SONY

Semiconductor IC

Data Book 1987 A/D,D/A Converters & D.S.P.

1987

NON Y

SONY.

Semiconductor Integrated Circuit Data Book 1987

List of Model Names/ Index by Usage	1
Description	2
A/D, D/A Converters Audio	3
A/D, D/A Converters Video	4
Digital Signal Processors	5
Evaluation Printed Circuit Boards	6
Application Notes	7

Semiconductor Integrated Circuit Data Book 1987

PREFACE

This is the 1987 version of the Sony semiconductor IC databook. This book covers all the semiconductor products manufactured and marketed by Sony.

In preparation of this databook, as much characteristic and application data as possible have been collected and added with a view of making this book a convenient reference for users of Sony products. If, however, you are dissatisfied with this book in any way, please write; we welcome suggestions and comments. The Sony semiconductor IC databook has been edited to include only accurate and reliable data. However, because of technical improvements and other modifications the contents are subject to change without notice.

The circuit examples used in this book are for illustration of typical applications only; we are not responsible for any problems that may occur in the circuitry and patents of any third party if these examples are put in practice.

Package abbreviations

- DIP : Dual Inline Package
- MFP : Mini Flat Package (= Flat DIP)
- QIP : Quad Inline Package (=Flat QUIP)
- PGA: Pin Grid Array
- SRK : Shrink Dual Inline Package
- SIP : Single Inline Package

Contents

		Pag	
1.	List of Model Names(6)
2.	Index by Usage(7)
3.	IC Nomenclature(9)
4.	Precautions for IC Application(10)
	A) Absolute maximum ratings		
	B) Protection against electrostatic break down		
	C) Mounting method		
5.	Quality Assurance and Reliability(16)
6.	Data Sheet ·······(21)
	1) A/D, D/A Converters(21)
	2) A/D, D/A Converters(1	03)
	3) Digital Signal Processors	217)
	4) Evaluation Printed Circuit Boards		-
	5) Application Notes		

1. List of Model Names

Туре	Page	Туре	Page	Туре	Page
CX-7997	219	CX20133	56	CXA1016P/K/UK CXA1056P/K/UK } PCB	343
CX20017	23	CX20152	69	CXA1096P	196
СХ20017 РСВ	307	CX20201A-1/-2/-3 CX20202A-1/-2/-3	132	CXA1106P	203
CX20018	37	CX20206	144	CXD1018G	266
СХ20018 РСВ	311	CX20220A-1/-2	160	СХК1201Р	283
CX20051A	105	CX23010 CX23060	87	CXK1202S	295
CX20052A	116	СХ23060 РСВ	336	FCX20220A-1/-2	352
CX20052A PCB·3A/3B	322	CX23024 CX23067	230	BX-1300	208
CX20052A Application Note	363	CX23034	238		
CX20116/U CXA1066K/UK	125	CX23038	249		
CX20116/U CXA1066K/UK } PCB	328	CX23043	257		
CX20116/U CXA1066K/UK CXA1056P/K/UK	370	CXA1008P CXA1009P	174		
CXA1056P/K/UK CXA1016P/K/UK Application Note	370	CXA1016P/K/UK CXA1056P/K/UK	186		

2. Index by Usage

Туре	Function	Page
CX20017	Dual 16bit 44kHz Multiplexed D/A Converter	23
CX20018	Dual 16bit 44kHz Multiplexed A/D Converter	37
CX20133	16bit D/A Converter	56
CX20152	Dual 16bit 88kHz Multiplexed D/A	69
CX23010 CX23060	Dual 10bit 50kHz Multiplexed A/D + D/A	87

1) A/D, D/A Converters - Audio -

2) A/D, D/A Converters - Video -

Туре	Function	Page
CX20051A	10bit 30MHz D/A Converter	105
CX20052A	8bit 20MHz Sub-ranging A/D Conveter	116
CX20116/U CXA1066K/UK	8bit 100MHz Flash A/D Converter	125
CX20201A-1/-2/-3 CX20202A-1/-2/-3	10/ 9/ 8bit 160MHz D/A Converter	132
CX20206	8bit 35MHz RGB 3-channel D/A Converter	144
CX20220A-1/-2	10/ 9bit 20MHz Sub-ranging A/D Converter	160
CXA1008P/1009P	High-speed Sample and Hold Amplifier	174
CXA1016P/K/UK CXA1056P/K/UK	8bit 30/50MHz Flash A/D Converter	186
CXA1096P	8bit 20MHz Flash A/D Converter (P)	196
CXA1106P	8bit 35MHz High-speed D/A Converter (P)	203
BX-1300	8bit 20MHz A/D Converter Module	208

(P): Preliminary

3) Digital Signal Processors

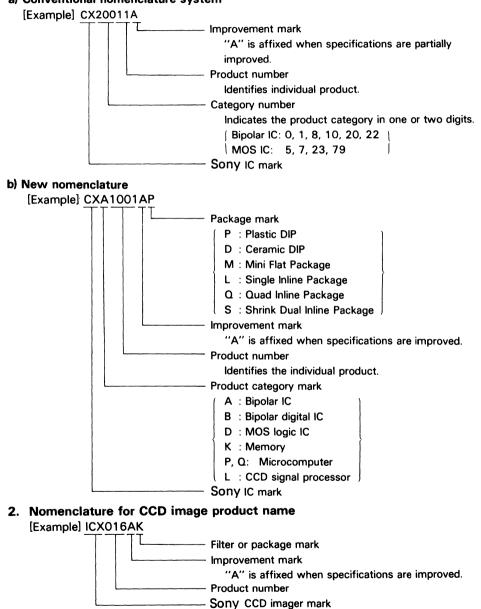
Туре	Function	Page
CX-7997	10×10bit 15MHz Multiplier/Adder	219
CX23024 CX23067	8bit S-P-S Converter	230
CX23034	Digital Filter for CD	238
CX23038	Programmable Shift Register	249
CX23043	10bit Synchronous Binary Counter	257
CXD1018G	Degital Signal Processing Multipler	266
CXK1201P	Double Scan Converter (P)	283
CXK1202S	Digital Delay Line	295

(P): Preliminary

4) Evaluation Printed Circuit Boards

Туре	Function	Page
СХ20017 РСВ	CX20017 Evaluation Board	307
СХ20018 РСВ	CX20018 Evaluation Board	311
СХ20052А РСВ-ЗА/ЗВ	8bit 20/15MHz A/D Converter Evaluation Board	322
CX20116/U CXA1066K/UK PCB	8bit 100MHz A/D Evaluation Board	328
СХ23060 РСВ	CX23060 Evaluation Board	336
CXA1016P/K/UK CXA1056P/K/UK PCB	8bit 50MHz/30MHz A/D Evaluation Board	343
FCX20220A-1/-2	10bit/9bit 20MHz Sub-ranging A/D Converter Evaluation Board	352

5) Application Notes


Туре	Function	Page
CX20052A	8bit 20MHz Sub-ranging A/D Converter	363
CX20116/U CXA1066K/UK CXA1056P/K/UK CXA1016P/K/UK	8bit High-speed A/D Converter	370

3. IC Nomenclature

1. Nomenclature of IC product name

Currently, both the conventional and new nomenclature systems are mixed in naming IC products.

a) Conventional nomenclature system

-9-

4. Precautions for IC Application

A) Absolute maximum ratings

The maximum ratings for semiconductor devices are normally specified by "absolute maximum ratings". The values shown in the maximum ratings table must never be exceeded even in a moment.

If the maximum rating is ever exceeded, device deterioration or damage will occur immediately. Then, even if the affected device can operate, the life will be considerably short.

Maximum rating must never be reached for two items at the same time.

IC maximum ratings

The following maximum ratings are used for ICs.

(1) Maximum power supply voltage Vcc (VDD)

The maximum voltage that can be applied between the power supply terminal and ground terminal.

This power supply voltage rating is directly related to the dielectric voltage of transistors in the internal circuit; the transistors may be destroyed if this voltage is exceeded.

(2) Allowable power dissipation PD

The maximum power consumption allowed in IC

In the circuit design the absolute maximum ratings must not be exceeded, and it must be designed only after considering the worst situations among the following:

- Fluctuation in source voltage
- Scattering in the electrical characteristics of electrical parts (transistors, resistors, capacitors, etc.)
- Power dissipation in circuit adjustment
- Ambient temperature
- Fluctuation in input signal
- Abnormal pulses

If this allowable power dissipation is exceeded, electrical and thermal damage may result.

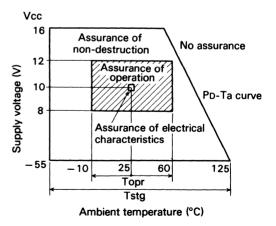
This value varies with the amount of IC integration in package types.

(3) Operating ambient temperature Topr The temperature range within which IC

can operate satisfactorily. Even if this temperature range is exceeded and some deterioration in operating characteristics is noted, the IC is not always damaged.

For some ICs, the electrical characteristics at Ta = 25 °C are not guaranteed even in this temperature range.

(4) Storage temperature Tstg


The temperature range for storing the IC which is not operating.

This temperature is restricted by the package material, and the intrinsic properties of the semiconductor.

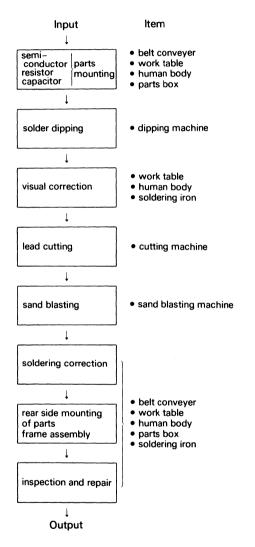
(5) Other values

The input voltage Vin, output voltage Vout, input current lin, output current lout and other values may be specified in some IC's.

The relationship among these maximum ratings for IC is shown below.

B) Protection against electrostatic breakdown

There have been problems of electrostatic destruction of electronic devices since the 2nd World War. Their history is closely related to the advancement in the semiconductor devices; that is, with the development of semiconductor technology, new problems in electrostatic destruction have arisen. This situation, perhaps, can be understood by recalling the case of MOS FET.


Today, the problem of electrostatic destruction is again drawing people's attention as we are entering the era of LSI and VLSI. Here are our suggestions for preventing electrostatic destruction in the device fabrication process.

Factors causing electrostatic generation in manufacture process

A number of dielectric materials are used in manufacture process. Friction of these materials with the substrate can generate static electricity which may destroy the semiconductor device.

Factors that can cause electrostatic destruction in the manufacture process are shown below:

Causes of electrostatic destruction of semiconductor parts in manufacture process

Handling precautions for preventing electrostatic destruction

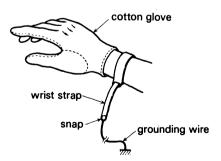
Explained below are procedures that must be taken in fabrication for preventing the electrostatic destruction of semiconductor devices.

The following basic rules must be obeyed.

- (1) Equalize potentials of terminals when transporting or storing.
- (2) Equalize the potentials of the electric device, work bench, and operator's body that may come in contact with the semiconductor device.
- (3) Prepare an environment that does not generate static electricity.

One method is keeping relative humidity in the work room about 50%.

Operator


1) Clothes

Do not use nylon, rubber and other materials which easily generate static electricity. For clothes, use cotton, or antistatic-treated materials. Wear gloves during operation.

2) Grounding of operator's body

The operator should connect the specified wrist strap to his arm. If wrist strap cannot be used, then the operator should touch the grounding point with his hand, before handling any semiconductor device.

example of grounding band

When using a copper wire for grounding, connect a 1M resistance in series near the hand for safety.

3) Handling of semiconductor device

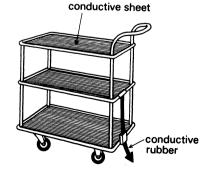
Do not touch the lead. Touch the body of semiconductor device when holding. Limit the number of handling times to a minimum. Do not take the device out of the magazine or package box unless it is absolutely necessary.

holding of semiconductor device

can type

Equipment and tools

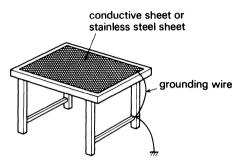
DIP type


1) Grounding of equipment and tools

Ground the equipments and tools that are to be used. Check insulation beforehand to prevent leakage.

[Check point]

- measuring instrument
- conveyer
- electric deburr brush
- carrier
- solder dipping tank
- lead cutter
- shelves and racks

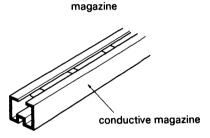

grounding of carrier

2) Grounding of work table

Ground the work table as illustrated. Do not put anything which can easily generate static electricity, such as foam styrol, on the work table.

grounding of work table

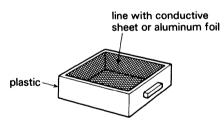
6) Other points of caution


Take note of the kind of the brush material used for removing lead chips. Use metal or antistatic-treated plastic brushes.

Transporting, storing and packaging methods

1) Magazine

Use the metal, or antistatic-treated plastic IC magazines.


The plastic magazines used for shipping ICs are antistatic-treated, and they can be used for storing ICs.

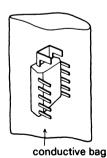
3) Semiconductor device case

Use the metal case, or the antistatic plastic case (lined with conductive sheet or aluminum foil).

plastic case for semiconductor devices

4) Insertion of semiconductor device

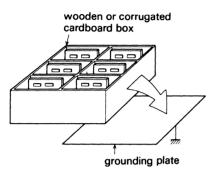
Insert the semiconductor device in mounting process or on the belt conveyer. The insertion should be done on a conductive sheet, or a wood or metal carrier.


5) Operation in energized state

When the substrate is checked while energizing the substrate where the delicate semiconductor device is mounted, be sure to place the substrate on corrugated cardboard, wood, or on a metal carrier.

2) Bag

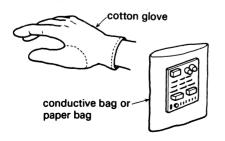
Use a conductive bag for keeping ICs. If use of a vinyl bag is unavoidable, be sure to wrap the IC with aluminum foil.


bag

3) Handling of delivery box

The delivery box used for carrying substrates must be made of wood or corrugated cardboard. Do not use a vinyl chloride or acrylic delivery box, otherwise static electricity will be generated.

handling of delivery box


4) Treatment after vehicle transport

After truck transport, place the magazine, package box or delivery box on the grounded rack, work table, or concrete floor for discharging. Do not pull the delivery box for more than 1 meter except on a concrete or a wooden floor.

5) Handling of mounted substrates

Wear cotton gloves when handling. As far as possible, avoid touching soldered faces. When handling mounted substrates individually, be sure to use a conductive or paper bag. Do not use a polyethylene bag.

handling of mounted substrate

Soldering operation

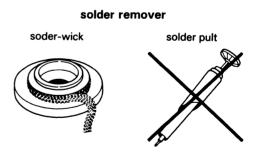
1) Soldering iron

Use a soldering iron with a grounded metal part or a soldering iron whose insulation resistance after five minutes from energizing is greater than 10 M Ω (DC 500V).

2) Operation

After inserting the semiconductor device into the substrate, solder it as quickly as possible. Do not carry the substrate with the inserted semiconductor device by car.

3) Correction


When correcting parts (semiconductor device and CR parts) after solder-dipping, be sure to wear cotton gloves. Also, connect the grounding band to the arm, or touch the grounding point before operation.

4) Manual soldering

Solder with wrist strap connected to the hand, or by touching the grounding point from time to time during operation.

5) Removing semiconductor device

Do not use the Solder-Pult when removing the semiconductor device. Use a Soder-wick or equivalent.

6) Soldering work table

Use a grounded work table, corrugated cardboard, or wooden work table for soldering. Do not solder on foam styrol, vinyl, or decorative board.

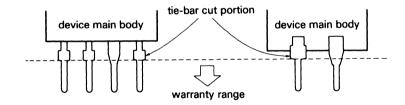
C) Mounting method

Soldering and solderability

(1) Solderability guaranteed by JIS

JIS specifies solderability of an IC terminal (lead) in "JIS-C7022 Test Procedure A-2". An abstract of this standard follows:

- Rosin flux must be used, and the terminal must be dipped in it for 5-10 seconds.
- H63A or equivalent solder must be used, and the terminal must be dipped in the solder which has been heated to 230°C±5°C for 5±1 seconds.
- Using a microscope, measure the area (%) deposited with solder. JIS specifies that more than 95% of the


total area should be coated with solder.

(2) Area for soldering warranty

Soldering is warranted for a specific portion of the terminal. The warranted portion is shown in the following figure.

The tie-bar cut portion also serves as a dam to prevent the sealing resin flowing out during device fabrication; it is cut off at the end of the process. Since the terminal is exposed at the cut-off end, the area for soldering is restricted. The portion near the resin is often covered with burrs when sealing with resin; it is not in the soldering warranty area.

warranty area for soldering

Resistance to soldering heat

(1) Specification of JIS

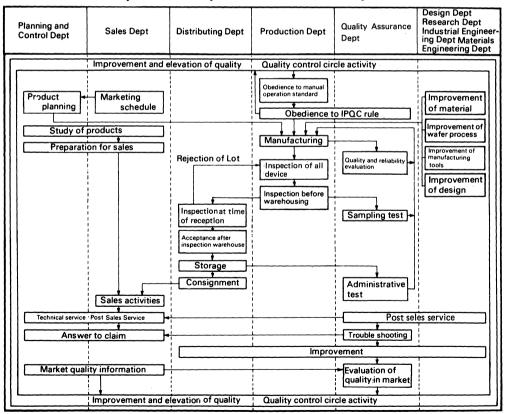
JIS specifies the method for testing the resistance to soldering heat. This method is used for guaranteeing the IC resistance against thermal stresses by soldering. An abstract of this standard is as follows:

• Dip the device terminal only once for 10 ± 1 seconds in a solder bath of $260^{\circ}C\pm5^{\circ}C$, or for $3^{+0.5}_{-0}$ seconds in a solder bath of $350^{\circ}C\pm10^{\circ}C$, for a distance of up to 1 to 1.5 mm from the main body.

The temperature of $260^{\circ}C \pm 5^{\circ}C$ assumes the soldering with solder flow system, and the temperature $350^{\circ}C \pm 10^{\circ}C$ assumes soldering by soldering iron.

- Leave the device for more than two hours after dipping, then measure the device characteristics.
- Normally, the warranty is limited for 10 seconds at $260^{\circ}C \pm 5^{\circ}C$. The distance between the device main body and solder bath is assumed as 1.6 mm.

- 15 -


5. Quality Assurance and Reliability

Sony's Policy of Quality Assurance

The Sony semiconductor embodies two fundamental ideas: "highest quality" and "lowest cost". There are the two key points for realizing these ideas.

One is the "quality" of men fabricating the semiconductor devices. The reliability of these people is reflected in the Sony products. Accordingly, Sony is making a continuous effort to raise the "quality" of people capable of manufacturing and fabricating Sony semiconductor devices. The other point is a source management system combined with the concept of thorough quality design. With this system, higher quality products can be steadily manufactured through automation of device design, process design, and the fabrication process.

Sony is making constant efforts to supply the most economical and most useful products of very high quality for users.

Quality assurance system of semiconductor products

Quality assurance criteria and reliability test criteria

1) Quality assurance in shipping

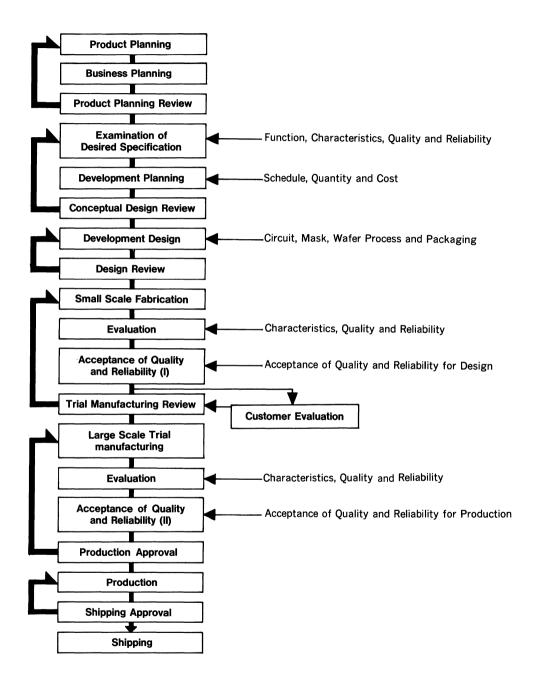
Establishing quality in the design and in fabrication is essential to keep the quality and reliability levels of the semiconductor devices at a high level. This is done by the "Zero-defect" (ZD) movement. Further sampling checks, in units of shipping lot, is done on products that have been "total-inspected" at the final fabrication stage, thus ensuring no detective items. This sampling inspection is done in accordance with MIL-STD-105D.

2) Reliability

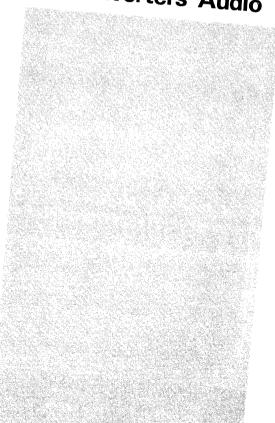
The reliability test is done, periodically, to confirm reliability level.

	ltem	Test Hour	LTPD (%)	
	Electrical characteristic test	In order to know the quality level, some types are selected and tested again.		
LIFE TEST	High temperature operation	Up to 1000 hr	10%	
	High temperature storage	Up to 1000 hr	10%	
	Low temperature storage	Up to 1000 hr	10%	
	High temperature and high humidity storage	Up to 1000 hr	10%	
	High humidity bias test	Up to 1000 hr	10%	
	High temperature and high humidity with bias	Up to 500 hr	10%	
	Pressure cooker	Up to 200 hr	10%	
ENVIRONMENT	Soldering heat resistance heat cycle	10 s	15%	
TEST	Heat cycle	10 cycle	15%	
MECHANICAL	Solderability	Japan Industrial	15%	
TEST	Lead strength	Standard (JIS)	15%	
OTHER TESTS	if necessary test, are selected accordingly to JI	S C7021, C7022, EIAJ SD1	21, IC121.	

Periodical reliability test


* These tests are selected by sampling standard.

These tests and Inspection data are useful not only to estimate quality in the market place but also as data to improve design and wafer processes.


Reliability test standard for acceptance of products

Type of Test	Condition	Supply voltage	Testing time	LTPD (%)
High temperature operation	Ta=125°C, 150°C	ТҮР	1000 hr	5%
High temperature with bias	Ta = 125°C, 150°C	ТҮР	1000 hr	5%
High temperature storage	Ta = 150°C		1000 hr	5%
Low temperature storage	Ta = - 65°C		1000 hr	5%
High temperature and humidity storage	Ta = 85°C, 85%RH		1000 hr	5%
High temperature and High humidity with bias	Ta = 85°C, 85%RH	TYP (I hr on/3 hr off)	500hr	5%
Pressure cooker	Ta = 121°C, 100%RH, per square inch	Ta = 121°C, 100%RH, 30 pounds per square inch		5%
Temperature cycle	$Ta = -65^{\circ}C \text{ to } +150^{\circ}C$		100 C	10%
Heat shock	$Ta = 0^{\circ}C to + 100^{\circ}C$		5 C	10%
Soldering heat resistance	Tsolder = 260°C		10 S	105
Solderability	Tsolder =230°C (Ros	sin type flux)	5 S	10%
Mechanical shock	X, Y, Z 1500G 0.5 ms half sine wave		3 times for each direction	10%
Vibration	X, Y, Z 20G 10 to 20 sine wave vibration	X, Y, Z 20G 10 to 2000 to 10 Hz (4 min) sine wave vibration		10%
Constant acceleration	X, Y, Z 20,000 G centrifugal acceleratio	X, Y, Z 20,000 G centrifugal acceleration		10%
Fall by gravity	Falling from the height of 75cm to maple plate by gravity		3 times	10%
Lead strength (Bend) (Pull)	Based on JIS			10%
Electrostatics strength	Device must be design supplying surge voltage To each pin under the	je	-	below standa

From development to production

A/D,D/A Converters Audio

1) A/D, D/A Converters – Audio –

Туре	Function	Page
CX20017	Dual 16bit 44kHz Multiplexed D/A Converter	23
CX20018	Dual 16bit 44kHz Multiplexed A/D Converter	37
CX20133	16bit D/A Converter	56
CX20152	Dual 16bit 88kHz Multiplexed D/A	69
CX23010 CX23060	Dual 10bit 50kHz Multiplexed A/D + D/A	87

- 22 -

SONY

Dual 16 bit 44 kHz Multiplexed D/A Converter

Description

The CX20017 is a 16 bit D/A converter IC for PCM audio using an integration system. Analog signals can be regenerated from 16 bit digital signals by adding an integrator, an analog switch, and a low-pass filter outside the IC.

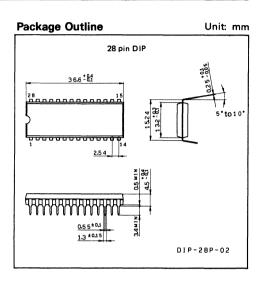
Features

- 16 bit D/A converter.
- · Clock buffer.
- TTL-ECL interface circuit.
- Discharge drive circuit.
- Analog switch drive circuit.

Functions

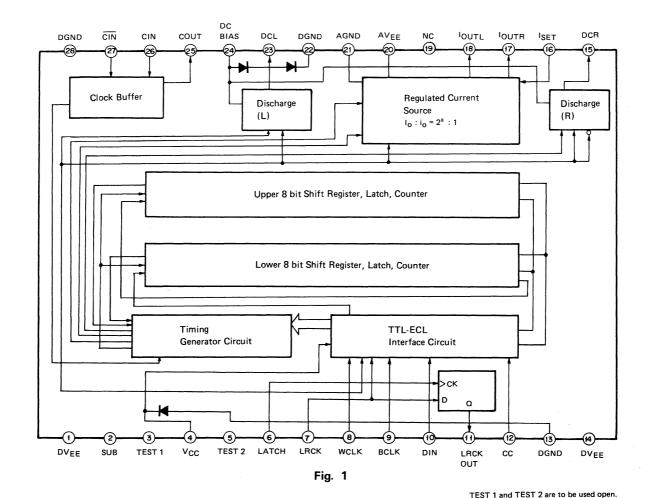
- Two channels for integral current output and discharge signal output.
- Level shift circuit for direct interface with TTLs and MOS LSIs.
- · Analog switch drive circuits, etc.

Structure


Silicon Monolithic IC

Absolute Maximum Ratings (Ta=25°C)

 Supply voltage 	Vcc to Ve	E 12	_ V
 Operating temperature 	Topr	-10 to +75	°C
Storage temperature	Tstg	-50 to +150	°C
 Allowable power dissipation 	Po	2.1	w


Recommended Operating Conditions

 Supply voltage 	Vcc	5 :	± 0.25	v
	Vee	-5 =	± 0.25	v

200

Block Diagram

SONY

CX 20017

SONY.

CX20017

Pin Description

No.	Symbol	Description
1	DVEE	Digital system power supply pin Apply -5V
2	SUB	Board of IC. It is used always being connected to pin 1
3	TEST 1	Test pin. It is used normally in the open state.
4	Vcc	Digital system power supply pin Apply +5V
5	TEST 2	Test pin. It is used normally in the open state.
6	LATCH	Clock pin of D type latch
7	LRCK	LRCK input pin
8	WCLK	WCLK input pin
9	BCLK	BCLK input pin
10	DIN	DIN (Data input pin)
11	LRCK OUT	LRCK output pin
12	сс	CC input pin
13	DGND	Digital system GND pin
14	DVEE	Digital system power supply pin Apply -5V
15	DCR	Right channel discharge drive signal output pin
16	ISET	Integral current setting pin
17	IOUTR	Right channel current output pin
18	Ιουτι	Left channel current output pin
19	NC	No connection
20	AVEE	Analog system power supply pin
21	AGND	Analog system GND pin
22	DGND	Digital system GND pin
23	DCL	Left channel discharge drive signal output pin
24	DCBIAS	Discharge circuit bias pin
25	COUT	Clock oscillator output pin
26	CIN	Clock oscillator positive input pin
27	CIN	Clock oscillator negative input pin
28	DGND	Digital system GND pin

Electrical Characteristics

CX20017

(Ta = 25° C, Vee = -5.0V, Vcc = 5.0V)

ltem	Symbol	Pin and test condition	Min.	Тур.	Max.	Unit	Note
Circuit Current	İEE	1, 2, 14, 20	-112	-85		mA	1
Circuit Current	lcc	4		9.5	12.5	mA	1
Input Threshold Voltage 1	VTH1	6, 7, 8, 9, 10, 12		-2.9		v	2
Input Threshold Voltage 2	Vth2	6, 7, 8, 9, 10, 12		2.1		V	3
High Level Input Voltage 1	Vін1	6, 7, 8, 9, 10, 12	-2.2			v	2
High Level Input Voltage 2	Vih2	6, 7, 8, 9, 10, 12	2.8			v	3
Low Level Input Voltage 1	VIL1	6, 7, 8, 9, 10, 12			-4.2	v	2
Low Level Input Voltage 2	VIL2	6, 7, 8, 9, 10, 12			0.8	v	3
High Level Input Current 1	Іінт	6, 7, 8, 9, 10, 12 VIH = -0.5V			500	μA	2
High Level Input Current 2	Іін2	6, 7, 8, 9, 10, 12 Viн = 4.5V			500	μA	3
Low Level Input Current 1	liL1	6, 7, 8, 9, 10, 12 VIL = −0.5V			-15	μA	2
Low Level Input Current 2	lıl2	6, 7, 8, 9, 10, 12 VIL = 0V			500	μA	3
High Level Output Voltage	Vlrckh	11 Іон = -100μ A after making Pin7 to be 4.5V. Supply a OV-5V-OV clock to pin 6	2.7			v	
Low Level Output Voltage	Vlrckl	11 $I_{OL} = 100\mu A$ after setting Pin 7 OV. Supply a OV-5V-OV to pin 6.	1		-2.7	v	
Clock Input Bias Voltage	Vcin	26, 27		-1.3		v	
Clock High Level Output Voltage	Vccr	25		-0.8		v	
Clock Low Level Output Voltage	Vcol	25		-1.6		v	
Current Output Pin Leak	Ioleak	17, 18 Pins17 and 18 voltage OV. When current output is off.	1		1.5	μΑ	

Item	Symbol	Pin and test condition	Min.	Тур.	Max.	Unit	Note
Ιουτ Output Current	Ιουτ	17, 18 Pins17 and 18 voltage OV. Pin 16 ISET = 500 μ A, (Iout = Io + io)		2.008		mA	
Current Ratio *2	lo/io	17, 18 Pin16 ISET = 250 μ A	255.0	256.0	257.5	_	4
Discharge Circuit Current Consumption	Ірс	24 Set Pin24 OV	1.35	1.9	2.5	mA	
Discharge Circuit High Level Output Voltage	Vdcн	15, 23 Pin24 voltage = 1.4V. Load current = $-100 \mu A$	0.27	0.45	0.77	v	
Discharge Circuit Low Level Output Voltage	VDCL	15, 23 Pin24 voltage = 1.4V. Load current = $-100 \mu\text{A}$		4.2	-3.5	v	
Maximum Iset Current	Iset max	16 Range in which current ratio of Io∪TL (R) meets 255 ≤ I₀/i₀ < 257			520	μΑ	
Distortion Factor	THD	During O dB (full scale) playback for both right and left		0.003	0.005	%	5
		During —20 dB playback for both right and left		0.02	0.025	%	5
Operating Clock Frequency	fсlк	Self-excitation/separate excitation			40	MHz	

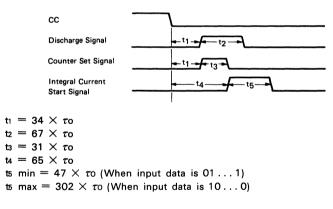
- Note) 1. Pins13, 17, 18, 21, 22, 24 and 28 are for grounding, pin16 is connected through 5.1 $k\Omega$ to ground. Other pins are open.
 - 2. When Pin 4 (Vcc) is opened.
 - 3. When Pin 4 (Vcc) is made to be 5.0V.
 - 4. Measurement circuit See Fig. 2 Conversion frequency 44.1 kHz. Input data 16 bit data generated by ROM SG., Full scale data (0 dB) and data of a level -20 dB below it are used. Distortion meter HP339A (all filters are turned on) or its equivalent that has an 80 kHz LPF, 30 kHz LPF and 400 Hz HPF.
 - *1 Recommended operating voltage
 - *2 In the current ratio measurement circuit (Fig. 3):

 $-3.9~(mV) < 1~(k\Omega) imes$ Io (μ A) - 256 ($k\Omega$) imes io (μ A) < 5.9 (mV)

Description of CX20017 Conversion Process

(1) Data Call In (BCLK, DIN, WCLK, LRCK.) See Fig. 5.

