
CROSS-ASSEMBLER DIRECTIVES
(CONCLUDED)

PAGE TITLE

TlTL supplies title to be printed in the heading of each page of the source listing.

Syntax: I < label> I TITL '<string>' I < comment> I

RESTART SOURCE LISTING

LIST restores printing of the source listing.

Syntax: I < label> I LIST I < comment> I

STOP SOURCE LISTING

UNL halts the source listing output until the occurrence of a LIST directive.

Syntax: 1 < label> I UNL 1 <comment> I

EJECT PAGE

TITL

LIST

UNL

PAGE

PAGE causes the assembler to continue the source program listing on a new page. The PAGE direc
tive is not printed in the source listing, but the line counter increments.

Syntax: 1 < label> I PAGE I < comment> I

INITIALIZE WORD DATA

DATA places one or more values in one or more successive words of memory.

Syntax: [< label> I DATA <exp>l.<exp» [< comment>)

INITIALIZE TEXT TEXT

TEXT places one or more characters in successive words of memory.

Syntax: [< label> I TEXT 1-)' <string>' [<comment>)

DEFINE ASSEMBLY-TIME CONSTANT EQU

EQU assigns a value to a symbol.

Syntax: <label> EQU <exp> 1 < comment»

EXTERNAL DEFINITION DEF

DEF makes one or more symbols available to other programs for reference.

Syntax: 1 < label» DEF < symbol> I. < symbol>) 1 < comment> I

EXTERNAL REFERENCE REF

REF provides access to one or more symbols defined in other programs.

Syntax: [<label» REF < symbol> [, < symbol>) 1 < comment>)

SECONDARY EXTERNAL REFERENCE SREF

SREF provides access to one or more symbols defined in other programs.

Syntax: 1 < label» SREF < symbol> I, < symbol>) 1 < comment>)

FORCE LOAD LOAD

LOAD is similar to REF, but the symbol does not need to be used in the module containing the LOAD.
The symbol used in LOAD must be defined in some other module. LOADs are used with SREFs.

Syntax: 1 < label> I LOAD < symbol> I, < symbol>) 1 < comment>)

PROGRAM END END

END terminates the assembly. The last source statement of a program is the END directive.

Syntax: I <label» END [<symbol» [< comment>)

COPY SOURCE FILE COpy

COPY changes the source input for the assembler.

Syntax: 1 < label» COpy <file name> I < comment>)

DEFINE MACRO LIBRARY MUB

MLIS provides the name of a library containing macro definitions.

Syntax: I < label>) MLIS , < pathname > ' [<comment»

4

TMS32010
DIGITAL SIGNAL PROCESSOR
Programmer's Reference Card

ASCII REFERENCE TABLE
00 10 20 30 40 50 60 70

00 NUL OLE SP 0 @ P \ P

01 SOH DCl ! 1 A 0 a q

02 STX DC2 " 2 B R b r

03 ETX DC3 # 3 C S c s

04 EOT DC4 $ 4 0 T d t

05 ENO NAK % 5 E U e u

06 ACK SYN & 6 F V f v

07 BEL ETB 7 G W 9 w

OS BS CAN (8 H X h x

09 HT EM) 9 I Y i y

OA LF SUB . : J Z j z

OB VT ESC + ; K [k I
OC FF FS < L \ I I

00 CR GS - = M I m I
OE SO RS > N 1\ n -
OF SI US / ? 0 - 0 DEL

HEX-DECIMAL TABLE
HEX DEC HEX DEC HEX DEC HEX DEC

0000 0 000 0 00 0 0 0
1000 4.096 100 256 10 16 1 1
2000 8.192 200 512 20 32 2 2
3000 12,288 300 768 30 48 3 3
4000 16.384 400 1.024 40 64 4 4
5000 20.4BO 500 1.280 50 80 5 5
6000 24.576 600 1.536 60 96 6 6
7000 28.672 700 1.792 70 112 7 7
8000 32.766 BOO 2.048 80 128 8 8
9000 36.864 900 2.304 90 144 9 9
AOOO 40.960 AOO 2.560 AO 160 A 10
BOOO 45.066 BOO 2.816 BO 176 B 11
COOO 49.152 COO 3.072 -cO-- 192 C 12
0000 53.248 000 3.328 DO 208 0 13
EOOO 57.344 EOO _ 3.584 EO 224 E 14
FOOO 61.440 'FOO 3.840 FO 240 F 15

RTC HOTLINE NUMBERS

For help with the TMS32010, call the TI Regional Technology
Center nearest you. The centers are staffed with applications
engineers ready to answer all your questions.

