2 SST #1,*,AR7 (Indirect addressing)

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ST1 2580h ST1 2580h

Data Memory Data Memory
300h 0h 300h 2580h

Cycles

 Subtract From Accumulator SUBPRELIMINARY

8-173 Assembly Language InstructionsPRELIMINARY

Syntax SUB dma [, shift] Direct addressing

SUB dma,16 Direct with left shift of 16

SUB ind [,shift [, ARn]�] Indirect addressing

SUB ind,16[, ARn] Indirect with left shift of 16

SUB #k Short immediate

SUB #lk [,shift] Long immediate

Operands dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

k: 8-bit short immediate value

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUB dma [,shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 shift 0 dma

SUB dma, 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 1 0 dma

SUB ind [�, shift �[�, ARn�]�]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

SUB ind,16 [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

SUB #k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 k

SUB #lk [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 1 0 shift

lk

Opcode

SUB Subtract From Accumulator PRELIMINARY

8-174 PRELIMINARY

Execution Increment PC, then ...

Event Addressing mode

(ACC) – ((data-memory address) � 2shift) → ACC Direct or indirect

(ACC) – (�(data-memory address) � 216) → ACC Direct or indirect

(shift of 16)

(ACC) – k → ACC Short immediate

(ACC) – lk � 2shift → ACC Long immediate

Status Bits Affected by Affects Addressing mode

OVM and SXM OV and C Direct or indirect

OVM OV and C Short immediate

OVM and SXM OV and C Long immediate

Description In direct, indirect, and long immediate addressing, the content of the

addressed data-memory location or a 16-bit constant are left shifted and sub-

tracted from the accumulator. During shifting, low-order bits are zero filled.

High-order bits are sign extended if SXM = 1 and zero filled if SXM = 0. The

result is then stored in the accumulator.

If short immediate addressing is used, an 8-bit positive constant is subtracted

from the accumulator. In this case, no shift value may be specified, the subtrac-

tion is unaffected by SXM, and the instruction is not repeatable.

Normally, the carry bit is cleared (C = 0) if the result of the subtraction gener-

ates a borrow and is set (C = 1) if it does not generate a borrow. However, if

a 16-bit shift is specified with the subtraction, the instruction clears the carry

bit if a borrow is generated but does not affect the carry bit otherwise.

Words Words Addressing mode

1 Direct, indirect

or short immediate

2 Long immediate

 Subtract From Accumulator SUBPRELIMINARY

8-175 Assembly Language InstructionsPRELIMINARY

Cycles for a Single SUB Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUB Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block.

Cycles for a Single SUB Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Single SUB Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

SUB Subtract From Accumulator PRELIMINARY

8-176 PRELIMINARY

Example 1 SUB DAT80 ;(DP = 8: addresses 0400h–047Fh,

;SXM=0: sign-extension suppressed)

Before Instruction After Instruction

Data Memory Data Memory
450h 11h 450h 11h

ACC X 24h ACC 1 13h

C C

Example 2 SUB *–,1,AR0 ;(Left shift by 1, SXM = 0)

Before Instruction After Instruction

ARP 7 ARP 0

AR7 301h AR7 300h

Data Memory Data Memory
301h 04h 301h 04h

ACC X 09h ACC 1 01h

C C

Example 3 SUB #8h ;(SXM = 1: sign-extension mode)

Before Instruction After Instruction

ACC X 07h ACC 0 FFFFFFFFh

C C

Example 4 SUB #0FFFh,4 ;(Left shift by four, SXM = 0)

Before Instruction After Instruction

ACC X 0FFFFh ACC 1 0Fh

C C

 Subtract From Accumulator With Borrow SUBBPRELIMINARY

8-177 Assembly Language InstructionsPRELIMINARY

Syntax SUBB dma Direct addressing

SUBB ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBB dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 0 dma

SUBB ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) – (data-memory address) – (logical inversion of C�) → ACC

Status Bits Affected by Affects

OVM OV and C

This instruction is not affected by SXM.

Description The content of the addressed data-memory location and the logical inversion

of the carry bit is subtracted from the accumulator with sign extension sup-

pressed. The carry bit is then affected in the normal manner: the carry bit is

cleared (C = 0) if the result of the subtraction generates a borrow and is set

(C = 1) if it does not generate a borrow.

The SUBB instruction can be used in performing multiple-precision arithmetic.

Words 1

Opcode

SUBB Subtract From Accumulator With Borrow PRELIMINARY

8-178 PRELIMINARY

Cycles for a Single SUBB Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SUBB Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBB DAT5 ;(DP = 8: addresses 0400h–047Fh)

Before Instruction After Instruction

Data Memory Data Memory
405h 06h 405h 06h

ACC 0 06h ACC 0 0FFFFFFFFh

C C

Example 2 SUBB *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 301h AR6 301h

Data Memory Data Memory
301h 02h 301h 02h

ACC 1 04h ACC 1 02h

C C

In the first example, C is originally zeroed, presumably from the result of a

previous subtract instruction that performed a borrow. The effective operation

performed was 6 – 6 – (1) = –1, generating another borrow (resetting carry)

in the process. In the second example, no borrow was previously generated

(C = 1), and the result from the subtract instruction does not generate a

borrow.

Cycles

 Conditional Subtract SUBCPRELIMINARY

8-179 Assembly Language InstructionsPRELIMINARY

Syntax SUBC dma Direct addressing

SUBC ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBC dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 dma

SUBC ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution For (ACC) ≥ 0 and (data-memory address) ≥ 0:

Increment PC, then ...

(ACC) – [(data-memory address) × 215] → ALU output

If ALU output ≥ 0

Then (ALU output) × 2 + 1 → ACC

Else (ACC) × 2 → ACC

Status Bits Affects

OV and C

Description The SUBC instruction performs conditional subtraction, which can be used for

division as follows: Place a positive 16-bit dividend in the low accumulator and

clear the high accumulator. Place a 16-bit positive divisor in data memory.

Execute SUBC 16 times. After completion of the last SUBC, the quotient of the

division is in the lower-order 16 bits of the accumulator, and the remainder is

in the higher-order 16 bits of the accumulator. For negative accumulator and/or

data-memory values, SUBC cannot be used for division.

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may

be placed in the accumulator and left shifted by the number of leading non-

significant 0s. The number of executions of SUBC is reduced from 16 by that

number. One leading 0 is always significant.

SUBC operations performed as previously stated are not affected by the sign-

extension mode bit (SXM).

Opcode

SUBC Conditional Subtract PRELIMINARY

8-180 PRELIMINARY

SUBC affects OV but is not affected by OVM; therefore, the accumulator does

not saturate upon positive or negative overflows when executing this instruc-

tion. The carry bit is affected in the normal manner during this instruction: the

carry bit is cleared (C = 0) if the result of the subtraction generates a borrow

and is set (C = 1) if it does not generate a borrow.

Words 1

Cycles for a Single SUBC Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SUBC Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBC DAT2 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
302h 01h 302h 01h

ACC X 04h ACC 0 08h

C C

Example 2 RPT #15

SUBC *

Before Instruction After Instruction

ARP 3 ARP 3

AR3 1000h AR3 1000h

Data Memory Data Memory
1000h 07h 1000h 07h

ACC X 41h ACC 1 20009h

C C

Cycles

 Subtract From Accumulator With Sign Extension Suppressed SUBSPRELIMINARY

8-181 Assembly Language InstructionsPRELIMINARY

Syntax SUBS dma Direct addressing

SUBS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBS dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 0 dma

SUBS ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) – (data-memory address) → ACC

Status Bits Affected by Affects

OVM OV and C

This instruction is not affected by SXM.

Description The content of the specified data-memory location is subtracted from the accu-

mulator with sign extension suppressed. The data is treated as a 16-bit

unsigned number, regardless of SXM. The accumulator behaves as a signed

number. SUBS produces the same results as a SUB instruction with SXM = 0

and a shift count of 0.

The carry bit is cleared (C = 0) if the result of the subtraction generates a

borrow and is set (C = 1) if it does not generate a borrow.

Words 1

Opcode

SUBS Subtract From Accumulator With Sign Extension Suppressed PRELIMINARY

8-182 PRELIMINARY

Cycles for a Single SUBS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SUBS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBS DAT2 ;(DP = 16, SXM = 1)

Before Instruction After Instruction

Data Memory Data Memory
802h 0F003h 802h 0F003h

ACC X 0F105h ACC 1 102h

C C

Example 2 SUBS * ;(SXM = 1)

Before Instruction After Instruction

ARP 0 ARP 0

AR0 310h AR0 310h

Data Memory Data Memory
310h 0F003h 310h 0F003h

ACC X 0FFFF105h ACC 1 0FFF0102h

C C

Cycles

 Subtract From Accumulator With Shift Specified by TREG SUBTPRELIMINARY

8-183 Assembly Language InstructionsPRELIMINARY

Syntax SUBT dma Direct addressing

SUBT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBT dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 1 0 dma

SUBT ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(ACC) – [(data-memory address) � 2(TREG(3:0))] → (ACC)

If SXM = 1

Then (data-memory address) is sign-extended.

If SXM = 0

Then (data-memory address) is not sign-extended.

Status Bits Affected by Affects

OVM and SXM OV and C

Description The data-memory value is left shifted and subtracted from the accumulator.

The left shift is defined by the four LSBs of TREG, resulting in shift options from

0 to 15 bits. The result replaces the accumulator contents. Sign extension on

the data-memory value is controlled by the SXM status bit.

The carry bit is cleared (C = 0) if the result of the subtraction generates a

borrow and is set (C = 1) if it does not generate a borrow.

Words 1

Opcode

SUBT Subtract From Accumulator With Shift Specified by TREG PRELIMINARY

8-184 PRELIMINARY

Cycles for a Single SUBT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUBT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block.

Example 1 SUBT DAT127 ;(DP = 5: addresses 0280h–02FFh)

Before Instruction After Instruction

Data Memory Data Memory
2FFh 06h 2FFh 06h

TREG 08h TREG 08h

ACC X 0FDA5h ACC 1 0F7A5h

C C

Example 2 SUBT *

Before Instruction After Instruction

ARP 1 ARP 1

AR1 800h AR1 800h

Data Memory Data Memory
800h 01h 800h 01h

TREG 08h TREG 08h

ACC X 0h ACC 0 FFFFFF00h

C C

Cycles

 Table Read TBLRPRELIMINARY

8-185 Assembly Language InstructionsPRELIMINARY

Syntax TBLR dma Direct addressing

TBLR ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

TBLR dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 0 0 dma

TBLR ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(PC) → MSTACK

(ACC(15:0)) → PC

(pma) → data-memory address

For indirect, modify (current AR) and (ARP) as specified,

(PC) + 1 → PC

While (repeat counter) ≠ 0

(pma) → data-memory address

For indirect, modify (current AR) and (ARP) as specified,

(PC) + 1 → PC

(repeat counter) –1 → repeat counter.

(MSTACK) → PC

Status Bits None

Description The TBLR instruction transfers a word from a location in program memory to

a data-memory location specified by the instruction. The program-memory

address is defined by the low-order 16 bits of the accumulator. For this opera-

tion, a read from program memory is performed, followed by a write to data

memory. When repeated with the repeat (RPT) instruction, TBLR effectively

becomes a single-cycle instruction, and the program counter that was loaded

with (ACC(15:0)) is incremented once each cycle.

Words 1

Opcode

TBLR Table Read PRELIMINARY

8-186 PRELIMINARY

Cycles

Cycles for a Single TBLR Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: DARAM

3 3 3 3+pcode

Source: SARAM

Destination: DARAM

3 3 3 3+pcode

Source: External

Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+pcode

Source: DARAM/ROM

Destination: SARAM

3 3 3

4†
3+pcode

Source: SARAM

Destination: SARAM

3 3 3

4†
3+pcode

Source: External

Destination: SARAM

3+psrc 3+psrc 3+psrc
4+psrc

†
3+psrc+pcode

Source: DARAM/ROM

Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: SARAM

Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: External

Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a TBLR Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM

Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External

Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

 Table Read TBLRPRELIMINARY

8-187 Assembly Language InstructionsPRELIMINARY

Cycles for a Repeat (RPT) Execution of a TBLR Instruction (Continued)

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: SARAM

n+2 n+2 n+2

n+4†
n+2+pcode

Source: SARAM

Destination: SARAM

n+2

2n‡
n+2

2n‡
n+2

2n‡

2n+2§

n+2+pcode
2n‡

Source: External

Destination: SARAM

n+2+npsrc n+2+npsrc n+2+npsrc
n+4+npsrc

†
n+2+npsrc+pcode

Source: DARAM/ROM

Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: SARAM

Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: External

Destination: External

4n+npsrc+nddst 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst+

pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLR DAT6 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

ACC 23h ACC 23h

Program Memory Program Memory
23h 306h 23h 306h

Data Memory Data Memory
206h 75h 206h 306h

Example 2 TBLR *,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ACC 24h ACC 24h

Program Memory Program Memory
24h 307h 24h 307h

Data Memory Data Memory
300h 75h 300h 307h

TBLW Table Write PRELIMINARY

8-188 PRELIMINARY

Syntax TBLW dma Direct addressing

TBLW ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

TBLW dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 0 dma

TBLW ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(PC+1) → MSTACK

(ACC(15:0)) → PC+1

(data-memory address) → pma,

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

While (repeat counter) ≠ 0

(data-memory address) → pma,

For indirect, modify (current AR) and (ARP) as specified

(PC) + 1 → PC

(repeat counter) –1 → repeat counter.

(MSTACK) → PC+1

Status Bits None

Description The TBLW instruction transfers a word in data memory to program memory.

The data-memory address is specified by the instruction, and the program-

memory address is specified by the lower 16 bits of the accumulator. A read

from data memory is followed by a write to program memory to complete the

instruction. When repeated with the repeat (RPT) instruction, TBLW effectively

becomes a single-cycle instruction, and the program counter that was loaded

with (ACC(15:0)) is incremented once each cycle.

Words 1

Opcode

 Table Write TBLWPRELIMINARY

8-189 Assembly Language InstructionsPRELIMINARY

Cycles

Cycles for a Single TBLW Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: DARAM

3 3 3 3+pcode

Source: SARAM

Destination: DARAM

3 3 3 3+pcode

Source: External

Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+pcode

Source: DARAM/ROM

Destination: SARAM

3 3 3

4†
3+pcode

Source: SARAM

Destination: SARAM

3 3 3

4†
3+pcode

Source: External

Destination: SARAM

3+dsrc 3+dsrc 3+dsrc
4+dsrc

†
3+dsrc+pcode

Source: DARAM/ROM

Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: SARAM

Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: External

Destination: External

4+dsrc+pdst 4+dsrc+pdst 4+dsrc+pdst 5+dsrc+pdst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a TBLW Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM

Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External

Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

TBLW Table Write PRELIMINARY

8-190 PRELIMINARY

Cycles for a Repeat (RPT) Execution of a TBLW Instruction (Continued)

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM

Destination: SARAM

n+2 n+2 n+2

n+3†
n+2+pcode

Source: SARAM

Destination: SARAM

n+2

2n‡
n+2

2n‡
n+2

2n‡

2n+1§

n+2+pcode
2n‡

Source: External

Destination: SARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc
n+3+ndsrc

†
n+2+ndsrc+pcode

Source: DARAM/ROM

Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: SARAM

Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: External

Destination: External

4n+ndsrc+npdst 4n+ndsrc+npdst 4n+ndsrc+npdst 4n+1+ndsrc+npdst+

pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLW DAT5 ;(DP = 32: addresses 1000h–107Fh)

Before Instruction After Instruction

ACC 257h ACC 257h

Data Memory Data Memory
1005h 4339h 1005h 4339h

Program Memory Program Memory
257h 306h 257h 4399h

Example 2 TBLW *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 1006h AR6 1006h

ACC 258h ACC 258h

Data Memory Data Memory
1006h 4340h 1006h 4340h

Program Memory Program Memory
258h 307h 258h 4340h

 Software Interrupt TRAPPRELIMINARY

8-191 Assembly Language InstructionsPRELIMINARY

Syntax TRAP

Operands None

Opcode 0123456789101112131415

1000101001111101

Execution (PC) + 1 → stack

22h → PC

Status Bits Not affected by INTM; does not affect INTM.

Description The TRAP instruction is a software interrupt that transfers program control to

program-memory location 22h and pushes the program counter (PC) plus 1

onto the hardware stack. The instruction at location 22h may contain a branch

instruction to transfer control to the TRAP routine. Putting (PC + 1) onto the

stack enables a return instruction to pop the return address (which points to the

instruction after TRAP) from the stack. The TRAP instruction is not maskable.

Words 1

Cycles for a Single TRAP Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The processor performs speculative fetching by reading two additional instruction words. If the

PC discontinuity is taken, these two instruction words are discarded.

Example TRAP ;PC + 1 is pushed onto the stack, and then

;control is passed to program memory location

;22h.

Cycles

XOR Exclusive OR With Accumulator PRELIMINARY

8-192 PRELIMINARY

Syntax XOR dma Direct addressing

XOR ind [, ARn] Indirect addressing

XOR #lk, [, shift] Long immediate addressing

XOR #lk,16 Long immediate with left

shift of 16

Operands dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

lk: 16-bit long immediate value

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

XOR dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 0 dma

XOR ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

XOR #lk [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 0 1 shift

lk

XOR #lk, 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1

lk

Execution Increment PC, then ...

Event(s) Addressing mode

(ACC(15:0)) XOR (data-memory address) → ACC(15:0) Direct or indirect

(ACC(31:16)) → ACC(31:16)

(ACC(31:0)) XOR lk � 2shift → ACC(31:0) Long immediate

(ACC(31:0)) XOR lk � 216→ ACC(31:0) Long immediate

with left shift of 16

Opcode

 Exclusive OR With Accumulator XORPRELIMINARY

8-193 Assembly Language InstructionsPRELIMINARY

Status Bits None

Description With direct or indirect addressing, the low half of the accumulator value is

exclusive ORed with the content of the addressed data memory location, and

the result replaces the low half of the accumulator value; the upper half of the

accumulator value is unaffected. With immediate addressing, the long imme-

diate constant is shifted and zero filled on both ends and exclusive ORed with

the entire content of the accumulator. The carry bit (C) is unaffected by XOR.

Words Words Addressing mode

1 Direct or indirect

2 Long immediate

Cycles for a Single XOR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an XOR Instruction (Using Direct

and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single XOR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

XOR Exclusive OR With Accumulator PRELIMINARY

8-194 PRELIMINARY

Example 1 XOR DAT127 ;(DP = 511: addresses FF80h–FFFFh)

Before Instruction After Instruction

Data Memory Data Memory
0FFFFh 0F0F0h 0FFFFh 0F0F0h

ACC X 12345678h ACC X 1234A688h

C C

Example 2 XOR *+,AR0

Before Instruction After Instruction

ARP 7 ARP 0

AR7 300h AR7 301h

Data Memory Data Memory
300h 0FFFFh 300h 0FFFFh

ACC X 1234F0F0h ACC X 12340F0Fh

C C

Example 3 XOR #0F0F0h,4 ;(First shift data value left by

;four)

Before Instruction After Instruction

ACC X 11111010h ACC X 111E1F10h

C C

 Zero Low Accumulator and Load High Accumulator With Rounding ZALRPRELIMINARY

8-195 Assembly Language InstructionsPRELIMINARY

Syntax ZALR dma Direct addressing

ZALR ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ZALR dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 0 dma

ZALR ind [, ARn]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in subsection 7.3.4, Indirect Addressing Opcode Format

(page 7-12).

Execution Increment PC, then ...

(data-memory address) → ACC(31:16)

8000h → ACC(15:0)

Status Bits None

Description To load a data-memory value into the high-order half of the accumulator, the

ZALR instruction rounds the value by adding 1/2 LSB; that is, the 15 low bits

(bits 14–0) of the accumulator are cleared to 0, and bit 15 of the accumulator

is set to 1.

Words 1

Opcode

ZALR Zero Low Accumulator and Load High Accumulator With Rounding PRELIMINARY

8-196 PRELIMINARY

Cycles for a Single ZALR Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a ZALR Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ZALR DAT3 ;(DP = 32: addresses 1000h–107Fh)

Before Instruction After Instruction

Data Memory Data Memory
1003h 3F01h 1003h 3F01h

ACC X 77FFFFh ACC X 3F018000h

C C

Example 2 ZALR *–,AR4

Before Instruction After Instruction

ARP 7 ARP 4

AR7 0FF00h AR7 0FEFFh

Data Memory Data Memory
0FF00h 0E0E0h 0FF00h 0E0E0h

ACC X 107777h ACC X 0E0E08000h

C C

Cycles

A-1

Appendix A

�����	���	���	����	��

���������������	���������

Note:

The instruction set for the TMS320C24x is identical to that of the
TMS320C2xx. All references to ’C2xx devices in this appendix also apply to
’C24x devices.

This appendix contains a table that compares the TMS320C1x, TMS320C2x,

TMS320C2xx, and TMS320C5x instructions alphabetically. Each table entry

shows the syntax for the instruction, indicates which devices support the

instruction, and describes the operation of the instruction. Section A.1 shows

a sample table entry and describes the symbols and abbreviations used in the

table.

The TMS320C2x, TMS320C2xx, and TMS320C5x devices have enhanced

instructions; these instructions are single mnemonics that perform the func-

tions of several similar instructions. Section A.2 summarizes these enhanced

instructions.

Topic Page

A.1 Using the Instruction Set Comparison Table A-2.

A.2 Enhanced Instructions A-5.

A.3 Instruction Set Comparison Table A-6.

Appendix A

PRELIMINARY

PRELIMINARY

Using the Instruction Set Comparison Table PRELIMINARY

 A-2 PRELIMINARY

A.1 Using the Instruction Set Comparison Table

To help you read the comparison table, this section provides an example of a

table entry and a list of acronyms.

A.1.1 An Example of a Table Entry

In cases where more than one syntax is used, the first syntax is usually for di-

rect addressing and the second is usually for indirect addressing. Where three

or more syntaxes are used, the syntaxes are normally specific to a device.

