
S32010
User's Guide

",
TEXAS

NSTRUMENTS

TMS32010
User's Guide

Digital Signal Processor Products

."
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

TI warrants performance of its semiconductor products, including SNJ
and SMJ, devices, to current specifications in accordance with TI's
standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems such testing necessary to support this
warranty. Unless mandated by government requirements, specific
testing of all parameters of each device is not necessarily performed.

In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor device might be or are used.

Copyright © 1985, Texas Instruments Incorporated

INTRODUCTION

ARCHITECTURE

INSTRUCTIONS

METHODOLOGY FOR APPLICATION DEVELOPMENT

PROCESSOR RESOURCE MANAGEMENT

INPUT/OUTPUT DESIGN TECHNIQUES

MACRO LANGUAGE INSTRUCTIONS

DIGITAL SIGNAL PROCESSING

TMS32010 DATA SHEET

SMJ32010 DATA SHEET

DEVELOPMENT SUPPORT/PART ORDER INFORMATION

TMS32020 DATA SHEET

TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION.. 1-1
1 . 1 General Description .. 1-1
1.2 Typical Applications .. 1-1
1.3 Key Features. .. 1-2
1.4 How To Use the TMS32010 Manual .. 1-2

1.4.1 Glossary of Basic TMS32010 Hardware Terms 1-4
1 .4.2 References... 1-6

2. ARCHITECTURE.. 2-1
2.1 Architectural Overview 2-1

2. 1. 1 Harvard Architecture .. 2-3
2.2 Arithmetic Elements .. 2-3

2.2.1 AlU.. 2-4
2.2.1.1 Overflow Mode (DVM) .. 2-4

2.2.2 Accumulator.. 2-4
2.2.2.1 Accumulator Status .. 2-5

2.2.3 Multiplier... 2-5
2.2.4 Shifters.. 2-5

2.2.4.1 Barrel Shifter .. 2-6
2.2.4.2 Parallel Shifter .. 2-7

2.3 Data Memory .. 2-7
2.3. 1 Data Memory Addressing .. 2-7

2.3.1.1 Indirect Addressing. .. 2-8
2.3.1.2 Direct Addressing. .. 2-8
2.3.1.3 Immediate Addressing 2-9

2.4 Registers... 2-9
2.4.1 Auxiliary Registers. .. 2-9
2.4.2 Auxiliary Register Pointer ... 2-10

2.5 Program Memory ... 2-10
2.5.1 Modes of Operation ... 2-11

2.5.1.1 Microcomputer Mode 2-11
2.5. 1.2 Microprocessor Mode 2-11

2.5.2 Using External Program Memory ., 2-12
2.6 Program Counter and Stack ... 2-13

2.6.1 Program Counter ... 2-13
2.6.2 Stack ... 2-13

2.6.2.1 Stack Overflow .. 2-14
2.7 Status Register .. 2-14

2.7. 1 Saving Status Register .. 2-15
2.8 Input/Output Functions .. 2-15

2.8.1 IN and OUT ... 2-15
2.8.2 Table Read (TBlR) and Table Write (TBlW) 2-17
2.8.3 Address Bus Decoding ... 2-18

2.9 BID Pin ... 2-18
2.10 Interrupts .. 2-18
2.11 Reset ... 2-19
2-12 Clock/Oscillator .. 2-20
2.13 Pin Descriptions ... 2-21
2.14 Interrupt and BIO System Design ... 2-24

iii

3. INSTRUCTIONS ... 3-1

4.

5.

iv

3. 1 Introduction. .. 3-1
3.2 Addressing Modes. 3-1

3.2.1 Direct Addressing Mode .. 3-1
3.2.2 Indirect Addressing Mode. .. 3-1
3.2.3 Immediate Addressing Mode. .. 3-2

3.3 Instruction Addressing Format 3-2
3.3.1 Direct Addressing Format. 3-2
3.3.2 Indirect Addressing Format. 3-2
3.3.3 Immediate Addressing Format. .. 3-2
3.3.4 Examples of Opcode Format. 3-3

3.4 Instruction Set 3-3
3.4.1 Symbols and Abbreviations .. 3-3
3.4.2 Instruction Set Summary. .. 3-5
3.4.3 Instruction Descriptions.. 3-8

METHODOLOGY FOR APPLICATION DEVELOPMENT '
4.1 Outline of Development Process .. .
4.2 Description of Development Facilities .. .

4.2.1 TMS32010 Evaluation Module .. .
4.2.2 XDS/320 Macro Assembler/Linker .. .
4.2.3 XDS/320 Simulator .. .
4.2.4 XDS /320 Emu lator .. .

4.3 Application Development Process Example
4.3.1 System Specification
4.3.2 System Design .. .
4.3.3 Code Development .. .

4.3.3.1 Discrete-Time Filter Flowchart
4.3.3.2 FORTRAN Program
4.3.3.3 Assembly Language Program Using Relocatable Code
4.3.3.4 Assembly Language Program Using Absolute Code

PROCESSOR RESOURCE MANAGEMENT
5.1 FundamentalOperations .. .

5.1.1 Bit Manipulation
5.1.2 Data Shift .. .
5.1.3 Fixed-Point Arithmetic ... "

5. 1 .3.1 Multiplication .. .
5. 1 .3.2 Addition
5.1.3.3 Division

5.1.4 Subroutines .. .
5.1.5 Computed GO TOs

5.2 Addressing and Loop Control with Auxiliary Registers
5.2.1 Auxiliary Register Indirect Addressing
5.2.2 Loop Counter
5.2.3 Combination of Operational Modes .. .

5.3 Multiplication and Convolution
5.3.1 Pipelined Multiplications .. .
5.3.2 Moving Data .. .
5.3.3 Product Register

5.4 Memory Considerations of Harvard Architecture
5.4.1 Moving Constants into Data Memory
5.4.2 Data Memory Expansion .. .
5.4.3 Program Memory Expansion .. .

4-1
4-1
4-2
4-2
4-2
4-3
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-6

4-13

5-1
5-1
5-1
5-1
5-2
5-3
5-5
5-5

5-11
5-12
5-13
5-13
5-13
5-14
5-14
5-14
5-15
5-16
5-16
5-16
5-17
5-18

6. INPUT/OUTPUT DESIGN TECHNIQUES. 6-1
6.1 Peripheral Device Types.. 6-1

6.1.1 Registers ~. 6-1
6.1.2 FIFOs......................... 6-2
6.1.3 Extended Memory Interface. 6-2

6.2 Interrupts. 6-3
6.2.1 Software Methods. 6-3
6.2.2 Hardware Methods ... 6-4

7. MACRO LANGUAGE EXTENSiONS... 7-1

8.

7. 1 Conventions Used in Macro Descriptions ... 7-1
7.2 Macro Set Summary. 7-2
7.3 Macro Descriptions . 7-6
7.4 Structured Programming Macros .. 7-148
7.5 Utility Subroutines ... 7-151

DIGITAL SIGNAL PROCESSING
8.1 A-to-D and D-to-A Conversion

8. 1 . 1 Sample Analysis
8.1.2 Sample Quantization

8.2 Basic Theory of Discrete Signals and Systems
8.2.1 Linear Systems .. .
8.2.2 Fourier Transform Representations

8.3 Design and Implementation of Digital Filters .. .
8.3.1 Digital Filter Structures
8.3.2 Digital Filter Design .. .

8.4 Quantization Effects .. .
8.5 Spectrum Analysis .. .

8.5.1 Discrete Fourier Transform (DFT) .. .
8.5.2 Fast Fourier Transform (FFT) .. .
8.5.3 Uses of the DFT and FFT
8.5.4 Autoregressive Model .. .

8.6 Potential DSP Applications for the TMS32010
8.6.1 Speech and Audio Processing
8.6.2 Communications .. .

8.7 References .. .

8-1
8-1
8-2
8-5
8-6
8-6
8-7
8-9
8-9

8-13
8-18
8-19
8-19
8-20
8-20
8-23
8-24
8-24
8-26
8-28

v

LIST OF APPENDICES

APPENDIX PAGE

A TMS32010 Digital Signal Processor Data Sheet A-1
B SMJ32010 Digital Signal Processor Data Sheet 8-1
C TMS32010 Development Support and Part Order Information .. C-1
D TMS32020 Digital Signal Processor Data Sheet D-1

LIST OF ILLUSTRATIONS

FIGURE PAGE

2-1 Block Diagram of the TMS320M 10 ... 2-2
2-2 Harvard Architecture .. 2-3
2-3 Indirect Addressing Autoincrement/Decrement 2-9
2-4 TMS320 Family Memory Map ... 2-12
2-5 External Program Memory Expansion Example 2-13
2-6 TMS32010 Status Register ... 2-14
2-7 Status Word as Stored by SST Instruction 2-15
2-8 External Device Interface ... 2-16
2-9 Input/Output Instruction Timing .. 2-16
2-10 Table Read and Table Write Instruction Timing 2-17
2-11 Simplified Interrupt Logic Diagram .. 2-18
2-12 Interrupt Timing .. 2-19
2-13 Reset Timing .. 2-20
2-14 Internal Clock ... 2-20
2-1 5 External Frequency Source .. 2-20
2-16 TMS3201 0 Pin Assignments .. 2-23
2-17 Interrupt and BIO Hardware Design ... 2-24

4-1 Flowchart of Typical Application Development 4-1
4-2 Flowchart of Filter Implementation .. 4-5

5-1 Division Routine I Flowchart .. 5-7
5-2 Division Routine II Flowchart 5-9
5-3 Techniques for Expanding Program Memory 5-18

6-1 Communication Between Processors .. 6-1
6-2 Typical Analog System Interface ... 6-2
6-3 TMS32010 Extended Memory Interface .. 6-3

8-1 Block Diagram of Digital Signal Processing .. 8-1
8-2 Analog-to-Digital Conversion Process .. 8-2
8-3 Two Cosine Waves Sampled with Period T .. 8-3
8-4 Frequency Components of Three Cosine Waves .. 8-3
8-5 D-to-A Conversion Using a Zero-Order Hold 8-4
8-6 An Eight-Level (Three-Bit) Quantizer .. 8-5
8-7 Quantization as Additive Noise. .. 8-6
8-8 Fourier Transform Sampling .. 8-8
8-9 Direct Forms I and II .. 8-10
8-10 Cascade Structure for N = 4 .. 8-1 2

vi

8-11 Fourth-Order Elliptic Digital Filter. .. 8-14
8-12 Frequency Response of FIR Lowpass Filter 8-17
8-13 Impulse Response of Equiripple Lowpass Filter. .. 8-18
8-14 A Discrete Convolution Using the FFT ... 8-21
8-15 Estimation of Fourier Transform of an Analog Signal .. 8-22
8-16 Short-Time Fourier Analysis of a Doppler Radar Signal 8-22
8-17 Spectrum Estimation for Speech Signals ... 8-24
8-18 Block Diagram of a Digital Modem. .. 8-27

LIST OF TABLES

TABLE PAGE

1-1 TMS32010 Hardware Terminology. 1-5

2-1 Accumu lator Results .. 2-4
2-2 Accumulator Test Conditions. 2-5
2-3 Program Memory for the TMS320 Family .. 2-11
2-4 TMS32010 Pin Descriptions .. 2-21

3-1 Instruction Symbols .. 3-4
3-2 Instruction Set Summary. .. 3-5

4-1 Filter Specifications ... 4-4

7 -1 Macro Index. .. 7-2
7-2 Macro Set Summary ... , 7-4

vii

viii

FOREWORD

Digital Signal Processing (DSP) is concerned with the representation of signals (and the information that
they contain) by sequences of numbers, and the transformation or processing of such signal
representations by numerical computation procedures.

Since the late 1950's, scientists and engineers in research labs have been touting the virtues of digital signal
processing, but practical considerations have prevented widespread application. Now, with the availability
of integrated circuits, such as Texas Instruments' TMS320, digital signal processing is leaving the
laboratory and entering the world of application. The reasons for this are numerous and compelling.
Perhaps the most important reason is that extremely sophisticated signal processing functions can be
implemented using digital techniques. Indeed, many of the important DSP techniques are difficult or
impossible to implement using analog (continuous-time) methods. It is almost equally important that VLSI
technology is best suited to the implementation of digital systems, which are inherently more reliable, more
compact, and less sensitive to environmental conditions and component aging than analog systems.
Another advantage of the discrete-time approach is the possibility of time sharing a single processing unit
among a number of different signal processing functions. This is particularly efficient and cost effective in
large systems having many input and output channels. Indeed, until recently, digital processing was only
cost effective where it could be applied in large systems. Now, however, with VLSI techniques, low-cost
processors such as the TMS32010 are available and a wealth of opportunities exist for the application of
DSP techniques.

The potential applications will be found in any area where signals arise as representations of information. In
many cases, the signals represent information about the state of some physical system (including human
beings). Often, the objective in processing the signal is to prepare the signal for digital transmission to a
remote location or for digital storage of the information for later reference. On the other hand, the signal
may be processed to remove distortions introduced by transducers, the signal generation environment, or
by a transmission system. Still another important class of applications arises when information is
automatically extracted from the signal so as to control another system or to infer something about the
properties of the system which generated the signal. Some of the more important areas where the above
types of processing are of interest include speech communication, geophysical exploration,
instrumentation for chemical analysis, image processing for television, audio recording and reproduction,
biomedical instrumentation, acoustical noise measurements, sonar, radar, automatic testing of systems,
and consumer electronics.

In areas such as speech communication research and geophysical exploration, digital signal processing
techniques already have been widely applied using general-purpose digital computers. In other areas,
eConomic factors or processing speed have had limited applications up to recent times. Now, however,
these limitations are subsiding rapidly and digital signal processing will soon be widely used in all the above
mentioned areas and many more.

Ronald W. Schafer
Russell M. Mersereau
Thomas P. Barnwell, III

Atlanta Signal Processors, Inc.

and

Georgia Institute of Technology
School of Electrical Engineering

ix

x

I

INTRODUCTION

1. INTRODUCTION

1.1 GENERAL DESCRIPTION

The TMS32010 is the first member of the new TMS320 digital signal processing family, designed to
support a wide range of high-speed or numeric-intensive applications. This 16/32-bit single-chip
microcomputer combines the flexibility of a high-speed controller with the numerical capability of
an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors.

The TMS320 family contains the first MOS microcomputers capable of executing five million I
instructions per second. This high throughput is the result of the comprehensive, efficient, and
easily programmed instruction set and of the highly pipelined architecture. Special instructions have
been incorporated to speed the execution of digital signal processing (DSP) algorithms.

Development support is available for a variety of host computers. This includes a macro assembler,
linker, simulator, emulator, and evaluation module.

1.2 TYPICAL APPLICATIONS

The TMS320 family's unique versatility and power give the design engineer a new approach to a
variety of complicated applications. In addition, these digital signal processors are capable of
providing the multiple functions often required for a single application. For example, the TMS320
family can enable an industrial robot to synthesize and recognize speech, sense objects with radar
or optical intelligence, and perform mechanical operations through digital servo loop computations.

Some typical applications of the TMS320 family are listed below.

SIGNAL PROCESSING

• Digital filtering

• Correlation

• Hilbert transforms

• Windowing

• Fast Fourier transforms

• Adaptive fiJtering

• Waveform generation

• Speech processing

• Radar and sonar processing

• Electronic counter measures

• Seismic processing

INSTRUMENTA TlON

• Spectrum analysis

• Digital filtering

• Phase-locked loops

• Averaging

• Arbitrary waveform generation

• Transient analysis

TELECOMMUNICATIONS

• Adaptive equalizers

• JL/A law conversion

• Time generators

• High-speed modems

• Multiple-bit-rate modems

• Amplitude, frequency, and phase

modulation/demodulation

• Data encryption

• Data scrambling

• Digital filtering

• Data compression

• Spread-spectrum communications

NUMERIC PROCESSING

• Fast multiply/divide

• Double-precision operations

• Fast scaling

• Non-linear function

computation

(i.e., sin x, eX)

IMAGE PROCESSING

• Pattern recognition

• Image enhancement

• Image compression

• Homomorphic processing

• Radar and sonar processing

HIGH-SPEED CONTROL

• Servo links

• Position and rate control

• Motor control

• Missile guidance

• Remote feedback control

• Robotics

SPEECH PROCESSING

• Speech analysis

• Speech synthesis

• Speech recognition

• Voice store and forward

• Vocoders

• Speaker authentification

1-1

I

1.3 KEY FEATURES

With an excellent combination of features, the TMS320 family of high-peformance digital signal
processors is a cost-effective alternative to custom VLSI devices and bit-slice systems.

• 200-ns instruction cycle

• 2SS-byte on-chip data RAM

• Microprocessor version - TMS3201 0

• Microcomputer version - TMS320M10 - (3K-byte on-chip program ROM)

• External program memory expansion to a total of SK bytes at full speed

• 16-bit instruction/data word

• 32-bit ALU/accumulator

• 16 x 16-bit multiply in 200 ns

• 0 to 15-bit barrel shifter

• Eight input and eight output channels

• 16-bit bidirectional data bus with 40-megabits-per-second transfer rate

• Interrupt with full context save

• Signed two's complement fixed-point arithmetic

• 2.7-micron NMOS technology

• Single 5-V supply

• 40-pin DIP

The TMS320M10 and the TMS32010 are exactly the same with one exception: the TMS320M10
contains an on-chip masked ROM while the TMS32010 utilizes off-chip program memory.

NOTE

Throughout this document, TMS32010 will refer to both the TMS32010 and the
TM S320 M 10 except where otherwise indicated.

1.4 HOW TO USE THE TMS32010 MANUAL

1-2

It is the intent in the design of this user's guide that it be an effective reference book that provides
information for both the hardware and the software engineer about the TMS32010 digital signal
processor, its architecture, instruction set, electrical specifications, interface methods, and
applications.

(mnemonic) (title of instruction) (mnemonic)
Addressing:

Operands:

Operation:

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 a

Description:

Words:
Cycles:

Example:

BEFORE INSTRUCTION AFTER INSTRUCTION
31 a 31 a

In the architecture section (Section 2), the design of the device and its hardware features are
described. The instruction section (Section 3) explains individual instructions in detail. The
following format is used for the instruction descriptions in Section 3.4.3 to provide ease of reading
and application.

Section 4 on methodology for application development describes the tools, such as an emulator or
evaluation module, that are available for developing an individual system and gives an example of
TMS32010 software development. In the processor resource management section (Section 5), the
engineer finds a description of the common algorithms or practices to be used for any application.
He becomes familiar with interface techniques in the input/output design techniques section
(Section 6).

The set of macros in the macro language extensions section (Section 7) aids the engineer in
programming and in providing templates for further software development. Another special format
is used for the macro descriptions in Section 7.2. Each macro instruction is named, followed by a
summary table. A flowchart serves to clarify the macro source which is given. Examples of macro
use are also presented. This macro description format is as follows:

1-3

I

I

(mnemonic) (title of macro) (mnemonic)

TITLE: (macro)

NAME: (mnemonic)

OBJECTIVE:

ALGORITHM:

CALLING
SEQUENCE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

PROGRAM DATA
MEMORY MEMORY
REQUIRED: (#words) REQUIRED: (#words)

STACK EXECUTION
REQUIRED: (# levels) TIME: (# cycles)

FLOWCHART:

SOURCE:

EXAMPLE 1:

EXAMPLE 2:

Section 8 on digital signal processing contains an overview of signal processing theory, algorithms,
and potential applications. The TMS32010 data sheet appears as Appendix A and the SMJ32010
data sheet as Appendix B. Data descriptions of the evaluation module, macro assembler/linker,
simulator, and emulator are presented in Appendix C.

1.4.1 Glossary of Basjc TMS32010 Hardware Terms

1-4

Table 1-1 lists in alphabetical order the TMS3201 0 basic hardware units, the symbol for the unit (if
any), and the function of that particular unit.

TABLE 1-1 - TMS32010 HARDWARE TERMINOLOGY

UNIT

Accumulator

Arithmetic Logic Unit

Auxiliary Registers

Auxiliary Register Pointer

Data Bus

Data Memory Page Pointer

Data RAM

Interrupt Flag Register

Interrupt Mode Register

Multiplier

Overflow Flag Register

Overflow Mode Register

P Register

Program Bus

Program Counter

Program ROM

Shifter

Stack

T Register

SYMBOL FUNCTION

ACC 32-bit accumulator

ALU Two-port 32-bit arithmetic logic unit

ARO, AR1 Two 16-bit registers for indirect addressing of data
memory and loop counting control. Nine LSBs of each
register are configured as bidirectional counters

ARP

D Bus

DP

INTF

INTM

OV

OVM

P

P Bus

PC

T

Single-bit register containing address of current
auxiliary register

16-bit bus routing data from random access memory

Single-bit register containing page address of data RAM
(1 page = 128 words)

144 X 16 bit word on-chip random access memory
containing data

Single-bit flag register that indicates an interrupt
request has occurred (is pending)

Single-bit mode register that masks the interrupt flag

16 X 16-bit parallel hardware multiplier

Single-bit flag register that indicates an overflow in
arithmetic operations

Single-bit mode register that defines a saturated or
unsaturated mode in arithmetic operations

32-bit register containing product of multiply operations

16-bit bus routing instructions from program memory

12-bit register containing address of program memory

1 536 X 1 6-bit word read only memory containing pro
gram code (TMS320M 10 only)

Two shifters: one is a variable 0-15-bit left-shift barrel
shifter that moves data from the RAM into the ALU.
The other shifter acts on the accumulator when it is
being stored in data RAM; it can left-shift by 0, 1, or 4
bits.

4 X 12-bit registers for saving program counter contents
in subroutine and interrupt calls

16-bit register containing multiplicand during multiply
operations

I

1-5

I

1.4.2 References

1-6

The following list of references, including textbooks, contains useful information regarding
functions, operations, and applications of digital processing. These books, in turn, list other
references to many useful technical papers.

Andrews, H.C., Hunt, B. R., DIGITAL IMAGE RESTORATION. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1977 .

Brigham, E. Oran, THE FAST FOURIER TRANSFORM. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1974.

Hamming, R.W., DIGITAL FILTERS. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1977.

Morris, L. Robert, DIGITAL SIGNAL PROCESSING SOFTWARE. Ottawa, Canada: Carleton
University, 1983.

Oppenheim, Alan V. (Editor), APPLICATIONS OF DIGITAL SIGNAL PROCESSING.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., Schafer, R.W., DIGITAL SIGNAL PROCESSING. Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R., Gold, Bernard, THEORY AND APPLICATION OF DIGITAL SIGNAL
PROCESSING. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R., Schafer, R.W., DIGITAL PROCESSING OF SPEECH SIGNALS.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978.

I

ARCHITECTURE

2. ARCHITECTURE

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility (see Figure 2-1).
In a strict Harvard architecture, program and data memory lie in two separate spaces, permitting a
full overlap of the instruction fetch and execution. The TMS320 family's modification of the Harvard
architecture allows transfers between program and data spaces, thereby increasing the flexibility of
the device. This modification permits coefficients stored in program memory to be read into the
RAM, eliminating the need for a separate coefficient ROM. It also makes available immediate
instructions and subroutines based on computed values.

The TMS32010 utilizes hardware to implement functions that other processors typically perform in
software. For example, the TMS3201 0 contains a hardware multiplier to perform a multiplication in I
a single 200-ns cycle. There is also a hardware barrel shifter for shifting data on its way into the
ALU. Finally, extra hardware has been included so that the auxiliary registers, which provide
indirect data RAM addresses, can be configured in an autoincrement/ decrement mode for single
cycle manipulation of data tables. This hardware-intensive approach gives the design engineer the
type of power previously unavailable on a single chip.

2.1 ARCHITECTURAL OVERVIEW

The TMS32010 microcomputers combine the following elements onto a single chip:

• Volatile 144 x 16-word read/write data memory

• Non-volatile 1536 X 16-word program memory (TMS320M10 only)

• Double-precision 32-bit ALU/accumulator

• Fast 200-ns multiplier

• Barrel shifter for shifting data memory words into the ALU

• Shifter that shifts the accumulator into the data RAM

• 16-bit data bus for fetching instruction words from off-chip at full speed

• 4 X 12-bit stack that allows context switching

• Autoincrementing/decrementing registers for indirect data addressing and loop counting

• Single-vectored interrupt

• On-chip oscillator

This section provides a description of these elements. The generic term JTMS3201 0' is used to refer
collectively to the TMS32010 and TMS320M10.

2-1

WE

DEN

MEN

BIO

MC/MP

I INT

RS

A ll-AO/
PA2-PAO

N

2-2

~
z
~ =>J

0 U
~ NJ
U X X

+ ++ j6 ~ 12 LSB
4~

t ~ ,
---..... a: ..

UJJ , -J
~ 12 0 .. a: - ~ .. z

0 . u ..
--

\ MUX I '~16

T
I PC (12) INSTRUCTION

)'12
(j) . .. CJ) PROGRAM w

~r a: ROM
Cl

fx
.... -..

I~
............

STACK Cl (1536 x 16)
<{

4 x 12

3
PROGRAM BUS

/

OTE:

ACC

ARP

ARO

AR1

DP

PC

P

T

/

=
=
=
=
=
=
=
=

4~
~ r 16

ARO (16) :
ARP --+---........ ---11----1

ARl (16) I
I

./8

Accumulator

Auxiliary register pointer

Auxiliary register 0

Auxiliary register 1

Data page pointer

Program counter

P Register

T Register

ADDRESS

DATA RAM
(144 x 16)

DATA

if'
~ 16

16 V ,
, ,

D15-DO

~16
~.

T(16)

SHIFTER
(0-15)

16
MULTIPLIER ~

~

7 32

+
'\ I

ALU (32)

, "I" 32 I 32
,~

ACC (32)

32

+ /32

I SHIFTER (0. 1, 4)

16

P(32) , ~ ~ 32
r

~ 32

r /

16 V . ,

DATA BUS

/

FIGURE 2-1 - BLOCK DIAGRAM OF THE TMS320M10

2.1.1 Harvard Architecture

The TMS320 10 utilizes a modified Harvard architecture in which program memory and data memory
lie in two separate spaces. This permits a full overlap of instruction fetch and execution.

Program memory can lie both on-chip (in the form of the 1536 X 16-word ROM) and off-chip. The
maximum amount of program memory that can be directly addressed is 4K X 16-bit words.

Instructions in off-chip program memory are executed at full speed. Fast memories with access
times of under 100 ns are required.

Data memory is the 144 X 16-bit on-chip data RAM. Instruction operands are fetched from this
RAM; no instruction operands can be directly fetched from off-chip. However, data can be written
into the data RAM from a peripheral by using the IN instruction or read from program memory by
using the TBlR (table read) instruction. The OUT instruction will write a word from the data RAM
to a peripheral, while a TB lW instruction will write a data RAM word to program memory
(presumably, off-chip).

Figure 2-2 outlines the overlap of the instruction prefetch and execution. On the falling edge of
ClKOUT, the program counter (PC) is loaded with the instruction (load PC2) to be prefetched while
the current instruction (execute 1) is decoded and is started to be executed. The next instruction is
then fetched (fetch 2) while the current instruction continues to execute (execute 1). Even as
another prefetch occurs (fetch 3), both the current instruction (execute 2) and the previous
instruction are still executing. This is possible because of a highly pipelined internal operation.

CLKOUT 1 .. __
LOAD

PC 1
..... FETCH 1

• • EXECUTE 1
•
LOAD

PC 2
...... FETCH 2

• • •
LOAD

PC 3

•

EXECUTE 2

........ FETCH 3
• •

•

EXECUTE 3 .. ~--------------------~.
FIGURE 2-2 - HARVARD ARCHITECTURE

2.2 ARITHMETIC ELEMENTS

L

There are four basic arithmetic elements: the AlU, the accumulator, the multiplier, and the shifters.
All arithmetic operations are performed using two's complement arithmetic (see Section 5.1.3).

Most arithmetic instructions will access a word in the data RAM, either directly or indirectly, and
pass it through the barrel shifter. This shifter can left-shift a word 0 to 15 bits, depending on the
value specified by the instruction. The data word then enters the ALU where it is loaded into or
added/subtracted from the accumulator. After a result is obtained in the accumulator, it can be
stored in the data RAM. Since the accumulator is 32 bits, both halves must be stored separately. A
parallel left-shifter is present at the accumulator output to aid in scaling results as they are being
moved to the data RAM.

2-3

I

2.2.1 ALU

The ALU is a general-purpose arithmetic logic unit that operates with a 32-bit data word. The unit
will add, subtract, and perform logical operations. The accumulator is always the destination and
the primary operand. The result of a logical operation is shown in Table 2-1 . A data memory value is
the operand for the lower half of the accumulator (bits 15 through 0), Zero is the operand for the
upper half of the accumulator.

TABLE 2-1 - ACCUMULATOR RESULTS

FUNCTION
ACCUMULATOR RESULT

ACC BITS 31 THROUGH 16 ACC BITS 15 THROUGH 0

XOR (zero) e (ACC bits 31-16) (data memory value) e (ACe bits 15-0)

AND (zero) . (ACC bits 31-16) (data memory value) . (ACC bits 15-0)

OR (zero) + (ACC bits 31-16) (data memory value) + (ACC bits 15-0)

2.2.1.1 Overflow Mode (OVM)

The OVM register is directly under program control, i.e., it is set by the SOVM instruction and reset
by the ROVM instruction. If an overflow occurs when set, the most positive or the most negative
representable value of the ALU will be loaded into the accumulator. Whether it is the most positive
or the most negative value is determined by the overflow sign. If an overflow occurs when reset, the
accumulator is unmodified. (See the SOVM instruction in Section 3.4.3 for further information and
an example.)

In signal processing, arithmetic overflows can create special problems. Since overflows can cause
swings between very large and very small numbers, they will often result in erratic system behavior.
The TMS3201 0 has been designed with a special overflow mode to compensate for this behavior.
When the overflow mode register (OVM) is set by the SOVM instruction (i.e., 1 -+ OVM), an
overflow will cause the largest/smallest representable value of the ALU to be loaded into the
accumulator. This models the saturation processes inherent in analog systems. When the overflow
mode register (OVM) is reset by the ROVM instructions (i.e., 0 --+ OVM), overflow results are loaded
into the accumulator without modification.

The OVM register can be stored in data memory as a single-bit register that is part of the status
register (see Section 2.7). It should not be confused with the overflow flag (OV), explained in
Section 2.2.2.1.

2.2.2 Accumulator

2-4

The accumulator stores the output from the ALU and is also often an input to the ALU. It operates
with a 32-bit word length. The accumulator is divided into a high-order word (bits 31 through 16)
and a low-order word (bits 15 through 0). Instructions are provided for storing the high and low
order accumulator words in data memory (SACH and SACL).

2.2.2.1 Accumulator Status

Accumulator overflow status can be read from the accumulator overflow flag register (OV). This
register will be set if an overflow occurs in the accumulator. Since the OV register is part of the
status register (see Section 2.7), OV status can be stored in data memory. Once the overflow flag
register is set, only the execution of the branch on overflow (BV) instruction or direct modification
of the status register can clear it. This feature permits the examination of overflow results outside of
time-critical loops.

A variety of other accumulator conditions can be tested by the branch instructions given in Table
2-2. These instructions will cause a branch to be executed if the condition is met.

TABLE 2-2 - ACCUMULATOR TEST CONDITIONS

INSTRUCTION ACCUMULATOR CONDITION TESTED

Bll <0
BlEl ~O

BGl >0
BGEl ~O

BNl <>0
Bl =0

2.2.3 Multiplier

The 16 X 16-bit parallel multiplier consists of three units: the T register, the P register, and the
multiplier array. The T register is a 16-bit register that stores the multiplicand, while the P register is
a 32-bit register that stores the product.

In order to use the multiplier, the multiplicand must first be loaded into the T register from the data
RAM by using one of the following instructions: L T, L TA, or LTD. Then the MPY (multiply) or the
MPYK (multiply immediate) instruction is executed. If the MPY instruction is used, the multiplier
value is a 16-bit number from the data RAM. If the MPYK instruction is used, the multiplier value is
a 13-bit immediate constant derived from the MPYK instruction word; this 13-bit constant is right
justified and sign extended. After execution of the MPY or MPYK instruction, the product will be
found in the P register. The product can then be added to, subtracted from, or loaded into the
accumulator by executing one of the following instructions: APAC, SPAC, LTA, LTD, or PAC.

Pipelined multiply and accumulate operations at 400-ns rates can be accomplished with the
L TAIL TO and MPY IMPYK instructions (see Section 3.4.3 for greater detail).

There is no convenient way to restore the contents of the P register without altering other registers.
For this reason, special hardware has been incorporated in the TMS32010 to inhibit an interrupt
from occurring until the instruction following the MPY or MPYK instruction has been executed.
Thus, the M PY or M PYK instruction should always be followed by instructions that combine the P
register with the accumulator: PAC, APAC, SPAC, LTA, or LTD. This is almost always done as a
logical consequence of the TMS3201 0 instruction set.

2.2.4 Shifters

There are two shifters available for manipulating data: a barrel shifter for shifting data from the data
RAM into the ALU and a parallel shifter for shifting the accumulator into the data RAM.

2-5

I

I

2.2.4.1 Barrel Shifter

2-6

The barrel shifter performs a left-shift of 0 to 15 places on all data memory words that are to be load
ed into, subtracted from, or added to the accumulator by the LAC, SUB, and ADD instructions.

The barrel shifter zero-fills the low-order bits and sign-extends the 16-bit data memory word to 32
bits by what is called an arithmetic left-shift. An arithmetic left-shift means that the bits to the left of
the M S B of the data word are filled with ones if the M S B is a one or with zeros if the M S B is a zero.
This is different from a logical left-shift where the bits to the left of the MSB are always filled with
zeros. A small amount of code is required to perform an arithmetic right-shift or a logical right-shift
(see Section 5.1.2).

The following examples illustrate the barrel shifter's function:

EXAMPLE 1:

Data memory location 20 holds the two's complement number: > 7EBC

The load accumulator (LAC) instruction is executed, specifying a left-shift of 4:

LAC 20,4

The accumulator would then hold the following 32-bit signed two's complement number:

31 16 15 0

000 7 E B C 0

Since the MSB of > 7EBC is a zero, the upper accumulator was zero-filled.

EXAMPLE 2:

Data memory location 30 holds the two's complement number: > 8EBC

The LAC instruction is executed, specifying a left-shift of 8:

LAC 30,8

The accumulator would then hold the following 32-bit signed two's complement number:

31 16 15 o

F F 8 E B COO

Since the MSB of > 8EBC is a one, the upper accumulator was filled with ones.

There are also instructions that perform operations with the lower half of the accumulator and a
data word without first sign-extending the data word (i.e., treating it as a 16-bit rather than a 32-bit
word). The mnemonics of these instructions typically end with an liS," indicating that sign
extension is suppressed (e.g., ADDS, SUBS). Along with the instructions that operate on the
upper half of the accumulator, these instructions allow the manipulation of 32-bit precision
numbers.

2.2.4.2 Parallel Shifter

The parallel shifter is activated only by the store high-order accumulator word (SACH) instruction.
This shifter left-shifts the entire 32-bit accumulator and places 16 bits into the data RAM, resulting
in a loss of the accumulator's high-order bits. This shifter can execute a shift of only 0, 1, or 4.
Shifts of 1 and 4 were chosen to be used with multiplication operations (see Section 5.1.3.1). No I
right-shift is directly implemented. The following example illustrates the accumulator shifter's
function:

EXAMPLE:

The accumulator holds the 32-bit two's complement number:

31 16 15 o

A 3 4 B 7 8 C 0

The SACH instruction is executed, specifying that a left-shift of four be performed on the
high-order accumulator word before it is stored in data memory location 40:

SACH 40,4

Data memory location 40 then contains the following number: > 34B7. The accumulator still
retains> A34B78CD.

2.3 DATA MEMORY

Data memory consists of the 144 words of 16-bit width of RAM present on-chip. All non-immediate
data operands reside within this RAM.

Sometimes it is convenient to store data operands off-chip and then read them into the on-chip
RAM as they are needed. Two means are available for doing this. First, there are the table read
(TBlR) and the table write (TBlW) instructions. The table read (TBlR) instruction can transfer
values from program memory, either on-chip ROM or off-chip PROM/RAM, to the on-chip data
RAM. The table write (TBlW) instruction transfers values from the data RAM to program memory,
presumably in the form of off-chip RAM. These instructions take three cycles to execute. The IN
and OUT instructions provide another method. The IN instruction reads data from a peripheral and
transfers it to the data RAM. With some extra hardware, the IN instruction, together with the OUT
instruction, can be used to read and write from the data RAM to large amounts of external storage
addressed as a peripheral (see Section 3.4.3). This method is faster since IN and OUT take only two
cycles to execute.

2.3.1 Data Memory Addressing

There are three forms of data memory addressing: indirect, direct, and immediate.

2-7

I

2.3.1.1 Indirect Addressing

Indirect addressing uses the lower eight bits of the auxiliary registers as the data memory address
(see Section 2.4.1). This is sufficient to address all 144 data words; no paging is necessary with
indirect addressing. The current auxiliary register is selected by the auxiliary register pointer (ARP).
In addition, the auxiliary registers can be made to autoincrement/ decrement during any given
indirect instruction. The increment/decrement occurs AFTER the current instruction is finished
executing.

Some examples of indirect addressing are given below. ARO and AR 1 are predefined assembler
constants with values of 0 and 1, respectively.

Each of the following examples should be viewed as a complete program sequence, rather than
separate isolated statements. Indirect addressing is indicated by an asterisk (*) in these examples
and in the TMS32010 assembler.

EXAMPLE 1:

LARP ARO

LARK ARO,5
ADD *

ADD *+

ADD *-

ADD *

EXAMPLE 2:

LARK ARO,10
LARK AR1,20
LARP 1

ADD *,O,ARO

ADD * + ,0,AR1

Load ARP with a zero. This sets ARO as the
current auxiliary register.
Load ARO with a 5.
Add contents of data memory location 5 to
accumulator.
Add contents of data memory location
accumulator and increment ARO. ARO
equals 6.
Add contents of data memory location
accumulator and decrement ARO. ARO
equals 5.
Add contents of data memory location
accumulator.

Load ARO with the value 10.
Load AR1 with the value 20.

5 to
now

6 to
now

5 to

Set ARP to one. This selects AR1 as the current
auxiliary register.
Add contents of data memory location 20 to
accumulator with no shift, then load ARP with
0, selecting ARO as the current auxiliary register.
Add contents of data memory location 10 to
accumulator with no shift, then increment ARO
to have value 11, and load AR P with 1, selecting
AR 1 as the cu rrent auxiliary register.

2.3.1.2 Direct Addressing

2-8

In direct addressing, seven bits of the instruction word are concatenated with the data page pointer
(DP) to form the data memory address. Thus, direct addressing uses the following paging scheme:

DP MEMORY LOCATIONS
o 0 - 127
1 128 - 144

Usually the second page of data memory contains infrequently accessed system variables, such as
those used by the interrupt routine.

DP is part of the status register and thus can be stored in data memory (see Section 2.7).

2.3.1.3 Immediate Addressing

The TMS32010 instruction set contains special "immediate" instructions, such as MPYK, LACK,
and LARK. These instructions derive data from part of the instruction word rather than from the
data RAM.

2.4 REGISTERS

2.4.1 Auxiliary Registers

There are two 16-bit hardware registers, the auxiliary registers, that are not part of the 144 X 16-bit
data RAM. These auxiliary registers can be used for three functions: temporary storage, indirect
addressing of data memory, and loop control.

Indirect addressing utilizes the least significant eight bits of an auxiliary register as the data memory
address (see Section 2.3.1.1).

The branch on auxiliary register not zero (BANZ) instruction permits these registers to also be used
as loop counters. BANZ checks if an auxiliary register is zero. If not, it decrements and branches.
Thus, loops can be implemented as follows:

LOOP

LARP

LARK

ADD
BANZ

ARO Load ARP with 0, selecting ARO as the current auxiliary
register.

ARO,5 Load ARO with 5.

* Indirectly add data memory to accumulator.
LOOP

The above program segment adds data memory locations 5 through 0 to the accumulator.

When the auxiliary registers are autoincrementedl decremented by an indirect addressing
instruction or by BANZ, the lowest nine bits are affected, one more than the lowest eight bits used
for indirect addressing (see Figure 2-3A). This counter portion of an auxiliary register is a circular
counter, as shown in Figures 2-3B and 2-3C.

COUNTER

15 o

INDIRECT ADDRESS

FIGURE 2-3A - AUXILIARY REGISTER COUNTER

2-9

I

I

15 8 o
AR UNAFFECTED 1 1 1 1 1 1 1 1 1

15 8

INCREMENT

o
AR UNAFFECTED 0 0 0 0 0 0 0 0 0

FIGURE 2-38 - AUTOINCREMENT

15 8 o

AR UNAFFECTED 111111111

DECREMENT

15

AR UNAFFECTED

FIGURE 2-3C - AUTODECREMENT

FIGURE 2-3 - INDIRECT ADDRESSING AUTOINCREMENT/DECREMENT

The upper seven bits of an auxiliary register (i.e., bits 9 through 15) are unaffected by any
autoincrement/decrement operation. This includes autoincrement of 111111111 (the lowest nine
bits go to 0) and autodecrement of 000000000 (the lowest nine bits go to 111111111) ; in each case,
bits 9 through 15 are unaffected.

The auxiliary registers can be saved in and loaded from the data RAM with the SAR (store auxiliary
register) and LAR (load auxiliary register) instructions. This is useful for performing context saves.
SAR and LAR transfer entire 16-bit values to and from the auxiliary registers even though indirect
addressing and loop counting utilize only a portion of the auxiliary register.

2.4.2 Auxiliary Register Pointer

The auxiliary register pointer (ARP) is a single bit which is part of the status register. It indicates
which auxiliary register is current as follows:

ARP CURRENT AUXILIARY REGISTER
o ARO
1 AR1

As part of the status register, the ARP can be stored in memory.

2.5 PROGRAM MEMORY

2-10

Program memory consists of up to 4K words of 16-bit width. The TMS320M1 0 has 1536 words of
on-chip ROM, while the TMS32010 is ROMless. Program memory mode of operation is controlled
by the MC/MP pin.

2.5.1 Modes of Operation

There are two modes of operation defined by the state of the MC/MP pin: the microcomputer
mode and the microprocessor mode. A one (high) level on this pin places the device in the
microcomp'uter mode, and a zero (low) level places a device in the microprocessor mode.

Table 2-3 illustrates the program memory capability of the TMS3201 0 microcomputers for each of
the two modes of operation enabled by the MC/MP pin. Figure 2-4 shows the memory map for
each setting of the MC/MP pin.

2.5.1.1 Microcomputer Mode (TMS320M10)

The microcomputer mode is defined by a one level on the MC/MP pin. Even though the
TMS320M10 has a 1536 X 16-bit on-chip ROM, only locations 0 through 1523 are available for the I
user's program. Locations 1524-1535 are reserved by Texas Instruments for testing purposes. The
device architecture allows for an additional 2560 words of program memory to reside off-chip.

2.5.1.2 Microprocessor Mode (TMS320M10 and TMS32010)

The microprocessor mode is defined by a zero level on the MC/MP pin. All 4K words of memory
are external in this mode.

TABLE 2-3 - PROGRAM MEMORY FOR THE TMS320 FAMILY

MODEL
PROGRAM MICROCOMPUTER MICROPROCESSOR

MEMORY OPTIONS MODE MEMORY MODE MEMORY

MC/MP= 1 MC/MP=O

TMS320M10 Microcomputer and 1 536 words on-chip ROM 4096 words of external
microprocessor modes and 2560 words of external memory

memory

TMS32010 Microprocessor mode only Not available 4096 words of external
memory

After reset, the TMS3201 0 microcomputers will begin execution at location O. Usually a branch
instruction to the reset routine is contained in locations 0 and 1. Upon interrupt, the TMS32010
microcomputers will begin execution at location 2.

2-11

I

ADDRESS

0

2

1523
1524

1535
1536

,:.; 4095

MICROCOMPUTER MODE

MC/MP = 1

16-BIT WORD

RESET 1 ST WORD I RESET 2ND WORD

INTERRUPT INTERNAL

MEMORY

SPACE

-1
INTERNAL

MEMORY

SPACE

RESERVED

FOR TESTING ,
EXTERNAL

MEMORY

SPACE

~

ADDRESS

o

MICROPROCESSOR MODE

MC/MP = 0

16-BIT WORD

RESET 1 ST WORD

RESET 2ND WORD

2 INTERRUPT

4095

FIGURE 2-4 - TMS320 FAMILY MEMORY MAP

EXTERNAL

MEMORY

SPACE

2.5.2 Using External Program Memory

2-12

Twelve output pins are available for addressing external memory. These pins are coded Al1 (MSB)
through AO (LSB) and contain the buffered outputs of the program counter or the I/O port address.
When an instruction is fetched from off-chip, the MEN (memory enable) strobe will be generated to
enable the external memory. The instruction word is then transferred to the TMS3201 0 by means of
the data bus. (See Section 2.8.)

When in the microcomputer mode, the TMS320M10 will internally select address locations 1535
and below from the on-chip program memory. The MEN strobe will still become active in this mode,
and the address lines A 11 through AO will still output the current value of the program counter
although the instruction word will be read from internal program memory.

Figure 2-5 gives an example of external program memory expansion. Even when executing from ex
ternal memory, the TMS3201 0 performs at its full 200-ns instruction cycle. Fast memories under
100-ns access time must be used.

MEN is never active at the same time as the WE or DEN signals. In effect, MEN will go low every
clock cycle except when an I/O function is being performed by the IN, OUT, or TBLW instructions.

In these multicycle instructions, MEN goes low during the clock cycles in which WE or DEN do not
go low.

-
TMS32010

-- MC/MP

-- MEN
WE

(Only for

RAM)

DATA LINES
I

I

16
ADDRESS LINES

,

12

OUTPUT

ENABLE

-T

4K X 16

STATIC RAM

ANDIOR PROM

CHIP

SELECT
~W RITE

ABLE EN

FIGURE 2-5 - EXTERNAL PROGRAM MEMORY EXPANSION EXAMPLE

2.6 PROGRAM COUNTER AND STACK

The program counter (PC) and stack enable the user to perform branches, subroutine calls, and
interrupts, and to execute the table read (TBlR) and table write (TBlW) instructions (see Section
3.4.3).

2.6.1 Program Counter

The program counter (PC) is a 12-bit register that contains the program memory address of the next
instruction to be executed. The device reads the instruction from the program memory location
addressed by the PC and increments the PC in preparation for the next instruction prefetch. The PC
is initialized to zero by activating the reset (RS) line.

In order to permit the use of external program memory, the PC outputs are buffered to the output
pins, A 11 through AO. The PC outputs appear on the address bus during all modes of operation.
The nine MSBs (A 11 through A3) of the PC have unique outputs assigned to them, while the three
lSBs are multiplexed with the port address field, PA2 through PAO. The port address field is used
by the I/O instructions, IN and OUT.

Program memory is always addressed by the contents of the PC. The contents of the PC can be
changed by a branch instruction if the particular branch condition being tested is true. Otherwise,
the branch instruction simply increments the PC. All branches are absolute, rather than relative,
i.e., a 12-bit value derived from the branch instruction word is loaded directly into the PC in order to
accomplish the branch.

2.6.2 Stack

The stack is 12 bits wide and four layers deep. The PUSH instruction pushes the twelve lSBs of the
accumulator onto the top of stack (TOS). The POP instruction pops the TOS into the twelve lSBs
of the accumulator. Following the POP instruction, the TOS can be moved into data memory by
storing the low-order accumulator word (SACl instruction). This allows expansion of the stack into
the data RAM. From the data RAM, it can easily be copied into program RAM off-chip by using the
TBlW instruction. In this way, the stack can be expanded to very large levels.

If the XDS/320 Emulator is used, one level of the stack is reserved by the emulator, reducing the
number of available stack levels to three.

2-13

I

I

2.6.2.1 Stack Overlow

Up to four nested subroutines or interrupts can be accommodated by the device without a stack
overflow if the TB LR and TB LW instructions are not executed. Since TB LR and TB LW utilize one
level of the stack, only three nested subroutines or interrupts can be accommodated without stack
overflow occurring if TBLR or TBLW are executed. If there is a stack overflow, the deepest level of
stack will be lost. If the stack is overpopped, the value at the bottom of the stack will become
copied into higher levels until it fills the stack.

To handle subroutines and interrupts of much higher nesting levels, part of the data RAM or
external RAM can be allocated to stack management. In this case, the top of the stack (TOS) is
popped immediately at the start of a subroutine or interrupt routine and stored in RAM. At the end
of the subroutine or interrupt routine, the stack value stored in RAM is pushed back onto the TOS
before returning to the main routine.

2.7 STATUS REGISTER

2-14

The status register, shown in Figure 2-6, consists of five status bits. These status bits can be
individually altered through dedicated instructions. In addition, the entire status register can be
saved in data memory through the SST instruction. New values can be reloaded into the status
register using the LST instruction, with the execption of the INTM bit. The INTM bit cannot be
changed through the LST instruction. It can only be changed by the instructions, EINT and DINT
(enable, disable interrupts).

OV OVM INTM ARP DP

FIGURE 2-6 - TMS32010 STATUS REGISTER

Accumulator Oveflow Flag Register
(OV)

Overflow Mode Bit (OVM)

Interrupt Mask Bit (INTM)

- Zero indicates that the accumulator has not
overflowed. One indicates that an overflow in the
accumulator has occurred. (See Section 2.2.2.1).
The BV (branch on overflow) instruction will clear
this bit and cause a branch if it is set.

- Zero means the overflow mode is disabled. One
means the overflow mode is enabled (see Section
2.2.1 .1). The SOVM instruction loads the OVM bit
with a one; the ROVM instruction loads the OVM bit
instruction with a zero.

- Zero means an interrupt is enabled. One means an
interrupt is disabled. The EINT instruction loads the
INTM bit with a zero; DINT loads the INTM bit with
a one. When an interrupt is executed, the INTM
register is automatically set to one before the
interrupt service routine begins. (See Section 2.10.)
Note that the INTM bit can only be altered by
executing the EINT and DINT instructions. Unlike
the rest of the status bits, the INTM bit cannot be
loaded with a new value by the LST instruction.

Auxiliary Register Pointer (ARP)

Data Memory Page Pointer (DP)

- Zero selects ARO. One selects AR 1. The AR P also
can be changed by executing the MAR or LAR P
instruction, or by instructions that permit the
indirect addressing option.

- Zero selects first 128 words of data memory, i.e.,
page zero. One selects last 16 words of data
memory, i.e., page one. The DP can also be
changed by executing either the LDP or the LDPK
instruction.

2.7.1 Saving Status Register

The contents of the status register call be stored in data memory by executing the SST instruction. I
If the SST instruction is executed using the direct addressing mode, the device automatically stores
this information on page one of data memory at the location specified by the instruction. Thus, an
SST instruction using the direct addressing mode can only specify an address less than 16, since
the second page of memory contains only 16 words. If the indirect addressing mode is selected,
then the contents of the status register may be stored in any RAM location selected by the auxiliary
register.

The SST instruction does not modify the contents of the status register. Figure 2-7 shows the
position of the status bits as they appear in the appropriate data RAM location after execution of the
SST instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

OV OVM INTM 1 ARP / / / DP

/ / / = don't care

FIGURE 2-7 - STATUS WORD AS STORED BY SST INSTRUCTION

The LST instruction may be executed to load the status register. LST does not assume status bits
are on page one, so the DP must be set to one for the LST instruction to access status bits stored
on page one. The interrupt mask bit cannot be changed by the LST instruction. However, all other
status bits can be changed by this instruction.

2.8 INPUT/OUTPUT FUNCTIONS

2.8.1 I N and OUT

Input and output of data to and from a peripheral is accomplished by the IN and OUT instructions.
Data is transferred over the 16-bit data bus ~ and from the data memory by two independent
strobes: data enable (DEN) and write enable (WE).

The bidirectional external data bus is always in a high-impedance mode, except when WE goes low.
WE will go low during the first cycle of the OUT instruction and the second cycle of the TBLW
instruction.

As shown in Figure 2-8, 128 1/0 bits are available for interfacing to peripheral devices: eight 16-bit
multiplexed input ports and eight 16-bit multiplexed output ports.

2-15

I

TMS32010

DEN

WE

A2-AO /

PA2-PAO PORT
ADDRESS

t------... I DECODER

174LS138)

DATA BUS (16)

1_0 U T_2 ---t.IIIIIIIIII" III"

16110 BITS PER PORT

FIGURE 2-8 - EXTERNAL DEVICE INTERFACE

Execution of an IN instruction generates the DEN strobe for transferring data from a peripheral
device to the data RAM (see Figure 2-9A). The IN instruction is the only instruction for which
DEN will become active. Execution of an OUT instruction generates the WE strobe for transferring
data from the data RAM to a peripheral device (see Figure 2-9B). WE becomes active only during
the OUT instruction and the table write (TBLW) instruction. See Appendix A, the TMS3201 0 Data
Sheet, for further timing information.

DATA IN
IN INSTRUCTION

VALID
NEXT INSTRUCTION

PREFETCH ... --~.,. PREFETCH • • . .,

DEN

FIGURE 2-9A - INPUT INSTRUCTION TIMING

2-16

OUT INSTRUCTION

PREFETCH . ..
DATA OUT

VALID NEXT INSTRUCTION

PREFETCH

MEN 1 .. _____ -'
WE

FIGURE 2-9B - OUTPUT INSTRUCTION TIMING

FIGURE 2-9 - INPUT/OUTPUT INSTRUCTION TIMING

The three multiplexed LSBs of the address bus, PA2 through PAO, are used as a port address by the I
IN and OUT instructions. The remaining higher order bits of the address bus, A 11 through A3, are
held at logic zero during execution of these instructions.

2.8.2 Table Read (TBlR) and Table Write (TBlW)

The TB lR and the TB lW instructions allow words to be transferred between program and data
spaces. TBlR is used to read words from on-chip program ROM or off-chip program ROM/RAM
into the data RAM. TBlW is used to write words from on-chip data RAM to off-chip program
RAM.

Execution of the TBlR instruction generates MEN strobes to read the word from program memory
(see Figure 2-1 OA). Execution of a TBlW instruction generates a WE strobe (see Figure 2-10B).
Note that the WE strobe will be generated and the appropriate data transferred even if the
TMS320M10 is in the microcomputer mode and a TBlW is performed to a program location less
than 1535.

The dummy prefetch is a prefetch of the instruction following the TBlR or TBlW instructions and
is discarded. The instruction following TBlR or TBlW is prefetched again at the end of the
execution of the TB lR or TB lW instructions.

TBLR

INSTRUCTION

PREFETCH

MEN~~ ________ ~

DUMMY

PREFETCH

DATA TRANSFERRED

FROM PROGRAM

MEMORY

FIGURE 2-10A - TABLE READ INSTRUCTION TIMING

TBLW

INSTRUCTION

PREFETCH

DUMMY

PREFETCH

DATA

TRANSFERRED TO

PROGRAM MEMORY

•

NEXT

INSTRUCTION

PREFETCH

NEXT

INSTRUCTION

PREFETCH
• ••

MENI~ ________ _

FIGURE 2-10B - TABLE WRITE INSTRUCTION TIMING

FIGURE 2-10 - TABLE READ AND TABLE WRITE INSTRUCTION TIMING

2-17

2.8.3 Address Bus Decoding

• 2.9

Since all three interface strobes, MEN, WE, and DEN, are mutually exclusive, there are some very
important considerations for those designs that utilize external program memory. Since the OUT and
TBLW instructions use only the WE signal to indicate valid data, these instructions cannot be
distinguished from one another on the basis of the interface strobes. Unless the address bus is decoded,
execution of TBLW instructions will write data to peripherals and execution of OUT instructions will
overwrite program memory locations 0 through 7. See Section 5-4 for an example of this decoding logic.

No matter what decoding logic is used, it will not be possible to use TBLW to uniquely write to program
memory locations 0 through 7. This is because the address bus will be identical for OUT and TBLW,
and there will be no way to distinguish between the two instructions .

BIO PIN

The BIO pin is an external pin which supports bit test and jump operations. When a low is
present on this pin, execution of the BIOZ instruction will cause a branch to occur. This pin is sampled
every clock cycle and is not latched.

The BIO pin is useful for monitoring peripheral device status. It is especially useful as an
alternative to using an interrupt when it is necessary not to disturb time-critical loops. See Section 2.14
for BIO system design recommendations.

2.10 INTERRUPTS

2-18

The TMS3201 O's interrupt is generated either by applying a negative-going edge to the interrupt (lNT)
pin or by holding the INT pin low. A diagrammatic explanation of the TMS3201 O's internal interrupt
circuitry is presented in Figure 2-11.

RS

TMS32010

INT

CLR
5V D Q

INTER-
RUPT
FLAG

to = a indicates interrupts enabled.
a = 1 indicates interrupts disabled.

* (j> = phase of internal clock.

EINT

CLR
CLOCK Q

INTERRUPT
MODE

REGISTERt
D

D Q

SYNC
FF

Q

FIGURE 2-11 - SIMPLIFIED INTERRUPT LOGIC DIAGRAM

INTERRUPT

ACKNOWLEDGE

INTERNAL

INTERRUPT

PROCESSOR

INTERRUPT ---_
ACTIVE

The Sync FF is a synchronizing flip-flop used to synchronize the external interrupt signal to the
TMS32010's internal interrupt circuitry. When interrupts are enabled, an interrupt becomes active
either due to a low voltage input on the INT pin or when a negative-edge has been latched into the
interrupt flag.

If the interrupt mode register (lNTM) is set, then an interrupt active signal to the internal interrupt
processor (liP) becomes valid. The liP begins interrupt servicing by causing a branch to location 2 in
program memory. It will delay interrupt servicing in each of the following cases:

1) Until the end of all cycles of a multicycle instruction,

2) Until the instruction following the MPY or MPYK has completed execution,

3) Until the instruction following EINT has been executed (when interrupts have been pre-I
viously disabled). This allows the RET instruction to be executed after interrupts become
enabled at the end of an interrupt routine.

When the interrupt service routine begins, the liP sends out an internal interrupt acknowledge
signal. This presets the INTM register (disabling interrupts) and clears the interrupt flag.

Figure 2-11 also shows that DINT or a hardware reset will set the INTM register, disabling
interrupts, while EINT will clear the INTM register. Interrupts will continue to be latched while they
are disabled. Note that DINT or EINT do not affect the interrupt flag.

Figure 2-12 shows the instruction sequence that occurs once an interrupt becomes active. The
dummy fetch is an instruction that is fetched but not executed. This instruction will be fetched and
executed after the interrupt routine is completed.

CLKOUT I'--__ ~
INT \, '1 CLOCK CYCLE MIN /

DUMMY FETCH
FETCH

FETCH FETCH INSTRUCTION
INSTRUCTION N INSTRUCTION N + 1 INSTRUCTION N + 2

002

EXECUTE N EXECUTE N+ 1 DUMMY CYCLE EXECUTE 002

FIGURE 2-12 - INTERRUPT TIMING

See Section 2.14 for interrupt system design recommendations.

2.11 RESET

The reset function is enabled when an active low is placed on the RS pin for a minimum of five clock
cycles (see Figure 2-13). The control lines for DEN, WE, and MEN are then forced high, and the
data bus (015 through DO) is tristated. The PC and the address bus (A 11 throug!!.. AO) a~then
synchronously cleared after the next complete clock cycle from the falling edge of RS. The RS pin
also disables the interrupt, clears the interrupt flag register, and leaves the overflow mode register
unchanged. The TMS32010 can be held in the reset state indefinitely.

2-19

~.1---5 CLOCK CYCLES MIN ~

Rsl _____ ----'I
FIGURE 2-13 - RESET TIMING

2.12 CLOCK/OSCILLATOR

The TMS32010 can use either its internal oscillator or an external frequency source for a clock.

Use of the internal oscillator is achieved by connecting a crystal across X1 and X2/ClKIN. The
frequency of CLKOUT and the cycle time of the TMS3201 0 is one-fourth of the crystal fundamental I frequency (see Figure 2-14).

2-20

X1 X2/CLKIN

----lOt---...
CRYSTAL

FIGURE 2-14 - INTERNAL CLOCK

An external frequency source can be used by injecting the frequency directly into X2/ClKIN with
X1 left unconnected. If an external frequency source is used, a pull-up resistor may be necessary
(see Figure 2-15). This is because the high-level voltage of the ClKIN input must be a minimum of
2.8 V while a standard TTL gate, for example, can have a high-level output voltage as low as 2.4 v.
The size of the pull-up resistor will depend on such things as the frequency source's high-level
output voltage and current and the number of other devices the frequency source will be driving.
The resistor should be made as large as possible while still having the ClKIN input specification
met.

X2/CLKIN

SIGNAL

GENERATOR

+VCC

FIGURE 2-15 - EXTERNAL FREQUENCY SOURCE

The delay time between ClKIN and ClKOUT is not specified. This delay time can vary by as much a
one CLKOUT cycle and is very temperature dependent. Hardware designs which depend upon this
delay time should not be used.

2.13 PIN DESCRIPTIONS

Definitions of the TMS32010 pin assignments and descriptions of the function of each pin are
presented in Table 2-4. Figure 2-16 illustrates the TMS3201 0 pin assignments.

SIGNAL PIN I/O

30

10

X2/CLKIN 8 IN

X1 7 OUT

CLKOUT 6 OUT

WE 31 OUT

32 OUT

33 OUT

TABLE 2-4 - TMS32010 PIN DESCRIPTIONS

DESCRIPTION

POWER SUPPLIES

Supply voltage (+ 5 V NOM)

Ground reference

CLOCKS

Crystal input pin for internal oscillator (X2). Also input pin for ex
ternal oscillator (ClKIN).

Crystal input pin for internal oscillator

Clock output signal. The frequency of ClKOUT is one-fourth of the
oscillator input (external oscillator) or crystal frequency (internal
oscillator). Duty cycle is 50 percent.

CONTROL

Write Enable. When active (low), WE indicates that valid output
data from the TMS3201 0 is available on the data bus. WE is only
active during the first cycle of the OUT instruction and the second
cycle of the TBlW instruction (see Section 3.4.3), MEN and DEN
will always be inactive (high) when WE is active.

Data Enable. When active (low), DEN indicates that the
TMS32010 is accepting data from the data bus. DEN is only ac
tive during the first cycle of the IN instruction (see Section 3.4.3).
MEN and WE will always be inactive (high) when DEN is active.

Memory Enable. MEN will be active low on every machine cycle
except when WE and DEN are active. MEN is a control signal
generated by the TMS3201 0 to enable instruction fetches from
program memory. MEN will be active on instructions fetched from
both'internal and external memory.

2-21

TABLE 2-4 - TMS32010 PIN DESCRIPTIONS (CONTINUED)

SIGNAL PIN I/O DESCRIPTION

INTERRUPTS

RS 4 IN Reset. When an active low is placed on the RS pin for a minimum
of five clock cycles, DEN, WE, and MEN are forced high, and the
data bus (D15 through DO) is tristated. The program counter (PC)
and the address bus (A 11 through AO) are then synchronously
cleared after the next complete clock cycle from the falling edge of
RS. RS also disables the interrupt, clears the interrupt flag register,
and leaves the overflow mode register unchanged. The TMS3201 0
can be held in the reset state indefinitely.

-
INT 5 IN Interrupt. The interrupt signal is generated by applying a negative-

going edge to the INT pin. The edge is used to latch the interrupt
flag register (lNTF) until an interrupt is granted by the device. An
active low level will also be sensed. (See Section 2.10.)

-
BIO 9 IN I/O Branch Control. If BIO is active (low) upon execution of the

BIOZ instruction, the device will branch to the address specified by
the instruction (see Section 2.9).

PROGRAM MEMORY MODES

-
MC/MP 3 IN Microcomputer/Microprocessor Mode. A high on the MC/MP pin

enables the microcomputer mode. In this mode, the user has
available 1524 words of on-chip program memory. (Program
memory locations 1 524 through 1535 are reserved.) The
microcomputer mode also allows an additional 2560 words of
program memory to reside off-chip. A Iowan the MC/MP pin
enables the microprocessor mode. In this mode, the entire
memory space is external, i.e., addresses 0 through 4095. (See
Section 2.3.1 .)

BIDIRECTIONAL DATA BUS

015 18 I/O 015 (MSB) through DO (LSB). The data bus is always in the high-
014 17 liD impedance state except when WE is active (low).
013 16 liD
012 15 liD
D11 14 liD
010 13 liD
09 12 liD
08 11 liD
07 19 liD
06 20 liD
05 21 liD
D4 22 liD
03 23 liD
02 24 liD
D1 25 liD
00 26 liD

2-22

TABLE 2-4 - TMS32010 PIN DESCRIPTIONS (CONCLUDED)

SIGNAL PIN I/O DESCRIPTION

PROGRAM MEMORY ADDRESS BUS AND
PORT ADDRESS BUS

All 27 OUT Program memory A 11 (MSB) through AD (LSB) and port
A10 28 OUT addresses PA2 (MSB) through PAD (LSB). Addresses A 11
A9 29 OUT through AD are always active and never go to high im-
A8 34 OUT pedance. During execution of the IN and OUT instructions,
A7 35 OUT pins A2 through AD carry the port addresses PA2 through
A6 36 OUT
A5 37 OUT PAD.

I
A4 38 OUT
A3 39 OUT
A2/PA2 40 OUT
Al/PAl 1 OUT
AD/PAD 2 OUT

A 1 /PA 1 A2/PA2

AO/PAQ A3

MC/MP A4

RS A5

INT A6

CLKOUT A7

X1 AS

X2/CLKIN MEN

910 O~N

Vss WE

OS vCC

09 A9

010 A10

011 A11

012 DO

013 01

014 02

015 03
07 04

06 05

FIGURE 2-16 - TMS32010 PIN ASSIGNMENTS

2-23

I

2.14 INTERRUPT AND 810 SYSTEM DESIGN

2-24

For systems using asynchronous inputs to the INT and BIO pins on the TMS32010, the external
hardware shown in Figure 2-17 is recommended to ensure proper execution of interrupts and the
BIOZ instruction. This hardware synchronizes the INT and BIO input signals with the rising edge
of CLKOUT on the TMS32010. The pulse width required for these input signals is tc(C), which is
one TMS32010 clock cycle, plus sufficient setup time for the flip-flop (dependent upon the flip-flop
used).

I
p

0 Q 1NT

SN74ALS74

r--~
C

I
TMS32010

+5V

CLKOUT

1
P

0 Q 810

SN74ALS74

r-- > TMS32010
C

+5
1
V

CLKOUT

FIGURE 2-17 - INTERRUPT AND mo HARDWARE DESIGN

I

INSTRUCTIONS

I

3. INSTRUCTIONS

The TMS3201 O's comprehensive instruction set supports both numeric- intensive operations, such
as signal processing, and general-purpose operations, such as high-speed control. The instruction
set, shown in Table 3-2, consists primarily of single-cycle single-word instructions, permitting exe
cution rates of up to five million instructions per second. Only infrequently used branch and I/O
instructions are multicycle.

The TMS32010 also contains a number of instructions that shift data as part of an arithmetic oper
ation. These all execute in a single cycle and are very useful for scaling data in parallel with other
operations.

3.1 INTRODUCTION

The instruction set contains a full set of branch instructions. Combined with the Boolean opera
tions and shifters, these instructions permit the bit manipulation and bit test capability needed for
high-speed control operations. Double-precision operations are also supported by the instruction I
set. Some examples are ADDH (add to high-order accumulator) and ADDS (add to accumulator
with sign extension suppressed), which allow easy manipulation of 32-bit numbers.

The TMS32010's hardware multiplier allows the MPY instruction to be executed in a single cycle.
The SUBC (conditional subtract for divide) instruction performs the shifting and conditional
branching necessary to implement a divide efficiently and quickly.

Two special instructions, TBLR (table read) and TBLW (table write), allow crossover between data
memory and program memory. The TB LR instruction transfers words stored in program memory to
the data RAM. This eliminates the need for a coefficient ROM separate from the program ROM,
thus permitting the user to make efficient trade-offs as to the amount of ROM dedicated to pro
gram or coefficient store. The accompanying instruction, TBLW, transfers words in internal data
RAM to an external RAM. In conjunction with TBLR, this instruction allows the use of external
RAM to expand the amount of data storage.

When a very large amount of external data must be addressed (i.e., > 4K words), TBLR and TBLW
can no longer serve as a means of expanding the data RAM. Then it becomes necessary to address
external data RAM as a peripheral by using the IN and OUT instructions; these instructions permit a
data word to be read into the on-chip RAM in only two cycles. This procedure requires a minimal
amount of external logic and permits the accessing of almost unlimited amounts of data RAM. This
is very useful for pattern recognition applications, such as speech recognition or image processing.

3.2 ADDRESSING MODES

Three main addressing modes are available with the TMS3201 0 instruction set direct, indirect, and
immediate addressing.

3.2.1 Direct Addressing Mode

In direct addressing, seven bits of the instruction word concatenated with the data page pointer
form the data memory address. This implements a paging scheme in which the first page contains
128 words and the second page contains 16 words. In a typical application, infrequently accessed
variables, such as those used when performing an interrupt service routine, are stored on the sec
ond page.

3.2.2 Indirect Addressing Mode

Indirect addressing forms the data memory address from the least significant eight bits of one of
two auxiliary registers, ARO and AR1 . The auxiliary register pointer (ARP) selects the current auxil
iary register. The auxiliary registers can be automatically incremented or decremented in parallel
with the execution of any indirect instruction to permit single-cycle manipulation of data tables.

3-1

I

3.2.3. Immediate Addressing Mode

The TMS3201 0 instruction set contains special lIimmediate" instructions. These instructions derive
data from part of the instruction word rather than from the data RAM. The constant in all immediate
instructions may refer to values supplied by an external reference symbol. Some very useful im
mediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and
load auxiliary register immediate (LARK).

3.3 INSTRUCTION ADDRESSING FORMAT

The following sections describe the opcode format for the various addressing modes of the
TMS32010.

3.3.1 Direct Addressing Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE dma

Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6
through 0 contain data memory address.

The 7 bits of the data memory address (dma) field can directly address up to 128 words (1 page) of
data memory. Use of the data memory page pointer is required to address the full 144 words of data
memory.

Direct addressing can be used with all instructions requiring data operands except for the immediate
operand instructions.

3.3.2. Indirect Addressing Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE 0 IINCIDECIARPI 0 I 0 I ARP I

Bit 7 = defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 6
through 0 contain indirect addressing control bits.

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP)' If bit 3 = 0, then the contents of bit 0
are loaded into the ARP after execution of the current instruction. If bit 3 = 1, then the contents of
the ARP remain unchanged. ARP = 0 defines the contents of ARO as a memory address. ARP =
1 defines the contents of AR1 as a memory address.

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, then ARP defines which auxiliary register is
to be incremented by 1 after execution. If bit 4 = 1, then the ARP defines which auxiliary register is
to be decremented by 1 after execution. If bit 5 and bit 4 are zero, then neither auxiliary register is in
c'remented or decremented. Bits 6,2, and 1 are reserved and should always be programmed to zero.

