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IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products

or to discontinue any product or service without notice, and advise customers to obtain the latest

version of relevant information to verify, before placing orders, that information being relied on

is current and complete. All products are sold subject to the terms and conditions of sale supplied

at the time of order acknowledgement, including those pertaining to warranty, patent

infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing

of all parameters of each device is not necessarily performed, except those mandated by

government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE

POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR

ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR

PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR

USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY

AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and

operating safeguards must be provided by the customer to minimize inherent or procedural

hazards.

TI assumes no liability for applications assistance or customer product design. TI does not

warrant or represent that any license, either express or implied, is granted under any patent right,

copyright, mask work right, or other intellectual property right of TI covering or relating to any

combination, machine, or process in which such semiconductor products or services might be

or are used. TI’s publication of information regarding any third party’s products or services does

not constitute TI’s approval, warranty or endorsement thereof.
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Preface

Read This First

About This Manual

This user’s guide serves as an applications reference book for the

TMS320C40 and TMS320C44 digital signal processors (DSP). Throughout

the book, all references to the TMS320C4x apply to both devices (exceptions

are noted).

Specifically, this book complements the TMS320C4x User’s Guide by provid-

ing information to assist managers and hardware/software engineers in ap-

plication development. It includes example code and hardware connections

for various applications.

The guide shows how to use the instruction set, the architecture, and the ’C4x

interface. It presents examples for frequently used applications and discusses

more involved examples and applications. It also defines the principles in-

volved in many applications and gives the corresponding assembly language

code for instructional purposes and for immediate use. Whenever the detailed

explanation of the underlying theory is too extensive to be included in this

manual, appropriate references are given for further information.

How to Use This Manual

The following table summarizes the information contained in this user’s guide:

If you are looking for

information about: Turn to these chapters:

Arithmetic Chapter 3, Logical and Arithmetic Operations

Communication Ports Chapter 8, Using the Communication Ports

Companding Chapter 6, Applications-Oriented Operations

Development Support Chapter 10, Development Support and Part Or-
der Information
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If you are looking for

information about: Turn to these chapters:

DMA Coprocessor Chapter 7, Programming the DMA Coprocessor

FTTs Chapter 6, Applications-Oriented Operations

Filters Chapter 6, Applications-Oriented Operations

Ordering Parts Chapter 10, Development Support and Part Or-
der Information

Repeat Modes Chapter 2, Program Control

Reset Chapter 1, Processor Initialization

Stacks Chapter 2, Program Control

Tips Chapter 5, Programming Tips

Wait States Chapter 4, Memory Interfacing

XDS510 Emulator Chapter 11, XDS510 Emulator Design Consider-
ations

Style and Symbol Conventions

This document uses the following conventions:

� Program listings, program examples, file names, and symbol names are

shown in a special font. Examples use a bold version of the special font

for emphasis. Here is a sample program listing segment:

*

LOOP1 RPTB MAX

CMPF *AR0,R0 ;Compare number to the maximum

MAX LDFLT *AR0,R0 ;If greater, this is a new max

B NEXT

LOOP2 RPTB MIN

CMPF *AR0++(1),R0 ;Compare number to the minimum

MIN LDFLT *–AR0(1),R0 ;If smaller, this is new minimum

NEXT .

.

� Throughout this book MSB indicates the most significant bit and LSB indi-

cates the least significant bit. MS indicates the most significant byte and

LS indicates the least significant byte.
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Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.

Please read each caution and warning carefully.
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Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related

support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,
please identify the book by its title and literature number.

TMS320C4x User’s Guide (literature number SPRU063) describes the ’C4x

32-bit floating-point processor, developed for digital signal processing as

well as parallel processing applications. Covered are its architecture, in-

ternal register structure, instruction set, pipeline, specifications, and op-

eration of its six DMA channels and six communication ports.

TMS320C4x Parallel Processing Development System Technical Refer-
ence (literature number SPRU075) describes the TMS320C4x parallel
processing system, a system with four C4xs with shared and distributed
memory.

Parallel Processing with the TMS320C4x (literature number SPRA031) de-

scribes parallel processing and how the ’C4x can be used in parallel pro-

cessing. Also provides sample parallel processing applications.

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature

number SPRU035) describes the assembly language tools (assembler,

linker, and other tools used to develop assembly language code),

assembler directives, macros, common object file format, and symbolic

debugging directives for the ’C3x and ’C4x generations of devices.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide (litera-
ture number SPRU034) describes the TMS320 floating-point C compiler.
This C compiler accepts ANSI standard C source code and produces
TMS320 assembly language source code for the ’C3x and ’C4x genera-
tions of devices.

TMS320C4x C Source Debugger User’s Guide (literature number

SPRU054) tells you how to invoke the ’C4x emulator and simulator ver-

sions of the C source debugger interface. This book discusses various

aspects of the debugger interface, including window management, com-

mand entry, code execution, data management, and breakpoints. It also

includes a tutorial that introduces basic debugger functionality.

TMS320C4x Technical Brief (literature number SPRU076) gives a con-
densed overview of the ’C4x DSP and its development tools. It also lists
TMS320C4x third parties.
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TMS320 Family Development Support Reference Guide (literature number
SPRU011) describes the ’320 family of digital signal processors and the
various products that support it. This includes code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). This book also

lists related documentation, outlines seminars and the university pro-
gram, and gives factory repair and exchange information.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that supply various
products that serve the family of ’320 digital signal processors—software
and hardware development tools, speech recognition, image process-
ing, noise cancellation, modems, etc.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number

SPRT125) presents solutions to common design problems using ’C2x,

’C3x, ’C4x, ’C5x, and other TI DSPs.

Related Articles and Books

A wide variety of related documentation is available on digital signal process-

ing. These references fall into one of the following application categories:

� General-Purpose DSP

� Graphics/Imagery

� Speech/Voice

� Control

� Multimedia

� Military

� Telecommunications

� Automotive

� Consumer

� Medical

� Development Support

In the following list, references appear in alphabetical order according to au-

thor. The documents contain beneficial information regarding designs, opera-

tions, and applications for signal-processing systems; all of the documents

provide additional references. Texas Instruments strongly suggests that you

refer to these publications.

General-Purpose DSP:

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY:

McGraw-Hill Company, Inc., 1979.

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ: Pren-

tice-Hall, Inc., 1974.
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3) Burrus, C.S., and T.W. Parks, DFT/FFT and Convolution Algorithms, New

York, NY: John Wiley and Sons, Inc., 1984.

4) Chassaing, R., Horning, D.W., “Digital Signal Processing with Fixed and

Floating-Point Processors.” CoED, USA, Volume 1, Number 1, pages 1–4,

March 1991.

5) Defatta, David J., Joseph G. Lucas, and William S. Hodgkiss, Digital Sig-

nal Processing: A System Design Approach, New York: John Wiley, 1988.

6) Erskine, C., and S. Magar, “Architecture and Applications of a Second-

Generation Digital Signal Processor.” Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing, USA, 1985.

7) Essig, D., C. Erskine, E. Caudel, and S. Magar, “A Second-Generation

Digital Signal Processor.” IEEE Journal of Solid-State Circuits, USA, Vol-

ume SC–21, Number 1, pages 86–91, February 1986.

8) Frantz, G., K. Lin, J. Reimer, and J. Bradley, “The Texas Instruments

TMS320C25 Digital Signal Microcomputer.” IEEE Microelectronics, USA,

Volume 6, Number 6, pages 10–28, December 1986.

9) Gass, W., R. Tarrant, T. Richard, B. Pawate, M. Gammel, P. Rajasekaran,

R. Wiggins, and C. Covington, “Multiple Digital Signal Processor Environ-

ment for Intelligent Signal Processing.” Proceedings of the IEEE, USA,

Volume 75, Number 9, pages 1246–1259, September 1987.

10) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York,

NY: McGraw-Hill Company, Inc., 1969.

11) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1977.

12) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro-

cessing, New York, NY: IEEE Press, 1979.

13) Jackson, Leland B., Digital Filters and Signal Processing, Hingham, MA:

Kluwer Academic Publishers, 1986.

14) Jones, D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using

the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

15) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing,

Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988.

16) Lin, K., G. Frantz, and R. Simar, Jr., “The TMS320 Family of Digital Signal

Processors.” Proceedings of the IEEE, USA, Volume 75, Number 9, pages

1143–1159, September 1987.
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17) Lovrich, A., Reimer, J., “An Advanced Audio Signal Processor.” Digest of

Technical Papers for 1991 International Conference on Consumer Elec-

tronics, June 1991.

18) Magar, S., D. Essig, E. Caudel, S. Marshall and R. Peters, “An NMOS Digi-

tal Signal Processor with Multiprocessing Capability.” Digest of IEEE Inter-

national Solid-State Circuits Conference, USA, February 1985.

19) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada:

Carleton University, 1983.

20) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

21) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing, Engle-

wood Cliffs, NJ: Prentice-Hall, Inc., 1975 and 1988.

22) Oppenheim, A.V., A.N. Willsky, and I.T. Young, Signals and Systems, En-

glewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

23) Papamichalis, P.E., and C.S. Burrus, “Conversion of Digit-Reversed to Bit-

Reversed Order in FFT Algorithms.” Proceedings of ICASSP 89, USA,

pages 984–987, May 1989.

24) Papamichalis, P., and R. Simar, Jr., “The TMS320C30 Floating-Point Digi-

tal Signal Processor.” IEEE Micro Magazine, USA, pages 13–29, Decem-

ber 1988.

25) Parks, T.W., and C.S. Burrus, Digital Filter Design, New York, NY: John

Wiley and Sons, Inc., 1987.

26) Peterson, C., Zervakis, M., Shehadeh, N., “Adaptive Filter Design and

Implementation Using the TMS320C25 Microprocessor.” Computers in

Education Journal, USA, Volume 3, Number 3, pages 12–16, July–Sep-

tember 1993.

27) Prado, J., and R. Alcantara, “A Fast Square-Rooting Algorithm Using a

Digital Signal Processor.” Proceedings of IEEE, USA, Volume 75, Number

2, pages 262–264, February 1987.

28) Rabiner, L.R. and B. Gold, Theory and Applications of Digital Signal Pro-

cessing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

29) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to

Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,

Volume D, page 1678, April 1988.

30) Simar, Jr., R., T. Leigh, P. Koeppen, J. Leach, J. Potts, and D. Blalock, “A

40 MFLOPS Digital Signal Processor: the First Supercomputer on a Chip.”

Proceedings of ICASSP 87, USA, Catalog Number 87CH2396–0, Volume

1, pages 535–538, April 1987.



 

x  

31) Simar, Jr., R., and J. Reimer, “The TMS320C25: a 100 ns CMOS VLSI Dig-

ital Signal Processor.” 1986 Workshop on Applications of Signal Process-

ing to Audio and Acoustics, September 1986.

32) Texas Instruments, Digital Signal Processing Applications with the

TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

33) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide

to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987.

Graphics/Imagery:

1) Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

2) Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

3) Papamichalis, P.E., “FFT Implementation on the TMS320C30.” Proceed-
ings of ICASSP 88, USA, Volume D, page 1399, April 1988.

4) Pratt, William K., Digital Image Processing, New York, NY: John Wiley and
Sons, 1978.

5) Reimer, J., and A. Lovrich, “Graphics with the TMS32020.” WESCON/85
Conference Record, USA, 1985.

Speech/Voice:

1) DellaMorte, J., and P. Papamichalis, “Full-Duplex Real-Time Implementa-
tion of the FED-STD-1015 LPC-10e Standard V.52 on the TMS320C25.”
Proceedings of SPEECH TECH 89, pages 218–221, May 1989.

2) Frantz, G.A., and K.S. Lin, “A Low-Cost Speech System Using the
TMS320C17.” Proceedings of SPEECH TECH ’87, pages 25–29, April
1987.

3) Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY:
Springer-Verlag, 1976.

4) Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

5) Papamichalis, Panos, Practical Approaches to Speech Coding, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

6) Papamichalis, P., and D. Lively, “Implementation of the DOD Standard
LPC–10/52E on the TMS320C25.” Proceedings of SPEECH TECH ’87,
pages 201–204, April 1987.

7) Pawate, B.I., and G.R. Doddington, “Implementation of a Hidden Markov
Model-Based Layered Grammar Recognizer.” Proceedings of ICASSP
89, USA, pages 801–804, May 1989.

8) Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.
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9) Reimer, J.B. and K.S. Lin, “TMS320 Digital Signal Processors in Speech
Applications.” Proceedings of SPEECH TECH ’88, April 1988.

10) Reimer, J.B., M.L. McMahan, and W.W. Anderson, “Speech Recognition
for a Low-Cost System Using a DSP.” Digest of Technical Papers for 1987
International Conference on Consumer Electronics, June 1987.

Control:

1) Ahmed, I., “16-Bit DSP Microcontroller Fits Motion Control System Ap-

plication.” PCIM, October 1988.

2) Ahmed, I., “Implementation of Self Tuning Regulators with TMS320 Fami-

ly of Digital Signal Processors.” MOTORCON ’88, pages 248–262, Sep-

tember 1988.

3) Ahmed, I., and S. Lindquist, “Digital Signal Processors: Simplifying High-

Performance Control.” Machine Design, September 1987.

4) Ahmed, I., and S. Meshkat, “Using DSPs in Control.” Control Engineering,

February 1988.

5) Allen, C. and P. Pillay, “TMS320 Design for Vector and Current Control of

AC Motor Drives.” Electronics Letters, UK, Volume 28, Number 23, pages

2188–2190, November 1992.

6) Bose, B.K., and P.M. Szczesny, “A Microcomputer-Based Control and

Simulation of an Advanced IPM Synchronous Machine Drive System for

Electric Vehicle Propulsion.” Proceedings of IECON ’87, Volume 1, pages

454–463, November 1987.

7) Hanselman, H., “LQG-Control of a Highly Resonant Disc Drive Head Posi-

tioning Actuator.” IEEE Transactions on Industrial Electronics, USA, Vol-

ume 35, Number 1, pages 100–104, February 1988.

8) Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel Dek-

ker, Inc., 1981.

9) Katz, P., Digital Control Using Microprocessors, Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1981.

10) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and

Winston, Inc., 1980.

11) Lovrich, A., G. Troullinos, and R. Chirayil, “An All-Digital Automatic Gain

Control.” Proceedings of ICASSP 88, USA, Volume D, page 1734, April

1988.

12) Matsui, N. and M. Shigyo, “Brushless DC Motor Control Without Position

and Speed Sensors.” IEEE Transactions on Industry Applications, USA,
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Multimedia:
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2) Casale, S., R. Russo, and G. Bellina, “Optimal Architectural Solution Us-

ing DSP Processors for the Implementation of an ADPCM Transcoder.”
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3) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice
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If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about

Texas Instruments Digital Signal

Processing (DSP) products

Write to:

Texas Instruments Incorporated

Market Communications Manager

MS 736

P.O. Box 1443

Houston, Texas 77251–1443

Order Texas Instruments

documentation

Call the TI Literature Response Center:

(800) 477–8924

Ask questions about product

operation or report suspected

problems

Contact the DSP hotline:

Phone: (713) 274–2320

FAX: (713) 274–2324

Electronic Mail: 4389750@mcimail.com.

Obtain the source code in this

user’s guide.

Call the TI BBS:

(713) 274–2323

Ftp from:

ftp.ti.com

log in as user ftp

cd to /mirrors/tms320bbs

Visit TI online, including

TI&ME�, your own customized

web page.

Point your browser at:

http://www.ti.com

Report mistakes or make com-

ments about this or any other TI

documentation.

Send electronic mail to:

comments@books.sc.ti.com

Send printed comments to:

Texas Instruments Incorporated

Technical Publications Mgr., MS 702

P.O. Box 1443

Houston, Texas 77251–1443



 

xv 

Trademarks

MS is a registered trademark of Microsoft Corp.

MS-Windows is a registered trademark of Microsoft Corp.

MS-DOS is a registered trademark of Microsoft Corp.

OS/2 is a trademark of International Business Machines Corp.

Sun and SPARC are trademarks of Sun Microsystems, Inc.

VAX and VMS are trademarks of Digital Equipment Corp.
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Processor Initialization

Before you execute a DSP algorithm, it is necessary to initialize the processor.

Initialization brings the processor to a known state. Generally, initialization

takes place any time after the processor is reset. This chapter reviews the con-

cepts explained in the user’s guide and provides examples.
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1.1 Reset Process

After RESET is applied, the ’C4x jumps to the address stored in the reset vec-

tor location and starts execution from that point.

In order to reset the ’C4x correctly, you need to comply with several hardware

and software requirements:

� Select the reset vector location:

� The RESET vector of the ’C4x can be mapped to one of four different

locations that are controlled by the value of the RESETLOC(1,0) pins

at RESET. Table 1–1 shows possible reset vectors for the ’C40 and

’C44.

� If the DSP is in microcomputer mode (ROMEN pin =1), RESET-

LOC(1,0) must be equal to 0,0 for the boot loader to operate correctly.

� If the DSP is in microcomputer mode, set the IIOFx pins as discussed in

the bootloader chapter TMS320C4x User’s Guide so that the bootloader

works properly.

� Provide the correct reset vector value:

� The RESET vector normally contains the address of the system initial-

ization routine.

� In microcomputer mode the reset vector is initialized automatically by

the processor to point to the beginning of the on–chip boot loader

code. No user action is required.

� In microprocessor mode, the reset vector is typically stored in an

EPROM. Example 1–1 shows how you can initialize that vector.

� Apply a low level to the RESET input. (See section 1.2).

Table 1–1.RESET Vector Locations in the ’C40 and ’C44

Value at RESETLOCx Pin
Get Reset Vector From

RESETLOC1 RESETLOC0
Get Reset Vector From

Hex Memory Address Bus

0 0 00000  0000 Local

0 1 07FFF  FFFF† Local

1 0 08000  0000† Global

1 1 0FFFF  FFFF† Global

† This corresponds to the 32-bit address that the processor accesses. However, in the ’C44 only

the 24-LSBs of the reset address are driven on pins A0–A23 and pins LA0–LA23. The corre-

sponding LSTRBx pins are also activated.
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1.2 Reset Signal Generation

Several aspects of ’C4x system hardware design are critical to overall system

operation. One such aspect is reset signal generation.

The reset input controls initialization of internal ’C4x logic and execution of the

system initialization software. For proper system initialization, the RESET sig-

nal must be applied for at least ten H1 cycles, that is, 400 ns for a ’C4x operat-

ing at 50 MHz. Upon power up, however, it can take 20 ms or more before the

system oscillator reaches a stable operating state. Therefore, the power-up

reset circuit should generate a low pulse on the RESET pin for 100 to 200 ms.

Once a proper reset pulse has been applied, the processor fetches the reset

vector from location zero, which contains the address of the system initializa-

tion routine. Figure 1–1 shows a circuit that will generate an appropriate pow-

er-up or push-button reset signal.

Figure 1–1. Reset Circuit

+5 V

TMS320C4x

Reset

R1 = 100 kΩ

C1 = 4.7 µF

74ALS34

The voltage on the RESET pin is controlled by the R1C1 network. After a reset,

this voltage rises exponentially according to the time constant R1C1, as shown

in Figure 1–2. In Figure 1–1, the 74ALS34 provides a clean RESET signal to

the ’C4x.
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Figure 1–2. Voltage on the RESET Pin

Voltage

VCC

V1

t0 = 0 t1
Time

V = VCC (1 – e – t /τ )

The duration of the low pulse on the RESET pin is approximately t1, which is

the time it takes for the capacitor C1 to be charged to 1.5 V. This is approxi-

mately the voltage at which the reset input switches from a logic 0 to a logic

1. The capacitor voltage is expressed as

(5)V � VCC
�1� e�t

��

where τ = R1C1 is the reset circuit time constant. Solving (5) for t results in

t �� R1C1ln�1� V
VCC

� (6)

Setting the following:

R1 = 100 kΩ

C1 = 4.7 µF

VCC = 5 V

V = V1 = 1.5 V

results in t = 167 ms. Therefore, the reset circuit of Figure 1–1 provides a low

pulse for a long enough time to ensure the stabilization of the system oscillator

upon powerup.

Note:

Reset does not have internal Schmidt hysteresis. To ensure proper reset op-
eration, avoid low rise and fall times. Rise/fall time should not exceed one
CLKIN cycle.
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1.3 Multiprocessing System Reset Considerations

If synchronization of multiple ’C4x DSPs is required, all processors should be

provided with the same input clock and the same reset signal. After powerup,

when the clock has stabilized, set RESET high for a few H1/H3 cycles and then

set it low to synchronize their H1/H3 clock phases. Following the falling edge,

RESET should remain low for at least ten H1 cycles and then be driven high.

The circuit in Figure 1–1 can be used for RESET generation.

Pullup resistors are recommended at each end of the connection to avoid unin-

tended triggering after reset when RESET going low is not received on all ’C4x

devices at the same time.

It is recommended that you power up the system with RESET low. This
prevents ’C4x asynchronous signals from driving unknown values
before RESET goes low, which could create bus contention in
communication-port pins, resulting in damage to the device.
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1.4 How to Initialize the Processor

After reset, the C4x jumps to the address stored in the reset vector location and

starts execution from that point. The RESET vector normally contains the ad-

dress of the system initialization routine.

The initialization routine should typically perform several tasks:

� Set the DP register.

� Set the stack pointer.

� Set the interrupt vector table.

� Set the trap vector table.

� Set the memory control register.

� Clear/enable cache.

Note:

When running under microcomputer mode (ROMEN = 1). The address
stored in the reset vector location points to the beginning of the bootloader
code. The on-chip bootloader automatically initializes the memory-control
register values from the bootloader table

The following examples illustrate how to initialize the ’C4x when using assem-

bly language and when using C.

Processor initialization under assembly language

If you are running under an assembly-only environment, Example 1–1 pro-

vides a basic initialization routine. This example shows code for initializing the

’C4x to the following machine state:

� Timer 0 interrupt is enabled.

� Trap 0 is initialized.

� The program cache is enabled.

� The DP is initialized to point to the .text section.

� The stack pointer is initialized to the beginning of the mystack section.

� The memory control registers are initialized.

� The ’C4x is initialized to run in microcontroller mode with the reset vector

located at address 08000 0000h (RESETLOC(1,0)=1,0).

� The program has already been loaded into memory location at address =

0x4000 0000.

You need to allocate the section addresses using a linker command file (see

the TMS320 Floating-Point DSP Assembly Language Tools User’s Guide

book for more information about linker command files) as shown in

Example 1–2.
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Example 1–1.Processor Initialization Example

;

;  Create Reset Vector

;

.sect ”rst_sect” ;Named section for RESET vector

reset .word init ;RESET vector

;

;  Create Interrupt Vector Table

;

_myvect .sect ”myvect” ;Named section for int. vectors

.space2 ;Reserved space

.word tint0 ;Timer 0 ISR address

;

;  Create Trap Vector Table

;

_mytrap .sect ”mytrap” ; named section for trap vectors

.word trap0 ;Trap 0 subroutine address

;

;  Create Stack

;

_mystack .usect”mystack”,500 ; reserve 500 locations for

              ; stack

.text

stacka .word _mystack ; address of mystack section

ivta .word _myvect ; address of myvect section

tvta .word _mytrap ; address of mytrap section

ieval .word 1 ; IE register value

gctrl .word ???????? ; target board specific

lctrl .word ???????? ; target board specific

mctrla .word 100000h ; address of the global memory

; control register

init:

;

; Initialize the DP Register

;

ldp stacka

;

;  Set Expansion Register IVTP

;

LDI @ivta,AR0

LDPE AR0,IVTP

;

;  Set Expansion Register TVTP

;

LDI @tvta,AR0

LDPE AR0,TVTP
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Example 1–1. Processor Initialization Example (Continued)

;

;  Initialize global memory interface control

;

ldi @mctrla,ar0

LDI @gctrl,R0

STI R0,*AR0

;

; Initialize local memory interface control

;

LDI @lctrl,R0

STI R0,*+AR0(4)

;

;  Initialize the Stack Pointer

;

LDI @stacka,SP

;

;  Enable timer interrupt

;    This is equivalent to ldi 1,iie

;

LDI @ieval,IIE

;

;  Clear/Enable Cache and Enable Global Interrupts

;

OR 3800H,ST ;

;

; Global interrupt enable

;

BR BEGIN ; Branch to the beginning of

; the application

     ..................

begin

< this is your application code>

trap0

   .. < this is your trap0 trap code>

reti

tint0

   .. < this is your tint0 interrupt

   service routine>

reti

.end
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Example 1–2.Linker Command File for Linking the Previous Example

MEMORY

{

    EPROM:  org = 0x80000000 len = 0x10     /* EPROM reset vector location */

    RAM:   org = 0x40000000   len = 0x100    /* extend RAM */

}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

{

   rst_sect: > EPROM

   myvect: > RAM

   mystack: > RAM

   .text:   > RAM

   mytrap: > RAM

}

Processor initialization under C language

If you are running under a C environment, your initialization routine is typically

boot.asm (from the RTS40.LIB library that comes with the floating-point

compiler). In addition to initializing global variables, boot.asm initializes the DP

register (pointing to the .bss section) and the SP register (pointing to the .stack

section). You need to enable the cache, as shown in Example 1–3, and setup

your interrupts inside your main routine before you enable interrupts. See the

Application Report, Setting Up TMS320 DSP Interrupts in C (SPRA036), for

more information.

Example 1–3.Enabling the Cache

main() {

asm(” or 1800,st”)    ; enable cache

/* asm(” or 3800,st”) */ ; enable cache and interrupts

}
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Program Control

Several ’C4x instructions provide program control and facilitate high-speed

processing. These instructions directly handle:

� Regular and zero-overhead subroutine calls

� Software stack

� Interrupts

� Delayed branches

� Single- and multiple-instruction loops without overhead
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2.1 Subroutines

The ’C4x provides two ways to invoke subroutine calls: regular calls and zero-

overhead calls. The regular and zero-overhead subroutine calls use the soft-

ware stack and extended-precision register R11, respectively, to save the re-

turn address. The following subsections use example programs to explain how

this works.

2.1.1 Regular Subroutine Calls

The ’C4x has a 32-bit program counter (PC) and a virtually unlimited software

stack. The CALL and CALLcond subroutine calls increment the stack pointer

and store the contents of the next value of the PC counter on the stack. At the

end of the subroutine, RETScond performs a conditional return.

Example 2–1 illustrates the use of a subroutine to determine the dot product

of two vectors. Given two vectors of length N, represented by the arrays a[0],

a[1], ..., a[N–1] and b[0], b[1],..., b[N–1], the dot product is computed from the

expression

d = a[0] b[0] + a[1] b[1] + ... + a[N–1] b[N–1]

Processing proceeds in the main routine to the point where the dot product is

to be computed. It is assumed that the arguments of the subroutine have been

appropriately initialized. At this point, a CALL is made to the subroutine, trans-

ferring control to that section of the program memory for execution, then re-

turning to the calling routine via the RETS instruction when execution has com-

pleted. Note that for this particular example, it would suffice to save the register

R2. However, a larger number of registers are saved for demonstration pur-

poses. The saved registers are stored on the system stack, which should be

large enough to accommodate the maximum anticipated storage require-

ments. Other methods of saving registers could be used equally well.
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Example 2–1.Regular Subroutine Call (Dot Product)

*

* TITLE REGULAR SUBROUTINE CALL (DOT PRODUCT)

*

*

* MAIN ROUTINE THAT CALLS THE SUBROUTINE ‘DOT’ TO COMPUTE THE

* DOT PRODUCT OF TWO VECTORS.

.

.

LDI @blk0,AR0 ;AR0 points to vector a

LDI @blk1,AR1 ;AR1 points to vector b

LDI N,RC ;RC contains the number of elements

CALL DOT

.

.

*

*

*SUBROUTINE DOT

*

*

*EQUATION: d = a(0) * b(0) + a(1) * b(1) + ... + a(N–1) * b(N–1)

*

*

*THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER R0. N MUST

*BE GREATER THAN OR EQUAL TO 2.

*

*

* ARGUMENT ASSIGNMENTS:

*  ARGUMENT | FUNCTION

* –––––––––––––– +–––––––––––––––––––––––––

*  AR0 | ADDRESS OF a(0)

* AR1 | ADDRESS OF b(0)

* RC | LENGTH OF VECTORS (N)

*

*

* REGISTERS USED AS INPUT: AR0, AR1, RC

* REGISTER MODIFIED: R0

* REGISTER CONTAINING RESULT: R0

*

*

.global DOT

*

DOT PUSH ST ;Save status register

PUSH R2 ;Use the stack to save R2’s

PUSHF R2 ;bottom 32 and top 32 bits

PUSH AR0 ;Save AR0

PUSH AR1 ;Save AR1

PUSH RC ;Save RC

PUSH RS

PUSH RE

*

*

* Initialize R0:

MPYF3 *AR0,*AR1,R0;a(0) * b(0) –> R0
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Example 2–1.Regular Subroutine Call (Dot Product) (Continued)

|| SUBF R2,R2,R2 ;Initialize R2.

SUBI 2,RC ;Set RC = N–2

*

*

* DOT PRODUCT (1 <= i < N)*

RPTS RC ; Setup the repeat single.

MPYF3 *++AR0(1),*++AR1(1),R0 ; a(i) * b(i) –> R0

|| ADDF3 R0,R2,R2 ; a(i–1)*b(i–1) + R2 –> R2

*

ADDF3 R0,R2,R0 ; a(N–1)*b(N–1) + R2 –> R0

*

*

* RETURN SEQUENCE

*

POP RE

POP RS

POP RC ;Restore RC

POP AR1 ;Restore AR1

POP AR0 ;Restore AR0

POPF R2 ;Restore top 32 bits of R2

POP R2 ;Restore bottom 32 bits of R2

POP ST ;Restore ST

RETS ;Return 

*

*  end

*

.end

2.1.2 Zero-Overhead Subroutine Calls

Two instructions, link and jump (LAJ) and link and jump conditional (LAJcond),

implement zero-overhead subroutine calls to be implemented on the ’C4x. Un-

like CALL and CALLcond, which put the value of PC + 1 into the software stack,

LAJ and LAJcond put the value of PC + 4 into extended-precision register R11.

Three instructions following LAJ or LAJcond are executed before going to the

subroutine. The restriction that applies to these three instructions is the same

as that of the three instructions following a delayed branch. At the end of the

subroutine, you can use a delayed branch conditional, BcondD, in the register

addressing mode with R11 as source, to perform a zero-overhead subroutine

return.

For comparison, the same dot product example with a zero-overhead subrou-

tine call is given in the following example program.
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Example 2–2.Zero-Overhead Subroutine Call (Dot Product)

*

* TITLE ZERO-OVERHEAD SUBROUTINE CALL (DOT PRODUCT)

*

*

* MAIN ROUTINE THAT CALLS THE SUBROUTINE ‘DOT’ TO COMPUTE THE

* DOT PRODUCT OF TWO VECTORS.

.

.

.

LAJ DOT

LDI @blk0,AR0 ; AR0 points to vector a

LDI @blk1,AR1 ; AR1 points to vector b

LDI N,RC ; RC contains the number of elements

.

.

.

*

*SUBROUTINE DOT

*

*EQUATION:    d = a(0) * b(0) + a(1) * b(1) + ... + a(N–1) * b(N–1)

*

* THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER R0. N MUST

* BE GREATER THAN OR EQUAL TO 2.

*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION

* ––––––––––––––– +–––––––––––––––––––––––––

* AR0 | ADDRESS OF a(0)

* AR1 | ADDRESS OF b(0)

* RC | LENGTH OF VECTORS (N)

*

* REGISTERS USED AS INPUT: AR0, AR1, RC

* REGISTER MODIFIED: R0

* REGISTER CONTAINING RESULT: R0

*

*

*

.global DOT

*

DOT PUSH ST ;Save status register

PUSH R2 ;Use the stack to save R2’s

PUSHF R2 ;bottom 32 and top 32 bits

PUSH AR0 ;Save AR0

PUSH AR1 ;Save AR1

PUSH RC ;Save RC

PUSH RS

PUSH RE
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Example 2–2.Zero-Overhead Subroutine Call (Dot Product) (Continued)

* Initialize R0:

MPYF3 *AR0,*AR1,R0 ;a(0) * b(0) –> R0

|| SUBF R2,R2,R2 ;Initialize R2.

SUBI 2,RC ;Set RC = N–2

*

* DOT PRODUCT (1 <= i < N)

*

RPTS RC ; Setup the repeat single

MPYF3 *++AR0(1),*++AR1(1),R0; a(i) * b(i) –> R0

|| ADDF3 R0,R2,R2 ; a(i–1)*b(i–1) + R2 –> R2

*

ADDF3 R0,R2,R0 ; a(N–1)*b(N–1) + R2 –> R0

*

* RETURN SEQUENCE

*

POP RE

POP RS

POP RC ;Restore RC

POP AR1 ;Restore AR1

POP AR0 ;Restore AR0

BUD R11 ;Return

POPF R2 ;Restore top 32 bits of R2

POP R2 ;Restore bottom 32 bits of R2

POP ST ;Restore ST

*

* end

*

.end
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2.2 Stacks and Queues

The ’C4x provides a dedicated stack pointer (SP) for building stacks in

memory. Also, the auxiliary registers can be used to build user stacks and a

variety of more general linear lists. This section discusses the implementation

of the following types of linear lists:

Stack A linear list for which all insertions and deletions are made at one

end of the list.

Queue A linear list for which all insertions are made at one end of the

list, and all deletions are made at the other end.

Dequeue A double-ended queue linear list for which insertions and dele-

tions are made at either end of the list.

2.2.1 System Stacks

A stack in the ’C4x fills from a low-memory address to a high-memory address,

as is shown in Figure 2–1. A system stack stores addresses and data during

subroutine calls, traps, and interrupts.

The stack pointer (SP) is a 32-bit register that contains the address of the top

of the system stack. The SP always points to the last element pushed onto the

stack. A push performs a preincrement, and a pop performs a postdecrement

of the SP. Provisions should be made to accommodate your software’s antici-

pated storage requirements.

The stack pointer (SP) can be read from as well as written to; multiple stacks

can be created by updating the SP. The SP is not initialized by the hardware

during reset; it is important to remember to initialize its value so that the it points

to a predetermined memory location. Example 1–1 on page 1-7, shows how

to initialize the SP. You must initialize the stack to a valid free memory space.

Otherwise, use of the stack could corrupt data or program memory.

The program counter is pushed onto the system stack on subroutine calls,

traps, and interrupts. It is popped from the system stack on returns. The PUSH,

POP, PUSHF, and POPF instructions push and pop the system stack. The

stack can be used inside of subroutines as a place of temporary storage of reg-

isters, as is the case shown in Example 2–1, on page 2-3.
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Two instructions, PUSHF and POPF, are for floating-point numbers. These in-

structions can pop and push floating-point numbers to registers R0 — R11. This

feature is very useful for saving the extended-precision registers (see

Example 2–1 and Example 2–2). PUSH saves the lower 32 bits of an extended-

precision register, and PUSHF saves the upper 32 bits. To recover this exten-

ded-precision number, execute a POPF followed by POP. It is important to per-

form the integer and floating-point PUSH and POP in the above order, since

POPF forces the last eight bits of the extended-precision registers to zero.

Figure 2–1. System Stack Configuration

Bottom of stack

Top of stack

(Free)

Low Memory

High Memory

SP

.

.

.

2.2.2 User Stacks

User stacks can be built to store data from low-to-high memory or from high-to-

low memory. Two cases for each type of stack are shown. You can build stacks

by using the preincrement/decrement and postincrement/decrement modes

of modifying the auxiliary registers (AR).

You can implement stack growth from high to low memory in two ways:

Case 1: Store to memory using *– –ARn to push data onto the stack, and read

from memory using *ARn++ to pop data off the stack.

Case 2: Store to memory using *ARn– – to push data onto the stack, and read

from memory using * ++ARn to pop data off the stack.

Figure 2–2 illustrates these two cases. The only difference is that in case 1,

the AR always points to the top of the stack, and in case 2, the AR always points

to the next free location on the stack.
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Figure 2–2. Implementations of High-to-Low Memory Stacks

Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

ARn Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

Case 1 Case 2

ARn

You can implement stack growth from low to high memory in two ways:

Case 3: Store to memory using *++ARn to push data onto the stack, and read

from memory using *ARn– – to pop data off the stack.

Case 4: Store to memory using *ARn++ to push data onto the stack, and read

from memory using *– –ARn to pop data off the stack.

Figure 2–3 shows these two cases. In case 3, the AR always points to the top

of the stack. In case 4, the AR always points to the next free location on the

stack.

Figure 2–3. Implementations of Low-to-High Memory Stacks

Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

ARn Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

Case 3 Case 4

ARn

.

.

.

.

.

.

2.2.3 Queues and Double-Ended Queues

The implementations of queues and double-ended queues is based upon the

manipulation of the auxiliary registers for user stacks.
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For queues, two auxiliary registers are used: one to mark the front of the queue

from which data is popped and the other to mark the rear of the queue to where

data is pushed.

For double-ended queues, two auxiliary registers are also necessary. One

register marks one end of the double-ended queue, and the other register

marks the other end. Data can be popped from or pushed onto either end.
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2.3 Interrupt Examples

When using interrupts, you must consider several issues. This section offers

examples of several interrupt-related topics:

� Interrupt Service Routines

� Context Switching

� Interrupt-Vector Table (IVTP)

� Interrupt Priorities

2.3.1 Correct Interrupt Programming

For interrupts to work properly you need to execute the following sequence of

steps, as is shown in Example 1–1:

1) Set the interrupt-vector table in a 512-word boundary.

2) Initialize the IVTP register.

3) Create a software stack.

4) Enable the specific interrupt.

5) Enable global interrupts.

6) Generate the interrupt signal.

2.3.2 Software Polling of Interrupts

The interrupt flag register can be polled, and action can be taken, depending

on whether an interrupt has occurred. This is true even when maskable inter-

rupts are disabled.This can be useful when an interrupt-driven interface is not

implemented. Example 2–3 shows the case in which a subroutine is called

when external interrupt 1 has not occurred.

Example 2–3.Use of Interrupts for Software Polling

* TITLE INTERRUPT POLLING

.

.

.

TSTB 40H,IIF ;Test if interrupt 1 has occurred

CALLZ SUBROUTINE ;If not, call subroutine

.

.

.

When interrupt processing begins, the program counter is pushed onto the

stack, and the interrupt vector is loaded in the program counter. Interrupts are

disabled when GIE is cleared to 0 and the program continues from the address

loaded in the program counter. Because all maskable interrupts are disabled,

interrupt processing can proceed without further interruption unless the inter-

rupt service routine re-enables interrupts, or the NMI occurs.
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2.3.3 Using One Interrupt for Two Services

The IVTP can be changed to point to alternate interrupt-vector tables. This re-

locatable feature of the table allows you to use a single interrupt signal for more

than one service.

In Example 2–4, the IVTP is reset in the external INT0 interrupt service rou-

tines EINT0A and EINT0B. After the value of the IVTP is changed, the CPU

goes to a different interrupt service routine when the same interrupt signal re-

occurs.

Example 2–4.Use of One Interrupt Signal for Two Different Services

* TITLE USE OF ONE INTERRUPT SIGNAL FOR TWO DIFFERENT SERVICES

*

* IN THIS EXAMPLE, THE ADDRESS OF EINT0A AND EINT0B ARE IN

* MEMORY LOCATION 03H AND 1003H, RESPECTIVELY. ASSUME THE IVTP

* HAS NOT BEEN CHANGED AFTER DEVICE RESET AND THE EXTERNAL

* INTERRUPT IIOF0 IS ENABLED. WHEN THE FIRST IIOF0 INTERRUPT 

* SIGNAL COMES IN, THE EINT0A ROUTINE WILL BE EXECUTED AND THEN

* IF THE NEXT IIOF0 INTERRUPT SIGNAL OCCURS, THE EINT0B ROUTINE

* WILL BE EXECUTED, AND SO ON. THE EINT0A AND EINT0B ROUTINES

* WILL TAKE TURNS TO BE EXECUTED WHEN THE IIOF0 INTERRUPT 

* SIGNAL OCCURS.

*

* External IIOF0 interrupt service routine A

*

.global EINT0A

EINT0A: .

.

.

.

LDI 1000H,R0 ;Change IVTP to point to 1000H

LDPE R0,IVTP

.

.

*

RETI ;Return and enable interrupts

*

* External IIOF0 interrupt service routine A

*

.global EINT0B

EINT0B: .

.

.

.

LDI 0,R0 ;Change IVTP to point to 0

LDPE R0,IVTP

.

.

*

RETI ;Return and enable interrupts
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2.3.4 Nesting Interrupts

In Example 2–5, the interrupt service routine for INT2 temporarily modifies the

interrupt enable register (IIE) and interrupt flag register (IIF) to permit interrupt

processing when an interrupt to INT0 or NMI (but no other interrupt) occurs.

When the routine finishes processing, the IIE register is restored to its original

state. Notice that the RETIcond instruction not only pops the next program

counter address from the stack, but also restores GIE and CF bits from the

PGIE and PCF bits. This re-enables all interrupts that were enabled before the

INT2 interrupt was serviced.

Example 2–5.Interrupt Service Routine

* TITLE INTERRUPT SERVICE ROUTINE

.global ISR2

*

ENABLE .set 2000h

MASK .set 9h

*

* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2–

*

ISR2:

PUSH ST ;Save status register

PUSH DP ;Save data page pointer

PUSH IIE ;Save interrupt enable register

PUSH IIF

PUSH R0 ;Save lower 32 bits and

PUSHF R0 ;upper 32 bits of R0

PUSH R1 ;Save lower 32 bits and

PUSHF R1 ;upper 32 bits of R1

LDI 0,IIE ;Unmask all internal interrupts

LDI MASK, R0

MH0 R0, IIF ;Enable INT2

OR ENABLE,ST ;Enable all interrupts

*

* MAIN PROCESSING SECTION FOR ISR2

.

.

.

XOR ENABLE,ST ;Disable all interrupts

POPF R1 ;Restore upper 32 bits and

POP R1 ;lower 32 bits of R1

POPF R0 ;Restore upper 32 bits and

POP R0 ;lower 32 bits of R0

POP IIF

POP IIE ;Restore interrupt enable register

POP DP ;Restore data page register

POP ST ;Restore status register

*

RETI ;Return and enable interrupts
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2.4 Context Switching in Interrupts and Subroutines

Context switching is commonly required when a subroutine call or interrupt is

processed. It can be extensive or simple, depending on system requirements.

For the ’C4x, the program counter is automatically pushed onto the stack. Im-

portant information in other ’C4x registers, such as the status, auxiliary, or ex-

tended-precision registers, must be saved in the stack with PUSH/PUSHF and

recovered later with POP/POPF instructions.

You need to preserve only the registers that are modified inside of your subrou-

tine or interrupt/trap service routine and that could potentially affect the pre-

vious context environment.

Note:

The status register should be saved first and restored last to preserve the
processor status without any further change caused by other context-switch-
ing instructions.

If the previous context environment was in C, then your program must perform

one of two tasks:

� If the program is in a subroutine, it must preserve the dedicated C regis-

ters:

Save as integers Save as floating-point

R4 RS R6 R7

AR4 AR5

AR6 AR7

FP DP (small model only)

SP R8 (‘C4x only)

� If the program is in an interrupt service routine, it must preserve all of the

’C4x registers, as Example 2–6 shows.

If the previous context environment was in assembly language, you need to

determine which registers you must save based on the operations of your as-

sembly-language code.
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Example 2–6.Context Save and Context Restore

* .global ISR1

*

* TOTAL CONTEXT SAVE ON INTERRUPT.

*

ISR1: PUSH ST ;Save status register

*

* SAVE THE EXTENDED PRECISION REGISTERS

*

PUSH R0 ;Save the lower 32 bits of R0

PUSHF R0 ;and the upper 32 bits

PUSH R1 ;Save the lower 32 bits of R1

PUSHF R1 ;and the upper 32 bits

PUSH R2 ;Save the lower 32 bits of R2

PUSHF R2 ;and the upper 32 bits

PUSH R3 ;Save the lower 32 bits of R3

PUSHF R3 ;and the upper 32 bits

PUSH R4 ;Save the lower 32 bits of R4

PUSHF R4 ;and the upper 32 bits

PUSH R5 ;Save the lower 32 bits of R5

PUSHF R5 ;and the upper 32 bits

PUSH R6 ;Save the lower 32 bits of R6

PUSHF R6 ;and the upper 32 bits

PUSH R7 ;Save the lower 32 bits of R7

PUSHF R7 ;and the upper 32 bits

PUSH R8 ;Save the lower 32 bits of R8

PUSHF R8 ;and the upper 32 bits

PUSH R9 ;Save the lower 32 bits of R9

PUSHF R9 ;and the upper 32 bits

PUSH R10 ;Save the lower 32 bits of R10

PUSHF R10 ;and the upper 32 bits

PUSH R11 ;Save the lower 32 bits of R11

PUSHF R11 ;and the upper 32 bits

*

* SAVE THE AUXILIARY REGISTERS

*

PUSH AR0 ;Save AR0

PUSH AR1 ;Save AR1

PUSH AR2 ;Save AR2

PUSH AR3 ;Save AR3

PUSH AR4 ;Save AR4

PUSH AR5 ;Save AR5

PUSH AR6 ;Save AR6

PUSH AR7 ;Save AR7

*
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Example 2–6.Context Save and Context Restore (Continued)

* SAVE THE REST OF THE REGISTERS FROM THE REGISTER FILE

*

PUSH DP ;Save data page pointer

PUSH IR0 ;Save index register IR0

PUSH IR1 ;Save index register IR1

PUSH BK ;Save block-size register

PUSH IIE ;Save interrupt enable register

PUSH IIF ;Save interrupt flag register

PUSH DIE ;Save DMA interrupt enable register

PUSH RS ;Save repeat start address

PUSH RE ;Save repeat end address

PUSH RC ;Save repeat counter

*

* SAVE IS COMPLETE

*

*

* YOUR INTERRUPT SERVICE ROUTINE CODE GOES HERE*

.global RESTR

*

* CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR 

INTERRUPT.

RESTR:

*

* RESTORE THE REST REGISTERS FROM THE REGISTER FILE

*

POP RC ;Restore repeat counter

POP RE ;Restore repeat end address

POP RS ;Restore repeat start address

POP DIE ;Restore DMA interrupt enable register

POP IIF ;Restore interrupt flag register

POP IIE ;Restore interrupt enable register

POP BK ;Restore block-size register

POP IR1 ;Restore index register IR1

POP IR0 ;Restore index register IR0

POP DP ;Restore data page pointer

*

* RESTORE THE AUXILIARY REGISTERS

*

POP AR7 ;Restore AR7

POP AR6 ;Restore AR6

POP AR5 ;Restore AR5

POP AR4 ;Restore AR4

POP AR3 ;Restore AR3

POP AR2 ;Restore AR2

POP AR1 ;Restore AR1

POP AR0 ;Restore AR0

*
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Example 2–6.Context Save and Context Restore (Continued)

* RESTORE THE EXTENDED PRECISION REGISTERS

*

POPF R11 ;Restore the upper 32 bits and

POP R11 ;the lower 32 bits of R11

POPF R10 ;Restore the upper 32 bits and

POP R10 ;the lower 32 bits of R10

POPF R9 ;Restore the upper 32 bits and

POP R9 ;the lower 32 bits of R9

POPF R8 ;Restore the upper 32 bits and

POP R8 ;the lower 32 bits of R8

POPF R7 ;Restore the upper 32 bits and

POP R7 ;the lower 32 bits of R7

POPF R6 ;Restore the upper 32 bits and

POP R6 ;the lower 32 bits of R6

POPF R5 ;Restore the upper 32 bits and

POP R5 ;the lower 32 bits of R5

POPF R4 ;Restore the upper 32 bits and

POP R4 ;the lower 32 bits of R4

POPF R3 ;Restore the upper 32 bits and

POP R3 ;the lower 32 bits of R3

POPF R2 ;Restore the upper 32 bits and

POP R2 ;the lower 32 bits of R2

POPF R1 ;Restore the upper 32 bits and

POP R1 ;the lower 32 bits of R1

POPF R0 ;Restore the upper 32 bits and

POP R0 ;the lower 32 bits of R0

POP ST ;Restore status register

*

* RESTORE IS COMPLETE

*

RETI
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2.5 Repeat Modes

The RPTB, RPTBD, and RPTS instructions support looping without overhead.

Loop execution parameters are specified by three registers, as can be seen

in the following examples:

� RS (Repeat start address)

� RE (Repeat end address)

� RC (Repeat counter)

In principle, it is possible to nest repeat blocks. However, there is only one set

of control registers: RS, RE, and RC. It is, therefore, necessary to save these

registers before entering an inside loop and to restore these registers after

completing the inside loop. It takes four cycles of overhead to save and restore

these registers. Hence, sometimes it may be more economical to implement

a nested loop by the more traditional method of using a register as a counter

and then using a delayed branch, rather than by using the nested repeat block

approach. Often, implementing the outer loop as a counter and the inner loop

as a RPTB/RPTBD instruction produces the fastest execution.

2.5.1 Block Repeat

Example 2–7 shows the use of the block repeat to find the maximum or the

minimum value of 147 numbers. The elements of the array are either all

positive or all negative numbers. Because the loop cannot be predetermined,

the RPTBD instruction is not suitable here.

Example 2–7.Use of Block Repeat to Find a Maximum or a Minimum

*

* TITLE USE OF BLOCK REPEAT TO FIND A MAXIMUM OR A MINIMUM 

*

* THIS ROUTINE FINDS MAXIMUM OR MINIMUM OF N=147 NUMBERS

.

.

.

LDI 146,RC ;Initialize repeat counter to 147–1

LDI @ADDR,AR0 ;AR0 points to beginning of array

LDF *AR0++(1),R0 ;Initialize MAX or MIN to first value

BLT LOOP2 ;If negative array, find minimum

*

LOOP1 RPTB MAX

CMPF *AR0,R0 ;Compare number to the maximum

MAX LDFLT *AR0,R0 ;If greater, this is a new maximum

B NEXT

LOOP2 RPTB MIN

CMPF *AR0++(1),R0 ;Compare number to the minimum

MIN LDFLT *–AR0(1),R0 ;If smaller, this is new minimum

NEXT .

.

.
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2.5.2 Delayed Block Repeat

Example 2–8 shows an application of the delayed block-repeat construct. In

this example, an array of 64 elements is flipped over by exchanging the ele-

ments that are equidistant from the end of the array. In other words, if the origi-

nal array is:

a(1), a(2),..., a(31), a(32),..., a(63), a(64);

then the final array after the rearrangement is:

a(64), a(63),..., a(32), a(31),..., a(2), a(1).

Because the exchange operation is performed on two elements at the same

time, it requires 32 operations. The repeat counter (RC) is initialized to 31. In

general, if RC contains the number N, the loop is executed N + 1 times. In the

example, the loop begins at the fourth instruction following the RPTBD instruc-

tion (at the EXCH label). RC should not be initiated in the next three instruc-

tions following the RPTBD.

Example 2–8.Loop Using Delayed Block Repeat

* TITLE LOOP USING DELAYED BLOCK REPEAT

*

* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY

* ELEMENTS THAT ARE SYMMETRIC AROUND THE MIDDLE OF THE

* ARRAY.

*

.

.

.

LDI 31,RC ;Initialize repeat counter

*

RPTBD EXCH ;Repeat RC + 1 times between

;START and EXCH

LDI @ADDR,AR0 ;AR0 points to 

beginning of array

LDI AR0,AR1

ADDI 63,AR1 ;AR1 points to the end of the

array

*

* The loop starts here

START LDI *AR0,R0 ;Load one memory element in R0,

|| LDI *AR1,R1 ;and the other in R1

EXCH STI R1,*AR0++(1) ;Then, exchange their locations

|| STI R0,*AR1––(1)

.

.

.
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2.5.3 Single-Instruction Repeat

Example 2–9 shows an application of the repeat-single construct. In this ex-

ample, the sum of the products of two arrays is computed. The arrays are not

necessarily different. If the arrays are a(i) and b(i), and if each is of length 

N = 512, register R2 contains the following quantity:

a(1) b(1) + a(2) b(2) +...+ a(N) b(N).

The value of the repeat counter (RC) is specified to be 511 in the instruction.

Example 2–9.Loop Using Single Repeat

* TITLE LOOP USING SINGLE REPEAT

*

.

.

.

LDI @ADDR1,AR0 ;AR0 points to array a(i)

LDI @ADDR2,AR1 ;AR1 points to array b(i)

*

LDF 0.0,R2 ;Initialize R0

*

MPYF3 *AR0++(1),*AR1++(1),R1 ;Compute first product

*

RPTS 511 ;Repeat 512 times

*

MPYF3 *AR0++(1),*AR1++(1),R1 ;Compute next product and

|| ADDF3 R1,R2,R2 ;accumulate the previous

*

ADDF R1,R2 ;One final addition

.

.

.
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2.6 Computed GOTOs to Select Subroutines at Runtime

Occasionally, it is convenient to select during runtime, not during assembly, the

subroutine to be executed. The ’C4x’s computed GOTO supports this selec-

tion. You can implement the computed GOTO by using the CALLcond instruc-

tion in the register addressing mode. This instruction uses the contents of the

register as the address of the call. Example 2–10 shows the case of a task con-

troller.

Example 2–10. Computed GOTO

* TITLE COMPUTED GOTO

*

* TASK CONTROLLER

*

* THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION

* (6 TASKS IN THE PRESENT EXAMPLE). TASK0 THROUGH TASK5 ARE

* THE NAMES OF SUBROUTINES TO BE CALLED. THEY ARE EXECUTED

* IN ORDER, TASK0, TASK1, ... TASK5. WHEN AN INTERRUPT

* OCCURS, THE INTERRUPT SERVICE ROUTINE IS EXECUTED, AND THE

* PROCESSOR CONTINUES WITH THE INSTRUCTION FOLLOWING THE

* IDLE INSTRUCTION. THIS ROUTINE SELECTS THE APPROPRIATE

* TASK FOR THE CURRENT CYCLE, CALLS THE TASK AS A SUBROUTINE,

* AND BRANCHES BACK TO THE IDLE INSTRUCTION TO WAIT FOR THE

* NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK HAS COMPLETED

* EXECUTION. R0 HOLDS THE OFFSET FROM THE BASE ADDRESS OF THE

* TASK TO BE EXECUTED. BIT 15 (SET COND BIT) OF STATUS REGISTER

* (ST) SHOULD BE SET TO 1.

