TMS320C2xx User's Guide

Literature Number: SPRU127B Manufacturing Part Number: D412008-9761 revision A January 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This user's guide describes the architecture, hardware, assembly language instructions, and general operation of the TMS320C2xx digital signal processors (DSPs). This manual can also be used as a reference guide for developing hardware and/or software applications. In this document, 'C2xx refers to any of the TMS320C2xx devices, except where device-specific information is explicitly stated. When device-specific information is given, the device name may be abbreviated; for example, TMS320C203 will be abbreviated as 'C203.

How to Use This Manual

Chapter 1, *Introduction*, summarizes the TMS320 family of products and then introduces the key features of the TMS320C2xx generation of that family. Chapter 2, *Architectural Overview*, summarizes the 'C2xx architecture, providing information about the CPU, bus structure, memory, on-chip peripherals, and scanning logic.

If you are reading this manual to learn about the 'C209, Chapter 11 is important for you. There are some notable differences between the 'C209 and other 'C2xx devices, and Chapter 11 explains these differences. In addition, it shows how to use this manual to get a complete picture of the 'C209.

The following table points you to major topics.

For this information:	Look here:
Addressing modes (for addressing data memory)	Chapter 6, Addressing Modes
Assembly language instructions	Chapter 7, Assembly Language Instructions
Assembly language instructions of TMS320C1x, 'C2x, 'C2xx, and 'C5x compared	Appendix B, TMS320C1x/C2x/C2xx/C5x Instruction Set Comparison
Boot loader	Chapter 4, Memory and I/O Spaces
Clock generator	Chapter 8, On-Chip Peripherals
CPU	Chapter 3, Central Processing Unit
Custom ROM from TI	Appendix D, <i>Submitting ROM Codes</i> to TI
Emulator	Appendix E, Design Considerations for Using XDS510 Emulator
Features	Chapter 1, Introduction Chapter 2, Architectural Overview
Input/output ports	Chapter 4, Memory and I/O Spaces
Interrupts	Chapter 5, Program Control
Memory configuration	Chapter 4, Memory and I/O Spaces
Memory interfacing	Chapter 4, Memory and I/O Spaces
On-chip peripherals	Chapter 8, On-Chip Peripherals
Pipeline	Chapter 5, Program Control
Program control	Chapter 5, Program Control
Program examples	Appendix C, Program Examples
Program-memory address generation	Chapter 5, Program Control
Registers summarized	Appendix A, Register Summary
Serial ports	Chapter 9, <i>Synchronous Serial Port</i> Chapter 10, <i>Asynchronous Serial Port</i>
Stack	Chapter 5, Program Control
Status registers	Chapter 5, Program Control
Timer	Chapter 8, On-Chip Peripherals
TMS320C209 differences and similarities	Chapter 11, TMS320C209
Wait-state generator	Chapter 8, On-Chip Peripherals

Notational Conventions

This document uses the following conventions:

Program listings and program examples are shown in a special typeface.

Here is a segment of a program listing:

OUTPUT LDP #6 ;select data page 6 BLDD #300, 20h ;move data at address 300h to 320h RET

In syntax descriptions, **bold** portions of a syntax should be entered as shown; *italic* portions of a syntax identify information that you specify. Here is an example of an instruction syntax:

BLDD source, destination

BLDD is the instruction mnemonic, which must be typed as shown. You specify the two parameters, *source* and *destination*.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify the information within the brackets; you do not type the brackets themselves. You separate each optional operand from required operands with a comma and a space. Here is a sample syntax:

BLDD source, destination [, ARn]

BLDD is the instruction. The two required operands are *source* and *destination*, and the optional operand is **AR***n*. **AR** is bold and *n* is italic; if you choose to use **AR***n*, you must type the letters A and R and then supply a chosen value for *n* (in this case, a value from 0 to 7). Here is an example:

BLDD *, #310h, AR3

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your software or equipment.

The information in a caution is provided for your protection. Please read each caution carefully.

Related Documentation From Texas Instruments

This subsection describes related TI[™] documents that can be ordered by calling the Texas Instruments Literature Response Center at (800) 477–8924. When ordering, please identify the document by its title and literature number.

The following data sheets contain the electrical and timing specifications for the TMS320C2xx devices, as well as signal descriptions and pinouts for all of the available packages:

- TMS320C2xx data sheet (literature number SPRS025)
- □ TMS320F2xx data sheet (literature number SPRS050). This data sheet covers the TMS320C2xx devices that have on-chip flash memory.

The books listed below provide additional information about using the TMS320C2xx devices and related support tools, as well as more general information about using the TMS320 family of DSPs.

- **TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started Guide** (literature number SPRU121) describes how to install the TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly language tools and the C compiler for the 'C1x, 'C2x, 'C2xx, and 'C5x devices. The installation for MS-DOS[™], OS/2[™], SunOS[™], and Solaris[™] systems is covered.
- TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User's Guide (literature number SPRU018) describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the 'C1x, 'C2x, 'C2xx, and 'C5x generations of devices.
- TMS320C2x/C2xx/C5x Optimizing C Compiler User's Guide (literature number SPRU024) describes the 'C2x/C2xx/C5x C compiler. This C compiler accepts ANSI standard C source code and produces TMS320 assembly language source code for the 'C2x, 'C2xx, and 'C5x generations of devices.
- **TMS320C2xx C Source Debugger User's Guide** (literature number SPRU151) tells you how to invoke the 'C2xx emulator and simulator versions of the C source debugger interface. This book discusses various aspects of the debugger interface, including window management, command entry, code execution, data management, and breakpoints. It also includes a tutorial that introduces basic debugger functionality.

- **TMS320C2xx Simulator Getting Started** (literature number SPRU137) describes how to install the TMS320C2xx simulator and the C source debugger for the 'C2xx. The installation for MS-DOS[™], PC-DOS[™], SunOS[™], Solaris[™], and HP-UX[™] systems is covered.
- **TMS320C2xx Emulator Getting Started Guide** (literature number SPRU209) tells you how to install the Windows[™] 3.1 and Windows[™] 95 versions of the 'C2xx emulator and C source debugger interface.
- **XDS51x Emulator Installation Guide** (literature number SPNU070) describes the installation of the XDS510[™], XDS510PP[™], and XDS510WS[™] emulator controllers. The installation of the XDS511[™] emulator is also described.
- JTAG/MPSD Emulation Technical Reference (literature number SPDU079) provides the design requirements of the XDS510[™] emulator controller. Discusses JTAG designs (based on the IEEE 1149.1 standard) and modular port scan device (MPSD) designs.
- **TMS320 DSP Development Support Reference Guide** (literature number SPRU011) describes the TMS320 family of digital signal processors and the tools that support these devices. Included are code-generation tools (compilers, assemblers, linkers, etc.) and system integration and debug tools (simulators, emulators, evaluation modules, etc.). Also covered are available documentation, seminars, the university program, and factory repair and exchange.
- Digital Signal Processing Applications with the TMS320 Family, Volumes 1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017) Volumes 1 and 2 cover applications using the 'C10 and 'C20 families of fixed-point processors. Volume 3 documents applications using both fixed-point processors as well as the 'C30 floating-point processor.
- *TMS320 DSP Designer's Notebook: Volume 1* (literature number SPRT125). Presents solutions to common design problems using 'C2x, 'C3x, 'C4x, 'C5x, and other TI DSPs.
- **TMS320 Third-Party Support Reference Guide** (literature number SPRU052) alphabetically lists over 100 third parties that provide various products that serve the family of '320 digital signal processors. A myriad of products and applications are offered—software and hardware development tools, speech recognition, image processing, noise cancellation, modems, etc.

Related Articles

"A Greener World Through DSP Controllers", Panos Papamichalis, *DSP & Multimedia Technology*, September 1994.

"A Single-Chip Multiprocessor DSP for Image Processing—TMS320C80", Dr. Ing. Dung Tu, *Industrie Elektronik*, Germany, March 1995.

"Application Guide with DSP Leading-Edge Technology", Y. Nishikori, M. Hattori, T. Fukuhara, R.Tanaka, M. Shimoda, I. Kudo, A.Yanagitani, H. Miyaguchi, et al., *Electronics Engineering*, November 1995.

"Approaching the No-Power Barrier", Jon Bradley and Gene Frantz, *Electronic Design*, January 9, 1995.

"Beware of BAT: DSPs Add Brilliance to New Weapons Systems", Panos Papamichalis, *DSP & Multimedia Technology*, October 1994.

"Choose DSPs for PC Signal Processing", Panos Papamichalis, *DSP & Multimedia Technology*, January/February 1995.

"Developing Nations Take Shine to Wireless", Russell MacDonald, Kara Schmidt and Kim Higden, *EE Times*, October 2, 1995.

"Digital Signal Processing Solutions Target Vertical Application Markets", Ron Wages, *ECN*, September 1995.

"Digital Signal Processors Boost Drive Performance", Tim Adcock, *Data Storage*, September/October 1995.

"DSP and Speech Recognition, An Origin of the Species", Panos Papamichalis, *DSP & Multimedia Technology*, July 1994.

"DSP Design Takes Top-Down Approach", Andy Fritsch and Kim Asal, *DSP Series Part III, EE Times*, July 17, 1995.

"DSPs Advance Low-Cost 'Green' Control", Gregg Bennett, *DSP Series Part II, EE Times*, April 17, 1995.

"DSPs Do Best on Multimedia Applications", Doug Rasor, *Asian Computer World*, October 9–16, 1995.

"DSPs: Speech Recognition Technology Enablers", Gene Frantz and Gregg Bennett, *I&CS*, May 1995.

"Easing JTAG Testing of Parallel-Processor Projects", Tony Coomes, Andy Fritsch, and Reid Tatge, *Asian Electronics Engineer*, Manila, Philippines, November 1995.

"Fixed or Floating? A Pointed Question in DSPs", Jim Larimer and Daniel Chen, *EDN*, August 3, 1995.

"Function-Focused Chipsets: Up the DSP Integration Core", Panos Papamichalis, DSP & Multimedia Technology, March/April 1995.

"GSM: Standard, Strategien und Systemchips", Edgar Auslander, *Elektronik Praxis*, Germany, October 6, 1995.

"High Tech Copiers to Improve Images and Reduce Paperwork", Karl Guttag, *Document Management*, July/August 1995.

"Host-Enabled Multimedia: Brought to You by DSP Solutions", Panos Papamichalis, *DSP & Multimedia Technology*, September/October 1995.

"Integration Shrinks Digital Cellular Telephone Designs", Fred Cohen and Mike McMahan, *Wireless System Design*, November 1994.

"On-Chip Multiprocessing Melds DSPs", Karl Guttag and Doug Deao, *DSP Series Part III, EE Times*, July 18, 1994.

"Real-Time Control", Gregg Bennett, Appliance Manufacturer, May 1995.

"Speech Recognition", P.K. Rajasekaran and Mike McMahan, *Wireless Design & Development*, May 1995.

"Telecom Future Driven by Reduced Milliwatts per DSP Function", Panos Papamichalis, *DSP & Multimedia Technology*, May/June 1995.

"The Digital Signal Processor Development Environment", Greg Peake, *Embedded System Engineering*, United Kingdom, February 1995.

"The Growing Spectrum of Custom DSPs", Gene Frantz and Kun Lin, *DSP Series Part II*, *EE Times*, April 18, 1994.

"The Wide World of DSPs, " Jim Larimer, *Design News*, June 27, 1994.

"Third-Party Support Drives DSP Development for Uninitiated and Experts Alike", Panos Papamichalis, *DSP & Multimedia Technology*, December 1994/January 1995.

"Toward an Era of Economical DSPs", John Cooper, *DSP Series Part I, EE Times*, Jan. 23, 1995.

Trademarks

TI, 320 Hotline On-line, XDS510, XDS510PP, XDS510WS, and XDS511 are trademarks of Texas Instruments Incorporated.

HP-UX is a trademark of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

PAL® is a registered trademark of Advanced Micro Devices, Inc.

OS/2, PC, and PC-DOS are trademarks of International Business Machines Corporation.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

If You Need Assistance. . .

	World-Wide Web Sites			
l u		h		
	TI Online	http://www.ti.com	n n/sc/docs/pic/home.htm	
	Semiconductor Product Information Center (PIC) DSP Solutions	http://www.ti.com		
	320 Hotline On-line ™		n/sc/docs/dsps/support.html	ml
	North America, South America, Ce			
	Product Information Center (PIC)	(972) 644-5580		
	TI Literature Response Center U.S.A.	(800) 477-8924		
	Software Registration/Upgrades	(214) 638-0333	Fax: (214) 638-7742	
	U.S.A. Factory Repair/Hardware Upgrades	(281) 274-2285		
	U.S. Technical Training Organization DSP Hotline	(972) 644-5580 (281) 274-2320	Eave (201) 274 2224	Email: danh@ti aam
	DSP Modem BBS	(281) 274-2320	Fax: (281) 274-2324	Email: dsph@ti.com
	DSP Internet BBS via anonymous ftp to ftp://ft	· · ·	320bbs	
	Europe, Middle East, Africa	L La Ria a su		
	European Product Information Center (EPIC)		Four 100 1 00 70 10 00	Emoily opic@ti com
	Multi-Language Support Deutsch +49 8161 80 33 11 or	+33 1 30 70 11 69	Fax: +33 1 30 70 10 32	Email. epic@ti.com
		+33 1 30 70 11 65		
		+33 1 30 70 11 64		
		+33 1 30 70 11 67		
		+33 1 30 70 11 99		
	European Factory Repair	+33 4 93 22 25 40		
	Europe Customer Training Helpline		Fax: +49 81 61 80 40 10)
	Asia-Pacific			
	Literature Response Center	+852 2 956 7288	Fax: +852 2 956 2200	
	Hong Kong DSP Hotline	+852 2 956 7268	Fax: +852 2 956 1002	
	Korea DSP Hotline	+82 2 551 2804	Fax: +82 2 551 2828	
	Korea DSP Modem BBS	+82 2 551 2914		
	Singapore DSP Hotline		Fax: +65 390 7179	
	Taiwan DSP Hotline	+886 2 377 1450	Fax: +886 2 377 2718	
	Taiwan DSP Modem BBS Taiwan DSP Internet BBS via anonymous ftp	+886 2 376 2592	utw/pub/Tl/	
	anonymous up		, pub/ 11/	
	Japan			
		1-0026 (in Japan)	Fax: +0120-81-0036 (in	• •
	+03-3457-0972 or (INT	/	Fax: +03-3457-1259 or	
	DSP Hotline +03-3769-8735 or (INT	,	Fax: +03-3457-7071 or	(INTL) 813-3457-7071
	DSP BBS via Nifty-Serve	Type "Go TIASP"		
	Documentation			
	When making suggestions or reporting errors i	n documentation, ple	ease include the following	information that is on the title
	page: the full title of the book, the publication	date, and the literatu		
	Mail: Texas Instruments Incorporated		Email: comments@boo	ks.sc.ti.com
	Technical Documentation Services,	MS 702		
	P.O. Box 1443			
	Houston Lovac $77951 1/1/9$			
	Houston, Texas 77251-1443			

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the book.

Contents

1	Sumi	marizes	1- the features of the TMS320 family of products and presents typical applications. e TMS320C2xx DSP and lists its key features.	·1
	1.1	TMS32	20 Family	-2
		1.1.1	History, Development, and Advantages of TMS320 DSPs 1-	-2
		1.1.2	Typical Applications for the TMS320 Family 1-	-4
	1.2	TMS32	20C2xx Generation 1-	-5
	1.3	Key Fe	eatures of the TMS320C2xx 1-	-6
2	Arch	itectura	l Overview	-1
			the TMS320C2xx architecture. Provides information about the CPU, bus mory, on-chip peripherals, and scanning logic.	
	2.1	'C2xx	Bus Structure	-3
	2.2		ll Processing Unit	
		2.2.1	Central Arithmetic Logic Unit (CALU) and Accumulator 2-	
		2.2.2	Scaling Shifters 2-	
		2.2.3	Multiplier 2-	
		2.2.4	Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers 2-	
	2.3	Memo	ry and I/O Spaces 2-	
		2.3.1	Dual-Access On-Chip RAM 2-	
		2.3.2	Single-Access On-Chip Program/Data RAM 2-	
		2.3.3	Factory-Masked On-Chip ROM 2-	
		2.3.4	Flash Memory 2-	-9
	2.4	Progra	ım Control	0
	2.5	On-Ch	ip Peripherals	11
		2.5.1	Clock Generator	
		2.5.2	CLKOUT1-Pin Control (CLK) Register 2-1	1
		2.5.3	Hardware Timer 2-1	
		2.5.4	Software-Programmable Wait-State Generator	1
		2.5.5	General-Purpose I/O Pins 2-1	
		2.5.6	Serial Ports 2-1	
	2.6	Scann	ing-Logic Circuitry 2-1	3

3	Centr	al Proc	essing Unit	3-1
	Desci the ac	ribes the cumula	TMS320C2xx CPU. Includes information about the central arithmetic logic unit, tor, the shifters, the multiplier, and the auxiliary register arithmetic unit. Concludes of the status register bits.	
	3.1 3.2	•	Scaling Section	
	-	3.2.1	Multiplier	
		3.2.2	Product-Scaling Shifter	
	3.3	Centra	I Arithmetic Logic Section	3-8
		3.3.1	Central Arithmetic Logic Unit (CALU)	3-9
		3.3.2	Accumulator	
		3.3.3	Output Data-Scaling Shifter	
	3.4		ry Register Arithmetic Unit (ARAU)	
		3.4.1	ARAU and Auxiliary Register Functions	
	3.5	Status	Registers ST0 and ST1 3	3-15
4	Memo	ory and	I/O Spaces	4-1
		-	configuration and use of the TMS320C2xx memory and I/O spaces. Includes	
	memo	ory/addr	ess maps and descriptions of the HOLD (direct memory access) operation and pot loader.	
	4.1	Overvi	ew of the Memory and I/O Spaces	4-2
		4.1.1	Pins for Interfacing to External Memory and I/O Spaces	
	4.2	Progra	m Memory	
		4.2.1	Interfacing With External Program Memory	4-5
	4.3	Local [Data Memory	4-7
		4.3.1	Data Page 0 Address Map	4-8
		4.3.2	Interfacing With External Local Data Memory	4-9
	4.4	Global	Data Memory	
		4.4.1	Interfacing With External Global Data Memory	
	4.5		oader	
		4.5.1	Choosing an EPROM	
		4.5.2	Connecting the EPROM to the Processor	
		4.5.3	Programming the EPROM	
		4.5.4	Enabling the Boot Loader	
		4.5.5	Boot Loader Execution	
	4.0	4.5.6	0	4-21
	4.6			4-23
	4 7	4.6.1	Accessing I/O Space	
	4.7		Memory Access Using the HOLD Operation	
	4.0	4.7.1	HOLD During Reset	
	4.8	4.8.1	-Specific Information TMS320C203 Address Maps and Memory Configuration	
		4.8.1 4.8.2		
		4.0.2	TMS320C204 Address Maps and Memory Configuration 4	+-34

5	Program Control				
	5.1	Progra	m-Address Generation	5-2	
	••••	5.1.1	Program Counter (PC)		
		5.1.2	Stack		
		5.1.3	Micro Stack (MSTACK)		
	5.2		e Operation		
	5.3	-	es, Calls, and Returns		
	0.0	5.3.1	Unconditional Branches		
		5.3.2	Unconditional Calls		
		5.3.3	Unconditional Returns		
	5.4		onal Branches, Calls, and Returns		
	0.1	5.4.1	Using Multiple Conditions		
		5.4.2	Stabilization of Conditions		
		5.4.3	Conditional Branches		
		5.4.4	Conditional Calls		
		5.4.5	Conditional Returns		
	5.5		ting a Single Instruction		
	5.6	•	bts		
		5.6.1	Interrupt Operation: Three Phases		
		5.6.2	Interrupt Table		
		5.6.3	Maskable Interrupts		
		5.6.4	Interrupt Flag Register (IFR)		
		5.6.5	Interrupt Mask Register (IMR)		
		5.6.6	Interrupt Control Register (ICR)		
		5.6.7	Nonmaskable Interrupts		
		5.6.8	Interrupt Service Routines (ISRs)		
		5.6.9	Interrupt Latency		
	5.7	Reset (Operation		
	5.8		Down Mode		
		5.8.1	Normal Termination of Power-Down Mode		
		5.8.2	Termination of Power-Down During a HOLD Operation		
6		•	Modes		
				6.0	
	6.1		iate Addressing Mode		
	<u> </u>	6.1.1 Direct	Examples of Immediate Addressing		
	6.2		Addressing Mode		
		6.2.1	Using Direct Addressing Mode		
		6.2.2	Examples of Direct Addressing	6-6	

	6.3	Indirect 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6	t Addressing Mode Current Auxiliary Register Indirect Addressing Options Next Auxiliary Register Indirect Addressing Opcode Format Examples of Indirect Addressing Modifying Auxiliary Register Content	6-9 6-11 6-12 6-15
7			nguage Instructions	
			TMS320C2xx assembly language instructions in alphabetical order. Begins with the TMS320C2xx instructions.	ר
	7.1	•	tion Set Summary	7-2
	7.2		Use the Instruction Descriptions	
	1.2	7.2.1	Syntax	
		7.2.2	Operands	
		7.2.3	Opcode	
		7.2.4	Execution	
		7.2.5	Status Bits	7-15
		7.2.6	Description	7-15
		7.2.7	Words	
		7.2.8	Cycles	
		7.2.9	Examples	
	7.3	Instruc	tion Descriptions	7-20
8	Introc	luces th	pherals The TMS320C2xx on-chip peripherals. Describes the clock generator, the control register, the timer, the wait-state generator, and the general-purpose I/C	Ð
	8.1	Contro	l of On-Chip Peripherals	8-2
	8.2	Clock (Generator	
		8.2.1	Clock Generator Options	
	8.3		JT1-Pin Control (CLK) Register	
	8.4			
		8.4.1	Timer Operation	
		8.4.2	Timer Control Register (TCR)	
		8.4.3 8.4.4	Timer Counter Register (TIM) and Timer Period Register (PRD) Setting the Timer Interrupt Rate	
		8.4.4 8.4.5	The Timer at Hardware Reset	
	8.5		tate Generator	
	0.0	8.5.1	Generating Wait States With the READY Signal	
		8.5.2	Generating Wait States With the 'C2xx Wait-State Generator	
	8.6		al-Purpose I/O Pins	
		8.6.1		8-17
		8.6.2	Output Pin XF	8-18
		8.6.3	Input/Output Pins IO0, IO1, IO2, and IO3	8-18

9	Sync	hronous	s Serial Port	. 9-1
	Desci	ribes the	operation and control of the TMS320C2xx on-chip synchronous serial port.	
	9.1	Overvie	ew of the Synchronous Serial Port	. 9-2
	9.2	Compo	nents and Basic Operation	. 9-3
		9.2.1	Signals	. 9-3
		9.2.2	FIFO Buffers and Registers	. 9-5
		9.2.3	Interrupts	. 9-6
		9.2.4	Basic Operation	. 9-6
	9.3	Control	Iling and Resetting the Port	
		9.3.1	Selecting a Mode of Operation (Bit 1 of the SSPCR)	9-12
		9.3.2	Selecting Transmit Clock Source and Transmit Frame Sync Source (Bits 2 and 3 of the SSPCR)	9-12
		9.3.3	Resetting the Synchronous Serial Port (Bits 4 and 5 of the SSPCR)	9-13
		9.3.4	Using Transmit and Receive Interrupts (Bits 8–11 of the SSPCR)	9-13
	9.4	Manag	ing the Contents of the FIFO Buffers	9-15
	9.5	Transm	nitter Operation	9-16
		9.5.1	Burst Mode Transmission With Internal Frame Sync (FSM = 1, TXM = 1)	9-16
		9.5.2	Burst Mode Transmission With External Frame Sync (FSM = 1, TXM = 0)	9-18
		9.5.3	Continuous Mode Transmission With Internal Frame Sync (FSM = 0, TXM = 1)	
		9.5.4	Continuous Mode Transmission with External Frame Sync (FSM=0, TXM=0)	
	9.6	Receiv	er Operation	
		9.6.1	Burst Mode Reception	
		9.6.2	Continuous Mode Reception	
	9.7	Trouble	eshooting	9-27
		9.7.1	Test Bits	9-27
		9.7.2	Burst Mode Error Conditions	9-29
		9.7.3	Continuous Mode Error Conditions	9-29
10	-		us Serial Port	10-1
	Desci		operation and control of the TMS320C2xx on-chip asynchronous serial port.	
	10.1		ew of the Asynchronous Serial Port	
	10.2	•	nents and Basic Operation	
		10.2.1	5	
			Baud-Rate Generator	
		10.2.3	Registers	10-4
		10.2.4	Interrupts	
		10.2.5	Basic Operation	10-6

	10.3 10.4 10.5	Controlling and Resetting the Port10.3.1Asynchronous Serial Port Control Register (ASPCR)10.3.2I/O Status Register (IOSR)10.3.3Baud-Rate Divisor Register (BRD)10.3.4Using Automatic Baud-Rate Detection10.3.5Using I/O Pins IO3, IO2, IO1, and IO010.3.6Using Interrupts101010.3.6Using Interrupts1010	10-7 0-10 0-13 0-14 0-15 0-17 0-19
11		320C209 ribes how the TMS320C209 differs from other TMS320C2xx devices and is a centra.	
		irce for all the TMS320C209-specific control registers and configuration information.	1
	11.1	'C209 Versus Other 'C2xx Devices	11-2
		11.1.3 Where to Find the Information You Need About the TMS320C209	
	11.2	C209 Memory and I/O Spaces	
	11.3	'C209 Interrupts 1	1-10
		11.3.1 'C209 Interrupt Registers	
	11.4	11.3.2 IACK Pin 1 'C209 On-Chip Peripherals 1	
	11.4	11.4.1 C209 Clock Generator Options	
		11.4.2 'C209 Timer Control Register (TCR) 1	
		11.4.3 C209 Wait-State Generator 1	1-16
Α	Regis	ster Summary	A-1
		concise, central resource for information about the TMS320C2xx on-chip registers. des addresses, reset values, and descriptive illustrations for the registers.	
	A.1 A.2	Addresses and Reset Values Comparison Register Descriptions Comparison	
В	TMS3	320C1x/C2x/C2xx/C5x Instruction Set Comparison	B-1
		isses the compatibility of program code among the following devices: TMS320C1x, 320C2x, TMS320C2xx, and TMS320C5x.	
	B.1	Using the Instruction Set Comparison Table B.1.1 An Example of a Table Entry	B-2
	B.2 B.3	B.1.2 Symbols and Acronyms Used in the Table Enhanced Instructions Instruction Set Comparison Table	B-5
с	-	ram Examples	
C	Prese	ents examples of assembly language programs for the TMS320C2xx, primarily examples e on-chip peripherals.	
	C.1	About These Program Examples	C-2
	C.2	Shared Program Code	C-5
	C.3	Task-Specific Program Code	
	C.4	Introduction to Generating Boot Loader Code	C-23

D		•	OM Codes to TI	
			on a TMS320 DSP.	
Е	Desig	n Cons	iderations for Using XDS510 Emulator	E-1
			JTAG emulator cable and how to construct a 14-pin connector on your target ow to connect the target system to the emulator.	
	E.1	Design	ing Your Target System's Emulator Connector (14-Pin Header)	E-2
	E.2	Bus Pro	otocol	E-4
	E.3	Emulat	or Cable Pod	E-5
	E.4	Emulat	or Cable Pod Signal Timing	E-6
	E.5	Emulat	ion Timing Calculations	E-7
	E.6	Connec	ctions Between the Emulator and the Target System E	<u>-10</u>
		E.6.1	Buffering Signals E	<u>-10</u>
		E.6.2	Using a Target-System Clock E	:-12
		E.6.3	Configuring Multiple Processors E	<u>-13</u>
	E.7	Physica	al Dimensions for the 14-Pin Emulator Connector	-14
	E.8	Emulat	ion Design Considerations E	-16
		E.8.1	Using Scan Path Linkers E	-16
		E.8.2	Emulation Timing Calculations for a Scan Path Linker (SPL) E	<u>-18</u>
		E.8.3	Using Emulation Pins E	-20
		E.8.4	Performing Diagnostic Applications E	-24
F	Gloss	sary		F-1
	Expla	ins term	s, abbreviations, and acronyms used throughout this book.	

Figures

1–1	TMS320 Family	1-3
2–1	Overall Block Diagram of the 'C2xx	2-2
2–2	Bus Structure Block Diagram	
3–1	Block Diagram of the Input Scaling, Central Arithmetic Logic, and Multiplication Sections of the CPU	3-2
3–2	Block Diagram of the Input Scaling Section	3-3
3–3	Operation of the Input Shifter for SXM = 0	
3–4	Operation of the Input Shifter for SXM = 1	
3–5	Block Diagram of the Multiplication Section	3-5
3–6	Block Diagram of the Central Arithmetic Logic Section	3-8
3–7	Shifting and Storing the High Word of the Accumulator	
3–8	Shifting and Storing the Low Word of the Accumulator	3-11
3–9	ARAU and Related Logic	
3–10	Status Register ST0	3-15
3–11	Status Register ST1	3-15
4–1	Interface With External Program Memory	4-6
4–2	Pages of Data Memory	4-7
4–3	Interface With External Local Data Memory	4-10
4–4	GREG Register Set to Configure 8K for Global Data Memory	4-12
4–5	Global and Local Data Memory for GREG = 11100000	4-12
4–6	Using 8000h–FFFFh for Local and Global External Memory	4-13
4–7	Simplified Block Diagram of Boot Loader Operation	4-14
4–8	Connecting the EPROM to the Processor	4-15
4–9	Storing the Program in the EPROM	4-17
4–10	Program Code Transferred From 8-Bit EPROM to 16-Bit RAM	4-19
4–11	Interrupt Vectors Transferred First During Boot Load	4-20
4–12	I/O Address Map for the 'C2xx	4-23
4–13	I/O Port Interface Circuitry	4-26
4–14	HOLD Deasserted Before Reset Deasserted	
4–15	Reset Deasserted Before HOLD Deasserted	4-30
4–16	C203 Address Map	
4–17	C204 Address Map	
5–1	Program-Address Generation Block Diagram	
5–2	A Push Operation	
5–3	A Pop Operation	
5–4	4-Level Pipeline Operation	5-7

5–5	INT2/INT3 Request Flow Chart	5 10
5–5 5–6	Maskable Interrupt Operation Flow Chart	
5–0 5–7	C2xx Interrupt Flag Register (IFR) — Data-Memory Address 0006h	
5–8	C2xx Interrupt Mask Register (IMR) — Data-Memory Address 00001	
5–8 5–9	² C2xx Interrupt Control Register (ICR) — I/O-Space Address FFECh	
5–9 5–10		
	Nonmaskable Interrupt Operation Flow Chart	
6–1	Instruction Register Contents for Example 6–1	
6–2	Two Words Loaded Consecutively to the Instruction Register in Example 6–2	
6–3	Pages of Data Memory	
6-4	Instruction Register (IR) Contents in Direct Addressing Mode	
6–5	Generation of Data Addresses in Direct Addressing Mode	
6–6	Instruction Register Content in Indirect Addressing	
7–1	Bit Numbers and Their Corresponding Bit Codes for BIT Instruction	
7–2	Bit Numbers and Their Corresponding Bit Codes for BITT Instruction	
7–3	LST #0 Operation	
7–4	LST #1 Operation	
8–1	Using the Internal Oscillator	
8–2	Using an External Oscillator	
8–3	C2xx CLK Register — I/O-Space Address FFE8h	
8–4	Timer Functional Block Diagram	
8–5	'C2xx Timer Control Register (TCR) — I/O-Space Address FFF8h	8-11
8–6	'C2xx Wait-State Generator Control Register (WSGR) — I/O-Space Address FFFCh	8-15
8–7	BIO Timing Diagram Example	
9–1	Synchronous Serial Port Block Diagram	
9–2	2-Way Serial Port Transfer With External Frame Sync and External Clock	
9–3	Synchronous Serial Port Control Register (SSPCR) — I/O-Space Address FFF1h	
9–4	Burst Mode Transmission With Internal Frame Sync and	
5 4	Multiple Words in the Buffer	9-17
9–5	Burst Mode Transmission With External Frame Sync	
9–6	Continuous Mode Transmission With Internal Frame Sync	
9–7	Continuous Mode Transmission With External Frame Sync	
9–8	Burst Mode Reception	
9–9	Continuous Mode Reception	
9–10	Test Bits in the SSPCR	
10–1	Asynchronous Serial Port Block Diagram	
10–2	Typical Serial Link Between a 'C2xx Device and a Host CPU	
10–3	Asynchronous Serial Port Control Register (ASPCR) — I/O-Space	
10 0	Address FFF5h	10-7
10–4	I/O Status Register (IOSR) — I/O-Space Address FFF6h	
10–5	Example of the Logic for Pins IO0–IO3	
10–6	Data Transmit	
10–7	Data Receive	
11–1	C209 Address Maps	11-6

11–2	C209 Interrupt Flag Register (IFR) — Data-Memory Address 0006h	11-12
11–3	'C209 Interrupt Mask Register (IMR) — Data-Memory Address 0004h	11-13
11–4	'C209 Timer Control Register (TCR) — I/O Address FFFCh	11-15
11–5	'C209 Wait-State Generator Control Register (WSGR) — I/O Address FFFFh	11-17
C–1	Procedure for Generating Executable Files	C-2
D–1	TMS320 ROM Code Submittal Flow Chart	D-2
E–1	14-Pin Header Signals and Header Dimensions	E-2
E–2	Emulator Cable Pod Interface	E-5
E–3	Emulator Cable Pod Timings	E-6
E–4	Emulator Connections Without Signal Buffering	. E-10
E–5	Emulator Connections With Signal Buffering	. E-11
E–6	Target-System-Generated Test Clock	
E–7	Multiprocessor Connections	. E-13
E–8	Pod/Connector Dimensions	. E-14
E–9	14-Pin Connector Dimensions	. E-15
E–10	Connecting a Secondary JTAG Scan Path to a Scan Path Linker	. E-17
E–11	EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns	. E-21
E–12	Suggested Timings for the EMU0 and EMU1 Signals	. E-22
E–13	EMU0/1 Configuration With Additional AND Gate to Meet	
	Timing Requirements of Greater Than 25 ns	
E–14		
E–15	TBC Emulation Connections for n JTAG Scan Paths	. E-25

Tables

1–1	Typical Applications for TMS320 DSPs 1-4
1–2	C2xx Generation Summary 1-5
2–1	Program and Data Memory on the TMS320C2xx Devices
2–2	Serial Ports on the 'C2xx Devices
3–1	Product Shift Modes for the Product-Scaling Shifter
3–2	Bit Fields of Status Registers ST0 and ST1 3-16
4–1	Pins for Interfacing With External Memory and I/O Spaces 4-3
4–2	Data Page 0 Address Map 4-8
4–3	Global Data Memory Configurations 4-11
4–4	On-Chip Registers Mapped to I/O Space 4-24
4–5	C203 Program-Memory Configuration Options 4-33
4–6	C203 Data-Memory Configuration Options 4-34
4–7	C204 Program-Memory Configuration Options 4-37
4–8	C204 Data-Memory Configuration Options 4-37
5–1	Program-Address Generation Summary 5-3
5–2	Address Loading to the Program Counter 5-4
5–3	Conditions for Conditional Calls and Returns 5-10
5–4	Groupings of Conditions 5-11
5–5	C2xx Interrupt Locations and Priorities 5-16
5–6	Reset Values of On-Chip Registers Mapped to Data Space 5-35
5–7	Reset Values of On-Chip Registers Mapped to I/O Space 5-35
6–1	Indirect Addressing Operands 6-10
6–2	Effects of the ARU Code on the Current Auxiliary Register
6–3	Field Bits and Notation for Indirect Addressing 6-14
7–1	Accumulator, Arithmetic, and Logic Instructions
7–2	Auxiliary Register Instructions
7–3	TREG, PREG, and Multiply Instructions 7-7
7–4	Branch Instructions
7–5	Control Instructions
7–6	I/O and Memory Instructions
7–7	Product Shift Modes
7–8	Product Shift Modes
8–1	Peripheral Register Locations and Reset Conditions
8–2	C2xx Input Clock Modes 8-6
8–3	C2xx Timer Run/Emulation Modes 8-11
8–4	Setting the Number of Wait States With the 'C2xx WSGR Bits 8-16

Contents xxiii

9–1	SSP Interface Pins
9–2	Run and Emulation Modes
9–3	Controlling Transmit Interrupt Generation by Writing to Bits FT1 and FT0 9-9
9–4	Controlling Receive Interrupt Generation by Writing to Bits FR1 and FR0
9–5	Selecting Transmit Clock and Frame Sync Sources
9–6	Run and Emulation Modes
10–1	Asynchronous Serial Port Interface Pins 10-4
10–2	Common Baud Rates and the Corresponding BRD Values 10-14
10–3	Configuring Pins IO0–IO3 with ASPCR Bits CIO0–CIO3 10-15
10–4	Viewing the Status of Pins IO0–IO3 With IOSR Bits IO0–IO3 and DIO0–DIO3 10-16
11–1	'C209 Program-Memory Configuration Options 11-8
11–2	C209 Data-Memory Configuration Options 11-9
11–3	'C209 On-Chip Registers Mapped to I/O Space 11-9
11–4	C209 Interrupt Locations and Priorities 11-10
11–5	C209 Input Clock Modes 11-15
A–1	Reset Values of the Status Registers A-2
A–2	Addresses and Reset Values of On-Chip Registers Mapped to Data Space A-2
A–3	Addresses and Reset Values of On-Chip Registers Mapped to I/O Space A-2
B–1	Symbols and Acronyms Used in the Instruction Set Summary B-3
B–2	Summary of Enhanced Instructions B-5
C–1	Shared Programs in This Appendix C-3
C–2	Task-Specific Programs in This Appendix C-3
E–1	14-Pin Header Signal Descriptions E-3
E–2	Emulator Cable Pod Timing Parameters E-6

Examples

4–1	An Interrupt Service Routine Supporting INT1 and HOLD	4-28
6–1	RPT Instruction Using Short-Immediate Addressing	
6–2	ADD Instruction Using Long-Immediate Addressing	
6–3	Using Direct Addressing with ADD (Shift of 0 to 15)	
6–4	Using Direct Addressing with ADD (Shift of 16)	
6–5	Using Direct Addressing with ADDC	
6–6	Selecting a New Current Auxiliary Register	
6–7	No Increment or Decrement	
6–8	Increment by 1	
6–9	Decrement by 1	6-16
6–10	Increment by Index Amount	
6–11	Decrement by Index Amount	
6–12	Increment by Index Amount With Reverse Carry Propagation	6-16
6–13	Decrement by Index Amount With Reverse Carry Propagation	6-16
C–1	Generic Command File (c203.cmd)	C-5
C–2	Header File With I/O Register Declarations (init.h)	C-6
C–3	Header File With Interrupt Vector Declarations (vector.h)	C-7
C–4	Implementing Simple Delay Loops (delay.asm)	C-8
C–5	Testing and Using the Timer (timer.asm)	C-9
C–6	Testing and Using Interrupt INT1 (intr1.asm)	C-10
C–7	Implementing a HOLD Operation (hold.asm)	
C–8	Testing and Using Interrupts INT2 and INT3 (intr23.asm)	
C–9	Asynchronous Serial Port Transmission (uart.asm)	C-13
C–10	Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm)	C-14
C–11	Testing and Using Automatic Baud-Rate Detection on Asynchronous Serial Port (autobaud.asm)	
A 1A	Asynchronous Serial Port (autobaud.asm)	C-16
C-12	Testing and Using Asynchronous Serial Port Delta Interrupts (bitio.asm)	
C–13	Synchronous Serial Port Continuous Mode Transmission (ssp.asm)	
C-14	Using Synchronous Serial Port With Codec Device (ad55.asm)	
C–15	Linker Command File	
C–16	Hex Conversion Utility Command File	
E–1	Key Timing for a Single-Processor System Without Buffers	E-8
E–2	Key Timing for a Single- or Multiple-Processor System With Buffered Input and Output	E-8
E–3	Key Timing for a Single-Processor System Without Buffering (SPL)	
L-3 E-4	Key Timing for a Single- or Multiprocessor-System Without Bullening (SFE)	
- 7	Buffered Input and Output (SPL)	E-19
	· · · ·	

Contents xxv

Cautions

Obtain the Proper Timing Information	4-5
Do Not Write to Test/Emulation Addresses	4-8
Obtain the Proper Timing Information	4-9
Do Not Write to Reserved Addresses	4-24
Do Not Write to Reserved Addresses	4-33
Do Not Write to Reserved Addresses	4-36
nitialize the DP in All Programs	6-5
Do Not Write to Reserved Addresses	11-7

Chapter 1

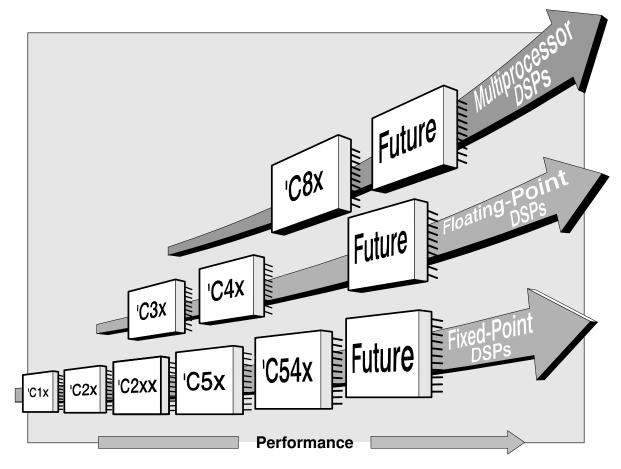
Introduction

The TMS320C2xx ('C2xx) is one of several fixed-point generations of DSPs in the TMS320 family. The 'C2xx is source-code compatible with the TMS320C2x. Much of the code written for the 'C2x can be reassembled to run on a 'C2xx device. In addition, the 'C2xx generation is upward compatible with the 'C5x generation of DSPs.

Topic Page 1.1 TMS320 Family 1-2 1.2 TMS320C2xx Generation 1-5 1.3 Key Features of the TMS320C2xx 1-6

1.1 TMS320 Family

The TMS320 family consists of fixed-point, floating-point, and multiprocessor digital signal processors (DSPs). TMS320 DSPs have an architecture designed specifically for real-time signal processing. The following characteristics make this family the ideal choice for a wide range of processing applications:


- Flexible instruction sets
- High-speed performance
- Innovative parallel architectures
- Cost effectiveness

1.1.1 History, Development, and Advantages of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point DSP in the TMS320 family. Before the end of the year, *Electronic Products* magazine awarded the TMS32010 the title "Product of the Year". Today, the TMS320 family consists of these generations: 'C1x, 'C2x, 'C2xx, 'C5x, and 'C54x fixed-point DSPs; 'C3x and 'C4x floating-point DSPs; and 'C8x multiprocessor DSPs. See Figure 1–1.

Devices within a generation of the TMS320 family have the same CPU structure but different on-chip memory and peripheral configurations. Spin-off devices use new combinations of on-chip memory and peripherals to satisfy a wide range of needs in the worldwide electronics market. By integrating memory and peripherals onto a single chip, TMS320 devices reduce system cost and save circuit board space.

Figure 1–1. TMS320 Family

1.1.2 Typical Applications for the TMS320 Family

Table 1–1 lists some typical applications for the TMS320 family of DSPs. The TMS320 DSPs offer adaptable approaches to traditional signal-processing problems such as filtering and vocoding. They also support complex applications that often require multiple operations to be performed simultaneously.

Table 1–1. Typical Applications for TMS320 DSPs

Automotive	Consumer	Control		
Adaptive ride control Antiskid brakes Cellular telephones Digital radios Engine control Global positioning Navigation Vibration analysis Voice commands	Digital radios/TVs Educational toys Music synthesizers Pagers Power tools Radar detectors Solid-state answering machines	Disk drive control Engine control Laser printer control Motor control Robotics control Servo control		
General-Purpose	Graphics/Imaging	Industrial		
Adaptive filtering Convolution Orrelation Digital filtering Fast Fourier transforms Hilbert transforms Waveform generation Windowing	3-D rotation Animation/digital maps Homomorphic processing Image compression/transmission Image enhancement Pattern recognition Robot vision Workstations	Numeric control Power-line monitoring Robotics Security access		
Instrumentation	Medical	Military		
Digital filtering Function generation	Diagnostic equipment Fetal monitoring	Image processing Missile guidance		
Pattern matching Phase-locked loops Seismic processing Spectrum analysis Transient analysis	Hearing aids Patient monitoring Prosthetics Ultrasound equipment	Navigation Radar processing Radio frequency modems Secure communications Sonar processing		
Phase-locked loops Seismic processing Spectrum analysis Transient analysis	Patient monitoring Prosthetics	Radar processing Radio frequency modems Secure communications		

1.2 TMS320C2xx Generation

Texas Instruments uses static CMOS integrated-circuit technology to fabricate the TMS320C2xx DSPs. The architectural design of the 'C2xx is based on that of the 'C5x. The operational flexibility and speed of the 'C2xx and 'C5x are a result of an advanced, modified Harvard architecture (which has separate buses for program and data memory), a multilevel pipeline, on-chip peripherals, on-chip memory, and a highly specialized instruction set. The 'C2xx performs up to 40 MIPS (million instructions per second).

The 'C2xx generation offers the following benefits:

- Enhanced TMS320 architectural design for increased performance and versatility
- Modular architectural design for fast development of additional spin-off devices
- Advanced IC processing technology for increased performance
- □ Fast and easy performance upgrades for 'C1x and 'C2x source code, which is upward compatible with 'C2xx source code
- Enhanced instruction set for faster algorithms and for optimized high-level language operation
- New static design techniques for minimizing power consumption

Table 1–2 provides an overview of the basic features of the 'C2xx DSPs.

		On-Chip Memory		Serial Ports				
Device	Cycle Time (ns)	RAM	ROM	Flash	Synch.	Asynch.	Timers	Package
TMS320C203	25/35/50	544			1	1	1	100 TQFP†
TMS320C204	25/35/50	544	4K		1	1	1	100 TQFP†
TMS320F206	25/35/50	4.5K		32K	1	1	1	100 TQFP†
TMS320C209	35/50	4.5K	4K		-	_	1	80 TQFP†

Table 1–2. 'C2xx Generation Summary

† TQFP = Thin quad flat pack

1.3 Key Features of the TMS320C2xx

Key features on the various 'C2xx devices are:

- □ Speed:
 - 50-, 35-, or 25-ns execution time of a single-cycle instruction
 - 20, 28.5, or 40 MIPS
- Code compatibility with other TMS320 fixed-point devices:
 - Source-code compatible with all 'C1x and 'C2x devices
 - Upward compatible with the 'C5x devices
- □ Memory:
 - 224K words of addressable memory space (64K words of program space, 64K words of data space, 64K words of I/O space, and 32K words of global space)
 - 544 words of dual-access on-chip RAM (288 words for data and 256 words for program/data)
 - 4K words on-chip ROM or 32K words on-chip flash memory (on selected devices)
 - 4K words of single-access on-chip RAM (on selected devices)
- CPU:
 - 32-bit arithmetic logic unit (CALU)
 - 32-bit accumulator
 - 16-bit × 16-bit parallel multiplier with 32-bit product capability
 - Three scaling shifters
 - Eight 16-bit auxiliary registers with a dedicated arithmetic unit for indirect addressing of data memory
- Program control:
 - 4-level pipeline operation
 - 8-level hardware stack
 - User-maskable interrupt lines

- Instruction set:
 - Single-instruction repeat operation
 - Single-cycle multiply/accumulate instructions
 - Memory block move instructions for better program/data management
 - Indexed-addressing capability
 - Bit-reversed indexed-addressing capability for radix-2 FFTs
- On-chip peripherals:
 - Software-programmable timer
 - Software-programmable wait-state generator for program, data, and I/O memory spaces
 - Oscillator and phase-locked loop (PLL) to implement clock options: ×1, ×2, ×4, and ÷2 (only ×2 and ÷2 available on 'C209)
 - CLK register for turning the CLKOUT1 pin on and off (not available on 'C209)
 - Synchronous serial port (not available on 'C209)
 - Asynchronous serial port (not available on 'C209)
- On-chip scanning-logic circuitry (IEEE Standard 1149.1) for emulation and testing purposes
- Dever:
 - 5- or 3.3-V static CMOS technology
 - Power-down mode to reduce power consumption
- Packages:
 - 100-pin TQFP (thin quad flat pack)
 - 80-pin TQFP for the 'C209

Chapter 2

Architectural Overview

This chapter provides an overview of the architectural structure and components of the 'C2xx. The 'C2xx DSPs use an advanced, modified Harvard architecture that maximizes processing power by maintaining separate bus structures for program memory and data memory. The three main components of the 'C2xx are the central processing unit (CPU), memory, and on-chip peripherals.

Figure 2–1 shows an overall block diagram of the 'C2xx.

Note:

All 'C2xx devices use the same central processing unit (CPU), bus structure, and instruction set, but the 'C209 has some notable differences. For example, although certain peripheral control registers have the same names on all 'C2xx devices, these registers are located at different I/O addresses on the 'C209. See Chapter 11 for a detailed description of the differences on the 'C209.

Topic

Page

2.1	C2xx Bus Structure
2.2	Central Processing Unit 2-5
2.3	Memory and I/O Spaces
2.4	Program Control 2-10
2.5	On-Chip Peripherals 2-11
2.6	Scanning-Logic Circuitry 2-13



Figure 2–1. Overall Block Diagram of the 'C2xx

Note: The I/O-mapped (peripheral) registers are not part of the core; they are accessed as shown in Figure 2–2 on page 2-4.

2.1 'C2xx Bus Structure

Figure 2–2 shows a block diagram of the 'C2xx bus structure. The 'C2xx internal architecture is built around six 16-bit buses:

- □ **PAB.** The *program address bus* provides addresses for both reads from and writes to program memory.
- **DRAB.** The *data-read address bus* provides addresses for reads from data memory.
- DWAB. The *data-write address bus* provides addresses for writes to data memory.
- **PRDB.** The *program read bus* carries instruction code and immediate operands, as well as table information, from program memory to the CPU.
- DRDB. The data read bus carries data from data memory to the central arithmetic logic unit (CALU) and the auxiliary register arithmetic unit (ARAU).
- DWEB. The *data write bus* carries data to both program memory and data memory.

Having separate address buses for data reads (DRAB) and data writes (DWAB) allows the CPU to read and write in the same machine cycle.

Separate program and data spaces allow simultaneous access to program instructions and data. For example, while data is multiplied, a previous product can be added to the accumulator, and, at the same time, a new address can be generated. Such parallelism supports a set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the 'C2xx includes control mechanisms to manage interrupts, repeated operations, and function/subroutine calls.

All 'C2xx devices share the same CPU and bus structure; however, each device has different on-chip memory configurations and on-chip peripherals.

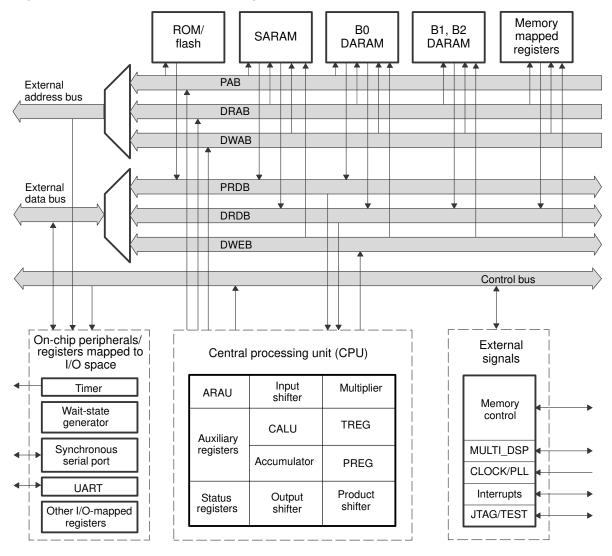


Figure 2–2. Bus Structure Block Diagram

2.2 Central Processing Unit

The CPU is the same on all the 'C2xx devices. The 'C2xx CPU contains:

- A 32-bit central arithmetic logic unit (CALU)
- A 32-bit accumulator
- Input and output data-scaling shifters for the CALU
- \Box A 16-bit × 16-bit multiplier
- A product-scaling shifter
- Data-address generation logic, which includes eight auxiliary registers and an auxiliary register arithmetic unit (ARAU)
- Program-address generation logic

2.2.1 Central Arithmetic Logic Unit (CALU) and Accumulator

The 'C2xx performs 2s-complement arithmetic using the 32-bit CALU. The CALU uses 16-bit words taken from data memory or derived from an immediate instruction, or it uses the 32-bit result from the multiplier. In addition to arithmetic operations, the CALU can perform Boolean operations.

The accumulator stores the output from the CALU; it can also provide a second input to the CALU. The accumulator is 32 bits wide and is divided into a high-order word (bits 31 through 16) and a low-order word (bits 15 through 0). Assembly language instructions are provided for storing the high- and low-order accumulator words to data memory.

2.2.2 Scaling Shifters

The 'C2xx has three 32-bit shifters that allow for scaling, bit extraction, extended arithmetic, and overflow-prevention operations:

- □ Input data-scaling shifter (input shifter). This shifter left shifts 16-bit input data by 0 to 16 bits to align the data to the 32-bit input of the CALU.
- Output data-scaling shifter (output shifter). This shifter can left shift output from the accumulator by 0 to 7 bits before the output is stored to data memory. The content of the accumulator remains unchanged.
- Product-scaling shifter (product shifter). The product register (PREG) receives the output of the multiplier. The product shifter shifts the output of the PREG before that output is sent to the input of the CALU. The product shifter has four product shift modes (no shift, left shift by one bit, left shift by four bits, and right shift by 6 bits), which are useful for performing multiply/accumulate operations, performing fractional arithmetic, or justifying fractional products.

2.2.3 Multiplier

The on-chip multiplier performs 16-bit \times 16-bit 2s-complement multiplication with a 32-bit result. In conjunction with the multiplier, the 'C2xx uses the 16-bit temporary register (TREG) and the 32-bit product register (PREG). The TREG always supplies one of the values to be multiplied. The PREG receives the result of each multiplication.

Using the multiplier, TREG, and PREG, the 'C2xx efficiently performs fundamental DSP operations such as convolution, correlation, and filtering. The effective execution time of each multiplication instruction can be as short as one CPU cycle.

2.2.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indirect addressing (see Chapter 6, *Addressing Modes*) to access data memory. The ARAU is supported by eight auxiliary registers (AR0 through AR7), each of which can be loaded with a 16-bit value from data memory or directly from an instruction word. Each auxiliary register value can also be stored to data memory. The auxiliary registers are referenced by a 3-bit auxiliary register pointer (ARP) embedded in status register ST0.

2.3 Memory and I/O Spaces

The 'C2xx memory is organized into four individually selectable spaces: program, local data, global data, and I/O. These spaces form an address range of 224K words.

All 'C2xx devices include 288 words of dual-access RAM (DARAM) for data memory and 256 words of data/program DARAM. Depending on the device, it may also have data/program single-access RAM (SARAM) and read-only memory (ROM) or flash memory. Table 2–1 shows how much ROM, flash memory, DARAM, and SARAM are available on the different 'C2xx devices.

Table 2–1. Program and Data Memory on the TMS320C2xx Devices

Memory Type	'C203	'C204	'F206	'C209
ROM (words)	-	4K	-	4K
Flash memory (words)	-	-	32K	-
DARAM (words)	544	544	544	544
Data (words)	288	288	288	288
Data/program (words)	256	256	256	256
SARAM (words)	_	_	4K	4K

The 'C2xx also has CPU registers that are mapped in data memory space and peripheral registers that are mapped in on-chip I/O space. The 'C2xx memory types and features are introduced in the subsections following this paragraph. For more details about the configuration and use of the 'C2xx memory and I/O space, see Chapter 4, *Memory and I/O Space*.

2.3.1 Dual-Access On-Chip RAM

All 'C2xx devices have 544 words \times 16-bits of on-chip DARAM, which can be accessed twice per machine cycle. This memory is primarily intended to hold data but, when needed, can also hold programs. It can be configured in one of two ways:

- All 544 words are configured as data memory.
- 288 words are configured as data memory, and 256 words are configured as program memory.

Because DARAM can be accessed twice per cycle, it improves the speed of the CPU. The CPU operates within a four-cycle pipeline. In this pipeline, the

CPU reads data on the third cycle and writes data on the fourth cycle. However, DARAM allows the CPU to write and read in one cycle; the CPU writes to DARAM on the master phase of the cycle and reads from DARAM on the slave phase. For example, suppose two instructions, A and B, store the accumulator value to DARAM and load the accumulator with a new value from DARAM. Instruction A stores the accumulator value during the master phase of the CPU cycle, and instruction B loads the new value to the accumulator during the slave phase. Because part of the dual-access operation is a write, it only applies to RAM.

2.3.2 Single-Access On-Chip Program/Data RAM

Some of the 'C2xx devices have 4K 16-bit words of single-access RAM (SARAM). The addresses associated with the SARAM can be used for both data memory and program memory and are software- or hardware-configur-able (depending on the device) to either external memory or the internal SARAM. When configured as external, these addresses can be used for off-chip data and program memory. Code can be booted from off-chip ROM and then executed at full speed once it is loaded into the on-chip SARAM. Because the SARAM can be mapped to program and/or data memory, the SARAM allows for more flexible address mapping than the DARAM block.

SARAM is accessed only once per CPU cycle. When the CPU requests multiple accesses, the SARAM schedules the accesses by providing a not-ready condition to the CPU and then executing the accesses one per cycle. For example, if the instruction sequence involves storing the accumulator value and then loading a value to the accumulator, it would take two cycles to complete in SARAM, compared to one cycle in DARAM.

2.3.3 Factory-Masked On-Chip ROM

Some of the 'C2xx devices feature an on-chip, 4K 16-bit words of programmable ROM. The ROM can be selected during reset by driving the MP/\overline{MC} pin low. If the ROM is not selected, the device starts its execution from off-chip memory.

If you want a custom ROM, you can provide the code or data to be programmed into the ROM in object file format, and Texas Instruments will generate the appropriate process mask to program the ROM. See Appendix D for details on how to submit ROM code to Texas Instruments.

2.3.4 Flash Memory

Some of the 'C2xx devices feature on-chip blocks of flash memory, which is electronically erasable and programmable, and non-volatile. Each block of flash memory will have a set of control registers that allow for erasing, programming, and testing of that block. The flash memory blocks can be selected during reset by driving the MP/MC pin low. If the flash memory is not selected, the device starts its execution from off-chip memory.

2.4 Program Control

Several features provide program control:

- ☐ The program controller of the CPU decodes instructions, manages the pipeline, stores the status of operations, and decodes conditional operations. Elements involved in program control are the program counter, the status registers, the stack, and the address-generation logic.
- Software mechanisms used for program control include branches, calls, conditional instructions, a repeat instruction, reset, and interrupts.

For descriptions of these program control features, see Chapter 5, *Program Control.*

2.5 On-Chip Peripherals

All the 'C2xx devices have the same CPU, but different on-chip peripherals are connected to their CPUs. The on-chip peripherals featured on the 'C2xx devices are:

- Clock generator (an oscillator and a phase lock loop circuit)
- CLK register for turning the CLKOUT1 pin on and off
- 🗋 Timer
- Wait-state generator
- General-purpose input/output (I/O) pins
- Synchronous serial port
- Asynchronous serial port

2.5.1 Clock Generator

The clock generator consists of an internal oscillator and an internal phase lock loop (PLL) circuit. The clock generator can be driven internally by connecting the DSP to a crystal resonator circuit, or it can be driven by an external clock source. The PLL circuit generates an internal CPU clock by multiplying the clock source by a specified factor. Thus, you can use a clock source with a lower frequency than that of the CPU. The clock generator is discussed in Section 8.2, on page 8-4.

2.5.2 CLKOUT1-Pin Control (CLK) Register

The 'C2xx CLK register controls whether the master clock output signal (CLKOUT1) is available at the CLKOUT1 pin.

2.5.3 Hardware Timer

The 'C2xx features a 16-bit down-counting timer with a 4-bit prescaler. Timer control bits can stop, start, reload, and determine the prescaler count for the timer. For more information, see Section 8.4, *Timer*, on page 8-8.

2.5.4 Software-Programmable Wait-State Generator

Software-programmable wait-state logic is incorporated (without any external hardware) for interfacing with slower off-chip memory and I/O devices. The 'C209 wait-state generator generates zero or one wait states; the wait-state generator on other 'C2xx devices generates zero to seven wait states. For more information, see Section 8.5, *Wait-State Generator*, on page 8-14.

2.5.5 General-Purpose I/O Pins

The 'C2xx has pins that provide general-purpose input or output signals. All 'C2xx devices have a general-purpose input pin, $\overline{\text{BIO}}$, and a general-purpose output pin, XF. Except for the 'C209, the 'C2xx devices also have pins IO0, IO1, IO2, and IO3, which are connected to corresponding bits (IO0–IO3) mapped into the on-chip I/O space. These bits can be individually configured as inputs or outputs. For more information on the general-purpose pins, see Section 8.6, on page 8-17.

2.5.6 Serial Ports

The serial ports available on the 'C2xx vary by device, but two types of serial ports are represented: synchronous and asynchronous. See Table 2–2 for the number of each kind on the various 'C2xx devices. The subsections following the table provide an introduction to the two types of serial ports.

Table 2–2. Serial Ports on the 'C2xx Devices

Serial Ports	'C203	'C204	' F206	'C209
Synchronous	1	1	1	_
Asynchronous	1	1	1	-

Synchronous serial port (SSP)

The 'C2xx synchronous serial port (SSP) communicates with codecs, other 'C2xx devices, and external peripherals. The SSP offers:

- Two four-word-deep first in, first out (FIFO) buffers that have interrupt-generating capabilities.
- Burst and continuous transfer modes.
- A wide range of operation speeds when external clocking is used.

If internal clocking is used, the speed is fixed at 1/2 of the internal DSP clock frequency. For more information on the SSP, see Chapter 9.

Asynchronous serial port (ASP)

The 'C2xx asynchronous serial port (ASP) communicates with asynchronous serial devices. The ASP has a maximum transfer rate of 250,000 characters per second (assuming it uses10 bits to transmit each 8-bit character). The ASP also has logic for automatic baud detection, which allows the ASP to lock to the incoming data rate. All transfers through the asynchronous serial port use double buffering. See Chapter 10, *Asynchronous Serial Port*, for more information.

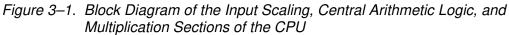
2.6 Scanning-Logic Circuitry

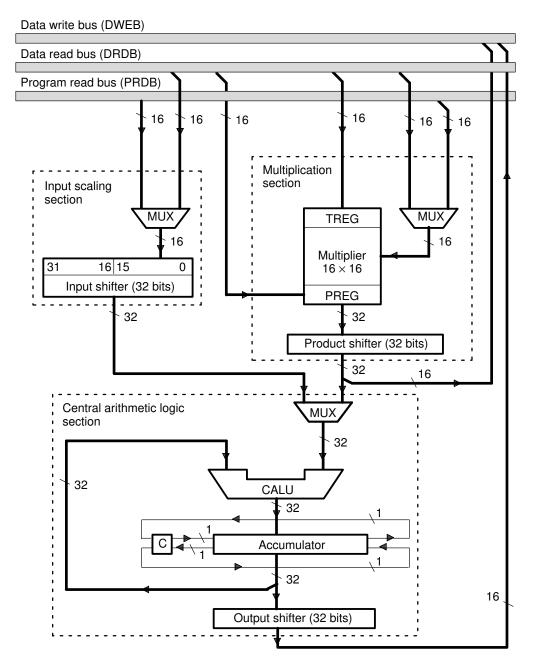
The 'C2xx has JTAG scanning-logic circuitry that is compatible with IEEE Standard 1149.1. This circuitry is used for emulation and testing purposes only. The serial scan path is used to test pin-to-pin continuity as well as to perform operational tests on the on-chip peripherals. The internal scanning logic provides access to all of the on-chip resources. Thus, the serial-scan pins and the emulation pins on 'C2xx devices allow on-board emulation. However, on all 'C2xx devices, the serial scan path does not have boundary scan logic. Appendix E provides information to help you meet the design requirements of the Texas Instruments XDS510[™] emulator with respect to IEEE-1149.1 designs and discusses the XDS510 cable.

Chapter 3

Central Processing Unit

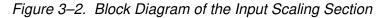
This chapter describes the main components of the central processing unit (CPU). First, this chapter describes three fundamental sections of the CPU (see Figure 3–1):

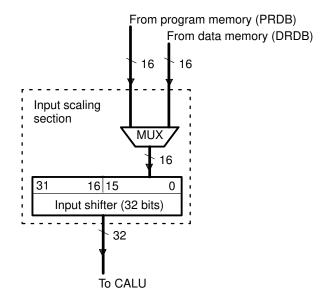

- Input scaling section
- Multiplication section
- Central arithmetic logic section


The chapter then describes the auxiliary register arithmetic unit (ARAU), which performs arithmetic operations independently of the central arithmetic logic section. The chapter concludes with a description of status registers ST0 and ST1, which contain bits for determining processor modes, addressing pointer values, and indicating various processor conditions and arithmetic logic results.

Topic

Page


3.1	Input Scaling Section 3-3
3.2	Multiplication Section 3-5
3.3	Central Arithmetic Logic Section 3-8
3.4	Auxiliary Register Arithmetic Unit (ARAU)
3.5	Status Registers ST0 and ST1 3-15



3.1 Input Scaling Section

A 32-bit input data-scaling shifter (input shifter) aligns a 16-bit value coming from memory to the 32-bit CALU. This data alignment is necessary for data-scaling arithmetic as well as aligning masks for logical operations. The input shifter operates as part of the data path between program or data space and the CALU and, thus, requires no cycle overhead. Described directly below are the input, the output, and the shift count of the input shifter. Throughout the discussion, refer to Figure 3–2.

Input. Bits 15 through 0 of the input shifter accept a 16-bit input from either of two sources (see Figure 3–2):

- □ *The data read bus (DRDB).* This input is a value from a data memory location referenced in an instruction operand.
- ☐ *The program read bus (PRDB).* This input is a constant value given as an instruction operand.

Output. After a value has been accepted into bits 15 through 0, the input shifter aligns the16-bit value to the 32-bit bus of the CALU as shown in Figure 3–2. The shifter shifts the value left 0 to 16 bits and then sends the 32-bit result to the CALU.

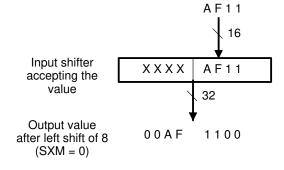
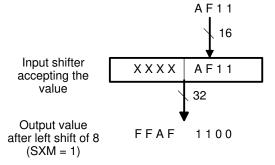
During the left shift, unused LSBs in the shifter are filled with zeros, and unused MSBs in the shifter are either filled with zeros or sign extended, depending on the value of the sign-extension mode bit (SXM) of status register ST1.

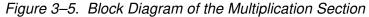
Shift count. The shifter can left-shift a 16-bit value by 0 to 16 bits. The size of the shift (or the shift count) is obtained from one of two sources:

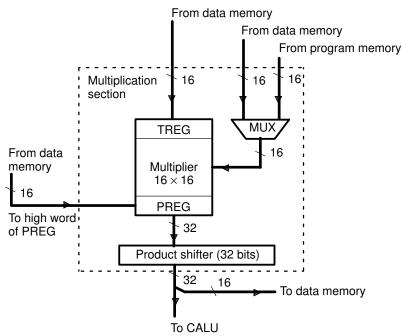
- A constant embedded in the instruction word. Putting the shift count in the instruction word allows you to use specific data-scaling or alignment operations customized for your program code.
- ☐ The four LSBs of the temporary register (TREG). The TREG-based shift allows the data-scaling factor to be determined dynamically so that it can be adapted to the system's performance.

Sign-extension mode bit. For many but not all instructions, the sign-extension mode bit (SXM), bit 10 of status register ST1, determines whether the CALU uses sign extension during its calculations. If SXM = 0, sign extension is suppressed. If SXM = 1, the output of the input shifter is sign extended. Figure 3–3 shows an example of an input value shifted left by 8 bits for SXM = 0. The MSBs of the value passed to the CALU are zero filled. Figure 3–4 shows the same shift but with SXM = 1. The value is sign extended during the shift.

Figure 3–3. Operation of the Input Shifter for SXM = 0


Figure 3–4. Operation of the Input Shifter for SXM = 1



3.2 Multiplication Section

The 'C2xx uses a 16-bit \times 16-bit hardware multiplier that can produce a signed or unsigned 32-bit product in a single machine cycle. As shown in Figure 3–5, the multiplication section consists of:

- □ The 16-bit temporary register (TREG), which holds one of the multiplicands
- The multiplier, which multiplies the TREG value by a second value from data memory or program memory
- The 32-bit product register (PREG), which receives the result of the multiplication
- □ The product shifter, which scales the PREG value before passing it to the CALU.

3.2.1 Multiplier

The 16-bit \times 16-bit hardware multiplier can produce a signed or unsigned 32-bit product in a single machine cycle. The two numbers being multiplied are treated as 2s-complement numbers, except during unsigned multiplication (MPYU instruction). Descriptions of the inputs and output of the multiplier follow.

Inputs. The multiplier accepts two 16-bit inputs:

- One input is always from the 16-bit temporary register (TREG). The TREG is loaded before the multiplication with a data-value from the data read bus (DRDB).
- The other input is one of the following:
 - A data-memory value from the data read bus (DRDB).
 - A program memory value from the program read bus (PRDB).

Output. After the two 16-bit inputs are multiplied, the 32-bit result is stored in the product register (PREG). The output of the PREG is connected to the 32-bit product-scaling shifter. Through this shifter, the product may be transferred from the PREG to the CALU or to data memory (by the SPH and SPL instructions).

3.2.2 Product-Scaling Shifter

The product-scaling shifter (product shifter) facilitates scaling of the product register (PREG) value. The shifter has a 32-bit input connected to the output of the PREG and a 32-bit output connected to the input of the CALU.

Input. The shifter has a 32-bit input connected to the output of the PREG.

Output. After the shifter completes the shift, all 32 bits of the result can be passed to the CALU, or 16 bits of the result can be stored to data memory.

Shift Modes. This shifter uses one of four product shift modes, summarized in Table 3–1. As shown in the table, these modes are determined by the product shift mode (PM) bits of status register ST1. In the first shift mode (PM = 00), the shifter does not shift the product at all before giving it to the CALU or to data memory. The next two modes cause left shifts (of one or four), which are useful for implementing fractional arithmetic or justifying products. The right-shift mode shifts the product by six bits, enabling the execution of up to 128 consecutive multiply-and-accumulate operations without causing the accumulator to overflow. Note that the content of the PREG remains unchanged; the value is copied to the product shifter and shifted there.

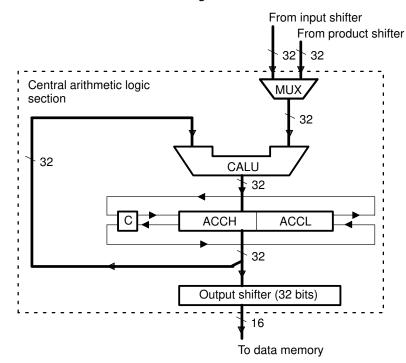
Note:

The right shift in the product shifter is always sign extended, regardless of the value of the sign-extension mode bit (SXM) of status register ST1.

РМ	Shift	Comments
00	no shift	Product sent to CALU or data write bus (DWEB) with no shift
01	left 1	Removes the extra sign bit generated in a 2s-complement multiply to produce a Q31 product †
10	left 4	Removes the extra four sign bits generated in a 16-bit \times 13-bit 2s-complement multiply to produce a Q31 product † when multiplying by a 13-bit constant
11	right 6	Scales the product to allow up to 128 product accumulations with- out overflowing the accumulator. The right shift is always sign ex- tended, regardless of the value of the sign-extension mode bit (SXM) of status register ST1.

Table 3–1. Product Shift Modes for the Product-Scaling Shifter

_


[†]A Q31 number is a binary fraction in which there are 31 digits to the right of the binary point (the base 2 equivalent of the base 10 decimal point).

3.3 Central Arithmetic Logic Section

Figure 3–6 shows the main components of the central arithmetic logic section, which are:

- ☐ The central arithmetic logic unit (CALU), which implements a wide range of arithmetic and logic functions.
- The 32-bit accumulator (ACC), which receives the output of the CALU and is capable of performing bit shifts on its contents with the help of the carry bit (C). Figure 3–6 shows the accumulator's high word (ACCH) and low word (ACCL).
- ☐ The output shifter, which can shift a copy of either the high word or low word of the accumulator before sending it to data memory for storage.

Figure 3–6. Block Diagram of the Central Arithmetic Logic Section

3.3.1 Central Arithmetic Logic Unit (CALU)

The central arithmetic logic unit (CALU), implements a wide range of arithmetic and logic functions, most of which execute in a single clock cycle. These functions can be grouped into four categories:

- 16-bit addition
- 16-bit subtraction
- Boolean logic operations
- Bit testing, shifting, and rotating.

Because the CALU can perform Boolean operations, you can perform bit manipulation. For bit shifting and rotating, the CALU uses the accumulator. The CALU is referred to as central because there is an independent arithmetic unit, the auxiliary register arithmetic unit (ARAU), which is described in Section 3.4. A description of the inputs, the output, and an associated status bit of the CALU follows.

Inputs. The CALU has two inputs (see again Figure 3–6):

- One input is always provided by the 32-bit accumulator.
- The other input is provided by one of the following:
 - The product-scaling shifter (see subsection 3.2.2)
 - The input data-scaling shifter (see Section 3.1)

Output. Once the CALU performs an operation, it transfers the result to the 32-bit accumulator, which is capable of performing bit shifts of its contents. The output of the accumulator is connected to the 32-bit output data-scaling shifter. Through the output shifter, the accumulator's upper and lower 16-bit words can be individually shifted and stored to data memory.

Sign-extension mode bit. For many but not all instructions, the sign-extension mode bit (SXM), bit 10 of status register ST1, determines whether the CALU uses sign extension during its calculations. If SXM = 0, sign extension is suppressed. If SXM = 1, sign extension is enabled.

3.3.2 Accumulator

Once the CALU performs an operation, it transfers the result to the 32-bit accumulator, which can then perform single-bit shifts or rotations on its contents. Each of the accumulator's upper and lower 16-bit words can be passed to the output data-scaling shifter, where it can be shifted, and then stored in data memory. Status bits and branch instructions associated with the accumulator are discussed directly below. Status bits. Four status bits are associated with the accumulator:

- Carry bit (C). C (bit 9 of status register ST1) is affected during:
 - Additions to and subtractions from the accumulator:
 - C = 0 When the result of a subtraction generates a borrow.

When the result of an addition does not generate a carry. (Exception: When the ADD instruction is used with a shift of 16 and no carry is generated, the ADD instruction has no affect on C.)

C = 1 When the result of an addition generates a carry.

When the result of a subtraction does not generate a borrow. (Exception: When the SUB instruction is used with a shift of 16 and no borrow is generated, the SUB instruction has no effect on C.)

- Single-bit shifts and rotations of the accumulator value. During a left shift or rotation, the most significant bit of the accumulator is passed to C; during a right shift or rotation, the least significant bit is passed to C.
- Overflow mode bit (OVM). OVM (bit 11 of status register ST0) determines how the accumulator will reflect arithmetic overflows. When the processor is in overflow mode (OVM = 1) and an overflow occurs, the accumulator is filled with one of two specific values:
 - If the overflow is in the positive direction, the accumulator is filled with its most positive value (7FFF FFFFh).
 - If the overflow is in the negative direction, the accumulator is filled with its most negative value (8000 0000h).
- Overflow flag bit (OV). OV is bit 12 of status register ST0. When no accumulator overflow is detected, OV is latched at 0. When overflow (positive or negative) occurs, OV is set to 1 and latched.
- Test/control flag bit (TC). TC (bit 11 of status register ST1) is set to 0 or 1 depending on the value of a tested bit. In the case of the NORM instruction, if the exclusive-OR of the two MSBs of the accumulator is true, TC is set to 1.

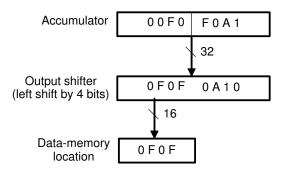
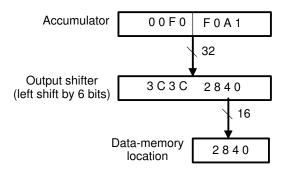
A number of branch instructions are implemented based on the status of bits C, OV, and TC, and on the value in the accumulator (as compared to zero). For more information about these instructions, see Section 5.4, *Conditional Branches, Calls, and Returns*, on page 5-10.

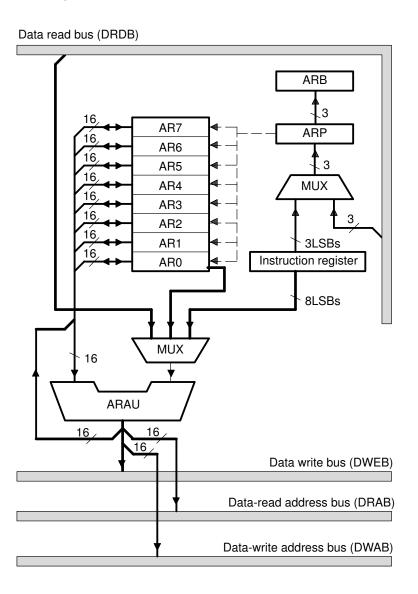
3.3.3 Output Data-Scaling Shifter

The output data-scaling shifter (output shifter) has a 32-bit input connected to the 32-bit output of the accumulator and a 16-bit output connected to the data bus. The shifter copies all 32-bits of the accumulator and then performs a left shift on its content; it can be shifted from zero to seven bits, as specified in the corresponding store instruction. The upper word (SACH instruction) or lower word (SACL instruction) of the shifter is then stored to data memory. The content of the accumulator remains unchanged.

When the output shifter performs the shift, the MSBs are lost and the LSBs are zero filled. Figure 3–7 shows an example in which the accumulator value is shifted left by four bits and the shifted high word is stored to data memory. Figure 3–8 shows the same accumulator value shifted left by 6 bits and then the shifted low word stored.

Figure 3–7. Shifting and Storing the High Word of the Accumulator


Figure 3–8. Shifting and Storing the Low Word of the Accumulator

3.4 Auxiliary Register Arithmetic Unit (ARAU)

The CPU also contains the auxiliary register arithmetic unit (ARAU), an arithmetic unit independent of the central arithmetic logic unit (CALU). The main function of the ARAU is to perform arithmetic operations on eight auxiliary registers (AR7 through AR0) in parallel with operations occurring in the CALU. Figure 3–9 shows the ARAU and related logic.

Figure 3–9. ARAU and Related Logic

The eight auxiliary registers (AR7–AR0) provide flexible and powerful indirect addressing. Any location in the 64K data memory space can be accessed using a 16-bit address contained in an auxiliary register. For the details of indirect addressing, see Section 6.3 on page 6-9.

To select a specific auxiliary register, load the 3-bit auxiliary register pointer (ARP) of status register ST0 with a value from 0 through 7. The ARP can be loaded as a primary operation by the MAR instruction (which only performs modifications to the auxiliary registers and the ARP) or by the LST instruction (which can load a data-memory value to ST0 by way of the data read bus, DRDB). The ARP can be loaded as a secondary operation by any instruction that supports indirect addressing.

The register pointed to by the ARP is referred to as the *current auxiliary register* or *current AR*. During the processing of an instruction, the content of the current auxiliary register is used as the address at which the data-memory access will take place. The ARAU passes this address to the data-read address bus (DRAB) if the instruction requires a read from data memory, or it passes the address to the data-write address bus (DWAB) if the instruction requires a write to data memory. After the instruction uses the data value, the contents of the current auxiliary register can be incremented or decremented by the ARAU, which implements unsigned 16-bit arithmetic.

3.4.1 ARAU and Auxiliary Register Functions

The ARAU performs the following operations:

- Increments or decrements an auxiliary register value by 1 or by an index amount (by way of any instruction that supports indirect addressing)
- Adds a constant value to an auxiliary register value (ADRK instruction) or subtracts a constant value from an auxiliary register value (SBRK instruction). The constant is an 8-bit value taken from the eight LSBs of the instruction word.
- Compares the content of AR0 with the content of the current AR and puts the result in the test/control flag bit (TC) of status register ST1 (CMPR instruction). The result is passed to TC by way of the data write bus (DWEB).

Normally, the ARAU performs its arithmetic operations in the decode phase of the pipeline (when the instruction specifying the operations is being decoded). This allows the address to be generated before the decode phase of the next instruction. There is an exception to this rule: During processing of the NORM instruction, the auxiliary register and/or ARP modification is done during the

execute phase of the pipeline. For information on the operation of the pipeline, see Section 5.2 on page 5-7.

In addition to using the auxiliary registers to reference data-memory addresses, you can use them for other purposes. For example, you can:

- Use the auxiliary registers to support conditional branches, calls, and returns by using the CMPR instruction. This instruction compares the content of AR0 with the content of the current AR and puts the result in the test/control flag bit (TC) of status register ST1.
- Use the auxiliary registers for temporary storage by using the LAR instruction to load values into the registers and the SAR instruction to store AR values to data memory.
- Use the auxiliary registers as software counters, incrementing or decrementing them as necessary.

3.5 Status Registers ST0 and ST1

The 'C2xx has two status registers, ST0 and ST1, which contain status and control bits. These registers can be stored into and loaded from data memory, thus allowing the status of the machine to be saved and restored for subroutines.

The LST (load status register) instruction writes to ST0 and ST1, and the SST (store status register) instruction reads from ST0 and ST1 (with the exception of the INTM bit, which is not affected by the LST instruction). Many of the individual bits of these registers can be set and cleared using the SETC and CLRC instructions. For example, the sign-extension mode is set with SETC SXM and cleared with CLRC SXM.

Figure 3–10 and Figure 3–11 show the organization of status registers ST0 and ST1, respectively. Several bits in the status registers are reserved; they are always read as logic 1s. The other bits are described in alphabetical order in Table 3–2.

Figure 3–10. Status Register ST0

	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	ARP		OV	OVM	1ª	INTM					DP				
	R/W–x		R/W-0	R/W-x		R/W-1				ł	R/W–>	(

Note: R = Read access; W = Write access; value following dash (-) is value after reset (x means value not affected by reset).

[†]This reserved bit is always read as 1. Writes have no effect on it.

Figure 3–11. Status Register ST1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ARB		CNF	TC	SXM	С	11	11	11	1†	XF	1t	/1#	Ρ	М
	R/W-x		R/W-0	R/W-x	R/W-1	R/W-1					R/W-1			R/W	/00

Note: R = Read access; W = Write access; value following dash (-) is value after reset (x means value not affected by reset).

[†]These reserved bits are always read as 1s. Writes have no effect on them.

Table 3–2. Bit Fields of Status Registers ST0 and ST1

Name	Description
ARB	Auxiliary register pointer buffer. Whenever the auxiliary register pointer (ARP) is loaded, the pre- vious ARP value is copied to the ARB, except during an LST (load status register) instruction. When the ARB is loaded by an LST instruction, the same value is also copied to the ARP.
ARP	Auxiliary register pointer. This 3-bit field selects which auxiliary register (AR) to use in indirect addressing. When the ARP is loaded, the previous ARP value is copied to the ARB register, except during an LST (load status register) instruction. The ARP may be modified by memory-reference instructions using indirect addressing, and by the MAR (modify auxiliary register) and LST instructions. When the ARB is loaded by an LST instruction, the same value is also copied to the ARP. For more details on the use of ARP in indirect addressing, see Section 6.3, <i>Indirect Addressing Mode</i> , on page 6-9.
С	Carry bit. This bit is set to 1 if the result of an addition generates a carry, or cleared to 0 if the result of a subtraction generates a borrow. Otherwise, it is cleared after an addition or set after a subtraction, except if the instruction is ADD or SUB with a 16-bit shift. In these cases, ADD can only set and SUB only clear the carry bit, but cannot affect it otherwise. The single-bit shift and rotate instructions also affect this bit, as well as the SETC, CLRC, and LST instructions. The conditional branch, call, and return instructions can execute based on the status of C. C is set to 1 on reset.
CNF	On-chip DARAM configuration bit. This bit determines whether reconfigurable dual-access RAM blocks are mapped to data space or to program space. The CNF bit may be modified by the SETC CNF, CLRC CNF, and LST instructions. Reset clears the CNF bit to 0. For more information about CNF and the dual-access RAM blocks, see Chapter 4, <i>Memory and I/O Spaces</i> .
	CNF = 0 Reconfigurable dual-access RAM blocks are mapped to data space.
	CNF = 1 Reconfigurable dual-access RAM blocks are mapped to program space.
DP	Data page pointer. When an instruction uses direct addressing, the 9-bit DP field is concatenated with the 7 LSBs of the instruction word to form a full 16-bit data-memory address. For more details, see Section 6.2, <i>Direct Addressing Mode</i> , on page 6-4. The LST and LDP (load DP) instructions can modify the DP field.
INTM	Interrupt mode bit. This bit enables or disables all maskable interrupts. INTM is set and cleared by the SETC INTM and CLRC INTM instructions, respectively. INTM has no effect on the nonmaskable interrupts RS and NMI or on interrupts initiated by software. INTM is unaffected by the LST (load status register) instruction. INTM is set to 1 when an interrupt trap is taken (except in the case of the TRAP instruction) and at reset.
	INTM = 0 All unmasked interrupts are enabled.
	INTM = 1 All maskable interrupts are disabled.
OV	Overflow flag bit. This bit holds a latched value that indicates whether overflow has occurred in the CALU. OV is set to 1 when an overflow occurs in the CALU. Once an overflow occurs, the OV bit remains set until it is cleared by a reset, a conditional branch on overflow (OV) or no overflow (NOV), or an LST instruction .

Name	Descriptio	n					
OVM		node bit. OVM determines how overflows in the CALU are handled. The SETC and uctions set and clear this bit, respectively. An LST instruction can also be used to modify					
	OVM = 0	Results overflow normally in the accumulator.					
	OVM = 1	The accumulator is set to either its most positive or negative value upon encountering an overflow. (See subsection 3.3.2, <i>Accumulator</i> .)					
РМ	CALU or to pied to the	Product shift mode. PM determines the amount that the PREG value is shifted on its way to the CALU or to data memory. Note that the content of the PREG remains unchanged; the value is co- pied to the product shifter and shifted there. PM is loaded by the SPM and LST instructions. The PM bits are cleared by reset.					
	PM = 00	The multiplier's 32-bit product is passed to the CALU or to data memory with no shift.					
	PM = 01 The output of the PREG is left shifted one place (with the LSBs zero filled) befing passed to the CALU or to data memory.						
	PM = 10	The output of the PREG is left shifted four bits (with the LSBs zero filled) before being passed to the CALU or to data memory.					
	PM = 11	This mode produces a right shift of six bits, sign extended.					
SXM	example, th SETC SXM	Sign-extension mode bit. SXM does not affect the basic operation of certain instructions. For example, the ADDS instruction suppresses sign extension regardless of SXM. This bit is set by the SETC SXM instruction and cleared by the CLRC SXM instruction, and may be loaded by the LST instruction. SXM is set to 1 by reset.					
	SXM = 0	This mode suppresses sign extension.					
	SXM = 1	This mode produces sign extension on data as it is passed into the accumulator from the input shifter.					
тс	Test/control flag bit. The TC bit is set to 1 if a bit tested by BIT or BITT is a 1, if a compare condition tested by CMPR exists between the current auxiliary register and AR0, or if the exclusive-OR function of the two MSBs of the accumulator is true when tested by a NORM instruction. The conditional branch, call, and return instructions can execute based on the condition of the TC bit. The TC bit is affected by the BIT, BITT, CMPR, LST, and NORM instructions.						
XF	pin. XF is s	tus bit. This bit determines the state of the XF pin, which is a general-purpose output et by the SETC XF instruction and cleared by the CLRC XF instruction. XF can also be ith an LST instruction. XF is set to 1 by reset.					

Table 3–2. Bit Fields of Status Registers ST0 and ST1 (Continued)

Chapter 4

Memory and I/O Spaces

This chapter describes the 'C2xx memory configuration options and the address maps of the individual 'C2xx devices. It also illustrates typical ways of interfacing the 'C2xx with external memory and external input/output (I/O) devices.

Each 'C2xx device has a 16-bit address line that accesses four individually selectable spaces (224K words total):

- □ A 64K-word program space
- A 64K-word local data space
- A 32K-word global data space
- □ A 64K-word I/O space

Also available on select 'C2xx devices are an on-chip boot loader and a HOLD operation. The on-chip boot loader allows a 'C2xx to boot software from an 8-bit external ROM to a 16-bit external RAM at reset. The HOLD operation allows a 'C2xx to give external devices direct memory access to external program, data, and I/O spaces.

Topic

Page

4.1	Overview of the Memory and I/O Spaces
4.2	Program Memory 4-5
4.3	Local Data Memory 4-7
4.4	Global Data Memory 4-11
4.5	Boot Loader 4-14
4.6	I/O Space 4-23
4.7	Direct Memory Access Using the HOLD Operation
4.8	Device-Specific Information 4-31

4.1 Overview of the Memory and I/O Spaces

The 'C2xx address map is organized into four individually selectable spaces:

- Program memory (64K words) contains the instructions to be executed, as well as data used during program execution.
- Local data memory (64K words) holds data used by the instructions.
- Global data memory (32K words) shares data with other processors or serves as additional data space. Addresses in the upper 32K words (8000h–FFFFh) of local data memory can be used for global data memory.
- □ Input/output (I/O) space (64K words) interfaces to external peripherals and contains registers for the on-chip peripherals.

These spaces provide a total address range of 224K words. The 'C2xx includes a considerable amount of on-chip memory to aid in system performance and integration and a considerable amount of addresses that can be used for external memory and I/O devices.

The advantages of operating from on-chip memory are:

- Higher performance than external memory (because the wait states required for slower external memories are avoided)
- Lower cost than external memory
- Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a larger address space.

The 'C2xx design is based on an enhanced Harvard architecture. The 'C2xx memory spaces are accessible on three parallel buses—the program address bus (PAB), the data-read address bus (DRAB), and the data-write address bus (DWAB). Because the operations of the three buses are independent, it is possible to access both the program and data spaces simultaneously. Within a given machine cycle, the central arithmetic logic unit (CALU) can execute as many as three concurrent memory operations.

4.1.1 Pins for Interfacing to External Memory and I/O Spaces

The pins for interfacing to external memory and I/O space, described in Table 4–1, are of four main types:

- External buses. Sixteen signals (A15–A0) are available for passing an address from the 'C2xx to another device. Sixteen signals (D15–D0) are available for transferring a data value between the 'C2xx and another device.
- □ Select signals. These signals can be used by external devices to determine when the 'C2xx is requesting access to off-chip locations, and whether that request is for data, program, global, or I/O space.
- **Read/write signals.** These signals indicate to external devices the direction of a data transfer (to the 'C2xx or from the 'C2xx).
- □ **Request/control signals.** The input request signals (BOOT, MP/MC, RAMEN, READY, and HOLD) effect a change in the operation of the 'C2xx. The output HOLDA is the response to HOLD.

	Pin(s)	Description
External buses	A15–A0	The 16 lines of the external address bus. This bus can address up to 64K words of external memory or I/O space.
	D15–D0	The 16 bidirectional lines of the external data bus. This bus carries data to and from external memory or I/O space.
Select signals	DS	Data memory select pin. The 'C2xx asserts $\overline{\text{DS}}$ to indicate an access to external data memory (local or global).
	BR	Bus request pin. The 'C2xx asserts both $\overline{\text{BR}}$ and $\overline{\text{DS}}$ to indicate an access to global data memory.
	PS	Program memory select pin. The 'C2xx asserts \overline{PS} to indicate an access to external program memory.
	IS	I/O space select pin. The 'C2xx asserts $\overline{\text{IS}}$ to indicate an access to external I/O space.
	STRB	External access active strobe. The 'C2xx asserts STRB during accesses to external program, data, or I/O space.

	Pin(s)	Description
Read/write signals	R/W	Read/write pin. This pin indicates the direction of transfer between the 'C2xx and external program, data, or I/O space.
	RD	Read select pin. The 'C2xx asserts $\overline{\text{RD}}$ to request a read from external program, data, or I/O space.
	WE	Write enable pin. The 'C2xx asserts $\overline{\text{WE}}$ to request a write to external program, data, or I/O space.
Request/control signals	BOOT	Boot <u>load p</u> in. This pin is only on devices that have the on-chip boot load- er. If BOOT is low during a hardware reset, the 'C2xx transfers code from EPROM in global data memory to RAM in external program memory.
	MP/MC	Microprocessor/microcomputer pin. This pin is only on devices with on- chip non-volatile program memory. The level on this pin is tested at reset. If MP/MC is high, the device is in microprocessor mode (the reset vector is fetched from external memory). If MP/MC is low, the device is in micro- computer mode (the reset vector is fetched from on-chip memory).
	RAMEN	Single-access RAM enable pin. On 'C2xx devices with on-chip single-ac- cess RAM, when this pin is high, the RAM is enabled; when this pin is low, the RAM is disabled.
	READY	External device ready pin (for generating wait states externally). When this pin is driven low, the 'C2xx waits one CPU cycle and then tests READY again. After READY is driven low, the 'C2xx does not continue processing until READY is driven high. If READY is not used, it should be kept high. On the 'C203, at boot time, this pin must be high.
	HOLD	HOLD operation request pin. An external device can request control of the external buses by asserting HOLD. After the 'C2xx (along with proper software logic) asserts HOLDA, the external device controls the buses until it deasserts HOLD.
	HOLDA	HOLD acknowledge pin. The 'C2xx (with assistance from proper pro- gram code) asserts HOLDA to acknowledge that HOLD has been as- serted and places its external buses in high impedance.

Table 4–1. Pins for Interfacing With External Memory and I/O Spaces (Continued)

4.2 Program Memory

Program-memory space holds the code for applications; it can also hold table information and constant operands. The program-memory space addresses up to 64K 16-bit words. Every 'C2xx device contains a DARAM block B0 that can be configured as program memory or data memory. Other on-chip program memory may be SARAM and ROM or flash memory. For information on configuring on-chip program-memory blocks, see Section 4.8.

4.2.1 Interfacing With External Program Memory

The 'C2xx can address up to 64K words of external program memory. While the 'C2xx is accessing the on-chip program-memory blocks, the external memory signals PS and STRB are in high impedance. The external buses are active only when the 'C2xx is accessing locations within the address ranges mapped to external memory. An active PS signal indicates that the external buses are being used for program memory. Whenever the external buses are active (when external memory or I/O space is being accessed) the 'C2xx drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast access time. If fast memory is not available, or if speed is not a serious consideration, you can use the the READY signal and/or the on-chip wait-state generator to create wait states.

Figure 4–1 shows an example of interfacing to external program memory. In the figure, $8K \times 16$ -bit static memory is interfaced to the 'C2xx using two $8K \times 8$ -bit RAMs.

Obtain the Proper Timing Information

When interfacing memory with high-speed 'C2xx devices, refer to the data sheet for that 'C2xx device for the required access, delay, and hold times.

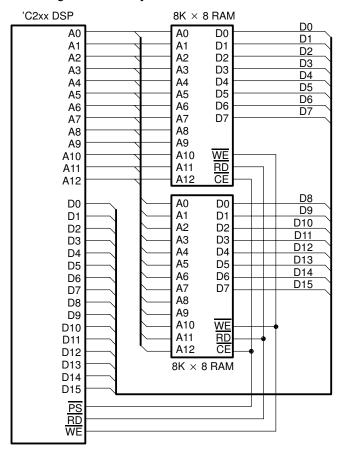


Figure 4–1. Interface With External Program Memory

4.3 Local Data Memory

The local data-memory space addresses up to 64K 16-bit words. Every 'C2xx device has three on-chip DARAM blocks: B0, B1, and B2. Block B0 has 256 words that are configurable as either data locations or program locations. Blocks B1 (256 words) and B2 (32 words) have a total of 288 words that are available for data memory only. Some 'C2xx devices, in addition to the three DARAM blocks, have an on-chip SARAM block that can be used for program and/or data memory. Section 4.8 tells how to configure these memory blocks.

Data memory can be addressed with either of two addressing modes: directaddressing mode or indirect-addressing mode. Addressing modes are described in detail in Chapter 6.

When direct addressing is used, data memory is addressed in blocks of 128 words called data pages. Figure 4–2 shows how these blocks are addressed. The entire 64K of data memory consists of 512 data pages labeled 0 through 511. The current data page is determined by the value in the 9-bit data page pointer (DP) in status register ST0. Each of the 128 words on the current page is referenced by a 7-bit offset, which is taken from the instruction that is using direct addressing. Therefore, when an instruction uses direct addressing, you must specify both the data page (with a preceding instruction) and the offset (in the instruction that accesses data memory).

Figure 4–2. Pages of Data Memory

DP value	Offset	'C2xx Data Memory
0000 0000 0	000 0000	
:	÷	Page 0: 0000h–007Fh
0000 0000 0	111 1111	-
0000 0000 1	000 0000	
:	÷	Page 1: 0080h-00FFh
0000 0000 1	111 1111	
0000 0001 0	000 0000	
:	:	Page 2: 0100h–017Fh
0000 0001 0	111 1111	
•		•
•	•	-
		-
1111 1111 1	000 0000	
		Page 511: FF80h–FFFFh
1111 1111 1	111 1111	

Memory and I/O Spaces 4-7

4.3.1 Data Page 0 Address Map

Table 4–2 shows the address map of data page 0 (addresses 0000h–007Fh). Note the following:

- Three memory-mapped registers can be accessed with zero wait states:
 - Interrupt mask register (IMR)
 - Global memory allocation register (GREG)
 - Interrupt flag register (IFR)
- ☐ The test/emulation reserved area is used by the test and emulation systems for special information transfers.

Do Not Write to Test/Emulation Addresses

Writing to the test/emulation addresses can cause the device to change its operational mode and, therefore, affect the operation of an application.

The scratch-pad RAM block (B2) includes 32 words of DARAM that provide for variable storage without fragmenting the larger RAM blocks, whether internal or external. This RAM block supports dual-access operations and can be addressed with any data-memory addressing mode.

Address	Name	Description
0000h–0003h	_	Reserved
0004h	IMR	Interrupt mask register
0005h	GREG	Global memory allocation register
0006h	IFR	Interrupt flag register
0023h–0027h	-	Reserved
002Bh-002Fh	-	Reserved for test/emulation
0060h–007Fh	B2	Scratch-pad RAM (DARAM B2)

Table 4–2. Data Page 0 Address Map

4.3.2 Interfacing With External Local Data Memory

While the 'C2xx is accessing the on-chip local data-memory blocks, the external memory signals DS and STRB are in high impedance. The external buses are active only when the 'C2xx is accessing locations within the address ranges mapped to external memory. An active DS signal indicates that the external buses are being used for data memory. Whenever the external buses are active (when external memory or I/O space is being accessed) the 'C2xx drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast access time. If fast memory is not available, or if speed is not a serious consideration, you can use the the READY signal and/or the on-chip wait-state generator to create wait states.

Figure 4–3 shows an example of interfacing to external data memory. In the figure $8K \times 16$ -bit static memory is interfaced to the 'C2xx using two $8K \times 8$ -bit RAMs. The RAM devices must have fast access times if the internal instruction speed is to be maintained.

Obtain the Proper Timing Information

When interfacing memory with high-speed 'C2xx devices, refer to the data sheet for that 'C2xx device for the required access, delay, and hold times.

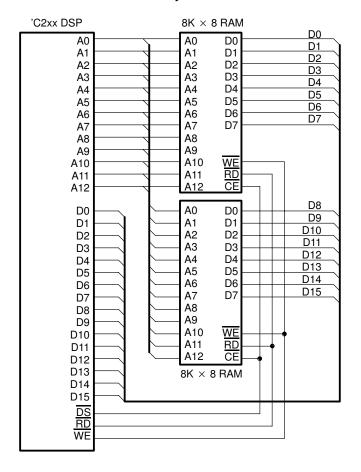


Figure 4–3. Interface With External Local Data Memory

4.4 Global Data Memory

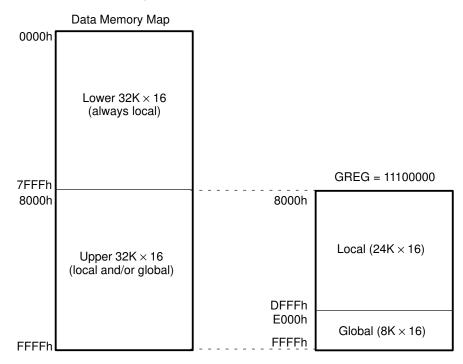
Addresses in the upper 32K words (8000h–FFFFh) of local data memory can be used for global data memory. The global memory allocation register (GREG) determines the size of the global data-memory space, which is between 256 and 32K words. The GREG is connected to the eight LSBs of the internal data bus and is memory-mapped to data-memory location 0005h. Table 4–3 shows the allowable GREG values and shows the corresponding address range set aside for global data memory. Any remaining addresses within 8000h–FFFFh are available for local data memory.

Note:

Choose only the GREG values listed in Table 4–3. Other values lead to fragmented memory maps.

Table 4–3.	Global Da	ta Memory	Configurations
------------	-----------	-----------	----------------

GREG Value		Local Me	mory	Global Memory		
High Byte	Low Byte	Range	Words	Range	Words	
XXXX XXXX	0000 0000	0000h–FFFFh	65 536	_	0	
XXXX XXXX	1000 0000	0000h–7FFFh	32 768	8000h-FFFFh	32 768	
XXXX XXXX	1100 0000	0000h–BFFFh	49 152	C000h-FFFFh	16 384	
XXXX XXXX	1110 0000	0000h–DFFFh	57 344	E000h-FFFFh	8 192	
XXXX XXXX	1111 0000	0000h-EFFFh	61 440	F000h-FFFFh	4 096	
XXXX XXXX	1111 1000	0000h-F7FFh	63 488	F800h–FFFFh	2 048	
XXXX XXXX	1111 1100	0000h–FBFFh	64 512	FC00h-FFFFh	1 024	
XXXX XXXX	1111 1110	0000h-FDFFh	65 024	FE00h-FFFFh	512	
XXXX XXXX	1111 1111	0000h-FEFFh	65 280	FF00h-FFFFh	256	


Note: X = Don't care

As an example of configuring global memory, suppose you want to designate 8K addresses as global addresses. You would write the 8-bit value 11100000₂ to the eight LSBs of the GREG (see Figure 4–4). This would designate addresses E000h–FFFFh of data memory as global data addresses (see Figure 4–5).

Figure 4–4. GREG Register Set to Configure 8K for Global Data Memory

8 MSBs									8 L	SBs					
Х	Х	Х	Х	Х	Х	Х	Х	1	1	1	0	0	0	0	0
(Don't cares)						(Set fo	or 8K o	of glo	bal da	ata m	emor	у		

Figure 4–5. Global and Local Data Memory for GREG = 11100000

4.4.1 Interfacing With External Global Data Memory

When a program accesses any data-memory address, the 'C2xx drives the \overline{DS} signal low. If that address is within a range defined by the GREG as global, \overline{BR} and \overline{DS} are asserted. Because \overline{BR} differentiates local and global accesses, you can use the GREG to extend data memory by up to 32K. Figure 4–6 shows two external RAMs that are sharing data-memory addresses 8000h–FFFFh. Overlapping addresses must be reconfigured with the GREG in order to be

toggled between local memory and global memory. For example, in the system of Figure 4–6, when GREG = $XXXXXXX0000000_2$ (no global memory), the local data RAM is fully accessible; when GREG = $XXXXXXX1000000_2$ (all global memory), the local data RAM is not accessible.

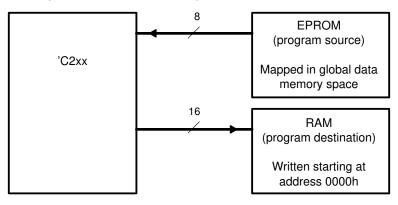

Local data RAM 'C2xx 8000h-FFFFh 16 A15-A0 A15-A0 16 D15–D0 D15-D0 RD OE WE WE DS CE 16 Global data RAM 8000h-FFFFh 16 A15-A0 D15-D0 OE WE BR CE

Figure 4–6. Using 8000h–FFFFh for Local and Global External Memory

4.5 Boot Loader

This section applies to 'C2xx devices that have an on-chip boot loader. The boot loader is used for booting software from an 8-bit external ROM to a 16-bit external RAM at reset (see Figure 4–7). The source for your program is an external ROM located in external global data memory. The destination for the boot loaded program is RAM in program space. The main purpose of the boot loader is to provide you with the ability to use low-cost, simple-to-use 8-bit EPROMs with the 16-bit 'C2xx.

Figure 4–7. Simplified Block Diagram of Boot Loader Operation

The code for the boot loader is stored on chip. Using the boot loader requires several steps: choosing an EPROM, connecting and programming the EPROM, enabling the boot loader program, and finally, booting.

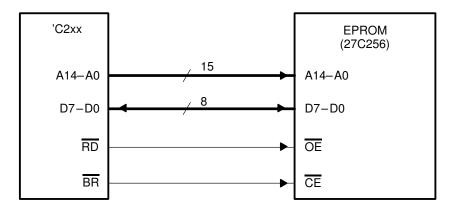
4.5.1 Choosing an EPROM

The code that you want boot loaded must be stored in non-volatile external memory; usually, this code is stored in an EPROM. Most standard EPROMs can be used. At reset, the processor defaults to the maximum number of software wait states to accommodate slow EPROMs.

The maximum size for the EPROM is 32K words \times 8 bits, which accommodates a program of up to 16K words \times 16 bits. However, you could use the boot loader to load your own boot software to get around this limit or to perform a different type of boot.

Recommended EPROMs include the 27C32, 27C64, 27C128, and 27C256.

4.5.2 Connecting the EPROM to the Processor


To map the EPROM into the global data space at address 8000h, make the following connections between the processor and the EPROM (refer to Figure 4–8):

- Connect the address lines of the processor and the EPROM (see lines A14–A0 in the figure).
- □ Connect the data lines of the processor and the EPROM (see lines D7–D0 in the figure).
- Connect the processor's RD pin to the EPROM's output enable pin (OE in the figure).
- □ Connect the processor's BR pin to the EPROM's chip enable pin (CE in the figure).

Notes:

- 1) If the EPROM is smaller than 32K words \times 8 bits, connect only the address pins that are available on the EPROM.
- 2) When the boot loader accesses global memory, along with BR, DS is driven low. Design your system such that the DS signal does not initiate undesired accesses to data memory during the boot loads.

Figure 4–8. Connecting the EPROM to the Processor

4.5.3 Programming the EPROM

Texas Instruments fixed-point development tools provide the utilities to generate the boot ROM code. (For an introduction to the procedure for generating boot loader code, see Appendix C, *Program Examples*.) However, should you need to do the programming, use the following procedure.