Atlanta
Boston
Chicago
Dallas
Northern California
Southern California

404/452-4686
617/890-4271
312/228-6008
214/680-5096
408/980-0305
714/660-8164

TEXAS
INSTRUMENTS

1

SYMBOLS FOR INSTRUCTION SET SUMMARY

SYMBOL MEANING

D Data memory address field
I Addressing mode bit
K Immediate operand field
PA 3·bit port address field (PAO through PA7 are predefined assembler symbols

equal to 0 through 7, respectively)
R l-bit operand field specifying auxiliary resister
S 4·bit left·shift code
X 3·bit accumulator left·shift field

INSTRUCTION SET SUMMARY
MNEMONIC DESCRIPTION NO. NO. OPCODE

INSTRUCTION REGISTER

ABS Absolute value of
accumulator

ADD Add to accumulator
with shift

ADDH Add to high·order
accumulator bits

ADDS Add to accumulator
with no sign extension

AND AND with accumulator
APAC Add P Register to

accumulator
Branch unconditionally

BANZ Branch on auxiliary
resister not zero

BGEZ Branch if accumulator
;;'0

BGZ Branch if accumulator
>0

BIOZ Branch on iiTO = 0

BLEZ Branch if accumulator
';0

BlZ Branch if accumulator
<0

BNZ Branch if accumulator
+0

BV

BZ

Branch on overflow

Branch if accumulator
=0

CALA Call subroutine from
accumulator

CALL Call subroutine
immediately

01 NT Disable interrupt
DMOV Copy contents of data

memory location into
next location

EI NT Enable interrupt
IN Input data from port
LAC Load accumulator

with shift
LACK Load accumulator

immediate
LAR Load auxiliary

register
LARK Load auxiliary

register immediate
LARP Load auxiliary

register pointer
immediate

LOP Load data memory
page pointer

LDPK Load data memory
page pointer immediate

LST Load status register
L T Load T Register
LTA LTAcombines LT and

APAC into one instruc
tion

LTD LTD combines L T,
APAC, and DMOV into
one instruction

MAR Modify auxiliary
register and pointer

MPY Multiply with T
Register; store product
in P Register

MPYK Multiply T Register
with immediate oper
and; store product in
P Register

NOP No operation
OR OR with accumulator
OUT Output data to port
PAC Load accumulator from

P Regi.ster
POP Pop stack to

accumulator
PUSH Push stack from

accumulator
RET Return from sub

routine
ROVM Reset overflow mode
SACH Store high-order

accumulator bits with
shift

SACL Store low·order
accumulator bits

SAR Store auxiliary
register

SOVM Set overflow mode
SPAC Subtract P Register

from accumulator
SST Store status register
SUB Subtract from

accumulator with
shift

CYCLES WORDS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0111111110001000

o 0 0 0 ~S~ I ~D~

o 1 1 0 () 0 0 0 I ~D~

o 1 1 0 0 0 0 1 I ~D~

~D~
o 0 0 1 1 1 1

100100000000
~ BRANCH ADDRESS ~

010000000000
~ BRANCH ADDRESS ~

110100000000
~ BRANCH ADDRESS ~

110000000000
~ BRANCH ADDRESS ~

011000000000
~ BRANCH ADDRESS ~

101100000000
~BRANCH ADDRESS ~

101000000000
~ BRANCH ADDRESS ~

111000000000
~ BRANCH ADDRESS ~

010100000000
~ BRANCH ADDRESS ~

111100000000
~ BRANCH ADDRESS ~

0111111110001100

100000000000
~ BRANCH ADDRESS ~

1 1 1 1
o ..,.PA.".
""S~

0000001
~D-

0000010
~D_
~D_

0111111 0 ~K_

0011100 R I ~D_

0111000R~K-

011010001000000K

011011111~D-

011011100000000K

~D_

~D
~'D-

011010111~D-

011010001~D-

011011011~D-

1 0 0 ~E-----------

0000000
~D
~D
o 0 0 1 1 1 0

o 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1

0111111110011100

0111111110001101

111000010
..,.X.". ~-

010100001~D_

0011000RI~D_

o 0 0 0 1 1
001 000

(Continued)

