
S3201'0
Evaluation
Module
User's Guide

• • TEXAS
INSTRUMENTS

SPRU005A

•

TMS32010 Evaluation Module
User's Guide

.,,
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

Tl warrants performance of its semiconductor products, including SNJ
and SMJ devices, to current specifications in accordance with Tl's
standard warranty. Testing and other quality control techniques are
utilized to the extent Tl deems such testing necessary to support this
warranty. Unless mandated by government requirements, specific
testing of all parameters of each device is not necessarily performed.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does Tl warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of Tl covering or relating to any combination, machine, or process in
which such semiconductor device might be or are used.

Copyright © 1985, Texas Instruments Incorporated

Contents

Section

1
1. 1
1. 1.1
1.1.2
1.1.3
1.2
1.3

Introduction
Description .. .
Functional Overview .. .
Operating System Firmware .. .
EVM Board Configuration .. .
Other Applicable Documents .. .
Customer Assistance

Page

1-1
1-1
1-2
1-2
1-2
1-3
1-3

2 Installation and Operation 2-1
2. 1 Introduction . 2-1
2.2 Installation . 2-2
2.2.1 Power Supply . 2-3
2.2.2 Terminal, Cables, and Tape Recorder . 2-3
2.2.3 1/0 Connections . 2-3
2.3 Operation . 2-6
2.3.1 EVM Memory . 2-6
2.3.2 The RESET Switch . 2-7
2.3.3 Keyboard Entry Aids (Special Function Keys) . 2-8
2.3.4 Command Concatenation (STRINGS and CHAINS) . 2-10
2.3. 5 Input/Output Features . 2-11
2.3.6 Transparency Mode Support . 2-13
2.3. 7 Terminal Emulation Support . 2-16
2.3.8 Dual EVM Master/Slave Operation . 2-17
2.3.9 User-Changeable Functions . 2-21
2.3.10 Monitor Operation . 2-27

3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.4
3.5
3.5.1
3.5.2

Debug Monitor Commands
Introduction .. .
Monitor Conventions and Formats
Register Definition
Numerical Data
Display/Modify Procedures
Command Parameters
Fill/f=ind Commands ASCII Parameter Library
Monitor Commands
Display/Modify Commands
Display/Modify Register Set Commands
Display/Modify Memory Commands
Single-Step Commands .. .
Breakpoint Commands .. .
Trace Commands
Display/Modify Baud Rate Commands
Miscellaneous Monitor Commands
Monitor Command Definitions
Display Menu Commands .. .
Monitor Program System Access Commands
Format
Command Menu

3-1
3-1
3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-6
3-8
3-8
3-9
3-9
3-11
3-12
3-75
3-76
3-77
3-77

3. 5.3 Monitor Program System Access Commands . • . . . 3-77
3.6 Monitor Program Error Messages . 3-79

4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.3
4.3.1
4.3.2
4.4
4.5

5
5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.4
5.4.1
5.4.2
5.4.3

6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.4

7
7.1
7.2
7.3

8
8.1
8.1.1
8.1.2
8.1.3
8.2
8.3
8.4
8.5

9
9.1

ii

The Assembler and Reverse Assembler
Introduction .. -· .·
.Assembler Execution•... · .
.Input Port Designation .. .
Output Port Designation
Assembling Files from a Host System•.
Assembling Files from Audio Tape•........
Concatenation of Audio Tape Files
The Line-by-Line Assembler (LBLA)
The Patch Assembler (PASM)
Assembler Conventions and Formats
Constants
Assembler Directives
Assembler Errors .. .
The Reverse Assembler (RASM)

The EVM Text Editor
Introduction ...•.•.
Procedures and Formats
The EDIT Command .. .
The Text Editor Banner .. .
Text Editor Memory
Text Editor Commands .. .
Entering Text Into RAM .. .
Text Editor Error Messages
INPUT FULL Error Message
RAM FULL Error Message .. .
LINE NUMBER ERROR Error Message

The TMS2764 PROM Utility
Introduction .. .
On-Board Power Supply
EPROM Programming Procedure
Programming a Byte-Wide EPROM with Word-Wide RAM
PROM Utility Command Descriptions
System Access from PROM Utility Commands
PROM Utility Error Messages .. .

In-Circuit Emulation
Introduction ..•
Connecting an External Clock to the EVM
Limita_tions

The Audio Tape System
Introduction ..•
Using the <ESC> Key and RESET Switch
The TAPE ERROR Message
The Tape System LED ...•
Saving Files to Tape .. .
Reading Files ...•
The Audio Tape Directory .. .
The Motor Control Utility

EVM Hardware Functional Description
Introduction

4-1
4-1
4-1
4-2
4-2
4-3
4-5
4-5
4-5
4-6
4-8
4-8
4-8
4-11
4-12

5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-24
5-24
5-24
5-24

6-1
6-1
6-1
6-1
6-2
6-2
6-11
6-11

7-1
7-1
7-1
7-1

8-1
8-1
8-1
8-1
8-1
8-1
8-2
8-3
8-3

9-1
9-1

9.2 Memory . • 9-1
9.3 Program Execution and Breakpoint Logic . 9-2
9.4 Communication Ports . 9-3
9.5 EPROM Programmer . 9-3
9.6 Audio Cassette Interface • . 9-3
9. 7 Target Control . 9-4
9.8 Clock Control . 9-4

A Schematics A-1
B TMS32010 EVM Commands Summary B-1

iii

Illustrations

Figure Page

1-1 TMS32010 Evaluation Module 1-1
2-1 Stand-Alone Configuration of the EVM . 2-1
2-2 ·· EVM Configured to Use Host CPU as Mass Storage . 2-2
2-3 Correct Connection of Target Board To EVM . 2-6
2-4 EVM Memory Map . 2-7
2-5 Transparency Mode Configuration . 2-1 3
5-1 EVM Text Editor Memory Map . 5-2
8-1 Typical Audio Tape Data Block . 8-3
9-1 EVM Memory Map Configuration . 9-1
9-2 EVM CRU Address Map . 9-2

Tables

Table Page

2-1 Audio Tape Recorder to EVM Cable Connections . 2-5
2-2 EPROMSocket Addresses . 2-7
2-3 Keyboard Entry Aids (SpeciaJ Function Keys) . 2-9
2-4 Control Characters Reserved for EVM Use . 2-14
2-5 User-Changeable EVM Firmware Functions . 2-22
2-6 TMS9902 Asynchronous Communication Control Unit Format Controls 2-24
2-7 Single Control Characters in EPROM U 58 . 2-25
2-8 <ESC> Sequences . 2-26
2-9 Command Chain Library Locations . 2-27
3-1 Display/Modify Monitor Commands . 3-4
3-2 Display/Modify Register Set Commands . 3-5
3-3 Display/Modify Memory Commands . 3-6
3-4 Single-Step Commands . 3-8
3-5 Breakpoint Commands . 3-8
3-6 Trace Commands 3-9
3-7 Display/Modify Baud Rate Commands . 3-10
3-8 . Miscellaneous Monitor Commands · . 3-11
3-9 Display Menu Commands . 3-75
3-10 System Access Commands . 3-77
3-11 Monitor Program Error Messages . 3-79
4-1 Assembler Directives . 4-8
4-2 Assembler Error Codes . 4-12
4-3 Assembler Warning Codes . 4-12
5-1 EVM Text Editor Commands . 5-3
6-1 PROM Utility Commands . 6-2
6-2 PROM Utility Error Messages . 6-11
8-1 Tape System File Types . 8-1
9-1 EIA Connector Description . 9-3
9-2 Clock/OSC Switch Settings . 9-4

iv

1. INTRODUCTION
1 . 1 DESCRIPTION

The RTC/EVM320A, part number RTC/EVM320A-03, is a TMS32010 Digital Signal
Processor Evaluation Module, referred to in this manual as the EVM. It provides the abil
ity to develop and debug programs and test them prior to production release. Figure 1-1
shows the EVM.

EIA PORT 2

EIA PORT 1

EPROM
PROGRAMMING

SOCKET

MOTOR ST/SP

TMS9995 TMS320

Figure 1-1 . TMS32010 Evaluation Module

POWER
CONNECTOR

RESET
SWITCH

SW1

1-1

Introduction

This manual is organized so that the reader can easily become familiar with the opera
tion of the EVM. Detailed procedures for operating the EVM are specified, and include
power-up procedures, monitor operation, instruction set execution, programming, and
in-circuit emulation. Example operations are included to aid in understanding some of
the more complex procedures.

1. 1. 1 Functional Overview

The TMS32010 EVM is a single-board development system for the TMS32010 digital
signal processor. The EVM can stand alone as a development system, using the on
board full-feature text editor for the creation of TMS32010 assembly language text
files, and the audio cassette tape interface (with a limited directory and file search capa
bility) as a mass storage media. Or, the EVM can accept text files from a host CPU
through one of the two EIA ports. In either situation, the resident assembler will convert
the incoming text into executable code in just one pass by automatically resolving labels
after the first assembly pass is complete. This object code is stored in a 4K-word mem
ory space, allowing the utilization of the entire TMS32010 address space for develop
ing programs.

1. 1.2 Operating System Firmware

The EVM operating system firmware resides in EPROM and can be divided into four
main segments:

1) The debug monitor
2) The assembler/reverse assembler
3) The text editor
4) The TMS2764 PROM utility

(see Section 3)
(see Section 4)
(see Section 5)
(see Section 6)

The EVM contains two processors configured in a master-slave relationship. The
TMS9995 processor, functioning in the role of master, executes the operating firm
ware; the on-board TMS32010 is used to execute the user's code in real-time.

1. 1.3 EVM Board Configuration

1-2

The EVM firmware supports three ports for the operations of inputting and outputting
data (text and object code) for storage and/or display. Two of the ports conform to EIA
RS-232C specifications and are called Port 1 and Port 2. The third port, Port 3, is an
audio tape connection. Instructions for connecting devices to the ports are contained in
Section 2. The ports function as follows:

Port 1 : User terminal
Port 2: Host CPU uplink/donwlink or line printer connection
Port 3: Audio tape

The EVM supports baud rates of 110, 300, 600, 1200, 2400, 4800, 9600, and 19200.

The baud rate of Port 1 (terminal port) is set automatically at power-up by pressing the
carriage return <CR> on the terminal after toggling the RESET switch on the EVM. This
feature is called auto baud. The baud rate of Port 2 (up/down link to host) defaults to
9600 baud at RESET. The baud rates of both ports are changeable with monitor com
mands. (see BAUD1 and BAUD2 commands, Section 3.)

When the EVM is used in conjunction with a host system, the transparency mode pro
vides a flexible means of both editing and transferring text files from the host system to
the EVM assembler, using only the terminal connected to the EVM.

The EVM is equipped with a 40-pin emulation cable for connection to a target system.
The on-board TMS32010 can be clocked internally at 20 MHz (default), or externally.
The user can also select between on-board or external target memory (see the I NIT com
mand).

Introduction

1.2 OTHER APPLICABLE DOCUMENTS

Other documents which may be helpful when operating the EVM include:

• TMS32010 USER'S GUIDE, part number SPRU001A

• TMS32010 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE, part number
SPRU002B

• Tektronix Development System User's Guide

1.3 CUSTOMER ASSISTANCE

For help in using the TMS32010 EVM Board, call the Tl Regional Technology Center
nearest you. The centers are staffed with applications engineers ready to answer your
questions.

ATLANTA
BOSTON
CHICAGO
DALLAS
NORTHERN CALIFORNIA
SOUTHERN CALIFORNIA

(404) 662-7945
(617) 890-6671
(312) 640-2909
(214) 680-5066
(408) 748-2220
(714) 660-8140

1-3

2. INSTALLATION AND OPERATION
2. 1 INTRODUCTION

This section details the procedures for setting up the TMS32010 EVM for operation.
Figures 2-1 and 2-2 illustrate the configurations for stand-alone operation and for con
nection with a host computer in order to use the host CPU's mass storage.

CRT! OR
743

LINE
PRINTER

AUDIO
TAPE

...---- RECODER

FIGURE 2-1 - STAND-ALONE CONFIGURATION OF THE EVM

2-1

INSTALLATION AND OPERATION

CRT,...---.
OR

TM990/518
----POWER

SUPPLY

743

. . . ·poo ·~ .

il~:lf-TI·1 IT·~ .. ~~~-~···
•• ~ D :. .. - u·~u·oDnuU·~uo Un. m
~ff: rr-]-]-.[~IT- TI- TI-]i.TI- n-n-0,
~~o- n- IT-vIT•n- n- TI- n- u~;n~
" -- rr-]- rr- rr- n- n- o n u o u n-~ ... -. ._

--- ... - - ... o'o ifJ.

FIGURE 2-2 - EVM CONFIGURED TO USE HOST CPU AS MASS STORAGE
I

' ' 2.-2 INSTALLATION I
)

2-2

The following paragraphs describe connections and procedures for setting up the EVM
board. The basic equipment required, along with appropriate options, is also explained.

INSTALLATION AND OPERATION

2.2. 1 Power Supply

The power supply must be UL approved, with current limitations on all outputs. A + 5
volt and a + /-12 volt power supply capable of well-regulated and noise-free output is
recommended. Additionally, the power supply should have a minimum current capabil
ity of + 5 volt~ at 3 amps, -12 volts at 0. 1 amps, and + 12 volts at 0. 1 amps. An addi
tional connector (P2) is provided for daisy chain power connection to a target system.
AMP-type connectors 1-480702-0 join to Pins Pl and P2 (pins are 350550-1). The
power connectors are wired as follows:

P1/P2 PIN: 2 3 4

GND +5V -12V + 12V

An on-board chopper circuit produces + 21 V from + 12 V for use during EPROM pro
gramming operations.

2.2.2 Terminal, Cables, and Tape Recorder

Any standard RS-232C-compatible terminal with a 25-pin RS-232C male plug (type
DB25P) will work. For using the audio tape facility, two standard mini-to-mini cables and
one sub-mini-to-sub-mini cable are required. The recommended tape recorder is a Radio
Shack CTR-41 or its equivalent.

2.2.3 1/0 Connections

The EVM has two EIA RS-232C port connections (labeled J 1 and J2 in Figure 1-1), and a
connection for attaching an audio tape recorder to be used as a mass storage device
(labeled J 3 in Figure 1-1).

The Evaluation Module does not support a 20mA current loop interface, but adapters
can be purchased from outside vendors to perform the conversion.

The EVM supports both hardware and software handshaking protocols for terminals op
erating in the full-duplex mode. Section 2. 7 details the EVM EIA hardware.

2. 2. 3. 1 Terminal Connection

The user's terminal is connected to the EVM at connector J 1, hereafter referred to
throughout the manual as Port 1 (see Figure 1-1).

2.2.3.2 Host/PrlnterConnectlon

The EVM uplink/downlink or line printer connection is made at connector J2, hereafter
referred to throughout the manual as Port 2 (see Figure 1-1) . The connections for host
and printer are illustrated in Figures 2-1 and 2-2.

2-3

INSTALLATION AND OPERATION

2-4

The following are examples of connections to both host computers and printing de-
vices:
(1 l TMS32010 EVM

(2)

(3)

(4)

PIN 2 RX
PIN 3 TX
PIN 8 DTR
PIN 7 GND
PIN 6 PDCD *
PIN 20DSR

* PDCD is + 12 V when EVM power is ON.

TMS32010 EVM

PIN 1 GND
PIN 2 RX
PIN 3 TX
PIN 7 GND
PIN 6 PDCD *
PIN 20DSR

* PDCD is + 12 V when EVM power is ON.

TMS32010 EVM

PIN 1 GND
PIN 3 TX
PIN 8 DTR
PIN 7 GND
PIN 6 PDCD *
PIN 20DSR

* PDCD is + 12 V when EVM power is ON.

TMS32010EVM

PIN 2 RX
PIN3 TX
PIN 8 DTR
PIN 7 GND
PIN 6 PDCD *
PIN 20DSR

* PDCD is + 12 V when EVM power is ON.

NOTE:

c

820KSR

PIN 2 TX
PIN 3 RX
PIN 6 DSR
PIN 7 GND
PIN 8 DCD
PIN 11 SCA (BUSY)
PIN4 RTS

PIN 5 CTS

743KSR

PIN 9 GND
PIN 13TX
PIN 12RX
PIN 1 GND
PIN 11 DCD
PIN 15DTR

810 LINE PRINTER

PIN 1 GND
PIN 3 RX
PIN 6 DTR
PIN 7 GND
PIN 8 DCD
PIN 11 DTR (BUSY)

990EIACARD

PIN 3 TX
PIN 2 RX
PIN 20DSR
PIN 7 GND
PIN 18DCD
PIN 8 RTS

The PDCD signal is pulled to + 12 volts through a 3.3 Kilohms resistor. 765-type
terminals may require a resistance value in the 1 Kilohm range.

INSTALLATION AND OPERATION

(5) TMS32010 EVM

PIN 2 RX
PIN 3 TX
PINS DTR
PIN 7 GND
PIN 20DSR

TMS32010 EVM

PIN 1 GND
PIN 2 RX
PIN 3 TX

**"DUMB" CRT has all handshaking disabled.

2.2.3.3 Audio TapeRecorderConnection

FS990/4

PIN3 TX
PIN 2 RX
PIN 20DSR
PIN 7 GND
PINS ATS

"DUMB" CRT * *

GND
TX
RX

When used in a stand-alone configuration (see Figure 2-1), the EVM supports one audio
tape recorder as a mass storage device. Connections to a tape recorder are detailed in
Table 2-1. The connection is illustrated in Figure 2-1.

TABLE 2-1 - AUDIO TAPE RECORDER TO EVM CABLE CONNECTIONS

FUNCTION EVMPLUG CASSETTE PLUG

Audio Tape Motor J3 Remote

Audio Data In J4(inl Ear (monitor)

Audio Data Out J5 (out) Microphone

Three connections are provided between the EVM and the tape recorder. Data-out and
data-in are accessed with standard dual-ended male mini cables. The motor control con
nection is made with a dual-ended male sub-mini cable. All cables are easily obtained
from local vendors.

The tape cassette motor control is provided by the EVM to insure proper tape starting
during dump of multiple-block operations, and this connection is required. The proper
setting of the volume control when reading data from the tape is between 6 and S on a
scale of 10. If the tape recorder has a tone control, it should be set to high.

2.2.3.4 TargetBoardConnection

A target board may be connected to the EVM by means of a 91605021 target connector
cable, as shown in Figure 2-3.

2-5

INSTALLATION AND OPERATION

TMS32010
r:::=f'4 •----- EVALUATION
c::::JIJ MODULE

-O·D!

IT ij ·u~ ~:
TI- rr-·~ =

RED STRIPE ON CABLE

c::::J c::::J uee

a·ar
PIN 21

FIGURE 2-3 - CORRECT CONNECTION OF TARGET BOARD TO EVM

CAUTION

The target connector cable MUST be plugged into both the TMS32010 EVM and
the target system with Pin 1 connected to Pin 1, or damage may result. Turn the
power off when plugging or unplugging the connector cable.

2.3 OPERATION

The following paragraphs describe various functional features of the EVM board.

2.3. 1 EVM Memory

2-6

EVM memory is divided into three main parts: operating system EPROM, operating sys
tem RAM, and user RAM. The EVM memory is discussed in Section 9.2. The memory
map is illustrated in Figure 2-3.

INSTALLATION AND OPERATION

2.3.1.1 RAM

TMS9995 INTERNAL RAM

BREAKPOINT RAM

DUAL PORT USER RAM

SYSTEM RAM

EVM FIRMWARE (EPROM)

EVM FIRMWARE (EPROM)

EVM FIRMWARE (EPROM)

EVM FIRMWARE (EPROM)

UNUSED

>FOOO->FOFB

>COOO - >DFFF

>AOOO - >BFFF

>8000 - >SFFF

>6000 - > 7FFF

>4000 - >SFFF

>2000 - >3FFF

>0000 - > 1 FFF

FIGURE 2-4 - EVM MEMORY MAP

The TMS32010 can address 4K words of memory. Four RAM chips (U46-U49) are des
ignated for on-board RAM. Operating system RAM is contained in one BK x 8 RAM chip
(U54).

2.3.1.2 EPROM

The EVM firmware is contained in four TMS2764 EPROMs on the board. The socket
addresses are illustrated in Table 2-2, and are addressable only by the EVM host proces
sor (a TMS9995).

TABLE 2-2 - EPROM SOCKET ADDRESSES

START STOP

CHIP ADDRESS ADDRESS

U58 >0000 >1FFF

U57 >2000 >3FFF

U56 >4000 >SFFF

U55 >6000 >7FFF

2.3.2 The RESET Switch

The RESET switch (SW 1) is located at the upper right corner of the EVM board and pro
vides the source of the RESET pulse that initiates the EVM operation and provides a
restart for the EVM software at any time. Because of the auto-baud feature of the termi
nal at Port 1, the user must press the carriage return on the terminal after performing
RESET in order to initiate the EVM operating system. If the EVM initializes properly, the
RESET banner will appear as follows:

2-7

INSTALLATION AND OPERATION

*** TMS32010 EVM OPERATING SYSTEM ***
REVISION 1.X

"HELP" MONITOR COMMANDS

?

The question mark is the EVM monitor prompt. For baud rates less than or equal to 1200
baud, the RESET banner consists of the revision level, monitor banner, and HELP prompt
only. For baud rates greater than 1200 baud (up to 19200 baud), the RESET banner in
cludes initialization messages for breakpoints, event counter, trace, clock, and program
memory in addition to the monitor menu. The monitor menu is available at any baud rate
at anytime (see Display monitor Menu Command, Section 3.2.4).

The EVM senses whether power has been cycled between RESETs. If power has not
been cycled and/or the reset is not a "warm" RESET as described in Section 2.3. 10, the
breakpoints, event count, and trace locations are cleared and the program memory/
clock sources are setto internal. If power has been cycled, the following additional func
tions are performed:

• The text editor is initialized

• The assembler table is reset

• Terminal tabs are reset

• All TMS32010 registers are zeroed

If the user wants to perform a power cycle RESET without actually cycling power, the
monitor RESET command is provided. For example:

?RESET
ARE YOU SURE? <ND> Y
ENTER <CR>

CRESET Banner]

Port 2 defaults at RESET to 9600 baud. The default is changeable (see User-Changeable
Functions, Section 2.3.9).

If the EVM does not initialize properly, check that the terminal is properly connected and
that power is properly applied.

2.3.3 Keyboard Entry Aids (Special Function Keys)

2-8

The EVM supports a flexible set of character entry aids (special function keys) which
permit editing of the current input line prior to entering the data (with a carriage return).
They are modeled after Lear/Siegler, Adds, Televideo, and Hazeltine dedicated keys.
VT52 <ESC> sequences are also supported (see Section 2.3.9.3.2). These entry aids
allow editing of the current input line prior to entering a <CR>. Spare locations are pro
vided in the monitor EPROM to expand both the single control character set and any
<ESC> sequences (see User-Changeable Functions, Section 2.3.9). Table 2-3 lists
these aids (function keys) and their equivalent control characters. The keyboard entry
aids are also summarized in Appendix B.

INSTALLATION AND OPERATION

TABLE 2-3 - KEYBOARD ENTRY AIDS (SPECIAL FUNCTION KEYS)

KEY/KEYSt FUNCTION

ESC Delete Line/Create New Line

RUB/DEL Delete Last Character on the Line

CNTL/N Insert a Character

CNTL/D Delete a Character

CNTL/F Move Cursor to the Right (-->I
CNTL/l Move Cursor to the Right

CNTL/P Move Cursor to the Right

CNTL/H Move Cursor to the LEFT l<--l
CNTL Redisplay Line

CNTL/A Cursor Home

CNTL/I Cursor Home

ESC/CNTL/R Cursor Home

CNTL/E Move Cursor to End of Text

CNTL/X Delete All Characters on Line

CNTL/Y Delete to End of Line from Cursor

CNTL/I Tab Right (Tab)

ESC/I Tab Left (Back Tab)

t In the case of multiple keys, press simultaneously.

With baud rates from 110 to 1200, the insert (CNTL/N) and delete (CNTL/D) functions
will accept a character from 1 to 9 after entry, redisplay the altered line on the next line
with the insertion, or deletion of the specified number of characters and the cursor at the
original position. With baud rates from 2400 to 19200,· these functions are instantane
ous and are performed on the same line.

With fast printing terminals, a "redump line" command (CNTL is provided. When this
command is executed at the prompt level with the input buffer empty, it will alternately
display the previously executed command STRING or the previously executed CHAIN.
For example:

? C CNTL l

?<ESC>C CNTL l

Display most recent command STRING

Display most recent CHAIN

Alternating <ESC> key entry will toggle the buffer displayed by the CNTL key. When
displayed, each buffer is ready for execution when a <CR> is entered. Each command/
STRING and/or CHAIN is held intact in a separate buffer until a new command/STRING
or CHAIN is executed. This allows the user to quit execution of a long chain, execute
some commands to alter the machine state, and then recall and execute the chain with
out having to retype it.

The EVM input software converts lower-case alpha characters to their upper-case
equivalents except during text entry in the text editor mode. Therefore, either lower- or
upper-case letters will be accepted as command inputs.

2-9

INSTALLATION AND OPERATION

2.3.4 Command Concatenation (STRINGS And CHAINS)

At the command entry level during EVM activity, it is legal to fill the input buffer with
characters that will satisfy a command, thereby satisfying a command on one line. This
is called a command STRING. Commands in a string are separated by a semicolon(;)
which acts as a <CR> when the buffer is read. All command responses from the EVM
will be displayed. For example:

?PCcCR>

?

PC • 055 O,R<CR>
PC = 000 <CR>

or:

?PC O,R;cCR>
PC = 055
PC = 000

?

Note that the use of the "R" redisplay command provides display of the newly altered
program counter (the old PC is displayed before being changed to the value entered on
the command line). A semicolon(;) after the "R" terminates the subcommand, allowing
the carriage return <CR> to terminate the entire command string. Without the semico
lon, the command will halt after redisplaying the new PC value, waiting for input. The
semicolon after the last command in the string is optional, as are trailing spaces.

The only limitation on command strings is the length of the line buffer, 72 characters.
Occurrence of any error will terminate the concatenated command string. If a subcom
mand is included in the concatenated command string, an additional semicolon must be
included to terminate the subcommand. For example:

?CLEAR;PC 3,R;;STATE<CR>

will clear all TMS32010 locations, load the program counter with 3, then display the
TMS32010 register set. While it was executing, the normal EVM responses to all inputs
will be printed on the monitor.

Another example:

?PRDM;READ;QUIT;PC O,R;;RUH<CR>

In this case, the command string will enter the PROM utility, read the EPROM into RAM,
quit the PROM utility, set the program counter to zero, and execute the program without
breakpoints.

2.3.4.1 Chain Terminators

2-10

When using command strings, four terminators are provided to execute the strings
either a fixed number of times and/or until entry of <ESC> from the terminal. When one
of these terminators is used as the last character in a command or string, it is called a
CHAIN. During execution of a chain, display of prompts is suppressed, allowing more
efficient use of the terminal screen and making the display easier to read. The four termi
nators are:

*
%
!

Execute continuously and scroll down
Execute continuously and scroll up
Execute once and scroll up
Execute continuously with output disabled

INSTALLATION AND OPERATION

The scroll down terminator (*) continuously executes the chain and displays each result
on a new line. During execution, entry of a <SP> will start/stop the display after one
complete execution of the chain, and entry of <ESC> will terminate execution.

The two scroll up terminators (% and !) continuously execute the chain, but after one
execution, print the number of cursor-up characters to the screen equal to the number of
line feeds in the display, and then continue the execution. The effect is to freeze the
display. the display must not have more lines than are on the terminal screen.

The cursor-up character used by the EVM may be changed by the user (see Section
2.3.9). If the terminal used accepts a different character for cursor-up, the user must
make a new EPROM with the correct character or character sequence (up to three char
acters long) for use with that terminal (see Section 6).

When using the % terminator, entry of a <SP> will start/stop the display after one com
plete execution. When using the! terminator, a <SP> entry is required to perform one
execution of the chain, and entry of <ESC> will terminate execution.

The output off terminator(#) will execute the chain with all output disabled until entry of
<ESC>.

Several monitor commands aid in the use of command chains. The first is the Chain Li
brary command (CUB). The format is:

?CLIB <output port>

where the output port is 1 (default) or 2. This allows a listing of the library functions. The
library lists six preprogrammed chains that can be loaded into the chain buffer by typing
the command:

Cx

where 0 < = x < = 9. The chain buffer is then displayed for execution by entering:

?cESC>C CHTL< l

The chain library display also lists the four types of terminators and displays the charac
ter(s) currently being used for cursor up. Chains are not limited to those contained in the
library. Chains of the user's creation can also be entered at any time by the user from the
terminal and will be saved in the chain buffer when executed. The addition of chains of
the user's creation in those slots designated as UNUSED in the library display is dis
cussed in Section 2.3.9. Execution of a Cx command for an unused slot will leave the
previous contents of the chain buffer intact.

2.3.4.2 Chain Counts

To limit the duration of execution of a chain, a count can be entered with the C command
as follows:

?C
COUNT CO> XXXXX 0 <= xxxxx <= 65535

The count is a decimal number with the above range. Entry of 0 (default at RESET) yields
infinite execution. If a non-zero number is entered, the count remaining is displayed af
ter one execution of the chain (except when the #terminator which suppresses output
is used). If the count is 0 (infinite), it is not displayed. When the count expires, chain
execution terminates but the count is left intact for future chain execution and is used as
the default for the next execution of the C command.

2.3.5 Input/Output Features

The following paragraphs describe some of the EVM 1/0 features applicable to Ports 1
and 2, the EIA RS-232C communication links.

2-11

INSTALLATION AND OPERATION

2.3.5.1 EVMCharacterFormat

The EVM character format for both ports is:

• 1 start bit
• 7 data bits
• 2 stop bits
• no parity bit

The character format is changeable for either port (see Table 2-6).

2.3.5.2 EIA Communications Protocol

Four commands are provided to enable and disable DEC and Tektronix software hand
shaking protocols. At cold RESET, both protocols are disabled. Hardware handshaking
is always enabled.

Software handshake characters are transmitted out the download port during buffttr in
put. The commands function as follows:

XON: Enable transmission of XON (DC 1, >11)
Enable transmission of XOFF (DC3, >13)

XOFF: Disable XON/XOFF transmission

ACK: Enable transmission of ACK (O<CR>)

NACK: Disable transmission of ACK (NOTE: the EVM never
transmits a NACK (7<CR>)

To enable software handshaking with any system except Tektronix, enter: XON<CR>. If
for some reason it should be desired to disconnect the software handshaking facility,
enter: XOFF<CR>. To enable software handshaking with a Tektronix system, enter:
ACK<CR>; to disable, enter: NACK<CR>. If both types of software handshaking are
enabled, the XON is transmitted before the ACK.

During uplink, afterthe transmission of each character, the EVM will check for reception
of an XOFF character. If an XOFF character is received, the EVM will wait for an XON
character before resuming transmission. During downlink, the EVM will transmit an
XON prior to starting to fill the downlink buffer, and will transmit an XOFF while receiv
ing the 480th character in the 51 2-byte buffer. Any additional characters are then re
ceived before a character timer determines that transmission has stopped and the
buffer is unloaded internally. The value used for XON is DC 1, and for XOFF, DC3; these
values are changeable (see Section 2.3.9).

2. 3. 5. 3 Fixed/Variable Length Records

The EVM supports both fixed and variable length record formats during downlink. The
only constraint is that a variable length record transmission to the EVM must not be
greater than the current length of the fixed record setting. The default fixed record
length at RESET is 82 characters; it is configurable from between 50 to 142 characters
inclusive. (see $DRL monitor command).

2. 3. 5.4 Hardware Handshaking

2-12

The EVM uses handshaking in transmitting and receiving data through Ports 1 and 2.
Handshaking is done on a character-by-character basis when interacting with a terminal
at Port 1. With 3-wire connections to dumb terminals, unused lines are self-satisfying.
During download from Ports 1 and 2, handshaking is done on a buffer-by-buffer basis,
512 bytes at a time.

INSTALLATION AND OPERATION

Handshaking begins with the EVM placing + 12 Von pin 8 of the selected port. the EVM
will then wait until pin 20 of the selected port rises above + 4 V (+ 4 V to + 12 V). There
is a twenty-second timeout when waiting for this signal from Port 2. The duration of the
timeout can be changed; see Section 2.3.9. Afterthe handshake signal is received, the
data is transmitted. The EVM will check the handshake line before each byte of data is
transmitted. The signal at pin 8 will go from 4 V to -1 2 V after character reception during
character handshaking, but will wait until 480 characters have been received during
buffer handshaking. At that time, any additional characters are received before a char
acter timer determines that transmission has stopped and unloads the buffer internally.
The EVM will pull all handshake input line to + 12 V through a 3.3 kohms resistor.

The EVM checks the handshake line before each byte of data is transmitted. If at any
time the DSR line is not satisfied, the EVM will wait in a loop until it is satisfied. If a
terminal without handshaking facility is being used, do not connect pin 20; the EVM will
pull the handshake line to + 12 V through a 2.2 K resistor.