Store the following to the EPROM:

- Destination address. Store the destination address in the first two bytes of the EPROM—store the high-order byte of the destination address at EPROM address 8000h and store the low-order byte at EPROM address 8001h.
- Program length. Store N (the length of your program in bytes) in the next two bytes in EPROM. Use this calculation to determine N:

N = ((number of bytes to be transferred)/2) - 1

Store the high-order N byte at EPROM address 8002h and the low-order N byte at EPROM address 8003h.

Program. Store the program, one byte at a time, beginning at EPROM address 8004h.

Each word in the program must be divided into two bytes in the EPROM; store the high-order byte first and store the low-order byte second. For example, if the first word were 813Fh, you would store 81h into the first byte (at 8004h) and 3Fh into the second byte (at 8005h). Then, you would store the high byte of the next word at address 8006h.

Notes:

- Do not include the first four bytes of the EPROM in your calculation of the length (N). The boot loader uses N beginning at the fifth byte of the EPROM.
- 2) Make sure the first part of the program on the EPROM contains code for the reset and interrupt vectors. These vectors must be stored in the destination RAM first, so that they can be fetched from program-memory addresses 0000h–003Fh. The reset vector will be fetched from 0000h. For a list of all the assigned vector locations, see subsection 5.6.2, *Interrupt Table*, on page 5-16.

Figure 4–9 shows how to store a 16-bit program into the 8-bit EPROM. A subscript h (for example, on Word1_h) indicates the high-byte and a subscript I (for example, on Word1_l) indicates the low byte.

Figure 4–9. Storing the Program in the EPROM

	16-Bit P	rogram	
15	8	7	0
Word1 _h		Word1 ₁	
Word2 _h		Word2 _l	
•.		•	
•		•	
•		•	
Wordn _h		Wordn _l	

8-Bit EPROM

7	0
Destination _h	
Destination _l	
Length N _h	
Length N _I	
Word1 _h	
Word1 ₁	
Word2 _h	
Word2 _I	
•	
•	
•	
Wordn _h	
Wordn _l	
	Destination _I Length N _h Length N _I Word1 _h Word2 _h Word2 _I • • • •

4.5.4 Enabling the Boot Loader

To enable the boot loader, tie the $\overline{\text{BOOT}}$ pin low and reset the device. The $\overline{\text{BOOT}}$ pin is sampled only at reset. If you don't want to use the boot loader, tie $\overline{\text{BOOT}}$ high before initiating a reset.

Three main conditions occur at reset that ensure proper operation of the boot loader:

- All maskable interrupts are globally disabled (INTM bit = 1).
- \Box On-chip DARAM block B0 is mapped to data space (CNF bit = 0).
- Seven wait states are selected for program and data spaces.

After a hardware reset, the processor either executes the boot loader software or skips execution of the boot loader, depending on the level on the BOOT pin:

- ☐ If BOOT is low, the processor branches to the location of the on-chip boot loader program.
- □ If BOOT is high, the processor begins program execution at the address pointed to by the reset vector at address 0000h in program memory.

4.5.5 Boot Loader Execution

Once the EPROM has been programmed and installed, and the boot loader has been enabled, the processor automatically boots the program from EPROM at startup. If you need to reboot the processor during operation, bring the $\overline{\text{RS}}$ pin low to cause a hardware reset.

When the processor executes the boot loader, the program first enables the full 32K words of global data memory by setting the eight LSBs of the GREG register to 80h. Next, the boot loader copies your program from the EPROM in global data space to the RAM in program space through a five step process (refer to Figure 4–10):

- 1) The boot loader loads the first two bytes from the EPROM and uses this word as the destination address for the code. (In Figure 4–10, the destination is 0000h.)
- 2) The boot loader loads the next two bytes to determine the length of the code.
- 3) The boot loader transfers the next two bytes. It loads the high byte first and the low byte second, combines the two bytes into one word, stores the new word in the destination memory location, and then increments the source and destination addresses.
- 4) The boot loader checks to see if the end of the program has been reached:
 - If the end is reached, the boot loader goes on to step 5.
 - If the end is not reached, the boot loader repeats steps 3 and 4.
- 5) The boot loader disables the entire global memory and then forces a branch to the reset vector at address 0000h in program memory. Once the boot loader finishes operation, the processor switches the on-chip boot loader out of the memory map.

Note:

During the boot load, data is read using the low-order eight data lines (D7–D0). The upper eight data lines are not used by the boot loader code.

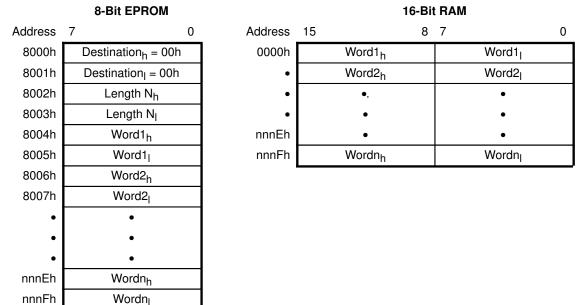


Figure 4–10. Program Code Transferred From 8-Bit EPROM to 16-Bit RAM

The 'C2xx fetches its interrupt vectors from program-memory locations 0000h–003Fh (the reset vector is fetched from 0000h). Make sure that the interrupt vectors are stored at the top of the EPROM, so that they will be transferred to addresses 0000h–003Fh in the RAM (see Figure 4–11). Each interrupt vector is a branch instruction, which requires four 8-bit words, and there is space for 32 interrupt vectors. Therefore, the first 128 words to be transferred from the EPROM should be the interrupt vectors.

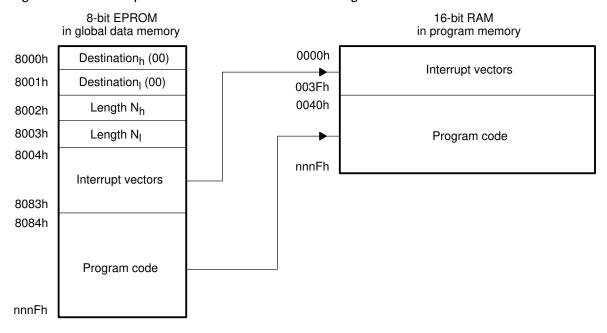
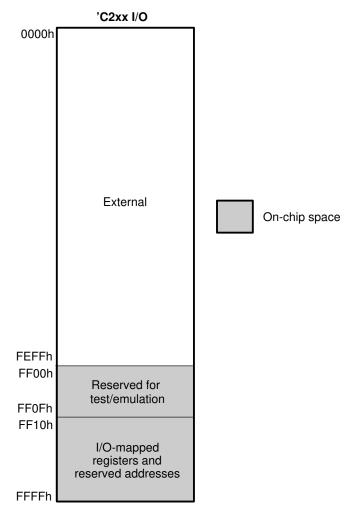


Figure 4–11. Interrupt Vectors Transferred First During Boot Load

4.5.6 Boot Loader Program

```
TMS320C2xx Boot Loader Program
*
  This code sets up and executes boot loader code that loads program
                                                                 *
  code from location 8000h in external global data space and transfers it
*
  to the destination address specified by the first word read from locations *
  8000h and 8001h.
*
.length 60
       .set 5h
                        ; The GREG Register
GREG
                        ; Source address
SRC
              8000h
       .set
DEST .set 60h
LENGTH .set 61h
                         ; Destination address
; Code length
      .set 62h
TEMP
                         ; Temporary storage
HBYTE .set 63h
                        ; Temporary storage for upper half of 16-bit word
             64h
CODEWORD .set
                        ; Hold program code word
      .sect "bootload"
* Initialization
              #0 ; Set the data page to 0 (load DP with 0)
#2E00h,TEMP ; Set ARP = 1, OVM = 1, INTM = 1, DP = 0
BOOT
       T'DP
       SPLK
       LST
              #0,TEMP
              #21FCh,TEMP ; Set ARB = 1, CNF = 0, SXM = 0, XF = 1, PM = 0
       SPLK
       LST
              #1,TEMP
       SPLK
              #80h, GREG ; Designate locations 8000-FFFFH as global data
BOOT LOAD FROM 8-BIT MEMORY. MOST SIGNIFICANT BYTE IS FIRST
* Determine destination address
                        ; AR1 points to global address 8000h
ADDR
       LAR
              AR1,#SRC
                         ; Load ACC with high byte shifted left by 8 bits
       LACC
              *+,8
                         ; Store high byte
; Load ACC with low byte of destination
       SACL
              HBYTE
       LACL
              *+
                        ; Mask off upper 24 bits.
       AND
              #OFFH
       OR
                        ; OR ACC with high byte to form 16-bit
              HBYTE
                         ; destination address
       SACL
             DEST
                         ; Store destination address
 Determine length of code to be transferred
                        ; Load ACC with high byte shifted left by 8 bits
LEN
       LACC
              *+,8
              HBYTE
                        ; Store high byte
       SACL
                        ; Load ACC with low byte of length
       LACL
              *+
              #OFFH
                         ; Mask off upper 24 bits.
       AND
       OR
              HBYTE
                         ; OR ACC with high byte to form 16-bit length
             LENGTH ; Store length
       SACL
       LAR
             ARO, LENGTH ; Load ARO with length to be used for BANZ
```

```
*
  Transfer code
                 *+,8
                            ; Load ACC with high byte of code shifted by 8 bits
LOOP
        LACC
        SACL
                 HBYTE
                             ; Store high byte
                 *+,AR0
        LACL
                            ; Load ACC with low byte of code
                 #OFFH
                            ; Mask off upper 24 bits
        AND
                            ; OR ACC with high byte to form 16-bit code word
        OR
                 HBYTE
                            ; Store code word
        SACL
                 CODEWORD
                             ; Load destination address
        LACL
                 DEST
                 CODEWORD
                             ; Transfer code to destination address
        TBLW
        ADD
                 #1
                             ; Add 1 to destination address
                             ; Save new address
        SACL
                 DEST
        BANZ
                 LOOP,AR1
                            ; Determine if end of code is reached
                 #0,GREG
        SPLK
                            ; Disable entire global memory
        INTR
                 0
                              ; Branch to reset vector and execute code.
         .END
```


Note:

The INTR instruction in the boot loader program causes the processor to push a return address onto the stack, but the device does not use a RET to return to this address. Therefore, your program must execute a POP instruction to get the address off the stack.

4.6 I/O Space

The 'C2xx supports an I/O address range of 64K 16-bit words. Figure 4–12 shows the 'C2xx I/O address map.

Figure 4–12. I/O Address Map for the 'C2xx

The map has three main sections of addresses:

- Addresses 0000h–FEFFh allow access to off-chip peripherals typically used in DSP applications, such as digital-to-analog and analog-to-digital converters.
- Addresses FF00h–FF0Fh are mapped to on-chip I/O space. These addresses are reserved for test purposes and should not be used.
- Addresses FF10h–FFFFh are also mapped to on-chip I/O space. These addresses are used for other reserved space and for the on-chip I/Omapped registers. For 'C2xx devices other than the 'C209, Table 4–4 lists the registers mapped to on-chip I/O space. For the I/O-mapped registers on the 'C209, see Section 11.2, on page 11-5.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to I/O addresses FF00h–FF0Fh or any reserved I/O address in the range FF10–FFFFh (that is, any address not designated for an on-chip peripheral.)

Table 4–4. On-Chip Registers Mapped to I/O Space

I/O Address	Name	Description
FFE8h	CLK	CLK register
FFECh	ICR	Interrupt control register
FFF0h	SDTR	Synchronous serial port transmit and receive register
FFF1h	SSPCR	Synchronous serial port control register
FFF4h	ADTR	Asynchronous serial port transmit and receive register
FFF5h	ASPCR	Asynchronous serial port control register
FFF6h	IOSR	Input/output status register
FFF7h	BRD	Baud rate divisor register
FFF8h	TCR	Timer control register
FFF9h	PRD	Timer period register
FFFAh	TIM	Timer counter register
FFFCh	WSGR	Wait-state generator control register

Note: This table does not apply to the 'C209. For the I/O-mapped registers on the 'C209, see Section 11.2 on page 11-5.

4.6.1 Accessing I/O Space

All I/O words (external I/O ports and on-chip I/O registers) are accessed with the IN and OUT instructions. Accesses to external parallel I/O ports are multiplexed over the same address and data buses for program and data-memory accesses. These accesses are distinguished from external program and data-memory accesses by \overline{IS} going low. The data bus is 16 bits wide; however, if you use 8-bit peripherals, you can use either the higher or lower eight lines of the data bus to suit a particular application.

You can use $\overline{\text{RD}}$ with chip-select logic to generate an output-enable signal for an external peripheral. You can also use the $\overline{\text{WE}}$ signal with chip-select logic to generate a write-enable signal for an external peripheral. As an example of interfacing to external I/O space, Figure 4–13 shows interface circuitry for eight input bits and eight output bits. Note that the decode section is simplified if fewer I/O ports are used.

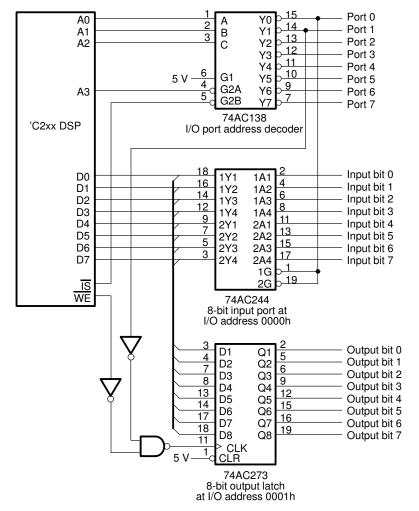


Figure 4–13. I/O Port Interface Circuitry

4.7 Direct Memory Access Using the HOLD Operation

The 'C2xx HOLD operation allows direct-memory access to external program, data, and I/O spaces. The process is controlled by two signals:

- HOLD. An external device can drive the HOLD/INT1 pin low to request control over the external buses. If the HOLD/INT1 interrupt line is enabled, this triggers an interrupt.
- HOLDA. In response to a HOLD interrupt, software logic can cause the processor to issue a HOLD acknowledge (HOLDA pin low), to indicate that it is relinquishing control of its external lines. Upon HOLDA, the external address signals (A15–A0), data signals (D15–D0), and memory-control signals (PS, DS, BR, IS, STRB, R/W, RD, WE) are placed in high impedance.

Following a negative edge on the HOLD/INT1 pin, if interrupt line HOLD/INT1 is enabled, the CPU branches to address 0002h (this branch could also be accomplished with an INTR 1 instruction). Here the CPU fetches the interrupt vector and follows it to the interrupt service routine. If you wish to use this routine for HOLD operations and also for the interrupt INT1, the tasks carried out by this routine will depend on the value of the MODE bit:

- MODE = 1. When the CPU detects a negative edge on HOLD/INT1, it finishes executing the current instruction (or repeat operation) and then forces program control to the interrupt service routine. The interrupt service routine, after successfully testing for MODE = 1, performs the tasks for INT1.
- MODE = 0. Interrupt line INT1 is both negative- and positive-edge sensitive. When the CPU detects the negative edge, it finishes executing the current instruction (or repeat operation) and then forces program control to the interrupt service routine. This routine, after successfully testing for MODE = 0, executes an IDLE instruction. Upon IDLE, HOLDA is asserted and the external lines are placed in high impedance. Only after detecting a rising edge on the HOLD/INT1 pin, the CPU exits the IDLE state, deasserts HOLDA, and returns the external lines to their normal states.

Example 4–1 shows an interrupt service routine that tests the MODE bit and acts accordingly. Note that the IDLE instruction should be placed inside the interrupt service routine to issue \overline{HOLDA} . Also note that the interrupt program code disables all maskable interrupts except $\overline{HOLD}/\overline{INT1}$ to allow safe recovery of \overline{HOLDA} and the buses. Any other sequence of CPU code will cause undesirable bus control and is not recommended. (Interrupt operation is explained in detail in Section 5.6 on page 5-15.)

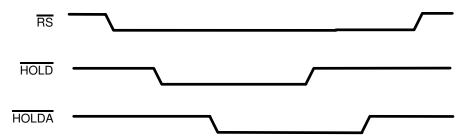
Example 4–1. An Interrupt Service Routine Supporting INT1 and HOLD

```
.mmregs
                             ; Include c2xx memory-mapped registers.
          .set
              OFFECh
                             ;Define interrupt control register in I/O space.
TCR
                             ;Define ICRSHDW in scratch pad location.
ICRSHDW
         .set
              060h
* Interrupt vectors *
               main ;0 - reset , Branch to main program on reset.
int1_hold ;1 - external interrupt 1 or HOLD.
reset
         В
Int1h
         В
                           ;Fill 0000 between vectors and main program.
;Enable HOLD/INT1 interrupt line.
          .space 40*16
         SPLK #0001h,imr
main:
         CLRC INTM
wait:
         В
                wait
int1_hold:
          ; Perform any desired context save.
         LDP
                #0
                             ; Set data-memory page to 0.
         IN
                ICRSHDW, ICR ; Save the contents of ICR register.
               #010h
         LACL
                          ;Load accumulator (ACC) with mask for MODE bit.
         AND
                ICRSHDW
                            ;Filter out all bits except MODE bit.
         BCND
                int1, neq ;Branch if MODE bit is 1, else in HOLD mode.
                           ;Load ACC with interrupt mask register.
         LACC
                imr, O
         SPLK
                #1, imr
                             ;Mask all interrupts except interrupt1/HOLD.
         IDLE
                             ;Enter HOLD mode. Issues HOLDA, and puts
                             ; buses in high impedance. Wait until
                             ; rising edge is seen on HOLD/INT1 pin.
         SPLK
                #1, ifr
                            ;Clear HOLD/INT1 flag in interrupt flag register
                             ;to prevent re-entering HOLD mode.
         SACL
                imr
                             ;Restore interrupt mask register.
          ; Perform necessary context restore.
         CLRC
               INTM
                             ;Enable all interrupts.
         RET
                             ;Return from HOLD interrupt.
int1:
         NOP
                             ;Replace these NOPs with desired int1 interrupt
         NOP
                             ;service routine.
          ; Perform necessary context restore.
         CLRC INTM
                        ;Enable all interrupts.
         RET
                             ;Return from interrupts.
```

Here are three valid methods for exiting the IDLE state, thus deasserting HOLDA and restoring the buses to normal operation:

- \Box Cause a rising edge on the HOLD/INT1 pin when MODE = 0.
- Assert system reset at the reset pin.
- \Box Assert the nonmaskable interrupt $\overline{\text{NMI}}$ at the $\overline{\text{NMI}}$ pin.

If reset or $\overline{\text{NMI}}$ occurs while $\overline{\text{HOLDA}}$ is asserted, the CPU will deassert $\overline{\text{HOLDA}}$ regardless of the level on the $\overline{\text{HOLD}}/\overline{\text{INT1}}$ pin. Therefore, to avoid further conflicts in bus control, the system hardware logic should restore $\overline{\text{HOLD}}$ to a high state.


4.7.1 HOLD During Reset

The HOLD logic can be used to put the buses in a high-impedance state at power-on or reset. This feature is useful in extending the DSP memory control to external processors. If $\overline{\text{HOLD}}$ is driven low during reset, normal reset operation occurs internally, but $\overline{\text{HOLDA}}$ will be asserted, placing all buses and control lines in a high-impedance state. Upon release of both $\overline{\text{HOLD}}$ and $\overline{\text{RS}}$, execution starts from program location 0000h.

Either of the following conditions will cause the processor to deassert HOLDA and return the buses to a normal state:

☐ HOLD is deasserted before reset is deasserted. See Figure 4–14. This is the normal recovery condition after a HOLD operation. After the HOLD signal goes high, the HOLDA signal will be deasserted, and the buses will assume normal states.

Figure 4–14. HOLD Deasserted Before Reset Deasserted

Reset is deasserted before HOLD is deasserted. See Figure 4–15. The CPU will deassert HOLDA regardless of the HOLD signal after the 16 clock cycles required for normal reset operation. Along with the HOLDA signal, the buses will assume normal states. The external system hardware logic should restore the HOLD signal to a high state to avoid conflicts in HOLD logic.

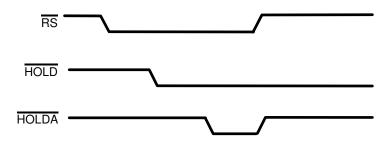
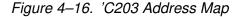
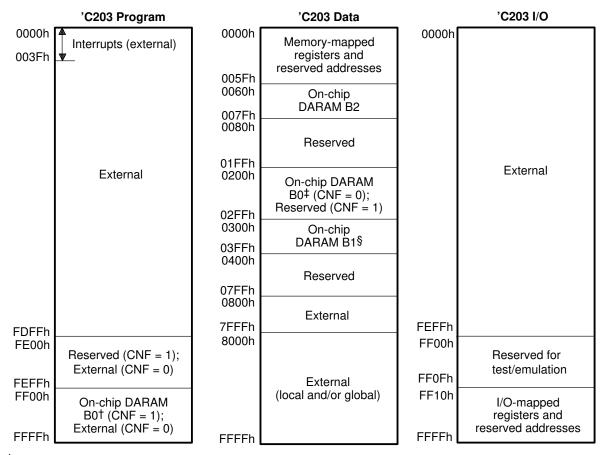


Figure 4–15. Reset Deasserted Before HOLD Deasserted

4.8 Device-Specific Information


For 'C2xx devices other than the 'C209, this section mentions the presence or absence of the boot loader and HOLD features, shows address maps, and explains the contents and configuration of the program-memory and datamemory maps. For details about the memory and I/O spaces of the 'C209, see Section 11.2 on page 11-5.


4.8.1 TMS320C203 Address Maps and Memory Configuration

The 'C203 has a 'C2xx on-chip boot loader and supports the 'C2xx HOLD operation. Figure 4–16 shows the 'C203 address map.

The on-chip program and data memory available on the 'C203 consists of:

- DARAM B0 (256 words, for program or data memory)
- DARAM B1 (256 words, for data memory)
- DARAM B2 (32 words, for data memory)

[†] When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to here as reserved when CNF = 1.

When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to here as reserved.

SAddresses 0300h-03FFh and 0400h-04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h-04FFh are referred to here as reserved.

DARAM blocks B1 and B2 are fixed, but DARAM block B0 may be mapped to program space or data space, depending on the value of the CNF bit (bit 12 of status register ST1):

- □ **CNF = 0.** B0 is mapped to data space and is accessible at data addresses 0200h–02FFh. Note that the addressable external *program* memory increases by 512 words.
- **CNF = 1.** B0 is mapped to program space and is accessible at program addresses FF00h–FFFFh.

At reset, CNF = 0.

Table 4–5 shows the program-memory options for the 'C203; Table 4–6 lists the data-memory options. Note these facts:

- Program-memory addresses 0000h–003Fh are used for the interrupt vectors.
- Data-memory addresses 0000h–005Fh contain on-chip memory-mapped registers and reserved memory.
- ☐ Two other on-chip data-memory ranges are always reserved: 0080h-01FFh and 0400h-07FFh.

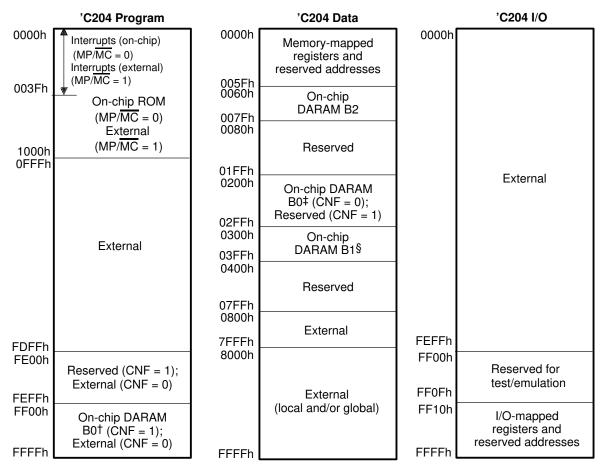
Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to any addresses labeled Reserved. This includes any data-memory address in the range 0000h–005Fh that is not designated for an on-chip register and any I/O address in the range FF00h–FFFFh that is not designated for an on-chip register.

Table 4–5.	'C203 Program-Memor	v Configuration	Options

CNF	DARAM BO	External	Reserved
0	-	0000h-FFFFh	-
1	FF00h-FFFFh	0000h-FDFFh	FE00h-FEFFh

CNF	DARAM B0 (hex)	DARAM B1 (hex)	DARAM B2 (hex)	External (hex)	Reserved (hex)
0	0200–02FF	0300–03FF	0060–007F	0800–FFFF	0000–005F
					0080–01FF
					0400–07FF
1	_	0300–03FF	0060–007F	0800–FFFF	0000–005F
					0080–02FF
_					0400–07FF


Table 4–6. 'C203 Data-Memory Configuration Options

4.8.2 TMS320C204 Address Maps and Memory Configuration

The 'C204 does not have an on-chip boot loader, but it does support the 'C2xx HOLD operation. Figure 4–16 shows the 'C204 address map. The on-chip program and data memory available on the 'C204 consists of:

- BOM (4K words, for program memory)
- DARAM B0 (256 words, for program or data memory)
- DARAM B1 (256 words, for data memory)
- DARAM B2 (32 words, for data memory)

Figure 4–17. 'C204 Address Map

[†] When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to here as reserved when CNF = 1.

[‡] When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to here as reserved.

§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to here as reserved.

You select or deselect the ROM by changing the level on the MP/\overline{MC} pin at reset:

- MP/MC = 0 at reset. The device is configured as a microcomputer. The on-chip ROM is enabled and is accessible at addresses 0000h–0FFFh. The device fetches the reset vector from on-chip ROM.
- MP/MC = 1 at reset. The device is configured as a microprocessor, and addresses 0000h–0FFFh are used to access external memory. The device fetches the reset vector from external memory.

Regardless of the value of MP/\overline{MC} , the 'C2xx fetches its reset vector at location 0000h of program memory.

DARAM blocks B1 and B2 are fixed, but DARAM block B0 may be mapped to program space or data space, depending on the value of the CNF bit (bit 12 of status register ST1):

- CNF = 0. B0 is mapped to data space and is accessible at data addresses 0200h−02FFh. Note that the addressable external *program* memory increases by 512 words.
- CNF = 1. B0 is mapped to program space and is accessible at program addresses FF00h–FFFFh.

At reset, CNF = 0.

Table 4–7 lists the available program memory configurations for the 'C204; Table 4–8 lists the data-memory configurations. Note these facts:

- Program-memory addresses 0000h–003Fh are used for the interrupt vectors.
- Data-memory addresses 0000h–005Fh contain on-chip memory-mapped registers and reserved memory.
- ☐ Two other on-chip data-memory ranges are always reserved: 0080h-01FFh and 0400h-07FFh.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to any addresses labeled Reserved. This includes any data-memory address in the range 0000h–005Fh that is not designated for an on-chip register and any I/O address in the range FF00h–FFFFh that is not designated for an on-chip register.

MP/MC	CNF	ROM (hex)	DARAM B0 (hex)	External (hex)	Reserved (hex)
0	0	0000-0FFF	_	1000–FFFF	-
0	1	0000-0FFF	FF00–FFFF	1000–FDFF	FE00-FEFF
1	0	_	_	0000-FFFF	_
1	1	-	FF00-FFFF	0000-FDFF	FE00-FEFF

Table 4–7. 'C204 Program-Memory Configuration Options

Table 4–8. 'C204 Data-Memory Configuration Options

CNF	DARAM B0 (hex)	DARAM B1 (hex)	DARAM B2 (hex)	External (hex)	Reserved (hex)
0	0200–02FF	0300–03FF	0060–007F	0800–FFFF	0000–005F
					0080–01FF
					0400–07FF
1	_	0300–03FF	0060–007F	0800–FFFF	0000–005F
					0080–02FF
					0400–07FF

Chapter 5

Program Control

This chapter discusses the processes and features involved in controlling the flow of a program on the 'C2xx.

Program control involves controlling the order in which one or more blocks of instructions are executed. Normally, the flow of a program is sequential: the 'C2xx executes instructions at consecutive program-memory addresses. At times, a program must branch to a nonsequential address and then execute instructions sequentially at that new location. For this purpose, the 'C2xx supports branches, calls, returns, repeats, and interrupts.

The 'C2xx also provides a power-down mode, which halts internal program flow and temporarily lowers the power requirements of the 'C2xx.

Topic

Page

5.1	Program-Address Generation 5-2
5.2	Pipeline Operation 5-7
5.3	Branches, Calls, and Returns 5-8
5.4	Conditional Branches, Calls, and Returns 5-10
5.5	Repeating a Single Instruction
5.6	Interrupts
5.7	Reset Operation5-33
5.8	Power-Down Mode

5.1 Program-Address Generation

Program flow requires the processor to generate the next program address (sequential or nonsequential) while executing the current instruction. Program-address generation is illustrated in Figure 5–1 and summarized in Table 5–1.

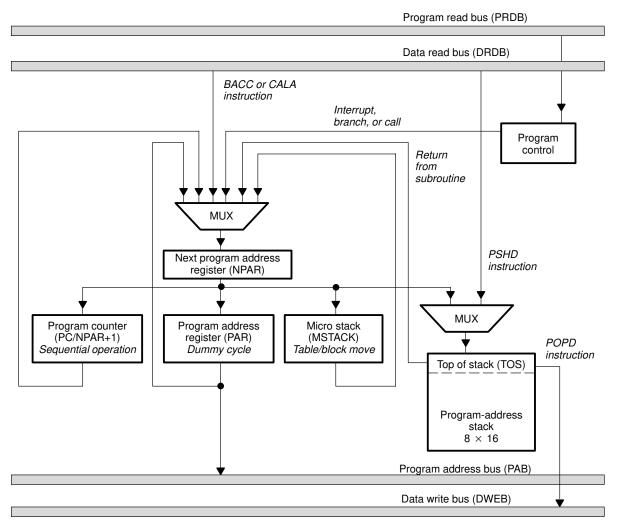


Figure 5–1. Program-Address Generation Block Diagram

Operation	Program-Address Source
Sequential operation	PC (contains program address +1)
Dummy cycle	PAR (contains program address)
Return from subroutine	Top of the stack (TOS)
Return from table move or block move	Micro stack (MSTACK)
Branch or call to address specified in instruction	Branch or call instruction by way of the program read bus (PRDB)
Branch or call to address specified in lower half of the accumulator	Low accumulator by way of the data read bus (DRDB)
Branch to interrupt service routine	Interrupt vector location by way of the program read bus (PRDB)

Table 5–1.	Program-Address	Generation Summary

The 'C2xx program-address generation logic uses the following hardware:

- Program counter (PC). The 'C2xx has a 16-bit program counter (PC) that addresses internal and external program memory when fetching instructions.
- Program address register (PAR). The PAR drives the program address bus (PAB). The PAB is a 16-bit bus that provides program addresses for both reads and writes.
- □ Stack. The program-address generation logic includes a 16-bit-wide, 8level hardware stack for storing up to eight return addresses. In addition, you can use the stack for temporary storage.
- Micro stack (MSTACK). Occasionally, the program-address generation logic uses the 16-bit-wide, 1-level MSTACK to store one return address.
- Repeat counter (RPTC). The 16-bit RPTC is used with the repeat (RPT) instruction to determine how many times the instruction following RPT is repeated.

5.1.1 Program Counter (PC)

The program-address generation logic uses the 16-bit program counter (PC) to address internal and external program memory. The PC holds the address of the next instruction to be executed. Through the program address bus (PAB), an instruction is fetched from that address in program memory and loaded into the instruction register. When the instruction register is loaded, the PC holds the next address.

The 'C2xx can load the PC in a number of ways, to accommodate sequential and nonsequential program flow. Table 5–2 shows what is loaded to the PC according to the code operation performed.

Table 5–2. Address Loading to the Program Counter

Code Operation	Address Loaded to the PC
Sequential execution	The PC is loaded with PC + 1 if the current instruction has one word or PC + 2 if the current instruction has two words.
Branch	The PC is loaded with the long immediate value directly fol- lowing the branch instruction.
Subroutine call and return	For a call, the address of the next instruction is pushed from the PC onto the stack, and then the PC is loaded with the long immediate value directly following the call instruction. A return instruction pops the return address back into the PC to return to the calling sequence of code.
Software or hardware interrupt	The PC is loaded with the address of the appropriate inter- rupt vector location. At this location is a branch instruction that loads the PC with the address of the corresponding in- terrupt service routine.
Computed GOTO	The content of the lower 16 bits of the accumulator is loaded into the PC. Computed GOTO operations can be performed using the BACC (branch to address in accumulator) or CALA (call subroutine at location specified by the accumula- tor) instructions.

5.1.2 Stack

The 'C2xx has a 16-bit-wide, 8-level-deep hardware stack. The program-address generation logic uses the stack for storing return addresses when a subroutine call or interrupt occurs. When an instruction forces the CPU into a subroutine or an interrupt forces the CPU into an interrupt service routine, the return address is loaded to the top of the stack automatically; this event does not require additional cycles. When the subroutine or interrupt service routine is complete, a return instruction transfers the return address from the top of the stack to the program counter.

When the eight levels are not used for return addresses, the stack may be used for saving context data during a subroutine or interrupt service routine, or for other storage purposes.

You can access the stack with two sets of instructions:

PUSH and POP. The PUSH instruction copies the lower half of the accumulator to the top of the stack. The POP instruction copies the value on the top of the stack to the lower half of the accumulator.

PSHD and POPD. These instructions allow you to build a stack in data memory for the nesting of subroutines or interrupts beyond eight levels. The PSHD instruction pushes a data-memory value onto the top of the stack. The POPD instruction pops a value from the top of the stack to data memory.

Whenever a value is pushed onto the top of the stack (by an instruction or by the address-generation logic), the content of each level is pushed down one level, and the bottom (eighth) location of the stack is lost. Therefore, data is lost (stack overflow occurs) if more than eight successive pushes occur before a pop. Figure 5–2 shows a push operation.

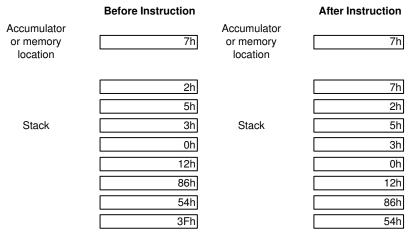
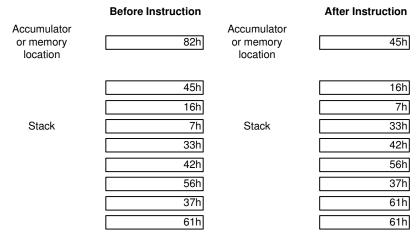



Figure 5–2. A Push Operation

Pop operations are the reverse of push operations. A pop operation copies the value at each level to the next higher level. Any pop after seven sequential pops yields the value that was originally at the bottom of the stack because, by then, the bottom value has been copied upward to all of the stack levels. Figure 5–3 shows a pop operation.

Figure 5–3. A Pop Operation

5.1.3 Micro Stack (MSTACK)

The program-address generation logic uses the 16-bit-wide, 1-level-deep MSTACK to store a return address before executing certain instructions. These instructions use the program-address generation logic to provide a second address in a two-operand instruction. These instructions are: BLDD, BLPD, MAC, MACD, TBLR, and TBLW. When repeated, these instructions use the PC to increment the first operand address and can use the auxiliary register arithmetic unit (ARAU) to generate the second operand address. When these instructions are used, the return address (the address of the next instruction to be fetched) is pushed onto the MSTACK. Upon completion of the repeated instruction, the MSTACK value is popped back into the program-address generation logic. The MSTACK operations are not visible to you. Unlike the stack, the MSTACK can be used only by the program-address generation logic; there are no instructions that allow you to use the MSTACK for storage.

5.2 Pipeline Operation

Instruction pipelining consists of a sequence of bus operations that occur during the execution of an instruction. The 'C2xx pipeline has four independent stages: instruction-fetch, instruction-decode, operand-fetch, and instructionexecute. Because the four stages are independent, these operations can overlap. During any given cycle, one to four different instructions can be active, each at a different stage of completion. Figure 5–4 shows the operation of the 4-level-deep pipeline for single-word, single-cycle instructions executing with no wait states.

The pipeline is essentially invisible to you except in the following cases:

- A single-word, single-cycle instruction immediately following a modification of the global-memory allocation register (GREG) uses the previous global map.
- The NORM instruction modifies the auxiliary register pointer (ARP) and uses the current auxiliary register (the one pointed to by the ARP) during the execute phase of the pipeline. If the next two instruction words change the values in the current auxiliary register or the ARP, they will do so during the instruction decode phase of the pipeline (before the execution of NORM). This would cause NORM to use the wrong auxiliary register value and the following instructions to use the wrong ARP value.

CLKOUT1			\square	
Fetch	₩ N	N + 1	N + 2	N + 3
Decode	N – 1	Ν	N + 1	N + 2
Operand	N – 2	N – 1	N N	N + 1
Execute	N – 3	N – 2	 N – 1	N

Figure 5–4. 4-Level Pipeline Operation

The CPU is implemented using 2-phase static logic. The 2-phase operation of the 'C2xx CPU consists of a master phase in which all commutation logic is executed, and a slave phase in which results are latched. Therefore, sequential operations require sequential master cycles. Although sequential operations require a deeper pipeline, 2-phase operation provides more time for the computational logic to execute. This allows the 'C2xx to run at faster clock rates despite having a deeper pipeline that imposes a penalty on branches and subroutine calls.

5.3 Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by transferring control to another location in program memory. A *branch* only transfers control to the new location. A *call* also saves the return address (the address of the instruction following the call) to the top of the hardware stack. Every called subroutine or interrupt service routine is concluded with a *return* instruction, which pops the return address off the stack and back into the program counter (PC).

The 'C2xx has two types of branches, calls, and returns:

- □ Unconditional. An unconditional branch, call, or return is always executed. The unconditional branch, call, and return instructions are described in subsections 5.3.1, 5.3.2, and 5.3.3, respectively.
- □ Conditional. A conditional branch, call, or return is executed only if certain specified conditions are met. The conditional branch, call, and return instructions are described in detail in Section 5.4, *Conditional Branches, Calls, and Returns*, on page 5-10.

5.3.1 Unconditional Branches

When an unconditional branch is encountered, it is always executed. During the execution, the PC is loaded with the specified program-memory address and program execution begins at that address. The address loaded into the PC may come from either the second word of the branch instruction or the lower sixteen bits of the accumulator.

By the time the branch instruction reaches the execute phase of the pipeline, the next two instruction words have already been fetched. These two instruction words are flushed from the pipeline so that they are not executed, and then execution continues at the branched-to address. The unconditional branch instructions are B (branch) and BACC (branch to location specified by accumulator).

5.3.2 Unconditional Calls

When an unconditional call is encountered, it is always executed. When the call is executed, the PC is loaded with the specified program-memory address and program execution begins at that address. The address loaded into the PC may come from either the second word of the call instruction or the lower sixteen bits of the accumulator. Before the PC is loaded, the return address is saved in the stack. After the subroutine or function is executed, a return instruction loads the PC with the return address from the stack, and execution resumes at the instruction following the call.

By the time the unconditional call instruction reaches the execute phase of the pipeline, the next two instruction words have already been fetched. These two instruction words are flushed from the pipeline so that they are not executed, the return address is stored to the stack, and then execution continues at the beginning of the called function. The unconditional call instructions are CALL and CALA (call subroutine at location specified by accumulator).

5.3.3 Unconditional Returns

When an unconditional return (RET) instruction is encountered, it is always executed. When the return is executed, the PC is loaded with the value at the top of the stack, and execution resumes at that address.

By the time the unconditional return instruction reaches the execute phase of the pipeline, the next two instruction words have already been fetched. The two instruction words are flushed from the pipeline so that they are not executed, the return address is taken from the stack, and then execution continues in the calling function.

5.4 Conditional Branches, Calls, and Returns

The 'C2xx provides branch, call, and return instructions that will execute only if one or more conditions are met. You specify the conditions as operands of the conditional instruction. Table 5–3 lists the conditions that you can use with these instructions and their corresponding operand symbols.

Operand Symbol	Condition	Description	
EQ	ACC = 0	Accumulator equal to zero	
NEQ	ACC \neq 0	Accumulator not equal to zero	
LT	ACC < 0	Accumulator less than zero	
LEQ	ACC \leq 0	Accumulator less than or equal to zero	
GT	ACC > 0	Accumulator greater than zero	
GEQ	ACC \geq 0	Accumulator greater than or equal to zero	
С	C = 1	Carry bit set to 1	
NC	C = 0	Carry bit cleared to 0	
OV	OV = 1	Accumulator overflow detected	
NOV	OV = 0	No accumulator overflow detected	
BIO	BIO low	BIO pin is low	
тс	TC = 1	Test/control flag set to 1	
NTC	TC = 0	Test/control flag cleared to 0	

Table 5–3. Conditions for Conditional Calls and Returns

5.4.1 Using Multiple Conditions

Multiple conditions can be listed as operands of the conditional instructions. If multiple conditions are listed, all conditions must be met for the instruction to execute. Note that only certain combinations of conditions are meaningful. See Table 5–4. For each combination, the conditions must be selected from Group 1 and Group 2 as follows:

Group 1. You can select up to two conditions. Each of these conditions must be from a different category (A or B); you cannot have two conditions from the same category. For example, you can test EQ and OV at the same time, but you cannot test GT and NEQ at the same time.

Group 2. You can select up to three conditions. Each of these conditions must be from a different category (A, B, or C); you cannot have two conditions from the same category. For example, you can test TC, C, and BIO at the same time, but you cannot test C and NC at the same time.

Gro	oup 1	Group 2				
Category A	Category B	Category A	Category B	Category C		
EQ	OV	TC	С	BIO		
NEQ	NOV	NTC	NC			
LT						
LEQ						
GT						
GEQ						

Table 5–4. Groupings of Conditions

5.4.2 Stabilization of Conditions

A conditional instruction must be able to test the most recent values of the status bits. Therefore, the conditions cannot be considered stable until the fourth, or execution, stage of the pipeline, one cycle after the previous instruction has been executed. The pipeline controller stops the decoding of any instructions following the conditional instruction until the conditions are stable.

5.4.3 Conditional Branches

A branch instruction transfers program control to any location in program memory. Conditional branch instructions are executed only when one or more user-specified conditions are met (see Table 5–3 on page 5-10). If all the conditions are met, the PC is loaded with the second word of the branch instruction, which contains the address to branch to, and execution continues at this address.

By the time the conditions have been tested, the two instruction words following the conditional branch instruction have already been fetched in the pipeline. If all the conditions are met, these two instruction words are flushed from the pipeline so that they are not executed, and then execution continues at the branched-to address. If the conditions are *not* met, the two instruction words are executed instead of the branch. Because conditional branches use conditions determined by the execution of the previous instructions, a conditional branch takes one more cycle than an unconditional one. The conditional branch instructions are BCND (branch conditionally) and BANZ (branch if currently selected auxiliary register is not equal to 0). The BANZ instruction is useful for implementing loops.

5.4.4 Conditional Calls

The conditional call (CC) instruction is executed only when the specified condition or conditions are met (see Table 5–3 on page 5-10). This allows your program to choose among multiple subroutines based on the data being processed. If all the conditions are met, the PC is loaded with the second word of the call instruction, which contains the starting address of the subroutine. Before branching to the subroutine, the processor stores the address of the instruction following the call instruction—the return address—to the stack. The function must end with a return instruction, which will take the return address off the stack and force the processor to resume execution of the calling program.

By the time the conditions of the conditional call instruction have been tested, the two instruction words following the call instruction have already been fetched in the pipeline. If all the conditions are met, these two instruction words are flushed from the pipeline so that they are not executed, and then execution continues at the beginning of the called function. If the conditions are *not* met, the two instructions are executed instead of the call. Because there is a wait cycle for conditions to become stable, the conditional call takes one more cycle than the unconditional one.

5.4.5 Conditional Returns

Returns are used in conjunction with calls and interrupts. A call or interrupt stores a return address to the stack and then transfers program control to a new location in program memory. The called subroutine or the interrupt service routine concludes with a return instruction, which pops the return address off the top of the stack and into the program counter (PC).

The conditional return instruction (RETC) is executed only when one or more conditions are met (see Table 5–3 on page 5-10). By using the RETC instruction, you can give a subroutine or interrupt service routine more than one possible return path. The path chosen then depends on the data being processed. In addition, you can use a conditional return to avoid conditionally branching to/around the return instruction at the end of the subroutine or interrupt service routine.

If all the conditions are met for execution of the RETC instruction, the processor loads the return address from the stack to the PC and resumes execution of the calling or interrupted program.

RETC, like RET, is a single-word instruction. However, because of the potential PC discontinuity, it operates with the same effective execution time as the conditional branch (BCND) and the conditional call (CC). By the time the conditions of the conditional return instruction have been tested, the two instruction words following the return instruction have already been fetched in the pipeline. If all the conditions are met, these two instruction words are flushed from the pipeline so that they are not executed, and then execution of the calling program continues. If the conditions are *not* met, the two instructions are executed instead of the return. Because there is a wait cycle for conditions to become stable, the conditional return takes one more cycle than the unconditional one.

5.5 Repeating a Single Instruction

The 'C2xx repeat (RPT) instruction allows the execution of a single instruction N + 1 times, where N is specified as an operand of the RPT instruction. When RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then decremented every time the repeated instruction is executed, until RPTC equals zero. RPTC can be used as a 16-bit counter when the count value is read from a data-memory location; if the count value is specified as a constant operand, it is in an 8-bit counter.

The repeat feature is useful with instructions such as NORM (normalize contents of accumulator), MACD (multiply and accumulate with data move), and SUBC (conditional subtract). When instructions are repeated, the address and data buses for program memory are free to fetch a second operand in parallel with the address and data buses for data memory. This allows instructions such as MACD and BLPD to effectively execute in a single cycle when repeated.

5.6 Interrupts

Interrupts are hardware- or software-driven signals that cause the 'C2xx to suspend its current program sequence and execute a subroutine. Typically, interrupts are generated by hardware devices that need to give data to or take data from the 'C2xx (for example, A/D and D/A converters and other processors). Interrupts can also signal that a particular event has taken place (for example, a timer has finished counting).

The 'C2xx supports both software and hardware interrupts:

- A software interrupt is requested by an instruction (INTR, NMI, or TRAP).
- A hardware interrupt is requested by a signal from a physical device. Two types exist:
 - External hardware interrupts are triggered by signals at external interrupt pins. All these interrupts are negative-edge triggered and should be active low for at least one CLKOUT1 period to be recognized.
 - Internal hardware interrupts are triggered by signals from the on-chip peripherals.

If hardware interrupts are triggered at the same time, the 'C2xx services them according to a set priority ranking. Each of the 'C2xx interrupts, whether hardware or software, can be placed in one of the following two categories:

- □ **Maskable interrupts.**These are hardware interrupts that can be blocked (masked) or enabled (unmasked) through software.
- ❑ Nonmaskable interrupts. These interrupts cannot be blocked. The 'C2xx will always acknowledge this type of interrupt and branch from the main program to a subroutine. The 'C2xx nonmaskable interrupts include all software interrupts and two external hardware interrupts: reset (RS) and NMI.

5.6.1 Interrupt Operation: Three Phases

The 'C2xx handles interrupts in three main phases:

- 1) **Receive the interrupt request.** Suspension of the main program must be requested by a software interrupt (from program code) or a hardware interrupt (from a pin or an on-chip device).
- 2) Acknowledge the interrupt. The 'C2xx must acknowledge the interrupt request. If the interrupt is maskable, certain conditions must be met in order for the 'C2xx to acknowledge it. For nonmaskable hardware interrupts and for software interrupts, acknowledgement is immediate.

3) Execute the interrupt service routine. Once the interrupt is acknowledged, the 'C2xx branches to its corresponding subroutine called an interrupt service routine (ISR). The 'C2xx follows the branch instruction you place at a predetermined address (the vector location) and executes the ISR you have written.

5.6.2 Interrupt Table

For 'C2xx devices other than the 'C209, Table 5–5 lists the interrupts available and shows their vector locations. In addition, it shows the priority of each of the hardware interrupts. For the corresponding 'C209 table, see Section 11.3, 'C209 Interrupts, on page 11-10.

Table 5–5. 'C2xx Interrupt Locations and Priorities

K †	Vector Location	Name	Priority	Function
0	Oh	RS	1 (highest)	Hardware reset (nonmaskable)
1	2h	HOLD/INT1	4	User-maskable interrupt #1
2	4h	<u>INT2</u> , <u>INT3</u> ‡	5	User-maskable interrupts #2 and #3
3	6h	TINT	6	User-maskable timer interrupt
4	8h	RINT	7	User-maskable synchronous serial port receive interrupt
5	Ah	XINT	8	User-maskable synchronous serial port transmit interrupt
6	Ch	TXRXINT	9	User-maskable asynchronous serial port transmit/receive in- terrupt
7	Eh		10	Reserved
8	10h	INT8	_	User-defined software interrupt
9	12h	INT9	-	User-defined software interrupt

Note: This table does not apply to the 'C209. For the 'C209 interrupt table, see Section 11.3 on page 11-10.

[†] The K value is the operand used in an INTR instruction that branches to the corresponding interrupt vector location.

‡ INT2 and INT3 have separate pins but are tied to the same vector location.

K †	Vector Location	Name	Priority	Function
10	14h	INT10	-	User-defined software interrupt
11	16h	INT11	-	User-defined software interrupt
12	18h	INT12	-	User-defined software interrupt
13	1Ah	INT13	-	User-defined software interrupt
14	1Ch	INT14	-	User-defined software interrupt
15	1Eh	INT15	-	User-defined software interrupt
16	20h	INT16	-	User-defined software interrupt
17	22h	TRAP	-	TRAP instruction vector
18	24h	NMI	3	Nonmaskable interrupt
19	26h		2	Reserved
20	28h	INT20	-	User-defined software interrupt
21	2Ah	INT21	-	User-defined software interrupt
22	2Ch	INT22	-	User-defined software interrupt
23	2Eh	INT23	-	User-defined software interrupt
24	30h	INT24	-	User-defined software interrupt
25	32h	INT25	-	User-defined software interrupt
26	34h	INT26	-	User-defined software interrupt
27	36h	INT27	-	User-defined software interrupt
28	38h	INT28	-	User-defined software interrupt
29	3Ah	INT29	-	User-defined software interrupt
30	3Ch	INT30	-	User-defined software interrupt
31	3Eh	INT31	_	User-defined software interrupt

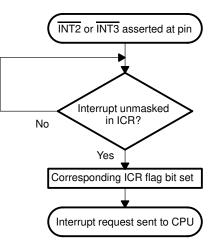
Table 5–5. 'C2xx Interrupt Locations and Priorities (Continued)

Note: This table does not apply to the 'C209. For the 'C209 interrupt table, see Section 11.3 on page 11-10.

[†] The K value is the operand used in an INTR instruction that branches to the corresponding interrupt vector location.

⁺ INT2 and INT3 have separate pins but are tied to the same vector location.

5.6.3 Maskable Interrupts


When a maskable interrupt is successfully requested by a hardware device or by an external pin, the corresponding flag or flags are activated. These flags are activated whether or not the interrupt is later acknowledged by the processor.

Two registers on the 'C2xx contain flag bits:

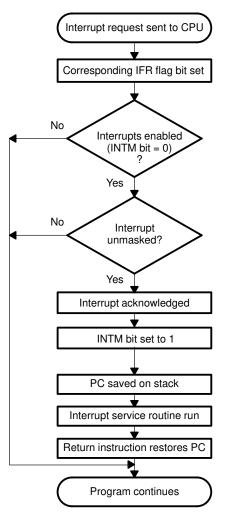
- Interrupt flag register (IFR), a 16-bit, memory-mapped register located at address 0006h in data-memory space. The IFR is explained in detail in subsection 5.6.4
- □ Interrupt control register (ICR), a 16-bit register located at address FFECh in I/O space. The ICR is explained in subsection 5.6.6.

The IFR contains flag bits for all the maskable interrupts. The ICR contains additional flag bits for the interrupts INT2 and INT3. For all maskable interrupts except INT2 and INT3, an interrupt request is sent to the CPU as soon as the interrupt signal is sent by the pin or on-chip peripheral. For INT2 or INT3, the interrupt request is only sent to the CPU if the interrupt signal is not masked by its mask bit in the ICR. Figure 5–5 shows the process for successfully requesting INT2 or INT3.

Figure 5–5. INT2/INT3 Request Flow Chart

After an interrupt request is received by the CPU, the CPU must decide whether to acknowledge the request. Maskable hardware interrupts are acknowledged only after certain conditions are met:

- Priority is highest. When more than one hardware interrupt is requested at the same time, the 'C2xx services them according to a set priority ranking in which 1 indicates the highest priority. For the priorities of the hardware interrupts, see subsection 5.6.2 (on page 5-16).
- IMR mask bit is 1. The interrupt must be unmasked (enabled) in the interrupt mask register (IMR), a 16-bit, memory-mapped register located at address 0004h in data-memory space. The IMR contains mask bits for all the maskable interrupts. INT2 and INT3 share one of the bits in the IMR. The IMR is explained in subsection 5.6.5 on page 5-22.
- □ **INTM bit is 0.** The interrupt mode (INTM) bit, bit 9 of status register ST0, enables or disables all maskable interrupts:
 - When INTM = 0, all unmasked interrupts are enabled.
 - When INTM = 1, all unmasked interrupts are disabled.


INTM is set to 1 automatically when the CPU acknowledges an interrupt (except when initiated by the TRAP instruction). INTM can also be set to 1 by a hardware reset or by execution of a disable-interrupts instruction (SETC INTM). You can clear INTM by executing the enable-interrupts instruction (CLRC INTM). INTM has no effect on reset, $\overline{\text{NMI}}$, or software-interrupts (initiated with the TRAP, NMI, and INTR instructions). Also, INTM is unaffected by the LST (load status register) instruction.

INTM does not modify the interrupt flag register (IFR), the interrupt mask register (IMR), or the interrupt control register (ICR).

When the CPU acknowledges a maskable hardware interrupt, it loads the instruction bus with the INTR instruction. This instruction forces the CPU to branch to the corresponding *interrupt vector location*. From this location in program memory, the CPU fetches a branch that leads to the appropriate interrupt service routine. As the CPU branches to the interrupt service routine, it also sets the INTM bit to 1, preventing all hardware-initiated maskable interrupts from interrupting the execution of the ISR. Note that the INTR instruction can also be initiated directly by software; thus, the interrupt service routines for the maskable interrupts can also be initiated directly with the INTR instruction (see subsection 5.6.7, *Nonmaskable Interrupts* on page 5-27).

To determine which vector address has been assigned to each of the interrupts, see subsection 5.6.2 (on page 5-16). Interrupt vector locations are spaced apart by two addresses so a 2-word branch instruction can be accommodated in each of the locations. Figure 5-6 summarizes how maskable interrupts are handled by the CPU.

Figure 5–6. Maskable Interrupt Operation Flow Chart

5.6.4 Interrupt Flag Register (IFR)

The 16-bit interrupt flag register (IFR), located at address 0006h in data memory space, contains flag bits for all the maskable interrupts. When a maskable interrupt request reaches the CPU, the corresponding flag is set to 1 in the IFR. This indicates that the interrupt is pending, or waiting for acknowledgement.

Read the IFR to identify pending interrupts, and write to the IFR to clear pending interrupts. To clear an interrupt request (and set its IFR flag to 0), write a 1 to the corresponding IFR bit. All pending interrupts can be cleared by writing the current contents of the IFR back into the IFR. Acknowledgement of a hardware request also clears the corresponding IFR bit. A device reset clears all IFR bits.

Notes:

- When an interrupt is requested by an INTR instruction, if the corresponding IFR bit is set, the CPU will not clear it automatically. If an application requires that the IFR bit be cleared, the bit must be cleared in the interrupt service routine.
- 2) To avoid double interrupts from the synchronous serial port and the asynchronous serial port (including delta interrupts), clear the IFR bit(s) in the corresponding interrupt service routine, just before returning from the routine.

For 'C2xx devices other than the 'C209, Figure 5–7 shows the IFR. Descriptions of the bits follow the figure. For a description of the 'C209 IFR, see subsection 11.3.1, 'C209 Interrupt Registers, on page 11-11.

Figure 5–7. 'C2xx Interrupt Flag Register (IFR) — Data-Memory Address 0006h

15	6	5	4	3	2	1	0
Reserved		TXRXINT	XINT	RINT	TINT	INT2/INT3	HOLD/INT1
0		R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0

Note: 0 = Always read as zeros; R = Read access; W1C = Write 1 to this bit to clear it to 0; value following dash (–) is value after reset.

Bit 5 TXRXINT — Transmit/receive interrupt flag. Bit 5 is tied to the transmit/receive interrupt for the asynchronous serial port. *To avoid double interrupts, write a 1 to this bit in the interrupt service routine.*

- TXRXINT = 0 Interrupt TXRXINT is not pending.
- TXRXINT = 1 Interrupt TXRXINT is pending.
- **Bit 4** XINT Transmit interrupt flag. Bit 4 is tied to the transmit interrupt for the synchronous serial port. *To avoid double interrupts, write a 1 to this bit in the interrupt service routine.*
 - XINT = 0 Interrupt XINT is not pending.
 - XINT = 1 Interrupt XINT is pending.

Bits 15–6 Reserved. Bits 15–6 are reserved and are always read as 0s.

Rit 3

Bit 3		e interrupt flag. Bit 3 is tied to the receive interrupt for the synchro- To avoid double interrupts, write a 1 to this bit in the interrupt service
	RINT = 0	Interrupt RINT is not pending.
	RINT = 1	Interrupt RINT is pending.
Bit 2	TINT — Timer i	nterrupt flag. Bit 2 is tied to the timer interrupt, TINT.
	TINT = 0	Interrupt TINT is not pending.
	TINT = 1	Interrupt TINT is pending.
Bit 1	tied to bit 1. If INT	terrupt 2/Interrupt 3 flag. The $\overline{INT2}$ pin and the $\overline{INT3}$ pin are both $\overline{2}$ is requested, INT2/INT3 and FINT2 (of the ICR) are both automati- NT3 is requested, INT2/INT3 and FINT3 (of the ICR) are both auto- i. Neither $\overline{INT2}$ nor $\overline{INT3}$ is pending.

- INT2/INT3 = 1At least one of the two interrupts is pending. To determine which one is pending or if both are pending, read flag bits FINT2 and FINT3 in the interrupt control register (ICR). FINT2 and FINT3 are not automatically cleared when INT2 and INT3 are acknowledged by the CPU; they must be cleared by the interrupt service routine.
- Bit 0 HOLD/INT1 — HOLD/Interrupt 1 flag. Bit 0 is a flag for HOLD or INT1. The operation of the HOLD/INT1 pin differs depending on the value of the MODE bit in the interrupt control register (ICR). When MODE = 1, an interrupt is triggered only by a negative edge on the pin. When MODE = 0, interrupts can be triggered by both a negative edge and a positive edge. This is necessary to implement the 'C2xx HOLD operation (see Section 4.7, Direct Memory Access Using The HOLD Operation, on page 4-27).
 - HOLD/INT1 = 0 $\overline{HOLD}/\overline{INT1}$ is not pending.

HOLD/INT1 = 1 HOLD/INT1 is pending.

5.6.5 Interrupt Mask Register (IMR)

The 16-bit interrupt mask register (IMR), located at address 0004h in datamemory space, is used for masking external and internal hardware interrupts. Neither MII nor RS is included in the IMR; thus, IMR has no effect on these interrupts.

Read the IMR to identify masked or unmasked interrupts, and write to the IMR to mask or unmask interrupts. To unmask an interrupt, set its corresponding IMR bit to 1. To mask an interrupt, set its corresponding IMR bit to 0. At reset, the IMR bits are all set to 0, masking all the maskable interrupts.

For 'C2xx devices other than the 'C209, Figure 5–8 shows the IMR. Descriptions of the bits follow the figure. For a description of the 'C209 IMR, see subsection 11.3.1, 'C209 Interrupt Registers, on page 11-11.

Figure 5–8. 'C2xx Interrupt Mask Register (IMR) — Data-Memory Address 0004h

15	6	5	4	3	2	1	0
đ/////	Reserved		XINT	RINT	TINT	INT2/INT3	HOLD/INT1
	0	R/W–0	R/W-0	R/W-0	R/W-0	R/W–0	R/W–0
Note: 0 = A	lways read as zeros; F	R = Read access	s; W = Write	e access; va	lue following	g dash (–) is valu	e after reset.
Bits 15–6	Bits 15–6 Reserved. Bits 15–6 are reserved and are always read as 0s.						
Bit 5	Bit 5 TXRXINT — Transmit/receive interrupt mask. Bit 5 is tied to the transmit/receive terrupt for the asynchronous serial port.					mit/receive in-	
	TXRXINT = 0	Interrupt TX	(RXINT is	s masked			
	TXRXINT = 1	Interrupt TX	(RXINT is	s unmask	ed.		
Bit 4	XINT — Transmit interrupt mask. Bit 4 is tied to the transmit interrupt for the synchro nous serial port.					or the synchro-	
	XINT = 0	Interrupt XI	NT is ma	sked.			
	XINT = 1	Interrupt XI	NT is unr	nasked.			
Bit 3	RINT — Receiv nous serial port.	-	nask. Bit :	3 is tied to	the recei	ve interrupt fo	or the synchro-
	RINT = 0	Interrupt RI	NT is ma	sked.			
	RINT = 1	Interrupt RI	NT is uni	nasked.			
Bit 2	TINT — Timer i	nterrupt ma	sk. Bit 2 i	s tied to t	he interru	pt for the time	er.
	TINT = 0	Interrupt TI	NT is ma	sked.			
	TINT = 1	Interrupt TI	NT is unr	nasked.			
Bit 1	INT2/INT3 — In tied to bit 1. With with this bit, bits and INT3.	this bit, you i	mask botl	n <mark>INT2</mark> an	d INT3 sir	nultaneously.	In conjunction
	INT2/INT3 = 0	$\overline{\rm INT2}$ and $\overline{\rm II}$	NT3 are r	nasked.			
	INT2/INT3 = 1					s unmasked.	
		If INT2/INT	3 = 1 and	I MINT3 =	= 1, INT3 i	s unmasked.	

Bit 0 HOLD/INT1 — HOLD/Interrupt 1 mask. This bit masks or unmasks interrupts requested at the HOLD/INT1 pin.

HOLD/INT1 = 0 $\overline{HOLD}/\overline{INT1}$ is masked.

HOLD/INT1 = 1 $\overline{HOLD}/\overline{INT1}$ is unmasked.

5.6.6 Interrupt Control Register (ICR)

The 16-bit interrupt control register (ICR), located at address FFECh in I/O space, controls the function of the $\overline{HOLD}/\overline{INT1}$ pin and individually controls the interrupts $\overline{INT2}$ and $\overline{INT3}$.

Controlling the HOLD/INT1 pin

This pin can be used for triggering the interrupt $\overline{INT1}$ and for sending a \overline{HOLD} signal to the CPU. Accordingly, the MODE bit provides two possible modes for the $\overline{HOLD}/\overline{INT1}$ pin. When MODE = 1, the pin is negative-edge sensitive and, thus, is set appropriately for initiating a standard interrupt ($\overline{INT1}$). When MODE = 0, the pin is both negative- and positive-edge sensitive, which is necessary for implementing the logic for the HOLD operation (see Section 4.7, *Direct Memory Access Using The HOLD Operation*, on page 4-27). Regardless of the value of MODE, the pin is connected to the same interrupt logic, which initiates only one interrupt service routine. ($\overline{HOLD}/\overline{INT1}$ is mapped to interrupt vector location 0002h in program memory.) To differentiate the two uses of the pin, the interrupt service routine must test the value of the MODE bit.

Controlling INT2 and INT3

Each of these interrupts has its own pin. However, they share:

- A single flag bit (INT2/INT3) in the interrupt flag register (IFR).
- A single mask bit in the interrupt mask register (IMR).
- A single interrupt service routine. (INT2 and INT3 are mapped to interrupt vector location 0004h in program memory.)

To allow you to use INT2 and INT3 individually, the ICR provides two mask bits (MINT2 and MINT3) and two flag bits (FINT2 and FINT3).

When interrupts are requested on the pins INT2 and INT3, MINT2 and MINT3 determine whether the flag bits FINT2, FINT3, and INT2/INT3 are set. To mask INT2 (prevent the setting of flags FINT2 and INT2/INT3), write a 0 to MINT2;

to mask INT3 (prevent the setting of flags FINT3 and INT2/INT3) write a 0 to MINT3. If INT2/INT3 is not set, the CPU has not received and will not acknowledge the interrupt request.

When INT2/INT3 is set, one or both of the interrupts is pending. To differentiate the occurrences of the two interrupts, your interrupt service routine can test FINT2 and FINT3 and then branch to the appropriate subroutine. If you want the interrupt service routine to be executed only in response to one of the interrupts, mask the other interrupt in the ICR. Each of the ICR flag bits, like the IFR flag bit, can be cleared by writing a 1 to it.

Note:

- Neither FINT2 nor FINT3 is automatically cleared when the CPU acknowledges the corresponding interrupt. If the application requires the bit(s) be cleared, the clearing must be done in the interrupt service routine.
- Writing 1s to FINT2 and FINT3 will set these bits to 0 but will *not* clear interrupt requests for INT2 and INT3. To clear requests for INT2 and/or INT3, write a 1 to the INT2/INT3 bit of the IFR.

If INT2 or INT3 is unmasked in the ICR, the IFR flag bit will be set regardless of bit 1 (INT2/INT3) in the IMR. If the IFR flag bit is set, the IMR bit is set, and the INTM bit is 0 (maskable interrupts are enabled), the CPU will acknowledge the interrupt. If an interrupt is masked by the IMR and/or the ICR, it will not be acknowledged, even if INTM = 0.

At reset, all ICR bits are set to zero, which means:

- The $\overline{HOLD}/\overline{INT1}$ pin is both negative- and positive-edge sensitive (MODE = 0).
- □ The FINT2 and FINT3 flag bits are cleared.
- □ INT2 and INT3 are masked.

Figure 5–9 shows the ICR, and bit descriptions follow the figure.

Figure 5–9. 'C2xx Interrupt Control Register (ICR) — I/O-Space Address FFECh

15		5	4	3	2	1	0
	Reserved		MODE	FINT3	FINT2	MINT3	MINT2
	0		R/W-0	R/W1C-0	R/W1C-0	R/W-0	R/W-0
	 0 = Always read as zeros; R = Read access; W = Write access; W1C = Write 1 to this bit to clear it to 0; value following dash (-) is value after reset. 						
Bits 15–5	Reserved.	Bits 15–5 are re	served and	are always	read as 0s	6.	
Bit 4	MODE — Pi	n mode. Bit 4 se	elects one c	of two possil	ole modes f	or the HOLI	D/INT1 pin.
	MODE = 0	DE = 0 Double-edge mode. The HOLD/INT1 pin is both negative- and positive- edge sensitive. A falling edge or a rising edge triggers an interrupt re- quest. This mode is necessary for proper implementation of a HOLD op- eration.					nterrupt re-
	MODE = 1	<i>Single-edge mode.</i> A falling edge (only) on the HOLD/INT1 pin triggers an interrupt request.					
Bit 3		terrupt 3 flag. bit 1 of the IFR (upt reques	t on the IN	Γ3 pin sets
	FINT3 = 0	INT3 is not pe	nding.				
	FINT3 = 1	INT3 is pendir	ıg.				
Bit 2		terrupt 2 flag. bit 1 of the IFR (upt reques	t on the \overline{IN}	Γ2 pin sets
	INT2 = 0	INT2 is not pe	nding.				
	INT2 = 1	INT2 is pendir	ng.				
Bit 1		terrupt 3 mask. INT2/INT3 bit c				upt INT3 or,	in conjunc-
	MINT3 = 0	INT3 is maske by a request o			oit 1 of the	IFR (INT2/I	NT3) is set
	MINT3 = 1	INT3 is unmas request on the		bits FINT3	and INT2/I	NT3 are bo	th set by a

Bit 0	MINT2 — Interrupt 2 mask. This bit masks the external interrupt INT2 or, in conjunc-
	tion with the INT2/INT3 bit of the IMR, unmasks INT2.

- MINT2 = 0 INT2 is masked. Neither FINT2 nor bit 1 of the IFR (INT2/INT3) is set by a request on the INT2 pin.
- MINT2 = 1 INT3 is unmasked. Flag bits FINT2 and INT2/INT3 are both set by a request on the INT2 pin.

5.6.7 Nonmaskable Interrupts

Hardware nonmaskable interrupts can be requested through two pins:

- RS (reset). RS is an interrupt that stops program flow, returns the processor to a predetermined state, and then begins program execution at address 0000h. For details of the reset operation, see Section 5.7, *Reset Operation*, on page 5-33. When RS is acknowledged, the interrupt mode (INTM) bit of status register ST1 is set to 1 to disable maskable interrupts.
- NMI. When NMI is activated (either by the NMI pin or by the NMI instruction), the processor switches program control to vector location 24h. In addition, maskable interrupts are disabled (the INTM bit of status register ST0 is set to 1). Although NMI uses the same logic as the maskable interrupts, it is not maskable. NMI happens regardless of the value of the INTM bit, and no mask bit exists for NMI. If the NMI pin is not used, it should be pulled high to prevent an accidental interrupt.

 $\overline{\text{NMI}}$ can be used as a soft reset. Unlike a hardware reset ($\overline{\text{RS}}$), the $\overline{\text{NMI}}$ neither affects any of the modes of the device nor aborts a currently active instruction or memory operation.

Software interrupts (which are inherently nonmaskable) are requested by the following instructions:

INTR. This instruction allows you to initiate any 'C2xx interrupt, including user-defined interrupts INT8 through INT16 and INT20 through INT31. The instruction operand (K) indicates which interrupt vector location the CPU will branch to. To determine the operand K that corresponds to each interrupt vector location see subsection 5.6.2 (on page 5-16). When an INTR interrupt is acknowledged, the interrupt mode (INTM) bit of status register ST1 is set to 1 to disable maskable interrupts.

Note:

The INTR instruction does not affect IFR flags. When you use the INTR instruction to initiate an interrupt that has an associated flag bit in the IFR, the instruction neither sets nor clears the flag bit. No software write operation can set the IFR flag bits; only the appropriate hardware requests can. If a hardware request has set the flag for an interrupt and then the INTR instruction is used to initiate that interrupt, the INTR instruction will not clear the flag.

- NMI. This instruction forces a branch to interrupt vector location 24h, the same location used for the nonmaskable hardware interrupt NMI. Thus, you can either initiate NMI by driving the NMI pin low or by executing an NMI instruction. When the NMI instruction is executed, INTM is set to 1 to disable maskable interrupts.
- □ TRAP. This instruction forces the CPU to branch to interrupt vector location 22h. The TRAP instruction does *not* disable maskable interrupts (INTM is not set to 1); thus when the CPU branches to the interrupt service routine, that routine can be interrupted by the maskable hardware interrupts (in addition to RS and NMI).

If the INTM bit is set to 1 during the acknowledgement process, all hardwareinitiated maskable interrupts are disabled and, thus, cannot interfere with the interrupt service routine.

To determine which vector address has been assigned to each of the interrupts on a specific 'C2xx device, see subsection 5.6.2 (on page 5-16). Interrupt vector locations are spaced apart by two addresses so that a 2-word branch instruction can be accommodated in each location.

Figure 5–10 summarizes how nonmaskable interrupts are handled by the CPU.

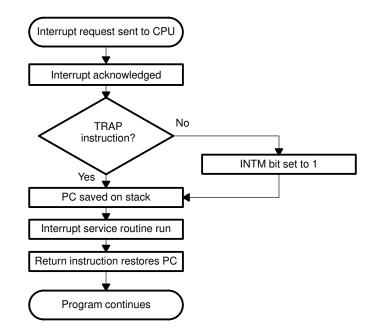


Figure 5–10. Nonmaskable Interrupt Operation Flow Chart

5.6.8 Interrupt Service Routines (ISRs)

After an interrupt has been requested and acknowledged, the CPU follows an interrupt vector to the ISR. The ISR is the program code that actually performs the tasks requested by the interrupt. While performing these tasks, the ISR may also be:

Saving and restoring register values

Managing ISRs within ISRs

Saving and restoring register values

Only the incremented program counter value is stored automatically before the CPU enters an interrupt service routine (ISR). You must design the ISR to save and then restore any other important register values. For example, if your ISR will need to perform a multiplication, it will need to use the product register (PREG). If the value currently in the PREG must be in the PREG after the ISR, the ISR must save the value, perform the new multiplication, store the resulting PREG value, and then reload the original value. You may find that certain registers will need to be saved during most ISRs. If so, you can copy a common save and restore routine and then individualize it for each interrupt.

Managing ISRs within ISRs

The 'C2xx hardware stack allows you to have ISRs within ISRs. When considering nesting ISRs like this, keep the following in mind:

- ☐ If you want the ISR be interrupted by a maskable interrupt, the ISR must unmask the interrupt by setting the appropriate IMR bit (and ICR bit, if applicable) and executing the enable-interrupts instruction (CLRC INTM).
- The hardware stack is limited to eight levels. Each time an interrupt is serviced or a subroutine is entered, the return address is pushed onto the hardware stack. This provides a way to return to the previous context afterwards. The stack contains eight locations, allowing interrupts or subroutines to be nested up to eight levels deep. (One level of the stack is reserved for debugging, to be used for breakpoint/single-step operations. If debugging is not used, this extra level is available for internal use.) If your software requires more than eight stack levels, you can use the POPD and PSHD instructions to effectively extend the stack into data memory.
- ☐ If you do not nest ISRs, you can avoid stack overflow. The 'C2xx has a feature that allows you to prevent unintentional nesting. If an interrupt occurs during the execution of a CLRC INTM instruction, the device always completes CLRC INTM as well as the next instruction before the pending interrupt is processed. This ensures that a return instruction that directly follows CLRC INTM will be executed before an interrupt is processed. The return instruction will pop the previous return address off the top of the stack before the new return address is pushed onto the stack.

To allow the CPU to complete the return, interrupts are also blocked after a RET instruction until at least one instruction at the return address is executed. Interrupts may be blocked for more than one instruction if the instruction at the return address requires additional blocking for pipeline protection.

□ If you want an ISR to occur *within* the current ISR rather than *after* the current ISR, place the CLRC INTM instruction more than one instruction before the return (RET) instruction.

5.6.9 Interrupt Latency

The length of an interrupt latency—the delay between when an interrupt request is made and when it is serviced—depends on many factors. For example, the CPU always completes all instructions in the pipeline before executing a software vector. This subsection describes the factors that determine minimum latency and then describes factors that may cause additional latency. The maximum latency is a function of wait states and pipeline protection. For an external, maskable hardware interrupt, a minimum latency of eight cycles is required to synchronize the interrupt externally, recognize the interrupt, and branch to the interrupt vector location. On the ninth cycle, the interrupt vector is fetched. For a software interrupt, the minimum latency consists of four cycles needed to branch to the interrupt vector location.

Latency for pipeline protection

Multicycle instructions add additional cycles to empty the pipeline. Instructions may become multicycle for these reasons:

- An instruction that writes to or reads from external memory may be delayed by wait states generated by the external READY pin or the onchip wait-state generator. These wait states may affect the instruction being executed at the time the interrupt is requested, and they may affect the interrupt itself if the interrupt vector must be fetched from external memory.
- If an interrupt occurs during a HOLD operation and the interrupt vector must be fetched from external memory, the vector cannot be fetched until HOLDA is deasserted.
- When repeated with RPT, instructions run parallel operations in the pipeline and the context of these additional parallel operations cannot be saved in an interrupt service routine. To protect the context of the repeated instruction, the CPU locks out all interrupts except reset until the RPT loop completes.

Note:

Reset ($\overline{\text{RS}}$) is not delayed by multicycle instructions. $\overline{\text{NMI}}$ can be delayed by multicycle instructions.

Latency for stack overflow protection

A return address (incremented program counter value) is forced onto the hardware stack every time the CPU follows another interrupt service routine or other subroutine. However, the 'C2xx has a feature that can help you to keep the hardware stack from overflowing. Interrupts cannot be processed between the CLRC INTM (enable maskable interrupts) instruction and the next instruction in a program sequence. This ensures that a return instruction that directly follows CLRC INTM will be executed before an interrupt is processed. The return instruction will pop the previous return address off the top of the stack before the new return address is pushed onto the stack. If the interrupt were to occur before the return, the new return address would be added to the hardware stack, even if the stack were already full.

To allow the CPU to complete the return, interrupts are also blocked after a RET instruction until at least one instruction at the return address is executed.

5.7 Reset Operation

Reset (\overline{RS}) is a nonmaskable external interrupt that can be used at any time to put the 'C2xx into a known state. Reset is the highest priority interrupt; no other interrupt takes precedence over reset. Reset is typically applied after power up when the machine is in an unknown state. Because the reset signal aborts memory operations and initializes status bits, the system should be reinitialized after each reset. The \overline{NMI} interrupt can be used for soft resets because it neither aborts memory operations nor initializes status bits.

Driving \overline{RS} low causes the 'C2xx to terminate execution and affects various registers and status bits. For correct system operation after power up, \overline{RS} must be asserted for at least six clock cycles. The device latches the reset pulse and generates an internal reset pulse long enough to ensure a device reset. The device fetches its first instruction 16 cycles after the rising edge of \overline{RS} . Processor execution begins at location 0000h, which normally contains a branch instruction to the system initialization routine.

When the 'C2xx receives a reset signal, the following actions take place:

- Program-control features:
 - The program counter is cleared to 0 (however, the address bus, A15–A0, is unknown while RS is low).
 - Status bits in registers ST0 and ST1 are loaded with their reset values: OV = 0, INTM = 1, CNF = 0, SXM = 1, C = 1, XF= 1 and PM = 00. (The other status bits remain undefined and should be initialized by a reset.)
 - The INTM (interrupt mode) bit is set to 1, disabling all maskable interrupts. (RS and NMI are not maskable.) Also, the interrupt flag register (IFR), interrupt mask register (IMR), and interrupt control register (ICR) are cleared.
 - The MODE bit of the interrupt control register (ICR) is set to 0 so that the HOLD/INT1 pin is both negative- and positive-edge sensitive.
 - The repeat counter (RPTC) is cleared.

☐ Memory and I/O spaces:

- A logic 0 is loaded into the CNF (configuration control) bit in status register ST1, mapping dual-access RAM block B0 into data space.
- The global memory allocation register (GREG) is cleared to make all memory local.
- The wait-state generator is set to provide the maximum number of wait states for external memory and I/O accesses.

Peripherals:

- The timer count is set to its maximum value (FFFFh), the timer dividedown value is set to 0, and the timer starts counting down.
- The synchronous serial port is reset:
 - The port emulation mode is set to immediate stop.
 - Error and status flags are reset.
 - Receive interrupts are set to occur when the receive buffer is not empty.
 - Transmit interrupts are set to occur when the transmit buffer can accept one or more words.
 - External clock and frame synchronization sources are selected.
 - Continuous mode is selected.
 - Digital loopback mode is disabled.
 - The receiver and transmitter are enabled.
- The asynchronous serial port is reset:
 - The port emulation mode is set to immediate stop.
 - Error and status flags are reset.
 - Receive, transmit, and delta interrupts are disabled.
 - One stop bit is selected.
 - Auto-baud alignment is disabled.
 - The TX pin is forced high between transmissions.
 - I/O pins IO0, IO1, IO2, and IO3 are configured as inputs.
 - A baud rate of (CLKOUT1 rate)/16 is selected.
 - The port is disabled.
- CLK register bit 0 is cleared to 0 so that the CLKOUT1 signal is available at the CLKOUT1 pin.

No other registers or status bits (such as the accumulator, DP, ARP, and the auxiliary registers) are initialized. Table 5–6 and Table 5–7 list the reset values for all the registers mapped to on-chip addresses.

Name	Data-Memory Address	Reset Value	Description
IMR	0004h	0000h	Interrupt mask register
GREG	0005h	0000h	Interrupt control register
IFR	0006h	0000h	Synchronous data transmit and receive register

Table 5–6. Reset Values of On-Chip Registers Mapped to Data Space

Table 5–7. Reset Values of On-Chip Registers Mapped to I/O Space
--

_	I/O Address			
Name	'C209	Other 'C2xx	Reset Value	Description
CLK	-	FFE8h	0000h	CLKOUT1-pin control (CLK) register
ICR	-	FFECh	0000h	Interrupt control register
SDTR	-	FFF0h	xxxxh	Synchronous data transmit and receive register
SSPCR	-	FFF1h	0030h	Synchronous serial port control register
ADTR	-	FFF4h	xxxxh	Asynchronous data transmit and receive register
ASPCR	-	FFF5h	0000h	Asynchronous serial port control register
IOSR	-	FFF6h	18xxh	I/O status register
BRD	-	FFF7h	0001h	Baud-rate divisor register
TCR	FFFCh	FFF8h	0000h	Timer control register
PRD	FFFDh	FFF9h	FFFFh	Timer period register
ТІМ	FFFEh	FFFAh	FFFFh	Timer counter register
WSGR	FFFFh	FFFCh	0FFFh	Wait-state generator control register

Note: An x in an address represents four bits that are either not affected by reset or dependent on pin levels at reset.

5.8 Power-Down Mode

The 'C2xx has a power-down mode that allows the 'C2xx core to enter a dormant state and use less power than during normal operation. Executing an IDLE instruction initiates power-down mode. When the IDLE instruction executes, the program counter is incremented once, and then all CPU activities are halted. While the 'C2xx is in power-down mode, all of its internal contents are maintained. The content of all on-chip RAM remains unchanged. The peripheral circuits continue to operate, allowing the serial ports and the timer to take the CPU out of the power-down state. The CLKOUT1 pin remains active if bit 0 of the CLK register is set to 0.

The methods for terminating power-down mode depend on whether the power-down was initiated under normal circumstances or as part of a HOLD operation. The following subsections describe the differences.

5.8.1 Normal Termination of Power-Down Mode

If power-down has been initiated, any hardware interrupt (internal or external) takes the processor out of the IDLE state. If you use reset or $\overline{\text{NMI}}$, the CPU will immediately execute the corresponding interrupt service routine. In addition, if you use reset, registers will assume their reset values.

For a maskable hardware interrupt to wake the processor, it must be unmasked by the interrupt mask register (IMR bit = 1). However, if the interrupt is unmasked and is then requested, the processor will leave the IDLE state regardless of the value of the INTM bit (bit 9 of status register ST0). The value of the INTM bit will only determine the action of the CPU *after* power-down has been terminated:

- □ **INTM = 0.** The interrupt is enabled, and the CPU executes the corresponding interrupt service routine.
- □ **INTM = 1.** The interrupt is disabled, and the CPU continues with the instruction after IDLE.

If you do not want the CPU to follow an interrupt service routine before continuing with the interrupted program sequence:

- Do not use reset or NMI to bring the processor out of power-down.
- Make sure your program globally disables maskable interrupts (sets INTM to 1) before IDLE is executed.

5.8.2 Termination of Power-Down During a HOLD Operation

One of the necessary steps in the HOLD operation is the execution of an IDLE instruction (see Section 4.7, *Direct Memory Access Using The HOLD Opera-tion*, on page 4-27). There are unique characteristics of the HOLD operation that affect how the IDLE state can be exited.

Before performing a HOLD operation, your program must write a 0 to the MODE bit (bit 4 of the interrupt control register, ICR). This makes the HOLD/INT1 pin both negative- and positive-edge sensitive. A *falling* edge on HOLD/INT1 will cause the CPU to branch to the interrupt service routine, which initiates the HOLD operation with an IDLE instruction. A subsequent *rising* edge on HOLD/INT1 can take the CPU out of the IDLE state and end the HOLD operation. This rising-edge interrupt does *not* cause the CPU to branch to the interrupt service routine.

The recommended software logic for the HOLD operation is described in Section 4.7, *Direct Memory Access Using the HOLD Operation*, on page 4-27.

During a HOLD operation, there are only three valid methods for taking the CPU out of the IDLE state:

- Causing a rising edge on the HOLD/INT1 pin.
- Asserting a system reset at the reset pin.
- Asserting the nonmaskable interrupt NMI at the NMI pin.

If you use reset or $\overline{\text{NMI}}$, the CPU will immediately execute the corresponding interrupt service routine. In addition, if you use reset, the contents of some registers will be changed. For more information about exiting a HOLD operation with reset or $\overline{\text{NMI}}$, see Section 4.7, *Direct Memory Access Using The HOLD Operation*, on page 4-27.

Chapter 6

Addressing Modes

This chapter explains the three basic memory addressing modes used by the 'C2xx instruction set. The three modes are:

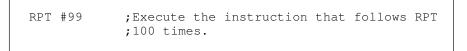
- Immediate addressing mode
- Direct addressing mode
- Indirect addressing mode

In immediate addressing, a constant to be manipulated by the instruction is supplied directly as an operand of that instruction. Two types of immediate addressing are available—short and long. In short-immediate addressing, an 8-, 9-, or 13-bit operand is included in the instruction word. Long-immediate addressing uses a 16-bit operand.

When you need to access data memory, you can use direct or indirect addressing. Direct addressing concatenates seven bits of the instruction word with the nine bits of the data-memory page pointer (DP) to form the 16-bit data memory address. Indirect addressing accesses data memory through one of eight 16-bit auxiliary registers.

TopicPage6.1Immediate Addressing Mode6-26.2Direct Addressing Mode6-46.3Indirect Addressing Mode6-9

6.1 Immediate Addressing Mode


In immediate addressing, the instruction word contains a constant to be manipulated by the instruction. The 'C2xx supports two types of immediate addressing:

- ❑ Short-immediate addressing. Instructions that use short-immediate addressing take an 8-bit, 9-bit, or 13-bit constant as an operand. Short-immediate instructions require a single instruction word, with the constant embedded in that word.
- ❑ Long-immediate addressing. Instructions that use long-immediate addressing take a 16-bit constant as an operand and require two instruction words. The constant is sent as the second instruction word. This 16-bit value can be used as an absolute constant or as a 2s-complement value.

6.1.1 Examples of Immediate Addressing

In Example 6–1, the immediate operand is contained as a part of the RPT instruction word. For this RPT instruction, the instruction register will be loaded with the value shown in Figure 6–1. Immediate operands are preceded by the symbol #.

Example 6–1. RPT Instruction Using Short-Immediate Addressing

Figure 6–1. Instruction Register Contents for Example 6–1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	0	1	1	0	1	1	0	0	0	1	1
RPT		ode fo	or imr	nedia	te ad	dress			8-bit	cons	stant	= 99			

In Example 6–2, the immediate operand is contained in the second instruction

word. The instruction register receives, consecutively, the two 16-bit values shown in Figure 6–2.

Example 6–2. ADD Instruction Using Long-Immediate Addressing

ADD #16384,2 ;Shift the value 16384 left by two bits ;and add the result to the accumulator.

		ion w	ord:											
14	14 13	12	11	10	9	8	7	6	5	4	3	2	1	
0	0 1	1	1	1	1	1	1	0	0	1	0	0	1	
ADD opcode for long-immediate addressing shift = 2 Second instruction word:														
na i												_		
nd I 14	14 13	12	11	10	9	8	7	6	5	4	3	2	1	
	14	4 13	4 13 12	4 13 12 11	4 13 12 11 10	4 13 12 11 10 9	4 13 12 11 10 9 8	4 13 12 11 10 9 8 7	4 13 12 11 10 9 8 7 6	4 13 12 11 10 9 8 7 6 5	4 13 12 11 10 9 8 7 6 5 4	4 13 12 11 10 9 8 7 6 5 4 3	4 13 12 11 10 9 8 7 6 5 4 3 2	

Figure 6–2. Two Words Loaded Consecutively to the Instruction Register in Example 6–2

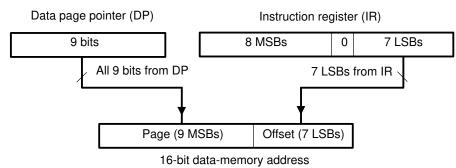
16-bit constant = 16 384 = 4000h

6.2 Direct Addressing Mode

In the direct addressing mode, data memory is addressed in blocks of 128 words called data pages. The entire 64K of data memory consists of 512 data pages labeled 0 through 511, as shown in Figure 6–3. The current data page is determined by the value in the 9-bit data page pointer (DP) in status register ST0. For example, if the DP value is 00000000_2 , the current data page is 0. If the DP value is 000000010_2 , the current data page is 2.

Figure 6–3. Pages of Data Memory

DP value	Offset	Data Memory							
0000 0000 0	000 0000								
		Page 0: 0000h–007Fh							
0000 0000 0	111 1111								
0000 0000 1	000 0000								
	÷	Page 1: 0080h-00FFh							
0000 0000 1	111 1111								
0000 0001 0	000 0000								
:	:	Page 2: 0100h–017Fh							
0000 0001 0	111 1111								
		•							
•	•								
1111 1111 1	000 0000								
:	:	Page 511: FF80h–FFFFh							
1111 1111 1	111 1111								


In addition to the data page, the processor must also know the particular word being referenced on that page. This is determined by a 7-bit offset (see Figure 6–3). The offset is supplied by the seven least significant bits (LSBs) of the instruction register, which holds the opcode for the next instruction to be executed. In direct addressing mode, the content of the instruction register has the format shown in Figure 6–4.

-						_									
15 14	l 13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		8 N	/ISBs				0	7 LSBs							
8 MSBs Bits 15 through 8 indicate the instruction type (for exam ADD) and also contain any information regarding a shift or data value to be accessed by the instruction.															
0		Direct/indirect indicator. Bit 7 contains a 0 to define the ad- dressing mode as direct.										ad-			
7 LSBs				•			te the e inst			the o	data-	mem	ory	ad-	

Figure 6–4. Instruction Register (IR) Contents in Direct Addressing Mode

To form a complete 16-bit address, the processor concatenates the DP value and the seven LSBs of the instruction register, as shown in Figure 6–5. The DP supplies the nine most significant bits (MSBs) of the address (the page number), and the seven LSBs of the instruction register supply the seven LSBs of the address (the offset). For example, to access data address 003Fh, you specify data page 0 (DP = 0000 0000 0) and an offset of 011 1111. Concatenating the DP and the offset produces the 16-bit address 0000 0000 0011 1111, which is 003Fh or decimal 63.

Figure 6–5. Generation of Data Addresses in Direct Addressing Mode

Initialize the DP in All Programs

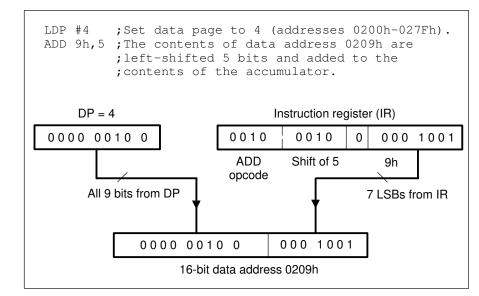
It is critical that all programs initialize the DP. The DP is not initialized by reset and is undefined after power up. The 'C2xx development tools use default values for many parameters, including the DP. However, programs that do not explicitly initialize the DP can execute improperly, depending on whether they are executed on a 'C2xx device or with a development tool.

6.2.1 Using Direct Addressing Mode

When you use direct addressing mode, the processor uses the DP to find the data page and uses the seven LSBs of the instruction register to find a particular address on that page. Always do the following:

 Set the data page. Load the appropriate value (from 0 to 511) into the DP. The DP register can be loaded by the LDP instruction or by any instruction that can load a value to ST0. The LDP instruction loads the DP directly without affecting the other bits of ST0, and it clearly indicates the value loaded into the DP. For example, to set the current data page to 32 (addresses 1000h–107Fh), you can use:

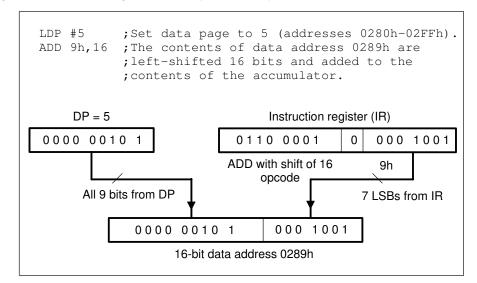
LDP #32 ;Initialize data page pointer


2) **Specify the offset.** Supply the 7-bit offset as an operand of the instruction. For example, if you want the ADD instruction to use the value at the second address of the current data page, you would write:

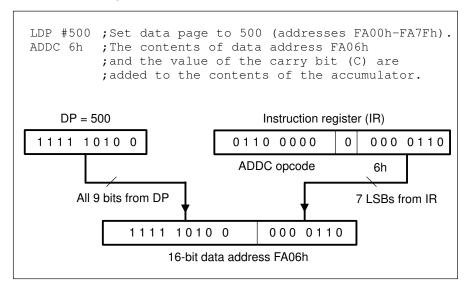
ADD 1h ;Add to accumulator the value in the current ;data page, offset of 1.

You do not have to set the data page prior to every instruction that uses direct addressing. If all the instructions in a block of code access the same data page, you can simply load the DP at the front of the block. However, if various data pages are being accessed throughout the block of code, be sure the DP is changed whenever a new data page should be accessed.

6.2.2 Examples of Direct Addressing


In Example 6–3, the first instruction loads the DP with 00000100_2 (4) to set the current data page to 4. The ADD instruction then references a data memory address that is generated as shown following the program code. Before the ADD instruction is executed, the opcode is loaded into the instruction register. Together, the DP and the seven LSBs of the instruction register form the complete 16-bit address, 00000100001001_2 (0209h).

Example 6–3. Using Direct Addressing with ADD (Shift of 0 to 15)


In Example 6–4, the ADD instruction references a data memory address that is generated as shown following the program code. For any instruction that performs a shift of 16, the shift value is not embedded directly in the instruction word; instead, all eight MSBs contain an opcode that not only indicates the instruction type but also a shift of 16. The eight MSBs of the instruction word indicate an ADD with a shift of 16.

Example 6–4. Using Direct Addressing with ADD (Shift of 16)

In Example 6–5, the ADDC instruction references a data memory address that is generated as shown following the program code. Note that if an instruction does not perform shifts, like the ADDC instruction does not, all eight MSBs of the instruction contain the opcode for the instruction type.

Example 6–5. Using Direct Addressing with ADDC

6.3 Indirect Addressing Mode

Eight auxiliary registers (AR0–AR7) provide flexible and powerful indirect addressing. Any location in the 64K data memory space can be accessed using a 16-bit address contained in an auxiliary register.

6.3.1 Current Auxiliary Register

To select a specific auxiliary register, load the 3-bit auxiliary register pointer (ARP) of status register ST0 with a value from 0 to 7. The ARP can be loaded as a primary operation by the MAR instruction or by the LST instruction. The ARP can be loaded as a secondary operation by any instruction that supports indirect addressing.

The register pointed to by the ARP is referred to as the *current auxiliary register* or *current AR*. During the processing of an instruction, the content of the current auxiliary register is used as the address at which the data-memory access will take place. The ARAU passes this address to the data-read address bus (DRAB) if the instruction requires a read from data memory, or it passes the address to the data-write address bus (DWAB) if the instruction requires a write to data memory. After the instruction uses the data value, the contents of the current auxiliary register can be incremented or decremented by the ARAU, which implements unsigned 16-bit arithmetic.

Normally, the ARAU performs its arithmetic operations in the decode phase of the pipeline (when the instruction specifying the operations is being decoded). This allows the address to be generated before the decode phase of the next instruction. There is an exception to this rule: During processing of the NORM instruction, the auxiliary register and/or ARP modification is done during the execute phase of the pipeline. For information on the operation of the pipeline, see Section 5.2 on page 5-7.

6.3.2 Indirect Addressing Options

The 'C2xx provides four types of indirect addressing options:

- □ No increment or decrement. The instruction uses the content of the current auxiliary register as the data memory address but neither increments nor decrements the content of the current auxiliary register.
- Increment or decrement by 1. The instruction uses the content of the current auxiliary register as the data memory address and then increments or decrements the content of the current auxiliary register by one.
- □ Increment or decrement by an index amount. The value in AR0 is the index amount. The instruction uses the content of the current auxiliary reg-

ister as the data memory address and then increments or decrements the content of the current auxiliary register by the index amount.

Increment or decrement by an index amount using reverse carry. The value in AR0 is the index amount. After the instruction uses the content of the current auxiliary register as the data-memory address, that content is incremented or decremented by the index amount. The addition or subtraction, in this case, is done with the carry propagation reversed (for FFTs).

These four option types provide the seven indirect addressing options listed in Table 6–1. The table also shows the instruction operand that corresponds to each indirect addressing option and gives an example of how each option is used.

Option	Operand	Example
No increment or decrement	*	LT * loads the temporary register (TREG) with the content of the data memory address referenced by the current AR.
Increment by 1	*+	LT *+ loads the temporary register (TREG) with the content of the data memory address referenced by the current AR and then adds one to the content of the current AR.
Decrement by 1	*	LT *– loads the temporary register (TREG) with the content of the data memory address referenced by the current AR and then subtracts one from the content of the current AR.
Increment by index amount	*0+	LT *0+ loads the temporary register (TREG) with the content of the data memory address referenced by the current AR and then adds the content of AR0 to the content of the current AR.
Decrement by index amount	*0–	LT *0– loads the temporary register (TREG) with the content of the data memory address referenced by the current AR and then subtracts the content of AR0 from the content of the current AR.

Table 6–1. Indirect Addressing Operands

Option	Operand	Example
Increment by index amount, adding with reverse carry	*BR0+	LT *BR0+ loads the temporary register (TREG) with the content of the data memory address referenced by the current AR and then adds the content of AR0 to the content of the current AR, adding with reverse carry propagation.
Decrement by index amount, subtracting with reverse carry	*BR0–	LT *BR0– loads the temporary register (TREG) with the content of the data memory address referenced by the current AR and then subtracts the con- tent of AR0 from the content of the cur- rent AR, subtracting with bit reverse carry propagation.

Table 6–1. Indirect Addressing Operands (Continued)

All increments or decrements are performed by the auxiliary register arithmetic unit (ARAU) in the same cycle during which the instruction is being decoded in the pipeline.

The bit-reversed indexed addressing allows efficient I/O operations by resequencing the data points in a radix-2 FFT program. The direction of carry propagation in the ARAU is reversed when the address is selected, and AR0 is added to or subtracted from the current auxiliary register. A typical use of this addressing mode requires that AR0 first be set to a value corresponding to half of the array's size, and that the current AR value be set to the base address of the data (the first data point).

6.3.3 Next Auxiliary Register

In addition to updating the current auxiliary register, a number of instructions can also specify the *next auxiliary register* or *next AR*. This register will be the current auxiliary register when the instruction execution is complete. The instructions that allow you to specify the next auxiliary register load the ARP with a new value. When the ARP is loaded with that value, the previous ARP value is loaded into the auxiliary register pointer buffer (ARB). Example 6–6 illustrates the selection of a next auxiliary register, as well as other indirect addressing features discussed so far.

Example 6–6. Selecting a New Current Auxiliary Register

MAR*,AR1	;Load the ARP with 1 to make AR1 the
LT *+,AR2	;current auxiliary register. ;AR2 is the next auxiliary register.
	;Load the TREG with the content of the ;address referenced by AR1, add one to
	the content of AR1, then make AR2 the ;current auxiliary register.
MPY*	; Multiply TREG by content of address ; referenced by AR2.

6.3.4 Indirect Addressing Opcode Format

Figure 6–6 shows the format of the instruction word loaded into the instruction register when you use indirect addressing. The opcode fields are described following the figure.

Figure 6–6. Instruction Register Content in Indirect Addressing

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				8	MSB	s			1		ARU		N NAR				
8	MS	ISBs Bits 15 through 8 indicate the instruction type (for example, LT) and also contain any information regarding data shifts.															
1		Direct/indirect indicator. Bit 7 contains a 1 to define the ad- dressing mode as indirect.							ad-								
4	ARU Auxiliary register update code. Bits 6 through 4 determine whether and how the current auxiliary register is incremented or decremented. See Table 6–2.																

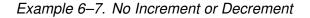
AF	RU Co	de				
6	5	4	Arithmetic Operation Performed on Current AR			
0	0	0	No operation on current AR			
0	0	1	current AR – 1 \rightarrow current AR			
0	1	0	current AR + 1 \rightarrow current AR			
0	1	1	Reserved			
1	0	0	current AR – AR0 \rightarrow current AR [reverse carry propagation]			
1	0	1	current AR – AR0 \rightarrow current AR			
1	1	0	current AR + AR0 \rightarrow current AR			
1	1	1	current AR + AR0 \rightarrow current AR [reverse carry propagation]			
N			ext auxiliary register indicator. Bit 3 specifies whether the struction will change the ARP value.			
		Ν	= 0 If N is 0, the content of the ARP will remain un- changed.			
		N	= 1 If N is 1, the content of NAR will be loaded into the ARP, and the old ARP value is loaded into the auxiliary register buffer (ARB) of status reg- ister ST1.			
NAR		Va	ext auxiliary register value. Bits 2 through 0 contain the alue of the next auxiliary register. NAR is loaded into the ARP $N = 1$.			

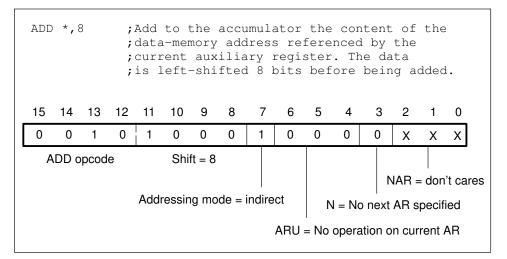
Table 6–2. Effects of the ARU Code on the Current Auxiliary Register

Table 6–3 shows the opcode field bits and the notation used for indirect addressing. It also shows the corresponding operations performed on the current auxiliary register and the ARP.

Instruction Opcode Bits											
15	_	8	7	6	5	4	3	2	10	Operand(s)	Operation
\leftarrow	8 MSBs	\rightarrow	1	0	0	0	0	<n< td=""><td>$IAR \rightarrow$</td><td>*</td><td>No manipulation of current AR</td></n<>	$IAR \rightarrow$	*	No manipulation of current AR
\leftarrow	8 MSBs	\rightarrow	1	0	0	0	1	<n< td=""><td>$IAR \rightarrow$</td><td>*,AR<i>n</i></td><td>$NAR\toARP$</td></n<>	$IAR \rightarrow$	*,AR <i>n</i>	$NAR\toARP$
\leftarrow	8 MSBs	\rightarrow	1	0	0	1	0	<n< td=""><td>$IAR \rightarrow$</td><td>*</td><td>current AR – 1 \rightarrow current AR</td></n<>	$IAR \rightarrow$	*	current AR – 1 \rightarrow current AR
\leftarrow	8 MSBs	\rightarrow	1	0	0	1	1	←N	IAR→	*–,AR <i>n</i>	current AR – 1 \rightarrow current AR NAR \rightarrow ARP
\leftarrow	8 MSBs	\rightarrow	1	0	1	0	0	←N	$IAR \rightarrow$	*+	current AR + 1 \rightarrow current AR
\leftarrow	8 MSBs	\rightarrow	1	0	1	0	1	←N	IAR→	*+,AR <i>n</i>	current AR + 1 \rightarrow current AR NAR \rightarrow ARP
\leftarrow	8 MSBs	\rightarrow	1	1	0	0	0	←N	IAR→	*BR0-	current AR – <i>rc</i> AR0 \rightarrow current AR †
\leftarrow	8 MSBs	\rightarrow	1	1	0	0	1	←N	IAR→	*BR0–,AR <i>n</i>	current AR – <i>rc</i> AR0 \rightarrow current AR NAR \rightarrow ARP [†]
\leftarrow	8 MSBs	\rightarrow	1	1	0	1	0	۸→	IAR→	*0—	current AR – AR0 \rightarrow current AR
\leftarrow	8 MSBs	\rightarrow	1	1	0	1	1	←N	IAR→	*0–,AR <i>n</i>	current AR – AR0 \rightarrow current AR NAR \rightarrow ARP
\leftarrow	8 MSBs	\rightarrow	1	1	1	0	0	۸→	IAR→	*0+	current AR + AR0 \rightarrow current AR
\leftarrow	8 MSBs	\rightarrow	1	1	1	0	1	←N	IAR→	*0+,AR <i>n</i>	current AR + AR0 \rightarrow current AR NAR \rightarrow ARP
\leftarrow	8 MSBs	\rightarrow	1	1	1	1	0	←N	IAR→	*BR0+	current AR + <i>rc</i> AR0 \rightarrow current AR †
\leftarrow	8 MSBs	\rightarrow	1	1	1	1	1	←N	IAR→	*BR0+,AR <i>n</i>	current AR + <i>rc</i> AR0 \rightarrow current AR NAR \rightarrow ARP \uparrow

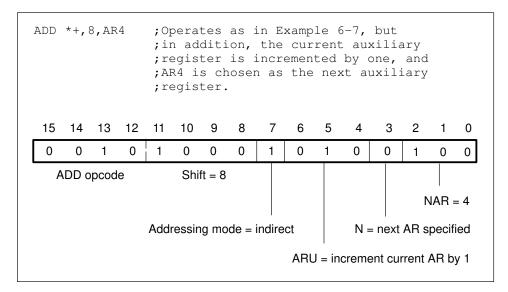
Table 6–3. Field Bits and Notation for Indirect Addressing


[†]Bit-reversed addressing mode


Legend:

uuu	a oconig in	
	rc	Reverse carry propagation
	NAR	Next AR
	п	0, 1, 2,, or 7
	8 MSBs	Eight bits determined by instruction type and (sometimes) shift information
	\rightarrow	Is loaded into

6.3.5 Examples of Indirect Addressing


In Example 6–7, when the ADD instruction is fetched from program memory, the instruction register is loaded with the value shown.

In Example 6–8, when the ADD instruction is fetched from program memory, the instruction register is loaded with the value shown.

```
Example 6-8. Increment by 1
```


Example 6–9. Decrement by 1

```
ADD *-,8 ;Operates as in Example 6-7, but in ;addition, the current auxiliary register ;is decremented by one.
```

Example 6–10. Increment by Index Amount

ADD *0+,8 ;Operates as in Example 6-7, but in ;addition, the content of register AR0 ;is added to the current auxiliary ;register.

Example 6–11. Decrement by Index Amount

Example 6–12. Increment by Index Amount With Reverse Carry Propagation

```
ADD *BR0+,8 ;Operates as in Example 6-10, except that
;the content of register AR0 is added to
;the current auxiliary register with
;reverse carry propagation.
```

Example 6–13. Decrement by Index Amount With Reverse Carry Propagation

ADD *BR0-,8 ;Operates as in Example 6-11, except that ;the content of register AR0 is subtracted ;from the current auxiliary register with ;reverse carry propagation.

6.3.6 Modifying Auxiliary Register Content

The LAR, ADRK, SBRK, and MAR instructions are specialized instructions for changing the content of an auxiliary register (AR):

- The LAR instruction loads an AR.
- ☐ The ADRK instruction adds an immediate value to an AR; SBRK subtracts an immediate value.
- The MAR instruction can increment or decrement an AR value by one or by an index amount.

However, you are not limited to these four instructions. Auxiliary registers can be modified by any instruction that supports indirect addressing operands. (Indirect addressing can be used with all instructions except those that have immediate operands or no operands.)

Chapter 7

Assembly Language Instructions

The 'C2xx instruction set supports numerically intensive signal-processing operations as well as general-purpose applications such as multiprocessing and high-speed control. The 'C2xx instruction set is compatible with the 'C2x instruction set; code written for the 'C2x can be reassembled to run on the 'C2xx. The 'C5x instruction set is a superset of that of the 'C2xx; thus, code written for the 'C2xx can be upgraded to run on a 'C5x.

