
TMS32010
Assembly
Language
Programmer's
Guide

.,, .

TEXAS
INSTRUMENTS

SPRU002B

TMS32010
Assembly
Language

Programmer's
Guide

Digital Signal Processor Products

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in
order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents
or rights of others based on Texas Instruments applications assistance or
product specifications, since Tl does not possess full access to data con
cerning the use or applications of customer's products. Tl also assumes
no responsibility for customer product designs.

Copyright © 1983 by Texas Instruments Incorporated

TABLE OF CONTENTS
SECTION PAGE

1.

2.

INTRODUCTION
1. 1 General Description
1.2 Assembly Language Application
1.3 Linking Program Modules
1 .4 Program Relocatability
1.5 Macros .. .

GENERAL PROGRAMMING INFORMATION
2.1 Introduction.
2.2 Data Areas
2.3 The TMS32010 Instruction Set
2.4 Source Statement Format

2.4.1 Label Field

1-1
1-1
1-1
1-2
1-2
1-3

2-1
2-1
2-1
2-1
2-3
2-4

2.4.2
2.4.3
2.4.4
Constants
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5

Command Field . 2-4

2.5

Operand Field . 2-5
Comment Field . 2-5

Decimal Integer Constants
Binary Integer Constants
Hexadecimal Integer Constants
Character Constants
Assembly-Time Constants

2-5
2-5
2-5
2-5
2-6
2-6

2.6 Symbols . 2-6
2.6.1 Predefined Symbols . 2-7
2.6.2 Terms . 2-7
2.6.3 Character Strings . 2-7

2. 7 Expressions . 2-8
2. 7. 1 Arithmetic Operators in Expressions 2-8
2. 7 .2 Parentheses in Expressions . 2-8
2. 7 .3 Well-Defined Expressions . 2-9
2. 7.4 Relocatable Symbols in Expressions 2-9
2. 7. 5 Externally Defined Symbols in Expressions 2-10

3. ASS EMBLY INSTRUCTIONS . 3-1
3.1 Introduction . 3-1
3.2 Addressing Modes . 3-1

3.2.1 Direct Addressing Mode . 3-1
3.2.2 Indirect Addressing Mode . 3-1
3.2.3 Immediate Addressing Mode . 3-2

3.3 Instruction Addressing Format . 3-2
3.3.1 Direct Addressing Format . 3-2
3.3.2 Indirect Addressing Format . 3-2
3.3.3 Immediate Addressing Format . 3-2
3.3.4 Examples of Instruction Format . 3-3

3.4 Instruction Set . 3-3
3.4. 1 Symbols and Abbreviations . 3-3

iii

TABLE OF CONTENTS (Continued)
SECTION PAGE

3.4.2
3.4.3

Instruction Set Summary
Instruction Descriptions

3-4
3-5

4. SAMPLE ROUTINES . 4-1

5.

6.

4.1 Introduction . 4-1
4.2 Initializing the TMS32010 . 4-1
4.3 BIOZ Instruction . 4-2
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

BANZ Instruction
LTD Instruction .. .
SUBC Instruction
CALA Instruction
32-Bit Arithmetic Capabilities of TMS32010
Table Read from Program Memory Instruction
Interrupt Instruction
Stack Expansion .. .

4-3
4-4
4-5
4-7
4-8
4-9

4-10
4-11

ASSEMBLER DIRECTIVES 5-1
5-1
5-1
5-1
5-1

5.1
5.2
5.3

Introduction :
The TMS32010 Assembler
Assembler Directives
5.3.1 Directives that Affect the Location Counter
5.3.2 Directives that Affect Assembler Output
5.3.3
5.3.4
5.3.5

Directives that Initialize Constants
Directives that Provide Linkage Between Programs
Miscellaneous Directives

5-17
5-23
5-27
5-33

PROGRAM LINKING 6-1
-6.1 Introduction . 6-1
6.2 Relocation Capability . 6-1
6.3 Linking Program Modules . 6-2

6.3.1 External Reference Directives . 6-2
6.3.2 External Definition Directive . 6-3
6.3.3 Program Identifier Directive . 6-3
6.3.4 Linking . 6-3

7. ASSEMBLER OUTPUT . 7-1

8.

7. 1 Introduction . 7-1
7.2 Source listing .. 7-1
7 .3 Assembler Error Messages . 7-2
7 .4 Cross-Reference Listing . 7-5
7. 5 Object Code . 7-6

7. 5. 1 Object Code Format . 7-6
7.5.2 External References in Object Code 7-10
7.5.3 Changing Object Code . 7-10

MACRO CAPABILITY
8.1 Introduction

iv

8-1
8-1

TABLE OF CONTENTS {Concluded)

SECTION PAGE

8.2 Defining Macros . 8-1
8.2.1 Sample Macros . 8-3

8.3 Macro Language Elements . 8-4

8.4

8.3.1 Strings . 8-4
8.3.2 Constants and Operators . 8-4
8.3.3 Variables . 8-5
8.3.3.1
8.3.3.2
8.3.3.3
8.3.4
8.3.4.1
8.3.4.2
8.3.5
8.3.5.1
8.3.5.2
8.3.5.3
8.3.5.4
8.3.5.5
8.3.5.6
8.3.5.7
8.3.6

Parameters
Macro Symbol Table
Variable Qualifiers
Keywords
Symbol Attribute Component Keywords
Parameter Attribute Keywords
Verbs .. .
$MACRO Statement
$VAR Statement
$ASG Statement
$IF Statement
$ELSE Statement
$ENDIF Statement
$END Statement
Model Statements

Macro Examples .. .
8.4.1 Macro ID
8.4.2 Macro GENCMT
8.4.3 Macro FACT
8.4.4 Macro FFT

8-5
8-6
8-7
8-8
8-9
8-9

8-10
8-10
8-13
8-13
8-14
8-16
8-16
8-16
8-16
8-17
8-17
8-18
8-19
8-19

8.5 Macro Error Messages . 8-21

LIST OF APPENDICES

APPENDIX PAGE

A TMS32010 Hardware Summary . A-1
B Character Sets Recognized by the Assembler . B-1

LIST OF ILLUSTRATIONS

FIGURE PAGE

1-1 Development Process . 1-2
7-1 Cross-Reference Listing Format . 7-5
7-2 Sample Object Code . 7-6

v

TABLE

2-1
3-1
3-2
5-1
5-2
5-3
5-4
5-5
7-1
7-2
7-3
8-1
8-2
8-3
8-4
8-5

LIST OF TABLES

Results of Operations on Absolute and Relocatable Items in Expressions
Instruction Symbols .. .
Instruction Set Summary .. .
Assembler Directives that Affect the Location Counter
Directives that Affect Assembler Output
Directives that Initialize Constants
Directives that Provide Linkage Between Programs
Miscellaneous Directives
Assembly Listing Errors
Symbol Attributes
Object Record Format and Tags
Variable Qualifiers
Variable Qualifiers for Symbol Components
Symbol Attribute Keywords
Parameter Attribute Keywords
Macro Error Messages

vi

PAGE

2-10
3-4
3-5
5-2

5-17
5-23
5-27
5-32

7-3
7-5
7-9
8-7
8-8
8-9

8-10
8-21

1 . INTRODUCTION

1.1 GENERAL DESCRIPTION

An assembly language is a computer-oriented language for writing programs, consisting of
symbolic instructions and assembler directives. In assembly instructions, the user assigns
symbolic addresses to memory locations and specifies instructions by means of symbolic
(mnemonic) operation codes. The user specifies instruction operands by means of symbolic
addresses, numbers, and expressions consisting of symbolic addresses and numbers.
Assembler directives control the processes of making a machine language program from
the assembly language program, placing data in the program, and assigning symbols to values
to be used in the program. Assembler directives that place data in memory locations allow
the user to assign symbolic addresses to those locations.

Assembly language is computer-oriented in that the mnemonic operation codes correspond
directly to machine instructions. The chief advantage an assembly language offers over a
machine language is that the symbols of assembly language are easier to use and easier
to remember than the zeros and ones of machine language. Other advantages are the use
of expressions as operands and the use of decimal numbers in expressions and as operands.

This manual describes the assembly language for the TMS32010 and TMS320M 10 16/32-bit
high-performance digital signal processors.

1.2 ASSEMBLY LANGUAGE APPLICATION

An assembly language program, called a source program, must be processed by an assembler
to obtain a machine language program that can be executed by the computer. Processing
of a source program is called assembling, because it consists of assembling the binary values
(that correspond to the mnemonic· operation code) with the binary address information to
form the machine language instruction.

To illustrate the place of assembly language in the development of programs, consider the
following steps in program development:

1) Define the problem.

2) Flowchart the solution to the problem.

3) Code the solution by writing assembly language statements (machine instructions
and assembler directives) that correspond to the steps of the flowchart.

4) Prepare the source program by writing the statements on the medium appropriate
to the installation; e.g., enter a file on a disk, keypunch the statements, etc.

5) Execute the assembler to assemble the machine language object code correspon
ding to the source program.

6) Debug the resulting object code by loading and executing the object code and mak
ing the consequent corrections indicated.

7) Repeat Steps 5 and 6 until no further correction is required.

The use of assembly language in program development relieves the programmer of the tedious
task of writing machine language instructions and keeping track of binary machine addresses
within the program. Figure 1-1 also illustrates this procedure.

1-1

1 .3 LINKING PROGRAM MODULES

The assembler commands include two pairs of directives, DEF/REF and SREF/LOAD, that
generate the information required to link program modules, thus removing the constraint
of having to assemble an entire program at once. A long program may be divided into more
manageable components in order to avoid a time-consuming assembly. Also, these smaller
units reduce the size of the symbol table (an entry is made in the symbol table for every
symbol used in the program). Components of a large program are then linked by the link
editor (also called the linker) to form a complete executable program.

1.4 PROGRAM RELOCATABILITY

1-2

A major advantage of the TMS32010 Assembler is its ability to generate relocatable object
code modules which can then be linked by the link editor to form an executable program.
(Absolute code, on the other hand, must occupy a dedicated area of memory and cannot
be moved as necessity dictates. This means that repetitive code in a program must be writ
ten into the program each time it is needed.)

The ability to relocate modules simplifies the programming task. Programs designed as a
set of modules are easier to code, test, and debug, and are easier to understand and main
tain. Relocatability also permits multiple programmers to work on a program's components.

BEGIN

DEFINE

PROBLEM

FLOWCHART

SOLUTION

CODE

SOLUTION

INPUT

CODE

EXECUTE

ASSEMBLER

LOAD, EXECUTE

OBJECT CODE

END

YES

FIGURE 1-1 - DEVELOPMENT PROCESS

DEBUG

1.5 MACROS

The macro capability adds great flexibility to the assembler and provides the means to create
a macro language that is capable of calling source statements from other locations within
a program. A macro call statement fetches the source statements defined by the macro and
substitutes them for the macro as if they had been written in that location in the program.

The obvious advantage of using macro code is that less source code must be written; this
in turn means that the programs are easier to read and debug. In addition, macros usually
execute faster than a comparable absolute code routine because no branching is involved.
The macro capability is discussed in Section 8.

1-3

1-4

2. GENERAL PROGRAMMING INFORMATION

2.1 INTRODUCTION

The TMS32010 Assembly Language is a powerful set of instructions consisting of mnemonic
operation codes (called mnemonics) that correspond directly to binary machine instructions.
The assembly language program, as coded by the programmer, is called a source program.
Before it can be executed by the computer, this source program must be processed by the
assembler to obtain a machine language program. This processing of a source program is
called assembling. This consists of assembling the binary values (which correspond to the
mnemonic operation code) with the binary address information, to form the machine language
instruction.

Assembler directives (see Section 5) control the process of making a machine language pro
gram from the assembly language program, placing data in the program, and assigning values
to symbols to be used in the program.

2.2 DATA AREAS

The data manipulated by the TMS32010 is organized into four areas:

• Register areas: Two 16-bit auxiliary registers, a 1-bit auxiliary register pointer, a
32-bit T register; a 32-bit P register; an accumulator, and a 4 X 12 hardware stack
area. In addition, The TMS32010 CPU has access to the 12-bit program counter
(PC), the 16-bit status register (ST), and the 1-bit data page pointer (DP).

• 1 536 X 16-bit read-only-memory (ROM) program areas containing the main pro
gram and subroutines.

• 144 X 16-bit on-chip RAM data memory areas comprising data tables.

• Eight 1/0 Ports.

Detailed information and illustrations of these data areas are presented in Appendix A.

2.3 THE TMS32010 INSTRUCTION SET

The TMS32010 instruction set is composed of 60 instructions that provide for the input,
output, manipulation, and comparison of data. The instruction set is divided into eight func
tional categories. They are as follows:

1 l ACCUMULATOR INSTRUCTIONS: Provide a variety of ways to add, subtract, load,
and store the accumulator.

MNEMONIC

ABS
ADD
ADDH
ADDS
LAC
LACK
SACH

DESCRIPTION

ABSOLUTE VALUE OF ACCUMULATOR
ADD TO ACCUMULATOR WITH SHIFT
ADD TO HIGH ACCUMULATOR
ADD TO ACCUMULATOR WITH NO SIGN EXTENSION
LOAD ACCUMULATOR WITH SHIFT
LOAD ACCUMULATOR IMMEDIATE
STORE HIGH ACCUMULATOR

2-1

2-2

SACL
SUB
SUBC
SUBH
SUBS
ZAC
ZALH
ZALS

STORE LOW ACCUMULATOR
SUBTRACT FROM ACCUMULATOR WITH SHIFT
CONDITIONAL SUBTRACT (FOR DIVIDE)
SUBTRACT FROM HIGH ACCUMULATOR
SUBTRACT FROM ACCUMULATOR WITH NO EXTENSION
ZERO ACCUMULATOR
ZERO ACCUMULATOR AND LOAD HIGH
ZERO ACCUMULATOR AND LOAD LOW

2) AUXILIARY REGISTER AND DATA PAGE INSTRUCTION: Load, store, modify, and
compare ARs and ARP.

MNEMONIC

LAR
LARK
LARP
LOP
LDPK
MAR
SAR

DESCRIPTION

LOAD AUXILIARY REGISTER
LOAD AUXILIARY REGISTER IMMEDIATE
LOAD AUXILIARY REGISTER POINTER IMMEDIATE
LOAD DATA PAGE MEMORY POINTER
LOAD DATA MEMORY PAGE POINTER IMMEDIATE
MODIFY AUXILIARY REGISTER AND POINTER
STORE AUXILIARY REGISTER

3) T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS: Provide for the
preparation for and execution of a multiply.

MNEMONIC

APAC
LT
LTA
LTD

MPY

MPYK

DESCRIPTION

ADD P REGISTER TO ACCUMULATOR
LOAD T REGISTER
LOAD T REGISTER AND ACCUMULATOR PRODUCT
LOAD T REGISTER, ACCUMULATOR PRODUCT, AND MOVE DATA
IN MEMORY FORWARD ONE LOCATION
MULTIPLY T REGISTER BY DATA MEMORY VALUE AND STORE
THE PRODUCT IN P REGISTER
MULTIPLY T REGISTER BY IMMEDIATE OPERAND AND STORE
VALUE IN P REGISTER

PAC LOAD ACCUMULATOR FROM P REGISTER
SPAC SUBTRACT P REGISTER FROM A CCU MULA TOR

4) BRANCH INSTRUCTIONS: Permit testing of a variety of conditions, along with
subroutine calls.

MNEMONIC

B
SANZ
BGEZ
BGZ
BIOZ
BLEZ
BLZ

DESCRIPTION

BRANCH UNCONDITIONALLY
BRANCH ON AUXILIARY REGISTER NOT ZERO
BRANCH IF ACCUMULATOR > OR = 0
BRANCH IF ACCUMULATOR > 0
BRANCH ON 1/0 ST A TUS = 0
BRANCH IF ACCUMULATOR < OR = 0
BRANCH IF ACCUMULATOR < 0

BNZ BRANCH IF ACCUMULATOR NOT = 0
BV BRANCH ON OVERFLOW
BZ BRANCH IF ACCUMULATOR = 0
CALA CALL SUBROUTINE INDIRECT VIA ACCUMULATOR
CALL CALL SUBROUTINE
RET RETURN FROM SUBROUTINE

5) CONTROL INSTRUCTIONS: Affect the overflow mode, enable and disable inter
rupts, and store certain registers which cannot be stored by other instructions.

MNEMONIC

DINT
EINT
LST
NOP
POP
PUSH
ROVM
SOVM
SST

DISABLE INTERRUPT
ENABLE INTERRUPT
LOAD ST A TUS REGISTER
NO OPERATION

DESCRIPTION

TOP OF STACK TO ACCUMULATOR
PUSH ACCUMULATOR TO TOP OF STACK
RESET OVERFLOW MODE
SET OVERFLOW MODE
STORE STATUS REGISTER

6) BOOLEAN OPERATIONS: Perform logical operations between the accumulator and
data memory.

MNEMONIC

AND
OR
XOR

DESCRIPTION

AND WITH LOW ACCUMULATOR
OR WITH LOW ACCUMULATOR
EXCLUSIVE OR WITH LOW ACCUMULATOR

7) 1/0 AND DATA MEMORY OPERATIONS: Allow input/output of data to external
peripherals, provide for transfer of data within data memory or between program
and data memory.

MNEMONIC

DMOV

IN
OUT
TBLR
TBLW

DESCRIPTION

SHIFT CONTENTS OF DATA MEMORY ADDRESS FORWARD ONE
LOCATION
INPUT DAT A FROM PORT
OUTPUT DAT A TO PORT
TABLE READ FROM PROGRAM MEMORY TO DATA MEMORY
TABLE WRITE FROM DATA MEMORY TO PROGRAM MEMORY

Detailed information concerning these instructions is presented in Section 3.

2.4 SOURCE STATEMENT FORMAT

An Assembly Language source program consists of source statements that may contain
assembler directives, machine instructions, or comments. Source statements scanned by
the assembler may contain four ordered fields separated by one or more blanks. These fields

2-3

(label, command, operand, and comment) are discussed in the following paragraphs. Source
statements containing an asterisk (*) in the first character position are comment statements,
and as such, they have no effect on the assembly. The source statement line may be as
long as the source file format allows; however, the assembler will truncate the source line
to 60 characters without warning. The user should insure that nothing other than comments
extend past column 60.

The character set accepted by the TMS32010 Assembler consists of the ASCII character
set as well as special characters that are undefined in ASCII. Appendix B contains tables
that list the TMS32010 Assembler character set, along with associated ASCII and Hollerith
codes.

The syntax for source statements is:

[<label>] <mnemonic> [<operand>] [<comment>]

EXAMPLE: LOOP IN MEM,PAO INPUT NEXT DA TA SAMPLE

A source statement may have a label that is defined by the user. One or more blanks separate
the label from the command mnemonic. Instruction operation codes, assembler directives,
and user-defined operation codes are all included in the generic term mnemonic. One or more
blanks separate the mnemonic from the operand (when an operand is required). One or more
blanks separate the operand(s) from the comment field. Comments are ignored by the
assembler.

The last source statement of a source program, usually the END directive, is followed by
the end-of-file statement for the source medium (e.g., for punched cards, a card with a slash
{/) punched in column one and an asterisk (*) in column two).

2.4. 1 Label Field '

The label field begins in character position one of the source record, extends to the first
blank, and contains a symbol of up to six significant characters. The first character of the
symbol must be alphabetic. Additional characters may be any alphanumeric characters. A
label is optional for machine instructions and for many assembler directives. When the label
is omitted, the first character position must contain a blank. A source statement consisting
of only a label field is a valid statement. It has the effect of assigning the current value of
the location counter to the label; this is equivalent to the following directive statement:

< I a be I > E Q U $ Where $ represents the current value of the location counter at that
point in the assembly.

2.4.2 Command Field

2-4

The command field begins after the blank that terminates the label field, or in the first non blank
character past the first character position (which must be blank when the label is omitted).
The command field is terminated by one or more blanks and may not extend past the right
margin. The command field may contain one of the following opcodes:

• Assembler mnemonic of a machine instruction (e.g., IN)

• Macro directive (e.g., $MACRO)

• Assembler directive (e.g., DATA)

2.4.3 Operand Field

2.4.4

The operand field begins following the blank that terminates the command field and may
not extend past the right margin of the source record. The operand field may contain one
or more constants or expressions (described in Sections 2. 5 and 2. 7). The operand field
is terminated by one or more blanks.

Comment Field

The comment field begins after the blank that terminates the operand field or the blank that
terminates the command field, as in the case of commands that have no operands. The com
ment field may extend to the end of the source record, if required, and may contain any
ASCII character including blank(s). The contents of the comment field up to the end of the
source record are listed in the source portion of the assembly listing and have no other ef
fect on the assembly.

2.5 CONSTANTS

The assembler recognizes the following five types of constants, each internally maintained
as a 16-bit quantity:

• Decimal integer constants

• Binary integer constants

• Hexadecimal integer constants

• Character constants

• Assembly-time constants

2.5.1 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits. The range of values of
decimal integers is - 32, 768 to + 65,535. Positive decimal integer constants greater than
32, 767 are considered negative when interpreted as two's complement values.

The following are valid decimal constants:

1000
-32768
25

2.5.2 Binary Integer Constants

Constant equal to 1000 or > 03E8
Constant equal to - 32768 or > 8000
Constant equal to 25 or >0019

A binary integer constant is written as a string of up to 16 binary digits (0/1) preceded by
a question mark, "?". If less than sixteen digits are specified, the assembler will right-justify
the given bits in the resulting constant.

The following are valid binary constants:

2-5

?0000000000010011
?O 111111111111111
?11110

Constant equal to 19 or > 0013
Constant equal to 32767 or > 7FFF
Constant equal to 30 or > 001 E

2.5.3 Hexadecimal Integer Constants

2.5.4

A hexadecimal integer constant is written as a string of up to four hexadecimal digits preceded
by a greater than sign, '> '. If less than four hexadecimal digits are specified, the assembler
will right-justify the bits which are specified in the resulting constant. Hexadecimal digits
include the decimal values 'O' through '9' and the letters 'A' through 'F'.

The following are valid hexadecimal constants:

>78
>F
>37AC

Character Constants

Constant equal to 120 (or >0078)
Constant equal to 15 (or >OOOF)
Constant equal to 14252 (or > 37 AC)

A character constant is written as a string of one or two alphabetic characters enclosed
in single quotes. Two consecutive single quotes are required to represent each single quote
contained within a character constant. If less than two characters are specified, the assembler
will right-justify the given bits in the resulting constant. The characters are represented in
ternally as 8-bit ASCII characters. A character constant consisting of only two single quotes
(no character) is valid and is assigned the value 0000 (Hex).

The following are valid character constants:

'AB'
'C'
'N'
'''D'

Represented internally as > 4142
Represented internally as > 0043
Represented internally as > 004E
Represented internally as > 27 44

2.5.5 Assembly-Time Constants

An assembly-time constant is a symbol given a value by an EQU directive (see Section 2.4.1).
The value of the symbol is determined at assembly time and is considered to be absolute
or relocatable according to the relocatability of the expression, not according to the relocatabili
ty of the location counter value. Absolute value symbols may be assigned values with ex
pressions using any of the above constant types.

2.6 SYMBOLS

2-6

Symbols are used in the label field and the operand field. A symbol is a string of alphanumeric
characters, ('A' through 'Z', 'O' through '9' and '$ '). The first character in a symbol must
be 'A' through 'Z' or '$'. No character may be blank. When more than six characters are
used in a symbol, the assembler prints all the characters, but accepts only the first six
characters for processing (the assembler also prints a warning indicating that the symbol
has been truncated). Therefore, symbols must be unique in the first six characters. User
defined symbols are valid only during the assembly in which they are defined.

Symbols used in the label field become symbolic addresses. They are associated with loca
tions in the program and must not be used in the label field of other statements. Mnemonic

operation codes and assembler directive names may also be used as valid user-defined sym
bols when placed in the label field.

Symbols used in the operand field must be defined in the assembly, usually by appearing
in the label field of a statement or in the operand field of a REF or SREF directive. REF and
SREF directives provide access to symbols defined in other programs (see Section 5.3.4).

The following are examples of valid symbols:

START

ADD

OPERATION

2.6.1 Predefined Symbols

ST ART is assigned the value of the location where it
appears in the label field.

ADD is assigned the value of the location where it ap
pears in the label field.

OPERA T (assembler recognizes only the first six
characters) is assigned the value of the location where
it appears in the label field.

The predefined symbols are the dollar sign character($) and the register and port symbols.
The dollar sign character is used to represent the current location within the program. The
auxiliary register symbols are of the form "ARn," where 'n' is a constant 0 or 1.

The port addresses are of the form "PAn," where n is a constant in the range from 0 to 7.

The following are examples of valid predefined symbols:

2.6.2 Terms

$
ARO
PAO

Represents the current location
Represents Auxiliary Register 0
Represents Port Address 0

Terms are used in the operand fields of machine instructions and assembler directives. A
term may be a decimal, binary, character, or hexadecimal constant, an absolute assembly
time constant, or a label having an absolute value.

2.6.3 Character Strings

Several assembler directives require character strings in the operand field. A character string
is written as a string of characters enclosed in single quotes. For each single quote in a
character string, two consecutive single quotes are required to represent the single quote.
The maximum length of the string is defined for each directive that requires a character string.
The characters are represented internally as 8-bit ASCII. Appendix B gives a complete list
of valid characters within character strings.

The following are valid character strings:

'SAMPLE PROGRAM' Defines a 14-character string consisting of SAMPLE
PROGRAM

2-7

'PLAN "C'" Defines an 8-character string consisting of PLAN 'C'

'OPERATOR MESSAGE: PRESS START SWITCH'
Defines a 37-character string consisting of the expres
sion enclosed in single quotes.

2. 7 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and machine instructions.
An expression is a constant or symbol, a series of constants or symbols, or a series of con
stants and symbols separated by arithmetic operators. Each constant or symbol may be
preceded by a minus sign (unary minus), a plus sign (unary plus), or the #symbol (unary
invert). Unary minus is the same as taking the two's complement, and unary invert is the
same as taking the one's complement. The# symbol causes the value of the logical com
plement of the following constant, symbol, or expression to be used. An expression may
not contain embedded blanks. The valid range of values for an expression is - 32, 768 to
+65,535. Symbols that are defined as external references may be operands of arithmetic
instructions within certain limits, as described in Section 2. 7.4.

2. 7 .1 Arithmetic Operators in Expressions

The arithmetic operators used in expressions are as follows:

+ for addition
for subtraction

* for multiplication
I for signed division

In evaluating an expression, the assembler first negates any constant or symbol preceded
by a unary minus and then performs the arithmetic operations from left to right. The unary
invert will be performed last. The assembler does not assign arithmetic operation precedence
to any operation other than unary plus, unary minus, or unary invert. All arithmetic opera
tions take precedence over the unary invert(#) operation. The expression following a unary
invert (i.e., "#") must be resolved to an absolute value. All operations are integer opera
tions. The assembler truncates the fraction in division.

For example, the expression 4+5*2 would be evaluated 18, not 14; and the expression
7+1 /2 would be evaluated four, not seven.

The assembler checks for overflow/underflow conditions when arithmetic operations are
performed at assembly time and gives the warning message "VALUE TRUNCATED"
whenever an overflow/underflow occurs.; Examples of "VALUE TRUNCATED" messages
are as follows:

-2* >4001

>8000*2

>FFFE+2

- >8000-1

-1 * >8001

-2* >8000

2. 7 .2 Parentheses in Expressions

2-8

The assembler supports the use of parentheses in expressions to alter the order of evalua
tion of the expression. Nesting of pairs of parentheses within expressions is also supported.
When parentheses are used, the portion of the expression within the innermost parentheses

is evaluated first; then the portion of the expression within the next innermost pair is evaluated.
When evaluation of the portions of the expression within the parentheses has been com
pleted, the evaluation is completed from left to right. Evaluation of portions of an expres
sion within parentheses at the same nesting level is considered as simultaneous. Parenthetical
expressions may not be nested more than eight deep.

For example, the use of parentheses in the expression LAB1 + ((4 + 3) *7) will result in the
following operation: add four to three; multiply the resulting sum by seven; and add the
resulting product to the value of LAB 1 .

2. 7 .3 Well-Defined Expressions

Some assembler directives require well-defined expressions in operand fields. For an expres
sion to be well-defined, any symbols or assembly-time constants in the expression must
have been previously defined. The evaluation of a well-defined expression must also be ab
solute, and a well-defined expression cannot contain a character constant. An example of
a well-defined expression is:

>1000+X Where X must have been previously defined

2. 7 .4 Relocatable Symbols in Expressions

An expression that contains a relocatable symbol or constant immediately following a
multiplication or division operator is illegal. When the result of evaluating an expression up
to a multiplication or division operator is relocatable, the expression is also illegal.

If the current value of an expression is relocatable with respect to one relocatable section,
a symbol of another section may not be included until the value of the expression becomes
absolute. The following are legal expressions involving relocatable symbols:

BLUE+ 1

GREEN-4

2*16+RED

440/2-RED

The sum of the value of symbol BLUE plus 1 is legal
and of the same type as BLUE (BLUE can be an ab
solute or a relocatable symbol).

The result of subtracting 4 from the value of symbol
GREEN is legal and of the same type as GREEN
(GREEN can be an absolute or a relocatable symbol).

The sum of the value of symbol RED plus the product
of 2 times 16 is legal, and of the same type as RED
(RED can be an absolute or a relocatable symbol).

The result of dividing 440 by 2 and then subtracting
the value of symbol RED from the quotient is absolute
(RED must be absolute to make this a legal
expression).

Table 2-1 defines the relocatability of the result for each type of operator.

2-9

TABLE 2-1 - RESULTS OF OPERATIONS ON ABSOLUTE AND RELOCATABLE ITEMS IN EXPRESSIONS

IF A IS AND BIS
RESULT OF RESULT OF RESULT OF RESULT OF

A+B A-B A*B A/B

ABS ABS ABS ABS ABS ABS (B< >0)*

ABS RELOC RELOC illegal Note 1 illegal

RELOC ABS RELOC RELOC Note 2 Note 3

RELOC RELOC illegal Note 4 illegal illegal

* < > indicates "not equal"
NOTES: 1. Illegal unless A equals zero or one. If A equals one, the result is relocatable; if A is zero, the result is an absolute zero.