2.3.6 Transparency Mode Support

Transparency mode provides a means of communication between a host system con
nected to the EVM at Port 2 and the EVM downlink software by allowing the user to log
on to a host CPU and the EVM from one terminal. Each time the toggle character is en
tered from the keyboard, transparency mode is toggled between monitor control and
transparency mode control, thereby switching the terminal between host and EVM op
erating systems. By using transparency mode, the EVM terminal is able to emulate a
host terminal at Port 2 of the EVM and stimulate the host to upload/download files to/
from the EVM. Figure 2-4 illustrates the transparency mode configuration.

0

TRANSPARENCY MODE
CHARCATER PATH

MONITOR
CHARACTER PATH

TMS32010
EVALUATION

MODULE

FIGURE 2-5 - TRANSPARENCY MODE CONFIGURATION

2-13

INSl'ALLATION ANO OPE~ATION

2.3. 6. 7 Display/Modify Toggle Character Command (COMM)

The transparency mode toggle defaults at power-on initialization to the CNTL/C charac
ter. If the host system uses this character extensively and the "PASS" command (dis
cussed in Section 2.3.6.2) does not allow for enough flexibility in transmitting this char
acter, the COMM command may be used to change the toggle character. Once the
toggle character is changed, only cycling the power to the EVM will cause the default to
be reloaded.

When using the COMM command, the ASCII value of the current toggle character is
displayed. Entry of the character is in ASCII and is achieved by simply typing in the char
acter at the terminal. If the character is reserved for use by the EVM (see Table 2-4), the
terminal will "beep" and wait for another input. If the character is accepted, it is redis
played. The COMM command is terminated by a carriage return. An example of how to
change the toggle character is:

?COMM
TOGGLE CHARACTER = CNTL/C C CNTL/U
TOGGLE CHARACTER = CNTL/U <CR>

In this example, the user entered CNTL/U, which was accepted and redisplayed on the
next monitor line. The user terminated the session with a carriage return.

Appendix B also includes a list of control characters with their ASCII values and notes
whether or not they are reserved by the EVM. Illegal toggle characters include the key
board entry aids listed in Tables 2-3 and 2-4.

TABLE 2-4 - CONTROL CHARACTERS RESERVED FOR EVM USE

KEYS FUNCTION

CNTL/[ESCAPE

CNTL/M CARRIAGE RETURN

CNTL/J CURSOR DOWN

CNTL/K CURSOR UP

CNTLN CURSOR DOWN

CNTL/Z CURSOR UP

2.3. 6. 2 Transmit Toggle Character to Port 2 Command (PASS)

2-14

Since the transparency mode toggle character is intercepted (and not transmitted), the
PASS command transmits the toggle character out of Port 2. This command is identical
to the P command in the text editor. The toggle character used in the following example
is the default (CNTL/C). To transmit the toggle character, the following sequence or
(equivalent) must be executed:

TRANSPARENCY MODE ACTIVE
CNTL/C l

MONITOR ACTIVE

? C CNTL/C l
C TRANSPARENCY MODE ACTIVE

INSTALLATION AND OPERATION

In the example above, notice that leaving the transparency mode caused the monitor
prompt(?) to be printed. Since the PASS command will only execute from the monitor
top level. it can be used as needed to log on to a host system before entering transpar
ency mode from within an active load command.

2.3. 6.3 Downloading in Transparency Mode

The following example demonstrates the download procedure while the EVM is in trans
parency mode. It is based on interaction between the EVM and a Texas Instruments 990
minicomputer. (The LPM command (Load Program Memory) is explained in Section
3.2.17)

? LPM 2
C CNTL/C
C <ESC>!
SYSTEM COMMAND INTERPRETER - PLEASE LOG IN

USER ID: VDT101
PASSWORD:

CST22l SF
SHOW FILE

FILE PATHNAME: DS01.TEST C CNTL/C l
14 IDT: TEST

?

The sequence shown above begins with the user entering the monitor command to load
program memory from Port 2. This means that the EVM is expecting object code to be
input from Port 2. After terminating the command line, the EVM will idle as it waits for
the input.

A CNTL/C is then entered and the monitor displays the new line. The EVM is now in
transparency mode and any characters (except CNTL/C) entered at the terminal key
board will be sent out from Port 2 to the host system. Likewise, any characters received
in this mode will be sent to the terminal and displayed. The baud rates of Ports 1 and 2 do
not have to be the same.

The next sequence, [<ESC>!], is the log-on character sequence for this particular com
mand interpreter. After logging on to the host, a command is executed on the host to
show a file on the "terminal" that the EVM has now become. After entering the
pathname, instead of entering a <CR> to terminate the command normally and show
the file to the terminal, the user should instead toggle out of the transparency mode.

In any instance, entry of the CNTL/C should be in place of the last <CR> before the dump
begins. This does two things: (1) sends a <CR> to the host to start the dump, and (2)
returns control to the current monitor command, in this case, "LPM 2".

Finally, download is initiated and the EVM responds by counting the number of blocks as
a way of monitoring the progress of the download.

The following examples are the command strings for the entry of the Load Machine
State command (Section 3.2.15), the assembler (Section 4), and the text editor (Sec
tion 5) via the transparency mode. After entry of the first C NTL/C, user response is iden
tical to the example above. Remember that the LPM command expects object file, while
the ASM and EDIT commands expect source files, and the LMS command expects ma
chine-state files.

2-15

INSTALLATION AND OPERATION

CD ?LMS 2
[CNTL/C l ...

C2> ?ASM 2 1
LINE NUMBERS? CH>
[CNTL/C l ...

C3> ?EDIT 2
LINE NUMBERS? CH>
[CNTL/C l ...

2.3.6.4 Uploading in Transparency Mode

The procedure for upload from the EVM to a host system is similar to the download pro
cedures described in the previous section. The example below describes an upload from
the EVM text editor (see Section 5) and assumes that the user has already logged on to
the system. The transparency mode toggle character used in the example is the default
CNTL/C.

*[CNTL/C

CST22lCC
COPY/CONCATENATE

INPUT ACCESS NAMECS>: ME
OUTPUT ACCESS NAME: .TEST.SOURCE

REPLACE?: NO/YES
MAXIMUM RECORD LENGTH: <CR>

[CNTL/C l

*QUIT 2

** TMS320 EVM MONITOR **

?

This example uses the Copy/Concatenate command. Input is specified as "ME" (the
EVM terminal), output is specified as the file name the user wants the text to be stored in
on the host system. The file is to be replaced if it already exists (this could be an older
version), and the record length is defaulted.

After execution of the CC command, CNTL/C is entered to toggle the mode, and the text
editor prompt (*) is displayed. the user simply has to quit the text editor to Port 2,
thereby dumping its contents to the host file.

2.3. 7 Terminal Emulation Support

2-16

The command strings for the assembler (ASM), the text editor (EDIT) entry, and the
Load Machine State (LMS) and Load Program Memory (LPM) commands allow for users
running terminal emulation software on a host computer connected to the EVM at Port
1 . This configuration allows the addition of a line printer at Port 2, while still supporting
upload/download capability with a host system supporting a mass storage device.
While downloading from Port 1 , reception of an <ESC> character will terminate the load
and return control to the monitor.

INSTALLATION AND OPERATION

The transparency mode toggle character can also be used to allow a line printer at Port 2
to function as a system line printer when using terminal emulation. By sending the tog
gle character to the EVM from the controlling keyboard, subsequent characters sent to
the EVM will be dumped by the EVM to Port 2. After the transmission is finished, send
ing the toggle character again will return normal control to the monitor.

2.3.8 Dual EVM Master/Slave Operation

The cable connection shown below is to connect Port 2 of a "master" EVM to the Port 1
(terminal) of a "slave" EVM and to control both (via the transparency mode described in
Section 2.3.6, and the terminal emulator mode described in Section 2.3. 7) using only
one terminal connected to Port 1 of the master EVM. The pin connections are:

TMS32010 EVM (Master)

Pin 2 RX
Pin 3 TX
Pin 8 DTR
Pin 7 GND
Pin 20DSR

TMS32010 EVM (Slave)

Pin 3 TX
Pin 2 RX
Pin 20DSR
Pin 7 GND
Pin 8 RTS

Complete functioning of the EVMs as host peripherals or in stand-alone modes is possi
ble. There are two primary uses for a master/slave configuration:

1) Use one EVM as a text storage media in stand-alone mode in order to use the other
EVM to assemble/execute the program without destroying the text file on the first
EVM.

2) Use the slave EVM as a second TMS32010 emulator in a dual-processor design.
This mode allows the download of object/text files from a host (connected at Port
2 of the slave) to the master, or the download of text/source from an audio tape
recorder connected to either the master or the slave EVM. In this mode, no medium
exists to start both EV Ms synchronously.

When using transparency mode on the master EVM to toggle the terminal between mas
ter and slave, the EVM prompts will be displayed each time a different EVM is accessed.
To allow the user to easily distinguish between the EVMs, a monitor command is pro
vided to append a user-selectable character to all EVM prompts, thus making all
prompts from one EVM distinguishable from the same prompts on the other EVM. The
command is:

?$JD <ID character>

Legal values for the ID character are letters, numbers, and all symbols. Entering more
than one character will use the first character entered. Defaulting the character (enter
ing a <CR> immediately after the command) will return the ID to its default value. The ID
character defaults at RESET to >OO. An ID with this value is not displayed with the
prompt or in all single EVM modes of operation.

2.3.8. 1 Initialization

The following sequence is required to initialize both EVMs prior to master/slave opera
tion. The master is initialized first, followed by the slave. (In all examples in this section,
the default transparency mode toggle character (CNTL/C) is used.)

2-17

INSTALLATION AND OPERATION

C Pre55 RESET on Ma5ter EVM J
C Pre55 RESET on Slave EVM J
<CR> From terminal autobaud5 master EVM

(Ma5ter EVM banner)

?$ID M<CR> Set ma5ter ID
[Optionally change Port 2

baud rate to 19200. 5ee
Section 2.3.9 to change
power-up default J

M?C CHTL/C J

<Slave RESET banner)

?$ID S<CR>
S? C CHTL/C
M?

Set 5lave ID
Return to ma5ter

After initialization, the ID values will remain intact until a power cycle RESET.

Just as entering CNTL/C from the terminal puts the master in transparency mode, use of
the PASS command on the master will put the slave in transparency mode. Execution of
a subsequent PASS command will toggle the slave back into monitor mode. Communi
cation between a host computer and the master EVM is accomplished by placing the
slave EVM in transparency mode and then entering transparency mode on the master
with a CNTL/C. Once that is done, the terminal is in communication with the host sys
tem, and download/upload between the master EVM and the host system is accom
plished as described.in Section 2. 7.

Communication between master and slave EVMs is simpler. In this mode, the slave is
treated as the "host", and all the examples in Section 2. 7 apply. In this mode, text, ob
ject code and machine states can be transferred between EV Ms.

2.3.8.2 A Complete Stand-Alone System

2-18

The optimal dual-EVM single emulator configuration uses the slave EVM for emulation
and the master EVM for text storage. This allows assembled source listings at Port 2 of
the slave. The configuration is as follows:

MASTER EVM: Port 1: Terminal

SLAVEEVM:

Port 2: Connected to slave EVM Port 1
Port 3: Audio Tape

Port 1: Connected to master EVM Port 2
Port 2: Line Printer (host optional)
Port 3: Audio Tape (optional)

In this configuration, text files can be loaded into the text edior on the master EVM either
from the host or from the audio tape connected to the master. If files are loaded from the
host, a line printer is then connected to slave Port 2 for assembled source listings. Text
can then be modified until ready for assembly. At assembly, the slave EVM must be set
up to accept source from its Port 2. For example:

INSTALLATION AND OPERATION

M•[CHTL/C l
S?ASM 1 2
LINE NUMBERS <HD> Y<CR>
C CHTL/C l
M•Q 2<CR>
M?C CHTL/C
S?

(Normal Debug Cycle)

S?C CHTL/C
M?EDIT<CR>

(text edior Banner)

M•

Leave master text edior
lnit slave assembler
Must have line numbers
Slave ready, return
Q master editor to 2
Assembly complete
... Go to slave to ...

... Debug

Debug complete
Return to master editor

Implement changes to text

Edit file and repeat

After assembly is complete, the user will have an assembled source listing that was gen
erated at Port 2 of the slave EVM and can execute the program on the slave EVM. If any
modifications need to be made to the program, the text file is still intact on the master
EVM. The process can be repeated indefinitely.

The line printer connected to the slave at Port 2 can also be used by the master to gener
ate hard copy of object code dumps and text editor contents. To generate a dump of
object code, the sequence is:

M?PASS
M?DPM 0 FFF 2
FORMAT? <HX><CR>
M?PASS

Enable slave transparency
Dump to printer through slave

Disable slave transparency

To generate a dump of text editor contents (executed from text editor), the sequence is:

M•PASS
M•Q 2
M?PASS

Enable slave transparency
Quit to printer
Disable slave transparency

2.3.8.3 The Slave EVM as a Companion Emulator

For designs employing two TMS32010 processors, each EVM in a master/slave config
uration can be configured as an emulator, either in the stand-alone mode (assembling
files from audio tape) or in the download mode. The cable connection is as follows:

MASTER EVM: Port 1: Terminal
Port 2: Connected to slave EVM Port 1
Port 3: Audio tape (stand-alone mode)

SLAVE EVM: Port 1: Connected to master EVM Port 2
Port 2: Host CPU (Printer optional)
Port 3: Audio tape (stand-alone mode)

With the use of transparency mode, the user alternately communicates with each EVM,
loading and dumping text and object, assembling programs into program memory, and
generally preparing each EVM to execute its own program.

2-19

INSTALLATION AND OPERATION

2-20

A major limitation in download mode is that the slave cannot be configured to directly
assemble a file from the host system. The file must pass through the slave and be as
sembled by the master. The object code is then transferred from .master to slave. Com
municating to the host system from the master through the slave is accomplished by the
following sequence (in this case, assembling):

,' '

M?PASS
M?ASM 2 1

Put slave in transparency'mode
Set up ·download on master

LINE NUMBERS? <HO> <CR>
. C CHTL/C l P·ut master in tram1parency mode

CHTL/C l
M?PASS

Execute download
Remove slave transparency

The sequence of transferring data (in this case, object code) from the master to the slave
is:

M?C CHTL/C
S?LPM 1
C CHTL/C l
M?SPM 0 FFF 2
M?

Enter slave
Set up slave load
Return to master
Set up master dump and execute
at 96+ baud <approx. 1 minute)

At execution time, the following sequence will start both EVMs executing as closely
together as possible. No mechanism exists to synchronously start both EV Ms executing
the user program. Another example: ·

M?

<Set master breakpoints, etc.)

M?EXC CHTL/C l
S?

Type master EX and enter slave

<Set slave breakpoints, etc.)

S?EXC CHTL/C

M?EX<CR>

Type slave EX and return to master,
(slave now executing)

EX on master reappears. Enter <CR>:
both EVMs executing

Once both EVMs are executing, the master must encounter a breakpoint or be RESET
before the status of the slave can be checked. When checking the slave, entry of C NTL/
C from the master prompt will cause either a slave prompt to be displayed (if a break
point has been encountered) or no display (if a breakpoint has not yet been encoun
tered.) If a breakpoint has been encountered on the slave, executing DB and PC
commands will display all the breakpoints and the program counter. The breakpoint
matching the PC was the one encountered. The string:

S?DB;PC;<CR>

will display the needed information.

INSTALLATION AND OPERATION

2.3. 8.4 Pseudo-Synchronous Emulation

The monitor commands $EC and $$EC (see Section 3) can be used together to control
the master and slave EVMs by allowing them to execute the same commands. Use of
the $$EC command is optional and requires a display at slave Port 2. If used, the $$EC
command is first entered on the slave, and provides a means of monitoring slave output
activity while Port 1 is communicating with the master. In this mode, output sent to the
terminal is also sent to Port 2. Input at Port 1 is also sent to Port 2.

The $EC command is then executed on the master. This command causes all subse
quent keyboard input to be sent out Port 2. Thus, at that point (until entry of $NEC on
both master and slave, which cancels the effect of both commands), commands exe
cuted by the master will also be sent to the slave for execution.

Commands executed directly on the slave in this way will not be executed by the mas
ter. Reentry of the toggle character will return terminal control to the maser, resuming
command echo to the slave. Command echo allows side-by-side single-stepping of pro
grams on both EV Ms, and also provides a means of displaying a breakpoint on the slave
if both EVMs receive an EX command. The user should note that whenever using either
the $EC or $$EC commands, the overall serial 1/0 performance is reduced to the baud
rate of the slowest EIA port.

2.3.9 User-Changeable Functions

The following paragraphs describe how various EVM features and functions may be al
tered by the user.

2.3.9. 7 EVMFirmwareFunctions

The automatic EVM firmware functions listed in Table 2-5 may be altered by the user to
remove them. This process requires that a new EPROM be created to replace the one in
socket U 58. The procedure is described following Table 2-5.

2-21

INSTALLATION AND OPERATION

TABLE 2-5 - USER-CHANGEABLE EVM FIRMWARE FUNCTIONS

CHANGE CHANGE

FUNCTION ADDRESS FROM TO

Delete Form Feed >0086 >OCOO >0000

Delete Terminal Bell >0088 >0700 >OOOO

Unused >008A

XON Character >008C >11

XOFF Character >008D >13

PORT 1 Character

Format >008E >42 See Table 2-6

PORT 2 Character

Format >008F >42 See Table 2-6

PORT 2 Baud Rate >0090 9600 110 (Error Default),

300, 600, 1200,

2400,4800,19200

Baud Rate Display >0092 1200 Baud rates equal to or

less than this de-

fault to minimal

display.

Cursor Left Sequence >0094to >0800to Up to 3 characters,

>0096 >0000 followed by a byte

>OO.

Cursor Up Sequence >0098to >OBOOto Up to 3 characters,

>009A >0000 followed by a byte

>OO.

Cursor Down Character >009C >OAOO One character in MSB.

Timeout Error Delay >009E >0019 1 =Approx .75seconds

XON/XOFF Disabled at >OOA2 >0000 >FFFF

at power up

ACK/NACK Disabled at >OOA4 >0000 >FFFF

at power up

Autoexecution after >OOA8 >FFFF >Max Delay

Reset

Transparency mode >OOAO >0300 New default

toggle character toggle char

Number of nulls >OOA6 Initial To nulls

transmitted Zero transmitted

after<CR>

2-22

INSTALLATION AND OPERATION

The procedure for creating a new EPROM is:

CAUTION

When creating a new EPROM, DO NOT ERASE the existing one until the procedure
described below is complete.

1) Move the contents of U 58 to RAM by entering:

?$MOVE 0 1FFF AOOO

2) Use the $MPM command to modify any locations desired. These locations will be
equivalent to the addresses in Table 2-5, except that the most significant address
nibble will now be: A.

3) Enter the PROM utility with:

?PROM

4) Place an EPROM in the programming socket and verify that it is erased by entering:

.VRFY
VERIFY COMPLETE CMe55age returned if EPROM i5 OK>

5) Program the EPROM (all parameters can be defaulted) by entering:

.PROG
PROGRAMMING COMPLETE
.QUIT
?

CMe55age returned)

6) Exchange EPROMs, retaining the old one.

2.3.9.2 Changing the Port Character Formats

The character formats for Ports 1 and 2, as described in Section 2.3. 5.1, may be al
tered. Refer to Table 2-6, which describes the TMS9902 Asynchronous Communica
tion Control units format control.

2-23
I

INSTALLATION AND OPERATION

TABLE 2-6 - TMS9902 ASYNCHRONOUS COMMUNICATION CONTROL UNIT
FORMAT CONTROLS

BITS

STOP BITS 1.5 2 1 1

BIT7 0 0 1 1

BIT6 0 1 0 1

PARITY NONE NONE EVEN ODD

BITS 0 0 1 1

BIT4 0 1 0 1

CLOCK DIVIDE (LEAVE AT ZERO)

BIT3 0: Divide clock by 3

1: Divide clock by 4

BIT2 Unused

BITS

CHARACTER 5 6 7 8

BIT1 0 0 1 1

BIT1 0 J 0 1

2.3.9.3 Adding terminal Control Characters

2-24

There are two control character tables stored in the U 58 EPROM, one for single charac
ters and one for <ESC> sequences. The <ESC> sequence table is interrogated if a char
acter is received within at least two character times of an <ESC> character. Adding en
tries to either table will allow the EVM to recognize the characters sent from dedicated
keys not already recognized and perform the designated function. These characters will
not be echoed to the terminal.

The only cursor characters sent to the terminal are cursor left and cursor up. These are
shown in Table 2-5. The process for changing them is described in Section 2.3.9. 1. Cur
sor down is controlled by a line feed character, and cursor right is accomplished by over
printing the contents of the line.

Any control characters added to the existing list of control characters recognized by the
EVM will automatically be included in the list of illegal characters for the COMM com
mand.

Changing Single Control Characters: The single control character table stored in EPROM
U 58 is in the form of:

DATA <Character in MSB?<OO in LSB>
DATA <Address of handler>

DATA 0

Table 2-7 shows each entry as a pair of data statements, the first with the character
(indicated with an *) in the MSB and 00 in the LSB. This is followed by the address of the
handler function that character is to perform. The table must end with a word of >0000.

INSTALLATION AND OPERATION

TABLE 2-7 - SINGLE CONTROL CHARACTERS IN EPROM U58

ADDRESS CONTENTS

* >OOA8 <CR>

>OOAA LINE TERMINATOR

* >OOAC RUBOUT

>OOAE DELETE CHARACTER AT END OF LINE

* >OOBO CNTL/N

>OOB2 INSERT CHARACTER(S)

* >OOB4 CNTL/D

>OOB6 DELETE CHARACTER(S)

* >OOB8 CNTL/F

>OOBA CURSOR RIGHT

* >OOBC CNTL/L

>OOBE CURSOR RIGHT

* >OOCO CNTL/P

>OOC2 CURSOR RIGHT

* >OOC4 CNTL/H

>OOC6 CURSOR LEFT

* >OOC8 CNTL

>OOCA REDUMPLINE

* >OOCC CNTL//\

>OOCE CURSOR HOME

* >OODO CNTL/A

>OOD2 CURSOR HOME

* >OOD4 CNTL/E

>OOD6 CURSOR TO END OF LINE

* >OOD8 CNTL/Y

>OODA DELETE TO END OF LINE

* >OODC CNTL/X

>OODE DELETE ALL OF LINE

* >OOEO <SP>

>OOE2 NEXT ENTRY COMMAND TERMINATOR

* >OOE4 CNTL/J, <LF>

>OOE6 NEXT ENTRY COMMAND TERMINATOR

* >OOE8 CNTL/K

>OOEA PREVIOUS ENTRY COMMAND TERMINATOR

* >OOEC CNTL/Z

>OOEE PREVIOUS ENTRY COMMAND TERMINATOR

* >OOFO CNTL/1

>OOF2 TAB RIGHT

* >OOF4 >0000 (Table Terminator)

>OOF6->0114 EXPANSION

When adding entries to the table, the new character is placed over the table terminator
(>0000), followed by the address of the routine for that character. The address must be
one of the handler addresses already in the table. The table terminator must then be put
after the new address. Space is provided for up to eight user-added character/handler
address pairs.

<ESC> Sequences: The second table stored in the U 58 EPROM is for storing the second
character in a two-character <ESC> sequence. This table is searched by the line buffer
controller after reception of an <ESC> character from the terminal. The handler ad-

2-25

INSTALLATION AND OPERATION

2-26

dresses used by this table are the same as those in the single control character table
described in the previous subsection. This table is actually a tree of compare and branch
instructions of the form:

CI Rx, <ch~racter>

JNE X1
B @HANDLER

·x1 c 1. ..

The addresses listed in Table 2-8 are for the <character> location (indicated by an*) in
the Compare Immediate instruction, and the address of HANDLER in the Branch instruc
tion. Space is provided in the table for eight user-added characters (one spare character,
plus one spare address each). No table terminator is needed, since the entire table is
searched each time. If no entry is found, program execution simply continues with the
input routine.

TABLE 2-8 -<ESC> SEQUENCES

ADDRESS CONTENTS

* >0118 CNTL/L

>011E CURSOR UP

* >0122 I

>0128 BACK TAB

* >012C CNTL/R

>0132 CURSOi::tHOME

* >0136 A

>013C CURSOR UP

* >0140 B

>0146 CURSOR DOWN

* >014A c
>0150 CURSOR RIGHT

* >0154 D

>015A CURSOR LEFT

* >015E H

>0164 CURSOR HOME

* >0168 Spare Character 1

>016E Spare Address 1

* >0172 Spare Character 2

>0178 Spare Address 2

*>017C Spare Character 3

>0182 Spare Address 3

*>0186 Spare Character 4

>018C Spare Address 4

* >0190 Spare Character 5

>0196 Spare Address 5

* >019A Spare Character 6

>01AO Spare Address 6

* >01A4 Spare Character 7

>01AA Spare Address 7

*>01AE Spare Character 8

>0184 Spare Address 8

INSTALLATION AND OPERATION

2.3.9.4 Adding Command Chains to the Chain Library

The command chains in the library are stored in ten 48-byte section at the high end of
the EPROM in U 55. The locations are listed in Table 2-9.

TABLE 2-9 - COMMAND CHAIN LIBRARY LOCATIONS

START END

CHAIN ADDRESS ADDRESS

0 >7FDO >7FFF

1 >7FAO >7FCF

2 >7F70 >7F9F

3 >7F40 >7F6F

4 >7F10 >7F3F

5 >7EEO >7FOF

6 >7EBO >7EDF

7 >7E80 >7EAF

8 >7E50 >7E7F

9 >7E20 >7E4F

All unused locations must have a byte of >FF in the start address location, and all used
locations must end with a byte of >FF. To add chains to the library, first test the chain
thoroughly, then copy the EPROM into RAM with the following instruction:

?$MOVE 6000 7FFF AOOO <CR>

Using the $MPM command and remembering that the most significant address nibble is
B after the move, use the ASCII subcommand (see Section 3) to put the new chain into
RAM, leaving the other chains and the rest of the EPROM undisturbed. The ASCII sub
command allows entry of ASCII values into byte locatins by enclosing the characters in
single quotation marks. For example:

?$MPM BFDO<CR>
BFDO • FFF "AA' <CR>
BFDO • 4141

Entry of the null string: :· will cause display of the contents in ASCII. For example:

BFDO • 4141 ,"<CR> AA
BFDO = 4141

The unused slots can be used in any order, and when completed, the new chain will
automatically be displayed with the library command CUB, and will be loaded with the
Cx command calling that slot. Once the new chain is entered, place an EPROM in the
programming socket, enter the PROM utility with the PROM command, verify that it is
erased with the VRFY command, and program it with the PROG command. All parame
ters in the PROG command may be defaulted.

2.3.10 Monitor Operation

The following subsections discuss some general information concerning monitor opera
tion.

2.3. 10. 1 Object Code Loading and Dumping

The EVM accepts object code in three formats: TMS7000, TMS9900, and Tektronix.
Input files must be at absolute, or load module level. For an explanation of each of these
formats, see the appropriate manual listed in Section 1. Attempting to input object files
at other than load level may cause the EVM to generate an error for that file.

2-27

INSTALLATION AND OPERATION

The EVM outputs object code in two formats: TMS9900 (TMS7000 object code will
dump in this format) and Tektronix. The following paragraphs explain each output for
mat.

TMS9900 (TMS7000) Dump Format: If a dump is performed from locations >1234 to
>1246, then the TMS9900 dump format will appear as follows:

OOOOOPROGRAM 91234BDEADBDEADBDEADBDEADBDEADBDEADBDEADBDEAD7FOBF 0

BDEADBDEAD7FD29F
:<CR><LF>

TMS7000 object code contains an additional data tag, * , to denote an 8-bit byte in the
data. A dump from an TMS7000 format would be identical to the example above, ex
ceptthatthe header: OOOOOPROGRAM is replaced by: KOOOOPROGRAM.

Tektronix Dump Format: If a dump is performed from locations >1234 to >1246, then
the Tektronix dump format will appear as follows:

/1234140FDEADDEADDEADDEADDEADDEADDEADDEADDEADDEADF4
/OOOOOOOO<CR><LF>

2.3. 10.2 RESETs

2-28

"Warm" RESETs may be initiated during the execution of a user program and during
execution of a command . This feature allows the user to quickly halt the TMS3201 O;
however, this halt is uncontrolled and will clear the internal registers and possibly cause
some program or data memory locations to be corrupted.

RESET During Program Execution: If a RESET is performed during execution of a user
program, control will immediately return to the monitor top level in the following man
ner:

C RESET J

USER HALT -PC RESET 810=1

?

This "warm" start does not reinitialize baud rates, clock and memory sources, etc. RE
SET During Command Execution: If RESET is performed during execution of a command
(a "warm" start), control will immediately return to the monitor top level in the following
manner:

C RESET

?

This warm start does not reinitialize baud rates, clock, memory sources, etc.

The EVM senses whether power has been cycled between RESETs. If the power has not
been cycled and/or the RESET is not a warm start, the breakpoints, event count, and
trace locations are cleared and the program memory/clock sources are set to internal. If
power has been cycled, the power has been cycled, the following additional functions
are performed: the text editor is initialized, the assembler table is reset, terminal tabs are
reset, and all TMS32010 registers are zeroed.

If the user wants to perform a power-cycle RESET without actually cycling the power,
the monitor RESET command is used as follows:

INSTALLATION AND OPERATION

?RESET
ARE YOU SURE? CHO> Y
ENTER <CR>

CRESET Banner)

Port 2 (J2) defaults at RESET to 9600 baud. The default is changable.

The RESET command is distinguished from the $BOOT command in that the latter also
fills program memory with NOPs and fills data memory with zeros.

2.3. 10.3 Using <ESC> or<SP> during Load/Dump Execution

Pressing the space bar <SP> during a dump/display of data freezes the display ONLY if
the output is assigned to Port 1. Pressing <SP> again reactivates the dump/display.

If the escape key <ESC> is pressed during execution of any dump, display, or load com
mand, control will immediately return to the top level of the currently executing EVM
software (monitor, editor, PROM utility, etc.) in the following manner:

<ESC>

?

This feature is especially useful during time-consuming loads/dumps because it simply
aborts the process without the necessity of having to RESET (and reinitialize). Com
mands that accept this feature are indicated in the command descriptions in Section 3.
Commands which allow the <CR> abort also permit use of the <ESC> feature described
in the previous paragraph.

2.3. 10.4 Autoexecution After Power-Up Reset (Load-And-Go)

Revision 2.0 allows chain 9 (see "CLIB" and "C9" command descriptions) to be exe
cuted automatically at power-up after a reset if the autobaud <CR> is not received be
fore a software timer expires. The value of this timer is initially loaded from locations
>OOA8->00A9 and starts counting down after the reset switch is pressed. When the
autobaud <CR> is received the autoexec process is aborted. If the timer expires before
the <CR> is received, the terminal baud rate is set to 19200 baud and chain 9 is auto
matically loaded and executed.

Chain C9 is initially set to read an eprom in the eprom programming socket, set the
PC= 000, init the clock to external, and run the program. The contents of chain 9 can be
set to do any sequence of commands up to 48 characters.

The prinicpal use of the autoexec is to allow the evm to be used in a limited fashion in
field tests without the requirement of a terminal. The contents of chain 9 as shipped
with the software allow a user's program to be read from U29 (the eprom programming
socket) and executed after some initialization without the need for a terminal at port 1.
After the autoexec timer has expired and the chain is executing, normal terminal output
is still enabled and can be watched with a terminal at port 1 . Since the baud rate is set a
19200, the time for this terminal output is minimal and the user's program is entered
approximately 3 seconds after chain execution starts.

This feature can also be used as a simple autoexec at reset to execute commands usu
ally executed at power-up reset by the user (such as "XON;' "ACK," "INIT E;' etc.). The
user should note that since the baud rate is set to 19200 by the autoexec, the "BAUD 1
XXX" command should be executed first in the chain if terminal interaction is desired
(see "BAUD 1" command description).

2-29

INSTALLATION AND OPERATION

2.3.10.4.1 Changing TheAutoexecutionDelay Value

Each count of 1 in the initial timer value approximately equals a second thus:

>0000 NO DELAY

>0060 ABOUT A MINUTE OF DELAY

>FFFF MAXIMUM DELAY <DEFAULT)

Changing the initial delay count requires following the procedure outlined in the section
2.3.9.1 for creating a new U 58 monitor eprom. The value is located in:

>OOA8 MSB OF INITIAL DELAY COUNT
>OOA9 LSB OF INITIAL DELAY COUNT

2.3. 10.4.2 Changing TheAutoexecution Chain

The procedure for creating a new chain at the C9 location is described in the section
2.3.9.4. The C9 chain extends from >7E20to >7E4F.

2.3. 10. 5 Using Program Breakpoints and TMS320 Interrupts

2-30

The breakpoint process on the EVM (including single step} involves running small pro
grams in the TMS320 program space. If the user's application involves interrupts, it is
possible to interrupt this breakpoint program in addition to the user's application. The
application program will continue to execute properly but if the interrupt occurs during
the breakpoint program, one position on the stack (the position after the top of the
stack} will be corrupted with the value >OCE.

Using the "RUN" command will allow complete emulation of the TMS320 with no stack
limitation.

