TMS32010 User's Guide

Digital Signal Processor Products

ξ, '

· · · , . 2

--

: .

	and a second state of the second s
INTRODUCTION	1
ARCHITECTURE	2
INSTRUCTIONS	3
I DEVELOPMENT	4
	5
GN TECHNIQUES	6
INSTRUCTIONS	
AL PROCESSING	8
10 DATA SHEET	A
10 DATA SHEFT	B
R INFORMATION	C

METHODOLOGY FOR APPLICATION DEV

PROCESSOR RESOURCE MAN

INPUT/OUTPUT DESIGN TE

MACRO LANGUAGE INST

DIGITAL SIGNAL PR

TMS32010 D/

SMJ32010 D/

DEVELOPMENT SUPPORT/PART ORDER INF

TMS32010 User's Guide

Digital Signal Processor Products

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents or rights of others based on Texas Instruments applications assistance or product specifications, since TI does not possess full access to data concerning the use or applications of customer's products. TI also assumes no responsibility for customer product designs.

Copyright © 1983 by Texas Instruments Incorporated

TABLE OF CONTENTS

1	INTRO	DUCTION				
	1.1	General Description				
	1.2	Typical Applications				
1.1.1.2.5	13	Key Features 1-2				
	1 4	How To Use the TMS32010 Manual 1-2				
		1 4 1 Glossany of Basic TMS32010 Hardware Terms 1-4				
		1.4.2 Poteronoos				
•	ADOL	1/1 2-1				
Ζ.	ARCE	11 ECTURE				
	2.1	Architectural Overview				
		2.1.1 Harvard Architecture				
	2.2					
		2.2.1 ALU				
		2.2.1.1 Overflow Mode (OVM)				
		2.2.2 Accumulator				
		2.2.2.1 Accumulator Status 2-5				
		2.2.3 Multiplier 2-5				
		2.2.4 Shifters				
		2.2.4.1 Barrel Shifter 2-6				
		2.2.4.2 Parallel Shifter 2-7				
	2.3	Data Memory				
		2.3.1 Data Memory Addressing 2-7				
		2.3.1.1 Indirect Addressing 2-8				
		2.3.1.2 Direct Addressing 2-8				
		2.3.1.3 Immediate Addressing 2-9				
	2.4	Registers				
		2.4.1 Auxiliary Registers				
		2.4.2 Auxiliary Register Pointer 2-10				
	2.5	Program Memory				
	2.0	2.5.1 Modes of Operation				
		2.5.1.1 Microcomputer Mode				
		2.5.1.2 Microprocessor Mode				
		2 5 2 Using External Program Memory				
	26	Program Counter and Stack				
	2.0	2 6 1 Program Counter				
		2.6.7 Stack				
		2.6.2 1 Stack Overflow				
	27	Statue Register				
	2.1	2 7 1 Saving Status Register				
	20	Input/Output Functions				
	2.0	2.9.1 IN and OUT				
		2.8.1 IN and OOT				
		2.0.2 Table field (TDEn) and Table Write (TDEW)				
		2.0.3 Audices Due Decoding				
	2.9	DIU FIII				
	2.10	Interrupts				
	2.11	Keset				
	2.12	Clock/Uscillator				
	2.13					
	2.14	Interrupt System Design 2-2-				

SECTION

PAGE

3	INSTR		NS	3_1
0.	3 1	Introdu		3-1
	3.7		ssing Modes	2 1
	3.2	2 2 1	Direct Addressing Mode	0-1 01
		327	Indirect Addressing Mode	21
		3 2 3	Immediate Addressing Mode	3-1 วา
	22	J.Z.J	Initiation Addressing Exernet	3-2
	3.3	2 2 1	Direct Addressing Format	3-2
		2.2.1		3-2
		3.3.2	Indirect Addressing Format	3-2
		3.3.3	Immediate Addressing Format	3-2
	~ ~	3.3.4		3-3
	3.4			3-3
		3.4.1	Symbols and Abbreviations	3-3
		3.4.2	Instruction Set Summary	3-5
		3.4.3		3-8
4.	METI	HODOL	OGY FOR APPLICATION DEVELOPMENT	4-1
	4.1	Outline	e of Development Process	4-1
	4.2	Descri	ption of Development Facilities	4-2
		4.2.1	TMS32010 Evaluation Module	τ-2 Λ_2
		422	XDS/320 Macro Assembler / Linker	π-2 Λ_2
		423	XDS/320 Simulator	4-2
		4.2.0	XDS/320 Emulator	4-3
	12	Applio	ation Development Process Example	4-4
	4.3		System Specification	4-4
		4.3.1	System Decincation	4-4
		4.3.2	Code Development	4-5
		4.3.3	4.2.2.1 Disprete Time Filter Elevebert	4-5
				4-5
			4.3.3.2 FONTRAN Flogram.	4-0
			4.3.3.3 Assembly Language Program Using Relocatable Code	4-6
			4.3.3.4 Assembly Language Program Using Absolute Code	-13
5.	PROC	CESSOF		5-1
	5.1	Funda	mental Operations	5-1
		5.1.1	Bit Manipulation	5-1
		5.1.2	Data Shift	5-1
		5.1.3	Fixed-Point Arithmetic	5-2
			5.1.3.1 Multiplication	5-3
			5.1.3.2 Addition	5-5
			5.1.3.3 Division	5-5
		5.1.4	Subroutines	5-11
		5.1.5	Computed GO TOs	5-12
	5.2	Addres	ssing and Loop Control with Auxiliary Registers	5-13
		5.2.1	Auxiliary Register Indirect Addressing	5-13
		5.2.2	Loop Counter	5-13
		5.2.3	Combination of Operational Modes	5-14
	5.3	Multip	lication and Convolution	5_1/
		5.3.1	Pipelined Multiplications	2-14 5_17
		5.3.2	Moving Data	-14 5_15
		5.3.3	Product Register	-10
	54	Memor	ry Considerations of Hanvard Architecture	01-0
	0.7	5 4 1	Moving Constants into Data Memory	01-10
		542	Data Memory Evnancion	-10
		5.1.2	Dragram Memory Expansion	D-1/
		J.T.J	5 TOGRAM MEMORY EXPANSION	51- 0

6.	INPU	T/OUTF	PUT DESIGN TECHNIQUES	. 6-1
	6.1	Periphe	eral Device Types	. 6-1
		6.1.1	Registers	. 6-1
	•	6.1.2	FIFOs	. 6-2
		6.1.3	Extended Memory Interface	. 6-2
ź	6.2	Interru	pts	. 6-3
		6.2.1	Software Methods	. 6-3
		6.2.2	Hardware Methods	. 6-4
7.	MAC	ROLAN	IGUAGE EXTENSIONS	. 7-1
	7.1	Conve	ntions Used in Macro Descriptions	. 7-1
	7.2	Macro	Set Summary	. 7-2
	7.3	Macro	Descriptions	. 7-6
	7.4	Struct	ured Programming Macros	. 7-148
	7.5	Utility	Subroutines	. 7-151
8.	DIGI	TAL SIG	NAL PROCESSING	. 8-1
	8.1	A-to-D) and D-to-A Conversion	. 8-1
		8.1.1	Sample Analysis	. 8-2
		8.1.2	Sample Quantization	. 8-5
	8.2	Basic]	Theory of Discrete Signals and Systems	. 8-6
	•	8.2.1	Linear Systems	. 8-6
		8.2.2	Fourier Transform Representations	. 8-7
	8.3	Desiar	and Implementation of Digital Filters	. 8-9
	0.0	8.3.1	Digital Filter Structures	. 8-9
		8.3.2	Digital Filter Design	. 8-13
	8.4	Quanti	ization Effects	. 8-18
	8.5	Spectr		. 8-19
	0.0	8.5.1	Discrete Fourier Transform (DFT)	. 8-19
		8.5.2	Fast Fourier Transform (FFT)	. 8-20
		8.5.3	Uses of the DFT and FFT	. 8-20
		854	Autoregressive Model	. 8-23
	86	Potent	tial DSP Applications for the TMS32010	. 8-24
	0.0	8.6.1	Speech and Audio Processing	. 8-24
		862	Communications	. 8-26
	87	Refere	ences	. 8-28
		1.51010		

V

LIST OF APPENDICES

APPENDIX

A	TMS32010 Digital Signal Processor Data Sheet	A-1
В	SMJ32010 Digital Signal Processor Data Sheet	B-1
С	TMS32010 Development Support and Part Order Information	C-1

LIST OF ILLUSTRATIONS

FIGURE

2-1	Block Diagram of the TMS320M10	2-2
2-2	Harvard Architecture	2-3
2-3	Indirect Addressing Autoincrement/Decrement	2-9
2-4	TMS320 Family Memory Map	2-12
2-5	External Program Memory Expansion Example	2-13
2-6	TMS32010 Status Register	2-14
2-7	Status Word as Stored by SST Instruction	2-15
2-8	External Device Interface	2-16
2-9	Input/Output Instruction Timing	2-16
2-10	Table Read and Table Write Instruction Timing	2-17
2-11	Simplified Interrupt Logic Diagram	2-18
2-12	Interrupt Timina	2-10
2-13	Reset Timing	2-10
2-14	Internal Clock	2-20
2-15	External Frequency Source	2-20
2-16	TMS32010 Pin Assignments	2-20
2-17	Interrupt Hardware Design	2-23
		2-24
4-1	Flowchart of Typical Application Development	4-1
4-2	Flowchart of Filter Implementation	4-5
5-1	Division Routine I Flowchart	5-7
5-2	Division Routine II Flowchart	5-9
5-3	Techniques for Expanding Program Memory	5-18
		0.0
6-1	Communication Between Processors	6-1
6-2	Typical Analog System Interface	6-2
6-3	TMS32010 Extended Memory Interface	6-3
8-1	Block Diagram of Digital Signal Processing	8-1
8-2	Analog-to-Digital Conversion Process	8-2
8-3	Two Cosine Waves Sampled with Period T	8-3
8-4	Frequency Components of Three Cosine Waves	8-3
8-5	D-to-A Conversion Using a Zero-Order Hold	8-4
8-6	An Eight-Level (Three-Bit) Quantizer	8-5
8-7	Quantization as Additive Noise	8-6
8-8	Fourier Transform Sampling	8_8
8-9	Direct Forms I and II	8.10
8-10	Cascade Structure for N = 4	8.12
		V-12

PAGE

PAGE

Q_11	Fourth-Order Elliptic Digital Filter	
8-17	Frequency Response of FIR Lowpass Filter	8-17
8-13	Impulse Response of Equiripple Lowpass Filter	8-18
8-14	A Discrete Convolution Using the FFT	8-21
8-15	Estimation of Fourier Transform of an Analog Signal	
8-16	Short-Time Fourier Analysis of a Doppler Radar Signal	
8-17	Spectrum Estimation for Speech Signals	8-24
8-18	Block Diagram of a Digital Modem	8-27

LIST OF TABLES

TABLE

1-1	TMS32010 Hardware Terminology	1-5
2-1	Accumulator Results	2-4
2.2	Accumulator Test Conditions	2-5
2-3	Program Memory for the TMS320 Family	2-11
2-4	TMS32010 Pin Descriptions	2-21
3_1	Instruction Symbols	3-4
3-2	Instruction Set Summary	3-5
4-1	Filter Specifications	4-4
7-1	Macro Index	7-2
7-2		7-4

PAGE

FOREWORD

Digital Signal Processing (DSP) is concerned with the representation of signals (and the information that they contain) by sequences of numbers, and the transformation or processing of such signal representations by numerical computation procedures.

Since the late 1950's, scientists and engineers in research labs have been touting the virtues of digital signal processing, but practical considerations have prevented widespread application. Now, with the availability of integrated circuits, such as Texas Instruments' TMS320, digital signal processing is leaving the laboratory and entering the world of application. The reasons for this are numerous and compelling. Perhaps the most important reason is that extremely sophisticated signal processing functions can be implemented using digital techniques. Indeed, many of the important DSP techniques are difficult or impossible to implement using analog (continuous-time) methods. It is almost equally important that VLSI technology is best suited to the implementation of digital systems, which are inherently more reliable, more compact, and less sensitive to environmental conditions and component aging than analog systems. Another advantage of the discrete-time approach is the possibility of time sharing a single processing unit among a number of different signal processing functions. This is particularly efficient and cost effective in large systems having many input and output channels. Indeed, until recently, digital processing was only cost effective where it could be applied in large systems. Now, however, with VLSI techniques, low-cost processors such as the TMS32010 are available and a wealth of opportunities exist for the application of DSP techniques.

The potential applications will be found in any area where signals arise as representations of information. In many cases, the signals represent information about the state of some physical system (including human beings). Often, the objective in processing the signal is to prepare the signal for digital transmission to a remote location or for digital storage of the information for later reference. On the other hand, the signal may be processed to remove distortions introduced by transducers, the signal generation environment, or by a transmission system. Still another important class of applications arises when information is automatically extracted from the signal so as to control another system or to infer something about the properties of the system which generated the signal. Some of the more important areas where the above types of processing are of interest include speech communication, geophysical exploration, instrumentation for chemical analysis, image processing for television, audio recording and reproduction, biomedical instrumentation, acoustical noise measurements, sonar, radar, automatic testing of systems, and consumer electronics.

In areas such as speech communication research and geophysical exploration, digital signal processing techniques already have been widely applied using general-purpose digital computers. In other areas, economic factors or processing speed have had limited applications up to recent times. Now, however, these limitations are subsiding rapidly and digital signal processing will soon be widely used in all the above mentioned areas and many more.

Ronald W. Schafer Russell M. Mersereau Thomas P. Barnwell, III

Atlanta Signal Processors, Inc.

and

Georgia Institute of Technology School of Electrical Engineering

INTRODUCTION

1. INTRODUCTION

1.1 GENERAL DESCRIPTION

The TMS32010 is the first member of the new TMS320 digital signal processing family, designed to support a wide range of high-speed or numeric-intensive applications. This 16/32-bit single-chip microcomputer combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors.

The TMS320 family contains the first MOS microcomputers capable of executing five million instructions per second. This high throughput is the result of the comprehensive, efficient, and easily programmed instruction set and of the highly pipelined architecture. Special instructions have been incorporated to speed the execution of digital signal processing (DSP) algorithms.

Development support is available for a variety of host computers. This includes a macro assembler, linker, simulator, emulator, and evaluation module.

1.2 TYPICAL APPLICATIONS

The TMS320 family's unique versatility and power give the design engineer a new approach to a variety of complicated applications. In addition, these digital signal processors are capable of providing the multiple functions often required for a single application. For example, the TMS320 family can enable an industrial robot to synthesize and recognize speech, sense objects with radar or optical intelligence, and perform mechanical operations through digital servo loop computations.

Some typical applications of the TMS320 family are listed below.

SIGNAL PROCESSING

- Digital filtering
- Correlation
- Hilbert transforms
- Windowing
- Fast Fourier transforms
- Adaptive filtering
- Waveform generation
- Speech processing
- Radar and sonar processing
- Electronic counter measures
- Seismic processing

INSTRUMENTATION

- Spectrum analysis
- Digital filtering
- Phase-locked loops
- Averaging
- Arbitrary waveform generation
- Transient analysis

TELECOMMUNICATIONS

- Adaptive equalizers
- μ/A law conversion
- Time generators
- High-speed modems
- Multiple-bit-rate modems
- Amplitude, frequency, and phase modulation/demodulation
- Data encryption
- Data scrambling
- Digital filtering
- Data compression
- Spread-spectrum communications

NUMERIC PROCESSING

- Fast multiply/divide
- Double-precision operations
- Fast scaling
- Non-linear function computation
 - (i.e., sin x, e^x)

IMAGE PROCESSING

- Pattern recognition
- Image enhancement
- Image compression
- Homomorphic processing
- Radar and sonar processing

HIGH-SPEED CONTROL

- Servo links
- Position and rate control
- Motor control
- Missile guidance
- Remote feedback control
- Robotics

SPEECH PROCESSING

- Speech analysis
- Speech synthesis
- Speech recognition
- Voice store and forward
- Vocoders
- Speaker authentification

1.3 KEY FEATURES

With an excellent combination of features, the TMS320 family of high-peformance digital signal processors is a cost-effective alternative to custom VLSI devices and bit-slice systems.

- 200-ns instruction cycle
- 288-byte on-chip data RAM
- Microprocessor version TMS32010
- Microcomputer version TMS320M10 (3K-byte on-chip program ROM)
- External program memory expansion to a total of 8K bytes at full speed
- 16-bit instruction/data word
- 32-bit ALU/accumulator
- 16 × 16-bit multiply in 200 ns
- 0 to 15-bit barrel shifter
- Eight input and eight output channels
- 16-bit bidirectional data bus with 40-megabits-per-second transfer rate
- Interrupt with full context save
- Signed two's complement fixed-point arithmetic
- 2.7-micron NMOS technology
- Single 5-V supply
- 40-pin DIP

The TMS320M10 and the TMS32010 are exactly the same with one exception: the TMS320M10 contains an on-chip masked ROM while the TMS32010 utilizes off-chip program memory.

NOTE

Throughout this document, TMS32010 will refer to both the TMS32010 and the TMS320M10 except where otherwise indicated.

1.4 HOW TO USE THE TMS32010 MANUAL

It is the intent in the design of this user's guide that it be an effective reference book that provides information for both the hardware and the software engineer about the TMS32010 digital signal processor, its architecture, instruction set, electrical specifications, interface methods, and applications.

	mr	۱e	m	0	ni	C)
•				-		

(title of instruction)

1

Addressing:

Operands:

Operation:

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description:

Words: Cycles:

Example:

BEFORE INSTRUCTIO	N O	AFTER INSTRUCTIO	N O
<u></u>			

In the architecture section (Section 2), the design of the device and its hardware features are described. The instruction section (Section 3) explains individual instructions in detail. The following format is used for the instruction descriptions in Section 3.4.3 to provide ease of reading and application.

Section 4 on methodology for application development describes the tools, such as an emulator or evaluation module, that are available for developing an individual system and gives an example of TMS32010 software development. In the processor resource management section (Section 5), the engineer finds a description of the common algorithms or practices to be used for any application. He becomes familiar with interface techniques in the input/output design techniques section (Section 6).

The set of macros in the macro language extensions section (Section 7) aids the engineer in programming and in providing templates for further software development. Another special format is used for the macro descriptions in Section 7.2. Each macro instruction is named, followed by a summary table. A flowchart serves to clarify the macro source which is given. Examples of macro use are also presented. This macro description format is as follows:

(mnem	onic)	(title of macro)		(mnemonic)		
TITLE:	(macro)					
NAME:	(mnemonic)					
OBJECTIVE:					199 	
ALGORITHM:						
CALLING SEQUENCE:			······································			
ENTRY CONDITIONS:						
EXIT CONDITIONS:						
PROGRAM MEMORY REQUIRED:	(# words)	DATA MEMORY REQUIRED:	(# words)			
STACK REQUIRED:	(# levels)	EXECUTION TIME:	(# cycles)			
FLOWCHART:						
SOURCE:						
EXAMPLE 1:					· · · · ·	
EXAMPLE 2:						

Section 8 on digital signal processing contains an overview of signal processing theory, algorithms, and potential applications. The TMS32010 data sheet appears as Appendix A and the SMJ32010 data sheet as Appendix B. Data descriptions of the evaluation module, macro assembler/linker, simulator, and emulator are presented in Appendix C.

1.4.1 Glossary of Basic TMS32010 Hardware Terms

Table 1-1 lists in alphabetical order the TMS32010 basic hardware units, the symbol for the unit (if any), and the function of that particular unit.

÷.....

TABLE 1-1 — TMS32010 HARDWARE TERMINOLOGY

UNIT	SYMBOL	FUNCTION
Accumulator	ACC	32-bit accumulator
Arithmetic Logic Unit	ALU	Two-port 32-bit arithmetic logic unit
Auxiliary Registers	AR0, AR1	Two 16-bit registers for indirect addressing of data memory and loop counting control. Nine LSBs of each register are configured as bidirectional counters
Auxiliary Register Pointer	ARP	Single-bit register containing address of current auxiliary register
Data Bus	D Bus	16-bit bus routing data from random access memory
Data Memory Page Pointer	DP	Single-bit register containing page address of data RAM (1 page = 128 words)
Data RAM	-	144 X 16 bit word on-chip random access memory containing data
Interrupt Flag Register	INTF	Single-bit flag register that indicates an interrupt request has occurred (is pending)
Interrupt Mode Register	INTM	Single-bit mode register that masks the interrupt flag
Multiplier	. – .	16 X 16-bit parallel hardware multiplier
Overflow Flag Register	ov	Single-bit flag register that indicates an overflow in arithmetic operations
Overflow Mode Register	OVM	Single-bit mode register that defines a saturated or unsaturated mode in arithmetic operations
P Register	Р	32-bit register containing product of multiply operations
Program Bus	P Bus	16-bit bus routing instructions from program memory
Program Counter	PC	12-bit register containing address of program memory
Program ROM	_	1536 X 16-bit word read only memory containing pro- gram code (TMS320M10 only)
Shifter		Two shifters: one is a variable 0-15-bit left-shift barrel shifter that moves data from the RAM into the ALU. The other shifter acts on the accumulator when it is being stored in data RAM; it can left-shift by 0, 1, or 4 bits.
Stack	_	4 X 12-bit registers for saving program counter contents in subroutine and interrupt calls
T Register	Т	16-bit register containing multiplicand during multiply operations

1.4.2 References

The following list of references, including textbooks, contains useful information regarding functions, operations, and applications of digital processing. These books, in turn, list other references to many useful technical papers.

Andrews, H.C., Hunt, B. R., DIGITAL IMAGE RESTORATION. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1977.

Brigham, E. Oran, THE FAST FOURIER TRANSFORM. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1974.

Hamming, R.W., DIGITAL FILTERS. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1977.

Morris, L. Robert, DIGITAL SIGNAL PROCESSING SOFTWARE. Ottawa, Canada: Carleton University, 1983.

Oppenheim, Alan V. (Editor), APPLICATIONS OF DIGITAL SIGNAL PROCESSING. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., Schafer, R.W., DIGITAL SIGNAL PROCESSING. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R., Gold, Bernard, THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R., Schafer, R.W., DIGITAL PROCESSING OF SPEECH SIGNALS. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978.

ARCHITECTURE

2. ARCHITECTURE

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility (see Figure 2-1). In a strict Harvard architecture, program and data memory lie in two separate spaces, permitting a full overlap of the instruction fetch and execution. The TMS320 family's modification of the Harvard architecture allows transfers between program and data spaces, thereby increasing the flexibility of the device. This modification permits coefficients stored in program memory to be read into the RAM, eliminating the need for a separate coefficient ROM. It also makes available immediate instructions and subroutines based on computed values.

The TMS32010 utilizes hardware to implement functions that other processors typically perform in software. For example, the TMS32010 contains a hardware multiplier to perform a multiplication in a single 200-ns cycle. There is also a hardware barrel shifter for shifting data on its way into the ALU. Finally, extra hardware has been included so that the auxiliary registers, which provide indirect data RAM addresses, can be configured in an autoincrement/decrement mode for single-cycle manipulation of data tables. This hardware-intensive approach gives the design engineer the type of power previously unavailable on a single chip.

2.1 ARCHITECTURAL OVERVIEW

The TMS32010 microcomputers combine the following elements onto a single chip:

- Volatile 144 × 16-word read/write data memory
- Non-volatile 1536 X 16-word program memory (TMS320M10 only)
- Double-precision 32-bit ALU/accumulator
- Fast 200-ns multiplier
- Barrel shifter for shifting data memory words into the ALU
- Shifter that shifts the accumulator into the data RAM
- 16-bit data bus for fetching instruction words from off-chip at full speed
- 4 X 12-bit stack that allows context switching
- Autoincrementing/decrementing registers for indirect data addressing and loop counting
- Single-vectored interrupt
- On-chip oscillator

This section provides a description of these elements. The generic term 'TMS32010' is used to refer collectively to the TMS32010 and TMS320M10.

FIGURE 2-1 - BLOCK DIAGRAM OF THE TMS320M10

2.1.1 Harvard Architecture

The TMS32010 utilizes a modified Harvard architecture in which program memory and data memory lie in two separate spaces. This permits a full overlap of instruction fetch and execution.

Program memory can lie both on-chip (in the form of the 1536 X 16-word ROM) and off-chip. The maximum amount of program memory that can be directly addressed is 4K X 16-bit words.

Instructions in off-chip program memory are executed at full speed. Fast memories with access times of under 100 ns are required.

Data memory is the 144 X 16-bit on-chip data RAM. Instruction operands are fetched from this RAM; no instruction operands can be directly fetched from off-chip. However, data can be written into the data RAM from a peripheral by using the IN instruction or read from program memory by using the TBLR (table read) instruction. The OUT instruction will write a word from the data RAM to a peripheral, while a TBLW instruction will write a data RAM word to program memory (presumably, off-chip).

Figure 2-2 outlines the overlap of the instruction prefetch and execution. On the falling edge of CLKOUT, the program counter (PC) is loaded with the instruction (load PC2) to be prefetched while the current instruction (execute 1) is decoded and is started to be executed. The next instruction is then fetched (fetch 2) while the current instruction continues to execute (execute 1). Even as another prefetch occurs (fetch 3), both the current instruction (execute 2) and the previous instruction are still executing. This is possible because of a highly pipelined internal operation.

FIGURE 2-2 — HARVARD ARCHITECTURE

2.2 ARITHMETIC ELEMENTS

There are four basic arithmetic elements: the ALU, the accumulator, the multiplier, and the shifters. All arithmetic operations are performed using two's complement arithmetic (see Section 5.1.3).

Most arithmetic instructions will access a word in the data RAM, either directly or indirectly, and pass it through the barrel shifter. This shifter can left-shift a word 0 to 15 bits, depending on the value specified by the instruction. The data word then enters the ALU where it is loaded into or added/subtracted from the accumulator. After a result is obtained in the accumulator, it can be stored in the data RAM. Since the accumulator is 32 bits, both halves must be stored separately. A parallel left-shifter is present at the accumulator output to aid in scaling results as they are being moved to the data RAM.

2.2.1 ALU

The ALU is a general-purpose arithmetic logic unit that operates with a 32-bit data word. The unit will add, subtract, and perform logical operations. The accumulator is always the destination and the primary operand. The result of a logical operation is shown in Table 2-1. A data memory value is the operand for the lower half of the accumulator (bits 15 through 0). Zero is the operand for the upper half of the accumulator.

FUNCTION	ACCUMULATOR RESULT									
FUNCTION	ACC BITS 31 THROUGH 16	ACC BITS 15 THROUGH 0								
XOR	(zero) 🕂 (ACC bits 31-16)	(data memory value) 🕂 (ACC bits 15-0)								
AND	(zero) . (ACC bits 31-16)	(data memory value) . (ACC bits 15-0)								
OR	(zero) + (ACC bits 31-16)	(data memory value) + (ACC bits 15-0)								

TABLE 2-1	ACCUMULAT	OR RESULTS
-----------	-----------	-------------------

2.2.1.1 Overflow Mode (OVM)

The OVM register is directly under program control, i.e., it is set by the SOVM instruction and reset by the ROVM instruction. If an overflow occurs when set, the most positive or the most negative representable value of the ALU will be loaded into the accumulator. Whether it is the most positive or the most negative value is determined by the overflow sign. If an overflow occurs when reset, the accumulator is unmodified. (See the SOVM instruction in Section 3.4.3 for further information and an example.)

In signal processing, arithmetic overflows can create special problems. Since overflows can cause swings between very large and very small numbers, they will often result in erratic system behavior. The TMS32010 has been designed with a special overflow mode to compensate for this behavior. When the overflow mode register (OVM) is set by the SOVM instruction (i.e., $1 \rightarrow OVM$), an overflow will cause the largest/smallest representable value of the ALU to be loaded into the accumulator. This models the saturation processes inherent in analog systems. When the overflow mode register (OVM) is reset by the ROVM instructions (i.e., $0 \rightarrow OVM$), overflow results are loaded into the accumulator without modification.

The OVM register can be stored in data memory as a single-bit register that is part of the status register (see Section 2.7). It should not be confused with the overflow flag (OV), explained in Section 2.2.2.1.

2.2.2 Accumulator

The accumulator stores the output from the ALU and is also often an input to the ALU. It operates with a 32-bit word length. The accumulator is divided into a high-order word (bits 31 through 16) and a low-order word (bits 15 through 0). Instructions are provided for storing the high and low-order accumulator words in data memory (SACH and SACL).

2.2.2.1 Accumulator Status

Accumulator overflow status can be read from the accumulator overflow flag register (OV). This register will be set if an overflow occurs in the accumulator. Since the OV register is part of the status register (see Section 2.7), OV status can be stored in data memory. Once the overflow flag register is set, only the execution of the branch on overflow (BV) instruction or direct modification of the status register can clear it. This feature permits the examination of overflow results outside of time-critical loops.

A variety of other accumulator conditions can be tested by the branch instructions given in Table 2-2. These instructions will cause a branch to be executed if the condition is met.

ACCUMULATOR CONDITION TESTED
< 0
€0
> 0
≥0
<> 0
= 0

-	-	-		_	-	-			-		-	-			-	_	-			-	-	-				-				_		-	-	-	
E	Α	١Н	۶L	E	z	-2	 F	40	н	U		v	L		А	Т	С) F	τ.	Т		s	Т	C	3	J	N	IE	וכ	Т	1	D	N	R	ί.
-	-		_	_	_	_	-		 -	-			-	 	-		_		-	-		-				-						-		-	

2.2.3 Multiplier

The 16 X 16-bit parallel multiplier consists of three units: the T register, the P register, and the multiplier array. The T register is a 16-bit register that stores the multiplicand, while the P register is a 32-bit register that stores the product.

In order to use the multiplier, the multiplicand must first be loaded into the T register from the data RAM by using one of the following instructions: LT, LTA, or LTD. Then the MPY (multiply) or the MPYK (multiply immediate) instruction is executed. If the MPY instruction is used, the multiplier value is a 16-bit number from the data RAM. If the MPYK instruction is used, the multiplier value is a 13-bit immediate constant derived from the MPYK instruction word; this 13-bit constant is right justified and sign extended. After execution of the MPY or MPYK instruction, the product will be found in the P register. The product can then be added to, subtracted from, or loaded into the accumulator by executing one of the following instructions: APAC, SPAC, LTA, LTD, or PAC.

Pipelined multiply and accumulate operations at 400-ns rates can be accomplished with the LTA/LTD and MPY/MPYK instructions (see Section 3.4.3 for greater detail).

There is no convenient way to restore the contents of the P register without altering other registers. For this reason, special hardware has been incorporated in the TMS32010 to inhibit an interrupt from occurring until the instruction following the MPY or MPYK instruction has been executed. Thus, the MPY or MPYK instruction should always be followed by instructions that combine the P register with the accumulator: PAC, APAC, SPAC, LTA, or LTD. This is almost always done as a logical consequence of the TMS32010 instruction set.

2.2.4 Shifters

There are two shifters available for manipulating data: a barrel shifter for shifting data from the data RAM into the ALU and a parallel shifter for shifting the accumulator into the data RAM.

2.2.4.1 Barrel Shifter

The barrel shifter performs a left-shift of 0 to 15 places on all data memory words that are to be loaded into, subtracted from, or added to the accumulator by the LAC, SUB, and ADD instructions.

The barrel shifter zero-fills the low-order bits and sign-extends the 16-bit data memory word to 32 bits by what is called an arithmetic left-shift. An arithmetic left-shift means that the bits to the left of the MSB of the data word are filled with ones if the MSB is a one or with zeros if the MSB is a zero. This is different from a logical left-shift where the bits to the left of the MSB are always filled with zeros. A small amount of code is required to perform an arithmetic right-shift or a logical right-shift (see Section 5.1.2).

The following examples illustrate the barrel shifter's function:

EXAMPLE 1:

Data memory location 20 holds the two's complement number: > 7EBC

The load accumulator (LAC) instruction is executed, specifying a left-shift of 4:

LAC 20,4

The accumulator would then hold the following 32-bit signed two's complement number:

31		16	15		()
0	0 0	7	E	B	C 0	

Since the MSB of > 7EBC is a zero, the upper accumulator was zero-filled.

EXAMPLE 2:

Data memory location 30 holds the two's complement number: > 8EBC

The LAC instruction is executed, specifying a left-shift of 8:

LAC 30,8

1183

The accumulator would then hold the following 32-bit signed two's complement number:

31				16	; 1	5				0
	F	F	8	E	T	В	С	0	0	
<u> </u>										

Since the MSB of > 8EBC is a one, the upper accumulator was filled with ones.

There are also instructions that perform operations with the lower half of the accumulator and a data word without first sign-extending the data word (i.e., treating it as a 16-bit rather than a 32-bit word). The mnemonics of these instructions typically end with an "S," indicating that sign-extension is suppressed (e.g., ADDS, SUBS). Along with the instructions that operate on the upper half of the accumulator, these instructions allow the manipulation of 32-bit precision numbers.

2.2.4.2 Parallel Shifter

The parallel shifter is activated only by the store high-order accumulator word (SACH) instruction. This shifter left-shifts the entire 32-bit accumulator and places 16 bits into the data RAM, resulting in a loss of the accumulator's high-order bits. This shifter can execute a shift of only 0, 1, or 4. Shifts of 1 and 4 were chosen to be used with multiplication operations (see Section 5.1.3.1). No right-shift is directly implemented. The following example illustrates the accumulator shifter's function:

EXAMPLE:

The accumulator holds the 32-bit two's complement number:

The SACH instruction is executed, specifying that a left-shift of four be performed on the high-order accumulator word before it is stored in data memory location 40:

SACH 40,4

Data memory location 40 then contains the following number: > 34B7. The accumulator still retains > A34B78CD.

2.3 DATA MEMORY

Data memory consists of the 144 words of 16-bit width of RAM present on-chip. All non-immediate data operands reside within this RAM.

Sometimes it is convenient to store data operands off-chip and then read them into the on-chip RAM as they are needed. Two means are available for doing this. First, there are the table read (TBLR) and the table write (TBLW) instructions. The table read (TBLR) instruction can transfer values from program memory, either on-chip ROM or off-chip PROM/RAM, to the on-chip data RAM. The table write (TBLW) instruction transfers values from the data RAM to program memory, presumably in the form of off-chip RAM. These instructions take three cycles to execute. The IN and OUT instructions provide another method. The IN instruction reads data from a peripheral and transfers it to the data RAM. With some extra hardware, the IN instruction, together with the OUT instruction, can be used to read and write from the data RAM to large amounts of external storage addressed as a peripheral (see Section 3.4.3). This method is faster since IN and OUT take only two cycles to execute.

2.3.1 Data Memory Addressing

There are three forms of data memory addressing: indirect, direct, and immediate.

2.3.1.1 Indirect Addressing

Indirect addressing uses the lower eight bits of the auxiliary registers as the data memory address (see Section 2.4.1). This is sufficient to address all 144 data words; no paging is necessary with indirect addressing. The current auxiliary register is selected by the auxiliary register pointer (ARP). In addition, the auxiliary registers can be made to autoincrement/decrement during any given indirect instruction. The increment/decrement occurs AFTER the current instruction is finished executing.

Some examples of indirect addressing are given below. AR0 and AR1 are predefined assembler constants with values of 0 and 1, respectively.

Each of the following examples should be viewed as a complete program sequence, rather than separate isolated statements. Indirect addressing is indicated by an asterisk (*) in these examples and in the TMS32010 assembler.

	Load ARP with a zero. This sets ARO as the
	current auxiliary register.
LARK AR0,5	Load AR0 with a 5.
ADD *	Add contents of data memory location 5 to accumulator.
ADD *+	Add contents of data memory location 5 to accumulator and increment AR0. AR0 now equals 6.
ADD * –	Add contents of data memory location 6 to accumulator and decrement AR0. AR0 now equals 5.
ADD *	Add contents of data memory location 5 to accumulator.

EXAMPLE 2:

EXAMPLE 1:

LARK AR0,10	Load AR0 with the value 10.
LARK AR1,20	Load AR1 with the value 20.
LARP 1	Set ARP to one. This selects AR1 as the current auxiliary register.
ADD *,0,AR0	Add contents of data memory location 20 to accumulator with no shift, then load ARP with 0, selecting AR0 as the current auxiliary register.
ADD *+,0,AR1	Add contents of data memory location 10 to accumulator with no shift, then increment AR0
	to have value 11, and load ARP with 1, selecting
	AR1 as the current auxiliary register.

2.3.1.2 Direct Addressing

In direct addressing, seven bits of the instruction word are concatenated with the data page pointer (DP) to form the data memory address. Thus, direct addressing uses the following paging scheme:

DP	MEMORY LOCATIONS
0	0 — 127
1	128 — 144

Usually the second page of data memory contains infrequently accessed system variables, such as those used by the interrupt routine.

DP is part of the status register and thus can be stored in data memory (see Section 2.7).

2.3.1.3 *Immediate Addressing*

The TMS32010 instruction set contains special "immediate" instructions, such as MPYK, LACK, and LARK. These instructions derive data from part of the instruction word rather than from the data RAM.

2.4 REGISTERS

2.4.1 Auxiliary Registers

There are two 16-bit hardware registers, the auxiliary registers, that are not part of the 144 X 16-bit data RAM. These auxiliary registers can be used for three functions: temporary storage, indirect addressing of data memory, and loop control.

Indirect addressing utilizes the least significant eight bits of an auxiliary register as the data memory address (see Section 2.3.1.1).

The branch on auxiliary register not zero (BANZ) instruction permits these registers to also be used as loop counters. BANZ checks if an auxiliary register is zero. If not, it decrements and branches. Thus, loops can be implemented as follows:

	LARP	AR0	Load ARP with 0, selecting AR0 as the current auxiliary register.
,	LARK	AR0,5	Load AR0 with 5.
LOOP	ADD BANZ	* LOOP	Indirectly add data memory to accumulator.
		2001	

The above program segment adds data memory locations 5 through 0 to the accumulator.

When the auxiliary registers are autoincremented/decremented by an indirect addressing instruction or by BANZ, the lowest nine bits are affected, one more than the lowest eight bits used for indirect addressing (see Figure 2-3A). This counter portion of an auxiliary register is a circular counter, as shown in Figures 2-3B and 2-3C.

FIGURE 2-3A — AUXILIARY REGISTER COUNTER

FIGURE 2-3B — AUTOINCREMENT

FIGURE 2-3C - AUTODECREMENT

FIGURE 2-3 - INDIRECT ADDRESSING AUTOINCREMENT/DECREMENT

The upper seven bits of an auxiliary register (i.e., bits 9 through 15) are unaffected by any autoincrement/decrement operation. This includes autoincrement of 111111111 (the lowest nine bits go to 0) and autodecrement of 000000000 (the lowest nine bits go to 111111111); in each case, bits 9 through 15 are unaffected.

The auxiliary registers can be saved in and loaded from the data RAM with the SAR (store auxiliary register) and LAR (load auxiliary register) instructions. This is useful for performing context saves. SAR and LAR transfer entire 16-bit values to and from the auxiliary registers even though indirect addressing and loop counting utilize only a portion of the auxiliary register.

2.4.2 Auxiliary Register Pointer

The auxiliary register pointer (ARP) is a single bit which is part of the status register. It indicates which auxiliary register is current as follows:

ARP	CURRENT AUXILIARY REGISTER
0	AR0
1	AR1

As part of the status register, the ARP can be stored in memory.

2.5 PROGRAM MEMORY

Program memory consists of up to 4K words of 16-bit width. The TMS320M10 has 1536 words of on-chip ROM, while the TMS32010 is ROMless. Program memory mode of operation is controlled by the MC/MP pin.

2

2.5.1 Modes of Operation

There are two modes of operation defined by the state of the MC/MP pin: the microcomputer mode and the microprocessor mode. A one (high) level on this pin places the device in the microcomputer mode, and a zero (low) level places a device in the microprocessor mode.

Table 2-3 illustrates the program memory capability of the TMS32010 microcomputers for each of the two modes of operation enabled by the MC/MP pin. Figure 2-4 shows the memory map for each setting of the MC/MP pin.

2.5.1.1 Microcomputer Mode (TMS320M10)

The microcomputer mode is defined by a one level on the MC/MP pin. Even though the TMS320M10 has a 1536 X 16-bit on-chip ROM, only locations 0 through 1523 are available for the user's program. Locations 1524-1535 are reserved by Texas Instruments for testing purposes. The device architecture allows for an additional 2560 words of program memory to reside off-chip.

2.5.1.2 Microprocessor Mode (TMS320M10 and TMS32010)

The microprocessor mode is defined by a zero level on the MC/\overline{MP} pin. All 4K words of memory are external in this mode.

MODEL	PROGRAM MEMORY OPTIONS	MICROCOMPUTER MODE MEMORY	MICROPROCESSOR MODE MEMORY		
		MC/MP = 1	MC/MP=0		
TMS320M10	Microcomputer and microprocessor modes	1536 words on-chip ROM and 2560 words of external memory	4096 words of external memory		
TMS32010	Microprocessor mode only	Not available	4096 words of external memory		

TABLE 2-3 - PROGRAM MEMORY FOR THE TMS320 FAMILY

After reset, the TMS32010 microcomputers will begin execution at location 0. Usually a branch instruction to the reset routine is contained in locations 0 and 1. Upon interrupt, the TMS32010 microcomputers will begin execution at location 2.

FIGURE 2-4 - TMS320 FAMILY MEMORY MAP

2.5.2 Using External Program Memory

Twelve output pins are available for addressing external memory. These pins are coded A11 (MSB) through A0 (LSB) and contain the buffered outputs of the program counter or the I/O port address. When an instruction is fetched from off-chip, the MEN (memory enable) strobe will be generated to enable the external memory. The instruction word is then transferred to the TMS32010 by means of the data bus. (See Section 2.8.)

When in the microcomputer mode, the TMS320M10 will internally select address locations 1535 and below from the on-chip program memory. The MEN strobe will still become active in this mode, and the address lines A11 through A0 will still output the current value of the program counter although the instruction word will be read from internal program memory.

Figure 2-5 gives an example of external program memory expansion. Even when executing from external memory, the TMS32010 performs at its full 200-ns instruction cycle. Fast memories under 100-ns access time must be used.

MEN is never active at the same time as the WE or DEN signals. In effect, MEN will go low every clock cycle except when an I/O function is being performed by the IN, OUT, or TBLW instructions.

In these multicycle instructions, MEN goes low during the clock cycles in which WE or DEN do not go low.

FIGURE 2-5 - EXTERNAL PROGRAM MEMORY EXPANSION EXAMPLE

2.6 PROGRAM COUNTER AND STACK

The program counter (PC) and stack enable the user to perform branches, subroutine calls, and interrupts, and to execute the table read (TBLR) and table write (TBLW) instructions (see Section 3.4.3).

2.6.1 Program Counter

The program counter (PC) is a 12-bit register that contains the program memory address of the next instruction to be executed. The device reads the instruction from the program memory location addressed by the PC and increments the PC in preparation for the next instruction prefetch. The PC is initialized to zero by activating the reset (RS) line.

In order to permit the use of external program memory, the PC outputs are buffered to the output pins, A11 through A0. The PC outputs appear on the address bus during all modes of operation. The nine MSBs (A11 through A3) of the PC have unique outputs assigned to them, while the three LSBs are multiplexed with the port address field, PA2 through PA0. The port address field is used by the I/O instructions, IN and OUT.

Program memory is always addressed by the contents of the PC. The contents of the PC can be changed by a branch instruction if the particular branch condition being tested is true. Otherwise, the branch instruction simply increments the PC. All branches are absolute, rather than relative, i.e., a 12-bit value derived from the branch instruction word is loaded directly into the PC in order to accomplish the branch.

2.6.2 Stack

The stack is 12 bits wide and four layers deep. The PUSH instruction pushes the twelve LSBs of the accumulator onto the top of stack (TOS). The POP instruction pops the TOS into the twelve LSBs of the accumulator. Following the POP instruction, the TOS can be moved into data memory by storing the low-order accumulator word (SACL instruction). This allows expansion of the stack into the data RAM. From the data RAM, it can easily be copied into program RAM off-chip by using the TBLW instruction. In this way, the stack can be expanded to very large levels.

If the XDS/320 Emulator is used, one level of the stack is reserved by the emulator, reducing the number of available stack levels to three.

2.6.2.1 Stack Overlow

Up to four nested subroutines or interrupts can be accommodated by the device without a stack overflow if the TBLR and TBLW instructions are not executed. Since TBLR and TBLW utilize one level of the stack, only three nested subroutines or interrupts can be accommodated without stack overflow occurring if TBLR or TBLW are executed. If there is a stack overflow, the deepest level of stack will be lost. If the stack is overpopped, the value at the bottom of the stack will become copied into higher levels until it fills the stack.

To handle subroutines and interrupts of much higher nesting levels, part of the data RAM or external RAM can be allocated to stack management. In this case, the top of the stack (TOS) is popped immediately at the start of a subroutine or interrupt routine and stored in RAM. At the end of the subroutine or interrupt routine, the stack value stored in RAM is pushed back onto the TOS before returning to the main routine.

2.7 STATUS REGISTER

The status register, shown in Figure 2-6, consists of five status bits. These status bits can be individually altered through dedicated instructions. In addition, the entire status register can be saved in data memory through the SST instruction. New values can be reloaded into the status register using the LST instruction, with the execption of the INTM bit. The INTM bit cannot be changed through the LST instruction. It can only be changed by the instructions, EINT and DINT (enable, disable interrupts).

	I		2.2	
ov	OVM	INTM	ARP	DP

FIGURE 2-6 - TMS32010 STATUS REGISTER

Accumulator Oveflow Flag Register (OV)

Overflow Mode Bit (OVM)

Interrupt Mask Bit (INTM)

 Zero indicates that the accumulator has not overflowed. One indicates that an overflow in the accumulator has occurred. (See Section 2.2.2.1). The BV (branch on overflow) instruction will clear this bit and cause a branch if it is set.

Zero means the overflow mode is disabled. One means the overflow mode is enabled (see Section 2.2.1.1). The SOVM instruction loads the OVM bit with a one; the ROVM instruction loads the OVM bit instruction with a zero.

Zero means an interrupt is enabled. One means an interrupt is disabled. The EINT instruction loads the INTM bit with a zero; DINT loads the INTM bit with a one. When an interrupt is executed, the INTM register is automatically set to one before the interrupt service routine begins. (See Section 2.10.) Note that the INTM bit can only be altered by executing the EINT and DINT instructions. Unlike the rest of the status bits, the INTM bit cannot be loaded with a new value by the LST instruction.

Auxiliary Register Pointer (ARP)

 Zero selects AR0. One selects AR1. The ARP also can be changed by executing the MAR or LARP instruction, or by instructions that permit the indirect addressing option.

Data Memory Page Pointer (DP)

 Zero selects first 128 words of data memory, i.e., page zero. One selects last 16 words of data memory, i.e., page one. The DP can also be changed by executing either the LDP or the LDPK instruction.

2.7.1 Saving Status Register

The contents of the status register can be stored in data memory by executing the SST instruction. If the SST instruction is executed using the direct addressing mode, the device automatically stores this information on page one of data memory at the location specified by the instruction. Thus, an SST instruction using the direct addressing mode can only specify an address less than 16, since the second page of memory contains only 16 words. If the indirect addressing mode is selected, then the contents of the status register may be stored in any RAM location selected by the auxiliary register.

The SST instruction does not modify the contents of the status register. Figure 2-7 shows the position of the status bits as they appear in the appropriate data RAM location after execution of the SST instruction.

/// = don't care

FIGURE 2-7 - STATUS WORD AS STORED BY SST INSTRUCTION

The LST instruction may be executed to load the status register. LST does not assume status bits are on page one, so the DP must be set to one for the LST instruction to access status bits stored on page one. The interrupt mask bit cannot be changed by the LST instruction. However, all other status bits can be changed by this instruction.

2.8 INPUT/OUTPUT FUNCTIONS

2.8.1 IN and OUT

Input and output of data to and from a peripheral is accomplished by the IN and OUT instructions. Data is transferred over the 16-bit data bus to and from the data memory by two independent strobes: data enable (DEN) and write enable (WE).

The bidirectional external data bus is always in a high-impedance mode, except when WE goes low. WE will go low during the first cycle of the OUT instruction and the second cycle of the TBLW instruction.

As shown in Figure 2-8, 128 I/O bits are available for interfacing to peripheral devices: eight 16-bit multiplexed input ports and eight 16-bit multiplexed output ports.

FIGURE 2-8 — EXTERNAL DEVICE INTERFACE

Execution of an IN instruction generates the DEN strobe for transferring data from a peripheral device to the data RAM (see Figure 2-9A). The IN instruction is the only instruction for which DEN will become active. Execution of an OUT instruction generates the WE strobe for transferring data from the data RAM to a peripheral device (see Figure 2-9B). WE becomes active only during the OUT instruction and the table write (TBLW) instruction. See Appendix A, the TMS32010 Data Sheet, for further timing information.

FIGURE 2-9A - INPUT INSTRUCTION TIMING

FIGURE 2-9B – OUTPUT INSTRUCTION TIMING

The three multiplexed LSBs of the address bus, PA2 through PA0, are used as a port address by the IN and OUT instructions. The remaining higher order bits of the address bus, A11 through A3, are held at logic zero during execution of these instructions.

2.8.2 Table Read (TBLR) and Table Write (TBLW)

The TBLR and the TBLW instructions allow words to be transferred between program and data spaces. TBLR is used to read words from on-chip program ROM or off-chip program ROM/RAM into the data RAM. TBLW is used to write words from on-chip data RAM to off-chip program RAM.

Execution of the TBLR instruction generates MEN strobes to read the word from program memory (see Figure 2-10A). Execution of a TBLW instruction generates a WE strobe (see Figure 2-10B). Note that the WE strobe will be generated and the appropriate data transferred even if the TMS320M10 is in the microcomputer mode and a TBLW is performed to a program location less than 1535.

The dummy prefetch is a prefetch of the instruction following the TBLR or TBLW instructions and is discarded. The instruction following TBLR or TBLW is prefetched again at the end of the execution of the TBLR or TBLW instructions.

FIGURE 2-10B — TABLE WRITE INSTRUCTION TIMING

FIGURE 2-10 - TABLE READ AND TABLE WRITE INSTRUCTION TIMING

2.8.3 Address Bus Decoding

Since all three interface strobes. MEN, WE, and DEN, are mutually exclusive) there are some very important considerations for those designs that utilize external program memory. Since the OUT and TBLW instructions use only the WE signal to indicate valid data, these instructions cannot be distinguished from one another on the basis of the interface strobes. Unless the address bus is decoded, execution of TBLW instructions will write data to peripherals and execution of OUT instructions will overwrite program memory locations 0 through 7. See Section 5-4 for an example of this decoding logic.

No matter what decoding logic is used, it will not be possible to use TBLW to uniquely write to program memory locations 0 through 7. This is because the address bus will be identical for OUT and TBLW, and there will be no way to distinguish between the two instructions.

2.9 BIO PIN

The BIO pin is an external pin which supports bit test and jump operations. When a low is present on this pin, execution of the BIOZ instruction will cause a branch to occur. This pin is sampled every clock cycle and is not latched.

The BIO pin is useful for monitoring peripheral device status. It is especially useful as an alternative to using an interrupt when it is necessary not to disturb time-critical loops.

2.10 INTERRUPTS

The TMS32010's interrupt is generated either by applying a negative-going edge to the interrupt (INT) pin or by holding the INT pin low. A diagrammatic explanation of the TMS32010's internal interrupt circuitry is presented in Figure 2-11.

FIGURE 2-11 - SIMPLIFIED INTERRUPT LOGIC DIAGRAM

The Sync FF is a synchronizing flip-flop used to synchronize the external interrupt signal to the TMS32010's internal interrupt circuitry. When interrupts are enabled, an interrupt becomes active either due to a low voltage input on the INT pin or when a negative-edge has been latched into the interrupt flag.

If the interrupt mode register (INTM) is set, then an interrupt active signal to the internal interrupt processor (IIP) becomes valid. The IIP begins interrupt servicing by causing a branch to location 2 in program memory. It will delay interrupt servicing in each of the following cases:

- 1) Until the end of all cycles of a multicycle instruction,
- 2) Until the instruction following the MPY or MPYK has completed execution,
- 3) Until the instruction following EINT has been executed (when interrupts have been previously disabled). This allows the RET instruction to be executed after interrupts become enabled at the end of an interrupt routine.

When the interrupt service routine begins, the IIP sends out an internal interrupt acknowledge signal. This presets the INTM register (disabling interrupts) and clears the interrupt flag.

Figure 2-11 also shows that DINT or a hardware reset will set the INTM register, disabling interrupts, while EINT will clear the INTM register. Interrupts will continue to be latched while they are disabled. Note that DINT or EINT do not affect the interrupt flag.

Figure 2-12 shows the instruction sequence that occurs once an interrupt becomes active. The dummy fetch is an instruction that is fetched but not executed. This instruction will be fetched and executed after the interrupt routine is completed.

FIGURE 2-12 — INTERRUPT TIMING

See Section 2.14 for interrupt system design recommendations.

2.11 RESET

The reset function is enabled when an active low is placed on the \overline{RS} pin for a minimum of five clock cycles (see Figure 2-13). The control lines for DEN, WE, and MEN are then forced high, and the data bus (D15 through D0) is tristated. The PC and the address bus (A11 through A0) are then synchronously cleared after the next complete clock cycle from the falling edge of RS. The RS pin also disables the interrupt, clears the interrupt flag register, and leaves the overflow mode register unchanged. The TMS32010 can be held in the reset state indefinitely.

FIGURE 2-13 - RESET TIMING

2.12 CLOCK/OSCILLATOR

The TMS32010 can use either its internal oscillator or an external frequency source for a clock.

Use of the internal oscillator is achieved by connecting a crystal across X1 and X2/CLKIN. The frequency of CLKOUT and the cycle time of the TMS32010 is one-fourth of the crystal fundamental frequency (see Figure 2-14).

FIGURE 2-14 - INTERNAL CLOCK

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left unconnected. If an external frequency source is used, a pull-up resistor may be necessary (see Figure 2-15). This is because the high-level voltage of the CLKIN input must be a minimum of 2.8 V while a standard TTL gate, for example, can have a high-level output voltage as low as 2.4 V. The size of the pull-up resistor will depend on such things as the frequency source's high-level output voltage and current and the number of other devices the frequency source will be driving. The resistor should be made as large as possible while still having the CLKIN input specification met.

FIGURE 2-15 - EXTERNAL FREQUENCY SOURCE

The delay time between CLKIN and CLKOUT is not specified. This delay time can vary by as much a one CLKOUT cycle and is very temperature dependent. Hardware designs which depend upon this delay time should not be used.

2.13 PIN DESCRIPTIONS

Definitions of the TMS32010 pin assignments and descriptions of the function of each pin are presented in Table 2-4. Figure 2-16 illustrates the TMS32010 pin assignments.

SIGNAL	PIN	1/0	DESCRIPTION
			POWER SUPPLIES
V _{cc}	30		Supply voltage (+ 5 V NOM)
V _{ss}	10		Ground reference
			CLOCKS
X2/CLKIN	8		Crystal input pin for internal oscillator (X2). Also input pin for ex- ternal oscillator (CLKIN).
X1	7	ουτ	Crystal input pin for internal oscillator
CLKOUT	6	OUT	Clock output signal. The frequency of CLKOUT is one-fourth of the oscillator input (external oscillator) or crystal frequency (internal oscillator). Duty cycle is 50 percent.
		·	CONTROL
	31	OUT	Write Enable. When active (low), \overline{WE} indicates that valid output data from the TMS32010 is available on the data bus. \overline{WE} is only active during the first cycle of the OUT instruction and the second cycle of the TBLW instruction (see Section 3.4.3). MEN and \overline{DEN} will always be inactive (high) when \overline{WE} is active.
DEN	32	OUT	Data Enable. When active (low), DEN indicates that the TMS32010 is accepting data from the data bus. DEN is only ac- tive during the first cycle of the IN instruction (see Section 3.4.3). MEN and WE will always be inactive (high) when DEN is active.
MEN	33	OUT	Memory Enable. MEN will be active low on every machine cycle except when WE and DEN are active. MEN is a control signal generated by the TMS32010 to enable instruction fetches from program memory. MEN will be active on instructions fetched from both internal and external memory.

TABLE 2-4 - TMS32010 PIN DESCRIPTIONS

TABLE 2-4 — TMS32010 PIN DESCRIPTIONS (CONTINUED)

SIGNAL	PIN	1/0	DESCRIPTION
			<u>INTERRUPTS</u>
RS	4	IN	Reset. When an active low is placed on the $\overline{\text{RS}}$ pin for a minimum of five clock cycles, $\overline{\text{DEN}}$, $\overline{\text{WE}}$, and $\overline{\text{MEN}}$ are forced high, and the data bus (D15 through D0) is tristated. The program counter (PC) and the address bus (A11 through A0) are then synchronously cleared after the next complete clock cycle from the falling edge of $\overline{\text{RS}}$. $\overline{\text{RS}}$ also disables the interrupt, clears the interrupt flag register, and leaves the overflow mode register unchanged. The TMS32010 can be held in the reset state indefinitely.
INT	5	IN	Interrupt. The interrupt signal is generated by applying a negative- going edge to the INT pin. The edge is used to latch the interrupt flag register (INTF) until an interrupt is granted by the device. An active low level will also be sensed. (See Section 2.10.)
BIO	9	IN	I/O Branch Control. If $\overline{\text{BIO}}$ is active (low) upon execution of the BIOZ instruction, the device will branch to the address specified by the instruction (see Section 2.9).
MC/MP	3	IN	PROGRAM MEMORY MODES Microcomputer/Microprocessor Mode. A high on the MC/MP pin enables the microcomputer mode. In this mode, the user has available 1524 words of on-chip program memory. (Program memory locations 1524 through 1535 are reserved.) The microcomputer mode also allows an additional 2560 words of program memory to reside off-chip. A low on the MC/MP pin enables the microprocessor mode. In this mode, the entire memory space is external, i.e., addresses 0 through 4095. (See Section 2.3.1.)
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D5 D4 D3 D2 D1 D0	18 17 16 15 14 13 12 11 19 20 21 22 23 24 25 26	I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O	BIDIRECTIONAL DATA BUS D15 (MSB) through D0 (LSB). The data bus is always in the high- impedance state except when WE is active (low).

2-22

TABLE 2-4 — TMS32010 PIN DESCRIPTIONS (CONCLUDED)

SIGNAL	PIN	1/0	DESCRIPTION
			PROGRAM MEMORY ADDRESS BUS AND
			PORT ADDRESS BUS
A 1 1	27		Program memory A11 (MSB) through A0 (LSB) and port
A10	29		addresses PA2 (MSB) through PA0 (ISB). Addresses A11
A10	20		addresses FAZ (MSB) through FAG (200), Addresses fAZ (200
A9	29		through AU are always active and never go to high in
A8 -	34	001	pedance. During execution of the IN and OUT instructions,
A7	35	OUT	pins A2 through A0 carry the port addresses PA2 through
A6	36	OUT	ΡΔΟ
A5	37	OUT	
A4	38	OUT	
A3	39	OUT	
A2/PA2	40	OUT	
A1/DA1	1	OUT	
		001	

		<u> </u>	-		1	
A1/PA1		1	U	40		A2/PA2
A0/PA0		2		39		A3
MC/MP	D	3		38		A4
RS	d	4		37		A5
INT		5		36		A6
CLKOUT	Б	6		35	Б	A7
X1	Б	7		34	Б	A8
X2/CLKIN	Б	8		33	Б	MEN
BIO	Б	9		32	Б	DEN
VSS	П	10) - 1 ¹	31	6	WE
D8	Б	11		30	6	Vcc
D9	Б	12	2	29	Б	A9
D10	П	13	3	28	Б	A10
D11	Б	14	L	27	Б	A11
D12	Б	15	5	26	Б	D0
D13	Б	16	5.	25	Б	D1
D14	Б	17	7	24	Б	D2
D15	Б	18	3	23	Б	D3
D7	H	19	•	22	Б	D4
D6	Ы	20)	21	Б	D5
	-				_	

FIGURE 2-16 - TMS32010 PIN ASSIGNMENTS

2.14 INTERRUPT SYSTEM DESIGN

For systems using asynchronous interrupts on the TMS32010, the external hardware shown in Figure 2-17 is recommended to ensure proper execution of interrupts. This hardware synchronizes interrupt input signals with the rising edge of CLKOUT on the TMS32010. The pulse width required for the interrupt input signal is $t_{C}(C)$, which is one TMS32010 clock cycle, plus sufficient setup time for the flip-flop (dependent upon the flip-flop used).

FIGURE 2-17 - INTERRUPT HARDWARE DESIGN

INSTRUCTIONS

3. INSTRUCTIONS

The TMS32010's comprehensive instruction set supports both numeric- intensive operations, such as signal processing, and general-purpose operations, such as high-speed control. The instruction set, shown in Table 3-2, consists primarily of single-cycle single-word instructions, permitting execution rates of up to five million instructions per second. Only infrequently used branch and I/O instructions are multicycle.

The TMS32010 also contains a number of instructions that shift data as part of an arithmetic operation. These all execute in a single cycle and are very useful for scaling data in parallel with other operations.

3.1 INTRODUCTION

The instruction set contains a full set of branch instructions. Combined with the Boolean operations and shifters, these instructions permit the bit manipulation and bit test capability needed for high-speed control operations. Double-precision operations are also supported by the instruction set. Some examples are ADDH (add to high-order accumulator) and ADDS (add to accumulator with sign extension suppressed), which allow easy manipulation of 32-bit numbers.

The TMS32010's hardware multiplier allows the MPY instruction to be executed in a single cycle. The SUBC (conditional subtract for divide) instruction performs the shifting and conditional branching necessary to implement a divide efficiently and quickly.

Two special instructions, TBLR (table read) and TBLW (table write), allow crossover between data memory and program memory. The TBLR instruction transfers words stored in program memory to the data RAM. This eliminates the need for a coefficient ROM separate from the program ROM, thus permitting the user to make efficient trade-offs as to the amount of ROM dedicated to program or coefficient store. The accompanying instruction, TBLW, transfers words in internal data RAM to an external RAM. In conjunction with TBLR, this instruction allows the use of external RAM to expand the amount of data storage.

When a very large amount of external data must be addressed (i.e., >4K words), TBLR and TBLW can no longer serve as a means of expanding the data RAM. Then it becomes necessary to address external data RAM as a peripheral by using the IN and OUT instructions; these instructions permit a data word to be read into the on-chip RAM in only two cycles. This procedure requires a minimal amount of external logic and permits the accessing of almost unlimited amounts of data RAM. This is very useful for pattern recognition applications, such as speech recognition or image processing.

3.2 ADDRESSING MODES

Three main addressing modes are available with the TMS32010 instruction set direct, indirect, and immediate addressing.

3.2.1 Direct Addressing Mode

In direct addressing, seven bits of the instruction word concatenated with the data page pointer form the data memory address. This implements a paging scheme in which the first page contains 128 words and the second page contains 16 words. In a typical application, infrequently accessed variables, such as those used when performing an interrupt service routine, are stored on the second page.

3.2.2 Indirect Addressing Mode

Indirect addressing forms the data memory address from the least significant eight bits of one of two auxiliary registers, ARO and AR1. The auxiliary register pointer (ARP) selects the current auxiliary register. The auxiliary registers can be automatically incremented or decremented in parallel with the execution of any indirect instruction to permit single-cycle manipulation of data tables.

3.2.3. Immediate Addressing Mode

The TMS32010 instruction set contains special "immediate" instructions. These instructions derive data from part of the instruction word rather than from the data RAM. The constant in all immediate instructions may refer to values supplied by an external reference symbol. Some very useful immediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and load auxiliary register immediate (LARK).

3.3 INSTRUCTION ADDRESSING FORMAT

The following sections describe the opcode format for the various addressing modes of the TMS32010.

3.3.1 Direct Addressing Format

Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6 through 0 contain data memory address.

The 7 bits of the data memory address (dma) field can directly address up to 128 words (1 page) of data memory. Use of the data memory page pointer is required to address the full 144 words of data memory.

Direct addressing can be used with all instructions requiring data operands except for the immediate operand instructions.

3.3.2. Indirect Addressing Format

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OPCODE						1	0	ÍNC	DEC	ARP	0	0	ARP		

Bit 7 = 1 defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 6 through 0 contain indirect addressing control bits.

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the contents of bit 0 are loaded into the ARP after execution of the current instruction. If bit 3 = 1, then the contents of the ARP remain unchanged. ARP = 0 defines the contents of ARO as a memory address. ARP = 1 defines the contents of AR1 as a memory address.

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, then ARP defines which auxiliary register is to be incremented by 1 after execution. If bit 4 = 1, then the ARP defines which auxiliary register is to be decremented by 1 after execution. If bit 5 and bit 4 are zero, then neither auxiliary register is incremented or decremented. Bits 6, 2, and 1 are reserved and should always be programmed to zero.

Indirect addressing can be used with all instructions requiring data operands, except for the immediate operand instructions.

3.3.3 Immediate Addressing Format

Included in the TMS32010's instruction set are five immediate operand instructions (LDPK, LARK, MPYK, LACK, and LARP). In these instructions, the operand is contained within the instruction word.

3.3.4 Examples of Opcode Format

ADD 9,5 1)

Add to accumulator the contents of memory location 9 left-shifted 5 bits.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	1

Note: Opcode of the ADD instruction is 0000 and appears in bits 15 through 12. Shift code of 5 appears in bits 11 through 8. Data memory address 9 appears in bits 6 through 0.

Add to accumulator the contents of data memory address defined by 2) ADD *+,8 contents of current auxiliary register. This data is left-shifted 8 bits before being added. The current auxiliary register is auto-incremented by 1.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	0	1	0	1	0	1	0	0	0

Other variations of indirect addressing are as follows:

As in example 2, but with no auto-increment; opcode would be ADD *, 8 3) >0888 As in example 2, except that current auxiliary register is decremented ADD * -, 8 4) by 1; opcode would be > 0898As in example 2, except that the auxiliary register pointer is loaded ADD * + , 8, 1 5) with the value 1 after execution; opcode would be > 08A1 As in example 2, except that the auxiliary register pointer is loaded ADD * + , 8, 0 6) with the value 0 after execution; opcode would be > 08A0

3.4 INSTRUCTION SET

The following sections include the symbols and abbreviations that are used in the instruction set summary and in the instruction descriptions, the complete instruction set summary, and a description of each instruction.

All numbers are assumed to be decimal unless otherwise indicated. Hexidecimal numbers are specified by the symbol ">" before the number.

Symbols and Abbreviations 3.4.1.

DATn and PRGn are assumed to have the symbolic value of n. They are used to represent any symbol with the value n.

TABLE 3-1 - INSTRUCTION SYMBOLS

SYMBOL	MEANING
ACC	Accumulator
AR	Auxiliary register (ARO and AR1 are predefined assembler symbols equal to 0 and 1
	respectively.)
ARP	Auxiliary register pointer
D	Data memory address field
DATn	Label assigned to data memory location n
dma	Data memory address
DP	Data page pointer
	Addressing mode bit
INTM	Interrupt mode flag bit
K	Immediate operand field
>nn	Indicates nn is a hexadecimal number. All others are assumed to be decimal values
OVM	Overflow (saturation) mode flag bit
Р	Product (P) register
PA	Port address (PA0 through PA7 are predefined assembler symbols equal to 0 through
and the second	7, respectively)
PC	Program counter
pma	Program memory address
PRGn	Label assigned to program memory location n
gala R sa	1-bit operand field specifying auxiliary register
S	4-bit left-shift code
T	T register
TOS	Top of stack
X	3-bit accumulator left-shift field
-	Is assigned to
	Indicates an absolute value
< >	Items within angle brackets are defined by user.
[]	Items within brackets are optional.
	Indicates "contents of"
<pre>[] [] [] [] [] [] [] [] [] [] [] [] [] [</pre>	Items within braces are alternative items; one of them must be entered.
	Angle brackets back-to-back indicate "not equal".
	Blanks or spaces are significant.