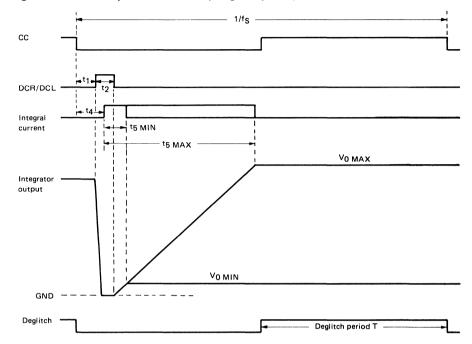
Data is 16 bit serial signals and is of a 2's complement type (2's complement). Data is synchronized with a rising edge of the bit clock (BCLK) from MSB and is sent to the IC sequentially. (Data variations occur with the fall of BCLK.)


Changing the word clock (WCLK) from a high to a low level during the 17th fall of the BCLK, 16 bit data is transferred from the shift register to the latch. Data from the other channel is sent in to the system at the 17th BCLK when CX20017 is used in the stereo mode.

When allocating data in the stereo mode, Rch data is called in while the level of LRCK is low, calling in Lch data while the level of LRCK is high. lout and DCL operate only when the level of LRCK is low, and lout and DCR, operate only when the level of LRCK is high.

(2) Conversion Process (CC, LRCK, CIN, IOUTL, IOUTR, DCL, and DCR)

All the timing circuits inside are reset, by inputting more than three clocks from the clock input (CIN) after setting the level of the conversion command (CC) to high.


After resetting, the level of CC is set to low, and a clock is supplied into CIN, to start the functioning of the internal timing circuit. It produces three signals: a discharge, a counter set, and an integral current start signals. Depending on periods of clocks and the number of clocks the timings of these three signals are determined as follows:

The counter set signal sets data entered in the latch to the counter, and is not output outside. The discharge signal is output from DCL and DCR and is controlled by LRCK. The signal is output from DCL when the level of LRCK is low, and from DCR when the level is high.

The upper current I₀ and lower current i₀ flow on the instruction of the integral current start signal. The counter starts counting the value preset simultaneously with the turning off the discharge signal. The counter counts eleven offsets and then sends a signal to stop the integral current. The value of t5 is changed by the input data value preset in the counter and is changed over the range 0 to 255. For this reason, a maximum (t4 + t5 max) is needed for the conversion time, i.e., the time period between the level of CC becoming low and the completion of integration.

As is the case with the discharge signal, the integral current outputs lout when the level of LRCK is low, outputting lout when the level is high.

Regarding the relationship between sampling frequency fs and clock.

By denoting the clock frequency f_{CLK} cycle as τ_0 , the maximum value VOMAX and minimum value VOMIN of the integral voltage output can be given as the following equations.

$$V_{OMAX} = \frac{I_0}{C} * \tau_0 * 267 + \frac{I_0}{C} * \tau_0 * 266 \quad (t_4 + t_5 \text{ max})$$
$$V_{OMIN} = \frac{I_0}{C} * \tau_0 * 12 + \frac{I_0}{C} * \tau_0 * 11 \quad (t_4 + t_5 \text{ min})$$

This integral voltage is held to the capacitor C of the integrator when the current switch is turned off. This voltage is utilized as the D/A conversion output in the deglitch period T. This T is determined by the settling time of the deglitch circuit.

If setting of the conversion time and deglitch period are equal, the relationship between the conversion synchronization f_s and the clock frequency f_{CLK} can be given as follows:

$$fs = \frac{f_{CLK}}{2 \times (t_4 + t_{5MAX})} = \frac{f_{CLK}}{734}$$

CX20017

Assuming that f_s =44.1 kHz, fcLK becomes 32.4 MHz.

However, when it is used in practice, it is sufficient to consider that $f_5 = f_{CLK} / \{(t_4+t_5 \text{ MAX}+1.0 \mu s)+T\}$, since approximately 0.5 to 1.0 μs will become necessary to the settling of the integrator after the current of t5 is being switched off.

Where, i_0 is the integrated current which is corresponding to 1LSB, and l_0 is that of corresponding to $2^8 LSB.$

- CX20017
- (3) Setting Integral Current (ISET, IOUTL, IOUTR)

The integral current is determined by the value of a regulated current flowing from I_{SET} pin. Its relationship can be expressed as follows:

 $IOUTL (R) = I_0 + i_0$

$$= (4 + \frac{1}{64})$$
 iset

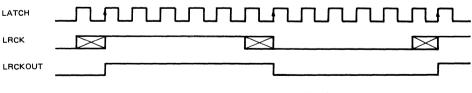
Assuming that D_0 ; MSB, D_{15} ; LSB, the integrator output voltage V_0 can be given as the following equations.

$$V_{0} = \frac{I_{0}}{C} (\overline{D}_{0} * 2^{7} + \overline{D}_{1} * 2^{6} + \ldots + \overline{D}_{7} * 2^{0} + 12) \tau_{0}$$
$$+ \frac{I_{0}}{C} (\overline{D}_{0} * 2^{7} + \overline{D}_{9} * 2^{6} + \ldots + \overline{D}_{15} * 2^{0} + 11) \tau_{0}$$

Assuming that IsET=500 μ A, τ_0 =1/35(MHz)=28.6(ns), and C=2000 pF, the output voltage of the integrator becomes maximum when the input data is "10 to 0", and that value VOMAX becomes as follows:

$$I_{0}=4*I_{SET}$$
As $i_{0}=\frac{1}{64}*I_{SET}$

$$V_{OMAX}=\frac{2.0\times10^{-3}}{2000\times10^{-12}}*267*28.6\times10^{9}$$


$$+\frac{500*10^{-6}/64}{2000\times10^{-12}}*266*28.6\times10^{9}$$
=7.67(V)

(4) Function of LRCK OUT (LATCH, LRCK, LRCK OUT)

The LRCK OUT output drives the analog switch IC (MC 14053B or its equivalent) to cut the output converted by CX20017 and the integrator as a PAM wave.

Jitter in a PAM wave causes conversion errors, and a D-type flip flop is contained to absorb this jitter. The LATCH input is used as a clock to drive the flip flop. The D-type flip flop changes the output condition in synchronization with the rise of the clock.

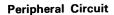
This LRCK OUT functions only when +5V is applied to Vcc. The output voltage level is -3 to +3V and can efficiently drive the CMOS analog switch.

LATCH, LRCK, and LRCKOUT Timing

- (5) Clock Input/Output Pin (COUT, CIN CIN) The clock buffer has a configuration similar to that of an ECL logic circuit, and its input pin is biased by an internal bias circuit. (≈−1.3V) output amplitude level is 0.8V.
- (6) Bias Pin (DVEE, SUB, DGND, Vcc, AVEE, AGND, and DC BIAS)

SUB is the IC substrate and can be used by making its potential common to DVEE. The standard values of DVEE and AVEE are -5.0V.

The CX20017 can be operated regardless of whether the digital input pin is in the ranges 0 to -5V, or 0 to +5V. When operating with an input voltage between 0 and +5V, raise the level of the Vcc pin to +5V. As mentioned before, LRCKOUT is output in this case.


Open the Vcc pin when using an input voltage between 0 and -5V. The DC BIAS is the bias circuit for the output circuit of the discharge signal. A current of approximately 2.5 mA is required for the standard value. Supply a current higher than (2.5 mA + α) from a +5V and higher power source. The potential of this pin is biased to 2Vf.

The value of α is determined as follows. In order to maintain this pin voltage of 2Vf (\approx 1.4V), approximately 0.5 mA is required. In addition, the maximum current flowing to load resistance RL which is connected to DCR (pin 15) and DCL (pin 23) can be obtained by the following:

 $\frac{1}{RL} \times (V_{DCH} + |DV_{EE}|) \times 2$

when RL=4.7 kΩ, VDCH=0.4V and DVEE=-5V, α =0.5+1.32=1.82 (mA) and the total becomes 4.32 mA. As the recommended value, it is 5 mA at RL=4.7 kΩ.

- 31 -

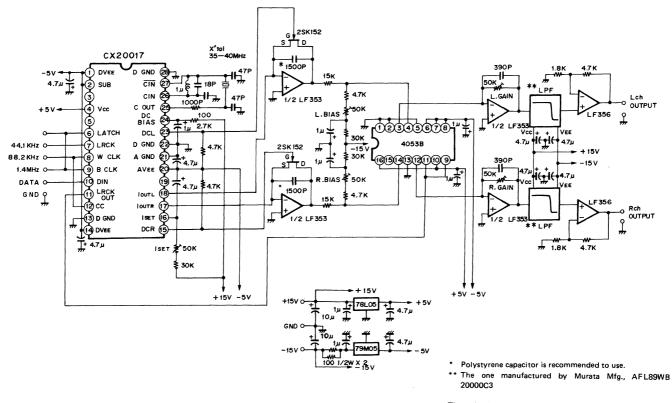
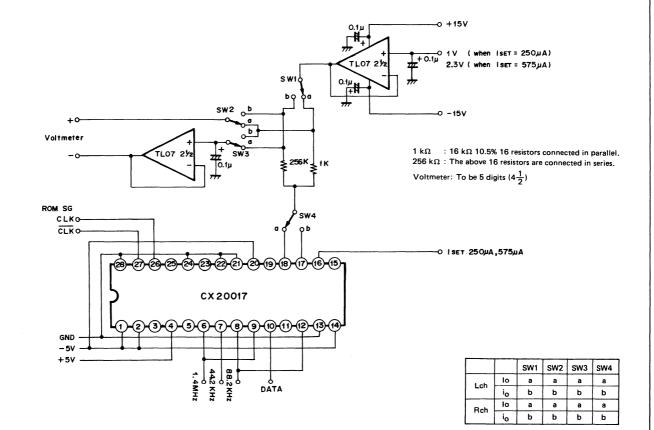
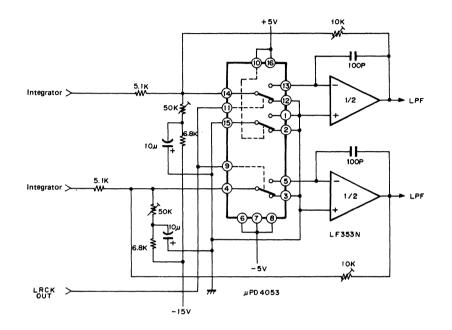



Fig. 2

The evaluation boards applying the above circuit are prepared.


CX20017

1

SONY

Fig. 3

A circuit example by which deglitcher is carried out with sample/hold type

Fig. 4

Timing Chart During Stereo Mode

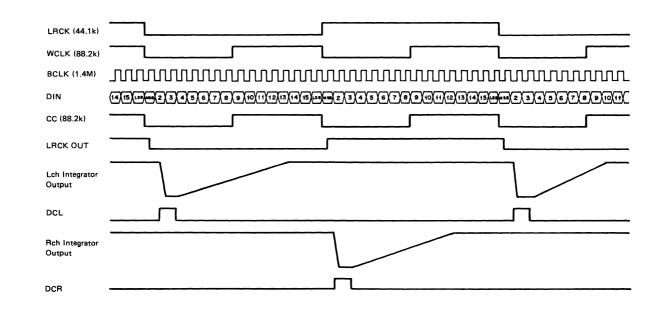
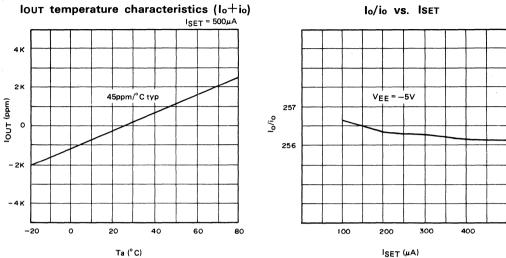
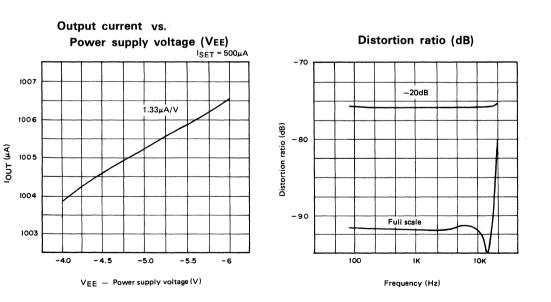




Fig. 5

SONY

Ta (°C)

- 36 -

CX20017

SONY

CX20018

Dual 16 bit 44 kHz Multiplexed A/D Converter

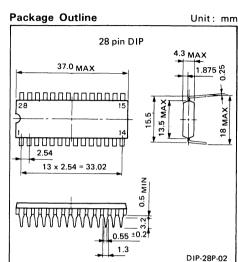
Description

The CX20018 is a monolithic bipolar IC designed for PCM (Pulse Code Modulation) audio. This IC consists of 16 bit counters, shift registers, clock buffer, clocked synchronous comparator, stabilized current source and TTL compatible interface circuits, etc.

Features

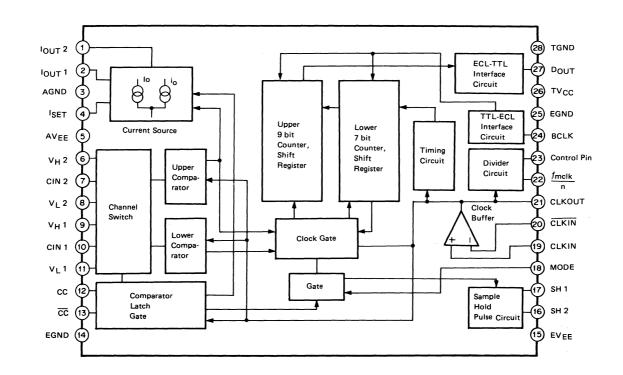
- · Line monotonicity
- · Low noise
- TTL compatible input/output
- Stereo or monaural modes can be selected by external control

Structure


Bipolar silicon monolithic IC

Absolute Maximum Ratings

 Supply voltage 	Vcc to Vee	12	V
 Operating temperature 	Topr	-20 to $+75$	°C
 Strange temperature 	Tstg	-50 to $+150$	°C
 Allowable power dissipation 	PD	1.7	W


Recommended Operating Conditions

 Supply voltage 	Vcc	4.75 to 5.25	V
	Vee	-5.25 to -4.75	V

*Note: Refer to page 311 (CX20018PCB) as the application note.

Block Diagram

CX20018

Electrical Characteristics

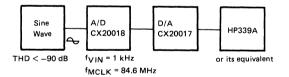
Electrical Charact	eristics			(Ta=25	°C, Vee=	=—5V,	Vcc=5V
Item	Symbol	Pin No. and Test Conditions	Min.	Тур.	Max.	Unit	Note
Supply Voltage Range ^{*1}	Vee		-4.75	-5.00	-5.25	V	1
Supply Voltage Range ^{*1}	Vcc		4.75	5.00	5.25	V	1
Circuit Current	IEE		70.0	102.0	130.0	mA	1
Circuit Current	Icc		4.0	10.0	15.0	mA	1
Current Output Pin Leak	IOLEAK	1, 2 (Pins 1, 2 Voltage=0V when current output is off)			1.0	μΑ	2
lout Output Current	lout	1, 2 (Pins 1, 2 Voltage=0V. Iset=410 μA)		1.64		mA	2
Current Ratio *2	lo/io	1, 2 (Iset=410 μA)	127.0	128.0	129.0		2
Maximum Iset Current	Iset Max.	4 127.0≦ <u>lo</u> ≦129.0			750	μΑ	2
Sample Hold Pulse High Level Output Voltage	Vsн1н Vsн2н	16, 17	-0.05	0	0.1	V	
Sample Hold Pulse Low Level Output Voltage	VSH1L VSH2L	16, 17	-4.40	-4.25	-3.50	V	
Clock Input Bias Voltage	Vclkin Vclkin	19, 20	-1.90	-1.72	-1.50	v	
Clock Output Low Level Output Current	ICLKOUTL	21		3.0	4.0	mA	
CC, CC Input Bias Voltage	Vccin Vccin	12, 13	-2.20	-1.92	-1.60	V	
Data Output High Level Output Voltage	VDOUTH	27 Іон=0.1 mA	3.2			V	
Data Output Low Level Output Voltage	VDOUTL	27 IoL=−0.4 mA			0.4	V	
Bit Clock High Level Input Voltage	VBCLKH	24	2.0			V	
Bit Clock Low Level Input Voltage	VBCLKL	24			0.5	V	
Bit Clock High Level Input Current	Івсікн	24		4		μΑ	
Bit Clock Low Level Input Current	IBCLKL	24	0.2	1		μΑ	
Distortion *3 Factor	THD .	During 0 dB (full scale) playback for both channel		0.005	0.006	%	3
		During —20 dB playback for both channel			0.05	%	3

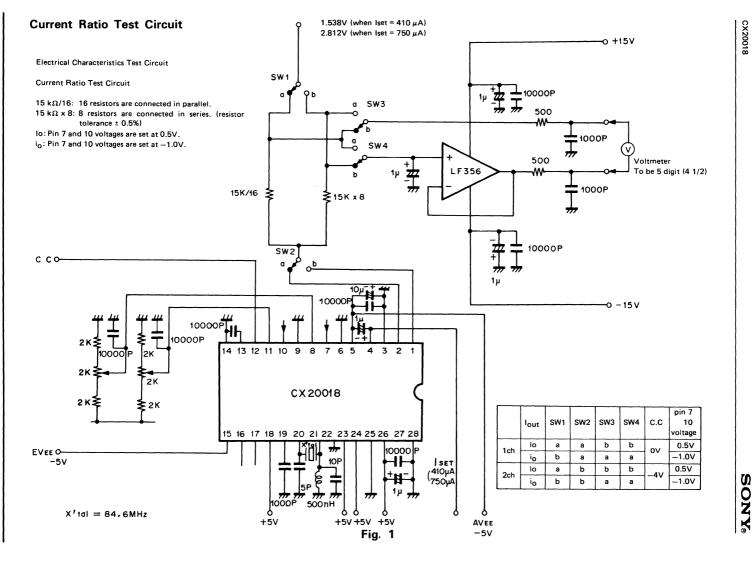
Item	Symbol	Pin No. and Test Conditions	Min.	Тур.	Max.	Unit
Maximum Operating Clock Frequency	fMCLK	Self-excitation or separate excitation			100	MHz
	Vст∟ (∞)	23	2.0		5.0	V
Dividing Ratio	Vctl (2)	23	0.2		0.8	v
Control Voltage	Vc⊺∟ (4)	23	-0.8		-0.2	v
	Vc⊤∟ (8)	23	-5.0		-2.0	V
	VMODE (1)	18 Stereo, S/H ON	2.0		5.0	V
Mode Control Voltage	VMODE (2)	18 Stereo, S/H OFF	0.2		0.8	v
	Vmode (3)	18 Monaural, S/H OFF	-0.8		-0.2	V
	Vmode (4)	18 Monaural, S/H ON	-5.0		-2.0	V

Note) 1 Pins 1, 2, 3, 6, 7, 8, 9, 10, 11, 14, 21, 25 and 28 are for grounding, pins 18, 22, 23, are connected V_{cc}. Pin 4 draws 410 μA of current by external current source.

2 Reference to the current ratio test circuit.

3 Conversion Frequency 44.1 kHz


Distortion Meter HP339A (all Filters are turned on) or its equivalent that has an 80 kHz, LPF, 30 kHz LPF and 400 Hz HPF.


*1 Recommended operating voltage

*2 In the current ratio test circuit (See Fig. 1)

 $|15 \times 8 (k\Omega) \times i_0 (\mu A) - \frac{15}{16} (k\Omega) \times I_0 (\mu A)| < 12.0 \text{ mV}$

*3 Measurement Method (See Note 3)

- 41 -

Description of CX20018 Conversion Process

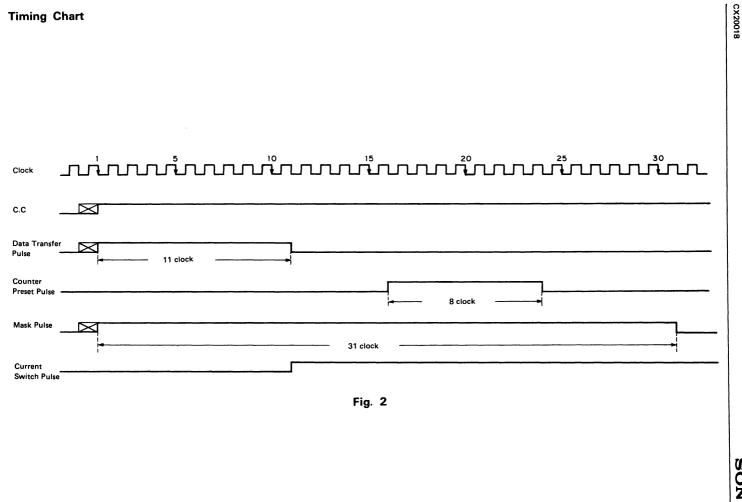
Conversion process

The timing circuit controls a conversion cycle and send "Data Transfer Pulse" to the 16 bit shift register for transmitting the last converted data. It is reset by both the edge of CC (Conversion Command), and the master clock pulse is fed to the timing circuit.

"Data Transfer Pulse" and "Mask Pulse" become "H" level as soon as the timing circuit starts to count clocks. "Data Transfer Pulse" becomes "L" when the timing circuit counts 11 clocks, and then the last data is transferred. Simultaneously, "Current Switch Pulse" becomes "H", and integral current starts to flow. "Counter Preset Pulse" becomes "H" when the timing circuit counts 16 clocks. And then, upper and lower level counters are reset. Counter Preset Pulse holds "H" level during the period of 8 clocks.

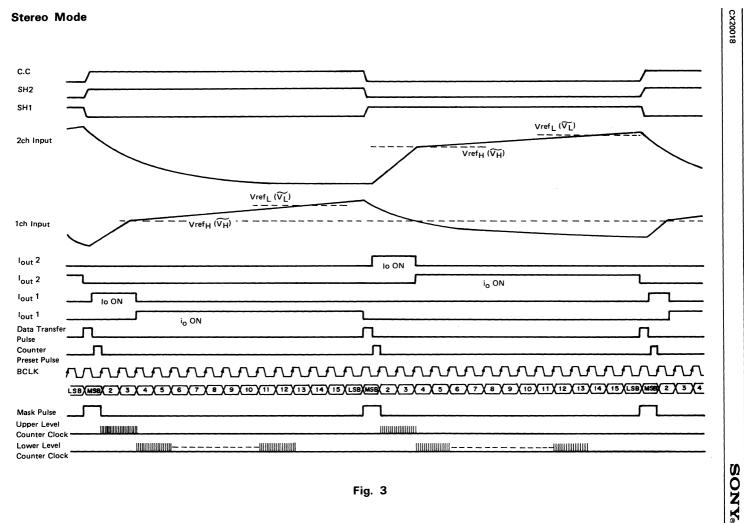
When the timing circuit counts 31 clocks, Mask Pulse becomes "L" and A/D conversion starts.

The coarse current "Io" discharges the sampled charge of integrator until the output voltage of integrator crosses the reference voltage (VrefH). During this period the upper level counter counts the number of clock. After crossing the VrefH the fine current discharges the remaining charge of integrator. The lower level counter counts the number of clock until the output voltage of integrator crosses the lower level references voltage (VrefL). (See Figs. 2, 3, 4)

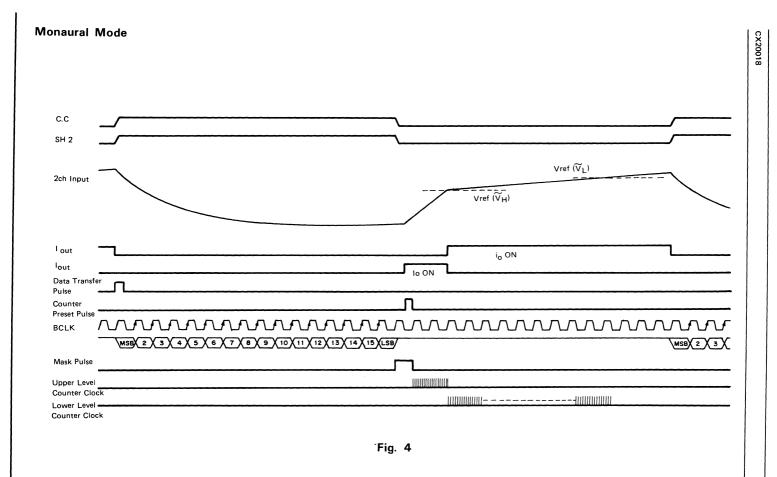

Data output

Data are 16 bit serial signals and 2's complement. The serial data are synchronous with a rising edge of Bit clock (BCLK), and only MSB data is synchronized with a edge of "Data Transfer Pulse". (See Fig. 3)

Monaural operation mode


In monaural mode the external integrator is tracking the input signal during CC is "H" state. At the moment when CC goes "L" state, the CX20018 starts conversion. The data is transferred to the output from MSB sequentially.

After 16 bit data are transferred, "Data Out" comes to the "H" level and keeps "H" level until next conversion. (See Fig. 4)



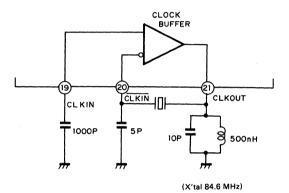
- 43 -

SONY

44 T

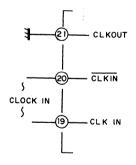
SONY

Interface Circuit, Divider Circuit, Sample Hold Circuit

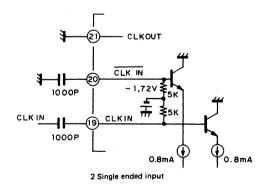

(1) Integral current output

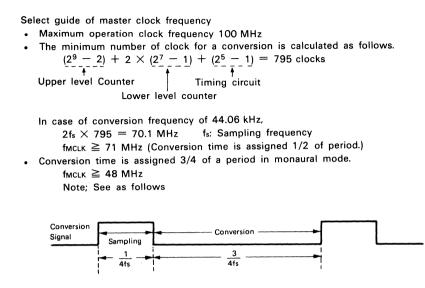
Recommended value; $I_{set} = 410 \ \mu A$ $\begin{pmatrix} I_0 = 4 \ I_{set} = 1.64 \ mA \\ I_0 = \frac{1}{32} \ I_{set} = 12.8 \ \mu A \end{pmatrix}$ $I_{set} = 750 \ \mu A$

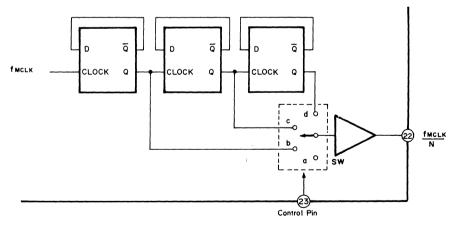
at C = 1000 pF fmcLk = 84.6 MHz full scale 10V

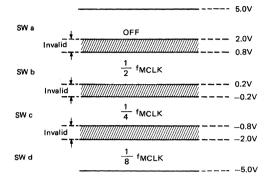

(2) Clock Buffer

(a) Internal clock (Excited circuit with crystal)





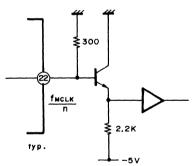

1 Balanced input



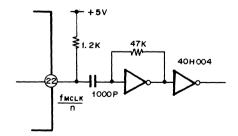
(3) fMCLK/N Output

The output of fMCLK/N is prepared for synchronous operation with digital circuit. Divided Value "N" is determined by external control, and N is 2, 4, 8 or ∞ .

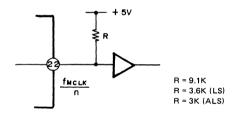
Basic Divider Block



N	V _{CTL} Range
8	$5.0V \ge V_{CTL} \ge 2.0V$
2	$0.8V \ge V_{CTL} \ge 0.2V$
4	–0.2V≧V _{CTL} ≧ –0.8V
8	–2.0V≧V _{CTL} ≧–5.0V


Threshould value of Control Pin

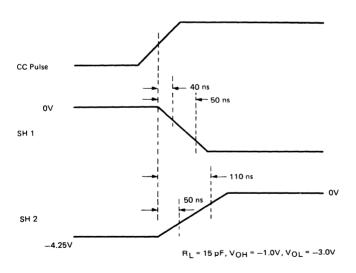
(4) Recommended Interface Circuit


(a) ECL 10k (N=2)

(c) High Speed CMOS (N=8)

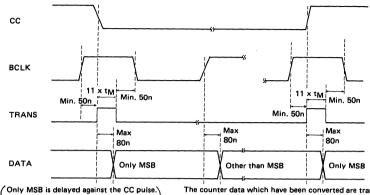
(b) TTLs (N=4 or 8)

CX20018


(5) Stereo mode, Monaural mode

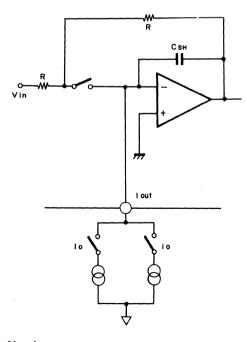
Stereo or Monaural modes can be selected by mode pin. And "ON" or "OFF" state of Sample Hold Pulse is selected similary.