This is how the AND instruction appears in the table:

Syntax 1x 2x 2xx 5x Description

AND dma

AND {ind} [, next ARP]

AND #lk [, shift]

√

√

√

√

√

√

√

√

√

√

AND With Accumulator

TMS320C1x and TMS320C2x devices: AND the con-

tents of the addressed data-memory location with the

16 LSBs of the accumulator. The 16 MSBs of the accu-

mulator are ANDed with 0s.

TMS320C2xx and TMS320C5x devices: AND the con-

tents of the addressed data-memory location or a

16-bit immediate value with the contents of the accu-

mulator. The 16 MSBs of the accumulator are ANDed

with 0s. If a shift is specified, left shift the constant be-

fore the AND. Low-order bits below and high-order bits

above the shifted value are treated as 0s.

The first column, Syntax, states the mnemonic and the syntaxes for the AND

instruction.

The checks in the second through the fifth columns, 1x, 2x, 2xx, and 5x, indi-

cate the devices that can be used with each of the syntaxes.

1x refers to the TMS320C1x devices.

2x refers to the TMS320C2x devices, including TMS320C25.

2xx refers to the TMS320C2xx devices.

5x refers to the TMS320C5x devices.

In this example, you can use the first two syntaxes with TMS320C1x,

TMS320C2x, TMS320C2xx, and TMS320C5x devices, but you can use the

last syntax only with TMS320C2xx and TMS320C5x devices.

The sixth column, Description, briefly describes how the instruction functions.

Often, an instruction functions slightly differently for the different devices: read

the entire description before using the instruction.

Using the Instruction Set Comparison TablePRELIMINARY

A-3TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

A.1.2 Symbols and Acronyms Used in the Table

Table A–1 lists the instruction set symbols and acronyms used throughout this

appendix.

Table A–1. Symbols and Acronyms Used in the Instruction Set Comparison Table

Symbol Description Symbol Description

 lk 16-bit immediate value INTM Interrupt mask bit

k 8-bit immediate value INTR Interrupt mode bit

{ind} Indirect address OV Overflow bit

ACC Accumulator P Program bus

ACCB Accumulator buffer PA Port address

AR Auxiliary register PC Program counter

ARCR Auxiliary register compare PM Product shifter mode

ARP Auxiliary register pointer pma Program-memory address

BMAR Block move address register RPTC Repeat counter

BRCR Block repeat count register shift, shiftn Shift value

C Carry bit src Source address

DBMR Dynamic bit manipulation register ST Status register

dma Data-memory address SXM Sign-extension mode bit

DP Data-memory page pointer TC Test/control bit

dst Destination address T Temporary register

FO Format status list TREGn TMS320C5x temporary register (0–2)

FSX External framing pulse TXM Transmit mode status register

IMR Interrupt mask register XF XF pin status bit

Using the Instruction Set Comparison Table PRELIMINARY

 A-4 PRELIMINARY

Based on the device, this is how the indirect addressing operand {ind} is

interpreted:

{ind} ’C1x: { * | *+ | *– }

’C2x: { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }

’C2xx: { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }

’C5x: { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }

where the possible options are separated by vertical bars (|). For example:

ADD {ind}

is interpreted as:

’C1x devices ADD { * | *+ | *– }
’C2x devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }
’C2xx devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }
’C5x devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }

Based on the device, these are the sets of values for shift, shift1, and shift2:

shift ’C1x: 0–15 (shift of 0–15 bits)

’C2x: 0–15 (shift of 0–15 bits)

’C2xx: 0–16 (shift of 0–16 bits)

’C5x: 0–16 (shift of 0–16 bits)

shift1 ’C1x: n/a

’C2x: 0–15 (shift of 0–15 bits)

’C2xx: 0–16 (shift of 0–16 bits)

’C5x: 0–16 (shift of 0–16 bits)

shift2 ’C1x: n/a

’C2x: n/a

’C2xx: 0–15 (shift of 0–15 bits)

’C5x: 0–15 (shift of 0–15 bits)

In some cases, the sets are smaller; in these cases, the valid sets are given

in the Description column of the table.

Enhanced InstructionsPRELIMINARY

A-5TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

A.2 Enhanced Instructions

An enhanced instruction is a single mnemonic that performs the functions of

several similar instructions. For example, the enhanced instruction ADD

performs the ADD, ADDH, ADDK, and ADLK functions and replaces any of

these other instructions at assembly time. For example, when a program using

ADDH is assembled for the ’C2xx or ’C5x, ADDH is replaced by an ADD

instruction that performs the same function. These enhanced instructions are

valid for TMS320C2x, TMS320C2xx, and TMS320C5x devices (not

TMS320C1x).

Table A–2 summarizes the enhanced instructions and the functions that the

enhanced instructions perform (based on TMS320C1x/2x mnemonics).

Table A–2. Summary of Enhanced Instructions

Enhanced

Instruction Includes These Operations

ADD ADD, ADDH, ADDK, ADLK

AND AND, ANDK

BCND BBNZ, BBZ, BC, BCND, BGEZ, BGZ, BIOZ, BLEZ, BLZ, BNC,

BNV, BNZ, BV, BZ

BLDD BLDD, BLKD

BLDP BLDP, BLKP

CLRC CLRC, CNFD, EINT, RC, RHM, ROVM, RSXM, RTC, RXF

LACC LAC, LACC, LALK, ZALH

LACL LACK, LACL, ZAC, ZALS

LAR LAR, LARK, LRLK

LDP LDP, LDPK

LST LST, LST1

MAR LARP, MAR

MPY MPY, MPYK

OR OR, ORK

RPT RPT, RPTK

SETC CNFP, DINT, SC, SETC, SHM, SOVM, SSXM, STC, SXF

SUB SUB, SUBH, SUBK

Instruction Set Comparison Table PRELIMINARY

 A-6 PRELIMINARY

A.3 Instruction Set Comparison Table

Table A–3 contains a comparison of the TMS320C1x, TMS320C2x,

TMS320C2xx, and TMS320C5x instructions alphabetically.

Table A–3. Instruction Set Comparison

Syntax 1x 2x 2xx 5x Description

ABS √ √ √ √ Absolute Value of Accumulator

If the contents of the accumulator are less than 0,

replace the contents with the 2s complement of the

contents. If the contents are ≥ 0, the accumulator is not

affected.

ADCB √ Add ACCB to Accumulator With Carry

Add the contents of the ACCB and the value of the

carry bit to the accumulator. If the result of the addition

generates a carry from the accumulator’s MSB, the

carry bit is set to 1.

ADD dma [, shift]

ADD {ind} [, shift [, next ARP]]

ADD #k

ADD # lk [, shift2]

√

√

√

√

√

√

√

√

√

√

√

√

Add to Accumulator With Shift

TMS320C1x and TMS320C2x devices: Add the

contents of the addressed data-memory location to the

accumulator; if a shift is specified, left shift the contents

of the location before the add. During shifting, low-

order bits are zero filled, and high-order bits are sign

extended.

TMS320C2xx and TMS320C5x devices: Add the

contents of the addressed data-memory location or an

immediate value to the accumulator; if a shift is speci-

fied, left shift the data before the add. During shifting,

low-order bits are zero filled, and high-order bits are

sign extended if SXM = 1.

ADDB √ Add ACCB to Accumulator

Add the contents of the ACCB to the accumulator.

ADDC dma

ADDC {ind} [, next ARP]

√

√

√

√

√

√

Add to Accumulator With Carry

Add the contents of the addressed data-memory loca-

tion and the carry bit to the accumulator.

ADDH dma

ADDH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Add High to Accumulator

Add the contents of the addressed data-memory loca-

tion to the 16 MSBs of the accumulator. The LSBs are

not affected. If the result of the addition generates a

carry, the carry bit is set to 1.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: If the result of the addition generates a carry

from the accumulator’s MSB, the carry bit is set to 1.

Instruction Set Comparison TablePRELIMINARY

A-7TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

ADDK #k √ √ √ Add to Accumulator Short Immediate

TMS320C1x devices: Add an 8-bit immediate value to

the accumulator.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Add an 8-bit immediate value, right justified, to

the accumulator with the result replacing the accumu-

lator contents. The immediate value is treated as an

8-bit positive number; sign extension is suppressed.

ADDS dma

ADDS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Add to Accumulator With Sign Extension

Suppressed

Add the contents of the addressed data-memory loca-

tion to the accumulator. The value is treated as a 16-bit

unsigned number; sign extension is suppressed.

ADDT dma

ADDT {ind} [, next ARP]

√

√

√

√

√

√

Add to Accumulator With Shift Specified by

T Register

Left shift the contents of the addressed data-memory

location by the value in the four LSBs of the T register;

add the result to the accumulator. If a shift is specified,

left shift the data before the add. During shifting, low-

order bits are zero filled, and high-order bits are sign

extended if SXM = 1.

TMS320C2xx and TMS320C5x devices: If the result of

the addition generates a carry from the accumulator’s

MSB, the carry bit is set to 1.

ADLK #lk [, shift] √ √ √ Add to Accumulator Long Immediate With Shift

Add a 16-bit immediate value to the accumulator; if a

shift is specified, left shift the value before the add.

During shifting, low-order bits are zero filled, and high-

order bits are sign extended if SXM = 1.

ADRK #k √ √ √ Add to Auxiliary Register Short Immediate

Add an 8-bit immediate value to the current auxiliary

register.

Instruction Set Comparison Table PRELIMINARY

 A-8 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

AND dma

AND {ind} [, next ARP]

AND #lk [, shift]

√

√

√

√

√

√

√

√

√

√

AND With Accumulator

TMS320C1x and TMS320C2x devices: AND the

contents of the addressed data-memory location with

the 16 LSBs of the accumulator. The 16 MSBs of the

accumulator are ANDed with 0s.

TMS320C2xx and TMS320C5x devices: AND the

contents of the addressed data-memory location or a

16-bit immediate value with the contents of the accu-

mulator. The 16 MSBs of the accumulator are ANDed

with 0s. If a shift is specified, left shift the constant

before the AND. Low-order bits below and high-order

bits above the shifted value are treated as 0s.

ANDB √ AND ACCB to Accumulator

AND the contents of the ACCB to the accumulator.

ANDK #lk [, shift] √ √ √ AND Immediate With Accumulator With Shift

AND a 16-bit immediate value with the contents of the

accumulator; if a shift is specified, left shift the constant

before the AND.

APAC √ √ √ √ Add P Register to Accumulator

Add the contents of the P register to the accumulator.

TMS320C2x, TMS320C2xx, and TMS320C5x

devices: Before the add, left shift the contents of the

P register as defined by the PM status bits.

APL [#lk] ,dma

APL [#lk,] {ind} [, next ARP]

√

√

AND Data-Memory Value With DBMR or Long

Constant

AND the data-memory value with the contents of the

DBMR or a long constant. If a long constant is speci-

fied, it is ANDed with the contents of the data-memory

location. The result is written back into the data-

memory location previously holding the first operand.

If the result is 0, the TC bit is set to 1; otherwise, the TC

bit is cleared.

B pma

B pma [, {ind} [, next ARP]]

√

√ √

Branch Unconditionally

Branch to the specified program-memory address.

TMS320C2x and TMS320C2xx devices: Modify the

current AR and ARP as specified.

Instruction Set Comparison TablePRELIMINARY

A-9TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

B[D] pma [, {ind} [, next ARP]] √ Branch Unconditionally With Optional Delay

Modify the current auxiliary register and ARP as speci-

fied and pass control to the designated program-

memory address. If you specify a delayed branch

(BD), the next two instruction words (two 1-word

instructions or one 2-word instruction) are fetched and

executed before branching.

BACC √ √ Branch to Address Specified by Accumulator

Branch to the location specified by the 16 LSBs of the

accumulator.

BACC[D] √ Branch to Address Specified by Accumulator

With Optional Delay

Branch to the location specified by the 16 LSBs of the

accumulator.

If you specify a delayed branch (BACCD), the next two

instruction words (two 1-word instructions or one

2-word instruction) are fetched and executed before

branching.

BANZ pma

BANZ pma [, {ind} [, next ARP]]

√

√ √

Branch on Auxiliary Register Not Zero

If the contents of the nine LSBs of the current auxiliary

register (TMS320C1x) or the contents of the entire cur-

rent auxiliary register (TMS320C2x) are ≠ 0, branch to

the specified program-memory address.

TMS320C2x and TMS320C2xx devices: Modify the

current AR and ARP (if specified) or decrement the

current AR (default). TMS320C1x devices: Decrement

the current AR.

BANZ[D] pma [, {ind} [, next
ARP]]

√ Branch on Auxiliary Register Not Zero With

Optional Delay

If the contents of the current auxiliary register are ≠ 0,

branch to the specified program-memory address.

Modify the current AR and ARP as specified, or decre-

ment the current AR.

If you specify a delayed branch (BANZD), the next two

instruction words (two 1-word instructions or one

2-word instruction) are fetched and executed before

branching.

Instruction Set Comparison Table PRELIMINARY

 A-10 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

BBNZ pma [, {ind} [, next ARP]] √ √ √ Branch on Bit ≠ Zero

If the TC bit = 1, branch to the specified program-

memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: If the –p port-

ing switch is used, modify the current AR and ARP as

specified.

BBZ pma [, {ind} [, next ARP]]

BBZ pma

√ √ √

√

Branch on Bit = Zero

If the TC bit = 0, branch to the specified program-

memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BC pma [, {ind} [, next ARP]]

BC pma

√

√

√

√

Branch on Carry

If the C bit = 1, branch to the specified program-

memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BCND pma, cond1 [, cond2] [, ...] √ Branch Conditionally

Branch to the program-memory address if the speci-

fied conditions are met. Not all combinations of condi-

tions are meaningful.

BCND[D] pma, cond1
[, cond2] [, ...]

√ Branch Conditionally With Optional Delay

Branch to the program-memory address if the speci-

fied conditions are met. Not all combinations of condi-

tions are meaningful.

If you specify a delayed branch (BCNDD), the next two

instruction words (two 1-word instructions or one

2-word instruction) are fetched and executed before

branching.

Instruction Set Comparison TablePRELIMINARY

A-11TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

BGEZ pma

BGEZ pma [, {ind} [, next ARP]]

√

√

√ √

√

Branch if Accumulator ≥ Zero

If the contents of the accumulator ≥ 0, branch to the

specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BGZ pma

BGZ pma [, {ind} [, next ARP]]

√

√

√ √

√

Branch if Accumulator > Zero

If the contents of the accumulator are > 0, branch to the

specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BIOZ pma

BIOZ pma [, {ind} [, next ARP]]

√

√

√ √

√

Branch on I/O Status = Zero

If the BIO pin is low, branch to the specified program-

memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BIT dma, bit code

BIT {ind}, bit code [, next ARP]

√

√

√

√

√

√

Test Bit

Copy the specified bit of the data-memory value to the

TC bit in ST1.

BITT dma

BITT {ind} [, next ARP]

√

√

√

√

√

√

Test Bit Specified by T Register

TMS320C2x and TMS320C2xx devices: Copy the

specified bit of the data-memory value to the TC bit in

ST1. The four LSBs of the T register specify which bit

is copied.

TMS320C5x devices: Copy the specified bit of the

data-memory value to the TC bit in ST1. The four LSBs

of the TREG2 specify which bit is copied.

Instruction Set Comparison Table PRELIMINARY

 A-12 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

BLDD #lk, dma

BLDD #lk, {ind} [, next ARP]

BLDD dma, #lk

BLDD {ind}, #lk [, next ARP]

BLDD BMAR, dma

BLDD BMAR, {ind} [, next ARP]

BLDD dma BMAR

BLDD {ind}, BMAR [, next ARP]

√

√

√

√

√

√

√

√

√

√

√

√

Block Move From Data Memory to Data Memory

Copy a block of data memory into data memory. The

block of data memory is pointed to by src, and the

destination block of data memory is pointed to by dst.

TMS320C2xx devices: The word of the source and/or

the destination space can be pointed to with a long im-

mediate value or a data-memory address. You can use

the RPT instruction with BLDD to move consecutive

words, pointed to indirectly in data memory, to contigu-

ous program-memory spaces. The number of words to

be moved is 1 greater than the number contained in the

RPTC at the beginning of the instruction.

TMS320C5x devices: The word of the source and/or

the destination space can be pointed to with a long im-

mediate value, the contents of the BMAR, or a data-

memory address. You can use the RPT instruction with

BLDD to move consecutive words, pointed to indirectly

in data memory, to a contiguous program-memory

space. The number of words to be moved is 1 greater

than the number contained in the RPTC at the begin-

ning of the instruction.

BLDP dma

BLDP {ind} [, next ARP]

√

√

Block Move From Data Memory to Program

Memory

Copy a block of data memory into program memory

pointed to by the BMAR. You can use the RPT instruc-

tion with BLDP to move consecutive words, indirectly

pointed to in data memory, to a contiguous program-

memory space pointed to by the BMAR.

BLEZ pma

BLEZ pma [, {ind} [, next ARP]]

√

√

√

√

√

√

Branch if Accumulator ≤ Zero

If the contents of the accumulator are ≤ 0, branch to the

specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

Instruction Set Comparison TablePRELIMINARY

A-13TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

BLKD dma1, dma2

BLKD dma1, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Data Memory to Data Memory

Move a block of words from one location in data mem-

ory to another location in data memory. Modify the cur-

rent AR and ARP as specified. RPT or RPTK must be

used with BLKD, in the indirect addressing mode, if

more than one word is to be moved. The number of

words to be moved is 1 greater than the number

contained in RPTC at the beginning of the instruction.

BLKP pma, dma

BLKP pma, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Program Memory to Data

Memory

Move a block of words from a location in program

memory to a location in data memory. Modify the cur-

rent AR and ARP as specified. RPT or RPTK must be

used with BLKD, in the indirect addressing mode, if

more than one word is to be moved. The number of

words to be moved is 1 greater than the number

contained in RPTC at the beginning of the instruction.

BLPD #pma, dma

BLPD #pma, {ind} [, next ARP]

BLPD BMAR, dma

BLPD BMAR, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Program Memory to Data

Memory

Copy a block of program memory into data memory.

The block of program memory is pointed to by src, and

the destination block of data memory is pointed to by

dst.

TMS320C2xx devices: The word of the source space

can be pointed to with a long immediate value. You can

use the RPT instruction with BLPD to move consecu-

tive words that are pointed at indirectly in data memory

to a contiguous program-memory space.

TMS320C5x devices: The word of the source space

can be pointed to with a long immediate value or the

contents of the BMAR. You can use the RPT instruc-

tion with BLPD to move consecutive words that are

pointed at indirectly in data memory to contiguous pro-

gram-memory spaces.

BLZ pma

BLZ pma [, {ind} [, next ARP]]

√

√

√

√

√ Branch if Accumulator < Zero

If the contents of the accumulator are < 0, branch to the

specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

Instruction Set Comparison Table PRELIMINARY

 A-14 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

BNC pma [, {ind} [, next ARP]] √ √ √ Branch on No Carry

If the C bit = 0, branch to the specified program-

memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BNV pma [, {ind} [, next ARP]] √ √ √ Branch if No Overflow

If the OV flag is clear, branch to the specified program-

memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BNZ pma

BNZ pma [, {ind} [, next ARP]]

√

√ √ √

Branch if Accumulator ≠ Zero

If the contents of the accumulator ≠ 0, branch to the

specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP

as specified.

TMS320C2xx and TMS320C5x devices: Modify the

current AR and ARP as specified when the –p porting

switch is used.

BSAR [shift] √ Barrel Shift

In a single cycle, execute a 1- to 16-bit right arithmetic

barrel shift of the accumulator. The sign extension is

determined by the sign-extension mode bit in ST1.

BV pma

BV pma [, {ind} [, next ARP]]

√

√ √ √

Branch on Overflow

If the OV flag is set, branch to the specified program-

memory address and clear the OV flag.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Modify the current AR and ARP as specified.

TMS320C2xx and TMS320C5x devices: To modify the

AR and ARP, use the –p porting switch.

Instruction Set Comparison TablePRELIMINARY

A-15TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

BZ pma

BZ pma [, {ind} [, next ARP]]

√

√

√ √ Branch if Accumulator = Zero

If the contents of the accumulator = 0, branch to the

specified program-memory address.

TMS320C2x, TMS320C2xx and TMS320C5x de-

vices: Modify the current AR and ARP as specified.

TMS320C2xx and TMS320C5x devices: To modify the

AR and ARP, use the –p porting switch.

CALA √ √ √ Call Subroutine Indirect

The contents of the accumulator specify the address

of a subroutine. Increment the PC, push the PC onto

the stack, then load the 12 (TMS320C1x) or 16

(TMS320C2x/C2xx) LSBs of the accumulator into the

PC.

CALA[D] √ Call Subroutine Indirect With Optional Delay

The contents of the accumulator specify the address

of a subroutine. Increment the PC and push it onto the

stack; then load the 16 LSBs of the accumulator into

the PC.

If you specify a delayed branch (CALAD), the next two

instruction words (two 1-word instructions or one

2-word instruction) are fetched and executed before

the call.

CALL pma

CALL pma [,{ind} [, next ARP]]

√

√ √

Call Subroutine

The contents of the addressed program-memory loca-

tion specify the address of a subroutine. Increment the

PC by 2, push the PC onto the stack, then load the

specified program-memory address into the PC.

TMS320C2x and TMS320C2xx devices: Modify the

current AR and ARP as specified.

CALL[D] pma [, {ind} [, next
ARP]]

√ Call Unconditionally With Optional Delay

The contents of the addressed program-memory loca-

tion specify the address of a subroutine. Increment the

PC and push the PC onto the stack; then load the

specified program-memory address (symbolic or

numeric) into the PC. Modify the current AR and ARP

as specified.

If you specify a delayed branch (CALLD), the next two

instruction words (two 1-word instructions or one

2-word instruction) are fetched and executed before

the call.