This chapter describes the assembly language instructions.

Topic

Page

7.1	Instruction Set Summary 7-2
7.2	How To Use the Instruction Descriptions
7.3	Instruction Descriptions7-20

7.1 Instruction Set Summary

This section provides a summary of the instruction set in six tables (Table 7–1 to Table 7–6) according to the following functional headings:

- Accumulator, arithmetic, and logic instructions (see Table 7–1 on page 7-4)
- Auxiliary register and data page pointer instructions (see Table 7–2 on page 7-7)
- TREG, PREG, and multiply instructions (see Table 7–3 on page 7-7)
- □ Branch instructions (see Table 7–4 on page 7-8)
- □ Control instructions (see Table 7–5 on page 7-9)
- □ I/O and memory operations (see Table 7–6 on page 7-10)

Within each table, the instructions are arranged alphabetically. The number of words that an instruction occupies in program memory is specified in column three of each table; the number of cycles that an instruction requires to execute is in column four. All instructions are assumed to be executed from internal program memory (RAM) and internal data dual-access memory. The cycle timings are for single-instruction execution, not for repeat mode. Additional information about each instruction is presented in the individual instruction descriptions in Section 7.2.

For your reference, here are definitions of the symbols used in these six summary tables:

- ACC The accumulator
- AR Auxiliary register
- **ARX** A 3-bit value used in the LAR and SAR instructions to designate which auxiliary register will be loaded (LAR) or have its contents stored (SAR)
- **BITX** A 4-bit value (called the bit code) that determines which bit of a designated data memory value will be tested by the BIT instruction
- **CM** A 2-bit value. The CMPR instruction performs a comparison specified by the value of CM: If CM = 00, test whether current AR = AR0 If CM = 01, test whether current AR < AR0 If CM = 10, test whether current AR > AR0 If CM = 11, test whether current AR \neq AR0

ΙΑΑΑ ΑΑΑΑ	that reflects whether dressing $(I = 1)$ is bein the seven As are the data memory address are bits that control a	ven As) The I at the left represents a bit direct addressing (I = 0) or indirect ad- g used. When direct addressing is used, seven least significant bits (LSBs) of a s. For indirect addressing, the seven As uxiliary register manipulation (see Sec- ressing Mode, p. 6-9).
1111 1111	(Eight Is) An 8-bit con sing	nstant used in short immediate addres-
1 1111 1111	(Nine Is) A 9-bit const for the LDP instructio	ant used in short immediate addressing n
1 1111 1111 1111	(Thirteen Is) A 13-bit dressing for the MPY	constant used in short immediate ad- instruction
I NTR#	•	nting a number from 0 to 31. The INTR umber to change program control to one ctor addresses.
РМ	A 2-bit value copied in the SPM instruction	nto the PM bits of status register ST1 by
SHF	A 3-bit left-shift value	
SHFT	A 4-bit left-shift value	
ТР	A 2-bit value used by represent four condit	the conditional execution instructions to ions:
	BIO pin low	TP = 00

BIO pin low	IP = 00
TC bit =1	TP = 01
TC bit = 0	TP = 10
No condition	TP = 11

ZLVC ZLVC Two 4-bit fields — each representing the following conditions:

ACC = 0	Z
ACC < 0	L
Overflow	V
Carry	С

A conditional instruction contains two of these 4-bit fields. The 4-LSB field of the instruction is a mask field. A 1 in the corresponding mask bit indicates that condition is being tested. For example, to test for ACC \geq 0, the Z and L fields are set, and the V and C fields are not set. The Z field is set to test the condition ACC \geq 0, and the L field is reset to test the condition ACC \geq 0. The second 4-bit field (bits 4 – 7) indicates the state of the conditions to test. The conditions possible with these eight bits are shown in the descriptions for the BCND, CC, and RETC instructions.

+ 1 word The second word of a two-word opcode. This second word contains a 16-bit constant. Depending on the instruction, this constant is a long immediate value, a program memory address, or an address for an I/O port or an I/O-mapped register.

Mnemonic	Description	Words	Cycles	Opcode
ABS	Absolute value of ACC	1	1	1011 1110 0000 0000
ADD	Add to ACC with shift of 0 to 15, direct or indirect	1	1	0010 SHFT IAAA AAAA
	Add to ACC with shift 0 to 15, long immediate	2	2	1011 1111 1001 SHFT + 1 word
	Add to ACC with shift of 16, direct or indirect	1	1	0110 0001 IAAA AAAA
	Add to ACC, short immediate	1	1	1011 1000
ADDC	Add to ACC with carry, direct or indirect	1	1	0110 0000 IAAA AAAA
ADDS	Add to low ACC with sign-extension suppressed, direct or indirect	1	1	0110 0010 IAAA AAAA
ADDT	Add to ACC with shift (0 to 15) specified by TREG, direct or indirect	1	1	0110 0011 IAAA AAAA

Table 7–1. Accumulator, Arithmetic, and Logic Instructions

Mnemonic	Description	Words	Cycles	Opcode
AND	AND ACC with data value, direct or indirect	1	1	0110 1110 IAAA AAAA
	AND with ACC with shift of 0 to 15, long immediate	2	2	1011 1111 1011 SHFT + 1 word
	AND with ACC with shift of 16, long immediate	2	2	1011 1110 1000 0001 + 1 word
CMPL	Complement ACC	1	1	1011 1110 0000 0001
LACC	Load ACC with shift of 0 to 15, direct or indirect	1	1	0001 SHFT IAAA AAAA
	Load ACC with shift of 0 to 15, long immediate	2	2	1011 1111 1000 SHFT + 1 word
	Load ACC with shift of 16, direct or indirect	1	1	0110 1010 IAAA AAAA
LACL	Load low word of ACC, direct or indirect	1	1	0110 1001 IAAA AAAA
	Load low word of ACC, short immediate	1	1	1011 1001
LACT	Load ACC with shift (0 to 15) specified by TREG, direct or indirect	1	1	0110 1011 IAAA AAAA
NEG	Negate ACC	1	1	1011 1110 0000 0010
NORM	Normalize the contents of ACC, indirect	1	1	1010 0000 IAAA AAAA
OR	OR ACC with data value, direct or indirect	1	1	0110 1101 IAAA AAAA
	OR with ACC with shift of 0 to 15, long immediate	2	2	1011 1111 1100 SHFT + 1 word
	OR with ACC with shift of 16, long immediate	2	2	1011 1110 1000 0010 + 1 word
ROL	Rotate ACC left	1	1	1011 1110 0000 1100
ROR	Rotate ACC right	1	1	1011 1110 0000 1101
SACH	Store high ACC with shift of 0 to 7, direct or indirect	1	1	1001 1SHF IAAA AAAA
SACL	Store low ACC with shift of 0 to 7, direct or indirect	1	1	1001 0SHF IAAA AAAA
SFL	Shift ACC left	1	1	1011 1110 0000 1001
SFR	Shift ACC right	1	1	1011 1110 0000 1010

Table 7–1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Assembly Language Instructions 7-5

Mnemonic	Description	Words	Cycles	Opcode
SUB	Subtract from ACC with shift of 0 to 15, direct or indirect	1	1	0011 SHFT IAAA AAAA
	Subtract from ACC with shift of 0 to 15, long immediate	2	2	1011 1111 1010 SHFT + 1 word
	Subtract from ACC with shift of 16, direct or indirect	1	1	0110 0101 IAAA AAAA
	Subtract from ACC, short immediate	1	1	1011 1010
SUBB	Subtract from ACC with borrow, direct or indirect	1	1	0110 0100 IAAA AAAA
SUBC	Conditional subtract, direct or indirect	1	1	0000 1010 IAAA AAAA
SUBS	Subtract from ACC with sign-extension suppressed, direct or indirect	1	1	0110 0110 IAAA AAAA
SUBT	Subtract from ACC with shift (0 to 15) specified by TREG, direct or indirect	1	1	0110 0111 IAAA AAAA
XOR	Exclusive OR ACC with data value, direct or indirect	1	1	0110 1100 IAAA AAAA
	Exclusive OR with ACC with shift of 0 to 15, long immediate	2	2	1011 1111 1101 SHFT + 1 word
	Exclusive OR with ACC with shift of 16, long immediate	2	2	1011 1110 1000 0011 + 1 word
ZALR	Zero low ACC and load high ACC with rounding, direct or indirect	1	1	0110 1000 IAAA AAAA

Table 7–1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic	Description	Words	Cycles	Opcode
ADRK	Add constant to current AR, short immediate	1	1	0111 1000
BANZ	Branch on current AR not-zero, indirect	2	4 (condition true) 2 (condition false)	0111 1011 1AAA AAAA + 1 word
CMPR	Compare current AR with AR0	1	1	1011 1111 0100 01CM
LAR	Load specified AR from specified data location, direct or indirect	1	2	0000 OARX IAAA AAAA
	Load specified AR with constant, short immediate	1	2	1011 OARX IIII IIII
	Load specified AR with constant, long immediate	2	2	1011 1111 0000 1ARX + 1 word
MAR	Modify current AR and/or ARP, indirect (performs no operation when direct)	1	1	1000 1011 IAAA AAAA
SAR	Store specified AR to specified data location, direct or indirect	1	1	1000 OARX IAAA AAAA
SBRK	Subtract constant from current AR, short immediate	1	1	0111 1100

Table 7–2. Auxiliary Register Instructions

Table 7–3. TREG, PREG, and Multiply Instructions

Mnemonic	Description	Words	Cycles	Opcode
APAC	Add PREG to ACC	1	1	1011 1110 0000 0100
LPH	Load high PREG, direct or indirect	1	1	0111 0101 IAAA AAAA
LT	Load TREG, direct or indirect	1	1	0111 0011 IAAA AAAA
LTA	Load TREG and accumulate previous product, direct or indirect	1	1	0111 0000 IAAA AAAA
LTD	Load TREG, accumulate previous product, and move data, direct or indirect	1	1	0111 0010 IAAA AAAA
LTP	Load TREG and store PREG in accumulator, direct or indirect	1	1	0111 0001 IAAA AAAA
LTS	Load TREG and subtract previous product, direct or indirect	1	1	0111 0100 IAAA AAAA

Assembly Language Instructions 7-7

Mnemonic	Description	Words	Cycles	Opcode
MAC	Multiply and accumulate, direct or indirect	2	3	1010 0010 IAAA AAAA + 1 word
MACD	Multiply and accumulate with data move, direct or indirect	2	3	1010 0011 IAAA AAAA + 1 word
MPY	Multiply TREG by data value, direct or indirect	1	1	0101 0100 IAAA AAAA
	Multiply TREG by 13-bit constant, short immediate	1	1	110
MPYA	Multiply and accumulate previous product, direct or indirect	1	1	0101 0000 IAAA AAAA
MPYS	Multiply and subtract previous product, direct or in- direct	1	1	0101 0001 IAAA AAAA
MPYU	Multiply unsigned, direct or indirect	1	1	0101 0101 IAAA AAAA
PAC	Load ACC with PREG	1	1	1011 1110 0000 0011
SPAC	Subtract PREG from ACC	1	1	1011 1110 0000 0101
SPH	Store high PREG, direct or indirect	1	1	1000 1101 IAAA AAAA
SPL	Store low PREG, direct or indirect	1	1	1000 1100 IAAA AAAA
SPM	Set product shift mode	1	1	1011 1111 0000 00PM
SQRA	Square and accumulate previous product, direct or indirect	1	1	0101 0010 IAAA AAAA
SQRS	Square and subtract previous product, direct or indirect	1	1	0101 0011 IAAA AAAA

Table 7–3. TREG, PREG, and Multiply Instructions (Continued)

Table 7–4. Branch Instructions

Mnemonic	Description	Words	Cycles	Opcode
В	Branch unconditionally, indirect	2	4	0111 1001 1AAA AAAA + 1 word
BACC	Branch to address specified by ACC	1	4	1011 1110 0010 0000
BANZ	Branch on current AR not-zero, indirect	2	4 (condition true) 2 (condition false)	0111 1011 1AAA AAAA + 1 word
BCND	Branch conditionally	2	4 (conditions true) 2 (any condition false)	1110 00TP ZLVC ZLVC + 1 word
CALA	Call subroutine at location specified by ACC	1	4	1011 1110 0011 0000

Mnemonic	Description	Words	Cycles	Opcode
CALL	Call subroutine, indirect	2	4	0111 1010 1AAA AAAA + 1 word
CC	Call conditionally	2	4 (conditions true) 2 (any condition false)	1110 10TP ZLVC ZLVC + 1 word
INTR	Soft interrupt	1	4	1011 1110 011I NTR#
NMI	Nonmaskable interrupt	1	4	1011 1110 0101 0010
RET	Return from subroutine	1	4	1110 1111 0000 0000
RETC	Return conditionally	1	4 (conditions true) 2 (any condition false)	1110 11TP ZLVC ZLVC
TRAP	Software interrupt	1	4	1011 1110 0101 0001

Table 7–4. Branch Instructions (Continued)

Table 7–5. Control Instructions

Mnemonic	Description	Words	Cycles	Opcode
BIT	Test bit, direct or indirect	1	1	0100 BITX IAAA AAAA
BITT	Test bit specified by TREG, direct or indirect	1	1	0110 1111 IAAA AAAA
CLRC	Clear C bit	1	1	1011 1110 0100 1110
	Clear CNF bit	1	1	1011 1110 0100 0100
	Clear INTM bit	1	1	1011 1110 0100 0000
	Clear OVM bit	1	1	1011 1110 0100 0010
	Clear SXM bit	1	1	1011 1110 0100 0110
	Clear TC bit	1	1	1011 1110 0100 1010
	Clear XF bit	1	1	1011 1110 0100 1100
IDLE	Idle until interrupt	1	1	1011 1110 0010 0010
LDP	Load data page pointer, direct or indirect	1	2	0000 1101 IAAA AAAA
	Load data page pointer, short immediate	1	2	1011 110
LST	Load status register ST0, direct or indirect	1	2	0000 1110 IAAA AAAA
	Load status register ST1, direct or indirect	1	2	0000 1111 IAAA AAAA
NOP	No operation	1	1	1000 1011 0000 0000
POP	Pop top of stack to low ACC	1	1	1011 1110 0011 0010

Assembly Language Instructions 7-9

Mnemonic	Description	Words	Cycles	Opcode
POPD	Pop top of stack to data memory, direct or indirect	1	1	1000 1010 IAAA AAAA
PSHD	Push data memory value on stack, direct or indirect	1	1	0111 0110 IAAA AAAA
PUSH	Push low ACC onto stack	1	1	1011 1110 0011 1100
RPT	Repeat next instruction, direct or indirect	1	1	0000 1011 IAAA AAAA
	Repeat next instruction, short immediate	1	1	1011 1011
SETC	Set C bit	1	1	1011 1110 0100 1111
	Set CNF bit	1	1	1011 1110 0100 0101
	Set INTM bit	1	1	1011 1110 0100 0001
	Set OVM bit	1	1	1011 1110 0100 0011
	Set SXM bit	1	1	1011 1110 0100 0111
	Set TC bit	1	1	1011 1110 0100 1011
	Set XF bit	1	1	1011 1110 0100 1101
SPM	Set product shift mode	1	1	1011 1111 0000 00PM
SST	Store status register ST0, direct or indirect	1	1	1000 1110 IAAA AAAA
	Store status register ST1, direct or indirect	1	1	1000 1111 IAAA AAAA

Table 7–5. Control Instructions (Continued)

Table 7–6. I/O and Memory Instructions

Mnemonic	Description	Words	Cycles	Opcode
BLDD	Block move from data memory to data memory, direct/indirect with long immediate source	2	3	1010 1000 IAAA AAAA + 1 word
	Block move from data memory to data memory, direct/indirect with long immediate destination	2	3	1010 1001 IAAA AAAA + 1 word
BLPD	Block move from program memory to data memory, direct/indirect with long immediate source	2	3	1010 0101 IAAA AAAA + 1 word
DMOV	Data move in data memory, direct or indirect	1	1	0111 0111 IAAA AAAA
IN	Input data from I/O location, direct or indirect	2	2	1010 1111 IAAA AAAA + 1 word
OUT	Output data to port, direct or indirect	2	3	0000 1100 IAAA AAAA + 1 word
SPLK	Store long immediate to data memory location, direct or indirect	2	2	1010 1110 IAAA AAAA + 1 word

Mnemonic	Description	Words	Cycles	Opcode
TBLR	Table read, direct or indirect	1	3	1010 0110 IAAA AAAA
TBLW	Table write, direct or indirect	1	3	1010 0111 IAAA AAAA

Table 7–6. I/O and Memory Instructions (Continued)

7.2 How To Use the Instruction Descriptions

Section 7.3 contains detailed information on the instruction set. The description for each instruction presents the following categories of information:

- Syntax
- Operands
- Opcode
- Execution
- Status Bits
- Description
- U Words
- □ Cycles
- **Examples**

7.2.1 Syntax

Each instruction begins with a list of the available assembler syntax expressions and the addressing mode type(s) for each expression. For example, the description for the ADD instruction begins with:

ADD dma [, shift]	Direct addressing
ADD dma, 16	Direct with left shift of 16
ADD <i>ind</i> [, <i>shift</i> [, AR <i>n</i>]]	Indirect addressing
ADD ind, 16 [, ARn]	Indirect with left shift of 16
ADD #k	Short immediate addressing
ADD #lk [, shift]	Long immediate addressing

These are the notations used in the syntax expressions:

italic symbols	Italic symbol <i>Example:</i>	s in an instruction syntax represent variables. For the syntax: ADD <i>dma</i> you may use a variety of values for <i>dma</i> . Samples with this syntax follow: ADD DAT ADD 15
boldface characters	Boldface cha shown. <i>Example:</i>	Aracters in an instruction syntax must be typed as For the syntax: ADD <i>dma</i> , 16 you may use a variety of values for <i>dma</i> , but the word ADD and the number 16 should be typed as shown. Samples with this syntax follow: ADD 7h, 16
		ADD X, 16

[, x]	Operand x is optional. Example: For the syntax: ADD dma, [, shift] you must supply dma, as in the instruction: ADD 7h and you have the option of adding a shift value, as in the instruction: ADD 7h, 5
[, x1 [, x2]]	Operands x1 and x2 are optional, but you cannot include x2 without also including x1. <i>Example:</i> For the syntax: ADD ind, [, shift [, ARn]] you must supply ind, as in the instruction: ADD *+ You have the option of including shift, as in the instruction: ADD *+, 5 If you wish to include ARn, you must also include shift, as in: ADD *+, 0, AR2
#	The # symbol is a prefix for constants used in immediate addressing. For short- or long- immediate operands, it is used in instructions where there is ambiguity with other

addressing modes. *Example:* RPT #15 uses short immediate addressing. It causes the next instruction to be repeated 16 times. But RPT 15 uses direct addressing. The number of times the next instruction repeats is determined by a value stored in memory.

Finally, consider this code example:

MoveData	BLDD	DAT5,	#310h	;move data at address
				;referenced by DAT5 to address
				;310h.

Note the optional label MoveData used as a reference in front of the instruction mnemonic. Place labels either before the instruction mnemonic on the same line or on the preceding line in the first column. (Be sure there are no spaces in your labels.) An optional comment field can conclude the syntax expression. At least one space is required between fields (label, mnemonic, operand, and comment).

7.2.2 Operands

Operands can be constants, or assembly-time expressions referring to memory, I/O ports, register addresses, pointers, shift counts, and a variety of other constants. The operands category for each instruction description defines the variables used for and/or within operands in the syntax expressions. For example, for the ADD instruction, the syntax category gives these syntax expressions:

ADD dma [, shift]	Direct addressing
ADD dma, 16	Direct with left shift of 16
ADD <i>ind</i> [, <i>shift</i> [, AR <i>n</i>]]	Indirect addressing
ADD ind, 16 [, ARn]	Indirect with left shift of 16
ADD #k	Short immediate addressing
ADD #lk [, shift]	Long immediate addressing

The operands category defines the variables *dma*, *shift*, *ind*, *n*, *k*, and *lk*. For *ind*, an indirect addressing variable, you supply one of the following seven symbols:

* *+ *– *0+ *0– *BR0+ *BR0–

These symbols are defined in subsection 6.3.2, *Indirect Addressing Options*, on page 6-9.

7.2.3 Opcode

The opcode category breaks down the various bit fields that make up each instruction word. When one of the fields contains a constant value derived directly from an operand, it will have the same name as that operand. The contents of fields that do not directly relate to operands are given other names; the opcode category either explains these names directly or refers you to a section of this book that explains them in detail. For example, these opcodes are given for the ADDC instruction:

AD	DC d	ma													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0	0	0				dma			
	ADDC ind [, ARn]														
AD	DC ir	nd [, 🖌	4R <i>n</i>]												
AD 15	D C ir 14	-	4R <i>n</i>] 12		10	9	8	7	6	5	4	3	2	1	0
		-	-		10 0	9 0	8 0	7	6	5 ARU	4	3 N	2	1 NAR	

Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9).

The field called dma contains the value *dma*, which is defined in the operands category. The contents of the fields ARU, N, and NAR are derived from the operands *ind* and *n* but do not directly correspond to those operands; therefore, a note directs you to the appropriate section for more details.

7.2.4 Execution

The execution category presents an instruction operation sequence that describes the processing that takes place when the instruction is executed. If the execution event or events depend on the addressing mode used, the execution category specifies which events are associated with which addressing modes. Here are notations used in the execution category:

(r)	The content <i>Example:</i>	of register or location r. (ACC) represents the value in the accumulator.
$X \to Y$	Value x is as <i>Example:</i>	signed to register or location y. (data-memory address) \rightarrow ACC means: The content of the specified data-memory address is put into the accumulator.
r(n:m)	Bits n throug <i>Example:</i>	h m of register or location r. ACC(15:0) represents bits 15 through 0 of the accumulator.
(r(n:m))	The content <i>Example:</i>	of bits n through m of register or location r. (ACC(31:16)) represents the content of bits 31 through 16 of the accumulator.
nnh	Indicates tha	t nn represents a hexadecimal number.

7.2.5 Status Bits

The bits in status registers ST0 and ST1 affect the operation of certain instructions and are affected by certain instructions. The status bits category of each instruction description states which of the bits (if any) affect the execution of the instruction and which of the bits (if any) are affected by the instruction.

7.2.6 Description

The description category explains what happens during instruction execution and its effect on the rest of the processor or on memory contents. It also discusses any constraints on the operands imposed by the processor or the assembler. This description parallels and supplements the information given in the execution category.

7.2.7 Words

The words category specifies the number of memory words (one or two) required to store the instruction. When the number of words depends on the addressing mode used for an instruction, the words category specifies which addressing modes require one word and which require two words.

7.2.8 Cycles

The cycles category of each instruction description contains tables showing the number of processor machine cycles (CLKOUT1 periods) required for the instruction to execute in a given memory configuration when executed as a single instruction or when repeated with the RPT instruction. For example:

	Program							
Operand	ROM	DARAM	SARAM	External				
DARAM	1	1	1	1+p				
SARAM	1	1	1	1+p				
External	1+d	1+d	1+d	2+d+p				

Cycles for a Single Instruction

	Program							
Operand	ROM	DARAM	SARAM	External				
DARAM	n	n	n	n+p				
SARAM	n	n	n	n+p				
External	n+nd	n+nd	n+nd	n+1+p+nd				

Cycles for a Repeat (RPT) Execution of an Instruction

The column headings in these tables indicate the program source location, defined as follows:

ROM The instruction executes from internal program ROM.

DARAM The instruction executes from internal dual-access program RAM.

SARAM The instruction executes from internal single-access program RAM.

External The instruction executes from external program memory.

If an instruction requires memory operand(s), the rows in the table indicate the location(s) of the operand(s), as defined here:

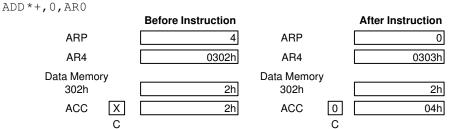
- DARAM The operand is in internal dual-access RAM.
- **SARAM** The operand is in internal single-access RAM.
- **External** The operand is in external memory.

For the RPT mode execution, *n* indicates the number of times a given instruction is repeated by an RPT instruction. Additional cycles (wait states) can be generated for program-memory, data-memory, and I/O accesses by the waitstate generator or by the external READY signal. These additional wait states are represented in the tables by the following variables:

- Program-memory wait states. Represents the number of additional clock cycles the device waits for external program memory to respond to a single access.
- **d** Data-memory wait states. Represents the number of additional clock cycles the device waits for external data memory to respond to a single access.
- io I/O wait states. Represents the number of additional clock cycles the device waits for an external I/O device to respond to a single access.
- **n** Number of repetitions (where n > 2 to fill the pipeline). Represents the number of times a repeated instruction is executed.

If there are multiple accesses to one of the spaces, the variable will be preceded by the appropriate integer multiple. For example, two accesses to external program memory would require 2p wait states. The above variables may also use the subscripts *src*, *dst*, and *code* to indicate source, destination, and code, respectively.

The internal single-access memory on each 'C2xx processor is divided into 2K-word blocks contiguous in address space. All 'C2xx processors support parallel accesses to these internal single-access RAM blocks. Furthermore, one single access block allows only one access per cycle. Thus, the processor can read/write on single-access RAM block while accessing another single-access RAM block at the same time.


All external reads take at least one machine cycle while all external writes take at least two machine cycles. However, if an external write is immediately followed or preceded by an external read cycle, then the external write requires three cycles. If the wait state generator or the READY pin is used to add m (m > 0) wait states to an external access, then external reads require m+1 cycles, and external write accesses require m+2 cycles. See Section 8.5, *Wait-State Generator*, page 8-14, for the discussion on generating wait states.

The instruction-cycle timings are based on the following assumptions:

- At least the next four instructions are fetched from the same memory section (internal or external) that was used to fetch the current instruction (except in the case of PC discontinuity instructions, such as B, CALL, etc.)
- □ In the single-execution mode, there is no pipeline conflict between the current instruction and the instructions immediately preceding or following that instruction. The only exception is the conflict between the fetch phase of the pipeline and the memory read/write (if any) access of the instruction under consideration. See Section 5.2, *Pipeline*, on page 5-7 for more information about pipeline operation.
- □ In the repeat execution mode, all conflicts caused by the pipelined execution of an instruction are considered.

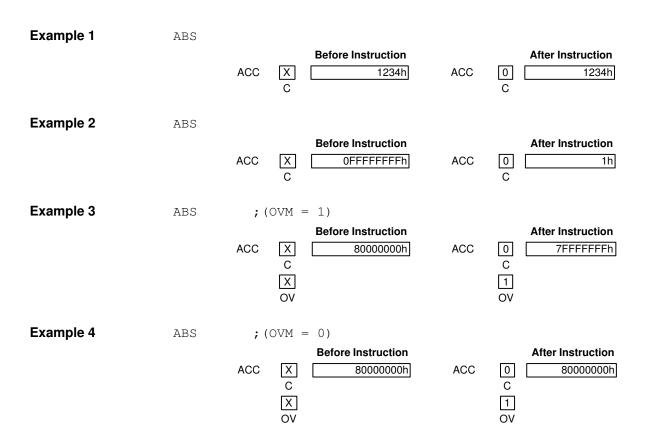
7.2.9 Examples

Example code is included for each instruction. The effect of the code on memory and/or registers is summarized. Program code is shown in a special typeface. The sample code is then followed by a verbal or graphic description of the effect of that code. Consider this example of the ADD instruction:

Here are the facts and events represented in this example:

- ☐ The auxiliary register pointer (ARP) points to the current auxiliary register. Because ARP = 4, the current auxiliary register is AR4.
- When the addition takes place, the CPU follows AR4 to data-memory address 0302h. The content of that address, 2h, is added to the content of the accumulator, also 2h. The result (4h) is placed in the accumulator. (Because the second operand of the instruction specifies a left shift of 0, the data-memory value is not shifted before being added to the accumulator value.)
- ☐ The instruction specifies an increment of one for the contents of the current auxiliary register (*+); therefore, after the addition is performed, the content of AR4 is incremented to 0303h.

- \Box The instruction also specifies that AR0 will be the next auxiliary register; therefore, after the instruction ARP = 0.
- Because no carry is generated during the addition, the carry bit (C) becomes 0.


7.3 Instruction Descriptions

This section contains detailed information on the instruction set for the 'C2xx (For a summary of the instruction set, see Section 7.1.) The instructions are presented alphabetically, and the description for each instruction presents the following categories of information:

- Syntax
- Operands
- Opcode
- Execution
- Status Bits
- Description
- Words
- Cycles
- Examples

For a description of how to use each of these categories, see Section 7.2.

Syntax	ABS														
Operands	None														
Opcode	15 14 1 0	13 1	12 1	11 1	10 1	9 1	8 0	7 0	6 0	5 0	4	3 0	2 0	1 0	0
Execution	Increment PC, then $ (ACC) \rightarrow ACC; 0 \rightarrow C$														
Status Bits	<u>Affected</u> OVM	<u>by</u>			<i>ffects</i> and										
	This inst	ructio	n is n	iot af	fecte	d by	SXN	1							
Description	If the contents of the accumulator are greater than or equal to zero, the accu- mulator is unchanged by the execution of ABS. If the contents of the accumula- tor are less than zero, the accumulator is replaced by its 2s-complement value. The carry bit (C) on the 'C2xx is always reset to zero by the execution of this instruction.														
	Note that 8000 0000h is a special case. When the overflow mode is not set $(OVM = 0)$, the ABS of 8000 0000h is 8000 0000h. When the overflow mode is set $(OVM = 1)$, the ABS of 8000 0000h is 7FFF FFFFh. In either case, the OV status bit is set.														
Words	1														
Cycles				Су	cles f	or a	Sing	e AB	S Ins	struc	tion				
	ROM			DAF	RAM			SAF	RAM			Ext	ernal		
	1			1				1				1+p)		
		Cycle	es for	r a Re	epeat	(RP	T) Ex	ecuti	on o	f an A	ABSI	nstru	ction	1	
	ROM			DAF	RAM			SAF	RAM			Ext	ernal		
	n			n				n				n+p)		

Syntax	ADD ADD ADD ADD ADD ADD	dma, ind [, ind, 1 #k	16 <i>shifi</i> 16 [,	t [, A AR <i>n</i>]							Direc Direc Indire Indire Short Long	t with ct ac ct wi imm	n left ddres ith lef ediat	shift sing ft shi te ad	ft of 1 dress	6 sing
Operands	dma: shift: n: k: lk: ind:		Le Va 8- 16	eft sh alue f bit sl 6-bit l	iift va from hort i long	0 to mme imme of the	rom 7 des diate ediate	0 to 1 signa e valu e valu	ting t ue ue g sev	efau he r	Its to next a	uxilia	ary re	giste	er	
Opcode	AD	D dn	na [, :	shift]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	0		sł	nift		0				dma			
	ADD dma, 16															
	15		13 13	, 12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	0	0	0	1	0		•	-	dma	_		
				-	-	-	-									
	AD	D inc	-	hift [,	AR /	[[ר										
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	0		sł	nift		1		ARU		Ν		NAR	
	Not	e: A	RU, N	, and	NAR a	are de	fined i	n Sect	tion 6.	3, <i>Inc</i>	direct A	ddres	sing M	lode (oage 6	i-9).
	AD	D inc	/. 16	[. A R	[<i>n</i>]											
	15	14	 13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	0	0	0	1	1		ARU		N		NAR	
	Not	e: A	RU, N	, and	NAR a	are de	fined i	n Sect	tion 6.	3, Inc	direct A	ddres	sing M	lode (oage 6	i-9).
	۸ D	D # k														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	1	1	0	0	0					ĸ	-		
					•	•	-	•								
		D #//		-												
	15		13		11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	1	1	1	1	1	1	0	0	1		sł	nift	
		-			-		-		k				-			

Execution	Increment PC, then <u>Event</u> (ACC) + ((data-men (ACC) + ((data-men	<u>Addressing mode</u> Direct or indirect Direct or indirect (shift of 16)			
	$(ACC) + k \rightarrow ACC$		Short immediate		
	(ACC) + lk $ imes$ 2 ^{shift} -	ightarrow ACC	Long immediate		
Status Bits	<u>Affected by</u> SXM and OVM	<u>Affects</u> C and OV	<u>Addressing mode</u> Direct or indirect		
	OVM	C and OV	Short immediate		
	SXM and OVM	C and OV	Long immediate		
Description	is left-shifted and ad zero filled. High-ord SXM = 0. The result	ddressed data memory location or a ded to the accumulator. During shift ler bits are sign extended if SXM is stored in the accumulator. Wher e addition is unaffected by SXM and	ing, low-order bits are = 1 and zero filled if a short immediate ad-		
		rect addressing and update the AR ever, if you do not want a shift to oc ole:			
	ADD *+,0,AR2				
	and is cleared (C = with a shift of 16, the carry bit is unaffected	it is set (C = 1) if the result of the addi 0) if it does not generate a carry. H e carry bit is set if a carry is generat ed. This allows the accumulator to dding a 32-bit number to the accum	owever, when adding ted but otherwise, the generate the proper		
Words	<u>Words</u> 1		<u>Addressing mode</u> Direct, indirect, or short immediate		
	2		Long immediate		

Cycles

Cycles for a Single ADD Instruction (Using Direct and Indirect Addressing)

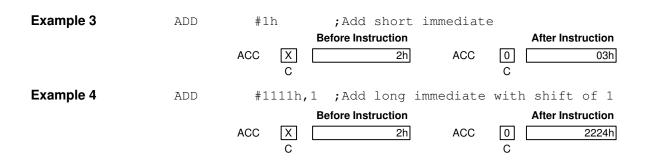
	Program							
Operand	ROM	DARAM	SARAM	External				
DARAM	1	1	1	1+p				
SARAM	1	1	1, 2†	1+p				
External	1+d	1+d	1+d	2+d+p				

[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADD Instruction (Using Direct and Indirect Addressing)

	Program								
Operand	ROM	DARAM	SARAM	External					
DARAM	n	n	n	n+p					
SARAM	n	n	n, n+1†	n+p					
External	n+nd	n+nd	n+nd	n+1+p+nd					

[†] If the operand and the code are in the same SARAM block


Cycles for a Single ADD Instruction (Using Short Immediate Addressing)

ROM	DARAM	SARAM	External
1	1	1	1+p

Cycles for a Single ADD Instruction (Using Long Immediate Addressing)

	ROM	DA	RAM SA	ARAM E	External 2+2p		
	2	2	2	2			
Example 1	ADD	1,1	;(DP = 6)				
			Before Instruction		After Instruction		
		Data Memory		Data Memory			
		301h	1h	301h	1h		
		ACC X	2h	ACC 0	04h		
		С		C			
Example 2	ADD	*+,0,AR	0				
			Before Instruction		After Instruction		
		ARP	4	ARP	0		
		AR4	0302h	AR4	0303h		
		Data Memory		Data Memory			
		302h	2h	302h	2h		
		ACC X	2h	ACC 0	04h		
		С		С			

Assembly Language Instructions 7-25

Syntax	ADDC dma ADDC ind [, ARn]						Direct addressing Indirect addressing							
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options: $*$ $*_{+}$ $*_{-}$ $*0 *BR0-$													
Opcode	ADDC a	lma												
•	15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1	1 0	0	0	0	0	0				dma			
	ADDC i	nd [, AR n	1											
	15 14	13 12	. 11	10	9	8	7	6	5	4	3	2	1	0
	0 1	1 0	0	0	0	0	1		ARU		Ν		NAR	
Execution Status Bits Description	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9). Increment PC, then (ACC) + (data-memory address) + (C) \rightarrow ACC <u>Affected by</u> <u>Affects</u> OVM C and OV This instruction is not affected by SXM. The contents of the addressed data-memory location and the value of the carry bit are added to the accumulator with sign extension suppressed. The carry bit is then affected in the normal manner: the carry bit is set (C = 1) if the result of the addition generates a carry and is cleared (C = 0) if it does not gen-											the The the		
	The ADDC instruction can be used in performing multiple-precision arithme							etic.						
Words	1													
Cycles	Cycles for a Single ADDC Instruction													
	Program													
	Operand	ROM		0	DAR	AM		SAR	AM		Ex	terna	al	
	DARAM	1		1				1			1+	p		
	SARAM	1		1				1, 2†	t		1+	p		
	External	1+d		1	+d			1+d			2+	d+p		

[†] If the operand and the code are in the same SARAM block

Assembly Language Instructions 7-27

	C	Cycles for a Repeat (RPT) Execution of an ADDC Instruction									
			Pr	ogram							
	Operand	ROM	DARAM	SARAM	External						
	DARAM	n	n	n	n+p						
	SARAM	n	n	n, n+1†	n+p						
	External	n+nd	n+nd	n+nd	n+1+p+nd						
	† If the opera	and and the coo	de are in the same SAR	AM block							
Example 1	ADDC	DAT300		ddresses 03							
				a label for							
	_		Before Instruction		After Instruction						
		a Memory 300h	04h	Data Memory 300h	04h						
			13h								
		ACC 1 C	1311		D 18h						
Example 2	ADDC	*-,AR4	;(OVM = 0)								
			Before Instruction		After Instruction						
		ARP	0	ARP	4						
		AR0		AR0	299h						
	Data	Memory		Data Memory							
		300h	0h	300h	Oh						
		ACC 1	0FFFFFFFh	ACC [1	0h						
		C									
		X ov		[0							
		00		0	v						

7-28

Syntax	ADDS dma						Direct Indire			-	
Operands	dma: n: ind:	Value Select * *+	from one	0 to 7	follow	ating	the next at ven options		ry reg	ister	
Opcode	ADDS di		44	10	0 0	7	6 F	4	0	0 1	0
	15 14	13 12 1 0	11 0	10 0	9 8 1 0	-	65	4	3 dma	2 1	0
			-	-							
	ADDS in 15 14	13 12	11	10	98	7	65	4	3	2 1	0
	0 1	1 0	0	0	1 0	1	ARU		Ν	NAR	
	Note: Af	RU, N, and	NAR a	re defi	ned in Se	ection 6.	3, Indirect Ad	ddress	ing Mo	<i>de</i> (page (6-9).
Execution	Increment (ACC) + (d			ddres	s) $ ightarrow$ A	сс					
Status Bits	<u>Affected by</u> <u>Affects</u> OVM C and OV										
	This instruc	ction is no	ot affe	ected	by SXI	1.					
Description	The conten lator with si number, reg number. No with SXM = The carry b	gn extens gardless o ote that A = 0 and a	sion s of SXI ADDS shift	uppre M. Th prod count	essed. 7 e accur uces th of 0.	he dat nulato ie san	ta is treated r contents ne results	d as a are tr as ar	n uns eated 1 ADE	igned 16 I as a sig D instruc	8-bit ned tion
	is cleared (•		,				J		,	
Words	1										
Cycles			Cycle	es for	a Singl	e ADD	S Instructio	on			
		_				Prog	gram				
	Operand	ROM		D	ARAM		SARAM		Ext	ernal	
	DARAM	1		1			1		1+p	1	
	SARAM	1		1			1, 2†		1+p)	
	External	1+d		1.	⊦d		1+d		2+d	+p	
	t If the opera	and and the	codo ·	aro in t	ho camo	SABAN	1 block				

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

C	Cycles for a Repeat (RPT) Execution of an ADDS Instruction									
		Pr	ogram							
Operand	ROM	DARAM	SARAM	External						
DARAM	n	n	n	n+p						
SARAM	n	n	n, n+1†	n+p						
External	n+nd	n+nd	n+nd	n+1+p+nd						
† If the operation	and and the co	de are in the same SAR	AM block							
ADDS	0	;(DP = 6: a	ddresses 03	00h-037Fh)						
		Before Instruction		After Instruction						
	a Memory 300h	0F006h	Data Memory 300h	0F006h						
	ACC X C	0000003h	ACC 0 C	0000F009h						
ADDS	*									
		Before Instruction		After Instruction						
	ARP	0	ARP	0						
	AR0	0300h	AR0	0300h						
	a Memory 300h	0FFFFh	Data Memory 300h	0FFFFh						
	ACC X C	7FFF0000h	ACC 0 C							
	Operand DARAM SARAM External T if the oper ADDS Data	Operand ROM DARAM n SARAM n External n+nd T if the operand and the correlation ADDS 0 Data Memory 300h ACC X ADDS * ADDS * ADDS X ADDS * ADDS X ADDS X ADDS X ADDS X ARP AR0 Data Memory 300h ACC ACC X	OperandROMDARAMDARAMnnDARAMnnSARAMnnExternaln+ndn+ndT If the operand and the code are in the same SARAADDS0; (DP = 6: a)Before InstructionData Memory 300hOF006h CADDS*Before InstructionADDS*ADDS*ADDS*ADDS*ADDS*ADDS*ADDS*ADDS*ACCXO0300hData Memory 300h0FFFFh ACCACCXTFFF0000h	ProgramOperandROMDARAMSARAMDARAMnnnnSARAMnnnn, n+1†Externaln+ndn+ndn+nd† If the operand and the code are in the same SARAM blockADDS0; (DP = 6: addresses 03Before InstructionData Memory 300hData Memory 300hData Memory 300hOOADDS**Before InstructionData Memory 300hOADDS*CADDS*ADDS*ADDS*ADDS*ADDS*ADDS*ADDS*ACCQARPQAR0O300hAR0Data Memory 300hACCXTFFF0000hACCQQFFFFhACCXTFFF0000hACC						

Cycles for a Repeat (RPT) Execution of an ADDS Instruction

Syntax	ADDT dma ADDT ind							ct addi ect ad		-		
Operands	dma: n: ind:	Value	from 0 one o) to 7	followin	ating t Ig sev	the next a ven optior		ry re	giste	r	
Opcode	ADDT di	ma										
	15 14	13 12	11		98	7	65	4	3	2	1	0
	0 1	1 0	0	0	1 1	0		1	dma			
	ADDT in	d [, AR n]										
	15 14	13 12	11		98	7	6 5	4	3	2	1	0
	0 1	1 0	0	0	1 1	1	ARL		N		NAR	
	Note: Al	RU, N, and	NAR ar	e delin	eu în Sec		3, mairect /	Address	sing w	ioae (p	bage d	o-9).
Execution Status Bits Description	Increment (ACC) + [(d Affected by SXM or OV The data-m result repla LSBs of the on the data a carry is ge the carry b	data-mem //M nemory va ices the a e TREG, i i-memory enerated o	Affe Car Car alue is accum resulti value out of t	o <u>cts</u> nd OV s left s ulator ng in e is co	hifted a conter shift op ntrolled	ind ac its. Th tions	dded to th ne left sh from 0 to XM. The	ne acc ift is de 15 bit carry b	umu efine s. Si oit (C	ed by gn e: C) is s	the f xtens set w	iour sion hen
Wordo	-											
Words	1											
Cycles			Cycles	s for a	Single		Γ Instruct	ion				
	On survey of	DOM			DAM	Prog	gram		F -1			
	Operand	ROM			RAM		SARAM			terna	al	
	DARAM	1		1			1		1+	-		
	SARAM	1		1			1, 2†		1+	-		
	External	1+d		1+			1+d		2+	d+p		
	t If the opera	and and the	code a	re in th	e same 🤇	SARAM	1 block					

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block.

		Cycles for a Repeat (RPT) Execution of an ADDT Instruction									
			Pr	ogram							
	Operand	ROM	DARAM	SARAM		External					
	DARAM	n	n	n		n+p					
	SARAM	n	n	n, n+1†		n+p					
	External	n+nd	n+nd	n+nd		n+1+p+nd					
	† If the opera	and and the coo	de are in the same SAR	AM block							
Example 1	ADDT	127	;(DP = 4: a	ddresses	0200)h-027Fh,					
			; $SXM = 0$)								
			Before Instruction			After Instruction					
		a Memory 027Fh	09h	Data Memo 027Fh	ry	09h					
	-	TREG	0FF94h	TREG		0FF94h					
		ACC X	0F715h	ACC	0	0F7A5h					
		С			С						
Example 2	ADDT	*-,AR4	; $(SXM = 0)$								
			Before Instruction			After Instruction					
		ARP	0	ARP		4					
		AR0	027Fh	AR0		027Eh					
	Data	a Memory		Data Memo	ry						
	(027Fh	09h	027Fh		09h					
	-	TREG	0FF94h	TREG		0FF94h					
		ACC X	0F715h	ACC	0	0F7A5h					
		С			С						

Syntax	ADRK #/	k								Shor	timm	iedia	te ad	dress	sing
Operands	k:	8-	bit sł	nort i	mme	diate	valu	ie							
Opcode	ADRK 15 14 0 1	4 13	12 1	11 1	10 0	9 0	8 0	7	6	5	4	3 k	2	1	0
Execution	Incremer (current /	-			ive co	onsta	ant	→ CUrr	ent /	AR					
Status Bits	None														
Description	The 8-bit immediate value is added, right justified, to the current auxiliary regis- ter (the one specified by the current ARP value) and the result replaces the auxiliary register contents. The addition takes place in the ARAU, with the im- mediate value treated as an 8-bit positive integer. All arithmetic operations on the auxiliary registers are unsigned.														
Words	1														
Cycles				Cycle	es for	a Si	ngle	ADR	(Ins	tructi	on				
	ROM		[DAR	۹M			SARA	١M			Exter	nal		
	1			1			•	1				1+p			
Example	ADRK	#8 ARP AR5	30h		Before	e Instr		5		ARP AR5			ter Ins		ion 5 A1h

Syntax	AND AND AND AND	<i>ind</i> [, # lk [,	shift	-							Direc Indire Long Long shil	ect ac imm	ddres ediat ediat	sing e ad		-
Operands	dma: shift: n: Ik: ind:		Lo V: 10	eft sh alue 1 6-bit	iift va from long	alue f 0 to imme of the	rom 7 de ediat	nemo 0 to 1 signa e valu owing *0-	5 (de ting t ue g sev	efaul he n	ts to ext a ption	uxilia	ary re	giste	er	
Opcode		D dn														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	1	1	1	0	0				dma			
	AN	D inc	/[, A	R <i>n</i>]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	1	1	1	0	1		ARU		Ν		NAR	
	Not	e: A	RU, N	l, and	NAR a	are def	fined	in Sect	ion 6.	3, <i>Ind</i>	irect A	ddres	sing N	lode (page 6	6-9).
	AN	D #//	([. <i>sł</i>	nift]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	1	1	1	1	1	1	0	1	1		sł	nift	
								I	ĸ							
	AN 15	D # // 14	(, 16 13	12	11	10	0	8	7	6	5	4	3	2	1	0
	1	0	1	12	1	1	9	0	1	0	0	4	0	2	0	1
	- H	•	•	•	•	•	•			0	0	Ŭ	•	•	Ū	· ·
Execution	Increi <u>Even</u> (ACC 0 → A	<u>t<i>(s)</i></u> (15:0)) Al	ND (d		memo	ory a	lddres	ss) —	→ AC	C(15				<u>g mo</u> ndirec	
	(ACC	(31:0)) Al	ND lk	× 2	shift _	→ A(CC				L	ong i	imme	ediate	e
	(ACC	(31:0)) Al	ND Ik	× 2	16 _→	ACC	;					-		ediate hift o	

Status Bits	None				
	This instruc	tion is not affect	ed by SXM.		
Description	ANDed with tion in the ad ate address shift, low-or	a data-memory ccumulator. The ing is used, the lo der and high-oro	value, and the re high word of the ong-immediate c	sult is placed in t accumulator is z onstant can be s by the shifted v	e accumulator is he low word posi- eroed. If immedi- hifted. During the ralue are zeroed.
Words	<u>Words</u> 1			<u>Addressing</u> Direct or inc	
	2			Long imme	diate
Cycles	Cycles for	a Single AND In	struction (Using	Direct and Indire	ect Addressing)
			Pro	gram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	1	1	1	1+p
	SARAM	1	1	1, 2†	1+p

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

1+d

External

1+d

Cycles for a Repeat (RPT) Execution of an AND Instruction (Using Direct and Indirect Addressing)

1+d

2+d+p

		Program										
Operand	ROM	DARAM	SARAM	External								
DARAM	n	n	n	n+p								
SARAM	n	n	n, n+1†	n+p								
External	n+nd	n+nd	n+nd	n+1+p+nd								

[†] If the operand and the code are in the same SARAM block

Cycles for a Single	AND Instruction (Using	Long Immediate A	ddressing)

ROM	DARAM	SARAM	External
2	2	2	2+2p

AND With Accumulator

Example 1	AND	16	;(DP = 4:	addresses 0200	h-027Fh)
			Before Instruction		After Instruction
		Data Memory 0210h ACC	00FFh	Data Memory 0210h ACC	00FFh
Example 2	AND	*			
			Before Instruction		After Instruction
		ARP	0	ARP	0
		AR0	0301h	AR0	0301h
		Data Memory		Data Memory	
		0301h	0FF00h	0301h	0FF00h
		ACC	12345678h	ACC	00005600h
Example 3	AND	#00FFh,	4		
			Before Instruction		After Instruction
		ACC	12345678h	ACC	00000670h

Syntax	APAC
Operands	None
Opcode	APAC
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0
Execution	Increment PC, then (ACC) + shifted (PREG) \rightarrow ACC
Status Bits	Affected byAffectsPM and OVMC and OV
	This instruction is not affected by SXM.
Description	The contents of PREG are shifted as defined by the PM status bits of the ST1 register (see Table 7–7) and added to the contents of the accumulator. The result is placed in the accumulator. APAC is not affected by the SXM bit of the status register. PREG is always sign extended. The task of the APAC instruction is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and SQRA instructions.

Table 7–7. Product Shift Modes

1

PM	Bits	
Bit 1	Bit 0	Resulting Shift
0	0	No shift
0	1	Left shift of 1 bit
1	0	Left shift of 4 bits
1	1	Right shift of 6 bits

Words	
-------	--

Cycles

	Cycles for a Sing	le APAC Instruction	
ROM	DARAM	SARAM	External
1	1	1	1+p

Cycles for a Repeat	(RPT) Execution of an APAC Instruction	'n
Oycles for a nepear	(III I) Execution of an Al Ao instructio	

ROM	DARAM	SARAM	External
n	n	n	n+p

Example	APAC	;(1	PM =	01)			
				Before Instruction			After Instruction
		PREG		40h	PREG		40h
		ACC	X	20h	ACC	0	A0h
			С			С	

Syntax	B pma [, in	d [, AR n]]				I	ndire	ct ac	dres	sing		
Operands	pma: n: ind:	16-bit pro Value fror Select on * *+	n 0 to 7 d	esigna ollowin	ating t ng sev	he n	ptions		ary re	giste	er	
Opcode	15 14 0 1	<i>ind</i> [, AR <i>n</i>]] 13 12 11 1 1 1 RU, N, and NAF	0 0	р 1 р	7 1 oma ction 6.3	6 3, Indi	5 ARU irect Ad	4 ddress	3 N sing M	2 lode (1 NAR page 6	
Execution	$pma \rightarrow PC$ Modify (cur	rrent AR) and	d (ARP) a	s spe	cified.							
Status Bits	None											
Description	control is pa	t auxiliary reg assed to the c er a symboli	designate	d prog	ram-r	nemo				•		
Words	2											
Cycles		c	cycles for	a Sing	jle B li	nstru	ction					
	ROM	DAI	RAM		SARA	M		l	Exter	nal		
	4	4			4			4	4+4p			
	tion	en this instructio words have en ruction words a	tered the pi	peline.								
Example	В	191,*+,	AR1									
	to execute	191 is loadec from that loc ' is set to po	ation. The	e curre	ent au	xiliar	y regi	ster	-			

_																
Syntax	BACC	,														
Operands	None															
Opcode	15	14 0	13 1	12 1	11 1	10 1	9 1	8 0	7 0	6 0	5 1	4	3 0	2 0	1 0	0 0
Execution	ACC(1	5:0	$) \rightarrow$	РС												
Status Bits	None															
Description	Contro lator.	ol is j	pass	ed to	the	16-bi	add	ress	resid	ling i	n the	lowe	r half	ofth	e acc	umu-
Words	1															
Cycles					Сус	les fo	or a S	Single	e BA(CC In	struc	ction				
	ROM				DAF	RAM			SA	RAM			Ext	ernal		
	4				4				4				4+3	р		
	Note:	tio	n wor	ds hav	ve ent	n reacl tered t re disc	he pip	eline.								
Example	BACC		;	(AC	C C	onta	ins	the	e va	lue	191)				
	The va to exe							rogra	am co	ounte	ər, ar	nd the	e pro	gram	cont	inues

Syntax	BANZ pma	n [, ind [, /	\R n]]				I	ndired	ct ac	ldres	sing		
Operands	pma: n: ind:	Value f Select	program from 0 to one of t *-	7 de	signat	ing t sev	he ne		5:	ry re	giste	r	
Opcode	BANZ pr			_	-	_	-	_		_			
	15 14	13 12 1 1	11 10 1 0	9	8	7	6	5	4	3	2	1 NAR	0
	0 1	1 1	1 0	- 1	pm	1		ARU		Ν		NAR	
	Note: AF	RU, N, and I	NAR are c	efined	•		3. Indi	rect Ao	Idres	sina M	lode (r	bage 6	5-9).
		10, 11, and 1		onnou		011 0.0	, ma	001710		, ing in	000 (1	Jugo u	, 0).
Execution	•	$ma \rightarrow PC$ PC) + 2 \rightarrow	PC	P) as	speci	fied							
Status Bits	None												
Description	Control is p contents of passes to t decrement register (as a symbolic	f the curi he next ir by one. N a loop co	rent aux nstructio I loop ite ounter) t	iliary n.The rations o N–1	regist defau s can b	er a ult mo be ex	re no odific ecut	ot zer ation ed by	o. C to th initia	Other ne cu alizin	wise Irrent g an	, con t AR auxili	itrol is a iary
Words	2												
Cycles			Cycles f	or a Si	ingle E	BANZ	Inst	ructio	n				
	Condition	ROM		DAR	AM		SAR	AM		Ex	terna	al	
	True	4		4			4			4+	4р		
	False	2		2			2			2+	2р		
	Note: The	'C2xx perfo	orms specu	lative fe	etching	by rea	ading t	wo add	litiona	al instr	uction	words	s. If

Note: The 'C2xx performs speculative fetching by reading two additional instruction words. If the PC discontinuity is taken, these two instruction words are discarded.

Example 1	BANZ	PGMO ; (P	GMO labels p:	rogram add	ress O)
		Before II	struction		After Instruction
		ARP	0	ARP [0
		AR0		ARO [4h
			511		411
	dress 0 is l executing f	ne content of AR0 is n loaded into the progra from that location. The e current auxiliary regi cution.	am counter (PC) default auxiliary	, and the prog register opera	ation is a decre-
	or				
		Before I	struction		After Instruction
		ARP	0	ARP	0
		AR0	0h	AR0	FFFFh
	PC is incre	ne content of AR0 is a mented by 2, and exensition. Because of ming -1 .	cution continues	with the instru	uction following
Example 2		MAD + ADA		to point t	- NDO
		MAR *,ARO Lar ar1,#3	;Load AR1	to point to	O ARU.
		LAR ARI,#5 LAR ARO,#60h			
	PGM191			with 60h.	+ = = = = =
	PGMI91	ADD *+, AR1	-	ile AR1 no	
		BANZ PGM191,A			-
				ulator and	Increment
			;AR0 value	₹.	
	The conter tor.	nts of data-memory lo	cations 60h–63h	are added to	the accumula-

Operandspma:16-bit program-memory address $cond$ $Condition$ EQ $ACC = 0$ NEQ $ACC \neq 0$ LT $ACC < 0$ LEQ $ACC \leq 0$ GT $ACC > 0$ GEQ $ACC \geq 0$ NC $C = 0$ C $C = 1$
EQACC = 0NEQACC $\neq 0$ LTACC < 0LEQACC ≤ 0 GTACC > 0GEQACC ≥ 0 NCC = 0
NOV $OV = 0$ OV $OV = 1$ BIO BIO lowNTC $TC = 0$ TC $TC = 1$ UNCUnconditionally
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 0 0 0 TP ZIVC ZIVC
1 1 1 0 0 0 TP ZLVC ZLVC pma
Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.
ExecutionIf cond 1 AND cond 2 ANDThen pma \rightarrow PCElse increment PC
Status Bits None
Description A branch is taken to the specified program-memory address (pma) if the specified conditions are met. Not all combinations of conditions are meaningful. Fo example, testing for LT and GT is contradictory. In addition, testing BIO is mutually exclusive to testing TC.
Words 2
Cycles for a Single BCND Instruction
Condition ROM DARAM SARAM External

True

False

4

2

Note: The 'C2xx performs speculative fetching by reading two additional instruction words. If the PC discontinuity is taken, these two instruction words are discarded.

4

2

4

2

Assembly Language Instructions 7-43

4+4p

2+2p

BCND Branch Conditionally

Example

BCND PGM191, LEQ, C

If the accumulator contents are less than or equal to zero and the carry bit is set, program address 191 is loaded into the program counter, and the program continues to execute from that location. If these conditions do not hold, execution continues from location PC + 2.

Syntax	BIT dma, bit codeDirect addressingBIT ind, bit code [, ARn]Indirect addressing
Operands	dma:7 LSBs of the data-memory addressbit code:Value from 0 to 15 indicating which bit to test (see Figure 7–1)n:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options: $*$ $*_{+}$ $*_{-}$ $*_{0-}$ * BR0+* BR0-
Opcode	BIT dma, bit code
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 1 0 0 bit code 0 dma
	BIT ind, bit code [,ARn]
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 1 0 0 bit code 1 ARU N NAR
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).
Execution	Increment PC, then (data bit number (15 – bit code)) \rightarrow TC
Status Bits	<u>Affects</u> TC
Description	The BIT instruction copies the specified bit of the data-memory value to the TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM instructions also affect the TC bit in ST1. A bit code value is specified that corresponds to a certain bit number of the data-memory value, as shown in Figure 7–1.
Figure 7–1. Bit Nun	nbers and Their Corresponding Bit Codes for BIT Instruction
Bit code	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bit number	
	MSB Data-memory value LSB

Words

1

Cycles

	Cycl	es for a Single I	BIT Instruction	
		F	Program	
Operand	ROM	DARAM	SARAM	External
DARAM	1	1	1	1+p
SARAM	1	1	1, 2†	1+p
External	1+d	1+d	1+d	2+d+p

[†] If the operand and the code are in the same SARAM block

		Cycles for a R	lepeat (RPT) Execu	tion of a BIT Instr	uction
			Pr	ogram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	n	n	n	n+p
	SARAM	n	n	n, n+1†	n+p
	External	n+nd	n+nd	n+nd	n+1+p+nd
	† If the operation	and and the code	e are in the same SAR/	AM block	
Example 1	BIT	0h,15	; $(DP = 6)$.	Test LSB at	300h
			Before Instruction		After Instruction
		Nemory 300h	4DC8h	Data Memory 300h	4DC8h
		тс [0	TC	0
Example 2	BIT	*,0,AR1	;Test MSB a	t 310h, then	set ARP = 1
			Before Instruction		After Instruction
		ARP [0	ARP	1
		AR0 [310h	AR0	310h
		a Memory 310h [8000h	Data Memory 310h	8000h
		тс [0	тс	1

Syntax		T dri T ind		\R <i>n</i>]									irect direc			-		
Operands	dm n: ind			Valu	ue fro	om () to 7 of the	7 de	esigr	natir ing s	ng th	lress e ne n op 0+	xt au	:	y re	giste	r	
Opcode	E	ытт	dma															
	1	5 1	4 1	3	12	11	10	9	8		7	6	5	4	3	2	1	0
		0	1	1	0	1	1	1	1		0				dma			
	-	ытт	ind[ิจไ													
					•	11	10	9	8		7	6	5	4	3	2	1	0
	Γ	0		-	0	1	1	1	1	- i	1	-	RU	-	N		NAF	-
Execution	Inc	lote: reme ta bit	nt Po	C, th	en							Indire	eci Ad	uress	ing wi	ode (t	age	o-9).
Status Bits	<u>Affe</u> TC	<u>ects</u>																
Description	TC inst cifie	e BIT bit o tructio ed by figure	f stat ons a r a bi	us re also a t cod	egiste affec	er S t the	T1.N	Vote oit ir	e tha n sta	it the	e BIT regis	FT, C ster S	MPF ST1.	R, LS The I	T #1 pit nu	, and Imbe	d NC er is s	RM spe-
Figure 7–2. Bit Num	bers	and	' The	eir C	orre	spo	ndir	ng E	Bit C	Code	es fo	or Bl	TT I	nstr	uctic	n		
Bit code (in 4 LSBs of TREG)	0	1	2	3	4	5	6		7	8	9	10	11	12	13	14	4 1	5
Bit number	15	14	13	12	11	10) 9		8	7	6	5	4	3	2	1	(

 MSB
 Data-memory value
 LSB

 Words
 1

Cycles

	Cycle	s for a Single B	ITT Instruction	
		Р	rogram	
Operand	ROM	DARAM	SARAM	External
DARAM	1	1	1	1+p
SARAM	1	1	1, 2†	1+p
External	1+d	1+d	1+d	2+d+p

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

C	ycles for a R	epeat (RPT) Execu	ution of an BITT I	nstruction
		F	Program	
Operand	ROM	DARAM	SARAM	External
DARAM	n	n	n	n+p
SARAM	n	n	n, n+1†	n+p
External	n+nd	n+nd	n+nd	n+1+p+nd

[†] If the operand and the code are in the same SARAM block

Example 1	BITT 00h	;(DP = 6) Test bit 14 of ;at 300h	f data
		Before Instruction	After Instruction
	Data Memory 300h	Data Memory 4DC8h 300h	4DC8h
	TREG	1h TREG	1h
	TC	0 TC	1
Example 2	BITT *	;Test bit 1 of data at 3	310h
		Before Instruction	After Instruction
	ARP	1 ARP	
	7 4 4		1
	AR1	310h AR1	1 310h
			1 310h 8000h
	AR1 Data Memory	310h AR1 Data Memory	

Syntax	Gene	ral sy	/ntax	:	BL	DD s	ourc	e, de	estina	tion						
	BLDI) # /k,	dm	а							Direc	t with irce	n long	g imr	nedia	ite
	BLDI) # /k,	ind [, AR	n]						Indire	ect wi		-		
	BLDI	BLDD dma, #lkimmediate sourceBLDD dma, #lkDirect with long immediatedestination										ite				
	BLDI) ind,	#lk [, AR	<i>n</i>]						Indire		th lor	ng im	nmed	iate
Operands	dma: n: lk: ind:		Va 10	alue i 6-bit l	from long one	0 to imme of the	7 de: ediat	signa e val	ue g sev	he r	next a		ary re	giste	er	
Opcode	BL	DD #	lk, dı	na												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	0	1	0	0	0	0				dma			
									k							
	BI	DD #	lk in	d[🛛	R nl											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	0	1	0	0	0	1		ARU		N		NAR	
									k							
	Not	e: A	RU, N	, and	NAR a	are def	fined i	n Sec	tion 6.	3, <i>Inc</i>	lirect A	ddres	sing N	lode (page 6	6-9).
	BL	DD a	lma. i	ŧlk												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	0	1	0	0	1	0				dma			
									k							
	BL	DD ii	nd. #1	k[. A	R n]											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	0	1	0	0	1	1		ARU		Ν		NAR	
									k							
	Not	e: A	RU, N	, and	NARa	are def	fined i	n Sec	tion 6.	3, <i>Inc</i>	lirect A	ddres	sing N	lode (page 6	6-9).

Execution	Increment PC, then $(PC) \rightarrow MSTACK$ $lk \rightarrow PC$ $(source) \rightarrow destination$ For indirect, modify (current AR) and (ARP) as specified $(PC) + 1 \rightarrow PC$ While (repeat counter) $\neq 0$: $(source) \rightarrow destination$ For indirect, modify (current AR) and (ARP) as specified $(PC) + 1 \rightarrow PC$ $(repeat counter) -1 \rightarrow repeat counter$
	$(MSTACK) \rightarrow PC$
Status Bits	None
Description	The word in data memory pointed to by <i>source</i> is copied to a data-memory space pointed at by <i>destination</i> . The word of the source and/or destination space can be pointed at with a long-immediate value or by a data-memory address. Note that not all source/destination combinations of pointer types are valid.
	Note:
	BLDD will not work with memory-mapped registers.
	RPT can be used with the BLDD instruction to move consecutive words in data memory. The number of words to be moved is one greater than the number contained in the repeat counter (RPTC) at the beginning of the instruction. When the BLDD instruction is repeated, the source (destination) address specified by the long immediate constant is stored to the PC. Because the PC is incremented by 1 during each repetition, it is possible to access a series of source (destination) addresses. If you use indirect addressing to specify the destination (source) address, a new destination (source) address can be accessed during each repetition. If you use the direct addressing mode, the specified destination (source) address is a constant; it will not be modified during each repetition.
	The source and destination blocks do not have to be entirely on chip or off chip. Interrupts are inhibited during a BLDD operation used with the RPT instruction. When used with RPT, BLDD becomes a single-cycle instruction once the RPT pipeline is started.
Words	2
7-50	

Cycles

	Cycles for a Single BLDD Instruction								
Operand	ROM	DARAM	SARAM	External					
Source: DARAM Destination: DARAM	3	3	3	3+2p					
Source: SARAM Destination: DARAM	3	3	3	3+2p					
Source: External Destination: DARAM	3+d _{src}	3+d _{src}	3+d _{src}	3+d _{src} +2p					
Source: DARAM Destination: SARAM	3	3	3 4†	3+2p					
Source: SARAM Destination: SARAM	3	3	3 4†	3+2p					
Source: External Destination: SARAM	3+d _{src}	3+d _{src}	3+d _{src} 4+d _{src} †	3+d _{src} +2p					
Source: DARAM Destination: External	4+d _{dst}	4+d _{dst}	4+d _{dst}	6+d _{dst} +2p					
Source: SARAM Destination: External	4+d _{dst}	4+d _{dst}	4+d _{dst}	6+d _{dst} +2p					
Source: External Destination: External	4+d _{src} +d _{dst}	4+d _{src} +d _{dst}	4+d _{src} +d _{dst}	6+d _{src} +d _{dst} +2p					

[†] If the destination operand and the code are in the same SARAM block.

	Cycles for a Rep	eat (RPT) Execution	of a BLDD Instruction	1
Operand	ROM	DARAM	SARAM	External
Source: DARAM Destination: DARAM	n+2	n+2	n+2	n+2+2p
Source: SARAM Destination: DARAM	n+2	n+2	n+2	n+2+2p
Source: External Destination: DARAM	n+2+nd _{src}	n+2+nd _{src}	n+2+nd _{src}	n+2+nd _{src} +2p
Source: DARAM Destination: SARAM	n+2	n+2	n+2 n+4†	n+2+2p
Source: SARAM Destination: SARAM	n+2 2n‡	n+2 2n‡	n+2 2n‡ n+4† 2n+2§	n+2+2p 2n+2p‡
Source: External Destination: SARAM	n+2+nd _{src}	n+2+nd _{src}	n+2+nd _{src} n+4+nd _{src} †	n+2+nd _{src} +2p
Source: DARAM Destination: External	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst} +2p
Source: SARAM Destination: External	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst} +2p
Source: External Destination: External	4n+nd _{src} +nd _{dst} ‡	4n+nd _{src} +nd _{dst}	4n+nd _{src} +nd _{dst}	4n+2+nd _{src} +nd _{dst} +2p

Cycles for a Repeat (RPT) Execution of a BLDD Instruction

 † If the destination operand and the code are in the same SARAM block

 \ddagger If both the source and the destination operands are in the same SARAM block $\$ If both operands and the code are in the same SARAM block

Example 1	BLDD	#300h,2	20h;(DP = 6)		
			Before Instruction		After Instruction
	Da	ata Memory 300h	Oh	Data Memory 300h	0h
		320h	0Fh	320h	0h
Example 2	BLDD	*+ , #321	ь лр3		
•		111021	-		
·		171021	Before Instruction	_	After Instruction
·		ARP	-	ARP	After Instruction
•			Before Instruction		
•		ARP AR2 ata Memory	Before Instruction	AR2 Data Memory	3 302h
•		ARP AR2	Before Instruction	AR2 Data Memory	3

Syntax	General syntax: BLPD source, destination
	BLPD #pma, dma Direct with long immediate source
	BLPD #pma, ind [, ARn] Indirect with long immediate source
Operands	pma:16-bit program-memory addressdma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+**BR0+
Opcode	BLPD #pma, dma
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 0 1 0 1 0 dma
	pma
	BLPD #pma, ind [, ARn]
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 0 1 0 0 1 0 1 1 ARU N NAR
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).
Execution	Increment PC, then (PC) \rightarrow MSTACK pma \rightarrow PC (source) \rightarrow destination For indirect, modify (current AR) and (ARP) as specified (PC) + 1 \rightarrow PC
	While (repeat counter) \neq 0: (source) \rightarrow destination For indirect, modify (current AR) and (ARP) as specified (PC) + 1 \rightarrow PC (repeat counter) -1 \rightarrow repeat counter
	$(MSTACK) \to PC$
Status Bits	None
7-54	

DescriptionA word in program memory pointed to by the source is copied to data-memory
space pointed to by destination. The first word of the source space is pointed
to by a long-immediate value. The data-memory destination space is pointed
to by a data-memory address or auxiliary register pointer. Not all source/des-
tination combinations of pointer types are valid.RPT can be used with the BLPD instruction to move consecutive words. The

RPT can be used with the BLPD instruction to move consecutive words. The number of words to be moved is one greater than the number contained in the repeat counter (RPTC) at the beginning of the instruction. When the BLPD instruction is repeated, the source (program-memory) address specified by the long immediate constant is stored to the PC. Because the PC is incremented by 1 during each repetition, it is possible to access a series of program-memory addresses. If you use indirect addressing to specify the destination (data-memory) address, a new data-memory address can be accessed during each repetition. If you use the direct addressing mode, the specified data-memory address is a constant; it will not be modified during each repetition.

The source and destination blocks do not have to be entirely on chip or off chip. Interrupts are inhibited during a repeated BLPD instruction. When used with RPT, BLPD becomes a single-cycle instruction once the RPT pipeline is started.

Words

2

Cycles

Cycles for a Single BLPD Instruction								
Operand	ROM	DARAM	SARAM	External				
Source: DARAM/ROM Destination: DARAM	3	3	3	3+2p _{code}				
Source: SARAM Destination: DARAM	3	3	3	3+2p _{code}				
Source: External Destination: DARAM	3+p _{src}	3+p _{src}	3+p _{src}	3+p _{src} +2p _{code}				
Source: DARAM/ROM Destination: SARAM	3	3	3 4†	3+2p _{code}				
Source: SARAM Destination: SARAM	3	3	3 4†	3+2p _{code}				
Source: External Destination: SARAM	3+p _{src}	3+p _{src}	3+p _{src} 4+p _{src} †	3+p _{src} +2p _{code}				
Source: DARAM/ROM Destination: External	4+d _{dst}	4+d _{dst}	4+d _{dst}	6+d _{dst} +2p _{code}				
Source: SARAM Destination: External	4+d _{dst}	4+d _{dst}	4+d _{dst}	6+d _{dst} +2p _{code}				
Source: External Destination: External	4+p _{src} +d _{dst}	4+p _{src} +d _{dst}	4+p _{src} +d _{dst}	6+p _{src} +d _{dst} +2p _{code}				

 $\ensuremath{^\dagger}$ If the destination operand and the code are in the same SARAM block

	Cycles for a Repeat (RPT) Execution of a BLPD Instruction									
Operand	ROM	DARAM	SARAM	External						
Source: DARAM/ROM Destination: DARAM	n+2	n+2	n+2	n+2+2p _{code}						
Source: SARAM Destination: DARAM	n+2	n+2	n+2	n+2+2p _{code}						
Source: External Destination: DARAM	n+2+np _{src}	n+2+np _{src}	n+2+np _{src}	n+2+np _{src} +2p _{code}						
Source: DARAM/ROM Destination: SARAM	n+2	n+2	n+2 n+4†	n+2+2p _{code}						

[†] If the destination operand and the code are in the same SARAM block [‡] If both the source and the destination operands are in the same SARAM block § If both operands and the code are in the same SARAM block

Operand	ROM	DARAM	SARAM	External
Source: SARAM Destination: SARAM	n+2 2n‡	n+2 2n‡	n+2 2n‡ n+4† 2n+2§	n+2+2p _{code} 2n+2p _{code} ‡
Source: External Destination: SARAM	n+2+np _{src} †	n+2+np _{src}	n+2+np _{src} n+4+np _{src} †	n+2+np _{src} +2p _{code}
Source: DARAM/ROM Destination: External	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst} +2p _{code}
Source: SARAM Destination: External	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst} +2p _{code}
Source: External Destination: External	4n+np _{src} +nd _{dst} ‡	4n+np _{src} +nd _{dst}	4n+np _{src} +nd _{dst}	4n+2+np _{src} +nd _{dst} + 2p _{code}

Cycles for a Repeat (RPT) Execution of a BLPD Instruction (Continued)

 $\ensuremath{^\dagger}$ If the destination operand and the code are in the same SARAM block

 \ddagger If both the source and the destination operands are in the same SARAM block \$ If both operands and the code are in the same SARAM block

Example 1	BLPD	#800h,0	0h ;(DP=6)		
			Before Instruction		After Instruction
	•	n Memory 00h	0Fh	Program Memory 800h	0Fh
		Memory 00h	0h	Data Memory 300h	0Fh
Example 2	BLPD	#800h,*	, AR7		
			Before Instruction		After Instruction
	A	۱RP	Before Instruction	ARP	After Instruction
		NRP		ARP AR0	After Instruction 7 310h
	A Program		0		7

Syntax	CALA															
Operands	None															
Operands	None															
Opcode		14 0	13 1	12 1	11 1	10 1	9 1	8 0	7 0	6 0	5 1	4 1	3 0	2 0	1 0	0 0
Execution	PC + 1 ACC(1															
Status Bits	None															
Description	The cu the sta loaded	ack (TOS	5). Tł	nen,	the c	onte	nts o	f the	lowe	er ha	lf of t	the a			•
	The C	<u> </u>	inot		i .			. orfo	rm o		اممد	la		1		
	1110 07		IIISU	ructi	onis	useo		Jeno		ompi	liea	subro	Julin	e cai	15.	
Words	1		insu	ructi	onis	use	ן טו ג	Jerio		ompt	lied	SUDIO	Julin	e cai	15.	
Words Cycles			1150	ructi		useo les fo							JULIN	e cai	15.	
		<u></u>		ructi	Сус				e CAI					e cai		
	1			ructi	Сус	les fo			e CAI	LA In				ernal		
	1 ROM	Wh	en thi	s inst ds hav	Cyc DAI 4 ructio	les fo	or a S	Single e exec peline.	e CAI SAI 4	LA In RAM	struc	ipelin	Ext 4+3 e, two	ernal 3p additio	I onal in	
	1 ROM 4	Wh	en thi	s inst ds hav	Cyc DAI 4 ructio	cles for RAM n react	or a S	Single e exec peline.	e CAI SAI 4	LA In RAM	struc	ipelin	Ext 4+3 e, two	ernal 3p additio	I onal in	
Cycles	1 ROM 4 Note:	Wh	en thi	s inst ds hav	Cyc DAI 4 ructio	n react re disc	nes th he pip arded	Single e exec peline.	e CAI SAI 4 cute pl Wher	LA In RAM	struc	ipelin	Ext 4+3 e, two nuity is	erna Bp additio taker	I onal in	se two
Cycles	1 ROM 4 Note:	Wh	en thi	s inst ds hav	Cyc DAI 4 ructio	n react re disc	nes th he pip arded	e exec eline.	e CAI SAI 4 cute pl Wher	LA In RAM	struc	ipelin	Ext 4+3 e, two nuity is	erna Bp additio taker	Donal in n, thes	se two
Cycles	1 ROM 4 Note:	Wh tion inst	en thi worc rructic PC ACC	s inst ds hav n wo	Cyc DAI 4 ructio	n react re disc	nes th he pip arded	e exec eline. • structi	e CAI SAI 4 cute pl Wher Wher	LA In RAM	f the p C dis PC	ipelin	Ext 4+3 e, two nuity is	erna Bp additio taker	Donal in n, thes	e two iction
Cycles	1 ROM 4 Note:	Wh tion inst	en thi worc rructio	s inst ds hav n wo	Cyc DAI 4 ructio	n react re disc	nes th he pip arded	e exec eline. • structi	e CAI SAI 4 cute pl When	LA In RAM	struc of the p PC dis	ipelin	Ext 4+3 e, two nuity is	erna Bp additio taker	Donal in n, thes	iction 83h

Syntax	CALL pma [, ind [, ARn]] Indirect addressing										
Operands	pma: n: ind:		m 0 to 7	designa following	ting t g sev	he next a en option		ry re	gister	r	
Opcode	15 14 0 1	na [, ind [, A 13 12 1 1 1 1 RU, N, and NA	1 10 0	•	7 1 na ion 6.3	6 5 ARU 3, Indirect A	4 ddress	3 N sing M		1 NAR age 6	0 -9).
Execution	$PC + 2 \rightarrow T$ pma $\rightarrow PC$ Modify (cur		d (ARP)	as spec	ified.						
Status Bits	None										
Description	The current the stack (T address, are rent auxiliar	OS). Then, e loaded inte	the con the PC	tents of t . Executi	he pr on co	na, either ontinues a	a syı t this	mbol addr	ic or ı ess. ⁻	nume	eric
Words	2										
Cycles		Су	cles for	a Single	CALL	. Instructio	on				
	ROM	DA	RAM		SARA	M	E	Exter	nal		
	4	4		2	4		4	l+4p†	•		
	tion	n this instruction words have er uction words a	ntered the	pipeline. W							
Example	CALL	191,*+,	ar0								
			Before	nstructior	1			Aft	er Ins	tructio	
		ARP AR1		05	1 <u>]</u> ล	ARP AR1					0 6h
		PC		301	_	PC				0B	
		ros		100	_	TOS					2h
		ldrago ODEh	(101) :-						e re cl	.	

Program address 0BFh (191) is loaded into the program counter, and the program continues executing from that location.

Syntax	CC pma, c	CC pma, cond 1 [,cond 2] [,]									
Operands	pma: <u>cond</u> EQ NEQ LT LEQ GT GEQ NC C NOV OV BIO NTC TC UNC	Cond ACC ACC ACC ACC ACC ACC ACC C = 0 C = 1 OV = BIO I TC = TC =	$ = 0 \neq 0 < 0 \leq 0 > 0 ≥ 0 0 = 0 = 1 ow 0 0 0 = 0 0 = 0 0 = 0 0 0 = 0 0 0 = 0 0 0 = 0 0 0 = 0 0 0 = 0 0 $	lddress							
Opcode		<u>13 12 11</u>	10 9 8	7 6 5 4	3 2 1 0						
	1 1 1 0 1 0 TP ZLVC ZLVC pma										
	Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.										
Execution	Then PC pm Else	ND <i>cond</i> 2 Al + 2 \rightarrow TOS ha \rightarrow PC rement PC	ND								
Status Bits	None										
Description	Control is passed to the specified program-memory address (pma) if the speci- fied conditions are met. Not all combinations of conditions are meaningful. For example, testing for LT and GT is contradictory. In addition, testing BIO is mu- tually exclusive to testing TC. The CC instruction operates like the CALL in- struction if all conditions are true.										
Words	2										
Cycles		Су	cles for a Single	e CC Instruction							
	Condition	ROM	DARAM	SARAM	External						
	True	4	4	4	4+4p†						
	False	2	2	2	2+2p						
	t The proces	sor porforms spe	oulative fetebing by	reading two addition:	al instruction words. If the						

[†] The processor performs speculative fetching by reading two additional instruction words. If the PC discontinuity is taken these two instruction words are discarded.

Example

PGM191,LEQ,C

СС

If the accumulator contents are less than or equal to zero and the carry bit is set, 0BFh (191) is loaded into the program counter, and the program continues to execute from that location. If the conditions are not met, execution continues at the instruction following the CC instruction.

Syntax	CLRC control bit															
Operands	control b	it:	C CI IN O	NF ITM VM XM C	Ca R/ Int Ov Sig	e of th arry b AM co terrup verflo gn-ex est/co = pin	bit of onfig ot mo ow m ow m otens otens	statu urati ode b ode l sion r flag	on co bit of s bit of node bit of	gister ontrol statu statu bit c f stat	ST1 bit c s reg is reg of sta us re	of sta jister giste tus r giste	ST0 r ST(egist er ST) er S1		-1
Opcode	CLRC C															
	15 14		<u>3</u> 1	<u>12</u> 1	<u>11</u> 1	<u>10</u> 1	<u>9</u> 1	<u>8</u> 0	70	<u>6</u> 1	<u>5</u> 0	4	<u>3</u> 1	<u>2</u> 1	<u>1</u> 1	0
	CLRC C	NF														
	15 14		3	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 0	-	1	1	1	1	1	0	0	1	0	0	0	1	0	0
		ТМ														
	15 14		<u>3</u> 1	<u>12</u> 1	<u>11</u> 1	<u>10</u> 1	9 1	<u>8</u> 0	70	<u>6</u> 1	5 0	4	<u>3</u> 0	2	1 0	0
	1 0		I		1	1	<u> </u>	0	0		0	0	0	0	0	0
	CLRC O		_				_	_	_	_	_		_	_		_
	15 14		<u>3</u> 1	<u>12</u> 1	<u>11</u> 1	<u>10</u> 1	<u>9</u> 1	<u>8</u> 0	<u>7</u> 0	<u>6</u> 1	<u>5</u> 0	<u>4</u> 0	<u>3</u> 0	2 0	1 1	0
	CLRC S	хм														
	15 14		3	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 0		1	1	1	1	1	0	0	1	0	0	0	1	1	0
	CLRC T	С														
	15 14	1	3	<u>12</u> 1	<u>11</u> 1	<u>10</u> 1	9 1	<u>8</u> 0	7	<u>6</u> 1	5 0	4	<u>3</u> 1	2	<u>1</u> 1	0
				I	I	1	1	0	0	I	0	0	1	0	I	0
	CLRC X		_					•	_		_					
	15 14		<u>3</u> I	<u>12</u> 1	<u>11</u> 1	<u>10</u> 1	<u>9</u> 1	<u>8</u> 0	7 0	<u>6</u> 1	<u>5</u> 0	<u>4</u> 0	<u>3</u> 1	<u>2</u> 1	<u>1</u> 0	0
Execution	Increme 0 → con			then												
Status Bits	None															
Description	The spec be used <i>ST1</i> on p	to lo	bad	STO) and	IST1	. Se	e sub	secti	ion 3	.5, <i>S</i>	tatus	Reg	ister	s ST(

Words	1			
Cycles		Cycles for a S	Single CLRC Instruct	ion
	ROM	DARAM	SARAM	External
	1	1	1	1+p
	Cyc	les for a Repeat (RP DARAM	T) Execution of a CL SARAM	RC Instruction External
	n	n	n	n+p
Example	CLRC TC	;(TC is bit 11		
	S	Before Ins [1]	x9xxh ST1	After Instruction

Syntax	CMPL													
Operands	None													
Opcode	15 14 1 0	13 1	<u>12 11</u> 1 1	10 1	9 1	8 0	7 0	6 0	5 0	4 0	3 0	2 0	1 0	0 1
Execution	Increment PC, then $\overline{(ACC)} \rightarrow ACC$													
Status Bits	None													
Description	The conte						•	aced	with	its I	ogica	al inv	rersio	n (1s
Words	1													
	Cycles for a Single CMPL Instruction													
Cycles			Су	cles fo	or a S	Single	e CM	PL In	struc	tion				
Cycles	ROM		-	cles fo RAM	or a S	Single		PL In RAM	struc	tion	Ext	erna	l	
Cycles	ROM 1		-		or a S	Single			struc	tion	Ext	-		
Cycles	1	Cycles	DA	RAM			SAI 1	RAM			1+p)		
Cycles	1	Cycles	DA 1 for a R	RAM			SAI 1 ecutio	RAM			1+p Instr)	n	
Cycles	1	Cycles	DA 1 for a R	RAM epeat			SAI 1 ecutio	RAM on of			1+p Instr	uctio ernal	n	

Syntax	СМР	R Cl	М														
Operands	CM:		١	/alue	e fror	n 0 to	53										
Opcode	15 1	14 0	<u>13</u> 1	12 1	11 1	<u>10</u> 1	9 1	<u>8</u> 1	7 0	<u>6</u> 1	5 0	4		3 0	2 1	1 CN	<u>0</u> Л
Execution	Incre Com regis	pare	(cur			to (A	.R0)	and	place	e the	res	ult iı	n tł	ne T	⁻ C bi	t of st	atus
Status Bits	<u>Affec</u> TC	<u>sts</u>															
	This	instr	uctio	n is r	not a	ffecte	ed by	SXN	И. It c	does	not	affe	ct S	SXN	Λ.		
Description	The	СМР	R ins	struct	tion p	oerfo	rms a	a cor	npari	ison	spec	cified	d b	y th	e val	ue of	CM:
	If CM If CM If CM If CM	1 = 0 1 = 1	1, tes 0, tes	st wh st wh	ethe ethe	er (cu er (cu	rrent rrent	AR) AR)	< (A > (A	R0) R0)							
	If CM = 11, test whether (current AR) \neq (AR0) If the condition is true, the TC bit is set to 1. If the condition is false, the TC b is cleared to 0.													C bit			
	Note comp			auxili	ary r	egist	er va	lues	are t	reate	ed as	s un	sig	ned	inte	gers ir	n the
Words	1																
Cycles					Сус	cles f	or a S	Single	e CM	PR In	nstru	ctio	n				
	ROM	Λ			DA	RAM			SA	RAM				Ext	ernal		
	1				1				1					1+p	1		
		C	Cvcle	s for	a Re	peat	(RPT) Exe	ecutio	on of	an C	MP	R Ir	nstr	uctio	n	
	ROM					RAM	<u> </u>	, -		RAM					ernal		
	n				n				n					n+p			
Example	CMPF	٤	2	2				rrer tructi		R) >	> (7	AR0)?		After	nstruc	tion
			ARP			Delu	re ms	structi	4		ARP			, [Alteri	instruc	4
			AR0					0FFF	Fh		AR0					0FF	FFh
			AR4					7FF	Fh		AR4					7F	FFh
			AR4 TC					7FF	Fh 1		AR4 TC					7F	FFh 0

Syntax	DMO DMO			R n]									lress ddres	-		
Operands	dma: n: ind:		Va	alue f	irom one	0 to 3 of the	7 de	signa owin	ory ac ating t g sev *B	the n	ext a ption		ary re	giste	r	
Opcode	DM	OV c	lma													
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	1	0	1	1	1	0				dma			
	DM	OV i	nd [, .	AR n]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 Note	1	1	1	0	1	1	1	1 tion 6.		ARU		N		NAR	
Execution	Increi (data-					→ da	ta-m	emoi	ry ad	dress	s + 1					
Status Bits	<u>Affec</u> CNF	ted b	Ľ													
Description	The c tents tion to unalte	of the	next	high	er ad	dress	s. Wl	hen d	lata is	s copi	ed fro	om th	ie ado	dress	sedlo	oca-
	DMO gurab data functi ifies a but pe	ole RA move on ca n ext	AM bl func nnot ernal	ock if tion be pe men	f that is co erfori nory a	block Intinu med o addre	k is o Ious on e>	config acro kterna	gured ss bl al dat	as d ock b a me	ata m oouno mory	nemc darie . If th	ory. In s. Th e inst	i add ie da tructi	ition, ta m on sp	the ove bec-
	The d in dig MACI	ital si	gnal	proc	essir	ng. Th	ne D	MOV	' func	tion i	s a s	ubta	sk of	the	LTD	and
Words	1															

7-66

Cycles for a Single DMOV Instruction												
	Program											
Operand	ROM	DARAM	SARAM	External								
DARAM	1	1	1	1+p								
SARAM	1	1	1, 3†	1+p								
External‡	2+2d	2+2d	2+2d	5+2d+p								

Cycles

[†] If the operand and the code are in the same SARAM block
[‡] If used on external memory, DMOV reads the specified memory location but performs no operations.

	Program										
Operand	ROM	DARAM	SARAM	External							
DARAM	n	n	n	n+p							
SARAM	2n–2	2n–2	2n–2, 2n+1†	2n–2+p							
External‡	4n-2+2nd	4n-2+2nd	4n-2+2nd	4n+1+2nd+p							

[†] If the operand and the code are in the same SARAM block [‡] If used on external memory, DMOV reads the specified memory location but performs no operations.

Example 1	DMOV	DAT8	; $(DP = 6)$		
			Before Instruction		After Instruction
	C	Data Memory 308h	43h	Data Memory 308h	43h
	C	Data Memory 309h	2h	Data Memory 309h	43h
Example 2	DMOV	*,AR1			
•		•			
·		·	Before Instruction		After Instruction
·		ARP	Before Instruction	ARP	After Instruction
		ARP AR0		ARP AR0	After Instruction 1 30Ah
	C		0		1
		AR0 Data Memory	0 30Ah	AR0 Data Memory	1 30Ah

Syntax	IDLE															
Operands	None)														
Opcode	15 1	14 0	13 1	12 1	11 1	10 1	9 1	8 0	7 0	6 0	5 1	4	3 0	2 0	1 1	0
Execution	Incre	ment	t PC,	ther	n wai	t for	unma	asked	d or r	nonm	naska	able I	nardv	vare	inter	rupt.
Status Bits	<u>Affec</u> INTM		<u>by</u>													
Description	recei NMI, powe er do active The i interr rupts rupt, I r t NMI a	ves a or re er-dov wn; it e; thu dle si rupt r whe the C f INT outin f INT he ID and r c, the	a requeset. wn m i is not us, th tate i not tate i not cPU' M is cPU' M is o LE. eset	uest f Exect ode. ot inc eir ir s exir s exir s set s ne 0, the 1, the are r	rom cutio The reme ted b of sta to 1. kt ac e pro	an ur n of t PC is ented upts a oy an atus n) Wh tion, l gram	he II s incr durin are a unma regis en th howe brar n con	ked h DLE i reme ng the mong asked ter S ne idle ever, nches tinue	nardw nstru nted e idle g tho d inte STO, 1 e sta depe s to the es ex	vare uction once stat se th errup norm te is ends he cc ecuti if the	intern a cau befo e. Or at ca ally a exite on II prres ng a e idle	rupt (ises ore the n-chip an wa n if IN disab d by NTM: pond t the	exter the '($2 \circ peri$ o peri ake the NTM les r an u ing ir instru e is e	rnal o C2xx 2xx e pher he pr he pr is 1. (nask nmas nterru uctior	r inte to en nters als re occes (INTI able sked upt se by k	CPU rnal), hter a pow- emain sor. <i>A</i> , the inter- inter- inter- ervice bwing
Words	1															
Cycles					Cy	cles f	or a	Singl	e IDL	.E Ins	struc	tion				
	ROM	Λ			DAI	RAM			SAF	RAM			Ext	ernal		
	1				1				1				1+p)		
Example	IDLE		;		ard	oces ware										t,

Syntax	IN dma, PADirect addressingIN ind, PA [, ARn]Indirect addressing												
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerPA:16-bit I/O port or I/O-mapped register addressind:Select one of the following seven options:**+*-*0+* BR0+*BR0-												
Opcode	IN dma , PA												
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
	1 0 1 0 1 1 1 1 0 dma PA												
	IN ind ,PA [,ARn] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
	1 0 1 0 1 1 1 1 ARU N NAR												
	PA												
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).												
Execution	Increment PC, then												
	PA $ ightarrow$ address bus lines A15–A0 Data bus lines D15–D0 $ ightarrow$ data-memory address												
	$(PA) \rightarrow data-memory address$												
Status Bits	None												
Description	The IN instruction reads a 16-bit value from an I/O location into the specified data-memory location. The \overline{IS} line goes low to indicate an I/O access. The \overline{STRB} , \overline{RD} , and READY timings are the same as for an external data-memory read.												
	The repeat (RPT) instruction can be used with the IN instruction to read in con- secutive words from I/O space to data space.												
Words	2												

Cycles	Су	cles for a Single IN	Instruction								
	Program										
Operand	ROM	DARAM	SARAM	External							
Destination: DARAM	2+io _{src}	2+io _{src}	2+io _{src}	3+io _{src} +2p _{code}							
Destination: SARAM	2+io _{src}	2+io _{src}	2+io _{src} † 3+io _{src} †	3+io _{src} +2p _{code}							
Destination: External	3+d _{dst} +io _{src}	3+d _{dst} +io _{src}	3+d _{dst} +io _{src}	6+d _{dst} +io _{src} +2p _{code}							

Cycles for a Repeat (RPT) Execution of an IN Instruction

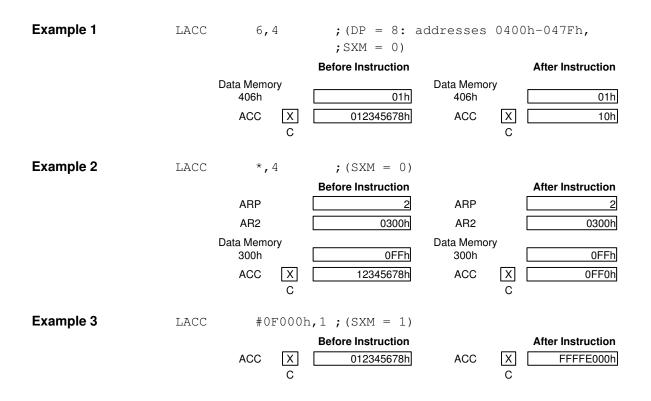
	Oycles			Acculio		11
					Program	
Operand	ROM		DARAM		SARAM	External
Destination: DARAM	2n+nio _{src} 2n+nio _{src}				2n+nio _{src}	2n+1+nio _{src} +2p _{code}
Destination: SARAM	2n+nio _s	rc	2n+nio _{src}		2n+nio _{src} 2n+2+nio _{src} †	2n+1+nio _{src} +2p _{code}
Destination: External	4n–1+n nio _{src}	d _{dst} +	4n–1+nd _{dst} +nio _{src}		4n–1+nd _{dst} +nio _{src}	4n+2+nd _{dst} +nio _{src} + 2p _{code}
† If the operand and the c	ode are in t	he same	SARAM block			
Example 1	IN	7,10	000h	;por	t address 1000	peripheral on h. Store word in ion 307h (DP=6).
Example 2	IN	*,5h	1	;por	peripheral on Store word in ion specified by	

; current auxiliary register.

Syntax	INTR K														
Operands	K:		/alue o bra			31 1	hat i	ndica	ates	the ir	nterru	ipt ve	ector	locat	ion
Opcode	15 14 1 0		12 1	11 1	10 1	9 1	8 0	7 0	6 1	5 1	4	3	2 K	1	0
Execution	(PC) + 1 \rightarrow stack corresponding interrupt vector location \rightarrow PC														
Status Bits	<u>Affects</u> INTM														
	This instruction is not affected by INTM.														
Description	The pro- sented k that tran K. The v routine. to be exe ing K va ecution of the stack tion. An (an inter disablec	by a va sfers (ector a Thus, ecuted lues, s of the i k. Neitl INTR f rupt ac	lue k progr at tha the in from see s nstru her th cknow	K fror ram of t add nstru ubse uctior ne IN te ext wled	m 0 to contr lress iction r soft ection n, the ITM b ernal ge is	o 31. ol to then allo ware 5.6. valu it no l inte gene	The the p lead ws a . For 2, <i>In</i> e PC r the rrupts	INTF progr ls to t ny or a list <i>terru</i> + 1 (interr s loo	R insi am-r he of of in of Ta the r rupt r ks ex	tructi memo orres the i terru ble, o eturn mask actly	on is ory a pond interr pts a on pa addi s affe r like a	a so ddre ling ir upt s nd th uge 5 ress) ect th an ex	ftwar ss sp nterru ervic eir cc -16. is pu is pu kterna	e inte pecifi upt se ce rou prresp Durin ushec FR inte al inte	errupt ed by ervice utines bond- ng ex- d onto struc- errupt
Cycles				Cv	cles f	or a	Sinal	e IN1	R In:	struc	tion				
	ROM				RAM				RAM			Ext	ernal		
	4			4				4				4+3	ip†		
	† The pro PC disc	cessor p continuit											iction	words	. If the
Example	INTR		3		;	The	n cc	ontr	ol :		asse		ie st .o pi		

LACC Load Accumulator With Shift

	LACC dma, 16 LACC ind [, shift [, ARn]] LACC ind, 16[, ARn]												Direct addressing Direct with left shift of 16 Indirect addressing Indirect with left shift of 16 Long immediate addressing				
Operands	dma:7 LSBs of the data-memory addressshift:Left shift value from 0 to 15 (defaults to 0)n:Value from 0 to 7 designating the next auxiliary registerlk:16-bit long immediate valueind:Select one of the following seven options:**+**0+**BR0+																
Opcode	LA	CC d	-	, shif	t]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	0	0	1		sh	nift		0				dma				
	LA	CC d	lma. [.]	16													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	1	1	0	1	0	1	0	0				dma				
				1.105													
	LA 15	CC ir 14	ים [, ג 13			<i>n</i>]] 10	0	0	7	6	F	4	0	0	4	0	
	0	0	0	12 1	11	-	9 nift	8	7	6	5 ARU	4	3 N	2	1 NAR	0	
		•		-		-	-	n 600			lirect A	ddroo		lada (
							ineu i	n Sec		5, 110	liect A	uures	sing iv	1000 (paye	s-9).	
		CC ir		-	-		_	_	_		_	_	_	_		_	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	1	1	0	1	0	1	0	1		ARU		N		NAR		
	Note	e: A	KU, N	I, and	NAKa	are dei	ined i	n Sec	tion 6.3	3, Ind	lirect A	adres	sıng N	iode (page 6	5-9).	
	LA	CC #	lk [, s	shift]													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
											0 0 0 shift						
									k				-				


Execution	Increment F <u>Event</u> (data-memo	PC, then ory address) \times	$2^{\text{shift}} ightarrow \text{ACC}$	<u>Addressi</u> Direct or								
	(data-memo	ory address) $ imes$	$2^{16} \rightarrow ACC$	Direct or	indirect (shift of 16)							
	lk × 2 ^{shift} –	ACC		Long imn	nediate							
Status Bits	<u>Affected by</u> SXM											
Description	left shifted a	contents of the specified data-memory address or a 16-bit constant are hifted and loaded into the accumulator. During shifting, low-order bits are filled. High-order bits are sign extended if SXM = 1 and zeroed if SXM = 0.										
Words	<u>Words</u> 1	<u>Addressing mode</u> Direct or indirect										
	2			Long imn	nediate							
Cycles	Cycles for	a Single LACC	Instruction (Usi	ng Direct and Inc	direct Addressing)							
			P	rogram								
	Operand	ROM	DARAM	SARAM	External							
	DARAM	1	1	1	1+p							
	SARAM	1	1	1, 2†	1+p							
	External	1+d	1+d	1+d	2+d+p							
	† If the opera	nd and the code a	re in the same SAF	AM block								
	Cycles fo		 Execution of a and Indirect Add 		ion (Using Direct							
			Р	rogram								
	Operand	ROM	DARAM	SARAM	External							

		118	gram	
Operand	ROM	DARAM	SARAM	External
DARAM	n	n	n	n+p
SARAM	n	n	n, n+1†	n+p
External	n+nd	n+nd	n+nd	n+1+p+nd

[†] If the operand and the code are in the same SARAM block

Cycles for a Single LACC Instruction (Using Immediate Addressing)

ROM	DARAM	SARAM	External
2	2	2	2+2p

Syntax	LACL dmaDirect addressingLACL ind [, ARn]Indirect addressingLACL #kShort immediate													
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerk:8-bit short immediate valueind:Select one of the following seven options:**+**0+**BR0+													
Opcode	LACL dma													
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 0 0 1 0 dma													
	LACL ind [, ARn]													
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
	0 1 1 0 1 0 0 1 1 ARU N NAR													
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).													
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 1 0 0 1 k 1 1													
Execution	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Status Bits	This instruction is not affected by SXM.													
Description	The contents of the addressed data-memory location or a zero-extended 8-bit constant are loaded into the 16 low-order bits of the accumulator. The upper half of the accumulator is zeroed. The data is treated as an unsigned 16-bit number rather than a 2s-complement number. There is no sign extension of the operand with this instruction, regardless of the state of SXM.													
Words	1													

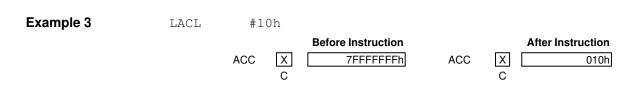
Cycles

Cycles for a Single LACL Instruction (Using Direct and Indirect Addressing)

		Program									
Operand	ROM	DARAM	SARAM	External							
DARAM	1	1	1	1+p							
SARAM	1	1	1, 2†	1+p							
External	1+d	1+d	1+d	2+d+p							

[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACL Instruction (Using Direct and Indirect Addressing)


		Program										
Operand	ROM	DARAM	SARAM	External								
DARAM	n	n	n	n+p								
SARAM	n	n	n, n+1†	n+p								
External	n+nd	n+nd	n+nd	n+1+p+nd								

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

Cycles for a Single LACL Instruction (Using Immediate Addressing)

ROM	DARAM	SARAM	External
1	1	1	1+p

Example 1	LACL	1	;(DP = 6:	addresses	0300	h-037Fh)
			Before Instruction			After Instruction
		Data Memory 301h ACC X C	0h 7FFFFFFh	Data Memor 301h ACC	y X C	0h 0h
Example 2	LACL	*-, AR4				
			Before Instruction			After Instruction
		ARP	0	ARP		4
		AR0	401h	AR0		400h
		Data Memory		Data Memor	У	
		401h	00FFh	401h		00FFh
		ACC X	7FFFFFFh	ACC	Х	0FFh
		С			С	

Syntax	LACT LACT		-	n]							Direct addressing Indirect addressing					
Operands	dma: n: ind:		Va	0 to	ory ac ating 1 g sev *B	the ne	ext au		ary re	giste	er					
Opcode																
	15	14	13 1	12 0	11 1	10 0	9	8	7	6	5	4	3 dma	2	1	0
		-		-	•	0	•						unia			
	LA 15	CT in 14	13 nd [,	\R <i>n</i>] 12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	1	0	1	1	1	- -	ARU	4	N	2	NAR	- 1
	Note	e: A	RU, N	, and I	NAR a	are de	fined	in Sec	tion 6.	3, Indi	rect Ac	dres	sing M	lode (page 6	6-9).
Execution	If SXN	∙merr ⁄I = 1 en (d ⁄I = 0	nory a : ata-n :	addre nemc	ess) > ory a	ddres	ss) is	s sigr	$\rightarrow A$ the extern sign of	nded						
Status Bits	<u>Affect</u> SXM	ted b	Ľ													
Description	The L has b result a shift der bi	een le ing in code	eft sh i shift e prov	ifted optic	. The ons fi a dy	e left rom (vnam	shift) to 1 ic sh	is sp 15 bits nift me	ecifie s. Usi echar	d by t ng the nism.	the fo e four Durin	our L [·] LSE Ig sh	SBs 3s of hifting	of th the	e TRI TREC	EG, à as
	LACT nent is encec used	s plac d by t	ced ir he da	n the i ata-m	four l nemc	LSBs ory ac	of tl ddre:	he TF ss. Tl	REG r	egiste ethoc	er and I of de	d the enor	man maliz	ntissa zatio	a is re	fer-
Words	1															

SARAM

External

Cycles for a Single LACT Instruction

DARAM

Program

	DARAM	1	1	1	1+p			
	SARAM	1	1	1, 2†	1+p			
	External	1+d	1+d	1+d	2+d+p			
	† If the opera	and and the co	de are in the same SAR	AM block				
	C	ycles for a R	epeat (RPT) Executi		struction			
			Pi	ogram				
	Operand	ROM	DARAM	SARAM	External			
	DARAM	n	n	n	n+p			
	SARAM	n	n	n, n+1†	n+p			
	External	n+nd	n+nd	n+nd	n+1+p+nd			
	† If the opera	and and the co	de are in the same SAR	AM block				
Example 1	LACT	1	;(DP = 6: a ;SXM = 0)	ddresses 030	0h-037Fh,			
			Before Instruction		After Instruction			
		Memory 301h	1376h	Data Memory 301h	1376h			
	T	TREG	14h	TREG	14h			
		ACC X C	98F7EC83h	ACC X C	13760h			
Example 2	LACT	*-,AR3	;(SXM = 1)					
			Before Instruction		After Instruction			
		ARP	1	ARP	3			
		AR1	310h	AR1	30Fh			
		a Memory 310h	0FF00h	Data Memory 310h	0FF00h			
	٦	TREG	11h	TREG	11h			
		ACC X C	098F7EC83h	ACC X C	0FFFFE00h			

ROM

Operand

Cycles

Syntax Operands	LAR AR <i>x</i> , LAR AR <i>x</i> , LAR AR <i>x</i> , LAR AR <i>x</i> , CAR AR <i>x</i> , LAR AR <i>x</i> , k: lk: lk: n:	Direct addressing Indirect addressing Short immediate addressing Long immediate addressing ating the auxiliary register to be loaded ory address lue alue ating the next auxiliary register														
	ind:	Se *	elect *+	one *_			owing *0–	-	seven options: *BR0+ *BR0–							
Opcode	LAR AR 15 14	13	<i>na</i> 12	11	10	9	8	7	6	5	4	3	2	1	0	
	0 0	0	0	0		9 X	0	0	0	5	4	dma		I		
	<u> </u>	•	•	0		X		Ŭ				unia				
	LAR AR		-	-			_	_	_	_		_	_		_	
	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0 0	0	0	0		X		1		ARU		N	(NAR		
	Note: A			NAR a	are det	inea ii	1 Seci	ion 6.	3, INAI	rect Ad	aares	sing iv	10 <i>ae</i> (page 6	o-9).	
	LAR AR 15 14	13 13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1 0	1	1	0		x	0		•	-	•	k	-	•		
		y #/k	<i>(</i>		1											
	15 14	13	、 12	11	10	9	8	7	6	5	4	3	2	1	0	
	1 0	1	1	1	1	1	1	0	0	0	0	1		х		
								k								
Execution	Increment	PC, t	hen													
	<u>Event</u>									Addre		-				
	(data-merr	nory a	lddre	ess) -	$\rightarrow AR$	x			[Direct	or i	ndire	ct			
	$k \to ARx$								ę	Short	imm	iedia	te			
	$lk\toARx$								l	_ong	imm	ediat	e			
Status Bits	None															

Description The contents of the specified data-memory address or an 8-bit or 16-bit constant are loaded into the specified auxiliary register (ARx). The specified constant is acted upon like an unsigned integer, regardless of the value of SXM.

> The LAR and SAR (store auxiliary register) instructions can be used to load and store the auxiliary registers during subroutine calls and interrupts. If an auxiliary register is not being used for indirect addressing, LAR and SAR enable the register to be used as an additional storage register, especially for swapping values between data-memory locations without affecting the contents of the accumulator.