*

LDI 5,IR0 ;Initialize IR0

LDI @ADDR,AR1 ;AR1 holds the base address

;of the table

WAIT IDLE ;Wait for the next interrupt

ADDI *+AR1(IR0),R1 ;Add base address to the 

;table entry number

SUBI 1,IR0 ;Decrement IR0

LDILT 5,IR0 ;If IR0<0, reinitialize it to 5

CALLU R1 ;Execute appropriate task

BR WAIT

*

TSKSEQ .word TASK5 ;Address of TASK5

.word TASK4 ;Address of TASK4

.word TASK3 ;Address of TASK3

.word TASK2 ;Address of TASK2

.word TASK1 ;Address of TASK1

.word TASK0 ;Address of TASK0

ADDR .word TSKSEQ
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3.1 Bit Manipulation

Instructions for logical operations, such as AND, OR, NOT, ANDN, and XOR,

can be used together with shift instructions for bit manipulation. A special

instruction, TSTB, tests bits. TSTB does the same operation as AND, but the

result of the TSTB is used only to set the condition flags and is not written any-

where. Example 3–1 and Example 3–2 demonstrate the use of several in-

structions for bit manipulation and testing.

Example 3–1.Use of TSTB for Software-Controlled Interrupt

* TITLE USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT

*

* IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY

* RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN

* INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE

* PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR

* WHEN IT DETECTS THAT INT2- HAS OCCURRED.

.

.

.

TSTB 4,IIF ; Check if bit 2 of IF is set,

CALLNZ INTR ; and, if so, call subroutine INTR

.

.

.

Example 3–2.Copy a Bit from One Location to Another

* TITLE COPY A BIT FROM ONE LOCATION TO ANOTHER

*

* BIT I OF R1 NEEDS TO BE COPIED TO BIT J OF R2. AR0 POINTS TO A LOCATION

* HOLDING I, AND IT IS ASSUMED THAT THE NEXT MEMORY LOCATION HOLDS THE VALUE J.

*

.

.

.

LDI 1,R0

LSH *AR0,R0 ;Shift 1 to align it with bit I

TSTB R1,R0 ;Test the I–th bit of R1

BZD CONT ;If bit = 0, branch delayed

LDI 1,R0

LSH *+AR0(1),R0 ;Align 1 with J–th location

ANDN R0,R2 ;If bit = 0, reset J–th bit of R2

OR R0,R2 ;If bit = 1, set J–th bit of R2

CONT

.

.

.
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3.2 Block Moves

Because the ’C4x directly addresses a large amount of memory, blocks of data

or program code can be stored off-chip in slow memories and then loaded

on-chip for faster execution. Data can also be moved from on-chip memory to

off-chip memory for storage or for multiprocessor data transfers.

The DMA can transfer data efficiently in parallel with CPU operations. Alterna-

tively, you can use the load and store instructions in a repeat mode to perform

data transfers under program control. Example 3–3 shows how to transfer a

block of 512 floating-point numbers from external memory to block 1 of on-chip

RAM.

Example 3–3.Block Move Under Program Control

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL

*

extern .word 01000H

block1 .word 02FFC00H

.

.

.

LDI @extern,AR0 ;Source address

LDI @block1,AR1 ;Destination address

LDF *AR0++,R0 ;Load the first number

RPTS 510 ;Repeat following instruction 511 times

LDF *AR0++,R0 ;Load the next number, and...

|| STF R0,*AR1++ ;store the previous one

STF R0,*AR1 ;Store the last number

.

.

.
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3.3 Byte and Half-Word Manipulation

A set of instructions for byte and half-word accessibility, such as LB(3,2,1,0),

LBU(3,2,1,0), LH(1,0), LHU(1,0), LWL(0,1,2,3), LWR(0,1,2,3), MB(3,2,1,0),

and MH(1,0), is available on the ’C4x. In an application such as image process-

ing, it is often important to be able to manipulate packed data. For example,

the pixels in color images are often represented by four 8-bit unsigned quanti-

ties — red, green, blue and alpha — which are packed into a single 32-bit

word. The byte and half-word instruction makes it very easy to manipulate this

packed data.

Example 3–4 shows the packing of data from a half-word FIFO to 32-bit data

memory, and Example 3–5 shows the unpacking of a 32-bit data array into a

4-byte-wide data array (assuming the 32-bit data array contains four 8-bit un-

signed numbers).

Example 3–4.Use of Packing Data From Half-Word FIFO to 32-Bit Data Memory

* TITLE USE OF PACKING DATA FROM HALF-WORD FIFO

* TO 32-BIT DATA MEMORY

*

* IN THIS EXAMPLE, EVERY TWO INPUT 16 BITS DATA HAS BEEN

* PACKED INTO ONE 32-BIT DATA MEMORY. THE LOOP SIZE

* USED HERE IS ARRAY SIZE, NOT THE INPUT DATA LENGTH.

.

.

.

LDI size-1,RC ;Load array size

RPTBD PACK

LDI @fifo_adr,AR1 ;Load fifo address

LDI @array,AR2 ;Load data array address

NOP

* >>>>>>>>>>>>>>>> ;Loop starts here

LWL0 *AR1,R9 ;Pack 16 LSBs

LWL1 *AR1,R9 ;Pack 16 MSBs

PACK STI R9,*AR2++(1) ;Store the data

.

.

.
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Example 3–5.Use of Unpacking 32-Bit Data Into Four-Byte-Wide Data Array

* TITLE  USE OF UNPACKING 32-BIT DATA INTO FOUR BYTE-WIDE

* DATA ARRAY

*

* THIS EXAMPLE ASSUMED THAT THE 32-BIT DATA CONTAINS FOUR 8-BIT

* UNSIGNED DATA.

.

.

. LDI size–1,RC ;Load array size

LDI @input_adr,AR0 ;Load RPTBD UNPACK input address

LDI @array1,AR1 ;Load output data array 1 address

RPTBD UNPACK

LDI @array2,AR2 ;Load output data array 2 address

LDI @array3,AR3 ;Load output data array 3 address

LDI @array4,AR4 ;Load output data array 4 address

* >>>>>>>>>>>>>>>> ;Loop starts here

LBU0 *AR0,R8 ;Unpack first byte

STI R8,*AR1++(1)

LBU1 *AR0,R8 ;Unpack second byte

STI R8,*AR2++(1)

LBU2 *AR0,R8 ;Unpack third byte

STI R8,*AR3++(1)

LBU3 *AR0++(1),R8 ;Unpack fourth byte

UNPACK STI R8,*AR4++(1)

.

.

.
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3.4 Bit-Reversed Addressing

The ’C4x can implement fast Fourier transforms (FFT) with bit-reversed ad-

dressing. If the data to be transformed is in the correct order, the final result

of the FFT is scrambled in bit-reversed order. To recover the frequency-do-

main data in the correct order, certain memory locations must be swapped.

The bit-reversed addressing mode makes swapping unnecessary. The next

time data is accessed, the access is bit-reversed rather than sequential. In

’C4x, this bit-reversed addressing can be implemented through both the CPU

and DMA.

For correct CPU or DMA bit-reversed operation, the base address of bit-re-

versed addressing must be located on a boundary of the size of the table. To

clarify this point, assume an FFT of size N = 2n. When real and imaginary data

are stored in separate arrays, the n LSBs of the base address must be zero,

(0) and IR0 must be initialized to 2n–1 (half of the FFT size). When real and

imaginary data are stored in consecutive memory locations (Re–Im–Re–Im)

the n+1 LSBs of the base address must be zero (0), and IR0 must be equal

to IR0 = 2n = N (FFT size).

3.4.1 CPU Bit-Reversed Addressing

One auxiliary register (AR0, in this case) points to the physical location of a

data value. When you add IR0 to the auxiliary register by using bit-reversed

addressing, addresses are generated in a bit-reversed fashion (reverse carry

propagation). The largest index (IR0, in this case) for bit reversing is 00FF

FFFFh.

Example 3–6 illustrates how to move a 512-point complex FFT from the place

of computation (pointed at by AR0) to a location pointed at by AR1. Reads are

executed in a bit-reversed fashion and writes in a linear fashion. In this exam-

ple, real and imaginary parts XR(i) and XI(i) of the data are not stored in sepa-

rate arrays, but they are interleaved with XR(0), XI(0), XR(1), XI(1), ..., XR(N1),

XI(N1). Because of this arrangement, the length of the array is 2N instead of

N, and IR0 is set to 512 instead of 256.
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Example 3–6.CPU Bit-Reversed Addressing

*

* TITLE BIT-REVERSED ADDRESSING

*

* THIS EXAMPLE MOVES THE RESULT OF THE 512-POINT FFT COMPUTATION, POINTED AT BY

* AR0, TO A LOCATION POINTED AT BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING.

*

.

.

.

LDI 511,RC ;Repeat 511+1 times

RPTBD LOOP

LDI 512,IR0 ;Load FFT size

LDI 2,IR1

LDF *+AR0(1),R1 ;Load first imaginary point

*

LDF *AR0++(IR0)B,R0 ;Load real value (and point to next

|| STF R1,*+AR1(1) ;location) and store the imaginary value

LOOP LDF *+AR0(1),R1 ;Load next imaginary point and store

|| STF R0,*AR1++(IR1) ;previous real value

.

.

.

3.4.2 DMA Bit-Reversed Addressing

In DMA bit-reversed addressing, two bits in the DMA control register enable

bit-reversed addressing on DMA reads (READ BIT REV) and DMA writes

(WRITE BIT REV). The source address index register and destination address

index register define the size of the bit-reversed addressing. Their function is

similar to the CPU index register IR0 described in the previous subsection.

Two DMA block transfers are required when the DMA is used for bit-reversed

transfer of complex numbers: one to transfer the real ports and one to transfer

the imaginary ports.

Figure 3–1 illustrates the DMA settings required for a DMA operation equiva-

lent to Example 3–6. Unified-autoinitialization mode and bit-reversed read are

used. For more detailed information about DMA operation, refer to The DMA

Coprocessor in the TMS320C4x User’s Guide.
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Figure 3–1. DMA Bit-Reversed Addressing

00C0 1009h

AR0

IR0

512

AR1

2

label

Control Register

src Address

src Index

Counter

dst Address

dst Index

Link Pointer

label 00C0 1005h
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IR0

512

AR1+1

2
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3.5 Integer and Floating-Point Division

You can use the single-cycle instruction, RCPF, to generate an estimate of the

reciprocal of a floating-point number. This estimate has the correct exponent,

and the mantissa is accurate to the eighth binary place (the error of the mantis-

sa is < 2–8). Often, this is a satisfactory estimate of the reciprocal of a floating-

point number. In other cases, this estimate can be used as a seed for an algo-

rithm that computes the reciprocal to even greater accuracy. The Newton-

Raphson algorithm described later is one such case.

Although it provides no special instruction for integer division, the instruction

set can perform an efficient division routine. Additionally, the FLOAT, RCPF,

and FIX instructions can produce a rough estimate.

3.5.1 Integer Division

You can implement division on the ’C4x by repeating SUBC, a special condi-

tional subtract instruction. Consider the case of a 32-bit positive dividend with

i significant bits (and 32–i sign bits), and a 32-bit positive divisor with j signifi-

cant bits (and 32–j sign bits). The repetition of the SUBC command i–j + 1 times

produces a 32-bit result in which the lower i–j + 1 bits are the quotient, and the

upper 31–i + j bits are the remainder of the division.

SUBC implements binary division in the same manner as long division. The

divisor (assumed to be smaller than the dividend) is shifted left i–j times to align

with the dividend. Then, using SUBC, the shifted divisor is subtracted from the

dividend. For each subtract that does not produce a negative answer, the divi-

dend is replaced by the difference. It is then shifted to the left, and the LSB is

set to 1. If the difference is negative, the dividend is simply shifted left by one.

This operation is repeated i–j + 1 times.

As an example, consider the division of 33 by 5 using both long division and

the SUBC method. In this case, i = 6, j = 3, and the SUBC operation is repeated

6–3 + 1 = 4 times.

LONG DIVISION:

00000000000000000000000000000101

00000000000000000000000000000110

Quotient

Remainder

00000000000000000000000000100001

–101

1101

–101

11



Integer and Floating-Point Division

 3-10

SUBC METHOD:

00000000000000000000000000100001

00000000000000000000000000101000

Dividend
Divisor (aligned)
(1st SUBC com-
mand)Negative difference

↓
00000000000000000000000000100001

00000000000000000000000000101000
New Dividend + Quotient
Divisor
Difference (>0) (2nd SUBC
command)00000000000000000000000000011010

↓
New Dividend + Quotient
Divisor
Difference (>0) (3rd SUBC
command)

00000000000000000000000000100001

00000000000000000000000000101000

00000000000000000000000000011010

↓
00000000000000000000000000011011

00000000000000000000000000101000

Negative difference

↓

New Dividend +  Quotient
Divisor
(4th SUBC command)

00000000000000000000000000110110

Remainder

↓ ↓
Final Result

Quot.

When the SUBC command is used, both the dividend and the divisor must be

positive. Example 3–7 shows a realization of the integer division in which the

sign of the quotient is properly handled. The last instruction before returning

modifies the condition flag, in case subsequent operations depend on the sign

of the result.
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Example 3–7.Integer Division

*

* TITLE INTEGER DIVISION

*

* SUBROUTINE DIVI

*

*

* INPUTS: SIGNED INTEGER DIVIDEND IN R0,

* SIGNED INTEGER DIVISOR IN R1.

*

* OUTPUT: R0/R1 into R0.

*

* REGISTERS USED: R0–R3, IR0, IR1

*

* OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND

* 2. REPEAT SUBC

* 3. QUOTIENT IS IN LSBs OF RESULT

*

* CYCLES: 31–62 (DEPENDS ON AMOUNT OF NORMALIZATION)

* .globl DIVI

SIGN .set R2

TEMPF .set R3

TEMP .set IR0

COUNT .set IR1

* DIVI – SIGNED DIVISION

DIVI:

*

* DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS.

*

XOR R0,R1,SIGN ;Get the sign

ABSI R0

ABSI R1

CMPI R0,R1 ;Divisor > dividend ?

BGTD ZERO ;If so, return 0

*

* NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT

* FOR DIVISOR, AND AS REPEAT COUNT FOR ’SUBC’.

*

FLOAT R0,TEMPF ;Normalize dividend

PUSHF TEMPF ;PUSH as float

POP COUNT ;POP as int

LSH –24,COUNT ;Get dividend exponent

FLOAT R1,TEMPF ;Normalize divisor

PUSHF TEMPF ;PUSH as float

POP TEMP ;POP as int

LSH –24,TEMP ;Get divisor exponent

SUBI TEMP,COUNT ;Get difference in exponents

LSH COUNT,R1 ;Align divisor with dividend

*

* DO COUNT+1 SUBTRACT & SHIFTS.

*

RPTS COUNT

SUBC R1,R0

*
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Example 3–7.Integer Division (Continued)

* MASK OFF THE LOWER COUNT+1 BITS OF R0

*

SUBRI 31,COUNT ;Shift count is (32 – (COUNT+1))

LSH COUNT,R0 ;Shift left

NEGI COUNT

LSH COUNT,R0 ;Shift right to get result

*

* CHECK SIGN AND NEGATE RESULT IF NECESSARY.

*

NEGI R0,R1 ;Negate result

ASH –31,SIGN ;Check sign

LDINZ R1,R0 ;If set, use negative result

CMPI 0,R0 ;Set status from result RETS

*

* RETURN ZERO.

*

ZERO:

LDI 0,R0

RETS

.end

If the dividend is less than the divisor and you want fractional division, you can

perform a division after you determine the desired accuracy of the quotient in

bits. If the desired accuracy is k bits, start by shifting the dividend left by k posi-

tions. Then apply the algorithm described above, and replace with i + k. It is

assumed that i + k is less than 32.

3.5.2 Computation of Floating-Point Inverse and Division

When you use the RCPF (reciprocal of a floating-point number) instruction to

generate an estimate of the reciprocal of a floating-point number, you can also

use Newton-Raphson algorithm to extend the precision of the mantissa of the

reciprocal of a floating-point number that the instruction generates. The floa-

ting-point division can be obtained by multiplying the dividend and the recipro-

cal of the divisor.

The input to RCPF is assumed to be v = v(man) × 2v(exp). The output is x =

x(man) × 2 x(exp). The value v(man) (or x(man)) is composed of three fields:

the sign bit v(sign), an implied nonsign bit, and the fraction field v(frac).

Four rules apply to generating the reciprocal of a floating-point number:

1) If v > 0, then x(exp) = –v(exp) – 1, and x(man) = 2/v(man).

For the special case in which the 10 MSBs of v(man) = 01.00000000b,

then x(man) = 2–2 –8 = 01.11111111b. In both cases, the 23 LSBs of

x(frac) = 0.

2) If v < 0, then x(exp) = –v(exp) – 1, and x(man) = 2/v(man).

For the special case in which the 10 MSBs of v(man) = 10.00000000b,
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then x(man) = –1 – 2–8  = 10.11111111b. In both cases, the 23 LSBs of

x(frac) = 0.

3) If v = 0 ( v(exp) = –128 ), then x(exp) = 127, and

x(man) = 01.1111111111111111111111111111111b.

In other words, if v = 0, then x becomes the largest positive number repre-

sentable in the extended-precision floating-point format. The overflow flag

(V) is set to 1.

4) If v(exp) = 127, then x(exp) = –128, and x(man) = 0.

The zero flag (Z) is set to 1.

The Newton-Raphson algorithm is:

x[n+1] = x[n](2.0 – vx[n])

In this algorithm, v is the number for which the reciprocal is desired. x[0] is the

seed for the algorithm and is given by RCPF. At every iteration of the algorithm,

the number of bits of accuracy in the mantissa doubles. Using RCPF, accuracy

starts at eight bits. With one iteration, accuracy increases to16 bits in the man-

tissa, and with the second iteration, accuracy increases to 32 bits in the mantis-

sa. Example 3–8 shows the program for implementing this algorithm on the

’C4x.
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Example 3–8.Inverse of a Floating-Point Number With 32-Bit Mantissa Accuracy

*

* TITLE INVERSE OF A FLOATING-POINT NUMBER WITH 32-BIT

* MANTISSA ACCURACY

*

* SUBROUTINE INVF

*

* THE FLOATING-POINT NUMBER v IS STORED IN R0. AFTER THE

* COMPUTATION IS COMPLETED, 1/v IS STORED IN R1.

*

* TYPICAL CALLING SEQUENCE:

* LAJU INVF

* LDF v, R0

* NOP <–––– can be other non-pipeline-break

* NOP <–––– instructions

*

* ARGUMENT ASSIGNMENTS:

*

* ARGUMENT |FUNCTION

* –––––––––––––– +––––––––––––––––––––––––––––––––––––––––––––

* R0 | v = NUMBER TO FIND THE RECIPROCAL OF

* | (UPON THE CALL)

* R1 | 1/v (UPON THE RETURN)

*

* REGISTER USED AS INPUT: R0

* REGISTERS MODIFIED: R1, R2

* REGISTER CONTAINING RESULT: R1

* REGISTER FOR SUBROUTINE CALL: R11

*

* CYCLES: 7 (not including subroutine overhead)
* WORDS: 8 (not including subroutine overhead)
*

*

.global INVF

*

INVF: RCPF R0,R1 ;Get x[0] = the

;estimate of 1/v, R0 = v

*

MPYF3 R1,R0,R2

SUBRF 2.0,R2

MPYF R2,R1 ;End of first iteration

;(16 bits accuracy)

*

BUD R11 ;Delayed return to caller

*

MPYF3 R1,R0,R2

SUBRF 2.0,R2

MPYF R2,R1 ;End of second iteration 

;(32 bits accuracy)

*

* R1 = 1/v, Return to caller

*

.end
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3.6 Calculating a Square Root

In many applications, normalization of data values is necessary. Often, the

normalizing factor is the square root of another quantity. For example, given

a vector, the unit vector in the same direction as the original vector can be

found by normalizing the original vector by its length. This involves a division

by a square root. The ’C4x single-cycle instruction RSQRF generates an

estimate of the reciprocal of the square root of a positive floating-point number.

This estimate has the correct exponent, and the mantissa is accurate to the

eighth binary place (the error of the mantissa is < 2–8). Three rules apply to this

algorithm:

1) If v(exp) is even, then x(exp) = –(v(exp)/2) – 1, and

x(man) = 2/sqrt(v(man)).

For the special case where the 10 MSBs of y(man) = 01.00000000b, then

x(man) = 2 – 2 –8 = 01.11111111b. In both cases, the 23 LSBs of x(frac) = 0.

2) If v(exp) is odd, then x(exp) = –((v(exp) – 1)/2) – 1 and

x(man) = sqrt(2/v(man)). The 23 LSBs of x(frac) = 0.

3) If v = 0 ( v(exp) = –128 ), then x(exp) = 127, and

x(man) = 01.1111111111111111111111111111111b.

In other words, if v = 0, then x becomes the largest positive number repre-

sentable in the extended-precision floating-point format. The overflow flag

(V) is set to 1.

If you need larger precision than the RSQRF instruction gives for the estimate

of the reciprocal of the square root, you can use the Newton-Raphson algo-

rithm to further extend the precision of the mantissa. The algorithm is:

x[n+1] = x[n](1.5 – (v/2) x [n] x [n])

In this equation, v is the number for which the reciprocal is desired. x[0] is the

seed for the algorithm and is given by RSQRF. At every iteration of the algo-

rithm, the number of bits of accuracy in the mantissa doubles. Using RSQRF,

accuracy starts at eight bits. With one iteration, accuracy increases to16 bits,

and with the second iteration, accuracy increases to 32 bits in the mantissa.

Example 3–9 shows the program for implementing this algorithm on the ’C4x.
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Example 3–9.Reciprocal of the Square Root of a Positive Floating Point

* TITLE RECIPROCAL OF THE SQUARE ROOT OF A POSITIVE

*   FLOATING-POINT

*

* SUBROUTINE RCPSQRF

*

* THE FLOATING-POINT NUMBER v IS STORED IN R0. AFTER THE

* COMPUTATION IS COMPLETED, 1/SQRT(v) IS STORED IN R1.

*

* TYPICAL CALLING SEQUENCE:

* LDF v, R0

* LAJU RCPSQRF

*

* ARGUMENT ASSIGNMENTS:

*

* ARGUMENT | FUNCTION

* –––––––––––– +––––––––––––––––––––––––––––––––––––––

* R0 | v = NUMBER TO FIND THE RECIPROCAL OF

* | (UPON THE CALL)

* R1 | 1/sqrt(v) (UPON THE RETURN)

*

* REGISTER USED AS INPUT: R0

* REGISTERS MODIFIED: R1, R2

* REGISTER CONTAINING RESULT: R1

* REGISTER FOR SUBROUTINE CALL: R11

*

* CYCLES: 10 (not including subroutine overhead)
* WORDS: 10 (not including subroutine overhead)
*

.global RCPSQRF

*

RCPSQRF: RSQRF R0,R1 ;Get x[0] = the estimate of 1/sqrt(v), R0 = v

MPYF 0.5,R0 ;R0 = v/2

*

MPYF3 R1,R1,R2 ;First iteration

MPYF R0,R2

SUBRF 1.5,R2

MPYF R2,R1 ;End of first iteration (16 bits accuracy)

*

MPYF3 R1,R1,R2 ;Second iteration

*

BRD R11 ;Delayed return to caller

*

MPYF R0,R2

SUBRF 1.5,R2

MPYF R2,R1 ;End of second iteration (32 bits accuracy)

*

* R1 = 1/SQRT(v), Return to caller

*

.end

You can find the square root by a simple multiplication: sqrt(v) = vx[n] in which

x[n] is the estimate of 1/sqrt(v) as determined by the Newton-Raphson algo-

rithm or another algorithm.
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3.7 Extended-Precision Arithmetic

The ’C4x offers 32 bits of precision in the mantissa for integer arithmetic, and

24 bits of precision in the mantissa for floating-point arithmetic. For higher pre-

cision in floating-point operations, the twelve extended-precision registers, R0

to R11, contain eight more bits of accuracy. Because no comparable extension

is available for fixed-point arithmetic, this section discusses how to achieve

fixed-point double precision. The technique consists of performing the arith-

metic by parts and is similar to the way in which longhand arithmetic is done.

The instructions, ADDC (add with carry) and SUBB (subtract with borrow) use

the status carry bit for extended-precision arithmetic. The carry bit is affected

by the arithmetic operations of the ALU and by the rotate and shift instructions.

You can also manipulate it directly by setting the status register to certain val-

ues. For proper operation, the overflow mode bit should be reset (OVM = 0)

so that the accumulator results are not loaded with the saturation values.

Example 3–10 and Example 3–11 show 64-bit addition and 64-bit subtraction,

respectively. The first operand is stored in the registers R0 (low word) and R1

(high word). The second operand is stored in registers R2 and R3, respective-

ly. The result is stored in R0 and R1.

Example 3–10. 64-Bit Addition

*

* TITLE 64-BIT ADDITION

*

* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING

*

* A 64-BIT RESULT. THE NUMBERS X (R1,R0) AND Y (R3,R2)

*

* ARE ADDED, RESULTING IN W (R1,R0).

*

*    R1   R0

*  + R3   R2

*    –––––––

*    R1   R0

*

ADDI R2,R0

ADDC R3,R1
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Example 3–11. 64-Bit Subtraction

*

* TITLE 64-BIT SUBTRACTION

*

* TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER

* PRODUCING A 64-BIT RESULT. THE NUMBERS X (R1,R0) AND

* Y (R3,R2) ARE SUBTRACTED, RESULTING IN W (R1,R0).

*

*    R1   R0

*  – R3   R2

*    –––––––

*    R1   R0

*

SUBI R2,R0

SUBB R3,R1

When two 32-bit numbers are multiplied, a 64-bit product results. To do this,

’C4x provides a 32 bit x 32-bit multiplier and two special instructions, MPYSHI

(multiply signed integer and produce 32 MSBs) and MPYUHI (multiply un-

signed integer and produce 32 MSBs). Example 3–12 shows the implementa-

tion of a 32-bit x 32-bit multiplication.

Example 3–12. 32-Bit by 32-Bit Multiplication

*

* TITLE 32 BIT × 32-BIT MULTIPLICATION
*

* MULTIPLIES 2 32-BIT NUMBERS, PRODUCING A 64-BIT RESULT.

* THE TWO NUMBERS R0 AND R1 ARE MULTIPLIED, RESULTING

* IN W (R3,R2).

*

*      R0

*   ×  R1
*     ––––

*      R3  R2

*

MPYI3 R0,R1,R2

MPYSHI3 R0,R1,R3
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3.8 Floating-Point Format Conversion: IEEE to/From ’C4x

In fixed-point arithmetic, the binary point that separates the integer from the

fractional part of the number is fixed at a certain location. Therefore, if the

binary point of a 32-bit number is fixed after the most significant bit (which is

also the sign bit), only a fractional number (a number with an absolute value

less than 1), can be represented. In other words, there is a number with 31 frac-

tional bits. All operations assume that the binary point is fixed at this location.

The fixed-point system, although simple to implement in hardware, imposes

limitations in the dynamic range of the represented number. This causes scal-

ing problems in many applications. You can avoid this difficulty by using floa-

ting-point numbers.

A floating-point number consists of a mantissa m multiplied by base b raised

to an exponent e:

m × be

In current hardware implementations, the mantissa is typically a normalized

number with an absolute value between 1 and 2, and the base is b = 2. Al-

though the mantissa is represented as a fixed-point number, the actual value

of the overall number floats the binary point because of the multiplication by

be. The exponent e is an integer whose value determines the position of the

binary point in the number. IEEE has established a standard format for the re-

presentation of floating-point numbers.

To achieve higher efficiency in the hardware implementation, the ’C4x uses a

floating-point format that differs from the IEEE standard. However, ’C4x has

two single-cycle instructions, TOIEEE and FRIEEE, for the format conversion.

These two instructions can also be used with the STF instruction, which allows

the data format to be converted within memory-to-memory transfer. Here are

descriptions of both formats and an example program to convert between

them.

’C4x floating-point format:

e s f

1 23 bits8 bits

In a 32-bit word representing a floating-point number, the first 8 bits corre-

spond to the exponent expressed in twos-complement format. One bit is for

sign, and 23 bits are for the mantissa. The mantissa is expressed in twos-com-

plement form with the binary point after the most significant nonsign bit. Be-

cause this bit is the complement of the sign bit s, it is suppressed. In other

words, the mantissa actually has 24 bits. One special case occurs when 
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e = –128. In this case, the number is interpreted as zero, independently of the

values of s and f (which are, by default, set to zero). To summarize, the values

of the represented numbers in the ’C4x floating-point format are as follows:

2e * (01.f) if s = 0
2e * (10.f) if s = 1
0 if e = –128

IEEE floating-point format:

es f

1 23 bits 8 bits

The IEEE floating-point format uses sign-magnitude notation for the mantissa.

In a 32-bit word representing a floating-point number, the first bit is the sign bit.

The next 8 bits correspond to the exponent, expressed in an offset-by-127 for-

mat (the actual exponent is e–127). The following 23 bits represent the abso-

lute value of the mantissa with the most significant 1 implied. The binary point

is fixed after this most significant 1. In other words, the mantissa actually has

24 bits. Several special cases are summarized below.

These are values of the represented numbers in the IEEE floating-point for-

mat:

(–1)s * 2e–127 * (01.f) if 0 < e < 255

Special cases:

(–1)s * 0.0 if e = 0 and f = 0 (zero)
(–1)s * 2–126 * (0.f) if e = 0 and f <> 0 (denormalized)
(–1)s * infinity if e = 255 and f = 0 (infinity)
NaN (not a number) if e = 255 and f <> 0

The ’C4x performs the conversion according to these definitions of the for-

mats. It assumes that the source data for the IEEE format is in memory only

and that the source data for the ’C4x floating-point format is in either memory

or an extended-precision register. The destination for both conversions must

be in an extended-precision register. In the case of block memory transfer, the

no-penalty data-format conversion can be executed by parallel instruction with

STF. Example 3–13 and Example 3–14 show the data-format conversion

within the data transformation between communication port and internal RAM.
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Example 3–13. IEEE to ’C4x Conversion Within Block Memory Transfer

* TITLE IEEE TO ’C4x CONVERSION WITHIN BLOCK MEMORY

* TRANSFER

*

* PROGRAM ASSUMES THAT INPUT FIFO OF COMMUNICATION PORT 0

* IS FULL OF IEEE FORMAT DATA. EIGHT DATA WORDS ARE

* TRANSFERRED FROM COMMUNICATION PORT 0 TO INTERNAL RAM

* BLOCK 0 AND THE DATA FORMAT IS CONVERTED FROM IEEE FORMAT

* TO ’C4x FLOATING-POINT FORMAT.

*

.

.

.

LDI @CP0_IN,AR0 ;Load comm port0 input FIFO address

LDI @RAM0,AR1 ;Load internal RAM block 0 address

FRIEEE *AR0,R0 ;Convert first data

RPTS 6

FRIEEE *AR0,R0 ;Convert next data

|| STF R0,*AR1++(1) ;Store previous data

STF R0,*AR1++(1) ;Store last data

.

.

.

Example 3–14. ’C4x to IEEE Conversion Within Block Memory Transfer

* TITLE ’C4x TO IEEE CONVERSION WITHIN BLOCK MEMORY 

* TRANSFER

*

* PROGRAM ASSUMES THAT OUTPUT FIFO OF COMMUNICATION PORT 0

* IS EMPTY. EIGHT DATA WORDS ARE TRANSFERRED FROM INTERNAL

* RAM BLOCK 0 TO COMMUNICATION PORT 0 AND THE DATA FORMAT

* IS CONVERTED FROM ’C4x FLOATING-POINT FORMAT TO

* IEEE FORMAT.

*

.

.

.

LDI @CP0_OUT,AR0 ;Load comm port0 output FIFO address

LDI @RAM0,AR1 ;Load internal RAM block 0 address

TOIEEE *AR1++(1),R0 ;Convert first data

RPTS 6

TOIEEE *AR1++(1),R0 ;Convert next data

|| STF R0,*AR0 ;Store previous data

STF R0,*AR0 ;Store last data

.

.

.
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4.1 System Configuration

Figure 4–1 illustrates an expanded configuration of a ’C4x system with differ-

ent types of external devices and the interfaces to which they are connected.

Figure 4–1. Possible System Configurations
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External flags

System
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Timer interface
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Analog I/O Large shared
memory

Peripherals

I/O devices

Bit I/O

Peripherals

Peripherals

Fast local
memory

I/O devices

Timer interface

Communication
 ports

Peripherals

’C4x devices

Clock, reset
 generator, etc

In your design, you can use any subset or superset of the illustrated compo-

nents.



 External Interfacing

4-3  Memory Interfacing

4.2 External Interfacing

The ’C4x interfaces connect to a wide variety of device types. Each of these

interfaces is tailored to a particular type of device such as memory, DMA, par-

allel and serial peripherals, and I/O. In addition, ’C4x devices can interface di-

rectly with each other, without external logic, through their communication

ports or their external flag pins IIOF(0–3). Each interface comprises one or

more signal lines, which transfer information and control its operation.

Figure 4–2 shows the signal groups for these interfaces.

Figure 4–2. External Interfaces
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STRB0 control enable

Interlock signal

STRB0 control

Status

Data enable
Address enable

LSTRB1
LR/W1
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LRDY1
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CACKn
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port interface
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LSTRB1 control enable

LSTRB1 control

LSTRB0 control enable

LSTRB0 control

Interlock signal
Status4

4

2

LCE1

Global
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Bus

Note: n = 0 for communication port 0, n = 1 for communication port 1, etc.

The global and local buses implement the primary memory-mapped interfaces

to the device. These interfaces allow external devices such as DMA controllers

and other microprocessors to share resources with one or more ’C4x devices

through a common bus.
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4.3 Global and Local Bus Interfaces

The ’C4x uses the global and local buses to access the majority of its

memory-mapped locations. Since these two memory interfaces are identical

in every way, except for their positions in the memory map, each example in

this memory interface section focuses on only one of the two interfaces. How-

ever, all of the examples are applicable to either the local or global bus. The

buses have identical but mutually exclusive sets of control signals:

Table 4–1.Local/Global Bus Control Signals

Global Bus Local Bus

STRB0 LSTRB0

STRB1 LSTRB1

CE0 LCE0

CE1 LCE1

RDY0 LRDY0

RDY1 LRDY1

AE LAE

DE LDE

PAGE0 LPAGE0

PAGE1 LPAGE1

R/W0 LR/W0

R/W1 LR/W1

While both the global bus and the local bus can interface to a wide variety of

devices, they most commonly interface to memories.
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4.4 Zero Wait-State Interfacing to RAMs

A memory-read access time is normally defined as the time between address

valid and data valid. This time can be determined by:

Read access time = tc(H) – (td(H1L–A) + tsu(D)R)

where:

tc(H) = H1/H3 cycle time

td(H1L–A) = H1 low to address valid

tsu(D)R = Data valid before next H1 low (read)

For a full-speed, zero wait-state interface to any device, a 50-MHz ’C4x (40-ns

instruction cycle time) requires a read access time of 21 ns from address stable

to data valid. For most memories, the access time from chip enable is the same

as access time from address; thus, it is possible to use 20-ns memories at full

speed with a 50-MHz ’C4x. However, to use 20-ns memories properly, you

must avoid long delays between the processor and the memories.

Avoiding these delays is not always possible, because interconnections and

gating for chip-enable generation can cause them. In addition, if you choose

a memory device with an output enable, the output enable must become active

quickly enough to ensure that the memory can meet the data valid timing

requirements of the ’C4x. For memories with 20-ns access times, the output

enable active to data valid timing parameter is typically less than 10 ns.

Currently available RAMs without output-enable (OE) control lines include the

1-bit wide organized RAMs and most of the 4-bit wide RAMs. Those with OE

controls include the byte-wide and a few of the 4-bit wide RAMs. Many of the

fastest RAMs do not provide OE control; they use chip-enable (CE) controlled

write cycles to ensure that data outputs do not turn on for write operations. In

CE-controlled write cycles, the write control line (WE) goes low before CE goes

low, and internal logic holds the outputs disabled until the cycle is completed.

Using CE-controlled write cycles is an efficient way to interface fast RAMs

without OE controls to the ’C4x at full speed.

Note:

You can find timing parameters for CLKIN, H1, H3, and memory in the
TMS320C40 and TMS320C44 data sheets.
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4.4.1 Consecutive Reads Followed by a Write Interface Timing

Figure 4–3 shows the timing of consecutive reads followed by a write. For con-

secutive reads, LSTRB0 stays active (low), and LR/W stays high as long as

read cycles continue. For back-to-back reads, the ’C4x requires zero-wait-

state memories to have an address-valid to data-valid time of less than 21 ns.

For most memory devices, this time is the same as the memory access time,

which is t1 = 20 ns. Thus, memories with access times of 25 ns or more cannot

meet this timing.

Memory device timing is not as critical for zero-wait-state as for nonzero-wait-

state write cycles, because of the two H1 cycle writes of the ’C4x. The extra

cycle gives LSTRB0 enough time to frame LR/W, preventing memories that

go into high impedance slowly at the end of a read cycle from driving the bus

during the subsequent write cycle. For the memory device used in this design

(Figure 4–3), the data lines are guaranteed to into high impedance (t2 = 10 ns)

after CS goes inactive, which gives more than 23 ns of margin before the ’C4x

starts driving the bus with write data. Also, the extra cycle with LSTRB0

inactive prevents writes to random locations in memory while the address is

changing between consecutive writes.

For the write cycles shown in Figure 4–3 and Figure 4–4, the RAM requires

15 ns of write data setup before CS goes high, and this design provides at least

24 ns (t3). A data hold time of 0 ns (t4) is required by the RAM, and this design

provides greater than 13 ns. Finally, the RAM’s 20-ns setup and 0-ns hold

times for address (with respect to CS high) ensure a clear margin.

Figure 4–3. Consecutive Reads Followed by a Write

LR/W0

LSTRB0

LD(31–0)

LA(30–0)

H1

Valid
read addr Valid read addr Write address

Valid write dataValid
data

Valid
data

t1 t2
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Figure 4–4. Consecutive Writes Followed by a Read

LR/W0

STRB0

LD(31–0)

LA(30–0)

H1

Valid write address Valid write address

Valid write data Valid dataValid write data

Read address

t3

t4

4.4.2 Consecutive Writes Followed by a Read Interface Timing

Figure 4–4 shows the timing of consecutive writes followed by a read. Notice

that between consecutive writes, LR/W stays low, but STRB0 goes inactive to

frame the write cycles. Although ’C4x zero-wait-state writes take two H1

cycles, writes appear to take one cycle internally (from the perspective of the

CPU and DMA) if no access to the interface is already in progress.

In the read cycle following the writes in Figure 4–4, the ’C4x requires zero-wait-

state memories to have a LSTRB-active to data-valid time of less than 21 ns

(one H1 cycle minus (H1 low to LSTRB active plus data setup before H1 low)).

For most memory devices, this time is the same as the memory access time,

which is t1 = 20 ns in this design. Thus, a margin of only 1 ns exists, leaving

little allowance for STRB gating if desired.

4.4.3 RAM Interface Using One Local Strobe

Figure 4–5 shows the ’C4x’s local bus interfaced to eight Integrated Device

Technology IDT71258 20-ns 64K × 4-bit CMOS static RAMs with zero wait

states using chip-enable controlled write cycles. The SRAMs are arranged to

implement the first 64K, 32-bit words in external memory, located at addresses

00000h thru 0FFFFh (internal ROM is assumed to be disabled). If these 64K

words of SRAM are the only memory controlled by LSTRB0, the LSTRB AC-

TIVE field of the local memory interface control register (LMICR) should be set

to its minimum value of 011112, allowing LSTRB0 to be active for only the first
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64K words of the ’C4x’s memory space. In addition, if this memory is the only

memory interfaced to LSTRB0, LSTRB0 requires only one page, and the PA-

GESIZE field of the LMICR should be set to 011112. Also note that in

Figure 4–5, the LRDY0 input is tied low, selecting zero wait states for all

LSTRB0 accesses on the local bus. With all of the zero-wait-state memory

controlled by LSTRB0, LSTRB1 can be used to control accesses to slower

read-only memory devices or other types of memory.

Figure 4–5. ’C4x Interface to Eight Zero-Wait-State SRAM
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I/O3 – 0

LR/W0

LSTRB0

LRDY0

WE

A15–A0

32

CS

16

A15–A0

WE

CS

I/O3 – 0

IDT71258 SRAM

IDT71258 SRAM

In this circuit implementation, no external logic is necessary to interface the

’C4x to the memory device. Typically, memory devices must be held inactive

(CS inactive) during changes in WE; this avoids undesired memory accesses

while the address changes. The ’C4x ensures this glueless interface because

LSTRB always frames changes in LR/W.

4.4.4 RAM Interface Using Both Local Strobes

Figure 4–6 shows the ’C4x’s local bus interfaced to HM6708 — 20-ns 64K ×
4-bit CMOS static RAMs with zero wait states using CS controlled write cycles.
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These RAMs are arranged to allow 128K 32-bit words of local memory, which

are implemented as two 64K × 32-bit banks. One bank is controlled by each

of the two sets of control signals on the local bus. To map these memory de-

vices properly in the ’C4x’s memory space, you must use the local-memory-in-

terface control register (LMICR) to define which part of the local bus’s memory

space is mapped to each of the two strobes. In this implementation with inter-

nal ROM disabled, LSTRB0 is mapped to the first 64K words of the local space

(addresses 0h through 0FFFFh), and LSTRB1 is mapped to the rest of the lo-

cal space (addresses 10000h through 7FFF FFFFh). For this memory config-

uration, the LSTRB ACTIVE field of the local-memory-interface control regis-

ter (LMICR) should be set to 011112. Also, each LSTRB requires only one

page. The PAGESIZE field of the LMICR should be set to 011112. Note that in

Figure 4–6, the LRDY inputs are tied low, selecting zero wait states for all ac-

cesses on the local bus.

Hence, through the use of the ’C4x’s four strobes (two each on the local and

global buses), four different banks of memory can be decoded. In addition,

through program control, you can change the address decoding under pro-

gram control by changing the LSTRB active field (bits 24–28) of the LMICR or

the global-memory-interface control register (GMICR). If you must decode

more than four banks of memory or if the chosen memory device cannot meet

the read cycle timing requirements for the ’C4x at zero wait states, you should

use page switching (discussed in subsection 4.5.6 on page 4-18) to add an ex-

tra cycle to read accesses outside the current bank boundary.
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Figure 4–6. ’C4x Interface to Zero-Wait-State SRAMs, Two Strobes
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4.5 Wait States and Ready Generation

Using wait states can greatly increase a system’s flexibility and reduce its

hardware requirement. The ’C4x is capable of generating wait states on either

the global bus or the local bus, and both buses have independent sets of ready

control logic. The buses’ wait-state configuration is determined by the SWW

and WTCNT fields of the local and global-bus-interface control registers.

This section discusses ready generation from the perspective of the global-

bus interface; however, wait-state operation on the local bus is the same as

on the global bus, so this discussion pertains equally well to both (local and

global). Also, the local and global buses each have two sets of control signals

— R/W0, STRB0, RDY0, PAGE0, CE0 and R/W1, STRB1, RDY1, PAGE1,

CE1— with each set of control signals having its own ready signal, providing

for more flexibility in support of external devices with different speeds. Since

both strobes’ ready signals share the same electrical characteristics, the fol-

lowing discussion focuses on one of the global bus’s set of control signals.

Wait states are generated by:

� The internal wait-state generator

� The external ready inputs (RDY0 or RDY1)

� The logical AND or OR of the two ready signals

When enabled, internally generated wait states affect all external cycles, re-

gardless of the address accessed. If different numbers of wait states are re-

quired for various external devices, the external RDY input can be used to cus-

tomize wait-state generation to specific system requirements.

If either the logical OR or electrical AND (since the signals are true low) of the

external and wait-count ready signals is selected, the earlier of the two signals

will generate a ready condition and allow the cycle to be completed. It is not

required that both signals be present.



Wait States and Ready Generation

 4-12

4.5.1 ORing of the Ready Signals (STRBx SWW = 10)

You can use the OR of the two ready signals to implement wait states for de-

vices that require more wait states than internal logic can implement (up to

seven). This feature is useful, for example, if a system contains some fast and

some slow devices. In this case:

� Fast devices can generate ready externally with a minimum of logic.

When fast devices are accessed, the external hardware responds prompt-

ly with ready, which terminates the cycle.

� Slow devices can use the internal wait counter for larger numbers of wait

states. When slow devices are accessed, the external hardware does not

respond, and the cycle is appropriately terminated after the internal wait

count.

The OR of the two ready signals can also terminate the bus cycle before the

number of wait states implemented with external logic allows termination. In

this case, a shorter wait count is specified internally than the number of wait

states implemented with the external ready logic, and the bus cycle is termi-

nated after the wait count. Also, this feature can be used as a safeguard

against inadvertent accesses to nonexistent memory that would never re-

spond with ready and would, therefore, lock up the ’C4x.

If the OR of the two ready signals is used, however, and the internal wait-state

count is less than the number of wait states implemented externally, the

external ready generation logic must be able to reset its sequencing to allow

a new cycle to begin immediately following the end of the internal wait count.

Also, the consecutive cycles must be from independently decoded areas of

memory (or from different pages in memory). Otherwise, the external ready

generation logic may lose synchronization with bus cycles and generate

improperly timed wait states.

4.5.2 ANDing of the Ready Signals (STRBx SWW = 11)

If the logical AND (electrical OR) of the wait count and external ready signals

is selected, the later of the two signals will control the internal ready signal, but

both signals must be asserted. Accordingly, external ready control must be im-

plemented for each wait-state device, and the wait count ready signal must be

enabled.

This feature is useful if devices in a system are equipped to provide a ready

signal but cannot respond quickly enough to meet the ’C4x’s timing require-

ments. If these devices normally indicate a ready condition and, when ac-

cessed, respond with a wait until they become ready, the logical AND of the
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two ready signals can be used to save hardware in the system. In this case,

the internal wait counter can provide wait states initially, and then the external

ready can provide wait states after the external device has had time to send

a not-ready indication. The internal wait counter then remains ready until the

external device also becomes ready, which terminates the cycle.

Additionally, the AND of the two ready signals can be used for extending the

number of wait states for devices that already have external ready logic imple-

mented, but require additional wait states under certain unique circumstances.

4.5.3 External Ready Generation

The optimum technique for implementing external ready generation hardware

depends on the specific characteristics of the system, including the relative

number of wait-state and nonwait-state devices in the system and the

maximum number of wait states required for any one device. The approaches

discussed here are intended to be general enough for most applications and

are easily modifiable to comprehend many different system configurations.

In general, ready generation involves the following three functions:

1) Segmentation of the address space to distinguish fast and slow devices

2) Generation of properly timed ready indications

3) Logical ORing of all the separate ready timing signals together to

 connect to the physical ready input

Segmentation of the address space is required to obtain a unique indication

of each particular area within the address space that requires wait states. This

segmentation is commonly implemented in the form of chip-select generation.

Chip-select signals can initiate wait states in many cases; however,

occasionally, chip-select decoding considerations may provide signals that do

not allow ready input timing requirements to be met. In this case, you can seg-

ment coarse address space on the basis of a small number of address lines,

where simpler gating allows signals to be generated more quickly. In either

case, the signal that indicates that a particular area of memory is being

addressed also normally initiates the ready or wait-state signal.

When address space to be accessed has been established, a timing circuit is

normally used to provide a ready indication to the processor at the appropriate

point in the cycle to satisfy each device’s unique requirements.

Finally, since indications of ready status from multiple devices are typically

present, you should logically OR the signals by using a single gate to drive the

RDY input.
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4.5.4 Ready Control Logic

You can take one of two basic approaches to implement ready control logic,

depending on the state of the ready input between accesses. If RDY is low be-

tween accesses, the processor is always ready unless a wait state is required;

if RDY is high between accesses, the processor will always enter a wait state

unless a ready indication is generated.

If RDY is low between accesses, control of devices that are zero-wait-state

at full speed is straightforward; no action is necessary, because ready is al-

ways active unless otherwise required. Devices requiring wait states, howev-

er, must drive ready high fast enough to meet the input timing requirements.

Then, after an appropriate delay, a ready indication must be generated. This

can be difficult in many circumstances because wait-state devices are in-

herently slow and often require complex select decoding.

If RDY is high between accesses, zero-wait-state devices, which tend to be

inherently fast, can usually respond immediately with a ready indication. Wait-

state devices can simply delay their select signals appropriately to generate

a ready. Typically, this approach results in the most efficient implementation

of ready control logic. Figure 4–7 shows a circuit of this type, which can be

used to generate 0, 1, or 2 wait states for multiple devices in a system.

Figure 4–7. Logic for Generation of 0, 1, or 2 Wait States for Multiple Devices
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4.5.5 Example Circuit

Figure 4–7 shows how a single, 7-ns 16R4 programmable logic device (PLD)

can be used to generate 0, 1, and 2 wait states for multiple devices that are

interfaced to a ’C4x. In this example, distinct address bits are used to select

the different wait-state devices. Here, each of the three address lines input to

the 16R4 corresponds to a different speed device. For a single 16R4 imple-

mentation, up to nine different address bits can be used to select different

speed devices.

The single output, 4Q, of the PLD is connected directly to the RDY0 input of

the ’C4x to signal the completion of a bus access for external wait-state gen-

eration. Because RDY0 is sampled on the falling of H1, the H3 output clock is

used as the PLD clock input.

Example 4–1 shows the ready logic equations for programming the 16R4

PLD. The PLD language used is ABEL. STRB0 is an input into the PLD that

indicates that a valid ’C4x bus cycle is occurring. Also, a delayed version of

STRB0 (synchronized with H1 going high) is provided as the strb_syn_ input

signal. This delayed signal is needed to avoid problems with a race condition

that may exist between STRB0 going low and H3 rising. RESET can be used

to bring the state machine back to the idle state.

Notice that the RDY0 output of the PLD is not registered. An asynchronous

RDY0 signal is necessary to generate a ready signal for zero-wait-state de-

vices. When a zero-wait-state device is selected (ahi1 high in Example 4–1)

and STRB0 is low, the PLD asserts RDY0 low within 7 ns. Hence, RDY0 goes

active fast enough to satisfy the 20-ns setup time of RDY0 low before H1 low.

For generation of RDY0 for one and two wait states, the device select address

bits and strb_syn_ are delayed one and two cycles, respectively, by the PLD

before a RDY0 is brought active low. The one H3-cycle delay, required for one-

wait-state device ready generation, corresponds to state wait_one in

Example 4–1 and the two H3-cycle delay required for two-wait-state devices

corresponds to state wait_twoa and wait_twob.

This 16R4 PLD-based design can be used to implement different numbers of

wait states for multiple devices. More devices can be selected with ’C4x ad-

dress lines, and a higher number of wait states can be produced with a PLD

logic. Furthermore, this approach can be used in conjunction with the ’C4x’s

internal wait-state generator.
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Example 4–1.PLD Equations for Ready Generation

0001 | module ready_generation

0002 | title’ ready generation logic for 0, 1 and 2 wait state devices interfaced

0003 | to TMS320C4x’

0004 |

0005 | C40u5 device ’P16R4’;

0006 |

0007 | “inputs

0008 | h3 Pin 1;

0009 |

0010 |

0011 | “The following are TMS320C40 address bits used to 

0012 | “select the different speed devices. More can be used if 

0013 | “necessary. In this example, a zero wait state, a one wait

0014 | “state, and a two wait state device are decoded with these

| “three address bits

0015 |

0016 | ahi1 Pin 2; “when high selects zero wait state device

0017 | ahi2 Pin 3; “when high selects one wait state device

0018 | ahi3 Pin 4; “when high selects two wait state device

0019 | strb0_ Pin 5; “indicates valid TMS320C40 bus cycle

0020 | reset_ Pin 6; “reset signal from TMS320C40

0021 | strb_syn_ Pin 7; ”reset strb0_ synchronized with H1 rising edge.