1183

3-4

3.4.2 Instruction Set Summary

The instruction set summary in the following table consists primarily of single-cycle single-word instructions. Only infrequently used branch and I/O instructions are multicycle.

		ACCI	JMULAT	DR IN	IST	RU	СТІ	ONS											
MNEMONIC	DESCRIPTION	NO. CYCLES	NO. WORDS					INS	TRL	OP JCT		DE RE	GIS	бΤЕ	R				
				15 ⁻	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ABS Ab	solute value of	1	. 1	0	1	1	1	1	1	1	1	1	0	0	0	1	0	0	0
ADD Ac	ld to accumulator	. 1	1	0	0	0	0	-	S -		>	I	4			D			>
ADDH Ac	ld to high-order	1	a 1 1 -	0	1	1	0	0	0	0	0	1	<		`.	D		- '-	→
ADDS Ac	Id to accumulator	1	1	0	1	1	0	0	0	0	1	1	~	1. A	••••	D	<u> </u>		→
AND AI	ND with accumulator	1	1	0	1 0	1 1	1 0	1 <	0 S	0	1 →	1	: «			D			→ →
LACK LC	th shift and accumulator	1	1	0	1	1	1	1	1	1	0	<				ĸ			\rightarrow
OR O	mediate R with accumulator	1	1	0	1	1	1	1	0	1	0	I	¥			D		<u> </u>	$\mathbf{\hat{z}}$
SACH St ac	ore high-order cumulator bits with	1	1	0	1	0	1	1	~	×	~	1	<			·D			
SACL St	ift ore low-order	1	1	0	1	0	1	0	0	0	0	I	€			Đ			→
SUB Su	ubtract from	1	1	0	0	0	1	<	- S		\rightarrow	1	<			D			→
sure C	hift	1	1	0	1	1	0	0	1	Ó	0	. 1	<			- D			\rightarrow
(f	or divide)	1	1	0	1	1	0	0	0	1	0	1	<			- D	·		→ _>
	rder accumulator bits	1	1	0	1	1	0	0	0	1	1	1	•			- D)		\rightarrow
la	tor with no sign																		
XOR E	xclusive OR with	1	1	0	1	1	1	, 1	0	0	0	I	<	<u>.</u>		- D) (
ZAC Z ZALH Z	ero accumulator ero accumulator and	1 1	1	0	1 1	1 1	1) 1) 0	1	1 0	1	1 	0 «	() (0 0	- C	0 (0	\rightarrow
ZALS Z	bad high-order bits ero accumulator and	1	1	0	. 1	1	- C) 0	1	1	0	I	. <	<u> </u>		- C)		->
la M	oad low-order bits with no sign extension														:				

TABLE 3-2 - INSTRUCTION SET SUMMARY

ŝ

			•																	
	AUXILIAR	Y REGISTE	R AND D	ATA	A PA	GE	РО	INT	ER	INS	TR	UC	ГІО	NS						
MNEM	ONIC DESCRIPTION	NO. CYCLES	NO. WORDS					IN	STR	C UC		ODI DN F	E	SIS	TE	R			S	
				15	14	13	12	11	10	9	8	7	' (6	5	4	3	2	1	0
LAR	Load auxiliary	1	1	0	0	1	1	1	0	0	F	1 1	•	<			D)		->
LARK	Load auxiliary	1	1	0	1	1	1	0	0	0	F	<	(ĸ			\rightarrow
LARP	Load auxiliary register pointer	1	1	0	1	1	0	1	0	0	0	1	()	0	0	0	0	0	ĸ
LDP	Load data memory	1	1	0	1	1	0	1	1	1	1	I	<	(-		D	I —		->
LDPK	Load data memory page pointer	1	1	0	1	1	0	1	1	1	0	0		<u>ן</u>	0	0	0	0	0	К
MAR	Modify auxiliary	1	1	0	1	1	0	1	0	0	0	· 1	~	<u> </u>			D			\rightarrow
SAR	register and pointer Store auxiliary register	1	1	0	0	1	1	0	0	0	R	1	•				D		<u> </u>	->
ŧ		В	RANCH I	NST	RU	СТІ	ON	S												
MNEMC	ONIC DESCRIPTION	NO. CYCLES	NO. WORDS		-	·		INS	STR	O UCT	PCC FIO	DDE N R	EG	IST	EF	R				
				15	14	13	12	11	10	9	8	7	6	; ;	5	4	3	2	1	0
B	Branch unconditionally	2	2	1 0	1 0	1 0	1 0	1 <	0	0	1 BF	0 8 A N	0 ICH) (Al) DD	0 RE	0 SS	0	0	0 ~
BANZ	Branch on auxiliary register not zero	2	2	1	1 0	1 0	1 0	0 ✦	1	0	0 BF	0 A N	0 ICH) (A[נ סכ	0 RE	0 SS	0	0) • •
BGEZ	Branch if accumulator ≥ 0	2	2	1 0	1 0	1 0	1 0	1 <	1	0	1 BF	0 AN	0 ICH) A[נ סכ	0 RE	0 SS	0	0	0 ~
BGZ	Branch if accumulator > 0	2	2	1 0	1 0	1 0	1 0	1 ←	1	0	0 BF	0 AN	0 ICH	(A[) DD	0 RE	0 SS	0	0	0 ~
BIOZ	Branch on $\overline{BIO} = 0$	2	2	1 0	1 0	1 0	1 0	0 ←	1	1	0 B F	0 AN	0 CH	C A[) DD	0 RE	0 SS	0	0	0 ~
BLEZ	Branch if accumulator ≪0	2	2	1 0	1 0	1 0	1 0	1 < -	0	1	1 BR	0 AN	0 СН	C AC) DD	0 RE:	0 SS	0	0	0 →
BLZ	Branch if accumulator < 0	2	2	1 0	1 0	1 0	1 0	1 <	0	1	0 BR	0 AN	0 СН	0 AC	D	0 RES	0 SS -	0	0	0 ~
BNZ	Branch if accumulator ≠ 0	• 2	2	1 0	1 0	1 0	1 0	1 ←	1	1	0 BR	0 AN	0 CH	0 AC	D	0 RES	0 SS ·	0	0	0 >
BV ●	Branch on overflow	2	2	1 0	1 0	1 0	1 0	0 ←	1	0	1 BR	0 AN	0 CH	0 AD	D	0 RES	0 3S	0	0	0
BZ	Branch if accumulator = 0	2	2	1 0	1 0	1 0	10	7	1	1	1 BR	0 AN	0 СН	0 AD	D	0 RES	0 3S -	0	0	0 >
CALA	Call subroutine from	2	1	0	1	1	1	1	1	1	1	1	0	0	(0	1.	1	0	0
CALL	Call subroutine immediately	2	2	1 0	1 0	1 0	1 0	1 ←	0	0	0 BR	0 AN(0 CH	0 AD) DF	0 RES	0 35 -	0	0	0 >
RET	Return from sub- routine	2	1	0	1	1	1	1	1	1	1	1	0	0	(0	1	1	0	1

TABLE 3-2 - INSTRUCTION SET SUMMARY (CONTINUED)

3-6

				NID			01.	7.1 N	ICTO	110	TIO	NIC							
	T REGIST	ER, P REG	ISIER, A	UND	MU		rL'	T IN	19 I R		10	00							
MNEMO	NIC DESCRIPTION	NO. CYCLES	NO. WORDS					INS	STRU	OP JCT	ION	DE RE	GIS	TEI	R				
			-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
APAC	Add P register to	1	1	0	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1
LT	Load T register	1	1	0	1	1	0	1	0	1	0	1	<			D			> >
LTA	LTA combines LT and APAC into one instruc- tion	1	1	U	1	1	U	1	1	U	U	I	<			יט			
LTD	LTD combines LT, APAC, and DMOV into	1	1	0	1	1	0	1	0	1	1	I	~			D		<u></u>	>
MPY	Multiply with T register; store product	1	1	0	1	1	0	1	1	0	- 1	1	<			- D			>
МРҮК	Multiply T register with immediate oper- and: store product in	1	1	1	0	0	e	<u>[</u>						K	-				→
PAC	P register Load accumulator from	1	1	0	1	1	,1	1	1	1	1	1	0	0	0	1	1	1	0
SPAC	P register Subtract P register from accumulator	1	1	0	1	1	1	1	1	1	1	1	0	0	1	0	0	0	0
1		C	ONTROL	INS	TRI	лст	101	NS											
		NO	NO							0	PCO	DF					- <u></u>		
	INIC DESCRIPTION	CYCLES	WORDS					IN	STR			NR	EGI	STE	R		•		
				15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DINT	Disable interrupt	1	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	1
	Enable interrupt				1	1	1	1 1	0	1	1			0		D			\rightarrow
NOP	No operation			0	1	1	1	1	1	i	1	1	ō	0	0	ō	0	0	0
POP	Pop stack to	2	1	Ŏ	1	1	1	1	. 1	1	1	1	0	0	1	1	1	0	1
PUSH	accumulator Push stack from	2	1	0	-1	1	1	1	1	1	1	1	0	0	1	1	1	0	C
ROVM	accumulator Reset overflow mode	1	1	0	1	1	1	1	1	1	1	1	0	0	0	1	0	1	C
SOVM	Set overflow mode	1	. 1	0	1	_1	1	1	1	1	1	1	0	0	0	1	0	:1	1
SST	Store status register	1	1	0	1	1	1	1	1	0	0		<			• D			\geq
		I/O AND	DATA N	IEM	OR	ΥO	PEF	RAT	ION	S									
MNEMO	ONIC DESCRIPTION	NO. CYCLES	NO. WORDS					IN	ISTR	O UC	PCC TIO	DDE N R	EG	STE	R				
	<u></u>			15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	1	Ċ
DMOV	Copy contents of data memory location into	1	1	0	1.1	1	C) 1	0	0	1	I	•	ç		- D			>
IN	Input data from port	2	1	0) 1	i - C) () () <	-PA	۱ >	I	<			- D			->
OUT	Output data to port	2	1	0) 1) () 1	<i>€</i>	-P/	١÷	1	<	<u>.</u>		- D			≳
TBLR	Table read from	3	1	0) 1	1	• •) (J 1	1	1	I	•	· · · ·		- U			-
	data RAM															_			
TBLW	Table write from	3	1	0) 1	1		1	1 1	0	1	1		←		- D			\rightarrow
	data KAM to program memory															•			

TABLE 3-2 - INSTRUCTION SET SUMMARY (CONCLUDED)

3

3-7

3.4.3 Instruction Descriptions

Each instruction in the instruction set summary is described in the following pages. The instructions are listed in alphabetical order. An example is provided with each instruction.

Each instruction begins with an assembler syntax expression. Since the comment field which concludes the syntax is optional, it is not included in the syntax expression. A syntax example is given below that shows the spaces that are included and required in the syntax expression, and the optional comment field along with its preceding spaces that has been omitted.

for this section.

<constant> [<label>] LACK [<comment>] Spaces Spaces and comment field not included in the syntax expressions

AB	5							Abs	olute	Va	lue	of A	CCI	umu	late	or 			· .				A	3 S
Assemt	bler S	Synt	ax:	•		[<	labe	el>]	A	BS													· • · · ·	
Operan	ds:	1	Non	e																				
Operati	ion:	ן ר	f (A Thei	CC n —) < (A	0 CC)) → /	ACC									•		•					
Encodi	ng:	1	5	14	1	3	12	11	10	9	8	7	6	5	4	3	2	1	0					
			0	: 1		1	1	1	1	1	1	1	0	0	0	1	0	0	0]				
		by cas the	its se. \ e ov	two Who erflo	o's c en 1 ow	com the mo	over over de, 1	nent flow the A	value mode BS of	. N e is > {	ote 1 not 3000	that set,)000	the the 0 is	hex AB >7	ade S of FFF	cima >8 FFF	al nu 000 F.	umb 0000	er >)0 is	800 >80	0000	00 is 000	s a s . Wi	pecia nen il
Nords: Sveles:	1								·* . :															
Exampl	e: Al	BS													•									
	BI 31	EFO	RE	INS	STF	RUC	стіо	N O			/ 31	١FT	ER	INS	TRU	JCT	ION	l 0						
ACC	> 0	0	0	0	1	2	3	4	AC	C [>0	0	0	0	1	2 3	4							an an ' Sairtean Airtean
and	ł	· · ·																						
ACC	> F	F	F	F	F	F	F	F	AC		>0	0	0	0	0 (0 0	1				. •			
			•																					
				2																			2	
																					· · ·			

ADD	· · ·				Ade	d to /	Acci	um	ulat	or w	vith	Shi	ft				-		- 1		DD
Assembler S Direct Ad Indirect A	Syntax dressi ddress	c: ng: sing:	[<lab <lab< th=""><th>el>] el>]</th><th> .</th><th>AD[AD[</th><th>))</th><th>< {*</th><th>dma * * -</th><th>a>[+ *</th><th>,<s -}∣</s </th><th>hift: [,<s< th=""><th>>] hift</th><th>>[,</th><th><!--</th--><th>٩RP</th><th>>]]</th><th>· ·</th><th></th><th></th></th></s<></th></lab<></lab 	el>] el>]	.	AD[AD[))	< {*	dma * * -	a>[+ *	, <s -}∣</s 	hift: [, <s< th=""><th>>] hift</th><th>>[,</th><th><!--</th--><th>٩RP</th><th>>]]</th><th>· ·</th><th></th><th></th></th></s<>	>] hift	>[,	</th <th>٩RP</th> <th>>]]</th> <th>· ·</th> <th></th> <th></th>	٩RP	>]]	· ·		
Operands:	0 ≤ : 0 ≤ : ARP	shift dma ? = (≤ 15 ≤ 12) or 1	7																	
Operation:	(AC	C) +	(dm	ia) ×	2 ^{shi}	ift 🛶	ACO	0													
Encoding:	15	14	13	12	11	10	9	8	,7	6	5	4	3	2	1	0				- -	
Direct:	0	0	0	0		SHIF	Т		0		DA	TA ADI	MEN DRE	IOR SS	Y					•	
Indirect:	0	0	0	0		SHIF	T		1		SEE	SE	СТЮ	N 3	.3						· .
Description	Conto shifti store	ents ng, l d in t	of d ow-o :he ad	lata i rder l ccum	memo bits a ulato	ory a are ze r.	addro ero-f	ess illec	are I, ar	left nd hi	-shi igh-	fted orde	anc r bit	l ac s ar	ldec e si	l to gn-	o ac exte	cum ndeo	ulate I. Tł	or. [ne re	During sult is
Words: 1 Cycles: 1														· .							
Example:	ADD	DA	Г1,3																		

ADD *,3 If current auxiliary register contains the value 1.

DATA	BEFORE INSTRUCTION	ΠΔΤΔ	AFTER INSTRUCTION
MEMORY 1	2	MEMORY	2
ACC	7	ACC	23

Note: If the contents of data memory address DAT2 is >8BOE, then the following instruction sequence will leave accumulator with the value > FFF8B0E0.

ZAC Zero accumulator ADD DAT2,4 ACC = > FFF8B0E0

(

Assembler Syntax: Direct Addressing Indirect AddressirOperands:0 ≤ dr ARPOperation:(ACC)Encoding:15Direct:0	y: [< ng: [< ma ≤ 127 = 0 or) + (dma 14 13	< labe < labe 7 1 a) × 2 12	>] >] 2 16 _	A A ► AC	DDI DDI	4	< { [†]	:dm * *	a> + *	- }[., </th <th>ARP></th> <th>•]</th> <th></th> <th></th> <th></th> <th></th>	ARP>	•]				
Operands:0 ≤ dr ARPOperation:(ACC)Encoding:15Direct:0	ma ≤ 127 = 0 or) + (dma 14 13	, 1 a) × 2 12	2 16 _	► AC													
Operation: (ACC) Encoding: 15 Direct: 0) + (dma 14 13	a) × 2 12	2 16 _	► AC	~												
Encoding: 15 Direct: 0	14 13	12			C												
Direct: 0			11	10	9	8	7	6	5	4	3	2 1	0				
	1 1	0	0	0	0	0	0		DA	TA N ADD	MEN DRE	IORY SS	,				
Indirect: 0	1 1	0	0	0	0	0	1		SEE	SEC	CTIC	N 3.3	3] .			
Description: Add cor Words: 1 Cycles: 1 Example: ADDH D or ADDH *	ntents of AT5 If cu	data	memo auxilia	ory a ary re	ddre gist	er c	to u	ppe ains	r hal [:] the [,]	f of t	:he a e 5.	iccun	nulat	or (bi	ts 31	throug	h 16).
					•							•					•
DATA MEMORY 5	ORE IN	STRU	JCTIC >	2N 4		[Me	DAT EMC 5	-A DRY		FTE	RII	NSTR	UCT	10N >4	•		n 1. 1. An an
ACC	>0 0 0	000	01	3			ACC	2		>0	0	04	00	13	- 1	. **	

	S			 	wit	Add h Sig	to gn-E	Low	v Ao nsi	ccur on S	nula Supp	tor resse	bd		-			A	DD	S
Assembler S Direct Ado Indirect Ad	ynta) Iressi Idres	k: ng: sing:]	<lab <lab< th=""><th>oel>] oel>]</th><th></th><th>AD[AD[</th><th>DS DS</th><th></th><th><dr {* </dr </th><th>na> *+ </th><th>* – }[</th><th>,<a< th=""><th>RP></th><th></th><th></th><th></th><th></th><th></th><th></th></a<></th></lab<></lab 	oel>] oel>]		AD[AD[DS DS		<dr {* </dr 	na> *+	* – }[, <a< th=""><th>RP></th><th></th><th></th><th></th><th></th><th></th><th></th></a<>	RP>						
Operands:	0≤ ARF	dma > =	≤12 0 or	7 1																
Operation:	(AC	C) +	- (dm	na) →	ACC											•				
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4 3	2	1	0					
Direct:	0	1	.1	0	0	0	0	1	0		DA	TA M Addf	EMO RESS	RY].				
Indirect:	0	1	1	0	0	0	0	1	1		SEE	SECT		3.3			с - 			,
Description: Words: 1	Add treat is no	cont ed a: sign	ents s a 16 -exte	of sp 6-bit ensior	ecifie positi n as tl	d dat ve in here i	ta m tege is wi	emo er ra ith t	ory the he A	locat r tha ADD	ion v n a tv instr	vith s wo's o uctio	ign-e comp n.	exter olem	isio ent	n su inte	ppres ger.	ssed. There	The da fore, t	ta is here
Description: Words: 1 Cycles: 1 Example: 4	Add treat is no ADDS or ADDS	cont ed a: sign ; DA	ents s a 10 -exte T11	of sp 6-bit ensior	ecifie positi n as tl	d dat ve in here ixiliar	ta m tege is wi	emo er ra ith t	ory the he A	locat r tha ADD	ion v n a tv instr	vith s wo's o uctio	ign-e comp n.	exter olem	nsio ent	n su inte	opres ger.	ssed. There	The da fore, t	ta is here
Description: Words: 1 Cycles: 1 Example:	Add treat is no ADDS or ADDS BE	cont ed as sign 5 DA 5 *	ents s a 16 -exte T11 If	of sp 6-bit ensior curre	ecifie positi n as tl ent au	d dat ve in here vxiliar	ta m tege is wi	emo er ra ith t	ory the he /	locat r tha ADD onta	ion v n a tv instr ins tł Af	vith s wo's d uctio ne val	ign-e comp n. ue 1	oxten olem 1.	isio ent	n su inte	opres ger.	ssed. There	The da fore, t	ita is
Description: Words: 1 Cycles: 1 Example: 4 DATA MEMORY 11	Add treat is no ADDS or ADDS BE	cont ed a: sign 5 DA 5 *	rents s a 16 -exte T11 If E INS F 0	of sp 6-bit ensior curre STRL 0	ecifie positi n as ti ent au JCTI(6	d dat ve in here ixiliar	ta m tege is wi	ema er ra ith t gist	er c DAT EMC	locat r tha ADD onta DRY	ion v n a tv instr ins tł	vith s wo's o uctio ne val =TER 	ign-e comp n. ue 1 INS F (extern blem 1. TRL	usio ent JCT	n su inte	ppres ger.	ssed. There	The da fore, t	ita is
Description: Words: 1 Cycles: 1 Example: 4 DATA MEMORY 11 ACC	Add treat is no ADDS or ADDS BE	cont ed as sign 5 DA 5 * FOR >I >I	Eents s a 10 -exte T11 If E INS F 0	of sp 6-bit ensior STRL 0	ecifie positi n as tl ent au JCTIC 6	id dat ve in here uxiliar DN	ta m tege is wi	ema er ra ith t gist Mi	er c	locat r tha ADD onta DRY C	ion v n a tv instr Af	vith s wo's o uctio TER > >0	ign-e comp n. ue 1 INS F (0 0	xter blem 1. TRL D 0 F	JCT	n su inte	ppres ger.	ssed. There	The da fore, t	ita is here

ZAC Zero ACC ADD DAT1,0 ACC = > FFFFE007

The ADDS instruction can be used in implementing 32-bit arithmetic.

1183

3-12

Assembler S Direct Add Indirect Add	yntax Iressi ddres	c: ng: sing:] [<lab <lab< th=""><th>el>] el>]</th><th></th><th>ANC ANC</th><th>)</th><th>< {*</th><th>dm: *-</th><th>a> + *</th><th>- }</th><th>[,<</th><th>AR</th><th>P></th><th>]</th><th></th><th></th><th></th><th></th><th></th></lab<></lab 	el>] el>]		ANC ANC)	< {*	dm: *-	a> + *	- }	[,<	AR	P>]					
Operands:	0 A	≤dn RP ÷	na≼ = 0 c	127 or 1																У	
Operation:	Zerc	b. AN	ND. h	igh-c	order	ACC	bits	s: (c	ima)). A	ND.	lov	v-or	der	AC	CE	oits	→ A	CC		
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
Direct:	0	1	1	1	1	0	0	1	0		DA	TA AD	ME DRI	MO ESS	RY	·]	:			
Indirect:	0	1	1	1	1	0	0	1	1		SEE	SE	CTI	ON	3.3	}	_] ·				
e Status Alexandria Alexandria	.								L												

Description: The low-order bits of the accumulator are ANDed with the contents of the specified data memory address and concatenated with all zeroes ANDed with the high-order bits of the accumulator. The AND operation follows the truth table below.

DATA MEMORY BIT	ACC BIT (BEFORE)	ACC BIT (AFTER)
0	0	0
0	1	0
1	0	0
1	1	1

Words: 1 Cycles: 1

Example: AND DAT16

or

AND * If current auxiliary register contains the value 16.

Note: This instruction is useful for examining bits of a word for high-speed control applications.

APAC				Ad	ld P l	Regi	ster	to	Acc	um	ulat	or						A	P/	٩C
Assembler Sy	ntax:		[< a	bel>	•]	APA	٩C								· ·.		•			
Operands:	No	ne					<u>,</u>											. ••		
Operation:	(AC	C) +	- (P)-	→ AC	С															
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	0	- 1	1	1	1	1	1	1	1	0	0	0	. 1	. 1	1	1]			

Description: The contents of the P register, the result of a multiply, are added to the contents of the accumulator and the result is stored in the accumulator.

Words: 1 Cycles: 1

Example: APAC

	BEFORE INS	TRUCTION		AFTER INSTRUCTION
Ρ		64	Р	64
	1 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	· · · · · · · · · · · · · · · · · · ·		
ACC		32	ACC	96

Note: This instruction is a subset of the LTA and LTD instructions.

3-14

B					Br	anch	Un	cor	nditi	iona	nily		. *					 	B
Assembler Syr	ntax:	•	[<	abel:	>]	В	<	<pr< th=""><th>na></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></pr<>	na>			-							
Operands:	0 ;	≼ pm	a < 2	212															r sa 19 L
Operation:	pm	na →	PC			n A Agente	•			•									
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0			
	0	0	0	0		PI	205	RA	MN	1EM	OR	YA	DD	RES	S				
			2	•													_	•	

Description: Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2 Cycles: 2

Example:

B PRG191 191 is loaded into the program counter and program continues running from that location.

BANZ	Branch on Auxiliary Register Not Zero	BAN
Assembler Synt	tax: [<label>] BANZ <pma></pma></label>	
Operands:	0 ≤ pma < 2 ¹²	
Operation:	If (AR bits 8 through 0) $<> 0$ Then (AR) - 1 \rightarrow AR and pma \rightarrow PC Else (PC) + 2 \rightarrow PC (AR) - 1 \rightarrow AR	
Encoding:	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
	1 1 1 1 0 1 0 0 0 0 0 0 0 0 0	
	0 0 0 0 PROGRAM MEMORY ADDRESS	

Description: If the lower nine bits of the current auxiliary register are not equal to zero, then the auxiliary register is decremented, and the address contained in the following word is loaded into the program counter. If these bits equal zero, the current program counter is incremented and AR also is decremented. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or numeric address.

Words: 2

3

Cycles: 2

Example: BANZ PRG35

Note: This instruction can be used for loop control with the auxiliary register as loop counter. The auxiliary register is decremented after testing for zero. The auxiliary registers also behave as modulo 512 counters.

BGEZ	•		Bran	ch if	Acc or E	umı Equa	ulat al to	or (Ze	Grea ro	ter	The	n '					B	GE	ΞZ	
Assembler Sy	ntax:		[< a	ibel>	•]	BGI	ΞZ	<	<pn< th=""><th>na></th><th>· · ·</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th></pn<>	na>	· · ·									_
Operands:	0 ≤	pma	< 2	12	na in Airte															
Operation:	lf (<i>)</i> The Else	ACC) en prr e (PC	≥0 na→)+2	PC 2 → P	с. С															•
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				s San San San San San San San San San San
	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0]			
en e	0	0	0	0		F	PRO	GR	٩M	ME	NOI	YY	ADD	RE	SS					
					·					:										

Description: If the contents of the accumulator are greater than or equal to zero, branch to the specified program memory location. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2 Cycles: 2

,...

Example: BGEZ PRG217 217 is loaded into the program counter if the accumulator is greater than or equal to zero.

Assembler Syntax:			[<	abel:	>]	BG	Z	<	<pre>pm</pre>	a>				•		
Operands:	0 ≤	pma	< 21	2												
Operation:	lf (/ The Else	ACC) n pm (PC)	>0 a→F +2			•			·							
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1.	1	1	1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0		Р	RO	GR/	٩M	ME	MOF	RY A	ADD	RE	SS	

Description: If the contents of the accumulator are greater than zero, branch to the specified program memory location. Branch to location in program specified by the program memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2 Cycles: 2

Example: BGZ PRG342 342 is loaded into the program counter if the accumulator is greater than zero.

BIOZ

Assembler Syntax:			[<	abel	>]	BIC)Z	~	<pn< th=""><th>1a></th><th></th><th></th><th></th><th></th><th colspan="7"></th></pn<>	1a>											
Operands:	0 ≤	pma	< 2 ¹	2																	
Operation:	lf The Else	BIO en pr e (PC	= 0 na → C) +	PC 2 → F	°C																
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0					
	0	0	0	0		P	RO	GR/	٩M	ME	MOF	RY /	٩DD	RE	SS						

Description: If the BIO pin is active low, then branch to specified memory location. Otherwise, the program counter is incremented to the next instruction. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2

Cycles: 2

Example: BIOZ PRG64 If the BIO pin is active low, then a branch to location 64 occurs. Otherwise, the program counter is incremented.

Note: This instruction can be used in conjunction with the BIO pin to test if peripheral is ready to deliver an input. This type of interrupt is preferable when performing time-critical loops.

BIOZ

BLEZ Branc							Acc r Eq	umi ual	ulat to Z	or L Zero	ess	Th		•		BLEZ		
Assembler Sy	ntax:		[<	label	>]	BL	.EZ		<p< th=""><th>ma</th><th>></th><th>· .</th><th></th><th></th><th></th><th></th><th></th><th></th></p<>	ma	>	· .						
Operands:	0 ≤	pma	< 21	2														
Operation:	lf The Else	(ACC en p e (P	:) ≼ (oma → C) +) ► PC 2 →	PC									· · · · ·				
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		4 A.S.
	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0]	
	0	0	0	0		F	PRO	GR	AM	MEI	MO	RY	AD	DRE	SS			
Description:	If the	cont	ents	of the	e acc	umul	ator	· are	les	s th	an d	or e	qual	to	zero	, bra	anch	to the specifie

program memory location. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2 Cycles: 2

Example: BLEZ PRG63 63 is loaded into the program counter if the accumulator is less than or equal to zero.

BLZ	Branch if Accumulator Less Than Zero													BLZ						
Assembler Sy	vntax:		[<]	abel:	>]	BL	z	<	pm	a>	•••									
Operands:	0 ≤ pi	ma	< 21	2																
Operation:	lf (A Then Else (CC) pr PC)	< 0 ma → + 2	PC → P	С															
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0				
	0	0	0	0		F	PRO	GR	AM	MEI	MOI	RY /	AD	DRE	SS]			

Description: If the contents of the accumulator are less than zero, branch to the specified program memory location. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or numeric address.

Words: 2 Cycles: 2

Example: BLZ PRG481 481 is loaded into the program counter if the accumulator is less than zero.

Assembler Syntax:			[<	abel	>]	BN	Ζ	<	<pr< th=""><th>na></th><th></th><th></th><th></th><th></th><th></th><th></th></pr<>	na>						
Operands:	0 ≤	pma	< 2	12												
Operation:	lf (The Else	ACC n p (P) < > ma → C) +	0 • PC 2 →	PC											
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	0	0	0	0		Р	RO	GR/	AM I	MEN	MOF	RY A	٩DD	RE	SS	

Description: If the contents of the accumulator are not equal to zero, branch to the specified program memory location. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or numeric address.

Words: 2 Cycles: 2

3

Example: BNZ PRG320 320 is loaded into the program counter if the accumulator does not equal zero.
Branch on Overflow BV [<label>] <pma> **Assembler Syntax:** $0 \leq pma < 212$ **Operands:** If overflow flag = 1 **Operation:** Then $pma \rightarrow PC$ and $O \rightarrow overflow$ flag Else (PC) + 2 \rightarrow PC **Encoding: PROGRAM MEMORY ADDRESS**

Description: If the overflow flag has been set, then a branch to the program address occurs and the overflow flag is cleared. Otherwise, the program counter is incremented to the next instruction. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2 Cycles: 2

Example: BV PRG610 If an overflow has occurred since the overflow flag was last cleared, then 610 is loaded into the program counter. Otherwise, the program counter is incremented.

Assembler Sy	ntax:		[<	label	>]	BZ	2	<	pma	a>						
Operands:	0 ≤	pma	< 2	12												
Operation:	lf The Else	(ACC en p e (P	:) = (oma ⊸ C) +	0 ► PC 2 →	PC		• .								• • •	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	0	0	0	0		P	RO	GR/	٩M	ME	NOF	RY /	ADD	RE	SS	· · · ·

Description: If the contents of the accumulator are equal to zero, branch to the specified program memory location. Branch to location in program is specified by the program memory address (pma). Pma can be either a symbolic or numeric address.

Words: 2

3

Cycles: 2

Example: BZ PRG102 102 is loaded into the program counter if accumulator is equal to zero.

CALA				Ca	ll Su	bro	utin	e I r	ndir	ect							CAL	
Assembler Sy	ntax:		[<	abel>	>]	CA	LA											
Operands:	Nor	ne			× .													
Operation:	(PC (AC) + 1 C bit	→ T s 11	OS throu	ıgh 0) →	PC											
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	0]	

Description: The current program counter is incremented and pushed onto the top of the stack. Then, the contents of the 12 least significant bits of the accumulator are loaded into the PC.

Words: 1 Cycles: 2

Example: CALA

Note: This instruction is used to perform computed subroutine calls.

CALL						Call :	Sub	orou	tine) Di	rect	t					CALL
Assembler Sy	/ntax:	-	[<	label	>]	CA			<p< th=""><th>ma</th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th></p<>	ma	>						
Operands:	0 :	≤ pm	na <.	212													andar Antonio Antonio (Antonio (Antonio))
Operation:	(PC pm	C) + 2 a → F	? → T PC	OS													
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0		P	RO	GR/	AM	ME	MOR	RY /	٩DE	DRE	SS		

Description: The current program counter is incremented and pushed onto the top of the stack. Then, the program memory address is loaded into the PC.

Words: 2 Cycles: 2

3

Example: CALL PRG109

	BEFORE INSTRUCTION		AFTER INSTRUCTION
PC	33	PC	109
STACK	71 48 16 80	STACK	35 71 48 16

DINT						Dis	abl	e In	terr	upt		-					D	IN	T	
Assembler Syn	itax:		[<]	abel	>]	DI	NТ													
Operands:	Nor	ne							·											
Operation:	1→	INTN	۸ţ																	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	1				

Description: The interrupt-mode flag (INTM) bit is set to logic 1. When this flag is set, any further maskable interrupts are disabled.

Words: 1 Cycles: 1

Example: DINT

DMO	V	-				D	ata	Мо	ve i	n M	em	ory						DM	(
Assembler S Direct Ad Indirect A	Synta dress ddres	i x: sing: ssing	:	[<lat< th=""><th>pel></th><th>]</th><th>DM DM</th><th>10V 10V</th><th></th><th><c {*</c </th><th>1ma * +</th><th>></th><th>- }[</th><th>,<!--</th--><th>٩RP</th><th>>]</th><th></th><th></th><th>-</th></th></lat<>	pel>]	DM DM	10V 10V		<c {*</c 	1ma * +	>	- }[, </th <th>٩RP</th> <th>>]</th> <th></th> <th></th> <th>-</th>	٩RP	>]			-
Operands:	0 ≼ AR	dma P=0	i ≤ 12 or 1	27															
Operation :	(dn	na) →	dma	+ 1															
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Direct:	0	1	1	0	1	0	0	1	0		DA		ME DR	MO ESS	RY				
Indirect:	0	1	1	0	1	0	0	1	1		SEE	SE	СТІ	ON	3.3]		
																	-		

Description: The contents of the specified data memory address are copied into the contents of the next higher address.

Words: 1 Cycles: 1

Example: DMOV DAT8

or

DMOV * If current auxiliary register contains the value 8.

Note: DMOV is an instruction that can be associated with Z⁻¹ in signal flow graphs. It is a subset of the LTD instruction. See LTD for more information.

EINT			•		I	Enab	le I r	nter	rup	t							EINT
Assembler Syr	ntax:	: [<lab< th=""><th>oel>]</th><th></th><th>EINT</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th></lab<>	oel>]		EINT	-								-		
Operands:	No	ne									· .						
Operation:	0 .	INT	M														
Encoding:	15	14	13	12	.11	10	9	8	7	6	5	4	3	2	1	0	• •
	0	1	1	1	1	1	1	1	1	0	0	0	0	0	1	0	7 F 8 2

Description: The interrupt-mode flag (INTM) in the status register is cleared to logic 0. When this flag is not set, maskable interrupts are enabled.

Words: 1 Cycles: 1

Example: EINT

				-	Ir	nput l	Dat	af	ron	n Port								
Assemble Direct A Indirect	r Synta ddressi Addres	x: ing: sing:	[< a	abel > abel >	•] •]	IN IN		<d {* </d 	ma * +	>,< *_	PA> }, < P	A>[, < Al	RP>	•]			
Operands:	0 : 0 : AF	≤dma ≤PA ≤ RP = 0	≤127 7 or 1			•					•							
Operation:	PA Da	N→ado Ita bu	lress lir s D15-[nes P/ DO→c	A2-F Ima	PA0			•								•	. 4
Encoding:	15	14	13 12	11	10	9	8	7	6	5	43	2	1 - (0				
Direct:	0	1	0 0	0	P AD	PORT	SS	0		DAT A		MOF ESS	٩Y					
Indirect:	0	1	0 0	0	P AD	ORT	SS	1		SEE	SECT	ION	3.3				- - - - 1	
Description Words: 1	: The a ty line whi	IN in wo-cyc s A2/l ich the	structic cle inst PA2-AC e addre	on rea ructio)/PA0 ssed	ads c on. D D. DE perij	data f Juring N go phera	ron I th es I pl	n a e fi low ace	pe irst / di es c	ripher cycle uring on the	ral and e, the the sa e data	d pla port ame bus	aces add cycle , D1	it in ress e, s 5-D	data s is s trobin 0.	a me ent ng ir	mory to ac 1 the	γ. It is Idress data
Cycles: 2	·																	
Example:	IN	STA	AT,PA5	Read Stor	d in v e in c	vord f data n	rom	n pe Iory	ripl / loc	heral c ation	on por STAT	t add F.	ress !	5.		· .		
· · ·	LARK LARP IN	1, 2 1 *-,P	0 A1,0	Load Load Read Store AR1	I AR I AR I in w e in c to 1	1 with P with vord fi lata m 9. Loa	n de n 1. rom nem ad ti	cim pe lory he /	ial 2 ript loc ARF	20. neral o ation ? with	on port 20. Do 0.	t add ecrer	ress 1 nent	1.				

Notes: When the TMS32010 outputs address onto the three LSBs of address lines, the nine MSBs are zeroed.

Instruction causes the DEN line to go low during the first clock cycle of this instruction's execution. MEN remains high when DEN is active.

INI

Assembler S Direct Add Indirect A	dressi ddres	k: ng: sing:	[<lab <lab< th=""><th>el >] el >]</th><th>L/ L/</th><th></th><th>< {*</th><th>dm; *</th><th>a>[, + *</th><th>,<s } </s </th><th>hift ,<</th><th>:>] shif</th><th>t> </th><th>,<!--</th--><th>ARP>]]</th><th></th><th></th></th></lab<></lab 	el >] el >]	L/ L/		< {*	dm; *	a>[, + *	, <s } </s 	hift ,<	:>] shif	t>	, </th <th>ARP>]]</th> <th></th> <th></th>	ARP>]]		
Operands:	0 ≤ s 0 ≤ c ARP	shift ≼ dma ≼ =0 o	≤ 15 ≤ 127 or 1	,														
Operation:	(dm	a) X	2shit	ft →A	CC					•								
Encoding:	15	14	13	12	11	10	98	7	6	5	4	3	2	1	0			
Direct:	0	0	.1	0		SHIF	Т	0		DA	TA AD	ME DR	MO ESS	RY				
Indirect:	0	0	1	0		SHIF	Γ	1		SEE	E SE	СТ	ION	3.3]		
Description:	Con shif	tents ting,	s of d low-	ata m orde	nemo r bite	ry addı s are z	ress a ero-fi	illed	eft-s and	hifte d hig	ed a jh-o	nd le rde	oad r bit	ed i ts a	nto re s	the accur sign-exte	nulato nded.	or. During
Words: 1 Cycles: 1																		
Example:	LAC	C D/	AT6,4	ł .														
	or LA(C *,4	4		If c	urrent a	auxilia	ry re	gist	ter co	onta	ins	the	valu	le 6	•		•
DAT MEM(6	TA DRY	BEF	ORE	INS	TRU	CTION 1]	М	DA [.] EM	TA ORY	م 	\FT	ER	INS	TRI	UCTION 1		
									0									

LACK

Load Accumulator with Eight-Bit Constant

Assembler \$	Synta	X:	ļ	 < at	pel>]		L	AC	(<c< th=""><th>ons</th><th>tant</th><th>:></th><th></th><th></th></c<>	ons	tant	:>		
Operands:	0	≤cor	nstan	t≤2!	55											
Operation:	CC	onsta	nt→A	ACC												
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	1	1	1	1	0		8	BIT	- cc)NS	TAN	IT	

Description: The eight-bit constant is loaded into the accumulator right-justified. The upper 24 bits of the accumulator are zeros (i.e., sign extension is suppressed).

Words: 1 Cycles: 1

Example: LACK 15

Λ	\mathbf{c}	
А		

	BEFORE INSTRUC	TION		AFTER INSTRUCTION
С		31	ACC	15

Note: If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No error message will be given.

Assembler Syntax: Direct Addressing: $ < label > $ LAR $< AR > , < dma > $ Indirect Addressing: $ < label > $ LAR $< AR > , \{* * + * - \} [, < ARP >]$ Operands: $0 < dma < 127$ AR = 0 or 1 ARP = 0 or 1 ARP = 0 or 1 Operation: $(dma) \rightarrow AR$ Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Direct: 0 0 1 1 AUXILIARY REGISTER 0 DATA MEMORY ADDRESS Indirect: 0 0 1 1 AUXILIARY REGISTER 1 SEE SECTION 3.3 Description: The contents of the specified data memory address are loaded into the designated auxiliary register. Words: 1 SEFORE INSTRUCTION AFTER INSTRUCTION DATA MEMORY 18 18 18 18 19 AR0 6 AR0 18 32 7 32 AR0 7 32 MEMORY 32 32 32	LAR				Load Aux	xiliary	Registe	ir.	,		LAR
Operands: $0 \le dma \le 127$ AR = 0 or 1 ARP = 0 or 1 Operation: $(dma) \rightarrow AR$ Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Direct: 0 0 1 1 1 AUXILIARY REGISTER 0 DATA MEMORY ADDRESS Indirect: 0 0 1 1 1 AUXILIARY ADDRESS Indirect: 0 0 1 1 1 SEE SECTION 3.3 Description: The contents of the specified data memory address are loaded into the designated auxiliary register. Words: 1 Cycles: 1 Example: LAR ARO, DAT19 BEFORE INSTRUCTION AFTER INSTRUCTION MEMORY 18 19 18 also, LAR AR0,* - DATA MEMORY 32 7 AR0 32	Assembler S Direct Add Indirect Add	yntax: Iressing: ddressing	[< : [<	abel>] abel>]	LAR LAR	< A < A	R>, <d R>,{* </d 	ma> *+ *-}	[, <arf< th=""><th>°>]</th><th></th></arf<>	°>]	
Operation: (dma) - AR Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Direct: 0 0 1 1 1 AUXILIARY REGISTER 0 DATA MEMORY ADDRESS Indirect: 0 0 1 1 1 AUXILIARY REGISTER 1 SEE SECTION 3.3 Description: The contents of the specified data memory address are loaded into the designated auxiliary register. Words: 1 Cycles: 1 Example: LAR AR0, DAT19 BEFORE INSTRUCTION DATA MEMORY AFTER INSTRUCTION DATA MEMORY 18 MEMORY 18 19 AR0 6 AR0 18 also, LAR ARO,* - DATA LAR ARO,* - DATA MEMORY 32 AR0 7 AR0 32	Operands:	0 ≤ dm AR = (ARP =	a ≤ 127) or 1 0 or 1				· · · ·		n na sana Na sana sa		
Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Direct: 0 0 1 1 1 AUXILIARY REGISTER 0 DATA MEMORY ADDRESS Indirect: 0 0 1 1 1 AUXILIARY REGISTER 1 SEE SECTION 3.3 Description: The contents of the specified data memory address are loaded into the designated auxiliary register. BEFORE INSTRUCTION AFTER INSTRUCTION Words: 1 Cycles: 1 18 MEMORY 18 AR0 6 AR0 18 32 32 AR0 6 AR0 18 32 AR0 27 32 MEMORY 32 AR0 7 AR0 32 32	Operation :	(dma) —	AR				. •				
Direct: 0 0 1 1 1 AUXILIARY REGISTER 0 DATA MEMORY ADDRESS Indirect: 0 0 1 1 1 AUXILIARY REGISTER 1 SEE SECTION 3.3 Description: The contents of the specified data memory address are loaded into the designated auxiliary register. Words: 1 Cycles: 1 Example: LAR ARO,DAT19 BEFORE INSTRUCTION DATA MEMORY 18 19 AR0 6 AR0 18 also, LARP 0 LAR ARO,* DATA MEMORY 32 7 AR0 7 AR0 32	Encoding:	15 14	13 1	2 11	10 9	87	6 5	4 3 2	1 0		
Indirect: 0 0 1 1 1 AUXILIARY REGISTER 1 SEE SECTION 3.3 Description: The contents of the specified data memory address are loaded into the designated auxiliary register. SEE SECTION 3.3 Words: 1 Cycles: 1 Image: Contents of the specified data memory address are loaded into the designated auxiliary register. Before: LAR AR0,DAT19 BEFORE INSTRUCTION AFTER INSTRUCTION MEMORY AFTER INSTRUCTION 18 DATA 19 6 AR0 18 also, LARP 0 LAR AR0,* - Image: Content of the designated auxiliary DATA 7 32 MEMORY 32 AR0 7 AR0 32	Direct:	0 0) 1	1 1	AUXILIA REGISTE	RY R 0	DA	TA MEMO)RY S		
Description: The contents of the specified data memory address are loaded into the designated auxiliary register. Words: 1 Cycles: 1 Example: LAR ARO,DAT19 BEFORE INSTRUCTION DATA MEMORY 18 19 AR0 6 AR0 18 also, LARP 0 LAR AR0,* - DATA MEMORY 32 AR0 7 AR0 32	Indirect:	0 0) 1	1 1	AUXILIA REGISTE	RY R 1	SEE	SECTION	3.3		
Words: 1 Cycles: 1Example:LAR ARO,DAT19 BEFORE INSTRUCTIONDATA MEMORYAFTER INSTRUCTION 18DATA 19DATA 18AR06AR018also, LAR AR0,*DATA 18DATA MEMORY32AR07AR032	Description :	The contregister.	tents of t	he spec	cified data	memor	y addres	s are load	ed into	the designa	ted auxiliary
Example: LAR ARO, DAT19 BEFORE INSTRUCTION AFTER INSTRUCTION DATA MEMORY 18 19 ARO 6 ARO 18 also, LARP 0 LAR ARO,* DATA MEMORY 32 7 ARO 7 ARO 32	Words: 1 Cycles: 1							•			
BEFORE INSTRUCTION AFTER INSTRUCTION MEMORY 18 19 18 AR0 6 AR0 6 AR0 18 also, LARP 0 LAR AR0,* DATA DATA MEMORY 7 32 7 AR0 7 AR0 7 AR0 7 AR0 7 AR0	Example:	LAR A	RO,DAT	19							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		АТА	EFORE	INSTR	UCTION		ΠΑΤΑ	AFTEF	INSTR	UCTION	
AR06AR018also,LARP 0 LAR AR0,*DATA MEMORY32DATA MEMORY32 7 AR07AR032	MEN				18	Μ	EMORY 19			18	
also, LARP 0 LAR AR0,* – DATA MEMORY 32 DATA MEMORY 32 7 AR0 7 AR0 32	Α	R0	 		6		AR0			18	
also, LARP 0 LAR AR0,* – DATA MEMORY 32 7 AR0 7 AR0 32				-			•	. :			
DATA MEMORY32DATA MEMORY32777AR07AR032	a	so,	LARP (AR0,* -							
AR0 7 AR0 32	D/ MEI				32	Μ	DATA EMORN 7	(32	
	A	R0	<u> </u>		7		AR0			32	

Notes: ARO is not decremented after the LAR instruction. Generally as in the above case, if indirect addressing with autodecrement is used with LAR to load the current auxiliary register, the new value of the auxiliary register is not decremented as a result of instruction execution. The analagous case is true with autoincrement.

LAR and its companion instruction SAR (store auxiliary registers) should be used to store and load the auxiliary during subroutine calls and interrupts.

If an auxiliary register is not being used for indirect addressing, LAR and SAR enable it to be used as an additional storage register, especially for swapping values between data memory locations.

LARK			L	oad	Auxi	liary	Reç	giste	rw	/ith	Eigl	ht-E	Bit C	Con	stai	nt			L	41	RK
Assembler	Synta	X:	I	[<lat< th=""><th>oel></th><th>]</th><th>LAF</th><th>RK</th><th>•</th><th><ai< th=""><th>۲>,</th><th><c< th=""><th>ons</th><th>tan</th><th>t></th><th></th><th></th><th></th><th></th><th></th><th></th></c<></th></ai<></th></lat<>	oel>]	LAF	RK	•	<ai< th=""><th>۲>,</th><th><c< th=""><th>ons</th><th>tan</th><th>t></th><th></th><th></th><th></th><th></th><th></th><th></th></c<></th></ai<>	۲>,	<c< th=""><th>ons</th><th>tan</th><th>t></th><th></th><th></th><th></th><th></th><th></th><th></th></c<>	ons	tan	t>						
Operands:	0 A	≤ co R =	nstar 0 or	nt ≤ 2 1	255			·										•			
Operation:	cc	onsta	nt→/	AR																	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
Direct:	0	1	1	1	0	AUX REG	(ILI SIST	AR) ER	1	8	-817		ONS	TAI	١T						
																	_				

Description: The eight-bit positive constant is loaded into the designated auxiliary register right-justified and zero-filled (i.e., sign-extension suppressed).

Words: 1 Cycles: 1

Example: LARK AR0,21

BEFORE INSTRUCTION

AR0

0

AFTER INSTRUCTION

Notes: This instruction is useful for loading an initial loop counter value into an auxiliary register for use with the BANZ instruction.

If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No error message will be given.

AR0

LARP				Loa	d Au	xiliar	y R	egis	ster	Po	inte	r Im	nme	dia	te		LARP
Assembler S	ynta	x:	[<lab< th=""><th>el>]</th><th></th><th>LAF</th><th>RP -</th><th><</th><th>< co</th><th>nsta</th><th>nt></th><th></th><th></th><th>•</th><th></th><th>н н н н н</th></lab<>	el>]		LAF	RP -	<	< co	nsta	nt>			•		н н н н н
Operands:	0 ≤	cons	tant	≤1,													
Operation:	con	stant	A←A	RP													
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	n de la casa de la cas En la casa de la casa d
	0	1	1	0	1	0	0	0	1	0	0	0	0	0	0	1-BIT CONSTANT	

Description: Load a one-bit constant identifying the desired auxiliary register into the auxiliary register pointer.

Words: 1 Cycles: 1

Example: LARP 1 Any succeeding instructions will use auxiliary register 1 for indirect addressing.

Note: This instruction is a subset of MAR.

LDP

Assembler S Direct Ad Indirect A	Synta dress ddres	x: ing: ssing	[; [<lai <lai< th=""><th>oel> oel></th><th>]</th><th>LDF LDF</th><th></th><th>< {*</th><th>dm: *</th><th>a> + *</th><th>- }</th><th>[,<!--</th--><th>ARI</th><th>[<°</th><th></th></th></lai<></lai 	oel> oel>]	LDF LDF		< {*	dm: *	a> + *	- }	[, </th <th>ARI</th> <th>[<°</th> <th></th>	ARI	[<°	
Operands:	0 A	≤dm RP =	a≤1 0 or	27 1												
Operation:	LS	SB of	(dm	a) →	DP (DP =	0 c	or 1)		•						
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Direct:	0	1	1	0	1	1	1	1	0		DA		ME DRE	MO ESS	RY	
Indirect:	0	1	1	0	1	1	1	1	1		SEE	E SE	CTI	ON	3.3	

Description: The least significant bit of the contents of the specified data memory address is loaded into the data memory page pointer register (DP). All higher-order bits are ignored in the data word. DP = 0 defines page 0 which contains words 0-127. DP = 1 defines page 1 which contains words 128-143.

Words: 1 Cycles: 1

Example:	LDP	DAT1	LSB of location DAT1 is loaded into data page pointer.
	or		
	LDP	*,1	LSB of location currently addressed by auxiliary register is loaded into
			data page pointer. ARP is set to one.

LDPK			-		Load	d Da	ta P	age	Poir	nter	Imm	edia	te			LD	PK
Assembler S	yntax:		[<	(lab	el>]		LDP	РК	<	cons	stant	:>					n an
Operands:	0≤0	const	tant	≤1													
Operation:	con	stant	t→D	P													
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	1	1	0	1	1	1	0	Ó	0	0	0	0	0	0	1-BIT CONSTANT	
	L																

Description: The one-bit constant is loaded into the data memory page pointer register (DP). DP = 0 defines page 0 which contains words 0-127. DP = 1 defines page 1 which contains words 128-143.

Words: 1 Cycles: 1

Example: LDPK 0 Data page pointer is set to zero.

LJ 1			<u> </u>		Loa	ad St	tatu	s fr	om	Dat	a M	em	ory		-	
Assembler S Direct Ad Indirect A	Synta dress ddres	x: ing: ssing	 :	<lai <lai< th=""><th>pel > pel ></th><th>]]</th><th>LST LST</th><th>-</th><th>< {*</th><th>dm: *-</th><th>a> + *</th><th>-}</th><th>[,<</th><th>ARI</th><th>?>]</th><th></th></lai<></lai 	pel > pel >]]	LST LST	-	< {*	dm: *-	a> + *	-}	[,<	ARI	? >]	
Operands: •	0: Al	≤dma RP=0	a≤1: 0 or	27 1												
Operation:	d)	ma)-	+stat	us b	its											
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Direct:	0	1	1	1	1	0	1	1	0		DA	ATA AD	ME DR	MO ESS	RΫ́	
Indirect:	0	1	1	1	1	0	1	1	1		SEE	E SE	CT	ON	3.3	

Description: Restores the contents of the status register as saved by the store status (SST) instruction from a data memory word.

Words: 1 Cycles: 1

Example: LARP 0 LST *,1

The data memory word addressed by the contents of auxiliary register 0 replaces the status bits. The auxiliary register pointer becomes 1.

Note: This instruction is used to load the TMS32010's status bits after interrupts and subroutine calls. These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Auxiliary Register Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. The Interrupt Mask bit cannot be changed by the LST instruction. These bits were stored (by the SST instruction) in the data memory word as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ov	OVM	INTM	1	1	1	1	ARP	1	1	1	1	1	1	1	DP

See SST.

LT						Ĺ	bad	TR	egis	ter	•								LT
								<u> </u>											
Assembler Sy Direct Addro Indirect Add	ntax: essin Iressi	g: ing:	[< [<	labe labe	>] >]	L1 L1	r F F	< {*	dma ' *-	ı> ⊦ *	· - }	[, </td <td>ARF</td> <td>^>]</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ARF	^ >]					
Operands:	0≤ ARI	dma: P=0	≤12 or 1	7															
Operation:	(dm	na)→ ⁻	τ.																
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Direct:	0	1	. 1	0	1	0	1	0	0		DA	TA ADI	ME DRE	MO	RY				
Indirect:	0	1	1	0	1	0	1	0	1		SEE	E SE	CTI	ON	3.3				
Description:	-T loa	ads th	ne T r	egiste	er wit	h the	cor	iten	ts of	the	e spe	ecifie	əd d	ata	mer	nory	y loc	ation	
Words: 1 Cycles: 1																			
Words: 1 Cycles: 1 Example: LT		D	AT24	, i L															
Words: 1 Cycles: 1 Example: LT or LT		D. *	AT24	۰ ۱	lf o	currer	nt au	ıxilia	ary r	egis	ster (cont	ains	s the	e val	ue 2	24.		
Words: 1 Cycles: 1 Example: LT or LT		D. * BEF(AT24 DRE	INST	lf o RUC	currer	nt au	ıxilia	ary r	egis	ster	cont AF	ains	s the R IN	e val	ue 2 RU(24. CTIC	DN	
Words: 1 Cycles: 1 Example: LT or LT DATA MEMOI 24	, ۲۲ [D. * BEF(AT24 DRE	INST	lf o RUC	Currer TION 62	nt au	ıxilia	D/ MEI	egis ATA 101 24	ster (A RY	cont AF	TE	s the	e val	ue 2 RU(24. CTIC	DN 62	

LTA			Loa	ad T	Regi	ster	and	Ac	cum	nulate Previo	us Produ	ct	-	l	TA.
Assembler S Direct Ad Indirect A	Synta dress ddre:	ix: sing: ssing		[< a [< a	bel> bel>]	LT/ LT/	а а	< {*	:dma> * *+ *-}[,	<arp>]</arp>				
Operands:	0 A	≤dm RP=	a≤1 0 or	27 1											
Operation:	(d (A	lma)- \CC)	→ T + (P)	→AC	с										
Encoding:	15	14	13	12	11	10	9	8	7	6 5 4 3	3 2 1	0			
Direct:	0	1.	1	0	1	1	0	0	0	DATA N ADD	IEMORY RESS		-	na 1999 - 1997 - Agrico 1997 - Agrico	
Indirect:	0	1	1	0	1	1	0	0	1	SEE SECT	ION 3.3				
Description:	The P re mul	e con egiste lator,	tents er, co and	of th ntain the re	e spe ing th esult i	cified ne pr s sto	d dat evio red i	ta m us p n th	iemo prodi ie ac	ory address are uct of the mul	e loaded i tiply oper	nto the ation, i	T regis s adde	ster. Th d to th	en, the e accu-

Words: 1 Cycles: 1

Example: LTA DAT24

or

LTA *

If current auxiliary register contains the value 24.

DATA	BEFORE INSTRUCTION	ΝΑΤΑ	AFTER INSTRUCTION
MEMORY	62	MEMORY	62
		24	
Т	3	Т	62
Ρ	15	Р	15
		n di kara	
ACC	5	ACC	20
	· · · · · · · · · · · · · · · · · · ·	•	

Note: This instruction is a subset of the LTD instruction.

Assembler S Direct Add Indirect Ad	ynta x Iressi ddres	k: ng: sing:]]	<lab <lab< th=""><th>el >] el >]</th><th></th><th>_TD _TD</th><th></th><th><c {*</c </th><th>ima * ⊣</th><th>i> ⊦ *</th><th>- } </th><th>,<!--</th--><th>٩RP</th><th>·>]</th><th></th></th></lab<></lab 	el >] el >]		_TD _TD		<c {*</c 	ima * ⊣	i> ⊦ *	- }	, </th <th>٩RP</th> <th>·>]</th> <th></th>	٩RP	·>]	
Operands:	0 : Af	≤dma RP=(a≤1:)or	27 1												
Operation:	(di (A (di	ma) - .CC) ma) -	- T + (P) - dma	→AC a+1	С											÷.,
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Direct:	0	1	1	0	1	0	1	1	0		DA		ME DR	MO ESS	RY	
	, 			· ·												
Indirect:	0	1	1	0	1	0	1	1	1		SE	e si	СТ	ION	3.3	

Description: The T register is loaded with the contents of the specified data memory address. Then, the contents of the P register are added to the accumulator. Next, the contents of the specified data memory address are transferred to the next higher data memory address.

Words: 1 Cycles: 1

Example: LTD DAT24

or

LTD *

IF current auxiliary register contains the value 24.

MAR

Assembler	Synt	ax:		[<]8	abel >	•]	M	AR		{*	* +	*-	· }[,	<a< th=""><th>RP:</th><th>>]</th><th></th><th></th><th></th><th></th><th></th><th></th></a<>	RP:	>]						
Operands:		ARP =	=0 oi	r 1																		
Operation:) i	Curre liary	nt au regis	uxilia ter p	ry re ointe	giste er is l	r is Ioac	incı led	rem with	ente n th	ed, e n	dec ext	rem ARf	ent P	ed,	or r	ema	ins t	he s	ame.	Au	X-
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0						
Direct:	0	1	1	0	1	0	0	0	0		DA	ATA AD	ME DRE	MO ESS	RY]					
Indirect:	0	1	1	0	1	0	0	0	1		SEE	SE	СТІ	ON	3.3]					
Description	: Thi regi	s inst isters	ruction and	on ut to ch	ilizes ange	the i the a	ndir uxil	ect iary	add regi	ress ster	ing poi	moo nter	de to . It h	o in Ias I	cren no o	nent	t/dec r effe	reme ct.	ent ti	he au	ıxilia	ry
Words: 1 Cycles: 1																						
Example:	MAI MAI MAI	R *,1 R *_ R *+,	,0		Load Deci Incre	d ARI remer emen	Pwi ntc tcu	ith 1 urrei rren	nt au t au	uxilia xilia	ary i ry re	regis egist	ster (/	(in 1 AR1	this), le	case oad	e, Ar Arp	1) with	n 0.			

Note: In the direct addressing mode, MAR is a NOP. Also, the instruction LARP is a subset of MAR (i.e., MAR *,0 performs the same function as LARP 0).

3-42

MPY				Μι	iltiply	/	MPY
Assembler Synt Direct Addres Indirect Addre	ax: sing: essing:	<label></label>	>] N >] N	ИРҮ ИРҮ	<0 {*	ma> * + * - }[, <arp>]</arp>	
Operands: ()≤dma≤1 ARP=0 or	27 1				N	
Operation: (T) x (dma)	→P					
Encoding: 15	5 14 13	12 1	1 10	98	7	6 5 4 3 2 1 0	
Direct: () 1 1	0	1 1	0 1	0	DATA MEMORY ADDRESS	
Indirect:) 1 1	0	1 1	0 1	1	SEE SECTION 3.3	•
Description: Th ad Words: 1 Cvcles: 1	ne contents dress, and	of the T the resul	registe t is stor	rarem redint	ultipli he P i	ed by the contents of the s register.	specified data memory
Example: MPY [or MPY *	DAT13	ent auxil	iary reg	ister co	ntain	s the value 13.	
DATA MEMORY 13	BEFORE	INSTRU	CTION 7]	DA MEM 1	AFTER INSTRUCT	TION 7
т			6]	. 1		6
Р	[36] .	F	,	42
Note: During an in hardware p following in APAC, or S	nterrupt, al rotection a struction. F PAC.	l register gainst se For this re	s excep rvicing eason, it	t the P an inte t is adv	regis errupt isable	ter can be saved. However between an MPY or MPY to follow MPY and MPYK	r, the TMS32010 has K instruction and the with LTA, LTD, PAC,

No provisions are made for the condition of $>8000 \times >8000$. If this condition arises, the product will be > C0000000.

MPY						M	lulti	ply	lmr	ned	iate	•						N	/ F	Þγ	K
Assembler S	Synta	x:	. [<lab< th=""><th>el>]</th><th></th><th>MP</th><th>ŕκ</th><th></th><th><co< th=""><th>nsta</th><th>ant</th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></co<></th></lab<>	el>]		MP	ŕκ		<co< th=""><th>nsta</th><th>ant</th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></co<>	nsta	ant	>								
Operands:	(-2	12) ≼	cons	tant	< 212	2			•	ŀ											
Operation :	(T)	хсо	nstai	nt→P)															· .	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
	1	0	0				13	3-BI	ТС	ONS	TA	NT]				

Description: The contents of the T register are multiplied by the signed 13-bit constant and the result loaded into the P register.

Words: 1 Cycles: 1

3

Example: MPYK -9

	BEF	ORE INS	TRUC	TION			AF	TER INS	TRUC	TION
Т		·		7		Т				7
										1. A
Ρ				42	· .	P				-63

Note: No provision is made to save the contents of the P register during an interrupt. Therefore, this instruction should be followed by one of the following instructions: PAC, APAC, SPAC, LTA, or LTD. Provision is made in hardware to inhibit interrupt during MPYK until the next instruction is executed.

NOP						No	o Op	oera	tior	כי נ	-	- 				a.		R	10	P
Assembler Sy	ntax:		[< a	bel>]	NOP)	· ·	•						-		· .		· ···	
Operands:	Nor	ne																		
Operation:	No	ne																	· · ·	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0				
Description:	No op	erati	on is j	perfo	rmed															
Words: 1 Cycles: 1																				

Example: NOP

Note: NOP is useful as a "pad" or temporary instruction during program development.

				OR	with	Lov	v-01	der	Bit	s of	i Ac	cur	nul	ato	r				-		
Assembler S Direct Ad Indirect A	Synta dress ddres	x: ing: ssing:	: [<lab <lab< th=""><th>oel>] oel>]</th><th></th><th>OR OR</th><th></th><th><d {* </d </th><th>ma: * +</th><th>> *-</th><th>- }[,</th><th>,<a< th=""><th>RP</th><th>·></th><th>]</th><th></th><th></th><th></th><th></th><th></th></a<></th></lab<></lab 	oel>] oel>]		OR OR		<d {* </d 	ma: * +	> *-	- }[,	, <a< th=""><th>RP</th><th>·></th><th>]</th><th></th><th></th><th></th><th></th><th></th></a<>	RP	·>]					
Operands:	0: Al	≤dm RP = (a≤1 0 or	27 1																	
Operation:	Ze	ero. (DR. H	nigh-c	order	ACC	C bit	ts: (dma	a). (OR.	lov	v-or	der	A		b	its-	+ A (сс	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2		1	0				
Direct:	0	1	1	1	1	0	1	0	0		DA	ATA AD	ME DR	ESS	DR S	Y					
Indirect:	0	.1	1	1	1	0	1	0	1		SE	e Si	ECT	101	13	.3]			

Description The low-order bits of the accumulator are ORed with the contents of the specified data memory address concatenated with all zeroes ORed with the high-order bits of the accumulator. The result is stored in the accumulator. The OR operation follows the truth table below.

DATA MEMORY BIT	ACC BIT (BEFORE)	ACC BIT (AFTER)
0	0	0
0	· 1	1
1	0	1
. 1	. 1	1

Words: 1

Cycles: 1

Example: OR DAT88

or OR *

Where current auxiliary register contains the value 88.

Note: This instruction is useful for comparing selected bits of a data word.

OUT

Assembler S Direct Add Indirect Ad	yntax ressir Idress	: ng: sing:	[<	<labe< th=""><th>e >] e >]</th><th>0</th><th>UT</th><th></th><th><c {*</c </th><th>dma * +</th><th>>,· *</th><th><p <br="">- },</p></th><th>A> <p< th=""><th>A></th><th>[,<</th><th>AR</th><th>P>]</th><th></th></p<></th></labe<>	e >] e >]	0	UT		<c {*</c 	dma * +	>,· *	<p <br="">- },</p>	A> <p< th=""><th>A></th><th>[,<</th><th>AR</th><th>P>]</th><th></th></p<>	A>	[,<	AR	P>]	
Operands:	0≤ 0≤ AR	dma PA ≤ P=0	≤12 ≤7 or 1	7														
Operation:	PA (dn	→ ac na)→	ldres data	s line bus	es PA D15	2-P/ -D0	۹0											
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Direct:	0	1	0	0	· 1	P AD	OR DRE	T ESS	0		DA	ATA AD	ME DRI	MO ESS	RY]	
Indirect:	0	1	0	0	1	P AD	OR DRE	T ESS	1		SEE	ESE	CTI	ON	3.3]	

Description: The OUT instruction transfers data from data memory to an external peripheral. The first cycle of this instruction places the port address onto address lines A2/PA2-A0/PA0. During the same cycle, WE goes low and the data word is placed on the data bus D15-D0.

Words: 1

Cycles: 2

Example:	OUT 120,7	Output data word stored in memory location 120 to
		peripheral on port address 7.
	OUT *,5	Output data word referenced by current auxiliary
		register to peripheral on port address 5.

Notes: When the TMS32010 sends the port address onto the three LSBs of the address lines, the nine MSBs are set to zero.

The OUT instruction causes the $\overline{\text{WE}}$ line to go low during the first clock cycle of this instruction's execution. MEN remains high during the first cycle.

4C
a ta sa

Description: The contents of the P register resulting from a multiply are loaded into the accumulator.

Words: 1 Cycles: 1

3

Example: PAC

Р	
	144
ACC	144

POP		•		Po	ор То	op of	Sta	ck t	io A	ccu	mu	lato	or						POP
Assembler Sy	ntax:		[<	abel	>]	PC)P			1.1 x							· · ·		
Operands:	No	ne															-		
Operation:	(тс)S) →	ACC																
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	0	1	1	1	1	1	1	1	1	0	0	1	1	1	0	1			
					•			-					• •						

Description: The contents of the top of stack are loaded into the accumulator. The next element on the stack becomes the top of the stack.

Words: 1 Cycles: 2

Example: POP

	BEFORE INSTRUCTION		AFTER INSTRUCTION
ACC	82	ACC	45
STACK	45 16 7 33	STACK	16 7 33 33

Note: The 12 bits of the stack are put into the accumulator in bits 11 through 0, and bits 31 through 12 are zeroed. There is no provision to check stack underflow.