Words	<u>Words</u>	<u>Addressing mode</u>
	1	Direct, indirect or
		short immediate
	2	Long immediate

Cycles

Cycles for a Single LAR Instruction (Using Direct and Indirect Addressing)

		Program						
Operand	ROM	DARAM	SARAM	External				
DARAM	2	2	2	2+p _{code}				
SARAM	2	2	2, 3†	2+p _{code}				
External	2+d _{SrC}	2+d _{Src}	2+d _{SrC}	3+d _{src} +p _{code}				

[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LAR Instruction (Using Direct and Indirect Addressing)

Operand	ROM	DARAM	SARAM	External
DARAM	2n	2n	2n	2n+p _{code}
SARAM	2n	2n	2n, 2n+1†	2n+p _{code}
External	2n+nd _{src}	2n+nd _{src}	2n+nd _{src}	2n+1+nd _{src} p _{code}

[†] If the operand and the code are in the same SARAM block

Cycles for a Single LAR Instruction ((Using Short Immediate Addressing)
---------------------------------------	------------------------------------

ROM	DARAM	SARAM	External				
2	2	2	2+p _{code}				
Cycles for a Single LAR Instruction (Using Long Immediate Addressing)							
ROM	DARAM SARAM		External				
2	2	2	2+2p				

Example 1	LAR	AR0,16	;(DP = 6:	addresses 0300	h-037Fh)
			Before Instruction		After Instruction
	Da	ta Memory 310h	18h	Data Memory 310h	18h
		AR0	6h] AR0	18h
Example 2	LAR	AR4,*-			
			Before Instruction		After Instruction
		ARP	4	ARP	4
	Da	ta Memory		Data Memory	
		300h	32h	300h	32h
		AR4	300h	AR4	32h
	Note:				·
	specified	by the instruct	tion is the same a	ores any AR modific is that pointed to by nted after the LAR i	the ARP. There-
Example 3	LAR	AR4,#01	h		
			Before Instruction		After Instruction
		AR4	0FF09h	AR4	01h
Example 4	LAR	AR6,#3F	FFh		
			Before Instruction		After Instruction
		AR6	0h	AR6	3FFFh

Syntax	LDP dmaDirect addressingLDP ind [, ARn]Indirect addressingLDP #kShort immediate addressing
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerk:9-bit short immediate valueind:Select one of the following seven options:**+**0+**BR0+**BR0+
Opcode	LDP dma
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 1 0 1 0 dma dma
	LDP ind [, AR n] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 1 1 ARU N NAR
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).
	LDP #k
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 0 1 1 1 1 0 k
Execution	Increment PC, thenAddressing mode $Event$ Addressing modeNine LSBs of (data-memory address) \rightarrow DPDirect or indirect $k \rightarrow DP$ Short immediate
Status Bits	<u>Affects</u> DP
Description	The nine LSBs of the contents of the addressed data-memory location or a 9-bit immediate value is loaded into the data page pointer (DP) of status register ST0. The DP can also be loaded by the LST instruction.
	In direct addressing, the 9-bit DP and the 7-bit value specified in the instruction (dma) are concatenated to form the 16-bit data-memory address accessed by the instruction. The DP provides the 9 MSBs, and dma provides the 7 LSBs.
Words	1

	Program							
Operand	ROM	DARAM	SARAM	External				
DARAM	2	2	2	2+p _{code}				
SARAM	2	2	2, 3†	2+p _{code}				
External	2+d _{src}	2+d _{SrC}	2+d _{src}	3+d _{src} +p _{code}				

Cycles for a Single LDP Instruction (Using Direct and Indirect Addressing)

[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LDP Instruction (Using Direct and Indirect Addressing)

			Program	
Operand	ROM	DARAM	SARAM	External
DARAM	2n	2n	2n	2n+p _{code}
SARAM	2n	2n	2n, 2n+1†	2n+p _{code}
External	2n+nd _{src}	2n+nd _{src}	2n+nd _{src}	2n+1+nd _{src} p _{code}

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

Cycles for a Single LDP Instruction (Using Short Immediate Addressing)

	ROM		DARAM	SAF	RAM	External
	2		2	2		2+p _{code}
Example 1	LDP	127	;(D	P = 511:	addresses	FF80h-FFFFh)
-			Before I	nstruction		After Instruction
		Data Memory FFFFh		FEDCh	Data Memory FFFFh	FEDCh
		DP		1FFh	DP	0DCh
Example 2	LDP	#0h				
			Before I	nstruction		After Instruction
		DP		1FFh	DP	0h
Example 3	LDP	*,AR	5			
			Before I	nstruction		After Instruction
		ARP		4	ARP	5
		AR4		300h	AR4	300h
		Data Memory 300h		06h	Data Memory 300h	06h
		DP		1FFh	DP	06h

Cycles

Syntax	LPH dma LPH ind [, ARn]						Direct addressing Indirect addressing						
Operands	dma: n: ind:	7 LSB Value Select * *+	from one	0 to 7 of the	7 des e follo	igna	ting t g sev	he ne	xt auxilia	ary re	giste	er	
Opcode	LPH dm	а											
	15 14	13 12	11	10	9	8	7	6	5 4	3	2	1	0
	0 1	1 1	0	1	0	1	0			dma			
	LPH ind	[, AR <i>n</i>]											
	15 14	13 12	11	10	9	8	7	6	54	3	2	1	0
	0 1	1 1	0	1	0	1	1	A	ARU	Ν		NAR	
Execution Status Bits	Increment (data-mem None	-		→ PR	EG ((31:1	6)						
Description	The 16 high-order bits of the PREG are loaded with the content of the specified data-memory address. The low-order PREG bits are unaffected. The LPH instruction can be used for restoring the high-order bits of the PREG after interrupts and subroutine calls.												
Words	1												
Cycles			Сус	les fo	r a S	ingle	LPH	Instru	ction				
							Prog	Iram					
	Operand	ROM		C	ARA	М		SARA	AM	Ex	terna	al	
	DARAM	1		1				1		1+	р		
	SARAM	1		1				1, 2†		1+	р		
	External	1+d		1	+d			1+d		2+	d+p		
	t If the energy and the code are in the come CADAM block												

		Cycles for a Repeat (RPT) Execution of an LPH Instruction							
			Pr	gram					
	Operand	ROM	DARAM	SARAM	External				
	DARAM	n	n	n	n+p				
	SARAM	n	n	n, n+1†	n+p				
	External	n+nd	n+nd	n+nd	n+1+p+nd				
	† If the ope	erand and the co	ode are in the same SAR/	AM block					
Example 1	LPH	DAT0	;(DP = 4)						
			Before Instruction		After Instruction				
	Da	ta Memory 200h	0F79Ch	Data Memory 200h	0F79Ch				
		PREG	30079844h	PREG	0F79C9844h				
Example 2	LPH	*,AR6							
			Before Instruction		After Instruction				
		ARP	5	ARP	6				
		AR5	200h	AR5	200h				
	Da	ta Memory		Data Memory					
		200h	0F79Ch	200h	0F79Ch				
		PREG	30079844h	PREG	0F79C9844h				

Syntax	LST #m, dmaDirect addressingLST #m, ind [, ARn]Indirect addressing
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerm:Select one of the following:0Indicates that ST0 will be loaded1Indicates that ST1 will be loadedind:Select one of the following seven options:**+**0+**BR0+**BR0+
Opcode	LST #0, dma
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 1 1 0 0 dma
	LST #0, ind [, ARn]
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 1 1 0 1 ARU N NAR
	Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9). LST #1, dma 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	LST #1, ind [, ARn]
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 1 1 1 1 ARU N NAR
Execution	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).

(data-memory address) \rightarrow status register STm

For details about the differences between an LST #0 operation and an LST #1 operation, see Figure 7–3, Figure 7–4, and the description category below.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data																
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow			\downarrow	\rightarrow							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ST0		ARP		OV	OVM	1	INTM					D	Р			

3			- 1												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ST0	ARP		OV	OVM	1	INTM						DP			
\uparrow	\uparrow	Ŷ													
15 Data	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data		\downarrow		$ \downarrow $											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ST1	ARB		CNF	TC	SXM	С	1	1	1	1	XF	1	1	Р	М
Status Bit	S		AR			OVM, Di				И, C,	XF, aı	nd PM			
Descriptio	'n		The specified status register (ST0 or ST1) is loaded with the addressed data- memory value. Note the following points:												
			The LST #0 operation does not affect the ARB field in the ST1 register, even though a new ARP is loaded.												
			During the LST #1 operation, the value loaded into ARB is also loaded into ARP.												
				mode	, this o	value is perand i ned in th	is ign	ored.	ARP	is loa	aded w	vith the	e three		-
						t values have no			us reę	gister	s are a	always	read	as 1s.	Writes
						ion can l errupts.	oe us	ed for	resto	oring t	he sta	tus reg	gisters	afters	subrou-
Words			1												
Cycles						Cw	lee f	oras	inale	ISTI	nstruc	tion			
			Cycles for a Single LST Instruction Program												
			0-	erand	ROI	М		DARA			SARA	м	E,	ternal	
						141			141			171			
			DARAM 2 2 2 2+p _{code}												
			SARAM 2 2 2, 3 [†] 2+p _{code}												
			Ex	ternal	2+d	src		2+d _{src}			2+d _{src}		3+	-d _{src} +p	code
			-												

Figure 7–4. LST #1 Operation

[†] If the operand and the code are in the same SARAM block

		Cycles for a	Repeat (RPT) Ex	ecution of an l	LST Instruction
				Program	
	Operan	d ROM	DARAM	SARAM	External
	DARAM	2n	2n	2n	2n+p _{code}
	SARAM	2n	2n	2n, 2n+1†	2n+p _{code}
	External	l 2n+nd _{src}	2n+nd _{src}	2n+nd _{src}	2n+1+nd _{src} +p _{code}
	† If the op	perand and the co	ode are in the same	SARAM block	
Example 1	MAR	*,AR0			
	LST		;contents of ;loaded into ;for the INI ;though a ne ;that value	f auxiliary o status re IM bit. Not ext ARP val is ignored	addressed by the register AR0 is gister ST0,except that even tue is specified, and Also note that baded into the
Example 2	LST	#0,60h			
	D	Data Memory 60h ST0 ST1	Before Instructi	Data Mem 04h 60h 00h ST0	After Instruction nory 2404h 2604h 05ECh
Example 3	LST	#O,*-,	AR1		
			Before Instruct	on	After Instruction
		ARP		4 ARP	7
		AR4	3F	Fh AR4	3FEh
	C	Data Memory		Data Men	
		3FFh	EEC		
		ST0 ST1	EE0		EE04h
					F7ECh

Cycles for a Repeat (RPT) Execution of an LST Instruction

Example 4	LST	#1,00h	;(DP = 6) ;Note that ;the new AR	the ARB is lo P value.	aded with
			Before Instruction		After Instruction
	D	ata Memory		Data Memory	
		300h	E1BCh	300h	E1BCh
		ST0	0406h	ST0	E406h
		ST1	09ECh	ST1	E1FCh

Syntax	LT dmaDirect addressingLT ind [, ARn]Indirect addressing														
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+														
Opcode	LT dma														
	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1	1	1	0	0	1	1	0				dma			
	LT ind [,	۸R	5												
	15 14	13	יי 12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1	1	1	0	0	1	1	1	-	ARU		N		NAR	
Execution Status Bits	Increment (data-men None				\rightarrow TF	EG									
Description	TREG is lo LT instruct also the LT	ion m	ay be	e use	ed to l	oad ⁻	TREC	G in p	repa	ratior	n for I	multi	olicat	ion.	See
Words	1														
Cycles				Су	cles f	or a s	Singl	e LT I	nstru	uctior	า				
	Program														
	Operand	RC	M		[DARA	M		SAF	RAM		Ex	tern	al	
	DARAM	1			1				1			1+	ъ		
	SARAM	1			1				1, 2	t		1+	р		
	External	1+	d		1	+d			1+d			2+	d+p		
	t If the oper	and ar	nd tho	oodo	aro in	tho or	mos		block						

		Cycles for a Repeat (RPT) Execution of an LT Instruction								
			Pr	ogram						
	Operand	ROM	DARAM	SARAM	External					
	DARAM	n	n	n	n+p					
	SARAM	n	n	n, n+1†	n+p					
	External	n+nd	n+nd	n+nd	n+1+p+nd					
	† If the operation	and and the c	ode are in the same SAR	AM block						
Example 1	LT 24		;(DP = 8: a	ddresses 040	0h-047Fh)					
			Before Instruction		After Instruction					
		a Memory 418h	62h	Data Memory 418h	62h					
	-	TREG	3h	TREG	62h					
Example 2	LT *,	AR3								
			Before Instruction		After Instruction					
		ARP	2	ARP	3					
		AR2	418h	AR2	418h					
		a Memory 418h	62h	Data Memory 418h	62h					
	-	TREG	3h	TREG	62h					

Syntax	LTA dma LTA ind [, J	4R <i>n</i>]					address	-	
Operands	dma: n: ind:	Value Select * *+	from 0 to one of th		ating t ng sev	the next au ren options		egister	
Opcode	LTA dma 15 14	a 13 12	11 10	0 0	7	65	4 3	0 1	0
	0 1	1 1	11 10 0 0	98 00	i	65	4 3 dma	2 1	0
								-	
	LTA ind 15 14	[, AR <i>n</i>] 13 12	11 10	98	7	65	4 3	2 1	0
	0 1	1 1	0 0	0 0	-	ARU	N	NAF	
	Note: A	RU, N, and	NAR are de	efined in Se	ection 6.	3, Indirect Ad	ddressing l	<i>Mode</i> (page	6-9).
Execution Status Bits Description	Increment (data-mem (ACC) + sh <u>Affected by</u> PM and OV TREG is lo contents of added to th The carry b is cleared (ory addre ifted (PR Z /M aded with if the prod he accum pit is set (C = 0) if	$P(\text{ess}) \rightarrow \text{T}$ $EG) \rightarrow A$ Affects C and 0 C the cont uct registic $ulator, arC = 1) ifC the contC = 1 of 0$	CC OV ents of th ter, shifte ad the resul ot genera	d as d sult is p t of the te a ca	efined by t blaced in tl e addition arry.	the PM s he accur generate	tatus bits, nulator. es a carry	are
Words	1								
Cycles			Cycles f	or a Sing	le LTA	Instruction	n		
					Prog	gram			
	Operand	ROM		DARAM		SARAM	E	xternal	
	DARAM	1		1		1	1.	+p	
	SARAM	1		1		1, 2†	1.	+p	
	External	1+d		1+d		1+d	2-	+d+p	
	t if the ener	and and the	anda ara i	the eeme		hlaak			

	c	cycles for a	a Repeat (RPT) Exec	ution of an LTA I	nstruction
				Program	
	Operand	ROM	DARAM	SARAM	External
	DARAM	n	n	n	n+p
	SARAM	n	n	n, n+1†	n+p
	External	n+nd	n+nd	n+nd	n+1+p+nd
	† If the opera	and and the c	code are in the same SA	RAM block	
Example 1	LTA	36	;(DP = 6:	addresses 0	300h-037Fh,
			;PM =0: no	o shift of p	roduct)
			Before Instruction		After Instruction
	Data Me			Data Memory	
	324		62h	324h	62h
	TRE	-	3h	TREG	62h
	PRE		0Fh	PREG	0Fh
	AC		5h	ACC 0	14h
		С		С	
Example 2	LTA	*,AR5	;(PM = 0)		
			Before Instruction		After Instruction
	AR	P	4	ARP	5
	AR	4	324h	AR4	324h
	Data Me 324		62h	Data Memory 324h	62h
	TRE		3h	TREG	62h
	PRE		0Fh	PREG	0Fh
	AC		01 h]		14h
	AU	c X c	011	ACC 0 C	14(1

Syntax	LTD dmaDirect addressingLTD ind [, ARn]Indirect addressing							
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+*-*0+* BR0+*BR0-							
Opcode	LTD dma 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	0 1 1 1 0 0 1 0 0 dma							
	LTD ind [, ARn] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 0 0 1 0 1 ARU N NAR Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9).							
Execution	Increment PC, then (data-memory address) \rightarrow TREG (data-memory address) \rightarrow data-memory address + 1 (ACC) + shifted (PREG) \rightarrow ACC							
Status Bits	Affected byAffectsPM and OVMC and OV							
Description	TREG is loaded with the contents of the specified data-memory address. The contents of the PREG, shifted as defined by the PM status bits, are added to the accumulator, and the result is placed in the accumulator. The contents of the specified data-memory address are also copied to the next higher data-memory address. This instruction is valid for all blocks of on-chip RAM configured as data							
	memory. The data move function is continuous across the boundaries of con- tiguous blocks of memory but cannot be used with external data memory or memory-mapped registers. The data move function is described under the in- struction DMOV.							
	Note:							
	If LTD is used with external data memory, its function is identical to that of LTA; that is, the previous product will be accumulated, and the TREG will be loaded from external data memory, but <i>the data move will not occur</i> .							
	The carry bit is set (C = 1) if the result of the addition generates a carry and is cleared (C = 0) if it does not generate a carry.							

1

LTD

Words

Cycles

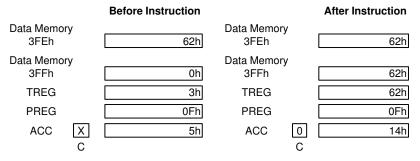
	Cycles for a Single LTD Instruction										
	Program										
Operand	ROM	DARAM	SARAM	External [‡]							
DARAM	1	1	1	1+p							
SARAM	1	1	1, 3†	1+p							
External	2+2d	2+2d	2+2d	5+2d+p							

[†] If the operand and the code are in the same SARAM block

[‡] If the LTD instruction is used with external memory, the data move will not occur. (The previous product will be accumulated, and the TREG will be loaded.)

	Program						
Operand	ROM	DARAM	SARAM	External [‡]			
DARAM	n	n	n	n+p			
SARAM	2n–2	2n–2	2n–2, 2n+1†	2n–2+p			
External	4n-2+2nd	4n-2+2nd	4n2+2nd	4n+1+2nd+p			

[†] If the operand and the code are in the same SARAM block


126

[‡] If the LTD instruction is used with external memory, the data move will not occur. (The previous product will be accumulated, and the TREG will be loaded.)

Example 1

;(DP = 7: addresses 0380h-03FFh,

;PM = 0: no shift of product).

Example 2	LTD	*,AR3	; (PM = 0)		
			Before Instruction		After Instruction
		ARP	1	ARP	3
		AR1	3FEh	AR1	3FEh
	C	ata Memory 3FEh	62h	Data Memory 3FEh	62h
	C	ata Memory 3FFh	0h	Data Memory 3FFh	62h
		TREG	3h	TREG	62h
		PREG	0Fh	PREG	0Fh
		ACC X	5h	ACC 0	14h
		С		С	

Syntax	LTP dma LTP ind [, ARn]						Direct addressing Indirect addressing						
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+												
Opcode	LTP dma	1											
	15 14	13 12	11	10	98	7	6	5	4	3	2	1	0
	0 1	1 1	0	0	0 1	0			(dma			
	LTP ind [, AR <i>n</i>]											
	15 14	13 12	11	10	98	7	6	5	4	3	2	1	0
	0 1	1 1	0	0	0 1	1		ARU		Ν		NAR	
	Note: AF	RU, N, and	NAR a	re defir	ed in Se	ction 6.	3, Indir	ect Ad	dress	ing M	ode (oage 6	6-9).
Execution	Increment PC, then (data-memory address) \rightarrow TREG shifted (PREG) \rightarrow ACC												
Status Bits	<u>Affected by</u> PM												
Description	The TREG is loaded with the content of the addressed data-memory location, and the PREG value is stored in the accumulator. The shift at the output of the PREG is controlled by the PM status bits.												
Words	1												
Cycles	Cycles for a Single LTP Instruction												
	Program												
	Operand ROM DARAM SARAM External												
	DARAM	1		1			1			1+	p		
	SARAM	1		1			1, 2†			1+	р		
	External 1+d 1+d 1+d 2+d+p												
	t If the approved and the code are in the same SARAM block												

		Cycles for a nepeat (nr r) Execution of an Err instruction								
			Program							
	Operand	ROM	DARAM	SARAM	External					
	DARAM	n	n	n	n+p					
	SARAM	n	n	n, n+1†	n+p					
	External	n+nd	n+nd	n+nd	n+1+p+nd					
	† If the opera	and and the co	de are in the same SARA	M block						
Example 1	LTP	36	;(DP = 6: addresses 0300h-037Fh,							
			;PM = 0: no	shift of p	product)					
			Before Instruction		After Instruction					
		a Memory 324h	62h	Data Memory 324h	62h					
	-	TREG	3h	TREG	62h					
	F	PREG	0Fh	PREG	0Fh					
		ACC X	5h	ACC [X OFh					
		С			C					
Example 2	LTP	*,AR5	;(PM = 0)							
			Before Instruction		After Instruction					
		ARP	2	ARP	5					
		AR2	324h	AR2	324h					
		a Memory 324h	62h	Data Memory 324h	62h					
	-	TREG	3h	TREG	62h					
	F	PREG	0Fh	PREG	0Fh					
		ACC X	5h	ACC 🛛	X 0Fh					
		С			2					

Cycles for a Repeat (RPT) Execution of an LTP Instruction

Syntax	LTS dmaDirect addresLTS ind [, ARn]Indirect addres									-			
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options: $*$ $*_{+}$ $*_{-}$ $*_{0-}$ $*BR0+$ $*BR0-$												
Opcode	LTS dma												
	15 14	13 12	11	10 9		7	6	5	4	3	2	1	0
	0 1	1 1	0	1 (0 0	0				dma			
	LTS ind	[, AR <i>n</i>]											
	15 14	13 12	11	10 9	8	7	6	5	4	3	2	1	0
	0 1	1 1	0	1 (0	1		ARU		Ν		NAR	
	Note: A	RU, N, and	NAR ar	re define	d in Sec	tion 6.	3, <i>Indir</i>	rect Ac	ddress	sing M	lode (page 6	6-9).
Execution Status Bits Description	Increment PC, then (data-memory address) \rightarrow TREG ACC – shifted (PREG) \rightarrow ACC <u>Affected by</u> <u>Affects</u> PM and OVM C and OV TREG is loaded with the contents of the addressed data-memory location. The contents of the product register, shifted as defined by the contents of the PM status bits, are subtracted from the accumulator. The result is placed in the ac- cumulator. The carry bit is cleared (C = 0) if the result of the subtraction generates a bor-									PM ac-			
Words	row and is	,	,		U								
words	I		0		0:		I		_				
			Cycle	es for a	Single				n				
	Onevend	DOM				Prog							
	Operand	ROM			RAM		SAR	AIVI			terna	al	
	DARAM	1		1			1			1+	-		
	SARAM	1		1			1, 2†			1+	р		
	External	1+d		1+c			1+d			2+	d+p		

[†] If the operand and the code are in the same SARAM block

		Program									
	Operand	ROM	DARAM	SARAM	External						
	DARAM	n	n	n	n+p						
	SARAM	n	n	n, n+1†	n+p						
	External	n+nd	n+nd	n+nd	n+1+p+nd						
	† If the opera	and and the cod	le are in the same SAR	AM block							
Example 1	LTS	DAT36	;(DP = 6: a	ddresses ()300h-037Fh,						
			;PM = 0: nc	shift of	product)						
			Before Instruction		After Instruction						
		a Memory		Data Memory							
		324h	62h	324h	62						
		FREG	3h	TREG	62						
		PREG	0Fh	PREG	0F						
		ACC X	05h	ACC	0 OFFFFFF6						
		С			С						
Example 2	LTS	*,AR2	; $(PM = 0)$								
			Before Instruction		After Instructio						
		ARP	1	ARP							
		AR1	324h	AR1	324						
		324h	62h	324h	62						
	T	TREG	3h	TREG	62						
	F	PREG	0Fh	PREG	0F						
		ACC X	05h	ACC	0 OFFFFF6						
		C			C						

Cycles for a Repeat (RPT) Execution of an LTS Instruction

Syntax	MAC pma, dmaDirect addressingMAC pma, ind [, ARn]Indirect addressing							
Operands	dma:7 LSBs of the data-memory addresspma:16-bit program-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+**BR0+							
Opcode	MAC pma, dma							
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	1 0 1 0 0 0 1 0 0 dma							
	pma							
	MAC pma, ind [, ARn]							
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	1 0 1 0 0 0 1 0 1 ARU N NAR							
	pma Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).							
Execution	Increment PC, then (PC) \rightarrow MSTACK pma \rightarrow PC (ACC) + shifted (PREG) \rightarrow ACC (data-memory address) \rightarrow TREG (data-memory address) \times (pma) \rightarrow PREG For indirect, modify (current AR) and (ARP) as specified (PC) + 1 \rightarrow PC							
	While (repeat counter) \neq 0: (ACC) + shifted (PREG) \rightarrow ACC (data-memory address) \rightarrow TREG (data-memory address) \times (pma) \rightarrow PREG For indirect, modify (current AR) and (ARP) as specified (PC) + 1 \rightarrow PC (repeat counter) - 1 \rightarrow repeat counter							
	$(MSTACK) \to PC$							
Status Bits	Affected byAffectsPM and OVMC and OV							

Description	The MAC instruction:							
	Adds the previous product, shifted as defined by the PM status bits, to the accumulator. The carry bit is set $(C = 1)$ if the result of the addition generates a carry and is cleared $(C = 0)$ if it does not generate a carry.							
	□ Loads the TREG with the content of the specified data-memory address.							
	Multiplies the data-memory value in the TREG by the contents of the spe- cified program-memory address.							
	The data and program memory locations on the 'C2xx may be any nonre- served on-chip or off-chip memory locations. If the program memory is block B0 of on-chip RAM, the CNF bit must be set to 1.							
	When the MAC instruction is repeated, the program-memory address con- tained in the PC is incremented by 1 during each repetition. This makes it pos- sible to access a series of operands in program memory. If you use indirect addressing to specify the data-memory address, a new data-memory address can be accessed during each repetition. If you use the direct addressing mode, the specified data-memory address is a constant; it will not be modified during each repetition.							
	MAC is useful for long sum-of-products operations because, when repeated, it becomes a single-cycle instruction once the RPT pipeline is started.							
Words	2							

Cycles

Cycles for a Single MAC Instruction							
Operand	ROM	DARAM	SARAM	External			
Operand 1: DARAM/ ROM	3	3	3	3+2p _{code}			
Operand 2: DARAM							
Operand 1: SARAM Operand 2: DARAM	3	3	3	3+2p _{code}			
Operand 1: External Operand 2: DARAM	3+p _{op1}	3+p _{op1}	3+p _{op1}	3+p _{op1} +2p _{code}			
Operand 1: DARAM/ ROM Operand 2: SARAM	3	3	3	3+2p _{code}			
Operand 1: SARAM Operand 2: SARAM	3 4†	3 4†	3 4†	3+2p _{code} 4+2p _{code} †			
Operand 1: External Operand 2: SARAM	3+p _{op1}	3+p _{op1}	3+p _{op1}	3+p _{op1} +2p _{code}			
Operand 1: DARAM/ ROM Operand 2: External	3+d _{op2}	3+d _{op2}	3+d _{op2}	3+d _{op2} +2p _{code}			
Operand 1: SARAM Operand 2: External	3+d _{op2}	3+d _{op2}	3+d _{op2}	3+d _{op2} +2p _{code}			
Operand 1: External Operand 2: External	4+p _{op1} +d _{op2} +2p _{code}						

[†] If both operands are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MAC Instruction

	, ,	()		
Operand	ROM	DARAM	SARAM	External
Operand 1: DARAM/ ROM Operand 2: DARAM	n+2	n+2	n+2	n+2+2p _{code}
Operand 1: SARAM Operand 2: DARAM	n+2	n+2	n+2	n+2+2p _{code}
Operand 1: External Operand 2: DARAM	n+2+np _{op1}	n+2+np _{op1}	n+2+np _{op1}	n+2+np _{op1} +2p _{code}

[†] If both operands are in the same SARAM block

Operand	ROM	DARAM	SARAM	External		
Operand 1: DARAM/ ROM Operand 2: SARAM	n+2	n+2	n+2	n+2+2p _{code}		
Operand 1: SARAM Operand 2: SARAM	n+2 2n+2†	n+2 2n+2 [†]	n+2 2n+2 [†]	n+2+2p _{code} 2n+2 [†]		
Operand 1: External Operand 2: SARAM	n+2+np _{op1}	n+2+np _{op1}	n+2+np _{op1}	n+2+np _{op1} +2p _{code}		
Operand 1: DARAM/ ROM Operand 2: External	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2} +2p _{code}		
Operand 1: SARAM Operand 2: External	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2} +2p _{code}		
Operand 1: External Operand 2: External	2n+2+np _{op1} + nd _{op2}	2n+2+np _{op1} +nd _{op2}	2n+2+np _{op1} +nd _{op2}	2n+2+np _{op1} +nd _{op2} + 2p _{code}		
† If both operands are in	the same SARAM blo	ock				
Example 1	MAC	0FF00h,02h	;(DP = 6, PM =	0, CNF = 1)		
		Before Inst	ruction	After Instruction		
	Data M 302		Data Memory 23h 302h	/23h		
	Program FF0		Program Memo 4h FF00h	bry 4h		
	TRE	-	45h TREG	23h		
	PRI		-58972h PREG	08Ch		
	AC	C X 720 C	3EC41h ACC	0 76975B3h C		
Example 2	MAC	0FF00h,*,AR5	;(PM = 0, CNF	= 1)		
		Before Inst	ruction	After Instruction		
	AF	{P	4 ARP	5		

Cycles for a Repeat (RPT) Execution of an MAC Instruction (Continued)

AR4 302h AR4 302h Data Memory Data Memory 23h 23h 302h 302h **Program Memory** Program Memory FF00h 4h 4h FF00h TREG 45h TREG 23h PREG 458972h PREG 8Ch X C 76975B3h ACC 723EC41h ACC 0 С

Syntax	•									Direct Indire			-			
Operands	dma: pma: n: ind:		16 Va	6-bit alue elect	prog from	ram- 0 to of th	merr 7 de	lowing	ddre: ting t g sev	ss he r en c	next au		ary re	giste	er	
Opcode		-		dma			_	_	_		_		_	_		_
	15	14 0	13 1	12 0	11 0	10 0	9	8	7	6	5	4	3 dma	2	1	0
		0	1	0	0	0	1		na na				una			
				in d [
	15	כט ג 14	13 13	,ind 12	, АК / 11	//j 10	9	8	7	6	5	4	3	2	1	0
	1	0	1	0	0	0	1	1	1		ARU		Ν		NAR	
								pn								
	Note	e: A	RU, N	l, and	NAR a	are de	fined	in Sect	ion 6.	3, <i>Inc</i>	lirect Ac	ddres	sing N	lode (page 6	-9).
Execution	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9) Increment PC, then (PC) → MSTACK pma → PC (ACC) + shifted (PREG) → ACC (data-memory address) → TREG (data-memory address) × (pma) → PREG For indirect, modify (current AR) and (ARP) as specified (PC) + 1 → PC (data-memory address) → data-memory address + 1 While (repeat counter) ≠ 0: (ACC) + shifted (PREG) → ACC (data-memory address) → TREG (data-memory address) → TREG (data-memory address) × (pma) → PREG For indirect, modify (current AR) and (ARP) as specified (PC) + 1 → PC (data-memory address) × (pma) → DREG For indirect, modify (current AR) and (ARP) as specified (PC) + 1 → PC															

 $(\mathsf{MSTACK}) \to \mathsf{PC}$

Status Bits	<u>Affected by</u> PM and OVM	<u>Affects</u> C and OV
Description	The MACD instructi	ion:
	accumulator. Th	us product, shifted as defined by the PM status bits, to the ne carry bit is set (C = 1) if the result of the addition gener- d is cleared (C = 0) if it does not generate a carry.
	Loads the TRE	G with the content of the specified data-memory address.
		ata-memory value in the TREG by the contents of the spe- memory address.
	Copies the con higher data-me	tents of the specified data-memory address to the next mory address.
	served, on-chip or c B0 of on-chip RAM, the memory-mappe the effect of the inst	rram-memory locations on the 'C2xx may be any nonre- off-chip memory locations. If the program memory is block the CNF bit must be set to 1. If MACD addresses one of d registers or external memory as a data-memory location, ruction is that of a MAC instruction; the data move will not DV instruction description).
	tained in the PC is in sible to access a se addressing to specif can be accessed du	struction is repeated, the program-memory address con- ncremented by 1 during each repetition. This makes it pos- eries of operands in program memory. If you use indirect fy the data-memory address, a new data-memory address ring each repetition. If you use the direct addressing mode, nemory address is a constant; it will not be modified during
	for on-chip RAM bl such as convolution	he same manner as MAC, with the addition of a data move ocks. This feature makes MACD useful for applications and transversal filtering. When used with RPT, MACD be- le instruction once the RPT pipeline is started.
Words	2	
Cycles		
	Cycles for a	Single MACD Instruction

Operand	ROM	DARAM	SARAM	External
Operand 1: DARAM/ ROM Operand 2: DARAM	3	3	3	3+2p _{code}
Operand 1: SARAM Operand 2: DARAM	3	3	3	3+2p _{code}

Operand	ROM	DARAM	SARAM	External				
Operand 1: External Operand 2: DARAM	3+p _{op1}	3+p _{op1}	3+p _{op1}	3+p _{op1} +2p _{code}				
Operand 1: DARAM/ ROM Operand 2: SARAM	3	3	3	3+2p _{code}				
Operand 1: SARAM Operand 2: SARAM	3	3	3 4† 5‡	3+2p _{code} 4+2p _{code} †				
Operand 1: External Operand 2: SARAM	3+p _{op1}	3+p _{op1}	3+p _{op1}	3+p _{op1} +2p _{code}				
Operand 1: DARAM/ ROM Operand 2: External§	3+d _{op2}	3+d _{op2}	3+d _{op2}	3+d _{op2} +2p _{code}				
Operand 1: SARAM Operand 2: External§	3+d _{op2}	3+d _{op2}	3+d _{op2}	3+d _{op2} +2p _{code}				
Operand 1: External Operand 2: External§	4+p _{op1} +d _{op2} +2p _{code}							

[†] If both operands are in the same SARAM block

[‡] If both operands and code are in the same SARAM block § Data move operation is not performed when operand2 is in external data memory.

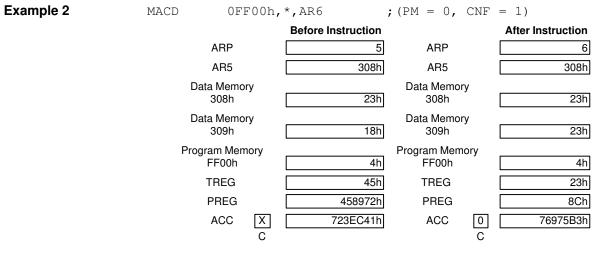
Cycles for a Repeat (RPT) Execution of an MACD Instruction

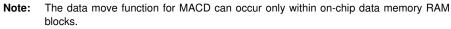
Operand	ROM	DARAM	SARAM	External
Operand 1: DARAM/ ROM Operand 2: DARAM	n+2	n+2	n+2	n+2+2p _{code}
Operand 1: SARAM Operand 2: DARAM	n+2	n+2	n+2	n+2+2p _{code}
Operand 1: External Operand 2: DARAM	n+2+np _{op1}	n+2+np _{op1}	n+2+np _{op1}	n+2+np _{op1} +2p _{code}
Operand 1: DARAM/ ROM Operand 2: SARAM	2n	2n	2n 2n+2†	2n+2p _{code}

[†] If operand 2 and code are in the same SARAM block

[‡] If both operands are in the same SARAM block § If both operands and code are in the same SARAM block

¶ Data move operation is not performed when operand2 is in external data memory.


Operand	ROM	DARAM	SARAM	External
Operand 1: SARAM Operand 2: SARAM	2n 3n‡	2n 3n‡	2n 2n+2† 3n‡ 3n+2§	2n+2p _{code} 3n‡
Operand 1: External Operand 2: SARAM	2n+np _{op1}	2n+np _{op1}	2n+np _{op1} 2n+2+np _{op1} †	2n+np _{op1} +2p _{code}
Operand 1: DARAM/ ROM Operand 2: External¶	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2} +2p _{code}
Operand 1: SARAM Operand 2: External [¶]	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2}	n+2+nd _{op2} +2p _{code}
Operand 1: External Operand 2: External [¶]	2n+2+np _{op1} + nd _{op2}	2n+2+np _{op1} +nd _{op2}	2n+2+np _{op1} +nd _{op2}	2n+2+np _{op1} +nd _{op2} + 2p _{code}


Cycles for a Repeat (RPT) Execution of an MACD Instruction (Continued)

[†] If operand 2 and code are in the same SARAM block [‡] If both operands are in the same SARAM block § If both operands and code are in the same SARAM block

¶ Data move operation is not performed when operand2 is in external data memory.

Example 1	MACD	0FF00h,	08h	<pre>h ;(DP = 6: addresses 0300h-037Fh, ;PM = 0: no shift of product, ;CNF = 1: RAM B0 configured to ;program memory).</pre>			
				Before Instruction			After Instruction
		Data Memor 308h	у	23h	Data Memor 308h	ry	23h
		Data Memor 309h	у	18h	Data Memor 309h	ſy	23h
	F	rogram Mem FF00h	ory	4h	Program Mem FF00h	iory	4h
		TREG		45h	TREG		23h
		PREG		458972h	PREG		8Ch
		ACC	X	723EC41h	ACC	0	76975B3h
			С			С	

Syntax	MAR dmaDirect addressingMAR ind [, ARn]Indirect addressing				
Operands	n: Value from 0 to 7 designating the next auxiliary register ind: Select one of the following seven options: * *+ *- *0+ *0- *BR0+ *BR0-				
Opcode	MAR dma 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
	1 0 0 0 1 0 1 1 0 dma				
	MAR ind [, AR n] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
	1 0 0 0 1 0 1 1 1 ARU N NAR				
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).				
Execution	Event(s)Addressing modeIncrement PCDirect				
	Increment PC Indirect Modify (current AR) and (ARP) as specified				
Status Bits	AffectsAddressing modeNoneDirect				
	ARP and ARB Indirect				
Description	In the direct addressing mode, the MAR instruction acts as a NOP instruction.				
	In the indirect addressing mode, an auxiliary register value and the ARP value can be modified; however, the memory being referenced is not used. When MAR modifies the ARP value, the old ARP value is copied to the ARB field of ST1. Any operation that MAR performs with indirect addressing can also be performed with any instruction that supports indirect addressing. In addition, the ARP can also be loaded by an LST instruction.				
	The LARP instruction from the 'C25 instruction set is a subset of MAR. For ex- ample, MAR *, AR4 performs the same function as LARP 4, which loads the ARP with 4.				
	For loading an auxiliary register, see the description for the LAR instruction. For storing an auxiliary register value to data memory, see the SAR instruction.				

Words	1							
Cycles		Cycles for a Single MAR Instruction						
	ROM	DAF	RAM SA	ARAM	External			
	1	1	1		1+p			
		Cycles for a Re	epeat (RPT) Execu	tion of an MAI	R Instruction			
	ROM	DAF	RAM SA	ARAM	External			
	n	n	n		n+p			
Example 1	MAR	*,AR1	;Load the .	ARP with 1				
			Before Instruction		After Instruction			
		ARP	0	ARP	1			
		ARB	7	ARB	0			
Example 2	MAR	*+, AR5	;Increment	current a	uxiliary			
			;register	(AR1) and	load ARP			
			;with 5.					
			Before Instruction		After Instruction			
		AR1	34h	AR1	35h			
		ARP	1	ARP	5			
		ARB	0	ARB	1			

Syntax	MPY dmaDirect addressingMPY ind [, ARn]Indirect addressingMPY #kShort immediate addressing				
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerk:13-bit short immediate valueind:Select one of the following seven options:**+**0+* BR0+* BR0-				
Opcode	MPY <i>dma</i> 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 0 1 0 0 0 dma				
	MPY <i>ind</i> [, AR <i>n</i>] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
	0 1 0 1 0 1 0 0 1 ARU N NAR				
	Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9). MPY #k 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 k k 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1				
Execution	Increment PC, thenAddressing mode \underline{Event} Addressing mode $(TREG) \times (data-memory address) \rightarrow PREG$ Direct or indirect $(TREG) \times k \rightarrow PREG$ Short immediate				
Status Bits	None				
Description	The contents of TREG are multiplied by the contents of the addressed data memory location. The result is placed in the product register (PREG). With short immediate addressing, TREG is multiplied by a signed 13-bit constant. The short-immediate value is right justified and sign extended before the multiplication, regardless of SXM.				
Words	1				

Cycles

Cycles for a Single MPY Instruction (Using Direct and Indirect Addressing)

	Program					
Operand	ROM	DARAM	SARAM	External		
DARAM	1	1	1	1+p		
SARAM	1	1	1, 2†	1+p		
External	1+d	1+d	1+d	2+d+p		

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPY Instruction (Using Direct and Indirect Addressing)

	Program				
Operand	ROM	DARAM	SARAM	External	
DARAM	n	n	n	n+p	
SARAM	n	n	n, n+1†	n+p	
External	n+nd	n+nd	n+nd	n+1+p+nd	

[†] If the operand and the code are in the same SARAM block

DAT13

ROM	DARAM	SARAM	External
1	1	1	1+p

;(DP = 8)

Example 1

MPY

	Before Instruction		After Instruction
Data Memory		Data Memory	
40Dh	7h	40Dh	7h
TREG	6h	TREG	6h
PREG	36h	PREG	2Ah

Multiply MPY

Example 2	MPY	*,AR2			
			Before Instruction		After Instruction
		ARP	1	ARP	2
		AR1	40Dh	AR1	40Dh
		Data Memory		Data Memory	
		40Dh	7h	40Dh	7h
		TREG	6h	TREG	6h
		PREG	36h	PREG	2Ah
Example 3	MPY	#031h			
			Before Instruction		After Instruction
		TREG	2h	TREG	2h
		PREG	36h	PREG	62h

Syntax	MPYA dm MPYA ina		R n]							Direct ndire			-		
Operands	dma: n: ind:	Va	alue	from one	0 to 1	7 des e foll	signa owing	ry ad ting t g sev *Bl	he ne en op	ext au		ary re	giste	er	
Opcode	ΜΡΥΑ α	lma													
-	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1	0	1	0	0	0	0	0				dma			
	MPYA i	nd [, I	AR <i>n</i>]												
	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1	0	1	0	0	0	0	1		ARU		Ν		NAR	
Execution Status Bits Description	Increment (ACC) + s (TREG) × Affected b PM and O The conte memory lo vious proc	hiftec (data <u>y</u> VM nts o catio luct, s	I (PR t-mer f TRI n. Th	EG) nory <u>Affi</u> Ca EGa	addr <u>ects</u> and C re mu	ess) V ultipli plac	ied b	y the the p	roduc	ct reg	ister	(PRI	EG).	Thep	ore-
Words	1														
Cycles	•			Cvel	ae for	a Si	nalo	МРҮА	Inet	ructio	'n				
				Oyen	03 101	u 01	ingic	Prog							
	Operand	RC	DM		0	DARA	M	3	SAR	АМ		Ex	terna	al	
	DARAM	1			1				1			1+			
	SARAM	1			1				1, 2†			1+	•		
	External	1+	d		1	+d			1+d			2+	d+p		
	† If the ope	and a	nd the	code	are in	the sa	ame S	ARAM	block						

[†] If the operand and the code are in the same SARAM block

	Cy	cles for a R	epeat (RPT) Executi	on of an MP	YA Ins	truction
			Pi	rogram		
	Operand	ROM	DARAM	SARAM		External
	DARAM	n	n	n		n+p
	SARAM	n	n	n, n+1†		n+p
	External	n+nd	n+nd	n+nd		n+1+p+nd
	† If the operation	and and the coo	de are in the same SAR	AM block		
Example 1	MPYA	DAT13	;(DP = 6, E	PM = 0)		
			Before Instruction			After Instruction
		Memory		Data Memor	у	
		30Dh	7h	30Dh		7h
		FREG	6h	TREG		6h
	F	PREG	36h	PREG		2Ah
		ACC X	54h	ACC	0	8Ah
		С			С	
Example 2	MPYA	*,AR4	; (PM = 0)			
			Before Instruction			After Instruction
		ARP	3	ARP		4
		AR3	30Dh	AR3		30Dh
		a Memory 30Dh	7h	Data Memor 30Dh	у	7h
	٦	TREG	6h	TREG		6h
	F	PREG		PREG		2Ah
		ACC X	54h	ACC	0	8Ah
		C			C	

Syntax	MPYS dm. MPYS ind								Direct ndire			-		
Operands	dma: n: ind:	Value Selec	Bs of t from t one + *-	0 to of the	7 des	signa	ting t g sev	he n	ext a ption		ıry re	giste	er	
Opcode	MPYS a	lma												
	15 14	13 12	. 11	10	9	8	7	6	5	4	3	2	1	0
	0 1	0 1	0	0	0	1	0				dma			
	MPYS in	nd [, AR r	7]											
	15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1 Note: A	0 1 .RU, N, and	0	0	0	1	1		ARU		Ν		NAR	
Execution Status Bits Description	Increment (ACC) – sk (TREG) \times Affected b PM and O The conter memory lo vious prod the accum	nifted (Pl (data-me VM nts of TF cation. T uct, shift	REG) emory <u>Aff</u> C a REG a he res ed as	addr <u>fects</u> and C ure mi sult is define	ess))V ultipli place ed by	ed b ed in ' the l	y the the p PM si	rodu tatus	ct reg bits,	ister is als	(PRI so su	EG).	Thep	ore-
We add		,												
Words	1			_										
Cycles			Cycl	es for	' a Si	ngle	MPYS Prog		ructio	on				
	Operand	ROM		г	DARA	M	Flog	SAF			Fx	tern	al	
	DARAM	1		1				1			1+			
	SARAM	1		1				1, 2	t		1+			
	External	1+d		1	+d			1+d			2+	d+p		
	† If the oper	and and th	e code	are in	the sa	ame S	ARAM	block	ί					

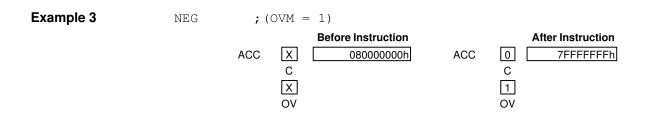
	C	ycles for a Re	epeat (RPT) Executi	on of an MP	'S Instruction	
			Pr	ogram		
	Operand	ROM	DARAM	SARAM	External	
	DARAM	n	n	n	n+p	
	SARAM	n	n	n, n+1†	n+p	
	External	n+nd	n+nd	n+nd	n+1+p+nd	
	† If the opera	and and the co	de are in the same SAR	AM block		
Example 1	MPYS	DAT13	;(DP = 6, P	PM = 0)		
			Before Instruction		After Instruc	tion
		a Memory 30Dh	7h	Data Memor 30Dh	у	7h
	-	TREG	6h	TREG		6h
	F	PREG	36h	PREG		2Ah
		ACC X	54h	ACC	1	1Eh
		С			C	
Example 2	MPYS	* , AR5	;(PM = 0)			
			Before Instruction		After Instruc	tion
		ARP	4	ARP		5
		AR4	30Dh	AR4	3	30Dh
		a Memory 30Dh	7h	Data Memor 30Dh	у	7h
	-	TREG	6h	TREG		6h
	F	PREG	36h	PREG		2Ah
		ACC X	54h	ACC	1	1Eh
		С			С	

Syntax	MPYL MPYL			R n]							Direct Indire			-		
Operands	dma: n: ind:		Va	alue	from one	0 to [·]	7 de: e foll	signa Iowing	-	he n en o	ext au		ıry re	giste	ər	
Opcode	MP	YU a	lma													
	15	14 1	13 0	12 1	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	1	0	1	0	1	0				dma			
	MP 15	YU ir 14	nd [, A 13	(R <i>n</i>) 12	44	10	0	0	7	e	5	4	2	0	1	0
	0	14	0	1	11 0	10 1	9	8	1	6	5 ARU	4	3 N	2	NAR	0
	Note	e: A	RU, N	l, and	NAR a	are del	ined i	in Sec	tion 6.	3, <i>Ind</i>	lirect Ac	ddress	sing M	lode (page 6	i-9).
Execution	Increr Unsig					gned	(dat	ta-me	emory	v adc	dress)	ightarrow F	PREG	à		
Status Bits	None This i	nstru	ction	is no	ot affe	ected	l by S	SXM.								
Description	The u addre (PRE tion, v When or to t of the when used The N produ uct.	ssed G). T vith th he C/ PRE PM = if uns	data he m he M ther i ALU, G. T = 3 (ri signe	i-mer nultipl SB o instru the v his s ight-s d pro	mory ier a f bot uctior value hiften shift-l oduct	locat cts as h ope pass r alwa by-6 r s are parti	ion. s a s erand ses fi ays in node des cula	The re- igned ds for the re- irst th nvoke e). Th ired. rly us	result d 17 > rced t esultin rough es sig nerefo	is pl < 17- o 0. ng P n the jn ex pre, t	laced bit mu REG produ ttensic his sh	in th ultipli uct sl on or ift m	e pro ier fo e to o hifter n the ode s multi	duc r this data at th PRI shou	t regis s instr mem ne out EG va Ild not	ster ruc- ory put lue t be
Words	1															

Cycles for a Single MPYU Instruction										
	Program									
Operand	ROM	DARAM	SARAM	External						
DARAM	1	1	1	1+p						
SARAM	1	1	1, 2†	1+p						
External	1+d	1+d	1+d	2+d+p						

[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPYU Instruction


	Program								
Operand	ROM	DARAM	SARAM	External					
DARAM	n	n	n	n+p					
SARAM	n	n	n, n+1†	n+p					
External	n+nd	n+nd	n+nd	n+1+p+nd					

[†] If the operand and the code are in the same SARAM block

Example 1	MPYU	16	; (DP = 4:	addresses 020	0h-027Fh)
			Before Instruction		After Instruction
		Data Memory 210h	0FFFh	Data Memory 210h	0FFFFh
		TREG	0FFFh	TREG	0FFFFh
		PREG	1h	PREG	0FFFE0001h
Example 2	MPYU	*,AR6			
	111 10	,			
	111 10	, 1110	Before Instruction		After Instruction
	111 10	ARP	Before Instruction	ARP	After Instruction
	111 10			ARP AR5	
		ARP AR5 Data Memory	5 210h	AR5 Data Memory	6 210h
		ARP AR5 Data Memory 210h	5 210h	AR5 Data Memory 210h	6 210h
		ARP AR5 Data Memory	5 210h	AR5 Data Memory	6 210h

Cycles

Syntax	NEG													
Operands	None													
Opcode	15 14 1 0	<u>13 12</u> 1 1	11 1	10 1	9 1	8 0	7 0	6 0	5 0	4 0	3 0	2 0	1 1	0
Execution		nt PC, the $-1 \rightarrow AC$												
Status Bits	<u>Affected</u> OVM	<u>by</u>		f <u>ects</u> and (
Description	complem = 1, the result is a	ent of the nent). The accumula 8000 000 values of	OV bi tor cor Dh. Th	t is s ntent e car	et w is re rry bi	hen i eplac it (C)	takin ed w is cle	g the vith 7 eared	NEG FFF d to 0	d of 8 FFF by th	8000 Fh. I his ir	0000 f OV)h. If M = ction	OVM 0, the for all
Words	1													
Cycles			Сус	les f	or a	Singl	e NE	G Ins	truct	ion				
	ROM		DAR	АМ			SAF	RAM			Ext	ernal		
	1		1				1				1+p)		
		Cycles fo	-	peat	(RP1	Γ) Ex	-	on of	an N	EG li			1	
	1 ROM	Cycles fo	or a Re DAR	-	(RP	Γ) Ex	ecuti SAF	on of RAM	an N	EG I	nstru Ext	ictior ernal		
		Cycles fo	or a Re	-	(RP	Г) Ex	ecuti		an N	EG li	nstru	ictior ernal		
Example 1	ROM	; (O' ACC	n DAR n	AM X) (Con ^v re Ins		ecuti SAF n -3 on	RAM		+354	nstru Ext n+p 14 2 2	ictior ernal	nstru	ction DD8h

Syntax NMI Operands None Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Description (PC) + 1 \rightarrow stack 24h PC 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Execution(PC) + 1 \rightarrow stack 24h \rightarrow PC 1 \rightarrow INTM $24h \rightarrow$ PC 1 \rightarrow INTM 7
I011110 <th< th=""></th<>
$24h \rightarrow PC$ $1 \rightarrow INTMStatus BitsAffectsINTMThis instruction is not affected by INTM.DescriptionThe NMI instruction forces the program counter to the nonmaskable interruptvector located at 24h. This instruction has the same effect as the hardware$
INTM Inis instruction is not affected by INTM. Description The NMI instruction forces the program counter to the nonmaskable interrupt vector located at 24h. This instruction has the same effect as the hardware
vector located at 24h. This instruction has the same effect as the hardware
nonmaskable interrupt NMI.
Words 1
Cycles Cycles for a Single NMI Instruction
ROM DARAM SARAM External
4 4 4 4+3p†
[†] The 'C2xx performs speculative fetching by reading two additional instruction words. If the PC discontinuity is taken, these two instruction words are discarded.
Example NMI ;PC + 1 is pushed onto the stack, and then ;control is passed to program memory location ;24h.

Syntax	NOP														
Operands	None														
Opcode	15 14 1 0	13 0	12 0	11 1	10 0	9 1	8 1	7 0	6 0	5 0	4 0	3 0	2 0	1 0	0
Execution	Incremen	t PC													
Status Bits	None														
Description	No operat instructior		•									-	e PC	. The	NOP
Words	1														
Cycles				Су	cles f	or a	Singl	le NC	P Ins	struc	tion				
	ROM			DAF	RAM			SAF	RAM			Ext	ernal		
	1			1				1				1+p)		
		Cycle	es foi	' a Re	epeat	(RP	T) Ex	ecuti	on o	f an I		nstru	uctior	ו	
	ROM			DAF	RAM			SAF	RAM			Ext	ernal		
	n			n				n				n+p)		

Syntax	NORM ind Indirect addressing
Operands	ind: Select one of the following seven options: * * ₊ *– *0 ₊ *0– *BR0 ₊ *BR0–
Opcode	NORM ind 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 0 0 0 1 ARU N NAR Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9).
Execution	Increment PC, then If (ACC) = 0: Then TC \rightarrow 1; Else, if (ACC(31)) XOR (ACC(30)) = 0: Then TC \rightarrow 0, (ACC) \times 2 \rightarrow ACC Modify (current AR) as specified; Else TC \rightarrow 1.
Status Bits	<u>Affects</u> TC
Description	The NORM instruction normalizes a signed number that is contained in the ac- cumulator. Normalizing a fixed-point number separates it into a mantissa and an exponent. By finding the magnitude of the sign-extended number. An exclu- sive-OR operation is performed on accumulator bits 31 and 30 to determine if bit 30 is part of the magnitude or part of the sign extension. If they are the same, they are both sign bits, and the accumulator is left shifted to eliminate the extra sign bit.
	The current AR is modified as specified to generate the magnitude of the expo- nent. It is assumed that the current AR is initialized before normalization be- gins. The default modification of the current AR is an increment.
	Multiple executions of the NORM instruction may be required to completely normalize a 32-bit number in the accumulator. Although using NORM with RPT does not cause execution of NORM to fall out of the repeat loop automati- cally when the normalization is complete, no operation is performed for the re- mainder of the repeat loop. NORM functions on both positive and negative 2s- complement numbers.

Notes:

For the NORM instruction, the auxiliary register operations are executed during the fourth phase of the pipeline, the execution phase. For other instructions, the auxiliary register operations take place in the second phase of the pipeline, in the decode phase. Therefore:

- The auxiliary register values should not be modified by the two instruction words following NORM. If the auxiliary register used in the NORM instruction is to be affected by either of the next two instruction words, the auxiliary register value will be modified by the other instructions *before* it is modified by the NORM instruction.
- 2) The value in the auxiliary register pointer (ARP) should not be modified by the two instruction words following NORM. If either of the next two instruction words specify a change in the ARP value, the ARP value will be changed *before* NORM is executed; the ARP will not be pointing at the correct auxiliary register when NORM is executed.

Words	1														
Cycles		Cycle	es for a Single NOF	RM Instruction	n										
	ROM	DAR	AM SAF	RAM	External										
	1 1 1 1+p														
	Cycles for a Repeat (RPT) Execution of a NORM Instruction														
	ROM	DAR	AM SAF	RAM	External										
	n	n	n		n+p										
Example 1	NORM	*+													
		_	Before Instruction		After Instruction										
		ARP	2	ARP	2										
		AR2	00h	AR2											
		ACC X	0FFFFF001h	ACC	X 0FFFE002h										
		X			0										
		TC			тс										
Example 2	31-Bit	Normalization:													
	LOOP	MAR *, AR1 LAR AR1, #01 NORM *+	n ;Clear out e ;One bit is	exponent co normalized	counter. zed.										
		BCND LOOP,NT	C $i \perp \perp C = 0$,	magnitude	not found yet.										

Example 3 15-Bit Normalization:

```
MAR *,AR1 ;Use AR1 to store the exponent.
LAR AR1,#0Fh ;Initialize exponent counter.
RPT #14 ;15-bit normalization specified (yielding
;a 4-bit exponent and 16-bit mantissa).
NORM *- ;NORM automatically stops shifting when first
;significant magnitude bit is found,
;performing NOPs for the remainder of the
;repeat loops.
```

The method used in Example 2 normalizes a 32-bit number and yields a 5-bit exponent magnitude. The method used in Example 3 normalizes a 16-bit number and yields a 4-bit magnitude. If the number requires only a small amount of normalization, the Example 2 method may be preferable to the Example 3 method because the loop in Example 2 runs only until normalization is complete. Example 3 always executes all 15 cycles of the repeat loop. Specifically, Example 2 is more efficient if the number requires three or fewer shifts. If the number requires six or more shifts, Example 3 is more efficient.

Syntax	OR <i>dma</i> OR <i>ind</i> [, A OR #/k [, <i>s</i> / OR #/k, 16	Direct addressing Indirect addressing Long immediate addressing Long immediate with left shift of 16												
Operands	dma: shift: n: lk: ind:	Left s Value 16-bi Seleo	from long t one	alue fi 0 to imme of the	rom 7 de: ediat	0 to 1 signa e valı	ess ults to 0) next auxiliary register options: + *BR0–							
Opcode	OR <i>dma</i> 15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1	1 0	1	1	0	1	0				dma	_		
	OR <i>ind</i> [,	-	44	10	~	•	7	~	F		0	0	4	0
	15 14	13 12 1 0	11 1	10 1	9	8	7	6	5 ARU	4	3 N	2	1 NAR	0
		RU, N, and						3. Ind		ddres				
								o, ma			onig it	1000 (1	Jugo	, 0).
	OR # <i>lk</i> [, 15 14	<i>snin</i>] 13 12	11	10	9	8	7	6	5	4	3	2	1	0
	1 0	1 1	1	1	1	1	, 1	1	0	0			nift	
				-	-		k	-	-	-				
		101												
	OR # <i>lk</i> [, 15 14	-	11	10	9	8	7	6	5	4	3	2	1	0
	1 0	1 1	1	1	1	0	1	0	0	0	0	0	1	0
						I	k							
Execution	Increment I <u>Event(s)</u> (ACC(15:0) (ACC(31:10 (ACC) OR (ACC) OR)) OR (d 6)) → A lk × 2 ^{sl}	ata-m CC(31 ^{nift} →	1:16) ACC	ry ad	dress	5) → .	ACC	:(15:0) Di La La	irect ong ir ong ir	or incontraction of the second	direc diate diate	t

Status Bits	None This instruc	tion is not affec	ted by SXM.		
Description	tents of the long-immed mains in the zero filled, i of the accur ing is used shifted into	addressed data diate value may accumulator. A regardless of the nulator is unaffe , or if immediate	-memory locatio be shifted before Il bit positions un e value of the SX cted by this instru- e addressing is cant bits of the op	n or a long-in the OR oper occupied by t M status bit. uction if direct used with a s	mulator and the con- mediate value. The ration. The result re- he data operand are Thus, the high word t or indirect address- shift of 0. Zeros are ediate addressing is
Words	<u>Words</u> 1				<u>Addressing mode</u> Direct or indirect
	2				Long immediate
Cycles	Cycles fo	or a Single OR In	struction (Using	Direct and Inc	lirect Addressing)
			Pro	gram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	1	1	1	1+p
	SARAM	1	1	1, 2†	1+p
	External	1+d	1+d	1+d	2+d+p
	† If the opera	nd and the code are	e in the same SARAN	VI block	
	Cycles for	a Repeat (RPT)	Execution of an (Indirect Address		n (Using Direct and
			Pro	gram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	n	n	n	n+p
	SARAM	n	n	n, n+1†	n+p
	External	n+nd	n+nd	n+nd	n+1+p+nd
	† If the opera	nd and the code are	e in the same SARAN	VI block	
	Cycles	or a Single OR I	nstruction (Using	Long Immed	iate Addressing)

ROM	DARAM	SARAM	External
2	2	2	2+2p

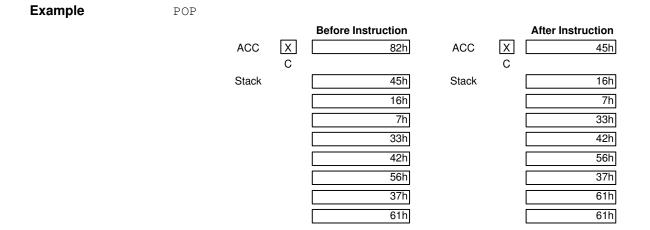
Example 1	OR DAT8 ; (1	DP =	8)			
			Before Instruction			After Instruction
	Data Memo	ry	[]	Data Memory	/	
	408h		0F000h	408h		0F000h
	ACC	X	100002h	ACC	X	10F002h
		С			С	
Example 2	OR *, ARO					
			Before Instruction			After Instruction
	ARP		1	ARP		0
	AR1		300h	AR1		300h
	Data Memo	ry		Data Memory	/	
	300h		1111h	300h		1111h
	ACC	X	222h	ACC	X	1333h
		С			С	
Example 3	OR #08111h,8					
	ACC	X C	Before Instruction 0FF0000h	ACC	X C	After Instruction 0FF1100h

Syntax	OUT dma, PA OUT ind, PA [, P	4R <i>n</i>]			Direct addressing Indirect addressing								
Operands	PA: 16 n: Va	LSBs of the data-memory address β -bit I/O address alue from 0 to 7 designating the next auxiliary register elect one of the following seven options: *+ $* *0+$ $*0 *BR0+$ $*BR0-$											
Opcode	OUT dma, PA	1											
opocao	15 14 13	12 11	10 9	8	7	6	5	4	3	2	1	0	
	0 0 0	0 1	1 0	0	0				dma				
				P	A								
	OUT ind, PA [[, AR <i>n</i>]											
	15 14 13	12 11	10 9	8	7	6	5	4	3	2	1	0	
	0 0 0	0 1	1 0 0 1 ARU N NAR PA										
	Note: ARU, N,	, and NAR a	re defined			, Indi	irect Ac	ddres	sing M	lode (page 6	-9).	
Execution	Increment PC, t PA \rightarrow address b		40										
	(data-memory a (data-memory a	,		us D1	5–D0								
Status Bits	None												
Description	The OUT instruct specified I/O loc STRB, R/W, and write.	cation. Th	ne IS line	e goes	s low	to ir	ndicat	te ar	n I/O	acce	ess	Гhe	
	RPT can be use data memory to			nstruc	tion to	o wr	ite co	onse	cutive	e wo	rds fr	om	
Words	2												

Cycles

Cvcles	for a	Sinale	OUT	Instruction
0,0.00		. e		

			Program	
Operand	ROM	DARAM	SARAM	External
Source: DARAM	3+io _{dst}	3+io _{dst}	3+io _{dst}	5+io _{dst} +2p _{code}
Source: SARAM	3+io _{dst}	3+io _{dst}	3+io _{dst} 4+io _{dst} †	5+io _{dst} +2p _{code}
Source: External	3+d _{src} +io _{dst}	3+d _{src} +io _{dst}	3+d _{src} +io _{dst}	6+d _{src} +io _{dst} +2p _{code}


[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OUT Instruction

	Program										
Operand	ROM		DARAM		SARAM	External					
Destination: DARAM	3n+nio _{ds}	st	3n+nio _{dst}		3n+nio _{dst}	3n+3+nio _{dst} +2p _{code}					
Destination: SARAM	3n+nio _{ds}	st	3n+nio _{dst}		3n+nio _{dst} 3n+1+nio _{dst} †	3n+3+nio _{dst} +2p _{code}					
Destination: External	5n–2+nc nio _{dst}	I _{src} +	5n–2+nd _{src} -	+nio _{dst}	5n–2+nd _{src} +nio _{dst}	5n+1+nd _{src} +nio _{dst} + 2p _{code}					
† If the operand and the c	ode are in tł	ne same	SARAM block								
Example 1	OUT	DATO	,100h	;dat	a memory locati ipheral at I/O						
Example 2	OUT	*,10	Oh	;cur	eferenced by register to port address						

Syntax	PAC															
Operands	None															
Opcode	15 1	14 0	13 1	12 1	<u>11</u> 1	10 1	9 1	8 0	7 0	6 0	5 0	4	3 0	2 0	1	0
Execution	Incren shifteo															
Status Bits	<u>Affect</u> PM	ed bj	Ľ													
Description	The co the ac				G, sh	ifted	as s	pecif	ied b	y the	PM	status	s bits	s, is lo	ade	d into
Words	1															
Cycles					Сус	cles f	or a s	Singl	e PA	C Ins	tructi	on				
Cycles	ROM				Cyc DAR		or a S	Singl	e PA SAF		tructi	on	Exte	ernal		
Cycles	ROM 1				-		or a s	Singl			tructi	on	Exte			
Cycles	1		Cycle	es foi	DAR 1 r a Re	AM			SAF 1	ion of			1+p struc	tion		
Cycles	1 ROM		Cycle	es foi	DAR 1 r a Re DAR	AM			SAF 1 cecuti SAF	ion of			1+p struc Exte	tion ernal		
Cycles	1		Cycle	es foi	DAR 1 r a Re	AM			SAF 1	ion of			1+p struc	tion ernal		
Cycles Example	1 ROM			es foi	DAR 1 r a Re DAR	AM	: (RP	T) Ex	SAF 1 cecuti SAF	ion o	faPA	\C In:	1+p struc Exte	tion ernal		
	1 ROM n		;	es for	DAR 1 r a R DAR n = 0	AM epeat	: (RP	T) Ex	SAF 1 cecuti SAF n of	ion of AM	f a PA	\C In:	1+p struc Exte n+p	tion ernal		
	1 ROM n			es for	DAR 1 r a R (DAR n = 0	epeat AM	: (RP	T) Ex nift truction 14	SAF 1 secuti SAF n	ion of AM pro	faPA	\C In:	1+p struc Exte	tion ernal		ction 144h

Syntax	POP															
Operands	None															
Opcode	15 1	14 0	<u>13</u> 1	12 1	<u>11</u> 1	10 1	9 1	8 0	7 0	6 0	5 1	4 1	3 0	2 0	1 1	0 0
Execution	Increation (TOS) $0 \rightarrow P$ Pop s	$) \rightarrow A$ ACC(ACC(31:16	15:0 3)))											
Status Bits	None															
Description	The c then t is set	the st	tack v	value	•			•	,	•						
	The h Any ti catior two st if mor tions) same	ime a n, and tack v re tha occu	pop the vords n sev ur bef	occu top will ven s fore	urs, e valu have stacl any	every e is r e the < pop pusł	stac emo samo s (us nes c	k val ved f valu ing t occur	ue is rom ue. B he P(, all I	copi the s ecau OP, F evels	ed to stack se ea POPI s of t	o the Afte ach s D, RE the s	next er a p tack ETC, tack	highe oop, t value or RE	er sta he b e is co ET in:	ck lo- ottom opied, struc-
Words	1															
Cycles					Су	cles f	or a	Sing	le PO	P Ins	struc	tion				
	ROM				DAF	RAM			SAF	RAM			Ext	ernal		
	1				1				1				1+p)		
		(Cycle	es fo	r a R	lepea	t (RP	T) Ex	cecut	ion o	of a P	OP li	nstru	ction		
	ROM				DA	RAM			SAF	RAM			Ext	ernal		
	n				n				n				n+p)		

Syntax	POPD dmaDirect addressing POPD ind [, AR n]Indirect addressing												
Operands	dma: n: ind:		from t one	0 to 3 of the	7 des e follo	igna	ting t g sev		xt auxilia	ary re	giste	r	
Opcode	POPD d	ma											
	15 14	13 12	11	10	9	8	7	6	5 4	3	2	1	0
	1 0	0 0	1	0	1	0	0			dma			
	POPD in	nd [, AR n]											
	15 14	13 12	11	10	9	8	7	6	54	3	2	1	0
	1 0	0 0	1	0	1	0	1	A	RU	Ν		NAR	
Execution Status Bits	Increment (TOS) \rightarrow d Pop stack of None	ata-mem one level	iory a			trop	oforr	odiato	the data		moru	locat	ion
Description	The value f specified b ues are cop for the POI	y the inst pied up or	ructio ne lev	on. In el. Th	the lo le sta	ower ck op	seve berat	en loca ion is e	ations of explained	the s d in th	stack ne de	, the v script	val-
Words	1												
Cycles			Cycle	es for	a Sir	ngle	POPE) Instru	uction				
							Prog	Iram					
	Operand	ROM		۵	ARA	М		SARA	AM	Ex	terna	al	
	DARAM	1		1				1		1+	p		
	SARAM	1		1				1, 2†		1+	p		
	External	2+d		2	+d			2+d		4+	d+p		
	t If the opera	and and the		are in	the sa	mo S		block					

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

	С	ycles for a l	Repeat (RPT) Execut	ion of a POPD In	struction
			Pr	ogram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	n	n	n	n+p
	SARAM	n	n	n, n+2†	n+p
	External	2n+nd	2n+nd	2n+nd	2n+2+nd+p
	† If the opera	and and the co	ode are in the same SAR	AM block	
Example 1	POPD	DAT10	;(DP = 8)		
			Before Instruction		After Instruction
		a Memory 40Ah	55h	Data Memory 40Ah	92h
		Stack	92h	Stack	72h
			72h		8h
			8h		44h
			44h		81h
			81h		75h
			75h		32h
			32h		0AAh
			0AAh		0AAh
Example 2	POPD	*+,AR1			
			Before Instruction		After Instruction
		ARP	0	ARP	1
		AR0	300h	AR0	301h
		a Memory 300h	55h	Data Memory 300h	92h
		Stack	92h	Stack	72h
			72h		8h
			8h		44h
			44h		81h
			81h		75h
			75h		32h
			32h		0AAh
			0AAh		0AAh

Syntax	PSHD dmaDirect addressingPSHD ind [, ARn]Indirect addressing												
Operands	dma: n: ind:		from t one	0 to 7 of the	7 des	signa	ting t g sev	he ne	ext auxilia otions: *BR0-		egiste	ər	
Opcode	PSHD di	ma											
	15 14	13 12	11	10	9	8	7	6	54	3	2	1	0
	0 1	1 1	0	1	1	0	0			dma			
	PSHD in	d [, AR n]										
	15 14	13 12	11	10	9	8	7	6	54	3	2	1	0
	0 1	1 1	0	1	1	0	1		ARU	Ν		NAR	
Execution Status Bits Description	Increment (data-mem Push all sta None The value f	ory addr ack locat	ess) - ions d	down	one			ecified	d by the i	nstru	ction	is tra	ns-
	ferred to the ues are als PUSH instr	e top of tl so copied	ne sta d one	ack. Ir level	the dow	lowe /n, a:	r sev s exp	en loc olaine	cations of d in the	f the s desci	stack riptio	, the v	/al-
Words	1												
Cycles			Cycl	es for	a Si	ngle	PSHE) Instr	ruction				
							Prog	Iram					
	Operand	ROM		0	ARA	М		SAR	AM	E	terna	al	
	DARAM	1		1				1		1+	p		
	SARAM	1		1				1, 2†		1+	ъ		
	External	1+d		1	+d			1+d		2+	d+p		
	t If the opera	and and the	o codo	aro in	the co	moc		block					

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

	C	cycles for a	Repeat (RPT) Execu	tion of a PSHD In	struction
			Р	rogram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	n	n	n	n+p
	SARAM	n	n	n, n+1†	n+p
	External	n+nd	n+nd	n+nd	n+1+nd+p
	† If the operation	and and the o	code are in the same SAF	AM block	
Example 1	PSHD	127	;(DP = 3:	addresses 018	80-01FFh)
			Before Instruction		After Instruction
	Data	a Memory 1FFh	65h	Data Memory 1FFh	65h
		Stack	2h	Stack	65h
		Older	33h	Olack	03h
			78h		33h
			99h		78h
			42h		99h
			50h		42h
			0h		50h
			0h		0h
Example 2	PSHD	*,AR1			
			Before Instruction		After Instruction
		ARP	0	ARP	1
		AR0	1FFh	AR0	1FFh
	Data	a Memory 1FFh	12h	Data Memory 1FFh	12h
		Stack	2h	Stack	12h
		oluon	33h	Otdok	2h
			78h		33h
			99h		78h
			42h		99h
			50h		42h
			0h		50h
			Oh		Oh

_ - 1 fo п otic

Syntax	PUSH														
Operands	None														
Opcode	<u>15 14</u> 1 0	<u>13</u>	12 1	<u>11</u> 1	<u>10</u> 1	9 1	8	7	6 0	<u>5</u> 1	4	<u>3</u> 1	2	1 0	0
Execution	Increme Push all ACC(15	nt PC, stack	then locat	1	dow		e lev	-							
Status Bits	None														
Description	The stac the accu													wer h	alf of
	The hard If more t INTR, or lost with	han ei NMI ir	ght p nstru	oush ictior	es (d 1) occ	ue to cur be	a C	ALA,	CAL	L, C	C, P	SHD	, PUS	SH, T	RAP,
Words	1														
Cycles				Сус	les fo	or a S	Single	e PUS	SH In	struc	tion				
	ROM				RAM			SAF	2 ~ • •			Evt	ernal		
				DAF	NAIVI				1AIVI				orna		
	1			1				1				1+p			
		Cycle	s for	1		(RP1	Г) Ех о	1		a PU	ISH I	1+p)		
		Cycle	s for	1 [.] a Re		(RP1	ſ) Ex	1 ecuti		a PU	ISH I	1+p nstru)	1	
	1	Cycle	s for	1 [.] a Re	epeat	(RP1	Г) Ех	1 ecuti	on of	a PU	ISH I	1+p nstru) Ictior ernal	1	
Example	1 ROM	Cycle	s for	1 a Re DAF	epeat	(RP1	Г) Exc	1 ecuti SAF	on of	a PU	ISH I	1+p nstru Ext) Ictior ernal	1	
Example	1 ROM n	Cycle		1 a Re DAF	epeat RAM		tructi	1 ecution SAF	on of }AM	a PU	[1+p nstru Ext	o ernal	1	ction 7h
Example	1 ROM n			1 a Re DAF	epeat RAM		tructi	1 ecution SAF n	on of		[1+p nstru Ext n+p	o ernal	1	
Example	1 ROM n	ACC		1 a Re DAF	epeat RAM		tructi	1 ecuti SAF n on 7h 2h 5h	on of	ACC	[1+p nstru Ext n+p	o ernal	1	7h 7h 2h 5h
Example	1 ROM n	ACC		1 a Re DAF	epeat RAM		tructi	1 ecuti SAF n on 7h 2h 2h 3h 0h	on of	ACC	[1+p nstru Ext n+p	o ernal	1	7h 7h 2h 5h 3h
Example	1 ROM n	ACC		1 a Re DAF	epeat RAM		tructi	1 ecuti SAF n on 7h 2h 5h	on of	ACC	[1+p nstru Ext n+p	o ernal	1	7h 7h 2h 5h
Example	1 ROM n	ACC		1 a Re DAF	epeat RAM		tructi	1 ecuti SAF n on 7h 2h 5h 3h 0h 2h	on of	ACC	[1+p nstru Ext n+p	o ernal	1	7h 7h 2h 5h 3h 0h

Syntax	RET														
Operands	None														
Opcode	15 1	<u>14 13</u> 1 1	12 0	11 1	10 1	9 1	8 1	7 0	6 0	5 0	4 0	3 0	2 0	1 0	0
Execution	,	\rightarrow PC ack on	e leve	el.											
Status Bits	None														
Description	remaiı tines a	ontents ning sta and inte pted pr	ck va rrupt	lues servi	are th ice ro	nen o utine	opie	d up	one	level	. RÉ	Т соі	nclud	es sı	ubrou-
Words	1														
Cycles				Су	cles	ior a	Sing	le RE	T Ins	struct	tion				
	ROM			DA	RAM			SAI	RAM			Ex	terna		
	ROM 4			DA 4	RAM			SA I 4	RAM			Ex		I	
		When t tion wo instruc	rds ha	4 tructio ve en	n reac tered t	he pip	beline.	4 cute pl	hased			4+ e, two	3p additi	onalir	
Example	4	tion wo	rds ha	4 tructio ve en	n reac tered t	he pip	beline.	4 cute pl	hased			4+ e, two	3p additi	onalir	
Example	4 Note:	tion wo	rds ha	4 tructio ve en	n reacl tered t re disc	he pip arded	beline.	4 cute pl When	hased			4+ e, two	3p additi s take	onal ir n, thes	
Example	4 Note:	tion wo instruc P(rds ha tion wo	4 tructio ve en	n reacl tered t re disc	he pip arded	structi	4 cute pl When on	hased	PC dis	contir	4+ e, two	3p additi s take	onal ir n, thes	se two Iction 37h
Example	4 Note:	tion wo	rds ha tion wo	4 tructio ve en	n reacl tered t re disc	he pip arded	eline.	4 cute pl When on 96h	hased	PC dis	contir	4+ e, two	3p additi s take	onal ir n, thes	uction 37h 45h
Example	4 Note:	tion wo instruc P(rds ha tion wo	4 tructio ve en	n reacl tered t re disc	he pip arded	eline.	4 When On 96h 97h	hased	PC dis	contir	4+ e, two	3p additi s take	onal ir n, thes	action 37h 45h 75h
Example	4 Note:	tion wo instruc P(rds ha tion wo	4 tructio ve en	n reacl tered t re disc	he pip arded	structi	4 cute pl When 06h 05h 75h	hased	PC dis	contir	4+ e, two	3p additi s take	onal ir n, thes	action 37h 45h 75h 21h
Example	4 Note:	tion wo instruc P(rds ha tion wo	4 tructio ve en	n reacl tered t re disc	he pip arded	structi	4 When 00 06 06 06 05 15 15 11	hased	PC dis	contir	4+ e, two	3p additi s take	onal ir n, thes	se two action 37h 45h 75h 21h 3Fh
Example	4 Note:	tion wo instruc P(rds ha tion wo	4 tructio ve en	n reacl tered t re disc	he pip arded	structi	4 cute pl When 06h 05h 75h	hased	PC dis	contir	4+ e, two	3p additi s take	onal ir n, thes	action 37h 45h 75h 21h
Example	4 Note:	tion wo instruc P(rds ha tion wo	4 tructio ve en	n reacl tered t re disc	he pip arded	structi	4 Cute pl When 06 06 06 17 15 15 15 15 15 15 15 15 15 15 15 15 15	hased	PC dis	contir	4+ e, two	3p additi s take	onal ir n, thes	se two action 37h 45h 75h 21h 3Fh 45h

Syntax	BETC con	d 1 [, cond 2] [1		
Operands	cond EQ NEQ LT LEQ GT GEQ NC C NOV OV BIO NTC TC UNC	$\frac{Condit}{ACC} = ACC = ACC = ACC = ACC = ACC = CC = $	<i>ition</i> = 0 ≤ 0 ≤ 0 ≥ 0 ≥ 0		
‡					
Opcode	1 1	1 0 1	10 9 8 7 1 TP	ZLVC	3 2 1 0 ZLVC
Execution	lf <i>cond</i> 1 A (TOS)	ND <i>cond</i> 2 AN \rightarrow PC ack one level			
Status Bits	None				
Description	(see the de conditions	escription for th are meaningfu	e RET instruction). Note that not a sting for LT and G	return is executed Il combinations of T is contradictory.
Words	1				
Cycles		Cycle	es for a Single RE	TC Instruction	
	Condition	ROM	DARAM	SARAM	External
	True	4	4	4	4+4p
	False	2	2	2	2+2p
			rms speculative fetch ontinuity is taken, thes		
Example	RETC	GEQ,NOV	;accumulato	s executed i r content is d if the OV ro.	positive

Syntax	ROL															
Operands	None	;														
Opcode	15 1	14 0	<u>13</u> 1	12 1	<u>11</u> 1	10 1	9 1	8 0	7 0	6 0	5 0	4 0	<u>3</u> 1	2 1	1 0	0
Execution	Incre C → (ACC (ACC	ACC (31)	$\dot{c}(0)$ $) \rightarrow 0$	C		:1)										
Status Bits	<u>Affec</u> C															
	This	instru	uction	n is n	ot a	ffecte	d by	SXN	Λ.							
Description	The F bit is															carry
Words	1															
Cycles					Су	cles f	or a	Sing	le RC)L Ins	struc	tion				
	ROM	1			DA	RAM			SA	RAM			Ext	ernal		
	1				1				1				1+p)		
			Cycle	es foi	r a R	epeat	(RP	T) Ex	ecuti	on o	f an F	ROLI	nstru	ictior	1	
	RON				DA	RAM			SA	RAM			Ext	ernal		
	n				n				n				n+p)		
Example	ROL															
			ACC	_	0 C	Befo		tructi 00123			ACC		1 [c	After	Instru 60002	

Syntax	ROR														
Operands	None														
Opcode	15 14 1 0	13 1	12 1	11 1	10 1	9 1	8 0	7 0	6 0	5 0	4 0	3 1	2 1	1 0	0 1
Execution	Increment $C \rightarrow ACC$ (ACC(0)) (ACC(31))	$C(31) \rightarrow C$:0)										
Status Bits	<u>Affects</u> C							_							
	This inst	ructio	n is r	not af	fecte	d by	SXM	1.							
Description	The ROF carry bit mulator i	s shif	ted in	nto th	ne MS	SB of	the a								
Words	1														
				Су	cles f	or a	Singl	e RO	R Ins	struc	tion				
Cycles	ROM			DAF	RAM			SAF	RAM			Ext	ernal		
	1			1				1				1+p)		

		Cycles	R Instruction			
	ROM		DARAM	SARA	M	External
	n		n	n		n+p
Example	ROR					
		ACC	Before Ins	otruction 001235h	ACC	After Instruction 1 5800091Ah C C

Syntax	RPT dma RPT ind [, ARn] RPT #k								Direct addressing Indirect addressing Short immediate							
Operands	dma:7 LSBs of the data-mern:Value from 0 to 7 desigk:8-bit short immediate vind:Select one of the follow**+*-*0+**0+									he n	ext a		ıry re	giste	r	
Opcode	RP1	Г dm	а													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	0	1	1	0				dma			
	RP1	Г ind	[, A F	R <i>n</i>]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	0	1	1	1		ARU		Ν		NAR	
	Note	: A	RU, N	, and	NAR a	are def	ined i	n Sect	tion 6.	3, <i>Ind</i>	lirect Ad	ddres	sing M	lode (j	bage 6	6-9).
	RP1	「 # k														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	1	1	0	1	1				ł	(]
Execution	Incren <u>Event</u> (data-	mem	iory a			→ RF	στς				<u>Addre</u> Direct	or ii	ndire	ct		
	$k \rightarrow R$	PTC									Short	imm	edia	te		
Status Bits	None															
Description	The repeat counter (RPTC) is loaded with the content of the addressed data- memory location if direct or indirect addressing is used; it is loaded with an 8-bit immediate value if short immediate addressing is used. The instruction follow- ing the RPT is repeated <i>n</i> times, where <i>n</i> is the initial value of the RPTC plus 1. Since the RPTC cannot be saved during a context switch, repeat loops are regarded as multicycle instructions and are not interruptible. The RPTC is cleared to 0 on a device reset.															
	RPT is izatior										-	umul	ates	and	norn	nal-
Words	1															

Cycles

Cycles for a Single RPT Instruction (Using Direct and Indirect Addressing)

	Program									
Operand	ROM	DARAM	SARAM	External						
DARAM	1	1	1	1+p						
SARAM	1	1	1, 2†	1+p						
External	1+d	1+d	1+d	2+d+p						

[†] If the operand and the code are in the same SARAM block

Cycles for a Single RPT Instruction (Using Short Immediate Addressing)

	ROM		DARAM	SARAM	E	ternal
	1		1	1	1+	p
Example 1	RPT	DAT127		: addresse ext instru		
			Before Instr	uction		After Instruction
		Data Memory 0FFFh			l Memory IFFFh	0Ch
		RPTC		Oh F	RPTC	0Ch
Example 2	RPT	*,AR1	;Repeat no	ext instru	ction 409	6 times.
			Before Instr	uction		After Instruction
		ARP		0	ARP	1
		AR0		300h	AR0	300h
		Data Memory 300h			ı Memory 300h	0FFFh
		RPTC		Oh F	RPTC	0FFFh
Example 3	RPT	#1	-	ext instru	ction two	
		RPTC	Before Instr		RPTC	After Instruction

Syntax	SACH dma [, shift2]Direct addressingSACH ind [, shift2 [, ARn]]Indirect addressing										
Operands	dma:7 LSBs of the data-memory addressshift2:Left shift value from 0 to 7 (defaults to 0)n:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+										
Opcode	SACH d	ma [, shii	ft2]								
	15 14	13 12	11 1		7	6 5	4	3	2	1	0
	1 0	0 1	1	shift2	0			dma			
	SACH in	-	[, AR n]]							
	15 14	13 12			7	6 5	4	3	2	1	0
	1 0 Note: Al	0 1	1 NAB are	shift2 defined in Se	1	ARU		N sing M	lode (i	NAR	-9)
Execution	Increment 16 MSBs o	PC, then						U			,
Status Bits	This instruc	ction is no	ot affect	ed by SXN	1						
Description	The SACH instruction copies the entire accumulator into the output shifter, where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the upper 16 bits of the shifted value into data memory. During the shift, the low-or-der bits are filled with zeros, and the high-order bits are lost. The accumulator itself remains unaffected.									the -or-	
Words	1										
Cycles			Cycles	or a Single	SACH	Instruct	on				
					Prog	jram					
	Operand	ROM		DARAM		SARAM		E>	terna	al	
	DARAM	1		1		1		1+	р		

1

2+d

SARAM

External

1

2+d

1, 2†

2+d

1+p

4+d+p

	C)	cies for a Rep	beat (RPT) Execution	on of an SAC	H Instruction
			Pr	ogram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	n	n	n	n+p
	SARAM	n	n	n, n+2†	n+p
	External	2n+nd	2n+nd	2n+nd	2n+2+nd+p
	† If the operation	and and the code	are in the same SAR	AM block	
Example 1	SACH	DAT10,1	;(DP = 4: a	ddresses	0200h-027Fh,
			;left shift	of 1)	
			Before Instruction		After Instruction
		ACC X C	4208001h	ACC	X 4208001h
		a Memory 20Ah	0h	Data Memory 20Ah	-
Example 2	SACH	*+,0,AR2	;(No shift)		
		I	Before Instruction		After Instruction
		ARP [1	ARP	2
		AR1	300h	AR1	301h
		ACC X	4208001h	ACC	X 4208001h
		а Memory 300h Г	0h	Data Memory 300h	

Cycles for a Repeat (RPT) Execution of an SACH Instruction

Syntax	SACL dma [, shift2]Direct addressingSACL ind [, shift2 [, ARn]]Indirect addressing										
Operands	dma:7 LSBs of the data-memory addressshift2:Left shift value from 0 to 7 (defaults to 0)n:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+* BR0+*BR0-									r	
Opcode		ma [, shif	-								
	15 14	13 12 0 1	11 10	98 98	7	65	4	3 dma	2	1	0
	1 0	0 1	0	Shintz	0			uma			
		d[, shift2		-	7	с г	4	0	0	4	0
	15 14 1 0	13 12 0 1	11 10	98 98	7	6 5 ARI	4 J	3 N	2	1 NAR	0
Execution	Note: Al Increment 16 LSBs of	PC, then		efined in Se $) ightarrow ext{data}$				sing N	<i>1ode</i> (p	bage 6	-9).
Status Bits	This instrue	ction is no	ot affecte	d by SXN	l.						
Description	The SACL where it lef lower 16 b low-order l accumulate	t shifts th bits of the bits are f	e entire 3 e shifted illed with	32-bit nun value int 1 zeros, a	nber fro o data and th	om 0 to 3 1 memor	7 bits. y. Du	It the	en co the s	pies shift,	the the
Words	1										
Cycles			Cycles fo	or a Single	SACL	. Instruct	ion				
					Prog	ram					
	Operand	ROM		DARAM		SARAM		E	terna	al	
	DARAM	1		1		1		1+	p		

1

2+d

1+p 4+d+p

1, 2†

2+d

1

2+d

SARAM

External

Cycles for a Repeat (RPT) Execution of an SACL Instruction										
	Program									
Operand	ROM	DARAM	SARAM	External						
DARAM	n	n	n	n+p						
SARAM	n	n	n, n+2†	n+p						
External	2n+nd	2n+nd	2n+nd	2n+2+nd+p						

Example 1	SACL	DAT11,1	;(DP = 4: ac ;left shift		0h-027Fh,
			Before Instruction		After Instruction
		ACC X	7C63 8421	ACC X	7C63 8421h
		С		С	
	0	Data Memory	251	Data Memory	
		20Bh	05h	20Bh	0842h
Example 2	SACL	*,0,AR7	;(No shift)		
		_	Before Instruction		After Instruction
		ARP	6	ARP	7
		AR6	300h	AR6	300h
		ACC X	00FF 8421h	ACC X	00FF 8421h
		С		С	
	C	Data Memory 300h	05h	Data Memory 300h	8421h

Syntax	SAR ARx, dmaDirect addressingSAR ARx, ind [, ARn]Indirect addressing													
Operands	 dma: 7 LSBs of the data-memory address x: Value from 0 to 7 designating the auxiliary register value to be stored n: Value from 0 to 7 designating the next auxiliary register ind: Select one of the following seven options: * *+ *- *0+ *0- *BR0+ *BR0- 									be				
Opcode	SAR AF 15 14	R x, dma 13 12	11	10	9	8	7	6	5	4	3	2	1	0
	1 0	0 0	0		x	0	0	0	0		dma	-		
	SAR AF 15 14 1 0	R <i>x</i> , <i>ind</i> [<i>, 1</i> 13 12 0 0	AR <i>n</i>] 11 0	10 are def	9 x	8 n Sect	7 0		5 ARU rect Ac	4 ddres	3 N	2 lode (1 NAR page 6	0 ;-9).
Execution	Increment $(ARx) \rightarrow c$			ddres	s									
Status Bits	None													
Description	The conter data-mem is also mo the auxilia the conter	ory locati dified by f ry register	on. W the in r value	/hen ⁻ struc ⁻ e to d	the c tion (ata n	onter in inc nemo	nt of direct	the d addr	esigr essii	nateo ng m	d aux iode)	iliary , SAI	regis R cop	ster bies
Words	1													
Cycles			Сус	les fo	r a S	ingle	SAR	Instr	uctio	n				
							Prog	ram						
	Operand	ROM		0	ARA	M		SAR	АМ		Ex	terna	al	
	DARAM	1		1				1			1+	·р		
	SARAM	1		1				1, 2†			1+	p		
	External	2+d		2	+d			2+d			4+	d+p		

-	,									
Program										
Operand	ROM	DARAM	SARAM	External						
DARAM	n	n	n	n+p						
SARAM	n	n	n, n+2†	n+p						
External	2n+nd	2n+nd	2n+nd	2n+2+nd+p						

Cycles for a Repeat (RPT) Execution of an SAR Instruction

Example 1	SAR	AR0,DAI	30 ;(DP = 6: a	ddresses 0300)h-037Fh)
			Before Instruction		After Instruction
		AR0	37h	AR0	37h
		Data Memory 31Eh	18h	Data Memory 31Eh	37h
Example 2					
Example 2	SAR	AR0,*+			
Example 2	SAR	ARU,*+	Before Instruction		After Instruction
Example 2	SAR	ARU,*+	Before Instruction	ARP	After Instruction
	SAR	,	Before Instruction 0 401h	ARP AR0	

Syntax	SBRK	(# k									Shor	t imm	edia	te ad	dres	sing
Operands	k:		8-	bit p	ositiv	ve sh	ort in	nmec	liate	value	Э					
Opcode		RK #					-		_	-	_		_	-		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	-	-		-	-	0	0					`			
Execution	Increr (curre	nt AF	R) — I	$\mathbf{x} \rightarrow \mathbf{x}$	curre											
	Note t	that k	is a	n 8-b	oit po	sitive	con	stant	•							
Status Bits	None															
Description	The 8 currer places auxilia an 8-b unsign	nt au: s the ary re bit po:	xiliary conte egiste	y reg ents o er arit	ister of the thme	(the e auxi tic ur	one iliary nit (A	point regis RAU)	ted to ter. 7), wit	o by The s h the	the A ubtra	ARP) action iediat	and take e val	the r es pla lue tr	esult ce in eate	t re- i the d as
Words	1															
Cycles					Cycl	es foi	r a Si	ngle	SBRI	K Ins	tructi	ion				
	ROM				DAR	АМ			SAR	AM			Exter	rnal		
	1				1				1				1+p			
Example	SBRK		# (ARP	OFFh		Before	e Inst	ructio	n 7	Þ	ARP		Af	ter In:		7
			AR7					0	h	A	AR7				FF	01h

Ormstern										
Syntax	SETC control bit									
Operands	control bit:Select one of the following control bits: C Carry bit of status register ST1CNFRAM configuration control bit of status register ST1INTMInterrupt mode bit of status register ST0OVMOverflow mode bit of status register ST0SXMSign-extension mode bit of status register ST1TCTest/control flag bit of status register ST1XFXF pin status bit of status register ST1									
Opcode	SETC C									
•	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>									
	1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1									
	SETC CNF									
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>									
	1 0 1 1 1 1 1 0 0 1 0 0 1 0 1									
	SETC INTM									
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>									
	1 0 1 1 1 1 1 0 0 1 0 0 0 0 1									
	SETC OVM									
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>									
	1 0 1 1 1 1 1 0 0 1 0 0 0 1 1									
	SETC SXM									
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1									
	SETC TC									
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 1 0 1 1 1 1 1 0 0 1 0 1 1 1									
	SETC XF									
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1									
Execution	Increment PC, then $1 \rightarrow \text{control bit}$									
Status Bits	None									
Description	The specified control bit is set to 1. Note that LST may also be used to load ST0 and ST1. See Section 3.5, <i>Status and Control Registers</i> , on page 3-15 for more information on each control bit.									

Words	1							
Cycles		Cycles for a Single SETC Instruction						
	ROM		DARAM	SARAM	External			
	1		1	1	1+p			
		-) Execution of an S				
	ROM		DARAM	SARAM	External			
	n		n	n	n+p			
Example	SETC	TC	; TC	is bit 11 of S	Г1			
			Before Ins	struction	After Instruction			
		ST1		x1xxh ST1	x9xxh			

Syntax	SFL							
Operands	None							
Opcode	15 14 13 1 0 1		9 8 1 0	7 6 0 0	5 4 0 0	<u>3 2</u> 1 0		0
Execution	Increment P (ACC(31)) $-$ (ACC(30:0)) 0 \rightarrow ACC(0)	$\rightarrow C \\ \rightarrow ACC(31:1)$						
Status Bits	<u>Affects</u> C							
	This instruct	ion is not affect	ed by SXN	Λ.				
Description	cant bit is fille	truction shifts th ed with a 0, and like SFR, is una	the most	significant				-
Words	1							
Cycles		Cycles	for a Sing	le SFL Ins	truction			
	ROM	DARAM		SARAM		Externa	al	
	1	1		1		1+p		
	Су	cles for a Repea	it (RPT) Ex	ecution o	f an SFL	Instructio	n	
	ROM	DARAM		SARAM		Externa	al	
	n	n		n		n+p		
Example	SFL							
	A	Before CC X	B000123		ACC	Afte 1 C	r Instru 60002	2468h

Syntax	SFR														
-															
Operands	None														
Opcode	15 1	<u>14 13</u> 0 1	<u>12</u> 1	11 1	<u>10</u> 1	9 1	8 0	7 0	6 0	5 0	4 0	<u>3</u> 1	2 0	1 1	0
Execution	If SXN Tł If SXN Tł (ACC)	hen 0 $ ightarrow$	- ACC C(31 → AC	C(31))) →	ACC	(31)									
Status Bits	<u>Affect</u> SXM	ed by		<u>A</u> C	ffects	<u>i</u>									
Description	The S	FR instr	uctio	n shi	fts th	e ac	cumı	ulator	[,] righ	t one	e bit.				
	(N	SXM = ⁻ /ISB) is u arry bit (uncha			•					-				-
	to	SXM = 0 or bits ar e carry	e shif	ted r	ight k	by or	ne bit	. The	leas	st sig	nific	ant b			
Words	1														
Cycles				Су	cles	ior a	Sing	le SF	R Ins	struct	tion				
	ROM			DAF	RAM			SAF	RAM			Ext	ernal		
	1			1				1				1+p)		
		Cycl	es fo	r a R	epeat	: (RP	T) Ex	ecuti	on o	f an S	SFR I	nstru	iction	ı	
	ROM	-			RAM	•	,		RAM				ernal		
	n			n				n				n+p)		

Example 1	SFR	;(SXM = 0: no sign exte	nsion)	
		Before Instruction		After Instruction
		ACC X B0001234h	ACC	0 5800091Ah
		C		C
Example 2	SFR	;(SXM = 1: sign extend)		
		Before Instruction		After Instruction
		ACC X B0001234h	ACC	0 D800091Ah
		C		С

Syntax	SPAC														
Operands	None														
Opcode		<u>4 13</u> 0 1	12 1	<u>11</u> 1	10 1	9 1	8 0	7 0	6 0	5 0	4	3 0	2 1	1 0	0 1
Execution	Increme (ACC) -				$\rightarrow A$	CC									
Status Bits	<u>Affected</u> PM and This ins	I OVM	ı is n	Ca	f <u>ects</u> and (VC	SXM								
Description	The cor from the SPAC is The fun	ntent of e conte s not af	PRE nt of fecte	G, sl the a d by	niftec accur SXM	l as c nulat I, and	define or. T d the	ed by he re PRE	esult G va	is ste lue i	ored s alv	in the vays	e acc sign (cumu exter	lator. Ided.
	instructi														
Words	1														
Cycles				Cycl	les fo	or a S	ingle	SPA	C Ins	struc	tion				
	ROM			DAR	АМ			SAR	АМ			Exte	ernal		
	1			1				1				1+p			
		Cycle	s for	a Rep	oeat (RPT	Exe	cutio	n of a	an Sl	PAC	Instru	ictior	ı	
	ROM			DAR	АМ			SAR	АМ			Exte	ernal		
	n			n				n				n+p			
Example	SPAC		(PM) Befor	e Inst	ructic	on	P			_	After I	nstrue	tion

Syntax	SPH dma SPH ind [,	AR n]					Direc Indire			-		
Operands	dma: n: ind:	Value	from (of the f	lesigna	ating t g sev	he next a en option		ry re	giste	r	
Opcode	SPH dm											
	15 14	13 12	11	10 9		7	65	4	3	2	1	0
	1 0	0 0	1	1 () 1	0			dma			
	SPH ind	[, AR <i>n</i>]										
	15 14	13 12	11	10 9		7	65	4	3	2	1	0
	1 0	0 0	1	1 (1	ARU		Ν		NAR	
Execution Status Bits	Note: A Increment 16 MSBs c <u>Affected b</u>	PC, then of shifted					3, <i>Indirect A</i>	uuress	sirig ivi	1006 (1	Jage o	-9).
	PM											
Description	The 16 hig stored in da shifter, who mode is se are lost. If a bits are zer value are s value is mo	ata memo ere it is s lected, th a left shift ro filled. If tored in d	ory. Fi hifted e high is sel PM = ata m	rst, the I as spo n-order lected, 00, no emory.	32-bit l ecified bits are the hig shift oc Neithe	PREC by th e sign h-ord ccurs.	a value is e PM bits extended er bits are Then the	copie 5. If th 1 and 9 lost 16 M	ed int he rig the l and t SBs	o the ght-s ow-o the lo of the	prod hift-b rder w-or e shif	luct y-6 bits der ted
Words	1											
Cycles			Cycl	es for a	Single	SPH	Instructio	n				
						Prog	Iram					
	Operand	ROM		DA	RAM		SARAM		Ex	terna	al	
	DARAM	1		1			1		1+	р		
	SARAM	1		1			1, 2†		1+	р		
	External	2+d		2+d			2+d		4+	d+p		

	C	cycles for a l	Repeat (RPT) Execut	ion of an SPH In	struction				
		nnnn+pnnn, n+2†n+p2n+nd2n+nd2n+2+nd+pbrand and the code are in the same SARAM blockDAT3; (DP = 4: addresses 0200h-027Fh, ; PM = 0: no shift)Before InstructionAfter InstructionPREGFE079844hPREGFE079844hPREGFE079844hta Memory 203h203hFE07h*, AR7; (PM = 2: left shift of four)Before InstructionAfter Instruction							
	Operand	ROM	DARAM	SARAM	External				
	DARAM	n	n	n	n+p				
	SARAM	n	n	n, n+2†	n+p				
	External	2n+nd	2n+nd	2n+nd	2n+2+nd+p				
	† If the opera	and and the co	de are in the same SAR	AM block					
Example 1	SPH	DAT3			00h-027Fh,				
				SHILL()	After Instruction				
	F	PREG		PREG					
		,	4567h	,	FE07h				
Example 2	SPH	* , AR7	;(PM = 2: 1	eft shift o	f four)				
			Before Instruction		After Instruction				
		ARP	6	ARP	7				
		AR6	203h	AR6	203h				
	F	PREG	FE079844h	PREG	FE079844h				
		a Memory 203h	4567h	Data Memory 203h	E079h				

Syntax	SPL dma SPL ind [, ,	AR n]					t address ect addre	-	
Operands	dma: n: ind:	Value	one of tl	7 desig ne follov	nating ving sev	the next a ven option		egister	
Opcode	SPL dma								
	15 14	13 12	11 10	9	8 7	65	4 3	2 1	0
	1 0	0 0	1 1	0	0 0		dma	a	
	SPL ind	[, AR <i>n</i>]							
	15 14	13 12	11 10		8 7	6 5	4 3	2 1	0
	1 0 Note: Al	0 0	1 1	0	0 1	.3, Indirect A	<u>N</u>	NA	
Execution Status Bits Description	Increment 16 LSBs of <u>Affected by</u> PM The 16 low stored in da shifter, whe mode is se are lost. If a	-order bi ata memo ere it is s lected, th a left shift	PREG) - ts of the ory. First, hifted as e high-or is select	PREG, the 32-l specifi der bits ed, the	shifted bit PRE ed by ti are sign nigh-ore	as specifi G value is ne PM bits n extendeo der bits are	copied ir s. If the r d and the e lost and	to the pro ight-shift low-orde the low-o	oduct -by-6 r bits order
Wende	bits are zer value are s value is mo	tored in d	ata mem	ory. Nei					
Words	1								
Cycles			Cycles	or a Sir	gle SPL	. Instructio	n		
						gram			
	Operand	ROM		DARAN		SARAM	E	xternal	
	DARAM	1		1		1	1	+p	
	SARAM	1		1		1, 2†	1	+p	
	External	2+d		2+d		2+d	4	+d+p	

	(Cycles for a F	Repeat (RPT) Executi	ion of an SPL In	struction
			Pro	ogram	
	Operand	ROM	DARAM	SARAM	External
	DARAM	n	n	n	n+p
	SARAM	n	n	n, n+2†	n+p
	External	2n+nd	2n+nd	2n+nd	2n+2+nd+p
	† If the oper	and and the co	de are in the same SARA	M block	
Example 1	SPL	DAT5	;(DP = 4: a	ddresses 02	00h-027Fh,
			;PM = 2: le	ft shift of	four)
			Before Instruction		After Instruction
		PREG	0FE079844h	PREG	0FE079844h
	Dat	a Memory		Data Memory	
		205h	4567h	205h	08440h
Example 2	SPL	*,AR3	;(PM = 0: n	o shift)	
			Before Instruction		After Instruction
		ARP	2	ARP	3
		AR2	205h	AR2	205h
		PREG	0FE079844h	PREG	0FE079844h
	Dat	a Memory		Data Memory	000445
		205h	4567h	205h	09844h

Cycles for a Repeat (RPT) Execution of an SPL Instruction

Syntax	SPLK # <i>lk</i> , SPLK # <i>lk</i> ,		7]				Direct add ndirect ad		-		
Operands	dma: n: Ik: ind:	Value fr 16-bit lo	of the dat rom 0 to 7 ong immed one of the *- *0-	designa liate val followin	ating ue g sev	the ne	ext auxilia	-	giste	er	
Opcode	SPLK #/	k, dma									
	15 14	13 12	11 10	98	7	6	54	3	2	1	0
	1 0	1 0	1 1	1 0	0 lk			dma			
		k ind [Al	Del		IN						
	5PLK #1 15 14	k, ind [, AF 13 12	-1 //] 11 10	98	7	6	54	3	2	1	0
	1 0	1 0	1 1	1 0	1	-	ARU	N	_	NAR	
					lk						
Status Bits Description Words	lk → data-r None The SPLK memory log 2	instructior cation.	n allows a		-			itten i	into	any c	lata
Cycles		(Cycles for a	a Single			ruction				
	Operand	ROM	D/	RAM	Proţ	gram SAR	ΔΜ	Fx	tern	al	
	DARAM	2	2			2			2p	u	—
	SARAM	2	2			- 2, 3†			-р 2р		
	External	3+d	3+	d		3+d		5+	d+2p)	
	† If the opera	and and the c	code are in th	ie same S	SARAM	1 block					
Example 1	SPLK	#7FFF		nstructio	n	DP =		Af	ter In	struct	ion
		a Memory 303h		FE07			/lemory)3h			7FF	Fh

Example 2	SPLK #	#1111h,*+,AR4			
		Before In:	struction		After Instruction
	ARP		0	ARP	4
	AR0		300h	AR0	301h
	Data Mei 300h	· ·	07h	Data Memory 300h	1111h

Syntax	SPM constant
Operands	constant: Value from 0 to 3 that determines the product shift mode
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 1 1 1 1 0
Execution	Increment PC, then constant \rightarrow product shift mode (PM) bits
Status Bits	<u>Affects</u> PM
	This instruction is not affected by SXM.
Description	The two LSBs of the instruction word are copied into the product shift mode (PM) bits of status register ST1 (bits 1 and 0 of ST1). The PM bits control the mode of the shifter at the output of the PREG. This shifter can shift the PREG output either one or four bits to the left or six bits to the right. The possible PM bit combinations and their meanings are shown in Table 7–8. When an instruction accesses the PREG value, the value first passes through the shifter, where it is shifted by the specified amount.

Table 7–8. Product Shift Modes

1

PM Field	Specified Product Shift
00	No shift of PREG output
01	PREG output to be left shifted 1 place
10	PREG output to be left shifted 4 places
11	PREG output to be right shifted 6 places and sign extended

The left shifts allow the product to be justified for fractional arithmetic. The right-shift-by-six mode allows up to 128 multiply accumulate processes without the possibility of overflow occurring. PM may also be loaded by an LST #1 instruction.