0022 | “output

0023 | rdy0_ Pin 12; “ready signal to TMS320C40

0024 |

0025 | one_wait Pin 14; “internal flip–flop signal for 1 wait state

0026 |                         “device ready signal generation

0027 | two_waita Pin 15; “internal flip–flop signal for first of the two

0028 | “wait states for 2 wait state devices

0029 | two_waitb Pin 16; “internal flip–flop signal for second 

0030 | “of the two wait states for 2 wait 

0031 | ”state devices

0032 |

0033 | “name substitutions for test vectors

0034 | c,H,L,X  = .C.,1,0,.X.;

0035 |

0036 |

0037 | “state bits

0038 | outstate = [one_wait, two_waita, two_waitb];

0039 |

0040 | idle      = ^b111;

0041 | wait_one  = ^b011;

0042 | wait_twoa = ^b101;

0043 | wait_twob = ^b110;

0044 |

0045 |

0046 |state_diagram  outstate

0047 |

0048 |state idle:

0049 | if (reset_ & ahi2 & !strb_syn_) then wait_one

0050 | else if (reset_ & ahi3 & !strb_syn_) then wait_twoa
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Example 4–1.PLD Equations for Ready Generation (Continued)

0051 | else idle;

0052 |

0053 |

0054 |state wait_one:

0055 | GOTO idle;

0056 |

0057 |state wait_twoa:

0058 | if (reset_)  then wait_twob

0059 | else idle;

0060 |

0061 |state wait_twob:

0062 | GOTO idle;

0063 |

0064 |equations

0065 | !rdy0_   =  reset_ & ((ahi1 & !strb0_) # !one_wait # 

| !two_waitb) ;                                        

0066 |

0067 |@page

0068 |“Test 1st level global arbitration logic

0069 |test_vectors

0070 |([h3,ahi1,ahi2,ahi3,strb0_, _strb_syn_ reset_] –> [outstate,  rdy0_])

0071 |[ c,  X,   X,    X,   X,        X,       L   ] –> [idle,       H   ];

0072 |[ c,  L,   H,    L,   L,        L,       H   ] –> [wait_one,   L   ];

0073 |[ c,  X,   X,    X,   X,        X,       L   ] –> [idle,       H   ];

0074 |[ c,  L,   L,    H,   L,        L,       H   ] –> [wait_twoa,  H   ];

0075 |[ c,  X,   X,    X,   X,        X,       L   ] –> [idle,       H   ];

0076 |[ c,  L,   L,    H,   L,        L,       H   ] –> [wait_twoa,  H   ];

0077 |[ c,  L,   L,    H,   L,        L,       H   ] –> [wait_twob,  L   ];

0078 |[ c,  X,   X,    X,   X,        X,       L   ] –> [idle,       H   ];

0079 |[ L,  H,   L,    L,   L,        L,       H   ] –> [idle,       L   ];

0080 |[ c,  H,   L,    L,   L,        L,       H   ] –> [idle,       L   ];

0081 |[ L,  L,   L,    L,   L,        L,       H   ] –> [idle,       H   ];

0082 |[ c,  L,   H,    L,   L,        L,       H   ] –> [wait_one,   L   ];

0083 |[ c,  X,   X,    X,   X,        X,       H   ] –> [idle,       H   ];

0084 |[ c,  L,   L,    H,   L,        L,       H   ] –> [wait_twoa,  H   ];

0085 |[ c,  L,   L,    H,   L,        L,       H   ] –> [wait_twob,  L   ];

0086 |[ c,  H,   L,    L,   L,        L,       H   ] –> [idle,       L   ];

0087 |[ c,  X,   X,    X,   H,        H,       H   ] –> [idle,       H   ];

0088 |[ c,  X,   X,    X,   H,        H,       H   ] –> [idle,       H   ];

0089 |end    ready_generation
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4.5.6 Page Switching Techniques

The ’C4x’s programmable page-switching feature can greatly ease system de-

sign when large amounts of memory or slow external peripheral devices are

required. This feature provides a time period for disabling all device selects.

During the interval, slow devices are allowed time to turn off before other de-

vices have the opportunity to drive the data bus, thus avoiding bus contention.

When page switching is enabled, any time a portion of the high-order address

lines changes, as defined by the contents of the STRB0 and STRB1 PAGE-

SIZE fields (in the global and local memory interface control registers), the cor-

responding STRB and PAGE go high for one full H1 cycle. Provided that STRB

is included in chip-select decodes, this causes all devices selected by that

STRB to be disabled during this period. The next page of devices is not en-

abled until STRB and PAGE go low again.

If the high-order address lines remain constant during a read cycle, the

memory access time with page switching is the same as memory access time

without page switching. In addition, page switching is not required during

writes, because these write cycles exhibit an inherent one-half H1 cycle setup

of address information before STRB goes low. Thus, when you use page

switching for read/write devices, a minimum of half of one H1 cycle of address

setup is provided for all accesses outside a page boundary. Therefore, large

amounts of memory can be implemented without wait states or extra hardware

required for isolation between pages. Also, note that access time for cycles

during page switching is the same as that of cycles without page switching,

and, accordingly, full-speed accesses may still be accomplished within each

page.

The circuit shown in Figure 4–8 illustrates page switching with the CY7B185

15-ns 8K × 8 BiCMOS static RAM. This circuit implements 32K 32-bit words

of memory with full-speed zero wait-state accesses within each page.
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Figure 4–8. Page Switching for the CY7B185
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A 5-ns, 16L8 PLD decodes lines A15 – A13. These lines along with STRB0

select each of the four pages in this circuit. With the PAGESIZE field of STRB0

of the global memory interface control register set to 0Ch, the pages are

selected on even 8K-word boundaries, starting at location zero in external

memory space.

This circuit cannot be implemented without page switching, because the data

output’s turn-on and turn-off delays cause bus conflicts, and full-speed

accesses do not allow enough time for chip-select decoding for the four pages.

Here, the propagation delay of the 16L8 is involved only during page switches,

where there is sufficient time between cycles to allow new chip-selects to be

decoded.

The timing of this circuit for read operations with page switching is shown in

Figure 4–9. When a page switch occurs, the page address on address lines

A30 – A13 is updated during the extra H1 cycle while STRB0 is high. Then,

after chip-select decodes have stabilized and the previously selected page

has disabled its outputs, STRB goes low for the next read cycle. Further

accesses occur at full speed with the normal bus timings, as long as another

page switch is not necessary. Write cycles do not require page switching, be-

cause of the inherent address setup provided in their timings.

This timing is summarized in Table 4–2.
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Figure 4–9. Timing for Read Operations Using Bank Switching
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Table 4–2.Page Switching Interface Timing

Time

Interval Event
Time

Period

t1 H1 falling to address/STRB valid 7 ns

t2 STRB to select delay 5 ns

t3 Memory disable from select 8 ns

t4 H1 falling to STRB 7 ns

t5 STRB to select delay 5 ns

t6 Memory output enable delay 3 ns
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4.6 Parallel Processing Through Shared Memory

The ’C4x’s two memory interfaces allow flexibility to design shared-memory

interfaces for parallel processing. Many processors can be linked together in

a wide variety of network configurations through these ports. In this section,

Figure 4–10 illustrates ’C4x shared-memory networks that you can use to fulfill

many signal processing system needs.

Figure 4–10. ’C4x Shared/Distributed-Memory Networks
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4.6.1 Shared Global-Memory Interface 

One of the most common multiprocessor configurations is the sharing of

memory by all processors in a system. Shared memory is typically

implemented by tying the processors’ data and address lines together. Howev-

er, the shared memory interface must guarantee that no more than one

processor is driving the shared bus at any one time; it must also allow all

processors sharing the bus to have a chance to access shared resources.

The ’C4x supports shared memory multiprocessing with its identical global-

and local-port interfaces. Both interfaces have four status output signals,

(L)STAT3–0, which identify what type of access is beginning on the bus. These

signals identify whether the ’C4x port is idle, a DMA read is occurring, a STRB1

write is occurring, a LOCKed access to memory is pending, etc. The signals

can be interpreted by the interface to issue single access or locked access bus

requests to a shared bus arbiter.

The (L)CE, (L)AE, and (L)DE input signals support shared address control and

data lines. When the signals are disabled (high), they put the port’s control
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signals, address lines, and data lines, respectively, in the high-impedance

state. These bus enable lines are asynchronous inputs to the ’C4x, which can

quickly turn off bus drivers when another processor is accessing a shared

resource. However, these signals asynchronously turn off the ’C4x’s local and

global buses, without memory accesses being suspended. To ensure that data

written is seen externally and data read is valid, you should use the external

(L)RDY should be used for wait-state generation in shared memory designs.

An (L)RDY signal should not be sent to the ’C4x until the processor has

regained access to the bus (CE, AE, DE enabled) and has had enough time

to complete its access. Hence, with bus enable and status signals, the ’C4x

flexible bus interfaces easily implement high-speed shared bus configura-

tions.

4.6.2 Shared-Memory Interface Design Example

For an example of a ’C4x shared-memory interface, see the TMS320C4x Par-

allel Processing Development System Technical Reference (SPRU075). In

the example in that text, four ’C4x devices share SRAM with their global buses

tied together. A bus arbitrator implemented as a programmable logic device

provides a fair scheme for processor access to the shared bus. The design

uses high-speed parts but employs a fully asynchronous handshake protocol

that allows ’C4x devices of various speeds and also processors other than

’C4x devices to be added to this bus configuration.

The shared-memory interface in the PPDS works for ’C4x devices running at

a speed of up to 32 MHz. For higher speeds, the arbitrator incorrectly takes

away bus master privileges from a ’C4x between back-to-back reads to the

same page (the page size is determined by the page size field in the global bus

control register. The default page size for the PPDS global memory is 64K).

If this occurs while two or more ’C4x devices are requesting the bus to perform

write cycles, random shared memory locations can be corrupted.

To fix this problem for higher speeds, the busenable_ signal of each ’C4x local

interface can be used to generate gmce0_ and gmce1_ to prevent these sig-

nals from going low (active) if all the processors busenable_ signals are high

(inactive). The busenable_ signal is shown in the PLD equations in the Global

Bus Interface Logic section the of the TMS320C4x Parallel Processing Devel-

opment System Technical Reference). The gmce0 and gmce1 signals are

shown in the Global Memory Control section of the same book.



5-1  Chapter Title—Attribute Reference

Programming Tips

Programming style is highly personal and reflects each individual’s prefer-

ences and experiences. The purpose of this chapter is not to impose any par-

ticular style. Instead, it emphasizes some of the features of the ’C4x that can

help in producing faster and/or shorter programs. The tips in this chapter cover

both C and assembly language programming.
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5.1 Hints for Optimizing C Code

The ’C4x’s large register file, software stack, and large memory space easily

support the ’C4x C Compiler. The C compiler translates standard ANSI C pro-

grams into assembly language source. It also increases the portability and de-

creases the porting time of applications.

The suggested methodology for developing your application follows five steps:

1) Write the application in C.

2) Debug the program.

3) Estimate if the program runs in real-time.

4) If the program does not run in real time:

� Use the –o2 or –o3 option when compiling

� Use registers to pass parameters (–mr compiling option)

� Use inlining (–x compiling option)

� Remove the –g option when compiling

� Follow some of the efficient code generation tips listed below.

5) Identify places where most of the execution time is spent and optimize

these areas by writing assembly language routines that implement the

functions.

The efficiency of the code generated by the floating point compiler depends

to a large extent on how well you take advantage of the compiler strengths de-

scribed above when writing your C code. There are specific constructs that can

vastly improve the compiler’s effectiveness:

� Use register variables for often–used variables. This is particularly true

for pointer variables. Example 5–1 shows a code fragment that ex-

changes one object in memory with another.

Example 5–1.Exchanging Objects in Memory

do

  {

      temp  = *++src;

      *src  = *++dest;

      *dest = temp; 

  }

  while (––n);

� Pre-compute subexpressions, especially array references in loops. As-

sign commonly used expressions to register variables where possible.
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� Use *++ to step through arrays, rather than using an index to recalculate

the address each time through a loop.

As an example of the previous 2 points, consider the loops in Example 5–2:

Example 5–2.Optimizing a Loop

/* loop 1 */

 main()

 {

    float a[10], b[10];

    int i;

    for (i = 0; i < 10; ++i)

       a[i] = (a[i] * 20) + b[i];

 }

/* loop 2 */

main()

{

  float a[10], b[10];

  int i;

  register float *p = a, *q = b;

  for (i = 0; i < 10; ++i)

  *p++ = (*p * 20) + *q++;

}

Loop 1 executes in 19 cycles. Loop 2, which is the equivalent of loop 1,

executes in 12 cycles.

� Use structure assignments to copy blocks of data. The compiler gen-

erates very efficient code for structure assignments, so nest objects within

structures and use simple assignments to copy them.

� Avoid large local frames and declare the most often used local vari-

ables first. The compiler uses indirect addressing with an 8-bit offset to

access local data. To access objects on the local frame with offsets greater

than 255, the compiler must first load the offset into an index register. This

causes 1 extra instruction and incurs 2 cycles of pipeline delay.

� Avoid the large model. The large model is inefficient because the compil-

er reloads the data-page pointer (DP) before each access to a global or

static variable. If you have large array objects, use ”malloc()” to dynamical-

ly allocate them and access them via pointers rather than declaring them

globally. Example 5–3 illustrates two methods for allocating large array

objects:
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Example 5–3.Allocating Large Array Objects

/* Bad Method */

int a[100000]; /* BAD */

...

a[i] = 10;

/* Good Method */

int *a = (int *)malloc(100000); /* GOOD */

...

a[i] = 10;
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5.2 Hints for Optimizing Assembly-Language Code

Each program has particular requirements. Not all possible optimizations

make sense in every case. The suggestions presented in this section can be

used as a checklist of available software tools.

� Use delayed branches. Delayed branches execute in a single cycle; reg-

ular branches execute in four. The three instructions that follow the

delayed branch are executed whether the branch is taken or not. If fewer

than three instructions are used, use the delayed branch and append

NOPs. Machine cycles (time) are still being saved.

� Use delayed subroutine call and return. Regular subroutine CALL and

RETS execute in four cycles. You can implement a delayed subroutine call

by using link and jump (LAJ) and delayed branches with R11 register mode

(BUD R11) instructions. Both LAJ and BUD instructions execute in a single

cycle. Guidelines for using the LAJ instruction are the same as for delayed

branches.

� Use the repeat single/block construct. This method produces loops

with no overhead. Nesting such constructs will not normally increase effi-

ciency, so try to use the feature on the most often performed loop. The

RPTBD is a single-cycle instruction, and the RPTS and RPTB are four-

cycle instructions. RPTBD and delayed branches are used in similar ways.

Note that RPTS is not interruptible, and the executed instruction is not re-

fetched for execution. This frees the buses for operands.

� Use parallel instructions. You can have a multiply in parallel with an add

(or subtract) and stores in parallel with any multiply or ALU operation. This

increases the number of operations executed in a single cycle. For

maximum efficiency, observe the addressing modes used in parallel

instructions and arrange the data appropriately. You can have loads in

parallel with any multiply or add (or subtract). The result of a multiply by

one or an add of zero is the same as a load. Therefore, to implement paral-

lel instructions with a data load, you can substitute a multiply or an add

instruction, with one extra register containing a one or zero, in place of the

load instruction.

� Maximize the use of registers. The registers are an efficient way to

access scratch-pad memory. Extensive use of the register file facilitates

the use of parallel instructions and helps avoid pipeline conflicts when you

use register addressing.

� Use the cache. The cache speeds instruction fetches and enables sim-

ple-cycle access, even with slow external memory. The cache is transpar-

ent to the user, so make sure that it is enabled.
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� Use internal memory instead of external memory. The internal

memory (2K × 32 bits RAM and 4K × 32 bits ROM) is considerably faster

to access than external memory. In a single cycle, two operands can be

brought from internal memory. You can maximize performance if you use

the DMA coprocessor in parallel with the CPU to transfer data you want

to operate on to internal memory.

� Avoid pipeline conflicts. For time-critical operations, make sure that

cycles are not missed because of pipeline conflicts. If there is no problem

with program speed, ignore this suggestion.

� Plan your linker command file in advance. Memory allocation for code

and data sections can have a big impact on your algorithm performance.

One of the ’C4x’s strengths is its sustained bandwidth achieved by having

two external busses. By carefully dividing data and program between the

two busses, you can minimize pipeline conflicts. You need to apply the

same concept to minimize DMA/CPU access conflicts.

The above checklist is not exhaustive, and it does not address some features

in detail. To learn how to exploit the full power of the ’C4x, carefully study its

architecture, hardware configuration, and instruction set, which are all de-

scribed in the TMS320C4x User’s Guide (SPRU063).
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Applications-Oriented Operations

The ’C4x architecture and instruction set features facilitate the solution of nu-

merically intensive problems. This chapter presents examples of applications

that use these features, such as companding, filtering, matrix arithmetic, and

fast Fourier transforms (FFT).
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6.1 Companding

In telecommunications, one of the primary concerns is to conserve the channel

bandwidth and, at the same time, to preserve high speech quality. This is

achieved by quantizing the speech samples logarithmically. It has been

demonstrated that an 8-bit logarithmic quantizer produces speech quality

equivalent to that of a 13-bit uniform quantizer. The logarithmic quantization

is achieved by companding (COMpress/exPANDing). Two international

standards have been established for companding: the µ-law (used in the

United States and Japan), and the A-law (used in Europe). Detailed

descriptions of µ-law and A-law companding are presented in an application

report on companding routines included in the book Digital Signal Processing

Applications with the TMS320 Family (literature number SPRA012A).

During transmission, logarithmically compressed data in sign-magnitude form

are transmitted along the communications channel. If any processing is

necessary, these data should be expanded to a 14-bit (for µ-law) or 13-bit (for

A-law) linear format. This operation occurs when data is received at the digital

signal processor. After processing, and in order to continue transmission, the

result is compressed back to 8-bit format and transmitted through the channel.

Example 6–1 and Example 6–2 show µ-law compression and expansion

(such as linear to µ-law and µ-law to linear conversion), while Example 6–3

and Example 6–4 show A-law compression and expansion. For expansion,

using a look-up table is an alternative approach. It trades memory space for

speed of execution. Because the compressed data is 8 bits long, a table with

256 entries can be constructed to contain the expanded data. If the

compressed data is stored in the register AR0, the following two instructions

put the expanded data in register R0:

ADDI @TABL,AR0 ; @TABL = BASE ADDRESS OF TABLE

LDI *AR0,R0 ; PUT EXPANDED NUMBER IN R0

The same look-up table approach could be used for compression, but the re-

quired table length would then be 16,384 words for µ-law or 8,192 words for

A-law. If this memory size is not acceptable, you should use the subroutines

presented in Example 6–1 or Example 6–3.
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Example 6–1.µ-Law Compression

*

* TITLE µ-LAW COMPRESSION
*
* SUBROUTINE MUCMPR
*
* TYPICAL CALLING SEQUENCE:
* LAJU MUCMPR
* LDI v, R0
* NOP <–––– can be other non-pipeline break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* ––––––––– +––––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1
* REGISTER  CONTAINING RESULT: R0
*
*
* BENCHMARKS: CYCLES: 14 (not including the BUD instruction)
* WORDS: 15 (not including the BUD instruction)
*
*

.global MUCMPR
*
MUCMPR LSH3 –6,R0,R1 ;Save sign of number

ABSI R0,R0
CMPI 1FDEH,R0 ;If R0>0x1FDE,
LDIGT 1FDEH,R0 ;saturate the result
ADDI 33,R0 ;Add bias
FLOAT R0 ;Normalize: (seg+5)0WXYZx...x
MPYF 0.03125,R0 ;Adjust segment number by 2**(–5)
LSH 1,R0 ;(seg)WXYZx...x
PUSHF R0
POP R0 ;Treat number as integer
LSH –20,R0 ;Right–justify
BUD R11 ;Delayed return
AND 080H,R1 ;Set sign bit
ADDI R1,R0 ;R0 = compressed number
NOT R0 ;Reverse all bits for transmission
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Example 6–2.µ-Law Expansion

*

*TITLE ‘µ-LAW EXPANSION’
*
* SUBROUTINE MUXPND
*
* TYPICAL CALLING SEQUENCE:
* LAJU MUXPND
* LDI v, R0
* NOP <–––– can be other non-pipeline-break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* ––––––––– +–––––––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 11/10 (worst/best, not including subroutine overhead)
* WORDS: 11 (not including subroutine overhead)
*
*

.global MUXPND
*
MUXPND NOT R0,R0 ;Complement bits

AND3 0FH,R0,R1 ;Isolate quantization bin
LSH 1,R1
ADDI 33,R1 ;Add bias to introduce 1xxxx1
LSH3 –4,R0 ;Isolate segment code
TSTB 08H,R0 ;Test sign 
BZD R11 ;If positive, delayed return
AND 7,R0
LSH3 R0,R1,R0 ;Shift and put result in R0
SUBI 33,R0 ;Subtract bias
BUD R11 ;Delayed return
NEGI R0 ;Negate if a negative number
NOP
NOP
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Example 6–3.A-Law Compression

*
* TITLE A-LAW COMPRESSION
*
* SUBROUTINE ACMPR
*
* TYPICAL CALLING SEQUENCE:
* LAJ ACMPR
* LDI v, R0
* NOP <–––– can be other non–pipeline–break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* ––––––––– +–––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1
* REGISTER CONTAINING RESULT: R0
*
*
* BENCHMARKS: CYCLES: 16/10 (worst/best, not including subroutine overhead)
* WORDS: 16 (not including subroutine overhead)
*

.global ACMPR
*
ACMPR LSH3 –5,R0,R1 ;Save sign of number

ABSI R0,R0
CMPI 1FH,R0 ;If R0<0x20,
BLED END ;do linear coding
CMPI 0FFFH,R0 ;If R0>0xFFF,
LDIGT 0FFFH,R0 ;saturate the result
LSH –1,R0 ;Eliminate rightmost bit
FLOAT R0 ;Normalize: (seg+3)0WXYZx...x
MPYF 0.125,R0 ;Adjust segment number by 2**(–3)
LSH 1,R0 ;(seg)WXYZx...x
PUSHF R0
POP R0 ;Treat number as integer
LSH –20,R0 ;Right-justify

END BUD R11 ;Delayed return
AND 080H,R1 ;Set sign bit
ADDI R1,R0 ;R0 = compressed number
XOR 0D5H,R0 ;Invert even bits for transmission

*
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Example 6–4.A-Law Expansion

*
* TITLE A-LAW EXPANSION
*
* SUBROUTINE AXPND
*
* TYPICAL CALLING SEQUENCE:
* LAJU AXPND
* LDI v, R0
* NOP <–––– can be other non-pipeline-break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* –––––––––+––––––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 15/13 (worst/best – not including subroutine overhead)
* WORDS: 15 (not including subroutine overhead)
*
*

.global AXPND
*
AXPND XOR 0D5H,R0,R2 ;Invert even bits

ASH3 –4,R2,R0 ;Store for bit sign
AND 7,R0 ;Isolate segment code
BZD SKIP1
AND3 0FH,R2,R1 ;Isolate quantization bin
LSH 1,R1
ADDI 1,R1 ;Create 0xxxx1
ADDI 32,R1 ;Or 1xxxx1
SUBI 1,R0

SKIP1 LSH3 R0,R1,R0 ;Shift and put result in R0
TSTB 80H,R2 ;Test sign bit
BZAT R11 ;If positive, delayed return and

;annul next three instructions
NEGI R0 ;Negate if a negative number
NOP
NOP
BU R11 ;Return
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6.2 FIR, IIR, and Adaptive Filters

Digital filters are a common requirement for digital signal processing systems.

There are two types of digital filters: finite impulse response (FIR) and infinite

impulse response (IIR). Each of these types can have either fixed or adaptable

coefficients. In this section, the fixed-coefficient filters are presented first, and

then the adaptive filters are discussed.

6.2.1 FIR Filters

If the FIR filter has an impulse response h[0], h[1],..., h[N–1], and x[n] repre-

sents the input of the filter at time n, the output y[n] at time n is given by this

equation:

y[n] = h[0] x[n] + h[1] x[n–1] + ... + h[N–1] x[n–(N–1)]

Two features of the ’C4x that facilitate the implementation of the FIR filters are

parallel multiply/add operations and circular addressing. The first permits the

performance of a multiplication and an addition in a single machine cycle, while

the second makes a finite buffer of length N sufficient for the data x.

Figure 6–1 shows the arrangement of the memory locations to implement cir-

cular addressing, while Example 6–5 presents the ’C4x assembly code for an

FIR filter.

Figure 6–1. Data Memory Organization for an FIR Filter
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To set up circular addressing, initialize the block-size register BK to block

length N. Also, the locations for signal x should start from a memory location

whose address is a multiple of the smallest power of 2 that is greater than N.

For instance, if N = 24, the first address for x should be a multiple of 32 (the

lower 5 bits of the beginning address should be zero). To understand see Cir-

cular Addressing in the TMS320C4x User’s Guide.

In Example 6–5, the pointer to the input sequence x is incremented and as-

sumed to be moving from an older input to a newer input. At the end of the sub-

routine, AR1 will point to the position for the next input sample.
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Example 6–5.FIR Filter

*
* TITLE FIR FILTER
*
*
* SUBROUTINE FIR
*
* EQUATION: y(n) = h(0) * x(n) + h(1) * x(n-1) +
* ... + h(N-1) * x(n-(N-1))
*
* TYPICAL CALLING SEQUENCE:
*
* LOAD AR0
* LAJU FIR
* LOAD AR1
* LOAD RC
* LOAD BK
*
*
* ARGUMENT ASSIGNMENTS:
*
*  ARGUMENT | FUNCTION
*  –––––––– +–––––––––––––––––––––––––––––
*     AR0 | ADDRESS OF h(N–1)
*     AR1 | ADDRESS OF x(N–1)
*     RC | LENGTH OF FILTER – 2 (N–2)
*     BK | LENGTH OF FILTER (N)
*
* REGISTERS USED AS INPUT: AR0, AR1, RC, BK
* REGISTERS MODIFIED: R0, R2, AR0, AR1, RC
* REGISTER CONTAINING RESULT: R0
*

*
* BENCHMARKS: CYCLES: 3 + N (not including subroutine overhead)
* WORDS: 6 (not including subroutine overhead)
*
*
FIR .global FIR
*

RPTBD CONV ;Set up the repeat cycle
* Initialize R0:

MPYF3 *AR0++(1),*AR1++(1)%,R0 ;h(N–1) *x(n–(N–1)) –>R0
LDF 0.0,R2 ;Initialize R2
NOP

*
* FILTER (1 <= i < N)
*
CONV MPYF3 *AR0++(1),*AR1++(1)%,R0 ;h(N–1–i)*x(n–(N–1–i))–>R0
|| ADDF3 R0,R2,R2 ;Multiply and add operation
*

BUD R11 ;Delayed return
ADDF R0,R2,R0 ;Add last product
NOP
NOP

*
* end
*

.end
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6.2.2 IIR Filters

The transfer function of the IIR filters has both poles and zeros. Its output de-

pends on both the input and the past output. As a rule, the filters need less

computation than an FIR with similar frequency response, but the filters have

the drawback of being sensitive to coefficient quantization. Most often, the IIR

filters are implemented as a cascade of second-order sections called biquads.

Example 6–6 and Example 6–7 show the implementation for one biquad and

for any number of biquads, respectively.

y[n] = a1 y[n–1] + a2 y[n–2] + b0 x[n] + b1 x[n–1] + b2 x[n–2]

However, the following two equations are more convenient and have smaller

storage requirements:

d[n] = a2 d[n–2] + a1 d[n–1] + x[n]
y[n] = b2 d[n–2] + b1 d[n–1] + b0 d[n]

Figure 6–2 shows the memory organization for this two-equation approach to

the implementation of a single biquad on the ’C4x.

Figure 6–2. Data Memory Organization for a Single Biquad
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As in the case of FIR filters, the address for the start of the values d must be

a multiple of 4; that is, the last two bits of the beginning address must be zero.

The block-size register BK must be initialized to 3.
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Example 6–6.IIR Filter (One Biquad)

* TITLE IIR FILTER
*
* SUBROUTINE IIR1
*
* IIR1 == IIR FILTER (ONE BIQUAD)
*
* EQUATIONS: d(n) = a2 * d(n–2) + a1 * d(n–1) + x(n)
* y(n) = b2 * d(n–2) + b1 * d(n–1) + b0 * d(n)
*
* OR y(n) = a1*y(n–1) + a2*y(n–2) + b0*x(n) + b1*x(n–1)
* + b2*x(n–2)
*
*
* TYPICAL CALLING SEQUENCE:
*
* load R2
* LAJU IIR1
* load AR0
* load AR1
* load BK
*
*
* ARGUMENT ASSIGNMENTS:
*    ARGUMENT | FUNCTION
*   –––––––––––––– +––––––––––––––––––––––––––––––––––––––––––
*     R2   | INPUT SAMPLE X(N)
*     AR0  | ADDRESS OF FILTER COEFFICIENTS (A2)
*     AR1  | ADDRESS OF DELAY MODE VALUES (D(N–2))
*     BK   | BK = 3
*
* REGISTERS USED AS INPUT: R2, AR0, AR1, BK
* REGISTERS MODIFIED: R0, R1, R2, AR0, AR1
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 7 (not including subroutine overhead)
* WORDS: 7 (not including subroutine overhead)
*
*

.global IIR1
*
IIR1 MPYF3 *AR0,*AR1,R0 ;a2 * d(n–2) –> R0

MPYF3 *++AR0(1),*AR1– –(1)%,R1 ;b2 * d(n–2) –> R1
*

MPYF3 *++AR0(1),*AR1,R0 ;a1 * d(n–1) –> R0
|| ADDF3 R0,R2,R2 ;a2*d(n–2)+x(n) –> R2
*

MPYF3 *++AR0(1),*AR1––(1)%,R0 ;b1 * d(n–1) –> R0      
|| ADDF3 R0,R2,R2 ;a1*d(n–1)+a2*d(n–2)

;+x(n) –> R2     
*

BUD R11 ;Delayed return
*

MPYF3 *++AR0(1),R2,R2 ;b0 * d(n) –> R2
|| STF R2,*AR1++(1)% ;Store d(n) and point to d(n–1)
*

ADDF R0,R2 ;b1*d(n–1)+b0*d(n) –> R2
ADDF R1,R2,R0 ;b2*d(n–2)+b1*d(n–1)

;+b0*d(n) –> R0
*
* end
*

.end
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Generally, the IIR filter contains N>1 biquads. The equations for its implemen-

tation are given by the following pseudo-C language code:

y[0,n] = x[n]
for (i=0; i<N; i++){

d[i,n] = a2[i] d[i,n–2] + a1[i] d[i,n–1] + y[i–1,n]
y[i,n] = b2[i] d[i–2] + b1[i] d[i,n–1] + b0[i] d[i,n]

}

y[n] = y[N–1,n]

Figure 6–3 shows the memory organization, and Example 6–7 shows the cor-

responding ’C4x assembly-language code.

Figure 6–3. Data Memory Organization for N Biquads
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The block size register BK should be initialized to 3, and each set of d values

(i.e., d[i,n], i = 0...N–1) should begin at an address that is a multiple of 4 (the

last two bits zero), as stated in the case of a single biquad.
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Example 6–7.IIR Filter (N > 1 Biquads)

*
* TITLE IIR FILTER (N > BIQUADS)
*
* SUBROUTINE IIR2
*
* EQUATIONS: y(0,n) = x(n)
*
* FOR (i = 0; i < N; i++)
* {
* d(i,n) = a2(i) * d(i,n–2) + a1(i) * d(i,n–1) * y(i–1,n)
* y(i,n) = b2(i) * d(i,n–2) + b1(i) * d(i,n–1) * b0(i) * d(i,n)
* }
* y(n) = y(N–1,n)
*
* TYPICAL CALLING SEQUENCE:
*
* load R2
* load AR0
* load AR1
* load IR0
* LAJU IIR2
* load IR1
* load BK
* load RC
*
* ARGUMENT ASSIGNMENT:
*  ARGUMENT | FUNCTION*
* ––––––––– +––––––––––––––––––––––––––––––––––––––––––

*    R2 | INPUT SAMPLE x(n)
*    ARO | ADDRESS OF FILTER COEFFICIENTS (a2(0))
*    AR1 | ADDRESS OF DELAY NODE VALUES (d(0,n–2))
*    BK | BK = 3
*    IR0 | IR0 = 4
*    IR1 | IR1 = 4*N–4
*    RC | NUMBER OF BIQUADS (N) –2
*
* REGISTERS USED AS INPUT; R2, AR0, AR1, IR0, IR1, BK, RC
* REGISTERS MODIFIED; R0, R1, R2, AR0, AR1, RC
* REGISTERS CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 2 + 6N (not including subroutine overhead)
* WORDS: 15 (not including subroutine overhead)
*
*

.global IIR2
*
IIR2 MPYF3 *AR0,*AR1,R0 ;a2(0) * d(0,n–2) –> R0

MPYF3 *AR0++(1),*AR1— –(1)%,R1;b2(0) * d(0,n–2) –> R1
*

RPTBD LOOP ;Set loop for 1 <= i < n
*

MPYF3 *++AR0(1),*AR1,R0 ;a1(0) * D(0,n–1) –> R0
|| ADDF R0,R2,R2 ;First sum term of d(0,n).
*
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Example 6–7.IIR Filter (N > 1 Biquads) (Continued)

MPYF3 *++AR0(1),*AR1—–(1)%,R0 ;b1(0) * d(0,n–1) –> R0
|| ADDF3 R0,R2,R2 ;Second sum term of d(0,n)

MPYF3 *++AR0(1),R2,R2 ;b0(0) * d(0,n) –> R2   
|| STF R2,*AR1– –(1)% ;Store d(0,n) point to d(0,n–2)
** LOOP STARTS HERE
*

MPYF3 *++AR0(1),*++AR1(IR0),R0 ;a2(i)* d(i,n–2) –> R0
|| ADDF3 R0,R2,R2 ;First sum term of y(i–1,n)
* ;Pipeline hit on previous

;instruction
*

MPYF3 *++AR0(1),*AR1— –(1)%,R1;b2(i) * D(i,n–2) –> R1
|| ADDF3 R1,R2,R2 ;Second sum term of y(i–1,n).

MPYF3 *++AR0(1),*AR1,R0 ;a1(i) * d(i,n–1) –> R0
|| ADDF3 R0,R2,R2 ;First sum term of d(i,n)
*

MPYF3 *++AR0(1),*AR1— –(1)%,R0;b1(i) * d(i,n–1) –> R0
|| ADDF3 R0,R2,R2 ;Second sum term of d(i,n).
*
LOOP MPYF3 *++AR0(1),R2,R2 ;b0(i) * d(i,n) –> R2
|| STF R2, *AR1— –(1)% ;Store d(i,n) point to d(i,n–2)
*
* FINAL SUMMATION
*

ADDF3 R1,R2,R0 ;Second sum term of y(n–1,n
BRD R11 ;Delayed return

*

ADDF R0,R2 ;First sum term of y(n–1,n)  
NOP *AR1– –(IR1) ;Return to first biquad
NOP *AR1– –(1)% ;Point to d(0,n–1)

*
* end
*

.end

6.2.3 Adaptive Filters (LMS Algorithm)

In some applications in digital signal processing, a filter must be adapted over

time to keep track of changing conditions. The book Theory and Design of

Adaptive Filters by Treichler, Johnson, and Larimore (Wiley-Interscience,

1987) presents the theory of adaptive filters. Although in theory, both FIR and

IIR structures can be used as adaptive filters, the stability problems and the

local optimum points that the IIR filters exhibit make them less attractive for

such an application. Hence, until further research makes IIR filters a better

choice, only the FIR filters are used in adaptive algorithms of practical applica-

tions.

In an adaptive FIR filter, the filtering equation takes this form:

y[n] = h[n,0] x[n] + h[n,1]x[n–1] +...+ h[n,N–1]x[n–(N–1)]

The filter coefficients are time-dependent. In a least-mean-squares (LMS) al-

gorithm, the coefficients are updated by an equation in this form:
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h[n+1,i] = h[n,1] + b x[n–i], i = 0, 1, ..., N–1

b is a constant for the computation. The updating of the filter coefficients can

be interleaved with the computation of the filter output so that it takes 3 cycles

per filter tap to do both. The updated coefficients are written over the old filter

coefficients. Example 6–8 shows the implementation of an adaptive FIR filter

on the ’C4x. The memory organization and the positioning of the data in

memory should follow the same rules as the above FIR filter with fixed coeffi-

cients.
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Example 6–8.Adaptive FIR Filter (LMS Algorithm)

* TITLE ADAPTIVE FIR FILTER (LMS ALGORITHM)
*
* SUBROUTINE LMS
*
* LMS == LMS ADAPTIVE FILTER
*
* EQUATIONS: y(n) = h(n,0)*x(n) + h(n,1)*x(n–1) + ...
* + h(n,N–1)*x(n–(N–1))
* FOR (i = 0; i < N; i++) h(n+1,i) = h(n,i)
* + tmuerr * x(n–i)
*
* TYPICAL CALLING SEQUENCE:
*
* load R4
* load AR0
* LAJU LMS
* load AR1
* load RC
* load BK
*
*

* ARGUMENT ASSIGNMENTS:
*   ARGUMENT | FUNCTION
* ––––––––––––––– +–––––––––––––––––––––––––––––––––
*    R4 | SCALE FACTOR (2 * mu * err)
*    AR0 | ADDRESS OF h(n,N–1)
*    AR1 | ADDRESS OF x(n–(N–1))
*    RC | LENGTH OF FILTER – 2 (N–2)
*    BK | LENGTH OF FILTER (N)*
* REGISTERS USED AS INPUT: R4, AR0, AR1, RC, BK
* REGISTERS MODIFIED: R0, R1, R2, AR0, AR1, RC
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES:     4 + 3N (not including subroutine overhead)
* PROGRAM SIZE: 9 words (not including subroutine overhead)
*
* SETUP (i = 0)
*

.global LMS
LMS RPTBD LOOP ;Setup the delayed repeat block
* Initialize R0:

MPYF3 *AR0,*AR1,R0 ;h(n,N–1) * x(n–(N–1)) –> R0
|| SUBF3 R2, R2, R2 ;Initialize R2
*
* Initialize R1:

MPYF3 *AR1++(1)%,R4,R1 ;x(n–(N–1)) * tmuerr –> R1
ADDF3 *AR0++(1),R1,R1 ;h(n,N–1) + x(n–(N–1)) * 

;tmuerr –> R1
*
* FILTER AND UPDATE (1 <= I < N)
* Filter:

MPYF3 *AR0– –(1),*AR1,R0 ;h(n,N–1–i) * x(n–(N–1–i)) –> R0
|| ADDF3 R0,R2,R2 ;Multiply and add operation.
*
* UPDATE:

MPYF3 *AR1++(1)%,R4,R1 ;x(n,N–(N–1–i)) * tmuerr –> R1
|| STF R1,*AR0++(1) ;R1 –> h(n+1,N–1–(i–1))
*
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Example 6–8.Adaptive FIR Filter (LMS Algorithm) (Continued)

LOOP ADDF3 *AR0++(1),R1,R1 ;h(n,N–1–i) + x(n–(N–1–i))
;*tmuerr –> R1           

*
BUD R11 ;Delayed return

*
ADDF3 R0,R2,R0 ;Add last product.
STF R1,*–AR0(1) ;h(n,0) + x(n)* tmuerr –>

;h(n+1 , 0)
NOP

*
* end
*

.end
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6.3 Lattice Filters

The lattice form is an alternative way of implementing digital filters; it has appli-

cations in speech processing, spectral estimation, and other areas. In this dis-

cussion, the notation and terminology from speech processing applications

are used.

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 1/H(z)

will be a filter having only zeros, and it will be called the inverse filter. The in-

verse lattice filter is shown in Figure 6–4. These equations describe the filter

in mathematical terms:

f(i,n) = f(i–1,n) + k(i) b(i–1,n–1)
b(i,n) = b(i–1,n–1) + k(i) f(i–1,n)

Initial conditions:

f(0,n) = b(0,n) = x(n)

Final conditions:

y(n) = f(p,n)

In the above equation, f(i,n) is the forward error, b(i,n) is the backward error,

k(i) is the i-h reflection coefficient, x(n) is the input, and y(n) is the output signal.

The order of the filter (that is, the number of stages) is p. In the linear predictive

coding (LPC) method of speech processing, the inverse lattice filter is used

during analysis, and the (forward) lattice filter is used during speech synthesis.

Figure 6–4. Structure of the Inverse Lattice Filter

x(n) f(0, n) f(1, n) f(p –1, n) f(p, n) = y(n)

K1 K2 Kp

K1 K2 Kp

b(0, n) b(1, n) b(p–1, n)

z –1 z –1 z –1

Figure 6–5 shows the data memory organization of the inverse lattice filter on

the ’C40.
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Figure 6–5. Data Memory Organization for Inverse Lattice Filters
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Example 6–9.Inverse Lattice Filter

* TITLE INVERSE LATTICE FILTER
*
* SUBROUTINE LATINV
*
* LATINV == LATTICE FILTER (LPC INVERSE FILTER – ANALYSIS)
*
* TYPICAL CALLING SEQUENCE:
*
* load R2
* LAJU LATINV
* load AR0
* load AR1
* load RC
*
*
* ARGUMENT ASSIGNMENTS:
*  ARGUMENT | FUNCTION
* ––––––––– +–––––––––––––––––––––––––––––––––––––––––––––––––––
*    R2 | f(0,n) = x(n)
*    AR0 | ADDRESS OF FILTER COEFFICIENTS (k(1))
*    AR1 | ADDRESS OF BACKWARD PROPAGATION VALUES (b(0,n–1))
*    RC | RC = p – 2
*
* REGISTERS USED AS INPUT: R2, AR0, AR1, RC
* REGISTERS MODIFIED: R0, R1, R2, R3, RS, RE, RC, AR0, AR1
* REGISTER CONTAINING RESULT: R2 (f(p,n))
*

BENCHMARKS: CYCLES: 3 + 3p (not including subroutine overhead)
PROGRAM SIZE: 9 WORDS (not including subroutine overhead)

*
*
*
*

.global LATINV
*
* i = 1
*
LATINV RPTBD LOOP ;Setup the delayed repeat block loop

MPYF3 *AR0,*AR1,R0 ;k(1) * b(0,n–1) –> R0
;Assume f(0,n) –> R2.

LDF R2,R3 ;Put b(0,n) = f(0,n) –> R3.
MPYF3 *AR0++(1),R2,R1 ;k(1) * f(0,n) –> R1
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Example 6–9.Inverse Lattice Filter (Continued)

*
* 2 <= i <= p  (Repeat block loop start here)
*

MPYF3 *AR0,*++AR1(1),R0 ;k(i) * b(i–1,n–1) –> R0 
|| ADDF3 R2,R0,R2 ;f(i–1–1,n) + k(i–1) *b(i–1–1,n–1)

;= f(i–1,n) –> R2
*

;b(i–1–1,n–1) + k(i–1)*f(i–1–1,n)
ADDF3 *–AR1(1),R1,R3 ;= b(i–1,n) –> R3

|| STF R3,*–AR1(1) ;b(i–1–1,n) –> b(i–1–1,n–1)
*
LOOP MPYF3 *AR0++(1),R2,R1 ;k(i) * f(i–1,n) –> R1
*
* I = P + 1 (CLEANUP)
*

BUD R11 ;Delayed return
ADDF3 R2,R0,R2 ;f(p–1,n) + k(p)*b(p–1,n–1)

;= f(p,n) –> R2
*

ADDF3 *AR1,R1,R3 ;b(p–1,n–1) + k(p)*f(p–1,n)
;= b(p,n) –> R3

|| STF R3,*AR1 ;b(p–1,n) –> b(p–1,n–1)
NOP

*
* end
*

.end

The structure of the forward lattice filter, shown in Figure 6–6, is similar to that

of the inverse filter (also shown in the figure). These corresponding equations

describe the lattice filter:

f(i–1,n) = f(i,n) – k(i) b(i–1,n–1)
b(i,n) = b(i–1,n–1) + k(i) f(i–1,n)

Initial conditions:

f(p,n) = x(n), b(i,n–1) = 0 for i = 1, ..., p

Final conditions:

 y(n) = f(0,n).

The data memory organization is identical to that of the inverse filter shown in

Figure 6–5. Example 6–10 shows the implementation of the lattice filter on the

’C4x.

Figure 6–6. Structure of the Forward Lattice Filter

y(n)f(1, n)f(2, n)x(n) = f(p, n)

– K1– K2– Kp

K1K2Kp

b(1, n)b(2, n)

z –1 z –1 z –1

b(p, n)
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Example 6–10. Lattice Filter

* TITLE LATTICE FILTER
*
* SUBROUTINE LATTICE
*
* LAJU LATTICE
* LOAD AR0
* LOAD AR1
* LOA RC
*
* ARGUMENT ASSIGNMENTS:
*  ARGUMENT | FUNCTION
* ––––––––– +–––––––––––––––––––––––––––––––––––––
*    R2 | F(P,N) = E(N) = EXCITATION
*    AR0 | ADDRESS OF FILTER COEFFICIENTS (K(P))
*    AR1 | ADDRESS OF BACKWARD PROPAGATION
* | VALUES (B(P–1,N–1))
*    RC | RC = P – 2
*
* REGISTERS USED AS INPUT: R2, AR0, AR1, RC
* REGISTERS MODIFIED: R0, R1, R2, R3, RS, RE, RC, AR0, AR1
* REGISTER CONTAINING RESULT: R2 (f(0,n))
*
* BENCHMARKS: CYCLES:         1 + 5P (not including subroutine overhead)
* PROGRAM SIZE: 11 words (not including subroutine overhead)
*

.global LATTICE
*
LATTICE RPTBD LOOP ;Setup the delayed repeat block loop

MPYF3 *AR0,*AR1,R0 ;K(P) * B(P–1,N–1) –> R0
SUBF3 R0,R2,R2 ;Assume F(P,N) –> R2
NOP ;F(P,N)–K(P)*B(P–1,N–1)

;= F(P–1,N) –> R2
*
* 2 <= I <= P  (Repeat block loop start here)
*

MPYF3 *AR0,R2,R1 ;K(I) * F(I–1,N) –> R1
MPYF3 *––AR0(1),*–AR1(1),R0 ;K(I–1) * 

;B(I–1–1,N–1) –> R0
ADDF3 *AR1––(1),R1,R3 ;B(I–1,N–1) + K(I)*F(I–1,N)

* ;= B(I,N) –> R3
STF R3,*+AR1(2) ;B(I,N) –> B(I,N–1)

LOOP SUBF3 R0,R2,R2 ;F(I–1,N)–K(I–1)
;*B(I–1–1,N–1)

* ;= F(I–1–1,N) –> R2
*
* I = 1 (CLEANUP)
*

BUD R11 ;Delayed return
MPYF *AR0,R2,R1 ;K(1) * F(0,N) –> R1
ADDF3 *AR1,R1,R3 ;B(0,N–1) + K(1)*F(0,N)

* ;= B(1,N) –> R3
STF R3,*+AR1(1) ;B(1,N) –> B(1,N–1)

|| STF R2,*AR1 ;F(0,N) –> B(0,N–1)
*
* end
*

.end
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6.4 Matrix-Vector Multiplication

In matrix-vector multiplication, a K × N matrix of elements m(i,j), having K rows

and N columns, is multiplied by an N × 1 vector to produce a K × 1 result. The

multiplier vector has elements v(j), and the product vector has elements p(i).

Each one of the product-vector elements is computed by the following expres-

sion:

p(i) = m(i,0) v(0) + m(i,1) v(1) +...+ m(i,N-1) v(N–1)  i = 0,1,...,K-1

This is essentially a dot product, and the matrix-vector multiplication contains,

as a special case, the dot product presented in Example 2–1 on page 2-3 and

Example 2–2 on page 2-5. In pseudo-C format, the computation of the matrix

multiplication is expressed by

for (i = 0; i < K; i++) {

p(i) = 0
for (j = 0; j < N; j++)

p(i) = p(i) + m(i,j) * v(j)
}

Figure 6–7 shows the data memory organization for matrix-vector multiplica-

tion, and Example 6–11 shows the ’C4x assembly code that implements it.

Note that in Example 6–11, K (number of rows) should be greater than 0, and

N (number of columns) should be greater than 1.

Figure 6–7. Data Memory Organization for Matrix-Vector Multiplication

•
•
•

•
•
•

•
•
•

matrix storage
input

vector storage
result

vector storage
low

address

high
address

p(0)

p(1)

v(0)

v(1)

p(K – 1)

v(N – 1)

m(0, 0)

m(0, 1)

m(0, N – 1)

m(1, 0)

m(1, 1)

•
•
•



Matrix-Vector Multiplication

 6-22

Example 6–11. Matrix Times a Vector Multiplication

*

* TITLE MATRIX TIMES A VECTOR MULTIPLICATION

*

* SUBROUTINE MAT

*

* MAT == MATRIX TIMES A VECTOR OPERATION

*

* TYPICAL CALLING SEQUENCE:

*

* load AR0

* load AR1

* load AR2

* load AR3

* load R1

* CALL MAT

*

* ARGUMENT ASSIGNMENTS:

*

* ARGUMENT| FUNCTION

* ––––––––––––––– +––––––––––––––––––––––––––––––––

* AR0 | ADDRESS OF M(0,0)

* AR1 | ADDRESS OF V(0)

* AR2 | ADDRESS OF P(0)

* AR3 | NUMBER OF ROWS – 1 (K–1)

* RC | NUMBER OF COLUMNS – 2 (N–2)

*

* REGISTERS USED AS INPUT: AR0, AR1, AR2, AR3, RC

* REGISTERS MODIFIED: R0, R2, AR0, AR1, AR2, AR3, IR0, RC

*

*

* MATRIX  -VECTOR BENCHMARKS: CYCLES: 1 + 7K + KN = 1 + K (N + 7)
* (not including subroutine overhead)
* PROGRAM SIZE: 10 words (not including subroutine 

overhead)
*

*

.global MAT

*

* SETUP

*

MAT ADDI3 RC,2,IR0 ;IR0 = N

*

* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS.

*

ROWS RPTBD DOT ;Setup multiply a row by a column

;Set loop counter

LDF 0.0,R2 ;Initialize R2

MPYF3 *AR0++(1),*AR1++(1),R0 ;m(i,0) * v(0) –> R0

NOP

* FOR (j = 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS

*

DOT MPYF3 *AR0++(1),*AR1++(1),R0 ;m(i,j) * v(j) –> R0

|| ADDF3 R0,R2,R2 ;m(i,j–1) * v(j–1) + 

;R2 –> R2

*

DBD AR3,ROWS ;counts the number of rows left

*
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Example 6–11. Matrix Times a Vector Multiplication (Continued)

*

ADDF R0,R2 ;last accumulate

STF R2,*AR2++(1) ;result –> p(i)

NOP *– –AR1(IR0) ;set AR1 to point to v(0)

* !!! DELAYED BRANCH HAPPENS HERE !!!

*

* RETURN SEQUENCE

*

RETS ;return

*

* end

*

.end
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6.5 Fast Fourier Transforms (FFTs)

Fourier transforms are an important tool often used in digital signal processing

systems. The transform converts information from the time domain to the fre-

quency domain. The inverse Fourier transform converts information back to

the time domain from the frequency domain. Implementation of Fourier trans-

forms that are computationally efficient are known as fast Fourier transforms

(FFTs). The theory of FFTs can be found in books such as DFT/FFT and Con-

volution Algorithms by C.S. Burrus and T.W. Parks (John Wiley, 1985) and Dig-

ital Signal Processing Applications With the TMS320 Family.

’C4x features that increase efficient implementation of numerically intensive

algorithms are particularly well-suited for FFTs. The high speed of the ’C4x

(40-ns cycle time) makes the implementation of real-time algorithms easier,

while the floating-point capability eliminates the problems associated with dy-

namic range. The powerful indexing scheme in indirect addressing facilitates

the access of FFT butterfly legs that have different spans. The repeat block

implemented by the RPTB or RPTBD instruction reduces the looping over-

head in algorithms heavily dependent on loops (such as the FFTs). This gives

the efficiency of in-line coding with the form of a loop. Since the output of the

FFT is in scrambled (bit-reversed) order when the input is in regular order, it

must be restored to the proper order. This rearrangement does not require ex-

tra cycles. The device has a special form of indirect addressing (bit-reversed

addressing mode) that can be used when the FFT output is needed.

The ’C4x can implement the bit-reversed addressing mode on either the CPU

or DMA. This mode makes it possible to access the FFT output in the proper

order. If the DMA transfer with bit-reversed addressing mode is used, there is

no overhead for data input and output.

There are several types of FFT examples in this section:

� Radix-2 and radix-4 algorithms, depending on the size of the FFT 

butterfly

� Decimation in time or frequency (DIT or DIF)

� Complex or real FFTs

� FFTs of different lengths, etc.

The following C-callable FFT code examples are provided in this section:

� Complex radix-2 DIF FFT: subsection 6.5.1

� Complex radix-4 DIF FFT: subsection 6.5.2

� Faster Complex radix-2 DIT FFT: subsection 6.5.3

� Real radix-2 DIF FFT: subsection 6.5.4



 Fast Fourier Transforms (FFTs)

6-25  Applications-Oriented Operations

Code for these different FFTs can be found in the DSP Bulletin Board Service

(under the filename: C40FFT.EXE). This file includes code, input data and sine

table examples, and batch files for compiling and linking. For instructions on

how to access the BBS, see subsection 10.1.3, The Bulletin Board Service

(BBS). To use these FFT codes, you need to perform two steps:

� Provide a sine table in the format required by the program. This sine table

 is FFT size specific, with the exception of the sine table required for

 Complex radix-2 DIT and the real radix-2 DIF FFT programs (as noted in

Example 6–18)

� Align the input data buffer on a n+1 memory boundary, i.e the n+1 LSBs

of the input buffer base address must be zero. (n = log FFT_SIZE).

For most applications, the ’C4x quickly executes FFT lengths of up to 1024

points (complex) or 2048 points (real) because it can do so almost entirely in

on-chip memory.

For FFTs larger than 1024 (complex), see the application report, Parallel 1-D

FFT Implementation with the TMS320C4x DSPs, in the book Parallel Proces-

sing Applications with the TMS320C4x DSP (literature number SPRA031).

This application note covers unprocessed partitioned FFT implementation for

large FFTs. The source code is also available on the TI DSP Bulletin Board (un-

der the filename: C40PFFT.EXE).
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6.5.1 Complex Radix-2 DIF FFT

Example 6–12 shows a simple implementation of a complex radix-2, DIF FFT

on the ’C4x. The code is generic and can be used with any length number.

However, for the complete implementation of an FFT, a table of twiddle factors

(sines/cosines) is needed, and this table depends on the size of the transform.