PUSH PUSH **Push Accumulator onto Stack Assembler Syntax:** [<label>] PUSH **Operands:** None **Operation:** (ACC) →TOS **Encoding:** Description: The contents of the lower 12 bits (11-0) of the accumulator are pushed onto the top of the hardware stack. Words: Cycles: 2 **Example: PUSH BEFORE INSTRUCTION** AFTER INSTRUCTION ACC ACC 5 STACK STACK Ō Note: There is no provision for detecting a stack overflow. Therefore, if the stack is already full, the

contents of the bottom stack element will be lost upon execution of PUSH.

RET	Return from Subroutine													 RET				
Assembler Sy	ntax:		[<	abel	>]	RE	Т											
Operands:	No	ne																
Operation:	(тс)S) →	PC															an an an Arta An Arta An Arta
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	1]	F8D

Description: The top element is popped off of the stack and loaded into the program counter.

Words: 1 Cycles: 2

Example: RET

Note: This instruction is used in conjunction with CALL and CALA for subroutines.

 (γ)

ROVM Reset					Clear) Overflow Mode Register										ROVM							
Assembler Sy	/ntax:	[<	label	>]	RC)∨M	1						-				er di ja Titu Si di jag					
Operand:	None																					
Operation:	0→0\	/M															•					
Encoding:	15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0							
	0	1 1	1	1	1	1	1	1	0	0	0	1	0	1	0		•					

Description: This instruction will reset the TMS32010 from the overflow mode it was placed in by the SOVM instruction. The overflow mode will set the accumulator and the ALU to their highest positive/negative value when an overflow occurs.

Words: 1 Cycles: 1

Example: ROVM

Note: See SOVM.

SACH

SACH

Assembler Syntax: Direct Addressing: Indirect Addressing:			[< [<	abel abel	>] >]	SAC SAC	H H	<dma>[,<shift>] {* *+ *-}[,<shift>[,<arp>]]</arp></shift></shift></dma>									
Operands:	0≤d shift ARP	ma≤ =0,′ =0 c	127 1, or or 1	4 4													
Operation:	(AC	C) x	2 – (16-sl	nift) -	≻ dma					2 - 1						
Encoding:	15	14	13	12	1,1	10 9	8	7	6	5	4	3	21	0			
Direct:	0	1	0	1	1	SHI	FT	0		DA	TA M ADD	NEM RES	IORY SS]		
Indirect:	0	1	0	1	1	SHI	FT	1		SEE	SEC	стю	N 3.:	3]		
Description:	Store t 1, or 4.	he up	oper l	half c	of the	accum	ulato	r in (data	mer	nory	v wit	h shi	ft. Th	ne sh	ift c	an only
Words: 1 Cycles: 1																	
Example: SA or SA	СН D СН *,	AT7(D,1 If cu	irrent	auxil	iary reg	jister	cont	ains	the	valu	e 70	• • .				
	BE	FOR	EIN	STRU	JCTIO	ON				A	FTE	RIN	ISTR	UCT	ION		
ACC		>0	42	08	0 0	1		AC	2		>0	4	20	80	01]	
DATA MEMOR 70	Y					6	M	DAT EMC 70	A DRY			>0	8 (4 1]	

Notes: The SACH instruction copies the entire accumulator into a shifter. It then shifts this entire 32-bit number 0, 1, or 4 bits and copies the upper 16 bits of the shifted product into data memory. The accumulator itself remains unaffected.

For example, the following instruction sequence will store > 8F35 in data memory location DAT1. Location DAT2 contains the number > A8F3. DAT3 contains > 5000.

ZALH	DAT2	ACC =	>A8F30000
ADDS	DAT3	ACC =	>A8F35000
SACH	DAT1,4	DAT1 =	>8F35
		ACC =	> A8F35000

3

be 0,

S	Α	Cl	21. 21.

Direct Addressing: Indirect Addressing:			[<label>] SACL [<label>] SACL</label></label>				<dma>[,<shift>] {* *+ *-}[,<shift>[,<arp>]]</arp></shift></shift></dma>										
Operands:	0≤c ARP Shif	dma≤ ?=0 c t = 0	≤127 or 1	•													
Operation:	(AC	C bit	s 15 t	hrou	gh 0)	→ dr	na										
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Ó	
Direct:	0	1	0	1	0	0	0	0	0		DA	ATA AD	ME DR	MO	RY		
Indirect:	0	1	0	1	0	0	0	0	1		SEE	E SE	СТІ	ON	3.3]
Description: St	ore t	he lov	N-Orc	ler bi	ts of t	he ad	ccui	nula	ator	in d	ata	men	nory	<i>ı</i> .			
Words: 1 Cycles: 1																	
Example: SAC or SAC	L ·	DAT *	71		lf cur	rent	aux	iliary	/ reg	jiste	er co	ontai	ns t	he v	valu	e 7 [.]	1.
	BEI	FORE	INS	TRU	стіо	N					Α	FTE	RI	NST	ſRU	СТ	ION
ACC	-	>0	4 2	08	0 0	1		А	CC			>0) 4	2 (08	0	01
DATA MEMORY 71						7		D. ME	ATA MO 71	N RY			>8	0	0	1	

Note: There is no shift associated with this instruction, although a shift code of zero MUST be specified if the ARP is to be changed.

3-54

3

Assembler Sy Direct Add Indirect Ad	yntax ressir Idress	: ng: ing:	[< [<	labe labe	>] >]	S, S,	AR AR		<a <a< th=""><th>R> R></th><th>,<(,{*</th><th>dma * </th><th> > - *</th><th>- }[</th><th>,<!--</th--><th>٩RP</th><th>>]</th></th></a<></a 	R> R>	,<(,{*	dma *	> - *	- }[, </th <th>٩RP</th> <th>>]</th>	٩RP	>]
Operands:	0≤ AR AR	dma =0 c P=0	≤12 or 1 or 1	7													
Operation:	(AF	ר (א	dma														
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Direct:	0	0	1	1	0	AUX REG	(ILI) IST	AR) ER	0		DA	AD	ME DRI	MO ESS	RY		
Indirect:	0	0	1	1	0	AUX REG		AR) ER	1		SEI	E SE	CT	ION	3.3		

Description: The contents of the designated auxiliary register are stored in the specified data memory location.

Words: 1

Cycles: 1

Example: SAR **AR0, DAT101**

WARNING

Special problems arise when SAR is used to store the current auxiliary register with indirect addressing if autoincrement/decrement is used.

(continued)

LARP AR0 LARK AR0,10 SAR AR0,*+ or SAR ARO,*-

In this case, SAR AR0, * + will cause the value 11 to be stored in location 10. SAR AR0, * - will cause the value 9 to be stored in location 10.

Note: For more information, see LAR.

SOVM	Set Overflow Mode Register							SOVM							
Assembler Syntax:	[<label>]</label>	SOVM													
Operands:	None														
Operation:	1→OVM														
Encoding:	15 14 13	12 11	10	9 8	76	5	4	3	2	1	0				
	0 1 1	1 1	1	1 1	1 0	0	0	1	0	1	1				

Description: When placed in the overflow mode, the TMS32010 will set the accumulator and ALU to their highest positive/negative value if an overflow/underflow occurs. The highest positive value is >7FFFFFFF, and the lowest negative value is >80000000.

Words: 1 Cycles: 1

Example: SOVM

SPAC	Subtract P Register from Accumulator											SPAC					
Assembler Syntax:	[<label>]</label>	SP	AC								/						
Operands:	None																
Operation:	(ACC) – (P)	→ A(CC													•	
Encoding:	15 14 13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	0 1 1	1	1	1	1	1	.1	0	0	1	0	0	0	0]		

Description: The contents of the P register are subtracted from the contents of the accumulator, and the result is stored in the accumulator.

Words: 1 Cycles: 1

Example: SPAC

	AFTER IN	STRUCTION								
Ρ		36								
ACC		24								
	· .									
Assembler Sy Direct Addro Indirect Add	ntax: essing tressir	: ng:	[< [<	abel: abel:	>] >]	SS SS	T T	< {	(dm * *	a> + * - }[, <arp>]</arp>
--	----------------------------	-------------	-------------	----------------	----------	----------	--------	--------	------------	--------------------------------
Operands:	0≤d ARP	ma≤ =0 c	≦15 or 1	· ·						
Operation:	stat	us bit	ts → s	specif	ied d	ata m	nem	ory	wor	d on page 1
Encoding:	15	14	13	12	11	10	9	8	7	6 5 4 3 2 1 0
Direct:	0	1	1	1	1	1	0	0	0	DATA MEMORY ADDRESS
Indirect:	0	1	1	.1.	1	1	0	0	1	SEE SECTION 3.3

- Words: 1 Cycles: 1
- Example: SST DAT1 or SST *,1

IF current auxiliary register contains the value 1.

Note: This instruction is used to load the TMS32010's status bits after interrupts and subroutine calls. These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Interrupt Mask (INTM) bit, Auxiliary Register Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. These bits are stored (by the SST instruction) in the data memory word as follows:

2

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OV	OVM	INTM	1	1	1	1	ARP	1	1	1	1	1	1.	1	DP

Note: See LST.

SUB	· · · ·			1	Subtr	act fi	rom A	CCU	imulat	orw	ith Sł	nift				S	UB
Assembler Direct Ac Indirect A	Synt Idres Addre	ax: sing: essing	g:	[< a [< a	abel > abel >]	SUB SUB		<dma {* *+</dma 	>[,< *-	shift }[, <s< th=""><th>>] shift;</th><th>>[,<</th><th>ARP></th><th>-))</th><th></th><th></th></s<>	>] shift;	>[,<	ARP>	-))		
Operands:)≤sh)≤dn \RP=	iift ≤ na≤ ⊧0 or	≤15 127 r 1													
Operation:	(A(CC) -	- [(dr	ma) >	< 2 sh	ift] →	ACC										
Encoding:	15	14	13	12	11	10	98	, 7	65	4	3 2	2 1	0				
Direct:	0	0	0	1	5	SHIFT	•	0	D	ATA AD	MEM DRES	ORY S					
Indirect:	0	0	0	1	5	SHIFT	•	1	S	EE S	ECTIC	DN 3.	3		i i		
Description:	Con Duri exte	tents ing sl endec	s of d hiftin I. Th	lata n ng, th ne res	nemoi e low sult is	ry adc -orde store	lress r bits ed in 1	are I of c	eft-shi lata ar accum	fted a e zer ulato	and su o-fille vr.	ubtra d and	cted d the	from t high-	he a orde	ccumul r bit is	ator. sign-
Words: 1 Cycles: 1															2 A 		
Example: SL	JB	D	OAT5	9				4. ¹⁵									
or SL	JB	*			lf c	urrent	: auxil	ary	registe	r con	tains t	he va	alue 5	9.			
		BEF	ORE	INST	RUC	TION				A	FTER	INS ⁻	FRUC	TION			
ACC	. [36		·	ACC				۰.	19)		
DATA MEMOI	A RY [17		D ME		· _	· .			17]		

SUBC

Conditional Subtract

S	U	B	С

Assembler Synt Direct Addres Indirect Addre	ax: sing: essing:	[] ^	<lab <lab< th=""><th>el>] el>]</th><th></th><th>SUB(SUB(</th><th></th><th>< {*</th><th>dm: *</th><th>a> + '</th><th>• - }</th><th>[,<</th><th>ARI</th><th>P>]</th><th></th><th></th></lab<></lab 	el>] el>]		SUB(SUB(< {*	dm: *	a> + '	• - }	[,<	ARI	P>]		
Operands:	0 ≤ dn ARP =	na ≼ 1 ⊧ 0 oi	1 27 , r 1													
Operation: (/	ACC) -	-[(dn	na) x	215]→ad	lder (out								
	lf (l The Else	high- en (ac e (AC	order dder (C) ×	bits outpu 2 →	of ad t) * 2 ACC	der o + 1	outp → /	ut) 2 ACC	≥ 0							
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Direct:	0	1	1	0	0	1	0	0	0		DA	ATA AD	ME DR	MO ESS	RY	
Indirect:	0	1	1	0	0	1	0	0	1		SE	E SI	ECT	ION	3.3	

Description: This instruction performs conditional subtraction which can be used for division in algorithms.

Words: 1 Cycles: 1

Note: The next instruction after SUBC cannot use the accumulator.

SUBH

Assembler Sy Direct Addr Indirect Add	ressin dress	: ig: ing:	[<	labe labe	>] >]	S S	UBI UBI	4	< {*	dm; *	a> + *	- }[,<	ARF	? >]				a an ta Tana ta Tana ta Ta	: : : : :
Operands:	0≤ ARI	dma P=0	≤12 or 1	7												•			4
Operation:	(AC	C) —	[(dn	na) ×	216] →	ACO	2										· · · ·	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4 3	2	1	0				
Direct:	0	1	1	0	0	0	1	0	0		DAT	TA MI ADDR	ESS	RY					
Indirect:	0	1	1	0	0	0	1	0	1		SEE	SECT	ION	3.3	- - -				
Description: S a Words: 1 Cycles: 1	Subtra	act th nulato	ne co or. Th	onten e resi	ts of ult is :	spe store	ecifie ed in	ed c the	lata acc	me umu	mory Ilator	loca	tion	from	the	uppe	r ha	lf of	the
Example: SUE or	BH	DA	T33														÷		
SUE	BH	*			If cu	rrent	aux	iliar	y reę	giste	r cor	ntains	the v	alue	33.				2 ³⁵ 24
DATA MEMORY 33	BEI	FORE	E INS	TRU 15	СТІО	5 0		D ME	AT MO 33	4 RY	AF 31	TER	INST	RUC	TION 5] 0			
ACC			17			0			ACC				12	:	0				

Note: The SUBH instruction can be used for performing 32-bit arithmetic.

3-62

Assembler Syr Direct Addre Indirect Add	ntax: essin ressi	g: ng:	[< [<	labe labe	>] >]	SI	JBS UBS		<) {*	dma * ⊣	a> ⊦ *	- }[, </th <th>٩RF</th> <th>?>]</th> <th></th> <th></th> <th></th> <th></th> <th>· .</th> <th></th> <th></th>	٩RF	?>]					· .		
Operands:	0≤0 ARF	dma P=0	≤12 or 1	7															:			
Operation:	(AC	C) —	(dm	a) →	ACC																	
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_					
Direct:	0	1	1	0	0	0	1	1	0		DA	TA AD	ME DRE	MO	RY		-					
Indirect:	0	1	1	0	0	0	1	1	1		SEE	SE	CTI	ON	3.3]					
Description:	Subt exter comp	ract ision bleme	conto supp ent in	ents presse teger	ofa ed.Th	spec ne da	cified Ita is	d da s tre	ata eateo	mer 1 as	mory a 1	/ lo 6-bi	catio it po	on ositi	fron ve i	n a nteç	ccu jer	mula rath	ator er tł	with nan a	n s ntv	ign- vo's
Words: 1 Cycles: 1											. *											
Example: SU	BS	[DAT6	51																•		
or SUI	BS	÷			lf c	urren	t au	xilia	ry re	gist	ter c	onta	ains	the	val	ue 6	61.					
	В	EFO	RE II	NSTR	UCT	ION	1.1					AF	ΓER	INS	STR	UC	TIC	N				
ACC		>0	00) O F	10	5]		A	CC	[>	>0	0 0	0	0 1	0	2				
DATA MEMOR 61	Y [>F	0 0) 3			N	DA NEN 6	TA IOR 1	Ŷ [>	>F	0	0	3					

			Tat	ole Rea	d				I	BLR
Assembler Syn Direct Addre Indirect Add	ntax: essing: [ressing: [[<label>] [<label>]</label></label>	TBLR TBLR	<0 {*	ma> *+ *-	- }[,<#	ARP>]			
Operands:	0≤dma≤1 ARP=0 or	27 1								
Operation:	(PC) + 1 → (ACC) → Podata bus D' $(TOS) → F$	 TOS C → address 15 through E PC 	lines A1 0 → dma	l throu	gh A0					
Encoding:	15 14 1	3 12 11	10 9	8 7	6 5	4 3	2 1	0		
Direct:	0 1	1 0 0	1 1	1 0	DA		EMORY ESS			
					••••••••••••••••••••••••••••••••••••••					
Indirect:	0 1	1 0 0	1 1	1 1	SEE	E SECT	ION 3.3			
e» in	cternal ROM, struction is as Prefetch:	external RA s follows: MEN goe is fetched	M) to the slow and.	e spec d the 1 evious	BLR ins	ation in truction	n data r on opcoe executin	nemory. de g.	The th	nree-cycle
	Cycle 1:	MEN goe tion is pla not read.	s low. Th aced onto Program	he add o addro count	ress of t ess bus,	he nex but da	t instru ata bus	C- is		
		Twelve L loaded in	SBs of to the pi	the action rogram	counte	or con er.	tents a	re		
	Cycle 2:	MEN goe buffered tion is rea tion. The the stack	s low. Co to addres d and is c new pro	ontents is lines copied i gram d	of prog Addres nto spec counter	ram co ss merr cified R is pop	unter an hory loca AM loca ped from	re a- n		
	Cycle 3:	MEN goe prefetche	es low. d.	Next	instruct	ion op	ocode i	S		
Words: 1 Cycles: 3								1. **		

Example: TBLR DAT4 TBLR * If current auxiliary register contains the value 4.

(Continued)

BLR			
	BEFORE INSTRUCTION	4	AFTER INSTRUCTION
ACC	17	ACC	17
PROGRAM MEMORY	306		306
17 DATA MEMORY 4	75		306

Note: This instruction is useful for reading coefficients that have been stored in program ROM, or timedependent data stored in RAM.

TBLR

TBLW	TBLW						Tal	ble	Writ	te						-	Т	B	_ N	
Assembler S Direct Ado Indirect Ad	yntax: dressing ddressi	g: ng:	[< [<	label label	>] >]	TE	BLW BLW	1	<) {*	dma * +	1> - *	- }I	,<,	ARF	? >]					
Operands:	0≤c ARP	lma≞ '=0 o	≤127 or 1	7								•								
Operation:	(PC) (AC((dma (TOS	+ 1 C) → a)→c S)→F	→ T PC - lata l PC	OS ≁ado bus[dress D15 1	lines throu	A11 Igh	l th D0	roug	jh A	0						•			
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			•	
Direct:	0	1	1	1	1	1	0	1	0		DA	ATA AD	ME DRI	MO ESS	RY					
Indirect:	0	1	1	1	1	1	0	1	1		SE	E SE	СТІ	ON	3.3					

Description: This instruction transfers a word from the specified location in data memory to a location in external program RAM. The three-cycle instruction is as follows:

Prefetch: MEN goes low and the TBLR instruction opcode is fetched. The previous instruction is executing.

Cycle 1: MEN goes low. The address of the next instruction is placed onto address bus, but data bus is not read. Program counter is pushed onto stack. Twelve LSBs of the accumulator contents are loaded into the program counter.

Cycle 2: WE goes low. Contents of program counter are buffered to address lines. Contents of specified data memory address are placed on the data bus. The new program counter is popped off of stack.

Cycle 3:

MEN goes low. Next instruction opcode is prefetched.

Words: 1

Cycles: 3

Example: TBLW DAT4 TBLW * If current auxiliary register contains the value 4.

(Continued)

Note: The TBLW and OUT instructions use the same external signals and thus cannot be distinguished when writing to program memory addresses 0 through 7.

 \mathbf{S}

N

XOR

Operands:	0± Al	≤dma RP = (a≤1 0or	27 1															
Operation:	Ze	ro. X	(OR.	high	-orde	er AC	C b	oits:	(dr	na). >	OR.	low	-oro	ler A	CC	bits	→AC	C	
							. •		de j		2								
Incoding:	15	14	13	12	11	10	9	8	7	6	5 4	3	2	1	0				
Direct:	0	1	1	1	1	0	0	0	0	E	DATA A[A ME DDR	MO	RY					
ndirect:	0	1	1	1	1	0	0	0	1	S	EE SI	ECTI	ON	3.3	7				
	1.1					•													

DATA MEMORY BIT ACC BIT (BEFORE) ACC BIT (AFTER) 0 0 0 0 1 1 1 0 1 1 1 0

Words: 1 Cycles: 1

Example: XOR DAT45

or

XOR If current auxiliary register contains the value 45.

Note: This instruction is useful for toggling or setting bits of a word for high-speed control. Also, the one's complement of a word can be found by exclusive-ORing it with all ones.

ZAC						Ze	ro ti	he A	CCI	umu	lat	or						-	3 \ \	Z	A(
Assembler S	Synta	x:]	<lab< th=""><th>oel>]</th><th></th><th>ZAC</th><th>C</th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lab<>	oel>]		ZAC	C			•										
Operands:	No	ne					· .														
Operation:	0 →	ACC																			
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
	0	1	1	1	1	1	1	1	1	0	0	0	1	0	0	1					
Description	: Tł	ne acc	umul	ator	is cle	ared	(zer	oed)	• •	×									-		
Words: 1 Cycles: 1																					
Example: Z	AC																				
		BEF	DRE	INST	RUC	TIO	N					A	FTE	RII	NST	RUC	стіо	N			
ACC		A F	F	FF	: F	F	F		-	ACC		0	0	0	0 (0 0) ()	0]		

ZALH				*	Zer	o A	ccui	mul	ato	r an	d Lo	ad	High				-	2	ZA		H
Assembler S Direct Ad Indirect A	Synta Idress Addre	ax: sing: ssing	ی رو ا	[< a [< a	bel>] bel>]		ZAI ZAI	LH LH		<d {* </d 	ma> * +	*	}[,<	ARP	2>]		•				
Operands:	0 A	≤dm RP=	na≤1 0 or	127 1																	
Operation:	(dn	na) X	216) → A(CC .																
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0	، ب ا					
Direct:	0	1	1	0	0	1	0	1	0		DA		MEM DRES	OR S] .					
Indirect:	0	1	1	0	0	1	0	1	1		SEE	SE	СТЮ	N 3.	3]					
Description	: ZAL into	.H cle the u	ears t Ipper	he ac half c	cumu of the	lator accu	and umu	d loa lato	ads t r. Th	the he lo	conte	ents half	s of th f of th	ne sp le ac	ecif	ied o	lata i or rei	nem	ory le	ocat	ion
Words: 1 Cycles: 1				•			• .												0.00		
Example: ZA or	ALH:	DA	Г29																		
ZA	ALH	*	lf ci	urrent	auxil	iary i	regis	ster	cont	tain	s the	valı	ue 29	•							
ΠΔΤ	Δ.	BEF	ORE	INST	RUC	τιοι	N		П		^	AF	TER	INS	TR	UCTI	ON				
MEMO 29		•	>3	F	0 0				ME	MO 29	RY		>	3 1	= C) ()					1.1
'ACC	; [>	00	77	FF	FF			ŀ	٩CC			>3	F 0	0 0	0 0	00				

Note: ZALH can be used for implementing 32-bit arithmetic.

Assembler S Direct Add Indirect A	dress dress ddres	x: ing: ising:	[[<lab <lab< th=""><th>el>] el>]</th><th></th><th>ZAL ZAL</th><th>.S .S</th><th>< {</th><th colspan="8"><dma> {* *+ *-}[,<arp>]</arp></dma></th></lab<></lab 	el>] el>]		ZAL ZAL	.S .S	< {	<dma> {* *+ *-}[,<arp>]</arp></dma>							
Operands:	0 : Al	≤dm RP = (a≤1 0or	27 1													
Operation:	(dm	na) →	ACC														
Encoding:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Direct:	0	1	1	0	0	1	1	0	0		DA	ATA AD	ME DR	MO ESS	RY		
Indirect:	1	0	0	1	1	0	1		SE	E SE	СТ	ION	3.3				

Description: Clear accumulator and load contents of specified data memory location into lower half of the accumulator. The data is treated as a 16-bit positive integer rather than a two's complement integer. Therefore, there is no sign-extension as with the LAC instruction.

Words: 1 Cycles: 1

Cycles. I

Example: ZALS DAT22 or

ZALS

×

If current auxiliary register contains the value 22.

DATA	BEFORE INSTRUCTION		AFTER INSTRUCTION
MEMORY	>F 7 F F	MEMORY 22	>F 7 F F
ACC	>7 F F 0 0 0 3 3	ACC	>0 0 0 0 F 7 F F

Notes: The following routine reveals the difference between the ZALS and the LAC instruction. Data memory location 1 contains the number > FA37.

ZALS	DAT1	(ACC) = > 0000FA37
ZAC		Zero ACC
LAC	DAT1	(ACC) = > FFFFFA37

ZALS is useful for 32-bit arithmetic operations.

METHODOLOGY FOR APPLICATION DEVELOPMENT

4. METHODOLOGY FOR APPLICATION DEVELOPMENT

4.1 OUTLINE OF DEVELOPMENT PROCESS

A number of development tools are required for designing a system with a microprocessor. This section describes the facilities which are available for the TMS32010 and illustrates how to use them for developing an application. A typical application development flowchart is shown in Figure 4-1.

FIGURE 4-1 - FLOWCHART OF TYPICAL APPLICATION DEVELOPMENT

After defining the specifications of the system, the designer should draw a flowchart of the software and a block diagram of the hardware. The processor's performance is then evaluated to determine the feasibility of implementing the algorithm via the TMS32010 Evaluation Module. The full algorithm is coded using assembly language. The program is assembled and then verified using the XDS/320 Macro Assembler and Linker and, optionally, the XDS/320 Simulator. Several iterations of the program are usually required to correctly code the algorithm. The verified program is integrated into the hardware, and the prototype system is debugged by using the XDS/320 Emulator.

4-1

4.2 DESCRIPTION OF DEVELOPMENT FACILITIES

Five development facilities aid in the design and implementation of TMS32010 applications. Each of the following five development facilities provides a tool for one of the steps involved in developing an application:

- The TMS32010 Evaluation Module is used to appraise the performance of the processor. A software library capability is used to simplify and standardize code development.
- The XDS/320 Assembler and Linker translates an assembly language program into a loadable object module.
- The XDS/320 Simulator accepts downloaded object code and executes the program via a simulated TMS32010 in a debug mode, thus allowing software debug before attempting hardware debug.
- The XDS/320 Emulator integrates the processor into the hardware design by providing a means to debug both software and hardware together.

4.2.1 TMS32010 Evaluation Module

The TMS32010 Evaluation Module (EVM) is a single board which enables a user to determine inexpensively if the TMS32010 meets the speed and timing requirements of his application. The EVM is a stand-alone module which contains all the tools necessary to evaluate the TMS32010.

Communication to a host computer and to several peripherals is provided on the EVM. Dual EIA ports allow the EVM to be connected to a terminal and a host computer. The EVM can also be configured with a line printer on one port; the other port is connected to either a terminal or a host computer. As either the host computer or the terminal feeds the assembly language program to the EVM, the EVM assembles the code. A built-in cassette tape interface can also be used to save code on tape to be reloaded at a later time. An EPROM programmer is also provided for saving code. Alternatively, code can be executed directly by the EVM through its target connector.

The EVM can accept either source or object code from a host computer or terminal. A line-oriented text editor, an assembler which permits symbolic addressing of memory locations, and a reverse assembler that changes machine code back into assembly language instructions are provided for programming ease. The debug mode gives access to all of the TMS32010's registers and memory. Eight breakpoints on program addresses and the ability to single-step program execution have been incorporated for monitoring device operation.

4.2.2 XDS/320 Macro Assembler/Linker

The XDS/320 Macro Assembler translates TMS32010 assembly language into executable object code. The assembler allows the programmer to work with mnemonics rather than hexadecimal machine instructions and to reference memory locations with symbolic addresses. This allows software to be designed more efficiently and reliably.

The XDS/320 Macro Assembler supports macro calls and definitions along with conditional assembly. It provides the user with a comprehensive set of error diagnostics. The XDS/320 Macro Assembler produces a listing and an object file, and will optionally print a symbol table/cross-reference listing.

Assembler directives which affect program assembly are provided for the user. Some directives affect the location counter and make sections of the program relocatable. Constants for data and text are defined by using directives. Symbols defined in one assembly can be used in another assembly with the REF and DEF directives. These external symbols allow separate modules to be linked together.

1183

The XDS/320 Linker permits a program to be designed and implemented in separate modules which will later be linked together to form the complete program. This allows the same modules (i.e., a filter module) to be used in many programs. The linker assigns values to relocatable code, creating an object file which can be executed by the simulator or emulator.

The linker resolves external definitions and references from different assemblies, and thereby links several modules together. More than one assembly may be linked together to create a module which may be linked again to the main program. An intermediate partial linkage does not require that all external references be resolved, but in the final linking process, there should be no unresolved references. Another function of the linker is to assign absolute values to relocatable code. The final output of the linker can then be loaded into either the simulator or the emulator.

A source code macro library can be maintained in a directory to be assembled with the main program. This allows commonly used routines to be accessed by more than one program and to be used to decrease program development time. The mnemonics are macro calls which expand into assembly code.

The macro library typically should contain user-defined macros and the macros defined in Section 7. These macros simplify the generation of an assembly language program. Examples include comparing a word in memory to a word in the accumulator, shifting right, and moving numbers between registers.

The XDS/320 Macro Assembler and Linker are currently available on several host computers, including the TI990(DX10) VAX(VMS) and IBM MVS and CMS operating systems. Currently in development is software to support the VAX(UNIX), DEC PDP11(RSX), IBM PC(DOS) and TI professional computer (DOS) operating system. Contact your local TI representative for availability or further details.

4.2.3 XDS/320 Simulator

The XDS/320 Simulator is a software program that simulates operation of the TMS32010 to allow program verification. The debug mode enables the user to monitor the state of the simulated TMS32010 while the program is executing.

The simulator program uses the TMS32010 object code, produced by the XDS/320 Macro Assembler/ Linker. Input and output files may be associated with the port addresses of the I/O instructions in order to simulate I/O devices which will be connected to the processor. The interrupt flag can be set periodically at a user-defined interval for simulating an interrupt signal. Before initiating program execution, breakpoints may be defined, and the trace mode set up.

During program execution, the internal registers and memory of the simulated TMS32010 are modified as each instruction is interpreted by the host computer. Execution is suspended when either 1) a breakpoint or error is encountered, 2) the step count goes to zero, or 3) a branch to 'self' is detected. Once program execution is suspended, the internal registers and both program and data memories can be inspected and/or modified. The trace memory can also be displayed. A record of the simulation session can be maintained in a journal file, so that it may be replayed to regain the same machine state during another simulation session.

The XDS/320 Simulator is currently available for the VAX(VMS).

Δ

4.2.4 XDS/320 Emulator

The XDS/320 Emulator is a self-contained system that has all the features necessary for real-time in-circuit emulation. This allows integration of the user hardware and software in the debug mode. Three EIA ports have been provided on the emulator to interface with a host system. The first EIA port provides a connection for a computer, the second port for a terminal, and the third port for a printer or a PROM programmer. Using a standard EIA port, the object file produced by the macro assembler/linker can be downloaded into the emulator, which can then be controlled through a terminal. In addition, source code can be downloaded to the emulator. A line-by-line assembler with forward and reverse referencing labels is provided on the XDS to assemble the source.

A pin-compatible target connector plugs into the TMS32010 socket to enable real-time emulation. Three clock options are available. First, a 20-MHz clock is available on the emulator. In addition, an external clock source can be used by attaching a crystal to the target connector, or by connecting a signal generator to the emulator.

The emulator operates in one of three memory modes: 1) software development mode, 2) microcomputer mode, or 3) microprocessor mode. In the software development mode, the entire 8K bytes of program memory reside within the emulator. In the microcomputer mode, 3K bytes reside within the emulator while 5K bytes reside on the target system. The microprocessor mode is used when all 8K bytes of program memory exist on the target system.

By setting breakpoints based on internal conditions or external events, execution of the user's program can be suspended and control given to the XDS monitor. While in the monitor, all registers and memory locations can be inspected and modified. Single-step execution is also available. A single read or write to an I/O port can be performed to test peripheral devices in the prototype system. Full trace capabilities at full speed and a reverse assembler that translates machine code back into assembly instructions are also included to increase debugging productivity.

4.3 APPLICATION DEVELOPMENT PROCESS EXAMPLE

The design and implementation of a TMS32010-based discrete-time filter is presented below to illustrate the development process. The filter design is derived from the system specification, using digital signal processing theory. A macro library is used to help code the program. The assembler and simulator verify that the program executes the filter properly. The processor is then integrated into the prototype system by using the emulator.

4.3.1 System Specification

Table 4-1 defines the specifications of the discrete-time filter.

PARAMETER	VALUE	UNIT
Sample frequency (f _S)	10	kHz
Corner frequency (f _{CO})	2	kHz
Attenuation at f=f _{CO}	-2	dB
Attenuation at $f = 1.2 f_{CO}$	-15	dB
Passband ripple	±1.5	dB

TABLE 4-1 - FILTER	SPECIFICATIONS
--------------------	----------------

4.3.2 System Design

The equation for the above discrete-time filter was derived as follows:

y(n) = -.2302699 x(n) + .1559177 x(n-1) + .2211667 x(n-2) + .1119031 x(n-3)

- .1124507 x(n-4) - .1485743 x(n-5) + .2046856 x(n-6) + .7409326 x(n-7)

+ 1.0 x(n-8) + .7409326 x(n-9) + .2046856 x(n-10) - .1485743 x(n-11)

- .1124507 x(n-12) + .1119031 x(n-13) + .2211667 x(n-14)

+ .1559177 x(n-15) - .2302699 x(n-16).

where x(n) is the current sample,

x(n-1) is the sample from the previous period,

¥

x(n - 16) is the sample from the previous 16th period.

4.3.3 Code Development

The TMS32010 software development cycle is generally a three-step process for the purpose of translating the filter equation into TMS32010 assembly language. First, a flowchart of the program is drawn. Then, the example is coded in a high-level language, FORTRAN, to provide structure and to test if the algorithm is correct before implementing it in assembly language. Finally, the program is coded and tested in assembly language using some of the macro library routines.

4.3.3.1 Discrete-Time Filter Flowchart

Figure 4-2 is a flowchart for the software implementation of the discrete-time filter.

FIGURE 4-2 - FLOWCHART OF FILTER IMPLEMENTATION

4.3.3.2 FORTRAN Program

The following FORTRAN program implements the specified digital filter and provides 1000 outputs.

```
PROGRAM FILTER
```

```
С
C y(n)=-.2302699 x(n) + .1559177 x(n-1) + .2211667 x(n-2) + .1119031 x(n-3)
C - .1124507 x(n-4) - .1485743 x(n-5) + .2046856 x(n-6) + .7409326 x(n-7)
  + 1.0 x(n-8) + .7409326 x(n-9) + .2046856 x(n-10) - .1485743 x(n-11)
С
   - .1124507 x(n-12) + .1119031 x(n-13) + .2211667 x(n-14)
С
   + .1559177 x(n-15) - .2302699 x(n-16).
C
C
     REAL*4 X(17),CX(17),Y
С
       Initialize the constants for the filter equation
С
Ć
             CX /-.2302699,.1559177,.2211667,.1119031,-.1124507,
     DATA
                   -.1485743,.2046856,.7409326,1.0,.7409326,
     1
                   .2046856, -.1485743, -.1124507, .1119031, .2211667,
     1
     1
                   .1559177,-.2302699/
С
     I = 0
  100
              I = I + 1
C
C
      Input sampled data
С
     READ (55,110) IX
  110
              FORMAT (16)
     X(1) = IX
C
C
      Filter data
С
     Y = 0
     DO J = 1,17
         Y = Y + CX(J) * X(J)
     END DO
С
С
      Shift data to new variables
С
     DO J = 16, 1, -1
         X(J) = X(J-1)
     END DO
C
С
      Output filtered data
С
     TYPE *,Y
С
     IF (I .LE. 1000) GO TO 100
  200
              END
```

4.3.3.3 Assembly Language Program Using Relocatable Code

The same discrete-time filter can be implemented in TMS32010 assembly language using relocatable code. The FORTRAN program should not be directly translated into assembly language. Assembly language code can be made more efficient than the FORTRAN implementation by taking advantage of the processor's architecture. The assembly language implementation of the FORTRAN program is described in the following paragraphs.

1183

Two library macros (PROG and MAIN) have been used in the example program to simplify the coding process and to standardize the program structure. One advantage of using macros for standardizing program structure is that different programmers can easily trade relocatable modules if they have used the same structure. The PROG macro begins the module with an IDT directive. This directive gives the module a name to be used later during link and also initializes some values in the assembler's symbol table. The macro MAIN labels the beginning of the main routine, initializes the constants ONE and MINUS, and defines the variables XR0 and XR1.

The coefficients in the equation are converted to integer arithmetic for this program. To maintain a maximum amount of accuracy, the coefficients should be factored by $2^{**} - 15$, which will create a Q15 number. After factoring the filter equation, it becomes:

 $\begin{array}{l} y(n) = [-7545x(n) + 5109 \ x(n-1) + 7247 \ x(n-2) + 3667 \ x(n-3) \\ - 3685 \ x(n-4) - 4868x(n-5) + 6707 \ x(n-6) + 24279 \ x(n-7) \\ + 32767 \ x(n-8) + 24279 \ x(n-9) + 6706 \ x(n-10) - 4868 \ x(n-11) \\ - 3685 \ x(n-12) + 3667 \ x(n-13) + 7247 \ x(n-14) + 5109 \ x(n-15) \\ - 7545 \ x(n-16)]^{*}2^{**} - 15. \end{array}$

Contants are listed in program memory in a table so as to define the coefficients in data memory. Constants are then read into data memory using the TBLR instruction. The user loads a one in the T register to access the table. The MPYK instruction puts the address of the table into the P register. Then, the PAC instruction loads it into the accumulator. A loop is set up to move all of the constants into data memory.

The $\overline{\text{BIO}}$ pin is connected to the FIFO empty line. A BIOZ instruction is used to synchronize the external hardware with the program. As long as the FIFO buffer is empty, the processor polls the device until data is available.

The sampled data is read into data memory, and the filter equation is calculated. If the equation is coded in a loop, both of the auxiliary registers must be used as pointers. By starting one of the lists at location zero in data memory, the pointer for that list can also be used as the loop counter. The calculation time can be reduced by a factor of two if the equation is implemented using straight-line code. The user must decide whether program size or execution time is more important in his application.

The data is shifted in memory as the equation is computed, making a separate loop to do the shift operation unnecessary. A 0.5 is added to the result to round up the number before storing the result. The output is written to a D/A converter. Then the whole process is repeated.

The following assembly language program implements the digital filter:

* Tł * sc *	ne MLIB d ource cod	irective is used to reference a file containing th e for the two macros, PROG and MAIN.
	MLIB	'MACRO.SRC'
*	PROG	FLTR
× · · · · · · · · · · · · · · · · · · ·	REAL	4 X(17),CX(17),Y
	DSEG	BEGIN DATA SEGMENT
X1	BSS	16 16 WORDS NAME X1
X17	BSS	1 1 WORD NAME X17
CX1	BSS	16 16 WORDS NAME CX1
CX17	BSS	1 1 WORD NAME CX17

¥ .		BSS DEND	1	1 WOR END D	D NAME Ata sec	Y GMEN	Г								
.		B RET	FLTI	R .							•				
× COEF		DATA DATA DATA	-754 670 -486	45,510 7,2427 58,-36	9,7247, 9,32767 85,3667	,366' 7,24: 7,72	7,-36 279,6 47,51	585,- 5707 109,-	-4868 -754!	B 5					
*		MAIN	FLT	R											
****	****	******	****	*****	*****	****	****	****	****	****	****	****	*****	****	
*		DATA	CX /	2302	2699,.1	5591	77,.	2211	667,	.111	9031	,11	124507	7,	
★ ★		1		148	857 4 3,.	2046 1485	856,	.740	9326 2450	,1.0	1100	09326	5, 221160	- " - "	
*		1		.1559)177, - .	2302	699/		2450	.,.1	.1190	51,.2	21100	<i>,</i> ,	
****	****	******	****	*****	******	****	****	****	****	****	****	*****	*****	****	
* * * *	ONE wher code used	is a da re the f e put th d for re	ta m ilte e va adin	emory r coef lue of g in t	locati ficien COEF he coe	on c t ta in t ffic	onta ble he a ient	inin begi ccum s.	g a ns. ulat	1. C The or s	OEF next o th	is th four at TE	ne ado line BLR ca	lres es o: an bo	s f e
*				,											
		LT MPYK	ONE	F											
		PAC	002	•											
		LARK	ARO	,16											
RCON	IST	LARP	1	, CAI											
		TBLR	*+,	ARO											
		ADD BANZ	RCO	NST											
*															
* * *	Test	t FIFO t elf till	o se the	e if i BIO p	t is en oin goe:	mpty s lo	. Th w.	e ne	xt l	ine	of c	ode b	branch	ies d	on
WAIT *		BIOZ	WAI	г		-									
* *	Inpu	ut sampl	ed d	ata											
+		IN	X1,1	PAO											
****	****	*****	****	*****	*****	****	****	****	****	****	****	*****	*****	**	
*	DO	J = 1, 17		\		_					<i>,</i>				
*	END	$\mathbf{Y} = \mathbf{Y} + \mathbf{D}$	CX(J)*X(J)		C	ompu	te f:	ilte	r eq	uati	on			
*															
*	DO	J = 1,16	/ 1_1	`		c	hift								
*	END	DO	(0-1	/		3	IIII C	var	Tabi	es					
****	****	******	****	*****	*****	****	****	****	****	****	****	*****	*****	***	
* *	X17 CX17	is the 7 is the	data data	memor a memo	y addro ry addi	ess ress	of X of ((17) CX(1	7).			•	• •		
× ≁		LARK	ARO	,X17										,	
^		LARK ZAC	AR1	, CX17											
		LT	*-,i	AR1											
LOOP	,	MPY LTD	*-,/ * 1	ARO R1											
		MPY	, .	ARO											

	BANZ	LOOP
	APAC	
*	Darrad	
*	kouna up	
	ADD	ONE,14
*		
*	Output res	ults
×	C) CU	¥7 1
	OUT	V PA1
	B	WAIT

4.3.3.3.1 Assembler Output

The XDS/320 Macro Assembler requires a source file which contains the assembly language program. Two output files are created by the assembler. One output file is a listing file that prints the object code and the source statement for each instruction. The other output file contains the object code in standard 990 tagged format. The listing file for the filter program is shown below, although certain comment statements have been deleted. Object code followed by an apostrophe indicates that the code is relocatable (i.e., the B FLTR statement).

LISTING FILE

FLTR		320 F	AMILY M	IACRO ASS	SEMBLE	CR 2.0 83.010	9:20:28	2/21/83 PAGE 0001
0001 0002			* The * tai *	MLIB di ning sou	irecti urce c	ve is used to re ode for the two	ference a f macros, PRO	ile con- G and MAIN.
0003	0000		*	MLIB	'MAC	CRO.SRC'		
0006			*	PROG IDT	FLTH 'FLT	R TR'		
0008 0009			* *	REAL	4 X((17),CX(17),Y		
0010 0011 0012 0013 0014 0015 0016	0000 0000 0010 0011 0021 0022 0023	•	X1 X17 CX1 CX17 Y	DSEG BSS BSS BSS BSS BSS DEND	16 1 16 1	BEGIN DATA SEGME 16 WORDS NAME X1 1 WORD NAME X17 16 WORDS NAME CX17 1 WORD NAME CX17 1 WORD NAME Y END DATA SEGMENT	NT 1	
0018	0000 F 0001 0 0002 7	900 01 4' F8D		B RET	FLTF	2		
0020 0021	0003 E 0004 1 0005 1 0006 0 0007 F	287 3F5 C4F E53 19B	* COEF	DATA	-754	15,5109,7247,3667	,-3685,-486	8
0022	0008 E 0009 1 000A 5 000B 7 000C 5	A33 ED7 FFF ED7	· · · ·	DATA	6707	7,24279,32767,242	79,6707	
0023	000D 1. 000E E 000F F	A33 CFC 19B		DATA	-486	58,-3685,3667,724	7,5109,-754	5

	0010	0E53										
	0011	1045										
	0011	1071										
	0012	1342										
	0013	E287							1			
0024			**		· · · ·							
0025				MATN	FLTR							
0020	0014			DCEC			DDOC	CEC			÷.,	
0001	0014			PSEG	1.1		PROG	SEG				
0002				DEF	FLTR		ENTRY	' POINT			1.1	
0003	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0014'	FLTR	EOU	Ś							
0004	0014	7501		TACK	1		MARE	CONGTA	NT ONE			
0004	0014	7601		LACK	1 . 1		TIAKE	CONSIA	INT ONE	5		
0005	0012	5023"		SACL	ONE, U		SAVE	T.L.				
0006	0016	7F89		ZAC			ZERO	ACCUMU	LATOR			
0007	0017	1023"		SUR	ONE O		MAKE	-1	1			
0000	0019	50241		SACT	MINIC	•	CAVE	TT				
0000	0010	5024		DACT	TIMOS	,0	SAVE	11				
0009	0023			DSEG								
0010	0023		ONE	BSS	1		CONST	ANT ON	E			
0011	0024		MINUS	BSS	1		CONST	ANT -1				
0012	0025		YPO	DCC .	1		TEMD	0				
0012	0023			000	4		TEHT	1	× .			
0013	0026		XRI	BSS	T		TEMP	1				
0014			•	DEF	ONE, M	INUS	ALLOW	EXTER	NAL US	E		
0015		· .		DEF	XRO X	R1	OF VA	RTABLE				
0016	0027			DEND		***	END O	E DATA				
0010	0027			DEND			END U	F DAIA				
0026			******	*****	*****	******	******	*****	*****	******	*****	******
0027			*	DATA	ĊX	123	02699	155917	7 221	1667	111903	31 - 11
0028			*	1		_ 1	A 0 5 7 A 2	20469	FC 7/		1 0 7	7400000
0020						1	405745,	.20400	50,.14	109320,	1.0,.	/409326
0029			×	1		.204	46856,-	.14857	43,1	.124507	, .1119	9031,.2
0030			*	1		.15	59177	.23026	99/			
0031			******	*****	****	*****	*****	*****	*****	*****	*****	*****
0032			*									
0032			· · · · ·									
0033			* ONE -			-	· ·					
			. ONE 1	lsad	lata m	emory 1	locatio	n cont	aining	a 1.	COEF	is the
0034			* addre	ls a d ess wh	lata m ere t	emory i he filt	locatio ter coe	n cont	aining nt tab	ja 1. De beg	COEF	is the
0034		·	* addre	ls a d ess wh lines	lata m ere t	emory he filt	locatio ter coe	n cont fficie	aining nt tab	y a 1. Die beg	COEF ins. 7	is the The next
0034		:	* addre * four	ls a d ess wh lines	ata m ere t of c	emory he filt ode put	locatio ter coe t the v	n cont fficie alue o	aining nt tab f COEF	y a 1. ble beg ' in th	COEF ins. 1 e_accu	is the The next umulator
0034 0035 0036		;	* addre * four * so th	ls a d ess wh lines hat TB	lata m ere t of c LR ca	emory i he filt ode put n be us	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	y a l. ble beg ' in th the co	COEF ins. 7 e accu effici	is the The next imulator lents.
003 <u>4</u> 0035 0036 0037		: ···	* addre * four * so th *	ls a d ess wh lines hat TB	lata m ere t of c LR ca	emory i he filt ode put n be us	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	y a l. ble beg ' in th the co	COEF ins. 1 e accu effici	is the The next Imulator Lents.
0034 0035 0036 0037 0038		: .	* addre * four * so th *	ls a d ess wh lines hat TB	lata m ere t of c LR ca	emory he filt ode put n be us	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	y a l. ble beg ' in th the co	COEF ins. 1 e accu effici	is the The next imulator lents.
0034 0035 0036 0037 0038 0039	0019	6223"	* addre * four * so th *	ls a d ess wh lines hat TB	lata m ere t of c LR ca	emory i he filt ode put n be us	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	a l. ble beg ' in th the co	COEF ins. 1 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039	0019	6A23"	* addre * four * so th *	LS a d ess wh lines hat TB LT	lata m ere t of c LR ca O	emory i he filt ode put n be us	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	a 1. Die beg in th the co	COEF ins.] e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040	0019 001A	6A23" 8003	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK	lata m ere t DR ca O C	emory i he filt ode put n be us NE OEF	locatio ter coe t the v sed for	n cont fficie alue o readin	aining nt tab f COEF ng in	y a 1. ble beg ' in th the co	COEF ins.] e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041	0019 001A 001B	6A23" 8003 7F8E	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC	lata m lere t DLR ca O C	emory : he filt ode put n be us NE OEF	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	f a 1. ble beg ' in th the co	COEF ins. 1 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042	0019 001A 001B 001C	6A23" 8003 7F8E 7010	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC LARK	lata m lere t LR ca Ol C	emory i he filt ode put n be us NE OEF R0,16	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a 1. Dle beg ' in th the co	COEF ins. 1 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043	0019 001A 001B 001C 001D	6A23" 8003 7F8E 7010 7111	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK	lata m ere t DR ca O C A	emory i he filt ode put n be us NE OEF R0,16 R1 CX1	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a 1. Dle beg ' in th the co	COEF ins. 1 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043	0019 001A 001B 001C 001D	6A23" 8003 7F8E 7010 7111 6881	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK	lata m ere t LR ca O C A A	emory i he filt ode put n be us NE OEF R0,16 R1,CX1	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a 1. Dle beg ' in th the co	COEF ins. 7 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044	0019 001A 001B 001C 001D 001E	6A23" 8003 7F8E 7010 7111 6881	* addre * four * so th *	LS a d ess wh lines hat TB MPYK PAC LARK LARK LARK	lata m lere t of c LR ca O C C A A A 1	emory i he fili ode put n be us NE OEF R0,16 R1,CX1	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a l. ble beg in th the co	COEF ins. 1 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045	0019 001A 001B 001C 001D 001E 001F	6A23" 8003 7F8E 7010 7111 6881 67A0	* addre * four * so th *	LS a d ess wh lines bat TB MPYK PAC LARK LARK LARP TBLR	lata m lere t of c LR ca O C C A A A 1 X X	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a l. ble beg in th the co	COEF ins. 7 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046	0019 001A 001B 001C 001D 001E 001F 0020	6A23" 8003 7F8E 7010 7111 6881 67A0 0023"	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD	lata m ere t of c LR ca O C A A A 1 X O	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0 NE	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a 1. ble beg in th the co	COEF ins. 7 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047	0019 001A 001B 001C 001D 001E 001F 0020 0021	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK TBLR ADD BANZ	ata m ere t of c LR ca O C A A A 1 t *	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0 NE CONST	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	f a 1. Die beg in th the co	COEF ins. 7 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047	0019 001A 001B 001C 001D 001E 001F 0020 0021	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ	ata m ere t of c LR ca O C C A A A 1 1 * O I R	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0 NE CONST	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a 1. Die beg ' in th the co	COEF ins. 1 e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047	0019 001A 001B 001C 001D 001F 0020 0021 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E'	* addre * four * so th *	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK LARP TBLR ADD BANZ	lata m lere t of c LR ca O C C A A A 1 * O O R	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0 NE CONST	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a 1. ble beg in th the co	COEF ins.] e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048	0019 001A 001B 001C 001D 001E 001F 0020 0021 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E'	* addre * four * so th * RCONST	LS a d ess wh lines hat TB PAC LARK LARK LARK LARP TBLR ADD BANZ	lata m lere t of c LR ca O C C A A A 1 t S C R	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0 NE CONST	locatio ter coe t the v sed for	n cont fficie alue o readi	aining nt tab f COEF ng in	g a 1. ble beg in th the co	COEF ins.] e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049	0019 001A 001B 001C 001D 001E 0020 0021 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E'	* addre * four * so th * RCONST * * Test	LS a d ess wh lines bat TB MPYK PAC LARK LARK LARK LARK ADD BANZ FIFO	lata m lere t of c LR ca O C C A A A 1 * O R to see	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it	locatio ter coe t the v sed for	n cont fficie alue o readin	aining nt tab f COEF ng in	f a 1. ble beg in th the co	COEF ins. T e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050	0019 001A 001B 001C 001D 001E 001F 0020 0021 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E'	* addre * four * so th * RCONST * * Test	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK BANZ FIFO	lata m lere t of c LR ca O C A A A 1 X 0 R to see	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it	locatio ter coe t the v sed for	n cont fficie alue o readin readin	aining nt tab f COEF ng in	t line	COEF ins. T e accu effici of co	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050	0019 001A 001B 001C 001D 001E 001F 0020 0021 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E'	* addre * four * so th * RCONST * * Test * branc	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK TBLR ADD BANZ FIFO hes o	lata m lere t of c LR ca O C A A 1 t N C A 1 t S C C C C C C C C C C C C C C C C C C	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0 NE CONST e if it elf til	locatio ter coe t the v sed for is em Ll the i	n cont fficie alue o readi readi readi readi	aining nt tab f COEF ng in ng in ng in ng in ng in	t line low.	COEF ins. T e accu effici of co	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051	0019 001A 001B 001C 001D 001F 0020 0021 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E'	* addre * four * so th * RCONST * * Test * branc	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ FIFO ches o	lata m lere t of c LR ca O C A A 1 * O R to see n itse	emory i he filt ode put n be us NE OEF R0,16 R1,CX1 +,AR0 NE CONST e if it elf til	locatio ter coe t the v sed for is em Ll the i	n cont fficie alue o readi readi readi readi	aining nt tab f COEF ng in ng in ng in ng in ng in	t line low.	COEF ins. T e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052	0019 001A 001B 001C 001F 0020 0021 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600	* addre * four * so th * RCONST * * Test * branc * WAIT	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK ADD BANZ FIFO ches o BIOZ	lata m lere t of c LR ca O C C A A 1 1 * O R to see n its W	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT	locatio ter coe t the v sed for : : is em Ll the i	n cont fficie alue o readin readin readin	aining nt tab f COEF ng in ng in ne nex ng oes	t line low.	COEF ins. T e accu effici of cc	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052	0019 001A 001B 001C 001D 001F 0020 0021 0022 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	* addre * four * so th * RCONST * * Test * branc WAIT	LS a dess wh lines bat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ FIFO hes o BIOZ	lata m lere t of c LR ca O C C A A 1 * O R R to see n its N	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT	locatio ter coe t the v sed for is em l the l	n cont fficie alue o readin readin pty. Th BIO pin	aining nt tab f COEF ng in ng in ng in ng in	t line low.	COEF ins. 1 e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052	0019 001A 001B 001C 001D 001F 0020 0021 0022 0023 0023	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* addre * four * four * so th * RCONST * * Test * branc WAIT *</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK BANZ FIFO ches o BIOZ	lata m lere t of c LR ca O C C A A A 1 * O R to see n its W	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til	locatio ter coe t the v sed for	n cont fficie alue o readin readin pty. Th BIO pin	aining nt tab f COEF ng in ng in ne nex n goes	t line low.	COEF ins. T e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052	0019 001A 001B 001C 001D 001F 0020 0021 0022 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* addre * four * four * so th * RCONST * * Test * branc WAIT * * *</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ FIFO hes o BIOZ	lata m lere t of c LR ca O C A A A 1 * O R to see n its W	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT	locatio ter coe t the v sed for	n cont fficie alue o readin readin	aining nt tab f COEF ng in ng in ne nex 1 goes	t line	COEF ins. T e accu effici of co	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0053	0019 001A 001B 001C 001D 001E 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* addre * four * four * so th * RCONST * * Test * WAIT * Inp</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ FIFO ches o BIOZ	lata m lere t of c LR ca O C A A 1 * O R to see n its W mpled	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data	locatio ter coe t the v sed for	n cont fficie alue o readi readi readi	aining nt tab f COEF ng in ng in	t line low.	COEF ins. T e accu effici	is the The next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055	0019 001A 001B 001C 001F 0020 0021 0022 0022	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* oNE] * addre * four * four * so th * RCONST * * * Test * branc WAIT * * Inp *</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK LARP TBLR ADD BANZ FIFO ches o BIOZ	lata m lere t of c LR ca O C C A A 1 t N K to see n its W mpled	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT data	locatio ter coe t the v sed for	n cont fficie alue o readi readi readi	aining nt tab f COEF ng in ng in	t line low.	COEF ins. T e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* addre * four * four * so th * RCONST * * Test * branc WAIT * * Inp *</pre>	IS A O SS wh lines Dat TB LT MPYK PAC LARK LARK LARK LARK LARK ADD BANZ FIFO Ches o BIOZ Sut sa IN	lata m lere t of c LR ca O C C A A 1 t A C R A N T S C W M T T S C S C S C S C S C S C S C S C S C	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT data L.PAO	locatio ter coe t the v sed for	n cont fficie alue o readin readin	aining nt tab f COEF ng in ng in	y a 1. ble beg in th the co t line low.	COEF ins. T e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057	0019 001A 001B 001C 001F 0020 0021 0022 0023 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* addre * addre * four * so th * RCONST * * Test * branc WAIT * * Inp * * *</pre>	LS A C LS A C LS Wh lines DAT TB LT MPYK PAC LARK LARK LARK LARK LARK LARK BANZ FIFO Hes O BIOZ Sut sa IN	lata m lere t of c LR ca O C C A A 1 * O R to see n its w W mpled X	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data 1,PA0	locatio ter coe t the v sed for	n cont fficie alue o readin readin	aining nt tab f COEF ng in ng in	t line low.	COEF ins. e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023' 4000"	<pre>* addre * four * four * so th * RCONST * * * * * WAIT * * Inp * * * * * * * * * * * * * * * * * * *</pre>	IS A C SS Wh lines hat TB LT MPYK PAC LARK LARK LARK LARK LARK BANZ FIFO hes o BIOZ put sa IN	lata m lere t of c LR ca O C C A A A 1 * O C C A A A 1 * * O R to see n itso W W mpled X:	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data 1,PA0	locatio ter coe t the v sed for	n cont fficie alue o readin readin pty. Th BIO pin	aining nt tab f COEF ng in ne nex n goes	t line low.	COEF ins. T e accu effici	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0055 0056 0057 0058	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023' 4000"	<pre>* one i * addre * four * so tr * so tr * * * * Test * branc * WAIT * * Inp * * * * * * * * * * * * * * * * * * *</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK TBLR ADD BANZ FIFO hes o BIOZ but sa IN	lata m lere t of c LR ca Ol C Al Al 1 * Ol R to see n itso W mpled X: *	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data 1,PA0	locatio ter coe t the v sed for	n cont fficie alue o readin pty. Th BIO pin	aining nt tab f COEF ng in ne nex n goes	t line low.	COEF ins. T e accu effici of cc	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059	0019 001A 001B 001C 001F 0020 0021 0022 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* addre * four * four * so th * RCONST * * * * Test * branc WAIT * * Inp * * * * DO</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ FIFO hes o BIOZ but sa IN ***** J = 1	lata m lere t of c LR ca O C A A A 1 * O R to see n its w mpled X: ****** ,17	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data 1,PA0	locatio ter coe t the v sed for	n cont fficie alue o readi readi BIO pin	aining nt tab f COEF ng in ng in	t line low.	COEF ins. T e accu effici of cc	is the Che next imulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* oNE] * addre * four * four * so th * RCONST * * * Test * branc WAIT * * Inp * * * * * D0 *</pre>	LS a dess wh lines bat TB LT MPYK PAC LARK LARP TBLR ADD BANZ FIFO bas o BIOZ but sa IN ***** J = 1 Y = Y	ata m lere t of c LR ca O C C A A 1 * O R to see n its W mpled X: * * * *	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT data 1,PAO	locatio ter coe t the v sed for is em Ll the i	n cont fficie: alue o readin preadin preadin BIO pin	aining nt tab f COEF ng in ne nex n goes	<pre>y a 1. ble beg in th the co t line low. *******</pre>	COEF ins.] e accu effici of cc	is the Che next mulator lents. ode
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* ONE] * addre * four * four * so th * RCONST * * Test * branc WAIT * * Inp * * ******** * D0 * * END</pre>	LS a dess wh lines bat TB LT MPYK PAC LARK LARK LARK LARK LARK BANZ BANZ FIFO bhes o BIOZ but sa IN ***** J = 1 Y = Y	lata m lere t of c LR ca O C A A 1 A 1 X N R to see n its W W mpled X: ******; ,17 + CX	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT data 1,PAO ******* (J)*X(J	locatio ter coe t the v sed for is em Ll the f	n cont fficie alue o readin pty. Th BIO pin	aining nt tab f COEF ng in he nex h goes	<pre>y a 1. ble beg in th the co t line low. ******* filter</pre>	COEF ins. 1 e accu effici of cc	is the Che next mulator lents. ode
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0055 0055 0056 0057 0058 0059 0060 0061	0019 001A 001B 001C 001F 0020 0021 0022 0023 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023' 4000"	<pre>* ONE] * addre * four * four * so th * RCONST * * * Test * branc WAIT * * Inp * * * * D0 * * END * * * * * * * * * * * * * * * * * * *</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARK ADD BANZ FIFO bhes o BIOZ but sa IN ****** J = 1 Y = Y DO	lata m lere t of c LR ca O C A A 1 * * O R to see n its W mpled X: * * * * * * * * * * * * * * * * * *	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data 1,PA0 ******* (J)*X(J	locatio ter coe t the v sed for t is em ll the f	n cont fficie alue o readin pty. Th BIO pin BIO pin	aining nt tab f COEF ng in ne nex n goes	<pre>y a 1. ble beg in th the co t line low. ******* filter</pre>	COEF ins. 1 e accu effici of co	is the Che next mulator lents. ode
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0055 0055 0055 0055 0055 0055	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023' 4000"	<pre>* one i * addre * four * so th * so th * * * Test * branc * WAIT * Inp * * * * END *</pre>	LS a d ess wh lines hat TB LT MPYK PAC LARK LARK LARF TBLR ADD BANZ FIFO hes o BIOZ but sa IN ***** J = 1 Y = Y DO	lata m lere t of c LR ca O C A A A 1 * O R to see n its w W mpled X: * ******; ,17 + CX(emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data 1,PA0 ******* (J)*X(J	locatio ter coe t the v sed for : is em ll the i ll the i	n cont fficie alue o readin pty. Th BIO pin BIO pin	aining nt tab f COEF ng in ne nex n goes	<pre>y a 1. ble beg in th the co t line low. ******* filter</pre>	COEF ins. T e accu effici of cc	is the Che next mulator lents. ode
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0055 0056 0057 0058 0059 0060 0061 0062 0063	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023' 4000"	<pre>* ONE] * addre * four * four * so th * RCONST * * * Test * branc WAIT * * Inp * * * * D0 * * END * * D0</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARF TBLR ADD BANZ FIFO hes o BIOZ but sa IN ****** J = 1 Y = Y DO J = 1	lata m lere t of c LR ca O C A A 1 * O R to see n its W mpled X: * * * * * * * * * * * * * * * * * *	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,AR0 NE CONST e if it elf til AIT data 1,PA0 *******	locatio ter coe t the v sed for t is em Ll the i	n cont fficie alue o readin pty. Th BIO pin	aining nt tab f COEF ng in ne nex n goes	<pre>y a 1. ble beg in th the co t line low. ******* filter</pre>	COEF ins. T e accu effici of cc	is the Che next mulator lents. ode
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064	0019 001A 001B 001C 001F 0020 0021 0022 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* ONE] * addre * four * four * four * so th * * * Test * * * Test * WAIT * * * * * * * * * * * * * * * * * * *</pre>	LS a dess wh lines hat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ FIFO hes o BIOZ but sa IN ***** J = 1 Y = Y DO J = 1 X(J)	ata m lere t of c LR ca O C C A A 1 * O R to see n its w mpled X: * * * * * * * * * * * * * * * * * *	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT data 1,PAO ******* (J)*X(J	locatio ter coe t the v sed for t is em Ll the i	n cont fficie alue o readin pty. Th BIO pin BIO pin K****** Com	aining nt tab f COEF ng in he nex n goes (*****	<pre>y a 1. ble beg in th the co t line low. ******* filter riable</pre>	COEF ins. T e accu effici of cc	is the Che next mulator lents.
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* ONE] * addre * four * four * so th * RCONST * * Test * branc * WAIT * * Inp * * * Loo * DO * * DO * * DO * * END * * * * * * * * * * * * * * * * * * *</pre>	LS a dess wh lines bat TB LT MPYK PAC LARK LARK LARK LARP TBLR ADD BANZ FIFO bas o BIOZ but sa IN ***** J = 1 Y = Y DO J = 1 X(J)	ata m lere t of c LR ca O C C A A 1 * O R to see n its W mpled X: * * * * * * * O C C C X A A 1 * * O C C X A * * * O C C C * * * * * * * * * * * * *	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT data 1,PAO ******* (J)*X(J	locatio ter coe t the v sed for is em Ll the i	n cont fficie alue o readin pty. Th BIO pin BIO pin Kite Con Shi	aining nt tab f COEF ng in he nex n goes	y a 1. ble beg in th the co t line low. ****** filter riables	COEF ins. T e accu effici of cc	is the Che next mulator lents. ode
0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066	0019 001A 001B 001C 001F 0020 0021 0022 0023 0024	6A23" 8003 7F8E 7010 7111 6881 67A0 0023" F400 001E' F600 0023'	<pre>* ONE 1 * addre * four * four * so th * RCONST * * Test * branc * WAIT * * Inp * * * Loo * * * * * * * * * * * * * * * * * *</pre>	LS a d LS a d LS a d LS a d LS a d LS a d LS a d MPYK PAC LARK LARK LARK LARK LARK LARK LARK LARK LARK LARK ADD BANZ FIFO BANZ FIFO BIOZ DU LS a d MPYK PAC LARK LA	lata m lere t of c LR ca O C C A A 1 * * O R to see n its W W mpled X: * * * * * * * * * * * * * * * * * *	emory i he filt ode put n be us NE OEF RO,16 R1,CX1 +,ARO NE CONST e if it elf til AIT data 1,PAO ******* (J)*X(J	locatio ter coe t the v sed for t is em Ll the f	n cont fficie alue o readin pty. Th BIO pin BIO pin ******* Com Shi	aining nt tab f COEF ng in he nex n goes	<pre>y a 1. ble beg in th the co t line low. ******* filter riables</pre>	COEF ins. 1 e accu effici of cc	is the Che next mulator lents. ode

	0067		1. S.	*	
	0068			* X17 is the da	ta memory address of X(17).
	0069			* CX17 is the d	lata memory address of CX(17).
	0070			*	
	0071	0026	7010	LARK	AR0.X17
	0072			*	
	0073	0027	7121	LARK	AR1.CX17
	0074	0028	7F89	ZAC	
1	0075	0029	6491	LT	*- AR1
	0076	0028	6090	MPY	*- AR0
	0077	002B	6B81	LOOP LTD	* AR1
	0078	0020	6090	MPY	*- ARO
	0070	0020	F400	BANZ	TOOP
	0079	0020	00201	DAIN	
	0000	0026	JEOF	λΡλΟ	
	0000	0025	100	The second se	
	0001			+ Deund un	
	0082			* Kouna up	
	0083	0020	0000	200	ONE 14
	0084	0030	UEZ3"	ADD	ONE,14
	0085	5		*	-9.4
	0086			 Output result 	lits
	0087			*	
	0088	0031	5922"	SACH	Y,I W DD1
	0089	0032	4922"	OUT	Y,PAL
	0090	0033	F900	В	WAIT
		0034	00231	- -	

THE FOLLOWING SYMBOLS ARE UNDEFINED *+ *-

\$\$LAB

NO ERRORS, NO WARNINGS

Although the symbols above are undefined, this is a natural result of the macros used and should be ignored.

The following example is the tagged object code produced by the XDS/320 Assembler. The tags are used by the linker when it is producing a link module.