2.7.5

2-10

2. Illegal unless B equals zero or one. If B equals one, the result is relocatable; if B is zero, the result is absolute zero.
3. Illegal unless B equals one, in which case the result is relocatable.
4. Illegal unless A and B are in the same section, in which case the result is absolute.

Externally Defined Symbols in Expressions

The assembler allows externally defined symbols (defined in REF and SREF directives) in
expressions under the following conditions:

1) Only one externally referenced symbol may be used in an expression.

2) The character preceding the referenced symbol must be a plus sign, a blank, a com
ma, or a unary invert. The portion of the expression preceding the symbol, if any,
must be added to the symbol.

3) The portion of the expression following the referenced symbol must not include
multiplication or division operations on the symbol (as for a relocatable symbol
described in Section 2. 7.4).

4) The remainder of the expression following the referenced symbol must be absolute.

The assembler limits the user to a total of 255 externally referenced symbols per module.
Modules using more than 255 external symbols must be broken into smaller modules for
assembly, and linked using the link editor.

3. ASSEMBLY INSTRUCTIONS

Assembly language instructions for the TMS32010 microcomputer are described in this sec
tion. Descriptions of the addressing modes, formats for instruction addressing, and detailed
instruction descriptions are included.

3.1 INTRODUCTION

The instruction set contains a full set of branch instructions. Combined with the Boolean opera
tions and shifters, these instructions permit the bit manipulation and bit test capability needed for
high-speed control operations. Double-precision operations are also supported by the instruction
set. Some examples are ADDH (add to high-order accumulator) and ADDS (add to accumulator
with sign extension suppressed), which allow easy manipulation of 32-bit numbers.

The TMS3201 O's hardware multiplier allows the MPY instruction to be executed in a single cycle.
The SUBC (conditional subtract for divide) instruction performs the shifting and conditional
branching necessary to implement a divide efficiently and quickly.

Two special instructions, TBLR (table read) and TBLW (table write), allow crossover between data
memory and program memory. The TBLR instruction transfers words stored in program memory to
the data RAM. This eliminates the need for a coefficient ROM separate from the program ROM,
thus permitting the user to make efficient trade-offs as to the amount of ROM dedicated to pro
gram or coefficient store. The accompanying instruction, TBLW, transfers words in internal data
RAM to an external RAM. In conjunction with TBLR, this instruction allows the use of external
RAM to expand the amount of data storage.

When a very large amount of external data must be addressed (i.e.,> 4K words), TBLR and TBLW
can no longer serve as a means of expanding the data RAM. Then it becomes necessary to address
external data RAM as a peripheral by using the IN and OUT instructions; these instructions permit a
data word to be read into the on-chip RAM in only two cycles. This procedure requires a minimal
amount of external logic and permits the accessing of almost unlimited amounts of data RAM. This
is very useful for pattern recognition applications, such as speech recognition or image processing.

3.2 ADDRESSING MODES

Three main addressing modes are available with the TMS32010 instruction set direct, indirect, and
immediate addressing.

3.2.1 Direct Addressing Mode

In direct addressing, seven bits of the instruction word concatenated with the data page pointer
form the data memory address. This implements a paging scheme in which the first page contains
128 words and the second page contains 16 words. In a typical application, infrequently accessed
variables, such as those used when performing an interrupt service routine, are stored on the sec
ond page.

3.2.2 Indirect Addressing Mode

Indirect addressing forms the data memory address from the least significant eight bits of one of
two auxiliary registers, ARO and AR1. The auxiliary register pointer (ARP) selects the current auxil
iary register. The auxiliary registers can be automatically incremented or decremented in parallel
with the execution of any indirect instruction to permit single-cycle manipulation of data tables.

3-1

3.2.3. Immediate Addressing Mode

The TMS32010 instruction set contains special "immediate" instructions. These instructions derive
data from part of the instruction word rather than from the data RAM. The constant in all immediate
instructions may refer to values supplied by an external reference symbol. Some very useful im
mediate instructions are multiply immediate (MPYKJ, load accumulator immediate (LACK), and
load auxiliary register immediate (LARK).

3.3 INSTRUCTION ADDRESSING FORMAT

The following sections describe the opcode format for the various addressing modes of the
TMS32010.

3.3.1 Direct Addressing Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

OPCODE I 0 I dma

Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6
through 0 contain data memory address.

The 7 bits of the data memory address (dma) field can directly address up to 128 words (1 page) of
data memory. Use of the data memory. page pointer is required to address the full 144 words of data
memory.

Direct addressing can be used with all instructions requiring data operands except for the immediate
operand instructions.

3.3.2. Indirect Addressing Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

OPCODE o ! 1NciDEciARPI o I o I ARP I
Bit 7 = 1 defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 6
through 0 contain indirect addressing control bits.

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the contents of bit 0
are loaded into the ARP after execution of the current instruction. If bit 3 = 1, then the contents of
the ARP remain unchanged. ARP = 0 defines the contents of ARO as a memory address. ARP =
1 defines the contents of AR 1 as a memory address.

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, then ARP defines which auxiliary register is
to be incremented by 1 after execution. If bit 4 = 1, then the ARP defines which auxiliary register is
to be decremented by 1 after execution. If bit 5 and bit 4 are zero, then neither auxiliary register is in
cremented or decremented. Bits 6, 2, and 1 are reserved and should always be programmed to zero.

Indirect addressing can be used with all instructions requiring data operands, except for the im
mediate operand instructions.

3.3.3 Immediate Addressing Format

3-2

Included in the TMS3201 O's instruction set are five immediate operand instructions (LDPK, LARK,
MPYK, LACK, and LARPJ. In these instructions, the operand is contained within the instruction
word.

1183

3.3.4 Examples of Opcode Format

1) ADD 9,5 Add to accumulator the contents of memory
location 9 left-shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I a a a a I a o 1!0!0 o o 0 0

Note: Opcode of the ADD instruction is 0000 and appears in bits 15 through 12. Shift code of 5 appears in bits 11 through 8. Data mem
ory address 9 appears in bits 6 through 0.

2) ADD *+ ,8 Add to accumulator the contents of data memory address defined by
contents of current auxiliary register. This data is left-shifted 8 bits
before being added. The current auxiliary register is auto-incremented
by 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 a a a I I a 0 0 0 0

Other variations of indirect addressing are as follows:

3) ADD*, 8 As in example 2, but with no auto-increment; opcode would be
>0888

4) ADD* - , 8 As in example 2, except that current auxiliary register is decremented
by 1 ; opcode would be > 0898

5) ADD* + , 8, 1 As in example 2, except that the auxiliary register pointer is loaded
with the value 1 after execution; opcode would be> 08A 1

6) ADD* + , 8, 0 As in example 2, except that the auxiliary register pointer is loaded
with the value 0 after execution; opcode would be> 08AO

3.4 INSTRUCTION SET

The following sections include the symbols and abbreviations that are used in the instruction set
summary and in the instruction descriptions, the complete instruction set summary, and a descrip
tion of each instruction.

All numbers are assumed to be decimal unless otherwise indicated. Hexidecimal numbers are
specified by the symbol ">" before the number.

3.4.1. Symbols and Abbreviations

1183

DATn and PRGn are assumed to have the symbolic value of n. They are used to represent any sym
bol with the value n.

3-3

3-4

SYMBOL

ACC
AR

ARP
D

DATn
dma
DP
I

INTM
K

>nn
OVM

p

PA

PC
pma

PRGn
R
s
T

TOS
x

I I
< >
[l
()

{ }
<>

TABLE 3-1 - INSTRUCTION SYMBOLS

MEANING

Accumulator
Auxiliary register (ARO and AR 1 are predefined assembler symbols equal to 0 and 1 ,
respectively.)
Auxiliary register pointer
Data memory address field
Label assigned to data memory location n
Data memory address
Data page pointer
Addressing mode bit
Interrupt mode flag bit
Immediate operand field
Indicates nn is a hexadecimal number. All others are assumed to be decimal values.
Overflow (saturation) mode flag bit
Product (P) register
Port address (PAO through PA 7 are predefined assembler symbols equal to 0 through
7, respectively)
Program counter
Program memory address
Label assigned to program memory location n
1-bit operand field specifying auxiliary register
4-bit left-shift code
T register
Top of stack
3-bit accumulator left-shift field
Is assigned to
Indicates an absolute value
Items within angle brackets are defined by user.
Items within brackets are optional.
Indicates "contents of"
Items within braces are alternative items; one of them must be entered.
Angle brackets back-to-back indicate "not equal".
Blanks or spaces are significant.

1183

3.4.2 Instruction Set Summary

The instruction set summary in the following table consists primarily of single-cycle single-word in
structions. Only infrequently used branch and 1/0 instructions are multicycle.

TABLE 3-2 - INSTRUCTION SET SUMMARY

ACCUMULATOR INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABS Absolute value of 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0
accumulator

ADD Add to accumulator 1 1 0 0 0 0 <E- s ---7 I <E- D -7
with shift

ADDH Add to high-order 1 1 0 1 1 0 0 0 0 0 I * D 7
accumulator bits

ADDS Add to accumulator 1 1 0 1 1 0 0 0 0 1 I * D 7
with no sign extension

AND AND with accumulator 1 1 0 1 1 1 1 0 0 1 I <E- D 7
LAC Load accumulator 1 1 0 0 1 0 <E- s ---7 I "- D -7

with shift

I l* LACK Load accumulator 1 1 0 1 1 1 1 1 1 0 K -7
immediate

OR OR with accumulator 1 1 0 1 1 1 1 0 1 0 I * D 7
SACH Store high-order 1 1 0 1 0 1 1 <E- x -7 I *" D 7

accumulator bits with
shift

0) I SACL Store low-order 1 1 0 1 0 1 0 0 0 * D 7
accumulator bits

I

SUB Subtract from 1 1 0 0 0 1 <E- s ~ I * D -7
accumulator with
shift

SUBC Conditional subtract 1 1 0 1 1 0 0 1 0 0 I -E- D 7
(for divide)

SUBH Subtract from high- 1 1 0 1 1 0 0 0 1 0 I *" D 7
order accumulator bits

SUBS Subtract from accumu- 1 1 0 1 1 0 0 0 1 1 I -E---- D 7
lator with no sign
extension

XOR Exclusive 0 R with 1 1 0 1 1 1 1 0 0 0 I -E- D _:-,
/

accumulator
ZAC Zero accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1
ZALH Zero accumulator and 1 1 0 1 1 0 0 1 0 1 I <E- D -7

load high-order bits
ZALS Zero accumulator and 1 1 0 1 1 0 0 1 1 0 I -E- D -7

load low-order bits
with no sign extension

3-5

TABLE 3-2 - INSTRUCTION SET SUMMARY (CONTINUED!

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER >

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LAR Load auxiliary 1 1 I 0 0 1 1 1 0 0 R I <E- D ' --;>

register
LARK Load auxiliary 1 1 0 1 1 1 0 0 0 R -E- K ~

register immediate
LARP Load auxiliary 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 K

register pointer
immediate

LOP Load data memory 1 1 0 1 1 0 1 1 1 1 I <E- D -------7
page pointer

LDPK Load data memory 1
'

1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 K
page pointer
immediate

MAR Modify auxiliary 1 1 0 1 1 0 1 0 0 0 I <E- D ~

register and pointer
SAR Store auxiliary 1 1 0 0 1 1 0 0 0 R I -E- D --7

register

BRANCH INSTRUCTIONS

MNEMONIC DESCRIPTION I OPCODE NO. I NO.
CYCLES WORDS INSTRUCTION REGISTER

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- ---1---

B Branch unconditionally 2 2 1 1 1 1 -, , 0 0 1 IQ Q Q 0 0 0 0 0
0 0 0 0 * BR~NCH ADDRESS ' -:o

BANZ Branch on auxiliary 2 2 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
register not zero 0 0 0 0 <E- BRANCH ADDRESS ---7

BGEZ Branch if accumulator 2 2 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
~o 0 0 ,Q 0 L. BRANCH ADDRESS --.:;;-'-

BGZ Branch if accumulator 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
>O 0 0 0 0 ~ BRANCH ADDRESS-------:;..

BIOZ Branch on B 10 = 0 2 2 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 ,-'_ BRANCH ADDRESS---> '-

BLEZ Branch if accumulator 2 2 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
~o 0 0 0 0 <E- BRANCH ADDRESS ---·-·~-- 7

I
BLZ Branch if accumulator 2 2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

<O 0 0 0 0 -E- BRANCH ADDRESS --7

BNZ Branch if accumulator 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
jQ 0 0 0 0 -E- BRANCH ADDRESS ' ,,

BV Branch on overflow 2 2 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 -E- BRANCH ADDRESS - ' ~

BZ Branch if accumulator 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
=O 0 0 0 0 <E- BRANCH ADDRESS --7

CALA Call subroutine from 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0
accumulator

CALL Call subroutine 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
immediately 0 0 0 0 -E- BRANCH ADDRESS --7

RET Return from sub- 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1
routine

3-6

TABLE 3-2 - INSTRUCTION SET SUMMARY (CONCLUDED)

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4
--·-

APAC Add P register to 1 1 0 1 1 1 1 1 1 1 1 0 0 0
accumulator

LT Load T register 1 1 0 1 1 0 1 0 1 0 I /

=-LTA LT A combines LT and 1 1 0 1 1 0 1 1 0 0 I "" APAC into one instruc-
ti on

LTD LTD combines LT, 1 1 0 1 1 0 1 0 1 1 I ~
APAC, and DMOV into
one instruction

MPY Multiply with T 1 1 0 1 1 0 1 1 0 1 I ~

register; store product
in P register

MPYK Multiply T register 1 1 1 0 0 ~ K
with immediate oper-
and; store product in
P register

PAC Load accumulator from 1 1 0 1 1 1 1 1 1 1 1 0 0 0
P register

SPAC Subtract P register 1 1 0 1 1 1 1 1 1 1 1 0 0 1
from accumulator

- --- -------- --

CONTROL INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4

DINT Disable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0
EINT Enable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0
LST Load status register 1 1 0 1 1 1 1 0 1 1 I /

~

NOP No operation 1 1 0 1 1 1 1 1 1 1 1 0 0 0
POP Pop stack to 2 1 0 1 1 1 1 1 1 1 1 0 0 1

accumulator
PUSH Push stack from 2 1 0 1 1 1 1 1 1 1 1 0 0 1

accumulator
ROVM Reset overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0
SOVM Set overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0
SST Store status register 1 1 0 1 1 1 1 1 0 0 I /

~

1/0 AND DATA MEMORY OPERATIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES WORDS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4
-;

DMOV Copy contents of data 1 1 0 1 1 0 1 0 0 1 I ~

memory location into
next location

IN Input data from port 2 1 0 1 0 0 0 <E--PA7 I ~

OUT Output data to port 2 1 0 1 0 0 1 <E-PA7 I ~

TBLR Table read from 3 1 0 1 1 0 0 1 1 1 I ~

program memory to
data RAM

TBLW Table write from 3 I 0 1 1 1 1 1 0 1 I /
~

data RAM to program
memory

\

1183

3 2 1 0

1 1 1 1

D-·-------7
D --7'

D---7

D --,;:.

··" /

1 1 1 0

0 0 0 0

3 2 0

0 0 0 1
0 0 1 0
D
0 0 0 0
1 1 0 1

0 0

1 0 0
1 0 1
D ------"'

3 2 1 0

D /

D --"'

D ~
D

_;:
-;7

D ~

3-7

3.4.3 Instruction Descriptions

3-8

Each instruction in the instruction set summary is described in the following pages. The instructions
are listed fn alphabetical order. An example is provided with each instruction.

Each instruction begins with an assembler syntax expression. Since the comment field which con
cludes the syntax is optional, it is not included in the syntax expression. A syntax example is given
below that shows the spaces that are included and required in the syntax expression, and the op
tional comment field along with its preceding spaces that has been omitted.

[<label> l LACK f
~Spaces

[<comment> l

Spaces and comment
field not included
in the syntax expressions
for this section.

1183

ABS Absolute Value of Accumulator ABS
Assembler Syntax: [<label>] ABS

Operands: None

Operation: lf(ACC)< 0
Then - (ACC) - ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I o 1 1 1 0 0 0 0 0 0

Description: If accumulator is greater than zero, then the accumulator is unchanged by the execution of
this instruction. If the accumulator is less than zero, then the accumulator will be replaced
by its two's complement value. Note that the hexadecimal number> 80000000 is a special
case. When the overflow mode is not set, the ABS of> 80000000 is> 80000000. When in
the overflow mode, the ABS of> 80000000 is> 7FFFFFFF.

Words: 1
Cycles: 1

Example: ABS

BEFORE INSTRUCTION AFTER INSTRUCTION
31 0 31 0

ACC I> 0 0 0 0 1 2 3 4 ACC I> 0 0 0 0 1 2 3 4

and

ACC I> F F F F F F F F ACC I> 0 0 0 0 0 0 0 1

1183 3-9

ADD Add to Accumulator with Shift

Assembler Syntax:
Direct Addressing: <dma>L<shift>l
Indirect Addressing:

[<label>]
[<label> l

ADD
ADD {*I*+ I*- }L<shift>L<ARP>lJ

Operands: 0 ~ shift~ 15
0 ~ dma ~ 127
ARP= 0or1

Operation: (ACC) + (dma) x 2shift - ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Direct: 0 0 0 0

Indirect: 0 0 0 0

SHIFT

SHIFT

DATA MEMORY
ADDRESS

SEE SECTION 3.3

0

ADD

Description: Contents of data memory address are left-shifted and added to accumulator. During
shifting, low-order bits are zero-filled, and high-order bits are sign-extended. The result is
stored in the accumulator.

Words: 1
Cycles: 1

Example:

DATA
MEMORY

1

ACC

ADD DAT1,3
or
ADD *,3 If current auxiliary register contains the value 1 .

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA

21 MEMORY
1

71 ACC

21

231

Note: If the contents of data memory address DAT2 is > 8BOE, then the following instruction sequence
will leave accumulator with the value> FFF8BOEO.

ZAC Zero accumulator
ADD DAT2,4 ACC = > FFFSBOEO

3-10 1183

ADDH Add to High-Order Accumulator

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label> 1
[<label> 1

Operands: o~ dma~ 127
ARP = 0 or 1

ADDH
ADDH

Operation: (ACC) + (dma) x 2 16 - ACC

Encoding: 15 14 13 12 11 10 9

Direct: 0 0 0 0 0

<dma>
{*I*+ I* - }L<ARP>l

8 7 6 5 4 3 2

0 I 0 I
DATA MEMORY

ADDRESS

Indirect: 0 o o o o ol SEE SECTION 3.3

ADDH

0

Description: Add contents of data memory address to upper half of the accumulator (bits 31 through 16).

Words: 1
Cycles: 1

Example: ADDH DAT5
or

· ADDH * If current auxiliary register contains the value 5.

BEFORE INSTRUCTION
DATA

MEMORY >41 5 ~~~~~~-~~---'·

ACC >O 0 0 0 0 0 1 31

AFTER INSTRUCTION
DATA

MEMORY >41 5 ~~~~~~~~--'·

ACC >O 0 0 4 0 0 1 31

Note: This instruction can be used in performing 32-bit arithmetic.

1183 3-11

ADDS

Assembler Syntax:
Direct Addressing:

Add to Low Accumulator
with Sign-Extension Suppressed

<dma>
Indirect Addressing:

[<label> l
[<label>]

ADDS
ADDS {*I*+ I* - }[,<ARP> l

Operands: 0::5dma::5127
ARP = 0 or 1

Operation: (ACC) + (dma) - ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0 0 0 1 I 0 I
DATA MEMORY

ADDRESS

Indirect: 0 0 0 0 0 1 I SEE SECTION 3.3

ADDS

Description: Add contents of specified data memory location with sign-extension suppressed. The data is
treated as a 16-bit positive integer rather than a two's complement integer. Therefore, there
is no sign-extension as there is with the ADD instruction.

Words: 1
Cycles: 1

Example: ADDS DAT11
or
ADDS* If current auxiliary register contains the value 11 .

DATA
MEMORY

11

ACC

BEFORE INSTRUCTION

>F 0 0 6

>O 0 0 O O 0 O 3

DATA
MEMORY

AFTER INSTRUCTION

>F 0 0 6
11 '--~~~~~~~-----'

ACC >O 0 0 0 F 0 0 91

Notes: The following routines illustrate the difference between the ADD and ADDS instructions. Data
memory location DA T1 contains> E007.

ZAC Zero ACC
ADDS DAT1 ACC = > OOOOE007

ZAC ZeroACC
ADD DAT1 ,0 ACC = > FFFFE007

The ADDS instruction can be used in implementing 32-bit arithmetic.

3-12 1183

AND AND with Low-Order Bits of Accumulator

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label> l
[<label>]

Operands: 0 ~ dma ~ 127
ARP = 0 or 1

AND
AND

<dma>
{*l*+l*-}[,<ARP>l

Operation: Zero. AND. high-order ACC bits: (dma). AND. low-order ACC bits- ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 0 0 1 I SEE SECTION 3.3

AND

Description: The low-order bits of the accumulator are ANDed with the contents of the specified data
memory address and concatenated with all zeroes ANDed with the high-order bits of the
accumulator. The AND operation follows the truth table below.

DATA MEMORY BIT

Words: 1
Cycles: 1

Example: AND DAT16
or

0
0
1
1

ACC BIT IBEFOREJ ACC BIT (AFTER I

0 0
1 0
0 0
1 1

AND* If current auxiliary register contains the value 16.

DATA
MEMORY

16

ACC

BEFORE INSTRUCTION

>O 0 F F

>1 2 3 4 5 6 7 8

DATA
MEMORY

16

ACC

AFTER INSTRUCTION

>O 0 F F

>O 0 0 0 0 0 7 8

Note: This instruction is useful for examining bits of a word for high-speed control applications.

1183 3-13

APAC Add P Register to Accumulator APAC

Assembler Syntax: [<label >1 APAC

Operands: None

Operation: (ACC) + (P)-+ ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1

Description: The contents of the P register, the result of a multiply, are added to the contents of the
accumulator and the result is stored in the accumulator.

Words: 1
Cycles: 1

Example: APAC

p

BEFORE INSTRUCTION

64

ACC ~I _____ 3_2__,

p

AFTER INSTRUCTION

64

ACC ._I _____ 96__,

Note: This instruction is a subset of the LT A and LTD instructions.

3-14 1183

B Branch Unconditionally B

Assembler Syntax: [<label>] B <pma>

Operands: 0 ~ pma< 212

Operation: pma-PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 al PROGRAM MEMORY ADDRESS

Description: Branch to location in program is specified by the program memory address (pma). Pma can
be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example:

1183

B PRG191 191 is loaded into the program counter and program continues running from
that location.

3-15

BANZ Branch on Auxiliary Register Not Zero BANZ

Assembler Syntax: [<label>] SANZ <pma>

Operands: 0 ~ pma < 212

Operation: If (AR bits 8 through 0) <> 0
Then (AR) - 1 - AR and pma - PC
Else (PC) + 2 - PC

(AR) - 1 - AR

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 ol PROGRAM MEMORY ADDRESS

Description: If the lower nine bits of the current auxiliary register are not equal to zero, then the auxiliary
register is decremented, and the address contained in the following word is loaded into the
program counter. If these bits equal zero, the current program counter is incremented and
AR also is decremented. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BANZ PRG35

BEFORE INSTRUCTION

AR

PC 461

or

AR 01

PC 461

AFTER INSTRUCTION

AR .__I ____ ____.o I

PC I 351

ARI >1 F Fl

PC 481

Note: This instruction can be used for loop control with the auxiliary register as loop counter. The auxiliary
register is decremented after testing for zero. The auxiliary registers also behave as modulo 512
counters.

3-16 1183

BGEZ Branch if Accumulator Greater Than
or Equal to Zero BGEZ

Assembler Syntax: [<label>] BGEZ <pma>

Operands:

Operation:

Encoding:

0 ~ pma< 2 12

If (ACC) ~O
Then pma- PC
Else (PC) + 2- PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0 0

a a a a I PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are greater than or equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example:

1183

BGEZ PRG217 217 is loaded into the program counter if the accumulator is greater than
or equal to zero.

3-17

BGZ Branch if Accumulator Greater Than Zero BGZ

Assembler Syntax: [<label> l BGZ <pma>

Operands: 0 ~ pma < 212

Operation: If (ACC) > 0
Then pma --+ PC
Else (PC) + 2--+ PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0 0 0

0 0 0 oj PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are greater than zero, branch to the specified program
memory location. Branch to location in program specified by the program memory address
(pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BGZ PRG342 342 is loaded into the program counter if the accumulator is greater than zero.

3-18 1183

BIOZ Branch on 1/0 Status Equal to Zero BIOZ

Assembler Syntax: [<label>] BIOZ <pma>

Operands: O~pma<212

Operation: If BIO= 0
Then pma- PC
Else (PC) + 2- PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0 0 0

0 0 0 ol PROGRAM MEMORY ADDRESS

Description: If the BIO pin is active low, then branch to specified memory location. Otherwise, the
program counter is incremented to the next instruction. Branch to location in program is
specified by the program memory address (pma). Pma can be either a symbolic or a numeric
address.

Words: 2
Cycles: 2

Example: BIOZ PRG64 If the BIO pin is active low, then a branch to location 64 occurs. Otherwise, the
program counter is incremented.

Note: This instruction can be used in conjunction with the BIO pin to test if peripheral is ready to deliver an
input. This type of interrupt is preferable when performing time-critical loops.

1183 3-19

BLEZ Branch if Accumulator Less Than
or Equal to Zero BLEZ

Assembler Syntax: [<label>] BLEZ <pma>

Operands: 0 ~ pma < 212

Operation: If (ACC) ~ 0
Then pma-PC
Else (PC)+ 2-PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 l PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are less than or equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example:

3-20

BLEZ PRG63 63 is loaded into the program counter if the accumulator is less than or
equal to zero.

1183

BLZ Branch if Accumulator Less Than Zero BLZ

Assembler Syntax: [<label>] BLZ <pma>

Operands: O ~ pma < 212

Operation: If (ACC) < 0
Then pma- PC
Else (PC) + 2- PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0 0 0

0 0 0 oj PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are less than zero, branch to the specified program
memory location. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BLZ PRG481 481 is loaded into the program counter if the accumulator is less than zero.

1183 3-21

BNZ Branch if Accumulator Not Equal to Zero BNZ

Assembler Syntax: [<label> 1 BNZ <pma>

Operands: 0 ~ pma< 212

Operation: If (ACC)<> 0
Then pma-PC
Else (PC) + 2- PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 0 0 0 0 0 0 0 0

0 0 0 oJ PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are not equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BNZ PRG320 320 is loaded into the program counter if the accumulator does not equal zero.

3-22 1183

BV Branch on Overflow BV

Assembler Syntax: [<label>] BV <pma>

Operands: 0 ~ pma < 212

Operation: If overflow flag = 1
Then pma-PC and 0-overflow flag
Else (PC)+ 2 - PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 al PROGRAM MEMORY ADDRESS

Description: If the overflow flag has been set, then a branch to the program address occurs and the
overflow flag is cleared. Otherwise, the program counter is incremented to the next instruc
tion. Branch to location in program is specified by the program memory address (pma).
Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BV PRG610 If an overflow has occurred since the overflow flag was last cleared, then 610 is
loaded into the program counter. Otherwise, the program counter is
incremented.

1183 3-23

BZ Branch if Accumulator Equals Zero BZ

Assembler Syntax: [<label> J BZ <pma>

Operands: O ~ pma< 212

Operation: If (ACC) = 0
Then pma-PC
Else (PC)+ 2-PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0

0 0 0 o} PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are equal to zero, branch to the specified program
memory location. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BZ PRG102 102 is loaded into the program counter if accumulator is equal to zero.

3-24 1183

CALA Call Subroutine Indirect CALA

Assembler Syntax: [<label>] CALA

Operands: None

Operation: (PC)+ 1 - TOS
(ACC bits 11 through 0) - PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 0 0 0 0 ~
Description: The current program counter is incremented and pushed onto the top of the stack. Then,

the contents of the 12 least significant bits of the accumulator are loaded into the PC.

Words: 1
Cycles: 2

Example: CALA

PC

ACC

STACK

BEFORE INSTRUCTION

25

83

32
75
84
49

PC

ACC

AFTER INSTRUCTION

83

83

STACK I._ ______ !_~____.
Note: This instruction is used to perform computed subroutine calls.

1183 3-25

CALL Call Subroutine Direct CALL
Assembler Syntax: [<label>] CALL <pma>

Operands: 0 :5 pma <212

Operation: (PC)+ 2 -TOS
pma-PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 oj PROGRAM MEMORY ADDRESS

Description: The current program counter is incremented and pushed onto the top of the stack. Then,
the program memory address is loaded into the PC.

Words: 2
Cycles: 2

Example: CALL PRGl 09

PC

STACK

3-26

BEFORE INSTRUCTION

33

71
48
16
80

PC

AFTER INSTRUCTION

109 I

STACK J.___ ______ ~_u

1183

DINT Disable Interrupt DINT

Assembler Syntax: [<label>] DINT

Operands: None

Operation: 1-INTM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 00000011

Description: The interrupt-mode flag (INTM) bit is set to logic 1. When this flag is set, any further
maskable interrupts are disabled.

Words: 1
Cycles: 1

Example: DINT

1183 3-27

DMOV Data Move in Memory DMOV

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: 0~dma~127

ARP=O or 1

Operation: (dma) - dma + 1

Encoding: 15 14 13 12 11

Direct: 0 0

10

0

<dma> DMOV
DMOV { * I * + I * - } [, <ARP>]

9 8 7 6 5 4 3 2 0

0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 0 1 0 0 11 SEE SECTION 3.3

Description: The contents of the specified daia memory address are copied into the contents of the next
higher address.