Cycles

Cycles	Cycles for a Single SPM Instruction									
	ROM	DARAM	SARAM	External						
	1	1	1	1+p						
Example	SPM 3	;is selected ;transfers f	;Product register shift mode 3 (1 ;is selected causing all subseque ;transfers from the product regis ;to be shifted to the right six p							

Syntax	SQRA dmaDirect addressingSQRA ind [, ARn]Indirect addressing											
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+**BR0+											
Opcode	SQRA d	та										
	15 14	13 12		09	8 7	-	54	3	2 1	0		
	0 1 0 1 0 0 1 0 0 dma											
	SQRA ind [, ARn]											
	15 14	13 12	11 1	09	8 7	6	54	3	2 1	0		
	0 1	0 1	0 () 1	0 1	ŀ	ARU	Ν	NAF	{		
Execution Status Bits Description	Increment PC, then $(ACC) + shifted (PREG) \rightarrow ACC$ $(data-memory address) \rightarrow TREG$ $(TREG) \times (data-memory address) \rightarrow PREG$ $\underline{Affected by}$ $\underline{Affected by}$ OVM and PM OV and CThe content of the PREG, shifted as defined by the PM status bits, is added to the accumulator. Then the addressed data-memory value is loaded into the TREG, squared, and stored in the PREG.											
Words	1											
Cycles			Cycles [•]	ior a Si	ngle SQ	RA Instr	uction					
					Pr	ogram						
	Operand	ROM		DAR	AM	SAR	AM	Ex	ternal			
	DARAM	1		1		1		1+	p			
	SARAM	1		1		1, 2†		1+	р			
	External	1+d		1+d		1+d		2+	d+p			

	C	cles for a R	epeat (RPT) Executi	on of an SQI	RA Ins	truction						
			Program									
	Operand	ROM	DARAM	SARAM		External						
	DARAM	n	n	n		n+p						
	SARAM	n	n	n, n+1†		n+p						
	External	n+nd	n+nd	n+nd		n+1+p+nd						
	† If the operation	and and the co	de are in the same SAR	AM block								
Example 1	SQRA	DAT30	;(DP = 6: a	addresses	0300)h-037Fh,						
			;PM = 0: no	shift o	f pro	oduct)						
			Before Instruction			After Instruction						
	Data	Memory		Data Memo	ry							
	:	31Eh	0Fh	31Eh		0Fh						
	٦	REG	3h	TREG		0Fh						
	F	PREG	12Ch	PREG		0E1h						
		ACC X	1F4h	ACC	0	320h						
		С			С							
Example 2	SQRA	*,AR4	; $(PM = 0)$									
			Before Instruction			After Instruction						
		ARP	3	ARP		4						
		AR3	31Eh	AR3		31Eh						
		Memory		Data Memo	ry							
		31Eh	0Fh	31Eh		0Fh						
		REG	3h	TREG		0Fh						
		PREG	12Ch	PREG		0E1h						
		ACC X	1F4h	ACC	0 C	320h						
		C			U							

Syntax	SQR SQR			R <i>n</i>]							Direct Indire			-		
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:* *+ *- *0+ *0- *BR0+ *BR0-															
Opcode	SQ	RS a	lma													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	1	0	0	1	1	0				dma			
	SO	RS ir	nd[∆R n]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	1	0	0	1	1	1		ARU		N		NAR	
Execution	Increment PC, then (ACC) – shifted (PREG) \rightarrow ACC (data-memory address) \rightarrow TREG (TREG) \times (data-memory address) \rightarrow PREG															
Status Bits	<u>Affected by</u> <u>Affects</u> OVM and PM OV and C															
Description	The c tracte loade	d fro	m th	ie ac	cum	ulato	r. Th	en th	ne ac	Idre	ssed	data				
Words	1															
Cycles					Cycl	es foi	^r a Si	ngle	SQRS	S Ins	tructio	on				
									Prog	ram						
	0.000	and		144						C AI			с.	+	_	

		Program									
Operand	ROM	DARAM	SARAM	External							
DARAM	1	1	1	1+p							
SARAM	1	1	1, 2†	1+p							
External	1+d	1+d	1+d	2+d+p							

Cy	Cycles for a Repeat (RPT) Execution of an SQRS Instruction								
	Program								
Operand	ROM	DARAM	SARAM	External					
DARAM	n	n	n	n+p					
SARAM	n	n	n, n+1†	n+p					
External	n+nd	n+nd	n+nd	n+1+p+nd					

Example 1	SQRS	DAT9		addresses 030 c shift of pro	
			Before Instruction	S SHILL OL PL	After Instruction
		Data Memory 309h	08h	Data Memory 309h	08h
		TREG	1124h	TREG	08h
		PREG	190h	PREG	40h
		ACC X	1450h	ACC 1	12C0h
		C		С	
Example 2	SQRS	* , AR5	; (PM = 0)		
			Before Instruction		After Instruction
		ARP	3	ARP	5
		AR3	309h	AR3	309h
		Data Memory 309h	08h	Data Memory 309h	08h
		TREG	1124h	TREG	08h
		PREG	190h	PREG	40h
		PREG ACC X		PREG ACC 1	40h

Syntax	SST # <i>m</i> , <i>dma</i> SST # <i>m</i> , <i>ind</i> [, AR <i>n</i>]									Direct Indire			-			
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerm:Select one of the following:0Indicates that ST0 will be stored1Indicates that ST1 will be storedind:Select one of the following seven options:**+**0+**BR0+**BR0-															
Opcode	SST	#0 .	dma													
opeene	15		13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	0	0	1	1	1	0	0				dma			
		#0	ind[n				-							
	SST 15	#U , 14	13 110 1	, Ап . 12	//j 11	10	9	8	7	6	5	4	3	2	1	0
	1	0	0	0	1	1	1	0	1		ARU	•	N	_	NAR	
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).															
	SST #1, dma															
	551 15	#1 , 14	<i>ama</i> 13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	0	0	1	1	1	1	0	0	5	-	dma	2	-	
		•	•	•	•				Ů				unia			
	SST		-		-			_	_	_	_		_	_		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
	1	0	0	0	1	1	1	1	1		ARU		N		NAR	
	Note	: Al	40, N	, and	NAR 8	are det	ined i	n Seci	(ION 6.)	3, <i>ina</i>	irect Ac	ares	sing iv	10 <i>ae</i> (bage 6	o-9).
Execution	Increm (status					data-	men	nory a	addre	SS						
Status Bits	None															
Description	Status	regi	ster S	ST0 (or ST	⁻ 1 (wl	hiche	ever i	s spe	cifie	d) is s	store	d in d	data	mem	ory.
	Status register ST0 or ST1 (whichever is specified) is stored in data memory. In direct addressing mode, the specified status register is always stored in page 0, regardless of the value of the data page pointer (DP) in ST0. Although the processor automatically accesses page 0, the DP is not physically modi- fied; this allows the DP value to be stored unchanged when ST0 is stored. The specific storage location within page 0 is given in the instruction. In indirect addressing mode, the storage address is obtained from the auxiliary register selected; thus, the specified status register contents can be stored to an address on any page in data memory.															

Status registers ST0 and ST1 are defined in Section 3.5, Status Registers ST0 and ST1, on page 3-15.

Words

1

SST

Cycles

Cycles for a Single SST Instruction											
	Program										
Operand	ROM	DARAM	SARAM	External							
DARAM	1	1	1	1+p							
SARAM	1	1	1, 2†	1+p							
External	2+d	2+d	2+d	4+d+p							

[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SST Instruction

		Program									
Operand	ROM	DARAM	SARAM	External							
DARAM	n	n	n	n+p							
SARAM	n	n	n, n+2†	n+p							
External	2n+nd	2n+nd	2n+nd	2n+2+nd+p							

[†] If the operand and the code are in the same SARAM block

Example 1

Example 2

(Direct addressing: data page 0 ; accessed automatically)

	Before Instruction		After Instruction
ST0	0A408h	ST0	0A408h
Data Memory		Data Memory	
60h	0Ah	60h	0A408h

SST #1,*,AR7 (Indirect addressing)

#0,96

	Before Instruction		After Instruction
ARP	0	ARP	7
AR0	300h	AR0	300h
ST1	2580h	ST1	2580h
Data Memory 300h	0h	Data Memory 300h	2580h

Syntax	SUB dma [, shift] SUB dma,16 SUB ind [,shift [, ARn]] SUB ind,16[, ARn] SUB #k SUB #lk [,shift]							Direct addressing Direct with left shift of 16 Indirect addressing Indirect with left shift of 16 Short immediate Long immediate								
Operands	dma: shift: n: k: lk: ind:	shift:Left shift value from 0 to 15 (defaun:Value from 0 to 7 designating the rx:8-bit short immediate valuek:16-bit long immediate value						ults to 0) next auxiliary register options:								
Opcode	SU	B dr	na [,s	hift]												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	1		sh	nift		0				dma			
	SU	B dr	na, 16	6												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	0	1	0	1	0				dma			
	SU	B inc	l[, sł	nift [,	AR r	[[י										
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	1		sh	nift		1		ARU		Ν		NAR	
	Not	e: A	RU, N	, and I	NAR a	are def	fined i	n Sec	tion 6.	3, <i>Inc</i>	direct A	ddres	sing M	lode (page 6	-9).
	SU	B inc	, 16 [, AR /	n]											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	0	1	0	1	1		ARU		Ν		NAR	
	Not		RU, N	, and I	NAR a	are def	fined i	n Sect	ion 6.	3, <i>Inc</i>	direct A	ddres	sing M	lode (page 6	-9).
		B #k														
	15		13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	1	1	0	1	0				ł	K			
	SU	B #/k	[, sh	ift]												
	-	14			11	10	9	8		6	5	4	3		1	0
	1	0	1	1	1	1	1	1	1	0	1	0		S	hift	
								I	k							

Execution		 nory address) $ imes$ 2 ^{shift}) $ ightarrow$ ACC nory address) $ imes$ 2 ¹⁶) $ ightarrow$ ACC	<u>Addressing mode</u> Direct or indirect Direct or indirect (shift of 16)				
	$(ACC) - k \rightarrow ACC$		Short immediate				
	(ACC) – lk $ imes$ 2 ^{shift} -	ightarrow ACC	Long immediate				
Status Bits	<u>Affected by</u> OVM and SXM	<u>Affects</u> OV and C	<u>Addressing mode</u> Direct or indirect				
	OVM	OV and C	Short immediate				
	OVM and SXM	OV and C	Long immediate				
Description	dressed data-memo tracted from the acc	and long immediate addressing, the ory location or a 16-bit constant are cumulator. During shifting, low-ord sign extended if SXM = 1 and zero in the accumulator.	e left shifted and sub- er bits are zero filled.				
	from the accumulato	ddressing is used, an 8-bit positive o or. In this case, no shift value may be v SXM, and the instruction is not rep	specified, the subtrac-				
	ates a borrow and is a 16-bit shift is speci	rmally, the carry bit is cleared ($C = 0$) if the result of es a borrow and is set ($C = 1$) if it does not generate 6-bit shift is specified with the subtraction, the instruc- if a borrow is generated but will not affect the carry					
Words	<u>Words</u> 1 2	<u>Words</u> 1					

Cycles

Cycles for a Single SUB Instruction (Using Direct and Indirect Addressing)

		Program									
Operand	ROM	DARAM	SARAM	External							
DARAM	1	1	1	1+p							
SARAM	1	1	1, 2†	1+p							
External	1+d	1+d	1+d	2+d+p							

[†] If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUB Instruction (Using Direct and Indirect Addressing)

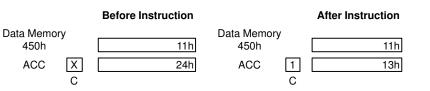
	Program									
Operand	ROM	DARAM	SARAM	External						
DARAM	n	n	n	n+p						
SARAM	n	n	n, n+1†	n+p						
External	n+nd	n+nd	n+nd	n+1+p+nd						

[†] If the operand and the code are in the same SARAM block.

Cycles for a Single SUB Instruction (Using Short Immediate Addressing)

ROM	DARAM	SARAM	External
1	1	1	1+p

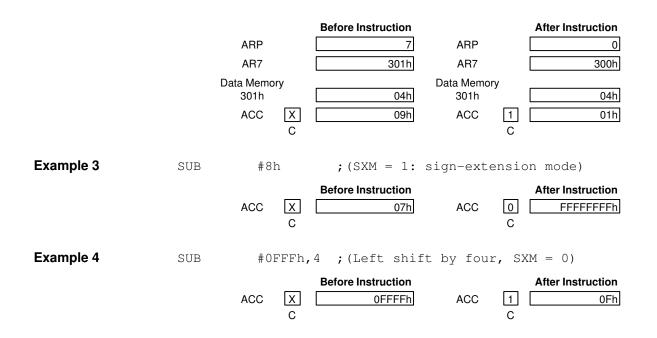
Cycles for a Single SUB Instruction (Using Long Immediate Addressing)									
ROM	DARAM	SARAM	External						
2	2	2	2+2p						


Example 1

DAT80

SUB

SUB


;(DP = 8: addresses 0400h-047Fh, ;SXM=0: sign-extension suppressed)

Example 2

*-,1,AR0 ; (Left shift by 1, SXM = 0)

7-176

Syntax	SUBB dmaDirect addressingSUBB ind [, ARn]Indirect addressing												
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+												
Opcode	SUBB a	lma											
	15 14	13 12	11 1) 9	8	7	6	5	4	3	2	1	0
	0 1	1 0	0 1	0	0	0				dma			
	SUBB ir	nd [, AR n]											
	15 14	13 12	11 1) 9	8	7	6	5	4	3	2	1	0
	0 1	1 0	0 1	0	0	1	A	ARU		Ν		NAR	
Execution Status Bits Description	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9). Increment PC, then (ACC) – (data-memory address) – (logical inversion of C) \rightarrow ACC <u>Affected by</u> <u>Affects</u> OVM OV and C This instruction is not affected by SXM. The content of the addressed data-memory location and the logical inversion of the carry bit is subtracted from the accumulator with sign extension sup- pressed. The carry bit is then affected in the normal manner: the carry bit is cleared (C = 0) if the result of the subtraction generates a borrow and is set (C = 1) if it does not generate a borrow.												
Manda	The SUBB	Instructio	in can be	usea	in peri	IOIIII	ing mu	unipie	e-pre	CISIC	mar		euc.
Words	1												
Cycles			Cycles f	or a S	ingle S	SUBE	3 Instr	uctio	n				
						Prog	Iram						
	Operand	ROM		DAR	AM		SAR	AM		Ex	terna	al	
	DARAM	1		1			1			1+	р		
	SARAM	1		1			1, 2†			1+	р		
	External	1+d		1+d			1+d			2+	d+p		

Cycles for a Repeat (RPT) Execution of an SUBB Instruction						
	Program					
Operand	ROM	DARAM	SARAM	External		
DARAM	n	n	n	n+p		
SARAM	n	n	n, n+1†	n+p		
External	n+nd	n+nd	n+nd	n+1+p+nd		

Example 1	SUBB	DAT5	;(DP = 8:	addresses 0400)h-047Fh)
			Before Instruction		After Instruction
		Data Memory 405h ACC 0 C	06h	Data Memory 405h ACC 0 C	06h 0FFFFFFFh
Example 2	SUBB	*	Before Instruction		After Instruction
		ARP	6	ARP	6
		AR6		AR6	301h
		Data Memory 301h ACC 1 C	02h	Data Memory 301h ACC 1 C	02h

In the first example, C is originally zeroed, presumably from the result of a previous subtract instruction that performed a borrow. The effective operation performed was 6 - 6 - (0-) = -1, generating another borrow (resetting carry) in the process. In the second example, no borrow was previously generated (C = 1), and the result from the subtract instruction does not generate a borrow.

Syntax	SUBC dmaDirect addressingSUBC ind [, ARn]Indirect addressing
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options: $*$ $*+$ $* *0+$ $*$ $*BR0+$ $*BR0-$
Opcode	SUBC dma 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 0 1 0 0 dma
	SUBC ind [, ARn]
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 0 1 0 1 ARU N NAR
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).
Execution	For (ACC) ≥ 0 and (data-memory address) ≥ 0 : Increment PC, then (ACC) – [(data-memory address) $\times 2^{15}$] \rightarrow ALU output If ALU output ≥ 0 Then (ALU output) $\times 2 + 1 \rightarrow ACC$ Else (ACC) $\times 2 \rightarrow ACC$
Status Bits	<u>Affects</u> OV and C
Description	The SUBC instruction performs conditional subtraction, which can be used for division as follows: Place a positive 16-bit dividend in the low accumulator and clear the high accumulator. Place a 16-bit positive divisor in data memory. Execute SUBC 16 times. After completion of the last SUBC, the quotient of the division is in the lower-order 16 bits of the accumulator, and the remainder is in the higher-order 16 bits of the accumulator. For negative accumulator and/or data-memory values, SUBC cannot be used for division. If the 16-bit dividend contains fewer than 16 significant bits, the dividend may be placed in the accumulator and left shifted by the number of leading nonsignificant 0s. The number of executions of SUBC is reduced from 16 by that number. One leading 0 is always significant.

SUBC affects OV but is not affected by OVM; therefore, the accumulator does not saturate upon positive or negative overflows when executing this instruction. The carry bit is affected in the normal manner during this instruction: the carry bit is cleared (C = 0) if the result of the subtraction generates a borrow and is set (C = 1) if it does not generate a borrow.

Words

1

Cycles

	Cy	cles for a Single S	UBC Instruction	
		F	Program	
Operand	ROM	DARAM	SARAM	External
DARAM	1	1	1	1+p
SARAM	1	1	1, 2†	1+p
External	1+d	1+d	1+d	2+d+p

[†] If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SUBC Instruction

	Program					
Operand	ROM	DARAM	SARAM	External		
DARAM	n	n	n	n+p		
SARAM	n	n	n, n+1†	n+p		
External	n+nd	n+nd	n+nd	n+1+p+nd		

[†] If the operand and the code are in the same SARAM block

Example 1	SUBC	DAT2	; (DP = 6) Before Instruction		After Instruction
		Data Memory 302h ACC X C	01h	Data Memory 302h ACC 0 C	01h
Example 2	RPT SUBC	#15 *			
			Before Instruction		After Instruction
		ARP	3	ARP	3
		AR3	1000h	AR3	1000h
		Data Memory 1000h ACC X	07h	Data Memory 1000h ACC 1	07h
		C		C	

Assembly Language Instructions 7-181

SUBS Subtract From Accumulator With Sign Extension Supp	oressed
---	---------

Syntax	SUBS dma								address t addres	-		
Operands	dma: n: ind:	Value f	s of the from 0 to one of t *-	o 7 de	signat	ing t sev	he ne	xt au>		egiste	er	
Opcode	SUBS di	na										
	15 14	13 12	11 10) 9	8	7	6	5	4 3	2	1	0
	0 1	1 0	0 1	1	0	0			dma			
	SUBS in	d [, AR n]										
	15 14	13 12	11 1() 9	8	7	6	5	4 3	2	1	0
	0 1	1 0	0 1	1	0	1	Α	ARU	Ν		NAR	
	Note: Al	RU, N, and I	NAR are o	lefined i	n Sectio	on 6.3	3, Indire	ect Ada	dressing I	Node (oage 6	6-9).
Execution Status Bits	Increment (ACC) – (d <u>Affected by</u> OVM	ata-memo		<u>5</u>	→ ACC	0						
	This instruc	ction is no	ot affecte	ed by S	SXM.							
Description	The conten mulator wit signed nun number. SI 0 and a shi The carry b	h sign ex nber, rega JBS prod ft count o	tension ardless uces the f 0.	suppr of SXI e same	essed M. The e resu	l. The e ace ilts a	e data cumul s a SI	a is tre lator k UB in:	eated a behave: structio	s a 1 s as a n with	6-bit a sig n SXI	un- ned M =
	row and is	set (C = 1	I) if it do	es no	t gene	erate	a bor	row.				
Words	1											
Cycles			Cycles f	or a Si	ngle S	SUBS	Instru	uction	ו			
						Prog	ram					
	Operand	ROM		DARA	١M		SARA	۹M	E	xterna	al	
	DARAM	1		1			1		1-	⊦р		
	SARAM	1		1			1, 2†		1-	⊦p		
	External	1+d		1+d			1+d		2-	⊦d+p		

Cycles for a Repeat (RPT) Execution of an SUBS Instruction					
	Program				
Operand	ROM	DARAM	SARAM	External	
DARAM	n	n	n	n+p	
SARAM	n	n	n, n+1†	n+p	
External	n+nd	n+nd	n+nd	n+1+p+nd	

Example 1	SUBS	DAT2	;(DP = 16,	SXM = 1)	
			Before Instruction		After Instruction
		Data Memory 802h ACC X C	0F003h	Data Memory 802h ACC 1 C	0F003h
Example 2	SUBS	*	; (SXM = 1) Before Instruction		After Instruction
		400			After Instruction
		ARP	0	ARP	0
		AR0	310h	AR0	310h
		Data Memory	0F003h	Data Memory 310h	0F003h
		310h	0F0030	31011	01 00311
		ACC X	0FFFF105h	ACC 1	0FFF0102h

Syntax	SUBT dmaDirect addressingSUBT ind [, ARn]Indirect addressing
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+* BR0+*BR0-
Opcode	SUBT dma
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 1 1 0 0 1 1 1 0 dma
	SUBT ind [, ARn]
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 1 1 0 0 1 1 1 1 ARU N NAR
Execution	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9). Increment PC, then $(ACC) - [(data-memory address) \times 2^{(TREG(3:0))}] \rightarrow (ACC)$ If SXM = 1 Then (data-memory address) is sign-extended. If SXM = 0
	Then (data-memory address) is not sign-extended.
Status Bits	Affected byAffectsOVM and SXMOV and C
Description	The data-memory value is left shifted and subtracted from the accumulator. The left shift is defined by the four LSBs of TREG, resulting in shift options from 0 to 15 bits. The result replaces the accumulator contents. Sign extension on the data-memory value is controlled by the SXM status bit.
	The carry bit is cleared (C = 0) if the result of the subtraction generates a borrow and is set (C = 1) if it does not generate a borrow.
Words	1

Cycles for a Single SUBT Instruction						
	Program					
Operand	ROM	DARAM	SARAM	External		
DARAM	1	1	1	1+p		
SARAM	1	1	1, 2†	1+p		
External	1+d	1+d	1+d	2+d+p		

 † If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUBT Instruction					
	Program				
Operand	ROM	DARAM	SARAM	External	
DARAM	n	n	n	n+p	
SARAM	n	n	n, n+1†	n+p	
External	n+nd	n+nd	n+nd	n+1+p+nd	

[†] If the operand and the code are in the same SARAM block.

Example 1	SUBT	DAT127	;(DP = 5:	addresses	0280	h-02FFh)
			Before Instruction			After Instruction
		Data Memory 2FFh	06h	Data Memor 2FFh	у	06h
		TREG	08h	TREG		08h
		ACC X	0FDA5h	ACC	1	0F7A5h
		С			С	
Example 2	SUBT	*				
			Before Instruction			After Instruction
		ARP	1	ARP		1
		AR1	800h	AR1		800h
		Data Memory 800h	01h	Data Memor 800h	у	01h
		TREG	08h	TREG		08h
		ACC X	0h	ACC	0	FFFFF00h
		С			С	

Assembly Language Instructions 7-185

Cycles

Syntax	TBLR dmaDirect addressingTBLR ind [, ARn]Indirect addressing					
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+*-*0+**BR0+**BR0+					
Opcode	TBLR dma 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
	1 0 1 0 0 1 1 0 0 dma					
	TBLR ind [, ARn]					
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>					
	1 0 1 0 0 1 1 0 1 ARU N NAR					
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).					
Execution	Increment PC, then $(PC) \rightarrow MSTACK$ $(ACC(15:0)) \rightarrow PC$ $(pma) \rightarrow data\text{-memory address}$ For indirect, modify (current AR) and (ARP) as specified, $(PC) + 1 \rightarrow PC$ While (repeat counter) \neq 0 $(pma) \rightarrow data\text{-memory address}$ For indirect, modify (current AR) and (ARP) as specified, $(PC) + 1 \rightarrow PC$ $(pe) + 1 \rightarrow PC$ $(pe) + 1 \rightarrow PC$ $(repeat counter) -1 \rightarrow repeat counter.$					
	$(MSTACK) \rightarrow PC$					
Status Bits	None					
Description	The TBLR instruction transfers a word from a location in program memory to a data-memory location specified by the instruction. The program-memory ad- dress is defined by the low-order 16 bits of the accumulator. For this operation, a read from program memory is performed, followed by a write to data memory. When repeated with the repeat (RPT) instruction, TBLR effectively becomes a single-cycle instruction, and the program counter that was loaded with (ACC(15:0)) is incremented once each cycle.					
Words	1					

7-186

Cycles

Cycles for a Single TBLR Instruction						
	Program					
Operand	ROM	DARAM	SARAM	External		
Source: DARAM/ROM Destination: DARAM	3	3	3	3+p _{code}		
Source: SARAM Destination: DARAM	3	3	3	3+p _{code}		
Source: External Destination: DARAM	3+p _{src}	3+p _{src}	3+p _{src}	3+p _{src} +p _{code}		
Source: DARAM/ROM Destination: SARAM	3	3	3 4†	3+p _{code}		
Source: SARAM Destination: SARAM	3	3	3 4†	3+p _{code}		
Source: External Destination: SARAM	3+p _{src}	3+p _{src}	3+p _{src} 4+p _{src} †	3+p _{src} +p _{code}		
Source: DARAM/ROM Destination: External	4+d _{dst}	4+d _{dst}	4+d _{dst}	6+d _{dst} +p _{code}		
Source: SARAM Destination: External	4+d _{dst}	4+d _{dst}	4+d _{dst}	6+d _{dst} +p _{code}		
Source: External Destination: External	4+p _{src} +d _{dst}	4+p _{src} +d _{dst}	4+p _{src} +d _{dst}	6+p _{src} +d _{dst} +p _{code}		

[†] If the destination operand and the code are in the same SARAM block

C	Cycles for a Repeat (RPT) Execution of a TBLR Instruction				
		Pr	rogram		
	ROM	DARAM	SARAM	External	

Operand	ROM	DARAM	SARAM	External
Source: DARAM/ROM Destination: DARAM	n+2	n+2	n+2	n+2+p _{code}
Source: SARAM	n+2	n+2	n+2	n+2+p _{code}

n+2+np_{src}

[†] If the destination operand and the code are in the same SARAM block

 \ddagger If both the source and the destination operands are in the same SARAM block

 $\$ If both operands and the code are in the same SARAM block

n+2+np_{src}

Destination: DARAM

Destination: DARAM

Source: External

n+2+np_{src}+p_{code}

n+2+np_{src}

	Program					
Operand	ROM	DARAM	SARAM	External		
Source: DARAM/ROM Destination: SARAM	n+2	n+2	n+2 n+4†	n+2+p _{code}		
Source: SARAM Destination: SARAM	n+2 2n‡	n+2 2n‡	n+2 2n‡ 2n+2§	n+2+p _{code} 2n‡		
Source: External Destination: SARAM	n+2+np _{src}	n+2+np _{src}	n+2+np _{src} n+4+np _{src} †	n+2+np _{src} +p _{code}		
Source: DARAM/ROM Destination: External	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+4+nd _{dst} +p _{code}		
Source: SARAM Destination: External	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+2+nd _{dst}	2n+4+nd _{dst} +p _{code}		
Source: External Destination: External	4n+np _{src} +nd _{dst}	4n+np _{src} +nd _{dst}	4n+np _{src} +nd _{dst}	4n+2+np _{src} +nd _{dst} + p _{code}		

Cycles for a Repeat (RPT) Execution of a TBLR Instruction (Continued)

 † If the destination operand and the code are in the same SARAM block ‡ If both the source and the destination operands are in the same SARAM block $^{\$}$ If both operands and the code are in the same SARAM block

Example 1	TBLR	DAT6	; (DP = 4:	addresses 0200)h-027Fh)
			Before Instruction		After Instruction
		ACC	23h	ACC	23h
	Prog	ram Memory 23h		Program Memory 23h	306h
	Da	ta Memory 206h	75h	Data Memory 206h	306h
Example 2	TBLR	*,AR7			
			Before Instruction		After Instruction
		ARP	0	ARP	7
		AR0	300h	AR0	300h
		ACC	24h	ACC	24h
	Prog	ram Memory 24h		Program Memory 24h	
	Da	ta Memory 300h	75h	Data Memory 300h	

Syntax	TBLW dmaDirect addressing TBLW ind [, AR n]Indirect addressing					
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+					
Opcode	TBLW dma					
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
	1 0 1 0 0 1 1 1 0 dma					
	TBLW ind [, ARn]					
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
	1 0 1 0 0 1 1 1 1 ARU N NAR					
	Note: ARU, N, and NAR are defined in Section 6.3, <i>Indirect Addressing Mode</i> (page 6-9).					
Execution	Increment PC, then $(PC+1) \rightarrow MSTACK$ $(ACC(15:0)) \rightarrow PC+1$ $(data-memory address) \rightarrow pma,$ For indirect, modify (current AR) and (ARP) as specified $(PC) + 1 \rightarrow PC$ While (repeat counter) $\neq 0$ $(data-memory address) \rightarrow pma,$ For indirect, modify (current AR) and (ARP) as specified $(PC) + 1 \rightarrow PC$ $(repeat counter) -1 \rightarrow repeat counter.$ $(MSTACK) \rightarrow PC+1$					
Status Bits	None					
Description	The TBLW instruction transfers a word in data memory to program memory. The data-memory address is specified by the instruction, and the program- memory address is specified by the lower 16 bits of the accumulator. A read from data memory is followed by a write to program memory to complete the instruction. When repeated with the repeat (RPT) instruction, TBLW effectively becomes a single-cycle instruction, and the program counter that was loaded with (ACC(15:0)) is incremented once each cycle.					
Words	1					

Cycles

Cycles for a Single TBLW Instruction							
	Program						
Operand	ROM	DARAM	SARAM	External			
Source: DARAM/ROM Destination: DARAM	3	3	3	3+p _{code}			
Source: SARAM Destination: DARAM	3	3	3	3+p _{code}			
Source: External Destination: DARAM	3+d _{src}	3+d _{src}	3+d _{SrC}	3+d _{src} +p _{code}			
Source: DARAM/ROM Destination: SARAM	3	3	3 4†	3+p _{code}			
Source: SARAM Destination: SARAM	3	3	3 4†	3+p _{code}			
Source: External Destination: SARAM	3+d _{src}	3+d _{src}	3+d _{src} 4+d _{src} †	3+d _{src} +p _{code}			
Source: DARAM/ROM Destination: External	4+p _{dst}	4+p _{dst}	4+p _{dst}	5+p _{dst} +p _{code}			
Source: SARAM Destination: External	4+p _{dst}	4+p _{dst}	4+p _{dst}	5+p _{dst} +p _{code}			
Source: External Destination: External	4+d _{src} +p _{dst}	4+d _{src} +p _{dst}	4+d _{src} +p _{dst}	5+d _{src} +p _{dst} +p _{code}			

 $\ensuremath{^\dagger}$ If the destination operand and the code are in the same SARAM block

0	Cycles for a Repeat (RPT) Execution of a TBLW Instruction						
	Program						
Operand	ROM	DARAM	SARAM	External			
Source: DARAM/ROM Destination: DARAM	n+2	n+2	n+2	n+2+p _{code}			
Source: SARAM Destination: DARAM	n+2	n+2	n+2	n+2+p _{code}			
Source: External Destination: DARAM	n+2+nd _{src}	n+2+nd _{src}	n+2+nd _{src}	n+2+nd _{src} +p _{code}			

 † If the destination operand and the code are in the same SARAM block \ddagger If both the source and the destination operands are in the same SARAM block \$ If both operands and the code are in the same SARAM block

	Program					
Operand	ROM	DARAM	SARAM	External		
Source: DARAM/ROM Destination: SARAM	n+2	n+2	n+2 n+3†	n+2+p _{code}		
Source: SARAM Destination: SARAM	n+2 2n‡	n+2 2n‡	n+2 2n‡ 2n+1§	n+2+p _{code} 2n‡		
Source: External Destination: SARAM	n+2+nd _{src}	n+2+nd _{src}	n+2+nd _{src} n+3+nd _{src} †	n+2+nd _{src} +p _{code}		
Source: DARAM/ROM Destination: External	2n+2+np _{dst}	2n+2+np _{dst}	2n+2+np _{dst}	2n+3+np _{dst} +p _{code}		
Source: SARAM Destination: External	2n+2+np _{dst}	2n+2+np _{dst}	2n+2+np _{dst}	2n+3+np _{dst} +p _{code}		
Source: External Destination: External	4n+nd _{src} +np _{dst}	4n+nd _{src} +np _{dst}	4n+nd _{src} +np _{dst}	4n+1+nd _{src} +np _{dst} + Pcode		

Cycles for a Repeat (RPT) Execution of a TBLW Instruction (Continued)

[†] If the destination operand and the code are in the same SARAM block

[‡] If both the source and the destination operands are in the same SARAM block

 $\$ If both operands and the code are in the same SARAM block

Example 1	TBLW	DAT5	;(DP = 32:	addresses 100)0h-107Fh)
			Before Instruction		After Instruction
		ACC	257h	ACC	257h
		1 Memory 005h	4339h	Data Memory 1005h	4339h
	•	am Memory 257h	306h	Program Memory 257h	4399h
Example 2	TBLW	*			
			Before Instruction		After Instruction
		ARP	Before Instruction	ARP	After Instruction
		ARP AR6		ARP AR6	
			6		6
	Data	AR6	6 1006h	AR6	6 1006h

Syntax	TRAP													
Operands	None													
Opcode	15 14 1 0	<u>13 12</u> 1 1	<u>11</u> 1	<u>10</u> 1	9 1	8 0	7 0	<u>6</u> 1	5 0	4 1	<u>3</u> 0	2 0	1 0	0
Execution	$(PC) + 1 - 22h \rightarrow PC$													
Status Bits	Not affected by INTM; does not affect INTM.													
Description	The TRAP instruction is a software interrupt that transfers program control to program-memory location 22h and pushes the program counter (PC) plus 1 onto the hardware stack. The instruction at location 22h may contain a branch instruction to transfer control to the TRAP routine. Putting (PC + 1) onto the stack enables a return instruction to pop the return address (which points to the instruction after TRAP) from the stack. The TRAP instruction is not maskable.													
Quality														
Cycles			-	cles f	or a S	Single			struc	ction				
	ROM		DA	RAM			SA	RAM			Ext	ernal		
	4		4				4				4+3	3pt		
	† The proce PC discon					-	•	-				uction	words	. If the
Example	TRAP		+ 1 ntro h.		-									

Syntax							Direct addressing Indirect addressing Long immediate addressing Long immediate with left shift of 16								
Operands	dma:7 LSBs of the data-memory addressshift:Left shift value from 0 to 15 (defaults to 0)n:Value from 0 to 7 designating the next auxiliary registerlk:16-bit long immediate valueind:Select one of the following seven options:**+**0+**BR0+						er								
Opcode	XOR d	ma													
•	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 1	1	0	1	1	0	0	0				dma			
			Dol												
	XOR in 15 14	-	n //j 12	11	10	9	8	7	6	5	4	3	2	1	0
		1	0	1	1	0	0	1		ARU		N		NAR	
				NAR a	are def				3. Ind				l lode (i		
									-,						/-
	XOR # 15 14	-	1171] 12	44	10	0	0	7	6	5	٨	3	2	1	0
	13 14	13	12	11	10	9	8	7	6	5	4	3		nift	0
		I						51	IIIL						
	XOR #	k, 16													
	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 0	1	1	1	1	1	0	1	0	0	0	0	0	1	1
								k							
Execution	Increment PC, then <u>Event(s)</u> (ACC(15:0)) XOR (data-memory address) \rightarrow ACC(15:0) Direct or i (ACC(31:16)) \rightarrow ACC(31:16) (ACC(31:0)) XOR lk $\times 2^{\text{shift}} \rightarrow$ ACC(31:0) Long imm						or in	direc	ct						
	(ACC(31:	,,					· ·	,			Long immediate Long immediate with left shift of 16				

Assembly Language Instructions 7-193

Status Bits	None						
Description	With direct or indirect addressing, the low half of the accumulator value is exclusive ORed with the content of the addressed data memory location, and the result replaces the low half of the accumulator value; the upper half of the accumulator value is unaffected. With immediate addressing, the long immediate constant is shifted and zero filled on both ends and exclusive ORed with the entire content of the accumulator. The carry bit (C) is unaffected by XOR.						
Words	Words <u>Addressing mode</u>						
	1 Direct or indirect						
	2	Long immediate					
Cycles	Cycles for a Single XOR Instruction (Using Direct and Indirect Addressing)						

Cycles for a Single XOR Instruction (Using Direct and Indirect Addressing)

	Program							
Operand	ROM	DARAM	SARAM	External				
DARAM	1	1	1	1+p				
SARAM	1	1	1, 2†	1+p				
External	1+d	1+d	1+d	2+d+p				

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an XOR Instruction (Using Direct and Indirect Addressing)

		Program									
Operand	ROM	DARAM	SARAM	External							
DARAM	n	n	n	n+p							
SARAM	n	n	n, n+1†	n+p							
External	n+nd	n+nd	n+nd	n+1+p+nd							

 $\ensuremath{^\dagger}$ If the operand and the code are in the same SARAM block

Cycles for a Single XOR Instruction (Using Long Immediate Addressing)

ROM	DARAM	SARAM	External
2	2	2	2+2p

Example 1	XOR	DAT127	;(DP = 511:	addresses FF	780h-FFFFh)
			Before Instruction		After Instruction
		Data Memory 0FFFh	0F0F0h	Data Memory 0FFFh	0F0F0h
		ACC X	12345678h	ACC X	1234A688h
Example 2	XOR	*+,AR0			
			Before Instruction		After Instruction
		ARP	7	ARP	0
		AR7	300h	AR7	301h
		Data Memory 300h	0FFFFh	Data Memory 300h	0FFFh
		ACC X	1234F0F0h	ACC X	12340F0Fh
		С		С	
Example 3	XOR	#0F0F0h,4	;(First shi	ft data value	e left by
			;four)		
			Before Instruction		After Instruction
		ACC X	11111010h	ACC X	111E1F10h
		С		С	

ZALR	Zero Low Accumulator and Load High Accumulator With Rounding

Syntax	ZALR dma ZALR ind [, ARn]						Direct addressing Indirect addressing					
Operands	dma:7 LSBs of the data-memory addressn:Value from 0 to 7 designating the next auxiliary registerind:Select one of the following seven options:**+**0+**BR0+**BR0+											
Opcode	ZALR d											
	15 14	13 12 1 0	11 1	10 0	98	7	6 5	4	3 dma	2	1	0
				0	0 0	0			uma			
		d [, AR n]		4.0		-	o -		~	~		•
	15 14	13 12 1 0	11 1	10 0	9 8 0 0	7	6 5 ARL	4	3 N	2	1 NAR	0
		RU, N, and								l lode (r		
Execution Status Bits Description Words	Increment (data-mem $8000h \rightarrow A$ None To load a c ZALR instr (bits 14–0) is set to 1.	lory addr ACC(15:0 data-men ruction ro	ess) –)) nory va unds t	alue i the va	nto the	high-c	g 1/2 LSB	; that	is, th	ne 15	low	bits
Cycles			Cycle	es for	a Singl	e ZALF	R Instruct	on				
						Proç	gram					
	Operand	ROM		D	ARAM		SARAM		Ex	terna	al	
	DARAM	1		1			1		1+	p		
	SARAM	1		1			1, 2†		1+	p		
	External	1+d		1-	-d		1+d		2+	d+p		
	† If the operation	and and the	e code a	are in t	ne same	SARAN	l block					

C	Cycles for a Repeat (RPT) Execution of a ZALR Instruction									
		Program								
Operand	ROM	DARAM	SARAM	External						
DARAM	n	n	n	n+p						
SARAM	n	n	n, n+1†	n+p						
External	n+nd	n+nd	n+nd	n+1+p+nd						

Example 1	ZALR	DAT3	;(DP = 32:	addresses 10	00h-107Fh)
			Before Instruction		After Instruction
		Data Memory 1003h ACC X C	3F01h 77FFFFh	Data Memory 1003h ACC X C	3F01h 3F018000h
Example 2	ZALR	*-,AR4			
			Before Instruction		After Instruction
		ARP	7	ARP	4
		AR7	0FF00h	AR7	0FEFFh
		Data Memory 0FF00h	0E0E0h	Data Memory 0FF00h	0E0E0h
		ACC X	107777h	ACC X	0E0E08000h

Chapter 8

On-Chip Peripherals

This chapter discusses on-chip peripherals connected to the 'C2xx CPU and their control registers. The on-chip peripherals are controlled through memory-mapped registers. The operations of the timer and the serial ports are synchronized to the processor through interrupts and interrupt polling. The 'C2xx on-chip peripherals are:

- Clock generator
- Timer
- Software-programmable wait-state generator
- General-purpose I/O pins
- Synchronous serial port (SSP)
- Asynchronous serial port (ASP), or UART

The serial ports are discussed in Chapter 9 and Chapter 10.

For examples of program code for the on-chip peripherals, see Appendix C, *Program Examples*.

Topic

Page

8.1	Control of On-Chip Peripherals 8-2
8.2	Clock Generator
8.3	CLKOUT1-Pin Control (CLK) Register 8-7
8.4	Timer
8.5	Wait-State Generator
8.6	General-Purpose I/O Pins 8-17

8.1 Control of On-Chip Peripherals

The on-chip peripherals are controlled by accessing control registers that are mapped to on-chip I/O space. Data is also transferred to and from the peripherals through these registers. Setting and clearing bits in these registers can enable, disable, initialize, and dynamically reconfigure the on-chip peripherals.

On a device reset, the CPU sends an internal SRESET signal to the peripheral circuits. Table 8–1 lists the peripheral registers and summarizes what happens when the values in these registers are reset. For a description of all the effects of a device reset, see Section 5.7, *Reset Operation*, on page 5-33.

Register	I/O Address				
Name	'C209	Other 'C2xx	Reset Value	Effects at Reset	
CLK	_	FFE8h	0000h	<i>CLKOUT1-pin control (CLK) register.</i> The CLKOUT1 signal is available at the CLKOUT1 pin.	
SDTR	_	FFF0h	xxxxh	Synchronous data transmit and receive register. The value in this register is unde- fined after reset.	
SSPCR	_	FFF1h	0030h	Synchronous serial port control register. The port emulation mode is set to immedi- ate stop. Error and status flags are reset. Receive interrupts are set to occur when the receive buffer is not empty. Transmit inter- rupts are set to occur when the transmit buffer can accept one or more words. Exter- nal clock and frame synchronization sources are selected. Continuous mode is selected. Digital loopback mode is disabled. The receiver and transmitter are enabled.	
ADTR	_	FFF4h	xxxxh	Asynchronous data transmit and receive register. The value in this register is unde- fined after reset.	
ASPCR	_	FFF5h	0000h	Asynchronous serial port control register. The port emulation mode is set to immedi- ate stop. Receive, transmit, and delta in- terrupts are disabled. One stop bit is se- lected. Auto-baud alignment is disabled. The TX pin is forced high between trans- missions. I/O pins IO0, IO1, IO2, and IO3 are configured as inputs. The port is disabled.	

Table 8–1. Peripheral Register Locations and Reset Conditions

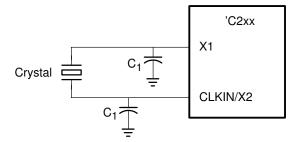
Register	I/O A	I/O Address		
Name	'C209	Other 'C2xx	Reset Value	Effects at Reset
IOSR	-	FFF6h	18xxh	<i>I/O status register.</i> Auto-baud alignment is disabled. Error and status flags are reset. The lower eight bits are dependent on the values on pins IO0, IO1, IO2, and IO3 at reset.
BRD	-	FFF7h	0001h	Baud rate divisor register. A baud rate of (CLKOUT1 rate)/16 is selected.
TCR	FFFCh	FFF8h	0000h	<i>Timer control register.</i> The divide-down value is 0, and the timer is started.
PRD	FFFDh	FFF9h	FFFFh	<i>Timer period register.</i> The next value to be loaded into the timer counter register (TIM) is at its highest value.
TIM	FFFEh	FFFAh	FFFFh	<i>Timer counter register.</i> The timer count is at its highest value.
WSGR	FFFFh	FFFCh	0FFFh	<i>Wait-state generator control register.</i> The maximum number of wait states are selected for off-chip program, data, and I/O spaces.

Table 8–1. Peripheral Register Locations and Reset Conditions (Continued)

8.2 Clock Generator

The high pulse of the master clock output signal (CLKOUT1) signifies the logic phase of the device (the phase when values are changed), while the low pulse signifies the latch phase (the phase when values are latched). CLKOUT1 determines much of the device's operational speed. For example:

- The timer clock rate is a fraction of the rate of CLKOUT1.
- Each instruction cycle is equal to one CLKOUT1 period.
- Each wait state generated by the READY signal or by the on-chip waitstate generator is equal to one CLKOUT1 period.


You control the rate of CLKOUT1 with the on-chip clock generator. The clock generator creates an internal CPU clock signal CLKOUT1 whose rate is a fraction or multiple of a source clock signal CLKIN. This generator consists of two independent components, an oscillator and a phase lock loop (PLL) circuit. The internal oscillator, in conjunction with an external resonator circuit, allows you to generate CLKIN internally and create a CLKOUT1 signal that oscillates at half the frequency of CLKIN. The PLL makes the rate of CLKOUT1 a multiple of the rate of CLKIN and locks the phase of CLKOUT1 to that of CLKIN.

CLKIN can be generated by the internal oscillator or by an external oscillator:

Internal oscillator. The clock source is generated internally by connecting a crystal resonator circuit across the CLKIN/X2 and X1 pins. The crystal should be in either fundamental or overtone operation and parallel resonant, with an effective series resistance of 30 ohms and a power dissipation of 1 mW. It should also be specified at a load capacitance of 20 pF. Figure 8–1 shows the setup for a fundamental frequency crystal. Overtone crystals require an additional tuned-LC circuit.

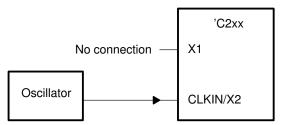

When the internal oscillator is used, the frequency of CLKOUT1 is half the oscillating frequency of the crystal. For example, a 40-MHz crystal will provide a CLKOUT1 rate of 20 MHz, providing 20 MIPS of processing power.

Figure 8–1. Using the Internal Oscillator

External Oscillator. CLKIN is the output of an external oscillator, which is connected to the CLKIN/X2 pin. The X1 pin must be left unconnected. See Figure 8–2.

Figure 8–2. Using an External Oscillator

Regardless of the method used to generate CLKOUT1, CLKOUT1 is also available at the CLKOUT1 pin, unless the pin is turned off by the CLK register (see Section 8.3).

You can lower the power requirements for the 'C2xx by slowing down or stopping the input clock.

Note:

When restarting the system, activate $\overline{\text{RS}}$ before starting or stopping the clock, and hold it active until the clock stabilizes. This brings the device back to a known state.

8.2.1 Clock Generator Options

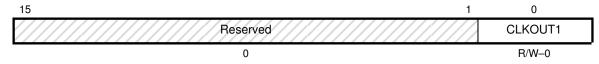
The 'C2xx provides four clock modes: divide-by-2 (\div 2), multiply-by-1 (×1), multiply-by-2 (×2), and multiply-by-4 (×4). The \div 2 mode operates the CPU at half the input clock rate. Each of the other modes operates the CPU at a multiple of the input clock rate and phase locks the output clock with the the input clock. You set the mode by changing the levels on the DIV1 and DIV2 pins. For each mode, Table 8–2 shows the generated CPU clock rate and the state of DIV2, DIV1, the internal oscillator, and the internal phase lock loop (PLL).

Notes:

- 1) Change DIV1 and DIV2 only while the reset signal (\overline{RS}) is active.
- 2) The PLL requires approximately 2500 cycles to lock the output clock signal to the input clock signal. When setting the $\times 1$, $\times 2$, or $\times 4$ mode, keep the reset ($\overline{\text{RS}}$) signal active until at least three cycles after the PLL has stabilized.

Clock Mode	CLKOUT1 Rate	DIV2	DIV1	External CLKIN Source?	Internal Oscillator	Internal PLL
÷2	CLKOUT1 = CLKIN ÷ 2	0	0	No	Enabled	Disabled
				Yes	Disabled	Disabled
× 1	$CLKOUT1 = CLKIN \times 1$	0	1	Required	Disabled	Enabled
× 2	$CLKOUT1 = CLKIN \times 2$	1	0	Required	Disabled	Enabled
× 4	$CLKOUT1 = CLKIN \times 4$	1	1	Required	Disabled	Enabled

Table 8–2. 'C2xx Input Clock Modes


Remember the following when configuring the clock mode:

- ☐ The clock mode configuration cannot be dynamically changed. After you change the levels on DIV1 and DIV2, the mode is not changed until a hardware reset is executed (RS low).
- □ The operation of the PLL circuit is affected by the operating voltage of the device. If your device operates at 5V, the PLL5V signal should be tied high at the PLL5V pin. If you have a 3-V device, tie PLL5V low.
- □ The ×1, ×2, and ×4 modes use an internal phase lock loop (PLL) that requires approximately 2500 cycles to lock. Delay the rising edge of RS until at least three cycles after the PLL has stabilized. When the PLL is used, the duty cycle of the CLKIN signal is more flexible, but the minimum duty cycle should not be less than 10 nanoseconds. When the PLL is not used, no phase-locking time is necessary, but the minimum pulse width must be 45% of the minimum clock cycle.

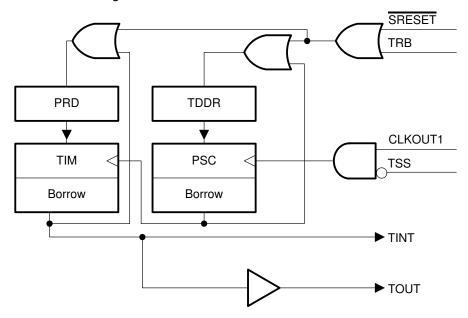
8.3 CLKOUT1-Pin Control (CLK) Register

You can use bit 0 of the CLK register to turn off the pin for the master clock output signal (CLKOUT1). The CLK register is located at address FFE8h in I/O space and has the organization shown in Figure 8–3.

Figure 8–3. 'C2xx CLK Register — I/O-Space Address FFE8h

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

If the CLKOUT1 bit is 1, the CLKOUT1 signal is not available at the CLKOUT1 pin; if the bit is 0, CLKOUT1 is available at the pin. At reset, this bit is cleared to 0. When the IDLE instruction puts the CPU into a power-down mode, CLKOUT1 remains active at the pin if the CLKOUT1 bit is 0. (For more information on the 'C2xx power-down mode, see section 5.8, *Power-Down Mode*, on page 5-36).


For the current status of CLKOUT1, read bit 0. To change the status, write to bit 0. When programming, allow the CLKOUT1 pin two cycles to change its state from on to off or from off to on. Bits 15–1 are reserved and are always read as 0s.

8.4 Timer

The 'C2xx features an on-chip timer with a 4-bit prescaler. This timer is a down counter that can be stopped, restarted, reset, or disabled by specific status bits. You can use the timer to generate periodic CPU interrupts.

Figure 8–4 shows a functional block diagram of the timer. There is a 16-bit main counter (TIM) and a 4-bit prescaler counter (PSC). The TIM is reloaded from the period register PRD. The PSC is reloaded from the period register TDDR.

Figure 8–4. Timer Functional Block Diagram

Each time a counter decrements to zero, a borrow is generated on the next CLKOUT1 cycle, and the counter is reloaded with the contents of its corresponding period register. The contents of the PRD are loaded into the TIM when the TIM decrements to 0 or when a 1 is written to the timer reload bit (TRB) in the timer control register (TCR). Similarly, the PSC is loaded with the value in the TDDR when the PSC decrements to 0 or when a 1 is written to TRB.

When the TIM decrements to 0, it generates a borrow pulse that has a duration equal to that of a CLKOUT1 cycle $(t_{c(C)})$. This pulse is sent to:

- The external timer output (TOUT) pin
- The CPU, as a timer interrupt (TINT) signal

The TINT request automatically sets the TINT flag bit in the interrupt flag register (IFR). You can mask or unmask the request with the interrupt mask register (IMR). If you are not using the timer, mask TINT so that it does not cause an unexpected interrupt.

8.4.1 Timer Operation

Here is a typical sequence of events for the timer:

- 1) The PSC decrements on each succeeding CLKOUT1 pulse until it reaches 0.
- On the next CLKOUT1 cycle, the TDDR loads the new divide-down count into the PSC, and the TIM decrements by 1.
- The PSC and the TIM continue to decrement in the same way until the TIM decrements to 0.
- 4) On the next CLKOUT1 cycle, a timer interrupt (TINT) is sent to the CPU, a pulse is sent to the TOUT pin, the new timer count is loaded from the PRD into the TIM, and the PSC is decremented once.

The TIM decrements by one every (TDDR+1) CLKOUT1 cycles. When PRD, TDDR, or both are nonzero, the timer interrupt rate is defined by Equation 8–1, where $t_{c(CO)}$ is the period of CLKOUT1, u is the TDDR value plus 1, and v is the PRD value plus 1. When PRD = TDDR = 0, the timer interrupt rate is (CLKOUT1 rate)/2.

Equation 8–1. Timer Interrupt Rate for Nonzero TDDR and/or PRD

$$\mathsf{TINT} \ \mathsf{rate} \ = \ \frac{1}{\mathsf{t}_{\mathsf{c}(\mathsf{CO})}} \ \times \ \frac{1}{\mathsf{u} \times \mathsf{v}} \ = \ \frac{1}{\mathsf{t}_{\mathsf{c}(\mathsf{CO})}} \ \times \ \frac{1}{(\mathsf{TDDR} + 1) \times (\mathsf{PRD} + 1)} \ = \ \frac{\mathsf{CLKOUT1} \ \mathsf{rate}}{(\mathsf{TDDR} + 1) \times (\mathsf{PRD} + 1)}$$

Note:

Equation 8–1 is not valid for TDDR = PRD = 0; in this case, the timer interrupt rate defaults to (CLKOUT1 rate)/2.

In Equation 8–1 the timer interrupt rate equals the CLKOUT1 frequency $(1/t_{c(CO)})$ divided by two independent factors (u and v). Each of the two divisors is implemented with a down counter and a period register. See the timer functional block diagram, Figure 8–4, on page 8-8. The counter and period registers for the divisor u are the PSC and TDDR, respectively, both 4-bit fields of the timer control register (TCR). The counter and period registers for the divi

sor v are the TIM and PRD, respectively. Both are16-bit registers mapped to I/O space.

The 4-bit TDDR (timer divide-down register) and the 4-bit PSC (prescaler counter) are contained in the timer control register (TCR) described in subsection 8.4.2. The TIM (timer counter register) and the PRD (timer period register) are 16-bit registers described in subsection 8.4.3. You can read the TCR, TIM, and PRD to obtain the current status of the timer and its counters.

Note:

Read the TIM for the current value in the timer. Read the TCR for the PSC value. Because it takes two instructions to read both the TIM and the TCR, the PSC may decrement between the two reads, making comparison of the reads inaccurate. Therefore, where precise timing measurements are necessary, you may want to stop the timer before reading the two values. (Set the TSS bit of the TCR to 1 to stop the time; clear TSS to 0 to restart the timer.)

8.4.2 Timer Control Register (TCR)

The TCR, a 16-bit register mapped to on-chip I/O space, contains the control bits that:

- Control the mode of the timer
- Specify the current count in the prescaler counter
- Reload the timer
- Start and stop the timer
- Define the divide-down value of the timer

For 'C2xx devices other than the 'C209, Figure 8–5 shows the bit layout of the TCR. Descriptions of the bits follow the figure. For a description of the 'C209 TCR, see subsection 11.4.2 on page 11-15.

15 12	11	10	9 6	5	4	3 0
Reserved	FREE	SOFT	PSC	TRB	TSS	TDDR
0	R/W–0	R/W-0	R/W-0	R/W-0	W–0	R/W-0

Figure 8–5. 'C2xx Timer Control Register (TCR) — I/O-Space Address FFF8h

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Bits 11–10 FREE, SOFT — These bits are special emulation bits that determine the state of the timer when a breakpoint is encountered in the high-level language debugger. If the FREE bit is set to 1, then, upon a software breakpoint, the timer continues to run (that is, free runs). In this case, SOFT is a *don't care*. But if FREE is 0, then SOFT takes effect. In this case, if SOFT = 0, the timer halts the next time the TIM decrements. If the SOFT bit is 1, then the timer halts when the TIM has decremented to zero. Table 8–3 summarizes the available run and emulation modes. The default (reset) setting is FREE = 0 and SOFT = 0.

Table 8–3. 'C2xx Timer Run/Emulation Modes

0 0	Stop after the next decrement of the TIM (hard stop)
0 1	
0 1	Stop after the TIM decrements to 0 (soft stop)
1 0	Free run
1 1	Free run

Bits 9–6
 PSC — Timer prescaler counter. These four bits hold the current prescale count for the timer. For every CLKOUT1 cycle that the PSC value is greater than 0, the PSC decrements by one. One CLKOUT1 cycle after the PSC reaches 0, the PSC is loaded with the contents of the TDDR, and the timer counter register (TIM) decrements by one. The PSC is also reloaded whenever the timer reload bit (TRB) is set by software. The PSC can be checked by reading the TCR, but it cannot be set directly. It must get its value from the timer divide-down register (TDDR). At reset, the PSC is set to 0.
 Bit 5

it 5 TRB — Timer reload bit. When you write a 1 to TRB, the TIM is loaded with the value in the PRD, and the PSC is loaded with the value in the timer dividedown register (TDDR). The TRB bit is always read as zero.

Bits 15–12 Reserved. Bits 15–12 are reserved and are always read as 0s.

Bit 4		er stop status bit. TSS stops or starts the timer. At reset, TSS 0 and the timer immediately starts.
	TSS = 0	Starts or restarts the timer.
	TSS = 1	Stops the timer.
Bits 3–0	the timer cou are cleared t factor, write t counter (PS TDDR reload	ner divide-down register. Every $(TDDR + 1) CLKOUT1$ cycles, unter register (TIM) decrements by one. At reset, the TDDR bits o 0. If you want to increase the overall timer count by an integer this factor minus one to the four TDDR bits. When the prescaler C) value is 0, one CLKOUT1 cycle later, the contents of the d the PSC, and the TIM decrements by one. TDDR also reloads enever the timer reload bit (TRB) is set by software.

8.4.3 Timer Counter Register (TIM) and Timer Period Register (PRD)

These two registers work together to provide the current count of the timer:

The 16-bit timer counter register (TIM) holds the current count of the timer. The TIM decrements by one every (TDDR+1) CLKOUT1 cycles. When the TIM decrements to zero, the TINT bit of the interrupt flag register (IFR) is set (causing a pending timer interrupt), and a pulse is sent to the TOUT pin.

You can write values from 1 to 65 535 (FFFFh) to this register. At reset, this register is set to hold its maximum value of FFFFh. See Table 8–1 (page 8-2) for the address of this register.

The 16-bit timer period register (PRD) holds the next starting count for the timer. When the TIM decrements to zero, in the following cycle, the contents of the PRD are loaded into the TIM. The PRD contents are also loaded into the TIM when you set the timer reload bit (TRB).

You can program the PRD to contain a value from 0 to 65 535 (FFFFh). After reset, the PRD holds its maximum value of FFFFh. See Table 8–1 (page 8-2) for the address of this register. If you are not using the timer, you can mask TINT and then use the PRD as a general-purpose datamemory location.

You control the timer's current and next periods. You can write to or read from the TIM and PRD on any cycle. You can monitor and control the count by reading from the TIM and writing the next counter period to the PRD without disturbing the current timer count. The timer will start the next period after the current count is complete. If you use TINT, you should program the PRD and TIM before unmasking TINT, to avoid unwanted interrupts.

Once a reset is initiated, the TIM begins to decrement only after reset is deasserted.

8.4.4 Setting the Timer Interrupt Rate

When the divide-down value (TDDR) is 0, you can program the timer to generate an interrupt (TINT) every 2 to 65 536 cycles by programming the period register (PRD) from 0 to 65 535 (FFFFh). When TDDR is nonzero (1 to 15), the timer interrupt rate decreases.

If TDDR, PRD, or both are nonzero, the timer interrupt rate is given by:

TINT rate = $\frac{CLKOUT1 \text{ rate}}{(TDDR + 1) \times (PRD + 1)}$

Note:

When TDDR = PRD = 0, the timer interrupt rate defaults to (CLKOUT1 rate)/2.

As an example of setting the timer interrupt rate, suppose the CLKOUT1 rate is 10 MHz and you want to use the timer to generate a clock signal with a rate of 10 kHz. You need to divide the CLKOUT1 rate by 1000. The TDDR is loaded with 4, so that every 5 CLKOUT1 cycles, the TIM decrements by one. The PRD is loaded with the starting count (199) for the TIM. These values are verified with the TINT rate equation:

TINT rate = CLKOUT1 rate $\times \frac{1}{(\text{TDDR} + 1) \times (\text{PRD} + 1)}$ TINT rate = $\frac{1 \text{ CLKOUT1 cycle}}{0.10 \times 10^{-6} \text{ s}} \times \frac{1 \text{ TINT cycle}}{(4 + 1) \times (199 + 1) \text{ CLKOUT1 cycles}}$ TINT rate = $\frac{10 \times 10^3 \text{ TINT cycles}}{\text{s}}$ = 10 kHz

The PSC and the TIM would be loaded with the values from the TDDR and the PRD, respectively. Then, one CLKOUT1 cycle after the TIM decrements to 0, the timer would send an interrupt to the CPU.

8.4.5 The Timer at Hardware Reset

On a device reset, the CPU sends an SRESET signal to the peripheral circuits, including the timer. The SRESET signal has the following consequences on the timer:

- The registers TIM and PRD are loaded with their maximum values (FFFFh).
- All the bits of the TCR are cleared to zero with the following results:
 - The divide-down value is 0 (TDDR = 0 and PSC = 0).
 - The timer is started (TSS = 0).
 - The FREE and SOFT bits are both 0.

8.5 Wait-State Generator

Wait states are necessary when you want to interface the 'C2xx with slower external logic and memory. By adding wait states, you lengthen the time the CPU waits for external memory or an external I/O port to respond when the CPU reads from or writes to that memory or port. Specifically, the CPU waits one extra cycle (one CLKOUT1 cycle) for every wait state. The wait states operate on CLKOUT1 cycle boundaries.

To avoid bus conflicts, writes from the 'C2xx always take at least two CLKOUT1 cycles.

The 'C2xx offers two options for generating wait states:

- The READY signal. With the READY signal, you can externally generate any number of wait states.
- **The on-chip wait-state generator.** With this generator, you can generate zero to seven wait states.

8.5.1 Generating Wait States With the READY Signal

When READY is low, the 'C2xx waits one CLKOUT1 cycle and checks READY again. The 'C2xx will not continue executing until READY is driven high; therefore, if the READY signal is not used, it should be pulled high during external accesses.

Again, the READY pin can be used to generate any number of wait states. However, even when the 'C2xx operates at full speed, it may not respond fast enough to provide a READY-based wait state for the first cycle. For extended wait states using external READY logic, the on-chip wait-state generator should be programmed to generate at least one wait state.

The READY pin has no effect on accesses to *internal* memory or I/O registers, except in the case of the 'C209 (see Section 11.2, '*C209 Memory and I/O Spaces*, on page 11-5.) For a 'C2xx device with a boot loader, READY must be high at boot time.

8.5.2 Generating Wait States With the 'C2xx Wait-State Generator

For devices other than the 'C209, the software wait-state generator can be programmed to generate zero to seven wait states for a given off-chip memory space (lower program, upper program, data, or I/O), regardless of the state of the READY signal. This wait-state generator has the bit fields shown in Figure 8–6 and described after the figure. For a description of the 'C209 wait-

state generator, see subsection 11.4.3 on page 11-16. To avoid bus conflicts, all writes to external addresses take at least two cycles.

Figure 8–6. 'C2xx Wait-State Generator Control Register (WSGR) — I/O-Space Address FFFCh

 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
////	Reserv	/ed		ISWS		[osws		Р	suws		PSLWS		6	
	0			F	R/W–111		R	/W–111		R	/W–111		F	R/W–11 ⁻	1

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

- Bits 15–12 Reserved. Bits 15–12 are reserved and are always read as 0s.
- **Bits 11–9 ISWS** I/O-space wait-state bits. Bits 9–11 determine the number of wait states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip I/O space. At reset, the three ISWS bits become 111, setting seven wait states for reads from and writes to off-chip I/O space.
- **Bits 8–6 DSWS Data-space wait-state bits.** Bits 6–8 determine the number of wait states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip data space. At reset, the three DSWS bits become 111, setting seven wait states for reads from and writes to off-chip data space.
- **Bits 5–3 PSUWS Upper program-space wait-state bits.** Bits 3–5 determine the number of wait states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip *upper* program addresses 8000h–FFFFh. At reset, the three PSUWS bits become 111, setting seven wait states for reads from and writes to off-chip upper program space.
- **Bits 2–0 PSLWS** Lower program-space wait-state bits. Bits 0–2 determine the number of wait states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip *lower* program addresses 0h–7FFFh. At reset, the three PSLWS bits become 111, setting seven wait states for reads from and writes to off-chip lower program space.

Table 8–4 shows how to set the number of wait states you want for each type of off-chip memory. For example, if you write 1s to bits 0 through 5, the device will generate seven wait states for off-chip lower program memory and seven wait states for off-chip upper program memory.

IS	ISWS Bits			DSWS Bits				SUW Bits		Upper Program	Р	SLW Bits		Lower Program	
11	10	9	I/O Wait States	8	7	6	Data Wait States	5	4	3	Wait States	2	1	0	Wait States
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	1	0	2	0	1	0	2	0	1	0	2	0	1	0	2
0	1	1	3	0	1	1	3	0	1	1	3	0	1	1	3
1	0	0	4	1	0	0	4	1	0	0	4	1	0	0	4
1	0	1	5	1	0	1	5	1	0	1	5	1	0	1	5
1	1	0	6	1	1	0	6	1	1	0	6	1	1	0	6
1	1	1	7	1	1	1	7	1	1	1	7	1	1	1	7

Table 8–4. Setting the Number of Wait States With the 'C2xx WSGR Bits

In summary, the wait-state generator inserts zero to seven wait states to a given memory space, depending on the values of PSLWS, PSUWS, DSWS, and ISWS, while the READY signal remains high. The READY signal may then be driven low to generate additional wait states. If *m* is the number of CLKOUT1 cycles required for a particular read or write operation and *w* is the number of wait states added, the operation will take (m + w) cycles. At reset, all WSGR bits are set to 1, making seven wait states the default for every memory space.

8.6 General-Purpose I/O Pins

The 'C2xx provides pins that can be used to supply input signals from an external device or output signals to an external device. These pins are not bound to specific uses; rather, they can provide input or output signals for a great variety purposes. You have access to the general-purpose input pin BIO and the general-purpose output pin XF. On 'C2xx devices other than the 'C209, you also have the pins IO0, IO1, IO2, and IO3, which can each be configured as an input pin or an output pin.

8.6.1 Input Pin BIO

The general-purpose input pin $\overline{\text{BIO}}$ pin provides input from an external device and is particularly helpful as an alternative to an interrupt when time-critical loops must not be disturbed. The $\overline{\text{BIO}}$ signal gives you control through three instructions, a conditional branch (BCND), a conditional call (CC), and a conditional return (RETC). Here is an example of each:

BCND pma, BIO

pma is a program memory address that you specify. The CPU branches to the program memory address if BIO is low.

CC pma, BIO

pma is a program memory address that you specify. If BIO is low, the CPU stores the return address to the top of the hardware stack and then branches to the program memory address.

RETC BIO

If $\overline{\text{BIO}}$ is low, the CPU transfers the return address from the stack to the program counter (PC) to return from a subroutine or interrupt service routine.

If $\overline{\text{BIO}}$ is not used, it should be pulled high so that a conditional branch, call, or return will not be executed accidentally.

An example of BIO timing is shown in Figure 8–7. This timing diagram is for a sequence of single-cycle, single-word instructions located in external memory. BIO must be asserted low for at least one CLKOUT1 cycle. The BCND, CC, and RETC instructions sample the BIO pin during their execute phase in the pipeline. Actual timing may vary with different instruction sequences.

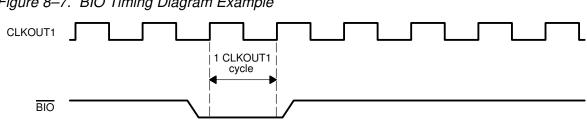


Figure 8–7. BIO Timing Diagram Example

8.6.2 Output Pin XF

The XF pin is the external flag output pin. If you connect XF to an input pin of another processor, you can use XF as a signal to other processor. The most recent XF value is latched in the 'C2xx, and that value is indicated by the XF status bit of status register ST1. You can set XF (XF = 1) with the SETC XF (set external flag) instruction and clear it (XF = 0) with the CLRC XF (clear external flag) instruction. In addition, you can write to ST1 with the LST (load status register) instruction. During a hardware reset, XF is set to 1.

Input/Output Pins IO0, IO1, IO2, and IO3 8.6.3

For additional input/output control, 'C2xx devices other than the 'C209 have pins IO0, IO1, IO2, and IO3, which can be individually configured as inputs or outputs. These pins are software-controllable with the asynchronous serial port control register (ASPCR) and the I/O status register (IOSR). For the details of configuring and using these I/O pins, see subsection 10.3.5, Using I/O Pins IO3, IO2, IO1, and IO0, on page 10-15.

Chapter 9

Synchronous Serial Port

The 'C2xx devices have a synchronous serial port that provides direct communication with serial devices such as codecs (coder/decoders) and serial A/D converters. The serial port may also be used for intercommunication between processors in multiprocessing applications.

The synchronous serial port offers these features:

- Two four-word-deep FIFO buffers
- Interrupts generated by the FIFO buffers
- A wide range of speeds of operation
- Burst and continuous modes of operation

For examples of program code for the synchronous serial port, see Appendix C, *Program Examples*.

Topic

Page

9.1	Overview of the Synchronous Serial Port
9.2	Components and Basic Operation 9-3
9.3	Controlling and Resetting the Port
9.4	Managing the Contents of the FIFO Buffers
9.5	Transmitter Operation
9.6	Receiver Operation 9-24
9.7	Troubleshooting

9.1 Overview of the Synchronous Serial Port

Both receive and transmit operations of the synchronous serial port have a four-word-deep first-in, first-out (FIFO) buffer. The FIFO buffers reduce the amount of CPU overhead inherent in servicing transmit or receive data by reducing the number of transmit or receive interrupts that occur during a transfer.

In the internal clock mode, the maximum transmission rate for both transmit and receive operations is the CPU clock rate divided by two, or (CLKOUT1 rate)/2. Therefore, the maximum rate is 10 megabits/s for a 20-MHz (50-ns) device, 14.28 megabits/s for a 28.57-MHz (35-ns) device, and 20 megabits/s for a 40-MHz (25-ns) device. Since the serial port is fully static, it also functions at arbitrarily low clocking frequencies.

Two modes of operation are provided to support a wide range of applications. Continuous mode provides operation that requires only one frame synchronization (frame sync) pulse to transmit several packets at maximum frequency. Burst mode allows transmission of a single 16-bit word following a frame sync pulse. These two modes of operation suit most of the industry-standard synchronous serial-data devices, such as codecs. This port is intended to provide a glueless interface to most of the standard codec parts. However, these modes can also be adapted for specialized synchronous interfaces.

9.2 Components and Basic Operation

The synchronous serial port has several hard-wired parts, including two FIFO buffers and six signal pins. Figure 9–1 shows how the components of the synchronous serial port are interconnected.

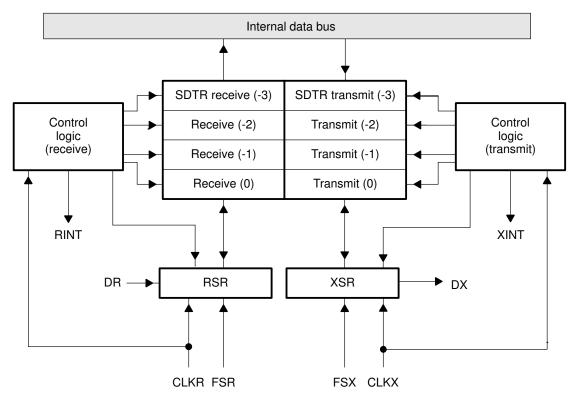


Figure 9–1. Synchronous Serial Port Block Diagram

9.2.1 Signals

Serial port operation requires three basic signals:

- □ Clock signal. The clock signal (CLKX/CLKR) is used to control timing during the transfer. The timing signal for transmissions can be either generated internally or taken from an external source.
- □ **Frame sync signal.** The frame sync signal (FSX/FSR) is used at the start of a transfer to synchronize the transmit and receive operations. The frame sync signal for transmissions can be either generated internally or taken from an external source.

Data signal. The data signal carries the actual data that is transferred in the transmit/receive operation. The data signal transmit pin (DX) of one device should be connected to the data signal receive (DR) pin on another device.

Table 9–1 describes the six pins that use these signals.

Table 9–1. SSP Interface Pins

Pin Name	Description
CLKX	<i>Transmit clock input or output.</i> The clock signal is used for clocking data from the serial port transmit shift register (XSR) to the DX pin. If the port is configured for accepting an external clock, this pin receives the clock signal. If the port is configured for generating an internal clock, this pin transmits the clock signal.
FSX	<i>Transmit frame synchronization.</i> FSX signals the start of a transmission. If the port is configured for accepting an external frame sync pulse, this pin receives the pulse. If the port is configured for generating an internal frame sync pulse, this pin transmits the signal.
DX	<i>Serial data transmit.</i> DX transmits serial data from the serial port transmit shift register (XSR).
CLKR	<i>Receive clock input.</i> CLKR receives an external clock signal for clocking the data from the DR pin into the serial port receive shift register (RSR).
FSR	<i>Receive frame synchronization.</i> FSR initiates the reception of data at the beginning of the packet.
DR	<i>Serial data receive.</i> DR receives serial data, transferring it into the serial port receive shift register (RSR).

Figure 9–2 shows how the signals are connected in a typical serial transfer between two devices. The DR pin receives serial data from the D_{OUT} signal, and the DX signal sends serial data to the D_{IN} pin. The FSX and FSR signals are both supplied from the \overline{FS} pin, and they initiate the transfers (at the beginning of a data packet). The SCK signal drives both the CLKX and CLKR signals, which clock the bit transfers.

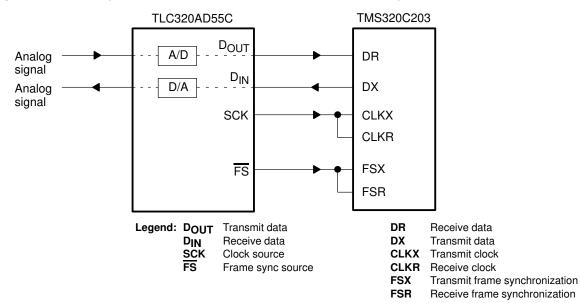


Figure 9–2. 2-Way Serial Port Transfer With External Frame Sync and External Clock

9.2.2 FIFO Buffers and Registers

The synchronous serial port (SSP) has two four-level transmit and receive FIFO buffers (shown at the center of Figure 9–1 on page 9-3).

Two on-chip registers allow you to access the FIFO buffers and control the operation of the port:

- □ Synchronous data transmit and receive register (SDTR). The SDTR, at I/O address FFF0h, is used for the top of both FIFO buffers (transmit and receive) and is the only visible part of the FIFO buffers.
- Synchronous serial port control register (SSPCR). The SSPCR, at I/O address FFF1h, contains bits for setting port modes, indicating the status of a data transfer, setting trigger conditions for interrupts, indicating error conditions, accepting bit input, and resetting the port. Section 9.3 includes a detailed description of the SSPCR.

Two other registers (not accessible to a programmer) control transfers between the FIFO buffers and the pins:

- Synchronous serial port transmit shift register (XSR). Each data word is transferred from the bottom level of the transmit FIFO buffer to the XSR. The XSR then shifts the data out (MSB first) through the DX pin.
- Synchronous serial port receive shift register (RSR). Each data word is accepted, one bit at a time, at the DR pin and shifted into the RSR. The RSR then transfers the word to the bottom level of the receive FIFO buffer.

9.2.3 Interrupts

The synchronous serial port (SSP) has two hardware interrupts that let the processor know when the FIFO buffers need to be serviced:

- Transmit interrupts (XINTs) cause a branch to address 000Ah in program space whenever the transmit-interrupt trigger condition is met. Set the trigger condition by setting bits FT1 and FT0 in the SSPCR (see Table 9–3 on page 9-9). XINTs have a priority level of 8 (1 being highest).
- Receive interrupts (RINTs) cause a branch to address 0008h in program space whenever the receive-interrupt-trigger condition is met. The trigger condition is selected by setting the FR1 and FR0 bits in the SSPCR (see Table 9–4 on page 9-10). RINTs have a priority level of 7.

These are maskable interrupts controlled by the interrupt mask register (IMR) and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the SSP, clear the IFR bit (XINT or RINT) in the corresponding interrupt service routine, just before returning from the routine.

9.2.4 Basic Operation

Typically, transmitting a word through the serial port follows this four step process:

- 1) Initialize the serial port to the desired configuration by writing to the SSPCR.
- Your software writes up to four words to the transmit FIFO buffer through the SDTR.
- The transmit FIFO buffer copies the earliest-written word to the transmit shift register (XSR) when the XSR is empty.
- 4) The XSR shifts the data, bit-by-bit (MSB first), to the DX pin.
- 5) When the XSR empties, it signals the FIFO buffer, and then:
 - □ If the FIFO buffer is not empty, the process repeats from step 2.
 - If the FIFO buffer is empty (as specified by the FT1 and FT0 bits in the SSPCR), it sends a transmit interrupt (XINT) to request more data, and transmission stops.

Receiving a word through the serial port typically is done as follows:

- 1) Data from the DR pin is shifted, bit-by-bit (MSB first), into the receive shift register (RSR).
- 2) When the RSR is full, the RSR copies the data to the receive FIFO buffer.
- 3) The process then does one of two things, depending upon the state of the receive FIFO buffer:
 - If the receive FIFO buffer is not full, the process repeats from step 1.
 - If the receive FIFO buffer is full (as specified by the FR1 and FR0 bits in the SSPCR), it sends a receive interrupt (RINT) to the processor to request servicing.
- 4) The processor can read the received data from the receive FIFO buffer through the SDTR.

9.3 Controlling and Resetting the Port

The synchronous serial port control register (SSPCR) controls the operation of the synchronous serial port. To configure the serial port, a total of two writes to the SSPCR are necessary:

- Write your choices to the configuration bits and place the port in reset by writing zeros to SSPCR bits XRST and RRST.
- 2) Write your choices to the configuration bits and take the port out of reset by writing ones to bits XRST and RRST.

Note:

Set the DLB bit of the SSPCR to zero to disable digital loopback mode, which is not normally used in serial transfers. See subsection 9.7.1, *Test Bits*, for a description of digital loopback mode.

Make sure you write your configuration choices to the SSPCR during both writes.

Figure 9–3 shows the 16-bit memory-mapped SSPCR. Following the figure is a description of each of the bits.

Figure 9–3. Synchronous Serial Port Control Register (SSPCR) — I/O-Space Address FFF1h

15	14	13	12	11	10	9	8
FREE	SOFT	TCOMP	RFNE	FT1	FT0	FR1	FR0
R/W-0	R/W-0	R–0	R–0	R/W-0	R/W-0	R/W-0	R/W-0
7	6	5	4	3	2	1	0
7 OVF	6 IN0	5 XRST	4 RRST	3 TXM	2 MCM	1 FSM	0 DLB

Note: R=Read access; W=Write access; value following dash (-) is value after reset.

Bits 15–14 FREE, SOFT. These bits are special emulation bits that determine the state of the serial port clock when a breakpoint is encountered in the high-level language debugger. If the FREE bit is set to 1, then, upon a breakpoint, the clock continues to run (that is, free runs) and data is shifted out. In this case, SOFT is a *don't care*. If FREE = 0, then SOFT takes effect. The effects of FREE and SOFT are summarized in Table 9–2. At reset, immediate stop mode is selected (FREE = 0 and SOFT = 0).

FREE	SOFT	Run/Emulation Mode
0	0	Immediate stop
0	1	Stop after completion of word
1	0	Free run
1	1	Free run

Note:

If an option besides immediate stop is chosen for the receiver, an overflow error is possible. The default mode (selected at reset) is immediate stop.

Bit 13	TCOMP — Transmission complete. This bit is cleared to 0 when all data in the transmit FIFO buffer has been transmitted (the buffer is empty) and is set to 1 when new data is written to the transmit FIFO buffer (the buffer is not empty).
Bit 12	RFNE — Receive FIFO buffer not empty bit. This bit is 1 when the receive FIFO buffer contains data and is cleared when the buffer empties.
Bits 11–10	FT1, FT0 — FIFO transmit-interrupt bits. The values you write to FT0 and FT1 set an interrupt trigger condition based on the contents of the transmit FIFO buffer. When this condition is met, a transmit interrupt (XINT) is generated and the data can be transferred out to the FIFO buffer using the OUT instruction. Table 9–3 summarizes the possible trigger conditions.

Table 9–3. Controlling Transmit Interrupt Generation by Writing to Bits FT1 and FT0

Selec	t Bits	
FT1	FT0	Generate XINT when
0	0	Transmit FIFO buffer can accept one or more words; XINT occurs repeatedly until the buffer is full.
0	1	Transmit FIFO buffer can accept two or more words; XINT occurs repeatedly until three words are written.
1	0	Transmit FIFO buffer can accept three or four words; XINT occurs repeatedly until two words are written.
1	1	Transmit FIFO buffer is empty (can accept 4 words); XINT occurs repeatedly until one word is written.

Bits 9–8 FR1, FR0 — FIFO receive-interrupt bits. The values you write to FR0 and FR1 set an interrupt trigger condition based on the contents of the receive FIFO buffer. When this condition is met, a receive interrupt (RINT) is generated and the data can be transferred in from the FIFO buffer using the IN instruction. Table 9–4 lists the possible trigger conditions.

Table 9–4.	Controllina	Receive In	nterrupt C	Generation b	v Writina	ı to Bits FF	R1 and FR0
	•••••••				,		

Selec	t Bits	
FR1	FR0	Generate RINT when
0	0	Receive FIFO buffer is not empty.
0	1	Receive FIFO buffer holds at least two words.
1	0	Receive FIFO buffer holds at least three words.
1	1	Receive FIFO buffer is full (holds four words).

Bit 7	OVF — Overflow bit. This bit is set whenever the receive FIFO buffer is full and another word is received in the RSR. The contents of the FIFO buffer will not be overwritten by this new word. OVF is cleared when the FIFO buffer is read.
Bit 6	IN0 — Input bit. This bit allows the CLKR pin to be used as a bit input. IN0 reflects the current logic level on the CLKR pin. IN0 can be tested by using a BIT or BITT instruction on the SSPCR. If the serial port is not used, IN0 can be used as a general-purpose bit input.
Bit 5	XRST — Transmit reset bit. This bit resets the transmitter portion of the serial interface. Set XRST to 0 to put the transmitter in reset. Set XRST to 1 to bring the transmitter out of reset.
Bit 4	RRST — Receive reset bit. This bit resets the receiver portion of the serial interface. Set RRST to 0 to put the receiver in reset. Set RRST to 1 to bring the receiver out of reset.

Bit 3	synchroniza transmit fra	nsmit mode. This bit determines the source device for the frame ation (frame sync) pulse for transmissions. It configures the me sync pin (FSX) as an output or as in input. Note that the ne sync pin (FSR) is always configured as an input.
	TXM = 0	An external frame sync source is selected. FSX is configured as an input and accepts an external frame sync signal. The transmitter idles until a frame sync pulse is supplied on the FSX pin.
	TXM = 1	The internal frame sync source is selected. The FSX pin is configured as an output and sends a frame sync pulse at the beginning of every transmission. In this mode, frame sync pulses are generated internally when data is transferred from the SDTR to the XSR to initiate data transfers. The internally generated framing signal is synchronous with respect to CLKX.
Bit 2	for a serial p	ock mode. This bit determines the source device for the clock ort transfer. It configures the clock transmit pin (CLKX) as an out-input. Note that the clock receive pin (CLKR) is always confignput.
	MCM = 0	An external clock source is selected. The CLKX pin is config- ured as an input that accepts an external clock signal.
	MCM = 1	The internal clock source is selected. The CLKX pin is configured as an output driven by an internal clock source with a frequency equal to $1/2$ that of CLKOUT1. Note that if MCM = 1 and DLB = 1, CLKR is also supplied by the internal source.
Bit 1		ame synchronization mode. The FSM bit specifies whether aronization pulses are required between consecutive word trans-
	FSM = 0	Continuous mode is selected. In continuous mode, one frame sync pulse (FSX/FSR) initiates the transmission/reception of multiple words.
	FSM = 1	Burst mode is selected. A frame sync pulse (FSX/FSR) is re- quired for the transmission/reception of each word.

Bit 0

DLB — **Digital loopback mode.** The DLB bit can be used to put the serial port in digital loopback mode.

- DLB = 0 Digital loopback mode is disabled. The DR, FSR, and CLKR signals are connected to their respective device pins.
- DLB = 1 Digital loopback mode is enabled. DR and FSR become internally connected to DX and FSX, respectively. The FSX and DX signals appear on the device pins, but FSR and DR do not.

TXM must be set to 1 for proper operation in digital loopback mode.

CLKX drives CLKR if you also set MCM = 1. If DLB = 1 and MCM = 0, CLKR is taken from the CLKR pin of the device. This configuration allows CLKX and CLKR to be tied together externally and supplied by a common external clock source.

9.3.1 Selecting a Mode of Operation (Bit 1 of the SSPCR)

Different applications require different modes of operation for the serial port. The synchronous serial port supports two basic modes of operation:

- Continuous mode (FSM = 0). The continuous mode of operation requires only an initial frame sync pulse, as long as a write to SDTR (for transmission) or a read from SDTR (for reception) is executed during each transmission/reception. Use continuous mode for transmitting a continuous stream of information.
- Burst mode (FSM = 1). In burst mode operation, a frame sync is required for every transfer, and there are periods of serial port inactivity between packet transmits. Use this mode for transmitting short packets of information.

9.3.2 Selecting Transmit Clock Source and Transmit Frame Sync Source (Bits 2 and 3 of the SSPCR)

The transmit clock is used to set the transmission rate of the serial port. Transmissions can be clocked by the internal clock source or by an external source:

- □ To use the **internal clock source**, set the MCM bit in the SSPCR to 1. This causes the serial port to take CLKX from the internal source. The internal clock rate is (CLKOUT1 rate)/2.
- To use an **external clock source**:
 - Connect the external clock to the CLKX pin of the transmitter and to the CLKR pin of the receiver.
 - Set the MCM bit to 0 in the SSPCR to cause the serial port to get CLKX from the CLKX pin.

A transmit frame sync pulse marks the start of a data transmission. The synchronous serial port can transmit using the internal frame sync source or using an external source:

- To use **internal frame sync pulses**, set the TXM bit in the SSPCR to 1.
- To use external frame sync pulses:
 - 1) Connect the frame sync source to the FSX pin of the transmitter and to the FSR pin of the receiver.
 - 2) Set the TXM bit in the SSPCR to 0 to enable external frame syncs.

The source configuration options are summarized in Table 9–5.

Table 9–5. Selecting Transmit Clock and Frame Sync Sources

МСМ	ТХМ	CLKX source	FSX source	
0	0	External	External	
0	1	External	Internal	
1	0	Internal	External	
1	1	Internal	Internal	

9.3.3 Resetting the Synchronous Serial Port (Bits 4 and 5 of the SSPCR)

Reset the synchronous serial port by setting XRST = 0 and RRST = 0 and then setting XRST = 1 and RRST = 1. These bits can be set individually, allowing you to reset only the transmitter or only the receiver. When a zero is written to one of these bits, activity in the corresponding section of the serial port stops.

9.3.4 Using Transmit and Receive Interrupts (Bits 8–11 of the SSPCR)

The synchronous serial port has two interrupts for managing reads and writes to the FIFO buffers. The processor can determine when the FIFO buffers need servicing in two ways:

- By polling the SSPCR register (RFNE and TCOMP bits)
- By setting up XINT and/or RINT interrupts

To determine when the FIFO buffers need servicing by polling, disable the interrupts by masking them in the interrupt mask register (IMR).

If you want to use interrupts to manage your serial transfer, then perform three steps:

- 1) Create interrupt service routines for XINTs and RINTs and include a branch to each service routine at the appropriate interrupt vector address:
 - The RINT vector is fetched from address 0008h.
 - The XINT vector is fetched from address 000Ah.
- 2) Select when you want interrupts to occur and set the FR0, FR1, FT0, and FT1 bits accordingly. You can set the FIFO buffers to generate interrupts when they are empty, when they have 1 or 2 words, when they have 3 or 4 words, or when they are full. Table 9–4 and Table 9–3 show what values to set in the FR0, FR1, FT0, and FT1 bits for each condition.
- Enable the interrupts by unmasking them in the interrupt mask register (IMR).

For more information about interrupts, see Section 5.6, Interrupts, p. 5-15.

Note:

To avoid a double interrupt from the SSP, clear the IFR bit (XINT or RINT) in the corresponding interrupt service routine, just before returning from the routine.

9.4 Managing the Contents of the FIFO Buffers

The SDTR is a read/write register (at I/O address FFF0h) that is used to send data to the transmit FIFO buffer and to extract data from the receive FIFO buffer.

A word is written to the SDTR by the OUT instruction. When the transmit FIFO buffer is full, additional writes to the SDTR are ignored. Therefore, your program should not write a word for transmission until at least one space is available in the transmit FIFO buffer. You can set up a transmit interrupt (XINT) based on the contents of the buffer (using the FT1 and FT0 bits of the SSPCR). If your program writes words to the buffer only when the buffer is empty, you can use the transmission complete (TCOMP) bit; when the buffer is empty, TCOMP = 0.

When the receive FIFO buffer holds data, you can read the received data from the FIFO buffer through the SDTR (using the IN instruction). You can check the state of the receive buffer by reading the receive FIFO buffer not empty (RFNE) bit in the SSPCR, or you can set up a receive interrupt (RINT) based on the state of the buffer (using the FR1 and FR0 bits of the SSPCR).

9.5 Transmitter Operation

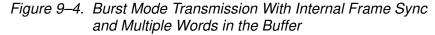
Transmitter operation is different in continuous and burst modes. Other differences also depend on whether an internal or an external frame sync is used.

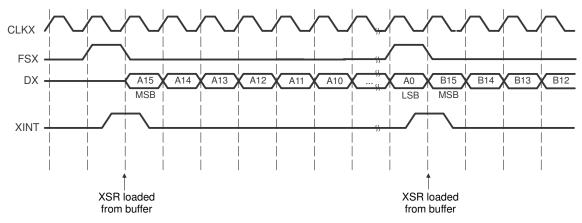
9.5.1 Burst Mode Transmission With Internal Frame Sync (FSM = 1, TXM = 1)

Use burst mode transmission with internal frame sync to transfer short packets at rates lower than maximum packet frequency while using an internal frame sync generator. Place the transmitter in burst mode with internal frame sync by setting the FSM bit to 1 and the TXM bit to 1.

This mode of operation offers several features:

- ☐ A one-clock-cycle frame-sync pulse is generated internally at the beginning of each transmission.
- Continuous transmission is possible if SDTR is updated in the XINT interrupt service routine.
- □ Transmission can be initiated by an external event (for example, an external interrupt) or by a receive interrupt (RINT).


Generally, the transmit clock and the receive clock have the same source. This allows each bit to be transmitted from another device on a rising edge of the clock signal and received by the 'C2xx on the next falling edge of the clock signal.


Burst mode transmission with internal frame sync requires the following order of events (see Figure 9–4):

- 1) Initiate the transfer by writing to SDTR.
- 2) A frame sync pulse is generated on the next rising edge of CLKX. The frame sync pulse remains high for one clock cycle.
- 3) On the next rising edge of CLKX after FSX goes high, XSR is loaded with the value at the bottom of the FIFO buffer, and the frame sync pulse goes low. Additionally, the first data bit (MSB first) is driven on the DX pin. If the FIFO buffer becomes empty during this operation, then it generates XINT to request more data.
- 4) The rest of the bits are then shifted out. Each new bit is transmitted at each consecutive rising edge of CLKX.
- 5) If the FIFO buffer still holds a word or words to be transmitted, another frame sync pulse is generated in parallel to the driving of the LSB on the DX pin, and transmission continues at step 3. If the FIFO is empty, transmission is complete.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the new word will be lost; the FIFO buffer will not accept any more than four words.

The burst mode can be discontinued (changed to continuous mode) only by a serial-port or device reset. Changing the FSM bit during transmit or halt will not necessarily cause a switch to continuous mode.

9.5.2 Burst Mode Transmission With External Frame Sync (FSM = 1, TXM = 0)

Use burst mode transmission with external frame sync to transfer short packets at rates lower than maximum packet frequency while using an external frame sync generator. Place the transmitter in burst mode with external frame sync by setting the FSM bit to 1 and the TXM bit to 0.

This mode of operation offers several features:

- A frame sync pulse initiates transmission.
- ☐ If a frame sync pulse occurs after the initial one, then transmission restarts.
- □ Transmission can be initiated by an external event (for example, an external interrupt) or by a serial port receive interrupt (RINT).

Generally, the transmit clock and the receive clock have the same source. This allows each bit to be transmitted from another device on a rising edge of the clock signal and received by the 'C2xx on the next falling edge of the clock signal.

Burst mode transmission with external frame sync involves the following order of events (see Figure 9–5):

- A frame sync pulse initiates the transmission. The pulse is sampled on the falling edge of CLKX. After the falling edge of CLKX, the contents of the first entry in the FIFO buffer are transferred to the XSR. If the FIFO buffer becomes empty during this operation, it generates a XINT to request more data.
- On the next rising edge of CLKX after FSX goes high, DX is driven with the first bit (MSB) of the word to be transmitted.
- 3) The frame sync goes low (and remains low during word transmission).
- 4) Once FSX goes low, the rest of the bits are shifted out.
- 5) When all of the bits in the word are transferred, the port waits for a new frame sync pulse.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the new word will be lost; the FIFO buffer will not accept any more than four words.

If a frame sync pulse occurs during transmission, transmission is restarted. If another value has been written to the SDTR, a new word is sent; otherwise, the last word in the XSR is sent.

The burst mode can be discontinued (changed to continuous mode) only by a serial-port or device reset. Changing the FSM bit during transmit or halt will not necessarily cause a switch to continuous mode.

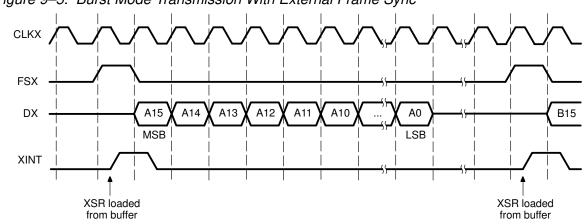


Figure 9–5. Burst Mode Transmission With External Frame Sync

9.5.3 Continuous Mode Transmission With Internal Frame Sync (FSM = 0, TXM = 1)

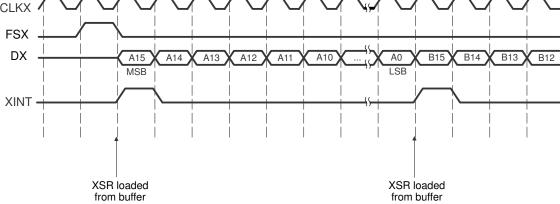
Use continuous mode transmission with internal frame sync to transfer long packets at maximum packet frequency while using an internal frame sync generator. Place the transmitter in continuous mode with internal frame sync by setting the FSM bit to 0 and the TXM bit to 1.

In continuous mode, frame sync pulses are not necessary after the initial pulse for consecutive packet transfers. A frame sync is generated only for the first transmission. As long as the FIFO buffer has new values to transmit, the mode continues. Transmission halts when the buffer empties. If SDTR is written to after the halt, the device starts a new continuous mode transmission.

This mode of operation offers several features:

- A write to the SDTR begins the transmission.
- ☐ A one-clock-cycle frame-sync pulse is generated internally at the beginning of the transmission.
- ☐ As long as data is maintained in the transmit FIFO buffer, the mode continues.
- Failure to update the FIFO buffer causes the process to end.

Generally, the transmit clock and the receive clock have the same source. This allows each bit to be transmitted from another device on a rising edge of the clock signal and received by the 'C2xx on the next falling edge of the clock signal.


As illustrated by Figure 9–6, in this mode, the port operates as follows:

- 1) The transfer is initiated by a write to the SDTR.
- The write to the SDTR causes a frame sync pulse to be generated on the next rising edge of CLKX. The frame sync pulse remains high for one clock cycle.
- 3) On the next rising edge of CLKX after FSX goes high, the XSR is loaded with the earliest-written value from the transmit FIFO buffer, and the frame sync pulse goes low. Additionally, the first data bit (MSB first) is driven on the DX pin. If the FIFO buffer becomes empty during this operation, then it generates a XINT to request more data.
- 4) The rest of the bits are then shifted out. Each new bit is transmitted at the rising edge of CLKX.
- 5) Once the entire word in the XSR is shifted out, the next word is loaded in and the first bit of the word is placed on the DX pin. Then, the process repeats beginning with step four. If a new word is not in the transmit FIFO buffer, the process ends.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the new word will be lost; the FIFO buffer will not accept any more than four words.

Continuous mode can be discontinued (changed to burst mode) only by a serial-port or device reset. Changing the FSM bit during transmit or halt will not necessarily cause a switch to burst mode.

Figure 9–6. Continuous Mode Transmission With Internal Frame Sync

9.5.4 Continuous Mode Transmission with External Frame Sync (FSM=0, TXM=0)

Use continuous mode transmission with external frame sync to transfer long packets at maximum packet frequency while using an external frame sync generator. Place the transmitter in continuous mode with external frame sync by setting the FSM bit to 0 and the TXM bit to 0.

In continuous mode, frame sync pulses are not necessary after the initial pulse for consecutive packet transfers. A frame sync is generated only for the first transmission. As long as the FIFO buffer has new values to transmit, the mode continues. Transmission halts when the buffer empties. If SDTR is written to after the halt, the device starts a new continuous mode transmission.

This mode of operation offers several features:

- Only one frame sync is necessary for the transmission of consecutive packets.
- If the FIFO buffer is not empty, the mode continues. If the FIFO buffer is empty, the process ends.

Generally, the transmit clock and the receive clock have the same source. This allows each bit to be transmitted from another device on a rising edge of the clock signal and received by the 'C2xx on the next falling edge of the clock signal.

Continuous mode transmission with external frame sync requires the following order of events (see Figure 9–7):

- A frame sync pulse initiates the transmission. The pulse is sampled on the falling edge of CLKX. After the falling edge of CLKX, the contents of the current word in the transmit FIFO buffer are transferred to the XSR. If the FIFO buffer becomes empty during this operation, then it generates a XINT to request more data.
- On the next rising edge of CLKX after FSX goes high, DX is driven with the first bit (MSB) of the word to be transmitted.
- 3) The frame sync goes low (and remains low during word transmission).
- 4) Once FSX goes low, the rest of the bits are shifted out.
- 5) Once the entire word in the XSR is shifted out, the next word is loaded in and the first bit of the word is placed on the DX pin. Then, the process repeats beginning with step four. If a new word is not in the transmit FIFO buffer, then the process ends.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the new word will be lost; the FIFO buffer will not accept any more than four words.

The continuous mode can be discontinued (changed to burst mode) only by a serial-port or device reset. Changing the FSM bit during transmit or halt will not necessarily cause a switch to burst mode.

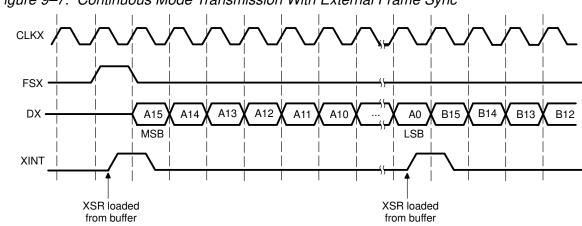


Figure 9–7. Continuous Mode Transmission With External Frame Sync

9.6 Receiver Operation

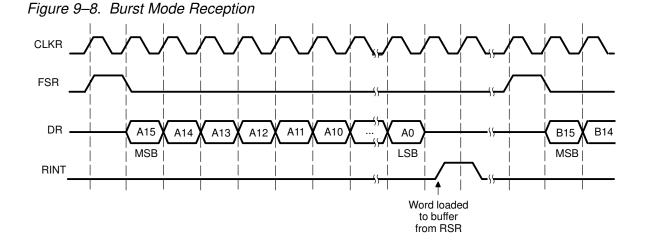
Receiver operation is different in continuous and burst modes. The receiver does not generate frame sync pulses; it always takes the frame sync pulse as an input.

In selecting the proper receive mode, note that the mode for the receiver must match the mode for the transmitter.

If all four words of the receive FIFO buffer have been filled, the buffer will not accept additional words. If a fifth write is attempted, the overflow (OVF) bit of the SSP control register (SSPCR) is set to 1.

9.6.1 Burst Mode Reception

Use burst mode receive to transfer short packets at rates lower than maximum packet frequency.


This mode of operation offers these features:

- □ The data packet is marked by the frame sync pulse on FSR.
- Reception of data can be maintained continuously.

Generally, the transmit clock and the receive clock have the same source. This allows each bit to be transmitted from another device on a rising edge of the clock signal and received by the 'C2xx on the next falling edge of the clock signal.

The following events occur during a burst mode receive operation (see Figure 9–8):

- 1) A frame sync pulse initiates the receive operation. This event is sampled on the falling edge of CLKR.
- On the next falling edge of CLKR after the falling edge of FSR, the first bit (MSB) is shifted into the receive shift register (RSR).
- 3) The rest of the bits in the word are then shifted into RSR one at a time at each consecutive falling edge of CLKR.
- 4) After all bits have been received, if the receive FIFO buffer is not full, the contents of the RSR are copied into the receive FIFO buffer. If the FIFO buffer becomes full during this operation, an interrupt (RINT) is sent to the CPU, and the overflow bit (OVF) of the SSPCR is set.
- 5) The receive operation is started again after the next frame sync pulse. However, the received word can be loaded into the FIFO buffer only if the buffer is empty; otherwise, the word is lost.

If a frame sync pulse occurs during reception, reception is restarted, and the bits that were shifted into the RSR before the pulse are lost.

9.6.2 Continuous Mode Reception

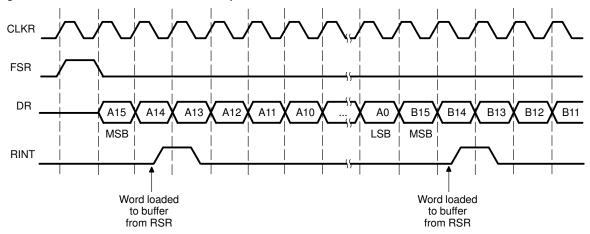
Use continuous mode receive to transfer long packets at maximum packet frequency.

This mode of operation offers several features:

- Only the first frame sync signal is necessary to start the reception of consecutive words.
- ☐ As long as the receive FIFO buffer is not allowed to overflow, the mode continues. Overflow is indicated by the OVF bit in the SSPCR.
- Reception can be maintained continuously.

Generally, the transmit clock and the receive clock have the same source. This allows each bit to be transmitted from another device on a rising edge of the clock signal and received by the 'C2xx on the next falling edge of the clock signal.

As shown in Figure 9–9, the following events occur during a continuous mode receive operation:


- 1) The receive operation begins when a frame sync signal is detected on the falling edge of CLKR.
- 2) On the first falling edge of CLKR after the frame sync signal goes low, the first bit (MSB) is shifted into the RSR.

- 3) The remaining bits in the word are then shifted into the RSR, one by one at the falling edge of each consecutive clock cycle.
- 4) After all bits have been received, if the FIFO buffer is not full, the contents of the RSR are copied to the receive FIFO buffer. If the receive FIFO buffer does become full, an interrupt (RINT) is sent to the CPU, and if overflow has occurred, the overflow (OVF) bit of the SSPCR is set.
- 5) The process then repeats itself, except that there are no additional frame sync pulses.

If a frame sync pulse occurs during reception, then reception is restarted and the bits in the current word that were shifted into the RSR before the pulse are lost.

If the FIFO buffer becomes full, no new words will be received into the buffer until at least one word has been read from the buffer (through the SDTR). Once the continuous reception is started, the port will always be reading in the values on the DR pin. To stop continuous mode reception, reset the port.

Figure 9–9. Continuous Mode Reception

9.7 Troubleshooting

The synchronous serial port uses three bits for troubleshooting and testing. In addition to using these three bits, you must be able to identify special error conditions that may occur in actual transfers. Error conditions result from an unprogrammed event occurring to the serial port. These conditions are operational errors such as overflow, underflow, or a frame sync pulse during a data transfer.

This section describes how the serial port handles these errors and the state it acquires during these error conditions. The types of errors differ slightly in burst and continuous modes.

9.7.1 Test Bits

Three bits in the SSPCR help you test the synchronous serial port. The digital loopback mode bit (DLB) can be used to internally connect the receive data and frame sync signals to the transmit data and frame sync signals on the same device. The FREE and SOFT bits allow emulation modes that stop the port either immediately or after the transmission of the current word. Figure 9–10 shows the bits that are used for troubleshooting. The list items following the figure describe the functions of these bits.

Figure 9–10. Test Bits in the SSPCR

15	14	C	3
FREE	SOFT		LB

□ FREE and SOFT are special emulation bits that allow you to determine the state of the serial port clock when a breakpoint is encountered in the high-level language debugger. If the FREE bit is set to 1, then, upon a software breakpoint, the clock continues to run (that is, free runs) and data is shifted out. In this case, SOFT is a *don't care*. But if FREE is 0, then SOFT takes effect. If SOFT = 0, then the clock immediately stops, thus aborting any transmission. If the SOFT bit is 1, the particular transmission continues until completion of the word, and then the clock halts. Table 9–6 summarizes the available run and emulation modes.

FREE	SOFT	Run/Emulation Mode
0	0	Immediate stop
0	1	Stop after completion of word
1	0	Free run
1	1	Free run
	1	

Table 9-6. Run and Emulation Modes

Note:

If an option besides immediate stop is chosen for the receiver, an overflow error is possible. The default mode (selected at reset) is immediate stop.

DLB enables or disables digital loopback mode:

- To enable the digital loopback mode, set DLB = 1.
- To disable the digital loopback mode, set DLB = 0.