TAGGED OBJECT CODE

K0035FLTR	MOO27\$DATA	000050014FLTR	W00230NE	00007F43AF	FLTR
W0025XR0	0000W0026XR1	0000W0024MIN	US 0000A000	0BF900C0014B7F8D7F1A9F	FLTR
BE287B13F5E	B1C4FB0E53BF1	9BBECFCB1A33B5E	D7B7FFFB5ED	7B1A33BECFCBF19B7F036F	FLTR
BOE53B1C4FE	313F5BE287A00	14B7E01#5023007	7FB7F89#1023	3007F#5024007F7F281F	FLTR
A0019#6A230	07FB8003B7F8	EB7010B7111B688	B1B67A0#0023	3007FBF400C001E7F250F	FLTR
BF600C0023	4000007FB701	OB7121B7F89B6A 9	1B6D90B6B81	B6D90BF400C002B7F1D5F	FLTR
B7F8F#0E230	07F#5922007F	#4922007FBF9000	C00237F6E6F		FLTR
: FLTI	R 2/21/	83 9:20:28	ASM320 2.0	83.010	FLTR

4.3.3.3.2 Program Linkage

The linker must be executed even if the program is contained in a single module. The control file required by the linker specifies the task name, defines the starting location for the data and program

segments, and indicates the object files to be linked. The control file which was used to link the example program is as follows:

FORMAT ASCII TASK DEV PROGRAM > 0000 DATA > 0000 INCLUDE S4USR.LVK111 .FLTR.OBJ END

Two files are produced by the linker. The linked object file is an output file containing the load module. The link listing file is an output file containing a listing of the command control file, a map of the segments and modules which were linked, and a cross-reference listing of the externally defined variables. The link listing file and the linked object file are shown below. The object file can be loaded into the simulator or emulator for program debugging.

LINK LISTING FILE

DX/9900 COMMAND	LINKER LIST	VERSION	2.0.0	82.312	2/21/83	9:29:30		PAGE	1
FORMAT A TASK DEV PROGRAM DATA >00	SCII >0000 00								
INCLUDE	5405R.	LVKIII.FL	I.K. OBJ						
DX/9900 LINK MAP	LINKER	VERSION	2.0.0	82.312	2/21/83	9:29:30		PAGE	2
CONTROL	FILE =	S4USR.LVK1	11.FLTR	.CF					
LINKED O	UTPUT F	ILE = S4US	SR.LVK11	1.FLTR.	LINKOBJ				
LIST FIL	E = S4U	SR.LVK111.	FLTR.LI	NKLIS					
OUTPUT F	ORMAT =	ASCII							
1>0 DX/9900	VERWRIT LINKER	TEN SEGMEN VERSION	TS IN M	IODULE DI	EV 2/21/83	9.29.30		DACE	2
,			2.0.0	02.312	2/21/05	5:25:30		FAGE	3
PHASE 0	DEV	MOL	OULE OR	IGIN = (0000 L	ENGTH = 0000) .		
MODULE	NO	ORIGIN	LENGTH	TYI	PE	DATE	TIME	CREATO	R
FLTR \$DATA	1 1	0000* 0000*	0035 0027	INCLU	JDE	2/21/83	9:20:28	ASM320)

DEFINITIONS

NAME	VALUE NO	NAME	VALUE NO	NAME	VALUE NO	NAME	VALUE NO
*FLTR *XR1	0014* 1 0026* 1	*MINUS	0024* 1	*ONE	0023* 1	*XR0	0025* 1

LENGTH OF REGION FOR TASK

= 0000

4-12

4

NUMBER OF WARNINGS MESSAGES PRINTED	=	1	
NUMBER OF RECORDS FOR MODULE DEV	=	6	
TOTAL CARDS PRINTED	= -	6	
**** LINKING COMPLETED 2/21/83	9:29	:34	

The following object file is an output produced by the linker:

LINKED OBJECT FILE

 K0000DEV
 90000BF900B0014B7F8DBE287B13F5B1C4FB0E53BF19BBECFC7F1C4F
 DEV

 B1A33B5ED7B7FFFB5ED7B1A33BECFCBF19BB0E53B1C4FB13F5BE28790014B7E017F0A0F
 DEV

 B5023B7F89B1023B502490019B6A23B8003B7F8EB7010B7111B6881B67A0B00237F1B8F
 DEV

 BF400B001EBF600B0023B4000B7010B7121B7F89B6A91B6D90B6B81B6D90BF4007F177F
 DEV

 B002BB7F8FB0E23B5922B4922BF900B00237F80BF
 DEV

 :
 DEV
 2/21/83
 9:29:30
 MPPLINK
 82.312
 DEV

4.3.3.4 Assembly Language Program Using Absolute Code

Through the use of the macros, PROG and MAIN, the above program is well structured and relocatable. During link time, the program and data memory locations for the coefficient CX (i.e., the value for the constant COEF), the data memory location of the variable X, and the program memory location of the MAIN program, FLTR, can be established.

In contrast to the relocatable code approach is one that uses absolute code. Although the use of absolute code makes it somewhat easier to write a single program, this program is not relocatable. The same program that was coded in relocatable code in Section 4.3.3.3 is shown below coded in absolute code.

SOURCE FILE

IDT 'FLTR'

* IDT is a directive which assigns a name to the module. The EQU
* directive assigns values to constants. The constants below
* will refer to locations in data memory. Unlike the above
* program, these data memory locations are fixed and cannot be
* changed at link time. As a result, this module would be very
* difficult to use as part of another program.

~		
X1	EQU	17
X17	EQU	33
CX17	EQU	16
Y	EQU	34
ONE	EQU	127
*	-	1.1

*

*

AORG 10

* The AORG directive establishes the location in program memory where * the code sequence will begin. In this case, the following section * of code will begin at program memory location 10. This contrasts * with the above program (Section 4,3.3.3) which allows the block of * memory the program will occupy to be established during link time. *

	LARK	AR0,16 AR1 0
*		ARI, U
RCONST	LARP TBLR ADD BANZ	1 *+,AR0 ONE RCONST
WAIT *	BIOZ	WAIT
*	IN	X1,PA0
	LARK LARK ZAC LT MPY	AR0,X17 AR1,CX17 *-,AR1 *-,AR0
* LOOP	LTD MPY BANZ APAC	* , AR1 *- , AR0 LOOP
*	ADD	ONE,14
	SACH OUT B	Y,1 Y,PA1 WAIT

Below is the listing file for this program using absolute code.

LISTING FILE

FLTR	320 FAMILY	MACRO AS	SSEMBLER	1.0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	10:16: 5	12/22/82 PAGE 0001
0001		IDT	'FLTR'				THEE UUT
0002	**						
0003	* IDT is a dire	ctive whi	ich assid	ins a nai	me to t	he module.	The EOU
0004	* directive ass	igns valu	les to co	onstants	. The	constants	below *
0005	* will refer	to locat	ions in	data m	emorv.	Unlike the	above *
0006	* program, thes	e data me	emory lo	cations	are f	ixed and c	annot be
0007	* changed at li	nk time.	As a re	sult. t	his mo	dule would	be verv
0008	* difficult to	use as pa	art of an	other p	rogram.		
0009	*	•		-			
0010	0011 X1	EOU	17				
0011	0021 X17	EÕU	33				
0012	0010 CX17	EQU	16				
0013	0022 Y	EQU	34				
0014	007F ONE	EQU	127				
0015	*						
0016	000A	AORG	10				
0017	* 114 and 114						
0018	* The AORG dire	ctive est	ablishes	the loo	cation	in program	memory
0019	* where * the c	ode seque	ence wil	l begin.	. In th	is case, t	he fol-
0020	* lowing section	n of code	will be	gin at	progra	m memory lo	ocation
0021	\star 10. This con	ntrasts w	ith the	above pr	ogram	(Section 4	.3.3.3)
0022	* which allows	the block	of memo	ry the p	program	will occu	upy to
0023	* be established	d during	link tim	ie.			
0024	*						
0025	000A 7010	LARK	AR0,16				
0026	000B 7100	LARK	AR1.0				

4-14

0027	*		
0028 000C 6881	RCONST	LARP	1
0029 000D 67A0		TBLR	*+,AR0
0030 000E 007F		ADD	ONE
0031 000F F400		BANZ	RCONST
0010 000C		•	
0032	*	·	
0033 0011 F600	WAIT	BIOZ	WAIT
0012 0011			
0034	*		
0035 0013 4011		IN	X1,PAO
0036	*		• • • •
0037 0014 7021		LARK	AR0,X17
0038 0015 7110		LARK	AR1,CX17
0039 0016 7F89		ZAC	
0040 0017 6A91		LT	*-,AR1
0041 0018 6D90		MPY	*-,AR0
0042	*		
0043 0019 6B81	LOOP	LTD	*,AR1
0044 001A 6D90		MPY	*-,ARO
0045 001B F400) - E	BANZ	LOOP
001C 0019			
0046 001D 7F8F		APAC	
0047	*		
0048 001E 0E7F		ADD	ONE,14
0049	*		
0050 001F 5922	2	SACH	Y,1
0051 0020 4922	2	OUT	Y,PA1
0052 0021 F900)	В	WAIT
0022 0011	L ;		ter en
0053 0023	- 2- 2- 2-		
0054 0023			
NO FRRORS NO	WARNINGS		

:

PROCESSOR RESOURCE MANAGEMENT

5. PROCESSOR RESOURCE MANAGEMENT

5.1 FUNDAMENTAL OPERATIONS

An understanding of how to use the instructions to perform common tasks is necessary in order to make efficient use of the instruction set. The following sections discuss implementations of some fundamental operations using the TMS32010 instruction set.

5.1.1 Bit Manipulation

0

A specified bit of a word from data memory can either be set, cleared, or tested. Such bit manipulations are accomplished by using the built-in shifter and the logic instructions, AND, OR, and XOR. In the first example, operations on single bits are performed on the data word VALUE. In this and the following examples, data memory location ONE contains the value 1 and MINUS contains the value 1 (all bits set).

×				
* *	Clear bit 5 of	f data memory loc	ation VALUE	
	LAC	ONE 5	ACC = >00000020	
	XOR	MTNUS	Invert accumulator: ACC =	= >0000FFDF
	AND	VALUE	Bit 5 of VALUE is zeroed	
	SACT	VALUE		1. The second
*	DIICE	VIII 02		
* *	Set bit 12 of	VALUE		
	LAC	ONE 12	ACC = >00001000	
	OR	VALUE	Bit 12 of VALUE is set	
	SACL	VALUE		
*				
*	Test bit 3 of	VALUE		
	LAC	ONE.3	ACC = >00000008	
	AND	VALUE	Test bit 3 of VALUE	
	BZ	BIT3Z	Branch to BIT3Z if bit is	clear

More than one bit can be set, cleared, or tested at one time if the necessary mask exists in data memory. In the next example, the six low-order bits in the word VALUE are cleared if MASK contains the value 127.

```
*
```

```
* Clear lower six bits of VALUE
```

LAC	MASK	ACC = >0000003F
XOR	MINUS	Invert accumulator; ACC = >0000FFC0
AND	VALUE	Clear lower six bits
SACL	VALUE	

5.1.2 Data Shift

There are two types of shifts: logical and arithmetic. A logical shift is implemented by filling the empty bits to the left of the MSB with zeros, regardless of the value of the MSB. An arithmetic shift fills the empty bits to the left of the MSB with ones if the MSB is one, or with zeros if the MSB is zero. The second type of bit padding is referred to as sign extension.

The hardware shift which is built into the ADD, SUB, and LAC instructions performs an arithmetic left shift on a 16-bit word. This feature can also be used to perform right shifts. A right shift of n is implemented by performing a left shift of 16-n and saving the upper word of the accumulator.

The first example performs an arithmetic right shift of seven on a 16-bit number in the accumulator.

SACL	TEMP	Move number to memory
LAC	TEMP,9	Shift left (16-7)
SACH	TEMP	Save high word in memory
LAC	TEMP	Return number back to accumulator

The second example performs a logical right shift of four on a 32-bit number stored in the accumulator. The 32-bit results of the shift are then stored in data memory. In this example, the accumulator initially contains the hex number >9D84C1B2. The variables, SHIFTH and SHIFTL, will receive the high word (>09D8) and low word (>4C1B) of the shifted results.

5

* Shift the lower word

SACH SACL LAC SACH LAC XOR AND	SHIFTH SHIFTL,12 SHIFTL,12 MINUS,12 MINUS SHIFTL	SHIFTH = >9D84 SHIFTL = >C1B2 ACC = >FC1B2000 SHIFTL = >FC1B ACC = >FFFF000 ACC = >FFFF000 ACC = >000000C1B	Initial values
	0	nee >00000cib	
the upp	er word		
ADD SACL SACH LAC XOR AND SACL	SHIFTH,12 SHIFTL SHIFTH MINUS,12 MINUS SHIFTH SHIFTH	ACC = >F9D84C1B SHIFTL = >4C1B SHIFTH = >F9D8 ACC = >FFFFF000 ACC = >FFFF0FFF ACC = >000009D8 SHIFTH = >09D8	Final low-order value Final high-order value
	SACH SACL LAC SACH LAC XOR AND the upp ADD SACL SACH LAC XOR AND SACL	SACH SHIFTH SACL SHIFTL LAC SHIFTL,12 SACH SHIFTL LAC MINUS,12 XOR MINUS AND SHIFTL the upper word ADD SHIFTH,12 SACL SHIFTH LAC MINUS,12 XOR MINUS AND SHIFTH SACL SHIFTH	SACHSHIFTHSHIFTH = >9D84SACLSHIFTLSHIFTL = >C1B2LACSHIFTL,12ACC = >FC1B2000SACHSHIFTLSHIFTL = >FC1BLACMINUS,12ACC = >FFFF000XORMINUSACC = >FFFF000XORMINUSACC = >FFFF0FFFANDSHIFTLACC = >00000C1Bthe upper wordSHIFTLSHIFTL = >4C1BSACLSHIFTHSHIFTL = >4C1BSACHSHIFTHSHIFTH = >F9D8LACMINUS,12ACC = >FFFF000XORMINUSACC = >FFFF000XORMINUSACC = >FFFF0FFFANDSHIFTHACC = >000009D8SACLSHIFTHSHIFTH = >09D8

An arithmetic right shift of four can be implemented using the same routine as shown above, except with the last four lines omitted.

5.1.3 Fixed-Point Arithmetic

Computation on the TMS32010 is based on a fixed-point two's complement representation of numbers. Each 16-bit number is evaluated with a sign bit, i integer bits, and 15-i fractional bits. Thus the number:

0 0000010 10100000

____decimal point

has a value of 2.625. This particular number is said to be represented in a Q8 format (8 fractional bits). Its range is between -128 (100000000000000) and 127.996 (0111111111111111). The fractional accuracy of a Q8 number is about .004 (one part in 2**8 or 256).

Although particular situations (e.g., a combination of dynamic range and accuracy requirements) must use mixed notations, it is more common to work entirely with fractions represented in a Q15 format or integers in a Q0 format. This is especially true for signal processing algorithms where multiply-accumulate operations are dominant. The result of a fraction times a fraction remains a fraction, and the result of an integer times an integer remains an integer. No overflows are possible.
The difficulty comes during accumulations of the resulting products. In these situations, the programmer must understand the physical process which underlies the mathematics in order to take care of potential overflow conditions. The following sections discuss some of the techniques involved in using this kind of number representation.

5.1.3.1 Multiplication

There are a wide variety of situations which might be encountered when multiplying two numbers. Three of these scenarios are illustrated below:

CASE I -- FRACTION * FRACTION

Q15 * Q15 = Q30

01000000000000 = 0.5 in Q15 notation * 01000000000000 = 0.5 in Q15

00 010000000000 00000000000000 = 0.25 in Q30

_decimal point

Note: Two sign bits remain after the multiply.

Generally, the programmer will not want to maintain full precision. In fact, he will probably want to save a single-precision (16-bit) result. Unfortunately, the upper half of the result does not contain a full 15 bits of fractional precision since the multiply operation actually creates a second sign bit. In order to recover that precision, the product must be shifted left by one bit. The following code excerpt illustrates an implementation of this example:

LT	OP1	OP1 = >4000 (0.5 in Q15)
MPY	OP2	OP2 = >4000 (0.5 in Q15)
PAC SACH	ANS,1	ANS = >2000 (0.25 in Q15)

The MPYK instruction in the TMS320 will allow the programmer the ability to multiply by a 13-bit signed constant. In fractional notation, this means he can multiply a Q15 number by a Q12 number. This case requires the programmer to shift the resulting number left by four bits to maintain full precision.

LT	OP1	OP1 = >4000 (0.5 in Q15)
MPYK	2048	OP2 = >0800 (0.5 in Q12)
PAC		
SACH	ANS,4	ANS = >2000 (0.25 in Q15)

CASE II -- INTEGER * INTEGER

$$Q0 * Q0 = Q0$$

* 1111111111111111 = 5 in Q0

Note: In this case, the extra sign bit does not come into play, and the desired product is entirely in the lower half of the product. The following program illustrates this example.

LT	OP1	OP1	÷	>0011	(17	in	Q0)
MPY	OP2	OP2	=	>0005	(5	in	Q0)
PAC					÷.,		
SACL	ANS	ANS	=	>0055	(85	in	Q0)

CASE III -- MIXED NOTATION

$$Q14 * Q14 = Q28$$

01100000000000 = 1.50 in Q14 * 001100000000000 = 0.75 in Q14

___ decimal point

The maximum magnitude of a Q14 number is just under two. Thus, the maximum magnitude of the product of two Q14 numbers is four. Two integer bits are required to allow for this possibility, leaving a maximum precision for the product of 13 bits. In general, the following rule applies:

The product of a number with i integer bits and f fractional bits and a second number with j integer bits and g fractional bits will be a number with (i + j) integer bits and (f + g) fractional bits. The highest precision possible for a 16-bit representation of this number will have (i + j) integer bits and (15 - i - j) fractional bits.

If, however, the programmer has a prior knowledge of the physical system which is being modelled, he may be able to increase the precision with which the number is modelled. For example, if he knows that the above product can be no more than 1.8, he could represent the product as a Q14 number rather than the theoretical worst case of Q13. The following program illustrates the above example:

LT	OP1	OP1 = >6000 (1.5 in Q14)
MPY	OP2	OP2 = >3000 (.75 in Q14)
PAC		
SACH	ANS,1	ANS = >2400 (1.125 in Q13)

The techniques which have been illustrated above all truncate the result of the multiplication to the desired precision. The error which is generated as a result amounts to minus one full LSB. This is true whether the truncated number is positive or negative. It is possible to implement a simple rounding technique to reduce this potential error by a factor of two. This is illustrated by the following code sequence:

LT	OP1		
MPY	OP2	OP1 *	OP2
PAC			
ADD	ONE,14	ROUND	UP
SACH	ANS,1		

The error generated in this example is plus one-half LSB whether ANS is positive or negative.

5.1.3.2 Addition

During the process of multiplication, the programmer is not concerned about overflows and needs only to adjust his decimal point following the operation. Addition is a much more complex process. First, both operands of an addition must be represented in the same Q-point notation. Second, the programmer must either allow enough head room in his result to accomodate bit growth or he must be prepared to handle oveflows. If the operands are only 16 bits long, the result may have to be represented as a double-precision number. The following example illustrates two approaches to adding 16-bit numbers:

Maintaining 32-Bit Results:

LAC	OP1	Q15
ADD	OP2	Q15
SACH	ANSHI	High-order 16 bits of result
SACL	ANSLO	Low-order 16 bits of result

Adjusted Decimal Point to Maintain 16-Bit Results:

LAC	OP1,15	Q14	number	in	ACCH
ADD	OP2,15	Q14	number	in	ACCH
SACH	ANS	Q14			

Double-precision operands present a more complex problem. In this case, actual arithmetic overflows or underflows might occur. The TMS32010 provides the programmer with the facility to check for the occurrence of these conditions using the BV instruction. A second technique is the use of saturation mode operations which will saturate the result of overflowing accumulations to the most positive or most negative number. Unfortunately, both techniques will result in a loss of precision. The best technique involves a thorough understanding of the underlying physical process and care in selecting number representations.

5.1.3.3 Division

Binary division is the inverse of multiplication. Multiplication consists of a series of shift and add operations, while division can be broken down into a series of subtracts and shifts. The following example illustrates this process:

Given an 8-bit accumulator, suppose the problem is to divide the number 10 by 3. The process consists of gradually shifting the divisor relative to the dividend, subtracting at each stage, and inserting bits into the quotient if the subraction was successful.

1. First line up the LSB of the divisor with the MSB of the dividend.

00001010 -00011000 11110010

2. Since the result is negative (the subtraction was unsuccessful), throw away the result, shift the dividend, and try again.

景教

00010100 -00011000 11111000

3. The result is still negative. Throw away the result, shift, and try again.

00101000
-00011000
00010000

4. The answer is now positive. Shift the result and add one to set up the fourth and final subtraction.

00100001 -00011000 00001001

5. The answer is again positive. Shift the result and add one. The most significant four bits represent the remainder, while the least significant four bits represent the quotient.

The TMS32010 does not have an explicit divide instruction. However it is possible to implement an efficient flexible divide capability using the conditional subtract instruction, SUBC. The only restriction for the use of this instruction is that both operands be positive. It is also very important that the programmer understand the characteristics of his potential operands, such as whether the quotient can be represented as a fraction and the accuracy to which the quotient is to be computed. Each of these considerations can affect how the SUBC is used.

The examples below illustrate two different situations.

DIV1	CASE 1 - NUMERATOR <	DENOMINATOR	DIV1
TITLE:	Division Routine I		
NAME:	DIV1		
OBJECTIVE:	To divide two binary two's complement number numerator is less than the denominator	s of any sign where the	
	170 14		

5-6

ALGORITHM: ((((((A - B)*2) + 1) - B)*2) + 1) - B... = C

if,
$$A - B > = 0$$
, (($(A - B)^{*}2$) + 1) - B > = 0 ...

where A = denominator, B = numerator, C = quotient

CALLING SEQUENCE: CALL DIV1

ENTRY

CONDITIONS: Numerator < Denominator

EXIT ~

CONDITIONS: Quotient stored in data memory location labelled QUOT

PROGRAM MEMORY REQUIRED:	22 words, excluding macros	DATA MEMORY REQUIRED: 4 words	
STACK	None	EXECUT	FION
REQUIRED:		TIME:	61-64 machine cycles

FLOWCHART: DIV1

FIGURE 5-1 - DIVISION ROUTINE I FLOWCHART

5-7

SOURCE:

5

EXAMPLE:

CALL DIV1

DIV2

CASE 2 — SPECIFY ACCURACY OF QUOTIENT

DIV2

TITLE: Division Routine II

NAME: DIV2

OBJECTIVE: To divide two binary two's complement numbers of any sign, specifying the fractional accuracy of the quotient

ALGORITHM: ((((((A - B)*2) + 1) - B)*2) + 1) - B... = C

if A - B > = 0,(((A - B)*2) + 1) - B > = 0,...

where A = numerator, B = denominator, C = quotient

CALLING

SEQUENCE: CALL DIV2

ENTRY

CONDITIONS: FRAC specifies accuracy of quotient

EXIT

CONDITIONS: Quotient stored in data memory location labelled QUOT

PROGRAM MEMORY REQUIRED:	24 words, excluding macros	DATA MEMORY REQUIRED:	5 words
STACK REQUIRED:	None	EXECUTION TIME: 67 -	- 70 + 3*FRAC clocks

FLOWCHART: DIV2

FIGURE 5-2 - DIVISION ROUTINE I FLOWCHART

SOURCE:

*			
DIV2	LARP	0	
	LT	NUMERA	Get sign of quotient
	MPY	DENOM	
	PAC		
	SACH	TEMSGN	Save sign of quotient
	LAC	DENOM	
	ABS		
	SACL	DENOM	Make denominator positive
	LACK	15	
	ADD	FRAC	
	SACL	FRAC	Compute loop count
	LAC	NUMERA	Align numerator
	ABS		Make numerator positive
	LAR	0,FRAC	
×			
KPDVNG	SUBC	DENOM	16 + FRAC cycle divide loop
	BANZ	KPDVNG	
*			
	SACL	QUOT	
	LAC	TEMSGN	· · · · · · · · · · · · · · · · · · ·
т	BGEZ	DONE ·	Done if sign positive
×			
	ZAC		
	SUB	QUOT	· · · · · · · · · · · · · · · · · · ·
· •	SACL	QUOT.	Negate quotient if negative
DONE	חת		
DONE	KEI		

5

EXAMPLE:

5-10

5.1.4 Subroutines

When a subroutine call is made using the CALL or CALA instruction, the PC + 1 (return address) is saved on the top of the stack. At the end of the subroutine, a RET instruction is executed which updates the PC with the value saved on the stack. The program will then resume execution at the instruction following the subroutine call.

There are two occasions in which a level of stack must be reserved for the machine's use. First, the TBLR and TBLW instructions use one level of stack. Second, when interrupts are enabled, the PC is saved on the stack during the interrupt routine. If a system is designed to use both interrupts and a TBLR or TBLW instruction, only two levels of stack are available for nesting subroutine calls.

NOTE

If the hardware emulator will be used for system development, the level of stack which is reserved for TBLR and TBLW will be used by the emulator to store a return address whenever the program execution is suspended by the emulator. Therefore, if neither the TBLR or TBLW instruction is used, one level of stack must still be reserved for use by the emulator.

Subroutine calls can be nested deeper than two levels if the return address is removed from the stack and saved in data memory. The POP instruction moves the top of stack (TOS) into the accumulator and pops the stack up one level. The return address can then be stored in data memory until the end of the subroutine when it is put back into the accumulator. The PUSH instruction will push the stack down one level and then move the accumulator onto the TOS. Therefore, when the RET instruction is executed, the PC is updated with the return address. This procedure will allow a second subroutine to be called inside the first routine without using another level of stack.

The POP and PUSH instructions can also be used to pass arguments to a subroutine. DATA directives following the subroutine call create a list of constants and/or variables to be passed to the subroutine. After the subroutine is called, the TOS points to the list of arguments following the CALL instruction. By moving the argument pointer from the TOS into the accumulator, the list of arguments can be read into data memory using the TBLR instruction. Between each TBLR instruction, the accumulator must be incremented by one to point to the next argument in the list. To create the return address, the argument pointer is incremented past the last element in the argument list. The PUSH instruction moves the return address onto the TOS, and the RET instruction updates the PC.

The following example illustrates a call which passes two arguments to a subroutine.

	CALL CBITS	
	DATA VALUE	
	DATA >OFFF	
	•	
	•	
	•	
*:	****	***********
*: *	**************************************	**************************************
* * * .	**************************************	**************************************
* * * * *	**************************************	**************************************
*****	**************************************	**************************************
* * * * * * *	**************************************	**************************************

* * *	1st 2nd	argument = argument =	address mask	s of data wo	ord	* *
* Cal * * *	ling *****	sequence:	CALL DATA DATA *******	CBITS 1st argume 2nd argume	ent ent **********	^ * * *
CBITS	SAR	ARO, XRO)	Save ARO ir	n temporary	location
	POP TBLR LAR ADD TBLR ADD PUSH	XR1 AR0,XR1 ONE XR1 ONE		Hold return 1st argumen Put 1st arg 2nd argumen Put return	n address nt = pointer gument into nt = mask address on	r to data ARO TOS
	LARP LAC XOR AND SACL	0 XR1 MINUS * *		Load mask i Invert mask Clear bits	nto accumul	Lator
	LAR RET	ARO, XRO)	Restore ARO	n na star D _{e se} star and se	

5.1.5 Computed GO TOs

The CALA instruction executes a subroutine call based on the address contained in the accumulator. This instruction can be used to perform a computed GO TO. The address of the subroutine can be computed from a data value to determine which one of several routines will be executed. The return at the end of each of these routines will cause program execution to resume with the instruction following the CALA command. It should be noted that the CALA instruction will use a level of stack, because it is an indirect subroutine call and not just an indirect branch.

The example below illustrates how to compute a call to one of several routines. The subroutines are defined first, and then a table of branches to each subroutine is created. The main part of the program inputs a data value of 0, 1, or 2. The appropriate address in the table is calculated in the accumulator. An indirect subroutine call causes the proper branch in the table to be executed.

1183

SUB1	IN RET	DAT1,PAO	
SUB2	IN RET	DAT1,PA1	
SUB3	IN RET	DAT1,PA2	
TBL1	B B B	SUB1 SUB2 SUB3	
	LT MPYK PAC	ONE TBL1	Get address of table
	IN LT	VALUE,PA4 VALUE	Input data from PA4

. . .

MPYK	2	Calculate offset
APAC		
CALA		Go to designated subroutine
LAC	DAT1	Return here after subroutine

5.2 ADDRESSING AND LOOP CONTROL WITH AUXILIARY REGISTERS

There are two auxiliary registers on the TMS32010. The auxiliary registers can be used either as loop counters or as pointers for indirect addressing.

5.2.1 Auxiliary Register Indirect Addressing

In the indirect addressing mode, the auxiliary register pointer (ARP) is used to determine which auxiliary register is selected. The LARP instruction sets the ARP equal to the value of the immediate operand. The value of the ARP can also be changed in the indirect addressing mode; the ARP is updated after the instruction has been executed.

The contents of the auxiliary register are interpreted as a data memory address when the indirect addressing mode is used. A sequential list of data can easily be accessed in the indirect mode by using the autoincrement or autodecrement feature of the auxiliary registers. If the auxiliary register contains a data memory address, the counter can be used to increment through the entire address space. The auxiliary register should not be used as a general purpose incrementer, because only the lower nine bits of the register actually count. A special instruction, MAR, allows the auxiliary register which is selected by the ARP to be incremented or decremented without implementing any other operation in parallel.

There are three instructions (LARK, LAR, SAR) which either load or store a value into an auxiliary register, independent of the value of the ARP. The first operand in each of these instructions determines which auxiliary register is to be either loaded or stored. This operand does not affect the value of the ARP for subsequent instructions.

The example below illustrates using an auxiliary register in the indirect addressing mode to input data into a block of memory.

	LARK	ARO,DATBLK	Initialize ARO as a pointer to DATBLK (an area of 8 words in data memory)
	LARP	0	Select ARO
·	LACK	8	Initialize accumulator as a counter
LOOP	IN	*+,PA0	Input data
	SUB	ONE	Decrement counter (ONE contains value 1)
et e	BNZ	LOOP	Repeat until count=0

5.2.2 Loop Counter

An auxiliary register can also be used as a loop counter. The BANZ instruction will test and then decrement the auxiliary register selected by the ARP. Because the test for zero occurs before the auxiliary register is decremented, the value loaded into the auxiliary register must be one less than the number of times the loop should be executed. The maximum number of loops which can be counted is 512, because only nine bits of each auxiliary register are implemented as counters.

The example below inputs data and calculates the sum while the auxiliary register is used to count the number of loops. The accumulator will contain the result.

	LARK LARP ZAC	AR0,3 0	Initialize ARO as a counter Select ARO Clear accumulator		
LOOP		DATA1, PA2	Input data value		
	BANZ	LOOP	Repeat loop four times		

5.2.3 Combination of Operational Modes

Both indirect addressing and loop counting can be performed at the same time to implement loops efficiently. If the data block is defined to start at location 0 in data memory, the same auxiliary which is counting the number of loops can also be the pointer for indirect addressing.

The example below illustrates using the same auxiliary register as both a counter and a pointer. Data locations 0 through 7 are loaded with input data.

LOOP	LARK	AR0,7 * PA0	ARO points to end of data block
	BANZ	LOOP	Repeat loop 8 times

The data block does not have to start at zero if one auxiliary register is used for counting and the other auxiliary register is used as a pointer. The following example illustrates how both auxiliary registers can be used at once.

	LARK LARK	ARO,7 AR1,DATBLK	Initialize ARO as a counter AR1 points to start of DATBLK, data memory area
	ZAC		
LOOP	LARP	1	Point to AR1
	ADD	*+,AR0	Calculate sum of data in block;
	BANZ	LOOP	Repeat loop 8 times

5.3 MULTIPLICATION AND CONVOLUTION

The hardware multiplier will perform a 16 X 16-bit multiply and produce a 32-bit result. This section will discuss the features of the multiplier and give examples which illustrate how to efficiently use the multiply instructions.

5.3.1 Pipelined Multiplications

A single multiply operation consists of three steps on the TMS32010. First, one of the operands is loaded into the T register from data memory using the LT instruction. The second step is performed by specifying the second operand using either the MPY or MPYK instruction. MPY obtains the second operand from data memory, and MPYK uses an immediate operand as the other operand to be multiplied. The third step moves the output from the (product) P register to the accumulator by using one of three instructions, PAC, APAC, or SPAC. The PAC instruction loads the accumulator

with the value from the P register; the APAC instruction adds the product register to the accumulator; and the SPAC instruction subtracts the P register from the accumulator. Since each of the steps is a one-clock cycle, a single multiply-accumulate operation takes 600 ns.

If several multiplies are to be performed consecutively, the first and third steps of the multiplication process can be done in parallel. This method reduces the time of a multiply-accumulate operation to 400 ns. Multiplication can be pipelined by using the LTA instruction. This instruction loads the T register with the first operand for the next multiplication and adds the P register to the accumulator for the current multiplication.

The example below performs a pipelined multiplication.

*****	******	****	******
* The	equation	n to be calculated	lis: *
$\frac{1}{2} + \frac{1}{2} + \frac{1}$			*
*****	******	*****	*****
	ZAC		
	\mathbf{LT}	W	
	MPY	A	
	LTA	X	ACC = Aw
	MPY	В	
	LTA	Y	ACC = Aw + Bx
	MPY	C	
	LTA	Z	ACC = Aw + Bx + Cy
	MPY	D	-
	APAC	-	ACC = Aw+Bx+Cy+Dz
	SACH	Т1	4
	SACL	T2	Store results

5.3.2 Moving Data

When implementing a digital filter, the variables in the equation represent the inputs and outputs at discrete times. Typically this type of data structure is implemented as a shift register where the data at time t is shifted to the position previously occupied by the data at time t-1. If consecutive addresses in data memory correspond to consecutive time increments, then shifts can be accomplished simply by moving the data item at location d to that corresponding to d + 1. The DMOV command allows a data word to be written into the next higher memory location in a single cycle without affecting the accumulator. Therefore, if the variables are placed in consecutive locations, a DMOV command can be used to move each of the variables before the next calculation is peformed.

The data move operation is combined with the LTA instruction to create the LTD instruction. This instruction performs three operations in parallel. The operand of the instruction is loaded into the T register; the operand is also written into the next higher memory location; and the P register is added to the accumulator. When using the LTD instruction, the order of the multiply and accumulate operations becomes important because the data is being moved while the calculation is being performed. The oldest input variable must be multiplied by its constant and loaded into the accumulator first. Then the input, which is one time-unit delay less, is multiplied and accumulated. This process is repeated until the entire equation has been computed.

The following example illustrates the input variables being moved in memory as the results are calculated:

START	IN	X1, PA0	Input sample
	LT	X4	x(n-4)
	MPY	D	
	LTD	X3	ACC=Dx4: $x(n-4)=x(n-3)$
	MPY	C	
	LTD	X2	ACC=Dx4+Cx3: x(n-3)=x(n-2)
	MPY	В	
	LTD	X1	ACC=Dx4+Cx3+Bx2: x(n-2)=x(n-1)
	MPY	A	
	APAC		ACC=Dx4+Cx3+Bx2+Ax1
	SACH	Y	
	OUT	Y.PA1	Output results
	В	START	···· ·································

5.3.3 Product Register

5

The product register stores the results of a multiplication until another multiplication is peformed. A user may want to use the multiplier during the interrupt routine, but the product register must be restored with the value it contained before the interrupt occurred. It is easy to save the product register in data memory, but it is very difficult to restore the product register with the value that was saved in memory. A hardware feature has been built into the interrupt logic to prevent an interrupt from occurring immediately after a multiply instruction (MPY or MPYK). If the contents of the product register are always transferred into the accumulator on the instruction following the multiply, the product register could be changed during the interrupt routine without having to be restored before returning from the interrupt. Therefore, a PAC, APAC, SPAC, LTA, or LTD should always follow a MPY or MPYK instruction. This rule should be followed whenever the multiplier is being used during the interrupt routine.

The value of the product register can be restored if the contents are saved in memory, but it is a very time-consuming process. If the magnitude of the value saved in memory is greater than fifteen bits, it must be factored into two smaller numbers in order to restore the product register.

5.4 MEMORY CONSIDERATIONS OF HARVARD ARCHITECTURE

The memory organization on the TMS32010 is referred to as a Harvard architecture. This means that the program memory is separate from the data memory. This type of architecture allows the next instruction fetch to occur while the current instruction is fetching data and executing the operation. While the concept of a Harvard architecture increases the speed of the machine, there are disadvantages in having the program memory totally separate from data memory. The instruction set, therefore, includes instructions which transfer a word between data memory and program memory. The following sections illustrate how to make efficient use of the ablility to exchange data between memories.

5.4.1 Moving Constants into Data Memory

Most signal processors have a separate memory space for storing constants. By allowing communication between data and program memory, the TMS32010 is able to incorporate a constant memory capability with its program memory. This method allows a more efficient use of memory space. The portion of memory not used for storing constants is available for use as program space. There are five immediate instructions in the instruction set which provide an efficient way to execute operations using constants. Two immediate instructions, LARP and LDPK, modify the program context.

LARP changes the auxiliary register pointer, and LDPK changes the data page pointer. Three other immediate instructions, LACK, LARK, and MPYK, allow constants to be used in calculations. LACK and LARK both require an unsigned operand with a magnitude no greater than eight bits. The MPYK instruction allows a 13-bit signed number as an operand.

A 16-bit data value can be moved from program memory to data memory using the TBLR instruction. TBLR requires that the program memory address (the source) be in the accumulator, while the data memory address (the destination) is obtained from the operand of the instruction. The TBLR instruction is commonly used to look up values in a table in program memory. The address of the value in the table is computed in the accumulator before executing the instruction. TBLR then moves the value into data memory. TBLR is a three-cycle instruction and, therefore, takes longer than an immediate instruction. However, it has more flexibility since it operates on 16-bit constants.

The example below illustrates bringing the cosine value of a variable into data memory.

* Fir * pro	* First, a table containing the cosine values is created in * program memory.				
COSIN	E	DATA			
		•			
		•			
	1. •				
START	IN LACK ADD TBLR	X,PAO COSINE X COSX	Load table address Calculate program memory address Move value into data memory		

Note: If the address of COSINE is larger than 255, the address can be loaded into the accumulator by loading the T register with a one and then "multiplying by the constant COSINE.

5.4.2 Data Memory Expansion

Often it is necessary to expand data storage capability by using external memory. If the storage requirements are small, additional memory can be added as a RAM extension of the program memory address space. This technique is very efficient in terms of additional hardware requirements, but it has two drawbacks. It requires that the combination of the memory required to store the program and accomodate data be limited to 4096 words. It also tends to limit system throughput, since access to data in program memory is relatively slow. The minimum memory access time using this technique is four clocks (800 ns), but six clocks (1200 ns) is a more likely average.

A system requiring larger memories or faster data access can be implemented by treating the expanded data memory as an I/O device. Since the TMS32010 lacks the capability to address a large I/O address space (it is limited to eight devices), this technique also requires the use of an external address register. This register can be implemented as a counter to allow efficient access to contiguous data buffers. See Section 6.1.3 on I/O design techniques for more details.

5.4.3 Program Memory Expansion

Using the MC/ MP pin on the TMS32010, the applications engineer can choose between two distinct techniques for structuring his program memory address space. (See Figure 5-3.) In the microcomputer mode, the internal masked ROM is active and consumes the low 1536 words of the address space. The remaining 2560 words can be implemented using external memory. If the microprocessor mode is selected, the entire 4096 word address space is assumed to exist external to the chip.

FIGURE 5-3A - USE OF INTERNAL PROGRAM MEMORY

FIGURE 5-3B - USE OF EXTERNAL PROGRAM MEMORY

FIGURE 5-3 - TECHNIQUES FOR EXPANDING PROGRAM MEMORY

In the microcomputer mode, only the upper 2.5K words of external program memory are used. In the microprocessor mode, all 4K words of external memory are used. With some types of memory elements, additional chip-select logic may be necessary.

External program memory may utilize either RAM or ROM. In either case, system operation at the full 5-MHz clock rate requires that the memory exhibit an access time of less than 100 ns. If RAM is used, it may be loaded either via the TMS32010 itself using a boot ROM, or via a dual RAM port from an independent controller.

5

INPUT/OUTPUT DESIGN TECHNIQUES

6. INPUT/OUTPUT DESIGN TECHNIQUES

An interrupt-driven sampled data interface is the most common for signal processing applications, but other types of peripherals can also be used. This section illustrates several examples and discusses some of the hardware and software issues which should be considered when designing an I/O system for the TMS32010.

6.1 PERIPHERAL DEVICE TYPES

Using a three-bit port address, the TMS32010 is capable of accessing eight different input devices and eight different output devices. The port number is placed on the external address lines during the second cycle of the instruction. The address lines can be decoded to select one of several devices attached to the data bus or to activate a single control line. Three classes of peripherals are discussed below.

6.1.1 Registers

A register can be used for several different functions. The most simplistic interface uses a 16-bit dual port transceiver. Such a register allows two-way communication between the TMS32010 and another processor. Handshaking between the processors can be implemented by using interrupts on the TMS32010. In Figure 6-1, the acknowledge line from the other processor is connected to the BIO pin in order to synchronize the TMS32010.

FIGURE 6-1 - COMMUNICATION BETWEEN PROCESSORS

In a more complicated configuration, a shift register can be used to convert a serial data stream into parallel data to be compatible with the I/O instructions. An analog device which can be interfaced to this processor is a codec. It is simply an A/D converter and D/A converter which is designed to operate in a telecommunications environment. This serial device produces eight-bit logarithmically-weighted digital data. Consequently, a codec interface must include a mechanism for serial to parallel conversion and a facility for code conversion. A shift register can provide the parallel input to the TMS32010. The code converter for A/D data can be implemented either in hardware using a 256 X 16-bit ROM or in software.

Another example of a register-based I/O system is a very simple A/D channel where the output of an A/D converter is buffered using a single parallel register. This requires that the A/D system be serviced before the next data sample overwrites the previous sample stored in the register. Unfortunately, a routine which only services a single data word for every interrupt can be very time consuming. The service overhead time can be reduced by multiword buffering (see Section 6.1.2 for discussion of FIFOs and interrupts).

6.1.2 FIFOs

The use of FIFOs instead of registers offers three definite advantages as follows:

- 1) Single address access to multiple data words,
- 2) Reduction of I/O overhead (since several words can be accessed for each interrupt),

3) Preservation of temporary information in data stream.

Figure 6-2 illustrates the use of a FIFO in a typical analog subsystem.

FIGURE 6-2 - TYPICAL ANALOG SYSTEM INTERFACE

6.1.3 Extended Memory Interface

The peripheral which requires the most hardware to implement is a large memory. Because the address lines only access locations 0-7 during an I/O operation an external address counter must be used to provide an address for the memory. It is also advisable to provide a buffer between the data bus of the TMS32010 and that of the memory itself. Although this buffer is probably not necessary for high-speed static memories, it is required for slower devices and large arrays where the drive capacity of the TMS32010 may be marginal.

Figure 6-3 gives an example of one way to extend data memory by using the IN and OUT instructions. The design consists of 16K words of static RAM, addressed by the lower 14 bits of a 16-bit counter. The location to address in this RAM is loaded into the counter by doing an OUT instruction to port 0. This loads the data bus into the counters. The appropriate data memory location is addressed by the lower 14 bits of the data. Bit 15 (MSB) of the data is loaded into the counters to determine whether to count up or down through data memory. Memory can then be read from or written to sequentially by doing an IN or OUT instruction to port 1. The MSB in the counters determines whether the memory address should be incremented (MSB = 0) or decremented (MSB = 1) after a read or write of data memory. Memory will continue to be addressed sequentially until new data is loaded into the counters.

6-2

FIGURE 6-3 - TMS32010 EXTENDED MEMORY INTERFACE

Dynamic memories can also be used. However, those devices may impose software constraints on the system designer. For example, memory cycle times may not allow consecutive IN/OUT/IN instruction sequences. Memory refresh represents another problem. Since this processor has no capability to enter a "wait" state, memory refresh must be generated with external hardware.

6.2 INTERRUPTS

An interrupt routine allows the current process to be suspended while an I/O device is being serviced. The processor's execution may be suspended on a high-priority basis by using the INTpin. Otherwise, a lower priority interrupt can be serviced by using a software polling technique.

6.2.1 Software Methods

The BIOZ instruction can be used to poll (or test) the BIO pin to see if a device needs to be serviced. This method allows for a critical loop or set of instructions to be executed without a variation in execution time. Because the test for interrupts occurs at defined points in the program, context saves requirements are minimal.

The BIO pin can be used to monitor the status of a peripheral. If the FIFO full status line is connected to the BIO pin, the FIFO is serviced only when the FIFO is full. In the following example, the FIFO contains 16 data words. The BIO pin is tested after each time-critical function has been executed.

BIOZ	SKIP
CALL	SERVE
•	

SKIP

The subroutine does not have to save the registers or the status, because a new procedure will be executed after the device is serviced.

	SERVE	LACK	AR0,15
		LACK	AR1, TABLE
1	LOOP	LARP	1
		IN	PA0,*+,AR0
		BANZ	LOOP
		RET	

The FIFO must be serviced before another word is input or data may be lost. This fact determines the frequency at which the polling must take place.

6.2.2 Hardware Methods

The INT pin causes execution to be suspended at any point in the program except after a multiply instruction (see Section 4.1.3.3). The hardware interrupt can be masked at critical points in the program with the DINT instruction. If an interrupt occurs while the INTM (disabled interrupt mask) equals one, the interrupt will not be serviced until the interrupts are enabled again. If an interrupt is pending when an enable interrupt operation occurs, the interrupt is serviced after the execution of the instruction following the EINT command.

When an interrupt is serviced, the INTF (interrupt flag) is cleared, INTM is set to one, the current PC is pushed on the TOS, and the PC is set to 2. The user must save the context of the machine before servicing the peripheral. The context should be restored and the interrupts enabled prior to returning from the interrupt routine. The following paragraphs illustrate a technique for implementing an interrupt-driven analog input channel. It also shows the impact of multiple-level data buffering on system I/O overhead.

Generally, the class of analog systems which can be reasonably supported by the TMS32010 will have information bandwidths of less than 20 kHz. The desired sample rate can be generated by dividing the 5 MHz CLKOUT signal from the TMS32010. It is advisable to provide at least a one-level data buffer to insure the integrity of the data which is read by the processor. If an 8-kHz sample rate is used (for example), the system must then respond to an analog interrupt every 125 ms. The I/O overhead incurred by this arrangement can be computed by determining the number of clock times the TMS32010 will spend in the interrupt routine servicing each sample, and dividing by 625. For example, a typical interrupt routine might look like the following:

INT	SST	STATUS	Save status
	SACL	ACCL	Save accumulator low
	SACH	ACCH	Save accumulator high
	IN	SAMP, ADC	Read from ADC
	LAC	COUNT	Update sample counter
	ADD	ONE	
	SACL	COUNT	
	LACK	LIMIT	Check whether LIMIT clocks
	SUB	COUNT	received
	BGZ	OK	

DONE	LACK	1	YES ===> Set flag
5	SACL	FLAG	
OK	ZALH	ACCH	Restore accumulator high
	ADDS	ACCL	Restore accumulator low
	LST	STATUS	Restore status
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	EINT		Enable subsequent interrupts
	RET		

The overhead required to service this system is 18/625 = 2.9 percent. This overhead burden can be reduced by using a FIFO to buffer the data. In this case, the TMS32010 need only be interrupted when the buffer has filled. If a 16-level FIFO is used in our example above, this interrupt will occur every 2 ms, and the overhead burden will be reduced to about 0.5 percent.

If two different kinds of devices are being serviced by the same interrupt routine, the \overline{BIO} pin can be used to determine which device needs to be serviced.

MACRO LANGUAGE INSTRUCTIONS

7. MACRO LANGUAGE EXTENSIONS

The basic instruction set of the TMS32010 has been extended via the XDS/320 Macro Assembler to facilitate coding of commonly used assembly language constructs. In this section, a set of macros designed to ease assembly language coding is described. Some macros call routines from the set of utility routines described in Section 7.5.

7.1 CONVENTIONS USED IN MACRO DESCRIPTIONS

In the macro descriptions, the following conventions are used:

Α	A previously defined [†] memory label	
B	Another previously defined tlabel	
A:A + 1	Like A, except refers to a double word	
B:B + 1	Like B, except refers to a double word	
ТМР	A temporary location (previously defined)	
AR	Auxiliary register 1 or auxiliary registor 0	
@AR	Data RAM location pointed to by the selected auxilia	ary register
@AR: @AR + 1	Double word, starting at location pointed to by the s register	selected auxiliary
@AR — 1: @AR	Double word, starting at one before the location poi selected auxiliary register	nted to by the
AR1	Auxiliary register 1	
@AR1	Data RAM location pointed to by AR1	
AR0	Auxiliary register 0	
@AR0	Data RAM location pointed to by AR0	
AC	Accumulator	
AC low	Low-order 16 bits of the accumulator	
AC high	High-order 16 bits of the accumulator	
@AC	Data RAM location pointed to by the accumulator	
Ρ	P register	
Т	T register	
ARP	Auxiliary register pointer	

7-1

Indirect operand

Indirect reference and increment

Indirect reference and decrement

Field f optional (i.e., may be replaced by a null operand)

Constant. (It may be written as $C\{n < C < m\}$ to indicate a range limit between n and m. C1 and C2 will be used as constants when two are required in a description.

1183

† Some macros generate different code sequences for constant operands and memory operands. Memory operands can be confused with constants unless the memory labels (operand names) have been defined to the assembler prior to their use in a macro call. This limitation corresponds to the requirement in some higher-level languages like PASCAL that variables be declared prior to their use in expressions.

7.2 MACRO SET SUMMARY

[f]

С

Table 7-1 lists alphabetically all the macros described in Section 7-3.

MNEMONIC	DESCRIPTION	PAGE
ΔΩΤΔΒ	Move Accumulator to Auxilian, Pariston	
ADAR	Add Variable to Auviliant Register	7-7
	Double-Word Add	7-9
ARTAC	Move Auxiliant Register to Assumulation	7-11
RIC	Clear Bits in Date Mard	7-14
BIC	Set Pite in Data Word	7-16
DIJ	Test Dits in Data Word	7-18
	Company True Mond	7-20
	Compare I wo words	7-22
	Compare I wo Double Words	7-24
	Decrement Word	7-26
DECX	Double-Word Decrement	7-28
INC	Increment Word	7-31
INCX	Double-Word Increment	7-33
LACARY	Load Accumulator from Address in	
	Accumulator	7-36
LASH	Arithmetic Left Shift	7-38
LASX	Double-Word Arithmetic Left Shift	7-40
LAXARY	Load Double Word into Accumulator from	
	Address in Accumulator	7-42
LCAC	Load Constant into Accumulator	7-44
LCACAR	Load Constant to Accumulator from Program	
	Address in Accumulator	7-48
LCAR	Load Constant into Auxiliary Register	7-50
LCAX	Load Double-Word Constant into Accumulator	7-53
LCAXAR	Load Double-Word Constant to Accumulator	
	from Program Memory	7-55
LCP	Load Constant into P Register	7-57
LCPAC	Load Constant into P Register and	
	Accumulator	7-59

TABLE 7-1 - MACRO INDEX

MNEMONIC	DESCRIPTION	PAGE
LDAX	Load Double Word	7-61
LTK	Load Constant into T Register	7-64
MAX	Select Maximum of Two Words	7-66
MAXX	Select Maximum of Two Double Words	7-68
MIN	Select Minimum of Two Words	7-70
MINX	Select Minimum of Two Double Words	7-72
MOV	Move Word in Data Memory	7-74
MOVCON	Move Constants to Data Memory	7-76
MOVDAT	Move Words to Data Memory	7-80
MOVE	Move Data Array	7-85
MOVROM	Move Words to Program Memory	7-90
MOVX	Move Double Word	7-95
NEG	Arithmetic Negation	7-98
NEGX	Double-Word Arithmetic Negation	7-100
NOT	Boolean Not	7-103
RASH	Arithmetic Right Shift	7-105
RASX	Double-Word Arithmetic Right Shift	7-107
REPCON	Move One-Word Constant into Array	7-109
RIPPLE	Ripple Data Array One Position	7-111
RLSH	Right Logical Shift	7-115
RLSX	Double-Word Logical Right Shift	7-117
SACX	Store Double Word	7-119
SAT	Saturate Data Word between Upper and Lower	
	Bounds	7-122
SBAR	Subtract Variable from Auxiliary Register	7-126
SBIC	Clear Single Bit in Data Word	7-129
SBIS	Set Single Bit in Data Word	7-131
SBIT	Test Single Bit in Data Word	7-133
STOX	Convert Single Word to Double Word	7-135
SUBX	Double-Word Subtract	7-137
TST	Test Word	7-140
TSTX	Test Double Word	7-142
XTOS	Convert Double Word to Single Word	7-145

TABLE 7-1 - MACRO INDEX (CONTINUED)

Table 7-2 summarizes all the legal parameters of the macros described in Section 7-3.

TABLE 7-2 - MACRO SET SUMMARY

MACRO		0	OPERAND		OPERAND TYPES [‡]		CONSTANT RANGE					
INSTRUCTION	NUNIDER	T	SIZE '		s	*	*+	*_	AC	AR	LOWEST	HIGHEST
ACTAR	1	x	1		x					X	temr	l
ADAR	1						1 .,		3 ° 4	X	Cont	
	3	x		X		1	1			1. S. S.	- 32768	32767
ADDX	1		2	1	X	T X	X	X	- ···		Comp	
ARTAC	1									X		
BIC	1	^	1.			×	×	×	÷	<u> </u>	temp	orary
	2		1		x	x						
BIS	1				X	X	X	X				
BIT	1		1		Î	<u>†</u>	x	x				
CMD	2		1		X	X	X	X				
СМР	1		1					X	÷	а. С		
СМРХ	1		2		X	X	X	X			in the second second	
DEC	2		2		X	X	X	X				
DEG	2	x	•		^	1				x		
DECX	1	X	2		X	X	X	X	Х			
INC	1	X	1		X		. 1		X			
INCX	1	X	2	1	x	x	X	X	X	X		
LACARY	##	v	1			1			X			
LASH	1	×	1	X	×		-		· .		0	15
	2		1		x					•		
LASX	1		2		x						<u> </u>	15
	2		2							с х.		
LAXARY	3		2		· · · ·	+					0	15
LCAC	1	v	. 1	X	X	1					- 32768	32767
LCACAR	##	<u> </u>	1	<u>├</u>					X		0	15
	1	X	1	X	v		а. С . С. А.				0	15
LCAR	1	~			^				<u> </u>	x	tempo	prary
	2		1	X	x						-32768	32767
	1		26	X			·				-2**31	2**31-1
LOANAN	<i>""</i> 1	x	2	1.	x				×		temp	rary
LCP	1		1	Х	X	1. 					- 4096	4095
	1		1	Х	X						- 4096	4095
LUAA	1		2	X	X	X	X	<u> </u>			- 32769	22767
ΜΑΧ	1		1		X		÷				52700	32/07
MAXX	1		2		X					_		
MIN	2		2		X			·				
	2		1		X					. 1		
MINX	1 2		2		X		·	ан А. А.				
MOV	1 2		1		X	X	X	X	×			
MOVCON	1		?	X	~							
MOVDAT	2		?		X	X			X			
program →	2		?		x	â		x	^	· · · ·		
data	3	x		x						-	- 32768	32767

MACRO	OPERAND	0	OPERAND SIZE [†]			OPERAND TYPES [‡]				‡	CONSTANT RANGE		
INSTRUCTION	NUMBER	P T		С	s	*	*+	*_	AC	AR	LOWEST	HIGHEST	
MOVE	1	•	?		X	Х	-		X				
data →	2	1	?		X	X			X				
data	3	X		X							- 32768	32767	
MOVROM	1	T	?		Х	X			X				
data →	2		7		Х	x			X		00700	20767	
program	3	X		X				<u> </u>		-	- 32768	32/6/	
MOVX	1 2		2		X	X	X X	X	X			**	
NEG	1		1		X	Х	5.						
NEGX	1		2		Х	Х	Х	X				· · · · · · · · · · · · · · · · · · ·	
NOT	1	X	1		X	X	Х	X	X				
RASH	1		1		X								
	2		1		X						6	15	
	3	 		X							0	15	
RASX	1		2	ľ							-		
	23		2	x	. ~						0	15	
REPCON	1			X							- 32768	32767	
	2	1.1	?		X	1 - E		ľ					
	3			X			ļ	ļ	 		- 32768	32767	
RIPPLE	1		?		X						22762	22767	
	2						1	1			- 32/68	32/0/	
	3	X		+				<u> </u>					
RLSH			1		🗘	ļ							
	2			x	^			ľ			0	15	
RISX			2	+	x			1	1	1			
	2	1	2		X		1		1				
	3	1	·	X							0	15	
SACX	1		2		X	X	X	X					
SAT	1		1		X		1						
	2	1.	1	X	X		.		1	1	-32768	32767	
	3		1	X	X		 	ļ		+	- 32768	32767	
SBAR	1					1 ·		1	1	X	20760	22767	
	2			×		1		1	1		- 32/08		
0010	3	+ <u>×</u>	1	+	+			+	+		C Centre	15	
SBIC			1	1^	x	x							
SBIS	1			X							0	15	
	2		1		X	X			+			15	
SBIS		-	1	×	x	x	1					GI	
SRIT	<u> </u>		<u> </u>	+ x	+	\uparrow	+	+	-		0	15	
	2		1		X	x	x	X					
STOX	1		1		X	-							
	2		2		+	+	+ v	+ v	+-	+			
SUBX	$\frac{1}{1}$		2		$+\hat{\mathbf{x}}$	$+\hat{\mathbf{x}}$	<u>†</u> Ŷ	+ ^	+	+		1	
TSTY	1 1		2		X	X	$\frac{1}{x}$	T X	1				
XTOS	1	-	2		$+\hat{\mathbf{x}}$	+~	+	+	1			· · · · ·	
					X	1							

TABLE 7-2 - MACRO SET SUMMARY (Concluded)

NOTES:

t ‡

С

S

Blank in size field means that operand is not a data (program) location, but is a field in an instruction (i.e., has no word size).

Constant

Symbolic address

Indirect through the selected address register (ARP) *,*+,*-

Operand is the AC (usually shown in the instruction as null or blank operand: MOV,A) AC

AR An address register (ARO or AR1)

- 32-bit constant expressed as a two-word constant list: (C1,C2)
- ş Variable length operand (length given by argument 3) ?

Implied operand in accumulator ##

7.3 MACRO DESCRIPTIONS

Each macro instruction is named, followed by a summary table. A flowchart for clarifying the macro source then follows and specific examples of all legal forms.

The macros described in this section use a number of assembler symbols for internal purposes during macro expansion. Most of these internal symbols and any operands the user supplies to the macros are entered into the assembler symbol table as undefined (unless they are user-defined already) and will be printed at the end of the assembler printed output as undefined. This is not an error. Only undefined symbol errors flagged under assembly language statements in the program listing are actual fatal errors. Only these errors will be tallied in the assembly error count. Undefined symbols listed after the program are for information only.

1183

ACTAR

ACTAR

	· · · · · · · · · · · · · · · · · · ·				
TITLE:	Move Accumulator to Auxiliary Regi	ster			
NAME:	ACTAR		•	·	
OBJECTIVE:	Pass data word to named auxiliary re	gister from accum	ulator		
ALGORITHM:	(ACC) → temp (XR0) (temp) → AR		1.14		
CALLING SEQUENCE:	ACTAR AR [,TEMP]				· · ·
ENTRY CONDITIONS:	AR = 0,1; 0 ≤ TEMP ≤ 127				
EXIT CONDITIONS:	Accumulator stored in auxiliary regis ARP now points to auxiliary register	ter; specified			
PROGRAM MEMORY REQUIRED:	3 words	DATA MEMORY REQUIRED:	1 word		
STACK REQUIRED:	None	EXECUTION TIME:	3 cycles		

FLOWCHART: ACTAR

ACTAR ACTAR SOURCE: *MOVE AC TO AR ★ ACTAR \$MACRO A,T SIF T.L=0 ASSIGN XRO AS TEMP \$ASG 'XRO' TO T.S \$ENDIF SACL :T:,0 STORE AC TO :T: LAR :A:,:T: LARP :A: RE-LOAD :A: LOAD AR POINTER SEND **EXAMPLE 1:** 0013 ACTAR ARO 0001 0009 5004" SACL XR0,0 STORE AC TO XRO LAR ARO, XRO LARP ARO 0002 000A 3804" RE-LOAD ARO 0003 000B 6880 LOAD AR POINTER EXAMPLE 2: 001 5 0

0015		ACTAR	0,C		
0001 000C	5000"	SACL	C,0		STORE AC TO C
0002 000D	3800"	LAR	0,C	÷	RE-LOAD 0
0003 000E	6880	LARP	0		LOAD AR POINTER

ADAR	Add Variable to Auxiliary Register – Macro	ADAR
TITLE:	Add Variable to Auxiliary Register	
NAME:	ADAR	
OBJECTIVE:	Add data word to named auxiliary register	n an an Arthur an Arthur An Anna Anna Anna Anna Anna Anna Anna
ALGORITHM:	(AR) + (dma) → ĀCC (ACC) → AR	
CALLING SEQUENCE:	ADAR AR, B [,TEMP]	
ENTRY CONDITIONS:	AR = 0,1; 0 ≤ B ≤ 127; 0 ≤ TEMP ≤ 127	
EXIT CONDITIONS:	Sum of memory location and auxiliary register is stored in named au register	ıxiliary
PROGRAM MEMORY REQUIRED:	5 – 7 words (plus LDAC\$ DATA REQUIRED: 2 words routine)	
STACK REQUIRED:	0 – 2 levels EXECUTION TIME : 5 – 17 cyc	les
FLOWCHART:	ADAR	
	BEGIN	
TE	IS THERE A MPORARY JAMED ?	RARY
STOR		IN RY
	GISTER IN MPORARY IN AUXILI REGISTE	ORARY ARY R
AR	IS 2ND GUMENT A UNSTANT ? YES CALL LCAC TO LOAD CONSTANT INTO ACC END	
LOA		

7-9

ADAR

SOURCE:

```
*ADD TO AR
★
ADAR SMACRO A, B, T
      $IF T.L=0
                        USE XR1 AS TEMP
      $ASG 'XR1' TO T.S
      $ENDIF
      SAR :A:,:T:
$IF B.SA&$UNDF
LCAC :B:
                        STORE :A:
                        LOAD CONST :B: INTO AC
      $ELSE
      LAC :B:,0
                        LOAD VAR :B: INTO AC
      $ENDIF
      ADD :T:,0
                        ADD TEMP :T: TO AC
      SACL :T:,0
                        STORE :T:
      LAR :A:,:T:
                        LOAD BACK INTO :A:
      $END
```

EXAMPLE 1:

0007				ADAR	A.3			
0001	0006	3103"		SAR	A.XR1	STORE A		
0002				LCAC	3	LOAD CONSTANT 3 INTO	AC	
0001		0003	V\$1	EOU 3			AC	
0002	0007	7E03	•	LACH	VS1	LOAD AC WITH VS1		
0003	0008	0003"		ADD	XR1.0	ADD TEMP XR1 TO AC		
0004	0009	5003"		SACL	XR1.0	STORE XR1		
0005	A000	3903"		LAR	A,XR1	LOAD BACK INTO A		
EXAM	IPLE 2	:			•			
0000								
0009	0000			ADAR	ARU,C,B			
0001	0008	3008		SAR	ARO, B	STORE ARO		
0002	0000	2004"		LAC C	C,0	LOAD VARIABLE C INTO	AC	
0003	0000	0008		ADD	B,0	ADD TEMP B TO AC		
0004	OUOE	5008		SACL	B,0	STORE B		
0005	OOOF	3808		LAR	ARO,B	LOAD BACK INTO ARO		
EXAM	PLE 3	:						
0011								
0011	0010	2000		ADAR	0,D			
0001	0010	3003"		SAR	U,XR1	STORE O		
0002	0011	2005"		LAC D	0,0	LOAD VARIABLE D INTO	AC	
0003	0012	0003"		ADD	XR1,0	ADD TEMP XR1 TO AC		
0004	0013	5003"		SACL	XR1,0	STORE XR1		
0005	0014	3803"		LAR	0, XR1	LOAD BACK INTO O		
			and an					

7-10

ADAR
ADDX

Double-Word Add TITLE:

ADDX NAME:

OBJECTIVE: Add double word to accumulator

ALGORITHM: ADDX* - causes \rightarrow (ACC) + (@AR:@AR + 1) \rightarrow ACC $ADDX * - - causes \rightarrow (ACC) + (@AR - 1:@AR) \rightarrow ACC$

 $(AR) - 2 \rightarrow AR$

- causes → (ACC) + (@AR:@AR + 1) → ACC ADDX * + $(AR) + 2 \rightarrow AR$

- causes \rightarrow (ACC) + (A:A + 1) \rightarrow ACC ADDX A

CALLING

ADDX {A,*,* - ,* + } SEQUENCE:

None

ENTRY CONDITIONS: $0 \le A \le 127$

EXIT

CONDITIONS: Accumulator contains updated value after addition; auxiliary register is updated if necessary

PROGRAM MEMORY

REQUIRED: 2 words

STACK

REQUIRED:

DATA MEMORY **REQUIRED:** None

TIME:

EXECUTION 2 cycles

ADDX FLOWCHART: ADDX

SOURCE:

*ADD	DOUBLE PRECISION			
*			and the second sec	
ADDX	\$MACRO A	ADD	DOUBLE PRI	ECISION
	\$VAR ST, SP, SM			
	\$ASG '*+' TO SP.	S		
	\$ASG '*-' TO SM.	5		
	\$ASG '*' TO ST.S			
	\$IF A.SV=ST.SV			
	ADDH *+	ADD	HIGH	
	ADDS *-	ADD	LOW	
	\$ELSE			
	\$IF A.SV=SP.SV			
	ADDH *+	ADD	HIGH	
	ADDS *+	ADD	LOW '*+'	
	ŞELSE			
	\$IF A.SV=SM.SV			
	ADDS *-	ADD	LOW	
	ADDH *-	ADD	HIGH '*-'	
	ŞELSE			
	ADDH :A:	ADD	:A: HIGH	
	ADDS :A:+1	ADD	:A: LOW	
	SENDIF			
	SENDIF			
	SENDIF			
	\$END			

~1

ADDX

ADDX

ADDX

EXAMPLE 1:

0011	ADDX A	
0001 0006 6007	ADDH A	ADD A HIGH
0002 0007 6108	ADDS A+1	ADD A LOW
EXAMPLE 2:		
0013	ADDX *	
0001 0008 6088	ADDH *+	ADD HIGH
0002 0009 6198	ADDS *-	ADD LOW '*'
EXAMPLE 3:		
0015	ADDX *-	
0001 000A 6198	ADDS *-	ADD LOW
0002 000B 6098	ADDH *-	ADD HIGH '*-'
EXAMPLE 4:		
0017	ADDX *+	
0001 000C 60A8	ADDH *+	ADD HIGH
0002 000D 61A8	ADDS *+	ADD LOW '*+'

ARTAC

ARTAC

TITLE:	Move Auxiliary Register to Accumulator
--------	--

NAME: ARTAC

OBJECTIVE: Load data from auxiliary register into accumulator

ALGORITHM: (AR) → temp (temp) → ACC

CALLING

SEQUENCE: ARTAC AR [,TEMP]

ENTRY

7

CONDITIONS: AR = $0,1; 0 \leq \text{TEMP} \leq 127$

EXIT CONDITIONS: Accumulator contains same value as auxiliary register

PROGRAM MEMORY		DATA MEMORY	
REQUIRED:	2 words	REQUIRED:	1 word
STACK REQUIRED:	None	EXECUTION TIME:	2 cycles

FLOWCHART: ARTAC

7-14

ARTAC

ARTAC

SOURCE:

*COPY AR TO AC * ARTAC \$MACRO A,T \$IF T.L=0 USE XRO AS TEMP \$ASG 'XRO' TO T.S \$ENDIF SAR :A:,:T: SAVE :A: LAC :T:,0 LOAD INTO AC \$END

EXAMPLE 1:

0013 0001 0008 300 4" 0002 0009 200 4 "	ARTAC ARO SAR ARO,XRO LAC XRO,O	SAVE ARO Load into ac
EXAMPLE 2:		

0014			***					
0015				ARTAC	0,C			
0001	A000	3000"		SAR	0,C	SAVE	0	
0002	000B	2000"		LAC	C,0	LOAD	INTO	AC

BIC

TITLE: **Clear Bits in Data Word** NAME: BIC

OBJECTIVE: Clear bits in data word specified by one bit in mask

ALGORITHM: (data) .AND. .NOT. (mask) → data

CALLING

SEQUENCE: BIC mask, data

ENTRY

CONDITIONS: $0 \le \text{mask} \le 127$; $0 \le \text{data} \le 127$

EXIT

7

CONDITIONS: Data word contains initial value with specified bits cleared

	None		EXECUTION	Alexalas	
REQUIRED:	4 words		REQUIRED:	1 word	
PROGRAM MEMORY			DATA MEMORY		

FLOWCHART: BIC

SOURCE:

*BIT CLEAR - CLEAR BITS IN B WHERE A HAS ZEROS * BIC \$MACRO A, B BIT CLEAR LAC :A:,0

LOAD :A:

7-16

BIC

IC			BIC
XOR MINUS AND :B: SACL :B:,0 \$END	INVERT MASK AND :B: SAVE RESULT IN :	B ;	
EXAMPLE 1:			
0014 0001 000A 2008 0002 000B 7803" 0003 000C 7901 0004 000D 5001	BIC B,A LAC B,O XOR MINUS AND A SACL A,O	LOAD B INVERT MASK AND A SAVE RESULT	IN A
EXAMPLE 2:			
0016 0001 000E 2001" 0002 000F 7803" 0003 0010 7900" 0004 0011 5000"	BIC D,C LAC D,O XOR MINUS AND C SACL C,O	LOAD D INVERT MASK AND C SAVE RESULT	INC
EXAMPLE 3:			
0018 0001 0012 2001" 0002 0013 7803" 0003 0014 7901 0004 0015 5001	BIC D,A LAC D,O XOR MINUS AND A SACL A,O	LOAD D INVERT MASK AND A SAVE RESULT	INA

BIS

TITLE: Set Bits in Data Word

NAME: BIS

OBJECTIVE: Set bits in data word specified by one bit in mask

ALGORITHM: (data).OR. (mask) → data

CALLING

SEQUENCE: BIS mask, data

ENTRY

CONDITIONS: $0 \le \text{mask} \le 127$; $0 \le \text{data} \le 127$

EXIT

7

CONDITIONS: Data word contains initial value with specified bits set

STACK REQUIRED:	None	EXECUTION TIME:	3 cycles	
PROGRAM MEMORY REQUIRED:	3 words	DATA MEMORY REQUIRED:	None	

FLOWCHART: BIS

SAVE BACK TO :A:

SOURCE:

*SET BITS IN B CORRESPONDING TO ONES IN A * BIS \$MACRO A,B BIT SET LAC :A:,0 LOAD :A: OR :B: OR WITH :B:

SACL :B:,0

\$END

7	-1	8

Ť.