Words: 1
Cycles: 1

Example: DMOV OATS
or
DMOV * If current auxiliary register contains the value 8.

BEFORE INSTRUCTION
DATA ~~~~~~~~~~

MEM80RY I 431

DATA
MEM90RYI ~ ______ 2~1

AFTER INSTRUCTION
DATA

MEMORY I 43 I
8

DATA
MEMgORY l.__ _____ 43__,I

Note: DMOV is an instruction that can be associated with z-1 in signal flow graphs. It is a subset of the LTD
instruction. See LTD for more information.

3-28 1183

EINT Enable Interrupt EINT
Assembler Syntax: [<label> J EINT

Operands: None

Operation: 0-INTM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I a 0 0 0 0 0 ol
Description: The interrupt-mode flag (INTM) in the status register is cleared to logic 0. When this flag is

not set, maskable interrupts are enabled.

Words: 1
Cycles: 1

Example: EINT

1183 3-29

IN Input Data from Port

Assembler Syntax:
Direct Addressing: <dma>,<PA>
Indirect Addressing:

[<label>]
[<label> l

IN
IN {*I*+ I*- },<PA>L<ARP>]

Operands: Osdma::s; 127
O::s;PA::s;7
ARP=O or 1

Operation: PA-address lines PA2-PAO
Data bus D 1 5-DO-dma

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0 0 PORT 0 DATA MEMORY
ADDRESS ADDRESS

Indirect: 0 0 0 0 I Abg~~ssl 1 I SEE SECTION 3.3

IN

Description: The IN instruction reads data from a peripheral and places it in data memory. It is
a two-cycle instruction. During the first cycle, the port address is sent to address
lines A2/PA2-AO/PAO. DEN goes low during the same cycle, strobing in the data
which the addressed peripheral places on the data bus, D15-DO.

Words: 1
Cycles: 2

Example: IN

LARK
LARP
IN

STAT, PAS Read in word from peripheral on port a.ddress 5.

1, 20
1
*-,PA1,0

Store in data memory location ST AT.

Load AR1 with decimal 20.
Load ARP with 1.
Read in word from peripheral on port address 1 .
Store in data memory location 20. Decrement
AR1 to 19. Load the ARP with 0.

Notes: When the TMS32010 outputs address onto the three LSBs of address lines, the nine MSBs are
zeroed.

3-30

Instruction causes the DEN line to .9.QJs>w during the first clock cycle of this instruction's ex
ecution. MEN remains high when DEN is active.

1183

LAC Load Accumulator with Shift

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label> l

Operands: 0 ~ shift ~ 15
o~ dma~ 127
ARP=O or 1

Operation: (dma) x 2shift -ACC

LAC
LAC

< dma >[,<shift> l
{*I * + I* - }[,<shift>[,< ARP>]]

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0

Indirect: 0 0 0

SHIFT

SHIFT

DATA MEMORY
ADDRESS

SEE SECTION 3.3

LAC

Description: Contents of data memory address are left-shifted and loaded into the accumulator. During
shifting, low-order bits are zero-filled and high-order bits are sign-extended.

Words: 1
Cycles: 1

Example: LAC DAT6,4
or
LAC *,4 If current auxiliary register contains the value 6.

BEFORE INSTRUCTION AFTER INSTRUCTION

1183

DATA
MEMORY

6

ACC

, I

ol

DATA
MEMORY

6

ACC

1 I

3-31

LACK Load Accumulator with Eight-Bit Constant LACK

Assembler Syntax: [<label>] LACK <constant>

Operands: 0 ::5 constant ::5 255

Operation: constant-ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 .3 2 0

0 1 o! 8-BIT CONSTANT

Description: The eight-bit constant is loaded into the accumulator right-justified. The upper 24 bits of the
accumulator are zeros (i.e., sign extension is suppressed).

Words: 1
Cycles: 1

Example: LACK 15

ACC

BEFORE INSTRUCTION

31 ACC

AFTER INSTRUCTION

15 I

Note: If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No
error message will be given.

3-32 1183

LAR

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: 0 ~ dma ~ 127
AR = 0 or 1
ARP = 0 or 1

Operation: (dma)-AR

Load Auxiliary Register

LAR
LAR

<AR>,<dma>
<AR>,{*I *+I*- }L<ARP>]

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 1 1 1
AUXILIARY

0
DATA MEMORY

REGISTER ADDRESS

Indirect: 0 0 1 1 1 AUXILIARY l SEE SECTION 3.3 REGISTER

LAR

Description: The contents of the specified data memory address are loaded into the designated auxiliary
register.

Words: 1
Cycles: 1

Example: LAA ARO,DAT19

BEFORE INSTRUCTION
DATA

ME~~RY I 1a i

ARO 61

also, LARP 0
LAA ARO,* -

DATA
MEMORY I 321

7

ARO 11

AFTER INSTRUCTION
DATA

Ml:~~RY I 18 I
ARO

DATA
321 MEMORY I

7

ARO 321

Notes: ARO is not decremented after the LAA instruction. Generally as in the above case, if indirect
addressing with autodecrement is used with LAR to load the current auxiliary register, the new
value of the auxiliary register is not decremented as a result of instruction execution. The analagous
case is true with autoincrement.

1183

LAR and its companion instruction SAR (store auxiliary registers) should be used to store and load
the auxiliary during subroutine calls and interrupts.

If an auxiliary register is not being used for indirect addressing, LAR and SAR enable it to be used
as an additional storage register, especially for swapping values between data memory locations.

3-33

LARK Load Auxiliary Register with Eight-Bit Constant

Assembler Syntax: [<label> J LARK <AR>,< constant>

Operands:

Operation:

Encoding:

Direct:

0 ~ constant ~ 255
AR = 0 or 1

constant-AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 1 1 1 0 AUXILIARY 8-BIT CONSTANT REGISTER

LARK

0

Description: The eight-bit positive constant is loaded into the designated auxiliary register right-justified
and zero-filled (i.e., sign-extension suppressed).

Words: 1
Cycles: 1

Example: LARK AR0,21

BEFORE INSTRUCTION

ARO oi
AFTER INSTRUCTION

ARO 21 I

Notes: This instruction is useful for loading an initial loop counter value into an auxiliary register for use
with the BANZ instruction.

3-34

If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No
error message will be given.

1183

LARP Load Auxiliary Register Pointer Immediate LARP

Assembler Syntax: [<label>] LARP <constant>

Operands: 0 ~ constant ~ 1

Operation: constant- ARP

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0 0 0 0
. CONSTANT:
I 1-BIT I

Description: Load a one-bit constant identifying the desired auxiliary register into the auxiliary register
pointer.

Words: 1
Cycles: 1

Example: LARP 1 Any succeeding instructions will use auxiliary register 1 for indirect addressing.

Note: This instruction is a subset of MAR.

1183 3-35

LOP Load Data Memory Page Pointer

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label> J
[<label> J

Operands: 0 :5dma :5127
ARP=O or 1

LDP
LDP

<dma>
{*I*+ I* - }[,<ARP>]

Operation: LSB of (dma) - DP (DP = 0 or 1)

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Direct: 0 0 , I 0 I DATA MEMORY
ADDRESS

Indirect: 0 0 , I SEE SECTION 3.3

LOP

0

Description: The least significant bit of the contents of the specified data memory address is loaded into
the data memory page pointer register (DP). All higher-order bits are ignored in the data
word. DP = 0 defines page 0 which contains words 0-127. DP = 1 defines page 1 which
contains words 128-143.

Words: 1
Cycles: 1

Example: LOP

3-36

or
LDP

DAT1

*, 1

LSB of location DAT1 is loaded into data page pointer.

LSB of location currently addressed by auxiliary register is loaded into
data page pointer. ARP is set to one.

1183

LDPK Load Data Page Pointer Immediate LDPK

Assembler Syntax: [<label> I LDPK <constant>

Operands: 0::::; constant::::; 1

Operation: constant-DP

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

/ /-- ~- .
bC (_) I

'--' c

Description: The one-bit constant is loaded into the data memory page pointer register (DP). DP = 0
defines page 0 which contains words 0-127. DP = 1 defines page 1 which contains words
128-143.

Words: 1
Cycles: 1

Example: LDPK 0 Data page pointer is set to zero.

1183 3-37

LST Load Status from Data Memory LST

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label> l

Operands: O:::;dma:5127
ARP=O or 1

Operation: (dma)-status bits

Encoding: 15 14 13 12 11

Direct: 0

' Indirect: 0

10

0

0

LST
LST

9 8

<dma>
{*I * + I * - }[,<ARP> J

7 6 5 4 3 2 0

I 0 I
DATA MEMORY

ADDRESS

SEE SECTION 3.3

Description: Restores the contents of the status register as saved by the store status (SST) instruction
from a data memory word.

Words: 1
Cycles: 1

Example: LARP 0
LST *, 1

The data memory word addressed by the contents of auxiliary
register 0 replaces the status bits. The auxiliary register pointer
becomes 1.

Note: This instruction is used to load the TMS3201 O's status bits after interrupts and subroutine calls.

3-38

These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Auxiliary Register
Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. The Interrupt Mask bit cannot be
changed by the LST instruction. These bits were stored (by the SST instruction) in the data memory
word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

lov\ovM\1NTM\ 1 \ 1 \ 1\1 \ARP\ \ 1\1\1\1\1 \ \DP\

See SST.

1183

LT Load T Register

Assembler Syntax:
Direct Addressing: [<label>] LT <dma>
Indirect Addressing: [<label>] LT {*l*+l*-}L<ARP>l

Operands: O:::;dma::s;127
ARP=O or 1

Operation: (dma)-T

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0 0 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 0 0 a 11 I SEE SECTION 3.3

Description: LT loads the T register with the contents of the specified data memory location.

Words: 1
Cycles: 1

Example: LT
or
LT

DAT24

* If current auxiliary register contains the value 24.

BEFORE INSTRUCTION
DATA

MEMORY 62j
24

AFTER INSTRUCTION
DATA

MEMORY I 62
24

T T 62

Note: LT is used to load the T register in preparation for a multiplication. See MPY, LTA, and LTD.

1183

LT

3-39

LTA Load T Register and Accumulate Previous Product

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: O::;;dma::;; 127
ARP=O or 1

Operation: (dma)--T
(ACC) +(P)--ACC

Encoding: 15 14 13 12 11

Direct: 0 0

Indirect: 0 0

10

1

LTA
LTA

9

0

0

<dma>
{*I*+ I* - }[,<ARP>]

8 7 6 5 4 3 2

DATA MEMORY
ADDRESS

SEE SECTION 3.3

0

LTA

Description: The contents of the specified data memory address are loaded into the T register. Then, the
P register, containing the previous product of the multiply operation, is added to the accu
mulator, and the result is stored in the accumulator.

Words: 1
Cycles: 1

Example: LTA DAT24
or
LTA * If current auxiliary register contains the value 24.

DATA
MEMORY

24

T

p

ACC

BEFORE INSTRUCTION

'----------~

31

151

51

AFTER INSTRUCTION
DATA

MEMORY I 62 I 24 ~·~~~~~~~~---'·

T 62 I

p 15 I

ACC 20 I

Note: This instruction is a subset of the LTD instruction.

3-40 1183

LTD Load T Register, Accumulater Previous
Product, and Move Data Memory

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands:

Operation:

Encoding:

Direct:

Indirect:

Osdma :s; 127
ARP=O or 1

(dma)-T
(ACC) + (Pl-ACC
(dma)-dma + 1

15 14 13 12

0 0

0 0

11

1

10

0

0

LTD
LTD

9

1

8

1

<dma>
{*l*+l*-}L<ARP>l

7 6 5 4 3 2

I 0 I
DATA MEMORY

ADDRESS

I 1 I SEE SECTION 3.3

LTD

0

Description: The T register is loaded with the contents of the specified data memory address. Then, the
contents of the P register are added to the accumulator. Next, the contents of the specified
data memory address are transferred to the next higher data memory address.

Words: 1
Cycles: 1

Example: LTD DA T24
or
LTD* IF current auxiliary register contains the value 24.

1183

DATA
MEMORY

24

DATA
MEMORY

25

T

p

ACC

BEFORE INSTRUCTION

62 I

ol

31

151

51

AFTER INSTRUCTION
DATA

MEMORY 62j 24 L-~~~~~~~--'

DATA
621 MEMORY

25

T 621

p 15 I

ACC 20 I

3-41

MAR Modify Auxiliary Register MAR

Assembler Syntax: [<label> J MAR {*l*+l*-}L<ARP>J

Operands:

Operation:

Encoding: 15

Direct: 0

Indirect: 0

ARP=O or 1

Current auxiliary register is incremented, decremented, or remains the same. Aux
iliary register pointer is loaded with the next ARP.

14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 I 0 I
DATA MEMORY

ADDRESS

0 0 0 0
J 1 I SEE SECTION 3.3

Description: This instruction utilizes the indirect addressing mode to increment/decrement the auxiliary
registers and to change the auxiliary register pointer. It has no other effect.

Words: 1
Cycles: 1

Example: MAR *,1
MAR*
MAR *+,O

Load ARP with 1.
Decrement current auxiliary register (in this case, AR1)
Increment current auxiliary register (AR1), load ARP with 0.

Note: In the direct addressing mode, MAR is a NOP. Also, the instruction LARP is a subset of MAR (i.e.,
MAR* ,0 performs the same function as LARP 0).

3-42 1183

MPV Multiply MPV

Assembler Syntax:
Direct Addressing: [<label> l MPY <dma>
Indirect Addressing: [<label> l MPY {*I*+ I* - }[,<ARP> l

Operands: O=::;;dma=::;;127
ARP=O or 1

Operation: (T) x (dma)- P

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 0 1 0 I 1 I SEE SECTION 3.3

Description: The contents of the T register are multiplied by the contents of the specified data memory
address, and the result is stored in the P register.

Words: 1
Cycles: 1

Example: MPY DAT13
or
MPY * If current auxiliary register contains the value 13.

BEFORE INSTRUCTION
DATA

MEMORY I 1 J

13

T

p

AFTER INSTRUCTION
DATA

MEMORY I 7J
13

T

p

Note: During an interrupt, all registers except the P register can be saved. However, the TMS32010 has
hardware protection against servicing an interrupt between an MPY or MPYK instruction and the
following instruction. For this reason, it is advisable to follow MPY and MPYK with L TA, LTD, PAC,
APAC, or SPAC.

1183

No provisions are made for the condition of > 8000 X > 8000. If this condition arises, the product
will be > COOOOOOO.

3-43

MPYK Multiply Immediate MPYK

Assembler Syntax: [<label> l MPYK <constant>

Operands: (-212) ~constant< 212

Operati~n: (T) x constant-P
"

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 0 0 13-BIT CONSTANT

Description: The contents of the T register are multiplied by the signed 13-bit constant and the result
loaded into the P register.

Words: 1
Cycles: 1

Example: MPYK - 9

BEFORE INSTRUCTION

T 11

p

AFTER INSTRUCTION

T 11

p

Note: No provision is made to save the contents of the P register during an interrupt. Therefore, this
instruction should be followed by one of the following instructions: PAC, APAC, SPAC, LTA, or
LTD. Provision is made in hardware to inhibit interrupt during MPYK until the next instruction is
executed.

3-44 1183

NOP No Operation

Assembler Syntax: [<label>] NOP

Operands: None

Operation: None

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I o 1 1 1 1 1 0 0 0 0 0 0 0

Description: No operation is performed.

Words: 1
Cycles: 1

Example: NOP

Note: NOP is useful as a "pad" or temporary instruction during program development.

1183

NOP

3-45

OR OR with Low-Order Bits of Accumulator

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label> l
[<label> l

Operands: 0:5dma:5127
ARP=O or 1

OR
OR

<dma>
{*l*+l*-}L<ARP>l

Operation: Zero. OR. high-order ACC bits: (dma). OR. low-order ACC bits-A CC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 1

Indirect: 0

0

0

DATA MEMORY
ADDRESS

0 I 1 I SEE SECTION 3.3

OR

Description The low-order bits of the accumulator are ORed with the contents of the specified data
memory address concatenated with all zeroes ORed with the high-order bits of the ac
cumulator. The result is stored in the accumulator. The OR operation follows the truth
table below.

DATA MEMORY BIT

Words: 1
Cycles: 1

Example: OR DAT88
or

0
0
1
1

ACC BIT (BEFORE) ACC BIT (AFTER)
0 0
1 1
0 1
1 1

OR * Where current auxiliary register contains the value 88.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

MEMORY >F 0 0 0 MEMORY >F 0 0 0
88 88

ACC >O 0 1 0 0 0 0 21 ACC >O 0 1 0 F 0 0 21

Note: This instruction is useful for comparing selected bits of a data word.

3-46 1183

OUT Output Data to Port

Assembler Syntax:
Direct Addressing: <dma>,<PA>
Indirect Addressing:

[<label>]
[<label>]

OUT
OUT {*I*+ I* - }, <PA>[, <ARP> l

Operands:

Operation:

Encoding:

Direct:

Indirect:

Q:s;dma:s; 127
0:s;PA:s;7
ARP=O or 1

PA- address lines PA2-PAO
(dma)-data bus D15-DO

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 0 PORT DATA MEMORY
ADDRESS O ADDRESS

0 0 0 f Acig~Jss[1 f SEE SECTION 3.3

0

OUT

Description: The OUT instruction transfers data from data memory to an external peripheral. The
first cycle of this instruction places the port address onto address lines A2/PA2-AO/PAO.
During the same cycle, WE goes low and the data word is placed on the data bus D15-DO.

Words: 1
Cycles: 2

Example: OUT 120,7 Output data word stored in memory location 120 to
peripheral on port address 7.

OUT * ,5 Output data word referenced by current auxiliary
register to peripheral on port address 5.

Notes: When the TMS32010 sends the port address onto the three LSBs of the address lines, the nine
MSBs are set to zero.

1183

The OUT instruction causes the WE line to go low during the first clock cycle of this instruc
tion's execution. MEN remains high during the first cycle.

3-47

PAC Load Accumulator with P Register PAC
Assembler Syntax: [<label>] PAC

Operands: None

Operation: (P)-ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I o 0 0 0 0

Description: The contents of the P register resulting from a multiply are loaded into the accumulator.

Words: 1
Cycles: 1

Example: PAC

p

ACC

3-48

BEFORE INSTRUCTION

144

23

p

ACC

AFTER INSTRUCTION

1441

1183

POP Pop Top of Stack to Accumulator POP

Assembler Syntax: [<label>] POP

Operands: None

Operation: (TOS)-ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Description: The contents of the top of stack are loaded into the accumulator. The next element on the
stack becomes the top of the stack.

Words: 1
Cycles: 2

Example: POP

ACC

STACK

BEFORE INSTRUCTION

821 ACC

STACK

AFTER INSTRUCTION

451

Note: The 12 bits of the stack are put into the accumulator in bits 11 through 0, and bits 31 through 12 are
zeroed. There is no provision to check stack underflow.

1183 3-49

PUSH Push Accumulator onto Stack PUSH

Assembler Syntax: [<label> 1 PUSH

Operands: None

Operation: (ACC)-TOS

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I a 1 1 1 1 0 0 0 0

Description: The contents of the lower 12 bits (11-0) of the accumulator are pushed onto the top of the
hardware stack.

Words: 1
Cycles: 2

Example: PUSH

ACC

STACK

BEFORE INSTRUCTION AFTER INSTRUCTION

11 ACC

11

STACK

Note: There is no provision for detecting a stack overflow. Therefore, if the stack is already full, the
contents of the bottom stack element will be lost upon execution of PUSH.

3~50 1183

RET Return from Subroutine

Assembler Syntax: [<label>] RET

Operands: None

Operation: (TOS)-PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I a 1 1 0 0 0 a 1 I

Description: The top element is popped off of the stack and loaded into the program counter.

Words: 1
Cycles: 2

Example: RET

PC

STACK

BEFORE INSTRUCTION

961 PC

STACK

AFTER INSTRUCTION

371

Note: This instruction is used in conjunction with CALL and CALA for subroutines.

1183

RET

3-51

ROVM Reset (Clear) Overflow Mode Register ROVM
Assembler Syntax: [<label>] ROVM

Operand: None

Operation: 0-0VM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 O·

I o 0 0 0 o 1 o I
Description: This instruction will reset the TMS32010 from the overflow mode it was placed in by the

SOVM instruction. The overflow mode will set the accumulator and the ALU to their highest
positive/negative value when an overflow occurs.

Words: 1
Cycles: 1

Example: ROVM

Note: See SOVM.

3-52 1183

SACH Store Accumulator High with Shift SACH

Assembler Syntax:
Direct Addressing: <dma >[,<shift>]
Indirect Addressing:

[<label>]
[<label>]

SACH
SACH { * I * + I * - }[, <shift>[, <ARP>]]

Operands:

Operation:

Encoding:

Direct:

Indirect:

Osdmas127
shift = 0, 1 , or 4
ARP=O or 1

(ACC) x 2 - (16-shift) - dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 1

0 0

SHIFT I 0 I DATA MEMORY
ADDRESS

SHIFT I 1 I SEE SECTION 3.3

0

Oescr.iption: Store the upper half of the accumulator in data memory with shift. The shift can only be 0,
1, or4.

Words: 1
Cycles: 1

Example: SACH DAT70, 1
or
SACH *,1 If current auxiliary register contains the value 70.

BEFORE INSTRUCTION

>O 4 2 0 8 0 0 1 I ACC

DATA
MEMORY 61 70 '--~~~~~~~----l.

ACC

DATA
MEMORY

AFTER INSTRUCTION

>O 4 2 0 8 0 0 1

>O 8 4 1 70 '--~~~~~~~~

Notes: The SACH instruction copies the entire accumulator into a shifter. It then shifts this entire 32-bit
number 0, 1 /or 4 bits and copies the upper 16 bits of the shifted product into data memory. The
accumulator itself remains unaffected.

1183

For example, the following instruction sequence will store > 8F35 in data memory location DAT1.
Location DA T2 contains the number> A8F3. DAT3 contains> 5000.

ZALH DAT2 ACC = > A8F30000

ADDS DAT3 ACC = > A8F35000

SACH DAT1,4 DAT1 = >8F35

ACC = >A8F35000

3-53

SACL Store Accumulator Low

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: Osdmas127
ARP=O or 1
Shift= 0

SACL
SACL

Operation: (ACC bits 15 through 0) - dma

<dma >[,<shift>]
{*I*+ I* - }[,<shift>L<ARP>]]

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: a 1 o 1 a o o al a I

Indirect: 0 0 a a a a I

DATA MEMORY
ADDRESS

SEE SECTION 3.3

Description: Store the low-order bits of the accumulator in data memory.

Words: 1
Cycles: 1

DAT71 Example: SACL
or
SACL * If current auxiliary register contains the value 71.

BEFORE INSTRUCTION

>O 4 2 0 8 0 0 1 I ACC

DATA
MEMORY 71 71 .__ _______ ___,

AFTER INSTRUCTION

ACC >O 4 2 0 8 0 0

DATA
MEMORY I >8 0 0 1

71

SACL

Note: There is no shift associated with this instruction, although a shift code of zero MUST be specified
if the ARP is to be changed.

3-54 1183

SAR Store Auxiliary Register

Assembler Syntax:
Direct Addressing: <AR>,<dma>
Indirect Addressing:

[<label>]
[<label>]

SAR
SAR <AR>,{* I*+ I*- }[,<ARP>]

Operands:

Operation:

Encoding:

Direct:

Indirect:

0 :s; dma :s; 127
AR=O or 1
ARP=O or 1

(AR) - dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 1 1

0 0 1

0 AUXILIARY 0 REGISTER

O AUXILIARY l
REGISTER

DATA MEMORY
ADDRESS

SEE SECTION 3.3

0

SAR

Description: The contents of the designated auxiliary register are stored in the specified data memory
location.

Words: 1
Cycles: 1

Example: SAR ARO,DAT101

ARO

DATA
MEMORY

101

also,

BEFORE INSTRUCTION

371

LARP ARO
SAR ARO,*+

ARO 51

DATA
MEMORY ol

5

ARO

DATA
MEMORY

101

ARO

DATA
MEMORY

5

WARNING

AFTER INSTRUCTION

371

61

61

Special problems arise when SAR is used to store the current auxiliary register with in
direct addressing if autoincrement/decrement is used.

(continued)

1183 3-55

SAR
LARP
LARK
SAR

ARO
ARO, 10
ARO,*+ or SAR ARO,*-

In this case, SAR ARO,*+ will cause the value 11 to be stored in location 10. SAR
ARO, * - will cause the value 9 to be stored in location 10.

Note: For more information, see LAR.

3-56

SAR

1183

SOVM Set Overflow Mode Register SOVM

Assembler Syntax: [<label> l SOVM

Operands: None

Operation: 1-0VM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I o 1 1 1 0 0 0 0 1 I

Description: When placed in the overflow mode, the TMS32010 will set the accumulator and ALU
to their highest positive/negative value if an overflow/underflow occurs. The highest
positive value is_> 7FFFFFFF, and the lowest negative value is > 80000000.

Words: 1
Cycles: 1

Example: SOVM

1183 3-57

SPAC Subtract P Register from Accumulator SPAC

Assembler Syntax: [<label> l SPAC

Operands: None

Operation: (ACC) - (P) - ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I o 1 0 0 0 0 0 0

Description: The contents of the P register are subtracted from the contents of the accumulator, and the
result is stored in the accumulator.

Words: 1
Cycles: 1

Example: SPAC

3-58

p

BEFORE INSTRUCTION

361

ACC~I ______ 60~'

p

AFTER INSTRUCTION

361

ACC .__I _____ 24__,I

1183

SST

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

Operands: 0 :5dma ::515
ARP=O or 1

Store Status

SST
SST

<dma>
{*I*+ I* - }[,<ARP>]

Operation: status bits - specified data memory word on page 1

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: 0

Indirect: 0

1 DATA MEMORY
ADDRESS

0 0 I 1 I SEE SECTION 3.3

Description: The status bits are saved into the specified data memory address on page 1.

Words: 1
Cycles: 1

Example: SST DAT1
or
SST *,1 IF current auxiliary register contains the value 1.

SST

Note: This instruction is used to load the TMS3201 O's status bits after interrupts and subroutine calls.
These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Interrupt Mask
(INTM) bit, Auxiliary Register Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. These
bits are stored (by the SST instruction) in the data memory word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I ov I OVM I 1 NTM I 1 I 1 I ARPI 1 I 1 I 1 I 1 I 1 I DP I

Note: See LST.

1183 3-59

SUB Subtract from Accumulator with Shift

Assembler Syntax:
Direct Addressing: [<label>]

[<label>] Indirect Addressing:

Operands: O:s;shift :s; 15
Q:s;dma :s; 127
ARP=O or 1

SUB
SUB

Operation: (ACC) - [(dma) x 2 shift] - ACC

<dma >[,<shift>]
{*I*+ l*-}L<shift>L<ARP>ll

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: 0 0 0

Indirect: 0 0 0

SHIFT

SHIFT

DATA MEMORY
ADDRESS

SEE SECTION 3.3

SUB

Description: Contents of data memory address are left-shifted and subtracted from the accumulator.
During shifting, the low-order bits of data are zero-filled and the high-order bit is sign
extended. The result is stored in the accumulator.

Words: 1
Cycles: 1

Example: SUB
or
SUB

3-60

ACC

DATA
MEMORY

59

DAT59

* If current auxiliary register contains the value 59.

BEFORE INSTRUCTION

......__ ____ ~ ACC

DATA
MEMORY

59

AFTER INSTRUCTION

191

1183

SUBC Conditional Subtract

Assembler Syntax:
Direct Addressing: <dma>
Indirect Addressing:

[<label>]
[<label>]

SUBC
SUBC {*I*+ I* - }L<ARP>]

Operands: 0~dma~127,

ARP= 0or1

Operation: (ACC)-[(dma) x 215]--adder output

If (high-order bits of adder output)~ 0
Then (adder output) * 2 + 1 - ACC
Else (ACC) x 2 - ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Direct: 0 1 1 0 0 1 0 olol DATA MEMORY
ADDRESS

Indirect: 0 0 0 0 o I 1 I SEE SECTION 3.3

SUBC

0

Description: This instruction performs conditional subtraction which can be used for division in
algorithms.

Words: 1
Cycles: 1

Note: The next instruction after SUBC cannot use the accumulator.

1183 3-61

SUBH Subtract from High-Order Accumulator

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label> J
[<label> J

Operands: Osdmas 127
ARP=O or 1

SUBH
SUBH

Operation: (ACC) - [(dma) x 216] - ACC

Encoding: 15 14 13 12 11 10 9

Direct: 0 l 1 0 0 0 1

Indirect: 0 1 0 0 0 1

<dma>
{*I*+ l*-}L<ARP>J

8 7 6 5 4 3 2 1

o!oj DATA MEMORY
ADDRESS

o 11 I SEE SECTION 3.3

SUBH

0

Description: Subtract the contents of specified data memory location from the upper half of the
accumulator. The result is stored in the accumulator.

Words: 1
Cycles: 1

Example: SUBH
or
SUBH

DAT33

* If current auxiliary register contains the value 33.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

MEMORY 51 MEMORY I sl
33 33

31 16 15 0 31 16 15 0

ACC 111 ol ACC 121 ol

Note: The SUBH instruction can be used for performing 32-bit arithmetic.

3-62 1183

SUBS Subtract from Low Accumulator
with Sign-Extension Suppressed

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label> J
[<label> J

Operands: 0::::dma::;127
ARP=O or 1

Operation: (ACCl - (dma)--+ ACC

Encoding: 15 14 13 12 11

Direct: 0 1 0 0

Indirect: 0 0 0

SUBS
SUBS

10 9

0

0

8

<dma>
{*I*+ I* - }[,<ARP> l

7 6 5 4 3 2

I 0 I
DATA MEMORY

ADDRESS

I 1 I SEE SECTION 3.3

SUBS

0

Description: Subtract contents of a specified data memory location from accumulator with sign
extension suppressed. The data is treated as a 16-bit positive integer rather than a two's
complement integer.