To retain the generic form of Example 6–12, the table with the twiddle factors

(containing 1-1/4 complete cycles of a sine) is presented separately in

Example 6–13 for the case of a 64-point FFT. A full cycle of a sine should have

a number of points equal to the FFT size. If the table with the twiddle factors

and the FFT code are kept in separate files, they should be connected at link

time.
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Example 6–12. Complex Radix-2 DIF FFT

********************************************************************************
*
*  FILENAME     : CR2DIF.ASM
*  DESCRIPTION  : COMPLEX, RADIX–2 DIF FFT FOR TMS320C40 (C callable)
*  DATE         : 6/29/93
*  VERSION      : 4.0
*
********************************************************************************
*
*  VERSION        DATE         COMMENTS
*  –––––––        ––––         ––––––––
*   1.0           10/87        PANNOS PAPAMICHALIS (TI Houston) Original Release
*   2.0           1/91         DANIEL CHEN (TI Houston): C40 porting
*   3.0           7/1/92       ROSEMARIE PIEDRA (TI Houston): made it C–callable
*   4.0           6/29/93      ROSEMARIE PIEDRA (TI Houston): added support for
*                              in-place bit reversing
*
********************************************************************************
*
*  SYNOPSIS: int  cr2dif(SOURCE_ADDR,FFT_SIZE,LOGFFT,DST_ADDR)
*                             ar2        r2       r3    rc
*
*            float   *SOURCE_ADDR    ; input address
*            int     FFT_SIZE        ;64, 128, 256, 512, 1024, ...
*            int     LOGFFT          ;log (base 2) of FFT_SIZE
*            float   *DST_ADDR       ;destination address
*
*   – The computation is done in–place.
*   – Sections to be allocated in linker command file: .ffttxt : FFT code
*                                                      .fftdat : FFT data
*  If SOURCE_ADDR=DST_ADDR, then in-place bit reversing is performed
*
********************************************************************************
*
*  DESCRIPTION:
*
*  Generic program for a radix–2 DIF FFT computation using the TMS320C4x family.
*  The computation is done in–place and the result is bit–reversed. The program
*   is from the Burrus and Parks book, p. 111. The input data array is 2*FFT_SIZE–
*  long with real and imaginary data in consecutive memory locations: Re–Im–Re–Im
*
*  The twiddle factors are supplied in a table put in a section with a global
*  label _SINE pointing to the beginning of the table. This data is included in a
*  separate file to preserve the generic nature of the program. The sine table
*  size  is (5*FFT_SIZE)/4.
*
*  Note: Sections needed in the linker command file: .ffttxt : FFT code
*                                                    .fftdat : FFT data
*
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Example 6–12. Complex Radix-2 DIF FFT (Continued)

********************************************************************************
*                              +
*   AR + j AI –––––––––––––––––––––––––––––––––––––––– AR’ + j AI’
*                      \         / +
*                        \     /
*                          \ /
*                          / \
*                        /     \
*                      /         \ +
*   BR + j BI –––––––––––––––––––––––– COS – j SIN –––– BR’ + j BI’
*                              –
*
*   AR’= AR + BR
*   AI’= AI + BI
*   BR’= (AR–BR)*COS + (AI–BI)*SIN
*   BI’= (AI–BI)*COS – (AR–BR)*SIN
*
********************************************************************************
*
*
        .globl   _SINE            ;Address of sine/cosine table
        .globl   _cr2dif         ;Entry point for execution
        .globl   STARTB,ENDB       ;starting/ending point for benchmarks
        .sect    ”.fftdat”
SINTAB  .word    _SINE
OUTPUTP .space   1
FFTSIZE .space   1
        .sect   ”.ffttxt”

_cr2dif:
        LDI     SP,AR0
        PUSH    DP
        PUSH    R4             ;Save dedicated registers
        PUSH    R5
        PUSH    R6                 ;lower 32 bits
        PUSHF   R6                 ;upper 32 bits
        PUSH    AR4
        PUSH    AR5
        PUSH    AR6
        PUSH    R8
        LDP     SINTAB
       .if      .REGPARM == 0    ;stack is used for parameter passing
        LDI     *–AR0(1),AR2       ;points input data
        LDI     *–AR0(2),R10       ;R10=N
        LDI     *–AR0(3),R9        ;R9 holds the remain stage number
        LDI     *–AR0(4),RC        ;points where FFT result should move to
        .else                      ;registers are used for parameter passing
        LDI     R2,R10
        LDI     R3,R9
       .endif
        STI     RC, @OUTPUTP
        STI     R10,@FFTSIZE
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Example 6–12. Complex Radix-2 DIF FFT (Continued)

STARTB:
      LDI     1,R8          ;Initialize repeat counter of first loop
     LSH3    1,R10,IR0      ;IR0=2*N1 (because of real/imag)
     LSH3    –2,R10,IR1       ;IR1=N/4, pointer for SIN/COS table
     LDI     1,AR5          ;Initialize IE index (AR5=IE)
      LSH     1,R10
     SUBI3   1,R8,RC         ;RC should be one less than desired #
*    Outer loop
LOOP:
     RPTBD   BLK1            ;Setup for first loop
     LSH    –1,R10           ;N2=N2/2
     LDI     AR2,AR0         ;AR0 points to X(I)
     ADDI    R10,AR0,AR6     ;AR6 points to X(L)
*
*
*  First loop
*
     ADDF   *AR0,*AR6,R0      ;R0=X(I)+X(L)
    SUBF   *AR6++,*AR0++,R1 ;R1=X(I)–X(L)
     ADDF   *AR6,*AR0,R2      ;R2=Y(I)+Y(L)
     SUBF   *AR6,*AR0,R3      ;R3=Y(I)–Y(L)
     STF    R2,*AR0––        ;Y(I)=R2  and...
||   STF    R3,*AR6––        ;Y(L)=R3
BLK1 STF    R0,*AR0++(IR0)    ;X(I)=R0  and...
||  STF    R1,*AR6++(IR0)    ;X(L)=R1 and AR0,2 = AR0,2 + 2*n
*  If this is the last stage, you are done
     SUBI    1,R9
     BZD     ENDB
*   main inner loop
     LDI     2,AR1           ;Init loop counter for inner loop
      LDI     @SINTAB,AR4     ;Initialize IA index (AR4=IA)
     ADDI    AR5,AR4          ;IA=IA+IE;AR4 points to cosine
     ADDI    AR2,AR1,AR0      ;(X(I),Y(I)) pointer
     SUBI    1,R8,RC         ;RC should be one less than desired #
INLOP:
     RPTBD   BLK2            ;Setup for second loop
     ADDI    R10,AR0,AR6     ;(X(L),Y(L)) pointer
     ADDI    2,AR1
     LDF     *AR4,R6          ;R6=SIN*
*
*  Second loop
*
     SUBF    *AR6,*AR0,R2    ;R2=X(I)–X(L)
     SUBF    *+AR6,*+AR0,R1   ;R1=Y(I)–Y(L)
     MPYF    R2,R6,R0         ;R0=R2*SIN and...
||   ADDF    *+AR6,*+AR0,R3   ;R3=Y(I)+Y(L)
     MPYF    R1,*+AR4(IR1),R3 ;R3 = R1 * COS and ...
||   STF     R3,*+AR0       ;Y(I)=Y(I)+Y(L)
     SUBF    R0,R3,R4         ;R4=R1*COS–R2*SIN
     MPYF    R1,R6,R0         ;R0=R1*SIN and...
||   ADDF    *AR6,*AR0,R3     ;R3=X(I)+X(L)
     MPYF    R2,*+AR4(IR1),R3 ;R3 = R2 * COS and...
||   STF     R3,*AR0++(IR0)  ;X(I)=X(I)+X(L) and AR0=AR0+2*N1
     ADDF    R0,R3,R5        ;R5=R2*COS+R1*SIN
BLK2 STF     R5,*AR6++(IR0)   ;X(L)=R2*COS+R1*SIN, incr AR6 and...
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Example 6–12. Complex Radix-2 DIF FFT (Continued)

||  STF     R4,*+AR6         ;Y(L)=R1*COS–R2*SIN
    CMPI    R10,AR1
    BNEAF   INLOP            ;Loop back to the inner loop
    ADDI    AR5,AR4           ;IA=IA+IE;AR4 points to cosine
     ADDI    AR2,AR1,AR0       ;(X(I),Y(I)) pointer
     SUBI    1,R8,RC
    LSH     1,R8             ;Increment loop counter for next time
     BRD     LOOP             ;Next FFT stage (delayed)
     LSH     1,AR5             ;IE=2*IE
     LDI     R10,IR0           ;N1=N2
     SUBI3   1,R8,RC
ENDB:
*
*
***************************************************************************
*––––––––––––– BITREVERSAL –––––––––––––––––––––––––––––––––––––––––––––––*
* This bit–reversal section assume input and output in Re–Im–Re–Im format *
***************************************************************************
    cmpi    @OUTPUTP,ar2
     beqd    INPLACE
     nop
     ldi     @FFTSIZE,ir0      ;ir0 = FFT_SIZE
     subi    2,ir0,rc         ;rc  = FFT_SIZE–2
                                 ;SRC different from DST
                                 ;ar2 = SRC_ADDR
     rptbd   BITRV
     ldi     2,ir1            ;ir1 = 2
     ldi     @OUTPUTP,ar1     ;ar1 = DST_ADDR
     ldf     *+ar2(1),r0      ;read first Im value
     ldf    *ar2++(ir0)b,r1
||   stf     r0,*+ar1(1)
BITRV ldf     *+ar2(1),r0
||   stf    r1,*ar1++(ir1)
     bud    END
     ldf   *ar2++(ir0)b,r1
||   stf   r0,*+ar1(1)
     nop
     stf    r1,*ar1
INPLACE
     rptbd  BITRV2          ;in place bit reversing
     ldi    ar2,ar1
      nop    *++ar1(2)
     nop    *ar2++(ir0)b
     cmpi  ar1,ar2
     bgeat  CONT
     ldf    *ar1,r0
||    ldf    *ar2,r1
     stf    r0,*ar2
||   stf    r1,*ar1
      ldf    *+ar1(1),r0
||   ldf    *+ar2(1),r1
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Example 6–12. Complex Radix-2 DIF FFT (Continued)

      stf    r0,*+ar2(1)
||   stf   r1,*+ar1(1)
CONT  nop    *++ar1(2)
BITRV2 nop   *ar2++(ir0)b
;
;Return to C environment.
;
END: POP   R8
     POP     AR6          ;Restore the register values and return
     POP     AR5
     POP     AR4
      POPF    R6
     POP     R6
     POP     R5
     POP     R4
     POP     DP
     RETS
     .end
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Example 6–13. Table With Twiddle Factors for a 64-Point FFT

************************************************************
*
*  TITLE  TABLE WITH TWIDDLE FACTORS FOR A 64–POINT FFT
*
*  FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64–POINT,
*  RADIX–2 DIF COMPLEX FFT OR A RADIX–4 DIF COMPLEX FFT.
*
* SINE TABLE LENGTH = 5*FFTSIZE/4
*
************************************************************

.globl _SINE

.sect ”.sintab”
_SINE

.float 0.000000

.float 0.098017

.float 0.195090

.float 0.290285

.float 0.382683

.float 0.471397

.float 0.555570

.float 0.634393

.float 0.707107

.float 0.773010

.float 0.831470

.float 0.881921

.float 0.923880

.float 0.956940

.float 0.980785

.float 0.995185
_COSINE

.float 1.000000

.float 0.995185

.float 0.980785

.float 0.956940
 .float 0.923880

.float 0.881921

.float 0.831470

.float 0.773010

.float 0.707107

.float 0.634393

.float 0.555570

.float 0.471397

.float 0.382683

.float 0.290285

.float 0.195090

.float 0.098017

.float 0.000000

.float –0.098017
  .float –0.195090

.float –0.290285

.float –0.382683

.float –0.471397

.float –0.555570

.float –0.634393

.float –0.707107

.float –0.773010

.float –0.831470

.float –0.881921

.float –0.923880
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.float –0.956940

.float –0.980785

.float –0.995185

.float –1.000000

.float –0.995185

.float –0.980785

.float –0.956940

.float –0.923880

.float –0.881921

.float –0.831470

.float –0.773010

.float –0.707107

.float –0.634393

.float –0.555570

.float –0.471397

.float –0.382683

.float –0.290285

.float –0.195090

.float –0.098017

.float 0.000000

.float 0.098017

.float 0.195090

.float 0.290285

.float 0.382683

.float 0.471397

.float 0.555570

.float 0.634393

.float 0.707107

.float 0.773010

.float 0.831470

.float 0.881921
 .float 0.923880
 .float 0.956940

.float 0.980785
 .float 0.995185

6.5.2 Complex Radix-4 DIF FFT

The radix-2 algorithm has tutorial value because it is relatively easy to under-

stand how the FFT algorithm functions. However, radix-4 implementations can

increase the speed of the execution by reducing the overall arithmetic re-

quired. Example 6–14 shows the generic implementation of a complex, DIF

FFT in radix-4. A companion table like the one Example 6–13 should be used

to provide the twiddle factor.
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********************************************************************************
*
*  FILENAME     : CR4DIF.ASM
*  DESCRIPTION  : COMPLEX, RADIX–4 DIF FFT FOR TMS320C40 (C callable)
*  DATE         : 6/29/93
*  VERSION      : 4.0
*
********************************************************************************
*
*  VERSION        DATE         COMMENTS
*  –––––––        ––––         ––––––––
*   1.0           10/87        PANNOS PAPAMICHALIS (TI Houston)
*                              Original Release
*   2.0           1/91         DANIEL CHEN (TI Houston): C40 porting
*   3.0           7/1/91       ROSEMARIE PIEDRA (TI Houston): made it C–callable
*   4.0           6/29/93      ROSEMARIE PIEDRA (TI Houston):added support for
*                              in–place bit reversing.
*
********************************************************************************
*
*  SYNOPSIS: int  cr4dif(SOURCE_ADDR,FFT_SIZE,LOGFFT,DST_ADDR)
*                             ar2        r2       r3    rc
*
*            float   *SOURCE_ADDR    ;input address
*            int     FFT_SIZE        ;64, 256, 1024, ...
*            int     LOGFFT          ;log (base 4) of FFT_SIZE
*            float   *DST_ADDR       ;destination address
*
*   – The computation is done in–place.
*   – Sections to be allocated in linker command file: .ffttxt : FFT code
*                                                      .fftdat : FFT data
*  If SOURCE_ADDR=DST_ADDR, then in-place bit reversing is performed
*
********************************************************************************
*
*  DESCRIPTION:
*
*  Generic program for a radix–4 DIF FFT computation using the TMS320C4x
*  family. The computation is done in–place and the result is bit–reversed.
*  The program is taken from the Burrus and Parks book, p. 117.
*  The input data array is 2*FFT_SIZE–long with real and imaginary data
*  in consecutive memory locations: Re–Im–Re–Im
*
*  The twiddle factors are supplied in a table put in a section
*  with a global label _SINE pointing to the beginning of the table
*  This data is included in a separate file to preserve the generic
*  nature of the program. The sine table size is (5*FFT_SIZE)/4.
*
*  In order to have the final results in bit–reversed order, the two
*  middle branches of the radix–4 butterfly are interchanged during
*  storage. Note the difference when comparing with the program in p.117
*  of the Burrus and Parks  book.
*



 Fast Fourier Transforms (FFTs)

6-35  Applications-Oriented Operations

Example 6–14. Complex Radix-4 DIF FFT (Continued)

*  Note: Sections needed in the linker command file: .ffttxt : FFT code
*                                                    .fftdat : FFT data
*
********************************************************************************
*
*  WARNING:
*
*  For optimization purposes, LDF *+AR1,R0 (see **1**) will fetch memory outside
*  the input buffer range during the ”first loop” execution (RC=0). Even though
*  the read value (R0) is not used in the code, this could cause a halt situa
*  tion if AR1 points to a no-ready external memory
*
********************************************************************************

.globl _SINE ;Address of sine/cosine table

.globl _cr4dif ;Entry point for execution

.globl STARTB,ENDB ;starting/ending point for benchmarks

.sect ”.fftdat”
FFTSIZ .space 1
SINTAB .word _SINE
SINTAB1 .word _SINE–1
INPUTP .space 1
OUTPUTP .space 1

.sect ”.ffttxt”
_cr4dif:

LDI SP,AR0
PUSH DP
PUSH R4 ;Save dedicated registers

PUSH R5
PUSH R6 ;lower 32 bits
PUSHF R6 ;upper 32 bits
PUSH R7 ;lower 32 bits
PUSHF R7 ;upper 32 bits
PUSH AR3
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH R8
.if .REGPARM == 0
LDI *–AR0(1),AR2 ;points to input data
LDI *–AR0(2),R10 ;R10=N
LDI *–AR0(3),R9 ;R9 holds the remain stage number
LDI *–AR0(4),RC ;points to where FFT result should move to
.else
LDI R2,R10
LDI R3,R9
.endif
LDP FFTSIZ ;Command to load data page pointer
STI AR2, @INPUTP
STI RC, @OUTPUTP
STI R10,@FFTSIZ
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STARTB:
LDI @FFTSIZ,BK
LSH3 1,BK,IR0 ;IR0=2*N1 (because of real/imag)
LSH3 –2,BK,IR1 ;IR1=N/4, pointer for SIN/COS table
LDI 1,AR7 ;Initialize IE index
LDI 1,R8 ;Initialize repeat counter of first loop
ADDI 2,IR1,R9 ;R9=JT
LSH –1,BK ;BK=N2

* OUTER LOOP
LOOP: LDI @INPUTP,AR0 ;AR0 points to X(I)

SUBI3 1,R8,RC ;RC should be one less than desired #
ADDI BK,AR0,AR1 ;AR1 points to X(I1)
RPTBD BLK1 ;Setup loop BLK1
ADDI BK,AR1,AR2 ;AR2 points to X(I2)
ADDI BK,AR2,AR3 ;AR3 points to X(I3)
LDF *+AR1,R0 ;R0=Y(I1)

* FIRST LOOP: BLK1
ADDF R0,*+AR3,R3;R3=Y(I1)+Y(I3)
ADDF *+AR0,*+AR2,R1 ;R1=Y(I)+Y(I2)
ADDF R3,R1,R6 ;R6=R1+R3
SUBF *+AR2,*+AR0,R4 ;R4=Y(I)–Y(I2)
LDF *AR2,R5 ;R5=X(I2)

|| STF R6,*+AR0 ;Y(I)=R1+R3
SUBF R3,R1 ;R1=R1–R3
ADDF *AR3,*AR1,R3 ;R3=X(I1)+X(I3)
ADDF R5,*AR0,R1 ;R1=X(I)+X(I2)

|| STF R1,*+AR1 ;Y(I1)=R1–R3
ADDF R3,R1,R6 ;R6=R1+R3
SUBF R5,*AR0,R2 ;R2=X(I)–X(I2)

|| STF R6,*AR0++(IR0) ;X(I)=R1+R3
SUBF R3,R1 ;R1=R1–R3
SUBF *AR3,*AR1,R6 ;R6=X(I1)–X(I3)
SUBF R0,*+AR3,R3 ;–R3=Y(I1)–Y(I3)

|| STF R1,*AR1++(IR0) ;X(I1)=R1–R3
SUBF R6,R4,R5 ;R5=R4–R6
ADDF R6,R4 ;R4=R4+R6
STF R5,*+AR2 ;Y(I2)=R4–R6

|| STF R4,*+AR3 ;Y(I3)=R4+R6
SUBF R3,R2,R5 ;R5=R2+R3
ADDF R3,R2 ;R2=R2–R3
STF R2,*AR3++(IR0) ;X(I3)=R2+R3

BLK1 STF R5,*AR2++(IR0) ;X(I2)=R2–R3
|| LDF *+AR1,R0 ;R0=Y(I1)               ; **1**

* IF THIS IS THE LAST STAGE, YOU ARE DONE
CMPI IR1,R8
BZD ENDB
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*
* MAIN INNER LOOP
*

LDI 1,R10 ;Init IA1 index
LDI 2,R11 ;Init loop counter for inner loop
LDI R11,AR0
ADDI @INPUTP,AR0 ;(X(I),Y(I)) pointer
ADDI 2,R11 ;Increment inner loop counter

INLOP: ADDI AR7,R10 ;IA1=IA1+IE
ADDI BK,AR0,AR1 ;(X(I1),Y(I1)) pointer
CMPI R9,R11 ;If LPCNT=JT, go to
BZD SPCL ;special butterfly
ADDI BK,AR1,AR2 ;(X(I2),Y(I2)) pointer
ADDI BK,AR2,AR3 ;(X(I3),Y(I3)) pointer
SUBI3 1,R8,RC ;RC should be one less than desired #
LDI R10,AR4
ADDI @SINTAB1,AR4 ;Create cosine index AR4
ADDI AR4,R10,AR5
SUBI 1,AR5 ;IA2=IA1+IA1–1
RPTBD BLK2 ;Setup loop BLK2
ADDI R10,AR5,AR6
SUBI 1,AR6 ;IA3=IA2+IA1–1
LDF *+AR2,R7 ;R7=Y(I2)

*
* SECOND LOOP: BLK2
*

ADDF R7,*+AR0,R3 ;R3=Y(I)+Y(I2)
ADDF *+AR3,*+AR1,R5 ;R5=Y(I1)+Y(I3)
ADDF R5,R3,R6 ;R6=R3+R5
SUBF R7,*+AR0,R4 ;R4=Y(I)–Y(I2)
SUBF R5,R3 ;R3=R3–R5
ADDF *AR2,*AR0,R1 ;R1=X(I)+X(I2)
ADDF *AR3,*AR1,R5 ;R5=X(I1)+X(I3)
MPYF R3,*+AR5(IR1),R6 ;R6=R3*CO2

|| STF R6,*+AR0 ;Y(I)=R3+R5
ADDF R5,R1,R0 ;R0=R1+R5
SUBF *AR2,*AR0,R2 ;R2=X(I)–X(I2)
SUBF R5,R1 ;R1=R1–R5
MPYF R1,*AR5,R0 ;R0=R1*SI2

|| STF R0,*AR0++(IR0) ;X(I)=R1+R5
SUBF R0,R6 ;R6=R3*CO2–R1*SI2
SUBF *+AR3,*+AR1,R5 ;R5=Y(I1)–Y(I3)
MPYF R1,*+AR5(IR1),R0 ;R0=R1*C02

|| STF R6,*+AR1 ;Y(I1)=R3*CO2–R1*SI2
MPYF R3,*AR5,R6 ;R6=R3*SI2
ADDF R0,R6 ;R6=R1*CO2+R3*SI2
ADDF R5,R2,R1 ;R1=R2+R5
SUBF R5,R2 ;R2=R2–R5
SUBF *AR3,*AR1,R5 ;R5=X(I1)–X(I3)
SUBF R5,R4,R3 ;R3=R4–R5
ADDF R5,R4 ;R4=R4+R5
MPYF R3,*+AR4(IR1),R6 ;R6=R3*CO1

|| STF R6,*AR1++(IR0) ;X(I1)=R1*CO2+R3*SI2
MPYF R1,*AR4,R0 ;R0=R1*SI1
SUBF R0,R6 ;R6=R3*CO1+R1*SI1
MPYF R1,*+AR4(IR1),R6 ;R6=R1*CO1

|| STF R6,*+AR2 ;Y(I2)=R3*CO1–R1*SI1
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MPYF R3,*AR4,R0 ;R0=R3*SI1
ADDF R0,R6 ;R6=R1*CO1+R3*SI1
MPYF R4,*+AR6(IR1),R6 ;R6=R4*CO3

|| STF R6,*AR2++(IR0) ;X(I2)=R1*CO1+R3*SI1
MPYF R2,*AR6,R0 ;R0=R2*SI3
SUBF R0,R6 ;R6=R1*CO3–R2*SI3
MPYF R2,*+AR6(IR1),R6 ;R6=R2*CO3

|| STF R6,*+AR3 ;Y(I3)=R4*CO3–R2*SI3
MPYF R4,*AR6,R0 ;R0=R4*SI3
ADDF R0,R6 ;R6=R2*CO3+R4*SI3

BLK2 STF R6,*AR3++(IR0) ;x(i3)=R2*CO3+R4*SI3
|| LDF *+AR2,R7 ;Load next Y(I2)

CMPI R11,BK
BPD INLOP ;LOOP BACK TO THE INNER LOOP
LDI R11,AR0
ADDI @INPUTP,AR0 ;(X(I),Y(I)) pointer
ADDI 2,R11 ;Increment inner loop counter
BRD CONT
LSH 2,R8 ;Increment repeat counter for next time
LSH 2,AR7 ;IE=4*IE
LDI BK,IR0 ;N1=N2

* SPECIAL BUTTERFLY FOR W=J
SPCL RPTBD BLK3 ;Setup loop BLK3

LSH –1,IR1,AR4 ;Point to SIN(45)
ADDI @SINTAB,AR4 ;Create cosine index AR4=CO21
LDF *AR2,R7 ;R7=X(I2)

* SPCL LOOP: BLK3
ADDF R7,*AR0,R1 ;R1=X(I)+X(I2)
ADDF *+AR2,*+AR0,R3 ;R3=Y(I)+Y(I2)
SUBF *+AR2,*+AR0,R4 ;R4=Y(I)–Y(I2)
ADDF *AR3,*AR1,R5 ;R5=X(I1)+X(I3)
SUBF R1,R5,R6 ;R6=R5–R1
ADDF R5,R1 ;R1=R1+R5
ADDF *+AR3,*+AR1,R5 ;R5=Y(I1)+Y(I3)
SUBF R5,R3,R0 ;R0=R3–R5
ADDF R5,R3 ;R3=R3+R5
SUBF R7,*AR0,R2 ;R2=X(I)–X(I2)

|| STF R3,*+AR0 ;Y(I)=R3+R5
LDF *AR3,R7 ;R7=X(I3)

|| STF R1,*AR0++(IR0) ;X(I)=R1+R5
SUBF *+AR3,*+AR1,R3 ;R3=Y(I1)–Y(I3)
SUBF R7,*AR1,R1 ;R1=X(I1)–X(I3)

|| STF R6,*+AR1 ;Y(I1)=R5–R1
ADDF R3,R2,R5 ;R5=R2+R3
SUBF R2,R3,R2 ;R2=–R2+R3
SUBF R1,R4,R3 ;R3=R4–R1
ADDF R1,R4 ;R4=R4+R1
SUBF R5,R3,R1 ;R1=R3–R5
MPYF R1,*AR4,R1 ;R1=R1*CO21

|| STF R0,*AR1++(IR0) ;X(I1)=R3–R5
ADDF R5,R3 ;R3=R3+R5
MPYF R3,*AR4,R3 ;R3=R3*CO21

|| STF R1,*+AR2 ;Y(I2)=(R3–R5)*CO21
SUBF R4,R2,R1 ;R1=R2–R4
MPYF R1,*AR4,R1 ;R1=R1*CO21
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|| STF R3,*AR2++(IR0) ;X(I2)=(R3+R5)*CO21
ADDF R4,R2 ;R2=R2+R4
MPYF3 R2,*AR4,R2 ;R2=R2*CO21

|| STF R1,*+AR3 ;Y(I3)=–(R4–R2)*CO21
BLK3 LDF *AR2,R7 ;Load next X(I2)
|| STF R2,*AR3++(IR0) ;X(I3)=(R4+R2)*CO21

CMPI R11,BK
BPD INLOP ;Loop back to the inner loop
LDI R11,AR0
ADDI @INPUTP,AR0 ;(X(I),Y(I)) pointer
ADDI 2,R11 ;Increment inner loop counter
LSH 2,R8 ;Increment repeat counter for next time
LSH 2,AR7 ;IE=4*IE
LDI BK,IR0 ;N1=N2

CONT BRD LOOP ;Next FFT stage (delayed)
LSH –2,BK ;N2=N2/4
LSH3 –1,BK,R9
ADDI 2,R9 ;JT=N2/2+2

ENDB:
****************************************************************************
*––––––––––––– BIT REVERSAL –––––––––––––––––––––––––––––––––––––––––––––––*
* This bit–reversal section assumes input and output in Re–Im–Re–Im format *
****************************************************************************

LDI @INPUTP,ar0
CMPI @OUTPUTP,ar0
BEQD INPLACE
LDI @OUTPUTP,ar1 ;ar1=DST_ADDR
LDI @FFTSIZ,ir0 ;ir0=FFT_SIZE
SUBI 2,ir0,rc ;rc=FFT_SIZE–2

RPTBD bitrv1
LDI 2,ir1 ;ir1=2
LDF *+ar0(1),r0 ;read first Im value
NOP LDF *ar0++(ir0)b,r1

|| STF r0,*+ar1(1)
bitrv1 LDF *+ar0(1),r0
|| STF r1,*ar1++(ir1) BUD END

LDF *ar0++(ir0)b,r1
|| STF r0,*+ar1(1)

NOP
STF r1,*ar1INPLACE
RPTBD BITRV2
NOP *++ar1(2)
NOP *ar0++(ir0)b
NOP CMPI ar1,ar0
BGEAT CONT2
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LDF *ar1,r0
|| LDF *ar0,r1

STF r0,*ar0
|| STF r1,*ar1

LDF *+ar1(1),r0
|| LDF *+ar0(1),r1

STF r0,*+ar0(1)
|| STF r1,*+ar1(1)
CONT2 NOP *++ar1(2)
BITRV2 NOP *ar0++(ir0)b
END: POP R8 ;Restore the register values and return

POP AR7
POP AR6
POP AR5
POP AR4
POP AR3
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP DP
RETS
.end
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6.5.3 Faster Complex Radix-2 DIT FFT

Example 6–12 and Example 6–14 provide an easy understanding of the FFT

algorithm functions. However, those examples are not optimized for fast ex-

ecution of the FFT. Example 6–15 shows a faster version of a radix-2 DIT FFT

algorithm. This program uses a different twiddle factor table than the previous

examples. The twiddle factors are stored in bit-reversed order and with a table

length of N/2 (N = FFT length) as shown in Example 6–16. For instance, if the

FFT length is 32, the twiddle factor table should be:

Address Coefficient

0 R{WN(0)}  = COS(2*PI*0/32) = 1

1 –I{WN(0)}  = SIN(2*PI*0/32) = 0

2 R{WN(4)}  = COS(2*PI*4/32) = 0.707

3 –I{WN(4)}  = SIN(2*PI*4/32) = 0.707

.

.

.

12 R{WN(3)}  = COS(2*PI*3/32) = 0.831

13 –I{WN(3)}  = SIN(2*PI*3/32) = 0.556

14 R{WN(7)}  = COS(2*PI*7/32) = 0.195

15 –I{WN(7)}  = SIN(2*PI*7/32) = 0.981
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********************************************************************************
*
*  FILENAME    : CR2DIT.ASM
*
*  DESCRIPTION : COMPLEX, RADIX–2 DIT FFT FOR TMS320C40
*
*  DATE        : 6/29/93
*
*  VERSION     : 4.0
*
********************************************************************************
*    VERSION        DATE         COMMENTS
*    –––––––        ––––         ––––––––
*     1.0           7/89         Original version
*                                RAIMUND MEYER, KARL SCHWARZ
*                                LEHRSTUHL FUER NACHRICHTENTECHNIK
*                                UNIVERSITAET ERLANGEN–NUERNBERG
*                                CAUERSTRASSE 7, D–8520 ERLANGEN, FRG
*
*     2.0           1/91         DANIEL CHEN (TI HOUSTON): C40 porting
*     3.0           7/1/92       ROSEMARIE PIEDRA (TI HOUSTON): made it
*                                C–callable and implemented changes in the order
*                                of the operands for some mpyf instructions for
*                                faster execution when sine table is off–chip
*     4.0           6/29/93      ROSEMARIE PIEDRA (TI Houston): Added support
*                                for in–place bit reversing.
********************************************************************************
*
* SYNOPSIS: int  cr2dit(SOURCE_ADDR,FFT_SIZE, DST_ADDR)
*                              ar2        r2       r3
*
*            float   *SOURCE_ADDR    ; Points to where data is originated
*                                    ; and operated on.
*            int     FFT_SIZE        ; 64, 128, 256, 512, 1024, ...
*
*            float   *DST_ADDR       ; Points to where FFT results should be
*                                    ; moved
*
********************************************************************************
*
* THE COMPUTATION IS DONE IN–PLACE.
* FOR THIS PROGRAM THE MINIMUM FFT LENGTH IS 32 POINTS BECAUSE OF THE
* SEPARATE STAGES (THIS IS NOT CHECKED INSIDE THE
* FIRST TWO PASSES ARE REALIZED AS A FOUR BUTTERFLY LOOP SINCE THE
* MULTIPLIES ARE TRIVIAL. THE MULTIPLIER IS ONLY USED FOR A LOAD IN
* PARALLEL WITH AN ADDF OR SUBF.
********************************************************************************
* SECTIONS NEEDED IN LINKER COMMAND FILE:  .ffttxt : fft code
*                                             .fftdat : fft data
********************************************************************************
*
* THE TWIDDLE FACTORS ARE STORED IN BIT-REVERSED ORDER AND WITH A TABLE LENGTH 
* OF N/2 (N = FFTLENGTH). THE SINE TABLE IS PROVIDED IN A SEPARATE FILE
* WITH GLOBAL LABEL _SINE POINTING TO THE BEGINNING OF THE TABLE.
*
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*                  2          R{WN(4)} = COS(2*PI*4/32) = 0.707
*                  3         –I{WN(4)} = SIN(2*PI*4/32) = 0.707
*
*                  :                           :
*
*                  12         R{WN(3)} = COS(2*PI*3/32) = 0.831
*                  13        –I{WN(3)} = SIN(2*PI*3/32) = 0.556
*                  14         R{WN(7)} = COS(2*PI*7/32) = 0.195
*                  15        –I{WN(7)} = SIN(2*PI*7/32) = 0.981
*
* WHEN GENERATED FOR A FFT LENGTH OF 1024, THE TABLE IS FOR ALL FFT
* LENGTH LESS OR EQUAL AVAILABLE.
* THE MISSING TWIDDLE FACTORS (WN(),WN(),....) ARE GENERATED BY USING
* THE SYMMETRY WN(N/4+n) = –j*WN(n). THIS CAN BE REALIZED VERY EASY, BY
* CHANGING REAL– AND IMAGINARY PART OF THE TWIDDLE FACTORS AND BY
* NEGATING THE NEW REAL PART.
******************************************************************************
**
*
*                                                +
*   AR + j AI ––––––––––––––––––––––––––––––––––––––––––––––– AR’ + j AI’
*                                       \         / +
*                                         \     /
*                                           \ /
*                                           / \
*                                         /     \
*                                       /         \ +
*   BR + j BI –––– ( COS – j SIN ) –––––––––––––––––––––––––– BR’ + j BI’
*                                                –*
*   TR = BR * COS + BI * SIN
*   TI = BI * COS – BR * SIN
*   AR’= AR + TR
*   AI’= AI + TI
*   BR’= AR – TR
*   BI’= AI – TI
*
******************************************************************************
**

.global _cr2dit ; Entry execution point.

.global _SINE ; sine table pointer

.global STARTB,ENDB ; starting/ending point for given
; benchmarks

.sect ”.fftdat”
fg .space 1 ; is FFT_SIZE
fg2 .space 1 ; is FFT_SIZE/2
fg4m2 .space 1 ; is FFT_SIZE/4 – 2
fg8m2 .space 1 ; is FFT_SIZE/8 – 2
sintab .word _SINE ; pointer to sine table
sintp2 .word _SINE+2 ; pointer to sine table +2
inputp2 .space 1 ; pointer to input +2
inputp .space 1 ; pointer to source address
outputp .space 1 ; pointer to dst address

* EXAMPLE: SHOWN FOR N=32, WN(n) = COS(2*PI*n/N) – j*SIN(2*PI*n/N)
*
*               ADDRESS                 COEFFICIENT
*                  0          R{WN(0)} = COS(2*PI*0/32) = 1
*                  1         –I{WN(0)} = SIN(2*PI*0/32) = 0
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;
; Initialize C Function.
;

.sect ”.ffttxt”
_cr2dit: LDI SP,AR0

PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR3
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP
.if .REGPARM == 0 ; arguments passed in stack
LDI *–AR0(1),AR2 ; src address
LDI *–AR0(2),R2 ; FFT size
LDI *–AR0(3),R3 ; dst address
.endif
LDP fg ; Initialize DP pointer.
STI R2,@fg ; fg = FFT_SIZE
LSH –1,R2 ; R2 = FFT_SIZE/2
STI AR2,@inputp ; inputp = SOURCE_ADDR
ADDI 2,AR2,R0
STI R0,@inputp2 ; inputp2= SOURCE_ADDR + 2
STI R3,@outputp ; output = DST_ADDR
STI R2,@fg2 ; fg2 = nhalb = (FFT_size/2)
LSH –1,R2
SUBI 2,R2,R0
STI R0,@fg4m2 ; fg4m2 = NVIERT–2 : (FFT_SIZE/4)–2
LSH –1,R2
SUBI 2,R2,R0
STI R0,@fg8m2

*       ar0 : AR + AI
*       ar1 : BR + BI
*       ar2 : CR + CI + CR’ + CI’
*       ar3 : DR + DI
*       ar4 : AR’ + AI’
*       ar5 : BR’ + BI’
*       ar6 : DR’ + DI’
*       ar7 : first twiddle factor = 1
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Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

STARTB:
ldi @fg2,ir0 ; ir0 = n/2 = offset between SOURCE_ADDRs
ldi @sintab,ar7 ; ar7 points to twiddle factor 1
ldi ar2,ar0 ; ar0 points to AR
addi ir0,ar0,ar1 ; ar1 points to BR
addi ir0,ar1,ar2 ; ar2 points to CR
addi ir0,ar2,ar3 ; ar3 points to DR
ldi ar0,ar4 ; ar4 points to AR’
ldi ar1,ar5 ; ar5 points to BR’
ldi ar3,ar6 ; ar6 points to DR’
ldi 2,ir1 ; addressoffset
lsh –1,ir0 ; ir0 = n/4 = number of R4–butterflies
subi 2,ir0,rc

*****************************************************************************
* –––––––––––– FIRST 2 STAGES AS RADIX–4 BUTTERFLY –––––––––––––––––––––––– *
******************************************************************************
fill pipeline

addf *ar2,*ar0,r4 ; r4 = AR + CR
subf *ar2,*ar0++,r5 ; r5 = AR – CR
addf *ar1,*ar3,r6 ; r6 = DR + BR
subf *ar1++,*ar3++,r7 ; r7 = DR – BR
addf r6,r4,r0 ; AR’ = r0 = r4 + r6
mpyf *ar7,*ar3++,r1 ; r1 = DI , BR’ = r3 = r4 – r6

|| subf r6,r4,r3
addf r1,*ar1,r0 ; r0 = BI + DI , AR’ = r0

|| stf r0,*ar4++
subf r1,*ar1++,r1 ; r1 = BI – DI , BR’ = r3

|| stf r3,*ar5++
addf r1,r5,r2 ; CR’ = r2 = r5 + r1
mpyf *ar7,*+ar2,r1 ; r1 = CI , DR’ = r3 = r5 – r1

|| subf r1,r5,r3
rptbd blk1 ; Setup for radix–4 butterfly loop
addf r1,*ar0,r2 ; r2 = AI + CI , CR’ = r2

|| stf r2,*ar2++(ir1)
subf r1,*ar0++,r6 ; r6 = AI – CI , DR’ = r3

|| stf r3,*ar6++ 
addf r0,r2,r4 ; AI’ = r4 = r2 + r0
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* radix–4 butterfly loop
*

mpyf *ar7,*ar2– –,r0 ; r0 = CR , (BI’ = r2 = r2 – r0)
|| subf r0,r2,r2

mpyf *ar7,*ar1++,r1 ; r1 = BR , (CI’ = r3 = r6 + r7)
|| addf r7,r6,r3

addf r0,*ar0,r4 ; r4 = AR + CR , (AI’ = r4)
|| stf r4,*ar4++

subf r0,*ar0++,r5 ; r5 = AR – CR , (BI’ = r2)
|| stf r2,*ar5++

subf r7,r6,r7 ; (DI’ = r7 = r6 – r7)
addf r1,*ar3,r6 ; r6 = DR + BR , (DI’ = r7)

|| stf r7,*ar6++
subf r1,*ar3++,r7 ; r7 = DR – BR , (CI’ = r3)

|| stf r3,*ar2++
addf r6,r4,r0 ; AR’ = r0 = r4 + r6
mpyf *ar7,*ar3++,r1 ; r1 = DI , BR’ = r3 = r4 – r6

|| subf r6,r4,r3
addf r1,*ar1,r0 ; r0 = BI + DI , AR’ = r0

|| stf r0,*ar4++
subf r1,*ar1++,r1 ; r1 = BI – DI , BR’ = r3

|| stf r3,*ar5++
addf r1,r5,r2 ; CR’ = r2 = r5 + r1
mpyf *+ar2,*ar7,r1  ; r1 = CI , DR’ = r3 = r5 – r1

|| subf r1,r5,r3
addf r1,*ar0,r2 ; r2 = AI + CI , CR’ = r2

|| stf r2,*ar2++(ir1)
subf r1,*ar0++,r6 ; r6 = AI – CI , DR’ = r3

|| stf r3,*ar6++
blk1 addf r0,r2,r4 ; AI’ = r4 = r2 + r0
* clear pipeline
*

subf r0,r2,r2 ; BI’ = r2 = r2 – r0
addf r7,r6,r3 ; CI’ = r3 = r6 + r7
stf r4,*ar4 ; AI’ = r4 , BI’ = r2

|| stf r2,*ar5
subf r7,r6,r7 ; DI’ = r7 = r6 – r7
stf r7,*ar6 ; DI’ = r7 , CI’ = r3

|| stf r3,*– –ar2
*****************************************************************************
* –––––––––––– THIRD TO LAST–2 STAGE –––––––––––––––––––––––––––––––––––––– *
*****************************************************************************
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Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

ldi @fg2,ir1
subi 1,ir0,ar5
ldi 1,ar6
ldi @sintab,ar7 ; pointer to twiddle factor
ldi 0,ar4 ; group counter
ldi @inputp,ar0

stufe ldi ar0,ar2 ; upper real butterfly output
addi ir0,ar0,ar3 ; lower real butterfly output
ldi ar3,ar1 ; lower real butterfly input
lsh 1,ar6 ; double group count
lsh –2,ar5 ; half butterfly count
lsh 1,ar5 ; clear LSB
lsh –1,ir0 ; half step from upper to lower real part
lsh –1,ir1
addi 1,ir1 ; step from old imaginary to new

; real value
ldf *ar1++,r6 ; dummy load, only for address update

|| ldf *ar7,r7 ; r7 = COS
gruppe
* fill pipeline
*
* ar0 = upper real butterfly input
* ar1 = lower real butterfly input
* ar2 = upper real butterfly output
* ar3 = lower real butterfly output
* the imaginary part has to follow

ldf *++ar7,r6 ; r6 = SIN
mpyf *ar1– –,r6,r1 ; r1 = BI * SIN

|| addf *++ar4,r0,r3 ; dummy addf for counter update
mpyf *ar1,r7,r0 ; r0 = BR * COS
ldi ar5,rc
rptbd bfly1 ; Setup for loop bfly1
mpyf *ar7– –,*ar1++,r0 ; r3 = TR = r0 + r1 , r0 = BR * SIN

|| addf r0,r1,r3
mpyf *ar1++,r7,r1 ; r1 = BI * COS , r2 = AR – TR

|| subf r3,*ar0,r2
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
*  FIRST BUTTERFLY–TYPE:
*
*  TR = BR * COS + BI * SIN
*  TI = BR * SIN – BI * COS
*  AR’= AR + TR
*  AI’= AI – TI
*  BR’= AR – TR
*  BI’= AI + TI
*  loop bfly1
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* switch over to next group
subf r1,r0,r2 ; r2 = TI = r0 – r1
addf r2,*ar0,r3 ; r3 = AI + TI , AR’ = r5

|| stf r5,*ar2++
subf r2,*ar0++(ir1),r4 ; r4 = AI – TI , BI’ = r3

|| stf r3,*ar3++(ir1)
nop *ar1++(ir1) ; address update
mpyf *ar1– –,r7,r1 ; r1 = BI * COS , AI’ = r4

|| stf r4,*ar2++(ir1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN
ldi ar5,rc
rptbd bfly2 ; Setup for loop bfly2
mpyf *ar7++,*ar1++,r0 ; r3 = TR = r1 – r0 , r0 = BR * COS

|| subf r0,r1,r3
mpyf *ar1++,r6,r1 ; r1 = BI * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
*  SECOND BUTTERFLY–TYPE:
*
*  TR = BI * COS – BR * SIN
*  TI = BI * SIN + BR * COS
*  AR’= AR + TR
*  AI’= AI – TI
*  BR’= AR – TR
*  BI’= AI + TI
* loop bfly2

mpyf *+ar1,r7,r5 ; r5 = BI * COS , (AR’ = r5)
|| stf r5,*ar2++

addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++
subf r0,r5,r3 ; TR = r3 = r5 – r0
mpyf *ar1++,r7,r0 ; r0 = BR * COS , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r6,r1 ; r1 = BI * SIN , (AI’ = r4)

|| stf r4,*ar2++
bfly2 addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2
|| stf r2,*ar3++
* clear pipeline

mpyf *+ar1,r6,r5 ; r5 = BI * SIN , (AR’ = r5)
|| stf r5,*ar2++

subf r1,r0,r2 ; (r2 = TI = r0 – r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++
bfly1 addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2
|| stf r2,*ar3++
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addf r1,r0,r2 ; r2 = TI = r0 + r1
addf r2,*ar0,r3 ; r3 = AI + TI

|| stf r5,*ar2++ ; AR’ = r5
cmpi ar6,ar4
bned gruppe ; do following 3 instructions
subf r2,*ar0++(ir1),r4 ; r4 = AI – TI , BI’ = r3

|| stf r3,*ar3++(ir1)
ldf *++ar7,r7 ; r7 = COS

|| stf r4,*ar2++(ir1) ; AI’ = r4
nop *ar1++(ir1) ; branch here

* end of this butterflygroup
cmpi 4,ir0 ; jump out after ld(n)–3 stage
bnzaf stufe
ldi @sintab,ar7 ; pointer to twiddle factor
ldi 0,ar4 ; group counter
ldi @inputp,ar0

*****************************************************************************
* –––––––––––– SECOND LAST STAGE –––––––––––––––––––––––––––––––––––––––––– *
*****************************************************************************

ldi @inputp,ar0
ldi ar0,ar2 ; upper output
addi ir0,ar0,ar1 ; lower input
ldi ar1,ar3 ; lower output
ldi @sintp2,ar7 ; pointer to twiddle faktor
ldi 5,ir0 ; distance between two groups
ldi @fg8m2,rc

* fill pipeline

* 1. butterfly: w^0
addf *ar0,*ar1,r2 ; AR’ = r2 = AR + BR
subf *ar1++,*ar0++,r3 ; BR’ = r3 = AR – BR
addf *ar0,*ar1,r0 ; AI’ = r0 = AI + BI
subf *ar1++,*ar0++,r1 ; BI’ = r1 = AI – BI

* 2. butterfly: w^0

addf *ar0,*ar1,r6 ; AR’ = r6 = AR + BR
subf *ar1++,*ar0++,r7 ; BR’ = r7 = AR – BR
addf *ar0,*ar1,r4 ; AI’ = r4 = AI + BI
subf *ar1++(ir0),*ar0++(ir0),r5 ; BI’ = r5 = AI – BI
stf r2,*ar2++ ; (AR’ = r2)

|| stf r3,*ar3++ ; (BR’ = r3)
stf r0,*ar2++ ; (AI’ = r0)

|| stf r1,*ar3++ ; (BI’ = r1)
stf r6,*ar2++ ; AR’ = r6

|| stf r7,*ar3++ ; BR’ = r7
stf r4,*ar2++(ir0) ; AI’ = r4

|| stf r5,*ar3++(ir0) ; BI’ = r5
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* 3. butterfly: w^M/4
addf *ar0++,*+ar1,r5 ; AR’ = r5 = AR + BI
subf *ar1,*ar0,r4 ; AI’ = r4 = AI – BR
addf *ar1++,*ar0––,r6 ; BI’ = r6 = AI + BR
subf *ar1++,*ar0++,r7 ; BR’ = r7 = AR – BI

* 4. butterfly: w^M/4
addf *+ar1,*++ar0,r3 ; AR’ = r3 = AR + BI
ldf *–ar7,r1 ; r1 = 0 (for inner loop)

|| ldf *ar1++,r0 ; r0 = BR (for inner loop)
rptbd bf2end ; Setup for loop bf2end
subf *ar1++(ir0),*ar0++,r2 ; BR’ = r2 = AR – BI
stf r5,*ar2++ ; (AR’ = r5)

|| stf r7,*ar3++ ; (BR’ = r7)
stf r6,*ar3++ ; (BI’ = r6)

* 5. to M. butterfly: 
* loop bf2end

ldf *ar7++,r7 ; r7 = COS , ((AI’ = r4))
|| stf r4,*ar2++

ldf *ar7++,r6 ; r6 = SIN , (BR’ = r2)
|| stf r2,*ar3++

mpyf *+ar1,r6,r5 ; r5 = BI * SIN , (AR’ = r3)
|| stf r3,*ar2++

addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++(ir0)
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
mpyf *+ar1,r6,r5 ; r5 = BI * SIN , (AR’ = r5)

|| stf r5,*ar2++
subf r1,r0,r2 ; (r2 = TI = r0 – r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++(ir0),r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++
addf *ar0++,r3,r3 ; r3 = AR + TR , BR’ = r2

|| stf r2,*ar3++
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mpyf *+ar1,r7,r5 ; r5 = BI * COS , (AR’ = r3)
|| stf r3,*ar2++

subf r1,r0,r2 ; (r2 = TI = r0 – r1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
subf r0,r5,r3 ; r3 = TR = r5 – r0
mpyf *ar1++,r7,r0 ; r0 = BR * COS , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r6,r1 ; r1 = BI * SIN , (AI’ = r4)

|| stf r4,*ar2++(ir0)
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
mpyf *+ar1,r7,r5 ; r5 = BI * COS , (AR’ = r5)

|| stf r5,*ar2++
addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , y(L) = BI’ =

r3)
|| stf r3,*ar3++

subf r0,r5,r3 ; r3 = TR = r5 – r0
mpyf *ar1++,r7,r0 ; r0 = BR * COS , r2 = AR – TR

|| subf r3,*ar0,r2
bf2end mpyf *ar1++(ir0),r6,r1 ; r1 = BI * SIN , r3 = AR + TR
|| addf *ar0++,r3,r3
* clear pipeline

stf r2,*ar3++ ; BR’ = r2 , AI’ = r4
|| stf r4,*ar2++

addf r1,r0,r2 ; r2 = TI = r0 + r1
addf r2,*ar0,r3 ; r3 = AI + TI , AR’ = r3

|| stf r3,*ar2++
subf r2,*ar0,r4 ; r4 = AI – TI , BI’ = r3

|| stf r3,*ar3
stf r4,*ar2 ; AI’ = r4

*****************************************************************************
*––––––––––––– LAST STAGE ––––––––––––––––––––––––––––––––––––––––––––––––––*
*****************************************************************************

ldi @inputp,ar0
ldi ar0,ar2 ; upper output
ldi @inputp2,ar1
ldi ar1,ar3 ; lower output
ldi @sintp2,ar7 ; pointer to twiddle factors
ldi 3,ir0 ; group offset
ldi @fg4m2,rc

* fill pipeline
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* 1. butterfly: w^0
addf *ar0,*ar1,r6 ; AR’ = r6 = AR + BR
subf *ar1++,*ar0++,r7 ; BR’ = r7 = AR – BR
addf *ar0,*ar1,r4 ; AI’ = r4 = AI + BI
subf *ar1++(ir0),*ar0++(ir0),r5; BI’ = r5 = AI – BI

* 2. butterfly: w^M/4
addf *+ar1,*ar0,r3 ; AR’ = r3 = AR + BI
ldf *–ar7,r1 ; r1 = 0 (for inner loop) 

|| ldf *ar1++,r0 ; r0 = BR (for inner loop)
rptbd bflend ; Setup for loop bflend
subf *ar1++(ir0),*ar0++,r2 ; BR’ = r2 = AR – BI 
stf r6,*ar2++ ; (AR’ = r6)

|| stf r7,*ar3++ ; (BR’ = r7)
stf r5,*ar3++(ir0) ; (BI’ = r5)

* 3. to M. butterfly: 
* loop bflend

ldf *ar7++,r7 ; r7 = COS , ((AI’ = r4))
|| stf r4,*ar2++(ir0)

ldf *ar7++,r6 ; r6 = SIN , (BR’ = r2)
|| stf r2,*ar3++

mpyf *+ar1,r6,r5 ; r5 = BI * SIN, (AR’ = r3)
|| stf r3,*ar2++

addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2 
mpyf *ar1++(ir0),r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++(ir0)
addf *ar0++,r3,r3 ; r3 = AR + TR , BR’ = r2

|| stf r2,*ar3++
mpyf *+ar1,r7,r5 ;r5 = BI * COS , (AR’ = r3)

|| stf r3,*ar2++
subf r1,r0,r2 ;(r2 = TI = r0 – r1)
mpyf *ar1,r6,r0 ;r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ;(r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
subf r0,r5,r3 ;r3 = TR = r0 – r5
mpyf *ar1++,r7,r0 ;r0 = BR * COS , r2 = AR – TR 

|| subf r3,*ar0,r2 
bflend mpyf *ar1++(ir0),r6,r1 ;r1 = BI * SIN , r3 = AR + TR
|| addf *ar0++,r3,r3
* clear pipeline
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stf r2,*ar3++ ;BR’ = r2 , (AI’ = r4)
|| stf r4,*ar2++(ir0)

addf r1,r0,r2 ;r2 = TI = r0 + r1
addf r2,*ar0,r3 ;r3 = AI + TI , AR’ = r3

|| stf r3,*ar2++
subf r2,*ar0,r4 ;r4 = AI – TI , BI’ = r3

|| stf r3,*ar3
stf r4,*ar2 ;AI’ = r4

*****************************************************************************
*––––––––––––– END OF FFT ––––––––––––––––––––––––––––––––––––––––––––––––––*
*****************************************************************************
ENDB:
*****************************************************************************
*––––––––––––– BITREVERSAL –––––––––––––––––––––––––––––––––––––––––––––––––*
* This bit–reversal section assume input and output in Re–Im–Re–Im format *
*****************************************************************************

ldi @inputp,ar0
cmpi @outputp,ar0
beqd INPLACE
ldi @outputp,ar1 ;ar1=DSR_ADDR
ldi @fg,ir0 ;ir0=FFT_SIZE
subi 2,ir0,rc ;rc=FFT_SIZE–2
rptbd bitrv1
ldi 2,ir1 ;ir1=2
ldf *+ar0(1),r0 ;read first Im value
nop
ldf *ar0++(ir0)b,r1

|| stf r0,*+ar1(1)
bitrv1 ldf *+ar0(1),r0
|| stf r1,*ar1++(ir1)

bud end
ldf *ar0++(ir0)b,r1

|| stf r0,*+ar1(1)
nop
stf r1,*ar1

;
; Return to C environment.
;
INPLACE

rptbd BITRV2
nop *++ar1(2)
nop *ar0++(ir0)b
nop
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cmpi ar1,ar0
bgeat CONT
ldf *ar1,r0

|| ldf *ar0,r1
stf r0,*ar0

|| stf r1,*ar1
ldf *+ar1(1),r0

|| ldf *+ar0(1),r1
stf r0,*+ar0(1)

|| stf r1,*+ar1(1)
CONT nop *++ar1(2)
BITRV2 nop *ar0++(ir0)b
; Return to C environment
end: POP DP

POP AR7
POP AR6
POP AR5
POP AR4
POP AR3
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
RETS
.end
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**************************************************************
*
*   SINTAB.ASM : Bit–reversed sine table for a 64–point 
*                File to be linked with the source code for a 
*                64–point radix–2 DIT FFT 
*                Sine table length = FFT size / 2
*
**************************************************************

.global _SINE

.sect ”.sintab”
_SINE 

.float 1.000000

.float 0.000000

.float 0.707107

.float 0.707107

.float 0.923880

.float 0.382683

.float 0.382683

.float 0.923880

.float 0.980785

.float 0.195090

.float 0.555570

.float 0.831470

.float 0.831470

.float 0.555570

.float 0.195090

.float 0.980785

.float 0.995185

.float 0.098017

.float 0.634393

.float 0.773010

.float 0.881921

.float 0.471397

.float 0.290285

.float 0.956940

.float 0.956940

.float 0.290285

.float 0.471397

.float 0.881921

.float 0.773010

.float 0.634393

.float 0.098017

.float 0.995185

.end
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6.5.4 Real Radix-2 FFT

Most often, the data to be transformed is a sequence of real numbers. In this

case, the FFT demonstrates certain symmetries that permit the reduction of

the computational load even further. Example 6–17 and Example 6–18 show

the generic implementation of a real-valued radix-2 FFT (forward and inverse).