EXAMPLE 1:		andar Antonio antonio antonio antonio antonio Antonio antonio antonio antonio antonio antonio antonio antonio antonio	
0014	BIS B,A		•
0001 000A 2008	LAC B,0	LOAD B	
0002 000B 7A01	OR A	OR WITH A	
0003 000C 5001	SACL A,O	SAVE BACK TO B	
EXAMPLE 2:			
0016	BIS D,C		
0001 000D 2001"	LAC D,0	LOAD D	
0002 000E 7A00"	OR C	OR WITH C	
0003 000F 5000"	SACL C,0	SAVE BACK TO D	

BIT	Test Bits in Data Word – Macro BIT
TITLE:	Test Bits in Data Word
NAME:	BIT I I I I I I I I I I I I I I I I I I
OBJECTIVE:	Test bits in data word specified by one bit in mask
ALGORITHM:	(data) .AND. (mask) → ACC
CALLING SEQUENCE:	BIT mask,data
ENTRY CONDITIONS:	0 ≤ mask ≤ 127; 0 ≤ data ≤ 127
EXIT CONDITIONS:	ACC contains zero if no bits of mask are set in data word: any bits masked that are set in data word will be set in ACC
PROGRAM MEMORY REQUIRED:	2 words DATA MEMORY REQUIRED: None
STACK REQUIRED:	EXECUTIONNoneTIME:2 cycles
FLOWCHART:	BIT
	BEGIN
	LOAD MASK INTO ACC
an de la companya de La companya de la comp	

SOURCE:

*BIT TEST - BITS IN B TESTED BY MASK IN A * BIT \$MACRO A,B BIT TEST LAC :A:,O LOAD :A:, MASK AND :B: AND WITH :B: \$END

BIT										BIT
EX	AMPLE:	· ·								
0 0 0	014 001 000A 002 000B	2008 7901		BIT LAC AND	B,A B,O A		LOAD B, MA AND WITH A	SK		
						· · ·		· · · · · · · · · · · · · · · · · · ·		
			• • •							an thur an
				•						
										na na sana Na sana sang
- -			: :							
						e Servereze			·	
			:							
	94 1						n An Anna Anna Anna Anna Anna Anna Anna			
						lan an a	,			
										an a

СМР	Compare	Two Words – Macro		CMP
TITLE:	Compare Two Words			
NAME:	СМР			
OBJECTIVE:	Load word into accumulator; comparison	then subtract the other w	ord, allowing	
ALGORITHM:	CMPX A,B – causes→ (A) –	- (B) → ACC		
CALLING SEQUENCE:	CMP {A,*,* - ,* + },{B,*,* -	- ,* + }		
ENTRY CONDITIONS:	0 ≤ A ≤ 127; 0 ≤ B ≤ 127			
EXIT CONDITIONS:	Accumulator contains value o word; auxiliary register is upd			
PROGRAM MEMORY REQUIRED:	2 words	DATA MEMORY REQUIRED:	None	
STACK REQUIRED:	None	EXECUTION TIME:	2 cycles	
FLOWCHART:	СМР			
	L0,	BEGIN AD ACC WITH 1ST WORD SUBTRACT 2ND WORD		

SOURCE:

*COMPARE A TO B * CMP \$MACRO A,B COMPARE LAC :A:,0 LOAD :A: SUB :B:,0 SUBTRACT :B: \$END

CMP

EXAMPLE 1:

0007 0001 0006 2001 0002 0007 1008	CMP A,B LAC A,0 SUB B,0	LOAD A SUBTRACT B
EXAMPLE 2:		
0009 0001 0008 2088 0002 0009 1008	CMP *,B LAC *,0 SUB B,0	LOAD * SUBTRACT B
EXAMPLE 3:		
0011 0001 000A 2004" 0002 000B 10A8	CMP C,*+ LAC C,0 SUB *+,0	LOAD C SUBTRACT *+
EXAMPLE 4:		
0013 0001 000C 2088 0002 000D 1088	CMP *,* LAC *,0 SUB *,0	LOAD * SUBTRACT *

7

CMP

CMPX	Compare	Two Double	Words – Mac	ro	C	MPX
TITLE:	Compare Two Double	Words				
NAME:	CMPX					s de la composición d Para de la composición de la composición Para de la composición
OBJECTIVE:	Load double word into allowing comparison	accumulator; t	hen subtract the	other doub	e word,	
ALGORITHM:	CMPX A, B - causes-	→ (A:A+1)	– (B:B + 1) →	ACC		
CALLING SEQUENCE:	CMPX {A,*,* - ,* + },	,{B,*,*-,*+}				
ENTRY CONDITIONS:	0 ≤ A ≤ 127; 0 ≤ B ≤ 1	27				
EXIT CONDITIONS:	Accumulator contains v first double word; auxil	value of second iary register is u	double word su pdated if necess	btracted fro ary.	m the	
PROGRAM MEMORY REQUIRED:	4 words		DATA MEMORY REQUIRED:	None		
STACK REQUIRED:	None		EXECUTION TIME:	4 cycles		
FLOWCHART:	СМРХ					
		BEGIN	D			
		LOAD 1ST DO WORD INTO	DUBLE ACC			

SUBTRACT 2ND DOUBLE WORD FROM ACC

SOURCE:

*COMPARE A TO B, DOUBLE * CMPX \$MACRO A,B LDAX :A: SUBX :B: \$END

COMPARE DOUBLE LOAD DOUBLE :A: SUBTRACT DOUBLE :B:

CMPX

EXAMPLE 1:

0011 0001 0001 0006 6507 0002 0007 6108 0002 0001 0008 6209 0002 0009 630A	CMPX A,B LDAX A ZALH A ADDS A+1 SUBX B SUBH B SUBS B+1	LOAD DOUBLE À LOAD HIGH À LOAD LOW À SUBTRACT DOUBLE B SUBTRACT HIGH SUBTRACT LOW
EXAMPLE 2:		
0013 0001 0001 000A 6500" 0002 000B 6101" 0002 0001 000C 62A8 0002 000D 6398	CMPX C,* LDAX C ZALH C ADDS C+1 SUBX * SUBH *+ SUBS *-	LOAD DOUBLE C LOAD HIGH C LOAD LOW C SUBTRACT DOUBLE * SUBTRACT HIGH SUBTRACT LOW
EXAMPLE 3:		
0015 0001 0001 000E 6698 0002 000F 6098 0002 0001 0010 6202 0002 0011 6303	CMPX *-,D LDAX *- ZALS *- ADDH *- SUBX D SUBH D SUBS D+1	LOAD DOUBLE *- LOAD LOW LOAD HIGH '*-' SUBTRACT DOUBLE D SUBTRACT HIGH SUBTRACT LOW
EXAMPLE 4:		
0017 0001 0001 0012 65A8 0002 0013 61A8 0002	CMPX *+,*+ LDAX *+ ZALH *+ ADDS *+ SUBX *+	LOAD DOUBLE *+ LOAD HIGH LOAD LOW '*+' SUBTRACT DOUBLE *+

SUBH *+

SUBS *+

EXAMPLE 5:

0001 0014 62A8 0002 0015 63A8

00019 LDAX *- L 0001 0016 6698 ZALS *- L 0002 0017 6098 ADDH *- L 0002 SUBX *- S S 0001 0018 6398 SUBS *- S 0002 0019 6298 SUBH *- S	LOAD DOUBLE *- LOAD LOW LOAD HIGH '*-' SUBTRACT DOUBLE *- SUBTRACT LOW SUBTRACT HIGH
--	---

SUBTRACT HIGH

SUBTRACT LOW

E A

CMPX

DEC	Decrement Wo	ord – Macro DEC
TITLE:	Decrement Word	
NAME:	DEC	
OBJECTIVE:	Decrement word or accumulator	
ALGORITHM:	DEC - causes \rightarrow (ACC) - 1 \rightarrow A	CC
	DEC A - causes \rightarrow (A) - 1 \rightarrow (A)	
	DEC , AR – causes \rightarrow (AR) – 1 \rightarrow A	R
CALLING SEQUENCE:	DEC [A][,AR]	
ENTRY CONDITIONS:	0 ≤ A ≤ 127; AR =0,1	
EXIT CONDITIONS:	Specified word or auxiliary register is pointer will point to specified auxiliary	decremented; auxiliary register / register
PROGRAM MEMORY REQUIRED:	1 – 3 words	DATA MEMORY REQUIRED: 1 word
STACK REQUIRED:	None	EXECUTION TIME: 1 – 3 cycles

7-26

DEC SOURCE:

 $\dot{\omega}$

DEC

*DECR *REGI *	EMENT THE ACCUM STER, OR MEMORY	ULATOR, AN AUXILIARY
DEC	SMACRO A, B	DECREMENT
272.4	SIF A.L=0	
	SIF B.L=0	
	SUB ONE, O	DECREMENT AC
	SELSE	
	LARP :B:	LOAD ARP WITH :B:
	MAR *-	DECREMENT
	SENDIF	
	SELSE	

LAC :A:	:,0	LOA	D :A:	
SUB ONE	Ξ,Ο	DEC	REMEN	Т
SACL :A:	,0	SAV	:A:	
\$ENDIF		1.1		٠,
\$END				

EXAMPLE 1:

0007				DEC	A		
0001	0006	2001		LAC	A,0	1997 - 1997 1997 - 1997	LOAD A
0002	0007	1000"	* 	SUB	ONE, O		DECREMENT
0003	0008	5001		SACL	A,0		SAVE A

EXAMPLE 2:

0009	DEC ,A	
0001 0009 6881	LARP A	LOAD ARP
0002 000A 6898	MAR *-	DECREMENT

EXAMPLE 3:

0011 0001 000B 1000'	DEC SUB ONE, O	DECREMENT THE A	CCUMULATOR
EXAMPLE 4:	an an an Array ann a Array anns an Array anns an Array anns anns anns an Array anns anns anns anns anns anns anns an		
0015 0001 000F 6880 0002 0010 6898	DEC ,ARO LARP ARO MAR *-	 LOAD ARP WITH A DECREMENT	NRO

ARP WITH A

DECX

DECX

Double Double	e-word Decrement

NAME: DECX

OBJECTIVE: Decrement double word or accumulator

ALGORITHM:	DECX *	- causes→	(@AR:@AR + 1) – 1 → @AR:@AR + 1
	DECX * –	– causes→	(@AR – 1:@AR) – 1 → @AR – 1:@AR (AR) – 2 → AR
	DECX * +	– causes→	(@AR:AR:@AR + 1) - 1 → @AR:@AR + ' (AR) + 2 → AR
	DECX A	– causes→	(A:A+1) – 1 → A:A+1
	DECX	– causes→	$(ACC) - 1 \rightarrow ACC$

CALLING

SEQUENCE: DECX [A,*,*-,*+]

ENTRY CONDITIONS: $0 \le A \le 127$

EXIT

CONDITIONS: Specified double word is decremented; auxiliary register is updated as necessary

PROGRAM MEMORY REQUIRED:	1 – 5 words	DATA MEMORY REQUIRED: 1 word
STACK REQUIRED:	None	EXECUTION TIME: 1 - 5 cycles

DECX

DECX

FLOWCHART: DECX

SOURCE:

*DECREMENT DOUBLE

×			
DECX	SMACRO A SVAR ST,SP,SM SASG '*+' TO SP.S SASG '*-' TO SM.S SASG '*' TO ST.S	DECREMENT	DOUBLE
	SUB ONE,0 SELSE SIF A.SV=SM.SV	DECREMENT	AC
	ZALS *- ADDH *+	LOAD **-	
	SUB ONE,0	DECREMENT	
	SACX *- \$ELSE	SAVE '*-'	
	SIF A.SV=SP.SV		
	LDAX *	LOAD	
	SUB ONE, 0	DECREMENT	
	SACX *+	SAVE '*+'	

DECX

SELSE	
\$IF A.SV=ST.SV	
LDAX *	LOAD '*'
SUB ONE, 0	DECREMENT
SACX *	SAVE '*'
ŞELSE	
LDAX :A:	LOAD :A:
SUB ONE, 0	DECREMENT
SACX :A:	SAVE :A:
\$ENDIF	
SEND	

EXAMPLE 1:

0011			DECX A	· · · ·
0001			LDAX A	LOAD A
0001	0006	6507	ZALH A	LOAD HIGH A
0002	0007	6108	ADDS A+1	LOAD LOW A
0002	0008	1004"	SUB ONE,0	DECREMENT
0003			SACX A	SAVE A
0001	0009	5807	SACH A,0	STORE HIGH
0002	000A	5008	SACL A+1.0	STORE LOW
	an an an Arthur An Anna Anna Anna Anna Anna Anna Anna A	Alfred Lands - Alfred		

EXAMPLE 2:

0013			DECX *		
0001		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	LDAX *		LOAD '*'
0001	000B	65A8	ZALH *+		LOAD HIGH
0002	000C	6198	ADDS *-		LOAD LOW '*
0002	000D	1004"	SUB ONE.0	e de la composition de la composition	DECREMENT
0003			SACX *		SAVE 141
0001	000E	58A8	SACH *+.0		STORE HIGH
0002	000F	5098	SACL *- 0		STORE LOW

EXAMPLE 3:

0015		DECX *-	
0001 0010	6698	ZALS *-	States and the second
0002 0011	60A8	ADDH *+	LOAD 1*-1
0003 0012	1004"	SUB ONE.0	DECREMENT
0004		SACX *-	SAVE '*-'
0001 0013	5098	SACL *0	STORE LOW
0002 0014	5898	SACH *-,0	STORE HIGH

EXAMPLE 4:

0017	DECX *+	
0001	LDAX *	LOAD '*'
0001 0015 65A8	ZALH *+	LOAD HIGH
0002 0016 6198	ADDS *-	LOAD LOW 1*1
0002 0017 1004"	SUB ONE.0	DECREMENT
0003	SACX *+	SAVE '*+'
0001 0018 58A8	SACH *+.0	STORE HIGH
0002 0019 50A8	SACL *+,0	STORE LOW
EXAMPLE 5:		

0019 DECX 0001 001A 1004" SUB ONE,0 DECREMENT AC

INC	Increment Word	– Macro		INC
TITLE:	Increment Word			
NAME:	INC			
OBJECTIVE:	Increment word or accumulator			
ALGORITHM:	INC $- \text{causes} \rightarrow (ACC) + 1 \rightarrow ACC$			
	INC A $-$ causes \rightarrow (A) + 1 \rightarrow (A)			
	INC , AR – causes \rightarrow (AR) + 1 \rightarrow AR	• • • • • • • • • • • • • • • • • • •		
CALLING SEQUENCE:	INC [A][,AR]			
ENTRY CONDITIONS:	0 ≤ A ≤ 127; AR =0,1			
EXIT CONDITIONS:	Specified word or auxiliary register is in pointer specifies the named auxiliary re	cremented; aux gister	iliary register	
PROGRAM MEMORY REQUIRED:	1 – 3 words	DATA MEMORY REQUIRED:	1 word	
STACK REQUIRED:	None	EXECUTION TIME:	1 – 3 cycle	
FLOWCHART:	INC	:		

INC SOURCE:

*INCF *	REMENT AC, AR, OR	MEM
INC	\$MACRO A,B \$IF A.L=0 \$IF B.L=0	INCREMENT
	ADD ONE,0 \$ELSE	INCREMENT AC
	LARP :B: MAR *+ \$ENDIF	LOAD ARP WITH :B: INCREMENT
	LAC :A:,0 ADD ONE,0 SACL :A:,0 \$ENDIF \$END	LOAD :A: INCREMENT SAVE :A:

EXAMPLE 1:

0007 0001 0002 0003	0006 0007 0008	2001 0000" 5001	INC LAC ADD SACL	A A, 0 ONE, 0 A, 0	LOAD A INCREMENT SAVE A			2 - L Š
EXAM	PLE 2					t en Statue		
0009 0001 0002	0009 000A	6881 68A8	INC LARP MAR	, AR1 AR1 *+	LOAD ARP WITH A INCREMENT	AR1		
EXAM	PLE 3	:		n an shekara T				
0011 0001	000B	0000"	INC ADD	ONE,0	INCREMENT		• #	
EXAM	PLE 4	•						
0015 0001 0002	000F 0010	6880 6888	INC LARP MAR	, ARO ARO *+	 LOAD ARP WITH A INCREMENT	ARO	- - -	

INC

INCX

TITLE:	Double-Word Increment			
NAME:	INCX			
OBJECTIVE:	Increment double word or	accumulator		
ALGORITHM:	INCX * – causes→	(@AR:@AR+1) + 1 → @A	AR:@AR + 1	
	INCX * – – causes→	(@AR – 1:@AR) + 1 → @ (AR) – 2 → AR	AR – 1: @A	
	INCX * + − causes→	(@AR:@ AR + 1) + 1 → @ (AR) + 2 → AR	AR:@AR + 1	
andra an	INCX A − causes→	(A:A+1) + 1 → A:A+1		
	INCX – causes→	(ACC) + 1 → ACC		
CALLING SEQUENCE:	INCX [A,*,* – ,* +]		· ·	
ENTRY CONDITIONS:	0 ≤ A ≤ 127			
EXIT CONDITIONS:	Specified double word is in auxiliary register is update	ncremented; d as necessary		
PROGRAM MEMORY REQUIRED:	1 – 5 words	DATA MEMORY REQUIRED:	1 word	and Angeles An
STACK REQUIRED:	None	EXECUTION TIME:	1 – 5 cycles	

7-33

INCX

FLOWCHART: INCX

INCX

SOURCE:

*INCRI *	EMENT DOUBLE		
INCX	\$MACRO A \$VAR ST,SP,SM \$ASG '*+' TO SP.S \$ASG '*-' TO SM.S \$ASG '*' TO ST.S	INCREMENT	DOUBLE
	\$IF A.L=0 ADD ONE,0 \$ELSE \$IF A.SV=SM.SV ZALS *-	INCREMENT	AC
	ADDH *+ ADD ONE,0 SACX *- \$ELSE	LOAD '*-' INCREMENT SAVE '*-'	
	\$IF A.SV=SP.SV LDAX * ADD ONE,0	LOAD '*' INCREMENT	
	JALA AT	SAVE '^+'	

INCX

INCX

SELSE	
SIF A.SV=ST.SV	
LDAX *	LOAD '*'
ADD ONE, O	INCREMENT
SACX *	SAVE '*'
SELSE	
LDAX :A:	LOAD :A:
ADD ONE, O	INCREMENT
SACX :A:	SAVE :A:
SENDIF	
SEND	

EXAMPLE 1:

0011			INCX A	
0001			LDAX A	LOAD A
0001 0	0006	6507	ZALH A	LOAD HIGH A
0002 (0007	6108	ADDS A+1	LOAD LOW A
0002 (8000	0004"	ADD ONE, O	INCREMENT
0003			SACX A	SAVE A
0001 (2009	5807	SACH A,0	STORE HIGH
0002	A000	5008	SACL A+1,0	STORE LOW
EXAMP	PLE 2	:		
0013			INCX *	
0001			LDAX *	LOAD '*'
0001 (000B	65A8	ZALH *+	LOAD HIGH
0002	000C	6198	ADDS *-	LOAD LOW '*'
0002	000D	0004"	ADD ONE, O	INCREMENT
0003			SACX *	SAVE '*'
0001	000E	58A8	SACH *+,0	STORE HIGH
0002	000F	5098	SACL *-,0	STORE LOW
EXAMF	PLE 3	• • •		
0015			INCX *-	
0001	0010	6698	ZALS *-	
0002	0011	60A8	ADDH *+	LOAD '*-'
0003	0012	0004"	ADD ONE, O	INCREMENT
0004			SACX *-	SAVE '*-'
0001	0013	5098	SACL *-,0	STORE LOW
0002	0014	5898	SACH *-,0	STORE HIGH
EXAMI	PLE 4	:		
0017			INCX *+	
0001			LDAX *	LOAD '*'
0001	0015	65A8	ZALH *+	LOAD HIGH
0002	0016	6198	ADDS *-	LOAD LOW '*'
0002	0017	0004"	ADD ONE, O	INCREMENT
0003			SACX *+	SAVE '*+'
0001	0018	58A8	SACH *+,0	STORE HIGH
0002	0019	50A8	SACL *+,0	STORE LOW
EXAM	PLE 5	5:		
0019			INCX	
0001	001A	0004"	ADD ONE, O	INCREMENT AC
			·	

ł

LACAR	Load A from Address in	Accumulator Accumulator — Mac	ro	ACARY
///LC.	Load Accumulator from Addres	s in Accumulator		
NAME:	LACARY			
OBJECTIVE:	Load accumulator from array in location is in the accumulator; the accumulator is the acc	data RAM; the addres ne data will be left-shif	s of the data RA ted in the	M
	accumulator			
ALGORITHM:	(ACC) → AR1 (@AR1) * 2 ^{shift} → ACC			
CALLING SEQUENCE:	LACARY [shift]			
ENTRY CONDITIONS:	0 ≤ shift < 16; 0 ≤ (ACC) ≤ 143			
EXIT CONDITIONS:	Data RAM location pointed to by accumulator; AR1 is overwritten	accumulator is stored	l in the	
PROGRAM MEMORY REQUIRED:	4 words	DATA MEMORY REQUIRED:	1 word	
STACK REQUIRED:	None	EXECUTION TIME:	4 cycles	

FLOWCHART: LACARY

LACARY

LACARY

SOURCE:

*LOAD A *	C FROM ADDRESS I	N AC
LACARY	\$MACRO A ACTAR AR1 SIF A.L=0	AC TO AR1
	LAC *,0 SELSE	LOAD
	LAC *,:A: \$ENDIF \$END	LOAD AND SHIFT

EXAMPLE 1:

0011 0001 0002 0003 0002	0006 0007 0008 0009	5006" 3906" 6881 2888	LACARY 8 ACTAR AR1 SACL XRO,O LAR AR1,XRO LARP AR1 LAC *,8	AC TO AR1 STORE AC TO XRO RE-LOAD AR1 LOAD AR POINTER LOAD AND SHIFT
EXAM	PLE 2	:		
0013 0001 0002 0003 0002	000A 000B 000C 000D	5006" 3906" 6881 2088	LACARY ACTAR AR1 SACL XR0,0 LAR AR1,XR0 LARP AR1 LAC *,0	AC TO AR1 STORE AC TO XRO RE-LOAD AR1 LOAD AR POINTER LOAD

LASH

LASH

TITLE: Arithmetic Left Shift

NAME: LASH

OBJECTIVE: Move word from one data location to another with an arithmetic left shift

ALGORITHM: (A) * $2^{\text{shift}} \rightarrow B$

CALLING SEQUENCE: LASH A, B, shift

ENTRY

CONDITIONS: $0 \le A \le 127$; $0 \le B \le 127$; $0 \le \text{shift} < 16$

EXIT

CONDITIONS: B contains the shifted value of A

STACK REQUIRED:	None	EXECUTION TIME:	2 cycles	
PROGRAM MEMORY REQUIRED:	2 words	DATA MEMORY REQUIRED:	None	

FLOWCHART: LASH

SOURCE:

*MOVE A TO B (SINGLE-VAR) WITH N (CONST) BIT
*LEFT ARITHMETIC SHIFT
*
LASH \$MACRO A,B,N MOVE WITH LEFT ARITH. SHIFT
LAC :A:,:N: LOAD :A: LEFT SHIFT
SACL :B:,0 STORE TO :B:
\$END

LASH EXAMPLE :

0013	LASH A, B, 5
0001 0008 2507	LAC A,5
0002 0009 5008	SACL B,0

LOAD A LEFT SHIFT STORE TO B

LASX

TITLE:	Double-Word Arithmetic Left Shift
NAME:	LASX
OBJECTIVE:	Move double word from one data location to another in data memory with left shift
ALGORITHM:	(A:A + 1) * 2 ^{shift} → B:B + 1
CALLING SEQUENCE:	LASX A,B,shift
ENTRY CONDITIONS:	0 ≤ A ≤ 126; 0 ≤ B ≤ 126; 0 ≤ shift < 16
EXIT CONDITIONS:	B:B + 1 contains shifted value of A:A + 1
PROGRAM MEMORY REQUIRED:	8 words REQUIRED: 1 word
STACK REQUIRED:	None EXECUTION TIME : 8 cycles
FLOWCHART:	LASX
	BEGIN
	LOAD ACC WITH A+1, SHIFTED N
	SAVE ACC LOW IN B+1; SAVE ACC HIGH IN B
	CREATE MASK (16-N) O'S; (N) 1'S
	ZERO SIGN-EX- TENDED BITS IN B

ADD A, SHIFTED N TO B

END

LASX SOURCE:

LASX	\$MACRO A,B,N LAC :A:+1,:N: SACL :B:+1,0	MOVE DOUBLE WITH ARITH. SHIFT LOAD LOW, SHIFT LEFT SAVE IN LOW
	SACH :B:,0	SAVE HIGH OVERFLOW
	LAC MINUS,:N: NOT	GET MASK
	AND :B: ADD :A:,:N: SACL :B:,0 \$END	TAKE SIGNIFICANT BITS ADD IN SHIFT HIGH PART SAVE HIGH

EXAMPLE:

0011	LASX A.B.3		
0001 0006 2308	LAC A+1,3	LOAD LOW, SHIFT LEFT	
0002 0007 500A	SACL B+1,0	SAVE IN LOW	
0003 0008 5809	SACH B,0	SAVE HIGH OVERFLOW	
0004 0009 2305"	LAC MINUS, 3	GET MASK	
0005	NOT		
0001 000A 7805"	XOR MINUS	INVERT	
0006 000B 7909	AND B	TAKE SIGNIFICANT BITS	
0007 000C 0307	ADD A,3	ADD IN SHIFT HIGH PART	
0008 000D 5009	SACL B,0	SAVE HIGH	

7

LASX

v	$\mathbf{\Lambda}$	V	
		T	

LAXARY

TITLE:	Load Double Word into	Accumulator	from Address in	Accumula	ator	
NAME:	LAXARY					
OBJECTIVE:	Load accumulator from on the first RAM location is	double-word in the accum	array in data RA ulator	M; the add	ress of	
ALGORITHM:	(ACC) → AR1 (@AR1) → ACC high (@AR1 + 1) → ACC low					
CALLING SEQUENCE:	LAXARY	<u></u>			· · · · · · · · · · · · · · · · · · ·	
ENTRY CONDITIONS:	0 ≤ (ACC) ≤ 143					
EXIT CONDITIONS:	Double word pointed to b is overwritten	oy accumulat	or is stored in the	e accumula	itor; AR1	
PROGRAM MEMORY REQUIRED:	5 words	e al	DATA MEMORY REQUIRED:	1 word	andra State State State State State State State	
STACK REQUIRED:	None		EXECUTION TIME:	5 cycles		
FLOWCHART:	LAXARY	· · · · · · · · · · · · · · · · · · ·			- 	
		LOAD ARR POINTER INTO REGISTE				
		LOAD DOU WORD INTO	BLE ACC			

END

SOURCE:

*LOAD DOUBLE AC FROM ADDRESS IN AC * LAXARY \$MACRO ACTAR AR1 LDAX *+ \$END ACTO AR1 LOAD DOUBLE ACTO AR1 LOAD DOUBLE

7

ł

LAXARY

LAXARY

EXAMPLE:

0003 0008 6881 LARP ARI LOAD AR POINTER 0002 LDAX *+ LOAD DOUBLE 0001 0009 65A8 ZALH *+ LOAD HIGH 0002 000A 61A8 ADDS *+ LOAD LOW '*+'	0011 0001 0001 0006 5006" 0002 0007 3906" 0003 0008 6881 0002 0001 0009 65A8 0002 000A 61A8	LAXARY ACTAR AR1 SACL XR0,0 LAR AR1,XR0 LARP AR1 LDAX *+ ZALH *+ ADDS *+	AC TO AR1 STORE AC TO XRO RE-LOAD AR1 LOAD AR POINTER LOAD DOUBLE LOAD HIGH LOAD LOW '*+'	
--	--	---	---	--

.

1183

LCAC	Load Constant into Ac	cumulator — N	
TITLE:	Load Constant into Accumulator		
NAME:	LCAC		
OBJECTIVE :	Move constant value into accumulat	or with possible le	eft shift
ALGORITHM:	Constant → ACC if shift → (ACC) → temp * 2 ^{shift} → ACC		
CALLING SEQUENCE:	LCAC constant, shift, temp		
ENTRY CONDITIONS:	 – 32768 ≤ constant ≤ 32767; 0 ≤ sl 0 ≤ temp ≤ 127 	hift < 16;	
EXIT CONDITIONS:	Accumulator contains value of the co	onstant	
PROGRAM MEMORY REQUIRED:	1 – 5 words + LDAC\$ routine	DATA MEMORY REQUIRED:	0 – 2 words
STACK REQUIRED:	2 levels with LDAC\$	EXECUTION TIME:	1 – 15 cycles

LCAC

SOURCE:

★ *LOAD CONSTANT TO AC ★ LCAC A LOAD CONSTANT A * LCAC A,B LOAD CONSTANT A, SHIFTED B, USE TEMP XRO LOAD CONSTANT A, SHIFTED B, USE TEMP T * LCAC A,B,T ★ LCAC \$MACRO A, B, T \$IF A.SA&\$REL CALL LDACS LOAD AC WITH: REF LDAC\$ DATA :A: :A: \$ELSE \$IF A.SA&\$UNDF SVAR L,Q \$ASG '\$\$LAB' TO L.S \$ASG L.SV+1 TO L.SV V\$:L.SV: EQU :A: \$ASG 'V\$' TO Q.S \$ASG :Q.S::L.SV: TO A.S SENDIF \$IF (A.SV<256)&(A.SV>-1) LACK :A: LOAD AC WITH :A: SELSE CALL LDAC\$ LOAD AC WITH: REF LDAC\$ DATA :A: :A: \$ENDIF SENDIF \$IF B.L#=0 \$IF (B.V>0) \$IF T.L=0 XRO AS TEMP SASG 'XRO' TO T.S **\$ENDIF** SACL :T:,0 STORE UNSHIFTED CONSTANT LAC :T:,:B: LOAD SHIFTED **\$ENDIF** SENDIF SEND

EXAMPLE 1:

7

0012				LCAC	1.5		
0001		0001	V\$2	EOU 1			
0002 0003 0004	0007 0008 0009	7E01 5003" 2503"	· · ·	LACK SACL LAC	V\$2 XR0,0 XR0,5	LOAD AC WITH V\$2 STORE UNSHIFTED CONSTANI LOAD SHIFTED	Г

EXAMPLE 2:

0014				LCAC 128.0				
0001		0080	V\$3	EOU 128				
0002	A000	7E80		ĨLACK V\$3	LOAD	AC	WITH	V\$3

EXAMPLE 3:

0018			LCAC -1000.5
0001		FC18	V\$5 EOU -1000
0002	000E	F800	CALL LDACS
	000F	0000	

LOAD AC WITH:
LCAC

0003		REF	LDAC\$
0004 0010) FC18	DATA	V\$5
0005 001:	1 5003"	SACL	XRO,0
0006 0012	2 2503"	LAC	XR0,5

V\$5 STORE UNSHIFTED CONSTANT LOAD SHIFTED

EXAMPLE 4:

0022 0001 0016 7E07 0002 0017 5008	LCAC A,6,B LACK A SACL B,0 LAC B 6	LOAD AC WITH A STORE UNSHIFTED CONSTANT LOAD SHIFTED
0003 0018 2608	LAC B,6	LOAD SHIFTED

TITLE:	Load Constant to Accun	nulator from	Program Addres	s in Accumulato	or.
NAME:	LCACAR				
OBJECTIVE:	Load accumulator from a program ROM location is in the accumulator	array in progr s in the accur	ram RAM; the ac nulator; the data	ldress of the will be left-shift	ted
ALGORITHM:	(@ACC) → temp (temp) * 2 ^{shift} → ACC				
CALLING SEQUENCE:	LCACAR [C][,TEMP]				
ENTRY CONDITIONS:	$0 \le \text{shift} < 16; 0 \le \text{TEMF}$	P ≤ 127; 0 ≤	(ACC) ≤ 40 95		
EXIT CONDITIONS:	Program ROM location pe accumulator	ointed to by a	accumulator is st	tored in the	
PROGRAM MEMORY REQUIRED:	2 words		DATA MEMORY REQUIRED:	1 word	
STACK REQUIRED:	1 level		EXECUTION TIME:	4 cycles	
FLOWCHART:	LCACAR	BEGIN	ר ר		

LCACAR

SOURCE:

LCACAR SMACRO A,T	
SIF T.L=O ASSIGN TEMP	
SASG 'XRO' TO T.S	
SENDIF	
TBLR :T: READ FROM ROM TO	:T:
\$IF A.L=0	
LAC :T:,0 LOAD :T: UNSHIFT	ED
\$ELSE	
LAC :T:,:A: LOAD :T: SHIFTED	
\$ENDIF	
ŞEND	

EXAMPLE 1:

0011 0001 0006 6706" 0002 0007 2806"	LCACAR 8 TBLR XRO LAC XRO,8	READ FROM ROM TO XRO LOAD XRO SHIFTED
EXAMPLE 2:		
0013 0001 0008 6707 0002 0009 2407	LCACAR 4,A TBLR A LAC A,4	READ FROM ROM TO A LOAD A SHIFTED
EXAMPLE 3:	an Anno 1997 - Charles Charles ann an 1997 - Charles Anno 1997 - Charles Anno 1997 - Charles Anno 1997 - Charles Anno 1997 - Charles Anno 1997 - Anno 1997 - Charles Anno 1997 -	
0015 0001 000A 6706" 0002 000B 2006"	LCACAR TBLR XRO LAC XRO,O	READ FROM ROM TO XRO LOAD XRO UNSHIFTED
EXAMPLE 4:		
0017 0001 000C 6700" 0002 000D 2000"	LCACAR ,C TBLR C LAC C,O	READ FROM ROM TO C LOAD C UNSHIFTED

7

LCACAR

LCAR	Load Constant into Auxi	iary Reqister —	Macro	LCAR
TITLE:	Load Constant into Auxiliary Registe	ðr		
NAME:	LCAR			
OBJECTIVE:	Move constant value into auxiliary re	gister		
ALGORITHM:	Constant → AR			
CALLING SEQUENCE:	LCAR AR, constant	· · · · ·		
ENTRY CONDITIONS:	– 32768 ≤ constant ≤ 32767; AR =	0,1		
EXIT CONDITIONS:	Auxiliary register contains value of th	e constant		
PROGRAM MEMORY REQUIRED:	1 – 3 words (+ LDAR\$0 and LDAR\$1 routines)	DATA MEMORY REQUIRED:	0 – 2 words	
STACK REQUIRED:	2 levels with LDAR\$	EXECUTION TIME:	1 – 13 cycles	

FLOWCHART: LCAR

LCAR

SOURCE:

```
*LOAD CONSTANT (TO AR0/1)
*
       LCAR ARO/1, CONSTANT
★
LCAR
       $MACRO A,B
       $IF B.SA&$REL
                          LOAD :A: WITH:
       CALL LDAR$:A.V:
       REF LDAR$:A.V:
DATA :B:
                             :B:
       $ELSE
       $IF B.SA&$UNDF
       $VAR L,Q
       $ASG '$$LAB' TO L.S
       $ASG L.SV+1 TO L.SV
V$:L.SV: EQU :B:
       $ASG 'V$' TO Q.S
       $ASG :Q.S::L.SV: TO B.S
       SENDIF
       $IF (B.SV<256)&(B.SV>-1)
                          LOAD :A: WITH :B:
       LARK :A:,:B:
       $ELSE
                          LOAD :A: WITH:
       CALL LDAR$:A.V:
        REF LDAR$:A.V:
                              :B:
        DATA :B:
```

LCAR

\$ENDIF \$ENDIF \$END

EXAMPLE 1:

0010		LCAR 0,A		
0001 00	06 7007	LARK 0,A	LOAD	0

EXAMPLE 2:

0012		LCAR 1,C		
0001 000	7 F800 B 0000	CALL LDAR\$1	LOAD 1	WITH:
0002		REF LDAR\$1	,	·
0003 000	9 0000"	DATA C	C	

WITH A

EXAMPLE 3:

0001 FC18 V\$1 EQU -1000 0002 000A F800 CALL LDAR\$1 LOAD AR1 WIT 000B 0000 0003 REF LDAR\$1 U\$1 0004 000C FC18 DATA V\$1 V\$1	
0002 000A F800 CALL LDAR\$1 LOAD AR1 WIT 000B 0000 0003 REF LDAR\$1 US1 0004 000C FC18 DATA VS1 VS1	
0003 REF LDAR\$1 0004 000C FC18 DATA V\$1 V\$1	Ή:

EXAMPLE 4:

0016 0001 0002	000D 000E	0D05 F800 0000	LCAR V\$2 EQU 333 CALL	AR0,3333 3 LDAR\$0	LOAD	ARO	WITH:
0003 0004	000F	0D05	REF DATA	LDAR\$0 V\$2	V\$2		

LCAX	Load Double-Word Constant in	to Accumulator	– Macro	LCAX
TITLE:	Load Double-Word Constant into Acc	cumulator		
NAME:	LCAX			
OBJECTIVE:	Move double-word constant value inte	o accumulator		
ALGORITHM:	Constant → ACC			
CALLING SEQUENCE:	LCAX (upper,lower)			
ENTRY CONDITIONS:	– 32768 ≤ upper ≤ 32767; – 32768	≤ lower ≤ 32767		
EXIT CONDITIONS:	Accumulator contains value of the co	nstant		
PROGRAM MEMORY REQUIRED:	2 words + LDAX\$ routine	DATA MEMORY REQUIRED:	3 words	
STACK REQUIRED:	2 levels	EXECUTION TIME:	18 cycles	

FLOWCHART: LCAX

CAX				LCAX
 SOUR	CE:			
*LOAD * *	DOUBLE CONSTA LCAX (HIGH V	ANT (TO AC) VALUE,LOW VALUE)		
LCAX	\$MACRO A CALL LDAX\$ REF LDAX\$ DATA :A:	LOAD DOUBLE DATA LIST		
	\$END		• •	
EXAM	PLE 1:			· · · · · · · · · · · · · · · · · · ·
0010 0001	0006 F800 0007 0000	LCAX (128,3) CALL LDAX\$	LOAD DOUBLE	
0002 0003	0008 0080 0009 0003	REF LDAX\$ DATA 128,3	DATA LIST	
EXAM	PLE 2:	• •	• •	
0012 0001	000A F800 000B 0000	LCAX (-1000,5) CALL LDAX\$	LOAD DOUBLE	
0002 0003	000C FC18 000D 0005	REF LDAX\$ DATA -1000,5	DATA LIST	
EXAM	PLE 3:			
001 4 0001	000E F800 000F 0000	LCAX (A,B) CALL LDAX\$	LOAD DOUBLE	с.
0002 0003 0011	0010 0007 0009	REF LD AX\$ DATA A,B	DATA LIST	

LCAXAR

FLOWCHART: LCAXAR

EXIT

7

LCAXAR

LCAXAR

LCAXAR

SOURCE:

*LOAD FROM ROW AT ADDRESS IN ACCUMULATOR, *DOUBLE CONSTANT TO ACCUMULATOR * LCAXAR \$MACRO T \$IF T.L=0 ASSIGN TEMP SASG 'XRO' TO T.S **\$ENDIF** TBLR :T: READ HIGH PART OF :T: ADD ONE,0 TBLR :T:+1 INCREMENT AC READ LOW PART OF :T: LDAX :T: LOAD TO AC \$END

EXAMPLE 1:

0011	LCAXAR	
0001 0006 6706"	TBLR XRO	READ HIGH PART OF XRO
0002 0007 0004"	ADD ONE, O	INCREMENT AC
0003 0008 6707"	TBLR XR0+1	READ LOW PART OF XRO
0004	LDAX XRO	LOAD TO AC
0001 0009 6506"	ZALH XRO	LOAD HIGH XRO
0002 000A 6107"	ADDS XR0+1	LOAD LOW XRO
		the second s

EXAMPLE 2:

0013			LCAXAR C	
0001	000B	6700"	TBLR C	READ HIGH PART OF C
0002	000C	0004"	ADD ONE, 0	INCREMENT AC
0003	000D	6701"	TBLR C+1	READ LOW PART OF C
0004			LDAX C	LOAD TO AC
0001	000E	6500"	ZALH C	LOAD HIGH C
0002	000F	6101"	ADDS C+1	LOAD LOW C

LCP

TITLE:	Load Constant into P Register			
NAME:	LCP			
OBJECTIVE:	Move constant value into P register		• • •	
ALGORITHM:	1 * constant → P	· · · · ·		
CALLING SEQUENCE:	LCP constant			
ENTRY CONDITIONS:	– 4096 ≤ constant ≤ 4095			
EXIT CONDITIONS:	P register contains value of the const T register contains value 1	ant;		
PROGRAM MEMORY	2 wordo		1 word	
STACK REQUIRED:	None	EXECUTION TIME:	2 cycles	

FLOWCHART: LCP

SOURCE:

*LCP LOAD A CONSTANT TO THE P REGISTER * LCP \$MACRO A LT ONE LOAD A ONE MPYK :A: MAKE CONSTANT \$END

EXAMPLE 1:

0013 0001	0008	6A01"	LCP LT	A ONE	LOAD	A ONE	
0002	000 <u>9</u>	8007	MPY	KA	MAKE	CONSTANT	
EXAM	PLE 2						
0015			LCP ·	-4096			
0001	A000	6A01"	LT	ONE	LOAD	A ONE	
0002	000B	9000	MPYI	K -4096	MAKE	CONSTANT	
EXAM	PLE 3						
0017			LCP 4	4095			
0001	000C	6A01"	LT	ONE	LOAD	A ONE	
0002	000D	8FFF	MPYI	K 4095	MAKE	CONSTANT	
EXAM	PLE 4	:					
0019			LCP	-4000			
0001	000E	6A01"	LT	ONE	LOAD	A ONE	
0002	000F	9060	MPYH	< -4000	MAKE	CONSTANT	

LCPAC

TITLE:	Load Constant into P Register and Ac	cumulator		
NAME:	LCPAC			
OBJECTIVE:	Move constant value into P register ar			
ALGORITHM:	1 * constant → P (P) → ACC			
CALLING SEQUENCE:	LCPAC constant			
ENTRY CONDITIONS:	– 4096 ≤ constant ≤ 4095			1
EXIT CONDITIONS:	P register and accumulator contain va T register contains the value 1	nt;		
PROGRAM MEMORY REQUIRED:	3 words	DATA MEMORY REQUIRED:	1 word	
STACK REQUIRED:	None	EXECUTION TIME:	3 cycles	

FLOWCHART: LCPAC

SOURCE:

*LCPAC LOAD A CONST TO P AND AC REGISTERS * LCPAC \$MACRO A

LCPAC			LCPAC
LT ONE MPYK :A: PAC \$END	LOAD A ONE MAKE CONSTANT TO THE AC		
EXAMPLE 1:		<u></u>	
0013 0001 0009 6A01" 0002 000A 8007 0003 000B 7F8E	LCPAC A LT ONE MPYK A PAC	LOAD A ONE MAKE CONSTANT TO THE AC	
EXAMPLE 2:			
0015 0001 000C 6A01" 0002 000D 9000 0003 000E 7F8E	LCPAC -4096 LT ONE MPYK -4096 PAC	LOAD A ONE MAKE CONSTANT TO THE AC	
EXAMPLE 3:			
0017 0001 000F 6A01" 0002 0010 8FFF 0003 0011 7F8E	LCPAC 4095 LT ONE MPYK 4095 PAC	LOAD A ONE MAKE CONSTANT TO THE AC	
EXAMPLE 4:			
0019 0001 0012 6A01" 0002 0013 9060 0003 0014 7F8E	LCPAC -4000 LT ONE MPYK -4000 PAC	LOAD A ONE Make constant To the Ac	

LDAX

TITLE:	Load Double Word	
NAME:	LDAX	
OBJECTIVE:	Load double word into accumulator	
ALGORITHM:	LDAX * – causes→ (@AR:@A	R + 1) → ACC
	LDAX * causes→ (@AR - 1: (AR) - 2 -	@ AR) → ACC → AR
	LDAX * + - causes→ (@AR:@ A (AR) + 2 ⁻	R + 1) → ACC → AR
	LDAX A $- \text{causes} \rightarrow (A:A+1)$	→ ACC
CALLING SEQUENCE:	LDAX {A,*,* - ,* + }	
ENTRY CONDITIONS:	0 ≤ A ≤ 127	
EXIT CONDITIONS:	Accumulator contains value of doub auxiliary register is updated if necess	ole word; sary
PROGRAM MEMORY		DATA MEMORY
REQUIRED :	2 words	REQUIRED: None

STACK

REQUIRED:

None

TIME:

EXECUTION 2 cycles

LDAX FLOWCHART: LDAX

SOURCE:

*LUAD	DOUBLE PRECISION		
LDAX	\$MACRO A \$VAR ST,SP,SM \$ASG '*' TO ST.S \$ASG '*+' TO SP.S \$ASG '*-' TO SM.S \$IF A SV=ST SV	LOAD	DOUBLE
	ZALH *+		нтсн
	ADDS *- \$ELSE	LOAD	LOW '*'
	SIF A.SV=SP.SV		
	ZALH *+	LOAD	HIGH
	ADDS *+ \$ELSE	LOAD	LOW '*+'
	\$IF A.SV=SM.SV		
	ZALS *-	LOAD	LOW
	ADDH *- \$ELSE	LOAD	HIGH '*-'
	ZALH :A:	LOAD	HIGH :A:
	ADDS :A:+1 \$ENDIF \$ENDIF \$ENDIF \$END	LOAD	LOW :A:

LDAX

EXAMPLE 1:

0011 0001 0006 0002 0007	6507 6108	LDAX A ZALH A ADDS A+1	LOAD LOAD	HIGH A LOW A
EXAMPLE 2	2:			
0013 0001 0008 0002 0009	65A8 6198	LDAX * ZALH *+ ADDS *-	LOAD LOAD	HIGH LOW '*'
EXAMPLE 3	3:			
0015 0001 000A 0002 000B	A 6698 8 6098	LDAX *- ZALS *- ADDH *-	LOAD LOAD	LOW HIGH '*-'
	4:			
0017 0001 0000 0002 0000	C 65A8 0 61A8	LDAX *+ ZALH *+ ADDS *+	LOAD LOAD	HIGH LOW '*+'

LDAX

7

7-63

LTK

LTK

PROGRAM MEMORY REQUIRED:	3 words (+ LTK\$ routine)	DATA MEMORY REQUIRED:	2 words	
EXIT CONDITIONS:	T register contains value of the consta	nt		
ENTRY CONDITIONS:	- 32768 ≤ constant ≤ 32767			
CALLING SEQUENCE:	LTK constant			
ALGORITHM:	Constant → T			
OBJECTIVE:	Move constant value into T register			
NAME:	LTK			
TITLE:	Load Constant into T Register			

FLOWCHART: LTK

7

то т

SOURCE:

*LOAD *	CONSTANT TO T	
LTK	\$MACRO A CALL LTK\$ REF LTK\$ DATA :A: \$END	LOAD :A:

LTK

EXAMPLE 1:

0012 0001	0009	F800	LTK A CALL	LTK\$	LOAD	а то т	
0002 0003	000A 000B	0000	REF DATA	LTK\$ A			
EXAM	PLE 2	•					
0014 0001 0002 0003	000C 000D 000E	F800 0000 7FFF	LTK >7 CALL REF DATA	FFF LTK\$ LTK\$ >7FFF	LOAD	>7FFF	то т
EXAM	PLE 3	:					
0016 0001 0002	000F 0010	F800 0000	LTK >8 CALL REF	3000 LTK\$ LTK\$	LOAD	>8000	то т
0003	0011	8000	DATA	>8000			

7

<u>LTK</u>

MAX	Select Maximum of T	「wo Words – M	lacro	MAX
TITLE:	Select Maximum of Two Words			
NAME:	MAX			
OBJECTIVE:	Load maximum of two words into a	accumulator		
ALGORITHM:	If (A) > (B) then (A) \rightarrow ACC else (B) \rightarrow ACC			
CALLING SEQUENCE:	MAX A,B			
ENTRY CONDITIONS:	0 ≤ A ≤ 127; 0 ≤ B ≤ 127			
EXIT CONDITIONS:	Accumulator contains maximum va	lue of two words		
PROGRAM MEMORY REQUIRED:	8 words	DATA MEMORY REQUIRED:	None	
STACK REQUIRED:	None	EXECUTION TIME:	5 – 7 cycles	
FLOWCHART:	МАХ	· · · · · · · · · · · · · · · · · · ·		
FLOWCHART:	MAX			

MAX

MAX

SOURCE:

*SELECT MAXIMUM OF SINGLE A OR B ***A AND B ARE VARIABLES** * MAX \$MACRO A, B LOAD :A: LAC :A:,0 SUB :B:,0 COMPARE :B: \$VAR L,L1,L2 SASG 'SSLAB' TO L.S \$ASG L.SV+2 TO L.SV UNIQUE LABEL \$ASG L.SV-1 TO L1.V \$ASG L.SV TO L2.V BRANCH IS :A:>:B: BGZ L\$:L1.V: LAC :B:,0 LOAD :B: L\$:L2.V: TO CONTINUE В L\$:L1.V: LAC :A:,0 LOAD :A: CONTINUE L\$:L2.V: EQU \$ SEND

EXAMPLE:

0011		MAX A	,В	
0001 0006	2007	LAC	A,0	LOAD A
0002 0007	1008	SUB	в,0	COMPARE B
0003 0008	FC00	BGZ	L\$1	BRANCH IS A>B
0009	000D'			
0004 000A	2008	LAC	в,0	LOAD B
0005 000E	F900	В	L\$2	TO CONTINUE
0000	000E'		· .	
0006 0000	2007 L\$1	LAC	A,0	LOAD A
0007	000E' L\$2	EQU \$		CONTINUE

MAXX	Select Maximum of Two Do	ouble Words -	- Macro	MAXX
TITLE:	Select Maximum of Two Double Word	ls		
NAME:	MAXX			
OBJECTIVE:	Load maximum of two double words in	nto accumulato	n an an Air ann an Air Ann an Air ann an Air an	
ALGORITHM:	If (A:A + 1) > (B:B + 1) then (A:A + 1 else (B:B + 1)) → ACC → ACC		
CALLING SEQUENCE:	MAXX A,B			
ENTRY CONDITIONS:	0< = A<,PI6,171 126;0< = B< =	- 126		
EXIT CONDITIONS:	Accumulator contains maximum value mode is reset	of two double v	vords; saturation	
PROGRAM MEMORY REQUIRED:	14 words	DATA MEMORY REQUIRED:	None	
STACK REQUIRED:	None	EXECUTION TIME:	10 — 12 cycles	
FLOWCHART:	MAXX			

MAXX

SOURCE:

*SELECT MAX OF DOUBLE A OR B (VARIABLES)

	CHACDO A P	
MAXX	SMACRU A, D	
	SOVM	SET OVERFLOW MODE
	LDAX :A:	LOAD :A:
	SUBX :B:	COMPARE TO :B:
	SVAR L,L1,L2	
	\$ASG '\$\$LAB' TO	L.S
	\$ASG L.SV+2 TO 1	L.SV UNIQUE LABEL
	\$ASG L.SV-1 TO 1	L1.V
	SASG L.SV TO	L2.V
	BGZ L\$:L1.V:	BRANCH IF :A:>:B:
	LDAX :B:	LOAD :B:
	B L\$:L2.V:	TO CONTINUE
LS:L1	.V: LDAX :A:	LOAD :A:
LS:L2	.V: ROVM	CONTINUE
	\$END	

EXAMPLE:

0013	× .			MAXX C,D	
0001	0013	7F8B		SOVM	SET OVERFLOW MODE
0002				LDAX C	LOAD C
0001	0014	6500"		ZALH C	LOAD HIGH C
0002	0015	6101"		ADDS C+1	LOAD LOW C
0003				SUBX D	COMPARE TO D
0001	0016	6202"		SUBH D	SUBTRACT HIGH
0002	0017	6303"		SUBS D+1	SUBTRACT LOW
0004	0018	FC00		BGZ L\$3	BRANCH IF C>D
	0019	001E'			
0005				LDAX D	LOAD D
0001	001A	6502"		ZALH D	LOAD HIGH D
0002	001B	6103"		ADDS D+1	LOAD LOW D
0006	001C	F900		B L\$4	TO CONTINUE
	001D	00201			
0007			L\$3	LDAX C	LOAD C
0001	001E	6500"		ZALH C	LOAD HIGH C
0002	001F	6101"		ADDS C+1	LOAD LOW C
0008	0020	7F8A	L\$ 4	ROVM	CONTINUE

MIN	Sel	ect Minimum of T	wo Words – Ma	Cro	MIN
TITLE:	Select Minimu	Im of Two Words			
NAME:	MIN				
OBJECTIVE :	Load minimun	n of two words into	accumulator		
ALGORITHM:	lf (A) < (B)	then (A) → ACC else (B) → ACC			
CALLING SEQUENCE:	MIN A,B				
ENTRY CONDITIONS:	0 ≤ A ≤ 127; 0) ≤ B ≤ 127			
EXIT CONDITIONS:	Accumulator c	ontains minimum va	alue of two words		
PROGRAM MEMORY REQUIRED:	8 words		DATA MEMORY REQUIRED:	None	
STACK REQUIRED:	None		EXECUTION TIME:	5 — 7 cycle	
FLOWCHART:	MIN				

 $\tilde{\gamma}$

MIN

MIN

SOURCE:

*SELECT MINUMUM OF SINGLE A OR B (VARIABLES) ★ MIN \$MACRO A, B LAC :A:,0 SUB :B:,0 LOAD :A: COMPARE TO :B: \$VAR L,L1,L2 \$ASG '\$\$LAB' TO L.S SASG L.SV+2 TO L.SV SASG L.SV-1 TO L1.V \$ASG L.SV TO L2.V BLZ L\$:L1.V: BRANCH IF :A:<:B: LOAD :B: LAC :B:,0 B L\$:L2.V: TO CONTINUE L\$:L1.V: LAC :A:,0 LOAD :A: CONTINUE L\$:L2.V: EQU \$ **\$END**

EXAMPLE:

0011		MIN A	,В	
0001 0006	2007	LAC	Α,Ο	LOAD A
0002 0007	1008	SUB	в,0	COMPARE TO B
0003 0008	FAOO	BLZ	L\$1	BRANCH IF A <b< td=""></b<>
0009	000D'			
0004 000A	2008	LAC	В,О	LOAD B
0005 000B	F900	В	L\$2	TO CONTINUE
000C	000E'			
0006 000D	2007 L\$1	LAC	Α,Ο	LOAD A
0007	000E' L\$2	EQU \$		CONTINUE

MINX	Select Minimum of Two De	ouble Words -	Macro MINX
TITLE:	Select Minimum of Two Double Wor	ds	
NAME:	MINX		
OBJECTIVE:	Load minimum of two double words i	nto accumulator	
ALGORITHM:	If (A:A + 1) < (B:B + 1) then (A:A + else (B:B +	1) → ACC 1) → ACC	
CALLING SEQUENCE:	MINX A,B		
ENTRY CONDITIONS:	0 ≤ A ≤ 126; 0 ≤ B ≤ 126	an an an an Taonaichte Chailte an Anna Anna Anna Anna Anna Anna Anna	
EXIT CONDITIONS:	Accumulator contains minimum value mode is reset	of two double v	vords; saturation
PROGRAM MEMORY REQUIRED:	14 words	DATA MEMORY REQUIRED:	None
STACK REQUIRED:	None	EXECUTION TIME:	10 – 12 cycles
FLOWCHART:	MINX		

MINX

~ -

SOURC		
*SELECI	MINIMUM OF DOUBLE	E A OR B (VARIABLES)
MINX	\$MACRO A,B	· · · · · · · · · · · · · · · · · · ·
	SOVM	SET OVERFLOW MODE
	LDAX :A:	LOAD :A:
	SUBX :B:	COMPARE TO :B:
	SVAR L, L1, L2	
	SASG 'SSLAB' TO L	.S
	SASG L.SV+2 TO L.S	5V
	SASG L.SV-1 TO L1	. V
100	SASG L.SV TO L2	.V
	BLZ LS:L1.V:	BRANCH IF :A:<:B:
	LDAX :B:	LOAD :B:
	B LS:L2.V:	TO CONTINUE
LS:L1.	V: LDAX :A:	LOAD :A:
LS:L2.	V: ROVM	CONTINUE
	SEND	

MINX

7

7-73

EXAMPLE:

0011		MINX A,B	
0001 0005	7F8B	SOVM	SET OVERFLOW MODE
0002 0000		LDAX A	LOAD A
0001 0006	6507	ZALH A	LOAD HIGH A
0002 0007	6108	ADDS A+1	LOAD LOW A
0002 0007	0100	SUBX B	COMPARE TO B
0003	6209	SUBH B	SUBTRACT HIGH
0001 0000	630A	SUBS B+1	SUBTRACT LOW
0002 0003	FAOO	BLZ LS1	BRANCH IF A <b< td=""></b<>
0004 0008	0010		
0005	0010	LDAX B	LOAD B
0003	6509	ZALH B	LOAD HIGH B
0001 0000	6103	ADDS B+1	LOAD LOW B
0002 000D	F000	B LS2	TO CONTINUE
UUUB UUUE	00121	D 242	
0007	L\$1	T.DAX A	LOAD A
0007			LOAD HIGH A
0001 0010	6507		
0002 0011	6108	ADDS ATI	
0008 0012	7F8A L\$2	ROVM	CONTINUE

MOV	Move Word in Data N	Memory – Ma	acro	MOV
TITLE:	Move Word in Data Memory			
NAME:	MOV			
OBJECTIVE:	Copy word from one location to anot	her in data mem	ory	
ALGORITHM:	(A) → B or (@ACC) → B			
CALLING SEQUENCE:	MOV [A],B			
ENTRY CONDITIONS:	0 ≤ A ≤ 127;0 ≤ B ≤ 127			
EXIT CONDITIONS:	Word at B contains value of word loca AR0 may be overwritten; accumulator	ited at A; r is overwritten		
PROGRAM MEMORY REQUIRED:	2 – 5 words	DATA MEMORY REQUIRED:	0 – 1 words	
STACK REQUIRED:	None	EXECUTION TIME:	2 — 5 cycles	

FLOWCHART: MOV

MOV SOURCE:

MOV

ONE WORD (A TO B)	
\$MACRO A,B \$IF A.L=0 SACL XRO,0 LAR ARO,XRO LARP ARO LAC *,0 SELSE	IF A IS AC SAVE AC LOAD TO ARO SELECT ARO LOAD *
LAC :A:,0 \$ENDIF	LOAD :A:
	ONE WORD (A TO B) \$MACRO A,B \$IF A.L=0 SACL XR0,0 LAR AR0,XR0 LARP AR0 LAC *,0 \$ELSE LAC :A:,0 \$ENDIF

EXAMPLE 1:

0012 0001 0006 2001 0002 0007 5008	MOV A,B LAC A,O SACL B,O	LOAD A STORE B
EXAMPLE 2:		
0014 0001 0008 2088 0002 0009 5008	MOV *,B LAC *,0 SACL B,0	LOAD * STORE B
EXAMPLE 3:		
0016 0001 000A 2000" 0002 000B 50A8	MOV C,*+ LAC C,0 SACL *+,0	LOAD C STORE *+
EXAMPLE 4:		
0018 0001 000C 5004" 0002 000D 3804" 0003 000E 6880 0004 000F 2088 0005 0010 5001"	MOV ,D SACL XR0,0 LAR AR0,XR0 LARP AR0 LAC *,0 SACL D,0	SAVE AC LOAD TO ARO SELECT ARO LOAD * STORE D
EXAMPLE 5:		
0020 0001 0011 2098 0002 0012 5008	MOV *-,B LAC *-,0 SACL B,0	LOAD *- STORE B
EXAMPLE 6:		
0022 0001 0013 20A8 0002 0014 5001	MOV *+,A LAC *+,0 SACL A,0	LOAD *+ STORE A
EXAMPLE 7:		
002 4 0001 0015 2001" 0002 0016 5098	MOV D,*- LAC D,0 SACL *-,0	LOAD D STORE *-

MOVC	ON Move Constants in Da	ta Memory — I	Macro M	OVCON
TITLE:	Move Constants to Data Memory			
NAME:	MOVCON			
OBJECTIVE:	Move list of constants to data mem	ory		
ALGORITHM:	For each constant in list, C \rightarrow A[i] (data memory location)			
CALLING SEQUENCE:	MOVCON C [,A ,*] or MOVCON (C1,C2,Cn) [,A ,*]		ى بى بى	
ENTRY CONDITIONS:	0 ≤ A ≤ 143; - 32768 ≤ C ≤ 32767			
EXIT CONDITIONS:	Data memory addresses starting at s constants; AR0 and AR1 may be ove	pecified locations erwritten	are filled with	
PROGRAM MEMORY REQUIRED:	8 words (+ MOVC\$ routines)	DATA MEMORY REQUIRED:	3 words	
STACK REQUIRED:	2 levels	EXECUTION TIME:	(max) 9 + (7 x of C's) cycles	

MOVCON

FLOWCHART: MOVCON

SOURCE:

MOVCON	SMACRO A, B	
	SVAR ST	
	SASG '*' TO ST.S	
	STE B.L=0	
	ACTAR ARI	
	CIAN ANI	
	SASG IC D.D	
	SENDIC	A TS LIST OF CONST
	SIF A.AXSPOPL	A 15 HIDI OF COMPL
	SIF B.SV=51.5V	MONE CONSTANTS
	CALL MOVCSI	MOVE CONSTRAIS
	REF MOVC\$1	
	SELSE	
	CALL MOVC\$	MOVE CONSTANTS
	REF MOVC\$	
	DATA :B:	TO :B:
	SENDIF	
	DATA :A.V:	LENGTH OF LIST
	DATA ·A·	CONSTANT LIST
	CFICF	
	LLAC IA:	STORE CONSTANT
	SALL :D:,U	BIONE CONDITINT
	SENDIF	
	ŞEND	

7

MOVCON

MOVCON

EXAMPLE 1:

0012			MOVCON 1 B
0001			LCAC 1
0001	0001	V\$1	EOU 1
0002 0006	7E01		LACK VS1
0002 0007	5008		SACL B,0

EXAMPLE 2:

0014		MOVCON 3 *	
0001		LCAC 3	
0001	0003	V\$2 EQU 3	
0002 000	08 7E03	LACK V\$2	LOAD AC WITH V
0002 000	09 5088	SACL *,0	STORE CONSTANT

LOAD AC WITH V\$1 STORE CONSTANT

V\$2

EXAMPLE 3:

0016 0001 0001 0002 0003 0002	000A 000B 000C	5004" 3904" 6881		MOVCON ACTAR SACL LAR LARP	6, AR1 XR0,0 AR1,XR0 AR1	STORE AC TO XRO RE-LOAD AR1 LOAD AR POINTER	
0001 0002 0003	000D 000E	0006 7E06 5088	V\$ 3	EQU 6 LACK SACL	V\$3 *,0	LOAD AC WITH V\$3 STORE CONSTANT	

EXAMPLE 4:

0018			MOVCO	N (32,15,2,13).B
0001	000F	F800	CALL	MOVC\$	MOVE CONSTANTS
	0010	0000			
0002			REF	MOVCS	
0003	0011	0008	DATA	В	TOB
0004	0012	0004	DATA	4	LENGTH OF LIST
0005	0013	0020	DATA	32,15,2,13	CONSTANT LIST
	0014	000F		, , _ ,	
	0015	0002			
	0016	0000			

EXAMPLE 5:

0020 0001 00 00	17 F800 18 0000	MOVCON (22,1,56),* CALL MOVC\$1	MOVE CONSTANTS
0002 0003 00 0004 00 00	19 0003 1A 0016 1B 0001 1C 0038	REF MOVC\$1 Data 3 Data 22,1,56	LENGTH OF LIST CONSTANT LIST

EXAMPLE 6:

0022		MOVCON (33.34.35)	
0001		ACTAR AR1	and the second
0001 001D	5004"	SACL XRO.0	STORE AC TO YRO
0002 001E	3904"	LAR AR1 XRO	RE-LOAD AP1
0003 001F	6881	LARP AR1	LOAD AR POINTED
0002 0020	F800	CALL MOVCS1	MOVE CONSTANTS
0021	0000		HOVE CONSTANTS
0003		REF MOVCS1	
0004 0022	0003	DATA 3	LENGTH OF LIST

MOVCON

0005 0023 0021 0024 0022 0025 0023 DATA 33,34,35

CONSTANT LIST

MOVCON

MOVDAT

TITLE: Move Words to Data Memory

NAME: MOVDAT

OBJECTIVE: Copy data from program memory to data memory

ALGORITHM: For number of elements in array,

MOVDAT	$A,B,C - causes \rightarrow (A) \rightarrow @B$
MOVDAT	$A,^*, C - causes \rightarrow (A) \rightarrow @AR1$
MOVDAT	A, ,C - causes \rightarrow (A) \rightarrow @ACC
MOVDAT	*,B,C – causes→ (@AR0) → @R
MOVDAT	*,*,C - causes \rightarrow (@AR0) \rightarrow @AR1
MOVDAT	*, ,C – causes→ (@AR0) → @ACC
MOVDAT	,B,C – causes→ (@ACC) → @B
MOVDAT	,*,C – causes→ (@ACC) → @AR1