3. DEBUG MONITOR COMMANDS

3. 1 INTRODUCTION

The TMS32010 EVM Monitor Program contains approximately 80 commands and sub
commands. This section describes those commands, their usage, and lists and de
scribes monitor error messages. The monitor commands are grouped in the following
categories and sub-categories:

• MONITOR COMMANDS
Display/Modify Monitor Commands
Display/Modify Register Commands

Display/Modify Register Subcommands
Display/Modify Memory Commands

Display/Modify Memory Subcommands
Single-Step Commands

Single-Step Subcommands
Breakpoint Commands

Breakpoint Subcommands
Trace Commands

Trace Subcommands
Display/Modify Baud Rate Commands

Display/Modify Baud Rate Subcommands
Miscellaneous Monitor Commands

• MONITOR MENU DISPLAY COMMANDS
• MONITOR SYSTEM ACCESS COMMANDS

Each instruction within each category is explained in Section 3.3.9.

3.2 MONITOR CONVENTIONS AND FORMATS

The following paragraphs describe the various conventions and formats required to
properly enter and execute monitor commands. A full listing of all monitor commands is
also included in Appendix B.

3.2.1 Register Definition

Upon initial power-up, the TMS32010 Emulator register contents will be set to zero.
Afterwards, all user register memory will remain intact regardless of RESET or execu
tion of breakpoint operations.

3.2.2 Numerical Data

Whenever the monitor is accepting numerical input data, it expects the data to be in
either hexadecimal or decimal format. In general, all address inputs are expected to be in
hexadecimal. Data for the fill memory commands is also expected in hexadecimal. Data
for the program counter, stack and auxiliary registers is expected in hexadecimal. Data
for the accumulator, T and P registers is expected in decimal (16 or 32 bits). The com
mand description for each command will detail the input format.

Any entry other than valid hexadecimal or decimal characters will cause a command to
abort, and no change will be made to effect any memory modification. If data entry is
expected in hex, a greater-than sign (>)is optional. Data entered in decimal may be

3-1

DEBUG MONITOR COMMANDS

preceded by a plus sign (+) to indicate positive numbers; the plus sign is optional and is
assumed if none is present. Negative decimal numbers must be preceded by a minus
sign.

Commands that display numerical data (either in the form of dumps or for modification)
can work in one of three data formats: hexadecimal (HX), signed decimal (SD), and un
signed decimal (UD). In general, commands dealing with program memory will default
to HX, while commands dealing with data memory will default to SD. Dump commands
(DPM, DDM) will prompt the user for the format on entry of the command. Display/mod
ify commands (MPM, MDM) will take the default value and allow change of the format
inside the command. When the format is required as input, the prompt:

FORMAT? CXX>

is displayed, where XX is the current default value. Entering an <SP> will display:

FORMATS: "HX", "SD", "UD"

and return to the proper format.

3. 2. 2. 1 Scale Factors

Whenever signed decimal data is displayed, the user has the option of scaling the data
by a power of two. The default power of two is zero, yielding a divide-by-one. Legal
values of scale factors are from zero (default) to 15 (decimal). Entering a number outside
this range defaults the scale factor to zero.

To request a scale factor, the user must enter a comma (,) after the SD format entry,
followed by the scale factor. If SD is the default format, the user can immediately enter
the" ,x" scale factor. The scale factor entered is valid until the command is terminated,
at which time the scale factor returns to its default value of zero. When data is scaled,
the data is accurate to nine digits to the right of the decimal point. Scaled memory
dumps accommodate for the additional digits by spreading the data out. The following
are examples of scaling data:

FORMAT? CHX> SD,15

FORMAT? CSD> ,10

Scale data by 2E15, the maximum
scale factor

Format is defaulted and data is
scaled by 1024

3.2.3 Display/Modify Procedures

3-2

Any time that a display /modify type of command is entered, the user has several options
on how to proceed: (1) enter new data, (2. enter a <CR> to terminate the command, or
(3) enter a character to either display the previous or the next location. Except for data
entry into certain TMS32010 register locations that expect data in signed decimal, all
data is expected in hexadecimal format. The format expected by any command allows
entry of data not preceded by a character defining the type of data. If the user wants to
enter data in a format different from the default, the defining character can be entered. If
the defining character entered is the same as for the format expected, it is ignored.

During execution of any display/modify command, the Next Entry characters (<SP>,
<LF>, CNTLN, CNTL/J, cursor down) will access the next location, and the Previous
Entry characters (cursor up, CNTL/K,Z) will access the previous location. Each line dis
played will be indented two spaces. When a Next Entry command is entered, a caret(%)
will be displayed to indicate reverse motion.

DEBUG MONITOR COMMANDS

3.2.4 Command Parameters

If parameters are required for a command, they must be entered in proper order. Failure
to enter the required number of parameters in the proper format (unless defaults are
acceptable) will result in a "VALUE ERROR" message being displayed.

A command must be separated from the first parameter by a space <SP> or a comma.
Each parameter must also be separated from the previous parameter by a space or a
comma. Thus, the general format for a command is:

?CMD PARM1 PARM2 PARM3 <CR>

For example, the Move Memory command (MOVE) requires three param It would be en
tered as follows:

?MOVE 0 10 20<CR> OR: ?MOVE 0,10,20<CR>

As another example, the Execute command (EX) accepts optional parameters. It may be
entered as follows:

?EX<CR>
?EX 2<CR>
?EX 2 2<CR> OR: ?EX 2,2,<CR>

3.2.5 Fill/Find Commands ASCII Parameter Entry

The fill and find commands described in Section 3.3.9 support entry of the last parame
ter in the default (hexadecimal) format. Signed decimal numbers can also be entered if
preceded by a plus or minus sign (+/-).The monitor commands affected are:

FBPM $FBPM
FWPM $FWPM
FBDM
FPM
FDM SFPM

These commands also support direct entry of ASCII characters as either the fill or find
character. This is accomplished enclosing the character in single quotation marks. For
example:

?FBPM 0 FFF +10 Will search program memory for decimal 10

?FBPM 0 FFF A Will search program memory for decimal 10

?FBPM 0 FFF "A' Will search program memory for >41

If several characters are entered between the single quote marks, a byte command will
use only the last character entered, and a word command will only use the last two char
acters entered, using the ASCII value of each entry as a byte of data. If one character is
entered for a word command, the MSB of the word is >OO and the character is used as
the LSB. If no characters are inserted between the single quotes, the value used is zero.

3.3 MONITOR COMMANDS

The monitor commands allow the user to control the hardware and software functions
of the monitor and monitor program. This section contains detailed descriptions of the
monitor commands.

3-3

DEBUG MONITOR COMMANDS

3.3. 1 Display/Modify Monitor Commands

The display/modify monitor commands cause a display of the specified information on
the system monitor for user reference and/or modification. Table 3-1 lists the Display
monitor commands. A description of each command is in Section 3.3.9.

TABLE 3-1 - DISPLAY /MODIFY MONITOR COMMANDS

COMMAND MNEMONIC

Display Monitor Commands Menu HELP

Display Keyboard Entry Aids KHELP

Display Monitor Error Messages EHELP

Display/Modify Cursor Control Characters MCC

Display Monitor Menu MENU

Display/Modify Clock/Memory Source INIT

Display/Modify Tabs TABS

16-Bit Unsigned Hex-Decimal Conversion UD16

32-Bit Unsigned Hex-Decimal Conversion UD32

16-Bit Signed Hex-Decimal Conversion SD16

32-Bit Signed Hex-Decimal Conversion SD32

16-Bit Decimal-Hex Conversion HX16

32-Bit Decimal-Hex conversion HX32

Display Scaled 16-Bit Decimal Number SCALE

Save/Show Machine State SMS

Load Machine State LMS

Save Program Memory SPM

Load Program Memory LPM

Display Program Memory DPM

Display Data Memory DOM

Display TMS32010 Register Set STATE

Clear TMS32010 Register Set CLEAR

Display ACC/T Reg/P Reg in Hex HATP

3.3.2 Display/Modify Register Set Commands

3-4

The commands to display and/or modify the TMS32010 register set are accessed as
follows: once the register name has been entered and the register contents displayed
and modified (if desired), subsequent register locations can be accessed with a Next
Entry character (<SP>, <LF>, CNTL/J,V or cursor down) or a Previous Entry character
(<CNTL/K,Z or cursor up). Thus, all register locations are available in a bidirectional, cir
cular fashion, with entry at any point.

Table 3-2 lists the register display/modify commands and subcommands. An explana
tion of each command is in Section 3.3.9.

DEBUG MONITOR COMMANDS

TABLE 3-2 - DISPLAY /MODIFY REGISTER SET COMMANDS

COMMAND MNEMONIC

Display /Modify Accumulator ACC

Display/Modify T Register TREG

Display/Modify P Register PREG

Displlly/Modify Auxiliary Register 0 ARO

Display/Modify Auxiliary Register 1 AR1

Display/Modify Program Counter PC

Display/Modify Overflow Flag ov
Display/Modify Overflow Mode OVM

Display/Modify Data Page Pointer DP

Display/Modify Auxiliary Register Pointer ARP

Display/Modify Stack Locations STACK

SUBCOMMAND

This Menu M

Redisplay Register R

Redisplay Opposite Format ,X

Next Entry <SP>. <LF>. CNTL/J, CNTLN

or Cursor Down

Previous Entry CNTL/K,Z or Cursor Up

3. 3. 2. 1 Display/Modify Register Set Subcommands

The subcommands may be entered in place of, or in addition to, data. The menu of sub
commands is accessed by entering" ,M", resulting in the following display:

,M THIS MENU
,R REDISPLAY REGISTER
,x REDISPLAY OPPOSITE FORMAT
<SP>,<LF>,CNTL/J, CNTL/V, CURSOR DOWN
CNTLCK,Z>,CURSOR UP
<CR> QUIT

Next Entry
Previous Entry

If entered in addition to data, the data is first stored and then the subcommand is exe
cuted. Occurrence of any error during entry of a subcommand will cause control to re
turn to the monitor top level. The Next Entry/Previous Entry/QUIT commands allow se
quencing of locations in any direction and normal command termination (return to the
monitor). The subcommands cause the following functions:

,M Displays the subcommand menu and then redisplays the line that the command
was entered on.

,R Allows redisplay of the just entered data without having to advance to the next
entry and then back up by one.

,x (where "x" is an~· <ilphanumeric character except Mor R) Allows redisplay of the
current register in signed decimal if the default for that register is hexadecimal, and
in hexadecimal if the default for that register is signed decimal. Any alphanumeric
character except Mor R will execute this command. Since the status register loca
tions are only one bit wide and have the same display in both formats, those loca
tions treat this command as an <SP> entry.

3-5

DEBUG MONITOR COMMANDS

3.3.3 Display/Modify Memory Commands

The commands and subcommands to display and/or modify the TMS32010 program
and data memory are listed in Table 3-3. Equivalent functions for the separate memories
are provided by similar commands. A description of each command is in Section 3.3.9.

TABLE 3-3 - DISPLAY /MODIFY MEMORY COMMANDS

COMMAND

Display/Modify Data Memory

Find Word in Data Memory

Find Byte in Data Memory

Display/Modify Program Memory

Find Word in Program Memory

Find Byte in Program Memory

SUBCOMMAND

This Menu

Quit 'FIND' Byte/Word in Program/Data Memory

Change Display Format

Redisplay Current Value

Display Current Value in Hexadecimal

Display Current Value in Signed Decimal

Display Current Value in Unsigned Decimal

Display Current Value in Binary

Enter New 'MPM' /'MDM' Address

Display Current Value in ASCII

Modify Current Value in ASCII

Next Entry

Previous Entry

Quit MXM/'FIND' Next Entry

MDM

FWDM

FBDM

MPM

FWPM

FBPM

,M

,Q

,F

,R
,H

,S

,D

,B

A=

,'xx'

MNEMONIC

<SP>.<LF>.CNTL/J, CNTLN or

Cursor Down

CNTL/K,Z or Cursor Up

<CR>

3. 3. 3. 1 Display/Modify Memory Subcommands

3-6

The subcommands may be entered in place of, or in addition to, data. The menu of sub
commands is accessed by entering" ,M", resulting in the following display:

,M THIS MENU
,Q QUIT "FIND' BYTE/WORD IN PROGRAM/DATA MEMORY
,F CHANGE DISPLAY FORMAT
,R REDISPLAY CURRENT VALUE
,H DISPLAY CURRENT VALUE IN HEXADECIMAL
,S DISPLAY CURRENT VALUE IN SIGNED DECIMAL
,D DISPLAY CURRENT VALUE IN UNSIGNED DECIMAL
,B DISPLAY CURRENT VALUE IN BINARY
,A= ENTER NEW MPM/MDM ADDRESS

DISPLAY CURRENT VALUE IN AC!!
, 'xx' MODIFY CURRENT VALUE IN ASCII
<SP>,<LF>,CNTL/J, CNTL/V, CURSOR DOWN
CNTLCK,Z>,CURSOR UP

Next Entry
Previous Entry
Next Entry <CR> QUIT MXM/'FIND'

DEBUG MONITOR COMMANDS

If entered in addition to data, the data is first stored and then the subcommand is exe
cuted. Occurrence of any error during entry of a subcommand will cause control to re
turn to the monitor top level. The Next Entry/Previous Entry/QUIT commands allow se
quencing of locations in any direction and normal command termination (return to the
monitor). The subcommands cause the following functions:

,M Displays the menu and then redisplays the line that the command was entered
on.

,Q Used to terminate a Find Data command, since the normal command terminator
(<CR>) is used to initiate the next find sequence.

,F Allows change of default display/modify format. Defaults are signed decimal
for data memory, and hexadecimal for program memory. If signed decimal is
specified, the user can specify a scale factor (see Section 3.2.2.1). Execution of
the ,F command from a Find Data command will cause the currently executing
command to become the equivalent display/modify command. The formats are:
HX (hexadecimal), SD (signed decimal), and UD (unsigned decimal).

,R Allows display of the just entered data without having to advance to the next
entry and then back up one.

,H Displays the contents of the current location in hexadecimal, regardless of de
fault format.

,S Displays the contents of the current location in signed decimal, regardless of
the default format. This subcommand also incorporates the scale factor option
available for signed decimal data. Default scale factor is 0, and the legal range is
0 to 15. Entering a scale factor outside this range causes a default to zero. the
scale factor is entered immediately after the ,S command as Sx, with no space
or comma between. The scale factor is used only for the subcommand with
which it is entered; any scale factor entered previously intact. The user must
enter the ,F command to change the scale factor for the command.

,U Displays the contents of the current location in unsigned decimal, regardless of
default format.

,B Displays the contents of the current location in binary, regardless of the default
format. A space is inserted between each nibble.

,A= Allows large jumps in location without having to exit the command and reenter
with a new starting location. The user must observe maximum address values
for data memory (Oto >BF) if currently executing a data memory command, and
for program memory (0 to>FFF) if currently executing a program memory com
mand. Execution of the ,A= command from a Find Data command will cause
the currently executing command to become the equivalent display/modify
command. For example:

FBPM would become: MPM
FWDM would become: MDM

Displays the contents of the current location as two ASCII characters. If either
byte is out of the displayable ASCII range >20 to> >Fl, it is displayed as a space.

,'xx' Changes the contents of the current location to the hexadecimal value of the
last two ASCII characters entered. If only one ASCII character is entered then it
is right justified with the MSB = 0.

<CR> In a display/modify command, the <CR> returns control to the monitor. In a Find
Byte/Word command, the <CR> initiates the search for the next entry.

3-7

DEBUG MONITOR COMMANDS

3.3.4 Single-Step Commands

Table 3-4 lists the single-step commands and subcommands. A description of each
command is in Section 3.3.9.

TABLE 3-4 - SINGLE-STEP COMMANDS

COMMAND MNEMONIC

Fill Data Memory FDM

Fill Program Memory FPM

Fill Program Memory with NOPs NOP

Move Program Memory MOVE

Execute User Program with Breakpoints EX

Execute User Program without Breakpoints RUN

Single-Step User Program SS

SUBCOMMAND

This Menu M

Change Display Type Tx

Change Display Format F

Enter Step Count c
Display Program Counter p

PC Display Range R

List to Port 1 1

Listto Port 2 2

Execute One Single-Step <SP>

Return to Monitor <CR>

3.3.5 Breakpoint Commands

3-8

Table 3-5 lists the breakpoint commands and subcommands that display and/or modify
breakpoints. A description of each command is in Section 3.3.9.

TABLE 3-5 - BREAKPOINT COMMANDS

COMMAND MNEMONIC

Set Breakpoints SB

Clear One or All Breakpoints CB

Display Breakpoints DB

Set Event Count For One Breakpoint EC

SUBCOMMAND

This Menu ,M

Clear Breakpoint ,C

Redisplay Breakpoint ,R

Display Event Counter ,E

Next Entry <SP>,<LF>,CNTL/J, CNTLN, or

Cursor Down

Previous Entry CNTL/K, CNTL/Z or Cursor Up

Quit <CR>

DEBUG MONITOR COMMANDS

3.3.6 Trace Commands

Table 3-6 lists the trace commands and subcommands. A description of each command
is in Section 3.3.9.

TABLE 3-6 - TRACE COMMANDS

COMMAND MNENOMIC

Set Single-Step Trace Line Locations ST

Clear One or All Trace Locations CT

Display Trace Locations OT

SUBCOMMAND

This Menu ,M

Clear Field ,C

Redisplay Field ,R

Next Entry <SP>.<LF>,CNTL/J,CNTLN, or

Cursor Down

Previous Entry CNTL/K,Z or Cursor Up

Quit <CR>

3. 3. 6. 1 Trace Subcommands

The subcommands may be entered in place of, or in addition to, data. The menu of sub
commands is accessed by entering" ,M", resulting in the following display:

,M THIS MEHU
,C CLEAR FIELD
,R REDISPLAY FIELD
<SP>,<LF>,CNTL/J,CNTL/V,CURSDR DOWN
CNTLCK,Z>,CURSOR UP
<CR> QUIT

Next Entry
Previous Entry

If entered in addition to data, the data is first stored and then the subcommand is exe
cuted. Occurrency of any error during entry of a subcommand will cause control to re
turn to the monitor top level. The Next Entry/Previous Entry/QUIT subcommands allow
sequencing locations in any direction and a return to monitor when the command has
executed. The other commands function as follows:

,M Displays the menu and then redisplays the line that the command was entered on.

,C Clears the current trace location. Default = 0, not 1, although the function is the
same (one step). In addition, any count entered is used as the next default until the
SS command is terminated.

,R Allows redisplay of the just entered trace location without having to advance to
the next entry and then backing up one.

3.3. 7 Display/Modify Baud Rate Commands

The EVM contains two TMS9902 UART chips, one for each EIA port. The baudtate of
Port 1 (the terminal) is determined automatically after RESET by striking the <CR> on
the terminal keyboard. The baud rate of Port 2 defaults to 9600 baud. Both port baud
rates may be changed by using the commands listed in Table 3-7. A description of each
command is in Section 3.3.9.

3-9

DEBUG MONITOR COMMANDS

TABLE 3-7 - DISPLAY/MODIFY BAUD RATE COMMANDS

COMMANDS MNEMONIC

Display/Modify Port 1 Baud Rate BAUD1

Display/Modify Port 2 Baud Rate BAUD2

SUBCOMMANDS

This Menu ,M

Redisplay Baud Rate ,R

Display Current Value of Control Byte of the EIA Port ,D

Modify Control Byte of the EIA Port ,C=

Note: Allowable baud rates will be displayed at the bottom of the menu as follows:

Baud Rates: 110, 300, 600, 1200, 2400, 4800, 9600, 19200

3. 3. 7. 1 Baud Rate Subcommands

3-10

The subcommands may be entered in place of, or in addition to, data. The menu of sub
commands is accessed by entering" ,M", resulting in the following display:

,M THIS MENU
,R REDISPLAY BAUD RATE
,D DISPLAY CHARACTER FORMAT
,C= CHANGE CHARACTER FORMAT
BAUD RATES: 110, 300, 600, 1200, 2400, 4800, 9600, 19200

If entered in addition to data, the data is first stored and then the subcommand is exe
cuted. Occurrence of any error during entry of a subcommand will cause control to re
turn to the monitor top level. The commands function as follows:

,M Displays the menu and then redisplays the line that the command was entered on.

,R Allows redisplay of the baud rate just entered.

The next two subcommands allow display/modification of the format control byte for
each EIA port. Table 2-6 detail how the contents of this byte control the character for
mat. Both EIA ports are initially set to one start bit, seven data bits, two stop bits, and no
parity bits. The user has the option of either creating a new EPROM (see Section
2.3.9.1 l to change these power-up default values, or of executing the ,C = command
each time EVM power is cycled.

,D Causes a display in hex and binary of the current value of the control byte of the
port. The control byte dictates the format of characters transmitted/received at
that EIA port. The power-up default value of the control byte is shown in Table 2-5.

,C = Allows modification of the control byte of the EIA port. The byte is entered as a
hexadecimal value. See Table 2-6 to configure the control byte. No entry aborts the
subcommand. Execution of this commands automatically causes execution of the
,D command described above.

DEBUG MONITOR COMMANDS

3.3.8 Miscellaneous Monitor Commands

Table 3-8 lists the miscellaneous monitor commands. A description of each command is
in Section 3.3.9

TABLE 3-8 - MISCELLANEOUS MONITOR COMMANDS

COMMAND MNEMONIC

Print Formfeed Character to EIA Port FF

Display Files Stored on Audio Cassette DIR

Enable Audio Cassette Motor MO

Display Assembler Label Table TABLE

3.3.9 Monitor Command Definitions

The monitor commands on the following pages are defined and described in detail. They
are listed in alphabetical order.

3-11

ACC

Operands

Syntax

Purpose

Notes

Example

3-12

Display/Modify Accumulator ACC

None

A(CCJ

To display and/or modify the contents of the accumulator.

1) The accumulator is displayed as a signed 32-bit decimal number with input ex
pected in signed decimal.

21 Entering a preceding plus sign (+) is optional, since it is assumed. Negative num
bers must be preceded by a minus sign(-). Entering values in hex is allowed if a
greater-than sign (>) precedes the entry.

?ACC

?

ACC • +44 -122,R
ACC " -122 <CR>

Accumulator i5 displayed,
modified, and redisplayed.

ARO

Operands

Syntax

Purpose

Notes

Example

Display/Modify Auxiliary Resister 0 ARO

None

ARO

To display and/or modify the contents of auxiliary register 0.

1) The auxiliary register is displayed as an 8-bit hexadecimal number.

2) Entry of data is assumed to be in hexadecimal within a range from >O to >SF
(+ 143), but decimal values can be entered by preceding the entry with a plus (+)
sign.

?ARO

?

ARO • 008f' 60,R
ARO • 0060 <CR>

The contents of the auxiliary
register are displayed, modi

fied, and redisplaye~.

3-13

AR1

Operands

Syntax

Purpose

Notes

Example

3-14

Display/Modify Auxiliary Register 1 AR1

None

AR1

To display and/or modify the contents of auxiliary register 1.

1) The auxiliary register is displayed as an 8-bit hexadecimal number.

2) Entry is assumed to be in hex within a range of from >Oto >SF (+ 143), but deci
mal values can be entered by preceding them with a plus sign (+).

?AR1
AR1 = 0040 <CR>

?

Auxiliary register 1 is displayed
in hexadecimal.

ARP

Operands

Syntax

Purpose

Note

Example

Display/Modify Auxiliary Register Pointer ARP

None

ARP

To display and/or modify the auxiliary register pointer.

The auxiliary register pointer is a single bit of the status register, and is changed by the
least significant bit of the entered value.

?ARP

?

ARP 0 1 ,R
ARP s <CR>

The auxiliary register pointer bit is
displayed, modified, and redisplayed.

3-15

BA001

Operands

Syntax

Purpose

Note

Example

3-16

Display/Modify Port 1 Baud Rate BAUD1

None

BAUD1

To display and/or modify the baud rate of Port 1 (the terminal).

The baud rate is displayed and modified in the actual decimal baud rate values. This is
accomplished by first entering the command. The terminal will display the current baud
rate, and the user then enters the new baud rate desired, as shown in the example be
low. Pressing the <ESC> key will cause the monitor prompt to display at the new baud
rate.

BAUD1 The terminal baud
rate is changed
without RESET.

PORT1 BAUD RATE • 19200 9600<CR>

[CHANGE TERMINAL BAUD RATE J
cESC>
?

BAUD2

Operands

Syntax

Purpose

Note

Example

Display/Modify Port 2 Baud Rates BAUD2

None

BAUD2

To display and/or modify the baud rate of Port 2.

The baud rate is displayed and modified in the actual decimal baud rate values. This is
accomplished by first entering the command. The terminal will display the current baud
rate, and the user then enters the new baud rate desired, as shown in the example be
low. Pressing the <ESC> key will cause the monitor prompt to display at the new baud
rate.

?BAUD2
PORT2 BAUD RATE • 9600 300,R
PORT2 BAUD RATE • 300 <CR>

?

The Port 2 baud rate is
changed.

3-17

CB

Operands

Syntax

Purpose

Notes

Example

3-18

Clear One or All Breakpoints

Breakpoint number (1to8.)

CB [breakpoint number]

To allow the user to selectively clear a breakpoint or clearall breakpoints without
entering the SB command.

1 I Legal range of breakpoint numbers is from 1 (default) to 8.

CB

21 Entering a zero or an A (for ALLI will clear all breakpoints and the event counter
whether any breakpoints are set or not.

31 Clearing a breakpoint will cause a BPx = CLEARED message to display; attempt
ing to clear a breakpoint that is not set will cause a BPx = NOT SET message to
display.

41 In the event counter is set for a breakpoint, clearing that breakpoint or all the break
points will also clear the event counter.

?CB A
BREAKPOINTS ARE CLEARED
EVENT COUNT CLEARED

?

All breakpoints are cleared.

CT

Operands

Syntax

Purpose

Notes

Example

Clear One or All Trace Locations

Trace location

CT [trace location]

To allow the user to selectively clear trace locations or to clear all trace locations
without having to enter the" ,C" subcommand of the ST command.

CT

1) Legal range of trace location numbers is from 1 (default) to 6; entering a zero or an
A (for ALL) will clear all trace locations whether or not any are set.

2) Clear a trace location will cause display of a TRAC Ex =CLEARED message.

3) Attempting to clear a trace location that is not set will cause display of a TRAC Ex
= NOT SET message.

?CT A
TRACE CLEARED

?

All trace location5 are
cleared.

3-19

DB

Operands

Syntax

Purpose

Notes

Example

3-20

Display Breakpoints DB

None

DB

To display all set breakpoints on one line of the terminal.

1 I Only breakpoints that are set are displayed; if no breakpoints are set, nothing is
displayed.

21 Breakpoints are program memory locations from >Oto >FFF, and are displayed in
hexadecimal.

?DB
BP1=040 BP4=503 BP7=033

?

All 5et breakpoint5
are displayed.

DIR

Operands

Syntax

Purpose

Notes

Example

Audio Tape Directory

Output port (optional) default = 1

DIR [output port]

To display the files stored on an audio tape recorder cassette connected to Port 3 at
either Port 1 or Port 2.

DIR

1) The audio tape directory is printed by file name and type. As the file passes by the
read heads, the number of blocks (512 bytes/block) are counted.

21 Termination of directory listing is by pressing the <ESC> key or by RESET.

3) This command is discussed in detail in Section 8.

?DIR 1

AUDIO TAPE DIRECTORY

S TEST.SOURCE
12 TEST1.0BJECT
3 TEST1.STATE

<ESC> OR < RESET J

?

The listing of the audio tape
directory is assigned to and
displayed at the terminal.

3-21

DP

Operands

Syntax

Purpose

Note··

Example

3-22

Display/Modify Data Page Pointer DP

None

DP

To display and/or modify the data page .pointer.

The data page pointer is a single bit of the status register, and is changed by the least
significant bit of the entered value.

?DP
DP = 0 1, R
DP <CR>

?

The data page pointer bit is displayed,
modified, and redisplayed.

DPM

Operands

Syntax

Purpose

Notes

Example

Display Program Memory DPM

1) Memory display start address
2) Memory display end address
3) Output.port 1 or 2 (optional) default = 1

DPM <start address> <end addre~s> [output port]

To display the contents of a selected block of program memory for examination by the
user.

1) Legal values for output port are --Land 2 only.

2) Failure to enter either address parameter will cause a VALUE ERROR message to
display. Entering an end address greater than the start address will cause an AD
DRESS ERROR message to display.

3) Valid address range is from >Oto >FFF. When entering address parameters, only
the last four digits are accepted and leading zeros are assumed.

4) While the dump is in progress, it may be stopped and started by pressing the space
bar, and can be aborted at any time by pressing the <ESC> key.

5) The display may be in either hexadecimal (HX), signed decimal (SD), or unsigned
decimal (UD) format.

?DPM 30 100
FORMAT? CHX> SD

[PROGRAM MEMORY

?

User has requested a display to
the terminal of a section of
program memory in signed decimal
format.

3-23

OT

Operands

Syntax

Purpose

Notes

Example

3-24

Display Trace Locations OT

None

DT

To display all set trace locations and their contents on one line at the terminal.

1) Only trace locations that are set are displayed.

2) The trace locations are data memory addresses from >Oto >BF, displayed in hex
adecimal.

3) If no trace locations are set, nothing is displayed.

?DT Display all trace locations.

TRACE1=40 TRACE2=41 TRACE4=82

?

EC

Operands

Syntax

Purpose

Notes

Example

Set Event Counter for One Breakpoint EC

Breakpoint number

EC [breakpoint number]

To allow the user to display and/or modify the event count associated with an existing
breakpoint.

1) The event count for a breakpoint is the number of times that breakpoint is to be
encountered before execution is halted and the display given.

2) Entry is expected as a decimal number from 1 to 255. Entering zero or a number
larger than 255 clears the event counter. Entering zero for the breakpoint number
clears theevent counter whether it is set or not.

3) Entering a breakpoint number will allow an event count to be entered only if that
breakpcint already exists. If not, the message BPx NOT SET will display.

4) The SB command must be used to set a breakpoint.

5) Defaulting the breakpoint number will cause the event counter and the associated
breakpoint number (if it is set) to display. If an associated breakpoint number is not
set, the EVENT COUNT NOT SET message will display (because the event counter
will not set if the specified breakpoint does not already exist).

6) When entering the event count, terminating the entry with a <SP> will redisplay
the event count. Termination with a <CR> will return control to the monitor com
mand handler.

7) The user should note that since the breakpoint is processed for each occurrence of
the event, overall execution is not in real time.

8) If a breakpoint other than the one associated with the event count is encountered
before the event count has reached zero, the event counter is reset to its original
value. When the event counter reaches zero, the breakpoint is displayed with the
message EVENT COUNT to indicate that t,he event count breakpoint was proc
essed.

?EC
EC1 200 100<5P>
EC1 100 <CR>

?

An existing event count is
displayed and changed.

3-25

EHELP

Operands

Syntax

Purpose

Notes

Example

3-26

Display Monitor Error Messases

Output port (optional) default = 1

E[HELPJ [output port)

To display the monitor error messages for reference by the user.

1) This command may be executed by either typing E, or the full word.

2) Legal values for output port are 1 and 2.

3) Monitor error messages are discussed in Section 3.6.

?EHELP

< Menu >

?

Monitor error messages are displayed
at the terminal.

EHELP

EX

Operands

Syntax

Purpose

Notes

Execute User Program with Breakpoints EX

Breakpoint display type 0 to 4 (optional) default = 0

EX [breakpoint display type]

To execute the user program with the breakpoints specified by the SB command.

1) The display type selects the display sent to the terminal when a breakpoint is en
countered. Display types are:

0 (Default) ACC, T, P
1 All internal registers
2 Type 0 plus trace line set using ST
3 Type 1 plus trace line set using ST
4 Trace line set using ST
5 PC/BIO/Interrupt/mnemonic only

Attempting to enter a display type of 2 to 4 is only allowed if a trace line has been de
fined by the ST command. If displaying the trace line, the display format is prompted for
prior to execution. Since trace line displays data memory locations, default is signed
decimal format.

2) If no breakpoints are set, or if none of the set breakpoints is encountered, the EX
command functions the same as the RUN command.

3) If a breakpoint is encountered, no matter what display is selected, the following is
displayed:

• The PC, in hexadecimal, equivalent to the breakpoint stress (this instruction has
not been executed).

• A breakpoint halt banner message.

• The state of the Bl 0 pin.

• Whether or not an interrupt occured (indicated by an INTERRUPT message).

• The mnemonic of the instruction at the breakpoint address

4) If a RESET is performed before an active event count has expired, the remaining
event count is desplayed. Use of the RESET function to stop execution causes an
uncontrolled halt of the TMS32010 and will save the internal registers except the
PC. Display types are:

0 (Default) ACC, T, P
1 All internal registers
2 Type 0, plus trace line
3 Type 1, plus trace line
4 Trace line
5 PC/BIO/INTERRUPT/mnemonic only

3-27

EX

Examples

3-28

, EX

Attempting to enter a display type of 2 to 4 is only allowed if a trace line has been de
fined by the ST command. If displaying the trace line, the display format is prompted for
prior to execution. Since trace line displays data memory locations, default is in signed
decimal.

Previously, the RESET switch on the EVM was the only way to terminate user program
execution when a breakpoint was not set. The escape key (<ESC>) will also terminate
program execution in the same way as the RESET switch, allowing full control of the
EVM from the keyboard. Since this is an uncontrolled halt ofthe TMS320, the program
counter value is not retrieved but all other contents of the machine state are saved.