This is illustrated in the following way.


S/H Pulse

Propagation Delay Times from CC input to SH1, SH2 output

SONY


(6) Data Out

Only MSB is delayed against the CC pulse. Others are delayed against the bit clock. t_M; One cycle of master clock The counter data which have been converted are transmitted to the shift register with the TRANS pulse. However, due to the circuit structure of the shift register, it cannot be transmitted unless the BCLK and TRANS are simultaneously at high.

Propagation Delay Time from CC or BCLK Data Out

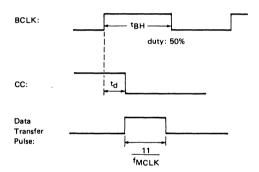
- (7) Relationship of Vin max, CSH, Iset, Io and io
 - (1) Vin is defined as the input voltage of integrator.
 - (2) Io, io are defined as the coarse and fine integral current respectively.
 - (3) In case of a full scale input voltage.

Vin max =
$$\frac{I_0}{CSH} \frac{\tau_0}{(2^9 - 1)} + \frac{i_0}{CSH} \frac{\tau_0}{(2^7 - 1)}$$

Using I₀ = 4I_{set}, i₀ = $\frac{1}{32}$ I_{set}
Vin max = $\frac{1}{32} \cdot \frac{I_{set} \tau_0}{CSH} (2^{16} - 1)$
Assuming, Vin max = 10 Vp-p, $\tau_0 = \frac{1}{f} = \frac{1}{84.6 \text{ MHz}}$
CSH = 1500 PF
 \therefore I_{set} = 620 μ A
 \therefore ILSB = $\frac{i_0 \tau_0}{CSH} = 152 \text{ uV}$

Note) In case of non-inverting operation, Vin Max. is limited to 5 Vp-p.

CX20018


(8) The maximum frequency of BCLK. The maximum frequency of BCLK is derived as follows:

$$f_{BCLK} = \frac{1}{2t_{BH}}$$

 $t_{BH} \geqq td + \frac{11}{f_{MCLK}} + 50^{ns}$ $O^{ns} \leqq td \leqq 100^{ns}$

Therefore,

 $\label{eq:bclk} \begin{array}{l} f_{BCLK} \leqq 1.7 \; \text{MHz} \; \text{on condition that the duty of BCLK is 50\%.} \\ f_{BCLK} \leqq 1.7 \; \times \frac{X}{50} \; \text{MHz} \; \text{on condition that the duty is X\%.} \end{array}$

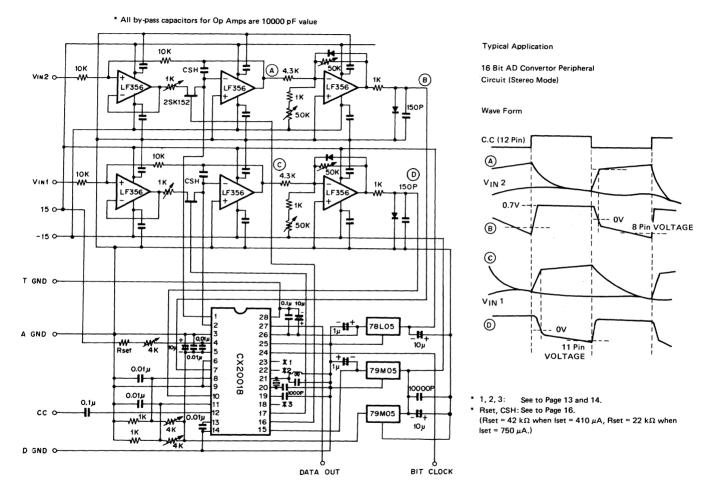


Fig. 5 16 bit A/D Converter Peripheral Circuit (Stereo Mode)

- 52 -

SONY

CX20018

Typical Application - Monaural Mode

16 Bit AD Convertor Peripheral Circuit (Monaural Mode)

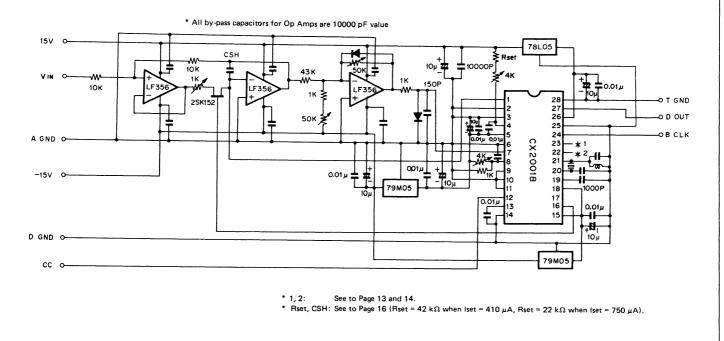


Fig. 6 16 bit A/D Converter Peripheral Circuit (Monaural Mode)

CX:20018

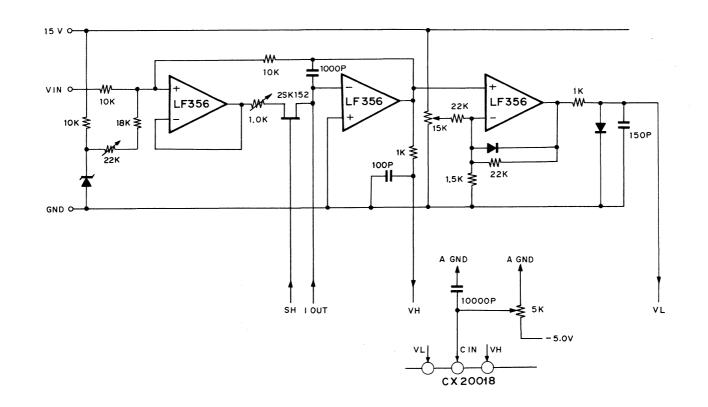
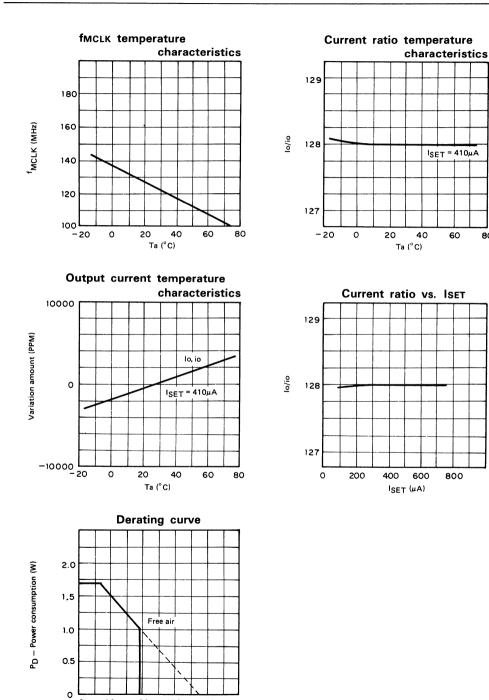



Fig. 7 Application Circuit (Non-inverting Circuit)

SONY®

- 54 -

Ambient temperature (°C)

SONY

CX20133

16 bit D/A Converter

Description

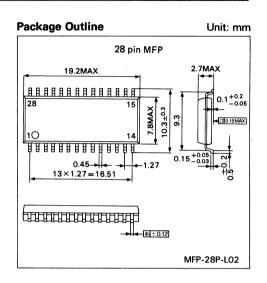
The CX20133 is a 16 bit D/A converter IC for PCM audio using the integrating formula. Analog signal is reproduced from the 16 bit digital signal by combining an integrator, analog switch and low-pass filter to the IC exterior. Following circuits are also built-in so that it can be operated in sync with the CX23035, LSI for CD (compact disc) system.

- Integrating current output
- Two channels of discharge signal output
- Level shifting for interface direct with TTL/MOS LSIs.
- Analog switch drive.

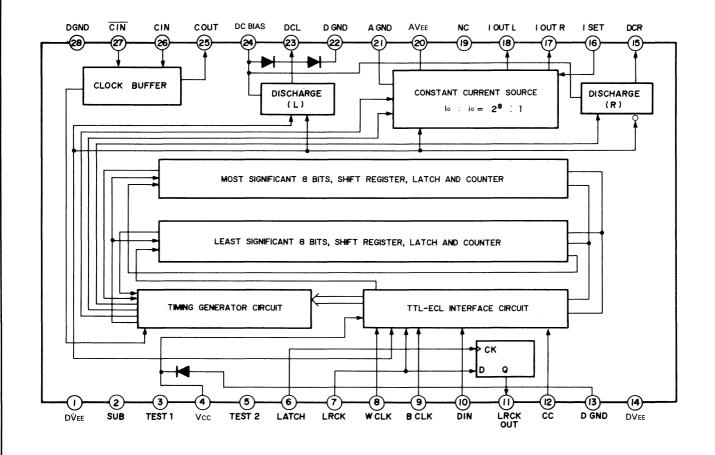
Features

- Miniature flat package requires only small mounting area.
- Conversion frequency of 44.1 kHz.
- Serial data input.
- Low distortion factor typically at 0.003%.

Structure


Bipolar Silicon Monolithic IC

Absolute Maximum Ratings (Ta = 25° C)


 Supply voltage 	VCC to VEE	12	V
 Operating temperature 	Topr	- 10 to +75	°C
 Storage temperature 	Tstg	-50 to +125	°C
Allowable power dissipation	PD	1.1	W

Recommended Operating Conditions

 Supply voltage 	Vcc	5 ± 0.25	v
	VEE	-5 ± 0.25	v

CX20133

Fig. 1

- 57 -

Pin Description

No.	Symbol	Description
1	DVEE	Power supply pin for the digital circuit. Applied with -5 V.
2	SUB	IC substrate. Always connected to 1 pin.
3	TEST 1	Test pin, normally open.
4	Vcc	Power supply pin for the digital circuit. Applied with +5 V.
5	TEST 2	Test pin, normally open.
6	LATCH	Clock pin of D-type clutch.
7	LRCK	LRCK input pin.
8	WCLK	WCLK input pin.
9	BCLK	BCLK input pin.
10	DIN	DIN (data input pin).
11	LRCK OUT	LRCK output pin.
12	сс	CC input pin.
13	DGND	Ground pin for the digital circuit.
14	DVEE	Power supply pin for the digital circuit. Applied with -5 V.
15	DCR	Output pin of R-channel discharge driving signal.
16	ISET	Pin for setting integration current.
17	IOUTR	Output pin for R-channel current.
18	IOUTL	Output pin for L-channel current.
19	NC	No connection.
20	AVEE	Power supply pin for the analog circuit.
21	AGND	Ground pin for the analog circuit.
22	DGND	Ground pin for the digital circuit.
23	DCL	Output pin for L-channel discharge driving signal.
24	DCBIAS	Bias pin for the discharge circuit.
25	СОИТ	Output pin for the clock oscillator.
26	CIN	Positive input pin for the clock oscillator.
27	CIN	Negative input pin for the clock oscillator.
28	DGND	Ground pin for the digital circuit.

SONY.

Electrical Characteristics

 $(Ta = 25^{\circ}C, VEE = -5.0V, Vcc = 1.0V)$

	T						
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Circuit current	IEE	1, 2, 14, 20	- 112	- 85		mA	1
Circuit current	lcc	4		9.5	12.5	mA	1
Input threshold voltage	Vтн	6, 7, 8, 9, 10, 12		2.1		v	
High-level input voltage	Viн	6, 7, 8, 9, 10, 12	2.8			v	
Low-level input voltage	VIL	6, 7, 8, 9, 10, 12			0. 8	v	
High-level input current	Ін	6, 7, 8, 9, 10, 12 VIH =4.5V			500	μA	
Low-level input current	հւ	6, 7, 8, 9, 10, 12 VIL = 0V			500	μΑ	
High-level output voltage	VLRCKH	11 Pin 7 = $4.5V$ IOH = -100μ A Pin 6:1 clock input:0V - 5V - 0V	2.7			v	
Low-level output voltage	VLRCKL	$11 \begin{array}{l} \text{Pin 7} = 0\text{V} \text{IoL} = 100\mu\text{A} \\ \text{Pin 6:1 clock input: } 0\text{V} - 5\text{V} - 0\text{V} \end{array}$			-2.7	v	
Clock input bias voltage	Vcin	26, 27		- 1.3		v	
Clock high-level output voltage	VCCR	25		- 0.8		v	
Clock low-level output voltage	VCOL	25		- 1.6		v	
Current output pin leak	lo LEAK	17, 18 Pins 17, 18: voltage = 0V when current output is off.			1.5	μA	
lo∪⊤ output current	Ιουτ	Pins 17, 18: voltage OV 17, 18 Pin 16 ISET 500μA (IoUT Io - io)		2.008		mA	
Current ratio * 1	la/io	17, 18 Pin 16 ISET = 250µA	255.0	256.0	257.5	-	2
Discharge circuit current dissipation	lDC	24 Set Pin 24 to 0V.	1.35	1.9	2.5	mA	
Discharge circuit high-level output voltage	Vdch	15, 23 Pin 24 voltage = $1.4V$ Load current = $-100\mu A$	0.27	0.45	0.77	v	
Discharge circuit low-level output voltage	VDCL	15, 23 Pin 24 voltage = $1.4V$ Load current = $-100\mu A$		-4.2	-3.5	v	
Maximum ISET current	ISET MAX	16 In the range when the IOUTL(R) current ratio satisfies 255<10/io<257			575	μA	
Distortion factor	тнр	Both right and left, OdB (full scale) reproduction 680Hz		0.003	0.005	%	3
Distortion ractor		Both right and left, – 20dB reproduction 680Hz		0.02	0.025	%	3
Operating clock frequency	fclk	Self-activating/Activated			36	MHz	

Note 1) Ground Pins 13, 17, 18, 21, 22, 24 and 28. Connect Pin 16 via a resistor of 5.1 k Ω and keep other pins open.

2) I₀ and i₀ must satisfy the relation below in the Current Ratio Test Circuit (Fig. 3): -3.9 (mV) < 1 (k Ω) × I₀ (μ A) - 256 (k Ω) × i₀ (μ A) < 5.9 (mV)

3) See the Test Circuit (Fig. 2).

Conversion frequency: 44.1 kHz

Input data: Use the 16 bit full-scale data (0 dB) generated by the data generator.

Distortion meter: Use the HP339A (with all filters on) or the like provided with 80 kHz LPF, 30 kHz LPF and 400 Hz HPF.

*1 In the Current Ratio Test Circuit (Fig. 3), $20(m)(1 < 1/(m)) \times lo(mA) = 256/(m)(1 + 1/(m))$

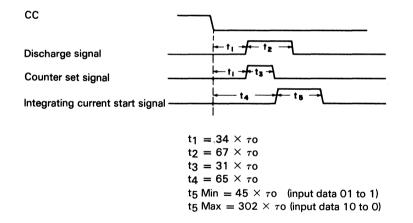
 $-3.9 (\textrm{mV}) < 1 (\textrm{k}\,\Omega) \times \textrm{lo}(\mu\textrm{A}) - 256 (\textrm{k}\,\Omega) \times \textrm{io}(\mu\textrm{A}) < 5.9 (\textrm{mV})$

Description of the Conversion Operation

(1) Data call (BCLK, DIN, WCLK, LRCK). Refer to Fig. 6.

The data comes in 16 bit serial signal with 2's compliment. The data is sent sequencially into the IC beginning from MSB in sync with the rise of the bit clock (BCLK). (The data change represents the BCLK fall).

When the word clock (WCLK) is changed from the high-level to low-level at the 17th fall of BCLK, the 16 bit data is transferred from the shift register to the latch by the fall signal.


When the CX20133 is used in the stereo mode, data from other channels are sent in from the 17th BCLK.

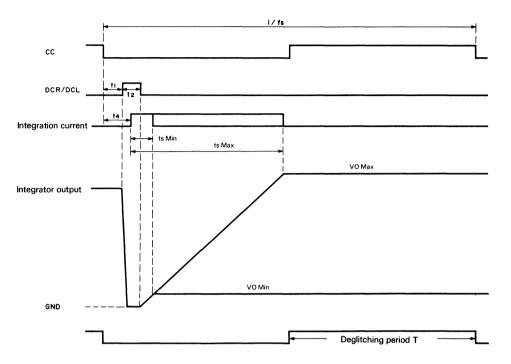
In the stereo mode, Rch data is called when LRCK at the low level and Lch data is called in when the LRCK is at the high level. IOUTL and DCL operate only when LRCK is at the low level and IOUTR and DCR operate only when LRCK is at the high level.

(2) Conversion operation (CC, LRCK, CIN, IOUTL, IOUTR, DCL, DCR)

When more than 3 clocks are input from the clock input (CIN) with conversion command at the high level, all inner timing circuits are reset.

After resetting, the inner timing circuit starts operation when a clock is input from CIN with CC at the low level. The three signal generated this way are the discharge signal, counter set signal and integrating signal. Time of these three signals is determined depending on the clock cycle and their number of quantity:

The counter set signal is to set the data input to the latch to the counter and it is not output externally.


The discharge signal is output from DCL and DCR and it is controlled by LRCK. It is output from DCL when LRCK is at the low level and from the DCR when LRCK is at the high level.

By the integrating current start signal, the upper current lo and lower current io start flowing. The counter starts counting from the preset value simultaneously when the discharge signal is off, measures the 11 offsets after completion of counting and outputs a signal to stop the integrating current.

The t5 value is varied between 0 and 255 by the preset input data in the counter.

Therefore, the conversion time from the start of low CC level to the completion of integrating requires t4 + t5 sec max.

The integrating current, like the discharge signal, is controlled by LRCK; IOUTL is output when LRCK is at the low level and IOUTR is output when LRCK is at the high level.

The Relation between Sampling Frequency fs and Clock

The maximum and minimum values of the integration voltage output, V $_0$ Max and V $_0$ Min, are expressed as follows:

 $V_{0} Max = \frac{I_{0}}{C} * \tau_{0} * 267 + \frac{i_{0}}{C} * \tau_{0} * 266 \qquad (t_{4} + t_{5} Max)$ $V_{0} Min = \frac{I_{0}}{C} * \tau_{0} * 12 + \frac{i_{0}}{C} * \tau_{0} * 11 \qquad (t_{4} + t_{5} Min)$

where fCLK is a clock frequency and τ is a period.

The integration voltage is held by the capacitor C in the integrator when the current is switched off. This voltage is used as D/A conversion output during the deglitching period T which is given according to the settling time of the deglitching circuit.

The relation between the conversion frequency fs and the clock frequency fCLK is given as below assuming that the conversion time and deglitching period are equivalent:

$$fs = \frac{fCLK}{2 \times (t_4 + t_5 Max)} = \frac{fCLK}{734}$$

where $f_s = 44.1$ kHz results in 32.4 MHz of fCLK.

It is, however, recommendable to specify f_s as the follow for the practical use because a settling time of 0.5 to 1.0 μ s is required for the integrator after the current for ts disappears:

$$fs = \frac{fCLK}{(t_4 + t_5 Max + 1.0 (\mu s)) + T}$$

CX20133

SONY.

(3) Integration current setting (ISET, IOUTL, LOUTR)

Integration current is determined by a constant current value input through the ISET pin, which is given as below:

IOUTL (R) =
$$I_0 + i_0$$

= $(4 + \frac{1}{64})$ ISET

where io and lo are integration currents corresponded to the ILSB and 28 LSB, respectively.

If D_0 and D_{15} are specified as MSB and LSB, respectively, integrator output voltage V_0 is given by the following equation:

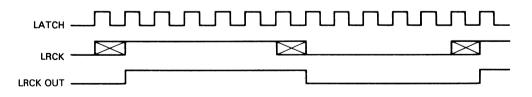
$$V_{0} = \frac{I_{0}}{C} (D_{0} * 2^{7} + \overline{D}_{1} * 2^{7} + \dots + \overline{D}_{7} * 2^{0} + 12) \tau_{0}$$

+ $\frac{I_{0}}{C} (\overline{D}_{8} * 2^{7} + \overline{D}_{9} * 2^{6} + \dots + \overline{D}_{15} + 2^{0} + 11) \tau_{0}$

where ISET = 500μ A, $\tau_0 = \frac{1}{35}$ (MHz) = 28.6 (ns) and C = 2000 pF result in the maximum output voltage V₀ Max of the integrator when any of a value from 10 to 0 is given as an input data. Based on the relations below,

 $i_0 = \frac{1}{64}$ *ISET,

Vo Max is calculated as the follow:


$$V_{0} Max = \frac{2.0 \times 10^{-3}}{2000 \times 10^{-12}} * 267 * 28.6 \times 10^{-9} + \frac{500 * 10^{-6}/64}{2000 \times 10^{-12}} * 266 * 28.6 \times 10^{-9} = 7.67 \text{ (V)}$$

(4) Operation of LRCK OUT

The LRCK OUT is an output for the analog switch IC (equivalent to MC14053B) drive to clip the output converted by the CX20133 and integrator as a PAM wave.

A PAM wave jitter may cause a conversion error and a D-type flip-flop is incorporated to eliminate this jitter; the LATCH input is used as a clock for the flip-flop.

This D-type flip-flop changes the output status in sync with the clock rise. The LRCK OUT operates only when +5 V is applied to Vcc. The output voltage level ranges from -2.7 V to +2.7 V enough to drive the CMOS analog switch effectively.

Timing of LATCH, LARCK and LRCKO

(5) Clock input/output pin (COUNT, CIN, CIN)

The clock buffer consists of a circuit equivalent to a general-purpose ECL logic circuit, with its input pin biased by the internal bias circuit. The (≈ -1.3 V) output amplitude level is 0.8 V.

(6) Bias pin (DVEE, SUB, DGND, VCC, AVEE, AGND, DC BIAS)

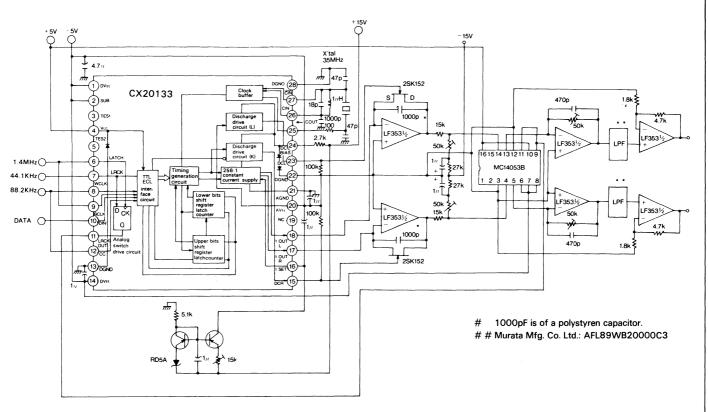
SUB is used at the common potential with DVEE. A standard value for the DVEE and AVEE is -5.0 V.

The CX20133 is devised so that it can operate when voltage at the digital input pin has a value between either 0 to -5 V or 0 to +5 V. When operated with an input between 0 and +5 V, +5 V must be applied to Vcc. In this case, LRCK OUT is output as mentioned above.

When operated with an input between 0 to -5 V, Vcc must be set open.

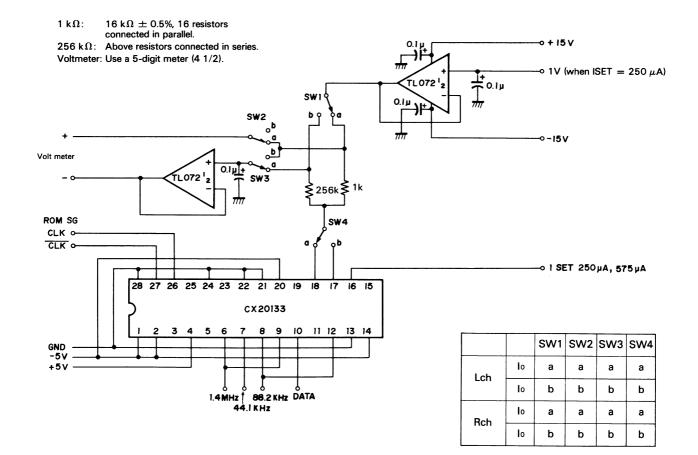
DC BIAS is for the bias circuit of the discharge signal output circuit. Supply current of (2.5 mA $+\alpha$) from a power supply of +5 V or above, because this pin requires approx. 2.5 mA current as a standard value. The potential at the pin is biased at 2 Vf.

A value α can be determined according to the following procedures. Approx. 0.5 mA current is necessary to retain 2 Vf (approx. 1.4 V) at this pin. The maximum current that flows through the load resistor RL attached to DCR (15 Pin) and DCL (23 Pin) is calculated as the follow:


 $1/RL \times (VDCH + |DVEE|)$

The above equation results in 1.15 V where RL=4.7 k Ω , VDCH=0.4 V and DVEE=-5 V are specified. Then α is calculated as

 $\alpha = 0.5 + 1.15 = 1.65$ (mA),


and required current is then obtained as 4.15 mA. Recommended value is 5 mA for RL=4.7 k Ω .

Application Circuit and Test Circuit

SONY

CX20133

SONY

CX20133

Sample/Hold Circuit for Deglitching

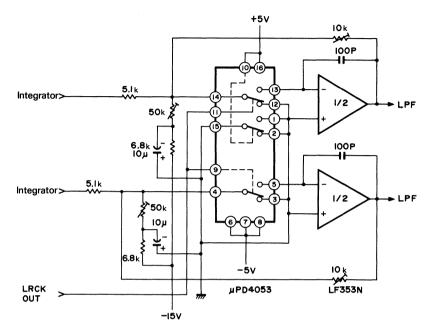
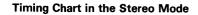
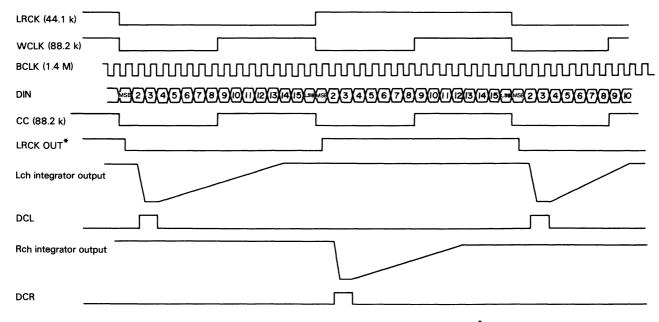
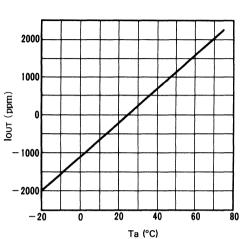
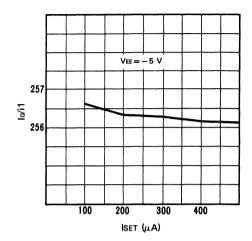




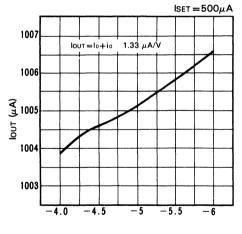
Fig. 4


- 67 -

* When LATCH input is used as BCLK.

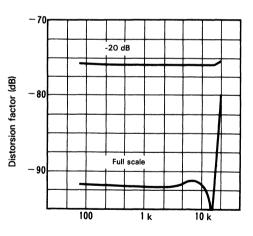

SONY.

CX20133



Temperature characteristics of Iout (Io+io) (R, Lch common)

lo/io vs. ISET



Output current vs. Supply voltage (VEE)

VEE - Supply voltage (V)

Distortion factor

Frequency (Hz)

SONY₈

CX20152

Dual 16 bit 88 kHz Multiplexed D/A

Description

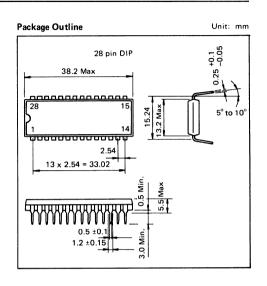
CX20152 is a 16-bit D/A converter IC for PCM audio. It uses an integration system consisting of the following circuits.

- Clock signal generator
- TTL-ECL interface circuit
- Discharge drive circuit
- Analog switch drive circuit
- 1/4 frequency divider output circuit

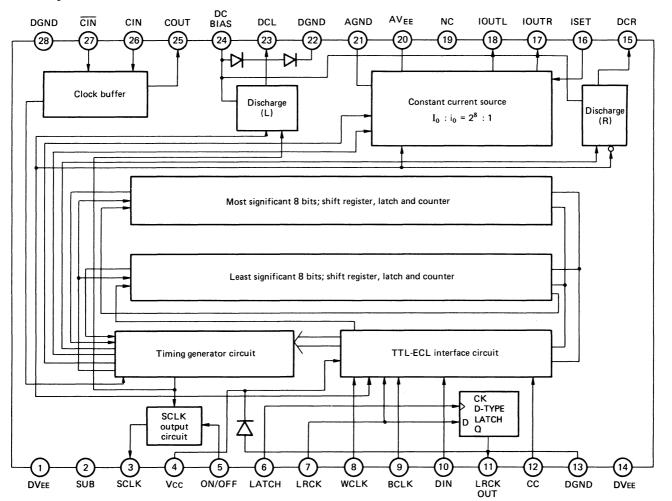
By adding an integrator, analog switch and low pass filter externally to the IC, analog signal is reproduced from the 16-bit digital data.

Features

- Conversion frequency
 88.2kHz
- Serial data input
- Low distortion factor 0.003% (typ.)
- 1/4-division output of the master clock is available for the clock of the CX23035, an single-chip LSI for CD, and the digital filter CX23034.


Structure

Bopolar Sillicon Monolithic IC


Absolute Maximum Rating

 Supply voltage Operating temperature 	VCC to VEE Topr	12 20 to +75	۷ °C
Storage temperature	Tstg		°č
Allowable power dissipation	PD	2.1	w
Recommended Operating Condi	tions		
Cupply voltage	Maa	E +0 25	~ ~ ~

 Supply voltage 	VCC	5 ±0.25	v
	VEE	-5 ±0.25	v

Block Diagram

- 70 -

SONY

CX20152

CX20152

Pin Description

No.	Symbol	Description			
1	DVEE	Digital VEE: 5V			
2	SUB	IC substrate: Be sure to connect to Pin 1.			
3	SCLK	System clock output pin			
4	Vcc	Digital Vcc: +5V			
5	ON/OFF	Pin to determine the system clock on/off			
6	LATCH	Clock pin of D type latch			
7	LRCK	LRCK input pin			
8	WCLK	WCLK input pin			
9	BCLK	BCLK input pin			
10	DIN	DIN (data input pin): MSB first			
11	LRCK OUT	LRCK output pin			
12	сс	CC input pin			
13	DGND	Digital ground			
14	DVEE	Digital VEE: – 5V			
15	DCR	Right channel discharge drive signal output pin			
16	ISET	Integration current setting pin			
17	IOUTR	Right channel current output pin			
18	IOUTL	Left channel current output pin			
19	NC	No connection			
20	AVEE	Analog VEE			
21	AGND	Analog GND			
22	DGND	Digital GND			
23	DCL	Left channel discharge drive signal output pin			
24	DC BIAS	Discharge circuit bias pin			
25	COUT	Clock generator output pin			
26	CIN	Clock generator positive input pin			
27	CIN	Clock generator negative input pin			
28	DGND	Digital GND			

No.	Symbol	Equivalent Circuits
1	DVEE	
2	SUB	
3	SCLK	V _{CC} (4)
4	Vcc	
5	ON/OFF	ON/OFF 5 470 50k 70k 30k UVEE 14

CX20152 Input/Output Pin Equivalent Circuits

CX20152

No.	Symbol	Equivalent Circuit
6	LATCH	
7	LRCK	
8	WCLK	
9	BCLK	
10	DIN	▲ \$ 60k ▲ \$ 20k
12	сс	DVEE (14)

CX20152

SONY.