Indirect addressing can be used with all instructions requiring data operands, except for the im
mediate operand instructions.

3.3.3 I mmediate Addressing Format

3-2

Included in the TMS32010's instruction set are five immediate operand instructions (LDPK, LARK,
MPYK, LACK, and LARP). In these instructions, the operand is contained within the instruction
word.

3.3.4 Examples of Opcode Format

1) ADD 9,5 Add to accumulator the contents of memory
location 9 left-shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\ 0 0 0 0 \ 0 01\01 00 0 o 0

Note: Opcode of the ADD instruction is 0000 and appears in bits 15 through 12. Shift code of 5 appears in bits 11 through 8. Data mem
ory address 9 appears in bits 6 through o.

2) ADD *+,8 Add to accumulator the contents of data memory address defined by
contents of current auxiliary register. This data is left-shifted 8 bits
before being added. The current auxiliary register is auto-incremented
by 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 0 o 1 000

Other variations of indirect addressing are as follows:

3) ADD *, 8 As in example 2, but with no auto-increment; opcode would be
>0888

4) ADD * -, 8 As in example 2, except that current auxiliary register is decremented
by 1 ; opcode would be > 0898

5) ADD * + , 8, 1 As in example 2, except that the auxiliary register pointer is loaded
with the value 1 after execution; opcode would be> 08A 1

6) ADD * + ,8,0 As in example 2, except that the auxiliary register pointer is loaded
with the value 0 after execution; opcode would be> 08AO

3.4 INSTRUCTION SET

The following sections include the symbols and abbreviations that are used in the instruction set
summary and in the instruction descriptions, the complete instruction set summary, and a descrip
tion of each instruction.

All numbers are assumed to be decimal unless otherwise indicated. Hexidecimal numbers are
specified by the symbol II>" before the nu mber.

3.4.1. Symbols and Abbreviations

DATn and PRGn are assumed to have the symbolic value of n. They are used to represent any sym
bol with the value n.

3-3

SYMBOL

ACC
AR

ARP
D

DATn
dma
DP
I

I
INTM

K
>nn
OVM

P
PA

PC
pma

PRGn
R
5
T

T05
X

-
I I

< >
[]
()

{ }
<>

3-4

TABLE 3-1 - INSTRUCTION SYMBOLS

MEANING

Accumulator
Auxiliary register (ARO and AR 1 are predefined assembler symbols equal to 0 and 1,
respectively.)
Auxiliary register pointer
Data memory address field
Label assigned to data memory location n
Data memory address
Data page pointer
Addressing mode bit
Interrupt mode flag bit

. Immediate operand field
Indicates nn is a hexadecimal number. All others are assumed to be decimal values.
Overflow (saturation) mode flag bit
Product (P) register
Port address (PAO through PA7 are predefined assembler symbols equal to 0 through
7, respectively)
Program counter
Program memory address
Label assigned to program memory location n
1-bit operand field specifying auxiliary register
4-bit left-shift code
T register
Top of stack
3-bit accumulator left-shift field
Is assigned to
Indicates an absolute value
Items within angle brackets are defined by user.
Items within brackets are optional.
Indicates II contents of"
Items within braces are alternative items; one of them must be entered.
Angle brackets back-to-back indicate "not equal".
Blanks or spaces are significant.

3.4.2 Instruction Set Summary

The instruction set summary in the following table consists primarily of single-cycle single-word in
structions. Only infrequently used branch and 1/0 instructions are multicycle.

TABLE 3-2 - INSTRUCTION SET SUMMARY

ACCUMULATOR INSTRUCTIONS

MNEMO!,)!IC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABS Absolute value of 1 1 a 1 1 1 1 1 1 1 1 a 0 0 1 a 0 0
accumulator

ADD Add to accumulator 1 1 a 0 0 0 ~S--7 I < D :>
with shift

ADDH Add to high-order 1 1 a 1 1 0 0 0 0 a I < D :>
accumulator bits

ADDS Add to accumulator 1 1 0 1 1 0 0 0 0 1 I < D :>
with no sign extension

AND AND with accumulator 1 1 a 1 1 1 1 0 0 1 I < D :;:.
LAC Load accumulator 1 1 0 0 1 0 ~ S -----7 I < D :>

with shift
LACK Load accumulator 1 1 a 1 1 1 1 1 1 a < K :>

immediate
OR OR with accumulator 1 1 0 1 1 1 1 0 1 0 I < D :>
SACH Store high-order 1 1 a 1 0 1 1 ~ X~ I (D :;:.

accumulator bits with
shift

SACL Store low-order 1 1 0 1 0 1 0 0 0 0 I < D :>
accumulator bits

SUB Subtract from 1 1 a 0 0 1 ~S~ I < D :;:.
accumulator with
shift

SUBC Conditional subtract 1 1 a 1 1 0 a 1 0 a I < D :>
(for divide)

SUBH Subtract from high- 1 1 a 1 1 0 0 0 1 0 I < D :>
order accumulator bits

SUBS Subtract from accumu- 1 1 a 1 1 0 0 0 1 1 I < D :>
lator with no sign
extension

XOR Exclusive 0 R with 1 1 0 1 1 1 1 0 0 a I < D :>
accumulator

ZAC Zero accumulator 1 1 a 1 1 1 1 1 1 1 1 0 0 0 1 a 0 1
ZALH Zero accumulator and 1 1 a 1 1 a 0 1 0 1 I < D :;:.

load high-order bits
ZALS Zero accumulator and 1 1 a 1 1 0 0 1 1 a I < D :>

load low-order bits
with no sign extension

3-5

I

TABLE 3-2 - INSTRUCTION SET SUMMARY (CONTINUED)

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LAR Load auxiliary 1 1 0 0 1 1 1 0 0 R I oE 0 ~
register

LARK Load auxiliary 1 1 0 1 1 1 0 0 0 R oE K ~
register immediate

LARP Load auxiliary 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 K
register pointer
immediate

LOP Load data memory 1 1 0 1 1 0 1 1 1 1 I oE 0 :>
page pointer

I
LDPK Load data memory 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 K

page pointer
immediate

MAR Modify auxiliary 1 1 0 1 1 0 1 0 0 0 I oE 0 >
register and pointer

SAR Store auxiliary 1 1 0 0 1 1 0 0 0 R I oE 0 >
register

BRANCH INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B Branch unconditionally 2 2 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 < BRANCH ADDRESS >

BANZ Branch on auxiliary 2 2 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
register not zero 0 0 0 0 oE BRANCH ADDRESS >

BGEZ Branch if accumulator 2 2 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
~O 0 0 0 0 < BRANCH ADDRESS :>

BGZ Branch if accumulator 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
>0 0 0 0 0 < BRANCH ADDRESS --~

BIOZ Branch on BIO = 0 2 2 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 < BRANCH ADDRESS :>

BLEZ Branch if accumulator 2 2 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
~O 0 0 0 0 < BRANCH ADDRESS --~

BLZ Branch if accumulator 2 2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
<0 0 0 0 0 < BRANCH ADDRESS :>

BNZ Branch if accumulator 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 < BRANCH ADDRESS :>

BV Branch on overflow 2 2 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 < BRANCH ADDRESS :>

BZ Branch if accumulator 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
=0 0 0 0 0 < BRANCH ADDRESS ~

CALA Call subroutine from 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0
accumulator

CALL Call subroutine 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
immediately 0 0 0 0 < BRANCH ADDRESS :>

RET Return from sub- 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1
routine

3-6

TABLE 3-2 - INSTRUCTION SET SUMMARY (CONCLUDED)

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APAC Add P register to 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
accumulator

LT Load T register 1 1 0 1 1 0 1 0 1 0 I tE D :?>
LTA LTA combines L T and 1 1 0 1 1 0 1 1 0 0 I < D :>

APAC into one instruc-
tion

LTD LTD combines LT, 1 1 0 1 1 0 1 0 1 1 I tE D ')

APAC, and DMOV into
one instruction

MPY Multiply with T 1 1 0 1 1 0 1 1 0 1 I < D :>
register; store product
in P register I

MPYK Multiply T register 1 1 1 0 0 < K :>
with immediate oper-
and; store product in
P register

PAC Load accumulator from 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0
P register

SPAC Subtract P register 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0
from accumulator

CONTROL INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DINT Disable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1
EINT Enable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0
LST Load status register 1 1 0 1 1 1 1 0 1 1 I < D :>
NOP No operation 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
POP Pop stack to 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1

accumulator
PUSH Push stack from 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0

accumulator
ROVM Reset overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0
SOVM Set overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1
SST Store status register 1 1 0 1 1 1 1 1 0 0 I < D :>

I/O AND DATA MEMORY OPERATIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMOV Copy contents of data 1 1 0 1 1 0 1 0 0 1 I < D :>
memory location into
next location

IN I nput data from port 2 1 0 1 0 0 0 ~PA~ I < D :>
OUT Output data to port 2 1 0 1 0 0 1 ~PA~ I < D :>
TBLR Table read from 3 1 0 1 1 0 0 1 1 1 I tE D :>

program memory to
data RAM

TBLW Table write from 3 I 0 1 1 1 1 1 0 1 I <: D ')

data RAM to program
memory

3-7

I

3.4.3 I nstruction Descriptions

3-8

Each instruction in the instruction set summary is described in the following pages. The instructions
are listed in alphabetical order. An example is provided with each instruction.

Each instruction begins with an assembler syntax expression. Since the comment field which con
cludes the syntax is optional, it is not included in the syntax expression. A syntax example is given
below that shows the spaces that are included and required in the syntax expression, and the op
tional comment field along with its preceding spaces that has been omitted.

[< label>] LACK f
~spaces

[<comment>]

Spaces and comment
field not included
in the syntax expressions
for this section.

ABS Absolute Value of Accumulator ABS

Assembler Syntax: [< label>] ABS

Operands: None

Operation: If (ACC) < 0
Then - (ACC) -+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 1 1 1 0 0 0 0 0 0

Description: If accumulator is greater than zero, then the accumulator is unchanged by the execution of I
this instruction. If the accumulator is less than zero, then the accumulator will be replaced
by its two's complement value. Note that the hexadecimal number> 80000000 is a special
case. When the overflow mode is not set, the ABS of> 80000000 is > 80000000. When in
the overflow mode, the ABS of> 80000000 is> 7FFFFFFF.

Words: 1
Cycles: 1

Example: ABS

BEFORE INSTRUCTION AFTER INSTRUCTION
31 0 31 0

ACC I> 0 0 0 0 1 2 3 4 ACC I> 0 0 0 0 1 2 3 4

and

ACC I> F F F F F F F F ACC I> 0 0 0 0 0 0 0 1

3-9

ADD Add to Accumulator with Shift

Assembler Syntax:
Direct Addressing: <dma> [, <shift>]
Indirect Addressing:

[<label>]
[<label>]

ADD
ADD {* 1* + 1* -}[, <shift> [, <ARP>]]

Operands: 0 ~ shift ~ 15
O~ dma~ 127
ARP = 0 or 1

Operation: (ACC) + (dma) X 2shift --+ ACC

I Encoding: 15 14 13 12

Direct: o o o o

Indirect: o 000

11 10 9 8 7 6 5 4 3 2

SHIFT

SHIFT

DATA MEMORY
ADDRESS

SEE SECTION 3.3

o

ADD

Description: Contents of data memory address are left-shifted and added to accumulator. During
shifting, low-order bits are zero-filled, and high-order bits are sign-extended. The result is
stored in the accumulator.

Words: 1
Cycles: 1

Example: ADD DAT1,3
or
ADD *,3 If current auxiliary register contains the value 1 .

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

MEMORY 21 MEMORY
1 1

ACC 71 ACC

21

23
1

Note: If the contents of data memory address DAT2 is > 8BDE, then the following instruction sequence
will leave accumulator with the value> FFF8BOEO.

ZAC Zero accumulator
ADD DAT2,4 ACe = > FFF8BOEO

3-10

ADDH Add to High-Order Accumulator ADDH
Assembler Syntax:

Direct Addressing: [< label>] ADDH <dma>
Indirect Addressing: [<label>] ADDH { * I * + I * - } [, < ARP >]

Operands: O~dma~ 127
ARP = 0 or 1

Operation: (ACC) + (dma) x 2 16 -+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1 0 0 0 0 01 0 1
DATA MEMORY

ADDRESS

Indirect: 0 1 1 0 0 0 0 01 SEE SECTION 3.3

Description: Add contents of data memory address to upper half of the accumulator (bits 31 through 16).

Words: 1
Cycles: 1

Example: ADDH DAT5
or
ADDH * If current auxiliary register contains the value 5.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

MEMORY >41 MEMORY >41
5 5

ACC >0 0 0 0 0 0 1 31 ACC >0 0 0 4 0 0 1 31

Note: This instruction can be used in performing 32-bit arithmetic.

3-11

I

I

ADDS

Assembler Syntax:
Direct Addressing:

Add to Low Accumulator
with Sign-Extension Suppressed

[< label>] ADDS <dma>
Indirect Addressing: [<label>] ADDS { * I * + I * - } [, <"ARP >]

Operands: O~dma~127

ARP = 0 or 1

Operation: (ACC) + (dma) - ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0 0 0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 0 0 0 0 1 I SEE SECTION 3.3

ADDS

Description: Add contents of specified data memory location with sign-extension suppressed. The data is
treated as a 16-bit positive integer rather than a two's complement integer. Therefore, there
is no sign-extension as there is with the ADD instruction.

Words: 1
Cycles: 1

Example: ADDS DA T11
or
ADDS * If current auxiliary register contains the value 11 .

DATA
MEMORY

11

ACC

BEFORE INSTRUCTION

>F 0 0 6

>0 0 0 0 0 0 0 3

DATA
MEMORY

11

ACC

AFTER INSTRUCTION

>F 0 0 6

>0 0 0 0 F 0 0 91

Notes: The following routines illustrate the difference between the ADD and ADDS instructions. Data
memory location DA Tl contains> E007.

ZAC ZeroACC
ADDS DAT1 ACC = > OOOOE007

ZAC ZeroACC
ADD DAT1,0 ACC = > FFFFE007

The ADDS instruction can be used in implementing 32-bit arithmetic.

3-12

AND AND with Low-Order Bits of Accumulator

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: 0 ~ dma ~ 127
ARP = 0 or 1

AND
AND

<dma>
{* I * + 1* - }[,<ARP>]

Operation: Zero. AND. high-order ACC bits: (dma). AND. low-order ACC bits -+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1 1 0 0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 1 0 0 1 I SEE SECTION 3.3

AND

Description: The low-order bits of the accumulator are ANDed with the contents of the specified data
memory address and concatenated with all zeroes AN Oed with the high-order bits of the
accumulator. The AND operation follows the truth table below.

DATA MEMORY BIT

Words: 1
Cycles: 1

Example: AND DAT16

0
0
1
1

ACC BIT (BEFORE) ACC BIT (AFTER)

0 0
1 0
0 0
1 1

or
AND * If current auxiliary register contains the value 16.

DATA
MEMORY

16

ACC

BEFORE INSTRUCTION

>0 0 F F

>1 2 3 4 5 6 7 8

DATA
MEMORY

16

ACC

AFTER INSTRUCTION

>0 0 F F

>0 0 0 0 0 0 7 8

Note: This instruction is useful for examining bits of a word for high-speed control applications.

3-13

APAC Add P Register to Accumulator APAC

Assembler Syntax: [< label>] APAC

Operands: None

Operation: (ACC) + (P)-+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 1 1 000

I Description: The contents of the P register, the result of a multiply, are added to the contents of the
accumulator and the result is stored in the accumulator.

Words: 1
Cycles: 1

Example: APAC

P

BEFORE INSTRUCTION

64

Ace L-I ______ 3_2----J

P

AFTER INSTRUCTION

64

AcelL--_________ 9_6----J

Note: This instruction is a subset of the L T A and L TO instructions.

3-14

B Branch Unconditionally B

Assembler Syntax: [<label>] B <pma>

Operands: o ~ pma< 212

Operation: pma-+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 01 PROGRAM MEMORY ADDRESS

Description: Branch to location in program is specified by the program memory address (pma). Pma can
be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: B PRG191 191 is loaded into the program counter and program continues running from
that location.

3-15

I

I

BANZ Branch on Auxiliary Register Not Zero BANZ

Assembler Syntax: [<label>] BANZ <pma>

Operands: o ~ pma< 212

Operation: If (AR bits 8 through 0) < > 0
Then (AR) - 1 - AR and pma - PC
Else (PC) + 2 - PC

(AR) - 1 - AR

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0\ PROGRAM MEMORY ADDRESS

Description: If the lower nine bits of the current auxiliary register are not equal to zero, then the auxiliary
register is decremented, and the address contained in the following word is loaded into the
program counter. If these bits equal zero, the current program counter is incremented and
AR also is decremented. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BANZ PRG35

BEFORE INSTRUCTION

AR

PC 46
1

or

AR 01

PC 46
1

AFTER INSTRUCTION

ARL...--1 ____ ----'0 I

PC I 35
1

ARI >1 F FJ

PC 48
1

Note: This instruction can be used for loop control with the auxiliary register as loop counter. The auxiliary
register is decremented after testing for zero. The auxiliary registers also behave as modulo 512
counters.

3-16

BGEZ Branch if Accumulator Greater Than
or Equal to Zero BGEZ

Assembler Syntax: [<label>] BGEZ <pma>

Operands: o ~ pma < 212

Operation: If (ACC) ~ 0
Then pma -. PC
Else (PC) + 2 -. PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 0 0 0 0 0 0 0 0

0 0 0 01 PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are greater than or equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BGEZ PRG217 217 is loaded into the program counter if the accumulator is greater than
or equal to zero.

3-17

I

I

BGZ Branch if Accumulator Greater Than Zero BGZ

Assembler Syntax: [<label>] BGZ <pma>

Operands: O~ pma< 212

Operation: If (ACe) > 0
Then pma -+ PC
Else (PC) + 2 -+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 01 PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are greater than zero, branch to the specified program
memory location. Branch to location in program specified by the program memory address
(pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BGZ PRG342 342 is loaded into the program counter if the accumulator is greater than zero.

3-18

BIOZ Branch on I/O Status Equal to Zero BIOZ

Assembler Syntax: [< label>] . BIOZ <pma>

Operands: o ~ pma< 212

Operation: If BIO = 0
Then pma~ PC
Else (PC) + 2 ~ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 o I PROGRAM MEMORY ADDRESS

Description: If the BIO pin is active low, then branch to specified memory location. Otherwise, the
program counter is incremented to the next instruction. Branch to location in program is
specified by the program memory address (pma). Pma can be either a symbolic or a numeric
address.

Words: 2
Cycles: 2

Example: BIOZ PRG64 If the BIO pin is active low, then a branch to location 64 occurs. Otherwise, the
program counter is incremented.

Note: This instruction can be used in conjunction with the BIO pin to test if peripheral is ready to deliver an
input. This type of interrupt is preferable when performing time-critical loops.

3-19

I

I

BLEZ Branch if Accumulator Less Than
or Equal to Zero BLEZ

Assembler Syntax: [<label>] BLEZ <pma>

Operands: O~ pma< 212

Operation: If (ACC) ~ 0
Then pma -+ PC
Else (PC) + 2 -+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0/ PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are less than or equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example:

3-20

BLEZ PRG63 63 is loaded into the program counter if the accumulator is less than or
equal to zero.

BlZ Branch if Accumulator Less Than Zero BlZ
Assembler Syntax: [<label>] BLZ <pma>

Operands: o ~ pma< 212

Operation: If (ACC) < 0
Then pma'" PC
Else (PC) + 2 ... PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 01 PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are less than zero, branch to the specified program
memory location. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BLl PRG481 481 is loaded into the program counter if the accumulator is less than zero.

3-21

•

•

BNZ Branch if Accumulator Not Equal to Zero BNZ

Assembler Syntax: [<label>] BNZ <pma>

Operands: O~ pma< 212

Operation: If (ACC) < > 0
Then pma -. PC
Else (PC) + 2 -. PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 1 0 0 0 0 0 0 0 a 0

a 0 0 01 PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are not equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BNZ PRG320 320 is loaded into the program counter if the accumulator does not equal zero.

3-22

BV Branch on Overflow BV

Assembler Syntax: [<label>] BV <pma>

Operands: o ~ pma < 212

Operation: If overflow flag = 1
Then pma-PC and O-overflow flag
Else (PC) + 2 -+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 01 PROGRAM MEMORY ADDRESS

Description: If the overflow flag has been set, then a branch to the program address occurs and the
overflow flag is cleared. Otherwise, the program counter is incremented to the next instruc
tion. Branch to location in program is specified by the program memory address (pma).
Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BV PRG610 If an overflow has occurred since the overflow flag was last cleared, then 610 is
loaded into the program counter. Otherwise, the program counter is
incremented.

3-23

I

I

BZ Branch if Accumulator Equals Zero BZ

Assembler Syntax: [<label>] BZ <pma>

Operands: o ~ pma< 212

Operation: If (ACC) = 0
Then pma -. PC
Else (PC) + 2 -. PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 01 PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are equal to zero, branch to the specified program
memory location. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BZ PRG102 102 is loaded into the program counter if accumulator is equal to zero.

3-24

CALA Call Subroutine Indirect CALA

Assembler Syntax: [<,label>] CALA

Operands: None

Operation: (PC) + 1 -+ TOS
(ACC bits 11 through 0) -+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 1 1 000 o 0

Description: The current program counter is incremented and pushed onto the top of the stack. Then, I
the contents of the 12 least significant bits of the accumulator are loaded into the PC.

Words: 1
Cycles: 2

Example: CALA

PC

ACC

STACK

BEFORE INSTRUCTION

25

83

32
75
84
49

PC

ACC

AFTER INSTRUCTION

83

83

ST ACK IL---______ !I-----'

Note: This instruction is used to perform computed subroutine calls.

3-25

•

CALL Call Subroutine Direct CALL
Assembler Syntax: [<label>] CALL <pma>

Operands: o ::5 pma < 21 2

Operation: (PC) + 2 -+ TOS
pma --+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 oJ PROGRAM MEMORY ADDRESS

Description: The current program counter is incremented and pushed onto the top of the stack. Then,
the program memory address is loaded into the PC.

Words: 2
Cycles: 2

Example: CALL PRG109

PC

STACK

3-26

BEFORE INSTRUCTION

33

71
48
16
80

PC

AFTER INSTRUCTION

109

STACK L.-1 ______ 4_~i____l

DINT Disable Interrupt DINT

Assembler Syntax: [<label>] DINT

Operands: None

Operation: 1-INTM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 1 1 1 1 000 000 1

Description: The interrupt-mode flag (lNTM) bit is set to logic 1. When this flag is set, any further
maskable interrupts are disabled. I

Words: 1
Cycles: 1

Example: DINT

3-27

I

DMOV Data Move in Memory DMOV

Assembler Syntax:
Direct Addressing: [<label>] DMOV <dma>
Indirect Addressing: [<label>] DMOV {* 1* + 1* - }[, <ARP>]

Operands: o ~ dma~ 127
ARP=Q or 1

Operation: (dma) ~ dma + 1

Encoding: 15 14 13 12 11 10 9 a 7 6 5 4 3 2 0

Direct: 0 1 1 0 1 0 0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 0 1 0 0 1 I SEE SECTION 3.3

Description: The contents of the specified data memory address are copied into the contents of the next
higher address.

Words: 1
Cycles: 1

Example: DMOV DATa
or
DMOV * If current auxiliary register contains the value 8.

BEFORE INSTRUCTION
DATA ~----------------~

ME~ORYI 431

DATA
MEMgORY 1L.-.-_____ ---'21

AFTER INSTRUCTION
DATA

MEMORY I 43 1
a

DATA
ME~O RY 1'"--______ 43---1,

Note: DMOV is an instruction that can be associated with Z-l in signal flow graphs. It is a subset of the LTD
instruction. See LTD for more information.

3-28

EINT Enable Interrupt EINT
Assembler Syntax: [<label>] EINT

Operands: None

Operation: O-INTM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 1 1 1 1 1 1 0 0 0 0 0 1 01

Description: The interrupt-mode flag (lNTM) in the status register is cleared to logic O. When this flag is
not set, maskable interrupts are enabled.

Words: 1
Cycles: 1

Example: EINT

3-29

I

I

IN Input Data from Port

Assembler Syntax:
Direct Addressing: <dma>,<PA>
Indirect Addressing:

[<label>]
[<label>]

IN
IN {* I * + I * - }, < PA > [, < ARP >]

Operands: O::;;dma::;;127
O::;;PA::;;7
ARP=O or 1

Operation: PA-address lines PA2-PAO
Data bus D15-DO-dma

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 PORT DATA MEMORY
Direct: ADDRESS ADDRESS

Indirect: 0 0 0 o I Abg=~ssll I SEE SECTION 3.3

IN

Description: The IN instruction reads data from a peripheral and places it in data memory. It is
a two-cycle instruction. During the first cycle, the port address is sent to address
lines A2/PA2-AO/PAO. DEN goes low during the same cycle, strobing in the data
which the addressed peripheral places on the data bus, D 15-DO.

Words: 1
Cycles: 2

Example: IN

LARK
LARP
IN

STAT,PA5 Read in word from peripheral on port address 5.

1,20
1
*-,PA 1,0

Store in data memory location STAT.

Load AR 1 with decimal 20 .
Load ARP with 1.
Read in word from peripheral on port address 1 .
Store in data memory location 20. Decrement
AR1 to 19. Load the ARP with O.

Notes: When the TMS32010 outputs address onto the three LSBs of address lines, the nine MSBs are
zeroed.

3-30

Instruction causes the DEN line to ~w during the first clock cycle of this instruction's ex
ecution. MEN remains high when DEN is active.

LAC Load Accumulator with Shift

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[< label>]
[<label>]

Operands: 0 ~ shift ~ 15
O~dma~ 127
ARP=Q or 1

Operation: (dma) X 2shift -+ACC

Encoding: 15 14 13 12 11

Direct: o o o

Indirect: 001 0

LAC
LAC

< dma > [, < shift>]
{* 1* + 1* - }[, <shift> [, <ARP>]]

10 9 8 7 6 5 4 3 2 o

SHIFT

SHIFT

DATA MEMORY
ADDRESS

SEE SECTION 3.3

LAC

Description: Contents of data memory address are left-shifted and loaded into the accumulator. During
shifting, low-order bits are zero-filled and high-order bits are sign-extended.

Words: 1
Cycles: 1

Example: LAC DAT6,4
or
LAC *,4 If current auxiliary register contains the value 6.

BEFORE INSTRUCTION
DATA

MEMORY 1 1

6 ~----------------~.

ACC 01

DATA
MEMORY

6

ACC

AFTER INSTRUCTION

1 I

3-31

I

LACK Load Accumulator with Eight-Bit Constant LACK

Assembler Syntax: [<label>] LACK <constant>

Operands: o :::;;constant:::;; 255

Operation: constant-ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 1 1 o 8-BIT CONSTANT

I Description: The eight-bit constant is loaded into the accumulator right-justified. The upper 24 bits of the
accumulator are zeros (i.e., sign extension is suppressed).

Words: 1
Cycles: 1

Example: LACK 15

ACC

BEFORE INSTRUCTION

31 ACC

AFTER INSTRUCTION

15 I

Note: If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No
error message will be given.

3-32

LAR

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: 0 ~ dma ~ 127
AR = 0 or 1
ARP = 0 or 1

Operation: (dma) - AR

Load Auxiliary Register

LAR
LAR

<AR>,<dma>
<AR>,{*I * + 1* - }L<ARP>]

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Direct: 0 0 1 1 1
AUXILIARY

0
DATA MEMORY

REGISTER ADDRESS

Indirect: 0 0 1 1 1 AUXILIARY 1 SEE SECTION 3.3 REGISTER

LAR

Description: The contents of the specified data memory address are loaded into the designated auxiliary
register.

Words: 1
Cycles: 1

Example: LAR ARO,DAT19

BEFORE INSTRUCTION
DATA

ME~~RY I lsi
ARO 61

also, LARP 0
LAR ARO,*-

DATA
ME~ORY 1~ ______ 32---J1

ARO 71

AFTER INSTRUCTION
DATA

M~~~RYI lsi
ARO

DATA
MEM

7
0RY L...-1 ______ 32~1

ARO 321

Notes: ARO is not decremented after the LAR instruction. Generally as in the above case, if indirect
addressing with autodecrement is used with LAR to load the current auxiliary register, the new
value of the auxiliary register is not decremented as a result of instruction execution. The analagous
case is true with autoincrement.

LAR and its companion instruction SAR (store auxiliary registers) should be used to store and load
the auxiliary during subroutine calls and interrupts.

If an auxiliary register is not being used for indirect addressing, LAR and SAR enable it to be used
as an additional storage register, especially for swapping values between data memory locations.

3-33

I

I

LARK Load Auxiliary Register with Eight-Bit Constant

Assembler Syntax: [<label>] LARK <AR> ,<constant>

Operands:

Operation:

Encoding:

Direct:

o ~ constant ~ 255
AR = 0 or 1

constant-AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 1 1 1 0 AUXILIARY 8-BIT CONSTANT REGISTER

LARK

o

Description: The eight-bit positive constant is loaded into the designated auxiliary register right-justified

Words: 1
Cycles: 1

and zero-filled (i.e., sign-extension suppressed).

Example: LARK ARO,21

BEFORE INSTRUCTION

ARO 01 ARO

AFTER INSTRUCTION

21 I

Notes: This instruction is useful for loading an initial loop counter value into an auxiliary register for use
with the BANZ instruction.

3-34

If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No
error message will be given.

LARP Load Auxiliary Register Pointer Immediate LARP

Assembler Syntax: [<label>] LARP < constant>

Operands: o ~ constant ~ 1

Operation: constant -+ ARP

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 1 0 0 0 0 0 0 0 0 0 I l-BIT I
. CONSTANT.

Description: Load a one-bit constant identifying the desired auxiliary register into the auxiliary register
pointer.

Words: 1
Cycles: 1

Example: LARP 1 Any succeeding instructions will use auxiliary register 1 for indirect addressing.

Note: This instruction is a subset of MAR.

3-35

I

LOP Load Data Memory Page Pointer

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: O~dma~ 127
ARP=O or 1

LDP
LDP

<dma>
{*I * + 1* - }L<ARP>]

Operation: LSB of (dma) --. DP (DP = 0 or 1)

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Direct: 0 1 0 1 1 I 0 I
DATA MEMORY

ADDRESS

Indirect: 0 0 1 1 I SEE SECTION 3.3

LOP

0

Description: The least significant bit of the contents of the specified data memory address is loaded into
the data memory page pointer register (DP). All higher-order bits are ignored in the data
word. DP = 0 defines page 0 which contains words 0-127. DP = 1 defines page 1 which
contains words 128-143.

Words: 1
Cycles: 1

Example: LOP
or
LOP

3-36

DAT1

*,1

LSB of location DAT1 is loaded into data page pointer.

LSB of location currently addressed by auxiliary register is loaded into
data page pointer. AR P is set to one.

LDPK Load Data Page Pointer Immediate LDPK

Assembler Syntax: [<label>] LDPK <constant>

Operands: o ~ constant ~ 1

Operation: constant- DP

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o

o 1 1 0 1 1 1 0 0 0 0 0 0 0 0 ICO~:~:NTI

Description: The one-bit constant is loaded into the data memory page pointer register (DP). DP = 0
defines page 0 which contains words 0-127. DP = 1 defines page 1 which contains words
128-143.

Words: 1
Cycles: 1

Example: LDPK 0 Data page pointer is set to zero.

3-37

I

I

LST Load Status from Data Memory LST

Assembler Syntax:
Direct Addressing: [<label >] LST <dma>
Indirect Addressing: [<label>] LST {* 1* + 1* - }[, <ARP>]

Operands: Q~dma~127

ARP=Q or 1

Operation: (dma) -status bits

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1 0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 0 1 I SEE SECTION 3.3

Description: Restores the contents of the status register as saved by the store status (SST) instruction
from a data memory word.

Words: 1
Cycles: 1

Example: LARP 0
LST *,1

The data memory word addressed by the contents of auxiliary
register 0 replaces the status bits. The auxiliary register pointer
becomes 1.

Note: This instruction is used to load the TMS32010's status bits after interrupts and subroutine calls.

3-38

These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Auxiliary Register
Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. The Interrupt Mask bit cannot be
changed by the LST instruction. These bits were stored (by the SST instruction) in the data memory
word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

See SST.

LT Load T Register

Assembler Syntax:
Direct Addressing: [<label>] LT <dma>
Indirect Addressing: [<label>] LT {* I * + I * - }L < ARP >]

Operands: O::;dma::;127
ARP=O or 1

Operation: (dma)-T

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0
1

DATA MEMORY
Direct: 0 0 0 ADDRESS

Indirect: 0 1 0 0 o 11 1 SEE SECTION 3.3

Description: L T loads the T register with the contents of the specified data memory location.

Words: 1
Cycles: 1

Example: LT
or
LT

DATA
MEMORY

24

T

DAT24

* If current auxiliary register contains the value 24.

BEFORE INSTRUCTION

621

AFTER INSTRUCTION

62
DATA

MEMORY I
24 ~. ----------------~

T 62

Note: LT is used to load the T register in preparation for a multiplication. See MPY, LTA, and LTD.

LT

I

3-39

LTA Load T Register and Accumulate Previous Product

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: O~dma~127

ARP=O or 1

Operation: (dma)-T
(ACC) + (P) - ACC

15 14 13 12 11

0 1 0 1

I Encoding:

Direct:

Indirect: 0 1 0 1

10

1

LTA
LTA

9

0

0

<dma>
{*I * + 1* - }[,<ARP>]

8 7 6 5 4 3 2 0

o 101
DATA MEMORY

ADDRESS

o 11 I SEE SECTION 3.3

LTA

Description: The contents of the specified data memory address are loaded into the T register. Then, the
P register, containing the previous product of the multiply operation, is added to the accu
mulator, and the result is stored in the accumulator.

Words: 1
Cycles: 1

Example: LTA DAT24
or
LTA * If current auxiliary register contains the value 24.

DATA.
MEMORY

24

T

p

ACC

BEFORE INSTRUCTION

621

31

15
1

51

AFTER INSTRUCTION
DATA

MEMORY 1 62 1
24 ~. ----------------~.

T 62 1

p 15 I
ACe 20 I

Note: This instruction is a subset of the LTD instruction.

3-40

LTD Load T Register, Accumulater Previous
Product, and Move Data Memory

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands:

Operation:

Encoding:

Direct:

Indirect:

Osdmas127
ARP=O or 1

(dma)-T
(ACC) + (P)-ACC
(dma) -dma + 1

15 14 13 12

0 1 0

0 1 0

11

1

1

10

0

0

LTD
LTD

9

1

1

8

1

1

<dma>
{ * I * + I * - H, < ARP >]

7 6 5 4 3 2 1

1
0

1

DATA MEMORY
ADDRESS

11 1 SEE SECTION 3.3

LTD

0

Description: The T register is loaded with the contents of the specified data memory address. Then, the
contents of the P register are added to the accumulator. Next, the contents of the specified
data memory address are transferred to the next higher data memory address.

Words: 1
Cycles: 1

Example: LTD DAT24
or
LTD * IF current auxiliary register contains the value 24.

DATA
MEMORY

24

DATA
MEMORY

25

T

p

ACe

BEFORE INSTRUCTION

621

01

31

15
1

51

AFTER INSTRUCTION
DATA

MEMORY 621
24 ~--------------~

DATA
MEMORY 62 1

25

T 62
1

p 15 I
ACC 20 1

3-41

I

I

MAR Modify Auxiliary Register MAR

Assembler Syntax: [<label>] MAR {* 1* + 1* - }[, <ARP>]

Operands: ARP=Q or 1

Operation: Current auxiliary register is incremented, decremented, or remains the same. Aux
iliary register pointer is loaded with the next ARP.

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1 0 1 0 0 0
1

0
1

DATA MEMORY
ADDRESS

Indirect: 0 1 0 1 0 0 0 11 1 SEE SECTION 3.3

Description: This instruction utilizes the indirect addressing mode to increment/decrement the auxiliary
registers and to change the auxiliary register pointer. It has no other effect.

Words: 1
Cycles: 1

Example: MAR *, 1
MAR *
MAR *+,0

Load ARP with 1.
Decrement current auxiliary register (in this case, AR 1)
Increment current auxiliary register (AR1), load ARP with O.

Note: In the direct addressing mode, MAR is a NOP. Also,the instruction LAR'P is a subset of MAR (i.e.,
MAR *,0 performs the same function as LARP 0).

3-42

MPY Multiply MPY

Assembler Syntax:
Direct Addressing: [< label>] MPY <dma>
Indirect Addressing: [<label>] MPY {*I * + 1* - }L<ARP>]

Operands: O:::;;dma::5127
ARP=O or 1

Operation: (T) x (dma)-P

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1 0 1 1 0
1

0
1

DATA MEMORY
ADDRESS

Indirect: 0 0 1 0 11 1 SEE SECTION 3.3

Description: The contents of the T register are multiplied by the contents of the specified data memory
address, and the result is stored in the P register.

Words: 1
Cycles: 1

Example: MPY DAT13
or
MPY * If current auxiliary register contains the value 13.

BEFORE INSTRUCTION
DATA

MEMORY I 71
13

T

p

AFTER INSTRUCTION
DATA

MEMORY I 71
13

T

p

Note: During an interrupt, all registers except the P register can be saved. However, the TMS32010 has
hardware protection against servicing an interrupt between an MPY or MPYK instruction and the
following instruction. For this reason, it is advisable to follow MPY and MPYK with LTA, LTD, PAC,
APAC, or SPAC.

No provisions are made for the condition of > 8000 X > 8000. If this condition arises, the product
will be > COOOOOOO.

3-43

I

MPYK Multiply Immediate MPYK

Assembler Syntax: [<label>] MPYK <constant>

Operands: (-212) ~ constant < 212

Operation: (T) x constant- P

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

I 1 o 0 13-BIT CONSTANT

Description: The contents of the T register are multiplied by the signed 13-bit constant and the result I loaded into the P register.

Words: 1
Cycles: 1

Example: MPYK - 9

BEFORE INSTRUCTION

T 71

p 4~

AFTER INSTRUCTION

T 71

p

Note: No provision is made to save the contents of the P register during an interrupt. Therefore, this
instruction should be followed by one of the following instructions: PAC, APAC, SPAC, l TA, or
l TO. Provision is made in hardware to inhibit interrupt during MPYK until the next instruction is
executed.

3-44

NOP No Operation NOP
Assembler Syntax: [<label>] NOP

Operands: None

Operation: None

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

I 0 1 1 1 o 000 0 0 0

Description: No operation is performed.

Words: 1 I
Cycles: 1

Example: NOP

Note: NOP is useful as a IIpad" or temporary instruction during program development.

3-45

OR OR with Low-Order Bits of Accumulator

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: O:5dma :5127
ARP=O or 1

OR
OR

<dma>
{* 1* + 1* - }[, <ARP>]

Operation: Zero. OR. high-order ACC bits: (dma). OR. low-order ACC bits-ACC

I Encoding: 15 14 13

Direct: o 1

Indirect: o

12 11 10 9 8 7 6 5 4 3 2 1

o

o

DATA MEMORY
ADDRESS

o 11 I SEE SECTION 3.3

o

OR

Description The low-order bits of the accumulator are ORed with the contents of the specified data
memory address concatenated with all zeroes ORed with the high-order bits of the ac
cumulator. The result is stored in the accumulator. The OR operation follows the truth
table below.

DATA MEMORY BIT

Words: 1
Cycles: 1

Example: OR DAT88
or

0
0
1
1

ACC BIT (BEFORE) ACC BIT (AFTER)
0 0
1 1
0 1
1 1

OR * Where current auxiliary register contains the value 88.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

MEMORY >F 0 0 0 MEMORY I >F 0 0 0
88 88

ACC >0 0 1 000 0 21 ACC >0 0 1 OF0021

Note: This instruction is useful for comparing selected bits of a data word.

3-46

OUT Output Data to Port

Assembler Syntax:
Direct Addressing: <dma>,<PA>
Indirect Addressing:

[< label>]
[< label>]

OUT
OUT {* I * + I * - }, < PA > [, < ARP >]

Operands: 0~dma:5127

0~PA~7

ARP=O or 1

Operation: PA- address lines PA2-PAO
(dma)-data bus 015-00

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: PORT DATA MEMORY 0 0 0 1 ADDRESS ADDRESS

Indirect: 0 1 0 0 I A6g~~ssI1 I SEE SECTION 3.3

OUT

Description: The OUT instruction transfers data from data memory to an external peripheral. The
first cycle of this instruction places the port address onto address lines A2/PA2-AO/PAO.
During the same cycle, WE goes low and the data word is placed on the data bus D15-DO.

Words: 1
Cycles: 2

Example: OUT 120,7 Output data word stored in memory location 1 20 to
peripheral on port address 7.

OUT *,5 Output data word referenced by current auxiliary
register to peripheral on port address 5.

Notes: When the TMS32010 sends the port address onto the three LSBs of the address lines, the nine
MSBs are set to zero.

The OUT instruction causes the WE line to go low during the first clock cycle of this instruc
tion's execution. MEN remains high during the first cycle.

3-47

I

PAC Load Accumulator with P Register PAC
Assembler Syntax: [<label>] PAC

Operands: None

Operation: (P) -ACe

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

I 0 1 1 1 1 1 000 o

Description: The contents of the P register resulting from a multiply are loaded into the accumulator.

I Words: 1
Cycles: 1

Example: PAC

p

ACC

3-48

BEFORE INSTRUCTION

144

23

p

ACC

AFTER INSTRUCTION

1441

POP Pop Top of Stack to Accumulator POP

Assembler Syntax: [<label>] POP

Operands: None

Operation: (TOS)'" ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a
o 1 1 1 1 100 1 a 1

Description: The contents of the top of stack are loaded into the accumulator. The next element on the I
stack becomes the top of the stack.

Words: 1
Cycles: 2

Example: POP

ACC

STACK

BEFORE INSTRUCTION

82
1

!! I
ACC

STACK

AFTER INSTRUCTION

451

Note: The 12 bits of the stack are put into the accumulator in bits 11 through 0, and bits 31 through 12 are
zeroed. There is no provision to check stack underflow.

3-49

I

PUSH Push Accumulator onto Stack PUSH

Assembler Syntax: [< label>] PUSH

Operands: None

Operation: (ACC) -+TOS

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

I 0 111 o 0 1 o 0 I
Description: The contents of the lower 12 bits (11-0) of the accumulator are pushed onto the top of the

hardware stack.

Words: 1
Cycles: 2

Example: PUSH

BEFORE INSTRUCTION AFTER INSTRUCTION

ACC 71 ACC

STACK

II
STACK

II
Note: There is no provision for detecting a stack overflow. Therefore, if the stack is already full, the

contents of the bottom stack element will be lost upon execution of PUSH.

3-50

RET Return from Subroutine

Assembler Syntax: [<label>] RET

Operands: None

Operation: (TOS) -+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

I 0 1 000 1 o 1 I

Description: The top element is popped off of the stack and loaded into the program counter.

Words: 1
Cycles: 2

Example: RET

PC

STACK

BEFORE INSTRUCTION

961 PC

STACK

AFTER INSTRUCTION

371

Note: This instruction is used in conjunction with CALL and CALA for subroutines.

RET

I

3-51

I

ROVM Reset (Clear) Overflow Mode Register ROVM

Assembler Syntax: [<label>] ROVM

Operand: None

Operation: O-OVM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a

I a a a a o a

Description: This instruction will reset the TMS32010 from the overflow mode it was placed in by the
SOVM instruction. The overflow mode will set the accumulator and the ALU to their highest
positive/negative value when an overflow occurs.

Words: 1
Cycles: 1

Example: ROVM

Note: See SOVM.

3-52

SACH Store Accumulator High with Shift SACH

Assembler Syntax:
Direct Addressing: <dma > [, <shift>]
Indirect Addressing:

[<label>]
[<label>]

SACH
SACH {* 1* + 1* - H, <shift>[, <ARP>]]

Operands:

Operation:

Encoding:

Direct:

Indirect:

Osdmas127
shift = 0, 1, or 4
ARP=O or 1

(ACC) x 2 - (16-shift) -+ dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o o

o o

SHIFT 101 DATA MEMORY
ADDRESS

SH 1FT 11 I SEE SECTION 3.3

o

Description: Store the upper half of the accumulator in data memory with shift. The shift can only be 0,
1,or4.

Words: 1
Cycles: 1

Example: SACH DAT70,1
or
SACH *,1 If current auxiliary register contains the value 70.

ACC

DATA
MEMORY

70

BEFORE INSTRUCTION

>0 4 2 0 8 0 0 1 1 ACC

DATA
MEMORY

70

AFTER INSTRUCTION

>0 4 2 0 8 0 0

>0 8 4

Notes: The SACH instruction copies the entire accumulator into a shifter. It then shifts this entire 32-bit
number 0, 1, or 4 bits and copies the upper 16 bits of the shifted product into data memory. The
accumulator itself remains unaffected.

For example, the following instruction sequence will store> 8 F35 in data memory location DA T1 .
Location DAT2 contains the number> A8F3. DAT3 contains> 5000.

ZALH DAT2 ACC = > A8F30000

ADDS DAT3 ACC = > A8F35000

SACH DAT1,4 DAT1 = >8F35

ACC = > A8F35000

3-53

I

I

SACL Store Accumulator Low

Assembler Syntax:
Direct Address-ing: [< label>]

[< label>] Indirect Addressing:

Operands: 0::5dma::5127
ARP=O or 1
Shift = 0

SACL
SACL

Operation: (ACC bits 15 through 0) -+ dma

<dma > [, <shift>]
{* 1* + 1* - }[, <shift>[, <ARP>]]

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: 010

Indirect: 010

o 0 0 01 0 1

o 0 0 0 I

DATA MEMORY
ADDRESS

SEE SECTION 3.3

Description: Store the low-order bits of the accumulator in data memory.

Words: 1
Cycles: 1

Example: SACL
or
SACL

ACC

DATA
MEMORY

71

DAT7l

* If current auxiliary register contains the value 71.

BEFORE INSTRUCTION

>0 4 2 0 8 0 0 1 I
AFTER INSTRUCTION

ACC >0 4 2 0 8 0 0 1

DATA
MEMORY I >8 0 0 1

71

SACL

Note: There is no shift associated with this instruction, although a shift code of zero MUST be specified
if the ARP is to be changed.

3-54

SAR

Assembler Syntax:
Direct Addressing: [<label>]

[<label>] Indirect Addressing:

Operands:

Operation:

O~dma~ 127
AR=O or 1
ARP=O or 1

(AR) -+ dma

Store Auxiliary Register

SAR
SAR

<AR>,<dma>
<AR>,{* 1* + I * - }L<ARP>]

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Direct: 0 0 1 1 0 AUXILIARY 0 DATA MEMORY
REGISTER ADDRESS

Indirect: 0 0 1 1 0 AUXILIARY 1 SEE SECTION 3.3
REGISTER

SAR

Description: The contents of the designated auxiliary register are stored in the specified data memory
location.

Words: 1
Cycles: 1

Example: SAR ARO,DAT101

ARO

DATA
MEMORY

101

also,

BEFORE INSTRUCTION

371

LARP ARO
SAR ARO,*+

ARO 51
DATA

MEMORY 01 5

ARO

DATA
MEMORY

101

ARO

DATA
MEMORY

5

WARNING

AFTER INSTRUCTION

371

61

61

Special problems arise when SAR is used to store the current auxiliary register with in
direct addressing if autoincrement/decrement is used.

(continued)

3-55

I

I

SAR
LARP
LARK
SAR

ARO
ARO,10
ARO, * + or SAR ARO, *-

In this case, SAR ARO, * + will cause the value 11 to be stored in location 10. SAR
ARO, * - will cause the value 9 to be stored in location 1 O.

Note: For more information, see LAR.

3-56

SAR

SOVM Set Overflow Mode Register SOVM

Assembler Syntax: [<label>] SOVM

Operands: None

Operation: 1-0VM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 1 1 1 1 1 1 0 0 0 1 0 1 1 I

Description: When placed in the overflow mode, the TMS3201 0 will set the accumulator and ALU I
to their highest positive/negative value if an overflow/underflow occurs. The highest
positive value is > 7FFFFFFF, and the lowest negative value is > 80000000.

Words: 1
Cycles: 1

Example: SOVM

3-57

I

SPAC Subtract P Register from Accumulator SPAC

Assembler Syntax: [<label>] SPAC

Operands: None

Operation: (ACC) - (P) -+ ACe

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 111100100001

Description: The contents of the P register are subtracted from the contents of the accumulator, and the
result is stored in the accumulator.

Words: 1
Cycles: 1

Example: SPAC

3-58

p

BEFORE INSTRUCTION

36\

ACC 1L....--_____ 6---J0 1

p

AFTER INSTRUCTION

36\

ACC L--I _____ 24---J
1

SST

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: O:5dma:515
ARP=O or 1

Store Status

SST
SST

<dma>
{* 1* + I * - }[, <ARP>]

Operation: status bits -. specified data memory word on page 1

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Direct: 0 1 1 0 0101 DATA MEMORY
ADDRESS

Indirect: 0 1 1 1 0 01 SEE SECTION 3.3

0

Description: The status bits are saved into the specified data memory address on page 1 .

Words: 1
Cycles: 1

Example: SST DAT1
or
SST *,1 IF current auxiliary register contains the value 1.

SST

Note: This instruction is used to load the TMS32010's status bits after interrupts and subroutine calls.
These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Interrupt Mask
(INTM) bit, Auxiliary Register Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. These
bits are stored (by the SST instruction) in the data memory word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I OV 1 OVM IINTM 1 1 1 1 I ARP 11 1 I 1 11 1 1 11 1 DP I

Note: See LST.

3-59

I

SUB Subtract from Accumulator with Shift

Assembler Syntax:
Direct Addressing: [<label>]

[<label>] Indirect Addressing:

Operands: O:::;shift :::;15
O:::;dma:::;127
ARP=O or 1

SUB
SUB

Operation: (ACC) - [(dma) X 2 shift] -+ ACC

<dma.> [, <shift>]
{ * I * + I * - H, < shift> [, < ARP >]]

I Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: 000

Indirect: 000 1

SHIFT

SHIFT

DATA MEMORY
ADDRESS

SEE SECTION 3.3

SUB

Description: Contents of data memory address are left-shifted and subtracted from the accumulator.
During shifting, the low-order bits of data are zero-filled and the high-order bit is sign
extended. The result is stored in the accumulator.

Words: 1
Cycles: 1

Example: SUB
or
SUB

3-60

ACC

DATA
MEMORY

59

DAT59

* If current auxiliary register contains the value 59.

BEFORE INSTRUCTION

361 ACC

DATA
MEMORY

59

AFTER INSTRUCTION

191

SUBC Conditional Subtract

Assembler Syntax:
Direct Addressing: <dma>
Indirect Addressing:

[<label>]
[<label>]

SUBC
SUBC {*I * + 1*- }L<ARP>]

Operands: 0 ~ dma ~ 127,
ARP = 0 or 1

Operation: (ACC) - [(dma) x 2 15]-adder output

If (hig h-order bits of adder output) > 0
Then (adder output) * 2 + 1 -+ ACC
Else (ACC) x 2 -+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: o

Indirect: o

o 0 1 00101 DATA MEMORY
ADDRESS

o 0 o 0 I 1 I SEE SECTION 3.3

SUBC

Description: This instruction performs conditional subtraction which can be used for division in
algorithms.

Words: 1
Cycles: 1

Note: The next instruction after SUBC cannot use the accumulator.

3-61

I

I

SUBH Subtract from High-Order Accumulator SUBH

Assembler Syntax:
Direct Addressing: [<label>] SUBH <dma>
Indirect Addressing: [<label>] SUBH { * I * + I * - } [, < ARP >]

Operands: O=::;;dma=::;; 127
ARP=O or 1

Operation: (ACC) - [(dma) x 216] -+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1 0 0 0 01 01
DATA MEMORY

ADDRESS

Indirect: 0 1 1 0 0 0 1 o 11 1 SEE SECTION 3.3

Description: Subtract the contents of specified data memory location from the upper half of the
accumulator. The result is stored in the accumulator.

Words: 1
Cycles: 1

Example: SUBH
or
SUBH

DAT33

* If current auxiliary register contains the value 33.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

51 MEMORY 51 MEMORY I
33 33

31 16 15 0 31 16 15 0

ACC 171 01 ACC 121 01

Note: The SUBH instruction can be used for performing 32-bit arithmetic.

3-62

SUBS Subtract from Low Accumulator
with Sign-Extension Suppressed

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: Q~dma~127

ARP=Q or 1

Operation: (ACC) - (dma) -+ ACC

Encoding: 15 14 13 12 11

Direct: 0 0 0

Indirect: 0 1 0 0

SUBS
SUBS

10 9

0

0 1

8

<dma>
{*I * + 1* - }[,<ARP>]

7 6 5 4 3 2 1

1
0

1

DATA MEMORY
ADDRESS

11 I SEE SECTION 3.3

SUBS

0

Description: Subtract contents of a specified data memory location from accumulator with sign
extension suppressed. The data is treated as a 16-bit positive integer rather than a two's
complement integer.

Words: 1
Cycles: 1

Example: SUBS
or
SUBS

ACC

DATA
MEMORY

61

DAT61

* If current auxiliary register contains the value 61 .

BEFORE INSTRUCTION

>0 0 0 0 FlO 5

>F 0 0 3

ACC

DATA
MEMORY

61

AFTER INSTRUCTION

>0 0 0 0 0 1 0 2 I

>F 0 0 3

3-63

I

TBLR

Assembler Syntax:
Direct Addressing: [<label>]

[<label>] Indirect Addressing:

Operands:

Operation:

O~dma~127

ARP=O or 1

(PC) + 1 --. TOS

Table Read

TBlR
TBlR

<dma>
{ * I * + I * - } [, < ARP >]

(ACC) --. PC --. address lines A 11 through AO
data bus 015 through 00--' dma

Encoding:

Direct:

Indirect:

(TOS) --. PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1 1

o 1 1

o 0

o 0

DATA MEMORY
ADDRESS

SEE SECTION 3.3

TBLR

Description: This instruction transfers a word from anywhere in program memory (i.e., internal ROM,
external ROM, external RAM) to the specified location in data memory. The three-cycle
instruction is as follows:

Words: 1
Cycles: 3

Prefetch:

Cycle 1:

Cycle 2:

Cycle 3:

Example: TBLR OAT4

MEN goes low and the TBlR instruction opcode
is fetched. The previous instruction is executing.

MEN goes low. The address of the next instruc
tion is placed onto address bus, but data bus is
not read. Program counter is pushed onto stack.
Twelve lSBs of the accumulator contents are
loaded into the program counter.

MEN goes low. Contents of program counter are
buffered to address lines. Address memory loca
tion is read and is copied into specified RAM loca
tion. The new program counter is popped from
the stack.

MEN goes low. Next instruction opcode is
prefetched.

TB LR * If current auxiliary register contains the value 4.

(Continued)

3-64

TBLR TBLR

BEFORE INSTRUCTION AFTER INSTRUCTION

ACC 171 ACC 17 I
PROGRAM I

3061
PROGRAM I

3061 MEMORY MEMORY
17 17

DATA
MEMORY I 751

DATA
MEMORY I 3061

4 4

Note: This instruction is useful for reading coefficients that have been stored in program ROM, or time
dependent data stored in RAM.

3-65

I

I

TBLW Table Write

Assembler Syntax:
Direct Addressing: [<label>]

[<label>] Indirect Addressing:

Operands:

Operation:

0~dma~127

ARP=O or 1

(PC) + 1 -+ TOS

TBLW
TBLW

<dma>
{*J * + J * - }L<ARP>]

(ACC) -+ PC -+ address lines A 11 through AO

Encoding:

Direct:

Indirect:

(dma) -data bus D15 through DO
(TOS)-PC

15 14 13 12 11 10 9 8

0 1 0

0 1 1 1 0

7 6 5 4 3 2 1

1
0

1

DATA MEMORY
ADDRESS

SEE SECTION 3.3

TBLW

0

Description: This instruction transfers a word from the specified location in data memory to a location in
external program RAM. The three-cycle instruction is as follows:

Words: 1
Cycles: 3

Prefetch:

Cycle 1:

Cycle 2:

Cycle 3:

Example: TBLW DAT4

MEN goes low and the TBLR instruction opcode
is fetched. The previous instruction is executing.

MEN goes low. The address of the next instruc
tion is placed onto address bus, but data bus is
not read. Program counter is pushed onto stack.
Twelve LSBs of the accumulator contents are
loaded into the program counter.

WE goes low. Contents of program counter are
buffered to address lines. Contents of specified
data memory address are placed on the data bus.
The new program counter is popped off of stack.

MEN goes low. Next instruction opcode is
prefetched.

TBLW * If current auxiliary register contains the value 4.

(Continued)

3-66

TBLW TBLW

BEFORE INSTRUCTION AFTER INSTRUCTION

ACC 171 ACC 171

DATA DATA
751 MEMORY I 751 MEMORY I

4 4

PROGRAM I
MEMORY

17
3061

PROGRAM I
MEMORY

17
751

Note: The TBLW and OUT instructions use the same external signals and thus cannot be distin
guished when writing to program memory addresses 0 through 7.

3-67

I

I

XOR Exclusive-OR with Low-Order Bits of Accumulator

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[< label>]

Operands: O::;dma::;127
ARP=O or 1

XOR
XOR

<dma>
{* 1* + 1* - }[, <ARP>]

Operation: Zero. XOR. high-order ACC bits: (dma). XOR. low-order ACC bits-ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0 0101 DATA MEMORY
ADDRESS

Indirect: 0 1 0 0 o 11 1 SEE SECTION 3.3

XOR

Description: The low-order bits of the accumulator are exciusive-ORed with the specified data memory
address and concatenated with the exclusive-OR of a" zeroes and the high-order bits
of the accumulator. The exclusive-OR operation follows the truth table below:

DATA MEMORY BIT ACC BIT (BEFORE) ACC BIT (AFTER)

Words: 1
Cycles: 1

Example: XOR DAT45

0
0
1
1

0 0
1 1
0 1
1 0

or
XOR * If current auxiliary register contains the value 45.

BEFORE INSTRUCTION
DATA

MEMORY 1 >F F 0 0
45

ACC >0 F F F 0 F F F

AFTER INSTRUCTION
DATA

MEMORY >F F 0 0
45

ACC >0 F F F F 0 F F I

Note: This instruction is useful for toggling or setting bits of a word for high-speed control. Also, the one's
complement of a word can be found by exclusive-DRing it with all ones.

3-68

ZAC Zero the Accumulator

Assembler Syntax: [< label>] ZAC

Operands: None

Operation: 0 -+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Description:

Words: 1
Cycles: 1

Example: ZAC

o 1

The accumulator is cleared (zeroed).

BEFORE INSTRUCTION

ACe I A F F F F F F F I

000 o 0

AFTER INSTRUCTION

ACC I 0 0 0 0 0 0 0 0 I

ZAC

I

3-69

I

ZALH Zero Accumulator and Load High ZALH

Assembler Syntax:
Direct Addressing: [<label>] ZALH <dma>
Indirect Addressing: [<label>] ZALH { * I * + I * - } [, < ARP >]

Operands: Q~dma~127

ARP=Q or 1

Operation: (dma) X 216 -+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1 0 0 1 0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 0 0 1 0 1 I SEE SECTION 3.3

Description: ZALH clears the accumulator and loads the contents of the specified data memory location
into the upper half of the accumulator. The lower half of the accumulator remains clear.

Words: 1
Cycles: 1

Example: ZALH DA T29
or
ZALH * If current auxiliary register contains the value 29.

DATA
MEMORY

29

ACC

BEFORE INSTRUCTION

>3 F 0 0

>0 0 7 7 F F F F

DATA
MEMORY

29

ACC

Note: ZALH can be used for implementing 32-bit arithmetic.

3-70

AFTER INSTRUCTION

>3 F 0 0

>3 F 0 0 0 0 0 0 I

ZALS Zero Accumulator and Load Low
with Sign-Extension Suppressed

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: Q~dma:::;;127

ARP=Q or 1

Operation: (dma) -+ ACC

Encoding: 15 14 13 12 11

Direct: 0 0 0

Indirect: 0 0 0

10

1

ZALS
ZALS

9 8 7

<dma>
{* 1* + 1* - }[, <ARP >]

6 5 4 3 2

1 01 0 I
DATA MEMORY

ADDRESS

1 01 SEE SECTION 3.3

ZALS

0

Description: Clear accumulator and load contents of specified data memory location into lower half of the
accumulator. The data is treated as a 16-bit positive integer rather than a two's complement
integer. Therefore, there is no sign-extension as with the LAC instruction.

Words: 1
Cycles: 1

Example: ZALS DA T22
or
ZALS * If current auxiliary register contains the value 22.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

MEMORY >F 7 F F MEMORY >F 7 F F
22 22

ACe >7 F F 0 0 0 3 3 ACC >0 0 0 0 F 7 F FI

Notes: The following routine reveals the difference between the ZALS and the LAC instruction. Data
memory location 1 contains the number> FA37.

ZALS
ZAC
LAC

DAT1

DAT1

(ACC) = > OOOOFA37
ZeroACC
(ACC) = > FFFFFA37

ZALS is useful for 32-bit arithmetic operations.

3-71

I

I

3-72

I

METHODOLOGY
FOR APPLICATION DEVELOP'MENT

I

4. METHODOLOGY FOR APPLICATION DEVELOPMENT

4.1 OUTLINE OF DEVELOPMENT PROCESS

A number of development tools are required for designing a system with a microprocessor. This
section describes the facilities which are available for the TMS3201 0 and illustrates how to use them
for developing an application. A typical application development flowchart is shown in Figure 4-1.

SYSTEM SPECIFICATION

CODE PROGRAM

SOFTWARE LIBRARIES

TRANSLATE TO MACHINE CODE

EXECUTE XDS/320 ASSEMBLER

HARDWARE/SOFTWARE INTEGRATION

XDS/320 EMULATOR

FIGURE 4-1 - FLOWCHART OF TYPICAL APPLICATION DEVELOPMENT

After defining the specifications of the system, the designer should draw a flowchart of the
software and a block diagram of the hardware. The processor's performance is then evaluated to
determine the feasibility of implementing the algorithm via the TMS32010 Evaluation Module. The
full algorithm is coded using assembly language. The program is assembled and then verified using
the XDS/320 Macro Assembler and Linker and, optionally, the XDS/320 Simulator. Several
iterations of the program are usually required to correctly code the algorithm. The verified program
is integrated into the hardware, and the prototype system is debugged by using the XDS /320
Emulator.

4-1

I

I

4.2 DESCRIPTION OF DEVELOPMENT FACILITIES

4.2.1

Five development facilities aid in the design and implementation of TMS32010 applications. Each of
the following five development facilities provides a tool for one of the steps involved in developing
an application:

• The TMS32010 Evaluation Module is used to appraise the performance of the processor. A
software library capability is used to simplify and standardize code development.

• The XDS/320 Assembler and Linker translates an assembly language program into a loadable
object module.

• The XDS/320 Simulator accepts downloaded object code and executes the program via a
simulated TMS32010 in a debug mode, thus allowing software debug before attempting
hardware debug.

• The XDS/320 Emulator integrates the processor into the hardware design by providing a
means to debug both software and hardware together.

TMS32010 Evaluation Module

The TMS32010 Evaluation Module (EVM) is a single board which enables a user to determine
inexpensively if the TMS32010 meets the speed and timing requirements of his application. The
EVM is a stand-alone module which contains all the tools necessary to evaluate the TMS32010.

Communication to a host computer and to several peripherals is provided on the EVM. Dual EIA
ports allow the EVM to be connected to a terminal and a host computer. The EVM can also be
configured with a line printer on one port; the other port is connected to either a terminal or a host
computer. As either the host computer or the terminal feeds the assembly language program to the
EVM, the EVM assembles the code. A built-in cassette tape interface can also be used to save code
on tape to be reloaded at a later time. An EPROM programmer is also provided for saving code.
Alternatively, code can be executed directly by the EVM through its target connector.

The EVM can accept either source or object code from a host computer or terminal. A line-oriented
text editor, an assembler which permits symbolic addressing of memory locations, and a reverse
assembler that changes machine code back into assembly language instructions are provided for
programming ease. The debug mode gives access to all of the TMS3201 O's registers and memory.
Eight breakpoints on program addresses and the ability to single-step program execution have been
incorporated for monitoring device operation.

4.2.2 XDS/320 Macro Assembler/Linker

4-2

The XDS/320 Macro Assembler translates TMS32010 assembly language into executable object
code. The assembler allows the programmer to work with mnemonics rather than hexadecimal
machine instructions and to reference memory locations with symbolic addresses. This allows
software to be designed more efficiently and reliably.

The XDS/320 Macro Assembler supports macro calls and definitions along with conditional
assembly. It provides the user with a comprehensive set of error diagnostics. The XDS/320 Macro
Assembler produces a listing and an object file, and will optionally print a symbol tablel cross
reference listing.

Assembler directives which affect program assembly are provided for the user. Some directives
affect the location counter and make sections of the program relocatable. Constants for data and
text are defined by using directives. Symbols defined in one assembly can be used in another
assembly with the REF and DEF directives. These external symbols allow separate modules to be
linked together.

The XDS/320 Linker permits a program to be designed and implemented in separate modules which
will later be linked together to form the complete program. This allows the same modules (i.e., a
filter module) to be used in many programs. The linker assigns values to relocatable code, creating
an object file which can be executed by the simulator or emulator.

The linker resolves external definitions and references from different assemblies, and thereby links
several modules together. More than one assembly may be linked together to create a module
which may be linked again to the main program. An intermediate partial linkage does not require
that all external references be resolved, but in the final linking process, there should be no
unresolved references. Another function of the linker is to assign absolute values to relocatable
code. The final output of the linker can then be loaded into either the simulator or the emulator.

A source code macro library can be maintained in a directory to be assembled with the main
program. This allows commonly used routines to be accessed by more than one program and to be
used to decrease program development time. The mnemonics are macro calls which expand into
assembly code.

The macro library typically should contain user-defined macros and the macros defined in Section
7. These macros simplify the generation of an assembly language program. Examples include I
comparing a word in memory to a word in the accumulator, shifting right, and moving numbers
between registers.

The XDS /320 Macro Assembler and Linker are currently available on several host computers,
including the TI990(DX10) VAX(VMS) and IBM MVS and eMS operating systems. Currently in
development is software to support the VAX(UNIX), DEC PDP11(RSX), IBM PC(DOS) and TI
professional computer (DOS) operating system. Contact your local TI representative for availability
or further details.

4.2.3 XDS/320 Simulator

The XDS/320 Simulator is a software program that simulates operation of the TMS32010 to allow
program verification. The debug mode enables the user to monitor the state of the simulated
TMS32010 while the program is executing.

The simulator program uses the TMS32010 object code, produced by the XDS/320 Macro
Assembler/ Linker. Input and output files may be associated with the port addresses of the I/O
instructions in order to simulate I/O devices which will be connected to the processor. The interrupt
flag can be set periodically at a user-defined interval for simulating an interrupt signal. Before
initiating program execution, breakpoints may be defined, and the trace mode set up.

During program execution, the internal registers and memory of the simulated TMS32010 are
modified as each instruction is interpreted by the host computer. Execution is suspended when
either 1) a breakpoint or error is encountered, 2) the step count goes to zero, or 3) a branch to 'self'
is detected. Once program execution is suspended, the internal registers and both program and
data memories can be inspected and/or modified. The trace memory can also be displayed. A
record of the simulation session can be maintained in a journal file, so that it may be replayed to
regain the same machine state during another simulation session.

The XDS/320 Simulator is currently available for the VAX(VMS).

4-3

I

4.2.4 XDS/320 Emulator

The XDS/320 Emulator is a self-contained system that has all the features necessary for real-time
in-circuit emulation. This allows integration of the user hardware and software in the debug mode.
Three EIA ports have been provided on the emulator to interface with a host system. The first EIA
port provides a connection for a computer, the second port for a terminal, and the third port for a
printer or a PROM programmer. Using a standard EIA port, the object file produced by the macro
assembler/linker can be downloaded into the emulator, which can then be controlled through a
terminal. In addition, source code can be downloaded to the emulator. A line-by-line assembler with
forward and reverse referencing labels is provided on the XDS to assemble the source.

A pin-compatible target connector plugs into the TMS3201 0 socket to enable real-time emulation.
Three clock options are available. First, a 20-MHz clock is available on the emulator. In addition, an
external clock source can be used by attaching a crystal to the target connector, or by connecting a
signal generator to the emulator.

The emulator operates in one of three memory modes: 1) software development mode, 2)
microcomputer mode, or 3) microprocessor mode. In the software development mode, the entire
8K bytes of program memory reside within the emulator. In the microcomputer mode, 3K bytes
reside within the emulator while 5K bytes reside on the target system. The microprocessor mode is
used when all 8K bytes of program memory exist on the target system.

By setting breakpoints based on internal conditions or external events, execution of the user's
program can be suspended and control given to the XDS monitor. While in the monitor, all registers
and memory locations can be inspected and modified. Single-step execution is also available. A
single read or write to an I/O port can be performed to test peripheral devices in the prototype
system. Full trace capabHities at full speed and a reverse assembler that translates machine code
back into assembly instructions are also included to increase debugging productivity.

4.3 APPLICATION DEVELOPMENT PROCESS EXAMPLE

The design and implementation of a TMS32010-based discrete-time filter is presented below to
illustrate the development process. The filter design is derived from the system specification, using
digital signal processing theory. A macro library is used to help code the program. The assembler
and simulator verify that the program executes the filter properly. The processor is then integrated
into the prototype system by using the emulator.

4.3.1 System Specification

Table 4-1 defines the specifications of the discrete-time filter.

TABLE 4-1 - FILTER SPECIFICATIONS

PARAMETER VALUE UNIT

Sample frequency (fs) 10 kHz

Corner frequency (f co) 2 kHz

Attenuation at f = feo -2 dB

Attenuation at f = 1.2 fco -15 dB

Passband ripple ± 1.5 dB

4-4

4.3.2 System Design

The equation for the above discrete-time filter was derived as follows:

y(n)= -.2302699x(n) + .1559177x(n-1) + .2211667x(n-2) + .1119031 x(n-3)
- .1124507 x(n-4) - . 1485743 x(n-5) + .2046856 x(n-6) + .7409326 x(n-7)
+ 1.0 x(n-8) + .7409326 x(n-9) + .2046856 x(n-1 0) - .1485743 x(n-11)
- .1124507 x(n-12) + .1119031 x(n-13) + .2211667 x(n-14)
+ .1559177 x(n-15) - .2302699 x(n-16).

where x(n) is the current sample,

4.3.3 Code Development

x(n -1) is the sample from the previous period,
~

x(n - 16) is the sample from the previous 16th period.

The TMS32010 software development cycle is generally a three-step process for the purpose of
translating the filter equation into TMS32010 assembly language. First, a flowchart of the program
is drawn. Then, the example is coded in a high-level language, FORTRAN, to provide structure and
to test if the algorithm is correct before implementing it in assembly language. Finally, the program.
is coded and tested in assembly language using some of the macro library routines.