Instruction Set Comparison Table PRELIMINARY

 A-16 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

CC pma, cond1 [, cond2] [, ...] √ Call Conditionally

If the specified conditions are met, control is passed to

the pma. Not all combinations of conditions are mean-

ingful.

CC[D] pma, cond1 [, cond2] [, ...] √ Call Conditionally With Optional Delay

If the specified conditions are met, control is passed to

the pma. Not all combinations of conditions are mean-

ingful.

If you specify a delayed branch (CCD), the next two in-

struction words (two 1-word instructions or one 2-word

instruction) are fetched and executed before the call.

CLRC control bit √ √ Clear Control Bit

Set the specified control bit to a logic 0. Maskable inter-

rupts are enabled immediately after the CLRC instruc-

tion executes.

CMPL √ √ √ Complement Accumulator

Complement the contents of the accumulator (1s com-

plement).

CMPR CM √ √ √ Compare Auxiliary Register With AR0

Compare the contents of the current auxiliary register

to AR0, based on the following cases:

If CM = 00, test whether AR(ARP) = AR0.

If CM = 01, test whether AR(ARP) < AR0.

If CM = 10, test whether AR(ARP) > AR0.

If CM = 11, test whether AR(ARP) ≠ AR0.

If the result is true, load a 1 into the TC status bit; other-

wise, load a 0 into the TC bit. The comparison does not

affect the tested registers.

TMS320C5x devices: Compare the contents of the

auxiliary register with the ARCR.

CNFD √ √ √ Configure Block as Data Memory

Configure on-chip RAM block B0 as data memory.

Block B0 is mapped into data-memory locations

512h–767h.

TMS320C5x devices: Block B0 is mapped into data-

memory locations 512h–1023h.

Instruction Set Comparison TablePRELIMINARY

A-17TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

CNFP √ √ √ Configure Block as Program Memory

Configure on-chip RAM block B0 as program memory.

Block B0 is mapped into program-memory locations

65280h–65535h.

TMS320C5x devices: Block B0 is mapped into data-

memory locations 65024h–65535h.

CONF 2-bit constant √ Configure Block as Program Memory

Configure on-chip RAM block B0/B1/B2/B3 as

program memory. For information on the memory

mapping of B0/B1/B2/B3, see the TMS320C2x User’s
Guide.

CPL [#lk,] dma

CPL [#lk,] {ind} [, next ARP]

√

√

Compare DBMR or Immediate With Data Value

Compare two quantities: If the two quantities are

equal, set the TC bit to 1; otherwise, clear the TC bit.

CRGT √ Test for ACC > ACCB

Compare the contents of the ACC with the contents of

the ACCB, then load the larger signed value into both

registers and modify the carry bit according to the com-

parison result. If the contents of ACC are greater than

or equal to the contents of ACCB, set the carry bit to 1.

CRLT √ Test for ACC < ACCB

Compare the contents of the ACC with the contents of

the ACCB, then load the smaller signed value into both

registers and modify the carry bit according to the com-

parison result. If the contents of ACC are less than the

contents of ACCB, clear the carry bit.

DINT √ √ √ √ Disable Interrupts

Disable all interrupts; set the INTM to 1. Maskable

interrupts are disabled immediately after the DINT

instruction executes. DINT does not disable the

unmaskable interrupt RS; DINT does not affect the

IMR.

DMOV dma

DMOV {ind} [, next ARP]

√

√

√

√

√

√

√

√

Data Move in Data Memory

Copy the contents of the addressed data-memory

location into the next higher address. DMOV moves

data only within on-chip RAM blocks.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: The on-chip RAM blocks are B0 (when config-

ured as data memory), B1, and B2.

Instruction Set Comparison Table PRELIMINARY

 A-18 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

EINT √ √ √ √ Enable Interrupts

Enable all interrupts; clear the INTM to 0. Maskable

interrupts are enabled immediately after the EINT

instruction executes.

EXAR √ Exchange ACCB With ACC

Exchange the contents of the ACC with the contents

of the ACCB.

FORT 1-bit constant √ Format Serial Port Registers

Load the FO with a 0 or a 1. If FO = 0, the registers are

configured to receive/transmit 16-bit words. If FO = 1,

the registers are configured to receive/transmit 8-bit

bytes.

IDLE √ √ √ Idle Until Interrupt

Forces an executing program to halt execution and

wait until it receives a reset or an interrupt. The device

remains in an idle state until it is interrupted.

IDLE2 √ Idle Until Interrupt — Low-Power Mode

Removes the functional clock input from the internal

device; this allows for an extremely low-power mode.

The IDLE2 instruction forces an executing program to

halt execution and wait until it receives a reset or

unmasked interrupt.

IN dma, PA

IN {ind}, PA [, next ARP]

√

√

√

√

√

√

√

√

Input Data From Port

Read a 16-bit value from one of the external I/O ports

into the addressed data-memory location.

TMS320C1x devices: This is a 2-cycle instruction.

During the first cycle, the port address is sent to ad-

dress lines A2/PA2–A0/PA0; DEN goes low, strobing

in the data that the addressed peripheral places on

data bus D15–D0.

TMS320C2x devices: The IS line goes low to indicate

an I/O access, and the STRB, R/W, and READY tim-

ings are the same as for an external data-memory

read.

TMS320C2xx and TMS320C5x devices: The IS line

goes low to indicate an I/O access, and the STRB, RD,

and READY timings are the same as for an external

data-memory read.

Instruction Set Comparison TablePRELIMINARY

A-19TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

INTR K √ √ Soft Interrupt

Transfer program control to the program-memory

address specified by K (an integer from 0 to 31). This

instruction allows you to use your software to execute

any interrupt service routine. The interrupt vector loca-

tions are spaced apart by two addresses (0h, 2h, 4h,

... , 3Eh), allowing a 2-word branch instruction to be

placed at each location.

LAC dma [, shift]

LAC {ind} [, shift [, next ARP]]

√

√

√

√

√

√

√

√

Load Accumulator With Shift

Load the contents of the addressed data-memory

location into the accumulator. If a shift is specified, left

shift the value before loading it into the accumulator.

During shifting, low-order bits are zero filled, and high-

order bits are sign extended if SXM = 1.

LACB √ Load Accumulator With ACCB

Load the contents of the accumulator buffer into the

accumulator.

LACC dma [, shift1]

LACC {ind} [, shift1 [, next ARP]�]

LACC #lk [, shift2]

√

√

√

√

√

√

√

√

√

Load Accumulator With Shift

Load the contents of the addressed data-memory

location or the 16-bit constant into the accumulator. If

a shift is specified, left shift the value before loading it

into the accumulator. During shifting, low-order bits are

zero filled, and high-order bits are sign extended if

SXM = 1.

LACK 8-bit constant √ √ √ √ Load Accumulator Immediate Short

Load an 8-bit constant into the accumulator. The

24 MSBs of the accumulator are zeroed.

LACL dma

LACL {ind} [, next ARP]

LACL #k

√

√

√

√

√

√

Load Low Accumulator and Clear High

Accumulator

Load the contents of the addressed data-memory

location or zero-extended 8-bit constant into the

16 LSBs of the accumulator. The MSBs of the accumu-

lator are zeroed. The data is treated as a 16-bit

unsigned number.

TMS320C2xx: A constant of 0 clears the contents of

the accumulator to 0 with no sign extension.

Instruction Set Comparison Table PRELIMINARY

 A-20 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

LACT dma

LACT {ind} [, next ARP]

√

√

√

√

√

√

Load Accumulator With Shift Specified by T

Register

Left shift the contents of the addressed data-memory

location by the value specified in the four LSBs of the

T register; load the result into the accumulator. If a shift

is specified, left shift the value before loading it into the

accumulator. During shifting, low-order bits are zero

filled, and high-order bits are sign extended if SXM = 1.

LALK #lk [, shift] √ √ √ Load Accumulator Long Immediate With Shift

Load a 16-bit immediate value into the accumulator. If

a shift is specified, left shift the constant before loading

it into the accumulator. During shifting, low-order bits

are zero filled, and high-order bits are sign extended if

SXM = 1.

LAMM dma

LAMM {ind} [, next ARP]

√

√

Load Accumulator With Memory-Mapped

Register

Load the contents of the addressed memory-mapped

register into the low word of the accumulator. The nine

MSBs of the data-memory address are cleared,

regardless of the current value of DP or the nine MSBs

of AR (ARP).

LAR AR, dma

LAR AR, {ind} [, next ARP]

LAR AR, #k

LAR AR, #lk

√

√

√

√

√

√

√

√

√

√

√

√

Load Auxiliary Register

TMS320C1x and TMS320C2x devices: Load the con-

tents of the addressed data-memory location into the

designated auxiliary register.

TMS320C25, TMS320C2xx, and TMS320C5x de-

vices: Load the contents of the addressed data-

memory location or an 8-bit or 16-bit immediate value

into the designated auxiliary register.

LARK AR, 8-bit constant √ √ √ √ Load Auxiliary Register Immediate Short

Load an 8-bit positive constant into the designated

auxiliary register.

LARP 1-bit constant

LARP 3-bit constant

√

√ √ √

Load Auxiliary Register Pointer

TMS320C1x devices: Load a 1-bit constant into the

auxiliary register pointer (specifying AR0 or AR1).

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Load a 3-bit constant into the auxiliary register

pointer (specifying AR0–AR7).

Instruction Set Comparison TablePRELIMINARY

A-21TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

LDP dma

LDP {ind} [, next ARP]

LDP #k

√

√

√

√

√

√

√

√

√

√

Load Data-Memory Page Pointer

TMS320C1x devices: Load the LSB of the contents of

the addressed data-memory location into the DP regis-

ter. All high-order bits are ignored. DP = 0 defines

page 0 (words 0–127), and DP = 1 defines page 1

(words 128–143/255).

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Load the nine LSBs of the addressed data-

memory location or a 9-bit immediate value into the DP

register. The DP and 7-bit data-memory address are

concatenated to form 16-bit data-memory addresses.

LDPK 1-bit constant

LDPK 9-bit constant

√

√ √ √

Load Data-Memory Page Pointer Immediate

TMS320C1x devices: Load a 1-bit immediate value

into the DP register. DP = 0 defines page 0

(words 0–127), and DP = 1 defines page 1

(words 128–143/255).

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Load a 9-bit immediate into the DP register. The

DP and 7-bit data-memory address are concatenated

to form 16-bit data-memory addresses. DP � 8 speci-

fies external data memory. DP = 4 through 7 specifies

on-chip RAM blocks B0 or B1. Block B2 is located in

the upper 32 words of page 0.

LMMR dma, #lk

LMMR {ind}, #lk [, next ARP]

√

√

Load Memory-Mapped Register

Load the contents of the memory-mapped register

pointed at by the seven LSBs of the direct or indirect

data-memory value into the long immediate addressed

data-memory location. The nine MSBs of the data-

memory address are cleared, regardless of the current

value of DP or the nine MSBs of AR (ARP).

LPH dma

LPH {ind} [, next ARP]

√

√

√

√

√

√

Load High P Register

Load the contents of the addressed data-memory

location into the 16 MSBs of the P register; the LSBs

are not affected.

LRLK AR, lk √ √ √ Load Auxiliary Register Long Immediate

Load a 16-bit immediate value into the designated

auxiliary register.

LST dma

LST {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load Status Register

Load the contents of the addressed data-memory

location into the ST (TMS320C1x) or into ST0

(TMS320C2x/2xx/5x).

Instruction Set Comparison Table PRELIMINARY

 A-22 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

LST #n, dma

LST #n, {ind} [, next ARP]

√

√

√

√

√

√

Load Status Register n

Load the contents of the addressed data-memory

location into STn.

LST1 dma

LST1 {ind} [, next ARP]

√

√

√

√

√

√

Load ST1

Load the contents of the addressed data-memory

location into ST1.

LT dma

LT {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register

Load the contents of the addressed data-memory

location into the T register (TMS320C1x/2x/2xx) or

TREG0 (TMS320C5x).

LTA dma

LTA {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register and Accumulate Previous

Product

Load the contents of the addressed data-memory

location into T register (TMS320C1x/2x/2xx) or

TREG0 (TMS320C5x) and add the contents of the

P register to the accumulator.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Before the add, shift the contents of the P regis-

ter as specified by the PM status bits.

LTD dma

LTD {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register, Accumulate Previous Product,

and Move Data

Load the contents of the addressed data-memory

location into the T register (TMS320C1x/2x/2xx) or

TREG0 (TMS320C5x), add the contents of the P regis-

ter to the accumulator, and copy the contents of the

specified location into the next higher address (both

data-memory locations must reside in on-chip data

RAM).

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Before the add, shift the contents of the P regis-

ter as specified by the PM status bits.

LTP dma

LTP {ind} [, next ARP]

√

√

√

√

√

√

Load T Register, Store P Register in Accumulator

Load the contents of the addressed data-memory

location into the T register (TMS320C1x/2x/2xx) or

TREG0 (TMS320C5x). Store the contents of the prod-

uct register into the accumulator.

Instruction Set Comparison TablePRELIMINARY

A-23TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

LTS dma

LTS {ind} [, next ARP]

√

√

√

√

√

√

Load T Register, Subtract Previous Product

Load the contents of the addressed data-memory

location into the T register (TMS320C1x/2x/2xx) or

TREG0 (TMS320C5x). Shift the contents of the P reg-

ister as specified by the PM status bits, and subtract

the result from the accumulator.

MAC pma, dma

MAC pma, {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate

Multiply a data-memory value by a program-memory

value and add the previous product (shifted as speci-

fied by the PM status bits) to the accumulator.

MACD dma, pma

MACD pma, {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate With Data Move

Multiply a data-memory value by a program-memory

value and add the previous product (shifted as speci-

fied by the PM status bits) to the accumulator. If the

data-memory address is in on-chip RAM block B0, B1,

or B2, copy the contents of the address to the next

higher address.

MADD dma

MADD {ind} [, next ARP]

√

√

Multiply and Accumulate With Data Move and

Dynamic Addressing

Multiply a data-memory value by a program-memory

value and add the previous product (shifted as defined

by the PM status bits) into the accumulator. The

program-memory address is contained in the BMAR;

this allows for dynamic addressing of coefficient

tables.

MADD functions the same as MADS, with the addition

of data move for on-chip RAM blocks.

MADS dma

MADS {ind} [, next ARP]

√

√

Multiply and Accumulate With Dynamic

Addressing

Multiply a data-memory value by a program-memory

value and add the previous product (shifted as defined

by the PM status bits) into the accumulator. The

program-memory address is contained in the BMAR;

this allows for dynamic addressing of coefficient

tables.

MAR dma

MAR {ind} [, next ARP]

√

√

√

√

√

√

√

√

Modify Auxiliary Register

Modify the current AR or ARP as specified. MAR acts

as NOP in indirect addressing mode.

Instruction Set Comparison Table PRELIMINARY

 A-24 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

MPY dma

MPY {ind} [, next ARP]

MPY #k

MPY #lk

√

√

√

√

√

√

√

√

√

√

√

√

Multiply

TMS320C1x and TMS320C2x devices: Multiply the

contents of the T register by the contents of the

addressed data-memory location; place the result in

the P register.

TMS320C2xx and TMS320C5x devices: Multiply the

contents of the T register (TMS320C2xx) or TREG0

(TMS320C5x) by the contents of the addressed data-

memory location or a 13-bit or 16-bit immediate value;

place the result in the P register.

MPYA dma

MPYA {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate Previous Product

Multiply the contents of the T register (TMS320C2x/

2xx) or TREG0 (TMS320C5x) by the contents of the

addressed data-memory location; place the result in

the P register. Add the previous product (shifted as

specified by the PM status bits) to the accumulator.

MPYK 13-bit constant √ √ √ √ Multiply Immediate

Multiply the contents of the T register (TMS320C2x/

2xx) or TREG0 (TMS320C5x) by a signed 13-bit

constant; place the result in the P register.

MPYS dma

MPYS {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Subtract Previous Product

Multiply the contents of the T register (TMS320C2x/

2xx) or TREG0 (TMS320C5x) by the contents of the

addressed data-memory location; place the result in

the P register. Subtract the previous product (shifted

as specified by the PM status bits) from the accumula-

tor.

MPYU dma

MPYU {ind} [, next ARP]

√

√

√

√

√

√

Multiply Unsigned

Multiply the unsigned contents of the T register

(TMS320C2x/2xx) or TREG0 (TMS320C5x) by the

unsigned contents of the addressed data-memory

location; place the result in the P register.

NEG √ √ √ Negate Accumulator

Negate (2s complement) the contents of the accumu-

lator.

NMI √ √ Nonmaskable Interrupt

Force the program counter to the nonmaskable inter-

rupt vector location 24h. NMI has the same effect as a

hardware nonmaskable interrupt.

Instruction Set Comparison TablePRELIMINARY

A-25TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

NOP √ √ √ √ No Operation

Perform no operation.

NORM

NORM {ind}

√

√

√

√

√

√

Normalize Contents of Accumulator

Normalize a signed number in the accumulator.

OPL [#lk,] dma

OPL [#lk,] {ind} [, next ARP]

√

√

OR With DBMR or Long Immediate

If a long immediate is specified, OR it with the value at

the specified data-memory location; otherwise, the

second operand of the OR operation is the contents of

the DBMR. The result is written back into the data-

memory location previously holding the first operand.

OR dma

OR {ind} [, next ARP]

OR #lk [, shift]

√

√

√

√

√

√

√

√

√

√

OR With Accumulator

TMS320C1x and TMS320C2x devices: OR the

16 LSBs of the accumulator with the contents of the

addressed data-memory location. The 16 MSBs of the

accumulator are ORed with 0s.

TMS320C2xx and TMS320C5x devices: OR the

16 LSBs of the accumulator or a 16-bit immediate val-

ue with the contents of the addressed data-memory

location. If a shift is specified, left-shift before ORing.

Low-order bits below and high-order bits above the

shifted value are treated as 0s.

ORB √ OR ACCB With Accumulator

OR the contents of the ACCB with the contents of the

accumulator. ORB places the result in the accumula-

tor.

ORK #lk [, shift] √ √ √ OR Immediate With Accumulator with Shift

OR a 16-bit immediate value with the contents of the

accumulator. If a shift is specified, left-shift the

constant before ORing. Low-order bits below and high-

order bits above the shifted value are treated as 0s.

Instruction Set Comparison Table PRELIMINARY

 A-26 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

OUT dma, PA

OUT {ind}, PA [, next ARP]

√

√

√

√

√

√

√

√

Output Data to Port

Write a 16-bit value from a data-memory location to the

specified I/O port.

TMS320C1x devices: The first cycle of this instruction

places the port address onto address lines

A2/PA2–A0/PA0. During the same cycle, WE goes low

and the data word is placed on the data bus D15–D0.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: The IS line goes low to indicate an I/O access;

the STRB, R/W, and READY timings are the same as

for an external data-memory write.

PAC √ √ √ √ Load Accumulator With P Register

Load the contents of the P register into the accumula-

tor.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Before the load, shift the P register as specified

by the PM status bits.

POP √ √ √ √ Pop Top of Stack to Low Accumulator

Copy the contents of the top of the stack into the 12

(TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the

accumulator and then pop the stack one level. The

MSBs of the accumulator are zeroed.

POPD dma

POPD {ind} [, next ARP]

√

√

√

√

√

√

Pop Top of Stack to Data Memory

Transfer the value on the top of the stack into the

addressed data-memory location and then pop the

stack one level.

PSHD dma

PSHD {ind} [, next ARP]

√

√

√

√

√

√

Push Data-Memory Value Onto Stack

Copy the addressed data-memory location onto the

top of the stack. The stack is pushed down one level

before the value is copied.

PUSH √ √ √ √ Push Low Accumulator Onto Stack

Copy the contents of the 12 (TMS320C1x) or 16

(TMS320C2x/2xx/5x) LSBs of the accumulator onto

the top of the hardware stack. The stack is pushed

down one level before the value is copied.

RC √ √ √ Reset Carry Bit

Reset the C status bit to 0.

Instruction Set Comparison TablePRELIMINARY

A-27TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

RET √ √ √ Return From Subroutine

Copy the contents of the top of the stack into the PC

and pop the stack one level.

RET[D] √ Return From Subroutine With Optional Delay

Copy the contents of the top of the stack into the PC

and pop the stack one level.

If you specify a delayed branch (RETD), the next two

instruction words (two 1-word instructions or one

2-word instruction) are fetched and executed before

the return.

RETC cond1 [, cond2] [, ...] √ Return Conditionally

If the specified conditions are met, RETC performs a

standard return. Not all combinations of conditions are

meaningful.

RETC[D] cond1 [, cond2] [, ...] √ Return Conditionally With Optional Delay

If the specified conditions are met, RETC performs a

standard return. Not all combinations of conditions are

meaningful.

If you specify a delayed branch (RETCD), the next two

instruction words (two 1-word instructions or one

2-word instruction) are fetched and executed before

the return.

RETE √ Enable Interrupts and Return From Interrupt

Copy the contents of the top of the stack into the PC

and pop the stack one level. RETE automatically

clears the global interrupt enable bit and pops the

shadow registers (stored when the interrupt was tak-

en) back into their corresponding strategic registers.

The following registers are shadowed: ACC, ACCB,

PREG, ST0, ST1, PMST, ARCR, INDX, TREG0,

TREG1, TREG2.

RETI √ Return From Interrupt

Copy the contents of the top of the stack into the PC

and pop the stack one level. RETI also pops the values

in the shadow registers (stored when the interrupt was

taken) back into their corresponding strategic regis-

ters. The following registers are shadowed: ACC,

ACCB, PREG, ST0, ST1, PMST, ARCR, INDX,

TREG0, TREG1, TREG2.

Instruction Set Comparison Table PRELIMINARY

 A-28 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

RFSM √ Reset Serial Port Frame Synchronization Mode

Reset the FSM status bit to 0.