CALLING

SEQUENCE: MOVDAT [A|*],[B|*][,C]

ENTRY

CONDITIONS: $0 \le B + C \le 143$; $0 \le A < 4095$

EXIT

7

CONDITIONS: Elements of B contain data from program memory starting at A; AR0 and AR1 may be overwritten

PROGRAM MEMORY REQUIRED:	12 words (+ routines)	DATA MEMORY REQUIRED:	3 words
STACK REQUIRED:	2 levels	EXECUTION TIME:	(max) 31 + (7x length) cycles

1183

MOVDAT

7-81

MOVDAT

MOVDAT

SOURCE:

*MOVE L(CONST) WORDS FROM A(ROM ITEM) *TO B(RAM VAR) *ROM ITEM IS: * MOVDAT \$MACRO A, B, L **\$VAR ST** \$ASG '*' TO ST.S \$IF B.L=0 ACTAR AR1 \$ASG '*' TO B.S SENDIF \$IF L.V<3 ONE OR TWO WORDS SIF A.SV=ST.SV A = *ARTAC ARO **\$ELSE** \$IF A.L#=0 A = PROGRAM ADDRESSLCAC :A: **\$ENDIF \$ENDIF** \$IF B.SV=ST.SV LARP 1 TBLR *+ READ FIRST WORD SELSE TBLR :B: \$ENDIF \$IF L.V=2 TWO WORDS ADD ONE, 0 INCREMENT POINTER SIF B.SV=ST.SV TBLR *+ READ NEXT WORD **\$ELSE** TBLR :B:+1 SENDIF \$ENDIF \$ENDIF \$IF L.V>2 \$IF A.L=0 ACTAR ARO \$ASG '*' TO A.S SENDIF \$IF B.SV=ST.SV \$IF A.SV#=ST.SV CALL MOVCSA MOVE REF MOVC\$A DATA :A: FROM :A: SELSE CALL MOVC\$\$ MOVE **REF MOVC\$\$ \$ENDIF** \$ELSE \$IF A.SV#=ST.SV CALL MOVA\$B MOVE REF MOVASB DATA :A: FROM :A: **\$ELSE** CALL MOVC\$B MOVE REF MOVC\$B **\$ENDIF** DATA :B: TO :B: SENDIF DATA :L: FOR :L: WORDS **\$ENDIF** SEND

7-82
MOVDAT

MOVDAT

EXAMPLE 1:

0012	MOVDAT A,B	
0001	LCAC A	
0001 0006 7E01	LACK A	LOAD AC WITH A
0002 0007 6708	TBLR B	

EXAMPLE 2:

0014		MOVDAT	: *,B,2		
0001		ARTAC	ARO		
0001 0008	3004"	SAR	ARO, XRO	SAVE ARO	
0002 0009	2004"	LAC	XR0,0	LOAD INTO	AC
0002 000A	6708	TBLR	В		
0003 000B	0002"	ADD	ONE, O	INCREMENT	POINTER
0004 000C	6709	TBLR	B+1		

EXAMPLE 3:

0016		MOVDAT *,*,2	
0001		ARTAC ARO	
0001 000	D 3004"	SAR ARO,XRO	SAVE ARO
0002 000	E 2004"	LAC XR0,0	LOAD INTO AC
0002 000	F 6881	LARP 1	
0003 001	0 67A8	TBLR *+	READ FIRST WORD
0004 001	1 0002"	ADD ONE, O	INCREMENT POINTER
0005 001	2 6788	TBLR *+	READ NEXT WORD

EXAMPLE 4:

0018			MOVDA	ГС,*,В	
0001	0013	F800	CALL	MOVC\$A	MOVE
	0014	0000			
0002			REF	MOVC\$A	
0003	0015	0000"	DATA	С	FROM C
0004	0016	0008	DATA	В	FOR B WORDS

EXAMPLE 5:

XR0
NTER
;

EXAMPLE 6:

0022			MOVDAT , H	3
0001	001D	6708	TBLR B	

EXAMPLE 7:

0024	MOVDAT	,*,5		
0001	ACTAR	ARO		
0001 001E 5	004" SACL	XR0,0	STORE AC TO XRO	
0002 001F 3	804" LAR	ARO, XRO	RE-LOAD ARO	
0003 0020 6	880 LARP	ARO	LOAD AR POINTER	
0002 0021 F	800 CALL	MOVC\$\$	MOVE	
0022 0	000			

MOVDAT			MOVDAT
0003	REF MOVC\$\$		
0004 0023 0005	DATA 5	FOR 5 WORDS	
EXAMPLE 8:			
0026	MOVDAT D,*		
0001 0024 F800	LCAC D		
0025 0000	CALL LDACS	LOAD AC WITH:	
0002	REF LDACS		
0003 0026 0001	DATA D	D	
0002 0027 6881	LARP 1		
0003 0028 67A8	TBLR *+	READ FIRST WORD	
0028	MOVDAT D,,3		
0001	ACTAR AR1		
0001 0029 5004"	SACL XR0,0	STORE AC TO XRO	
0002 002A 3904"	LAR AR1, XRO	RE-LOAD AR1	
0003 0028 6881	LARP AR1	LOAD AR POINTER	
002D 002D 0000	CALL MOVCSA	MOVE	
0003	REF MOVCSA		
0004 002E 0001"	DATA D	FROM D	
0005 002F 0003	DATA 3	FOR 3 WORDS	
EVANDIE 10.			
EXAIVIPLE IU;			
0030	MOVDAT * *		
0001	ARTAC ARO		
0001 0030 3004"	SAR ARO, XRO	SAVE ARO	
0002 0031 2004"	LAC XR0,0	LOAD INTO AC	
0002 0032 6881	LARP 1		
0003 0033 07A0	IBLR ^+	READ FIRST WORD	
EXAMPLE 11:			
0001 0034 E800	MOVDAT *,*,9		
0035 0000 0035 0000	CALL MOVCSS	MOVE	
0002	REF MOVCSS		
0003 0036 0009	DATA 9	FOR 9 WORDS	

MOVE

STACK REQUIRED:	2 levels	EXECUTION TIME:	(max) 29 + (7 x length) cycles
PROGRAM MEMORY REQUIRED:	5 – 7 words (+ MOV\$ routines)	DATA MEMORY REQUIRED:	1 – 3 words
EXIT CONDITIONS:	Elements of B contain corresponding e AR0 or AR1 may be overwritten	elements of A;	
ENTRY CONDITIONS:	$0 \le A + \text{length} \le 143; 0 \le B + \text{length}$	≤ 143	
CALLING SEQUENCE:	MOVE A, B, length		
ALGORITHM:	For number of elements in array, (A[i]) \rightarrow B[i]		
OBJECTIVE:	Copy data from one array to another in	data memory.	
NAME:	MOVE		
TITLE:	Move Data Array		

SOURCE:

MOVE

```
*MOVE L(CONST) WORDS FROM A(RAM VAR)
*TO B(RAM VAR)
*
MOVE $MACRO A,B,L
$IF (L.V<2)&(B.L#=0)
MOV :A:,:B: MOVE SINGLE
$ENDIF
$IF (L.V=2)&(B.L#=0)
MOVX :A:,:B: MOVE DOUBLE
$ENDIF</pre>
```

7

MOVE

(L.V>2)++(B.L=0) \$IF \$VAR ST \$ASG '*' TO ST.S (A.L#=0)&(B.L#=0) \$IF (A.SV#=ST.SV)&(B.SV#=ST.SV) SIF MOVE CALL MOVABS REF MOVABS FROM :A: DATA :A: TO :B: DATA :B: FOR :L.V: WORDS DATA :L.V: \$ENDIF **\$ENDIF** \$IF (A.SV#=ST.SV)&(A.L#=0) (B.L=0)++(B.SV=ST.SV)\$IF \$IF B.L=0 AC TO AR1 ACTAR AR1 SENDIF CALL MOVAS MOVE REF MOVA\$ DATA :A: FROM :A: FOR :L.V: WORDS DATA :L.V: SENDIF SENDIF (B.SV#=ST.SV)&(B.L#=0) \$IF (A.L=0)++(A.SV=ST.SV) \$IF SIF A.L=0 MOVE AC TO ARO ACTAR ARO SENDIF CALL MOVB\$ MOVE REF MOVB\$ TO :B: DATA :B: FOR :L.V: WORDS DATA :L.V: SENDIF SENDIF (A.L=0)++(A.SV=ST.SV)\$IF SIF (B.L=0)++(B.SV=ST.SV)\$IF A.L=0 AC TO ARO ACTAR ARO **\$ENDIF** \$IF B.L=0 AC TO AR1 ACTAR AR1 **\$ENDIF** MOVE CALL MOV\$\$ REF MOV\$\$ DATA :L.V: FOR :L.V: WORDS **\$ENDIF \$ENDIF** \$ENDIF

EXAMPLE 1:

SEND

0012	MOVE A, B	
0001	MOV A, B	MOVE SINGLE
0001 0006 2001	LAC A,O	LOAD A
0002 0007 5008	SACL B,0	STORE B

EXAMPLE 2:

0014 0001 0001 0001 0008 65A8	MOVE *,B,2 MOVX *,B LDAX * ZALH *+	MOVE DOUBLE LOAD DOUBLE * LOAD HIGH
0002 0009 6198	ADDS *-	LOAD LOW '*'

MOVE

MOVE 0002 0001 0003 5808

MOVE

0002 0001 000A 5808 0002 000B 5009	SACX B SACH B,0	STORE DOUBLE * STORE HIGH
0002 000B 5009	SACL B+1,0	STORE LOW
EXAMPLE 3:		
0016 0001 000C F800 000D 0000	MOVE C,*,B Call Mova\$	MOVE
0002 0003 000E 0000" 0004 000F 0008	REF MOVA\$ Data C Data 8	FROM C FOR 8 WORDS
EXAMPLE 4:		
0018 0001 0001 0010 5004" 0002 0011 3904" 0003 0012 6881 0002 0013 F800 0014 0000 0003	MOVE *,,5 ACTAR AR1 SACL XRO,0 LAR AR1,XRO LARP AR1 CALL MOV\$\$ REF MOV\$\$	AC TO AR1 STORE AC TO XRO RE-LOAD AR1 LOAD AR POINTER MOVE
	DATA 5	FOR 5 WORDS
EXAMPLE 5:		
0020 0001 0001 0016 5004" 0002 0017 3804" 0003 0018 6880 0004 0019 2088 0005 001A 5008	MOVE ,B MOV ,B SACL XRO,O LAR ARO,XRO LARP ARO LAC *,O SACL B,O	MOVE SINGLE SAVE AC LOAD TO ARO SELECT ARO LOAD * STORE B
EXAMPLE 6:		
0022 0001 0001 001B 5004" 0002 001C 3804" 0003 001D 6880 0002 001E F800 001F 0000 0003 0004 0020 0005	MOVE ,*,5 ACTAR ARO SACL XRO,O LAR ARO,XRO LARP ARO CALL MOV\$\$ REF MOV\$\$ DATA 5	AC TO ARO STORE AC TO XRO RE-LOAD ARO LOAD AR POINTER MOVE FOR 5 WORDS
EXAMPLE 7:		
0024 0001 0001 0021 2001" 0002 0022 5088	MOVE D,* MOV D,* LAC D,0 SACL *,0	MOVE SINGLE LOAD D STORE *
EXAMPLE 8:		
0026 0001 0001 0023 5004" 0002 0024 3904" 0003 0025 6881 0002 0026 F800	MOVE D,,3 ACTAR AR1 SACL XR0,0 LAR AR1,XR0 LARP AR1 CALL MOVA\$	AC TO AR1 STORE AC TO XRO RE-LOAD AR1 LOAD AR POINTER MOVE

MOVE				-		 	MOVE
	0003 0004 0005	0027 0028 0029	0000 0001" 0003	REF DATA DATA	MOVA\$ D 3	FROM D FOR 3 WORDS	

MOVROM

TITLE: Move Words to Program Memory

NAME: MOVROM

OBJECTIVE: Copy data from data memory to program memory

ALGORITHM: For number of elements in array,

MOVROM	A,B,C – causes→	(A) → @B
MOVROM	A,*,C – causes→	(A) → @AR1
MOVROM	A, ,C – causes→	(A) → @ACC
MOVROM	*,B,C – causes→	(@AR0) → @B
MOVROM	*,*,C – causes→	(@AR0) → @AR1
MOVROM	*, ,C – causes→	(@AR0) → @ACC
MOVROM	,B,C – causes→	(@ACC) → @B
MOVROM	,*,C – causes→	(@ACC) → @AR1

CALLING

SEQUENCE: MOVROM [A,*],[B,*][,length]

ENTRY

CONDITIONS: $0 \le A + \text{length} \le 143$; $0 \le B \le 4095$

EXIT

CONDITIONS: Program memory starting at B contains data elements starting at A; AR0 and AR1 may be overwritten

PROGRAM MEMORY REQUIRED:	8 words (+ TBW\$ routines)	DATA MEMORY REQUIRED:	3 words
STACK	2 levels	EXECUTION	(max) 31 + (7 x
REQUIRED:		TIME:	length) cycles

MOVROM FLOWCHART: MOVROM

SOURCE:

```
*MOVE L(CONST) WORDS FROM A(RAM VAR)
*TO B(ROM VAR)
*
MOVROM $MACRO A,B,L
$VAR ST
$ASG '*' TO ST.S
$IF L.V=0 DEFAULT 0 TO 1
$ASG 1 TO L.V
$ENDIF
$IF A.L=0
ACTAR AR0 AC TO AR0
$ENDIF
$IF B.L=0
```

MOVROM

ACTA	R ARI	AC TO AR1
\$END:	IF	
ŞIF	(B.SV=ST.SV)	++(B.L=0)
\$IF	(A.SV=ST.SV)	++(A.L=0)
CALL	TBW\$01	MOVE RAM->ROM
REF	TBW\$01	
DATA	:L.V:	FOR :L.V: WORDS
\$ELSI	5	
CALL	TBW\$1	MOVE RAM->ROM
REF	TBW\$1	
DATA	:A:	FROM :A:
DATA	:L.V:	FOR :L.V: WORDS
\$END]	F	
\$ELSE		
\$IF	(A.SV=ST.SV)	++(A.L=0)
CALL	TBW\$0	MOVE RAM->ROM
REF	TBW\$0	
DATA	:B:	TO :B:
DATA	:L.V:	FOR :L.V: WORDS
\$ELSE	i de la construcción de la constru Reconstrucción de la construcción de	
CALL	TBW\$\$	MOVE RAM->ROM
REF	TBW\$\$	
DATA	:A:	FROM :A:
DATA	:B:	TO :B:
DATA	:L.V:	FOR :L.V: WORDS
\$ENDI	F	
\$ENDI	F	
\$END		

EXAMPLE 1:

0012 0001	0006	F800	MOVROM A,B CALL TBW\$\$	MOVE RAM->ROM
0002 0003 0004 0005	0008 0009 000A	0001 0008 0001	REF TBW\$\$ Data a Data b Data 1	FROM A TO B FOR 1 WORDS
EXAM	PLE 2			
0014 0001	000B 000C	F800 0000	MOVROM *,B, CALL TBW\$0	2 MOVE RAM->ROM

0002			т	REF	TBW\$0		
0003	000D	0008		DATA	В	TO B	
0004	000E	0002		DATA	2	FOR 2 W	ORDS

EXAMPLE 3:

0016			MOVRO	M C.*.B		
0001	000F	F800	CALL	TBWS1	MOVE	RAM->ROM
	0010	0000				
0002			REF	TBW\$1		
0003	0011	0000"	DATA	С	FROM	С
0004	0012	0008	DATA	8	FOR a	BWORDS

EXAMPLE 4:

0018	 MOVROM	*5	
0001	ACTAR	AR1	AC TO AR1
0001 0013 5004"	SACL	XR0,0	STORE AC TO XRO
0002 0014 3904"	LAR	AR1,XRO	RE-LOAD AR1

Μ	0\	/R	OF	Ν
		19 1 1		W I

		the second s	
0003 0015 6881	LARP AR1	LOAD AR POINTER	
0002 0016 F800	CALL TBW\$01	MOVE RAM->ROM	
0017 0000			
0003	REF TBW\$01		and the second sec
0004 0018 0005	DATA 5	FOR 5 WORDS	
EXAMPLE 5:			
0020	MOVROM B		e e e e e e e e e e e e e e e e e e e
0001	ACTAR ARO	AC TO APO	
0001 0019 5004"	SACI XRO O	STOPE AC TO YDO	
0002 0013 3804		BE-LOAD ADO	
0002 001R 5004	LAR ARO, ARO	LOAD AD DOINTED	
0002 0010 5800	CALL TRUCO	LOAD AR FUINIER	
	CALL IDW50	MOVE RAM->ROM	
0003			
	REF IBWSU	mo n	
0004 001E 0008	DATA B		
0005 001F 0001	DATA I	FOR 1 WORDS	
			1
EXAMPLE 0:			
0000			
0022	MOVROM ,*,5		
0001	ACTAR ARO	AC TO ARO	
0001 0020 500 4 "	SACL XR0,0	STORE AC TO XRO	
0002 0021 3804"	LAR ARO,XRO	RE-LOAD ARO	·
0003 0022 6880	LARP ARO	LOAD AR POINTER	
0002 0023 F800	CALL TBW\$01	MOVE RAM->ROM	
0024 0000			
0003	REF TBWS01		
0004 0025 0005	DATA 5	FOR 5 WORDS	
EXAMPLE 7:			
0024	MOVROM D,*		
0001 0026 F800	CALL TBWS1	MOVE RAM->ROM	
0027 0000			
0002	REF TBWS1		
0003 0028 0001"	DATA D	FROM	
0004 0029 0001	DATA 1	FOR 1 WORDS	
	<i>D</i>	TOK I WORDD	
0026	MOVROM D 3		
0001	ACTAP AP1	ΔΓ ΤΟ ΔΡ 1	
0001 0023 5004"	SACI VDO O	STOPE AC TO YDO	
0002 0028 3004	TAD AD1 VD0	DE-LOID AD1	
0002 0025 3904	LAR ARI, ARU	RE-LOAD ARI	
0003 0020 5881	LARP ARI	LOAD AR POINTER	
0002 002D F800	CALL IBWSI	MOVE RAM->ROM	
002E 0000			
0003	REF IBWSI		
0004 002F 0001"	DATA D	FROM D	
0005 0030 0003	DATA 3	FOR 3 WORDS	
EXAMPLE 9:			
0028			
	MOVROM *,*	· · · · · · · · · · · · · · · · · · ·	
0001 0031 F800	CALL TBW\$01	MOVE RAM->ROM	1. E.
0032 0000			· · · · · · ·
	REF TBW\$01		
0003 0033 0001	DATA 1	FOR 1 WORDS	

MOVROM

EXAMPLE 10:

0030			MOVROM *,*,1	
0001	0034	F800	CALL TBW\$01	MOVE RAM->ROM
	0035	0000		
0002			REF TBW\$01	
0003	0036	0001	DATA 1	FOR 1 WORDS

7-94

MOVX

7

7-95

TITLE:	Move Double Word					
NAME:	MOVX					
OBJECTIVE:	Copy double word from one location t	o another in data	amemory			
ALGORITHM:	(A:A + 1) → B:B + 1 or (@ACC:@ACC + 1) → B:B + B					
CALLING SEQUENCE:	MOVX [A],B	<u> </u>				
ENTRY CONDITIONS:	0 ≤ A ≤ 126;0 ≤ B ≤ 126					
EXIT CONDITIONS:	Double word at B contains value of double word located at A; AR0 may be overwritten					
PROGRAM MEMORY REQUIRED:	4 – 8 words	DATA MEMORY REQUIRED:	0 – 2 words			
STACK REQUIRED:	None	EXECUTION TIME:	4 – 8 cycles			

FLOWCHART: MOVX

MOVX SOURCE:

*MOVE DOUBLE FROM A TO B ★ MOVE DOUBLE MOVX \$MACRO A, B SIF A.L=0 A IN AC SACH XR0,0 SACL XR1,0 SAVE AC TO XRO LAR ARO, XRO TO ARO LARP ARO SELECT ARO LOAD * LDAX * SELSE LDAX :A: LOAD DOUBLE :A: \$ENDIF SACX :B: STORE DOUBLE :A: \$END

MOVX

1183

EXAMPLE 1:

0011			MOVX A, B	
0001			LDAX A	LOAD DOUBLE A
0001	0006	6501	ZALH A	LOAD HIGH A
0002	0007	6102	ADDS A+1	LOAD LOW A
0002			SACX B	STORE DOUBLE A
0001	0008	5808	SACH B.O	STORE HIGH
0002	0009	5009	SACL B+1.0	STORE LOW
EXAM	PLE 2	•		
0013			M017X * B	
0001			LDAX *	I OAD DOUBLE *
0001	000A	6588	ZALH *+	LOAD HIGH
0002	000B	6198	ADDS *-	
0002			SACX B	STORE DOUBLE *
0001	000C	5808	SACH B 0	STORE HIGH
0002	000D	5009	SACL B+1 0	STORE LOW
EXAM	PLE 3	•		
0015			MOVX C *+	
0001			LDAX C	LOAD DOUBLE C
0001	000E	6500"	ZALH C	LOAD HIGH C
0002	000F	6101"	ADDS C+1	LOAD LOW C
0002			SACX *+	STORE DOUBLE C
0001	0010	58A8	SACH *+.0	STORE HIGH
0002	0011	50A8	SACL *+,0	STORE LOW
EXAM	PLE 4			and the second
0017			MOVX D	
0001	0012	5806"	SACH XRO.0	
0002	0013	5007"	SACL XR1.0	SAVE AC TO XRO
0003	0014	3806"	LAR ARO, XRO	TO ARO
0004	0015	6880	LARP ARO	SELECT ARO
0005			LDAX *	LOAD *
0001	0016	65A8	ZALH *+	LOAD HIGH
0002	0017	6198	ADDS *-	LOAD LOW '*'
0006			SACX D	STORE DOUBLE
0001	0018	5802"	SACH D,0	STORE HIGH
0002	0019	5003"	SACL D+1,0	STORE LOW

MOVX EXAMPLE 5:

MOVX

0019	MOVX *-,B	
0001	LDAX *-	LOAD DOUBLE *-
0001 001A 6698	ZALS *-	LOAD LOW
0002 001B 6098	ADDH *-	LOAD HIGH '*-'
0002	SACX B	STORE DOUBLE *-
0001 001C 5808	SACH B 0	STORE HIGH
0002 0010 5009	SACI. B+1 0	STORE LOW
0002 0010 5005		
EYAMDIE 6.		
EAAIVIFLE U.		
0021	MOVX *+,A	
0001	LDAX *+	LOAD DOUBLE *+
0001 001E 65A8	ZALH *+	LOAD HIGH
0002 001F 61A8	ADDS *+	LOAD LOW '*+'
0002	SACX A	STORE DOUBLE *+
0001 0020 5801	SACH A.O	STORE HIGH
0002 0021 5002	SACL A+1.0	STORE LOW
EXAMPLE 7:		
0023	MOVX D,*-	
0001	LDAX D	LOAD DOUBLE D
0001 0022 6502"	ZALH D	LOAD HIGH D

0001		TOUR POOPLE D
0001 0022 6502"	ZALH D	LOAD HIGH D
0002 0023 6103"	ADDS D+1	LOAD LOW D
0002	SACX *-	STORE DOUBLE D
0001 0024 5098	SACL *-,0	STORE LOW
0002 0025 5898	SACH *-,0	STORE HIGH
		•

NEG

TITLE: Arithmetic Negation

NAME: NEG

OBJECTIVE: Find negative value of argument

ALGORITHM: $-(A) \rightarrow A$

CALLING SEQUENCE: NEG A

ENTRY CONDITIONS: $0 \le A \le 127$

EXIT

7

CONDITIONS: Data word A contains the negative of its previous value

STACK REQUIRED:	None	EXECUTION TIME:	3 cycles
MEMORY REQUIRED:	3 words	MEMORY REQUIRED:	None
PROGRAM		ΠΔΤΔ	

FLOWCHART: NEG

SOURCE:

*NEGAT *	TE VAR A	
NEG	\$MACRO A ZAC SUB :A:,0 SACL :A:,0 \$END	NEGATE ZERO AC SUBTRACT :A: RESTORE

N	EG		* .						NEG
	EXAMPLE: 0015 0001 000C 0002 000D	7F89 1001"	NEG D ZAC SUB	D,0	ZEI SUI	RO AC BTRACT	D		
	0003 000E	5001"	SACL	D,0	RE	STORE			
-						· · · · · · · · · · · · · · · · · · ·			
	·								
	• • •								
		•			• • •			• • •	
	~					94 -			

NEGX

TITLE:	Double-Word Arithmetic	c Negation		
NAME:	NEGX			
OBJECTIVE:	Find negative value of do	puble-word argument		
ALGORITHM:	NEGX * – causes→	– (@AR:@AR + 1) →@AR +	• 1 •••• •••• ••••	
	NEGX * – – causes→	– (@AR – 1:@AR) → @AR (AR) – 2 → AR	– 1:@AR	
	NEGX * + – causes→	– (@AR:@AR + 1) → @AR: (AR) + 2 → AR	@AR + 1	
	NEGX A – causes→	– (A:A+1) → A:A+1		
CALLING SEQUENCE:	NEGX {A,*,*-,*+}			
ENTRY CONDITIONS:	0 ≤ A ≤ 127			
EXIT CONDITIONS:	Specified data words con is updated as necessary	ntain negative of previous valu	e; auxiliary register	
PROGRAM MEMORY REQUIRED:	5 words	DATA MEMORY REQUIRED:	None	
STACK REQUIRED:	None	EXECUTION TIME:	5 cycles	

FLOWCHART: NEGX

NEGX

SOURCE:

*NEGATE DOUBLE WORD

*			
NEGX	\$MACRO A \$VAR ST,SP,SM \$ASG '*+' TO SP.S \$ASG '*-' TO SM.S \$ASG '*' TO ST.S ZAC	NEGATE DO	UBLE
	SIF A.SV=SM.SV		
	SUBS *- SUBH *+	SUBTRACT	I X_ I
	SACX *-	SAVE '*-'	
	\$ELSE		
	\$IF A.SV=SP.SV		
	SUBX *	SUBTRACT	1 🛪 1
	SACX *+ \$ELSE SIF A.SV=ST.SV	SAVE '*+'	
	SUBX *	SUBTRACT	171
	SACX *	SAVE '*'	
	SELSE		à
	SUBA :A:	SUBTRACT	:A:
	SACX :A: \$ENDIF \$END	JAVE :A:	

7

NEGX

NEGX

0011			NEGX A	
0001	0006	7F89	ZAC	
0002			SUBX A	SUBTRACT A
0001	0007	6207	SUBH A	SUBTRACT HIGH
0002	0008	6308	SUBS A+1	SUBTRACT LOW
0003			SACX A	SAVE A
0001	0009	5807	SACH A,0	STORE HIGH
0002	A000	5008	SACL A+1,0	STORE LOW
EXAM	PLE 2			
0013			NEGX *	
0001	000B	7F89	ZAC	
0002			SUBX *	SUBTRACT '*'
0001	000C	62A8	SUBH *+	SUBTRACT HIGH
0002	000D	6398	SUBS *-	SUBTRACT LOW
0003		÷	SACX *	SAVE '*'
0001	000È	58A8	SACH *+,0	STORE HIGH
0002	000F	5098	SACL *-,0	STORE LOW
EXAM	PLE 3	:		
0015			NEGX *-	
0001	0010	7F89	ZAC	
0002	0011	6398	SUBS *-	
0003	0012	62A8	SUBH *+	SUBTRACT '*-'
0004			SACX *-	SAVE '*-'
0001	0013	5098	SACL *-,0	STORE LOW
0002	0014	5898	SACH *-,0	STORE HIGH
EXAM	PLE 4	:		
0017			NEGX *+	
0001	0015	7F89	ZAC	
0002			SUBX *	SUBTRACT '*'
0001	0016	62A8	SUBH *+	SUBTRACT HIGH
0002	0017	6398	SUBS *-	SUBTRACT LOW
0003			SACX *+	SAVE '*+'
0001	0018	58A8	SACH *+,0	STORE HIGH
0002	0019	50A8	SACL *+,0	STORE LOW

7-102

NEGX

NOT

TITLE: Boolean Not

NAME: NOT

OBJECTIVE: Calculate one's complement of accumulator or data word

ALGORITHM: (A) XOR. $-1 \rightarrow A$

CALLING SEQUENCE: NOT [A]

ENTRY CONDITIONS: $0 \le A \le 127$

EXIT CONDITIONS: A (accumulator) contains one's complement of previous value

PROGRAM MEMORY REQUIRED:	3 words	DATA MEMORY REQUIRED:	1 word
STACK REQUIRED:	None	EXECUTION TIME:	1 — 3 cycles

FLOWCHART: NOT

NOT SOURCE:

*NOT AC OR WORD A		
NOT \$MACRO A	INVERT	
SIF A.L#=0 LAC :A:,0 XOR MINUS	LOAD AC INVERT DESTORE	
SACL :A:,U \$ELSE	THEFT	
SENDIF SEND	INVERI	
EXAMPLE 1:		
0011 0001 0006 7803"	NOT XOR MINUS INVERT	
EXAMPLE 2:		
0017 0001 000D 2000" 0002 000E 7803" 0003 000F 5000"	NOT C LAC C,0 LOAD AC XOR MINUS INVERT SACL C,0 RESTORE	

RASH

TIT	LE:	Arithmetic	Right Shift

NAME: RASH

OBJECTIVE: Move shifted data from one location to another in data memory

ALGORITHM: (A) * $2 - \text{shift} \rightarrow B$

CALLING

SEQUENCE: RASH A, B, shift

ENTRY

CONDITIONS: $0 \le A \le 127$; $0 \le B \le 127$; $0 \le \text{shift} < 16$

EXIT

CONDITIONS: B contains shifted value of A

PROGRAM MEMORY REQUIRED:	2 words	DATA MEMORY REQUIRED:	None
STACK REQUIRED:	None	EXECUTION TIME:	2 cycles

FLOWCHART: RASH

SOURCE:

*MOVE A TO B (SINGLE-VAR) WITH N (CONST) BIT
*RIGHT ARITHMETIC SHIFT
*
RASH \$MACRO A,B,N MOVE WITH RIGHT ARITH. SHIFT
LAC :A:,16-:N: LOAD :A: RIGHT SHIFT
SACH :B:,0 STORE HIGH TO :B:
\$END

RASH

EXAMPLE:

0011 0001 0006 2D07 0002 0007 5808

RASH A,B,3 LAC A,16-3 SACH B,0

LOAD A RIGHT SHIFT STORE HIGH TO B RASH

RASX

TITLE:	Double-Word Arithmetic Right Shift			
NAME:	RASX	,	-	
OBJECTIVE :	Move shifted double word from one lo	ocation to anothe	r in data memory	
ALGORITHM:	(A:A + 1) * 2 ^{shift} → B:B + 1			
CALLING SEQUENCE:	RASX A,B,shift			
ENTRY CONDITIONS:	0 ≤ A ≤ 126; 0 ≤ B ≤ 126; 0 ≤ shift <	(16		
EXIT CONDITIONS:	Double word at B contains shifted val	ue of double wor	d at A	
PROGRAM MEMORY REQUIRED:	10 words	DATA MEMORY REQUIRED:	1 word	
STACK REQUIRED:	None	EXECUTION TIME:	10 cycles	
LOWCHART:	RASX			

SOURCE:

*MOVE A TO B (DOUBLE VAR) WITH N (CONST) BIT *RIGHT ARITHMETIC SHIFT *

RASX \$MACRO A, B, N MOVE DOUBLE WITH ARITH. SHIFT

RASX

X								RASX
	RLSH	:A:+1,:B:+1,	:N:			·		
	LAC	:A:,16-:N:	LOAD HIG	I, RIGHT	SHIFT			
	SACH	:B:,0	SAVE IN	B: HIGH			1. S. S. S. S. 199	
	OR	:B:+1	COMBINE W	VITH :B:	LOW			
	SACL	:B:+1,0	SAVE BACH	٢				
	\$END							
								-

EXAMPLE:

0011		RASX A,B,3	
0001		RLSH A+1,B+1,3	
0001 0006	2D08	LAC A+1,16-3	LOAD, RIGHT SHIFT
0002 0007	580A	SACH B+1,0	SAVE HIGH PART
0003 0008	2D03"	LAC MINUS,16-3	GET MASK
0004		NOT	
0001 0009	7803"	XOR MINUS	INVERT
0005 000A	790A	AND B+1	APPLY MASK
0006 000B	500A	SACL B+1,0	STORE BACK TO B+1
0002 000C	2D07	LAC A,16-3	LOAD HIGH, RIGHT SHIFT
0003 000D	5809	SACH B,0	SAVE IN B HIGH
0004 000E	7A0A	OR B+1	COMBINE WITH B LOW
0005 000F	500A	SACL B+1,0	SAVE BACK

REPCON

TITLE:	Move One-Word Constant into Array	/		
NAME:	REPCON			
OBJECTIVE:	Initialize an array in data memory wit	h a constant		
ALGORITHM:	Constant \rightarrow ACC For number of elements in array, (ACC) \rightarrow data memory			
CALLING SEQUENCE:	REPCON constant, array, length			
ENTRY CONDITIONS:	— 32768 ≤ constant ≤ 32767; 0 ≤ a	rray + length ≤ 14	43	
EXIT CONDITIONS:	Array contains constant in each loca	tion		
PROGRAM MEMORY REQUIRED:	2 – 4 words (+ SETS\$ and LAC\$ routines)	DATA MEMORY REQUIRED:	0 – 3 words	
STACK REQUIRED:	2 levels	EXECUTION TIME:	(max) 27 + (4 > length) cycles	(

FLOWCHART: REPCON

REPCON

REPCON

SOURCE:

*REPLICATE CONSTANTS	
*A IS A CONSTANT	
*B IS A MEM LOCATION	
*L IS LENGTH TO REPLICA *	TE
REPCON \$MACRO A, B, L	
\$IF L.V<2	
LCAC :A:	LOAD CONSTANT
SACL :B:,0	SET IT
ŞELSE	
CALL SETS\$	CALL FOR SET MEMORY
REF SETS\$	
DATA :A:	CONSTANT
DATA :L:	LENGTH
DATA :B:	DESTINATION
SENDIE	

EXAMPLE 1:

\$END

0014	REPCON -252,A,10	
0001 000B F800	CALL SETS\$	CALL FOR SET MEMORY
000C 0000		
0002	REF SETS\$	
0003 000D FF04	DATA -252	CONSTANT
0004 000E 000A	DATA 10	LENGTH
0005 000F 0001	DATA A	DESTINATION
EXAMPLE 2:		

0016 REPCON 2,B,1 0001 LCAC 2 LOAD CONSTANT 0001 0002 V\$1 EQU 2 LOAD AC WITH V\$1 0002 0010 7E02 LACK V\$1 LOAD AC WITH V\$1 0002 0011 5008 SACL B,0 SET IT

REPCON

TITLE:	Ripple Data Array One Position			
NAME:	RIPPLE			
OBJECTIVE:	Move each element of array in data me	mory to next hig	her location	
ALGORITHM:	(array element N – 1) \rightarrow array element (array element N – 2) \rightarrow array element : (array element 2) \rightarrow array element 3	N N — 1		
<u>e</u>	(array element 1) → array element 2			· · · · · · · · · · · · · · · · · · ·
CALLING SEQUENCE:	RIPPLE array [,length[,inline]]			
ENTRY CONDITIONS:	$0 \leq array + length \leq 143$; inline = an	y string		-
EXIT CONDITIONS:	All array elements N contain value of p AR1 may be overwritten	revious location	N – 1; AR0 and	
PROGRAM MEMORY REQUIRED:	Inline – length words;	DATA MEMORY REQUIRED:	3 words	
	looped – 4 + RIP\$ function (23 words)		an a	
STACK REQUIRED:	2 levels (looped)	EXECUTION TIME:	Inline – length cycles; looped – 30 + (4 * length)	

RIPPLE

1183

SOURCE 1:

```
RIPPLE $MACRO A,L,C

$IF (L.V<4)++(C.L#=0)

INRIP :A:,:L:

$ELSE

CALL RIP$ CALL FOR RIPPLE LOOP

REF RIP$

DATA :L: FOR :L:-1 WORDS

DATA :A: FROM :A:+:L:-1

$ENDIF

$END
```

SOURCE 2:

***RIPPLE DOWN ARRAY** *A IS ARRAY LOCATION *L IS LENGTH OF ARRAY * INRIP SMACRO A,L \$IF L.V>16 INRIP :A:+16,:L:-16 **\$ENDIF** \$IF L.V>15 DMOV :A:+15 SENDIF SIF L.V>14 DMOV :A:+14 **\$ENDIF** \$IF L.V>13 DMOV :A:+13 **\$ENDIF** \$IF L.V>12

RIPPLE

DMOV	:A:+12
\$ENDI	F
\$IF :	L.V>11
DMOV	:A:+11
\$ENDI	F say
\$IF ·	L.V>10
DMOV	:A:+10
\$ENDI	F
\$IF	L.V>9
DMOV	:A:+9
\$ENDI	F
\$IF	L.V>8
DMOV	:A:+8
\$ENDI	F
\$IF	L.V>7
DMOV	:A:+7
\$END1	F
\$IF	L.V>6
DMOV	:A:+6
\$END1	.F
\$IF	L.V>5
DMOV	:A:+5
\$END]	F
\$IF	L.V>4
DMOV	:A:+4
\$END]	[F
\$IF	L.V>3
DMOV	:A:+3
\$END]	F
\$IF	L.V>2
DMOV	:A:+2
\$END]	(F
\$IF	L.V>1
DMOV	:A:+1
\$END]	[F
\$IF	L.V>0
DMOV	:A:
\$END]	LF
SEND	

EXAMPLE 1:

0007			RIPPLE	λ,3
0001			INRIP	A ,3
0001	0006	6909	DMOV	λ+2
0002	0007	6908	DMOV	. λ+ 1
0003	0008	6907	DMOV	ΪX (

EXAMPLE 2:

0009 0001 0009 F80	RIPPLE A,4 0 CALL RIP\$	CALL FOR RIPPLE LOOD
000A 000	O PEE RIPS	
0002 0003 000B 000	4 DATA 4	FOR 4-1 WORDS
0004 000C 000	7 DATA A	FROM A+4-1

EXAMPLE 3:

0011	RIPPLE A, 5, L
0001	INRIP A,5
0001 000D 690B	DMOV A+4
0002 000E 690A	DMOV A+3

0003 000F 6909 0004 0010 6908 0005 0011 6907 DMOV A+2 DMOV A+1 DMOV A

t

1

RIPPLE

RLSH

RLSH

TITLE: Right Lo	gical Shift
-----------------	-------------

NAME: RLSH

OBJECTIVE: Move right-shifted data from one location to another in data memory

ALGORITHM: [(A) * 2 - shift] and $[2^{16} - \text{shift} - 1] \rightarrow B$

CALLING

SEQUENCE: RLSH A, B, shift

ENTRY

CONDITIONS: $0 \le A \le 127$; $0 \le B \le 127$; $0 \le \text{shift} < 16$

EXIT

CONDITIONS: B contains shifted value of A

•
6 words

DATA MEMORY REQUIRED: 1 word

		· · · · · · · · · · · · · · · · · · ·	
STACK		EXECUTION	
REQUIRED:	None	TIME:	6 cycles

FLOWCHART: RLSH

SOURCE:

*MOVE *RIGH *	A TO B (SINGLE VA I LOGICAL SHIFT	R) WITH N (CONST) BIT
RLSH	SMACRO A,B,N LAC :A:,16-:N: SACH :B:,0	MOVE WITH RIGHT LOGICAL SHIFT LOAD, RIGHT SHIFT SAVE HIGH PART

RLSH

RLSH

LAC	MINUS, 16-:N:	GET MASK			
NOT				2	
AND	• • • • • • • • • • • • • • •	APPLY	MASK	15	
SACL \$END	:B:,0	STORE	BACK	то	:B:

EXAMPLE:

0011			
0001	0006	2D07	
0002	0007	5808	
0003	0008	2D03"	
0004			
0001	0009	7803"	
0005	A000	7908	
0006	000B	5008	

RLSH A,B,3LAC A,16-3LOAD, RIGHT SHIFTSACH B,0SAVE HIGH PARTLAC MINUS,16-3GET MASKNOTINVERTXOR MINUSINVERTAND BAPPLY MASKSACL B,0STORE BACK TO B

RLSX

TITLE:Double-Word Logical Right Shift

NAME: RLSX

OBJECTIVE: Move right-shifted double word from one location to another in data memory

ALGORITHM: [(A:A + 1) * 2 - shift].and. $[2^{16} - \text{shift} - 1] \rightarrow B:B + 1$

CALLING

SEQUENCE: RLSX A, B, shift

ENTRY

CONDITIONS: $0 \le A \le 126$; $0 \le B \le 126$; $0 \le \text{shift} < 16$

EXIT

CONDITIONS: Double word at B contains shifted value of double word at A

PROGRAM MEMORY		DATA MEMORY	
REQUIRED:	14 words	REQUIRED :	1 word
STACK REQUIRED:	None	EXECUTION TIME:	14 cycles

FLOWCHART: RLSX

RLSX SOURCE:

RLSX

*MOVE A TO B (DOUBLE VAR) WITH N(CONST) BIT *RIGHT LOGICAL SHIFT *

RLSX	\$MACRO A,B,N	MOVE DOUBLE WITH LOGICAL SHIFT
	RLSH :A:+1,:B:+1,	:N: SHIFT RIGHT LOWER
	LAC :A:,16-:N:	GET UPPER (RIGHT SHIFT)
	SACH :B:,0	SAVE IN :B: HIGH
	OR :B:+1	COMBINE LOW PARTS
	SACL :B:+1,0	SAVE IN :B: LOW
	LAC MINUS, 16-:N:	GET MASK
	NOT	
	AND :B:	MASK HIGH :B:
	SACL :B:,0	SAVE BACK IN :B:
	SEND	

EXAMPLE:

0011]	RLSX A	A,B,3	
0001		RLSH	A+1,B+1,3	SHIFT RIGHT LOWER
0001 0006	2D08	LAC	A+1,16-3	LOAD, RIGHT SHIFT
0002 0007	580A	SACH	H B+1,0	SAVE HIGH PART
0003 0008	2D05"	LAC	MINUS,16-3	GET MASK
0004		NOT		
0001 0009	7805"	XOF	R MINUS	INVERT
0005 000A	790A	AND	B+1	APPLY MASK
0006 000B	500A	SACI	_ B+1,0	STORE BACK TO B+1
0002 000C	2D07	LAC	A,16-3	GET UPPER (RIGHT SHIFT)
0003 000D	5809	SACH	В,0	SAVE IN B HIGH
0004 000E	7A0A	OR	B+1	COMBINE LOW PARTS
0005 000F	500A	SACL	B+1,0	SAVE IN B LOW
0006 0010	2D05"	LAC	MINUS,16-3	GET MASK
0007		NOT		
0001 0011	7805"	XOR	MINUS	INVERT
0008 0012	7909	AND	В	MASK HIGH B
0009 0013	5009	SACL	В,О	SAVE BACK IN B
SACX

9.2 A.

TITLE:	Store Double Word			
NAME:	SACX			
OBJECTIVE :	Store double word from	accumulator		
ALGORITHM:	SACX * − causes→	(ACC) → @AR:@AR + 1		
	SACX * – – causes→	(ACC) → @AR-1:@AR (AR) – 2 → AR		
	SACX * + − causes→	(ACC) → @AR:@AR + 1 (AR) + 2 → AR		
	SACX A − causes→	(ACC) → A:A + 1	•	
CALLING SEQUENCE:	SACX {A,*,*-,*+}			
ENTRY CONDITIONS:	0 ≤ A ≤ 127			
EXIT CONDITIONS:	Specified double word co auxiliary register is updat	ontains value from accumulato ed if necessary	or;	
PROGRAM MEMORY REQUIRED:	2 words	DATA MEMORY REQUIRED:	None	
STACK REQUIRED:	None	EXECUTION TIME:	2 cycles	

SACX

SACX FLOWCHART: SACX

SOURCE:

20.7.2

*STORE	DOUBLE		
SACX	SMACRO A	STORE	DOUBLE
	\$VAR ST, SP, SM		
	SASG '*' TO ST.S		
7	SASG '*-' TO SM.S		
	SASG '*+' TO SP.S		
	SIF A.SV=ST.SV		
	SACH *+,0	STORE	HIGH
	SACL *-,0	STORE	LOW
	\$ELSE		
	SIF A.SV=SP.SV		
	SACH *+,0	STORE	HIGH
	SACL *+,0	STORE	LOW
	ŞELSE		
	\$IF A.SV=SM.SV		
	SACL *-,0	STORE	LOW
	SACH *-,0	STORE	HIGH
	SELSE		
	SACH :A:,0	STORE	HIGH
	SACL :A:+1,0	STORE	LOW
	\$ENDIF		
	\$ENDIF		
	SENDIF		
	ŞEND		

SACX

SACX

EXAMPLE 1:

0011 0001 0006 0002 0007	5807 5008	SACX A SACH A,0 SACL A+1,0	STORE STORE	HIGH LOW
EXAMPLE 2	2:			
0013 0001 0008 0002 0009	58A8 5098	SACX * SACH *+,0 SACL *-,0	STORE STORE	HIGH LOW
EXAMPLE 3	3:			
0015 0001 000A 0002 000B	5098 5898	SACX *- SACL *-,0 SACH *-,0	STORE STORE	LOW HIGH
EXAMPLE 4	k:		· · ·	
0017 0001 000C 0002 000D	58A8 50A8	SACX *+ SACH *+,0 SACL *+,0	STORE STORE	HIGH LOW

7-121

SAT

TITLE:	aturate Data Word between Upper and Lower Bounds						
NAME:	SAT	SAT					
OBJECTIVE:	Insure that a data word falls within bo	undary condition	S				
ALGORITHM:	If $(A) > upper$, then $upper$ Else if $(A) < lower$, then low	per → A ver → A					
CALLING SEQUENCE:	SAT data,lower,upper				,		
ENTRY CONDITIONS:	0 ≤ data ≤ 127; — 32768 ≤ lower ≤ u	pper ≤ 32767					
EXIT CONDITIONS:	Data word contains value within boun	ds; staturation m	ode is reset				
PROGRAM MEMORY REQUIRED:	16 – 24 words (+ LDAC\$ routine)	DATA MEMORY REQUIRED:	2 words				
STACK REQUIRED:	2 levels	EXECUTION TIME:	10 – 48 cycles				

7

SOURCE:

```
*SATURATE VALUE IN A BETWEEN VALUES B AND C
*A IS A VARIABLE
*B AND C ARE VARIABLES OR CONSTANTS
*
SAT
       $MACRO A, B, C
       $VAR L,L1,L2,L3
       $ASG '$$LAB' TO L.S
       $ASG L.SV+3 TO L.SV
                                GET A LABEL
       $ASG L.SV-2 TO L1.V
       SASG L.SV-1 TO L2.V
       $ASG L.SV
                   TO L3.V
       SOVM
                        SET OVERFLOW MODE
       $IF C.SA&$UNDF
       LCAC :C:
                        LOAD UPPER BOUND :C:
       $ELSE
       LAC :C:,0
                        LOAD UPPER BOUND :C:
       $ENDIF
       SUB :A:,0
                        COMPARE TO :A:
       BGEZ L$:L1.V:
                        BRANCH IF :A:<=:C:
       $IF C.SA&$UNDF
       LCAC :C:
                        RELOAD :C: AS VALUE
       $ELSE
```

7-123

SAT

LAC :C:,0	RELOAD :C: AS VALUE
B L\$:L2.V: L\$:L1.V: EOU \$	BRANCH TO CONTINUE CHECK LOWER
\$IF B.SA&\$UNDF	
LCAC :B: \$ELSE	LOAD LOWER BOUND :B:
LAC :B:,0 \$ENDIF	LOAD LOWER BOUND :B:
SUB :A:,0	COMPARE TO :A:
BLEZ L\$:L3.V: \$IF B.SA&\$UNDF	BRANCH IF :A:>:B:
LCAC :B: \$ELSE	RELOAD :B: AS VALUE
LAC :B:,0 SENDIF	RELOAD :B: AS VALUE
L\$:L2.V: SACL :A:,0	RESTORE :A:
L\$:L3.V: ROVM \$END	CONTINUE

EXAMPLE 1:

0011	1			SAT .	A,25,50			
0001	1 0005	7F8B		SOVM			SET OVERFLOW MODE	
0002	2			LCAC	50		LOAD UPPER BOUND 5	50
0001	1	0032	V\$4	EOU 50				
0002	2 0006	7E32		LAC	K VS4		LOAD AC WITH VS4	
0003	3 0007	1007		SUB	A.0		COMPARE TO A	
0004	4 0008	FD00		BGEZ	LS1		BRANCH IF A<=50	
	0009	10000						
0005	5	0032		LCAC	50		RELOAD 50 AS VALUE	5
0001	1	0032	VS5	EOU 50				•
0000		7532	• • • •	LQC CC	K V\$5		LOAD AC WITH VS5	
0002	5 000R	F900		B	1.52		BRANCH TO CONTINUE	2
0000	0000	00121		D			BRANCH TO CONTINUE	,
0007	7 0000	0012	T ¢ 1	FOUS			CHECK LOWER	
0000	2	0000	TOT		25		LOAD LOWER BOUND 2	5
0000	1	0000	1766	FOIL 25	23		LOAD LOWER BOUND 2	
0001	2 0000	7510	V 30		1766		TOND NO WITH VEC	
0002		1007		CUP			COMPARE TO A	
0003		1007		SUB DI E7	A,0		DDAMOU TE ANDE	
0010	000F	FBUU		BLEZ	ГЭЗ		BRANCH IF A>25	
0011	0010	0013.		T CD C	05			
0011	1	0019		LUAL	25		RELUAD 25 A5 VALUE	•
0001		0019	VŞ/	EQU 25				
0002	2 0011	/E19		LAC	K V\$7		LOAD AC WITH V\$7	
0012	2 0012	5007	LSZ	SACL	Α,υ		RESTORE A	
0013	3 0013	/F8A	L\$3	ROVM			CONTINUE	
EXA	MPLE 2							
0017	-			C D m				
0013	0014	7000		SAT	H,C,D		CET OVEDELOU NODE	
0000		/108		SUVM			SET OVERFLOW MODE	
0002	2 0015	2002"		LAC	J,U		LOAD UPPER BOUND D)
0003	3 0016	1007		SUB	A,0		COMPARE TO A	
0004	4 0017	FDUU		BGEZ	LŞ8		BRANCH IF A<=D	
	0018	0010						
0005	5 0019	2002"		LAC	D,0		RELOAD D AS VALUE	
0006	5 001A	F900		В	L\$9		BRANCH TO CONTINUE	5
	0018	0021						
0007	/ -	001C'	L\$8	EQUŞ			CHECK LOWER	
0008	5 001C	2000"		LAC	C,0	· • · · · ·	LOAD LOWER BOUND C	
0009	9 001D	1007		SUB	Α,Ο		COMPARE TO A	

SAT	
-----	--

	0010	001E	FB00		BLEZ	L\$10	BRANCH II	F A>C		an a
	0011 0012 0013	001F 0020 0021 0022	0022 2000" 5007 7F8A	L\$9 L\$10	LAC SACL ROVM	C,0 A,0	RELOAD C RESTORE D CONTINUE	AS VALUE A	;	
-	- le									
						-1 				
									na di serita di serit	
- 										
								× ماريخ		
							1 -			
				t j		4				
			Ċ.				•			
									en e	
1183										7-125

SBAR	Subtract Variable from Auxi	liary Register -	- Macro	SBAR
TITLE:	Subtract Variable from Auxiliary Regi	ster	<u> </u>	
NAME:	SBAR			
OBJECTIVE:	Subtract data word from named auxil	iary register		
ALGORITHM:	(ACAR) – (dma) → ACC (ACC) → AR			a se and a second
CALLING SEQUENCE:	SBAR AR, B [,TEMP]			
ENTRY CONDITIONS:	AR = 0,1;0 ≤ B ≤ 127;0 ≤ TEMP ≤	127		
EXIT CONDITIONS:	Difference between memory location named auxiliary register	and auxiliary regi	ster is stored in	
PROGRAM MEMORY REQUIRED:	5 — 7 words (plus LDAC\$ routine)	DATA MEMORY REQUIRED:	2 words	
STACK REQUIRED:	0 – 2 levels	EXECUTION TIME:	5 — 17 cycles	

SBAR FLOWCHART: SBAR

SBAR

SOURCE:

*SUB H *A IS *B IS *	FROM AR AR1 OR ARO CONST OR VAR	: :
SBAR	\$MACRO A,B,T \$IF T.L=0 \$ASG 'XR1' TO T.S \$ENDIF	ASSIGN TEMP
	SAR :A:,:T: \$IF B.SA&\$UNDF \$ASG -B.V TO B.V	SAVE :A:
	LCAC :B.V:	LOAD -: B: VALUE
	ADD :T:,0	ADD :T: VALUE
	\$ELSE	
	LAC :T:,0	LOAD :T:
	SUB :B:,0	SUB :B: VALUE

SBAR

SBAR

SENDI	F	. (
SACL	:T:,0	RESTORE
LAR	:A:,:T:	RELOAD :A:
SEND		

EXAMPLE 1:

0007	. · · .		SBAR AR1,3	
0001	0006	3103"	SAR AR1, XR1	SAVE AR1
0002			LCAC -3	LOAD -3 VALUE
0001		FFFD	V\$1 EQU -3	
0002	0007	F800	CALL LDACS	LOAD AC WITH:
	0008	0000		
0003			REF LDAC\$	
0004	0009	FFFD	DATA V\$1	V\$1
0003	000A	0003"	ADD XR1,0	ADD XR1 VALUE
0004	000B	5003"	SACL XR1,0	RESTORE
0005	000C	3903"	LAR AR1,XR1	RELOAD AR1

EXAMPLE 2:

0009 0001 000D 3008 0002 000E 2008 0003 000F 1004"	SBAR ARO,C,B SAR ARO,B LAC B,O SUB C,O	SAVE ARO LOAD B SUB C VALUE
0004 0010 5008	SACL B,U	RESTORE RELOAD ARO
EXAMPLE 3:		
0011	SBAR 0,D	
0001 0012 3003"	SAR 0, XR1	SAVE O
0002 0013 2003"	LAC XR1,0	LOAD XR1
0003 0014 1005"	SUB D,0	SUB D VALUE
0004 0015 5003"	SACL XR1,0	RESTORE
0005 0016 3803"	LAR 0,XR1	RELOAD O

SBIC	Clear Single Bit in Data	a Word – Mac	ro	SBIC
TITLE:	Clear Single Bit in Data Word			<u> </u>
NAME:	SBIC			
OBJECTIVE:	Clear bit in data word specified by bit	position argumer	nt	
ALGORITHM:	(A) .ANDNOT. 2 ^{bit} → (A)			
CALLING SEQUENCE:	SBIC bit,A			
ENTRY CONDITIONS:	0 ≤ A ≤ 127; 0 ≤ bit ≤ 15			
EXIT CONDITIONS:	A contains initial value with specified	bit cleared		
PROGRAM MEMORY REQUIRED:	4 words	DATA MEMORY REQUIRED:	2 words	
STACK REQUIRED:	None	EXECUTION TIME:	4 cycles	
FLOWCHART:	SBIC			

SBIC

SOURCE:

*BIC A SELECTED BIT *A IS BIT NUMBER *B IS VAR * SBIC \$MACRO A,B SINGLE BIT CLEAR LAC ONE,:A: GET SELECT BIT XOR MINUS INVERT MASK AND :B: AND :B: SACL :B:,0 STORE TO :B: \$END

EXAMPLE 1:

0012			SBIC	B,C	
0001	A000	2802"	LAC	ONE, B	GET SELECT BIT
0002	000B	7803"	XOR	MINUS	INVERT MASK
0003	000C	7900"	AND	С	AND C
0004	000D	5000"	SACL	С,0	STORE TO C
EXAM	PLE 2	:			
0014			SBIC	3,D	
0001	000E	2302"	LAC	ONE, 3	GET SELECT BIT
0002	000F	7803"	XOR	MINUS	INVERT MASK
0003	0010	7901"	AND	D	AND D
0004	0011	5001"	SACL	D,0	STORE TO D
EXAM	PLE 3	1 () 1			
0016			SBIC	12,B	
0001	0012	2C02"	LAC	ONE,12	GET SELECT BIT
0002	0013	7803"	XOR	MINUS	INVERT MASK
0003	0014	7908	AND	B	AND B
0004	0015	5008	SACL	В,О	STORE TO B

SBIS

TITLE: Set Single Bit in Data Word

NAME: SBIS

OBJECTIVE: Set bit in data word specified by bit position argument

ALGORITHM: (data).OR. 2^{bit} → data

CALLING SEQUENCE: SBIS bit,A

ENTRY CONDITIONS: $0 \le A \le 127$; $0 \le bit \le 15$

EXIT

CONDITIONS: A contains initial value with specified bit set

PROGRAM MEMORY REQUIRED:	3 words	DATA MEMORY REQUIRED:	1 word
STACK REQUIRED:	None	EXECUTION TIME:	3 cycles

FLOWCHART: SBIS

SOURCE:

*SET : *A IS *B IS	SELECTED BIT BIT NUMBER VAR	
SBIS	\$MACRO A,B LAC ONE,:A: OR :B: SACL :B:,O \$END	SINGLE BIT SET GET SELECT BIT SET TO :B: RESTORE

EXAMPLE 1:

0012 0001 0002 0003	0009 000A 000B	2802" 7A00" 5000"	SBIS LAC OR SACL	B,C ONE,B C C,O	GET SELECT SET TO C RESTORE	BIT
EXAM	PLE 2	•		- 		
0014 0001 0002 0003	000C 000D 000E	2302" 7A01" 5001"	SBIS LAC OR SACL	3,D ONE,3 D D,0	GET SELECT SET TO D RESTORE	BIT
EXAM	PLE 3	:				
0016 0001 0002 0003	000F 0010 0011	2C02" 7A08 5008	SBIS LAC OR SACL	12,B ONE,12 B B,0	GET SELECT SET TO B RESTORE	BIT

SBIT

TITLE: Test Single Bit in Data Word

NAME: SBIT

OBJECTIVE: Test bit in data word specified by bit position argument

ALGORITHM: data .AND. 2^{bit} → ACC

CALLING

SEQUENCE: SBIT bit, A

ENTRY

CONDITIONS: $0 \le A \le 127$; $0 \le bit \le 15$

EXIT

CONDITIONS: ACC contains zero if specified bit is cleared, non-zero else

REQUIRED:	None	TIME:	2 cycles
STACK		EXECUTION	
REQUIRED:	2 words	REQUIRED:	1 word
MEMORY		MEMORY	
PROGRAM		DATA	

FLOWCHART: SBIT

SOURCE:

*TEST *A IS *B IS *	SELECTED BIT BIT NUMBER VAR TO TEST	
SBIT	\$MACRO A,B LAC ONE,:A: AND :B: \$END	SINGLE BIT TEST GET BIT :A: TEST FOR IT

7-133

SBIT

EXAMPLE:

0014	SBIT	3.D	
0001 000A 2302"	LAC	ONE, 3	GET BIT 3
0002 000B 7901"	AND	D	TEST FOR IT

STOX

TITLE: Convert Single Word to Double Word

NAME: STOX

OBJECTIVE: Convert single word to a double word and save

ALGORITHM: $(A) \rightarrow B:B+1$

CALLING SEQUENCE: STOX single, double

ENTRY

CONDITIONS: $0 \le \text{single} \le 127$; $0 \le \text{double} \le 127$

EXIT

CONDITIONS: Double word contains value of single word

STACK REQUIRED:	None	EXECUTION TIME:	3 cycles	
PROGRAM MEMORY REQUIRED:	3 words	DATA MEMORY REQUIRED:	None	

FLOWCHART: STOX

SOURCE:

*SINGL *	E TO DOUBLE (A T	О В)
STOX	\$MACRO A,B LAC :A:,0 SACX :B: \$END	LOAD SINGLE STORE DOUBLE

STOX

STOX

EXAMPLE:

0011	STOX A,D	
0001 0006 2007	LAC A,O	LOAD SINGLE
0002	SACX D	STORE DOUBLE
0001 0007 5802"	SACH D,0	STORE HIGH
0002 0008 5003"	SACL D+1,0	STORE LOW

SUBX

TITLE:	Double-Word Subtract			
NAME:	SUBX			
OBJECTIVE:	Subtract double word from accumulat	or		
ALGORITHM:	SUBX *	AR:@AR + 1) →	ACC	
	SUBX * causes→ (ACC) - (@ (AR) - 2 →	AR-1:@AR) → A AR	CC	
	SUBX * + - causes→ (ACC) - (@ (AR) + 2 →	AR:@AR + 1) → AR	ACC	
	SUBX A – causes→ (ACC) – (A	:A + 1) → ACC		
CALLING SEQUENCE:	SUBX {A,*,* - ,* + }	·		
ENTRY CONDITIONS:	0 ≤ A ≤ 127			
EXIT CONDITIONS:	Accumulator contains updated value a auxiliary register is updated if necessa	after subtraction; ry		
PROGRAM MEMORY REQUIRED:	2 words	DATA MEMORY REQUIRED:	None	
STACK REQUIRED:	None	EXECUTION TIME:	2 cycles	

7-137

SUBX

SUBX FLOWCHART: SUBX

SOURCE:

*SUBTRACT DOUBLE *

SUBX	\$MACRO A \$VAR ST,SM,SP \$ASG '*' TO ST.S \$ASG '*+' TO SP.S \$ASG '*-' TO SM.S \$IF A.SV=ST.SV	SUBTRACT	DOUBLE
	SUBH *+	SUBTRACT	HIGH
	SUBS *-	SUBTRACT	LOW
	SELSE	002111101	2011
	SIF A.SV=SP.SV		
	SUBH *+	SUBTRACT	HIGH
	SUBS *+	SUBTRACT	LOW
	ŞELSE		
	SIF A.SV=SM.SV		
	SUBS *-	SUBTRACT	LOW
	SUBH *-	SUBTRACT	HIGH
	SELSE		
	SUBH :A:	SUBTRACT	HIGH
	SUBS :A:+1	SUBTRACT	LOW
	SENDIF		
	SENDIF		
	SENDIF		
	SEND		
	Y		

SUBX

EXAMPLE 1:

0011 0001 0002	0006 0007	6207 6308	SUBX A SUBH A SUBS A+1	SUBTRACT SUBTRACT	HIGH LOW
EXAM	PLE 2	•			
0013 0001 0002	0008 0009	62A8 6398	SUBX * SUBH *+ SUBS *-	SUBTRACT SUBTRACT	HIGH LOW
EXAM	PLE 3				
0015 0001 0002	000A 000B	6398 6298	SUBX *- SUBS *- SUBH *-	SUBTRACT SUBTRACT	LOW HIGH
EXAM	PLE 4	:			
0017 0001 0002	000C 000D	62A8 63A8	SUBX *+ SUBH *+ SUBS *+	SUBTRACT SUBTRACT	HIGH LOW
EXAM	PLE 5	•			
0019 0001 0002	000E 000F	6203 6304	SUBX 3 SUBH 3 SUBS 3+1	SUBTRACT SUBTRACT	HIGH LOW

7

SUBX

TS1	Γ

TITLE:	Test Word
--------	-----------

NAME: TST

OBJECTIVE: Load word into accumulator, allowing comparison with zero

ALGORITHM: $(A) \rightarrow ACC$

CALLING SEQUENCE: TST {A,*,* - ,* + }

ENTRY CONDITIONS: $0 \le A \le 127$

EXIT

7

CONDITIONS: Accumulator contains value of word

MEMORY REQUIRED:	1 word	DATA MEMORY REQUIRED:	None
STACK REQUIRED:	None	EXECUTION TIME:	1 cycle

FLOWCHART: TST

SOURCE:

*TEST *	SINGLE VAR
TST	\$MACRO A
	LAC :A:,0

\$END

COMPARE TO ZERO LOAD IT

EXAMPLE 1:

0007			TST	A	
0001	0006	2001	LAC	Α,Ο	

LOAD IT

<u>tst</u>

EXAMPLE 2:		
0009 0001 0007 2088	TST * LAC *,0	LOAD IT
EXAMPLE 3:		
0011 0001 0008 2004"	TST C LAC C,0	LOAD IT
EXAMPLE 4:		× · · · ·
0013 0001 0009 20A8	TST *+ LAC *+,0	LOAD IT

TSTX

TSTX

TITL	E:		Test	Double	Word	
			i cat	Double	vvoru	

NAME: TSTX

OBJECTIVE: Load double word into accumulator, allowing comparison with zero

ALGORITHM: TSTX * - causes→ $(@AR:@AR + 1) \rightarrow ACC$ TSTX * - - causes→ $(@AR - 1:@AR) \rightarrow ACC$ $(AR) - 2 \rightarrow AR$ TSTX * + - causes→ $(@AR:@AR+1) \rightarrow ACC$ $(AR) + 2 \rightarrow AR$ TSTX A – causes← $(A:A+1) \rightarrow ACC$

CALLING

SEQUENCE: TSTX {A,*,*-,*+}

ENTRY **CONDITIONS**: $0 \le A \le 127$

EXIT

CONDITIONS: Accumulator contains value of double word; auxiliary register is updated if necessary

MEMORY REQUIRED:	2 words	DATA MEMORY REQUIRED:	None
STACK REQUIRED:	None	EXECUTION TIME:	2 cycles

SOURCE:

*TEST *	DOUBLE VAR			
TSTX	\$MACRO A LDAX :A: \$END	COMPARE LOAD IT	TO ZERO DOUBLE	DOUBLE

EXAMPLE 1:

0011 0001 0001 0006 6507 0002 0007 6108	TSTX A LDAX A ZALH A ADDS A+1	LOAD IT DOUBLE LOAD HIGH A LOAD LOW A
EXAMPLE 2:		
0013	TSTX *	
0001	TDAY *	LOAD TT DOUBLE

0001 0001 0008 0002 0009	65A8 6198	LDAX * ZALH *+ ADDS *-	LOAD IT DOUBL LOAD HIGH LOAD LOW '*'

EXAMPLE 3:

0015	TSTX *-	
0001 0001 000A 6698	LDAX *- ZALS *-	LOAD IT DOUBLE LOAD LOW
0002 000B 6098	ADDH *-	LOAD HIGH '*-'

TSTX					Т	STX
EXAMPLE 4:		· · · ·		* 11 · · · · · · · · · · · · ·		
0017 0001 0001 000C 65A8 0002 000D 61A8	TSTX *+ LDAX *+ ZALH *+ ADDS *+	LOA LOA LOA	D IT DOUBLE D HIGH D LOW '*+'			

7

.