4.3.3.1 Discrete-Time Filter Flowchart

Figure 4-2 is a flowchart for the software implementation of the discrete-time filter.

OUTPUT FILTERED DATA

FIGURE 4-2 - FLOWCHART OF FILTER IMPLEMENTATION

4-5

II

4.3.3.2 FORTRAN Program

The following FORTRAN program implements the specified digital filter and provides 1000 outputs.

PROGRAM FILTER
e
C y(n)=-.2302699 x(n) + .1559177 x(n-1) + .2211667 x(n-2) +.1119031 x(n-3)
e - .1124507 x(n-4) - .1485743 x(n-5) + .2046856 x(n-6) + .7409326 x(n-7)
e + 1.0 x(n-8) + .7409326 x(n-9) + .2046856 x(n-10) - .1485743 x(n-11)
C - .1124507 x(n-12) + .1119031 x(n-13) + .2211667 x(n-14)
e + .1559177 x(n-15) - .2302699 x(n-16).
e

REAL*4 X(17),CX(17),Y
C
e Initialize the constants for the filter equation

C

C

C

DATA
1
1
1

I = 0
100

ex /-.2302699,.1559177,.2211667,.1119031,-.1124507,
-.1485743,.2046856,.7409326,1.0,.7409326,
.2046856,-.1485743,-.1124507,.1119031,.2211667,
.1559177,-.2302699/

I = I + 1

C Input sampled data
C

READ (55,110) IX
110 FORMAT (16)

X(l) = IX
C
C Filter data
C

C

Y = 0

DO J = 1,17
Y = Y + CX(J)*X(J)

END DO

C Shift data to new variables
C

C

DO J = 16,1,-1
X(J) = X(J-1)

END DO

C Output filtered data
C

TYPE *,Y
c

IF (1 .LE. 1000) GO TO 100
200 END

4.3.3.3 Assembly Language Program Using Relocatable Code

4-6

The same discrete-time filter can be implemented in TMS32010 assembly language using
relocatable code. The FORTRAN program should not be directly translated into assembly language.
Assembly language code can be made more efficient than the FORTRAN implementation by taking
advantage of the processor's architecture. The assembly language implementation of the
FORTRAN program is described in the following paragraphs.

*
*
*
*

*
*
*

Two library macros (PROG and MAIN) have been used in the example program to simplify the
coding process and to standardize the program structure. One advantage of using macros for
standardizing program structure is that different programmers can easily trade relocatable modules
if they have used the same structure. The PROG macro begins the module with an lOT directive.
This directive gives the module a name to be used later during link and also initializes some values in
the assembler's symbol table. The macro MAIN labels the beginning of the main routine, initializes
the constants ONE and MINUS, and defines the variables XRO and XR1.

The coefficients in the equation are converted to integer arithmetic for this program. To maintain a
maximum amount of accuracy, the coefficients should be factored by 2** - 15, which will create a
Q15 number. After factoring the filter equation, it becomes:

y(n) = [- 7545x(n) + 5109 x(n-1) + 7247 x(n-2) + 3667 x(n-3)
- 3685 x(n-4) - 4868x(n-5) + 6707 x(n-6) + 24279 x(n-7)
+ 32767 x(n-8) + 24279 x(n-9) + 6706 x(n-10) - 4868 x(n-11)
- 3685 x(n-12) + 3667 x(n-13) + 7247 x(n-14) + 5109 x(n-15)
- 7545 x(n-16)]*2** - 15.

Contants are listed in program memory in a table so as to define the coefficients in data memory .•
Constants are then read into data memory using the TB LR instruction. The user loads a one in the T
register to access the table. The MPYK instruction puts the address of the table into the P register.
Then, the PAC instruction loads it into the accumulator. A loop is set up to move all of the
constants into data memory.

The BIO pin is connected to the FIFO empty line. A BIOZ instruction is used to synchronize the
external hardware with the program. As long as the FIFO buffer is empty, the processor polls the
device until data is available.

The sampled data is read into data memory, and the filter equation is calculated. If the equation is
coded in a loop, both of the auxiliary registers must be used as pointers. By starting one of the lists
at location zero in data memory, the pointer for that list can also be used as the loop counter. The
calculation time can be reduced by a factor of two if the equation is implemented using straight-line
code. The user must decide whether program size or execution time is more important in his
application.

The data is shifted in memory as the equation is computed, making a separate loop to do the shift
operation unnecessary. A 0.5 is added to the result to round up the number before storing the
result. The output is written to a 0/ A converter. Then the whole process is repeated.

The following assembly language program implements the digital filter:

The MLIB directive is used to reference a file containing the
source code for the two macros, PROG and MAIN.

MLIB 'MACRO.SRC'

PROG FLTR

REAL 4 X(17),CX(17),Y

Xl
X17
CX1
eX17

DSEG
BSS
BSS
BSS
BSS

BEGIN DATA SEGMENT
16 16 WORDS NAME Xl
1 1 WORD NAME X17
16 16 WORDS NAME eX1
1 1 WORD NAME eX17

4-7

I

4-8

Y BSS 1 1 WORD NAME Y
DEND END DATA SEGMENT

*
B FLTR
RET

*
COEF DATA -7545,5109,7247,3667,-3685,-4868

DATA 6707,24279,32767,24279,6707
DATA -4868,-3685,3667,7247,5109,-7545

*
MAIN FLTR

**
* DATA CX /-.2302699,.1559177,.2211667,.1119031,-.1124507,
* 1 -.1485743,.2046856,.7409326,1.0,.7409326,
* 1 .2046856,-.1485743,-.1124507,.1119031,.2211667,
* 1 .1559177,-.2302699/
**
*
*
*
*
*
*

ONE is a data memory location containing a 1. COEF is the address
where the filter coefficient table begins. The next four lines of
code put the value of COEF in the accumulator so that TBLR can be
used for reading in the coefficients.

LT ONE
MPYK COEF
PAC
LARK ARO ,16
LARK AR1,CX1

ReONST LARP 1

*
*
*
* WAIT
*
*
*
*

TBLR *+,ARO
ADD ONE
BANZ RCONST

Test FIFO to see if it is empty. The next line of code branches on
itself till the BIO pin goes low.

BIOZ WAIT

Input sampled data

IN Xl,PAO

*
*
*
*

DO J = 1,17
Y = Y + CX(J)*X(J}

END DO

* DO J = 1,16

Compute filter equation

* X(J) = X(J-l) Shift variables
* END DO

* * X17 is the data memory address of X(17}.
* CX17 is the data memory address of CX(17}.
* LARK ARO,X17
*

LARK ARl,CX17
ZAC
LT *-,AR1
MPY *-,ARO

LOOP LTD *,AR1
MPY *-,ARO

BANZ LOOP
APAC

*
* Round up
*

ADD ONE,14

*
* Output results
*

SACH Y,l
OUT Y,PA1
B WAIT

4.3.3.3.1 Assembler Output

The XDS/320 Macro Assembler requires a source file which contains the assembly language
program. Two output files are created by the assembler. One output file is a listing file that prints
the object code and the source statement for each instruction. The other output file contains the
object code in standard 990 tagged format. The listing file for the filter program is shown below,
although certain comment statements have been deleted. Object code followed by an apostrophe I
indicates that the code is relocatable (i.e., the B FLTR statement). ~

LISTING FILE

FLTR 320 FAMILY MACRO ASSEMBLER 2.0 83.010 9:20:28 2/21/83
PAGE 0001

0001 * The MLIB directive is used to reference a file con-
0002 * taining source code for the two macros, PROG and MAIN.
0003 *
0004 0000 MLIB 'MACRO.SRC'
0005 *
0006 PROG FLTR
0001 lOT 'FLTR'
0007 *
0008 * REAL 4 X(17),CX(17),Y
0009 *
0010 0000 DSEG BEGIN DATA SEGMENT
0011 0000 Xl BSS 16 16 WORDS NAME Xl
0012 0010 X17 BSS 1 1 WORD NAME X17
0013 0011 CX1 BSS 16 16 WORDS NAME CX1
0014 0021 CX17 BSS 1 1 WORD NAME CX17
0015 0022 Y BSS 1 1 WORD NAME Y
0016 0023 DEND END DATA SEGMENT
0017 *
0018 0000 F900 B FLTR

0001 0014'
0019 0002 7F8D RET
0020 *
0021 0003 E287 COEF DATA -7545,5109,7247,3667,-3685,-4868

0004 13F5
0005 1C4F
0006 OE53
0007 F19B
0008 ECFC

0022 0009 1A33 DATA 6707,24279,32767,24279,6707
OOOA 5ED7
OOOB 7FFF
OOOC SED7
0000 1A33

0023 OOOE ECFC DATA -4868,-3685,3667,7247,5109,-7545
OOOF F19B

4-9

II

4-10

0024
0025

0010 OE53
0011 1C4F
0012 13F5
0013 E287

0001 0014
0002

* MAIN FLTR
PSEG
DEF

PROG SEG
ENTRY POINT

0003
0004 0014
0005 0015
0006 0016
0007 0017
0008 0018
0009 0023
0010 0023
0011 0024
0012 0025
0013 0026
0014

0014 1 FLTR
7E01

EQU
LACK
SACL
ZAC

FLTR
$
1
ONE,O

MAKE
SAVE
ZERO
MAKE
SAVE

CONSTANT ONE
IT
ACCUMULATOR
-1

0015
0016 0027
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038

5023 11

7F89
1023"
5024 11

6A23 11

8003
7F8E
7010
7111

ONE
MINUS
XRO
XR1

SUB ONE,O
SACL MINUS,O
DSEG

IT

BSS 1 CONSTANT ONE
BSS 1 CONSTANT -1
BSS 1 TEMP 0
BSS 1 TEMP 1
DEF ONE,MINUS ALLOW EXTERNAL USE
DEF XRO,XR1 OF VARIABLE
DEND END OF DATA

**
* DATA CX /-.2302699,.1559177,.2211667,.1119031,-.11
* 1 -.1485743,.2046856,.7409326,1.0,.7409326
* 1 .2046856,-.1485743,-.1124507,.1119031,.2
* 1 .1559177,-.2302699/
**
*
* ONE is a data memory location containing a 1. COEF is the
* address where the filter coefficient table begins. The next
* four lines of code put the value of COEF in the accumulator
* so that TBLR can be used for reading in the coefficients.
*

ONE
COEF

0039 0019
0040 001A
0041 001B
0042 001C
0043 0010
0044 001E
0045 001F
0046 0020
0047 0021

6881 RCONST
67AO

LT
MPYK
PAC
LARK
LARK
LARP
TBLR
ADD
BANZ

ARO ,16
AR1,CX1
1
*+,ARO
ONE
RCONST

0048
0049
0050
0051
0052

0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

0023"
F400

0022 001E'

0023 F600
0024 0023 1

0025 4000"

*
* Test FIFO to see if it is empty. The next line of code
* branches on itself till the BIO pin goes high.
*
WAIT

*
*
*

*

BIOZ WAIT

Input sampled data

IN X1,PAO

**
*
*
*
*
*
*
*

DO J = 1,17
y = y + CX(J)*X(J)

END DO

DO J = 1,16
X(J) = X(J-1)

END DO

Compute filter equation

Shift variables

**

0067 *
0068 * X17 is the data memory address of X(17).
0069 * CX17 is the data memory address of CX(17).
0070 *
0071 0026 7010 LARK ARO,X17
0072

,
*

0073 0027 7121 LARK AR1,CX17
0074 0028 7F89 ZAC
0075 0029 6A91 LT *-,AR1
0076 002A 6090 MPY *-,ARO
0077 002B 6B81 LOOP LTD *,AR1
0078 002C 6090 MPY *-,ARO
0079 002D F400 BANZ LOOP

002E 002B'
0080 002F 7F8F APAC
0081 *
0082 * Round up
0083 *
0084 0030 OE23" ADD ONE,14
0085 *
0086 * Output results
0087 *
0088 0031 5922" SACH Y,l
0089 0032 4922" OUT Y,PA1
0090 0033 F900 B WAIT

0034 0023'

THE FOLLOWING SYMBOLS ARE UNDEFINED
*+
*-
$$LAB

*
NO ERRORS, NO WARNINGS

Although the symbols above are undefined, this is a natural result of the macros used and should be
ignored.

The following example is the tagged object code produced by the XDS/320 Assembler. The tags
are used by the linker when it is producing a link module.

TAGGED OBJECT CODE

K0035FLTR M0027$DATA 000050014FLTR W00230NE 00007F43AF FLTR
W0025XRO 0000W0026XR1 0000W0024MINUS 0000AOOOOBF900C0014B7F8D7F1A9F FLTR
BE287B13F5B1C4FBOE53BF19BBECFCB1A33B5ED7B7FFFB5ED7B1A33BECFCBF19B7F036F FLTR
BOE53B1C4FB13F5BE287A0014B7E01#5023007FB7F89#1023007F#5024007F7F281F FLTR
A0019#6A23007FB8003B7F8EB7010B7111B6881B67AO#0023007FBF400C001E7F250F FLTR
BF600C0023#4000007FB7010B7121B7F89B6A91B6D90B6B81B6D90BF400C002B7F1D5F FLTR
B7F8F#OE23007F#5922007F#4922007FBF900C00237F6E6F FLTR

FLTR 2/21/83 9:20:28 ASM320 2.0 83.010 FLTR

4.3.3.3.2 Program Linkage

The linker must be executed even if the program is contained in a single module. The control file
required by the linker specifies the task name, defines the starting location for the data and program

4-11

•

I

segments, and indicates the object files to be linked. The control file which was used to link the
example program is as follows:

FORMAT ASCII
TASK DEV
PROGRAM> 0000
DATA >0000
INCLUDE S4USR.LVK111 .FLTR.OBJ
END

Two files are produced by the linker. The linked object file is an output file containing the load
module. The link listing file is an output file containing a listing of the command control file, a map
of the segments and modules which were linked, and a cross-reference listing of the externally
defined variables. The link listing file and the linked object file are shown below. The object file can
be loaded into the simulator or emulator for program debugging.

LINK LISTING FILE

DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 PAGE 1
COMMAND LIST

FORMAT ASCII
TASK DEV
PROGRAM >0000
DATA >0000
INCLUDE S4USR.LVK111.FLTR.OBJ
END
DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 PAGE 2
LINK MAP

CONTROL FILE = S4USR.LVK111.FLTR.CF

LINKED OUTPUT FILE = S4USR.LVK111.FLTR.LINKOBJ

LIST FILE = S4USR.LVK111.FLTR.LINKLIS

OUTPUT FORMAT = ASCII

1 ---->OVERWRITTEN SEGMENTS IN MODULE DEV
DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 PAGE 3

PHASE 0 DEV MODULE ORIGIN = 0000 LENGTH = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

FLTR 1 0000* 0035 INCLUDE 2/21/83 9:20:28 ASM320
$ DATA 1 0000* 0027

D E FIN I T ION S

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

*FLTR
*XR1

0014* 1 *MINUS 0024* 1
0026* 1

ONE 0023 1 *XRO 0025* 1

LENGTH OF REGION FOR TASK = 0000

4-12

NUMBER OF WARNINGS MESSAGES PRINTED = 1

NUMBER OF RECORDS FOR MODULE DEV = 6

TOTAL CARDS PRINTED = 6

**** LINKING COMPLETED 2/21/83 9:29:34

The following object file is an output produced by the linker:

LINKED OBJECT FILE

KOOOODEV 90000BF900B0014B7F8DBE287B13F5BIC4FBOES3BF19BBECFC7F1C4F DEV
B1A33BSED7B7FFFBSED7B1A33BECFCBF19BBOES3B1C4FB13FSBE28790014B7E017FOAOF DEV
B5023B7F89BI023BS02490019B6A23B8003B7F8EB7010B7111B688IB67AOB00237F1B8F DEV
BF400BOOIEBF600B0023B4000B7010B7121B7F89B6A91B6D90B6B8IB6D90BF4007F177F DEV
B002BB7F8FBOE23BS922B4922BF900B00237F80BF DEV

DEV 2/21/83 9:29:30 MPPLINK· 82.312 DEV

4.3.3.4 Assembly Language Program Using Absolute Code

Through the use of the macros, PROG and MAIN, the above program is well structured and
relocatable. During link time, the program and data memory locations for the coefficient ex (Le.,
the value for the constant COEF), the data memory location of the variable X, and the program
memory location of the MAIN program, FL TR, can be established.

In contrast to the relocatable code approach is one that uses absolute code. Although the use of
absolute code makes it somewhat easier to write a single program, this program is not relocatable.
The same program that was coded in relocatable code in Section 4.3.3.3 is shown below coded in
absolute code.

*
*
*
*
*
*
*
*

SOURCE FILE

IDT 'FLTR'

IDT is a directive which assigns a name to the module. The EQU
directive assigns values to constants. The constants below
will refer to locations in data memory. Unlike the above
program, these data memory locations are fixed and cannot be
changed at link time. As a result, this module would be very
difficult to use as part of another program.

Xl EQU 17
X17 EQU 33
CX17 EQU 16
Y EQU 34
ONE EQU 127
*

AORG 10
* * The AORG directive establishes the location in program memory where
* the code sequence will begin. In this case, the following section
* of code will begin at program memory location 10. This contrasts
* with the above program (Section 4~3.3.3) which allows the block of
* memory the program will occupy to be established during link time.
*

4-13

I

I

LARK ARO,16
LARK AR1,0

*
ReONST LARP 1

TBLR *+,ARO
ADD ONE
BANZ RCONST

*
WAIT BIOZ WAIT
*

IN Xl, PAO
*

LARK ARO,X17
LARK AR1,CX17
ZAC
LT *- ,AR1
MPY *-,ARO

*
LOOP LTD *,AR1

MPY *- ,ARO
BANZ LOOP
APAC

*
ADD ONE,14

*
SACH Y,l
OUT Y,PA1
B WAIT

Below is the listing file for this program using absolute code.

LISTING FILE

FLTR 320 FAMILY MACRO ASSEMBLER 1.0 10:16: 5 12/22/82
PAGE 0001

4-14

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026

IDT 'FLTR'
*
* IDT is a directive which assigns a name to the module. The EQU
* directive assigns values to constants. The constants below *
* will refer to locations in data memory. Unlike the above *
* program, these data memory locations are fixed and cannot be
* changed at link time. As a result, this module would be very
* difficult to use as part of another program.
*

0011 Xl EQU 17
0021 X17 EQU 33
0010 CX17 EQU 16
0022 Y EQU 34
007F ONE EQU 127

*
OOOA AORG 10

*
* The AORG directive establishes the location in program memory
* where * the code sequence will begin. In this case, the fol
* lowing section of code will begin at program memory location
* 10. This contrasts with the above program (Section 4.3.3.3)
* which allows the block of memory the program will occupy to
* be established during link time.
*

OOOA 7010
OOOB 7100

LARK ARO,16
LARK AR1,0

0027 *
0028 DOOC 6881 RCONST LARP 1
0029 0000 67AO TBLR *+,ARO
0030 OOOE 007F ADD ONE
0031 OOOF F400 BANZ RCONST

0010 OOOC
0032 *
0033 0011 F600 WAIT BIOZ WAIT

0012 0011
0034 *
0035 0013 4011 IN X1,PAO
0036 *
0037 0014 7021 LARK ARO,X17
0038 0015 7110 LARK AR1,CX1
0039 0016 7F89 ZAC
0040 0017 6A91 LT *-,AR1
0041 0018 6090 MPY *-,ARO
0042 *
0043 0019 6B81 LOOP LTD *,AR1
0044 001A 6D90 MPY *-,ARO
0045 001B F400 BANZ LOOP

001C 0019

I 0046 0010 7F8F APAC
0047 *
0048 001E OE7F ADD ONE,14
0049 *
0050 OOIF 5922 SACH Y,l
0051 0020 4922 OUT Y,PA1
0052 0021 F900 B WAIT

0022 0011
0053 0023
0054 0023
NO ERRORS, NO WARNINGS

4-15

•

4-16

I

PROCESSOR RESOURCE MANAGEMENT

I

5. PROCESSOR RESOURCE MANAGEMENT

5.1 FUNDAMENTAL OPERATIONS

An understanding of how to use the instructions to perform common tasks is necessary in order to
make efficient use of the instruction set. The following sections discuss implementations of some
fundamental operations using the TMS3201 0 instruction set.

5.1.1 Bit Manipulation

*

A specified bit of a word from data memory can either be set, cleared, or tested. Such bit
manipulations are accomplished by using the built-in shifter and the logic instructions, AND, OR,
and XOR. In the first example, operations on single bits are performed on the data word VALUE. In
this and the following examples, data memory location ONE contains the value 1 and MINUS
contains the value-1 (all bits set).

* Clear bit S of data memory location VALUE
*

LAC
XOR
AND
SACL

*
* Set bit 12
* LAC

OR
SACL

*

ONE,S
MINUS
VALUE
VALUE

of VALUE

ONE,12
VALUE
VALUE

ACC = >00000020
Invert accumulator; ACC =
Bit 5 of VALUE is zeroed

ACC = >00001000
Bit 12 of VALUE is set

>OOOOFFDF

* Test bit 3 of VALUE
*

*
*
*

LAC ONE,3
AND VALUE
BZ BIT3Z

ACC = >00000008
Test bit 3 of VALUE
Branch to BIT3Z if bit is clear

More than one bit can be set, cleared, or tested at one time if the necessary mask exists in data
memory. In the next example, the six low-order bits in the word VALUE are cleared if MASK
contains the value 127.

Clear lower six

LAC
XOR
AND
SACL

bits

MASK
MINUS
VALUE
VALUE

of VALUE

ACC = >0000003F
Invert accumulator; ACC = >OOOOFFCO
Clear lower six bits

5.1.2 Data Shift

There are two types of shifts: logical and arithmetic. A logical shift is implemented by filling the
empty bits to the left of the MSB with zeros, regardless of the value of the MSB. An arithmetic shift
fills the empty bits to the left of the MSB with ones if the MSB is one, or with zeros if the MSB is
zero. The second type of bit padding is referred to as sign extension.

The hardware shift which is built into the ADD, SUB, and LAC instructions performs an arithmetic
left shift on a 16-bit word. This feature can also be used to peform right shifts. A right shift of n is
implemented by peforming a left shift of 16-n and saving the upper word of the accumulator.

5-1

I

I

The first example performs an arithmetic right shift of seven on a 16-bit number in the accumulator.

SACL
LAC
SACH
LAC

TEMP
TEMP,9
TEMP
TEMP

Move number to memory
Shift left (16-7)
Save high word in memory
Return number back to accumulator

*

The second example performs a logical right shift of four on a 32-bit number stored in the
accumulator. The 32-bit results of the shift are then stored in data memory. In this example, the
accumulator initially contains the hex number> 9084C1 B2. The variables, SHIFTH and SHIFTL, will
receive the high word (> 0908) and low word (> 4C1 B) of the shifted results.

* Shift the lower word
*

SACH
SACL
LAC
SACH
LAC
XOR
AND

*

SHIFTH
SHIFTL
SHIFTL,12
SHIFTL
MINUS,12
MINUS
SHIFTL

SHIFTH = >9D84 Initial values
SHIFTL = >C1B2
Ace = >FC1B2000
SHIFTL = >FC1B
Ace = >FFFFFOOO
Ace = >FFFFOFFF
Ace = >00000C1B

* Shift the upper word
*

ADD
SACL
SACH
LAC
XOR
AND
SACL

SHIFTH,12
SHIFTL
SHIFTH
MINUS,12
MINUS
SHIFTH
SHIFTH

Ace = >F9D84C1B
SHIFTL = >4C1B Final low-order value
SHIFTH = >F9D8
Ace = >FFFFFOOO
Ace = >FFFFOFFF
Ace = >00000908
SHIFTH = >09D8 Final high-order value

An arithmetic right shift of four can be implemented using the same routine as shown above, except
with the last four lines omitted.

5.1.3 Fixed-Point Arithmetic

5-2

Computation on the TMS32010 is based on a fixed-point two's complement representation of
numbers. Each 16-bit number is evaluated with a sign bit, i integer bits, and 15-i fractional bits. Thus
the number:

o 00000l0fOl00000

decimal point

has a value of 2.625. This particular number is said to be represented in a Q8 format (8 fractional
bits) . Its range is between -128 (1 000000000000000) and 127.996 (0111111111111111) . The
fractional accuracy of a as number is about .004 (one part in 2**8 or 256).

Although particular situations (e.g., a combination of dynamic range and accuracy requirements)
must use mixed notations, it is more common to work entirely with fractions represented in a Q15
format or integers in a QO format. This is especially true for signal processing algorithms where
multiply-accumulate operations are dominant. The result of a fraction times a fraction remains a
fraction, and the result of an integer times an integer remains an integer. No overflows are possible.

The difficulty comes during accumulations of the resulting products. In these situations, the
programmer must understand the physical process which underlies the mathematics in order to take
care of potential overflow conditions. The following sections discuss some of the techniques involved
in using this kind of number representation.

5. 1.3. 1 Multiplication

There are a wide variety of situations which might be encountered when multiplying two numbers.
Three of these scenarios are illustrated below:

CASE I -- FRACTION * FRACTION

015 * 015 = 030

0100000000000000 = 0.5 in 015 notation
* 0100000000000000 = 0.5 in 015

00 01000000000000 0000000000000000 = 0.25 in 030

Ldecima, point

Note: Two sign bits remain after the multiply.

Generally, the programmer will not want to maintain full precision. In fact, he will probably want to
save a single-precision 06-bit) result. Unfortunately, the upper half of the result does not contain a
full 15 bits of fractional precision since the multiply operation actually creates a second sign bit. In
order to recover that precision, the product must be shifted left by one bit. The following code
excerpt illustrates an implementation of this example:

LT
MPY
PAC
SACH

OPl
OP2

ANS/l

OPl = >4000 (0.5 in Ql5)
OP2 = >4000 (0.5 in Ql5)

ANS = >2000 (0.25 in Ql5)

The MPYK instruction in the TMS320 will allow the programmer the ability to multiply by a 13-bit
signed constant. In fractional notation, this means he can multiply a Q15 number by a Q12 number.
This case requires the programmer to shift the resulting number left by four bits to maintain full
precision.

LT
MPYK
PAC
SACH

OPl
2048

ANS,4

OPl)4000 (0.5 in Q15)
OP2)0800 (0.5 in Q12)

ANS)2000 (0.25 in Q15)

5-3

I

I

5-4

CASE II -- INTEGER * INTEGER

00*00 = 00

0000000000010001 = 17 in 00
* 1111111111111 0 11 = 5 in 00

11111111111111111111111110101011 I = 85
...... _____ decimal point

in 00

Note: In this case, the extra sign bit does not come into play, and the desired product is entirely in the lower half of the product. The
following program illustrates this example.

LT OP1
MPY OP2
PAC
SACL ANS

OP1)0011 (17 in QO)
OP2)0005 (5 in QO)

ANS)0055 (85 in QO)

CASE III -- MIXED NOTATION

014 * 014 = 028

0110000000000000 = 1.50 in 014
* 0011000000000000 = 0.75 in 014

OOlO 1 001 0000000000000000000000000 = 1 . 125 in 028

decimal point

The maximum magnitude of a 014 number is just under two. Thus, the maximum magnitude of the
product of two 014 numbers is four. Two integer bits are required to allow for this possibility, leav
ing a maximum precision for the product of 13 bits. In general, the following rule applies:

The product of a number with i integer bits and f fractional bits and a second number with j
integer bits and g fractional bits will be a number with (i + j) integer bits and (f + g) fractional
bits. The highest precision possible for a 16-bit representation of this number will have (i + j)
integer bits and (15- i - j) fractional bits.

If, however, the programmer has a prior knowledge of the physical system which is being
modelled, he may be able to increase the precision with which the number is modelled. For exam
ple, if he knows that the above product can be no more than 1.8, he could represent the product as
a 014 number rather than the theoretical worst case of 013. The following program illustrates the
above example:

LT
MPY
PAC
SACH

OP1
OP2

ANS , 1

OP1 = >6000 (1.5 in Q14)
OP2 = >3000 (.75 in Q14)

ANS = >2400 (1.125 in Q13)

The techniques which have been illustrated above all truncate the result of the multiplication to the
desired precision. The error which is generated as a result amounts to minus one full LSB. This is
true whether the truncated number is positive or negative. It is possible to implement a simple
rounding technique to reduce this potential error by a factor of two. This is illustrated by the
following code sequence:

LT OPI
MPY OP2 OPI * OP2
PAC
ADD ONE,14 ROUND UP
SACH ANS,l

The error generated in this example is plus one-half LSB whether ANS is positive or negative.

5.1.3.2 Addition

During the process of multiplication, the programmer is not concerned about overflows and needs
only to adjust his decimal point following the operation. Addition is a much more complex process.
First, both operands of an addition must be represented in the same Q-point notation. Second, the
programmer must either allow enough head room in his result to accomodate bit growth or he must
be prepared to handle oveflows. If the operands are only 16 bits long, the result may have to be
represented as a double-precision number. The following example illustrates two approaches to
adding 16-bit numbers:

LAC
ADD
SACH
SACL

Maintaining 32-Bit Results:

OPl
OP2
ANSHI
ANSLO

Ql5
Q15
High-order 16 bits of result
Low-order 16 bits of result

Adjusted Decimal Point to Maintain 16-Bit Results:

LAC
ADD
SACH

OPl,lS
OP2,15
ANS

Q14 number in ACCH
Q14 number in ACCH
Q14

Double-precision operands present a more complex problem. In this case, actual arithmetic
overflows or underflows might occur. The TMS32010 provides the programmer with the facility to
check for the occurrence of these conditions using the BV instruction. A second technique is the
use of saturation mode operations which will saturate the result of overflowing accumulations to
the most positive or most negative number. Unfortunately, both techniques will result in a loss of
precision. The best technique involves a thorough understanding of the underlying physical process
and care in selecting number representations.

5.1.3.3 Division

Binary division is the inverse of multiplication. Multiplication consists of a series of shift and add
operations, while division can be broken down into a series of subtracts and shifts. The following
example illustrates this process:

Given an 8-bit accumulator, suppose the problem is to divide the number 10 by 3. The process
consists of gradually shifting the divisor relative to the dividend, subtracting at each stage, and
inserting bits into the quotient if the subraction was successful.

5-5

I

I

1. First line up the lSB of the divisor with the MSB of the dividend.

00001010
-00011000
11110010

2. Since the result is negative (the subtraction was unsuccessful), throwaway the result, shift
the dividend, and try again.

00010100
-00011000
11111000

3. The result is still negative. Throwaway the result, shift, and try again.

00101000
-00011000
00010000

4. The answer is now positive. Shift the result and add one to set up the fourth and final
subtraction.

00100001
-00011000
00001001

5. The answer is again positive. Shift the result and add one. The most significant four bits
represent the remainder, while the least significant four bits represent the quotient.

00010011

\ "---- Quotient = 0011
..... --Remainder = 0001

The TMS32010 does not have an explicit divide instruction. However it is possible to implement an
efficient flexible divide capability using the conditional subtract instruction, SUBC. The only
restriction for the use of this instruction is that both operands be positive. It is also very important
that the programmer understand the characteristics of his potential operands, such as whether the
quotient can be represented as a fraction and the accuracy to which the quotient is to be computed.
Each of these considerations can affect how the SUBC is used.

The examples below illustrate two different situations.

DIV1
CASE 1 - NUMERATOR < DENOMINATOR

DIV1
TITLE: Division Routine I

NAME: DIV1

OBJECTIVE: To divide two binary two's complement numbers of any sign where the
numerator is less than the denominator

5-6

ALGORITHM: ((((((A - B)*2) + 1) - B)*2) + 1) - B ... = C

if,A-B> =0,(((A-B)*2)+1)-B> =0 ...

where A = denominator, B = numerator, C = quotient

CALLING
SEQUENCE: CALL DIV1

ENTRY
CONDITIONS: Numerator < Denominator

EXIT
CONDITIONS: Quotient stored in data memory location labe"ed QUOT

PROGRAM
MEMORY
REQUIRED: 22 words, excluding macros

STACK
REQUIRED: None

FLOWCHART: DIV1

DATA
MEMORY
REQUIRED: 4 words

EXECUTION
TIME: 61-64 machine cycles

SUBTRACT DENOMINATOR ____ _

CALCULATE SIGN

OF QUOTIENT

MAKE NUMERATOR AND

DENOMINATOR POSITIVE

ALIGN NUMERATOR

FOR DIVISION

INITIALIZE

LOOP COUNTER

FOR 15 CYCLES

CONDITIONALLY

NEGATE

QUOTIENT

RETURN

FIGURE 5-1 - DIVISION ROUTINE I FLOWCHART

NO

NO

COUNT =

COUNT -1

5-7

I

I

SOURCE:

*
DIV1

*
KPDVNG

*

*

* DONE

EXAMPLE:

CALL DIV1

LARP
LT
MPY
PAC
SACH
LAC
ABS
SACL
ZALH
ABS
LARK

SUBC
BANZ

SACL
LAC
BGEZ

ZAC
SUB
SACL

RET

0
NUMERA
DENOM

TEMSGN
DENOM

DENOM
NUMERA

0,14

DENOM
KPDVNG

QUaT
TEMSGN
DONE

QUaT
QUaT

Get sign of quotient

Save sign of quotient

Make denominator positive
Align numerator
Make numerator positive

1S-cycle divide loop

Done if sign positive

Negate quotient if negative

BEFORE INSTRUCTION

NUMERA 21 NUMERA

AFTER INSTRUCTION

21

DENOM 42 DENOM 42

QUaT o QUOT .5

(0.1 0 0)

DIV2 CASE 2 - SPECIFY ACCURACY OF QUOTIENT

TITLE: Division Routine II

NAME: DIV2

OBJECTIVE: To divide two binary two's complement numbers of any sign, specifying the
fractional accuracy of the quotient

ALGORITHM: ((((((A - B)*2) + 1) - B)*2) + 1) - Boo. = C

5-8

DIV2

if A - B> = 0, (((A - B)*2) + 1) - B > = 0, ...

where A = numerator, B = denominator, C = quotient

CALLING
SEQUENCE: CALL DIV2

ENTRY
CONDITIONS: FRAC specifies accuracy of quotient

EXIT
CONDITIONS: Quotient stored in data memory location labelled QUOT

PROGRAM
MEMORY
REQUIRED: 24 words, excluding macros

STACK
REQUIRED: None

FLOWCHART: DIV2

CALL DIV2

CALCULATE SIGN

OF QUOTIENT

MAKE NUMERATOR

AND DENOMINATOR

POSITIVE

INITIALIZE

LOOP COUNTER

(15 + ACCURACY),

LOAD

NUMERATOR

DATA
MEMORY
REQUIRED:

EXECUTION

5 words

TIME: 67 - 70 + 3*FRAC clocks

SUBTRACT

DENOMINATOR

CONDITIONALL Y

NEGATE

QUOTIENT

RETURN

FIGURE 5-2 - DIVISION ROUTINE II FLOWCHART

NO

COUNT =

COUNT -1

NO

5-9

SOURCE:

*
DIV2 LARP 0

LT NUMERA
MPY DENOM
PAC
SACH TEMSGN
LAC DENOM
ASS
SACL DENOM
LACK 15
ADD FRAC
SACL FRAC
LAC NUMERA
ASS
LAR O,FRAC

*
KPDVNG SUBC DENOM

SANZ KPDVNG
* SACL QUOT

LAC TEMSGN
BGEZ DONE

*
ZAC

I SUB QUOT
SACL QUOT

*
DONE RET

EXAMPLE:

CALL DIV2

BEFORE INSTRUCTION

NUMERA 11

DENOM 8

FRAC 3

QUOT 17

5-10

Get sign of quotient

Save sign of quotient

Make denominator positive

Compute loop count
Align numerator
Make numerator positive

16 + FRAC cycle divide loop

Done if sign positive

Negate quotient if negative

NUMERA

DENOM

FRAC

QUOT

AFTER INSTRUCTION

11

8

3

1.375

(1.0 1 1)

5.1.4 Subroutines

When a subroutine call is made using the CAll or CAlA instruction, the PC + 1 (return address)
is saved on the top of the stack. At the end of the subroutine, a RET instruction is executed which
updates the PC with the value saved on the stack. The program will then resume execution at the
instruction following the subroutine call.

There are two occasions in which a level of stack must be reserved for the machine's use. First, the
TBlR and TBlW instructions use one level of stack. Second, when interrupts are enabled, the PC
is saved on the stack during the interrupt routine. If a system is designed to use both interrupts and
a TBlR or TBlW instruction, only two levels of stack are available for nesting subroutine calls.

NOTE

If the hardware emulator will be used for system development, the level of stack which is
reserved for TBlR and TBlW will be used by the emulator to store a return address
whenever the program execution is suspended by the emulator. Therefore, if neither the
TBlR or TBlW instruction is used, one level of stack must still be reserved for use by the
emulator.

Subroutine calls can be nested deeper than two levels if the return address is removed from the
stack and saved in data memory. The POP instruction moves the top of stack (TOS) into the
accumulator and pops the stack up one level. The return address can then be stored in data memory
until the end of the subroutine when it is put back into the accumulator. The PUSH instruction will
push the stack down one level and then move the accumulator onto the TOS. Therefore, when the
RET instruction is executed, the PC is updated with the return address. This procedure will allow a
second subroutine to be called inside the first routine without using another level of stack.

The POP and PUSH instructions can also be used to pass arguments to a subroutine. DATA
directives following the subroutine call create a list of constants and/or variables to be passed to the
subroutine. After the subroutine is called, the TOS points to the list of arguments following the CAll
instruction. By moving the argument pointer from the TOS into the accumulator, the list of
arguments can be read into data memory using the TBlR instruction. Between each TBlR
instruction, the accumulator must be incremented by one to point to the next argument in the list. To
create the return address, the argument pointer is incremented past the last element in the argument
list. The PUSH instruction moves the return address onto the TOS, and the RET instruction updates
the PC.

The following example illustrates a call which passes two arguments to a subroutine.

CALL CBlTS
DATA VALUE
DATA >OFFF

**
* Clear Bits *
* This subroutine clears the bits of a data word desig- *
* nated by a mask. The bits set to one in the mask *
* indicate the bits in the data word to be cleared. All *
* other bits remain unchanged. Two arguments are passed *
* to this subroutine: *

5-11

I 5.1.5

5-12

* 1st argument = address of data word *
* 2nd argument = mask *
* *
* Calling sequence: CALL CBITS *
* DATA 1st argument *
* DATA 2nd argument *
**

CBITS SAR

POP
TBLR
LAR
ADD
TBLR
ADD
PUSH

LARP
LAC
XOR
AND
SACL

LAR
RET

Computed GO TOs

ARO,XRO

XRl
ARO,XRl
ONE
XRl
ONE

° XRl
MINUS
*
*
ARO,XRO

Save ARO in temporary location

Hold return address
1st argument = pointer to data
Put 1st argument into ARO

2nd argument = mask

Put return address on TOS

Load mask into accumulator
Invert mask
Clear bits

Restore ARO

The CALA instruction executes a subroutine call based on the address contained in the
accumulator. This instruction can be used to perform a computed GO TO. The address of the
subroutine can be computed from a data value to determine which one of several routines will be
executed. The return at the end of each of these routines will cause program execution to resume
with the instruction following the CALA command. It should be noted that the CALA instruction
will use a level of stack, because it is an indirect subroutine call and not just an indirect branch.

The example below illustrates how to compute a call to one of several routines. The subroutines are
defined first, and then a table of branches to each subroutine is created. The main part of the
program inputs a data value of 0, 1, or 2. The appropriate address in the table is calculated in the
accumulator. An indirect subroutine call causes the proper branch in the table to be executed.

SUBI IN DATl,PAO
RET

SUB2 IN DATI ,PAl
RET

SUB3 IN DATl,PA2
RET

TBLI B SUBI
B SUB2
B SUB3

LT ONE
HPYK TBLI Get address of table
PAC
IN VALUE,PA4 Input data from PA4
LT VALUE

MPYK
APAC
CAL A
LAC

2

DATI

Calculate offset

Go to designated subroutine
Return here after subroutine

5.2 ADDRESSING AND LOOP CONTROL WITH AUXILIARY REGISTERS

There are two auxiliary registers on the TMS3201 O. The auxiliary registers can be used either as loop
counters or as pointers for indirect addressing.

5.2.1 Auxiliary Register Indirect Addressing

In the indirect addressing mode, the auxiliary register pointer (ARP) is used to determine which
auxiliary register is selected. The LARP instruction sets the ARP equal to the value of the immediate
operand. The value of the ARP can also be changed in the indirect addressing mode; the ARP is
updated after the instruction has been executed.

The contents of the auxiliary register are interpreted as a data memory address when the indirect
addressing mode is used. A sequential list of data can easily be accessed in the indirect mode by
using the autoincrement or autodecrement feature of the auxiliary registers. If the auxiliary register
contains a data memory address, the counter can be used to increment through the entire address
space. The auxiliary register should not be used as a general purpose incrementer, because only the
lower nine bits of the register actually count. A special instruction, MAR, allows the auxiliary
register which is selected by the ARP to be incremented or decremented without implementing any
other operation in parallel.

There are three instructions (LARK, LAR, SAR) which either load or store a value into an auxiliary
register, independent of the value of the ARP. The first operand in each of these instructions
determines which auxiliary register is to be either loaded or stored. This operand does not affect the
value of the ARP for subsequent instructions.

The example below illustrates using an auxiliary register in the indirect addressing mode to input
data into a block of memory.

LARK ARO,DATBLK Initialize ARO as a pointer to
DATBLK (an area of 8 words in
data memory)

LARP ° Select ARO
LACK 8 Initialize accumulator as a counter

LOOP IN *+,PAO Input data
SUB ONE Decrement counter (ONE contains

value 1)
BNZ LOOP Repeat until count=O

5.2.2 Loop Counter

An auxiliary register can also be used as a loop counter. The BANZ instruction will test and then
decrement the auxiliary register selected by the ARP. Because the test for zero occurs before the
auxiliary register is decremented, the value loaded into the auxiliary register must be one less than
the number of times the loop should be executed. The maximum number of loops which can be
counted is 512, because only nine bits of each auxiliary register are implemented as counters.

5-13

I

The example below inputs data and calculates the sum while the auxiliary register is used to count
the number of loops. The accumulator will contain the result.

LARK ARO,3 Initialize ARO as a counter
LARP 0 Select ARO
ZAC Clear accumulator

LOOP IN DATAl,PA2 Input data value
ADD DATAl Add data to accumulator
BANZ LOOP Repeat loop four times

5.2.3 Combination of Operational Modes

Both indirect addressing and loop counting can be performed at the same time to implement loops
efficiently. If the data block is defined to start at location 0 in data memory, the same auxiliary which
is counting the number of loops can also be the pointer for indirect addressing.

The example below illustrates using the same auxiliary register as both a counter and a pointer. Data
locations 0 through 7 are loaded with input data.

LARK
LOOP IN

BANZ

ARO,7
*,PAO
LOOP

ARO points to end of data block
Input data
Repeat loop 8 times

The data block does not have to start at zero if one auxiliary register is used for counting and the
other auxiliary register is used as a pointer. The following example iIIu,strates how both auxiliary
registers can be used at once.

LARK ARO,7 Initialize ARO as a counter
LARK ARl,DATBLK ARI points to start of DATBLK,

data memory area
ZAC

LOOP LARP 1 Point to ARI
ADD *+,ARO Calculate sum of data in block;

point to ARO
BANZ LOOP Repeat loop 8 times

5.3 MULTIPLICATION AND CONVOLUTION

The hardware multiplier will peform a 16 X 16-bit multiply and produce a 32-bit result. This section
will discuss the features of the multiplier and give examples which illustrate how to efficiently use
the multiply instructions.

5.3.1 Pipelined Multiplications

5-14

A single multiply operation consists of three steps on the TMS32010. First, one of the operands is
loaded into the T register from data memory using the LT instruction. The second step is performed
by specifying the second operand using either the MPY or MPYK instruction. MPY obtains the
second operand from data memory, and MPYK uses an immediate operand as the other operand to
be mUltiplied. The third step moves the output from the (product) P register to the accumulator by
using one of three instructions, PAC, APAC, or SPAC. The PAC instruction loads the accumulator

with the value from the P register; the APAC instruction adds the product register to the
accumulator; and the SPAC instruction subtracts the P register from the accumulator. Since each
of the steps is a one-clock cycle, a single multiply-accumulate operation takes 600 ns.

If several multiplies are to be performed consecutively, the first and third steps of the multiplication
process can be done in parallel. This method reduces the time of a multiply-accumulate operation to
400 ns. Multiplication can be pipelined by using the LTA instruction. This instruction loads the T
register with the first operand for the next multiplication and adds the P register to the accumulator
for the current multiplication.

The example below performs a pipelined multiplication.

**
* The equation to be calculated is: *
* t = Aw + Bx + Cy + Dz *
**

ZAC
LT W
MPY A
LTA X ACC = Aw
MPY B
LTA Y ACC = Aw+Bx
MPY C
LTA Z ACC = Aw+Bx+Cy
MPY D
APAC ACC = Aw+Bx+Cy+Dz
SACH Tl
SACL T2 Store results

5.3.2 Moving Data

When implementing a digital filter, the variables in the equation represent the inputs and outputs at
discrete times. Typically this type of data structure is implemented as a shift register where the data
at time t is shifted to the position previously occupied by the data at time t-l. If consecutive
addresses in data memory correspond to consecutive time increments, then shifts can be
accomplished simply by moving the data item at location d to that corresponding to d + 1. The
DMOV command allows a data word to be written into the next higher memory location in a single
cycle without affecting the accumulator. Therefore, if the variables are placed in consecutive
locations, a DMOV command can be used to move each of the variables before the next calculation
is peformed.

The data move operation is combined with the LTA instruction to create the LTD instruction. This
instruction performs three operations in parallel. The operand of the instruction is loaded into the T
register; the operand is also written into the next higher memory location; and the P register is
added to the accumulator. When using the LTD instruction, the order of the multiply and
accumulate operations becomes important because the data is being moved while the calculation is
being performed. The oldest input variable must be multiplied by its constant and loaded into the
accumulator first. Then the input, which is one time-unit delay less, is multiplied and accumulated.
This process is repeated until the entire equation has been computed.

The following example illustrates the input variables being moved in memory as the results are
calculated :

5-15

I

I

5.3.3

**
* The following equation is used to implement a filter: *
* y(n)=[Ax(n-1)+Bx(n-2)+cx(n-3)+Dx(n-4)1 * 2**-16 *
** ***************

START IN XI,PAO Input sample
ZAC
LT X4 x(n-4)
MPY D
LTD X3 ACC=Dx4; x(n-4)=x(n-3)
MPY C
LTD X2 ACC=Dx4+Cx3; x(n-3)=x(n-2)
MPY B
LTD Xl ACC=Dx4+Cx3+Bx2; x(n-2)=x(n-l)
MPY A
APAC ACC=Dx4+Cx3+Bx2+Ax1
SACH Y
OUT Y,PAI Output results
B START

Product Register

The product register stores the results of a multiplication until another multiplication is peformed. A
user may want to use the multiplier during the interrupt routine, but the product register must be
restored with the value it contained before the interrupt occurred. It is easy to save the product
register in data memory, but it is very difficult to restore the product register with the value that was
saved in memory. A hardware feature has been built into the interrupt logic to prevent an interrupt
from occurring immediately after a multiply instruction (MPY or MPYK). If the contents of the
product register are always transferred into the accumulator on the instruction following the
multiply, the product register could be changed during the interrupt routine without having to be
restored before returning from the interrupt. Therefore, a PAC, APAC, SPAC, LTA, or LTD should
always follow a MPY or MPYK instruction. This rule should be followed whenever the multiplier is
being used during the interrupt routine.

The value of the product register can be restored if the contents are saved in memory, but it is a very
time-consuming process. If the magnitude of the value saved in memory is greater than fifteen bits,
it must be factored into two smaller numbers in order to restore the product register.

5.4 MEMORY CONSIDERATIONS OF HARVARD ARCHITECTURE

The memory organization on the TMS32010 is referred to as a Harvard architecture. This means
that the program memory is separate from the data memory. This type of architecture allows the
next instruction fetch to occur while the current instruction is fetching data and executing the
operation. While the concept of a Harvard architecture increases the speed of the machine, there
are disadvantages in having the program memory totally separate from data memory. The
instruction set, therefore, includes instructions which transfer a word between data memory and
program memory. The following sections illustrate how to make efficient use of the ablility to
exchange data between memories.

5.4.1 Moving Constants into Data Memory

5-16

Most signal processors have a separate memory space for storing constants. By allowing communi
cation between data and program memory, the TMS32010 is able to incorporate a constant
memory capability with its program memory. This method allows a more efficient use of memory
space. The portion of memory not used for storing constants is available for use as program space.

There are five immediate instructions in the instruction set which provide an efficient way to
execute operations using constants. Two immediate instructions, lARP and lDPK, modify the
program context.

LARP changes the auxiliary register pointer, and lDPK changes the data page pointer. Three other
immediate instructions, lACK, lARK, and MPYK, allow constants to be used in calculations.
LACK and lARK both require an unsigned operand with a magnitude no greater than eight bits.
The MPYK instruction allows a 13-bit signed number as an operand.

A 16-bit data value can be moved from program memory to data memory using the TB lR
instruction. TBlR requires that the program memory address (the source) be in the accumulator,
while the data memory address (the destination) is obtained from the operand of the instruction.
The TBlR instruction is commonly used to look up values in a table in program memory. The
address of the value in the table is computed in the accumulator before executing the instruction.
TBlR then moves the value into data memory. TBlR is a three-cycle instruction and, therefore,
takes longer than an immediate instruction. However, it has more flexibility since it operates on
16-bit constants.

The example below illustrates bringing the cosine value of a variable into data memory.

* First, a table containing the cosine values is created in
* program memory.

COSINE

START IN
LACK
ADD
TBLR

DATA

X,PAO
COSINE
X
COSX

Load table address
Calculate program memory address
Move value into data memory

Note: If the address of COSINE is larger than 255, the address can be loaded into the accumulator by loading the T register with a
one and then "multplying by the constant COSINE.

5.4.2 Data Memory Expansion
Often it is necessary to expand data storage capability by using external memory. If the storage
requirements are small, additional memory can be added as a RAM extension of the program
memory address space. This technique is very efficient in terms of additional hardware
requirements, but it has two drawbacks. It requires that the combination of the memory required to
store the program and accomodate data be limited to 4096 words. It also tends to limit system
throughput, since access to data in program memory is relatively slow. The minimum memory
access time using this technique is four clocks (800 ns), but six clocks (1200 ns) is a more likely

average.

A system requIring larger memories or faster data access can be implemented by treating the
expanded data memory as an liD device. Since the TMS32010 lacks the capability to address a
large liD address space (it is limited to eight devices), this technique also requires the use of an
external address register. This register can be implemented as a counter to allow efficient access to
contiguous data buffers. See Section 6.1.3 on liD design techniques for more details.

5-17

I

I

5.4.3 Program Memory Expansion

5-18

Using the Mel MP pin on the TMS32010, the applications engineer can choose between two
distinct techniques for structuring his program memory address space. (See Figure 5-3.) In the
microcomputer mode, the internal masked ROM is active and consumes the low 1536 words of the
address space. The remaining 2560 words can be implemented using external memory. If the
microprocessor mode is selected, the entire 4096 word address space is assumed to exist external to
the chip.

MC MODE

TMS32010
(1.5K PM)

FIGURE 5-3A - USE OF INTERNAL PROGRAM MEMORY

DATA LINES
..- I ~ ,

TMS32010 16

ADDRESS LINES 4K X 16

MC/MP
I STATIC RAM

,'2 ANDIOR PROM

MEN .. -
WE OUTPUT

ENABLE
CHIP

SELECT -
(ONLY FOR

RAM)

FIGURE 5-38 - USE OF EXTERNAL PROGRAM MEMORY

FIGURE 5-3 - TECHNIQUES FOR EXPANDING PROGRAM MEMORY

WR ITE

ABLE EN

In the microcomputer mode, only the upper 2.SK words of external program memory are used. In
the microprocessor mode, all4K words of external memory are used. With some types of memory
elements, additional chip-select logic may be necessary.

External program memory may utilize either RAM or ROM. In either case, system operation at the
fullS-MHz clock rate requires that the memory exhibit an access time of less than 100 ns. If RAM is
used, it may be loaded either via the TMS32010 itself using a boot ROM, or via a dual RAM port
from an independent controller.

INPUT/OUTPUT DESIGN TECHNIQUES I

I

6. INPUT/OUTPUT DESIGN TECHNIQUES

An interrupt-driven sampled data interface is the most common for signal processing applications,
but other types of peripherals can also be used. This section illustrates several examples and
discusses some of the hardware and software issues which should be considered when designing
an I/O system for the TMS3201 O.

6.1 PERIPHERAL DEVICE TYPES

Using a three-bit port address, the TMS3201 0 is capable of accessing eight different input devices
and eight different output devices. The port number is placed on the external address lines during
the second cycle of the instruction. The address lines can be decoded to select one of several
devices attached to the data bus or to activate a single control line. Three classes of peripherals are
discussed below.

6.1.1 Registers

A register can be used for several different functions. The most simplistic interface uses a 16-bit
dual port transceiver. Such a register allows two-way communication between the TMS32010 and
another processor. Handshaking between the processors can be implemented by using interrupts
on the TMS3201 O. In Figure 6-1, the acknowledge line from the other processor is connected to the
BID pin in order to synchronize the TMS32010.

ADDRESS BUS
74LS138

I ,
3

INTERRUPT -- • • • u

t
~

P
~ - R T R

E M 0
G S C DATA BUS I DATA BUS

I I 3 E , ,
16 S 16 2 S

T 0 S
E 1 BI 0 - R 0 -R

o

~

ACKNOWLEDGE -
FIGURE 6-1 - COMMUNICATION BETWEEN PROCESSORS

In a more complicated configuration, a shift register can be used to convert a serial data stream into
parallel data to be compatible with the liD instructions. An analog device which can be interfaced
to this processor is a codec. It is simply an AID converter and 01 A converter which is designed to
operate in a telecommunications environment. This serial device produces eight-bit logarithmically
weighted digital data. Consequently, a codec interface must include a mechanism for serial to
parallel conversion and a facility for code conversion. A shift register can provide the parallel input
to the TMS3201 O. The code converter for AID data can be implemented either in hardware using a
256 X 16-bit ROM or in software.

6-1

I

I

Another example of a register-based liD system is a very simple AID channel where the output of
an AID converter is buffered using a single parallel register. This requires that the AID system be
serviced before the next data sample overwrites the previous sample stored in the register.
Unfortunately, a routine which only services a single data word for every interrupt can be very time
consuming. The service overhead time can be reduced by multiword buffering (see Section 6.1 .2
for discussion of FIFOs and interrupts).

6.1.2 FIFOs

The use of FIFOs instead of registers offers three definite advantages as follows:

1) Single address access to multiple data words,
2) Reduction of 1/0 overhead (since several words can be accessed for each interrupt),
3) Preservation of temporary information in data stream.

Figure 6-2 illustrates the use of a FIFO in a typical analog subsystem.

ANALOG DIGITAL

ANALOG

SIGNAL
.a

ANTI-ALIASING DATA

FILTER

DATA
AID CONVERTER

CLOCK 74LS222

I INPUT ..
SAMPLE READY

DATA

BUS

BIO

TMS32010

FIGURE 6-2 - TYPICAL ANALOG SYSTEM INTERFACE

FIFO

~ 10016

~

DEN ~

OU TPUT

BLE ENA

6.1.3 Extended Memory Interface

6-2

The peripheral which requires the most hardware to implement is a large memory. Because the
address lines only access locations 0-7 during an 1/0 operation an external address counter must be
used to provide an address for the memory. It is also advisable to provide a buffer between the data
bus of the TMS3201 0 and that of the memory itself. Although this buffer is probably not necessary
for high-speed static memories, it is required for slower devices and large arrays where the drive
capacity of the TMS3201 0 may be marginal.

Figure 6-3 gives an example of one way to extend data memory by using the IN and OUT
instructions. The design consists of 16K words of static RAM, addressed by the lower 14 bits of a
16-bit counter. The location to address in this RAM is loaded into the counter by doing an OUT
instruction to port O. This loads the data bus into the counters. The appropriate data memory
location is addressed by the lower 14 bits of the data. Bit 15 (MSB) of the data is loaded into the
counters to determine whether to count up or down through data memory. Memory can then be
read from or written to sequentially by doing an IN or OUT instruction to port 1. The MSB in the
counters determines whether the memory address should be incremented (MSB = 0) or
decremented (MSB = 1) after a read or write of data memory. Memory will continue to be
addressed sequentially until new data is loaded into the counters.

------------------------------------~:~LOAD 16 X 16 DATA RAM

ADDRESS
COUNTER
(72LS 193)
(4 units)

.... , -IA 1 3-AO
14 (lMS1420)

(16 units)

A15 (MSB) __ (16Kx1 70-ns SRAM)

U 0 CS WE

-«(} L.--1=~
~l J COUNT UP

WRITE RAM ...--.

--READ RAM

j) J:l jl

PA PA
DECODER DECODER
(74LS138) (72LS138) . ~ t u ! .-

I ,
- ~3 3

WE DEN A2-AO

D15-DO
TMS32010 A 11-A3

MEN

-

-.-
: -I '-0--+------

• ~I .r COUNT DOWN -
," 16

.~ 3

.
16

00-015

EXTERNAL
READ ONLY
PROGRAM
MEMORY

DATA BUS TBP28S166)

-9

(2/4 units)
16 ADDRESS BUS

I--..... ...I------------~ ~:........-------.... __I A 11-AO r2
~------------------------------~~ CS

~------------------~ ~-------------

FIGURE 6-3 - TMS32010 EXTENDED MEMORY INTERFACE

Dynamic memories can also be used. However, those devices may impose software constraints on
the system designer. For example, memory cycle times may not allow consecutive IN/OUT/IN
instruction sequences. Memory refresh represents another problem. Since this processor has no
capability to enter a "wait" state, memory refresh must be generated with external hardware.

6.2 INTERRUPTS

An interrupt routine allows the current process to be suspended while an I/O device is being
serviced. The processor's execution may be suspended on a high-priority basis by using the INTpin.
Otherwise, a lower priority interrupt can be serviced by using a software polling technique.

6.2.1 Software Methods

The BIOZ instruction can be used to poll (or test) the BIO pin to see if a device needs to be serviced.
This method allows for a critical loop or set of instructions to be executed without a variation in
execution time. Because the test for interrupts occurs at defined points in the program, context
saves requirements are minimal.

The BIO pin can be used to monitor the status of a peripheral. If the FIFO full status line is
connected to the BIO pin, the FIFO is serviced only when the FIFO is full. In the following example,
the FIFO contains 16 data words. The BIO pin is tested after each time-critical function has been
executed.

6-3

I

I

BIOZ SKIP
CALL SERVE

SKIP

The subroutine does not have to save the registers or the status, because a new procedure will be
executed after the device is serviced.

SERVE LACK ARO ,15
LACK ARl,TABLE

LOOP LARP 1
IN PAO,*+,ARO
BANZ LOOP
RET

The FIFO must be serviced before another word is input or data may be lost. This fact determines
the frequency at which the polling must take place.

6.2.2 Hardware Methods

6-4

The INT pin causes execution to be suspended at any point in the program except after a multiply
instruction (see Section 4.1.3.3). The hardware interrupt can be masked at critical points in the
program with the DINT instruction. If an interrupt occurs while the INTM (disabled interrupt mask)
equals one, the interrupt will not be serviced until the interrupts are enabled again. If an interrupt is
pending when an enable interrupt operation occurs, the interrupt is serviced after the execution of
the instruction following the EINT command.

When an interrupt is serviced, the INTF (interrupt flag) is cleared, INTM is set to one, the current PC
is pushed on the TOS, and the PC is set to 2. The user must save the context of the machine before
servicing the peripheral. The context should be restored and the interrupts enabled prior to
returning from the interrupt routine. The following paragraphs illustrate a technique for
implementing an interrupt-driven analog input channel. It also shows the impact of multiple-level
data buffering on system I/O overhead.

Generally, the class of analog systems which can be reasonably supported by the TMS32010 will
have information bandwidths of less than 20 kH~. The desired\ sample rate can be generated by
dividing the 5 MHz CLKOUT signal from the TMS32010. It is advisable to provide at least a one-level
data buffer to insure the integrity of the data which is read by the processor. If an a-kHz sample rate
is used (for example), the system must then respond to an analog interrupt every 125 ms. The I/O
overhead incurred by this arrangement can be computed by determining the number of clock times
the TMS3201 0 will spend in the interrupt routine servicing each sample, and dividing by 625. For
example, a typical interrupt routine might look like the following:

INT SST STATUS Save status
SACL ACCL Save accumulator low
SACH ACCH Save accumulator high
IN SAMP,ADC Read from ADC
LAC COUNT Update sample counter
ADD ONE
SACL COUNT
LACK LIMIT Check whether LIMIT clocks
SUB COUNT received
BGZ OK

DONE

OK

LACK
SACL
ZALH
ADDS
LST
EINT
RET

1
FLAG
ACCH
ACCL
STATUS

YES ===> Set flag

Restore accumulator high
Restore accumulator low
Restore status
Enable subsequent interrupts

The overhead required to service this system is 18/625 = 2.9 percent. This overhead burden can be
reduced by using a FIFO to buffer the data. In this case, the TMS3201 0 need only be interrupted
when the buffer has filled. If a 16-level FIFO is used in our example above, this interrupt will occur
every 2 ms, and the overhead burden will be reduced to about 0.5 percent.

If two different kinds of devices are being serviced by the same interrupt routine, the BIO pin can be
used to determine which device needs to be serviced.

6-5

•

I

6-6

MACRO LANGUAGE INSTRUCTIONS

•

I

7. MACRO LANGUAGE EXTENSIONS

The basic instruction set of the TMS3201 0 has been extended via the XDS/320 Macro Assembler to
facilitate coding of commonly used assembly language constructs. In this section, a set of macros
designed to ease assembly language coding is described. Some macros call routines from the set of
utility routines described in Section 7.5.

7.1 CONVENTIONS USED IN MACRO DESCRIPTIONS

In the macro descriptions, the following conventions are used:

A

B

A:A + 1

B:B + 1

TMP

AR

@AR

@AR: @AR + 1

@AR - 1: @AR

A previously definedt memory label

Another previously definedt label

Like A, except refers to a double word

Like B, except refers to a double word

A temporary location (previously defined)

Auxiliary register 1 or auxiliary registor 0

Data RAM location pointed to by the selected auxiliary register

Double word, starting at location pointed to by the selected auxiliary
register

Double word, starting at one before the location pointed to by the
selected auxiliary register •

AR1 Auxiliary register 1

@AR1 Data RAM location pointed to by AR 1

ARO Auxiliary register 0

@ARO Data RAM location pointed to by ARO

AC Accumulator

AClow Low-order 16 bits of the accumulator

AC high High-order 16 bits of the accumulator

@AC Data RAM location pointed to by the accumulator

p P register

T T register

ARP Auxiliary register pointer

7-1

I

*

* +

*

[fl

C

Indirect operand

Indirect reference and increment

Indirect reference and decrement

Field f optional (i.e., may be replaced by a null operand)

Constant. (It may be written as C{n< C< m} to indicate a range limit
between nand m. C1 and C2 will be used as constants when two are
required in a description.

t Some macros generate different code sequences for constant operands and memory operands. Memory operands can be confused with
constants unless the memory labels (operand names) have been defined to the assembler prior to their use in a macro call. This limitation
corresponds to the requirement in some higher-level languages like PASCAL that variables be declared prior to their use in expressions.

7.2 MACRO SET SUMMARY

Table 7-1 lists alphabetically all the macros described in Section 7-3.

TABLE 7-1 - MACRO INDEX

MNEMONIC DESCRIPTION PAGE

ACTAR Move Accumulator to Auxiliary Register 7-7
ADAR Add Variable to Auxiliary Register 7-9
ADDX Double-Word Add 7-11
ARTAC Move Auxiliary Register to Accumulator 7-14
BIC Clear Bits in Data Word 7-16
BIS Set Bits in Data Word 7-18
BIT Test Bits in Data Word 7-20
CMP Compare Two Words 7-22
CMPX Compare Two Double Words 7-24
DEC Decrement Word 7-26
DECX Double-Word Decrement 7-28
INC Increment Word 7-31
INCX Double-Word Increment 7-33
LACARY Load Accumulator from Address in

Accumulator 7-36
LASH Arithmetic Left Shift 7-38
LASX Double-Word Arithmetic Left Shift 7-40
LAXARY Load Double Word into Accumulator from

Address in Accumulator 7-42
LCAC Load Constant into Accumulator 7-44
LCACAR Load Constant to Accumulator from Program

Address in Accumulator 7-48
LCAR Load Constant into Auxiliary Register 7-50
LCAX Load Double-Word Constant into Accumulator 7-53
LCAXAR Load Double-Word Constant to Accumulator

from Program Memory 7-55
LCP Load Constant into P Register 7-57
LCPAC Load Constant into P Register and

Accumulator 7-59

7-2

TABLE 7-1 - MACRO INDEX (CONTINUED)

MNEMONIC DESCRIPTION PAGE

LDAX Load Double Word 7-61
LTK Load Constant into T Register 7-64
MAX Select Maximum of Two Words 7-66
MAXX Select Maximum of Two Double Words 7-68
MIN Select Minimum of Two Words 7-70
MINX Select Minimum of Two Double Words 7-72
MOV Move Word in Data Memory 7-74
MOVCON Move Constants to Data Memory 7-76
MOVDAT Move Words to Data Memory 7-80
MOVE Move Data Array 7-85
MOVROM Move Words to Program Memory 7-90
MOVX Move Double Word 7-95
NEG Arithmetic Negation 7-98
NEGX Double-Word Arithmetic Negation 7-100
NOT Boolean Not 7-103
RASH Arithmetic Right Shift 7-105
RASX Double-Word Arithmetic Right Shift 7-107
REPCON Move One-Word Constant into Array 7-109
RIPPLE Ripple Data Array One Position 7-111
RLSH Right Logical Shift 7-115
RLSX Double-Word Logical Right Shift 7-117
SACX Store Double Word 7-119
SAT Saturate Data Word between Upper and Lower

Bounds 7-122
SBAR Subtract Variable from Auxiliary Register 7-126
SBIC Clear Single Bit in Data Word 7-129
SBIS Set Single Bit in Data Word 7-131 I
SBIT Test Single Bit in Data Word 7-133
STOX Convert Single Word to Double Word 7-135
SUBX Double-Word Subtract 7-137
TST Test Word 7-140
TSTX Test Double Word 7-142
XTOS Convert Double Word to Single Word 7-145

Table 7-2 summarizes all the legal parameters of the macros described in Section 7-3.

7-3

TABLE 7-2 - MACRO SET SUMMARY

MACRO OPERAND 0 OPERAND OPERAND TYPES:t: CONSTANT RANGE
INSTRUCTION NUMBER P SIZEt

T C S * *+ *- AC AR LOWEST HIGHEST
ACTAR 1 X I

2 X 1 X temporary
ADAR 1 X

- 32768 I 32767 2 1 X X
3 X 1 X temporary

ADDX 1 2 X X X X
ARTAC 1 X I

2 X 1 X temporary
BIC 1 1 X X X X

2 1 X X
BIS 1 1 X X X X

2 1 X X
BIT 1 1 X X X X

2 1 X X X X
CMP 1 1 X X X X

2 1 X X X X
CMPX 1 2 X X X X

2 2 X X X X
DEC 1 X 1 X X X

2 X X
DECX 1 X 2 X X X X X
INC 1 X 1 X X X

2 X X
INCX 1 X 2 X X X X X
LACARY ## 1 X

1 X X 0 15
LASH 1 1 X

2 1 X
3 X 0 15

LASX 1 2 X
2 2 X

I
3 X 0 15

LAXARY ## 2
LCAC 1 1 X X - 32768 32767

2 X X 0 15
LCACAR ## 1 X

1 X X 0 15
2 X 1 X temporary

LCAR 1 X
2 1 X X -32768 32767

LCAX 1 2f X -2**31 2**31-1
LCAXAR ## 2 X

1 X 2 X temporary
LCP 1 1 X X -4096 4095
LCPAC 1 1 X X -4096 4095
LDAX 1 2 X X X X
LTK 1 1 X X -32768 32767
MAX 1 1 X

2 1 X
MAXX 1 2 X

2 2 X
MIN 1 1 X

2 1 X
MINX 1 2 X

2 2 X
MOV 1 1 X X X X X

2 1 X X X X X
MOVCON 1 ? X

2 ? X X X
MOVDAT 1 ? X X X

program - 2 ? X X X
data 3 X X -32768 32767

7-4

TABLE 7-2 - MACRO SET SUMMARY (Concluded)

MACRO OPERAND 0 OPERAND OPERAND TYPES:!: CONSTANT RANGE
INSTRUCTION NUMBER P SIZEt

T C S * *+ * - AC AR LOWEST HIGHEST
MOVE 1 ? X X X

data - 2 ? X X X
data 3 X X -32768 32767

MOVROM 1 ? X X X
data - 2 ? X X X
program 3 X X -32768 32767

MOVX 1 2 X X X X X
2 2 X X X X X

NEG 1 1 X X
NEGX 1 2 X X X X
NOT 1 X 1 X X X X X
RASH 1 1 X

2 1 X
3 X 0 15

RASX 1 2 X
2 2 X
3 X 0 15

REPCON 1 X -32768 32767
2 ? X
3 X -32768 32767

RIPPLE 1 ? X
2 X -32768 32767
3 X dummy argument

RLSH 1 1 X
2 1 X
3 X 0 15

RLSX 1 2 X
2 2 X
3 X 0 15

SACX 1 2 X X X X
SAT 1 1 X

2 1 X X -32768 32767
3 1 X X -32768 32767

SBAR 1 X
2 1 X X -32768 32767
3 X 1 X temporary

SBIC 1 X 0 15
2 1 X X

SBIS 1 X 0 15
2 1 X X

SBIS 1 X 0 15
2 1 X X

SBIT 1 X 0 15
2 1 X X X X

STOX 1 1 X
2 2 X

SUBX 1 2 X X X X
TST 1 1 X X X X
TSTX 1 2 X X X X
XTOS 1 2 X

2 1 X

NOTES:
t Blank in size field means that operand is not a data (program) location, but is a field in an instruction (Le., has no word size).
:!:

f
?

C Constant
S Symbolic address
* , * + , * - Indirect through the selected address register (ARP)
AC Operand is the AC (usually shown in the instruction as null or blank operand: MOV,A)
AR An address register (ARO or AR 1)
32-bit constant expressed as a two-word constant list: (C1,C2)
Variable length operand (length given by argument 3)
Implied operand in accumulator

7-5

I

I

7.3 MACRO DESCRIPTIONS

7-6

Each macro instruction is named, followed by a summary table. A flowchart for clarifying the macro
source then follows and specific examples of all legal forms.

The macros described in this section use a number of assembler symbols for internal purposes
during macro expansion. Most of these internal symbols and any operands the user supplies to the
macros are entered into the assembler symbol table as undefined (unless they are user-defined
already) and will be printed at the end of the assembler printed output as undefined. This is not an
error. Only undefined symbol errors flagged under assembly language statements in the program
listing are actual fatal errors. Only these errors will be tallied in the assembly error count. Undefined
symbols listed after the program are for information only.