Words: 1
Cycles: 1

Example: SUBS
or
SUBS

1183

ACC

DATA
MEMORY

61

DAT61

* If current auxiliary register contains the value 61.

BEFORE INSTRUCTION

>O 0 0 0 F 1 0 5

>F 0 0 3

ACC

DATA
MEMORY

61

AFTER INSTRUCTION

>O O O 0 0 1 0 2

>F 0 0 3

3-63

TBLR

Assembler Syntax:
Direct Addressing: [<label>]

[<label>] Indirect Addressing:

Operands:

Operation:

Osdmas127
ARP=O or 1

(PC)+ 1 -Tos

Table Read

TBLR
TBLR

<dma>
{*I*+ I*- }[,<ARP>]

(ACC) - PC - address lines A11 through AO
data bus D15 through DO- dma
(TOS) - PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Direct: 0 1 0 0 1 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 1 1 0 0 1 1 1 I 1 I SEE SECTION 3.3

TBLR

0

Description: This instruction transfers a word from anywhere in program memory (i.e., internal ROM,
external ROM, external RAM) to the specified location in data memory. The three-cycle
instruction is as follows:

Words: 1
Cycles: 3

Prefetch:

Cycle 1:

Cycle2:

Cycle3:

Example: TBLR DAT4

MEN goes low and the TBLR instruction opcode
is fetched. The previous instruction is executing.

MEN goes low. The address of the next instruc
tion is placed onto address bus, but data bus is
not read. Program counter is pushed onto stack.
Twelve LSBs of the accumulator contents are
loaded into the program counter.

MEN goes low. Contents of program counter are
buffered to address lines. Address memory loca
tion is read and is copied into specified RAM loca
tion. The new program counter is popped from
the stack.

MEN goes low. Next instruction opcode is
prefetched.

TBLR * If current auxiliary register contains the value 4.

(Continued)

3-64 1183

TBLR TBLR

BEFORE INSTRUCTION AFTER INSTRUCTION

ACC 11 I ACC 11 I
PROGRAM I

3061
PROGRAM
MEMORY I 3061 MEMORY

17 17

DATA
75 I DATA

306 I MEMORY I MEMORY I
4 4

Note: This instruction is useful for reading coefficients that have been stored in program ROM, or time·
dependent data stored in RAM.

1183 3-65

TBLW Table Write

Assembler Syntax:
Direct Addressing: [<label>]

[<label>]
TBLW
TBLW

<dma>
Indirect Addressing: {*I*+ I*- }[,<ARP>]

Operands:

Operation:

Encoding:

Direct:

Indirect:

0 :s; dma :s; 127
ARP=O or 1

(PC) + 1 - TOS
(ACC) - PC - address lines A 11 through AO
(dma)-data bus D15 through DO
(TOS)-PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0

0 0

DATA MEMORY
ADDRESS

SEE SECTION 3.3

TBLW

0

Description: This instruction transfers a word from the specified location in data memory to a location in
external program RAM. The three-cycle instruction is as follows:

Words: 1
Cycles: 3

Prefetch:

Cycle 1:

Cycle 2:

Cycle 3:

Example: TBLW DAT4

MEN goes low and the TBLR instruction opcode
is fetched. The previous instruction is executing.

MEN goes low. The address of the next instruc
tion is placed onto address bus, but data bus is
not read. Program counter is pushed onto stack.
Twelve LSBs of the accumulator contents are
loaded into the program counter.

WE goes low. Contents of program counter are
buffered to address lines. Contents of specified
data memory address are placed on the data bus.
The new program counter is popped off of stack.

MEN goes low. Next instruction opcode is
pref etched.

TBLW * If current auxiliary register contains the value 4.

(Continued)

3-66 1183

TBLW TBLW

BEFORE INSTRUCTION AFTER INSTRUCTION

ACC 11 I ACC 111

DATA DATA
751 MEMORY I 751 MEMORY I

4 4

PROGRAM I PROGRAM I
751 JOO] MEMORY MEMORY

17 17

Note: The TBLW and OUT instructions use the same external signals and thus cannot be distin
guished when writing to program memory addresses 0 through 7.

1183 3-67

XOR Exclusive-OR with Low-Order Bits of Accumulator

Assembler Syntax:
Direct Addressing: [<label>]

[<label>]
XOR
XOR

<dma>
Indirect Addressing: {*I*+ I* - }[,<ARP>]

Operands:

Operation:

Encoding:

Direct:

Indirect:

Osdmas127
ARP=O or 1

Zero. XOR. high-9rder ACC bits: (dma). XOR. low-order ACC bits-ACC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1

0 1

1 o o ojoj DATA MEMORY
ADDRESS

1 0 0 0 I 1 I SEE SECTION 3.3

XOR

Description: The low-order bits of the accumulator are exclusive-ORed with the specified data memory
address and concatenated with the exclusive-OR of all zeroes and the high-order bits
of the accumulator. The exclusive-OR operation follows the truth table below:

DATA MEMORY BIT ACC BIT (BEFORE) ACC BIT (AFTER)

Words: 1
Cycles: 1

Example: XOR DAT45

0
0
1
1

0 0
1 1
0 1
1 0

or
XOR * If current auxiliary register contains the value 45.

BEFORE INSTRUCTION
DATA ~·~~~~~~~~~

MEMORY I >F F 0 0
45

ACC >O F F F 0 F F F

AFTER INSTRUCTION
DATA

MEMORY >F F 0 0
45

ACC >O F F F F 0 F FI

Note: This instruction is useful for toggling or setting bits of a word for high-speed control. Also, the one's
complement of a word can be found by exclusive-ORing it with all ones.

3-68 1183

ZAC Zero the Accumulator

Assembler Syntax: [<label>] ZAC

Operands: None

Operation: o-ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1

Description: The accumulator is cleared (zeroed).

Words: 1
Cycles: 1

Example: ZAC

1183

BEFORE INSTRUCTION

ACC I A F F F F F F F I

0 0 0 0 0 1

AFTER INSTRUCTION

ACC I 0 0 0 0 0 0 0 0 I

ZAC

3-69

ZALH Zero Accumulator and Load High

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

[<label> 1
[<label>]

Operands: Osdmas127
ARP=O or 1

Operation: (dma) x 216 -ACC

Encoding: 15 14 13 12 11

Direct: 0 1 0 0

Indirect: 0 0 0

10

ZALH
ZALH

9 8 7

<dma>
{*I * + I * - }[,<ARP>]

6 5 4 3 2 1 0

0 , I 0 I DATA MEMORY
ADDRESS

0 , I SEE SECTION 3.3

ZALH

Description: ZALH clears the accumulator and loads the contents of the specified data memory location
into the upper half of the accumulator. The lower half of the accumulator remains clear.

Words: 1
Cycles: 1

Example: ZALH DAT29
or
ZALH * If current auxiliary register contains the value 29.

BEFORE INSTRUCTION
DATA ~~~~~~~~~~

MEMORY I >3 F 0 0
29

ACC >O 0 7 7 F F F F

AFTER INSTRUCTION
DATA

MEMORY >3 F 0 0
29

ACC >3 F 0 0 0 0 0 0 I

Note: ZALH can be used for implementing 32-bit arithmetic.

3-70 1183

ZALS

Assembler Syntax:

Zero Accumulator and Load Low
with Sign-Extension Suppressed

Direct Addressing:
Indirect Addressing:

[<label>]
[<label>]

ZALS
ZALS

<dma>
{*I*+ I* - }L <ARP>]

Operands: O:sdma:s127
ARP=O or 1

Operation: (dmal-ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Direct: 0 0 0 0 I 0 I DATA MEMORY
ADDRESS

Indirect: 0 0 0 ol SEE SECTION 3.3

ZALS

0

Description: Clear accumulator and load contents of specified data memory location into lower half of the
accumulator. The data is treated as a 16-bit positive integer rather than a two's complement
integer. Therefore, there is no sign-extension as with the LAC instruction.

Words: 1
Cycles: 1

Example: ZALS DAT22
or
ZALS * If current auxiliary register contains the value 22.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA

MEMORY >F 7 F F MEMORY >F 7 F F
22 22

ACC >7 F F 0 0 0 3 3 ACC >O 0 0 0 F 7 F Fl

Notes: The following routine reveals the difference between the ZALS and the LAC instruction. Data
memory location 1 contains the number> FA37.

1183

ZALS
ZAC
LAC

DAT1

DAT1

(ACC) = > OOOOFA37
ZeroACC
(ACC) = > FFFFFA37

ZALS is useful for 32-bit arithmetic operations.

3-71

3-72

4. SAMPLE ROUTINES

4. 1 INTRODUCTION

This section provides information that supplements the data presented in Section 3. The
programming examples are provided to further illustrate the usage of some of the instructions.

4.2 INITIALIZING THE TMS32010

*Flags: ARP, OPP, OV
*Mode OV INT
*

AORG a
B INIT Branch vector for RESET
B INTR Branch vector for INTERRUPT

INIT EINT Initialize interrupt mode
ROVM Initialize overflow mode
BV CLROV Clear overflow flag

CLROV LARP a Initialize auxiliary register pointer
LDPK a Initialize data page pointer

*
*INITIALIZATION COMPLETE

4-1

4.3 BIOZ INSTRUCTION

4-2

The TMS32010 supports an external hardware input. Testing the level of the BIO pin may
be performed with the BIOZ instruction, demonstrated by the following example in which
the TMS32010 fills a FIFO of unknown depth from data memory. The FIFO-full signal (full
active high) is connected to the BIO pin.

LARP 0
LARK 0,0

LDFIFO OUT *+,PA3
BIOZ LDFIFO

Select ARO
Initialize ARO to zero
Output data to Port 3, increment ARO
If BIO is zero, then BRANCH

4.4 BANZ INSTRUCTION

This decrement and branch if not zero instruction is extremely useful in implementing loop

counters.

Example 1: Shift data memory in page zero to the next higher address, (A) -- (A+ 1), for
all addresses less than or equal to the address in ARO.

LARK 0,9 Load ARO with 9
LDPK 0 Initialize DP to page 0
LARP 0 Set pointer to ARO

NXTMOV DMOV * Move data pointed to by ARO
BANZ NXTMOV If ARO < or > zero, then BRANCH to

* NEXT MOVE. ARO is decremented.

Example 2: Input 10 data values from Port 5. Auxiliary register 0 is used as a data input

counter, and auxiliary register 1 is used as the pointer to the data table. Note that AR1 is

used in the auto-increment mode (* +), and ARO is decremented by the execution of BANZ.

LARK 0,9 Load counter
LARK 1,14 Load starting address

DATAIN LARP 1
IN *+,PA5,ARO Input data value from Port 5 and

* store in data location addressed
* by ARl

LARP 0
BANZ DATAIN If ARO < or > 0, then BRANCH

4-3

4.5 LTD INSTRUCTION

4-4

The Load T Register and Shift Data instruction implements three key operations in parallel.
During the execution of this instruction, the P Register is added to the accumulator, the T
Register is loaded with the data from the operand, and the data value is shifted to the next
address.

The following example illustrates the use of this powerful instruction in implementing multipole
filters. This routine assumes an 1/0 device on Port 1 which inputs a sample. The TMS32010
then computes a number (Y), based on this and previous samples. Y is output to the 1/0
device on Port 2. The following symbols are used:

Y = output to I/0 device on Port 2
Xl = current sample taken at time 11 t 11

X2 = sample taken at t-1
X3 = sample taken at t-2
X4 = sample taken at t-3

NOTE

X4 is at a higher address than X3; X3 is at a higher address than X2, etc.
The formula is: Y = 3(X1) + 4(X2) + 5(X3) + 6(X4). Data is shifted down one inter
val by LTD.

Example:
DSEG 0

Xl BSS 1
X2 BSS 1
X3 BSS 1
X4 BSS 1
y BSS 1

PSEG
START IN Xl,PAl Input current data sample

LT X4
ZAC
MPYK 6 Multiply 6 X (X4)
LTD X3 Move (X3) -->T and move (X3) --> (X4)
MPYK 5 Multiply 5 X (X3)
LTD X2 Move (X2)--> T and move (X2) --> X3
MPYK 4 Multiply 4 X (X2)
LTD Xl Move (Xl) --> t and move (Xl) --> X2
MPYK 3 Multiply 3 X (Xl)
APAC
SACL y
OUT Y,PA2 Output the results
B START

4.6 SUBC INSTRUCTION

Division is the inverse of the multiplication process, i.e., multiplication consists of a series
of add and shift operations while division consists of a series of subtract and shift opera
tions. The TMS32010 does not have a hardware divider; however, SUBC provides an effi
cient means of implementing division. The only restriction for the use of this instruction is
that both operands must be positive.

It is also important that the programmer understand the characteristics of the operands,
whether or not the quotient can be represented as a fraction, and the degree of accuracy
to which the quotient is to be computed.

FRACTIONAL DIVISION: In fractional division, the denominator is divided into the numerator:
The absolute value of the numerator must be less than the absolute value of the denominator.
There is no restriction on the sign of the two operands.

1
10

(numerator/dividend)
(denominator/divisor)

-p--(quotient)
(1 divided by 10 = 1/10)

The following routine can be used to divide two numbers:

*
DNl LARP

LT
MPY
PAC

0
NUMERA
DEN OM

SACH TEMSGN
LAC DENOM
ABS
SACL DENOM
ZALH NUMERA
ABS
LARK 0,14

* (If divisor and dividend
KPDVNG SUBC DENOM

BANZ KPDVNG
*

SACL QUOT
LAC TEMSGN
BGEZ DONE

*
ZAC
SUB QUOT
SACL QUOT

*
DONE RET

Get sign of quotient

Save sign of quotient

Make denominator positive
Align numerator

are aligned, division can start here.)
15-cycle divide loop

Done if sign is positive

Negate quotient if negative

The quotient is stored in the accumulator/low, the remainder in the accumulator/high.

4-5

4-6

WHOLE DIVISION: In whole division, the dividend is divided by the divisor:

10 (quotient)

(divisor) 10 I 100 (dividend)

The subroutine in the following example can be used to divide two numbers with no restric
tion on the dividend/numerator or the divisor/denominator, or on the sign of the two operands.
The desired fractional accuracy is passed as the number of desired fraction bits (FRAC):

*
DN2 LARP

LT
MPY
PAC
SACH
LAC
ABS
SACL
LACK
ADD
SACL
LAC
ABS
LAR

*
KPDVNG SUBC

BANZ

*
SACL
LAC
BGEZ

*
ZAC
SUB
SACL

*
DONE RET

0
NUMERA
DEN OM

TEMSGN
DEN OM

DEN OM
15
FRAC
FRAC
NU MERA

O,FRAC

DEN OM
KPDVNG

QUOT
TEMSGN
DONE

QUOT
QUOT

Get sign of quotient

Save sign of quotient

Make denominator positive

Compute loop count
Align numerator
Make numerator positive

15-cycle divide loop

Done, if sign is positive

Negate quotient if negative

The quotient is stored in the accumulator/low, the remainder in the accumulator/high.

4. 7 CALA INSTRUCTION

This routine reads a 16-bit data value from an 1/0 device and extracts bits 0 and 1 . It then
calls a subroutine indirectly. Subroutines are set up at the following program locations:

ROUTO at >AO
ROUTl at >A6
ROUT2 at >AC
ROUT3 at >82

The subroutine branched to depends on the value of the bits read.

LACK
SACL

*
LACK
SACL
IN
LAC
AND
SACL
ZALS
LT
MPYK
APAC
CALA

>AO
TEMP

>03
MASK
VALUE,PA3
VALUE
MASK
RESULT
TEMP
RESULT
6

Initialize TEMP with entry address
of ROUTO

Set up mask register

Save data temporarily in RESULT

4-7

4.8 32-BIT ARITHMETIC CAPABILITIES OF TMS32010

4-8

ADDH, ADDS, SUBH, SUBS, ZALH, ZALS instructions can be used to implement 32-bit
arithmetic.

Example: 32-bit subtraction: Assume two 32-bit numbers are stored in four locations of
data RAM. 81 and 82 are respectively the MSB and LSB parts of the number which is sub
tracted from numbers A 1 and A2. A 1 is the MSB, and A2 is the LSB part of the number.

ZALS A2 Zero accumulator and load LSB into
* accumulator

ADDH Al Add in MSB
SUBS 82 Subtract from accumulator low
SUBH Bl Subtract from accumulator high

4.9 TABLE READ FROM PROGRAM MEMORY INSTRUCTION

*

The TMS32010 implements separation of code and data spaces. The Table Read and Table
Write from program memory instructions permit shifting constants between program memory
into data memory. For example, assume the values from program memory locations OOAO,
OOA 1, OOA2, OOA3 are to be transferred to data memory locations 0003, 0002, 0001, 0000,
respectively. Also, assume variable ONE contains value 0001.

Example:
LACK >00AO Load program memory address into

accumulator
LARP 0 ARP points to ARO
LARK 0,03 Set up ARO as counter

LOOK TBLR * Transfer value in program memory to
* data memory

ADD ONE Increment address (accumulator)
BANZ LOOK If ARO < or > zero, decrement and

* branch

4-9

4. 10 INTERRUPT INSTRUCTION

4-10

The following example illustrates how to implement interrupt processing. Further, it
demonstrates how to save and restore the original user context during entry into and exit
from the interrupt program sequence.

DSEG
STATUS BSS
ACH BSS
ACL BSS
AROO BSS
AROl BSS

DENO
AORG
B
B

*
INTR SST

LDPK
SACH
SACL
SAR
SAR

LDPK
LAR

*
LAR
ZALH
ADDS
LST
EINT
RET

1
1
1
1
1

0
INIT
INTR

STATUS
1
ACH
ACL
O,AROO
l ,AROl

1
O,AROO

l ,AROl
ACH
ACL
STATUS

NOTE

Branch vector for RESET
Branch vector for INTERRUPT

Store status on page 1
Set data page = 1
Store accumulator

Store auxiliary registers

Set data page = 1 if it was modified
Load auxiliary registers with old
value

Load accumulator with old value

Restore status
Enable interrupts
Return to PROGRAM

When an interrupt occurs, the interrupt mode is set. After the status is restored,
the subroutine should enable interrupts before returning to the main program.

4.11 STACK EXPANSION

The TMS32010 allows up to four levels of subroutine call/returns when interrupts are desired
and Table Read/Write is not used. This may seem to be a limitation to the implementation
of large algorithms or programss, but the following routines demonstrates how the level of
nesting of subroutines can be expanded. Special CALS (call subroutine) and associated RETS
(return from subroutine) are listed. These utilities save the user context as well as allowing
parameter passing via the accumulator. The logical stack is implemented in data memory.
These utilities will assume four data locations in DP1 (ACL,ACH,ADDR,ST). ARO = STACK
POINTER (TOS + 1).

MAIN

SACL X
CALL CALS
DATA POLY
SACL QUO

POLYNOMIAL EVALUATION SUBROUTINE

POLY LT A
MPY x
PAC
SACL POL YT
ZAC
LT POL YT
MPY x
LTA B
MPY x
SPAC
ADDS c
CALL RETS

*Y = (A(X)**2)-(BX)+C
A*X

AX(squared)

AX(squared)-BX
AX(squared)-BX+C

CALL SUBROUTINE WITH LOGICAL STACK IMPLEMENTATION IN DATA MEMORY

CALS SST
SACL
SACH
LDPK
LARP
POP
SACL

*
TBLR
LAC
PUSH
ZALS
ADDH
LST
RET

ST
ACL
ACH
1
0

*+

ADDR
ADDR

ACL
ACH
ST

Save context

Save accumulator
Change context

Move return address into accumulator
Put accumulator onto TOS in data
memory
Fetch parameter (add of routine)
Put parameter into accumulator
Put parameter onto hardware stack
Restore context

Go to called routine

4-11

ASSOCIATE RETURN FROM SUBROUTINE WHEN CALS IS USED

RETS SST ST Save context
LDPK 1 Change context
LARP 0
SACL ACL Save accumulator
SACH ACH
POP Remove last address from hardware

* stack.
MAR *- Decrement stack. pointer
LACK 1 Load accumulator with 1
ADD * Add accumulator to return address(*)
PUSH Push onto hardware stack.
ZALS ACL Restore context
ADDH ACH
LST ST
RET Return from routine

4-12

5. ASSEMBLER DIRECTIVES

5. 1 INTRODUCTION

The TMS32010 Assembly Language is processed by the assembler executing in a host com
puter. This section describes the assembler and its directives.

5.2 THE TMS32010 ASSEMBLER

The TMS32010 Assembler generates object code for the TMS32010 microcomputer. The
assembler processes source code twice. On the first pass, the assembler maintains the loca
tion counter (which defines the program memory addresses assigned to the resulting words
of object code), builds a symbol table, and produces a copy of the source code for process
ing during the second pass. On the second pass, the assembler reads the copy of the source
and assembles the object code using the operation codes and the symbol table produced
during the first pass.

5.3 ASSEMBLER DIRECTIVES

Assembler directives and machine instructions in source programs supply data to be includ
ed in the program and control the assembly process. The assembler supports a number of
directives in the following categories:

Directives that affect the location counter

Directives that affect assembler output

Directives that initialize constants

Directives that provide linkage between programs

Miscellaneous directives.

These directive types are discussed in detail in the following paragraphs.

5.3.1 Directives that Affect the Location Counter

As the assembler reads the source statements of a program, a component of the assembler
called the location counter sets the memory locations to the resulting object code. The first
nine assembler directives listed below initialize the location counter and define the value
as relocatable, absolute, or dummy. The last two directives set the location counter to pro
vide a block or an area of program memory for the object code. The directives are listed
in Table 5-1, and they are discussed in detail in alphabetical order on the following pages.

5-1

TABLE 5-1 - ASSEMBLER DIRECTIVES THAT AFFECT THE LOCATION COUNTER

DIRECTIVES MNEMONICS

Absolute origin AORG

Relocatable origin RORG

Dummy origin DORG

Block starting with symbol BSS

Block ending with symbol BES

Data segment DSEG

Data segment end DENO

Common segment CSEG

Common segment end CEND

Program segment PSEG

Program segment end PEND

5-2

AORG Absolute Origin Directive AORG

Description:

AORG places a value in the location counter and defines the succeeding locations as absolute. (An
absolute location is not affected by relocation.) Use of the label field is optional. When a label is used,
it is assigned the value that the AORG directive places in the location counter (the command field
contains AORG). The operand field is optional, but when used, it must contain a well-defined expres
sion (wd-exp). The comment field is optional and may be used only when the operand field is also
used. Upon encountering an AORG statement, the assembler places the value of the well-defined ex
pression into the location counter. When no AORG directive is entered, no absolute addresses are
included in the object program. When the operand field is not used, the length of all preceding ab
solute code replaces the value in the location counter.

Syntax:

[<label>] AORG [<wd-exp> [<comment>]]

Example:

AORG >1000+X

Symbol X must be abolute and have been previously defined. If X has a value of 6, the location counter
is set to > 1006" by this directive. Had a label been included, the label would have been assigned
the value > 1006.

5-3

BES Block Ending with Symbol Directive

Description:

BES advances the location counter by the value in the operand field.

Syntax:

[<label >1 BES <wd-exp> [<comment>]

BES

Use of the label field is optional. When used, a label is assigned the value of the location following
the block. The operation field contains BES. The operand field contains a well-defined expression that
represents the number of words to be added to the location counter. The comment field is optional.

Example:

BUFF2 BES > 10

The directive reserves a 16-word buffer. Had the location counter contained > 100 when the assembler
processed this directive, BUFF2 would have been assigned the value > 110.

5-4

BSS Block Startiing with Symbol Directive BSS

Description:

BSS advances the location counter by the value of the well-defined expression (wd-exp) in the operand
field. Use of the label field is optional. When used, a label is assigned the value of the location of
the first word in the block. The operation field contains BSS. The operand field contains a well-defined
expression that represents the number of words to be added to the location counter. The comment
field is optional.

Syntax:

[<label>] BSS <wd-exp> [<comment>]

Example:

This directive reserves a 16-word buffer at location BUFF1. Had the location counter contained > 100
when the assembler processed this directive, BUFF1 would be assigned > 110.

5-5

CEND Common Segment End Directive CEND

Description:

CEND terminates the definition of a block of common-relocatable code by placing a value in the loca
tion counter and defining succeeding locations as program-relocatable. Use of the label field is op
tional. When used, a label is assigned the value of the location counter prior to modification. The com
mand field contains CEND. The operand field is not used, and the comment field is optional. As a
result of this directive, the location counter is set to one of the following values:

Syntax:

The maximum value the location counter has ever attained as a result of the
assembly of any preceding block of program-relocatable code; or

Zero, if no program-relocatable code had been previous assembled.

[<label> 1 CEND [<comment> J

If encountered in data- or program-relocatable code, this directive functions as a DENO or PEND, and
a warning message is issued. As is the case for DENO and PEND, CEND is invalid when used in ab
solute code.

Example:

See CSEG directive.

5-6

CSEG Common Segment Directive CSEG

Description:

CSEG places a value in the location counter and defines succeeding locations as common-relocatable
(i.e., relocatable with respect to a common segment).

Syntax:

[<label>] CSEG ['<string>' [<comment>]]

Use of the label field is optional. When used, a label is assigned the value placed by the directive
in the location counter. The command field contains CSEG, and the operand field is optional. The
comment field may only be used when the operand field is used.

If the operand field is not used, the CSEG directive defines the beginning of (or continuation of) the
blank common segment of the program. When used, the operand field contains a character string
of up to six characters enclosed in quotes. (If the string length exceeds six characters of the string.)
If this string has not previously appeared as the operand of a CSEG directive, the assembler associates
a new relocation section number with the operand, sets the location counter to zero, and defines suc
ceeding locations as relocatable with respect to the new relocatable section. When the operand string
has been previously used in a CSEG, the succeeding code represents a continuation of the particular
common segment associated with the operand. The location counter is reset to the maximum value
attained during the previous assembly of any portion of that particular common segment.

The following directives will properly terminate the definition of a block of common-relocatable code:
CEND, PSEG, DSEG, AORG, and END. The block is normally terminated with a CEND directive. The
PSEG directive, like CEND, indicates that succeeding locations are program-relocatable. The DSEG
and AORG directives effectively terminate the common segment by beginning a data segment or an
absolute segment. The END directive terminates the common segment as well as the program.

The CSEG directive permits the construction and definition of independently relocatable segments
of data that several programs may access or reference at execution time. The segments are the assembly
language counterparts of FORTRAN blank COMMON and labeled COMMON. Information placed in
the object code by the assembler permits the link editor to relocate all common segments independently
and make appropriate adjustments to all addresses that reference locations within common segments.
Locations within a particular common segment may be referenced by several different programs if
each program contains a CSEG directive with the same operand or no operand.

5-7

CSEG CSEG

Example:

The following example illustrates the use of both the CSEG and the CEND directives:

COM1A CSEG 'ONE'

* COMMON RELOCATABLE SECTION, NAMED 'ONE'

CEND

*
COM2A CSEG 'TWO'

* COMMON-RELOCATABLE SECTION, NAMED 'TWO'

COM2B CEND
COM1C CSEG

*
COM1B CEND
*
COM1L DATA
COM2L DATA

'ONE'

COM 1 B-COM 1 A
COM2B-COM2A

LENGTH OF SEGMENT 'ONE'
LENGTH OF SEGMENT 'TWO'

The three blocks of code between the CSEG and the CEND directives are common-relocatable. The
first and third blocks are relocatable with respect to one common relocation counter; the second is
relocatable with respect to another. The first and third blocks comprise the common segment 'ONE';
the value of the symbol COM1 Lis the length in words of this segment. The symbol COM2A is the
symbolic address of the first word of common segment 'TWO'; COM2B is the common-relocatable
(type 'TWO') word address of the location following the segment. (Note that the symbols COM2B
and COM1 Care of different relocation types and possibly different values.) The value of the symbol
COM2L is the length in words of common segment 'TWO'.

5-8

DENO Data Segment End Directive DENO

Description:

DENO terminates the definition of a block of data-relocatable code by placing a value in the location
counter and defining succeeding locations as program-relocatable.

Syntax:

[<label>] DENO [<comment>]

Use of the label field is optional. When used, a label is assigned the value of the location counter
prior to modification. The command field contains DENO. The operand field is not used, and the com
ment field is optional. As a result of this directive, the location counter is set to one of these values:

The maximum value attained by the location counter as a result of the
assembly of any preceding block of program-relocatable code; or

- Zero, if no program-relocatable code has been previously assembled.

If encountered in common-relocatable or program-relocatable code, DENO functions as a CEND or
PEND, and a warning message is issued. Like CEND and PEND, it is invalid when used in absolute code.

5-9

DORG Dummy Origin Directive DORG

Description:

DORG places a value in the location counter and defines the succeeding locations as a dummy block
or section. When assembling a dummy section, the assembler does not generate object code but
operates normally in all other respects. The result is that the symbols that describe the layout of the
dummy section are available to the assembler during assembly of the remainder of the program.

Syntax:

[<label>] DORG <exp> [<comment>]

The label is assigned the value that the directive places in the location counter. The operation field
contains DORG. The operand field contains an expression <exp> which may be either absolute or
relocatable. Any symbol in the expression must have been previously defined.

When the operand field is absolute, the location counter is assigned the absolute value. When the
operand is relocatable, the location counter is assigned the relocatable value and the same relocation
type as the operand. When this occurs, space is reserved in the section that has that relocation type.

Example 1:

DORG 0

The effect of this directive is to cause the assembler to assign values relative to the start of the dum
my section to the labels within the dummy section. The example directive below is appropriate to
define a data structure. The executable portion of the module (following a RORG directive) should
use the labels of the dummy section as relative addresses. In this manner, the data is available to
the procedure regardless of the memory area into which the data is loaded.

Example 2:

RORG 0

(code as desired)

DORG $

(data segment)

END

The above example of the DORG directive is appropriate for the executable portion (procedure divi
sion) of a procedure that is common to more than one task. The code corresponding to the dummy
section must be assembled in another program module. In this manner, separate data portions (dum
my sections) are available to the procedure portion.

The DORG directive may also be used with data-relocatable or common-relocatable operands to specify
dummy data or common segments.