1. ?EX

BREAKPOINT HALT

A breakpoint is encountered
at PC • >400.

PC • 400 BIO•O MNEMONIC---> ZAC
ACC • +90 TREG • +2 PREG = 2122

?

2. ?EX 4
f'DRMAT? <SD><CR>

BREAKPOINT HALT

A breakpoint is executed and
the trace line is displayed.

PC • FE1 BI0•1 MNEMONIC---> LACK 1
88•-12 44=+27

?

3. ?EX

C RESET l

USER HALT -PC RESET BI0=1
REMAINING EVENT COUNT • 44

?

User RESET before event
count expired.

FBDM

Operands

Syntax

Purpose

Notes

Example

Find Bvte in Data Memory FBDM

1) Start search address (begin limit: >Ol
21 End search address (end limit: >FF)
3) Target byte (optional) default = >FF

FBDM <start address><end address> (target byte]

To search data memory for an 8-bit value.

1) The legal address range is >O to >SF, with decimal entry allowed if preceded by a
plus sign (+).

2) The target word parameter assumes leading zeros for hexadecimal entry. Decimal
entry is allowed if preceded by a plus or a minus sign.

3) Data memory is searched on a byte-by-byte basis, two bytes per word. If a match
is found within the address range entered, the MOM command is entered. If no
match is found, nothing is displayed. Once in the MOM command, the location of
the target word or any location around it can be displayed and/or modified.

4) Entering a <CR> will resume the search process, starting at the address last dis
played (see Subcommands, Section 3.3.3.1.

5) ASCII target bytes are allowed (see Section 3.2.5).

?FBDM 1E 7F 80
27 "' 801E<CR>
70 • 0080<CR>

?

The byte >80 is found in the
MSB of location >27, and in
the LSB of location >70.

3-29

FBPM

Operands

Syntax

Purpose

Notes

Example

3-30

Find Byte in Program Memory FBPM

1) Start search address (start limit: >O)
2) End search address (end limit: >FFF)
3) Target byte (optional) default = >FF

FBPM <start address> <end address> [target byte]

To search program memory for a 16-bit value contained within a word boundary.

1) The legal address range is >Oto >FFF, with decimal entry allowed if preceded by a
plus sign (+).

2) The target word parameter assumes leading zeros for hexadecimal entry. Decimal
extry is allowed if preceded by a plus or a minus sign.

3) Data memory is searched on a byte-by-byte basis, two bytes per word. If a match
is found withing the address range entered, the MPM command is entered. If no
match is found, nothing is displayed. Once in the MPM command, the location of
the target word or any location around it can be displayed and/or modified.

4) Entering a <CR> will resume the search process, starting at the address last dis
played (see Section 3.3.3.1.

5) ASCII target bytes are allowed (see Section 3.2. 5).

?FBPM 0 200 7F
088 = 7F80 <CR>
1FE = 117F <CR>

?

The byte >7F is located in the NOP
opcode MSB and also in a data
statement LSB.

FDM

Operands

Syntax

Purpose

Notes

Example

Fill Data Memory FDM

1) Memory start address (start limit: >OI
21 Memory end address (end limit: >BF)
3) Fill word (optional) default = >FFFF

FDM <start address> <end address> [fill word]

To fill data memory between the specified addresses with a given value.

1) Legal address range is >O to >BF. Decimal addresses are allowed if preceded by a
plus or a minus sign.

2) The fill word parameter entry is expected in hexadecimal, but decimal entry is al
lowed if preceded by a plus or minus sign.

3) ASCII fill words are allowed (see Section 3.2.5).

?FDM 0 •143 0 Data memory is cleared.

?

3-31

FF

Operands

Syntax

Purpose

Note

Example

Print Formfeed Character to EIA Port

Output port 1 or 2 (optional) default = 2

FF (output port)

To allow continuous forms to be used on a line printer connected to Port 2.

The character sequence is:

?ff

?

<FF>= >OC
<CR>= >OD

The formfeed character is sent
to Port 2.

FF

FPM

Operands

Syntax

Purpose

Notes

Example

Fill Program Memory FPM

1) Memory start address (start limit: >O)
2) Memory end address (end limit: >FFF)
3) Fill word (optional) default = >FFFF

FPM <start address> <end address> [fill word]

To fill program memory between the specified addresses with a given value.

1) Legal address range is >Oto >FFF. Decimal addresses are allowed if preceded by a
plus sign or a minus sign.

2) Since it fills memory, this command initializes the text editor.

3) ASCII fill words are allowed (see Section 3.2.5).

?FPM 0 FFF 0 Program memory is cleared.

?

3-33

FWDM

Operands

Syntax

Purpose

Notes

Example

3-34

Find Word in Data Memory FWDM

1) Start search address (start limit: >O) ·
2) End search address (end limit: >SF)
3) Target word (optional) default = >FFFF

FWDM <start address> <end address> [target word)

To search data memory for a 16-bit value contained within a word boundary.

1) The legal address range is >O to >SF, with decimal entry allowed if preceded by a
plus sign (+).

2) The target word parameter assumes leading zeros for hexadecimal entry (i.e., en
tering >FF will search for >OOFF). Decimal entry is allowed if preceded by a plus
sign or a minus sign.

3) If a match is found within the address range entered, the MOM command is en
tered. Once in the MD M command, the target word or any location around it can be
displayed and/or modified.

4) Entering a <CR> will resume the search process, starting at the address last dis
played (see subcommands, Section 3.3.3.1.

5) ASCII target words are allowed (see Section 3.2.5).

?FWDM 10 70 -1

?

64 • -00001 <CR>
6C • -00001 <CR>

All occurrences of -1 between
the addresses specified have
been found.

FWPM

Operands

Syntax

Purpose

Notes

Example

Find Word In Program Memory FWPM

1) Start search address (start limit: >Ol
2) End search address (end limit: >FFF)
3) Target word (optional) default = >FFFF

FWPM <start address> <end address> [target word]

To search program memory for a 16-bit value contained within a word boundary.

1) The legal address range is >Oto >FFF, with decimal entry allowed if preceded by a
plus sign (+).

2) The target word parameter assumes leading zeros for hexadecimal entry (i.e., en
tering >FF will cause a search for >OOFF).

3) If a match is found within the address range entered, the MPM command is en
tered. Once in the MPM command, the location of the target word or any location
around it can be displayed and/or modified.

4) Entering a <CR> will resume the search process, starting at the address last dis
played (see Section 3.3.3.1.

5) ASCII target words are allowed (see Section 3.2. 5).

?FWPM 0 FFF 7F80
2FO = 7F80 <CR>
38C = 7F80 <CR>
441 = 7F80 <CR>

?

All occurrences of the HOP
opcode in program memory are
found.

3-35

HELP

Operands

Syntax

Purpose

Note

Example

3-36

Display Monitor Commands Memory

Output port 1 or 2 (optional) default = 1

H[ELPJ [output port]

To display the EVM monitor commands and their functions for user reference.

This command can be executed by either typing H, or entering the full word.

?HELP

(Menu)

?

Monitor Commands Menu is displayed at
Port 1 (the terminal).

HELP

HX16

Operands

Syntax

Purpose

Notes

Example

16-Bit Decimal-Hex Conversion HX16

None

HX16

To convert a 16-bit decimal number to its hex equivalent.

1 l The HX 16 command prompts the user for decimal input.

2) User must not enter more than five digits and leading zeros are assumed.

3) Decimal numbers outside the range + 32767 to -32768 are not allowed. Either
violation will cause a VALUE ERROR message.

4) Data may be entered with either a <CR> or a <SP>. The converted number is then
displayed on the same line, and the user is prompted for another input. If no entry is
made, <CR> or <SP> terminates the command.

?HX16
DEC INPUT? 23456<CR> = >SBAO<CR>
DEC INPUT?<CR>

?

3-37

HX32

Operands

Syntax

Purpose

Notes

Example

3-38

32-Bit Decimal.-Hex Conversion HX32

None

HX32

To convert a 32-bit decimal number tC> its hex equivalent.

1) The HX32 command prompts the user for decimal input. No more than ten digits.
can be entered and leading zeros are assumed. i::

2) Decimal numbers outside the range + 213748364 7 to -2147483648. Either vio
lation will cause a VALUE ERROR message to display.

3) Data entered may be terminated with either a <CR> or a <SP>. The converted
number is then displayed on the same line, and the user is prompted for another
input. If no entry is made, <CR> or <SP> terminates the command.

?HX32
DEC IHPUT? 15732735<5P> = >OFOOFFF<SP>
DEC I HPUT?. <SP>

?

INIT

Operands

Syntax

Purpose

Notes

Example

Display/Modify Clock/Memory Source

None

INIT

To set the EVM emulator clock source and/or program memory to either internal or
external.

INIT

1) The clock and memory source default at RESET to the internal setting. This means
that the EVM is supplying the clock used by the target system and the 4K words of
program memory are on-board the EVM.

2) If external memory is specified, the EVM program memory display/modify com
mands (MPM, DPM, FBPM, FWPM, SPM, LPM, FPM AND NOP) cannot be used
with the memory on the target system.

3) Selecting external clock also selects external BIO and INT, thus enabling BIO and
INT signals to reach the on-board TMS32010 from the target connector.

4) If external CLOCK is selected just to get external BIO and INT, the internal 20 MHz
clock can be jumpered to the external clock position in the EVM by connecting po
sitions 2-3 of the jumper above the emulation cable. If this is done then power
must not be applied to the V cc pin (pin 30) of the emulation cable target connecter.

?INIT
CLOCK SOURCE • INTERNAL ExternalcSP>
PROGRAM MEMORY • INTERNAL <CR>

?

External .clock
i5 enabled.
<Note: only the
E in EXTERNAL
i!I needed; all
other character!!
are ignored.)

3-39

INITO

Operands

Syntax

Purpose

Notes

Example

3-40

Enable Memory Initialization INITO

None

INITO

To enable the automatically memory initialization associated with the monitor com
mands LPM (Load Program Memory) and ASM (Execute Assembler). Memory initializa
tion involves filling memory with >7F80 (NOP Opcode).

The user cannot tell whether memory initialization is enabled or disabled when this com
mand is executed. Executing this command when initialization is already enabled will
continue to enable initialization. memory initializaion enabled at system reset.

?JNITO<CR>

?

INTIF

Operands

Syntax

Purpose

Notes

Example

Memory Initialization Disable INTIF

None

INTIF

To disable the automatically memory initialization associated with the monitor com
mands LPM (Load Program Memory) and ASM (Execute Assembler). Memory initializa
tion involves filling memory with >7F80 (NOP Opcode).

The user cannot tell whether memory initialization is enabled or disabled when this com
mand is executed. Executing this command when initialization is already disabled will
continue to disable initialization.

?IHJTF<CR>

?

3-41

INTM

Operands

Syntax

Purpose

Note

Example

3-42

Interrupt Mask INTM

None

INTM

To display/modify the interrupt mask bit.

The interrupt mask is a single bit in the status register and is changed by the least signifi
cant bit of the entry.

?IHTM
IHTM = 0 C>

KHELP

Operands

Syntax

Purpose

Notes

Example

Display-Keyboard Entry Aids KHELP

Output port 1 or 2 (optional) default = 1

KIHELP] [output port]

To display the EVM keyboard entry aids (special function keys) menu for reference by
the user.

1) This command can be executed by either typing K, or entering the full word.

2) It is functionally equivalent to the text editor's K command.

3) Legal values for output port are 1 and 2.

?KHELP

Menu

?

Menu of 5pecial function key5
i5 di5played at the terminal.

3-43

LMS

Operands

Syntax

Purpose

Notes

Example

3-44

Load Machine State

Input port 1 or 2 (optional) default = 3

LMS [input port]

LMS

To load machine state data Jn the format created by the SMS command (see Secticm
3.3.1.14.). . ..

1) The machine state can be created by the SMS command, or can be create.d.as a
text file on a host system with the same format as in SMS and downloaded
through Port 2.

2) For users with terminal emulation software downloading through Port 1, the out
put port is set to 2.

3) If the machine state data is loaded from tape, a filename input is prompted for, and
the tape is searched for a "state" file with that name.

4) The operation can be aborted while in progress with the <ESC> key.

5) The data memory portion of the machine state can only be loaded if stored in hex
(HX) format (i.e., the audio tape default condition), or in signed decimal (SD) for
mat. State files uploaded through Ports 1 or 2 to a host system must also use one
of those two formats; never the signed decimal(SO) format.

6) During downloading from Ports 2 or 3, the input buffer count is displayed at the
terminal. During downloading from Port 1, the input buffer count is displayed to
Port 2.

?LMS<CR>

FILENAME: TSTAT
3

?

The machine state saved in
TSTAT he! been re!tored.

LPM

Operands

Syntax

Purpose

Notes

Example

Load Program Memory LPM

Input port 1 or 2 (optional) default = 3

LPM [input port]

To load program memory with object code stored either in TMS9900, TMS 7000, or
Tektronix format.

1) The LPM command automatically distinguishes between TMS9900, TMS7000,
and Tektronix format. All object data is loaded at the absolute (not relocatable
level.

2) When loading from Port 3 (audio tape), only file types with the correct file name
will be loaded (see Section 3. 3. 1. 16 .. The LPM command derives the load address
from the object file itself.

3) The operation can be aborted while in progress with the <ESC> key.

4) For users with terminal emulation software, downloading through Port 1, the out
put port is set to 2. During downloading from Port 1, the input buffer count and the
IDT (for TMS9900 and TMS7000 formats) are displayed to Port 2.

5) During downloading from Ports 2 or 3, the input buffer count is displayed to the
terminal. During downloading from Port 2, the IDT is displayed to the terminal for
TMS9900 and TMS7000 formats.

6) When the load command executes, program memory is initially filled with the NOP
opcode 1>7F80).

7) The revision 1.2 firmware used a non-standard word count for the Tektronix object
code download format. The revision 2.0 firmware has been changed to use the
standard byte count in each object code record. This will allow use of standard
Tektronix object code without the need for loader software to adjust the byte
count to a word count before the file is downloaded to the EVM.

?LPM<CR>

FILENAME; PROG1
3

?

User has loaded a saved object
file from Port 3.

3-45

MCC

Operands

Syntax

Purpose

Notes

Example

3-46

Display/Modify Cursor Control Characters MCC

None

MCC

To modify the character or character sequence for controlling the cursor and cursor left
functions.

1) The % and ! chain terminators (see Section 2. must send a cursor up character or
character sequence to the user's terminal in order to provide a fixed display. If the
cursor up character or character sequence recognized by the user's terminal is not
equivalent to the cursor up character loaded by the EVM at RESET (see Table 2-5),
then the MCC command must be executed to modify the character or sequence,
which can be one, two or three characters in length.

2) The MCC command also inputs the character or sequence for cursor left, which is
sent to the terminal during normal editing operations.

3) Since cursor right is handled by overprinting, and cursor down is accomplished
with a line feed, these characters need only be in the library of recognized control
characters received from but never sent to the terminal. Control sequences in the
library can only be two characters in length.

4) The MCC command cannot be aborted by an <ESC>, since this character is legal in
cursor control sequences.

5) After execution of the MCC command, execution of the CLIB command will cause
a display of the new cursor up character.

6) Executing the $DEFC command reloads the power-up default values of the cursor
up and cursor left control characters. See Section 2 for procedures on creating a
new EPROM to change the power-up default values of the control characters.

?MCC
>08 ENTER CURSOR UP<CR>
>08 ENTER CURSOR LEFT<CR>

?

When MCC is entered, the current value(s) for each cursor control is displayed in hex
adecimal. The first entry prompt is the cursor up control. Entry of a <CR> as the first
character will leave the current value intact and continue execution of the command.
Nothing is echoed, and entries other than a <CR> (up to three characters) will change
the value of the cursor up control. If a <CR> is not received before the fourth character,
the command is aborted and the power-up default value is reloaded.

The second prompt in the display is for the cursor left control. Entry here is the same as
for the cursor up control.

MOM

Operands

Syntax

Purpose

Notes

Example

Display/Modify Data Memory

Start address >Oto >SF (optional) default = 0

MOM [start address]

To display and/or modify locations in data memory.

MOM

1) Legal address range is >Oto >SF. Decimal addresses are allowed if preceded by a
plus sign.

2) Since operation is in data memory, data display/modify format is assumed to be in
signed decimal, but can be changed by using one of the subcommands (see Sec
tion 3.3.3. 1). Hexadecimal data entry is allowed if preceded by a greater-than sign
(>).

?MOM +100
6'1 • +00000
6'1 -00001
65 = +00021
65 = +00021

?

-1,R
<SP>
,H
<CR>

>0015

Start at location >6'1 (+100),
5tep to location >65, and
di5played in hexadecimal.

3-47

MENU

Operands

Syntax

Purpose

Notes

Example

3-48

Display Monitor Menu MENU

None

MENU

To display the monitor menu to the terminal.

1) This command is functionally equivalent to the PROM Utility MENU command.

2) The monitor menu can be sent to Port 2 (the line printer) with the /MON command
(see Section 3.4.).

3) The monitor menu is displayed automatically on return from the text editor and any
of the assemblers, if the terminal baud rate is greater than 1200 baud. At any baud
rate, it can be requested by the MENU command.

?MENU (Command)

** TMS320 EVM MONITOR ** -- ---+

"HELP" MONITOR COMMANDS
"MENU" THIS MENU
"EDIT" TEXT EDITOR) CDi5play>
11ASM11 ASSEMBLER
11 LBLA11 LINE-BY-LINE ASSEMBLER
11 PASM11 PATCH ASSEMBLER
11 RASM11 REVERSE ASSEMBLER
"PROM" PROM UT! LI TY -- ---+

?

MO

Operands

Syntax

Purpose

Notes

Example

Enable Audio Cassette Motor

None

MO

To permit positioning of the cassette tape without having to disconnect the control
cable at the tape drive.

MO

1) With the cassette motor under program control, the user can use this command to
force the motor to turn on for rewinding, positioning of the tape past the leader,
etc.

2) Monitor execution stops when this command is activated; the MO command is
terminated with either a <CR> or <SP>, at which time monitor execution recom
mences.

3) This command is discussed in detail in Section 8.

?MO
<CR>

?

The tape recorder motor is enabled.
Control is returned to the monitor
with the <CR>.

3-49

MOVE

Operands

Syntax

Purpose

Notes

Example

3-50

Move Program Memory MOVE

1) Memory block start address (>Oto >FFF)
2) Memory block end address (>Oto >FFF)
3) Destination block address (>Oto >FFF)

MOVE <start addr> <end addr> <dest addr>

To move section of program memory to higher or lower parts of program memory.

1) Legal address range for all three addresses is >Oto >FFF.

2) The memory block start address parameter must be less than the block end ad
dress parameter or an ADDRESS ERROR message will display.

3) Memory blocks can overlap (see the example below), since moves down in mem
ory start at the low address, and moves up in memory start at the high address (see
Figure 3-1.

?MOVE 100 200 170

?

A
<NOTE 1>

B
<NOTE 2>

Block 100-200 <A> i5 moved to
begin at addre55 170 , a5
illustrated in Figure 3-1.

NOTE 1: If the move is performed from
block A to block B, transfer
starts from location >200 to
>270 and continues backwards
toward locations >100 and
>170.

NOTE 2: If the move is performed from
block B to block A, transfer
starts from location >170 to
>100 and continues forward
toward locations >270 and
>200.

MPM

Operands

Syntax

Purpose

Notes

Example

Display/Modify Program Memory MPM

Start address >Oto >FFF (optional) default = 0

MPM [start address]

To display and/or modify locations in program memory.

1) The starting address allows the user to enter an offset address from >O to >FFF.
Entry is expected in hexadecimal, with decimal entry allowed if preceded by a plus
sign (+)for addresses or a minus sign (-)for data.

2) Since the operation is in program memory, the data display/entry format is as
sumed to be hex, but can be changed with a subcommand. Decimal data entry is
allowed if preceded by a plus sign or a minus sign.

?MPM 800

?

800 = 6880 6881,R
800 = 6881 <SP>
801 = 7F80 <CR>

The opcode at >800 is changed and
displayed at <SP>, then causes the
opcode at >801 to be displayed.

3-51

NOP

Operands

Syntax

Purpose

Note

Example

3-52

Fill Program Memory with NOPs NOP

None

NOP

To fill program memory with> 7F80.

Since it fills memory, this command initializes the text editor.

?HOP Program memory i5 filled 111ith >7f'80.

?

ov

Operands

Syntax

Purpose

Note

Example

Display/Modify Overflow Flag ov

None

ov

To display and/or modify the overflow flag mode.

The overflow flag is a single bit of the status register and is changed by the least signifi
cant bit of the entry.

?OV The overflow flag it ditplayed.
OV • 0 cCR>

?

3-53

OVM Display/Modify Overflow Mode OVM

Operands: None

Syntax: OVM

Purpose: To display and/or modify the overflow flag mode.

Note: The overflow mode is defined by a single bit of the status register and is changed by ·
the least significant bit of the entry.

Example

3-54

?QVM

?

OVM = 0 1,R
OVM = <CR>

The overflow mode bit is displayed,
modified, .and redisplayed.

PC

Operands

Syntax

Purpose

Note

Example

Display/Modify Program Counter PC

None

PC

To display and/or modify the contents of the program counter.

The program counter is displayed and modified as a hexadecimal number. The legal
range is from >Oto >FFF.

?PC

?

PC • 088 O,R
PC • 000 <CR>

The contents of the program counter
are displayed, modified, and redis
played.

3-55

PREG

Operands

Syntax

Purpose

Notes

Example

3-56

Display/Modify P Register PREG

None

P[REGJ

To display and/or modify the contents of the auxiliary register.

1) The P register is displayed as a signed 32-bit decimal number, with input expected
in signed decimal.

2) Entering a preceding plus sign (+)is optional, since it is assumed. Negative num
bers must be preceded by a minus sign (-). Entering values in hex is allowed if a
greater-than sign (>) precedes the entry.

3) Prime numbers greater than 2 to the sixteenth power are not allowed. Entering
them will not cause an error, nor will it change the emulator's P register, but it will
not load the TMS3201 O's P register correctly upon running or single-stepping.

?PREG

?

PREG • -94066 1,R
PREG = 1 <CR>

The contents of P register are
di splayed, modified, and
redisplayed.

RUN

Operands

Syntax

Purpose

Note

Example

Execute User Program Without Breakpoints RUN

None

RUN

To execute the user program with no breakpoints without having to clear all existing
breakpoints.

The only way to recover from a RUN condition is with RESET. This is referred to as a
"warm" RESET, and does not initialize baud rates, clock, memory sources, etc. When a
warm RESET is performed, all TMS32010 registers except for the PC are saved. The
state of the BIO pin is displayed and, if an interrupt occurred during execution, the IN
TERRUPT message is displayed.

Previoiusly, the RESET switch on the EVM was the only way to terminate user program
execution when a breakpoint was not set. The escape key (< ESC >) will also terminate
program execution in the same way as the RESET switch, allowing full control of the
EVM from the keyboard. Since this is an uncontrolled halt of the TMS320, the program
counter value is not retrieved but all other contents of the machine state are saved.

?RUH

C RESET

Execute without breakpoints. Execution
continues until a RESET is performed.
An interrupt occurred during execution.

USER HALT -PC RESET 810=0 INTERRUPT

?

3-57

SB

Operands

Syntax

Purpose

Notes

Example

3-58

Set Breakpoints SB

Initial breakpoint (optional) default = 1

SB [number 1 to 81

To permit user to selectively display and/or modify up to eight breakpoints.

1) Legal range of breakpoint numbers is from 1 (default) to 8; entering a zero is equiv
alent to entering a 1 .

21 A breakpoint that is not set (i.e., one that is clear) is displayed as XXX.

3) Legal address range for a breakpoint is >O to >FFF. Entering a value larger than
>FFF causes a non-fatal ADDRESS ERROR message to display.

4) Breakpoints can be entered in any order, and breakpoint locations can be skipped.
For example, only SB5 and SB7 might be used.

5) When a program is executed to a breakpoint, the instruction at the breakpoint is
not executed. Subsequent execution will start at the location of the breakpoint.

6) When displaying a breakpoint, the terminal will beep (if so equipped) if an event
counter is set for that breakpoint.

7) A special check is built into the SB command to check for breakpoints set on illegal
locations. If this occurs, a non-fatal BREAKPOINT ERROR message will display as
follows:

BREAKPOINT ERROR XXXX YYY
where XXXX is one of the opcodes listed below, and YYY is the address of the opcode.
An illegal location is defined as the location after the location containing one of the fol
lowing mnemonics (opcodes):

TBRD >67XX PUSH >7F9C <Where X equals
TBWR >7DXX POP >7F9D any value>
CALA >7F8C IN >4XXX
RET >7F8D OUT >4XXX

8) If a breakpoint is set to occur at a location in program memory that is read by a
TBLR instruction, the program will be halted when either the instruction at that
locations is executed or when that location is read by the TNLR instruction. If the
halt occurs because of the TBLR instruction, the program counter and the accumu
lator will contain the address of the breakpoint. However, the last instruction actu
ally executed was the TBLR instruction to recover from this inadvertant break
point, the user must make the program counter point to the instruction following
the TBLR instruction, and then continue execution with the EX command.

?SB

?

BP1 • XXX 88,R
BP1 •088 <CR>

Breakpoint is set to 1.

SB SB

SET BREAKPOINT SUBCOMMANDS: The subcommands described here can only be
used with the SB command. The subcommands may be entered in place of, or in addi
tion to, data. The menu of subcommands is accessed by entering" ,M", resulting in the
following display:

,M THIS MENU
,C CLEAR BREAKPOINT
,R REDISPLAY BREAKPOINT
,E DISPLAY EVENT COUNT
<SP>,<LF>,CNTL/J,CNTL/V,CURSOR DOWN
CNTLCK,Z>,CURSOR UP
<CR> QUIT

Next Entry
Previou5 Entry

If entered in addition to data, the data is first stored and then the subcommand is exe
cuted. Occurrence of any error during entry of a subcommand will cause control to re
turn to the monitor top level. The Next Entry/Previous Entry/QUIT commands allow se
quencing of locations in any direction and normal command termination (return to the
monitor). The other commands cause the following functions:

,M Causes display of the breakpoint subcommand menu.

,C Clears the current breakpoint.

,R Allows redisplay of the just entered breakpoint without having to advance to
the next entry and then back up one.

,E Displays the event count currently set for the breakpoint most recently dis
played. If no event count is set, this command functions the same as the ,R
command.

3-59

SCALE

Operands

Syntax

Purpe>se

Notes

Example

Display Scaled 16-Bit Decimal Number SCALE

None

SCALE

To display a 16-bit decimal number scaled by the specified power of 2 from 0 to 15 •. ;

1) The SCALE command prompts the user for both the scale factor and the deeimal
input.

21 No more than five digits of decimal input may be entered and leading zeros are
assumed.

3) Entry of a scale factor of 0 or of one larger than 15 will terminate the command.

4) If a number outside the range + 32767 to -32768 is entered, a VALUE ERROR
message will display.

5) The decimal input sequence repeats until entry of either <SP> or <CR> is made in
place of a decimal number. Entry of <SP> returns to scale factor input. Entry of
<CR> terminates the command.

?SCALE
SCALE FACTOR? 2<CR>
DEC INPUT? 16<CR> • +4.000000000
DEC INPUT? <SP>
SCALE FACTOR? 1<CR>
DEC INPUT? 4<CR> = +2.00000000
DEC INPUT? <CR>

?

SD16

Operands

Syntax

Purpose

Notes

Example

16-Bit Signed Hex-Decimal Conversion SD16

None

SD16

To convert a 16-bit hex input to its signed decimal equivalent.

1) The SD 16 command prompts the user for hex input and prints a preceding greater
than sign (>).

2) The user can enter as many digits as desired; however, the command will accept
only the last four digits entered and assume leading zeros.

3) Data entered may be terminated with either a <CR> or <SP>. The converted num
ber is then displayed on the same line, and the user is prompted for another input. If
no entry is made, <CR>, or <SP> terminates the command.

?SD16
HEX INPUT? >FFFF<CR> • -1
HEX IHPUT?>cCR>
?

3-61

8032

Operands

Syntax

Purpose

Notes

Example

3-62

32-Bit Signed Hex-Decimal Conversion 8032

None

SD32

To convert a 32-bit hex input to its signed decimal equivalent.

1) The SD32 command prompts the user for hex input.~nd prints a preceding greater
than sign (>).

2) The user can enter as many digits as desired, however, the command will only ac
cept the last eight digits entered and assume leading zeros.

3) Data entered may be terminated with either a <CR> or <SP>. The converted num
ber is then displayed on the same line, and the user is prompted for another input. If
no entry is made, <CR> or <SP> terminates the command.

?SD32
HEX INPUT? >FOOFFF<SP> = 15732735
HEX INPUT? <SP>

?

SMS

Operands

Syntax

Purpose

Notes

Example

Save/Show Machine State

Output port 1, 2, or 3 (optional) default = 3

SMS [output port]

SMS

To dump the machine state data to the specified output port to be displayed or stored
for later retrieval.

1) The machine state consists of the STATE command display and the contents of the
data memory.

2) If the output port is specified as 1 or 2, the display format for the data memory is
prompted for format. The choices are: hexadecimal (HX), signed decimal (SD), or
unsigned decimal (UD). If the output port is specified as 3 (audio tape) the data
memory is stored in hex format and a state descriptor is assigned to the file so that
only the LMS command can load that type file.

3) The operation can be aborted while in progress by using the <ESC> key.

4) If the state data is assigned to Port 1 or Port 2, the <SP> bar will start and stop the
dump. If the state data is assigned to either Port 2 or 3, the less-than sign (<)
which is the end-of-dump character sign is appended. This character is required for
indicating the end of the file for proper LMS command execution.

1. ?SMS<CR>

FILENAME: TSTAT<CR>
READY TO RECORD? <CR>

CData Dumped To Port 3)

?

2. ?SMS 1
C TMS32010 REGISTERS

TMS32010 DATA MEMORY

?

The current machine state
has been saved to audio
tape. READY TO RECORD
prompts to put cassette in
record mode.

Machine state has been
displayed to the terminal.

3-63

SPM

Operands

Syntax

Purpose

Notes

Example

3-64

Save Program Memory

1) Memory dump start address >Oto >FFF
2) Memory dump end address >Oto >FFF
3) Output port number >Oto >FFF (optional) default = 3

SPM <address 1 ><address 2> [output port]

To dump memory to Ports 1, 2 or 3. Data will be dumped in either 9900 format or
·Tektronix format.

1) The object data is dumped at the absolute (not relocatable) level.

SPM

2) Entering a dump end address that is less than the start address will cause an AD
DRESS ERROR message to display. Failing to enter one of the address parameters
will cause a VALUE ERROR message to display.

3) The range of address values is >O to >FFF. When entering address parameters,
only the last four characters entered are accepted and leading zeros are assumed.

4) The FORMAT prompt allows the choice of TMS9900 dump format (the default) or
Tektronix format. Tektronix format is chosen by entering a"T". (The entire word
may be entered, but only the T affects the decision.) Any other entry causes a de
fault to TMS9900 dump format.

5) The operation can be aborted while in progress with the <ESC> key.

6) When stored to audio tape, object files in either format contain an "object descrip
tor" so that only the LPM command can load them.

?SPM 0 FFF<CR>
FORMAT? C9900)<CR>

FILENAME: PROG1
READY TO RECORD? <CR>

<Data dumped to Port 3.)

?

The entire 4K-word program
memory space has been saved
in 9900 format to audio
tape. READY TO RECORD
prompts the user to put the
cassette in Record Mode.

SS

Operands

Syntax

Purpose

Notes

Examples

Single-Step User Program SS

1) Display type 0 to 4 (optional) default = 0
2) Initial display port 1 or 2 (optional) default = 1

SS [display type] [initial display port]

To single-step the user program.

1) Legal values for display type are 0 (default) to 4. Legal values for output port are 1
(default) and 2.

2) All parameters are changeable (see subcommands, Section 3.3.5. 7).

3) Attempting to enter a display type of 2 to 4 is only allowed if a trace line has been
defined by the ST command. If displaying the trace line, the display format is asked
for before execution begins. Since the trace line displays data memory locations,
default is signed decimal.

4) The only line common to all display types is the first line. This line displays the PC
(in hexadecimal) of the instruction to be executed next, the state of the BIO pin,
whether or not an interrupt occurred (indicated by the INTERRUPT message), and
the mnemonic of the instruction just executed.

5) Once inside the SS command, the prompt ("SS") is displayed when the command
is ready to accept a subcommand. Entering a <CR> will return control to the moni
tor.

?SS A single-step instruction is executed.
PC = 020 810=1 MNEMONIC---> NOP
ACC = +5 TREG = -1 PREG = -99
CSS><CR>

?

SINGLE-STEP USER PROGRAM SUBCOMMANDS: The subcommands may be entered
after the SS command prompt is displayed. The menu of subcommands is accessed by
entering "M", resulting in the following display:

M THIS MENU
Tx CHANGE DISPLAY TYPE
F CHANGE DISPLAY FORMAT
c ENTER STEP PROGRAM
p DISPLAY PROGRAM COUNTER
R PC DISPLAY RANGE

LI ST TO PORT 1
2 LI ST TO PORT2
<SP> EXECUTE ONE SINGLE STEP
<CR> RETURN TO MONITOR
Execution of any of the commands will cause the following:

M Causes the subcommand menu to display.