No.	Symbol	Equivalent Circuits
11	LRCK OUT	Vcc (1) LRCK OUT LRCK OUT
13	DGND	
14	DVEE	
15	DCR	
23	DCL	
24	DC BIAS	DVEE 1

No.	Symbol	Equivalent Circuits
22	DGND	
16	ISET	2) AGND ISET (16) 2k 2k (20) AVEE
17	IOUTR	
18	IOUTL	
19	NC	
20	AVEE	
21	AGND	

No.	Symbol	Equivalent Circuit
25	соит	
26	CIN	
27	CIN	
28	DGND	

Electrical Characteristics

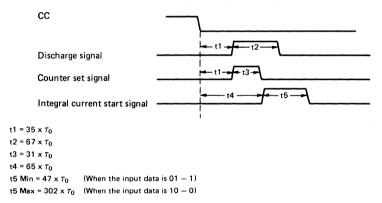
$(Ta = 25^{\circ}C, V_{EE} = -5.0V, V_{CC} = 5.0V)$

			,			
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Circuit current	IEE	1, 2, 14, 20 Pins 4, 5 = 5V	-125	-95		mA
Circuit current	Icc1	4 Pin 5 = 5V (6, 7, 8, 9, 10, 12, GND)		12.6	15.5	mA
Circuit current	ICC2	4 Pin 5 = 0V (6, 7, 8, 9, 10, 12, GND)		5.9	10.0	mA
Input threshold voltage	Vтн	6, 7, 8, 9, 10, 12		2.1		v
High level input voltage	Viн	6, 7, 8, 9, 10, 12	2.9			v
Low level input voltage	VIL	6, 7, 8, 9, 10, 12			0.9	v
High level input current 1	liH1	5 VIH = 5V		0.7	1.3	mA
High level input current 2	liH2	6, 7, 8, 9, 10, 12 VIH = 5V		250	550	μA
Low level input current 1	k∟1	5 VIH = 0V		0.35	0.8	mA
Low level input current 2	lil2	6, 7, 8, 9, 10, 12 VIL = 0V		120	550	μA
High level output voltage	VLRCKH	$\label{eq:hardward} 11 \qquad \begin{array}{l} \mbox{With Pin 7 at 4.5V, set } I_{OH} = -100 \mu A \mbox{ and input} \\ \mbox{a clock of } 0V - 5V - 0V \mbox{ to Pin 6}. \end{array}$	2.7	4.2		v
Low level output voltage	VLRCKL	11 With Pin 7 at 0V, set I_{OL} = 100µA and input a clock of 0V-5V-0V to Pin 6.		-3.1	-2.7	v
SCLK output, high level	VSCLKH	3 Іон = - 10µА	3.4	4.2		v
SCLK output, low level	VSCLKL	3 Ιοι = 400μA		0.5	1.6	v
Discharge circuit power dissipation current	IDCBIAS	24 VDCBIAS = OV		1.9	2.5	mA
Discharge circuit high level output voltage	Vdch	15, 23 Load current = 1.3V	0	0.4	0.65	v
Discharge circuit low level output voltage	VDCL	15, 23 Pin 24 voltage = 1.3V Load current = 1.2mA		-4.2	-3.4	v
ISET current	ISET	16		0.5	1.0	mA
IOUT output current	Ιουτ	17, 18 Pins 17, 18: Voltage = 0V Pin 16: ISET = $500\mu A$ (lout = lo + io)		2.008		mA
Clock input bias voltage	VCIN	26, 27		-1.3		v
Clock high level output voltage	Vсон	25		-0.8		v
Clock low level output voltage	Vcol	25		-1.6		v
Current output pin leakage	lo LEAK	17, 18 Pins 17, 18: Voltage = 0V when the current output is off.			1.5	μA
Current ratio	lo/io	17, 18 Pin 16: ISET = 500µA	255.0	256.0	257.5	-
Distortion factor	THD1	Both right and left; OdB (full scale) when reproduced.		0.003	0.005	%
	THD2	Both right and left; -20dB when reproduced.		0.02	0.025	%
Operation clock frequency	fclk1	Both self-drive & external-drive Ta = $-20 \sim +70^{\circ}$ C		68	80	MHz
Operation clock frequency	fclk2	Both self-drive & external-drive Ta = $-20 \sim +75^{\circ}$ C		68	75	MHz

Description of Conversion Operation

(1) Data pickup (BCLK, DIN, WCLK, LRCK)

Data consist of 16-bit serial signals in 2's complement. They are transmitted into the IC sequentially from the MSB in synchornization with the rise edge of the bit clock (BCLK). (The BCLK delay will change the data. The falling edge changes the data.)


When the word clock (WCLK) is changed from high level to low level at the 17th BCLK, the 16-bit data is transferred from the shift register to the latch with the decay signal. When CX20152 is used in the stereo mode, other-channel data are transmitted from the 17th BCLK.

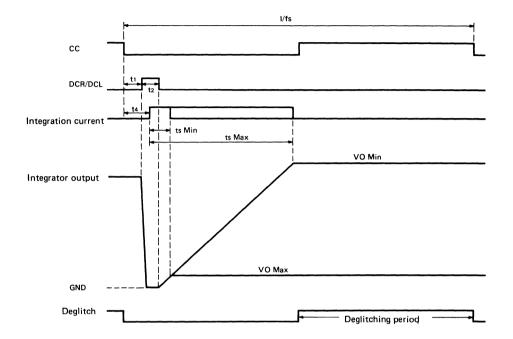
In the stereo mode, the Rch data is picked up when LRCK is at a low level and the Lch data is picked up when LRCK is at a high level. IOUTL and DCL operate only when LRCK is at a low level, and IOUTR and DCR operate only when LRCK is at a high level.

(2) Conversion operation (CC, LRCK, CIN, IOUTL, IOUTR, DCL, DCR)

When more than 3 clocks are fed from the clock input (CIN) with the conversion command (CC) at a high level, all the internal timing circuits are reset.

After the resetting, the internal timing circuit starts operation when a clock is input from CIN with CC at a low level. From this operation, three signals, Discharge, Counter set and Integral current Start, are generated. Timing of these signals is determined as follows by the clock interval τ_0 and its quantity.

The counter set signal is used to set the data input in the latch to the counter but does not output externally.


The discharge signal is output from DCL and DCR and controlled by LRCK. It is output from DCL when LRCK is at a low level and from DCR when LRCK is at a high level.

The integral current start signal starts the upper current lo and lower current io flowing. The counter starts counting from the preset value simultaneously when the discharge signal is off, counts 11 offsets after the end of the counting and outputs a signal to stop the integration current. The value t_5 is varied between 0 to 255 by the input data value preset to the counter.

Therefore, the time before the end of the integration after the low level has been set, i.e. the conversion time, requires the maximum ($t_4 + t_5 M_{ax} = 367 \times \tau_0$) seconds.

The integration current of IOUTL is output, as with the discharge signal, when LRCK is at a low level; IOUTR is output when LRCK is at a high level.

CX20152

(3) The relation between sampling frequency fs and clock

The maximum and minimum values of the integration voltage output, $V_{O\ Max}$ and $V_{O\ Min}$, are expressed as follows.

 $V_{O Max} = \frac{I_0}{C} * \tau * 267 + \frac{I_0}{C} * \tau * 266 \qquad (t_4 + t_5 Max)$

Vo Min = $\frac{I_0}{C} * \tau * 12 + \frac{i_0}{C} * \tau * 11$ (t₄+t₅ Min)

where f_{CLK} is a clock frequency and τ is a period.

The integration voltage is held by the capacitor C in the integrator when the current is switched off. This voltage is used as D/A conversion output during the deglitching period T which is given according to the settling time of the deglitching circuit.

The relation between the conversion frequency f_s and the clock frequency F_{CLK} is given as below assuming that the conversion time and deglitching period are equivalent:

$$fs = \frac{f_{CLK}}{2 \times (t_4 + t_5 M_{ax})} = \frac{f_{CLK}}{734}$$

where fs = 44.1 kHz results in 32.4 MHz of f_{CLK}

CX20152

It is, however, recommendable to specify f_s as the follow for the practical use because a settling time of 0.5 to 1.0 μ s is required for the integrator after the current for t_s disappears:

SONY

$$f_{S} = \frac{f_{CLK}}{(t_4 + t_5 Max + 1.0(\mu s) + T)}$$

(4) Integration current setting (ISET, IOUTL, IOUTR)

Integration current is determined by a constant current value input through the ISET pin, which is given as below:

IOUTL (R) =
$$I_0 + i_0 = (4 + \frac{1}{64})$$
 ISET

where i_0 and I_0 are integration currents corresponded to the ILSB and $2^8 \cdot LSB$, respectively.

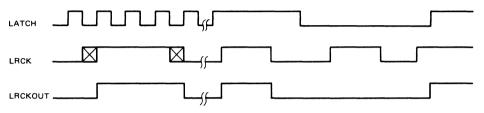
If D_0 and D_{15} are specified as MSB and LSB, respectively, integrator output voltage V_0 is given by the following equation:

$$V_{0} = \frac{I_{0}}{C} (D_{0} * 2^{7} + \overline{D}, *2^{7} + \dots + \overline{D}_{7} * 2^{0} + 12)\tau_{0}$$

$$+ \frac{I_{0}}{C} (\overline{D_{8}} * 2^{7} + \overline{D_{9}} * 2^{6} + \dots + \overline{D_{15}} * 2^{0} + 11)\tau_{0}$$

where ISET = 500 μ A, $\tau = \frac{1}{35 \text{ (MHz)}}$ = 28.6 (ns) and C=2000 pF result in the maximum output voltage Vo Max

of the integrator when any of a value from 10 to 0 is given as an input data. Based on the relations below,


$$I_0 = 4^* ISET$$

 $i_0 = \frac{1}{64} * ISET$

VO Max is calculated as the follow:

Vo Max =
$$\frac{2.0 \times 10^{-3}}{2000 \times 10^{-12}}$$
*267*28.6 x 10⁻⁹
+ $\frac{400^{*}10^{-6}/64}{2000 \times 10^{-12}}$ *266*28.6 x 10⁻⁹

(5) LRCK OUT operation (LATCH, LRCK, LRCK OUT)

The LRCK OUT is a drive output of the analog switch IC (equivalent to MC14053B) to clip the output converted by CX20152 and the integrator so that the converted output can be a PAM wave. When the PAM wave has a jitter, a conversion error results. To absorb this jitter, a D-type latch is built-in and the LATCH input is used as its clock. The D-type latch varies the output state in synchronization with the rise of the clock. In the high-speed conversion (with sampling frequency of 88.2kHz), the clock frequency is as high as about 70MHz. This will affect the delay time of the analog switch IC; it is possible the delay time becomes equal to t_1 . Then, the last part of the PAM wave overlasps on the discharge time causing a considerable conversion error. In such a case, LRCK can output its level by keeping LATCH at a high level. The output voltage level ranges from -2.7V to +2.7V, enable to drive CMOS analog switch.

(6) Clock input/output Pin (COUT, CIN and CIN)

The clock buffer consists of a circuit equivalent to a general-purpose ECL logic circuit, with its input pin biased with an internal bias circuit (= -1.3V). The output amplitude level is 0.8V.

(7) Bias Pin (DVEE, SUB, DGND, VCC, AVEE, AGND and DC BIAS)

SUB denotes the IC substrate and its voltage potential should be common to that of DVEE . The standard value of DVEE and AVEE is -5.0V.

 V_{CC} is the power supply for the interface circuit from a CMOS or TTL level to the internal ECL logic. Its standard value is +5V.

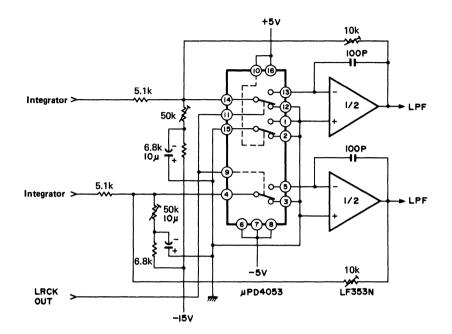
DC BIAS is the bias circuit of the discharge signal output circuit. As it requires about 2.5mA as its standard current, supply current should be 2.5mA + α . This pin voltage is biased to 2Vf and the value of α is determined as follows.

To maintain the pin voltage at 2Vf (\approx 1.4V), about 0.5 mA of current is required. Additionally, the maximum current flowing through the load resistor R_L attached to DCR (Pin 15) and DCL (Pin 23) is obtained from the following equation.

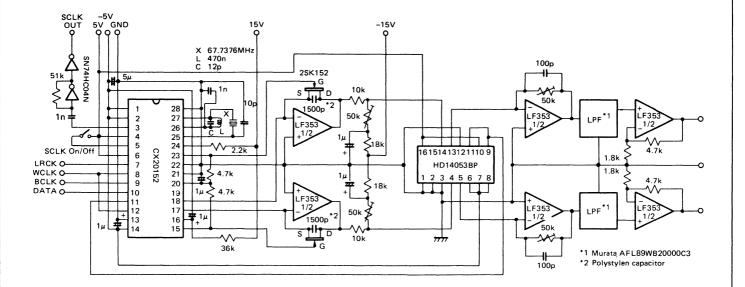
 $1/RL \times (VDCH + |DVEE|) \times 2$, where RL = 4.7kohm, VDCH = 0.4V and DVEE = -5V

Hence, $\alpha = 0.5 + 1.32 = 1.82$ (mA)

Therefore, the total current will be 4.32mA.


We recommend 5mA with R_L at 4.7 k Ω .

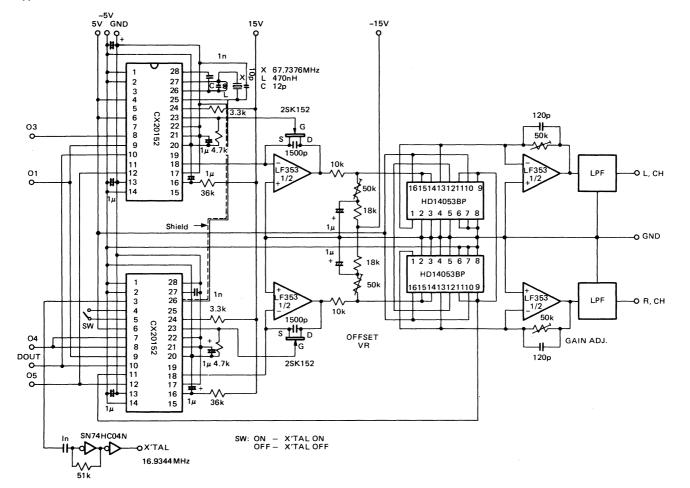
(8) System clock output pin, ON/OFF (SCKL, ON/OFF)


SCLK is the output pin of the 1/4 frequency divider of the oscillation circuit's master clock frequency. The frequency outputs when the ON/OFF pin is supplied with 5V (Vcc) and stops when the ON/OFF pin is supplied with 0V or set to open.

As its output amplitude is 2V and too low to be connected directly to a TTL or CMOS, be sure to amplify before connection.

Application Circuit for Operating Deglitcher in Sample/Hold Type

1

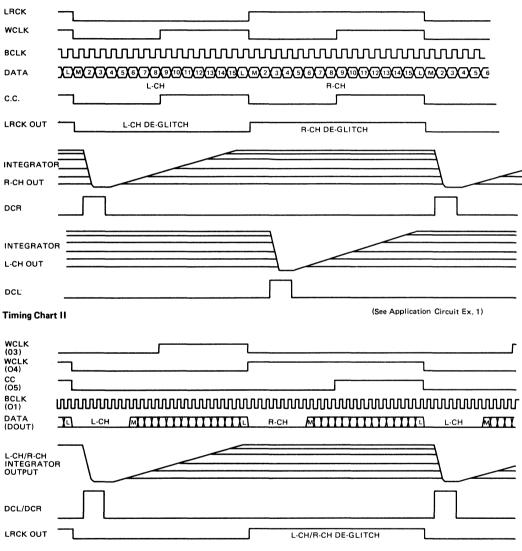

83

1

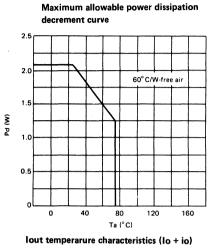
SONY,

CX20152

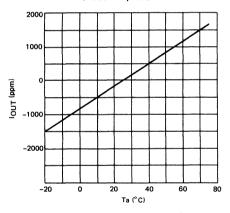
Application Circuit (Example 2)

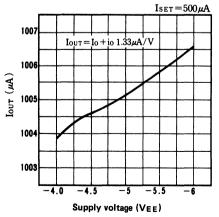

SONY.

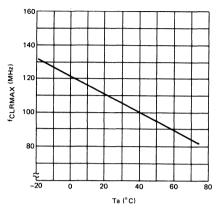
- 84 -

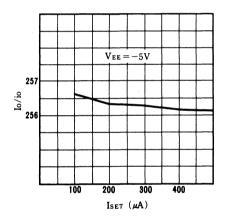

CX20152

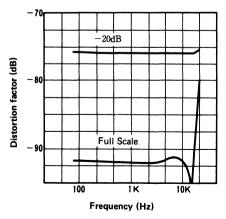
Timing Chart


CX20152


(See Application Circuit Ex. 2)


(Both of R, Lch)


Output current vs. Supply voltage (VEE)


Maximum clock frequency temperature characteristics

Io/io vs. ISET

SONY

CX23010/23060

Dual 10 bit 50 KHz Multiplexed A/D + D/A

Description

The CX23010/CX23060 are the 10 bit, 50 kHz CMOS A/D, D/A Converters for Auido digital signal processing, using a coarse-fine integration technique. Both Analog to Digital and Digital to Analog Conversions are capable with selecting the mode. It can be separated into 2 blocks. One is a digital block includes

- Digital block includes
 - A digital limiter
 - A counter
 - A timing generation circuit
- Analog block includes
 - A current source
 - An operational amplifier
 - A comparator
 - A multiplexer (2-channel)

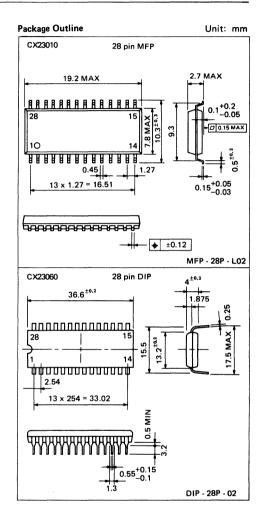
Features

- A Single Power Supply: V_{DD} 5V
- Minimum number of external parts required (Around one-third compared with our current A/Ds)
- Two channel audio A/D, D/A processing (L and R Channels)
- · 2's Complementary digital code is employed
- · Low Power consumption (Less than 50 mW)

Structure

Silicon Gate CMOS IC

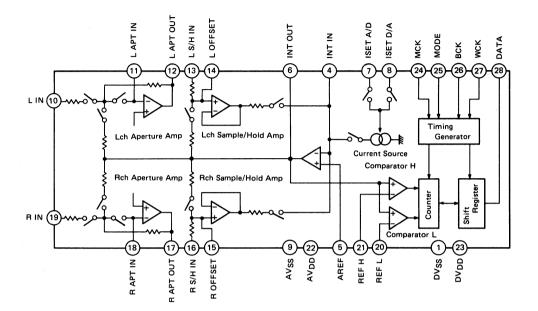
Applications


- Digital Audio Signal Processing
- PCM Audio Processing
- Telecommunications Digitizing
- Computer Interface System

Absolute Maximum Ratings ($T_a = 25^{\circ}C$)

	-		
•	Supply voltage	Vdd	0.3 to 7.0 V
•	Analog input voltage	VIN	–0.3 to V _{DD} + 0.3 V
•	Operating temperature	Topr	–20 to+75 °C
•	Storage temperature	T _{stg}	–55 to+150 °C
٠	Allowable power		
	dissipation	PD	650 mW for CX23010
		PD	800 mW for CX23060

Recommended Operating Conditions


(1) AV _{DD} , DV _{DD}	4.5 to 5.5	v
$^{(2)}$ AV _{DD} \leq DV _{DD} + 0.5		v

CX23010/23060

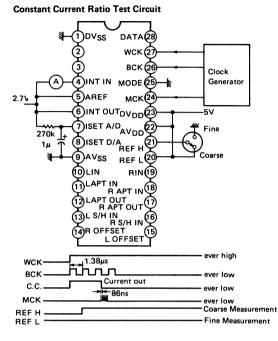
SONY.

Block Diagram

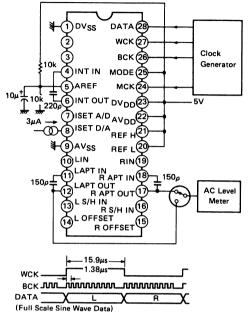
CX23010/23060

Pin Description

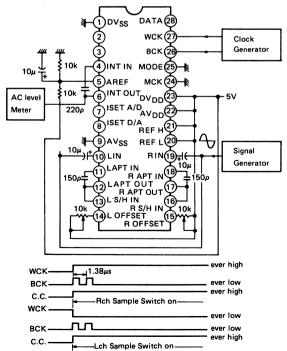
No.	Symbol	1/0	Description	DC potential
1	DVSS		Digital ground pin.	
4	INT IN	I	Operational amplifier inverted input pin for integrator, and connection pin for constant current switching.	2.44 to 2.57V
5	AREF	I	Operational amplifier non-inverted input pin for integrator and aperture. Analog reference voltage VA is input.	2.44 to 2.57V
6	INT OUT	0	Operational amplifier output pin for integrator. Connecting a capacitor between this and INT IN (Pin 4) will make an integrator.	
7	ISET A/D	ı	Integrating current setting pin during A/D conversion. 5µA reference current is input.	1.2 to 1.3V
8	ISET D/A	I	Integrating current setting pin during D/A conversion. $2.8\mu A$ reference current is input.	1.1 to 1.2V
9	AVSS		Analog ground pin.	
10 19	L IN R IN	I	L/R channel analog signal input pins. Less than $-10dBs$ is proper for the maximum input level. Input impedance is about $3.5 K \Omega.$	
11 18	L APT IN R APT IN	I	L/R channel operational amplifier inverted input pins for aperture. Input inpedance is about 4.4 k Ω_{\cdot}	
12 17	L APT OUT R APT OUT	ο	L/R channel operational amplifier output pins for aperture. Connecting capacitors with L/R APT IN (pins 11 & 18) will make aperture amplifiers.	
13 16	L S/H IN R S/H IN	1	L/R channel sample-hold amp input pins. Input impedance is about 10 k Ω . Less than -4.6 dBs is suitable for the maximum input level.	
14 15	L OFFSET R OFFSET	1	L/R channel DC offset correction pins during A/D conversion. Connecting variable resistors to the external reference power supply will correct the DC offset.	
20	REFL	1	Lower comparator comparison voltage input pin.	3.50 to 3.67V
21	REF H	1	Higher comparator comparison voltage input pin.	3.30 to 3.50V (When REF = 2.7V)
22	AV _{DD}		Analog power supply voltage pin. Latch-up prevention resistor 10 Ω is recommended.	
23	DVDD		Digital power supply voltage pin.	
24	мск	I	Master clock input pin. About 11.6 MHz (736 f_H) is suitable for 8 mm video.	
25	MODE	I	Mode select input pin. Selectable between A/D conversion at "L" level and D/A conversion at "H" level.	
26	вск	1	Bit clock input pin. It is used as a shift clock to transfer data by shift register. About $630~{\rm kHz}~(40f_{\rm H})$ is suitable for 8 mm video.	
27	WCK	1	Word clock input pin. It is used as an L/R channel identification signal of data. (R channel at "L" level and L channel at "H" level). About 31.5 kHz $(2f_H)$ is proper for 8 mm video. It must be input in sync with the rise edge of BCK.	
28	DATA	1/0	Data input/output pin. When MODE is "L", LSB-leading 10-bit data is output in sync with the rise edge of BCK. When MODE is "H". LSB-leading 10-bit data is input in sync with the fall edge of BCK. The data coding is in 2's complement.	

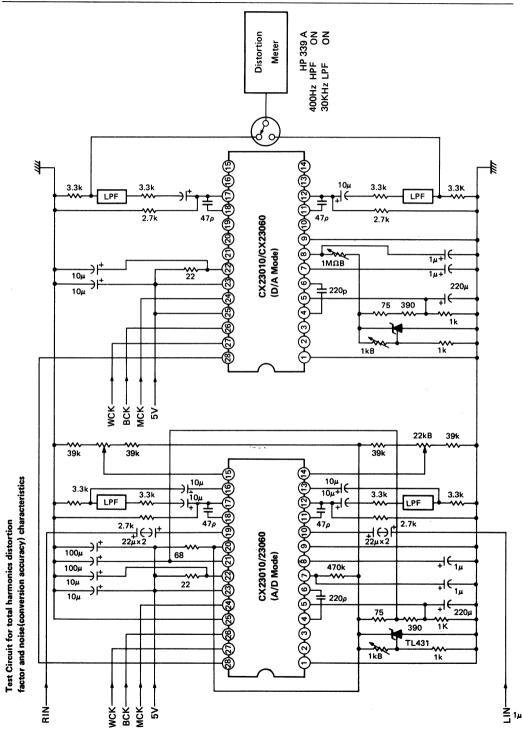

SONY

Electrical Characteristics

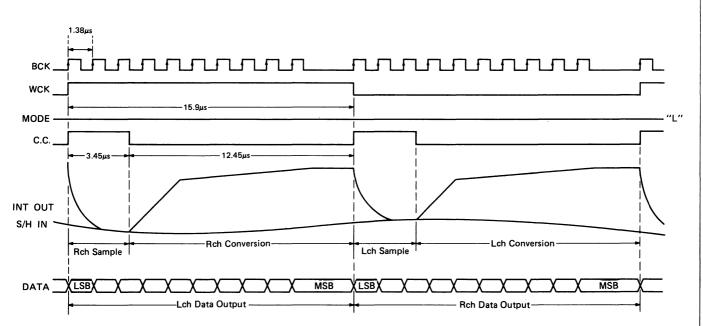

lectrical Cha	aracteristics		(т	a = 25°	C AV _{DD}	, DV _{DC}) = 5.0V
n kanan 1976 ministra di Kabumanan ang ka	Item	Symbol	Condition	Min.	Тур.	Max.	Unit
	Frequency	FMCK			11.6	19.0	MHz
Master	Input Voltage	VMCK		2.5	3.0	5.3	V _{P-P}
Clock	Input Threshold	тнмск		1.0	1.5	2.0	V
	Duty	DMCK		30	50	70	%
	Frequency	FMCK			31.5	50	kHz
Word	Input Voltage	VWCK		3.5	5.0	5.3	V _{P-P}
Clock	Input Threshold	тниск		2.0	2.5	3.0	V
	Frequency	FBCK			630	1000	kHz
Bit	Input Voltage	VBCK		3.5	5.0	5.3	V _{P-P}
Clock	Input Threshold	ТНВСК		2.0	2.5	3.0	٧
Mode	Input Voltage	VMOD		0		5.3	٧
Select	Input Threshold	THMODE		2.0	2.5	3.0	v
	Analog Signal Input	LIN				-10	dBs
	Sample Hold Input	L S/H IN R S/H IN				-4.6	dBs
Input	Upper Comparator Reference Input	V _H	V _L = 3.6V	3.31	3.40	3.50	v
Voltage	Lower Comparator Reference Input	VL		3.50	3.60	3.67	v
	Analog Reference Voltage	VA	V _L = 3.6V	2.44	2.50	2.57	v
Input	A/D Integration	I _{A/D}	FMCK = 11.6 MHz, C = 220PF	4.5	5.0	5.6	μA
Current	D/A Integration	I _{D/A}	FMCK = 11.6 MHz, C = 220PF	2.3	2.8	3.3	μA
	A/D Integration	VI	L S/H IN/R S/H IN = -4.6 dBs	1.9	2.0	2.1	V _{P-P}
Output Voltage	D/A Integration	VI	FMCK = 11.6 MHz, C = 220PF 0 dB	0.9	1.1	1.3	V _{P-P}
	D/A Aperture	L APT OUT	FMCK = 11.6 MHz, C = 220PF 0 dB	1.3	1.6	2.0	V _{P-P}
	A/D Gain	G _{V A/D}		16.0	16.5	17.0	dB
Gain	D/A Gain	G _{V D/A}		2.8	3.3	3.8	dB
Coarse/Fine	Current ratio	lo/io	A/D = 3.0 μA	15.5	16.0	16.5	
Resolution					10		bit
Distortion F	actor	THD	– 6 dB input, 1 kHz	52	54	-56	dB
Conver-	A/D	TCV A/D	FWCK = 31.5 kHz			12.45	μs
sion time	D/A	TCV D/A	FWCK = 31.5 kHz			8.28	μs
Frequency	A/D*	RESP A/D	Operating input <u>FWCK</u> 0dB frequency 2 ′ at 1kHz		0		dB
Response	D/A*	RESP D/A	Operating input <u>FWCK</u> OdB frequency at 1kHz		-3.6		dB
Su	oply Current	I _D (total)			9	10	mA

*Note) Assuming the frequency response is 0 dB when Analog Input Freq. = 1 kHz


SONY.

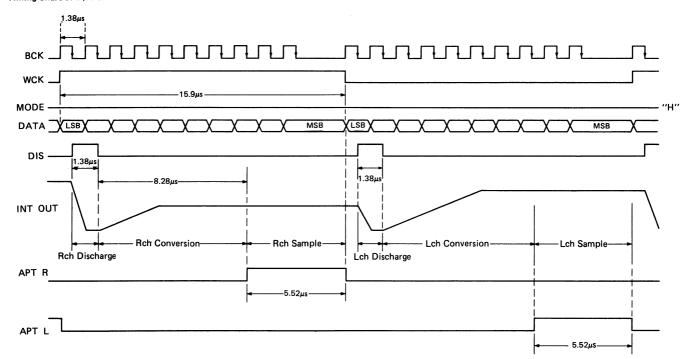

D/A conversion mode/Operational amplifier/ Amplification Gain Test Circuit

A/D conversion mode/Operational amplifier/ Amplification Gain Test Circuit



- 91 -

SONY.