For such an FFT, the total storage required for a length-N transform is only N

locations; in a complex FFT, 2N are necessary. Recovery of the rest of the

points is based on the symmetry conditions. A companion table

(Example 6–13) should be used to provide the twiddle factors.

Example 6–17. Real Forward Radix-2 FFT

********************************************************************************
*
*  FILENAME     : FFFT_RL.ASM
*  DESCRIPTION  : REAL, RADIX–2 DIF FFT FOR TMS320C40
*  DATE         : 1/19/93
*  VERSION      : 3.0
*
********************************************************************************
*
*  VERSION     DATE      COMMENTS
*  –––––––     ––––      ––––––––
*  1.0        7/18/91     ALEX TESSAROLO(TI Australia):
*                         Original Release (C30 version)
*  2.0        7/23/92     ALEX TESSAROLO(TI Australia):
*                         Most Stages Modified (C30 version).
*                         Minimum FFT Size increased from 32 to 64.
*                         Faster in place bit reversing algorithm.
*                         Program size increased by about 100 words.
*                         One extra data word required.
*  3.0        1/19/93     ROSEMARIE PIEDRA(TI Houston):
*                         C40 porting started from  C30 forward real FFT
*                         version 2.0. Expanded calling conventions to the use
*                         of registers for parameter passing.
*
*****************************************************************************
*
* SYNOPSIS:
*
* int ffft_rl (FFT_SIZE,LOG_SIZE,SOURCE_ADDR,DEST_ADDR,SINE_TABLE,BIT_REVERSE)
*                 ar2       r2        r3         rc        rs         re
*
*     int     FFT_SIZE        ; 64, 128, 256, 512, 1024, ...
*     int     LOG_SIZE        ;  6,   7,   8,   9,   10, ...
*     float   *SOURCE_ADDR    ; Points to location of source data.
*     float   *DEST_ADDR      ; Points to where data will be
*                             ; operated on and stored.
*     float   *SINE_TABLE     ; Points to the SIN/COS table.
*     int     BIT_REVERSE     ; =  0, Bit Reversing is disabled.
*                             ; <> 0, Bit Reversing is enabled.
*
*     NOTE:   1) If SOURCE_ADDR = DEST_ADDR, then in place bit reversing
*                is performed, if enabled (more processor intensive).
*             2) FFT_SIZE must be >= 64   (this is not checked).
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Example 6–17. Real Forward Radix-2 FFT (Continued)

*
*****************************************************************************
*
* DESCRIPTION:
*
*  Generic function to do a radix–2 FFT computation on the C40.
*  The input data array is FFT_SIZE–long with only real data. The output is
*  stored in the same locations (in–place) with real and imaginary
*  points R and I as follows:
*
* DEST_ADDR[0] –> R(0)
* R(1)
* R(2)
* R(3)
* .
* .
* R(FFT_SIZE/2)
* I(FFT_SIZE/2 – 1)
* .
* .
* I(2)
* DEST_ADDR[FFT_SIZE – 1] –> I(1)
*
*  The program is based on the FORTRAN program in the paper by Sorensen et al.,
*  June 1987 issue of Trans. on ASSP.
*
*  Bit reversal is optionally implemented at the beginning of the function.
*
*  The sine/cosine table for the twiddle factors is expected to be supplied in
*  the following format:
*
* SINE_TABLE[0] –> sin(0*2*pi/FFT_SIZE)
* sin(1*2*pi/FFT_SIZE)
* .
* .
* sin((FFT_SIZE/2–2)*2*pi/FFT_SIZE)
* SINE_TABLE[FFT_SIZE/2–1] –> sin((FFT_SIZE/2–1)*2*pi/FFT_SIZE)
*
*  NOTE: The table is the first half period of a sine wave.
*
*****************************************************************************
*
*  NOTES:   1. Calling C program can be compiled with large or small model. Both
*              calling conventions methods: stack or register for parameter
*              passing are supported.
*
*           2. Sections needed in linker command file: .ffttxt  : fft code
*                                                      .fftdat  : fft data
*
*           3. The DEST_ADDR must be aligned such that the first LOG_SIZE bits
*               are zero (this is not checked by the program)
*
*  Caution: DP initialized only once in the program. Be wary with interrupt
*           service routines. Make sure interrupt service routines save the DP
*           pointer.
*
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Example 6–17. Real Forward Radix-2 FFT (Continued)

*****************************************************************************
*
*  REGISTERS USED: R0, R1, R2, R3, R4, R5, R6, R7
*                  AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
*                  IR0, IR1
*                  RC, RS, RE
*                  DP
*
*
*  MEMORY REQUIREMENTS:  Program = 405 Words (approximately)
*                        Data    =   7 Words
*                        Stack   =  12 Words
*
*****************************************************************************
*
*  BENCHMARKS:   Assumptions     – Program in RAM0
*                                – Reserved data in RAM0
*                                – Stack on Local/Global Bus RAM
*                                – Sine/Cosine tables in RAM0
*                                – Processing and data destination in RAM1.
*                                – Local/Global Bus RAM, 0 wait state.
*
*  FFT Size        Bit Reversing   Data Source     Cycles(C40)
*  ––––––––        –––––––––––––   –––––––––––     –––––––––––
*   1024            OFF             RAM1            19404 approx.
*
*  Note: This number does not include the C callable overheads.
*        This benchmark is the number of cycles between labels STARTB and ENDB.
*
*  NOTE:
*  – If .ffttxt is located off–chip, enable cache for faster performance
*
*****************************************************************************
*
FP .set AR3

.global _ffft_rl ; Entry execution point.

.global STARTB,ENDB
FFT_SIZE: .usect ”.fftdat”,1 ; Reserve memory for arguments.
LOG_SIZE: .usect ”.fftdat”,1
SOURCE_ADDR: .usect ”.fftdat”,1
DEST_ADDR: .usect ”.fftdat”,1
SINE_TABLE: .usect ”.fftdat”,1
BIT_REVERSE: .usect ”.fftdat”,1
SEPARATION: .usect ”.fftdat”,1
*
*  Initialize C Function
*

.sect ”.ffttxt”
_ffft_rl: PUSH FP ; Preserve C environment.
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Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI SP,FP
PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP
LDP FFT_SIZE ; Initialize DP pointer.
.if .REGPARM==0 ; arguments passed in stack
LDA *–FP(2),AR2
LDI *–FP(3),R2
LDI *–FP(4),R3
LDI *–FP(5),RC
LDI *–FP(6),RS
LDI *–FP(7),RE
.endif
STI AR2,@FFT_SIZE
STI R2,@LOG_SIZE
STI R3,@SOURCE_ADDR
STI RC,@DEST_ADDR
STI RS,@SINE_TABLE
STI RE,@BIT_REVERSE

;
; Check Bit Reversing Mode (on or off).
;
; BIT_REVERSING =  0, then OFF (no bit reversing).
; BIT_REVERSING <> 0, Then ON.
;

LDI @BIT_REVERSE,R0
BZ MOVE_DATA

;
; Check Bit Reversing Type.
;
; If SourceAddr =  DestAddr, Then In Place Bit Reversing.
; If SourceAddr <> DestAddr, Then Standard Bit Reversing.
;

LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ IN_PLACE

;
; Bit reversing Type 1 (From Source to Destination).
;
; NOTE: abs(SOURCE_ADDR – DEST_ADDR) must be > FFT_SIZE, this is not checked.
;
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Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @FFT_SIZE,IR0
LSH –1,IR0 ;IRO = Half FFT size.
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0

 LDF *AR0++,R1
|| STF R1,*AR1++(IR0)B

STF R1,*AR1++(IR0)B
BR STARTB

;
; In Place Bit Reversing.
; Bit Reversing On Even Locations, 1st Half Only.
IN_PLACE: LDA @FFT_SIZE,IR0

LSH –2,IR0 ;IRO = Quarter FFT size.
LDA 2,IR1
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 3,RC
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV1
CMPI AR1,AR0 ;Xchange Locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV1: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0
STF R1,*AR2

;
;Perform Bit Reversing, Odd Locations, 2nd Half Only
;
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Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI @FFT_SIZE,RC
LSH –1,RC
LDA @DEST_ADDR,AR0
ADDI RC,AR0
ADDI 1,AR0
LDA AR0,AR1
LDA AR0,AR2
LSH –1,RC
SUBI 3,RC
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV2
CMPI AR1,AR0 ;Xchange Locations only if AR0<AR1
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV2: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0
STF R1,*AR2

;Perform Bit Reversing, Odd Locations, 1st Half Only
LDI @FFT_SIZE,RC
LSH –1,RC
LDA RC,IR0
LDA @DEST_ADDR,AR0
LDA AR0,AR1
ADDI 1,AR0
ADDI IR0,AR1
LSH –1,RC
LDA RC,IR0
SUBI 2,RC
RPTBD BITRV3
NOP ;Note: could be instruction
LDF *AR0,R0
LDF *AR1,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR1++(IR0)B
BITRV3: LDF *AR1,R1
|| STF R1,*–AR0(IR1)

STF R0,*AR1
|| STF R1,*AR0

BR STARTB
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Example 6–17. Real Forward Radix-2 FFT (Continued)

;
; Check Data Source Locations.
;
; If SourceAddr =  DestAddr, Then do nothing.
; If SourceAddr <> DestAddr, Then move data.
;
MOVE_DATA: LDI @SOURCE_ADDR,R0

CMPI @DEST_ADDR,R0
BEQ STARTB
LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++
STF R1,*AR1

;
; Perform first and second FFT loops.
;         
;  |  AR1 –> |__I1__| 0  <–  [X(I1) + X(I2)] + [X(I3) + X(I4)]
;  |  AR2 –> |__I2__| 1  <–  [X(I1) – X(I2)]
;  |  AR3 –> |__I3__| 2  <–  [X(I1) + X(I2)] – [X(I3) + X(I4)]
;  |_ AR4 –> |__I4__| 3  <– –[X(I3) – X(I4)]
;     AR1 –> |______| 4
;        |   .  |
;               .
;               .
;              \|/
;
STARTB: LDA @DEST_ADDR,AR1

LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 1,AR2
ADDI 2,AR3
ADDI 3,AR4
LDA 4,IR0
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 2,RC
LDF *AR2,R0 ; R0 = X(I2)

|| LDF *AR3,R1 ; R1 = X(I3)
ADDF3 R1,*AR4,R4 ; R4 = X(I3) + X(I4)
SUBF3 R1,*AR4++(IR0),R5 ; R5 = –[X(I3) – X(I4)] ––+
SUBF3 R0,*AR1,R6 ; R6 = X(I1) – X(I2) ––+  |



 Fast Fourier Transforms (FFTs)

6-63  Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

;                      |  |
RPTBD LOOP1_2 ;                      |  |
ADDF3 R0,*AR1++(IR0),R7 ; R7 = X(I1) + X(I2)   |  |
ADDF3 R7,R4,R2 ; R2 = R7 + R4 –––––+  |  |
SUBF3 R4,R7,R3 ; R3 = R7 – R4 ––+  |  |  |

;                |  |  |  |
LDF *+AR2(IR0),R0 ;                |  |  |  |

|| LDF *+AR3(IR0),R1 ;                |  |  |  |
ADDF3 R1,*AR4,R4 ;                |  |  |  |

|| STF R3,*AR3++(IR0) ; X(I3) <––––––––+  |  |  |
SUBF3 R1,*AR4++(IR0),R5 ;                   |  |  |

|| STF R5,*–AR4(IR0) ; X(I4) <–––––––––––|––|––+
SUBF3 R0,*AR1,R6 ;                   |  |

|| STF R6,*AR2++(IR0) ; X(I2) <–––––––––––|––+
ADDF3 R0,*AR1++(IR0),R7 ;                   |

|| STF R2,*–AR1(IR0) ; X(I1) <–––––––––––+
ADDF3 R7,R4,R2

LOOP1_2: SUBF3 R4,R7,R3
STF R3,*AR3

|| STF R5,*–AR4(IR0)
STF R6,*AR2

|| STF R2,*–AR1(IR0)
;
; Perform Third FFT Loop.
;
; Part A:
;     _          ______
; | AR1 –> |__I1__| 0  <–  X(I1) + X(I3)
; |        |______| 1
; |        |__I2__| 2
; |        |______| 3
; | AR2 –> |__I3__| 4  <–  X(I1) – X(I3)
; |        |______| 5
; | AR3 –> |__I4__| 6  <– –X(I4)
; |_        |______| 7
; AR1 –> |______| 8
; |______| 9
;        |   .  |
;        .
;     .
;    \|/

LDA @DEST_ADDR,AR1
LDA AR1,AR2
LDA AR1,AR3
ADDI 4,AR2
ADDI 6,AR3
LDA 8,IR0
LDI @FFT_SIZE,RC
LSH –3,RC
SUBI 2,RC
RPTBD LOOP3_A
SUBF3 *AR2,*AR1,R1
ADDF3 *AR2,*AR1,R2
NEGF *AR3,R3
LDF *+AR2(IR0),R0 ; R0 =  X(I3)
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Example 6–17. Real Forward Radix-2 FFT (Continued)

|| STF R2,*AR1++(IR0)
SUBF3 R0,*AR1,R1 ; R1 =  X(I1) – X(I3) –––––+

|| STF R1,*AR2++(IR0) ;                          |
ADDF3 R0,*AR1,R2 ; R2 =  X(I1) + X(I3) ––+  |

|| STF R3,*AR3++(IR0) ;                       |  |
LOOP3_A: NEGF *AR3,R3 ; R3 = –X(I4) ––+       |  |

;               |       |  |
STF R2,*AR1 ; X(I1) <–––––––|–––––––+  |

|| STF R1,*AR2 ; X(I3) <–––––––|––––––––––+
STF R3,*AR3 ; X(I4) <–––––––+

;
; Part B:
;  _  ______
; |       |______| 0
; | AR0 –> |__I1__| 1 <–  X(I1) + [X(I3)*COS + X(I4)*COS]
; |       |______| 2
; | AR1 –> |__I2__| 3 <–  X(I1) – [X(I3)*COS + X(I4)*COS]
; |       |______| 4
; | AR2 –> |__I3__| 5 <– –X(I2) – [X(I3)*COS – X(I4)*COS]
; |       |______| 6
; |_AR3 –> |__I4__| 7 <–  X(I2) – [X(I3)*COS – X(I4)*COS]
; |______| 8
;  AR0 –> |______| 9     NOTE: COS(2*pi/8) = SIN(2*pi/8)
; |   .  |
;                    .
;                   .
;                   \|/
;

LDI @FFT_SIZE,RC
LSH –3,RC
LDA RC,IR1
SUBI 3,RC
LDA 8,IR0
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
LDA AR0,AR3
ADDI 1,AR0
ADDI 3,AR1
ADDI 5,AR2
ADDI 7,AR3
LDA @SINE_TABLE,AR7 ; Initialize table pointers.
LDF *++AR7(IR1),R7 ; R7   = COS(2*pi/8)

; *AR7 = COS(2*pi/8)
MPYF3 *AR7,*AR2,R0 ; R0 =  X(I3)*COS
MPYF3 *AR3,R7,R1 ; R5 =  X(I4)*COS
ADDF3 R0,R1,R2 ; R2 =  [X(I3)*COS + X(I4)*COS]
MPYF3 *AR7,*+AR2(IR0),R0
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Example 6–17. Real Forward Radix-2 FFT (Continued)

|| SUBF3 R0,R1,R3 ; R3 = –[X(I3)*COS – X(I4)*COS]
SUBF3 *AR1,R3,R4 ; R4 = –X(I2) + R3 ––+

;                    |
RPTBD LOOP3_B ;                    |
ADDF3 *AR1,R3,R4 ; R4 =  X(I2) + R3 ––|––+

|| STF R4,*AR2++(IR0) ; X(I3) <––––––––––––+  |
SUBF3 R2,*AR0,R4 ; R4 =  X(I1) – R2 ––+  |

|| STF R4,*AR3++(IR0) ; X(I4) <––––––––––––|––+
ADDF3 *AR0,R2,R4 ; R4 =  X(I1) + R2 ––|––+

|| STF R4,*AR1++(IR0) ; X(I2) <––––––––––––+  |
MPYF3 *AR3,R7,R1 ;                       |

|| STF R4,*AR0++(IR0) ; X(I1) <–––––––––––––––+
ADDF3 R0,R1,R2
MPYF3 *AR7,*+AR2(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2++(IR0)
SUBF3 R2,*AR0,R4

|| STF R4,*AR3++(IR0)
LOOP3_B: ADDF3 *AR0,R2,R4
|| STF R4,*AR1++(IR0)

MPYF3 *AR3,R7,R1
|| STF R4,*AR0++(IR0)

ADDF3 R0,R1,R2
SUBF3 R0,R1,R3
SUBF3 *AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
STF R4,*AR0

;
; Perform Fourth FFT Loop.
;
; Part A:
;    _          ______
; | AR1–> |__I1__| 0  <–  X(I1) + X(I3)
; | |______| 1
; | |______| 2
; | |______| 3
; | |__I2__| 4
; | |______| 5
; | |______| 6
; | |______| 7
; | AR2–> |__I3__| 8  <–  X(I1) – X(I3)
; | |______| 9
; | |______| 10
; | |______| 11
; | AR3–> |__I4__| 12 <– –X(I4)
; | |______| 13
; | |______| 14
; |_ |______| 15
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Example 6–17. Real Forward Radix-2 FFT (Continued)

; AR1–> |__I5__| 16
; |______| 17
; |   .  |
;     .
;                    .
;                   \|/

LDA @DEST_ADDR,AR1
LDA AR1,AR2
LDA AR1,AR3
ADDI 8,AR2
ADDI 12,AR3
LDA 16,IR0
LDI @FFT_SIZE,RC
LSH –4,RC
SUBI 2,RC
RPTBD LOOP4_A
SUBF3 *AR2,*AR1,R1
ADDF3 *AR2,*AR1,R2
NEGF *AR3,R3
LDF *+AR2(IR0),R0 ;R0 =  X(I3)

|| STF R2,*AR1++(IR0)
SUBF3 R0,*AR1,R1 ;R1 =  X(I1) – X(I3) –––––+

|| STF R1,*AR2++(IR0) ;                         |
ADDF3 R0,*AR1,R2 ;R2 =  X(I1) + X(I3) ––+  |

|| STF R3,*AR3++(IR0) ;                      |  |
LOOP4_A: NEGF *AR3,R3 ;R3 = –X(I4) ––+       |  |
                            ;              |       |  |

STF R2,*AR1 ;X(I1) <–––––––|–––––––+  |
|| STF R1,*AR2 ;X(I3) <–––––––|––––––––––+

STF R3,*AR3 ;X(I4) <–––––––+
;
; Part B:
;    _              ___________
; |          |___________| 0
; | AR0  –> |__I1_(3rd)_| 1  <–  X(I1) + [X(I3)*COS + X(I4)*SIN]
; |          |__I1_(2nd)_| 2       .
; |           |__I1_(1st)_| 3       .
; |           |___________| 4
; |         |__I2_(1st)_| 5       .
; |           |__I2_(2nd)_| 6       .
; | AR1  –> |__I2_(3rd)_| 7  <–  X(I1) – [X(I3)*COS + X(I4)*SIN]
; |          |___________| 8
; | AR2  –> |__I3_(3rd)_| 9  <– –X(I2) – [X(I3)*SIN – X(I4)*COS]
; |          |__I3_(2nd)_| 10      .
; | AR4  –> |__I3_(1st)_| 11      .
; |          |___________| 12
; |          |__I4_(1st)_| 13      .
; |          |__I4_(2nd)_| 14      .
; |_ AR3  –> |__I4_(3rd)_| 15 <–  X(I2) – [X(I3)*SIN – X(I4)*COS]
;        |___________| 16
; AR0  –> |___________| 17
;         |     .     |
;                    .
;                     .
;                    \|/
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Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI @FFT_SIZE,RC
LSH –4,RC
LDA RC,IR1
LDA 2,IR0
SUBI 3,RC
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
LDA AR0,AR3
LDA AR0,AR4
ADDI 1,AR0
ADDI 7,AR1
ADDI 9,AR2
ADDI 15,AR3
ADDI 11,AR4
LDA @SINE_TABLE,AR7
LDF *++AR7(IR1),R7 ;R7 = SIN(1*[2*pi/16])

;*AR7 = COS(3*[2*pi/16])
LDA AR7,AR6
LDF *++AR6(IR1),R6 ;R6 = SIN(2*[2*pi/16])

;*AR6 = COS(2*[2*pi/16])
LDA AR6,AR5
LDF *++AR5(IR1),R5 ;R5 = SIN(3*[2*pi/16])

;*AR5 = COS(1*[2*pi/16])
LDA 16,IR1
MPYF3 *AR7,*AR4,R0 ;R0 =  X(I3)*COS(3)
MPYF3 *++AR2(IR0),R5,R4 ;R4 =  X(I3)*SIN(3)
MPYF3 *––AR3(IR0),R5,R1 ;R1 =  X(I4)*SIN(3)
MPYF3 *AR7,*AR3,R0 ;R0 =  X(I4)*COS(3)

|| ADDF3 R0,R1,R2 ;R2 =  [X(I3)*COS + X(I4)*SIN]
MPYF3 *AR6,*–AR4,R0

|| SUBF3 R4,R0,R3     ;R3 = –[X(I3)*SIN – X(I4)*COS]
SUBF3 *––AR1(IR0),R3,R4 ;R4 = –X(I2) + R3 ––+
ADDF3 *AR1,R3,R4      ;R4 =  X(I2) + R3 ––|––+

|| STF R4,*AR2–– ;X(I3) <––––––––––––+  |
SUBF3 R2,*++AR0(IR0),R4 ;R4 =  X(I1) – R2 ––+  |

|| STF R4,*AR3 ;X(I4) <––––––––––––|––+
ADDF3 *AR0,R2,R4 ;R4 =  X(I1) + R2 ––|–––+

|| STF R4,*AR1 ;X(I2) <––––––––––––+   |
                                ;                       |

MPYF3 *++AR3,R6,R1 ;                       |
|| STF R4,*AR0 ;X(I1) <––––––––––––––––+

ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *––AR2,R7,R4

|| STF R4,*AR0
MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0
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|| ADDF3 R0,R1,R2
MPYF3 *AR7,*++AR4(IR1),R0

|| SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
RPTBD LOOP4_B
ADDF3 *AR1,R3,R4

|| STF R4,*AR2++(IR1)
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3++(IR1)
ADDF3 *AR0,R2,R4

|| STF R4,*AR1++(IR1)
MPYF3 *++AR2(IR0),R5,R4

|| STF R4,*AR0++(IR1)
MPYF3 *––AR3(IR0),R5,R1
MPYF3 *AR7,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR6,*–AR4,R0

|| SUBF3 R4,R0,R3
SUBF3 *––AR1(IR0),R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2––
SUBF3 R2,*++AR0(IR0),R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *++AR3,R6,R1

|| STF R4,*AR0
ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *––AR2,R7,R4

|| STF R4,*AR0
MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR7,*++AR4(IR1),R0

|| SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2++(IR1)
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3++(IR1)
LOOP4_B: ADDF3 *AR0,R2,R4
|| STF R4,*AR1++(IR1)

MPYF3 *++AR2(IR0),R5,R4
|| STF R4,*AR0++(IR1)

MPYF3 *––AR3(IR0),R5,R1
MPYF3 *AR7,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR6,*–AR4,R0
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|| SUBF3 R4,R0,R3
SUBF3 *––AR1(IR0),R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2––
SUBF3 R2,*++AR0(IR0),R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *++AR3,R6,R1

|| STF R4,*AR0
ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *––AR2,R7,R4

|| STF R4,*AR0
MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0

|| ADDF3 R0,R1,R2
SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
STF R4,*AR0

;
; Perform Remaining FFT loops (loop 4 onwards).
;
; LOOP
; 1st  2nd
;        _          ______________  \/  \/
;   |       |____X’(I1)____| 0   0  <–  X’(I1) + X’(I3)
;   | AR1–> |__X(I1)_(1st)_| 1   1  <–  X(I1) + [X(I3)*COS + X(I4)*SIN]
;   |       |__X(I1)_(2nd)_| 2   2       .
;   |       |__x(I1)_(3rd)_| 3   3       .
;   |       |       .      |
;   |                .
;   | A –> |______________|
;   |       |____X’(I2)____| 8   16
;   | B –> |       .      |
;   |                .
;   |      |______________|
;   |     |__X(I2)_(3rd)_| 13  29      .
;   |       |__X(I2)_(2nd)_| 14  30      .
;   | AR2–> |__X(I2)_(1st)_| 15  31 <–  X(I1) – [X(I3)*COS + X(I4)*SIN]
;   |      |____X’(I3)____| 16  32 <–  X’(I1) – X’(I3)
;   | AR3–> |__X(I3)_(1st)_| 17  33 <– –X(I2) – [X(I3)*SIN – X(I4)*COS]
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;   |      |__X(I3)_(2nd)_| 18  34      .
;   |      |__X(I3)_(3rd)_| 19  35      .
;   |       |       .      |
;   |                  .
;   | C –> |______________|
;   |      |____X’(I4)____| 24  48 <– –X’(I4)
;   | D –> |       .      |
;   |                .
;   |      |______________|
;   |      |__X(I4)_(3rd)_| 29  61      .
;   |       |__X(I4)_(2nd)_| 30  62      .
;   |_ AR4–> |__X(I4)_(1st)_| 31  63 <–  X(I2) – [X(I3)*SIN – X(I4)*COS]
;     |______________| 32  64
; AR1–> |______________| 33  65
; |       .      |
;                      .
;                      .
;                     \|/
;

LDA @FFT_SIZE,IR0
LSH –2,IR0
STI IR0,@SEPARATION
LSH –2,IR0
LDI 5,R5
LDI 3,R7
LDI 16,R6
LDA @DEST_ADDR,AR5
LDA @DEST_ADDR,AR1
LSH –1,IR0
LSH 1,R7

LOOP: ADDI 1,R7
LSH 1,R6
LDA AR1,AR4
ADDI R7,AR1 ;AR1 points at A.
LDA AR1,AR2
ADDI 2,AR2 ;AR2 points at B.
ADDI R6,AR4
SUBI R7,AR4 ;AR4 points at D.
LDA AR4,AR3
SUBI 2,AR3 ;AR3 points at C.
LDA @SINE_TABLE,AR0 ;AR0 points at SIN/COS table.
LDA R7,IR1
LDI R7,RC

INLOP: ADDF3 *––AR1(IR1),*++AR2(IR1),R0 ;R0 = X’(I1) + X’(I3) ––+
SUBF3 *– –AR3(IR1),*AR1++,R1 ;R1 = X’(I1) – X’(I3) –+|
NEGF *––AR4,R2 ;R2 = –X’(I4) ––+      ||

|| STF R0,*–AR1 ;X’(I1) <–––––––|––––––|+
STF R1,*AR2–– ;X’(I3) <–––––––|––––––+

|| STF R2,*AR4++(IR1) ;X’(I4) <–––––––+
LDA @SEPARATION,IR1 ;IR1=SEPARATION BETWEEN SIN/COS

 TABLES
SUBI 3,RC
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MPYF3 *++AR0(IR0),*AR4,R4 ;R4 = X(I4)*SIN
MPYF3 *AR0,*++AR3,R1 ;R1 = X(I3)*SIN
MPYF3 *++AR0(IR1),*AR4,R0 ;R0 = X(I4)*COS
MPYF3 *AR0,*AR3,R0 ;R0 = X(I3)*COS

|| SUBF3 R1,R0,R3 ;R3 = –[X(I3)*SIN – X(I4)*COS]
MPYF3 *++AR0(IR0),*–AR4,R0

|| ADDF3 R0,R4,R2 ;R2 = X(I3)*COS + X(I4)*SIN
SUBF3 *AR2,R3,R4 ;R4 = R3 – X(I2) ––*

                                       ;                  |
RPTBD IN_BLK               ;                  |
ADDF3 *AR2,R3,R4 ;R4 = R3 + X(I2) ––|––*

|| STF R4,*AR3++ ;X(I3) <–––––––––––*  |
SUBF3 R2,*AR1,R4 ;R4 = X(I1) – R2 ––*  |

|| STF R4,*AR4– – ;X(I4) <–––––––––––|––*
ADDF3 *AR1,R2,R4 ;R4 = X(I1) + R2 ––|––*

|| STF R4,*AR2–– ;X(I2) <–––––––––––*  |
LDF *–AR0(IR1),R3       ;                     |
MPYF3 *AR4,R3,R4           ;                     |

|| STF R4,*AR1++ ;X(I1) <––––––––––––––*
MPYF3 *AR3,R3,R1
MPYF3 *AR0,*AR3,R0

|| SUBF3 R1,R0,R3
MPYF3 *++AR0(IR0),*–AR4,R0

|| ADDF3 R0,R4,R2
SUBF3 *AR2,R3,R4
ADDF3 *AR2,R3,R4

|| STF R4,*AR3++
SUBF3 R2,*AR1,R4

|| STF R4,*AR4– –
IN_BLK: ADDF3 *AR1,R2,R4
|| STF R4,*AR2– –

LDF *–AR0(IR1),R3
MPYF3 *AR4,R3,R4

|| STF R4,*AR1++
MPYF3 *AR3,R3,R1
MPYF3 *AR0,*AR3,R0

|| SUBF3 R1,R0,R3
LDA R6,IR1
ADDF3 R0,R4,R2
SUBF3 *AR2,R3,R4
ADDF3 *AR2,R3,R4

|| STF R4,*AR3++(IR1)
SUBF3 R2,*AR1,R4

|| STF R4,*AR4++(IR1)
ADDF3 *AR1,R2,R4

|| STF R4,*AR2++(IR1)
STF R4,*AR1++(IR1)
SUBI3 AR5,AR1,R0
CMPI @FFT_SIZE,R0
BLTD INLOP ;LOOP BACK TO THE INNER LOOP
LDA @SINE_TABLE,AR0 ;AR0 POINTS TO SIN/COS TABLE
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LDA R7,IR1
LDI R7,RC
ADDI 1,R5
CMPI @LOG_SIZE,R5
BLED LOOP
LDA @DEST_ADDR,AR1
LSH –1,IR0
LSH 1,R7

;
; Return to C environment.
;
ENDB: POP DP ;Restore C environment variables.

POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS
.end

*
* No more.
*
*****************************************************************************
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*****************************************************************************
*
*  FILENAME     : IFFT_RL.ASM
*  DESCRIPTION  : INVERSE FFT FOR TMS320C40
*  DATE         : 1/19/93
*  VERSION      : 2.0
*
*****************************************************************************
*
*  VERSION   DATE        COMMENTS
*  –––––––   ––––        ––––––––
*   1.0      2/18/92    DANIEL MAZZOCCO(TI Houston):
*                       Original Release (C30 version)
*                       Started from forward real FFT routine written by Alex
*                       Tessarolo, rev 2.0 .
*   2.0      1/19/93    ROSEMARIE PIEDRA(TI Houston): C40 porting started from
*                       C30 inverse real FFT version 1.0 (C30). Expanded calling
*                       conventions to registers for parameter passing.
*
*****************************************************************************
*
*  SYNOPSIS:
*
*  int ifft_rl(FFT_SIZE,LOG_SIZE,SOURCE_ADDR,DEST_ADDR,SINE_TABLE,BIT_REVERSE);
*                 ar2      r2         r3        rc        rs          re
*
*    int FFT_SIZE ; 64, 128, 256, 512, 1024, ...
* int LOG_SIZE ;  6,   7,   8,   9,   10, ...
*      float *SOURCE_ADDR ; Points to where data is originated
*                           ; and operated on.
* float *DEST_ADDR ; Points to where data will be stored.
* float *SINE_TABLE ; Points to the SIN/COS table.
* int BIT_REVERSE ; =  0, Bit Reversing is disabled.
* ; <> 0, Bit Reversing is enabled.
*
*  NOTE:   1) If SOURCE_ADDR = DEST_ADDR, then in place bit reversing is
*             performed, if enabled (more processor intensive).
*          2) FFT_SIZE must be >= 64 (this is not checked).
*
*****************************************************************************
*
*  DESCRIPTION:
*
*  Generic function to do an inverse radix–2 FFT computation on the C40.
*  The input data array is FFT_SIZE–long with real and imaginary  points R and
*  I as follows:
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*
* SOURCE_ADDR[0] –> R(0)
* R(1)
* R(2)
* R(3)
* .
* .
* R(FFT_SIZE/2)
* I(FFT_SIZE/2 – 1)
* .
* .
* I(2)
* SOURCE_ADDR[FFT_SIZE – 1] –> I(1)
*  The output data array will contain only real values. Bit reversal is
*  optionally implemented at the end of the function.
*
*  The sine/cosine table for the twiddle factors is expected to be supplied in
*  the following format:
*
* SINE_TABLE[0] –> sin(0*2*pi/FFT_SIZE)
* sin(1*2*pi/FFT_SIZE)
*                           .
*                           .
* sin((FFT_SIZE/2–2)*2*pi/FFT_SIZE)
* SINE_TABLE[FFT_SIZE/2–1] –> sin((FFT_SIZE/2–1)*2*pi/FFT_SIZE)
*
*  NOTE: The table is the first half period of a sine wave.
*
*****************************************************************************
*
*  NOTE:  1.Calling C program can be compiled using either large or small model.
*           Both calling conventions methods: stack or register for parameter
*           passing are supported.
*
*         2. Sections needed in linker command file: .ffttxt  : fft code
*                                                    .fftdat  : fft data
*
*         3.The SOURCE_ADDR must be aligned such that the first LOG_SIZE bits
*           are zero (this is not checked by the program).
*
*  CAUTION: DP initialized only once in the program. Be wary with interrupt
*           service routines.Ensure interrupt service routines save DP pointer.
*
*****************************************************************************
*
*  REGISTERS USED: R0, R1, R2, R3, R4, R5, R6, R7
*                  AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
*                  IR0, IR1
*                  RC, RS, RE
*                  DP
*
*  MEMORY REQUIREMENTS:  Program = 322 Words (approximately)
*                        Data    =   7 Words
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*                        Stack   =  12 Words
*
*****************************************************************************
*
*  BENCHMARKS:   Assumptions     – Program in RAM0
*                                – Reserved data in RAM0
*                                – Stack on Local/Global Bus RAM
*                                – Sine/Cosine tables in RAM0
*                                – Processing and data destination in RAM1.
*                                – Local/Global Bus RAM, 0 wait state.
*
*  FFT Size        Bit Reversing   Data Source     Cycles(C30)
*  ––––––––        –––––––––––––   –––––––––––     –––––––––––
*   1024            OFF             RAM1            25120 approx.
*
*  Note: This number does not include the C callable overheads.
*        This benchmark is the number of cycles between labels STARTB and ENDB
*
*  NOTE: If .ffttxt is located in external SRAM, enable cache for faster 
*  performance
*
*****************************************************************************

FP .set AR3
.global ifft_rl ;Entry execution point.
.global STARTB,ENDB

FFT_SIZE: .usect ”.ifftdat”,1 ;Reserve memory for arguments.
LOG_SIZE: .usect ”.ifftdat”,1
SOURCE_ADDR: .usect ”.ifftdat”,1
DEST_ADDR: .usect ”.ifftdat”,1
SINE_TABLE: .usect ”.ifftdat”,1
BIT_REVERSE: .usect ”.ifftdat”,1
SEPARATION: .usect ”.ifftdat”,1

;
; Initialize C Function.
;

.sect ”.iffttxt”
_ifft_rl: PUSH FP ;Preserve C environment.

LDI SP,FP
PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP
LDP FFT_SIZE ;Initialize DP pointer.
.if .REGPARM == 0 ;arguments passed in stack
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LDA *–FP(2),AR2
LDI *–FP(3),R2
LDI *–FP(4),R3
LDI *–FP(5),RC
LDI *–FP(6),RS
LDI *–FP(7),RE
.endif
STI AR2,@FFT_SIZE
STI R2,@LOG_SIZE
STI R3,@SOURCE_ADDR
STI RC,@DEST_ADDR
STI RS,@SINE_TABLE
STI RE,@BIT_REVERSE

;
; Perform Last FFT loops first (loop 2 onwards).
;
; LOOP
;   1st 2nd
;      _         ______________ \/  \/
; |       |____X’(I1)____| 0   0  <–  X’(I1) + X’(I3)
; | AR1–> |__X(I1)_(1st)_| 1   1  <–  X(I1) + X(I2)
; |      |__X(I1)_(2nd)_| 2   2       .
; |      |__x(I1)_(3rd)_| 3   3       .
; |       |       .      |
; |               .
; | A –> |______________|
; |       |____X’(I2)____| 8   16  <– X’(I2) * 2
; | B –> |       .      |
; |              .
; |       |______________|
; |     |__X(I2)_(3rd)_| 13  29      .
; |       |__X(I2)_(2nd)_| 14  30      .
; | AR2–> |__X(I2)_(1st)_| 15  31 <–  X(I4) – X(I3)
; |       |____X’(I3)____| 16  32 <–  X’(I1) – X’(I3)
; | AR3–> |__X(I3)_(1st)_| 17  33 <–
[X(I1)–X(I2)]*COS–[X(I3)+X(I4)]*SIN
; |        |__X(I3)_(2nd)_| 18  34      .
; |       |__X(I3)_(3rd)_| 19  35      .
; |       |       .      |
; |                 .
; | C –> |______________|
; |       |____X’(I4)____| 24  48 <– –X’(I4) * 2
; | D –> |       .      |
; |                .
; |      |______________|
; |      |__X(I4)_(3rd)_| 29  61      .
; |       |__X(I4)_(2nd)_| 30  62      .
; |_ AR4–> |__X(I4)_(1st)_| 31  63 <–
[X(I1)–X(I2)]*SIN+[X(I3)+X(I4)]*COS
; |______________| 32  64
; AR1–> |______________| 33  65
; |       .      |
;                       .
;                       .
;                      \|/



 Fast Fourier Transforms (FFTs)

6-77  Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

STARTB: LDA 1,IR0 ;step between two consecutive sines
LDI 4,R5 ;stage number from 4 to M.
LDI @FFT_SIZE,R7
LSH –2,R7 ;R7 is FFT_SIZE/4–1 (ie 15 for 64 

;pts)
SUBI 1,R7 ;and will be used to point at A & D.
LDI @FFT_SIZE,R6 ;R6 will be used to point at D.
LSH 1,R6
LDA @SOURCE_ADDR,AR5
LDA @SOURCE_ADDR,AR1

LOOP: LSH –1,R6 ;R6 is FFT_SIZE at the 1st loop
LDA AR1,AR4
ADDI R7,AR1 ;AR1 points at A.
LDA AR1,AR2
ADDI 2,AR2  ;AR2 points at B.
ADDI R6,AR4
SUBI R7,AR4 ;AR4 points at D.
LDA AR4,AR3
SUBI 2,AR3 ;AR3 points at C.
LDA R7,IR1
LDI R7,RC

INLOP: ADDF3 *––AR1(IR1),*– –AR3(IR1),R0; R0 = X’(I1) + X’(I3) –––+
SUBF3 *AR3,*AR1,R1 ; R1 = X’(I1) – X’(I3) –+ |
LDF *––AR4,R2 ;                       | |

|| STF R0,*AR1++ ; X’(I1) <––––––––––––––|–+
MPYF –2.0,R2 ; R2 = –2*X’(I4) ––+    |
LDF *– –AR2,R3 ;                  |    |

|| STF R1,*AR3++ ; X’(I3) <–––––––––|––––+
MPYF 2.0,R3 ; R3 = 2*X’(I2) –, |
STF R3,*AR2++(IR1) ; X’(I2) <–––––––’ |

|| STF R2,*AR4++(IR1) ; X’(I4) <–––––––––+
LDA @FFT_SIZE,IR1 ; IR1=SEPARATION BETWEEN SIN/COS TBLS
LDA @SINE_TABLE,AR0 ; AR0 points at SIN/COS table
LSH –2,IR1
SUBI 3,RC
SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2) –––+
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN         |
LDF *AR4,R4 ; R4 = X(I4)          |
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS         |

|| SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3)  ––|––+
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4)    |  |

|| STF R2,*AR1++ ; X(I1) <–––––––––––––+  |
MPYF3 R2,*AR0––(IR1),R4 ; R4 = R2*COS            |

|| STF R3,*AR2–– ; X(I2) <––––––––––––––––+
RPTBD IN_BLK
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS –––––+
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN               |

|| STF R3,*AR4– – ; X(I4) <–––––––––––––––––––+
SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN
SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2) –––+
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN         |

|| STF R4,*AR3++ ; X(I3)               |
LDF *AR4,R4 ; R4 = X(I4)          |
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS         |
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|| SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3)  ––|––+
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4)    |  |

|| STF R2,*AR1++ ; X(I1) <–––––––––––––+  |
MPYF3 R2,*AR0– –(IR1),R4 ; R4 = R2*COS            |

|| STF R3,*AR2– – ; X(I2) <––––––––––––––––+
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS –––––+
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN               |

|| STF R3,*AR4– – ; X(I4) <–––––––––––––––––––+
IN_BLK: SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN

SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2) –––+
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN         |

|| STF R4,*AR3++ ; X(I3)               |
LDF *AR4,R4 ; R4 = X(I4)          |
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS         |

|| SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3)  ––|––+
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4)    |  |

|| STF R2,*AR1 ; X(I1) <–––––––––––––+  |
MPYF3 R2,*AR0– –(IR1),R4 ; R4 = R2*COS            |

|| STF R3,*AR2 ; X(I2) <––––––––––––––––+
LDA R6,IR1 ; Get prepared for the next
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS –––––+
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN               |

|| STF R3,*AR4++(IR1) ; X(I4) <–––––––––––––––––––+
SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN
NEGF *AR1++(IR1),R2 ; DUMMY

|| STF R4,*AR3++(IR1) ; X(I3)               |
SUBI3 AR5,AR1,R0
CMPI @FFT_SIZE,R0
BLTD INLOP ; LOOP BACK TO THE INNER LOOP
NOP *AR2++(IR1) ; DUMMY
LDA R7,IR1
LDI R7,RC
ADDI 1,R5
CMPI @LOG_SIZE,R5 ; next stage if any left
BLED LOOP
LDA @SOURCE_ADDR,AR1
LSH 1,IR0 ; double step in sine table
LSH –1,R7

;
; Perform Third FFT loop .
;
;
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; Part A:
;          _       ______
;    | AR1–> |__I1__| 0  <–  X(I1) + X(I3)
;    |      |______| 1
;    | AR2 |__I2__| 2  <–  2 * X(I2)
;    |      |______| 3
;    | AR3–> |__I3__| 4  <–  X(I1) – X(I3)
;    |      |______| 5
;    | AR4–> |__I4__| 6  <– –2 * X(I4)
;    |_    |______| 7
;       AR1–> |______| 8
;    |______| 9
;              |   .  |
;     .
;     .
;    \|/

LDA @SOURCE_ADDR,AR1
LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 2,AR2
ADDI 4,AR3
LDI @FFT_SIZE,RC
LSH –3,RC
SUBI 1,RC
RPTBD LOOP3_A
ADDI 6,AR4
LDA 8,IR0
LDA @SINE_TABLE,AR0 ; AR0 points at SIN/COS table
LDF *AR3,R3
ADDF3 R3,*AR1,R0 ; R0 = X’(I1) + X’(I3) –––+
SUBF3 R3,*AR1,R1 ; R1 = X’(I1) – X’(I3) –+ |
LDF *AR4,R2 ;                       | |

|| STF R0,*AR1++(IR0) ; X’(I1) <––––––––––––––|–+
MPYF –2.0,R2 ; R2 = –2*X’(I4) ––+    |
LDF *AR2,R3 ;                  |    |

|| STF R1,*AR3++(IR0) ; X’(I3) <–––––––––|––––+
MPYF 2.0,R3 ; R3 = 2*X’(I2) –, |

LOOP3_A: STF R3,*AR2++(IR0) ; X’(I2) <–––––––’ |
|| STF R2,*AR4++(IR0) ; X’(I4) <–––––––––+
;
; Part B:
;      _      ______
;    |       |______| 0
;    | AR1–> |__I1__| 1 <–  X(I1) + X(I2)
;    |       |______| 2
;    | AR2–> |__I2__| 3 <–  X(I4) – X(I3)
;    |      |______| 4
;    | AR3–> |__I3__| 5 <– [X(I1)–X(I2)]*COS–[X(I3)+X(I4)]*SIN
;    |      |______| 6
;    |_AR4 –> |__I4__| 7 <– [X(I1)–X(I2)]*SIN+[X(I3)+X(I4)]*COS
;              |______| 8
;      AR1–> |______| 9       NOTE: COS(2*pi/8) = SIN(2*pi/8)
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;        |   .  |
;     .
;     .
;    \|/
; LDA @SOURCE_ADDR,AR1

LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 1,AR1
ADDI 3,AR2
ADDI 5,AR3
ADDI 7,AR4
LDA @SINE_TABLE,AR7 ; AR7 points at SIN/COS table
LDI @FFT_SIZE,RC
LSH –3,RC
LDA RC,IR1
SUBI 2,RC
LDF *AR2,R6 ; R6 = X(I2)
LDF *AR3,R0 ; R0 = X(I3)
ADDF3 R6,*AR1,R5 ; R5 = X(I1)+X(I2) –––––––––+
SUBF3 R6,*AR1,R4 ; R4 = X(I1)–X(I2)          |
SUBF3 R0,R4,R3 ; R3 = X(I1)–X(I2)–X(I3)    |
ADDF3 R0,R4,R2 ; R2 = X(I1)–X(I2)+X(I3)    |
SUBF3 R0,*AR4,R1 ; R1 = X(I4)–X(I3) –––––––––|–+

|| STF R5,*AR1++(IR0) ; X(I1) <–––––––––––––––––––+ |
;                             |

RPTBD LOOP3_B ;                             |
ADDF3 R2,*AR4,R5 ; R5 = X(I1)–X(I2)+X(I3)+X(I4)|

|| STF R1,*AR2++(IR0) ; X(I2) <–––––––––––––––––––––+
MPYF3 R5,*++AR7(IR1),R1 ; R1 = R5*SIN    ––––––––––––––+

|| SUBF3 *AR4,R3,R2 ; R2 = X(I1)–X(I2)–X(I3)–X(I4) |
MPYF3 R2,*AR7,R0 ; R0 = R2*SIN    –––+          |

|| STF R1,*AR4++(IR0) ; X(I4) <–––––––––––|––––––––––+
                                ;                   |

LDF *AR2,R6 ; R6 = X(I2)        |
|| STF R0,*AR3++(IR0) ; X(I3) <–––––––––––+

ADDF3 R6,*AR1,R5 ; R5 = X(I1)+X(I2) –––––––––+
LDF *AR3,R0 ; R0 = X(I3)                |
SUBF3 R6,*AR1,R4 ; R4 = X(I1)–X(I2)          |
SUBF3 R0,R4,R3 ; R3 = X(I1)–X(I2)–X(I3)    |
ADDF3 R0,R4,R2 ; R2 = X(I1)–X(I2)+X(I3)    |
SUBF3 R0,*AR4,R1 ; R1 = X(I4)–X(I3) –––––––––|–+

|| STF R5,*AR1++(IR0) ; X(I1) <–––––––––––––––––––+ |
ADDF3 R2,*AR4,R5 ; R5 = X(I1)–X(I2)+X(I3)+X(I4)|

|| STF R1,*AR2++(IR0) ; X(I2) <–––––––––––––––––––––+
MPYF3 R5,*AR7,R1 ; R1 = R5*SIN  <–––––––––––––––+

|| SUBF3 *AR4,R3,R2 ; R2 = X(I1)–X(I2)–X(I3)–X(I4) |
LOOP3_B: MPYF3 R2,*AR7,R0 ; R0 = R2*SIN                  |
|| STF R1,*AR4++(IR0) ; X(I4) <––––––––––––––––––––––+

STF R0,*AR3 ;X(I3)
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;
; Perform first and second FFT loops.
;     _         ______
;    |  AR1 –> |__I1__| 0  <–  X(I1) + X(I3) + 2*X(I2)
;    |  AR2 –> |__I2__| 1  <–  X(I1) + X(I3) – 2*X(I2)
;    |  AR3 –> |__I3__| 2  <–  X(I1) – X(I3) – 2*X(I4)
;    |_ AR4 –> |__I4__| 3  <–  X(I1) – X(I3) + 2*X(I4)
;       AR1 –> |______| 4
;              |   .  |
;     .
;               .
;               \|/
; LDA @SOURCE_ADDR,AR1

LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 1,AR2
ADDI 2,AR3
ADDI 3,AR4
LDA 4,IR0
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 2,RC
LDF *AR4,R6 ; R6 = X(I4)
LDF *AR2,R7 ; R7 = X(I2)

|| LDF *AR1,R1 ; R1 = X(I1)
MPYF 2.0,R6 ; R6 = 2 * X(I4)
MPYF 2.0,R7 ; R7 = 2 * X(I2)
SUBF3 R6,*AR3,R5 ; R5 = X(I3) – 2*X(I4)
SUBF3 R5,R1,R4 ; R4 = X(I1)–X(I3)+2X(I4) ––+
SUBF3 R7,*AR3,R5 ; R5 = X(I3) – 2*X(I2)      |

|| STF R4,*AR4++(IR0) ; X(I4)  <––––––––––––––––––+
ADDF3 R5,R1,R3 ; R3 = X(I1)+X(I3)–2X(I2) ––+
ADDF3 R6,*AR3,R4 ; R4 = X(I3) + 2*X(I4)      |

|| STF R3,*AR2++(IR0) ; X(I2)  <––––––––––––––––––+
;                           |

RPTBD LOOP1_2 ;                           |
SUBF3 R4,R1,R4 ; R4 = X(I1)–X(I3)–2X(I4) ––+
ADDF3 R7,*AR3,R0 ; R0 = X(I3) + 2*X(I2)      |

|| STF R4,*AR3++(IR0) ; X(I3)  <––––––––––––––––––+
ADDF3 R0,R1,R0 ; R0 = X(I1)+X(I3)+2X(I2) ––+

;                           |
LDF *AR4,R6 ; R6 = X(I4)                |

|| STF R0,*AR1++(IR0) ; X(I1)  <––––––––––––––––––+
MPYF 2.0,R6 ; R6 = 2 * X(I4)
LDF *AR2,R7 ; R7 = X(I2)

|| LDF *AR1,R1 ; R1 = X(I1)
MPYF 2.0,R7 ; R7 = 2 * X(I2)
SUBF3 R6,*AR3,R5 ; R5 = X(I3) – 2*X(I4)
SUBF3 R5,R1,R4 ; R4 = X(I1)–X(I3)+2X(I4) ––+
SUBF3 R7,*AR3,R5 ; R5 = X(I3) – 2*X(I2)      |

|| STF R4,*AR4++(IR0) ; X(I4)  <––––––––––––––––––+
ADDF3 R5,R1,R3 ; R3 = X(I1)+X(I3)–2X(I2) ––+
ADDF3 R6,*AR3,R4 ; R4 = X(I3) + 2*X(I4)      |
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|| STF R3,*AR2++(IR0) ; X(I2)  <––––––––––––––––––+
SUBF3 R4,R1,R4 ; R4 = X(I1)–X(I3)–2X(I4) ––+
ADDF3 R7,*AR3,R0 ; R0 = X(I3) + 2*X(I2)      |

|| STF R4,*AR3++(IR0) ; X(I3)  <––––––––––––––––––+
LOOP1_2: ADDF3 R0,R1,R0 ; R0 = X(I1)+X(I3)+2X(I2) ––+

;                           |
STF R0,*AR1 ; LAST X(I1) <––––––––––––––+

;
; Check Bit Reversing Mode (on or off)
;
; BIT_REVERSING =  0, then OFF (no bit reversing)
; BIT_REVERSING <> 0, Then ON
;
ENDB: LDI @BIT_REVERSE,R0

BZ MOVE_DATA
;
; Check Bit Reversing Type.
;
; If SourceAddr =  DestAddr, Then In Place Bit Reversing
; If SourceAddr <> DestAddr, Then Standard Bit Reversing
;

LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ IN_PLACE

;
; Bit reversing Type 1 (From Source to Destination).
;
; NOTE: abs(SOURCE_ADDR – DEST_ADDR) must be > FFT_SIZE, this is not checked.
;

LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @FFT_SIZE,IR0
LSH –1,IR0 ; IRO = Half FFT size.
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0

 LDF *AR0++,R1
|| STF R1,*AR1++(IR0)B

STF R1,*AR1++(IR0)B
BR DIVISION;

; In Place Bit Reversing.
;
; Bit Reversing On Even Locations, 1st Half Only.
IN_PLACE: LDA @FFT_SIZE,IR0



 Fast Fourier Transforms (FFTs)

6-83  Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

LSH –2,IR0 ; IRO = Quarter FFT size.
LDA 2,IR1
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 3,RC
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV1
CMPI AR1,AR0 ; Xchange Locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV1: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0
STF R1,*AR2

;Perform Bit Reversing Odd Locations, 2nd Half Only
LDI @FFT_SIZE,RC
LSH –1,RC
LDA @DEST_ADDR,AR0
ADDI RC,AR0
ADDI 1,AR0
LDA AR0,AR1
LDA AR0,AR2
LSH –1,RC
SUBI 3,RC
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV2
CMPI AR1,AR0 ; Xchange Locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV2: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0 ; STF     R1,*AR2  later
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; Perform Bit Reversing On Odd Locations, 1st Half Only.
LDI @FFT_SIZE,RC
LSH –1,RC
LDA RC,IR0
LDA @DEST_ADDR,AR0
LDA AR0,AR1
ADDI 1,AR0
ADDI IR0,AR1
LSH –1,RC
LDA RC,IR0
SUBI 2,RC
RPTBD BITRV3
STF R1,*AR2
LDF *AR0,R0
LDF *AR1,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR1++(IR0)B
BITRV3: LDF *AR1,R1
|| STF R1,*–AR0(IR1)

STF R0,*AR1
STF R1,*AR0
BR DIVISION

;
; Check Data Source Locations.
;
; If SourceAddr =  DestAddr, Then do nothing.
; If SourceAddr <> DestAddr, Then move data.
;
MOVE_DATA: LDI @SOURCE_ADDR,R0

CMPI @DEST_ADDR,R0
BEQ DIVISION
LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++
STF R1,*AR1

DIVISION: LDA 2,IR0
LDI @FFT_SIZE,R0
FLOAT R0 ; exp = LOG_SIZE
PUSHF R0 ; 32 MSB’S saved
POP R0
NEGI R0 ; Neg exponent
PUSH R0
POPF R0 ; R0 = 1/FFT_SIZE
LDA @DEST_ADDR,AR1
LDI @FFT_SIZE,RC
LSH –1,RC
SUBI 2,RC
RPTBD LAST_LOOP
LDA @DEST_ADDR,AR2
NOP *AR2++
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MPYF3 R0,*AR1,R1 ; 1st location
MPYF3 R0,*AR2,R2 ; 2nd,4th,6th,... location

|| STF R1,*AR1++(IR0)
LAST_LOOP:MPYF3 R0,*AR1,R1 ; 3rd,5th,7th,... location
|| STF R2,*AR2++(IR0)

MPYF3 R0,*AR2,R2 ; last location
|| STF R1,*AR1

STF R2,*AR2
; Return to C environment

POP DP ; Restore C environment variables.
POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS
.end

*
* No more.
*
*****************************************************************************
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6.6 ’C4x Benchmarks

Table 6–1 provides benchmarks for common DSP operations. Table 6–2 sum-

marizes the FFT execution time required for FFT lengths between 64 and 1024

points for the four algorithms in Example 6–12, Example 6–14,

Example 6–17, Example 6–18, and Example 6–15.