3-65

SS SS

3-66

Tx (where xis the display type selected) Causes a change in the display type, as spec
ified by x. The display types are:

0 (default)ACC,T,P
1 All Internal Registers
2 Type 0 Plus Trace Line set using ST
3 Type 1 Plus Trace Line set using ST
4 Trace Line set using ST
5 PC/BIO/Interrupt/mnemonic Only

If no locations are set in the trace line, attempting to enter a display type of 2 to 4
will force a TRACE NOT SET error message and default the display type to 0. This
command automatically calls the F command for types 2 to 4 displays. The PC and
the mnemonic of the instruction just executed are always displayed.

F Selects format for the display of the trace line (data memory locations). The user
will be prompted for a format if the display type selected was from 2 to 4 and trace
locations have been entered. Formats are: HX (hexadecimal), SD (signed decimal),
and UD (unsigned decimal). Since trace locations are in data memory, default value
for format is SD (signed decimal). This command automatically calls the C com
mand. If a signed decimal format is specified, the user can also specify a scale fac
tor.

C Allows the user to specify a count of steps to be taken the next time a <SP> is
entered. Default is O; entering a zero is equivalent to entering a 1. The maximum
value allowed is 254. Entry is in decimal format. Any count entered is used as the
default until the Single-Step command is quit.

This mode will continue until entry of a <CR>. An example of a step count entry is:

(SS) C
COUNT (0) 20
[single steping begins)

P Allows display of the current program counter value.

R Allows display/modification of the PC range within the limits:

PCLO = >OOO
PC HI= >FFF

The PC LO range is displayed first and can be changed or skipped. If the PC low
range entry is terminated with a Next Entry character (<SP>, <LF>, Cursor Down),
the PC high range is displayed and can then be changed or skipped. If the PC high
entry is terminated with a Previous Entry character (<CNTL/K,Z or Cursor Up), the
PC low entry is repeated. The display/modify process is terminated by entry of a
<CR>. Address values between 0 and >FFF can be entered, with entry expected in
hexadecimal. The values entered define a bracket for program counter values out
side of which the SS command will inhibit display. This allows the user to single
step through a particular part of a program and then execute to that part of the
program again when outside the range due to the display being inhibited. Should

SS SS

enter a range of values and no display results during subsequent single steps, the P com
mand will allow display of the current PC without leaving the single-step command
mode. Execution for restricted PC range is not in real time.

1 Causes subsequent single-step displays to be sent to Port 1 (the terminal). This
is the default condition upon entry into the SS command. The 1 command is
intended to reset the condition caused by the 2 command.

2 Causes subsequent single-step displays to be sent to Port 2 for either printing
on a line printer or logging to a host computer. For each single-step display sent
to Port 2 that was caused by the user pressing the space bar, the SS prompt is
repeated at the terminal. If a large step count is entered and all display is sent to
Port 2 while display is active, keyboard input is inhibited except for <CR> and
<SP> as described below.

<SP> Entering a <SP> from the SS prompt causes execution of one instruction. If a
step count (subcommand Cl different than 1 has been previously entered, that
many steps will be taken. While multiple steps are being taken, entering a <SP>
w;n freeze the display and the single-step process between instructions; enter
ing another <SP> allows the process to proceed. Entry of a <CR> at any time
will clear the count, stop the display, and return to the SS prompt. The user
should note that while the single-step command is executing outside the PC dis
play range established by a P command, entering a <SP> will not cause the
command to freeze.

<CR> Entry of a <CR> from the SS prompt will return control to the monitor. Entry of a
<CR> during display of single instruction stepa will return control to the single
step command with a prompt of SS, and clear any step count values remaining.

3-67

ST

Operands

Syntax

Purpose

Notes

Example

3-68

Set Single-Step Trace Line Locations

Initial trace number 1 to 6 (optional) default = 1

ST [initial trace number)

ST

To allow the user to selectively display/modify up to six data memory trace locations,

1) Legal range of trace numbers is from 1 (default) to 6; entering a zero is the same as
entering a 1 .

2) A trace that is not set (clear) is displayed as: XX.

3) Legal address range for a trace is >O to >SF. Entering a value larger than >SF
causes a non-fatal ADDRESS ERROR message to display.

4) Address entry is allowed in decimal if preceded by a plus sign (+).

5) See also the subcommands that may be used with this command is Section 3.

?ST
TRACE1 a XX +143,R<CR>
TRACE1 • SF <CR>

Set TRACE1.

STACK

Operands

Syntax

Purpose

Notes

Example

Display/Modify Stack Location

Stack starting location 0 to 3 (optional) def a ult = 0

STACK [starting location]

To display and/or modify locations in the stack.

STACK

1) Stack location values are from 0 to 3, with 0 being the "top of stack" and 3 being
"bottom of stack".

2) Stack locations are displayed in hexadecimal, with entry defaulting to hex.

3) Entry can be in decimal if preceded by plus or minus signs.

?STACK 1

?

STACK1 • 000 33cSP>
STACK2 • 000 44<CR>

Two middle stack locations
are displayed and modified.

3-69

TABLE

·Operands

Syntax

Purpose

Notes

Example

3-70

Display Assembler Label Table TABLE

Output port 1 or 2 (optional) default = 1

TABLE [output port]

To cause a display or print of the label table created by the most recent execution otthe
assembler. If no valid label table is contained in memory, nothing will display/print.

1) Legal values for output port are 1 and 2.

2) Execution of the command displays/prints the label table in two parts: the unre
solved references, followed by the entire label table.

3) The table printed/displayed is the equivalent to the one printed when the SYMT
assembler directive is executed.

?TABLE

NUM 001 LDC 004 NUMZ 002
LOOP OOA SUB1 09C SUEZ AAF
LOOP1 139

?

TABS

Operands

Syntax

Purpose

Notes

Example

Display/Modify Tabs TABS

None

TABS

To allow the user to display and modify, if desired, one or all of the three terminal tab
settings.

1) Upon execution of the TABS command, the first tab setting is displayed. A tab set
ting can be changed by entering the new tab setting after the current tab value.
After a new tab value is entered, terminating the entry with a comma will cause the
tab to be redisplayed.

2) Entering a <CR> will terminate the command and return control to the editor. En
tering a Next Entry character (SP, LF, CNTL/J, CNTLN, cursor down) will display
the next tab, and entry of a Previous Entry character (CNTL/K,Z or cursor up) will
display the previous tab.

3) Tab settings must be in increasing value and less than or equal to decimal 70. Viola
tion of either constraint will cause the tabs to be reset to their initial values of 8, 14,
and 30.

1.

2.

?TABS
TAB1 = 8 12<SP>
TAB2 = 14 22<SP>
TAB3 = 30 40<SP>

?

?TABS
TAB1 12 10,<CR>
TAB1 = 10<SP>
TAB2 = 22 99<CR>
VALUE ERROR - TABS RESET

?

Tab settings are
changed.

User changed and re
displayed TAB1. The
value entered for
TAB2 is too large;
tabs are reset to
original values of
8. 14. 30.

3-71

TREG

Operands

Syntax

Purpose

Notes

Example

3-72

Display/Modify T Register TREG

None

T[REGJ

To display and/or modify the contents of the T register.

1 I The T register is displayed as a signed 16-bit decimal number with input expected
in signed decimal.

21 Entering a preceding plus (+I sign is optional, since it is assumed. Negative num
bers must be preceded by a minus sign (-). Entering values in hex is allowed if a
greater-than sign (> I precedes the entry.

?TREG

?

TREG = -899 >FFFF,R
TREG = -1 <CR>

The contents of T register are
displayed, modified, and re
displayed. Notice user chose
to enter -1 as >FFFF.

UD16

Operands

Syntax

Purpose

Notes

Example

16-Bit Unsigned Hex-Decimal Conversion UD16

None

UD16

To convert a 16-bit hexadecimal input to its unsigned decimal equivalent.

1) The UD 16 command prompts the user for hex input and prints a preceding greater
than sign (>).

2) User can enter as many digits as desired; however, the command will accept only
the last four digits entered and assume leading zeros.

3) Data entered may be terminated with either a <CR> or <SP>. The converted num
ber is then displayed on the same line, and the user is prompted for another input. If
no entry is made, either <CR> or <SP> terminates the command.

?UD16
HEX INPUT? >FFFF<CR> = 65535
HEX INPUT?><CR>

?

3-73

UD32

Operands

Syntax

Purpose

Notes

Example

3-74

32-Bit Unsigned Hex-Decimal Conversion UD32

None

UD32

To convert a 32-bit hex input to its unsigned decimal equivalent.

1) The UD32 command prompts the user for hex input and prints a preceding greater
than sign (>).

2) User can enter as many digits as desired; however, the command will accept only
the last eight digits entered and assume leading zeros.

3) Data entered may be terminated with either a <CR> or <SP>. The converted num
ber is then displayed on the same line, and the user is prompted for another input. If
no entry is made, either <CR> or <SP> terminates the command.

?UD32
HEX INPUT? >FOOFFF • 15732735cSP>
HEX INPUT? ><SP>

?

DEBUG MONITOR COMMANDS

3.4 DISPLAY MENU COMMANDS

The monitor menu display commands allow the user to call up any menu available within
the EVM software for display either to the terminal screen or to a printer. Several of the
menus are accessible through the monitor subcommands (usually in the form of a ,Mor
Ml, which invokes the menu for a particular command type (display/modify montor, dis
play/modify register set, etc.) Any of the menus may be called by executing the appro
priate command in the following format:

?CCOMMAHDl [output portl

The output port parameter is optional; the default is 1 (to the terminal). The legal values
for the output port parameter are 1 and 2.

All display menu commands are distinguished by being preceeded by a slash(/), and by
having a command name similar to the command type to which the menu belongs (i.e., I
MON for display/modify monitor commands menu, /MM for display/modify memory
commands menu, etc.). The display menu commands are listed in Table 3-9.

TABLE 3-9 - DISPLAY MENU COMMANDS

COMMAND MNEMONIC

Display All the Menu Display Menus /HELP

Display the Monitor Menu /MON

Display the PROM Utility Menu /PROM

Display the Text Editor Commands Menu /EDIT

Display/Modify Memory Commands Menu /MM

Display Register Commands Menu /REGS

Display Set Breakpoint Subcommands Menu /SB

Display Set Trace Subcommands Menu /ST

Display Baud Rate Subcommands Menu /BAUD

Display Single-Step Subcommands Menu /SS

The commands function in the following manner:

/HELP

/MON

Causes a display/printout of all of the menus of display commands listed in
Table 3-9. The format is:

I HELP <output port>

Causes a display of the monitor commands menu. The format is:

/MOH [output port]

This command is distinguished from the /HELP command in that the /HELP
command does not allow an output port parameter and the /HELP command
also has a different function when in the PROM utility.

/PROM Causes the display of the PROM utility menu from the monitor command
entry level. This display is equivalent to the Menu command when in the
PROM utility. The format is:

/EDIT

/PROM [output portl

Causes the display of the text editor command menu from the monitor
command level. This command is equivalent to the text editor Help
command, as described in Section 5. The format is:

/EDIT [output port>

3-75

DEBUG MONITOR COMMANDS

/MM Causes the display of the Modify Memory commands menu. May be called
at any time while executing one of the following monitor commands:

/REGS

MPM <Di5play/Modify Program Memory>
MDM <Di5play/Modify Data Memory>
FBPM (Find Byte in Program Memory>
FWPM (Find Word in Program Memory)
FBDM (Find Byte in Data Memory)
FWDM <Find Word in Data Memory)

Causes the display of the Display/Modify Register commands menu. May be
called at any time while executing any of the following monitor commands:

ACC CDi5play/Modify Accumulator)
TREG <Display/Modify T Register)
PREG (Display/Modify P Register)
PC <Display/Modify Program Counter)
ARO <Display/Modify Auxiliary Regi5ter O>
AR1 CD15play/Modify Auxiliary Register 1.
OV (Di5play/Modify Overflow Flag>
OVM <Display/Modify Overflow Mode)
IHTM (Display Modify Interrupt Mode)
ARP <Display/Modify Auxiliary Register Pointer)
DP (Display/Modify Data Page Pointer)
STACK <Display/Modify Stack)

/SB Causes the display of the menu of subcommands which may be used within
the Set Breakpoint (SB) command.

/ST Causes the display of the menu of subcommands which may be used within
the Set Trace (ST) command.

/BAUD Causes the display of the baud rate subcommands menu from within either
the BAUD 1 or BAUD2 command.

/SS Causes the display of the Single-Step (SS) command subcommands menu
from within the SS command. Use of a comma preceding an /SS
subcommand is optional with the SS command only (see Table 3-6.).

3.5 MONITOR PROGRAM SYSTEM ACCESS COMMANDS

3-76

The monitor program and the PROM Utility contain a set of system access commands
that give the flexibility of using some of the monitor and PROM Utility commands to
manipulate the system software resident on the EVM in the EPROM.

The system access commands for the PROM utility are discussed in Section 6. The fol
lowing paragraphs generally pertain to both the monitor program and the PROM utility
program system commands.

All system access commands are distinguished by being preceded by a dollar sign($)
and by having a command name mnemonic the same as the regular commands previ
ously described in this chapter and the PROM utility commands in Section 6.

DEBUG MONITOR COMMANDS

3.5. 1 Format

The format for any system access command is identical to the regular command, except
that the RAM restrictions have been changed from the TMS32010 RAM range (>0 to
>FFF) to the TMS9995 RAM range of >Oto >FFFF, in which the TMS32010 RAM re
sides at >AOOO to >BFFF.

NOTE

A command executing in TMS32010 RAM is word oriented, while its system ac
cess equivalent is byte oriented.

3.5.2 Command Menu

A menu listing all of the system access commands may be called by entering either
$HELP.

3.5.3 Monitor Program System Access Commands

The monitor program system access commands and their regular command equiva
lents, as well as four unique system commands are listed in Table 3-10. The system
access commands with regular equivalent commands function in the same manner as
their equivalent commands. See the description of the equivalent command for informa
tion; a description of each unique command follows the table.

TABLE 3-10 - SYSTEM ACCESS COMMANDS

COMMAND MNEMONIC EQUIVALENT

Display/Modify Program Memory $MPM MPM

Display Program Memory $DPM DPM

Fill Program Memory $FPM FPM

Find Byte in Program Memory $FBPM FBPM

Find Word in Program Memory $FWPM FWPM

Move Memory $MOVE MOVE

UNIQUE COMMANDS

Display/Modify Record Length $DAL

Monitor Expansion Command $USER

Display Operating System Revision

Level $REV

Perform a "Power Cycle" RESET $BOOT

Assign EVM Identifier $ID

Disable EVM Output $OFF

Enable EVM Output $ON

Echo User Input to Port 2 $EC

Echo All Characters to Port 2 $$EC

Disable All Echo $NEC

3-77

DEBUG MONITOR COMMANDS

3-78

The unique commands function in the following manner:

$DRL

$USER

REV

$BOOT

NOTE

Permits setting of the record length during download operations of
fixed-length record input files. The record length may be changed at any
time during download. The legal range is from 50 to 142, with 142 being
the default. Downloading a variable-length record with record length
longer than those allowed by the $DRL command will cause a loading
error.

Gives the capability to branch to any point in the TMS9995 memory
space. The starting address of TMS32010 RAM memory space within the
TMS9995 RAM metnory space is >AOOO. The return address to the
monitor through the monitor menu is >0080.

Causes a display of the revision level of the software resident on the EVM.
(The only time the revision level is displayed automatically is on
initialization of the system, i.e, on cold RESET.)

Performs a "power cycle" RESET from the keyboard and prompts for a
<CR> to execute autobaud. This RESET cycles the power and initializes
the baud rates, breakpoints, event counter, trace, clock and program
memory sources (both internal), transparency mode toggle character
(CNTL/C), the assembler label table, and the text editor.

Once the system is initialized, the assembler label table and the transparency mode
toggle character are not reinitialized by any other reset; $BOOT must be executed to
reset these two.

$ID Used to distinguish between the master and slave EVMs in a dual-EVM
operation. (see Section 2.)

$0FF/$0N Allows the output to the terminal (response to commands, etc.) to be
turned off and on. After execution of the $OFF command, entry from the
keyboard is still accepted, but the user sees nothing. Entry of the $ON
command enables the display. Execution of the EX and RUN commands
will also enable output, allowing display of breakpoints. Any RESET will
also enable output.

$EC Causes transmission of user-entered data from the terminal to be sent to
Port 2. If a slave EVM is cnnected at Port 2, it will execute the same
commands as the master EVM. If this command is executed on the master
with the $$EC command executed on the slave, a printer or CRT
connected to Port 2 of the slave will monitor the slave execution of
commands from the master.

DEBUG MONITOR COMMANDS

$$EC Causes echoing of all terminal activity at Port 2. For example, This allows
terminal activity to be sent to Port 2 for an overall display for
demonstration purposes. It also allows commands being executed by one
EVM to be sent to another EVM that has had its output suppressed by the
$OFF command.

$NEC Cancels both the $EC and $$EC commands.

3.6 MONITOR PROGRAM ERROR MESSAGES

Table 3-11 lists the monitor error messages and explains the cause of each.

TABLE 3-11 - MONITOR PROGRAM ERROR MESSAGES

ERROR MESSAGE

COMMAND

ERROR

PARAMETER

ERROR

VALUE ERROR

ADDRESS ERROR

;"APE ERROR

CHECKSUM

ERROR

TIMEOUT ERROR

CAUSE

The command interpreter was not able to interpret the command

as entered.

The parameter analyzer associated with the command

entered received a character that was not valid for the type of

data expected. Examples: a Z for hex input, or, a 4 for a port

parameter.

A parameter is out of range for the data expected, such as

entering a 4 for a port parameter. It can also indicate that a

parameter was expected and not entered.

An entered address is out of the legal range for the operation.

Legal ranges are:

Data memory: >Oto >SF

Program memory: >O to>FFF

An invalid checksum for a block of data loaded from the audio

tape is detected. The error includes the approximate RAM

address of the error and continues with the load process.

Indicates detection of an invalid checksum during download of

either 9900 or TX format object code. Error includes the

approximate RAM address of the error and continues with the

load process.

DTR signal true was not received within 20 seconds after entry in

the write routine to Port 2. When the EVM is writing to EIA Port 2,

it waits for DTR to start character transmission. If this signal does

not go true in approximately 20 seconds, the process times out.

(The duration of the timeout is user-changeable.)

3-79

DEBUG MONITOR COMMANDS

TABLE 3-11 - MONITOR PROGRAM ERROR MESSAGES (Continued)

3-80

ERROR MESSAGE

TAG ERROR

BREAKPOINT

ERROR

DEVICE ERROR

CAUSE

Indicates the presence of an invalid object tag during download

of either 9900 or TEK formated object code. Error includes the

approximate RAM address of the error and continues the load

process upon receipt of the next <CR> in the data stream.

A warn·ing against placing a breakpoint in RAM at a

location containing an opcode for aninstruction that the EVM

cannot breakpoint on. The error will occur if an attempt is made

to set a breakpoint on the location after the location containing

one of the following opcodes:

TBRD >67xx (where xx is any number)

TBWR >7Dxx

CALA >7FBC

RET >7FBD

PUSH >7F9C

POP >7F9D

IN >4xxx

OUT >4xxx

The format for the message is: BREAKPOINT ERROR XXXX YYY,

where XXXX is one of the opcodes listed above, and YYY is the

address of the opcode.

The user must note that the RAM will only hold BK bytes of text

(including line numbers) while the active text editor holds 15000

bytes. If the BK bytes is ever exceeded either on read or write a

"DEVICE ERROR" message will be issued.

4. THE ASSEMBLER AND REVERSE ASSEMBLER
4. 1 INTRODUCTION

This section provides a general discussion of the EVM assembler and reverse assembler.

4.2 ASSEMBLER EXECUTION

The assembler is executed from the monitor. The general format for executing the as
sembler is as follows:

?ASM [input port] [output port]
LINE NUMBERS? CNO><CR>

Whenever the assembler is executed, RAM is filled with >7F80 (NOP) to insure valid
execution outside the range of the user's program, and the text editor is initialized, clear
ing its contents. For information on assembler commands, refer to the TMS32010 As
sembly Language Programmer's Guide. Also see Section 4.2 for exceptions to the in
struction sets and assembler directives.

The assembler requires the use of an editor to produce text, which is then assembled
using the EVM. The editor used can be the one resident on the EVM, or an editor on a
host computer system. If the text is sourced from a host system, it must be bracketed
with the<> symbols in the file.

For example:

*> (Insert *> sign at top of.file)
LOOP BZ >100 ----+

LARP 0
SUB 13,4
SACL 10,0 I> <Text>

* COMMENT LI NE
NOP
END ----+

*< C Insert *< sign at bottom of file)

The greater-than (>)and less-than (<)signs are the beginning-of- and end-of-file mark
ers recognized by the EVM text editor and assembler. For the assembler these charac
ters can be preceded by a comment symbol (*) so that any cross assembler can assem
ble the file.

The EVM assembler accepts both forward and backward referenced labels. All equate
statements must occur before the equated label is used in an instruction. The assem
bled source listing will show >FFFF for branches for all forward referenced labels; how
ever, the END statement directive will resolve those labels and place the correct value
into the appropriate RAM locations. The object code in RAM may be inspected with the
monitor commands DPM and MPM, as described in Section 3.3.9.

After the assembler receives the END directive, it lists all unresolved labels. Immediately
following the unresolved listing is a list of all labels used in the program if the label table
list is requested with the SYMT assembler directive. The output listing will list the label
and the address of the label. These labels are printed as they occur in the assembler and
label table, three on a line. Lastly, the total count of errors and warnings which occurred
during assembly is also printed; this number is a decimal value.

Any time a file is assembled, only the object code is loaded into RAM. The original
source and/or source listings are not stored in the EVM RAM.

4-1

THE ASSEMBLER AND REVERSE ASSEMBLER

All files assembled from a host system must enter the EVM through Port 2. The specifics
of assembling from an external system are discussed in Section 4. 1 . 2.

4.2. 1 Input Port Designation

The input port can be either Port 1, 2, 3, or 4. If Port 2 is selected, the EVM will expect
source file(s) to be input from Port 2 with the proper beginning- and end-of-file markers.
Selecting Port 3 will cause the EVM to assemble from tape and will prompt the user for a
file name. The assembler will only load source files. The prompt:

LINE NUMBERS? CNO>

is displayed when input is from Port 2 (host computer), and output is to Port 1. This
mode is for download of text from a host system. This prompt is also displayed when
input is from Port 1 and output is to Port 2 (a line printer). This mode is provided for users
running terminal emulation software on a host system connected to the EVM at Port 1
(terminal).

The mode entered with both ports equal to two is a special mode for host system inter
action, allowing text to be sent to the EVM and the listing returned to the host via one
full duplex EIA link. The default for the prompt is NO, since most host text editors have
no line numbers. If the file was generated by the EVM text editor and saved on the host
system via uplink, then it would have line numbers, and the correct response in this case
would be YES.

Entry of a Y or an N in response to the line numbers prompt is acceptable since only the
first character is read; entry of any character other than Y is treated as an N.

Revision 1.2 requires a file to be uploaded from the text editor prior to assembly since
there is not enough RAM on the EVM to support both programs at the same time. With
Revision 2.0, it is possible to place an 8K byte static RAM in the EPROM programming
socket (U28) and read/write to it as PORT 4 using any of the download/upload com
mands. Two types of RAM devices may be used (any access time will work):

ELECTRONIC DEVICES INC.
HITACHI

EDl8808
HM6264

The EDl8808 can be placed in U28 and used with no modification to the EVM. The
HM6264 requires a solder jumper between pins 28-26 of U28 since it has an additional
(active high) enable that is a no-connect on the EDl8808. This jumper does not affect
EPROM programming since pin 26 is a no-connect on TMS2764 devices and, most im
portantly, inadvertantly turning on the programming voltate (+ 21 volts) with a static
RAM device in U28 will cause no damage since pin 1 (VPP) is a no-connect on both of
these chips.

Examples:

?EDIT 4<CR>
*Q 4 <CR>
?ASM 4 1<CR>

EDIT A FILE FROM PORT 4
QUIT THE EDITOR TO PORT 4
ASSEMBLE FROM PORT 4

4.2.2 Output Port Designation

4-2

The output port can be either Port 1, 2, or O; it can never be Port 3. Entering the output
port as a inhibits the listing. (see UNL Directive, Section 4.3.2.8). When the lising is
inhibited in this way, the number of errors and warnings and the label table (see SYMT
Directive, Section 4.3.2.9), if called for, are displayed ifthe input port is 2 or 3, and sent
to Port 2 if the input port is 1 .

THE ASSEMBLER AND REVERSE ASSEMBLER

If both port parameters are set to 1, the assembler functions as a line-by-line assembler
(LBLA), with input and output at the terminal. If no port parameters are entered, the
assembler defaults to the LBLA. (Section 4. 2. 5 details the LBLA.)

When the output port is 1 (the terminal) during download from Ports 2 or 3, the assem
bly listing can be stopped in progress and restarted any number of times by pressing the
space bar <SP>. In this situation and when the output port is 1 or 2 during during
download from Port 3, the <ESC> key will abort the assembly. Any time the input port is
1, reception of an <ESC> character will terminate the assembly.

Neither the assembler nor the LBLA support concatenated command strings (see Sec
tion 2).

4.2.3 Assembling Files from a Host System

Once a file is edited with the proper beginning- and end-of-file markers (see Section
4.2), the EVM is ready to assemble the file as it is entered into the system from the host.

4.2.3.1 ObtainingHardCopy

If the user wants a hard copy of the assembled source listing of the program, a printing
terminal attached to Port 1 is required (the Tl 820 KSR terminal, for example). Another
method of obtaining a hard copy of the assembled source listing is to load the file
through Port 2 into the Editor, save the file to audio tape, and then assemble from the
tape with a printer attached at Port 2. The sequence of commands for this last option is
as follows:

?EDIT 2
LINE HUMERS? CHO> Ye5

or,

?EDIT 2
LINE NUMBERS? CHO> <CR>

NOTE

Downlinks a text file that ha5
a line number for each line.

Downlink5 a text file with no
line number5 and generate5 the
line numbers.

Use the LIST command in the Editor to verify proper loading.

or,

?QUIT 3 Save5 the file to audio tape.

NOTE

Disconnect the external system from Port 2 and connect the printer to Port 2. Use
the monitor BAUD2 command to set up the baud rate for the printer.

or,

?ASM 3 2

NOTE

Thi5 will as5emble the file
from tape and dump the li5ting
to Port 2.

Refer to Section 5 for a complete description of the Editor commands.

4-3

THE ASSEMBLER AND REVERSE ASSEMBLER

The user can also bypass the step of saving the file to tape by downloading the file di
rectly into the assembler through Port 2. The following examples demonstrate how this
is accomplished:

Example 1 : Assembly with line numbers

?ASM 2 1
LINE NUMBERS? <HD> Yes

•• TMS320 EVM ASSEMBLER **

C TRANSPARENCY MODE INITIATES DOWNLOAD I <see Section 2 for
transparency mode)

*>
00001 000 7F82 !HIT EIHT
00002 001 7F8A RDVM
00003 002 F500 BV CLRDV

003 FFFF
00004 004 6880 CLRDV LARP 0
00005 005 6EOO LDPK 0
00006 006 END
*<

LABEL TABLE

If there is a label in the label field, there can be only one space between the label and the
last digit in the line number. There must also be at least one space between the mne
monic and the label, or at least two spaces between the mnemonic and the last digit in
the number field.

Example 2: Assembly with no line numbers

?ASM 2 1
LINE NUMBERS? <HO> <CR>

•• TMS320 EVM ASSEMBLER **

C TRANSPARENCY MODE INITIATES DOWNLOAD I

*>
00001 000 7F82 !HIT EIHT
00002 001 7F8A RDVM
00003 002 F500 BV CLRDV

003 FFFF
00004 004 6880 CLRDV LARP 0
0)005 005 6EOO LDPK 0
00006 006 END
*<

LABEL TABLE

4. 2.3. 2 Suppl"9ssing the Assembly Listing

4-4

Another option available is the ability to suppress the assembled listing. There are two
ways to do this:

1) Specify zero (0) for the output port parameter. This disables the entire listing but
still loads the assembled object code.

2) Use the LIST and UNL assembler directives (see Sections 4.3.2. 7 and 4.3.2.8)

THE ASSEMBLER AND REVERSE ASSEMBLER

NOTE

Since the source listing is not stored by the EVM, suppressing it during assembly
will require another assembly to generate it.

4.2.4 Assembling Files from Audio Tape

The EVM assembler can accept source files from a tape if they were loaded to that tape
by the EVM text editor. When the text file is loaded to tape the EVM will automatically
include the beginning- and end-of-file markers described in Section 4.2. The format of
the tape assembly command is as follows:

ASM 3 <output port>

The output port can be either Port 1 or Port 2. There is no line number option in the ASM
command because, since they originally came from the text editor, all files assembled
from tape already have line numbers. The text editor also automatically provides the
space after the line numbers required by the assembler.

4.2.5 Concatenation of Audio Tape Files

A file concatenation feature exists for developing software with the EVM text editor and
audio tape which allows text files of any size to be created, stored, manipulated, and
assembled. When the text editor issues the RAM FULL error message, the user may
save the file to tape, reinitialize the editor, then continue entering text. This process may
be repeated as often as necessary, but each time, the last file created must have the END
assembler directive. When the assembler is executed with input from the tape, it will
assemble until it finds the END directive. If an end-of-file mark (<)is encountered first
(as automatically provided by the text editor), it assumes file concatenation and re
sponds with:

FILENAME:

at the terminal, accompanied by a beep. The user may then specify the file name of the
next section of text. If the user has forgotten to put the END directive in the text, the
<ESC> key should be pressed to force the assembler termination routine the same as if
an END directive had been present. By using this method of file concatenation, long text
files can be broken up into smaller more manageable parts, edited and stored in any or
der, then assembled in the proper order automatically using the built-in file search capa
bility of the EV M.

4.2.6 The Line-by-Line Assembler (LBLA)

Revision 1.2 firmware enters the LBLA mode with the "ASM" command when both
port parameters are 1 :

?ASM 1 1 ENTER LBLA DH REV 1.2 FIRMWARE

Revision 2.0 firmware uses the command "LBLA" for the line-by-line assembler and re
serves the format "ASM 1 1" for download assembly from a PC or intelligent terminal.

?ASM 1 DOWNLOAD ASSEMBLER FROM PC WITH LISTING TD PC

?LBLA ENTER LINE-BY-LINE ASSEMBLER CLBLA>

The line-by-line assembler (LBLA) may be entered any time the user wants to assemble
code a line at a time through Port 1 (the terminal). The LBLA is entered with the following
command format:

?LBLA

4-5

THE ASSEMBLER AND REVERSE ASSEMBLER

4.2.7

4-6

Upon entering the LBLA, a banner message will appear, followed on the next line by a
line number and memory location, The cursor will then be positioned for entry of a line of
code. For example:

?LBLA
"," TMS320 EVM LIHE-BY-LIHE ASSEMBLER ""

0000.1 000 [] <--- Cursor

At this point, code may be entered. The LBLA will indicate errors as they occur. If an
error is detected, an error message is printed on the next line, and the entire line contain
ing the error is ignored. After printing the error number, a new line number and memory
location are printed on the next line, but the memory location is unchanged from the line
wih the error. For example:

00001 000
"""""""ERROR 02
00001 000

LOOP CLB

[] <--- Cursor

CLB is an illegal mnemonic. Error 02 indicated the error (see Section 4.4). The label
LOOP is not stored as a label because the entire line has been ignored.

As each line is entered and properly terminated, it is assembled and stored in RAM. All
forward referenced labels will assemble as FFFF, but will be corrected in RAM as they
are resolved. If the user references a label previously defined by its use in the label field,
the LBLA will place the value in RAM and indicate it in the listing. For example:

00001 000 7F82 !HIT EIHT
00002 001 7F8A ROVM
00003 002 F500 BV CLROV

003 FFFF
00004 004 6880 CLROV LARP 0
00005 005 6EOO LDPK 0
00006 006 END

The Patch Assembler (PASM)

Once the program is entered and completed with the END assembler directive, the user
can change object code two ways: (1) using the MPM monitor command to directly
change bytes in RAM (The MLP object code tables must be used in order to alter the
program), or (2) by using a unique command (PASM) that will allow use of the LBLA to
add code to the existing program, the referencing by the new code to any labels used in
the initial program, and to bypass the automatic fill of program memory with NOPs. This
subsection discusses the PASM command.

The command format is:

?PASM<CR>

*" TMS320 EVM LIHE-BY-LIHE ASSEMBLER **

00001 000 [l <--- Cursor

The EVM will respond in the same manner as it does to an LBLA command. The only
difference is that the EVM does not reset the label table. To use the PASM command
successfully, two items are essential:

1) Patching can only be done on the most recent program assembled, and only if the
text editor has not been entered. If a label table does not exist in system RAM, the
results will be erratic, and a RESET will probably have to be performed.

THE ASSEMBLER AND REVERSE ASSEMBLER

2) The first line of code must be an AORG assembler directive. The AORG directive
points to the location in the program where the patch is to be inserted. The AORG
directive is discussed in Section 4.3.2. 1.