RHM √ √ Reset Hold Mode

Reset the HM status bit to 0.

ROL √ √ √ Rotate Accumulator Left

Rotate the accumulator left one bit.

ROLB √ Rotate ACCB and Accumulator Left

Rotate the ACCB and the accumulator left by one bit;

this results in a 65-bit rotation.

ROR √ √ √ Rotate Accumulator Right

Rotate the accumulator right one bit.

RORB √ Rotate ACCB and Accumulator Right

Rotate the ACCB and the accumulator right one bit;

this results in a 65-bit rotation.

ROVM √ √ √ √ Reset Overflow Mode

Reset the OVM status bit to 0; this disables overflow

mode.

RPT dma

RPT {ind} [, next ARP]

RPT #k

RPT #lk

√

√

√

√

√

√

√

√

√

√

Repeat Next Instruction

TMS320C2x devices: Load the eight LSBs of the

addressed value into the RPTC; the instruction follow-

ing RPT is executed the number of times indicated by

RPTC + 1.

TMS320C2xx and TMS320C5x devices: Load the

eight LSBs of the addressed value or an 8-bit or 16-bit

immediate value into the RPTC; the instruction follow-

ing RPT is repeated n times, where n is RPTC+1.

RPTB pma √ Repeat Block

RPTB repeats a block of instructions the number of

times specified by the memory-mapped BRCR without

any penalty for looping. The BRCR must be loaded

before RPTB is executed.

RPTK #k √ √ √ Repeat Instruction as Specified by Immediate

Value

Load the 8-bit immediate value into the RPTC; the

instruction following RPTK is executed the number of

times indicated by RPTC + 1.

Instruction Set Comparison TablePRELIMINARY

A-29TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

RPTZ #lk √ Repeat Preceded by Clearing the Accumulator

and P Register

Clear the accumulator and product register and repeat

the instruction following RPTZ n times, where n = lk +1.

RSXM √ √ √ Reset Sign-Extension Mode

Reset the SXM status bit to 0; this suppresses sign

extension on shifted data values for the following arith-

metic instructions: ADD, ADDT, ADLK, LAC, LACT,

LALK, SBLK, SUB, and SUBT.

RTC √ √ √ Reset Test/Control Flag

Reset the TC status bit to 0.

RTXM √ Reset Serial Port Transmit Mode

Reset the TXM status bit to 0; this configures the serial

port transmit section in a mode where it is controlled by

an FSX.

RXF √ √ √ Reset External Flag

Reset XF pin and the XF status bit to 0.

SACB √ Store Accumulator in ACCB

Copy the contents of the accumulator into the ACCB.

SACH dma [, shift]

SACH {ind} [, shift [, next ARP]]

√

√

√

√

√

√

√

√

Store High Accumulator With Shift

Copy the contents of the accumulator into a shifter.

Shift the entire contents by zero, one, or four bits

(TMS320C1x) or from zero to seven bits

(TMS320C2x/2xx/5x), and then copy the 16 MSBs of

the shifted value into the addressed data-memory

location. The accumulator is not affected.

SACL dma

SACL dma [, shift]

SACL {ind} [, shift [, next ARP]]

√

√ √

√

√

√

√

√

Store Low Accumulator With Shift

TMS320C1x devices: Store the 16 LSBs of the accu-

mulator into the addressed data-memory location. A

shift value of 0 must be specified if the ARP is to be

changed.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Store the 16 LSBs of the accumulator into the

addressed data-memory location. If a shift is specified,

shift the contents of the accumulator before storing.

Shift values are zero, one, or four bits (TMS320C20)

or from zero to seven bits (TMS320C2x/2xx/5x).

Instruction Set Comparison Table PRELIMINARY

 A-30 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

SAMM dma

SAMM {ind} [, next ARP]

√

√

Store Accumulator in Memory-Mapped Register

Store the low word of the accumulator in the addressed

memory-mapped register. The upper nine bits of the

data address are cleared, regardless of the current val-

ue of DP or the nine MSBs of AR (ARP).

SAR AR, dma

SAR AR, {ind} [, next ARP]

√

√

√

√

√

√

√

√

Store Auxiliary Register

Store the contents of the specified auxiliary register in

the addressed data-memory location.

SATH √ Barrel-Shift Accumulator as Specified

by T Register 1

If bit 4 of TREG1 is a 1, barrel-shift the accumulator

right by 16 bits; otherwise, the accumulator is

unaffected.

SATL √ Barrel-Shift Low Accumulator as Specified

by T Register 1

Barrel-shift the accumulator right by the value speci-

fied in the four LSBs of TREG1.

SBB √ Subtract ACCB From Accumulator

Subtract the contents of the ACCB from the accumula-

tor. The result is stored in the accumulator; the accu-

mulator buffer is not affected.

SBBB √ Subtract ACCB From Accumulator With Borrow

Subtract the contents of the ACCB and the logical in-

version of the carry bit from the accumulator. The result

is stored in the accumulator; the accumulator buffer is

not affected. Clear the carry bit if the result generates

a borrow.

SBLK #lk [, shift] √ √ √ Subtract From Accumulator Long Immediate

With Shift

Subtract the immediate value from the accumulator. If

a shift is specified, left shift the value before subtract-

ing. During shifting, low-order bits are zero filled, and

high-order bits are sign extended if SXM = 1.

SBRK #k √ √ √ Subtract From Auxiliary Register Short

Immediate

Subtract the 8-bit immediate value from the

designated auxiliary register.

SC √ √ √ Set Carry Bit

Set the C status bit to 1.

Instruction Set Comparison TablePRELIMINARY

A-31TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

SETC control bit √ √ Set Control Bit

Set the specified control bit to a logic 1. Maskable

interrupts are disabled immediately after the SETC

instruction executes.

SFL √ √ √ Shift Accumulator Left

Shift the contents of the accumulator left one bit.

SFLB √ Shift ACCB and Accumulator Left

Shift the concatenation of the accumulator and the

ACCB left one bit. The LSB of the ACCB is cleared to

0, and the MSB of the ACCB is shifted into the carry bit.

SFR √ √ √ Shift Accumulator Right

Shift the contents of the accumulator right one bit. If

SXM = 1, SFR produces an arithmetic right shift. If

SXM = 0, SFR produces a logic right shift.

SFRB √ Shift ACCB and Accumulator Right

Shift the concatenation of the accumulator and the

ACCB right 1 bit. The LSB of the ACCB is shifted into

the carry bit. If SXM = 1, SFRB produces an arithmetic

right shift. If SXM = 0, SFRB produces a logic right shift.

SFSM √ Set Serial Port Frame Synchronization Mode

Set the FSM status bit to 1.

SHM √ √ Set Hold Mode

Set the HM status bit to 1.

SMMR dma, #lk

SMMR {ind}, #lk [, next ARP]

√

√

Store Memory-Mapped Register

Store the memory-mapped register value, pointed at

by the seven LSBs of the data-memory address, into

the long immediate addressed data-memory location.

The nine MSBs of the data-memory address of the

memory-mapped register are cleared, regardless of

the current value of DP or the upper nine bits of

AR(ARP).

SOVM √ √ √ √ Set Overflow Mode

Set the OVM status bit to 1; this enables overflow

mode. (The ROVM instruction clears OVM.)

Instruction Set Comparison Table PRELIMINARY

 A-32 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

SPAC √ √ √ √ Subtract P Register From Accumulator

Subtract the contents of the P register from the

contents of the accumulator.

TMS320C2x, TMS320C2xx, and TMS320C5x de-

vices: Before the subtraction, shift the contents of the

P register as specified by the PM status bits.

SPH dma

SPH {ind} [, next ARP]

√

√

√

√

√

√

Store High P Register

Store the high-order bits of the P register (shifted as

specified by the PM status bits) at the addressed data-

memory location.

SPL dma

SPL {ind} [, next ARP]

√

√

√

√

√

√

Store Low P Register

Store the low-order bits of the P register (shifted as

specified by the PM status bits) at the addressed data-

memory location.

SPLK #lk, dma

SPLK #lk, {ind} [, next ARP]

√ √

√

Store Parallel Long Immediate

Write a full 16-bit pattern into a memory location. The

parallel logic unit (PLU) supports this bit manipulation

independently of the ALU, so the accumulator is

unaffected.

SPM 2-bit constant √ √ √ Set P Register Output Shift Mode

Copy a 2-bit immediate value into the PM field of ST1.

This controls shifting of the P register as shown below:

PM = 00 Multiplier output is not shifted.

PM = 01 Multiplier output is left shifted one place

and zero filled.

PM = 10 Multiplier output is left shifted four places

 and zero filled.

PM = 11 Multiplier output is right shifted six places

and sign extended; the LSBs are lost.

SQRA dma

SQRA {ind} [, next ARP]

√

√

√

√

√

√

Square and Accumulate Previous Product

Add the contents of the P register (shifted as specified

by the PM status bits) to the accumulator. Then load

the contents of the addressed data-memory location

into the T register (TMS320C2x/2xx) or TREG0

(TMS320C5x), square the value, and store the result

in the P register.

Instruction Set Comparison TablePRELIMINARY

A-33TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

SQRS dma

SQRS {ind} [, next ARP]

√

√

√

√

√

√

Square and Subtract Previous Product

Subtract the contents of the P register (shifted as

specified by the PM status bits) to the accumulator.

Then load the contents of the addressed data-memory

location into the T register (TMS320C2x/2xx) or

TREG0 (TMS320C5x), square the value, and store the

result in the P register.

SST dma

SST {ind} [, next ARP]

√

√

√

√

√

√

√

√

Store Status Register

Store the contents of the ST (TMS320C1x) or ST0

(TMS320C2x/2xx/5x) in the addressed data-memory

location.

SST #n, dma

SST #n, {ind} [, next ARP]

√

√

√

√

Store Status Register n

Store STn in data memory.

SST1 dma

SST1 {ind} [, next ARP]

√

√

√

√

√

√

Store Status Register ST1

Store the contents of ST1 in the addressed data-

memory location.

SSXM √ √ √ Set Sign-Extension Mode

Set the SXM status bit to 1; this enables sign

extension.

STC √ √ √ Set Test/Control Flag

Set the TC flag to 1.

STXM √ Set Serial Port Transmit Mode

Set the TXM status bit to 1.

SUB dma [, shift]

SUB {ind} [, shift [, next ARP]]

SUB #k

SUB #lk [, shift2]

√

√

√

√

√

√

√

√

√

√

√

√

Subtract From Accumulator With Shift

TMS320C1x and TMS320C2x devices: Subtract the

contents of the addressed data-memory location from

the accumulator. If a shift is specified, left shift the

value before subtracting. During shifting, low-order

bits are zero filled, and high-order bits are sign

extended if SXM = 1.

TMS320C2xx and TMS320C5x devices: Subtract the

contents of the addressed data-memory location or an

8- or 16-bit constant from the accumulator. If a shift is

specified, left shift the data before subtracting. During

shifting, low-order bits are zero filled, and high-order

bits are sign extended if SXM = 1.

Instruction Set Comparison Table PRELIMINARY

 A-34 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

SUBB dma

SUBB {ind} [, next ARP]

√

√

√

√

√

√

Subtract From Accumulator With Borrow

Subtract the contents of the addressed data-memory

location and the value of the carry bit from the accumu-

lator. The carry bit is affected in the normal manner.

SUBC dma

SUBC {ind} [, next ARP]

√

√

√

√

√

√

√

√

Conditional Subtract

Perform conditional subtraction. SUBC can be used

for division.

SUBH dma

SUBH {ind} [, next ARP]

√

√

√

√

√ √

√

Subtract From High Accumulator

Subtract the contents of the addressed data-memory

location from the 16 MSBs of the accumulator. The

16 LSBs of the accumulator are not affected.

SUBK #k √ √ √ Subtract From Accumulator Short Immediate

Subtract an 8-bit immediate value from the accumula-

tor. The data is treated as an 8-bit positive number;

sign extension is suppressed.

SUBS dma

SUBS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Subtract From Low Accumulator With Sign

Extension Suppressed

Subtract the contents of the addressed data-memory

location from the accumulator. The data is treated as

a 16-bit unsigned number; sign extension is

suppressed.

SUBT dma

SUBT {ind} [, next ARP]

√

√

√

√

√

√

Subtract From Accumulator With Shift Specified

by T Register

Left shift the data-memory value as specified by the

four LSBs of the T register (TMS320C2x/2xx) or

TREG1 (TMS320C5x), and subtract the result from

the accumulator. If a shift is specified, left shift the data-

memory value before subtracting. During shifting, low-

order bits are zero filled, and high-order bits are sign

extended if SXM = 1.

SXF √ √ √ Set External Flag

Set the XF pin and the XF status bit to 1.

TBLR dma

TBLR {ind} [, next ARP]

√

√

√

√

√

√

√

√

Table Read

Transfer a word from program memory to a data-

memory location. The program-memory address is in

the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x)

LSBs of the accumulator.

Instruction Set Comparison TablePRELIMINARY

A-35TMS320C1x/C2x/C24x/C5x Instruction Set ComparisonPRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

TBLW dma

TBLW {ind} [, next ARP]

√

√

√

√

√

√

√

√

Table Write

Transfer a word from data-memory to a program-

memory location. The program-memory address is in

the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x)

LSBs of the accumulator.

TRAP √ √ √ Software Interrupt

The TRAP instruction is a software interrupt that trans-

fers program control to program-memory address 30h

(TMS320C2x) or 22h (TMS320C2xx/5x) and pushes

the PC + 1 onto the hardware stack. The instruction at

address 30h or 22h may contain a branch instruction

to transfer control to the TRAP routine. Putting the

PC + 1 on the stack enables an RET instruction to pop

the return PC.

XC n, cond1 [, cond2] [, ...] √ Execute Conditionally

Execute conditionally the next n instruction words

where 1 ≤ n ≤ 2. Not all combinations of conditions are

meaningful.

XOR dma

XOR {ind} [, next ARP]

XOR #lk [, shift]

√

√

√

√

√

√

√

√

√

√

Exclusive-OR With Accumulator

TMS320C1x and TMS320C2x devices: Exclusive-OR

the contents of the addressed data-memory location

with 16 LSBs of the accumulator. The MSBs are not af-

fected.

TMS320C2xx and TMS320C5x devices: Exclusive-

OR the contents of the addressed data-memory loca-

tion or a 16-bit immediate value with the accumulator.

If a shift is specified, left shift the value before perform-

ing the exclusive-OR operation. Low-order bits below

and high-order bits above the shifted value are treated

as 0s.

XORB √ Exclusive-OR of ACCB With Accumulator

Exclusive-OR the contents of the accumulator with the

contents of the ACCB. The results are placed in the

accumulator.

XORK #lk [, shift] √ √ √ Exclusive-OR Immediate With Accumulator With

Shift

Exclusive-OR a 16-bit immediate value with the accu-

mulator. If a shift is specified, left shift the value before

performing the exclusive-OR operation. Low-order

bits below and high-order bits above the shifted value

are treated as 0s.

Instruction Set Comparison Table PRELIMINARY

 A-36 PRELIMINARY

Table A–3. Instruction Set Comparison (Continued)

Syntax Description5x2xx2x1x

XPL [#lk,] dma

XPL [#lk ,] {ind} [, next ARP]

√

√

Exclusive-OR of Long Immediate or DBMR

With Addressed Data-Memory Value

If a long immediate value is specified, exclusive OR it

with the addressed data-memory value; otherwise,

exclusive OR the DBMR with the addressed data-

memory value. Write the result back to the data-

memory location. The accumulator is not affected.

ZAC √ √ √ √ Zero Accumulator

Clear the contents of the accumulator to 0.

ZALH dma

ZALH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Zero Low Accumulator and Load High

Accumulator

Clear the 16 LSBs of the accumulator to 0 and load the

contents of the addressed data-memory location into

the 16 MSBs of the accumulator.

ZALR dma

ZALR {ind} [, next ARP]

√

√

√

√

√

√

Zero Low Accumulator, Load High Accumulator

With Rounding

Load the contents of the addressed data-memory

location into the 16 MSBs of the accumulator. The

value is rounded by 1/2 LSB; that is, the 15 LSBs of the

accumulator (0–14) are cleared and bit 15 is set to 1.

ZALS dma

ZALS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Zero Accumulator, Load Low Accumulator With

Sign Extension Suppressed

Load the contents of the addressed data-memory

location into the 16 LSBs of the accumulator. The

16 MSBs are zeroed. The data is treated as a 16-bit

unsigned number.

ZAP √ Zero the Accumulator and Product Register

The accumulator and product register are zeroed. The

ZAP instruction speeds up the preparation for a repeat

multiply/accumulate.

ZPR √ Zero the Product Register

The product register is cleared.

B-1

Appendix A

��	������������
��������

The size of a printed circuit board is a consideration in many DSP applications.

To make full use of the board space, Texas Instruments offers a ROM code

option that reduces the chip count and provides a single-chip solution. This

option allows you to use a code-customized processor for a specific applica-

tion while taking advantage of:

� Greater memory expansion

� Lower system cost

� Less hardware and wiring

� Smaller PCB

If a routine or algorithm is used often, it can be programmed into the on-chip

ROM of a TMS320 DSP. TMS320 programs can also be expanded by using

external memory; this reduces chip count and allows for a more flexible pro-

gram memory. Multiple functions are easily implemented by a single device,

thus enhancing system capabilities.

TMS320 development tools are used to develop, test, refine, and finalize the

algorithms. The microprocessor/microcomputer (MP/MC) mode is available

on all ROM-coded TMS320 DSP devices when accesses to either on-chip or

off-chip memory are required. The microprocessor mode is used to develop,

test, and refine a system application. In this mode of operation, the TMS320

acts as a standard microprocessor by using external program memory. When

the algorithm has been finalized, the code can be submitted to Texas Instru-

ments for masking into the on-chip program ROM. At that time, the TMS320

becomes a microcomputer that executes customized programs from the on-

chip ROM. Should the code need changing or upgrading, the TMS320 can

once again be used in the microprocessor mode. This shortens the field-

upgrade time and prevents the possibility of inventory obsolescence.

Figure B–1 illustrates the procedural flow for developing and ordering
TMS320 masked parts. When ordering, there is a one-time, nonrefundable
charge for mask tooling. A minimum production order per year is required for
any masked-ROM device. ROM codes will be deleted from the TI system one
year after the final delivery.

Appendix B

PRELIMINARY

PRELIMINARY

Submitting ROM Codes to TI PRELIMINARY

 B-2 PRELIMINARY

Figure B–1. TMS320 ROM Code Procedural Flow Chart

Customer TMS320 Design

Customer submits:
— TMS320 New Code Release Form
— Print Evaluation and Acceptance Form (PEAF)
— Purchase order for mask prototypes
— TMS320 code

Texas Instruments responds:
— Customer code input into TI system
— Code sent back to customer for verification

Customer
approves
algorithm

TI produces prototypes

Customer
approves

prototypes (minimum
production order

required)

TMS320 production

Yes

Yes

No

No

Submitting ROM Codes to TIPRELIMINARY

B-3Submitting ROM Codes to TIPRELIMINARY

The TMS320 ROM code may be submitted in one of the following forms:

� 3-1/2-in floppy: COFF format from macro-assembler/linker (preferred)

� Modem (BBS): COFF format from macro-assembler/linker

� EPROM (others): TMS27C64

� PROM: TBP28S166, TBP28S86

When code is submitted to TI for masking, the code is reformatted to accom-

modate the TI mask-generation system. System-level verification by the cus-

tomer is, therefore, necessary to ensure the reformatting remains transparent

and does not affect the execution of the algorithm. The formatting changes

involve the removal of address-relocation information (the code address

begins at the base address of the ROM in the TMS320 device and progresses

without gaps to the last address of the ROM) and the addition of data in the

reserved locations of the ROM for device ROM test. Because these changes

have been made, a checksum comparison is not a valid means of verification.

With each masked-device order, the customer must sign a disclaimer that

states:

The units to be shipped against this order were assembled, for expe-
diency purposes, on a prototype (that is, nonproduction qualified)

manufacturing line, the reliability of which is not fully characterized.
Therefore, the anticipated inherent reliability of these prototype units
cannot be expressly defined.

and a release that states:

Any masked ROM device may be resymbolized as TI standard
product and resold as though it were an unprogrammed version of
the device, at the convenience of Texas Instruments.

The use of the ROM-protect feature does not hold for this release statement.

Additional risk and charges are involved when the ROM-protect feature is

selected. Contact the nearest TI Field Sales Office for more information on

procedures, leadtimes, and cost associated with the ROM-protect feature.

Submitting ROM Codes to TI PRELIMINARY

 B-4 PRELIMINARY

C-1

Appendix A

����� �����������������
	��������
��������������

This appendix assists you in meeting the design requirements of the Texas

Instruments XDS510� emulator for IEEE-1149.1 designs and discusses the

XDS510 cable (manufacturing part number 2617698-0001). This cable is

identified by a label on the cable pod marked JTAG 3/5V and supports both

standard 3-V and 5-V target system power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which

is based on the IEEE 1149.1 standard.

For more information concerning the IEEE 1149.1 standard, contact IEEE

Customer Service:

Address: IEEE Customer Service

445 Hoes Lane, PO Box 1331

Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada

(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667 Telex: 833233

Topic Page

C.1 Designing Your Target System’s Emulator Connector
(14-Pin Header) C-2.

C.2 Bus Protocol C-4.

C.3 Emulator Cable Pod C-5.

C.4 Emulator Cable Pod Signal Timing C-6.

C.5 Emulation Timing Calculations C-7.

C.6 Connections Between the Emulator and the Target System C-10.

C.7 Physical Dimensions for the 14-Pin Emulator Connector C-14.

C.8 Emulation Design Considerations C-16.