ACTAR Move Accumulator to Auxiliary Register - Macro

TITLE: Move Accumulator to Auxiliary Register

NAME: ACTAR

OBJECTIVE: Pass data word to named auxiliary register from accumulator

ALGORITHM: (ACC) -+ temp (XRO)
(temp) -+ AR

CALLING
SEQUENCE: ACTAR AR [,TEMP]

ENTRY
CONDITIONS: AR = 0,1; 0 ~ TEMP ~ 127

EXIT
CONDITIONS: Accumulator stored in auxiliary register;

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

FLOWCHART:

ARP now points to auxiliary register specified

3 words

None

ACTAR

SAVE ACC IN
TEMPORARY

MOVE VALUE FROM
TEMPORARY TO
AUX. REGISTER

SET ARP

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

NO ASSIGN XRO TO
TEMPORARY

1 word

3 cycles

ACTAR

I

7-7

ACTAR
SOURCE:

*MOVE AC TO AR
*
ACTAR $MACRO A,T

$IF T.L=O ASSIGN XRO AS TEMP

7-8

$ASG IXR0 1 TO T.S
$ENDIF
SACL :T: ,0
LAR :A:, :T:
LARP :A:
$END

EXAMPLE 1:

0013
0001 0009 5004 11

0002 OOOA 3804"
0003 OOOB 6880

EXAMPLE 2:

0015
0001 OOOC 5000"
0002 0000 3800"
0003 OOOE 6880

STORE AC TO :T:
RE-LOAD :A:
LOAD AR POINTER

ACTAR ARO
SACL XRO,O
LAR ARO,XRO
LARP ARO

ACTAR O,C
SACL C,O
LAR O,C
LARP 0

STORE AC TO XRO
RE-LOAD ARO
LOAD AR POINTER

STORE AC TO C
RE-LOAD 0
LOAD AR POINTER

ACTAR

ADAR Add Variable to Auxiliary Register - Macro

TITLE: Add Variable to Auxiliary Register

NAME: ADAR

OBJECTIVE: Add data word to named auxiliary register

ALGORITHM: (AR) + (dma) - ACC
(ACC) -AR

CALLING
SEQUENCE:

ENTRY

ADAR AR, 8 [,TEMP]

CONDITIONS: AR = 0,1; 0 ~ 8 ~ 127; a ~ TEMP ~ 127

EXIT
CONDITIONS: Sum of memory location and auxiliary register is stored in named auxiliary

register

PROGRAM
MEMORY
REQUIRED: 5 - 7 words (plus LDAC$

routine)

STACK
REQUIRED: a - 2 levels

FLOWCHART: ADAR

STORE AUXILIARY
REGISTER IN
TEMPORARY

LOAD VARIABLE
INTO ACC

NO LET XRO BE
TEMPORARY

YES CALL LCAC TO
LOAD CONSTANT

INTO ACC

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

2 words

5 -17 cycles

ADD TEMPORARY
TO ACC

SAVE ACC IN
TEMPORARY

STORE TEMPORARY
IN AUXILIARY

REGISTER

ADAR

I

7-9

I

ADAR
SOURCE:

*ADD TO AR
* ADAR $MACRO A,B,T

$IF T.L=O USE XR1 AS TEMP
$ASG 'XR1' TO T.S
$ENDIF
SAR :A:, :T: STORE :A:
$IF B.SA&SUNDF
LCAC :B: LOAD CONST :B: INTO AC

7-10

$ELSE
LAC :B:,O LOAD VAR :B: INTO AC
$ENDIF
ADD :T:,O ADD TEMP :T: TO AC
SACL :T:,O STORE :T:
LAR :A: , :T: LOAD BACK INTO :A:
$END

EXAMPLE 1:

0007
0001 0006 3103 11

0002
0001 0003
0002 0007 7E03
0003 0008 0003 11

0004 0009 5003 11

0005 OOOA 3903 11

EXAMPLE 2:

0009
0001 OOOB 3008
0002 OOOC 2004 11

0003 0000 0008
0004 OOOE 5008
0005 OOOF 3808

EXAMPLE 3:

0011
0001 0010 3003 11

0002 0011 2005 11

0003 0012 0003 11

0004 0013 5003"
0005 0014 3803"

V$l

ADAR A,3
SAR A,XR1
LCAC 3

EQU 3
LACK V$l

ADD XR1,0
SACL XR1,0
LAR A,XR1

ADAR ARO,C,B
SAR ARO,B
LAC C,O
ADD B,O
SACL B,O
LAR ARO,B

ADAR O,D
SAR 0,XR1
LAC D,O
ADD XR1,0
SACL XR1,0
LAR 0,XR1

STORE A
LOAD CONSTANT 3 INTO AC

LOAD AC WITH V$l
ADD TEMP XR1 TO AC
STORE XR1
LOAD BACK INTO A

STORE ARO
LOAD VARIABLE C INTO AC
ADD TEMP B TO AC
STORE B
LOAD BACK INTO ARO

STORE 0
LOAD VARIABLE D INTO AC
ADD TEMP XR1 TO AC
STORE XR1
LOAD BACK INTO 0

ADAR

ADDX Double-Word Add - Macro

TITLE: Double-Word Add

NAME: ADDX

OBJECTIVE: Add double word to accumulator

ALGORITHM: ADDX * - causes-+ (ACC) + (@AR:@AR + 1) -+ ACC

CALLING

ADDX * - - causes-+ (ACC) + (@AR -1 :@AR) -+ ACe
(AR) - 2-+AR

ADDX * + - causes-+ (ACC) + (@AR:@AR + 1) -+ Ace
(AR) + 2 -+ AR

ADDX A - causes-+ (ACC) + (A:A + 1) -+ ACC

SEQUENCE: ADDX {A,*,* -,* +}

ENTRY
CONDITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: Accumulator contains updated value after addition; auxiliary register is

updated if necessary

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

2 words

None

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 2 cycles

ADDX

7-11

ADDX
FLOWCHART: ADDX

SOURCE:

ADD @AR
AND @AR+ 1

*ADD DOUBLE PRECISION

*

ADD @AR
AND @AR+1

ADD A AND A+ 1

ADDX $MACRO A ADD DOUBLE PRECISION
$VAR ST,SP,SM
$ASG '*+1 TO SP.S
$ASG '*_1 TO SM.S
$ASG '*1 TO ST.S
$IF A.SV=ST.SV
ADDH *+ ADD HIGH
ADDS *- ADD LOW 1*1
$ELSE
$IF A.SV=SP.SV
ADDH *+ ADD HIGH
ADDS *+ ADD LOW 1*+1
$ELSE
$IF A.SV=SM.SV
ADDS *- ADD LOW
ADDH *- ADD HIGH 1*_1
$ELSE
ADDH :A: ADD :A: HIGH
ADDS :A:+l ADD :A: LOW
$ENDIF
$ENDIF
$ENDIF
$END

7-12

ADD @AR
AND @AR-1

AR = AR-2

ADDX

ADDX ADDX

EXAMPLE 1:

0011 ADDX A
0001 0006 6007 ADDH A ADD A HIGH
0002 0007 6108 ADDS A+l ADD A LOW

EXAMPLE 2:

0013 ADDX *
0001 0008 60A8 ADDH *+ ADD HIGH
0002 0009 6198 ADDS *- ADD LOW 1*1

EXAMPLE 3:

0015 ADDX *-
0001 OOOA 6198 ADDS *- ADD LOW
0002 0008 6098 ADDH *- ADD HIGH 1*_1

EXAMPLE 4:

0017 ADDX *+
0001 00 DC 60A8 ADDH *+ ADD HIGH
0002 0000 61A8 ADDS *+ ADD LOW 1*+1

I

7-13

ARTAC

TITLE:

NAME:

OBJECTIVE:

ALGORITHM:

CALLING
SEQUENCE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

I FLOWCHART:

7-14

Move Auxiliary Register to Accumulator - Macro

Move Auxiliary Register to Accumulator

ARTAC

Load data from auxiliary register into accumulator

(AR) -+ temp
(temp) -+ ACC

ARTAC AR [,TEMP]

AR = 0,1; 0 ~ TEMP ~ 127

Accumulator contains same value as auxiliary register

DATA
MEMORY

2 words REQUIRED: 1 word

EXECUTION
None TIME: 2 cycles

ARTAC

STORE AUXILIARY
REGISTER IN
TEMPORARY

LOAD TEMPORARY
INTO ACC

NO ASSIGN XRO AS
TEMP LOCATION

ARTAC

ARTAC
SOURCE:

*COpy AR TO AC

* ARTAC $MACRO A,T
$IF T.L=O USE XRO AS TEMP
$ASG 'XRO' TO T.S
$ENDIF
SAR : A: , : T : SAVE : A :
LAC :T:,O LOAD INTO AC
$END

EXAMPLE 1:

0013 ARTAC ARO
0001 0008 3004" SAR ARO,XRO
0002 0009 2004" LAC XRO,O

EXAMPLE 2:

0014 ***
0015 ARTAC O,C
0001 OOOA 3000" SAR O,C
0002 OOOB 2000" LAC C,O

ARTAC

SAVE ARO
LOAD INTO AC

SAVE 0
LOAD INTO AC

I

7-15

BIC Clear Bits in Data Word - Macro

TITLE: Clear Bits in Data Word

NAME: BIC

OBJECTIVE: Clear bits in data word specified by one bit in mask

ALGORITHM: (data) .AND .. NOT. (mask) -+ data

CALLING
SEQUENCE:

ENTRY

BIC mask,data

CONDITIONS: 0 ~ mask ~ 127; 0 ~ data ~ 127

EXIT
CONDITIONS: Data word contains initial value with specified bits cleared

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

4 words

None

FLOWCHART: BIC

SOURCE:

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

(BEGIN J ,
LOAD MASK INTO

ACC ,
INVERT
MASK

•
AND ACC WITH

DATA ,
RESTORE DATA

WORD ,
(END)

*BIT CLEAR - CLEAR BITS IN B WHERE A HAS ZEROS
* BIC

7-16

$MACRO A,B
LAC :A: ,0

BIT CLEAR
LOAD :A:

1 word

4 cycles

BIC

BIC BIC
XOR MINUS INVERT MASK
AND :B: AND :B:
SACL :B: ,0. SAVE RESULT IN :B:
$END

EXAMPLE 1:

0.0.14 BIC B,A
00.01 ODOA 20.08 LAC B,O LOAD B
00.02 ODOB 780.3 11 XOR MINUS INVERT MASK
00.03 ODOC 790.1 AND A AND A
0.004 0000 50.01 SACL A,D SAVE RESULT IN A

EXAMPLE 2:

0.0.16 BIC D,C
0.0.01 DODE 20.0.1" LAC D,D LOAD 0
0.00.2 DDDF 780.3" XOR MINUS INVERT MASK
000.3 0.0.10. 7900." AND C AND C
0.0.0.4 0.0.11 50.0.0." SACL C'D SAVE RESULT IN C

EXAMPLE 3:

00.18 BIC D,A
000.1 0.0.12 20.01" LAC 0,0 LOAD 0
0.0.0.2 0.013 780.3" XOR MINUS INVERT MASK
0.0.0.3 00.14 790.1 AND A AND A
0.0.0.4 0.0.15 50.01 SACL A,O SAVE RESULT IN A

7-17

BIS Set Bits in Data Word - Macro

TITLE: Set Bits in Data Word

NAME: BIS

OBJECTIVE: Set bits in data word specified by one bit in mask

ALGORITHM: (data) .OR. (mask) --. data

CALLING
SEQUENCE:

ENTRY

BIS mask, data

CONDITIONS: 0 ~ mask ~ 127; 0 ~ data ~ 127

EXIT
CONDITIONS: Data word contains initial value with specified bits set

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

3 words

None

FLOWCHART: BIS

SOURCE:

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

(BEGIN)

~
LOAD ACC WITH

MASK ,
OR MASK WITH

DATA ,
RESTORE DATA WORD

TO MEMORY ,
(END J

*SET BITS IN B CORRESPONDING TO ONES IN A
* BIS

7-18

$MACRO A,B
LAC :A:,O
OR :B:
SACL :B:, 0
$END

BIT SET
LOAD :A:
OR WITH :B:
SAVE BACK TO :A:

BIS

None

3 cycles

BIS

EXAMPLE 1:

0014
0001 DOOA 2008
0002 OOOB 7A01
0003 OOOC 5001

EXAMPLE 2:

0016
0001 0000 2001 11

0002 DOOE 7AOO II

0003 OOOF 5000 11

BIS B,A
LAC B,O
OR A
SACL A,O

BIS D,C
LAC 0,0
OR C
SACL C,O

LOAD B
OR WITH A
SAVE BACK TO B

LOAD 0
OR WITH C
SAVE BACK TO 0

BIS

7-19

BIT Test Bits in Data Word - Macro

TITLE: Test Bits in Data Word

NAME: BIT

OBJECTIVE: Test bits in data word specified by one bit in mask

ALGORITHM: (data) .AND. (mask) -+ ACC

CALLING
SEQUENCE:

ENTRY

BIT mask,data

CONDITIONS: 0 ~ mask~ 127; 0 ~ data~ 127

EXIT
CONDITIONS: ACC contains zero if no bits of mask are set in data word: any bits masked

that are set in data word will be set in ACC

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

2 words

None

FLOWCHART: BIT

SOURCE:

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

LOAD MASK INTO
ACC

AND ACC WITH
DATA WORD

*BIT TEST - BITS IN B TESTED BY MASK IN A
*
BIT

7-20

$MACRO A,B
LAC :A: ,0
AND :B:
$END

BIT TEST
LOAD :A:, MASK
AND WITH :B:

None

2 cycles

BIT

BIT

EXAMPLE:

0014
0001 OOOA 2008
0002 OOOB 7901

BIT B,A
LAC B,O
AND A

LOAD B, MASK
AND WITH A

BIT

7-21

I

I

CMP Compare Two Words - Macro

TITLE: Compare Two Words

NAME: CMP

OBJECTIVE: Load word into accumulator; then subtract the other word, allowing
comparison

ALGORITHM: CMPX A,B - causes'" (A) - (B)'" ACC

CALLING
SEQUENCE:

ENTRY

CMP {A,*,* - ,* + },{B,*,* - ,* + }

CONDITIONS: 0 ~ A ~ 127; 0 ~ B ~ 127

EXIT
CONDITIONS: Accumulator contains value of second word subtracted from the first

word; auxiliary register is updated if necessary

PROGRAM
MEMORY
REQUIRED: 2 words

STACK
REQUIRED: None

FLOWCHART: CMP

7-22

SOURCE:

*COMPARE A TO B
*
CMP $MACRO A,B

LAC :A: ,0
SUB :B: ,0
$END

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

LOAD ACC WITH 1 ST
WORD

COMPaRE
LOAD :A:

SUBTRACT 2ND
WORD

SUBTRACT :B:

None

2 cycles

CMP

CMP CMP
EXAMPLE 1:

0007 CMP A,B
0001 0006 2001 LAC A,O LOAD A
0002 0007 1008 SUB B,O SUBTRACT B

EXAMPLE 2:

0009 CMP *,B
0001 0008 2088 LAC *,0 LOAD *
0002 0009 1008 SUB B,O SUBTRACT B

EXAMPLE 3:

0011 CMP C,*+
0001 DaDA 2004 11 LAC C,O LOAD C
0002 00 DB 10A8 SUB *+,0 SUBTRACT *+

EXAMPLE 4:

0013 CMP * * I

0001 OOOC 2088 LAC *,0 LOAD *
0002 0000 1088 SUB *,0 SUBTRACT *

I

7-23

CMPX Compare Two Double Words - Macro

TITLE: Compare Two Double Words

NAME: CMPX

OBJECTIVE: Load double word into accumulator; then subtract the other double word,
allowing comparison

ALGORITHM: CMPX A,B - causes- (A:A + 1) - (B:B + 1) - ACC

CALLING
SEQUENCE: CM PX {A, * , * - , * + }, { B, * , * - , * + }

ENTRY
CONDITIONS: 0 ~ A ~ 127; 0 ~ B ~ 127

EXIT
CONDITIONS: Accumulator contains value of second double word subtracted from the

first double word; auxiliary register is updated if necessary.

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

4 words

None

I FLOWCHART: CMPX

7-24

SOURCE:

*COMPARE A TO B, DOUBLE
*
CMPX $MACRO A,B

LDAX :A:
SUBX :B:
$END

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 4 cycles

(BEGIN J
~

LOAD 1 ST DOUBLE
WORD INTO Ace

~
SUBTRACT 2ND
DOUBLE WORD

FROM ACC ,
(END

COMPARE DOUBLE
LOAD DOUBLE :A:

)

SUBTRACT DOUBLE :B:

CMPX

CMPX .CMPX

EXAMPLE 1:

0011 CMPX A,B
0001 LDAX A LOAD DOUBLE A
0001 0006 6507 ZALH A LOAD HIGH A
0002 0007 6108 ADDS A+1 LOAD LOW A
0002 SUBX B SUBTRACT DOUBLE B
0001 0008 6209 SUBH B SUBTRACT HIGH
0002 0009 630A SUBS B+1 SUBTRACT LOW

EXAMPLE 2:

0013 CMPX C,*
0001 LDAX C LOAD DOUBLE C
0001 OOOA 6500" ZALH C LOAD HIGH C
0002 OOOB 6101" ADDS C+1 LOAD LOW C
0002 SUBX * SUBTRACT DOUBLE *
0001 OOOC 62A8 SUBH *+ SUBTRACT HIGH
0002 OOOD 6398 SUBS *- SUBTRACT LOW

EXAMPLE 3:

0015 CMPX *-,D
0001 LDAX *- LOAD DOUBLE *-
0001 OOOE 6698 ZALS *- LOAD LOW
0002 OOOF 6098 ADDH *- LOAD HIGH '*-'
0002 SUBX D SUBTRACT DOUBLE D
0001 0010 6202" SUBH D SUBTRACT HIGH
0002 0011 6303" SUBS D+1 SUBTRACT LOW

EXAMPLE 4:

0017 CMPX *+,*+
0001 LDAX *+ LOAD DOUBLE *+ I 0001 0012 65A8 ZALH *+ LOAD HIGH
0002 0013 61A8 ADDS *+ LOAD LOW ,*+,
0002 SUBX *+ SUBTRACT DOUBLE *+
0001 0014 62A8 SUBH *+ SUBTRACT HIGH
0002 0015 63A8 SUBS *+ SUBTRACT LOW

EXAMPLE 5:

0019 CMPX *-,*-
0001 LDAX *- LOAD DOUBLE *-
0001 0016 6698 ZALS *- LOAD LOW
0002 0017 6098 ADDH *- LOAD HIGH '*-'
0002 SUBX *- SUBTRACT DOUBLE *-
0001 0018 6398 SUBS *- SUBTRACT LOW
0002 0019 6298 SUBH *- SUBTRACT HIGH

7-25

DEC Decrement Word - Macro

TITLE: Decrement Word

NAME: DEC

OBJECTIVE: Decrement word or accumulator

ALGORITHM: DEC - causes-+ (ACC) - 1 -+ ACC

CALLING
SEQUENCE:

ENTRY

DEC A - causes-+ (A) - 1 -+ (A)

DEC ,AR - causes-+ (AR) - 1 -+ AR

DEC [A]LAR]

CONDITIONS: 0 ~ A ~ 127; AR = 0,1

EXIT
CONDITIONS: Specified word or auxiliary register is decremented; auxiliary register

pointer will point to specified auxiliary register

PROGRAM
MEMORY
REQUIRED:

I STACK
REQUIRED:

1 - 3 words

None

FLOWCHART: DEC

7-26

LOAD ACC WITH YES
VARIABLE

SUBTRACT ONE
FROM ACC

SAVE ACC IN
VARIABLE

DATA
MEMORY
REQUIRED: 1 word

EXECUTION
TIME: 1 - 3 cycles

SUBTRACT ONE
FROM ACC

YES POINT TO AUX.
REG. SPECIFIED

BY 2ND ARGUMENT

SUBTRACT ONE
FROM AUXILIARY

REGISTER

DEC

DEC
SOURCE:

*DECREMENT THE ACCUMULATOR, AN AUXILIARY
*REGISTER, OR MEMORY
* DEC $MACRO A,B

$IF 'A.L=O
$IF B.L=O
SUB ONE,O
$ELSE
LARP :B:
MAR *
$ENDIF
$ELSE
LAC :A: ,0
SUB ONE,O
SACL :A: ,0
$ENDIF
$ END

EXAMPLE 1:

0007
0001 0006 2001
0002 0007 1000"
0003 0008 5001

EXAMPLE 2:

0009
0001 0009 6881
0002 OOOA 6898

EXAMPLE 3:

0011
0001 OOOB 1000"

EXAMPLE 4:

0015
0001 OOOF 6880
0002 0010 6898

DECREMENT

DECREMENT AC

LOAD ARP WITH :B:
DECREMENT

LOAD :A:
DECREMENT
SAVE :A:

DEC A
LAC A,O
SUB ONE,O
SACL A,O

DEC ,A
LARP A
MAR *-

DEC
SUB ONE,O

DEC ,ARO
LARP ARO
MAR *-

LOAD A
DECREMENT
SAVE A

LOAD ARP WITH A
DECREMENT

DECREMENT THE ACCUMULATOR

LOAD ARP WITH ARO
DECREMENT

DEC

I

7-27

DECX Double-Word Decrement - Macro

TITLE: Double-Word Decrement

NAME: DECX

OBJECTIVE: Decrement double word or accumulator

ALGORITHM: OECX* - causes-+ (@AR:@AR + 1) - 1 -+ @AR:@AR + 1

DECX *- - causes-+ (@AR - 1 :@AR) - 1 -+ @AR - 1 :@AR
(AR) - 2 -+ AR

DECX * + - causes-+ (@AR:AR:@AR + 1) - 1 -+ @AR:@AR + 1
(AR) + 2 -+ AR

DECXA - causes-+ (A:A + 1) - 1 -+ A:A + 1

DECX - causes-+ (ACC) - 1 -+ ACC

CALLING
SEQUENCE: DECX [A, *, * - , * +]

ENTRY
CONDITIONS: 0 ~ A ~ 127

EXIT I CONDITIONS: Specified double word is decremented;
auxiliary register is updated as necessary

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 1 - 5 words REQUIRED: 1 word

STACK EXECUTION
REQUIRED: None TIME: 1 - 5 cycles

7-28

DECX

DECX
FLOWCHART: DECX

DECREMENT
ACC

DECREMENT
@AR AND

@AR-1

SOURCE:

*DECREMENT DOUBLE
* DECX $MACRO A

$VAR ST,SP,SM
$ASG 1*+1 TO SP.S
$ASG 1*_1 TO SM.S
$ASG 1*1 TO ST.S
$IF A.L=O
SUB ONE,O
$ELSE
$IF A.SV=SM.SV
ZALS *-
ADDH *+
SUB ONE,O
SACX *-
$ELSE
$IF A.SV=SP.SV
LDAX *
SUB ONE,O
SACX *+

DECREMENT
A AND A+ 1

DECREMENT DOUBLE

DECREMENT AC

LOAD '*-'
DECREMENT
SAVE '*-'

LOAD '*'
DECREMENT
SAVE ,*+,

DECREMENT
@AR AND
@AR+1

DECX

DECREMENT
@AR AND
@AR+1

7-29

I

DECX UI:\,;X
$ELSE
$IF A.SV=ST.SV
LDAX * LOAD 1*1
SUB ONE,O DECREMENT
SACX * SAVE 1*1
$ELSE
LDAX :A: LOAD :A:
SUB ONE,O DECREMENT
SACX :A: SAVE :A:
$ENDIF
$END

EXAMPLE 1:

0011 DECX A
0001 LDAX A LOAD A
0001 0006 6507 ZALH A LOAD HIGH A
0002 0007 6108 ADDS A+1 LOAD LOW A
0002 0008 1004" SUB ONE,O DECREMENT
0003 SACX A SAVE A
0001 0009 5807 SACH A,O STORE HIGH
0002 OOOA 5008 SACL A+1,0 STORE LOW

EXAMPLE 2:

0013 DECX *
0001 LDAX * LOAD 1*1
0001 OOOE 65A8 ZALH *+ LOAD HIGH
0002 OOOC 6198 ADDS *- LOAD LOW 1*1
0002 OOOD 1004" SUB ONE,O DECREMENT
0003 SACX * SAVE 1*1
0001 OOOE 58A8 SACH *+,0 STORE HIGH

I
0002 OOOF 5098 SACL *-,0 STORE LOW

EXAMPLE 3:

0015 DECX *-
0001 0010 6698 ZALS *-
0002 0011 60A8 ADDH *+ LOAD 1 *_ 1
0003 0012 1004" SUB ONE,O DECREMENT
0004 SACX *- SAVE 1*_1
0001 0013 5098 SACL *-,0 STORE LOW
0002 0014 5898 SACH *-,0 STORE HIGH

EXAMPLE 4:

0017 DECX *+
0001 LDAX * LOAD 1*1
0001 0015 65A8 ZALH *+ LOAD HIGH
0002 0016 6198 ADDS *- LOAD LOW 1*1
0002 0017 1004" SUB ONE,O DECREMENT
0003 SACX *+ SAVE 1 *+1
0001 0018 58A8 SACH *+,0 STORE HIGH
0002 0019 50A8 SACL *+,0 STORE LOW

EXAMPLE 5:

0019 DECX
0001 001A 1004" SUB ONE,O DECREMENT AC

7-30

INC Increment Word - Macro

TITLE: Increment Word

NAME: INC

OBJECTIVE: Increment word or accumulator

ALGORITHM: INC - causes'" (ACC) + 1 ... ACC

CALLING
SEQUENCE:

ENTRY

INC A - causes'" (A) + 1 ... (A)

INC ,AR - causes'" (AR) + 1 ... AR

INC [A][,AR]

CONDITIONS: 0 ~ A~ 127; AR =0,1

EXIT
CONDITIONS: Specified word or auxiliary register is incremented; auxiliary register

pointer specifies the named auxiliary register

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

FLOWCHART:

1 - 3 words

None

INC

LOAD ACC WITH
VARIABLE

ADD ONE TO
ACC

SAVE ACC IN
VARIABLE

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

ADD ONE TO Ace

1 word

1 - 3 cycle

POINT TO AUX.
REG. SPECIFIED

BY 2ND ARGUMENT

ADD ONE TO
AUX. REGISTER

INC

I

7-31

I

II~\'"

SOURCE:

*INCREMENT AC, AR, OR MEM

*
INC $MACRO A,B

$IF A.L=O
$IF B.L=O
ADD ONE,O
$ELSE
LARP :B:
MAR *+
$ENDIF
$ELSE
LAC :A: ,0
ADD ONE,O
SACL :A: ,0
$ENDIF
$END

EXAMPLE 1:

0007
0001 0006 2001
0002 0007 0000"
0003 0008 5001

EXAMPLE 2:

0009
0001 0009 6881
0002 OOOA 68A8

EXAMPLE 3:

7-32

0011
0001 OOOB DODO"

EXAMPLE 4:

0015
0001 OOOF 6880
0002 0010 68A8

INCREMENT

INCREMENT AC

LOAD ARP WITH :B:
INCREMENT

LOAD :A:
INCREMENT
SAVE :A:

INC A
LAC A,O
ADD ONE,O
SACL A,O

INC ,AR1
LARP AR1
MAR *+

INC
ADD ONE,O

INC fARO
LARP ARO
MAR *+

LOAD A
INCREMENT
SAVE A

LOAD ARP WITH AR1
INCREMENT

INCREMENT

LOAD ARP WITH ARO
INCREMENT

II~ \."

INCX Double-Word Increment - Macro

TITLE: Double-Word Increment

NAME: INCX

OBJECTIVE: Increment double word or accumulator

ALGORITHM: INCX* - causes-+ (@AR:@AR + 1) + 1 -+ @AR:@AR + 1

INCX *- - causes-+ (@AR - 1 :@AR) + 1 -+ @AR - 1 : @A
(AR) - 2 -+AR

INCX*+ - causes-+ (@AR:@ AR + 1) + 1 -+ @AR:@AR + 1
(AR) + 2 -+ AR

INCXA - causes-+ (A:A + 1) + 1 -+ A:A + 1

INCX - causes-+ (ACC) + 1 -+ ACC

CALLING
SEQUENCE: INCX [A, * 1* - 1* +]

ENTRY
CON DITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: Specified double word is incremented;

auxiliary register is updated as necessary

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 1 - 5 words REQUIRED: 1 word

STACK EXECUTION
REQUIRED: None TIME: 1 - 5 cycles

INCX

I

7-33

I

INCX
FLOWCHART: INCX

INCREMENT
ACC

INCREMENT
@AR AND

@AR-1

SOURCE:

*INCREMENT DOUBLE
*
INCX

7-34

$MACRO A
$VAR ST,SP,SM
$ASG '*+' TO SP.S
$ASG '*-' TO SM.S
$ASG ,*, TO ST.S
$IF A.L=O
ADD ONE,O
$ELSE
$IF A.SV=SM.SV
ZALS *-
ADDH *+
ADD ONE,O
SACX *-
$ELSE
$IF A.SV=SP.SV
LDAX *
ADD ONE,O
SACX *+

NO

YES

INCREMENT
A AND A+1

INCREMENT DOUBLE

INCREMENT AC

LOAD '*-'
INCREMENT
SAVE '*_1

LOAD 1*1
INCREMENT
SAVE 1*+1

YES

INCREMENT
@AR AND
@AR+1

INCREMENT
@AR AND
@AR+1

AR = AR+2

INCX

INCX
$ELSE
$IF A.SV=ST.SV
LDAX *
ADD ONE,O
SACX *
$ELSE
LDAX :A:
ADD ONE,O
SACX :A:
$ENDIF
$END

EXAMPLE 1:

0011
0001
0001 0006 6507
0002 0007 6108
0002 0008 0004"
0003
0001 0009 5807
0002 OOOA 5008

EXAMPLE 2:

0013
0001
0001 0008 65A8
0002 OOOC 6198
0002 OOOD 0004"
0003
0001 OOOE 58A8
0002 OOOF 5098

EXAMPLE 3:

0015
0001 0010 6698
0002 0011 60A8
0003 0012 0004"
0004
0001 0013 5098
0002 0014 5898

EXAMPLE 4:

0017
0001
0001 0015 65A8
0002 0016 6198
0002 0017 0004"
0003
0001 0018 58A8
0002 0019 50A8

EXAMPLE 5:

0019
0001 001A 0004"

LOAD '*'
INCREMENT
SAVE ,*,

LOAD :A:
INCREMENT
SAVE :A:

INCX A
LDAX A

ZALH A
ADDS A+1

ADD ONE,O
SACX A

SACH A,O
SACL A+1,0

INCX *
LDAX *

ZALH *+
ADDS *-

ADD ONE,O
SACX *

SACH *+,0
SACL *-,0

INCX *-
ZALS *-
ADDH *+
ADD ONE,O
SACX *-

SACL *-,0
SACH *-,0

INCX *+
LDAX *

ZALH *+
ADDS *-

ADD ONE,O
SACX *+

SACH *+,0
SACL *+,0

INCX
ADD ONE,O

INCX

LOAD A
LOAD HIGH A
LOAD LOW A
INCREMENT
SAVE A
STORE HIGH
STORE LOW

LOAD ,*,
LOAD HIGH
LOAD LOW '*'
INCREMENT
SAVE ,*,
STORE HIGH
STORE LOW

I

LOAD '*-'
INCREMENT
SAVE '*-'
STORE LOW
STORE HIGH

LOAD ,*,
LOAD HIGH
LOAD LOW ,*,
INCREMENT
SAVE ,*+,
STORE HIGH
STORE LOW

INCREMENT AC

7-35

LACARY Load Accumulator
from Address in Accumulator - Macro LACARY

TITLE: Load Accumulator from Address in Accumulator

NAME: LACARY

OBJECTIVE: Load accumulator from array in data RAM; the address of the data RAM
location is in the accumulator; the data will be left-shifted in the
accumulator

ALGORITHM: (ACC) -+ AR1

CALLING
SEQUENCE:

ENTRY

(@AR1) * 2shift-+ ACC

LACARY [shift]

CONDITIONS: 0 ~ shift < 16; 0 ~ (ACC) ~ 143

EXIT
CONDITIONS: Data RAM location pointed to by accumulator is stored in the

accumulator; AR1 is overwritten

PROGRAM
MEMORY
REQUIRED:

I STACK
REQUIRED:

4 words

None

FLOWCHART: LACARY

7-36

LOAD ARRAY
POINTER INTO AUX.

REGISTER

LOAD Ace
WITH SHIFT

DATA
MEMORY
REQUIRED: 1 word

EXECUTION
TIME: 4 cycles

LOAD Ace
WITHOUT SHIFT

LACARY
SOURCE:

*LOAD AC FROM ADDRESS IN AC
*
LACARY $MACRO A

ACTAR AR1
$IF A.L=O
LAC *,0
$ELSE
LAC *, :A:
$ENDIF
$END

EXAMPLE 1:

0011
0001
0001 0006 5006 11

0002 0007 3906 11

0003 0008 6881
0002 0009 2888

EXAMPLE 2:

0013
0001
0001 OOOA 5006 11

0002 OOOS 3906 11

0003 OOOC 6881
0002 DODD 2088

AC TO AR1

LOAD

LOAD AND SHIFT

LACARY 8
ACTAR AR1

SACL XRO,O
LAR AR1,XRO
LARP AR1

LAC *,8

LACARY
ACTAR AR1

SACL XRO,O
LAR AR1,XRO
LARP AR1

LAC *,0

AC TO AR1
STORE AC TO XRO
RE-LOAD AR1
LOAD AR POINTER
LOAD AND SHIFT

AC TO AR1
STORE AC TO XRO
RE-LOAD AR1
LOAD AR POINTER
LOAD

LACARY

I

7-37

I

LASH Arithmetic Left Shift - Macro

TITLE: Arithmetic Left Shift

NAME: LASH

OBJECTIVE: Move word from one data location to another with an arithmetic left shift

ALGORITHM:

CALLING
SEQUENCE:

ENTRY
CONDITIONS:

EXIT
CONDITIONS:

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

FLOWCHART:

SOURCE:

(A) * 2shift --+ B

LASH A,B,shift

o ~ A ~ 127; 0 ~ B ~ 127; 0 ~ shift < 16

B contains the shifted value of A

2 words

None

LASH

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

LOAD ACC WITH
A, SHIFTED N

SAVE ACC AT
LOCATION B

*MOVE A TO B (SINGLE-VAR) WITH N (CONST) BIT
*LEFT ARITHMETIC SHIFT

7-38

* LASH $MACRO A,B,N
LAC :A: I :N:
SACL :B: ,0
$END

MOVE WITH LEFT ARITH. SHIFT
LOAD :A: LEFT SHIFT
STORE TO :B:

None

2 cycles

LASH

LASH
EXAMPLE:

0013
0001 0008 2507
0002 0009 5008

LASH A,B,S
LAC A,S
SACL B,O

LOAD A LEFT SHIFT
STORE TO B

LASH

7-39

I

I

LASX Double-Word Arithmetic Left Shift - Macro

TITLE: Double-Word Arithmetic Left Shift

NAME: LASX

OBJECTIVE: Move double word from one data location to another in data memory with
left shift

ALGORITHM: (A:A + 1) * 2shift-+ B:B + 1

CALLING
SEQUENCE:

ENTRY

LASX A, B ,shift

CONDITIONS: 0 ~ A ~ 126; 0 ~ B ~ 126; 0 ~ shift < 16

EXIT
CONDITIONS: B: B + 1 contains shifted value of A:A + 1

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 8 words REQUIRED:

STACK EXECUTION
REQUIRED: None TIME:

FLOWCHART: LASX

(BEGIN) ,
LOAD ACC WITH
A+ 1, SHIFTED N ,

SAVE ACC LOW IN
B+ 1; SAVE ACC

HIGH IN B ,
CREATE MASK

(16-N) 0'5;
(N) 1'5 ,

ZERO SIGN-EX-
TENDED BITS IN B ,
ADD A, SHIFTED N

TO B ,
(END J

7-40

1 word

8 cycles

LASX

LASX
SOURCE:

*MOVE A TO B (DOUBLE VAR) WITH N (CONST) BIT
*LEFT ARITHMETIC SHIFT
*
LASX $MACRO A,B,N

LAC : A : + 1 , : N :
SACL :B:+1,0
SACH :B:, 0
LAC MINUS,:N:
NOT
AND :B:
ADD :A:, :N:
SACL :B:, 0
$END

EXAMPLE:

0011
0001 0006 2308
0002 0007 SODA
0003 0008 5809
0004 0009 2305"
0005
0001 OOOA 7805"
0006 OOOB 7909
0007 OOOC 0307
0008 OOOD 5009

MOVE DOUBLE WITH ARITH. SHIFT
LOAD LOW, SHIFT LEFT
SAVE IN LOW
SAVE HIGH OVERFLOW
GET MASK

TAKE SIGNIFICANT BITS
ADD IN SHIFT HIGH PART
SAVE HIGH

LASX A,B,3
LAC A+1,3 LOAD LOW, SHIFT LEFT
SACL B+1,0 SAVE IN LOW
SACH B,O SAVE HIGH OVERFLOW
LAC MINUS,3 GET MASK
NOT

XOR MINUS INVERT
AND B TAKE SIGNIFICANT BITS
ADD A,3 ADD IN SHIFT HIGH PART
SACL B,O SAVE HIGH

LASX

I

7-41

LAXARV Load Double-Word into Accumulator
from Address in Accumulator - Macro

TITLE: Load Double Word into Accumulator from Address in Accumulator

NAME: LAXARY

LAXARV

OBJECTIVE: Load accumulator from double-word array in data RAM; the address of
the first RAM location is in the accumulator

ALGORITHM: (ACC) -+ AR1

CALLING
SEQUENCE:

ENTRY

(@AR1) -+ ACC high
(@AR1 + 1) -+ ACC low

LAXARY

CONDITIONS: 0 ~ (ACC) ~ 143

EXIT
CONDITIONS: Double word pointed to by accumulator is stored in the accumulator; AR1

is overwritten

PROGRAM
MEMORY
REQUIRED:

I STACK
REQUIRED:

5 words

None

FLOWCHART: LAXARY

SOURCE:

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

LOAD ARRAY
POINTER INTO AUX.

REGISTER

LOAD DOUBLE
WORD INTO Ace

*LOAD DOUBLE AC FROM ADDRESS IN AC
* LAXARY $MACRO

ACTAR ARI AC TO ARI
LDAX *+ LOAD DOUBLE
$END

7-42

1 word

5 cycles

LAXARY

EXAMPLE:

0011
0001
0001 0006 5006"
0002 0007 3906"
0003 0008 6881
0002
0001 0009 65A8
0002 OOOA 61A8

LAXARY
ACTAR AR1

SACL XRO,O
LAR AR1,XRO
LARP AR1

LDAX *+
ZALH *+
ADDS *+

AC TO AR1
STORE AC TO XRO
RE-LOAD AR1
LOAD AR POINTER
LOAD DOUBLE
LOAD HIGH
LOAD LOW '*+'

LAXARY

7-43

LCAC Load Constant into Accumulator - Macro

TITLE: Load Constant into Accumulator

NAME: LCAC

OBJECTIVE: Move constant value into accumulator with possible left shift

ALGORITHM: Constant -+ ACC
if shift -+ (ACC) -+

CALLING
SEQUENCE:

ENTRY

temp * 2shift-+ ACC

LCAC constant,shift, temp

CONDITIONS: - 32768 ~ constant ~ 32767; 0 ~ shift < 16;
o ~ temp ~ 127

EXIT
CONDITIONS: Accumulator contains value of the constant

PROGRAM
MEMORY
REQUIRED:

STACK I REQUIRED:

7-44

1 - 5 words + LDAC$ routine

2 levels with LDAC$

DATA
MEMORY
REQUIRED: 0 - 2 words

EXECUTION
TIME: 1 - 15 cycles

LCAC

LCAC
FLOWCHART: LCAC

YES

NO

CALL LDAC$ TO
LOAD CONSTANT

INTO Ace

YES

SAVE ACC IN
TEMPORARY

RELOAD TEMPORARY
WITH SHIFT

YES BUILD EQU
STATEMENT

YES LOAD ACC
IMMEDIATE

NO USE XRO AS
TEMPORARY

LCAC

I

7-45

I

LCAC
SOURCE:

*
*LOAD CONSTANT TO AC
* LCAC A LOAD CONSTANT A
* LCAC A,B
* LCAC A,B,T

LOAD CONSTANT A, SHIFTED B, USE TEMP XRO
LOAD CONSTANT A, SHIFTED B, USE TEMP T

*
LCAC $MACRO A,B,T

$IF A.SA&$REL
CALL LDAC$ LOAD AC WITH:
REF LDAC$
DATA :A: :A:
$ELSE
$IF A.SA&$UNDF
$VAR L,Q
$ASG '$$LAB' TO L.S
$ASG L.SV+1 TO L.SV

V$:L.SV: EQU :A:
$ASG IV$' TO Q.S
$ASG :Q.S::L.SV: TO A.S
$ENDIF
$IF (A.SV<256)&(A.SV>-1)
LACK :A: LOAD AC WITH :A:
$ELSE
CALL LDAC$ LOAD AC WITH:
REF LDAC$
DATA :A: :A:
$ENDIF
$ENDIF
$IF B.L#=O
$IF (B.V>O)
$IF T.L=O XRO AS TEMP
$ASG 'XRO ' TO T.S
$ENDIF
SACL :T:,O STORE UNSHIFTED CONSTANT
LAC :T:,:B: LOAD SHIFTED
$ENDIF
$ENDIF
$ END

EXAMPLE 1:

0012 LCAC 1,5
0001 0001 V$2 EQU 1
0002 0007 7E01 LACK V$2
0003 0008 5003 11 SACL XRO,O
0004 0009 2503" LAC XRO,5

EXAMPLE 2:

0014 LCAC 128,0
0001 0080 V$3 EQU 128
0002 OOOA 7E80 LACK V$3

EXAMPLE 3:

0018 LCAC -1000,5
0001 FC18 V$5 EQU -1000
0002 OOOE F800 CALL LDAC$

OOOF 0000

7-46

LOAD AC WITH V$2
STORE UNSHIFTED CONSTANT
LOAD SHIFTED

LOAD AC WITH V$3

LOAD AC WITH:

LCAC

LCAC LCAC
0003 REF LDAC$
0004 0010 FC18 DATA V$5 V$5
0005 0011 5003" SACL XRO,O STORE UNSHIFTED CONSTANT
0006 0012 2503" LAC XRO,5 LOAD SHIFTED

EXAMPLE 4:

0022 LCAC A,6,B
0001 0016 7E07 LACK A LOAD AC WITH A
0002 0017 5008 SACL B,O STORE UNSHIFTED CONSTANT
0003 0018 2608 LAC B,6 LOAD SHIFTED

I

7-47

LCACAR Load Constant to Accumulator
from Address in Accumulator - Macro LCACAR

TITLE: Load Constant to Accumulator from Program Address in Accumulator

NAME: LCACAR

OBJECTIVE: Load accumulator from array in program RAM; the address of the
program ROM location is in the accumulator; the data will be left-shifted
in the accumulator

ALGORITHM: (@ACC) -+ temp
(temp) * 2shift -+ ACC

CALLING
SEQUENCE:

ENTRY

LCACAR [CH,TEMP]

CONDITIONS: 0 ~ shift < 16; 0 ~ TEMP ~ 127; 0 ~ (ACC) ~ 4095

EXIT
CONDITIONS: Program ROM location pointed to by accumulator is stored in the

accumulator

PROGRAM
MEMORY
REQUIRED:

I STACK
REQUIRED:

2 words

1 level

FLOWCHART: LCACAR

7-48

LOAD TEMPORARY
TO ACC WITH

NO SHIFT

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

LOAD TEMPORARY
TO Ace WITH SHIFT

1 word

4 cycles

USE XRO AS
TEMP STORAGE

LCACAR
SOURCE:

*LOAD CONSTANT ADDRESS BY AC IN AC
* (IN ROM)
*
LCACAR $MACRO A,T

$IF T.L=O ASSIGN TEMP
$ASG 'XRO' TO T.S
$ENDIF
TBLR :T: READ FROM ROM TO :T:
$IF A.L=O
LAC :T:,O LOAD :T: UNSHIFTED
$ELSE
LAC :T:,:A: LOAD :T: SHIFTED
$ENDIF
$ END

EXAMPLE 1:

0011
0001 0006 6706"
0002 0007 2806"

EXAMPLE 2:

0013
0001 0008 6707
0002 0009 2407

EXAMPLE 3:

0015
0001 OOOA 6706"
0002 OOOB 2006"

EXAMPLE 4:

0017
0001 OOOC 6700"
0002 OOOD 2000"

LCACAR 8
TBLR XRO
LAC XRO,8

LCACAR 4,A
TBLR A
LAC A,4

LCACAR
TBLR XRO
LAC XRO,O

LCACAR ,C
TBLR C
LAC C,O

READ FROM ROM TO XRO
LOAD XRO SHIFTED

READ FROM ROM TO A
LOAD A SHIFTED

READ FROM ROM TO XRO
LOAD XRO UNSHIFTED

READ FROM ROM TO C
LOAD C UNSHIFTED

LCACAR

I

7-49

I

LCAR Load Constant into Auxiliary Reqister - Macro

TITLE: Load Constant into Auxiliary Register

NAME: LCAR

OBJECTIVE: Move constant value into auxiliary register

ALGORITHM: Constant --+ AR

CALLING
SEQUENCE: LCAR AR,constant

ENTRY
CONDITIONS: - 32768 ~ constant ~ 32767; AR = 0,1

EXIT
CONDITIONS: Auxiliary register contains value of the constant

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

7-50

1 - 3 words (+ LDAR$O and
LDAR$1 routines)

2 levels with LDAR$

DATA
MEMORY
REQUIRED: 0 - 2 words

EXECUTION
TIME: 1 - 13 cycles

LCAR

LCAR
FLOWCHART: LeAR

YES

SOURCE:

*LOAD CONSTANT (TO AROjl)
* LCAR AROjl,CONSTANT
*
LCAR $MACRO A,B

$IF B.SA&$REL

CALL LDAR$O OR
LDAR$1 TO PUT
DATA IN AUX.

REGISTER

CALL LDAR$:A.V: LOAD :A: WITH:
REF LDAR$:A.V:
DATA :B: :B:
$ELSE
$IF B.SA&$UNDF
$VAR L,Q
$ASG '$$LAB' TO L.S
$ASG L.SV+l TO L.SV

V$:L.SV: EQU :B:
$ASG IV$I TO Q.S
$ASG :Q.S::L.SV: TO B.S
$ENDIF
$IF (B.SV<256)&(B.SV>-1)

YES

YES

LARK :A:,:B: LOAD :A: WITH :B:
$ELSE
CALL LDAR$:A.V: LOAD :A: WITH:
REF LDAR$:A.V:
DATA :B: :B:

CREATE
VARIABLE

WITH VALUE
OF NUMBER

LOAD AUX.
REGISTER

IMMEDIATE

LCAR

I

7-51

LeAR LeAR
$ENDIF
$ENDIF
$END

EXAMPLE 1:

0010 LCAR O,A
0001 0006 7007 LARK O,A LOAD 0 WITH A

EXAMPLE 2:

0012 LCAR 1 , C
0001 0007 F800 CALL LDAR$l LOAD 1 WITH:

0008 0000
0002 REF LDAR$l
0003 0009 0000" DATA C C

EXAMPLE 3:

0014 LCAR AR1,-1000
0001 FC18 V$l EQU -1000
0002 OOOA F800 CALL LDAR$l LOAD AR1 WITH:

OOOB 0000
0003 REF LDAR$l
0004 OOOC FC18 DATA V$l V$l

EXAMPLE 4:

0016 LCAR ARO,3333
0001 ODDS V$2 EQU 3333
0002 OOOD F800 CALL LDAR$O LOAD ARO WITH:

OOOE 0000
0003 REF LDAR$O

I 0004 OOOF ODDS DATA V$2 V$2

7-52

LCAX Load Double-Word Constant into Accumulator - Macro

TITLE: Load Double-Word Constant into Accumulator

NAME: LCAX

OBJECTIVE: Move double-word constant value into accumulator

ALGORITHM: Constant -+ ACC

CALLING
SEQUENCE: LCAX (upper,lower)

ENTRY
CONDITIONS: - 32768 ~ upper ~ 32767; - 32768 ~ lower ~ 32767

EXIT
·CONDITIONS: Accumulator contains value of the constant

DATA
MEMORY

PROGRAM
MEMORY
REQUIRED: 2 words + LDAX$ routine REQUIRED: 3 words

STACK
REQUIRED: 2 levels

FLOWCHART: LCAX

(BEGIN) ,
CALL LDAX$ WITH

CONSTANTS IN
NEXT TWO WORDS ,

READ FIRST
(UPPER) CONSTANT ,

INCREMENT
ARGUMENT

POINTER

l

EXECUTION
TIME: 18 cyctes

• READ SECOND
(LOWER) CaNST ANT

~
INCREMENT RETURN

ADDRESS

j
LOAD TWO WORDS

INTO ACC

l
RETURN

~
(END)

LCAX

I

7-53

I

LCAX
SOURCE:

*LOAD DOUBLE CONSTANT (TO AC)

7-54

* LCAX (HIGH VALUE,LOW VALUE)
* LCAX $MACRO A

CALL LDAX$
REF LDAX$
DATA :A:
$END

EXAMPLE 1:

0010
0001 0006 F800

0007 0000
0002
0003 0008 0080

0009 0003

EXAMPLE 2:

0012
0001 OOOA F800

OOOB 0000
0002
0003 DaDe FC18

DODD 0005

EXAMPLE 3:

0014
0001 OOOE F800

OOOF 0000
0002
0003 0010 0007
0011 0009

LOAD DOUBLE

DATA LIST

LCAX (128,3)
CALL LDAX$

REF LDAX$
DATA 128,3

LCAX (-1000,S)
CALL LDAX$

REF LDAX$
DATA -1000,S

LCAX (A,B)
CALL LDAX$

REF LDAX$
DATA A,B

LCAX

LOAD DOUBLE

DATA LIST

LOAD DOUBLE

DATA LIST

LOAD DOUBLE

DATA LIST

LCAXAR Load Double-Word Constant to Accumulator
from Program Memory - Macro LCAXAR

TITLE: Load Double-Word Constant to Accumulator from Program Memory

NAME: LCAXAR

OBJECTIVE: Load accumulator from double-word array in program RAM; the address
of the first program ROM location is in the accumulator

ALGORITHM: (@ACC) ~ temp
(@ACC + 1) ~ temp + 1
(temp:temp + 1) ~ ACC

CALLING
SEQUENCE:

ENTRY

LCAXAR [TEM Pl

CONDITIONS: 0 ~ TEMP ~ 127; 0 ~ (ACC) ~ 4095

EXIT
CON DITIONS: Program ROM double-word location pointed to by

accumulator is stored in the accumulator

PROGRAM
MEMORY
REQUIRED: 5 words

STACK
REQUIRED: 1 level

FLOWCHART: LCAXAR

YES

READ DOUBLE WORD
FROM PROGRAM

MEMORY INTO TEMP

LOAD DOUBLE WORD
FROM TEMPORARY

INTO ACC

DATA
MEMORY
REQUIRED: 2 words

EXECUTION
TIME: 9 cycles

ASSIGN XRO
AND XR1 AS

TEMP STORAGE

7-55

I

I

LGAXAR
SOURCE:

*LOAD FROM ROW AT ADDRESS IN ACCUMULATOR,
*DOUBLE CONSTANT TO ACCUMULATOR
*
LCAXAR $MACRO T

ASSIGN TEMP
TO T.S

$IF T.L=O
$ASG 'XRO'
$ENDIF
TBLR :T: READ HIGH PART OF :T:

7-56

ADD ONE,O
TBLR :T:+1
LDAX :T:
$END

EXAMPLE 1:

0011
0001 0006 6706 11

0002 0007 0004 11

0003 0008 6707 11

0004
0001 0009 6506 11

0002 OOOA 6107 11

EXAMPLE 2:

0013
0001 OOOB 6700 11

0002 OOOC 0004 11

0003 0000 6701 11

0004
0001 OOOE 6500 11

0002 OOOF 6101 11

INCREMENT AC
READ LOW PART OF :T:
LOAD TO AC

LCAXAR
TBLR XRO READ HIGH PART OF XRO
ADD ONE,O INCREMENT AC
TBLR XRO+1 READ LOW PART OF XRO
LDAX XRO LOAD TO AC

ZALH XRO LOAD HIGH XRO
ADDS XRO+1 LOAD LOW XRO

LCAXAR C
TBLR C READ HIGH PART OF C
ADD ONE,O INCREMENT AC
TBLR C+1 READ LOW PART OF C
LDAX C LOAD TO AC

ZALH C LOAD HIGH C
ADDS C+1 LOAD LOW C

L\.;AAAH

LCP Load Constant into P Register - Macro

TITLE: Load Constant into P Register

NAME: LCP

OBJ ECTIVE: Move constant value into P register

ALGORITHM: 1 * constant -+ P

CALLING
SEQUENCE: LCP constant

ENTRY
CONDITIONS: - 4096 ~ constant ~ 4095

EXIT
CONDITIONS: P register contains value of the constant;

T register contains value 1

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

2 words

None

FLOWCHART: LCP

SOURCE:

DATA
MEMORY
REQUIRED: 1 word

EXECUTION
TIME: 2 cycles

LOAD T REGISTER
WITH ONE

LOAD P REGISTER
WITH CONSTANT

*LCP LOAD A CONSTANT TO THE P REGISTER
*
LCP $MACRO A

LT ONE
MPYK :A:
$END

LOAD A ONE
MAKE CONSTANT

LCP

I

7-57

LCP LCP

EXAMPLE 1:

0013 LCP A
0001 0008 6A01 11 LT ONE LOAD A ONE
0002 0009 8007 MPYK A MAKE CONSTANT

EXAMPLE 2:

0015 LCP -4096
0001 OOOA 6A01 11 LT ONE LOAD A ONE
0002 OOOB 9000 MPYK -4096 MAKE CONSTANT

EXAMPLE 3:

0017 LCP 4095
0001 oooe 6A01 11 LT ONE LOAD A ONE
0002 0000 8FFF MPYK 4095 MAKE CONSTANT

EXAMPLE 4:

0019 LCP -4000
0001 OOOE 6A01 11 LT ONE LOAD A ONE
0002 OOOF 9060 MPYK -4000 MAKE CONSTANT

I

7-58

LCPAC Load Constant into P Register
and Accumulator - Macro

TITLE: Load Constant into P Register and Accumulator

NAME: LCPAC

OBJECTIVE: Move constant value into P register and accumulator

ALGORITHM: 1 * constant -+ P
(P) -+ ACe

CALLING
SEQUENCE: LCPAC constant

ENTRY
CONDITIONS: - 4096 ~ constant ~ 4095

EXIT
CONDITIONS: P register and accumulator contain value of the constant;

T register contains the value 1

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

3 words

None

FLOWCHART: LCPAC

SOURCE:

DATA
MEMORY
REQUIRED: 1 word

EXECUTION
TIME: 3 cycles

(BEGIN) ,
LOAD T REGISTER

WITH ONE ,
LOAD P REGISTER

(MULTIPLY
ARGUMENT)

•
LOAD P REGISTER

INTO Ace

• (END)

*LCPAC LOAD A CONST TO P AND AC REGISTERS
*
LCPAC $MACRO A

LCPAC

I

7-59

LCPAC LCPAC
LT ONE LOAD A ONE
HPYK :A: MAKE CONSTANT
PAC TO THE AC
$END

EXAMPLE 1:

0013 LCPAC A
0001 0009 6A01" LT ONE LOAD A ONE
0002 OOOA 8007 HPYK A MAKE CONSTANT
0003 OOOB 7F8E PAC TO THE AC

EXAMPLE 2:

0015 LCPAC -4096
0001 OOOC 6A01" LT ONE LOAD A ONE
0002 OOOD 9000 MPYK -4096 MAKE CONSTANT
0003 OOOE 7F8E PAC TO THE AC

EXAMPLE 3:

0017 LCPAC 4095
0001 OOOF 6A01" LT ONE LOAD A ONE
0002 0010 8FFF MPYK 4095 MAKE CONSTANT
0003 0011 7F8E PAC TO THE AC

EXAMPLE 4:

0019 LCPAC -4000
0001 0012 6A01" LT ONE LOAD A ONE
0002 0013 9060 MPYK -4000 MAKE CONSTANT
0003 0014 7F8E PAC TO THE AC

I

7-60

LDAX Load Double Word - Macro

TITLE: Load Double Word

NAME: LDAX

OBJECTIVE: Load double word into accumulator

~LGORITHM: LDAX * - causes-+ (@AR:@AR + 1) -+ ACC

CALLING

LDAX * - - causes-+ (@AR - 1: @ AR) -+ ACC
(AR) - 2-+AR

LDAX * + - causes-+ (@AR:@ AR + 1) -+ ACC
(AR) + 2-+AR

LDAX A - causes-+ (A:A + 1) -+ ACC

SEQUENCE: LDAX {A,*,* -,* + }

ENTRY
CONDITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: Accumulator contains value of double word;

auxiliary register is updated if necessary

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 2 words REQUIRED:

STACK EXECUTION
REQUIRED: None TIME:

LDAX

I
None

2 cycles

7-61

I

LDAX
FLOWCHART: LDAX

7-62

LOAD @AR
AND @AR+ 1

LOAD @AR
AND @AR+ 1

SOURCE:

*LOAD DOUBLE PRECISION
*
LDAX $MACRO A LOAD DOUBLE

$VAR ST,SP,SM
$ASG 1*1 TO ST.S
$ASG 1*+1 TO SP.S
$ASG 1*_1 TO SM.S
$IF A.SV=ST.SV
ZALH *+ LOAD HIGH
ADDS *- LOAD LOW 1*1
$ELSE
$IF A.SV=SP.SV
ZALH *+ LOAD HIGH
ADDS *+ LOAD LOW 1*+1
$ELSE
$IF A.SV=SM.SV
ZALS *- LOAD LOW
ADDH *- LOAD HIGH 1*_1
$ELSE
ZALH :A: LOAD HIGH :A:
ADDS :A:+l LOAD LOW :A:
$ENDIF
$ENDIF
$ENDIF
$END

LOAD
A AND A+1

END

LOAD @AR
AND @AR+1

LDAX

LDAX LDAX

EXAMPLE 1:

0011 LDAX A
0001 0006 6507 ZALH A LOAD HIGH A
0002 0007 6108 ADDS A+l LOAD LOW A

EXAMPLE 2:

0013 LDAX *
0001 0008 65A8 ZALH *+ LOAD HIGH
0002 0009 6198 ADDS *- LOAD LOW 1*1

EXAMPLE 3:

0015 LDAX *-
0001 OOOA 6698 ZALS *- LOAD LOW
0002 OOOB 6098 ADDH *- LOAD HIGH 1*_1

EXAMPLE 4:

0017 LDAX *+
0001 oooe 65A8 ZALH *+ LOAD HIGH
0002 OOOD 61A8 ADDS *+ LOAD LOW 1*+1

I

7-63

I

LTK Load Constant into T Register - Macro

TITLE: Load Constant into T Register

NAME: LTK

OBJECTIVE: Move constant value into T register

ALGORITHM: Constant -+ T

CALLING
SEQUENCE: L TK constant

ENTRY
CONDITIONS: - 32768 ~ constant ~ 32767

EXIT
CONDITIONS: T register contains value of the constant

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 3 words (+ L TK$ routine) REQUIRED:

STACK
REQUIRED: 2 levels

FLOWCHART: LTK

7-64

SOURCE:

*LOAD CONSTANT TO T
*
LTK $MACRO A

CALL LTK$
REF LTK$
DATA :A:
$END

EXECUTION
TIME:

MOVE CONSTANT
TO DATA MEMORY

LOAD T REGISTER
WITH VALUE IN
DATA MEMORY

LOAD :A: TO T

2 words

13 cycles

LTK

LTK LTK

EXAMPLE 1:

0012 LTK A
0001 0009 F800 CALL LTK$ LOAD A TO T

OOOA 0000
0002 REF LTK$
0003 OOOB 0007 DATA A

EXAMPLE 2:

0014 LTK >7FFF
0001 OOOC F800 CALL LTK$ LOAD >7FFF TO T

DODD 0000
0002 REF LTK$
0003 00 DE 7FFF DATA >7FFF

EXAMPLE 3:

0016 LTK >8000
0001 OOOF F800 CALL LTK$ LOAD >8000 TO T

0010 0000
0002 REF LTK$
0003 0011 8000 DATA >8000

I

7-65

I

MAX Select Maximum of Two Words - Macro

TITLE: Select Maximum of Two Words

NAME: MAX

OBJECTIVE: Load maximum of two words into accumulator

ALGORITHM: If (A) > (B) then (A) -+ ACC
else (B) -+ ACe

CALLING
SEQUENCE:

ENTRY

MAX A,B

CONDITIONS: 0 ~ A ~ 127; 0 ~ B ~ 127

EXIT
CONDITIONS: Accumulator contains maximum value of two words

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

8 words

None

FLOWCHART: MAX

7-66

COMPARE 1ST
ARGUMENT AND 2ND

ARGUMENT

LOAD 2ND
ARGUMENT INTO ACC

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 5 - 7 cycles

LOAD 1ST
ARGUMENT INTO Ace

MAX

MAX

SOURCE:

*SELECT MAXIMUM OF SINGLE A OR B
*A AND B ARE VARIABLES
*
MAX $MACRO A,B

LAC :A:,O LOAD :A:
SUB :B:,O COMPARE :B:
$VAR L,L1,L2
$ASG I$$LABI TO L.S
$ASG L.SV+2 TO L.SV UNIQUE LABEL
$ASG L.SV-1 TO L1.V
$ASG L.SV TO L2.V
BGZ L$:L1.V: BRANCH IS :A:>:B:
LAC :B:,O LOAD :B:
B L$:L2.V: TO CONTINUE

L$:L1.V: LAC :A:,O LOAD :A:
L$:L2.V: EQU $ CONTINUE

$END

EXAMPLE:

0011 MAX A,B
0001 0006 2007 LAC A,O
0002 0007 1008 SUB B,O
0003 0008 FCOO BGZ L$l

0009 OOOD I
0004 OOOA 2008 LAC B,O
0005 OOOB F900 B L$2

oooe OOOEI
0006 OOOD 2007 L$l LAC A,O
0007 OODEI L$2 EQU $

MAX

LOAD A
COMPARE B
BRANCH IS A>B

LOAD B
TO CONTINUE

LOAD A I CONTINUE

7-67

MAXX Select Maximum of Two Double Words - Macro

TITLE: Select Maximum of Two Double Words

NAME: MAXX

OBJECTIVE: Load maximum of two double words into accumulator

ALGORITHM: If (A:A + 1) > (8:B + 1) then (A:A + 1) -+ ACC
else (B:B + 1) -+ ACC

CALLING
SEQUENCE:

ENTRY

MAXX A,8

CONDITIONS: 0 < = A < ,PI6, 171126; 0 < = 8 < = 126

EXIT
CONDITIONS: Accumulator contains maximum value of two double words; saturation

mode is reset

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

14 words

None

I FLOWCHART: MAXX

7-68

COMPARE 1ST
ARGUMENT AND 2ND

ARGUMENT

LOAD 2ND
ARGUMENT INTO ACC

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 10 - 12 cycles

LOAD 1ST
ARGUMENT INTO

ACC

MAXX

MAXX

SOURCE:

*SELECT MAX OF DOUBLE A OR B (VARIABLES)

*
MAXX $MACRO A,B

SOVM
LDAX :A:
SUBX :B:
$VAR L,L1,L2

SET OVERFLOW MODE
LOAD :A:
COMPARE TO :B:

$ASG '$$LAB' TO L.S
$ASG L.SV+2 TO L.SV UNIQUE LABEL
$ASG L.SV-1 TO L1.V
$ASG L.SV TO L2.V
BGZ L$:L1.V: BRANCH IF :A:>:B:
LDAX :B: LOAD :B:
B L$:L2.V: TO CONTINUE

L $: L 1 . V: LDAX : A : LOAD : A :
L$:L2.V: ROVM CONTINUE

$END

EXAMPLE:

0013 MAXX C,D
0001 0013 7F8B SOVM SET OVERFLOW MODE
0002 LDAX C LOAD C
0001 0014 6500" ZALH C LOAD HIGH C
0002 0015 6101" ADDS C+1 LOAD LOW C
0003 SUBX D COMPARE TO D
0001 0016 6202" SUBH D SUBTRACT HIGH
0002 0017 6303" SUBS D+1 SUBTRACT LOW
0004 0018 FCOO BGZ L$3 BRANCH IF C>D

0019 OOIE '
0005 LDAX D LOAD D
0001 001A 6502" ZALH D LOAD HIGH D
0002 OOIB 6103" ADDS D+1 LOAD LOW D
0006 001C F900 B L$4 TO CONTINUE

OOID 0020 1

0007 L$3 LDAX C LOAD C
0001 OOIE 6500" ZALH C LOAD HIGH C
0002 OOIF 6101" ADDS C+1 LOAD LOW C
0008 0020 7F8A L$4 ROVM CONTINUE

MAXX

I

7-69

I

MIN Select Minimum of Two Words - Macro

TITLE: Select Minimum of Two Words

NAME: MIN

OBJECTIVE: Load minimum of two words into accumulator

ALGORITH M: If (A) < (B) then (A) -+ ACC
else (B) -+ ACC

CALLING
SEQUENCE:

ENTRY

MIN A,B

CONDITIONS: 0 ~ A ~ 127; 0 ~ B ~ 127

EXIT
CONDITIONS: Accumulator contains minimum value of two words

PROGRAM
MEMORY
REQUIRED: 8 words

STACK
REQUIRED: None

FLOWCHART: MIN

7-70

COMPARE 1ST
ARGUMENT AND 2ND

ARGUMENT

LOAD 2ND
ARGUMENT INTO ACC

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 5 - 7 cycle

LOAD 1ST
ARGUMENT INTO

ACC

MIN

MIN

SOURCE:

*SELECT MINUMUM OF SINGLE A OR B (VARIABLES)
*
MIN $MACRO A,B

LAC :A:,O LOAD :A:
SUB :B:,O COMPARE TO :B:
$VAR L,L1,L2
$ASG I$$LABI TO L.S
$ASG L.SV+2 TO L.SV
$ASG L.SV-1 TO L1.V
$ASG L.SV TO L2.V
BLZ L$:L1.V: BRANCH IF :A:<:B:
LAC :B:,O LOAD :B:
B L$:L2.V: TO CONTINUE

L$:L1.V: LAC :A:,O LOAD :A:
L$:L2.V: EQU $ CONTINUE

$END

EXAMPLE:

0011 MIN A,B
0001 0006 2007 LAC A,O
0002 0007 1008 SUB B,O
0003 0008 FAOO BLZ L$l

0009 0000 1

0004 DaDA 2008 LAC B,O
0005 OOOB F900 B L$2

OOOC OOOE I
0006 OOOD 2007 L$1 LAC A,O
0007 OOOE I L$2 EQU $

LOAD A
COMPARE TO B
BRANCH IF A<B

LOAD B
TO CONTINUE

LOAD A
CONTINUE

MIN

I

7-71

MINX Select Minimum of Two Double Words - Macro

TITLE: Select Minimum of Two Double Words

NAME: MINX

OBJECTIVE: Load minimum of two double words into accumulator

ALGORITHM: If (A:A + 1) < (B:B + 1) then (A:A + 1) ACC

CALLING
SEQUENCE:

ENTRY

else (B:B + 1) ACC

MINX A,B

CONDITIONS: 0 ~ A ~ 126; 0 ~ B ~ 126

EXIT
CONDITIONS: Accumulator contains minimum value of two double words; saturation

mode is reset

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

14 words

None

I FLOWCHART: MINX

7-72

COMPARE 1ST
ARGUMENT AND 2ND

ARGUMENT

LOAD 2ND
ARGUMENT
INTO ACC

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 10 - 12 cycles

LOAD 1ST
ARGUMENT INTO

ACC

MINX

MINX

SOURCE:

*SELECT MINIMUM OF DOUBLE A OR B (VARIABLES)
*
MINX $MACRO A,B

SOVM
LDAX :A:
SUBX :B:
$VAR L,L1,L2

SET OVERFLOW MODE
LOAD :A:
COMPARE TO :B:

$ASG I$$LABI TO L.S
$ASG L.SV+2 TO L.SV
$ASG L.SV-1 TO L1.V
$ASG L.SV TO L2.V
BLZ L$:L1.V: BRANCH IF :A:<:B:
LDAX :B: LOAD :B:
B L$:L2.V: TO CONTINUE

L$:L1.V: LDAX :A: LOAD :A:
L$:L2.V: ROVM CONTINUE

$END

EXAMPLE:

0011 MINX A,B
0001 0005 7F8B SOVM SET OVERFLOW MODE
0002 LDAX A LOAD A
0001 0006 6507 ZALH A LOAD HIGH A
0002 0007 6108 ADDS A+1 LOAD LOW A
0003 SUBX B COMPARE TO B
0001 0008 6209 SUBH B SUBTRACT HIGH
0002 0009 630A SUBS B+1 SUBTRACT LOW
0004 OOOA FAOO BLZ L$l BRANCH IF A<B

OOOB 0010 1

0005 LDAX B LOAD B
0001 OOOC 6509 ZALH B LOAD HIGH B
0002 0000 610A ADDS B+1 LOAD LOW B
0006 OOOE F900 B L$2 TO CONTINUE

00 OF 0012 1

0007 L$l LDAX A LOAD A
0001 0010 6507 ZALH A LOAD HIGH A
0002 0011 6108 ADDS A+1 LOAD LOW A
0008 0012 7F8A L$2 ROVM CONTINUE

MINX

I

7-73

I

MOV Move Word in Data Memory - Macro

TITLE: Move Word in Data Memory

NAME: MOV

OBJECTIVE: Copy word from one location to another in data memory

ALGORITHM: (A) - B or
(@ACC) - B

CALLING
SEQUENCE:

ENTRY

MOV [ALB

CONDITIONS: 0 ~ A ~ 127;0 ~ B ~ 127

EXIT
CONDITIONS: Word at B contains value of word located at A;

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

FLOWCHART:

7-74

ARO may be overwritten; accumulator is overwritten

2 - 5 words

None

MOV

LOAD ACC WITH
DATA WORD OF

SOURCE

SAVE ACC IN
LOCATION OF
DESTINATION

NO

DATA
MEMORY
REQUIRED: o - 1 words

EXECUTION
TIME: 2 - 5 cycles

MOVE ACC TO
AUX. REGISTER

LOAD ACC WITH
WORD POINTED

TO BY AUX.
REGISTER

MOV

MOV
SOURCE:

*MOVE ONE WORD (A TO B)
*
MOV $MACRO A,B

$IF A.L=O
SACL XRO,O
LAR ARO,XRO
LARP ARO
LAC *,0
$ELSE
LAC :A:,O
$ENDIF
SACL :B:,O
$END

EXAMPLE 1:

0012
0001 0006 2001
0002 0007 5008

EXAMPLE 2:

0014
0001 0008 2088
0002 0009 5008

EXAMPLE 3:

0016
0001 OOOA 2000"
0002 OOOB 50A8

EXAMPLE 4:

0018
0001 OOOC 5004"
0002 0000 3804"
0003 OOOE 6880
0004 OOOF 2088
0005 0010 5001"

EXAMPLE 5:

0020
0001 0011 2098
0002 0012 5008

EXAMPLE 6:

0022
0001 0013 20A8
0002 0014 5001

EXAMPLE 7:

0024
0001 0015 2001 11

0002 0016 5098

IF A IS AC
SAVE AC
LOAD TO ARO
SELECT ARO
LOAD *

LOAD :A:

STORE :B:

MOV A,B
LAC A,O
SACL B,O

MOV *,B
LAC *,0
SACL B,O

MOV C,*+
LAC C,O
SACL *+,0

MOV ,D
SACL XRO,O
LAR ARO,XRO
LARP ARO
LAC *,0
SACL D,O

MOV *-,B
LAC *-,0
SACL B,O

MOV *+,A
LAC *+,0
SACL A,O

MOV D,*-
LAC D,O
SACL *-,0

LOAD A
STORE B

LOAD *
STORE B

LOAD C
STORE *+

SAVE AC
LOAD TO ARO
SELECT ARO
LOAD *
STORE D

LOAD *
STORE B

LOAD *+
STORE A

LOAD D
STORE *-

MOV

I

7-75

MOVCON Move Constants in Data Memory - Macro MOVCON

TITLE:

NAME:

OBJECTIVE:

ALGORITHM:

CALLING
SEQUENCE:

ENTRY

Move Constants to Data Memory

MOVCON

Move list of constants to data memory

For each constant in list,
C - A[i] (data memory location)

MOVCON C LAI, *] or
MOVCON (Cl ,C2, ... Cn) LAI, *]

CONDITIONS: 0 ~ A ~ 143; - 32768 ~ C ~ 32767

EXIT
CONDITIONS: Data memory addresses starting at specified locations are filled with

constants; ARO and ARl may be overwritten

PROGRAM
MEMORY
REQUIRED:

STACK I REQUIRED:

7-76

8 words (+ MOVC$ routines)

2 levels

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

3 words

(max) 9 + (7 x
of C's) cycles

MOVCON
FLOWCHART: MOVCON

SOURCE:

MOVE LIST OF
CONSTANTS;
CALL MOVC$

MOVCON $MACRO A,B
$VAR ST
$ASG 1*1 TO ST.S
$IF B.L=O
ACTAR ARl
$ASG '*1 TO B.S
$ENDIF

MOVE LIST OF
CONSTANTS;

CALL MOVC$1

$IF A.A&$POPL A IS LIST OF CONST
$IF B.SV=ST.SV
CALL MOVC$l MOVE CONSTANTS
REF MOVC$l
$ELSE
CALL MOVC$ MOVE CONSTANTS
REF MOVC$
DATA :B: TO :8:
$ENDIF
DATA :A.V: LENGTH OF LIST
DATA :A: CONSTANT LIST
$ELSE
LCAC :A:
SACL :B:,O STORE CONSTANT
$ENDIF
$END

ACC POINTS TO
DESTINATION;
MOVE ACC TO

AR1

LOAD SINGLE
CONSTANT
INTO ACC

MOVE ACC TO
DESTINATION

MOVCON

I

7-77

MUVl,;UI~ MOVCON
EXAMPLE 1:

0012 MOVCON 1,B
0001 LCAC 1
0001 0001 V$l EQU 1
0002 0006 7E01 LACK V$l LOAD AC WITH V$l
0002 0007 5008 SACL B,O STORE CONSTANT

EXAMPLE 2:

0014 MOVCON 3,*
0001 LCAC 3
0001 0003 V$2 EQU 3
0002 0008 7E03 LACK V$2 LOAD AC WITH V$2
0002 0009 5088 SACL *,0 STORE CONSTANT

EXAMPLE 3:

0016 MOVCON 6,
0001 ACTAR AR1
0001 OOOA 5004" SACL XRO,O STORE AC TO XRO
0002 0008 3904" LAR AR1,XRO RE-LOAD AR1
0003 OOOC 6881 LARP AR1 LOAD AR POINTER
0002 LCAC 6
0001 0006 V$3 EQU 6
0002 0000 7E06 LACK V$3 LOAD AC WITH V$3
0003 OOOE 5088 SACL *,0 STORE CONSTANT

EXAMPLE 4:

0018 MOVCON {32,15,2,13),B
0001 OOOF F800 CALL MOVC$ MOVE CONSTANTS

0010 0000
0002 REF MOVC$

I
0003 0011 0008 DATA B TO B
0004 0012 0004 DATA 4 LENGTH OF LIST
0005 0013 0020 DATA 32,15,2,13 CONSTANT LIST

0014 OOOF
0015 0002
0016 0000

EXAMPLE 5:

0020 MOVCON (22,1,56),*
0001 0017 F800 CALL MOVC$l MOVE CONSTANTS

0018 0000
0002 REF MOVC$l
0003 0019 0003 DATA 3 LENGTH OF LIST
0004 001A 0016 DATA 22,1,56 CONSTANT LIST

0018 0001
001C 0038

EXAMPLE 6:

0022 MOVCON (33,34,35),
0001 ACTAR AR1
0001 001D 5004" SACL XRO,O STORE AC TO XRO
0002 001E 3904" LAR AR1,XRO RE-LOAD AR1
0003 001F 6881 LARP AR1 LOAD AR POINTER
0002 0020 F800 CALL MOVC$l MOVE CONSTANTS

0021 0000
0003 REF MOVC$l
0004 0022 0003 DATA 3 LENGTH OF LIST

7-78

MOVCON
0005 0023 0021

0024 0022
0025 0023

DATA 33,34,35 CONSTANT LIST
MOVCON

I

7-79

MOVDAT Move Words in Data Memory - Macro

TITLE: Move Words to Data Memory

NAME: MOVDAT

OBJECTIVE: Copy data from program memory to data memory

ALGORITHM: For number of elements in array,

CALLING

MOVDAT
MOVDAT
MOVDAT

MOVDAT
MOVDAT
MOVDAT

MOVDAT
MOVDAT

A,8,C - causes-+ (A) -+ @B
A, *,C - causes-+ (A) -+ @AR1
A, ,C - causes-+ (A) -+ @ACC

*,8,C - causes-+ (@ARO) -+ @B
*, *,C - causes-+ (@ARO) -+ @AR1
*, ,C - causes-+ (@ARO) -+ @ACC

,8,C - causes-+ (@ACC) -+ @8
, *,C - causes-+ (@ACC) -+ @AR1

SEQUENCE: MOVDAT [AI*],[BI*][,C]

ENTRY
CONDITIONS: 0 ~ 8 + C ~ 143; 0 ~ A < 4095

I EXIT

MOVDAT

CON DITIONS: Elements of B contain data from program memory starting at A; ARO and
A R 1 may be overwritten

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

7-80

12 words (+ routines)

2 levels

DATA
MEMORY
REQUIRED: 3 words

EXECUTION
TIME: (max) 31 + (7x

length) cycles

~
I

00 -

ACC CONTAINS
DESTINATION; MOVE

ACC TO AR1

MOVE TO RAM;
CALL MOVE$A

MOVE TO RAM;
CALL MOVE$$

NO

MOVE TO RAM;
CALL MOVE$B

-

MOVE TO RAM;
CALL MOVE$B

NO

YES

ACC CONTAINS
DESTINATION; MOVE

ACC TO AR1

LOAD AUX.
REG. TO ACC

MOVE FIRST
WORD

YES

LOAD SOURCE
ADDRESS TO

ACC

MOVE SECOND
WORD

~s:
~O n<
~C
~l> .. -I
s:
o
< o »
--I

s
o
<
C
l>
-I

I

MOVDAT

7-82

SOURCE:

*MOVE L(CONST) WORDS FROM A(ROM ITEM)
*TO B(RAM VAR)
*ROM ITEM IS:
*
MOVDAT $MACRO A,B,L

$VAR ST
$ASG 1*1 TO ST.S
$IF B.L=O
ACTAR ARI
$ASG 1*1 TO B.S
$ENDIF
$IF L.V<3 ONE OR TWO WORDS
$IF A.SV=ST.SV A = *
ARTAC ARO
$ELSE
$IF A.L#=O A = PROGRAM ADDRESS
LCAC :A:
$ENDIF
$ENDIF
$IF B.SV=ST.SV
LARP 1
TBLR *+ READ FIRST WORD
$ELSE
TBLR :8:
$ENDIF
$IF L.V=2 TWO WORDS
ADD ONE,O INCREMENT POINTER
$IF B.SV=ST.SV
TBLR *+ READ NEXT WORD
$ELSE
TBLR :8:+1
$ENDIF
$ENDIF
$ENDIF
$IF L.V>2
$IF A.L=O
ACTAR ARO
$ASG 1*1 TO A.S
$ENDIF
$IF B.SV=ST.SV
$IF A.SV#=ST.SV
CALL MOVC$A MOVE
REF MOVC$A
DATA :A: FROM :A:
$ELSE
CALL MOVC$$ MOVE
REF MOVC$$
$ENDIF
$ELSE
$IF A.SV#=ST.SV
CALL MOVA$B MOVE
REF MOVA$B
DATA :A: FROM :A:
$ELSE
CALL MOVC$B MOVE
REF MOVC$B
$ENDIF
DATA :8: TO :B:
$ENDIF
DATA :L: FOR :L: WORDS
$ENDIF
SEND

MOVDAT

MOVDAT MOVDAT

EXAMPLE 1:

0012 MOVDAT A,B
0001 LCAC A
0001 0006 7E01 LACK A LOAD AC WITH A
0002 0007 6708 TBLR B

EXAMPLE 2:

0014 MOVDAT *,B,2
0001 ARTAC ARO
0001 0008 3004" SAR ARO,XRO SAVE ARO
0002 0009 2004 11 LAC XRO,O LOAD INTO AC
0002 OOOA 6708 TBLR B
0003 OOOB 0002 11 ADD ONE,O INCREMENT POINTER
0004 OOOC 6709 TBLR B+1

EXAMPLE 3:

0016 MOVDAT *,*,2
0001 ARTAC ARO
0001 OOOD 3004 11 SAR ARO,XRO SAVE ARO
0002 OOOE 2004 11 LAC XRO,O LOAD INTO AC
0002 00 OF 6881 LARP 1
0003 0010 67A8 TBLR *+ READ FIRST WORD
0004 0011 0002 11 ADD ONE,O INCREMENT POINTER
0005 0012 67A8 TBLR *+ READ NEXT WORD

EXAMPLE 4:

0018 HOVDAT C,*,B
0001 0013 F800 CALL MOVC$A MOVE

0014 0000
0002 REF MOVC$A I 0003 0015 DODO" DATA C FROM C
0004 0016 0008 DATA B FOR B WORDS

EXAMPLE 5:

0020 MOVDAT *,,5
0001 ACTAR AR1
0001 0017 5004 11 SACL XRO,O STORE AC TO XRO
0002 0018 3904 11 LAR AR1,XRO RE-LOAD AR1
0003 0019 6881 LARP AR1 LOAD AR POINTER
0002 001A F800 CALL MOVC$$ MOVE

001B 0000
0003 REF MOVC$$
0004 ODIC 0005 DATA 5 FOR 5 WORDS

EXAMPLE 6:

0022 MOVDAT ,B
0001 0010 6708 TBLR B

EXAMPLE 7:

0024 MOVDAT ,*,5
0001 ACTAR ARO
0001 ODIE 5004" SACL XRO,O STORE AC TO XRO
0002 00 IF 3804 11 LAR ARO,XRO RE-LOAD ARO
0003 0020 6880 LARP ARO LOAD AR POINTER
0002 0021 F800 CALL MOVC$$ MOVE

0022 0000

7-83

MOVDAT MOVDAT
0003 REF MOVC$$
0004 0023 0005 DATA 5 FOR 5 WORDS

EXAMPLE 8:

0026 MOVDAT D,*
0001 LCAC D
0001 0024 F800 CALL LDAC$ LOAD AC WITH:

0025 0000
0002 REF LDAC$
0003 0026 0001" DATA D D
0002 0027 6881 LARP 1
0003 0028 67A8 TBLR *+ READ FIRST WORD

EXAMPLE 9:

0028 MOVDAT D,,3
0001 ACTAR AR1
0001 0029 5004" SACL XRO,O STORE AC TO XRO
0002 002A 3904" LAR AR1,XRO RE-LOAD AR1
0003 002B 6881 LARP AR1 LOAD AR POINTER
0002 002C F800 CALL MOVC$A MOVE

002D 0000
0003 REF MOVC$A
0004 002E 0001" DATA D FROM D
0005 002F 0003 DATA 3 FOR 3 WORDS

EXAMPLE 10:

0030 MOVDAT *,*
0001 ARTAC ARO
0001 0030 3004" SAR ARO,XRO SAVE ARO
0002 0031 2004" LAC XRO,O LOAD INTO AC
0002 0032 6881 LARP 1

I 0003 0033 67A8 TBLR *+ READ FIRST WORD

EXAMPLE 11:

0032 MOVDAT *,*,9
0001 0034 F800 CALL MOVC$$ MOVE

0035 0000
0002 REF MOVC$$
0003 0036 0009 DATA 9 FOR 9 WORDS

7-84

MOVE Move Data Array - Macro

TITLE: Move Data Array

NAME: MOVE

OBJECTIVE: Copy data from one array to another in data memory.

ALGORITHM: For number of elements in array,
(A[i]) - 8m

CALLING
SEQUENCE: MOVE A,B,length

ENTRY
CON DITIONS: 0 ~ A + length ~ 143;0 ~ B + length ~ 143

EXIT
CONDITIONS: Elements of B contain corresponding elements of A;

ARO or AR1 may be overwritten

DATA
MEMORY

PROGRAM
MEMORY
REQUIRED: 5 - 7 words (+ MOV$ routines) REQUIRED: 1 - 3 words

STACK
REQUIRED: 2 levels

EXECUTION
TIME: (max) 29 + (7 x

length) cycles

MOVE

I

7-85

I

MOVE
FLOWCHART: MOVE

MOVE DOUBLE
WORD SOURCE

TO
DESTINATION

CALL MOVA$
TO PERFORM

TRANSFER

CALL MOV$$ TO
PERFORM TRANSFER

7-86

SOURCE:

*MOVE L(CONST) WORDS FROM A(RAM VAR)
*TO B(RAM VAR)
*
MOVE $MACRO A,B,L

$IF (L.V<2)&(B.L#=O)
MOV :A:,:B: MOVE ,SINGLE
$ENDIF
$IF (L.V=2)&(B.L#=O)
MOVX :A:,:B: MOVE DOUBLE
$ENDIF

END

MOVE SINGLE
WORD SOURCE

TO DESTINATION

CALL MOVAB$
TO PERFORM

TRANSFER

CALL MOVB$
TO PERFORM

TRANSFER

MUVE

IVIUVI:.
$IF (L.V>2)++(B.L=0)
$VAR ST
$ASG 1*1 TO ST.S
$IF (A.L#=O)&(B.L#=O)
$IF (A.SV#=ST.SV)&(B.SV#=ST.SV)
CALL MOVAB$ MOVE
REF MOVAB$
DATA :A:
DATA :B:
DATA :L.V:
$ENDIF
$ENDIF

FROM :A:
TO :B:
FOR :L.V: WORDS

$IF (A.SV#=ST.SV)&(A.L#=O)
$IF (B.L=O)++(B.SV=ST.SV)
$IF B.L=O
ACTAR AR1
$ENDIF
CALL MOVA$
REF MOVA$
DATA :A:
DATA :L.V:
$ENDIF
$ENDIF

AC TO AR1

MOVE

FROM :A:
FOR :L.V: WORDS

$IF (B.SV#=ST.SV)&(B.L#=O)
$IF (A.L=O)++(A.SV=ST.SV)
$IF A.L=O
ACTAR ARO
$ENDIF
CALL MOVB$
REF MOVB$
DATA :B:
DATA :L.V:
$ENDIF
$ENDIF

MOVE AC TO ARO

MOVE

TO :B:
FOR :L.V: WORDS

$IF (A.L=O)++(A.SV=ST.SV)
$IF (B.L=O)++(B.SV=ST.SV)
$IF A.L=O
ACTAR ARO
$ENDIF
$IF B.L=O
ACTAR AR1
$ENDIF
CALL MOV$$
REF MOV$$
DATA :L.V:
$ENDIF
$ENDIF
$ENDIF
$END

AC TO ARO .

AC TO AR1

MOVE

FOR :L.V: WORDS

EXAMPLE 1:

0012
0001
0001 0006 2001
0002 0007 5008

EXAMPLE 2:

0014
0001
0001
0001 0008 65A8
0002 0009 6198

MOVE A,B
MOV A,B

LAC A,O
SACL B,O

MOVE *,B,2
MOVX *,B

LDAX *
ZALH *+
ADDS *-

MOVE SINGLE
LOAD A
STORE B

MOVE DOUBLE
LOAD DOUBLE *
LOAD HIGH
LOAD LOW 1*1

MUVE

I

7-87

I

MOVE

7-88

0002
0001 OOOA 5808
0002 OOOB 5009

EXAMPLE 3:

0016
0001 OOOC F800

DODD 0000
0002
0003 OOOE 0000 11

0004 OOOF 0008

EXAMPLE 4:

0018
0001
0001 0010 5004 11

0002 0011 3904 11

0003 0012 6881
0002 0013 F800

0014 0000
0003
0004 0015 0005

EXAMPLE 5:

0020
0001
0001 0016 5004 11

0002 0017 3804"
0003 0018 6880
0004 0019 2088
0005 OOIA 5008

EXAMPLE 6:

0022
0001
0001 OOIB 5004 11

0002 OOIC 3804"
0003 OOID 6880
0002 DOlE F800

OOIF 0000
0003
0004 0020 0005

EXAMPLE 7:

0024
0001
0001 0021 2001"
0002 0022 5088

EXAMPLE 8:

0026
0001
0001 0023 5004"
0002 0024 3904 11

0003 0025 6881
0002 0026 F800

SACX B
SACH B,O
SACL B+1,0

MOVE C,*,B
CALL MOVA$

REF MOVA$
DATA C
DATA 8

MOVE *,,5
ACTAR AR1

SACL XRO,O
LAR ARl,XRO
LARP ARI

CALL MOV$$

REF MOV$$
DATA 5

MOVE ,B
MOV ,B

SACL XRO,O
LAR ARO,XRO
LARP ARO
LAC *,0
SACL B,O

MOVE ,*,5
ACTAR ARO

SACL XRO,O
LAR ARO,XRO
LARP ARO

CALL MOV$$

REF MOV$$
DATA 5

MOVE D,*
MOV D,*

LAC D,O
SACL *,0

MOVE D, ,3
ACTAR ARI

SACL XRO,O
LAR ARl,XRO
LARP ARI

CALL MOVA$

STORE DOUBLE *
STORE HIGH
STORE LOW

MOVE

FROM C
FOR 8 WORDS

AC TO AR1
STORE AC TO XRO
RE-LOAD ARI
LOAD AR POINTER
MOVE

FOR 5 WORDS

MOVE SINGLE
SAVE AC
LOAD TO ARO
SELECT ARO
LOAD *
STORE B

AC TO ARO
STORE AC TO XRO
RE-LOAD ARO
LOAD AR POINTER
MOVE

FOR 5 WORDS

MOVE SINGLE
LOAD D
STORE *

AC TO AR1
STORE AC TO XRO
RE-LOAD ARI
LOAD AR POINTER
MOVE

MUVI:

MOVE
0027 0000

0003
0004 0028 0001 11

0005 0029 0003

REF MOVA$
DATA D
DATA 3

MOVE

FROM D
FOR 3 WORDS

I

7-89

MOVROM Move Words to Program Memory - Macro MOVROM

TITLE: Move Words to Program Memory

NAME: MOVROM

OBJECTIVE: Copy data from data memory to program memory

ALGORITHM: For number of elements in array,

MOVROM A,B,C - causes- (A)-@B
MOVROM A, * ,C - causes- (A) -@AR1
MOVROM A, ,C - causes- (A)-@ACC

MOVROM *,B,C - causes- (@ARO)-@B
MOVROM *, * ,C - causes- (@ARO) - @AR1
MOVROM *, ,C - causes- (@ARO) - @ACC

MOVROM ,B,C - causes- (@ACC)-@B
MOVROM , *,C - causes- (@ACC) - @AR1

CALLING
SEQUENCE: MOVROM [A, *1,[B, *][,Iengthl

ENTRY
CONDITIONS: 0 ~ A + length ~ 143; 0 ~ B ~ 4095

I EXIT
CONDITIONS: Program memory starting at B contains data elements starting at A; ARO

and AR1 may be overwritten

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

7-90

8 words (+ TBW$ routines)

2 levels

DATA
MEMORY
REQUIRED: 3 words

EXECUTION
TIME: (max) 31 + (7 x

length) cycles

MOVROM
FLOWCHART: MOVROM

MOVE DATA TO
PROGRAM MEMORY;

CALL TBW$O

SOURCE:

YES

MOVE DATA TO
PROGRAM MEMORY;

CALL TBW$$

*MOVE L(CONST) WORDS FROM A(RAM VAR)
*TO B(ROM VAR)
*
MOVROM $MACRO A,B,L

$VAR 5T
$A5G 1*1 TO 5T.5
$IF L.V=O DEFAULT 0 TO 1
$ASG 1 TO L.V
$ENDIF
$IF A.L=O
ACTAR ARO AC TO ARO
$ENDIF
$IF B.L=O

MOVE DATA TO
PROGRAM MEMORY;

CALL TBW$1

YES

MOVROM

LENGTH = 1

ACC POINTS TO
SOURCE; MOVE

ACC TO ARO

ACC POINTS TO
DESTINATION; MOVE

ACC TO AR1

MOVE DATA TO
PROGRAM MEMORY;

CALL TBW$01

7-91

I

I

MOVROM

7-92

ACTAR AR1
$ENDIF

AC TO AR1

$IF (B.SV=ST.SV)++(B.L=O)
$IF (A.SV=ST.SV)++(A.L=O)
CALL TBW$Ol MOVE RAM->ROM
REF TBW$Ol
DATA :L.V:
$ELSE
CALL TBW$l
REF TBW$l
DATA :A:
DATA :L.V:
$ENDIF
$ELSE

FOR :L.V: WORDS

MOVE RAM->ROM

FROM :A:
FOR :L.V: WORDS

$IF (A.SV=ST.SV)++(A.L=O)
CALL TBWSO MOVE RAM->ROM
REF TBW$O
DATA :B:
DATA :L.V:
$ELSE
CALL TBW$$
REF TBW$$
DATA :A:
DATA :B:
DATA :L.V:
$ENDIF
$ENDIF
$END

TO :B:
FOR :L.V: WORDS

MOVE RAM->ROM

FROM :A:
TO :B:
FOR :L.V: WORDS

EXAMPLE 1:

0012
0001 0006 F800

0007 0000
0002
0003 0008 0001
0004 0009 0008
0005 OOOA 0001

EXAMPLE 2:

0014
0001 OOOB F800

OOOC 0000
0002
0003 0000 0008
0004 OOOE 0002

EXAMPLE 3:

0016
0001 OOOF F800

0010 0000
0002
0003 0011 0000"
0004 0012 0008

EXAMPLE 4:

0018
0001
0001 0013 5004"
0002 0014 3904"

MOVROM A,B
CALL TBW$$

REF TBW$$
DATA A
DATA B
DATA 1

MOVROM *,B,2
CALL TBW$O

REF TBW$O
DATA B
DATA 2

MOVROM C,*,B
CALL TBW$l

REF TBW$l
DATA C
DATA 8

MOVROM *,,5
ACTAR AR1

SACL XRO,O
LAR AR1,XRO

MOVE RAl-t - > ROM

FROM A
TO B
FOR 1 WORDS

MOVE RAM->ROM

TO 8
FOR 2 WORDS

MOVE RAM->ROM

FROM C
FOR 8 WORDS

AC TO AR1
STORE AC TO XRO
RE-LOAD AR1

MOVROM

MOVROM
0003 0015 6881
0002 0016 F800

0017 0000
0003
0004 0018 0005

EXAMPLE 5:

0020
0001
0001 0019 5004 11

0002 001A 3804 11

0003 001B 6880
0002 001C F800

0010 0000
0003
0004 DOlE 0008
0005 001F 0001

EXAMPLE 6:

0022
0001
0001 0020 5004 11

0002 0021 3804"
0003 0022 6880
0002 0023 F800

0024 0000
0003
0004 0025 0005

EXAMPLE 7:

0024
0001 0026 F800

0027 0000
0002
0003 0028 0001"
0004 0029 0001

EXAMPLE 8:

0026
0001
0001 002A 5004"
0002 002B 3904"
0003 002C 6881
0002 002D F800

002E 0000
0003
0004 002F 0001"
0005 0030 0003

EXAMPLE 9:

0028
0001 0031 F800

0032 0000
0002
0003 0033 0001

LARP AR1
CALL TBW$Ol

REF TBW$Ol
DATA 5

MOVROM ,B
ACTAR ARO

SACL XRO,O
LAR ARO,XRO
LARP ARO

CALL TBW$O

REF TBW$O
DATA B
DATA 1

MOVROM ,*,5
ACTAR ARO

SACL XRO,O
LAR ARO,XRO
LARP ARO

CALL TBW$Ol

REF TBW$Ol
DATA 5

MOVROM D,*
CALL TBW$l

REF TBW$l
DATA D
DATA 1

MOVROM D,,3
ACTAR AR1

SACL XRO,O
LAR AR1,XRO
LARP AR1

CALL TBW$l

REF TBW$l
DATA D
DATA 3

MOVROM *,*
CALL TBW$Ol

REF TBW$Ol
DATA 1

LOAD AR POINTER
MOVE RAM->ROM

FOR 5 WORDS

AC TO ARO
STORE AC TO XRO
RE-LOAD ARO
LOAD AR POINTER
MOVE RAM->ROM

TO B
FOR 1 WORDS

AC TO ARO
STORE AC TO XRO
RE-LOAD ARO
LOAD AR POINTER
MOVE RAM->ROM

FOR 5 WORDS

MOVE RAM->ROM

FROM D
FOR 1 WORDS

AC TO AR1
STORE AC TO XRO
RE-LOAD AR1
LOAD AR POINTER
MOVE RAM->ROM

FROM D
FOR 3 WORDS

MOVE RAM->ROM

FOR 1 WORDS

MOVROM

I

7-93

I

MOVROM

7-94

EXAMPLE 10:

0030
0001 0034 F800

0035 0000
0002
0003 0036 0001

MOVROM *,*,1
CALL TBW$01

REF TBW$01
DATA 1

MOVROM

MOVE RAM->ROM

FOR 1 WORDS

MOVX Move Double Word - Macro

TITLE: Move Double Word

NAME: MOVX

OBJECTIVE: Copy double word from one location to another in data memory

ALGORITHM: (A:A + 1) ~ B:B + 1 or
(@ACC:@ACC + 1) ~ B: B + B

CALLING
SEQUENCE:

ENTRY

MOVX [ALB

CONDITIONS: 0 ~ A ~ 126;0 ~ B ~ 126

EXIT
CONDITIONS: Double word at B contains value of double word located at A; ARO may

be overwritten

PROGRAM
MEMORY
REQUIRED: 4 - 8 words

STACK
REQUIRED: None

FLOWCHART: MOVX

LOAD DOUBLE
WORD SOURCE

INTO ACC

STORE DOUBLE WORD
OF ACC INTO
DESTINATION

NO

DATA
MEMORY
REQUIRED: 0 - 2 words

EXECUTION
TIME: 4 - 8 cycles

MOVE ACC TO
AUX. REGISTER

LOAD Ace WITH
DOUBLE WORD
POINTED TO BY
AUX. REGISTER

MOVX

I

7-95

MOVX
SOURCE:

*MOVE DOUBLE FROM A TO
*
MOVX $MACRO A,B

$IF A.L=O
SACH XRO,O
SACL XR1,0
LAR ARO,XRO
LARP ARO
LDAX *
$ELSE
LDAX :A:
$ENDIF
SACX :B:
$END

EXAMPLE 1:

0011
0001
0001 0006 6501
0002 0007 6102
0002
0001 0008 5808
0002 0009 5009

EXAMPLE 2:

0013
0001
0001 OOOA 65A8

I
0002 OOOB 6198
0002
0001 OOOC 5808
0002 0000 5009

EXAMPLE 3:

0015
0001
0001 OOOE 6500"
0002 OOOF 6101"
0002
0001 0010 58A8
0002 0011 50A8

EXAMPLE 4:

0017
0001 0012 5806"
0002 0013 5007 11

0003 0014 3806 11

0004 0015 6880
0005
0001 0016 65A8
0002 0017 6198
0006
0001 0018 5802 11

0002 0019 5003 11

7-96

B

MOVE DOUBLE
A IN AC

SAVE AC TO XRO
TO ARO
SELECT ARO
LOAD *

LOAD DOUBLE :A:

STORE DOUBLE :A:

MOVX A,B
LDAX A

ZALH A
ADDS A+1

SACX B
SACH B,O
SACL B+1,0

MOVX *,B
LDAX *

ZALH *+
ADDS *

SACX B
SACH B,O
SACL B+1,0

HOVX C,*+
LDAX C

ZALH C
ADDS C+1

SACX *+
SACH *+,0
SACL *+,0

MOVX ,D
SACH XRO,O
SACL XR1,0
LAR ARO,XRO
LARP ARO
LDAX *

ZALH *+
ADDS *

SACX D
SACH D,O
SACL 0+1,0

LOAD DOUBLE A
LOAD HIGH A
LOAD LOW A
STORE DOUBLE A
STORE HIGH
STORE LOW

LOAD DOUBLE *
LOAD HIGH
LOAD LOW ,*,
STORE DOUBLE *
STORE HIGH
STORE LOW

LOAD DOUBLE C
LOAD HIGH C
LOAD LOW C
STORE DOUBLE C
STORE HIGH
STORE LOW

SAVE AC TO XRO
TO ARO
SELECT ARO
LOAD *
LOAD HIGH
LOAD LOW '*'
STORE DOUBLE
STORE HIGH
STORE LOW

MOVX

MOVX
EXAMPLE 5:

0019
0001
0001 001A 6698
0002 001B 6098
0002
0001 001C 5808
0002 001D 5009

EXAMPLE 6:

0021
0001
0001 ODIE 65A8
0002 001F 61A8
0002
0001 0020 5801
0002 0021 5002

EXAMPLE 7:

0023
0001
0001 0022 6502"
0002 0023 6103"
0002
0001 0024 5098
0002 0025 5898

MOVX *-,B
LDAX *

ZALS *
ADDH *

SACX B
SACH B,O
SACL B+1,O

MOVX *+,A
LDAX *+

ZALH *+
ADDS *+

SACX A
SACH A,O
SACL A+1,O

MOVX D,*
LDAX D

ZALH D
ADDS D+1

SACX *
SACL *-,0
SACH *-,0

LOAD DOUBLE *
LOAD LOW
LOAD HIGH 1*_1
STORE DOUBLE *
STORE HIGH
STORE LOW

LOAD DOUBLE *+
LOAD HIGH
LOAD LOW 1*+1
STORE DOUBLE *+
STORE HIGH
STORE LOW

LOAD DOUBLE D
LOAD HIGH D
LOAD LOW D
STORE DOUBLE D
STORE LOW
STORE HIGH

MOVX

I

7-97

I

NEG Arithmetic Negation - Macro

TITLE: Arithmetic Negation

NAME: NEG

OBJECTIVE: Find negative value of argument

ALGORITHM: - (A) ~ A

CALLING
SEQUENCE: NEG A

ENTRY
CONDITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: Data word A contains the negative of its previous value

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

3 words

None

FLOWCHART: NEG

SOURCE:

*NEGATE VAR A
*
NEG

7-98

$MACRO A
ZAC
SUB :A:, 0
SACL :A: ,a
$END

NEGATE

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

ZERO ACC

SUBTRACT A
FROM ACC

SAVE A

ZERO AC
SUBTRACT :A:
RESTORE

NEG

None

3 cycles

NEG

EXAMPLE:

0015
0001 OOOC 7F89
0002 OOOD 1001 11

0003 OOOE 5001 11

NEG D
ZAC
SUB D,O
SACL D,O

ZERO AC
SUBTRACT D
RESTORE

NEG

7-99

I

I

NEGX Double-Word Arithmetic Negation - Macro

TITLE: Double-Word Arithmetic Negation

NAME: NEGX

OBJECTIVE: Find negative value of double-word argument

ALGORITHM: NEGX * - causes-+ - (@AR:@AR + 1) -+@AR + 1

CALLING
SEQUENCE:

ENTRY

NEGX * - - causes-+ - (@AR - 1 :@AR) -+ @AR - 1 :@AR
(AR) - 2 -+ AR

NEGX * + - causes-+ - (@AR:@AR + 1) -+ @AR:@AR + 1
(AR) + 2 -+ AR

NEGX A - causes-+ - (A:A + 1) -+ A:A + 1

NEGX {A,*,* -,* + }

CONDITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: Specified data words contain negative of previous value; auxiliary register

is updated as necessary

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

7-100

5 words

None

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 5 cycles

NEGX

NEGX
FLOWCHART: NEGX

SOURCE:

NEGATE (a)AR
AND @AR+1

*NEGATE DOUBLE WORD

*

NEGATE (a)AR
AND @AR+ 1

YES

YES

NEGX $MACRO A NEGATE DOUBLE
$VAR ST,SP,SM
$ASG 1*+1 TO SP.S
$ASG 1*_1 TO SM.S
$ASG 1*1 TO ST.S
ZAC
$IF A.SV=SM.SV
SUBS *
SUBH *+
SACX *
$ELSE
$IF A.SV=SP.SV
SUBX *
SACX *+
$ELSE
$IF A.SV=ST.SV
SUBX *
SACX *
$ELSE
SUBX :A:
SACX :A:
$ENDIF
$END

SUBTRACT 1*_1
SAVE 1*_1

SUBTRACT 1*1
SAVE 1*+1

SUBTRACT 1*1
SAVE 1 *1

SUBTRACT :A:
SAVE :A:

NEGATE
A AND A+1

"'EGA TE (a)AR
AND @AR+1

NEGX

I

7-101

NEGX NEGX

EXAMPLE 1:

0011 NEGX A
0001 0006 7F89 ZAC
0002 SUBX A SUBTRACT A
0001 0007 6207 SUBH A SUBTRACT HIGH
0002 0008 6308 SUBS A+1 SUBTRACT LOW
0003 SACX A SAVE A
0001 0009 5807 SACH A,O STORE HIGH
0002 OOOA 5008 SACL A+1,0 STORE LOW

EXAMPLE 2:

0013 NEGX *
0001 OOOB 7F89 ZAC
0002 SUBX * SUBTRACT '*'
0001 OOOC 62A8 SUBH *+ SUBTRACT HIGH
0002 0000 6398 SUBS *- SUBTRACT LOW
0003 SACX * SAVE '*'
0001 OOOE 58A8 SACH *+,0 STORE HIGH
0002 OOOF 5098 SACL *-,0 STORE LOW

EXAMPLE 3:

0015 NEGX *-
0001 0010 7F89 ZAC
0002 0011 6398 SUBS *-
0003 0012 62A8 SUBH *+ SUBTRACT '*-'
0004 SACX *- SAVE '*-'
0001 0013 5098 SACL *-,0 STORE LOW
0002 0014 5898 SACH *-,0 STORE HIGH

I EXAMPLE 4:

0017 NEGX *+
0001 0015 7F89 ZAC
0002 SUBX * SUBTRACT ,*,
0001 0016 62A8 SUBH *+ SUBTRACT HIGH
0002 0017 6398 SUBS *- SUBTRACT LOW
0003 SACX *+ SAVE ,*+,
0001 0018 58A8 SACH *+,0 STORE HIGH
0002 0019 SOA8 SACL *+,0 STORE LOW

7-102

NOT Boolean Not - Macro

TITLE: Boolean Not

NAME: NOT

OBJECTIVE: Calculate one's complement of accumulator or data word

ALGORITHM: (A) .XOR. - 1 -+ A

CALLING
SEQUENCE:

ENTRY

NOT [AJ

CONDITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: A (accumulator) contains one's complement of previous value

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

3 words

None

FLOWCHART: NOT

LOAD ACC
WITH A

INVERT ACC

SAVE A

DATA
MEMORY
REQUIRED: 1 word

EXECUTION
TIME: 1 - 3 cycles

NO
INVERT ACC

NOT

7-103

I

NOT
SOURCE:

*NOT AC OR WORD A
*
NOT $MACRO A

$IF A.L#=O
LAC :A: ,0
XOR MINUS
SACL :A: ,0
$ELSE
XOR MINUS
$ENDIF
$END

EXAMPLE 1:

0011
0001 0006 7803"

EXAMPLE 2:

7-104

0017
0001 0000 2000"
0002 00 DE 7803"
0003 OOOF 5000"

INVERT

LOAD AC
INVERT
RESTORE

INVERT

NOT
XOR MINUS

NOT C
LAC C,O
XOR MINUS
SACL C,O

INVERT

LOAD AC
INVERT
RESTORE

NOT

RASH Arithmetic Right Shift - Macro

TITLE: Arithmetic Right Shift

NAME: RASH

OBJECTIVE: Move shifted data from one location to another in data memory

ALGORITHM: (A) * 2 -shift-+ B

CALLING
SEQUENCE: RASH A,B,shift

ENTRY
CONDITIONS: 0 ~ A ~ 127; 0 ~ B ~ 127; 0 ~ shift < 16

EXIT
CONDITIONS: B contains shifted value of A

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

2 words

None

FLOWCHART: RASH

SOURCE:

DATA
MEMORY
REQUIRED: None

EXECUTION
TIME: 2 cycles

LOAD ACC WITH
A, SHIFTED 16-N

SAVE ACC HIGH
IN B

*MOVE A TO B (SINGLE-VAR) WITH N (CONST) BIT
*RIGHT ARITHMETIC SHIFT
*
RASH $MACRO A,B,N

LAC : A : , 16 - : N :
SACH :B: ,0
$END

MOVE WITH RIGHT ARITH. SHIFT
LOAD :A: RIGHT SHIFT
STORE HIGH TO :B:

RASH

I

7-105

I

RASH
EXAMPLE:

7-106

0011
0001 0006 2D07
0002 0007 5808

RASH A,B,3
LAC A,16-3
SACH B,O

LOAD A RIGHT SHIFT
STORE HIGH TO B

RASH

RASX Double-Word Arithmetic Right Shift - Macro

TITLE: Double-Word Arithmetic Right Shift

NAME: RASX

OBJECTIVE: Move shifted double word from one location to another in data memory

ALGORITHM: (A:A + 1) * 2shift-. B:B + 1

CALLING
SEQUENCE:

ENTRY

RASX A, B ,shift

CONDITIONS: 0 ~ A ~ 126; 0 ~ B ~ 126; 0 ~ shift < 16

EXIT
CONDITIONS: Double word at B contains shifted value of double word at A

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

10 words

None

FLOWCHART: RASX

SOURCE:

(

DATA
MEMORY
REQUIRED: 1 word

EXECUTION
TIME: 10 cycles

BEGIN) ,
SHIFT RIGHT A + 1
TO B + 1, LOGICAL ,
LOAD ACC WITH A,

SHIFTED 16-N ,
SAVE ACC HIGH

IN B ,
ADD ACC LOW

TO B+1 ,
(END)

*MOVE A TO B (DOUBLE VAR) WITH N (CONST) BIT
*RIGHT ARITHMETIC SHIFT
*
RASX $MACRO A,B,N MOVE DOUBLE WITH ARITH. SHIFT

RASX

I

7-107

I

RASX
:A:+1, :B :+1, :N: RLSH

LAC
SACH
OR
SACL
$END

:A:,16-:N: LOAD HIGH, RIGHT SHIFT
:B:,O SAVE IN :B: HIGH
:B:+1 COMBINE WITH :B: LOW
:B:+1,0 SAVE BACK

EXAMPLE:

7-108

0011
0001
0001 0006 2008
0002 0007 580A
0003 0008 2D03 11

0004
0001 0009 7803 11

0005 OOOA 790A
0006 OOOB 500A
0002 OOOC 2007
0003 0000 5809
0004 OOOE 7AOA
0005 OOOF 500A

RASX A,B,3
RLSH A+1,B+l,3

LAC A+1,16-3
SACH B+1,0
LAC MINUS,16-3
NOT

XOR MINUS
AND B+1
SACL B+1,O

LAC A,16-3
SACH B,O
OR B+1
SACL B+1,O

LOAD, RIGHT SHIFT
SAVE HIGH PART
GET MASK

INVERT
APPLY MASK
STORE BACK TO B+1
LOAD HIGH, RIGHT SHIFT
SAVE IN B HIGH
COMBINE WITH BLOW
SAVE BACK

RASX

REPCON Move One-Word Constant into Array - Macro REPCON

TITLE: Move One-Word Constant into Array

NAME: REPCON

OBJECTIVE: Initialize an array in data memory with a constant

ALGORITHM: Constant ... ACC

CALLING
SEQUENCE:

ENTRY

For number of elements in array,
(ACC) ... data memory

REPCON constant,arraY,length

CONDITIONS: - 32768 ~ constant ~ 32767; 0 ~ array + length ~ 143

EXIT
CONDITIONS: Array contains constant in each location

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

2 - 4 words (+ SETS$ and
LAC$ routines)

2 levels

FLOWCHART: REPCON

CALL SETS$ FOR
MULTIPLE WORDS

YES

DATA
MEMORY
REQUIRED: a - 3 words

EXECUTION
TIME:

LOAD CONSTANT
INTO ACC

PLACE VALUE
IN ACC INTO
DESTINATION

(max) 27 + (4 x
length) cycles

7-109

I

I

REPCON
SOURCE:

*REPLICATE CONSTANTS
*A IS A CONSTANT
*B IS A MEM LOCATION
*L IS LENGTH TO REPLICATE

* REP CON $MACRO A,B,L
$IF L.V<2
LCAC :A:
SACL :B: ,0
$ELSE
CALL SETS$
REF SETS$
DATA :A:
DATA :L:
DATA :B:
$ENDIF
$END

EXAMPLE 1:

0014
0001 00 DB F800

OOOC 0000
0002
0003 DODD FF04
0004 OOOE OOOA
0005 00 OF 0001

EXAMPLE 2:

0016
0001
0001 0002 V$l
0002 0010 7E02
0002 0011 5008

7-110

LOAD CONSTANT
SET IT

CALL FOR SET MEMORY

CONSTANT
LENGTH
DESTINATION

REPCON -252,A,10
CALL SETS$

REF SETS$
DATA -252
DATA 10
DATA A

REP CON 2,B,1
LCAC 2

EQU 2
LACK V$l
SACL B,O

CALL FOR SET MEMORY

CONSTANT
LENGTH
DESTINATION

LOAD CONSTANT

LOAD AC WITH V$l
SET IT

REPCON

RIPPLE Ripple Data Array One Position - Macro RIPPLE

TITLE: Ripple Data Array One Position

NAME: RIPPLE

OBJECTIVE: Move each element of array in data memory to next higher location

ALGORITHM: (array element N - 1) -- array element N
(array element N - 2) -- array element N-1

CALLING
SEQUENCE:

ENTRY

(array element 2) -- array element 3
(array element 1) -- array element 2

RIPPLE array [,lengthLinline]]

CONDITIONS: 0 ~ array + length ~ 143; inline = any string

EXIT
CONDITIONS: All array elements N contain value of previous location N - 1; ARO and

AR1 may be overwritten

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

Inline - length words;
looped - 4 + RIP$ function
(23 words)

2 levels (looped)

DATA
MEMORY
REQUIRED: 3 words

EXECUTION
TIME: Inline - length

cycles; looped -
30 + (4 * length)

7-111

I

I

RIPPLE
FLOWCHART: RIPPLE

CALL RIP$ FOR
LOOPED VERSION OF

DATA SHIFT

SOURCE 1:

RIPPLE $MACRO A,L,C
$IF (L.V<4)++(C.L#=O)
INRIP :A:,:L:
$ELSE
CALL RIP$ CALL FOR RIPPLE LOOP
REF RIP$
DATA :L: FaR :L: -1 WORDS
DATA :A: FROM :A:+:L:-l
$ENDIF
$END

SOURCE 2:

*RIPPLE DOWN ARRAY
*A IS ARRAY LOCATION
*L IS LENGTH OF ARRAY
*
INRIP $MACRO A,L

7-112

$IF L.V>16
INRIP :A:+16, :L:-16
$ENDIF
$IF L.V>15
DMOV :A:+15
$ENDIF
$IF L.V>14
DMOV :A:+14
$ENDIF
$IF L.V>13
DMOV :A:+13
$ENDIF
$IF L.V>12

DECREMENT
ARRAY LENGTH

RIPPLE

RIPPLE
DMOV :A:+12
$ENDIF
$IF L.V>ll
DMOV :A:+ll
$ENDIF
$IF L.V>lO
DMOV :A:+lO
$ENDIF
$IF L.V>9
DMOV :A:+9
$ENDIF
$IF L.V>B
DMOV :A:+B
$ENDIF
$IF L.V>7
DMOV :A:+7
$ENDIF
$IF L.V>6
DMOV :A:+6
$ENDIF
$IF L.V>S
DMOV :A:+S
$ENDIF
$IF L.V>4
DMOV :A:+4
$ENDIF
$IF L.V>3
DMOV :A:+3
$ENDIF
$IF L.V>2
DMOV :A:+2
$ENDIF
$IF L.V>l
DMOV :A:+l
$ENDIF
$IF L.V>O
DMOV :A:
$ENDIF
$END

EXAMPLE 1:

0007
0001
0001 0006 6909
0002 0007 690B
0003 OOOB 6907

EXAMPLE 2:

0009
0001 0009 F800

OOOA 0000
0002
0003 OOOB 0004
0004 oooe 0007

EXAMPLE 3:

0011
0001
0001 DODD 690B
0002 OOOE 690A

RIPPLE A,3
INRIP A,3

DMOV A+2
DMOV A+1
DMOV A

RIPPLE A,4
CALL RIP$

REF RIP$
DATA 4
DATA A

RIPPLE A,S,L
INRIP A,S

DMOV A+4
DMOV A+3

CALL FOR RIPPLE LOOP

FOR 4-1 WORDS
FROM A+4-1

RIPPLE

I

7-113

RIPPLE

I

7-114

0003 OOOF 6909
0004 0010 6908
0005 0011 6907

DMOV A+2
DMOV A+1
DMOV A

RIPPLE

RLSH Right Logical Shift - Macro

TITLE: Right Logical Shift

NAME: RLSH

OBJECTIVE: Move right-shifted data from one location to another in data memory

ALGORITHM: [(A) * 2 -shift] .and. [216-shift-1] -+ B

CALLING
SEQUENCE:

ENTRY

RLSH A,B,shift

CONDITIONS: 0 ~ A ~ 127; 0 ~ B ~ 127; 0 ~ shift < 16

EXIT
CONDITIONS: B contains shifted value of A

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 6 words REQUIRED:

STACK EXECUTION
REQUIRED: None TIME:

FLOWCHART: RLSH

(BEGIN)

~
LOAD ACC WITH A,

SHIFTED 16-N

~
SAVE ACC HIGH

IN B

~
REMOVE SIGN

EXTENSION IN B ,
(END J

SOURCE:

*MOVE A TO B (SINGLE VAR) WITH N (CONST) BIT
*RIGHT LOGICAL SHIFT
*
RLSH $MACRO A,B,N

LAC :A:,16-:N:
SACH :B:,O

MOVE WITH RIGHT LOGICAL SHIFT
LOAD, RIGHT SHIFT
SAVE HIGH PART

1 word

6 cycles

RLSH

I

7-115

I

RLSH
LAC MINUS,16-:N: GET MASK
NOT
ANO : B : APPLY MASK
SACL :B:,O STORE BACK TO :B:
$END

EXAMPLE:

7-116

0011
0001 0006 2007
0002 0007 5808
0003 0008 2003 11

0004
0001 0009 7803 11

0005 OOOA 7908
0006 OOOB 5008

RLSH A,B,3
LAC A,16-3
SACH B,O
LAC MINUS,16-3
NOT

XOR MINUS
AND B
SACL B,O

LOAD, RIGHT SHIFT
SAVE HIGH PART
GET MASK

INVERT
APPLY MASK
STORE BACK TO B

RLSH

RLSX Double-Word Logical Right Shift - Macro

TITLE: Double-Word Logical Right Shift

NAME: RLSX

OBJECTIVE: Move right-shifted double word from one location to another in data
memory

ALGORITHM: [(A:A + 1) * 2 - shift].and.[216 - shift -1]--' B:B + 1

CALLING
SEQUENCE:

ENTRY

RLSX A,B,shift

CONDITIONS: 0 ~ A ~ 126; 0 ~ B ~ 126; 0 ~ shift < 16

EXIT
CONDITIONS: Double word at B contains shifted value of double word at A

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

14 words

None

FLOWCHART: RLSX

DATA
MEMORY
REQUIRED: 1 word

EXECUTION
TIME: 14 cycles

(BEGIN J ,
SHIFT RIGHT A + 1
TO B + 1 I LOGICAL

~
LOAD ACC WITH A,

SHIFTED 16-N

~
SAVE ACC HIGH

IN B

~
ADD ACC LOW

TO B+1 ,
ZERO-EXTENDED

SIGN IN B

-' (END)

RLSX

I

7-117

I

RLSX
SOURCE:

*MOVE A TO B (DOUBLE VAR) WITH N(CONST) BIT
*RIGHT LOGICAL SHIFT
*
RLSX $MACRO A,B,N MOVE DOUBLE WITH LOGICAL SHIFT

RLSH :A:+1, :B:+1, :N: SHIFT RIGHT LOWER
LAC :A:,16-:N: GET UPPER (RIGHT SHIFT)
SACH :B:,O SAVE IN :B: HIGH
OR :B:+1 COMBINE LOW PARTS
SACL :B:+1,O SAVE IN :B: LOW
LAC MINUS,16-:N: GET MASK
NOT
AND :B: MASK HIGH :B:
SACL :B:,O SAVE BACK IN :B:
$END

EXAMPLE:

0011 RLSX A,B,3
0001 RLSH A+1,B+1,3 SHIFT RIGHT LOWER
0001 0006 2008 LAC A+1,16-3 LOAD, RIGHT SHIFT
0002 0007 580A SACH B+1,0 SAVE HIGH PART
0003 0008 2005" LAC MINUS,16-3 GET MASK
0004 NOT
0001 0009 7805" XOR MINUS INVERT
0005 OOOA 790A AND B+1 APPLY MASK
0006 OOOB 500A SACL B+1,0 STORE BACK TO B+1
0002 OOOC 2007 LAC A,16-3 GET UPPER (RIGHT SHIFT)
0003 0000 5809 SACH B,O SAVE IN B HIGH
0004 OOOE 7AOA OR B+1 COMBINE LOW PARTS
0005 OOOF 500A SACL B+1,0 SAVE IN BLOW
0006 0010 2005 11 LAC MINUS,16-3 GET MASK
0007 NOT
0001 0011 7805 11 XOR MINUS INVERT
0008 0012 7909 AND B MASK HIGH B
0009 0013 5009 SACL B,O SAVE BACK IN B

7-118

RLSX

SACX Store Double Word - Macro

TITLE: Store Double Word

NAME: SACX

OBJECTIVE: Store double word from accumulator

ALGORITHM: SACX * - causes-+ (ACC) -+ @AR:@AR + 1

CALLING

SACX * - - causes-+ (ACC) -+ @AR-1 :@AR
(AR) - 2 -+ AR

SACX * + - causes-+ (ACC) -+ @AR:@AR + 1
(AR) + 2 -+ AR

SACX A - causes-+ (ACC) -+ A:A + 1

SEQUENCE: SACX {A,*,* -,* + }

ENTRY
CONDITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: Specified double word contains value from accumulator;

auxiliary register is updated if necessary

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 2 words REQUIRED: None

STACK EXECUTION
REQUIRED: None TIME: 2 cycles

SACX

I

7-119

I

SACX
FLOWCHART: SACX

STORE TO @AR YES
AND @AR+1

SOURCE:

*STORE DOUBLE
*

STORE TO @AR YES
AND @AR+ 1

STORE TO A AND A+ 1

SACX $MACRO A STORE DOUBLE
$VAR ST,SP,SM
$ASG 1*1 TO ST.S
$ASG 1*_1 TO SM.S
$ASG 1*+1 TO SP~S
$IF A.SV=ST.SV
SACH *+,0 STORE HIGH
SACL *-,0 STORE LOW
$ELSE
$IF A.SV=SP.SV
SACH *+,0 STORE HIGH
SACL *+,0 STORE LOW
$ELSE
$IF A.SV=SM.SV
SACL *-,0 STORE LOW
SACH *-,0 STORE HIGH
$ELSE
SACH :A:,O STORE HIGH
SACL :A:+l,O STORE LOW
$ENDIF
$ENDIF
$ENDIF
$END

7-120

SACX

YES STORE TO @AR
AND @AR-1

SACX SACX

EXAMPLE 1:

0011 SACX A
0001 0006 5807 SACH A,O STORE HIGH
0002 0007 5008 SACL A+l,O STORE LOW

EXAMPLE 2:

0013 SACX *
0001 0008 58A8 SACH *+,0 STORE HIGH
0002 0009 5098 SACL *-,0 STORE LOW

EXAMPLE 3:

0015 SACX *-
0001 OOOA 5098 SACL *-,0 STORE LOW
0002 OOOB 5898 SACH *-,0 STORE HIGH

EXAMPLE 4:

0017 SACX *+
0001 OOOC 58A8 SACH *+,0 STORE HIGH
0002 0000 SOA8 SACL *+,0 STORE LOW

I

7-121

I

SAT Saturate Data Word between Upper and Lower Bounds - Macro

TITLE: Saturate Data Word between Upper and Lower Bounds

NAME: SAT

OBJECTIVE: Insure that a data word falls within boundary conditions

ALGORITHM: If (A) > upper,
Else if (A) < lower,

CALLING
SEQUENCE: SAT data,lower,upper

ENTRY

then
then

upper ~ A
lower ~ A

CON DITIONS: 0 ~ data ~ 127; - 32768 ~ lower ~ upper ~ 32767

EXIT
CON DITIONS: Data word contains value within bounds; statu ration mode is reset

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

7-122

DATA
MEMORY

16 - 24 words (+ LDAC$ routine) REQUIRED: 2 words

EXECUTION
2 levels TIME: 10 - 48 cycles

SAT

SAT
FLOWCHART: SAT

LOAD UPPER
BOUND INTO

ACC

LOAD LOWER
BOUND INTO

ACC

SAVE
BOUNDARY
VALUE IN

DATA WORD

YES

SOURCE:

*SATURATE VALUE IN A BETWEEN VALUES BAND C
*A IS A VARIABLE
*B AND C ARE VARIABLES OR CONSTANTS
* SAT $MACRO A,B,C

$VAR L,L1,L2,L3
$ASG '$$LAB' TO L.S
$ASG L.SV+3 TO L.SV GET A LABEL
$ASG L.SV-2 TO L1.V
$ASG L.SV-1 TO L2.V
$ASG L.SV TO L3.V
SOVM SET OVERFLOW MODE
$IF C.SA&$UNDF
LCAC :C: LOAD UPPER BOUND :C:
$ELSE
LAC :C:,O LOAD UPPER BOUND :C:
$ENDIF
SUB :A:,O COMPARE TO :A:
BGEZ L$:L1.V: BRANCH IF :A:<=:C:
$IF C.SA&$UNDF
LCAC :C: RELOAD :C: AS VALUE
$ELSE

COMPARE UPPER
BOUND WITH
DATA WORD

COMPARE LOWER
BOUND WITH
DATA WORD

SAT

I

7-123

SAT SAT
LAC :C:,O RELOAD :C: AS VALUE
$ENDIF
B L$:L2.V: BRANCH TO CONTINUE

L$:L1.V: EQU $ CHECK LOWER
$IF B.SA&$UNDF
LCAC :B: LOAD LOWER BOUND :B:
$ELSE
LAC :B:,O LOAD LOWER BOUND :B:
$ENDIF
SUB· :A:,O COMPARE TO :A:
BLEZ L$:L3.V: BRANCH IF :A:>:B:
$IF B.SA&$UNDF
LCAC :B: RELOAD :B: AS VALUE
$ELSE
LAC :B:,O RELOAD :B: AS VALUE
$ENDIF

L$:L2.V: SACL :A:,O RESTORE :A:
L$:L3.V: ROVM CONTINUE

$END

EXAMPLE 1:

0011 SAT A,25,50
0001 0005 7F8B SOVM SET OVERFLOW MODE
0002 LCAC 50 LOAD UPPER BOUND 50
0001 0032 V$4 EQU 50
0002 0006 7E32 LACK V$4 LOAD AC WITH V$4
0003 0007 1007 SUB A,O COMPARE TO A
0004 0008 FOOD BGEZ L$l BRANCH IF A<=50

0009 0000 1

0005 0032 LCAC 50 RELOAD 50 AS VALUE
0001 0032 V$5 EQU 50

I 0002 OOOA 7E32 LACK V$5 LOAD AC WITH V$5
0006 OOOB F900 B L$2 BRANCH TO CONTINUE

OOOC 0012 1

0007 OOOD I L$l EQU $ CHECK LOWER
0008 0000 1 LCAC 25 LOAD LOWER BOUND 25
0001 0019 V$6 EQU 25
0002 OOOD 7E19 LACK V$6 LOAD AC WITH V$6
0009 OOOE 1007 SUB A,O COMPARE TO A
0010 OOOF FBOO BLEZ L$3 BRANCH IF A>25

0010 0013 1

0011 0019 LCAC 25 RELOAD 25 AS VALUE
0001 0019 V$7 EQU 25
0002 0011 7E19 LACK V$7 LOAD AC WITH V$7
0012 0012 5007 L$2 SACL A,O RESTORE A
0013 0013 7F8A L$3 ROVM CONTINUE

EXAMPLE 2:

0013 SAT A,C,D
0001 0014 7F8B SOVM SET OVERFLOW MODE
0002 0015 2002 11 LAC D,O LOAD UPPER BOUND D
0003 0016 1007 SUB A,O COMPARE TO A
0004 0017 FDOO BGEZ L$8 BRANCH IF A<=D

0018 001C I
0005 0019 2002 11 LAC D,O RELOAD D AS VALUE
0006 001A F900 B L$9 BRANCH TO CONTINUE

001B 0021 1

0007 001CI L$8 EQU $ CHECK LOWER
0008 001C 2000 11 LAC C,O LOAD LOWER BOUND C
0009 001D 1007 SUB A,O COMPARE TO A

7-124

SAT

0010 001E FBOO
001F 0022 1

0011 0020 2000"
0012 0021 5007 L$9
0013 0022 7F8A L$10

BLEZ L$10

LAC C,O
SACL A,O
ROVM

BRANCH IF A>C

RELOAD C AS VALUE
RESTORE A
CONTINUE

SAT

I

7-125

I

SBAR Subtract Variable from Auxiliary Register - Macro

TITLE: Subtract Variable from Auxiliary Register

NAME: SBAR

OBJECTIVE: Subtract data word from named auxiliary register

ALGORITHM: (ACAR) - (dma) - ACC
(ACC) -AR

CALLING
SEQUENCE:

ENTRY

SBAR AR, B [,TEMP]

CONDITIONS: AR = 0,1; 0 ~ B ~ 127; 0 ~ TEMP ~ 127

EXIT
CONDITIONS: Difference between memory location and auxiliary regi ster is stored in

named auxiliary register

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

7-126

5 - 7 words (plus LDAC$ routine)

o - 2 levels

DATA
MEMORY
REQUIRED: 2 words

EXECUTION
TIME: 5 - 17 cycles

SBAR

SBAR
FLOWCHART: SBAR

NO LET XRO BE

SOURCE:

*SUB FROM AR
*A IS ARI OR ARO
*B IS CONST OR VAR
* SBAR $MACRO A,B,T

STORE AUXILIARY
REGISTER IN
TEMPORARY

LOAD ACC WITH
TEMPORARY

SUBTRACT VARIABLE
FROM ACC

SAVE ACC IN
TEMPORARY

RELOAD AUXILIARY
REGISTER

$IF T.L=O ASSIGN TEMP
SASG 'XRl' TO T.S
$ENDIF
SAR : A : , : T : SAVE : A :
$IF B.SA&$UNDF
$ASG -B.V TO B.V

YES

LCAC :B. V: LOAD -:B: VALUE
ADD :T:,O ADD :T: VALUE
$ELSE
LAC :T:,O LOAD :T:
SUB :B:,O SUB :B: VALUE

TEMPORARY

CALL LCAC
TO LOAD

CONSTANT
IN ACC

ADD TEMP TO
ACC

SBAR

I

7-127

I

SBAR
$ENDIF
SACL :T:,O
LAR :A:, :T:
$END

EXAMPLE 1:

0007
0001 0006 3103"
0002
0001 FFFD V$l
0002 0007 F800

0008 0000
0003
0004 0009 FFFD
0003 OOOA 0003"
0004 OOOB 5003"
0005 OOOC 3903 11

EXAMPLE 2:

0009
0001 OOOD 3008
0002 OOOE 2008
0003 OOOF 1004"
0004 0010 5008
0005 0011 3808

EXAMPLE 3:

0011
0001 0012 3003"
0002 0013 2003"
0003 0014 1005"
0004 0015 5003"
0005 0016 3803"

7-128

RESTORE
RELOAD :A:

SBAR AR1,3
SAR AR1,XR1
LCAC -3

EQU -3
CALL LDAC$

REF LDAC$
DATA V$l

ADD XR1,O
SACL XR1,O
LAR AR1,XR1

SBAR ARO,C,B
SAR ARO,B
LAC B,O
SUB C,O
SACL B,O
LAR ARO,B

SBAR O,D
SAR O,XR1
LAC XR1,0
SUB D,O
SACL XR1,0
LAR O,XR1

SBAR

SAVE AR1
LOAD -3 VALUE

LOAD AC WITH:

V$l
ADD XR1 VALUE
RESTORE
RELOAD AR1

SAVE ARO
LOAD B
SUB C VALUE
RESTORE
RELOAD ARO

SAVE 0
LOAD XR1
SUB D VALUE
RESTORE
RELOAD 0

SBIC Clear Single Bit in Data Word - Macro SBIC

TITLE: Clear Single Bit in Data Word

NAME: SBIC

OBJECTIVE: Clear bit in data word specified by bit position argument

ALGORITHM: (A) .AND .. NOT. 2bit -+ (A)

CALLING
SEQUENCE: SBIC bit,A

ENTRY
CONDITIONS: 0 ~ A ~ 127; 0 ~ bit ~ 15

EXIT
CONDITIONS: A contains initial value with specified bit cleared

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 4 words REQUIRED: 2 words

STACK EXECUTION
REQUIRED: None TIME: 4 cycles

FLOWCHART: SBIC

(BEGIN)
I ,

SET SINGLE BIT
IN ACC ,
INVERT

ACC ,
CLEAR BIT OF
DATA WORD

IN ACC ,
RESTORE DATA TO

MEMORY ,
(END J

7-129

I

SBIC

SOURCE:

*BIC A SELECTED BIT
*A IS BIT NUMBER
*B IS VAR
* SBIC $MACRO A,B

LAC ONE, :A:
XOR MINUS
AND :B:
SACL :B: ,0
$ END

EXAMPLE 1:

0012
0001 OOOA 2802"
0002 OOOB 7803'1
0003 OOOC 7900"
0004 OOOD 5000'1

EXAMPLE 2:

0014
0001 OOOE 2302'1
0002 OOOF 7803"
0003 0010 7901"
0004 0011 5001 11

EXAMPLE 3:

0016
0001 0012 2C02'1
0002 0013 7803'1
0003 0014 7908
0004 0015 5008

7-130

SINGLE BIT CLEAR
GET SELECT BIT
INVERT MASK
AND :B:
STORE TO :B:

SBIC B,C
LAC ONE,B
XOR MINUS
AND C
SACL C,O

SBIC 3,D
LAC ONE,3
XOR MINUS
AND D
SACL D,O

SBIC 12,B
LAC ONE,12
XOR MINUS
AND B
SACL B,O

GET SELECT BIT
INVERT MASK
AND C
STORE TO C

GET SELECT BIT
INVERT MASK
ANDD
STORE TO D

GET SELECT BIT
INVERT MASK
AND B
STORE TO B

SBIC

SBIS Set Single Bit in Data Word - Macro

TITLE: Set Single Bit in Data Word

NAME: SBIS

OBJECTIVE: Set bit in data word specified by bit position argument

ALGORITHM: (data) .OR. 2bit -+ data

CALLING
SEQUENCE:

ENTRY

SBIS bit,A

CONDITIONS: 0 ~ A ~ 127; 0 ~ bit ~ 15

EXIT
CONDITIONS: A contains initial value with specified bit set

PROGRAM
MEMORY
REQUIRED: 3 words

STACK
REQUIRED: None

FLOWCHART: SBIS

SOURCE:

*SET SELECTED BIT
*A IS BIT NUMBER
*B IS VAR
*
SBIS $MACRO A,B

LAC ONE, :A:
OR :B:
SACL :B:,O
$END

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

(BEGIN) ,
SET SINGLE BIT

IN ACC

I
OR ACC WITH
DATA WORD ,

RESTORE DATA WORD
TO MEMORY ,
(END

SINGLE BIT SET
GET SELECT BIT
SET TO :B:
RESTORE

)

SBIS

1 word

3 cycles

I

7-131

I

5815
EXAMPLE 1:

0012
0001 0009 2802"
0002 OOOA 7AOO"
0003 OOOB 5000"

EXAMPLE 2:

0014
0001 OOOC 2302"
0002 0000 7A01 11

0003 OOOE 5001 11

EXAMPLE 3:

7-132

0016
0001 OOOF 2C02 11

0002 0010 7A08
0003 0011 5008

SBIS B,C
LAC ONE,B
OR C
SACL C,O

SBIS 3,0
LAC ONE,3
OR 0
SACL D,O

SBIS 12,B
LAC ONE,12
OR B
SACL B,O

GET SELECT BIT
SET TO C
RESTORE

GET SELECT BIT
SET TO D
RESTORE

GET SELECT BIT
SET TO B
RESTORE

S81S

SBIT Test Single Bit in Data Word - Macro

TITLE: Test Single Bit in Data Word

NAME: SBIT

OBJECTIVE: Test bit in data word specified by bit position argument

ALGORITHM: data .AND. 2bit -. ACC

CALLING
SEQUENCE: SBIT bit,A

ENTRY
CONDITIONS: 0 ~ A ~ 127; 0 ~ bit ~ 15

EXIT
CON DITIONS: ACC contains zero if specified bit is cleared, non-zero else

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

2 words

None

FLOWCHART: SBIT

SOURCE:

*TEST SELECTED BIT
*A IS BIT NUMBER
*B IS VAR TO TEST
* SBIT $MACRO A,B

LAC ONE, :A:
AND :B:
$END

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

SET SINGLE BIT
IN Ace

AND ACC WITH
DATA WORD

SINGLE BIT TEST
GET BIT :A:
TEST FOR IT

1 word

2 cycles

SBIT

I

7-133

I

SBIT

EXAMPLE:

0014
0001 OOOA 2302"
0002 OOOB 7901 11

7-134

SBIT 3,D
LAC ONE,3
AND D

GET BIT 3
TEST FOR IT

SBIT

STOX Convert Single Word to Double Word - Macro

TITLE: Convert Single Word to Double Word

NAME: STOX

OBJECTIVE: Convert single word to a double word and save

ALGORITHM: (A) -+ B:B + 1

CALLING
SEQUENCE: STOX single, double

ENTRY
CONDITIONS: 0 ~ single ~ 127 ; 0 ~ double ~ 127

EXIT
CONDITIONS: Double word contains value of single word

PROGRAM
MEMORY
REQUIRED: 3 words

STACK
REQUIRED: None

FLOWCHART: STOX

SOURCE:

*SINGLE TO DOUBLE (A TO B)
*
STOX $MACRO A,B

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

(BEGIN)

~
LOAD SINGLE WORD

INTO ACC

~
SAVE AS

DOUBLE WORD

~
(END J

LAC :A:, 0
SACX :B:
$END

LOAD SINGLE
STORE DOUBLE

None

3 cycles

STOX

I

7-135

STOX
EXAMPLE:

7-136

0011
0001 0006 2007
0002
0001 0007 5802"
0002 0008 5003"

STOX A,O
LAC A,O
SACX 0

SACH 0,0
SACL 0+1,0

LOAD SINGLE
STORE DOUBLE
STORE HIGH
STORE LOW

STOX

SUBX Double-Word Subtract - Macro

TITLE: Double-Word Subtract

NAME: SUBX

OBJ ECTIVE: Subtract double word from accumulator

ALGORITHM: SUBX * - causes'" (ACC) - (@AR:@AR + 1) ... ACC

CALLING

SUBX * - - causes'" (ACC) - (@AR-1 :@AR)'" ACC
(AR) - 2 -+ AR

SUBX * + - causes'" (ACC) - (@AR:@AR + 1) ... ACC
(AR) + 2 -+ AR

SUBX A - causes'" (ACC) - (A:A + 1) -+ ACe

SEQUENCE: SUBX {A,*,* -,* + }

ENTRY
CONDITIONS: 0 ~ A ~ 127

EXIT
CONDITIONS: Accumulator contains updated value after subtraction;

auxiliary register is updated if necessary

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

2 words

None

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

None

2 cycles

SUBX

I

7-137

I

SUBX
FLOWCHART: SUBX

SUBTRACT @AR
AND @AR+l

YES

SUBTRACT @AR YES
AND @AR+l

SUBTRACT A AND A + 1

END

SOURCE:

*SUBTRACT DOUBLE
*
SUBX $MACRO A SUBTRACT DOUBLE

$VAR ST,SM,SP
$ASG 1*1 TO ST.S
$ASG 1*+1 TO SP.S
$ASG 1*_1 TO SM.S
$IF A.SV=ST.SV
SUBH *+ SUBTRACT HIGH
SUBS *- SUBTRACT LOW
$ELSE
$IF A.SV=SP.SV
SUBH *+ SUBTRACT HIGH
SUBS *+ SUBTRACT LOW
$ELSE
$IF A.SV=SM.SV
SUBS *- SUBTRACT LOW
SUBH *- SUBTRACT HIGH
$ELSE
SUBH :A: SUBTRACT HIGH
SUBS :A:+l SUBTRACT LOW
$ENDIF
$ENDIF
$ENDIF
$END

7-138

SUBX

YES SUBTRACT @AR
AND @AR-l

SUBX SUBX

EXAMPLE 1:

0011 SUBX A
0001 0006 6207 SUBH A SUBTRACT HIGH
0002 0007 6308 SUBS A+1 SUBTRACT LOW

EXAMPLE 2:

0013 SUBX *
0001 0008 62A8 SUBH *+ SUBTRACT HIGH
0002 0009 6398 SUBS *- SUBTRACT LOW

EXAMPLE 3:

0015 SUBX *-
0001 OOOA 6398 SUBS *- SUBTRACT LOW
0002 OOOB 6298 SUBH *- SUBTRACT HIGH

EXAMPLE 4:

0017 SUBX *+
0001 OOOC 62A8 SUBH *+ SUBTRACT HIGH
0002 0000 63A8 SUBS *+ SUBTRACT LOW

EXAMPLE 5:

0019 SUBX 3
0001 OOOE 6203 SUBH 3 SUBTRACT HIGH
0002 OOOF 6304 SUBS 3+1 SUBTRACT LOW

I

7-139

I

TST Test Word - Macro

TITLE: Test Word

NAME: TST

OBJECTIVE: Load word into accumulator, allowing comparison with zero

ALGORITHM: (A)-'ACC

CALLING
SEQUENCE: TST {A, * , * - , * + }

ENTRY
CONDITIONS: O~A~ 127

EXIT
CONDITIONS: Accumulator contains value of word

PROGRAMM
MEMORY
REQUIRED: 1 word

STACK
REQUIRED: None

FLOWCHART: TST

SOURCE:

*TEST SINGLE VAR
*
TST $MACRO A

LAC :A: ,0
$END

EXAMPLE 1:

0007
0001 0006 2001

7-140

DATA
MEMORY
REQUIRED:

EXECUTION
TIME:

LOAD ACC WITH
WORD

COMPARE TO ZERO
LOAD IT

TST A
LAC A,O LOAD IT

None

1 cycle

TST

TST TST
EXAMPLE 2:

0009 TST *
0001 0007 2088 LAC *,0 LOAD IT

EXAMPLE 3:

0011 TST C
0001 0008 2004 11 LAC C,O LOAD IT

EXAMPLE 4:

0013 TST *+
0001 0009 20A8 LAC *+,0 LOAD IT

7-141

TSTX Test Double Word - Macro TSTX

TITLE: Test Double Word

NAME: TSTX

OBJECTIVE: Load double word into accumulator, allowing comparison with zero

ALGORITHM: TSTX* - causes-+ (@AR:@AR + 1) -+ ACC

TSTX * - - causes-+ (@AR - 1 :@AR) -+ ACC
(AR) - 2-+AR

TSTX * + - causes-+ (@AR:@ AR + 1) -+ ACC
(AR) + 2 -+ AR

TSTXA - causes- (A:A + 1) -+ ACC

CALLING
SEQUENCE: TSTX {A, * , * - , * + }

ENTRY
CONDITIONS: O~A~ 127

EXIT
CONDITIONS: Accumulator contains value of double word;

I
auxiliary register is updated if necessary

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 2 words REQUIRED: None

STACK EXECUTION
REQUIRED: None TIME: 2 cycles

7-142

TSTX
FLOWCHART: TSTX

LOAD {@AR
AND @AR+1

SOURCE:

*TEST DOUBLE VAR
*
TSTX $MACRO A

LDAX :A:
$END

EXAMPLE 1:

0011
0001
0001 0006 6507
0002 0007 6108

EXAMPLE 2:

0013
0001
0001 0008 65A8
0002 0009 6198

EXAMPLE 3:

0015
0001
0001 DaDA 6698
0002 OOOB 6098

LOAD @AR
AND @AR+ 1

LOAD A AND A+ 1

COMPARE TO ZERO DOUBLE
LOAD IT DOUBLE

TSTX A
LDAX A

ZALH A
ADDS A+1

TSTX *
LDAX *

ZALH *+
ADDS *-

TSTX *
LDAX *

ZALS *
ADDH *-

LOAD IT DOUBLE
LOAD HIGH A
LOAD LOW A

LOAD IT DOUBLE
LOAD HIGH
LOAD LOW 1*1

LOAD IT DOUBLE
LOAD LOW
LOAD HIGH 1*_1

LOAD @AR
AND @AR+1

AR = AR+2

TSTX

I

7-143

I

TSTX
EXAMPLE 4:

0017

7-144

0001
0001 oooe 65AB
0002 0000 61AB

TSTX *+
LOAX *+

ZALH *+
ADDS *+

LOAD IT DOUBLE
LOAD HIGH
LOAD LOW 1*+1

TSTX

XTOS Convert Double Word to Single Word - Macro

TITLE: Convert Double Word To Single Word

NAME: XTOS

OBJECTIVE: Convert double word to a single word and save

ALGORITHM: If (A:A + 1) > 32767 then 32767 -+ B
Else if (A:A + 1) < - 32768 then - 32768 -+ B

Else (A+ 1) -+ B

CALLING
SEQUENCE: XTOS double,single

ENTRY
CON DITIONS: 0 ~ single ~ 127 ; 0 ~ double ~ 127

EXIT
CONDITIONS: Single word contains value of double word or saturation value

PROGRAM
MEMORY
REQUIRED:

STACK
REQUIRED:

27 words (+ LDAC$ routine)

2 levels

DATA
MEMORY
REQUIRED: 2 words

EXECUTION
TIME: 33 - 50 cycles

XTOS

I

7-145

I

XTOS
FLOWCHART: XTOS

LOAD -32768
INTO Ace

COMPARE DOUBLE
WORD WITH 32767

COMPARE DOUBLE
WORD WITH -32768

LOAD DOUBLE WORD
INTO ACC

SAVE Aee LOW IN
SINGLE WORD

SOURCE:

*DOUBLE TO SINGLE (A TO B)

*
XTOS $MACRO A,B

$VAR L,L1,L2,L3
$ASG '$$LAB' TO L.S
$ASG L.SV+3 TO L.SV GET LABEL
$ASG L.SV-2 TO L1.V
$ASG L.SV-1 TO L2.V
$ASG L.SV TO L3.V
LCAC 32767 GET BIGGEST SINGLE
SUBX :A: COMPARE :A:
BGEZ L$:L1.V: IF :A: >= 32767 THEN
LCAC 32767 SATURATE AT 32767
B L$:L3.V: JUMP TO DONE

L$:Ll.V: LCAC -32768 GET MOST NEG SINGLE
SUBX :A: COMPARE :A:
BLEZ L$:L2.V: IF :A: <= -32768 THEN
LCAC -32768 SATURATE AT -32768
B L$:L3.V: JUMP TO DONE

L$:L2.V: LDAX :A: LOAD :A:
L$:L3.V: SACL :B:,O RESTORE TO :B:

$ END

7-146

LOAD 32767
INTO Ace

XTOS

XTOS XTOS

EXAMPLE:

0013 XTOS C,B
0001 LCAC 32727 GET BIGGEST SINGLE
0001 7FD7 V$ll EQU 32727
0002 0021 F800 CALL LDAC$ LOAD AC WITH:

0022 0000
0003 REF LDAC$
0004 0023 7FD7 DATA V$ll V$ll
0002 0024 SUBX C COMPARE C
0001 0024 6200 11 SUBH C SUBTRACT HIGH
0002 0025 6301 11 SUBS C+1 SUBTRACT LOW
0003 0026 FDOO BGEZ L$8 IF C >= 32767 THEN

0027 002D 1

0004 0028 LCAC 32727 SATURATE AT 32767
0001 7FD7 V$12 EQU 32727
0002 0028 F800 CALL LDAC$ LOAD AC WITH:

0029 0000
0003 REF LDAC$
0004 002A 7FD7 DATA V$12 V$12
0005 002B F900 B L$10 JuriP TO DONE

002C 003B 1

0006 002D L$8 LCAC -32768 GET MOST NEGATIVE SINGLE
0001 8000 V$13 EQU -32768
0002 002D F800 CALL LDAC$ LOAD AC WITH:

002E 0000
0003 REF LDAC$
0004 002F 8000 DATA V$13 V$13
0007 0030 SUBX C COMPARE C
0001 0030 6200" SUBH C SUBTRACT HIGH
0002 0031 6301" SUBS C+1 SUBTRACT LOW
0008 0032 FBOO BLEZ L$9 IF C <= -32768 THEN

0033 0039 1

0009 0034 LCAC -32768 SATURATE AT -32768
0001 8000 V$14 EQU -32768
0002 0034 F800 CALL LDAC$ LOAD AC WITH:

0035 0000
0003 REF LDAC$
0004 0036 8000 DATA V$14 V$14
0010 0037 F900 B L$10 JUMP TO DONE

0038 003B 1

0011 0039 L$9 LDAX C LOAD C
0001 0039 6500" ZALH C LOAD HIGH C
0002 003A 6101" ADDS C+1 LOAD LOW C
0012 003B 5009 L$10 SACL B,O RESTORE TO B

7-147

I

7.4 STRUCTURED PROGRAMMING MACROS

The program structure macros, PROG AND MAIN, need to be used with most of the other macros
described in Section 7.3 in order to set up internal symbols and utility variables used by those
macros.