Remember that the existing code is written over by the patch. If the user wants to insert
a block of code in the program, a branch (BR) statement is patched in at the appropriate
location in the existing program; it should branch to a location outside of the existing
program limits. The patch is coded at that location and branched back into the existing
program. Any instructions overwritten by the first branch must be included at the start
ofthe patch. See example below.

<EXISTING PROGRAM>

00035 A34 7F89 ZACK
00036 A35 5008 SACL SIGN

A36 5006 SACL ROOT
00037 A37 7E01 LACK 1
00038 A38 5007 SACL ONE
00039 A39 2F07 LAC ONE,15

00097 803 END

If the user wants to insert a patch between the LACK 1 and the SACL ONE, it would be
done as follows:

1) Enter the LBLA patch mode with the PASM command.

2) Use the AORG assembler directive to place the branch (B) statement at PC location
>OA38.

3) Code in the branch statement to branch past the end of the existing program (in
this case, >0803 or greater).

41 Use the AORG assembler directive again to place the PC location at the point you
chose to execute the branch.

5) Code in the patch, remembering to include the code eliminated by the branch
statement and include another branch statement to return to the correct place in
the original program.

CAUTION

Care must be taken not to start a patch on the second word of a two-word instruc
tion.

4-7

THE ASSEMBLER AND REVERSE ASSEMBLER

6) Use the END assembler directive to terminate the patch.
The following example demonstrates the patch process:

00001 000 AORG >0A38
00002 A38 F900 8 >0803

A36 0803
0003 A38 AORG >0803
00004 803 5007 SACL ONE
00005 804

<PATCH CODE>

00045 894 F900 8 >0A39
895 OA39

00046 897 END

The patching process can be repeated as necessary.

4.3 ASSEMBLER CONVENTIONS AND FORMATS

All TMS32010 assembler instructions are described in the TMS32010 Assembly Lan
guage Programmer's Guide, Part Number SPRU002B. All exceptions are discussed in
this section.

4.3.1 Constants

Constants must be intered in signed decimal. If a number is entered in hexadecimal, it
must be preceded by a greater-than sign (>).

4.3.2 Assembler Directives

The EVM assembler only supports the directives outlined in this section. The IDT and
TITL directives are not supported, but do not cause an error message. Table 4-1 lists the
directives.

TABLE 4-1 - ASSEMBLER DIRECTIVES

MNEMONIC DEFINITION

AORG Absolute Origin

BSS Block Starting With Symbol

BES Block Ending With Symbol

EQU Define Assembly-Time Constant Directive

DATA Initialize Word

WORD Initialize 32 Bit Double Word

TEXT Initialize text editor

LIST List Source

UNL No Source List

SYMT List Label Table

PAGE Eject Page

END End Program

4.3.2. 1 Absolute Origin Directive (AORGJ

4-8

The purpose of the AORG directive is to change the contents of the location counter
over the address range of the TMS32010 (>000 to >FFF, or 4K words). The assembler
will place the object code in RAM in a position relative to the AORG value. Any time the

THE ASSEMBLER AND REVERSE ASSEMBLER

location counter exceeds the 4K maximum value, an error occurs. If the greater-than
symbol (>)is not entered, the AORG statement defaults to decimal. The syntax is:

[<label>] AORG <adddress> [comment]

4. 3. 2. 2 Block Starting with Symbol Directive (SSS)

Executing BSS first assigns the label (if present) a decimal (default) or hexadecimal
value, then increments the location counter by the value of the expression. The syntax
is:

[<label>] BSS <expression> [<comment>]

A directive entered with no label will advance the location counter by the value of the
expression. The expression may be a hexadecimal or a decimal (default) value.

If a label is used, the label is assigned the value of the location of the first word in the
block, and the location counter is advanced by the value. For example:

Label BSS >20 Save a buffer of 32 words.

4.3.2.3 Block Ending with Symbol Directive (BES)

BES first increments the location counter by the value of the expression, then assigns
the label, if present. The syntax is:

[<label>] BES <expression> [<comment>]

Not entering a label will adavance the location counter by the value of the expression.
The expression may be a hexadecimal or a decimal value. If the command includes a
label, the label is assigned the value of the location of the last word in the block, and the
location counter is advanced by the value.

4.3.2.4 Define Assembly-Time Constant Directive (EQU)

EQU assigns a label a decimal (default) or hexadecimal value (an assembly-time con
stant). The syntax is:

[<label>] EGU <value> [<comment> l

For example:

TEMP1 EQU 14
TEMP2 EQU +14
TEMP3 EGU >E
TEMP4 EQU -14

A directive entered with no label will advance the location counter by the value of the
expression. The expression may be a hexadecimal or a decimal (default) value.

With a label, the label is assigned the value of the location of the last word in the block,
and the location counter is advanced by the value. For example:

Label BES >20 Saves a buffer of 32 words.

4. 3. 2. 5 Initialize Word Directive (DATA)

The DATA directive specifies that the operand that follows is a constant to be loaded into
the next word of memory. Only the last four valid hexadecimal digits entered are stored.
Data may be entered as a positive or negative decimal (default) value. DATA statements
can also be the sum of previously defined EQU statements, with an unlimited number of
terms, and can also have as a last term the sum of a hexadecimal or decimal value. DATA
in hexadecimal format will accept the last four characters entered, with leading zeroes
assumed. Data entered in signed decimal must be in the range -32768 to + 32767. A

4-9

THE ASSEMBLER AND REVERSE ASSEMBLER

data statement can also have a label as the operand, if the label is already defined in the
program. For example:

900 DDAD
901 0020
902 FFFF

DATA >FDDAD
DATA 32
DATA -1

4.3.2. 6 Initialize 32 Bit Double Word Directive (WORD)

A 32 bit word directive has been added to the EVM assembler that allows the user to
directly specify a 32 bit value without using two 16 bit data statements. The power of
the word directive is not evident when working with hexadecimal numbers, since any
32 bit value can directly be split into two 16 bit MS and LS words. But if the user wants
to enter a table of 32 bit decimal values, it would be necessary to first convert each
number to hexadecimal (with a monitor command like "HX32") and then enter them as
pairs of data statements:

004 FFFE LABEL DATA -2
005' FFFF LABEL WORD -2

FFFE
007 0000 LABEL WORD >A

OOOA
009 0000 LABEL WORD 10

OOOA

Entries for the word directive are assumed to be positive decimal values unless pre
ceded by a '-' (negative decimal value) or a '>' (hexadecimal value). All negative values
are sign extended. The most significant word is stored in the lower address and the least
significant word is stored in the higher address.

4.3.2. 7 lnhlaHze Text Directive (TEXT)

The TEXT directive specifies that a string of arbitrary length will follow as the operand.
The string must be enclosed in single quotes and follow the format for string entries.
Null strings are not allowed. For example:

900 TEXT "<string>"<CR>
906

Note that the ASCII values of the TEXT string are not printed. This is a special space
saving measure for listings. The next address printed indicates the next available byte
after the TEXT string. The ASCII values are placed in the least significant byte of succes
sive words.

4. 3.2. 8 List Source Directive (LIST)

The LIST directive enables the listing at the output port, unless the output port is speci
fied as zero when the assembler is entered. When the output port is not zero, the assem
bler is normally in the list mode, so this directive is only needed to reverse a UNL direc
tive. The syntax is:

C<label>l LIST [<comment>]

4.3.2.9 No Source List Directive (UNL)

4-10

The UNL directive suppresses the listing at the output port until either a LIST directive is
encountered or the END statement is processed. Once the END statement is processed,
the listing is turned back on for listing of any errors, warnings, and the label table are
called for. The syntax is:

[<label>] UHL [<comment>]

THE ASSEMBLER AND REVERSE ASSEMBLER

4. 3. 2. 10 Enable Label Table Directive (SYMTJ

The SYMT directive enables the listing of the entire label table after assembly is com
plete. Once the directive is encountered by the assembler, there is no way to suppress
the label table listing. The SYMT directive can be placed anywhere in the text file. If the
SYMT directive is not present in the text file, printing of unresolved labels still takes
place after assembly is complete. The syntax is:

[<label>] SYMT [<comment>]

4.3.2.11 Eject Page Directive (PAGE)

Executing the PAGE directive causes a form feed sequence to be sent to the output port.
The syntax is:

[<label>] PAGEC<comment>l

The sequence is:

<ff><CR><LF>

4.3.2.12 ProgramEndDirective(END)

When an END directive is processed, after unresolved labels and a sum of all warnings
and errors are printed. system control is returned to the monitor. The END directive will
ignore a label in the label field.

4. 3. 2. 13 The Comment Line

A comment may be entered on a program line if an asterisk (*) is the first character of the
comment. For example:

000 * The5e
001 * three lines
002 * are comment lines
003

4.4 ASSEMBLER ERRORS

Whether using the assembler or the LBLA, the error listing format is the same, except
that in the LBLA mode, the user must correct the mistake before continuing. The error
listing will always occur on a new line. Any labels defined on the line containing the error
are ignored, along with the assembly mnemonic. In the assembler Mode (not LBLA), the
assembler will store two NOPs (>7F80) in RAM. For either mode, unresolved branch
instructions will have >FFFF stored in the branch address word (after the B opcode).
This allows the user to correct the errors (after the entire file is assembled) with the
MPM command or the LBLA patch command (PASM).

Errors are indicated by: ****** XXXXX ERROR VY

Warnings are indicated by: *** XXXXX WARNING VY

where XXXXX is the line number (not displayed in LBLA mode), and YY is the error num
ber. If the listing is suppressed either with the U NL directive or by setting the output port
to zero, the error/warning messages will still be displayed as the errors occur. If the input
port is 2 or 3, the messages will be sent to the terminal. If the input port is 1 , they will be
sent to Port 2. Table 4-2 lists the error codes and an explanation of each; Table 4-3 lists
the warning codes and an explanation of each.

4-11

THE ASSEMBLER AND REVERSE ASSEMBLER

TABLE 4-2 - ASSEMBLER ERROR CODES

CODE EXPLANATION

01 Characters after label and mnemonic are not spaces, or,

character after mnemonic is not a space or <CR>.

02 Illegal mnemonic.

03 Expected comma at end of field to indicate start of next

required field.

04 Comma or <CR> not valid for first character of a field.

05 Incorrect line number read.

06 Field terminator was not space, comma, or <CR>.

07 First character must be alpha.
08 Character immediately following label must be a space.

09 Label already exists.

10 The "x" input for SACL must be a zero.

11 This mnemonic requires an operand field.

12 Incomplete mnemonic.

13 Branch and call statements require label or absolute address.

15 location counter beyond TMS32010 range.

16 Found <CR> instead of start of mnemonic.

17 Field either initiated or terminated by an illegal character.

18 Label must be a previously defined value.

19 The "x" input for SACH must be a 0, 1, or 4.

20 Multiply constant is out of range. Must be - 4096 to + 4095.

21 The MAR mnemonic may only use indirect addressing.

22 TEXT string is not preceded by a single quote(').

23 EOU statement must have a predefined label.

24 Branch is to address outside TMS32010 range.

25 Number entered is too large.

TABLE 4-3 - ASSEMBLER WARNING CODES

WARNING

CODE EXPLANATION

01 Value truncated.

02 Character terminating last field not a space or <CR>.

04 AORG address is out of range. Must be 0 < = AORG < = 4095.

05 <CR> encountered before closing single quote (') in TEXT

string.

4.5 THE REVERSE ASSEMBLER (RASM)

4-12

The TMS32010 EVM reverse assembler converts object code between specified ad
dresses into TMS32010 assembly language mnemonics without labels. It is executed
from the monitor. The format of the command is:

?RASM <start address> <stop address> [output port]

The start and stop address parameters must both be entered and cannot be greater than
>FFF. The output port parameter is optional, with legal values being 1 (default-terminal)
and 2.

THE ASSEMBLER AND REVERSE ASSEMBLER

CAUTION

When executing the reverse assembler, care must be taken not to $tart the process
on the second word of a two-word instruction.

The reverse assembler will print a line of data in the following format:

XXXXX YYY ZZZZ MNEMONIC DPERAHD<S>

where XXXXX is the line number (1-up count), YYY is the address of the opcode, ZZZZ
is the opcode, and the mnemonic is the reverse assembled opcode with operands, if any.

If the data at the address YYY cannot be interpreted as a valid form of a mnemonic, it is
printed as a DATA statement. If the data at a location can be interpreted as a valid mne
monic (whether it is or not), it is printed as a mnemonic. Any value greater than >FFOO
will be printed as a DATA statement. If the opcode is a branch, the destination of the
branch is printed on the next line in the form of an absolute address.

4-13

5. THE EVM TEXT EDITOR
5. 1 INTRODUCTION

The EVM text editor is line-number oriented, with character edit capability. The editor
may be used to build assembly language source files as well as general text files. Enter
ing the text editor resets the assembler label table. This section details the operation of
the text editor.

5.2 PROCEDURES AND FORMATS

The following subsections describe the procedures and formats for properly executing
the text editor.

5.2.1 The EDIT Command

The text editor is executed from the monitor by entering the EDIT command. The format
is:

?EDIT <input port>

The input port parameter can be either 1 (terminal), 2 (downlink). 3 (audio tape) or 4
(See Section 4. 2. 1 for a description of port 4). The port parameter determines the initial
input of text into the editor. If the user intends to edit an existing file, Port 2 or 3 should
be specified and the text loaded from that port.

If the file to be loaded was not sourced from the EVM, it will need to be bracketed by the
EVM buffer control characters. The greater-than sign (>) must be the first character in
the file, followed by <CR>. The file must end with a <CR> followed by a less-than sign
(<).When the text editor dumps its contents, these characters are automatically gener
ated.

After the load is complete, control returns to the terminal. If Port 1 is specified, text
entry from the terminal is immediately enabled. If no port parameter is specified, Port 1
is assumed. If download to the text editor is through Port 1 via user terminal emulation
software, the buffer control characters are not required, since normal terminal input is
expected. In this case, the user must include line numbers or one autoincrement line
number command in the text (see below). lfthe input port is specified as Port 2, the user
is given an additional prompt as follows:

?EDIT 2
LINE NUMBERS? CNO> <CR>

Downloads text file without
line numbers.

[TRANSPARENCY MODE INITIATES DOWNLOAD " CSee Section 2
for information
on transparency
mode)

Text editors on host systems are usually not line-number oriented as is the EVM text
editor. Thus, when the EVM text editor is loaded with text from a host ystem, it must
create the line numbers. This is the default condition for the prompt. If the text file being
loaded was created with the EVM text editor, it already has line numbers, and te proper
response to the prompt would be:

?EDIT 2
LINE NUMBERS? CNO> <Yes>

Downloads text file with line
numbers.

[TRANSPARENCY MODE INITIATES DOWNLOAD "

5-1

THE EVM TEXT EDITOR

If the input port specified is 3, the user is prompted for a filename. After entry of the
filename, the audio tape controller will begin to search the tape for a source file with that
name. It is the responsibility of the user to rewind the tape and/or to insure that the file
desired is ahead of the tape position. The text editor will only load source files. The com
mand sequence is:

?EDIT 3

FILENAME: TEST
5

During downlink from either Port 2 or 3, the number of input buffers loaded is displayed
to the terminal as an indication of activity.

5.2.2 The Text Editor Banner

When the text editor mode is entered, the following banner is displayed:

** TMS320 EVM TEXT EDITOR **

"H" HELP

XXXXX FREE BYTES
*

where XXXXX is the number of bytes (in decimal) available for text storage. (The num
ber displayed above is a maximum.) After a successful download into the editor either
from a host system via Port 2 or from tape via Port 3, some of the bytes will have been
used and the number display will indicate how much space is left for text storage. Sub
sequently, as more text is entered, this number will decrease. The prompt is an asterisk
(*),and is displayed whenever input is expected. As in the monitor, the Escape <ESC>
key is used to abort the current activity and return control to the top level of the editor.

5.2.3 Text Editor Memory

5-2

Figure 5-1 illustrates the text editor memory map.

USER RAM
(Two Port)

SYSTEM RAM

SYSTEM RAM

LINE BUFFER

TEXT END ADDRESS

(text Stored Here)

TEXT START ADDRESS

SYSTEM RAM START ADDRESS

FIGURE 5-1 - EVM TEXT EDITOR MEMORY MAP

THE EVM TEXT EDITOR

The line buffer holds data input from the keyboard, and lines that are currently being
edited are terminated by a <CR>. The line is then linked in memory in the proper se
quence. The current line is stored in the next open place in memory, and the two bytes
before that line number are used to store the address of the next line. The corresponding
two bytes in the previous line are changed to point to the new line.

5.3 TEXT EDITOR COMMANDS

All commands in the text editor are executed by the first letter of any command entered.
Text editor commands are also summarized in Appendix B.

The text editor supports concatenated command strings (see Section 2), with the ex
ception of autoincrement, edit, and text entry commands, thereby allowing the concat
enation character (;) to be used in the text. Table 5-1 lists the text editor commands and
definitions.

TABLE 5-1 - EVM TEXT EDITOR COMMANDS

DESCRIPTION MNEMONIC

Autoincrement Line Number Mode AUTO

Change Line Number CHANGE

Save Line/Edit Next Line CNTL/J, CNTLN, line feed, or

cursor down

Save Line/Edit Previous Line CNTL/K, CNTL/Z, <ESC>CNTL/L, or

cursor up

Duplicate Line DUPLICATE

Edit line EDIT

Find String (8 characters maximum) FIND

Display Editor Commands Menu HELP

Display Keyboard Entry Aids Menu KHELP

List Line(s) LIST

Display Free RAM Available MEMORY

Quit Editor and Dump File QUIT

Resequence Line Numbers to EOF RESEQUENCE

Display/Modify Tabs TABS

Clear text and Initialize Editor ZERO

Delete Line Number <CR>

Abort Current Activity <ESC>

A description of each command is presented beginning on page 5-5.

5.3. 1 Entering Text Into RAM

Text may be intered into RAM after a line is started with the Enter Line command
(LINE<SP>), either manually or when provided by entering the autoincrement mode
(see autocommand description). The command format is:

XXXXX<SP>TEXT<CR>

Where: XXXXX means the line number, i.e., all lines begin with a five-digit number from
00001 to 65525; the line number 00000 is illegal. Attempting to enter a line number
greater than 65535 will cause the issuance of a LINE NUMBER ERROR message. Any
number entered with less than five digits is assumed to be padded with leading zeroes.

<SP>: Entering a space after the line number tells the text editor that text will fol
low, thereby distinguishing the command from a line number preceding a

5-3

THE EVM TEXT EDITOR

5-4

<CR>:

Notes:

command. This space is provided automatically in the Autoincrement mode.
This space is not stored with the text.

A carriage return signifies the end of the line of text and tells the text editor to
store the line from the line buffer to RAM in order of increasing line numbers.

1) The text editor fills RAM from the user RAM start address to the user
RAM end address (see Figure 5-1. The editor will not allow the text to be
stored in the system RAM, since this area is needed if the text is to be
dumped to either cassette tape (Port 3. or to another computer (Port
2.). When text storage uses RAM to within 64 characters of the RAM
end address, the RAM FULL message is issued after any operation that
involves storing text to RAM. The user can use the MEMORY command
to make best use of the remaining space. The editor will quit storing
lines with they are too long to fit in the remaining RAM, but will still al
low the user to type lines as usual, continually issuing the RAM FULL
message.

2) Three limitations are placed on the nature of the text. First, the text edi
tor will not allow control characters to be entered as text. If a control
character that is not a command (see example below) is entered, an au
dible beep is issued by the terminal. Second, if the text of a line consists
only of spaces, the line will not be stored. Third, the maximum number
of characters allowed in a line is 72.

3) While in text entry mode, the user can use the cursor control key, the
insert and delete functions, and the tab key to format the files neatly.

An example is shown below.

*00010 AORG 0
*00020 B !HIT BRANCH VECTOR FOR RESET
*00030 B IHTR BRANCH VECOTR FOR INTERRUPT
*00040 *
*00050 !HIT EIHT IHITIALIZE INTERRUPT MODE
*00060 ROVM IHITIALIZE OVERFLOW MODE
*AUTO< CR>
00070 BV CLROV CLEAR OVERFLOW FLAG
00080 CLROV LARP 0
00090 LDPK 0

IHITIALIZE ARP
INITIALIZE DATA PAGE POINTER

00100 * INITIALIZATION COMPLETE
00110 <CR>
*

In the example above, the user has executed the text editor from the monitor and speci
fied input from Port 1, the terminal (EDIT 1 .. After initializing (see ZERO command), the
user began entering text. After entering line 60, the user entered autoincrement line
numbers mode (see AUTO command).

AUTO

Parameters:

Syntax

Purpose

Notes

Examples:

Autoincrement Line Number Mode AUTO

Line number preceding command (optional)

[line#JA[UTOJ

To automatically print to the terminal sequentially incremented line numbers, followed
by a space, for quick and orderly entry of text.

1) The auto increment command initially uses the default line number increment (10)
installed when a ZERO command is executed. If a RESEQUENCE (line numbers)
command is executed, the AUTO command uses that increment. When a line num
ber is entered preceding the AUTO command, Autoincrement mode is entered be
ginning with that line number. If no line number is entered, the editor positions the
autoincrement pointer at the end of the text file and starts with the last used line
number plus the current increment.

2) To exit autoincrement mode, enter a carriage return <CR> immediately after the
line number. If a line of text with that line number already exists, it will not be de
leted. Entering and immediately exiting autoincrement mode will cause the current
line to point to the last line in the file.

1. *AUTO
00010

2. *AUTO
00860

3. *SOOA

4. 00200 <CR>

*

Text editor is executed, memory is
initialized with ZERO command, and
autoincrement mode is entered.

Text editor is executed with a download
load of text from either Port 2 or 3,
then autoincrement mode is entered.
Pointer is automatically positioned at
the end of the text.

Autoincrement mode is entered beginning
at line 500.

Autoincrement mode is guit.

5-5

CHANGE

Parameters:

Syntax

Purpose

Notes

Examples:

5-6

Change Line Number CHANGE

1) Line number to be changed (optional)
2) New line number

[line#JC(HANGEJ <new line number>

To allow the user to change the line number of a line in text memory.

1) This command will only execute properly if two conditions are satisifed: the line
number to be changed must already exist in the text file, and the new line number
specified must not already exist in the text file. If either condition is not satisfied,
the LINE NU MER ERROR message is displayed.

2) If the extra memory the text editor needs to change the line number of a line will
cause the text file to exceed the user RAM space, the RAM FULL message will
display. Issuance of any error aborts the command.

*50CHAHGE 70
LIHE HUMBER ERROR
•

2. 55CHAHGE
LIHE HUMBER ERROR
•

3. *60CHAHGE 45
*40CHAHGE 65
•

Attempted to change a line number
to an already existing line .

Attempted to change the line
number of a nonexistent line.
Command immediately terminated .

Lines 60 and 60 changed to lines
lines 45 and 65 respectively.
Lines numbers 60 and 40 are auto
matically deleted from the text
file.

CNTL/J
CNTL/V
LINEFEED
CURSOR
DOWN Save Line/Edit Next Line

CNTL/L
CNTL/V

LINEFEED
CURSOR

DOWN

Parameters: None

Syntax CNTL/J, CNTLN, Line Feed, or Cursor Down

Purpose To save the line currently being edited, then display thenext line for editing.

Notes 1 l This command gives the user a quick way of scrolling through a file. If the last line
is encountered, the last line is continually redisplayed.

2) When this command is used while editing a line from the FIND command, the next
line is displayed until a <CR> is entered, returning control to the text editor.

5-7

CNTL/K
CNTL/Z
<ESC>CNTL/L
CURSOR
UP

Parameters: None

Save Line/Edit Previous Line

Syntax CNTL/K, CNTL/Z, <ESC>CNTL/L, or Cursor Up

CNTL/K
CNTL/Z

<ESC>CNTL/L
CURSOR

UP

Purpose To save the line currently being edited and to display the previous line for editing.

Notes

5-8

1) This command is the opposite of the Edit Next Line command on the previous
page.

2) If the first line in the file is encountered, the first line is continually redisplayed until
a <CR> is entered to terminate the command.

DUPLICATE

Parameters:

Syntax

Purpose

Note

Examples:

Duplicate Line DUPLICATE

1) Line number to be duplicated (optional)
2) New line number

[line#]D [UPLICATEJ <new line number>

To allow the user to duplicate a line of text in memory.

This command is identical in operational requirements to the CHANGE command, i.e,
the first line number to be duplicated must already exist, and the new line number speci
fied cannot exist.

1. •DUPLICATE First line must exist in
LINE NUMBER ERROR order to be duplicated.
•

2. •600 so Second line number cannot
LINE NUMBER ERROR already exist.

3. •60DUPLI CATE 150 Line 60 is duplicated at
*60cCR> line 150, original line
•150CHANGE 60 60 is deleted, then, line

• 150 is changed to 60 .

•

5-9

EDIT Edit Line EDIT

Parameters: Line number preceding command (optional)

Syntax [line#]E[DIT]

Purpose To allow the user to insert/delete/replace characters within a line.

Notes

Example:

5-10

1) If no line number is entered, the current line number is assumed. (The current line is
the first line of the file immediately after intering the text editor.) If the user is in the
process of entering text from the keyboard, the current line is the most recent line
number being displayed. If a line number is specified, that line becomes the current
line and is used when the EDIT command executes.

2) When the EDIT command executes, the line of text is dumped to the terminal with
the cursor positioned at the start of the line.

3) In the edit mode, the text editor will accept characters from the keyboard and store
them at the cursor position, moving the cursor one position to the right for each
character entered. The character input routine does not accept control characters
as text and will beep the terminal when an illegal character is entered. Edit mode
commands available to the user are:

*10E

CNTL/J, CNTLN, Line Feed, Cursor Down
(Save Line/Edit Next Line)

CNTL/K, CNTL/Z, <ESC>, CNTL/L, Cursor Up
(Save Line/Edit Previous Line)

00010 LABEL EQU >2000
[11 < - cur5or

Line 10 i5 edited. Cur5or i5
po5itioned at fir5t character
on the line.

FIND Find Character String FIND

Parameters: String

Syntax F[INDJ <string> (terminals<= 1200 baud)
Or,
F[INDJ <prompt> <string> (terminals> 1200 baud)

Purpose To allow the user to quickly locate a string of up to eight characters text file.

Notes

Exi'moles:

1) The Fl ND command matches the specified string with its occurrence in the text file
and prints any matches to the terminal.

2) The format of the display is the line that the string occurs in, followed by a redis
play of the string as a reminder to the user.

3) FIND returns a find for all occurrences of a string.

4) The maximum length of the string to be searched for cannot exceed eight charac
ters. The characters in the string can only be within the range of >20 to >7E of
ASCII values (no control characters). Entering a character out of this range will
cause an audible beep to the terminal.

5) If the baud rate of the terminal is greater than 1200 baud, a prompt will be printed
for the string input. When the prompt is printed, the string may also be entered on
the same line as the command.

6) When an occurrence of the string is found, the program halts with the cursor pos
tioned at the end of the line and waits for input. One of three commands may be
given at this point:

<CR>
<SP>
E

Terminate search
Continue search
Edit line (see EDIT command)

If the user chooses to edit the line, termination of the edit command returns to exe
cution of the FIND command at the start of the line just edited.

7) When the FIND command is terminated by a <CR>, control returns to the text edi
tor, and the asterisk(*) prompt is printed. If searching continues to the end of the
file by continuation with the <SP> bar after each occurrence, the editor prompt
will be displayed signifying that there are no more occurrences, and control returns
to the editor.

8) Failure to find a string will cause the NO OCCURRENCES FOUND message to dis
play, and control will be returned to the editor.

1. *FIND MASK
FOUND: 00020
FOUND: 00100

AND MASK
LAC MASK

00100 LAC MASK,15<CR>

END OF TEXT
"

<SP>
<CR>

5-11

FIND

5-12

FIND

In the above example, the search was for MASK. The first occurrence was passed
with a <SP>. The second opcurrence was edited, with no changes made. Edit was
terminated with <CR> anq searching continued with edited line. <SP> continues
the search, no further occl,lrrences are found, and the search terminates automati
cally. The prompt will not be displayed since the baud rate is less-than or equal-to
1200baud.

2. *FIND

LEGAL STRING LENGTH IS 1 TO 8 CHARACTERS
ENTER A STRING TO BE LOCATED: BANZ<CR>
FOUND: 00010 AND MASK <CR>

In the above example, the user prompt is displayed because the baud rate is
greater-than 1200 baud. The first occurrence of MASK is found. FIND is termi
nated with a <CR> following the MASK.

3. *FIND SROOT

NO OCCURRENCES FOUND
*

In the above example, the string SROOT was not found in the text file. The user
prompt is not displayed because the baud rate is less-than or equal-to 1200 baud.

HELP

Parameters:

Syntax

Purpose

Notes

Examples:

Display text Editor Commands Menu HELP

Output port (optional) default = 1

H [ELP] [output port]

To display the valid text editor commands.

1) This command can be invoked in the editor any time the prompt asterisk is dis
played.

2) Upon execution of this command, the valid editor commands will be dumped to the
appropriate port specified.

1. *HELP

[Menu of commands "

*

2. *HELP 2

Menu of commands "

Displays the editor commands to
the terminal.

Dumps the editor commands to
Port 2.

5-13

KHELP Display Keyboard Entry Aids Menu KHELP

Parameters: Output port (optional) default = 1

Syntax K[HELPJ (output port)

Purpose To display the various special function key commands available to the user to manipu
late text.

Notes

Examples:

5-14

1) This command can be invoked in the editor any time the monitor prompt asterisk is
displayed.

2) Upon execution of this command, the cursor control and character manipulation
commands will be dumped to the port specified.

1. •KHELP

C Menu of commands 11

•

2. *K

C Menu of commands 11

•

Displays the keyboard entry
aid menu to the terminal.

Dumps the menu to Port 2.

LIST

Parameters:

Syntax

Purpose

Notes

Examples:

List Line(s) to Terminal LIST

1 l Line number preceding command (optional)
2) Number of lines to list (default = 1 l

[line#JL[ISTJ <#lines>

To list lines of text in order of ascending count to the terminal.

1 l The number of lines that can be listed is in the range of 1 to 65535.

2) If no line number is entered, the first line listed is the current line. The current line is
pointed to by the line number most recently displayed. Immediately after entering
the text editor, the current line is the first line in the file. If a line number is entered,
listing starts with that line. In either case, listing continues until either the pre
scribed number of lines are dumped, or until the end of the text file is encountered.

3) While the text is being dumped to the terminal, the user can press the <SP> bar to
stop .the listing in order to view the text. Another press of the <SP> bar reactivates
the listing process, or, pressing the <ESC> key causes an abort of the command.

1. *LIST 2 Two lines are listed beginning
00010 X1 DATA 0 with line 1. Since line 1 does
00020 X2 DATA 0 not exist, the listing begins
• with the fir!lt line found

after line number 1.

2. *10LIST 2 Two lines are listed,
beginning with line
10.

00010 X1 DATA 0
00020 X2 DATA 0
•

LIST

3. *LIST The current line i!I displayed.
00020 X2 DAT AO <In the previous example, it
• would be line 20.)

"· *LIST 99 A request was made to list 99
00010 X1 DATA 0 lines, starting at line number
00020 X2 DATA 0 1 ' but the end of text file
00030 X3ART DATA 0 was encountered first.
00040 X4 OTA 0
00050 PSEG
00060 START IH X1,PA1
00070 LT X4
00080 ZAC
00090 MPYK 6
00100 LTD X3
00110 MPYK S
00120 EHD
•

5-15

MEMORY

Parameters:

Syntax

Purpose

Notes

Examples:

5-16

Display Free RAM Available MEMORY

None

M[EMORYJ

To display the number of bytes of RAM available for text storage. The number of bytes
is in decimal.

1) The available RAM space for text storage is a maximum just after execution of the
ZERO command. It is equal to the total amount of user RAM detected by the mem
ory sizing routine at power-up/RESET, less the system RAM.

2) When the text editor is entered with a downlink of text from either Ports 1 or 2, the
remaining free RAM value is printed out on the line above the * prompt.

1. *MEMORY
15000 FREE BYTES

2. *MEMORY
14966 FREE BYTES

The text editor is initialized.It
has 15008 bytes of usable RAM
space available.

The user had entered a line of
text 38 characters long. Each
line stored requires two bytes
for text editor use, two bytes
for line number, the text, and
the line ending <CR>.

QUIT

Parameters:

Syntax

Purpose

Notes

;xamples:

Quit Edit and Dump File QUIT

Output port (optional) default = 0

Q[UITJ [output port]

To exit the text editor and re-enter the monitor program. If a port is specified, the text
file is dumped to that port prior to re-entering the monitor program.

1) Because the text editor does not destroy its internal pointers, the user can exit and
enter it at will, as long as nothing occurs to alter the contents of RAM. As an exam
ple, the QUIT command gives the user the means of saving the text file to cassette
tape (Port 3. , then immediately executing the editor again from the monitor, then
quiting the editor again to get a complete listing at either the terminal at Port 1 or a
printer at Port 2.

2) If a zero (default value) is entered for the port number, no dump takes place and
control returns directly to the monitor program.

3) Pressing the <ESC> key during a dump associated with a QUIT will abort the dump
and return control to the monitor program. This action will have no effect on the
text in RAM.

4) If the dump is to Port 1, pressing the <SP> bar will start and stop the dump.

5) The dump can be to Port 4 if an SK byte static ram chip as described in Section
4.2.1 is placed in the EPROM programming socket.