Appendix C

PRELIMINARY

PRELIMINARY

Designing Your Target System’s Emulator Connector (14-Pin Header) PRELIMINARY

 C-2 PRELIMINARY

C.1 Designing Your Target System’s Emulator Connector (14-Pin Header)

JTAG target devices support emulation through a dedicated emulation port.
This port is accessed directly by the emulator and provides emulation func-
tions that are a superset of those specified by IEEE 1149.1. To communicate
with the emulator, your target system must have a 14-pin header (two rows of
seven pins) with the connections that are shown in Figure C–1. Table C–1
describes the emulation signals.

Although you can use other headers, the recommended unshrouded, straight

header has these DuPont connector systems part numbers:

� 65610–114

� 65611–114

� 67996–114

� 67997–114

Figure C–1. 14-Pin Header Signals and Header Dimensions

TDI 3 4 GND

TDO 7 8 GND

TMS 1 2 TRST

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1

† While the corresponding female position on the cable connector is plugged to prevent improper

connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the

schematics and wiring diagrams in this appendix.

Designing Your Target System’s Emulator Connector (14-Pin Header)PRELIMINARY

C-3Design Considerations for Using the XDS510 EmulatorPRELIMINARY

Table C–1. 14-Pin Header Signal Descriptions

Signal Description
Emulator†

State

Target†

State

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

GND Ground

PD(VCC) Presence detect. Indicates that the emulation

cable is connected and that the target is

powered up. PD must be tied to VCC in the tar-

get system.

I O

TCK Test clock. TCK is a 10.368-MHz clock

source from the emulation cable pod. This

signal can be used to drive the system test

clock.

O I

TCK_RET Test clock return. Test clock input to the emu-

lator. May be a buffered or unbuffered version

of TCK.

I O

TDI Test data input O I

TDO Test data output I O

TMS Test mode select O I

TRST‡ Test reset O I

† I = input; O = output
‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

Bus Protocol PRELIMINARY

 C-4 PRELIMINARY

C.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port

(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS and TDI inputs are sampled on the rising edge of the TCK signal

of the device.

� The TDO output is clocked from the falling edge of the TCK signal of the

device.

When these devices are daisy-chained together, the TDO of one device has

approximately a half TCK cycle setup time before the next device’s TDI signal.

This timing scheme minimizes race conditions that would occur if both TDO

and TDI were timed from the same TCK edge. The penalty for this timing

scheme is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-

tor) devices. Instead, it states that the device expects a bus master to provide

bus slave compatible timings. The XDS510 provides timings that meet the bus

slave rules.

Emulator Cable PodPRELIMINARY

C-5Design Considerations for Using the XDS510 EmulatorPRELIMINARY

C.3 Emulator Cable Pod

Figure C–2 shows a portion of the emulator cable pod. The functional features

of the pod are:

� TDO and TCK_RET can be parallel-terminated inside the pod if required

by the application. By default, these signals are not terminated.

� TCK is driven with a 74LVT240 device. Because of the high-current drive

(32-mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied to

TCK_RET, you can use the parallel terminator in the pod.

� TMS and TDI can be generated from the falling edge of TCK_RET, accord-

ing to the IEEE 1149.1 bus slave device timing rules.

� TMS and TDI are series terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You can also provide your

own test clock for greater flexibility.

Figure C–2. Emulator Cable Pod Interface

100 Ω

TL7705A
RESIN

270 Ω

JP2

180 Ω

TCK_RET (pin 9)�

EMU1 (pin 14)

EMU0 (pin 13)

74AS1034

GND (pins 4,6,8,10,12)

TRST (pin 2)

TCK (pin 11)�

10.368 MHz

33 Ω

33 Ω

TDI (pin 3)

TMS (pin 1)

TDO (pin 7)

74LVT240

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD(VCC) (pin 5)

5 V

5 V

74AS1004

Y

Y

Y

Y

A

† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an

optional target system test clock source.

Emulator Cable Pod Signal Timing PRELIMINARY

 C-6 PRELIMINARY

C.4 Emulator Cable Pod Signal Timing

Figure C–3 shows the signal timings for the emulator cable pod. Table C–2

defines the timing parameters illustrated in the figure. These timing parame-

ters are calculated from values specified in the standard data sheets for the

emulator and cable pod and are for reference only. Texas Instruments does

not test or guarantee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-

zation. TCK is provided as an optional target system test clock source.

Figure C–3. Emulator Cable Pod Timings

TDO

TMS, TDI

TCK_RET

6
5

4

3
2

1

Table C–2. Emulator Cable Pod Timing Parameters

No. Parameter Description Min Max Unit

1 tc(TCK) Cycle time, TCK_RET 35 200 ns

2 tw(TCKH) Pulse duration, TCK_RET high 15 ns

3 tw(TCKL) Pulse duration, TCK_RET low 15 ns

4 td(TMS) Delay time, TMS or TDI valid for TCK_RET low 6 20 ns

5 tsu(TDO) Setup time, TDO to TCK_RET high 3 ns

6 th(TDO) Hold time, TDO from TCK_RET high 12 ns

Emulation Timing CalculationsPRELIMINARY

C-7Design Considerations for Using the XDS510 EmulatorPRELIMINARY

C.5 Emulation Timing Calculations

The examples in this section help you calculate emulation timings in your sys-

tem. For actual target timing parameters, see the appropriate data sheet for

the device you are emulating.

The examples use the following assumptions:

tsu(TTMS) Setup time, target TMS or TDI to TCK
high 10 ns

td(TTDO) Delay time, target TDO from TCK low 15 ns

td(bufmax) Delay time, target buffer maximum 10 ns

td(bufmin) Delay time, target buffer minimum 1 ns

tbufskew Skew time, target buffer between two de-
vices in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

tTCKfactor Duty cycle, assume a 40/60% duty cycle
clock

0.4
(40%)

Also, the examples use the following values from Table C–2 on page C-6:

td(TMSmax) Delay time, emulator TMS or TDI from
TCK_RET low, maximum

20 ns

tsu(TDOmin) Setup time, TDO to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS or TDI path, called tpd(TCK_RET-TMS/TDI) (propaga-

tion delay time)

� The TCK_RET-to-TDO path, called tpd(TCK_RET-TDO)

In the examples, the worst-case path delay is calculated to determine the

maximum system test clock frequency.

Emulation Timing Calculations PRELIMINARY

 C-8 PRELIMINARY

Example C–1. Key Timing for a Single-Processor System Without Buffers

� The following example calculates key timing for a single-processor system

without buffers.

t
pd �TCK_RET-TMS�TDI� �

�t
d �TMSmax�� t

su �TTMS��
tTCKfactor

�
(20 ns � 10 ns)

0.4

� 75 ns, or 13.3 MHz

t
pd �TCK_RET–TDO� �

�t
d �TTDO� � t

su �TDOmin��
tTCKfactor

�
(15 ns � 3 ns)

0.4

� 45 ns, or 22.2 MHz

In the preceding example, the TCK_RET-to-TMS/TDI path is the limiting factor

because it requires more time to complete.

� The following example calculates key timing for a single- or multiple-pro-

cessor system with buffered input and output:

t
pd (TCK_RET-TMS�TDI)

�
�td (TMSmax)

� tsu (TTMS)
� t bufskew

�
tTCKfactor

�
(20 ns � 10 ns � 1.35 ns)

0.4

� 78.4 ns, or 12.7 MHz

t
pd (TCK_RET–TDO)

�
�td (TTDO)

� tsu (TDOmin) � td (bufmax)
�

t TCKfactor

� 70 ns, or 14.3 MHz

�
(15 ns � 3 ns � 10 ns)

0.4

In the preceding example, the TCK_RET-to-TMS/TDI path is the limiting factor

becaise it requires more time to complete.

Emulation Timing CalculationsPRELIMINARY

C-9Design Considerations for Using the XDS510 EmulatorPRELIMINARY

In a multiprocessor application, it is necessary to ensure that the EMU0 and

EMU1 lines can go from a logic-low level to a logic-high level in less than 10 µs,

this parameter is called rise time, tr. This can be calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� × 16 × 15 pF)

= 5(4.7 × 103 � × 16 × 15 = no –12 F)

= 5(1128 × 10 –9 �

= 5.64 µs

Connections Between the Emulator and the Target System PRELIMINARY

 C-10 PRELIMINARY

C.6 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator

and the JTAG target system. You must supply the correct signal buffering, test

clock inputs, and multiple processor interconnections to ensure proper emula-

tor and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can

be either input or output. In general, these two pins are used as both input and

output in multiprocessor systems to handle global run/stop operations. EMU0

and EMU1 signals are applied only as inputs to the XDS510 emulator header.

C.6.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is

greater than 6 inches, the emulation signals must be buffered. If the distance

is less than 6 inches, no buffering is necessary. Figure C–4 shows the simpler,

no-buffering situation.

The distance between the header and the JTAG target device must be no more

than 6 inches. The EMU0 and EMU1 signals must have pullup resistors con-

nected to VCC to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor

is suggested for most applications.

Figure C–4. Emulator Connections Without Signal Buffering

VCC

Emulator header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 inches or less

Figure C–5 shows the connections necessary for buffered transmission sig-

nals. The distance between the emulation header and the processor is greater

than 6 inches. Emulation signals TMS, TDI, TDO, and TCK_RET are buffered

through the same device package.

Connections Between the Emulator and the Target SystemPRELIMINARY

C-11Design Considerations for Using the XDS510 EmulatorPRELIMINARY

Figure C–5. Emulator Connections With Signal Buffering

VCC

Emulator header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater than
6 inches

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to

provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for

most applications.

The input buffers for TMS and TDI should have pullup resistors connected to

VCC to hold these signals at a known value when the emulator is not con-

nected. A resistor value of 4.7 kΩ or greater is suggested.

To have high-quality signals (especially the processor TCK and the emulator

TCK_RET signals), you may have to employ special care when routing the

printed wiring board trace. You also may have to use termination resistors to

match the trace impedance. The emulator pod provides optional internal paral-

lel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series

termination.

Because TRST is an asynchronous signal, it should be buffered as needed to

ensure sufficient current to all target devices.

Connections Between the Emulator and the Target System PRELIMINARY

 C-12 PRELIMINARY

C.6.2 Using a Target-System Clock

Figure C–6 shows an application with the system test clock generated in the

target system. In this application, the emulator’s TCK signal is left

unconnected.

Figure C–6. Target-System-Generated Test Clock

NC

System test clock

VCC

Emulator header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater than
6 inches

VCC

Note: When the TMS and TDI lines are buffered, pullup resistors must be used to hold the buffer

inputs at a known level when the emulator cable is not connected.

There are two benefits in generating the test clock in the target system:

� The emulator provides only a single 10.368-MHz test clock. If you allow

the target system to generate your test clock, you can set the frequency

to match your system requirements.

� In some cases, you may have other devices in your system that require

a test clock when the emulator is not connected. The system test clock

also serves this purpose.

Connections Between the Emulator and the Target SystemPRELIMINARY

C-13Design Considerations for Using the XDS510 EmulatorPRELIMINARY

C.6.3 Configuring Multiple Processors

Figure C–7 shows a typical daisy-chained multiprocessor configuration that

meets the minimum requirements of the IEEE 1149.1 specification. The

emulation signals are buffered to isolate the processors from the emulator and

provide adequate signal drive for the target system. One of the benefits of this

interface is that you can slow down the test clock to eliminate timing problems.

Follow these guidelines for multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals must be buffered through

the same physical device package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK must have pullup resistors con-

nected to VCC to hold these signals at a known value when the emulator

is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide

isolation. These are not critical signals and do not have to be buffered

through the same physical package as TMS, TCK, TDI, and TDO.

Figure C–7. Multiprocessor Connections

TDITDI TDOTDO

JTAG deviceJTAG device

VCC

Emulator header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1 VCC

Physical Dimensions for the 14-Pin Emulator Connector PRELIMINARY

 C-14 PRELIMINARY

C.7 Physical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable

that connects to the emulator, an active cable pod, and a short section of jack-

eted cable that connects to the target system. The overall cable length is

approximately 3 feet 10 inches. Figure C–8 and Figure C–9 show the physical

dimensions for the target cable pod and short cable. The cable pod box is non-

conductive plastic with four recessed metal screws.

Figure C–8. Pod/Connector Dimensions

0.90

2.70

4.50

9.50

See Figure C–9

Emulator cable pod

Short, jacketed cable

Connector

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified. Pin-to-pin spacing on the connec-

tor is 0.100 inches in both the X and Y planes.

Physical Dimensions for the 14-Pin Emulator ConnectorPRELIMINARY

C-15Design Considerations for Using the XDS510 EmulatorPRELIMINARY

Figure C–9. 14-Pin Connector Dimensions

0.100
(pin spacing)

Key, pin 6

0.100
(pin spacing)

0.87

0.66

0.20

Cable

Connector, side view

Connector, front view

Cable

1

3

5

7

9

11

13

2

4

6

8

10

12

14

2 rows of pins

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

Pin-to-pin spacing on the connector is 0.100 inches in both the X and Y planes.

Emulation Design Considerations PRELIMINARY

 C-16 PRELIMINARY

C.8 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),

which can simultaneously add all four secondary JTAG scan paths to the main

scan path. It also describes the use of the emulation pins and the configuration

of multiple processors.

C.8.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG

emulation scan path into smaller, logically connected groups of 4 to 16

devices. As described in the Advanced Logic and Bus Interface Logic Data

Book, the SPL is compatible with the JTAG emulation scanning. The SPL is

capable of adding any combination of its four secondary scan paths into the

main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance

and isolation than a single scan path. Since an SPL has the capability of adding

all secondary scan paths to the main scan path simultaneously, it can support

global emulation operations, such as starting or stopping a selected group of

processors.

TI emulators do not support the nesting of SPLs (for example, an SPL

connected to the secondary scan path of another SPL). However, you can

have multiple SPLs on the main scan path.

Scan path selectors are not supported by this emulation system. The TI

ACT8999 scan path selector is similar to the SPL, but it can add only one of

its secondary scan paths at a time to the main JTAG scan path. Thus, global

emulation operations are not assured with the scan path selector.

You can insert an SPL on a backplane so that you can add up to four device

boards to the system without the jumper wiring required with nonbackplane

devices. You connect an SPL to the main JTAG scan path in the same way you

connect any other device. Figure C–10 shows how to connect a secondary

scan path to an SPL.

Emulation Design ConsiderationsPRELIMINARY

C-17Design Considerations for Using the XDS510 EmulatorPRELIMINARY

Figure C–10. Connecting a Secondary JTAG Scan Path to a Scan Path Linker

TDI

TCK

TDO

TRST

TMS

TDO

TRST

TCK

TMS

TDI

DTDI0

DTMS0

DTDO0

DTCK

TDO

TRST

TCK

TMS

TDI

SPL

JTAG 0

JTAG n
DTDI1

DTMS1

DTDO1

DTDI2

DTMS2

DTDO2

DTDI3

DTMS3

DTDO3

.
.
.

The TRST signal from the main scan path drives all devices, even those on

the secondary scan paths of the SPL. The TCK signal on each target device

on the secondary scan path of an SPL is driven by the SPL’s DTCK signal. The

TMS signal on each device on the secondary scan path is driven by the respec-

tive DTMS signals on the SPL.

DTDO0 on the SPL is connected to the TDI signal of the first device on the sec-

ondary scan path. DTDI0 on the SPL is connected to the TDO signal of the last

device in the secondary scan path. Within each secondary scan path, the TDI

signal of a device is connected to the TDO signal of the device before it. If the

SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;

if signal degradation is a problem, you may need to buffer both the TRST and

DTCK signals. Although degradation is less likely for DTMSn signals, you may

also need to buffer them for the same reasons.

Emulation Design Considerations PRELIMINARY

 C-18 PRELIMINARY

C.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL)

The examples in this section help you to calculate the key emulation timings

in the SPL secondary scan path of your system. For actual target timing pa-

rameters, see the appropriate device data sheet for your target device.

The examples use the following assumptions:

tsu(TTMS) Setup time, target TMS/TDI to TCK high 10 ns

td(TTDO) Delay time, target TDO from TCK low 15 ns

td(bufmax) Delay time, target buffer, maximum 10 ns

td(bufmin) Delay time, target buffer, minimum 1 ns

t(bufskew) Skew time, target buffer, between two
devices in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Duty cycle, TCK assume a 40/60% clock 0.4
(40%)

Also, the examples use the following values from the SPL data sheet:

td(DTMSmax) Delay time, SPL DTMS/DTDO from TCK
low, maximum

31 ns

tsu(DTDLmin) Setup time, DTDI to SPL TCK high,
minimum

7 ns

td(DTCKHmin) Delay time, SPL DTCK from TCK high,
minimum

2 ns

td(DTCKLmax) Delay time, SPL DTCK from TCK low,
maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK-DTMS)
� The TCK-to-DTDI path, called tpd(TCK-DTDI)

Emulation Design ConsiderationsPRELIMINARY

C-19Design Considerations for Using the XDS510 EmulatorPRELIMINARY

In the following two examples, the worst-case path delay is calculated to deter-

mine the maximum system test clock frequency.

Example C–2. Key Timing for a Single-Processor System Without Buffering (SPL)

� The following example calculates key timing for a single-processor system

without buffering (SPL):

t
pd �TCK-DTMS� �

�t
d �DTMSmax� � t

d �DTCKHmin�� t
su �TTMS�

�
tTCKfactor

�
(31 ns � 2 ns � 10 ns)

0.4

� 107.5 ns, or 9.3 MHz

t
pd �TCK-DTDI�

�
�t

d �TTDO�� t
d �DTCKLmax�

� t
su �DTDLmin�

�
t
TCKfactor

�
(15 ns � 16 ns � 7 ns)

0.4

� 9.5 ns, or 10.5 MHz

In the preceding example, the TCK-to-DTMS/DTDL path is the limiting factor.

� The following example calculates key timing for a single- or multiprocessor-

system with buffered input and output (SPL):

tpd (TCK-TDMS) �
�td (DTMSmax) � t�DTCKHmin�� tsu (TTMS) � t(bufskew)

�
tTCKfactor

�
(31 ns � 2 ns � 10 ns � 1.35 ns)

0.4

� 110.9 ns, or 9.0 MHz

tpd (TCK–DTDI) �
�td (TTDO) � t

d �DTCKLmax� � tsu (DTDLmin)
� td (bufskew)

�
tTCKfactor

� 120 ns, or 8.3 MHz

�
(15 ns � 15 ns � 7 ns � 10 ns)

0.4

In the preceding example, the TCK-to-DTDI path is the limiting factor.

Emulation Design Considerations PRELIMINARY

 C-20 PRELIMINARY

C.8.3 Using Emulation Pins

The EMU0/1 pins of TI devices are bidirectional, 3-state output pins. When in

an inactive state, these pins are at high impedance. When the pins are active,

they provide one of two types of output:

� Signal event. The EMU0/1 pins can be configured via software to signal

internal events. In this mode, driving one of these pins low can cause

devices to signal such events. To enable this operation, the EMU0/1 pins

function as open-collector sources. External devices such as logic analyz-

ers can also be connected to the EMU0/1 signals in this manner. If such

an external source is used, it must also be connected via an open-collector

source.

� External count. The EMU0/1 pins can be configured via software as totem-

pole outputs for driving an external counter. If the output of more than one

device is configured for totem-pole operation, then these devices can be

damaged. The emulation software detects and prevents this condition.

However, the emulation software has no control over external sources on

the EMU0/1 signal. Therefore, all external sources must be inactive when

any device is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1

pins are driven low. This feature combined with the signal event output, allows

one TI device to halt all other TI devices on a given event for system-level de-

bugging.

If you route the EMU0/1 signals between multiple boards, they require special

handling because they are more complex than normal emulation signals.

Figure C–11 shows an example configuration that allows any processor in the

system to stop any other processor in the system. Do not tie the EMU0/1 pins

of more than 16 processors together in a single group without using buffers.

Buffers provide the crisp signals that are required during a RUNB (run bench-

mark) debugger command or when the external analysis counter feature is

used.

Emulation Design ConsiderationsPRELIMINARY

C-21Design Considerations for Using the XDS510 EmulatorPRELIMINARY

Figure C–11. EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns

Open-
collector
drivers

EMU0/1-IN

Backplane

Target board m

TCK

XCNT_ENABLE

To emulator EMU0

PAL
Pullup
resistor

Open-
collector
drivers

Target board 1

EMU0/1

EMU0/1-OUT

. . .
Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Pullup
resistor

Pullup
resistor

Notes: 1) The low time on EMU0/1-IN must be at least one TCK cycle and less than 10 �s. Software sets the EMU0/1-OUT

pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall times of less than 25 ns, the modifi-

cation shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false edges

during the RUNB command or when the external counter selected from the debugger analysis menu is used.

These seven important points apply to the circuitry shown in Figure C–11 and

the timing shown in Figure C–12:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied

together on each board.

� At the board edge, the EMU0/1 signals are split to provide both input and

output connections. This is required to prevent the open-collector drivers

from acting as latches that can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors must

be installed as required.

Emulation Design Considerations PRELIMINARY

 C-22 PRELIMINARY

� The bused EMU0/1 signals go into a programmable logic array device

PAL�, whose function is to generate a low pulse on the EMU0/1-IN signal

when a low level is detected on the EMU0/1-OUT signal. This pulse must

be longer than one TCK period to affect the devices but less than 10 µs

to avoid possible conflicts or retriggering once the emulation software

clears the device’s pins.

� During a RUNB debugger command or other external analysis count, the

EMU0/1 pins on the target device become totem-pole outputs. The EMU1

pin is a ripple carry-out of the internal counter. EMU0 becomes a proces-

sor-halted signal. During a RUNB or other external analysis count, the

EMU0/1-IN signal to all boards must remain in the high (disabled) state.

You must provide some type of external input (XCNT_ENABLE) to the

PAL� to disable the PAL� from driving EMU0/1-IN to a low state.

� If you use sources other than TI processors (such as logic analyzers) to

drive EMU0/1, their signal lines must be isolated by open-collector drivers

and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or

directly to a test bus controller.