When you enable digital loopback mode, the transmit data (DX) and frame sync (FSX) signals become internally connected to the receive data (DR) and frame sync (FSR) signals. After writing code for both the transmitter and the receiver, you can then test whether the code is working properly and also check that the serial port is functioning. In addition, if both the DLB and MCM bits are 1, the transmit clock signal is also connected internally to the receive clock signal.

The serial port operates normally when you disable digital loopback mode; that is, no transmit and receive signals are internally connected together.

Note:

To configure the serial port, a total of two writes to the SSPCR are necessary:

- First, write your choices to the configuration bits and place the port in reset by writing zeros to XRST and RRST.
- 2) Second, write your choices to the configuration bits and take the port out of reset by writing ones to the XRST and RRST bits.

9.7.2 Burst Mode Error Conditions

The following are descriptions of errors that can occur in burst mode:

- Underflow. Underflow is caused if an external FSX occurs, and there are no new words in the transmit FIFO buffer. Upon receiving the FSX (generally, from an external clock source), transmitter resends the previous word; that is, the value in XSR will be transmitted again.
- Overflow. This error occurs when the device has not read incoming data and more data is being sent (indicated by a frame sync pulse on FSR). The OVF bit of the SSPCR is set to indicate overflow. The processor halts updates to the FIFO buffer until the SDTR is read. Thus, any further data sent is lost.
- Frame sync pulse during a reception. If the frame sync occurs during a reception, the present reception is aborted and a new one begins. The data that was being loaded into the RSR is lost, but the data in the FIFO buffer is not. No RSR-to-FIFO buffer copy occurs until all 16 bits in a word have been received.
- □ Frame sync pulse during a transmission. Another error results when a frame sync occurs while a transmission is in process. If the data in the XSR is being driven on the DX pin when the frame sync pulse occurs, then the present transmission is aborted. Then, whatever data is next in the FIFO buffer at the time of the frame sync pulse is transferred to XSR for transmission.

9.7.3 Continuous Mode Error Conditions

The following are descriptions of continuous mode errors and how the port responds to them:

❑ Underflow. Underflow occurs when the XSR is ready to accept new data but there are no new words in the transmit FIFO buffer. Underflow errors are fatal to a transmission; it causes transmission to halt. For as long as the transmit FIFO buffer is empty, frame sync pulses are ignored. If new data is then written to the SDTR, another frame sync pulse is required (or generated, if you are using internal frame syncs) to restart continuous mode transmission.

Your software can do the following to determine how many words are left in the transmit FIFO buffer:

- Test for the condition TCOMP = 0. When the transmit FIFO buffer empties, the TCOMP bit of the SSPCR is set to 0.
- Cause an interrupt (XINT) to occur based on the contents of the buffer. You can use bits FT1 and FT0 in the SSPCR to set the interrupt trigger conditions shown in Table 9–3 on page 9-9.

- Overflow. Overflow occurs when the RSR has new data to pass to the receive FIFO buffer but the FIFO buffer is full. Overflow errors are fatal to a reception. For as long as the FIFO buffer is full, any incoming words will be lost. To restart reception, make space in the buffer by reading from it (through the SDTR).
- □ Frame sync pulse during a transmission. After the initial frame sync, no others should occur during transmission. If a frame sync pulse occurs during a transmission, the current transmission is aborted, and a new transmit cycle begins.
- Frame sync pulse during a reception. After the initial frame sync, no others should occur during reception. If a frame sync pulse occurs during a reception, the current packet of data is lost. On any FSR pulse, the RSR bit counter is reset; therefore, the data that was being shifted into the RSR from the the DR pin is lost.

Chapter 10

Asynchronous Serial Port

The 'C2xx has an asynchronous serial port that can be used to transfer data to and from other devices. The port has several important features:

- □ Full-duplex transmit and receive operations at the maximum transfer rate
- Data-word length of eight bits for both transmit and receive
- Capability for using one or two stop bits
- Double buffering in all modes to transmit and receive data
- Adjustable baud rate of up to 250,000 10-bit characters per second
- Automatic baud-rate detection logic

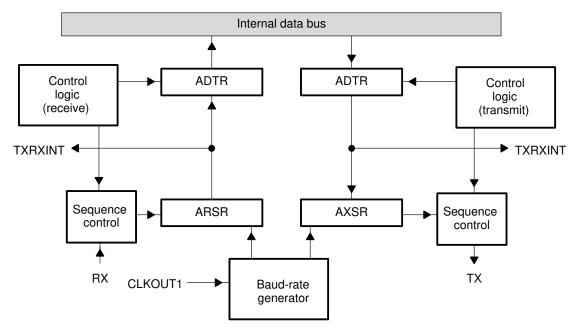
For examples of program code for the asynchronous serial port, see Appendix C, *Program Examples*.

Topic

Page

10.1 Overview of the Asynchronous Serial Port
10.2 Components and Basic Operation
10.3 Controlling and Resetting the Port
10.4 Transmitter Operation 10-19
10.5 Receiver Operation 10-20

10.1 Overview of the Asynchronous Serial Port


The on-chip asynchronous serial port (ASP) provides easy serial data communication between host CPUs and the 'C2xx or between two 'C2xx devices. The asynchronous mode of data communication is often referred to as UART (universal asynchronous receive and transmit). For transmissions, data written to a transmit register is converted from an 8-bit parallel form to a 10- or 11-bit serial form (the eight bits preceded by one start bit and followed by one or two stop bits). Each of the ten or eleven bits is transmitted sequentially (LSB first) to a transmit pin. For receptions, data is received one bit at a time (LSB first) at a receive pin (one start bit, eight data bits, and one or two stop bits). The received bits are converted from serial form to parallel form and stored in the lower eight bits of a 16-bit receive register. Errors in data transfers are indicated by flags and/or interrupts.

The maximum rate for transmissions and receptions is determined by the rate of the internal baud clock, which operates at a fraction of the rate of CLKOUT1. The exact fraction is determined by the value in the 16-bit programmable baud-rate divisor register (BRD). For receptions, you may enable (through software) the auto-baud detection logic, which allows the ASP to lock to the incoming data rate.

10.2 Components and Basic Operation

Figure 10–1 shows the main components of the asynchronous serial port.

Figure 10–1. Asynchronous Serial Port Block Diagram

10.2.1 Signals

Two types of signals are used in asynchronous serial port (ASP) operations:

- Data signal. A data signal carries data from the transmitter to the receiver. Data is sent through the transmit pin (TX) on the transmitter and accepted through the receive pin (RX) on the receiver. One-way serial port transmission requires one data signal; two-way transmission requires two data signals.
- □ **Handshake signal.**The data transfer can be improved by using bits IO0–IO3 of the ASP control register (ASPCR) for handshaking.

Data is transmitted on a character-by-character basis. Each data frame contains a start bit, eight data bits, and one or two stop bits. The transmit and receive sections are both double-buffered to allow continuous data transfers.

The pins used by the asynchronous serial port are summarized in Table 10–1. Each of these pins has an associated signal with the same name.

Pin Name	Description
ТХ	Asynchronous serial port data transmit pin. Transmits serial data from the asynchronous serial port transmit shift register (AXSR).
RX	Asynchronous serial port data receive pin. Receives serial data into the asynchronous serial port receive shift register (ARSR).
IO0	<i>General purpose I/O pin 0.</i> Can be used for general purpose I/O or for handshaking by the UART.
IO1	<i>General purpose I/O pin 1</i> . Can be used for general purpose I/O or for handshaking by the UART.
IO2	<i>General purpose I/O pin 2.</i> Can be used for general purpose I/O or for handshaking by the UART.
IO3	<i>General purpose I/O pin 3.</i> Can be used for general purpose I/O or for handshaking by the UART.

Table 10–1. Asynchronous Serial Port Interface Pins

10.2.2 Baud-Rate Generator

The baud-rate generator is a clock generator for the asynchronous serial port. The output rate of the generator is a fraction of the CLKOUT1 rate and is controlled by a 16-bit register, BRD, that you can read from and write to at I/O address FFF7h. For a CLKOUT1 frequency of 40 MHz, the baud-rate generator can generate baud rates as high as 2.5 megabits/s (250,000 characters/s) and as low as 38.14 bits/s (3.81 characters/s).

10.2.3 Registers

Four on-chip registers allow you to transmit and receive data and to control the operation of the port:

- Asynchronous data transmit and receive register (ADTR). The ADTR is a 16-bit read/write register for transmitting and receiving data. Data written to the lower eight bits of the ADTR is transmitted by the asynchronous serial port. Data received by the port is read from the lower eight bits of the ADTR. The upper byte is read as zeros. The ADTR is an on-chip register located at address FFF4h in I/O space.
- Asynchronous serial port control register (ASPCR). The ASPCR, at I/O address FFF5h, contains bits for setting port modes, enabling or disabling the automatic baud-rate detection logic, selecting the number of stop bits, enabling or disabling interrupts, setting the default level on the TX pin, configuring pins IO3–IO0, and resetting the port. Subsection 10.3.1 gives a detailed description of the ASPCR.

- I/O status register (IOSR). Bits in the IOSR indicate detection of the incoming baud rate, various error conditions, the status of data transfers, detection of a break on the RX pin, the status of pins IO3–IO0, and detection of changes on pins IO3–IO0. The IOSR is at address FFF6h in I/O space. For detailed descriptions of the bits in the IOSR, see subsection 10.3.2.
- Baud-rate divisor register (BRD). The 16-bit value in the BRD is a divisor used to determine the baud rate for data transfers. BRD (at address FFF7h in I/O space) is either loaded by software or is loaded by the port when the automatic baud-rate detection logic is enabled and samples the incoming baud rate. Subsection 10.3.3 describes how to determine the BRD value that will produce the desired baud rate.

Two other registers (not accessible to a programmer) control transfers between the ADTR and the pins:

- Asynchronous serial port transmit shift register (AXSR). During transmissions, each data character is transferred from the ADTR to the AXSR. The AXSR then shifts the character out (LSB first) through the TX pin.
- Asynchronous serial port receive shift register (ARSR). During receptions, each data character is accepted, one bit at a time (LSB first), at the RX pin and shifted into the ARSR. The ARSR then transfers the character to the ADTR.

10.2.4 Interrupts

The asynchronous serial port has one hardware interrupt (TXRXINT), which can be generated by various events (described in subsection 10.3.6). TXRXINT leads the CPU to interrupt vector location 000Ch in program memory. The branch at that location should lead to an interrupt service routine that identifies the cause of the interrupt and then acts accordingly. TXRXINT has a priority level of 9 (1 being highest).

TXRXINT is a maskable interrupt controlled by the interrupt mask register (IMR) and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the ASP, clear the IFR bit (TXRXINT) in the corresponding interrupt service routine, just before returning from the routine.

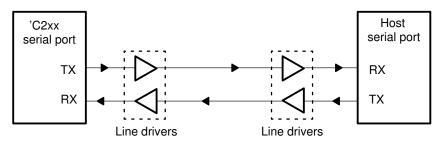

10.2.5 Basic Operation

Figure 10–2 shows a typical serial link between a 'C2xx device and any host CPU. In this mode of communication, any 8-bit character can be transmitted or received serially by way of the transmit data pin (TX) or the receive data pin (RX), respectively. The data transmitted or received through the TX and RX pins will be at TTL level. However, if the hosts are separated by a few feet or more, the serial data lines must be buffered through line-drivers (RS-232 or RS-485, depending on the application).

When an 8-bit character is written into the lower eight bits of the ADTR, the data, in parallel form, is converted into a 10- or 11-bit character with one start bit and one or two stop bits. This new 10- or 11-bit character is then converted into a serial data stream and transmitted through the TX pin one bit at a time. The bit duration is determined by the baud clock rate. The baud-rate divisor register (BRD) is programmable and takes a 16-bit value, providing all the industry-standard baud rate values.

Similarly, if a 10- or 11-bit data stream reaches the RX pin, the serial port samples the bit at the transmitted baud rate and converts the serial stream into an 8-bit parallel data character. The received 8-bit character is stored in the lower eight bits of the ADTR.

Figure 10–2. Typical Serial Link Between a 'C2xx Device and a Host CPU

10.3 Controlling and Resetting the Port

The asynchronous serial port is programmed through three on-chip registers mapped to I/O space: the asynchronous serial port control register (ASPCR), the I/O status register (IOSR), and the baud-rate divisor register (BRD). This section describes the contents of each of these registers and also explains the use of associated control features.

10.3.1 Asynchronous Serial Port Control Register (ASPCR)

The ASPCR controls the operation of the asynchronous serial port. Figure 10–3 shows the fields in the 16-bit memory-mapped ASPCR and bit descriptions follow the figure. All of the bits in the register are read/write, with the exception of the reserved bits (12–10). The ASPCR is an on-chip register mapped to address FFF5h in I/O space.

Figure 10–3. Asynchronous Serial Port Control Register (ASPCR) — I/O-Space Address FFF5h

15	14	13	12	11	10	9	8	
FREE	SOFT	URST		Reserved		DIM	TIM	
R/W–0	R/W–0	R/W–0		0		R/W-0	R/W–0	
7	6	5	4	3	2	1	0	
RIM	STB	CAD	SETBRK	CIO3	CIO2	CIO1	CIO0	
R/W–0	R/W-0	R/W–0	R/W-0	R/W-0	R/W–0	R/W-0	R/W–0	
Note: 0 = A	lways as zeros	R=Read acce	ss; W=Write ac	cess; value follo	wing dash (–) is	s value after res	set.	
Bit 15		FREE. This	bit sets the p	port to function	on in emulati	on or run me	ode.	
	FREE = 0 Emulation mode is selected. SOFT then determines the which emulation mode is enabled.							
		FREE = 1 Free run mode is selected.						
Bit 14	SOFT. This bit is enabled when the FREE bit is 0. It determines the emulation mode.							
		SOFT = 0 Process stops immediately.						
		SOFT = 1 Process stops after word completion.						
Bit 13		URST — Reset asynchronous serial port bit. URST is used to reset the asynchronous serial port. At reset, URST = 0.						
		URST = 0	The por	t is in reset.				
		URST = 1	The por	t is enabled.				

Bits 12–10	Reserved. Always read as 0s.				
Bit 9	are asserted on	Iterrupt mask. DIM selects whether or not delta interrupts the TXRXINT interrupt line. A delta interrupt is generated by e of the general-purpose I/O pins (IO3, IO2, IO1, or IO0).			
	DIM = 0	Disables delta interrupts.			
	DIM = 1	Enables delta interrupts.			
Bit 8	are asserted on	it interrupt mask. TIM selects whether transmit interrupts the TXRXINT interrupt line. A transmit interrupt is generated mit register empty indicator in the IOSR) when the transmit empties.			
	TIM = 0	Disables transmit interrupts.			
	TIM = 1	Enables transmit interrupts.			
Bit 7	asserted on the one of these ind	interrupt mask. RIM selects whether receive interrupts are TXRXINT interrupt line. A receive interrupt is generated by licators in the IOSR: BI (break interrupt), FE (framing error), rror), or DR (data ready).			
	RIM = 0	Disables receive interrupts.			
	RIM = 1	Enables receiver interrupts.			
Bit 6	STB — Stop bit mission and rec	seption.			
	STB = 0	One stop bit is used in transmission and reception. This is the default value at reset.			
	STB = 1	Two stop bits are used in transmission and reception.			
Bit 5		te A detect bit. CAD is used to enable and disable automatic ment (auto-baud alignment).			
	CAD = 0	Disables auto-baud alignment.			
	CAD = 1	Enables auto-baud alignment.			
Bit 4	SETBRK — Se not transmitting	t break bit. Selects the output level of TX when the port is .			
	SETBRK = 0	The TX output is forced high when the port is not transmitting.			
	SETBRK = 1	The TX output is forced low when the port is not transmitting.			

Bit 3	CIO3 — Configuration bit for IO3. CIO3 configures I/O pin 3 (IO3) as an input or as an output.			
	CIO3 = 0	IO3 is configured as an input. This is the default value at reset.		
	CIO3 = 1	IO3 is configured as an output.		
Bit 2	CIO2 — Config input or as an o	juration bit for IO2. CIO2 configures I/O pin 2 (IO2) as an utput.		
	CIO2 = 0	IO2 is configured as an input. This is the default value at reset.		
	CIO2 = 1	IO2 is configured as an output.		
Bit 1	CIO1 — Config input or as an o	Juration bit for IO1. CIO1 configures I/O pin 1 (IO1) as an utput.		
	CIO1 = 0	IO1 is configured as an input. This is the default value at reset.		
	CIO1 = 1	IO1 is configured as an output.		
Bit 0	CIO0 — Config input or as an o	juration bit for IO0. CIO0 configures I/O pin 0 (IO0) as an utput.		
	CIO0 = 0	IO0 is configured as an input. This is the default value at reset.		
	CIO0 = 1	IO0 is configured as an output.		

10.3.2 I/O Status Register (IOSR)

The IOSR returns the status of the asynchronous serial port and of I/O pins IO0–IO3. The IOSR is a 16-bit, on-chip register mapped to address FFF6h in I/O space. Figure 10–4 shows the fields in the IOSR, and bit descriptions follow the figure.

15	14	13	12	11	10	9	8
Reserved	ADC	BI	TEMT	THRE	FE	OE	DR
0	R/W1C-0	R/W1C-0	R–1	R–1	R/W1C-0	R/W1C-0	R–0
7	6	5	4	3	2	1	0
DIO3	DIO2	DIO1	DIO0	IO3	IO2	IO1	IO0
R/W1C-x	R/W1C–x	R/W1C-x	R/W1C-x	R/W†–x	R/W [†] −x	R/W [†] −x	R/W†–x

Figure 10-4. I/O Status Register (IOSR) - I/O-Space Address FFF6h

Note: 0 = Always read as 0; R=Read access; W1C=Write 1 to this bit to clear it to 0; W = Write access; value following dash (-) is value after reset (x means value not affected by reset).

[†]This bit can be written to only when it is configured as an output by the corresponding CIO bit in the ASPCR.

Bit 15	Reserved. Always read as 0.					
Bit 14	character A or or <i>a</i> remains ror when the	ADC — <i>A</i> detect complete bit. If the CAD bit of the ASPCR is 1 and the character <i>A</i> or <i>a</i> is received in the ADTR, ADC is set to 1. The character <i>A</i> or <i>a</i> remains in the ADTR after it has been detected. To avoid an overrun error when the next character arrives, the ADTR should be read immediately after ADC is set.				
	ADC = 0	A or a not has not been detected. No receive interrupt (TXRXINT) will be generated.				
	ADC = 1	A or <i>a</i> has been detected. If the CAD bit of the ASPCR is also 1, a receive interrupt (TXRXINT) will be generated, regardless of the values of the DIM, TIM, and RIM bits of the ASPCR. For as long as ADC = 1 and CAD = 1, a receive interrupt will occur.				
Bit 13		interrupt indicator. $BI = 1$ indicates that a break has been de- e RX pin. Write a 1 to this bit to clear it to 0. BI is also cleared to				
	A break on t	break on the RX pin also generates an interrupt (TXRXINT).				
Bit 12	TEMT — Transmit empty indicator. TEMT = 1 indicates whether the tran mit register (ADTR) and/or transmit shift register (AXSR) are full or emp This bit is set to 1 on reset.					
	TEMT = 0	The ADTR and/or AXSR are full.				
	TEMT = 1	The ADTR and the AXSR are empty; the ADTR is ready for a new character to transmit.				

Bit 11	THRE — Transmit register (ADTR) empty indicator. THRE is set to 1 when the contents of the transmit register (ADTR) are transferred to the transmit shift register (AXSR). THRE is reset to 0 by the loading of the transmit register with a new character. A device reset sets THRE to 1.				
	The emptying	g of the ADTR also generates an interrupt (TXRXINT).			
	THRE = 0	The transmit register is not empty. Port operation is normal.			
	THRE = 1	The transmit register is empty, indicating that it is ready to be loaded with a new character.			
Bit 10	been detecte	ng error indicator. FE indicates whether a valid stop bit has d during reception. Clear the FE bit to 0 by writing a 1 to it. It ed to 0 on reset.			
	A framing err	or also generates an interrupt (TXRXINT).			
	FE = 0	No framing error is detected. Port operation is normal.			
	FE = 1	The character received did not have a valid (logic 1) stop bit.			
Bit 9	OE — Receive register (ADTR) overrun indicator. OE indicates whether an unread character has been overwritten. Clear the OE bit to 0 by writing a 1 to it. It is also cleared to 0 on reset.				
	The occurrer	nce of overrun also generates an interrupt (TXRXINT).			
	OE = 0	No overrun error is detected. The port is operating normally.			
	OE = 1	The last character in the ADTR was not read before the next character overwrote it.			
Bit 8	new characte	ready indicator for the receiver. This bit indicates whether a er has been received in the ADTR. This bit is automatically ro when the receive register (ADTR) is read or when the device			
	The reception (TXRXINT).	n of a new character into the ADTR also generates an interrupt			
	DR = 0	The receive register (ADTR) is empty.			
	DR = 1	A character has been completely received and should be read from the receive register (ADTR).			

10-11

Asynchronous Serial Port

Bit 7	DIO3 — Change detect bit for IO3. DIO3 indicates whether a change has occurred on the IO3 pin. A change can be detected only when IO3 is configured as an input by the CIO3 bit of the ASPCR (CIO3 = 0) and the serial port is enabled by the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO3 clears it to 0.			
	(TXRXINT).	on of a change on the IO3 pin also generates an interrupt		
	DIO3 = 0	No change is detected on IO3.		
	DIO3 = 1	A change is detected on IO3.		
Bit 6	occurred on t ured as an in	inge detect bit for IO2. DIO2 indicates whether a change has the IO2 pin. A change can be detected only when IO2 is config- put by the CIO2 bit of the ASPCR (CIO2 = 0) and the serial port γ the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO2		
	The detection (TXRXINT).	n of a change on the IO2 pin also generates an interrupt		
	DIO2 = 0	No change is detected on IO2.		
	DIO2 = 1	A change is detected on IO2.		
Dit 5	DIO1 — Cha	inge detect bit for IO1. DIO1 indicates whether a change has		
Bit 5	occurred on t ured as an in	the IO1 pin. A change can be detected only when IO1 is config- put by the CIO1 bit of the ASPCR (CIO1 = 0) and the serial port γ the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO1		
DIL 3	occurred on t ured as an in is enabled by clears it to 0.	the IO1 pin. A change can be detected only when IO1 is config- put by the CIO1 bit of the ASPCR (CIO1 = 0) and the serial port γ the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO1		
Dit 3	occurred on t ured as an in is enabled by clears it to 0. The detection	the IO1 pin. A change can be detected only when IO1 is config- put by the CIO1 bit of the ASPCR (CIO1 = 0) and the serial port γ the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO1		
Dit 3	occurred on f ured as an in is enabled by clears it to 0. The detection (TXRXINT).	the IO1 pin. A change can be detected only when IO1 is config- put by the CIO1 bit of the ASPCR (CIO1 = 0) and the serial port y the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO1 on of a change on the IO1 pin also generates an interrupt		
Bit 4	occurred on f ured as an in is enabled by clears it to 0. The detection (TXRXINT). DIO1 = 0 DIO1 = 1 DIO0 — Cha occurred on f ured as an in	the IO1 pin. A change can be detected only when IO1 is config- put by the CIO1 bit of the ASPCR (CIO1 = 0) and the serial port y the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO1 on of a change on the IO1 pin also generates an interrupt No change is detected on IO1. A change is detected on IO1. A change is detected on IO1. Inge detect bit for IO0. DIO0 indicates whether a change has the IO0 pin. A change can be detected only when IO0 is config- put by the CIO0 bit of the ASPCR (CIO0 = 0) and the serial port y the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO0		
	occurred on f ured as an in is enabled by clears it to 0. The detection (TXRXINT). DIO1 = 0 DIO1 = 1 DIO0 — Cha occurred on f ured as an in is enabled by clears it to 0.	the IO1 pin. A change can be detected only when IO1 is config- put by the CIO1 bit of the ASPCR (CIO1 = 0) and the serial port y the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO1 on of a change on the IO1 pin also generates an interrupt No change is detected on IO1. A change is detected on IO1. A change is detected on IO1. Inge detect bit for IO0. DIO0 indicates whether a change has the IO0 pin. A change can be detected only when IO0 is config- put by the CIO0 bit of the ASPCR (CIO0 = 0) and the serial port y the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO0		
	occurred on f ured as an in is enabled by clears it to 0. The detection (TXRXINT). DIO1 = 0 DIO1 = 1 DIO0 — Cha occurred on f ured as an in is enabled by clears it to 0. The detection	the IO1 pin. A change can be detected only when IO1 is config- put by the CIO1 bit of the ASPCR (CIO1 = 0) and the serial port x the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO1 on of a change on the IO1 pin also generates an interrupt No change is detected on IO1. A change is detected on IO1. A change is detected on IO1. Inge detect bit for IO0. DIO0 indicates whether a change has the IO0 pin. A change can be detected only when IO0 is config- put by the CIO0 bit of the ASPCR (CIO0 = 0) and the serial port x the URST bit of the ASPCR (URST = 1). Writing a 1 to DIO0		

Bit 3		Is bit for IO3. When the IO3 pin is configured as an input (by the he ASPCR), this bit reflects the current level on the IO3 pin.
	IO3 = 0	The IO3 signal is low.
	IO3 = 1	The IO3 signal is high.
Bit 2		Is bit for IO2. When the IO2 pin is configured as an input (by the he ASPCR), this bit reflects the current level on the IO2 pin.
	IO2 = 0	The IO2 signal is low.
	IO2 = 1	The IO2 signal is high.
Bit 1		Is bit for IO1. When the IO1 pin is configured as an input (by the he ASPCR), this bit reflects the current level on the IO1 pin.
	IO1 = 0	The IO1 signal is low.
	IO1 = 1	The IO1 signal is high.
Bit 0		Is bit for IO0. When the IO0 pin is configured as an input (by the he ASPCR), this bit reflects the current level on the IO0 pin.
	IO0 = 0	The IO0 signal is low.
	IO0 = 1	The IO0 signal is high.

10.3.3 Baud-Rate Divisor Register (BRD)

The baud rate of the asynchronous serial port can be set to many different rates by means of the BRD, an on-chip register located at address FFF7h in I/O space. Equation 10–1 shows how to set the BRD value to get the desired baud rate. When the BRD contains 0, the ASP will not transmit or receive any character. At reset, BRD = 0001h.

Equation 10–1. Value Needed in the BRD

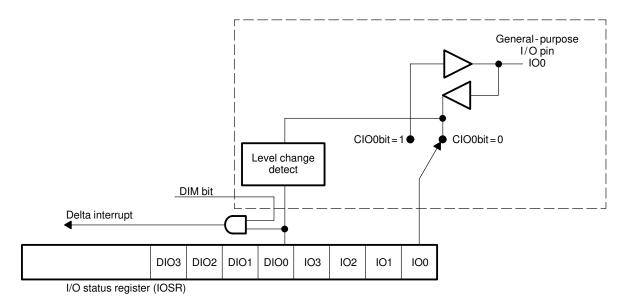
BRD value in decimal = $\frac{\text{CLKOUT1 frequency}}{16 \times \text{desired baud rate}}$

Table 10–2 lists common baud rates and the corresponding hexadecimal value that should be in the BRD for a given CLKOUT1 frequency.

	BRD Value in Hexadecimal						
Baud Rate	CLKOUT1 = 20 MHz (50 ns)	CLKOUT1 = 28.57 MHz (35 ns)	CLKOUT1 = 40 MHz (25 ns)				
1200	0411	05CC	0823				
2400	0208	02E6	0411				
4800	0104	0173	0208				
9600	0082	00B9	0104				
19200	0041	005C	0082				

Table 10–2. Common Baud Rates and the Corresponding BRD Values

10.3.4 Using Automatic Baud-Rate Detection


The ASP contains auto-baud detection logic, which allows the ASP to lock to the incoming data rate. The following steps explain the sequence by which the detection logic could be implemented:

- Enable auto-baud detection by setting the CAD bit in the ASPCR to 1 and ADC bit in the IOSR to zero.
- 2) Receive from a host the ASCII character *A* or *a* as the first character, at any desired baud rate definable in the BRD register. If the first character received is *A* or *a*, the serial port will lock to the incoming baud rate (the rate of the host), and the BRD register will be updated to the incoming baud rate value.
- 3) Baud-rate detection is indicated by a TXRXINT interrupt (mapped to vector location 000Ch) if TXRXINT is unmasked in the interrupt mask register and is globally enabled by the INTM bit of status register ST0. This interrupt occurs regardless of the values of the DIM, TIM, and RIM bits in the ASPCR.
- 4) Following the baud detection interrupt, the ADTR should be read to clear the *A* or *a* character from the receive buffer. If the ADTR is not cleared, any subsequent character received will set the OE bit in the IOSR, indicating an overrun error.
- 5) Once the baud rate is detected, both the CAD and ADC bits must be cleared; write 0 to CAD and write 1 to ADC. If CAD is not cleared, the auto baud-detection logic will try to lock to the incoming character speed. In addition, for as long as ADC = 1 and CAD = 1, receive interrupts will be generated.

10.3.5 Using I/O Pins IO3, IO2, IO1, and IO0

Pins IO3, IO2, IO1, and IO0 can be individually configured as inputs or outputs and can be used as handshake control for the asynchronous serial port or as general-purpose I/O pins. They are software-controlled through the asynchronous serial port control register (ASPCR) and the I/O status register (IOSR), as shown in Figure 10–5.

Figure 10–5. Example of the Logic for Pins IO0–IO3

The four LSBs of the ASPCR, bits CIO0–CIO3, are for configuring each pin as an input or an output. For example, as shown in the figure, setting CIO0 to 1 configures IO0 as an output; setting CIO0 to 0 configures IO0 as an input. At reset, CIO0–CIO3 are all cleared to 0, making all four of the the pins inputs. Table 10–3 summarizes the configuration of the pins.

Table 10–3. Configuring Pins IO0–IO3 with ASPCR Bits CIO0–CIO3

CIO0 Bit	IO0 Pin	CIO1 Bit	IO1 Pin	CIO2 Bit	IO2 Pin	CIO3 Bit	IO3 Pin
0	Input	0	Input	0	Input	0	Input
1	Output	1	Output	1	Output	1	Output

Asynchronous Serial Port 10-15

When pins IO0–IO3 are configured as inputs

When pins IO0–IO3 are configured as inputs, the eight LSBs of the IOSR allow you to monitor these four pins. Each of the IOSR bits 3–0, called IO3, IO2, IO1, and IO0, can be used to read the current logic level (high or low) of the signal at the corresponding pin. Each of the bits 7–4, called DIO3, DIO2, DIO1, and DIO0, is used to track a change from a previous known or unknown signal value at the corresponding pin. When a change is detected on one of the pins, the corresponding detect bit is set to 1, and an interrupt request is sent to the CPU on the TXRXINT interrupt line. You can clear each of the detect bits to 0 by writing a 1 to it. DIO3–DIO0 are only useful when the pins are configured as inputs and the serial port is enabled by the URST bit of the ASPCR (URST = 1). Table 10–4 summarizes what IOSR bits 0–7 indicate when IO0–IO3 are inputs.

Table 10–4. Viewing the Status of Pins IO0–IO3 With IOSR Bits IO0–IO3 and DIO0–DIO3

IOSR Bit Number	IOSR Bit Name	When IO0–IO3 are inputs, this bit indicates
0	IO0	Current logic level (0 or 1) on pin IO0
1	IO1	Current logic level (0 or 1) on pin IO1
2	IO2	Current logic level (0 or 1) on pin IO2
3	IO3	Current logic level (0 or 1) on pin IO3
4	DIO0†	Change detected (1) or not detected (0) on pin IO0 (when IO0 is an input)
5	DIO1 [†]	Change detected (1) or not detected (0) on pin IO1 (when IO1 is an input)
6	DIO2†	Change detected (1) or not detected (0) on pin IO2 (when IO2 is an input)
7	DIO3†	Change detected (1) or not detected (0) on pin IO3 (when IO3 is an input)

[†] Write a 1 to this bit to clear it to 0.

When pins IO0–IO3 are configured as outputs

When pins IO0–IO3 are configured as outputs, you can write to the four LSBs (IO3–IO0) of the IOSR. The value you write to each bit becomes the new logic level at the corresponding pin. For example, if you write a 0 to bit 2, the logic level at pin IO2 changes to low; if you write a 1 to bit 2, the logic level on IO2 changes to high.

10.3.6 Using Interrupts

The asynchronous serial port interrupt (TXRXINT) can be generated by three types of interrupts:

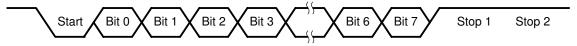
- □ Transmit interrupts. A transmit interrupt is generated when the ADTR empties during transmission. This indicates that the port is ready to accept a new transmit character. In addition to generating the interrupt, the port sets the THRE bit of the IOSR to 1. Transmit interrupts can be disabled by the TIM bit of the ASPCR.
- Receive interrupts. Any one of the following events will generate a receive interrupt:
 - The ADTR holds a new character. This event is also indicated by the DR bit of the IOSR (DR = 1).
 - Overrun occurs. The last character in the ADTR was not read before the next character overwrote it. Overrun also sets the OE bit of the IOSR to 1.
 - A framing error occurs. The character received did not have a valid (logic 1) stop bit. This event is also indicated by the FE bit of the IOSR (FE = 1).
 - A break has been detected on the RX pin. This event also sets the BI bit of the IOSR to 1.
 - The character A or a has been detected in the ADTR by the auto-baud detect logic. This event also sets the ADC bit of the IOSR to 1. This interrupt will occur regardless of the values of the DIM, TIM, and RIM bits of the ASPCR.

With the exception of the A detect interrupt, receive interrupts can be disabled by the RIM bit of the ASPCR.

□ Delta interrupts. This type of interrupt is generated if a change takes place on one of the I/O lines (IO0, IO1, IO2, or IO3) when the lines are used for ASP control (when DIM = 1 in the ASPCR). The event is also indicated by the corresponding detect bit (DIO0, DIO1, DIO2, or DIO3) in the IOSR. Delta interrupts can be disabled by the DIM bit of the ASPCR.

TXRXINT leads the CPU to interrupt vector location 000Ch in program memory. The branch at that location should lead to an interrupt service routine that identifies the cause of the interrupt and then acts accordingly. TXRXINT has a priority level of 9 (1 being highest).


TXRXINT is a maskable interrupt and is controlled by the interrupt mask register (IMR) and interrupt flag register (IFR).


Note:

To avoid a double interrupt from the ASP, clear the IFR bit (TXRXINT) in the corresponding interrupt service routine, just before returning from the routine.

10.4 Transmitter Operation

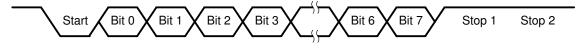
The transmitter consists of an 8-bit transmit register (ADTR) and an 8-bit transmit shift register (AXSR). Data to be transmitted is written to the ADTR, and then the port transfers the data to the AXSR. Data written to the transmit register should be written in right-justified form, with the LSB as the rightmost bit. Data from the AXSR is shifted out on the TX pin in the serial form shown in Figure 10–6 (the number of stop bits depends on the value of the STB bit in the ASPCR). When the serial port is not transmitting, TX should be held high by clearing the SETBRK bit of the ASPCR (SETBRK = 0).

Transmission is started by a write to the ADTR. If the AXSR is empty, data from the ADTR is transferred to the AXSR. If the AXSR is full, then data is kept in the ADTR, and existing data in the AXSR is shifted out to the sequence control logic. If both the AXSR and ADTR are full and the CPU tries to write to the ADTR, the write is not allowed, and existing data in both registers is maintained.

If the transmit register is empty and interrupt TXRXINT is unmasked (in the IMR) and enabled (by the INTM bit), an interrupt is generated. When the ADTR empties, the THRE bit of the IOSR is set to 1. The bit is cleared when a character is loaded into the transmit register. Bit 12 (TEMT) of the IOSR is set if both the transmit and transmit shift registers are empty.

The sequence control logic constructs the transmit frame by sending out a start bit followed by the data bits from the AXSR and either one or two stop bits.

Here is a summary of asynchronous mode transmission:


- 1) An interrupt (TXRXINT) is generated if the transmit register is empty.
- 2) If AXSR is empty, the data is transferred from ADTR to AXSR.
- A start bit is transmitted to TX, followed by eight data bits (LSB first), and the stop bit(s).
- 4) For the next transmission, the process begins again from step 1.

To avoid double interrupts, the interrupt service routine should clear TXRXINT in the interrupt flag register (IFR), just before forcing a return from the routine. Take special care when using this interrupt; it will be generated frequently for as long as the transmit register is empty.

10.5 Receiver Operation

The receiver includes two internal 8-bit registers: the receive register (ADTR) and receive shift register (ARSR). The data received at the RX pin should have the serial form shown in Figure 10–7 (the number of stop bits required depends on the value of the STB bit in the ASPCR).

Figure 10–7. Data Receive

Data is received on the RX pin, and the negative-edge detect logic initiates a receive operation and checks for a start bit. After the eight data bits are received, a stop bit (or bits) should be received, indicating the end of that block. If a valid stop bit is not received, a framing error has occurred; in response, the FE bit in the ASPCR is set to 1, and a TXRXINT interrupt is generated. Then normal reception continues, and the receiver looks for the next start bit.

Once a valid stop bit is received, data is then transferred to the ADTR, and an interrupt (TXRXINT) is sent to the CPU. The DR bit of the IOSR is set to indicate that a character has been received in the receive register, ADTR. (DR is cleared to 0 when the ADTR is read.) The ARSR is now available to receive another character.

If ADTR is not read before new data is transferred into the ADTR, the overflow error (OE) flag is set in the IOSR.

In summary, asynchronous mode reception involves the following events:

- 1) A negative edge is received on RX to indicate a start bit. A test is performed to indicate whether a start bit is valid.
- 2) If the start bit is valid, eight data bits are shifted into ARSR (LSB first).
- 3) A stop bit is received to indicate end of reception. (If a stop bit is not received, a framing error is indicated.)
- 4) Data is transferred from ARSR to ADTR.
- 5) An interrupt is sent to the CPU once data has been placed in the ADTR.
- 6) Reception is complete. The receiver waits for another negative transition.

To avoid double interrupts, the interrupt service routine should clear TXRXINT in the interrupt flag register (IFR) just before forcing a return from the routine.

Chapter 11

TMS320C209

All 'C2xx devices use the same central processing unit (CPU), bus structure, and instruction set, but the 'C209 has some notable differences. This chapter compares features on the 'C209 with those on other 'C2xx devices and then provides information specific to the 'C209 in the areas of memory and I/O spaces, interrupts, and on-chip peripherals.

Topio	c Pag	e
11.1	'C209 Versus Other 'C2xx Devices 11-2	2
11.2	'C209 Memory and I/O Spaces 11-5	5
11.3	'C209 Interrupts 11-10)
11.4	² C209 On-Chip Peripherals 11-14	1

11.1 'C209 Versus Other 'C2xx Devices

This section explains the differences between the 'C209 and other 'C2xx devices and concludes with a table to help you find the other information in this manual that applies to the 'C209.

11.1.1 What Is the Same

The following components and features are identical on all 'C2xx devices, including the 'C209:

- Central processing unit
- Status registers ST0 and ST1
- □ Assembly language instructions
- Addressing modes
- Global data memory
- Program-address generation logic
- General-purpose I/O pins BIO and XF

11.1.2 What Is Different

The important differences between the 'C209 and other 'C2xx devices are as follows:

Peripherals:

- The 'C209 has no serial ports.
- The wait-state generator can be programmed to generate either no wait states or one wait state. Other 'C2xx devices provide zero to seven wait states.
- The wait-state generator does not provide separate wait states for the upper and lower halves of program memory.
- The 'C209 supports address visibility mode (enabled with the waitstate generator control register). In this mode, the device passes the internal program address to the external address bus when this bus is not used for an external access.
- The 'C209 clock generator supports only two options: multiply-by-two (×2) and divide-by-two (÷2).
- The 'C209 does not have a CLK register; thus it cannot prevent the CLKOUT1 signal from appearing on the CLKOUT1 pin.
- The 'C209 does not have I/O pins IO3, IO2, IO1, and IO0.

Memory and I/O Spaces:

- The I/O addresses of the peripheral registers are different on the 'C209.
- The 'C209 does not support the 'C2xx HOLD operation.

Interrupts:

- The 'C209 has four maskable interrupt lines, none of them shared. The other devices have six interrupt lines, one shared by the INT2 and INT3 pins.
- The 'C209 does not have an interrupt control register (ICR) because INT2 and INT3 have their own interrupt lines.
- Although the interrupt flag register (IFR) and interrupt mask register (IMR) are used in the same way on all 'C2xx device, the 'C209 has fewer flag and mask bits because it does not have serial ports.
- On the 'C209, interrupts INT2 and INT3 have their own interrupt lines and, thus, have their own interrupt vectors. On other 'C2xx devices, INT2 and INT3 share an interrupt line and, thus, share one interrupt vector.
- The 'C209 has an interrupt acknowledge pin (IACK), which allows external detection of when an interrupt has been acknowledged.
- The 'C209 has two pins for reset: RS and RS; other 'C2xx devices have only RS.

For information about:		Look here:
Assembly language instructions		Chapter 7, Assembly Language Instructions
Clock generator	Main description	Chapter 8, On-Chip Peripherals
	Options and configuration	Subsection 11.4.1 (page 11-14)
CPU		Chapter 3, Central Processing Unit
Data-address generation		Chapter 6, Addressing Modes
I/O Space	Main description	Chapter 4, Memory
	Effect of READY pin	Section 11.2 (page 11-5)
	Control register locations	Table 11-3 (page 11-9)

11.1.3 Where to Find the Information You Need About the TMS320C209

For information about:		Look here:	
Interrupts	Main description	Chapter 5, Program Control	
	Vector locations	Table 11-4 (page 11-10)	
	Flag and mask registers	Subsection 11.3.1 (page 11-11)	
	Interrupt acknowledge pin	Subsection 11.3.2 (page 11-13)	
Memory	Main description	Chapter 4, Memory	
	Address maps	Figure 11-1 (page 11-6)	
	Configuration	Section 11.2 (page 11-5)	
Pipeline		Chapter 5, Program Control	
Power-down mode		Chapter 5, Program Control	
Program-address generation		Chapter 5, Program Control	
Program control		Chapter 5, Program Control	
Stack		Chapter 5, Program Control	
Status registers		Chapter 5, Program Control	
Timer	Main description	Chapter 8, On-Chip Peripherals	
	Configuration	Subsection 11.4.2 (page 11-15)	
Wait-state generator	Main description	Chapter 8, On-Chip Peripherals	
	Configuration	Subsection 11.4.3 (page 11-16)	

11.2 'C209 Memory and I/O Spaces

The 'C209 does not have an on-chip boot loader and does not support the 'C2xx HOLD operation. Figure 11–1 shows the 'C209 address map. The onchip program and data memory available on the 'C209 consists of:

- BOM (4K words, for program memory)
- SARAM (4K words, for program and/or data memory)
- DARAM B0 (256 words, for program or data memory)
- DARAM B1 (256 words, for data memory)
- DARAM B2 (32 words, for data memory)

	'C209 Program		'C209 Data		'C209 I/O	
0000h	Interru <u>pts (</u> on-chip) (MP/MC = 0) Interru <u>pts (</u> external)	0000h 005Fh	Memory-mapped registers and reserved addresses	0000h		
003Fh	(MP/MC = 1)	0060h 007Fh	On-chip DARAM B2			
	On-chip ROM (MP/MC = 0)	0080h 01FFh	Reserved			
0FFFh 1000h	External (MP/MC = 1)	0200h	On-chip DARAM B0 [‡] (CNF = 0); Reserved (CNF = 1)			
	(RAMEN = 1); External	02FFh 0300h 03FFh	On-chip DARAM B1§		External	
1FFFh 2000h	(RAMEN = 0)	0400h 07FFh	Reserved			
	External	0800h 0FFFh	Reserved (RAMEN = 1) External (RAMEN = 0);			
FDFFh		1000h	On-chip SARAM (RAMEN = 1); External (RAMEN = 0)	FEFFh		
FE00h	Reserved (CNF = 1); External (CNF = 0)	2000h 7FFFh 8000h	External	FF00h	Reserved for test/emulation	
FEFFh FF00h FFFFh	On-chip DARAM B0 [†] (CNF = 1); External (CNF = 0)	FFFFh	External (local and/or global)	FF0Fh FF10h FFFFh	I/O-mapped registers and reserved addresses	

Figure 11–1. 'C209 Address Maps

[†] When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to here as reserved when CNF = 1.

When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to here as reserved.

§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to here as reserved.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to any addresses labeled Reserved. This includes any data-memory address in the range 0000h–005Fh that is not designated for an on-chip register and any I/O address in the range FF00h–FFFFh that is not designated for an on-chip register.

You select or deselect the ROM by changing the level on the MP/\overline{MC} pin at reset:

- When MP/MC = 0 (low) at reset, the device is configured as a microcomputer. The on-chip ROM is enabled and is accessible at addresses 0000h–0FFFh. The device fetches the reset vector from on-chip ROM.
- When MP/MC = 1 (high) at reset, the device is configured as a microprocessor, and addresses 0000h–0FFFh are used to access external memory. The device fetches the reset vector from external memory.

Regardless of the value of MP/\overline{MC} , the 'C2xx fetches its reset vector at location 0000h of program memory.

The addresses assigned to the on-chip SARAM are shared by program memory and data memory. The RAMEN signal allows you to toggle the data addresses 1000h–1FFFh and the program addresses 1000h–1FFFh between on-chip memory and external memory:

When RAMEN = 1 (high), program addresses 1000h–1FFFh and data addresses 1000h–1FFFh are mapped to the same physical locations in the on-chip SARAM. For example, 1000h in program memory and 1000h in data memory point to the same physical location in the on-chip SARAM. Thus, the 4K words of on-chip SARAM are accessible for program and/or data space.

Note:

When RAMEN = 1, program addresses 1000h-1FFFh and data addresses 1000h-1FFFh are one and the same. When writing data to these locations be careful not to overwrite existing program instructions.

When RAMEN = 0 (low), program addresses 1000h–1FFFh (4K) are mapped to external program memory and data addresses 1000h–1FFFh (4K) are mapped to external data memory. Thus, a total of 8K additional addresses (4K program and 4K data) are available for external memory.

DARAM blocks B1 and B2 are fixed, but DARAM block B0 may be mapped to program space or data space, depending on the value of the CNF bit (bit 12 of status register ST1):

- ❑ When CNF = 0, B0 is mapped to data space and is accessible at data addresses 0200h–02FFh. Note that the addressable external *program* memory increases by 512 words. At reset, CNF = 0.
- When CNF = 1, B0 is mapped to program space and is accessible at program addresses FF00h–FFFFh.

Table 11–1 lists the available program memory configurations for the 'C209; Table 11–2 lists the data-memory configurations. Note these facts:

- Program-memory addresses 0000h–003Fh are used for the interrupt vectors.
- Data-memory addresses 0000h–005Fh contain on-chip memory-mapped registers and reserved memory.
- □ Two other on-chip data-memory ranges are always reserved: 0080h-01FFh and 0400h-07FFh.

MP/MC	RAMEN	CNF	ROM (hex)	SARAM (hex)	DARAM B0 (hex)	External (hex)	Reserved (hex)
0	0	0	0000–0FFF	-	-	1000–FFFF	-
0	0	1	0000–0FFF	-	FF00–FFFF	1000–FDFF	FE00-FEFF
0	1	0	0000–0FFF	1000–1FFF	_	2000–FFFF	-
0	1	1	0000–0FFF	1000–1FFF	FF00–FFFF	2000–FDFF	FE00-FEFF
1	0	0	_	_	_	0000-FFFF	_
1	0	1	_	_	FF00–FFFF	0000-FDFF	FE00-FEFF
1	1	0	-	1000–1FFF	-	0000–0FFF	-
						2000–FFFF	
1	1	1	-	1000–1FFF	FF00–FFFF	0000–0FFF	FE00-FEFF
						2000–FDFF	

Table 11–1. 'C209 Program-Memory Configuration Options

RAMEN	CNF	DARAM B0 (hex)	DARAM B1 (hex)	DARAM B2 (hex)	SARAM (hex)	External (hex)	Reserved (hex)
0	0	0200–02FF	0300–03FF	0060–007F	_	0800–FFFF	0000–005F
							0080–01FF
							0400–07FF
0	1	_	0300–03FF	0060–007F	_	0800–FFFF	0000–005F
							0080–02FF
							0400–07FF
1	0	0200–02FF	0300–03FF	0060–007F	1000–1FFF	2000–FFFF	0000–005F
							0080–01FF
							0400–0FFF
1	1	_	0300–03FF	0060–007F	1000–1FFF	2000–FFFF	0000–005F
							0080–02FF
							0400–0FFF

Table 11–2. 'C209 Data-Memory Configuration Options

A portion of the on-chip I/O space contains the control registers listed in Table 11–3. The corresponding registers on other 'C2xx devices are not at the addresses shown in this table. When accessing the I/O-mapped registers on the 'C209, also keep in mind the following:

- □ The READY pin must be pulled high to permit reads from or writes to registers mapped to internal I/O space. This is not true for other 'C2xx devices.
- □ The IS (I/O select) and R/W (read/write) signals are visible on their pins during reads from or writes to registers mapped to internal I/O space. On other 'C2xx devices, none of the interface signals are visible during internal I/O accesses.

I/O Address	Name	Description
FFFCh	TCR	Timer control register
FFFDh	PRD	Timer period register
FFFEh	TIM	Timer counter register
FFFFh	WSGR	Wait-state generator control register

Note: The corresponding registers on other 'C2xx devices are not at these addresses.

11.3 'C209 Interrupts

Table 11–4 lists the interrupts available on the 'C209 and shows their vector locations. In addition, it shows the priority of each of the hardware interrupts. Note that a device reset can be initiated in either of two ways: by driving the $\overline{\text{RS}}$ pin low or by driving the RS pin high. The K value shown for each interrupt vector location is the operand to be used with the INTR instruction if you want to force a branch to that location.

κ †	Vector Location	Name	Priority	Function
0	Oh	RS or RS‡	1 (highest)	Hardware reset (nonmaskable)
-	-			
1	2h	INT1	4	User-maskable interrupt #1
2	4h	INT2	5	User-maskable interrupt #2
3	6h	INT3	6	User-maskable interrupt #3
4	8h	TINT	7	User-maskable interrupt #4: timer interrupt
5	Ah		8	Reserved
6	Ch		9	Reserved
7	Eh		10	Reserved
8	10h	INT8	_	User-defined software interrupt
9	12h	INT9	_	User-defined software interrupt
10	14h	INT10	_	User-defined software interrupt
11	16h	INT11	_	User-defined software interrupt
12	18h	INT12	_	User-defined software interrupt
13	1Ah	INT13	_	User-defined software interrupt
14	1Ch	INT14	_	User-defined software interrupt

Table 11–4. 'C209 Interrupt Locations and Priorities

[†] The K value is the operand used in an INTR instruction that branches to the corresponding interrupt vector location.

[‡] The 'C209 has two pins for triggering a hardware reset: RS and RS. If either RS is driven low or RS is driven high, the device will be reset.

κ †	Vector Location	Name	Priority	Function
15	1Eh	INT15	_	User-defined software interrupt
16	20h	INT16	_	User-defined software interrupt
17	22h	TRAP	-	TRAP instruction vector
18	24h	NMI	3	Nonmaskable interrupt
19	26h		2	Reserved
20	28h	INT20	_	User-defined software interrupt
21	2Ah	INT21	_	User-defined software interrupt
22	2Ch	INT22	_	User-defined software interrupt
23	2Eh	INT23	_	User-defined software interrupt
24	30h	INT24	_	User-defined software interrupt
25	32h	INT25	-	User-defined software interrupt
26	34h	INT26	-	User-defined software interrupt
27	36h	INT27	-	User-defined software interrupt
28	38h	INT28	_	User-defined software interrupt
29	3Ah	INT29	_	User-defined software interrupt
30	3Ch	INT30	_	User-defined software interrupt
31	3Eh	INT31	_	User-defined software interrupt

Table 11–4. 'C209 Interrupt Locations and Priorities (Continued)

[†] The K value is the operand used in an INTR instruction that branches to the corresponding interrupt vector location.

[‡] The 'C209 has two pins for triggering a hardware reset: $\overline{\text{RS}}$ and RS. If either $\overline{\text{RS}}$ is driven low or RS is driven high, the device will be reset.

11.3.1 'C209 Interrupt Registers

As with other 'C2xx devices, the maskable interrupts of the 'C209 are controlled by an interrupt flag register (IFR) and an interrupt mask register (IMR). Figure 11–2 shows the IFR and Figure 11–3 shows the IMR. Each of the figures is followed by descriptions of the bits.

Figure 11–2. C209 Interrupt Flag Register (IFR) — Data-Memory Address 0006h	1
---	---

15			4	3	2	1	0			
	Re	served		TINT	INT3	INT2	INT1			
		0		R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0			
Note: 0 = Always read as zeros; R = Read access; W1C = Write 1 to this bit to clear it to 0; value following dash (–) is value after reset.										
Bits 15-4	Reserved. Bits 15–4 are reserved and are always read as 0s.									
Bit 3	TINT — Timer interrupt flag. Bit 3 indicates whether interrupt TINT is pending (whether TINT is requesting acknowledgment from the CPU).									
	TINT = 0	INT = 0 Interrupt TINT is not pending.								
	TINT = 1	Interrupt TINT is pendi	ng.							
Bit 2	INT3 — Interrupt 3 flag. Bit 2 indicates whether INT3 is pending (whether INT3 is requesting acknowledgment from the CPU).									
	INT3 = 0	INT3 is not pending.								
	INT3 = 1	INT3 is pending.								
Bit 1	INT2 — Interrupt 2 flag. Bit 1 indicates whether INT2 is pending (whether INT2 is requesting acknowledgment from the CPU).									
	INT2 = 0	INT2 is not pending.								
	INT2 = 1	INT2 is pending.								
Bit 0	INT1 — Interrupt 1 flag. Bit 0 indicates whether INT1 is pending (whether INT1 is requesting acknowledgment from the CPU).									
	INT1 = 0	INT1 is not pending.								
	INT1 = 1	INT1 is pending.								

Figure 11–3. C209 Interrupt Mask Register (IMR) — Data-Memory Address 0004h

15	4	3	2	1	0
Reserved		TINT	INT3	INT2	INT1
0		R/W-0	R/W-0	R/W-0	R/W–0
					<i>.</i> .

Note: Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Bits 15–4 Reserved. Bits 15–4 are reserved and are always read as 0s.

Bit 3 TINT — Timer interrupt mask. Mask or unmask the internal timer interrupt, TINT, with this bit.

TINT = 0 TINT is unmasked.

TINT = 1 TINT is masked.

Bit 2 INT3 — Interrupt 3 mask. Unmask external interrupt INT3 by writing a 1 to this bit.

- INT3 = 0 INT3 is unmasked.
- INT3 = 1 $\overline{INT3}$ is masked.

Bit 1 INT2 — Interrupt 2 mask. Unmask external interrupt INT2 by writing a 1 to this bit.

- INT2 = 0 $\overline{INT2}$ is unmasked.
- INT2 = 1 INT2 is masked.

Bit 0 INT1 — Interrupt 1 mask. Unmask external interrupt INT1 by writing a 1 to this bit.

- INT1 = 0 $\overline{INT1}$ is unmasked.
- INT1 = 1 $\overline{INT1}$ is masked.

11.3.2 IACK Pin

On the 'C209, the interrupt acknowledge signal is available at the external IACK pin. The CPU generates this signal while it fetches the first word of any of the interrupt vectors, whether the interrupt was requested by hardware or by software. IACK is not affected by wait states; IACK goes low only on the first cycle of the read when wait states are used. At reset, the interrupt acknowledge signal is generated in the same manner as for a maskable interrupt.

Your external hardware can use the \overline{IACK} signal to determine when the processor acknowledges an interrupt. Additionally, when \overline{IACK} goes low, the hardware can sample the address pins (A15–A0) to determine which interrupt the processor is acknowledging. Since the interrupt vectors are spaced apart by two words, address pins A1–A4 can be decoded at the falling edge of \overline{IACK} to identify the interrupt being acknowledged.

TMS320C209 11-13

11.4 'C209 On-Chip Peripherals

The 'C209 has these on-chip peripherals:

- □ Clock generator. The clock generator is fundamentally the same on all 'C2xx devices, including the 'C209. However, the 'C209 is limited to the two clock modes described in subsection 11.4.1.
- □ Timer. The timer is also fundamentally the same. The difference here is that the timer control register (TCR) on the 'C209 does not offer bits for configuring timer emulation modes. Subsection 11.4.2 describes the 'C209 TCR.
- ❑ Wait-state generator. The wait-state generators of the 'C2xx devices operate similarly; however, the 'C209 wait-state generator is different from that of other 'C2xx devices in these ways:
 - It offers zero or one wait states (not zero to seven).
 - It cannot produce separate wait states for the lower (0000h–7FFFh) and upper (8000h–FFFFh) halves of program space.
 - It provides a bit for enabling or disabling address visibility mode. In this mode (not available on other 'C2xx devices), the 'C209 passes the internal program address to the external address bus when this bus is not used for an external access.

The 'C209 generator is programmable by way of the 'C209 wait-state generator control register (WSGR) and is described subsection 11.4.3.

11.4.1 'C209 Clock Generator Options

The 'C209 includes two clock modes: divide-by-2 (\div 2) and multiply-by-2 (\times 2). The \div 2 mode operates the CPU at half the input clock rate. The \times 2 option doubles the input clock and phase-locks the output clock with the input clock. To enable the \div 2 mode, tie the CLKMOD pin low. To enable the \times 2 mode, tie CLKMOD high. For each clock mode, Table 11–5 shows the generated CPU clock rate and shows the state of CLKMOD, the internal oscillator, and the internal phase lock loop (PLL).

Notes:

- \Box Change CLKMOD only while the reset signal (\overline{RS} or RS) is active.
- The PLL requires approximately 2200 cycles to lock the output clock signal to the input clock signal. When setting the ×2 mode, keep the reset (RS or RS) signal active until at least three cycles after the PLL has stabilized.

Clock Mode	CLKOUT1 Rate	CLKMOD	Oscillator	PLL
÷2	CLKOUT1 = CLKIN ÷ 2	0	Enabled	Disabled
× 2	$CLKOUT1 = CLKIN \times 2$	1	Disabled	Enabled

Table 11–5. 'C209 Input Clock Modes

Remember the following points when configuring the clock mode:

- The modes cannot be configured dynamically. After you change the level on CLKMOD, the mode is not changed until a hardware reset is executed (RS low or RS high).
- □ The clock doubler mode uses an internal phase-locked loop (PLL) that requires approximately 2200 cycles to lock. Delay the rising edge of RS (or the falling edge of RS) until at least three cycles after the PLL has stabilized. When the PLL is used, the duty cycle of the CLKIN signal is more flexible, but the minimum duty cycle should not be less than 10 nanoseconds. When the PLL is not used, no phase-locking time is necessary, but the minimum pulse width must be 45% of the minimum clock cycle.

11.4.2 'C209 Timer Control Register (TCR)

Figure 11–4 shows the bit fields of the 'C209 TCR, and descriptions of the bit fields follow the figure.

15–10	9–6	5	4	3–0
Reserved	PSC	TRB	TSS	TDDR
0	R/W–0	R/W–0	W–0	R/W–0

Figure 11–4. 'C209 Timer Control Register (TCR) — I/O Address FFFCh

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (-) is value after reset.

Bits 15–10 Reserved. TCR bits 10–15 are reserved and are always read as 0s.

- Bits 9–6 PSC Timer prescaler counter. These four bits hold the current prescale count for the timer. For every CLKOUT1 cycle that the PSC value is greater than 0, the PSC decrements by one. One CLKOUT1 cycle after the PSC reaches 0, the PSC is loaded with the contents of the TDDR, and the timer counter register (TIM) decrements by one. The PSC is also reloaded whenever the timer reload bit (TRB) is set by software. The PSC can be checked by reading the TCR, but it cannot be set directly. It must get its value from the timer divide-down register (TDDR). At reset, the PSC is set to 0.
- **Bit 5 TRB**—**Timer reload bit.** When you write a 1 to TRB, the TIM is loaded with the value in the PRD, and the prescaler counter (PSC) is loaded with the value in the timer divide-down register (TDDR). The TRB bit is always read as zero.

- Bit 4 TSS Timer stop status bit. TSS is a 1-bit flag that stops or starts the timer. To stop the timer, set TSS to 1. To start or restart the timer, set TSS to 0. At reset, TSS is cleared to 0 and the timer immediately starts.
- Bits 3–0 TDDR —Timer divide-down register. Every (TDDR + 1) CLKOUT1 cycles, the timer counter register (TIM) decrements by one. At reset, the TDDR bits are cleared to 0. If you want to increase the overall timer count by an integer factor, write this factor minus one to the four TDDR bits. When the prescaler counter (PSC) value is 0, one CLKOUT1 cycle later, the contents of the TDDR reload the PSC, and the TIM decrements by 1. TDDR also reloads the PSC whenever the timer reload bit (TRB) is set by software.

11.4.3 'C209 Wait-State Generator

As with other 'C2xx devices, the 'C209 offers two options for generating wait states:

- ☐ **The READY signal.** With the READY signal, you can externally generate any number of wait states.
- ☐ **The on-chip wait-state generator.** With the 'C209 wait-state generator, you can internally generate zero or one wait state.

The 'C209 wait-state generator inserts a wait state to a given memory space (data, program, or I/O) if the corresponding bit in WSGR is set to 1, regardless of the condition of the READY signal. As with other 'C2xx devices, the READY signal can then be used to further extend wait states. The WSGR control bits are all set to 1 by reset, so that the device can operate from slow memory after reset. To avoid bus conflicts, writes from the 'C209 always take two CLKOUT1 cycles each.

To control the wait-state generator, you read from or write to the wait-state generator control register (WSGR), mapped to I/O memory location FFFFh. Figure 11–5 shows the register's bit layout, and descriptions of the bits follow. The WSGR also enables or disables address visibility mode.

Figure 11–5. 'C209 Wait-State Generator Control Register (WSGR) — I/O Address FFFFh

15–4	3	2	1	0
Reserved	AVIS	ISWS	DSWS	PSWS
0	W–1	W–1	W–1	W–1

Note: 0 = Always read as zeros; W = Write access; value following dash (–) is value after reset.

- **Bits 15–4 Reserved.** Bits 15–4 are reserved and are always read as 0s.
- Bit 3 AVIS Address visibility mode. AVIS = 1 enables the address visibility mode of the device. In this mode, the device provides a method of tracing internal code operation: it passes the internal program address to the address bus when this bus is not used for an external access. At reset, AVIS is set to 1. For production systems, the AVIS bit should be cleared to 0 to reduce power and noise. (AVIS does not generate a wait state.)
- Bit 2 ISWS I/O-space wait-state bit. When ISWS = 1, one wait state will be applied to all reads from off-chip I/O space. When ISWS = 0, no wait states are generated for off-chip I/O space. At reset, this bit is set to 1.
- **Bit 1 DSWS Data-space wait-state bit.** When DSWS = 1, one wait state will be applied to all reads from off-chip data space. When DSWS = 0, no wait states are generated for off-chip data space. At reset, this bit is set to 1.
- **Bit 0 PSWS Program-space wait-state bit.** When PSWS = 1, one wait state will be applied to all reads from off-chip program space. When PSWS = 0, no wait states are generated for off-chip program space. At reset, this bit is set to 1.

Appendix A

Register Summary

For the status and control registers of the 'C2xx devices, this appendix summarizes:

- Their addresses
- Their reset values
- ☐ The functions of their bits

Торіс

Page

A .1	Addresses and Reset Values A-2	
A.2	Register Descriptions	

A.1 Addresses and Reset Values

The following tables list the 'C2xx registers, the addresses at which they can be accessed, and their reset values. Note that the registers mapped to internal I/O space on the 'C209 are at addresses different from those of other 'C2xx devices. In addition, the 'C209 wait-state generator control register has a different reset value because there are only four control bits in the register.

Table A-1. Reset Values of the Status Registers

Name	Reset Value (Binary)	Description
ST0	XXX0 X11X XXXX XXXX	Status register 0
ST1	XXX0 X111 1111 1100	Status register 1

Notes: 1) No addresses are given for ST0 and ST1 because they can be accessed only by the CLRC, SETC, LST, and SST instructions.

2) X: Reset does not affect these bits.

Table A–2. Addresses and Reset Values of On-Chip Registers Mapped to Data Space

Name	Data-Memory Address	Reset Value	Description
IMR	0004h	0000h	Interrupt mask register
GREG	0005h	0000h	Interrupt control register
IFR	0006h	0000h	Synchronous data transmit and receive register

Note: An x in an address represents four bits that are either not affected by reset or dependent on pin levels at reset.

Table A–3. Addresses and Reset Values of On-Chip Registers Mapped to I/O Space

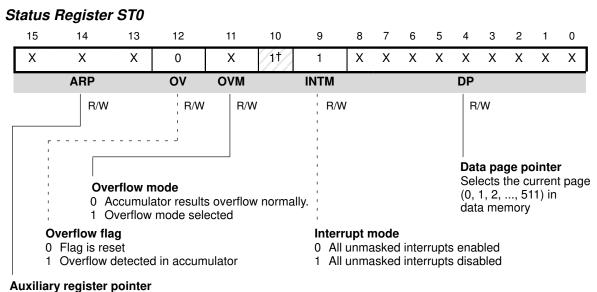
I/O Address				
Name	'C209	Other 'C2xx	Reset Value	Description
CLK	-	FFE8h	0000h	CLKOUT1-pin control (CLK) register
ICR	_	FFECh	0000h	Interrupt control register
SDTR	-	FFF0h	xxxxh	Synchronous data transmit and receive register
SSPCR	_	FFF1h	0030h	Synchronous serial port control register
ADTR	_	FFF4h	xxxxh	Asynchronous data transmit and receive register
ASPCR	_	FFF5h	0000h	Asynchronous serial port control register

Note: An x in an address represents four bits that are either not affected by reset or dependent on pin levels at reset.

	I/O Address			
Name	'C209	Other 'C2xx	Reset Value	Description
IOSR	-	FFF6h	18xxh	I/O status register
BRD	-	FFF7h	0001h	Baud-rate divisor register
TCR	FFFCh	FFF8h	0000h	Timer control register
PRD	FFFDh	FFF9h	FFFFh	Timer period register
TIM	FFFEh	FFFAh	FFFFh	Timer counter register
WSGR	FFFFh	FFFCh	0FFFh	Wait-state generator control register

Table A–3. Addresses and Reset Values of On-Chip Registers Mapped to I/O Space (Continued)

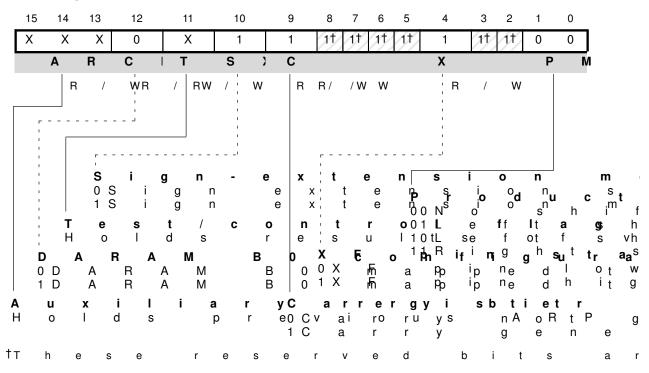
Note: An x in an address represents four bits that are either not affected by reset or dependent on pin levels at reset.

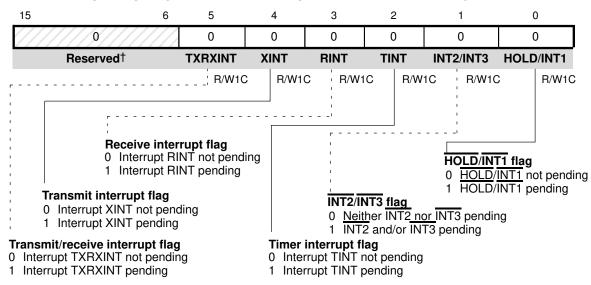

A.2 Register Descriptions

The following figures summarize the content of the 'C2xx status and control registers that are divided into fields. (The other registers contain no control bits; they simply hold a single 16-bit value.) Each figure in this section provides information in this way:

- ☐ The value shown in the register is the value after reset. If the value of a particular bit is not affected by reset or depends on pin levels at reset, that bit will contain an X.
- □ Each unreserved bit field or set of bits has a callout that very briefly describes its effect on the processor.
- Each non-reserved bit field or set of bits is labeled with one or more of the following symbols:
 - R indicates that your software can read the bit field but cannot write to it.
 - W indicates that your software can read the bit field and write to it.
 - W1C indicates that writing a 1 to the bit field clears it to 0; writing a 0 has no effect.

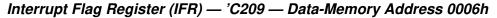
When both read access and write access apply to a bit field, two of these symbols are shown, separated by / (a forward slash): R/W or R/W1C.

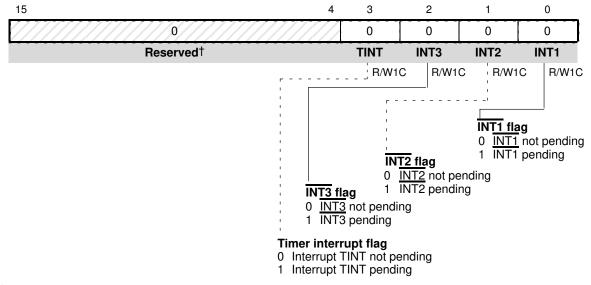

Where needed, footnotes provide additional information for a particular figure.

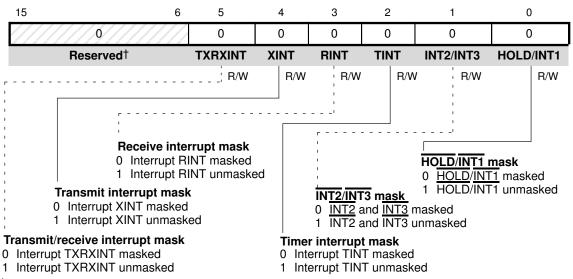

Selects the current auxiliary register (0, 1, 2, 3, 4, 5, 6, or 7)

[†]This reserved bit is always read as 1. Writes have no effect.

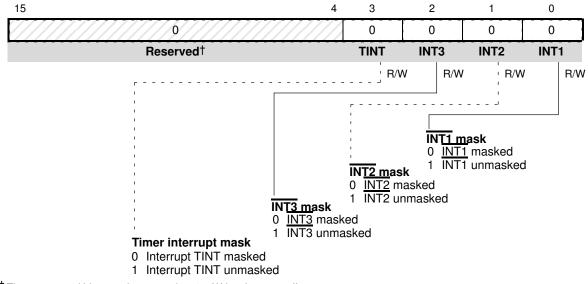
Status Register ST1

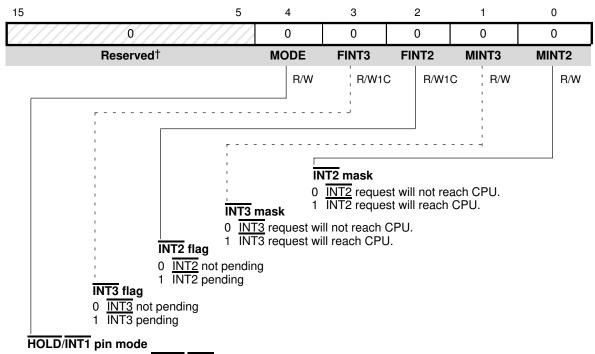



Register Summary A-5


'C2xx Interrupt Flag Register (IFR) — Except 'C209 — Data-Memory Address 0006h

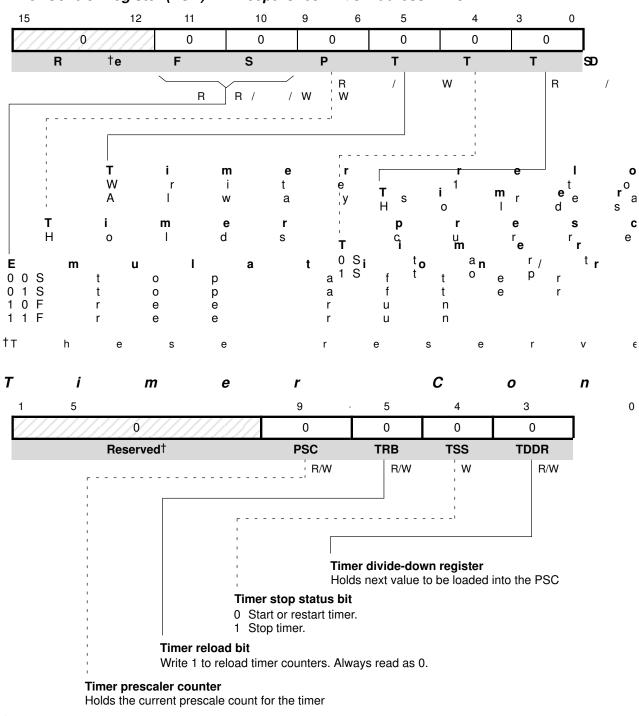
[†]These reserved bits are always read as 0s. Writes have no effect.


[†]These reserved bits are always read as 0s. Writes have no effect.


Interrupt Mask Register (IMR) — Except 'C209 — Data-Memory Address 0004h

[†] These reserved bits are always read as 0s. Writes have no effect.

Interrupt Mask Register (IMR) — 'C209 — Data-Memory Address 0004h

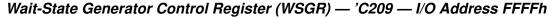

 $\ensuremath{^\dagger}$ These reserved bits are always read as 0s. Writes have no effect.

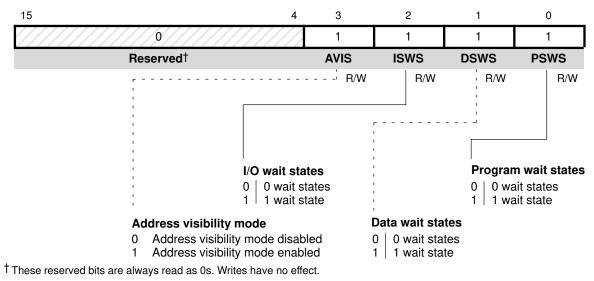
Interrupt Control Register (ICR) — I/O Address FFECh

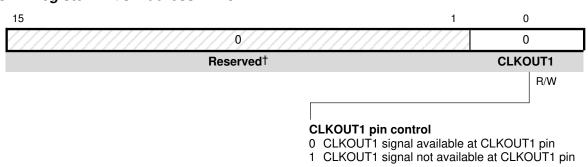
- 0 Double-edge mode. <u>HOLD/INT1</u> pin both negative- and positive-edge sensitive
 1 Single-edge mode. HOLD/INT1 pin only negative-edge sensitive

[†]These reserved bits are always read as 0s. Writes have no effect.

Timer Control Register (TCR) — Except 'C209 — I/O Address FFF8h

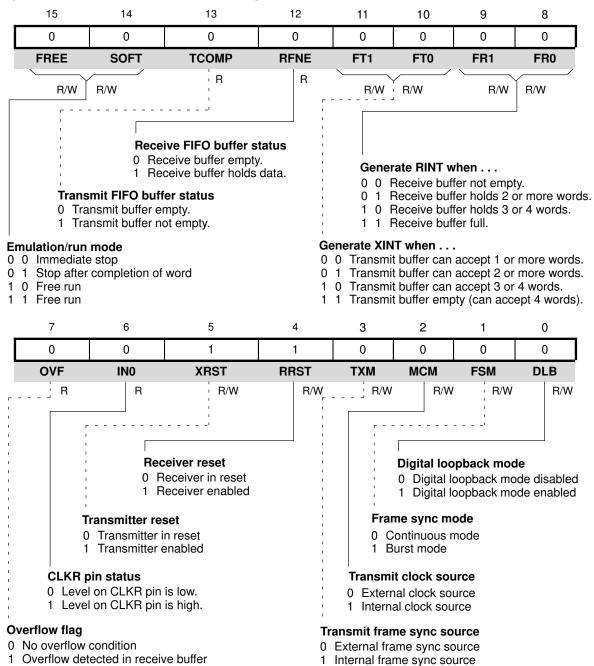

[†] These reserved bits are always read as 0s. Writes have no effect.

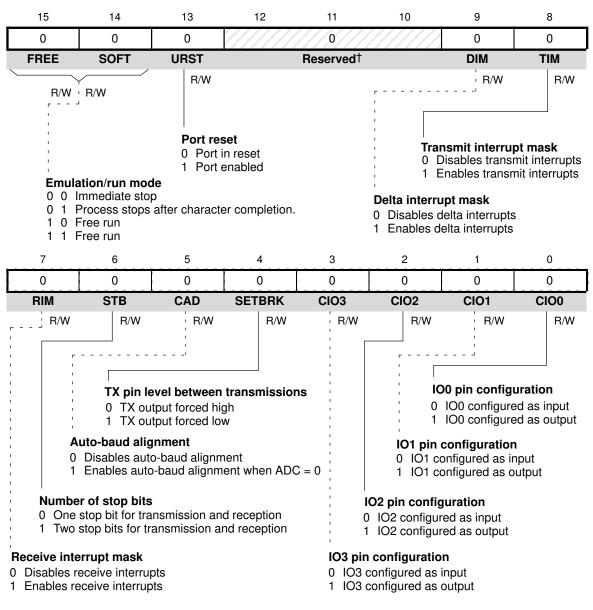

Register Summary A-9


15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0			1	1	1	1	1	1	1	1	1	1	1	1
	Reserve	ed†			ISWS			DSWS		Р	SUWS			PSLWS	5
r 1 1 1			 [R/W			R/W			, R/W				/W
1 1 1			0	ata wa 00	ait state 0 wait	e s Estates							ait sta	orograi ites	m
I/O wait 0 0 0 ∣	s tates 0 wait s	tataa	0 0 0	01 10	2 wait	state states states		Upper wait st	• •	ram		-	0 0 0 1 1 0	1 wai	t states t state t states
$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{array}$	1 wait s 2 wait s 3 wait s	tate tates	1 1 1	0 0 0 1 1 0	4 wait 5 wait	states states states states		0 0 0 0 0 1 0 1 0	0 \ 1 \	vait stat vait stat vait stat	te	0 1	1 1 0 0 0 1	3 wai 4 wai	t states t states t states t states
$\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	4 wait s 5 wait s 6 wait s	tates tates	1	11	7 wait	states		0 1 1 1 0 0 1 0 1	4 v 5 v	vait stat vait stat vait stat	tes tes	1 1	10 11		t states t states
1 1 1	7 wait s	tates						1 1 0 1 1 1	-	vait stat vait stat					

Wait-State Generator Control Register (WSGR) — Except 'C209— I/O Address FFFCh

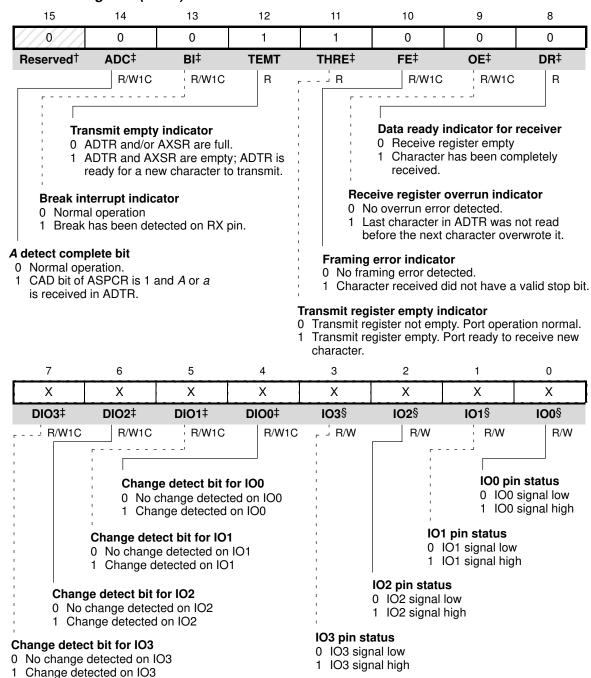
[†]These reserved bits are always read as 0s. Writes have no effect.





CLK Register — I/O Address FFE8h

[†] These reserved bits are always read as 0s. Writes have no effect.



Synchronous Serial Port Control Register (SSPCR) — I/O Address FFF1h

Asynchronous Serial Port Control Register (ASPCR) — I/O Address FFF5h

[†]These reserved bits are always read as 0s. Writes have no effect.

I/O Status Register (IOSR) — I/O Address FFF6h

[†]This reserved bit is always read as 0. Writes have no effect.

[‡] When any one of these bits changes in response to the specified event, an interrupt request is generated on the TXRXINT line. § This bit can be written to only when the corresponding pin is configured (in the ASPCR) as an output.

Appendix B

TMS320C1x/C2x/C2xx/C5x Instruction Set Comparison

This appendix contains a table that compares the TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x instructions alphabetically. Each table entry shows the syntax for the instruction, indicates which devices support the instruction, and describes the operation of the instruction. Section B.1 shows a sample table entry and describes the symbols and abbreviations used in the table.

The TMS320C2x, TMS320C2xx, and TMS320C5x devices have *enhanced instructions*; enhanced instructions are single mnemonics that perform the functions of several similar instructions. Section B.2 summarizes the enhanced instructions.

This appendix does not cover topics such as opcodes, instruction timing, or addressing modes; in addition to this book, the following documents cover such topics in detail:

TMS320C1x User's Guide (literature number SPRU013)

TMS320C2x User's Guide (literature number SPRU014)

TMS320C5x User's Guide (literature number SPRU056)

Topic

Page

B.1	Using the Instruction Set Comparison Table
B.2	Enhanced InstructionsB-5
B.3	Instruction Set Comparison Table

B.1 Using the Instruction Set Comparison Table

To help you read the comparison table, this section provides an example of a table entry and a list of acronyms.

B.1.1 An Example of a Table Entry

In cases where more than one syntax is used, the first syntax is usually for direct addressing and the second is usually for indirect addressing. Where three or more syntaxes are used, the syntaxes are normally specific to a device.

This is how the AND instruction appears in the table:

Syntax	1x	2x	2xx	5x	Description
AND dma	\checkmark	\checkmark	\checkmark	\checkmark	AND With Accumulator
AND {ind} [, next ARP]	\checkmark	\checkmark	\checkmark	\checkmark	TMS320C1x and TMS320C2x devices: AND the con-
AND #Ik[, shiff]			V	V	tents of the addressed data-memory location with the 16 LSBs of the accumulator. The 16 MSBs of the accumulator are ANDed with 0s.
					TMS320C2xx and TMS320C5x devices: AND the con- tents of the addressed data-memory location or a 16-bit immediate value with the contents of the accu- mulator. The 16 MSBs of the accumulator are ANDed with 0s. If a shift is specified, left shift the constant be- fore the AND. Low-order bits below and high-order bits above the shifted value are treated as 0s.

The first column, *Syntax*, states the mnemonic and the syntaxes for the AND instruction.

The checks in the second through the fifth columns, 1x, 2x, 2xx, and 5x, indicate the devices that can be used with each of the syntaxes.

- 1x refers to the TMS320C1x devices
- 2x refers to the TMS320C2x devices, including TMS320C25
- 2xx refers to the TMS320C2xx devices
- 5x refers to the TMS320C5x devices

In this example, you can use the first two syntaxes with TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x devices, but you can use the last syntax only with TMS320C2xx and TMS320C5x devices.

The sixth column, *Description*, briefly describes how the instruction functions. Often, an instruction functions slightly differently for the different devices: read the entire description before using the instruction.

B.1.2 Symbols and Acronyms Used in the Table

The following table lists the instruction set symbols and acronyms used throughout this chapter:

Table B–1. Symbols and Acronyms Used in the Instruction Set Summary

Symbol	Description	Symbol	Description
lk	16-bit immediate value	INTM	interrupt mask bit
k	8-bit immediate value	INTR	interrupt mode bit
{ind}	indirect address	OV	overflow bit
ACC	accumulator	Р	program bus
ACCB	accumulator buffer	PA	port address
AR	auxiliary register	PC	program counter
ARCR	auxiliary register compare	PM	product shifter mode
ARP	auxiliary register pointer	pma	program-memory address
BMAR	block move address register	RPTC	repeat counter
BRCR	block repeat count register	shift, shift _n	shift value
С	carry bit	src	source address
DBMR	dynamic bit manipulation register	ST	status register
dma	data-memory address	SXM	sign-extension mode bit
DP	data-memory page pointer	тс	test/control bit
dst	destination address	Т	temporary register
FO	format status list	TREGn	TMS320C5x temporary register (0-2)
FSX	external framing pulse	ТХМ	transmit mode status register
IMR	interrupt mask register	XF	XF pin status bit

Based on the device, this is how the indirect addressing operand {ind} is interpreted:

```
{ind} 'C1x: { * | *+ | *- }
'C2x: { * | *+ | *- | *0+| *0- | *BR0+ | *BR0- }
'C2xx: { * | *+ | *- | *0+| *0- | *BR0+ | *BR0- }
'C5x: { * | *+ | *- | *0+| *0- | *BR0+ | *BR0- }
```

where the possible options are separated by vertical bars (|). For example:

ADD {ind}

is interpreted as:

'C1x devices	ADD { * *+ *- }
'C2x devices	ADD { * *+ *- *0+ *0- *BR0+ *BR0- }
'C2xx devices	ADD { * *+ *- *0+ *0- *BR0+ *BR0- }
'C5x devices	ADD { * *+ *- *0+ *0- *BR0+ *BR0- }

Based on the device, these are the sets of values for shift, $shift_1$, and $shift_2$:

shift	'C1x:	0–15 (shift of 0–15 bits)
	'C2x:	0–15 (shift of 0–15 bits)
	'C2xx:	0–16 (shift of 0–16 bits)
	'C5x:	0–16 (shift of 0–16 bits)
shift ₁	'C1x:	n/a
	'C2x:	0–15 (shift of 0–15 bits)
	'C2xx:	0–16 (shift of 0–16 bits)
	'C5x:	0–16 (shift of 0–16 bits)
shift ₂	'C1x:	n/a
	'C2x:	n/a
	'C2xx:	0–15 (shift of 0–15 bits)
	'C5x:	0–15 (shift of 0–15 bits)

In some cases, the sets are smaller; in these cases, the valid sets are given in the *Description* column of the table.

B.2 Enhanced Instructions

An enhanced instruction is a single mnemonic that performs the functions of several similar instructions. For example, the enhanced instruction ADD performs the ADD, ADDH, ADDK, and ADLK functions and replaces any of these other instructions at assembly time. For example, when a program using ADDH is assembled for the 'C2xx or 'C5x, ADDH is replaced by an ADD instruction that performs the same function. These enhanced instructions are valid for TMS320C2x, TMS320C2xx, and TMS320C5x devices (not TMS320C1x).

Table B–2 below summarizes the enhanced instructions and the functions that the enhanced instructions perform (based on TMS320C1x/2x mnemonics).

Table B–2. Summary of Enhanced Instructions

Enhanced Instruction	Includes These Operations
ADD	ADD, ADDH, ADDK, ADLK
AND	AND, ANDK
BCND	BBNZ, BBZ, BC, BCND, BGEZ, BGZ, BIOZ, BLEZ, BLZ, BNC, BNV, BNZ, BV, BZ
BLDD	BLDD, BLKD
BLDP	BLDP, BLKP
CLRC	CLRC, CNFD, EINT, RC, RHM, ROVM, RSXM, RTC, RXF
LACC	LAC, LACC, LALK, ZALH
LACL	LACK, LACL, ZAC, ZALS
LAR	LAR, LARK, LRLK
LDP	LDP, LDPK
LST	LST, LST1
MAR	LARP, MAR
MPY	MPY, MPYK
OR	OR, ORK
RPT	RPT, RPTK
SETC	CNFP, DINT, SC, SETC, SHM, SOVM, SSXM, STC, SXF
SUB	SUB, SUBH, SUBK

TMS320C1x/C2x/C2xx/C5x Instruction Set Comparison B-5

Syntax	1x	2x	2xx	5x	Description
ABS	\checkmark	\checkmark	\checkmark	\checkmark	Absolute Value of Accumulator
					If the contents of the accumulator are less than zero, replace the contents with the 2s complement of the contents. If the contents are ≥ 0 , the accumulator is not affected.
ADCB				\checkmark	Add ACCB to Accumulator With Carry
					Add the contents of the ACCB and the value of the carry bit to the accumulator. If the result of the addition generates a carry from the accumulator's MSB, the carry bit is set to 1.
ADD dma [, shift]	\checkmark	\checkmark	\checkmark	\checkmark	Add to Accumulator With Shift
<pre>ADD {ind} [, shift [, next ARP]] ADD #k ADD # lk [, shift2]</pre>	√	\checkmark	 		TMS320C1x and TMS320C2x devices: Add the con- tents of the addressed data-memory location to the ac- cumulator; if a shift is specified, left shift the contents of the location before the add. During shifting, low- order bits are zero filled, and high-order bits are sign extended.
					TMS320C2xx and TMS320C5x devices: Add the con- tents of the addressed data-memory location or an im- mediate value to the accumulator; if a shift is specified, left shift the data before the add. During shifting, low- order bits are zero filled, and high-order bits are sign extended if SXM = 1.
ADDB					Add ACCB to Accumulator
					Add the contents of the ACCB to the accumulator.
ADDC dma		\checkmark	\checkmark	\checkmark	Add to Accumulator With Carry
ADDC {ind} [, next ARP]		V	V	V	Add the contents of the addressed data-memory loca- tion and the carry bit to the accumulator.
ADDH dma	\checkmark	\checkmark	\checkmark	\checkmark	Add High to Accumulator
ADDH { <i>ind</i> } [, <i>next ARP</i>]	V	V	\checkmark	V	Add the contents of the addressed data-memory loca- tion to the 16 MSBs of the accumulator. The LSBs are not affected. If the result of the addition generates a carry, the carry bit is set to 1.
					TMS320C2x, TMS320C2xx, and TMS320C5x de- vices: If the result of the addition generates a carry from the accumulator's MSB, the carry bit is set to 1.

B.3 Instruction Set Comparison Table

Syntax	1x	2x	2xx	5x	Description
ADDK #k			\checkmark	\checkmark	Add to Accumulator Short Immediate
					TMS320C1x devices: Add an 8-bit immediate value to the accumulator.
					TMS320C2x, TMS320C2xx, and TMS320C5x de- vices: Add an 8-bit immediate value, right justified, to the accumulator with the result replacing the accumu- lator contents. The immediate value is treated as an 8-bit positive number; sign extension is suppressed.
ADDS dma	\checkmark		\checkmark	V	Add to Accumulator With Sign Extension Suppressed
ADDS {ind} [, next ARP]	\checkmark	\checkmark	V	V	
					Add the contents of the addressed data-memory loca- tion to the accumulator. The value is treated as a 16-bit unsigned number; sign extension is suppressed.
ADDT dma		\checkmark	\checkmark	\checkmark	Add to Accumulator With Shift Specified by T
ADDT {ind} [, next ARP]			\checkmark	\checkmark	Register
					Left shift the contents of the addressed data-memory location by the value in the 4 LSBs of the T register; add the result to the accumulator. If a shift is specified, left shift the data before the add. During shifting, low-order bits are zero filled, and high-order bits are sign extended if $SXM = 1$.
					TMS320C2xx and TMS320C5x devices: If the result of the addition generates a carry from the accumulator's MSB, the carry bit is set to 1.
ADLK #lk[, shift]		\checkmark	\checkmark	\checkmark	Add to Accumulator Long Immediate With Shift
					Add a 16-bit immediate value to the accumulator; if a shift is specified, left shift the value before the add. During shifting, low-order bits are zero filled, and high-order bits are sign extended if SXM = 1.
ADRK #k			\checkmark	\checkmark	Add to Auxiliary Register Short Immediate
					Add an 8-bit immediate value to the current auxiliary register.

Syntax	1x	2x	2xx	5x	Description
AND dma	\checkmark	\checkmark	\checkmark	\checkmark	AND With Accumulator
<pre>AND {ind} [, next ARP] AND #lk [, shift]</pre>	V	V		√ √	TMS320C1x and TMS320C2x devices: AND the con- tents of the addressed data-memory location with the 16 LSBs of the accumulator. The 16 MSBs of the accu- mulator are ANDed with 0s.
					TMS320C2xx and TMS320C5x devices: AND the con- tents of the addressed data-memory location or a 16-bit immediate value with the contents of the accu- mulator. The 16 MSBs of the accumulator are ANDed with 0s. If a shift is specified, left shift the constant be- fore the AND. Low-order bits below and high-order bits above the shifted value are treated as 0s.
ANDB				\checkmark	AND ACCB to Accumulator
					AND the contents of the ACCB to the accumulator.
ANDK #lk [, shift]		\checkmark	\checkmark	\checkmark	AND Immediate With Accumulator With Shift
					AND a 16-bit immediate value with the contents of the accumulator; if a shift is specified, left shift the constant before the AND.
APAC	\checkmark	\checkmark	\checkmark	\checkmark	Add P Register to Accumulator
					Add the contents of the P register to the accumulator.
					TMS320C2x, TMS320C2xx, and TMS320C5x de- vices: Before the add, left shift the contents of the P register as defined by the PM status bits.
APL [# <i>lk</i>] , <i>dma</i> APL [# <i>lk</i> ,] { <i>ind</i> } [, <i>next ARP</i>]				√ √	AND Data-Memory Value With DBMR or Long Constant
[,] [AND the data-memory value with the contents of the DBMR or a long constant. If a long constant is specified, it is ANDed with the contents of the data-memory location. The result is written back into the data-memory location previously holding the first operand. If the result is 0, the TC bit is set to 1; otherwise, the TC bit is cleared.
B pma	\checkmark				Branch Unconditionally
B pma [, {ind} [, next ARP]]		\checkmark	\checkmark		Branch to the specified program-memory address.
					TMS320C2x and TMS320C2xx devices: Modify the current AR and ARP as specified.

Syntax	1x	2x	2xx	5x	Description
B [D] pma [, {ind} [, next ARP]]				\checkmark	Branch Unconditionally With Optional Delay
					Modify the current auxiliary register and ARP as speci- fied and pass control to the designated program- memory address. If you specify a delayed branch (BD), the next two instruction words (two 1-word in- structions or one 2-word instruction) are fetched and executed before branching.
BACC		\checkmark	\checkmark		Branch to Address Specified by Accumulator
					Branch to the location specified by the 16 LSBs of the accumulator.
BACC[D]				\checkmark	Branch to Address Specified by Accumulator With Optional Delay
					Branch to the location specified by the 16 LSBs of the accumulator.
					If you specify a delayed branch (BACCD), the next two instruction words (two 1-word instructions or one 2-word instruction) are fetched and executed before branching.
BANZ pma	\checkmark				Branch on Auxiliary Register Not Zero
BANZ pma[, {ind} [, next ARP]]		\checkmark	V		If the contents of the 9 LSBs of the current auxiliary register (TMS320C1x) or the contents of the entire current auxiliary register (TMS320C2x) are \neq 0, branch to the specified program-memory address.
					TMS320C2x and TMS320C2xx devices: Modify the current AR and ARP (if specified) or decrement the current AR (default). TMS320C1x devices: Decrement the current AR.
BANZ[D] pma [, {ind} [, next ARP]]				\checkmark	Branch on Auxiliary Register Not Zero With Optional Delay
					If the contents of the current auxiliary register are $\neq 0$, branch to the specified program-memory address. Modify the current AR and ARP as specified, or decrement the current AR.
					If you specify a delayed branch (BANZD), the next two instruction words (two 1-word instructions or one 2-word instruction) are fetched and executed before branching.

Syntax	1x	2x	2xx	5x	Description
BBNZ pma [, {ind} [, next ARP]]		\checkmark	\checkmark	\checkmark	Branch on Bit ≠ Zero
					If the TC bit = 1, branch to the specified program- memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: If the –p port- ing switch is used, modify the current AR and ARP as specified.
BBZ pma [, {ind} [, next ARP]]		\checkmark	\checkmark	\checkmark	Branch on Bit = Zero
BBZ pma				V	If the TC bit = 0, branch to the specified program- memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BC pma[, {ind} [, next ARP]]		\checkmark		\checkmark	Branch on Carry
BC pma			V	V	If the C bit = 1, branch to the specified program- memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BCND <i>pma</i> , <i>cond</i> ₁ [, <i>cond</i> ₂] [,]			\checkmark		Branch Conditionally
					Branch to the program-memory address if the speci- fied conditions are met. Not all combinations of condi- tions are meaningful.
BCND[D] pma, cond ₁				\checkmark	Branch Conditionally With Optional Delay
[, cond ₂] [,]					Branch to the program-memory address if the speci- fied conditions are met. Not all combinations of condi- tions are meaningful.
					If you specify a delayed branch (BCNDD), the next two instruction words (two 1-word instructions or one 2-word instruction) are fetched and executed before branching.

Syntax	1x	2x	2xx	5x	Description
BGEZ pma	\checkmark		\checkmark	\checkmark	Branch if Accumulator ≥ Zero
BGEZ pma [, {ind} [, next ARP]]		V		V	If the contents of the accumulator ≥ 0 , branch to the specified program-memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BGZ pma	\checkmark		\checkmark	\checkmark	Branch if Accumulator > Zero
BGZ pma [, {ind} [, next ARP]]		\checkmark		V	If the contents of the accumulator are > 0, branch to the specified program-memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BIOZ pma	\checkmark		\checkmark	\checkmark	Branch on I/O Status = Zero
BIOZ pma [, {ind} [, next ARP]]		\checkmark		V	If the BIO pin is low, branch to the specified program- memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BIT dma, bit code		\checkmark	\checkmark	\checkmark	Test Bit
BIT { <i>ind</i> }, <i>bit code</i> [, <i>next ARP</i>]		\checkmark	V	V	Copy the specified bit of the data-memory value to the TC bit in ST1.
BITT dma		\checkmark	\checkmark	\checkmark	Test Bit Specified by T Register
BITT {ind} [, next ARP]		V	\checkmark	V	TMS320C2x and TMS320C2xx devices: Copy the specified bit of the data-memory value to the TC bit in ST1. The 4 LSBs of the T register specify which bit is copied.
					TMS320C5x devices: Copy the specified bit of the data-memory value to the TC bit in ST1. The 4 LSBs of the TREG2 specify which bit is copied.

Syntax	1x	2x	2xx	5x	Description
BLDD #lk, dma			V	\checkmark	Block Move From Data Memory to Data Memory
BLDD #lk, {ind} [, next ARP] BLDD dma, #lk			√ √	√ √	Copy a block of data memory into data memory. The block of data memory is pointed to by <i>src</i> , and the destination block of data memory is pointed to by <i>dst</i> .
 BLDD {ind}, #lk [, next ARP] BLDD BMAR, dma BLDD BMAR, {ind} [, next ARP] BLDD dma BMAR BLDD {ind}, BMAR [, next ARP] 			1		TMS320C2xx devices: The word of the source and/or the destination space can be pointed to with a long im- mediate value or a data-memory address. You can use the RPT instruction with BLDD to move consecutive words, pointed to indirectly in data memory, to a contig- uous program-memory space. The number of words to be moved is 1 greater than the number contained in the RPTC at the beginning of the instruction.
					TMS320C5x devices: The word of the source and/or the destination space can be pointed to with a long im- mediate value, the contents of the BMAR, or a data- memory address. You can use the RPT instruction with BLDD to move consecutive words, pointed to indirectly in data memory, to a contiguous program-memory space. The number of words to be moved is 1 greater than the number contained in the RPTC at the begin- ning of the instruction.
BLDP dma				\checkmark	Block Move From Data Memory to Program
BLDP { <i>ind</i> } [, <i>next ARP</i>]				\checkmark	Memory Copy a block of data memory into program memory pointed to by the BMAR. You can use the RPT instruc- tion with BLDP to move consecutive words, indirectly pointed to in data memory, to a contiguous program- memory space pointed to by the BMAR.
BLEZ pma	\checkmark		\checkmark	\checkmark	Branch if Accumulator ≤ Zero
BLEZ pma [, {ind} [, next ARP]]		V	V	V	If the contents of the accumulator are \leq 0, branch to the specified program-memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.

Syntax	1x	2x	2xx	5x	Description
BLKD dma1, dma2			\checkmark	\checkmark	Block Move From Data Memory to Data Memory
BLKD dma1, {ind} [, next ARP]		V	V	V	Move a block of words from one location in data mem- ory to another location in data memory. Modify the cur- rent AR and ARP as specified. RPT or RPTK must be used with BLKD, in the indirect addressing mode, if more than one word is to be moved. The number of words to be moved is 1 greater than the number contained in RPTC at the beginning of the instruction.
BLKP pma, dma		\checkmark	V	\checkmark	Block Move From Program Memory to Data
BLKP pma, {ind} [, next ARP]		V	V	V	Memory Move a block of words from a location in program memory to a location in data memory. Modify the cur- rent AR and ARP as specified. RPT or RPTK must be used with BLKD, in the indirect addressing mode, if more than one word is to be moved. The number of words to be moved is 1 greater than the number contained in RPTC at the beginning of the instruction.
BLPD #pma, dma			V	\checkmark	Block Move From Program Memory to Data
BLPD #pma, {ind} [, next ARP]			\checkmark	\checkmark	Memory
BLPD BMAR, <i>dma</i> BLPD BMAR, { <i>ind</i> } [<i>, next ARP</i>]				√ √	Copy a block of program memory into data memory. The block of program memory is pointed to by <i>src</i> , and the destination block of data memory is pointed to by <i>dst</i> .
					TMS320C2xx devices: The word of the source space can be pointed to with a long immediate value. You can use the RPT instruction with BLPD to move consecu- tive words that are pointed at indirectly in data memory to a contiguous program-memory space.
					TMS320C5x devices: The word of the source space can be pointed to with a long immediate value or the contents of the BMAR. You can use the RPT instruc- tion with BLPD to move consecutive words that are pointed at indirectly in data memory to a contiguous program-memory space.
BLZ pma	√		V	\checkmark	Branch if Accumulator < Zero
BLZ pma [, {ind} [, next ARP]]		V	V		If the contents of the accumulator are < 0, branch to the specified program-memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.

Syntax	1x	2x	2xx	5x	Description
BNC pma[, {ind} [, next ARP]]		\checkmark	\checkmark	\checkmark	Branch on No Carry
					If the C bit = 0, branch to the specified program- memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BNV pma[, {ind} [, next ARP]]		\checkmark	\checkmark	\checkmark	Branch if No Overflow
					If the OV flag is clear, branch to the specified program- memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BNZ pma	\checkmark				Branch if Accumulator ≠ Zero
BNZ pma[, {ind} [, next ARP]]		\checkmark	\checkmark	\checkmark	If the contents of the accumulator \neq 0, branch to the specified program-memory address.
					TMS320C2x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: Modify the current AR and ARP as specified when the –p porting switch is used.
BSAR [shift]				\checkmark	Barrel Shift
					In a single cycle, execute a 1- to 16-bit right arithmetic barrel shift of the accumulator. The sign extension is determined by the sign-extension mode bit in ST1.
BV pma	\checkmark				Branch on Overflow
BV <i>pma</i> [, { <i>ind</i> } [, <i>next ARP</i>]]		\checkmark	\checkmark	V	If the OV flag is set, branch to the specified program- memory address and clear the OV flag.
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: To modify the AR and ARP, use the –p porting switch.

Syntax	1x	2x	2xx	5x	Description
BZ pma	\checkmark		\checkmark	\checkmark	Branch if Accumulator = Zero
BZ pma [, {ind} [, next ARP]]		V			If the contents of the accumulator = 0, branch to the specified program-memory address.
					TMS320C2x, TMS320C2xx and TMS320C5x de- vices: Modify the current AR and ARP as specified.
					TMS320C2xx and TMS320C5x devices: To modify the AR and ARP, use the –p porting switch.
CALA	\checkmark	\checkmark	\checkmark		Call Subroutine Indirect
					The contents of the accumulator specify the address of a subroutine. Increment the PC, push the PC onto the stack, then load the 12 (TMS320C1x) or 16 (TMS320C2x/C2xx) LSBs of the accumulator into the PC.
CALA[D]				\checkmark	Call Subroutine Indirect With Optional Delay
					The contents of the accumulator specify the address of a subroutine. Increment the PC and push it onto the stack; then load the 16 LSBs of the accumulator into the PC.
					If you specify a delayed branch (CALAD), the next two instruction words (two 1-word instructions or one 2-word instruction) are fetched and executed before the call.
CALL pma	\checkmark				Call Subroutine
CALL pma [,{ind} [, next ARP]]		V	\checkmark		The contents of the addressed program-memory loca- tion specify the address of a subroutine. Increment the PC by 2, push the PC onto the stack, then load the specified program-memory address into the PC.
					TMS320C2x and TMS320C2xx devices: Modify the current AR and ARP as specified.
CALL[D] pma [, {ind} [, next				\checkmark	Call Unconditionally With Optional Delay
ARP]]					The contents of the addressed program-memory loca- tion specify the address of a subroutine. Increment the PC and push the PC onto the stack; then load the specified program-memory address (symbolic or nu- meric) into the PC. Modify the current AR and ARP as specified.
					If you specify a delayed branch (CALLD), the next two instruction words (two 1-word instructions or one 2-word instruction) are fetched and executed before the call.

Syntax	1x	2x	2xx	5x	Description
CC <i>pma, cond</i> ₁ [<i>, cond</i> ₂] [<i>,</i>]			\checkmark		Call Conditionally
					If the specified conditions are met, control is passed to the pma. Not all combinations of conditions are mean- ingful.
CC [<i>D</i>] <i>pma</i> , <i>cond</i> ₁ [, <i>cond</i> ₂] [,]				\checkmark	Call Conditionally With Optional Delay
					If the specified conditions are met, control is passed to the pma. Not all combinations of conditions are mean- ingful.
					If you specify a delayed branch (CCD), the next two in- struction words (two 1-word instructions or one 2-word instruction) are fetched and executed before the call.
CLRC control bit			\checkmark	\checkmark	Clear Control Bit
					Set the specified control bit to a logic 0. Maskable inter- rupts are enabled immediately after the CLRC instruc- tion executes.
CMPL		\checkmark	\checkmark	\checkmark	Complement Accumulator
					Complement the contents of the accumulator (1s complement).
CMPR CM		\checkmark	\checkmark	\checkmark	Compare Auxiliary Register With AR0
					Compare the contents of the current auxiliary register to AR0, based on the following cases:
					If $CM = 00_2$, test whether $AR(ARP) = AR0$.
					If $CM = 01_2$, test whether $AR(ARP) < AR0$.
					If $CM = 10_2$, test whether $AR(ARP) > AR0$.
					If CM = 11 ₂ , test whether AR(ARP) \neq AR0.
					If the result is true, load a 1 into the TC status bit; other- wise, load a 0 into the TC bit. The comparison does not affect the tested registers.
					TMS320C5x devices: Compare the contents of the auxiliary register with the ARCR.
CNFD		\checkmark	\checkmark	\checkmark	Configure Block as Data Memory
					Configure on-chip RAM block B0 as data memory. Block B0 is mapped into data-memory locations 512h-767h.
					TMS320C5x devices: Block B0 is mapped into data- memory locations 512h–1023h.