1.

2.

3.

*QUIT 0

** TMS320 EVM MOHITOR

[Monitor Menu II

?

QUIT

*QUIT 3

FILEHAME: TEST
READY TO RECORD? <CR>

** TMS320 EVM MOHITOR

C Monitor Menu II

?

*Q

**

**

The text editor is quit
and the monitor program
re-entered without a
dump of the text. text
remains intact in RAM.

The text editor is quit
and text is dumped to
Port 3 (cassette tape)
to a file named TEST.
text remains intact in
RAM.

** TMS320 EVM TEXT EDITOR **

>
00010 LAC X, 15
00020 LARK 0,15
00030 LARP 0
00040 LOOP SUBC Y
00050 BAHZ LOOP
00060 *
<

DIVIDEHD IHTO ACC
USE ARO AS COUHTER
SET ARP TO ARO
SUBTRACT COHDITIOHALLY
IF ARO <> ZERO, DECREMEHT
AHD GO TO LOOP

5-17

QUIT

5-18

QUIT

** TMS320 EVM TEXT EDITOR **

[Monitor Menu"

4. *Q4 QUIT THE EDITOR TO PORT 4

In the example above, note the > and the < bracketing the text file. These marks are
used by the text editor to "sync up" to the incoming ASCII string during the text load
from Ports 2 or 3. If the user prepares a text flTe-on another computer for download to
either the EVM text editor or the EVM assembler, the file should start with ><CR> and
end with< <CR> to insure proper acceptance by the text editor. In addition, the text
editor inserts a space between the line number and the text when dumping a file, and
strips off the first character after the last line number (expecting it to be a space) during
downlink.

RESEQUENCE Resequence Line Numbers RESEQUENCE

Parameters:

Syntax

Purpose

Notes

Examples:

1) Line number preceding command (optional)
2) Resequence increment (optional) default = 10

[line#JR[ESEQUENCEJ [increment] (terminals<= 1200 baud)

[line#JRESEOUENCE<CR><prompt>[increment] (terminals >1200 baud)

To resequence line numbers of text in memory.

1) If no line number is entered, all lines are resequenced. If a line number is entered, all
lines are resequenced with that line number becoming the first line number.

2) If no increment is entered, 10 is assumed. Legal increment range is from 1 to 100.
Entering zero for the increment aborts the command.

3) If execution of the command causes a line number to exceed the maximum of
65335, a LINE NUMBER ERROR message is displayed.

4) The prompt will not be displayed for terminals running less than or equal to 1200
baud (see also the FIND command). When the prompt is displayed for high baud
rates, an increment may be entered on the same line as the command.

1. *RESEQUENCE All lines of text are resequenced
in memory. Increment defaulted to
10, i.e., first line number will
be 00010. The user prompt is not
displayed because the baud rate
is less-than or equal-to 1200.

•

RESEQUE

2. *RESEQUENCE 100 All lines of text in memory are resequenced in
increments of 100. The first line number is
00100. The user prompt is not displayed because
the baud rate is less-than or equal-to 1200 baud.

*

3. *RESEQUENCE

LEGAL VALUES ARE 1-100, DEFAULT IS 10
EHTER RESEQUEHCIHG VALUE: 50
•

4. *R

LEGAL VALUES ARE 1-100, DEFAULT IS 10
EHTER RESEQUEHCING VALUE: 100

LINE HUMBER ERROR
*

All lines are resequenced
by 50. The user prompt is
displayed because the baud
rate is less than 1200.

The line number register
exceeds 65535. When this
occurs, resequencing stops
with the current line
pointer at the line just
prior to the overflow. The
user can list the line to
determine a· smaller incre
ment that will work (see
LIST command). The user
must resequence immediately
and repeat until the error
condition disappears.

5-19

TABS

Parameters:

Syntax

Purpose

Notes

Examples:

5-20

Display/Modify Tabs TABS

None

TABS

To allow the user to display and modify the current terminal tabs.

1) Upon execution of the TABS command, the first tab setting is displayed. A tab set
ting can be changed by entering the new tab setting after the current tab setting is
displayed.

2) After a new tab setting is entered, terminating the entry with a comma (,) will
cause the tab to be redisplayed. Entering a <CR> will terminate the command and
return control to the editor. Entering a Next Entry character (<SP>,<LF>, cursor
down) will display the next tab. Entry of a Previous Entry character (CNTL/K,Z or
cursor up) will display the previous tab.

3) Tab settings must be in increasing value and less than or equal to decimal 70. Viola
tion of either constraint will cause the tabs to be reset to their default value (8, 14,
and 30).

1 . *TABS
TAB1 = 8 <SP>
TAB2 14<SP>
TAB3 = 30<SP>
*

2. *TABS
TAB1 8 10,<CR>
TAB1 10<CR>
*

The tab settings are displayed.

The current tab setting is
changed from 8 to 10. Entering
the comma after the 10 causes
the changed tab to be displayed.
The command is terminated by a
<CR>.

ZERO

Parameters:

Syntax

Purpose

Notes

Examples:

Initialize Text Editor ZERO

None

ZERO

To clear all text from memory and to initialize the text editor workspace pointers.

1) This command executes automatically prior to loading text from Ports 2 or 3 when
the editor is executed.

2) This command is automatically executed when entereing the editor from Port 1 for
the first time after power up, but not on a RESET.

3) A RESET does not affect the contents of the editor after the initial RESET. 4. The
user may execute this command at any time to cause the editor to erase the con
tents of the current text file.

*ZERO
ARE YOU SURE? CNO> Y

15000 FREE BYTES
*

When the command is executed,
a prompt is issued which gives
the user a chance not to
initialize (thereby not losing
the contents of the current
text file). A YES input to the
prompt erases the file and
initializes the editor; any
other entry leaves the editor
unchanged. The number displayed
under the prompt is the remain
ing useable RAM.

5-21

<CR> Delete Line <CR>

Parameters: None

Syntax [line#J<CR>

Purpose 1 ;ro delete a line of text in .rnen;i!?rv~
' - ' ~ '

Note If the line does not exist, the command will abort. If the line exists, it is deleted from the

Examples:

5-22

text file. If the [line#J<CR> is used to exit the autoincrement mode, the line will not be
deleted if it exists. ·

1. *70<Clb Line 70 deleted from text file,
•

' 2. *180<CR> Attempt was made to delete a
LINE NUMBER ERROR 11.umber that does not exist in
• the text file. The editor is

left intact.

<ESC> Abort Current Activity <ESC>

Parameters: None

Syntax <ESC>

Purpose To allow the user to abort any activity in the text editor when a character input is
expected. The monitor equivalent to this command is also the Escape Key.

Note This special character is tested for in the input routine and causes a jump to the com
mand handler of the text editor. See also DUPLICATE and EDIT commands.

Examples: 1. •10L 9cESC> A LIST commend ii aborted,
and a prompt ii i11ued for
next input.

•

2. •&OE
00060
00060
•

An edit 1e11ion i1 aborted
ZALS A2 after u1er changed A2 to
ZALS A1cESC> A1, then decided to leave

the line a1 it originally
wa1.

5-23

THE EVM TEXT EDITOR

5.4 TEXT EDITOR ERROR MESSAGES

The text editor issues !hr.ee err.or messages. They are:

INPUT ERROR
RAM FULL
LINE NUMBER ERROR

An explanation of each error message is given in the following subsections.

5.4. 1 INPUT FU.LL Error Message

lhis is the general input error message issued by the text editor when an illegal charac
ter is entered as a parameter in a command string.

5.4.2 RAM FULL Error Message

This error message is issued whenever the amount of available RAM for text storage (as
displayed with the MEMORY command) drops below 64 bytes. The error message will
continue to be issued while still allowing the user to add/edit lines to the text file until
RAM is exhausted. If a file is loaded into the text editor, this error is issued when the
RAM is filled, at which point, the load is aborted and control returned to the text editor
command handler.

5.4.3 LINE NUMBER ERROR Message

5-24

This error is issued whenever an operation involving line numbers causes the register
holding the line number to underflow below 000001, or overflow above 65535. The
error triggering .the issuance of this message under certain conditions will cause the fol
lowing actions to occur:

1) During a downlink with the editor creating line numbers, this error will terminate
the mode.

2) In autoincrement mode, this error will terminate the mode.

3) During execution of a RESEQUENCE line numbers command, this error will termi
nate the command. At that point, the line number holding the register will point to
the line just before the overflow occurred (to allow the user to determine where the
error occurred with respect to the end of the file).

4) This error will terminate the CHANGE and DUPLICATE command if the line to be
changed or copied does not exist, or if the destination line number does not exist.

6. THE TMS2764 PROM UTILITY
6. 1 INTRODUCTION

The TMS32010 EVM is equipped to program TMS2764 EPROMs. Four basic features
are available:

• The ability to program an EPROM with the contents of the designated memory ad
dresses. When programming is complete, the EPROM programmer will automati
cally execute a compare routine.

• A compare routine which matches the newly-programmed contents of an EPROM
to the contents of the memory addresses to verify the copy.

• The ability to read the EPROM contents into memory.

• The ability to verify that the EPROM is erased (all locations = >FF).

6. 1. 1 On-Board Power Supply

The EVM is equipped to provide an on-board power supply of the + 21 volts required for
programming EPROMs. It is recommended that a period check of the voltage be made to
ensure good programming.

CAUTION

The PROG LED will be lit any time + 21 volts is applied to the EPROM socket. Be
careful not to plug an EPROM into the socket if the PROG LED is on; the bits on the
EPROM can be mistakenly programmed if the EPROM is inserted in the socket while
the PROG LED is lit.

6. 1.2 EPROM Programming Procedure

When an EPROM is placed in the socket, the following commands (see 6.2) are used to
program an EPROM:

• VRFY Command to verify that the EPROM is erased. If an error is detected, it will
be displayed in the following format:

ERROR P:YYYY • yy Where P:YYYY • yy is the PROM byte
address and data at that address.

• PROG command to program/reprogram the EPROM from a specified block of mem
ory. As a time-saving measure, if a memory location contains >FF, the program
ming routine skips the corresponding location in the EPROM, assuming it to al
ready be >FF (the erased state).

• COMP command to compare the contents of the EPROM to a specified block of
memory

• READ command to read the contents of the EPROM to a specified block of memory

At the completion of execution of the programming command, a PROGRAMMING
COMPLETE messge will display at the terminal. Immediately following appearance of
the message, the EVM will execute a compare EPROM command, using the block limits
specified in the programming command. When the compare is complete, a COMPARE
COMPLETE message will display, if the EPROM programmed successfully. If it did not,
and any errors are detected, the location in the EPROM and the data associated with
that location will be printed, along with the corresponding location in memory and its
associated data. The format for the display of a compare error is:

6-1

THE TMS2764 PROM UTILITY

ERROR M:XXX = xx P:YYYY = yy

where M:XXX = xx is the RAM word address and data at that address, and P:YYYY =
yy is the PROM byte address and data at that address. The cursor will stop at the end of
the line. To examine subsequent error locations, press the <SP> bar and repeat as often
as necessary to display all the errors. The message: COMPARE COMPLETE will display
at completion. If a <CR> is entered, the compare process will be terminated.

6. 1.3 Programming a Byte-Wide EPROM with Word-Wide RAM

Programming a byte-wide EPROM with word-wide RAM is accomplished by program
ming each word a byte at a time, with the most significant byte first. If subsequent byte
locations do not program properly, the error display will show the byte address to be one
apart, while the word address is the same for both bytes.

6.2 PROM UTILITY COMMAND DESCRIPTIONS

6-2

Table 6-1 lists the PROM utility commands.

TABLE 6-1 - PROM UTILITY COMMANDS

COMMAND MNEMONIC

Compare EPROM to Memory COMP

Display PROM Utility Menu MENU

Program EPROM from Memory PROG

Execute the PROM Utility PROM

Quit PROM Utility QUIT

Read EPROM to RAM READ

Verify EPROM Erased VRFY

EPROM Byte Offset OFSET

A detailed description of each command is on the following pages. The commands are
also summarized in Appendix B.

COMP

Parameters

Syntax

Purpose

Notes

Examples

Compare EPROM to Memory COMP

1) EPROM start address (optional) default = 0
2) EPROM end address (optional) default= >1FFF
3) Memory start address (optional) default = 0

COMP [EPROM st addr] [EPROM end addr] [memory st addr]

To allow the user to compare the contents of the EPROM to the contents of memory.

1) The legal range of the EPROM addresses is from >0000 to >1 FFF. The legal range
of memory addresses is from >OOOO to >OFFF.

2) When the locations do not compare successfully, both addresses and both values
are displayed and the routine halts. At that point, a <CR> terminates the compare
operation; pressing any other key allows the operation to continue.

1. . COMP< CR>
COMPARE COMPLETE

2. .COMP 1000 AFFF 800<CR>

The content5 of the EPROM
are 5ucce55fully compared
to the content5 of memory.

ERROR M:003 = CA P:0006 = CD<CR>

In the above example, the operation was aborted after the first error was detected.

6-3

MENU

Parameters

Syntax

Purpose

Example

6-4

Display PROM Utility Menu

None

MENU

To display the PROM utility menu.

. MENU< CR> Menu is called .

H TMS320 EVM PROM UTI LI TV H ----

"QUIT" RETURN TO MONITOR
"MENU" THIS DISPLAY
"PROG" PROGRAM PROM
"READ" READ PROM
"COMP" COMPARE PROM
"VRFV" VERIFY PROM
"OFSET" 0-NONE/1-LSB/2-MSB

> Display

MENU

OF SET

Comm~nd
Name

Parameters

Format

Word/Byte Offset OF SET

The EPROM programming utility ("PROM") contains an additional command to select
or deselect an offset for programming byte-wide EPROMs as either high or low byte in a
1 6 bit wide system.

OFSET

1) 0 - no offset
1 - odd offset
2 - even offset

CMD <OFFSET>

NO OFFSET: Each TMS320 16 bit word is programmed into two successive EPROM 8
bit locations, MSB first and LSB second.

ODD OFSET: The least significant bytes (LSB) of each TMS320 16 bit word are pro
grammed into successive EPROM 8 bit locations.

EVEN OFFSET: The most significant bytes (MSB) of each TMS320 16 bit word are
programmed into successive EPROM 8 bit locations.

Each time the EPROM utility is executed, the offset is reset to 0 (no offset). The offset
must be initialized by the user each time it is used until the EPROM utility is exited. For
odd and even offset applications, only the lower 4K bytes in the BK byte EPROM are
programmed. The current value of the offset can not be displayed and a parameter (0,
1, 2) must be entered with the "OFSET" command or PARAMETER ERROR is issued.

6-5

PROG

Parameters

Syntax

Purpose

Notes

Examples

6-6

Program EPROM from Memory PROG

1) EPROM start address (optional) default = 0
2) EPROM end address (optional) default = > 1 FFF
3) Memory start address (optional) default = 0

PROG [EPROM st addr] [EPROM end addr] [memory st addr]

To allow the user to program a TMS2764 EPROM.

1) The range of the EPROM addresses is from >OOOOto >1FFF. The range of memory
address is from >OOOO to >OFFF.

2) The programming routine automatically enters the COMP command after the pro
gramming process is complete. When a mismatch occurs, the comparison can be
aborted by pressing <CR>, or can be continued by pressing any other key.

3) Pressing the <ESC> key, or performing a RESET at any time during execution of
this command, terminates the command and returns control to the PROM Utility
top level. A subsequent RESET will cause a system reset.

1. .PROG<CR>
PROGRAMMING COMPLETE
COMPARE COMPLETE

2. .PROG 1000 1FFF SOO<CR>
PROGRAMMING COMPLETE

The entire 4K word5 of
TMS32010 RAM are pro
grammed into SK byte5
of EPROM.

ERROR M:003 • CA P:OOOG = CD<SP>
COMPARE COMPLETE

In the above example, an attempt was made to program the top half of the RAM into
the top half of the EPROM. One error occurred. Pressing the <SP> bar continues the
comparison.

PROM

Parameters

Syntax

Purpose

Notes

Execute the PROM Utility PROM

None

PROM

To invoke the PROM Utility.

1) The PROM Utility is executed from the monitor.

2) The period is the PROM Utility prompt (see example below).

3) The menu is automatically displayed for baud rates greater that 1200 baud, but
can be requested at any time for any baud rate (see MENU command).

Examples ?PROMcCR>

•• TMS320 EVM PROM UTILITY ••

C PROM utility menu displays if baud rate > 1200 '

6-7

QUIT

Parameters

Syntax

Purpose

Examples

6-8

Quit PROM Utility

None

QUIT

To return control to the EVM monitor program.

.QUIT<CR>

?

Monitor menu i5 di5played
if baud rate > 1200 '

U5er ha5 quit the PROM
utility.

Monitor prompt

QUIT

READ

Parameters

Syntax

Purpose

Note

Example

Read EPROM to RAM READ

1) EPROM start address (optional) default = 0
2) EPROM end address (optional) default = >1 FFF
3) RAM start address (optional) default = 0

READ [EPROM st addrl [EPROM end addr] [RAM st addr]

To allow the user to read the contents of a TMS2764 EPROM into TMS32010 memory.

The legal range of the EPROM addresses if from >0000 to >1FFF. The legal range of
RAM addresses is from >0000 to >OFFF.

+-+-Byte Address
: :
I I +-Word Address
I I
I I

v v v
.READ 0 7FF 800<CR>
READ COMPLETE

The lower fourth of a TMS2764
EPRDM is read into the upper
half of the TMS32010 program
RAM.

6-9

VRFY

Parameters

Syntax

Purpose

Note

Examples

6-10

Verify EPROM Erased

1) EPROM start address (optional) default = 0
2) EPROM end address (optional) default = 0

VRFY [EPROM st addr] [EPROM end addr]

To allow the user to verify that the 2764 EPROM is clear (>FF in all locations).

The legal range of EPROM addresses is from >0000to>1 FFF.

1. .VRFY 0 1FFF<CR>
VERIFY COMPLETE

2. .VRFY 0 1FFF<CR>
ERROR P:0006 CD<CR>

The EPROM i5 verified
clear.

An error i5 found, and
the verify operation
i5 terminated.

VRFY

THE TMS2764 PROM UTILITY

6.3 SYSTEM ACCESS FROM PROM UTILITY COMMANDS

Three commands in the PROM utility accept the system access dollar sign prefix ($).
These commands are: PROG, COMP, and READ. The VRFY command is not included,
since all its parameters are EPROM addresses. As with the regular monitor system ac
cess commands, PROM utility access commands remove RAM address parameter re
strictions, thereby allowing duplication of operating system EPROMs, etc. In the sys
tem access mode, the 0 to >FFF two-port TMS32010 RAM address range becomes
>AOOO to >BFFF byte addresses of the TMS9995 master processor of the EVM. default
values for EPROM address parameters are the same as described in the above command
descriptions. RAM address parameters still default to zero (zero in this case being the
TMS9995 zero address). Error messages for $ commands contain four-digit RAM ad
dresses. The following examples illustrate the $PROM utility commands:

1. .$PROG 0 FFF 2000
PROGRAMMING COMPLETE
COMPARE COMPLETE

2. .$READ ·o FFF AOOO
READ COMPLETE

3. .$COMP 0 FFF AOOO
COMPARE COMPLETE

6.4 PROM UTILITY ERROR MESSAGES

The second monitor EPROM
is duplicated.

The contents of the EPROM
are read into the two-port
RAM.

The EPROM is compared with
the two-port RAM.

Other than the programming and compare errors discussed in the command descrip
tions, four other error messages may be issued by the command interpreter. They are
listed and described in Table 6-2.

TABLE 6-2 - PROM UTILITY ERROR MESSAGES

ERROR MESSAGE DESCRIPTION

COMMAND ERROR The command interpreter was not able to interpret the command.

PARAMETER ERROR The parameter analyzer.associated with the command received a character

that was not valid for the type of data expected (Example: a Z for a hex

input).

VALUE ERROR A parameter was expected but not entered.

ADDRESS ERROR The entered address is out of the legal range for the operation. Legal range is:

0->1 FFF.

6-11

7. IN-CIRCUIT EMULATION
7. 1 INTRODUCTION

The TMS32010 EVM is designed to emulate a user program in one of two modes: (1)
using the internal clock and internal 4K-word memory (default mode), or (2) allowing for
an external clock and/or external memory space (see INIT command). Emulation is
achieved through the 40-pin emulation cable attached to the board. The emulation cable
provides GND reference to the target system on pins 7, 10, and 30. No power connec
tion is available through the ICE cable.

7 .2 CONNECTING AN EXTERNAL CLOCK TO THE EVM

If the EVM is initialized to execute with an external clock, the signal must be applied to
the emulation cable. Section 9 contains descriptions of cable switch settings and the
oscillator connection pins.

7 .3 LIMITATIONS

Since the monitor commands dealing with program memory are designed to interact
with internal program memory only, they cannot be used with external program memory
selected by the INIT monitor command. In addition, the reverse assembly provided dur
ing single-step and breakpoints is disabled when executing out of external program
memory.

7-1

8. THE AUDIO TAPE SYSTEM
8. 1 INTRODUCTION

This section discusses the features of the audio cassette tape system that may be con
nected to the EVM for use as a mass storage device. Also discussed are various features
of the system.

The audio cassette tape system supports files by name and type. Filenames consist of
one to five alphanumeric characters and are stored to tape with a file type descriptor
associated with the command that created the file. Three types of files can be created
and stored on tape. Table 8-1 lists them, along with their creation and reading com
mands.

TABLE 8-1 - TAPE SYSTEM FILE TYPES

FILE TYPE CREATING COMMAND READING COMMAND

SOURCE Q 3 (Quit Editor) EDIT 3 (Execute Editor)

ASM 3 1 (Ex Assembler)

OBJECT SPM 3 (Dump Object) LPM 3 (load Object)

STATE SMS 3 (Dump State) LMS 3 (load State)

8. 1. 1 Using the <ESC> Key and RESET Switch

Whenever the audio tape system is active (READ/WRITE/DIRECTORY), pressing the
<ESC> key or the RESET switch causes an abort of the activity. When this is done, the
monitor prompt (?) is immediately displayed. This process allows the user to recover
from a READ operation that cannot find the file in question without re-initializing the
EVM. This feature and its use during the DIRECTORY operation is discussed in Section
8.4.

8. 1.2 The TAPE ERROR Message

The TAPE ERROR message is triggered whenever computed and actual checksums dif
fer during a READ operation. The message includes an approximate RAM address of the
error. The operation then continues.

8. 1.3 The Tape System LED

One LED reflects the tape operation (MOTOR). When lit, it indicates that the motor relay
has engaged the tape cassette motor.

8.2 SAVING FILES TO TAPE

When a file is created by issuing a command with the output port specified as Port 3, the
EVM responds with the following prompt:

FILENAME:

8-1

THE AUDIO TAPE SYSTEM

A filename of up to five characters maximum must be entered, followed by a <CR>. For
input operations, the asterisk(*) is used to denote the wildcard (next appropriate) file.
The asterisk can be used within any file name, but never as the first character. Once the
filename is entered, the EVM will prompt with:

READY TO RECORD? CY/N)

This is a reminder to put the cassette player on "Record". Once the correct response is
entered, command execution continues and the recorder motor is turned on. Dumping
of data to tape begins after a brief time delay (approximately 1. 5 seconds) to allow the
motors to get up to speed.

8.3 READING FILES

8-2

Figure 8-1 illustrates a typical audio taped data block.

TAPE
MOTION

FILL (Alternating 1 sand Os)

SYNC WORD <E320

FILE DESCRIPTOR WORDS

512
DATA

BYTES

CHECKSUM WORD (Includes only data bytes)

FIGURE 8-1 - TYPICAL AUDIO TAPE DATA BLOCK

When a file is loaded by issuing a command with the input port specified as Port 3, the
EVM responds with the following prompt:

FILENAME:

A filename of up to five characters maximum may be entered, followed by a <CR>. After
entry of the <CR>, the EVM begins searching the tape for a file with the given name that
is of the type required by the command being executed (see Table 8-1) . If the file is not
found, an <ESC> or RESET will have to be performed to abort the execution of the com
mand and return control to the monitor (the? ~·ampt will display).

As an option, the FILENAME prompt may be answered by entering an asterisk(*), the
wildcard file name. This action will cause the first file encountered of the proper type to
be loaded.

While loading is in progress, the number of input buffers (512 bytes) loaded will be
counted as an indicator that the file has been located. Since the tape load routine starts
to look for a file beginning at the current position of the tape, file names of the same
name and type can be stored on the tape. Before starting the load operation, the tape
can be positioned to miss an unwanted file either by using the DIRECTORY operation or

THE AUDIO TAPE SYSTEM

the same name for reference. The EDIT and ASM commands will look for a source file,
the LPM command will look for an object file, and the LSM command for a state file.

8.4 THE AUDIO TAPE DIRECTORY

The EVM monitor tape DIRECTORY command (DIR <port>) allows the user to keep a
record of files stored to tape. Performing a DIR or Port 2 allows the user with a printer to
produce hard copy for storage with the tape.

During a DIRECTORY operation, the file name and type are printed out as they are first
encountered. The number of blocks in the file is printed out last, when the last block is
encountered. In this way, the DIRECTORY command can be used to position the tape at
the logical end-of-tape for storage of a file. If a short file is written over part of a longer
file, the DIRECTORY command will terminate the longer file entry with the current block
count and initialize a new entry with the new file name. When the shorter file is passed,
the remainder of the old, longer file will be displayed.

Since no motor control other than ON/OFF is available to the EVM, the monitor has no
way of maintaining logical end-of-tape marks for purposes of terminating the DIREC
TORY command. Therefore, the operation must be terminated either by pressing the
<ESC> key or by toggling the RESET switch. When either action is performed from the
DIRECTORY operation, control is passed directly to the monitor command handler, and
the? prompt is displayed.

The following is a sample of the DIRECTORY command output:

?DJR<CR>

AUDIO TAPE DIRECTORY

16 TEST1.SOURCE
4 TEST1.0BJECT
3 TEST1.STATE
17 GAME.SOURCE
4 GAME.OBJECT

<ESC> OR [RESET l

?

8.5 THE MOTOR CONTROL UTILITY

Since the tape cassette motor is under program control, it is only enabled when the EVM
is attempting to create or load a file. To provide a way to enable the motor without dis
connecting the motor control cable, the monitor command MO enables the motor until a
subsequent MO command disables it, thus providing a direct way to rewind tapes for
storage and/or to fast-forward a tape past the clear leader prior to storing a file at the
beginning of the tape.

8-3

9. EVM HARDWARE FUNCTIONAL DESCRIPTION
9. 1 INTRODUCTION

The operation of the TMS32010 EVM is controlled by a TMS9995 microprocessor that
uses a system of addressable latches, multiplexers, and memory to send and receive
control signals to the various segments of the EVM. Each of the latches and the multi
plexers is mapped into the CRU space of the TMS9995. The details of this system are
explained in this section.

9.2 MEMORY

Figure 9-1 illustrates the EVM memory configuration.

>0000

TMS2764

(U58) >8000 EDl8808

>IFFF or

HM6264

>2000 >9FFF (U54)

TMS2764

(U57) >AOOO 1420x 4 >0000

>3FFF (Even Addr

U46,U47

>4000 (Odd Addr

TMS2764 >BFFF U48,U49)

(U56)

>5FFF >COOO TMS2147

(U43-D7)

>6000 (U44-D6)

TMS2764 >CFFF WRITE ONLY

(U55)

FIGURE 9-1 - EVM MEMORY CONFIGURATION

TMS32010

PROGRAM

MEMORY

(4K x 16)

Figure 9-2 illustrates the EVM CRU memory map. The TMS9995 has access to 32K
bytes of EPROM (four TMS2764s) that contain the monitor, assembler, text editor, etc.,
and BK bytes of RAM (an HM6264 or an EDIBBOB) that are used by the resident soft
ware and the user for text editing and program loading. The TMS9995 can also access
BK bytes of fast RAM (four IMS 1420s), called dual-port RAM, since the TMS32010
also has access to it. The dual-port RAM is used by the TMS32010 as its program mem
ory to enable the TMS9995 to easily load a user program for execution. Additonal RAM
exists for the purpose of program execution initiation and breakpoints (see section 9. 3).

9-1

EVM HARDWARE FUNCTIONAL DESCRIPTION

>0000

>OlFF

>0200

>02FF

>0400

>0407

>0480

>0487

>0480

>0487

>0500

>0507

>580

FACILITY

TMS9902

(Terminal)

J2 TMS9902

(Host) BITMAP

EPROM PROGMR 400 401 402 403 404

(Data) PDO PD1 PD2 PD3 PD4

EPROM PROGMR 480 481 482 483 484

ADDRESSLSB PAO PA1 PA2 PA3 PA4

(Write Only)

AUDIO INPUT 480 481 482 483 484

Reserved

(Read Only)

EPROM PROGMR 500 501 502 503 504

ADDRESS MSB & PAS PA9 PA10 PA11 PA12

CONTROLS

(Write Only)

CONTROL 580 581 582 583 584

SIGNALS Motor Audio ENRD- ENWR- ARM-

Out

FIGURE 9-2 - EVM CRU ADDRESS MAP

405 406 407

PD5 PD6 PD7

485 486 487

PA5 PA6 PA7

485 486 487

Audio

In

505 506 507

PROG- PSEL 5/21V

585 586 587

TGTIN TGEN HMACq

9.3 PROGRAM EXECUTION AND BREAKPOINT LOGIC

9-2

The EVM is designed so that the TMS32010 is always executing code, either NOPs
from two 74LS244 drivers, a user program on a target system (see Section 9. 7), or a
user program out of dual-port RAM on the EVM. What code will be executed is deter
mined by whether there is a start point set, a stop point (breakpoint) set, or if target
memory is enabled. If no start points are set, the 74LS244 output is enabled, thereby
permanently placing a NOP on the TMS32010 data bus and thus causing the
TMS32010 to continually execute NOPs.

A program is executed by first loading the program into the dual-port RAM, setting a
start point, and, if desired, a breakpoint. A breakpoint is set by writing a 1 to the desired
breakpoint address(es) in a TMS214 7H-3 high-speed 4K x 1 RAM. The breakpoint RAM
is mapped to >AOOOO through >BFFE of the TMS9995 memory space and uses bit 7 of
the data bus. (The correct breakpoint address is derived by multiplying the TMS32010
address by two and offsetting this by >AOOO.) A program start point is set in the same
way except the start point RAM uses bit 6 of the TMS9995 data bus.

When the TMS32010 address bus matches a start point, the data-out bit of the start
point RAM goes high, causing the start flip/flop (a 74ALS 1121 output to disable the
NOPs and enable the dual-port RAM data onto the TMS32010 data bus. When the
TMS32010 address bus matches a breakpoint address, the high data-out bit causes the
breakpoint flip/flop to disable the dual-port RAM and enable the hardwired NOP opcode
from the 74LS244s back onto the TMS32010 data bus. The output of this flip/flop also
causes the address, BIO-and INT- to be latched into two 74LS374s. They exist in the
TMS9995 CRU space as follows:

EVM HARDWARE FUNCTIONAL DESCRIPTION

AO - A7 at bits >EOOO - >E007
AS - ALL at bits >COOO - C003
B10 at bit >C004
INT at bit >COOS

A special control bit exists at CRU bit >584 (ARM-) that when set low clears both the
start and stop flip/flops and ensures execution of NOPs. This bit must return to a high
state before the user program can run again.

9.4 COMMUNICATION PORTS

The EVM has two RS232 communication ports (J 1 and J2) for communication with a
terminal and a host system respectively. A TMS9902A asynchronous communications
controller at each port provides the RS232 data format and signals. The connector at
each port is configured as shown in Table 9-1 .

The Clear To Send and Data Set Ready signals are pulled high on the EVM. The Release
Data signal will be high when the EVM is ready to send or receive data. The Clear To
Send and the Request To Send signals of the TMS99202A (both active low) wire
ANDed together and inverted to generate the Release Data signal.

TABLE 9-1 - EIA CONNECTOR DESCRIPTION

PIN SIGNAL 1/0

1 Chassis Ground IN
2 Transmit Data IN
3 Receive Data OUT

5 Clear to Send IN
6 Data Set Ready IN
7 Signal Ground IN
8 Release Data OUT

20 Data Terminal Ready IN

9.5 EPROM PROGRAMMER

The EPROM programmer is controlled and addressed via the CRU interface of the
TMS9995. The address is written to two 74LS259 addressable latches. The eight low
order bits, PA 7-PAO, are located at CRU bits >487 - >480. The five high-order bits,
PA 12-PA8, are at CRU bits >504 - >500. The data bits, PD7-PDO, of the EPROM pro-

. gramming socket are located at CRU bits >407 - >400.

To write data to the programmer, the ENWR- signal (CRU bit >583) must first be set low,
then the data is output on the CRU bus and latched into a 74LS259, then enabled to the
socket through a 7 4LS244. Data is read by first setting ENRD- (CRU bit >582) low, then
inputting the data through a 74LS251 multiplexer via the CRU bus.

The programming control signals, PROG-, PSEL, and 5/21V are located at CRU bits
>505 - >507, respectively. The 5/21 V bit, when set high, causes the TL497 switching
voltage regulator to produce the 21 volts needed for programming a TMS2764 EPROM.
The PSEL bit enables the select line for the EPROM programming socket when set high.
Setting PROG- high then low (a negative-going edge), causes the data held at the socket
to be programmed into the EPROM.