2

INSTRUCTION SET SUMMARY (CONCLUDED)
MNEMONIC DESCRIPTION NO, NO. OPCODE

CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

SUBC Conditional subtract 1 1 0 1 1 0 () 1 0 0 I ~ 0_
(for divide)

SUBH Subtract from high· 1 1 0 1 1 0 0 0 1 0 I ~ D~
order accumulator bits

SUBS Subtract from accumu· 1 1 0 1 1 0 0 0 1 1 I ~ D~
lator with no sign
extension

TBLR Table read from 3 1 0 1 1 0 0 1 1 1 I ~ D~
program memory to
data RAM

TBLW Table write from 3 1 0 1 1 1 1 1 () 1 I ~ D~
data RAM to program
memory

XOR Exclusive OR with 1 1 0 1 1 1 1 0 0 0 I ~ D~
accumulator

ZAC Zero accumulator 1 1 0 1 1 1 1 1 ~ 1 1 0 0 0 1 0 0 1
ZALH Zero accumulator and 1 1 0 1 1 0 0 1 0 1 I ~ D~

load high·order bits
ZALS Zero accumulator and 1 1 0 1 1 0 0 1 1 0 I <E--- D~

load low,order bits
with no sign extension

CROSS-ASSEMBLER DIRECTIVES

ABSOLUTE ORIGIN AORG

AORG places a value in the location counter and defines the succeeding locations as absolute.

Syntax: [< label>] AORG [<wd·exp» [< comment>)

RELOCATABLE ORIGIN RORG

RORG places a value in the location counter and defines the succeeding locations as program relocatable.

Syntax: [< label» RORG [<exp>] I < comment>)

DUMMY ORIGIN DORG

DORG places a value in the location counter and defines the succeeding locations as a dummy sec
tion. No object code is generated in a dummy section.

Syntax: [< label» DORG <exp> [< comment>)

BLOCK STARTING WITH SYMBOL BSS

BSS first assigns the label, if present, and then advances the location counter by the value of the
expression.

Syntax: [< label>) BSS <wd-exp> I <comment»

BLOCK ENDING WITH SYMBOL BES

BES first advances the location counter by the 'value of the expression and then assigns the label,
if present.

Syntax: [< label» BES <wd·exp> [< comment> I

DATA SEGMENT DSEG

DSEG places a value in the location counter and defines succeeding locations as data relocatable.

Syntax: [<label» OSEG [< comment>)

DATA SEGMENT END DEND

DENO terminates a block of data·relocatable code by placing a value in the location counter and defining
succeeding locations as program·relocatable.

Syntax: [< label» DENO [< comment>)

COMMON SEGMENT CSEG

GSEG places a value in the location counter and defines succeeding locations as common-relocatable
(Le., relocatable with respect to a common segment).

Syntax: [< label» GSEG [' <string> [< comment> II

COMMON SEGMENT END CEND

GEND terminates the definition of a block of common·relocatable code by placing a value in the loca·
tion counter and defining succeeding locations as program·relocatable.

Syntax: [< label>) GENO [<comment»

PROGRAM SEGMENT PSEG

PSEG places a value in the location counter and defines succeeding locations as program-relocatable.

Syntax: [< label» PSEG [< comment>)

PROGRAM SEGMENT END PEND

PEND places a value in the location counter and defines succeeding locations as program-relocatable.
(Since PEND properly appears only in program·relocatable code, the relocation type of succeeding
locations remains unchanged.)

Syntax: [< label» PEND [< comment>)

OUTPUT OPTIONS OPTION

OPTION selects several options for the assembler listing output.

Syntax: [< label>) OPTION < option-list> [< comment>)

PROGRAM IDENTIFIER lOT

lOT assigns a name to the object module produced.

Syntax: [< label> I lOT '<string>' [< comment> I

(Continued)

3