5-10

DORG DORG

Example 3:

CSEG 'COM1'
DORG $ "$" HAS A COMMON-RELOCATABLE VALUE

LAB 1 DATA$
MASK DAT A > FOOO

CEND

In this example, no object code is generated to initialize the common segment COM1, but space is
reserved and all common-relocatable labels describing the structure of the common block (including
LAB1 and MASK) are available for use throughout the program.

5-11

DSEG Data Segment Directive DSEG

Description:

DSEG places a value in the location counter and defines succeeding locations as data-relocatable.
Use of the label field is optional. When a label is used, it is assigned the data-relocatable value that
the directive places in the location counter. The command field contains DSEG. The operand field
is not used, and the comment field is optional. Either of the following values are placed in the location
counter:

Syntax:

The maximum value the location counter can attain as the result of assembling
any block of data-relocatable code; or

Zero, if no data-relocatable code has been previously assembled.

[<label>] DSEG [<comment> J

The DSEG directive defines the beginning of a block of data-relocatable code. The block is normally
terminated with a DENO directive. If several such blocks appear throughout the program, they com
prise the data segment of the program. The entire data segment may be relocated independently of
the program segment at link-edit time. This provides a convenient means of separating modifiable
data from executable code.

In addition to the DENO directive, the PSEG, CSEG, AORG, and END also properly terminate the defini
tion of a block of data-relocatable code. The PSEG directive, like DENO, indicates that succeeding
locations are program-relocatable. The CSEG and AORG directives effectively terminate the data seg
ment by beginning a common·segment (CSEG) or an absolute segment (AORG). The END directive
terminates the data segment as well as the program.

Example:

RAM DSEG START OF DATA AREA

<Data-relocatable code>

ERAM DENO
*
LRAM EQU ERAM - RAM

The block of code between the DSEG and DENO directives is data-relocatable. RAM is the symbolic
address of the first word of this block; ERAM is the data-relocatable word address of the location
following the code block. The value of the symbol LRAM is the length in words of the block.

5-12

PEND Program Segment End Directive PEND

Description:

The PEND directive is provided as the program-segment counterpart to the PEND and CEND direc
tives. Like those directives, it places a value in the location counter and defines succeeding locations
as program-relocatable; however, since PEND properly appears only in program-relocatable code, the
relocation type of succeeding locations remains unchanged.

Syntax:

[<label>] PEND [<comment>]

Use of the label field is optional. When used, a label is assigned the value of the location counter
prior to modification. The command field contains PEND. The operand field is not used, and the com
ment field is optional. The value placed in the location counter by this directive is simply the max
imum value attained by the location counter as a result of the assembly of all preceding program
relocatable code, this directive functions as a DENO or CEND. Like DENO and CEND, it is invalid when
used in absolute code.

5-13

PSEG Program Segment Directive PSEG

Description:

PSEG places a value in the location counter and defines succeeding locations as program-relocatable.

Syntax:

[<label> l PSEG [<comment> l

When used, a label is assigned the value that the directive places in the location counter. The com
mand field contains PSEG. The operand field is not used, and the comment field is optional. The loca
tion counter is set to one of the following values:

The maximum value the location counter had attained as a result of the
assembly of any preceding block of program-relocatable code; or

Zero, if no program-relocatable code had been previously assembled.

The PSEG directive is provided as the program-segment counterpart to the DSEG and CSEG direc
tives. Together, the three directives provide a consistent method of defining the various types of
relocatable segments.

5-14

PSEG

Example:

The following sequences of directives are functionally identical:

SEQUENCE 1

DSEG

<Data-relocatable code>

DENO
CSEG

<Common-relocatable code>

CEND
PSEG

<Program-relocatable code>

PEND

END

SEQUENCE 2

DSEG

<Data-relocatable code>

CSEG

<Common-relocatable code>

PSEG

<Program-relocatable code>

END

PSEG

5-15

RORG Relocatable Origin Directive RORG

Description:

RORG places a value in the location counter and defines succeeding locations as program-relocatable.
When a label is used, it is assigned the value that the directive places into the location counter. The
command field contains RORG. The operand field is optional; when it is used, the operand must be
an absolute or relocatable expression (exp) that contains only previously defined symbols. (Symbols
are defined by the EQU directive; see Section 5.3.3.) The comment field may be used only when the
operand field is used.

Syntax:

[<label>] RORG [<exp> [<comment>]]

When the operand field is not used, previous data segments, and specific common segments of a
program replace the value of the location counter. The directive initializes the location counter to the
value following the previous relocatable code of the program, or to zero if no relocatable code has
been previously assembled.

Since the location counter begins at zero, the length of a segment and the next available address
within that segment are identical. For example, if a segment begins at >0 and ends at > E, then the
length will be > F. The next available address will be > F.

When the operand field is used, the operand must be an absolute or relocatable expression (exp) that
contains only previously defined symbols. If the directive is encountered in absolute code, a relocatable
operand must be program-relocatable; in relocatable code, the relocation type of the operand must
match that of the current location counter. When it appears in absolute code, the RORG directive
changes the location counter to program-relocatable and replaces its value with the operand value.
In relocatable code, the operand value replaces the current location counter value, and the relocation
type of the location counter remains unchanged.

Example 1:

RORG $ - 10 OVERLAY TEN WORDS

The $ symbol refers to the present location counter value. This has the effect of backing up the loca
tion counter by ten words. The instructions and directives following the ROR directive replace the
ten previously assembled words of relocatable code, permitting correction of the program without
removing source records. If a label had been included, the label would have been assigned the value
placed in the location counter.

Example 2:

SEG2 RORG

The location counter contents depend upon preceding source statements. Assume that after defining
data for a program that occupied >44 words, an AORG directive initiated an absolute block of code.
The absolute block is followed by the RORG directive from the preceding example. This places > 0044
in the location counter and defines the location counter as relocatable. Symbol SEG2 is a relocatable
value, >0044. The RORG directive from the above example would have no effect except at the end
of an absolute block or a dummy block.

5-16

5.3.2 Directives that Affect Assembler Output

This category contains the directive which supplies a program identifier in the object code
and five directives that format the source listing. Table 5-2 lists those directives. The following
paragraphs dicuss the directives in detail in alphabetical order.

TABLE 5-2 - DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

DIRECTIVES MNEMONICS

Output options OPTION

Program identifier IDT

Page title TITL

Restart source listing LIST

Stop source listing UNL

Eject page PAGE

5-17

IDT Program Identifier Directive IDT

Description:

IDT assigns a name to the object module produced.

Syntax:

[<label> 1 IDT '<string>' [<comment>]

Use of the label field is optional. When used, a label assumes the current value of the location counter.
The command field contains IDT. The operand field contains the module name <string>, a character
string of up to eight characters within single quotes. When a character string of more than eight
characters is entered, the assembler prints a truncation warning message and retains the first eight
characters as the program name. The comment field is optional.

Example:

0001
0002
0003

0001
0002

IDT
ONE
TWO

'EXAMPLE'
EQU 1
EOU 2

The above example directive assigns the name EXAMPLE to the module being assembled. The module
name is then printed in the source listing as the operand of the IDT directive and appears in the page
heading of the source listing. The module name is also placed in the object code and is used by the
link editor to determine the entry point for the module. The entry point must also appear as a symbol
in a REF directive (see Section 5.3.4).

5-18

NOTE

Although the assembler will accept lowercase letters and special characters within
the quotes, ROM loaders, (for example) will not. Therefore, only uppercase letters
are recommended.

LIST Restart Source Listing Directive LIST

Description:

LIST restores printing of the source listing. This directive is required only when a no source listing
(UNL) directive is in effect and causes the assembler to resume listing. This directive is not printed
in the source listing, but the line counter increments.

Syntax:

[<label>] LIST [<comment>]

Use of the label field is optional. When used, the label assumes the current value of the location counter.
The command field contains LIST. The operand field is not used. Use of the comment field is optional
but the assembler does not print the comment.

Example:

LIST

5-19

OPTION Output Options Directive OPTION

Description:

OPTION selects several options for the assembler listing output. The <option-list> operand is a list
of keywords, separated by commas, where each keyword selects a listing feature.

Syntax:

[<label>] OPTION <option-list> [<comment>]

Use of the label field is optional. When used, the label assumes the current value of the location counter.
The available <option-list> features are:

- DUNLST: Limit the listing of DA TA directives to one line
- FUNLST: Turn off DUNLST, TUNLST options
- NOLIST: Inhibit all listing output. (This overrides the LIST

directive)
- SYMLST: Produce a symbol table list in the object file
- TUNLST: Limit the listing of TEXT directives to one line
- XREF: Produce a symbol cross-reference listing

Example:

OPTION XREF

5-20

PAGE Eject Page Directive PAGE

Description:

This directive causes the assembler to continue the source program listing on a new page. The PAGE
directive is not printed in the source listing, but the line counter increments.

Syntax:

[<label>] PAGE [<comment>]

Use of the label field is optional. When used, a label assumes the current value of the location counter.
The command field contains PAGE. The operand field is not used. Use of the comment field is op
tional, but the assembler does not print the comment.

Example:

PAGE

This example causes the assembler to begin a new page of the source listing. The next source state
ment is the first statement listed on the new page. Using the PAGE directive to divide the source
listing into logical divisions improves program documentation.

5-21

TITL Page Title Directive TITL

Description:

TITL supplies a title to be printed in the heading of each page of the source listing. When a title is
desired in the heading of the listing's page, a TITL directive must be the first source statement sub
mitted to the assembler. Unlike the IDT directive, the TITL directive is not printed in the source listing.
The assembler does not print the comment because the TITL directive is not printed, but the line counter
does increment.

Syntax:

[<label>] TITL '<string>' [<comment>]

Use of the label field ic:; optional. When used, a label field assumes the current value of the location
counter. The command field contains TITL. The operand field contains the title (string), a character
string of up to 50 characters enclosed in single quotes. When more than 50 characters are entered,
the assembler retains the first 50 characters as the title and prints a syntax error message. The com
ment field is optional.

Example:

TITL '**REPORT GENERATOR**'

This above example causes the title **REPORT GENERA TOR** to be printed in the page headings
of the source listing. When a TITL directive is the first source statement in a program, the title is printed
on all pages until another TITL directive is processed. Otherwise, the title is printed on the next page
after the directive is processed and on subsequent pages until another TITL directive is processed.

5-22

UNL Stop Source Listing Directive UNL

Description:

UNL halts the source listing output until the occurrence of a LIST directive. It is not printed in the
Sf'~1rce listing, but the source line counter is incremented. This directive is frequently used in macro
definitions to inhibit the listing of the macro expression.

Syntax:

[<label>] UNL [<comment>]

Use of the label field is optional, but when used, the label assumes the value of the location counter.
The command field contains the symbol UNL. The operand field is not used. The comment field is
optional, but the assembler does not print the comment.

The UNL directive can be used to reduce assembly time and the size of the source listing.

5.3.3 Directives that Initialize Constants

This category consists of directives that assign hexadecimal values in successive words of
the object code, and a directive initializing a constant for use during the assembly process.
Table 5-3 lists these directives. The following paragraphs discuss each directive in detail.

TABLE 5-3 - DIRECTIVES THAT INITIALIZE CONSTANTS

DIRECTIVES

Initialize word

Initialize text

Define assembly-time constant

MNEMONICS

DATA

TEXT

EQU

5-23

DATA Initialize Word Directive DATA

Description:

DA TA places one or more values in one or more successive words in program memory.

Syntax:

[<label> 1 DATA <exp> [, <exp >] [<comment>]

Use of the label field is optional. When used, a label is assigned the location at which the assembler
places the first word. The command field contains DAT A. The operand field contains one or more
expressions separated by commas. The assembler evaluates each expression and places the value
in a word as a 16-bit twos complement number. The command field is optional.

Example:

KONS1 DATA 3200,1 +'AB',-'AF',>F4AO,'A'

The directive initializes five words, starting with a word at location KONS 1 . The contents of the resulting
words are >0C80, >4143, >BEBA, >F4AO, and >0041. The DATA directive should be used to
place coefficients or other data words in program memory. During TMS32010 execution, TBLR can
then be used to transfer the data words from ROM to RAM. The user may have as many operands
as desired; however the total line length may not exceed 60 characters.

5-24

EQU Define Assembly-Time Constant Directive

Description:

EQU assigns a value to a symbol.

Syntax:

<label> EQU <exp> [<comment>]

EQU

<exp> may not contain a symbol that appears in a REF directive nor contain forward references.
The label field contains the symbol to be given a value. The command field contains EQU. The operand
field contains an expression. Use of the comment field is optional.

Example 1:

SUM EQU AR1

The directive assigns an absolute value to the symbol SUM, making SUM available to use as a register
address. A second example of an EQU directive follows:

Example 2:

TIME EQU HOURS

The above example assigns the value of the previously defined symbol HOURS to the symbol TIME.
When HOURS appears in the label field of a machine instruction in a relocatable block of the program,
the value is a relocatable value. After execution of the above directive, the two symbols may be used
interchangeably. Symbols in the operand field must be previously defined. Certain symbols, such as
ARO and PAO, have predefined values (see Section 2.6.1).

5-25

TEXT Initialize Text Directive TEXT

Description:

TEXT places one or more characters of a string of characters in successive words of program memory,
two characters per word. The assembler negates the last character of the string when the string is
preceded by a minus (-) sign (unary minus).

Syntax:

[<label>] TEXT [-]'<string>' [<comment>]

Use of the label field is optional. When used, a label is assigned the location at which the assembler
places the first character. The command field contains TEXT. The operand field contains a character
string of up to 52 characters enclosed in single quotes, which may be preceded by a unary minus
sign. The comment field is optional.

Example 1:

MSG 1 TEXT 'EXAMPLE' MESSAGE HEADING

In the example above, the directive places the eight-bit ASCII representations of each character in
memory and fills the unused byte of the last word with a blank. This blank is considered the last character
if the negate option is specified. The result is > 4558, > 414D, > 504C, and > 4520. The label MSG 1
is assinged the first word's address, which contains the value >4558. Had the operand been "exam
ple", the last word would have been contained in > 45EO, the negation being applied to the blank filler.

Example 2:

5-26

0001
0002

0000 4E
0000 55

0002 52

IDT
TEXT

0003 END
NO ERRORS, NO WARNINGS

'EXAMPLE'
'NUMBER'

5.3.4 Directives that Provide Linkage Between Programs
This category contains two directives that enable program modules to be assembled separately
and integrated into an executable program. The DEF directive places one or more symbols
defined in the module into the object code of the assembled module, thus making them
available for linking. The REF directive places symbols used in the module but defined in
another module into the object code of the assembled module, allowing them to be linked.
Table 5-4 lists these directives. The following paragraphs discuss each in detail in alphabetical
order. For further information, see Section 6.

TABLE 5-4 - DIRECTIVES THAT PROVIDE LINKAGE BETWEEN PROGRAMS

DIRECTIVES

External definition

External reference

Secondary external reference

Force load

MNEMONICS

DEF

REF

SREF

LOAD

5-27

DEF External Definition Directive DEF

Description:

DEF makes one or more symbols available to other programs. All symbols used in the DEF statement
must be defined in the same module.

Syntax:

[<label>] DEF <symbol>[,< symbol>] [<comment>]

The use of the label field is optional. When used, a label is assigned the current value of the location j,,
counter. The command field contains DEF. The operand field contains one or more symbols, separated
by commas, to be defined in the program being assembled. The comment field is optional.

Example 1:

DEF ENTER,ANS

This example causes the assembler to include symbols ENTER and ANS in the object code; these
symbols are available to other programs. For details on how the assembler places symbols in the ob
ject code for the DEF directive, see Section 7 .5.1. For further information on the DEF directive, see
Section 6.3.2.

Example 2:

0001 0000 ABC
0002 0001 DEF
0003 0000
0004
0005
NO ERRORS, NO WARNINGS

The object code for the above example is:

KOOOON0$1DT 60000ABC

EQU
EQU
AORG
DEF

60001DEF

0
1
0
ABC,DEF

7F89AF N0$1DT 1

The symbol name follows the four-digit hex numbers assigned to the symbol by the EQU directive
(see Section 5.3.3). The number 6 preceding the four-digit hex number is an object code tag (see
Section 7.5.1).

5-28

LOAD Force Load Directive LOAD

Description:

The LOAD directive is like a REF directive, except that the symbols do not need to be used in the
module containing the LOAD directive. All symbols used in the LOAD directive must be defined in
some other module during link editing time. LOADs are used with SREFs. If a one-to-one matching
of LOAD and DEF pairs does not occur, then unresolved references will occur during link editing.

Syntax:

[<label>] LOAD <symbol>[,< symbol>] [<comment>]

Example 1:

MODULE A1 MODULE A2 MODULE A3

LOAD C, D LOAD C LOAD E, F

,, ,, ,,
MODULE B " ,

SREF C, D, E, F,

DATA C
DATA D
DATA E
DATA F

,,
DEF C DEF D DEF E DEF F

MODULE C MODULE D MODULE E MODULE F

5-29

LOAD LOAD

Module A(n) uses a branch table in module B to obtain one module C, D, E, or F. Module A 1 knows
which of modules C, D, E, and Fit requires. Module B has an SREF for C, D, E, and F. Since SREF
does not require symbols C, D, E, and F to have a corresponding symbol defined in another module,
module C, D, E, and F do not have to be included in one link editing time. Module C has a DEF for
C. Module D has a DEF for D. Module E has a DEF for E. Module F has a DEF for F. Module A 1 has
a LOAD for the modules C and D it needs. Module A2 has a load for the module C it needs. Module
A3 has a LOAD for the modules E and F it needs.

The LOAD and SREF directives permit module B to be written to in order to handle a highly involved
case and still be linked together without unnecessary modules. A(n) only has LOAD directives for
the modules it needs. This is especially useful when developing large codes which may have about
a hundred modules. To test a particular function, not all mdoules are required. Including only the re·
quired module saves memory space and time.

If the link control file included A 1 and A2, modules C and D would be pulled in from a specified library
while modules E and F would not. If the link control file included A3, modules E and F would be pulled
in while modules C and D would not. If the link control file included A2, module C would be pulled
in while modules D, E, and F would not.

Example 2 (using a Tl 990 host computer):

TASK TSTLOAD
FORMAT ASCII
DATA 0
PROGRAM 0
LIBRARY <PATHNAME>.LIB
INCLUDE <PATHNAME>.OBJ.A1
INCLUDE <PATHNAME>.OBJ.B
END

In the above example, the <PATHNAME> .LIB is a directory that contains 990·tagged object modules
for modules C, D, E, and F. In this case only modules C and Dare to be linked into the LOAD object
module, while modules E and F are not.

5·30

REF External Reference Directive

Description:

REF provides access to one or more symbols defined in other programs.

Syntax:

[<label> 1 REF <symbol>[,< symbol> 1

REF

[<comment> 1

The use of the label field is optional. When used, a label is assigned the current value of the location
counter. The command field contains REF. The operand field contains one or more symbols, separated
by commas, to be used in the operand field of a subsequent source statement. The comment field
is optional.

Example:

REF ARG1 ,ARG2

This example causes the assembler to include symbols ARG 1 and ARG2 in the object code so that
the corresponding addresses may be obtained from other programs (see Section 6.3. 1).

If a symbol is listed in the REF statement, then a corresponding symbol must also be present in a
DEF statement in another source module. If a one-to-one matching of symbols does not occur, then
an error occurs at link edit time. The link editor will generate a summary list of all "unresolved
references".

5-31

SREF Secondary External Reference Directive SREF

Description:

SREF provides access to one or more symbols defineo in other programs. Unlike REF, SREF does not
require a symbol to have a corresponding symbol listed in a DEF statement of another source module.
The SREFed symbol will be an unresolved reference, but not included in the summary list of the unresolv
ed references.

Syntax:

[<label> 1 SREF <symbol>[, <symbol>] [<comment>]

The use of the label field is optional. When a label is used, the current value of the location counter
is assigned to the label. The command field contains SREF. The operand field contains one or more
symbols, separated by commas, to be used in the operand field of a subsequent source statement.
The comment field is optional.

Example:

SREF ARG1,ARG2

This example causes the assembler to include symbols ARG 1 and ARG2 in the object code so that
the corresponding addresses may be obtained from other programs.

5-32

5.3.5 Miscellaneous Directives

This category includes those assembler directives not applicable to the other categories.
Table 5-5 lists the directives, and the following paragraphs discuss them in alphabetical order.

TABLE 5-5 - MISCELLANEOUS DIRECTIVES

DIRECTIVES

Program end

Copy source file

Define MACRO library

MNEMONICS

END

COPY

MLIB

5-33

COPY Copy Source File Directive COPY

Description:

COPY causes the assembler to read source statements from a different file.

Syntax:

[<label> I COPY <file name> [<comment> I

The label field is optional. The command field contains COPY. The operand field contains a file name
from which the source statements are to be read. The file name may be one of the following:

- An access name recognized by the operating system; or
- A synonym form of an access name

The comment field is optional.

Example:

COPY .SFILE

The directive in the example causes the assembler to take its source statements from a file called
SFILE. At the end-of-file for SFILE, the assembler resumes processing source statements from the
file or device previous to the COPY directive. A COPY directive may be placed in a file being copied.
Nested copying of files can be performed by placing a COPY directive in a file being copied. Such
nesting is limited by the assembler to eight levels; additional restrictions may be set by the host operating
system.

5-34

END Program End Directive END

Description:

END terminates the assembly. The last source statement of a program is the END directive. Any source
statements following the END directive are considered part of the next assembly.

Syntax:

[<label>] END [<symbol> [<comment>]]

Use of the label field is optional. When used, a label is assigned the current value of the location counter.
The command field contains END. Use of the operand field is optional. When used, the operand field
contains a program-relocatable or absolute symbol that specifies to the link editor the entry point of
the program. The entry point is the program address at which execution of the assembled module
will begin. When the operand field is not used, no entry point is placed in the object code. If the entry
point symbol is specified in the link control file, it must be REFed; otherwise, the linker cannot find
the entry symbol. The comment field may be used only with an operand field.

Example 1:

AORG
*

NOP

*
ENTRY NOP

*
END

*
*
*
*

(SAMPLE PRINTOUT)

0

ENTRY

The symbol ENTRY is assigned
the value
1 by the assembler. Since ENTRY
appears
as the operand of the END
directive,
the value of the symbol will ap
pear as a four-digit hex character
following the object code tag
character 1, as seen in the sample
printout below:

+.-~i.---Value of the symbol

KOOOON0$1DT 9000087F8087F80100017F8A3F
N0$1DT 11 /12/82 13:47:31 ASM320 2.1 83.074

N0$1DT 1
N0$1DT 2

5-35

END

Example 2:

5-36

AORG >20

*
ENTRY NOP

*
END ENTRY

*
*
(SAMPLE PRINTOUT)

The symbol ENTRY is assigned
the value
> 20. As in the example above,
the value
appears in the object code
following
the tag character 1 .

i~~l--Value of the symbol.

KOOOON0$1DT 90020B7F80100207F9C7F
N0$1DT 10/06/82 12:42:48 ASM320 2.1 83.074

END

N0$1DT 1
N0$1DT 2

MLIB Define Macro Library Directive MLIB

Description:

The MLIB directive is used to provide the assembler with the name of a library containing macro defini
tions. The operand of this directive is a directory pathname (constructed according to the conven
tions of the host operating system) enclosed in single quotes (see IDT and TITL directives). This directive
is defined only for hosts which support libraries on hard disks.

Syntax:

[<label>] MLIB '<pathname>' [<comment>]

Use of the label field is optional. When used, a label assumes the current value of the location counter.
The command field contains MLIB. The operand field contains the pathname, a character string of
up to 48 characters encloseq in single quotes; longer strings will cause a truncation error message.
The comment field is optional.

Example:

NOTE

Neither the assembler nor its run-time support has access to the operating system's
synonym table, and so cannot expand pathnames. The use of synonyms will pre
vent finding any macros in that library.

MLIB 'MYVOLUME.MACDIR.CMPXMACS.NEWMACS'
MLIB 'USER32.BIGPROJ.MYTASK.MACROS'
MLIB 'DRCO:[MOORE.ASM32]'

NOTE

(9900)
(9900)
(VAX)

On VAX systems, the user must make certain that the filename of all files in the
macro library have an extension name of" .ASM". For example, if the statement:
MLIB 'DRC1 :[MACROS]' has been used, the VAX version of the macro library pro
cessor would expect to find files such as MYMACRO.ASM, NEWMAC.ASM, etc.,
within the macro library 'MACROS'.

When the program finds a macro call SUBMAC (not previously defined), the above example would
cause the macro function to search first for a file named USER32.BIGPROJ.MYTASK.MACROS.SUB
MAC, and then, if that file is not found, to search for a file named MYVOLUME.MAC
DIR.CMPXMACS.NEWMACS.SUBMAC, in that order.

5-37

5-38

6. PROGRAM LINKING

6.1 INTRODUCTION

The TMS32010 Assembler supplies both absolute and relocatable object code that may be
linked as required to form executable programs from separately assembled modules. This
section contains guide lines to assist the user in taking full advantage of these capabilities.

6.2 RELOCATION CAPABILITY

Relocatable code includes information that allows a link editor to place the code in any available
area of memory, thus providing the most efficient use of available memory. Absolute code
must be loaded into a specified area of memory.

Object code generated by an assembler comprises the assembled program and consists of
machine language instructions, addresses, and data. The code may include absolute
segments, program-relocatable segments, data-relocatable segments, and numerous
common-relocatable segments.

In assembly- language source programs, symbolic references to locations within a relocatable
segment are called relocatable addresses. These addresses are represented in the object
code as displacements from the beginning of a specified segment. A program-relocatable
address, for example, is a displacement into the program segment. At load time, all program
relocatable addresses are adjusted by a value equal to the load address (the load address
defines the beginning of the module). Data-relocatable addresses are represented by a
displacement into the data segment. There may be several types of common-relocatable
addresses in the same program since distinct common segments may be relocated in
dependently of each other. A subsequent section of this manual describes the representa
tion of these relocatable addresses in the object code (see Section 7.5.1).

The elements of source statements are expressions, constants, and symbols. The relocatability
of an expression is a function of the relocatability of the symbols and constants that make
up the expression. An expression is relocatable when the number of relocatable symbols
or constants added to the expression is one greater than the number of relocatable symbols
or constants subtracted from the expression. (All other valid expressions are absolute.) When
the first symbol or constant is unsigned, it is considered to be added to the expression. When
a unary minus follows a subtraction operator, the effective operation is addition. The unary
negation operator may not be applied to a relocatable expression or subexpression (see Section
2. 7 .4). For example, when all symbols in the following expressions are relocatable, the ex
pressions are relocatable:

LABEL + 1
LABEL+TABLE+ -INC
- LABEL+ TABLE+ INC

Decimal, hexadecimal, and character constants are absolute. Assembly-time constants defin
ed by absolute expressions are absolute, and assembly-time constants defined by relocatable
expressions are relocatable.

6-1

Any symbol that appears in the label field of a source statement other than an EOU directive
is absolute when the statement is in an absolute block of the program. Any symbol that
appears in the label field of a source statement other than an EQU directive is relocatable
when the statement is in a relocatable block of the program. The type of the label or an
EQU directive is the type of an expression in an operand field.

To summarize, a location is either absolute or relocatable and may contain either absolute
or relocatable values.

6.3 LINKING PROGRAM MODULES

Since the assembler includes directives that generate the information required to link pro
gram modules, it is not necessary to assemble an entire program in the same assembly. A
long program may be divided into separately assembled modules to avoid a long assembly
or to reduce the symbol table size. Modules common to several programs may also be com
bined as required. Program modules may be linked by the link editor to form a linked object
module that may be stored on a library and/or loaded as required. The following paragraphs
define the linking information that must be included in a program module.

6.3.1 External Reference Directives

6-2

Each symbol from another program module must be placed in the operand field of an REF
or SREF directive in the program module that requires the symbol. The example below shows
a program named 'MAIN' which REFs a routine named 'SUBR1 '. SUBR1 is not defined in
File A.

(FILE A)
IDT
REF

CALL

END

'MAIN'
SUBR1

SUBR1

6.3.2 External Definition Directive

Each symbol deflned in a program module and required by other program modules must be
placed in the operand field of a DEF directive. The example below shows a program named
'ROUTINES' which DEFs a routine named 'SUBR1 '. The label 'SUBR1' must be defined in
the program.

(FILE B)

SUBR1

SUBR2

IDT
DEF

EQU

RET
EQU

RET
END

'ROUTINES'
SUBR1 ,SUBR2

$

$

When program 'MAIN' in FILE A is linked with program 'ROUTINES' in FILE B, the linkage
is automatically resolved.

6.3.3 Program Identifier Directive

Program modules that are to be linked by the link editor must include an IDT directive. The
module names in the character strings of the IDT directives should be unique. The <string>
on the IDT directive is not automatically a DEF'd symbol.

6.3.4 Linking

The link editor builds a list of symbols from REF directives as it links the program modules.
The link editor matches symbols from DEF directives to the symbols in the reference list.
The link editor follows linking commands to determine the modules to be linked. If the module
in which a routine is defined has the same name as the routine entry points, the link editor
can automatically locate the required module in a designated library.

6-3

6-4

7. ASSEMBLER OUTPUT

7. 1 INTRODUCTION

This section presents information concerning the various data output by the assembler, in
cluding source listings, error messages, a cross reference listing, and object code.

7 .2 SOURCE LISTING

The source listings show the source statements and the resulting object code. Each page
of the source listing has a title line at the top. Any title supplied by a TITL directive is printed
on this line. If the TITL directive is not used, the title line is left blank. A page number is
printed to the right of the title. The printer inserts a blank line below the title line and prints
a line for each source statement listed. The line for each source statement contains a source
statement number, a location counter value, the object code assembled and the source state
ment as entered. A source statement may result in more than one word of object code. The
assembler prints the location counter value and object code on a separate line for each addi
tional word. Each added line is printed immediately following the source statement line. The
following is an example of a source statement line:

(Source Statement Number)
(Location Counter)

(Object Code)
(Label Field)

l
(Command Field)

l (Operand Field) i (C~mment Field)

0070 004A 7EFF BEGIN LACK 255 LOAD ACCUM
IMMEDIATE

The source statement number, 0070 in the example, is a four-digit decimal number. Source
records are numbered in the order in which they are entered including those source records
that are not listed (e.g., TITL, LIST, UNL, and PAGE directives are not listed; source records
between a UNL directive and a LIST directive are not listed). The difference between two
source record numbers printed immediately in line indicates the number of squrce records
entered and not listed. Source records generated by a MACRO call, however, are re-numbered
starting at 0001. The original sequence continues after the MACRO expansion is complete.