Figure C–12. Suggested Timings for the EMU0 and EMU1 Signals

EMU0/1-IN

EMU0/1-OUT

TCK

Emulation Design ConsiderationsPRELIMINARY

C-23Design Considerations for Using the XDS510 EmulatorPRELIMINARY

Figure C–13. EMU0/1 Configuration With Additional AND Gate to Meet Timing
Requirements of Greater Than 25 ns

Open-
collector
drivers

EMU0/1-IN

Backplane

Target board m

TCK

XCNT_ENABLE

To emulator EMU0

PAL
Pullup
resistor

Open-
collector
drivers

Target board 1

EMU0/1

EMU1 signal from other boards

EMU1
AND

To emulator EMU1

Circuitry required for >25-ns rise/
fall time modification

EMU0/1-OUT

. . .
Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Up to
m boards

Pullup
resistor

Pullup
resistor

Notes: 1) The low time on EMU0/1-IN must be at least one TCK cycle and less than 10 �s. Software sets the EMU0/1-OUT pin

to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall time of greater than 25 ns, the

modification shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false

edges during the RUNB command or when the external counter selected from the debugger analysis menu is used.

Emulation Design Considerations PRELIMINARY

 C-24 PRELIMINARY

You do not need to have devices on one target board stop devices on another

target board using the EMU0/1 signals (see the circuit in Figure C–14). In this

configuration, the global-stop capability is lost. It is important not to overload

EMU0/1 with more than 16 devices.

Figure C–14. EMU0/1 Configuration Without Global Stop

EMU0/1

To emulator

. . .

EMU0/1

. . .Device Device

EMU0/1

. . .

. . .

. . .

1 n

Device Device
1 n

. . .

Target board m

Target board 1

Pullup
resistor

Pullup
resistor

Pullup
resistor

Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rise/fall times of less than 25 ns. Rise times

of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter

selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1 signals from the

individual boards must be ANDed together (as shown in Figure C–14) to produce an EMU0/1 signal for the emulator.

C.8.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the

emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead

of the emulation header. The TBC is described in the Texas Instruments

Advanced Logic and Bus Interface Logic Data Book. Figure C–15 shows the

scan path connections of n devices to the TBC.

Emulation Design ConsiderationsPRELIMINARY

C-25Design Considerations for Using the XDS510 EmulatorPRELIMINARY

Figure C–15. TBC Emulation Connections for n JTAG Scan Paths

JTAG 0

JTAG nTDI

EMU1

TMS

TDO

EMU0

TRST

TCK

TDO

TCK

TRST

EMU1

EMU0

TMS

TDI

Clock

TDI1

TDI0

TCKO

TMS5/EVNT3

TMS4/EVNT2

TMS3/EVNT1

TMS2/EVNT0

TMS1

TMS0

TDO

TCKI

VCC

TBC

In the system design shown in Figure C–15, the TBC emulation signals TCKI,

TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0

are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target

devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-

tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.

The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the

main JTAG scan path is driven by the TBC’s TCKO pin.

On the TBC, the TMS0 pin drives the TMS pins on each device on the main

JTAG scan path. TDO on the TBC connects to TDI on the first device on the

main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the

last device on the main JTAG scan path. Within the main JTAG scan path, the

TDI signal of a device is connected to the TDO signal of the device before it.

TRST for the devices can be generated either by inverting the TBC’s

TMS5/EVNT3 signal for software control or by logic on the board itself.

PRELIMINARY

 C-26 PRELIMINARY

D-1

Appendix A

��������

A

A0–A15: Collectively, the external address bus; the 16 pins are used in par-

allel to address external data memory, program memory, or I/O space.

ACC: See accumulator.

ACCH: Accumulator high word. The upper 16 bits of the accumulator. See

also accumulator.

ACCL: Accumulator low word. The lower 16 bits of the accumulator. See

also accumulator.

accumulator: A 32-bit register that stores the results of operations in the

central arithmetic logic unit (CALU) and provides an input for subsequent

CALU operations. The accumulator also performs shift and rotate opera-

tions.

address: The location of program code or data stored in memory.

addressing mode: A method by which an instruction interprets its operands

to acquire the data it needs. See also direct addressing; immediate

addressing; indirect addressing.

analog-to-digital (A/D) converter: A circuit that translates an analog signal

to a digital signal.

AR: See auxiliary register.

AR0–AR7: Auxiliary registers 0 through 7. See auxiliary register.

ARAU: See auxiliary register arithmetic unit (ARAU).

ARB: See auxiliary register pointer buffer (ARB).

ARP: See auxiliary register pointer (ARP).

auxiliary register: One of eight 16-bit registers (AR7–AR0) used as point-

ers to addresses in data space. The registers are operated on by the aux-

iliary register arithmetic unit (ARAU) and are selected by the auxiliary

register pointer (ARP).

Appendix D

PRELIMINARY

PRELIMINARY

Glossary PRELIMINARY

D-2 PRELIMINARY

auxiliary register arithmetic unit (ARAU): A 16-bit arithmetic unit used to

increment, decrement, or compare the contents of the auxiliary registers.

Its primary function is manipulating auxiliary register values for indirect

addressing.

auxiliary register pointer (ARP): A 3-bit field in status register ST0 that

points to the current auxiliary register.

auxiliary register pointer buffer (ARB): A 3-bit field in status register ST1

that holds the previous value of the auxiliary register pointer (ARP).

B

B0: An on-chip block of dual-access RAM that can be configured as either

data memory or program memory, depending on the value of the CNF

bit in status register ST1.

B1: An on-chip block of dual-access RAM available for data memory.

B2: An on-chip block of dual-access RAM available for data memory.

BIO pin: A general-purpose input pin that can be tested by conditional

instructions that cause a branch when an external device drives BIO low.

bit-reversed indexed addressing: A method of indirect addressing that

allows efficient I/O operations by resequencing the data points in a

radix-2 fast Fourier transform (FFT) program. The direction of carry

propagation in the ARAU is reversed.

boot loader: A built-in segment of code that transfers code from an 8-bit

external source to a 16-bit external program destination at reset.

BOOT pin: The pin that enables the on-chip boot loader. When BOOT is held

low, the processor executes the boot loader program after a hardware

reset. When BOOT is held high, the processor skips execution of the boot

loader and accesses off-chip program-memory at reset.

BR: Bus request pin. This pin is tied to the BR signal, which is asserted when

a global data memory access is initiated.

branch: A switching of program control to a nonsequential program-

memory address.

GlossaryPRELIMINARY

D-3GlossaryPRELIMINARY

C

C bit: See carry bit.

CALU: See central arithmetic logic unit (CALU).

carry bit: Bit 9 of status register ST1; used by the CALU for extended

arithmetic operations and accumulator shifts and rotates. The carry bit

can be tested by conditional instructions.

central arithmetic logic unit (CALU): The 32-bit wide main arithmetic logic

unit for the ’C24x CPU that performs arithmetic and logic operations. It

accepts 32-bit values for operations, and its 32-bit output is held in the

accumulator.

CLK register: CLKOUT1-pin control register. Bit 0 of determines whether

the CLKOUT1 signal is available at the CLKOUT1 pin.

CLKIN: Input clock signal. A clock source signal supplied to the on-chip

clock generator at the CLKIN/X2 pin or generated internally by the

on-chip oscillator. The clock generator divides or multiplies CLKIN to

produce the CPU clock signal, CLKOUT1.

CLKOUT1: Master clock output signal. The output signal of the on-chip

clock generator. The CLKOUT1 high pulse signifies the CPU’s logic

phase (when internal values are changed), and the CLKOUT1 low pulse

signifies the CPU’s latch phase (when the values are held constant).

CLKOUT1 cycle: See CPU cycle.

CLKOUT1-pin control register: See CLK register.

clock mode (clock generator): One of the modes which sets the internal

CPU clock frequency to a fraction or multiple of the frequency of the input

clock signal CLKIN.

CNF bit: DARAM configuration bit. Bit 12 in status register ST1. CNF is used

to determine whether the on-chip RAM block B0 is mapped to program

space or data space.

codec: A device that codes in one direction of transmission and decodes in

another direction of transmission.

COFF: Common object file format. A system of files configured according to

a standard developed by AT&T. These files are relocatable in memory

space.

Glossary PRELIMINARY

D-4 PRELIMINARY

context saving/restoring: Saving the system status when the device

enters a subroutine (such as an interrupt service routine) and restoring

the system status when exiting the subroutine. On the ’C24x, only the

program counter value is saved and restored automatically; other

context saving and restoring must be performed by the subroutine.

CPU: Central processing unit. The ’C24x CPU is the portion of the processor

involved in arithmetic, shifting, and Boolean logic operations, as well as

the generation of data- and program-memory addresses. The CPU

includes the central arithmetic logic unit (CALU), the multiplier, and the

auxiliary register arithmetic unit (ARAU).

CPU cycle: The time required for the CPU to go through one logic phase

(during which internal values are changed) and one latch phase (during

which the values are held constant).

current AR: See current auxiliary register.

current auxiliary register: The auxiliary register pointed to by the auxiliary

register pointer (ARP). The auxiliary registers are AR0 (ARP = 0)

through AR7 (ARP = 7). See also auxiliary register; next auxiliary

register.

current data page: The data page indicated by the content of the data page

pointer (DP). See also data page; DP.

D

D0–D15: Collectively, the external data bus; the 16 pins are used in parallel

to transfer data between the ’C24x and external data memory, program

memory, or I/O space.

DARAM: Dual-access RAM. RAM that can be accessed twice in a single

CPU clock cycle. For example, your code can read from and write to

DARAM in the same clock cycle.

DARAM configuration bit (CNF): See CNF bit.

data-address generation logic: Logic circuitry that generates the address-

es for data memory reads and writes. This circuitry, which includes the

auxiliary registers and the ARAU, can generate one address per

machine cycle. See also program-address generation logic.

data page: One block of 128 words in data memory. Data memory contains

512 data pages. Data page 0 is the first page of data memory (addresses

0000h–007Fh); data page 511 is the last page (addresses

FF80h–FFFFh). See also data page pointer (DP); direct addressing.

GlossaryPRELIMINARY

D-5GlossaryPRELIMINARY

data page 0: Addresses 0000h–007Fh in data memory; contains the

memory-mapped registers, a reserved test/emulation area for special

information transfers, and the scratch-pad RAM block (B2).

data page pointer (DP): A 9-bit field in status register ST0 that specifies

which of the 512 data pages is currently selected for direct address

generation. When an instruction uses direct addressing to access a data-

memory value, the DP provides the nine MSBs of the data-memory

address, and the instruction provides the seven LSBs.

data-read address bus (DRAB): A 16-bit internal bus that carries the

address for each read from data memory.

data read bus (DRDB): A 16-bit internal bus that carries data from data

memory to the CALU and the ARAU.

data-write address bus (DWAB): A 16-bit internal bus that carries the

address for each write to data memory.

data write bus (DWEB): A 16-bit internal bus that carries data to both

program memory and data memory.

decode phase: The phase of the pipeline in which the instruction is

decoded. See also pipeline; instruction-fetch phase; operand-fetch

phase; instruction-execute phase.

direct addressing: One of the methods used by an instruction to address

data-memory. In direct addressing, the data-page pointer (DP) holds the

nine MSBs of the address (the current data page), and the instruction

word provides the seven LSBs of the address (the offset). See also

indirect addressing.

DIV2/DIV1: Two pins used together to determine the clock mode of the

’C24x clock generator (÷�2, ×�1, ×�2, or ×�4).

DP: See data page pointer (DP).

DRAB: See data-read address bus (DRAB).

DRDB: See data read bus (DRDB).

DS: Data memory select pin. The ’C24x asserts DS to indicate an access to

external data memory (local or global).

DSWS: Data-space wait-state bit(s). A value in the wait-state generator

control register (WSGR) that determines the number of wait states

applied to reads from and writes to off-chip data space.

Glossary PRELIMINARY

D-6 PRELIMINARY

dual-access RAM: See DARAM.

dummy cycle: A CPU cycle in which the CPU intentionally reloads the

program counter with the same address.

DWAB: See data-write address bus (DWAB).

DWEB: See data write bus (DWEB).

E

execute phase: The fourth phase of the pipeline; the phase in which the

instruction is executed. See also pipeline; instruction-fetch phase;

instruction-decode phase; operand-fetch phase.

external interrupt: A hardware interrupt triggered by an external event

sending an input through an interrupt pin.

F

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is

stored and then retrieved in the same order in which it was stored. The

synchronous serial port has two four-word-deep FIFO buffers: one for its

transmit operation and one for its receive operation.

flash memory: Electronically erasable and programmable, nonvolatile

(read-only) memory.

G

general-purpose input/output pins: Pins that can be used to accept input

signals and/or send output signals but are not linked to specific uses.

These pins are the input pin BIO, the output pin XF, and the input/output

pins IO0, IO1, IO2, and IO3.

global data space: One of the four ’C24x address spaces. The global data

space can be used to share data with other processors within a system

and can serve as additional data space. See also local data space.

GREG: Global memory allocation register. A memory-mapped register

used for specifying the size of the global data memory. Addresses not

allocated by the GREG for global data memory are available for local

data memory.

GlossaryPRELIMINARY

D-7GlossaryPRELIMINARY

H

hardware interrupt: An interrupt triggered through physical connections

with on-chip peripherals or external devices.

HOLD: An input signal that allows external devices to request control of the

external buses. If an external device drives the HOLD/INT1 pin low and

the CPU sends an acknowledgement at the HOLDA pin, the external

device has control of the buses until it drives HOLD high or a nonmask-

able hardware interrupt is generated. If HOLD is not used, it should be

pulled high.

HOLDA: HOLD acknowledge signal. An output signal sent to the HOLDA pin

by the CPU in acknowledgement of a properly initiated HOLD operation.

When HOLDA is low, the processor is in a holding state and the address,

data, and memory-control lines are available to external circuitry.

HOLD operation: An operation on the ’C24x that allows for direct memory

access of external memory and I/O devices. A HOLD operation is

initiated by a HOLD/INT1 interrupt. When the corresponding interrupt

service routine executes an IDLE instruction, the external buses enter

the high-impedance state and the HOLDA signal is asserted. The buses

return to their normal state, and the HOLD operation is concluded, when

the processor exits the IDLE state.

I

IACK: See interrupt acknowledge signal (IACK).

ICR: See interrupt control register (ICR).

IFR: See interrupt flag register (IFR).

immediate addressing: One of the methods for obtaining data values used

by an instruction; the data value is a constant embedded directly into the

instruction word; data memory is not accessed.

immediate operand/immediate value: A constant given as an operand in

an instruction that is using immediate addressing.

IMR: See interrupt mask register (IMR).

indirect addressing: One of the methods for obtaining data values used by

an instruction. When an instruction uses indirect addressing, data

memory is addressed by the current auxiliary register. See also direct

addressing.

Glossary PRELIMINARY

 D-8 PRELIMINARY

input clock signal: See CLKIN.

input shifter: A 16- to 32-bit left barrel shifter that shifts incoming 16-bit data

from 0 to 16 positions left relative to the 32-bit output.

instruction-decode phase: The second phase of the pipeline; the phase in

which the instruction is decoded. See also pipeline; instruction-fetch

phase; operand-fetch phase; instruction-execute phase.

instruction-execute phase: The fourth phase of the pipeline; the phase in

which the instruction is executed. See also pipeline; instruction-fetch

phase; instruction-decode phase; operand-fetch phase.

instruction-fetch phase: The first phase of the pipeline; the phase in which

the instruction is fetched from program-memory. See also pipeline;

instruction-decode phase; operand-fetch phase; instruction-execute

phase.

instruction register (IR): A 16-bit register that contains the instruction

being executed.

instruction word: A 16-bit value representing all or half of an instruction. An

instruction that is fully represented by 16 bits uses one instruction word.

An instruction that must be represented by 32 bits uses two instruction

words (the second word is a constant).

INT1–INT3: Three external pins used to generate general-purpose hard-

ware interrupts.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent to the CPU that (when not masked or disabled)

forces the CPU into a subroutine called an interrupt service routine (ISR).

This signal can be triggered by an external device, an on-chip peripheral,

or an instruction (INTR, NMI, or TRAP).

interrupt acknowledge signal (IACK): An output signal that indicates an

interrupt has been received and that the program counter is fetching the

interrupt vector that will force the processor into the appropriate interrupt

service routine.

interrupt control register (ICR): A 16-bit register used to differentiate

HOLD and INT1 and to individually mask and flag INT2 and INT3.

interrupt flag register (IFR): A 16-bit memory-mapped register that indi-

cates pending interrupts. Read the IFR to identify pending interrupts and

write to the IFR to clear selected interrupts. Writing a 1 to any IFR flag

bit clears that bit to 0.

GlossaryPRELIMINARY

D-9GlossaryPRELIMINARY

interrupt latency: The delay between the time an interrupt request is made

and the time it is serviced.

interrupt mask register (IMR): A 16-bit memory-mapped register used to

mask external and internal interrupts. Writing a 1 to any IMR bit position

enables the corresponding interrupt (when INTM = 0).

interrupt mode bit (INTM): Bit 9 in status register ST0; either enables all

maskable interrupts that are not masked by the IMR or disables all mask-

able interrupts.

interrupt service routine (ISR): A module of code that is executed in

response to a hardware or software interrupt.

interrupt trap: See interrupt service routine (ISR).

interrupt vector: A branch instruction that leads the CPU to an interrupt

service routine (ISR).

interrupt vector location: An address in program memory where an inter-

rupt vector resides. When an interrupt is acknowledged, the CPU

branches to the interrupt vector location and fetches the interrupt vector.

INTM bit: See interrupt mode bit (INTM).

I/O-mapped register: One of the on-chip registers mapped to addresses in

I/O (input/output) space. These registers, which include the registers for

the on-chip peripherals, must be accessed with the IN and OUT instruc-

tions. See also memory-mapped register.

IR: See instruction register (IR).

IS: I/O space select pin. The ’C24x asserts IS to indicate an access to exter-

nal I/O space.

ISR: See interrupt service routine (ISR).

ISWS: I/O-space wait-state bit(s). A value in the wait-state generator control

register (WSGR) that determines the number of wait states applied to

reads from and writes to off-chip I/O space.

L

latch phase: The phase of a CPU cycle during which internal values are held

constant. See also logic phase; CLKOUT1.

local data space: The portion of data-memory addresses that are not allo-

cated as global by the global memory allocation register (GREG). If none

of the data-memory addresses are allocated for global use, all of data

space is local. See also global data space.

Glossary PRELIMINARY

D-10 PRELIMINARY

logic phase: The phase of a CPU cycle during which internal values are

changed. See also latch phase; CLKOUT1.

long-immediate value: A 16-bit constant given as an operand of an

instruction that is using immediate addressing.

LSB: Least significant bit. The lowest order bit in a word. When used in plural

form (LSBs), refers to a specified number of low-order bits, beginning

with the lowest order bit and counting to the left. For example, the four

LSBs of a 16-bit value are bits 0 through 3. See also MSB.

M

machine cycle: See CPU cycle.

maskable interrupt: A hardware interrupt that can be enabled or disabled

through software. See also nonmaskable interrupt.

master clock output signal: See CLKOUT1.

master phase: See logic phase.

memory-mapped register: One of the on-chip registers mapped to

addresses in data memory. See also I/O-mapped register.

microcomputer mode: A mode in which the on-chip ROM or flash memory

is enabled. This mode is selected with the MP/MC pin. See also MP/MC

pin; microprocessor mode.

microprocessor mode: A mode in which the on-chip ROM or flash memory

is disabled. This mode is selected with the MP/MC pin. See also MP/MC

pin; microcomputer mode.

microstack (MSTACK): A register used for temporary storage of the

program counter (PC) value when an instruction needs to use the PC to

address a second operand.

MIPS: Million instructions per second.

MODE bit: Bit 4 of the interrupt control register (ICR); determines whether

the HOLD/INT1 pin is only negative-edge sensitive or both negative- and

positive-edge sensitive.

MP/MC pin: A pin that indicates whether the processor is operating in micro-

processor mode or microcomputer mode. MP/MC high selects micropro-

cessor mode; MP/MC low selects microcomputer mode.

MSB: Most significant bit. The highest order bit in a word. When used in

plural form (MSBs), refers to a specified number of high-order bits, begin-

ning with the highest order bit and counting to the right. For example, the

eight MSBs of a 16-bit value are bits 15 through 8. See also LSB.

GlossaryPRELIMINARY

D-11GlossaryPRELIMINARY

MSTACK: See microstack.

multiplier: A part of the CPU that performs 16-bit × 16-bit multiplication and

generates a 32-bit product. The multiplier operates using either signed

or unsigned 2s-complement arithmetic.

N

next AR: See next auxiliary register.

next auxiliary register: The register that is pointed to by the auxiliary regis-

ter pointer (ARP) when an instruction that modifies ARP is finished

executing. See also auxiliary register; current auxiliary register.

NMI: A hardware interrupt that uses the same logic as the maskable inter-

rupts but cannot be masked. It is often used as a soft reset. See also

maskable interrupt; nonmaskable interrupt.

nonmaskable interrupt: An interrupt that can be neither masked by the

interrupt mask register (IMR) nor disabled by the INTM bit of status

register ST0.

NPAR: Next program address register. Part of the program-address genera-

tion logic. This register provides the address of the next instruction to the

program counter (PC), the program address register (PAR), the micro

stack (MSTACK), or the stack.

O

operand: A value to be used or manipulated by an instruction; specified in

the instruction.

operand-fetch phase: The third phase of the pipeline; the phase in which

an operand or operands are fetched from memory. See also pipeline;

instruction-fetch phase; instruction-decode phase; instruction-execute

phase.

output shifter: 32- to 16-bit barrel left shifter. Shifts the 32-bit accumulator

output from 0 to 7 bits left for quantization management, and outputs

either the 16-bit high or low half of the shifted 32-bit data to the data write

bus (DWEB).