The benchmarks are given in cycles (the H1 internal processor cycle). To get

the benchmark (time), multiply the number of cycles by the processor’s inter-

nal clock period. For example, for a 50 MHz ’C4x, multiply by 40 ns.

Table 6–1. ’C4x Application Benchmarks

Application Words Cycles

Inverse of a float (32-bit mantissa accuracy) 7 7

Double-precision integer multiply 2 2

Square root (32-bit mantissa accuracy) 11 11

Vector dot product† 6 N + 4

Matrix Times a Vector 10 1 + R (C + 7)

FIR Filter 6 3+N

IIR Filter (One Biquad) 7 7

IIR Filter (N>1 Biquads) 15 2 + 6N

LMS Lattice Filter 11 1 + 5P

Inverse LPC Lattice Filter 9 3 + 3P

Mu–law (A–law) Compression 15 (16) 14 (16 / 10)

Mu–law (A–law) Expansion 11 (15) 11/10 (15/13)

† Based on a modification of the matrix times a vector benchmark
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Table 6–2.FFT Timing Benchmarks (Cycles)

Complex Real

Points
Radix-2

Example 6–12

Radix-4

Example 6–14

Radix-2

Example 6–15

Forward

Example 6–17

Inverse

Example 6–18

64 2290† 1745† 1425† 752† 1012†

128 5179† –––– 3336† 1683† 2269†

256 11588† 9216† 7655† 3814† 5086†

512 25677† –––– 17302† 8633† 11343†

1024 56411‡ 47237‡ 38945‡ 19404† 25120†

Assumptions:
† The data is in on-chip RAM1. Program (.fftxt) and reserved data (.fftdat) are in on-chip RAM0. The sine/Cosine table is in on-chip

RAM0. Bit-reversing is not considered. The cache is enabled
‡ The data is in on-chip RAM. Program (.ffttxt) and reserved data (.fftdat) are a in local(global) bus RAM with 0-wait states. Bit

reversing is not considered. The sine/cosine table is on the global(local) bus. The cache is enabled
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Programming the DMA Coprocessor

The ’C4x DMA (Direct Memory Access) coprocessor is a ’C4x peripheral mod-

ule. With its six channels, the DMA maximizes sustained CPU performance by

alleviating the CPU of burdensome I/O. Any of the six DMA channels can

transfer data to and from anywhere in the ’C4x’s memory map for maximum

flexibility.
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7.1 Hints for DMA Programming

The following hints will help you improve your DMA programming and also help

you avoid unexpected results:

� Reset the DMA register before starting it. This clears any previously

latched interrupt that may no longer exist. Also, set the DIE register (enab-

ling interrupts for sync transfer) after starting the DMA channel.

� Take care in selecting the priority used to arbitrate between the CPU and

DMA and also between DMA channels. If a DMA channel fails to finish a

block transfer, it may have lower priority in a conflicting environment and

and not be granted access to the resource. CPU/DMA rotating priority is

considered a safe first choice. Depending on CPU/DMA execution load,

selection of other priority schemes could result in faster code. Fine tuning

may be needed.

� Ensure that each interrupt is received when you use interrupt synchroniza-

tion; otherwise, the DMA will never complete the block transfer.

� For faster execution, avoid memory/resource access conflicts between

the CPU and DMA. Carefully allocate the different sections of the program

in memory. Use the same care with DMA autoinitialization values in

memory.

� Try to use read/write synchronization when reading from or writing to com-

munication ports. This avoids a peripheral-bus halt during a read from an

empty-input FIFO or a write to a full-output FIFO.

Choose between DMA read and write synchronization when using a DMA

channel to transfer from one communication port to another. The ’C4x

does not allow synchronization of DMA channel reads/writes with ICRDYi/

OCRDYj signals coming from two different communication ports (i�j)

� When your application requires initializing the primary (or auxiliary) DMA

channel while the auxiliary (or primary) channel may still be running, halt

the running channel by writing a halt signal to the START or AUX START

bits. Before proceeding, check the STATUS or AUX STATUS bits of the

running channel to ensure it has halted. This is necessary because the

DMA halt takes place in read/write boundaries (depending on the type of

halt issued), and the channel must wait for any ongoing read or write

cycles to complete. When reinitializing this channel, be especially careful

to restore its previous status exactly. For an example of how to deal with

this situation, refer to the Designer Notebook Page, split-mode DMA re-ini-

tialization, available through the DSP hotline.
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7.2 When a DMA Channel Finishes a Transfer

Many applications require that you perform certain tasks after a DMA channel

has finished a block transfer.

You can program the DMA to interrupt the CPU when this happens (TCC or

AUX TCC bits). You can also achieve this by polling if:

� The corresponding IIF (DMA INTx) bit is set to 1 (interrupt polling).

This requires that the DMA control register TCC (or AUX TCC) bit be set

first. This method does not cause any extra CPU/DMA access conflict. But

its drawback, when using split mode, is that you cannot differentiate

whether the primary or auxiliary channel has finished.

� The transfer counter has a zero value. This option is sometimes not reli-

able, because the DMA channel could be in the middle of an autoinitializa-

tion sequence.

� The TCINT (or AUX TCINT flag) is set to 1. This option is reliable, but the

CPU is polled via the peripheral bus, potentially causing CPU/DMA ac-

cess conflict if the DMA is operating to/from the peripheral bus. This is a

good option if you do not foresee any problem with the additional access

delay.

� The START (AUX START) bits in the DMA channel control register are

set to 102. This option can also cause a CPU/DMA access conflict.
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7.3 DMA Assembly Programming Examples

The DMA coprocessor is a memory-mapped peripheral that you can easily

program from C as well as from assembly. Example 7–1 through Example 7–5

provide examples on programming the DMA coprocessor using assembly lan-

guage. Example 7–6 through Example 7–11 provide examples on program-

ming the DMA coprocessor from C. The source code for examples

Example 7–6 through Example 7–11 can be found in the TI BBS (self-extract-

ing file: C4xdmaex.exe).

Example 7–1 shows one way for setting up DMA channel 2 to initialize an array

to zero. This DMA transfer is set up to have priority over a CPU operation and

to generate an interrupt flag, DMA INT2, after the transfer is completed. The

DMA control register is set to 00C4 0007h.

Example 7–1.Array initialization With DMA

*
* TITLE ARRAY INITIALIZATION WITH DMA
*
* THIS EXAMPLE INITIALIZES A 128 ELEMENTS ARRAY TO ZERO. THE DMA
* TRANSFER IS SET UP TO HAVE HIGHER PRIORITY OVER CPU OPERATION.
* THE DMA INT2 INTERRUPT FLAG IS SET TO 1 AFTER THE TRANSFER IS
* COMPLETED.
*

.data
DMA2 .word 001000C0H ;DMA channel 2 map address
CONTROL .word 00C40007H ;DMA register initialization data
SOURCE .word ZERO
SRC_IDX .word 0
COUNT .word 128
DESTIN .word ARRAY
DES_IDX .word 1
ZERO .float 0.0 ;Array initialization value 0.0

.bss ARRAY,128

.text
START LDP @DMA2 ;Load data page pointer

LDA @DMA2,AR0 ;Point to DMA channel 2 registers
LDI @SOURCE,R0 ;Initialize DMA source register
STI R0,*+AR0(1)
LDI @SRC_IDX,R0 ;Initialize DMA source index register
STI R0,*+AR0(2)
LDI @COUNT,R0 ;Initialize DMA count register
STI R0,*+AR0(3)

 LDI @DESTIN,R0 ;Initialize DMA destination register
STI R0,*+AR0(4)
LDI @DES_IDX,R0 ;Initialize DMA destination index register
STI R0,*+AR0(5)
LDI @CONTROL,R0 ;Start DMA channel 2 transfer
STI R0,*AR0
.end

The DMA transfer can be synchronized with external interrupts, communica-

tion-port ICRDY/OCRDY signals, and timer interrupts. In order to enable this

feature, the SYNCH MODE field, bits 6–7, of the DMA-control register must be
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configured to a proper value, and the corresponding bits of the DMA-interrupt

enable (DIE) register must be set. Example 7–2 sets up DMA channel 4 read

synchronization with the communication-port 4 ICRDY signal. The DMA con-

tinuously transfers data from the communication-port input register until the

START field, bits 22–23 of the DMA control register, is changed by the CPU.

Example 7–2.DMA Transfer With Communication-Port ICRDY Synchronization

*
* TITLE DMA TRANSFER WITH COMMUNICATION PORT ICRDY 
* SYNCHRONIZATION
*
* THIS EXAMPLE SETS UP DMA CHANNEL 4 TO TRANSFER DATA FROM
* COMMUNICATION PORT INPUT REGISTER TO INTERNAL RAM WITH ICRDY
* SIGNAL READ SYNCHRONIZATION. THE TRANSFER MODE OF THE DMA IS
* SET TO 00. THEREFORE THE TRANSFER WON’T STOP UNTIL THE START
* BITS OF THE DMA CONTROL REGISTER IS CHANGED.
* .data
DMA4 .word 001000E0H ;DMA channel 4 map address
CONTROL .word 00C00040H ;DMA register initialization data
SOURCE .word 00100081H
SRC_IDX .word 0
COUNT .word 0 ;Transfer counter is set to largest value
DESTIN .word 002FF800H
DES_IDX .word 1

.text
START LDP @DMA4 ;Load data page pointer

LDA @DMA4,AR0 ;Point to DAM channel 4 registers
LDI @SOURCE,R0 ;Initialize DMA source register
STI R0,*+AR0(1)
LDI @SRC_IDX,R0 ;Initialize DMA source index register
STI R0,*+AR0(2)
LDI @COUNT,R0 ;Initialize DMA count register
STI R0,*+AR0(3)
LDI @DESTIN,R0 ;Initialize DMA destination register
STI R0,*+AR0(4)
LDI @DES_IDX,R0 ;Initialize DMA destination index register
STI R0,*+AR0(5)
LDI @CONTROL,R0 ;Start DMA channel 4 transfer
STI R0,*AR0
LDHI 010H,DIE ;Enable ICRDY 4 read sync.
.end

If external interrupt signals are used for DMA transfer synchronization, then

pins IIOF0-3 must be configured as interrupt pins.

The ’C4x DMA split mode is another way besides memory-map address to

transfer data from/to the communication port. When the split-mode bit of the

DMA control register is set, the DMA is separated into primary and auxiliary

channels. The primary channel transfers data from memory to the commu-

nication-port output register, and the auxiliary channel transfers data from the

communication port to memory. The communication-port number is selected

in bits15–17 of the DMA control register.

Example 7–3 shows how to set up DMA channel 1 into split mode. The DMA

primary channel transfers data from internal RAM to communication port 3
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through external interrupt INT2 synchronization and bit-reversed addressing.

The DMA auxiliary channel transfers data from communication port 3 to inter-

nal RAM via external interrupt INT3 synchronization and linear addressing.

Example 7–3.DMA Split-Mode Transfer With External-Interrupt Synchronization

*
* TITLE DMA SPLIT-MODE TRANSFER WITH EXTERNAL INTERRUPT SYNCHRONIZATION
*
* THIS EXAMPLE SETS UP DMA CHANNEL 1 TO SPLIT-MODE. THE PRIMARY CHANNEL TRANSFERS 
* DATA FROM INTERNAL RAM TO COMM PORT 3 OUTPUT REGISTER WITH EXTERNAL INTERRUPT
* INT2 SYNCHRONIZATION AND BIT-REVERSED ADDRESSING. THE AUXILIARY CHANNEL TRANSFERS
* DATA FROM COMMUNICATION PORT 3 INPUT REGISTER TO INTERNAL RAM WITH EXTERNAL
* INTERRUPT INT3 SYNCHRONIZATION AND LINEAR ADDRESSING.
*

.data
DMA1 .word 001000B0H ;DMA channel 1 map address
CONTROL .word 03CDD0D4H ;DMA register initialization data
SOURCE .word 002FFC00H
SRC_IDX .word 08H ;The same value as IR0 for bit-reversed
COUNT .word 8
DESTIN .word 002FF800H
DES_IDX .word 1
AUX_CNT .word 8 .text
STAR LDP @DMA1 ;Load data page pointer

LDA @DMA1,AR0 ;Point to DAM channel 1 registers
LDI @SOURCE,R0 ;Initialize DMA primary source register
STI R0,*+AR0(1)
LDI @SRC_IDX,R0 ;Initialize DMA primary source index register
STI R0,*+AR0(2)
LDI @COUNT,R0 ;Initialize DMA primary count register
STI R0,*+AR0(3)
LDI @DESTIN,R0 ;Initialize DMA aux destination register
STI R0,*+AR0(4)
LDI @DES_IDX,R0 ;Initialize DMA aux destination index register
STI R0,*+AR0(5)
LDI @AUC_CNT,R0 ;Initialize DMA auxiliary count register
STI R0,*+AR0(7)
LDI @CONTROL,R0 ;Start DMA channel 1 transfer
STI R0,*AR0
LDI 01100H,IIF ;Configure INT2 and INT3 as interrupt pins
LDI 0A0H,DIE ;Enable INT2 read and INT3 write sync.
.end

An advantage of the ’C4x DMA is the autoinitialization feature. This allows you

to set up the DMA transfer in advance and makes the DMA operation com-

pletely independent from the CPU. When the DMA operates in autoinitializa-

tion mode, the link pointer and auxiliary link pointer initialize the registers that

control the DMA operation. The link pointer can be incremented (AUTOINIT

STATIC = 0) during autoinitialization or held constant (AUTOINIT STATIC = 1)

during autoinitialization. This option allows autoinitialization values to be

stored in sequential memory locations or in stream-oriented devices such as

the on-chip communication ports or external FIFOs. When DMA SYNC MODE

is enabled, The DMA autoinitialization operation can be configured to synchro-

nize with the same signal. Example 7–4 sets up DMA channel 0 to wait for the

communication port to input the initialization value. After DMA autoinitializa-
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tion is complete, the DMA channel starts transferring data from the communi-

cation port input register to internal RAM.

Example 7–4.DMA Autoinitialization With Communication Port ICRDY

*
* TITLE DMA AUTOINITIALIZATION WITH COMMUNICATION PORT ICRDY
*
* THIS EXAMPLE SETS UP DMA CHANNEL 0 TO WAIT FOR COMMUNICATION
* PORT TO INPUT THE INITIALIZATION VALUE. THE DMA AUTOINITIAL–
* IZATION AND TRANSFER ARE BOTH DRIVEN BY ICRDY 0 FLAG. AFTER
* DMA AUTOINIT IS COMPLETED, THE DMA CHANNEL STARTS TRANSFERRING
* DATA FROM COMM PORT INPUT REGISTER TO INTERNAL RAM WITH ICRDY
* 0 READ SYNCHRONIZATION. THE VALUES IN COMM PORT 0 INPUT FIFO
* SHOULD BE:
*
* SEQUENCE | VALUE
* –––––––––+––––––––––––––––––––––––––––––––––––––––––––––––
* 1 | 00C40047H (STOP AFTER TRANSFER COMPLETED)
* | OR 00C4054BH (REPEAT AFTER TRANSFER COMPLETED)
* 2 | 00100041H
* 3 | 0H
* 4 | 20H
* 5 | 002FF800H
* 6 | 1H
* 7 | 00100041H
*

.data
DMA0 .word 001000A0H ;DMA channel 0 map address
DMA_INIT .word 0004054BH ;DMA initialization control word
LINK .word 00100041H ;Comm port input register address
DMA_START .word 00C4054BH ;DMA start control word

.text
START LDP @DMA0 ;Load data page pointer

LDA @DMA0,AR0 ;Point to DMA channel 0 registers
LDI @DMA_INIT,R0 ;Initialize DMA control register
STI R0,*AR0
LDI @LINK,R0 ;Initialize DMA link pointer
STI R0,*+AR0(6)
LDI @DMA_START,R0 ;Start DMA channel 0 transfer
STI R0,*AR0
LDI 01H,DIE ;Enable ICRDY 0 read sync.
.end

The DMA autoinitialization and transfer continues executing if the DMA autoin-

itialization is still enabled. Therefore, a DMA setup like the one in Example 7–4

can make it possible for an external device to control the DMA operation

through the communication port.

With the autoinitialization feature, the ’C4x DMA coprocessor can support a

variety of DMA operations without slowing down CPU computation. A good ex-

ample is a DMA transfer triggered by one interrupt signal. Usually, this is imple-

mented by starting a DMA activity with a CPU interrupt service routine, but this

utilizes CPU time. However, as shown in Example 7–5, you can set up a single

interrupt-driven dummy DMA transfer with autoinitialization. When the inter-
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rupt signal is set, the DMA will complete the dummy DMA transfer and start

the autoinitialization for the desired DMA transfer.

Example 7–5.Single-Interrupt-Driven DMA Transfer

*
* TITLE SINGLE INTERRUPT-DRIVEN DMA TRANSFER
*
* THIS EXAMPLE SETS UP A DUMMY DMA TRANSFER FROM INTERNAL RAM
* TO THE SAME MEMORY WITH EXTERNAL INT 0 SYNCHRONIZATION AND
* AUTOINITIALIZATION FOR TRANSFERRING 64 DATA FROM LOCAL MEMORY
* TO INTERNAL RAM. AFTER THE SECOND TRANSFER IS COMPLETED, THE
* DMA IS RE-INITIALIZED TO FIRST DMA TRANSFER SETUP.
*

.data
DMA5 .word 001000F0H ;DMA channel 5 map address
DMA_INIT .word 0000004BH ;DMA initialization control word
LINK .word DMA1 ;1st DMA link list address
DMA_START .word 00C0004BH ;DMA start control word
DMA1 .word 00C0004BH ;1st dummy DMA transfer link list

.word 002FF800H

.word 00000000H

.word 00000001H

.word 002FF800H

.word 00000000H

.word DMA2
DMA2 .word 00C4000BH ;The desired DMA transfer link

.word 00400000H ;list

.word 00000001H

.word 00000040H

.word 002FF800H

.word 00000001H

.word DMA1

.text
START LDP @DMA5 ;Load data page pointer

LDA @DMA5,AR0 ;Point to DMA channel 5 registers
LDI @DMA_INIT,R0 ;Initialize DMA control register
STI R0,*AR0
LDI @LINK,R0 ;Initialize DMA link pointer
STI R0,*+AR0(6)
LDI @DMA_START,R0 ;Start DMA channel 5 transfer
STI R0,*AR0
LDI 01H,IIF ;Configure INT0 as interrupt pins
LDHI 0800H,DIE ;Enable INT 0 read sync. for 

;DMA channel 5
.end
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7.4 DMA C-Programming Examples

Example 7–6 to Example 7–11 includes DMA programing examples from C.

These examples cover unified and Split mode, DMA autoinitialization and

DMA synchronization operations. Descriptions of the examples presented are

as follows:

� Example 7–6: Unified-mode DMA transfers data between commports us-

ing read sync.

� Example 7–7: Unified-mode DMA uses autoinitialization (method 1) to

transfer 2 data blocks.

� Example 7–8: Unified-mode DMA uses autoinitialization (method 2) to

transfer 2 data blocks.

� Example 7–9: Split-mode auxiliary DMA transfers data between comm-

ports using read sync.

� Example 7–10: Split-mode auxiliary and primary channel send/receive

data to and from commport

� Example 7–11: Split-mode DMA autoinitializes both auxiliary and primary

channels (auxiliary transfers 1 block and primary transfers 2 blocks)

Example 7–12 is the include file for all examples (dma.h).
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Example 7–6.Unified-Mode DMA Using Read Sync

/*******************************************************************************
  EXAMPLE: Unified–mode
           Commport–to–commport transfer:
           DMA3 in unified mode transfers 8 words from commport 3 to commport 0.
           DMA3 source sync with ICRDY3 is used.
           Note: Writes cannot be synchronized with OCRDY0, because a DMA i can
           only be synchronized with signals coming commport i. You could sync
           on ICRDY3 or on OCRDY0, not both (the choice depends on the specific
           application to avoid deadlock).
           In this program, DMA3 expects data in commport 3 being sent by
           another processor/device. Otherwise no transfer will occur.
*******************************************************************************/
#include ”dma.h”
#define DMAADDR         0x001000d0
#define CTRLREG         0x00c40045 /* DMA sends interrupt to CPU when transfer
                                     finishes(TC=1),DMA–CPU rotating priority */
#define SRC             0x00100071 /* src = commport 0 input fifo */
#define SRC_IDX         0x0        /* src address does not increment */
#define COUNTER         0x08       /* number of words to transfer */
#define DST             0x00100042 /* dst = commport 3 output fifo */
#define DST_IDX         0x0        /* dst address does not increment */
#define DIEVAL          0x4000     /* set ICRDY3 read sync */
DMAUNIF *dma = (DMAUNIF *)DMAADDR;
int dieval = DIEVAL;

main() {

dma–>src     = (void *)SRC;
dma–>src_idx = SRC_IDX;
dma–>counter = COUNTER;
dma–>dst     = (void *)DST;
dma–>dst_idx = DST_IDX;
dma–>ctrl    = (void *)CTRLREG;
asm(” ldi @_dieval,die”);
PRIM_WAIT_DMA((volatile int *)dma);
}
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Example 7–7.Unified-Mode DMA Using Autoinitialization (Method 1)

/*********************************************************************************
EXAMPLE: Unified Mode
         Autoinitialization method 1:
         DMA0 in unified mode transfers 8 words from 0x02ffC00 (index 1) to
         0x02ffd00 (index 1) and then it transfer 4 words from 0x02ffe00 (index 4)
         to to 0x02fff00 (index 1). No DMA sync transfer is used.
         Autoinitialization method 1 requires N autoinitialization memory blocks
        to transfer N blocks and starts with a DMA transfer counter equals to 0.
*********************************************************************************/
#include ”dma.h”
#define DMAADDR         0x001000a0

/* 1st transfer settings */
#define CTRLREG1        0x00c00009 /* DMA–CPU rotating priority and DMA
                                   autoinitializes when transfer counter = 0 */
#define SRC1            0x002ffc00 /* src address */
#define SRC1_IDX        0x1        /* src address increment */
#define COUNTER1        0x08       /* number of words to transfer */
#define DST1            0x002ffd00 /* dst address rt 3 output fifo */
#define DST1_IDX        0x1        /* dst address increment */

/* 2nd transfer settings */
#define CTRLREG2        0x00c40005 /* DMA sends interrupt to CPU when transfer
                                     finishes(TC=1),DMA–CPU rotating priority
                                     and DMA stops after transfer completes */
#define SRC2            0x002ffe00 /* src address */
#define SRC2_IDX        0x4        /* src address increment */
#define COUNTER2        0x4        /* number of words to transfer */
#define DST2            0x002fff00 /* dst address */
#define DST2_IDX        0x1        /* dst address increment */
DMAUNIF *dma = (DMAUNIF *)DMAADDR;
DMAUNIF autoini1;
DMAUNIF autoini2;

main() {

/* initialize 1st set of autoinitialization values    */
autoini1.src     = (void *)SRC1;
autoini1.src_idx = SRC1_IDX;
autoini1.counter = COUNTER1;
autoini1.dst     = (void *)DST1;
autoini1.dst_idx = DST1_IDX;
autoini1.linkp   = &autoini2;
autoini1.ctrl    = (void *)CTRLREG1;

/* initialize 2nd set of autoinitialization values    */
autoini2.src     = (void *)SRC2;
autoini2.src_idx = SRC2_IDX;
autoini2.counter = COUNTER2;
autoini2.dst     = (void *)DST2;
autoini2.dst_idx = DST2_IDX;
autoini2.ctrl    = (void *)CTRLREG2;

/* initialize DMA (link pointer pointing to 1st set of autoinit. values */
dma–>linkp       = &autoini1;
dma–>counter     = 0;
dma–>ctrl        = (volatile void *)CTRLREG1;

/* wait for DMA to finish transfer */
PRIM_WAIT_DMA((volatile int *)dma);        }
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Example 7–8.Unified-Mode DMA Using Autoinitialization (Method 2)

/******************************************************************************
EXAMPLE: Unified Mode
         Autoinitialization method 2:
         DMA0 in unified mode transfers 8 words from 0x02ffC00 (index 1)
         to 0x02ffd00 (index 1) and then it transfer 4 words from 0x02ffe00
         (index 4) to to 0x02fff00 (index 1). No DMA sync transfer is used
         Autonitialization method 2 requires (N–1) autoinitialization memory
         blocks to transfer N blocks and starts with a DMA transfer counter
         different from 0.
*******************************************************************************/
#include ”dma.h”
#define DMAADDR         0x001000a0

/* 1st transfer settings */
#define CTRLREG1        0x00c00009 /* DMA–CPU rotating priority and DMA
                                   autoinitializes when transfer counter = 0 */
#define SRC1            0x002ffc00 /* src address */
#define SRC1_IDX        0x1        /* src address increment */
#define COUNTER1        0x08       /* number of words to transfer */
#define DST1            0x002ffd00 /* dst address rt 3 output fifo */
#define DST1_IDX        0x1        /* dst address increment */

/* 2nd transfer settings */
#define CTRLREG2        0x00c40005 /* DMA sends interrupt to CPU when transfer
                                     finishes(TC=1),DMA–CPU rotating priority
                                     and DMA stops after transfer completes */
#define SRC2            0x002ffe00 /* src address */
#define SRC2_IDX        0x4        /* src address increment */
#define COUNTER2        0x4        /* number of words to transfer */
#define DST2            0x002fff00 /* dst address */
#define DST2_IDX        0x1        /* dst address increment */
DMAUNIF *dma = (DMAUNIF *)DMAADDR;
DMAUNIF autoini2;

main() {

/* initialize 2nd set of autoinitialization values    */
autoini2.src     = (void *)SRC2;
autoini2.src_idx = SRC2_IDX;
autoini2.counter = COUNTER2;
autoini2.dst     = (void *)DST2;
autoini2.dst_idx = DST2_IDX;
autoini2.ctrl    = (void *)CTRLREG2;

/* initialize DMA with 1st set of autoinitialization values    */
dma–>src     = (void *)SRC1;
dma–>src_idx = SRC1_IDX;
dma–>counter = COUNTER1;
dma–>dst     = (void *)DST1;
dma–>dst_idx = DST1_IDX;
dma–>linkp   = &autoini2;
dma–>ctrl    = (void *)CTRLREG1;

/* wait for DMA to finish transfer */
PRIM_WAIT_DMA((volatile int *)dma);
}
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Example 7–9.Split-Mode Auxiliary DMA Using Read Sync

/******************************************************************************
EXAMPLE: Split–mode (AUX only)
         Commport–to–commport transfer:
         DMA 3 Auxiliary channel transfers 8 words from commport 3 to
         commport 0. DMA3 source sync with ICRDY3 is used.
         This example is functionally equivalent to Example 7–7.
         In this program, DMA3 expects data in commport 3 being sent by
         another processor/device. Otherwise no transfer will occur.
*******************************************************************************
/
#include ”dma.h”
#define DMAADDR         0x001000d0
#define CTRLREG         0x0309c091 /* DMA Aux sends interrupt to CPU when
                                      transfer finishes(TC=1),DMA–CPU rotating
                                      priority */
#define DST             0x00100042 /* dst = commport 3 output fifo */
#define DST_IDX         0x0        /* dst address does not increment */
#define DIEVAL          0x4000     /* set ICRDY3 Auxiliar read sync */
#define ACOUNTER        0x08       /* auxiliar channle counter  */
DMASPLIT *dma = (DMASPLIT *)DMAADDR;
int dieval = DIEVAL;

main() {

dma–>dst      = (void *)DST;
dma–>dst_idx  = DST_IDX;
dma–>acounter = ACOUNTER;
dma–>ctrl     = (void *)CTRLREG;
asm(” ldi @_dieval,die”);
AUX_WAIT_DMA((volatile int *)dma);
}
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Example 7–10. Split-Mode Auxiliary and Primary Channel DMA 

/******************************************************************************
EXAMPLE: Split–mode (AUX and PRIMARY both running)
         Commport–to–commport transfer:
         DMA3 prim. channel sends 4 words from memory (0x02ffc00) to
         commport 3 (output FIFO).
         DMA3 aux.channel receives 8 words from commport 3 (input FIFO)
         to memory (0x02ffd00)
         DMA3 prim. channel uses OCRDY3 write sync.
         DMA3 aux. channel uses ICRDY3 read sync.
         In this program, DMA3 aux channel expects data in commport 3 being
         sent by another processor/device. Otherwise no aux channel transfer
         will occur.
*******************************************************************************/
#include ”dma.h”
#define DMAADDR         0x001000d0
#define CTRLREG         0x03cdc0d5 /* DMA Aux/prim send interrupt to CPU when
                                      transfer finishes(TC=1),DMA–CPU rotating
                                      priority, read/write sync transfer */
#define DIEVAL          0x24000    /* set ICRDY3/OCRDY read/write sync */
#define DST             0x02ffd00  /* auxiliary channel settings */
#define DST_IDX         0x1
#define ACOUNTER        0x08
#define SRC             0x02ffc00  /* primary channel settings */
#define SRC_IDX         0x1
#define COUNTER         0x04
DMASPLIT *dma = (DMASPLIT *)DMAADDR;
int dieval = DIEVAL;

main() {

dma–>src      = (void *)SRC;       /* primary channel */
dma–>src_idx  = SRC_IDX;
dma–>counter  = COUNTER;
dma–>dst      = (void *)DST;       /* auxiliary channel */
dma–>dst_idx  = DST_IDX;
dma–>acounter = ACOUNTER;
dma–>ctrl     = (void *)CTRLREG;
asm(” ldi @_dieval,die”);
SPLIT_WAIT_DMA((volatile int *)dma);
}
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Example 7–11. Split-Mode DMA Using Autoinitialization

/******************************************************************************
EXAMPLE   : Split–mode (AUX and PRIMARY both running)
           Autoinitialization example:
           DMA3 aux .channel autoinitializes and THEN receives 4 words from
           commport 3 (input FIFO) to memory (0x02ffd00).
           DMA3 pri.channel sends 4 words from memory (0x02ffc00) to
           commport 3 (output FIFO)  and THEN other 2 words from memory
           (0x02ffc10) with index=2 to commport 3 (output FIFO).
           DMA3 prim. channel uses OCRDY3 write sync.
           DMA3 aux. channel uses ICRDY3 read sync.
           Autoinitialization method 1 is used in all cases.
           In this program, DMA3 aux channel expects data in commport 3 being
           sent by another processor/device. Otherwise no aux channel transfer
           will occur.
*******************************************************************************/
#include ”dma.h”
#define DMAADDR         0x001000d0
#define CTRLREG1        0x03cdc0e9 /* DMA aux/prim send interrupt to CPU when
                                      transfer finishes(TC=1),DMA–CPU rotating
                                      priority, read/write sync transfer */
#define CTRLREG2        0x03cdc0d5 /* same as above but transfer finishes */
#define DIEVAL          0x24000    /* set ICRDY3/OCRDY read/write sync */

/* Primary Channel */
#define SRC1            0x02ffc00       /* autoinitialization 1 */
#define SRC1_IDX        0x1
#define COUNTER1        0x04
#define SRC2            0x02ffc10       /* autoinitialization 2 */
#define SRC2_IDX        0x2
#define COUNTER2        0x02

/* Auxiliary channel */
#define DST1            0x02ffd00       /* autoinitialization 1 */
#define DST1_IDX        0x1
#define ACOUNTER1       0x04

DMASPLIT *dma = (DMASPLIT *)DMAADDR;
int dieval = DIEVAL;
DMAPRIM autoini1, autoini2;
DMAAUX autoiniaux;

main() {

/* PRIMARY CHANNEL : 1st autoinitialization values */
autoini1.ctrl    = (void *)CTRLREG1;
autoini1.src     = (void *)SRC1;
autoini1.src_idx = SRC1_IDX;
autoini1.counter = COUNTER1;
autoini1.linkp   = &autoini2;
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Example 7–11. Split-Mode DMA Using Autoinitialization (Continued)

/* PRIMARY CHANNEL : 2nd autoinitialization values */
autoini2.ctrl    = (void *)CTRLREG2;
autoini2.src     = (void *)SRC2;
autoini2.src_idx = SRC2_IDX;
autoini2.counter = COUNTER2;

/* AUXILIARY CHANNEL : 1st autoinitialization values */
autoiniaux.ctrl    = (void *)CTRLREG2;
autoiniaux.dst     = (void *)DST1;
autoiniaux.dst_idx = DST1_IDX;
autoiniaux.acounter = ACOUNTER1;

/* initialize DMA */
dma–>linkp       = &autoini1;
dma–>alinkp      = &autoiniaux;
dma–>counter     = 0;
dma–>acounter    = 0;
dma–>ctrl        = (void *)CTRLREG1;
asm(” ldi @_dieval,die”);

/* wait for DMA to finish transfer */
SPLIT_WAIT_DMA((volatile int *)dma);
}
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Example 7–12. Include File for All C Examples (dma.h)

typedef struct dmaunif{
        volatile void *ctrl;            /* control register     */
        volatile void *src;             /* source address       */
        volatile int src_idx;           /* source address index */
        volatile int counter;           /* transfer counter     */
        volatile void *dst;             /* dest. address        */
        volatile int dst_idx;           /* dest. address index  */
        struct dmaunif *linkp;          /* link pointer         */
        }DMAUNIF;
typedef struct dmaprim{
        volatile void *ctrl;            /* control register     */
        volatile void *src;             /* prim. src address    */
        volatile int src_idx;           /* prim. index          */
        volatile int counter;           /* prim transfer counter*/
        struct dmaprim *linkp;          /* link pointer         */
        }DMAPRIM;
typedef struct dmaaux{
        volatile void *ctrl;            /* control register     */
        volatile void *dst;             /* aux. dst address     */
        volatile int dst_idx;           /* aux. index           */
        volatile int acounter;          /* aux. transfer counter*/
        struct dmaaux *alinkp;          /* aux. link pointer    */
        }DMAAUX;
typedef struct {
        volatile void *ctrl;            /* control register     */
        volatile void *src;             /* prim. src address    */
        volatile int src_idx;           /* prim. index          */
        volatile int counter;           /* prim transfer counter*/
        volatile void *dst;             /* aux. dst address     */
        volatile int dst_idx;           /* aux. index           */
        struct dmaprim *linkp;          /* link pointer         */
        volatile int acounter;          /* aux. transfer counter*/
        struct dmaaux *alinkp;          /* aux. link pointer    */
        } DMASPLIT;
#define PRIM_WAIT_DMA(x)   while ((0x00c00000 & *x)!=0x00800000)
#define AUX_WAIT_DMA(x)    while ((0x03000000 & *x)!=0x02000000)
#define SPLIT_WAIT_DMA(x)  while ((0x03c00000 & *x)!=0x02800000)
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8.1 Communication Ports

To provide simple processor-to-processor communication, the ’C4x has six

parallel bidirectional communication ports. Because these ports have port ar-

bitration units to handle the ownership of the communication-port data bus be-

tween the processors, you should concentrate only on the internal operation

of the communication ports. For software, these communication ports can be

treated as 32-bit on-chip data I/O FIFO buffers. Processor read data from/write

data to communication is simple:

LDI @comm_port0_input,R0 ;Read data from comm. port 0

or

STI R0,@comm_port0_output ;Write data to comm. port 1

If the CPU or DMA reads from or writes to the communication-port I/O FIFO

and the I/O-FIFO is either empty (on a read) or full (on a write), the read/write

execution will be extended either until the data is available in the input FIFO

for a read, or until the space is available in the output FIFO for a write. Some-

times, you can use this feature to synchronize the devices. However, this can

slow down the processing speed and even hang up the processor. Avoid such

situations by synchronizing the CPU/DMA accesses with the following flags

that indicate the status of the port:

ICRDY (input channel ready)

= 0, the input channel is empty and not ready to be read.

= 1, the input channel contains data and is ready to read.

ICFULL (input channel full)

= 0, the input channel is not full.

= 1, the input channel is full.

OCRDY (output channel ready)

= 0, the output channel is full and not ready to be written.

= 1, the output channel is not full and ready to be written.

OCEMPTY (output channel empty)

= 0, the output channel is not empty.

= 1, the output channel is empty.

Example 8–1 shows the reading of data from the communication port, eight

data at a time using the CPU ICFULL interrupt. Example 8–2 shows the writing

of data to a communication port, one datum at a time using the polling method.

Both examples show DMA reads/writes. (DMA is discussed in subsection 7.3,

DMA Assembly Programming Examples on page 7-4.
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Example 8–1.Read Data from Communication Port With CPU ICFULL Interrupt

*
* TITLE READ DATA FROM COMMUNICATION PORT WITH CPU 
* ICFULL INTERRUPT
*
* THIS EXAMPLE ASSUMES THE ICFULL 0 INTERRUPT VECTOR IS SET IN THE CPU
* INTERRUPT VECTOR TABLE. THE EIGHT DATA WORDS ARE READ IN
* WHENEVER THE DATA IS FULL IN COMM PORT 0 INPUT FIFO.
*

.

.

.
LDA @COMM_PORT0_CTL,AR2 ;Load comm port 0 control Reg. address
LDA @COMM_PORT0_INPUT,AR0 ;Load comm port 0 input FIFO address
LDA @INTERNAL_RAM,AR1 ;Load internal RAM address
AND3 0F7H,*AR2,R9 ;Unhalt comm port 0 input channel
STI R9,*AR2
OR 04H,IIE ;Enable ICRDY 0 interrupt
OR 02000H,ST ;Enable CPU global interrupt
.
.
.

ICFULL0 PUSH ST
PUSH RS
PUSH RE
PUSH RC
LDI *AR0,R10 ;Read data from comm port 0 input
RPTS 6 ;Setup for loop READ

READ LDI *AR0,R10 ;Read data from comm port 0 input
|| STI R10,*AR1++(1) ;Store data into internal RAM

STI R10,*AR1++(1) ;Store data into internal RAM
POP RC
POP RE
POP RS
POP ST
RETI
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Example 8–2.Write Data to Communication Port With Polling Method

*
* TITLE WRITE DATA TO COMMUNICATION PORT WITH POLLING METHOD
*
* THE BIT 8 OF COMMUNICATION PORT 0 CONTROL REGISTER WILL BE
* SET ONLY WHEN THE OUTPUT FIFO IS FULL. THIS EXAMPLE CHECKS
* THIS BIT TO MAKE SURE THERE IS SPACE AVAILABLE IN
* OUTPUT FIFO.
*

.

.

.
LDA @COMM_PORT0_CTL,AR2 ;Load comm port 0 control reg address
LDA @COMM_PORT0_OUTPUT,AR0 ;Load comm port 0 output FIFO address
LDA @INTERNAL_RAM,AR1 ;Load internal RAM address 
AND3 0EFH,*AR2,R9 ;Unhalt comm port 0 output channel
STI R9,*AR2
LDI 0100H,R9 ;Load mask for bit 8

WAIT: TSTB *AR2,R9 ;Check if output FIFO is full
BZD WAIT ;If yes, check again

WRITE_COMM LDI *AR1++(1),R10 ;Read data from internal RAM
STI R10,*ARO ;Store data into comm port 0 output
NOP
.
.
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8.2 Signal Considerations

Because of the bidirectional high-speed protocol used in the ’C4x communica-

tion ports, signal quality is extremely important. Poor quality signals can poten-

tially cause both ends of a communication-port link to become a master. If this

occurs and one communication port drives a signal request, no response is

received from the other communication port, and the link hangs. This condition

remains until both ’C4x devices are reset. If this is not corrected, the commu-

nication-port drivers can be damaged.

If poor quality signals are a problem, use circuits to improve impedance match-

ing. Because the ’C4x communication-port output buffer impedance can

change during signal switching, a conventional parallel termination does not

help. Serial matching resistors can be added at each end of all communication

port lines (see Figure 8–1). Serial resistors help match the output buffer im-

pedance to the line impedance and protect against signal contention caused

by any potential fault condition. The resistor value, plus buffer output imped-

ance, should match the line impedance. Results have shown that a lower than

optimal serial resistor value provides better performance. A resistor value of

22–33 Ω is usually a reasonable start. Some experimentation may be needed

to reduce ringing effects. A good received signal should have an undershoot

of 0.5 to 1.0 V or less. A resistor value that is too high results in an under-

damped falling edge that does not cross the zero logic level and should be

avoided.

Figure 8–1. Impedance Matching for ’C4x Communication-Port Design

Pin as an Output Pin as an Input

Rb Rs
22–33 Ω
(Lower than
optimum)

Z0=50–100 Ω
Rs

VCC

10 kΩ

VCC

10 kΩ

Even though pullup resistors do not help for impedance matching, they are

recommended at each end to avoid unintended triggering after reset, when

RESET going low is not received on all ’C4x devices at the same time.

A pulldown resistor is not desirable, because it increases power consumption,

does not protect the device from a fault condition, and can cause token loss

and byte slippage on reset.
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For jumps to other boards or for long distances, a unidirectional data flow with

buffering is the preferred method. In this case, use buffers with hysteresis for

CSTRB and CRDY at each end with delays greater than those in the data bus.

This has two advantages: it cleans up the signals and helps eliminate glitches

that can be erroneously perceived as valid control; it also allows the data bits

to settle before the receiver sees CSTRB going low.
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8.3 Interfacing With a Non-’C4x Device

To guarantee a correct word transfer operation between a ’C4x communica-

tion port and a non-’C4x device, the non-’C4x device should mimic the hand-

shaking operation between CSTRB and CRDY (word transfer), CREQ and

CACK (token transfer). The token transfer operation is more complex than the

word transfer operation. It requires tri-stating of pins after different events.

Sections 8.6 and 8.7 offer examples on how to handle token transfers with

non-’C4x devices. The word transfer operation is much simpler. The following

sequence describes the word transfer operation:

Word transfer operation

CASE I: The non-’C4x has the token and transmits data. The ’C4x receives data.

1) The non-’C4x device drives the first byte (byte 0) into the CD data lines and

then drops CSTRB low, indicating new data. There is no need to meet the

maximum timing requirements, but the data should be valid before

CSTRB goes low.

2) The non-’C4x device waits for the ’C4x to respond with CRDY low and then

can immediately drive the next data byte and bring CSTRB high.

3) The non-’C4x device waits for CRDY to be high; then, steps 1, 2, and 3

repeat for bytes 1 – 3.

4) After byte 3 is transmitted, the non-’C4x device can leave the byte 3 value

in the CD lines until a new word is sent.

5) In ’C4x device revisions lower than 3.0, CSTRB should go high after re-

ceiving CRDY low no later than one ’C4x H1/H3 cycle between word

boundaries. See Section 8.9, Implementing a CSTRB Shortener Circuit on

page 8-17, for an implementation of a CSTRB shortener circuit. In ’C4x de-

vice revisions 3.0 or higher, no CSTRB width restriction exists.

6) The non-’C4x device can drive CSTRB low for the next word at any time

after receiving CRDY high from the last byte. There is no reason to wait

for the internal ’C4x synchronizer between CRDY low and CSTRB low for

the next word to finish.

CASE II: The ’C4x has the token and transmits data. The non-’C4x device re-

ceives data.

1) After receiving CRSTB low from the ’C4x, indicating new data valid, the

non-’C4x device can immediately read the data byte and then drive CRDY

low, indicating that the byte has been read. There is no maximum time limit

between these two events.

2) The non-’C4x device then waits to receive CSTRB high and can immedi-

ately drive CRDY high, ending the byte transfer operation.
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8.4 Terminating Unused Communication Ports

To avoid unintended communication port triggering, you can terminate unused

communication-port control lines in one of the following ways:

� Use pullup resistors in all the communication-port control lines. Pullups in

data lines of input communication ports are optional, but they lower power

consumption. Pullups in data lines of output communication ports are not

required; if used, they increase power consumption.

� Tie the control lines together on the same communication port, that is,

CSTRB to CRDY and CREQ to CACK. This holds the control inputs high

without using external pullup resistors.
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8.5 Design Tips

� Be careful with different voltage levels when running multiple ’C4x devices

(or any other CMOS device) from different power supplies. This can create

a CMOS latch-up that can permanently damage your device. Adding serial

resistors to ’C4x communication ports connecting devices in different

boards marginally helps to protect communication-port drivers. It is rec-

ommended that all ’C4x devices in the system remain in reset until power

supplies are stable.

� Sometimes, it is beneficial to keep the line impedance as high as possible.

This helps when interfacing to external cables. Typical ribbon cable im-

pedance is about 100 Ω.

Because it is sometimes difficult to route high-impedance lines (especially

long ones) in a circuit board, use an external ribbon cable to jump over the

length of a board. In this case, only two headers should be installed in the

circuit board.

� Use an alternating signal and ground scheme. This helps control differen-

tial signal coupling and impedance variation. For quality signals, use a

26-wire ribbon ((4 control + 8 data + 1 shield) * 2 = 26). The shield is need-

ed for the signal that is otherwise on the edge.

Do not route signals on top of each other. When it is necessary to cross

traces on adjacent layers, cross them at right angles to reduce coupling.

Note:

Because the ’C4x communication ports are very high-speed data transmis-
sion circuits, signal quality is very important. A poor quality signal can cause
the missing or slipping of a byte. If this happens, the only solution is a ’C4x
reset. Because at reset communication ports 0,1, and 2 are transmitters and
3, 4, and 5 are receivers, a safe reset requires resetting of every ’C4x con-
nected to the ’C4x with the faulty condition. Global reset becomes a neces-
sity.
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8.6 Commport to Host Interface

A host interface between a ’C4x comport and a PC’s bidirectional printer port

has many advantages including freeing up the DSP bus and treating the host

PC as a virtual ’C4x node within a system of ’C4x devices.

This interface uses a bidirectional PC printer port interface. Logic circuits, buff-

ers and resistors convert logic control levels driven from the printer port into

’C4x commport control signals. Signals driven from the ’C4x are converted into

status signals, which can be polled in software by the PC. In addition, the PC’s

printer port provides the byte-wide data path into and out of the PC.

You can use this I/O interface for host-data communication, bootloading, and

debug operations. With proper buffering and software control, it is also pos-

sible to build long and reliable links. The speed is primarily dependent on the

speed of the host. When using a PC as the host, the speed is limited by the

PC’s I/O channel speed. If higher rates are needed, use a memory-mapped

version of the printer port in the PC.

The printer port used to test this circuit was the DSP-550 from STB Systems,

but there are other bidirectional printer ports on the market. Using the STB card

in the bidirectional mode requires that a jumper be set (see your manual).

Then, if a 1 is written to bits 5 or 7 of the control register (this depends on your

printer port), data can be read back from the data register.

8.6.1 Simplified Hardware Interface for ’C40 PG � 3.3, or ’C44 devices

Figure 8–2 shows a simplified commport signal splitter that splits each comm-

port control signal into a simple drive and sense pair of signals. Simplified, in

this case, means that, though the circuit is easy to follow functionally and will

operate, it is not the preferred solution (see the improved driver in Figure 8–3).

The signals in this circuit can be easily buffered without risk of driver conflicts.

However, keep a few things in mind about the simplified design:

� Due to commport-control signal restrictions in earlier silicon revisions this

circuit will not work with the TMS320C40 PG 3.0 or lower.

� This circuit requires a bidirectional printer port.

� Standard printer-port cables often do not provide ’clean’ signals

� A high value is needed for the isolation resistor in order to keep the current

levels during signal opposition to a minimum. But, a low value is needed

for the isolation resistor in order to insure reasonably fast rise and fall times

of the commport control signals when they are inputs. This conflict can be

overcome by carefully picking the correct resistor values or by adding

additional biasing.
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Figure 8–2. Better Commport Signal Splitter
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8.6.2 Improved Drive and Sense Amplifiers

Two improvements are suggested for the interface described above. The

improvements are described in Figure 8–3.

Figure 8–3. Improved Interface Circuit

R3

Vcc
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C1
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Legend: Rp = 470 ohms R2 = 10 K ohms C1 = 100 pF
R1 = 1 K ohms R3 = 50 ohms
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comm port

sense

drive

The first improvement is that the signals going to and from the printer port are

synchronized using a clock and a simple data latch. By taking samples in time,

noise which may be able to corrupt the first sample of a transistion will probably

not be enough to corrupt the next sample. By adding a hysteris loop made from

resistors R1 and R2, the noise immunity is improved more. Capacitor C1 is an

additional analog filter that rejects high-frequency noise.

The next major improvement is the use of a current driver in place of the isola-

tion resistor. In this case, an RS232 driver is used; this driver can drive beyond

the supply rails of the DSP and has a built-in current limit of about 20mA.

Diodes D1 and D2, along with R3, clamp the resulting signal to the supply rails

of the DSP and latch to prevent excessive overdrive. The DSP and latch both

have internal clamping diodes, but it is not recommended that you rely on them

as the internal clamp diodes are not intended for this purpose.
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8.6.3 How the Circuit Works

The PC can drive any value on the control lines, independent from the returned

status. If a logic 1 is driven into the drive side of the isolation resistor and a logic

0 is observed on the sense side, the ’C4x commport signal under question is

without a doubt an output.

By then driving levels and polling the returned status, it is possible to synchro-

nize a host processor to the state machine of the ’C4x commport. The advan-

tage of this design is that it can be easily ported to any smart processor with

any basic I/O capability. For example, TMS320C31/32 devices have been

used as slave devices that are bootloaded from a commport and then used as

serial ports with internal memory and additional processing capabilities. Com-

plicated and risky ASIC designs are not required and the solution is fully pro-

grammable.

You must include current limiting circuitry when designing any
’C4x interface. If the current is not limited, it can exceed 100 mA per
pin, which can damage a device.