The next field in the listing contains the location counter value, a hexadecimal value. In the
example, 004A is the location counter value. Not all directives affect the location counter;
the field is blank for those directives that do not affect it. Of the directives that the assembler
lists, the IDT, REF, DEF, EQU, SREF, END directives leave the location counter field blank.

The third field contains the hexadecimal representation of the object code, 7EFF in the above
example. All machine instructions and the DA TA and TEXT directives use this field to list
object code. The EOU directive places the value corresponding to the label in the object code
field.

The fourth field contains the characters of the source statement as they were scanned by
the assembler. The maximum line length which the assembler will accept is 60 characters.
Spacing in this field is determined by the spacing in the source statement. The four fields

7-1

contained in source statements will be aligned in the listing only when they are aligned in
the source statements or when tab characters are used.

NOTE

Each of the four fields must be separated by at least one blank space.

7 .3 ASSEMBLER ERROR MESSAGES

7-2

The assembler issues three types of error messages: informative, nonfatal, and fatal. When
the assembler completes an assembly, it indicates any errors it encounters in the assembly
listing. The assembler indicates errors following the source line in which they occur. The
errors are referenced by number. At the end of a module (as delineated by an IDT and END
pair), the corresponding messages are printed. Table 7-1 lists error, warning, and informa
tion messages.

I

I·

MESSAGE

WARNING - 'CEND' ASSUMED

WARNING - 'DENO' ASSUMED

WARNING - 'PEND' ASSUMED

WARNING - 'DSEG' ASSUMED

WARNING - SYMBOL TRUNCATED

WARNING - STRING TRUNCATED

WARNING - TRAILING OPERAND(S)

WARNING - NULL STRING DEFINED

ABSOLUTE VALUE REQUIRED

DISPLACEMENT TOO BIG

INVALID EXPRESSION

EXPRESSION OUT OF BOUNDS

DUPLICATE DEFINITION

INVALID RELOCATION TYPE

INVALID OPCODE

INVALID OPTION

INVALID REGISTER VALUE

INVALID SYMBOL

VALUE TRUNCATED

SYMBOL USED IN BOTH REF AND DEF

COPY FIELD OPEN ERROR

TABLE 7-1 - ASSEMBLY LISTING ERRORS

EXPLANATION/RESPONSE

NONFATAL ERRORS

This is a warning that the following two statements have the

same result:

CSEG 'DATA'

DSEG

The maximum length for a symbol is 6 characters. The assembler

ignores the extra characters.

Check the syntax for the directive question to determine the

maximum length for the string.

The assembler found fewer or more operands than expected in

the flagged instruction.

A null string (i.e., ' ') is defined for directives that required a

string operand.

FATAL ERRORS

A relocatable symbol was used where an absolute symbol was

expected.

The maximum value of the operand was exceeded.

This may indicate invalid use of a relocatable symbol in

arithmetic.

Range limit for the value of the operand was exceeded.

The symbol appears as an operand of a REF statement, as well

as in the label field of the source, or the symbol appears more

than once in the label field of the source.

An absolute variable cannot be made relocatable.

The command field of the source record has an entry that is not

a defined instruction, directive, psuedo-op, DXOP, DFOP, or

macroname.

The option given in the OPTION directive is invalid. An option

is often misspelled.

The register specified is too large or too small. Only values of

0 or 1 are allowed for ARO and AR 1 , respectively.

The symbol has invalid characters in it (see Section 2).

The value is too big for the field and has been truncated. This

message also appears when a label string exceeds its maximum

length.

File does not exist or is already being used.

7-3

MESSAGE

EXPRESSION SYNTAX ERROR

INVALID ABSOLUTE CODE DIRECTIVE

LABEL REQUIRED

BLANK MISSING

COMMA MISSING

COPY FILENAME MISSING

SYMBOL REQUIRED

OPERAND MISSING

CLOSE (') MISSING

CLOSE (')') MISSING

STRING REQUIRED

PASS 1 /PASS2 OPERAND CONFLICT

SYNTAX ERROR

UNDEFINED SYMBOL

DIVIDE BY ZERO

ILLEGAL SHIFT COUNT

OPCODES REDEFINED

MACROS REDEFINED

7-4

TABLE 7-1 - ASSEMBLY LISTING ERRORS

EXPLANATION/RESPONSE

Unbalanced parentheses or invalid operations on relocatable
symbols.

The directives PEND, DENO and GENO have no meaning in ab

solute code.

The flagged directive must have a label.

A blank or blanks must separate each field of the source

statement.

Expected a comma but did not find one. Usually means that more

operands were expected.

Filename specified cannot be found.

OPTION, DEF, REF, SREF, and LOAD directives require symbols

as operands.

An operand must be supplied.

All strings must be enclosed in quotes.

Mismatched parentheses.

TEXT directive used with no text following.

A.symbol in the symbol table did not have the same value in

PASS1 and PASS2.

The symbol has not been REF'ed or it has been DEF'ed but not

used.

An expression or well-defined expression contains invalid

division.

The shift count requested is not valid.

INFORMATION MESSAGES

As a result of an MLIB directive, one or more assembler opcodes

has been redefined by a MACRO within a MACRO directory. The

user should take action if this is not intended.

As a result of an MLIB directive, one or more currently defined

MACROS has been redefined by a MACRO (of the same name)

within a MACRO DIRECTORY. The user should take action if

this is not intended.

7 .4 CROSS-REFERENCE LISTING

The assembler prints an optional cross-reference listing following the source listing. (The
cross-reference listing is created by using the OPTION directive.) The format of the listing
is shown in Figure 7-1.

LABEL VALUE DEFN REFERENCES PAGE 0004

BASE2 029B 0095
BC 0236 0009 0003 0025 0030 0035 0060 0061 0064 0067 0069
BCDONE REF 0004 0082 0084 0086 0088 0090 0092 0094
CT XTO 023B 0014 0020 0079
CTXT1 023C 0015 0021 0077
CTXT2 0230 0016 0022 0078
IORT SREF 0005
IORT1 B UNDF 0039 0043
IORT1 F 0256 0040 0028
IORT2F 025B 0044 0036
IORT3F 0281 0076 0072
IORTB1 0298 0093 0058
IORTB2 0295 0091 0055
IORTB3 0292 0089 0052
IORTB4 028F 0087 0049

FIGURE 7-1 - CROSS-REFERENCE LISTING FORMAT

As shown in Figure 7-1, in the LABEL column the assembler prints each symbol defined or
referenced in the assembly. The VALUE column contains a four-digit hexadecimal number
and is possibly followed by either a character or a name which represents the attributes
of the symbol. A four-digit hexadecimal number represents the value assigned to the sym
bol. The characters that could possily follow the four-digit number or the names which could
be in the value column have their meanings listed in Table 7-2. The number of the state
ment in which the symbol is defined appears in the Definition column. For undefined sym
bols, this column is left blank. The Reference column lists the numbers of statements that
reference the symbol. A blank in this column indicates the symbol was never used.

TABLE 7-2 - SYMBOL ATTRIBUTES

CHARACTER

OR NAME

REF
UNDF

SREF

+

MEANING

External reference (REF)

Undefined

Secondary reference (SREF)

Symbol defined in a program segment

Symbol defined in a data segment

Symbol defined in a common segment

7-5

7.5 OBJECT CODE

The assembler produces object code, which may be linked to other object code modules
or programs, and is loaded directly into the computer. Object code consists of records con
taining up to 71 ASCII characters. The user can correct record data via a keyboard device.
Reassembly would then be unnecessary. Figure 7-2 is an example of object code.

K0095SAMPROG AOOOOBOOOOBOOOOBOOOOB0020BAOAOBODOABOOOOB0001B00007F2EDF SAMPROGl
BF900C0019BF600C0013B500085801B4801B4900B7F82B7F8DB5000B5801B4A017FlAEFSAMPROG2
B4BOOB7F80B7F8DB6EOOB4002B400384004B4005B7F89B6880B7002B7104B7F827Fl82FSAMPROG3
B480087FBOB7D02B7F81B7F80B6A04B6DOSB8002B7F8EB7F8CB4006B7F89B7F817FOF9FSAMPROG4
B6506B7F81B6805B6806B6D0587F82B7F8EB6880B7006B6A88B6D04B8010B80027Fl4DFSAMPROG5
B7D0387F81B6806B7F89B7F82B7F8EBF800A0089B4007B7F8987F81B6607B7F807Fl01FSAMPROG6
B5000B4BOOB7F80B0105BSOOOB4COOB4DOOB4EOOB4FOOB4800B4900B6604B7F827FlB2FSAMPROG7
B6106B7F80B7F8AB7F8EB5000B4800B7F8DB6881BF900C002E7F478F SAMPROG8

SAMPROG 9/20/83 9:43:19 ASM320 2.1 83.074 SAMPROG9

FIGURE 7-2 - SAMPLE OBJECT CODE

7. 5. 1 Object Code Format

7-6

Object code is formatted to contain records made up of fields sandwiched between tag
characters. Table 7-3 lists field and character information.

A tag character occupies the first position on each line of object code and identifies the fields
it precedes. The specific tag character used depends on the function of the field with which
it is associated. The paragraphs that follow detail the various tag characters and their
associated fields.

Tag character K is placed at the beginning of each program and is followed by two fields.
Field one contains the number of words of program relocatable code; field two contains the
program identifier assigned to the program by an IDT directive. When no IDT directive is
entered, N0$1DT is put into field two. The linker uses the program identifier to identify the
program, and the number of words of program-relocatable code to determine the load bias
for the next module or program.

The tag character M is used when data or common segments are defined in the program
and is followed by three fields. Field one contains the length, in words, of data- or common
relocatable code; field two contains the data or common segment identifier; and field three
contains a "common number". The identifier is a six-character field containing the name
$DATA (padded on the right by one blank) for data segments and $BLANK for blank com
mon segments. If a named common segment appears in the program, an M tag will appear
in the object code with an identifier field corresponding to the operand in the defining CSEG
directive(s). Field three of the M tag consists of a four-character hexadecimal number defin
ing a unique "common number" to be used by other tags that reference or initialize data
of that particular segment. For data segments, this common number is always zero. For com
mon segments (including blank common), the common numbers are assigned in increasing
order, beginning at one and ending with the number of different common segments. The
maximum number of common segments that a program may contain is 127.

Tag characters 1 and 2 are used with entry addresses. The associated field is used by the
linker to determine the entry point at which execution starts when linking is complete. Tag
character 1 is used when the entry address is absolute; tag character 2 is used when the
address is relocatable. The field lists the address in hexadecimal.

Tag characters 9, A, S, and P are used with load addresses required for data words that
are to be placed at other than the next immediate memory addresses. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address
is program-relocatable. Tag character S is used when the load address is data-relocatable.
Tag character P is used when the load address is common-relocatable. Field one contains
the load address. Field two is only present for tag character P and contains the common
number.

Tag characters B, C, T, and N are used with data words. Tag character Bis used when the
data is absolute (i.e., an instruction word or a word that contains text characters or absolute
constants). Bis used for absolute word data (16 bits). Tag character C is used for a word
that contains a program-relocatable address. Tag character T is used for a word that con
tains a data-relocatable address. Tag character N is used for a word that contains a common
relocatable address. Field one contains the data word. The linker places the data word in
the memory location specified in the preceding load address field or in the memory location
that follows the preceding data word. Field two is only used with N and contains the com
mon number.

Tag characters #, %, and & are also used where a 7-bit field of an instruction refers to a
data element in either a DSEG, PSEG, or CSEG. Tag character # identifies an instruction
containing a reference to a seven-bit data-relative item. The second field following the tag
contains a mask which indicates to the link editor the width of the field (mask = > 007F
indicates the least seven bits). The link editor generates the final version of this instruction
by adding to the masked data word, the beginning location of the data segment and re
inserting the sum in the seven-bit field within the data word. Note that field overflow may
occur in this operation, and error messages may be generated by the link edit operation which
were not evident at assembly time. The description of the % tag is the same as above, ex
cept that it represents the use of a program-relative item as the operand. The fields used
with the & tag are identical to the # and % tags, except that the second field is the common
number and the mask becomes the third field.

Tag characters 5, 6, and Ware used for external definitions. Tag character 5 is used when
the location is program-relocatable. Tag character 6 is used when the location is absolute.
Tag character Wis used when the location is data- or common-relocatable. The fields are
used by the linker to provide the desired linking to the external definition. Field one contains
the location of the last appearance of the symbol. Field two contains the symbol of the ex
ternal definition. Field three of tag character W contains the common number.

Tag characters 3, 4, and X are used for external references. Tag character 3 is used when
the last appearance of the externally referenced symbol is in program-relocatable code; tag
character 4 when it is in absolute code; and the X tag when it is in data-or common-relocatable
code. Tag characters 3 and 4 are associated with two fields. Tag character X may identify
one additional field. Field one contains the location of the last appearance of the symbol.
Field two contains the symbol itself. Field three is only used to supply the common number
for the X tag.

Tag character E is used for external references. An E tag is used when a nonzero quantity
is to be added to a reference. Field 1 identifies the reference by occurrence in the object

7-7

7-8

code (0, 1, 2, ...). In other words, the value in field one is an index to references identified
by 3, 4, V, X, and Y tags in the object code. The list is maintained by order of occurrence
(i.e., the first entry in the list is the symbol located in field two of the first 3, 4, V, X, Y,
or Z tag). Field 2 contains the value to be added to the reference after the reference is resolved.

Tag character ! is used where a seven-bit field of an instruction refers to an external reference.
The determining factor here is that the field can only be seven bits in width, rather than
the usual 167bit word. The format of the ! sequence is:

! (external symbol number) (opcode/offset) (mask)

The processing of this tag and its associated fields is the same as that of the #tag, above.

Tag characters G, H, and J are used when the symbol table option (SYMLST) is specified
under the OPTION directive. Tag character G is used when the location or value of the sym
bol is program-relocatable; tag character H is used when the location or value of the symbol
is absolute; and tag character J is used when the location or value of the symbol is data
or common-relocatable. Field one contains the location or value of the symbol. Field two
contains the symbol to which the location is assigned. Field three is used with tag character
J only and contains the common number.

Tag character U is generated by the LOAD directive. The symbol specified is treated as if
it were the value specified in an INCLUDE command to the loader. Field one contains zeros.
Field two contains the symbol for which the loader will search for a definition. Refer to the
LOAD directive for further details.

Tag characters V, Y, and Z are used for secondary external references. Tag character Vis
used when the last appearance of the externally referenced symbol is in program-relocatable
code, tag character Y when it is in absolute code, and the Z tag when it is in data- or common
relocatable code. Tag characters V and Y are associated with two fields. Tag character Z
may identify one additional field. Field one contains the location of the last appearance of
the symbol. Field two contains the symbol itself. Field three is only used to supply the com
mon number for the Z tag.

Tag character 7 precedes the checksum, and is placed at the end of the set of fields in the
record. The checksum is an error detection word and is formed as the record is being writ
ten. It is the two's complement of the sum of the characters' eight-bit ASCII values from
the first tag of the record through the checksum tag, tag character 7.

Tag character 8 is also associated with the checksum field but is used when the checksum
field is to be ignored (as when changing the object code).

Tag character Dis used to specify a load bias. Its lone associated field contains the absolute
address that will be used by the loader to relocate symbols. The link editor does not accept
the D tag. Refer to Section 7.5.3 for additional information.

Tag character F is placed at the end of the record. It may be followed by blanks.

The end of each record is identified by tag character 7, followed by the checksum field and
tag character F. The assembler fills the rest of the record with blanks and a sequence number,
and begins a new record with the appropriate tag character.

The last record of an object module has a colon(:) in the first character position of the record,
followed by the module name, the date of the assembly, and the time of the assembly. Table
7-3 defines the object record format and tags.

TABLE 7-3 - OBJECT RECORD FORMAT AND TAGS

TAG 1ST FIELD

(MODULE DEFINITION)

K

M

M

M

PSEG LENGTH

DSEG LENGTH

BLANK COMMON LENGTH

CSEG LENGTH

(ENTRY POINT DEFINITION)

1 ABSOLUTE ADDRESS

2 P-R ADDRESS

(LOAD ADDRESS)

9 ABSOLUTE ADDRESS

A P-R ADDRESS

S D-R ADDRESS
p C-R ADDRESS

(DATA WORD)

B ABSOLUTE 16-BIT VALUE

C P-R ADDRESS

T
N

%

&

D-R ADDRESS

C-R ADDRESS

OPCODE/DR ADDRESS

OPCODE/PR ADDRESS

OPCODE/CR ADDRESS

(EXTERNAL DEFINITIONS)

6 ABSOLUTE VALUE

5

w
P-R ADDRESS

D-R/C-R ADDRESS

(EXTERNAL REFERENCES)

3 P-R ADDRESS OF CHAIN

4 ABSOLUTE ADDRESS OF CHAIN

x
E

D-R/C-R ADDRESS OF CHAIN

SYMBOL INDEX NUMBER

SYMBOL INDEX NUMBER

(SYMBOL DEFINITIONS)

G P-R ADDRESS

H ABSOLUTE VALUE

J D-R/C-R ADDRESS

(FORCE LOAD)

u 0000

(SECONDARY EXTERNAL REFERENCE)

v
y

z

P-R ADDRESS OF CHAIN ENTRY

ABSOLUTE ADDRESS OF CHAIN

D-R/C-R ADDRESS OF CHAIN

(CHECKSUM)

7 VALUE

NOTES: 1 . All field widths are four characters unless otherwise specified.
2. If the first tag is >01, the file is in compressed object format.
3. P-R program segment relative (address)

0-R data segment relative (address)
C-R common segment relative (address)

2ND FIELD

PROGRAM ID(8)

$DATA

$BLANK

COMMON NAME(6)

COMMON#

COMMON#

MASK

MASK

COMMON#

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

ABSOLUTE OFFSET

OPCODE/OFFSET

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

SYMBOL(6)

3RD FIELD

0000

COMMON#

COMMON#

MASK

COMMON#

COMMON#

MASK

COMMON#

COMMON#

7-9

TABLE 7-3 - OBJECT RECORD FORMAT AND TAGS !Concluded)

TAG 1ST FIELD 2ND FIELD 3RD FIELD

(IGNORE CHECKSUM)

8 ANY VALUE

(LOAD BIAS)

D ABSOLUTE ADDRESS

(END OF RECORD)

F

(END OF MODULE)

(LANGUAGE PROCESSOR DEPENDENT)

NOTES: 1. All field widths are four characters unless otherwise specified.

7.5.2

7.5.3

7-10

2. If the first tag is > 01, the file is in compressed object format.
3. P-R program segment relative (address)

D-R data segment relative (address)
C-R common segment relative (address)

External References in Object Code

External references are possible. The link editor will resolve all external references automatical
ly (see Section 5).

Changing Object Code

In most cases, changing the object code is not the best way to correct errors in a program.
All changes or corrections to a program should be made in the source code, then the pro
gram should be reassembled. Failure to follow this principle can make subsequent correc
tion or maintenance of the program impossible. The information in the following paragraphs
is intended for those rare instances when reassembly is not possible. Any changes made
directly to the object code should be thoroughly documented so that the programmers who
come later can see what the program actually does, not what the source code says it does.

To correct the object code without reassembling a program, change the object code by chang
ing or adding one or more records. One additional tag character is recognized by the loader
to permit specifying a load point. The additional tag character, D, may be used in object
records changed or added manually.

Tag character Dis followed by a load bias (offset) value. The loader uses this value instead
of the load bias computed by the loader itself. The loader adds the load bias to all relocatable
entry addresses, external references, external definitions, load addresses, and data. The ef
fect of the D tag character is to specify that area of memory into which the loader loads
the program. The tag character D and the associated field must be placed ahead of the ob
ject code generated by the assembler.

Correction of the object code may only require changing a character or a word in an object
code record. The user may duplicate the record up to the character or word in error, replace
the incorrect data with the correct data, and duplicate the remainder of the record up to
seven tag characters. Because the changes the user has made will cause a checksum error
when the checksum is verified as the record is loaded, the user must change the tag character
7 to 8.

When more extensive changes are required, the user may write an additional object code
record or records. Begin each record with a tag character 9, A, S, or P (load address tag
characters), followed by an absolute load address or a relocatable load address. This may
be an address into which an existing object code record places a different value. The new
value on the new record will override the other value when the new record follows the other
record in the loading sequence. Follow the load address with a tag character B, C, T, or
N (data word tag characters) and an absolute data word or a relocatable data word. Ad
ditonal data words preceded by appropriate tag characters may follow. When additional data
is to be placed at a nonsequential address, write another load address tag character follow
ed by the load address and data words preceded by tag characters. When the record is full
or all changes have been written, write tag character F to end the record.

When additonal memory locations are loaded as a result of changes, the user must change
field one of tag character zero, which contains the number of words of relocatable code.
For example, if the object field written by the assembler contained 1000 hexadecimal words
of relocatable code and the change has added eight words in a new object record, addi
tional memory locations will be loaded. The user must find the zero tag character in the ob
ject code file and change the value following the tag character from 1000 to 1008; he must
also change the tag character 7 to 8 in that record.

When added records place corrected data in locations previously loaded, the added records
must follow the incorrect records. The loader processes the records as they are read from
the object medium, and the last record that affects a given memory location determines the
contents of that location at execution time.

The object code records that contain the external definition fields, the external reference
fields, the entry address field, and the final program start field must follow all other object
records. An additional field or record may be added to include reference to a program iden
tifier. The tag character is 4, and the hexadecimal field contains zeros. The second field con
tains the first six characters of the IDT character string. External definitions may be added
using tag character 5 or 6, followed by the relocatable or absolute address, respectively.
The second field contains the defined symbol, filled to the right with blanks when the sym
bol contains less than six characters.

NOTE

Both object code that will be linked and object code that will be loaded by the
bootstrap loader can be changed without reassembling the program. However, the
link editor will not accept tag character D in changed or added object records.

7-11

7-12

8. MACRO CAPABILITY

8. 1 INTRODUCTION

The assembler recognizes a macro definition language that may be used to simplify program
ming. A macro definition is a set of source statements (machine instructions, macro language
statements, and assembler directives) which constitute a template for generating other
statements within a source program.

When the assembler processes a macro call, it substitutes the predefined statements of the
macro definition for the macro call statement in the source program, and assembles the
substituted statements as if they had been included in the source program. This section
describes the macro language and the verbs used to define macros.

8.2 DEFINING MACROS

The creation of macro definitions is normally done by including within the assembler source
file lines of code in a predefined format. In general, the definition requires a line marking
the start of a macro definition, putting the macro name in the label field of the symbolic
line, the string '$MACRO' in the opcode field, and possibly a list of formal parameters
separated by commas in the opcode field.

Macros may be defined in-line with the normal assembler input, except that a macro defini
tion must appear prior to an invocation of that macro. Good documentation practice is to
place all macro definitions at the top of the assembler source file. This also allows easy
reference to all the definitions because they are in one location.

'
In addition, macros may be defined in external files. These files are simply text files, like
the assembler source file which contains macros defined in the same manner as those defined
in-line. Only one macro may be defined in a file. The assembler is informed of the existence
of a macro library (i.e., a collection of macro files) by means of the 'MLIB' assembler direc
tive. The syntax of the MLIB directive is:

MLIB 'VOLUME.DIRECTORY.MACLIB'

The string enclosed in the quotes represents a directory name in the format required by the
host operating system.

Directions for the use of a macro library are as follows: Assume that a library of macro defini
tions is contained in a directory named 'VOLUME.DIRECTORY.MACLIB', and that a file nam
ed 'CPXADD' is a member of that directory. If the macro call

LABEL CPXADD CX1 ,CX2

is found in the assembler source, the in-memory macro table is first searched for the defini
tion of CPXADD. CPXADD will be in the macro table if CPXADD was previously defined
in the assembler source file or was previously encountered and has already been read from
a macro file. If the definition is not found in the macro table, a search of the normal assembler
opcode/directive table is made. If found there, the opcode will be assembled as a normal
machine instruction. If not, an attempt is made to find the file whose name is formed, by
appending the macro name to the MLIB name. If more than one MLIB directive has been
encountered, the most recently defined library is searched first, then all remaining libraries
are searched. If the file is found, the macro definition is copied into the assembler's macro
file (in a compressed format), and an entry is made in the macro table for later use.

8-1

8-2

Because of the sequence of the search for matching definitions (library search following op
code table search), a macro defined in a library will not automatically redefine a machine
instruction, although this is easily done using an in-line macro definition. To extend this
capability to the macro library, that library should include a text file named 'MUST', which
contains the names of the opcodes and currently defined macros (one name per line, star
ting with column one) which are to be redefined.

A typical MUST file might be constructed as follows, using the appropriate system text editor:

file named
record 1
record 2
record 3
record 4

eof (MUST)

< MUB directory name> .MUST
ADD (opcode)
LACK (opcode)
MOV (opcode)
FSUB (macro)

This file (MUST) is read when the MUB directive is processed. If a name found there mat
ches a currently defined opcode or a name in the macro table, the matching entry is remov
ed from its table. This forces a search of the libraries since the name will not be found
elsewhere. When a name is found matching an opcode, the message:

' * * * * OPCODES REDEFINED'

is printed in the assembler listing following the printing of the MUB statement. A similar
message:

' * * * * MACROS REDEFINED'

will appear when currently defined macros are redefined. If this is the user's intent, then
no action is required; if not, then some action is required, such as the deletion of some or
all of the records in the file MUST.

The name of a macro in file should be the same as the file name; otherwise, some inefficien
cy in macro usage will result. If the file named CPXADD contains a definition line such as

CPXMUL $MACRO MR, MD

An entry for a macro named CPXMUL will be made in the internal macro table, and the next
call to CPXADD will be recognized as undefined, and again reentered as CPXMUL into the
internal macro table.

NOTE

The MUB directive and the macro library concept are supported only by host
systems which allow libraries on hard (not floppy) disks.

CAUTION

The use of the assembler opcode table override feature can result in unpredictable
behavior of the assembler. Care should be exercised in electing to use this option.

8.2.1 Sample Macros

The following is a simple example of a macro definition:

INCX $MACRO
LACK 1
ADD X
SACL X
$END

The above code defines a macro named INCX. $MACRO identifies the beginning of the macro
definition, and $END identifies the end of the macro definition. LACK 1, ADD X, and SACL
X are model statements which will be placed into the source program upon a macro call.
The macro INCX may now be used in the source program as often as necessary. The macro
may be called by simply placing the line

INCX

within the source file. The macro assembler will replace this line with the remainder of the
definition, i.e.:

LACK 1
ADD X
SACL X

X must be a symbol representing a memory address in the source program assigned by the
EOU directive. INCX is limited because the macro can only be used with a single memory
location. The following macro, however, can be used with any memory location:

INC $MACRO M
LACK 1
ADD :M.S:
SACL :M.S:
$END

Mis a macro parameter which is replaced by the actual parameter when the macro is called.
M.S is the string component of this variable, i.e., the symbol representation of the variable.
For example, the line:

INC Y

will be replaced by:

but

LACK 1
ADD Y
SACL Y

INC Z

will be replaced by:

LACK 1
ADD Z
SACL Z

8-3

Another component of a macro variable is the value component. An example of the use of
this component is:

ADDK $MACRO X,NUM

LACK
ADD
SACL
$END

:NUM.V:
:X.S:
:X.S:

(X and NUM are parameters (see Section
8.3.3.1)

NUM.V is the value component of the parameter NUM. The call:

ADDK Y,3

will result in:

LACK 3
ADD Y
SACL Y

These and other macro commands will be explained in greater detail in the following
paragraphs.

8.3 MACRO LANGUAGE ELEMENTS

The elements of the macro language are strings, constants, operators, variables, keywords,
and verbs. A macro definition consists of model statements and statements containing macro
language verbs. A model statement results in an assembly language source statement.
Statements containing macro language verbs are used to define the macro and macro
variables, and to determine which model statements are assembled. All macro statements
which do not contain verbs are processed as model statements.

8.3.1 Strings

The literal strings of the macro language consist of one or more characters which do not
need enclosing quotes except in the $ASG statement (see Section 8.3.5.3). They are iden
tical to the character string used in the assembly language. Examples of a string are:

'ONE'
' (a blank space)

8.3.2 Constants And Operators

8-4

Constants for the macro language are defined in the same manner as constants for the
assembly language. The following are examples of constants:

>9F3C
$ (current PC value)

Arithmetic operators are also valid in the macro assembler. Functions of +, - , * (multiply),
and I (divide) can be used to generate operand values. The following is an example of the
use of arithmetic operators:

LABEL EQU $+4 (current PC value + 4)

Relational operators are also available for use in the macro assembler. The relational operators
compare the values of two variables or a variable and a constant, and return the answer
of TRUE or FALSE. The relational operators are:

Equal
> Greater than
< Less than
#= Not equal

The following are examples of the use of relational operators:

$IF A.V>3 Process succeeding block if value component of
variable A is > 5.

$IF B.L#=A.L Process succeeding block if length component of
variable B is not equal to length component of
variable A (see Section 8.3.5.4).

Boolean operators are another feature offered by the macro assembler. They perform the
desired operation and return either TRUE or FALSE. The Boolean operators are:

& AND
+ + OR

NOT

The following is an example of the use of the Boolean operators:

$IF - -(A.V>3)&(B.L#=A.L)Process succeeding block if both expressions in
parentheses are true.

The macro language permits concantenation of macro symbol components with literal strings,
characters of model statements, and other macro variables. Concatenation is indicated by
writing character strings in juxtaposition with string mode references.