Timing Chart of A/D Conversion Mode

When Mode Select of the CX23010/CX23060 is set to "L", A/D conversion mode is selected. When BCK (46fH, 723.776kHz for NTSC) and WCK (2fH, 31.46853kHz for NTSC) are input from CX23012(AD/DA interface LSI) in this mode, C.C (Convert Command) is generated internally in CX23010/CX23060. While this C.C is at "H" level, the analog signal input is sampled; the A/D conversion is executed during "L" level. The sampling and conversion operations are performed in time division for each of the R and L channel analog signals. The converted final data is output serially with the LSB data leading in sync with the rise edge of BCK when the C.C becomes "H" level again.

CX23010/23060

Timing Chart of D/A Conversion Mode

When Mode Select of the CX23010/CX23060 is set to "H", D/A conversion mode is selected. When BCK (46fH, 723.776kHz for NTSC) and WCK (2fH, 31.4685kHz for NTSC) are input from CX23012 (AD/DA interface LSI) in this mode, DIS (Discharge clock) and APT R/L (Aperture clock) are generated internally in the CX23010/CX23060. At the same time, the serial data input with the LSB leading is stored in sync with the fall edge of BCK. After DIS has discharged at "H" level the integrating charge resulting from the previous D/A conversion, D/A conversion starts when DIS goes to "L" level. The discharge and conversion operations are performed in time division for each of the R and L channel data inputs. The final integrated output after conversion is sampled while APT R/L is at "H" and held at "L" level.

CX23010/23060

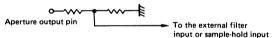
SONY

Description of Function

The CX23010/CX23060 are one-chip 10 bit A/D, D/A converter provided with every function required in A/D and D/A conversion. When combined with CX23011 (for modulation, demodulation and error correction), CX23012 (for 8-10 bits compression and expansion) and CX20099 (analog noise reduction), they are used in the PCM processor for 8 mm video.

1 A/D Conversion

• Selection of operational mode


A/D conversion mode is selected by setting the mode select input (MODE) to "L".

Analog block operation and gain

The input signal applied to the analog signal input pins (L_{IN}, R_{IN}) is amplified about 12.5 dB by the aperture amp and output to the aperture output pins (L APT OUT, R APT OUT). After component out of band area is removed from the output signal by the external attenuation filter, it is added to the sample-hold input pins (L S/H IN, R S/H IN) and output to the integrating output pin (INT OUT) after amplification of about 4dB by the sample-hold amplifier.

This gain is obtained assuming that the external filter's insertion loss is -7.3dB. Therefore, the overall gain will be 9.2dB when the A/D conversion filter is included.

When the external filter's insertion loss is different from the above value or its insertion position is different, the aperture amp gain may be too high. In such case, it is effective to divide the aperture output as follows:

When the divided output is supplied directly to the sample-hold input pin, a division resistance value of 3.3 $k\Omega$ is suitable for use.

SONY.

• Digital block operation and clock frequency

The Convert Command (C.C.) is generated internally by inputting the wordclock (WCK) and bit clock (BCK). While C.C. is at "H", the analog signal added to the sample-hold amp is sampled and while C.C. is at "L", the constant current weighted with inverse polarity against the input signal is integrated for conversion. The 10 bit data is performed by calculating the integrating time of the coarse constant current and fine constant current separately using a counter. The data is loaded in the shift register when C.C. becomes "H" again and is output serially with LSB leading in sync with the rise edge of BCK. The data is coded in 2's complement.

The master clock frequency (FMCK) required in excuting a full-scale A/D conversion in the CX23010/CX23060 is obtained from the following equation.

$$\mathsf{FMCK} \geq \left\{ \frac{(\mathsf{TWCK}/2) - 2.5\mathsf{TBCK}}{69} \right\}^{-1}$$

TWCK = word clock frequency. TBCK = bit clock frequency.

When combining with CX23012, a master clock of more than about 6 MHz is required, as TWCK is 31.7μ s and TBCK is 1.38μ s. With the CX23010/CX23060, a master clock of about 11.6MHz will be suitable as the margin is about double.

As the conversion operation is required to be in sync with the master clock in the CX23010/CX23060, the master clock, word clock and bit clock must be synchronous each other. They don't have to be in phase, however.

• Integrating current

The integrating current value $I_{A/D}$ required to perform a full-scale A/D conversion in the CX23010/CX23060 is obtained by the following equation.

$$I_{A/D} = \frac{C \cdot V_I}{1023_{TO}}$$

where C = Integral capacity,

V₁ = Integral output voltage and

 $\tau o = Master clock cycle$

Supposing C=220_pF, V₁=2V_{pp} and τ o=86ns (FMCK= 11.6MHz), a desirable integrating current value is about 5 μ A. The integrating current setting is done by applying an external constant current to the integrating current setting pin (ISET A/D) during A/D conversion.

When a constant current is applied through a setting resistor $R_{A/D}$ from an external reference voltage, this resistor value is calculated from the following equation.

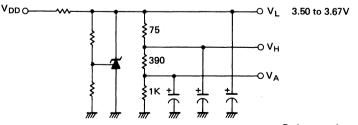
$$R_{A/D} = \frac{V_{REF} - 1.25V}{5\mu A}$$

Supposing V_{REF}=3.6V, a setting resistor value will be 470 K Ω . Using a resistor with tolerance of 1%, variation of the playback output level will be less than ±1.0dB. A bypass capacitor of more than 1 μ F should be used for the integrating current setting pin to avoid stray noise to the pin.

Comparison voltage

Switching between the upper conversion and lower conversion is performed by the integrating output surpassing the comparison voltages, $V_{\rm H}$ and $V_{\rm L}$ is the next stage comparator. The two comparison voltages have following relationship.

$$\frac{67 I_{A/D} \cdot \tau o}{C} \leq V_{L} - V_{H} \leq \frac{131 I_{A/D} \cdot \tau o}{C}$$


As the lower comparison voltage V_L needs a small ripple particularly, it is suggested to use a reference voltage made by th external reference power supply. Set the reference voltage at 3.50 V to 3.67 V (3.60V typ.). The upper comparison voltage V_H is made from resistance division as the following diagram in this reference voltage.

Analog reference voltage

As the CX23010/CX23060 are operated with a single 5V power supply, non-inverted input of the internal operational amp must be biased to around half of the power supply. The analog reference voltage V_A gives this bias and it can be divided from the comparator's lower comparison voltage V_L . The ripple filter capacitor to suppress time variation of V_A is suggested to have about 220µF.

Offset adjustment

As 8mm video uses a non-linear quantization by 10 bit, 8 bit compression/expansion, compatibility is affected when a DC offset component is included in the A/D converter data output. To correct this DC offset, the integrating output's center voltage must be shifted by applying an offset current from the offset input pins (L OFFSET, R OFFSET). As it is desirable to keep the offset voltage constant regardless of the power supply voltage changes, the offset voltage should be applied via an offset resistor from the external reference voltage (3.50V to 3.67V) in this case in adjusting the DC offset. set the offset resistor value so that the data output will be "000000000" when the center voltage is added to the sample-hold input. The lowest bits (LSB-2SB) of the data output are sometimes not determined due to an analog drift or stray noise, but in practice this is not matter.

Resistance tolerance of 5% is recommended.

2. D/A Conversion Operation

Selection of operation mode

By setting the mode select input (MODE) to "H", the D/A conversion mode is selected.

Digital block operation and clock frequency

Discharge clock (DIS) and aperture clock are generated internally, by inputting word clock (WCK) and bit clock (BVCK). The serial data input with LSB leading is stored in the shift register in sync with the falling edge of bit clock and set in the counter just before the rise and falling of word clock. When the discharge clock becomes "L", the counter starts counting, beginning from the value set in it and at the same time a constant current weighted corresponding to data is output. When the counter outputs the carry signal, the counting and constant current output stop. The master clock frequency required to perform a fullscale D/A conversion in CX23010/CX23060 obtained from the following equation.

$$\mathsf{FMCK} \geq \left\{ \frac{6 \cdot \mathsf{TBCK}}{37} \right\}^{-1}$$

When combined with CX23012, a master clock of more than about 4.5 MHz is required since TBCK= 1.38μ s.

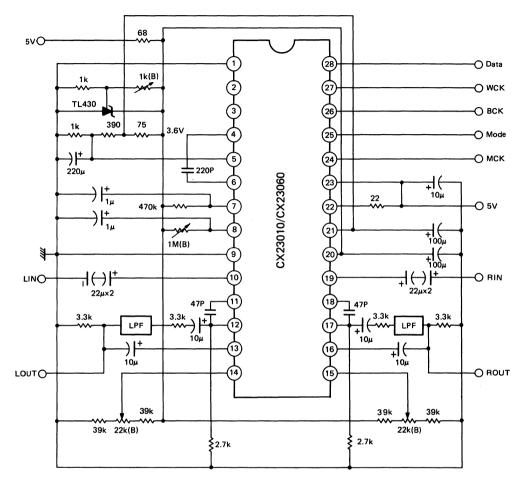
Analog block operation and gain

The integrating charge resulting from the previous conversion will be discharged while the discharge clock is "H". the integrating output potential is initialized to the analog reference voltage (VA). When the discharge clock goes to "L", D/A conversion operation is executed by integrating the constant current output. Which the constant current output stops, integrating also stops and the pin voltage of the integrated capacitor at this moment is the D/A converted value. The integrated output held in the capacitor is output, after being gained by about 3.3 dB from the aperture amp, to the aperture output pins (L APT OUT, R APT OUT). Output signal's out-of-band components are removed by an external interpolation filter. The aperture amp gain is set supposing the external filter's insertion loss at -7.3 dB. The gain is not varied externally unlike A/D conversion mode.

• Integrating current

With the CX23010/CX23060, relationship between the integrating output $V_{\rm I}$ and integrating current $I_{D/A}$ is determined from the following equation.

$$I_{D/A} = \frac{C. V_I}{1023\tau_0}$$


Supposing C=220_pF, V_I=1.1V_{pp} and τ o=86ns, a proper integrating current will be about 2.8µA. If the external filter loss is supposed to be -7.3dB, -10dBs will be obtained as the filter output level Setting of the integrating current is executed by applying a constant current externally to the integrating current setting pin (ISET D/A) during D/A conversion. When constant current is applied through a setting resistor R_{DA} from the external reference voltage, the resistor value is determined from the following equation.

$$R_{D/A} = \frac{V_{REF} - 1.15V}{2.8\mu A}$$

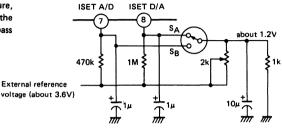
Supposing V_{REF}=3.6V, the setting resistor will be 880K Ω Using a resistor of 1% tolerance, the playback output level variation will be held within ±1.5dB. Applying a bypass capacitor of more than 1 μ F to the integrating current setting pin is recommended to avoid a stray noise to it.

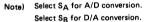
SONY.

Typical Application Circuit

Selection of Parts to be Used

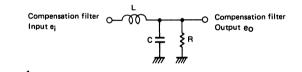
- For an integrating capacitor between Pin 4 and Pin 6, use a type with little dielectric absorption. (e.g. styrene, etc.)
- (2) Adjust the semi-fixed resistor 1KB so that the reference voltage generated from the reference voltage IC (TI's TL430 or TL431) is 3.6V.
- (3) Accuracy tolerance of the three divided resistors, 75 Ω , 390 Ω and 1K Ω , supplying voltage to Pins 5,20, and 21 is 5%. Voltages of each pin are 2.5V for Pin 5, 3.6V for Pin 20 and 3.4V for Pin 21 approximately.
- (4) We recommend 1% accuracy tolerance of 470KΩ for the integrating current setting resistor to be connected to Pin 7, which will give a recording level during A/D conversion.


Adjustment Methods


- (1) In adjustment of the play back level during D/A conversion, use the 1 Mega-Ω B semi-fixed resistor connected to Pin 8. Input to Pin 28 a full-scale level digital sine wave data (1 kHz) and adjust the semi-fixed resistor so the playback level of L OUT and R OUT becomes -10dBs (0.245Vrms). The maximum level deviation between L OUT and R OUT channels is ±0.3dB.
- (2) Adjustment of the recording level during A/D conversion is not shown in separate illustration but the playback level of the reference playback DAC (a separate DAC must be prepared adjusted to have -10dBs playback output level when full-scale data is input as in (1) above) must have -10dBs when the analog input level fed to Pins 10 and 19 is set at -10dBs (0.245Vrms). In practice, however, it is effective to vary the analog input level of Pins 10 and 19 properly or provide a level adjustment amp for Pins 13 and 16, since the level ratio of 1 to 1 between an analog input and digital output is unobtainable due to variation in the ADC conversion gain.
- (3) In the offset adjustment during A/D conversion, use the 22KB semi-fixed resistor out of the three divided resistors 39K, 22KB and 10K from the reference voltage 3.6V. In practice, adjust the 22KB so the data output of Pin 28 becomes "0000000000" when the analog inputs of L IN and R IN are shorted. At this time the lowest two or three bits may be affected due to stray noise but they pose practically no problem.

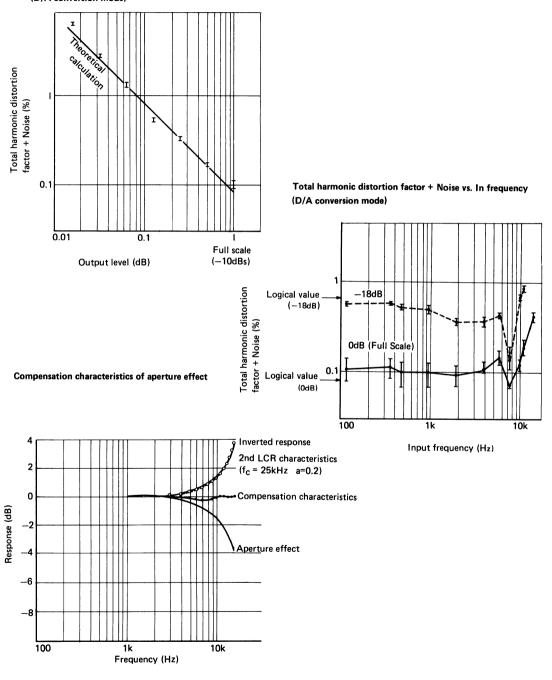
Application

• Mode switching in after recording

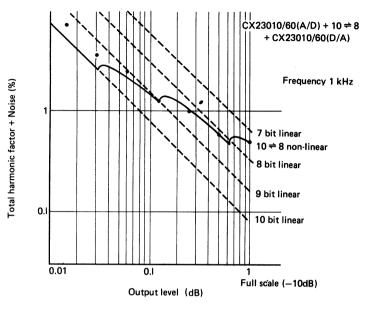

With the CX23010/CX23060, a bypass capacitor of more than 1 μ F is recommended to prevent degradation of S/N ratio due to stray noise from the integrating current setting pin. It takes 0.3-0.4 sec (when a 1 μ F bypass capacitor is used) before the integrating current becomes stable and the data during this period becomes insecure, generating a click noise in playback. To minimize the table period, it is most effective to precharge the bypass capacitor in the following circuit.

• Frequency characteristics

The CX23010/CX23060 frequency characteristics during A/D conversion is determined by an input attenuation filter. Meanwhile the frequency characteristics during D/A conversion is determined by an aperture effect and output interpolation filter. With the CX23010/CX23060, degradation of high area frequency characteristics due to the aperture effect is unavoidable. This is because a sample-hold aperture circuit is used to obtain -10dBs as the interpolation filter output level during full-scale D/A conversion. To compensate the degradated characteristics, add a compensation filter, shown below, after the interpolation filter passed.

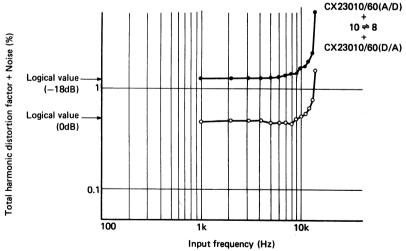

Note) $\frac{e_0}{e_i} = \frac{1}{\sqrt{1-2(1-2a^2)x^2+x^4}}$

where $x = \omega/\omega_c$ L/R = 2a/ ω_c LC = $(1/\omega_c)^2$


when $f_c = 25kHz$, L = 2.2 mH, C = 0.015 μ F and R = 1 k Ω

With this compensation filter, the total recording/playback frequency characteristics is determined only by an external filter. With the CX23010/CX23060, note the pass band ripple is magnified double, whereas double attenuation is obtained for the stop and suppress bands since the input attenuation filter and the output interpolation filter are used in common.

- 100 -



Total harmonic distortion factor + Noise vs. Output level (D/A conversion mode)

Total harmonic distortion factor + Noise vs. Output level (A/D conversion mode)

Total harmonic distortion factor + Noise vs. Input frequency (A/D conversion mode)

A/D,D/A Converters Video

Туре	Function	Page
CX20051A	10bit 30MHz D/A Converter	105
CX20052A	8bit 20MHz Sub-ranging A/D Converter	116
CX20116/U CXA1066K/UK	8bit 100MHz Flash A/D Converter	125
CX20201A-1/-2/-3 CX20202A-1/-2/-3	10/ 9/ 8bit 160MHz D/A Converter	132
CX20206	8bit 35MHz RGB 3-channel D/A Converter	144
CX20220A-1/-2	10/ 9bit 20MHz Sub-ranging A/D Converter	160
CXA1008P/1009P	High-speed Sample and Hold Amplifier	174
CXA1016P/K/UK CXA1056P/K/UK	8bit 30/50MHz Flash A/D Converter	186
CXA1096P	8bit 20MHz Flash A/D Converter (P)	196
CXA1106P	8bit 35MHz High-speed D/A Converter (P)	203
BX-1300	8bit 20MHz A/D Converter Module	208

2) A/D, D/A Converters - Video -

(P): Preliminary

SONY

CX20051A

10 bit 30 MHz D/A Converter

Description

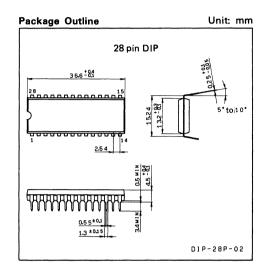
CX20051A is 10 bit, 30 MHz D/A Converter, designed for a video signal processing. The broadcasting application will require the fairly high resolution for D/A. CX20051A is suitable for the high definition TV application, too.

The external resistor can control the voltage output range of the D/A. The CX20051A requires -5V single power supply, the ECL digital inputs, and the differencial ECL clocks, to operate.

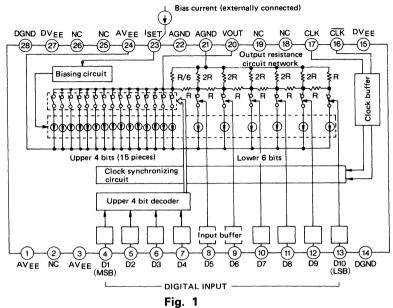
Features

- Maximum conversion frequency 30 MHz
- High resolution 10 bit
- Low power consumption 550 mW
- -5V single power supply
- · Clock input and digital input are in ECL level

Structure


Bipolar Silicon Monolithic IC.

Absolute Maximum Ratings (Ta=25°C)


 Supply voltage 	VEE	-12	v
 Digital input voltage 	Vin	VEE to O	v
• Operating temperature	Topr	-10 to +70	°C
 Storage temperature 	Tstg	-50 to +150	°C
Allowable power dissipation		1.47	w

Recommended Operating Conditions

 Supply voltage 	VEE	-5.0 ± 0.25	V
 Digital input voltage 	ViH	-0.89 ± 0.15	V
	VIL	-1.75 ± 0.15	v
 Dynamic range 	Vo	-1.5 to -0.5	v
 Bias current 	ISET	1.0 ± 0.5	mΑ

Block Diagram and Pin Connection

Pin Description

No.	Symbol	Description	Equivalent circuit
1	A VEE	Analog Vee power supply (-5V)	
2	NC	Non-connection	
3	A VEE	Analog Vee power supply (-5V)	
4	NSB)	
5	BIT2		GND 777
6	BIT3		777 15.4 k \$ \$15.4 k
7	BIT4		
8	BIT5	10-bit digital input	
9	BIT6	(MSB: Uppermost order) LSB: Lower most order	
10	BIT7	LSB: Lower most order/	
11	BIT8		•
12	BIT9		
13	LSB	J	
14	D GND	Digital GND	
15	D VEE	Digital VEE power supply (-5V)	

No.	Symbol	Description	Equivalent circuit
16	CLK	Clock bar input	
17	CLK	Clock input	
18	NC	Non-connection	
19	NC	finon-connection	
20	Ουτ	D/A output	
21	A GND	Analog GND Directly connected to the output resistance circuit network (Rout)	
22	A GND	Analog GND For analog circuit system other than the output resistance circuit network	
23	ISET	Dynamic range adjusting pin	(2) A GND TT TT TT TT TT TT TT TT TT T
24	A VEE	Analog VEE power supply (-5V)	
25	NC	Non-connection	
26	NC		
27	D Vee	Digital VEE power supply (-5V)	
28	D GND	Digital GND	

Electrical Characteristics

		(Ta=25°C AGND=	DGND=	=0V, A	Vee=DV	EE=-5V
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Differential linearity	D.L.	*1	-0.8	0	0.8	LSB
Maximum operating clock frequency	fмах	*2	30			MHz
Differential gain	D.G.	NTSC 40IRE mod. ramp		0.7		%
Differential phase	D.P.	fclk=14.3 MHz		0.2		deg
Circuit current	IEE		88	110	132	mA
Output impedance	Rout		52	62	72	Ω
Input current	Іін	Measured in the high level input voltage of the individual pins 4 to 13	1	3	10	μΑ
Input current	lı.	Measured in the low level input voltage of the individual pins 4 to 13	0	20	300	nA

Note) As for the test circuit, see Fig. 2a to 2d.

- *1 Input signal is digital ramp with 1 MHz clock. Glitches are not the subject of the measurement.
- *2 The maximum operating clock frequency which shows no bit error. Input signal is digital ramp. Glitches are not the subject of the measurement.

Electrical Characteristics Test Circuit

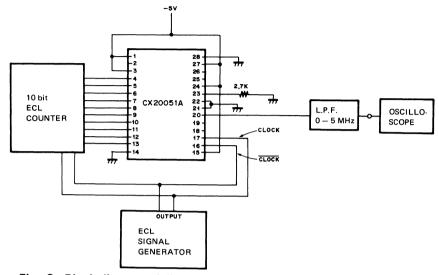


Fig. 2a Block diagram of differential linearity and maximum operating frequency test circuit

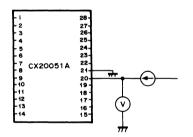


Fig. 2b Block diagram of output impedance test circuit

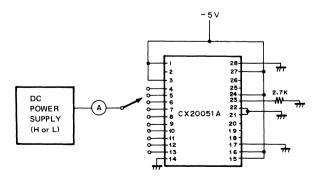


Fig. 2c Block diagram of input current test circuit

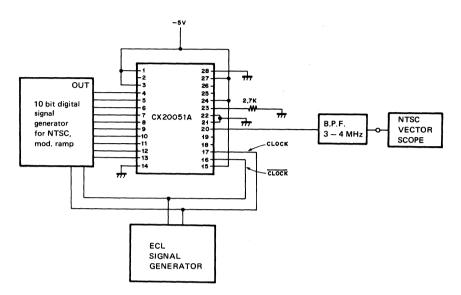


Fig. 2d Block diagram of DG and DP test circuit

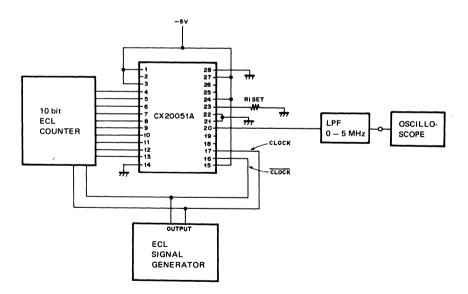


Fig. 2e Block diagram of dynamic range test circuit

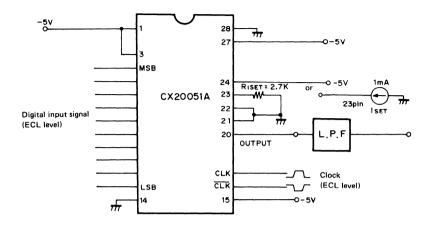
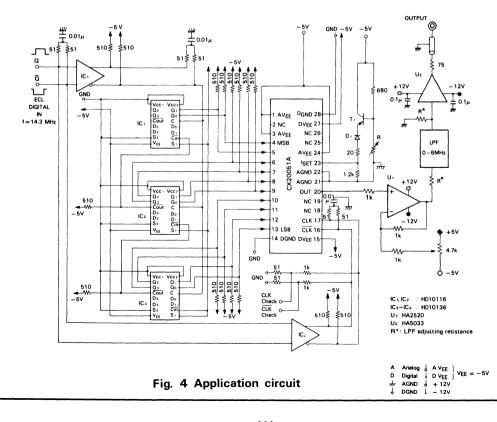
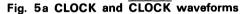
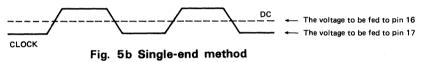
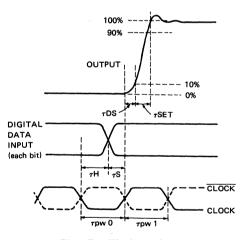




Fig. 3 Typical circuit connection


When changing the dynamic range of the output, change the value of R or the constant current supply value when a constant current supply is inserted in place of R. Both input and clock are in ECL level. Regarding the clock waveform, see the Note on Application.


Note on Application

- (1) Applying clocks
 - (a) To pins 16 and 17, clock signals denoted as CLOCK and CLOCK are to be fed respectively. Both of their levels are ECL compatible levels.



(b) Alternatively single-end method is usable to apply clock signal to the device. A clock signal of ECL level is to be fed to one of pin 16 or pin 17, with the other pin fixed to the ECL threshold level.

(2) Timing chart

The timing between the CLOCK signal and 10 bit Digital Data Input signal is shown in the diagram below.

 τ PWO = τ PW > 20 ns The typical values of τ DS and τ SET under the above-mentioned condition are

(Recommended operating condition)

$$au$$
DS $pprox$ 7 ns

auH > 2 ns auS > 10 ns

$$\tau SET \approx 4 \text{ ns}$$

for Z_L (load resistance) > 10 k Ω

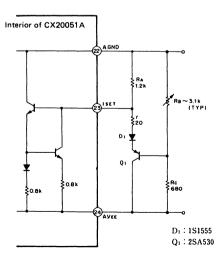
Fig. 5c Timing chart

(3) Dynamic range (ISET pin, pin 23)

Dynamic range can be determined by connecting an external resistor (RISET) between the ISET pin (pin 23) and the A GND pin (pin 22), or by applying a current source (ISET) to the ISET pin (pin 23). Typical values to obtain 1V of dynamic range are 2.7 k Ω and 1 mA, for RISET and ISET respectively (for a load resistance $Z_L > 10 k\Omega$). (See the Dynamic range vs. RISET on page 11.)

CX20051A

(4) Input coding

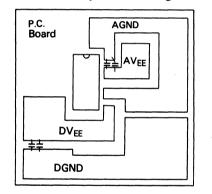

STEPS	DIGITAL INPUT	ANALOG OUTPUT		
01210		CASE ①	CASE 2	
0000	MSB11111111111	-0.003V	-0.003V	
	•		•	
•	•	•		
•	•	•	•	
•	•	•		
•	•	•	•	
0511	100000000	-0.4825V	-0.503V	
0512	0111111111	−0.4835V	-0.504V	
0513	011111110	−0.4844 V	-0.505V	
•	•	•	•	
	•			
			•	
·	•		•	
•				
1023	000000000	-0.963V	-1.003V	

CASE (1): RISET=2.7 k Ω

(Output voltage is typical value.)

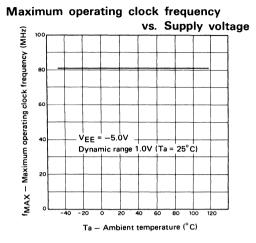
CASE ②: RISET is adjusted to obtain 1.000V full scale of analog output voltage.

(5) Temperature fluctuation compensation method of D/A output voltage dynamic range When the temperature fluctuation of the outout voltage dynamic range poses a problem, a simple temperature compensation can be performed by adding a simple circuit externally. Connecting diagram of the external circuit for temperature compensation is shown below. In this way, the temperature fluctuation may be limited to within ±150 ppm/°C.

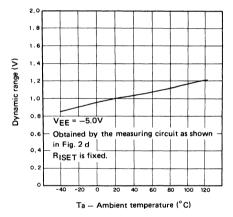


(6) When the analog output level is at full scale 1 Vp-p, the 1LSB becomes approximately 1 mV. In order to obtain the predesignated characteristics, due care should be exercised in the designing of the CX20051A periphery circuit.

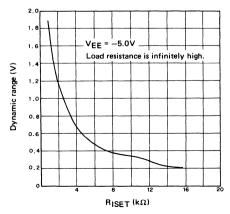
[Note on mounting onto the printed board]

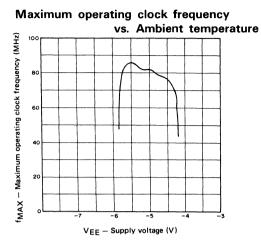

The external connection diagram of CX20051A is basically as shown in Fig. 3. In this regard, take note to the points mentioned below.

- (1) AGND and DGND as also AVEE and DVEE are not connected internally. It is also desired to separate the analog block and digital block externally.
- (2) Take as much space as possible of the ground surface on the printed board to reduce parasitic inductance and resistance.
- (3) Insert a 47 μF tantalum capacitor and a 1000 pF ceramic capacitor in parallel between the V_{EE} surface and the ground surface most adjacent to it on the printed board and reduce the noise. In addition, it is also desired to insert a capacitor between the V_{EE} surface and the GND surface near the IC. (See Fig. below)

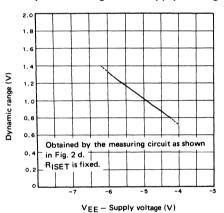


GND and VEE pattern arrangement

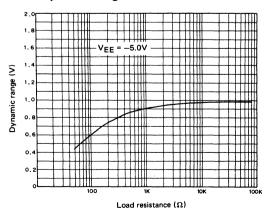

SONY®



Dynamic range vs. Ambient temperature



Dynamic range vs. RISET



Dynamic range vs. Supply voltage

Dynamic range vs. Load resistance

SONY

CX20052A

8 bit 20MHz Sub-ranging A/D Converter

Description

CX20052A is a serial-parallel type high speed A/D converter with a resolution of 8 bit for processing video signals driven by a single -5.0V power source.