PROG Begin Program - Macro PROG
PROG - Begin Program

The program directive does two things. First, it defines the module I DT name (the name of the module
printed on the link editor memory map listing). More importantly, it initializes several internal symbols used
in many of the macros from Section 7.3. Syntax is as follows:

PROG < name>

Where < name> is a string of up to six characters. This name is used to generate:

IDT'< name>'

To end the module, use the assembly language END statement:

END

SOURCE:

* * Prog Routine Initializes Internal Variables, and
* Outputs IDT Statement
*
PROG $MACRO A

$VAR Q
$ASG 1 1 liTO Q. S
IDT :Q::A::Q:

* * Initialize unique label
*

*
*
*

7-148

$ASG '$$LAB' TO Q.S
$ASG 0 TO Q.SV

Assign unique values to

$ASG ,*, TO Q.S
$ASG >FOFO TO Q.SV
$ASG '*+1 TO Q.S
$ASG >FOFI TO Q.SV
$ASG 1*_1 TO Q.S
$ASG >FOF2 TO Q.SV
$END

counter

indirect symbols

MAIN Begin Main Procedure - Macro MAIN
MAIN- Begin Main Procedure

MAIN<name>

The MAIN directive begins the main procedure. < name> is the label (created by the macro) of the first
instruction of the main routine (up to six characters). MAIN allocates the variables ONE, MINUS, XRO, and
XR1 in data RAM (in the DSEG), and initializes ONE to 1, and MINUS to - 1.

SOURCE:

* * Main Procedure Definition Macro
* * A is Main Program Name «6 CHAR)
* MAIN $MACRO

PSEG
DEF :A:

:A: EQU $

* * Initialize Variables
* LACK 1

SACL ONE,O
ZAC
SUB ONE,O
SACL MINUS,O

*
*
*

Data Segment

ONE
MINUS
XRO
XR1

DSEG
BSS 1
BSS 1
BSS 1
BSS 1
DEF ONE,MINUS
DEF XRO,XR1
DEND
$END

A
PROG SEG
ENTRY POINT

MAKE CONSTANT ONE
SAVE IT
ZERO ACCUMULATOR
MAKE -1
SAVE IT

CONSTANT ONE
CONSTANT -1
TEMP °
TEMP 1
ALLOW EXTERNAL USE
OF VARIABLES
END OF DATA

EXAMPLES OF PROG AND MAIN USAGE:

*
*
*

MLIB I MACROS I

PROG MACTST

Declare directory of macros,
including PROG and MAIN
Set up symbol table variables

7-149

I

I

DSEG
VAR1 BSS 1
VAR2 BSS 1
*
*
*

DEND

I

User1s program variables

*
*
*
*
*
*
*

Interrupt Routine (user defined)

I
MAIN START Start of main routine

*
: I
* Maln Program
*
* I

END

LISTING:

0001 0000
0002
0003
0001
0004
0005
0006 0000
0007 0000
0008 0001
0009
0010
0011
0012 0002
0013
0014
0015
0016
0017
0018
0019
0020
0001 0000
0002
0003
0004 0000
0005 0001
0006 0002
0007 0003
0008 0004
0009 0002
0010 0002
0011 0003
0012 0004
0013 0005
0014
0015
0016 0006
0021

7-150

0000 1

7E01
5002"
7F89
1002"
5003 11

- Instructions and Macros

MLIB I MACROS I Declare directory of macros,
* including PROG and MAIN

PROG MACTST Set up symbol table variables
IDT I MACTST I

*
*

DSEG Userls program variables
VAR1 BSS 1
VAR2 BSS 1
*
*
*

DEND
*
* I *
* Interrupt Routine (user defined)
*' I *
*

MAIN START Start of main routine
PSEG PROG SEG
DEF START ENTRY POINT

START EQU $
LACK 1 MAKE CONSTANT ONE
SACL ONE,O SAVE IT
ZAC ZERO ACCUMULATOR
SUB ONE,O MAKE -1
SACL MINUS,O - SAVE IT
DSEG

ONE BSS 1 CONSTANT ONE
MINUS BSS 1 CONSTANT -1
XRO BSS 1 TEMP 0
XR1 BSS 1 TEMP 1

DEF ONE ,MINUS ALLOW EXTERNAL USE
DEF XRO,XR1 OF VARIABLES
DEND END OF DATA

*

* 0022
0023
0024
0025
0026
0027
0028

: I
* Ma~n Program - Instructions and Macros

: I
END

7.5 UTILITY SUBROUTINES

The subroutines in this section are called by many of the macros described in Section 7.3.
Subroutines are used to save program space. Instead of inserting the code into each macro, the
code occurs as a separate subroutine. Since the code is not expanded with each macro call,
program space is saved. These routines should be assembled separately from the calling program
and linked with the main program.

SOURCE FILE OF UTILITY SUBROUTINES:

IDT 'SUBR'
* * SUBROUTINES USED AS UTILITIES IN VARIOUS MACRO LANGUAGE EXTENSIONS
* AND SIGNAL PROCESSING LANGUAGE MACROS.
*

*

REF ONE,MINUS
REF XRO,XRl

* LDAC$ - Load the accumulator with value found in program memory
* at location pointed to by address on the top of the stack.
* DEF LDAC$
LDAC$ POP

*
*

TBLR XRO
ADD ONE
PUSH
LAC XRO
RET

* RIP$ - SUBROUTINE USED FOR LOOPED VERSION OF RIPPLE MACRO
* DEF RIP$
RIP$ POP

TBLR XRO
LAR ARO,XRO
LARP ARO
MAR *-
SAR ARO,XRO
ADD ONE
TBLR XR1
LAR AR1,XR1
SACL XR1
LAC XRO
SAR AR1,XRO
ADD XRO
SACL XRO
LAR AR1,XRO

RIP$L LARP AR1
DMOV *-,ARO
BANZ RIP$L
LAC XRl
ADD ONE

1st argument = length
RO = count

Decrement count
Store L-1 in XRO
I~crement argument pointer
2nd argument = address
Save address in R1
Save argument pointer
ACC = L-1
Get address from R1
ACC = address + L-1
Save address
Rl = address pointer

Shift data

Restore argument pointer
Decrement argument pointer

7-151

I

I

*

PUSH
RET

Put return address on top ot stack

* LDAX$ - Load accumulator with double word
*

DEF LDAX$
LDAX$ POP

*

TBLR XRl
ADD ONE
TBLR XRO
ADD ONE
PUSH
ZALH XRl
ADDS XRO
RET

Get address of constants
Read upper half

Read lower half

Load upper half
Load lower half

* LDAR$O - Load Auxiliary Register 0 with word from program memory
*

DEF LDAR$O
LDAR$O POP

TBLR XRO

*

LAR ARO,XRO
ADD ONE
PUSH
RET

Get address of word
Read word into data memory
Load into ARO

Restore return address

* LDAR$l - Load Auxiliary Register 1 with word from program memory
*

DEF LDAR$l
LDAR$l POP Get address of word

TBLR XRO Read word into data memory
LAR ARl,XRO Load into ARI
ADD ONE
PUSH Restore return address
RET

* * LTK$ - Load T Register with word from program memory
*

DEF LTK$
LTK$ POP

*

TBLR XRO
LT XRO
ADD ONE
PUSH
RET

Get address of word
Read word into data memory
Load word into T register

Restore return address

* Instructions for MOVE macro. There are four different entry
* positions, but all of them use code starting at MOV$M to do
* actual data transfer.
*
* * MOVAB$ - MOVE A,B
*
MOVAB$ POP

TBLR XRO
LAR ARO,XRO
ADD ONE

MOVB$$ TBLR XRO

*

LAR ARl,XRO
ADD ONE
B MOV$M

* MOVA$ - MOVE A,*
*

7-152

Read A into ARO

Read B into ARI

Move data

MOVA$ POP

*

TBLR XRO
LAR ARO,XRO
ADD ONE
B MOV$M

* MOVB$ - MOVE *,B
*
MOVB$ POP

*
* MOV$$
*

B MOVB$$

- MOVE *,*

POP

Move A into ARO

Move B into AR1

MOV$$
MOV$M TBLR XRO Read number of elements to move

SACL XR1 Save return address
LARP °

MOV$L LAC *+,O,ARI Move @ARO to ACC
SACL *+,O,ARO Move ACC to @AR1
LAC XRO
SUB ONE Decrement loop counter
SACL XRO
BNZ MOV$L Loop back for another move
LAC XR1
ADD ONE
PUSH Restore return address
RET
DEF MOVAB$,MOVA$,MOVB$,MOV$$

* * SETS$ - Move constant into L positions of data memory

* SETS$ POP
TBLR XRO
ADD ONE
TBLR XR1
LAR ARO,XR1
LARP °
MAR *-
ADD ONE
TBLR XR1
LAR AR1,XR1
SACL XR1
LAC XRO

SET$L LARP 1

*

SACL *+,O,ARO
BANZ SET$L
LAC XR1
ADD ONE
PUSH
RET
DEF SETS$

Get 1st argument - constant

Get 2nd argument - count
Use ARO as counter

Get 3rd argument - destination
Use AR1 as pointer
Save return address
Load constant into accumulator

Move constant to data memory
Repeat L times

Restore return address

* MOVC$ AND MOVC$l - Move list of constants to data memory
*
MOVC$ POP

TBLR XRO
LAR AR1,XRO
ADD ONE
B MOVC$M

MOVC$l POP
MOVC$M TBLR XRO

LAR ARO,XRO
LARP °
MAR *-

Get argument pointer
1st argument = destination
Use AR1 as pointer
Increment argument pointer

Read length of data
ARO is loop counter

Decrement counter

I

7-153

I

ADD ONE Increment argument pointer
MOVC$L LARP 1

*

TBLR *+,ARO
ADD ONE
BANZ MOVC$L
PUSH
RET
DEF MOVC$,MOVC$l

Read constant

Loop for length of data
Restore return address

* Routines for MOVDAT macro
*
* MOVA$B - MOVDAT A,B,L
*

7-154

MOVA$B POP
TBLR XRO
LAR ARO,XRO
ADD ONE

MOVCB$ TBLR XRO

*

LAR AR1,XRO
ADD ONE
B MOV$$M

1st Argument is source

Increment pointer
Next argument is destination

Increment pointer

* MOVC$A - MOVDAT A,*,L or MOVDAT A"L
*
MOVC$A POP

*

TBLR XRO
LAR ARO,XRO
ADD ONE
B MOV$$M

Read source argument

Increment pointer

* MOVC$B - MOVDAT *,B,L or MOVDAT ,B,L
*
MOVC$B POP

B MOVCB$ Get destination argument
*
* MOVC$$ - MOVDAT ,*,L or MOVDAT *"L or MOVDAT *,*,L
*
MOVC$$
MOV$$M

MOV$$L

POP
SAR ARO,XRO
TBLR XR1
LAR ARO,XR1
LARP °
MAR *-
SACL XR1
LAC XRO
LARP 1
TBLR *+,ARO
ADD ONE
BANZ MOV$$L
LAC XR1
ADD ONE
PUSH
RET

Save source location
Read length

Decrement count
Save return address
Load start address

Move to data memory
Update source pointer
Loop on array length

Restore return address

DEF MOVA$B,MOVC$A,MOVC$B,MOVC$$
* * MOVROM routines
* * TBW$$ - MOVROM A,B,L
*
TBW$$ POP

TBLR XRO
LAR ARO,XRO
ADD ONE

TBWO$ TBLR XRO

Read source address

Update pointer
Read destination address

*

LAR ARl,XRO
ADD ONE
B TBW$M

Update pointer

* TBW$l - MOVROM A,*,L or MOVROM A"L
*
TBW$l POP

TBLR XRO

*

LAR ARO,XRO
ADD ONE
B TBW$M

Read source address

Update pointer

* TBW$O - MOVROM *,B,L or MOVROM ,B,L
*
TBW$O POP

B TBWO$ Read destination address
*
* TBW$$ - MOVROM *,*,L or MOVROM *"L or MOVROM ,*,L
*
TBW$Ol
TBW$M

TBW$L

POP
SAR ARl,XRO
TBLR XRl
LAR ARl,XRl
LARP 1
MAR *
SACL XRl
LAC XRO
LARP 0
TBLW *+,ARl
ADD ONE
BANZ TBW$L
LAC XRl
ADD ONE
PUSH
RET

Save destination address
Read length of move

Decrement counter
Save return address
Load destination address

Move data
Increment pointer
Loop on length

Restore return address

DEF TBW$$,TBWl,TBWO,TBW$Ol
END

* End of subroutines

I

7-155

I

DIGITAL SIGNAL PROCESSING

I

I

8. DIGITAL SIGNAL PROCESSING

All of the digital signal processing information presented in this Section 8 has been provided to
Texas Instruments by Ronald W. Schafer, Russell M. Mersereau, and Thomas P. Barnwell, III, of
Atlanta Signal Processors, Inc., and of Georgia Institute of Technology, School of Electrical
Engineering.

The purpose of this section is to review the fundamentals of digital signal processing in order to
highlight some of the important features of the digital approach and to illustrate how OSP
techniques can be applied. The important issues in sampling analog signals will be presented,
followed by a discussion of the basic theory of discrete signals and systems. A description of the
basic algorithms that are widely used in applications of OSP techniques is also provided, along with
some examples of how OS P can be used in the areas of speech and audio processing and in
communications. Referral to references listed in Section 8.7 is indicated by brackets surrounding a
reference number.

8.1 A-TO-D AND D-TO-A CONVERSION

In most applications, signals originate in analog form, i.e., as continuously varying patterns or
waveforms. Thus, the first step in applying OSP techniques to a signal is to convert from
continuous to discrete form, thereby obtaining a representation of the signal in terms of a sequence
or array of numbers. In practice, this is called analog-to-digital (A-to-O) conversion.

Once the signal has been represented in discrete form, it can be processed or transformed into
another sequence or set of numbers by a numerical computation procedure (see Figure 8-1). There
is also the possibility of converting from the discrete representation back to analog form using a
digital-to-analog (O-to-A) converter. This last stage is often not necessary, especially when the
purpose of digital processing is to automatically extract information from the signal. The study of
digital signal processing is concerned with both the A-to-O and O-to-A conversion processes as
well as with the analysis and design of numerical processing algorithms. Although it is important to
fully understand both aspects, they can be treated somewhat independently.

- A-TO-O - NUMERICAL -- O-TO-A -
x - CONVERTER - PROCESSOR - CONVERTER -a(t) Ya(t)

FIGURE 8-1 - BLOCK DIAGRAM OF DIGITAL SIGNAL PROCESSING

A-to-O conversion is conveniently analyzed by representing it as in Figure 8-2. First, it involves a
sampling operation wherein a sequence x[n] is obtained by periodically sampling an analog signal.
The samples are:

x[n] = xa(nT), -00 < n < +00
(1)

where T is the sampling period, n is an integer, and 1/T is the sampling frequency or sampling rate
with units of samples/s. (The sampling rate is often stated in units of frequency, i.e., Hz or kHz.) In
most practical settings, these samples must be represented using binary numbers with finite
precision. This involves quantizing the sample values. Thus, the sequence of quantized samples is:

x[n] = Q[x[n]]
(2)

where Q[] is a nonlinear transformation, such as rounding or truncating to the nearest allowed
amplitude level.

I

8-1 •

I

- SAMPLER - aUANTIZER -xa(t) - xln] = x(nT) - I\(n) -
A-TO-O CONVERTER

FIGURE 8-2 - ANALOG-TO-OIGITAL CONVERSION PROCESS

8.1.1 Sample Analysis

8-2

The important considerations in the sampling operation can be illustrated by a sinusoidal signal:
(3)

The resulting sequence of samples is:

x[n] = cos(wonT)
(4)

With this signal, it is simple to illustrate that there is a fundamentally unique problem in the
sampling process, i.e., a given sequence of samples can be obtained by sampling an infinite number
of analog signals. For example, consider the signal:

Xr(t) = cos((wo + 27Tr/T)t)
(5)

where r is any positive or negative integer. If the sampling period is T, the sampled sequence is:

xr[n] = cos((wo + 27Tr/T)nT) = cos(wonT + 27Trn)

Using a familiar trigonometric identity, xr[n] can be expressed as:

xr[n] = cos(wonT) . cos(27Trn) - sin(wonT) . sin(27Trn)

and since both nand r are integers:

xr[n] = cos(wonT) = xo[n]

(6)

(7)

(8)

Thus, the sequences xr[n] are all identical to xo[n], or in other words, the frequencies (000 + 2nr/T)
are indistinguishable from the frequency 000 after sampling. This is illustrated in Figure 8-3, where
two cosine waves are shown passing through the same sample points. The descriptive term for this
confused identity is 'aliasing.' The frequency domain representations of the cosine and its aliases
are shown in Figure 8-4. The positive and negative frequency components of the cosine wave at +
- 000 are shown together with frequency components at + - (000 + 2nlT) and at + - (000 -

2nlT) which produce the identical set of samples when the sampling rate is 1 IT.

o T 2T 3T

TIME

4T

NOTE: The two cosine waves have the same samples when the sampling period is T.

5T

FIGURE 8-3 - TWO COSINE WAVES SAMPLED WITH PERIOD T

6T

w

(
W 271") 0+-

T

NOTE: The positive and negative frequency components of three cosine waves that have the same samples.

FIGURE 8-4 - FREQUENCY COMPONENTS OF THREE COSINE WAVES

The ambiguity of this situation can be removed by imposing a constraint on the size of 000 relative to
the sampling frequency Ws = 2nlT (in radians/s). If 000 < niT, then all of the frequencies Wr = (000

+ 2nr/T) will be larger in magnitude than 000' Thus, there is no ambiguity if it is determined in
advance that wS > 2000, i.e., SAMPLING MUST OCCUR AT A RATE THAT IS GREATER THAN
lWlCE THE HIGHEST FREQUENCY IN THE SIGNAL. This is true in general for any signal whose
Fourier transform is bandlimited, as explained in the following paragraphs.

If the above condition is met, it is possible to recover xa(t) from x[n] by continuously interpolating
between the samples, using an interpolation formula of the form:

8-3

I

I

o

8-4

00

xa(t) = ~ x[n]· Pa(t-nT) (9)
n=-oo

If Pa(t) is a square pulse of duration T, the resulting interpolated waveform (reconstructed signal)
has a staircase appearance, as in Figure 8-5. This is a good model for the output of most practical
O-to-A converters. A better approximation to the original analog signal can be obtained by
smoothing the sharp pulses with a lowpass filter. [1-4] If the effective pulse shape in (9) is:

• 1T
Sin T t

Pa(t) =-
~t
T

(10)

then the original signal Xa(t) can be recovered from the samples x[n] if the Fourier transform of Xa(t)
is bandlimited (i.e., identically zero above some frequency which is less than nIT).

T 2T

RECONSTRUCTED
SIGNAL

SIGNAL

3T 4T

TIME

5T 6T

FIGURE 8-5 - D-TO-A CONVERSION USING A ZERO-ORDER HOLD

7T aT

8.1.2 Sample Quantization

The other aspect of A-to-O conversion is concerned with the quantization of the samples. Figure
8-6 shows an eight-level quantizer which illustrates the important aspects of the quantization
operation. Each quantization level is represented by a binary number (three bits in this case).
Although the assignment of binary codes to the quantization levels is arbitrary, it is obviously
advantageous to assign binary symbols in a scheme which permits convenient implementation of
arithmetic operations on the samples (e.g., two's complement, as in Figure 8-6).

Once the number of quantization levels has been fixed (usually between 28 and 216 for most signal
processing applications), the binary numerical representation of the samples is related to the
amplitude of the analog signal by the quantization stepsize 6.. The choice of 6. depends upon the
peak-to-peak amplitude range of the signal. If the B-bit code is used, then 6. should be chosen so
that:

~ . 28 = Peak-to-peak signal ampl itude (11)

With this constraint, the maximum error in a sample value would be + - 6./2, so that in general,
the average quantization error will be proportional to 6.. This points up a fundamental dilemma in
quantization, i.e., for a fixed stepsize, the relative error becomes large as the sample amplitude
decreases. Thus, if signal amplitude varies widely (i.e., the signal has a wide dynamic range), then it
may be necessary to use a large number of quantization levels to keep the relative quantization error
within acceptable limits. Alternative approaches, often used in speech processing, are the use of
either a nonuniform set of quantization levels or the adaptation of the stepsize to the amplitude of
the input signal. [2]

-9A I

2

100

-7A -sA
2 -2-

110

101

..
-3A -t!.
-2- -

2

111 I

" x

- 36

2b.

A

000

A
"2"

.• -A

-2A

-36

.. -46

PEAK-TO-PEAK RANGE

011

010

001

. . .
I

.
3A SA 7A
2 2 2

FIGURE 8-6 - AN EIGHT LEVEL (THREE-BIT) QUANTIZER

-x-

8-5

I

In the uniform stepsize non-adaptive case, it is often useful to represent the quantized signal as:

x[n] = x[n] + e[n]
(12)

where ern] is, by definition, the quantization error. This model for A-to-D conversion is depicted in
Figure 8-7. As seen above:

-6/2 < e[n] < +6/2 (13)

As a result, the root mean squared value of ern] is proportional to ~, which in turn is inversely
proportional to 2B where B is the number of bits in the binary coded samples. Thus, the signal-to
quantization noise ratio defined as:

SNR = 10· 10 (si9~al power) (14)
910 nOise power

increases by 6 dB for each doubling of the number of quantization levels (i.e., for each additional bit
in the word length).

Another important point is that from the viewpoint of statistical measurements, the sequence of
noise samples appears to be uniformly distributed in amplitude and uncorrelated from sample to
sample whenever the number of quantization levels (bits) is large. Thus, the model of the A-to-D
conversion operation in Figure 8-7 consists of an ideal sampler whose output samples are corrupted
by an additive white noise whose power increases exponentially as the number of bits/sample
decreases.

SAMPLER -------_ ... x[n] = x(nT)

A-TO-D CONVERTER

FIGURE 8-7 - QUANTIZATION AS ADDITIVE NOISE

A
x(n)

I 8.2 BASIC THEORY OF DISCRETE SIGNALS AND SYSTEMS

Since signals are represented in discrete form as sequences of samples, a discrete system or digital
signal processor is simply a computational algorithm for transforming an input sequence of samples
into an output sequence.

8.2.1 Linear Systems

8-6

As in analog systems, a linear system is one which obeys the principle of superposition, and a time
invariant (or in general, shift-invariant) system is one for which the input-to-output transformation
algorithm does not change with time. linear time-invariant systems are exceedingly important
because they are relatively easy to design and because they can be used to perform a wide variety of
signal processing functions.

As a direct consequence of linearity and time invariance, the output sequence for any linear time
invariant system is obtained from the input sequence by the repeated evaluation of the convolution
sum relation:

00

y [n] = ~ h [k] . x [n-k] -oo<n<oo
k=-oo

where hen] is the r~ponse of the system to the unit sample (or impulse) sequence:

{
1 n = 0

8[n] = 0 n#O

(15)

(16)

The convolution sum equation is very similar in form to the convolution integral that describes the
operation of a continuous-time linear time-invariant system. In contrast to the analog system,
however, the convolution sum equation (15) serves not only as a theoretical description of discrete
linear time-invariant systems in general, but it can be used to implement certain types of linear
systems.

8.2.2 Fourier Transform Representations

As in the analog case, Fourier analysis is a valuable tool in the theory and design of discrete signals
and systems. The discrete-time Fourier transform representation is defined by the equations:

00 (17 A)
X(ejw T) = L x [n] . e-jw nT

n=-oo

x [n] = 2: f X(ejw T)e jw nT dw
-1f

(17B)

The first equation (17 A) is a direct Fourier transform of the sequence x[n], and the second equation
(17B) is the inverse Fourier transform. A notable property of X(eiwT) is that it is always a periodic
function of w with period 2n/T.

In the analog case, the Laplace transform is often more useful and convenient than the Fourier
transform, because it can be used to represent a wider class of signals and because algebraic
expressions involving the Laplace transform are less cumbersome than those involving Fourier
transforms. For these same reasons, the z-transform is often preferred to the Fourier transform for
discrete sequences. The z-transform representation is defined by:

00 (18A)
X(z) L x[n]z-n

n=-oo

x[n] = ; ¢ X(z)zn-1 dz
(18B)

1fJ C

where C is a closed contour lying in the region of convergence of the power series in (18A).

Comparison of the Fourier transform (17 A) and the z-transform (18A) shows that:

X(ejw T) = X(z) I . (18C)
z = eJwT

i.e., the Fourier transform, when it exists, is just the z-transform evaluated on a circle of radius one
in the complex z-plane.

One of the most important reasons for the use of frequency domain representations is the result
that if y[n] is the output of a linear time-invariant system, then its z-transform (and thus its Fourier
transform) satisfies the equation:

Y(z) = H(z)· X(z) (19)

where H(z) and X(z) are the z-transforms of the unit sample response of the system and the input to
the system, respectively. Many of the design techniques which are available are based upon
approximating a desired transfer function H(z).

Another advantage of the Fourier transform representation is that it provides a very convenient
means of showing the relationship between a sequence of samples and the original analog signal
from which the samples were obtained. Specifically, if x[n] = Xa (nT), then:

X(ejw T) = i ~ Xa(w + 27Tk/T}
k=-oo

(20)

where Xa(w) is the Fourier transform of the analog signal xa(t). [1]

8-7

I

8-8

From this relationship between the Fourier transform of the sequence x[n] and the Fourier
transform of the analog signal, it is clear that what is true for the cosine wave is also true in general.
That is, there is a possibility that the images of the analog Fourier transform may overlap and since
they are added together, it would be impossible to unscramble the effects of this aliasing distortion.
Figure 8-8 illustrates the implications of (20) for two sampling rates. Figure a-8A shows a
bandlimited analog Fourier transform where Xa(w) = 0 for 1001 > wN. The frequency wN is often
called the Nyquist frequency. Figure 8-88 shows the Fourier transform of a sequence of samples
where the sampling frequency wS = 2nlT is such that wS > 2wN. Figure 8-8c shows the case when
wS > 2wN. No aliasing distortion occurs if Xa(w) is bandlimited and if the sampling frequency is
greater than twice the Nyquist frequency. Thus, it is essential that analog signals be bandlimited to
the proper frequency before sampling. Even if the signal is 'naturally' bandlimited, it is well to
remember that since additive noise may have a much broader spectrum than the signal, analog
lowpass filtering is almost always necessary prior to sampling. Since it is generally desirable to
minimize the sampling rate so as to minimize the computational intensity of the processor, sharp
cutoff analog filters may be required. In situations where the expense of such filters is prohibitive,
but sufficient numerical processing capability is available, it is possible to use low-order analog
filters and sample at a higher sampling rate to avoid aliasing. Then, the resulting sequence of
samples can be filtered digitally and the sampling rate reduced appropriately by decimating
(throwing away samples) the digitally filtered sequence. [2] Such techniques are also useful in
implementing low-noise A-to-O conversion systems, using delta modulation or other simple
digitizing systems. [5]

A

FIGURE 8-8A - FOURIER TRANSFORM OF ANALOG SIGNAL

AfT

FIGURE 8-88 - FOURIER TRANSFORM OF SAMPLES FOR 2n/T > 200N

-211"

T

AfT

T

FIGURE 8-8C - FOURIER TRANSFORM OF SAMPLES FOR 2nlT > 2coN

FIGURE 8-8 - FOURIER TRANSFORM SAMPLING

8.3 DESIGN AND IMPLEMENTATION OF DIGITAL FILTERS

211"
T

w

Linear filtering is one of the most important digital signal processing operations. As in the analog
system, digital filters can be used for separating signals from noise, for compensating for previous
linear distortions, for separating signal components from an additive combination of signals, and in
modeling of many classes of signals. Some of the important techniques for implementation and
design of digital filters are presented in the following paragraphs.

8.3.1 Digital Filter Structures

There are two classes of linear shift-invariant systems. The first class contains all such systems for
which the unit sample response is of finite length, e.g., h[n] = 0 for n > 0 and for n > M. Such
systems are called finite duration impulse response (FIR) systems. For such systems, it is clear from
the convolution sum equation (15) that:

M (21)
y[n] = ~ h[k]· x[n-k]

k=Q

so that the computation of each value of the output sequence requires M + 1 multiplications and M
additions, i.e., the accumulation of M + 1 products. Thus, the convolution sum expression can be I
used to implement FIR systems.

Systems which have infinite duration impulse responses are called IIR systems. In general, it is not
feasible to use the convolution sum expression to compute the output of such systems. However,
an interesting and useful class of IIR systems does exist. These are systems whose input and output
satisfy a linear constant coefficient difference equation of the form:

N M (22)
y [n] = ~ akY [n-k] + ~ bkx [n-kl

k=1 k=Q

For such systems, this equation can be used recursively to compute the output from the input
sequence and N previously computed output samples. When all the ak's are zero, (22) reduces to
(21) so that (22) turns out to be a general description of all computationally feasible (Le., realizable)
linear time-invariant systems.

By finding the z-transform of both sides of (22), the transfer function of this class of systems is
easily found to be: M

~ bkZ- k (23)

H(z)
k=Q

8-9

I

8-10

Since bkx[n-k] has z-transform bkz-kX(z), there is a direct correspondence between terms in the
numerator and denominator of H(z) in (23) and terms in the difference equation (22).

Block diagrams may be used to depict the computational procedure for implementing a digital filter.
Figure 8-9 depicts two systems whose input and output satisfy the difference equation (22) and
thus have the same transfer function (23). The operation of addition and multiplication are
represented in standard block diagram notation while the delays are represented by systems with
transfer functins z _1. (M = N = 4 is used for convenience only.) Figure 8-9A shows the direct
representation of the difference equation (22). This is sometimes called the Direct Form I structure
for a system with transfer function (23). If N = 0 (i.e., all the ak's are zero), then the system is a FIR
system. Thus, the left half of Figure 8-9A is illustrative of the general Direct Form implementation of
a FIR system. Also note that in general the left half implements the numerator (or zeros) of H(z)
while the right half implements the denominator (or poles) of the transfer function.

x[n] y[n]

z-1 z-1

FIGURE 8-9A - DIRECT FORM I

x[n] y[n]

FIGURE 8-98 - DIRECT FORM II

FIGURE 8-9 - DIRECT FORMS I AND II

Figure 8-S8 is obtained from Figure 8-SA. For linear time-invariant systems in cascade, the overall
transfer function is the product of the individual transfer functions. Thus, the overall transfer
function is the same regardless of the order in which the systems are cascaded. If the two
subsystems of Figure 8-SA are interchanged, the delay chains of the two systems can be combined.
This structure is often called the Direct Form II. Both forms require the same number of arithmetic
operations, but the Direct Form II requires up to 50 percent fewer memory registers for storing the I
past values of the input and output. It is important to understand that although both forms have the
same overall transfer function, they correspond to different difference equations. The difference
equation for Figure 8-SA is given in (22) while the set of difference equations represented by Figure
8-S8 is:

N
w[n] = ~ akw[n-k] + x[n]

k=1

M
y[n] = ~ bkw[n-k]

k=O

(24A)

(248)

Other structures (sets of difference equations) can be found for implementing a given rational
transfer function such as (23). The cascade form is obtained by factoring the numerator and
denominator of H(z) into second-order factors and pairing numerator and denominator factors to
form:

(25)

For simplicity it is assumed that N is even. When N is odd or when M =I N, some of the coefficients
in (25) will be zero. The structure suggested by (25) can be implemented with a cascade of second
order sections implemented in any desired form. Figure 8-10 shows an example for N = 4.

8-11

x[n]

I

8-12

z-1

z-1

a22

FIGURE 8-10 - CASCADE STRUCTURE FOR N = 4

The corresponding set of difference equations is:

Yk[n]

yo[n] = A ·x[n]

a1kwk[n-1] + a2kwk[n-2] + Yk-1 [n]

y[n] = YN [n]

2"

k = 1, 2, ... , N/2

k = 1, 2, ... , N/2

(26A)

(268)

(26C)

(260)

Still another form for the general transfer function of (25) is obtained from a partial fraction
expansion of H(z) in the form of:

N
2" bOk + b 1 kZ- 1

H(z) = AO + ~
k=1 1 - a1 kZ-1 - a2kz- 2

The set of difference equations corresponding to this form of the transfer function is:

wk[n] = a1kwk[n-1] + a2kwk[n-2] + x[n]

Yk [n] = bOkwk [n] + b1 kWk [n-1]

N
2"

Y [n] = AOx [n] + ~ Y k [n]
k=1

k = 1, 2, ... , N/2

k = 1, 2, ... , N/2

(27)

(28A)

(288)

(28C)

There is literally an infinite number of alternative structures for implementing a digital filter with a
given transfer function, but the ones discussed above are the most commonly used because of the
ease with which they can be obtained from the transfer function and, in the case of the cascade and
parallel forms, because they are relatively insensitive to coefficient quantization and round-off
errors. It is important to note that the basic arithmetic process in digital filtering is multiplication of a
delayed sequence value by a fixed coefficient, followed by the accumulation of the result. This is a
built-in operation of the TMS32010.

8.3.2 Digital Filter Design

A number of ways to implement a linear time-invariant system having a rational transfer function
have been presented. Designing the system to meet a set of prescribed specifications is equally
important. The specifications for a filter design are most frequently applied to the frequency
response of the filter, i.e., to the Fourier transform of the impulse response. For example, a
frequency selective filter, such as a lowpass, bandpass, highpass, or bandstop filter, may be
required; or an approximation of a differentiator frequency response (i.e., jw), or a 90-degree phase
shift, or in the case of compensators or equalizers, an approximation of the reciprocal of some given
frequency response may be desired. In all these cases, the designer is concerned with finding the
bk'S in the FIR case, or the ak's and bk's in the IIR case, so that the corresponding H{eiw T)
approximates a desired function according to some approximation error criterion. Many
approximation techniques exist, and it is possible to design very accurate approximations to a wide
variety of frequency responses.

A valuable collection of digital filter design programs is available from IEEE Press. [6] A reader who
wants to use these programs or to write design programs is encouraged to consult the texts and
reference books [1,3,7] on digital signal processing to obtain a complete understanding of each
method. The following paragraphs include a survey of the important techniques, along with the
advantages and limitations of each one.

The design of IIR filters has traditionally been based upon the transformation of an analog filter
approximation to a digital filter. The basic approaches are impulse invariance and bilinear
transformation. The former approach is based upon defining the unit sample response of the digital
filter to be the sequence obtained by sampling the impulse response of an analog filter. In this case,
the analog filter must be designed so that the resulting digital filter will meet its specifications.
Because of the aliasing inherent in sampling, the impulse invariance method is not effective for
highpass or bandstop filter types, and the detailed shape of the analog frequency response is
preserved only in highly bandlimited cases, such as lowpass filters with high stopband attenuation.

In the bilinear transformation method, the system function H(z) of the digital filter is obtained by an
algebraic (bilinear) transformation of the system function (Laplace transform of the impulse
response) of an analog filter, i.e., the Laplace variable s is replaced by 2(1 - z - 1)/(1 + z - 1).
Because the bilinear transformation causes a warping of the jw-axis of the s-plane onto the unit
circle of the z-plane, the bilinear transformation method is useful primarily for the design of
frequency selective filters where the frequency response consists of flat passbands and stopbands.
The passband and stopband cutoff frequencies of the analog filter must be 'prewarped' so that the
resulting digital filter meets its specifications. Because the bilinear transformation maps the entire
jw-axis of the s-plane onto the unit circle, the equiripple amplitude response of an elliptic filter will
be preserved. Thus, optimal magnitude responses can be obtained for IIR filters using bilinear
transformation of analog elliptic filters.

8-13

I

8-14

A major reason that the above methods are widely used is the existence of a variety of
approximation methods for analog frequency selective filters. That is, one can use the Butterworth,
Bessel, Chebyshev, or elliptic filter approximation methods for the analog filter and then simply
transform the analog filter to a digital filter by either the impulse invariance or bilinear
transformation methods. As an illustration of this general method, Figure 8-11 A shows the
magnitude response and Figure 8-11 B shows the phase response of a fourth-order elliptic filter
obtained by the bilinear transformation method. The difference equations for implementation of this
filter as a cascade of two second-order Direct Form II sections are:

yo[n] = 0.11928·x[n]

w1 [n] = 0.34863' w1 [n-1] - 0.17168 . w1 [n-2] + YO [n]

y 1 [n] = w 1 [n] + 1.8345 . w 1 [n -1] + w 1 [n - 2]

w2[n] = -0.12362' w2[n-1] - 0.71406 . w2[n-2] + Y1 [n]

Y2[n] = w2[n] + 1.26185 . w2[n-1] + w2[n-2]

y[n] = Y2[n]

(29A)

(29B)

(29C)

(290)

(29E)

(29F)

The block diagram representation for the above set of difference equations is identical to Figure
8-10, with the appropriate identification of the coefficients.

iii
~
w
c
:l
t-
2:
(!)
«
2
(!)
0
...I

o

-30

-60

-90
o

NORMALIZED FREQUENCY (RADIANS/SAMPLE)

FIGURE 8-11A - LOG MAGNITUDE OF FREQUENCY RESPONSE

en
z «
2i «
!;
w
C!J
Z «
w
CJ)

«
:I:
D..

4

2

0

-2

-4 ----------~~----------r_----------r_----------r_--------~
o

NORMALIZED FREQUENCY (RADIANS/SAMPLE)

FIGURE 8-118 - PHASE ANGLE OF FREQUENCY RESPONSE

FIGURE 8-11 - FOURTH-ORDER ELLIPTIC DIGITAL FILTER

It is relatively simple to design IIR filters using tables of analog filter designs and a calculator.
Alternatively, a program for designing IIR digital filters by bilinear transformation of Butterworth,
Chebyshev, and elliptic filters has been given by Dehner in the IEEE Press Book. [6, Section 6.1]

The bilinear transformation method can be termed a Iclosed form' solution to the IIR digital filter
design problem in the sense that an analog filter can be found in a non-iterative manner to meet a
set of prescribed approximation error specifications, and then the digital filter can be obtained in a
straightforward way by applying the bilinear transformation.

Another approach is as follows:

1) Define an ideal frequency response function,

2) Set up an approximation error criterion,

3) Pick an implementation structure, i.e., order of numerator and denominator of H(z),
cascade, parallel, or direct form,

4) Vary the filter coefficients systematically to minimize the approximation error criterion,

5) If the approximation is not good enough, increase the order of the system and repeat the
design process.

8-15

I

8-16

iterative design techniques have been proposed for both IIR and FIR filters.
oped a design program which minimizes a pth-order error norm. It is capable of
and group delay (negative derivative of phase with respect to frequency)

[6, Section 6.2] Another optimization program for magnitude approximations only
n by Dolan and Kaiser. [6, Section 6.3] Both this program and the Deczky program
e transfer function H(z) is a product of second-order factors.

fferent approaches have been developed for the design of FIR filters, since there really
rpart of the FIR filter for the analog system. In addition, FIR discrete-time filters can

ctly linear phase response. Since a linear phase response corresponds to only a delay,
atterll.". 10 be focused on approximating the desired magnitude response without concern for the
phase. In most IIR design methods, the phase is ignored, and one is forced to accept whatever
phase distortion is imposed by the design procedure. The condition for linear phase of a casual FIR
system is the symmetry condition:

h[n] ±h [M-n]

o otherwise

In the case of the + sign in (30), the frequency response will be:

. T (M) -JW --
H (ejw T) = R (w T) . e 2

where R(wT) is a real function of frequency. Such frequency responses are
approximating frequency selective filters. In the case of the minus sign in (30):

. T (M) . -Jw --
H(eJwT) = jl(wT) . e 2

(30)

(31)

appropriate for

(32)

where I(w T) is also a real function of frequency. Such frequency responses are required for
approximating differentiators and Hilbert transformers (90-degree phase shifters).

The most straightforward approach to the design of FIR filters is a technique often called the
'window method.' In this approach, an ideal frequency response function is first defined. Then, the
corresponding ideal impulse response is determined by evaluating the inverse Fourier transform of
the ideal frequency response. (In picking the ideal frequency response, the linear phase condition
mayor may not be applied depending on what is most appropriate.) The ideal impulse response will
in general be of infinite length. An' approximate impulse response is computed by truncating the
ideal impuse response to a finite number of samples and tapering the remaining samples with a
window function. With appropriate choice of the window function, a smooth approximation to the
ideal frequency response is obtained even at points of discontinuity. Many window functions have
been proposed, but the most useful window for filter design is perhaps the one proposed by Kaiser
[8] since it has a parameter which, in conjunction with the window length, can be used
systematically to trade off between approximation error in slowly varying regions of the ideal
response (e.g., the stopband) and sharpness of transition at discontinuities of the ideal frequency
response. A program for window design of FIR frequency selective filters is given by Rabiner and
McGonegal [6, Section 5.2]

FIR filters designed by the window method are not optimal, but in many cases the flexibility and
simplicity of the method outweigh the relatively small cost of increased filter length. In cases where
optimal designs are required for computationally efficient implementations, the Parks-McClellan
algorithm can be used to obtain equiripple or Chebyshev-type approximations. Such designs are
optimal in the sense of having the sharpest transitions between passbands and stopbands for a
given filter length and approximation error. This iterative algorithm is based upon the principles of
the Remez exchange algorithm. A program written by McClellan, Parks, and Rabiner is capable of
designing frequency selective FIR filters as well as differentiators and gO-degree phase shifters. [6,
Section 5.1] An example of the type of filters obtainable by this method is shown in Figure 8-12.
Only the magnitude response is shown since the phase is linear. The impulse response of this
system is given in Figure 8-13. With the symmetry of h[k], the difference equation for computing
the filtered output is:

15
y[n] = h[16] . x[n-16] + ~ h[k] [x[n-k] + x [n+k-32]]

k=O

where h[k] is as given in Figure 8-13. (Note that M = 32.)

30~--~

0
iii
~
w
0
::::)
~

Z -30
~ «
:?!
~
0
...I

-60

-90L---~
o

NORMALIZED FREQUENCY (RADIANS/SAMPLE)

(33)

NOTE: This FIR lowpass filter was designed by the Parks-McClellan algorithm (M = 32). The phase is linear with slope corresponding to

a delay of 16 samples.

FIGURE 8-12 - FREQUENCY RESPONSE OF FIR LOWPASS FILTER

8-17

I

I

IMPULSE RESPONSE OF EQUIRIPPLE LOWPASS FILTER

H(O) = 58211200E-02 = H(32)
H(1) = 12569420E-01 = H(31)
H(2) = 11188270E-01 = H(30)
H(3) = 49952310E-02 = H(29)
H(4) = 14605940E-01 = H(28)
H(5) = 29798820E-02 = H(27)
H(6) = 22352550E-01 = H(26)
H(7) = 42574740E-02 = H(25)
H(8) = 30249490E-01 = H(24)
H(9) = 17506790E-01 = H(23)
H(10) = 37882950E-01 = H(22)
H(11) = 41403080E-01 = H(21)
H(12) = 44224020E-01 = H(20)
H(13) = 91748770E-01 = H(19)
H(14) = 48421950E-01 = H(18)
H(15) = 31334940E-OO = H(17)
H(16) = 54989020E-OO = H(16)

FIGURE 8-13 - IMPULSE RESPONSE OF EQUIRIPPLE LOWPASS FILTER

8.4 QUANTIZATION EFFECTS

8-18

When digital filters are implemented on any computer, the finite precision of the machine can lead
to deviations from ideal performance. Problems which arise are due to quantization of the
coefficients of the difference equation and roundoff of products prior to accumulation or roundoff
of accumulated products.

When a discrete system is designed to meet a certain set of specifications, the design program
usually will compute the filter coefficients using floating-point arithmetic and the output of the
design program will be a set of coefficients specified to at least 32 -bit floating-point precision.
When these coefficients are used in a fixed-point implementation, it is generally necessary to
quantize the coefficients to fewer bits, e.g., 16 bits. The resulting frequency response will differ
from the original design. It may not meet the original specifications and may even be unstable. This
is analogous to the component tolerance problem in implementing analog active filters. Sensitivity
of the frequency response to errors in a given coefficient is dependent upon the nature of the
desired frequency response, and thus it is difficult to obtain theoretical results with wide generality.
However, it is well established both theoretically and experimentally that the direct-form
implementation structures for high-order filters are in general much more sensitive to coefficient
quantization errors than the equivalent cascade or parallel-form implementations using second
order sections. Therefore, these structures are generally to be preferred in small word-length
implementations.

The design program of Dehner [6, Section 6.1] has an option for optimizing filter response with
constraints on word length. Steiglitz and Ladendorf have also given an iterative program for
designing finite word-length IIR filters. [6, Section 6.4] A program for finite word-length design of
FIR filters has been written by Heute. [6, Section 5.4]

Another source of imperfection in implementing digital filters is the 'roundoff noise' that results
from quantization of intermediate computations in the difference equation. This problem is
particularly acute in IIR filters, where the recursive nature of the implementation algorithm leads to a
required word-length that increases linearly with time or to errors which propagate to future
computations. For example, with 16-bit input samples and 16-bit coefficients, the first output value
will require up to 32-bits for its representation, and in a recursive filter, the next output value will

require 32 + 16, etc. Thus, the products continually must be reduced to fit the word length of the
processor. However, the TMS320 has a full 32-bit accumulator so that 16-bit by 16-bit products
need not be rounded before addition. Thus, in implementing digital filters, each output value can be
computed with 32-bit precision and then rounded to 16-bits for output or for storage of delayed
variables.

It can be seen from (21) and (22) that in implementing digital filters, the basic operation is a multiply
followed by an accumulate (addition of the product to the sum of previously computed products).
An obvious additional problem is the danger of overflow of the accumulator word length. Overflow
can be eliminated as a problem by using floating-point arithmetic. However, this leads to
quantization of both sums and products, and implementation for floating-point arithmetic leads to
much higher costs in processors like the TMS320.

Rounding in digital filter implementations leads to errors in the output of the filters. In many cases,
these errors can be modeled as additive noise which is generated by noise sources in the filter
structure. (This is analogous to thermal noise generated by resistors in analog active filters.) In other
cases, the nonlinear nature of the quantization of products or overflow can lead to a much different
effect, i.e., periodic patterns of error samples are generated in the output. These 'limit cycles' are
particularly troublesome in situations where the input becomes zero for lengthy intervals. Certain
structures have been found which are free of limit cycle behavior. However, these require
somewhat more computation than the standard forms. [9] An important point is that limit cycles
cannot exist in the output of FIR filters. Since there is no feedback, the output of a FIR system
obviously becomes zero if the input is zero over an interval equal to or greater than the length of the
unit sample response. [1,3,7]

8.5 SPECTRUM ANALYSIS

Spectrum analysis is another major area of digital signal processing. Spectrum analysis consists of a
collection of techniques which are directed either toward the computation of the Fourier transform
of a deterministic signal or toward estimation of the power spectral density of a random signal. In
the following paragraphs are presented the important concepts and algorithms in discrete-time
spectrum analysis.

8.5.1 Discrete Fourier Transform (OFT)

The discrete Fourier transform (OFT) of a finite length sequence is defined as:

N-1 "
X[k] = ~ x[n] e-J27Tkn/N Q ~ k ~ N-1 (34)

n=O
The DFT is simply a sampled version of the discrete-time Fourier transform of x[n], Le.:

X[k] = X(e
jw

k T)
(35)

where Wk = 2nkl (NT), k = 0, 1, ... , N - 1. Thus, the OFT is a set of samples of the discrete-time
Fourier transform at N equally spaced frequencies from zero frequency up to (but not including) the
sampling frequency wS = 2n1T.

The inverse discrete Fourier transform (10FT) is:

1 N-1 "2 k IN
x [n] = - ~ X [k] eJ 7T n 0 ~ n ~ N-1

N k=Q
(36)

The OFT (34) and its inverse (36) provide an exact Fourier representation for finite length
sequences. However, an important property of the 10FT relation (36) is that if it is evaluated for
values of n outside the interval 0 ~ n ~ N - 1, the result is not zero but rather a periodic repetition
of x[n]. Thus, the OFT analysis and synthesis pair, (34) and (36), can also be thought of as a Fourier
series representation for periodic sequences. Whether (34) and (36) represent a finite-length

8-19

I

I

sequence or a periodic sequence is only a matter of what is assumed about the sequence outside
the interval 0 ~ n ~ N - 1. Nevertheless, (36) does repeat periodically outside the interval if it is
evaluated there, and it is this property that leads to a need to be careful in its use and also to
efficient computational algorithms for its evaluation. [1]

8.5.2 Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is a generic term for a collection of algorithms for efficiently
evaluating the DFT or 10FT. These algorithms are all based upon the general principle of breaking
down the computation of the N accumulations of N products (N2 multiplications and additions)
called for by either (34) or (36) into a number of smaller OFT-like computations. Because of the
periodicity and the symmetry of the quantities e-j2pkn/N, many of the multiplications and additions
can be eliminated. In fact, by increasing the control and indexing aspects of the algorithm, the
amount of numerical computation can be reduced to be proportional to N.log N rather than
proportional to N2. For large N, the savings in arithmetic computation can be several orders -of
magnitude.

The basic arithmetic operation in a FFT algorithm is a (complex) multiply-accumulate operation,
which can be easily and efficiently realized with the TMS320 10. The details of many FFT algorithms
can be found in references and textbooks on digital signal processing. [1,3,7]

A number of FORTRAN programs for FFT algorithms are contained in the IEEE Press Book. [6,
Section 1] They range in complexity from very simple programs where N must be a power of two, to
more complex (and thus more efficient) mixed radix algorithms. Although these programs cannot
be run directly on the TMS32010, they do serve as a convenient and readable description of the
algorithm which could be translated readily into a TMS32010 program.

8.5.3 Uses of the OFT and FFT

8-20

Since highly efficient computation of the OFT is possible, and since Fourier analysis is such a
fundamental concept in signal and system theory, it is natural that many uses have been found for
the OFT. One major class of applications is in the computation of convolutions or correlations. If
x[n] and h[n] are convolved to produce y[n] (i.e., linear filtering), then the Fourier transforms of
these sequences are related by:

Y(ejw T) = H (ejw T) . X(ejw T) (37)

Since the OFT is just a sampled version of the discrete-time Fourier transform, it is also true that:

Y[k] = H[k] . X[k] O~k~N-1
(38)

and if x[n], h[n], and the y[n] resulting from their convolution are all less than or equal to N in
length, then y[n] can be computed as the 10FT of Y[k] in (38), Due to the great efficiency of the
FFT, it may be more efficient in some cases to compute X[k] and H[k], mUltiply them together, and
then compute y[n] using the IFFT than to compute y[n] directly by discrete convolution. Such a
scheme is depicted in Figure 8-14. Since correlations can be computed by time-reversing one of the
sequences before convolution, Figure 8-14 also represents a technique for computing both auto
and cross-correlation functions.

When the lengths of the sequences are larger than the available random access memory, or when
real-time operation with minimal delay is required, there are schemes whereby the output can be
computed in sections. [1,3,7]

.. FFT .. X .. IFFT --. ... - Y[k] ...
..

x[n] X[k] y[n]
~~

H[k]

FFT

A.

h[n]

FIGURE 8-14 - A DISCRETE CONVOLUTION USING THE FFT

Another use of the OFT / FFT is in the computation of estimates of the Fourier transform or the
power spectrum of an analog signal. The three basic concerns in this application are depicted in
Figure 8-15. First, the analog signal ><a(t) must be sampled, and thus the spectrum of xa(t) must be
lowpass-filtered so as to minimize the aliasing distortion introduced by the sampling operation. The
second major concern is a result of the fact that the OFT IFFT applies to finite length sequences.
Thus, no matter how many samples of the input signal are available, there will always be a need to
truncate the input signal to a practical length for the FFT computation. This can be represented as a
windowing operation, i.e., a finite length sequence is obtained from x[n] by:

y[n] w[n] . x[n]

o
Thus, the Fourier transform of y[n] is:

o ~ n ~ N-1

otherwise

Y(ejwT) = _1_ f X(ejeT). W(ej(w-O)T)d8
211' -11'

(39)

(40) I
where X(eiwT) is the Fourier transform of the input signal, and W(eiwT) is the Fourier transform of
the window. From (40), it is clear that Y(eic.oT) is a Iblurred' or Ismeared' version of the desired
X(eiwT), and that it is desirable that W(eic.oT) be highly concentrated around zero frequency so that
it Ilooks like' an impulse compared to the detailed variations of X(eicoT). Then, Y(eiwT) will not differ
appreciably from the desired X(eiw T). This can be accomplished by adjusting the length N and the
shape of the window w[n]. [1-3]

In cases where the signal is modeled realistically as a stationary random process, the above
procedure can be used as a basis for the estimation of the power spectrum. In order to smooth the
statistical irregularities that arise in computing Fourier transforms of finite-length segments of a
random signal, it is common to compute discrete Fourier transforms of windowed segments of the
signal, and then average the squared magnitude of each transform. [1-3]

8-21

Xa(t)

I

8-22

LOWPASS
FILTER

ALIASING

A-TO-D
CONVERTER

•

I
I
I
I

x[n]
FFT

y[n]

w[n]

SPECTRAL SAMPLING

SMEARING

FIGURE 8-15 - ESTIMATION OF FOURIER TRANSFORM OF AN ANALOG SIGNAL

Y[k]

In situations where the signal is non-stationary, it is also common to compute discrete Fourier
transforms of successive (either overlapping or non-overlapping) segments of the waveform, but
instead of averaging the transforms, each transform is thought of as being representative of the
Signal in the time interval to which it corresponds. This leads to the concept of a short-time or
running Fourier transform which is a function of both time and frequency. [2] This approach to
spectrum analysis is widely used in speech, radar, and sonar signal processing. Figure 8-16 shows
an example of a running spectrum of a doppler radar signal. The plot shows a succession of DFTs of
the complex radar return signal. Evident in the plot is a strong time-varying component due to target
rotation along with considerable noise. [10]

1

NORMALIZED FREQUENCY

FIGURE 8-16 - SHORT-TIME FOURIER ANALYSIS OF A DOPPLER RADAR SIGNAL

8.5.4 Autoregressive Model

Another approach to spectrum analysis is based upon the assumption of a functional model for the
signal, and the subsequent estimation of the parameters of the model. [6] A widely used model
assumes that the signal x[n] is the output of a discrete-time linear system whose input and output
satisfy a difference equation of:

N
x[n] ~ akx[n-k] + G . u[n] (41)

k=1
where the spectrum of the model input urn] is flat. Estimation of the model parameters requires that
an estimate be made of the filter coefficients ak, the gain constant G, and perhaps some properties
of the input to the model urn]. The transfer function of the difference equation (41) is:

H(z) = --~---
1 - ~ akz-k

k=1

(42)

Thus, such models are often called all-pole models. Three basic types of excitations are generally
assumed for the model. When purely transient signals consisting of damped oscillations are
modeled, it is generally appropriate to use a unit impulse as the input to the model. When periodic
signals (such as voiced speech) are modeled, the input is assumed to be a periodic impulse train. In
cases where the signal is random and continuing in nature, the input is assumed to be white noise
with unit variance. In all these cases, since the inputs all have flat spectra, the transfer function of
the system determines the spectrum of the output of the model. Thus, if a given signal is assumed
to be the output of the above model, then the determination of H(z) for the model is tantamount to
determining the spectrum of the signal.

A number of techniques for determining the parameters ak of H(z) have been developed. Terms,
such as autoregressive modeling, linear predictive analysis, linear predictive coding (LPC), the Burg
method, maximum entropy method (MEM), and maximum likelihood method (MLM), are all
associated with methods of estimating the parameters of such all-pole signal models. Although the
details of these methods differ, it is fair to say that most of the available methods can be shown to
be equivalent to the solution of a set of N linear equations:

N
~ ak' R [k,m] = R [D,m] m = 1/2, ... ,N (43) I

k=1

where R[k,m] is a correlation-type function:

R [k,m] = ~ x [n-k] . x [n-ml (44)
n

where the sum is carried out over a finite interval of the signal. Both the computation of R[k,m] and
the solution of the set of linear equations by techniques such as the Levinson recursion [2,11,12]
involve the repetitive use of the basic multiply-accumulate operation. These computations can be
easily and efficiently implemented on the TMS3201 D.

Because the computation of the correlations R[k,m] can be based upon either a small or a large
number of samples of the signal, either a short-time or a long-time estimate of the signal model (and
thus of the signal spectrum) can be obtained. Thus, the autoregressive modeling approach can be
applied to either stationary or nonstationary signals just as in the case of Fourier analysis. As an
example, Figure 8-17 shows a spectrum estimate for several successive short segments of a speech
signal. The spectral peaks, which correspond to poles of the model transfer function, result from
resonances of the vocal system which produced the speech signal. These resonances are called
Iformant frequencies', and they are characteristic of the sound being produced during each
respective analysis interval. Spectrum analysis of this type is a cornerstone of much of the recent
work in speech synthesis and speech recognition. [2,12]

8-23

o 1T

NORMALIZED FREQUENCY (RADIANS/SAMPLE)

NOTE: In this short-time autoregressive spectrum estimation for speech signals, the lower spectra correspond to later analysis
times.

FIGURE 8-17 - SPECTRUM ESTIMATION FOR SPEECH SIGNALS

8.6 POTENTIAL DSP APPLICATIONS FOR THE TMS32010

I From the discussion of the fundamentals of digital signal processing, it can be seen that the
architecture of the TMS32010 is especially well suited to implementation of the basic DSP
algorithms for recursive and nonrecursive linear filtering, discrete Fourier transformation,
autoregressive mode,ling, and spectrum analysis. In the following paragraphs will be described
some of the basic applications of DSP techniques and the TMS32010 in the areas of speech and
audio processing and communications.

8.6.1 Speech and Audio Processing

8-24

In the field of speech and audio processing, there are three major application areas: 1) digital coding
for storage and transmission, 2) automatic recognition and classification of speech and speakers,
and 3) processing for enhancement and modification of speech signals.

The speech and audio coding area is very diverse, and its importance is growing rapidly as both
storage (recording) and transmission systems are rapidly moving in the digital direction. In all digital
coding applications, the basic concern is to encode sampled speech (or audio) signals with as Iowa
bit-rate as possible while maintaining an acceptable level of perceived quality. Generally, this must
be done within limits on the size, complexity, and cost of the encoding and decoding system.

The 'digital audio' area is rapidly becoming a major area of commercial exploitation of DSP. In this
field, the emphasis is on high quality reproduction of the signal. Signals are typically sampled with
14-to-16 bit precision at sampling rates upwards of 40 kHz. Potential areas of application of DSP

techniques by the TMS3201 0 include the use of digital filtering together with simple A-to-O
converters such as delta modulators operating at very high sampling rates to obtain high quality
sampling and quantization at low cost, the use of digital filters for changing sampling rates, and
high-speed coding and decoding (in the information theory sense) of samples for error protection
and detection. A variety of other applications in the audio area are possible if the audio signal is
available in digital form. These include delay and reverberation systems and sophisticated mixing
and editing systems. Another example is in the implementation of electronic musical instruments.

The speech coding area is wide in range and diverse due to the fact that the quality of the encoded
speech is not the only criterion in many applications. Often, simplicity of hardware implementation,
bit-rate for transmission or storage, or robustness to errors in transmission are major concerns. This
has led to the development of a multitude of coding schemes, all of which exploit one or more of the
basic algorithms of DSP discussed above, and each of which has its own set of advantages and
disadvantages.

Perhaps the simplest class of coders is based upon the principle of faithful reproduction of the
speech waveform. Such schemes as deltamodulation, differential PCM, and nonlinear companding
are examples. These systems may involve adaptive or fixed quantizers and adaptive or fixed
predictors to achieve data rates ranging from about 10 kbits/s to well over 1 megabit/so Recursive
and nonrecursive digital filtering and autoregressive spectrum analysis are fundamental to most of
these systems.

Another class of speech coders combines the principle of waveform replication with knowledge of
the ear's lack of sensitive to certain frequency domain distortions to obtain high perceptual quality
at bit rates in the 5-to-10 kbit/s range. Examples include sub-band coding, where the speech is
broken up into frequency bands before quantization, and transform coding, where blocks of speech
samples are transformed using the cosine transform (a close relative of the OFT) and then the
transform values are quantized rather than the speech samples themselves. In the former case, the
basic operations are digital filtering and adaptive quantization, and in the latter case, the basic
operations are Fourier transformation and adaptive quantization. These systems may be too
complex to be implemented with a single TMS32010 chip. However, several processors can be used
together since it is relatively straightforward to divide the system into parts which can operate in I
parallel or in pipeline fashion.

In the third class of speech coding systems, there is no attempt to replicate the waveform of the
speech signal. Instead, the objective is to incorporate both the physics of speech production and
the psychophysics of speech perception into a system which produces speech which is intelligible
and otherwise perceptually acceptable. Such systems are often called vocoders, and there are many
such schemes. However, recent interest centers primarily on the class of linear predictive (LPC)
vocoders. These systems are based upon an autoregressive all-pole model of the form discussed
earlier. The LPC vocoder analyzer system involves the estimation of the coefficients of the digital
filter in the model and the estimation of the parameters of the excitation to the model. The
computation of the correlation values and the recursive solution for the filter coefficients are basic
operations that can be efficiently implemented on the TMS3201 O. Speech is encoded in this system
by quantizing the parameters of the model. Speech is decoded from these parameters by actually
controlling a simulation of the model with the time-varying estimated parameters. This model
consists of an all-pole digital filter excited by either white noise or a periodic impulse train. The
TMS32010 is capable of generating the excitation as well as implementing the computations of the
difference equation in real-time at speech sampling rates. (Alternatively, special purpose LPC
speech synthesizer chips, such as the Texas Instruments TMS5100, 5200, or 5220, also can be used
for speech synthesis from an LPC model.)

8-25

I

One of the most exciting areas of speech processing is the area of voice input to computers. This
includes a wide range of considerations, such as isolated word recognition, connected speech
recognition, speaker verification, and speaker identification. These systems typically break down
into a 'front end' analysis or feature extraction stage, then a pattern comparison stage, followed by
a classification stage. Features used to represent speech signals for pattern recognition generally
are derived from an LPC spectrum analysis or a short-time Fourier spectrum analysis. Distance
measures for comparing speech patterns are generally in the form of an inner product of feature
vectors, which involves simply a multiply-accumulate operation. Another important operation is the
time alignment of speech patterns so as to take into account differences in articulation and speaking
rate. This is often accomplished using a dynamic programming algorithm. All of these operations
can be readily accomplished in real-time at speech sampling rates using a system composed of
several TMS32010 processors.