8.3.3 Variables

A macro definition may include variables which are represented in the same manner as sym
bols in the assembler symbol table, with the restriction that they may be a maximum of six
characters in length. Macro variables are strictly local; they are available only to the macro
which defines them. Access to symbols in the AST is through the symbol components (see
Section 8.3.4.1).

8. 3. 3. 1 Parameters

Parameters are a special class of macro variables. They are declared in the $MACRO state
ment at the beginning of the macro definition. The sequence of parameters in the operand
field of the $MACRO statement corresponds to the sequence of operands in the operand
field of the macro call. In the expansion of a macro call, the parameters have values which
are associated with the corresponding operands in the macro call.

The following are examples of $MACRO statements with parameters:

LABEL
NAME

$MACRO
$MACRO

A,B3
O,RC,AM

8-5

8.3.3.2 Macro Symbol Table

8-6

The macro translator maintains a Macro Symbol Table (MST) similar to the symbol table
of the assembler. Each entry consists of four components: the string, value, length, and
attributes of a variable or parameter. The macro assembler places parameters in the MST
as it processes a macro call, and places variables in the MST as it processes the macro
language $VAR statements that declare variables.

The string component of an entry in the MST contains a character string assigned to the
macro variable or parameter by the macro expander. The value component contains the
numerical equivalent of the string component, if the string component is an integer. The
value component can also contain the numerical value of the symbol, if the string compo- i

nent is a symbol in the Assembler Symbol Table (AST). If a parameter is an operand list, I•
the value is the length of the list. The length component contains the number of characters
in the string component. The attribute component of the MST is a bit vector, the bits of
which correspond to the attributes of the variable or parameter.

Example of a macro definition:

ADDK $MACRO X,NUM

identifies a macro, ADDK, having parameters X and NUM.

A macro call to activate that macro definition is coded as follows:

ADDK VAR1 ,3

The MST now contains parameters X and NUM. The string component of parameter X is
the character string VAR 1 . The attribute component ($ PCALL) indicates that the parameter
is supplied in a macro call. The length component is four. The string component of parameter
NUM is the ASCII character 3. The value component is three, (expressed as a binary number),
and the length component is one. The attribute component indicates that the parameter is
supplied in the macro call.

Each component of a macro variable may be accessed individually. Reference to a variable
component is made in either binary mode or string mode. In the binary mode, the referenc
ed macro variable component is treated as a signed 16-bit integer. Binary mode access is
made by writing the variable name and component. A reference to the string component
of a macro variable in binary mode is the 16-bit integer value of the ASCII representation
of the first two characters of the string. For example, the binary mode value of the string
component of X is > 5641, which is the ACCll representation for VA.

String mode access of macro variable components is signified by enclosing the variable in
a pair of colon characters (:); for example, :X:.

NOTE

Colons are always used in pairs to enclose a variable name. If a component qualifier
is used, the pair of colons enclose the entire qualified name.

8. 3. 3. 3 Variable Qualifiers

The components of a parameter or variable may be specified using the specific names shown
in Table 8-1. The variable name is followed by a period (.) and the single letter qualifier.
The following examples show qualified variables:

x.s

X.A

x.v

X.L

String component of variable X. In the example of the macro call for the
macro ADDK in Section 8.3.3.2, X.S equals the binary equivalent for VA
or >5641. A string mode indicated as :X.S: is equal to VAR1.

Attribute component of variable X. This component may be accessed by
the use of logical operators (&, + +, and - -) and attribute keywords
(described in Table 8-4).

Value component of variable X. :X.V: is equal to the value of VAR1.

Length component of variable X. In the same example of the macro call
for the macro ADDK, :X.L: = 4.

TABLE 8-1 - VARIABLE QUALIFIERS

QUALIFIER MEANING

s String component of the variable

A Attribute component of the variable

v Value component of the variable

L Length component of the variable

Except in an $ASG statement, an unqualified variable means the string component of the
variable. In the two following examples, the concatenated strings are equivalent:

(1) :CT.S: WAY

(2) :CT: WAY

Variable CT qualified

Variable CT unqualified

Note that in model statements, binary references to macro variables MUST be qualified.

All symbols in the AST have symbol components. (All components of macro parameters
and the values of all AST symbols are directly accessible.) In order for other components
to be accessed in a macro, the symbol must be assigned to the string component of a macro
variable, using $ASG. The additional qualifiers shown in Table 8-2 may be used with the
macro variable to access the symbol components of the AST symbols.

The following are examples of qualified variables that specify symbol components of string
components of variables. Assume that V1 .Shave been defined as MASK, and the statement

MASK EOU >FF

has been previously encountered in the assembly language source program.

V1.SS

V1.SV

String component of the symbol MASK. This is null unless a macro in
struction has caused a string to be associated with it by using a $ASG
statement.

Value component of the symbol MASK, i.e., >FF. In string mode, :V1 .SV:
equals the characters "255".

8-7

8.3.4

8-8

V1.SA

V1.SL

Attribute component of the symbol MASK. This component may be ac
cessed by logical operators and keywords, as described later.

Length component of the symbol MASK. If a string has been assigned
to MASK, then V1 .SL is the length of that string.

Concatenation is especially useful when a previously defined string is augmented with addi
tional characters. The string ONE could be represented by a qualified variable such as CT.S.
In that case, concatenation is expressed as follows:

:CT.S:' WAY'

and provides the same result as writing:

ONE WAY

If the qualified variable CT.S represents the characters: TWO, the result of the concatena
tion in the example would be TWO WAY. Strings and qualified variables may be concatenated
as required and the variable need not be first. Components of variables that are represented
by a binary value (e.g., CT.V and CT.L) are converted to their ASCII decimal equivalent before
concatenation.

For example:

:CT.S:' WAY ':CT.L:

is expanded as:

ONE WAY 3

since the length component of the variable CT is three. Table 8-2 defines the variable qualifiers
for symbol components.

Keywords

TABLE 8-2 - VARIABLE QUALIFIERS FOR SYMBOL COMPONENTS

QUALIFIER

SS

sv

SA

SL

MEANING

String component of a symbol that is the

string component of a variable

Value component of a symbol that is the

string component of a variable

Attribute component of a symbol that is

the string component of a variable

Length component of a symbol that is

the string component of a variable

The attribute component of assembler symbols and macro parameters contains information
on various attributes of those symbols and parameters. The macro language recognizes certain
keywords that are used to access that information. A keyword is used with a logical operator
and the attribute component to test or to set a specific attribute of a symbol or parameter.
The following paragraphs describe how keywords are used with symbols and parameters.

8.3.4. 1 Symbol Attribute Component Keywords·

The keywords listed in Table 8-3 may be used with a logical operator and the symbol at
tribute component (.SA) to test or set the corresponding attribute component in the AST.
The following example shows an expression that uses a symbol attribute component keyword:
(Assume V1 .S has been defined as MASK.)

V1 .SA&$STR This is the result of an AND operation between the attribute com
ponent of the symbol MASK and a flag corresponding to keyword
$STR. The expression is TRUE when the contents of the string com
ponent of MASK is not null; otherwise the expression is FALSE.

Another example shows an expression that uses a symbol attribute keyword:

V1 .SA++ $REL This is the result of an OR operation between the attribute compo
nent of the symbol MASK and the flag corresponding to keyword
$REL.

TABLE 8-3 - SYMBOL ATTRIBUTE KEYWORDS*

KEYWORD MEANING

$REL

$REF

$DEF

$STR

$MAC

$UNDF

Symbol is relocatable

Symbol is an operand of an REF directive

Symbol is an operand of an DEF directive

Symbol has been assigned a component

string

Symbol is defined as a macro name

Symbol is not defined

* Use of these attributes in conditional assembly (see $IF) can lead to pass conflict errors if the symbol has not been defined prior to the macro call.

8. 3.4. 2 Parameter Attribute Keywords 1

The keywords listed in Table 8-4 may be used with a logical operator and the macro symbol
attribute component to test or set the corresponding attribute in the MST attribute compo
nent. These attribute keywords may be used to test or set attributes of all variables in the
MST. The following examples show expressions that use parameter attribute component
keywords:

P6.A&$PCALL This is the result of an AND operation between the attribute com
ponent of variable P6 and the flag corresponding to keyword $PCALL.
The expression is TRUE when variable P6 is a parameter supplied
in a macro call; otherwise, the expression is FALSE.

RA.A++ $PSYM This is the result of an OR operation between the attribute compo
nent of variable RA and the flag corresponding to keyword $PSYM.

8-9

8.3.5 Verbs

TABLE 8-4 - PARAMETER ATTRIBUTE KEYWORDS

KEYWORD

$PCALL

$POPL

$PSVM

MEANING

Parameter appears as a macro-instruction

operand

Parameter is an operand list. The value

component contains the number of

operands in the list

Parameter is a symbolic memory ad

dress. (Note that a symbolic memory ad

dress is recognized when the variable is

preceded by an "@" character.)

The macro language supports seven verbs that are used in macro language statements. Any
statement in a macro definition that does not contain a macro language verb in the opera
tion field is processed as a model statement.

8.3.5.1 $MACRO Statement

8-10

The $MACRO statement must be the first statement of a macro definition. It assigns a name
to the macro and declares the parameters for the macro. The macro name consists of one
to six alphanumeric characters, the first of which must be alphabetic. Each <pa rm> is a
parameter for the macro (see Section 8.3.3.1). The operand field may contain as many
parameters as the size of the field allows and must contain all parameters used in the macro
definition. The comment field may not be used if there are no parameters.

Syntax:

<macro name> $MACRO [<pa rm-list> [<comment>]]

where <pa rm-list> is a sequence of parameters separated by commas. The macro defini
tion is used in the expansion of macro calls where that macro name appears in the instruc
tion field.

The syntax for a call is:

<macro name> [<operand-list> [<comment>])

where <operand-list> is a sequence of operands, separated by commas. The macro name
specifies the macro definition to be used. Each operand may be any expression or address
type recognized by the assembler, or a character string enclosed in quotes. Alternatively,
a list which is a group of operands enclosed in parentheses and separated by commas (when
two or more operands are in the list) may be used. A list is processed as a set after removal
of the outer parentheses during macro expansion.

Operands (or lists) may be nested in parentheses in the macro call for use within macro defini
tions. For example:

ONE $MACRO P1 ,P2

specifies two parameters.

A call such as:

ONE PAR1 ,PAR2

will result in PAR1 being associated with P1, and PAR2 being associated with P2. However,
a call such as:

ONE PAR1 ,(PAR21,PAR22)

will result in PAR1 being associated with P1, and PAR21,PAR22 being associated with P2.
Now, :P2: or :P2.S: can be used as a pair of operands in a model statement.

Processing of each macro call in a source program causes the macro expander to associate
the first parameter in the $MACRO statement with the first operand or operand list on the
macro call line and the second parameter with the second operand or operand list, etc. Each
parameter receiving a value has the $PCALL attribute (see Table 8-4) set in the MST. When
the macro definition has more parameters specified than the number of operands in the macro
call, the $PCALL attribute is not set for the excess parameters. The $PCALL attribute is also
not set if an operand is "null" (i.e., the call line has two commas adjacent or an operand
list has zero operands). Expansion of the macro can be controlled by the number of operands
by using the $PCALL attribute and $IF statements.

For example, a macro definition containing AMAC $MACRO P1 ,P2,P3 when called AMAC
AB1 ,AB2 sets $PCALL parameters P1 and P2 but not P3.

Similarly, AMAC XY,,XY3 causes $PCALL to be set for P1 and P3 but not P2.

When the macro call has more operands than the number of parameters in the $MACRO
statement, the excess operands are combined with the operand or list corresponding to the
last parameter to form a list (or a longer list). For example, in the macro statements shown
below, the operands of the two macro calls would be assigned to the parameters in the same
way:

(1) ONE EQU 9
TWO
THREE
FIX

EOU
EOU
$MACRO

FIX
FIX

43
86
P1,P2

ONE,TWO,THREE
ONE,(TWO,THREE)

MACRO FIX

MACRO CALL
MACRO CALL

8-11

8-12

PARM A,,8,() ,C,(D) ,E,(G,H,I))

Parameter assignments:

P1 .S = A
P1 .A = $PCALL
P1 .L = 1
P1 .V = 7

P3.S = B
P3.A = $PCALL
P3.L = 1
P3.V = 15

PS.S = C
PS.A = $PCALL
PS.L = 1
PS.V = 17
P7.S = E
P7.A = $PCALL
P7.V = 95

P9.S =

PS.A=
P9.L = 0
P9.V = 0

(no string)
(all false)

P2.S =

P2.A =

P2.L = 0
P2.V = 0

(no string)
(all false)

P4.S = (no string)
P4.A = $POPL
P4.L = 0
P4.V = 0

P6.S = D
P6.A = $PCALL,$POPL
P6.L = 1
P6.V = 1
P8.S = G,(H,I)
PS.A = $PCALL,$POPL
P8.V = 2

NOTE

A macro definition will supercede previous macro definitions and native instruc
tions with the same name. Symbolic operands which appear in a macro call are
treated as symbolic operands in native instructions, i.e., if they are not defined
with the program in which they appear, they will be listed as undefined symbols.

8. 3. 5. 2 $VAR Statement'

The $VAR statement declares the variables for a macro definition. Th $VAR statement is
required only if the macro definition contains one or more variables other than parameters.
More than one $VAR statement may be included, and each $VAR statement may declare
more than one variable. Each <var> in the operand is a var,iable as previously described.

Syntax:

$VAR <var>[, <var>] [<comment>]

The following is an example of a $VAR statement:

$VAR A,CT,V3 THREE VARIABLES FOR A MACRO

The example declares variables A, CT, and V3, which must not have been declared as
parameters.

The $VAR statement does not assign values to any components of the variables; that is
the function of the $ASG statement (see below). $VAR statements may appear anywhere
in the macro definition to which they apply, provided each variable is declared before the
first statement that uses the variable. Placing $VAR statements immediately following the
$MACRO statement is recommended.

8. 3. 5. 3 $ASG Statement

The $ASG statement assigns values to the components of a variable. Variables that are not
parameters do not have values for any components until values are assigned using $ASG
statements. Components of variables with previously assigned values may be assigned new
values with $ASG statements.

Syntax:

$ASG <express/string> TO <var> [<comment>]

The expression operand may be any expression which is valid to the assembler and may
contain binary mode variable references and the keywords shown in Tables 8-3 and 8-4.

A string may be one or more characters enclosed in single quotes or the concatenation of
such a literal string with the string mode value of a qualified variable. The <var> may be
either an unqualified or qualified variable.

When the operands are both unqualified variables, all components are transferred to target
variables. When the destination variable is qualified, only the specified component receives
the corresponding component of the expression or string. An exception to this is when a
string is assigned to the string component of a variable or symbol, the length component
of that variable or symbol is set to the number of characters in the assigned string. If the
attribute component of the destination variable is to be changed, only those attributes which
can be tested using keywords are changed. Other attributes maintained by the macro
assembler may or may not be changed as appropriate.

NOTE

A qualified variable that specifies the length component is illegal as a destination
in a $ASG statement, and will NOT set the length component.

8-13

The following examples show the use of the $ASG statement:

$ASG P3 TO V3 Assign all the components of variable P3 to variable V3.

$ASG :P3.S:'ES' TO P3.S Concatenate string 'ES' to the string component of variable P3,
and set the string component to the result. This adds 2 to the
length component of P3.

$ASG CT.A++ $PSYM TO CT.A
Set the flag in the attribute component of variable CT to
indicate the symbolic address attribute.

Variables P3, V3, and CT must have been previously declared either as parameters in a I

$MACRO statement or as variables in a $VAR statement. I·

The $ASG statement may be used to modify symbol components as shown in the following
examples. Assume the P3.V = 6 and P3.S = SUB.

$ASG 'TEN' TO G.S

$ASG P3.V TO G.SV

$ASG I A':P3.S:'S' TO G.SS

Assigns 'TEN' as the string component of variable G. When
'TEN' is a symbol in the AST, this statement allows the
use of symbol component qualifiers to modify the com
ponents of symbol TEN.

Sets the value component of the symbol in the string com
ponent of variable G to the value component of variable
P3. In this case, the value component of TEN is set to six.

Concatenates string 'A', the string component of v9riable
P3, and string 'S' and places the result in the string com
ponent of the symbol in the string component of variable
G. Also sets the length component of the same symbol.
Thus, the string component of TEN is ASUBS, and the
length component is five.

NOTE

Keywords in a $ASG statement MUST be used with a Boolean operator and an
attribute component of a variable in the source field. The attribute component must
come first. When quoted strings are assigned to the string component of some
variable, that string may later appear in the list of undefined symbols. In most cases,
the programmer will not be concerned with their appearance in that list since their
definition as labels was never intended.

8.3.5.4 $/F Statement

8-14

The $IF statement provides conditional processing in a macro definition.

Syntax:

$IF <expression > [<comment> J

An $IF statement is followed by a block of macro language statements terminated by an
$ELSE statement or an $ENDIF statement. When the $ELSE statement is used, it is follow
ed by another block of macro language statements terminated by an $ENDIF statement. When
the expression in the $IF statement has a nonzero value (or is evaluated as TRUE), the block
of statements following the $IF statement is processed. When the expression in the $IF state-

ment has a zero value (or is evaluated as FALSE), the block of statements following the $IF
statement is skipped. When the $ELSE statement is used and the expression in the $IF state
ment has a nonzero value, the block of statements following the $ELSE statement and ter
minated by the $ENDIF statement is skipped. Thus, the condition of the $IF statement may
determine whether or not a block of statements is processed, or which of two blocks of
statements is processed. A block may consist of zero or more statements.

The <expression> may be any expression as defined for the $ASG statement and may
include qualified variables and keywords. The expression defines the condition for the $IF
statement.

NOTE

The expression is always evaluated in binary mode. Specifically, the relational opera
tions (<, >, = ,# =) operate only on the binary mode values of macro variables.
Boolean operators may be nested (see Section 8.3.2). In addition, $IF blocks may
be nested at most 44 levels.

The following example shows conditional processing in macro definition:

$IF KY.SV

BLOCK A

$ELSE

BLOCK B

$ENDIF

$IF - -(T.A&$PCALL)

BLOCK A

$ENDIF

$IF T.L=5

BLOCK A
$ENDIF

Process the statement of BLOCK A when the
value component of the symbol in the string com
ponent of variable KY contains a non-zero value.
Process the statements of BLOCK B when the
component contains zero. After processing either
block of statement, continue processing at the
statement following the $ENDIF statement.

Process the statements of BLOCK A when the
attribute component of parameter T indicates that
parameter T was not supplied in the macro in
struction. If parameter T was supplied, do not
process the statements of BLOCK A. Continue
processing at the statement following the $ENDIF
statements in either case. Process the statements
of BLOCK A when the length component of
variable T is equal to 5; otherwise, do not pro
cess the statements of BLOCK A. Continue pro
cessing at the statement following the $ENDIF
statement.

8-15

8.3.5.5 $ELSE Statement

The $ELSE statement begins an alternate block to be processed if the preceding $IF expres
sion was false (see Section 8.3.5.4).

Syntax:

$ELSE [<comment>]

8.3.5.6 $ENDIF Statement

The $ENDIF statement terminates the conditional processing initiated by an $IF statement
in a macro definition. Examples of $ENDIF statements and their use are shown in Section
8.3.5.4.

Syntax:

$ENDIF [<comment>]

8.3.5. 7 $END Statement

The $END statement marks the end of the group of statements of the macro definition nam
ed in the operand. When executed, the $END statement terminates the processing of the
macro definition. The macro name may appear as a comment to enhance readability.

Syntax:

$END [<macro name>] [<comment>]

The following is an example of an $END statement:

$END FIX Terminates the definition of a macro

8. 3. 6 Model Statements

8-16

As stated previously, a macro definition consists of model statements and statements that
contain macro language verbs. Processing a model statement results in an assembly language
statement. This statement may be composed of the usual elements of an assembly language
statement combined with string mode qualified variable components (see Section 8.3.3.3).
In any case, the resulting source statement must be a legal assembler language statement.
The following examples show model statements:

(1) IN *+,PA7,1

(2) :P7 .S: LAR :P2.S:,R8 :V4.S:

This model statement is itself an assembly
language source statement that contains a
machine instruction.

This model statement begins with the string com
ponent of variable f>7. Three blanks, LAR, and
three more blanks are concatenated to the string.
The string component of variable P2 is con
catenated to the result, to which R8 and three
blanks are concatenated. A final concatenation
places the string component of variable V4 in the
model statement. The result is an assembly
language machine instruction having the label and
comment fields and part of the operand field sup
plied as string components.

(3) :MS.S: This model statement is the string component of
variable MS. Preceding statements in the macro
definition must place a valid assembly language
source statement in the string component to pre
vent assembly errors.

NOTE

Conditional assembly directives may not appear as operations in a model state
ment. Comments supplied in model statements may not contain periods since the
macro assembler scans them. Improper use of punctuation may cause syntax errors.

8.4 MACRO EXAMPLES

Macros may simply substitute a machine instruction for a macro instruction, or they may
include conditional processing, access the assembler symbol table, and employ recursion.
Several examples of macro definitions are described in the following paragraphs.

8.4. 1 Macro ID ·

Macro ID is an example of a macro with a default value. The macro supplies two DAT A direc
tives to the source program. The macro consists of nine macro language statements, four
of which are model statements. The definition is as follows:

ID $MACRO WS,PC Defines ID with parameters WS and PC.

DATA :WS.S: Model statement: places a DAT A directive with
the string of the first parameter as the operand
in the source program.

$IF PC.A&$PCALL Tests for presence of parameter PC.

DATA :PC.S:, 15 Model statement: places a DA TA directive in the
source program. The first operand is the string
of the second parameter, and the second operand
is 15. This statement is processed if the second
parameter is present.

$ELSE Start of the alternate portion of the definition.

DATA START, 15 Model statement: places a DAT A directive in the
source program. The first operand is label START,
and the second operand is 15. This statement is
processed if the second parameter is omitted.

START EOU $ Model statement: places label ST in the source
program. This statement is processed if the se-
cond parameter is omitted.

$ENDIF End of conditional processing.

$END End of macro.

Syntax:

[<label>] ID <address>[,< address>] [<comment>]

8-17

The addresses may be expressions or symbols.

The following is an example of a macro instruction for macro ID:

ID WORK1 ,BEGIN

The resulting source code would be:

DATA WORK1
DATA BEGIN, 15

If only one operand is supplied, the macro instruction could be coded as follows:

ID WORK2

This would result in the following source code:

DATA WORK2
DATA START, 15

START EOU $

This form of the macro instruction imposes two restrictions on the source program. The
source program may not use the label START and may not call macro ID more than once.
Problems with labels supplied in macros may be prevented by reserving certain characters
for use in macro-generated labels. A macro definition may maintain a count of the number
of times it is called and use this count in each label generated by the macro.

8.4.2 Macro GENCMT

8-18

This macro GENCMT example shows how to implement both those comments which ap
pear in the macro definition only, and those comments which appear in the expansion of
the macro. When this macro is called, the statement in line six generates a comment.

0001 IDT 'GENCMT'
0002 GENCMT $MACRO
0003 $VAR V
0004 * THIS IS A MACRO DEFINITION COMMENT *
0005 $ASG '*'TO V.S
0006 :V.S.: THIS IS A MACRO EXPANSION COMMENT *
0007 $END
0008 GENCMT
0001 * THIS IS A MACRO EXPANSION COMMENT *
0009 0000 0000 DAT A 0, 1

0002 0001
0010 GENCMT
0001 * THIS IS A MACRO EXPANSION COMMENT *
0011 GENCMT
0001 * THIS IS A MACRO EXPANSION COMMENT *
0012 0004 0004 DATA 4
0013 END
NO ERRORS, NO WARNINGS

j,,

8.4.3 Macro FACT

Macro FACT is an example of the recursive use of macros. FACT produces the assembly
code necessary to calculate the factorial of N, and store that value at data memory address
LOC. FACT accomplishes this by calling FACT1, which calls itself recursively.

FACT $MACRO N,LOC
$IF N.V<2
LACK 1

*

SACL :LOC:
$ELSE
LACK :N.V:
SACL :LOC:
$ASG N.V-1 TO N.V
FACT1 :N.V:,:LOC:
$ENDIF
$END

FACT1 $MACRO M,AREA
$IF M.V> 1
LT :AREA:
MPYK :M.V:
PAC
SACL :AREA:
$ASG M.V-1 TO M.V
FACT1 :M.V:,:AREA:
$ENDIF
$END

8.4.4 Macro FFT

* 1 ! = O! = 1

* N GREATER THAN/EQUAL 2 SO,
* STORE NAT LOC
* DECREMENT N
* DO FACTORIAL OF N - 1

* MULTIPLY FACTORIAL SO FAR
* BY CURRENT POSITION

* SAVE RESULT
* DECREMENT POSITION
* RECURSIVELY CALLS ITSELF

Macro FFT supplies a macro for a generalized FFT "butterfly". To use this macro, data should
be scaled so that it is totally fractional.

In general, the macro will perform additions and subtractions in the first fifteen bits of the
upper accumulator, leaving the sixteenth bit open for a one-bit overflow if it occurs; results
are shifted out so that they contain the overflow bit. Only the absolute values of the com
ponents of W should be stored in data memory.

*
*
*
*
*
*
*
*
*
*

IDT 'FFT'

THIS MACRO IS FOR FFT BUTTERFLIES.

THE AIM OF THE MACRO IS TO TRANSFORM THE COMPLEX
NUMBERS (XR,XI) AND (YR,YI) AS FOLLOWS:

~XR,Xll -- (XR + RE[Y*W],XI + IM[YW])
(YR,YI) -- (XR-RE[Y*WJ,Xl-IM[Y*W])

THE RESULT OF THE TRANSFORMATION IS STORED IN

8-19

8-20

*
*
*
*
*
*

THE SAME MEMORY LOCATIONS AS THE ORIGINAL

THE FIRST STEP IS TO COMPUTE (W) (Y). THE REAL
PARTS OF THIS PRODUCT WILL BE STORED IN TEMP,
THE IMAGINARY PARTS IN YI, ACCORDING TO:
(WR-iWI) (YR+iYl)=(YR*WR + Yl*WI) + i(Yl*WR-YR*WI)

FFT $MACRO XR, XI, YR, YI, WR, WI
* THE REAL PART IS:

*
LT
MPV
PAC
LT
MPV
APAC
SACH

*

:YR:
:WR:

:YI:
:WI:

TEMP, 1

:YR:*:WR:

:Yl:*:WI:
ACC =REAL PART. STORE IN TEMP.
SHIFTING TO ELIMINATE SECOND SIGN BIT.

* THE IMAGINARY PART IS:
*

MPV
PAC

:WR:

LT :YR:

:Yl:*:WR:

MPV :WI: :YR:*:WI:
SPAC ACC = IMAG PART. STORE IN YI.
SACH :YI:, 1 SHIFT TO ELIMINATE SECOND SIGN BIT.

* NOW TEMP HAS REAL PART AND YI HAS IMAGINARY PART OF
* PRODUCT. NOW DO ADDITIONS AND SUBTRACTIONS. DO REAL
* PARTS FIRST. TEMP CONTAINS RE[Y*W].

*
LAC :XR:, 15
SUB TEMP, 15
SACH :YR: :XR:- RE[] - :YR:

ADDH TEMP :XR: - RE[] + 2*RE[
SACH :XR: :XR: + RE[] - :XR:

*
* CALCULATE IMAGINARY POINTS:
*

*

XOR
XOI

LAC :XI:, 15
ADD :YI:, 15 :XI: + IM[
SACH :XI: :XI: + IM[] - :XI:

SUBH :YI: :XI: +IM[] - 2*1M[]

SACH :YI: :XI: - IM[] - :YI:
$END
NOW THAT THE MACRO IS COMPLETED, SHOW HOW TO USE IT.

AORG
EOU
EQU

0
1

X1R EQU 2
X11 EQU 3
WOR EQU 4
WOI EQU 5
TEMP EQU 127

*
FFT XOR, XOI, X1 R, X1 I, WOR, WOI

*
END

NO ERRORS, NO WARNINGS

8.5 MACRO ERROR MESSAGES

Table 8-5 lists and defines the macro error messages, and gives correction information.

MEANING

MACRO LINE TOO LONG

LONG MACRO VARIABLE QUALIFIER

TOO MANY MACRO VARIABLES

INVALID MACRO QUALIFIER

VARIABLE ALREADY DEFINED

IF LEVEL EXCEEDED

MACRO ASSEMBLER PROGRAM ERROR

TABLE 8-5 - MACRO ERROR MESSAGES

DESCRIPTION

In a macro definition, macro directive lines may only be 58

characters long. Model statements, when fully expanded, may

only be 60 characters long.

Macro variable qualifiers may only be one or two characters in

length.

The total number of macro parameter variables and labels in a

single macro definition may not exceed 128.

The only valid macro qualifiers are S, V, L, A, SS, SV, SL, and

SA.

A macro variable cannot be redefined within a macro.

The maximum nesting level of $IF directives is 44.

The macro assembler has detected an internal error. These can

be caused by incorrect syntax.

8-21

8-22

I

!
I
I·

A.1 COMPONENTS

NAME

Program ROM

Program Counter

Stack

Data RAM

Data Memory Page Pointer

Auxiliary Registers 0 and 1

Auxiliary Register Pointer

Shifter

APPENDIX A

TMS32010 HARDWARE SUMMARY

SYMBOL SIZE (bits} DESCRIPTION

PC

DP

AR

ARP

1536 X 16 On-chip masked ROM containing program
code.

12

4 x 12

144 x 16

1

2 x 16

1

Register containing current address of pro
gram memory.

Four 12-bit registers for saving program
counter contents during subroutine and in
terrupt calls.

On-chip RAM containing data. It can be ad
dressed both directly and indirectly. The in
struction DMOVE enables the user to move
the contents of a given location in RAM to
the next higher location in one machine cy
cle. This is a very useful function in many
applications, such as signal processing.

A single-bit register containing the page ad
dress of data RAM. 1 page = 128 words.
Note that the second page utilizes only the
first 16 words.