8.6.4 The Interface Software

The interface software for this host interface is available through the TI BBS

(filename: M4x_2.exe). This file contains not only the low-level software driv-

ers, but also extra code for the M4x (a multiprocessor ’C4x communication ker-

nel) applications note. The following files are contained in this application:

� M4X Debugger (no source code)

� MEMVIEW memory and communications matrix view and edit utility

� MANDEL40 multiprocessor Mandelbrot demonstration program

� M4X.ASM multiprocessor TMS320C4x communications kernel

� DRIVER.CPP higher level system functions

� TARGET.CPP getmem, putmem, run, stop and singlestep commands

� OBJECT.CPP source code for using the printer port interface



An I/O Coprocessor–’C4x Interface

 8-14

8.7 An I/O Coprocessor–’C4x Interface

This section presents a software-based interface that provides a ’C4x with a

flexible bidirectional interface to a TMS320C32. The ’C32 acts as a smart I/O

coprocessor that can provide AIC interfacing and data preprocessing among

others. The ’C32 is an inexpensive and flexible solution.

Some of the advantages of using an I/O coprocessor include:

� An I/O coprocessor can provide with data-processing.

� An I/O coprocessor allows for error correction and recovery from ’C4x

commport interface problems.

� An I/O coprocessor can buffer data, allowing faster ’C4x data throughput.

Figure 8–4 shows the ’C32-to-’C4x interface. Through the interface, a ’C4x

commport is memory-mapped to the ’C32 external memory bus. The interface

uses four ’C32 I/O pins to drive the commport control signals.

Figure 8–4. A ’C32 to ’C4x Interface
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Pullup resistors in the XF0, XF1, TCLK0 and TCLK1 lines are used to prevent

undesired glitches due to temporary high-impedance conditions. Serial resis-

tors are also used on the same pins for better impedance matching.

The interface software drivers and a more detailed explanation of the interface

can be obtained from our TI BBS (filename 4xaic.exe). Token transfer and

word transfer drivers are included with the software.
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8.8 Implementing a Token Forcer

After system reset, half of the communication channels associated with a par-

ticular ’C4x have token ownership (communication ports 0, 1, 2), and the other

half (communication ports 3, 4, 5) do not.

If, because of system configuration requirements, communication port direc-

tion must to be changed, the circuits shown in Figure 8–5 and Figure 8–6 can

be used. The circuits force the token to be passed and communication port

direction to remain changed.

Even though these circuits are intended to force a change of the original com-

munication port direction after reset, they can be used also to maintain the orig-

inal direction. However, this can be more conveniently achieved using pullups

in CACK and CREQ. The pullups prevent any damage to the communication

ports in the event of a program error that writes into a port configured as an

input.

Forcing a communication port to become an output port

Figure 8–5 shows a circuit that forces a communication port to become an out-

put port. In this circuit, driving the CACK line with the CREQ line reconfigures

an input port as an output port. When a word is written to the FIFO, CREQ is

driven low, indicating a token request. After a synchronizer delay of 1 to 2

cycles (U1 and U2), CACK is driven low, indicating a token acknowledge.

CREQ then goes active high and then is held high by RP as the line switches

to an input. The CLK signal can be any clock with a frequency equal to or lower

than the H1/H3 clock.

The synchronizer delay is important. If no delay is provided, the CREQ line will

not be ready to change to an input high condition. As a result, the CACK line,

which, at this point, is a delayed version of CREQ, is inverted and applied to

the CREQ line. This results in an oscillation until the synchronizer period has

timed out.

Figure 8–5. A Token Forcer Circuit (Output)
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Forcing a communication port to become an input port

Figure 8–6 shows a circuit that forces a communication port to become an in-

put port. In this circuit, driving the CREQ line with an inverted CACK reconfi-

gures an input port as an output. If CREQ is an input, it is held low through RS
whenever CACK is high or floating high because of RP. The port then responds

to this request by driving CACK low, which, in turn, drives CREQ high, finishing

the token acknowledge. As in Figure 8–5, synchronizer delays mimic the re-

sponse of another ’C4x communication port to prevent oscillation.

Figure 8–6. Communication-Port Driver Circuit (Input)
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D Q D Q
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Note that after the port has been reconfigured as an input port, the CREQ line

is active high while the output of the inverter is low. This causes a constant cur-

rent flow from CREQ to the inverter.
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8.9 Implementing a CSTRB Shortener Circuit

In ’C40 device revisions lower than 3.0, the width of the CSTRB low pulse be-

tween word boundaries should not exceed 1.0 H1/H3 at the receiving end. A

CSTRB low beyond the synchronization period on a word boundary can be

recognized as a new valid CSTRB, resulting in an extra byte reception (byte

slippage). For a short distance between two communicating ’C4x devices,

byte slippage is not a problem. In ’C40 device revisions 3.0 or higher, or in any

revision of the ’C44, no CSTRB width restriction exists.

The circuit shown in Figure 8–7 can reduce the width of CSTRB for very long

distances when you are using ’C4x device revisions lower than 3.0. The circuit

has buffers for CSTRB and CRDY on the transmitting end and two S-R flip-

flops on the receiving end. On the receiving end, a low STRB incoming signal

causes the Q signal of S-R flip-flop U1 to go low, forcing the CSTRB pin to go

low. When CRDY responds with a low signal, S-R flip-flop U2 drives the RDY

signal low. Because RDY is also tied to the S input of U1, and S has prece-

dence over R in an S-R flip-flop, Q in U1 goes high. Also, STRB is inverted and

drives the S input of U2. In this way, the width of the local CSTRB is shortened,

regardless of the channel length. When the STRB signal goes back high, the

S-R flip-flop pair is ready to receive another CSTRB.

Figure 8–7. CSTRB Shortener Circuit
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8.10 Parallel Processing Through Communication Ports

The ’C4x communication ports are key to parallel processing design flexibility.

Many processors can be linked together in a wide variety of network configura-

tions. In this section, Figure 8–8 illustrates ’C4x parallel processing connectiv-

ity networks that are used to fulfill many signal processing system needs.

Figure 8–8. ’C4x Parallel Connectivity Networks
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Figure 8–8. ’C4x Parallel Connectivity Networks (Continued)
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According to memory interface, ’C4x parallel system architecture can be clas-

sified in three basic groups:

� Shared-Memory Architecture: shares global memory among processors.

� Distributed-Memory Architecture: each processor has its own private local

memory. Interprocessor communication is via ’C4x communication ports.

� Shared- and Distributed-Memory Architecture: each processor has its

own local memory but also shares a global memory with other processors.

Figure 8–8 shows examples of these basic groups.
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8.11 Broadcasting Messages From One ’C4x to Many ’C4x Devices

Message broadcasting from one ’C4x to many ’C4x devices requires a simple

interface. However, try to avoid signal analog delays caused by distance differ-

ences between the ’C4x master and the ’C4x slave processor. These delays

could create bus contention in the CSTRB and CRDY lines. Figure 8–9 shows

the block diagram of a multiple processor system. In this design, one ’C4x is

the dedicated transmitter, and three ’C4x devices are dedicated receivers. No

reset circuitry is needed, because the transmitter is communication port 0, and

the receivers are communication ports 3, 4, and 5. At reset, ’C4x communica-

tion ports 0, 1, and 2 are output ports, and communication ports 3, 4, and 5,

are input ports.

Because the communications configuration is fixed, no token transfer is need-

ed; this allows the CREQ and CACK pins of all processors to be individually

pulled up to 5 volts through 22-kΩ resistors.

In all cases, each CSTRB should be individually buffered to ensure that line

reflections do not corrupt each received CSTRB signal. The data pins CD7–0

of intercommunicating ’C4x devices can be tied together. In general, for fewer

than three receivers and distances shorter than six inches, data skew relative

to CSTRB is not a problem, and data buffering is not needed. However, if more

than three receivers must be driven by a single transmitter or the distance is

more than six inches, both the CSTRB and CD7–0 lines must be buffered.

The CRDY signal input is generated by ORing the RDY outputs of all of the

receiver communication ports. The transmitter should not receive a RDY sig-

nal until the receiver has received all data.

In addition, to ensure that the dedicated receiver ’C4x devices do not try to arbi-

trate for the communication-port bus, you should halt the output ports of the

receiver ’C4x devices by setting bit four of their communication-port control

registers to one.
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Figure 8–9. Message Broadcasting by One ’C4x to Many ’C4x Devices
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’C4x Power Dissipation

The power-supply current requirement (IDD) of the ’C4x vary with the specific

application and the device program activity. The maximum power dissipation

of a device can be calculated by multiplying IDD with VDD (power supply volt-

age requirement). Both parameters are provided in the ’C4x data sheet. Addi-

tionally, due to the inherent characteristics of CMOS technology, the current

requirements depend on clock rates, output loadings, and data patterns.

This chapter presents the information you need to determine power-supply

current requirements for the ’C4x under various operating conditions. After

you make this determination, you can then calculate the device power dissipa-

tion, and, in turn, thermal management requirements.
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9.1 Capacitive and Resistive Loading

In CMOS devices, the internal gates swing completely from one supply rail to

the other. The voltage change on the gate capacitance requires a charge

transfer, and therefore causes power consumption.

The required charge for a gate’s capacitance is calculated by the following

equation:

Qgate   = VDD  �  Cgate   (coulombs)

where:

Qgate  is the gate’s charge,

VDD  is the supply voltage, and

Cgate  is the gate’s capacitance.

Since current is coulombs per second, the current can then be obtained from:

I  =  coul / s  =  VDD   �  Cgate   �  Frequency

where:

I is the current.

For example, the current consumed by an 80-pF capacitor being driven by a

10-MHz CMOS level square wave is calculated as follows:

I  =  5 (volts)  �  80  �  10–12(farads)  �  10  �  106(charges/s)

   =   4 mA  @ 10 MHz

Furthermore, if the total number of gates in a device is known, the effective

total capacitance can be used to calculate the current for any voltage and fre-

quency. For a given CMOS device, the total number of gates is probably not

known, but you can solve for a current at a particular frequency and supply volt-

age and later use this current to calculate for any supply voltage and operating

frequency.

Idevice  = VDD  � Ctotal   �  fCLK

where:

Idevice is the current consumed by the device,

Ctotal  is the total capacitance, and

fCLK is the clock cycle.
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Solving for power (P = V x I), the equation becomes:

Pdevice  = VDD
2  �  Ctotal   �  fCLK

where:

Pdevice  is the power consumed by the device.

In this case, Ctotal  includes both internal and external capacitances. Ctotal  can

be effectively reduced by minimizing power-consuming internal operation and

external bus cycles. Bipolar devices, pullup resistors and other devices con-

sume DC power that adds a constant offset unaffected by fCLK . The effect of

these DC losses depends on data, not frequency. This document assumes an

all-CMOS approach in which these effects are minimal.

Another source of power consumption is the current consumed by a CMOS

gate when it is biased in the linear region. Typically, if a gate is allowed to float,

it can consume current. Pullups and pulldowns of unused pins are therefore

recommended.
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9.2 Basic Current Consumption

Generally, power supply current requirements are related to the system—for

example, operating frequency, supply voltage, temperature, and output load.

In addition, because the current requirement for a CMOS device depends on

the charging and discharging of node capacitance, factors such as clocking

rate, output load capacitance, and data values can be important.

9.2.1 Current Components

The power supply current has four basic components:

� Quiescent

� Internal operations

� Internal bus operations

� External bus operations

9.2.2 Current Dependency

The power supply current consumption depends on many factors. Four are

system related:

� Operation frequency

� Supply voltage

� Operating temperature

� Output load

Several others are related to TMS320C4x operation:

� Duty cycle of operations

� Number of buses used

� Wait states

� Cache usage

� Data value

You can calculate the total power supply current requirement for a ’C4x device

by using the equation below, which comprises the four basic power supply cur-

rent components and three system-related dependencies described above.

Itotal  = ( Iq  + Iiops  + Iibus  + Ixbus )  �  F  �  V  �  T

where:

Itotal  is the total supply current,

Iq is the quiescent current component,

Iiops  is the current component due to internal operations,

Iibus  is the current component due to internal bus usage, including data value

and cycle time dependency,
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Ixbus  is the current component due to external bus usage, including data value

wait state, cycle time, and capacitive load dependency,

F is a scale factor for frequency,

V is a scale factor for supply voltage, and

T is a scale factor for operating temperature.

This report describes in detail the application of this equation and determina-

tion of all the dependencies. The power dissipation measurements in this re-

port were taken using a ’C40 PG 3.X running at speeds up to 50 MHz and at

a voltage level of 5 V.

The minimum power supply current requirement is 130 mA. The typical current

consumption for most algorithms is 350 mA, as described in the TMS320C4x

data sheet, unless excessive data output is being performed.

The maximum current requirement for a ’C4x running at 50 MHz is
850 mA and occurs only under worst case conditions: writing
alternating data (AAAA AAAA to 5555 5555) out of both external
buses simultaneously, every cycle, with 80 pF loads.

9.2.3 Algorithm Partitioning

Each part of an algorithm has its own pattern with respect to internal and exter-

nal bus usage. To analyze the power supply current requirement, you must

partition an algorithm into segments with distinct concentrations of internal or

external bus usage. Analyze each program segment to determine its power-

supply current requirement. You can then calculate the average power supply

current requirement from the requirements of each segment of the algorithm.

9.2.4 Test Setup Description

All TMS320C4x supply current measurements were performed on the test

setup shown in Figure 9–1. The test setup consists of a TMS320C40, capaci-

tive loads on all data and address lines, but no resistive loads. A Tektronix digi-

tal multimeter measures the power supply current. Unless otherwise specified,

all measurements are made at a supply voltage of 5 V, an input clock frequency

of 50 MHz, a capacitive load of 80 pF, and an operating temperature of 25°C.

Note that the current consumed by the oscillator and pullup resistors does not

flow through the current meter. This current is considered part of the system’s

resistive loss (see section 9.1, Capacitive and Resistive Loading).
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Figure 9–1. Test Setup
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9.3 Current Requirement of Internal Components

The power-supply current requirement for internal circuitry consists of three

components: quiescent, internal operations, and internal bus operations.

Quiescent and internal operations are constants, whereas the internal bus

operations component varies with the rate of internal bus usage and the data

values being transferred.

9.3.1 Quiescent

The quiescent requirement for the TMS320C4x is 130 mA while in IDLE.

Quiescent refers to the baseline supply current drawn by the TMS320C4x dur-

ing minimal internal activity. Examples of quiescent current include:

� Maintaining timer and oscillator

� Executing the IDLE instruction

� Holding the TMS320C4x in reset

9.3.2 Internal Operations

Internal operations include register-to-register multiplication, ALU operations,

and branches, but not external bus usage or significant internal bus usage. In-

ternal operations add a constant 60 mA above the quiescent requirement, so

that the total contribution of quiescent and internal operation is 190 mA. Note,

however, that internal and/or external program operations executed via an

RPTS instruction do not contribute an internal operations power supply current

component. During an RPTS instruction, program fetch activity other than the

instruction being repeated is suspended; therefore, power-supply current is

related only to the data operations performed by the instruction being

executed.
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Figure 9–2. Internal and Quiescent Current Components
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9.3.3 Internal Bus Operations

The internal bus operations include all operations that utilize the internal buses

extensively, such as internal RAM accesses every cycle. No distinction is

made between internal reads or writes, such as instruction or operand fetches

from internal memory, because internally they are equal. Significant use of

internal buses adds a data-dependent term to the equation for the power sup-

ply current requirement. Recall that switching requires more current. Hence,

changing data at high rates requires higher power-supply current.

Pipeline conflicts, use of cache, fetches from external wait-state memory, and

writes to external wait-state memory all affect the internal and external bus

cycles of an algorithm executing on the TMS320C4x. Therefore, you must

determine the algorithm’s internal bus usage in order to accurately calculate

power supply current requirements. The TMS320C4x software simulator and

XDS emulator both provide benchmarking and timing capabilities that help you

determine bus usage.
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Figure 9–3. Internal Bus Current Versus Transfer Rate
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The current resulting from internal bus usage varies linearly with transfer rates.

Figure 9–3 shows internal bus-current requirements for transferring alternat-

ing data (AAAA AAAAh to 5555 5555h) at several frequencies. Note that trans-

fer rates greater than the TMS320C4x’s MIPS rating are possible because of

internal parallelism.

The data set AAAA AAAAh to 5555 5555h exhibits the maximum internal bus

current for data transfer operations. The current required for transferring other

data patterns may be derated accordingly, as described later in this subsec-

tion.

As the transfer rate decreases (that is, transfer-cycle time increases) the incre-

mental IDD approaches 0 mA. This figure represents the incremental IDD due

to internal bus operations and is added to quiescent and internal operations

current values.

For example, the maximum transfer rate corresponds to three accesses every

cycle (one program fetch and two data transfers) or an effective one-third H1

transfer cycle time. At this rate, 178 mA is added to the quiescent (130 mA)

and internal operation (60 mA) current values for a total of 368 mA.
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Figure 9–3 shows the internal bus current requirement when transferring As

followed by 5s for various transfer rates. Figure 9–4 shows the data depen-

dence of the internal bus-current requirement when the data is other than As

followed by 5s. The trapezoidal region bounds all possible data values trans-

ferred. The lower line represents the scale factor for transferring the same

data. The upper line represents the scale factor for transferring alternating

data (all 0s to all Fs or all As to all 5s, etc.).

The possible permutation of data values is quite large. The term relative data

complexity refers to a relative measure of the extent to which data values are

changing and the extent to which the number of bits are changing state. There-

fore, relative data complexity ranges from 0, signifying minimal variation of

data, to a normalized value of 1, signifying greatest data variation.

Figure 9–4. Internal Bus Current Versus Data Complexity Derating Curve
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If a statistical knowledge of the data exists, Figure 9–4 can be used to deter-

mine the exact power supply requirement on the basis of internal bus usage.

For example, Figure 9–4 indicates a 89.5% scale factor when all Fs

(FFFF FFFFh) are moved internally every cycle with two accesses per cycle

(80 Mbytes per second). Multiplying this scale factor by 178 mA (from
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Figure 9–3) yields 159 mA due to internal bus usage. Therefore, an algorithm

running under these conditions requires about 349 mA of power supply current

(130 + 60 + 159).

Since a statistical knowledge of the data may not be readily available, a nomi-

nal scale factor may be used. The median between the minimum and maxi-

mum values at 50% relative data complexity yields a value of 0.93 and can be

used as an estimate of a nominal scale factor. Therefore, this nominal data

scale factor of 93% can be used for internal bus data dependency, adding

165.5 mA to 130 mA (quiescent) and 60 mA (internal operations) to yield 355.5

mA. As an upper bound, assume worst case conditions of three accesses of

alternating data every cycle, adding 178 mA to 130 mA (quiescent) and 60 mA

(internal operations) to yield 368 mA.
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9.4 Current Requirement of Output Driver Components

The output driver circuits on the TMS320C4x are required to drive significantly

higher DC and capacitive loads than internal device logic drivers. Because of

this, output drivers impose higher supply current requirements than other sec-

tions of circuitry in the device.

Accordingly, the highest values of supply current are exhibited when external

writes are being performed at high speed. During read cycles, or when the

external buses are not being used, the TMS320C4x is not driving the data bus;

this eliminates a significant component of the output buffer current. Further-

more, in many typical cases, only a few address lines are changing, or the

whole address bus is static. Under these conditions, an insignificant amount

of supply current is consumed. Therefore, when no external writes are being

performed or when writes are performed infrequently, current due to output

buffer circuitry can be ignored.

When external writes are being performed, the current required to supply the

output buffers depends on several considerations:

� Data pattern being transferred

� Rate at which transfers are being made

� Number of wait states implemented (because wait states affect rates at

which bus signals switch)

� External bus DC and capacitive loading

External bus operations involve external writes to the device and constitute a

major power-supply current component. The power supply current for the

external buses, made up of four components, is summarized in the following

equation:

Ixbus  = ( Ibase  local  + Ilocal  ) + ( Ibase global  + Iglobal  )

where:

Ibase local/global  is the current consumed by the internal driver and pin capaci-

tance,

Ilocal  is the local bus current component, and

Iglobal  is the global bus current component.

The remainder of this section describes in detail the calculation of external bus

current requirements.
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Note:

The DMA current component (IDMA ) and communication port current compo-
nent (ICP ) should be included in the calculation of Ixbus  if they are used in the
operations.

9.4.1 Local or Global Bus

The current due to bus writes varies with write cycle time. As discussed in the

previous section, to obtain accurate current values, you must first determine

the rate and timing for write cycles to external buses by analyzing program

activity, including any pipeline conflicts that may exist. To do this, you can use

information from the TMS320C4x emulator or simulator as well as the

TMS320C4x User’s Guide. In your analysis, you must account for effects from

the use of cache, because use of cache can affect whether or not instructions

are fetched from external memory.

When evaluating external write activity in a given program segment, you must

consider whether or not a particular level of external write activity constitutes

significant activity. If writes are being performed at a slow enough rate, they

do not impact supply current requirements significantly and can be ignored.

This is the case, however, only if writes are being performed at very slow rates

on either the local or global bus.

When bus-write cycle timing has been established, Figure 9–5 can be used

to determine the contribution to supply current due to bus activity. Figure 9–5

shows values of current contribution from the local or global bus for various

transfer rates. This data was gathered when alternating values of 555555555h

and AAAAAAAAh were written at a capacitive load of 80 pF per output signal

line. This condition exhibits the highest current values on the device. The val-

ues presented in the figure represent the incremental current contributed by

the local or global bus output driver circuitry under the given conditions. Cur-

rent values obtained from this graph are later scaled and added to several

other current terms to calculate the total current for the device. As indicated

in the figure, the lower limit Ibase  = Iq  + Iiops  + Iibus  is essentially Itotal  for transfer

rates less than 1 Mword/second.
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Figure 9–5. Local/Global Bus Current Versus Transfer Rate and Wait States
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Figure 9–5 demonstrates a feature of the ’C4x’s external bus architecture

known as a posted write. In general, data is written to a latch (or a one deep

FIFO) and held by the bus until the bus cycle is complete. Since the CPU may

not require that bus again for some time, the CPU is free to perform operations

on other buses until a conflict occurs. Conflicts include DMA, a second write,

or a read to the bus.

In Figure 9–5, the upper line is applicable when STI || STI is not dominated by

execution of internal NOPs and the external wait state is equal to zero. The

lower line shows when STI || STI is internally stalled while waiting for the exter-

nal bus to go ready because of wait states. The addition of NOPs between

successive STI || STI operations contributes to internal bus current and there-

fore does not result in the lowest possible current.
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Figure 9–6. Local/Global Bus Current Versus Transfer Rate at Zero Wait States
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To further illustrate the relationship of current and write cycle time, Figure 9–6

shows the characteristics of current for various numbers of cycles between

writes for zero wait states. The information on this graph can be used to obtain

more precise values of current whenever zero wait states are used. Table 9–1

lists the number of cycles used for software generated wait states.

Table 9–1.Wait State Timing Table

Wait State Read Cycles Write Cycles

0 1 2

1 2 3

2 3 4

3 4 5

Once a current value has been obtained from Figure 9–5 or Figure 9–6, this

value can be scaled by a data dependency factor if necessary, as described

on page 9-16. This scaled value is then summed along with several other cur-

rent terms to determine the total supply current.
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9.4.2 DMA

Using DMA to transfer data consumes power that is data dependent. The cur-

rent resulting from DMA bus usage (IDMA ) varies linearly with the transfer rate.

Figure 9–7 shows DMA bus current requirements for transferring alternating

data (AAAA AAAAh to 5555 5555h) at several transfer rates; it also shows that

current consumption increases when more DMA channels are used. However,

as more DMA channels are used, the incremental change in current dimi-

nishes as the internal DMA bus becomes saturated. Note that DMA current is

superimposed over Iibus  (internal bus) value.

Figure 9–7. DMA Bus Current Versus Clock Rate
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9.4.3 Communication Port

Communication port operations add a data-dependent term to the equation for

the current requirement. The current resulting from communication port opera-

tion (ICP ) varies linearly with the transfer rate. Figure 9–8 shows communica-

tion port operation current requirements for transferring alternating data

(AAAA AAAAh to 5555 5555h) at several transfer rates; it also shows that cur-

rent consumption increases when more communication port channels are
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used. Similar to the DMA bus current consumption, adding communication

ports eventually saturates the peripheral bus as more channels are added.

Figure 9–8. Communication Port Current Versus Clock Rate
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Note that since the communication ports are intended to communicate with

other TMS320C4x communication ports over short distances, no additional

capacitive loading was added. In this case, the transmission distance is about

6 inches without additional 80-pF loads. Note that communication port current

is superimposed over Iibus  value.

9.4.4 Data Dependency

Data dependency of the current for the local and global buses is expressed as

a scale factor that is a percentage of the maximum current exhibited by either

of the two buses.
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Figure 9–9. Local/Global Bus Current Versus Data Complexity
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Figure 9–9 shows normalized weighting factors that can be used to scale cur-

rent requirements on the basis of patterns in data being written on the external

buses. The range of possible weighting factors forms a trapezoidal pattern

bounded by extremes of data values. As the figure shows, the minimum cur-

rent occurs when all zeros are written, while the maximum current occurs when

alternating 5555 5555h and AAAA AAAAh are written. This condition results

in a weighting factor of 1, which corresponds to using the values from

Figure 9–5 and/or Figure 9–6 directly.

As with internal bus operations, data dependencies for the external buses are

well defined, but accurate prediction of data patterns is often either impossible

or impractical. Therefore, unless you have precise knowledge of data patterns,

you should use an estimate of a median or average value for the scale factor.

Assuming that data will be neither 5s and As nor all 0s and will be varying ran-

domly, then a value of 0.80 is appropriate. Otherwise, if you prefer a conserva-

tive approach, you can use a value of 1.0 as an upper bound.

Regardless of the approach taken for scaling, once you determine the scale

factor for the buses, apply this factor to the current values you determined with

the graphs in section 9.4.1, Local or Global Bus.
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For example, if a nominal scale factor of 0.80 for the buses is assumed, the

current contribution from the two buses is as follows:

Local or Global : 0.80 � 133 mA = 106.4 mA

9.4.5 Capacitive Loading Dependence

Once cycle timing and data dependencies have been accounted for, capaci-

tive loading effects should be calculated and applied. Figure 9–10 shows the

current values obtained above as a function of actual load capacitance if the

load capacitance presented to the buses is less than 80 pF.

In the previous example, if the load capacitance is 20 pF instead of 80 pF, the

actual pin current would be 1.66 mA.

While the slope of the line in Figure 9–10 can be used to interpolate scale fac-

tors for loads greater than 80 pF, the TMS320C4x is specified to drive output

loads less than 80 pF; interface timings cannot be guaranteed at higher loads.

With data dependency and capacitive load scale factors applied to the current

values for local and global buses, the total supply current required for the

device for a particular application can be calculated, as described in the next

section.

Figure 9–10. Pin Current Versus Output Load Capacitance (10 MHz)
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9.5 Calculation of Total Supply Current

The previous sections have discussed currents contributed by different

sources on the TMS320C4x. Because determinations of actual current values

are unique and independent for each source, each current source was dis-

cussed separately. In an actual application, however, the sum of the indepen-

dent contributions determines the total current requirement for the device. This

total current value is exhibited as the total current supplied to the device

through all of the VDD inputs and returned through the VSS connections.

Note that numerous VDD and VSS pins on the device are routed to a variety of

internal connections, not all of which are common. Externally, however, all of

these pins should be connected in parallel to 5 V and ground planes, providing

very low impedance.

As mentioned previously, because of the inherent differences in operations

between program segments, it is usually appropriate to consider current for

each of the segments independently. In this way, peak current requirements

are readily obtained. Further, you can make average current calculations to

use in determining heating effects of power dissipation. These effects, in turn,

can be used to determine thermal management considerations.

9.5.1 Combining Supply Current Due to All Components

To determine the total supply current requirements for any given program

activity, calculate each of the appropriate components and combine them in

the following sequence:

1) Start with 130 mA quiescent current requirement.

2) Add 60 mA for internal operations unless the device is dormant, such as

when executing IDLE or using an RPTS instruction to perform internal

and/or external bus operations (see Internal Operations section on page

9-7). Internal or external bus operations executed via RPTS do not con-

tribute an internal operations power supply current component. Therefore,

current components in the next two steps may still be required, even

though the 60 mA is omitted.

3) If significant internal bus operations are being performed (see subsection

9.3.2, Internal Bus Operations on page 9-8), add the calculated current

value.

4) If external writes are being performed at high speed (see Section 9.4,

Current Requirements of Output Driver Components on page 9-12), then

add the values calculated for local and global bus current components.

5) Add DMA and communication port current requirements if they are used.
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The current value resulting from summing these components is the total

device current requirement for a given program activity.

9.5.2 Supply Voltage, Operating Frequency, and Temperature Dependencies

Three additional factors that affect current requirements are supply voltage

level, operating temperature, and operating frequency. However, these con-

siderations affect total supply current, not specific components (that is, internal

or external bus operations). Note that supply voltages, operating temperature,

and operating frequency must be maintained within required device specifica-

tions.

The scale factor for these dependencies is applied in the same manner as dis-

cussed in previous sections, once the total current for a particular program

segment has been determined. Figure 9–11 shows the relative scale factors

to be applied to the supply current values as a function of both VDD and operat-

ing frequency.

Figure 9–11. Current Versus Frequency and Supply Voltage
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Power-supply current consumption does not vary significantly with operating

temperature. However, you can use a scale factor of 2% normalized IDD per

50°C change in operating temperature to derate current within the specified

range noted in the TMS320C4x data sheet.
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Figure 9–12. Change in Operating Temperature (°C)
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This temperature dependence is shown graphically in Figure 9–12. Note that

a temperature scale factor of 1.0 corresponds to current values at 25°C, which

is the temperature at which all other references in the document are made.

9.5.3 Design Equation

The procedure for determining the power-supply current requirement can be

summarized in the following equation:

Itotal = ( Iqidle + Iiops + Iibus + Ixbusglobal + Ixbuslocal + IDMA + Icp) � F � V � T

where:

F is a scale factor for frequency

V is a scale factor for supply voltage

T is a scale factor for operating temperature

Table 9–2 describes the symbols used in the power-supply current equation

and gives the value and the number from which the value is obtained.
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Table 9–2.Current Equation Typical Values (FCLK  = 40 MHz)

Value

Symbol Min Typical Max Note Reference

Iqidle2 – 20 �A 50 �A Idle2 shutdown Figure 9–2

Iqidle 130 mA 130 mA 130 mA Internal idle Figure 9–2

Iiops 60 mA 60 mA 60 mA Branch to self internal Figure 9–2

Iibus 0 mA 50 mA 190 mA Data dependent Figure 9–3, Figure 9–4

Ixbusglobal (max) 0 mA 50 mA 280 mA Data and Cload
dependent

Figure 9–5, Figure 9–6,

Figure 9–9

Ixbuslocal (max) 0 mA 50 mA 280 mA Data and Cload
dependent

Figure 9–5, Figure 9–6,

Figure 9–9

IDMA 0 mA 50 mA 300 mA Data and source/

destination dependent

Figure 9–7

ICP 0 mA 50 mA 250 mA Data dependent Figure 9–8

Notes: 1) All values are scaled by frequency and supply voltage. The nominal tested frequency is 40 MHz.

2) Externally-driven signals are capacitive-load dependent.

3) It is unrealistic to add all of the maximum values, since it is impossible to run at those levels.

9.5.4 Average Current

Over the course of an entire program, some segments typically exhibit signifi-

cantly different levels of current for different durations. For example, a program

may spend 80% of its time performing internal operations and draw a current

of 250 mA; it may spend the remaining 20% of its time performing writes at full

speed to both buses and drawing 790 mA.

While knowledge of peak current levels is important in order to establish power

supply requirements, some applications require information about average

current. This is particularly significant if periods o

f high peak current are short in duration. You can obtain average current by

performing a weighted sum of the current due to the various independent pro-

gram segments over time. You can calculate the average current for the exam-

ple in the previous paragraph as follows:

I = 0.8 � 250 mA + 0.2 � 790 mA = 358 mA

Using this approach, you can calculate average current for any number of pro-

gram segments.

9.5.5 Thermal Management Considerations

Heating characteristics of the TMS320C4x are dependent upon power dis-

sipation, which, in turn, is dependent upon power supply current. When mak-
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ing thermal management calculations, you must consider the manner in which

power supply current contributes to power dissipation and to the TMS320C4x

package thermal characteristics’ time constant.

Depending on the sources and destinations of current on the device, some

current contributions to IDD  do not constitute a component of power dissipation

at 5 volts. That is to say, the TMS320C4x may be acting only as a switch, in

which case, the voltage drop is across a load and not across the ’C4x. If the

total current flowing into VDD  is used to calculate power dissipation at 5 volts,

erroneously large values for package power dissipation will be obtained. The

error occurs because the current resulting from driving a logic high level into

a DC load appears only as a portion of the current used to calculate system

power dissipation due to VDD  at 5 volts. Power dissipation is defined as:

P = V � I

where P is power, V is voltage, and I is current. If device outputs are driving

any DC load to a logic high level, only a minor contribution is made to power

dissipation because CMOS outputs typically drive to a level within a few tenths

of a volt of the power supply rails. If this is the case, subtract these current com-

ponents out of the TMS320C4x supply current value and calculate their con-

tribution to system power dissipation separately (see Figure 9–13).



 Calculation of Total Supply Current

9-25  ’C4x Power Dissipation

Figure 9–13. Load Currents
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Furthermore, external loads draw supply current (IDD ) only when outputs are

driven high, because when outputs are in the logic zero state, the device is

sinking current through VSS , which is supplied from an external source. There-

fore, the power dissipation due to this component will not contribute through

IDD  but will contribute to power dissipation with a magnitude of:

P = VOL � IOL

where VOL  is the low-level output voltage and IOL  is the current being sunk by

the output, as shown in Figure 9–13. The power dissipation component due

to outputs being driven low should be calculated and added to the total power

dissipation.

When outputs with DC loads are being switched, the power dissipation compo-

nents from outputs being driven high and outputs being driven low should be

averaged and added to the total device power dissipation. Power components

due to DC loading of the outputs should be calculated separately for each pro-

gram segment before average power is calculated.

Note that unused inputs that are left unconnected may float to a voltage level

that will cause the input buffer circuits to remain in the linear region, and there-

fore contribute a significant component to power supply current. Accordingly,

if you want absolute minimum power dissipation, you should make any unused

inputs inactive by either grounding or pulling them high. If several unused

inputs must be pulled high, they can be pulled high together through one resis-

tor to minimize component count and board space.
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When you use power dissipation values to determine thermal management

considerations, use the average power unless the time duration of individual

program segments is long. The thermal characteristics of the TMS320C40 in

the 325-pin PGA package are exponential in nature with a time constant on

the order of minutes. Therefore, when subjected to a change in power, the tem-

perature of the device package will require several minutes or more to reach

thermal equilibrium.

If the duration of program segments exhibiting high power dissipation values

is short (on the order of a few seconds) in comparison to the package thermal

characteristics’ time constant, use average power calculated in the same man-

ner as average current described in the previous section. Otherwise, calculate

maximum device temperature on the basis of the actual time required for the

program segments involved. For example, if a particular program segment

lasts for 7 minutes, the device essentially reaches thermal equilibrium due to

the total power dissipation during the period of device activity.

Note that the average power should be determined by calculating the power

for each program segment (including all considerations described above) and

performing a time average of these values, rather than simply multiplying the

average current by VDD , as determined in the previous subsection.

Calculate specific device temperature by using the TMS320C4x thermal

impedance characteristics included in the TMS320C4x data sheet.
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9.6 Example Supply Current Calculations

An FFT represents a typical DSP algorithm. The FFT code used in this calcula-

tion processes data in the RAM blocks. The entire algorithm consists mainly

of internal bus operations and hence includes quiescent and, in general, inter-

nal operations. At the end of the processing, the results are written out on the

global and local bus. Therefore, the algorithm exhibits a higher current require-

ment during the write portion where the external bus is being used significantly.

9.6.1 Processing

The processing portion of the algorithm is 95% of the total algorithm. During

this portion, the power-supply current is required for the internal circuitry only.

Data is processed in several loops that make up the majority of the algorithm.

During these loops, two operands are transferred on every cycle. The current

required for internal bus usage, then, is 60 mA (from Figure 9–3). The data is

assumed to be random. A data value scale factor of 0.93 is used (from

Figure 9–4). This value scales 60 mA, yielding 55.8 mA for internal bus opera-

tions. Adding 55.8 mA to the quiescent current requirement and internal opera-

tions current requirement yields a current requirement of 245.8 mA for the

major portion of the algorithm.

I = Iq + Iiops + Iibus
I = 130 mA + 60 mA + (60 mA) (0.93)

  = 245.8 mA

9.6.2 Data Output

The portion of the algorithm corresponding to writing out data is approximately

5% of the total algorithm. Again, the data that is being written is assumed to

be random. From Figure 9–4 and Figure 9–10, scale factors of 0.93 and 0.8

are used for derating due to data value dependency for internal and local

buses, respectively. During the data dump portion of the code, a load and a

store are performed every cycle; however, the parallel load/store instruction

is in an RPTS loop. Therefore, there is no contribution due to internal opera-

tions, because the instruction is fetched only once. The only internal contribu-

tions are due to quiescent and internal bus operations. Figure 9–5 indicates

a 23-mA current contribution due to writes every available cycle. Therefore,

the total contribution due to this portion of the code is:

I = Iq + Iibus + Ixbus

or

I = 130 mA + (60 mA) (0.93) + 85 mA + (23 mA) (0.8)

  = 289.2 mA
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9.6.3 Average Current

The average current is derived from the two portions of the algorithm. The pro-

cessing portion took 95% of the time and required about 245.8 mA; the data

dump portion took the other 5% and required about 411.6 mA. The average

is calculated as:

Iavg = (0.95) (245.8 mA) + (0.05) (289.2 mA)

   = 247.97 mA

From the thermal characteristics specified in the TMS320C4x User’s Guide,

it can be shown that this current level corresponds to a case temperature of

28°C. This temperature meets the maximum device specification of 85°C and

hence requires no forced air cooling.

9.6.4 Experimental Results

A photograph of the power-supply current for the FFT, using a 40-MHz system

clock, is shown in Appendix A. During the FFT processing, the current varied

between 190 and 220 mA. The current during external writes had a peak of 230

mA, and the average current requirement as measured on a digital multimeter

was 205 mA. Scaling those results to the 50-MHz calculations yielded results

that were close to the actual measured power-supply current.
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9.7 Design Considerations

Designing systems for minimum power dissipation involves reducing device

operating current requirements due to signal switching rate, capacitive load-

ing, and other effects. Selective consideration of these effects makes it pos-

sible to optimize system performance while minimizing power consumption.

This section describes current reduction techniques based on operating cur-

rent dependencies of the device as discussed in previous sections of this doc-

ument.

9.7.1 System Clock and Signal Switching Rates

Since current (and therefore, power) requirements of CMOS devices are

directly proportional to switching frequency, one potential approach to mini-

mizing operating power is to minimize system clock frequency and signal

switching rates. Although performance is often directly proportional to system

clock and signal switching rates, tradeoffs can be made in both areas to

achieve an optimal balance between power usage and performance in the

design of a system.

If reducing power is a primary goal, and a given system design does not have

particularly demanding performance requirements, the system clock rate can

be reduced with the corresponding savings in power. Minimum power is real-

ized when system clock rates are only as fast as necessary to achieve required

system performance. Additionally, if overall system clock rates cannot be

reduced, an alternative approach to power reduction is to reduce clock speed

wherever possible during periods of inactivity.

Also, the appropriate choice of clock generation approach will ensure mini-

mum system power dissipation. The use of an external oscillator rather than

the on-chip oscillator can result in lower power device and system power dis-

sipation levels. As described previously, the internal oscillator can require as

much as 10 mA when operating at 40 MHz. If you use an external oscillator

that requires less than 10 mA for clock generation, overall system power is

reduced.

When considering switching rates of signals other than the system clock, the

main consideration is to minimize switching. Specifically, any unnecessary

switching should be avoided. Outputs or inputs that are unused should either

be disabled, tied high, or grounded, whichever is appropriate. Additionally, out-

puts connected to external circuitry should drive other power dissipation ele-

ments only when absolutely necessary.
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9.7.2 Capacitive Loading of Signals

Current requirements are also directly proportional to capacitive loading.

Therefore, all capacitive loading should be minimized. This is especially signif-

icant for device outputs.

The approaches to minimize capacitive loading are consistent with efficient PC

board layout and construction practices. Specifically, signal runs should be as

short as possible, especially for signals with high switching rates. Also, signals

should not run long distances across PC boards to edge connectors unless

absolutely necessary.

Note that the buffering of device outputs that must drive high capacitive loads

reduces supply current for the TMS320C40, but this current is translated to the

buffering device. Whether or not this is a valid tradeoff must be determined at

the system level. The two main considerations are: 1) whether the power

required by the buffers is more or less than the power required from the ’C40

to drive the load in question, and 2) whether or not off-loading the power to the

buffers has any implications with respect to system power-down modes. It may

be desirable to use buffers to drive high capacitive loads, even though they

may require more current than the TMS320C40, especially in cases where

part of the system may be powered down but the TMS320C40 is still required

to interface to other low capacitance loads.

9.7.3 DC Component of Signal Loading

In order to achieve lowest device current requirements, the internal and exter-

nal DC load component of device input and output signal loading must also be

minimized .

Any device inputs that are unused and left floating may cause excessively high

DC current to be drawn by their input buffer circuitry. This occurs because if

an input is left unconnected, the voltage on the input may float to a level that

causes the input buffer to be biased at a point within its range of linear opera-

tion. This can cause the input buffer circuit to draw a significant DC current

directly from VDD to ground. Therefore, any unused device inputs should be

pulled up to VDD via a resistor pullup of nominally 20 kΩ, or driven high with

an unused gate. Input-only pins that are not used can be pulled up in parallel

with other inputs of the same type with a single gate or resistor to minimize sys-

tem component count. In this case, up to 15 or more standard device inputs

can be pulled up with a single resistor.

Any device I/O pins that are unused should be selected as outputs. This avoids

the requirement for pull-ups (to ensure that the I/O input stage is not biased

in the linear region) and therefore eliminates an unnecessary current compo-

nent.
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For any device output, any DC load present is directly reflected in the system’s

power-supply current. Therefore, DC loading of outputs should be reduced to

a minimum. If DC currents are being sourced from the address bus outputs,

the address bus should be set to a level that minimizes the current through the

external load. This can be accomplished by performing a dummy read from an

external address.

For I/O pins that must be used in both the input and output modes, individual

pullup resistors of nominally 20 kΩ should be used to ensure minimum power

dissipation if these pins are not always driven to a valid logic state. This is par-

ticularly true of the data-bus pins. When the bus is not being driven explicitly,

it is left floating, which can cause excessively high currents to be drawn on the

input buffer section of all 64 bits of the bus. In this case, because all 64 data

bus bits are normally used independently in most applications, each data-bus

pin should be pulled up with a separate resistor for minimum power.
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Development Support and Part Order Information

This chapter provides development support information, socket descriptions,

device part numbers, and support tool ordering information for the ’C4x.

Each ’C4x support product is described in the TMS320 Family Development

Support Reference Guide (literature number SPRU011). In addition, more

than 100 third-party developers offer products that support the TI TMS320

family. For more information, refer to the TMS320 Third-Party Reference

Guide (literature number SPRU052).

For information on pricing and availability, contact the nearest TI Field Sales

Office or authorized distributor. See the list at the back of this book.
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10.1 Development Support

Texas Instruments offers an extensive line of development tools for the

TMS320C4x generation of DSPs, including tools to evaluate the performance

of the processors, generate code, develop algorithm implementations, and ful-

ly integrate and debug software and hardware modules.

The following products support the development of ’C4x applications:

Code Generation Tools

� The optimizing ANSI C compiler translates ANSI C language directly into

highly optimized assembly code. You can then assemble and link this code

with the TI assembler/ linker, which is shipped with the compiler. It sup-

ports both ’C3x and ’C4x assembly code. This product is currently avail-

able for PCs (DOS, DOS extended memory, OS/2), VAX/VMS and SPARC

workstations. See the TMS320 Floating-Point DSP Optimizing C Compiler

User’s Guide (SPRU034) for detailed information about this tool.

� The assembler/linker converts source mnemonics to executable object

code. It supports both ’C3x and ’C4x assembly code. This product is cur-

rently available for PCs (DOS, DOS extended memory, OS/2). The

’C3x/’C4x assembler for the VAX/VMS and SPARC workstations is only

available as part of the optimizing ’C3x/’C4x compiler. See the TMS320

Floating-Point DSP Assembly Language Tools User’s Guide (SPRU035)

for detailed information about available assembly-language tools.

� The digital filter design package helps you design digital filters.

System Integration and Debug Tools

� The simulator simulates (via software) the operation of the ’C4x and can

be used in C and assembly software development. This product is current-

ly available for PCs (DOS, Windows) and SPARC workstations. See the

TMS320C4x C Source Debugger User’s Guide (SPRU054) for detailed in-

formation about the debugger.

� The XDS510 emulator performs full-speed in-circuit emulation with the

’C4x, providing access to all registers as well as to internal and external

memory of the device. It can be used in C and assembly software develop-

ment and has the capability to debug multiple processors. This product is

currently available for PCs (DOS, Windows, OS/2) and SPARC worksta-

tions. This product includes the emulator board (emulator box, power sup-

ply, and SCSI connector cables in the SPARC version), the ’C4x C Source

Debugger and the JTAG cable.

Because ’C3x and ’C5x XDS510 emulators also come with the same emu-

lator board (or box) as the ’C4x, you can buy the ’C4x C Source Debugger
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Software as a separate product called ’C4x C Source Debugger Conver-

sion Software. This enables you to debug ’C3x/’C4x applications with the

same emulator board. The emulator cable that comes with the ’C3x

XDS510 emulator cannot be used with the ’C4x. A JTAG emulation con-

version cable (see Section 10.3) is needed instead. The emulator cable

that comes with the ’C5x XDS510 emulator can also be used for the ’C4x

without any restriction. See the TMS320C4x C Source Debugger User’s

Guide (SPRU054) for detailed information about the ’C4x emulator.

� The parallel processing development system (PPDS) is a stand-alone

board with four ’C4xs directly connected to each other via their commu-

nication ports. Each ’C4x has 64K-words SRAM and 8K-byte EPROM as

local memory, and they all share a 128K-word global SRAM. See the

TMS320C4x Parallel Processing Development System Technical Refer-

ence (SPRU075) for detailed information about the PPDS.

� The emulation porting kit (EPK) enables you to integrate emulation

technology directly into your system without the need of an XDS510

board. This product is intended to be used by third parties and high-vol-

ume board manufacturers and requires a licensing agreement with Texas

Instruments.

10.1.1 Third-Party Support

The TMS320 family is supported by products and services from more than 100
independent third-party vendors and consultants. These support products
take various forms (both as software and hardware), from cross-assemblers,
simulators, and DSP utility packages to logic analyzers and emulators. The ex-

pertise of those involved in support services ranges from speech encoding and
vector quantization to software/hardware design and system analysis.

See the TMS320 Third-Party Support Reference Guide (literature number
SPRU052) for a more detailed description of services and products offered by
third parties.

10.1.2 The DSP Hotline

For answers to TMS320 technical questions on device problems, develop-
ment tools, documentation, upgrades, and new products, you can contact the
DSP hotline via:

� Phone: (713)274–2320 Monday through Friday from 8:30 a.m. to 5:00

p.m. central time

� Fax: (713)274–2324. (US DSP Hotline), +33–1–3070–1032 (European

DSP hotline)



Development Support

 10-4

� Electronic Mail: 4389750@mcimail.com

To ask about third-party applications and algorithm development packages,
contact the third party directly. Refer to the TMS320 Third-Party Support Ref-
erence Guide (SPRU052) for addresses and phone numbers.

Extensive DSP documentation is available; this includes data sheets, user’s
guides, and application reports. Contact the hotline for information on litera-
ture that you can request from the Literature Response Center,

(800)477–8924.

The DSP hotline does not provide pricing information. Contact the nearest

TI Field Sales Office for prices and availability of TMS320 devices and support

tools.

10.1.3 The Bulletin Board Service (BBS)

The TMS320 DSP Bulletin Board Service (BBS) is a telephone-line computer

service that provides information on TMS320 devices, specification updates

for current or new devices and development tools, silicon and development

tool revisions and enhancements, new DSP application software as it be-

comes available, and source code for programs from any TMS320 user’s

guide.

You can access the BBS via:

� Modem: (300-, 1200-, or 2400-bps) dial (713)274–2323. Set your modem

to 8 data bits,1 stop bit, no parity.

To find out more about the BBS, refer to the TMS320 Family Development
Support Reference Guide (literature number SPRU011).

10.1.4 Internet Services

Texas Instruments offers two Internet-accessible services for DSP support: an

ftp site, and a www site.

� World-wide web: Point your browser at http://www.ti.com to access TI’s

web site. At the site, you can follow links to find product information, online

literature, an online lab, and the 320 Hotline online.

� FTP: Use anonymous ftp to ti.com (Internet port address 192.94.94.1) to

access copies of the files found on the BBS. The BBS files are located in

the subdirectory called mirrors.
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10.1.5 Technical Training Organization (TTO) TMS320 Workshops

’C4x DSP Design Workshop. This workshop is tailored for hardware and soft-

ware design engineers and decision-makers who will be designing and utiliz-

ing the ’C4x generation of DSP devices. Hands-on exercises throughout the

course give participants a rapid start in developing ’C4x design skills. Micro-

processor/assembly language experience is required. Experience with digital

design techniques and C language programming experience is desirable.

These topics are covered in the ’C4x workshop:

� ’C4x architecture/instruction set

� Use of the PC-based software simulator

� Use of the ’C3x/’C4x assembler/linker

� C programming environment

� System architecture considerations

� Memory and I/O interfacing

� Development support

For registration information, pricing, or to enroll, call (800)336–5236, ext.

3904.
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10.2 Sockets

Table 10–1 contains available sockets that accept the 325-pin ’C40 pin grid

array (PGA) and the 304–pin ’C44 Plastic Quad Flatpack (PQF). Table 10–2

lists the phone numbers of the manufacturers listed in Table 10–1.

Table 10–1. Sockets that Accept the 325-pin ’C40 and the 304-pin ’C44

Manufacturer Type Part Number

Advanced Interconnections C40-wire-wrap socket 3919

AMP C40-tool-activated ZIF socket AMP 382533–9

AMP Actuation tool for AMP382533–9 AMP 854234–1

AMP C40-handle-activated ZIF socket AMP 382320–9

AMP C40-PGA ZIF AMP 55291–2

Emulation Technology C40-logic analyzer socket BZ6–325–H6A35–TMS320C40Z

Emulation Technology C40-wire-wrap socket AB–325–H6A35Z–P13–M

Mark Eyelet C40-wire-wrap socket MP325–73311D16

Yamaichi TMS320C44 PDB Socket (304 pins) ic201–3044–004

Table 10–2. Manufacturer Phone Numbers

Manufacturer Phone Number

AMP (717) 564–0100

Advanced Interconnections (401) 823–5200

Emulation Technology (408) 982–0660

Mark Eyelet (203) 756–8847

Yamaichi (408) 456–0797

The remainder of this section describes two available sockets that accept the

’C4x pin grid array (PGA). Both sockets feature zero insertion force (ZIF):

� A tool-activated ZIF socket (TAZ)

� A handle-activated ZIF socket (HAZ)

The sockets described herein are manufactured by AMP Incorporated.
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10.2.1 Tool-Activated ZIF PGA Socket (TAZ)

Figure 10–1. Tool-Activated ZIF Socket

2.260 in. Max. 2.061 in. Max.

0.350 in. Max.

Description:

AMP part number: 382533–9

Pin positions: 325

Soldertail length: 0.170 in. for PC boards 0.125 in.
thick (other tail lengths available)

Actuator tool 354234–1

Features:

� Slightly larger than a PGA device

� Easy package loading because of large funnel entry

� Zero insertion force

� Contact wiping action during insertion ensures clean contact points

� Spring-loaded cover ensures proper loading

� Can be used with robotic insertion and removal

� Horizontal vs. vertical socket forces prevent damage to the device
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10.2.2 Handle-Activated ZIF PGA Socket (HAZ)

Figure 10–2. Handle-Activated ZIF Socket

0.350 in. Max.

0.650 in. Max.

2.700 in. Max.
2.875 in. Max.

Description:

AMP part number: 382320–9

Pin positions: 325

Solder tail length: 0.170 in. for PC boards 0.125 in.
thick (other tail lengths available)

Features:

� Can be used for test and burn-in

� Spring contacts are normally closed

� Easy package loading because of large funnel entry

� Zero insertion force

� Contact wiping action during socket closing ensures clean contact points

� Maximum Operating temperature is 160° C (to allow burn-in capability)
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10.3 Part Order Information

This section describes the part numbers of ’C4x devices, development support

hardware, and software tools.

10.3.1 Nomenclature

To designate the stages in the product development cycle, Texas Instruments

assigns prefixes to the part numbers of all TMS320 devices and support tools.

Each TMS320 device has one of three prefixes: TMX, TMP, or TMS. Each sup-

port tool has one of two possible prefix designators: TMDX or TMDS. These

prefixes represent evolutionary stages of product development from engineer-

ing prototypes (TMX/TMDX) through fully qualified production devices and

tools (TMS/TMDS). This development flow is defined below.

Device Development Evolutionary Flow:

TMX The part is an experimental device that is not necessarily representa-
tive of the final device’s electrical specifications.

TMP The part is a device from a final silicon die that conforms to the device’s
electrical specifications but has not completed quality and reliability
verification.

TMS The part is a fully qualified production device.

Support Tool Development Evolutionary Flow:

TMDX The development-support product that has not yet completed Texas
Instruments internal qualification testing.

TMDS The development-support product is a fully qualified development
support product.