8.6.2 Communications

8-26

Digital signal processing has made a major impact in the general area of communications. In
addition to applications such as speech waveform coding, DSP hardware is being used in the
design of digital modems for communicating discrete information over voice-grade telephone
channels, for signal conversion, and for the digital realization of such familiar components as filters,
correlators, frequency references, and mixers.

As a specific example, a TMS32010 chip might be applied in the implementation of a digital modem
operating on a voice-grade telephone line. Digital processing has had a major impact on the design
of highspeed digital modems, not only because of cost, but also because these systems need to be
adaptive. In fact, all modems operating over voice-grade telephone lines at data rates in excess of

/'

1200 bits/ s require some sort of adaptive channel equalization. The frequency response of such
telephone lines extends from about 300 Hz to 3300 Hz. While the magnitude response is far from
flat, the more serious consideration for the modem designer is the group delay response, which
ranges from between 0 milliseconds at 1000 Hz to approximately 2.5 milliseconds at 3300 Hz. At a
transmission rate of 2400 pulses per second, the effect of this irregular group delay is to smear each
received pulse over several pulse intervals. This phenomenon is known as 'intersymbol
interference.' It can be removed by convolving the received signal with a function which is the
inverse of the channel impulse response. Unfortunately, the details of that response depend upon
the characteristics of the line, and thus they will change every time a new connection is made and
will vary during the course of a lengthy transmission. The solution is to pass the signal through an
adaptive equalizer, simply a FIR filter whose coefficients bk are systematically updated.

A simplified block diagram of a digital modem, shown in Figure 8-18, will be helpful before
considering the operation of the adaptive equalizer in more detial. At the transmitter, the bit stream
is converted into a waveform using either phase-shift keying (PSK) or a combination of PSK and
amplitude-shift keying (ASK). The resulting sequence is typically complex. This complex signal is
filtered and modulated to a center frequency, which after D-to-A conversion will be centered at
about 1800 Hz. These are all tasks which can be implemented easily on the TMS32010. At the
receiver, the signal is demodulated, filtered, and passed through the adaptive equalizer. The output
of the equalizer is decoded in order to reproduce the desired bit stream and this decision is also fed
back to the adaptive equalizer.

INPUT AID

BIT STREAM

0,1,1,0,1

SIGNAL
GENERATOR

lPF

LPF

TRANSMITTER

RECEIVER

ADAPTIVE
EQUALIZER

DIA

QUANTIZER

+

FIGURE 8-18 - BLOCK DIAGRAM OF A DIGITAL MODEM

OUTPUT

DECODER

In describing the operation of the adaptive equalizer, the kth filter coefficient at time n is denoted as
bk[n]. Then if x[n] and y[n] denote the input and output, respectively, of the equalizer:

M
y[n] = L bk[n]· x[n-k] (45)

k=O
The filter coefficients are updated according to:

k = 0, 1, ... , M (46)

where * denotes complex conjugation and where e[n] is the difference between the actual and the
desired value for y[n]. When the connection between the transmitter and the receiver is first made,
a standard preamble is transmitted, which is used to adapt the receiver coefficients. During the I
period of actual information transmission, the error is calculated under the assumption that the
signal is being correctly received and this information is fed back to the adaptive equalizer. The
stepsize parameter I.L controls the rate of adaption, the stability of the equalizer, and its immunity to
noise. The fundamental operation of the adaptive equalizer involves (complex) sums and products.
This is a task for which the TMS32010 is ideally suited.

8-27

I

8.7 REFERENCES

[1] Oppenheim, A.V. and Schafer, R.W., DIGITAL SIGNAL PROCESSING. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1975.

[2] Rabiner, L.R. and Schafer, R.W., DIGITAL PROCESSING OF SPEECH SIGNALS. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1978.

[3] Rabiner, L.R. and Gold, B., THEORY AND APPLICATION OF DIGITAL SIGNAL
PROCESSING. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

[4] Oppenheim, A.V., W ills ky, A.N., with Young, I.T., SIGNALS AND SYSTEMS. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1983.

[5] Goodman, D.J., 'The Application of Delta Modulation to Analog-to-PCM Encoding,' BELL
SYSTEM TECHNICAL JOURNAL, February, 1969, 321-343.

[6] IEEE ASSP DSP Committee, ed., PROGRAMS FOR DIGITAL SIGNAL PROCESSING. New
York, NY: IEEE Press, 1979.

[7] Gold, B. and Rader, C.M., DIGITAL PROCESSING OF SIGNALS. New York, NY: McGraw-Hili
Book Co., 1969.

[8] Kaiser, J.F., IINonrecursive Digital Filter Design Using The lo-sinh Window Function,"
PROCEEDINGS OF THE 1974 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND
SYSTEMS, April, 1974, 20-23.

[9] Fettweis, A. and Meekotter, K., IISuppression of Parasitic Oscillations in Wave Digital Filters,"
IEEE TRANSACTIONS CIRCUITS AND SYSTEMS, Vol. CAS-22, March, 1975, 239-246.

[10] Schaefer, R.T., Schafer, R.W., and Mersereau, R.M., "Digial Signal Processing for Doppler
Radar Signals," PROCEEDINGS OF THE 1979 INTERNATIONAL CONFERENCE OF
ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, April, 1979.

[11] Makhoul, J., IlLinear Prediction: A Tutorial Review," PROCEEDINGS OF IEEE, Vol. 63., 1975,
561-580.

[12] Markel, J.D. and Gray, A.H., LINEAR PRODUCTION OF SPEECH. New York, NY: Springer
Verlag, 1976.

APPENDIX A

TMS32010 DATA SHEET

I

I

A-2

• 160-ns Instruction Cycle

• 144-Word On-Chip Data RAM

• ROMless Version - TMS32010

• 1.5K-Word On-Chip Program ROM
TMS320M10

• External Memory Expansion to a Total of 4K
Words at Full Speed

• 16-Bit Instruction/Data Word

• 32-Bit ALU/Accumulator

• 16 x 16-Bit Multiply in 160-ns

• 0 to 16-Bit Barrel Shifter

• Eight Input and Eight Output Channels

• 16-Bit Bidirectional Data Bus with
50-Megabits-per-Second Transfer Rate

• Interrupt with Full Context Save

• Signed Two's-Complement Fixed-Point
Arithmetic

• NMOS Technology

• Single 5-V Supply

• Two Versions Available
TMS32010 ... 20.5 MHz Clock
TMS32010-25 ... 25.0 MHz Clock

description

The TMS3201 0 is the first member of the new
TMS320 digital signal processing family,
designed to support a wide range of high-speed
or numeric-intensive applications. This 16/32-bit
single-chip microcomputer combines the
flexibility of a high-speed controller with the
numerical capability of an array processor,
thereby offering an inexpensive alternative to
multichip bit-slice processors. The TMS320
family contains the first MOS microcomputers
capable of executing better than 6 million
instructions per second. This high throughput is
the result of the comprehensive, efficient, and
easily programmed instruction set and of the
highly pipelined architecture. Special instructions
have been incorporated to speed the execution
of digital signal processing (DSP) algorithms.

CLKOUT
X1

X2/CLKIN
BID
NC

VSS
08
09

010
011
012

TMS32010
DIGITAL SIGNAL PROCESSOR

MAY 1983 - REVISED OCTOBER 1985

N PACKAGE

(TOP VIEW)

A 1/PA 1 A2/PA2
AO/PAO A3
MC/MP A4

RS A5
INT A6

CLKOUT A7
X1 A8

X2/CLKIN MEN

17

810 DEN
VSS WE

08 VCC
09 A9

010 A10
011 A11
012 DO
013 01
014 02
015 03

07 04
06 05 -----

FN PACKAGE
(TOP VIEW)

I
CL 0.- N
~«« «
-....CLCL CL

II- ICJ) U (3 ;:: U N M o:;t LO co
~a:~««z«««««

18 19 20 21 22 232425 2627 28

UMo:;tLO['-..COLOo:;tMNU z..-.-.-ooooooz
000

A7
38 A8
37 MEN
36 DEN
35 WE
34 VCC
33 A9
32 A10
31 A 11
30 DO
29 01

The TMS320 family's unique versatility and power give the design engineer a new approach to a variety
of complex applications. In addition, these microcomputers are capable of providing the mUltiple functions
often required for a single application. For example, the TMS320 family can enable an industrial robot to

PRODUCTION DATA documents contain information
current as of publication date. Products conform
to specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

Copyright 'C 1985, Texas Instruments Incorporated

•

A-3

I

A-4

I M:iJlU'1 U
DIGITAL SIGNAL PROCESSOR

PIN NOMENCLATURE

NAME 1/0 DEFINITION

A 11-AO/PA2-PAO 0 External address bus. I/O port address multiplexed over PA2-PAO.

810 I External polling input for bit test and jump operations.

ClKOUT 0 System clock output, V4 crystal/ClKIN frequency.

015-00 I/O 16-bit data bus.

DEN 0 Data enable indicates the processor accepting input data on 015-00.

INT I Interrupt.

MC/MP I Memory mode select pin. High selects microcomputer mode. low selects microprocessor

mode.

MEN 0 Memory enable indicates that 015-00 will accept external memory instruction.

NC No connection.

RS I Reset used to initialize the device.

VCC I Power.

VSS I Ground.

WE a Write enable indicates valid data on D 15-00.

X1 I Crystal input.

X2/ClKIN I Crystal input or external clock input.

synthesize and recognize speech, sense objects with radar or optical intelligence, and perform mechanical
operations through digital servo loop computations.

architecture

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility. In a strict Harvard
architecture, program and data memory lie in two separate spaces, permitting a full overlap of the instruction
fetch and execution. The TMS320 family's modification of the Harvard architecture allows transfers
between program and data spaces, thereby increasing the flexibility of the device. This modification permits
coefficients stored in program memory to be read into the RAM, eliminating the need for a separate
coefficient ROM. It also makes available immediate instructions and subroutines based on computed values.

The TMS3201 0 utilizes hardware to implement functions that other processors typically perform in software.
For example, this device contains a hardware multiplier to perform a multiplication in a single 160-ns cycle.
There is also a hardware barrel shifter for shifting data on its way into the ALU. Finally, extra hardware
has been included so that auxiliary registers, which provide indirect data RAM addresses, can be configured
in an autoincrement/decrement mode for single-cycle manipulation of data tables. This hardware-intensive
approach gives the design engineer the type of power previously unavailable on a single chip.

32-bit ALU/accumulator

The TMS3201 0 contains a 32-bit ALU and accumulator that support double-precision arithmetic. The ALU
operates on 16-bit words taken from the data RAM or derived from immediate instructions. Besides the
usual arithmetic instructions, the ALU can perform Boolean operations, providing the bit manipulation ability
required of a high-speed controller.

shifters

A barrel shifter is available for left-shifting data 0 to 15 places before it is loaded into, subtracted from,
or added to the accumulator. This shifter extends the high-order bit of the data word and zero-fills the
low-order bits for two's-complement arithmetic. A second shifter left-shifts the upper half of the accumulator
0, 1, or 4 places while it is being stored in the data RAM. Both shifters are very useful for scaling and
bit extraction.

TEXAS •
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

functional block diagram

X1

WE

DEN

MEN

BIO

MC/MP

INT

RS

A11-AO/
PA2-PAO

ClKOUT X2/ClKIN

... -... -... ..

~ ..

/

+ 'r t J16 if 12 lSB
~~

t ~ ~
a:
w
..J
..J
0
a: z
0

\ MUX I ":'16

, ,-,; 12

I PC (12) INSTRUCTION

u
/12 en

... en PROGRAM w ,.
IX: ROM
C
C (1536 x 16)

STACK c:(

4 x 12 Ix ... -
I i
~

3
PROGRAM BUS

,/

j~
~, 16

ARO (16) :
ARP I---....... ---...;..--+--~

AR1 (16) I
I

7 ." "

ADDRESS

DATA RAM
(144 x 16)

lEGEND:

ACC= Accumulator

ARP= Auxiliary register pointer

ARO= Auxiliary register 0

AR1= Auxiliary register 1

DP = Data page pointer

PC = Program counter

P = P register

T = T register

/

DATA

" / 16

"
DATA BUS

TEXAS ."
INSTRUMENTS

TMS32010
DIGITAL SIGNAL PROCESSOR

T(16)

SHIFTER
(0-15)

MULTIPLIER

P(32)

~

t ~
V 32

, 32 ,
\ MUX/

Ta2 +
\ I I / AlU (32)

, .IV 32
I 32

~,

ACC (32)

------------. 32

+ /32

SHIFTER (0, 1, 4)

16

16 ~
~

•

A-5

I

A-6

TMS32010
DIGITAL SIGNAL PROCESSOR

16 x 16-bit parallel multiplier

The TMS32010's multiplier performs a 16 x 16-bit, two's-complement multiplication in one 160-ns
instruction cycle. The 16-bit T Register temporarily stores the multiplicand; the P Register stores the 32-bit
result. Multiplier values either come from the data memory or are derived immediately from the MPYK
(multiply immediate) instruction word. The fast on-chip multiplier allows the TMS3201 0 to perform such
fundamental operations as convolution, correlation, and filtering at the rate of better than 3 million samples
per second.

program memory expansion

The TMS320M 1 0 is equipped with a 1536-word ROM which is mask-programmed at the factory with
a customer's program. It can also execute from an additional 2560 words of off-chip program memory
at full speed. This memory expansion capability is especially useful for those situations where a customer
has a number of different applications that share the same subroutines. In this case, the common subroutines
can be stored on-chip while the application specific code is stored off-chip.

The TMS320M 1 0 can operate in either of the following memory modes via the MC/MP pin:

Microcomputer Mode (MC) - Instruction addresses 0-1 535 fetched from on-chip ROM. Those with
addresses 1536-4095 fetched from off-chip memory at full speed.

Microprocessor Mode (MP) - Full-speed execution from all 4096 off-chip instruction addresses.

The TMS32010 is identical to the TMS320M 10, except that the TMS32010 operates only in the
microprocessor mode. Henceforth, TMS32010 refers to both versions.

The ability of the TMS3201 0 to execute at full speed from off-chip memory provides the following important
benefits:

• Easier prototyping and development work than is possible with a device that can address only on-chip
ROM,

• Purchase of a standard off-the-shelf product rather than a semi-custom mask-programmed device,
• Ease of updating code,
• Execution from external RAM,
• Downloading of code from another microprocessor, and
• Use of off-chip RAM to expand data storage capability.

in put/output

The TMS3201 O's 16-bit parallel data bus can be utilized to perform I/O functions at burst rates of 50 million
bits per second. Available for interfacing to peripheral devices are 128 input and 128 output bits consisting
of eight 16-bit multiplexed input ports and eight 16-bit multiplexed output ports. In addition, a polling input
for bit test and jump operations (BIO) and an interrupt pin (INT) have been incorporated for multitasking.

interrupts and subroutines

The TMS3201 0 contains a four-level hardware stack for saving the contents of the program counter during
interrupts and subroutine calls. Instructions are available for saving the TMS3201 O's complete context.
The instructions, PUSH stack from accumulator, and POP stack to accumulator permit a level of nesting
restricted only by the amount of available RAM. The interrupts used in the TMS3201 0 are maskable.

instruction set

The TMS3201 O's comprehensive instruction set supports both numeric-intensive operations, such as signal
processing, and general-purpose operations, such as high-speed control. The instruction set, explained
in Tables 1 and 2, consists primarily of single-cycle single-word instructions, permitting execution rates
of better than 6 million instructions per second. Only infrequently used branch and I/O instructions are
multicycle.

TEXAS ~
INSTRUMENTS

pn<:T nl'l'll"'1' Rnx 144"1 • Hnll<:TnN TI'XA<: 77001

I MS;iZU1U
DIGITAL SIGNAL PROCESSOR

The TMS3201 0 also contains a number of instructions that shift data as part of an arithmetic operation.
These all execute in a single cycle and are very useful for scaling data in parallel with other operations.

Three main addressing modes are available with the TMS32010 instruction set: direct, indirect, and
immediate addressing.

direct addressing

In direct addressing, seven bits of the instruction word concatenated with the data page pointer form the
data memory address. This implements a paging scheme in which the first page contains 128 words and
the second page contains 16 words. In a typical application, infrequently accessed variables, such as those
used for servicing an interrupt, are stored on the second page. The instruction format for direct addressing
is shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

OPCODE o dma

Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6 through
o contain data memory address.

The seven bits of the data memory address (dma) field can directly address up to 128 words (1 page)
of data memory. Use of the data memory page pointer is required to address the full 144 words of data
memory.

Direct addressing can be used with all instructions requiring data operands except for the immediate operand
instructions.

indirect addressing

Indirect addressing forms the data memory address from the least significant eight bits of one of two auxiliary
registers, ARO and AR 1. The auxiliary register pointer (ARP) selects the current auxiliary register. The
auxiliary registers can be automatically incremented or decremented in parallel with the execution of any
indirect instruction to permit single-cycle manipulation of data tables. The instruction format for indirect
addressing is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

OPCODE

Bit 7 = 1 defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 7 through
o contain indirect addressing control bits.

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the content of bit 0 is loaded
into the ARP. If bit 3 = 1, then the content of ARP remains unchanged. ARP = 0 defines the contents
of ARO as memory address. ARP = 1 defines the contents of AR1 as memory address.

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, then the ARP defines which auxiliary register
is to be incremented by 1. If bit 4 = 1, then the ARP defines which auxiliary register is to be decremented
by 1. If bit 5 and bit 4 are zero, then neither auxiliary register is incremented or decremented. Bits 6, 2,
and 1 are reserved and should always be programmed to zero.

Indirect addressing can be used with all instructions requiring data operands, except for the immediate
operand instructions.

TEXAS ",
INSTRUMENTS

POST OFFICE BOX '-443 • HOUSTON, TEXAS 77001

I

A-7

I

A-8

• •• '.JI"'U I U

DIGITAL SIGNAL PROCESSOR

immediate addressing

The TMS3201 0 instruction set contains special"immediate" instructions. These instructions derive data
from part of the instruction word rather than from the data RAM. Some very useful immediate instructions
are multiply immediate (MPYK), load accumulator immediate (LACK), and load auxiliary register immediate
(LARK).

SYMBOL

ACC

D

I

K

PA

R

S

X

TABLE 1. INSTRUCTION SYMBOLS

MEANING

Accumulator

Data memory address field

Addressing mode bit

Immediate operand field

3-bit port address field

1-bit operand field specifying auxiliary register

4-bit left-shift code

3-bit accumulator left-shift field

TEXAS ~
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

MNEMONIC

ABS

ADD

AOOH

ADDS

AND

LAC

LACK

OR

SACH

SACL

SUB

SUBC

SUBH

SUBS

XOR

ZAC

ZALH

ZALS

MNEMONIC

LAR

LARK

LARP

LOP

LOPK

MAR

SAR

TMS32010
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS320 1 0 INSTRUCTION SET SUMMARY

ACCUMULATOR INSTRUCTIONS

NO. NO.
DESCRIPTION

CYCLES WORDS

OPCODE

INSTRUCTION REGISTER

151413121110 9 8 7 6 5 4 3 2 1 0

Absolute value of accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0

Add to accumulator with shift 1 1 0 0 0 0 4--S. I 4 0 •
Add to high-order accumulator bits 1 1 0 1 1 0 0 0 0 0 I 4 0 •
Add to accumulator with no sign

1 1 0 1 1 0
extension

0 0 0 1 I 4 0 •
AND with accumulator 1 1 0 1 1 1 1 0 0 1 I 4 0-+

Load accumulator with shift 1 1 0 0 1 0 +---S+ I 4 0-+

Load accumulator immediate 1 1 0 1 1 1 1 1 1 0 4 K~

OR with accumulator 1 1 0 1 1 1 1 0 1 0 I 4 0-+

Store high-order accumulator bits with
1 1 0 1 0 1 1 .X+ I 4 0 • shift

Store low-order accumulator bits 1 1 0 1 0 1 0 0 0 0 I 4 0 •
Subtract from accumulator with shift 1 1 0 0 0 1 +--S+ I 4 D---.

Conditional subtract (for divide) 1 1 0 1 1 0 0 1 0 0 I 4 D~

Subtract from high-order accumulator bits 1 1 0 1 1 0 0 0 1 0 I 4 D----.

Subtract from accumulator with no sign
1 1 0 1 1 0 0 0 1 1 I 4 D • extension

Exclusive OR with accumulator 1 1 0 1 1 1 1 0 0 0 I 4 D •
Zero accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1

Zero accumulator and load high-order bits 1 1 0 1 1 0 0 1 0 1 I 4 0 •
Zero accumulator and load low-order bits . 0 • 1 1 0 1 1 0 0 1 1 I 4 0
with no sign extension

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS

OPCODE
NO. NO.

INSTRUCTION REGISTER DESCRIPTION
CYCLES WORDS

151413121110 9 8 7 6 5 4 3 2 1 0

Load auxiliary register 1 1 0 0 1 1 1 0 0 R I 4 D~

Load auxiliary register immediate 1 1 0 1 1 1 0 0 0 R • K~

Load auxiliary register pointer immediate 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 K

Load data memory page pointer 1 1 0 1 1 0 1 1 1 1 I 4 D~

Load data memory page pointer immediate 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 K

Modify auxiliary register and pointer 1 1 0 1 1 0 1 0 0 0 I 4 0----+

Store auxiliary register 1 1 0 0 1 1 0 0 0 R I 4-- 0----+

I

TEXAS ."
INSTRUMENTS

A-9

I

TMS32010
DIGITAL SIGNAL PROCESSOR

TABLE 2 TMS32010 INSTRUCTION SET SUMMARY (CONTINUED)

BRANCH INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. NO.

CYCLES WORDS

B Branch unconditionally 2 2

BANZ Branch on auxiliary register not zero 2 2

BGEZ Branch if accumulator ~ 0 2 2

BGZ Branch if accumulator > 0 2 2

BIOZ Branch on BIO = 0 2 2

BLEZ Branch if accumulator :5 0 2 2

BLZ Branch if accumulator < 0 2 2

BNZ Branch if accumulator *- 0 2 2

BV Branch on overflow 2 2

BZ Branch if accumulator = 0 2 2

CALA Call subroutine from accumulator 2

CALL Call subroutine immediately 2 2

RET Return from subroutine or interrupt routine 2

OPCODE

INSTRUCTION REGISTER

1514131211109876543210

1 1 1 1 100 1 0 0 0 000 0 0

o 0 0 0 +----- BRANCH ADDRESS -.

1 1 1 101 0 0 0 0 0 000 0 0

o 0 0 0 ~ BRANCH ADDRESS -.

1 1 1 1 1 101 0 0 000 0 0 0

o 0 0 0 ~ BRANCH ADDRESS ---+
1 1 1 1 1 1 0 0 0 0 000 0 0 0

o 0 0 0 +----- BRANCH ADDRESS ~

1111011000000000

o 0 0 0 +----- BRANCH ADDRESS ---+
1 1 1 1 101 100 000 0 0 0

o 0 0 0 +-- BRANCH ADDRESS ~

1 1 1 1 101 000 0 000 0 0

o 0 0 0 ~ BRANCH ADDRESS----'

1 1 1 1 1 1 1 0 0 0 0 000 0 0

o 0 0 0 4-- BRANCH ADDRESS ---.

1111010100000000

o 0 0 0 ~ BRANCH ADDRESS----+

1 1 1 1 1 1 1 1 0 0 0 000 0 0

o 0 0 0 ~ BRANCH ADDRESS ---+
o 1 1 1 1 1 1 1 1 000 1 100

1 1 1 1 1 0 0 0 0 0 000 0 0 0

o 0 0 0 +----- BRANCH ADDRESS-'

o 1 1 1 1 1 1 1 1 000 1 101

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

MNEMONIC

APAC

LT

LTA

LTD

MPY

MPYK

PAC

SPAC

DESCRIPTION

Add P register to accumulator

Load T register

L T A combines L T and APAC into one

instruction

LTD combines LT, APAC, and DMOV into

one instruction

Multiply with T register, store product in

P register

Multiply T register with immediate

operand; store product in P register

Load accumulator from P register

Subtract P register from accumulator

NO. NO.

CYCLES WORDS

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

OPCODE

INSTRUCTION REGISTER

151413121110 9 8 7 6 5 4 3 2 1 0

o 1 1 1 1 1 1 1 1 000 1 1 1 1

011010101 4 D ~

o 1 1 0 1 1 0 0 I 4--D----+

o 1 1 0 1 0 1 1 I .4i---D---4.~

o 1 1 0 1 1 0 1 I ~4~-D----.~

1 0 0 44~------K-----~ ••

o 1 1 1 1 1 1 1 1 000 1 1 1 0

o 1 1 1 1 1 1 1 100 1 000 0

~-10 TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

TMS32010
DIGITAL SIGNAL PROCESSOR

TABLE 2. TMS32010 INSTRUCTION SET SUMMARY (CONCLUDED)

CONTROL INSTRUCTIONS

NO. NO.
OPCODE

MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES WORDS

1514131211109 8 7 6 5 4 3 2 1 0

DINT Disable interrupt 1 1 0 1 1 1 1 1 1 1 1 o 0 0 0 0 0 1

EINT Enable interrupt 1 1 0 1 1 1 1 1 1 1 1 o 0 0 0 0 1 0

LST Load status register 1 1 0 1 1 1 1 0 1 1 I 4 D •
NOP No operation 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

POP POP stack to accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1

PUSH PUSH stack from accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0

ROVM Reset overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0

SOVM Set overflow mode 1 1 0 1 1 1 1 1 1 1 1 o 0 0 1 0 1 1

SST Store status register 1 1 0 1 1 1 1 1 0 0 I 4 D---.

1/0 AND DATA MEMORY OPERATIONS

OPCODE
NO. NO.

MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES WORDS

1514131211109 8 7 6 5 4 3 2 1 0

DMOV
Copy contents of data memory location

1 1 0 1 1
into next location

0 1 0 0 1 I .-.-D ~

IN Input data from port 2 1 0 1 0 0 0 .PA" I .-.-D •
OUT Output data to port 2 1 0 1 0 0 1 .PA" I '-'-D •
TBLR

Table read from program memory to data
3 1 0 1 1

RAM
0 0 1 1 1 I '--D •

TBLW
Table write from data RAM to program

3 1 0 1 1 1 1 1 0 1 I 4 D •
development systems and software support

Texas Instruments offers concentrated development support and complete documentation for designing
a TMS3201 O-based microprocessor system. When developing an application, tools are provided to evaluate
the performance of the processor, to develop the algorithm implementation, and to fully integrate the
design's software and hardware modules. When questions arise, additional support can be obtained by
calling the nearest Texas Instruments Regional Technology Center (RTe).

Sophisticated development operations are performed with the TMS3201 0 Evaluation Module (EVM), Macro •
Assembler/Linker, Simulator, and Emulator (XDS). In the initial phase of developing an application, the
evaluation module is used to characterize the performance of the TMS3201 O. Once this evaluation phase
is completed, the macro assembler and linker are used to translate program modules into object code and
link them together. This puts the program modules into a form which can be loaded into the TMS3201 0
Evaluation Module, Simulator, or Emulator. The simulator provides a quick means for initially debugging
TMS32010 software while the emulator provides real-time in-circuit emulation necessary to perform system
level debug efficiently.

A complete list of TMS3201 0 software and hardware development tools is given in Table 3.

TEXAS ."
INSTRUMENTS

A-1'

TMS32010
DIGITAL SIGNAL PROCESSOR

TABLE 3. TMS32010 SOFTWARE AND HARDWARE SUPPORT

HOST OPERATING PART

COMPUTER SYSTEM NUMBER

MACRO ASSEMBLERS/LINKERS

DEC VAX VMS TMDS3240210-08

DEC VAX Berkeley UNIX 4.1 TM DS3240220-08

IBM MVS TMDS324031 0-08

IBM CMS TMDS3240320-08

TI/IBM PC MS/PC-DOS TMDS324081 0-02

SIMULATOR

DEC VAX VMS TMDS3240211-08

TI/IBM PC MS/PC-DOS TMDS3240811-02

DIGITAL FIL TER DESIGN PACKAGE (DFDP)

TI PC MS-DOS DFDP-TI001

IBM PC PC-DOS DFDP-IBMOO 1

HARDWARE

Evaluation Module (EVM) RTC/EVM320A-03

Analog Interface Board (AlB) RTC/EVM320C-06

Emulator (XDS/22) TMDS3262210

absolute maximum ratings over specified temperature range (unless otherwise noted) t

Supply voltage, Vec:t .. - 0.3 V to 7 V
All input voltages .. - 0.3 V to 1 5 V
Output voltage .. - 0.3 V to 1 5 V
Continuous power dissipation .. 1.5 W
Air temperature range above operating device ooe to 70°C
Storage temperature range .. - 55°C to + 150°C

tStresses beyond those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating
Conditions" section of this specification is not implied. Exposure to absolute-maxi mum-rated conditions for extended periods may affect
device reliability.

:tAli voltage values are with respect to VSS.

I recommended operating conditions

MIN NOM

VCC Supply voltage 4.75

VSS Supply voltage

I All inputs except ClKIN 2
VIH High-level input voltage

I ClKIN 2.8

Vil low-level input voltage (all inputs)

10H High-level output current (all outputs)

tOl low-level output current (all outputs)

TA Operating free-air temperature 0

NOTES: 1. Case temperature (TC) for the TMS32010-25 and TMS32010FDl must be maintained below 90°C.
2. For dual-in-line package:

A-12

ROJA = 51.6°C/Watt
ROJC = 16.6°C/Watt.

For plastic chip-carrier package:
ROJA = 70°C/Watt
ROJC = 20°C/Watt.

TEXAS ",
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

5

0

MAX UNIT

5.25 V

V

V

0.8 V

300 p.A

2 mA

70 °c

I M:i.:JlU·IU

DIGITAL SIGNAL PROCESSOR

electrical characteristics over specified temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN Typt MAX

VOH High-level output voltage IOH = MAX 2.4 3

VOL Low-level output voltage IOL = MAX 0.3 0.5

I Vo = 2.4 V 20
IOZ Off-state output current VCC = MAX

I va = 0.4 V -20

II Input current VI = VSS to VCC ±50

I TA = O°C 180 275
ICC t Supply current VCC = MAX I TA = 70 cC 235§

Data bus 25
Ci Input capacitance

All others f = 1 MHz, 15

Data bus 25
Co Output capacitance

All others
All other pins 0 V

10

t All typical values except for ICC are at VCC = 5 V, T A = 25 cC.
tlCC characteristics are inversely proportional to temperature; i.e., ICC decreases approximately linearly with temperature.
§Value derived from characterization data and not tested.

CLOCK CHARACTERISTICS AND TIMING

The TMS3201 0 can use either its internal oscillator or an external frequency source for a clock.

internal clock option

UNIT

V

V

J-tA

J-tA

mA

mA

pF

pF

The internal oscillator is enabled by connecting a crystal across X 1 and X2/CLKIN (see Figure 1). The
frequency of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental
mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW,
and be specified at a load capacitance of 20 pF.

PARAMETER

Crystal frequency fx

Cl, C2

TMS32010
TEST CONDITIONS

MIN

OcC - 70 cC 6.7

OcC - 70 cC

X1 X2/ClKIN

CRYSTAL

e__--t 0 t--___e

J
C2

NOM

10

FIGURE 1. INTERNAL CLOCK OPTION

TEXAS •
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

MAX

20.5

TMS32010-25
UNIT

MIN NOM MAX

6.7 25.0 MHz

10 pF

A-1

I

DIGITAL SIGNAL PROCESSOR

external clock option

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X 1 left
unconnected. The external frequency injected must conform to the specifications listed in the table below.

timing requirements over recommended operating conditions

TMS32010 TMS32010-25

MIN NOM MAX MIN NOM MAX

tc(MC) Master clock cycle time 48.78 150 40 150

tr(MC) Rise time master clock input 5 10 5 10

tf(MC) Fall time master clock input 5 10 5 10

tw(MCP) Pulse duration master clock O.4751:c(C) O.5251:c(C) O.475tc(C) 0.5251:c(C)

tw(MCL) Pulse duration master clock low, tc(MC) = 50 ns 20 18

tw(MCH) Pulse duration master clock high, tc(MC) = 50 ns 20 18

switching characteristics over recommended operating conditions

TEST TMS32010 TMS32010-25
PARAMETER

CONDITIONS MIN NOM MAX MIN NOM

tc(C) ClKOUT cycle time t 195.12 160

tr(C) CLKOUT rise time 10 10

tf(C) ClKOUT fall time
RL = 870 n

8 8

tw(CL) Pulse duration, CLKOUT low
Cl = 100 pF,

92 74

tw(CH) Pulse duration, CLKOUT high
See Figure 2

90 72

td(MCC) Delay time CLKINi to CLKOUT ~:j: 25 60 25

ttc(C) is the cycle time of CLKOUT, i.e., 4 *tc(MC) (4 times ClKIN cycle time if an external oscillator is used).
:j:Values given were derived from characterization data and are not tested.

MAX

60

UNIT

ns

ns

ns

ns

ns

ns

UNIT

ns

ns

ns

ns

ns

ns

~-14
TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

I M;jJlUIU

DIGITAL SIGNAL PROCESSOR

PARAMETER MEASUREMENT INFORMATION

2.14 V

RL = 870 (}

FROM OUTPUT n--__e
TEST

__ --0 POINT

2.0 V_
1.88 V

UNDER TEST

FIGURE 2. TEST LOAD CIRCUIT

VIH (MIN)

0.80 V- VIL (MAX) --------------------------

2.4V_

2.0V-

o
(a) INPUT

0.5 V-±==~==-==-=::....:=.=-~===-VOL (MAX)
o

(b) OUTPUTS

FIGURE 3. VolTAGE REFERENCE LEVELS

I

TEXAS •
INSTRUMENTS

A-1

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

I

DIGITAL SIGNAL PROCESSOR

clock timing

--t ,. tr(MC) 14 ~ tw(MCH)
.. t ----... - I ~ ~ tw(MCP) t I Icc c(MC) -I I I I

X2/ClKIN 1: ~ I \""' __ .J/----, /
I I t. ~ tw(MCL)

: tf(MC) -.I ~
1_ ~~~------------ tw(CH) ------------~~.

\~/

.. ~ td(MCC)t I I

CLKOUT ~~ ______________ ~t1~----------------~~
-.t t.- tf(C) -.I !... tr(C) I

II I. J r.... " ~ tw(CL)--------------~~·

~I.~---------------------------- tc(C) --------------------------~~.
NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.
ttd(MCC) and tw(MCP) are referenced to an intermediate level of 1.5 volts on the ClKIN waveform.

MEMORY AND PERIPHERAL INTERFACE TIMING

switching characteristics over recommended operating conditions

TEST
PARAMETER

CONDITIONS
MIN TYP MAX UNIT

td1
Delay time CLKOUT! to

10t 50 ns
address bus valid (see Note 4)

td2 Delay time CLKOUT! to MEN! 1i4tc(C) -5 t 1i4tc(C) + 15 ns

td3 Delay time CLKOUT! to MENt -10t 15 ns

td4 Delay time CLKOUT! to DEN! 1i4tc(C)-5t 1i4tc(C) + 15 ns

td5 Delay time CLKOUT! to DENt -10t 15 ns

td6 Delay time CLKOUT! to WE! RL = 870 fl, 1htc(C)-5t 1htc(C)+15 ns

td7 Delay time CLKOUT! to WEt CL = 100 pF, -10 t 15 ns

td8
Delay time CLKOUT! to See Figure 2

1i4tc(C) +65
data bus OUT valid

ns

Time after CLKOUT! that data
1i4tc(C)-5t td9 ns

bus starts to be driven

Time after CLKOUT! that data
1i4tc(C)+30t td10 ns

bus stops being driven

tv Data bus OUT valid after CLKOUT! 1i4tc(C)-10 ns

NOTE 4: Address bus will be valid upon WEt, DENt, or MENt.
tThese values were derived from characterization data and are not tested.

timing requirements over recommended operating conditions

TEST
MIN NOM MAX UNIT

CONDITIONS

tsu(D) Setup time data bus valid prior to CLKOUT! RL = 870 fl, 50 ns

tsu(A-MD) Address bus setup time prior to MEN! or DEN! CL = 100 pF, 1i4tc(C)-45 ns

th(D) Hold time data bus held valid after CLKOUT! See Figure 2 0 ns

NOTE 5: Data may be removed from the data bus upon MENt or DENt preceding CLKOUT!.

~-16
TEXAS ."

INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

" o
(/l
--t
o
"Tl

::!!-

hlZ
~C/l
~~
~~~ 
.c:~ 5~ 
fiit'l'1 
~Z 
~Uj. 
l> 
(/l 

..... ..... 
o 
~ 

» 
I 

~ tc(C) ~ 

3 
CD 
3 o 
~ 

-< 
~ 

CD 
m 
c.. 

ClKOUT '{ / ~ / 

tel3-; ~ td2 ~ I 
MEN 1/ 'i IV ~ 

~ tell =:1'-
All-AD ~ AOORESSB~SVAUOt --~~ ____ _ 

~ sufO) ~. 
015-00) ( INSTRUCTION IN VAllO ))-0----------

NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts. unless otherwise noted. 

g 

C5 
=i 
:I=
r-
en -G) 
2 
:I=
r-

", .... 
~3I: 
"en "'w en N 
(1)= 
Q~ 
::D «= 



I 
-10 

ex> 

." o 
(fl 
--t 
o 
"T1 
::!)-

~Z 
~(J) 
~~ 
~~~ 
.c:~ 6~
~(T1
clZ

~u1.
l>
(fl

-.,j
-.,j

o
o

• -I C.....j
to -:5:
r ~~ ::XJ -ICotJ
:r 2:-N

~c en
!:!!c ~

c
C') (') ... 2 0' 2:-~
~ ...
-a 3' ::a S' = CQ C"')
m
en
en = ::a

CLKOUT ~ / \ / \ / \ / \ I
td3 ---r ~d2""1 --..I f4- td3

2 ! r-\~ 3 I 4 MEN

A11-AO
_* 5 * j4-td1~ . 6)@(-7~)@(a

___),-------J.(9) < \4-t.U(~ ~th(DI *==
_ . 10) { 11 ;~ 015-00

LEGEND:

1. TBlR INSTRUCTION PREFETCH 7. ADDRESS BUS VALID

2. DUMMY PREFETCH 8. ADDRESS BUS VALID

3. DATA FETCH 9. INSTRUCTION IN VALID

4. NEXT INSTRUCTION PREFETCH 10. INSTRUCTION IN VALID

5. ADDRESS BUS VALID 11. DATA IN VALID

6. ADDRESS BUS VALID 12. INSTRUCTION IN VALID

NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

" o
Cf)
-I

;;
:!:'-

~z
~(JJ
~~
E ;tl~
.c:~ I~
~fT1
clZ

~ Ci14r
}>
'Jl

-..J
-..J
o
o

»
I

CLKOUT \ I \ I \ I \ I \ r
MEN 2 3

A11-AO =* 4)@(5)@(6)@(7 *==
I.--td6~ -.f,.-td7

------------~I--~~ ,---------
I+---td8 -t ~ j4-t

V

j4-td91~J.. ~td10--l
~ (8) ("--9~) ~ 10 .~< 11)~-

WE

015-00

LEGEND:

1 . TBLW INSTRUCTION PREFETCH 7. ADDRESS BUS VALID

2. DUMMY PREFETCH 8. INSTRUCTION IN VALID

3. NEXT INSTRUCTION PREFETCH 9. INSTRUCTION IN VALID

4. ADDRESS BUS VALID 10. DATA OUT VALID

5. ADDRESS BUS VALID 11 . INSTRUCTION IN VALID

6. ADDRESS BUS VALID

NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. -

~
to
~

~
:i' en
C
(")
S'
:::l
....
3'
:i'

CO

= -c-)

=i
:.:
r-
(I) -c-)
iii!!
:.:
r-

-a
~s:
ncn
mw
(l)N
We
Q ...
::::a =

"1l
o
en
--l

Q

y

~
o

.:!!-

~z

~~
~;o~
.c::~ 5~
~fT1
~Z
~~~ 
l> 
en 
-.J 
-.J 
o o 

-
;2 c ..... 
:r Cia=: 
fA 

-en 
,... .... w 
~ >1':1 
s:: r-= 
(') ,... en-
0' -= 
::1 

C') 

,... :2 

3' > r-
5' 
cc ." = 0 

n 
m 
en 
en 
0 
::a CLKOUT \__ __ 1- \ I -\ I \ I 

I I 
---,I \ II I \ 2 I \"--_ 

I I 

MEN 

I 

A11-AO _~3~ 4a<5~_ 
I-- td4---f td5~ f4---------------X ~-------------

f4-ts~:!.I L.. 
I ~ ,..-th(D) 

DEN 

015-00) <_6 ) {7 ))---0----( 
LEGEND: 

1. IN INSTRUCTION PREFETCH 5. ADDRESS BUS VALID 

2. NEXT INSTRUCTION PREFETCH 6. INSTRUCTION IN VALID 

3. ADDRESS BUS VALID 7. DATA IN VALID 

4. PERIPHERAL ADDRESS VALID 8. INSTRUCTION IN VALID 

NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 



CLKOUT 

I 
" 0 
(f) 
--i 

~ I MEN JJ _ 

~Z 

~~ 

\ / \ I \ / \ I 

o 
C 
-I 
:i" 
en ... 
~ 

c::: n ... o· 
::J ... 
3· 
:i" 
(Q 

I I 
/ \!; I \ 2 / \~ 

- I I 
~ ;C~ 
.C~ I A11-AO __ 3 _ 4 _ 5 _~ 
~~ 
~f"'J 
bZ 
~Ui4', 
~ 
(f) 

-.J 
-.J 
0 
::! 

I 

> 1 
r...> 

WE 

~ td6 ~ --...I f4- td7 

~td91 '{ V~------

015-00 

~ti8 tj t
V
=t=;j1d10i 

) ("--6~) 8{ 7 }a--< 8 ) 

LEGEND: 

1. 

2. 

3. 

4. 

OUT INSTRUCTION PREFETCH 

NEXT INSTRUCTION PREFETCH 

ADDRESS BUS VALID 

PERIPHERAL ADDRESS VALID 

5. 
6. 

7. 

8. 

ADDRESS BUS VALID 

INSTRUCTION IN VALID 

DATA OUT VALID 

INSTRUCTION IN VALID 

NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

-

5! 
C) 

=t 
:I=
r-
en 
c; 
i2 
:I=
r-
." =-=s 
n(l: 
me... en N enc 
Q-=c 



DIGITAL SIGNAL PROCESSOR 

RESET (RS) TIMING 

timing requirements over recommended operating conditions 

MIN NOM MAX UNIT 

tsu(R) Reset (RS) setup time prior to ClKOUT. See Note 6. 50 ns 

twIRl RS pulse duration 5te(C) ns 

switching characteristics over recommended operating conditions 

TEST 
PARAMETER 

CONDITIONS 
MIN TVP MAX UNIT 

td11 Delay time DENt, WEi, and MENt from RS Rl = 870 fl, 1f2tc(C) + 50 t ns 

Data bus disable time after RS 
Cl = 100 pF, 

1f4tc(C) + 50 t tdis(R) See Figure 2 
ns 

NOTE 6: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation. 
tThese values were derived from characterization data and are not tested. 

reset timing 

CLKOUT 

KtSU(R) ~tSU(R) 

RS \~~ ----.......... sj 
I.. tw(R) ~ 

DEN I J 
WE SEE I 

MEN NOTE 11 I 
~ ~td11 

tdis(R) ---t ~ 
015-00 --{ DOAUTTA \ ..... ----_________ S'"cr-_______ ---c/DATA IN FROMVDATA IN FROM 

• ( ;J \ PC ADDR 0 r-\PC ADDR PC + 1 

DATA SHOWN RELATIVE TO WE ss \ ____ r\'----
AB = ADDRESS BUS 

~~~~=~ X~-A-B-=-P-C-+-1-~ _______ A_B_=_P_C_=_0 _____ ~*=~+1 

NOTES: 3.

7.

8.

9.

10.

11.

12.

.-22

Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise
noted.

RS forces DEN, WE, and MEN high and tristates data bus DO through D15. AS outputs (and program counter) are synchronously

cleared to zero after the next complete ClK cycle from ~RS.

RS must be maintained for a minimum of five clock cycles.

Resumption of normal program will commence after one complete ClK cycle from tRS.

Due to the synchronizing action on RS, time to execute the function can vary dependent upon when tRS or ~RS occur in

the ClK cycle.

Diagram shown is for definition purpose only. DEN, WE, and MEN are mutually exclusive.

During a write cycle, RS may produce an invalid write address.

TEXAS ",
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

INTERRUPT (lNT) TIMING

timing requirements over recommended operating conditions

tf(INT) Fall time INT

tw(lNT) Pulse duration INT

tsu(lNT) Setup time INT! before CLKOUT!

interrupt timing

TMS3201D
DIGITAL SIGNAL PROCESSOR

MIN NOM MAX UNIT

15 ns

tc(C) ns

50 ns

CLKOUT _/ _'-----'1 \""--'----'/
"r..---~ ... tSU(lNT)

~I'--------'li
tf(lNT)~ ~ J

,..---tW(INT)-----4I~~

NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

I/O (BIO) TIMING

timing requirements over recommended operating conditions

MIN NOM MAX UNIT

tf(lO) Fall time BIO 15 ns

tw(lO) Pulse duration BIO tc(C) ns

tsu(lOI Setup time BIO! before CLKOUT! 50 ns

BIO timing

CLKOUT / \ / \ / L
~ ~ tsu(lO)

~ I
tf(lO)~ f4- I

J4 tw(lO) ~
NOTE 3: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

I

TEXAS ."
INSTRUMENTS

A-2:

TMS32010
DIGITAL SIGNAL PROCESSOR

input synchronization requirements

For systems using asynchronous inputs to the INT and BIO pins on the TMS3201 0, the external hardware
shown in the diagrams below is recommended to ensure proper execution of interrupts and the 810Z
instruction. This hardware synchronizes the INT and BIO input signals with the rising edge of CLKOUT
on the TMS3201 O. The pulse width required for these input signals is tc(C), which is one TMS3201 0 clock
cycle, plus sufficient setup time for the flip-flop (dependent upon the flip-flop used).

INTERRUPT INPUT SIGNAL
(ACTIVE LOW)

BIO INPUT SIGNAL
(ACTIVE LOW)

-

-

I
P

0 a

SN74ALS74

~
C

I
+5 V

I
P

0 Q

SN74ALS74

~
C

I
+5 V

INT

TMS32010

CLKOUT

810

TMS32010

CLKOUT

TI standard symbolization for devices without on-chip ROM

SYMBOLIZATION MEANINGS OF SYMBOLS

line 1: (a) ~ (b) TMS32010NL (a) Texas Instruments trademark

(b) Standard device number

line 2: (c) ©1983 TI (d) DCU8327 (c) TI design copyright

(d) Tracking mark and date code

line 3: (e) 24655 (e) Lot code

~-24 TEXAS ."
INSTRUMENlS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

IIYI~"'~U I U

DIGITAL SIGNAL PROCESSOR

THERMAL DATA

thermal resistance characteristics

PACKAGE
ROJA ROJC

(OC/W) (CC/W)

40-pin plastic dual-in-line package 51.6 16.6

44-lead plastic chip carrier package 70 20

MECHANICAL DATA

40-pin plastic dual-in-line package

14-------- 53,1 (2.090) MAX --------...

EITHER OR BOTH
INDEX MARKS

o -@
ct. 15,24±0,25 ct.
~.600±0'010~ 0.51~?N020) 5.08 (0.200) MAX

It= ~~n~~~ ~
0,28±0,08-1r- 0,457±0,076 --II+- 2,92 (0.115) MIN

(0.011 ±0.003) (0.018±0.003) ~ 0,84 (0.033) MIN~ I .. JI~l.- 2.41 (0.095)
PIN SPACING 2,54 (0.100) T.P. =:J 1,40 (0.055)

(SEE NOTE A) 1,52 (0.060) NOM

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Each pin centerline is located within 0,254 (0.010) of its true longitudinal position.

TEXAS 'Ii1
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

A-2

I

I M:i..1lUIU
DIGITAL SIGNAL PROCESSOR

44-lead plastic chip carrier package

14--------- 17.65 (0.695) _______ ~
17 AO (0.685)

r
4-------- 16.66 (0.656) -------+11

16.51 (D.65D) ~. _______ -,-

28 27 26 25 24 23 22 21 20 19 18

~ 17

30

31

32

33

34

36

38

39

16.66 (0.656)
16.51 (0.650)

17.65 (0.695)
17.40 (0.685)

4.57 (0.180) -14------.1
4.19 (0.165)

3.05 (0. 120) 4oe--~
2.29 (0.090)

0.51 (0.020)
MIN

0.533 (0.021)
0.330 (0.013)

...,.......,=,"",--r-oL 1.27 (0.050)

TYP

16.00 (0.630)
14.99 (0.590)

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

A-26 TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

APPENDIX B

SMJ32010 DATA SHEET

I

I

B-2

• DeSC Approved
-SMJ32010JDS DeSC No. 8405301QC
-SMJ32010FDS DeSC No. 8405301ZC

• MIL-STD-883C Class B Processing

• Same Features and Specifications as
TMS32010 over O°C - 70°C Temperature
Range

• Currently Microprocessor Mode Only (All
Program Memory Is Extended)

• 144-Word On-Chip Data RAM

• External Memory Expansion to Total of 4K
Words at Full Speed

• 16-Bit Instruction/Data Word

• 32-Bit ALU/Accumulator

• 16 x 16-Bit Multiply in One Instruction Cycle

• 0 to 16-Bit Barrel Shifter

• Eight Input and Eight Output Channels

• 16-Bit Bidirectional Data Bus with
40-Megabits-per-Second Transfer Rate

• Interrupt with Full Context Save

• Signed Two's-Complement Fixed-Point
Arithmetic

• 2.4-Micron NMOS Technology

• Single 5-V Supply [± 10% for (- 55°C to
100 0 C) Temperature Range (S Suffix)]

description

The SMJ3201 0 is a member of the new
TMS320 digital signal processing family,
designed to support a wide range of high-speed
or numeric-intensive applications. This 16/32-bit
single-chip microcomputer combines the
flexibility of a high-speed controller with the
numerical capability of an array processor,
thereby offering an inexpensive alternative to
multichip bit-slice processors. The TMS320
family contains the first MOS microcomputers
capable of executing five million instructions per
second. This high throughput is the result of the

CLKOUT
X1

X2/CLKIN
BIO
NC

VSS
08

SMJ32010
DIGITAL SIGNAL PROCESSOR

MAY 1983 - REVISED OCTOBER 1985

JD PACKAGE

(TOP VIEW)

A 1 /PA 1 A2/PA2
AO/PAO A3
MC/MP A4

RS A5
INT A6

CLKOUT A7
X1 A8

X2/CLKIN MEN
BIO OEN

VSS WE
08 VCC
09 A9

010 A10
011 A 11
012 00
013 01
014 02
015 03

07 04

06 05

44-PAD FD PACKAGE

LEAD LESS CERAMIC CHIP CARRIER

(TOP VIEW)

I~ ~ ~ < -e::e:: e::
I~ I~ ~ ~ ~ ~ < ~ ~ ~ ~

A7
A8
MEN

WE
VCC
A9

09 A10
010 A 11
011 00
012 17 29 01

18 19 20 21 22 23 24 25 26 27 28

comprehensive, efficient, and easily programmed instruction set and of the highly pipelined architecture.
Special instructions have been incorporated to speed the execution of digital signal processing (DSP)
algorithms.

The TMS320 family's unique versatility and power give the design engineer a new approach to a variety
of complex applications. In addition, these microcomputers are capable of providing the mUltiple functions

PRODUCTION DATA documents contain information
current as of publication date. Products conform
to specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS ."
INSTRUMENTS

Copyright © 1985, Texas Instruments Incorporated

I

B-~

I

8-4

SMJ32010
DIGITAL SIGNAL PROCESSOR

often required for a single application. For example, the TMS320 family can enable an industrial robot to
synthesize and recognize speech, sense objects with radar or optical intelligence, and perform mechanical
operations through digital servo loop computations.

PIN NOMENCLATURE

NAME I/O DEFINITION

A 11-AO/PA2-PAO a External address bus. I/O port address multiplexed over PA2-PAO.

BIO I External polling input for bit test and jump operations.

ClKOUT a System clock output, V4 crystal/ClKIN frequency.

D15-00 I/O 16-bit data bus.

DEN a Data enable indicates the processor accepting input data on 015-00.

INT I Interrupt.

MC/MP I Memory mode select pin. High selects microcomputer mode. low selects microprocessor

mode.

MEN a Memory enable indicates that 015-00 will accept external memory instruction.

RS I Reset used to initialize the device.

VCC I Power.

VSS I Ground.

WE a Write enable indicates valid data on D 1 5-DO.

X1 I Crystal input.

X2/ClKIN I Crystal input or external clock input.

SMJ32010 SIGNAL PROCESSOR NOMENCLATURE

EXAMPLE: SMJ
1. PREFIX-----------...J1

Must contain three or four letters
MIL-STD-883C Class B, Method 5004

2. CIRCUIT DESIGNATOR----------...J
Must contain five digits

3.

4.

32010

PACKAGE TYPE
Must contain two letters
J D - Side Braze
FD - Lead less Chip Carrier

TEMPERATURE RANGE
Must contain one letter only
L OOC to 70°C
S - - 55°C to 100°C

TEXAS •
INSTRUMENlS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

32010 JD

/

L

SMJ32010
DIGITAL SIGNAL PROCESSOR

SMJ32010 SIGNAL PROCESSOR SCREENING AND LOT CONFORMANCE

SCREEN METHOD RQMT
2010 Condition B

Internal Visual (Precap)
See Note.

100%

1008 Test Condition C
Stabilization Bake

(24 hours)
100%

1010 Condition C
Temperature Cycling

(50 cycles)
100%

2001 Condition A
Constant Acceleration

(MIN) in Y1 Plane
100%

Seal Fine and Gross 1014 100%

TI Data Sheet
Interim Electrical

Electrical Specifications
100%

1015

Burn-in 125 DC (160 hours MIN) 100%

PDA = 5%

Final Electrical Tests TI Data Sheet 100%

Electrical Specifications

(A) Static tests:

(1) 25 DC (Subgroup 1, Table 1, 5005)

(2) MAX and MIN Rated Operating

Temperature (Subgroups 2 and 3,

Table 1, 5005)

(B) Switching tests:

(1) 25 DC (Subgroup 9, Table 1, 5005)

(2) MAX and MIN Rated Operating

Temperature (Subgroups 10 and 11,

Table 1, 5005)

(C) Functional tests:

(1) 25 DC (Subgroup 7, Table 1, 5005)

(2) MAX and MIN Rated Operating

Temperature (Subgroup 8, Table 1,

5005)

Quality Conformance

Inspection Group A
5005 Class B LTPD

(A) Static tests:

(1) 25 DC (Subgroup 1) 2%

(2) Temperature (Subgroup 2) 3%

Temperature (Subgroup 3) 5%

(B) Switching tests

(1) 25 DC (Subgroup 9) 2%

(2) Temperature (Subgroup 10) 3%

Temperature (Subgroup 11) 5%

(C) Functional tests:

(1) 25 DC (Subgroup 7) 2%

External Visual 2009 100%

NOTE: 40x precap stress test in lieu of 100x precap per MIL-STD-883 Method 5004, Paragraph 3.3.

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

I

B-~

I

8-6

APPENDIX C

DEVELOPMENT SUPPORT/PART
ORDER INFORMATION

I

C-1

I

C-2

TMS32010 EVALUATION MODULE

• Target Connector for Full In-Circuit Emulation • Up to Eight Instruction Breakpoints

• Debug Monitor Including Over 60 Commands • Flexible Single Step with Software Trace
with Full Prompting

• Execution from EVM Program Memory or Target
• Reverse Assembler Memory

• Transparency Mode for Host CPU Upload/ • Event Counter for One Breakpoint
Download

The Evaluation Module (EVM) is a single board which enables a user to determine inexpensively if the
TMS32010 meets the speed and timing requirements of the application. The EVM is a stand-alone module
whch contains all the tools necessary to evaluate the TMS32010 as well as to provide full in-circuit
emulation via a target connector. A powerful firmware package contains a debug monitor, editor,
assembler, reverse assembler, EPROM programmer, communication software to talk to two EIA ports, and
an audio cassette interface. The resident assembler will convert incoming source text into executable code
in just one pass by automatically resolving labels after the first assembly pass is completed. The EVM can
be configured with a dumb terminal, power supplies, and either a host computer, or an audio cassette.
Either source or object code can be downloaded into the EVM via the EIA ports provided on the board.

PART NUMBER POWER SUPPLIES (TM990/518A) UNITS

RTC/EVM 320A-03 OUTPUT A: +5 VOC (+/- 3%) 4.0A
B: +12 VOC (+/- 3%) 0.6A
C: -12 VOC (+/- 3%) 0.4 A

C-3

XDS/320 MACRO ASSEMBLER/LINKER

• Macro Capabilities • Complete Error Diagnostics

• Library Functions • Symbol Table and Cross Reference

• Conditional Assembly • Available on Several Host Computers

• Relocatable Modules • Written in PASCAL

The XOS/320 Macro Assembler translates TMS32010 assembly language into executable object code. The
assembler allows the programmer to work with mnemonics rather than hexadecimal machine instructions
and to reference memory locations with symbolic addresses. The macro assembler supports macro calls
and definitions along with conditional assembly.

The XOS/320 Linker permits a program to be designed and implemented in separate modules that will later
be linked together to form the complete program. The linker assigns values to relocatable code, creating
an object file that can be executed by the simulator or emulator.

The XOS/320 Macro Assembler and Linker are currently available on several host computers, including
VAX(VMS and UNIX), IBM (MVS and CMS), and TIIIBM(MS/PC-OOS) operating systems. Contact the nearest
TI field sales office for availability or further details.

HOST
OPERATING

PART NUMBER MEDIUM
SYSTEM

TIIIBM MS/PC-OOS TM OS324081 0-08 5 1/4" FLOPPY
DEC VAX VMS TM OS324021 0-08 1600 BPI MAG TAPE
DEC VAX UNIX 4.1 TM OS3240220-08 1600 BPI MAG TAPE

IBM MVS TM OS324031 0-08 1600 BPI MAG TAPE
IBM CMS T M OS3240320-08 1600 BPI MAG TAPE

For additional host support, please contact your local TI Field Sales Office.

C-4

• Trace and Breakpoint Capabilities

XDS/320 SIMULATOR

• Runs Object Code Generated by XDS/320 Macro
Assembler / Linker

• Full Access to Simulated Registers and Memories
• Available on VAX(VMS),TIIIBM(MS/PC-DOS)

• I/O Device Simulation
• Written in FORTRAN

The XDS/320 Simulator is a software program that simulates operation of the TMS32010 to allow
program verification. The debug mode enables the user to monitor the state of the simulated TMS3201 0
while the program is executing. The simulator program uses the TMS3201 0 object code, produced by the
XDS/320 Macro Assembler/Linker. During program execution, the internal registers and memory of the
simulated TMS3201 0 are modified as each instruction is interpreted by the host computer. Once program
execution is suspended, the internal registers and both program and data memories can be inspected and/
or modified. The XDS/320 Simulator is currently available on the VAX(VMS) and TIIIBM(MS/PC-DOS) operating
systems.

HOST
OPERATING

PART NUMBER MEDIUM
SYSTEM

TI/lBM MS/PC-DOS T M DS3240811·02 5 1/4" FLOPPY
DEC VAX VMS TMDS3240211-08 1600 BPI MAG TAPE

C-5

I

I

XDS/320 EMULATOR

• 20-MHz Operation (Full In-Circuit Emulation)

• Up to Ten Software Breakpoints

• 4K Words of Program Memory for User Code

• Full Emulation of Microcomputer or Micro
processor Modes

• Use of Target System Crystal, Internal Crystal, or
External Clock Signal

• Hardware Breakpoint on Program, Data, or 11 0
Conditions

• 2K of Full-Speed Hardware Trace

• Single Step

• Assembler / Reverse Assembler

• Host-Independent Upload/Download Capabilities
to/from Program or Data Memory

• Ability to Inspect and Modify All Internal
Registers, Program and Data Memory

• Multi-Microprocessor Development

The XDS/320 Emulator is a self-contained system that has all the features necessary for real-time in-circuit
emulation. This allows integration of the hardware and software in the debug mode. By setting breakpoints
based on internal conditions or external events, execution of the program can be suspended and control
given to the debug mode. In the debug mode, all registers and memory locations can be inspected and
modified. Single-step execution is available. Full trace capabilities at full speed and a reverse assembler that
translates machine code back into assembly instructions are also included to increase debugging
productivity. The system provides three EIA ports so that the emulator can be interfaced with a host
computer, terminal, printer, or PROM programmer. Using a standard EIA port,the object file produced by
the macro assembler/linker can be downloaded into the emulator. The emulator then can be controlled
through a terminal.

PART NUMBER
TM DS326221 0

C-6

TMS320 NOMENCLATURE

320 10 JD L TMS

PREFIX----------a,
TMS = standard prefix

FAMILY-----------...j
320 = signal processing family

L' TEMPERATURE RANGE
L = 0 0 C to 70 0 C

PACKAGE TYPE

DEVICE-----------------'
10 = Microprocessor
M10 = Microcomputer (masked ROM)

DEVELOPMENT FLOWCHART

JD = ceramic
side-brazed

N = plastic
dual-in-line

TMXtXXXX Engineering prototypes that are not representative of the final
device's electrical specifications

Final silicon die that conforms to device's electrical specifications
but has not completed quality and reliability verification

Fully qualified production devices

tTMX units shipped against the following disclaimer:
1) Experimental product and its reliability has not been characterized.
2) Product is sold "as is."
3) Not warranted to be exemplary of final production version if or when released by Texas Instruments.

+TMP units shipped against the following disclaimer:
1) Customer understands that the product purchased hereunder has not been fully characterized and the expectation of quality and

reliability cannot be defined; therefore, Texas Instruments standard warranty refers only to the device's specifications.
2) No warranty of merchantability or fitness is expressed or implied.

C-7

I

I

C-8

APPENDIX D

TMS32020 DATA SHEET

0-1

• 200-ns Instruction Cycle Time

• 544 Words of Programmable On-Chip Data
RAM

• 128K Words of Data/Program Space

• Sixteen Input and Sixteen Output Channels

• 16-Bit Parallel Interface

• Directly Accessible External Data Memory
Space

• Global Data Memory Interface

• 16-Bit Instruction and Data Words

• 32-Bit AlU and Accumulator

• Single-Cycle Multiply/Accumulate
Instructions

• 0 to 16-Bit Scaling Shifter

• Bit Manipulation and logical Instructions

• Instruction Set Support for Floating-Point
Operations

• Block Moves for Data/Program Management

PIN ASSIGNMENTS

PIN FUNCTION PIN FUNCTION PIN FUNCTION
A2 08 C11 CLKOUT1 J10 PS
A3 010 01 04 J11 is
A4 012 02 03 K1 AO
A5 014 010 CLKOUT2 K2 A1
A6 VCC 011 XF K3 A3
A7 HOLD E1 02 K4 A5
A8 RS E2 01 K5 A7
A9 CLKX E10 HOLDA K6 A8
A10 VCC E11 OX K7 A10
B1 VSS F1 DO K8 A12
B2 07 F2 SYNC K9 A14
B3 09 F10 FSX K10 OS
B4 011 F11 X2/CLKIN K 11 VSS
B5 013 G1 INTO L2 VSS
B6 015 G2 INT1 L3 A2
B7 BIO G10 X1 L4 A4
B8 READY G 11 BR L5 A6
B9 CLKR H1 INT2 L6 VCC
B10 VCC H2 VCC L7 A9
B11 lACK H10 STRB L8 A 11

C1 06 H 11 R/W L9 A13

C2 05 J1 DR L10 A15
C10 MSC J2 FSR

TM5;iZUZU
DIGITAL SIGNAL PROCESSOR

MARCH 1985 - REVISED OCTOBER 1985

• Repeat Instructions for Efficient Use of
Program Space

• Five Auxiliary Registers and Dedicated
Arithmetic Unit for Indirect Addressing

• Serial Port for Direct Codec Interface

• Synchronization Input for Synchronous
Multiprocessor Configurations

• Wait States for Communication to Slow
Off-Chip Memories/Peripherals

• On-Chip Timer for Control Operations

• Three External Maskable User Interrupts

• Input Pin Polled by Software Branch
Instruction

• Programmable Output Pin for Signalling
External Devices

• 2.4-Micron NMOS Technology

• Single 5-V Supply

• On-Chip Clock Generator

68-PIN GB
PIN GRID ARRAY CERAMIC PACKAGE t

(TOP VIEW)

2 3 4 5 6 7 8 9 10 11

A • • • • • • • • •
B • C!J • • • • • • • (e) •
c • • • •
0 • • • •
E • • • •
F • • • •
G • • • •
H • • • •
J • • • •
K • 'e' '-' • • • • • • • '.J \ ... •
L • • • • • • • • •

t See Pin Assignments Table (Page 1) and Pin Nomenclature Table
(Page 2) for location and description of all pins.

Copyright © 1985, Texas Instruments Incorporated

I

PRODUCTION DATA documents contain information
current as of publication date. Products conform
to specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily incluile testing of all parameters.

TEXAS •
INSTRUMENTS

0-3

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

I

)-4

Im~.;I~U~U

DIGITAL SIGNAL PROCESSOR

PIN NOMENCLATURE

NAME I/O/Zt DEFINITION

VCC I 5-V supply pins

VSS I Ground pins

X1 0 Output from internal oscillator for crystal

X2/ClKIN I Input to internal oscillator from crystal or external clock

ClKOUT1 0 Master clock output (crystal or ClKIN frequency/4)

ClKOUT2 0 A second clock output signal

015-00 1/0Il 16-bit data bus 015 (MSB) through DO (LSB). Multiplexed between program, data, and 1/0

spaces.

A15-AO Oil 16-bit address bus A 15 (MSB) through AO (lSB)

pS,os,iS Oil Program, data, and 1/0 space select signals

R/W Oil Readlwrite signal

STRB Oil Strobe signal

RS I Reset input

INT2-INTO I External user interrupt inputs

MSC 0 Microstate complete signal

lACK 0 Interrupt acknowledge signal

READY I Data ready input. Asserted by external logic when using slower devices to indicate that the

current bus transaction is complete.

BR 0 Bus request signal. Asserted when the TMS32020 requires access to an external global data

memory space.

XF 0 External flag output (latched software-programmable signal).

HOLD I Hold input. When asserted, TMS32020 goes into an idle mode and puts the data, address, and

control lines in the high-impedance state.

HOLDA 0 Hold acknowledge signal

SYNC I Clock synchronization input

BIO I Branch control input. Polled by BIOl instruction.

DR I Serial data receive input

ClKR I Clock for receive input for serial port

FSR I Frame synchronization pulse for receive input

OX Oil Serial data transmit output

ClKX I Clock for transmit output for serial port

FSX 1/0Il Frame synchronization pulse for transmit. Configurable as either an input or an output.

tl/Oll Input/Output/High-impedance state.

TEXAS •
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

functional block diagram

1~1~lse ~ x N...I ...I x CJ CJ
I~

'1" '1" ,

Riw+-- I--

STRB+-- *--
R EAOY---+-

BR+-- a:
w

XF+-- ...I
...I ...

HOLO ---+-
0
a:
~

H OLOA+-- z
MSC+--

0
CJ

BIO--+

RS~

lACK+-- 1,.16

J T(2-01
31 , IN

~ 161

16 " X-"-'
15-AO ;:)

~~
16" ~

16 ... ,
5-00

, - ~~ 16

l

A

01

3 16 , 16

,
3

I ARP(3) J,"'-

3,

h
I ARB(31 I

¥.L' U
16

BLOCK B2
(32 x 16) 1-._._._._.-
OAT RAM
BLOCK Bl
(256 x 161

~16

~

TMS32020
DIGITAL SIGNAL PROCESSOR

/ PROGRAM BUS /
."16 • "16 116

IR(16)

· STO(16)
~ · ST1(16)

T · ~ RPTC(8)

~6 IFR(6) ,;r. OR
16 16

CLKR ,1--16
FSR I PC(161

• OX ,.p ~ ClKX

~ r FSX

16
ORR(161 STACK 16. '

(4X161 OXR(161
16

V 16. '
. TIM(161

PRO(161
6

IMR(61
8~ GREG(81

PROGRAM BUS
16

16

OATA BUS /
/16

16 16
f16? ~

~ ~
I SHIFTER(0-161 TR(161

~ ARO(16)

AR1(16)

AR2(16)
~9

7 LSB

AR3(16) FROM IR

AR4(16)
~

16
~16

ARAU(161 '\P!W

"'·l 16" , 16

'MU~

ir16 ,
OATA/PROG

RAM (256 x 161
BLOCK BO

~

)'16
~

/MUX\
"- 16

,
16

OATA BUS

TEXAS -1!1
INSTRUMENTS

MULTIPLIER
16

1,.32 PR(32)

32

I SHIFTER(-6.0.1.4) J
') ~32

~ ALU(32)
,~32

'(32

~
IACCH(16) ACCl(16)I

"-
~ 32

I SHIFTERS(0.1.41 I

16

--"' ~

V
/

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

I

o-!

I

)-6

TMS32020
DIGITAL SIGNAL PROCESSOR

description

The TMS32020 Digital Signal Processor is the second member of the TMS320 family of VLSI digital signal
processors and peripherals. The TMS320 family supports a wide range of digital signal processing
applications, such as telecommunications, modems, image processing, speech processing, spectrum
analysis, audio processing, digital filtering, high-speed control, graphics, and other computation-intensive
applications.

With a 200-ns instruction cycle time and an innovative memory configuration, the TMS32020 performs
operations necessary for many real-time digital signal processing algorithms. Since most instructions require
only one cycle, the TMS32020 is capable of executing five million instructions per second. On-chip data
RAM of 544 16-bit words, direct addressing of up to 64K words of external data memory space and 64K
words of external program memory space, and multiprocessor interface features for sharing global memory
minimize unnecessary data transfers to take full advantage of the capabilities of the processor.

architecture

The TMS32020 architecture is based upon that of the TMS3201 0, the first member of the TMS320 family.
The TMS32020 increases performance of DSP algorithms through innovative additions to the TMS320
family architecture. TMS32010 source code is upward-compatible with TMS32020 source code and can
be assembled using the TMS32-020 Macro Assembler.

Increased throughput on the TMS32020 for many DSP applications is accomplished by means of single
cycle multiply/accumulate instructions with a data move option, five auxiliary registers with a dedicated
arithmetic unit, and faster I/O necessary for data-intensive signal processing.

The architectural design of the TMS32020 emphasizes overall speed, communication, and flexibility in
processor configuration. Control signals and instructions provide floating-point support, block-memory
transfers, communication to slower off-chip devices, and multiprocessing implementations.