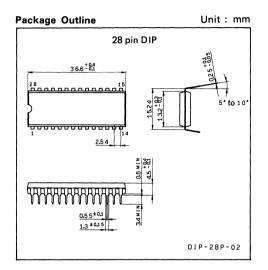
It performs an A/D conversion of video signals with an external sample & holding circuit. A reference voltage and a clock should be added external to it.

The digital output is provided in 8 bit parallel with an open emitter. Both the clock and the digital output are in ECL level.

Features

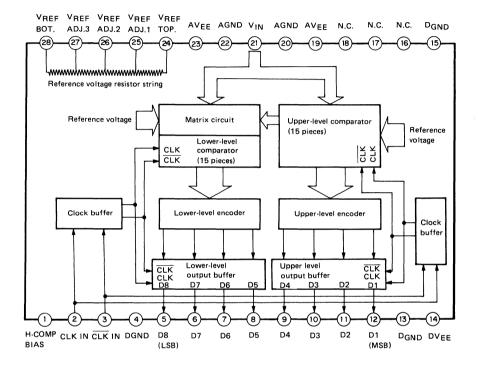
- Maximum sampling frequency of 20 MHz (Min.)
- Low power consumption 700 mW (Typ.)
- Non-linearity error $\pm 1/2$ LSB
- -5.0V single power supply
- · Both clock input and digital output are in ECL level

Structure


Bipolar Silicon Monolithic IC.

Absolute Maximum Ratings (Ta=25°C)

 Supply voltage 	VEE	-9.0	v
 Clock voltage 	VCLK	VEE to +0.3	v
 Input signal voltage 	VIN	VEE to +0.3	V
 Reference voltage 	VREF	VEE to +0.3	v
 Digital output current 	Іон	10	mΑ
 Operating temperature 	Topr	-10 to $+70$	°C
 Storage temperature 	Tstg	-50 to $+150$	°C
 Allowable power dissipation 	Po	1.47	W

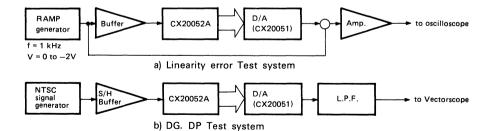

Recommended Operating Conditions

	•
to -0.74	V
) to -1.6	V
) to 0	V
to —1.9	V
	to -1.6 to 0

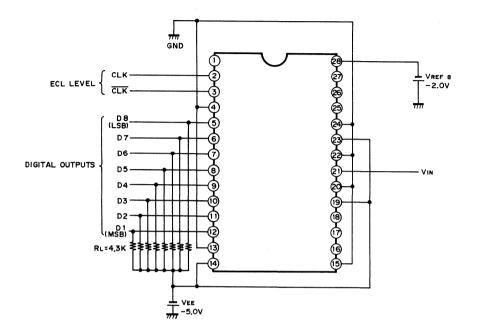
SONY®

Block Diagram

Pin Description


No.	Symbol	Description	No.	Symbol	Description
1	H-COMP BIAS	Pin connected to internal	15	DGND	Ground pin of digital circuit
		comparator. It should not	16	NC	
		be connected to outer circuit.	17	NC	Non-connection.
2	CLK IN	CLOCK input pin.	18	NC	
3		CLOCK input pin.	19	AVEE	Power supply pin of analog circuit. (-5.0V)
4	DGND	Ground pin of digital circuit.	20	AGND	Ground pin of analog circuit.
5	D8	Digital output pin. (LSB)	21	VIN	Analog input signal pin
6	D7			VIN	(0 to -2V)
7	D6		22	AGND	Ground pin of analog circuit.
8	D5	Digital output pin.	23	AVEE	Power supply pin of analog
9	D4				circuit. (-5.0V)
10	D3		24	VREF (T)	Reference voltage pin. (OV)
11	D2		25	VREF ADJ1	Reference voltage adjusting
12	D1	Digital output pin. (MSB)	26	VREF ADJ2	pin.
13	DGND	Ground pin of digital circuit.	27	VREF ADJ3	 (Usually it should be con- nected to GND through
14	DVEE	Power supply pin of digital			0.047 μF capacitor.)
		circuit. (-5.0V)		Vref (b)	Reference voltage pin. (-2.0V)

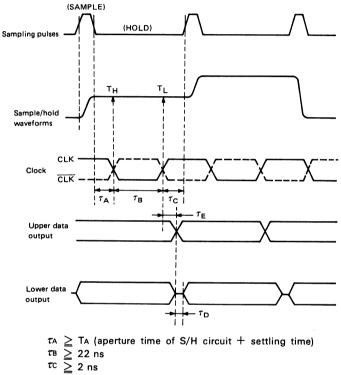
CX20052A


Electrical Characteristics

			(Ta=25°C, AGND, DGND=0V, AVEE, DVEE=-5V)				
No.	ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
1	Linearity error	L.E.	VIN: f=1 kHz, 0 to -2V ramp. CLK: 20 MHz ECL level			±1/2	LSB
2	Differential gain	D.G.	Vin: NTSC 40 IRE mod. ramp CLK: 20 MHz ECL level		0.7		%
3	Differential phase	D.P.	Vin: NTSC 40 IRE mod. ramp CLK: 20 MHz ECL level		0.3		deg.
4	Max. actuating clock frequency	fclk (MAX)	VIN: f=1 kHz, 0 to $-2V$ ramp. Linearity error $\pm \frac{1}{2}$ LSB Max.	20	30		MHz
5	Power consumption	lo	Output pin RL==4.3 kΩ Including current flowing to RL	110	140	160	mA
6	Clock input pin current	lo	V _{CLK} =-0.885V V _{CLK} =-1.75V		20.0	34.5	μΑ
7	Analog input pin current	lin	VIN=OV V _{CLK} =-0.885V V _{CLK} =-1.75V		70	110	μΑ
8	Digital output voltage-High	Vон	V _{IN} =0V R _L =4.3 kΩ Output data is "11111111"	-0.90	-0.75		V
9	Digital output voltage-Low	Vol	VIN=-2.0V RL=4.3 kΩ Output data is "00000000"		-1.50	-1.35	v
10	Reference resistor	RREF	Vref t=0V Vref b=-2.0V	45	50	56	Ω
11	Input capacitance	Cin	VIN=-0.2V+0.07 Vrms		70		PF

Note) To measure linearity error, differential gain, differential phase, max. frequency, the digital outputs of CX20052A are reconverted into an analog signal with a 10 bit D/A converter CX20051.

Electrical Characteristics Test Circuit



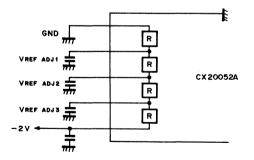
Notes on Application

1. CX20052A, a serial-parallel type A/D converter, requires an external sample & holding circuit, and precautions should be taken for the sampling pulse and the timing of clock.

Output data can be provided τ_D after T_L but it is more reliable and simple to latch the results at rising edge of CLK.

Duty of clock pulse should be set to the best point of DG and DP.

- $\varpi \leq 4 \text{ ns}$
- $\tau_{\rm E} \leq 8$ ns
- * Ta=-10°C to +70°C

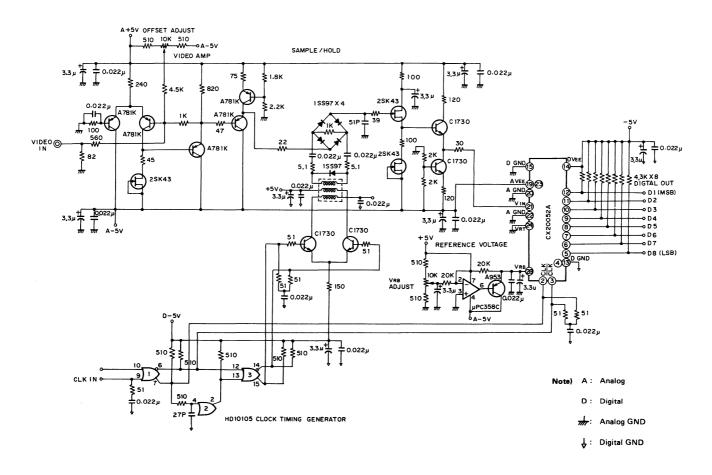

TH is the timing of the upper-level comparator for comparing VIN with VREF and latching the results. TL is the timing of the lower-level comparator for comparing VIN with VREF and latching the results.

 Digital output pin of CX20052A is provided with an open emitter. Although the level is ECL compatible but the current must be less than 10 mA in operation. Output current is about 1 mA, when R_L is 4.3 kΩ. R_L is 4.3 kΩ.

The reference table of analog input signal and digital output codes are shown below. D1 is MSB and D8 is LSB.

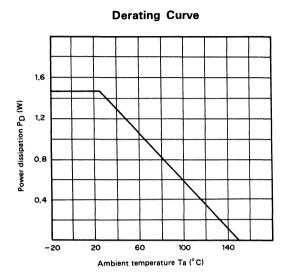
Step	Input signal voltage	Output digital code
		MSB LSB
000	0.0000∨	11111111
•	•	
127	-0.9961V	1000000
128	-1.0039V	01111111
129	-1.0118V	01111110
•		
255	-2.0000V	0000000

- 3. Usually, clock input pin should be driven by complementary ECL signal. nal.
- 4. Reference resistors have adjusting pins as shown below. Usually these pins are connected to GND through 0.047 μF capacitors. When an adjustment is required, they should be connected to GND or VREF (B) through resistors.



5. For reducing parasitic inductance and resistance, the wider area of GND pattern of the printed circuit board is the better.

As ANALOG GND and DIGITAL GND are prepared, separated GND patterns can be designed.


- 6. Use a sampling and hold circuit which has short TA for accurate sampling. (see the timing chart)
- 7. Although pin-1 (H, COMP, BIAS) is an idle pin, it is connected to internal circuit, so it should not be connected to GND, power supply or other pins. Pin-16, 17, 18 (NC) is not connected to internal circuit.

Application Circuit

CX20052A

SONY

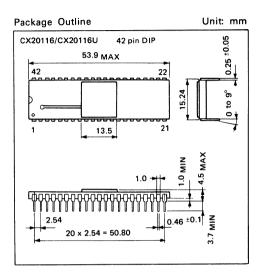
SONY

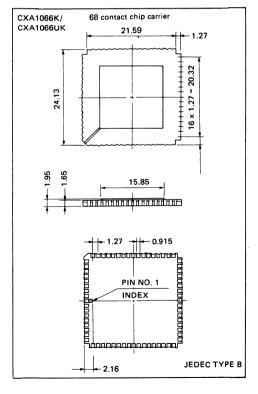
CX20116/CX20116U/ CXA1066K/CXA1066UK

8 bit 100 MHz Flash A/D Converter

Description

The CX20116/CX20116U/CXA1066K/CXA1066UK are the 8 bit ultra high speed A/D Converter Integrated Circuit capable of digitizing analog signals at rates from DC to 100 MHz. These A/Ds can be utilized in many varied applications. A wide analog input band width satisfies the characteristics for high definition television systems. Power consumption is approximately 1.2 Watts at 100 MHz sampling speed.


The CX20116U/CXA1066UK are high reliability version of CX20116/CXA1066K with extended temperature (-55 to 125° C) and bias burn-in (75 hours at 125° C).


Features

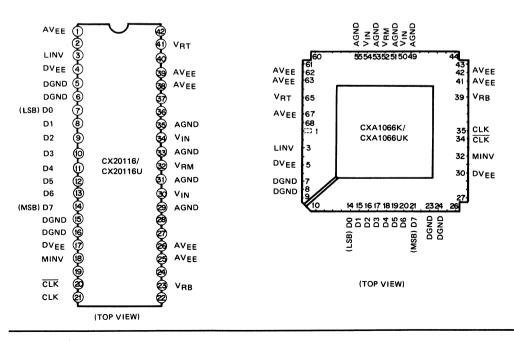
- Resolution at 8 bit $\pm \frac{1}{2}$ LSB
- Ultra high speed operation with maximum conversion rate of 100 MHz
- Full scale input band width of 40 MHz (-3 dB)
- Low input capacitance at 40 pF (max.)
- Low power consumption at 1.2W (Typ)

Applications

- · Digital video signal processing
- · Radar/sonar and acquisition systems
- Medical electronics
- · Digital measurement systems

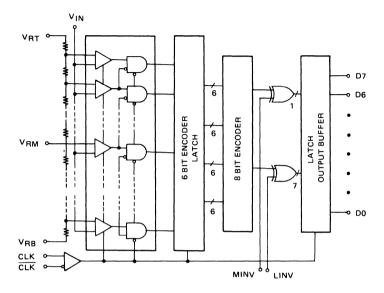
Absolute Maximum Ratings (Ta=25°C)

 Supply voltage 	Vee		0 to7	v
 Analog input voltage 	Vin		0.5 to Vee	v
 Reference input voltage 	Vrt,	Vrb, Vrm	0.5 to Vee	V
	VRT-	-Vrb	2.5	V
 Digital input voltage 	CLK,	ČLK, MINV, LINV	0.5 to -4	V
 VRм pin input current 	IVRN	1	-3 to 3	mA
 Digital output current 	IDo t	o ID7	0 to -10	mA
 Operating temperature 	Та	CX20116	-20 to $+100$	°C
	Тс	СХА1066К	-25 to +125	°C*1
	Тс	CX20116U/CXA1066UK	-55 to +125	°C*1
 Strage temperature 	Tstg		-55 to +150	°C
 Allowable power dissipation 	PD	CX20116/CX20116U	3.1 W	
		CXA1066K/CXA1066UK	2.3 W	
*1 Host sinking is required f	~~ CV	ALOGEK/CVALOGELIK -h-	- EA°C ambiant	


*1 Heat sinking is required for CXA1066K/CXA1066UK above 54° C ambient.

Recommended Operating Conditions

		Min. Typ.	Max.	Unit.
 Supply voltage 	AVEE, DVEE	-5.7 -5.2	-5.0	v
	AVEE-DVEE	-0.05 0	0.05	v
	AGND—DGND	-0.05 0	0.05	v
 Reference input voltage 	Vrt	-0.1 0	0.1	v
	Vrb	-2.2 -2	-1.8	v
 Analog input voltage 	Vin	Vrb	Vrt	
 Clock pulse width 	Tpw1	7.5		ns
	Tpw0	2.5		ns


Pin Configuration

The pin numbers without indication are empty pins. (not connected)

SONY®

Block Diagram

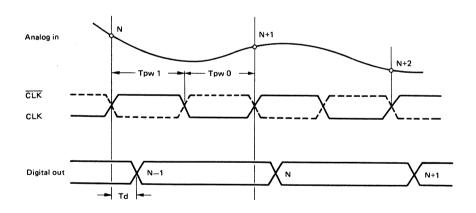
Pin Description

Symbol	Function
AVEE	Analog VEE, -5.2 V (typ). Coupled with ${\sim}6\Omega$ between DVEE.
LINV	Input pin for output polarity inversion of Do (LSB)-D6. (See the code table)
DVEE	Digital VEE, -5.2V (typ).
DGND	Digital GND, which is separated from the Analog GND.
Do — D7	Digital data output pin, ECL level. Do: LSB-D7: MSB. Pull-down resistors are necessary externally.
MINV	Input pin for output polarity inversion of D7 (MSB) (See the code table). ECL level. "O" level is held when it is released.
CLK	Inverse clock input pin, ECL level.
CLK	Clock input pin, ECL level.
Vrb	Reference voltage (bottom), -2V (typ).
AGND	Analog GND
Vin	Analog input, input range is VRT-VRB
Vrm	Middle point of the reference voltage, it can be used as a linearity correction pin.
Vrt	Reference voltage (top), OV (typ).
	Empty pins (not connected), 2 and 19 are used to be grounded to DGND, the others are used to be grounded to AGND.

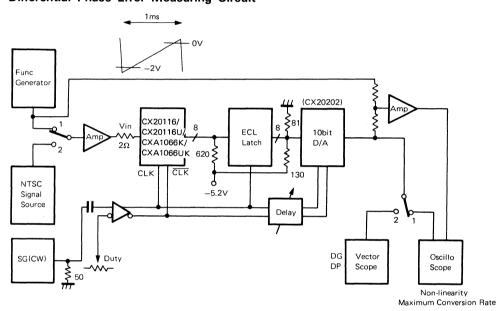
Electrical Characteristics

(Ta=25°C, VEE=-5.2V, VRT=OV, VRB=-2V)

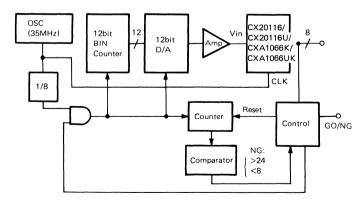
ltem		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Maximum Conversion Rate		Fc	Vin≡0 to −2V. fin=1 kHz, ramp	100			MS/s
Supply Current		IEE		-180	-220	-260	mA
Analog Input Cap	pacitance	CIN	VIN=-1V+0.07 Vrms		35	40	pF
Analog Input Bia	s Current	lin	VIN=-1V		150	220	μΑ
Reference Resist	or	Rr (Vrt – Vrb)	· · · · · · · · · · · · · · · · · · ·	70	80	100	Ω
Offset Voltage	Vrt		· · · · · · · · · · · · · · · · · · ·	7	9	11	mV
onder venage	Vrb			15	17	19	mV
		Viн		-1.0	-0.9	-0.7	V
Digital Input Voltage		VIL		-1.9	-1.75	-1.6	V
		Ін	VIH=-0.9V	0		0.4	mA
Digital Input Cur	rent	- IIL	VIL=-1.75V	-0.05		0.35	mA
D : 14 1 0 1 1 1 1		Voн		-1.0			V
Digital Output Vo	bitage	Vol	R ℓ =620 Ω to Vee			-1.6	V
Output Data Dela	ay	Td	$R\ell=620\Omega$ to Vee	3.0	3.5	4.2	ns
Non-linearity Error			Fc=100 MS/s, V _{IN} =0 to $-2V$, fin=1 kHz, ramp			±1/2	LSB
Differential Non-linearity Error			Fc=35 MS/s, 1/16 LSB step ramp			±1/2	LSB
Differential Gain		DG	NTSC 40 IRE mod.			1.5	%
Differential Phase	e	DP	ramp, Fc=100 MS/s			0.5	deg.
Aperture Jitter					15		ps


CX20116/CX20116U/CXA1066K/CXA1066UK

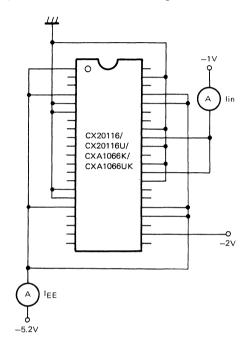
	MINV LINV	0 0	0 1	1 0	1 1
	0V	11111	10000	01111	00000
		111 10	100 01	011 10	000 01
	•		•		
	•	•	•	•	•
		•	•	•	
VIN		10000	111 11	00000	011 11
		011 11	000 00	11111	10000
	•	•			
			•	•	
			•		
		000 01	011 10	100 01	11110
	-2V	000 00	011 11	10000	11111


Output Coding

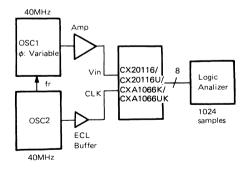
1: Vін, Vон 0: VIL, VOL


Timing Chart

Electrical Characteristics Measuring Circuit Maximum Conversion Frequency Measuring Circuit Non-linearity Measuring Circuit Differential Gain Error Measuring Circuit Differential Phase Error Measuring Circuit



Differential Non-linearity Measuring Circuit


SONY®

~

Power Supply Current Measuring Circuit Analog Input Bias Current Measuring Circuit

Aperture Jitter Measuring Circuit

SONY®

CX20201A-1/-2/-3 CX20202A-1/-2/-3

10/9/8 bit 160 MHz D/A Converter

Descriptions

A series of D/A converters CX20201A/ CX20202A convert binary data into an analog signal at rates higher than 160 MHz. The devices include input data registers and have a capability of driving 75 ohms load. Three versions with linearity specifications of 10, 9 or 8 bits are available for each model.

These D/A converter ICs can be used in signal processings which require high speed and high resolution D/A conversions such as high quality displays, high definition video systems, digital measurement instruments and radars.

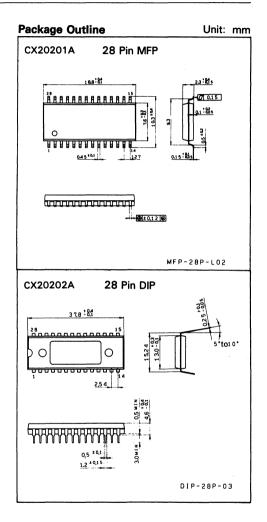
CX20201A-1/CX20202A-1	10-bit
CX20201A-2/CX20202A-2	9-bit
CX20201A-3/CX20202A-3	8-bit

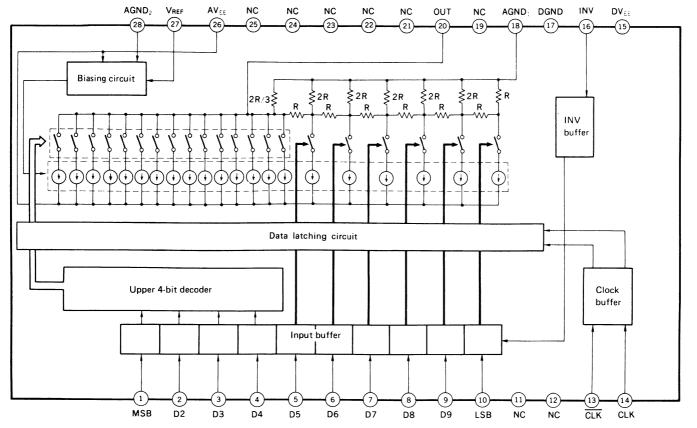
Features

 High speed 	160 MHz
 High accuracy 	10 bit
	(CX20201A-1/
	CX20202A-1)
 Low glitch energy 	15 pVsec

- Low power consumption 420 mW
- Logic invert input
- 75- Ω direct drive capability
- Analog multiplying function

Structure

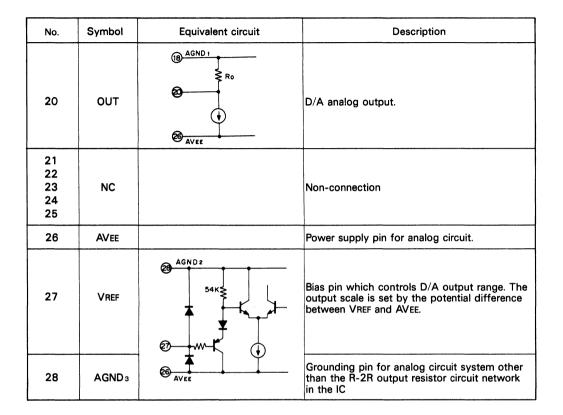

Bipolar silicon monolithic IC.


Absolute Maximum Ratings (Ta = 25° C)

 Supply voltage 	VEE	-7	V
 Digital input voltage 	Vi	+0.3 to VEE	v
 Reference input voltage 	Vref	+0.3 to VEE	
 Analog output current 	IOUT	20	mA
• Operating temperature	Tope	-20 to $+75$	°C
 Storage temperature 	Tstg	-55 to +150	°C
 Allowable power dissipation 	PD		
CX20201A-1/-2/	/-3	870	mW
CX20202A-1/-2/	/-3	1430	mW

Recommended Operating Conditions

 Supply voltage 	AVEE, DVEE	-4.75 to -5.45	V
	AVEE-DVEE	-0.05 to +0.05	V
 Digital input voltage 	ViH	-1.0 to -0.7	V
· · ·	VIL	— 1.9 to — 1.6	V
 Reference input 	VREF	VEE+0.5 to	
voltage		VEE + 1.4	V
 Load resistance 	RL	above 75	Ω
 Output voltage 	VO(FS)	0.8 to 1.2	V



CX20201A-1/-2/-3/CX20202A-1/-2/-3

SONY

Pin Description

No.	Symbol	Equivalent circuit	Description
1 2 3 4 5 6 7 8 9 10	MSB D2 D3 D4 D5 D6 D7 D8 D9 LSB	To DGND To	Input pin for digital data. MSB and LSB are corresponded to the most significant bit and least significant bit, respectively. Pins not used should be left open or connected to DVEE.
11 12	NC		Non-connection
13 14	CLK CLK	BOND BOND BOND BOND BOND BOND BOND BOND	Pins for clock inputs.
15	DVEE		Power supply pin for digital circuit.
16	INV	C D G ND C D G ND	Code invert input pin which inverts the relation- ship between the binary code of digital data and D/A output voltage level.
17	DGND		Grounding pin for digital circuit.
18	AGND 1		Grounding pin directly connected to the R-2R output resistor circuit network in the IC. Grounding for analog circuit system.
19	NC		Non-connection

Electrical Characteristics (1) Ta = 25°C, AVEE = DVEE = -5.2V, AGND = DGND = 0V, RL = ∞ , VO(FS) = -1V

CX20201A-1/CX20202A-1

Item	Symbol	Min.	Тур.	Max.	Unit
Resolution	RES		10		bit
Differential linearity error	ELD	-1/2		+1/2	LSB
Linearity error	ELI	-0.1		+0.1	% of FS
Settling time	ts		5.2		ns

CX20201A-2/CX20202A-2

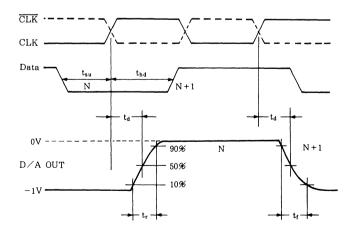
ltem	Symbol	Min.	Тур.	Max.	Unit
Resolution	RES		9		bit
Differential linearity error	ELD	- 1/2		+1/2	LSB
Linearity error	ELI	-0.1		+0.1	% of FS
Settling time	ts		4.7		ns

CX20201A-3/CX20202A-3

ltem	Symbol	Min.	Тур.	Max.	Unit
Resolution	RES		8		bit
Differential linearity error	ELD	- 1/2		+1/2	LSB
Linearity error	ELI	-0.2		+0.2	% of FS
Settling time	ts		4.3		ns

Electrical Characteristics (2) Ta = 25°C, AVEE = DVEE = -5.2V, AGND = DGND = 0V, RL = ∞ , VO(FS) = -1V

ltem	1	Symbol	Measuring condition*1	Min.	Тур.	Max.	Unit
Power supply	CX20201A	IEE		-60	- 75	- 90	mA
current	CX20202A	100		-65	-82	- 100	IIIA
Data input current	t	lih(u)	VIH = -0.89V	0.1	1.5	6.0	μA
(for upper 4 bits)		lil(U)	VIL = −1.75V	0.1	1.5	6.0	μA
Data input curren	t	lih(L)	VIH = -0.89V	0.1	0.75	3.0	μΑ
(for lower 6 bits)		lil(L)	VIL = −1.75V	0	0.75	3.0	μΑ
Clock input curre	nt	ICLKH	VIH = −0.89V	2	23	70	μA
Invert input currer	nt	linvh	VIH = -0.89V	0.1	1.5	6.0	μΑ
Reference input c	urrent	IREF	VREF = -4.38V	-3	-0.4	-0.1	μA
Output resistance		Ro	lo = -1mA	52	65	78	Ω
Maximum conver	sion rate	fC	$RL = 75 \Omega$	160			MSPS


*1 See Figs. 3 to 5.

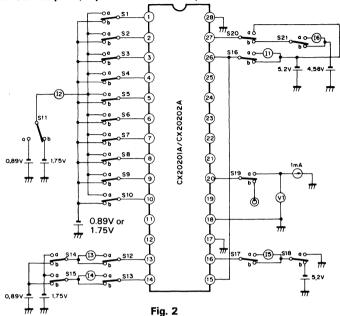
Data for Typical Application

Ta = 25°C, AVEE = DVEE = -5.2V, AGND = DGND = 0V, RL = ∞ , VO(FS) = -1V

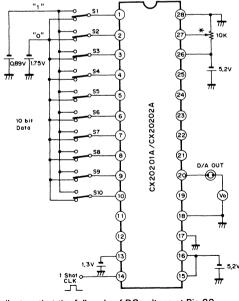
ltem	Symbol	Measuring condition	Min.	Тур.	Max.	Unit
Output voltage zero	EZS	$RL \geqq 10 k \Omega$	0	-7	-21	mV
offset	220	$RL = 75 \Omega$	0	-7	-21	1110
Output voltage full-scale	TC(FS)	$RL \geqq 10 k\Omega$	0	- 140	-280	ppm/°C
temperature coefficient	1010/	$RL = 75 \Omega$	0	- 580	- 1200	ppin/ C
Output voltage zero offset temperature coefficient	Tc(zs)	RL ≧ 10kΩ	6	16	22	μV/°C
Output voltage full-scale	VO(FS)	$RL \geqq 10 k \Omega$	0.8	1.0	1.6	v
dynamic range	¥0(i 3)	$RL = 75 \Omega$	0.8	1.0	1.2	
Glitch energy	GE	Digital ramp		15		pVsec
Rise time	tr			1.5		ns
Fall time	tf	$RL = 75 \Omega$		1.5		ns
Propagation delay	td			3.8		ns
Band width for multiplying	BWMUL	$RL = 75 \Omega, \\ - 3dB$	10	14	3	MHz
Set-up time	tsu				5.0	ns
Hold time	thd				1.0	ns

Timing Chart

Input Coding Table

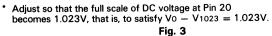

Input code	Output code (V)								
input code	INV = 0	INV = 1							
00000	0	-1							
10000	· · · · · · · · · · · · · · · · · · ·	0							

Measuring Conditions for Current Consumption, Input Current and Output Resistance (See Fig. 2.)