The eight least significant bits are used for
indirect addressing of data memory. The
nine least significant bits can also be con
figured as bidirectional counters for loop
control, with options for autoincre
ment/decrement.

A single-bit register which points to current
auxiliary register.

Two shifters are present. One left-shifts data
from 0 to 15 bits on its way to the ALU; the
other left-shifts the result of the accumulator
either 0, 1, or 4 bits. The shifter is controll
ed by four bits in the opcode of arithmetic
operations, and its output is always a 32-bit
word. To handle two's complement
arithmetic, shifted data is zero-filled, and the
high-order bit is sign-extended. In addition,
there are instructions that suppress sign
extension.

A-1

NAME

T Register

Multiplier

P Register

Arithmetic Logic Unit

Accumulator

Interrupt Flag Register

Interrupt Mode Register

Overflow Flag

Overflow Mode

SYMBOL SIZE (bits)

T 16

p 32

ALU 32

ACC 32

INTF 1

INTM 1

av 1

OVM

DESCRIPTION

Contains the multiplicand in multiply
operations.

Multiplies two 16-bit numbers. The result is
32 bits. The multiplier is a word from the
data RAM or a 13-bit immediate value in the
instruction word. The immediate value is
loaded right-justified and sign extended.

Contains the 32-bit product of multiply
operations.

Performs all arithmetic and logical functions
except multiply. Logical operations are bet
ween the 16 least significant bits of the ac
cumulator and the data memory value.

Accumulates results of ALU. Holds branch
address of program memory during branch
operations. Contains an overflow mode (see
below).

Used to indicate an interrupt. Automatical
ly cleared upon grant of an interrupt.

Used to mask the Interrupt Flag. Upon grant
of an interrupt, this bit is set to one by the
DINT instruction. This disables further inter
rupts. This register is reset by the EINT
instruction.

A one indicates an overflow in arithmetic
operations. The BV (branch on overflow) in
struction tests if this flag is clear and clears
it. This feature allows the flexibility of
overflow examination outside time-critical
loops.

Defines whether the TMS32010 operates in
the saturated or unsaturated mode during
arithmetic operations. In the saturated
mode, an overflow/underflow causes the ac
cumulator to be set to its largest/smallest
representative value. A logic one enables the
overflow mode, and a logic zero disables it.

A.2 ADDRESSING MODES AND INSTRUCTION FORMAT (SEE SECTION 3.3)

A.3 INTERFACE AND CONTROL

A-2

A.3.1 Program Control

A.3.2

A.3.3

In the microcomputer mode, the TMS32010 can access 2.5K words of program off-chip,
in addition to the 1.5K words on-chip. To facilitate this ability, the program counter outputs
are buffered to the address pins A 11-AO. A strobe output (MEN) is generated every machine
cycle to enable external memory, except when an IN, OUT, or TBLW instruction is being
executed. Data from external memory is transferred to the TMS32010 via the data bus
(D15-DO).

The TMS32010 suffers no performance degradation in fetching program words from off
chip memory, as long as the memory access time is approximately 100 ns.

Interrupts

The TMS32010 supports a single-level vectored interrupt with provisions for a full context
save. A negative going edge on the INT pin generates an interrupt and sets the interrupt
flag. When servicing an interrupt, the TMS32010 pushes PC+ 1 onto the stack and bran
ches to location 2. Locations 0 and 1 are reserved for RESET.

TMS32010 has an interrupt mode bit which is set by the Disable Interrupt (DINT) instruc
tion, and cleared by the Enable Interrupt (EINT) instruction. When set, this bit inhibits the
TMS32010 from responding to an interrupt. Upon grant of an interrupt by the processor,
the INT flag is automatically cleared, and the INT mode bit is set. This disables servicing
future interrupts until EINT is executed. This configuration allows the TMS32010 to com
plete time-critical loops before servicing an interrupt.

This instruction set allows for the storage and recovery of all registers and status bits, ex
cept the P register. The TMS32010 also has hardware protection that prevents response
to an interrupt between an MPV or MPYK instruction and the next instruction. Thus, the
contents of the P register will be accumulated before the interrupt is serviced. In addition,
the TMS32010 has hardware that prevents the servicing of an interrupt until the end of
multicycle instructions.

Branch Instructions

There are a variety of branch instructions that allow testing for the following conditions:

Auxiliary register counter portion not zero

Overflow

Low-level on the 1/0 Branch Control pin (BIO)

Accumulator less than zero, less than or equal to zero, greater than zero, greater
than or equal to zero, not zero, equal to zero.

A.3.4 Clock

The TMS32010 can use either its internal oscillator or an external frequency source for a
clock. The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN.
The frequency of CLKOUT is ~ the frequency of the input.

A-3

A.3.5 1/0

A-4

The TMS32010 has an external parallel 12-bit address bus and an external parallel 16-bit
data bus. The 1/0 space is separate from the general memory space and allows direct ad
dressing of up to eight peripherals.

Two inst~uctions, IN and OUT, cause input and output of data to and from the TMS32010
over the data bus. These instructions contain a 3-bit port address which is multiplexed over
the three least significant address lines (A2/PA2 - AO/PAO) while the remaining address
lines are held at a logic zero.

Inputs or\outputs are distinguished by the DEN and WE strobe. Execution of an IN instruc
tion generates a DEN strobe which enters the data on the data bus into the data RAM. Ex
ecution of an OUT instruction outputs data from the data RAM onto the data bus and
generates a WE strobe.

In addition, two instructions, TBLR (table read) and TBLW (table write), allow a transfer bet
ween data and program spaces. TBLR reads a word from program memory and transfers
it to the data RAM. TBLW copies a word from the data RAM into external program memory
(presumably a RAM). In both instructions, the data memory address is the instruction operand,
and the program memory address is contained in the accumulator.

INSTRUCTION

IN PA, A

TBLW A

OPERATION PERFORMED

(D15 through DO) - (A)
(PA) - (ports A2/PA2 through AO/PAO)

(PC) + 1 - top of stack
(ACC) - (PC) - (A 11 through AO)
(A) - (D 15 through DO)
Top of stack - (PC)

NOTE: () = contents of the named location.

APPENDIX B

CHARACTER SETS RECOGNIZED BY THE ASSEMBLER

The TMS32010 Assembler recognizes the ASCII characters listed in Table B-1. It also accepts the
characters listed in Table B-2, if they occur within quoted strings or in comment fields. The special
characters in Table B-3 are not accepted by the assembler but may be recognized and acted upon
appropriately by other programs. The device service routine for the card reader accepts (and stores
into the calling programs buffer) all the characters listed in Tables B-1, B-2, and B-3.

All of the tables include the ASCII code for each character represented, a hexadecimal value, and
a decimal value. The tables also include the keypunch (Hollerith) code for each character.

HEXADECIMAL
VALUE

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D

2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
30
3E
3F
40
41
42
43
44
45

TABLE B-1 - ASCII CHARACTER SET

DECIMAL
VALUE

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

CHARACTER

Space

$

%

&

+

0

1

2

3

4

5

6

7
8

9

<

>

@

A

B

c
D

E

(KEYPUNCH I
HOLLERITH CODE

Blank

11-8-2
8-7
8-3

11-8-3
0-8-4

12
8-5

12-8-5
11-8-5
11-8-4
12-8-6
0-8-3

11
12-8-3

0-1
0

2

3

4

5

6

7

8

9

8-2
11-8-6
12-8-4

8-6
0-8-6
0-8-7
8-4
12-1
12-2
12-3
12-4
12-5

B-1

TABLE B-1 - ASCII CHARACTER SET (Concluded)

HEXADECIMAL DECIMAL !KEYPUNCH)

VALUE VALUE
CHARACTER

HOLLERITH CODE

46 70 F 12-6

47 71 G 12-7

48 72 H 12-8

49 73 I 12-9

4A 74 j 11-1

48 75 K 11-2

4C 76 L 11-3

40 77 M 11-4

4E 78 N 11-5

II 4F 79 0 11-6

50 80 p 11-7

51 81 Q 11-8

52 82 R 11-9

53 83 s 0-2

54 84 T 0-3

55 85 u 0-4

56 86 v 0-5

57 87 w 0-6

58 88 x 0-7

59 89 y 0-8

5A 90 z 0-9

58 91 [12-2-8

5C 92 \ 0-2-8 0-8-2

50 93 11-1-8

5E 94 /\ 11-7-8

5F 95 0-5-8

TABLE B-2 - SPECIAL CHARACTERS RECOGNIZED IN QUOTED STRINGS AND COMMENT FIELDS

HEXADECIMAL DECIMAL (KEYPUNCH)

VALUE VALUE
CHARACTER

HOLLERITH CODE

60 96 \ 8-1

61 97 a 12-0-1

62 98 b 12-0-2

63 99 c 12-0-3

64 100 d 12-0-4

65 101 e 12-0-5

66 102 f 12-0-6

67 103 g 12-0-7

68 104 h 12-0-8

69 105 12-0-9

6A 106 j 12-11-1

68 107 k 12-11-2

6C 108 12-11-3

60 109 m 12-11-4

6E 110 n 12-11-5

6F 111 0 12-11-6

70 112 p 12-11-7

71 113 q 12-11-8

72 114 12-11-9

73 115 s 11-0-2

74 116 t 11-0-3

B-2

TABLE B-2 - SPECIAL CHARACTERS RECOGNIZED IN QUOTED STRINGS AND COMMENT FIELDS (Continued)

HEXADECIMAL DECIMAL (KEYPUNCH)
CHARACTER

VALUE VALUE HOLLERITH CODE
75 117 u 11-0-4
76 11 S v 11-0-5
77 119 w 11-0-6
7S 120 x 11-0-7
79 121 y 11-0-S
7A 122 z 11-0-9
78 123 12-0
7C 124 12-11
70 125 11-0
7E 126 11-0-1
7F 127 12-9-7
so 12S 11-0-9-S-1
S1 129 0-9-1
S2 130 0-9-2
S3 131 0-9-3
S4 132 0-9-4
S5 133 11-9-5
S6 134 12-9-6
S7 135 11-9-7
SS 136 0-9-S
S9 137 0-9-S-1
SA 13S 0-9-S-2
SB 139 0-9-S-3
SC 140 0-9-S-4
so 141 12-9-S-1
SE 142 12-9-S-2
SF 143 11-9-S-3
90 144 1 2-11-0-9-S-1
91 145 9-1
92 146 11-9-S-2
93 147 9-3
94 14S 9-4
95 149 9-5
96 150 9-6
97 1 51 1 2-9-S
9S 152 9-S
99 153 9-S-1
9A 154 9-S-2
9B 155 9-S-3
9C 156 12-9-4
90 157 11-9-4
9E 15S 9-S-O
9F 159 11-0-9-1
AO 160 12-0-9-1
A1 161 12-0-9-2
A2 162 12-0-9-3
A3 163 12-0-9-4
A4 164 12-0-9-5
A5 165 12-0-9-6
A6 166 12-0-9-7
A7 167 12-0-9-S
AS 16S 1 2-S-1
A9 169 12-11-9-1
AA 170 12-11-9-2

B-3

TABLE B-2 - SPECIAL CHARACTERS RECOGNIZED IN QUOTED STRINGS AND COMMENT FIELDS (Concluded)

HEXADECIMAL DECIMAL (KEYPUNCH)
CHARACTER

VALUE VALUE HOLLERITH CODE

AB 171 12-11-9-3

AC 172 12-11-9-4

AD 173 12-11-9-5

AE 174 12-11-9-6

AF 175 1 2-11-9-7

BO 176 12-11-9-8

B1 177 11-8-1

B2 178 11-0-9-2

B3 179 11-0-9-3

B4 180 11-0-9-4
11

B5 181 11-0-9-5

B6 182 11-0-9-6

B7 183 11-0-9-7

BS 184 11-0-9-8

B9 185 0-8-1

BA 186 12-11-0

BB 187 12-11-0-9-1

BC 188 12-11-0-9-2

BO 189 12-11-0-9-3

BE 190 12-11-0-9-4

BF 191 12-11-0-9-5

co 192 12-11-0-9-6

C1 193 12-11-0-9-7

C2 194 12-11-0-9-8

C3 195 12-0-8-1

C4 196 12-0-8-2

C5 197 12-0-8-3

C6 198 12-0-8-4

C7 199 12-0-8-5

ca 200 12-0-8-6

C9 201 12-0-8-7

CA 202 12-11-8-1

CB 203 12-11-8-2

cc 204 12-11-8-3

CD 205 12-11-8-4

CE 206 12-11-8-5

CF 207 12-11-8-6

DO 208 12-11-8-7

Dl 209 11-0-8-1

D2 210 11-0-8-2

D3 211 11-0-8-3

D4 212 11-0-8-4

D5 213 11-0-8-5

D6 214 11-0-8-6

D7 215 11-0-8-7

DB 216 12-11-0-8-1

D9 217 12-11-0-1

DA 218 12-11-0-2

DB 219 12-11-0-3

DC 220 12-11-0-4

DD 221 12-11-0-5

DE 222 12-11-0-6

DF 223 12-11-0-7

B-4

TABLE B-3 - ADDITIONAL CHARACTERS RECOGNIZED BY THE OPERATIVE SYSTEM DEVICE SERVICE ROUTINE

HEXADECIMAL DECIMAL
CHARACTER

(KEYPUNCH)

VALUE VALUE HOLLERITH CODE

00 0 NUL 12-0-9-8-1
01 1 SOH 12-9-1
02 2 STX 12-9-2
03 3 ETX 12-9-3
04 4 EQT 9-7
05 5 ENQ 0-9-8-5
06 6 ACK 0-9-8-6
07 7 BEL 0-9-8-7
08 8 BS 11-9-6
09 9 HT 12-9-5
OA 10 LF 0-9-5
OB 11 VT 12-9-8-3
oc 12 FF 12-9-8-4
OD 13 CR 12-9-8-5
OE 14 so 12-9-8-6
OF 15 SI 12-9-8-7
10 16 OLE 12-11-9-8-1
11 17 DC1 11-9-1
12 18 DC2 11-9-2
13 19 DC3 11-9-3
14 20 DC4 11-9-4
15 21 NAK 9-8-5
16 22 SYN 9-2
17 23 ETB 0-9-6
18 24 CAN 11-9-8
19 25 EM 11-9-8-1
1A 26 SUB 9-8-7
1B 27 ESC 0-9-7
1C 28 FS 11-9-8-4
10 29 GS 11-9-8-5
1E 30 RS 11-9-8-6
1F 31 us 11-9-8-7
7F 127 DEL 12-9-7

B-5

8-6

I
I'

DA TA places one or mQre values in one or more successive words of memory.

Syntax: I< label> I

,,:1NITIAUZE TEXT

DATA <ex.p>l.<exp>] (<comment>]

. Texr' places ·one or more characters in successive words of memory.

:Syntax: l<labEil.>J TEXT

D.EFINE Al;!IEMBLY-TIME CONSTANT

eel_µ as.Signs a, v~lue to a syrnbol.

~vntak: .<:t$'~t>
E~EAl\!Al DE~JNIJION

EOU

1-l'<string>' I <comment> I

[<comment> I

D~f ~~es-.~~~::~~'. more. symbols available to other programs for reference.

·~Ynt~~~:··' f :.:;~~~·ef·> l
EXJERNAL:;R~Fe8ENCE

- ' ,, '

DEF <symbol> I, <symbol> l I <cOmment:;>I

RE.F provides acceSS to one or more symbols.cfefined in· other 'prOg'rams.
",', .
, :Synta>: I< Fal\el> I REF

01 SOH

PAGE 02 STX

03 ETX

04 EQT

DATA 05 ENO

06 ACK

07 BEL

08 BS

09 HT

EOU
OA Lf

OB VT

oc FF

oEF OD ·CR

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

·,GS

K

< L

M m

N /\

0 0 DE[

DEC H.EX DEC

0 0 0
16 1 1
32 2 2
48 3 3
64 4 4
<lO 5 5
9.6 .8 6

112 7 7
128 8 8
144 .9 9
160 A 10
176 B 11
192 c. 12
208 0 '13
224 E 14
240· F 15

call the. Tl Regional· Techno!Clg
are $taffed with applicatjoll

\' ;~ ' 1!',j;fJ;~~
'" ~~!~.">:?::

,1,.'·

CROSS-ASSEMBLER DIRECTIVES
(CONCLUDED)

PAGE TITLE

TITL supplies title to be printed in the heading of each page of the source l1st1ng

Syntax ~ l<label > I TITL '< stung >' I < comment > I

RESTART SOURCE LISTING

UST restores printing of the source hsttng

Syntax . f< label > I LIST I < comment > I

STOP SOURCE LISTING

UNL halts the source lrst1ng output until the, occurrence of a LIST d1rec t1ve .

Syntax: I< label > I UNL !< comment >]

EJECT PAGE

TITL

LIST

UNL

PAGE

PAGE causes the assembler to continue the source orogram listing on a new page. The PAGE direc·
t1ve is not punted in the source lrntmg, but the hne counter increments.

Syntax : l < label > I PAGE I < comment > I

INITIALIZE WORD DATA

OAT A places one or more values 1n one or more successive words of memory.

Syntax: I < label> I DATA < exp > L < exp > I I < comment > I

INITIALIZE TEXT TEXT

TEXT places one or more characters in successive words of memory .

Syntax: I< label > I TEXT l-l '< stung >' I < comment > I

DEFINE ASSEMBL Y·TIME CONSTANT EOU

EQU assigns a value to a symbol

Syntax: < label > EOU < exp > I < comment > I

EXTERNAL DEFINITION DEF

DEF makes one or more symbols available to other programs for reference

Syntax I< label > I DEF < symbol> I.< symbol> I I < comment > l

EXTERNAL REFERENCE REF

REF provides access to one or more symbols defined 1n o ther programs.

Syntax : [< label > ! REF < symbol > ! .< symbol> I I < comment > I

SECONDARY EXTERNAL REFERENCE SREF

SAEF provides access to one or more symbols defined 1n other programs.

Syntax: f < labet > I SREF < symbol > I ,< symbol > I ! < comment > !

FORCE LOAD LOAD

LOAD is similar to REF , but the symbol does not need to be used m the module contam1nb the LOAD
The symbol used 1n LOAD must be de fined in some other module. LOADs are used with SAEFs.

Syntax: I < tabet > I LOAD < symbol > ! . < symbol > I l < comment > I

PROGRAM END END

END terminates the assembly . The last source statement of a program is the END directive

Syntax: I < label > I END l < symbol > I l < comment > I

COPY SOURCE FILE COPY

COPY changes the source input for the assembler .

Syntax : I < label > J COPY < flle name > r < comment > J

DEFINE MACRO LIBRARY MLIB

MUB provides the name of a library containing macro definttions

Syntax: I< label > I MLIB ·<pathname >' I <comment > I

4 1183

TMS32010
DIGIT AL SIGNAL PROCESSOR
Programmer's Reference Card

ASCII REFERENCE TABLE
-;;;;-1 ----, -,- ----,

00 10 20 30 50 60 70
----1

()() NUL OLE SP 0 @ p p

0 1 SOH DC1 I 1 A a a q

T -
02 STX DC2 .. 2 B R b r

-- - -
03 ETX DC3 • 3 c s c s

04 EQT DC4 s 4 D T d t

05 ENO NAK % 5 E u e u

06 ACK SYN & 6
..L

F v
J_

f v

07 BE L ETB 7 G w 9 w

OB BS CAN (B H x h x

09 HT EM I 9 I y 1 I y

OA LF SUB J z I l

OB VT ESC + K I k I
oc FF FS < L \ I I

OD CR GS - = M I rn I
OE SD

.l
RS

J_
> N /\ n -

OF SI us I , D 0 DE L -

HEX-DECIMAL TABLE

H EX DEC HEX DEC HEX DEC HEX DEC

0000 0 000 0 00 0 0 0
1000 4 096 100 256 10 16 1 1
2000 B. 192 200 512 20 32 2 2
3000 12.2BB 300 768 30 48 3 3
4000 16.384 400 1.024 40 64 4 4
5000 20.480 500 1.280 50 80 5 5
6000 24 .576 500 1 . 53~ 60 96 6 6
7000 28.672 700 1 792 70 112 7 7
8000 32 . 766 800 2 048 80 128 8 8
9000 36.864 900 2.304 90 144 9 9
AOOO 40 .960 AOO 2 560 AO 160 A 10
BOOO 45.066 BOO 2.816 BO 176 B 11
cooo 49.152 coo 3.072 co 192 c 12
0000 53 .248 000 3.328 DO 208 D 13
EOOO 57 .344 EOO 3.584 EO 224 E 14
FOOO 61.440 FOO 3.840 FO 240 F 15

RTC HOTLINE NUMBERS

For help with the TMS32010, call the Tl Regional Technology
Center nearest you . The centers are staffed with applications
engineers ready to answer all your questions.

1183

Atlanta
Boston
Chicago
Dallas
Northern California
Southern California

404 / 452-4686
617 / 890-4271
312 / 228-6008
214 /680-5096
408 / 980-0305
714 / 660 -8164

TEXAS
INSTRUMENlS

1

SYMBOLS FOR INSTRUCTION SET SUMMARY

SYMBOL MEANING

D Data memory address field
I Addressing mode bit
K Immediate operand fie ld
PA 3·bit port address fie ld (PA O through PA7 are predefined assembler symbols

equal to 0 through 7, respectively)
R 1 ·bi t operand f ield speci fying auxiliary resiste r
s 4 -bi t left-shift code
x 3-bi t accumu lator left-shift fi eld

INSTRUCTION SET SUMMARY
MNEMONIC DESCRI PT ION NO. NO. OPCODE

CYCLES WO ADS INSTRUCTION REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABS Absolute value of 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0
accumulator

ADO Add to accumulator O O 0 0 +--S~ I ~ D ~
w1thshilt

ADDH Add to high-order 0 1 1 0 0 0 0 0 I <E---- 0 ~
accumulator b1u

ADDS Add to accumulator 0 1 1 0 0 0 0 1 I <E--- D ~
with no sign ex1ensioo

ANO ANO w11h accumulator
APAC Add P A@(J1ster to

accumulator
Branch uncondihonally

BANZ Branch on au1ol1ary
resister not zero

BGEZ Branch if accumulator
;> Q

BGZ Branch 1f accumulator
> O

BIOZ Branch on iJiO • 0

BLEZ Branch 11 accumulator
.;; o

BLZ Branch 1f accumulator
< 0

BNZ Branch 1f accumulator
;o

BV

BZ

Branch on overflow

Bran-::h 11 accumulator
• O

CALA Call subroutine from
accumulator

CALL Call subroutine
1mmed1ately

01 NT Disable m1errupt
OMOV Copy contents of data

memory location into
next locauon

EINT Enable 1nterrup1
IN tnput da" from porl
LAC Load accumulator

w1thsh1ft
LACK Load accumula1or

1mmed1ate
LAA Load llUXthary

register
LARK load aux1hary

register 1mmed1ate
LARP load auxiliary

register poin1er
immediate

LOP Load data memory
page pomter

LDPK Load data memory
page pam1er 1mmed1ate

LST Load status register
LT Load T Regtster
LTA LTA combines LT and

APAC mto one instruc
11on

LTD LTD combines LT,
APAC, and OMOV mto
one 1nstruc11on

MAR Modify aux1hlfY
register and painter

MPY Multiply with T
Register, store product
mP Req1ster

MPYK Muh1pty T Register
with 1mmed1ate oper·
and; store product in
P Register

NOP No operauon
OR OR with accumulator
OUT Output data to port
P..O..C Load accumulator from

P Register
POP Pop stack to

accumulator
PUSH Push stack from

accumulator
RET Return from sub

routine
ROVM Reset overflow mode
SACH Store high -order

accumulator bits wnh
shift

SACL Store low order
accumulator bits

SA A Store auxiliary
register

SOVM Set overflow mode
SPAC Subtract P Register

from accumulator
SST Store status register
SUB Subtract from

~~~mulator wi th 

-0------7 
0 0 0 1 1 1 1 

100 1 00000000 
<E--- BRANCH ADDRESS ---;i. 

0 1 0000000000 
<E-- BRANCH ADDRESS ~ 

1 10100000000 
<E--- BRANCH ADDRESS ---;i. 

1 I 0 0 0 0 0 0 0 0 0 0 
~BRANCH ADDRESS ---;i. 

011000000000 
<E-- BRANCH ADDRESS --? 

1 01100000000 
<E---BRANCH ADDRESS ~ 

101000000000 
<E-- BRANCH ADDRESS-------?-

1 1 1000000000 
<E--- BRANCH ADDRESS --? 

0 1 0 1 0 0 0 0 0 0 0 0 
<E--- BRANCH ADDRESS ----? 

1111 00000000 
<E--- BRANCH ADDRESS -----? 

0111 1 11110001100 

I 0 0 0 0 0 0 0 0 0 0 0 
<E--- BRANCH ADDRESS -----7 

1 I 1 1 
0 <€-PA-?> 
... s------"'» 

0 0 0 0 0 0 1 

- 0 _______,. 

0000010 
-O--;> 
-O--;> 

011111 lO~K~ 

0011100Rl<E---D~ 

0 1 1 1 000 R<E---K~ 

0110 1 0001000000K 

0 1 1 0 1 1 1 I I <E---D----4-

011011100000000K 

.;.---- 0 --0--o--;> 

0 1 1010111 -E-- D ____:;. 

0 1 1 0 1 0 0 0 I <E---D------7 

0 1 1 0 1 1 0 1 I +--D-------? 

1 1 1 l 
1 0 1 0 
0 -<€-PA~ 
1 1 1 1 1 

0000000 

<"---- 0 -
<"---- 0 -
0 0 0 1 1 1 0 

0 1 1 1 1 1 l 1 1 0 0 1 1 1 0 1 

011111 1 1100 1 1100 

0111111110001101 

111 0001010 
~ x -?> <E--- 0 --?-

010100001 <E---D~ 

0011000RI <E----D~ 

0 0 0 0 1 1 
001 000 

(Continued) 

2 1183 

INSTRUCTION SET SUMMARY (CONCLUDED) 
MNEMONIC DESCRIPTION NO. NO. OPCODE 

INSTRUCTION RE GISTER CYCLES WO RDS 

SUBC Cond1t1onat subtract 
(for divide) 

SUBH Subtract from high· 
order ac<:umulator bits 

SUBS Subtract from accumu· 
lator with no sign 
extension 

TBLR Table read from 
program memory to 
data RAM 

TBLW Table write from 
data RAM to program 
memory 

XOR Exclusive OR with 
aceumulator 

ZAC Zero .ccumulatOf 
ZALH Zero ICCUmulator and 

lotd high-order bi ts 
ZALS Zero .:cumulator and 

load low-order bi ts 
with no sign extension 

15 14 13 12 11 10 9 B 7 ~ 5 4 3 2 1 O 

0 1 100100l<E----0~ 

0 11 000 1 0 I <E.-------0~ 

0 11 0001 11 <E.-------0~ 

0 1 1 00 1 1 11 <E.------ D ~ 

0 1 1 111 01 I <E------0--?-

011110001-E----D~ 

000 1 0 01 
<"---- 0 -----;> 

0 1 100 1 10 1 -E--- D ~ 

CROSS-ASSEMBLER DIRECTIVES 

A BSOLUTE ORIGIN AORG 

AOAG places a value 1n the location counter and defmes the succeeding locations as absolute. 

Syntax: I < label> I AOAG f < wd·exp > ] I < comment > I 

RELOCATABLE ORIGIN RORG 

AOAG places a value 1n the location counter and defines the succeeding locat ions as program relocatable. 

Syntax: I < label > I AOAG l<e)(p>I I < comment > I 

OUMMY ORIGIN OORG 

OORG places a value in the location counter and def ines the succeeding locations as a dummy sec· 
tion . No object code 1s generated in a dummy section. 

Syntax : l<label >I OORG < exp > I < comment > I 

BLOCK STARTING WITH SYMBOL BSS 

BSS fi rst assigns the 1abE!I, 1f present. and then advances the location counter by the value of the 
expression. 

Syntax; r <label> I BSS <wd·exp > l < comment>I 

BLOCK ENOING WITH SYMBOL BES 

BES first advances the location counter by the value of the expression and then assigns the label. 
if present. 

Syntax: l < label>I BES < wd·exp > l < comment > I 

DATA SEGMENT OSEG 

OSEG places a value in the tocat1on counter and defines succeeding locations as data relocatable . 

Syntax I < label > I DSEG I < comment > I 

DATA SEGMENT END DENO 

DENO terminates a block of data-relocatable code by placing a value 1n the locauon counter and defining 
succeeding locations as program-relocat able 

"'syntax: f< label>I DENO I< comment > I 

COMMON SEGM ENT CSEG 

CSEG places a value in the location counter and defines succeeding locations as common-relocatable 
fi.e .. relocatable with respect to a common segment) . 

Syntax t < tabel > J CSEG ! '< string> ' l < comment > ll 

COMMON SEGMENT END CEND 

CENO terminates the definition of a block of common-relocatable code by placing a value m the loca
uon counter and defining succeeding locations as program-relocatable 

Syntax: l < label > I CEND I < comment > I 

PROGRAM SEGMENT PSEG 

PSEG places a value in the location counter and defines succeeding locations as program-reloca table. 

Syntax: I< label> 1 PSEG I< comment > I 

PROGRAM SEGMENT END PEND 

PENO places a value m the location counter and defines succeeding locations as program-relocatable. 
(Smee PENO properly appears only in program-relocatable code. the relocation type of succeeding 
locations remains unchanged.) 

Syntax: I< label > I PEND I< comment > I 

OUTPUT OPTIONS OPTION 

OPTION selects several options for the assembler h!.l1ng output 

Syntax. I < label > I OPTION <option-list > I < comment > I 

PROGRAM IDENTIFIER IDT 

IDT assigns a name to the obiect module produced . 

Syntax: I < label > I IDT '< string > ' I < comment > I 

(Continued) 

11 83 3 



November 1983 
Revision B 
1603770-9701 
Pninted in the U.S.A . 

~ 
TEXAS 

INSTRUMENTS 
Creating useful products 

and services for you. 
SPRU002B 