Syntax	1x	2x	2xx	5x	Description
CNFP		\checkmark	\checkmark	\checkmark	Configure Block as Program Memory
					Configure on-chip RAM block B0 as program memory. Block B0 is mapped into program-memory locations 65280h–65535h.
					TMS320C5x devices: Block B0 is mapped into data- memory locations 65024h–65535h.
CONF 2-bit constant		\checkmark			Configure Block as Program Memory
					Configure on-chip RAM block B0/B1/B2/B3 as program memory. For information on the memory mapping of B0/B1/B2/B3, see the <i>TMS320C2x User's Guide</i> .
CPL [#lk,] dma				\checkmark	Compare DBMR or Immediate With Data Value
CPL [# <i>lk</i> ,] { <i>ind</i> } [, <i>next ARP</i>]				\checkmark	Compare two quantities: If the two quantities are equal, set the TC bit to 1; otherwise, clear the TC bit.
CRGT				\checkmark	Test for ACC > ACCB
					Compare the contents of the ACC with the contents of the ACCB, then load the larger signed value into both registers and modify the carry bit according to the com- parison result. If the contents of ACC are greater than or equal to the contents of ACCB, set the carry bit to 1.
CRLT				\checkmark	Test for ACC < ACCB
					Compare the contents of the ACC with the contents of the ACCB, then load the smaller signed value into both registers and modify the carry bit according to the com- parison result. If the contents of ACC are less than the contents of ACCB, clear the carry bit.
DINT	\checkmark	\checkmark	\checkmark	\checkmark	Disable Interrupts
					Disable all interrupts; set the INTM to 1. Maskable in- terrupts are disabled immediately after the DINT in- struction executes. DINT does not disable the un- maskable interrupt RS; DINT does not affect the IMR.
DMOV dma	\checkmark	\checkmark			Data Move in Data Memory
DMOV { <i>ind</i> } [, <i>next</i> ARP]	V	\checkmark	V	V	Copy the contents of the addressed data-memory lo- cation into the next higher address. DMOV moves data only within on-chip RAM blocks.
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: The on-chip RAM blocks are B0 (when configured as data memory), B1, and B2.

Syntax	1x	2x	2xx	5x	Description
EINT	\checkmark	\checkmark	\checkmark	\checkmark	Enable Interrupts
					Enable all interrupts; clear the INTM to 0. Maskable interrupts are enabled immediately after the EINT instruction executes.
EXAR				\checkmark	Exchange ACCB With ACC
					Exchange the contents of the ACC with the contents of the ACCB.
FORT 1-bit constant		\checkmark			Format Serial Port Registers
					Load the FO with a 0 or a 1. If FO = 0, the registers are configured to receive/transmit 16-bit words. If FO = 1, the registers are configured to receive/transmit 8-bit bytes.
IDLE		\checkmark	\checkmark	\checkmark	Idle Until Interrupt
					Forces an executing program to halt execution and wait until it receives a reset or an interrupt. The device remains in an idle state until it is interrupted.
IDLE2				\checkmark	Idle Until Interrupt—Low-Power Mode
					Removes the functional clock input from the internal device; this allows for an extremely low-power mode. The IDLE2 instruction forces an executing program to halt execution and wait until it receives a reset or unmasked interrupt.
IN dma, PA	\checkmark	\checkmark	\checkmark	\checkmark	Input Data From Port
IN {ind}, PA [, next ARP]	\checkmark	V	\checkmark	V	Read a 16-bit value from one of the external I/O ports into the addressed data-memory location.
					TMS320C1x devices: This is a 2-cycle instruction. During the first cycle, the port address is sent to ad- dress lines A2/PA2–A0/PA0; DEN goes low, strobing in the data that the addressed peripheral places on data bus D15–D0.
					TMS320C2x devices: The IS line goes low to indicate an I/O access, and the STRB, R/W, and READY tim- ings are the same as for an external data-memory read.
					TMS320C2xx and TMS320C5x devices: The IS line goes low to indicate an I/O access, and the STRB, RD, and READY timings are the same as for an external data-memory read.

Syntax	1x	2x	2xx	5x	Description
INTR K			\checkmark	\checkmark	Soft Interrupt
					Transfer program control to the program-memory ad- dress specified by K (an integer from 0 to 31). This in- struction allows you to use your software to execute any interrupt service routine. The interrupt vector loca- tions are spaced apart by two addresses (0h, 2h, 4h, , 3Eh), allowing a two-word branch instruction to be placed at each location.
LAC dma [, shiff]	\checkmark	\checkmark	\checkmark	\checkmark	Load Accumulator With Shift
LAC {ind} [, shift [, next ARP]]	V	V	V	V	Load the contents of the addressed data-memory lo- cation into the accumulator. If a shift is specified, left shift the value before loading it into the accumulator. During shifting, low-order bits are zero filled, and high- order bits are sign extended if SXM = 1.
LACB				\checkmark	Load Accumulator With ACCB
					Load the contents of the accumulator buffer into the accumulator.
LACC dma [, shift ₁]		\checkmark	\checkmark	\checkmark	Load Accumulator With Shift
LACC {ind} [, shift ₁ [, next ARP]] LACC #lk [, shift ₂]		√ √	√ √	√ √	Load the contents of the addressed data-memory lo- cation or the 16-bit constant into the accumulator. If a shift is specified, left shift the value before loading it into the accumulator. During shifting, low-order bits are zero filled, and high-order bits are sign extended if SXM = 1.
LACK 8-bit constant	\checkmark		\checkmark		Load Accumulator Immediate Short
					Load an 8-bit constant into the accumulator. The 24 MSBs of the accumulator are zeroed.
LACL dma			\checkmark	\checkmark	Load Low Accumulator and Clear High
LACL {ind} [, next ARP]			\checkmark	\checkmark	Accumulator
LACL #k			V	√	Load the contents of the addressed data-memory lo- cation or zero-extended 8-bit constant into the 16 LSBs of the accumulator. The MSBs of the accumula- tor are zeroed. The data is treated as a 16-bit unsigned number.
					TMS320C2xx: A constant of 0 clears the contents of the accumulator to 0 with no sign extension.

Syntax	1x	2x	2xx	5x	Description
LACT dma LACT {ind} [, next ARP]		√ √	√ √	√ √	Load Accumulator With Shift Specified by T Register
					Left shift the contents of the addressed data-memory location by the value specified in the 4 LSBs of the T register; load the result into the accumulator. If a shift is specified, left shift the value before loading it into the accumulator. During shifting, low-order bits are zero filled, and high-order bits are sign extended if SXM = 1.
LALK #lk[, shift]		\checkmark	\checkmark	\checkmark	Load Accumulator Long Immediate With Shift
					Load a 16-bit immediate value into the accumulator. If a shift is specified, left shift the constant before loading it into the accumulator. During shifting, low-order bits are zero filled, and high-order bits are sign extended if SXM = 1.
LAMM dma LAMM {ind} [, next ARP]				√ √	Load Accumulator With Memory-Mapped Register
				V	Load the contents of the addressed memory-mapped register into the low word of the accumulator. The 9 MSBs of the data-memory address are cleared, regardless of the current value of DP or the 9 MSBs of AR (ARP).
LAR AR, dma	\checkmark	\checkmark	\checkmark	\checkmark	Load Auxiliary Register
LAR AR, {ind} [, next ARP] LAR AR, #k	\checkmark	\checkmark	√ √	√ √	TMS320C1x and TMS320C2x devices: Load the con- tents of the addressed data-memory location into the
LAR <i>AR</i> , # <i>lk</i>			√ √	V	designated auxiliary register.
			v	v	TMS320C25, TMS320C2xx, and TMS320C5x de- vices: Load the contents of the addressed data- memory location or an 8-bit or 16-bit immediate value into the designated auxiliary register.
LARK AR, 8-bit constant	\checkmark	\checkmark	\checkmark	\checkmark	Load Auxiliary Register Immediate Short
					Load an 8-bit positive constant into the designated auxiliary register.
LARP 1-bit constant	\checkmark				Load Auxiliary Register Pointer
LARP 3-bit constant		V	V	V	TMS320C1x devices: Load a 1-bit constant into the auxiliary register pointer (specifying AR0 or AR1).
					TMS320C2x, TMS320C2xx, and TMS320C5x de- vices: Load a 3-bit constant into the auxiliary register pointer (specifying AR0–AR7).

Syntax	1x	2x	2xx	5x	Description
LDP dma	\checkmark	\checkmark	\checkmark	\checkmark	Load Data-Memory Page Pointer
LDP {ind} [, next ARP] LDP #k	\checkmark	\checkmark	√ √	√ √	TMS320C1x devices: Load the LSB of the contents of the addressed data-memory location into the DP register. All high-order bits are ignored. DP = 0 defines page 0 (words 0–127), and DP = 1 defines page 1 (words 128–143/255).
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Load the 9 LSBs of the addressed data-memory location or a 9-bit immediate value into the DP register. The DP and 7-bit data-memory address are concatenated to form 16-bit data-memory addresses.
LDPK 1-bit constant	\checkmark				Load Data-Memory Page Pointer Immediate
LDPK 9-bit constant		V	\checkmark	V	TMS320C1x devices: Load a 1-bit immediate value into the DP register. DP = 0 defines page 0 (words 0–127), and DP = 1 defines page 1 (words 128–143/255).
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Load a 9-bit immediate into the DP register. The DP and 7-bit data-memory address are concatenated to form 16-bit data-memory addresses. DP \geq 8 specifies external data memory. DP = 4 through 7 specifies on-chip RAM blocks B0 or B1. Block B2 is located in the upper 32 words of page 0.
LMMR dma, #lk					Load Memory-Mapped Register
LMMR {ind}, #lk [, next ARP]				√	Load the contents of the memory-mapped register pointed at by the 7 LSBs of the direct or indirect data- memory value into the long immediate addressed data-memory location. The 9 MSBs of the data- memory address are cleared, regardless of the current value of DP or the 9 MSBs of AR (ARP).
LPH dma		\checkmark	\checkmark		Load High P Register
LPH {ind} [, next ARP]		V	V	V	Load the contents of the addressed data-memory lo- cation into the 16 MSBs of the P register; the LSBs are not affected.
LRLK AR, Ik		\checkmark	\checkmark	\checkmark	Load Auxiliary Register Long Immediate
					Load a 16-bit immediate value into the designated aux- iliary register.
LST dma	\checkmark	\checkmark	\checkmark	\checkmark	Load Status Register
LST {ind} [, next ARP]	\checkmark	\checkmark	V	V	Load the contents of the addressed data-memory location into the ST (TMS320C1x) or into ST0 (TMS320C2x/2xx/5x).

Syntax	1x	2x	2xx	5x	Description
LST #n, dma		\checkmark	\checkmark	\checkmark	Load Status Register n
LST #n, {ind} [, next ARP]		V	V	V	Load the contents of the addressed data-memory lo- cation into ST <i>n</i> .
LST1 dma		\checkmark	\checkmark	\checkmark	Load ST1
LST1 {ind} [, next ARP]		V	\checkmark	V	Load the contents of the addressed data-memory lo- cation into ST1.
LT dma	\checkmark	\checkmark	\checkmark	\checkmark	Load T Register
LT {ind} [, next ARP]	V	V	V	V	Load the contents of the addressed data-memory lo- cation into the T register (TMS320C1x/2x/2xx) or TREG0 (TMS320C5x).
LTA dma LTA {ind} [, next ARP]		√ √	√ √	√ √	Load T Register and Accumulate Previous Product
	Ň	v	Ň	,	Load the contents of the addressed data-memory lo- cation into T register (TMS320C1x/2x/2xx) or TREG0 (TMS320C5x) and add the contents of the P register to the accumulator.
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Before the add, shift the contents of the P register as specified by the PM status bits.
LTD dma LTD {ind} [, next ARP]		√ √	√ √	√ √	Load T Register, Accumulate Previous Product, and Move Data
	v	v	v	v	Load the contents of the addressed data-memory lo- cation into the T register (TMS320C1x/2x/2xx) or TREG0 (TMS320C5x), add the contents of the P regis- ter to the accumulator, and copy the contents of the specified location into the next higher address (both data-memory locations must reside in on-chip data RAM).
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Before the add, shift the contents of the P register as specified by the PM status bits.
LTP dma		\checkmark	\checkmark		Load T Register, Store P Register in Accumulator
LTP {ind} [, next ARP]		V	\checkmark	V	Load the contents of the addressed data-memory lo- cation into the T register (TMS320C1x/2x/2xx) or TREG0 (TMS320C5x). Store the contents of the prod- uct register into the accumulator.
LTS dma		\checkmark	\checkmark	\checkmark	Load T Register, Subtract Previous Product
LTS {ind} [, next ARP]		V	\checkmark	V	Load the contents of the addressed data-memory lo- cation into the T register (TMS320C1x/2x/2xx) or TREG0 (TMS320C5x). Shift the contents of the prod- uct register as specified by the PM status bits, and sub- tract the result from the accumulator.

Syntax	1x	2x	2xx	5x	Description
MAC pma, dma		\checkmark	\checkmark		Multiply and Accumulate
MAC pma, {ind} [, next ARP]		V	\checkmark	V	Multiply a data-memory value by a program-memory value and add the previous product (shifted as specified by the PM status bits) to the accumulator.
MACD dma, pma		\checkmark	\checkmark	\checkmark	Multiply and Accumulate With Data Move
MACD pma, {ind} [, next ARP]		V	V	V	Multiply a data-memory value by a program-memory value and add the previous product (shifted as speci- fied by the PM status bits) to the accumulator. If the data-memory address is in on-chip RAM block B0, B1, or B2, copy the contents of the address to the next higher address.
MADD dma				√ √	Multiply and Accumulate With Data Move and Dynamic Addressing
MADD {ind} [, next ARP]				N	Multiply a data-memory value by a program-memory value and add the previous product (shifted as defined by the PM status bits) into the accumulator. The pro- gram-memory address is contained in the BMAR; this allows for dynamic addressing of coefficient tables.
					MADD functions the same as MADS, with the addition of data move for on-chip RAM blocks.
MADS dma				\checkmark	Multiply and Accumulate With Dynamic
MADS {ind} [, next ARP]				√	Addressing Multiply a data-memory value by a program-memory value and add the previous product (shifted as defined by the PM status bits) into the accumulator. The pro- gram-memory address is contained in the BMAR; this allows for dynamic addressing of coefficient tables.
MAR dma	V		\checkmark		Modify Auxiliary Register
MAR {ind} [, next ARP]	\checkmark	V	\checkmark	V	Modify the current AR or ARP as specified. MAR acts as NOP in indirect addressing mode.
MPY dma	\checkmark	\checkmark	\checkmark	\checkmark	Multiply
MPY {ind} [, next ARP]	\checkmark	\checkmark	\checkmark	\checkmark	TMS320C1x and TMS320C2x devices: Multiply the
MPY #k MPY #lk			√ √	√ √	contents of the T register by the contents of the ad- dressed data-memory location; place the result in the P register.
					TMS320C2xx and TMS320C5x devices: Multiply the contents of the T register (TMS320C2xx) or TREG0 (TMS320C5x) by the contents of the addressed data- memory location or a 13-bit or 16-bit immediate value; place the result in the P register.

Syntax	1x	2x	2xx	5x	Description
MPYA dma		\checkmark	\checkmark	\checkmark	Multiply and Accumulate Previous Product
MPYA { <i>ind</i> } [, <i>next ARP</i>]		V	\checkmark	V	Multiply the contents of the T register (TMS320C2x/ 2xx) or TREG0 (TMS320C5x) by the contents of the addressed data-memory location; place the result in the P register. Add the previous product (shifted as specified by the PM status bits) to the accumulator.
MPYK 13-bit constant	\checkmark	\checkmark	\checkmark	\checkmark	Multiply Immediate
					Multiply the contents of the T register (TMS320C2x/ 2xx) or TREG0 (TMS320C5x) by a signed 13-bit constant; place the result in the P register.
MPYS dma		\checkmark	\checkmark	\checkmark	Multiply and Subtract Previous Product
MPYS { <i>ind</i> } [, <i>next ARP</i>]		V	1	V	Multiply the contents of the T register (TMS320C2x/ 2xx) or TREG0 (TMS320C5x) by the contents of the addressed data-memory location; place the result in the P register. Subtract the previous product (shifted as specified by the PM status bits) from the accumula- tor.
MPYU dma		\checkmark	\checkmark	\checkmark	Multiply Unsigned
MPYU {ind} [, next ARP]		V	\checkmark	V	Multiply the unsigned contents of the T register (TMS320C2x/2xx) or TREG0 (TMS320C5x) by the unsigned contents of the addressed data-memory location; place the result in the P register.
NEG		\checkmark	\checkmark	\checkmark	Negate Accumulator
					Negate (2s complement) the contents of the accumu- lator.
NMI			\checkmark	\checkmark	Nonmaskable Interrupt
					Force the program counter to the nonmaskable inter- rupt vector location 24h. NMI has the same effect as a hardware nonmaskable interrupt.
NOP	\checkmark	\checkmark	V	\checkmark	No Operation
					Perform no operation.
NORM		\checkmark	\checkmark	\checkmark	Normalize Contents of Accumulator
NORM {ind}		\checkmark	\checkmark	\checkmark	Normalize a signed number in the accumulator.
OPL [#lk,] dma				\checkmark	OR With DBMR or Long Immediate
OPL [# <i>lk</i> ,] { <i>ind</i> } [, <i>next ARP</i>]				V	If a long immediate is specified, OR it with the value at the specified data-memory location; otherwise, the second operand of the OR operation is the contents of the DBMR. The result is written back into the data- memory location previously holding the first operand.

Syntax	1x	2x	2xx	5x	Description
OR dma	\checkmark	\checkmark	\checkmark	\checkmark	OR With Accumulator
<pre>OR {ind} [, next ARP] OR #lk [, shift]</pre>	V	V		√ √	TMS320C1x and TMS320C2x devices: OR the 16 LSBs of the accumulator with the contents of the addressed data-memory location. The 16 MSBs of the accumulator are ORed with 0s.
					TMS320C2xx and TMS320C5x devices: OR the 16 LSBs of the accumulator or a 16-bit immediate value with the contents of the addressed data-memory loca- tion. If a shift is specified, left-shift before ORing. Low- order bits below and high-order bits above the shifted value are treated as 0s.
ORB				\checkmark	OR ACCB With Accumulator
					OR the contents of the ACCB with the contents of the accumulator. ORB places the result in the accumula- tor.
ORK #lk [, shift]		\checkmark	\checkmark	\checkmark	OR Immediate With Accumulator with Shift
					OR a 16-bit immediate value with the contents of the accumulator. If a shift is specified, left-shift the constant before ORing. Low-order bits below and high-order bits above the shifted value are treated as 0s.
OUT dma, PA	\checkmark	\checkmark	\checkmark	\checkmark	Output Data to Port
OUT { <i>ind</i> }, PA [, next ARP]	V	\checkmark	\checkmark	V	Write a 16-bit value from a data-memory location to the specified I/O port.
					TMS320C1x devices: The first cycle of this instruction places the port address onto address lines A2/PA2–A0/PA0. During the same cycle, WE goes low and the data word is placed on the data bus D15–D0.
					TMS320C2x, TMS320C2xx, and TMS320C5x de- vices: The IS line goes low to indicate an I/O access; the STRB, R/W, and READY timings are the same as for an external data-memory write.
PAC	\checkmark	\checkmark	\checkmark	\checkmark	Load Accumulator With P Register
					Load the contents of the P register into the accumula- tor.
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Before the load, shift the P register as specified by the PM status bits.
РОР	\checkmark	\checkmark	\checkmark	\checkmark	Pop Top of Stack to Low Accumulator
					Copy the contents of the top of the stack into the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the accumulator and then pop the stack one level. The MSBs of the accumulator are zeroed.

Syntax	1x	2x	2xx	5x	Description
POPD dma		\checkmark	\checkmark	\checkmark	Pop Top of Stack to Data Memory
POPD { <i>ind</i> } [, <i>next</i> ARP]		\checkmark	V	V	Transfer the value on the top of the stack into the ad- dressed data-memory location and then pop the stack one level.
PSHD dma		\checkmark	\checkmark	\checkmark	Push Data-Memory Value Onto Stack
PSHD { <i>ind</i> } [, <i>next</i> ARP]		\checkmark	V	V	Copy the addressed data-memory location onto the top of the stack. The stack is pushed down one level before the value is copied.
PUSH	\checkmark	\checkmark	\checkmark	\checkmark	Push Low Accumulator Onto Stack
					Copy the contents of the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the accumulator onto the top of the hardware stack. The stack is pushed down one level before the value is copied.
RC		\checkmark	\checkmark	\checkmark	Reset Carry Bit
					Reset the C status bit to 0.
RET	\checkmark	\checkmark	\checkmark		Return From Subroutine
					Copy the contents of the top of the stack into the PC and pop the stack one level.
RET [<i>D</i>]				\checkmark	Return From Subroutine With Optional Delay
					Copy the contents of the top of the stack into the PC and pop the stack one level.
					If you specify a delayed branch (RETD), the next two instruction words (two 1-word instructions or one 2-word instruction) are fetched and executed before the return.
RETC cond ₁ [, cond ₂] [,]			\checkmark		Return Conditionally
					If the specified conditions are met, RETC performs a standard return. Not all combinations of conditions are meaningful.
RETC [D] cond ₁ [, cond ₂] [,]				\checkmark	Return Conditionally With Optional Delay
					If the specified conditions are met, RETC performs a standard return. Not all combinations of conditions are meaningful.
					If you specify a delayed branch (RETCD), the next two instruction words (two 1-word instructions or one 2-word instruction) are fetched and executed before the return.

Syntax	1x	2x	2xx	5x	Description
RETE					Enable Interrupts and Return From Interrupt
					Copy the contents of the top of the stack into the PC and pop the stack one level. RETE automatically clears the global interrupt enable bit and pops the shadow registers (stored when the interrupt was tak- en) back into their corresponding strategic registers. The following registers are shadowed: ACC, ACCB, PREG, ST0, ST1, PMST, ARCR, INDX, TREG0, TREG1, TREG2.
RETI				\checkmark	Return From Interrupt
					Copy the contents of the top of the stack into the PC and pop the stack one level. RETI also pops the values in the shadow registers (stored when the interrupt was taken) back into their corresponding strategic regis- ters. The following registers are shadowed: ACC, ACCB, PREG, ST0, ST1, PMST, ARCR, INDX, TREG0, TREG1, TREG2.
RFSM		\checkmark			Reset Serial Port Frame Synchronization Mode
					Reset the FSM status bit to 0.
RHM				\checkmark	Reset Hold Mode
					Reset the HM status bit to 0.
ROL		\checkmark	\checkmark	\checkmark	Rotate Accumulator Left
					Rotate the accumulator left one bit.
ROLB				\checkmark	Rotate ACCB and Accumulator Left
					Rotate the ACCB and the accumulator left by one bit; this results in a 65-bit rotation.
ROR		\checkmark	\checkmark	\checkmark	Rotate Accumulator Right
					Rotate the accumulator right one bit.
RORB				\checkmark	Rotate ACCB and Accumulator Right
					Rotate the ACCB and the accumulator right one bit; this results in a 65-bit rotation.
ROVM	\checkmark	\checkmark	\checkmark	\checkmark	Reset Overflow Mode
					Reset the OVM status bit to 0; this disables overflow mode.

Syntax	1x	2x	2xx	5x	Description
RPT dma		\checkmark	\checkmark	\checkmark	Repeat Next Instruction
RPT { <i>ind</i> } [, <i>next ARP</i>]		\checkmark	\checkmark	\checkmark	TMS320C2x devices: Load the 8 LSBs of the ad-
RPT #k			\checkmark	\checkmark	dressed value into the RPTC; the instruction following RPT is executed the number of times indicated by
RPT #lk			\checkmark	\checkmark	RPTC + 1.
					TMS320C2xx and TMS320C5x devices: Load the 8 LSBs of the addressed value or an 8-bit or 16-bit immediate value into the RPTC; the instruction following RPT is repeated n times, where n is RPTC+1.
RPTB pma				\checkmark	Repeat Block
					RPTB repeats a block of instructions the number of times specified by the memory-mapped BRCR without any penalty for looping. The BRCR must be loaded before RPTB is executed.
RPTK #k		V	V	V	Repeat Instruction as Specified by Immediate Value
					Load the 8-bit immediate value into the RPTC; the in- struction following RPTK is executed the number of times indicated by RPTC + 1.
RPTZ #/k				V	Repeat Preceded by Clearing the Accumulator and P Register
					Clear the accumulator and product register and repeat the instruction following RPTZ <i>n</i> times, where $n = lk + 1$.
RSXM		\checkmark	\checkmark	\checkmark	Reset Sign-Extension Mode
					Reset the SXM status bit to 0; this suppresses sign extension on shifted data values for the following arith- metic instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and SUBT.
RTC		\checkmark	\checkmark	\checkmark	Reset Test/Control Flag
					Reset the TC status bit to 0.
RTXM		\checkmark			Reset Serial Port Transmit Mode
					Reset the TXM status bit to 0; this configures the serial port transmit section in a mode where it is controlled by an FSX.
RXF		\checkmark	\checkmark	\checkmark	Reset External Flag
					Reset XF pin and the XF status bit to 0.
SACB				\checkmark	Store Accumulator in ACCB
					Copy the contents of the accumulator into the ACCB.

Syntax	1x	2x	2xx	5x	Description
SACH dma [, shift]	\checkmark	\checkmark	\checkmark	\checkmark	Store High Accumulator With Shift
SACH { <i>ind</i> } [, <i>shift</i> [, <i>next ARP</i>]]	√	\checkmark	V	V	Copy the contents of the accumulator into a shifter. Shift the entire contents 0, 1, or 4 bits (TMS320C1x) or from 0 to 7 bits (TMS320C2x/2xx/5x), and then copy the 16 MSBs of the shifted value into the addressed data-memory location. The accumulator is not af- fected.
SACL dma	\checkmark				Store Low Accumulator With Shift
SACL dma [, shift]	V	\checkmark	V	V	TMS320C1x devices: Store the 16 LSBs of the accu- mulator into the addressed data-memory location. A
SACL { <i>ind</i> } [, <i>shift</i> [, <i>next</i> ARP]]		V	V	V	shift value of 0 must be specified if the ARP is to be changed.
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Store the 16 LSBs of the accumulator into the addressed data-memory location. If a shift is specified, shift the contents of the accumulator before storing. Shift values are 0, 1, or 4 bits (TMS320C20) or from 0 to 7 bits (TMS320C2x/2xx/5x).
SAMM dma				\checkmark	Store Accumulator in Memory-Mapped Register
SAMM {ind} [, next ARP]				V	Store the low word of the accumulator in the addressed memory-mapped register. The upper 9 bits of the data address are cleared, regardless of the current value of DP or the 9 MSBs of AR (ARP).
SAR AR, dma	\checkmark				Store Auxiliary Register
SAR AR, {ind} [, next ARP]	V	V	V	V	Store the contents of the specified auxiliary register in the addressed data-memory location.
SATH				V	Barrel-Shift Accumulator as Specified by T Register 1
					If bit 4 of TREG1 is a 1, barrel-shift the accumulator right by 16 bits; otherwise, the accumulator is unaffected.
SATL				V	Barrel-Shift Low Accumulator as Specified by T Register 1
					Barrel-shift the accumulator right by the value speci- fied in the 4 LSBs of TREG1.
SBB				\checkmark	Subtract ACCB From Accumulator
					Subtract the contents of the ACCB from the accumula- tor. The result is stored in the accumulator; the accu- mulator buffer is not affected.

Syntax	1x	2x	2xx	5x	Description
SBBB				\checkmark	Subtract ACCB From Accumulator With Borrow
					Subtract the contents of the ACCB and the logical in- version of the carry bit from the accumulator. The result is stored in the accumulator; the accumulator buffer is not affected. Clear the carry bit if the result generates a borrow.
SBLK #lk [, shiff]		\checkmark	\checkmark	V	Subtract From Accumulator Long Immediate With Shift
					Subtract the immediate value from the accumulator. If a shift is specified, left shift the value before subtracting. During shifting, low-order bits are zero filled, and high-order bits are sign extended if $SXM = 1$.
SBRK #k		\checkmark	\checkmark	V	Subtract From Auxiliary Register Short Immediate
					Subtract the 8-bit immediate value from the designated auxiliary register.
SC		\checkmark	\checkmark	\checkmark	Set Carry Bit
					Set the C status bit to 1.
SETC control bit			\checkmark	\checkmark	Set Control Bit
					Set the specified control bit to a logic 1. Maskable interrupts are disabled immediately after the SETC instruction executes.
SFL		\checkmark	\checkmark	\checkmark	Shift Accumulator Left
					Shift the contents of the accumulator left one bit.
SFLB				\checkmark	Shift ACCB and Accumulator Left
					Shift the concatenation of the accumulator and the ACCB left one bit. The LSB of the ACCB is cleared to 0, and the MSB of the ACCB is shifted into the carry bit.
SFR		\checkmark	\checkmark	\checkmark	Shift Accumulator Right
					Shift the contents of the accumulator right one bit. If $SXM = 1$, SFR produces an arithmetic right shift. If $SXM = 0$, SFR produces a logic right shift.
SFRB				\checkmark	Shift ACCB and Accumulator Right
					Shift the concatenation of the accumulator and the ACCB right 1 bit. The LSB of the ACCB is shifted into the carry bit. If SXM = 1, SFRB produces an arithmetic right shift. If SXM = 0, SFRB produces a logic right shift.
SFSM		\checkmark			Set Serial Port Frame Synchronization Mode
					Set the FSM status bit to 1.

Syntax	1x	2x	2xx	5x	Description
SHM		\checkmark		\checkmark	Set Hold Mode
					Set the HM status bit to 1.
SMMR dma, #lk				\checkmark	Store Memory-Mapped Register
SMMR {ind}, #Ik [, next ARP]				V	Store the memory-mapped register value, pointed at by the 7 LSBs of the data-memory address, into the long immediate addressed data-memory location. The 9 MSBs of the data-memory address of the memory- mapped register are cleared, regardless of the current value of DP or the upper 9 bits of AR(ARP).
SOVM	\checkmark	\checkmark	\checkmark	\checkmark	Set Overflow Mode
					Set the OVM status bit to 1; this enables overflow mode. (The ROVM instruction clears OVM.)
SPAC	\checkmark	\checkmark	\checkmark	\checkmark	Subtract P Register From Accumulator
					Subtract the contents of the P register from the contents of the accumulator.
					TMS320C2x, TMS320C2xx, and TMS320C5x devices: Before the subtraction, shift the contents of the P register as specified by the PM status bits.
SPH dma			\checkmark	\checkmark	Store High P Register
SPH { <i>ind</i> } [, <i>next</i> ARP]		\checkmark	V	V	Store the high-order bits of the P register (shifted as specified by the PM status bits) at the addressed data- memory location.
SPL dma		\checkmark	\checkmark	\checkmark	Store Low P Register
SPL { <i>ind</i> } [, <i>next</i> ARP]		\checkmark	V	V	Store the low-order bits of the P register (shifted as specified by the PM status bits) at the addressed data- memory location.
SPLK #lk, dma			\checkmark	\checkmark	Store Parallel Long Immediate
SPLK #lk, {ind} [, next ARP]				V	Write a full 16-bit pattern into a memory location. The parallel logic unit (PLU) supports this bit manipulation independently of the ALU, so the accumulator is unaffected.
SPM 2-bit constant		\checkmark	\checkmark	\checkmark	Set P Register Output Shift Mode
					Copy a 2-bit immediate value into the PM field of ST1. This controls shifting of the P register as shown below:
					PM = 002Multiplier output is not shifted.PM = 012Multiplier output is left shifted one place and zero filled.PM = 102Multiplier output is left shifted four places and zero filled.
					PM = 11 ₂ Multiplier output is right shifted six places and sign extended; the LSBs are lost.

TMS320C1x/C2x/C2xx/C5x Instruction Set Comparison B-31

Syntax	1x	2x	2xx	5x	Description
SQRA dma		\checkmark		\checkmark	Square and Accumulate Previous Product
SQRA {ind} [, next ARP]		V	V	V	Add the contents of the P register (shifted as specified by the PM status bits) to the accumulator. Then load the contents of the addressed data-memory location into the T register (TMS320C2x/2xx) or TREG0 (TMS320C5x), square the value, and store the result in the P register.
SQRS dma		\checkmark	\checkmark	\checkmark	Square and Subtract Previous Product
SQRS {ind} [, next ARP]		\checkmark	V	V	Subtract the contents of the P register (shifted as specified by the PM status bits) to the accumulator. Then load the contents of the addressed data-memory location into the T register (TMS320C2x/2xx) or TREG0 (TMS320C5x), square the value, and store the result in the P register.
SST dma	\checkmark	\checkmark	\checkmark	\checkmark	Store Status Register
SST { <i>ind</i> } [, <i>next ARP</i>]	\checkmark	V	V	V	Store the contents of the ST (TMS320C1x) or ST0 (TMS320C2x/2xx/5x) in the addressed data-memory location.
SST #n, dma			\checkmark	\checkmark	Store Status Register n
SST #n, {ind} [, next ARP]			\checkmark	\checkmark	Store ST <i>n</i> in data memory.
SST1 dma		\checkmark	\checkmark	\checkmark	Store Status Register ST1
SST1 {ind} [, next ARP]		\checkmark	V	\checkmark	Store the contents of ST1 in the addressed data- memory location.
SSXM		\checkmark	\checkmark	\checkmark	Set Sign-Extension Mode
					Set the SXM status bit to 1; this enables sign extension.
STC				\checkmark	Set Test/Control Flag
					Set the TC flag to 1.
STXM					Set Serial Port Transmit Mode
					Set the TXM status bit to 1.

Syntax	1x	2x	2xx	5x	Description
SUB dma [, shiff]	V	\checkmark	\checkmark	\checkmark	Subtract From Accumulator With Shift
<pre>SUB {ind} [, shift [, next ARP]] SUB #k SUB #lk [, shift₂]</pre>	V	V	√ √ √		TMS320C1x and TMS320C2x devices: Subtract the contents of the addressed data-memory location from the accumulator. If a shift is specified, left shift the value before subtracting. During shifting, low-order bits are zero filled, and high-order bits are sign extended if SXM = 1.
					TMS320C2xx and TMS320C5x devices: Subtract the contents of the addressed data-memory location or an 8- or 16-bit constant from the accumulator. If a shift is specified, left shift the data before subtracting. During shifting, low-order bits are zero filled, and high-order bits are sign extended if SXM = 1.
SUBB dma		\checkmark	\checkmark		Subtract From Accumulator With Borrow
SUBB { <i>ind</i> } [, <i>next ARP</i>]		V	V	V	Subtract the contents of the addressed data-memory location and the value of the carry bit from the accumulator. The carry bit is affected in the normal manner.
SUBC dma	\checkmark	\checkmark	\checkmark	\checkmark	Conditional Subtract
SUBC { <i>ind</i> } [, <i>next</i> ARP]	\checkmark	\checkmark	V	\checkmark	Perform conditional subtraction. SUBC can be used for division.
SUBH dma	\checkmark	\checkmark	\checkmark	\checkmark	Subtract From High Accumulator
SUBH {ind} [, next ARP]	V	\checkmark		V	Subtract the contents of the addressed data-memory location from the 16 MSBs of the accumulator. The 16 LSBs of the accumulator are not affected.
SUBK #k		\checkmark	\checkmark	\checkmark	Subtract From Accumulator Short Immediate
					Subtract an 8-bit immediate value from the accumula- tor. The data is treated as an 8-bit positive number; sign extension is suppressed.
SUBS dma	V	\checkmark	V	\checkmark	Subtract From Low Accumulator With Sign
SUBS {ind} [, next ARP]	\checkmark	\checkmark	\checkmark	\checkmark	Extension Suppressed
					Subtract the contents of the addressed data-memory location from the accumulator. The data is treated as a 16-bit unsigned number; sign extension is suppressed.

Syntax	1x	2x	2xx	5x	Description
SUBT dma SUBT {ind} [, next ARP]		√ √	√ √	√ √	Subtract From Accumulator With Shift Specified by T Register
		v	v	,	Left shift the data-memory value as specified by the 4 LSBs of the T register (TMS320C2x/2xx) or TREG1 (TMS320C5x), and subtract the result from the accumulator. If a shift is specified, left shift the data-memory value before subtracting. During shifting, low-order bits are zero filled, and high-order bits are sign extended if SXM = 1.
SXF		\checkmark	\checkmark	\checkmark	Set External Flag
					Set the XF pin and the XF status bit to 1.
TBLR dma	\checkmark	\checkmark	\checkmark	\checkmark	Table Read
TBLR {ind} [, next ARP]	V	V	V	V	Transfer a word from program memory to a data- memory location. The program-memory address is in the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the accumulator.
TBLW dma	\checkmark	\checkmark	\checkmark	\checkmark	Table Write
TBLW { <i>ind</i> } [, <i>next ARP</i>]	V	V	V	V	Transfer a word from data-memory to a program- memory location. The program-memory address is in the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the accumulator.
TRAP		\checkmark	\checkmark	\checkmark	Software Interrupt
					The TRAP instruction is a software interrupt that trans- fers program control to program-memory address 30h (TMS320C2x) or 22h (TMS320C2xx/5x) and pushes the PC + 1 onto the hardware stack. The instruction at address 30h or 22h may contain a branch instruction to transfer control to the TRAP routine. Putting the PC + 1 on the stack enables an RET instruction to pop the return PC.
XC <i>n, cond</i> ₁ [<i>, cond</i> ₂] [<i>,</i>]				\checkmark	Execute Conditionally
					Execute conditionally the next n instruction words where $1 \le n \le 2$. Not all combinations of conditions are meaningful.

Syntax	1x	2x	2xx	5x	Description
XOR dma	\checkmark	\checkmark	\checkmark	\checkmark	Exclusive-OR With Accumulator
XOR {ind} [, next ARP] XOR #lk [, shift]	V	V	√ √	√ √	TMS320C1x and TMS320C2x devices: Exclusive-OR the contents of the addressed data-memory location with 16 LSBs of the accumulator. The MSBs are not affected.
					TMS320C2xx and TMS320C5x devices: Exclusive- OR the contents of the addressed data-memory loca- tion or a 16-bit immediate value with the accumulator. If a shift is specified, left shift the value before perform- ing the exclusive-OR operation. Low-order bits below and high-order bits above the shifted value are treated as 0s.
XORB				\checkmark	Exclusive-OR of ACCB With Accumulator
					Exclusive-OR the contents of the accumulator with the contents of the ACCB. The results are placed in the accumulator.
XORK #lk [, shiff]		V	V	V	Exclusive-OR Immediate With Accumulator With Shift
					Exclusive-OR a 16-bit immediate value with the accu- mulator. If a shift is specified, left shift the value before peforming the exclusive-OR operation. Low-order bits below and high-order bits above the shifted value are treated as 0s.
XPL [#lk,] dma XPL [#lk,] {ind} [, next ARP]					Exclusive-OR of Long Immediate or DBMR With Addressed Data-Memory Value
					If a long immediate value is specified, exclusive OR it with the addressed data-memory value; otherwise, ex- clusive OR the DBMR with the addressed data- memory value. Write the result back to the data- memory location. The accumulator is not affected.
ZAC	\checkmark	\checkmark	\checkmark	\checkmark	Zero Accumulator
					Clear the contents of the accumulator to 0.
ZALH dma ZALH {ind} [, next ARP]			√ √	√ √	Zero Low Accumulator and Load High Accumulator
	v	v	v	Ň	Clear the 16 LSBs of the accumulator to 0 and load the contents of the addressed data-memory location into the 16 MSBs of the accumulator.

Syntax	1x	2x	2xx	5x	Description
ZALR dma		√	√	√	Zero Low Accumulator, Load High Accumulator With Rounding
ZALR {ind} [, next ARP]		V	V	V	Load the contents of the addressed data-memory location into the 16 MSBs of the accumulator. The value is rounded by 1/2 LSB; that is, the 15 LSBs of the accumulator (0–14) are cleared and bit 15 is set to 1.
ZALS dma ZALS {ind} [, next ARP]	√ √	√ √	√ √	√ √	Zero Accumulator, Load Low Accumulator With Sign Extension Suppressed
	ľ	v	v	V	Load the contents of the addressed data-memory location into the 16 LSBs of the accumulator. The 16 MSBs are zeroed. The data is treated as a 16-bit unsigned number.
ZAP				\checkmark	Zero the Accumulator and Product Register
					The accumulator and product register are zeroed. The ZAP instruction speeds up the preparation for a repeat multiply/accumulate.
ZPR				\checkmark	Zero the Product Register
					The product register is cleared.

Appendix C

Program Examples

This appendix provides:

- A brief introduction to the process for generating executable program files.
- Sample programs for implementing simple routines and using interrupts, I/O pins, the timer, and the serial ports.

This appendix is not intended to teach you how to use the software development tools. The following documents cover these tools in detail:

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User's Guide (literature number SPRU018)

TMS320C2x/C2xx/C5x Optimizing C Compiler User's Guide (literature number SPRU024)

TMS320C2xx C Source Debugger User's Guide (literature number SPRU151)

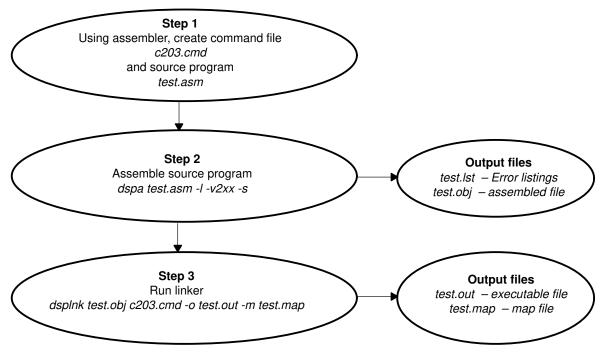
For more information about these documents and about ordering them, see *Related Documentation From Texas Instruments* on page vi of the Preface.

Topic

Page

C.1	About These Program ExamplesC-2
C.2	Shared Program CodeC-5
C.3	Task-Specific Program Code C-8
C.4	Introduction to Generating Boot Loader CodeC-23

C.1 About These Program Examples


Figure C–1 illustrates the basic process for creating assembly language files and then generating executable files from them:

- 1) Use the 'C2xx assembler to create:
 - □ A command file (*c203.cmd* in the figure) that defines address ranges according to the architecture of the particular 'C2xx device
 - An assembly language program (*test.asm* in the figure)
- Assemble the program. The command shown under Step 2 in the figure generates an object file and a file containing a listing of assembler errors encountered.
- 3) Use the linker to bring together the information in the object file and the command file and create an executable file (*test.out* in the figure). The command shown also generates a map file, which explains how the linker assigned the individual sections in the memory.

Note:

The procedure here applies to the PC^{TM} development environment and is given only as an example.

Figure C–1. Procedure for Generating Executable Files

The program examples in Section C.2 and Section C.3 consist of code for shared files and task-specific files. Table C–1 describes the shared programs. Shared files contain code that is used by multiple task-specific files. The task-specific programs are described in Table C–2. Every task-specific file that uses the header files includes them by way of the *.copy* assembler directive:

.copy "init.h" .copy "vector.h"

The assembler brings together the .h files and .asm file. The linker links assembled files according to the device architecture defined in the linker command file (c203.cmd).

Section C.4 contains an introduction to the procedure for using the assembler and linker to generate code for the boot loader. Program examples are also given in that section.

Table C-1. Shared Programs in This Appendix

Program	Functional Description	See
c203.cmd	Command file that defines size and placement of address blocks for the program, data, and I/O spaces	Example C–1, page C-5
init.h	Header file that declares space for variables and constants; declares initial values for variables; designates labels for the addresses of the control registers mapped to on-chip I/O space; contains comments that explain the functions of the control registers	Example C–2, page C-6
vector.h	Header file that fills the interrupt vector locations with branches to the corresponding interrupt service routines or with other values	Example C–3, page C-7

Program	Functional Description	See
delay.asm	Creates simple nested delay loops, measurable through XF and I/O pins	Example C–4, page C-8
timer.asm	Generates periodic timer interrupt, XF and I/O pins toggle at the interrupt rate	Example C–5, page C-9
intr1.asm	Causes XF pin to toggle at the rate of the interrupt signal on the INT1 pin	Example C–6, page C-10
hold.asm	Explains the software logic for implementing a HOLD operation	Example C–7 page C-11
intr23.asm	Accepts an interrupt signal on INT2 or INT3. Toggles XF pin for each interrupt.	Example C–8, page C-12

Table C–2. Task-Specific Programs in This Appendix

Program	Functional Description	See
uart.asm	Causes the asynchronous serial port to transmit a test message continuously at 1200 baud. Baud rate is 1200 at 50-ns cycle time.	Example C–9, page C-13
echo.asm	Echoes the character received by the asynchronous serial port at 1200 baud	Example C–10, page C-14
autobaud.asm	Causes the asynchronous serial port to lock on to the incoming baud rate and echoes the received character. The first character received should be <i>a</i> or <i>A</i> .	Example C-11, page C-16
bitio.asm	Toggles XF bit in response to delta interrupts and sends a charac- ter through the asynchronous serial port	Example C–12, page C-18
ssp.asm	Causes the synchronous serial port to send words in continuous mode with internal shift clock and frame synchronization	Example C–13, page C-20
ad55.asm	Implements simple loopback with a TLC320AD55C codec chip in- terfaced to the synchronous serial port	Example C–14, page C-21

Table C–2. Task-Specific Programs in This Appendix (Continued)

C.2 Shared Program Code

Example C-1. Generic Command File (c203.cmd)

```
/* Title: c203.cmd
/* Generic command file for linking TMS320C2xx assembler files */
/* input files: *.obj files
                                                                        */
/* output files: *.out file
                                                                        */
/* Map files: *.map file (optional)
                                                                        */
/* TMS320C2xx architecture declaration for linker use
                                                                        */
MEMORY
{
PAGE 0: /* PM - Program memory */
EX1_PM
        :ORIGIN=OH , LENGTH=OFEFFH /* External program RAM */
          :ORIGIN=OFF00H, LENGTH=0100H /* BLOCK MAP IN CNF=1 */
BO_PM
PAGE 1: /* DM - Data memory */
          :ORIGIN=0H , LENGTH=60H /* MEM-MAPPH
:ORIGIN=60H , LENGTH=20H /* BLOCK B2
:ORIGIN=200H , LENGTH=100H /* BLOCK B0
REGS
                                             /* MEM-MAPPED REGS
                                                                               */
                                             /* BLOCK B2
BLK_B2
                                                                                */
BLK_B0
                                                                                */
BLK_B1 :ORIGIN=300H , LENGTH=100H /* BLOCK B1
                                                                               */
EX1_DM :ORIGIN=0800H, LENGTH=7800H /* EXTERNAL DATA RAM
                                                                               */
GM_DM :ORIGIN=8000H, LENGTH=8000H /* External DATA RAM AS GLOBAL*/
PAGE 2: /* I/O SPACE */
IO_IN :ORIGIN=OFF00H, LENGTH=OFFH /* I/O MAPPED PERIPHERAL
                                                                               */
IO_EX
           :ORIGIN=0000H, LENGTH=OFF00H/* EXT. I/O MAPPED PERIPHERAL */
}
SECTIONS
/* Linker directive to specify section placement in the memory map */
{
                           PAGE 0
                                           /* Vectors at 0x0000
vectors
           :{} > EX1_PM
.text
                                             /* .text placed after vectors */
           :{} > EX1_PM
                             PAGE 0
                                           /* .bss in 0x800 in DM */
/* new in 0x0060 in DM */

      .bess
      :{}> EX1_DM
      PAGE 1

      new
      :{}> BLK_B2
      PAGE 1

      .data
      :{}> 0x0370
      PAGE 1

                                           /* .data at 0x0370 in DM
                                                                               */
}
```

```
* File: init.h *
\star Include file with I/O register declarations \star
         .mmregs
                                  ; Include reserved words
                                  ; Undefined variables space
         .bss dmem,10
         .def ini_d, start, codtx ; Directive for symbol address
                                  ; generation in the current module
                                  ; -optional
         .usect "new",10
ini_d:
                                 ; Example of undefined variable space
                                 ; with the segment's name as "new"
                                 ; Example of including dummy constants
         .data
                                  ; -optional
         .word 055aah
         .word 0aa55h
* On-chip register equates
* CLKOUT
clk1
              0ffe8h
         .set
* INTERRUPT CONTROL
icr .set Offech
* SYNC PORT
      .set
              OfffOh
sdtr
              0ffflh
         .set
sspcr
* UART
adtr
        .set 0fff4h
aspcr
        .set 0fff5h
iosr
         .set Offf6h
         .set Offf7h
brd
* TIMER
tcr
         .set
              0fff8h
              0fff9h
prd
         .set
tim .set
              Offfah
* WAIT STATES
         .set Offfch
wsgr
* Variables
rxbuf .set 0300h
         .set 00020h
size
        .set 0010h
del
```

Example C–2. Header File With I/O Register Declarations (init.h)

Example C–3. Header File With Interrupt Vector Declarations (vector.h)

C.3 Task-Specific Program Code

Example C–4. Implementing Simple Delay Loops (delay.asm)

```
* File:
              delay.asm
* Function: Delay loop. XF and I/O 3 pins toggle after each delay
          .title "Delay routine" ; Title
.copy "init.h" ; Variable and register dec
.copy "vector.h" ; Vector label declaration
                                  ; Variable and register declaration
          .text
start:
          clrc cnf
                                 ; Map block B0 to data memory
          ldp #0h
                                  ; set DP=0
          setc INTM
                                 ; Disable all interrupts
          splk #0000h, 60h ; Set zero wait states
                 60h, wsgr
          out
          splk #0e00ch,60h
                                 ; Define iosr for bit I/O in aspcr
                 60h,aspcr
          out
                                  ; Initialize ar0
          lar ar0,#del
                                  ; Set ARP to ar7
                 *,ar7
          mar
          splk#0008h,6eh; data for setting bit I/O 3splk#0000h,6fh; data for clearing bit I/O 3splk#0ffffh,60h; Inner repeat loop size
          lar
                 ar7,#del
          clrc
loop:
                 xf
                                  ; xf=0
                                 ; bit 3=0
          out
                 6fh,iosr
dely1:
          rpt
                 60h
                                   ; @ 50ns, this loop gives 3.4 ms approx.
          nop
          banz dely1,ar7
                                  ; delay = 17*3.4 = 57.8 ms approx.
          lar
                 ar7,#del
          setc xf
                                  ; xf=1
                 6eh,iosr
          out
                                  ; bit 3=1
dely2:
          rpt
                 60h
                                  ; @ 50ns, this loop gives 3.4 ms approx.
          nop
                                 ; delay = 17*3.4 = 57.8 ms approx.
          banz dely2,ar7
          lar
                 ar7,#del
          b
                 loop
                                   ; Unused interrupts
inpt1:
          ret
inpt23:
          ret
                                   ; have dummy returns for safety
timer:
          ret
uart:
          ret
codtx:
         ret
codrx:
          ret
          .end
                                   ; Assembler module end directive -optional
```

Example C–5. Testing and Using the Timer (timer.asm)

* File: timer.asm * Function: Timer test code * * PRD=0x00ff,TDDR=f @ 50ns, gives an interrupt interval=205us * PRD=0xffff,TDDR=0 @ 50ns, gives an interrupt interval=3.27ms* * Timer interval measurable on I/O 2,3 or xf pins .title "Timer Test" ; Title .copy "init.h" .copy "vector.h" ; Variable and register declaration ; Vector label declaration .text ; Map block B0 to data memory start: clrc CNF ; set DP=0 ldp #0h setc INTM ; Disable all interrupts splk #0000h,60h out 60h, wsgr ; Set zero wait states splk #0fffh,ifr ; clear interrupts splk #0004h,imr ; enable timer interrupt splk #0e00ch, 60h ; configure bit I/O IO3 and IO2 as outputs ; set the aspcr for the above out 60h, aspcr mar *,ar1 lar ar1,#rxbuf ; bit value to set I/O 2 $\,$ #0004h,61h splk ; bit value to set I/O 3 splk #0008h,62h ; set the bit 2 = high, 3= zero out 61h,iosr splk #0000h, 63h splk #00ffh, 64h 64h, prd ; set PRD=0x00ffh out 63h, tim ; set TIM=0x0000 #0c2fh, 64h ; PSC, TDDR are zero, reload, restart out splk out 64h, tcr intm clrc clrc xf wait: out 62h,iosr ; set io2=0 idle clrc xf b wait timer: setc xf ; xf =1 68h,tcr ; Read tcr,prd, tim regs. in in 69h,prd 6ah,tim in out 61h,iosr ; set io2=1 clrc intm ret inpt1: ; Unused interrupt routines ret inpt23: ret codtx: ret codrx: ret uart: ret ; Assembler module end directive -optional .end

Example C–6. Testing and Using Interrupt INT1 (intr1.asm)

```
* File:
         intr1.asm
* Function: Interrupt test code
* For each INT1 interrupt XF, I/O pins IO3 and IO2 will toggle and *
* transmit char 'c' through UART
          .title "Interrupt 1 Test" ; Title
.copy "init.h" ; Variable and register declaration
          .copy "init.h" ; Variable and region
; Vector label declaration
          .text
          clrc CNF
                                    ; Map block B0 to data memory
start:
          ldp
                #0h
                                    ; set DP=0
                                    ; Disable all interrupts
          setc
                INTM
                                    ; clear interrupts
          splk
                 #Offffh, ifr
          splk
                 #0001h, imr
                                    ; Enable int1 interrupts
          splk #0010h, 60h
                 60h,icr
                                    ; Enable Intr1 in mode bit/ICR
          out
          splk #0000h, 60h
          out60h, wsgr; Set zero wait statessplk#0e00ch, 60h; configure I03 and I02 as outputsout60h, aspcr; set the aspcr for the above
                                    ; default baud rate 1200, for UART @50 ns
          splk
                 #0411h, 60h
          out
                 60h,brd
          mar
                 *,ar1
                                    ; Initialize AR pointer with AR1
          lar
                ar1,#rxbuf
          lar
                ar0,#size
                                    ; set counter limit
          splk #0004h,61h
                                    ; set bit I/O 2
          splk #0008h,62h
                                    ; set bit I/O 3
          splk #0063h,63h
                                    ; set tx data
          clrc
                TNTM
          clrc
                XF
wait:
          out
                 61h,iosr ; toggle IO2/3
          idle
          clrc
                XF
                                    ; toggle xf
          b
                 wait
                 65h, icr
inpt1:
          in
                                    ; Read icr
                 62h, iosr
                                    ; toggle IO2/3
          out
                 65h, adtr
                                    ; send icr value through UART to check
          out
                                    ; interrupt source
          setc XF
                                    ; toggle xf
          clrc
                INTM
          ret.
timer:
          ret
inpt23:
          ret
uart:
          ret
codtx:
          ret
codrx:
         ret
          .end
                                     ; Assembler module end directive
                                      ; -optional
```

Example C-7. Implementing a HOLD Operation (hold.asm)

* File: hold.asm * Function: HOLD test code * Check for HOLDA toggle for HOLD requests in MODE 0 * Check for XF toggle on HOLD/INT1 requests in MODE 1 .title " HOLD Test " ; Title .mmregs .set OFFECh icr 0FFECh ; Interrupt control 060h ; scratch pad location ; Interrupt control register in I/O space icrshdw .set * Interrupt vectors .text reset В ; 0-reset , Branch to main program on reset main int1_hold int1h В ; 1-external interrupt 1 or HOLD .space 40*16 splk #0001h,imr main: clrc intm wait: b wait int1_hold: ; Perform any desired context save ldp #0 icrshdw, icr ; save the contents of ICR register in lacl #010h ; load ACC with mask for MODE bit ; Filter out all bits except MODE bit and icrshdw ; Branch if MODE bit is 1, else in HOLD mode int1,neq bcnd ; load ACC with interrupt mask register lacc imr, O ; mask all interrupts except interrupt1/HOLD #1, imr splk ; enter HOLD mode, issues HOLDA idle ; and the busses will be in tristate #1, ifr splk ; Clear HOLD/INT1 flag to prevent ; re-entering HOLD mode sacl imr ; restore interrupt mask register ; Perform necessary context restore ; enable all interrupts clrc intm ; return from HOLD interrupt ret int1: ; Replace this with desired INT1 interrupt nop ; service routine nop setc xf ; Dummy toggle to check the loop entry clrc ; in MODE 1 xf splk #0001,ifr clrc intm ; enable all interrupts ret ; return from interrupts

Example C–8. T	Festing and Using	Interrupts INT2 and	INT3 (intr23.asm)
----------------	-------------------	---------------------	-------------------

* Interru	intr23.asm n: Interrupt test code pt on INT2 or INT3 will toggl value copied in the Buffer @	
	<pre>.title " Interrupt 2/3 Test" .copy "init.h" .copy "vector.h" .text</pre>	; Title ; Variable and register declaration ; Vector label declaration
start:	<pre>clrc CNF ldp #0h setc INTM splk #0ffffh, ifr splk #0002h, imr splk #0003h, 60h out 60h, icr splk #0000h, 60h out 60h, wsgr srlk #000ch 60h</pre>	<pre>; Map block B0 to data memory ; set DP=0 ; Disable all interrupts ; clear interrupts ; Enable int1 interrupts ; Enable Int2 and 3 in ICR ; Set zero wait states ; enfirment the J02 and J02 are entrupt</pre>
	<pre>splk #0e00ch, 60h out 60h, aspcr mar *, ar1 lar ar1, #rxbuf lar ar0, #size splk #0004h, 61h splk #0008h, 62h splk #0063h, 63h clrc intm clrc xf</pre>	<pre>; configure the I03 and I02 as outputs ; set the aspcr for the above ; ARP=ar1 ; set counter limit ; set bit I/O 2 ; set bit I/O 3 ; set tx data</pre>
wait:	out 61h, iosr idle clrc xf b wait	; toggle I/O 2 ; toggle xf bit
inpt23:	in 65h, icr in *+, icr mar *,ar0 banz skip, ar1 lar ar1, #rxbuf lar ar0, #size	; Read icr ; Capture icr in buffer @300
skip:	out 62h, iosr setc xf out 65h, icr clrc intm ret	; toggle IO2/3 ; toggle xf ; clear interrupt 2/3 flag bit
timer: inpt1: uart: codtx: codrx:	ret ret ret ret	; Assembler module end directive
	.end	; Assembler module end directive ; -optional

Example C–9. Asynchronous Serial Port Transmission (uart.asm)

	uart.asm on: UART Test Code	* * 2T is fine! at 1200 baud *
<pre>start:</pre>	.title " UART Test" .copy "init.h" .copy "vector.h" .text clrc CNF ldp #0h	<pre>%T is fine' at 1200 baud. * ; Title ; Variable and register declaration ; Vector label declaration ; Map block B0 to data memory ; set DP=0</pre>
	setc INTM	; Disable all interrupts
* UART i	<pre>nitialization * splk #0ffffh,ifr splk #0000h,60h out 60h, wsgr splk #0c180h,61h out 61h, aspcr splk #0e180h,61h out 61h,aspcr splk #4fffh,62h out 62h,iosr splk #0411h,63h out 63h, brd splk #20h,imr more total</pre>	<pre>; clear interrupts ; Set zero wait states ; reset the UART by writing 0 ; 1 stop bit, tx interrupt, input i/o ; Enable the serial port ; disable auto baud ; set baud rate =1200 @ 20-MHz CLKOUT1 ; enable UART interrupt ; DDD ard</pre>
	mar *,arl lar arl,#rxbuf	; ARP=ar1
* Load d	ata at DM300 splk #0063h,*+ splk #0032h,*+ splk #0030h,*+ splk #0033h,*+ splk #0020h,*+	; 'c203 UART is fine!' - xmit data ; ascii value for the above characters
	<pre>splk #0055h,*+ splk #0041h,*+ splk #0052h,*+ splk #0054h,*+ splk #0020h,*+</pre>	
	splk #0069h,*+ splk #0073h,*+ splk #0020h,*+	
	<pre>splk #0066h,*+ splk #0069h,*+ splk #006eh,*+ splk #0065h,*+ splk #0020h,*+ splk #0021h,*+ splk #0021h,*+ splk #0020h,*+</pre>	

```
lar
               ar1,#rxbuf
               ar0, #20
         lar
                                 ; load buffer size
                                 ; load data pointer
         mar
               *,ar1
         clrc intm
         clrc
                                 ; toggle xf bit
wait:
               xf
         idle
         b
               wait
uart:
         setc xf
                                 ; toggle xf bit
         splk #0ffffh,67h
                                ; transmit character from data buffer@300
         out
               *+,adtr
         mar
               *,ar0
         banz skip,arl
                                ; check if size=0, and reload
               ar1,#rxbuf
         lar
        lar
              ar0,#20
                                 ; set size = character length
       splk #0020h,ifr
                              ; Clear ifr bit
skip:
        clrc intm
        ret
inpt1:
        ret
inpt23: ret
timer:
         ret
codtx:
         ret
codrx:
         ret
                                  ; Assembler module end directive
         .end
                                  ; -optional
```

```
Example C–9. Asynchronous Serial Port Transmission (uart.asm) (Continued)
```

Example C–10. Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm)

```
* File:
             echo.asm
* Function: UART Test Code
*
             Continuously echoes data received by UART at 1200 baud.
                                                                    *
*
            Received data will be stored in the buffer @300
         .title " UART/ASP loop back" ; Title
         .copy "init.h"
                                       ; Variable and register declaration
          .copy "vector.h"
                                          ; Vector label declaration
         .text
         clrc CNF
                                       ; Map block B0 to data memory
start:
         ldp
                #0h
                                       ; set DP=0
         setc INTM
                                       ; Disable all interrupts
```

Example C–10. Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm) (Continued)

* UART i	nitialization *	
	<pre>splk #0ffffh,ifr</pre>	; clear interrupts
	splk #0000h,60h	
	out 60h, wsgr	; Set zero wait states
	splk #0c080h,61h	; reset the UART by writing 0
	out 61h, aspcr	; 1 stop bit, rx interrupt, input i/o
	splk #0e080h,61h out 61h,aspcr	
	splk #4fffh,62h	
	out 62h,iosr	; disable auto baud
	splk #0411h, 63h	; set baud rate =1200 @ 20MHz CLKOUT1
	out 63h, brd	,
	splk #20h,imr	; enable UART interrupt
	mar *,arl	
* Load d	ata at DM300	
	lar arl,#rxbuf	
	lar ar0, #size	; load buffer size
	mar *,arl	; load data pointer
	clrc intm	
wait:	clrc xf	; toggle xf bit
	idle	
	b wait	
uart:	setc xf	; toggle xf bit
		; Check receive flag bit in iosr
	in 68h,iosr	; load input status from iosr
	bit 68h,7	; bit 8 in the data
	bcnd skip,ntc	; IF DR=0 no echo, return
	in *,adtr	; read and save at 300h ; echo
	out *+,adtr mar *,ar0	; echo
	banz skip,arl	; check if size=0, and reload
	lar arl, #rxbuf	, check if Size-0, and letoad
	lar ar0,#size	
skip:	splk #0020h, ifr	; Clear interrupt in ifr!
-	clrc intm	· •
	ret	
inpt1:	ret	
inpt23:		
timer:	ret	
codtx:	ret	
codrx:	ret	
	.end	; Assembler module end directive
		; -optional

Example C–11. Testing and Using Automatic Baud-Rate Detection on Asynchronous Serial Port (autobaud.asm)

* File: * Function * *	: UAH Loc is thu	autobaud.asm UART,auto baud test Locks to incoming baud rate if the first character is "A" or "a" & continuously echoes data received through the port.				
* disabled	and t	he interrupt is enab	le	AD and ADC bits are not d, the ISR will occur for nge the baud setting again.	* * *	
	.copy	"Auto_baud detect" "init.h" "vector.h"	;	Title Variable and register decla: Vector label declaration	ration	
	clrc ldp setc		;	Map block B0 to data memory set DP=0 Disable all interrupts		
	splk out splk out splk out splk out splk out splk out	<pre>#0ffffh,ifr #0000h,60h 60h, wsgr #0c0a0h,61h 61h, aspcr #0e0a0h,61h 61h,aspcr #4fffh,62h 62h,iosr #0000h, 63h 63h, brd #20h,imr</pre>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	clear interrupts Set zero wait states reset the UART by writing 0 1 stop bit, rx interrupt, in CAD=1 enable enable ADC bit disable auto baud set baud rate =0000 @ 20-MH: enable UART interrupt	-	
wait:	lar lar mar	arl,#rxbuf ar0, #size *,ar1 intm		load buffer size load data pointer		

uart:	setc	vf	
	in bit bcnd splk out	x1 68h,iosr 68h,1 rcv,ntc #4fffh,67h 67h,iosr #0e080h,67h	<pre>; load input status from iosr ; check if auto baud bit is set ; branch normal receive ; clear ADC</pre>
	out	•	; Disable CAD bit/auto baud
rcv:	in	68h,iosr	; check for DR bit
	bit	68h,7	; bit 8 in the data
	bcnd	skip,ntc	; IF DR=0 no echo, return
	in	*,adtr	; read and save at 300h
		*+,adtr *,ar0	; echo
	banz lar	skip,arl arl,#rxbuf ar0,#size	; check if size=0, and reload
skip:		#0020h,ifr intm	; Clear ifr
inpt1:	ret		
inpt23:	ret		
timer:	ret		
codtx:	ret		
codrx:	ret		
	.end		; Assembler module end directive
			; -optional

Example C–11. Testing and Using Automatic Baud-Rate Detection on Asynchronous Serial Port (autobaud.asm) (Continued)

Example C–12. Testing and Using Asynchronous Serial Port Delta Interrupts (bitio.asm)

* File: bitio.asm * * Function: Delta interrupt test code * Accepts delta interrupt on IO pins 3 and 2 * If bit level changes on bit 7, send character 'c' * through UART & toggle xf pin. * * If bit level changes on bit 6, send character 'i' * * through UART & toggle xf pin. * * The delta bits are cleared after interrupt service .title "BIT IO Interrupt Test"; Title ; Variable and register declaration .copy "init.h" .copy "vector.h" ; Vector label declaration .text clrc CNF ; Map block B0 to data memory start: ldp #0h ; set DP=0 setc INTM ; Disable all interrupts * UART initialization * splk #0ffffh,ifr ; clear interrupts #0000h,60h splk ; Set zero wait states out 60h, wsgr ; reset the UART by writing 0 splk #0c200h,61h ; 1 stop bit, Delta interrupt, out 61h, aspcr ; input i/o splk #0e200h,61h out 61h,aspcr splk #4fffh,62h ; disable auto baud 62h,iosr out #0411h, 63h ; set baud rate =1200 @ 20-MHz CLKOUT1 splk out 63h, brd #20h,imr ; enable UART interrupt ; transmit value = 0063h ='c' ; transmit value = 0063h ='i' splk splk #0063h,65h splk #0069h,67h mar *,ar1 lar ar1,#rxbuf * Load data at DM300 * lar ar1,#rxbuf ; load buffer size lar ar0, #size ; load data pointer ; disable interrupts for polling mar *,ar1 clrc intm wait: idle b wait

uart:	setc	xf	; toggle xf bit
	in	68h,iosr	; Bit i/o check
	bit	68h,8	; bit address 7 I/O 3 BIT IS SET?
			; required bit place = complement 7 !
	bcnd	poll,ntc	; NO then check FOR I/O 2
	clrc	- ·	
		65h, adtr	; transmit 63h ='c'
		#0080h,6bh	; reset delta bit
	out	6bh,iosr	; THE DELTA INTERRUPTS WILL BE ALWAYS
	out	0011,1031	; COMING IF THIS IS NOT CLEARED!!!
	clrc	xf	; clear xf bit
			; clear ifr bits
		#20h , ifr intm	; clear lir bits
		TUCM	
	ret		
poll:	in	,	
		68h,9	; bit address 6 I/O 2 bit is set?
		poll1,ntc	
	clrc		
		67h, adtr	; if set transmit 69h = 'i'
	-	#0040h,6bh	; reset delta bit
	out	6bh,iosr	
poll1:	clrc	xf	; clear xf bit
	splk	#20h,ifr	; clear ifr bits
	clrc	intm	
	ret		
inpt1:	ret		
-	ret		
-	ret		
codtx:	ret		
codrx:	ret		
	.end		; Assembler module end directive
			; -optional
			,

Example C–12. Testing and Using Asynchronous Serial Port Delta Interrupts(bitio.asm) (Continued)

Example C–13.	Synchronous	Serial I	Port (Continuous I	Node	Transmission	(ssp.asm)

* File: * Functio *	n: Coi In	p.asm ntinuous transmit in CO ternal shift clock and ansmit FIFO level is se	fra	ame sync *
	.copy	e "SSP Continuous mode" "init.h" "vector.h"	;	Title Variable and register declaration Vector label declaration
start:	out splk out splk out splk splk splk splk	<pre>#0h INTM #0000h, 60h 60h, wsgr #0cc0ch,60h 60h, sspcr #0cc3ch,60h 60h,sspcr #1717h,61h #7171h,63h #0aa55h,64h #55aah,62h #10h,imr</pre>	;;; ;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	<pre>Map block B0 to data memory set DP=0 Disable all interrupts Set zero wait states reset the serial port by writing zeros at NOR/RES enable Sync port, 4 word fifo, internal clocks, Continuous mode Use sspcr= #0cc3eh for Burst mode dummy data for tx transmit 55aah on tx enable xinit interrupt enable INTM Xmit once to start transmit interrupts</pre>
loop:	clrc idle b	xf loop	;	clear xf flag
codtx:	setc out out out splk clrc ret ret	xf 62h,sdtr 61h,sdtr 63h,sdtr 64h,sdtr #0010h, ifr intm	;;;;	set xf bit transmit 0x55aah again transmit 1717h transmit 7171h transmit aa55h clear ifr flag
<pre>inpt1: inpt23: timer: uart:</pre>	ret ret ret .end			Assembler module end directive -optional

Example C–14. Using Synchronous Serial Port With Codec Device (ad55.asm)

* File: * Function: * *	ad55.asm Burst mode simple loop bac CODEC master clock 10 MHz Simple I/O at 9.6-kHz samp	*
	title "AD55 codec simple I/0" copy "init.h" copy "vector.h" text	<pre>'; Title ; Variable and register declaration ; Vector label declaration</pre>
start: cl lc se sr ou sr ou sr	lrc cnf dp #0h etc intm elk #0000h, 60h at 60h,wsgr	<pre>; Map block B0 to data memory ; set DP=0 ; Disable all interrupts ; Set zero wait states ; Initialize SSP ; reset the serial port by writing ; zeros to reset bits, ; enable Sync port, 1 word fifo, ; CLX/FSR as inputs. Burst mode</pre>
sr ma la	olk #08h,imr olk #0ffffh, ifr ar *,arl ar arl, #rxbuf ar ar0, #size	<pre>; enable RINT interrupt ; reset ifr flags ; load ar1 with rx buffer</pre>
* 0 0 R/ *D15 14 13 sp sp sp sp sp sp ou ou ou	<pre>/W' reg_add data //W' reg_add data ///////////////////////////////////</pre>	<pre>; AD55 command reg. bits ; reg0 nop ; reg1 8khz sampling ; default data 00 ; default data 01 ; default data 01 ; default data 08 ; secondary comm. request data ; request sec. comm. ; send reg1 data for 9.6-Khz sampling ; send 0x0000 after programming ; Enable SSP interrupts</pre>
loop: cl	lrc xf lle loop	; clear xf flag ; Wait for SSP interrupt

codtx:	-	#0010h, ifr intm	;	clear tx intr flag
codrx:	lacc and sacl out mar banz lar	<pre>xf *,sdtr *+,0 #0fffeh,0 6ah,0 6ah,sdtr *,ar0 skip,ar1 ar1,#rxbuf ar0,#size</pre>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	toggle xf bit Read ADC value Make LSB zero to avoid secondary request for codec Send ADC value to DAC Check buffer limits
1	splk clrc ret ret ret ret	#0008h, ifr intm	;	Clear ifr flag
	.end		,	Assembler module end directive -optional

Example C–14. Using Synchronous Serial Port With Codec Device (ad55.asm) (Continued)

C.4 Introduction to Generating Boot Loader Code

The 'C2xx on-chip boot loader boots software from an 8-bit external EPROM to a 16-bit external RAM at reset. This section introduces to the procedure for using Texas Instruments development tools to generate the code that will be loaded into the EPROM.

Note:

The procedure in this section is given only as an example. This procedure may have to be modified to suit different applications.

For more details, refer to the *TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User's Guide* (literature number SPRU018).

The process for generating boot loader code uses these basic steps:

- 1) Write the following code by using the TMS320C1x/C2x/C2xx/C5x assembler:
 - □ The code that you wish to have loaded into the EPROM. Program code is listed after a .text assembler directive (see any of the programs in Section C.3).
 - □ A linker command file that defines the architecture of the particular 'C2xx device being used. Example C–15 shows a command file for the 'C203. Note that the file declares the .text section at 0000h. This is necessary because the boot loader transfers the code to the external RAM beginning at address 0000h.
- Assemble the code. Use the -v2xx option (for 'C2xx assembly) in the assemble command.
- Link the assembled file with the command file by using the TMS320C1x/C2x/C2xx/C5x linker.
- Write a hex conversion command file (an ASCII file) that contains options and directives for the TMS320C1x/C2x/C2xx/C5x hex conversion utility. Example C–16 shows such a file.
- 5) Use the hex conversion command file with the hex conversion utility to generate the boot code in an ASCII hexadecimal format suitable for loading into an EPROM programmer. The command file in Example C–16 selects the Intel[™] format.

Example C-15. Linker Command File

```
MEMORY
PAGE 0: /* PM - Program memory */
 EX1_PM :ORIGIN=OH , LENGTH=OFEFFH/* External program RAM */
            :ORIGIN=OFF00H, LENGTH=0100H /* BLOCK MAP IN CNF=1 */
 BO_PM
PAGE 1: /* DM - Data memory */
REGS :ORIGIN=0H , LENGTH=60H /* MEM-MAPPED REGS */
BLK_B2 :ORIGIN=60H , LENGTH=20H /* BLOCK B2 */
BLK_B0 :ORIGIN=200H , LENGTH=100H /* BLOCK B0, */
BLK_B1 :ORIGIN=300H , LENGTH=100H /* BLOCK B1 */
EX1_DM :ORIGIN=0800H , LENGTH=7800H /* EXTERNAL DATA RAM */
            :ORIGIN=8000H, LENGTH=8000H /* External DATA RAM AS GLOBAL */
GM DM
PAGE 2: /* I/O SPACE */
IO_IN :ORIGIN=OFF00H, LENGTH=OFFH /* I/O MAPPED PERIPHERAL
                                                                                      */
            :ORIGIN=0000H, LENGTH=0FF00H/* EXT. I/O MAPPED PERIPHERAL */
IO_EX
 }
SECTIONS
 /* Linker directive to specify section placement in the memory map */
 {
     .text :{} > EX1_PM PAGE 0
 }
```

Example C–16. Hex Conversion Utility Command File

```
dsphex boot.cmd
/* boot.cmd file an example */
test.out /* File for boot code in COFF format*/
                  /* option to generate Intel hex format */
-i
                 /* Name of the output file */
-o test.i0
                  /* 16-bit code is converted into byte */
-byte
                  /* stack to suit 8-bit ROM. */
                  /* The byte order is higher byte first followed by */
-order MS
                  /* lower order byte
                                                                    * /
-memwidth 8
-romwidth 8
-boot
SECTIONS
{ .text:boot }
```

Appendix D

Submitting ROM Codes to TI

The size of a printed circuit board is a consideration in many DSP applications. To make full use of the board space, Texas Instruments offers this ROM code option that reduces the chip count and provides a single-chip solution. This option allows you to use a code-customized processor for a specific application while taking advantage of:

- Greater memory expansion
- Lower system cost
- Less hardware and wiring
- Smaller PCB

If a routine or algorithm is used often, it can be programmed into the on-chip ROM of a TMS320 DSP. TMS320 programs can also be expanded by using external memory; this reduces chip count and allows for a more flexible program memory. Multiple functions are easily implemented by a single device, thus enhancing system capabilities.

TMS320 development tools are used to develop, test, refine, and finalize the algorithms. The microprocessor/microcomputer (MP/MC) mode is available on all ROM-coded TMS320 DSP devices when accesses to either on-chip or off-chip memory are required. The microprocessor mode is used to develop, test, and refine a system application. In this mode of operation, the TMS320 acts as a standard microprocessor by using external program memory. When the algorithm has been finalized, the code can be submitted to Texas Instruments for masking into the on-chip program ROM. At that time, the TMS320 becomes a microcomputer that executes customized programs from the on-chip ROM. Should the code need changing or upgrading, the TMS320 can once again be used in the microprocessor mode. This shortens the field-upgrade time and avoids the possibility of inventory obsolescence.

Figure D–1 illustrates the procedural flow for developing and ordering TMS320 masked parts. When ordering, there is a one-time, nonrefundable charge for mask tooling. A minimum production order per year is required for any masked-ROM device. ROM codes will be deleted from the TI system one year after the final delivery.

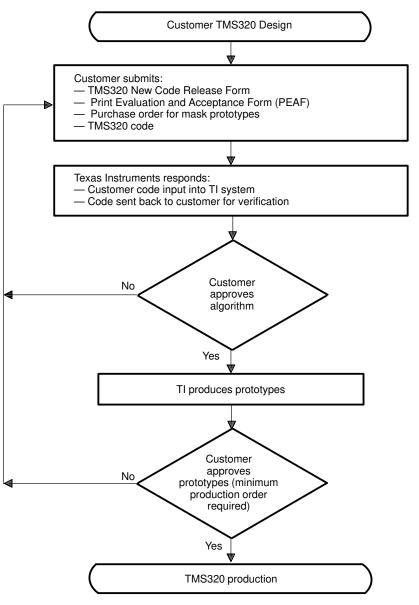


Figure D-1. TMS320 ROM Code Submittal Flow Chart

The TMS320 ROM code may be submitted in one of the following forms:

- 5-1/4-in floppy: COFF format from macro-assembler/linker (preferred)
- Modem (BBS): COFF format from macro-assembler/linker
- EPROM (others): TMS27C64
- **PROM: TBP28S166, TBP28S86**

When code is submitted to TI for masking, the code is reformatted to accommodate the TI mask-generation system. System-level verification by the customer is therefore necessary to ensure the reformatting remains transparent and does not affect the execution of the algorithm. The formatting changes involve the removal of address-relocation information (the code address begins at the base address of the ROM in the TMS320 device and progresses without gaps to the last address of the ROM) and the addition of data in the reserved locations of the ROM for device ROM test. Because these changes have been made, a checksum comparison is not a valid means of verification.

With each masked-device order, the customer must sign a disclaimer that states:

The units to be shipped against this order were assembled, for expediency purposes, on a prototype (that is, nonproduction qualified) manufacturing line, the reliability of which is not fully characterized. Therefore, the anticipated inherent reliability of these prototype units cannot be expressly defined.

and a release that states:

Any masked ROM device may be resymbolized as TI standard product and resold as though it were an unprogrammed version of the device, at the convenience of Texas Instruments.

The use of the ROM-protect feature does not hold for this release statement. Additional risk and charges are involved when the ROM-protect feature is selected. Contact the nearest TI Field Sales Office for more information on procedures, leadtimes, and cost associated with the ROM-protect feature.

Appendix E

Design Considerations for Using XDS510 Emulator

This appendix assists you in meeting the design requirements of the Texas Instruments XDS510 emulator with respect to IEEE-1149.1 designs and discusses the XDS510 cable (manufacturing part number 2617698-0001). This cable is identified by a label on the cable pod marked *JTAG 3/5V* and supports both standard 3-V and 5-V target system power inputs.

The term *JTAG*, as used in this book, refers to TI scan-based emulation, which is based on the IEEE 1149.1 standard.

For more information concerning the IEEE 1149.1 standard, contact IEEE Customer Service:

Address:	IEEE Customer Service				
	445 Hoes Lane, PO Box 1331				
	Piscataway, NJ 088	355-1331			
Phone:	(800) 678–IEEE in (908) 981–1393 ou				
FAX:	(908) 981–9667	Telex:	833233		

Topic

Page

E.1	Designing Your Target System's Emulator Connector (14-Pin Header) E-2
E.2	Bus Protocol E-4
E.3	Emulator Cable Pod E-5
E.4	Emulator Cable Pod Signal Timing E-6
E.5	Emulation Timing Calculations E-7
E.6	Connections Between the Emulator and the Target System E-10
E.7	Physical Dimensions for the 14-Pin Emulator Connector E-14
E.8	Emulation Design Considerations E-16

E.1 Designing Your Target System's Emulator Connector (14-Pin Header)

JTAG target devices support emulation through a dedicated emulation port. This port is accessed directly by the emulator and provides emulation functions that are a superset of those specified by IEEE 1149.1. To communicate with the emulator, *your target system must have a 14-pin header* (two rows of seven pins) with the connections that are shown in Figure E–1. Table E–1 describes the emulation signals.

Although you can use other headers, the recommended unshrouded, straight header has these DuPont connector systems part numbers:

- 65610–114
 65611–114
- **67996–114**
- **G** 67997–114

Figure E-1. 14-Pin Header Signals and Header Dimensions

TMS	1	2	TRST	
TDI	3	4	GND	H F
$PD(V_{CC})$	5	6	no pin (key)†	F F
TDO	7	8	GND	
TCK_RET	9	10	GND	
тск	11	12	GND	
EMU0	13	14	EMU1	

Header Dimensions: Pin-to-pin spacing, 0.100 in. (X,Y) Pin width, 0.025-in. square post Pin length, 0.235-in. nominal

[†] While the corresponding female position on the cable connector is plugged to prevent improper connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the schematics and wiring diagrams in this appendix.

Signal	Description	Emulator [†] State	Target [†] State
EMU0	Emulation pin 0	I	I/O
EMU1	Emulation pin 1	I	I/O
GND	Ground		
PD(V _{CC})	Presence detect. Indicates that the emulation cable is connected and that the target is powered up. PD should be tied to V_{CC} in the target system.	I	0
ТСК	Test clock. TCK is a 10.368-MHz clock source from the emulation cable pod. This signal can be used to drive the system test clock.	0	I
TCK_RET	Test clock return. Test clock input to the emu- lator. May be a buffered or unbuffered version of TCK.	I	0
TDI	Test data input	0	I
TDO	Test data output	I	0
TMS	Test mode select	0	I
TRST‡	Test reset	0	I

Table E-1. 14-Pin Header Signal Descriptions

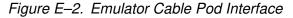
† I = input; O = output

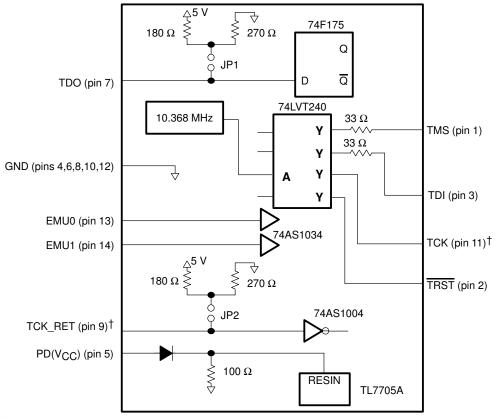
¹ De not use <u>pullup</u> resistors on <u>TRST</u>: it has an internal pulldown device. In a low-noise environment, TRST can be left floating. In a high-noise environment, an additional pulldown resistor may be needed. (The size of this resistor should be based on electrical current considerations.)

E.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port (TAP) bus slave devices and provides certain rules, summarized as follows:

- The TMS and TDI inputs are sampled on the rising edge of the TCK signal of the device.
- The TDO output is clocked from the falling edge of the TCK signal of the device.


When these devices are daisy-chained together, the TDO of one device has approximately a half TCK cycle setup time before the next device's TDI signal. This timing scheme minimizes race conditions that would occur if both TDO and TDI were timed from the same TCK edge. The penalty for this timing scheme is a reduced TCK frequency.


The IEEE 1149.1 specification does not provide rules for bus master (emulator) devices. Instead, it states that the device expects a bus master to provide bus slave compatible timings. The XDS510 provides timings that meet the bus slave rules.

E.3 Emulator Cable Pod

Figure E–2 shows a portion of the emulator cable pod. The functional features of the pod are:

- □ TDO and TCK_RET can be parallel-terminated inside the pod if required by the application. By default, these signals are not terminated.
- TCK is driven with a 74LVT240 device. Because of the high-current drive (32-mA I_{OL}/I_{OH}), this signal can be parallel-terminated. If TCK is tied to TCK_RET, you can use the parallel terminator in the pod.
- □ TMS and TDI can be generated from the falling edge of TCK_RET, according to the IEEE 1149.1 bus slave device timing rules.
- TMS and TDI are series-terminated to reduce signal reflections.
- A 10.368-MHz test clock source is provided. You can also provide your own test clock for greater flexibility.

[†] The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an optional target system test clock source.

Design Considerations for Using XDS510 Emulator E-5

E.4 Emulator Cable Pod Signal Timing

Figure E–3 shows the signal timings for the emulator cable pod. Table E–2 defines the timing parameters illustrated in the figure. These timing parameters are calculated from values specified in the standard data sheets for the emulator and cable pod and are for reference only. Texas Instruments does not test or guarantee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an optional target system test clock source.

Figure E-3. Emulator Cable Pod Timings

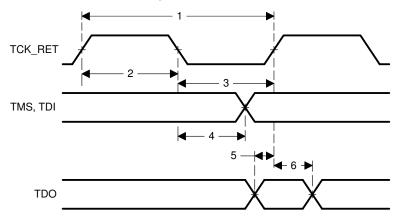


Table E–2. Emulator Cable Pod Timing Parameters

No.	Parameter	Description	Min	Max	Unit
1	t _{c(TCK)}	Cycle time, TCK_RET	35	200	ns
2	^t w(TCKH)	Pulse duration, TCK_RET high	15		ns
3	tw(TCKL)	Pulse duration, TCK_RET low	15		ns
4	^t d(TMS)	Delay time, TMS or TDI valid for TCK_RET low	6	20	ns
5	t _{su(TDO)}	Setup time, TDO to TCK_RET high	3		ns
6	t _{h(TDO)}	Hold time, TDO from TCK_RET high	12		ns

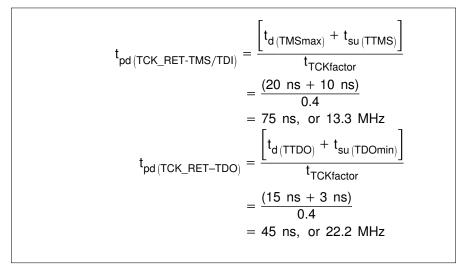
E.5 Emulation Timing Calculations

Example E–1 and Example E–2 help you calculate emulation timings in your system. For actual target timing parameters, see the appropriate data sheet for the device you are emulating.

The examples use the following assumptions:

t _{su(TTMS)}	Setup time, target TMS or TDI to TCK high	10 ns
td(TTDO)	Delay time, target TDO from TCK low	15 ns
t _{d(bufmax)}	Delay time, target buffer maximum	10 ns
t _{d(bufmin)}	Delay time, target buffer minimum	1 ns
^t bufskew	Skew time, target buffer between two devices in the same package: $[t_{d(bufmax)} - t_{d(bufmin)}] \times 0.15$	1.35 ns
^t TCKfactor	Duty cycle, assume a 40/60% duty cycle clock	0.4 (40%)

Also, the examples use the following values from Table E–2 on page E-6:


^t d(TMSmax)	Delay time, emulator TMS or TDI from TCK_RET low, maximum	20 ns
t _{su(TDOmin)}	Setup time, TDO to emulator TCK_RET high, minimum	3 ns

There are two key timing paths to consider in the emulation design:

- TheTCK_RET-to-TMSorTDIpath,calledtpd(TCK_RET-TMS/TDI)(propagation delay time)
- □ The TCK_RET-to-TDO path, called t_{pd(TCK_RET-TDO)}

In the examples, the worst-case path delay is calculated to determine the maximum system test clock frequency.

Example E-1. Key Timing for a Single-Processor System Without Buffers

In this case, because the TCK_RET-to-TMS/TDI path requires more time to complete, it is the limiting factor.

$$t_{pd (TCK_RET-TMS/TDI)} = \frac{\left[t_{d (TMSmax)} + t_{su (TTMS)} + t_{bufskew}\right]}{t_{TCKfactor}}$$
$$= \frac{(20 \text{ ns} + 10 \text{ ns} + 1.35 \text{ ns})}{0.4}$$
$$= 78.4 \text{ ns, or } 12.7 \text{ MHz}$$
$$t_{pd (TCK_RET-TDO)} = \frac{\left[t_{d (TTDO)} + t_{su (TDOmin)} + t_{d (bufmax)}\right]}{t_{TCKfactor}}$$
$$= \frac{(15 \text{ ns} + 3 \text{ ns} + 10 \text{ ns})}{0.4}$$
$$= 70 \text{ ns, or } 14.3 \text{ MHz}$$

In this case also, because the TCK_RET-to-TMS/TDI path requires more time to complete, it is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMU0 and EMU1 lines can go from a logic low level to a logic high level in less than 10 $\mu s,$ this parameter is called rise time, $t_{\text{r}}.$ This can be calculated as follows:

tr

= $5(R_{pullup} \times N_{devices} \times C_{load_per_device})$

$$= 5(4.7 \text{ k}\Omega \times 16 \times 15 \text{ pF})$$

$$= 5(4.7 \times 10^3 \,\Omega \times 16 \times 15 = \text{no}^{-12} \,\text{F})$$

$$= 5(1128 \times 10^{-9})$$

E.6 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator and the JTAG target system. You must supply the correct signal buffering, test clock inputs, and multiple processor interconnections to ensure proper emulator and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can be either input or output. In general, these two pins are used as both input and output in multiprocessor systems to handle global run/stop operations. EMU0 and EMU1 signals are applied only as inputs to the XDS510 emulator header.

E.6.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is greater than 6 inches, the emulation signals must be buffered. If the distance is less than 6 inches, no buffering is necessary. Figure E–4 shows the simpler, no-buffering situation.

The distance between the header and the JTAG target device must be no more than 6 inches. The EMU0 and EMU1 signals must have pullup resistors connected to V_{CC} to provide a signal rise time of less than 10 µs. A 4.7-k Ω resistor is suggested for most applications.

Figure E–4. Emulator Connections Without Signal Buffering

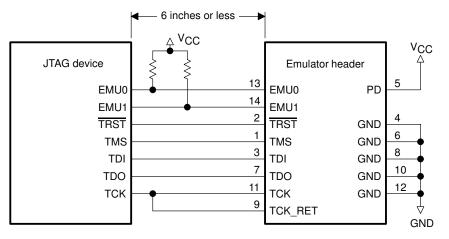


Figure E–5 shows the connections necessary for buffered transmission signals. The distance between the emulation header and the processor is greater than 6 inches. Emulation signals TMS, TDI, TDO, and TCK_RET are buffered through the same device package.

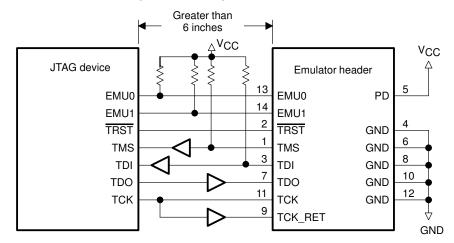
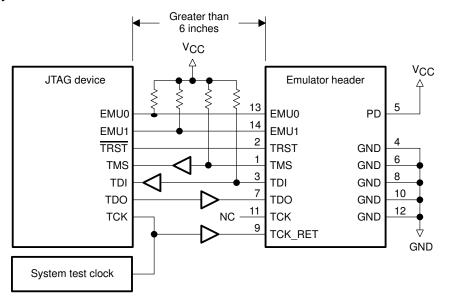


Figure E-5. Emulator Connections With Signal Buffering

The EMU0 and EMU1 signals must have pullup resistors connected to V_{CC} to provide a signal rise time of less than 10 μ s. A 4.7-k Ω resistor is suggested for most applications.

The input buffers for TMS and TDI should have pullup resistors connected to V_{CC} to hold these signals at a known value when the emulator is not connected. A resistor value of 4.7 k Ω or greater is suggested.


To have high-quality signals (especially the processor TCK and the emulator TCK_RET signals), you may have to employ special care when routing the printed wiring board trace. You also may have to use termination resistors to match the trace impedance. The emulator pod provides optional internal parallel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series termination.

Because TRST is an asynchronous signal, it should be buffered as needed to ensure sufficient current to all target devices.

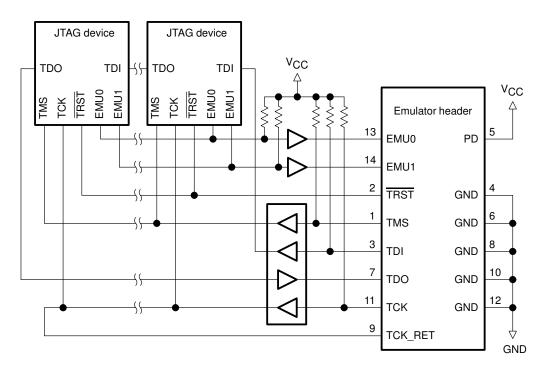
E.6.2 Using a Target-System Clock

Figure E–6 shows an application with the system test clock generated in the target system. In this application, the emulator's TCK signal is left unconnected.

Figure E-6. Target-System-Generated Test Clock

Note: When the TMS and TDI lines are buffered, pullup resistors must be used to hold the buffer inputs at a known level when the emulator cable is not connected.

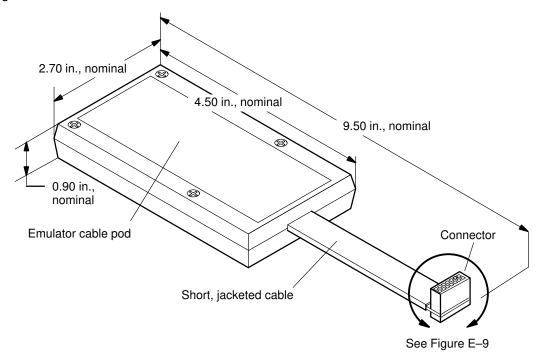
There are two benefits in generating the test clock in the target system:


- ☐ The emulator provides only a single 10.368-MHz test clock. If you allow the target system to generate your test clock, you can set the frequency to match your system requirements.
- In some cases, you may have other devices in your system that require a test clock when the emulator is not connected. The system test clock also serves this purpose.

E.6.3 Configuring Multiple Processors

Figure E–7 shows a typical daisy-chained multiprocessor configuration that meets the minimum requirements of the IEEE 1149.1 specification. The emulation signals are buffered to isolate the processors from the emulator and provide adequate signal drive for the target system. One of the benefits of this interface is that you can slow down the test clock to eliminate timing problems. Follow these guidelines for multiprocessor support:

- The processor TMS, TDI, TDO, and TCK signals must be buffered through the same physical device package for better control of timing skew.
- Buffering EMU0 and EMU1 is optional but highly recommended to provide isolation. These are not critical signals and do not have to be buffered through the same physical package as TMS, TCK, TDI, and TDO.


Figure E-7. Multiprocessor Connections

E.7 Physical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable that connects to the emulator, an active cable pod, and a short section of jacketed cable that connects to the target system. The overall cable length is approximately 3 feet 10 inches. Figure E–8 and Figure E–9 (page E-15) show the physical dimensions for the target cable pod and short cable. The cable pod box is nonconductive plastic with four recessed metal screws.

Figure E-8. Pod/Connector Dimensions

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified. Pin-to-pin spacing on the connector is 0.100 inches in both the X and Y planes.

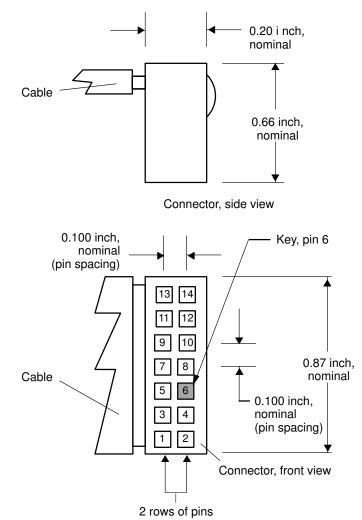


Figure E–9. 14-Pin Connector Dimensions

E.8 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL), which can simultaneously add all four secondary JTAG scan paths to the main scan path. It also describes the use of the emulation pins and the configuration of multiple processors.

E.8.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG emulation scan path into smaller, logically connected groups of 4 to 16 devices. As described in the *Advanced Logic and Bus Interface Logic Data Book*, the SPL is compatible with the JTAG emulation scanning. The SPL is capable of adding any combination of its four secondary scan paths into the main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance and isolation than a single scan path. Since an SPL has the capability of adding all secondary scan paths to the main scan path simultaneously, it can support global emulation operations, such as starting or stopping a selected group of processors.

TI emulators do not support the nesting of SPLs (for example, an SPL connected to the secondary scan path of another SPL). However, you can have multiple SPLs on the main scan path.

Scan path selectors are not supported by this emulation system. The TI ACT8999 scan path selector is similar to the SPL, but it can add only one of its secondary scan paths at a time to the main JTAG scan path. Thus, global emulation operations are not assured with the scan path selector.

You can insert an SPL on a backplane so that you can add up to four device boards to the system without the jumper wiring required with nonbackplane devices. You connect an SPL to the main JTAG scan path in the same way you connect any other device. Figure E–10 shows how to connect a secondary scan path to an SPL.

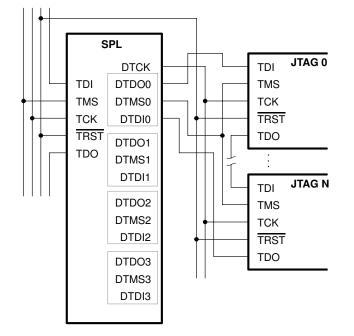


Figure E–10. Connecting a Secondary JTAG Scan Path to a Scan Path Linker

The TRST signal from the main scan path drives all devices, even those on the secondary scan paths of the SPL. The TCK signal on each target device on the secondary scan path of an SPL is driven by the SPL's DTCK signal. The TMS signal on each device on the secondary scan path is driven by the respective DTMS signals on the SPL.

DTDO0 on the SPL is connected to the TDI signal of the first device on the secondary scan path. DTDI0 on the SPL is connected to the TDO signal of the last device in the secondary scan path. Within each secondary scan path, the TDI signal of a device is connected to the TDO signal of the device before it. If the SPL is on a backplane, its secondary JTAG scan paths are on add-on boards; if signal degradation is a problem, you may need to buffer both the TRST and DTCK signals. Although degradation is less likely for DTMS*n* signals, you may also need to buffer them for the same reasons.

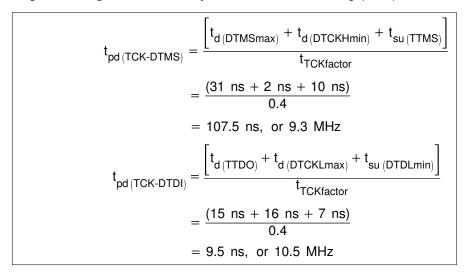
E.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL)

Example E–3 and Example E–4 help you to calculate the key emulation timings in the SPL secondary scan path of your system. For actual target timing parameters, see the appropriate device data sheet for your target device.

The examples use the following assumptions:

t _{su(TTMS)}	Setup time, target TMS/TDI to TCK high	10 ns
t _{d(TTDO)}	Delay time, target TDO from TCK low	15 ns
t _{d(bufmax)}	Delay time, target buffer, maximum	10 ns
td(bufmin)	Delay time, target buffer, minimum	1 ns
^t (bufskew)	Skew time, target buffer, between two devices in the same package: $[t_{d(bufmax)} - t_{d(bufmin)}] \times 0.15$	1.35 ns
t(TCKfactor)	Duty cycle, TCK assume a 40/60% clock	0.4 (40%)

Also, the examples use the following values from the SPL data sheet:


t _{d(DTMSmax)}	Delay time, SPL DTMS/DTDO from TCK low, maximum	31 ns
t _{su(DTDLmin)}	Setup time, DTDI to SPL TCK high, minimum	7 ns
^t d(DTCKHmin)	Delay time, SPL DTCK from TCK high, minimum	2 ns
t _{d(DTCKLmax)}	Delay time, SPL DTCK from TCK low, maximum	16 ns

There are two key timing paths to consider in the emulation design:

- ☐ The TCK-to-DTMS/DTDO path, called t_{pd(TCK-DTMS)}
- The TCK-to-DTDI path, called tpd(TCK-DTDI)

Of the following two cases, the worst-case path delay is calculated to determine the maximum system test clock frequency.

Example E–3. Key Timing for a Single-Processor System Without Buffering (SPL)

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Example E–4. Key Timing for a Single- or Multiprocessor-System With Buffered Input and Output (SPL)

$$\begin{split} t_{pd\,(TCK-TDMS)} &= \frac{\left[t_{d\,(DTMSmax)} + t_{(DTCKHmin)} + t_{su\,(TTMS)} + t_{(bufskew)} \right]}{t_{TCKfactor}} \\ &= \frac{(31 \text{ ns} + 2 \text{ ns} + 10 \text{ ns} + 1.35 \text{ ns})}{0.4} \\ &= 110.9 \text{ ns, or } 9.0 \text{ MHz} \\ t_{pd\,(TCK-DTDI)} &= \frac{\left[t_{d\,(TTDO)} + t_{d\,(DTCKLmax)} + t_{su\,(DTDLmin)} + t_{d\,(bufskew)} \right]}{t_{TCKfactor}} \\ &= \frac{(15 \text{ ns} + 15 \text{ ns} + 7 \text{ ns} + 10 \text{ ns})}{0.4} \\ &= 120 \text{ ns, or } 8.3 \text{ MHz} \end{split}$$

In this case, the TCK-to-DTDI path is the limiting factor.

Design Considerations for Using XDS510 Emulator E-19

E.8.3 Using Emulation Pins

The EMU0/1 pins of TI devices are bidirectional, 3-state output pins. When in an inactive state, these pins are at high impedance. When the pins are active, they provide one of two types of output:

- ❑ Signal Event. The EMU0/1 pins can be configured via software to signal internal events. In this mode, driving one of these pins low can cause devices to signal such events. To enable this operation, the EMU0/1 pins function as open-collector sources. External devices such as logic analyzers can also be connected to the EMU0/1 signals in this manner. If such an external source is used, it must also be connected via an open-collector source.
- External Count. The EMU0/1 pins can be configured via software as totem-pole outputs for driving an external counter. If the output of more than one device is configured for totem-pole operation, then these devices can be damaged. The emulation software detects and prevents this condition. However, the emulation software has no control over external sources on the EMU0/1 signal. Therefore, all external sources must be inactive when any device is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1 pins are driven low. This feature combined with the signal event output, allows one TI device to halt all other TI devices on a given event for system-level debugging.

If you route the EMU0/1 signals between multiple boards, they require special handling because they are more complex than normal emulation signals. Figure E–11 shows an example configuration that allows any processor in the system to stop any other processor in the system. Do not tie the EMU0/1 pins of more than 16 processors together in a single group without using buffers. Buffers provide the crisp signals that are required during a RUNB (run benchmark) debugger command or when the external analysis counter feature is used.

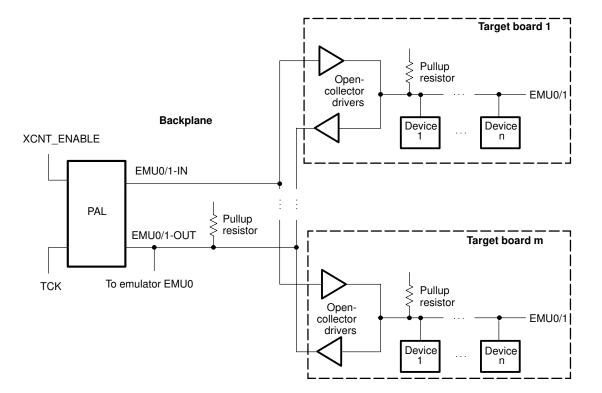
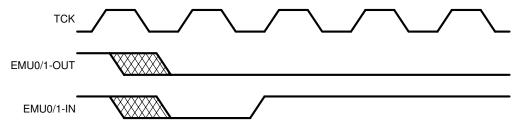
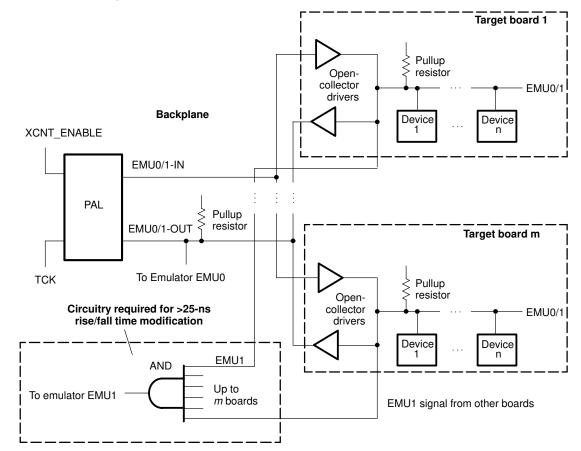
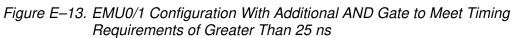


Figure E-11. EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns

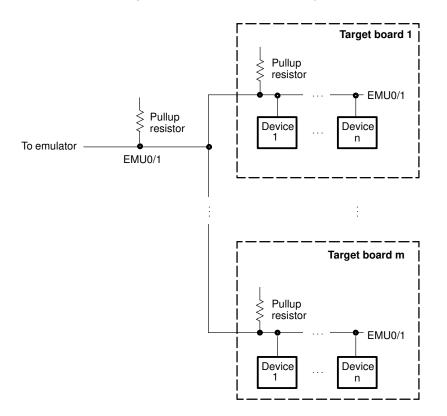

- Notes: 1) The low time on EMU0/1-IN should be at least one TCK cycle and less than 10 μs. Software sets the EMU0/1-OUT pin to a high state.
 - 2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall times of less than 25 ns, the modification shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter selected from the debugger analysis menu is used.


These seven important points apply to the circuitry shown in Figure E–11 and the timing shown in Figure E–12:


- Open-collector drivers isolate each board. The EMU0/1 pins are tied together on each board.
- At the board edge, the EMU0/1 signals are split to provide both input and output connections. This is required to prevent the open-collector drivers from acting as latches that can be set only once.
- The EMU0/1 signals are bused down the backplane. Pullup resistors must be installed as required.

- The bused EMU0/1 signals go into a programmable logic array device PAL[®] whose function is to generate a low pulse on the EMU0/1-IN signal when a low level is detected on the EMU0/1-OUT signal. This pulse must be longer than one TCK period to affect the devices but less than 10 μs to avoid possible conflicts or retriggering once the emulation software clears the device's pins.
- During a RUNB debugger command or other external analysis count, the EMU0/1 pins on the target device become totem-pole outputs. The EMU1 pin is a ripple carry-out of the internal counter. EMU0 becomes a *processor-halted* signal. During a RUNB or other external analysis count, the EMU0/1-IN signal to all boards must remain in the high (disabled) state. You must provide some type of external input (XCNT_ENABLE) to the PAL[®] to disable the PAL[®] from driving EMU0/1-IN to a low state.
- ☐ If you use sources other than TI processors (such as logic analyzers) to drive EMU0/1, their signal lines must be isolated by open-collector drivers and be inactive during RUNB and other external analysis counts.
- You must connect the EMU0/1-OUT signals to the emulation header or directly to a test bus controller.