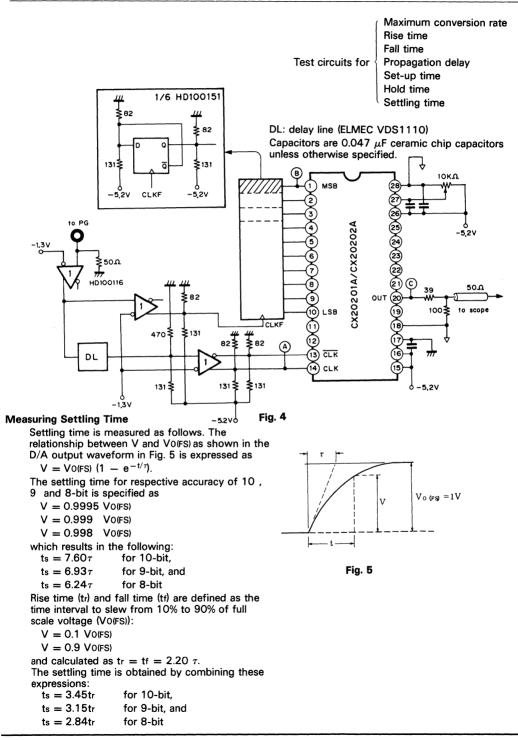

Test item Symbol		Switch condition														Test													
Symbol	S 1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21		point						
Current consumption	I _{EE}	ь	ь	ь	ь	Ъ	b	ь	b	ь	b	ь	Ъ	b	Ъ	ь	a	b	Ъ	Ъ	ь	b		Ι1					
	I _{IH(U)}	I _{IH(U)}	I _{IH(U)}	I _{IH(U)}	I		а	b	b	b																			
Data input current for upper						b	a	b	b	ь	ь	ь	Ъ	ь	ь	a	Ъ	ь	ь	ь	ь	ь	ь	Ъ	b	Ъ		12	
4 bits (H level)					b	b	a	b				U		0	a										U		12		
		Ъ	b	b	a																								
	I _{IL(U)}	a	Ь	b	b																								
Data input current for lower		Ь	a	b	b	b	ь	b	b	ь	ь	b	Ъ	ь	b	ь	ь	ь	ь	ь	ь	ь		I 2					
4 bits (L level)	-12(0)	b	b	a	b	-		' '	~	Ĩ							U			Ů	ľ	Ĩ							
		ь	b	b	a																								
	I _{IH(L)}					a	b	b	b	Ъ	b					b	b	b	b	b	b	b							
Data input current for upper 6 bits (H level) I						b	a	b	b	Ъ	b	- a																	
		Ъ	ь	ь	ь	b	b	a	b	b	b		ъ	ь	ь									I 2					
						b	Ь	b	a	b	b																		
						b	b	b	b	a	b																		
		b				b	b	b	b	b	a L																		
	I _{IL(L)}					a b	b a	b b	b b	b b	b b																		
Data input current for lower							b	a b	a	b	b	b																	
			Ъ	b	b	b b	b	a b	a	b	Ъ	ь 1	Ъ	b	Ъ	b	b	b	Ъ	b	b	b		I 2					
6 bits (L level)							b	b	b	a	b																		
						b	b	b	b	b	a																		
Clock input current (H level)	I _{cl.kh}	ь	b	Ъ	ь	Ъ	Ъ	ь	Ъ	ь	Ъ	b	a	Ъ	b	a	ь	ь	ь	b	b	Ъ		I 3					
Clock-bar input current (H level)	I _{CLRH}	b	b	b	Ъ	b	ь	Ъ	b	b	b	b	Ъ	a	a	ь	ь	b	b	ь	b	Ъ		I 4					
Invert input current (H level)	I _{invh}	ь	ь	ь	b	b	b	b	b	ь	b	ь	b	b	ь	b	ь	a	a	ь	b	Ъ		I 5					
Referecnce input current	IREF	Ъ	b	ь	b	b	ь	b	b	b	b	b	b	ь	Ъ	b	b	ь	b	ь	ь	a		I 6					
Output resistance	Ro	b	Ъ	b	b	b	ь	ь	b	ь	b	b	b	ь	b	ь	ь	ь	b	a	a	Ъ		V 1					

Electrical Characteristics Test Circuit

Test Circuit for Current Consumption, Input Current and Output Resistance

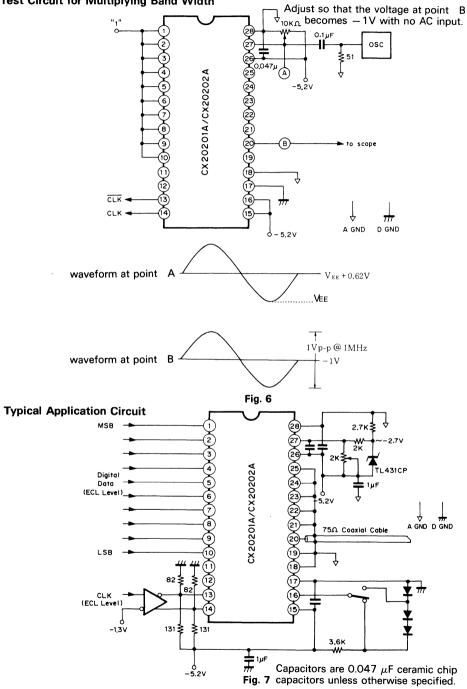


Test Circuit for Differential Linearity Error and Linearity Error



Linearit	y err	ors a	are meas	ured	as foll	ows.
S1	S2	S3		S9	S10	D/A out
0	0	0		0	0	Vo
0	0	0	•••••	0	1	V1
0	0	0	:;	1	0	V2
1	1	1	· · · · · · · · · · · · · · · · · · ·	1	1	V1 0 2 3
Linea	rity	erro	r Dif	fere	ntial li	nearity error
7	Vo					
7	/1		V	/1 -	V ₀	

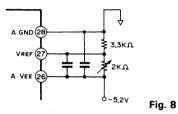
17	V V	
V1	$V_1 - V_0$	
V ₂	$V_2 - V_1$	
V4	$V_4 - V_3$	
V8	$V_8 - V_7$	
V1 6	$V_{1 6} - V_{1 5}$	
V _{3 2}	$V_{32} - V_{31}$	
V6 4	V64 - V63	
V128	$V_{128} - V_{127}$	
V1 9 2	$V_{192} = V_{191}$	
: V960	: V960 - V959	
V1023		



 $\begin{array}{l} \mbox{Errors at individual measurement points are calculated according to the following definition. \\ (V_{1023} - V_0)/1023 = V_0(\mbox{Fs})/1023 \equiv 1 \mbox{ LSB}. \end{array}$

SONY.

Test Circuit for Multiplying Band Width


Notes on Applications

(1) Setting of full-scale output voltage

The full-scale output voltage (VO(FS)) is set by the pin 27 (VREF). VO(FS) varies in proportion to the voltage difference between pin 27 and pin 26 (AVEE) as shown in Fig. 9.

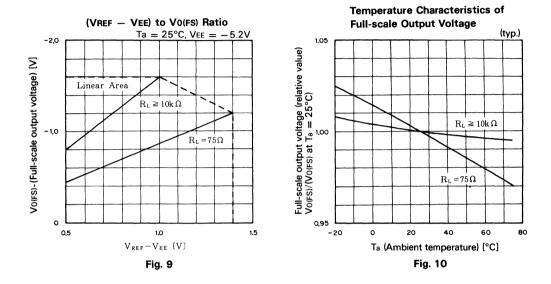
VO(FS) can be set by simply dividing the supply voltage using resistors as shown in Fig. 8, but in this simple set up the voltage deviation of the supply voltage result in a deviation of VO(FS). This influence can be avoided by using a stabilization circuit as shown in Fig. 7 to allow stable full-scale output.

Pin 27 (VREF) should be stabilized against high-frequency noise by sufficient by passing using a capacitor with low lead inductance such as ceramic chip capacitors. The stabilization capacitor should be inserted between pin 27 (VREF) and pin 26 (AVEE) as VO(FS) is direct proportion to the voltage across these two terminals.

(2) Noise reduction

An external digital noise should be minimized because the system handles small analog voltage (1 LSB corresponds 1 mV of analog output voltage for 10 bit resolution). Refer to the following notes to minimize the system noise contamination.

- Ground plane and VEE plane on a printed circuit board should be made as wide as possible to reduce parasitic inductance and resistance.
- The patterns AGND and DGND should be separated on the printed circuit board. AVEE and DVEE should be separated too. The connections between analog system and digital system are to be made at the I/O ports of the printed circuit board.
- AVEE and DVEE should be bypassed to respective GND by using a tantalum capacitor of 1 μ F and a ceramic chip capacitor of 47 μ F positioned as close as to terminals of the IC.
- Pins not in sure are to be connected to the ground plane.
- (3) Load resistance and temperature coefficient


Temperature coefficient of the full-scale output voltage and zero offset voltage depend on the load resistance (value and type). Generally, the larger the load resistance the better the temperature coefficient value. Temperature characteristics at RL \geq 10 k Ω and RL = 75 Ω are shown in Fig. 10.

(4) Input data and internal latching circuit

CX20201A/CX20202A incorporates a latching circuit as shown in the block diagram. This latching circuit has a two-stage configuration (master-slave type) and fetches input data only at the rising edge of the clock; the output is not affected by the changes in input data at any other timings. This mechanism allows stable operation against any changes in input data at any timings, except for the set-up time immediately before and the hold time immediately after the clock change from L to H.

(5) Driving input data and clock

CX20201A/CX20202A are designed to be operated at very high speed. It is, therefore, necessary to drive it with a high-speed ICs such as an ECL100K for full performance. Also the output port of the data and clock drivers should be terminated with $50-\Omega$ systems. See Figs. 4 and 7.

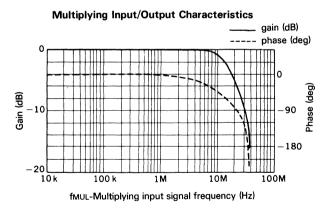


Fig. 11

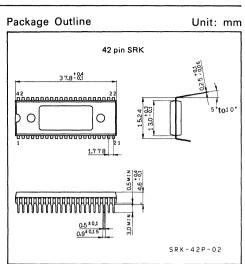
SONY

CX20206

8 bit 35 MHz RGB 3-channel D/A Converter

Description

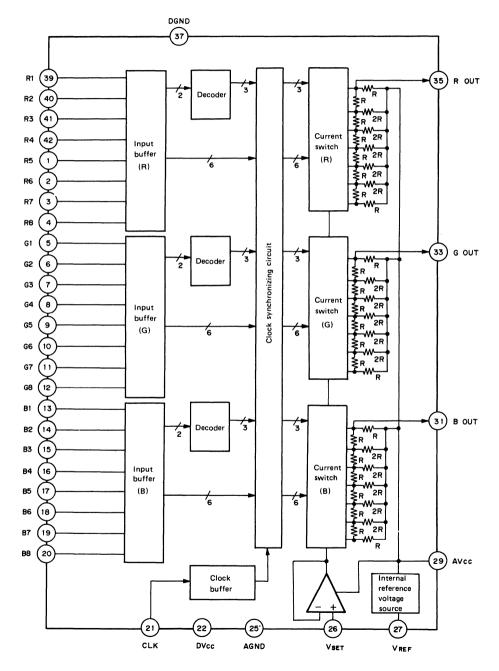
The CX20206 is an 8 bit high-speed D/A converter for video band use. It has an output/input equivalent to 3 channels of R, G and B. It is suitable for use of digital TV, graphic display, etc.


Features

- Resolution: 8 bits
- Maximum conversion speed: 35MSPS
- RGB 3-channel input/output
- Differential linearity error: ±1/2LSB
- Digital input voltage: TTL level
- Output voltage full-scale: 1 Vp-p (typ)
- Low power consumption: 360 mW (typ)
- +5V single power supply

Structure

Bipolar silicon monolithic IC


Absolute Maximum Ratings (Ta=25°C)

Pin Configuration (TOP VIEW)

	· · · · · · · · · · · · · · · · · · ·				
 Power supply voltage 	Vcc	0 to 7	V		
 Input voltage (digital) 	Vi	-0.3 to Vcc	V		
	Vclk	-0.3 to Vcc	V	R5 🛈	<table-row> R4</table-row>
 Input voltage (Vset pin) 	VSET	-0.3 to Vcc	V	R6 👰	🜗 R3
 Output voltage (analog) 	Vout	Vcc-2.1 to Vcc	V	R7 3	(40) R2
 Output current (analog) 	IOUT	-3 to +10	mA	R8 (4)	(39) R1
(VREF pin)	IREF	-5 to 0	mA	G1 (5) G2 (6)	(38) NC (37) DGND
Operating temperature	Topr	-20 to $+75$	°C	G3 (7)	G NC
 Storage temperature 	Tstg	-55 to $+150$	°C	G4 (8)	(35) ROUT
Allowable power dissipation	PD	1.5	W	G5 (9)	34 NC
				G6 🔞	🗿 бойт
Recommended Operating C	onditions			G7 🛈	∰ NC
Power supply voltage	AVcc, DVcc	4.5 to 5.5	V	G8 @	၍ воит
	AVcc-DVcc	-0.2 to $+0.2$	V	B1 (3)	(30) NC
	AGND-DGND	-0.05 to $+0.05$	V	B2 (4)	
 Digital input voltage H level 	VIH, VCLKH	2.0 to DVcc	V	B3 (15) B4 (16)	(28) NC
• • •	VIL, VCLKL	DGND to 0.8	V	B4 (16) B5 (17)	Ø7 VSET Ø6 VREF
VSET input voltage	VSET	0.7 to 0.9	V	B6 (18)	AGND
VREF pin current	IREF	-3 to -0.4	mA	B7 (19)	(24) NC
 Clock pulse width 	Tpw1	15	ns	B8 🙆	🗿 NC
	ТриЮ	10		ськ	@ ^{DV} CC

Block Diagram

- 145 -

Pin Description

No.	Symbol	Equivalent circuit	Description
39 to 42 1 to 20	R1 to R8 G1 to G8 B1 to B8	DVcc 2 39-42 1~20 0 0 0 0 0 0 0 0 0 0 0 0 0	Digital input pin. From pins 39 to 42 and from 1 to 4 are for RED. R1 is MSB and R8 is LSB. From pins 5 to 12 are for GREEN. G1 is MSB and G8 is LSB. From pins 13 to 20 are for BLUE. B1 is MSB and B8 is LSB.
21	CLK	DVec 2 2 3 DGND	Clock input pin.
22	DVcc		Digital Vcc.
23 24	NC		Vacant pin (non-connection)
25	AGND		Analog GND.
26	Vset	AVcc (2) 54K 54K (2) (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4	Bias input pin. Normally, apply 0.8V. See "Note on use".

No.	Symbol	Equivalent circuit	Description
27	Vref	AVCC 29 4 20 20 20 20 20 20 20 20 20 20	Internal reference voltage out-put pin 1.2V (typ) A pull-down resistance is necessary externally. See "Note on use".
28	NC		Vacant pin (non-connection)
29	AVcc		Analog Vcc
30	NC		Vacant pin but connect to AVcc*
31	BOUT	AVCC 29 Ro 31 (1) AGND	Analog output pin for BLUE.
32	NC		Vacant pin but connect to AVcc*
33	GOUT	AVCC 23 Ro 33 4 25 AGND	Analog output pin for GREEN.
34	NC		Vacant pin but connect to AVcc*
35	ROUT	AVCC (2) Ro (3) AGND	Analog output pin for RED.
36	NC		Vacant pin but connect to AVcc*
00		······································	
37	DGND		Digital GND

*: Pins 30, 32, 34 and 36 are vacant, but in order to reduce interference between the individual RGB outputs, connect them to AVcc.

SONY

Electrical Characteristics

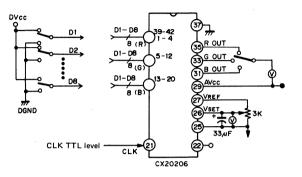
(Ta=25°C, AVcc=DVcc=5.0V, AGND=DGND=0.0V)

	Item		Symbol	Measuring condition	Min.	Тур.	Max.	Unit
Resolution		RSL			8		bit	
Monotony			MNT			Guara- ntee		
Differential	linear	ity error	DLE	Vset—AGND=0.8V	-0.5		+0.5	LSB
Integral line	arity	error	ILE	R∟>10kΩ F.S.≡Full-scale	-0.4		+0.4	% of F.S.
Maximum co	onver	sion speed	fмах		35			MSPS
Full-scale or voltage ^{(note}			Vofs	Vset—AGND=0.8V	0.85	1.0	1.15	Vp-p
RGB output ratio ^(note 2)	volta	ge full-scale	FSR	R∟>10kΩ C∟<20pF	0	4	8	%
Output zero	Output zero offset voltage		Voffset	et		-6	0	mV
Output resis	tance		Ro		270	340	420	Ω
Consumption	n curi	rent	lD	Vset—AGND=0.8V RL>10kΩ Iref=-400μA	54	72	90	mA
	н	Upper 2 bits	lih(u)	VI=DVcc		1.2	20	μΑ
Digital data	level	Lower 6 bits	lih(L)			0.6	10	μΑ
input current	L	Upper 2 bits	liц(υ)	V=DGND	-10	0	10	μΑ
	level	Lower 6 bits	հւզեյ		-10	0	10	μΑ
Clock input c		H level	Iclkh	Vclk=DVcc		3	30	μΑ
Clock input c	unem	L level	ICLKL	Vclk=DGND	-10	0	10	μΑ
Vset input o	urren	t	ISET	Vset—AGND=0.8V	-5	-0.3	0	μΑ
Internal refe	rence	voltage	VREF	Iref=-400µA	1.08	1.20	1.32	V
Set-up time			ts		12			ns
Hold time			th		3			ns

Note 1) AVcc-Vo

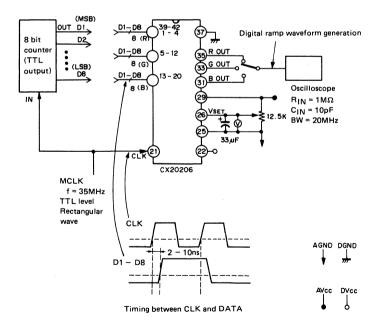
2) Maximum value among

$$\begin{array}{c|c} \text{Maximum value among} \\ 100 \times \left| \frac{\text{Vofs}(R)}{\text{Vofs}(G)} - 1 \right|, \ 100 \times \left| \frac{\text{Vofs}(G)}{\text{Vofs}(B)} - 1 \right|, \ \text{or} \ 100 \times \left| \frac{\text{Vofs}(B)}{\text{Vofs}(R)} - 1 \right| \end{array}$$


Input corresponding table

Input code	Output voltage
MSB LSB	
1 1 1 1 1 1 1 1	Vcc+Voffset
•	•
10000000	Vcc+Voffset-0.5V
00000000	Vcc+Voffset-1.0V

In case the output voltage full-scale is 1.00V. (1LSB=3.92 mV)


Electrical Characteristics Measuring Circuit

Differential linearity and integral linearity measuring circuits

5------

Maximum conversion speed measuring circuit

Output voltage full-scale precision, RGB output voltage full-scale ratio, and output zero offset voltage measuring circuits

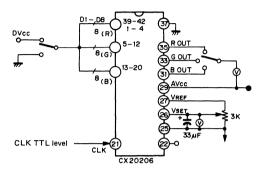
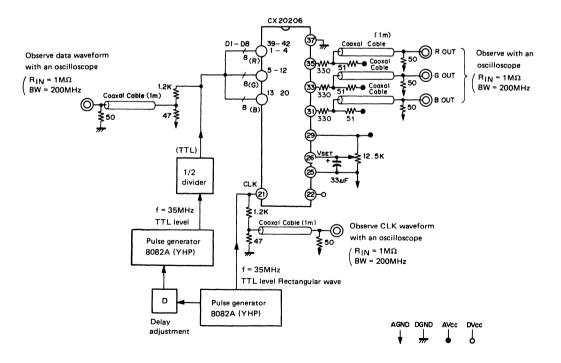



Fig. 1 Set-up time, hold time, and rise and fall time measuring circuits

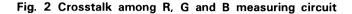
CX20206

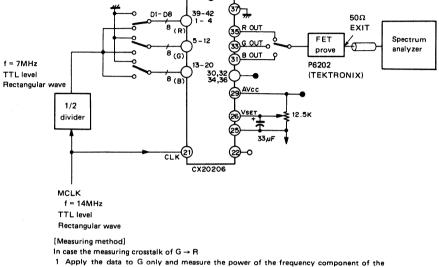
Standard Circuit Design Data

(Ta=25°C, AVcc=DVcc=5.0V, AGND=DGND=0.0V)

ltem	Symbol	Measuring condition	Min.	Тур.	Max.	Unit
Crosstalk among R, G and B	ст	D/A OUT: 1Vp-p RL>10kΩ CL<20pF fDATA=7MHz fcLK=14MHz See Fig.2		-40	-33	dB
Glitch energy	GE	Vset—AGND=0.8V RL>10kΩ fc∟κ=1MHz Digital ramp output See Fig.3 ^(note 1)		160		pV-s
Rise time ^(note 2)	tr	VSET-AGND=0.8V		5.5		ns
Fall time ^(note 2)	tf	See Fig. 1.		5.0		ns
Settling time	tset	, , , , ,		16		ns

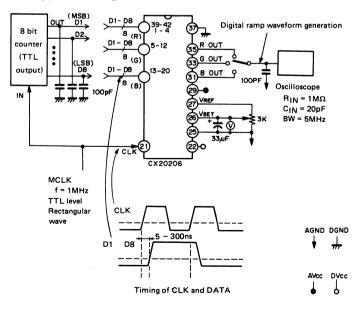
Note 1) Observe the glitch which is generated when the digital input varies as follows:

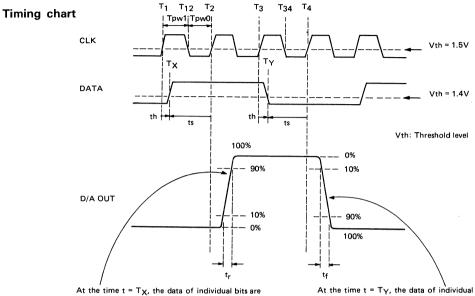

 $0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \rightarrow 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$


01111111 -> 1000000

10111111 -> 11000000

2) The time required for the D/A OUT to arrive at 90% of its final value from 10%.

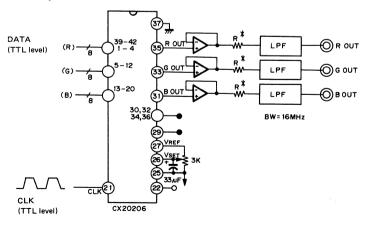

Standard Circuit Design Data Measuring Circuit



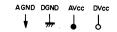
- data at R OUT.
- 2 Apply the data to R only and measure the power of the frequency component of the data at R OUT.
- 3 Take the difference of the above two powers. The unit is in dB.

Fig. 3 Glitch energy measuring circuit

Operation Description


switched and thereafter when the CLK becomes $L \rightarrow H$ at $t = T_2$, the D/A OUT is varied synchronous with it. That is, the D/A OUT is synchronous with the rise of the CLK.

(In this case, fetching of the data is carried out at the fall of the CLK (at the time when $t = T_{12}$)).


At the time t = T_Y, the data of individual bits are switched and thereafter when the CLK becomes $L \rightarrow H$ at t = T₄, the D/A OUT is varied synchronous with it. That is, the D/A OUT is synchronous with the rise of the CLK.

(In this case, fetching of the data is carried out at the fall of the CLK (at the time when t =.T4)).

Applied Circuit Example

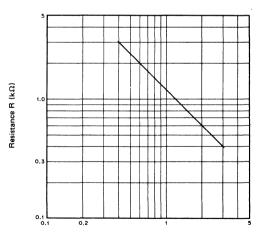
R* is matching resistance for LPF

Note on Use

(1) Setting of pin 26 (VSET)

The full-scale of the D/A output voltage changes by applying voltage to pin 26 (VSET). When load is connected to pin 27 (VREF), DC voltage of 1.2V is issued and the said voltage is dropped to 0.8V by resistance division.

When the 0.8V is applied to pin 26 (VSET), the D/A output of 1 Vp-p can be obtained. (Example of use)



(Adjustment method)

1 The resistance R is determined in accordance with the recommended operating condition of IREF (Current flowing through resistance R).

See R vs. IREF of Fig. 4. The calculation expression is as follows: $R{=}V{\mbox{\scriptsize REF}}/{\mbox{\scriptsize IREF}}$

2 Adjust the volume so that the RGB output voltage full-scale becomes 1.0V. (At this point, it becomes R1:R2=1:2)

Fig. 4 Resistance vs. VREF pin current

Pin current IREF (mA)

(2) Phase relationship between data and clock

In order to obtain the desired characteristics as a D/A converter, it is necessary to set the phase relationship correctly between the externally applied data and clock.

Satisfy the standard of the set-up time (ts) and hold time (th) indicated in the electrical characteristics. As to the meaning of ts and th, see the timing chart.

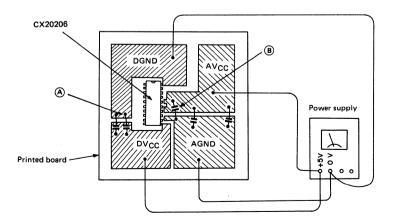
Moreover, the clock pulse width is desired to be as indicated in the recommended operating condition.

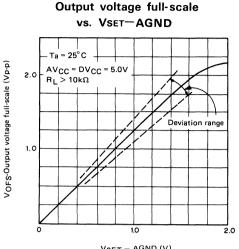
(3) Regarding the load of D/A output pin

Receive the D/A output of the next stage with high impedance. In other words, perform so that it becomes as follows:

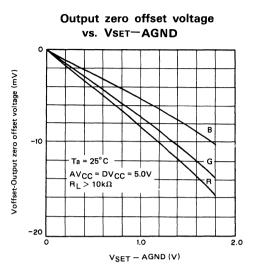
RL>10 kΩ

CL<20 pF

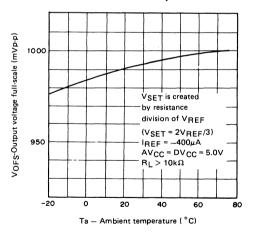

The temperature characteristics indicated in the characteristics diagram has been measured under this condition.

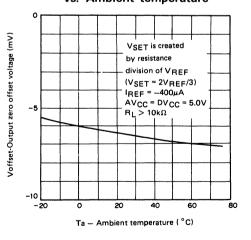

However, when it is made to $R \leq 10 \ k\Omega$ the temperature characteristics may change considerably. In addition, when it is made to $C \geq 20 \ pF$, the rise and fall of the D/A output become slow and will not operate at high speed.

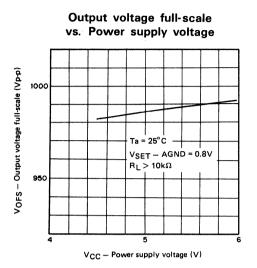
(4) Noise reduction measures

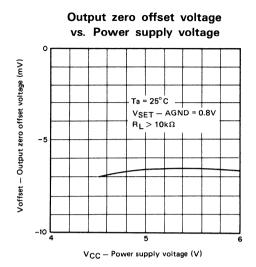

As the D/A output voltage is a minute voltage of approximately 4 mV per one step, ingenuity is required in reducing the noise entering from the outside of the IC as much as possible. Therefore use the items given below as reference.

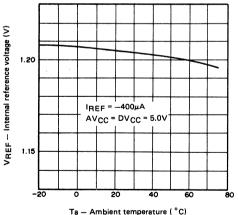
- When mounting onto the printed board, allow as much space as possible to the ground surface and the Vcc surface on the board and reduce the parasitic inductance and resistance.
- It is desirable that the AGND and DGND be separated in the pattern on the board. It is similar
 with AVcc and DVcc. As shown in the diagram below, for example, it is recommended that
 the wiring to the electric supply of AGND and DGND as also AVcc and DVcc be conducted
 separately, and then making AGND and DGND as also AVcc and DVcc in common right near
 the power supply respectively.
- Insert in parallel a 47 μ F tantalum capacitor and a 1000 pF ceramic capacitor between the Vcc surface on the printed board and the nearmost ground surface. (A of diagram below). It is also desirable to insert the above between the Vcc surface near the pin of the IC and the ground surface. (B of diagram below). They are bypass capacitors to prevent bad effects from occurring to the characteristics when the power supply voltage fluctuates due to the clock, etc.
- It is recommended to reduce noise which overlaps the D/A output by inserting a capacitor of over 0.1 μ F between pin 25 (AGND) and pin 26 (VSET).

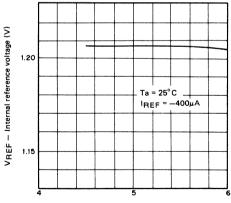



VSET - AGND (V)

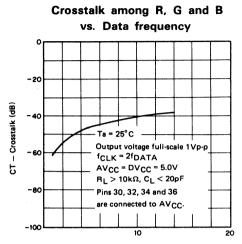



Output voltage full-scale vs. Ambient temperature


Output zero offset voltage vs. Ambient temperature



Internal reference voltage vs. Ambient temperature



Internal reference voltage vs. Power supply voltage

oltage rature

fDATA – Data frequency (MHz)

SONY

CX20220A-1/-2

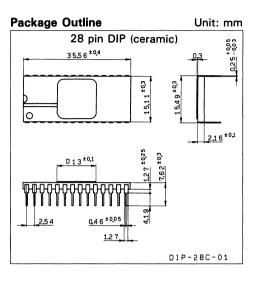
10/9 bit 20 MHz Sub-ranging A/D Converter

Description

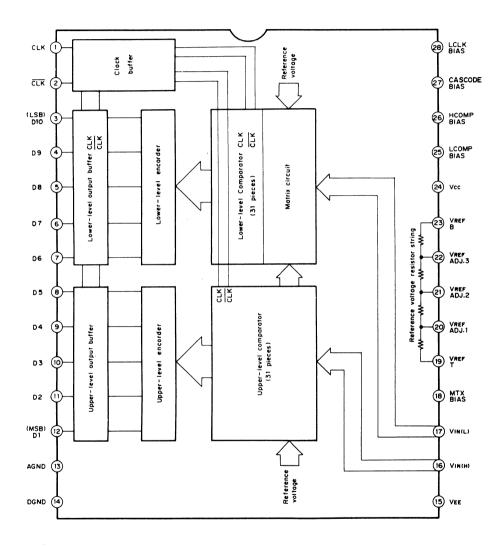
The CX20220A series is a high-speed, 20-MHz A/D converter which comes in two types of resolution, 10-bit and 9-bit, that are distinguished by the number suffixed to the name. Since a seriesparallel system is used, an external sample hold circuit is required.