Two large on-chip RAM blocks, configurable either as separate program and data spaces or as two
contiguous data blocks, provide increased flexibility in system design. Maintaining program memory off
chip allows large address spaces from which large programs of up to 64K words can operate at full speed.
Programs can also be downloaded from slow external memory to high-speed on-chip RAM. A total of 64K
data memory address space is included to facilitate implementation of DSP algorithms. The VLSI
implementation of the TMS32020 incorporates all of these features as well as many others, such as a
hardware timer, serial port, and block data transfer capabilities.

32-bit ALU/accumulator

The TMS32020 32-bit Arithmetic Logic Unit (ALU) and accumulator perform a wide range of arithmetic
and logical instructions, the majority of which execute in a single clock cycle. The ALU executes a variety
of branch instructions dependent on the status of the ALU or a single bit in a word. These instructions
provide the following capabilities:

• Branch to an address specified by the accumulator
• Normalize fixed-point numbers contained in the accumulator
• Test a specified bit of a word in data memory.

One input to the ALU is always provided from the accumulator, and the other input may be provided from
the Product Register (PR) of the multiplier or the input scaling shifter which has fetched data from the
RAM on the data bus. After the ALU has performed the arithmetic or logical operations, the result is stored
in the accumulator.

The 32-bit accumulator is split into two 16-bit segments for storage in data memory. Additional shifters
at the output of the accumulator perform shifts while the data is being transferred to the data bus for
storage. The contents of the accumulator remain unchanged.

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

scaling shifter

TMS32020
DIGITAL SIGNAL PROCESSOR

The TMS32020 scaling shifter has a 16-bit input connected to the data bus and a 32-bit output connected
to the ALU. The scaling shifter produces a left shift of 0 to 16 bits on the input data, as programmed
in the instruction. The LSBs of the output are filled with zeroes, and the MSBs may be either filled with
zeroes or sign-extended, depending upon the status programmed into the SXM (sign-extension mode) bit
of status register STO.

16 x 16-bit parallel multiplier

The TMS32020 has a two's complement 16 x 16-bit hardware multiplier, which is capable of computing
a 32-bit product in a single machine cycle. The multiplier has the following two associated registers:

• A 16-bit Temporary Register (TR) that holds one of the operands for the multiplier, and
• A 32-bit Product Register (PR) that holds the product.

Incorporated into the TMS32020 instruction set are single-cycle multiply/accumulate instructions that allow
both operands to be processed simultaneously. The data for these operations resides in the on-chip RAM
blocks and can be transferred to the multiplier each cycle via the program and data buses.

Four product shift modes are available at the Product Register (PR) output that are useful when performing
multiply/accumulate operations, fractional arithmetic, or justifying fractional products.

timer

The TMS32020 provides a memory-mapped 16-bit timer for control operations. The on-chip timer (TIM)
register is a down counter that is continuously clocked by an internal clock. This clock is derived by dividing
the CLKOUT1 frequency by 4. A timer interrupt (TINT) is generated every time the timer decrements to
zero. The timer is reloaded with the value contained in the period (PRD) register within the same cycle
that it reaches zero so that interrupts may be programmed to occur at regular intervals of 4 x (PRO)
cycles of CLKOUT1.

memory control

The TMS32020 provides a total of 544 16-bit words of on-chip data RAM, divided into three separate
blocks (BO, B1, and 82). Of the 544 words, 288 words (blocks 81 and 82) are always data memory, and
256 words (block BO) are programmable as either data or program memory. A data memory size of 544
words allows the TMS32020 to handle a data array of 512 words (256 words if on-chip RAM is used
for program memory), while still leaving 32 locations for intermediate storage. When using block 80 as
program memory, instructions can be downloaded from external program memory into on-chip RAM and
then executed.

When using on-chip program RAM or high-speed external program memory, the TMS32020 runs at full
speed without wait states. However, the READY line can be used to interface the TMS32020 to slower,
less-expensive external memory~ Downloading programs from slow off-chip memory to on-chip program
RAM speeds processing while cutting system costs.

The TMS32020 provides three separate address spaces for program memory, data memory, and I/O. The
on-chip memory is mapped into either the 64K-word data memory or program memory space, depending
upon the memory configuration. The CNFD (configure block 80 as data memory) and CNFP (configure
block 80 as program memory) instructions allow dynamic configuration of the memory maps through
software. Regardless of the configuration, the user may still execute from external program memory.

The TMS32020 has six registers that are mapped into the data memory space: a serial port data receive
register, serial port data transmit register, timer register, period register, interrupt mask register, and global
memory allocation register.

TEXAS •
INSTRUMENTS

0-

I

)-8

TMS3Z0Z0
DIGITAL SIGNAL PROCESSOR

0(>0000)

31(>001F)
32(>0020)

65,535(> FFFF)

0(>0000)

31(>001F)
32(>0020)

65,279(>FEFF)
65,280(>FFOO)

65,535(> FFFF)

PROGRAM

INTERRUPTS
AND RESERVED

(EXTERNAL)

EXTERNAL

PROGRAM

INTERRUPTS
AND RESERVED

(EXTERNAL)

EXTERNAL

ON-CHIP
BLOCK BO

DATA
0(>0000)

ON-CHIP
MEMORY -MAPPED

REGISTERS
5(>0005)
6(>0006) ::.-

RESERVED
95(>005F)
96(>0060) ON-CHIP

127(>007F)
BLOCK B2

128(>0080)

511(>01FF)
RESERVED ~

512(>0200)

767(>02FF)

ON-CHIP ~ BLOCK BO

768(>0300)

1023(>03FF)

ON-CHIP
~ BLOCK B1

1024(>0400)
EXTERNAL >-

65,535(>FFFF)

(a) ADDRESS MAPS AFTER A CNFD INSTRUCTION

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007F)
128(>0080)

511(>01FF)
512(>0200)

767(>02FF)
768(>0300)

1023(>03FF)
1024(>0400)

65,535(> FFFF)

DATA

ON-CHIP
MEMORY -MAPPED

REGISTERS

>-
RESERVED

ON-CHIP
BLOCK B2

RESERVED ~

DOES NOT >-EXIST

ON-CHIP
~

BLOCK B1

EXTERNAL >-

(b) ADDRESS MAPS AFTER A CNFP INSTRUCTION

FIGURE 1. MEMORY MAPS

TEXAS •
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

1/0 0r-::::l
15L::J

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

1/0

°1 mERNAL 1
15

PAGE'O

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

interrupts and subroutines

TMS32020
DIGITAL SIGNAL PROCESSOR

The TMS32020 has three external maskable user interrupts INT2-INTO, available for external devices that
interrupt the processor. Internal interrupts are generated by the serial port (RINT and XINT), by the timer
(TINT), and by the software interrupt (TRAP) instruction. Interrupts are prioritized with reset (RS) having
the highest priority and the serial port transmit interrupt (XINT) having the lowest priority. All interrupt
locations are on two-word boundaries so that branch instructions can be accommodated in those locations
if desired.

A built-in mechanism protects multicycle instructions from interrupts. If an interrupt occurs during a
multicycle instruction, the interrupt is not processed until the instruction is completed. This mechanism
applies both to instructions that are repeated or become multicycle due to the READY signal.

external interface

The TMS32020 supports a wide range of system interfacing requirements. Program, data, and I/O address
spaces provide interface to memory and I/O, thus maximizing system throughput. I/O design is simplified
by having I/O treated the same way as memory. I/O devices are mapped into the 1/0 address space using
the processor's external address and data busses in the same manner as memory-mapped devices. Interface
to memory and I/O devices of varying speeds is accomplished by using the READY line. When transactions
are made with slower devices, the TMS32020 processor waits until the other device completes its function
and signals the processor via the READY line. Then, theTMS32020 continues execution.

A serial port provides communication with serial devices, such as codecs, serial A/D converters, and other
serial systems. The interface signals are compatible with codecs and many other serial devices with a
minimum of external hardware. The serial port may also be used for intercommunication between processors
in multiprocessing applications.

The serial port has two memory-mapped registers: the data transmit register (DXR) and the data receive
register (ORR). Both registers operate in either the byte mode or 16-bit word mode, and may be accessed
in the same manner as any other data memory location. Each register has an external clock, a framing
synchronization pulse, and associated shift registers. One method of multiprocessing may be implemented
by programming one device to transmit while the others are in the receive mode.

multiprocessing

The flexibility of the TMS32020 allows configurations to satisfy a wide range of system requirements.
·The TMS32020 can be used as follows:

• A standalone processor
• A multiprocessor with devices in parallel
• A slave/host multiprocessor with global memory space
• A peripheral processor interfaced via processor-controlled signals to another device.

For multiprocessing applications, the TMS32020 has the capability of allocating global data memory space
and communicating with that space via the BR (bus request) and READY control signals. Global memory
is data memory shared by more than one processor. Global data memory access must be arbitrated. The
8-bit memory-mapped GREG (global memory allocation register) specifies part of the TMS32020's data
memory as global external memory. The contents of the register determine the size of the global memory
space. If the current instruction addresses an operand within that space, BR is asserted to request control
of the bus. The length of the memory cycle is controlled by the READY line. I
The TMS32020 supports DMA (direct memory access) to its external program/data memory using the HOLD
and HOLDA signals. Another processor can take complete control of the TMS32020's external memory
by asserting HODS low. This causes the TMS32020 to three-state its address, data, and control lines,
and assert HOLDA.

TEXAS •
INSTRUMENlS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

D-~

I

II.I"~'U'U

DIGITAL SIGNAL PROCESSOR

instruction set

The TMS32020 microprocessor implements a comprehensive instruction set that supports both numeric
intensive signal processing operations as well as general-purpose applications, such as multiprocessing
and high-speed control. The TMS3201 0 source code is upward-compatible with TMS32020 source code.

For maximum throughput, the next instruction is prefetched while the current one is being executed. Since
the same data lines are used to communicate to external data/program or I/O space, the number of cycles
may vary depending upon whether the next data operand fetch is from internal or external program memory.
Highest throughput is achieved by maintaining data memory on-chip and using either internal or fast external
program memory.

addressing modes

The TMS32020 instruction set provides three memory addressing modes: direct, indirect, and immediate
addressing.

Both direct and indirect addressing can be used to access data memory. In direct addressing, seven bits
of the instruction word are concatenated with the nine bits of the data memory page pointer to form the
16-bit data memory address. Indirect addressing accesses data memory through the five auxiliary registers.
In immediate addressing, the data is based on a portion of the instruction word(s).

In direct memory addressing, the instruction word contains the lower seven bits of the data memory address.
This field is concatenated with the nine bits of the data memory page pointer to form the full 16-bit address.
Thus, memory is paged in the direct addressing mode with a total of 51 2 pages, each page containing
128 words.

Five auxiliary registers (ARO-AR4) provide flexible and powerful indirect addressing. To select a specific
auxiliary register, the Auxiliary Register Pointer (ARP) is loaded with either a 0, 1, 2, 3, or a 4 for ARO
through AR4, respectively.

There are five types of indirect addressing: auto-increment or auto-decrement, post-indexing by either adding
or subtracting the contents of ARO, or single indirect addressing with no increment or decrement. All
operations are performed on the current auxiliary register in the same cycle as the original instruction,
followed by a new ARP value being loaded.

repeat feature

A repeat feature, used with instructions such as multiply/accumulates, block moves, I/O transfers, and
table read/writes, allows a single instruction to be performed up to 256 times. The repeat counter (RPTC)
is loaded with either a data memory value (RPT instruction) or an immediate value (RPTK instruction). The
value of this operand is one less than the number of times that the next instruction is executed. Those
instructions that are normally multicycle are pipelined when using the repeat feature, and effectively become
single-cycle instructions.

instruction set summary

Table 1 lists the symbols and abbreviations used in Table 2, the instruction set summary. Table 2 consists
primarily of single-cycle, single-word instructions. Infrequently used branch, I/O, and CALL instructions
are multicycle. The instruction set summary is arranged according to function and alphabetized within each
functional grouping. The symbol (t) indicates those instructions that are not included in the TMS3201 0
instruction set.

)-10 TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

SYMBOL

B
eM
D

FO
I
K

PA

PM

R
S
X

TMS32020
DIGITAL SIGNAL PROCESSOR

TABLE 1. INSTRUCTION SYMBOLS

MEANING

4-bit field specifying a bit code
2-bit field specifying compare mode
Data memory address field
Format statuS bit
Addressing mode bit
Immediate operand field
Port address (PAO through PA15 are predefined
assembler symbols equal to 0 through 1 5,
respectively.)
2-bit field specifying P register output shift
code
3-bit operand field specifying auxiliary register
4-bit left-shift code
3-bit accumulator left-shift field

TEXAS ."
INSTRUMENTS

D-1

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

DIGITAL SIGNAL PROCESSOR

TABLE 2. INSTRUCTION SET SUMMARY

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

No.
Mnemonic Description Words Instruction Bit Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABS Absolute value of accumulator 1 1 1 a a 1 1 1 0 0 0 0 1 1 0 1 1
ADD Add to accumulator with shift 1 0 0 a a-s • I • D •
ADDH Add to high accumulator 1 a 1 a a 1 0 0 0 I • D I

ADDS Add to low accumulator with 1 0 1 a a 1 0 0 1 I - D t

sign extension suppressed
ADDTt Add to accumulator with shift 1 0 1 0 a 1 0 1 0 I - D I

specified by T register
ADLKt Add to accumulator 2 1 1 0 1-S • 0 0 0 a 0 a 1 0

long immediate with shift
AND AND with accumulator 1 0 1 a a 1 1 1 a I • D •
ANDKt AND immediate with accumulator with 2 1 1 0 1-S • 0 0 0 0 0 1 0 0

shift
CMPLt Complement accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1
LAC Load accumulator with shift 1 0 0 1 a-s I I - D I

LACK Load accumulator immediate short 1 1 1 0 a 1 0 1 o • K •
LACTt Load accumulator with shift 1 a 1 a a 0 0 1 0 I • D I

specified by T register
LALKt Load accumulator long 2 1 1 0 1-S • 0 0 0 a 0 0 0 1

immediate with shift
NEGt Negate accumulator 1 1 1 0 0 1 1 1 0 0 0 1 a 0 0 1 1
NORMt Normalize contents of accumulator 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0
OR OR with accumulator 1 0 1 0 0 1 1 a 1 I - D •
ORKt OR immediate with accumulator with 2 1 1 0 1-S • 0 0 0 0 0 1 0 1

shift
SACH Store high accumulator with shift 1 a 1 1 a 1-X-I- D I

SACL Store low accumulator with shift 1 0 1 1 a O-X-I' D •
SBLKt Subtract from accumulator 2 1 1 a 1-S .0 0 0 0 0 0 1 1

long immediate with shift
SFLt Shift accumulator left 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0
SFRt Shift accumulator right 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1
SUB Subtract from accumulator with shift 1 a 0 0 1-S • I • D •
SUBC Conditional subtract 1 a 1 a a 0 1 1 1 I f D •
SUBH Subtract from high accumulator 1 a 1 0 0 0 1 0 0 I .. D I

SUBS Subtract from low accumulator 1 0 1 0 a 0 1 0 1 I • D I

with sign extension suppressed
SUBTt Subtract from accumulator with 1 0 1 0 a 0 1 1 0 I • D J

shift specified by T register
XOR Exclusive-OR with accumulator 1 a 1 a 0 1 1 0 0 I - D •
XORKt Exclusive-OR immediate with 2 1 1 0 1-S • 0 0 0 0 0 1 1 a

accumulator with shift
ZAC Zero accumulator 1 1 1 0 a 1 0 1 0 0 0 0 a 0 0 0 a
ZALH Zero low accumulator and load high 1 a 1 a a 0 a a 0 I • D I

accumulator
ZALS Zero accumulator and load low 1 a 1 a a 0 a a 1 I • D I

accumulator with sign extension
suppressed

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

No.
Mnemonic Description Words Instruction Bit Code

15 14 13 12 11 1a 9 8 7 6 5 4 3 2 1 a

CMPRt Compare auxiliary register with 1 1 1 a 0 1 1 1 a a 1 a 1 a a<CM>
auxiliary register ARa

LAR Load auxiliary register 1 a a 1 1 a-R-I' D •
LARK Load auxiliary register immediate short 1 1 1 a a a -R-----+-I • K I

LARP Load auxiliary register pointer 1 a 1 a 1 a 1 a 1 1 a a a 1 R

I
LDP Load data memory page pointer 1 a 1 a 1 a 0 1 0 I • D •
LDPK Load data memory page pointer 1 1 1 a a 1 a a , K •

immediate
LRLKt Load auxiliary register long immediate 2 1 1 a 1 a-R-a 0 0 a 0 a a a
MAR Modify auxiliary register 1 a 1 a 1 a 1 a 1 I • D •
SAR Store auxiliary register 1 a 1 1 1 a-R-I· D •

tThese instructions not included in the TMS3201 0 instruction set.

1-12 TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

TMS32020
DIGITAL SIGNAL PROCESSOR

TABLE 2. INSTRUCTION SET SUMMARY (CONTINUED)

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

No.
Mnemonic Description Words Instruction Bit Code

15 14 13 112 11 10 9 8 7 6 5 4 3 2 1 0

APAC Add P register to accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1
LPHt Load high P register 1 0 1 0 1 0 0 1 1 I • D •
LT Load T register 1 0 0 1 1 1 1 0 0 I • D •
LTA Load T register and accumulate 1 0 0 1 1 1 1 0 1 I • D •

previous product
LTD Load T register, accumulate previous 1 0 0 1 1 1 1 1 1 I • D I

product, and move data
LTPt Load T register and store P 1 0 0 1 1 1 1 1 0 I • D •

register in accumulator
LTSt Load T register and subtract 1 0 1 0 1 1 0 1 1 I • D •

previous product
MACt Multiply and accumulate 2 0 1 0 1 1 1 0 1 I I 0 •
MACDt Multiply and accumulate 2 0 1 0 1 1 1 0 0 I I 0 •

with data move
MPY Multiply (with T register, store product 1 0 0 1 1 1 0 0 0 I • 0 •

in P register)
MPYK Multiply immediate 1 1 0 1 • K •
PAC Load accumulator with P register 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0
SPAC Subtract P register from accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0
SPMt Set P register output shift mode 1 1 1 0 0 1 1 1 0 0 0 0 0 1 O<PM>
SORAt Square and accumulate 1 0 0 1 1 1 0 0 1 I • 0 •
SORSt Square and subtract previous product 1 0 1 0 1 1 0 1 0 I • 0 •

BRANCH/CALL INSTRUCTIONS

No.
Mnemonic Description Words Instruction Bit Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B Branch unconditionally 2 1 1 1 1 1 1 1 1 1 I 0 •
BACCt Branch to address specified by 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1

accumulator
BANZ Branch on auxiliary register not zero 2 1 1 1 1 1 0 1 1 1 I 0 •
BBNZt Branch if TC bit :F 0 2 1 1 1 1 1 0 0 1 1 I 0 •
BBZt Branch if TC bit = 0 2 1 1 1 1 1 0 0 0 1 • 0 •
BGEZ Branch if accumulator ~'O 2 1 1 1 1 0 1 0 0 1 • 0 •
BGZ Branch if accumulator> 0 2 1 1 1 1 0 0 0 1 1 , 0 •
BIOZ Branch on I/O status = 0 2 1 1 1 1 1 0 1 0 1 • 0 •
BLEZ Branch if accumulator S 0 2 1 1 1 1 0 0 1 0 1 • 0 •
BLZ Branch if accumulator < 0 2 1 1 1 1 0 0 1 1 1 • 0 •
BNVt Branch if no overflow 2 1 1 1 1 0 1 1 1 1 , 0 •
BNZ Branch if accumulator :F 0 2 1 1 1 1 0 1 0 1 1 • 0 •
BV Branch on overflow 2 1 1 1 1 0 0 0 0 1 • 0 •
BZ Branch if accumulator = 0 2 1 1 1 1 0 1 1 0 1 I 0 •
CALA Call subroutine indirect 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0
CALL Call subroutine 2 1 1 1 1 1 1 1 0 1 • 0 •
RET Return from subroutine 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0

tThese instructions not included in the TMS3201 0 instruction set.

I

TEXAS.
INSTRUMENTS

D-1 ~

TMS32020
DIGITAL SIGNAL PROCESSOR

TABLE 2. INSTRUCTION SET SUMMARY (CONCLUDED)

CONTROL INSTRUCTIONS

No.
Mnemonic Description Words Instruction Bit Code

15 14 13 12 11 10 9 8 7 6 5

BiTt Test bit 1 1 0 0 1 • B-1'
BIITt Test bit specified by T register 1 0 1 0 1 0 1 1 1 I I

CNFDt Configure block as data memory 1 1 1 0 0 1 1 1 0 0 0 0
CNFPt Configure block as program memory 1 1 1 0 0 1 1 1 0 0 0 0
DINT Disable interrupt 1 1 1 0 0 1 1 1 0 0 0 0
EINT Enable interrupt 1 1 1 0 0 1 1 1 0 0 0 0
IDLEt Idle until interrupt 1 1 1 0 0 1 1 1 0 0 0 0
LST Load status register STO 1 0 1 0 1 0 0 0 0 I •
lST1t Load status reg ister ST1 1 0 1 0 1 0 0 0 1 I I

NOP No operation 1 0 1 0 1 0 1 0 1 0 0 0
POP Pop top of stack to low accumulator 1 1 1 0 0 1 1 1 0 0 0 0
POPDt Pop top of stack to data memory 1 0 1 1 1 1 0 1 0 I •
PSHDt Push data memory value onto stack 1 0 1 0 1 0 1 0 0 I I

PUSH Push low accumulator onto stack 1 1 1 0 0 1 1 1 0 0 0 0
ROVM Reset overflow mode 1 1 1 0 0 1 1 1 0 0 0 0
RPTt Repeat instruction as specified 1 0 1 0 0 1 0 1 1 I I

by data memory value
RPTKt Repeat instruction as specified 1 1 1 0 0 1 0 1 1 I

by immediate value
RSXMt Reset sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0
SOVM Set overflow mode 1 1 1 0 0 1 1 1 0 0 0 0
SST Store status reg ister STO 1 0 1 1 1 1 0 0 0 I I

SST1t Store status reg ister ST1 1 0 1 1 1 1 0 0 1 I •
SSXMt Set sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0
TRAPt Software interrupt 1 1 1 0 0 1 1 1 0 0 0 0

1/0 AND DATA MEMORY OPERATIONS

No.
Mnemonic Description Words Instruction Bit Code

15 14 13 12 11 10 9 8 7 6 5

BLKDt Block move from data memory to 2 1 1 1 1 1 1 0 1 I I

data memory
BLKPt Block move from program memory 2 1 1 1 1 1 1 0 0 I I

to data memory
DMOV Data move in data memory 1 0 1 0 1 0 1 1 0 I I

FORTt Format serial port registers 1 1 1 0 0 1 1 1 0 0 0 0
IN Input data from port 1 1 0 0 O-PA-I I

OUT Output data to port 1 1 1 1 O-PA-I I

RTXMt Reset serial port transmit mode 1 1 1 0 0 1 1 1 0 0 0 1
RXFt Reset external flag 1 1 1 0 0 1 1 1 0 0 0 0
STXMt Set serial port transmit mode 1 1 1 0 0 1 1 1 0 0 0 1
SXFt Set external flag 1 1 1 0 0 1 1 1 0 0 0 0
TBlR Table read 1 0 1 0 1 1 0 0 0 I •
TBlW Table write 1 0 1 0 1 1 0 0 1 I •

tThese instructions not included in the TMS3201 0 instruction set.

I

)-14 TEXAS ~
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

4 3 2 1 0

D I

D I

0 0 1 0 0
0 0 1 0 1
0 0 0 0 1
0 0 0 0 0
1 1 1 1 1

D .
D I

0 0 0 0 0
1 1 1 0 1

D I

D •
1 1 1 0 0
0 0 0 1 0

D I

K I

0 0 1 1 0
0 0 0 1 1

D I

D I

0 0 1 1 1
1 1 1 1 0

4 3 2 1 0

D I

D I

D I

0 1 1 1 FO
D I

D I

0 0 0 0 0
0 1 1 0 0
0 0 0 0 1
0 1 1 0 1

D I

D I

development systems and software support

TMS32020
DIGITAL SIGNAL PROCESSOR

Texas Instruments offers concentrated development support and complete documentation for designing
a TMS32020-based microprocessor system. When developing an application, tools are provided to evaluate
the performance of the processor, to develop the algorithm implementation, and to fully integrate the
design's software and hardware modules. When questions arise, additional support can be obtained by
calling the nearest Texas Instruments Regional Technology Center (RTC).

Sophisticated development operations are performed with the TMS32020 Macro Assembler/Linker,
Simulator, and Emulator (XDS). The macro assembler and linker are used to translate program modules
into object code and link them together. This puts the program modules into a form which can be loaded
into the TMS32020 Simulator or Emulator. The simulator provides a quick means for initially debugging
TMS32020 software while the emulator provides the real-time in-circuit emulation necessary to perform
system level debug efficiently.

Table 3 gives a complete list of TMS32020 software and hardware development tools.

TABLE 3. TMS32020 SOFTWARE AND HARDWARE SUPPORT

MACRO ASSEMBLERS/LINKERS

Host Computer Operating System Part Number

DEC VAX VMS TMDS3241210-08

TI/IBM PC MS/PC-DOS TMDS3241810-02

SIMULATORS

Host Computer Operating System Part Number

DEC VAX VMS TMDS3241211-08

TI/IBM PC MS/PC-DOS TMDS3241811-02

EMULATORS

Model Power Supply Part Number

XDS/11 5 V @ 5 A required TMDS32611 20

XDS/22 Included TMDS3262220

I

TEXAS.
INSTRUMENTS

0-1 ~

pnC:;T O~~tr~ ROll 144~ • ~OIIC:::TON T~lIll.C::: 77()()1

I m~tu.tu
DIGITAL SIGNAL PROCESSOR

absolute maximum ratings over specified temperature range (unless otherwise noted) t

Supply voltage range, VCC+ .. - 0.3 V to 7 V
Input voltage range. .. - 0.3 V to 7 V
Output voltage range ... - 0.3 V to 7 V
Continuous power dissipation. .. 2.0 W
Operating free-air temperature range O°C to 70°C
Storage temperature range. .. - 55°C to 1 50°C

tStresses beyond those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating
Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect
device reliability.

+AII voltage values are with respect to VSS.

recommended operating conditions

VCC Supply voltage

VSS Supply voltage

All inputs except ClKIN
VIH High-level input voltage

ClKIN

All inputs except ClKIN
Vil low-level input voltage

ClKIN

IOH High-level output current

IOl low-level output current

TA Operating free-air temperature (Notes 1 and 2)

NOTES: 1. Case temperature (TC) must be maintained below 90°C.
2. ROJA = 36°C/Watt; ROJC = 6°C/Watt.

MIN NOM MAX

4.75 5 5.25

0

2 VCC+ 0.3

2.4 VCC+0.3

-0.3 0.8

-0.3 0.8

300

2

0 70

electrical characteristics over specified free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN Typt MAX

VOH High-level output voltage VCC = MIN, IOH = MAX 2.4 3

VOL low-level output voltage VCC = MIN, IOl = MAX 0.3 0.6

IZ Three-state current VCC = MAX -20 20

II Input current VI = VSS to VCC -10 10

TA = o°C, VCC = MAX, fx = MAX 360

ICC Supply current TA = 25°C, VCC = 5 V, fx = MAX 250

TC = 90°C, VCC = MAX, fx = MAX 285

CI Input capacitance 15

Co Output capacitance 15

t All typical values are at VCC 25°C.

~

UNIT

V

V

V

V

V

V

p,A

mA
DC

UNIT

V

V

p,A

p,A

mA

mA

mA

pF

pF

& Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic
- fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according
to Mll-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum

I rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device
should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic voltage level, preferrably
either VCC or ground. Specific guidelines for handling devices of this type are contained in the publication "Guidelines for Handling Electrostatic-
Discharge Sensitive (ESDS) Devices and Assemblies" available from Texas Instruments.

-16 TEXAS •
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

TMS32020
DIGITAL SIGNAL PROCESSOR

CLOCK CHARACTERISTICS AND TIMING

The TMS32020 can use either its internal oscillator or an external frequency source for a clock.

internal clock option

The internal oscillator is enabled by connecting a crystal across X 1 and X2/CLKIN (see Figure 2). The
frequency of CLKOUT1 is one-fourth the crystal fundamental frequency.

PARAMETER

fx Input clock frequency

f sx Serial port frequency

Cl, C2

external clock option

TEST CONDITIONS

TA = O°C to 70°C

TA = O°C to 70°C

TA = OOC to 70°C

Xl X2/ClKIN

CRYSTAL

.---401------

T
e2

FIGURE 2. INTERNAL CLOCK OPTION

MIN TYP MAX UNIT

6.7 20.5 MHz

50 2563 kHz

10 pF

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X 1 left
. unconnected. The external frequency injected must conform to the specifications listed in the following table.

switching characteristics over recommended operating conditions (see Note 3)

PARAMETER MIN TYP MAX UNIT

tc(C) CLKOUT1 ICLKOUT2 cycle time 195 597 ns

td(CIH-C) CLKIN high to CLKOUT1/CLKOUT2/STRB high/low 25 50 ns

tf(C) CLKOUT 1 ICLKOUT2/STRB fall time 10 ns

tr(C) CLKOUT 1 ICLKOUT2/STRB rise time 10 ns

tw(CL) CLKOUT1 /CLKOUT2 low pulse duration 20-15 20 20+ 15 ns

tw(CH) CLKOUT1/CLKOUT2 high pulse duratiOn 20-15 20 20+15 ns

td(Cl-C2) CLKOUT1 high to CLKOUT2 low, CLKOUT2 high to CLKOUT1 high, etc. 0-10 0 0+ 10 ns

NOTE 3: Q = 1/4tc (C).

TEXAS.
INSTRUMENTS

D-

TMS32D2D
DIGITAL SIGNAL PROCESSOR

timing requirements over recommended operating conditions (see Note 3)

te(CI) elKIN cycle time

tf(CI) elKIN fall time

tr(CI) elKIN rise time

tw(CIL) elKIN low pulse duration, te(CI) = 50 ns (Note 4)

tw(CIH) elKIN high pulse duration, te(CI) = 50 ns (Note 4)

tsu(S) SYNC setup time before ClKIN low

th(S) SYNC hold time from ClKIN low

NOTES: 3. Q = 1/4tc (C).

·18

4. ClKIN duty cycle [tr(CI) + tw(CIH)l/tc(CI) must be within 40-60%.

2.15 V

FROM OUTPUT 0---.
UNDER TEST ... -~o TEST

2.0 V_

1.88 V"

0.92 V_

POINT

J CL ~ 100 pF

FIGURE 3. TEST LOAD CIRCUIT

VIH (MIN)

V'L (MAX) 0.80 V_ --_IIIIIK-
~----------------------------

2.4V_

2.0V-
0.8 V-

o
(a) INPUT

-_--- VOH (MIN)

0.6 V --:1:==~~=-===-==-==-=~==-VOL (MAX)
o

(b) OUTPUTS

FIGURE 4. VOLTAGE REFERENCE LEVELS

TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

MIN NOM MAX UNIT

48.8 150 ns

10 ns

10 ns

10 40 ns

10 40 ns

10 Q-10 ns

15 ns

clock timing

X2/CLKIN

CLKOUT1

CLKOUT2

TMS32020
DIGITAL SIGNAL PROCESSOR

,,'-___ -J

...... -----tc(C)-----~ -....
;~~~_t_W(_CL_)_..3I"'" le--tw(CH)

--t I-- tr(C)

tw(CH)-,*

"'--

~-----!IIr tr(C) t- -I td(C1-C2) tflC)

I J ... --...... I td(C1-C2)

....... - ~-td(C1-C2)

TEXAS.
INSTRUMENTS

0-1

I

TMS32020
DIGITAL SIGNAL PROCESSOR

MEMORY AND PERIPHERAL INTERFACE TIMING

switching characteristics over recommended operating conditions (see Note 3)

PARAMETER MIN TYP MAX UNIT

td(C1-S) STRB from CLKOUT1 (if STRB is present) 0-15 0 0+ 15 ns

td(C2-S) CLKOUT2 to STRB (if STRB is present) -15 0 15 ns

tsu(A) Address setup time before STRB low (Note 5) 0-30 ns

th(A) Address hold time after STRB high (Note 5) 0-15 ns

tw(SL) STRB low pulse duration (no wait states, Note 6) 20 ns

tw(SH) STRB high pulse duration (between consecutive cycles, Note 6) 20 ns

tsu(D)W Data write setup time before STRB high (no wait states) 20-45 ns

th(D)W Data write hold time from STRB high 0-15 0 ns

ten(D) Data bus starts being driven after STRB low (write cycle) 0 ns

tdis(D) Data bus three-state after STRB high (write cycle) 0 0+30 ns

td(MSC) MSC valid from CLKOUT1 - 25 0 25 ns

NOTES: 3. 0 = 1/4t.£.LC).
5. A 15-AO, PS, DS, is, R/W, and BR timings are all included in timings referenced as "address."
6. Delays between CLKOUT 1 ICLKOUT2 edges and STRB edges track each other, resulting in tw(SL) and tw(SH) being 20 with no

wait states.

timing requirements over recommended operating conditions (see Note 3)

MIN

ta(A) Read data access time from address time (read cycle, Notes 5 and 7)

tsu(D)R Data read setup time before STRB high 40

th(D)R Data read hold time from STRB high 0

td(SL-R) READY valid after STRB low (no wait states)

td(C2H-R) READY valid after CLKOUT2 high

th(SL-R) READY hold time after STRB low (no wait states) Q-5

th(C2H-R) READY hold after CLKOUT2 high Q-5

td(M-R) READY valid after MSC valid

th(M-R) READY hold time after MSC valid 0

NOTES: 3. Q = 1/4tc(C).
5. A 15-AO, ps, DS, is, R/W, and BR timings are all included in timings referenced as "address."
7. Read data access time is defined as talA) = tsu(A) + tw(SL) - tsu(D)R.

NOM MAX UNIT

30-70 ns

ns

ns

Q-40 ns

Q-40 ns

ns

ns

2Q-50 ns

ns

20 TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

memory read timing

memory write timing

CLKOUT1

A15-A<1-
BR,PS,OS,
OR is

R/W

READY

015-00

CLKOUT1

TMS32020
DIGITAL SIGNAL PROCESSOR

L II
th(SL-R) r.....-----r...... ~ ~ th(O)R

__________________ ~r--O-~N-T-A~)~--------

\"'--_--.-1/ \'----
CLKOUT2 /

\"-_---.. \"------',
STRB

A15-AO,
BR,PS,OS,
OR IS

R/W

READY

015-00

'{
tsu(A) r!l------th-(A-) ~--II

\

VALID

TEXAS ..
INSTRUMENTS

o
POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

11VI::i.1lUlU
DIGITAL SIGNAL PROCESSOR

one wait-state memory access timing

) CLKOUT1 " I
\ / '----I

"
I

\ t \ CLKOUT2 I
I I I I

I I I I

~ I I I

/ STRB I I I
I I I

I I ~ ~ th(C2H-R)
A15-AO,SR,

I

:
PS,OS,R/W, VALID * OR IS

th(C2H-R)
I

READY
I

td(M-R) ~ ~I I I 1+-+ th(M-R)
I I

-+I H th(M-R) 1 I(DATA) 015-00 I I
(FOR READ I I I I

I I I I IN
OPERATION) I I I I I I

I I I I I I
015-00 I I - ~ (FOR WRITE I I DATA OUT

OPERATION) I I
I I I I
I I I

I
MSC

I
~td(MSC)

~2
TEXAS.

INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

RS, INT, BIO, and XF TIMING

TMS32020
DIGITAL SIGNAL PROCESSOR

switching characteristics over recommended operating conditions (see Note 3)

PARAMETER MIN TYP MAX UNIT

td(RS) CLKOUT1 low to reset state entered 45 ns

td(lACK) CLKOUT1 to lACK valid -25 0 25 ns

td(XF) XF valid before falling edge of STRB 0-30 ns

NOTE 3: 0 = 1/4tc (C)'
8. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup

time is met, the exact sequence shown in the timing diagrams will occur.

timing requirements over recommended operating conditions (see Note 3)

MIN NOM MAX UNIT

tsu(IN) INTIBIOIRS setup before CLKOUT1 high 50 ns

th(lN) INTIBIOIRS hold after CLKOUT1 high 0 ns

tf(lN) INT IBIO fall time 15 ns

tw(lN) INT IBIO low pulse duration tc(C) ns

tw(RS) RS low pulse duration 3tc (C) ns

NOTE 3: 0 = 1/4tc (C)'

8. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup time
is met, the exact sequence shown in the timing diagrams will occur.

reset timing

CLKOUT1

RS

A15-AO

015-00

PS

STRB

CONTROL
SIGNALSt

lACK

SERIAL PORT
CONTROLS:J:

t Control signals are OS, IS, R/W and XF.
:J: Serial port controls are OX and FSX.

I

TEXAS.
INSTRUMENTS

0-2:

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

I m" ... £u~u
DIGITAL SIGNAL PROCESSOR

interrupt timing

I CLKOUT1 \ I

" X " \ I \ \. I
I I I
I I I I

~ I / I \
I

I \ I \ I STRB I I I
I

-+t I-:J tsu(l~) i i+- th(lN) I I I I ---+t
- - ~tW(lNI i If INT2-INTO I

I I I I I
--+I ~ tf-'IN) I I I

A15-AO ~ FETCH N X FETCH N+ 1 X FETCH I X FETCH 1+ 1)(
I

lACK

810 timing

CLKOUT1

FETCH FETCH

A15-AO

BRANCH ADDRESS t NEXT INSTRUCTION J
=* Flrb1

ti * * x= PC=N PC=N+1 1
I I
!++t th(lN)

tsu(lN) ft"-+i I PC = N + 2

I
I I OR BRANCH ADDRESS
I I

I

D-24 TEXAS ."
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

external flag timing

CLKOUT1 \
STRB

A15-AO)«

XF

/ \ /

FETCH * VALID _SXF/RXF
PC=N PC=N+1

TEXAS"
INSTRUMENTS

\

--.j
I

~
I
I
I
I

I

TMS32020
DIGITAL SIGNAL PROCESSOR

/ \.

I
14- td(XF)
I

VALID K
PC=N+2

VALID

0-

TMS32020
DIGITAL SIGNAL PROCESSOR

HOLD TIMING

switching characteristics over recommended operating conditions (see Note 3)

PARAMETER MIN TYP MAX UNIT

td(C1L-AL) HOLDA low after CLKOUTl low -25 25 ns

tdis(AL-A) HOLDA low to address three-state 15 ns

tdis(C 1 L-A) Address three-state after CLKOUT1 low (HOLD mode, Note 5) 30 ns

td(HH-AH) HOLD high to HOLDA high 50 ns

ten (A-C1 L) Address driven before CLKOUTl low (HOLD mode, Note 5) 10 ns

NOTES: 3. 0 = 1 14t.£.LC)~ _ _ _
5. A 15-AO, PS, OS, IS, R/W, and BR timings are all included in timings referenced as "address."

timing requirements over recommended operating conditions (see Note 3)

MIN NOM MAX UNIT

td(C2H-H) HOLD valid after CLKOUT2 high 0-35 ns

NOTE: 3. 0 = 1/4tc (C).

HOLD timing (part A)

CLKOUT1 \ / \ / \ I X- I \ I

X \ I \ I \ I / '--CLKOUT2 I
I

I

I \ ,. STRB " I \ I I
---+1 i+- td(C2H-H) I I

'=
I I

HOLD
I I
I I

I I I
I I I

A15-AO ~ N »< N+1 »< N+2 '*' I I

PS,DS, ~ VALID »< VALID »< VALID • OR IS

I I

R/W -+t~ 'GolelL-A) e 0 015-00 I I
I I
I I
I I

N N+1 N/A .~! I N/A
FETCH ~ .~ .~ •

I I I

I
I I
I

! DEAD N-1 N DUMMY ... I EXECUTE 4 ... ~ .. ~
II

1-+11+- tdis(AL-A)

HOLDA 1\1.1 I I!

td(C1L-AL) ---.l ~

-26
TEXAS ."

INSTRUMENTS
POST OFFIrF ROX 1441 • HOIISTON TI=Xl\.C:: 77{){)1

HOLD timing (part B)

I I

CLKOUT1 \ I I \ I X I I
I

CLKOUT2 l LJ \ II I \
I I :
I - I STRB I
I

---.! r 'cIIC2H-HI
I I
I I

HOLD I I
~ If- ten(A-C1L)

I I
I I

fa I
A15-AO I N+2

I

PS,DS, III VALID OR is
I
I

R/W • I
I
I G 015-00 I
I
I
I

N/A N/A N+2
FETCH .. I

I
DEAD DEAD N+1

EXECUTE .. I
I
I
I I

HOLDA ~!r--- td(HH-AH)

! I

..

TEXAS.
INSTRUMENTS

TMS32020
DIGITAL SIGNAL PROCESSOR

\ I \
I '---
\ I

* N+3)

* VALID)

®--
N+3 ... •
N+2 . .. •

D-:

TMS32020
DIGITAL SIGNAL PROCESSOR

SERIAL PORT TIMING

switching characteristics over recommended operating conditions (see Note 3)

PARAMETER MIN TYP MAX UNIT

td(CH-DX) DX valid after CLKX rising edge (Note 9) 100 ns

td(FL-DX) DX valid after FSX falling edge (TXM = 0, Note 9) 50 ns

td(CH-FS) FSX valid after CLKX rising edge (TXM = 1) 60 ns

NOTES: 3. Q = 1/4tc (C)'
9. The last occurrence of FSX falling and CLKX rising.

timing requirements over recommended operating conditions (see Note 3)

MIN NOM MAX UNIT

tc(SCK) Serial port clock (CLKX/CLKR) cycle time 390 20,000 ns

tf(SCK) Serial port clock (CLKX/CLKR) fall time 50 ns

tr(SCK) Serial port clock (CLKX/CLKR) rise time 50 ns

tw(SCK) Serial port clock (CLKX/CLKR) low pulse duration (see Note 10) 150 12,000 ns

tw(SCK) Serial port clock (CLKX/CLKR) high pulse duration (see Note 10) 150 12,000 ns

tsu(FS) FSX/FSR setup time before (CLKX/CLKR) falling edge (TXM = 0) 20 ns

th(FS) FSX/FSR hold time after (CLKX/CLKR) falling edge (TXM = 0) 20 ns

tsu(DR) DR setup time before CLKR falling edge 20 ns

th(DR) DR hold time after CLKR falling edge 20 ns

NOTES: 3. Q = 1/4tc (C)'
10. The duty cycle of the serial port clock must be within 40-60%.

serial port receive timing

CLKR

~ tc(SCK) -+t
I I+----+r tw(SCK)

I I I
tr(SCKI -.I I+- I
I I 1---

FSR

I I
I ~ th(FS) I tf(SCKI -tt ~----I~
I I \ 1+ th(ORI

I! I I:! \ \~--------------
~ tsu(OR)

DR

serial port transmit timing

:4-- tc(SCK) -+:

I

tw(SCK) -+ tf- :
, '-+i '

: '
CLKX: : ' ' :,

: , tf(' SCK) ..: I+- "
th(FS) +! :4 i 1411.: ',;: tw(SCK)

FSX ! t : \~ !
(\NPUT.TXM=O) 4: I :\ 'I

" t: "": ~-..... !-ld-(C-H--O-X-)~I--. -~
:: dIFL-OXI ~, ~ po~

ox :: i+-tsUIFS)! (N=1 ~ ~ N=8.16

-.! !-- tdICH-FS) ---.! ~ td(CH-FS)

FSX J \.!;
(OUTPUT.TXM = 1) : ~

~------------~

) -

)-28 TEXAS.
INSTRUMENTS

O(""\CT nct:"lrt: c.nv 1 All. "l • Ur'llICTru .. 1 TCV I\C 17()()'

MECHANICAL DATA

TMS32020
DIGITAL SIGNAL PROCESSOR

68-pin GB pin grid array ceramic package

TOP VIEW

28,448 (1.120)
r----27,432 (1.080)~
I r- 17,0~ci~670)1 I

I I
THERMAL RESISTANCE CHARACTERISTICS 18,448 (1.120)

27,432 (1.080)

ROJA

ROJC

PARAMETER

Junction-to-free-air

thermal resistance

Junction-to-case

thermal resistance

MAX UNIT

36 °C/W

6 °C/W

4,953 (0.195)
2,032 (0.080)

3,302 (0.130)
2,794 (0.110)

17,02 (0.670)

L----------.J_ ~

;:::==r:================:::J.' ____ -, 1,397 (0.055)
~I ~~~~~~~~~~~~~~I~ MAX

~-~ ll111J~ IT tmJ: (0.062) OIA
0,406 (0.016) 1,473 (0.058)

BOTTOM VIEW 2,54 (0.100)t1
T.P.

~~----------------------~
l I cD00880808- r
K (f)08 0888 8 808-~2,54(0.100)
J 88 88 T.P.

H88 88

G88 88

F88 88

E88 80

088 88

NOM
C 8 8 8 8 =£1,524 (0.060)

B 0 \0 8 0 8 8 0 0 8 0 0 4 PLACES

A 8 8 0 8 8 8 0 8 8--L
2 3 4 5 6 7 8 9 10 11 -r_J,27 (0.050)

NOM

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TEXAS •
INSTRUMENlS

POST OFFIr.F ROX 144::1 • HOIISTON TFXAS 770()1

0-

0-30

TI Sales Offices TI Distributors
ALABAMA: Huntsville (205) 837·7530.

ARIZONA: Phoenix (602) 995·1007;
Tucson (602) 624·3276.

CALIFORNIA: Irvine (714) 660·8187;
Sacramento (916) 929·1521;
San Diego (619) 278·9601;
Santa Clara (408) 980·9000;
Torrance (213) 217·7010;
Woodland Hills (818) 704·7759.

COLORADO: Aurora (303) 368·8000.

CONNECTICUT: Wallingford (203) 269·0074.

FLORIDA: Ft. Lauderdale (305) 973·8502;
Maitland (305) 660·4600; Tampa (813) 870·6420

GEORGIA: Norcross (404) 662·7900.

ILLINOIS: Arlington Heights (312) 640·2925.

INDIANA: Ft. Wayne (219) 424·5174;
Indianapolis (317) 248·8555.

IOWA: Cedar Rapids (319) 395·9550.

MARYLAND: Baltimore (301) 944·8600.

MASSACHUSETTS: Waltham (617) 895·9100.

MICHIGAN: Farmington Hills (313) 553·1500;
Grand Rapids (616) 957·4200.

MINNESOTA: Eden Prairie (612) 828·9300.

MISSOURI: Kansas City (816) 523·2500;
SI. Louis (314) 569·7600.

NEW JERSEY: Iselin (201) 750-1050.

NEW MEXICO: Albuquerque (505) 345·2555.

NEW YORK: East Syracuse (315) 463-9291;
Endicott (607) 754·3900; Melville (516) 454-6600;
Pittsford (716) 385-6770;
Poughkeepsie (914) 473-2900.

NORTH CAROLINA: Charlotte (704) 527·0930;
Raleigh (919)876·2725.

OHIO: Beachwood (216) 464-6100;
Dayton (513) 258-3877.

OKLAHOMA: Tulsa (918) 250·0633.

OREGON: Beaverton (503) 643·6758.

PENNSYLVANIA: FI. Washington (215) 643-6450;
Coraopolis (412) 771·8550.

PUERTO RICO: Hato Rey (809) 753·8700

TEXAS: Austin (512) 250-7655;
Houston (713) 778-6592; Richardson (214) 680-5082;
San Antonio (512) 496-1779.

UTAH: Murray (801) 266-8972.

VIRGINIA: Fairfax (703) 849-1400.

WASHINGTON: Redmond (206) 881-3080.

WISCONSIN: Brookfield (414) 785·7140.

CANADA: Nepean, Ontario (613) 726-1970;
Richmond Hill, Ontario (416) 884-9181;
SI. Laurent, Quebec (514) 334·3635.

TI Regional
Technology Centers
CALIFORNIA: Irvine (714) 660·8140,
Santa Clara (408) 748·2220.

GEORGIA: Norcross (404) 662-7945.

ILLINOIS: Arlington Heights (312) 640·2909.

MASSACHUSETTS: Waltham (617) 895·9197.

TEXAS: Richardson (214) 680·5066.

CANADA: Nepean, Ontario (613) 726·1970

Customer
Response Center
TOLL FREE: (800) 232-3200

OUTSIDE USA: (214) 995-6611
(8:00 a.m. - 5:00 p.m. CST)

TI AUTHORIZED DISTRIBUTORS IN
USA

Arrow Electronics
Diplomat Electronics
General Radio Supply Company
Graham Electronics
Harrison Equipment Co.
International Electronics
JACO Electronics
Kierulff Electronics
LCOMP, Incorporated
Marshall Industries
Milgray Electronics
Newark Electronics
Time Electronics
R.V. Weatherford Co.
Wyle Laboratories

TI AUTHORIZED DISTRIBUTORS IN
CANADA

Arrow Electronics Canada
Future Electronics
ITT Multicomponents
L.A. Varah, Ltd.

TI AUTHORIZED DISTRIBUTORS IN
USA

-OBSOLETE PRODUCT ONLY
Rochester Electronics, Inc.
Wakefield, Massachusetts
(617) 245·2941

ALABAMA: Arrow (205) 882·2730;
Kierulff (205) 883-6070; Marshall (205) 881·9235.

ARIZONA: Arrow (602) 968·4800;
Kierulff (602) 243·4101; Marshall (602) 968·6181;
Wyle (602) 866·2888.

CALIFORNIA: Los Angeles/Orange County:
Arrow (818) 701·7500, (714) 838·5422;
Kierulff (213) 725·0325, (714) 731·5711, (714) 220·6300;
Marshall (818) 999·5001, (818) 442-7204,
(714) 660-0951; R.V. Weatherford (714) 634-9600,
(213) 849-3451, Wyle (213) 322-8100, (818) 880-9001,
(714) 863·9953; Sacramento: Arrow (916) 925-7456;
Marshall (916) 635-9700;
Wyle (916) 638·5282; San Diego: Arrow
(619) 565-4800; Kierulff (619) 278·2112;
Marshall (619) 578·9600; Wyle (619) 565·9171;
San Francisco Bay Area: Arrow (408) 745-6600;
(415) 487-4600; Kierulff (408) 971-2600;
Marshall (408) 943·4600; Wyle (408) 727·2500;

COLORADO: Arrow (303) 696-1111;
Kierulff (303) 790-4444; Wyle (303) 457-9953.

CONNECTICUT: Arrow (203) 265·7741;
Diplomat (203) 797·9674; Kierulff (203) 265-1115;
Marshall (203) 265-3822; Milgray (203) 795·0714.

FLORIDA: Ft. Lauderdale: Arrow (305) 429·8200;
Diplomat (305) 974-8700; Kierulff (305) 486-4004;
Orlando: Arrow (305) 725-1480;
Milgray (305) 647·5747; Tampa:
Arrow (813) 576·8995; Diplomat (813) 443·4514;
Kierulff (813) 576·1966.

~
TEXAS

INSTRUMENTS
Creating useful products

and services for you.

GEORGIA: Arrow (404) 449-8252;
Kierulff (404) 447-5252; Marshall (404) 923-5750.

ILLINOIS: Arrow (312) 397·3440;
Diplomat (312) 595-1000; Kierulff (312) 250·0500;
Marshall (312) 490·0155; Newark (312) 784·5100.

INDIANA: Indianapolis: Arrow (317) 243-9353;
Graham (317) 634-8202; Marshall (317) 297·0483;
FI. Wayne: Graham (219) 423-3422.

IOWA: Arrow (319) 395-7230.

KANSAS: Kansas City: Marshall (913) 492-3121;
Wichita: LCOMP (316) 265·9507.

MARYLAND: Arrow (301) 995-0003;
Diplomat (301) 995-1226; Kierulff (301) 636-5800;
Milgray (301) 793-3993; Marshall (301) 840-9450.

MASSACHUSETTS: Arrow (617) 933-8130;
Diplomat (617) 935-6611; Kierulff (617) 667·8331;
Marshall (617) 272·8200; Time (617) 532-6200.

MICHIGAN: Detroit: Arrow (313) 971·8220;
Marshall (313) 525·5850; Newark (313) 967·0600;
Grand Rapids: Arrow (616) 243·0912.

MINNESOTA: Arrow (612) 830·1800;
Kierulff (612) 941·7500; Marshall (612) 559·2211.

MISSOURI: Kansas City: LCOMP (816) 221-2400;
SI. Louis: Arrow (314) 567-6888;
Kierulff (314) 739-0855.

NEW HAMPSHIRE: Arrow (603) 668-6968.

NEW JERSEY: Arrow (201) 575·5300, (609) 596-8000;
Diplomat (201) 785·1830;
General Radio (609) 964-8560; Kierulff (201) 575·6750;
(609) 235-1444; Marshall (201) 882·0320,
(609) 234-9100; Milgray (609) 983-5010.

NEW MEXICO: Arrow (505) 243·4566;
International Electronics (505) 345·8127.

NEW YORK: Long Island: Arrow (516) 231·1000;
Diplomat (516) 454-6400; JACO (516) 273-5500;
Marshall (516) 273-2053; Milgray (516) 420-9800;
Rochester: (716) 427-0300;
Marshall (716) 235·7620;
Syracuse: Arrow (315) 652-1000;
Diplomat (315) 652-5000; Marshall (607) 798·1611.

NORTH CAROLINA: Arrow (919) 876-3132,
(919) 725-8711; Kierulff (919) 872-8410;
Marshall (919) 878·9882.

OHIO: Cincinnati: Graham (513) 772-1661;
Cleveland: Arrow (216) 248·3990;
Kierulff (216) 587-6558; Marshall (216) 248·1788.
Columbus: Arrow (614) 885-8362;
Dayton: Arrow (513) 435-5563; Graham (513) 435-8660;
Kierulff (513) 439-0045; Marshall (513) 236-8088.

OKLAHOMA: Arrow (918) 665·7700;
Kierulff (918) 252-7537.

OREGON: Arrow (503) 684-1690;
Kierulff (503) 641-9153; Wyle (503) 640-6000;
Marshall (503) 644·5050.

PENNSYLVANIA: Arrow (412) 856·7000,
(215) 928-1800; General Radio (215) 922·7037.

RHODE ISLAND: Arrow (401) 431-0980

TEXAS: Austin: Arrow (512~ 835-4180;
Kierulff (512) 835-2090; Marshall (512) 837-1991;
Wyle (512) 834-9957; Dallas: Arrow (214) 380·6464;
International Electronics (214) 233-9323;
Kierulff (214) 343-2400; Marshall (214) 233·5200;
Wyle (214) 235·9953;
EI Paso: International Electronics (915) 598-3406;
Houston: Arrow (713) 530·4700;
Marshall (713) 789-6600;
Harrison Equipment (713) 879-2600;
Kierulff (713) 530-7030; Wyle (713) 879·9953.

UTAH: Diplomat (801) 486-4134;
Kierulff (801) 973-6913; Wyle (801) 974-9953.

WASHINGTON: Arrow (206) 643·4800;
Kierulff (206) 575-4420; Wyle (206) 453·8300;
Marshall (206) 747-9100.

WISCONSIN: Arrow (414) 792-0150; Kierulff
(414) 784-8160.

CANADA: Calgary: Future (403) 235·5325; Varah
(403) 255-9550; Edmonton: Future (403) 486-0974;
Varah (403) 437-2755; Montreal: Arrow Canada
(514) 735-5511; Future (514) 694·7710; ITT
Multicomponents (514) 735·1177; Nova Scotia: Varah
(902) 465-2322; Ottawa: Arrow Canada (613) 226·6903;
Future (613) 820·8313; ITT Multicomponents
(613) 226-7406; Varah (613) 726·8884; Quebec City:
Arrow Canada (418) 687·4231; Toronto: Arrow Canada
(416) 661-0220; Future (416) 638-4771; ITT
Multicomponents (416) 736·1144; Varah
(416) 842-8484; Vancouver: Future (604) 438·5545;
Varah (604) 873-3211; Winnipeg: Varah (204) 633.61~~

TI Sales Offices TI Distributors
ALABAMA: Huntsville (205) 837-7530.

ARIZONA: Phoenix (602) 995-1007.

CALIFORNIA: Irvine (714) 660-8187;
Sacramento (916) 929-1521;
San Diego (619) 278-9601;
Santa Clara (408) 980-9000;
Torrance (213) 217-7010;
Woodland Hills (818) 704-7759.

COLORADO: Aurora (303) 368-8000.

CONNECTICUT: Wallingford (203) 269-0074

FLORIDA: Ft Lauderdale (305) 973-8502;
Maitland (305) 660-4600; Tampa (813) 870-6420.

GEORGIA: Norcross (404) 662-7900.

ILLINOIS: Arlington Heights (312) 640-2925.

INDIANA: Ft Wayne (219) 424-5174:
Indianapolis (317) 248-8555.

IOWA: Cedar Rapids (319) 395-9550.

MARYLAND: Baltimore (301) 944-8600.

MASSACHUSETTS: Waltham (617) 895-9100.

MICHIGAN: Farmington Hills (313) 553-1500

MINNESOTA: Eden Prairie (612) 828-9300.

MISSOURI: Kansas City (816) 523-2500;
St. Louis (314) 569-7600.

NEW JERSEY: Iselin (201) 750-1050.

NEW MEXICO: Albuquerque (505) 345-2555

NEW YORK: East Syracuse (315) 463-9291;
Endicott (607) 754-3900; Melville (516) 454-6600;
Pittsford (716) 385-6770;
Poughkeepsie (914) 473-2900.

NORTH CAROLINA: Charlotte (704) 527-0930;
Raleigh (919) 876-2725.

OHIO: Beachwood (216) 464-6100;
Dayton (513) 258-3877.

OKLAHOMA: Tulsa (918) 250-0633.

OREGON: Beaverton (503) 643-6758.

PENNSYLVANIA: Ft Washington (215) 643-6450;
Coraopolis (412) 771-8550.

PUERTO RICO: Hato Rey (809) 753-8700

TEXAS: Austin (512) 250-7655;
Houston (713) 778-6592; Richardson (214) 680-5082;
San Antonio (512) 496-1779.

UTAH: Murray (801) 266-8972

VIRGINIA: Fairfax (703) 849-1400.

WASHINGTON: Redmond (206) 881-3080

WISCONSIN: Brookfield (414) 785-7140.

CANADA: Nepean, Ontario (613) 726-1970;
Richmond Hill, Ontario (416) 884-9181;
St. Laurent, Quebec (514) 334-3635.

TI Regional
Technology Centers
CALIFORNIA: Irvine (714) 660-8140.
Santa Clara (408) 748-2220.

GEORGIA: Norcross (404) 662-7945.

ILLINOIS: Arlington Heights (312) 640-2909.

MASSACHUSETTS: Waltham (617) 890-6671.

TEXAS: Richardson (214) 680-5066.

CANADA: Nepean, Ontario (613) 726-1970

Technical
Support Center
TOLL FREE: (800) 232-3200

TI AUTHORIZED DISTRIBUTORS IN
USA

Arrow Electronics
Diplomat Electronics
General Radio Supply Company
Graham Electronics
Harrison Equipment Co.
International Electronics
JACO Electronics
Kierulff Electronics
LCOMP, Incorporated
Marshall Industries
Milgray Electronics
Newark Electronics
Rochester Radio Supply
Time Electronics
R.V. Weatherford Co.
Wyle Laboratories

TI AUTHORIZED DISTRIBUTORS IN
CANADA

Arrow/CESCO Electronics, Inc.
Future Electronics
ITT Components
L.A. Varah, Ltd.

ALABAMA: Arrow (205) 882-2730;
Kierulff (205) 883-6070; Marshall (205) 881-9235.

ARIZONA: Arrow (602) 968-4800;
Kierulff (602) 243-4101; Marshall (602) 968-6181;
Wyle (602) 866-2888.

CALIFORNIA: Los Angeles/Orange County:
Arrow (818) 701-7500, (714) 838-5422;
Kierulff (213) 725-0325, (714) 731-5711, (714) 220-6300;
Marshall (818) 999-5001, (818) 442-7204,
(714) 660-0951; R.V. Weatherford (714) 634-9600,
(213) 849-3451, (714) 623-1261; Wyle (213) 322-8100.
(818) 880-9001, (714) 863-9953; Sacramento: Arrow
(916) 925-7456; Wyle (916) 638-5282; San Diego:
Arrow (619) 565-4800; Kierulff (619) 278-2112;
Marshall (619) 578-9600; Wyle (619) 565-9171;
San Francisco Bay Area: Arrow (408) 745-6600;
(415) 487-4600; Kierulff (408) 971-2600;
Marshall (408) 732-1100; Wyle (408) 727-2500;
Santa Barbara: R.V. Weatherford (805) 965-8551

COLORADO: Arrow (303) 696-1111;
Kierulff (303) 790-4444; Wyle (303) 457-9953

CONNECTICUT: Arrow (203) 265-7741;
Diplomat (203) 797-9674; Kierulff (203) 265-1115;
Marshall (203) 265-3822; Milgray (203) 795-0714.

FLORIDA: Ft Lauderdale: Arrow (305) 429-8200;
Diplomat (305) 974-8700; Kierulff (305) 486-4004:
Orlando: Arrow (305) 725-1480;
Milgray (305) 647-5747; Tampa:
Arrow (813) 576-8995; Diplomat (813) 443-4514:
Kierulff (813) 576-1966.

GEORGIA: Arrow (404) 449-8252;
Kierulff (404) 447-5252; Marshall (404) 923-5750.

TEXAS
INSTRUMENTS

Creating useful products
and services for you.

ILLINOIS: Arrow (312) 397-3440;
Diplomat (312) 595-1000; Kierulff (312) 250-0500;
Marshall (312) 490-0155; Newark (312) 784-5100.

INDIANA: Indianapolis: Arrow (317) 243-9353;
Graham (317) 634-8202; Marshall (317) 297-0483:
Ft. Wayne: Graham (219) 423-3422.

IOWA: Arrow (319) 395-7230.

KANSAS: Kansas City: Marshall (913) 492-3121:
Wichita: LCOMP (316) 265-9507

MARYLAND: Arrow (301) 995-0003;
Diplomat (301) 995-1226; Kierulff (301) 636-5800:
Milgray (301) 793-3993.

MASSACHUSETTS: Arrow (617) 933-8130;
Diplomat (617) 935-6611; Kierulff (617) 667-8331:
Marshall (617) 272-8200; Time (617) 935-8080.

MICHIGAN: Detroit: Arrow (313) 971-8220;
Marshall (313) 525-5850; Newark (313) 967-0600:
Grand Rapids: Arrow (616) 243-0912.

MINNESOTA: Arrow (612) 830-1800;
Kierulff (612) 941-7500; Marshall (612) 559-2211

MISSOURI: Kansas City: LCOMP (816) 221-2400:
St. Louis: Arrow (314) 567-6888;
Kierulff (314) 739-0855.

NEW HAMPSHIRE: Arrow (603) 668-6968

NEW JERSEY: Arrow (201) 575-5300. (609) 596-8000:
Diplomat (201) 785-1830;
General Radio (609) 964-8560; Kierulff (201) 575-6750:
(609) 235-1444; Marshall (201) 882-0320.
(609) 234-9100; Milgray (609) 983-5010.

NEW MEXICO: Arrow (505) 243-4566;
International Electronics (505) 345-8127.

NEW YORK: Long Island: Arrow (516) 231-1000:
Diplomat (516) 454-6400; JACO (516) 273-5500;
Marshall (516) 273-2053; Milgray (516) 420-9800:
Rochester: Arrow (716) 427-0300;
Marshall (716) 235-7620;
Rochester Radio Supply (716) 454-7800;
Syracus~: Arrow (315) 652-1000;
Diplomat (315) 652-5000: Marshall (607) 798-1611

NORTH CAROLINA: Arrow (919) 876-3132.
(919) 725-8711; Kierulff (919) 872-8410.

OHIO: Cincinnati: Graham (513) 772-1661:
Cleveland: Arrow (216) 248-3990:
Kierullf (216) 587-6558; Marshall (216) 248-1788.
Columbus: Graham (614) 895-1590;
Dayton: Arrow (513) 435-5563; Kierulff (513) 439-0045:
Marshall (513) 236-8088.

OKLAHOMA: Kierulff (918) 252-7537.

OREGON: Arrow (503) 684-1690; Kierulff
(503) 641-9153; Wyle (503) 640-6000; Marshall
(503) 644-5050.

PENNSYLVANIA: Arrow (412) 856-7000.
(215) 928-1800; General Radio (215) 922-7037

RHODE ISLAND: Arrow (401) 431-0980

TEXAS: Austin: Arrow (512) 835-4180;
Kierulff (512) 835-2090; Marshall (512) 837-1991:
Wyle (512) 834-9957; Dallas: Arrow (214) 380-6464:
International Electronics (214) 233-9323;
Kierulff (214) 343-2400: Marshall (214) 233-5200:
Wyle (214) 235-9953;
EI Paso: International Electronics (915) 598-3406:
Houston: Arrow (713) 530-4700:
Marshall (713) 789-6600;
Harrison Equipment (713) 879-2600;
Kierulff (713) 530-7030; Wyle (713) 879-9953

UTAH: Diplomat (801) 486-4134;
Kierulff (801) 973-6913; Wyle (801) 974-9953.

VIRGINIA: Arrow (804) 282-0413

WASHINGTON: Arrow (206) 643-4800;
Kierulff (206) 575-4420: Wyle (206) 453-8300: Marshall
(206) 747-9100.

WISCONSIN: Arrow (414) 764-6600; Kierulff.
(414) 784-8160.

CANADA: Calgary: Future (403) 235-5325; Varah
(403) 255-9550; Edmonton: Future (403) 486-0974:
Varah (403) 437-2755; Montreal: Arrow/CESCO
(514) 735-5511; Future (514) 694-7710: ITT
Components (514) 735-1177; Ottawa: Arrow/CESCO
(613) 226-6903; Future (613) 820-8313: ITT
Components (613) 226-7406: Varah (613) 726-8884:
Quebec City: Arrow/CESCO (418) 687-4231: Toronto:
CESCO (416) 661-0220;
Future (416) 638-4771: ITT Components
(416) 736-1144: Varah (416) 842-8484:
Vancouver: Future (604) 438-5545: Varah
(604) 873-3211: Winnipeg: Varah (204) 633-6190 BL

Reader Response Card October 1985

TMS3201 0 User's Guide

Please use this form to communicate your comments about this document, its
organization and subject matter, for the purpose of improving technical documen
tation.

1) What do you feel are the best features of this document? _______ _

2) How does this document meet your software development needs?

3) Do you find the organization of this document easy to follow? If not, why?

4) What additions do you think would enhance the structure and subject matter?

5) What deletions could be made without affecting overall usefulness? ___ _

6) Is there any incorrect or misleading information? ___________ _

7) How would you improve this document? _____________ _

If you would like a reply, please give your name and address below.

Name ___ _

Company _______________ Title __________________ _
Address ___ _

City/State/Zip _________ Telephone

Thank you for your cooperation.

SPRU001B

11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
MIS 640
P.O. Box 1443
Houston, Texas 77001

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

en
z
c:(

C
c:(
!;
W
....I
t!'
Z
c:(

w
en
c:(
J:
a..

4

2

0

-2

-4 ----------~~----------r_----------r_----------r_--------~
o

NORMALIZED FREQUENCY (RADIANS/SAMPLE)

FIGURE 8-118 - PHASE ANGLE OF FREQUENCY RESPONSE

FIGURE 8-11 - FOURTH-ORDER ELLIPTIC DIGITAL FILTER

It is relatively simple to design IIR filters using tables of analog filter designs and a calculator.
Alternatively, a program for designing ItR digital filters by bilinear transformation of Butterworth,
Chebyshev, and elliptic filters has been given by Dehner in the IEEE Press Book. [6, Section 6.1]

The bilinear transformation method can be termed a 'closed form' solution to the ItR digital filter
design problem in the sense that an analog filter can be found in a non-iterative manner to meet a
set of prescribed approximation error specifications, and then the digital filter can be obtained in a
straightforward way by applying the bilinear transformation.

Another approach is as follows:

1) Define an ideal frequency response function,

2) Set up an approximation error criterion,

3) Pick an implementation structure, i.e., order of numerator and denominator of H(z),
cascade, parallel, or direct form,

4) Vary the filter coefficients systematically to minimize the approximation error criterion,

5) If the approximation is not good enough, increase the order of the system and repeat the
design process.

8-15

I

8-16

A variety of such iterative design techniques have been proposed for both IIR and FIR filters.
Deczky has developed a design program which minimizes a pth-order error norm. It is capable of
both magnitude and group delay (negative derivative of phase with respect to frequency)
approximations. [6, Section 6.2] Another optimization program for magnitude approximations only
has been written by Dolan and Kaiser. [6, Section 6.3] Both this program and the Deczky program
assume that the transfer function H(z) is a product of second-order factors.

Somewhat different approaches have been developed for the design of FIR filters, since there really
is no counterpart of the FIR filter for the analog system. In addition, FIR discrete-time filters can
have an exactly linear phase response. Since a linear phase response corresponds to only a delay,
attention can be focused on approximating the desired magnitude response without concern for the
phase. In most IIR design methods, the phase is ignored, and one is forced to accept whatever
phase distortion is imposed by the design procedure. The condition for linear phase of a casual FIR
system is the symmetry condition:

h[n] ±h [M-n]

o otherwise

In the case of the + sign in (30), the frequency response will be:

. T (M) -jw --
H(ejwT) = R(wT)' e 2

where R(wT) is a real function of frequency. Such frequency responses are
approximating frequency selective filters. In the case of the minus sign in (30):

. T (M) . -jw --
H(ejwT) = jl(wT) . e 2

(30)

(31)

appropriate for

(32)

where I(w T) is also a real function of frequency. Such frequency responses are required for
approximating differentiators and Hilbert transformers (gO-degree phase shifters).

The most straightforward approach to the design of FIR filters is a technique often called the
Iwindow method.' In this approach, an ideal frequency response function is first defined. Then, the
corresponding ideal impulse response is determined by evaluating the inverse Fourier transform of
the ideal frequency response. (In picking the ideal frequency response, the linear phase condition
mayor may not be applied depending on what is most appropriate.) The ideal impulse response will
in general be ·of infinite length. An" approximate impulse response is computed by truncating the
ideal impuse response to a finite number of samples and tapering the remaining samples with a
window function. With appropriate choice of the window function, a smooth approximation to the
ideal frequency response is obtained even at points of discontinuity. Many window functions have
been proposed, but the most useful window for filter design is perhaps the one proposed by Kaiser
[8] since it has a parameter which, in conjunction with the window length, can be used
systematically to trade off between approximation error in slowly varying regions of the ideal
response (e.g., the stopband) and sharpness of transition at discontinuities of the ideal frequency
response. A program for window design of FIR frequency selective filters is given by Rabiner and
McGonegal [6, Section 5.2]

."
TEXAS

INSTRUMENTS
Printed In U.S .A. Creating useful products

--------~----------------------~---~ ~ -.~------~--~~------