OV bit: Overflow flag bit. Bit 12 of status register ST0; indicates whether the

result of an arithmetic operation has exceeded the capacity of the

accumulator.

Glossary PRELIMINARY

D-12 PRELIMINARY

overflow (in a register): A condition in which the result of an arithmetic

operation exceeds the capacity of the register used to hold that result.

overflow mode: The mode in which an overflow in the accumulator causes

the accumulator to be loaded with a preset value. If the overflow is in the

positive direction, the accumulator is loaded with its most positive

number. If the overflow is in the negative direction, the accumulator is

filled with its most negative number.

OVM bit: Overflow mode bit. Bit 11 of status register ST0; enables or

disables overflow mode. See also overflow mode.

P

PAB: See program address bus (PAB).

PAR: Program address register. A register that holds the address currently

being driven on the program address bus for as many cycles as it takes

to complete all memory operations scheduled for the current machine

cycle.

PC: See program counter (PC).

PCB: Printed circuit board.

pending interrupt: A maskable interrupt that has been successfully

requested but is awaiting acknowledgement by the CPU.

pipeline: A method of executing instructions in an assembly line fashion.

The ’C24x pipeline has four independent phases. During a given CPU

cycle, four different instructions can be active, each at a different stage

of completion. See also instruction-fetch phase; instruction-decode

phase; operand-fetch phase; instruction-execute phase.

PLL: Phase lock loop circuit.

PM bits: See product shift mode bits (PM).

power-down mode: The mode in which the processor enters a dormant

state and dissipates considerably less power than during normal opera-

tion. This mode is initiated by the execution of an IDLE instruction. During

a power-down mode, all internal contents are maintained so that opera-

tion continues unaltered when the power-down mode is terminated. The

contents of all on-chip RAM also remains unchanged.

PRDB: See program read bus (PRDB).

GlossaryPRELIMINARY

D-13GlossaryPRELIMINARY

PREG: See product register (PREG).

product register (PREG): A 32-bit register that holds the results of a multi-

ply operation.

product shifter: A 32-bit shifter that performs a 0-, 1-, or 4-bit left shift, or

a 6-bit right shift of the multiplier product based on the value of the

product shift mode bits (PM).

product shift mode: One of four modes (no-shift, shift-left-by-one, shift-left-

by-four, or shift-right-by-six) used by the product shifter.

product shift mode bits (PM): Bits 0 and 1 of status register ST1; they iden-

tify which of four shift modes (no-shift, left-shift-by-one, left-shift-by-four,

or right-shift-by-six) will be used by the product shifter.

program address bus (PAB): A 16-bit internal bus that provides the

addresses for program-memory reads and writes.

program-address generation logic: Logic circuitry that generates the

addresses for program memory reads and writes, and an operand

address in instructions that require two registers to address operands.

This circuitry can generate one address per machine cycle. See also

data-address generation logic.

program control logic: Logic circuitry that decodes instructions, manages

the pipeline, stores status of operations, and decodes conditional

operations.

program counter (PC): A register that indicates the location of the next

instruction to be executed.

program read bus (PRDB): A 16-bit internal bus that carries instruction

code and immediate operands, as well as table information, from

program memory to the CPU.

PS: Program select pin. The ’C24x asserts PS to indicate an access to exter-

nal program memory.

PSLWS: Lower program-space wait-state bits. A value in the wait-state

generator control register (WSGR) that determines the number of wait

states applied to reads from and writes to off-chip lower program space

(addresses 0000h–7FFFh). See also PSUWS.

PSUWS: Upper program-space wait-state bits. A value in the wait-state

generator control register (WSGR) that determines the number of wait

states applied to reads from and writes to off-chip upper program space

(addresses 8000h–FFFFh). See also PSLWS.

Glossary PRELIMINARY

D-14 PRELIMINARY

R

RAMEN: RAM enable pin. This pin enables or disables on-chip single-

access RAM.

RD: Read select pin. The ’C24x asserts RD to request a read from external

program, data, or I/O space. RD can be connected directly to the output

enable pin of an external device.

READY: External device ready pin. Used to create wait states externally.

When this pin is driven low, the ’C24x waits one CPU cycle and then tests

READY again. After READY is driven low, the ’C24x does not continue

processing until READY is driven high.

repeat counter (RPTC): A 16-bit register that counts the number of times

a single instruction is repeated. RPTC is loaded by an RPT instruction.

reset: A way to bring the processor to a known state by setting the registers

and control bits to predetermined values and signaling execution to start

at address 0000h.

reset pin (RS): A pin that causes a reset.

reset vector: The interrupt vector for reset.

return address: The address of the instruction to be executed when the

CPU returns from a subroutine or interrupt service routine.

RPTC: See repeat counter (RPTC).

RS: Reset pin. When driven low, causes a reset on any ’C24x device.

R/W: Read/write pin. Indicates the direction of transfer between the ’C24x

and external program, data, or I/O space.

S

SARAM: Single-access RAM. RAM that can accessed (read from or written

to) once in a single CPU cycle.

scratch-pad RAM: Another name for DARAM block B2 in data space

(32 words).

short-immediate value: An 8-, 9-, or 13-bit constant given as an operand

of an instruction that is using immediate addressing.

sign bit: The MSB of a value when it is seen by the CPU to indicate the sign

(negative or positive) of the value.

GlossaryPRELIMINARY

D-15GlossaryPRELIMINARY

sign extend: Fill the unused high order bits of a register with copies of the

sign bit in that register.

sign-extension mode (SXM) bit: Bit 10 of status register ST1; enables or

disables sign extension in the input shifter. It also differentiates between

logic and arithmetic shifts of the accumulator.

single-access RAM: See SARAM.

slave phase: See latch phase.

software interrupt: An interrupt caused by the execution of an INTR, NMI,

or TRAP instruction.

software stack: A program control feature that allows you to extend the

hardware stack into data memory with the PSHD and POPD instructions.

The stack can be directly stored and recovered from data memory, one

word at time. This feature is useful for deep subroutine nesting or protec-

tion against stack overflow.

ST0 and ST1: See status registers ST0 and ST1.

stack: A block of memory reserved for storing return addresses for subrou-

tines and interrupt service routines. The ’C24x stack is 16 bits wide and

eight levels deep.

status registers ST0 and ST1: Two 16-bit registers that contain bits for

determining processor modes, addressing pointer values, and indicating

various processor conditions and arithmetic logic results. These regis-

ters can be stored into and loaded from data memory, allowing the status

of the machine to be saved and restored for subroutines.

STRB: External access active strobe. The ’C24x asserts STRB during ac-

cesses to external program, data, or I/O space.

SXM bit: See sign-extension mode bit (SXM).

T

TC bit: Test/control flag bit. Bit 11 of status register ST1; stores the results

of test operations done in the central arithmetic logic unit (CALU) or the

auxiliary register arithmetic unit (ARAU). The TC bit can be tested by

conditional instructions.

temporary register (TREG): A 16-bit register that holds one of the oper-

ands for a multiply operation; the dynamic shift count for the LACT,

ADDT, and SUBT instructions; or the dynamic bit position for the BITT

instruction.

Glossary PRELIMINARY

D-16 PRELIMINARY

TOS: Top of stack. Top level of the 8-level last-in, first-out hardware stack.

TREG: See temporary register (TREG).

TTL: Transistor-to-transistor logic.

V

vector: See interrupt vector.

vector location: See interrupt vector location.

W

wait state: A CLKOUT1 cycle during which the CPU waits when reading

from or writing to slower external memory.

wait-state generator: An on-chip peripheral that generates a limited

number of wait states for a given off-chip memory space (program, data,

or I/O). Wait states are set in the wait-state generator control register

(WSGR).

WE: Write enable pin. The ’C24x asserts WE to request a write to external

program, data, or I/O space.

WSGR: Wait-state generator control register. This register, which is mapped

to I/O memory, controls the wait-state generator.

X

XF bit: XF-pin status bit. Bit 4 of status register ST1 that is used to read or

change the logic level on the XF pin.

XF pin: External flag pin. A general-purpose output pin whose status can be

read or changed by way of the XF bit in status register ST1.

Z

zero fill: A way to fill the unused low or high order bits in a register by insert-

ing 0s.

PRELIMINARY

E-1Summary of Updates in This DocumentPRELIMINARY

Appendix A

�������
������	��������������	��

This appendix provides a summary of the updates in this version of the docu-

ment. Updates within paragraphs appear in a bold typeface.

Page: Change or Add:

4–5 Changed Figure 4–2, Data Memory Map for ’C24x. The word count for DARAM (B0)
and DARAM (B1) was changed to : 256/512, device dependent.

6–5 Changed Figure 6–2, System Control Register (SYSCR). The CLKSRC1 and
CLKSRC0 read/write notation was changed to : R/W–1*, not affected by reset. Set to
1 by power-on reset.

6–37 Changed Figure 6–10, External Interrupt Control Registers. The alpha suffix CR was
added to each register designation. At address 7072h, Type A was changed to Type
A–NMI.

8–49 Changed the text note in the center of the page to : BLDD does not work with core
memory-mapped registers such as IMR, IFR, and GREG.

Appendix E

PRELIMINARY

PRELIMINARY

PRELIMINARY

 E-2 PRELIMINARY

IndexPRELIMINARY

Index-1PRELIMINARY

�����

’C2xx, features, emulation 2-11

* operand 7-10

*+ operand 7-10

*– operand 7-10

*0+ operand 7-10

*0– operand 7-10

*BR0+ operand 7-10

*BR0– operand 7-10

14-pin connector, dimensions C-15

14-pin header

header signals C-2

JTAG C-2

4-level pipeline operation 5-7

A
ABS instruction 8-20

absolute value (ABS instruction) 8-20

accumulator

definition D-1

description 3-9

introduction 2-8

shifting and storing high and low words,

diagrams 3-11

accumulator instructions

absolute value of accumulator (ABS), 8-20

add PREG to accumulator (APAC), 8-36

add PREG to accumulator and load TREG

(LTA) 8-92

add PREG to accumulator and multiply

(MPYA) 8-115

add PREG to accumulator and square specified

value (SQRA) 8-167

accumulator instructions (continued)

add PREG to accumulator, load TREG, and

move data (LTD) 8-94

add PREG to accumulator, load TREG, and mul-

tiply (MAC) 8-101

add PREG to accumulator, load TREG, multiply,

and move data (MACD) 8-105

add value plus carry to accumulator (ADDC),

8-26

add value to accumulator (ADD) 8-22

add value to accumulator with shift specified by

TREG (ADDT) 8-30

add value to accumulator with sign extension

suppressed (ADDS), 8-28

AND accumulator with value (AND) 8-33

branch to location specified by accumulator

(BACC) 8-39

call subroutine at location specified by accumula-

tor (CALA) 8-57

complement accumulator (CMPL) 8-63

divide using accumulator (SUBC) 8-179

load accumulator (LACC) 8-71

load accumulator using shift specified by TREG

(LACT) 8-77

load accumulator with PREG (PAC) 8-133

load accumulator with PREG and load TREG

(LTP) 8-97

load high bits of accumulator with rounding

(ZALR) 8-195

load low bits and clear high bits of accumulator

(LACL) 8-74

negate accumulator (NEG) 8-121

normalize accumulator (NORM) 8-125

OR accumulator with value (OR) 8-128

pop top of stack to low accumulator bits

(POP) 8-134

push low accumulator bits onto stack

(PUSH) 8-140

rotate accumulator left by one bit (ROL) 8-143

rotate accumulator right by one bit (ROR) 8-144

accumulator instructions (continued)

shift accumulator left by one bit (SFL) 8-156

shift accumulator right by one bit (SFR) 8-157

Index PRELIMINARY

 Index-2 PRELIMINARY

store high byte of accumulator to data memory

(SACH) 8-147

store low byte of accumulator to data memory

(SACL) 8-149

subtract conditionally from accumulator

(SUBC) 8-179

subtract PREG from accumulator (SPAC) 8-159

subtract PREG from accumulator and load TREG

(LTS) 8-99

subtract PREG from accumulator and multiply

(MPYS) 8-117

subtract PREG from accumulator and square

specified value (SQRS 8-169

subtract value and logical inversion of carry bit

from accumulator (SUBB) 8-177

subtract value from accumulator (SUB) 8-173

subtract value from accumulator with shift speci-

fied by TREG (SUBT) 8-183

subtract value from accumulator with sign exten-

sion suppressed (SUBS) 8-181

XOR accumulator with data value (XOR) 8-192

ADD instruction 8-22

ADDC instruction 8-26

address generation

data memory

direct addressing 7-4

immediate addressing 7-2

indirect addressing 7-9

program memory 5-2

hardware 5-3

address map, local data memory, data page 0 4-7

addressing

bit-reversed indexed 7-10, D-2

global data memory 4-11

addressing modes

definition D-1

direct

description 7-4

examples 7-6

figure 7-5

opcode format 7-5 to 7-7

role of data page pointer (DP) 7-4

immediate 7-2

indirect

description 7-9

addressing modes (continued)

effects on auxiliary register pointer
(ARP) 7-13 to 7-15

effects on current auxiliary regis-
ter 7-13 to 7-15

examples 7-14
modifying auxiliary register content 7-16
opcode format 7-12 to 7-14
operands 7-9
operation types 7-13 to 7-15
options 7-9
possible opcodes 7-13 to 7-15

overview 7-1

ADDS instruction 8-28

ADDT instruction 8-30

ADRK instruction 8-32

AND instruction 8-33

APAC instruction 8-36

ARAU (auxiliary register arithmetic unit) 3-12

introduction 2-9

ARAU and related logic, block diagram 3-12

ARB (auxiliary register pointer buffer) 3-16

architecture

internal memory 2-5 to 2-7

on-chip peripherals 2-11

arithmetic logic unit, central (CALU) 3-9

ARP (auxiliary register pointer) 3-16

auxiliary register arithmetic unit (ARAU),

description 3-12

auxiliary register instructions

add short immediate value to current auxiliary

register (ADRK) 8-32

branch if current auxiliary register not zero

(BANZ) 8-40

compare current auxiliary register with AR0

(CMPR) 8-64

load specified auxiliary register (LAR) 8-79

modify auxiliary register pointer (MAR) 8-110

modify current auxiliary register (MAR) 8-110

store specified auxiliary register (SAR) 8-151

subtract short immediate value from current aux-

iliary register (SBRK) 8-153

auxiliary register pointer (ARP) 3-16, D-2

auxiliary register pointer buffer (ARB) 3-16, D-2

auxiliary register update (ARU) code 7-12

auxiliary registers, introduction 2-9

IndexPRELIMINARY

Index-3PRELIMINARY

auxiliary registers (AR0–AR7)

block diagram 3-12

current auxiliary register 7-9

role in indirect addressing 7-9 to 7-16
update code (ARU) 7-12

description 3-12 to 3-14

general uses for 3-14

instructions that modify content 7-16

next auxiliary register 7-11

used in indirect addressing 3-12

B
B instruction 8-38

BACC instruction 8-39

BANZ instruction 8-40

BCND instruction 8-42

BIT instruction 8-44

bit-reversed indexed addressing 7-10, D-2

BITT instruction 8-46

BLDD instruction 8-48

block diagrams

ARAU and related logic 3-12

arithmetic logic section of CPU 3-8

auxiliary registers (AR0–AR7) and ARAU 3-12

CPU (selected sections) 3-2

input scaling section of CPU 3-3

multiplication section of CPU 3-5

program-address generation 5-2

block move instructions

block move from data memory to data memory

(BLDD) 8-48

block move from program memory to data

memory (BLPD) 8-53

BLPD instruction 8-53

Boolean logic instructions

AND 8-33

CMPL (complement/NOT) 8-63

OR 8-128

XOR (exclusive OR) 8-192

branch instructions

branch conditionally (BCND) 8-42

branch if current auxiliary register not zero

(BANZ) 8-40

branch to location specified by accumulator

(BACC) 8-39

branch to NMI interrupt vector location

(NMI) 8-123

branch instructions (continued)

branch to specified interrupt vector location

(INTR) 8-70

branch to TRAP interrupt vector location

(TRAP) 8-191

branch unconditionally (B) 8-38

call subroutine at location specified by accumula-

tor (CALA) 8-57

call subroutine conditionally (CC) 8-59

call subroutine unconditionally (CALL) 8-58

conditional, overview 5-11

return conditionally from subroutine

(RETC) 8-142

return unconditionally from subroutine

(RET) 8-141

unconditional, overview 5-8

buffered signals, JTAG C-10

buffering C-10

bus devices C-4

bus protocol in emulator system C-4

buses

data read bus (DRDB) 2-4

data write bus (DWEB) 2-4

data-read address bus (DRAB) 2-4

data-write address bus (DWAB) 2-4

program address bus (PAB) 2-4

used in program-memory address genera-
tion 5-3

program read bus (PRDB) 2-4

C
C (carry bit)

affected during SFL and SFR instruc-

tions 8-156 to 8-158

definition 3-16

involved in accumulator events 3-10

used during ROL and ROR instruc-

tions 8-143 to 8-145

cable, target system to emulator C-1 to C-25

cable pod C-5, C-6

CALA instruction 8-57

CALL instruction 8-58

call instructions

call subroutine at location specified by accumula-

tor (CALA) 8-57

call subroutine conditionally (CC) 8-59

call subroutine unconditionally (CALL) 8-58

conditional, overview 5-12

unconditional, overview 5-8

Index PRELIMINARY

 Index-4 PRELIMINARY

CALU (central arithmetic logic unit)

definition D-3

description 3-9

introduction 2-8

carry bit (C)

affected during SFL and SFR instruc-

tions 8-156 to 8-158

definition 3-16

involved in accumulator events 3-10

used during ROL and ROR instruc-

tions 8-143 to 8-145

CC instruction 8-59

central arithmetic logic section of CPU 3-8

CHAR LEN2–0 bits 6-17, 6-18

character length 6-17, 6-18

CLKOUT1 signal, definition D-3

CLRC instruction 8-61

CMPL instruction 8-63

CMPR instruction 8-64

CNF (DARAM configuration bit) 3-16

codec, definition D-3

communication control register (SCInCCR) 6-40,

6-42, 6-44, 6-45, 6-46

conditional instructions 5-10 to 5-13

conditional branch 5-11 to 5-13

conditional call 5-12 to 5-13

conditional return 5-12 to 5-13

conditions that may be tested 5-10

stabilization of conditions 5-11

using multiple conditions 5-10

configuration

DARAM, ’C203, 4-3

global data memory 4-9

multiprocessor C-13

SARAM, ’C209, 4-4, 4-8

connector

14-pin header C-2

dimensions, mechanical C-14

DuPont C-2

contacting Texas Instruments, x

control bits

CHAR LEN2–0, 6-17, 6-18

PARITY ENABLE 6-17, 6-19

STOP BITS 6-17, 6-19, 6-40, 6-41, 6-42, 6-43,

6-44, 6-45, 6-46, 6-47

CPU

accumulator 3-9

arithmetic logic section 3-8

auxiliary register arithmetic unit (ARAU) 3-12

block diagram (partial) 3-2

CALU (central arithmetic logic unit) 3-9

central arithmetic logic unit (CALU) 3-9

components 3-1

definition D-4

input scaling section/input shifter 3-3

introduction 3-1 to 3-18

multiplication section 3-5

output shifter 3-11

overview 2-8

product shifter 3-6

product shift modes 3-7
program control 2-10

status registers ST0 and ST1, 3-15

current auxiliary register 7-9

add short immediate value to

(ADRK instruction) 8-32

branch if not zero (BANZ instruction) 8-40

compare with AR0 (CMPR instruction) 8-64

increment or decrement

(MAR instruction) 8-110

role in indirect addressing 7-9 to 7-16

subtract short immediate value from (SBRK

instruction) 8-153

update code (ARU) 7-12

D
D0–D15 (external data bus), definition D-4

DARAM 2-5

configuration, ’C203, 4-3

DARAM configuration bit (CNF) 3-16

data memory

data page pointer (DP) 3-16

global data memory 4-9

local data memory 4-5

on-chip registers 4-7

data page 0

address map 4-7

on-chip registers 4-7

RAM block B2 (scratch-pad RAM) 4-7

data page pointer (DP)

caution about initializing DP 7-5

definition 3-16

load (LDP instruction) 8-82

role in direct addressing 7-4

IndexPRELIMINARY

Index-5PRELIMINARY

data read bus (DRDB) 2-4

data write bus (DWEB) 2-4

data-read address bus (DRAB) 2-4

data-scaling shifter

at input of CALU 3-3

at output of CALU 3-11

data-write address bus (DWAB) 2-4

device reset 6-37, 6-48

diagnostic applications C-24

dimensions

12-pin header C-20

14-pin header C-14

mechanical 14-pin header C-14

direct addressing

description 7-4

examples 7-6

figure 7-5

opcode format 7-5 to 7-7

role of data page pointer (DP) 7-4

DIV1 and DIV2 pins D-5

divide (SUBC instruction) 8-179

DMOV instruction 8-65

DP (data page pointer)

caution about initializing DP 7-5

definition 3-16

load (LDP instruction) 8-82

role in direct addressing 7-4

DRAB (data-read address bus) 2-4

DRDB (data read bus) 2-4

dual-access RAM 2-5

configuration, ’C203, 4-3

dual-access RAM (DARAM) D-4

DuPont connector C-2

DWAB (data-write address bus) 2-4

DWEB (data write bus) 2-4

E

EMU0/1

configuration C-21, C-23, C-24

emulation pins C-20

IN signals C-21

rising edge modification C-22

EMU0/1 signals C-2, C-3, C-6, C-7, C-13, C-18

emulation

configuring multiple processors C-13

JTAG cable C-1

pins C-20

serial-scan 2-11

timing calculations C-7 to C-9, C-18 to C-26

using scan path linkers C-16

emulation timing C-7

emulator

cable pod C-5

connection to target system, JTAG mechanical

dimensions C-14 to C-25

designing the JTAG cable C-1

emulation pins C-20

pod interface C-5

pod timings C-6

signal buffering C-10 to C-13

target cable, header design C-2 to C-3

enabling, parity 6-17, 6-19

enhanced instructions A-5

F
features, emulation 2-11

flow charts, TMS320 ROM code procedural B-2

G
global data memory 4-9

address generation 4-11

configuration 4-9

global memory allocation register (GREG) 4-9

global memory allocation register (GREG) 4-9

GREG 4-9

H
hardware interrupts, nonmaskable external

RS 6-37, 6-48

RS (’C209) 6-37, 6-48

hardware reset 6-37, 6-48

effects 6-39 to 6-45, 6-49 to 6-52

hardware stack, overflow, ISRs within ISRs 6-32

header

14-pin C-2

dimensions 14-pin C-2

Index PRELIMINARY

 Index-6 PRELIMINARY

I
I/O space, instructions

transfer data from data memory to I/O space

(OUT) 8-131

transfer data from I/O space to data memory

(IN) 8-68

IDLE instruction 8-67

IEEE 1149.1 specification, bus slave device

rules C-4

IFR 6-16 to 6-58

immediate addressing 7-2

IMR 6-18 to 6-58

IN instruction 8-68

indirect addressing

description 7-9

effects on auxiliary register pointer

(ARP) 7-13 to 7-15

effects on current auxiliary register 7-13 to 7-15

examples 7-14

modifying auxiliary register content 7-16

opcode format 7-12 to 7-14

operands 7-10

operation types 7-13 to 7-15

options 7-9

possible opcodes 7-13 to 7-15

input scaling section of CPU 3-3

input shifter 3-3

instruction register (IR), definition D-8

instructions 8-1 to 8-19

Boolean logic

AND 8-33
CMPL (complement/NOT) 8-63
OR 8-128
XOR (exclusive OR) 8-192

compared with those of other TMS320 de-

vices A-1 to A-36

conditional 5-10 to 5-13

branch (BCND) 8-42
call (CC) 8-59
conditions that may be tested 5-10
return (RETC) 8-142
stabilization of conditions 5-11
using multiple conditions 5-10