XTOS	Convert Double Word to Single Word –	Macro XTOS
TITLE:	Convert Double Word To Single Word	
NAME:	XTOS	
OBJECTIVE:	Convert double word to a single word and save	
ALGORITHM:	$\begin{array}{ll} \mbox{If (A:A+1)} > & 32767 & \mbox{then} & 32767 \\ \mbox{Else if (A:A+1)} < & -32768 & \mbox{then} & -32768 \\ & \mbox{Else} & (A+1) \end{array}$	→ B → B → B
CALLING SEQUENCE:	XTOS double, single	
ENTRY CONDITIONS:	0 ≤ single ≤ 127 ; 0 ≤ double ≤ 127	
EXIT CONDITIONS:	Single word contains value of double word or saturation	on value
PROGRAM MEMORY REQUIRED:	27 words (+ LDAC\$ routine) DATA REQUIRED:	2 words
STACK REQUIRED:	2 levels EXECUTION TIME:	33 – 50 cycles
· · · · · · · · · · · · · · · · · · ·		

LOAD -32768 VES LOAD 32767 VES LOAD 32767 NTO ACC VOMPARE DOUBLE RREATER ? NO COMPARE DOUBLE MORD WITH -32768 VORD WITH -32768 SMULLER ? NO LOAD DOUBLE WORD INTO ACC

SOURCE:

XTOS

FLOWCHART: XTOS

```
*DOUBLE TO SINGLE (A TO B)
*
XTOS
       $MACRO A, B
       $VAR L,L1,L2,L3
       $ASG '$$LAB' TO L.S
       $ASG L.SV+3 TO L.SV
                               GET LABEL
       $ASG L.SV-2 TO L1.V
       $ASG L.SV-1 TO L2.V
       $ASG L.SV
                   TO L3.V
       LCAC 32767
                         GET BIGGEST SINGLE
       SUBX :A:
                         COMPARE :A:
       BGEZ L$:L1.V:
                         IF :A: >= 32767 THEN
       LCAC 32767
                         SATURATE AT 32767
       В
            L$:L3.V:
                         JUMP TO DONE
L$:L1.V: LCAC -32768
                         GET MOST NEG SINGLE
       SUBX :A:
                         COMPARE :A:
       BLEZ L$:L2.V:
                         IF :A: <= -32768 THEN
       LCAC -32768
                        SATURATE AT -32768
       В
            L$:L3.V:
                        JUMP TO DONE
L$:L2.V: LDAX :A:
                        LOAD :A:
L$:L3.V: SACL :B:,0
                        RESTORE TO :B:
       $END
```

XTOS

XTOS

EXAMPLE:

0013				XTOS C,B	
0001				LCAC 32727	Ċ,
0001		7FD7	V\$11	EOU 32727	
0002	0021	F800		~ CALL LDAC\$	
	0022	0000			
0003	0011			REF LDACS	
0003	0023	7507		DATA VS11	
000-	0023	1201		SUBX C	
0002	0024	62001		SUBH C	
0001	0024	6200			
0002	0025	6201 ···			
0003	0026	FDUU		BGEZ LŞO	
1.1	0027	002D'		T G1 G 20000	
0004	0028			LCAC 32/2/	
0001		7FD7	V\$12	EQU 32727	
0002	0028	F800		CALL LDACS	
	0029	0000			
0003				REF LDAC\$	
0004	002A	7FD7		DATA V\$12	
0005	002B	F900		B L\$10	
	002C	003B'			
0006	002D		L\$8	LCAC -32768	
0001		8000	V\$13	EOU -32768	
0002	002D	F800		~ CALL LDACS	
	002E	0000			
0003	0022			REF LDACS	
0000	0025	8000		DATA VS13	
0004	0021			SUBX C	
0001	0030	6200"		SUBH	
0001	0030	63011		SUBS C+1	
0002	0031	EDUU -		DIEZ ICQ	
0008	0032	CD00		BLCC LVV	
0000	0033	0039		TCAC -22768	
0009	0034	0000	17614	LUAC -32700	
0001		8000	V\$14	EQU -32760	
0002	0034	F800		CALL LDACS	
	0035	0000			
0003				REF LDACS	
0004	0036	8000		DATA V\$14	
0010	0037	F900		B L\$10	
	0038	003B1			
0011	0039		L\$9	LDAX C	
0001	0039	6500"		ZALH C	
0002	003A	6101"		ADDS C+1	
0012	003B	5009	LS10	SACL B.O	
0012	0000	5005			

GET BIGGEST SINGLE LOAD AC WITH: V\$11 COMPARE C SUBTRACT HIGH SUBTRACT LOW IF C >= 32767 THEN SATURATE AT 32767 LOAD AC WITH: V\$12 JUMP TO DONE GET MOST NEGATIVE SINGLE LOAD AC WITH: V\$13 COMPARE C SUBTRACT HIGH SUBTRACT LOW IF C \leq -32768 THEN SATURATE AT -32768 LOAD AC WITH: V\$14 JUMP TO DONE LOAD C LOAD HIGH C LOAD LOW C RESTORE TO B

7.4 STRUCTURED PROGRAMMING MACROS

The program structure macros, PROG AND MAIN, need to be used with most of the other macros described in Section 7.3 in order to set up internal symbols and utility variables used by those macros.

PROG

Begin Program – Macro

PROG

PROG – Begin Program

The program directive does two things. First, it defines the module IDT name (the name of the module printed on the link editor memory map listing). More importantly, it initializes several internal symbols used in many of the macros from Section 7.3. Syntax is as follows:

PROG < name>

Where < name> is a string of up to six characters. This name is used to generate:

IDT '< name>'

To end the module, use the assembly language END statement:

END

```
SOURCE:
```

```
*
* Prog Routine Initializes Internal Variables, and
*
      Outputs IDT Statement
*
PROG
       $MACRO
                          Α
       $VAR Q
       $ASG I''' TO Q.S
       IDT :Q::A::Q:
★
*
 Initialize unique label counter
*
       $ASG '$$LAB' TO Q.S
       $ASG 0 TO Q.SV
*
★
 Assign unique values to indirect symbols
       $ASG '*' TO O.S
       $ASG >FOFO TO Q.SV
       $ASG '*+' TO Q.S
       $ASG >FOF1 TO Q.SV
       $ASG '*-' TO Q.S
       $ASG >FOF2 TO Q.SV
       $END
```

MAIN— Begin Main Procedure

MAIN < name>

The MAIN directive begins the main procedure. < name> is the label (created by the macro) of the first instruction of the main routine (up to six characters). MAIN allocates the variables ONE, MINUS, XR0, and XR1 in data RAM (in the DSEG), and initializes ONE to 1, and MINUS to -1.

SOURCE:

```
*
   Main Procedure Definition Macro
★
*
★
   A is Main Program Name (<6 CHAR)
★
       $MACRO
MAIN
                           Α
       PSEG
                           PROG SEG
                           ENTRY POINT
       DEF
            :A:
       EQU $
:A:
★
★
   Initialize Variables
*
                           MAKE CONSTANT ONE
       LACK 1
                           SAVE IT
       SACL ONE,0
                           ZERO ACCUMULATOR
        ZAC
                           MAKE -1
       SUB ONE, O
                           SAVE IT
       SACL MINUS,0
*
*
   Data Segment
★
        DSEG
                           CONSTANT ONE
ONE
        BSS
             1
                           CONSTANT -1
MINUS
        BSS
             1
                           TEMP 0
XR0
        BSS
             1
                           TEMP 1
             1
XR1
        BSS
             ONE, MINUS
                           ALLOW EXTERNAL USE
        DEF
                           OF VARIABLES
        DEF
             XRO,XR1
                           END OF DATA
        DEND
        $END
```

EXAMPLES OF PROG AND MAIN USAGE:

*	MLIB 'MACROS'	Declare directory of macros,		
*	PROG MACTST	Set up symbol table variables		

7

*

DSEG User's program variables VAR1 BSS 1 VAR2 BSS 1 * ★ * DEND * ★ ★ * Interrupt Routine (user defined) * * * MAIN START Start of main routine * * ★ ★ Main Program - Instructions and Macros * * END LISTING: 0001 0000 MLIB 'MACROS' Declare directory of macros, * 0002 including PROG and MAIN 0003 PROG MACTST Set up symbol table variables 0001 IDT 'MACTST' 0004 * 0005 ★ 0006 0000 DSEG User's program variables 0007 0000 VAR1 BSS 1 0008 0001 VAR2 BSS 1 * 0009 * 0010 * 0011 0012 0002 DEND 0013 * 0014 * 0015 * ★ 0016 Interrupt Routine (user defined) ★ 0017 0018 ★ * 0019 0020 Start of main routine MAIN START 0001 0000 PSEG PROG SEG 0002 DEF START ENTRY POINT 0003 0000' START EQU \$ 0004 0000 7E01 LACK 1 MAKE CONSTANT ONE 0005 0001 5002" SACL ONE,0 SAVE IT 0006 0002 7F89 ZAC ZERO ACCUMULATOR 0007 0003 1002" SUB ONE, O MAKE -1 0008 0004 5003" SACL MINUS,0 SAVE IT 0009 0002 DSEG 0010 0002 ONE BSS 1 CONSTANT ONE 0011 0003 MINUS BSS 1 CONSTANT -1 0012 0004 XR0 BSS 1 TEMP 0 0013 0005 XR1 BSS 1 TEMP 1 0014 DEF ALLOW EXTERNAL USE ONE, MINUS 0015 DEF XRO,XR1 OF VARIABLES 0016 0006 DEND END OF DATA * 0021

0022	*		. ·	
0023	*			
0024	*			
0025	*	Main Program -	Instructions	and Macros
0026	*	_		
0027	*			
0028	· .	END		

7.5 UTILITY SUBROUTINES

The subroutines in this section are called by many of the macros described in Section 7.3. Subroutines are used to save program space. Instead of inserting the code into each macro, the code occurs as a separate subroutine. Since the code is not expanded with each macro call, program space is saved. These routines should be assembled separately from the calling program and linked with the main program.

SOURCE FILE OF UTILITY SUBROUTINES:

```
IDT 'SUBR'
*
*
   SUBROUTINES USED AS UTILITIES IN VARIOUS MACRO LANGUAGE EXTENSIONS
★
   AND SIGNAL PROCESSING LANGUAGE MACROS.
*
      REF ONE, MINUS
      REF XR0, XR1
*
*
   LDACS - Load the accumulator with value found in program memory
*
           at location pointed to by address on the top of the stack.
*
      DEF LDAC$
LDAC$ POP
      TBLR XRO
      ADD ONE
      PUSH
      LAC
           XRO
      RET
*
*
★
   RIP$ - SUBROUTINE USED FOR LOOPED VERSION OF RIPPLE MACRO
*
      DEF RIP$
RIP$
      POP
                           1st argument = length
      TBLR XRO
                           R0 = count
      LAR ARO, XRO
      LARP ARO
           *-
                           Decrement count
      MAR
      SAR ARO, XRO
                           Store L-1 in XRO
                           Increment argument pointer
      ADD
           ONE
                           2nd argument = address
      TBLR XR1
                           Save address in R1
      LAR AR1, XR1
                           Save argument pointer
      SACL XR1
                           ACC = L-1
      LAC
            XR0
                           Get address from R1
       SAR
            AR1,XRO
                           ACC = address + L-1
       ADD
            XR0
                            Save address
       SACL XRO
                           R1 = address pointer
       LAR AR1, XRO
RIP$L LARP AR1
       DMOV *-, ARO
                            Shift data
       BANZ RIPSL
                            Restore argument pointer
       LAC XR1
                            Decrement argument pointer
       ADD
            ONE
```

7-151

PUSH Put return address on top of stack RET * * LDAX\$ - Load accumulator with double word * DEF LDAXS LDAX\$ POP Get address of constants TBLR XR1 Read upper half ADD ONE TBLR XRO Read lower half ADD ONE PUSH ZALH XR1 Load upper half ADDS XRO Load lower half RET * LDAR\$0 - Load Auxiliary Register 0 with word from program memory DEF LDAR\$0 LDARSO POP Get address of word TBLR XRO Read word into data memory LAR ARO, XRO Load into ARO ADD ONE PUSH Restore return address RET * * LDAR\$1 - Load Auxiliary Register 1 with word from program memory * DEF LDAR\$1 LDAR\$1 POP Get address of word TBLR XRO Read word into data memory LAR AR1, XRO Load into AR1 ADD ONE PUSH Restore return address RET * * LTK\$ - Load T Register with word from program memory * DEF LTK\$ LTK\$ POP Get address of word TBLR XRO Read word into data memory LT XRO Load word into T register ADD ONE PUSH Restore return address RET * * Instructions for MOVE macro. There are four different entry * positions, but all of them use code starting at MOV\$M to do * actual data transfer. * * MOVAB\$ - MOVE A,B * MOVABS POP TBLR XRO Read A into ARO LAR ARO, XRO ADD ONE MOVB\$\$ TBLR XRO Read B into AR1 LAR AR1, XRO ADD ONE В MOVSM Move data *

```
* MOVA$ - MOVE A,*
```

N.

7

MOVA\$ POP TBLR XRO Move A into ARO LAR ARO, XRO ADD ONE MOV\$M B * MOVB\$ - MOVE *,B * MOVB\$ POP Move B into AR1 В MOVB\$\$ * MOV\$\$ - MOVE *,* * MOV\$\$ POP MOV\$M TBLR XRO Read number of elements to move SACL XR1 Save return address LARP 0 MOVSL LAC *+,0,AR1 Move @AR0 to ACC SACL *+,0,AR0 Move ACC to @AR1 LAC XR0 SUB Decrement loop counter ONE SACL XR0 BNZ MOV\$L Loop back for another move LAC XR1 ADD ONE PUSH Restore return address RET DEF MOVAB\$, MOVA\$, MOVB\$, MOV\$\$ * ★ SETS\$ - Move constant into L positions of data memory ★ SETS\$ POP Get 1st argument - constant TBLR XRO ADD ONE TBLR XR1 Get 2nd argument - count Use ARO as counter LAR ARO, XR1 LARP 0 *-MAR ADD ONE Get 3rd argument - destination TBLR XR1 Use AR1 as pointer LAR AR1, XR1 SACL XR1 Save return address LAC XRO Load constant into accumulator SET\$L LARP 1 SACL *+,0,ARO Move constant to data memory BANZ SET\$L Repeat L times LAC XR1 ADD ONE PUSH Restore return address RET DEF SETS\$ * * MOVC\$ AND MOVC\$1 - Move list of constants to data memory * MOVC\$ POP Get argument pointer TBLR XRO 1st argument = destination LAR AR1,XRO Use AR1 as pointer ADD ONE Increment argument pointer в MOVC\$M MOVC\$1 POP MOVC\$M TBLR XRO Read length of data LAR ARO, XRO ARO is loop counter LARP 0 MAR *-Decrement counter

Ň.

7

```
ADD
           ONE
                           Increment argument pointer
MOVC$L LARP 1
       TBLR *+, ARO
                           Read constant
       ADD ONE
       BANZ MOVC$L
                           Loop for length of data
       PUSH
                           Restore return address
       RET
       DEF MOVC$, MOVC$1
*
* Routines for MOVDAT macro
★
* MOVA$B - MOVDAT A,B,L
×
 MOVASB POP
         TBLR XRO
                             1st Argument is source
         LAR ARO, XRO
         ADD ONE
                             Increment pointer
 MOVCBS TBLR XRO
                             Next argument is destination
         LAR AR1, XRO
         ADD
              ONE
                             Increment pointer
         В
              MOVSSM
  *
  * MOVC$A - MOVDAT A,*,L or MOVDAT A,,L
  *
 MOVC$A POP
         TBLR XRO
                             Read source argument
         LAR ARO, XRO
         ADD
              ONE
                             Increment pointer
              MOV$$M
         B
  *
 * MOVC$B -
              MOVDAT *, B, L or MOVDAT , B, L
 *
 MOVC$B POP
         В
              MOVCB$
                             Get destination argument
 *
 * MOVC$$ - MOVDAT ,*,L or MOVDAT *,,L or MOVDAT *,*,L
 *
 MOVC$$ POP
 MOV$$M SAR AR0,XR0
                             Save source location
         TBLR XR1
                             Read length
         LAR ARO, XR1
         LARP 0
         MAR *-
                            Decrement count
         SACL XR1
                             Save return address
         LAC XRO
                            Load start address
 MOVSSL LARP 1
         TBLR *+, ARO
                            Move to data memory
         ADD ONE
                            Update source pointer
         BANZ MOV$$L
                            Loop on array length
         LAC XR1
         ADD ONE
         PUSH
                            Restore return address
         RET
         DEF MOVA$B, MOVC$A, MOVC$B, MOVC$$
 *
 *
    MOVROM routines
 ★
 *
    TBW$$ - MOVROM A, B, L
 *
 TBW$$
        POP
         TBLR XRO
                            Read source address
         LAR ARO, XRO
         ADD
             ONE
                            Update pointer
 TBWOS
        TBLR XRO
                            Read destination address
```
LAR AR1, XRO ADD ONE Update pointer В TBW\$M * * TBW\$1 - MOVROM A,*,L or MOVROM A,,L * TBW\$1 POP TBLR XRO Read source address LAR ARO, XRO ADD ONE Update pointer В TBW\$M ★ ★ TBW\$0 - MOVROM *, B,L or MOVROM , B,L ★ TBW\$0 POP В TBW0\$ Read destination address * * TBW\$\$ - MOVROM *,*,L or MOVROM *,,L or MOVROM ,*,L ★ TBW\$01 POP TBW\$M SAR AR1,XR0 Save destination address TBLR XR1 Read length of move LAR AR1, XR1 LARP 1 MAR *--Decrement counter SACL XR1 Save return address Load destination address LAC XRO TBW\$L LARP 0 TBLW *+, AR1 Move data ADD ONE Increment pointer BANZ TBWSL Loop on length LAC XR1 ADD ONE PUSH Restore return address RET DEF TBW\$\$, TBW\$1, TBW\$0, TBW\$01 END

* End of subroutines

1183

DIGITAL SIGNAL PROCESSING

8. DIGITAL SIGNAL PROCESSING

All of the digital signal processing information presented in this Section 8 has been provided to Texas Instruments by Ronald W. Schafer, Russell M. Mersereau, and Thomas P. Barnwell, III, of Atlanta Signal Processors, Inc., and of Georgia Institute of Technology, School of Electrical Engineering.

The purpose of this section is to review the fundamentals of digital signal processing in order to highlight some of the important features of the digital approach and to illustrate how DSP techniques can be applied. The important issues in sampling analog signals will be presented, followed by a discussion of the basic theory of discrete signals and systems. A description of the basic algorithms that are widely used in applications of DSP techniques is also provided, along with some examples of how DSP can be used in the areas of speech and audio processing and in communications. Referral to references listed in Section 8.7 is indicated by brackets surrounding a reference number.

8.1 A-TO-D AND D-TO-A CONVERSION

In most applications, signals originate in analog form, i.e., as continuously varying patterns or waveforms. Thus, the first step in applying DSP techniques to a signal is to convert from continuous to discrete form, thereby obtaining a representation of the signal in terms of a sequence or array of numbers. In practice, this is called analog-to-digital (A-to-D) conversion.

Once the signal has been represented in discrete form, it can be processed or transformed into another sequence or set of numbers by a numerical computation procedure (see Figure 8-1). There is also the possibility of converting from the discrete representation back to analog form using a digital-to-analog (D-to-A) converter. This last stage is often not necessary, especially when the purpose of digital processing is to automatically extract information from the signal. The study of digital signal processing is concerned with both the A-to-D and D-to-A conversion processes as well as with the analysis and design of numerical processing algorithms. Although it is important to fully understand both aspects, they can be treated somewhat independently.

A-to-D conversion is conveniently analyzed by representing it as in Figure 8-2. First, it involves a sampling operation wherein a sequence x[n] is obtained by periodically sampling an analog signal. The samples are:

$$\kappa[n] = x_a(nT), \quad -\infty < n < +\infty$$

where T is the sampling period, n is an integer, and 1/T is the sampling frequency or sampling rate with units of samples/s. (The sampling rate is often stated in units of frequency, i.e., Hz or kHz.) In most practical settings, these samples must be represented using binary numbers with finite precision. This involves quantizing the sample values. Thus, the sequence of quantized samples is:

$$\hat{\mathbf{x}}[\mathbf{n}] = \mathbf{Q}[\mathbf{x}[\mathbf{n}]]$$

where Q[] is a nonlinear transformation, such as rounding or truncating to the nearest allowed amplitude level.

8

(2)

FIGURE 8-2 - ANALOG-TO-DIGITAL CONVERSION PROCESS

8.1.1 Sample Analysis

The important considerations in the sampling operation can be illustrated by a sinusoidal signal:

 $x_a(t) = \cos(\omega_0 t)$

The resulting sequence of samples is:

 $x[n] = cos(\omega_0 nT)$

With this signal, it is simple to illustrate that there is a fundamentally unique problem in the sampling process, i.e., a given sequence of samples can be obtained by sampling an infinite number of analog signals. For example, consider the signal:

$$x_{r}(t) = \cos((\omega_{0} + 2\pi r/T)t)$$

(3)

(4)

(5)

(6)

(7)

(8)

where r is any positive or negative integer. If the sampling period is T, the sampled sequence is:

$$x_r[n] = cos((\omega_0 + 2\pi r/T)nT) = cos(\omega_0 nT + 2\pi rn)$$

Using a familiar trigonometric identity, xr[n] can be expressed as:

$$x_r[n] = \cos(\omega_n T) \cdot \cos(2\pi rn) - \sin(\omega_n T) \cdot \sin(2\pi rn)$$

and since both n and r are integers:

$$x_r[n] = cos(\omega_n T) = x_0[n]$$

Thus, the sequences $x_r[n]$ are all identical to $x_0[n]$, or in other words, the frequencies ($\omega_0 + 2\pi r/T$) are indistinguishable from the frequency ω_0 after sampling. This is illustrated in Figure 8-3, where two cosine waves are shown passing through the same sample points. The descriptive term for this confused identity is 'aliasing.' The frequency domain representations of the cosine and its aliases are shown in Figure 8-4. The positive and negative frequency components of the cosine wave at $+ - \omega_0$ are shown together with frequency components at $+ - (\omega_0 + 2\pi/T)$ and at $+ - (\omega_0 - 2\pi/T)$ which produce the identical set of samples when the sampling rate is 1/T.

NOTE: The two cosine waves have the same samples when the sampling period is T.

FIGURE 8-3 — TWO COSINE WAVES SAMPLED WITH PERIOD T

FIGURE 8-4 — FREQUENCY COMPONENTS OF THREE COSINE WAVES

The ambiguity of this situation can be removed by imposing a constraint on the size of ω_0 relative to the sampling frequency $\omega_S = 2\pi/T$ (in radians/s). If $\omega_0 < \pi/T$, then all of the frequencies $\omega_r = (\omega_0 + 2\pi r/T)$ will be larger in magnitude than ω_0 . Thus, there is no ambiguity if it is determined in advance that $\omega_S > 2\omega_0$, i.e., SAMPLING MUST OCCUR AT A RATE THAT IS GREATER THAN TWICE THE HIGHEST FREQUENCY IN THE SIGNAL. This is true in general for any signal whose Fourier transform is bandlimited, as explained in the following paragraphs.

If the above condition is met, it is possible to recover xa(t) from x[n] by continuously interpolating between the samples, using an interpolation formula of the form:

$$\overline{x}_{a}(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot P_{a}(t-nT)$$
(9)

If $P_a(t)$ is a square pulse of duration T, the resulting interpolated waveform (reconstructed signal) has a staircase appearance, as in Figure 8-5. This is a good model for the output of most practical D-to-A converters. A better approximation to the original analog signal can be obtained by smoothing the sharp pulses with a lowpass filter. [1-4] If the effective pulse shape in (9) is:

$$P_{a}(t) = \frac{\sin \frac{\pi}{T} t}{\frac{\pi}{T} t}$$
(10)

then the original signal $x_a(t)$ can be recovered from the samples x[n] if the Fourier transform of $x_a(t)$ is bandlimited (i.e., identically zero above some frequency which is less than π/T).

FIGURE 8-5 — D-TO-A CONVERSION USING A ZERO-ORDER HOLD

8-4

8.1.2 Sample Quantization

The other aspect of A-to-D conversion is concerned with the quantization of the samples. Figure 8-6 shows an eight-level quantizer which illustrates the important aspects of the quantization operation. Each quantization level is represented by a binary number (three bits in this case). Although the assignment of binary codes to the quantization levels is arbitrary, it is obviously advantageous to assign binary symbols in a scheme which permits convenient implementation of arithmetic operations on the samples (e.g., two's complement, as in Figure 8-6).

Once the number of quantization levels has been fixed (usually between 28 and 216 for most signal processing applications), the binary numerical representation of the samples is related to the amplitude of the analog signal by the quantization stepsize Δ . The choice of Δ depends upon the peak-to-peak amplitude range of the signal. If the B-bit code is used, then Δ should be chosen so that:

$\Delta \cdot 2^{B} = \text{Peak-to-peak signal amplitude}$ (11)

With this constraint, the maximum error in a sample value would be $+ - \Delta/2$, so that in general, the average quantization error will be proportional to Δ . This points up a fundamental dilemma in quantization, i.e., for a fixed stepsize, the relative error becomes large as the sample amplitude decreases. Thus, if signal amplitude varies widely (i.e., the signal has a wide dynamic range), then it may be necessary to use a large number of quantization levels to keep the relative quantization error within acceptable limits. Alternative approaches, often used in speech processing, are the use of either a nonuniform set of quantization levels or the adaptation of the stepsize to the amplitude of the input signal. [2]

FIGURE 8-6 — AN EIGHT LEVEL (THREE-BIT) QUANTIZER

In the uniform stepsize non-adaptive case, it is often useful to represent the quantized signal as:

$$\hat{x}[n] = x[n] + e[n]$$

(12)

(16)

where e[n] is, by definition, the quantization error. This model for A-to-D conversion is depicted in Figure 8-7. As seen above:

$$-\Delta/2 \leq e[n] < +\Delta/2 \tag{13}$$

As a result, the root mean squared value of e[n] is proportional to Δ , which in turn is inversely proportional to 2^B where B is the number of bits in the binary coded samples. Thus, the signal-to-quantization noise ratio defined as:

$$SNR = 10 \cdot \log_{10} \left(\frac{\text{signal power}}{\text{noise power}} \right)$$
(14)

increases by 6 dB for each doubling of the number of quantization levels (i.e., for each additional bit in the word length).

Another important point is that from the viewpoint of statistical measurements, the sequence of noise samples appears to be uniformly distributed in amplitude and uncorrelated from sample to sample whenever the number of quantization levels (bits) is large. Thus, the model of the A-to-D conversion operation in Figure 8-7 consists of an ideal sampler whose output samples are corrupted by an additive white noise whose power increases exponentially as the number of bits/sample decreases.

FIGURE 8-7 - QUANTIZATION AS ADDITIVE NOISE

8 8.2 BASIC THEORY OF DISCRETE SIGNALS AND SYSTEMS

Since signals are represented in discrete form as sequences of samples, a discrete system or digital signal processor is simply a computational algorithm for transforming an input sequence of samples into an output sequence.

8.2.1 Linear Systems

As in analog systems, a linear system is one which obeys the principle of superposition, and a timeinvariant (or in general, shift-invariant) system is one for which the input-to-output transformation algorithm does not change with time. Linear time-invariant systems are exceedingly important because they are relatively easy to design and because they can be used to perform a wide variety of signal processing functions.

As a direct consequence of linearity and time invariance, the output sequence for any linear timeinvariant system is obtained from the input sequence by the repeated evaluation of the convolution sum relation:

$$y[n] = \sum_{\substack{k=-\infty \\ k=-\infty}}^{\infty} h[k] \cdot x [n-k] \quad -\infty < n < \infty$$
(15)

where h[n] is the response of the system to the unit sample (or impulse) sequence:

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

The convolution sum equation is very similar in form to the convolution integral that describes the operation of a continuous-time linear time-invariant system. In contrast to the analog system, however, the convolution sum equation (15) serves not only as a theoretical description of discrete linear time-invariant systems in general, but it can be used to implement certain types of linear systems.

8.2.2 Fourier Transform Representations

As in the analog case, Fourier analysis is a valuable tool in the theory and design of discrete signals and systems. The discrete-time Fourier transform representation is defined by the equations:

$$X(e^{j\omega}T) = \sum_{\substack{n=-\infty \\ n=-\infty}}^{\infty} x[n] \cdot e^{-j\omega nT}$$

$$x[n] = \frac{T}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}T)e^{j\omega nT}d\omega$$
(17A)
(17A)
(17B)

The first equation (17A) is a direct Fourier transform of the sequence x[n], and the second equation (17B) is the inverse Fourier transform. A notable property of X($e^{j\omega T}$) is that it is always a periodic function of ω with period $2\pi/T$.

In the analog case, the Laplace transform is often more useful and convenient than the Fourier transform, because it can be used to represent a wider class of signals and because algebraic expressions involving the Laplace transform are less cumbersome than those involving Fourier transforms. For these same reasons, the z-transform is often preferred to the Fourier transform for discrete sequences. The z-transform representation is defined by:

$$X(z) = \sum_{\substack{n=-\infty\\n=-\infty}}^{\infty} x[n] z^{-n}$$

$$x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz$$
(18A)
(18B)

where C is a closed contour lying in the region of convergence of the power series in (18A).

Comparison of the Fourier transform (17A) and the z-transform (18A) shows that:

ver in Ty

$$X(e^{j\omega + j}) = X(z) \Big|_{z = e^{j\omega}T}$$

i.e., the Fourier transform, when it exists, is just the z-transform evaluated on a circle of radius one in the complex z-plane.

One of the most important reasons for the use of frequency domain representations is the result that if y[n] is the output of a linear time-invariant system, then its z-transform (and thus its Fourier transform) satisfies the equation:

$$Y(z) = H(z) \cdot X(z)$$
⁽¹⁹⁾

where H(z) and X(z) are the z-transforms of the unit sample response of the system and the input to the system, respectively. Many of the design techniques which are available are based upon approximating a desired transfer function H(z).

Another advantage of the Fourier transform representation is that it provides a very convenient means of showing the relationship between a sequence of samples and the original analog signal from which the samples were obtained. Specifically, if $x[n] = x_a (nT)$, then:

$$X(e^{j\omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{a}(\omega + 2\pi k/T)$$
(20)

where $X_{a}(\omega)$ is the Fourier transform of the analog signal $x_{a}(t)$. [1]

8-7

8

(18C)

From this relationship between the Fourier transform of the sequence x[n] and the Fourier transform of the analog signal, it is clear that what is true for the cosine wave is also true in general. That is, there is a possibility that the images of the analog Fourier transform may overlap and since they are added together, it would be impossible to unscramble the effects of this aliasing distortion. Figure 8-8 illustrates the implications of (20) for two sampling rates. Figure 8-8A shows a bandlimited analog Fourier transform where $X_a(\omega) = 0$ for $|\omega| > \omega N$. The frequency ωN is often called the Nyquist frequency. Figure 8-8B shows the Fourier transform of a sequence of samples where the sampling frequency $\omega S = 2\pi/T$ is such that $\omega S > 2\omega N$. Figure 8-8c shows the case when $\omega S > 2\omega N$. No aliasing distortion occurs if X_a(ω) is bandlimited and if the sampling frequency is greater than twice the Nyquist frequency. Thus, it is essential that analog signals be bandlimited to the proper frequency before sampling. Even if the signal is 'naturally' bandlimited, it is well to remember that since additive noise may have a much broader spectrum than the signal, analog lowpass filtering is almost always necessary prior to sampling. Since it is generally desirable to minimize the sampling rate so as to minimize the computational intensity of the processor, sharp cutoff analog filters may be required. In situations where the expense of such filters is prohibitive, but sufficient numerical processing capability is available, it is possible to use low-order analog filters and sample at a higher sampling rate to avoid aliasing. Then, the resulting sequence of samples can be filtered digitally and the sampling rate reduced appropriately by decimating (throwing away samples) the digitally filtered sequence. [2] Such techniques are also useful in implementing low-noise A-to-D conversion systems, using delta modulation or other simple digitizing systems. [5]

FIGURE 8-8B – FOURIER TRANSFORM OF SAMPLES FOR $2\pi/T > 2\omega_N$

FIGURE 8-8C — FOURIER TRANSFORM OF SAMPLES FOR $2\pi/T > 2\omega_N$

FIGURE 8-8 - FOURIER TRANSFORM SAMPLING

8.3 DESIGN AND IMPLEMENTATION OF DIGITAL FILTERS

Linear filtering is one of the most important digital signal processing operations. As in the analog system, digital filters can be used for separating signals from noise, for compensating for previous linear distortions, for separating signal components from an additive combination of signals, and in modeling of many classes of signals. Some of the important techniques for implementation and design of digital filters are presented in the following paragraphs.

8.3.1 Digital Filter Structures

There are two classes of linear shift-invariant systems. The first class contains all such systems for which the unit sample response is of finite length, e.g., h[n] = 0 for n > 0 and for n > M. Such systems are called finite duration impulse response (FIR) systems. For such systems, it is clear from the convolution sum equation (15) that:

$$y[n] = \sum_{k=0}^{M} h[k] \cdot x[n-k]$$

so that the computation of each value of the output sequence requires M + 1 multiplications and M additions, i.e., the accumulation of M + 1 products. Thus, the convolution sum expression can be used to implement FIR systems.

Systems which have infinite duration impulse responses are called IIR systems. In general, it is not feasible to use the convolution sum expression to compute the output of such systems. However, an interesting and useful class of IIR systems does exist. These are systems whose input and output satisfy a linear constant coefficient difference equation of the form:

$$y[n] = \sum_{k=1}^{N} a_{k}y[n-k] + \sum_{k=0}^{M} b_{k}x[n-k]$$

For such systems, this equation can be used recursively to compute the output from the input sequence and N previously computed output samples. When all the a_k's are zero, (22) reduces to (21) so that (22) turns out to be a general description of all computationally feasible (i.e., realizable) linear time-invariant systems.

By finding the z-transform of both sides of (22), the transfer function of this class of systems is easily found to be:

$$H(z) = \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1 - \sum_{k=1}^{N} a_{k} z^{-k}}$$
(23)

8

(21)

(22)

Since $b_k x[n-k]$ has z-transform $b_k z^{-k} X(z)$, there is a direct correspondence between terms in the numerator and denominator of H(z) in (23) and terms in the difference equation (22).

Block diagrams may be used to depict the computational procedure for implementing a digital filter. Figure 8-9 depicts two systems whose input and output satisfy the difference equation (22) and thus have the same transfer function (23). The operation of addition and multiplication are represented in standard block diagram notation while the delays are represented by systems with transfer functins z -1. (M = N = 4 is used for convenience only.) Figure 8-9A shows the direct representation of the difference equation (22). This is sometimes called the Direct Form I structure for a system with transfer function (23). If N = 0 (i.e., all the a_k 's are zero), then the system is a FIR system. Thus, the left half of Figure 8-9A is illustrative of the general Direct Form implementation of a FIR system. Also note that in general the left half implements the numerator (or zeros) of H(z) while the right half implements the denominator (or poles) of the transfer function.

FIGURE 8-9A - DIRECT FORM I

Figure 8-9B is obtained from Figure 8-9A. For linear time-invariant systems in cascade, the overall transfer function is the product of the individual transfer functions. Thus, the overall transfer function is the same regardless of the order in which the systems are cascaded. If the two subsystems of Figure 8-9A are interchanged, the delay chains of the two systems can be combined. This structure is often called the Direct Form II. Both forms require the same number of arithmetic operations, but the Direct Form II requires up to 50 percent fewer memory registers for storing the past values of the input and output. It is important to understand that although both forms have the same overall transfer function, they correspond to difference equations. The difference equations for Figure 8-9A is given in (22) while the set of difference equations represented by Figure 8-9B is:

$$w[n] = \sum_{k=1}^{N} a_{k}w[n-k] + x[n]$$
$$y[n] = \sum_{k=0}^{M} b_{k}w[n-k]$$

Other structures (sets of difference equations) can be found for implementing a given rational transfer function such as (23). The cascade form is obtained by factoring the numerator and denominator of H(z) into second-order factors and pairing numerator and denominator factors to form:

$$H(z) = A \cdot \prod_{k=1}^{N} \left(\frac{1 + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}} \right)$$
(25)

For simplicity it is assumed that N is even. When N is odd or when $M \neq N$, some of the coefficients in (25) will be zero. The structure suggested by (25) can be implemented with a cascade of second-order sections implemented in any desired form. Figure 8-10 shows an example for N = 4.

(24B)

The corresponding set of difference equations is:

$$y_0[n] = A \cdot x[n]$$
 (26A)

$$w_k[n] = a_{1k}w_k[n-1] + a_{2k}w_k[n-2] + y_{k-1}[n]$$
 $k = 1, 2, ..., N/2$ (26B)

$$y_k[n] = w_k[n] + b_{1k}w_k[n-1] + b_{2k}w_k[n-2]$$
 $k = 1, 2, ..., N/2$ (26C)

$$y[n] = y_{N}[n]$$

2 (26D)

Still another form for the general transfer function of (25) is obtained from a partial fraction expansion of H(z) in the form of:

$$H(z) = A_0 + \sum_{k=1}^{N} \frac{b_{0k} + b_{1k}z^{-1}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}}$$
(27)

The set of difference equations corresponding to this form of the transfer function is:

$$w_k[n] = a_{1k}w_k[n-1] + a_{2k}w_k[n-2] + x[n]$$
 $k = 1, 2, ..., N/2$ (28A)

$$y_k[n] = b_{0k}w_k[n] + b_{1k}w_k[n-1]$$
 $k = 1, 2, ..., N/2$ (288)

$$y[n] = A_0 x[n] + \sum_{k=1}^{N} y_k[n]$$
 (28C)

There is literally an infinite number of alternative structures for implementing a digital filter with a given transfer function, but the ones discussed above are the most commonly used because of the ease with which they can be obtained from the transfer function and, in the case of the cascade and parallel forms, because they are relatively insensitive to coefficient quantization and round-off errors. It is important to note that the basic arithmetic process in digital filtering is multiplication of a delayed sequence value by a fixed coefficient, followed by the accumulation of the result. This is a built-in operation of the TMS32010.

8

8.3.2 Digital Filter Design

A number of ways to implement a linear time-invariant system having a rational transfer function have been presented. Designing the system to meet a set of prescribed specifications is equally important. The specifications for a filter design are most frequently applied to the frequency response of the filter, i.e., to the Fourier transform of the impulse response. For example, a frequency selective filter, such as a lowpass, bandpass, highpass, or bandstop filter, may be required; or an approximation of a differentiator frequency response (i.e., j ω), or a 90-degree phase shift, or in the case of compensators or equalizers, an approximation of the reciprocal of some given frequency response may be desired. In all these cases, the designer is concerned with finding the b_k's in the FIR case, or the a_k's and b_k's in the IIR case, so that the corresponding H(ej ω T) approximation techniques exist, and it is possible to design very accurate approximations to a wide variety of frequency responses.

A valuable collection of digital filter design programs is available from IEEE Press. [6] A reader who wants to use these programs or to write design programs is encouraged to consult the texts and reference books [1,3,7] on digital signal processing to obtain a complete understanding of each method. The following paragraphs include a survey of the important techniques, along with the advantages and limitations of each one.

The design of IIR filters has traditionally been based upon the transformation of an analog filter approximation to a digital filter. The basic approaches are impulse invariance and bilinear transformation. The former approach is based upon defining the unit sample response of the digital filter to be the sequence obtained by sampling the impulse response of an analog filter. In this case, the analog filter must be designed so that the resulting digital filter will meet its specifications. Because of the aliasing inherent in sampling, the impulse invariance method is not effective for highpass or bandstop filter types, and the detailed shape of the analog frequency response is preserved only in highly bandlimited cases, such as lowpass filters with high stopband attenuation.

In the bilinear transformation method, the system function H(z) of the digital filter is obtained by an algebraic (bilinear) transformation of the system function (Laplace transform of the impulse response) of an analog filter, i.e., the Laplace variable s is replaced by 2(1 - z - 1)/(1 + z - 1). Because the bilinear transformation causes a warping of the j ω -axis of the s-plane onto the unit circle of the z-plane, the bilinear transformation method is useful primarily for the design of frequency selective filters where the frequency response consists of flat passbands and stopband stopband cutoff frequencies of the analog filter must be 'prewarped' so that the resulting digital filter meets its specifications. Because the bilinear transformation maps the entire jw-axis of the s-plane onto the unit circle, the equiripple amplitude response of an elliptic filter will be preserved. Thus, optimal magnitude responses can be obtained for IIR filters using bilinear transformation of analog elliptic filters.

A major reason that the above methods are widely used is the existence of a variety of approximation methods for analog frequency selective filters. That is, one can use the Butterworth, Bessel, Chebyshev, or elliptic filter approximation methods for the analog filter and then simply transform the analog filter to a digital filter by either the impulse invariance or bilinear transformation methods. As an illustration of this general method, Figure 8-11A shows the magnitude response and Figure 8-11B shows the phase response of a fourth-order elliptic filter obtained by the bilinear transformation method. The difference equations for implementation of this filter as a cascade of two second-order Direct Form II sections are:

$$y_0[n] = 0.11928 \cdot x[n]$$
 (29A)

$$w_1[n] = 0.34863 \cdot w_1[n-1] - 0.17168 \cdot w_1[n-2] + y_0[n]$$
 (29B)

$$y_1[n] = w_1[n] + 1.8345 \cdot w_1[n-1] + w_1[n-2]$$
 (29C)

$$w_2[n] = -0.12362 \cdot w_2[n-1] - 0.71406 \cdot w_2[n-2] + y_1[n]$$
 (29D)

$$y_2[n] = w_2[n] + 1.26185 \cdot w_2[n-1] + w_2[n-2]$$
 (29F)

$$y[n] = y_2[n]$$
 (29F)

The block diagram representation for the above set of difference equations is identical to Figure 8-10, with the appropriate identification of the coefficients.

NORMALIZED FREQUENCY (RADIANS/SAMPLE) FIGURE 8-11A – LOG MAGNITUDE OF FREQUENCY RESPONSE

8-14

8

FIGURE 8-11B — PHASE ANGLE OF FREQUENCY RESPONSE

FIGURE 8-11 — FOURTH-ORDER ELLIPTIC DIGITAL FILTER

It is relatively simple to design IIR filters using tables of analog filter designs and a calculator. Alternatively, a program for designing IIR digital filters by bilinear transformation of Butterworth, Chebyshev, and elliptic filters has been given by Dehner in the IEEE Press Book. [6, Section 6.1]

The bilinear transformation method can be termed a 'closed form' solution to the IIR digital filter design problem in the sense that an analog filter can be found in a non-iterative manner to meet a set of prescribed approximation error specifications, and then the digital filter can be obtained in a straightforward way by applying the bilinear transformation.

Another approach is as follows:

1183

- 1) Define an ideal frequency response function,
- 2) Set up an approximation error criterion,
- 3) Pick an implementation structure, i.e., order of numerator and denominator of H(z), cascade, parallel, or direct form,
- 4) Vary the filter coefficients systematically to minimize the approximation error criterion,
- 5) If the approximation is not good enough, increase the order of the system and repeat the design process.

A variety of such iterative design techniques have been proposed for both IIR and FIR filters. Deczky has developed a design program which minimizes a pth-order error norm. It is capable of both magnitude and group delay (negative derivative of phase with respect to frequency) approximations. [6, Section 6.2] Another optimization program for magnitude approximations only has been written by Dolan and Kaiser. [6, Section 6.3] Both this program and the Deczky program assume that the transfer function H(z) is a product of second-order factors.

Somewhat different approaches have been developed for the design of FIR filters, since there really is no counterpart of the FIR filter for the analog system. In addition, FIR discrete-time filters can have an exactly linear phase response. Since a linear phase response corresponds to only a delay, attention can be focused on approximating the desired magnitude response without concern for the phase. In most IIR design methods, the phase is ignored, and one is forced to accept whatever phase distortion is imposed by the design procedure. The condition for linear phase of a casual FIR system is the symmetry condition:

$$h[n] = \pm h[M-n] \qquad 0 \le n \le M$$

$$= 0 \qquad \text{otherwise} \qquad (30)$$

In the case of the + sign in (30), the frequency response will be:

$$H(e^{j\omega T}) = R(\omega T) \cdot e^{-j\omega T} \left(\frac{M}{2}\right)$$
(31)

where $R(\omega T)$ is a real function of frequency. Such frequency responses are appropriate for approximating frequency selective filters. In the case of the minus sign in (30):

$$H(e^{j\omega T}) = jI(\omega T) \cdot e^{-j\omega T} \left(\frac{M}{2}\right)$$
(32)

where $I(\omega T)$ is also a real function of frequency. Such frequency responses are required for approximating differentiators and Hilbert transformers (90-degree phase shifters).

The most straightforward approach to the design of FIR filters is a technique often called the 'window method.' In this approach, an ideal frequency response function is first defined. Then, the corresponding ideal impulse response is determined by evaluating the inverse Fourier transform of the ideal frequency response. (In picking the ideal frequency response, the linear phase condition may or may not be applied depending on what is most appropriate.) The ideal impulse response will in general be of infinite length. An approximate impulse response is computed by truncating the ideal impuse response to a finite number of samples and tapering the remaining samples with a window function. With appropriate choice of the window function, a smooth approximation to the ideal frequency response is obtained even at points of discontinuity. Many window functions have been proposed, but the most useful window for filter design is perhaps the one proposed by Kaiser [8] since it has a parameter which, in conjunction with the window length, can be used systematically to trade off between approximation error in slowly varying regions of the ideal response (e.g., the stopband) and sharpness of transition at discontinuities of the ideal frequency response. A program for window design of FIR frequency selective filters is given by Rabiner and McGonegal [6, Section 5.2]

FIR filters designed by the window method are not optimal, but in many cases the flexibility and simplicity of the method outweigh the relatively small cost of increased filter length. In cases where optimal designs are required for computationally efficient implementations, the Parks-McClellan algorithm can be used to obtain equiripple or Chebyshev-type approximations. Such designs are optimal in the sense of having the sharpest transitions between passbands and stopbands for a given filter length and approximation error. This iterative algorithm is based upon the principles of the Remez exchange algorithm. A program written by McClellan, Parks, and Rabiner is capable of designing frequency selective FIR filters as well as differentiators and 90-degree phase shifters. [6, Section 5.1] An example of the type of filters obtainable by this method is shown in Figure 8-12. Only the magnitude response is shown since the phase is linear. The impulse response of this system is given in Figure 8-13. With the symmetry of h[k], the difference equation for computing the filtered output is:

$$y[n] = h[16] \cdot x[n-16] + \sum_{k=0}^{15} h[k] [x[n-k] + x[n+k-32]]$$
(33)

where h[k] is as given in Figure 8-13. (Note that M = 32.)

NOTE: This FIR lowpass filter was designed by the Parks-McClellan algorithm (M = 32). The phase is linear with slope corresponding to a delay of 16 samples.

FIGURE 8-12 - FREQUENCY RESPONSE OF FIR LOWPASS FILTER

IMPULSE RESPONSE OF EQUIRIPPLE LOWPASS FILTER

H(0) = 58211200E-02 = H(32)H(1) = 12569420E-01 = H(31)H(2) = 11188270E-01 = H(30)H(3) = 49952310E-02 = H(29)= 14605940E-01 = H(28)H(4) H(5) = 29798820E-02 = H(27)H(6) = 22352550E-01 = H(26)= 42574740E-02 = H(25)H(7) H(8) = 30249490E-01 = H(24)H(9) = 17506790E-01 = H(23)H(10) = 37882950E-01 = H(22)H(11) = 41403080E-01 = H(21)H(12) = 44224020E-01 = H(20)H(13) = 91748770E-01 = H(19)H(14) = 48421950E-01 = H(18)H(15) = 31334940E-00 = H(17)H(16) = 54989020E-00 = H(16)

FIGURE 8-13 - IMPULSE RESPONSE OF EQUIRIPPLE LOWPASS FILTER

8.4 QUANTIZATION EFFECTS

When digital filters are implemented on any computer, the finite precision of the machine can lead to deviations from ideal performance. Problems which arise are due to quantization of the coefficients of the difference equation and roundoff of products prior to accumulation or roundoff of accumulated products.

When a discrete system is designed to meet a certain set of specifications, the design program usually will compute the filter coefficients using floating-point arithmetic and the output of the design program will be a set of coefficients specified to at least 32-bit floating-point precision. When these coefficients are used in a fixed-point implementation, it is generally necessary to quantize the coefficients to fewer bits, e.g., 16 bits. The resulting frequency response will differ from the original design. It may not meet the original specifications and may even be unstable. This is analogous to the component tolerance problem in implementing analog active filters. Sensitivity of the frequency response to errors in a given coefficient is dependent upon the nature of the desired frequency response, and thus it is difficult to obtain theoretical results with wide generality. However, it is well established both theoretically and experimentally that the direct-form implementation structures for high-order filters are in general much more sensitive to coefficient quantization errors than the equivalent cascade or parallel-form implementations using second-order sections. Therefore, these structures are generally to be preferred in small word-length implementations.

The design program of Dehner [6, Section 6.1] has an option for optimizing filter response with constraints on word length. Steiglitz and Ladendorf have also given an iterative program for designing finite word-length IIR filters. [6, Section 6.4] A program for finite word-length design of FIR filters has been written by Heute. [6, Section 5.4]

Another source of imperfection in implementing digital filters is the 'roundoff noise' that results from quantization of intermediate computations in the difference equation. This problem is particularly acute in IIR filters, where the recursive nature of the implementation algorithm leads to a required word-length that increases linearly with time or to errors which propagate to future computations. For example, with 16-bit input samples and 16-bit coefficients, the first output value will require up to 32-bits for its representation, and in a recursive filter, the next output value will

require 32 + 16, etc. Thus, the products continually must be reduced to fit the word length of the processor. However, the TMS320 has a full 32-bit accumulator so that 16-bit by 16-bit products need not be rounded before addition. Thus, in implementing digital filters, each output value can be computed with 32-bit precision and then rounded to 16-bits for output or for storage of delayed variables.

It can be seen from (21) and (22) that in implementing digital filters, the basic operation is a multiply followed by an accumulate (addition of the product to the sum of previously computed products). An obvious additional problem is the danger of overflow of the accumulator word length. Overflow can be eliminated as a problem by using floating-point arithmetic. However, this leads to quantization of both sums and products, and implementation for floating-point arithmetic leads to much higher costs in processors like the TMS320.

Rounding in digital filter implementations leads to errors in the output of the filters. In many cases, these errors can be modeled as additive noise which is generated by noise sources in the filter structure. (This is analogous to thermal noise generated by resistors in analog active filters.) In other cases, the nonlinear nature of the quantization of products or overflow can lead to a much different effect, i.e., periodic patterns of error samples are generated in the output. These 'limit cycles' are particularly troublesome in situations where the input becomes zero for lengthy intervals. Certain structures have been found which are free of limit cycle behavior. However, these require somewhat more computation than the standard forms. [9] An important point is that limit cycles cannot exist in the output of FIR filters. Since there is no feedback, the output of a FIR system obviously becomes zero if the input is zero over an interval equal to or greater than the length of the unit sample response. [1,3,7]

8.5 SPECTRUM ANALYSIS

Spectrum analysis is another major area of digital signal processing. Spectrum analysis consists of a collection of techniques which are directed either toward the computation of the Fourier transform of a deterministic signal or toward estimation of the power spectral density of a random signal. In the following paragraphs are presented the important concepts and algorithms in discrete-time spectrum analysis.

8.5.1 Discrete Fourier Transform (DFT)

The discrete Fourier transform (DFT) of a finite length sequence is defined as:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} \quad 0 \le k \le N-1$$
(34)

The DFT is simply a sampled version of the discrete-time Fourier transform of x[n], i.e.:

where $\omega_k = 2\pi k/(NT)$, k = 0, 1, ..., N - 1. Thus, the DFT is a set of samples of the discrete-time Fourier transform at N equally spaced frequencies from zero frequency up to (but not including) the sampling frequency w_S = $2\pi/T$.

The inverse discrete Fourier transform (IDFT) is:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N} \quad 0 \le n \le N-1$$
(36)

The DFT (34) and its inverse (36) provide an exact Fourier representation for finite length sequences. However, an important property of the IDFT relation (36) is that if it is evaluated for values of n outside the interval $0 \le n \le N - 1$, the result is not zero but rather a periodic repetition of x[n]. Thus, the DFT analysis and synthesis pair, (34) and (36), can also be thought of as a Fourier series representation for periodic sequences. Whether (34) and (36) represent a finite-length

8

(35)

sequence or a periodic sequence is only a matter of what is assumed about the sequence outside the interval $0 \le n \le N - 1$. Nevertheless, (36) does repeat periodically outside the interval if it is evaluated there, and it is this property that leads to a need to be careful in its use and also to efficient computational algorithms for its evaluation.[1]

8.5.2 Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is a generic term for a collection of algorithms for efficiently evaluating the DFT or IDFT. These algorithms are all based upon the general principle of breaking down the computation of the N accumulations of N products (N² multiplications and additions) called for by either (34) or (36) into a number of smaller DFT-like computations. Because of the periodicity and the symmetry of the quantities $e^{-j2}pkn/N$, many of the multiplications and additions can be eliminated. In fact, by increasing the control and indexing aspects of the algorithm, the amount of numerical computation can be reduced to be proportional to N.log N rather than proportional to N². For large N, the savings in arithmetic computation can be several orders of magnitude.

The basic arithmetic operation in a FFT algorithm is a (complex) multiply-accumulate operation, which can be easily and efficiently realized with the TMS32010. The details of many FFT algorithms can be found in references and textbooks on digital signal processing. [1,3,7]

A number of FORTRAN programs for FFT algorithms are contained in the IEEE Press Book. [6, Section 1] They range in complexity from very simple programs where N must be a power of two, to more complex (and thus more efficient) mixed radix algorithms. Although these programs cannot be run directly on the TMS32010, they do serve as a convenient and readable description of the algorithm which could be translated readily into a TMS32010 program.

8.5.3 Uses of the DFT and FFT

Since highly efficient computation of the DFT is possible, and since Fourier analysis is such a fundamental concept in signal and system theory, it is natural that many uses have been found for the DFT. One major class of applications is in the computation of convolutions or correlations. If x[n] and h[n] are convolved to produce y[n] (i.e., linear filtering), then the Fourier transforms of these sequences are related by:

$$Y(e^{j\omega T}) = H(e^{j\omega T}) \cdot X(e^{j\omega T})$$
(37)

Since the DFT is just a sampled version of the discrete-time Fourier transform, it is also true that:

$$Y[k] = H[k] \cdot X[k] \qquad 0 \le k \le N-1 \tag{38}$$

and if x[n], h[n], and the y[n] resulting from their convolution are all less than or equal to N in length, then y[n] can be computed as the IDFT of Y[k] in (38). Due to the great efficiency of the FFT, it may be more efficient in some cases to compute X[k] and H[k], multiply them together, and then compute y[n] using the IFFT than to compute y[n] directly by discrete convolution. Such a scheme is depicted in Figure 8-14. Since correlations can be computed by time-reversing one of the sequences before convolution, Figure 8-14 also represents a technique for computing both auto-and cross-correlation functions.

When the lengths of the sequences are larger than the available random access memory, or when real-time operation with minimal delay is required, there are schemes whereby the output can be computed in sections. [1,3,7]

Another use of the DFT/FFT is in the computation of estimates of the Fourier transform or the power spectrum of an analog signal. The three basic concerns in this application are depicted in Figure 8-15. First, the analog signal $x_a(t)$ must be sampled, and thus the spectrum of $x_a(t)$ must be lowpass-filtered so as to minimize the aliasing distortion introduced by the sampling operation. The second major concern is a result of the fact that the DFT/FFT applies to finite length sequences. Thus, no matter how many samples of the input signal are available, there will always be a need to truncate the input signal to a practical length for the FFT computation. This can be represented as a windowing operation, i.e., a finite length sequence is obtained from x[n] by:

 $y[n] = w[n] \cdot x[n] \qquad 0 \le n \le N-1$ $= 0 \qquad \text{otherwise} \qquad (39)$

Thus, the Fourier transform of y[n] is:

$$Y(e^{j\omega T}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta T}) \cdot W(e^{j(\omega - \theta)T})d\theta$$
(40)

where $X(e^{j\omega T})$ is the Fourier transform of the input signal, and $W(e^{j\omega T})$ is the Fourier transform of the window. From (40), it is clear that $Y(e^{j\omega T})$ is a 'blurred' or 'smeared' version of the desired $X(e^{j\omega T})$, and that it is desirable that $W(e^{j\omega T})$ be highly concentrated around zero frequency so that it 'looks like' an impulse compared to the detailed variations of $X(e^{j\omega T})$. Then, $Y(e^{j\omega T})$ will not differ appreciably from the desired $X(e^{j\omega T})$. This can be accomplished by adjusting the length N and the shape of the window w[n]. [1-3]

In cases where the signal is modeled realistically as a stationary random process, the above procedure can be used as a basis for the estimation of the power spectrum. In order to smooth the statistical irregularities that arise in computing Fourier transforms of finite-length segments of a random signal, it is common to compute discrete Fourier transforms of windowed segments of the signal, and then average the squared magnitude of each transform. [1-3]

8

FIGURE 8-15 - ESTIMATION OF FOURIER TRANSFORM OF AN ANALOG SIGNAL

In situations where the signal is non-stationary, it is also common to compute discrete Fourier transforms of successive (either overlapping or non-overlapping) segments of the waveform, but instead of averaging the transforms, each transform is thought of as being representative of the signal in the time interval to which it corresponds. This leads to the concept of a short-time or running Fourier transform which is a function of both time and frequency. [2] This approach to spectrum analysis is widely used in speech, radar, and sonar signal processing. Figure 8-16 shows an example of a running spectrum of a doppler radar signal. The plot shows a succession of DFTs of the complex radar return signal. Evident in the plot is a strong time-varying component due to target rotation along with considerable noise. [10]

TIME

NORMALIZED FREQUENCY

FIGURE 8-16 - SHORT-TIME FOURIER ANALYSIS OF A DOPPLER RADAR SIGNAL

8.5.4 Autoregressive Model

Another approach to spectrum analysis is based upon the assumption of a functional model for the signal, and the subsequent estimation of the parameters of the model. [6] A widely used model assumes that the signal x[n] is the output of a discrete-time linear system whose input and output satisfy a difference equation of:

$$x[n] = \sum_{k=1}^{N} a_{k}x[n-k] + G \cdot u[n]$$
 (41)

where the spectrum of the model input u[n] is flat. Estimation of the model parameters requires that an estimate be made of the filter coefficients a_k , the gain constant G, and perhaps some properties of the input to the model u[n]. The transfer function of the difference equation (41) is:

 $H(z) = \frac{G}{1 - \sum_{k=1}^{N} a_k z^{-k}}$

Thus, such models are often called all-pole models. Three basic types of excitations are generally assumed for the model. When purely transient signals consisting of damped oscillations are modeled, it is generally appropriate to use a unit impulse as the input to the model. When periodic signals (such as voiced speech) are modeled, the input is assumed to be a periodic impulse train. In cases where the signal is random and continuing in nature, the input is assumed to be white noise with unit variance. In all these cases, since the inputs all have flat spectra, the transfer function of the system determines the spectrum of the output of the model. Thus, if a given signal is assumed to be the output of the above model, then the determination of H(z) for the model is tantamount to determining the spectrum of the signal.

A number of techniques for determining the parameters a_k of H(z) have been developed. Terms, such as autoregressive modeling, linear predictive analysis, linear predictive coding (LPC), the Burg method, maximum entropy method (MEM), and maximum likelihood method (MLM), are all associated with methods of estimating the parameters of such all-pole signal models. Although the details of these methods differ, it is fair to say that most of the available methods can be shown to be equivalent to the solution of a set of N linear equations:

$$\sum_{k=1}^{N} a_{k} \cdot R[k,m] = R[0,m] \qquad m = 1, 2, ..., N$$
(43)

where R[k,m] is a correlation-type function:

$$R[k,m] = \sum x[n-k] \cdot x[n-m]$$

where the sum is carried out over a finite interval of the signal. Both the computation of R[k,m] and the solution of the set of linear equations by techniques such as the Levinson recursion [2,11,12] involve the repetitive use of the basic multiply-accumulate operation. These computations can be easily and efficiently implemented on the TMS32010.

Because the computation of the correlations R[k,m] can be based upon either a small or a large number of samples of the signal, either a short-time or a long-time estimate of the signal model (and thus of the signal spectrum) can be obtained. Thus, the autoregressive modeling approach can be applied to either stationary or nonstationary signals just as in the case of Fourier analysis. As an example, Figure 8-17 shows a spectrum estimate for several successive short segments of a speech signal. The spectral peaks, which correspond to poles of the model transfer function, result from resonances of the vocal system which produced the speech signal. These resonances are called 'formant frequencies', and they are characteristic of the sound being produced during each respective analysis interval. Spectrum analysis of this type is a cornerstone of much of the recent work in speech synthesis and speech recognition. [2,12]

(42)

8

(44)

NOTE: In this short-time autoregressive spectrum estimation for speech signals, the lower spectra correspond to later analysis times.

FIGURE 8-17 — SPECTRUM ESTIMATION FOR SPEECH SIGNALS

8.6 POTENTIAL DSP APPLICATIONS FOR THE TMS32010

From the discussion of the fundamentals of digital signal processing, it can be seen that the architecture of the TMS32010 is especially well suited to implementation of the basic DSP algorithms for recursive and nonrecursive linear filtering, discrete Fourier transformation, autoregressive modeling, and spectrum analysis. In the following paragraphs will be described some of the basic applications of DSP techniques and the TMS32010 in the areas of speech and audio processing and communications.

8.6.1 Speech and Audio Processing

In the field of speech and audio processing, there are three major application areas: 1) digital coding for storage and transmission, 2) automatic recognition and classification of speech and speakers, and 3) processing for enhancement and modification of speech signals.

The speech and audio coding area is very diverse, and its importance is growing rapidly as both storage (recording) and transmission systems are rapidly moving in the digital direction. In all digital coding applications, the basic concern is to encode sampled speech (or audio) signals with as low a bit-rate as possible while maintaining an acceptable level of perceived quality. Generally, this must be done within limits on the size, complexity, and cost of the encoding and decoding system.

The 'digital audio' area is rapidly becoming a major area of commercial exploitation of DSP. In this field, the emphasis is on high quality reproduction of the signal. Signals are typically sampled with 14-to-16 bit precision at sampling rates upwards of 40 kHz. Potential areas of application of DSP

techniques by the TMS32010 include the use of digital filtering together with simple A-to-D converters such as delta modulators operating at very high sampling rates to obtain high quality sampling and quantization at low cost, the use of digital filters for changing sampling rates, and high-speed coding and decoding (in the information theory sense) of samples for error protection and detection. A variety of other applications in the audio area are possible if the audio signal is available in digital form. These include delay and reverberation systems and sophisticated mixing and editing systems. Another example is in the implementation of electronic musical instruments.

The speech coding area is wide in range and diverse due to the fact that the quality of the encoded speech is not the only criterion in many applications. Often, simplicity of hardware implementation, bit-rate for transmission or storage, or robustness to errors in transmission are major concerns. This has led to the development of a multitude of coding schemes, all of which exploit one or more of the basic algorithms of DSP discussed above, and each of which has its own set of advantages and disadvantages.

Perhaps the simplest class of coders is based upon the principle of faithful reproduction of the speech waveform. Such schemes as deltamodulation, differential PCM, and nonlinear companding are examples. These systems may involve adaptive or fixed quantizers and adaptive or fixed predictors to achieve data rates ranging from about 10 kbits/s to well over 1 megabit/s. Recursive and nonrecursive digital filtering and autoregressive spectrum analysis are fundamental to most of these systems.

Another class of speech coders combines the principle of waveform replication with knowledge of the ear's lack of sensitive to certain frequency domain distortions to obtain high perceptual quality at bit rates in the 5-to-10 kbit/s range. Examples include sub-band coding, where the speech is broken up into frequency bands before quantization, and transform coding, where blocks of speech samples are transformed using the cosine transform (a close relative of the DFT) and then the transform values are quantized rather than the speech samples themselves. In the former case, the basic operations are digital filtering and adaptive quantization, and in the latter case, the basic operations are Fourier transformation and adaptive quantization. These systems may be too complex to be implemented with a single TMS32010 chip. However, several processors can be used together since it is relatively straightforward to divide the system into parts which can operate in parallel or in pipeline fashion.

In the third class of speech coding systems, there is no attempt to replicate the waveform of the speech signal. Instead, the objective is to incorporate both the physics of speech production and the psychophysics of speech perception into a system which produces speech which is intelligible and otherwise perceptually acceptable. Such systems are often called vocoders, and there are many such schemes. However, recent interest centers primarily on the class of linear predictive (LPC) vocoders. These systems are based upon an autoregressive all-pole model of the form discussed earlier. The LPC vocoder analyzer system involves the estimation of the coefficients of the digital filter in the model and the estimation of the parameters of the excitation to the model. The computation of the correlation values and the recursive solution for the filter coefficients are basic operations that can be efficiently implemented on the TMS32010. Speech is encoded in this system by quantizing the parameters of the model. Speech is decoded from these parameters by actually controlling a simulation of the model with the time-varying estimated parameters. This model consists of an all-pole digital filter excited by either white noise or a periodic impulse train. The TMS32010 is capable of generating the excitation as well as implementing the computations of the difference equation in real-time at speech sampling rates. (Alternatively, special purpose LPC speech synthesizer chips, such as the Texas Instruments TMS5100, 5200, or 5220, also can be used for speech synthesis from an LPC model.)

One of the most exciting areas of speech processing is the area of voice input to computers. This includes a wide range of considerations, such as isolated word recognition, connected speech recognition, speaker verification, and speaker identification. These systems typically break down into a 'front end' analysis or feature extraction stage, then a pattern comparison stage, followed by a classification stage. Features used to represent speech signals for pattern recognition generally are derived from an LPC spectrum analysis or a short-time Fourier spectrum analysis. Distance measures for comparing speech patterns are generally in the form of an inner product of feature vectors, which involves simply a multiply-accumulate operation. Another important operation is the time alignment of speech patterns so as to take into account differences in articulation and speaking rate. This is often accomplished using a dynamic programming algorithm. All of these operations can be readily accomplished in real-time at speech sampling rates using a system composed of several TMS32010 processors.

8.6.2 Communications

Digital signal processing has made a major impact in the general area of communications. In addition to applications such as speech waveform coding, DSP hardware is being used in the design of digital modems for communicating discrete information over voice-grade telephone channels, for signal conversion, and for the digital realization of such familiar components as filters, correlators, frequency references, and mixers.

As a specific example, a TMS32010 chip might be applied in the implementation of a digital modem operating on a voice-grade telephone line. Digital processing has had a major impact on the design of highspeed digital modems, not only because of cost, but also because these systems need to be adaptive. In fact, all modems operating over voice-grade telephone lines at data rates in excess of 1200 bits/s require some sort of adaptive channel equalization. The frequency response of such telephone lines extends from about 300 Hz to 3300 Hz. While the magnitude response is far from flat, the more serious consideration for the modem designer is the group delay response, which ranges from between 0 milliseconds at 1000 Hz to approximately 2.5 milliseconds at 3300 Hz. At a transmission rate of 2400 pulses per second, the effect of this irregular group delay is to smear each received pulse over several pulse intervals. This phenomenon is known as 'intersymbol interference.' It can be removed by convolving the received signal with a function which is the inverse of the channel impulse response. Unfortunately, the details of that response depend upon the characteristics of the line, and thus they will change every time a new connection is made and will vary during the course of a lengthy transmission. The solution is to pass the signal through an adaptive equalizer, simply a FIR filter whose coefficients bk are systematically updated.

A simplified block diagram of a digital modem, shown in Figure 8-18, will be helpful before considering the operation of the adaptive equalizer in more detial. At the transmitter, the bit stream is converted into a waveform using either phase-shift keying (PSK) or a combination of PSK and amplitude-shift keying (ASK). The resulting sequence is typically complex. This complex signal is filtered and modulated to a center frequency, which after D-to-A conversion will be centered at about 1800 Hz. These are all tasks which can be implemented easily on the TMS32010. At the receiver, the signal is demodulated, filtered, and passed through the adaptive equalizer. The output of the equalizer is decoded in order to reproduce the desired bit stream and this decision is also fed back to the adaptive equalizer.