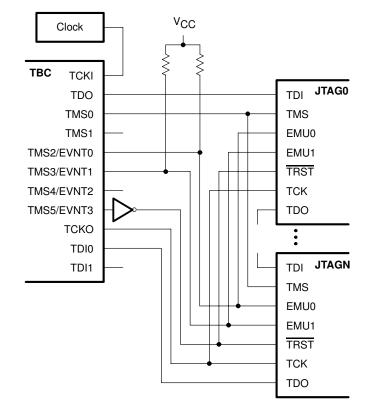
Figure E-12. Suggested Timings for the EMU0 and EMU1 Signals

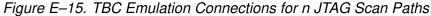


Notes: 1) The low time on EMU0/1-IN should be at least one TCK cycle and less than 10 μ s. Software will set the EMU0/1-OUT port to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall time of greater than 25 ns, the modification shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter selected from the debugger analysis menu is used.

You do not need to have devices on one target board stop devices on another target board using the EMU0/1 signals (see the circuit in Figure E–14). In this configuration, the global-stop capability is lost. It is important not to overload EMU0/1 with more than 16 devices.


Figure E-14. EMU0/1 Configuration Without Global Stop



Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rise/fall times of less than 25 ns. Rise times of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1 signals from the individual boards must be ANDed together (as shown in Figure E–14) to produce an EMU0/1 signal for the emulator.

E.8.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead of the emulation header. The TBC is described in the Texas Instruments *Advanced Logic and Bus Interface Logic Data Book*. Figure E–15 shows the scan path connections of *n* devices to the TBC.

In the system design shown in Figure E–15, the TBC emulation signals TCKI, TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0 are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target devices' EMU0 and EMU1 signals are connected to V_{CC} through pullup resistors and tied to the TBC's TMS2/EVNT0 and TMS3/EVNT1 pins, respectively. The TBC's TCKI pin is connected to a clock generator. The TCK signal for the main JTAG scan path is driven by the TBC's TCKO pin.

On the TBC, the TMS0 pin drives the TMS pins on each device on the main JTAG scan path. TDO on the TBC connects to TDI on the first device on the main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the last device on the main JTAG scan path. Within the main JTAG scan path, the TDI signal of a device is connected to the TDO signal of the device before it. TRST for the devices can be generated either by inverting the TBC's TMS5/EVNT3 signal for software control or by logic on the board itself.

Appendix F

Glossary

A

- A0–A15: Collectively, the external address bus; the 16 pins are used in parallel to address external data memory, program memory, or I/O space.
- ACC: See accumulator.
- ACCH: Accumulator high word. The upper 16 bits of the accumulator. See also accumulator.
- ACCL: Accumulator low word. The lower 16 bits of the accumulator. See also accumulator.
- **accumulator:** A 32-bit register that stores the results of operations in the central arithmetic logic unit (CALU) and provides an input for subsequent CALU operations. The accumulator also performs shift and rotate operations.
- **ADC bit:** A *detect complete bit.* Bit 14 of the I/O status register (IOSR); a flag bit used in the implementation of automatic baud-rate detection in the asynchronous serial port.
- address: The location of program code or data stored in memory.
- **addressing mode:** A method by which an instruction interprets its operands to acquire the data it needs. See also *direct addressing*; *immediate addressing*; *indirect addressing*.
- address visibility bit (AVIS): A bit in the 'C209's wait-state generator control register (WSGR) that allows the internal program address to appear at the 'C209 address pins. This allows the internal program address to be traced.
- **ADTR:** Asynchronous data transmit and receive register. A 16-bit register used by the on-chip asynchronous serial port. Data to transmit is written to the 8 LSBs of the ADTR, and received data is read from the 8 LSBs of the ADTR. See also ARSR.

analog-to-digital (A/D) converter:	A circuit that translates an analog signal
to a digital signal.	

- **AR:** See auxiliary register.
- **AR0–AR7:** Auxiliary registers 0 through 7. See auxiliary register.
- **ARAU:** See auxiliary register arithmetic unit (ARAU).
- **ARB:** See auxiliary register pointer buffer (ARB).
- **ARP:** See auxiliary register pointer (ARP).
- **ARSR:** Asynchronous serial port receive shift register. A 16-bit register in the on-chip asynchronous serial port that receives data from the RX pin one bit at a time. When full, ARSR transfers its data to the ADTR. See also *ADTR*.
- **ASPCR:** Asynchronous serial port control register. A 16-bit register used to control the on-chip asynchronous serial port; contains bits for setting port modes, enabling or disabling the automatic baud-rate detection logic, selecting the number of stop bits, enabling or disabling interrupts, setting the default level on the TX pin, configuring pins IO3–IO0, and resetting the port.
- **auxiliary register:** One of eight 16-bit registers (AR7–AR0) used as pointers to addresses in data space. The registers are operated on by the auxiliary register arithmetic unit (ARAU) and are selected by the auxiliary register pointer (ARP).
- **auxiliary register arithmetic unit (ARAU):** A 16-bit arithmetic unit used to increment, decrement, or compare the contents of the auxiliary registers. Its primary function is manipulating auxiliary register values for indirect addressing.
- **auxiliary register pointer (ARP):** A 3-bit field in status register ST0 that points to the current auxiliary register.
- **auxiliary register pointer buffer (ARB):** A 3-bit field in status register ST1 that holds the previous value of the auxiliary register pointer (ARP).
- **AVIS:** See address visibility bit (AVIS).
- **AXSR:** Asynchronous serial port transmit shift register. A 16-bit register in the asynchronous serial port that receives data from the ADTR and transfers it one bit at a time to the TX pin. See also *ADTR*; *TX pin*.

Β

- **B0:** An on-chip block of dual-access RAM that can be configured as either data memory or program memory, depending on the value of the CNF bit in status register ST1.
- B1: An on-chip block of dual-access RAM available for data memory.
- B2: An on-chip block of dual-access RAM available for data memory.
- **baud-rate divisor register (BRD):** A register for the asynchronous serial port that is used to set the serial port's baud rate.
- **BI bit:** Break interrupt bit. Bit 13 of the I/O status register (IOSR); indicates when a break is detected on the asynchronous receive (RX) pin.
- **BIO** pin: A general-purpose input pin that can be tested by conditional instructions that cause a branch when an external device drives BIO low.
- **bit-reversed indexed addressing**: A method of indirect addressing that allows efficient I/O operations by resequencing the data points in a radix-2 FFT program. The direction of carry propagation in the ARAU is reversed.
- **boot loader:** A built-in segment of code that transfers code from an 8-bit external source to a 16-bit external program destination at reset.
- **BOOT pin:** The pin that enables the on-chip boot loader. When BOOT is held low, the processor executes the boot loader program after a hardware reset. When BOOT is held high, the processor skips execution of the boot loader and accesses off-chip program-memory at reset.
- **BR:** Bus request pin. This pin is tied to the BR signal, which is asserted when a global data memory access is initiated.
- **branch:** A switching of program control to a nonsequential programmemory address.
- **BRD:** See baud-rate divisor register (BRD).
- **burst mode:** A synchronous serial port mode in which the transmission or reception of each word is preceded by a frame synchronization pulse. See also *continuous mode*.

С

- C bit: See carry bit (C).
- **CAD bit:** Calibrate A detect bit. Bit 5 of the ASPCR; enables and disables the automatic baud-rate detection logic of the on-chip asynchronous serial port.

CALU: See central arithmetic logic unit (CALU).

- **carry bit:** Bit 9 of status register ST1; used by the CALU for extended arithmetic operations and accumulator shifts and rotates. The carry bit can be tested by conditional instructions.
- central arithmetic logic unit (CALU): The 32-bit wide main arithmetic logic unit for the 'C2xx CPU that performs arithmetic and logic operations. It accepts 32-bit values for operations, and its 32-bit output is held in the accumulator.
- **CIO0–CIO3 bits:** Bits 0–3 of the asynchronous serial port control register (ASPCR); they individually configure pins IO0–IO3 as either inputs or outputs. For example, CIO0 configures the IO0 pin. See also *DIO0–DIO3 bits*; *IO0–IO3 bits*.
- **CLK register:** *CLKOUT1-pin control register.* Bit 0 of determines whether the CLKOUT1 signal is available at the CLKOUT1 pin.
- **CLKIN:** *Input clock signal.* A clock source signal supplied to the on-chip clock generator at the CLKIN/X2 pin or generated internally by the on-chip oscillator. The clock generator divides or multiplies CLKIN to produce the CPU clock signal, CLKOUT1.
- **CLKMOD pin:** (On the 'C209 only) Determines whether the on-chip clock generator is running in the divide-by-two or multiply-by-two mode. See also *clock mode*.
- **CLKOUT1:** *Master clock output signal.* The output signal of the on-chip clock generator. The CLKOUT1 high pulse signifies the CPU's logic phase (when internal values are changed), and the CLKOUT1 low pulse signifies the CPU's latch phase (when the values are held constant).
- CLKOUT1 cycle: See CPU cycle.
- CLKOUT1-pin control register: See CLK register.
- **CLKR:** *Receive clock input pin.* A pin that receives an external clock signal to clock data from the DR pin into the synchronous serial port receive shift register (RSR).
- **CLKX:** Transmit clock input/output pin. A pin used to clock data from the synchronous serial port transmit shift register to the DX pin. If the serial port is configured to accept an external clock, this pin receives the clock signal. If the port is configured to generate an internal clock, this pin transmits the clock signal.

- **clock mode (clock generator):** One of the modes which sets the internal CPU clock frequency to a fraction or multiple of the frequency of the input clock signal CLKIN. The 'C209 has two clock modes (\div 2 and \times 2); other 'C2xx devices have four clock modes (\div 2, \times 1, \times 2, and \times 4).
- clock mode (synchronous serial port): See clock mode bit (MCM).
- **clock mode bit (MCM):** Bit 2 of the synchronous serial port control register (SSPCR); determines whether the source signal for clocking synchronous serial port transfers is external or internal.
- **CNF bit:** DARAM configuration bit. Bit 12 in status register ST1. CNF is used to determine whether the on-chip RAM block B0 is mapped to program space or data space.
- **codec:** A device that codes in one direction of transmission and decodes in another direction of transmission.
- **COFF:** Common object file format. An output format that promotes modular programming by supporting sections; the format of files created by the TMS320C1x/C2x/C2xx/C5x assembler and linker.
- **context saving/restoring**: Saving the system status when the device enters a subroutine (such as an interrupt service routine) and restoring the system status when exiting the subroutine. On the 'C2xx, only the program counter value is saved and restored automatically; other context saving and restoring must be performed by the subroutine.
- **continuous mode:** A synchronous serial port mode in which only one frame synchronization pulse is necessary to transmit or receive several consecutive packets at maximum frequency. See also *burst mode*.
- **CPU**: Central processing unit. The 'C2xx CPU is the portion of the processor involved in arithmetic, shifting, and Boolean logic operations, as well as the generation of data- and program-memory addresses. The CPU includes the central arithmetic logic unit (CALU), the multiplier, and the auxiliary register arithmetic unit (ARAU).
- **CPU cycle:** The time required for the CPU to go through one logic phase (during which internal values are changed) and one latch phase (during which the values are held constant).
- current AR: See current auxiliary register.
- **current auxiliary register:** The auxiliary register pointed to by the auxiliary register pointer (ARP). The auxiliary registers are AR0 (ARP = 0) through AR7 (ARP = 7). See also *auxiliary register*, *next auxiliary register*.

current data page: The data page indicated by the content of the data page pointer (DP). See also *data page*; *DP*.

- **D0–D15:** Collectively, the external data bus; the 16 pins are used in parallel to transfer data between the 'C2xx and external data memory, program memory, or I/O space.
- **DARAM:** *Dual-access RAM.* RAM that can be accessed twice in a single CPU clock cycle. For example, your code can read from and write to DA-RAM in the same clock cycle.
- DARAM configuration bit (CNF): See CNF bit.
- **data-address generation logic:** Logic circuitry that generates the addresses es for data memory reads and writes. This circuitry, which includes the auxiliary registers and the ARAU, can generate one address per machine cycle. See also *program-address generation logic.*
- **data page:** One block of 128 words in data memory. Data memory contains 512 data pages. Data page 0 is the first page of data memory (addresses 0000h–007Fh); data page 511 is the last page (addresses FF80h–FFFFh). See also *data page pointer (DP)*; *direct addressing*.
- **data page 0:** Addresses 0000h–007Fh in data memory; contains the memory-mapped registers, a reserved test/emulation area for special information transfers, and the scratch-pad RAM block (B2).
- **data page pointer (DP):** A 9-bit field in status register ST0 that specifies which of the 512 data pages is currently selected for direct address generation. When an instruction uses direct addressing to access a data-memory value, the DP provides the nine MSBs of the data-memory address, and the instruction provides the seven LSBs.
- data-read address bus (DRAB): A 16-bit internal bus that carries the address for each read from data memory.
- data read bus (DRDB): A 16-bit internal bus that carries data from data memory to the CALU and the ARAU.
- **data-write address bus (DWAB):** A 16-bit internal bus that carries the address for each write to data memory.
- data write bus (DWEB): A 16-bit internal bus that carries data to both program memory and data memory.

- **decode phase:** The phase of the pipeline in which the instruction is decoded. See also *pipeline*; *instruction-fetch phase*; *operand-fetch phase*; *instruction-execute phase*.
- **delta interrupt:** An asynchronous serial port interrupt (TXRXINT) that is generated if a change takes place on one of these general-purpose I/O pins: IO0, IO1, IO2, or IO3.
- **digital loopback mode:** A synchronous serial port test mode in which the receive pins are connected internally to the transmit pins on the same device. This mode, enabled or disabled by the DLB bit, allows you to test whether the port is operating correctly.
- **DIM:** Delta interrupt mask bit. Bit 9 of the asynchronous serial port control register (ASPCR); enables or disables delta interrupts.
- **DIO0–DIO3 bits:** Bits 4–7 of the IOSR. If the asynchronous serial port is enabled (the URST bit of the ASPCR is 1), these bits are used to track a change from a previous known or unknown signal value at the corresponding I/O pin (IO0–IO3). For example, DIO0 indicates a change on the IO0 pin. See also *CIO0–CIO3 bits*; *IO0–IO3 bits*.
- **direct addressing:** One of the methods used by an instruction to address data-memory. In direct addressing, the data-page pointer (DP) holds the nine MSBs of the address (the current data page), and the instruction word provides the seven LSBs of the address (the offset). See also *indirect addressing*.
- **DIV2/DIV1:** Two pins used together to determine the clock mode of the 'C2xx clock generator (\div 2, \times 1, \times 2, or \times 4). (The 'C209 uses the CLKMOD pin and has only two clock modes, \div 2 and \times 2.)
- **divide-down value:** The value in the timer divide-down register (TDDR). This value is the prescale count for the on-chip timer. The larger the divide-down value, the slower the timer interrupt rate.
- **DLB bit:** Bit 0 of the synchronous serial port control register (SSPCR); enables or disables digital loopback mode for the on-chip synchronous serial port. See also *digital loopback mode*.
- **DP:** See data page pointer (DP).
- **DR bit:** Data ready indicator for the receiver. Bit 8 of the I/O status register (IOSR); indicates whether a new 8-bit character has been received in the ADTR of the asynchronous serial port.
- **DR pin:** Serial data receive pin. A synchronous serial port pin that receives serial data. As each bit is received at DR, the bit is transferred serially into the receive shift register (RSR).

- **DRAB:** See data-read address bus (DRAB).
- **DRDB:** See data read bus (DRDB).
- **DS:** Data memory select pin. The 'C2xx asserts **DS** to indicate an access to external data memory (local or global).
- **DSWS:** Data-space wait-state bit(s). A value in the wait-state generator control register (WSGR) that determines the number of wait states applied to reads from and writes to off-chip data space. On the 'C209, DSWS is bit 1 of the WSGR; on other 'C2xx devices, DSWS is bits 8–6.
- dual-access RAM: See DARAM.
- **dummy cycle:** A CPU cycle in which the CPU intentionally reloads the program counter with the same address.
- DWAB: See data-write address bus (DWAB).
- DWEB: See data write bus (DWEB).
- **DX pin:** Serial data transmit pin. The pin on which data is transmitted serially from the synchronous serial port; accepts a data word one bit at a time from the transmit shift register (XSR).

Ξ

- **execute phase:** The fourth phase of the pipeline; the phase in which the instruction is executed. See also *pipeline*; *instruction-fetch phase*; *instruction-decode phase*; *operand-fetch phase*.
- **external interrupt:** A hardware interrupt triggered by an external event sending an input through an interrupt pin.

F

- **FE bit:** *Framing error indicator bit.* Bit 10 of I/O status register (IOSR); indicates whether a valid stop bit has been detected during the reception of a character into the asynchronous serial port.
- **FIFO buffer:** *First-in, first-out buffer.* A portion of memory in which data is stored and then retrieved in the same order in which it was stored. The synchronous serial port has two four-word-deep FIFO buffers: one for its transmit operation and one for its receive operation.
- flash memory: Electronically erasable and programmable, nonvolatile (read-only) memory.

- **FR0/FR1:** *FIFO receive-interrupt bits.* Bits 8 and 9 of the synchronous serial port control register (SSPCR); together they set an interrupt trigger condition based on the number of words in the receive FIFO buffer.
- **frame synchronization (frame sync) mode:** One of two modes in the synchronous serial port that determine whether frame synchronization pulses are necessary between consecutive data transfers. See also *burst mode; continuous mode.*
- frame synchronization (frame sync) pulse: A pulse that signals the start of a transmission from or reception into the synchronous serial port.
- framing error: An error that occurs when a data character received by the asynchronous serial port does not have a valid stop bit. See also FE bit.
- **FREE bit (asynchronous serial port):** Bit 15 of the asynchronous serial port control register (ASPCR); determines whether the port is in free-run mode or an emulation mode. When FREE = 0, bit 14 (SOFT) determines which emulation mode is selected.
- **FREE bit (synchronous serial port):** Bit 15 of the synchronous serial port control register (SSPCR); determines whether the port is in free-run mode or an emulation mode. When FREE = 0, bit 14 (SOFT) determines which emulation mode is selected.
- **FREE bit (timer):** Bit 11 of the timer control register (TCR); determines whether the timer is in free-run mode or an emulation mode. When FREE = 0, bit 14 (SOFT) determines which emulation mode is selected. FREE and SOFT are not available in the TCR of the 'C209.
- **FSM bit:** Bit 1 of the synchronous serial port control register (SSPCR); determines the frame synchronization mode for the synchronous serial port. See also *burst mode*; *continuous mode*.
- **FSR pin:** *Receive frame synchronization pin.* This input pin accepts a frame sync pulse that initiates the reception process of the synchronous serial port.
- **FSX pin:** *Transmit frame synchronization pin.* This input/output pin accepts/ generates a frame sync pulse that initiates the transmission process of the synchronous serial port. If the port is configured for accepting an external frame sync pulse, the FSX pin receives the pulse. If the port is configured for generating an internal frame sync pulse, the FSX pin transmits the pulse.
- **FT0/FT1:** *FIFO transmit-interrupt bits.* Bits 10 and 11 of the synchronous serial port control register (SSPCR); together they set an interrupt trigger condition based on the number of words in the transmit FIFO buffer.

G

- **general-purpose input/output pins:** Pins that can be used to accept input signals and/or send output signals but are not linked to specific uses. These pins are the input pin BIO, the output pin XF, and the input/output pins IO0, IO1, IO2, and IO3. (IO0–IO3 are not available on the 'C209.)
- **global data space**: One of the four 'C2xx address spaces. The global data space can be used to share data with other processors within a system and can serve as additional data space. See also *local data space*.
- **GREG:** Global memory allocation register. A memory-mapped register used for specifying the size of the global data memory. Addresses not allocated by the GREG for global data memory are available for local data memory.
- **hardware interrupt:** An interrupt triggered through physical connections with on-chip peripherals or external devices.
- **HOLD:** An input signal that allows external devices to request control of the external buses. If an external device drives the HOLD/INT1 pin low and the CPU sends an acknowledgement at the HOLDA pin, the external device has control of the buses until it drives HOLD high or a nonmaskable hardware interrupt is generated. If HOLD is not used, it should be pulled high.
- **HOLDA:** HOLD acknowledge signal. An output signal sent to the HOLDA pin by the CPU in acknowledgement of a properly initiated HOLD operation. When HOLDA is low, the processor is in a holding state and the address, data, and memory-control lines are available to external circuitry.
- **HOLD operation:** An operation on the 'C2xx that allows for direct memory access of external memory and I/O devices. A HOLD operation is initiated by a HOLD/INT1 interrupt. When the corresponding interrupt service routine executes an IDLE instruction, the external buses enter the high-impedance state and the HOLDA signal is asserted. The buses return to their normal state, and the HOLD operation is concluded, when the processor exits the IDLE state.

IACK: See interrupt acknowledge signal (IACK).

Η

- IC: (Used in earlier documentation.) See interrupt control register (ICR).
- **ICR:** See interrupt control register (ICR).
- **IFR:** See interrupt flag register (IFR).
- **immediate addressing:** One of the methods for obtaining data values used by an instruction; the data value is a constant embedded directly into the instruction word; data memory is not accessed.
- **immediate operand/immediate value:** A constant given as an operand in an instruction that is using immediate addressing.
- **IMR:** See interrupt mask register (IMR).
- INO: Bit 6 of the synchronous serial port control register (SSPCR); allows you to use the CLKR pin as a bit input. IN0 indicates the current logic level on CLKR.
- **indirect addressing:** One of the methods for obtaining data values used by an instruction. When an instruction uses indirect addressing, data memory is addressed by the current auxiliary register. See also *direct addressing*.
- input clock signal: See CLKIN.
- input/output status register: See I/O status register (IOSR).
- **input shifter:** A 16- to 32-bit left barrel shifter that shifts incoming 16-bit data from 0 to 16 positions left relative to the 32-bit output.
- **instruction-decode phase:** The second phase of the pipeline; the phase in which the instruction is decoded. See also *pipeline*; *instruction-fetch phase*; *operand-fetch phase*; *instruction-execute phase*.
- **instruction-execute phase:** The fourth phase of the pipeline; the phase in which the instruction is executed. See also *pipeline*; *instruction-fetch phase*; *instruction-decode phase*; *operand-fetch phase*.
- **instruction-fetch phase:** The first phase of the pipeline; the phase in which the instruction is fetched from program-memory. See also *pipeline*; *instruction-decode phase*; *operand-fetch phase; instruction-execute phase*.
- **instruction register (IR):** A 16-bit register that contains the instruction being executed.
- **instruction word:** A 16-bit value representing all or half of an instruction. An instruction that is fully represented by 16 bits uses one instruction word. An instruction that must be represented by 32 bits uses two instruction words (the second word is a constant).

- INT1-INT3: Three external pins used to generate general-purpose hardware interrupts.
- internal interrupt: A hardware interrupt caused by an on-chip peripheral.
- **interrupt:** A signal sent to the CPU that (when not masked or disabled) forces the CPU into a subroutine called an interrupt service routine (ISR). This signal can be triggered by an external device, an on-chip peripheral, or an instruction (INTR, NMI, or TRAP).
- **interrupt acknowledge signal (**IACK): An output signal on the 'C209 that indicates that an interrupt has been received and that the program counter is fetching the interrupt vector that will force the processor into the appropriate interrupt service routine.
- **INT2 INT2 INT3 INT3 INT3 INT5 I**
- **interrupt flag register (IFR):** A 16-bit memory-mapped register that indicates pending interrupts. Read the IFR to identify pending interrupts and write to the IFR to clear selected interrupts. Writing a 1 to any IFR flag bit clears that bit to 0.
- **interrupt latency:** The delay between the time an interrupt request is made and the time it is serviced.
- **interrupt mask register (IMR):** A 16-bit memory-mapped register used to mask external and internal interrupts. Writing a 1 to any IMR bit position enables the corresponding interrupt (when INTM = 0).
- **interrupt mode bit (INTM):** Bit 9 in status register ST0; either enables all maskable interrupts that are not masked by the IMR or disables all maskable interrupts.
- interrupt service routine (ISR): A module of code that is executed in response to a hardware or software interrupt.
- **interrupt trap:** See *interrupt service routine (ISR)*.
- **interrupt vector:** A branch instruction that leads the CPU to an interrupt service routine (ISR).
- interrupt vector location: An address in program memory where an interrupt vector resides. When an interrupt is acknowledged, the CPU branches to the interrupt vector location and fetches the interrupt vector.
- **INTM bit:** See interrupt mode bit (INTM).

- IO0–IO3 bits: Bits 0–3 of the IOSR. When pins IO0–IO3 are configured as inputs, these bits reflect the current logic levels on the pins. For example, the IO0 bit reflects the level on the IO0 pin. See also CIO0–CIO3 bits; DIO0–DIO3 bits.
- IO0–IO3 pins: Four pins that can be individually configured as inputs or outputs. These pins can be used for interfacing the asynchronous serial port or as general-purpose I/O pins. See also CIO0–CIO3 bits; DIO0–DIO3 bits; IO0–IO3 bits.
- I/O-mapped register: One of the on-chip registers mapped to addresses in I/O (input/output) space. These registers, which include the registers for the on-chip peripherals, must be accessed with the IN and OUT instructions. See also *memory-mapped register*.
- I/O status register (IOSR): A register in the asynchronous serial port that provides status information about signals IO0–IO3 and about transfers in progress.
- **IOSR:** See I/O status register (IOSR).
- **IR:** See instruction register (IR).
- IS: I/O space select pin. The 'C2xx asserts IS to indicate an access to external I/O space.
- **ISR:** See interrupt service routine (ISR).
- **ISWS:** *I/O-space wait-state bit(s).* A value in the wait-state generator control register (WSGR) that determines the number of wait states applied to reads from and writes to off-chip I/O space. On the 'C209, ISWS is bit 2 of the WSGR; on other 'C2xx devices, ISWS is bits 11–9.

- **latch phase:** The phase of a CPU cycle during which internal values are held constant. See also *logic phase*; *CLKOUT1*.
- **local data space:** The portion of data-memory addresses that are not allocated as global by the global memory allocation register (GREG). If none of the data-memory addresses are allocated for global use, all of data space is local. See also *global data space*.
- **logic phase:** The phase of a CPU cycle during which internal values are changed. See also *latch phase*; *CLKOUT1*.
- **long-immediate value:** A 16-bit constant given as an operand of an instruction that is using immediate addressing.

LSB: Least significant bit. The lowest order bit in a word. When used in plural form (LSBs), refers to a specified number of low-order bits, beginning with the lowest order bit and counting to the left. For example, the four LSBs of a 16-bit value are bits 0 through 3. See also *MSB*.

Ν

machine cycle: See CPU cycle.

- **maskable interrupt**: A hardware interrupt that can be enabled or disabled through software. See also *nonmaskable interrupt*.
- master clock output signal: See CLKOUT1.
- master phase: See logic phase.
- MCM bit: See clock mode bit (MCM).
- **memory-mapped register:** One of the on-chip registers mapped to addresses in data memory. See also *I/O-mapped register*.
- **microcomputer mode:** A mode in which the on-chip ROM or flash memory is enabled. This mode is selected with the MP/MC pin. See also MP/MC pin; microprocessor mode.
- **microprocessor mode:** A mode in which the on-chip ROM or flash memory is disabled. This mode is selected with the MP/MC pin. See also MP/MC pin; microcomputer mode.
- **micro stack (MSTACK):** A register used for temporary storage of the program counter (PC) value when an instruction needs to use the PC to address a second operand.
- **MIPS:** Million instructions per second.
- **MODE bit:** Bit 4 of the interrupt control register (ICR); determines whether the HOLD/INT1 pin is only negative-edge sensitive or both negative- and positive-edge sensitive.
- **MP/MC pin**: A pin that indicates whether the processor is operating in microprocessor mode or microcomputer mode. MP/MC high selects microprocessor mode; MP/MC low selects microcomputer mode.
- **MSB**: *Most significant bit.* The highest order bit in a word. When used in plural form (MSBs), refers to a specified number of high-order bits, beginning with the highest order bit and counting to the right. For example, the eight MSBs of a 16-bit value are bits 15 through 8. See also LSB.

MSTACK: See micro stack.

multiplier: A part of the CPU that performs 16-bit × 16-bit multiplication and generates a 32-bit product. The multiplier operates using either signed or unsigned 2s-complement arithmetic.

next AR: See next auxiliary register.

- **next auxiliary register:** The register that will be pointed to by the auxiliary register pointer (ARP) when an instruction that modifies ARP is finished executing. See also *auxiliary register*; *current auxiliary register*.
- **NMI:** A hardware interrupt that uses the same logic as the maskable interrupts but cannot be masked. It is often used as a soft reset. See also maskable interrupt; nonmaskable interrupt.
- **nonmaskable interrupt:** An interrupt that can be neither masked by the interrupt mask register (IMR) nor disabled by the INTM bit of status register ST0.
- **NPAR:** Next program address register. Part of the program-address generation logic. This register provides the address of the next instruction to the program counter (PC), the program address register (PAR), the micro stack (MSTACK), or the stack.

0

Ν

- **OE:** *Receiver register overrun indicator bit.* Bit 9 of the I/O status register (IOSR); indicates whether overrun has occurred in the receiver of the asynchronous serial port (that is, whether an unread character in the ADTR has been overwritten by a new character).
- **operand:** A value to be used or manipulated by an instruction; specified in the instruction.
- **operand-fetch phase:** The third phase of the pipeline; the phase in which an operand or operands are fetched from memory. See also *pipeline*; *instruction-fetch phase*; *instruction-decode phase*; *instruction-execute phase*.
- **output shifter:** 32- to 16-bit barrel left shifter. Shifts the 32-bit accumulator output from 0 to 7 bits left for quantization management, and outputs either the 16-bit high or low half of the shifted 32-bit data to the data write bus (DWEB).

- **OV bit:** Overflow flag bit. Bit 12 of status register ST0; indicates whether the result of an arithmetic operation has exceeded the capacity of the accumulator.
- **overflow (in a register):** A condition in which the result of an arithmetic operation exceeds the capacity of the register used to hold that result.
- **overflow (in the synchronous serial port):** A condition in which the receive FIFO buffer of the port is full and another word is received in the RSR. (None of the contents of the FIFO buffer are overwritten by this new word.)
- **overflow mode:** The mode in which an overflow in the accumulator will cause the accumulator to be loaded with a preset value. If the overflow is in the positive direction, the accumulator will be loaded with its most positive number. If the overflow is in the negative direction, the accumulator will be filled with its most negative number.
- **overrun:** A condition in the receiver of the asynchronous serial port. Overrun occurs when an unread character in the ADTR is overwritten by a new character.
- **OVF bit:** Overflow bit (synchronous serial port). Bit 7 of the synchronous serial port control register (SSPCR); indicates when the receive FIFO buffer of the port is full and another word is received in the RSR. (None of the contents of the FIFO buffer are overwritten by this new word.)
- **OVM bit:** Overflow mode bit. Bit 11 of status register ST0; enables or disables overflow mode. See also overflow mode.
- **PAB:** See program address bus (PAB).
- **PAR:** *Program address register.* A register that holds the address currently being driven on the program address bus for as many cycles as it takes to complete all memory operations scheduled for the current machine cycle.
- **PC:** See program counter (PC).
- PCB: Printed circuit board.
- **pending interrupt:** A maskable interrupt that has been successfully requested but is awaiting acknowledgement by the CPU.

period register: See PRD.

- **pipeline**: A method of executing instructions in an assembly line fashion. The 'C2xx pipeline has four independent phases. During a given CPU cycle, four different instructions can be active, each at a different stage of completion. See also *instruction-fetch phase*; *instruction-decode phase*; *operand-fetch phase*; *instruction-execute phase*.
- PLL: Phase lock loop circuit.
- **PM bits:** See product shift mode bits (PM).
- **power-down mode:** The mode in which the processor enters a dormant state and dissipates considerably less power than during normal operation. This mode is initiated by the execution of an IDLE instruction. During a power-down mode, all internal contents are maintained so that operation continues unaltered when the power-down mode is terminated. The contents of all on-chip RAM also remains unchanged.
- **PRD:** *Timer period register.* A 16-bit memory-mapped register that specifies the main period for the on-chip timer. When the timer counter register (TIM) is decremented past zero, the TIM is loaded with the value in the PRD. See also *TDDR*.
- **PRDB:** See program read bus (PRDB).
- **PREG:** See product register (PREG).
- prescaler counter: See PSC.
- **product register (PREG):** A 32-bit register that holds the results of a multiply operation.
- **product shifter:** A 32-bit shifter that performs a 0-, 1-, or 4-bit left shift, or a 6-bit right shift of the multiplier product based on the value of the product shift mode bits (PM).
- **product shift mode:** One of four modes (no-shift, shift-left-by-one, shift-left-by-four, or shift-right-by-six) used by the product shifter.
- **product shift mode bits (PM):** Bits 0 and 1 of status register ST1; they identify which of four shift modes (no-shift, left-shift-by-one, left-shift-by-four, or right-shift-by-six) will be used by the product shifter.
- program address bus (PAB): A 16-bit internal bus that provides the addresses for program-memory reads and writes.
- **program-address generation logic:** Logic circuitry that generates the addresses for program memory reads and writes, and an operand address in instructions that require two registers to address operands. This circuitry can generate one address per machine cycle. See also *data-address generation logic*.

- **program control logic:** Logic circuitry that decodes instructions, manages the pipeline, stores status of operations, and decodes conditional operations.
- program counter (PC): A register that indicates the location of the next instruction to be executed.
- **program read bus (PRDB):** A 16-bit internal bus that carries instruction code and immediate operands, as well as table information, from program memory to the CPU.
- **PS:** *Program select pin.* The 'C2xx asserts **PS** to indicate an access to external program memory.
- **PSC:** *Timer prescaler counter.* Bits 9–6 of the timer control register (TCR); specifies the prescale count for the on-chip timer.
- **PSLWS:** Lower program-space wait-state bits. A value in the wait-state generator control register (WSGR) that determines the number of wait states applied to reads from and writes to off-chip lower program space (addresses 0000h–7FFFh). PSLWS is not available on the 'C209; instead, see *PSWS*. On other 'C2xx devices, PSLWS is bits 2–0 of the WSGR. See also *PSUWS*.
- **PSUWS:** Upper program-space wait-state bits. A value in the wait-state generator control register (WSGR) that determines the number of wait states applied to reads from and writes to off-chip upper program space (addresses 8000h–FFFFh). PSUWS is not available on the 'C209; instead, see *PSWS*. On other 'C2xx devices, PSUWS is bits 5–3 of the WSGR. See also *PSLWS*.
- **PSWS:** *Program-space wait-state bit.* Bit 0 of the 'C209 wait-state generator control register (WSGR). PSWS determines the number of wait states applied to reads from off-chip program memory space.

R

- **RAMEN:** *RAM enable pin.* This pin enables or disables on-chip single-access RAM.
- **RD:** *Read select pin.* The 'C2xx asserts RD to request a read from external program, data, or I/O space. RD can be connected directly to the output enable pin of an external device.
- **READY:** External device ready pin. Used to create wait states externally. When this pin is driven low, the 'C2xx waits one CPU cycle and then tests READY again. After READY is driven low, the 'C2xx does not continue processing until READY is driven high.

- **receive interrupt (asynchronous serial port):** An interrupt (TXRXINT) caused during reception by any one of these events: the ADTR holds a new character; overrun occurs; a framing error occurs; a break has been detected on the RX pin; a character *A* or *a* has been detected in the ADTR by the automatic baud-rate detection logic.
- receive interrupt (synchronous serial port): See RINT.
- **receive interrupt mask bit (RIM):** Bit 7 of the asynchronous serial port control register (ASPCR); enables or disables receive interrupts of the asynchronous serial port.
- receive pin (asynchronous serial port): See RX pin.
- receive pin (synchronous serial port): See DR pin.
- receive register (asynchronous serial port): See ADTR.
- receive register (synchronous serial port): See SDTR.
- **receive reset (RRST) bit:** Bit 4 of the synchronous serial port control register (SSPCR); resets the receiver portion of the synchronous serial port.
- receive shift register (asynchronous serial port): See ARSR.
- receive shift register (synchronous serial port): See RSR.
- **repeat counter (RPTC):** A 16-bit register that counts the number of times a single instruction is repeated. RPTC is loaded by an RPT instruction.
- **reset:** A way to bring the processor to a known state by setting the registers and control bits to predetermined values and signaling execution to start at address 0000h.
- reset pin (RS, also RS on 'C209): This pin causes a reset.
- reset vector: The interrupt vector for reset.
- **return address:** The address of the instruction to be executed when the CPU returns from a subroutine or interrupt service routine.
- **RFNE bit:** Receive FIFO buffer not empty bit. Bit 12 of the synchronous serial port control register (SSPCR); indicates whether the receive FIFO buffer of the synchronous serial port contains data to be read.
- **RIM bit:** See receive interrupt mask bit (RIM).
- **RINT:** Receive interrupt (synchronous serial port). An interrupt (RINT) generated during reception based on the number of words in the receive FIFO buffer. The trigger condition (the desired number of words in the buffer) is determined by the values of the receive-interrupt bits (FR1 and FR0) of the synchronous serial port control register (SSPCR).

- **RPTC:** See repeat counter (RPTC).
- **RRST:** *Receive reset bit.* Bit 4 of the synchronous serial port control register (SSPCR); resets the receiver portion of the synchronous serial port.
- **RS:** *Reset pin.* When driven low, causes a reset on any 'C2xx device, including the 'C209.
- RS: Reset pin. (On the 'C209 only) When driven high, causes a reset.
- **RSR:** *Receive shift register.* Shifts data serially into the synchronous serial port from the DR pin. See also *XSR*.
- **R**/**W**: *Read/write pin.* Indicates the direction of transfer between the 'C2xx and external program, data, or I/O space.
- **RX pin:** Asynchronous receive pin. During reception in the asynchronous serial port, this pin accepts a character one bit at a time, transferring it to the ARSR.

S

- **SARAM:** *Single-access RAM.* RAM that can accessed (read from or written to) once in a single CPU cycle.
- **scratch-pad RAM:** Another name for DARAM block B2 in data space (32 words).
- **SDTR:** Synchronous data transmit and receive register. An I/O-mapped read/write register that sends data to the transmit FIFO buffer and extracts data from the receive FIFO buffer.
- **SETBRK:** Bit 4 of the asynchronous serial port control register (ASPCR); selects the output level (high or low) on the TX pin when the port is not transmitting.
- **short-immediate value:** An 8-, 9-, or 13-bit constant given as an operand of an instruction that is using immediate addressing.
- **sign bit:** The MSB of a value when it is seen by the CPU to indicate the sign (negative or positive) of the value.
- **sign extend:** Fill the unused high order bits of a register with copies of the sign bit in that register.
- **sign-extension mode (SXM) bit**: Bit 10 of status register ST1; enables or disables sign extension in the input shifter. It also differentiates between logic and arithmetic shifts of the accumulator.

single-access RAM: See SARAM.

slave phase: See latch phase.

- **SOFT bit (asynchronous serial port):** Bit 14 in the asynchronous serial port control register (ASPCR); a special emulation bit that is used in conjunction with bit 15 (FREE) to determine the state of an asynchronous serial port transfer when a software breakpoint is encountered during emulation. When FREE = 0, SOFT determines the emulation mode. See also *FREE bit (asynchronous serial port)*.
- **SOFT bit (synchronous serial port):** Bit 14 of the synchronous serial port control register (SSPCR); a special emulation bit that is used in conjunction with bit 15 (FREE) to determine the state of a synchronous serial port transfer when a software breakpoint is encountered during emulation. When FREE = 0, SOFT determines the emulation mode. See also *FREE bit (synchronous serial port)*.
- **SOFT bit (timer):** Bit 10 of the timer control register (TCR); a special emulation bit that is used in conjunction with bit 11 (FREE) to determine the state of the timer when a software breakpoint is encountered during emulation. When FREE = 0, SOFT determines the emulation mode. SOFT and FREE are not available in the TCR of the 'C209. See also *FREE bit (timer)*.
- **software interrupt:** An interrupt caused by the execution of an INTR, NMI, or TRAP instruction.
- **software stack:** A program control feature that allows you to extend the hardware stack into data memory with the PSHD and POPD instructions. The stack can be directly stored and recovered from data memory, one word at time. This feature is useful for deep subroutine nesting or protection against stack overflow.
- **SSPCR:** Synchronous serial port control register. A 16-bit I/O-mapped register that you write to when setting the configuration of the synchronous serial port and that you read when obtaining the status of the port.
- **ST0 and ST1:** See status registers ST0 and ST1.
- **stack:** A block of memory reserved for storing return addresses for subroutines and interrupt service routines. The 'C2xx stack is 16 bits wide and eight levels deep.
- **start bit:** Every 8-bit data value transmitted or received by the asynchronous serial port must be preceded by a start bit, a logic 0 pulse.

- status registers ST0 and ST1: Two 16-bit registers that contain bits for determining processor modes, addressing pointer values, and indicating various processor conditions and arithmetic logic results. These registers can be stored into and loaded from data memory, allowing the status of the machine to be saved and restored for subroutines.
- **STB bit:** Stop bit selector. Bit 6 of the asynchronous serial port control register (ASPCR); selects the number of stop bits (one or two) used in transmission and reception.
- stop bit: Every 8-bit data value transmitted or received by the asynchronous serial port must be followed by one or two stop bits, each a logic 1 pulse. The number of stop bits required depends on the STB bit of the ASPCR.
- **STRB:** *External access active strobe.* The 'C2xx asserts STRB during accesses to external program, data, or I/O space.
- **SXM bit:** See sign-extension mode bit (SXM).

TC bit: *Test/control flag bit.* Bit 11 of status register ST1; stores the results of test operations done in the central arithmetic logic unit (CALU) or the auxiliary register arithmetic unit (ARAU). The TC bit can be tested by conditional instructions.

- **TCOMP:** *Transmission complete bit.* Bit 13 of the synchronous serial port control register (SSPCR); indicates when all data in the transmit FIFO buffer of the synchronous serial port has been transmitted.
- **TCR:** *Timer control register.* A 16-bit register that controls the operation of the on-chip timer.
- **TDDR:** See timer divide-down register (TDDR).
- **temporary register (TREG):** A 16-bit register that holds one of the operands for a multiply operation; the dynamic shift count for the LACT, ADDT, and SUBT instructions; or the dynamic bit position for the BITT instruction.
- **TEMT bit:** *Transmit empty indicator.* Bit 12 of the I/O status register (IOSR); indicates whether the transmit register (ADTR) and/or the transmit shift register (AXSR) of the asynchronous serial port are full or empty.
- **THRE bit:** Transmit register empty indicator. Bit 11 of the I/O status register (IOSR); indicates when the contents of the transmit register (ADTR) are transferred to the transmit shift register (AXSR).

- **TIM bit:** *Transmit interrupt mask bit.* Bit 8 of the asynchronous serial port control register (ASPCR); enables or disables transmit interrupts of the asynchronous serial port.
- **TIM register:** See *timer counter register (TIM)*.
- **timer counter register (TIM):** A 16-bit memory-mapped register that holds the main count for the on-chip timer. See also *timer prescaler counter (PSC)*.
- **timer divide-down register (TDDR):** Bits 3–0 of the timer control register (TCR); specifies the timer divide-down period for the on-chip timer. When the timer prescaler counter (PSC) decrements past zero, the PSC is loaded with the value in the TDDR. See also *timer period register (PRD)*.
- timer interrupt (TINT): See TINT.
- **timer period register (PRD):** A 16-bit memory-mapped register that specifies the main period for the on-chip timer. When the timer counter register (TIM) is decremented past zero, the TIM is loaded with the value in the PRD. See also *TDDR*.
- **timer prescaler counter (PSC):** Bits 9–6 of the timer control register (TCR); specifies the prescale count for the on-chip timer.
- **timer reload bit (TRB):** Bit 5 of the timer control register (TCR); when TRB is set, the timer counter register (TIM) is loaded with the value of the timer period register (PRD), and the prescaler counter (PSC) is loaded with the value of the timer divide-down register (TDDR).
- timer stop status bit (TSS): Bit 4 of the TCR. TSS is used to start and stop the timer.
- **TINT:** *Timer interrupt.* An interrupt generated by the timer on the next CLKOUT1 cycle after the main counter (TIM register) decrements to 0
- TOS: Top of stack. Top level of the 8-level last-in, first-out hardware stack.
- **TOUT:** *Timer output pin.* Provides access to an output signal based on the rate of the on-chip timer. On the next CLKOUT1 cycle after the main counter (TIM register) decrements to 0, a signal is sent to TOUT.
- **transmit interrupt (asynchronous serial port):** An interrupt (TXRXINT) generated when the transmit register (ADTR) empties during transmission. This condition indicates that the ADTR is ready to accept a new transmit character.

transmit interrupt (synchronous serial port): See XINT.

- **transmit mode (TXM) bit:** Bit 3 of the synchronous serial port control register (SSPCR); determines whether the source signal for frame synchronization is external or internal.
- transmit pin (asynchronous serial port): See TX pin.
- transmit pin (synchronous serial port): See DX pin.
- **transmit/receive interrupt (TXRXINT):** The CPU interrupt used to respond to a delta interrupt, receive interrupt, or transmit interrupt from the asynchronous serial port. All three of these interrupt types request TXRXINT and use the single TXRXINT interrupt vector. See also *delta interrupt*, *receive interrupt*, *transmit interrupt*.
- transmit register (asynchronous serial port): See ADTR.
- transmit register (synchronous serial port): See SDTR.
- **transmit reset (XRST) bit:** Bit 5 of the synchronous serial port control register (SSPCR); resets the transmitter portion of the synchronous serial port.
- **transmit shift register (asynchronous serial port):** Also called AXSR, this register shifts data serially out of the asynchronous serial port through the TX pin. See also *ARSR*.
- **transmit shift register (synchronous serial port):** Also called XSR, this register shifts data serially out of the synchronous serial port through the DX pin. See also *RSR*.
- TRB: See timer reload bit (TRB).
- **TREG:** See temporary register (TREG).
- **TSS bit:** See timer stop status bit (TSS).
- **TTL:** *Transistor-to-transistor logic.*
- **TX pin:** Asynchronous transmit pin. The pin on which data is transmitted serially from the asynchronous serial port; accepts a character one bit at a time from the transmit shift register (AXSR).
- **TXM:** *Transmit mode bit.* Bit 3 of the synchronous serial port control register (SSPCR); determines whether the source signal for frame synchronization is external or internal.
- **TXRXINT:** See transmit/receive interrupt (TXRXINT).

U

UART: Universal asynchronous receiver and transmitter. Used as another name for the asynchronous serial port.

URS	T: <i>Reset asynchronous serial port bit</i> . Bit 13 of the asynchronous serial port control register (ASPCR); resets the asynchronous port.
vect	or: See interrupt vector.
vect	or location: See interrupt vector location.
W	
wait	state : A CLKOUT1 cycle during which the CPU waits when reading from or writing to slower external memory.
wait	-state generator : An on-chip peripheral that generates a limited number of wait states for a given off-chip memory space (program, data, or I/O). Wait states are set in the wait-state generator control register (WSGR).
WE:	Write enable pin. The 'C2xx asserts $\overline{\text{WE}}$ to request a write to external program, data, or I/O space.
wso	GR: <i>Wait-state generator control register.</i> This register, which is mapped to I/O memory, controls the wait-state generator.
Χ	

- **XF bit:** *XF-pin status bit.* Bit 4 of status register ST1 that is used to read or change the logic level on the XF pin.
- **XF pin:** *External flag pin.* A general-purpose output pin whose status can be read or changed by way of the XF bit in status register ST1.
- **XINT:** *Transmit interrupt (synchronous serial port).* An interrupt generated during transmission based on the number of words in the transmit FIFO buffer. The trigger condition (the desired number of words in the buffer) is determined by the values of the transmit-interrupt bits (FT1 and FT0) of the synchronous serial port control register (SSPCR).
- **XRST:** *Transmit reset bit.* Bit 5 of the synchronous serial port control register (SSPCR); resets the transmitter portion of the synchronous serial port.
- **XSR:** *Transmit shift register.* Shifts data serially out of the synchronous serial port through the DX pin. See also *RSR*.

Ζ

zero fill: Fill the unused low or high order bits in a register with zeros.

Index

* operand 6-10
* operand 6-10
* operand 6-10
*0+ operand 6-10
*0- operand 6-10
*BR0+ operand 6-11
*BR0- operand 6-11
14-pin connector, dimensions E-15
14-pin header header signals E-2 JTAG E-2
4-level pipeline operation 5-7

A

A0-A15 (external address bus) definition 4-3 shown in figure 4-6, 4-10, 4-13, 4-15, 4-26 ABS instruction 7-21 absolute value (ABS instruction) 7-21 accumulator definition F-1 description 3-9 shifting and storing high and low words, diagrams 3-11 accumulator instructions absolute value of accumulator (ABS) 7-21 add PREG to accumulator (APAC) 7-37 add PREG to accumulator and load TREG (LTA) 7-93 add PREG to accumulator and multiply (MPYA) 7-116 add PREG to accumulator and square specified value (SQRA) 7-168 add PREG to accumulator, load TREG, and move data (LTD) 7-95

accumulator instructions (continued) add PREG to accumulator, load TREG, and multiply (MAC) 7-102 add PREG to accumulator, load TREG, multiply, and move data (MACD) 7-106 add value plus carry to accumulator (ADDC) 7-27 add value to accumulator (ADD) 7-23 add value to accumulator with shift specified by TREG (ADDT) 7-31 add value to accumulator with sign extension suppressed (ADDS) 7-29 AND accumulator with value (AND) 7-34 branch to location specified by accumulator (BACC) 7-40 call subroutine at location specified by accumulator (CALA) 7-58 complement accumulator (CMPL) 7-64 divide using accumulator (SUBC) 7-180 load accumulator (LACC) 7-72 load accumulator using shift specified by TREG (LACT) 7-78 load accumulator with PREG (PAC) 7-134 load accumulator with PREG and load TREG (LTP) 7-98 load high bits of accumulator with rounding (ZALR) 7-196 load low bits and clear high bits of accumulator (LACL) 7-75 negate accumulator (NEG) 7-122 normalize accumulator (NORM) 7-126 OR accumulator with value (OR) 7-129 pop top of stack to low accumulator bits (POP) 7-135 push low accumulator bits onto stack (PUSH) 7-141 rotate accumulator left by one bit (ROL) 7-144 rotate accumulator right by one bit (ROR) 7-145 shift accumulator left by one bit (SFL) 7-157 shift accumulator right by one bit (SFR) 7-158

accumulator instructions (continued) store high byte of accumulator to data memory (SACH) 7-148 store low byte of accumulator to data memory (SACL) 7-150 subtract conditionally from accumulator (SUBC) 7-180 subtract PREG from accumulator (SPAC) 7-160 subtract PREG from accumulator and load TREG (LTS) 7-100 subtract PREG from accumulator and multiply (MPYS) 7-118 subtract PREG from accumulator and square specified value (SQRS) 7-170 subtract value and logical inversion of carry bit from accumulator (SUBB) 7-178 subtract value from accumulator (SUB) 7-174 subtract value from accumulator with shift specified by TREG (SUBT) 7-184 subtract value from accumulator with sign extension suppressed (SUBS) 7-182 XOR accumulator with data value (XOR) 7-193 ADC bit 10-10 add. See accumulator instructions ADD instruction 7-23 ADDC instruction 7-27 address generation data memory direct addressing 6-4 immediate addressing 6-2 indirect addressing 6-9 program memory 5-2 hardware 5-3 address maps 'C203 4-32 'C204 4-35 'C209 11-6 data page 0 4-8 address visibility mode (AVIS bit) 11-17 addressing, bit-reversed indexed 6-10, F-3 addressing modes definition F-1 direct description 6-4 examples 6-6 figure 6-5 opcode format 6-5 to 6-7 role of data page pointer (DP) 6-4 immediate 6-2

addressing modes (continued) indirect description 6-9 effects on auxiliary register pointer (ARP) 6-14 to 6-16 effects on current auxiliary register 6-14 to 6-16 examples 6-15 modifying auxiliary register content 6-17 opcode format 6-12 to 6-14 operands 6-9 operation types 6-14 to 6-16 options 6-9 possible opcodes 6-14 to 6-16 overview 6-1 ADDS instruction 7-29 ADDT instruction 7-31 ADRK instruction 7-33 ADTR (asynchronous serial port transmit and receive register) 10-4 AND instruction 7-34 APAC instruction 7-37 applications, TMS320 devices 1-4 ARAU (auxiliary register arithmetic unit) 3-12 ARAU and related logic, block diagram 3-12 ARB (auxiliary register pointer buffer) 3-16 architecture of 'C2x 2-1 to 2-14 arithmetic instructions. See accumulator instructions; auxiliary register instructions arithmetic logic unit, central (CALU) 3-9 ARP (auxiliary register pointer) 3-16 ARSR (asynchronous serial port receive shift register) 10-5 ASPCR (asynchronous serial port control register) 10-7 configuring pins IO0-IO3 as inputs/outputs 10-15 quick reference A-13 assembly language instructions. See instructions asynchronous reception 10-20 transmission 10-19 asynchronous serial port See also asynchronous serial port registers basic operation 10-6 baud rates common 10-14 setting 10-13

asynchronous serial port (continued) baud-rate detection logic detecting A or a character (ADC bit) 10-10 enabling/disabling (CAD bit) 10-8 block diagram 10-3 components 10-3 configuration 10-7 delta interrupts 10-17 enabling/disabling (DIM bit) 10-8 emulation modes (FREE and SOFT bits) 10-7 features 10-1 interrupts (TXRXINTs) flag bit (TXRXINT) 5-21 introduction 10-5 mask bit in IMR (TXRXINT) 5-23 mask bits in ASPCR (DIM, TIM, RIM) 10-8 priority 5-16 three types 10-17 vector location 5-16 introduction 2-12 overrun in receiver, detecting (OE bit) 10-11 overview 10-2 receive interrupts 10-17 enabling/disabling (RIM bit) 10-8 receive pin (RX) definition 10-4 detecting break on (BI bit) 10-10 receiver operation 10-20 reset conditions 5-34 resetting (URST bit) 10-7 signals 10-3 data 10-3 handshake 10-3 stop bit(s) detecting invalid (FE bit) 10-11 setting number of (STB bit) 10-8 transmit interrupts 10-17 enabling/disabling (TIM bit) 10-8 transmit pin (TX) definition 10-4 output level between transmissions (SETBRK bit) 10-8 transmitter operation 10-19 asynchronous serial port registers baud-rate divisor register (BRD) 10-13 control register (ASPCR) 10-7 configuring pins IO0-IO3 as inputs/outputs 10-15 quick reference A-13

asynchronous serial port registers (continued) I/O status register (IOSR) description 10-10 quick reference A-13 introduction 10-4 receive register (ADTR) detecting overrun in (OE bit) 10-11 detecting when empty (DR bit) 10-11 receive shift register (ARSR) 10-5 receive/transmit register (ADTR) 10-4 transmit register (ADTR) detecting when empty (THRE bit) 10-11 detecting when it and AXSR are empty (TEMT bit) 10-10 transmit shift register (AXSR) 10-5 detecting when it and ADTR are empty (TEMT bit) 10-10 transmit/receive register (ADTR) 10-4 automatic baud-rate detection 10-14 auxiliary register arithmetic unit (ARAU), description 3-12 auxiliary register instructions add short immediate value to current auxiliary register (ADRK) 7-33 branch if current auxiliary register not zero (BANZ) 7-41 compare current auxiliary register with AR0 (CMPR) 7-65 load specified auxiliary register (LAR) 7-80 modify auxiliary register pointer (MAR) 7-111 modify current auxiliary register (MAR) 7-111 store specified auxiliary register (SAR) 7-152 subtract short immediate value from current auxiliary register (SBRK) 7-154 auxiliary register pointer (ARP) 3-16, F-2 auxiliary register pointer buffer (ARB) 3-16, F-2 auxiliary register update (ARU) code 6-13 auxiliary registers (AR0-AR7) block diagram 3-12 current auxiliary register 6-9 role in indirect addressing 6-9 to 6-18 update code (ARU) 6-13 description 3-12 to 3-14 general uses for 3-14 instructions that modify content 6-17 next auxiliary register 6-11 used in indirect addressing 3-12 AVIS bit 11-17 AXSR (asynchronous serial port transmit shift register) 10-5

В

B instruction 7-39 BACC instruction 7-40 BANZ instruction 7-41 baud-rate detection procedure 10-14 divisor register (BRD) 10-13 generator 10-4 BCND instruction 7-43 BI bit 10-10 BIO pin 8-17 to 8-18 BIT instruction 7-45 bit-reversed indexed addressing 6-10, F-3 BITT instruction 7-47 BLDD instruction 7-49 block diagrams 'C2xx overall 2-2 ARAU and related logic 3-12 arithmetic logic section of CPU 3-8 asynchronous serial port 10-3 auxiliary registers (AR0-AR7) and ARAU 3-12 bus structure 2-4 CPU (selected sections) 3-2 input scaling section of CPU 3-3 multiplication section of CPU 3-5 program-address generation 5-2 synchronous serial port 9-3 timer 8-8 block move instructions block move from data memory to data memory (BLDD) 7-49 block move from program memory to data memory (BLPD) 7-54 BLPD instruction 7-54 **Boolean logic instructions** AND 7-34 CMPL (complement/NOT) 7-64 OR 7-129 XOR (exclusive OR) 7-193 BOOT (boot load pin), definition 4-4

boot loader 4-14 to 4-22 boot source (EPROM) choosing an EPROM 4-14 connecting the EPROM 4-15 programming the EPROM 4-16 diagram 4-14 to 4-22 enabling 4-17 execution 4-18 generating code for EPROM C-23 to C-24 program code 4-21 BR (bus request pin) definition 4-3 shown in figure 4-13, 4-15 branch instructions branch conditionally (BCND) 7-43 branch if current auxiliary register not zero (BANZ) 7-41 branch to location specified by accumulator (BACC) 7-40 branch to NMI interrupt vector location (NMI) 7-124 branch to specified interrupt vector location (INTR) 7-71 branch to TRAP interrupt vector location (TRAP) 7-192 branch unconditionally (B) 7-39 call subroutine at location specified by accumulator (CALA) 7-58 call subroutine conditionally (CC) 7-60 call subroutine unconditionally (CALL) 7-59 conditional, overview 5-11 return conditionally from subroutine (RETC) 7-143 return unconditionally from subroutine (RET) 7-142 unconditional, overview 5-8 BRD (baud-rate divisor register) 10-13 buffered signals, JTAG E-10 buffering E-10 burst mode definition F-3 error conditions 9-29 reception 9-24 transmission with external frame sync 9-18 with internal frame sync 9-16 bus devices E-4 bus protocol in emulator system E-4

bus request pin (BR) definition 4-3 shown in figure 4-13, 4-15 buses block diagram 2-4 data read bus (DRDB) 2-3 data write bus (DWEB) 2-3 data-read address bus (DRAB) 2-3 data-write address bus (DWAB) 2-3 program address bus (PAB) *definition 2-3 used in program-memory address genera tion 5-3* program read bus (PRDB) 2-3

С

C (carry bit) affected during SFL and SFR instructions 7-157 to 7-159 definition 3-16 involved in accumulator events 3-10 used during ROL and ROR instructions 7-144 to 7-146 'C209 device 11-1 to 11-18 comparison to other 'C2xx devices 11-2 differences in interrupts 11-3 differences in memory and I/O spaces 11-3 differences in peripherals 11-2 similarities 11-2 interrupts 11-10 locating 'C209 information in this manual (table) 11-3 memory and I/O spaces 11-5 on-chip peripherals 11-14 cable, target system to emulator E-1 to E-25 cable pod E-5, E-6 CAD bit 10-8 CALA instruction 7-58 CALL instruction 7-59 call instructions call subroutine at location specified by accumulator (CALA) 7-58 call subroutine conditionally (CC) 7-60 call subroutine unconditionally (CALL) 7-59 conditional, overview 5-12 unconditional, overview 5-8

CALU (central arithmetic logic unit) definition F-4 description 3-9 carry bit (C) affected during SFL and SFR instructions 7-157 to 7-159 definition 3-16 involved in accumulator events 3-10 used during ROL and ROR instructions 7-144 to 7-146 CC instruction 7-60 central arithmetic logic section of CPU 3-8 central arithmetic logic unit (CALU). See CALU central processing unit. See CPU CIO0-CIO3 (bits), configuring pins IO0-IO3 as inputs/outputs 10-15 CLK register description 8-7 quick reference A-11 reset condition 5-34 CLKIN signal 8-4 to 8-6 CLKMOD pin 11-14, F-4 CLKOUT1 bit 8-7 CLKOUT1 signal 8-4 to 8-6 definition F-4 turning CLKOUT1 pin on and off 8-7 CLKOUT1-pin control (CLK) register description 8-7 quick reference A-11 reset condition 5-34 CLKR pin as bit input (IN0 bit) 9-10 definition 9-4 CLKX pin 9-4 clock generator 8-4 to 8-6 2209 clock options 11-14 to 11-18 introduction 2-11 modes 'C203/C204 8-5 'C209 11-14 to 11-18 clock mode bit (MCM) 9-11 clock modes clock generator 'C203/C204 8-5 'C209 11-14 synchronous serial port 9-11 CLRC instruction 7-62 CMPL instruction 7-64

CMPR instruction 7-65 CNF (DARAM configuration bit) 3-16 code compatibility 1-6 codec, definition F-5 conditional instructions 5-10 to 5-13 conditional branch 5-11 to 5-13 conditional call 5-12 to 5-13 conditional return 5-12 to 5-13 conditions that may be tested 5-10 stabilization of conditions 5-11 using multiple conditions 5-10 configuration memory global data 4-11 RAM (dual-access) 'C203 4-33 'C204 4-36 'C209 11-8 RAM (single-access) 11-7 ROM 'C204 4-36 'C209 11-7 multiprocessor E-13 connector 14-pin header E-2 dimensions, mechanical E-14 DuPont E-2 continuous mode error conditions 9-29 reception 9-25 transmission with external frame sync 9-22 with internal frame sync 9-20 control instructions (summary) 7-9 CPU 3-1 to 3-18 accumulator 3-9 arithmetic logic section 3-8 auxiliary register arithmetic unit (ARAU) 3-12 block diagram (partial) 3-2 CALU (central arithmetic logic unit) 3-9 central arithmetic logic unit (CALU) 3-9 definition F-5 input scaling section/input shifter 3-3 key features 1-6 multiplication section 3-5 output shifter 3-11 overview 2-5

CPU (continued) product shifter 3-6 product shift modes 3-7 status registers ST0 and ST1 3-15 current auxiliary register 6-9 add short immediate value to (ADRK instruction) 7-33 branch if not zero (BANZ instruction) 7-41 compare with AR0 (CMPR instruction) 7-65 increment or decrement (MAR instruction) 7-111 role in indirect addressing 6-9 to 6-18 subtract short immediate value from (SBRK instruction) 7-154 update code (ARU) 6-13

D

D0-D15 (external data bus) definition 4-3, F-6 shown in figure 4-6, 4-10, 4-13, 4-15, 4-26 DARAM (dual-access RAM) configuration 'C203 4-33 'C204 4-36 'C209 11-8 description 2-7 DARAM configuration bit (CNF) 3-16 data memory address map 'C203 4-32 'C204 4-35 'C209 11-6 data page 0 4-8 caution about reserved addresses 4-33, 4-36, 11-7 configuration RAM (dual-access) 'C203 4-33 'C204 4-36 'C209 11-8 RAM (single-access) 11-7 data page pointer (DP) 3-16 external interfacing caution about proper timing 4-9 global 4-12 local 4-9 global 4-11 local 4-7 on-chip registers mapped to 4-8

Index-6

data memory select pin (DS) definition 4-3 shown in figure 4-10, 4-13 data page 0 4-8 caution about test/emulation addresses 4-8 data page pointer (DP) caution about initializing DP 6-5 definition 3-16 load (LDP instruction) 7-83 role in direct addressing 6-4 data read bus (DRDB) 2-3 data write bus (DWEB) 2-3 data-read address bus (DRAB) 2-3 data-scaling shifter at input of CALU 3-3 at output of CALU 3-11 data-write address bus (DWAB) 2-3 delta interrupts description 10-17 enabling/disabling (DIM bit) 10-8 device reset 5-33 diagnostic applications E-24 digital loopback mode 9-28 DIM bit 10-8 dimensions 12-pin header E-20 14-pin header E-14 mechanical, 14-pin header E-14 DIO0-DIO3 (bits), detecting change on pins IO0-IO3 10-16 direct addressing description 6-4 examples 6-6 figure 6-5 opcode format 6-5 to 6-7 role of data page pointer (DP) 6-4 direct memory access (using HOLD operation) 4-27 during reset 4-29 example 4-28 terminating correctly 4-29 DIV1 and DIV2 pins 8-5, F-7 divide (SUBC instruction) 7-180 DLB bit 9-12 DMOV instruction 7-66

DP (data page pointer) caution about initializing DP 6-5 definition 3-16 load (LDP instruction) 7-83 role in direct addressing 6-4 DR bit 10-11 DR pin 9-4 DRAB (data-read address bus) 2-3 DRDB (data read bus) 2-3 DS (data memory select pin) definition 4-3 shown in figure 4-10, 4-13 DSWS bit(s) 'C203/C204 8-15 'C209 11-17 dual-access RAM (DARAM) F-6 configuration 'C203 4-33 'C204 4-36 'C209 11-8 description 2-7 DuPont connector E-2 DWAB (data-write address bus) 2-3 DWEB (data write bus) 2-3 DX pin 9-4

EMU0/1 configuration E-21, E-23, E-24 emulation pins E-20 IN signals E-21 rising edge modification E-22 EMU0/1 signals E-2, E-3, E-6, E-7, E-13, E-18 emulation configuring multiple processors E-13 JTAG cable E-1 pins E-20 timing calculations E-7 to E-9, E-18 to E-26 using scan path linkers E-16 emulation capability 2-13 emulation modes (FREE and SOFT bits) asynchronous serial port 10-7 synchronous serial port 9-8 timer 8-11 emulation timing E-7

emulator cable pod E-5 connection to target system, JTAG mechanical dimensions E-14 to E-25 designing the JTAG cable E-1 emulation pins E-20 pod interface E-5 pod timings E-6 signal buffering E-10 to E-13 target cable, header design E-2 to E-3 enhanced instructions B-5 error conditions asynchronous serial port framing error (FE bit) 10-11 overrun (OE bit) 10-11 synchronous serial port burst mode 9-29 continuous mode 9-29 examples of 'C2xx program code C-1 to C-24 external access active strobe (STRB) 4-3 external address bus (A0-A15) definition 4-3 shown in figure 4-6, 4-10, 4-13, 4-15, 4-26 external data bus (D0-D15) definition 4-3 shown in figure 4-6, 4-10, 4-13, 4-15, 4-26 external device ready pin (READY) definition 4-4 generating wait states with 8-14 external interfacing, diagrams 4-6, 4-10, 4-13, 4-26 external oscillator, using (diagram) 8-5

F

FE bit 10-11 features summary 1-6 FIFO buffers, introduction 9-5 FINT2 bit 5-26 FINT3 bit 5-26 flag bits I/O status register (IOSR) 10-10 interrupt control register (ICR) 5-18 interrupt flag register (IFR) 5-18 flash memory (on-chip), introduction 2-9 flow charts interrupt operation maskable interrupts 5-20 nonmaskable interrupts 5-29 requesting INT2 and INT3 5-18 TMS320 ROM code submittal D-2 4-level pipeline operation 5-7 14-pin connector, dimensions E-15 14-pin header header signals E-2 JTAG E-2 FR1 and FR0 bits 9-10 frame synchronization mode (FSM bit) 9-11 framing error (FE bit) 10-11 FREE bit asynchronous serial port 10-7 synchronous serial port 9-8 timer 8-11 FSM bit 9-11 FSR pin 9-4 FSX pin 9-4 FT1 and FT0 bits 9-9

G

general-purpose I/O pins 8-17 to 8-20 input BIO 8-17 to 8-18 IO0-IO3 10-15 to 10-16 output IO0-IO3 10-15 to 10-16 XF 8-18 generating executable files, figure C-2 generating wait states with 8-14 generators (on-chip) baud-rate generator 10-4 clock generator 8-4 to 8-6 'C209 clock options 11-14 to 11-18 wait-state generator 8-14 to 8-16 'C209 11-16 to 11-18 global data memory 4-11 configuration 4-11 external interfacing 4-12 global memory allocation register (GREG) 4-11 GREG (global memory allocation register) 4-11

Η

hardware interrupts definition 5-15 nonmaskable external 5-27 priorities 5-16 types 5-15 hardware reset 5-33 header 14-pin E-2 dimensions, 14-pin E-2 HOLD (HOLD operation request pin) definition 4-4 use in HOLD operation 4-27 HOLD acknowledge pin (HOLDA) definition 4-4 use in HOLD operation 4-27 HOLD operation description 4-27 during reset 4-29 example 4-28 terminating correctly 4-29 HOLD operation request pin (HOLD) definition 4-4 use in HOLD operation 4-27 HOLD/INT1 bit in interrupt flag register (IFR) 5-22 in interrupt mask register (IMR) 5-24 HOLD/INT1 interrupt flag bit 5-22 mask bit 5-24 priority 5-16 vector location 5-16 HOLD/INT1 pin, mode set by MODE bit 5-24 HOLDA (HOLD acknowledge pin) definition 4-4 use in HOLD operation 4-27

I/O general-purpose pins input BIO 8-17 to 8-18 IO0–IO3 10-15 to 10-16 output IO0–IO3 10-15 to 10-16 XF 8-18 I/O (continued) parallel ports 4-25 serial ports asynchronous 10-1 to 10-20 introduction 2-12 synchronous 9-1 to 9-30 I/O space accessing 4-25 address map 4-23 caution about reserved addresses 4-24 description 4-23 external interfacing 4-25 instructions transfer data from data memory to I/O space (OUT) 7-132 transfer data from I/O space to data memory (IN) 7-69 on-chip registers mapped to 'C203/C204 4-24 'C209 11-9 accessing 4-25 pins for external interfacing 4-3 I/O space select pin (\overline{IS}) definition 4-3 shown in figure 4-26 I/O status register (IOSR) description 10-10 detecting change on pins IO0-IO3 10-16 quick reference A-14 reading current logic level on pins IO0-IO3 10-16 I/O-mapped registers, addresses and reset values A-2 IACK signal 11-13 ICR (interrupt control register) 5-24 to 5-38 bits 5-26 quick reference A-8 IDLE instruction 7-68 IEEE 1149.1 specification, bus slave device rules E-4 IFR (interrupt flag register) 5-20 to 5-38 bits 'C203/C204 5-21 'C209 11-12 clearing interrupts 5-20 quick reference A-6 immediate addressing 6-2

IMR (interrupt mask register) 5-22 to 5-38 bits 'C203/C204 5-23 'C209 11-13 in interrupt acknowledgement process 5-19 quick reference A-7 IN instruction 7-69 IN0 bit 9-10 indirect addressing description 6-9 effects on auxiliary register pointer (ARP) 6-14 to 6-16 effects on current auxiliary register 6-14 to 6-16 examples 6-15 modifying auxiliary register content 6-17 opcode format 6-12 to 6-14 operands 6-10 operation types 6-14 to 6-16 options 6-9 possible opcodes 6-14 to 6-16 input clock modes 'C203/C204 8-5 'C209 11-14 input scaling section of CPU 3-3 input shifter 3-3 input/output space. See I/O space input/output status register (IOSR) description 10-10 detecting change on pins IO0-IO3 10-16 reading current logic level on pins IO0-IO3 10-16 instruction register (IR), definition F-11 instruction set, key features 1-7 instructions 7-1 to 7-20 Boolean logic AND 7-34 CMPL (complement/NOT) 7-64 OR 7-129 XOR (exclusive OR) 7-193 compared with those of other TMS320 devices B-1 to B-36 conditional 5-10 to 5-13 branch (BCND) 7-43 call (CC) 7-60 conditions that may be tested 5-10 return (RETC) 7-143 stabilization of conditions 5-11 using multiple conditions 5-10

instructions (continued) CPU halt until hardware interrupt (IDLE) 7-68 delay/no operation (NOP) 7-125 descriptions 7-20 how to use 7-12 enhanced B-5 idle until hardware interrupt (IDLE) 7-68 interrupt branch to NMI interrupt vector location (NMI) 7-124 branch to specified interrupt vector location (INTR) 7-71 branch to TRAP interrupt vector location (TRAP) 7-192 negate accumulator (NEG) 7-122 no operation (NOP) 7-125 normalize (NORM) 7-126 OR 7-129 power down until hardware interrupt (IDLE) 7-68 repeat next instruction n times description (RPT) 7-146 introduction 5-14 stack pop top of stack to data memory (POPD) 7-137 pop top of stack to low accumulator bits (POP) 7-135 push data memory value onto stack (PSHD) 7-139 push low accumulator bits onto stack (PUSH) 7-141 status registers ST0 and ST1 clear control bit (CLRC) 7-62 load (LST) 7-87 load data page pointer (LDP) 7-83 modify auxiliary register pointer (MAR) 7-111 set control bit (SETC) 7-155 set product shift mode (SPM) 7-167 store (SST) 7-172 summary 7-2 to 7-11 test bit specified by TREG (BITT) 7-47 test specified bit (BIT) 7-45 INT1 bit ('C209) in interrupt flag register (IFR) 11-12 in interrupt mask register (IMR) 11-13

INT1 interrupt 'C203/C204 flag bit (HOLD/INT1) 5-22 mask bit (HOLD/INT1) 5-24 priority 5-16 vector location 5-16 'C209 flag bit 11-12 mask bit 11-13 priority 11-10 vector location 11-10 INT2 bit ('C209) in interrupt flag register (IFR) 11-12 in interrupt mask register (IMR) 11-13 **INT2** interrupt 'C203/C204 flag bits FINT2 5-26 INT2/INT3 5-22 masking/unmasking in ICR 5-27 masking/unmasking in IMR 5-23 priority 5-16 vector location 5-16 'C209 flag bit 11-12 mask bit 11-13 priority 11-10 vector location 11-10 INT2/INT3 bit in interrupt flag register (IFR) 5-22 in interrupt mask register (IMR) 5-23 INT20–INT31 (interrupts), vector locations 'C203/C204 5-17 'C209 11-11 INT3 bit ('C209) in interrupt flag register (IFR) 11-12 in interrupt mask register (IMR) 11-13 **INT3** interrupt 'C203/C204 flag bits FINT3 5-26 INT2/INT3 5-22 masking/unmasking in ICR 5-26 masking/unmasking in IMR 5-23 priority 5-16 vector location 5-16

INT3 interrupt (continued) 'C209 flag bit 11-12 mask bit 11-13 priority 11-10 vector location 11-10 INT8-INT16 (interrupts), vector locations 'C203/C204 5-16 to 5-17 'C209 11-10 interfacing to external global data memory 4-12 to external I/O space 4-25 to external local data memory 4-9 to external program memory 4-5 internal oscillator, using (diagram) 8-4 interrupt 5-15 to 5-32 definitions 5-15, F-12 hardware interrupt definition 5-15 priorities 'C203/C204 5-16 'C209 11-10 interrupt mode bit (INTM) 3-16 use in enabling/disabling maskable interrupts 5-19 interrupt service routines (ISRs) 5-29 to 5-30 ISRs within ISRs 5-30 saving and restoring context 5-29 to 5-30 latency 5-30 to 5-36 after execution of RET 5-32 during execution of CLRC INTM 5-31 minimum latency 5-30 maskable interrupt 5-18 to 5-20 acknowledgement conditions 5-19 definition 5-15 enabling/disabling with INTM bit 5-19 flag bits in ICR 5-24 flag bits in IFR 5-20 flow chart of operation 5-20 flow chart of requesting INT2 and INT3 5-18 interrupt mode bit (INTM) 3-16 masking/unmasking in ICR 5-24 to 5-38 masking/unmasking in IMR 5-22 to 5-38 nonmaskable interrupt 5-27 to 5-29 definition 5-15 flow chart of operation 5-29 hardware-initiated 5-27 software-initiated 5-27 operation (three phases) 5-15 pending interrupt (IFR flag set) 5-20 to 5-22

interrupt (continued) phases of operation 5-15 priorities 'C203/C204 5-16 'C209 11-10 in interrupt acknowledgement process 5-19 registers interrupt control register (ICR) 5-24 interrupt flag register (IFR) 5-20 to 5-22 'C209 11-12 interrupt mask register (IMR) 5-22 to 5-24 'C209 11-13 software interrupt definition 5-15 instructions 5-27 special cases clearing ICR flag bits 5-25 clearing IFR flag bit after INTR instruction 5-21 clearing IFR flag bits set by serial port interrupts 5-21 controlling INT2 and INT3 with ICR 5-24 requesting INT2 and INT3 5-18 table 5-16 vector locations 'C203/C204 5-16 'C209 11-10 interrupt acknowledge signal (IACK) 11-13 interrupt control register (ICR) 5-24 to 5-38 bits 5-26 quick reference A-8 interrupt flag register (IFR) 5-20 to 5-38 bits 'C203/C204 5-21 'C209 11-12 clearing interrupts 5-20 quick reference A-6 interrupt latency definition F-12 description 5-30 interrupt mask register (IMR) 5-22 to 5-38 bits 'C203/C204 5-23 'C209 11-13 in interrupt acknowledgement process 5-19 quick reference A-7 interrupt mode bit (INTM) 3-16 interrupt phases of operation 5-15

interrupt service routines (ISRs) 5-29 definition F-12 ISRs within ISRs 5-30 saving and restoring context 5-29 INTM (interrupt mode bit) 3-16 effect on power-down mode 5-36 in interrupt acknowledgement process 5-19 INTR instruction 7-71 introduction 5-27 operand (K) values 'C203/C204 5-16 'C209 11-10 introduction TMS320 devices 1-2 TMS320C2xx devices 1-5 IO0-IO3 (bits) 10-13 reading current logic level on pins IO0-IO3 10-16 IO0-IO3 (pins) 10-15 to 10-17 IOSR (I/O status register) detecting change on pins IO0-IO3 10-16 quick reference A-14 reading current logic level on pins IO0-IO3 10-16 IR (instruction register), definition F-11 IS (I/O space select pin) definition 4-3 shown in figure 4-26 ISR (interrupt service routine) 5-29 to 5-30 definition F-12 ISRs within ISRs 5-30 saving and restoring context 5-29 to 5-30 ISWS bit(s) 'C203/C204 8-15 'C209 11-17

J

JTAG E-16 JTAG emulator buffered signals E-10 connection to target system E-1 to E-25 no signal buffering E-10

key features of the 'C2x 1-6

Index-12

LACC instruction 7-72 LACL instruction 7-75 LACT instruction 7-78 LAR instruction 7-80 latch phase of CPU cycle F-13 latency, interrupt 5-30 to 5-36 after execution of RET 5-32 during execution of CLRC INTM 5-31 minimum latency 5-30 LDP instruction 7-83 local data memory address map 'C203 4-32 'C204 4-35 'C209 11-6 configuration RAM (dual-access) 'C203 4-33 'C204 4-36 'C209 11-8 RAM (single-access) 11-7 description 4-7 external interfacing 4-9 caution about proper timing 4-9 pages of (diagram) 4-7 logic instructions AND 7-34 CMPL (complement/NOT) 7-64 OR 7-129 XOR (exclusive OR) 7-193 logic phase of CPU cycle F-13 long immediate addressing 6-2 LPH instruction 7-85 LST instruction 7-87 LT instruction 7-91 LTA instruction 7-93 LTD instruction 7-95 LTP instruction 7-98 LTS instruction 7-100

N

MAC instruction 7-102 MACD instruction 7-106 MAR instruction 7-111 mask bits asynchronous serial port control register (ASPCR) 10-8 interrupt control register (ICR) 5-24 interrupt mask register (IMR) 5-22 maskable interrupts 5-18 acknowledgement conditions 5-19 definition 5-15 enabling/disabling with INTM bit 5-19 flag bits in ICR 5-24 flag bits in IFR 5-20 flow chart of operation 5-20 flow chart of requesting INT2 and INT3 5-18 masking/unmasking in ICR 5-24 masking/unmasking in IMR 5-22 MCM bit 9-11 memory See also I/O space address map 'C203 4-32 'C204 4-35 'C209 11-6 data page 0 4-8 available on TMS320C2xx devices 2-7 available types 1-6 boot loader 4-14 boot source (EPROM) 4-14 diagram 4-14 enabling 4-17 execution 4-18 generating code for EPROM C-23 to C-24 program code 4-21 data page pointer (DP) 3-16 device-specific information 4-31 direct memory access (using HOLD operation) 4-27 during reset 4-29 example 4-28 terminating correctly 4-29 external interfacing global data memory 4-12 I/O ports 4-25 local data memory 4-9 program memory 4-5 flash, introduction 2-9 global data memory 4-11 to 4-13 HOLD operation 4-27 to 4-30 during reset 4-29 example 4-28 terminating correctly 4-29

memory (continued) introduction 4-2 local data memory description 4-7 to 4-10 pages of (diagram) 4-7 on-chip memory, advantages 4-2 organization 4-2 overview 2-7 pins for external interfacing 4-3 program memory 4-5 to 4-6 address generation logic 5-2 address sources 5-3 RAM (dual-access) configuration 'C203 4-33 'C204 4-36 'C209 11-8 description 2-7 RAM (single-access) configuration 11-7 description 2-8 reset conditions 5-33 ROM configuration 'C204 4-36 'C209 11-7 introduction 2-8 memory instructions block move from data memory to data memory (BLDD) 7-49 block move from program memory to data memory (BLPD) 7-54 move data after add PREG to accumulator, load TREG, and multiply (MACD) 7-106 move data to next higher address in data memory (DMOV) 7-66 move data, load TREG, and add PREG to accumulator (LTD) 7-95 store long immediate value to data memory (SPLK) 7-165 table read (TBLR) 7-186 table write (TBLW) 7-189 transfer data from data memory to I/O space (OUT) 7-132 transfer data from I/O space to data memory (IN) 7-69 transfer word from data memory to program memory (TBLW) 7-189 transfer word from program memory to data memory (TBLR) 7-186

memory-mapped registers, addresses and reset values A-2 micro stack (MSTACK) 5-6 microprocessor/microcomputer pin (MP/MC) definition 4-4 use in configuring memory 'C204 4-36 'C209 11-7 MINT2 bit 5-27 MINT3 bit 5-26 MODE bit 5-26 used in HOLD operation 4-27 MP/MC (microprocessor/microcomputer pin) definition 4-4 use in configuring memory 'C204 4-36 'C209 11-7 MPY instruction 7-113 MPYA instruction 7-116 MPYS instruction 7-118 MPYU instruction 7-120 MSTACK (micro stack) 5-6 multicycle instructions 5-31 multiplication section of CPU 3-5 multiplier description 3-5 introduction 2-6 multiply instructions multiply (include load to TREG) and accumulate previous product (MAC) 7-102 multiply (include load to TREG), accumulate previous product, and move data (MACD) 7-106 multiply (MPY) 7-113 multiply and accumulate previous product (MPYA) 7-116 multiply and subtract previous product (MPYS) 7-118 multiply unsigned (MPYU) 7-120 square specified value after accumulating previous product (SQRA) 7-168 square specified value after subtracting previous product from accumulator (SQRS) 7-170

Ν

NEG instruction 7-122 next auxiliary register 6-11 next program address register (NPAR) definition F-15 shown in figure 5-2 **NMI** hardware interrupt description 5-27 priority 'C203/C204 5-17 'C209 11-11 vector location 'C203/C204 5-17 'C209 11-11 NMI instruction 7-124 introduction 5-28 vector location 'C203/C204 5-17 'C209 11-11 nonmaskable interrupts 5-27 definition 5-15 flow chart of operation 5-29 hardware-initiated 5-27 software-initiated 5-27 NOP instruction 7-125 NORM instruction 7-126 NPAR (next program address register) definition F-15 shown in figure 5-2

0

OE bit 10-11 off-chip (external) memory 'C203 4-32 'C204 4-35 'C209 11-6 on-chip generators baud-rate generator 10-4 clock generator 8-4 *'C209 clock options 11-14* wait-state generator 8-14 *'C209 11-16* on-chip memory advantages 4-2

advantages 4-2 flash, introduction 2-9 on-chip memory (continued) RAM (dual-access) available 'C203 4-32 'C204 4-35 'C209 11-6 configuration 'C203 4-33 'C204 4-36 'C209 11-8 description 2-7 RAM (single-access) available, 'C209 11-6 configuration 11-7 description 2-8 ROM available 'C204 4-35 'C209 11-6 configuration 'C204 4-36 'C209 11-7 introduction 2-8 on-chip peripherals asynchronous serial port 10-1 to 10-20 available types 1-7 clock generator 8-4 to 8-6 'C209 clock options 11-14 to 11-18 control of 8-2 to 8-3 general-purpose I/O pins 8-17 to 8-20 overview 2-11 register locations and reset values 8-2 reset conditions 5-34, 8-2 synchronous serial port 9-1 to 9-30 timer 8-8 to 8-13 wait-state generator 8-14 to 8-16 'C209 11-16 to 11-18 on-chip registers mapped to data space addresses and reset values A-2 quick reference figures A-4 on-chip registers mapped to I/O space addresses and reset values A-2 quick reference figures A-4 on-chip ROM D-1 opcode format direct addressing 6-5 immediate addressing 6-2 indirect addressing 6-12 OR instruction 7-129 oscillator 8-4

OUT instruction 7-132 output modes external count E-20 signal event E-20 output shifter 3-11 OV (overflow flag bit) 3-16 overflow in accumulator detecting (OV bit) 3-16 enabling/disabling overflow mode (OVM bit) 3-17 overflow in synchronous serial port burst mode 9-29 continuous mode 9-30 detecting (OVF bit) 9-10 overflow mode bit (OVM) 3-17 effects on accumulator 3-10 OVF bit 9-10

Ρ

PAB (program address bus) definition 2-3 used in program-memory address generation 5-3 PAC instruction 7-134 packages, available types 1-7 pages of data memory, figure 6-4 PAL E-21, E-22, E-24 PAR (program address register) definition F-16 shown in figure 5-2 parallel I/O ports 4-23 PC (program counter) 5-3 description 5-3 loading 5-4 shown in figure 5-2 peripherals (on-chip) asynchronous serial port 10-1 to 10-20 available types 1-7 clock generator 8-4 to 8-6 'C209 clock options 11-14 to 11-18 control of 8-2 to 8-3 general-purpose I/O pins 8-17 to 8-20 overview 2-11 register locations and reset values 8-2 reset conditions 5-34, 8-2 synchronous serial port 9-1 to 9-30

peripherals (on-chip) (continued) timer 8-8 to 8-13 wait-state generator 8-14 to 8-16 'C209 11-16 to 11-18 phase lock loop (PLL) 8-4 pins asynchronous serial port 10-4 CLKOUT1 8-7 clock generator CLKIN/X2 8-4 CLKMOD 11-14 DIV1 and DIV2 8-5 X1 8-4 general-purpose BIO 8-17 100-103 10-15 XF 8-18 I/O and memory 4-3 IACK ('C209) 11-13 memory and I/O 4-3 READY 8-14 synchronous serial port 9-4 timer (TOUT) 8-8 wait-state (READY) 8-14 pipeline, operation 5-7 PM (product shift mode bits) 3-17 POP instruction 7-135 pop operation (diagram) 5-6 POPD instruction 7-137 power saving features 1-7 power-down mode 5-36 PRD F-23 PRD (timer period register) 8-12, F-23 to F-26 PRDB (program read bus) 2-3 PREG (product register) 3-6 PREG instructions add PREG to accumulator (APAC) 7-37 add PREG to accumulator and load TREG (LTA) 7-93 add PREG to accumulator and multiply (MPYA) 7-116 add PREG to accumulator and square specified value (SQRA) 7-168 add PREG to accumulator, load TREG, and move data (LTD) 7-95 add PREG to accumulator, load TREG, and multiply (MAC) 7-102 add PREG to accumulator, load TREG, multiply, and move data (MACD) 7-106

PREG instructions (continued) load high bits of PREG (LPH) 7-85 set PREG output shift mode (SPM) 7-167 store high word of PREG to data memory (SPH) 7-161 store low word of PREG to data memory (SPL) 7-163 store PREG to accumulator (PAC instruction) 7-134 store PREG to accumulator and load TREG (LTP) 7-98 subtract PREG from accumulator (SPAC) 7-160 subtract PREG from accumulator and load TREG (LTS) 7-100 subtract PREG from accumulator and multiply (MPYS) 7-118 subtract PREG from accumulator and square specified value (SQRS) 7-170 product register (PREG) 3-6 product shift mode bits (PM) 3-17 product shift modes 3-7 product shifter 3-6 program address bus (PAB) definition 2-3 used in program-memory address generation 5-3 program address register (PAR) definition F-16 shown in figure 5-2 program control features See also interrupts address generation, program memory 5-2 branch instructions conditional 5-11 unconditional 5-8 call instructions conditional 5-12 unconditional 5-8 conditional instructions 5-10 to 5-13 conditions that may be tested 5-10 to 5-13 stabilization of conditions 5-11 to 5-13 using multiple conditions 5-10 pipeline operation 5-7 program counter (PC) 5-3 loading 5-4

program control features (continued) repeating a single instruction 5-14 reset conditions 5-33 return instructions conditional 5-12 unconditional 5-9 stack 5-4 status registers ST0 and ST1 3-15 bits 3-15 program counter (PC) 5-3 description 5-3 loading 5-4 shown in figure 5-2 program examples C-1 to C-24 about the examples C-2 asynchronous serial port automatic baud-rate detection test C-16 delta interrupts C-18 transmission C-13 transmission loopback test C-14 boot loader code command file C-24 hex conversion file C-24 command file (generic) C-5 delay loops C-8 header file with I/O register declarations C-6 header file with interrupt vector declarations C-7 HOLD operation C-11 interrupt INT1 C-10 interrupts INT2 and INT3 C-12 synchronous serial port transmission (continuous mode) C-20 using with codec C-21 timer C-9 program memory address generation logic 5-2 micro stack (MSTACK) 5-6 program counter (PC) 5-3 stack 5-4 address map 'C203 4-32 'C204 4-35 'C209 11-6 address sources 5-3

program memory (continued) configuration RAM (dual-access) 'C203 4-33 'C204 4-36 'C209 11-8 RAM (single-access) 11-7 ROM 'C204 4-36 'C209 11-7 description 4-5 external interfacing 4-5 caution about proper timing 4-5 program memory select pin (\overline{PS}) definition 4-3 shown in figure 4-6 program read bus (PRDB) 2-3 program-address generation (diagram) 5-2 protocol, bus, in emulator system E-4 PS (program memory select pin) definition 4-3 shown in figure 4-6 PSC (timer prescaler counter) 'C203/C204 8-11 'C209 11-15 definition F-18 PSHD instruction 7-139 PSLWS bits 8-15 PSUWS bits 8-15 PSWS bit 11-17 PUSH instruction 7-141 push operation (diagram) 5-5

R

```
R/W (read/write pin) 4-4

RAM (on-chip)

dual-access

configuration

'C203 4-33

'C204 4-36

'C209 11-8

description 2-7

single-access

configuration 11-7

description 2-8

RAMEN (single-access RAM enable pin)

definition 4-4

use in configuring memory 11-7
```

RD (read select pin) definition 4-4 shown in figure 4-6, 4-10, 4-13, 4-15 read select pin (\overline{RD}) definition 4-4 shown in figure 4-6, 4-10, 4-13, 4-15 read/write pin (R/W) 4-4 READY (external device ready pin) definition 4-4 generating wait states with 8-14 receive interrupt asynchronous serial port 10-17 enabling/disabling (RIM bit) 10-8 synchronous serial port 9-6 receive pin asynchronous serial port (RX) 10-4 detecting break on (BI bit) 10-10 synchronous serial port (DR) 9-4 receive register asynchronous serial port (ADTR) 10-4 detecting overrun in (OE bit) 10-11 detecting when empty (DR bit) 10-11 synchronous serial port (SDTR) 9-5 receive shift register asynchronous serial port (ARSR) 10-5 synchronous serial port (RSR) 9-5 register summary A-1 to A-14 registers addresses and reset values A-2 asynchronous serial port baud-rate divisor register (BRD) 10-13 control register (ASPCR) 10-7 I/O status register (IOSR) 10-10 receive shift register (ARSR) 10-5 transmit shift register (AXSR) 10-5 auxiliary registers, current auxiliary register 6-13 auxiliary registers (AR0-AR7) current auxiliary register 6-9 next auxiliary register 6-11 baud-rate divisor register (BRD) 10-13 CLKOUT1-pin control (CLK) register 8-7 I/O status register (IOSR) 10-10 interrupt control register (ICR) 5-24 to 5-38 interrupt flag register (IFR) 5-20 to 5-22 C209 11-12 to 11-18 interrupt mask register (IMR) 5-22 to 5-24 'C209 11-13 to 11-18

registers (continued) mapped to data page 0 4-8 mapped to I/O space 'C203/C204 4-24 'C209 11-9 accessing 4-25 quick reference A-1 to A-14 status registers ST0 and ST1 3-15 timer control register (TCR) 'C203/C204 8-10 'C209 11-16 counter register (TIM) 8-12, F-23 divide-down register (TDDR) 'C203/C204 8-12 'C209 11-16 period register (PRD) 8-12, F-23 prescaler counter (PSC) 'C203/C204 8-11 'C209 11-15 wait-state generator control register (WSGR) 'C203/C204 8-15 'C209 11-17 repeat (RPT) instruction description 7-146 introduction 5-14 repeat counter (RPTC) 5-14 repeating a single instruction 5-14 reset 5-33 at same time as HOLD operation 4-29 effects 5-33 introduction 5-27 priority C203/C204 5-16 'C209 11-10 vector location 'C203/C204 5-16 'C209 11-10 reset values of on-chip registers mapped to data space 5-35, A-2 mapped to I/O space 5-35, A-2 status registers ST0 and ST1, A-2 RET instruction 7-142 RETC instruction 7-143

return instructions conditional, overview 5-12 return conditionally from subroutine (RETC) 7-143 return unconditionally from subroutine (RET) 7-142 unconditional, overview 5-9 RFNE bit 9-9 RIM bit 10-8 RINT bit in interrupt flag register (IFR) 5-22 in interrupt mask register (IMR) 5-23 **RINT** interrupt definition F-19 flag bit 5-22 mask bit 5-23 priority 5-16 vector location 5-16 ROL instruction 7-144 ROM, customized D-1 to D-3 ROM (on-chip) configuration 'C204 4-36 'C209 11-7 introduction 2-8 ROM codes, submitting to Texas Instruments D-1 to D-3 ROR instruction 7-145 RPT instruction 7-146 RPTC (repeat counter), 5-14 RRST bit 9-10 RS (reset) at same time as HOLD operation 4-29 effects 5-33 introduction 5-27 priority 'C203/C204 5-16 'C209 11-10 vector location 'C203/C204 5-16 'C209 11-10 RSR (synchronous serial port receive shift register) 9-5 run/stop operation E-10 RUNB, debugger command E-20, E-21, E-22, E-23, E-24 RUNB ENABLE, input E-22 RX pin 10-4

S

SACH instruction 7-148 SACL instruction 7-150 SAR instruction 7-152 SARAM (single-access RAM) configuration 11-7 definition F-20 description 2-8 SBRK instruction 7-154 scaling shifters input shifter 3-3 introduction 2-5 output shifter 3-11 product shifter 3-6 product shift modes 3-7 scan path linkers E-16 secondary JTAG scan chain to an SPL E-17 suggested timings E-22 usage E-16 scan paths, TBC emulation connections for JTAG scan paths E-25 scanning logic overview 2-13 SDTR (synchronous serial port transmit and receive register) 9-5 using to access FIFO buffers 9-15 serial ports See also synchronous serial port; asynchronous serial port available on TMS320C2xx devices 2-12 introduction 2-12 reset conditions 5-34 serial-scan emulation capability 2-13 SETBRK bit 10-8 SETC instruction 7-155 SFL instruction 7-157 SFR instruction 7-158 shifters input shifter 3-3 introduction 2-5 output shifter 3-11 product shifter 3-6 product shift modes 3-7 short immediate addressing 6-2 signal descriptions, 14-pin header E-3

signals buffered E-10 buffering for emulator connections E-10 to E-13 description, 14-pin header E-3 timing E-6 sign-extension mode bit (SXM) definition 3-17 effect on CALU (central arithmetic logic unit) 3-9 effect on input shifter 3-4 single-access RAM (SARAM) configuration 11-7 definition F-20 description 2-8 single-access RAM enable pin (RAMEN) definition 4-4 use in configuring memory 11-7 slave devices E-4 SOFT bit asynchronous serial port 10-7 synchronous serial port 9-8 timer 8-11 software interrupts definition 5-15 instructions 5-27 SPAC instruction 7-160 SPH instruction 7-161 SPL instruction 7-163 SPLK instruction 7-165 SPM instruction 7-167 SQRA instruction 7-168 SQRS instruction 7-170 SSPCR (synchronous serial port control register) 9-8 quick reference A-12 SST instruction 7-172 ST0. See status registers ST0 and ST1 ST1. See status registers ST0 and ST1 stack 5-4 managing nested interrupt service routines 5-30 pop top of stack to data memory (POPD instruction) 7-137 pop top of stack to low accumulator bits (POP instruction) 7-135 push data memory value onto stack (PSHD instruction) 7-139 push low accumulator bits onto stack (PUSH instruction) 7-141

status registers ST0 and ST1 addresses and reset values A-2 bits 3-15 clear control bit (CLRC instruction) 7-62 introduction 3-15 load (LST instruction) 7-87 load data page pointer (LDP instruction) 7-83 modify auxiliary register pointer (MAR instruction) 7-111 quick reference A-5 set control bit (SETC instruction) 7-155 set product shift mode (SPM instruction) 7-167 store (SST instruction) 7-172 STB bit 10-8 STRB (external access active strobe) 4-3 SUB instruction 7-174 SUBB instruction 7-178 SUBC instruction 7-180 SUBS instruction 7-182 SUBT instruction 7-184 subtract. See accumulator instructions SXM (sign-extension mode bit) definition 3-17 effect on CALU (central arithmetic logic unit) 3-9 effect on input shifter 3-4 synchronous serial port See also synchronous serial port registers basic operation 9-6 bit input from CLKR pin (IN0 bit) 9-10 block diagram 9-3 burst mode (introduction) 9-12 CLKR pin as bit input (IN0 bit) 9-10 clock source for transmission (MCM bit) 9-12 components 9-3 configuration 9-8 continuous mode (introduction) 9-12 controlling and resetting 9-8 digital loopback mode 9-28 emulation modes 9-8, 9-28 error conditions burst mode 9-29 continuous mode 9-29 features 9-1

synchronous serial port (continued) **FIFO** buffers detecting data in receive FIFO buffer (RFNE bit) 9-9 detecting empty transmit FIFO buffer (TCOMP bit) 9-9 introduction 9-5 managing contents with SDTR 9-15 frame sync modes (FSM bit) 9-12 frame sync source for transmission (TXM bit) 9-13 interrupts (XINT and RINT) flag bits 5-21 mask bits 5-23 priorities 5-16 receive (RINT) 9-6 controlling (FR1 and FR0 bits) 9-10 transmit (XINT) 9-6 controlling (FT1 and FT0 bits) 9-9 using 9-13 vector locations 5-16 introduction 2-12 overflow in receiver burst mode 9-29 continuous mode 9-30 detecting (OVF bit) 9-10 overview 9-2 pins 9-4 receiver operation 9-24 burst mode 9-24 continuous mode 9-25 registers (overview) 9-5 reset conditions 5-34 resetting 9-13 receiver (RRST bit) 9-10 transmitter (XRST bit) 9-10 selecting mode of operation 9-12 selecting transmit clock source 9-12 selecting transmit frame sync source 9-12 signals 9-3 testing 9-27 transmitter operation 9-16 burst mode with external frame sync 9-18 burst mode with internal frame sync 9-16 continuous mode with external frame sync 9-22 continuous mode with internal frame sync 9-20

Index

synchronous serial port (continued) troubleshooting bits for testing the port 9-27 error conditions burst mode 9-29 continuous mode 9-29 underflow in transmitter burst mode 9-29 continuous mode 9-29 synchronous serial port registers control register (SSPCR) description 9-8 quick reference A-12 **FIFO** buffers detecting data in receive FIFO buffer (RFNE bit) 9-9 detecting empty transmit FIFO buffer (TCOMP bit) 9-9 introduction 9-5 managing contents with SDTR 9-15 overview 9-5 receive shift register (RSR) 9-5 transmit and receive register (SDTR) 9-5 using to access FIFO buffers 9-15 transmit shift register (XSR) 9-5

Т

target cable E-14 target system, connection to emulator E-1 to E-25 target system emulator connector, designing E-2 target-system clock E-12 TBLR instruction 7-186 TBLW instruction 7-189 TC (test/control flag bit) 3-17 response to accumulator event 3-10 response to auxiliary register compare 3-14 TCK signal E-2, E-3, E-4, E-6, E-7, E-13, E-17, E-18, E-25 TCOMP bit 9-9 TCR (timer control register) 8-10 to 8-12 'C209 11-15 quick reference A-9 TDDR (timer divide-down register) 'C203/C204 8-12 'C209 11-16 definition F-23

TDI signal E-2, E-3, E-4, E-5, E-6, E-7, E-8, E-13, E-18 TDO signal E-4, E-5, E-8, E-19, E-25 temporary register (TREG) 3-6 TEMT bit 10-10 test bus controller E-22, E-24 test clock E-12 diagram E-12 test/control flag bit (TC) 3-17 response to accumulator event 3-10 response to auxiliary register compare 3-14 THRE bit 10-11 TIM (timer counter register) 8-12, F-23 to F-26 TIM bit 10-8 timer 8-8 to 8-13 block diagram 8-8 control register (TCR) 8-10 to 8-12 counter register (TIM) 8-12, F-23 to F-26 divide-down register (TDDR) 'C203/C204 8-12 'C209 11-16 definition F-23 emulation modes (FREE and SOFT bits) 8-11 interrupt (TINT) 'C203/C204 flag bit 5-22 mask bit 5-23 priority 5-16 vector location 5-16 'C209 flag bit 11-12 mask bit 11-13 priority 11-10 vector location 11-10 interrupt rate 8-13 operation 8-9 to 8-10 period register (PRD) 8-12, F-23 to F-26 prescaler counter (PSC) 'C203/C204 8-11 'C209 11-15 reload 'C203/C204 8-11 'C209 11-15 reset 8-13 setting interrupt rate 8-13 stop/start C203/C204 8-12 'C209 11-16

timer control register (TCR) 8-10 to 8-12 'C209 11-15 quick reference A-9 timer counter register (TIM) 8-12, F-23 to F-26 timer period register (PRD) 8-12, F-23 to F-26 timing calculations E-7 to E-9, E-18 to E-26 TINT bit 'C203/C204 in interrupt flag register (IFR) 5-22 in interrupt mask register (IMR) 5-23 'C209 in interrupt flag register (IFR) 11-12 in interrupt mask register (IMR) 11-13 **TINT** interrupt 'C203/C204 flag bit 5-22 mask bit 5-23 priority 5-16 vector location 5-16 'C209 flag bit 11-12 mask bit 11-13 priority 11-10 vector location 11-10 definition F-23 TMS signal E-2, E-3, E-4, E-5, E-6, E-7, E-8, E-13, E-17, E-18, E-19, E-25 TMS/TDI inputs E-4 TMS320 devices applications 1-4 evolution (figure) 1-3 overview 1-2 TMS320 ROM code submittal, flow chart D-2 TMS320C1x/C2x/C2xx/C5x instruction set comparisons B-1 to B-36 TMS320C209 device 11-1 to 11-18 comparison to other 'C2xx devices 11-2 differences in interrupts 11-3 differences in memory and I/O spaces 11-3 differences in peripherals 11-2 similarities 11-2 interrupts 11-10 locating 'C209 information in this manual (table) 11-3 memory and I/O spaces 11-5 on-chip peripherals 11-14

transmit interrupt asynchronous serial port 10-17 enabling/disabling (TIM bit) 10-8 synchronous serial port 9-6 transmit pin asynchronous serial port (TX) 10-4 output level between transmissions (SETBRK bit) 10-8 synchronous serial port (DX) 9-4 transmit register asynchronous serial port (ADTR) 10-4 detecting when empty (THRE bit) 10-11 detecting when it and AXSR are empty (TEMT bit) 10-10 synchronous serial port (SDTR) 9-5 transmit shift register asynchronous serial port (AXSR) 10-5 detecting when it and ADTR are empty (TEMT bit) 10-10 synchronous serial port (XSR) 9-5 TRAP instruction 7-192 introduction 5-28 vector location 'C203/C204 5-17 'C209 11-11 TRB bit 'C203/C204 8-11 'C209 11-15 TREG (temporary register) 3-6 **TREG** instructions load accumulator using shift specified by TREG (LACT) 7-78 load TREG (LT) 7-91 load TREG and add PREG to accumulator (LTA) 7-93 load TREG and store PREG to accumulator (LTP) 7-98 load TREG and subtract PREG from accumulator (LTS) 7-100 load TREG, add PREG to accumulator, and move data (LTD) 7-95 load TREG, add PREG to accumulator, and multiply (MAC) 7-102 load TREG, add PREG to accumulator, multiply, and move data (MACD) 7-106 TRST signal E-2, E-3, E-6, E-7, E-13, E-17, E-18, E-25

TSS bit 'C203/C204 8-12 'C209 11-16

TX pin 10-4 TXM bit 9-11

TXRXINT bit

in interrupt flag register (IFR) 5-21 in interrupt mask register (IMR) 5-23

TXRXINT interrupt flag bit 5-21 mask bit in IMR 5-23 priority 5-16 vector location 5-16

U

unconditional instructions unconditional branch 5-8 unconditional call 5-8 unconditional return 5-9 underflow in synchronous serial port burst mode 9-29 continuous mode 9-29 URST bit 10-7

W

wait states definition F-25 for data space 'C203/C204 8-15 'C209 11-17 for I/O space 'C203/C204 8-15 'C209 11-17 for program space 'C203/C204 8-15 'C209 11-17 generating with READY signal 8-14 wait states (continued) generating with wait-state generator 'C203/C204 8-14 to 8-17 'C209 11-16 to 11-18 wait-state generator 8-14 to 8-16 'C209 11-16 to 11-18 introduction 2-11 wait-state generator control register (WSGR) 8-15 'C209 11-17 quick reference A-10 WE (write enable pin) definition 4-4 shown in figure 4-6, 4-10, 4-13, 4-26 write enable pin (\overline{WE}) definition 4-4 shown in figure 4-6, 4-10, 4-13, 4-26 WSGR (wait-state generator control register) 'C203/C204 8-15 'C209 11-17 auick reference A-10

Х

XDS510 emulator. See emulation; emulator
XF bit (XF pin status bit) 3-17
XF pin 8-18
XINT bit

in interrupt flag register (IFR) 5-21
in interrupt mask register (IMR) 5-23

XINT interrupt

flag bit 5-21
mask bit 5-23
priority 5-16
vector location 5-16

XOR instruction 7-193
XRST bit 9-10
XSR (synchronous serial port transmit shift register) 9-5

ZALR instruction 7-196