TMX and TMP devices and TMDX development support tools are shipped with

the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development support tools have been fully character-

ized, and the quality and reliability of the device has been fully demonstrated.

Texas Instruments standard warranty applies to these products.

Note:

It is expected that prototype devices (TMX or TMP) have a greater failure rate
than standard production devices. Texas Instruments recommends that
these devices not be used in any production system, because their expected
end-use failure rate is still undefined. Only qualified production devices
should be used.
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TI device nomenclature also includes the device family name and a suffix. This

suffix indicates the package type (for example, N, FN, or GB) and temperature

range (for example, L). Figure 10–3 provides a legend for reading the com-

plete device name for any TMS320 family member.

Figure 10–3. Device Nomenclature

PREFIX

TEMPERATURE RANGE
(AMBIENT)

TMS 320 C 40 GF L

SMJ = Ceramic QML
TMX = experimental device
TMP = prototype device
TMS = qualified device
SMQ = Plastic QML

DEVICE FAMILY
320 = TMS320 Family

TECHNOLOGY

E = CMOS EPROM

A = -40 to 85°C
H = 0 to 50°C
L = 0 to 70°C
M = -55 to 125°C
S = -55 to 100°C

PACKAGE TYPE

FD = ceramic leadless CC
FN = plastic leaded CC
FZ = ceramic CER-QUAD
GB = 181-pin ceramic PGA
GE = 181-pin ceramic PGA
GF = 325-pin ceramic PGA
HFH = 352-leaded CER-QFP
J = ceramic DIP
JD = ceramic DIP, side-brazed
N = plastic DIP
TA = tape automated bonding

      (encapsulated)
TB = tape automated bonding

       (bare die)
KGD = known good die
PDB = 304-pin plastic quad 

       flatpack

C = CMOS

C1x DSP:
10 14
15 16
17

C2x DSP:
25 26
28

C3x DSP:
30 31
32

C4x DSP:
40
44

C5x DSP:
50 51
52 53

DEVICE

 

10.3.2 Device and Development Support Tools

Table 10–3 lists ’C4x device part numbers. Table 10–4 lists the development

support tools available for the ’C4x DSP, their part numbers, and the platform

on which they run.
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Table 10–3. Device Part Numbers

Device Part Number Voltage Operating

Frequency

Comm

Ports

Package

TMS320C40GFL 5V 50 MHz/40 ns 6 325-pin ceramic PGA

TMS320C40GFL60 5V 60 MHz/33 ns 6 325-pin ceramic PGA

TMS320C44PDB50 5V 50 MHz/40 ns 4 304-pin PQFP

TMS320C44PDB60 5V 60 MHz/33 ns 4 304-pin PQFP

SMJ320C40GFM40 5V 40MHz/50 ns 6 325-pin ceramic PGA

SMJ320C40GFM50 5V 50MHz/40 ns 6 325-pin ceramic PGA

SMJ320C40HFHM40 5V 40MHz/50 ns 6 352-lead ceramic PGA

SMJ320C40HFHM50 5V 50MHz/40 ns 6 352-lead ceramic PGA

SMJ320C40TAM40 5V 40MHz/50ns 6 324 pad TAB tape (encapsulated)

SMJ320C40TBM40 5V 40MHz/50ns 6 324 pad TAB tape (bare die)

TMS320C40TAL50 5V 50MHz/40ns 6 324 pad TAB tape (encapsulated)

SMJ320C40TAM50 5V 50MHz/40ns 6 324 pad TAB tape (encapsulated)

SMJ320C40TBM50 5V 50MHz/40ns 6 324 pad TAB tape (bare die)

TMS320C40TAL60 5V 60MHz/33ns 6 324 pad TAB tape (encapsulated)

SMJ320C40KGDM40 5V 40MHz/50ns 6 Known Good Die

SMJ320C40KGDM50 5V 50MHz/40ns 6 Known Good Die

TMS320C40KGDL50 5V 50MHz/40ns 6 Known Good Die

TMS320C40KGDL60 5V 60MHz/33ns 6 Known Good Die
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Table 10–4. Development Support Tools Part Numbers

Development Tool Part Number Platform

C Compiler/Assembler/Linker TMDS3243855-02 PC (DOS, OS/2)

C Compiler/Assembler/Linker TMDS3243255-08 VAX (VMS)

C Compiler/Assembler/Linker TMDS3243555-08 SPARC (Sun OS)

Assembler/Linker TMDS3243850-02 PC (DOS)

Simulator (C language) TMDS3244851-02 PC (DOS, Windows)

Simulator (C language) TMDS3244551-09 SPARC (Sun OS)

Tartan Floating Point Library 320FLO-PC-C40 PC (DOS)

Tartan Floating Point Library 320FLO-SUN-C40 SPARC (Sun OS)

Digital Filter Design Package DFDP PC (DOS)

C Source Debugger Conversion Software TMDS3240140 PC (XDS510)

C Source Debugger Conversion Software TMDS3240640 Sun (XDS510WS)

Emulation Porting Kit TMDX3240040† ––

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker TAR–CCM–PC PC (DOS)

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker TAR–CCM–SP SPARC

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker/
Simulator

TAR–SIM–PC PC (DOS)

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker/
Simulator

TAR–SIM–SP SPARC

’C3x/’C4x Tartan C/C++ XDS510 Debugger TAR–DEG–XDS–PC PC (DOS, Windows)

’C3x/’C4x Tartan C/C++ XDS510 Debugger TAR–DEG–XDS–SP SPARC (Sun OS)

XDS510 Emulator‡ TMDS3260140 PC (DOS, OS/2, Windows)

XDS510WS Emulator§ TMDS3260640 Sun (SPARC SCSI)

PC/Sparc JTAG Emulation Cable TMDS3080001 XDS510/XDS510WS

Parallel Processing Development System TMDX3261040 XDS510/XDS510WS

† Requires licensing agreement.
‡ Includes XDS510WS box, SCSI cable, power supply, and JTAG cable. TMDS3240640 C-source debugger software not

included.
§ Includes XDS510 board and JTAG cable. TMDS3240140 C-source debugger software not included.
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XDS510 Emulator Design Considerations

This chapter explains the design requirements of the XDS510 emulator with

respect to JTAG designs, and discusses the XDS510 cable (manufacturing

part number 2617698-0001). This cable is identified by a label on the cable pod

marked JTAG 3/5V and supports both standard 3-volt and 5-volt target system

power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which

is based on the IEEE 1149.1 standard.
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11.1 Designing Your Target System’s Emulator Connector (14-Pin Header)

JTAG target devices support emulation through a dedicated emulation port.

This port is a superset of the IEEE 1149.1 standard and is accessed by the

emulator. To communicate with the emulator, your target system must have a

14-pin header (two rows of seven pins) with the connections that are shown

in Figure 11–1. Table 11–1 describes the emulation signals.

Figure 11–1. 14-Pin Header Signals and Header Dimensions

TDI 3 4 GND

TDO 7 8 GND

TMS 1 2 TRST

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1

† While the corresponding female position on the cable connector is plugged to prevent improper
connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the sche-
matics and wiring diagrams in this document.

Table 11–1. 14-Pin Header Signal Descriptions

Signal Description
Emulator†

State
Target†

State

TMS Test mode select O I

TDI Test data input O I

TDO Test data output I O

TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod. This
signal can be used to drive the system test
clock

O I

TRST‡ Test reset O I

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

PD(VCC) Presence detect. Indicates that the emula-
tion cable is connected and that the target is
powered up. PD should be tied to VCC in the
target system.

I O

TCK_RET Test clock return. Test clock input to the
emulator. May be a buffered or unbuffered
version of TCK.

I O

GND Ground

† I = input; O = output
‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)
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Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part numbers:  65610–114

 65611–114

 67996–114

 67997–114

11.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port

(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS/TDI inputs are sampled on the rising edge of the TCK signal of

the device.

� The TDO output is clocked from the falling edge of the TCK signal of the

device.

When these devices are daisy-chained together, the TDO of one device has

approximately a half TCK cycle setup to the next device’s TDI signal. This type

of timing scheme minimizes race conditions that would occur if both TDO and

TDI were timed from the same TCK edge. The penalty for this timing scheme

is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-

tor) devices. Instead, it states that it expects a bus master to provide bus slave

compatible timings. The XDS510 provides timings that meet the bus slave

rules.

11.3 IEEE 1149.1 Standard

For more information concerning the IEEE 1149.1 standard, contact IEEE

Customer Service:

Address: IEEE Customer Service

445 Hoes Lane, PO Box 1331

Piscataway, NJ  08855-1331

Phone: (800) 678–IEEE in the US and Canada

(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667         Telex:       833233
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11.4 JTAG Emulator Cable Pod Logic

Figure 11–2 shows a portion of the emulator cable pod. These are the function-

al features of the pod:

� Signals TDO and TCK_RET can be parallel-terminated inside the pod if

required by the application. By default, these signals are not terminated.

� Signal TCK is driven with a 74LVT240 device. Because of the high-current

drive (32 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied

to TCK_RET, then you can use the parallel terminator in the pod.

� Signals TMS and TDI can be generated from the falling edge of TCK_RET,

according to the IEEE 1149.1 bus slave device timing rules.

� Signals TMS and TDI are series-terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You may also provide your

own test clock for greater flexibility.

Figure 11–2. JTAG Emulator Cable Pod Interface

100 Ω

TL7705A
RESIN

270 Ω

JP2

180 Ω

TCK_RET (Pin 9)�

EMU1 (Pin 14)

EMU0 (Pin 13)

74AS1034

GND (Pins 4,6,8,10,12)

TRST (Pin 2)

TCK (Pin 11)�

10.368 MHz

33 Ω

33 Ω

TDI (Pin 3)

TMS (Pin 1)

TDO (Pin 7)

74LVT240

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD(VCC) (Pin 5)

+5 V

+5 V

74AS1004

Y

Y

Y

Y

A

† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided

as an optional target system test clock source.
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11.5 JTAG Emulator Cable Pod Signal Timing

Figure 11–3 shows the signal timings for the emulator cable pod. Table 11–2

defines the timing parameters. These timing parameters are calculated from

values specified in the standard data sheets for the emulator and cable pod

and are for reference only. Texas Instruments does not test or guarantee these

timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-

zation. TCK is provided as an optional target system test clock source.

Figure 11–3. JTAG Emulator Cable Pod Timings

TDO

TMS/TDI

TCK_RET

6
5

4

3
2

1

1.5 V

Table 11–2. Emulator Cable Pod Timing Parameters

No.  Reference   Description Min Max Units

1 tc(TCK) TCK_RET period 35 200 ns

2 tw(TCKH) TCK_RET high-pulse duration 15 ns

3 tw(TCKL) TCK_RET low-pulse duration 15 ns

4 td(TMS) Delay time, TMS/TDI valid from TCK_RET low 6 20 ns

5 tsu(TDO) TDO setup time to TCK_RET high 3 ns

6 th(TDO) TDO hold time from TCK_RET high 12 ns
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11.6 Emulation Timing Calculations

The following examples help you calculate emulation timings in your system.

For actual target timing parameters, see the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4  
(40%)

Given in Table 11–2 ( on page 11-5):

td(TMSmax) Emulator TMS/TDI delay from TCK_RET
low, maximum

20 ns

tsu(TDOmin) TDO setup time to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS/TDI path, called tpd(TCK_RET–TMS/TDI)
� The TCK_RET-to-TDO path, called tpd(TCK_RET–TDO)

Of the following two cases, the worst-case path delay is calculated to deter-

mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, TMS/TDI timed from TCK_RET low.

t
pd �TCK_RET–TMS�TDI� �

�t
d �TMSmax� � t

su �TTMS��
t�TCKfactor�

�
[20ns � 10ns]

0.4

� 75ns (13.3 MHz)

t
pd �TCK_RET–TDO� �

�t
d �TTDO� � t

su �TDOmin��
t�TCKfactor�

�
[15ns � 3ns]

0.4

� 45ns (22.2 MHz)

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.
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Case 2: Single/multiprocessor, TMS/TDI/TCK buffered input, TDO buffered output,

TMS/TDI timed from TCK_RET low. 

t
pd (TCK_RET–TMS�TDI)

�
�td (TMSmax)

� tsu (TTMS)
� t (bufskew)

�
t�TCKfactor�

�
�20ns � 10ns � 1.35ns�

0.4

� 78.4ns (12.7 MHz)

t
pd (TCK_RET–TDO)

�
�td (TTDO)

� tsu (TDOmin) � td (bufmax)
�

t �TCKfactor�

� 70ns (14.3 MHz)

�
[15ns � 3ns � 10ns]

0.4

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMU0–1 lines

can go from a logic low level to a logic high level in less than 10 µs. This can be

calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� ×16 × 15 pF)

= 5.64 µs
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11.7 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator

and the JTAG target system. Depending upon the situation, you must supply

the correct signal buffering, test clock inputs, and multiple processor intercon-

nections to ensure proper emulator and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can

be either input or output (I/O). In general, these two pins are used as both input

and output in multiprocessor systems to handle global run/stop operations.

EMU0 and EMU1 signals are applied only as inputs to the XDS510 emulator

header.

11.7.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is

greater than six inches, the emulation signals must be buffered. If the distance

is less than six inches, no buffering is necessary. The following illustrations

depict these two situations.

� No signal buffering. In this situation, the distance between the header

and the JTAG target device should be no more than six inches.

VCC

Emulator Header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 Inches or Less

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to

provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for

most applications.
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� Buffered transmission signals. In this situation, the distance between

the emulation header and the processor is greater than six inches. Emula-

tion signals TMS, TDI, TDO, and TCK_RET are buffered through the same

package.

VCC

Emulator Header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

� The EMU0 and EMU1 signals must have pullup resistors connected to

VCC to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is

suggested for most applications.

� The input buffers for TMS and TDI should have pullup resistors con-

nected to VCC to hold these signals at a known value when the emula-

tor is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� To have high-quality signals (especially the processor TCK and the

emulator TCK_RET signals), you may have to employ special care

when routing the PWB trace. You also may have to use termination

resistors to match the trace impedance. The emulator pod provides

optional internal parallel terminators on the TCK_RET and TDO. TMS

and TDI provide fixed series termination.

� Since TRST is an asynchronous signal, it should be buffered as

needed to insure sufficient current to all target devices.
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11.7.2 Using a Target-System Clock

Figure 11–4 shows an application with the system test clock generated in the

target system. In this application, the TCK signal is left unconnected.

Figure 11–4. Target-System-Generated Test Clock
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Note: When the TMS/TDI lines are buffered, pullup resistors should be used to hold the buffer

inputs at a known level when the emulator cable is not connected.

There are two benefits to having the target system generate the test clock:

� The emulator provides only a single 10.368-MHz test clock. If you allow

the target system to generate your test clock, you can set the frequency

to match your system requirements.

� In some cases, you may have other devices in your system that require

a test clock when the emulator is not connected. The system test clock

also serves this purpose.
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11.7.3 Configuring Multiple Processors

Figure 11–5 shows a typical daisy-chained multiprocessor configuration,

which meets the minimum requirements of the IEEE 1149.1 specification. The

emulation signals in this example are buffered to isolate the processors from

the emulator and provide adequate signal drive for the target system. One of

the benefits of this type of interface is that you can generally slow down the test

clock to eliminate timing problems. You should follow these guidelines for

multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals should be buffered

through the same physical package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-

nected to VCC to hold these signals at a known value when the emulator

is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide

isolation. These are not critical signals and do not have to be buffered

through the same physical package as TMS, TCK, TDI, and TDO. Unbuf-

fered and buffered signals are shown in this section (page 11-8 and page

11-9).

Figure 11–5. Multiprocessor Connections
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11.8 Mechanical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable,

an active cable pod, and a short section of jacketed cable that connects to the

target system. The overall cable length is approximately 3 feet 10 inches.

Figure 11–6 and Figure 11–7 (page 11-13) show the mechanical dimensions

for the target cable pod and short cable. Note that the pin-to-pin spacing on

the connector is 0.100 inches in both the X and Y planes. The cable pod box

is nonconductive plastic with four recessed metal screws.

Figure 11–6. Pod/Connector Dimensions
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Refer to Figure 11–7.

Emulator Cable Pod

Short, Jacketed Cable

Connector

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.
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Figure 11–7. 14-Pin Connector Dimensions
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11.9 Emulation Design Considerations

This section describes the scan path linker (SPL), which can simultaneously

add all four secondary JTAG scan paths to the main scan path. It also de-

scribes how to use the emulation pins and configure multiple processors.

11.9.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG

emulation scan path into smaller, logically connected groups of 4 to 16

devices. As described in the Advanced Logic and Bus Interface Logic Data

Book (literature number SCYD001), the SPL is compatible with the JTAG

emulation scanning. The SPL is capable of adding any combination of its four

secondary scan paths into the main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance

and isolation than a single scan path. Since an SPL has the capability of adding

all secondary scan paths to the main scan path simultaneously, it can support

global emulation operations, such as starting or stopping a selected group of

processors.

TI emulators do not support the nesting of SPLs (for example, an SPL

connected to the secondary scan path of another SPL). However, you can

have multiple SPLs on the main scan path.

Although the ACT8999 scan path selector is similar to the SPL, it can add only

one of its secondary scan paths at a time to the main JTAG scan path. Thus,

global emulation operations are not assured with the scan path selector. For

this reason, scan path selectors are not supported.

You can insert an SPL on a backplane so that you can add up to four device

boards to the system without the jumper wiring required with nonbackplane

devices. You connect an SPL to the main JTAG scan path in the same way you

connect any other device. Figure 11–8 shows you how to connect a secondary

scan path to an SPL.
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Figure 11–8. Connecting a Secondary JTAG Scan Path to an SPL
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The TRST signal from the main scan path drives all devices, even those on

the secondary scan paths of the SPL. The TCK signal on each target device

on the secondary scan path of an SPL is driven by the SPL’s DTCK signal. The

TMS signal on each device on the secondary scan path is driven by the respec-

tive DTMS signals on the SPL.

DTDO on the SPL is connected to the TDI signal of the first device on the sec-

ondary scan path. DTDI on the SPL is connected to the TDO signal of the last

device in the secondary scan path. Within each secondary scan path, the TDI

signal of a device is connected to the TDO signal of the device before it. If the

SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;

if signal degradation is a problem, you may need to buffer both the TRST and

DTCK signals. Although less likely, you may also need to buffer the DTMSn

signals for the same reasons.
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11.9.2 Emulation Timing Calculations for SPL 

The following examples help you to calculate the emulation timings in the SPL

secondary scan path of your system. For actual target timing parameters, see

the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4   
(40%)

Given in the SPL data sheet:

td(DTMSmax) SPL DTMS/DTDO delay from TCK
low, maximum

31 ns

tsu(DTDLmin) DTDI setup time to SPL TCK
high, minimum

7 ns

td(DTCKHmin) SPL DTCK delay from TCK
high, minimum

2 ns

td(DTCKLmax) SPL DTCK delay from TCK
low, maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK–DTMS)
� The TCK-to-DTDI path, called tpd(TCK–DTDI)
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Of the following two cases, the worst-case path delay is calculated to deter-

mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, DTMS/DTDO timed from TCK low. 

t
pd �TCK–DTMS� �

�t
d �DTMSmax� � t

d �DTCKHmin� � t
su �TTMS�

�
t�TCKfactor�

�
[31ns � 2ns � 10ns]

0.4

� 107.5ns (9.3 MHz)

t
pd �TCK–DTDI�

�
�t

d �TTDO�� t
d �DTCKLmax�

� t
su �DTDLmin�

�
t�TCKfactor�

�
[15ns � 16ns � 7ns]

0.4

� 9.5ns (10.5 MHz)

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Case 2: Single/multiprocessor, DTMS/DTDO/TCK buffered input, DTDI buffered out-

put, DTMS/DTDO timed from TCK low. 

tpd (TCK–TDMS) �

�td (DTMSmax) � t�DTCKHmin� � tsu (TTMS) � t(bufskew)
�

t�TCKfactor�

�
[31ns � 2ns � 10ns � 1.35ns]

0.4

� 110.9ns (9.0 MHz)

tpd (TCK–DTDI) �

�td (TTDO) � t
d �DTCKLmax� � tsu (DTDLmin)

� td (bufskew)
�

t�TCKfactor�

� 120ns (8.3 MHz)

�
[15ns � 15ns � 7ns � 10ns]

0.4

In this case, the TCK-to-DTDI path is the limiting factor.
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11.9.3 Using Emulation Pins 

The EMU0/1 pins of TI devices are bidirectional, three-state output pins. When

in an inactive state, these pins are at high impedance. When the pins are

active, they function in one of the two following output modes:

� Signal Event

The EMU0/1 pins can be configured via software to signal internal events.

In this mode, driving one of these pins low can cause devices to signal

such events. To enable this operation, the EMU0/1 pins function as open-

collector sources. External devices such as logic analyzers can also be

connected to the EMU0/1 signals in this manner. If such an external

source is used, it must also be connected via an open-collector source.

� External Count

The EMU0/1 pins can be configured via software as totem-pole outputs

for driving an external counter. These devices can be damaged if the out-

put of more than one device is configured for totem-pole operation. The

emulation software detects and prevents this condition. However, the

emulation software has no control over external sources on the EMU0/1

signal. Therefore, all external sources must be inactive when any device

is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1

pins are driven low. This feature, in combination with the use of the signal event

output mode, allows one TI device to halt all other TI devices on a given event

for system-level debugging.

If you route the EMU0/1 signals between boards, they require special handling

because these signals are more complex than normal emulation signals.

Figure 11–9 shows an example configuration that allows any processor in the

system to stop any other processor in the system. Do not tie the EMU0/1 pins

of more than 16 processors together in a single group without using buffers.

Buffers provide the crisp signals that are required during a RUNB (run bench-

mark) debugger command or when the external analysis counter feature is

used.
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Figure 11–9. EMU0/1 Configuration
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Notes: 1) The low time on EMUx-IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx-OUT

pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,

the modification shown in this figure is suggested.  Rising edges slower than 25 ns can cause the emulator to detect

false edges during the RUNB command or when the external counter selected from the debugger analysis menu

is used.

These seven important points apply to the circuitry shown in Figure 11–9 and

the timing shown in Figure 11–10:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied to-

gether on each board.

� At the board edge, the EMU0/1 signals are split to provide IN/OUT. This

is required to prevent the open-collector drivers from acting as a latch that

can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors are

installed as required.

� The bused EMU0/1 signals go into a PAL� device whose function is to

generate a low pulse on the EMU0/1-IN signal when a low level is detected
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on the EMU0/1-OUT signal. This pulse must be longer than one TCK

period to affect the devices, but less than 10 µs to avoid possible conflicts

or retriggering, once the emulation software clears the device’s pins.

� During a RUNB debugger command or other external analysis count, the

EMU0/1 pins on the target device become totem-pole outputs. The EMU1

pin is a ripple carry-out of the internal counter. EMU0 becomes a

processor-halted signal. During a RUNB or other external analysis count,

the EMU0/1-IN signal to all boards must remain in the high (disabled)

state. You must provide some type of external input (XCNT_ENABLE) to

the PAL to disable the PAL from driving EMU0/1-IN to a low state.

� If sources other than TI processors (such as logic analyzers) are used to

drive EMU0/1, their signal lines must be isolated by open-collector drivers

and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or di-

rectly to a test bus controller.
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Figure 11–10.Suggested Timings for the EMU0 and EMU1 Signals
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Figure 11–11.EMU0/1 Configuration With Additional AND Gate to Meet Timing 
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Notes: 1) The low time on EMUx–IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx–OUT

pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,

the modification shown in this figure is suggested. Rising edges slower than 25 ns can cause the emulator to detect

false edges during the RUNB command or when the external counter selected from the debugger analysis menu

is used.
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If it is not important that the devices on one target board are stopped by devices

on another target board via the EM0/1, then the circuit in Figure 11–12 can be

used. In this configuration, the global-stop capability is lost. It is important not

to overload EMU0/1 with more than 16 devices.

Figure 11–12.EMU0/1 Configuration Without Global Stop
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. . .Device Device
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. . .
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1 n

Device Device
1 n

. . .

Target Board m

Target Board 1

Pullup Resistor

Pullup Resistor

Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rising/falling edges of less than 25 ns.

Rising edges slower than 25 ns can cause the emulator to detect false edges during the RUNB command or when the

external counter selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1

signals from the individual boards should be ANDed together (as shown in Figure 1-11 ) to produce an EMU0/1 signal for

the emulator.
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11.9.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the

emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead

of the emulation header. The TBC is described in the Texas Instruments Ad-

vanced Logic and Bus Interface Logic Data Book (literature number

SCYD001). Figure 11–13 shows the scan path connections of n devices to the

TBC.

Figure 11–13.TBC Emulation Connections for n JTAG Scan Paths
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In the system design shown in Figure 1–13, the TBC emulation signals TCKI,

TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0

are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target

devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-

tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.

The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the

main JTAG scan path is driven by the TBC’s TCKO pin.
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On the TBC, the TMS0 pin drives the TMS pins on each device on the main

JTAG scan path. TDO on the TBC connects to TDI on the first device on the

main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the

last device on the main JTAG scan path. Within the main JTAG scan path, the

TDI signal of a device is connected to the TDO signal of the device before it.

TRST for the devices can be generated either by inverting the TBC’s

TMS5/EVNT3 signal for software control or by logic on the board itself. 
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Appendix A

Glossary

A

A0–A30: External address pins for data/program memory or I/O devices.

These pins are on the global bus. See also LA0–LA30.

address:  The location of program code or data stored in memory.

addressing mode: The method by which an instruction interprets its oper-

ands to acquire the data it needs.

ALU: See Arithmetic logic unit.

analog-to-digital (A/D) converter: A successive-approximation converter

with internal sample-and-hold circuitry used to translate an analog signal

to a digital signal.

ARAU: See auxiliary register arithmetic unit.

arithmetic logic unit (ALU): The part of the CPU that performs arithmetic

and logic operations.

auxiliary registers (ARn): A set of registers used primarily in address gen-

eration.

auxiliary register arithmetic unit (ARAU): Auxiliary register arithmetic

unit. A16-bit arithmetic logic unit (ALU) used to calculate indirect ad-

dresses using the auxiliary registers as inputs and outputs.

B

bit-reversed addressing: Addressing in which several bits of an address

are reversed in order to speed processing of algorithms, such as Fourier

transforms.

BK: See block-size register.

Appendix A
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block-size register: A register used for defining the length of a program

block to be repeated in repeat mode.

bootloader: A built-in segment of code that transfers code from an external

memory or from a communication port to RAM at power-up.

C

carry bit: A bit in status register ST1 used by the ALU for extended arithme-

tic operations and accumulator shifts and rotates. The carry bit can be

tested by conditional instructions.

circular addressing: An addressing mode in which an auxiliary register is

used to cycle through a range of addresses to create a circular buffer in

memory.

context save/restore: A save/restore of system status (status registers, ac-

cumulator, product register, temporary register, hardware stack, and

auxiliary registers, etc.) when the device enters/exits a subroutine such

as an interrupt service routine.

CPU: Central processing unit. The unit that coordinates the functions of a

processor.

CPU cycle: The time it takes the CPU to go through one logic phase (during

which internal values are changed) and one latch phase (during which

the values are held constant).

cycle: See CPU cycle.

D

D0–D31: External data bus pins that transfer data between the processor

and external data/program memory or I/O devices. See also LD0–LD31.

data-address generation logic: Logic circuitry that generates the address-

es for data memory reads and writes. This circuitry can generate one ad-

dress per machine cycle. See also program-address generation logic.

data-page pointer: A seven-bit register used as the seven MSBs in ad-

dresses generated using direct addressing.

decode phase: The phase of the pipeline in which the instruction is de-

coded.

DIE: See DMA interrupt enable register.



 Glossary

A-3  Glossary

DMA coprocessor: A peripheral that transfers the contents of memory loca-

tions independently of the processor (except for initialization).

DMA controller: See DMA coprocessor.

DMA interrupt enable register (DIE): A register (in the CPU register file)

that controls which interrupts the DMA coprocessor responds to.

DP: See data-page pointer.

dual-access RAM: Memory that can be accessed twice in a single clock

cycle. For example, your code can read from and write to a dual-access

RAM in one clock cycle.

E

external interrupt: A hardware interrupt triggered by a pin.

extended-precision floating-point format: A 40-bit representation of a

floating-point number with a 32-bit mantissa and an 8-bit exponent.

extended-precision register: A 40-bit register used primarily for extended-

precision floating-point calculations. Floating-point operations use bits

39–0 of an extended-precision register. Integer operations, however, use

only bits 31–0.

F

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is

stored and then retrieved in the same order in which it was stored. Thus,

the first word stored in this buffer is retrieved first. The ’C4x’s communica-

tion ports each have two FIFOs: one for transmit operations and one for

receive operations.

H

hardware interrupt: An interrupt triggered through physical connections

with on-chip peripherals or external devices.

hit: A condition in which, when the processor fetches an instruction, the

instruction is available in the cache.

I
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IACK: Interrupt acknowledge signal. An output signal that indicates that an

interrupt has been received and that the program counter is fetching the

interrupt vector that will force the processor into an interrupt service rou-

tine.

IIE: See internal interrupt enable register.

IIF: See IIOF flag register.

IIOF flag register (IIF): Controls the function (general-purpose I/O or inter-

rupt) of the four external pins (IIOF0 to IIOF3). It also contains timer/DMA

interrupt flags.

index registers: Two registers (IR0 and IR1) that are used by the ARAU for

indexing an address.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

internal interrupt enable register: A register (in the CPU register file) that

determines whether or not the CPU will respond to interrupts from the

communication ports, the timers, and the DMA coprocessor.

interrupt: A signal sent to the CPU that (when not masked) forces the CPU

into a subroutine called an interrupt service routine. This signal can be

triggered by an external device, an on-chip peripheral, or an instruction

(TRAP, for example).

interrupt acknowledge (IACK): A signal that indicates that an interrupt has

been received, and that the program counter is fetching the interrupt vec-

tor location.

interrupt vector table (IVT): An ordered list of addresses which each corre-

spond to an interrupt; when an interrupt occurs and is enabled, the pro-

cessor executes a branch to the address stored in the corresponding

location in the interrupt vector table.

interrupt vector table pointer (IVTP): A register (in the CPU expansion

register file) that contains the address of the beginning of the interrupt

vector table.

ISR: Interrupt service routine. A module of code that is executed in

response to a hardware or software interrupt.

IVTP: See interrupt vector table pointer.

L
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LA0–LA30: External address pins for data/program memory or I/O devices.

These pins are on the local bus. See also A0–A30.

LD0–LD31: External data-bus pins that transfer data between the processor

and external data/program memory or I/O devices. See also D0–D31.

LSB: Least significant bit. The lowest order bit in a word.

M

machine cycle: See CPU cycle.

mantissa: A component of a floating-point number consisting of a fraction

and a sign bit. The mantissa represents a normalized fraction whose

binary point is shifted by the exponent.

maskable interrupt: A hardware interrupt that can be enabled or disabled

through software.

memory-mapped register: One of the on-chip registers mapped to ad-

dresses in memory. Some of the memory-mapped registers are mapped

to data memory, and some are mapped to input/output memory.

MFLOPS: Millions of floating-point operations per second. A measure of

floating-point processor speed that counts of the number of floating-point

operations made per second.

microcomputer mode: A mode in which the on-chip ROM is enabled. This

mode is selected via the MP/MC pin. See also MP/MC pin; microproces-

sor mode.

microprocessor mode: A mode in which the on-chip ROM is disabled. This

mode is selected via the MP/MC pin. See also MP/MC pin; microcomput-

er mode.

MIPS: Million instructions-per-second.

miss: A condition in which, when the processor fetches an instruction, it is

not available in the cache.

MSB: Most significant bit. The highest order bit in a word.

multiplier: A device that generates the product of two numbers.

N

NMI: See Nonmaskable interrupt.
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nonmaskable interrupt (NMI): A hardware interrupt that uses the same

logic as the maskable interrupts, but cannot be masked. It is often used

as a soft reset.

O

overflow flag (OV) bit: A status bit that indicates whether or not an arithme-

tic operation has exceeded the capacity of the corresponding register.

P

PC: See program counter.

peripheral bus: A bus that the CPU uses to communicate the DMA copro-

cessor, communication ports, and timers.

pipeline: A method of executing instructions in an assembly-line fashion.

program counter: A register that contains the address of the next instruc-

tion to be fetched.

R

RC: See repeat counter register.

read/write (R/W) pin: This memory-control signal indicates the direction of

transfer when communicating to an external device.

register file: A bank of registers.

repeat counter register: A register (in the CPU register file) that specifies

the number of times minus one that a block of code is to be repeated

when a block repeat is performed.

repeat mode: A zero-overhead method for repeating the execution of a

block of code.

reset: A means to bring the central processing unit (CPU) to a known state

by setting the registers and control bits to predetermined values and

signaling execution to fetch the reset vector.

reset pin: This pin causes the device to reset.

ROMEN: ROM enable. An external pin that determines whether or not the

the on-chip ROM is enabled.
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R/W: See read/write pin.

S

short-floating-point format: A 16-bit representation of a floating-point

number with a 12-bit mantissa and a 4-bit exponent.

short-integer format: A twos-complement 16-bit format for integer data.

short-unsigned-integer format: A 16-bit unsigned format for integer data.

sign extend: Fill the high order bits of a number with the sign bit.

single-access RAM: SARAM. Memory that can be read from or written to

only once in a single CPU cycle.

single-precision floating-point format: A 32-bit representation of a float-

ing point number with a 24-bit mantissa and an 8-bit exponent.

single-precision integer format: A twos-complement 32-bit format for in-

teger data.

single-precision unsigned-integer format: A 32-bit unsigned format for

integer data.

software interrupt: An interrupt caused by the execution of a TRAP instruc-

tion.

split mode: A mode of operation of the DMA coprocessor. This mode allows

one DMA channel to service both the receive and transmit portions of a

communication port.

ST: See status register.

stack: A block of memory reserved for storing and retrieving data on a first-in

last-out basis. It is usually used for storing return addresses and for pre-

serving register values.

status register: A register (in the CPU register file) that contains global in-

formation related to the CPU.

T

Timer: A programmable peripheral that can be used to generate pulses or

to time events.

Timer-Period Register: Timer-period register. A 32-bit memory-mapped

register that specifies the period for the on-chip timer.
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trap vector table (TVT): An ordered list of addresses which each corre-

spond to an interrupt; when a trap is executed, the processor executes

a branch to the address stored in the corresponding location in the trap

vector table.

trap vector table pointer (TVTP): A register (in the CPU expansion-register

file) that contains the address of the beginning of the trap vector table.

TVTP: See trap vector table pointer.

U

unified mode: A mode of operation of the DMA coprocessor. The mode is

used mainly for memory-to-memory transfers. This is the default mode

of operation for a DMA channel. See also split mode.

W

wait state: A period of time that the CPU must wait for external program,

data, or I/O memory to respond when reading from or writing to that ex-

ternal memory. The CPU waits one extra cycle for every wait state.

wait-state generator: A program that can be modified to generate a limited

number of wait states for a given off-chip memory space (lower program,

upper program, data, or I/O).

Z

zero fill: Fill the low or high order bits with zeros when loading a number into

a larger field.
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Index

14-pin connector, dimensions 11-13

14-pin header

header signals 11-2

JTAG 11-2

2D array 8-18

3-D grid 8-19

4-D hypercube 8-19

64-bit addition, example 3-17

A
A-law compression, expansion 6-2

A/D converter, definition A-1

A0-A30, definition A-1

adaptive filters 6-13

ADDC instruction 3-17

ADDI instruction 3-17

address

definition A-1

generation 3-6

address pins, external A-5

addressing mode, definition A-1

algorithm, LMS 6-13

ALU. See arithmetic logic unit

ANSI, C programs 5-2

applications, hardware 4-1

applications-oriented operations, introduction 6-1

ARAU. See auxiliary register arithmetic unit

architecture

distributed memory 8-19

shared and distributed memory 8-19

shared memory 8-19

arithmetic logic unit (ALU), definition A-1

array initialization, example 7-4

array objects, allocation 5-4

arrays 2-20

assembly language 1-6, 7-4

auxiliary register arithmetic unit (ARAU), defini-

tion A-1

auxiliary registers (ARn), definition A-1

B
BBS 10-4

Bcond instruction 2-4

benchmarks

A-law compression 6-5

A-law expansion 6-6

adaptive FIR filter 6-15

fast Fourier transforms (FFT) 6-87

FIR filter 6-8

floating-point inverse 3-14

IIR filter 6-12 to 6-15

inverse lattice filter 6-18

lattice filter 6-20

matrix-vector multiplication 6-21, 6-22

mu-law compression 6-3

mu-law expansion 6-4

bidirectional ring 8-18

biquads 6-9

data-memory organization 6-9

example 6-11, 6-12 to 6-15

single 6-9

bit copying, example 3-2

bit manipulation 3-2

bit -reversed addressing, example 3-7

bit-reversed addressing 3-6, 3-7, 3-8

CPU 3-6

definition A-1

bit-reversed sine, table 6-55

BK. See block size register

block move, example 3-3

block moves 3-3
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block repeat

delayed, example 2-19

example 2-18

single instruction 2-20

block repeats, delayed 2-19

block size (BK) register 6-7

block size register, definition A-2

block transfers 3-7

bootloader, definition A-2

BUD instruction 5-5

buffered signals, JTAG 11-9

buffering 11-8

bulletin board 10-4

bus, control signals 4-4

bus devices 11-3

bus protocol 11-3

byte manipulation 3-4

C
C code compiler, efficient usage 5-2

C compiler 10-2

C examples, include file 7-17

cable, target system to emulator 11-1 to 11-24

cable pod 11-4, 11-5

cache

enabling 1-9

optimization of code 5-5

CALL instruction 2-7

CALLcond instruction 2-2, 2-21

calls

example code 2-2

zero overhead 2-4

carry bit, definition A-2

central processing unit (CPU), definition A-2

chip-enable (CE) controls 4-5

circular addressing, definition A-2

code generation tools 10-2

code optimization 5-5

BUD instruction 5-5

delayed branches 5-5

internal memory 5-6

LAJ instruction 5-5

parallel instruction set 5-5

pipeline conflicts 5-6

registers 5-5

RPTB and RPTBD instructions 5-5

RPTS instruction 5-5

communication port, ICRDY synchronization 7-5

communication ports 8-1, 8-18

CSTRB shortener 8-17

hardware design guidelines 8-9

impedance matching 8-5

message broadcasting 8-20

software applications 8-2

termination 8-8

token forcer 8-15

word transfer 8-7

companding 6-2

companding standards 6-2

compiler 10-2

constructs 5-2 to 5-5

computed GOTO, example 2-21

computed GOTOs 2-21

configuration, multiprocessor 11-11

connector

14-pin header 11-2

dimensions, mechanical 11-12

DuPont 11-3

consecutive reads 4-6

consecutive writes, diagram 4-7

context restore, example 2-15 to 2-18

context save, example 2-15 to 2-18

context save/restore, definition A-2

context switching 2-14

conversion of format, IEEE to/from ’C4x instructions.

See TOIEEE and FRIEEE instructions

CPU cycle, definition A-2

CPU registers, stack pointer (SP) 2-7

CSTRB shortener 8-17

cycle. See CPU cycle
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D
D0-D31, definition. See LD0-LD31

data-address generation logic, definition. See pro-

gram address generation logic

data-page pointer, definition A-2

debugger. See emulation

decode phase, definition A-2

dequeues (stack) 2-9

development tools 10-2

device

nomenclature 10-10

part numbers 10-11

diagnostic applications 11-23

DIE. See DMA interrupt enable register

digital filters

FIR 6-7

IIR. See IIR filters

lattice 6-17

dimensions

12-pin header 11-18

14-pin header 11-12

mechanical, 14-pin header 11-12

division

floating point 3-9

integer 3-9

DMA 3-3, 3-6, 7-13, 7-14, 8-2

autoinitialization 7-6

C-programming, examples 7-9

example 7-11, 7-12

interrupts, example 7-8

split mode, autoinitialization 7-15

split-mode 7-6

unified mode 7-10

DMA autoinitialization 7-7

DMA channel, finished transfer 7-3

DMA controller. See DMA coprocessor

DMA coprocessor

array initialization 7-4

autoinitialization 7-7

example 7-8
definition A-3

interrupts 7-4

link-pointer register, example 7-7

operation examples 7-4

programming 7-4

programming hints 7-2

split mode example 7-5

transfer description 7-4

DMA interrupt enable register (DIE), definition A-3

DMA programming 7-2

DMA transfer 7-4

communication port 7-5

documentation 10-3

double precision, fixed point 3-17

DP. See data-page pointer

dual-access RAM, definition A-3

DuPont connector 11-3

E
EMU0/1

configuration 11-19, 11-21, 11-22

emulation pins 11-18

IN signals 11-18

rising edge modification 11-21

EMU0/1 signals 11-2, 11-5, 11-6, 11-11, 11-16

emulation

JTAG cable 11-1

timing calculations 11-6 to 11-7, 11-16 to 11-24

emulator

connection to target system, JTAG mechanical

dimensions 11-12 to 11-24

designing the JTAG cable 11-1

emulation pins 11-18

signal buffering 11-8 to 11-11

target cable, header design 11-2 to 11-3

emulator pod, JTAG timings 11-5

extended precision registers 3-17

extended-precision floating-point format, defini-

tion A-3

extended-precision register 2-2

definition A-3

external flag pins 4-3

external interfacing 4-3

example 4-3

external interrupt, definition A-3

external logic 4-12

external ready generation 4-13
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F
fast devices, OR 4-12

fast Fourier transforms 3-6, 6-56

DIF (decimation in frequency) 6-24

DIT (decimation in time) 6-24, 6-42 to 6-54

inverse 6-73

fast Fourier transforms (FFT) 6-24

benchmarks 6-87

complex radix-2 DIF 6-26

DIF (decimation in frequency) 6-27 to 6-31,

6-33, 6-34 to 6-41

DIT (decimation in time) 6-55

DIT (decimations in time) 6-41

DMA 6-24

real radix-2 6-56

theories, references 6-24

twiddle factors 6-32

twiddle table 6-41

types of 6-24

FFT. See fast Fourier transforms

FIFO buffer, definition A-3

filters

adaptive 6-7

digital. See digital filters

example 6-10

FIR 6-14

See also FIR filters
IIR 6-12 to 6-15

See also IIR filters

FIR filter

adaptive 6-15

benchmarks 6-8

FIR filters 6-7, 6-14

circular addressing 6-7

example 6-7

features 6-7

FIX instruction 3-9

FLOAT instruction 3-9

floating point

conversion (to/from IEEE) 3-19

formats 3-19

IEEE 3-20
pop and push 2-8

floating-point, reciprocal 3-12

example 3-16

floating-point division 3-12

floating-point number, inverse, example 3-14

formats, floating point 3-19

forward lattice filter, example 6-19

FRIEEE instruction 3-19

fully-connected network 8-19

G
GIE 2-11, 2-13

global bus 4-3

control signals 4-11

global memory interface. See memory interface

H
half-word manipulation 3-4

hardware interrupt, definition A-3

header

14-pin 11-2

dimensions, 14-pin 11-2

hexagonal grid 8-19

hit, definition A-3

hotline 10-3

I
IACK, definition A-4

ICFULL interrupt, example 8-2

ICRDY communication port 7-7

ICRDY interrupt, example 8-2

IEEE 1149.1 specification, bus slave device

rules 11-3

IEEE Customer Service, address 11-3

IEEE standard 11-3

IIE. See internal interrupt enable register

IIF. See IIOF flag register

IIOF flag register (IIF) 7-5

definition A-4

IIR filters 6-7, 6-9, 6-9

benchmarks 6-10, 6-12 to 6-15

index registers, definition A-4

initialization, boot.asm 1-9

initialization routine 1-6

input port 8-16

integer division 3-9

example 3-11

interface, SRAM 4-8

two strobes 4-10
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interfaces

external. See external interfacing

parallel processing 8-18

shared bus 4-22

internal interrupt, definition A-4

internal interrupt enable register, definition A-4

interrupt, definition A-4

interrupt acknowledge (IACK), definition A-4

interrupt flag register 2-11

interrupt programming, procedure 2-11

interrupt service routine, INT2 2-13

interrupt service routine (ISR), definition A-4

interrupt vector table (IVT), definition A-4

interrupt vector table pointer (IVTP), definition A-4

interrupts

communication port 8-3

context switching 2-14

context-switching 2-11

DMA 7-4

dual services, example 2-12

example 3-2

examples 2-11

IVTP reset 2-12

nesting 2-13

NMI 2-11

priorities 2-11

programming 2-11

service routines 2-11, 2-13

software polling, example 2-11

vector table 2-11

inverse Fourier transform 6-24

inverse lattice filter, example 6-18

inverse of floating point 3-12

ISR. See interrupt service routine (ISR)

IVTP 2-12

See also interrupt vector table pointer

IVTP register 2-11

J
JTAG 11-14

JTAG emulator

buffered signals 11-9

connection to target system 11-1 to 11-24

no signal buffering 11-8

pod interface 11-4

jumps 2-4

L
LA0-LA30, definition. See A0-A30

LAJ instruction 2-4, 5-5

lattice filter structure 6-17

lattice filters 6-17, 6-18

applications 6-17

benchmarks 6-20

forward 6-19

LBb LBUb instructions 3-4

LD0-LD31, definition. See D0-D31

LHw, LHUw instructions 3-4

linker command file 1-6

example 1-9

literature 10-3

LMS algorithm 6-13

local bus 4-3

control signals 4-11

local memory interface. See memory interface

local memory interface control register (LMICR),

LSTRB ACTIVE field 4-9

loop, delayed block repeat, example 2-19

loop optimization, example 5-3

loops 2-18

single repeat 2-20

LSB, definition A-5

LWLct, LWRct instructions 3-4

M
machine cycle. See CPU cycle

mantissa, definition A-5

maskable interrupt, definition A-5

matrix vector multiplication, data-memory organiza-

tion 6-21

MBct, MHct instructions 3-4

memory, object exchange, example 5-2

memory device timing 4-6

memory interface 4-12

global 4-4

local 4-4

ready generation 4-11

shared global 4-21

strobes 4-7

two banks 4-8
wait states 4-11
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memory interface (local, global)

RAM (zero wait states) 4-7

shared bus 4-22

memory interface control registers 4-12

LSTRB ACTIVE field 4-8

PAGESIZE field 4-8, 4-18

memory interfacing, introduction 4-1

memory map 4-4

memory-mapped register, definition A-5

message broadcasting 8-20

communication ports 8-21

MFLOPS, definition A-5

microcomputer mode, definition. See microproces-

sor mode

microprocessor mode, definition. See microcomput-

er mode

MIPS, definition A-5

miss, definition A-5

MPYI3 instruction 3-18

MPYSHI3 instruction 3-18

MSB, definition A-5

mu-law

compression, expansion 6-2

conversion, linear 6-2

multiplication, matrix vector 6-21

multiplier, definition A-5

N

networks

distributed-memory 4-21

parallel connectivity 8-18

Newton-Raphson algorithm 3-12, 3-15

NMI 2-13

See also nonmaskable interrupt

nomenclature 10-9

nonmaskable interrupt (NMI), definition A-6

normalization 3-15

O
OCEMPTY interrupt, example 8-2

OCRDY interrupt, example 8-2

operations

examples 3-1

introduction 3-1

logical instructions 3-2

output enable (OE) controls 4-5

output modes

external count 11-18

signal event 11-18

output port 8-15

overflow flag (OV) bit, definition A-6

P
packing data example 3-4

page, switching 4-18

page switching, example 4-19

PAL 11-19, 11-20, 11-22

parallel instruction set, optimization use 5-5

parallel processing

’C4x to ’C4x 8-20

distributed memory 8-19

shared and distributed memory 8-19

shared bus 4-22

shared memory 4-21, 8-19

part numbers

device 10-11

tools 10-12

part-order information 10-9

PC. See program counter

peripheral bus, definition A-6

phone numbers, manufacturer 10-6

pipeline, definition A-6

pipelined linear array 8-18

PLD equations 4-16

polling method, communication port 8-4

POP instruction 2-7, 2-14

POPF instruction 2-7

port driver circuit, diagram 8-16

primary channel 7-14

processor, delays 4-5
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processor initialization 1-6

C language 1-9

example 1-7

introduction 1-1

product vector 6-21

program control

instructions 2-1

introduction 2-1

program counter, definition A-6

programming tips 7-2

introduction 5-1

protocol, bus 11-3

pulldown resistor 8-5

pullups 1-5, 8-5

PUSH instruction 2-7, 2-14

PUSHF instruction 2-7

Q
queues (stack) 2-9

R
R/W. See read/write pin

RAM, zero wait states 4-7

RAMS 4-8

RAMs 4-5

RC. See repeat counter register

RCPF instruction 3-9, 3-12

read sync 7-13

read/write (R/W) pin, definition A-6

ready control logic 4-14

ready generation 4-11

ready signals 4-12

regional technology centers 10-5

register file, definition A-6

registers

optimization use 5-5

repeat count (RC) 2-20

stack pointer (SP) 2-7

regular subroutine call, example 2-3

repeat count register (RC) 2-20

repeat counter register, definition A-6

repeat mode, definition A-6

repeat modes, block repeat, restrictions 2-19

reset

definition A-6

multiprocessing 1-5

rise/fall time 1-4

signal generation 1-3

vector locations 1-2

vector mapping 1-2

voltage 1-3

reset circuit, diagram 1-3

reset pin

definition A-6

voltage, diagram 1-4

RETIcond instruction 2-13

RETScond instruction 2-2

ROMEN, definition A-6

RPTB and RPTBD instructions 6-24

optimization use 5-5

RPTB instruction 2-18

RPTBD instruction 2-18

RPTS instruction 2-18

example 2-18, 3-3

optimization use 5-5

RSQRF instruction 3-15, 3-16

RTCs 10-5

run/stop operation 11-8

RUNB, debugger command 11-18, 11-19, 11-20,

11-21, 11-22

RUNB_ENABLE, input 11-20

S
scan path linkers 11-14

secondary JTAG scan chain to an SPL 11-15

suggested timings 11-21

usage 11-14

scan paths, TBC emulation connections for JTAG

scan paths 11-23

seminars 10-5

serial resistors 8-5

shared bus interface 4-22

shared memory 4-21

short floating point format, definition A-7

short integer format, definition A-7

short unsigned integer format, definition A-7

signal descriptions, 14-pin header 11-2

signal quality 8-5
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signals

buffered 11-9

buffering for emulator connections 11-8 to 11-11

description, 14-pin header 11-2

timing 11-5

sign-extend, definition A-7

single-access RAM (SARAM), definition A-7

single-precision floating-point format, definition A-7

single-precision integer format, definition A-7

single-precision unsigned-integer format, defini-

tion A-7

slave devices 11-3

slow devices, OR 4-12

sockets 10-6

325-pin ’C40, 304-pin ’C44 10-6

software development tools

assembler/linker 10-2

C compiler 10-2

digital filter design package 10-2

general 10-12

linker 10-2

simulator 10-2

software interrupt, definition A-7

software polling, interrupts, example 2-11

software stack 2-2, 2-11

split mode, definition A-7

split mode (DMA) 7-5

split-mode 7-13, 7-14

square root, calculation 3-15

ST. See status register

stack 2-7

definition A-7

stack pointer 2-7

stack pointer (SP), application 2-7

stacks

growth 2-8

high-to-low memory, diagram 2-9

low-to-high memory, diagram 2-9

user 2-8

status register, definition A-7

straight, unshrouded, 14-pin 11-3

STRBx SWW 4-12

strobes 4-9

wait states 4-7

SUBB instruction 3-17, 3-18

SUBC instruction 3-9

SUBI instruction 3-18

subroutine 2-21

subroutines 2-4, 2-14

calls. See calls

support tools

development 10-10

device 10-10

support tools nomenclature 10-9

system configuration 4-2

possible 4-2

system configuration stack, diagram 2-8

system initialization 1-3

system stacks 2-7

stack pointer 2-7

T
target cable 11-12

target system, connection to emulator 11-1 to

11-24

target-system clock 11-10

TCK signal 11-2, 11-3, 11-5, 11-6, 11-11, 11-15,

11-16, 11-23

TDI signal 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-10,

11-11, 11-16, 11-17

TDO output 11-3

TDO signal 11-3, 11-4, 11-6, 11-7, 11-17, 11-23

technical assistance 10-3

test bus controller 11-20, 11-23

test clock 11-10

diagram 11-10

third-party support 10-3

Timer, definition A-7

Timer Period Register, definition A-7

timing

bank switching 4-20

page switching 4-20

timing calculations 11-6 to 11-7, 11-16 to 11-24

TMS, signal 11-3

TMS signal 11-2, 11-4, 11-5, 11-6, 11-7, 11-10,

11-11, 11-15, 11-16, 11-17, 11-23

TMS/TDI inputs 11-3

TOIEEE instruction 3-19

token forcer 8-15

token forcer circuit, diagram 8-15
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tools, part numbers 10-12

tools nomenclature 10-9

transfer function 6-9

trap vector table (TVT), definition A-8

trap vector table pointer (TVTP), definition A-8

tree structures 8-18

TRST signal 11-2, 11-5, 11-6, 11-11, 11-15, 11-16,

11-24

TSTB instruction 3-2

TVTP. See trap vector table pointer

twiddle factor 6-32

fast Fourier transforms (FFT) 6-41

U
unified mode, definition. See split mode

unpacking data example 3-5

W
wait state, definition A-8

wait states 4-5, 4-11, 4-15

consecutive reads, then write 4-6

consecutive writes, then read 4-7

full-speed 4-5

logic 4-14

memory device timing. See memory device tim-

ing

wait-state generator, definition A-8

workshops 10-5

write cycles, RAM requirements 4-6

X
XDS510 emulator, JTAG cable. See emulation

Z
zero fill, definition A-8

zero overhead subroutine call, example 2-5

ZIF PGA socket

handle-activated, diagram 10-8

tool-activated, diagram 10-7
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