9.6 AUDIO CASSETTE INTERFACE

The audio cassette interface is mapped into the CRU space of the TMS9995. Jack J3
controls the motor of the cassette. An LED indicator is provided that lights when the
motor is enabled. The audio output signal is output through Jack J5 and controlled by

9-3

EVM HARDWARE FUNCTIONAL DESCRIPTION

CRU bit >581 by setting this bit high or low, according to the data to be transmitted. The
audio signal is input through Jack J4, filtered by two op-amps, an RC4558, and discrete
components, and is read through CRU bit >487. The data stored on the cassette is in
verted and is re-inverted upon input.

9. 7 TARGET CONTROL

The target connector is added to the EVM by plugging the host side of the connector P4
into Port P3 on the EVM. The 40-pin target port, PS, plugs directly into the TMS32010
socket on the user's target system. The TMS32010 address and data buses are unbuf
fered and go directly to the target connector. The target cable is limited to six inches to
keep the propagation delay of the TMS32010 signals to a minimum.

9 .8 CLOCK CONTROL

9-4

The clock of the TMS32010 will be the 20-MHz clock provided on the board, unless the
user elects to use the target system clock. The target system clock and the target BIO
and I NT- signals are selected by setting TGTIN (CRU bit >585) high; when this bit is low,
the EVM signals and clock are used.

The target system clock can either emulate the internal oscillator of the TMS32010 or
provide an external clock signal. The internal oscillator option is selected by closing
switches 1 through 3 of the dip switch (SW2) on the target connector board and by
connecting the desired crystal between pins 7 and 8 of the target port P5 (the
TMS32010 X 1 and X2/CLKIN pins). The external clock signal option is selected by
opening switches 1 through 3 of SW2 and providing the clock signal at pin 8 of P5. Table
9-2 defines the SW2 switch settings.

TABLE 9-2 - CLOCK/OSC SWITCH SETTINGS

SWITCHES

OPTION S1 S2 S3 S4

Internal Oscillator OFF OFF OFF x

External Clock ON ON ON x

Target system memory is enabled by setting CRU bits >586 (TGEN-) and >582 (ENRD-)
high. The TGEN- signal enables the memory interface signal that is necessary to reach
the target connector, and the ENRD- signal enables DEN- to the target connector.

A. COMPONENT ASSEMBLY AND SCHEMATICS

A-1

_l

NOTES. IKESS 011£AWIS£ SP£CH:D:

I. MAX. tEAD LENGTH TO 8£ .062 F,f'OM CONDUCTOR
SIDE OF SOARD

D I 2. DO NOT SOLDER OIJ COMPONE"AIT SIDE

~ INSTALL AFTER PROCE.SS I
I

(!] llF SOCKET (IT.69) MUST BE SOLDERED WITH
· TJIE CONTACTS IN THE "OPEN" POSITION

--

CONtllRSIOA/ CJ/ART
INCll£S I mm

c I .010 I o. Z5 I
.Dt 0.5
.062 I 1.51

:i:-_.
w

REVISION LEVEL CONTROL Bl.OCH

· 1 PWB /6000/41~L1*fH I I I I
B D/"A6 J6050/6F F GH

ASSV /605015 IB IC ID IE
SIW REL /605022 l1.2l/.2ILZll.Z

-

A

I ISLM I 124-02 00 I FLOW SOLDER
~I imitPJocEF;';c

NO I ADDITIONAL

CLASSIFICATION
PROCIESSES- FOR CORRELATION TO GiJVTJINO iPiCWtcATIONS, ilEE TI ORAWiNCI 7294&1

U!i1nH 1

INOTE.S

-1 I

REVISIONS

->H-;.+T'rii'P";i-j<i=i~:=n.r-r.=--...rr..;n=rl'-l1-r-~-1 D

~'I:r PART OR IOENTIFYINQ MIMBER I NOMENCLA1URI: OR DESCRIP110N

PARTS LIST/

PROCUREMENT
SPECIFICATION

00
t--

c

I+-
I-

~

I{)

0
I{)
0
l.D L-

f--1·

t--

Eis
I I . TEXAS INSTRUMENTS ••:•::1:• A

•~nc..n'cti

1~-;~;;.y I JsEo@ 1 - - ~ ~, . ,
APPLICATION ~~' L- J dtl I _(.... ''_UJL~-+ 320 .. l I LM .. u:-n

D

c

)>
I .,::.

B

A

2 PLACES
(Jl,J2)

FREEHAMD APPROPRJATE
SERIAL NUMBER

FREE~AMD APPROPRIATE ASSEMBLY· .
AND DIAGRAM REVISION LETTER.

?PLACES

o;J ;,:::

~ "'[. "O... ...o· .. -® • ''-o' • I !" /AV• oua ~ d ·-.. -·····

;I/".~.:' = r ~ !1 ,3 F mo llIIDDll' 1-r.;i• o· o· TI·]· TI· o~ =o-~oc::JD:·!·c::Jo· .. -~~D·:~fijc::Joli ... S?D-:.do~
~ ... 0 o0 • 0 0. m ! c:::::J 5 I c:::J a c:::J c::J c::J c:::J- c::J Ull UI ~

: O-~ 0- D w o- ID a D- =o ... c:::Jo- c:::JD rn c:::Jo- c::JDUI - rr- YI

I I d c:::J c::J - .. ci""

··filnr· DD: - UH n UH oc::J '=O C::Jo USO"" c:::J c:::J USI ~ c::J - n -11 ~c::JD [J

c!:i ~ Li 0- 0 0- 0 U 0.u -0• I

, IT-- IT-]-· IT- IT- U- TI- IT TI IT IT TI Il-· TI.-
c::J " I •'

;; ~~:v. 0 0 0-0 = --=n ~. Il: IT~" B: · ..
l - - a a~ ~ 0. ~ 'ET'-·

JNSTALL(FARSIDE) AS LOC.A.TED C.OMPO~ENT SIDE
ON CoNDUCTOR SI DE SOLDERMASK

CONNECTORS Pf AND PZ(IT. ?Z)
MUST BE ORJENTEO AS SHOWN

1605015
...... 2 OF2 .

D

c

N
I

IO

0
IO
0
lD

A

D

-

c

=!=' -I
0'1

a

-

A

8 l
NOTU: W.USS~-.:IFWD:

I. ALL "'liBISTANCIE V"'L.UaB
"'Rf! IN OHM•

c::"L---·----

7

~-1;;;71;:;:11 r """'F1' U'A UW dECCC I EU , .. ._ ...
.. •NC• CSNCTEB NO CONNECTION

0 ALTERNATE VALUI! FOR CAPACllt>R
.Cit' IS 22ouF

l!J ALTERNATI! VALUI! RIA INDUCTOR
·L~IS 1fOJJH

m::.-. SN14ALS244N DEVICE MAYBE
_suasnrumr-roR TRE: Sll74Al.S241'1
=»ElllCILN UllZ

S"'AR'E!S (CONTINUEO)

us

j(J-
,. .. UIOB

:Qu..ue
I ,

"4L908

" u.zz

~
'1'4LSOO

~
"'902

us

D-
T4LS08

~
l'4LS•..Z

~
l'4LSOO

zy
"4SOZ

I 6 j s

,---------------~
TARGET BOARD

...
Al()

•9
• s
A 1
A6
• 5
A4
A3
• 2
A I
A:!I

P4 - R.C,..'J;;;FfflNCIE ONLV.

'it 27
2a ?"a
29 291
34 l4
35 35
36 ~
J7 "J7
lB 38
39 39
40 •O

I I
2 z

015 18 18
014 17 11
OU 16 JE
012 IS 15
011 14 I
01111 13 I
D 9 IZ 12
0 8 11 tL
0 1 19 19
DI r- 20
05 u ~
04 u 22
03 u ::ts
DZ 24 ~M
01 ZS _n
OB H ::zi

TR 4 4

= :1 ~I
1'1it'R 33 J2

I ~ ::1-----------"'16
I CLKOUT 61-----------4

I

PS

i "" i
I GNO, I

L-----~---· --~
~ CleHf ,.rttOCl•S7 "'Cl C\.ASSlfll~ON ""°'" :v:.:::: 1-M-:.-+:+"-f-=-i

.~"" k~•,111-•• .. • lJO-••r. ... JOt.IOOlf-1-l"•C&l<l- ~I hi:i¥o i~i

A I 7 ~ I 5

_,

t

4 I 3

POWER Ali) GROUND LOCATOR CHART
REF OES !iiEvlCE~ER PINS

+!!ill•121Hl1hw
US9 ,.,...,...,~ --,.:;, I ,.

U6l ,,.,o 10 ..

UZ..J. nttsff#Z.f t .!LI
USS'6.St58 .,.~.!l.•• .. Hj
US4 ""''".il.. •• !!.I
u<&.4~6 -·!tt.:.t!.. ,. gJ
U43.44 .,,, • .,,..::!. ..!.. ,.
us l..z!?f• 7 J ,.I ,
U4 l=n , ii]
U27 n.>017 4 "ti
iUI 1eud' J ,1 "f
t!!6·32 HM.Sit 7 ••
Ull ,..... 7 ~

l!l.23..J. J_ ,.
UIO W1d. J_ .ttl
u9. 2\53 ;lf.fLU&. 7 ,.
U13 1•~1+ 7 I+
)!!Z.M '1'fll<AH~ r ••

&.r9.31 lz1.LS1~8 • ••
l!!.37 ,.,. .. ,., , ••
~· J.l1..-+ 1• 4o
~61,6~66 11f- I# zo
W.030,,,,., ~ ..
~-6J7J!. !H<Hif: • •fl
~~- lz4tSIN ,. ~
j!!l8 LlH1' .. ••I I I I
U14~34 7'564 1 14
UZZ , .. Lsoe 1 14

l!!».36 74.!!!!. 1 14

l!lll 7ii0:4 __ 7 ~.

l!!.4 14F32 7 14
uaz l!;lAW.Cfm! •• 20

I!& 7'S2H 1 ..
l!l_5051 7'S37J 10 20
,UIS j}&PtN SR ::! r&

....L
U9 U'53

:j[)L =4Y-,. ... ""-._ 74ALS32

UIO UIO

~ ~
,.,1.914 "4LSl4

1 r· 16oso16 i- , 1 1
llllYlllOiiii I RE.V. - , DESCRIPTiON

• ~'°'B::2
I '"""' ,...,,.,......,......,

(~---··· ;Ulf, c tt.,.,... ~"

c

Ii

(1:',~., ...
fla 114
15r"w.-
,,,, __ .. __
-••Uli 11\?Lt. wr.li
CCT' ~~ 14011 Si
£ •": q,":tA(f")..,...,..
~Zk•(.. ~U.~

"'- t. 7"t$::.4- 641fi .. iilit .. ,•~c...~&
~ ... 1,.111' 100 or ... _,.,.,, ...
c••-.. Atti .. 74,.._ ,.

OATE-.l~r~
..... .,1,,..--

~~]:'.&:"'I'

.. ,;;ru I a s..iy.. jQ.Q

~__. _ •• ,,_I 1f'4l,,1 ... r-·--E le..:~ ,..,..,..._,..., ,_.t-+ -1 ,, -... .

........ ,.-...........,.._~

'"',..._ .. ~ ... re.•._ . ..,,.,.. , _...

F I ~!: ::.: :.::: .. .,f 7/tt{as ,,.. I t
a.~&11,r.c,.-9.

: J::;:;=:Jtt;~

I+-

SPARES

~
T4.&LS•:Z

UIO 1.12•

~ -4f>tL
T4L914 "4AL904

US2 USI

~ U42
T4LS244 -::

t;.1.:..1.;:.I'::'
...[--.--.. ~~

~~~~~--: =:=.:-::::.-

I 1&0_501_511120 CAoJt :::=:: :::::: 
- "'~=-·"'·"'·-"'_-=_"1:'-'_".;.:-"·"'~=~=1 ~::::: ::::: 

..... ""' .. ''0Pf I N&J-••• ··-·· 
$--Et 

4 "'n i 3 

] 

~ 
~ 

7 ... 997• 

.... ti ---utf 
J-

~· §ip41=12.1jJlii.Tu•e INeT1tUMllNTSI ~:1...... ".w°"" '1Y ·:::.=.::: SI-METRIC 
~~ ~- h.t 911'/V 

1 /]•-~ HJ; ifHlll 
~ .. _,,,,...., 

DIAGRAM,LOGIC 
TMS320 EVM 

pr<;~"--"'-•'1'*6668 _ ~1'UiNF 
1605016 

-nitt'r .l 
2 

1--

,. 

f111fl 



7 I 6 I 9 .l 4 I 3 I r- 1605016 ,- 2 
B I 

JI 
TIMNSMITTEO DAT.I. rz 
RECEIVED DATA 

D I 
DATA TERMINAL At1' 

RLSD 

CLEAR TO SE NI> 
•DATA SET READY 

SIGNAL GND 

QIASSIS GND 

TRANSMITTED MTA 

RmlVED DATA , .. ~ r--· ';.i ILL I I II .. __ ~le nli.t 11111 ~fll:R 11111~ u D 1; ~i I I I -c 
c I I .M&U:IM 

DATA TERMINAL ROY 

RLSD 

CLEAR 1D SEN& 

~~ 
DATA SET READY 

SIGNAL GNO 

CHASSISGND 

MOTOR 

MOTOR 1-=i -==-lff· 7~& I Ill I Ill ~ 11111111 · PJerg ·i r~-i 1-~-;i 1~~ .. OE 1 • ~ ... ~LJ I B M·AUOIOIN 

B I 
AUDIO IN 

UI I II 11~: 071\!;:NllACC 
ll6 •ft ftiii I LHit;~~I 

•••vss 
H•VCC -----

IUllO OUT fit 41! .4;~;, ~ ... -!------ II II 11r=;i:; ~: I ~Ill:;; ii I .,.. .. t~-- I IK -

U58 I U51 I UH~ Ull I U5& 

+5Y~-6j 1 ~::~1~-16~_:1"~126714 ~I '--HD7-HDe 
SWt ";~ ~--· -- -·- I llU!!LJ!lc Df~ r-Jt.?Cl I __ ....._ -- _......_ -

+ 12Y 1411 l~+~Y lM• r 
" I -U!Y 

+5Y 
I I I I I l1oOfiXl·:=t:'i\.~7·~ _ ... ~;~~~~~Lil- :._:.~ .. ~J ,_ L--

)_ -1515w':L - .. 
~668~-,605~6 IH -~1 .... ~ .. ··t=·· NEI f.., 

8 I 7 I 6 I 9 T 4 



8 7 6 s 4 3 

+!v l\~•t• ZI Cllll 
' Al.531 

t'°t.11 1
1 

WI i.•tj ~ 
IRii D D 

t4ZO 

u 49 

1410 

IACI 

c 
CSMf IJ c 

u 4@ 

)> 
' -.J ~ 

••?o 

B a 
U47 

14:0 

u 46 

"' 
A 

1605016 IH 

8 7 8 5 4 flJll 



)> 
I 

CX> 

.. 
ttOJES. llttSS 011£RWISE SPECIFIED: 

[) MARI< PER 2 Z65070 I LINE 4 
tEXT '' 820 PWR '' 

D 1 fD DISREGARD VENDOR PIM NUMBER 
MARKING- OF HOUSING (IT. 2) AND 
BUrLO AS SHOWN 

c 

... .... 

P2 

~1 ='" =~~ 1 • 4IE + 2V 4 
3 

NC 

WIRING DIAGRAM 

i-------- (6.00±.2.5 ---------< .... 

B 

A 

127-01 

l 
I 
4 

HAND SOLDER 

2.00 
APPROX 

:.?I IDUfJ I ji.§PEC I NO I ADOITIONAL INOTE' 
~ PROCESS CLASSIFICATION 

flflOCESSEI- FOR COllRILAtlON TD GOVTAHD SPECIFICATIONS, SEE TI ORA'MHCJ 729467 

Pl 

--1v.-1·~ PART OR IDENTIFYINQ NUMllEll 

1605029 8820 Ao3· 
NEXT ASSY USED ON 

APPLICATION 

REV 

REVISIONS 
Dl9CRIP110N I DATC -

PIN I 

zl II 

141 13 
.61 u 
"'---' 

SECTION A-A 
WIRlNGo SIDE 

FROCUREMENT 
SPECIFICATION <TE 

D 

00 

c 

0 
N 
0 
I() 

0 
lD 

~~ :J!tl ~ TEXA~l==~ENTS I A 

1605020 ..... 



)> 
I 

CD 

0 

c 

HOIU. llUSS emu. Sl'UfEO: 

m ALIGN COLOR STRIPS ov CA8LE(ITEMe)w1111 P/Nt 
l!.J tJF COAINECrt>llS PI 1 PS 

(!I MAM APPROPRIATIJ PllllT NllMBER AND REV t.ErrER 
Pl!R PROCffS I . 

MARK.Pl "PER PROCESS I 

JPINI 

111 

II 

B IGOWERSfOfJ CHART 
lNCMES I '"'" 

o.z~ 

0.5 
177.Bt6.4 

PINI 

.._.. _________ 1.00 ±.2s-------~ 

PART OR atml'YINQ NUMllO 

A 

112 I COlOR 8LACK. TYPE 6 
IDENT I F-&PEC I NO I MX>ITKJNAL 16' 

PROCESS I CLASSIFICATION 
filiiCE.sSQ..:.;.f'oii CORliEi.AtlDN to OOVTJIND SPECW'ICATION •• SEE TI DRAWiNci 72M87 

lllV 

•·· RIYlllONI -- ...... ' -

MARI( 'p3•PER RDCESS I 

IPROCUREMENT 
SPECIFICATION 

.. , 

D 

c 

N 
0, 
I{) 

0 
~ 

• Lt IU..la· - ,._ I A I~;.·#"! 'fDM3J '1Y ·----·---·--

l60502J 

I U nmrn 



)> 
I ..... 

0 

NOIES. llUSS OIHERWISE SPECIFIED: 

II) INSTALL AFTER PROCESS J 

R£11/SION l£V£L CONTl<rJL 

DIAG 1605028 '"I if PWs---n:,oso26 I* IA 

DI[[} TRIM LEADS OF ALL COM/:f:,11./E"A/TS MOl/NT£D 
ON COMPONENT SIDE TO .040 FROM CONDUCTOR 
SIDE PRIOR TO .bJSTAL.L!NG ADAPTER(IT. 7) 

ASSV /605027 l*IA 

c 

r------
lr ..... ,or::i·b ~ 
L L:;J Rl-c:J- I 

---- I - - - - .J 
=-=-=9 

==----=.::.-=a 

MARK (FREE llAND) APP~IATE 
ASSE'M8l Y REVISION £.!TTER 

REV 

COMPO.A/ENT SIDE 

B 

A 

.fJ75 :t.025L 

CONVERSION CHART 
IUCHES I mm 
.010 I 0.25 
.02 I o.s 
.o4o I 1.02 

.015 ± .02~ ' '· 9 / .t 0.64 

z SLDR 1'24-02 
I SLDR 127-0t 

.-

- HAND SOLDER 

- FLOW SOLDER ·- __ ._. .......... 
I ·- I _ _.. .. ---~==-:-.==... INotE5 SE IDENT F·SPEC 

N<fl PROCESS ,- ""LM~o:tlrl"""" I IUrt 

PftOCESSES-FOR COAREiA.TiON-TO GOVi'liND SPEClftCATIONS. SEE Tl ORAWINO 7N487 
fl·HU.ti 

I )REF 
REF 

PARTORIDEN11FYIHGHUMIWI 

SlJZOCJloa 

'2..,,... 

DESCRtPfK>N 

PROCUREMENT 
SPECIFICATION 

0 fEXAS INSTRUMENTS .............. _,, .. 

...... 

"" 

0 

QJ, 

c 

... 

..... 
~ 
<:l 

"' Cl 
-.s ..... 



)> 
I _. 
_. 

~ 

T Rl!VISIONS 
NOTES. IH.fSS 01lfRWIS[ Sl'£CIFIW: r-T - T ....... T-
t. ALL RESISJORS ARE ltf W, 5,. 

rr PS 

All 
_Jj 

Alf 28 
A9 29 
A8 34 
111 35 
A& 
AS 37 w A4 3 :s9 A3 311 40 
AZ ~ Al I ::z ( Af z 

..111 ... 
DIS II _uj 
Dl4 11 ..1.6 
DIJ I& 

~ Dl2 15 
011 14 13 
Diii Ill 

~ D 9 12 
DI II Ill 
D7 I zc DI I 
D5 21 
04 2Z 
OS 23 
DI 24 
0 I Z5 
DI 2& 

fTS 4 4 

H1l5 II -2 

f11fT 5 .J 

""' TtirA 33 ~ ._ 
nTR sz --» 

iii ...JI. ~ 31 

CLKCIUT 6 6 

.,! 
CX) 

N 

~·.i 1 
0 

~~ SPARES I{) 

'H\3 15 l'f~ I 

0 TCLK UI CD 

~ 
SI -

' 1 S9aA. :sa> ... "°4C>-
RI R2 ·~ II UI 10 GNO 1!§ +SY F-

~ 
.!! 

~ 
I-a:: -:r 

74504 

E§ld_'Jlr PART DR fDENTIPYINQ _,. T -..CU.tuM Dlt DESCRPTat I - ~ U'ECIFICA'llON 

PA R 9 LISY 

. 
~~~ 

>A.,~/, ~TEXAS INSTRUMENTS . ,,.,..,.. ... L-;JI ..,,.,_ t11Ce•f'NaHa
IPUCl:lllQMAU • -·-,..._..._.

.~"':f!..~ , N•1&.o. DIAGRAM , SCHEMATIC , - IDGQ ~ri. •CIDNCUIUMCIYY llfll .oio NI

~~~=:.,~ 
l-tJf.-4 Nrl"' ~·· TMS320 TARGET BOARD 

rt.!=~ 
,_Ai ...... Nl: rcr9s2141· 1605028 sEQ[ ""'"' I F.sl'£c I NO I ADDITIONAL loons 160~021 882~03 

NOT PROCESS I CLASSIFICATION NEXT AS~ USED ON ii·= =··· I~.~: -~Y•=>". 
PROCESSES FOR CORRElATION TO GOVT/IND SP£CIFK:ATIDNS, SEE TI DRAWING 7294fl7 

~· 
APPLICATION • CIQO•·. 7 -·--T l•tflf 

.~.r.'!"' -..-





B. TMS32010 EVM COMMAND SUMMARY 
B. 1 INTRODUCTION 

The tables in this appendix constitute a summary of all the commands presented in this 
manual. All are discussed in detail in the various chapters. Throughout the document, 
the following conventions have applied: 

INPUT PORT: 
OUTPUT PORT: 
PORT NUMBERS: 

IP 
OP 

2 
3 

EIA: Terminal 
EIA: Uplink/Downlink/Printer 
Audio Tape 

KEYBOARD INTERRUPTS: May be caused at any time during any 
display, dump, assembly listing, etc.: 

<SP> Stop/Start Display 
<ESC> Abort Activity 
<CR> Reset 

KEYBOARD ENTRY AIDS (Special Function Keys) 

KEY/KEYS* FUNCTION 

ESC Delete Line/Create New Line 

RUB/DEL Delete Last Character on the Line 

CNTL/N Insert a Character 

CNTL/D Delete a Character 

CNTL/F Move Cursor to the Right 

CNTL/L Move Cursor to the Right 

CNTL/P Move Cursor to the Right 

CNTL/H Move Cursor to the LEFT 

CNTL/ Redisplay Line 

CNTL/A Cursor Home 

CNTL/ Cursor Home 

ESC/CNTL/R Cursor Home 

CNTL/E Move Cursor to End of Text 

CNTL/X Delete to End of Line from Cursor 

CNTL/Y Delete All Characters on Line 

CNTL/I Tab Right (Tab) 

ESC/I Tab Left (Back Tab) 

* In the case of multiple keys, press simultaneously. 

(-->) 

(<--) 

B-1 



TMS32010 EVM COMMAND SUMMARY 

B-2 

TRANSPARENCY MODE COMMANDS 

COMMAND FUNCTION 

COMM Display/Modify Toggle Character 

PASS Transmit Toggle Character to Port 2 

CONTROL CHARACTERS RESERVED FOR EVM USE 

KEYS 

CNTL/[ 

CNTL/M 

CNTL/J 

CNTL/K 

CNTLN 

CNTL/Z 

DISPLAY /MODIFY REGISTER SET COMMANDS 

COMMAND 

Display/Modify Accumulator 

Display/Modify T Register 

Display/Modify P Register 

Display/Modify Auxiliary Register 0 

Display/Modify Auxiliary Register 1 

Display/Modify Program Counter 

Display/Modify Overflow Flag 

Display/Modify Overflow Mode 

Display/Modify Data Page Pointer 

Display/Modify Auxiliary Register Pointer 

Display/Modify Stack Locations 

SUBCOMMAND 

This Menu 

Redisplay Register 

Redisplay Opposite Format 

Next Entry 

Previous Entry 

FUNCTION 

Escape 

Carriage Return 

Cursor Down 

Cursor Up 

Cursor Down 

Cursor Up 

ACC 

TREG 

PREG 

ARO 

AR1 

PC 

MNEMONIC 

ov 
OVM 

DP 

ARP 

STACK 

M 
R 

,x 
<SP>, <LF>, CNTL/J, 

CNTLN or Cursor Down 

CNTL/K,Z or Cursor Up 



TMS32010 EVM COMMAND SUMMARY 

DISPLAY /MODIFY MONITOR COMMANDS 

COMMAND MNEMONIC 

Display Monitor Commands Menu HELP 

Display Keyboard Entry Aids KHELP 

Display Monitor Error Messages EHELP 

Display Monitor Menu MENU 

Display/Modify Clock/Memory Source INIT 

Display/Modify Tabs TABS 

16-Bit Unsigned Hex-Decimal Conversion UD16 

32-Bit Unsigned Hex-Decimal Conversion UD32 

16-Bit Signed Hex-Decimal Conversion SD16 

32-Bit Signed Hex-Decimal Conversion SD32 

16-Bit Decimal-Hex Conversion HX16 

32-Bit Decimal-Hex conversion HX32 

Display Scaled 16-Bit Decimal Number SCALE 

Save/Show Machine State SMS 

Load Machine State LMS 

Save Program Memory SPM 

Load Program Memory LPM 

Display Program Memory DPM 

Display Data Memory DOM 

Display TMS32010 Register Set STATE 

Clear TMS32010 Register Set CLEAR 

Display ACC/T Reg/P Reg In Hex HATP 

TRACE COMMANDS 

COMMAND MNENOMIC 

Set Single-Step Trace Line Locations ST 

Clear One Or All Trace Locations CT 

Display Trace Locations OT 

SUBCOMMAND 

This Menu ,M 

Clear Field .c 
Redisplay Field , ,R 

Next Entry <SP>,<LF>. CNTL/J, 

CNTLN, or Cursor Down 

Previous Entry CNTL/K,Z or Cursor Up 

Quit <CR> 

B-3 



TMS32010 EVM COMMAND SUMMARY 

B-4 

DISPLAY /MODIFY MEMORY COMMANDS 

COMMAND 

Display/Modify Data Memory 

Find Word in Data Memory 

Find Byte in Data Memory 

Display/Modify Program Memory 

Find Word in Program Memory 

Find Byte in Program Memory 

SUBCOMMAND 

This Menu 

Quit 'FIND' Byte/Word in Program/Data Memory 

Change Display Format 

Redisplay Current Value 

Display Current Value in Hexadecimal 

Display Current Value in Signed Decimal 

Display Current Value in Unsigned Decimal 

Display Current Value in Binary 

Enter New 'MPM' /'MOM' Address 

Next Entry 

Previous Entry 

Quit MXM/'FIND' Next Entry 

DISPLAY MENU COMMANDS 

COMMAND 

Display All the Menu Display Menus 

Display the Monitor Menu 

Display the PROM Utility Menu 

Display the Text Editor Commands Menu 

Display/Modify Memory Commands Menu 

Display Register Commands Menu 

Display Set Breakpoint Subcommands Menu 

Display Set Trace Subcommands Menu 

Display Baud Rate Subcommands Menu 

Display Single-Step Subcommands Menu 

MNEMONIC 

MOM 

FWDM 

FBDM 

MPM 

FWPM 

FBPM 

,M 
,Q 

,F 

,R 
,H 
,S 
,D 

,B 

,A= 

<SP>.<LF>,CNTL/J, 

CNTLN or Cursor Down 

CNTL/K,Z or Cursor Up 

<CR> 

MNEMONIC 

/HELP 

/MON 

/PROM 

/EDIT 

/MM 

/REGS 

/SB 

/ST 

/BAUD 

/SS 



TMS32010 EVM COMMAND SUMMARY 

SINGLE-STEP COMMANDS 

COMMAND MNEMONIC 

Fill Data Memory FDM 

Fill Program Memory FPM 

Fill Program Memory with NOPs NOP 

Move Program Memory MOVE 

Execute User Program with Breakpoints EX 

Execute User Program without Breakpoints RUN 

Single-Step User Program SS 

SUBCOMMAND 

This Menu M 

Change Display Type Tx 

Change Display Format F 

Enter Step Count c 
Display Program Counter p 

PC Display Range R 

List to Port 1 1 

List to Port 2 2 

Execute One Single-Step <SP> 

Return to Monitor <CR> 

BREAKPOINT COMMANDS 

COMMAND MNEMONIC 

Set Breakpoints SB 

Clear One Or All Breakpoints CB 

Display Breakpoints DB 

Set Event Count For One Breakpoint EC 

SUBCOMMAND 

This Menu ,M 

Clear Breakpoint ,C 

Redisplay Breakpoint ,R 

Display Event Counter ,E 

Next Entry <SP>,<LF>, 

CNTL/J, 

CMTN or 

Cursor Down 

Previous Entry CNTL/K,Zor 

Cursor Up 

<CR> 

8-5 



TMS32010 EVM COMMAND SUMMARY 

DISPLAY /MODIFY BAUD RATE COMMANDS 

COMMANDS MNEMONIC 

Display/Modify Port 1 Baud 

Rate BAUD1 

Display/Modify Port 2 Baud 

Rate BAUD2 

SUBCOMMANDS 

This Menu ,M 

Redisplay Baud Rate ,R 

NOTE: Allowable baud rates will be displayed at the bottom of the menu as follows: 

Baud Rates: 110, 300, 600, 1200, 2400, 4800, 9600, 19200 

MISCELLANEOUS MONITOR COMMANDS 

COMMAND MNEMONIC 

Print Formfeed Character To EIA Port FF 

Display Files Stored On Audio Cassette DIR 

Enable Audio Cassette Motor MO 

Display Assembler Label Table TABLE 

ASSEMBLER DIRECTIVES 

MNEMONIC DEFINITION 

AORG Absolute Origin 

BSS Block Starting with Symbol 

BES Block Ending with Symbol 

END End Program 

EQU Define Assembly-Time Constant Directive 

DATA Initialize Word 

TEXT Initialize Text Editor 

LIST List Source 

UNL No Source List 

SYMT List Label Table 

PAGE Eject Page 

B-6 



TMS32010 EVM COMMAND SUMMARY 

PROM UTILITY COMMANDS 

COMMAND MNEMONIC 

Compare EPROM to Memory COMP 

Display PROM Utility Menu MENU 

Program EPROM from Memory PROG 

Execute the PROM Utility PROM 

Quit PROM Utility QUIT 

Read EPROM to RAM READ 

Verify EPROM Erased VRFY 

EVM TEXT EDITOR COMMANDS 

DESCRIPTION MNEMONIC 

Display Editor Commands Menu HELP 

Display Keyboard Entry Aids Menu KHELP 

DisplayfModify Tabs TABS 

Clear Text and Initialize Editor ZERO 

Display Free RAM Available MEMORY 

Find String 18 characters maximum) FIND 

Quit Editor and Dump File QUIT <output port> 

Abort Current Activity <ESC> 

Autoincrement Line Number Mode <line#>AUTO 

Resequence Line Numbers to EOF RESEQUENCE <INCREMENT> 

List Line(sl <line#>LIST<#oflines>Def = 1 

Change Line Number <line#>CHANGE<new line #> 

Delete Line Number <line#><CR> 

Edit line <line#>EDIT 

Save LinefEdit Next Line CNTLIJ, CNTLN, linefeed, or 

Cursor Down 

Save LinefEdit Previous Line CNTLIK, CNTLIZ, or Cursor UP 

Enterline <line#XSP> 

Duplicate Line <line#>DUPLICATE<line#> 

B-7 



TMS32010 EVM COMMAND SUMMARY 

SYSTEM ACCESS COMMANDS 

COMMAND MNEMONIC EQUIVALENT 

Display/Modify Program Memory $MPM MPM 

Display Program Memory $DPM DPM 

Fill Program Memory $FPM FPM 

Find Byte in Program Memory $FBPM FBPM 

Find Word in Program Memory $FWPM FWPM 

Move Memory $MOVE MOVE 

UNIQUE COMMANDS 

Display/Modify Record Length $DRL (Default = 182) 

Monitor Expansion Command $USER 

Display Operating System Revision 

Level $REV 

Perform a "Power Cycle" Reset $BOOT 

8-8 



' 

March 1985 
Revision A 
1603479-9701 
Printed in U.S.A. 

• TEXAS 
INSTRUMENTS 

Creating useful products 
and services for you. 

SPRU005A 