CPU halt until hardware interrupt (IDLE) 8-67

delay/no operation (NOP) 8-124

descriptions 8-19

how to use 8-12

instructions (continued)

enhanced A-5

idle until hardware interrupt (IDLE) 8-67

interrupt

branch to NMI interrupt vector location
(NMI) 8-123

branch to specified interrupt vector location
(INTR) 8-70

branch to TRAP interrupt vector location
(TRAP) 8-191

negate accumulator (NEG) 8-121

no operation (NOP) 8-124

normalize (NORM) 8-125

OR 8-128

power down until hardware interrupt

(IDLE) 8-67

repeat next instruction n times

description (RPT) 8-145
introduction 5-14

stack

pop top of stack to data memory
(POPD) 8-136

pop top of stack to low accumulator bits
(POP) 8-134

push data memory value onto stack
(PSHD) 8-138

push low accumulator bits onto stack
(PUSH) 8-140

status registers ST0 and ST1

clear control bit (CLRC) 8-61
load (LST) 8-86
load data page pointer (LDP) 8-82
modify auxiliary register pointer (MAR) 8-110
set control bit (SETC) 8-154
set product shift mode (SPM) 8-166
store (SST) 8-171

summary 8-2 to 8-11

test bit specified by TREG (BITT) 8-46

test specified bit (BIT) 8-44

INT1 interrupt

priority, ’C203, 6-10

vector location, ’C203, 6-10

INT10 interrupt, vector location, ’C203, 6-10

INT11 interrupt, vector location, ’C203, 6-10

INT12 interrupt, vector location, ’C203, 6-10

INT13 interrupt, vector location, ’C203, 6-10

INT14 interrupt, vector location, ’C203, 6-10

INT15 interrupt, vector location, ’C203, 6-10

INT16 interrupt, vector location, ’C203, 6-10

IndexPRELIMINARY

Index-7PRELIMINARY

INT2 interrupt

priority, ’C203, 6-10

vector location, ’C203, 6-10

INT20 interrupt, vector location, ’C203, 6-10

INT21 interrupt, vector location, ’C203, 6-10

INT22 interrupt, vector location, ’C203, 6-10

INT23 interrupt, vector location, ’C203, 6-10

INT24 interrupt, vector location, ’C203, 6-11

INT25 interrupt, vector location, ’C203, 6-11

INT26 interrupt, vector location, ’C203, 6-11

INT27 interrupt, vector location, ’C203, 6-11

INT28 interrupt, vector location, ’C203, 6-11

INT29 interrupt, vector location, ’C203, 6-11

INT3 interrupt

priority, ’C203, 6-10

vector location, ’C203, 6-10

INT30 interrupt, vector location, ’C203, 6-11

INT31 interrupt, vector location, ’C203, 6-11

INT8 interrupt, vector location, ’C203, 6-10 to 6-12

INT9 interrupt, vector location, ’C203, 6-10

internal memory

dual-access RAM 2-5

configuration, ’C203, 4-3
organization 2-5

ROM, configuration, ’C209, 4-4

single-access RAM 2-6

configuration, ’C209, 4-4, 4-8

interrupt

definitions D-8

interrupt mode bit (INTM) 3-16

maskable interrupt, interrupt mode bit

(INTM) 3-16

interrupt flag register (IFR) 6-16 to 6-58

interrupt latency, definition D-9

interrupt mask register (IMR) 6-18 to 6-58

interrupt mode bit (INTM) 3-16

interrupt service routines (ISRs)

definition D-9

ISRs within ISRs 6-32

interrupts 6-9 to 6-47

hardware

nonmaskable external
RS 6-37, 6-48

RS (’C209) 6-37, 6-48

priorities
’C203, 6-22

’C24x 6-10

interrupts (continued)

IMR register 6-18

interrupt mask register 6-18

interrupt service routines (ISRs), ISRs within

ISRs 6-32

latency 6-33 to 6-34

after execution of RET 6-34
during execution of CLRC INTM 6-34
factors 6-33 to 6-34
minimum latency 6-33

masking, interrupt mask register

(IMR) 6-18 to 6-58

nonmaskable, reset, effects 6-39 to 6-45,

6-49 to 6-52

pending, interrupt flag register

(IFR) 6-16 to 6-58

saving data 6-31

vector locations, ’C203, 6-22

INTM (interrupt mode bit) 3-16

INTR instruction 8-70

introduction, TMS320 family overview 1-2

IR (instruction register), definition D-8

ISR, ISRs within ISRs 6-32

ISR (interrupt service routine), definition D-9

J
JTAG C-16

JTAG emulator

buffered signals C-10

connection to target system C-1 to C-25

no signal buffering C-10

L
LACC instruction 8-71

LACL instruction 8-74

LACT instruction 8-77

LAR instruction 8-79

latch phase of CPU cycle D-9

latency, interrupt 6-33 to 6-34

after execution of RET 6-34

during execution of CLRC INTM 6-34

factors 6-33

minimum latency 6-33

LDP instruction 8-82

Index PRELIMINARY

 Index-8 PRELIMINARY

local data memory 4-5

off-chip 4-8

on-chip 4-8

logic instructions

AND 8-33

CMPL (complement/NOT) 8-63

OR 8-128

XOR (exclusive OR) 8-192

logic phase of CPU cycle D-10

long immediate addressing 7-2

LPH instruction 8-84

LST instruction 8-86

LT instruction 8-90

LTA instruction 8-92

LTD instruction 8-94

LTP instruction 8-97

LTS instruction 8-99

M
MAC instruction 8-101

MACD instruction 8-105

MAR instruction 8-110

memory

address map, data page 0, 4-7

buses 4-2

configuration

global data memory 4-9 to 4-10
local data 4-8
off-chip local data memory 4-8
on-chip local data memory 4-8

data page pointer (DP) 3-16

dual-access RAM 2-5

configuration, ’C203, 4-3
global data memory 4-9 to 4-10

address generation 4-11
local data 4-5 to 4-8

on-chip, advantages 4-2

organization 2-5, 4-2

program 4-3 to 4-4

configuration, ’C203, 4-3
program memory

address generation logic 5-2
address sources 5-3

ROM, configuration, ’C209, 4-4

segments 4-2

single-access RAM 2-6

configuration, ’C209, 4-4, 4-8

total address range 4-1

memory instructions

block move from data memory to data memory

(BLDD) 8-48

block move from program memory to data

memory (BLPD) 8-53

move data after add PREG to accumulator, load

TREG, and multiply (MACD) 8-105

move data to next higher address in data

memory (DMOV) 8-65

move data, load TREG, and add PREG to accu-

mulator (LTD) 8-94

store long immediate value to data memory

(SPLK) 8-164

table read (TBLR) 8-185

table write (TBLW) 8-188

transfer data from data memory to I/O space

(OUT) 8-131

transfer data from I/O space to data memory

(IN) 8-68

transfer word from data memory to program

memory (TBLW) 8-188

transfer word from program memory to data

memory (TBLR) 8-185

microstack (MSTACK) 5-6

MPY instruction 8-112

MPYA instruction 8-115

MPYS instruction 8-117

MPYU instruction 8-119

MSTACK (microstack) 5-6

multiplication section of CPU 3-5

multiplier

description 3-5

introduction 2-9

multiply instructions

multiply (include load to TREG) and accumulate

previous product (MAC) 8-101

multiply (include load to TREG), accumulate pre-

vious product, and move data (MACD) 8-105

multiply (MPY) 8-112

multiply and accumulate previous product

(MPYA) 8-115

multiply and subtract previous product

(MPYS) 8-117

multiply unsigned (MPYU) 8-119

square specified value after accumulating pre-

vious product (SQRA) 8-167

square specified value after subtracting previous

product from accumulator (SQRS) 8-169

IndexPRELIMINARY

Index-9PRELIMINARY

N

NEG instruction 8-121

next auxiliary register 7-11

next program address register (NPAR)

definition D-11

shown in figure 5-2

NMI instruction 8-123

vector location, ’C203, 6-10

NMI interrupt, vector location, ’C203, 6-10

nonmaskable interrupts, external

RS 6-37, 6-48

RS (’C209) 6-37, 6-48

NOP instruction 8-124

NORM instruction 8-125

NPAR (next program address register)

definition D-11

shown in figure 5-2

O

off-chip memory, configuration, local data 4-8

on-chip memory

advantages 4-2

configuration 4-8

on-chip peripherals, overview 2-11

on-chip RAM

dual-access 2-5

configuration, ’C203, 4-3
single-access 2-6

configuration, ’C209, 4-4, 4-8

on-chip ROM B-1

factory-masked, configuration, ’C209, 4-4

opcode format

direct addressing 7-5

immediate addressing 7-2

indirect addressing 7-12

OR instruction 8-128

OUT instruction 8-131

output modes

external count C-20

signal event C-20

output shifter 3-11

OV (overflow flag bit) 3-16

overflow in accumulator

detecting (OV bit) 3-16

enabling/disabling overflow mode

(OVM bit) 3-17

overflow mode bit (OVM) 3-17

effects on accumulator 3-10

overview, TMS320 family 1-2

P
PAB (program address bus) 2-4

used in program-memory address genera-

tion 5-3

PAC instruction 8-133

pages of data memory, figure 7-4

PAL C-21, C-22, C-24

PAR (program address register)

definition D-12

shown in figure 5-2

PARITY ENABLE bit 6-17, 6-19

PC (program counter) 5-3

description 5-3

loading 5-4

shown in figure 5-2

peripherals, on-chip, overview 2-11

pipeline, operation 5-7

PM (product shift mode bits) 3-17

POP instruction 8-134

pop operation (diagram) 5-6

POPD instruction 8-136

power, lowering requirements 6-51

power-down mode 6-51

PRDB (program read bus) 2-4

PREG (product register) 3-6

PREG instructions

add PREG to accumulator (APAC) 8-36

add PREG to accumulator and load TREG

(LTA) 8-92

add PREG to accumulator and multiply

(MPYA) 8-115

add PREG to accumulator and square specified

value (SQRA) 8-167

add PREG to accumulator, load TREG, and

move data (LTD) 8-94

add PREG to accumulator, load TREG, and mul-

tiply (MAC) 8-101

add PREG to accumulator, load TREG, multiply,

and move data (MACD) 8-105

Index PRELIMINARY

 Index-10 PRELIMINARY

load high bits of PREG (LPH) 8-84

PREG instructions (continued)

set PREG output shift mode (SPM) 8-166

store high word of PREG to data memory

(SPH) 8-160

store low word of PREG to data memory

(SPL) 8-162

store PREG to accumulator (PAC instruc-

tion) 8-133

store PREG to accumulator and load TREG

(LTP) 8-97

subtract PREG from accumulator (SPAC) 8-159

subtract PREG from accumulator and load TREG

(LTS) 8-99

subtract PREG from accumulator and multiply

(MPYS) 8-117

subtract PREG from accumulator and square

specified value (SQRS) 8-169

product register (PREG) 3-6

product shift mode bits (PM) 3-17

product shift modes 3-7

product shifter 3-6

program address bus (PAB) 2-4

used in program-memory address genera-

tion 5-3

program address register (PAR)

definition D-12

shown in figure 5-2

program control 2-10

interrupts 6-9 to 6-47

power-down mode 6-51

program control features

address generation, program memory 5-2

branch instructions

conditional 5-11
unconditional 5-8

call instructions

conditional 5-12
unconditional 5-8

conditional instructions 5-10 to 5-13

conditions that may be tested 5-10 to 5-13
stabilization of conditions 5-11 to 5-13
using multiple conditions 5-10

pipeline operation 5-7

program counter (PC) 5-3

loading 5-4
repeating a single instruction 5-14

return instructions

conditional 5-12

unconditional 5-9

program control features (continued)

stack 5-4

status registers ST0 and ST1, 3-15

bits 3-15

program counter (PC) 5-3

description 5-3

loading 5-4

shown in figure 5-2

program memory 4-3

address generation logic 5-2

microstack (MSTACK) 5-6
program counter (PC) 5-3
stack 5-4

address sources 5-3

configuration, ’C203, 4-3

program read bus (PRDB) 2-4

program-address generation (diagram) 5-2

protocol, bus, in emulator system C-4

PSHD instruction 8-138

PUSH instruction 8-140

push operation (diagram) 5-5

R
RAM

dual-access on-chip 2-5

configuration, ’C203, 4-3
single-access on-chip 2-6

configuration, ’C209, 4-4, 4-8

registers

auxiliary registers

current auxiliary register 7-12
introduction 2-9

auxiliary registers (AR0–AR7)

current auxiliary register 7-9
next auxiliary register 7-11

interrupt flag register (IFR) 6-16 to 6-58

interrupt mask register (IMR) 6-18 to 6-58

mapped to data page 0, 4-7

SCInCCR (communication control) 6-40, 6-42,

6-44, 6-45, 6-46

status registers ST0 and ST1, 3-15

system control (SYSCR) 6-5

system interrupt vector register (SYSIVR) 6-8

system status (SYSSR) 6-6

repeat (RPT) instruction

description 8-145

introduction 5-14

IndexPRELIMINARY

Index-11PRELIMINARY

repeat counter (RPTC) 5-14

repeating a single instruction 5-14

reset 6-37, 6-48

’C203 (RS), effects 6-39 to 6-45, 6-49 to 6-52

’C209 (RS or RS), effects 6-39 to 6-45,

6-49 to 6-52

effects 6-39 to 6-45, 6-49 to 6-52

priority, ’C203, 6-10

vector location, ’C203, 6-10

RET instruction 8-141

RETC instruction 8-142

return instructions

conditional, overview 5-12

return conditionally from subroutine

(RETC) 8-142

return unconditionally from subroutine

(RET) 8-141

unconditional, overview 5-9

ROL instruction 8-143

ROM

configuration, ’C209, 4-4

customized B-1 to B-4

ROM codes, submitting to Texas Instru-

ments B-1 to B-4

ROR instruction 8-144

RPT instruction 8-145

RPTC (repeat counter) 5-14

RS 6-37, 6-48

effects 6-39 to 6-45, 6-49 to 6-52

priority, ’C203, 6-10

vector location, ’C203, 6-10

RS (’C209) 6-37, 6-48

run/stop operation C-10

RUNB, debugger command C-20, C-21, C-22,

C-23, C-24

RUNB_ENABLE, input C-22

S
SACH instruction 8-147

SACL instruction 8-149

SAR instruction 8-151

SARAM 2-6

configuration, ’C209, 4-4, 4-8

SARAM (single-access RAM), definition D-14

SBRK instruction 8-153

scaling shifters

input shifter 3-3

introduction 2-8

output shifter 3-11

product shifter 3-6

product shift modes 3-7

scan path linkers C-16

secondary JTAG scan chain to an SPL C-17

suggested timings C-22

usage C-16

scan paths, TBC emulation connections for JTAG

scan paths C-25

SCInCCR register (communication control) 6-40,

6-42, 6-44, 6-45, 6-46

serial-scan emulation 2-11

SETC instruction 8-154

SFL instruction 8-156

SFR instruction 8-157

shifters

input shifter 3-3

introduction 2-8

output shifter 3-11

product shifter 3-6

product shift modes 3-7

short immediate addressing 7-2

signal descriptions 14-pin header C-3

signals

buffered C-10

buffering for emulator connections C-10 to C-13

description 14-pin header C-3

timing C-6

sign-extension mode bit (SXM)

definition 3-17

effect on CALU (central arithmetic logic

unit) 3-9

effect on input shifter 3-4

single-access RAM 2-6

configuration, ’C209, 4-4, 4-8

single-access RAM (SARAM), definition D-14

slave devices C-4

SPAC instruction 8-159

SPH instruction 8-160

SPL instruction 8-162

SPLK instruction 8-164

SPM instruction 8-166

SQRA instruction 8-167

SQRS instruction 8-169

SST instruction 8-171

Index PRELIMINARY

 Index-12 PRELIMINARY

stack 5-4

overflow, ISRs within ISRs 6-32

pop top of stack to data memory (POPD instruc-

tion) 8-136

pop top of stack to low accumulator bits (POP

instruction) 8-134

push data memory value onto stack (PSHD

instruction) 8-138

push low accumulator bits onto stack (PUSH

instruction) 8-140

status registers ST0 and ST1

bits 3-15

clear control bit (CLRC instruction) 8-61

introduction 3-15

load (LST instruction) 8-86

load data page pointer (LDP instruction) 8-82

modify auxiliary register pointer

(MAR instruction) 8-110

set control bit (SETC instruction) 8-154

set product shift mode (SPM instruction) 8-166

store (SST instruction) 8-171

stop bits (1 or 2) 6-17, 6-19, 6-40, 6-41, 6-42,

6-43, 6-44, 6-45, 6-46, 6-47

SUB instruction 8-173

SUBB instruction 8-177

SUBC instruction 8-179

SUBS instruction 8-181

SUBT instruction 8-183

SXM (sign-extension mode bit)

definition 3-17

effect on CALU (central arithmetic logic

unit) 3-9

effect on input shifter 3-4

system control register (SYSCR) 6-5

system interrupt vector register (SYSIVR) 6-8

system status register (SYSSR) 6-6

T

target cable C-14

target system, connection to emulator C-1 to C-25

target system emulator connector, designing C-2

target-system clock C-12

TBLR instruction 8-185

TBLW instruction 8-188

TC (test/control flag bit) 3-17

response to accumulator event 3-10

response to auxiliary register compare 3-14

TCK signal C-2, C-3, C-4, C-6, C-7, C-13, C-17,

C-18, C-25

TDI signal C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-13,

C-18

TDO signal C-4, C-5, C-8, C-19, C-25

temporary register (TREG) 3-6

test bus controller C-22, C-24

test clock C-12

diagram C-12

test/control flag bit (TC) 3-17

response to accumulator event 3-10

response to auxiliary register compare 3-14

timing calculations C-7 to C-9, C-18 to C-26

TMS signal C-2, C-3, C-4, C-5, C-6, C-7, C-8,

C-13, C-17, C-18, C-19, C-25

TMS/TDI inputs C-4

TMS320 family 1-2 to 1-6

advantages 1-2

development 1-2

history 1-2

overview 1-2

TMS320 ROM code procedure, flow chart B-2

TMS320C1x/C2x/C2xx/C5x instruction set compari-

sons A-1 to A-36

TMS320C24x, features

CPU 1-7

emulation 1-8

event manager 1-8

instruction set 1-7

memory 1-7

power 1-7

program control 1-7

speed 1-8

TMS320C2xx, features, emulation 2-11

TRAP instruction 8-191

vector location, ’C203, 6-10

TREG (temporary register) 3-6

TREG instructions

load accumulator using shift specified by TREG

(LACT) 8-77

load TREG (LT) 8-90

load TREG and add PREG to accumulator

(LTA) 8-92

load TREG and store PREG to accumulator

(LTP) 8-97

IndexPRELIMINARY

Index-13PRELIMINARY

TREG instructions (continued)

load TREG and subtract PREG from accumulator

(LTS) 8-99

load TREG, add PREG to accumulator, and

move data (LTD) 8-94

load TREG, add PREG to accumulator, and mul-

tiply (MAC) 8-101

load TREG, add PREG to accumulator, multiply,

and move data (MACD) 8-105

TRST signal C-2, C-3, C-6, C-7, C-13, C-17, C-18,

C-25

U
unconditional instructions

unconditional branch 5-8

unconditional call 5-8

unconditional return 5-9

W

wait states, definition D-16

X

XF bit (XF pin status bit) 3-17

XOR instruction 8-192

Z

ZALR instruction 8-195

Index PRELIMINARY

 Index-14 PRELIMINARY

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor

product or service without notice, and advises its customers to obtain the latest version of relevant information

to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at

the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are

utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each

device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or

severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED

TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI

products in such applications requires the written approval of an appropriate TI officer. Questions concerning

potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or

infringement of patents or services described herein. Nor does TI warrant or represent that any license, either

express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property

right of TI covering or relating to any combination, machine, or process in which such semiconductor products

or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