FIGURE 8-18 — BLOCK DIAGRAM OF A DIGITAL MODEM

In describing the operation of the adaptive equalizer, the k^{th} filter coefficient at time n is denoted as $b_k[n]$. Then if x[n] and y[n] denote the input and output, respectively, of the equalizer:

$$y[n] = \sum_{k=0}^{M} b_k[n] \cdot x[n-k]$$
(45)

The filter coefficients are updated according to:

$$b_k[n+1] = b_k[n] + 2\mu \cdot x^*[n-k] \cdot e[n]$$
 $k = 0, 1, ..., M$ (46)

where * denotes complex conjugation and where e[n] is the difference between the actual and the desired value for y[n]. When the connection between the transmitter and the receiver is first made, a standard preamble is transmitted, which is used to adapt the receiver coefficients. During the period of actual information transmission, the error is calculated under the assumption that the signal is being correctly received and this information is fed back to the adaptive equalizer. The stepsize parameter μ controls the rate of adaption, the stability of the equalizer, and its immunity to noise. The fundamental operation of the adaptive equalizer involves (complex) sums and products. This is a task for which the TMS32010 is ideally suited.

8-27

8.7 REFERENCES

- [1] Oppenheim, A.V. and Schafer, R.W., DIGITAL SIGNAL PROCESSING. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.
- [2] Rabiner, L.R. and Schafer, R.W., DIGITAL PROCESSING OF SPEECH SIGNALS. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.
- [3] Rabiner, L.R. and Gold, B., THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.
- [4] Oppenheim, A.V., Willsky, A.N., with Young, I.T., SIGNALS AND SYSTEMS. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.
- [5] Goodman, D.J., 'The Application of Delta Modulation to Analog-to-PCM Encoding,' BELL SYSTEM TECHNICAL JOURNAL, February, 1969, 321-343.
- [6] IEEE ASSP DSP Committee, ed., PROGRAMS FOR DIGITAL SIGNAL PROCESSING. New York, NY: IEEE Press, 1979.
- [7] Gold, B. and Rader, C.M., DIGITAL PROCESSING OF SIGNALS. New York, NY: McGraw-Hill Book Co., 1969.
- [8] Kaiser, J.F., "Nonrecursive Digital Filter Design Using The I₀-sinh Window Function," PROCEEDINGS OF THE 1974 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, April, 1974, 20-23.
- [9] Fettweis, A. and Meekotter, K., "Suppression of Parasitic Oscillations in Wave Digital Filters," IEEE TRANSACTIONS CIRCUITS AND SYSTEMS, Vol. CAS-22, March, 1975, 239-246.
- [10] Schaefer, R.T., Schafer, R.W., and Mersereau, R.M., "Digial Signal Processing for Doppler Radar Signals," PROCEEDINGS OF THE 1979 INTERNATIONAL CONFERENCE OF ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, April, 1979.
- [11] Makhoul, J., "Linear Prediction: A Tutorial Review," PROCEEDINGS OF IEEE, Vol. 63., 1975, 561-580.
- [12] Markel, J.D. and Gray, A.H., LINEAR PRODUCTION OF SPEECH. New York, NY: Springer-Verlag, 1976.

8

1183

PROGRAMMABLE PRODUCTS

TMS32010 DIGITAL SIGNAL PROCESSOR

MAY 1983-REVISED FEBRUARY 1985

- **160-ns Instruction Cycle** 144-Word On-Chip Data RAM **ROMIess Version - TMS32010** A1/PA1 1 U40 A2/PA2 1.5K-Word On-Chip Program ROM -TMS320M10 **External Memory Expansion to A Total of** 4K Words at Full Speed **16-Bit Instruction/Data Word** > 32-Bit ALU/Accumulator 16×16-Bit Multiply in 160-ns 0 to 15-Bit Barrel Shifter **Eight Input and Eight Output Channels 16-Bit Bidirectional Data Bus with** 50-Megabits-per-Second Transfer Rate **Interrupt with Full Context Save** Signed Two's Complement Fixed-Point
- **NMOS Technology**
- Single 5-V Supply

Arithmetic

Two Versions Available TMS32010-20 . . . 20.5 MHz Clock TMS32010-25 . . . 25.0 MHz Clock

description

The TMS32010 is the first member of the new TMS320 digital signal processing family, designed to support a wide range of high-speed or numericintensive applications. This 16/32-bit single-chip microcomputer combines the flexibility of a highspeed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The TMS320 family contains the first MOS microcomputers capable of executing better than 6 million instructions per second. This high throughput is the result of the comprehensive, efficient, and easily programmed instruction set and of the highly pipelined architecture. Special instructions have been incorporated to speed the execution of digital signal processing (DSP) algorithms.

The TMS320 family's unique versatility and power give the design engineer a new approach to a

TMS32010 . . . N PACKAGE (TOP VIEW)

A0/PA0	2	39	A3
	3	38	A4
RS 🕻	4	37	A5
	5	36	A6
CLKOUT	6	35	A7
X1 🖸	7	34	A8
(2/CLKIN	8	33	MEN
) BIO	9	32	DEN
vss C	10	31	WE
D8 🕻	111	30	Vcc
D9 🕻	12	29	A9
D10 🕻	13	28	A10
D11	14	27	A11
D12	15	26	D0
D13 🕻	16	25	D1
· D14	17	24	D2
D15 🕻	18	23	D3
D7 🕻	19	22	D4
D6 🖸	20	21	D5

PIN NOMENCLATURE

SIGNATURE	I/O	DEFINITION	
A11-A0/	OUT	External address bus. I/O port address	
PA2-PA0		multiplexed over PA2-PA0.	
BIO	IN	External polling input for bit test and	
		jump operations.	
CLKOUT	OUT	System clock output, ¼ crystal/CLKIN	
		frequency.	
D15-D0	I/O	16-bit data bus.	
DEN	OUT	Data enable indicates the processor	
		accepting input data on D15-D0.	
INT	IN	Interrupt.	
MC/MP	IN	Memory mode select pin. High selects	
		microcomputer mode. Low selects	
		microprocessor mode.	
MEN	OUT	Memory enable indicates that D15-D0	
		will accept external memory	
		instruction.	
RS	IN	Reset used to initialize the device.	
Vcc	IN	Power.	
V _{SS}	IN	Ground.	
WE	OUT	Write enable indicates valid data on	
		D15-D0.	
X1	IN	Crystal input.	
X2/CLKIN	IN	Crystal input or external clock input.	

Copyright © 1985, Texas Instruments Incorporated

TMS32010 DIGITAL SIGNAL PROCESSOR

variety of complications. In addition, these microcomputers are capable of providing the multiple functions often required for a single application. For example, the TMS320 family can enable an industrial robot to synthesize and recognize speech, sense objects with radar or optical intelligence, and perform mechanical operations through digital servo loop computations.

architecture

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility. In a strict Harvard architecture, program and data memory lie in two separate spaces, permitting a full overlap of the instruction fetch and execution. The TMS320 family's modification of the Harvard architecture allows transfers between program and data spaces, thereby increasing the flexibility of the device. This modification permits coefficients stored in program memory to be read into the RAM, eliminating the need for a separate coefficient ROM. It also makes available immediate instructions and subroutines based on computed values.

The TMS32010 utilizes hardware to implement functions that other processors typically perform in software. For example, this device contains a hardware multiplier to perform a multiplication in a single 160-ns cycle. There is also a hardware barrel shifter for shifting data on its way into the ALU. Finally, extra hardware has been included so that auxiliary registers, which provide indirect data RAM addresses, can be configured in an autoincrement/decrement mode for single-cycle manipulation of data tables. This hardware-intensive approach gives the design engineer the type of power previously unavailable on a single chip.

32-bit ALU/accumulator

The TMS32010 contains a 32-bit ALU and accumulator that support double-precision arithmetic. The ALU operates on 16-bit words taken from the data RAM or derived from immediate instructions. Besides the usual arithmetic instructions, the ALU can perform Boolean operations, providing the bit manipulation ability required of a high-speed controller.

shifters

A barrel shifter is available for left-shifting data 0 to 15 places before it is loaded into, subtracted from, or added to the accumulator. This shifter extends the high-order bit of the data word and zero-fills the low-order bits for two's complement arithmetic. A second shifter left-shifts the upper half of the accumulator 0, 1, or 4 places while it is being stored in the data RAM. Both shifters are very useful for scaling and bit extraction.

16 × 16-bit parallel multiplier

The TMS32010's multiplier performs a 16×16 -bit, two's complement multiplication in one 160-ns instruction cycle. The 16-bit T Register temporarily stores the multiplicand; the P Register stores the 32-bit result. Multiplier values either come from the data memory or are derived immediately from the MPYK (multiply immediate) instruction word. The fast on-chip multiplier allows the TMS32010 to perform such fundamental operations as convolution, correlation, and filtering at the rate of better than 3 million samples per second.

program memory expansion

The TMS320M10 is equipped with a 1536-word ROM which is mask-programmed at the factory with a customer's program. It can also execute from an additional 2560 words of off-chip program memory at full speed. This memory expansion capability is especially useful for those situations where a customer has a number of different applications that share the same subroutines. In this case, the common subroutines can be stored on-chip while the application specific code is stored off-chip.

The TMS320M10 can operate in either of the following memory modes via the MC/MP pin:

Microcomputer Mode (MC) - Instruction addresses 0-1535 fetched from on-chip ROM. Those with addresses 1536-4095 fetched from off-chip memory at full speed.

Microprocessor Mode (MP) - Full speed execution from all 4096 off-chip instruction addresses.

TMS32010 Digital Signal Processor

The TMS32010 is identical to the TMS320M10, except that the TMS32010 operates only in the microprocessor mode. Henceforth, TMS32010 refers to both versions.

The ability of the TMS32010 to execute at full speed from off-chip memory provides the following important benefits:

- Easier prototyping and development work than is possible with a device that can address only on-chip ROM,
- Purchase of a standard off-the-shelf product rather than a semi-custom mask-programmed device,
- Ease of updating code,
- Execution from external RAM,
- Downloading of code from another microprocessor, and
- Use of off-chip RAM to expand data storage capability.

input/output

The TMS32010's 16-bit parallel data bus can be utilized to perform I/O functions at burst rates of 50 million bits per second. Available for interfacing to peripheral devices are 128 input and 128 output bits consisting of eight 16-bit multiplexed input ports and eight 16-bit multiplexed output ports. In addition, a polling input for bit test and jump operations (BIO) and an interrupt pin (INT) have been incorporated for multi-tasking.

interrupts and subroutines

The TMS32010 contains a four-level hardware stack for saving the contents of the program counter during interrupts and subroutine calls. Instructions are available for saving the TMS32010's complete context. The instructions, PUSH stack from accumulator, and POP stack to accumulator permit a level of nesting restricted only by the amount of available RAM. The interrupts used in the TMS32010 are maskable.

instruction set

The TMS32010's comprehensive instruction set supports both numeric-intensive operations, such as signal processing, and general purpose operations, such as high-speed control. The instruction set, explained in Tables 1 and 2, consists primarily of single-cycle single-word instructions, permitting execution rates of better than 6 million instructions per second. Only infrequently used branch and I/O instructions are multicycle.

The TMS32010 also contains a number of instructions that shift data a part of an arithmetic operation. These all execute in a single cycle and are very useful for scaling data in parallel with other operations.

Three main addressing modes are available with the TMS32010 instruction set: direct, indirect, and immediate addressing.

direct addressing

In direct addressing, seven bits of the instruction word concatenated with the data page pointer form the data memory address. This implements a paging scheme in which the first page contains 128 words and the second page contains 16 words. In a typical application, infrequently accessed variables, such as those used for servicing an interrupt, are stored on the second page. The instruction format for direct addressing is shown below.

15 14 13 12 11 10 9 8 7 6 5 3 2 4 1 0

OPCODE 0 dma

Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6 through 0 contain data memory address.

The seven bits of the data memory address (dma) field can directly address up to 128 words (1 page) of data memory. Use of the data memory page pointer is required to address the full 144 words of data memory.

Direct addressing can be used with all instructions requiring data operands except for the immediate operand instructions.

indirect addressing

Indirect addressing forms the data memory address from the least significant eight bits of one of two auxiliary registers, AR0 and AR1. The auxiliary register pointer (ARP) selects the current auxiliary register. The auxiliary registers can be automatically incremented or decremented in parallel with the execution of any indirect instruction to permit single-cycle manipulation of data tables. The instruction format for indirect addressing is as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OPCODE					1	0	INC	DEC	ARP	0	0	ARP			

Bit 7 = 1 defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 7 through 0 contain indirect addressing control bits.

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the content of bit 0 is loaded into the ARP. If bit 3 = 1, then content of ARP remain unchanged. ARP = 0 defines the contents of ARO as memory address. ARP = 1 defines the contents of AR1 as memory address.

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, then the ARP defines which auxiliary register is to be incremented by 1. If bit 4 = 1, then the ARP defines which auxiliary register is to be decremented by 1. If bit 5 and bit 4 are zero, then neither auxiliary register is incremented or decremented. Bits 6, 2, and 1 are reserved and should always be programmed to zero.

Indirect addressing can be used with all instructions requiring data operands, except for the immediate operand instructions.

immediate addressing

The TMS32010 instruction set contains special "immediate" instructions. These instructions derive data from part of the instruction word rather than from the data RAM. Some very useful immediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and load auxiliary register immediate (LARK).

SYMBOL	MEANING					
ACC	Accumulator					
D	Data memory address field					
1	Addressing mode bit					
κ	Immediate operand field					
PA	3-bit port address field					
R	1-bit operand field specifying auxiliary register					
S	4-bit left-shift code					
X	3-bit accumulator left-shift field					

TABLE 1. INSTRUCTION SYMBOLS

	ACCUMULATOR INSTRUCTIONS													
		NO	NO	OPCODE										
MNEMO	NIC DESCRIPTION	OVOLER	WORDS	INSTRUCTION REGISTER										
		CICLES	WONDS	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
ABS	Absolute value of accumulator	1	. 1 [°]	0 1 1 1 1 1 1 1 0 0 0 1 0 0 0										
ADD	Add to accumulator with shift	1.	1	0 0 0 0 ← S → I ← D →										
ADDH	Add to high-order accumulator bits	1 - 1	1	0 1 1 0 0 0 0 0 I 🗲 🗕 D 🔶										
ADDS	Add to accumulator with no sign extension	1	1 1	0 1 1 0 0 0 0 1 l 🔶 D 🔶										
AND	AND with accumulator	es 1 - 1	1	0 1 1 1 1 0 0 1 I 🔶 D										
LAC	Load accumulator with shift	1	1, 1	0 0 1 0 ← S → I ← D →										
LACK	Load accumulator immediate	1	1 1	0 1 1 1 1 1 0 4 K										
OR	OR with accumulator	1	1	0 1 1 1 1 0 1 0 I 4 D										
SACH	Store high-order accumulator bits with shift	1	1 1	0 1 0 1 1 ♣x ► I ◀ _ D ►										
SACL	Store low-order accumulator bits	1	1	0 1 0 1 0 0 0 0 I 🗲 — D — — →										
SUB	Subtract from accumulator with shift	1 1 2 1	e 1 1 1	0 0 0 1 ← S → I ← D →										
SUBC	Conditional subtract (for divide)	1	· 11	0 1 1 0 0 1 0 0 I 4										
SUBH	Subtract from high-order accumulator bits	1	1	0 1 1 0 0 0 1 0 I 🗲 — D — →										
SUBS	Subtract from accumulator with no sign extension	1	1	0 1 1 0 0 0 1 1 1 🔶 D										
XOR	Exclusive OR with accumulator	1	1	0 1 1 1 1 0 0 0 I 🔶 D										
ZAC	Zero accumulator	1	1 1	0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1										
ZALH	Zero accumulator and load high-order bits	1	1 -	0 1 1 0 0 1 0 1 I 🗲 D										
ZALS	Zero accumulator and load low-order bits with no sign extension	1	1	01100110I 🔶 D>										

TABLE 2. TMS32010 INSTRUCTION SET SUMMARY

	AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS														
MNEMONIC	DESCRIPTION	NO.	NO. WORDS	OPCODE INSTRUCTION REGISTER											
		CTULES		15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
LAR	Load auxiliary register	1	1	0 0 1 1 1 0 0 R I 🗲 — D — — →											
LARK	Load auxiliary register immediate	18 1 8 1	1 1 9 - 1	0 1 1 1 0 0 0 R 🗲 — — K — 🕨											
LARP	Load auxiliary register pointer immediate	11 N 1 N	202 1 (1)	0 1 1 0 1 0 0 0 1 0 0 0 0 0 K											
LDP	Load data memory page pointer	1	1	0 1 1 0 1 1 1 1 I 🖛 D											
LDPK	Load data memory page pointer immediate	1	1	0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 K											
MAR	Modify auxiliary register and pointer	1	1	0 1 1 0 1 0 0 0 I 4											
SAR	Store auxiliary register	1	1	0011000RI 🗲 — D — 🔶											

<u></u>	BRANCH INSTRUCTIONS										
MNEMONIC DESCRIPTION		NO. CYCLES	NO. WORDS								
B	Branch unconditionally	2	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
BANZ	Branch on auxiliary register not zero	2	2	1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
BGEZ	Branch if accumulator ≥ 0	2	2	1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0							
BGZ	Branch if accumulator > 0	2	2	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
BIOZ	Branch on $\overline{BIO} = 0$	2	2	1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0							
BLEZ	Branch if accumulator ≤ 0	2	2	1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0							
BLZ	Branch if accumulator < 0	2	2	1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0							
BNZ	Branch if accumulator $\neq 0$	2	2	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0							
BV	Branch on overflow	2	2	1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0							
BZ	Branch if accumulator $= 0$	2	2	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0							
CALA	Call subroutine from accumulator	2	1	0 1 1 1 1 1 1 1 0 0 0 1 1 0 0							
CALL	Call subroutine immediately	2	2	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 &$							
RET	Return from subroutine or interrupt routine	2	1	0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1							

TABLE 2. TMS32010 INSTRUCTION SET SUMMARY (CONTINUED)

	T REGISTER, P REGIS	TER, AND	MULTIPLY	INSTRUCTIONS			
MNEMONIC	DESCRIPTION	NO.	NO.	OPCODE INSTRUCTION REGISTE	2000 (AST) - 100 R - <u>1</u> 8		
		CYCLES	WORDS	15 14 13 12 11 10 9 8 7 6 5 4	3210		
APAC	Add P register to accumulator	1	1	0 1 1 1 1 1 1 1 0 0 0	0 1 1 1 1		
LT	Load T register	1	1	0 1 1 0 1 0 1 0 1	— D — — •		
LTA	LTA combines LT and APAC into one instruction	1	1	011011001	— D ——		
LTD	LTD combines LT, APAC, and DMOV into one instruction	1	1	0 1 1 0 1 0 1 1 1	— D — — •		
MPY	Multiply with T register, store product in P register	1	1.	0 1 1 0 1 1 0 1 1 🗲	— D — →		
MPYK	Multiply T register with immediate operand; store product in P register	1	1	1 0 0 ← K	>		
PAC	Load accumulator from P register	1	1	0 1 1 1 1 1 1 1 0 0	0 1 1 1 0		
SPAC	Subtract P register from accumulator	1 1	1	01111111100	10000		

	CON	TROL INST	RUCTIONS							
MNEMONIC	DESCRIPTION	NO.	NO.	OPCODE INSTRUCTION REGISTER						
				1514131211109876543210						
DINT	Disable interrupt	1	1	0 1 1 1 1 1 1 1 1 0 0 0 0 0 1						
EINT	Enable interrupt	1 1	1	0 1 1 1 1 1 1 1 1 0 0 0 0 1 0						
LST	Load status register	1	1 .	0 1 1 1 1 0 1 1 I 🖛 D						
NOP	No operation	1	1	0 1 1 1 1 1 1 1 1 0 0 0 0 0 0						
POP	POP stack to accumulator	2	1	0 1 1 1 1 1 1 1 0 0 1 1 1 0 1						
PUSH	PUSH stack from accumulator	2	1	0 1 1 1 1 1 1 1 0 0 1 1 1 0 0						
ROVM	Reset overflow mode	1	1	0 1 1 1 1 1 1 1 0 0 0 1 0 1 0						
SOVM	Set overflow mode	1	1	0 1 1 1 1 1 1 1 0 0 0 1 0 1 1						
SST	Store status register	1	1	0 1 1 1 1 1 0 0 I 4						
	I/O AND DA			TIONS						
MNEMONIC	DESCRIPTION	NO.	NO.	OPCODE INSTRUCTION REGISTER						
		OTOLLO	wonds	1514131211109876543210						
DMOV	Copy contents of data memory location into next location	1	1	0 1 1 0 1 0 0 1 I 4 D						
IN	Input data from port	2	1	0 1 0 0 0 4 PA > 4 D >						
OUT	Output data to port	2	1	0 1 0 0 1 4 PA I 4						
TBLR	Table read from program memory to data RAM	3	1	0 1 1 0 0 1 1 1 I 4 D						
TBLW	Table write from data RAM to program	3	1							

TABLE 2. TMS32010 INSTRUCTION SET SUMMARY (CONCLUDED)

development systems and software support

Texas Instruments offers concentrated development support and complete documentation for designing a TMS32010-based microprocessor system. When developing an application, tools are provided to evaluate the performance of the processor, to develop the algorithm implementation, and to fully integrate the design's software and hardware modules. When questions arise, additional support can be obtained by calling the nearest Texas Instruments Regional Technology Center (RTC).

Sophisticated development operations are performed with the TMS32010 Evaluation Module (EVM), Macro Assembler/Linker, Simulator, and Emulator (XDS). In the initial phase of developing an application, the evaluation module is used to characterize the performance of the TMS32010. Once this evaluation phase is completed, the macro assembler and linker are used to translate program modules into object code and link them together. This puts the program modules into a form which can be loaded into the TMS32010 Evaluation Module, Simulator, or Emulator. The simulator provides a quick means for initially debugging TMS32010 software while the emulator provides real-time in-circuit emulation necessary to perform system level debug efficiently.

A complete list of TMS32010 software and hardware development tools are given in Table 3.

HOST COMPUTER	OPERATING SYSTEM	PART NUMBER									
MACRO ASSEMBLERS/LINKERS											
DEC VAX	VMS	TMDS3240210-08									
DEC VAX	Berkeley UNIX 4.1	TMDS3240220-08									
DEC VAX	Berkeley UNIX 4.2	TMDS3240230-08									
IBM	MVS	TMDS3240310-08									
IBM	CMS	TMDS3240320-08									
TI/IBM PC	MS/PC-DOS	TMDS3240810-02									
	SIMULATORS										
DEC VAX	VMS	TMDS3240211-08									
TI/IBM PC	MS/PC-DOS	TMDS3240811-02									
DIGIT	AL FILTER DESIGN PACKAGE	(DFDP)									
TI PC	MS-DOS	DFDP-TI001									
IBM PC	PC-DOS	DFDP-IBM001									
	HARDWARE										
Evaluation Module (E	√M)	RTC/EVM320A-03									
Analog Interface Boar	rd (AIB)	RTC/EVM320C-06									
Emulator		TMDS3262210									

TABLE 3. TMS32010 SOFTWARE AND HARDWARE SUPPORT

absolute maximum ratings over specified temperature range (unless otherwise noted)[†]

Supply voltage, Vcc [‡]	
All input voltages	– 0.3 V to 15 V
Output voltage	–0.3 V to 15 V
Continuous power dissipation	
Air temperature range above operating device	0°C to 70°C
Storage temperature range	– 55°C to + 150°C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 $\ensuremath{^\ddagger}$ All voltage values are with respect to VSS.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage		4.75	- 5	5.25	v
Supply voltage			0		v
	All inputs except CLKIN	2			N S
High-level input voltage	CLKIN	2.8			
Low-level input voltage (all inp	puts)			0.8	V
High-level output current (all	outputs)			300	μA
Low-level output current (all c	outputs)			2	mA
Operating free-air temperature		0		70	°C
	Supply voltage Supply voltage High-level input voltage Low-level input voltage (all inp High-level output current (all Low-level output current (all c Operating free-air temperature	Supply voltage Supply voltage High-level input voltage All inputs except CLKIN CLKIN Low-level input voltage (all inputs) High-level output current (all outputs) Low-level output current (all outputs) Operating free-air temperature	MIN Supply voltage 4.75 Supply voltage 4.75 Supply voltage 2 High-level input voltage 2 CLKIN 2.8 Low-level input voltage (all inputs) 2 High-level output current (all outputs) 2 Low-level output current (all outputs) 0	MIN NOM Supply voltage 4.75 5 Supply voltage 0 0 High-level input voltage All inputs except CLKIN 2 CLKIN 2.8 Low-level input voltage (all inputs) 2.8 High-level output current (all outputs)	MINNOMMAXSupply voltage4.7555.25Supply voltage000High-level input voltageAll inputs except CLKIN22Low-level input voltage (all inputs)2.80.8High-level output current (all outputs)300300Low-level output current (all outputs)22Operating free-air temperature070

electrical characteristics over specified temperature range (unless otherwise noted)

PARAMETER			TEST CO	MIN T	YPT	MAX	UNIT	
VOH	High-level output vo	ltage	I _{OH} = MAX		2.4	3		v
VOL	Low-level output vo	ltage	I _{OL} = MAX			0.3	0.5	V
107	Off-state output our	root		V ₀ = 2.4 V			20	
IOZ On-state output current	ien.		$V_0 = 0.4 V$			- 20	μΑ	
- Ij	Input current		$V_{I} = V_{SS}$ to V_{CC}				±50	μA
loot	Supply ourrent		Vee - MAX	$T_A = 0^{\circ}C$		180	275	mA
'CC'	Supply current			$T_A = 70^{\circ}C$			235 [§]	mA
C.	Input consoitance	Data bus				25		
<u> </u>	при сараснансе	All others	f = 1 MHz,			15		p⊢
<u> </u>		Data bus			11. 19 19 19.	25		
<u>40</u>	Output capacitance	All others			10		p⊦	

[†] All typical values except for I_{CC} are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [‡] I_{CC} characteristics are inversely proportional to temperature; i.e., I_{CC} decreases approximately linearly with temperature.

§ Value derived from characterization data and is not tested.

CLOCK CHARACTERISTICS AND TIMING

The TMS32010 can use either its internal oscillator or an external frequency source for a clock.

internal clock option

The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1). The frequency of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and be specified at a load capacitance of 20 pF.

DADANETED	TECT CONDITIONS	· TI	MS32010	-20	T				
PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Crystal frequency f _x	0°C – 70°C	6.7		20.5	6.7		25.0	MHz	
C1, C2	0°C – 70°C		10			10		pF	

FIGURE 1. INTERNAL CLOCK OPTION

external clock option

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left unconnected. The external frequency injected must conform to the specifications listed in the table below.

timing requirements over recommended operating conditions

PARAMETER		T	TMS32010-20			TMS32010-25		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
	Master clock cycle time	48.78		150	40		150	ns
tr(MC)	Rise time master clock input		5	10		5	10	ns
tf(MC)	Fall time master clock input	· · ·	5	10		5	10	ns
tw(MCP)	Pulse duration master clock	0.475t _{c(C)}		0.525t _{c(C)}	0.475t _{c(C)}		0.525t _{c(C)}	ns
tw(MCL)	Pulse duration master clock low, $t_{c}(MC) = 50$ ns		20			18		ns
tw(MCH)	Pulse duration master clock high, t _C (MC) = 50 ns		20			18		ns

switching characteristics over recommended operating conditions

			Т	TMS32010-20		T	25		
PARAMETER		TEST CONDITIONS	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
t _c (C)	CLKOUT cycle time [†]		195.12			160	-		ns
tr(C)	CLKOUT rise time	R _L = 870 Ω		10			10		ns
tf(C)	CLKOUT fall time	C _L = 100 pF,		8			8		ns
tw(CL)	Pulse duration, CLKOUT low	See Figure 2		92			74		ns
tw(CH)	Pulse duration, CLKOUT high		· ·	90			72		ns
td(MCC)	Delay time CLKIN1 to CLKOUTJ [‡]		25		60	25		60	ns

[†] $t_{c(C)}$ is the cycle time of CLKOUT, i.e., $4^{*}t_{c(MC)}$ (4 times CLKIN cycle time if an external oscillator is used).

[‡] Values given were derived from characterization data and are not tested.

PARAMETER MEASUREMENT INFORMATION

FIGURE 3. VOLTAGE REFERENCE LEVELS

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. [†] $t_{d(MCC)}$ and $t_{w(MCP)}$ are referenced to an intermediate level of 1.5 volts on the CLKIN waveform.

MEMORY AND PERIPHERAL INTERFACE TIMING

switching characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIO	NS	MIN	түр мах	UNIT
td1	Delay time CLKOUT↓ to address bus valid (see Note)			10†	50	ns
td2	Delay time CLKOUT! to MEN!	¹ Contraction (1) and ¹ Computer (1) and ¹	an - Kalanga - 20	1/4 tc(C) - 5+45	65 % t _{c(C)} + 15	ns
td3	Delay time CLKOUT! to MEN!			- 10 [†]	15	ns
td4	Delay time CLKOUT! to DEN!			$\frac{1}{4}t_{c(C)} - 5^{\dagger}45$	65 ^{1/4} t _{c(C)} + 15	ns
td5	Delay time CLKOUT to DEN1			- 10†	15	ns
td6	Delay time CLKOUT to WE	R _L = 870	Ω,	$\frac{1}{2}t_{c(C)} - 5^{\dagger}g$	MS ^{1/2} t _{c(C)} + 15	ns
td7	Delay time CLKOUTI to WE1	$C_{L} = 100$	pF,	- 10 [†]	15	ns
td8	Delay time CLKOUTI to data bus OUT valid	See Figure	2		110 ^{1/4 t} c(C) + 65	ns
td9	Time after CLKOUT1 that data bus starts to be driven			^{1/4 t} c(C) - 5 [†] 45		ns
td10	Time after CLKOUTI that data bus stops being driven				% ¼ t _{c(C)} + 30 [†]	ns
tv	Data bus OUT valid after CLKOUT!			^{1/4} t _{c(C)} -10 40		ns

NOTE: Address bus will be valid upon WE1, DEN1, or MEN1.

[†] These values were derived from characterization data and are not tested.

timing requirements over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN TYP	мах	UNIT
t _{su} (D)	Setup time data bus valid prior to CLKOUT	R _L = 870 Ω,	50		ns
t _{su} (A-MD)	Address bus setup time prior to $\overline{\text{MEN}}\downarrow$ or $\overline{\text{DEN}}\downarrow$	C _L = 100 pF,	1/4 t _{c(C)-45} 5		ns
t _{h(D)}	Hold time data bus held valid after CLKOUT↓	See Figure 2	0		ns

NOTE: Data may be removed from the data bus upon MEN1 or DEN 1 preceding CLKOUT1.

POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001

TBLR instruction timing

LEGEND:

- TBLR INSTRUCTION PREFETCH 1.
- DUMMY PREFETCH 2.
- З. DATA FETCH
- NEXT INSTRUCTION PREFETCH 4.
- ADDRESS BUS VALID 5.
- ADDRESS BUS VALID 6.

- ADDRESS BUS VALID 7.
- ADDRESS BUS VALID 8.
- INSTRUCTION IN VALID 9.
- **INSTRUCTION IN VALID** 10.
- DATA IN VALID 11.
- INSTRUCTION IN VALID 12.

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

ت ا

TEXAS 77001

TMS32010 Digital Signal Processor

TBLW instruction timing

- 3. NEXT INSTRUCTION PREFETCH
- 4. ADDRESS BUS VALID
- 5. ADDRESS BUS VALID
- 6. ADDRESS BUS VALID

- 8. INSTRUCTION IN VALID
- INSTRUCTION IN VALID 9.
- 10. DATA OUT VALID
- INSTRUCTION IN VALID 11.

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

16

IEXAS T INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

¢.

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

OUT instruction timing

PERIPHERAL ADDRESS VALID

4.

N

- DATA OUT VALID 7. 8.
 - **INSTRUCTION IN VALID**

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

18

TEXAS VI INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

RESET (RS) TIMING

timing requirements over recommended operating conditions

					and the second se	-
	DADAMETER	MIN	NOM	MAX	UNIT	:
	Reset (RS) setup time prior to CLKOUT. See Note.	50			ns	
^L SU(R)	RS pulse duration	5t _{c(C)}		1.11	ns	
- τw(R)						-

switching characteristics over recommended operating conditions

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
ture Delay time DENt WEt and MENt from BS	$R_{L} = 870 \Omega,$		½ t _{c(C)} + 50 ¹	ns
tdis(R) Data bus disable time after RS	CL = 100 pF, See Figure 2		¼ t _{c(C)} + 50 ¹	ns

NOTE: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.

[†] These values were derived from characterization data and are not tested.

reset timing

- 1. RS forces DEN, WE, and MEN high and tristates data bus D0 through D15. AB outputs (and program counter) are synchronously cleared to NOTES: zero after the next complete CLK cycle from IRS.
 - 2. RS must be maintained for a minimum of five clock cycles.
 - 3. Resumption of normal program will commence after one complete CLK cycle from IRS.
 - 4. Due to the synchronizing action on RS, time to execute the function can vary dependent upon when 1RS or IRS occur in the CLK cycle.
 - 5. Diagram shown is for definition purpose only. DEN, WE, and MEN are mutually exclusive.
 - 6. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.
 - 7. During a write cycle, RS may produce an invalid write address.

INTERRUPT (INT) TIMING

timing requirements over recommended operating conditions

	PARAMETER		·	MIN	ТҮР	MAX	UNIT
t _f (INT)	Fall time INT					15	ns
tw(INT)	Pulse duration INT	n ng mananan ang kanang ang kanang mang kanang mang kanang mang kanang mang kanang mang kanang mang kanang kan					ns
^t su(INT)	Setup time INT! before CLKOUT!		· · · · · · · · · · · · · · · · · · ·	50			ns

interrupt timing

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

I/O (BIO) TIMING

timing requirements over recommended operating conditions

tf(IO) Fall time BIO 15 ns tw(IO) Pulse duration BIO tc(C) ns tsu(IO) Setup time BIO / /before CLKOUTI 50 ns		PARAMETER	MIN	ТҮР	MAX	UNIT
tw(IO) Pulse duration BIO tc(C) ns tsu(IO) Setup time BIO / /before CLKOUT / 50 ns	tf(IO)	Fall time BIO	÷		15	ns
t _{su(IO)} Setup time BIO1/before CLKOUT1	tw(IO)	Pulse duration BIO	t _c (C)			ns
	^t su(IO)	Setup time BIOI /before CLKOUT	50			ns

BIO timing

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

input synchronization requirements

For systems using asynchronous inputs to the \overline{INT} and \overline{BIO} pins on the TMS32010, the external hardware shown in the diagrams below is recommended to ensure proper execution of interrupts and the BIOZ instruction. This hardware synchronizes the \overline{INT} and \overline{BIO} input signals with the rising edge of CLKOUT on the TMS32010. The pulse width required for these input signals is $t_{C}(C)$, which is one TMS32010 clock cycle, plus sufficient setup time for the flip-flop (dependent upon the flip-flop used).

С

+5 V

TI standard symbolization for devices without on-chip ROM

line 1: (a) **V** line 2: (c) ©1983 TI line 3: (e) 24655 TMS32010NL

DCU8327

(b)

(d)

MEANINGS OF SYMBOLS

CLKOUT

- (a) Texas Instruments trademark
- (b) Standard device number
- (c) TI design copyright
- (d) Tracking mark and date code

(e) Lot code

MECHANICAL DATA

40-pin plastic dual-in-line package

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

APPENDIX B

SMJ32010 DATA SHEET

MILITARY Products

SMJ32010 DIGITAL SIGNAL PROCESSOR

MAY 1983

- MIL-STD-883B Processing
- Same Features and Specifications as TMS32010 over 0°C - 70°C Temperature Range
- Currently Microprocessor Mode Only (All Program Memory Is Extended)
- Extended Temperature Version Available in Near Future
- 288-Byte On-Chip Data RAM
- External Memory Expansion to Total of 8K Bytes at Full Speed
- 16-Bit Instruction/Data Word
- 32-Bit ALU/Accumulator
- 16×16-Bit Multiply in One Instruction Cycle
- 0 to 15-Bit Barrel Shifter
- Eight Input and Eight Output Channels
- 16-bit Bidirectional Data Bus with 40-Megabits-per-Second Transfer Rate
- Interrupt with Full Context Save
- Signed Two's Complement Fixed-Point Arithmetic
- 2.7-Micron NMOS Technology
- Single 5-V Supply

description

The SMJ32010 is a member of the new TMS320 digital signal processing family, designed to support a wide range of high-speed or numeric-intensive applications. This 16/32-bit single-chip microcomputer combines the flexibility of a high-speed controller with the numerical capability of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The TMS320 family contains the first MOS microcomputers capable of executing five million instructions per second. This high throughput is the result of the comprehensive, efficient, and easily programmed instruction set and of the highly pipelined architecture. Special instructions have been incorporated to speed the execution of digital signal processing (DSP) algorithms.

The TMS320 family's unique versatility and power give the design engineer a new approach to a variety of complicated applications. In addition, these microcomputers are capable of providing the multiple

SMJ32010	J	DL PA	
с (TOP V	IEW)	
	10		A 7/DA 7
		"H	AZ/FAZ
	2	39	A3
MC/MP	3	38	À4
RS 🗌	4	37	A5
	5	36	A6
CLKOUT	6	35	A7
X1 🖸	7	34	A8
K2/CLKIN	8	33	MEN
BIO 🗌	9	32	DEN
vss C	10	31	WE
D8 🕻	11	30	Vcc
D9 🖸	12	29	A9
D10 🗖	13	28	A10
D11 🖸	14	27	A11
D12	15	26	DO
D13 🕻	16	25	D1
D14 🕻	17	24	D2
D15 🗖	18	23	D3
D7 🕻	19	22	D4
D6 🕻	20	21	D5

[†] Also available in a 44-pad leadless ceramic chip carrier (type FK).

PIN NOMENCLATURE

SIGNATURE	I/O	DEFINITION
A11-A0/	OUT	External address bus. I/O port address
PA2-PA0		multiplexed over PA2-PA0.
BIO	IN	External polling input for bit test and
		jump operations.
CLKOUT	Ουτ	System clock output, ¼ crystal/CLKIN
		frequency.
D15-D0	I/O	16-bit data bus.
DEN	Ουτ	Data enable indicates the processor
		accepting input data on D15-D0.
INT	IN	Interrupt.
MC/MP	IN	Memory mode select pin. High selects
		microcomputer mode. Low selects
		microprocessor mode.
MEN	OUT	Memory enable indicates that D15-D0
		will accept external memory
		instruction.
RS	IN	Reset used to initialize the device.
Vcc	IN	Power.
VSS	IN	Ground.
WE		Write enable indicates valid data on
		D15-D0.
X1	IN	Crystal input.
X2/CLKIN	IN	Crystal input or external clock input.

Copyright © 1983 by Texas Instruments Incorporated

This document contains information on a new product. 1183 Specifications are subject to change without notice. B

SMJ32010 Digital Signal Processor

functions often required for a single application. For example, the TMS320 family can enable an industrial robot to synthesize and recognize speech, sense objects with radar or optical intelligence, and perform mechanical operations through digital servo loop computations.

SMJ32010 SIGNAL PROCESSOR SCREENING AND LOT PERFORMANCE

000FFN		
SCREEN	METHOD	RQMT
Internal Visual (Precap)	2010 Condition B	100%
	See Note.	
Stabilization Bake	1008 Test Condition C	100%
	(24 hours)	
Temperature Cycling	1010 Condition C	100%
	(50 cycles)	
Constant Acceleration	2001 Condition A	100%
Feel Fine and Creek	(MIN) in Y1 Plane	
Seal Fine and Gross	1014	100%
Interim Electrical	TI Data Sheet	100%
	Electrical Specifications	
Burn-In	1015	
Duin-Ini	125°C (160 hours MIN)	100%
Final Flectrical Tests		
	II Data Sheet	100%
(Δ) Static tests:	Electrical Specifications	
(1) 25° (Subgroup 1 Table 1 E00E)		
(2) MAX and MIN Bated Operating		
Temperature (Subgroups 2 and 3		
Table 1, 5005)		
(B) Switching tests:		
(1) 25 °C (Subgroup 9, Table 1, 5005)		
(2) MAX and MIN Rated Operating		
Temperature (Subgroups 10 and 11		
Table 1, 5005)		
(C) Functional tests:		
(1) 25 °C (Subgroup 7, Table 1, 5005)		
(2) MAX and MIN Rated Operating		
Temperature (Subgroup 8, Table 1,		an a
5005)		
Quality Conformance		
Inspection Group A	5005 Class B	LTPD
(A) Static tests:		
(1) 25 °C (Subgroup 1)		7%
(2) Temperature (Subgroups 2 and 3)		10%
(B) Switching tests:		
(1) 25 °C (Subgroup 9)		7%
(2) Temperature		10%
(Subgroups 10 and 11)		
(C) Functional tests:		
(1) 25 °C (Subgroup 7)		7%
External Visual	2009	100%

NOTE: 40x precap stress test in lieu of 100x precap per Mil-STD-883 Method 5004, Paragraph 3.3.

В

SMJ32010 SIGNAL PROCESSOR NOMENCLATURE 32010 JD SMJ EXAMPLE: PREFIX -1. Must contain three or four letters SMJ-Class B, Method 5004 JANB – JM38510/JANB Qualified* **CIRCUIT DESIGNATOR** -2. Must contain five digits 32010 3. PACKAGE TYPE -Must contain two letters JD - Side Braze FK - Chip Carrier **TEMPERATURE RANGE** 4. Must contain one letter only L - 0°C to 70°C (extended temperature available in near future) * Future product.

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

В

APPENDIX C

DEVELOPMENT SUPPORT/PART ORDER INFORMATION

C

TMS32010 EVALUATION MODULE

- Target Connector for Full In-Circuit Emulation
- Up to Eight Instruction Breakpoints
- Debug Monitor Including Over 60 Commands Flexible Single Step with Software Trace with Full Prompting

 - Execution from EVM Program Memory or Target Memory

- Reverse Assembler
- Transparency Mode for Host CPU Upload/ Event Counter for One Breakpoint Download

The Evaluation Module (EVM) is a single board which enables a user to determine inexpensively if the TMS32010 meets the speed and timing requirements of the application. The EVM is a stand-alone module which contains all the tools necessary to evaluate the TMS32010 as well as to provide full in-circuit emulation via a target connector. A powerful firmware package contains a debug monitor, editor, assembler, reverse assembler, EPROM programmer, communication software to talk to two EIA ports, and an audio cassette interface. The resident assembler will convert incoming source text into executable code in just one pass by automatically resolving labels after the first assembly pass is completed. The EVM can be configured with a dumb terminal, power supplies, and either a host computer, or an audio cassette. Either source or object code can be downloaded into the EVM via the EIA ports provided on the board.

PART NUMBER	UNITS	
RTC/EVM 320A-03	OUTPUT A: +5 VOC (+/- 3%) B: +12 VOC (+/- 3%) C: -12 VOC (+/- 3%)	4.0 A 0.6 A 0.4 A

XDS/320 MACRO ASSEMBLER/LINKER

- Macro Capabilities
- Library Functions
- Conditional Assembly
- Relocatable Modules

- Complete Error Diagnostics
- Symbol Table and Cross Reference
- Available on Several Host Computers
- Written in PASCAL

The XDS/320 Macro Assembler translates TMS32010 assembly language into executable object code. The assembler allows the programmer to work with mnemonics rather than hexidecimal machine instructions and to reference memory locations with symbolic addresses. The macro assembler supports macro calls and definitions along with conditional assembly.

The XDS/320 Linker permits a program to be designed and implemented in separate modules which will later be linked together to form the complete program. The linker assigns values to relocatable code, creating an object file which can be executed by the simulator or emulator.

The XDS/320 Macro Assembler and Linker are currently available on several host computers, including TI990(DX10), VAX(VMS), and IBM (MVS and CMS) operating systems. Currently in development is software to support the VAX(UNIX), DEC PDP11(RSX), IBM PC (DOS), and TI professional computer (DOS) operating system. Contact your local TI representative for availability or further details.

HOST	OPERATING SYSTEM	PART NUMBER	MEDIUM
TI990	DX10	TMDS3240120-08	1600 BPI MAG TAPE
DEC VAX	VMS	TMDS3240210-08	1600 BPI MAG TAPE
IBM	MVS	TMDS3240310-08	1600 BPI MAG TAPE
IBM	CMS	TMDS3240320-08	1600 BPI MAG TAPE

For additional host support, please contact your local TI Field Sales Office.

С

C-4

XDS/320 SIMULATOR

Trace and Breakpoint Capabilities

I/O Device Simulation

- Full Access to Simulated Registers and Memories
- Runs Object Code Generated by XDS/320 Macro Assembler/Linker
- Available on VAX (VMS)
- Written in FORTRAN

The XDS/320 Simulator is a software program that simulates operation of the TMS32010 to allow program verification. The debug mode enables the user to monitor the state of the simulated TMS32010 while the program is executing. The simulator program uses the TMS32010 object code, produced by the XDS/320 Macro Assembler/Linker. During program execution, the internal registers and memory of the simulated TMS32010 are modified as each instruction is interpreted by the host computer. Once program execution is suspended, the internal registers and both program and data memories can be inspected and/ or modified. The XDS/320 Simulator is currently available on the VAX (VMS).

HOST	OPERATING SYSTEM	PART NUMBER	MEDIUM
DEC VAX	VMS	TMDC3240211-08	1600 BPI MAG TAPE

XDS/320 EMULATOR

- 20-MHz Operation (Full In-Circuit Emulation)
- Up to Ten Software Breakpoints
- 4K Words of Program Memory for User Code
- Full Emulation of Microcomputer or Microprocessor Modes
- Use of Target System Crystal, Internal Crystal, or External Clock Signal
- Hardware Breakpoint on Program, Data, or I/O Conditions

- 2K of Full-Speed Hardware Trace
- Single Step
- Assembler/Reverse Assembler
- Host-Independent Upload/Download Capabilities to/from Program or Data Memory
- Ability to Inspect and Modify All Internal Registers, Program and Data Memory
- Multi-Microprocessor Development

The XDS/320 Emulator is a self-contained system that has all the features necessary for real-time in-circuit emulation. This allows integration of the hardware and software in the debug mode. By setting breakpoints based on internal conditions or external events, execution of the program can be suspended and control given to the debug mode. In the debug mode, all registers and memory locations can be inspected and modified. Single-step execution is available. Full trace capabilities at full speed and a reverse assembler that translates machine code back into assembly instructions are also included to increase debugging productivity. The system provides three EIA ports so that the emulator can be interfaced with a host computer, terminal, printer, or PROM programmer. Using a standard EIA port, the object file produced by the macro assembler/linker can be downloaded into the emulator. The emulator then can be controlled through a terminal.

C

C-6

TMS320 NOMENCLATURE

DEVELOPMENT FLOWCHART

Engineering prototypes that are not representative of the final device's electrical specifications

Final silicon die that conforms to device's electrical specifications but has not completed quality and reliability verification

Fully qualified production devices

[†]TMX units shipped against the following disclaimer:

1) Experimental product and its reliability has not been characterized.

2) Product is sold "as is."

3) Not warranted to be exemplary of final production version if or when released by Texas Instruments.

[‡]TMP units shipped against the following disclaimer:

 Customer understands that the product purchased hereunder has not been fully characterized and the expectation of quality and reliability cannot be defined; therefore, Texas Instruments standard warranty refers only to the device's specifications.
 No warranty of merchantability or fitness is expressed or implied.

2/ No warranty of merchantability of nuless is expressed of implied

TI Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514, Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave., Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIFORNIA: El Segundo, 831 S. Douglas St., El Segundo, CA 90245, (213) 973-2571; Irvine, 17891 Cartwright Rd., Irvine, CA 92714, (714) 660-1200; Sacramento, 1900 Point West Way, Suite 171, Sacramento, CA 95815, (916) 929-1521; San Diego, 4333 View Ridge Ave., Suite B., San Diego, CA 92123, (714) 278-9600; Santa Clare, SJ53 Betry Ross Dr., Santa Clara, CA 95054, (408) 980-9000; Woodland Hills, 21220 Erwin St., Woodland Hills, CA 91367, (213) 704-7759.

COLORADO: Denver, 9725 E. Hampden St., Suite 301, Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingford, CT 06492, (203) 269-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. 19 N., Suite 232, Clearwater, FL 33515, (813) 796-1926; Ft. Lauderdale, 2765 N.W. 62nd St., Fr. Lauderdale, FL 33309, (305) 973-8502; Maitland, 2601 Maitland Center Parkway, Maitland, FL 32751, (305) 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights, IL 60005, (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174; Indianapolis, 2346 S. Lynhurst, Suite J-400, Indianapolis, IN 46241, (317) 248-8555.

IOWA: Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedar Rapids, IA 52402. (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Wakham, 504 Totten Pond Rd., Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Pkwy., Kansas City, MO 64114, (816) 523-2500; St. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, NJ 07066, (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alice NSE, Suite E., Albuquerque, NM 87110, (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collamer Rd., East Syracuse, NY 13057, (315) 463-9291; Endicott, 112 Nanticoke Ave., P.O. Box 618, Endicott, NY 13760, (607) 754-3900; Melville, 1 Huntington Quadrangle, Suite 3C10, P.O. Box 2936, Melville, NY 11747, (516) 454-6600; Poughkeepsie, 201 South Ave., Poughkeepsie, NY 12601, (914) 473-2900; Rochester, 1210 Jefferson Rd., Rochester, NY 14623, (716) 424-5400.

NORTH CAROLINA: Charlotte, 8 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh, 3000 Highwoods Blvd., Suite 118, Raleigh, NC 27625, (919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwood, OH 44122, (216) 464-6100; Dayton, Kingsley Bldg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 7615 East 63rd Place, 3 Memorial Place, Tulsa, OK 74133, (405) 250-0633.

OREGON: Beaverton, 6700 SW 105th St., Suite 110, Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr., Ft. Washington, PA 19034, (215) 643-6450; Coraopolis, PA 15108, 420 Rouser Rd., 3 Airport Office PK, (412) 771-8550.

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909, Austin, TX 78723, (512) 250-7655; Dallas, P. O. Box 1087, Richardson, TX 75080; Houston, 9100 Southwest Frwy, Suite 237, Houston, TX 77036, (713) 778-6592; San Antonio, 1000 Central Park South, San Antonio, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City, UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400; Midlothian, 13711 Sutter's Mill Circle, Midlothian, VA 23113, (804) 744-1007.

WISCONSIN: Brookfield, 205 Bishops Way, Suite 214, Brookfield, WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldg. 6, Redmond, WA 98052, (206) 881-3080.

CANADA: Ottawa, 436 Mac Laren St., Ottawa, Canada, K2P0M8,(613) 233-1177; Richmond Hill, 280 Centre St. E., Richmond Hill L4C1B1, Ontario, Canada, (416) 884-9181; St. Laurent, Yille St. Laurent Quebec, 9460 Trans Canada Hwy., St. Laurent, Quebec, Canada H4S1R7, (514) 334-3635. C

TI Distributors

ALABAMA: Hall-Mark (205) 837-8700.

ARIZONA: Phoenix, Kierulff (602) 243-4101; Marshall (602) 968-6181; Wyle (602) 249-2232; Tueson, Kierulff (602) 624-9986.

CALIFORNIA: Los Angeles/Orange County, Arrow (213) 701-7500, (714) 851-8961; Kierulff (213) 725-0325, (714) 731-5711; Marshall (213) 999-5001, (213) 442-7204, (714) 556-6400; R. V. Weatherford (714) 634-9600, (213) 849-3451, (714) 623-1261; Wyle (213) 322-8100, (714) 641-1600, San Diego, Arrow (619) 565-4800; Kierulff (619) 278-2112; Marshall (619) 578-9600; R. V. Weatherford (619) 695-1700; Wyle (619) 565-9171; San Francisco Bay Area, Arrow (408) 745-6600; Kierulff (415) 968-6222; Marshall (408) 732-1100; Wyle (408) 727-2500; Santa Barbara, R. V. Weatherford (805) 965-8551.

COLORADO: Arrow (303) 758-2100; Kierulff (303) 790-4444; Wyle (303) 457-9953.

CONNECTICUT: Arrow (203) 265-7741; Diplomat (203) 797-9674; Kierulff (203) 265-1115; Marshall (203) 265-3822; Milgray (203) 795-0714.

FLORIDA: Ft. Lauderdale, Arrow (305) 776-7790; Diplomat (305) 971-7160; Hall-Mark (305) 971-9280; Kierulff (305) 652-6950; Orlando, Arrow (305) 725-1480; Diplomat (305) 725-4520; Hall-Mark (305) 855-4020; Milgray (305) 647-5747; Tampe, Diplomat (813) 443-4514; Hall-Mark (813) 576-8691; Kierulff (813) 576-1966.

GEORGIA: Arrow (404) 449-8252; Hall-Mark (404) 447-8000; Kierulff (404) 447-5252; Marshall (404) 923-5750.

ILLINOIS: Arrow (312) 397-3440; Diplomat (312) 595-1000; Hall-Mark (312) 860-3800; Kierulff (312) 640-0200; Newark (312) 638-4411.

INDIANA: Indianapolis, Arrow (317) 243-9353; Graham (317) 634-8202; Ft. Wayne, Graham (219) 423-3422.

IOWA: Arrow (319) 395-7230.

KANSAS: Kansas City, Component Specialties (913) 492-3555; Hall-Mark (913) 888-4747; Wichita, LCOMP (316) 265-9507.

MARYLAND: Arrow (301) 247-5200; Diplomat (301) 995-1226; Hall-Mark (301) 796-9300; Kierulff (301) 247-5020; Milgray (301) 468-6400.

MASSACHUSETTS: Arrow (617) 933-8130; Diplomat (617) 429-4120; Kierulff (617) 667-8331; Marshall (617) 272-8200; Time (617) 935-8080.

MICHIGAN: Detroit, Arrow (313) 971-8200; Newark (313) 967-0600; Grand Rapids, Arrow (616) 243-0912.

MINNESOTA: Arrow (612) 830-1800; Hall-Mark (612) 854-3223; Kierulff (612) 941-7500.

MISSOURI: Kanaas City, LCOMP (816) 221-2400; St. Louis, Arrow (314) 567-6888; Hall-Mark (314) 291-5350; Kierulff (314) 739-0855.

NEW HAMPSHIRE: Arrow (603) 668-6968.

NEW JERSEY: Arrow (201) 575-5300, (609) 235-1900; Diplomat (201) 785-1830; General Radio (609) 964-8560; Hall-Mark (201) 575-4415, (609) 424-7300; JACO (201) 778-4722, (800) 645-5130, Kierulf (201) 575-6750; Markhall (201) 882-0320; Milgray (609) 983-5010, (800) 645-3956.

NEW MEXICO: Arrow (505) 243-4566; International Electronics (505) 345-8127.

NEW YORK: Long Island, Arrow (516) 231-1000; Diplomat (516) 454-6334; Hall-Mark (516) 737-0600; JACO (516) 273-5500; Marshall (516) 273-2424; Milgray (516) 546-5600, (800) 645-3936; Hall-Mark (516) 737-0600; Rochester, Arrow (716) 275-0300; Marshall (716) 235-7620; Rochester, Radio Supply (716) 454-7800; Syracuse, Arrow (315) 652-1000; Diplomat (315) 652-5000; Marshall (607) 754-1570.

NORTH CAROLINA: Arrow (919) 876-3132, (919) 725-8711; Hall-Mark (919) 872-0712; Kierulff (919) 852-9440.

OHIO: Cincinnati, Graham (513) 772-1661; Hall-Mark (513) 563-5980; Cleveland, Arrow (216) 248-3990; Hall-Mark (216) 473-2907; Kierulff (216) 587-6558; Columbus, Hall-Mark (614) 891-4555, Dayton, Arrow (513) 435-5563; ESCO (513) 226-1133; Marshall (513) 236-8088.

OKLAHOMA: Arrow (918) 665-7700; Component Specialties (918) 664-2820; Hall-Mark (918) 665-3200; Kierulff (918) 252-7537.

OREGON: Kierulff (503) 641-9150; Wyle (503) 640-6000.

PENNSYLVANIA: Arrow (412) 856-7000, (215) 928-1800; General Radio (215) 922-7037; Hall-Mark (215) 355-7300.

TEXAS: Austin, Arrow (512) 835-4180; Component Specialties (512) 837-8922; Hall-Mark (512) 258-8848; Kierulff (512) 835-2090; Dallas, Arrow (214) 386-7500; Component Specialties (214) 357-6511; Hall-Mark (214) 341-1147; International Electronics (214) 233-9323; Kierulff (214) 343-2400; El Paso, International Electronics (915) 778-9761; Houston, Arrow (713) 491-4100; Component Specialties (713) 771-7237; Hall-Mark (713) 781-6100; Harrison Equipment (713) 879-2600; Kierulff (713) 530-7030.

UTAH: Diplomat (801) 486-4134; Kierulff (801) 973-6913; Wyle (801) 974-9953.

VIRGINIA: Arrow (804) 282-0413.

WASHINGTON: Arrow (206) 643-4800; Kierulff (206) 575-4420; Wyle (206) 453-8300.

WISCONSIN: Arrow (414) 764-6600; Hall-Mark (414) 761-3000; Kierulff (414) 784-8160.

CANADA: Calgary, Future (403) 259-6408; Varah (403) 230-1235; Hamilton, Varah (416) 561-9311; Montreal, CESCO (514) 735-5511; Future (514) 694-7710; Ottawa, CESCO (613) 226-6905; Future (613) 820-8313; Quebec City, CESCO (416) 687-4231; Toronto, CESCO (416) 661-0220; Future (416) 663-5563; Vancouves, Future (604) 438-5545; Varah (604) 873-3211; Winnipeg, Varah (204) 633-6190. BC

TI Worldwide Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514, Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave., Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIFORNIA: El Segundo, 831 S. Douglas St., El Segundo, CA 90245, (213) 973-2571; Irvine, 17891 Cartwright Rd., Irvine; CA 92714, (714) 660-1200; Sacramento, 1900 Point West Way, Suite 171, Sacramento, CA 95815, (916) 929-1521; San Diego, 4333 View Ridge Ave., Suite B., San Diego, CA 92123, (714) 278-9600; Santa Clare, 5353 Betsy Ross Dr., Santa Clara, CA 95054, (408) 980-9000; Woodland Hills, 21220 Erwin Sc., Woodland Hills, CA 91367, (213) 704-7759.

COLORADO: Denver, 9725 E. Hampden St., Suite 301, Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingford, CT 06492, (203) 269-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. 19 N., Suite 232, Clearwater, FL 33515, (813) 796-1926; Ft. Lauderdale, 2765 N.W. 62nd St., Fr. Lauderdale, FL 33309, (305) 973-8502; Maitland, 2601 Maitland Center Parkway, Maitland, FL 32751, (305) 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights, IL 60005, (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174; Indianapolis, 2346 S. Lynhurst, Suite J-400, Indianapolis, IN 46241, (317) 248-8555.

IOWA: Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedar Rapids, IA 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Wakhams, 504 Torten Pond Rd., Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Pkwy., Kansas City, MO 64114, (816) 523-2500; St. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, NJ 07066, (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alice NSE, Suite E., Albuquerque, NM 87110, (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collamer Rd., East Syracuse, NY 13057, (315) 463-9291; Endicott, 112 Nanticoke Ave., P.O. Box 618, Endicott, NY 13760, (607) 754-3900; Melville, 1 Huntington Quadrangle, Suite 3C10, P.O. Box 2936, Melville, NY 11747, (516) 454-6600; Poughkeepsie, 201 South Ave., Paughkeepsie, NY 12601, (914) 473-2900; Rochester, 1210 Jefferson Rd., Rochester, NY 14623, (716) 424-5400.

NORTH CAROLINA: Charlotte, 8 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh, 3000 Highwoods Blvd., Suite 118, Raleigh, NC 27625, (919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwood. OH 44122, (216) 464-6100; Dayton, Kingsley Bldg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 7615 East 63rd Place, 3 Memorial Place, Tulsa, OK 74133, (405) 250-0633. OREGON: Beaverton, 6700 SW 105th St., Suite 110, Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr., Ft. Washington, PA 19034, (215) 643-6450; Coraopolis, PA 15108, 420 Rouser Rd., 3 Airport Office PK, (412) 771-8550.

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909, Austin, TX 78723, (512) 250-7655; Dallas, P. O. Box 1087, Richardson, TX 75080; Houston, 9100 Southwest Frwy, Suite 237, Houston, TX 77036, (713) 778-6592; San Antonio, 1000 Central Park South, San Antonio, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City, UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400; Midlothian, 13711 Sutter's Mill Circle, Midlothian, VA 23113, (804) 744-1007.

WISCONSIN: Brookfield, 205 Bishops Way, Suite 214, Brookfield, WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldg. 6, Redmond, WA 98052, (206) 881-3080.

CANADA: Ottawa, 436 Mac Laren St., Ottawa, Canada, K2P0M8, (613) 233-1177; Richmond Hill, 280 Centre St. E., Richmond Hill L4C1B1, Ontario, Canada, (416) 884-9181; St. Laurent, Ville St. Laurent Quebec, 9460 Trans Canada Hwy., St. Laurent, Quebec, Canada H4S1R7, (514) 334-3635. C

ARGENTINA, Texas Instruments Argentina S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos Aires, Argentina, 394-2963.

AUSTRALIA (& NEW ZEALAND), Texas Instruments Australia Ltd.: 6-10 Talavera Rd., North Ryde (Sydney), New South Wales, Australia 2113, 02 + 687-1122; 5th Floor, 418 St. Kilda Road, Melbourne, Victoria, Australia 3004, 03 + 267-4677; 171 Philip Highway, Elizabeth, South Australia 5112, 08 + 255-2066.

AUSTRIA, Texas Instruments Ges. m.b. H.: Industriestrabe B/16, A-2345 Brunn/Gebirge, 2236-846210.

BELGIUM, Texas Instruments N. V. Belgium S. A.: Mercure Centre, Raketstraat 100, Rue de la Fusee, 1130 Brussels, Belgium, 02/720.80.00.

BRAZIL, Texas Instruments Electronicos do Brasil Ltda.: Av. Faria Lima, 2003, 20 0 Andar—Pinheiros, Cep-01451 Sao Paulo, Brazil, 815-6166.

DENMARK, Texas Instruments A/S, Marielundvej 46E, DK-2730 Herlev, Denmark, 2 - 91 74 00.

FINLAND, Texas Instruments Finland OY: PL 56, 00510 Helsinki 51, Finland, (90) 7013133.

FRANCE, Texas Instruments France: Headquarters and Prod. Plant, BP 05, 06270 Villeneuve-Loubet, (93) 20-01-01; Paris Office, BP 07 8-10. Avenue Morane-Saulnier, 78141 Velizy-Villacoublay, (3) 946-97-12; Lyon Sales Office, LOree D'Ecully, Batiment B, Chemin de la Forestiere, 69130 Ecully, (7) 833-04-40; Strasbourg Sales Office, Le Sebastopol 3, Quai Kleber, 67055 Strasbourg Cedex, (88) 22-12-66; Rennes, 23-25 Rue du Puits Mauger, 35100 Rennes, (99) 79-54-81; Toulouse Sales Office, Le Peripole--2, Chemin du Pigeonnier de la Cepiere, 31100 Toulouse, (61) 44-18-19; Marseille Sales Office, Noilly Paradis--146 Rue Paradis, 13006 Marseille, (91) 37-25-30.

GERMANY, Texas Instruments Deutschland GmbH: Haggerty-strasse 1, D-8050 Freising, 08161-801; Kurfuerstendamm 195/196, D-1000 Berlin 15, 030-8827365; III, Hagen 43/Kibbelstrasse; D-4300 Essen, 0201-24250; Frankfurter Allee 6-8, D-6236 Eschborn 1, 06196-43074; Hamburger Strasse 11, D-2000 Hamburg 76, 040-2201154, Kirchhonstenstrasse 2, D-3000 Hannover 51, 0511-648021; Arabellastrasse 15, D-8000 Muenchen 81, 089-92341; Maybachstrasse 11, D-7302 Ostfildern Z/Nellingen, 0711-34030.

HONG KONG (+ PEOPLES REPUBLIC OF CHINA), Texas Instruments Asia Ltd.: 8th Floor, World Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon, Hong Kong, 3 + 722-1223.

IRELAND, Texas Instruments (Ireland) Limited: 25 St. Stephens Green, Dublin 2, Eire, 01 609222.

ITALY, Texas Instruments Semiconduttori Italia Spa: Viale Delle Scienze, 1, 02015 Cittaducale (Rieti), Italy, 0746 694.1; Via Salaria KM 24 (Palazo Cosma), Monterotondo Scalo (Rome), Italy, 06 9004395; Viale Europa, 38-44, 20093 Cologno Monzese (Milano), 02 2532541; Corso Svizzera, 185, 10100 Torino, Italy, 011 774545; Via J. Barozzi, 6, 45100 Bologna, Italy, 051 35551.

JAPAN, Texas Instruments Asia Ltd.: 4F Aoyama Fuji Bldg., 6-12, Kita Aoyama 3-Chome, Minato-ku, Tokyo, Japan 107, 03-498-2111; Osaka Branch, 5F, Nissho Iwai Bldg., 30 Imabashi 3-Chome, Higashi-ku, Osaka, Japan 541, 06-204-1881; Nagoya Branch, 7F Daini Toyota West Bldg., 10-27, Meieki 4-Chome, Nakamura-ku, Nagoya, Japan 450, 032-583-8691.

KOREA, Texas Instruments Supply Co.: Room 201, Kwangpoong Bidg., 24-1, Hwayand-Dong, Sung dong-ku, 133 Seoul, Korea, 02 + 464-6274/5.

MEXICO, Texas Instruments de Mexico S.A.: Poniente 116, No. 489, Colonia Vallejo, Mexico, D.F. 02300, 567-9200.

MIDDLE EAST, Texas Instruments: No. 13, 1st Floor Mannai Bldg., Diplomatic Area, Manama, P.O. Box 26335, Bahrain, Arabian Gulf, 973 - 72 46 81.

NETHERLANDS, Texas Instruments Holland B.V., P.O. Box 12995, (Bullewijk) 1100 AZ Amsterdam, Zuid-Oost, Holland (020) 5602911.

NORWAY, Texas Instruments Norway A/S: Kr. Augustsgt. 13, Oslo 1, Norway, (2) 20 60 40.

PHILIPPINES, Texas Instruments Asia Ltd.: 14th Floor, Ba-Lepanto Bldg., 8747 Paseo de Roxas, Makati, Metro Manila, Philippines, 882465.

PORTUGAL, Texas Instruments Equipamento Electronico (Portugal), Lda.: Rua Eng. Frederico Ulrich, 2650 Moreira Da Maia, 4470 Maia, Portugal, 2-9481003.

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, THAILAND), Texas Instruments Asia Ltd.: P.O. Box 138, Unit #02-08, Block 6, Kolam Ayer Industrial Est., Kallang Sector, Singapore 1334, Republic of Singapore, 747-2255.

SPAIN, Texas Instruments Espana, S.A.: C/Jose Lazaro Galdiano No. 6, Madrid 16, 1/458.14.58. C/Balmes, 89 Barcelona-8, 253 60 00/253 29 02.

SWEDEN, Texas Instruments International Trade Corporation (Sverigefilialen): Box 39103, 10054 Stockholm, Sweden, 08 -235480.

SWITZERLAND, Texas Instruments, Inc. Riedstrasse 6, CH-8953 Dietikon (Zuerich) Switzerland, 1-740 2220.

TAIWAN, Texas Instruments Supply Co.: 10th Floor, Fu-Shing Bldg., 71 Sung-Kiang Road, Taipei, Taiwan, Republic of China, 02 + 521-9321.

UNITED KINGDOM, Texas Instruments Limited: Manton Lane, Bedford, MK41 7PA, England, 0234 67466; St. James House, Wellington Road North, Stockport, SK4 2RT, England, 061 442-8448. BC

. . .

1

March 1935 Revision B 1603459-9701 Printed in the U.S.A.