- Resolution: 10 bits (CX20220A-1)
 9 bits (CX20220A-2)
- Maximum conversion rate: 20 MHz
- Digitizing range: 0 to -2V
- Digital input/output: ECL level
- Output code: binary
- Low power consumption: 360 mW

Structure


Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25° C)

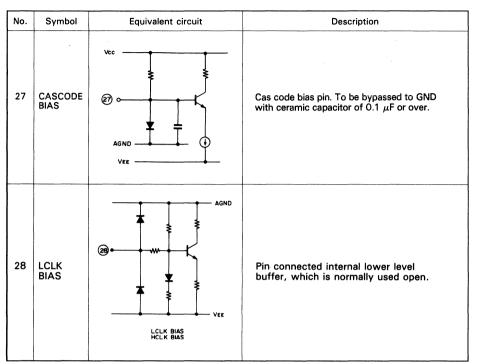

 Supply voltage 	Vcc	2.5	V
	VEE	-7	V
 Analog voltage 	VI	VEE to 0.3	V
 Clock input voltage 	VCLK, VCLK	VEE to 0.3	V
 Reference voltage 	VREF	VEE to 0.3	V
 Digital output current 	V01 to V010	0 to -20	mΑ
 Operating temperature 	Topr	-20 to $+75$	°C
 Storage temperature 	Tstg	-55 to +150	°C
 Allowable power dissipation 	PD	1.23	w

Recommended Operating Conditions

 Supply voltage 	VCC	1.6 to 2.1	V
	VEE	-5.25 to -4.75	V
	AGND-DGND	-0.05 to +0.05	V
Reference voltage	VREF.T	0	v
	VREF.B	2.0	v
 Analog input voltage 	Vi	VREF.B to VREF.T	V
Clock input voltage	VIH	— 1.1 min.	V
	VIL	— 1.4 max.	V
 Clock pulse width 	TPW1	20 min.	ns
	TPW0	22 min.	ns

Block Diagram and Pin Configuration (Top View)

No.	Symbol	Equivalent circuit	Description
1	CLK		Clock input pin, ECL level.
2	CLK	VEE	Inverse clock input pin, ECL level
3	D10(LSB)		
4	D9		
5	D8	4.35k DGND	
6	D7		
7	D6		Digital output pin, ECL level, pull-down resistor (10K Ω) built in.
8	D5		
9	D4		
10	D3	VEE	
11	D2		
12	D1(MSB)		
13	AGND		Analog ground pin
14	DGND		Digital ground pin
15	VEE		Power supply pin. To be grounded with ceramic chip capacitor of 0.1 μ F or over.
16	Vin(H)		Analog input pin (Upper level)
17	VIN(L)		Analog input pin (Lower level)


Pin Description and Equivalent Circuit

CX2022A-1/-2

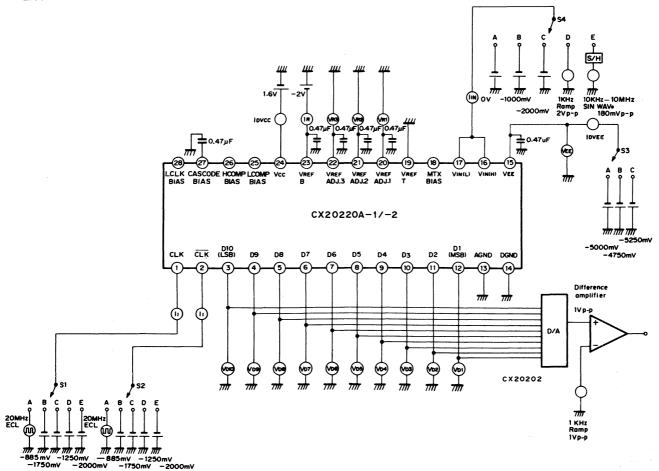
SONY.

No.	Symbol	Equivalent circuit	Description
18	MTX BIAS	AGND (B) VEE	Pin connected internal matrix, which is normally used open.
19	VREF.T		Reference voltage pin (top), 0 V (typ.)
20	Vref ADJ. 1	(9)	
21	Vref ADJ. 2		Reference voltage adjusting pin. To be grounded with ceramic chip capacitor of
22	Vref ADJ. 3		0.1μF or over.
23	Vref.b		Reference voltage pin (bottom), $-2 V$ (typ.) To be grounded with ceramic chip capacitor of 0.1 μ F or over.
24	Vcc	AGND	Internal power supply pin. Three diodes are incorporated in series, so that by connecting pull-up resistor to +5V.
25	LCOMP BIAS	25 AGND 26 AGND	Pin connected internal lower level comparator, which is normally used open.
26	HCOMP BIAS		Pin connected internal upper level comparator which is normally used open.

SONY.

Electrical Characteristics 1 (See the Electrical Characteristics Test Circuit) CX2022A-1 $(Ta = 25 \,^{\circ}\text{C}, \, \text{Vcc} = 1.6\text{V}, \, \text{VEE} = -5\text{V})$

ltem	Symbol		SW Co	onditio	n	Test point	Test condition	Min.	T	Max.	1.1
	Symbol	SW1	SW2	SW3	SW4	rest point	lest condition	Min.	Тур.	Max.	Unit
Resolution	n								10		bit
Differential linearity error	Eo	A	A	A	D	Differential waveform output				±1	LSB
Integral linearity error	EL	A	A	A	D	Differential waveform output				±1	LSB
Differential gain error	DG	A	A	A		DA output	SW4:NTSC 40IRE mod. ramp		0.7		%
Differential phase error	DP	A	A	A		DA output	fc = 14.32 MHz nonlock		0.3		deg


CX2022A-2

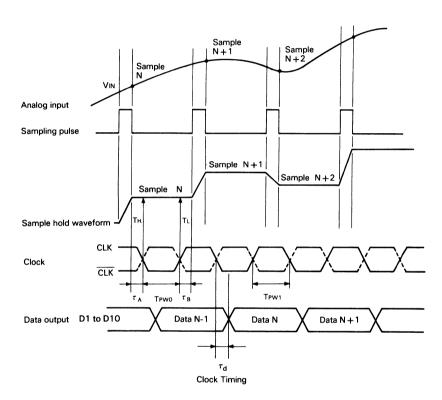
ltem	Symbol		SW Co	ondition	n	Test saint	Test condition	ondition Min. Typ. M	Max.	Unit	
	Symbol	SW1	SW2	SW3	SW4	Test point	Test condition	Min.	тур.	Max.	Unit
Resolution	n								9		bit
Differential linearity error	Eo	A	A	A	D	Differential waveform output				±1	LSB
Integral linearity error	EL	A	A	A	D	Differential waveform output				±1/2	LSB
Differential gain error	DG	A	A	A		DA output	SW4:NTSC 40IRE mod. ramp		1.0		%
Differential phase error	DP	A	A	A		DA output	fc = 14.32 MHz nonlock		0.5		deg

Electrical Characteristics 2 (See the Electrical Characteristics Test Circuit)

							(Ta = 25°C,	VCC=	=1.6V,	VEE =	—5V)
ltem	Symbol		SW Co	ondition	n	Test point	Test condition	Min.	Тур.	Max.	Unit
nem	Symbol	SW1	SW2	SW3	SW4	rest point	Test condition	IVIII I.	Typ.	IVIAX.	
Conversion rate	fmax	Α	A	A	D	DA output		20			MSPS
Power consumption(1)	IDVCC	В	D	A	A	IDVCC			17	25	mA
Power consumption(2)	IDVEE	В	D	A	A	IDVEE		-80	-60		mA
Resistor string current	IREF	В	D	A	A	IR		-14	- 12.5		mA
Resistor string pin voltage (1)	VR1	В	D	A	A	VRI		-0.51	-0.5	-0.49	v
Resistor string pin voltage (2)	VR2	в	D	A	A	VR2		-1.01	-1.0	-0.99	v
Resistor string pin voltage (3)	Vr3	в	D	A	A	Vr3		-1.51	-1.5	-1.49	v
Offset voltage, Vrr side	Еот	в	с	A	A				2		mV
Offset voltage, VRB side	Еов	в	с	A	A				4		mV
Analog input current	lin	В	D	A	A	lin			40	80	μA
Analog input capacity (1)	CIN	A	А	A			SW4: VIN = OV + 0.07 Vrms 4 MHz		230		pF
Analog input capacity (2)	CIN	A	A	A			V _{IN =} -2V+0.07 Vrms 4 MHz		190		pF
Analog input bandwidth	BW	A	A	A	E	DA output	Measurement of output amplitude		10		MHz
Digital input current (1)	Ін	в	с	A	A	h			5	8	μA
Digital input current (2)	hι	E	D	A	A	h			5	8	μA
Inverse digital input current (1)	Ін	с	в	A	Α	h			5	8	μA
Inverse digital input current (2)	hL.	D	E	A	A	h			5	8	μA
Digital output voltage, H level (1)	VIL	A	D	A	A	VD1 to VD10	Do not connect pull-down resistor.	-0.9	-0.8		v
Digital output voltage, H level (2)	Vон	A	D	A	A	VD1 to VD10	Pull-down resistor is 1k Ω.		-1.0		v
Digital output voltage L level (1)	Vol	A	D	A	A	VD1 to VD10	Do not connect pull-down resistor		-1.6	-1.5	v
Digital output voltage, L level (2)	Vol	A	D	A	A	VD1 to VD10	Pull-down resistor is 1k Ω .		- 1.9		v
Output data delay (1)	Tđ	A	A	A	A	VD1 to VD10	Do not connect pull-down resistor		10		ns
Output data delay (2)	Td	A	A	A	A	VD1 to VD10	Pull-down resistor is 1k Ω		5		ns

Electrical Characteristic Test Circuit

CX2022A-1/-2



SONY.

Reference Data for Standard Circuit Design

Clock Timing

CX20220A-1/-2 is a series-parallel-type A/D converter, and therefore an external sample and hold circuit is required. Careful timing, design should be made according to the timing chart shown below. The timing design between the S/H output and the A/D clock is important.

 $\tau_{A} \geq \tau_{A}$ (Aperture time + setting time of sample and hold circuit)

 $\tau_{\rm B} \ge 2$ ns

 $\tau_{\rm PW0} \ge 22 ns$

 $\tau_{PW1} \ge 20 \text{ns}$

TH is the timing in which the upper level comparator compares VIN and VREF and latches the result. TL is the timing in which the lower level comparator compares VIN and VREF and latches the result. The simple method is for output data to be latched upon rising edge of CLK. Clock duty should be chosen so that the DG and DP perform the best result.

Digital Output (CX20220A-1)

In the output stages (pins 3 through 12), 10 k Ω pull-down resistors are built in. A 1k Ω or larger resistance can further be connected to it externally.

D1 = MSB, D10 = LSB.

The table below shows the relationship between analog input voltage and digital output code.

		Digital output code (binary)
Input signal voltage	Step	MSB LSB
		1 2 3 4 5 6 8 8 9 10
VREF.T	0	1111111111
•	1	1 1 1 1 1 1 1 1 1 0
•	2	1111111101
•	•	•
•		•
•	511	100000001
	512	1000000000
	513	0 1 1 1 1 1 1 1 1 1 1
	•	•
	•	•
•	1022	0000000001
Vref. B	1023	00000000000

Digital Output (CX20220A-2)

D1 = MSB, D9 = LSB.

The table below shows the relationship between analog input voltage and digital output code.

[Digital output code (binary)	
Input signal voltage	Step	MSB LSB	
		123456889	
VREF.T	0	111111111	
•	1	111111110	
	2	111111101	
•	· ·	•	
•	•	•	
	255	10000001	
	256	100000000	
•	257	011111111	
	•	•	
	•	•	
	510	000000001	1 : V _{он}
VREF. B	511	000000000	0 : Vol

Ground Pin (AGND, DGND)

When mounting the converter on a printed circuit board, take as much space as possible for GND, to reduce impedance and resistance.

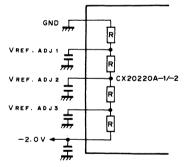
Power Supply Pin (VEE)

The VEE pin should be bypassed in the shortest way to AGND with a $0.1 \mu F$ or larger ceramic chip capacitor.

Power Supply Pin (Vcc)

This is an internal power supply pin. Three diodes are incorporated in it in series, as shown in the equivalent circuit diagram, and its lower end is connected to AGND. Therefore, any desired VCC can be obtained by connecting a pull-up resistor to +5V. Be careful not to connect a capacitor between this pin and GND, because oscillation may result.

Reference Voltage Pin


From this pin the reference voltage is supplied to the upper level and lower level comparators. Normally, VREF.T should be connected to GND, and VREF.B to -2.0V, respectively.

The interval between VREF.T and VREF.B constitutes a resistance of approximately 150 Ω , and upon application of -2.0V a current of approximately 13 mA will flow in it.

Any leakage of CLK to the reference voltage will deteriorate the characteristics of the converter. To avoid this, it should be bypassed to AGND with a tantalum capacitor of 47 μ F or over plus a ceramic chip capacitor of 0.1 μ F or over.

Linearity Adjusting Pin (VREF.ADJ)

Adjusting pins are extended from reference resistors as shown below. Normally, these pins are connected to AGND with a 0.1μ F or larger ceramic chip capacitor. When adjustments are needed, connect them to AGND or VREF.B via resistance.

Sample & Hold Circuit

As noted in the explanation of the clock timing, it is desirable that the sample and hold circuit has some allowance for TA. A sample and hold circuit based on a diode bridge switch may be used which performs the best result.

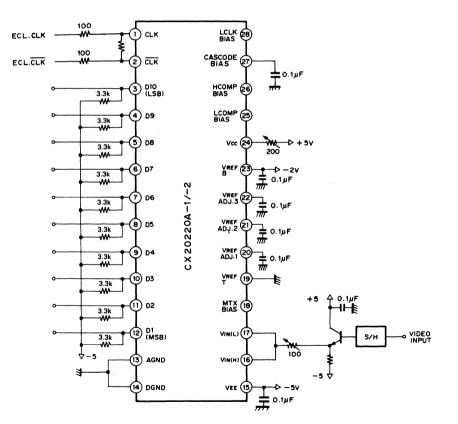
For more information, see Application Circuit (2).

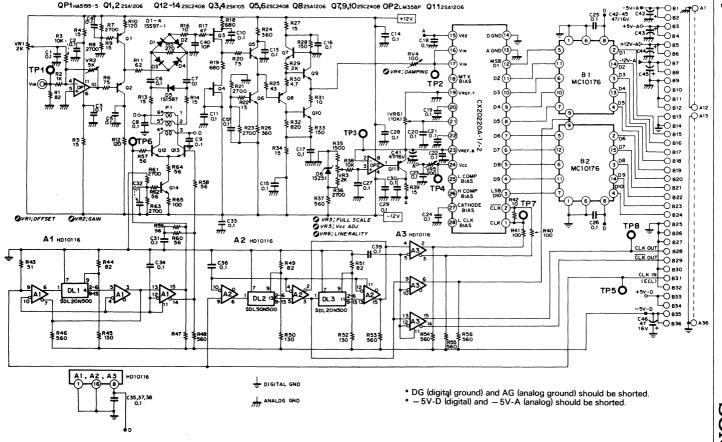
Analog Input

Since CX20220A-1/-2 has an analog input capacitance of approximately 230pF, the buffer amplifier used to drive it must have a sufficient drive capability. Note that, if driven by a low-output-impedance buffer amplifier, a parasitic oscillation may result. This can be prevented by inserting a resistor of about 10 to 30 Ω between the output of the buffer amplifier and the A/D input in series.

Clock Input

The clock input is a complementary configuration. Normally it should be driven with ECL circuit with complementary output.


Digital Output (D1 through D10)


Although a 10k Ω pull-down resistor is built into the digital output stage, a 1k Ω or larger resistor can further be connected to it externally. In this case, however, care must be taken about changes in output level.

Other

Pin 18 (MTX BIAS), pin 25 (LCOM BIAS), pin 26 (HCOMP BIAS) and pin 28 (LCLK BIAS) are not used. These pins should never be connected to GND, power supply or any other pins.

Application Circuit (1)

CX2022A-1/-2

SONY

Comparative Description of the System

CX20220A-1/-2 is based on a new series-parallel type. The following is a comparative explanation of the conventional and the new series-parallel types.

Series-Parallel Type (Conventional)

The series-parallel-type A/D converter is designed to accomplish A/D conversion in two steps, as shown in Fig. 1. With a 10-bit device, the level of the analog signal held in the sample hold (S/H) circuit is converted into a first set of parallel 5-bit digital output. This digital output is at the same time converted back into an analog signal, corresponding to the upper 5 bits. The difference between this signal and the level held at input is converted into digital signals in the parallel 5-bit A/D converter at the next stage, resulting in digital output for the lower 5 bits.

The number of comparators required for this system is $(2^5 - 1) \times 2 = 62$ pcs., bringing about a dramatic reduction in circuit size as compared to the 10-bit parallel type. However, since it does A/D conversion twice, once for the upper level and then again for the lower level, it takes longer conversion time, and also requires an S/H circuit to hold the input analog signal so that its level does not change when the lower 5 bits are being converted, in addition both the 5-bit D/A converter and the subtractor, shown in Fig. 1, are required to possess a 10-bit equivalent accuracy.

New Series-Parallel Type

Essentially the new series-parallel-type A/D converter aims to reduce the number of comparators by doing A/D conversion twice, once for the upper bits and again for the lower bits, as in the case of the conventional series-parallel type. The distinguishing feature of this system, however, is that it does not require the D/A converter and the subtractor as shown in Fig. 2. Simply speaking this system is designed so that the input level held in the S/H circuit is first A/D converted for the upper 5 bits, and upon receipt of control signal from the upper level encoder, the lower level A/D converter is operated.

To simplify the operating principle of this system, Fig. 3 shows an example which consists of an upper 2 bits and lower 2 bits, a total of 4 bits. The upper and lower level circuits each consist of three comparators, switch trains S1 through S4, a single 16-segmented resistor, and an encoder.

Input level VIN held by the S/H circuit is determined by the upper level comparator to be at a level of VREF.T to V₁, V₁ to V₁ to V₂, V₂ to V₃, or V₃ to VREF.B. The result of judgement is converted into upper 2-bit digital output through the upper level encoder. At the same time, one of the switch trains S1 to S4 is turned on, according to the level of VIN. As it switches on, reference voltage is supplied to the lower level comparator, and elaborate comparative judgement is made at the interval of (VREF/4), resulting in output of the lower 2 bits from the lower level encoder.

Since this system uses the same resistor strings in common for the upper and lower levels, simplicity is maintained. Furthermore, since this system requires fewer comparators, input bias current for the comparators is reduced accordingly.

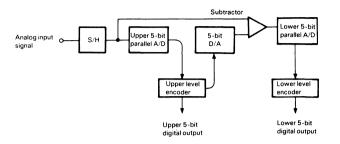


Fig. 1 Configuration of Series-Parallel 10-Bit A/D Converter

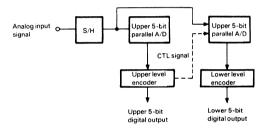
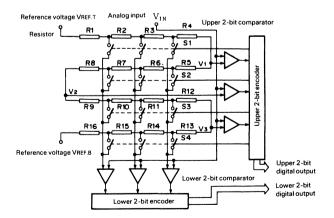



Fig. 2 Configuration of the New Series-Parallel 10-Bit A/D Converter

SONY®

CXA1008P/1009P

High-speed Sample and Hold Amplifier

Description

CXA1008P/1009P are bipolar IC's developed for the purpose of sample holding video signals and other signals at high-speed.

Features

•Maximum sampling frequency	
CXA1008P	35 MHz
CXA1009P	18 MHz
•Linearity	0.08% (Typ.)
Clock input level	ECL compatible
 Low power consumption 	•
CXA1008P	680 mW (Typ.)
CXA1009P	420 mW (Typ.)

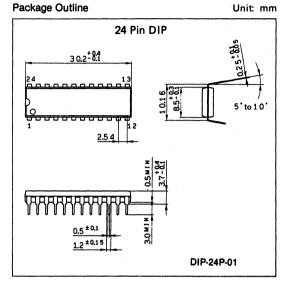
Structure

•Monolithic silicon bipolar IC.

Applications

• A/D converter and other analog signal processing • Other general applications.

Function


High-speed hold circuit, wide band 6 dB amplifier, A/D reference power supply, A/D clock output circuit.

Absolute Maximum Ratings (Ta = 25°C)

 Supply voltage 	Vcc	+5.5 V
	VEE	−6.0 V
 Operating temperature 	Topr	−20 to +75 °C
 Storage temperature 	Tstg	−55 to +150 °C
 Allowable power dissipation 	Po	1.2 W

Recommended Operating Conditions

 Supply voltage 	Vcc	+ 4.75 to 5.25V
	VEE	-4.75 to -5.45V

CXA1008P/1009P

Block Diagram

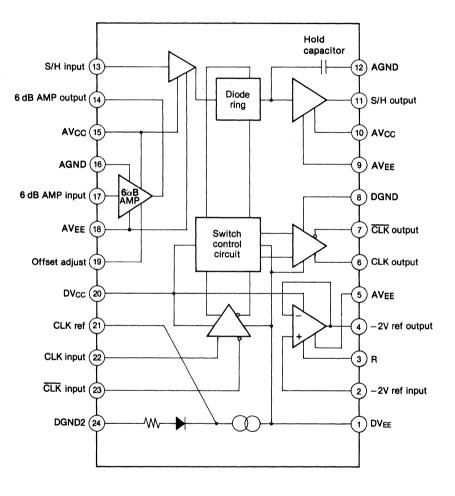


Fig. 1

SONY.

Terminal Function and Equivalent Circuits

Pin No.	Symbol	Equivalent circuit	Function
1	DVEE		Digital V _{EE} (-5V)
2	-2V ref input		reference voltage input for A/D converter
3	R	ODVcc (4)	Pulldown terminal for external R (30Ω typically)
4	- 2V ref output	2002 S O AVEE	reference voltage output for A/D converter
5	AV _{EE}		Analog V _{EE} (-5V)
6	CLK output		CLK output for A/D converter
7	CLK output	7kΩ 7kΩ	CLK output for A/D converter
8	DGND		Digital GND
9	AVEE		Analog V _{EE} (–5V)
10	AVcc		Analog V _{CC} (+5V)

CXA1008P/1009P

Τ

Τ

ſ

Pin No.	Symbol	Equivalent circuit	Function
11	S/H output	OAVcc 12.50 (I) OAVEE	S/H output
12	AGND		Analog GND
13	S/H input		S/H input
14	6dB AMP output	O AV _{CC} O AV _{CC} O AV _{EE}	Olutput terminal of 6dB amplifier
15	AVcc		Analog V _{CC} (+5V)
16	AGND		Analog GND

SONY.

T

CXA1008P/1009P

Pin No.	Symbol	Equivalent circuit	Function
17	6dB AMP input	AV _{cc}	6dB AMP input
18	AVee		Analog V _{EE} (-5V)
19	offset adjust		6dB AMP DC offset adjust terminal
20	DVcc		Digital V _{CC} (+ 5V)
21	CLK ref	©DVcc ↓ 210 ↓ ↓ −1.2V ↓ ↓ ○DV _{EE}	CLK reference output
22	CLK input		CLK input Note: connect to ② PIN or input ECL CLK signal
23	CLK input		CLK input (Note: input ECL) CLK signal
24	DGND		Digital GND

SONY.

CXA1008P

Electrical Characteristics S/H section (see Fig. 3)

S/H section (see Fig. 3)		(Ta	= 25°C,	$V_{cc} = +$	- 5V, Vee	= -5V)
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
		Viн	-0.9	-0.8		v
Digital input voltage		VIL		-1.6	- 1.5	v
CLK Reference voltage (pin 21)		VCLK REF	- 1.3	-1.2	- 1.1	v
Analog input voltage range	∆V < 1.2V * 1	VINS	-3		3	v
Output voltage range		Vouts	-3		3	v
		lcc	48	60	78	mA
Power Supply	without -2V ref.	I _{EE1}	48	60	78	mA
	with $-2V$ ref. $R_{LI} = 50\Omega *2$	IEE2	80	100	125	mA
Input bias current	$-2V < V_{in} < 2V$	IBiass		15	30	μΑ
Output impedance		Zos		20	40	Ω
Voltage gain ratio		Gvs	0.99	1.0	1.01	
Full power bandwidth	$V_{in} = 2V_{p \cdot p} (-3dB)$	BW		12		MHz
Power supply rejection ratio		SVRs		-40		dB
Hold mode feed through	fin = 4MHz Vin = 1 Vp-p, CLK open	нмтн		-50	-40	dB
Clock leak	V _{in} = 0V	CLLEAK		10	50	mV
Linearity	$\begin{array}{l} \mbox{fin} = 19.53\mbox{kHz} \ (10/512\mbox{MHz}) \\ \mbox{f}_{CLK} = 10\mbox{MHz} \ \ * \mbox{3} \end{array}$	Lin		0.08	0.15	%
Hold mode droop	input voltage range, 0 to $-2V$	HMDR		2	20	mV/μs
Acquisition time	∆V = 1.2V	Таq		8	12	ns
Settling time	see the TIMING CHART	T _{set}		25		ns
DC offset voltage	f _{CLK} = 5MHz	Voffset		±15	±100	mV
Maximum sampling frequency		fclкн	35			MHz
Minimum sampling frequency		fclkl			5	MHz
Differential gain (D.G.)	Vin = NTSC 40 IRE mode ramp.	DG		0.5	1.0	%
Differential phase (D.P.)	$f_{CLK} = 20MHz$	DP		0.5	1.0	deg

 $(R_{LI} = 50\Omega. \text{ see Fig. 3})$

CXA1009P

Electrical Characteristics S/H section (see Fig. 3)

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
		VIH	- 0.9	-0.8		v
Digital input voltage		VIL		- 1.6	- 1.5	v
CLK Reference voltage (pin 21)		VCLK REF		-1.2	-1.1	v
Analog input voltage range	∆V < 1.2V * 1	Vins	-3		3	v
Output voltage range		Vouts	-3		3	v
		lcc	25	35	45	mA
Power supply	without -2V ref.	I _{EE1}	25	35	45	mA
	with $-2V$ ref. RLI = 50 Ω *2	I _{EE2}	60	75	98	mA
Input bias current	-2V < Vin < 2V	Biass		9	18	μ A
Output impedance		Zos		20	40	Ω
Voltage gain ratio		Gvs	0.99	1.0	1.01	
Full power bandwidth	$V_{in} = 2V_{p-p} (-3dB)$	BW		6		MHz
Power supply rejection ratio		SVRs		- 40		dB
Hold mode feed through	fin = 4MHz Vin = 1 Vp-p, CLK open	нмтн		- 50	- 40	dB
Clock leak	Vin = 0V	CLLEAK		10	50	mV
Linearity	fin = 19.53kHz (10/512MHz) $f_{CLK} = 10MHz * 3$	Lin		0.08	0.15	%
Hold mode droop	input voltage range, 0 to -2V	HMDR		2	10	mV/μs
Acquisition time	∆V = 1.2V	Таq		12	20	ns
Settling time	see the Timing Chart	T _{set}		36		ns
DC offset voltage	f _{CLK} = 5MHz	Voffset		± 15	± 100	mV
Maximum sampling frequency	MHz	fclkh	18			MHz
Minimum sampling frequency		fclkl			2	MHz
Differential gain (D.G.)	Vin = NTSC	DG		0.5	1.0	%
Differential phase (D.P.)	40 IRE more ramp fcLκ = 15MHz	DP		0.5	1.0	deg

*2 Power consumption is $I_{CC} \times 5V + I_{EE1} \times 5V + 40$ mA $\times 1.8V$.

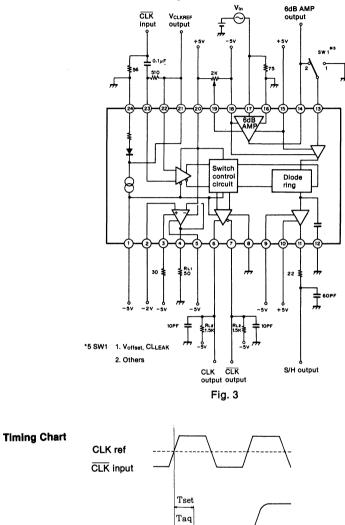
*3 Input voltage waveform

-2.0V

6dB amp section (see Fig. 3)

the sea	Condition	ndition Symbol	CXA1008P		CXA1009P			Unit	
Item			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Intput voltage range	*3	Vina	- 1.3		+ 0.8	- 1.3		+ 0.8	v
Band width (-3dB)	$V_{in} = IV_{pp}$	w	45	55		15	25		MHz
Input bias current	$-1V < V_{in} < 1V$	I _{Bias A}		9	20		5	10	μ A
Output impedance		ZOA		4	10		4	10	Ω
Voltage gain	*4	Gva	5.1	6.0	6.9	5.1	6.0	6.9	dB
Power supply rejection ratio		SVR₄		- 40			- 40		dB

*3 2ndary harmonic: $-40dB f_{in} = 3.58MHz$ *4 f_{in} = 3.58MHz V_{in} = $1V_{p-p}$


CLK OUT section (see Fig. 3)

Item	•	Condition Symbol		Condition Symbol CXA1008P			>	CXA1009P			Unit
iten	I	Condition	Symbol	Min.	Тур.	Max.	Min	Тур.	Max.	Unit	
Output voltage	Amplitude		VCLK	0.2	0.3	0.4	0.2	0.3	0.4	v	
Output voltage	Low level		VCLKL	- 1.2	-1.1	-0.9	- 1.2	- 1.1	-0.9	v	
Rise time		$R_{L2} = 1.5$ K Ω	tr		7	10		7	10	ns	
Fall time		see Fig. 3	tf		5	8		5	8	ns	
CLK Delay 1		1	7D1	20	28	34	36	38	45	ns	
CLK Delay 2			τ D2	14	22	28	24	26	33	ns	

- 2V_{ref} amp section (see Fig. 3)

lterr	Condition	Symbol	Condition Symbol		CXA1008	P		CXA1009	2	Unit
Item	Condition	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
Voltage gain ratio	$V_{ref} = -2V$	GvR	0.9	1.0	1.1	0.9	1.0	1.1		
Voltage gain ratio	$R_{LI} = 50\Omega$	GVR	0.9	1.0	1.1	0.5	1.0			
	$-3V < V_{in}$			5	10		E	10		
Input bias current	< 0V	Bias R		5	10		5	10	μΑ	
Output impedance		ZOR		2	10		2	10	Ω	

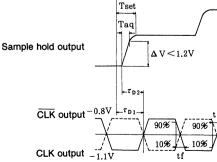


Fig. 4

Description of Functions

CXA1008P/1009P are the monolithic ICs incorporating a high-speed sample hold circuit, a wide band 6 dB amp, reference power supply for A/D converter, and a clock output section, and operate up to a sampling frequency of 35/18 MHz.

CXA1008P/1009P can compose in 20/15 MS/s A/D converter system in combination with a CX20052A. CXA1008P/1009P form, with the input of a single phase or 2-phase ECL clock input, a new sampling signal. For this reason, the sampling period remain unchanged even when the frequency or duty of the input sampling CLK signal changes.

•Wide band 6 dB AMP.

In-phase amp with a band width over 45/15 MHz amplifies ordinary TV signal (1Vp-p) to a 2Vp-p signal which gives the highest accuracy when processed in CX20052A.

•CLK output section

When used in combination with an A/D converter such as CX20052A, the CLK timing between the S/H circuit and the A/D converter needs to be adjusted, and up to 20/15 MHz, CXA1008P/1009P generate CLK timing signals for driving the A/D converter, and output 2-phase CLK at 300 mVp-p from pins 6 and 7. With this output, no separate CLK is required to combine with an A/D converter.

• CXA1008P/1009P incorporate a buffer amp to provide a reference voltage for the A/D converter.

Application Circuit

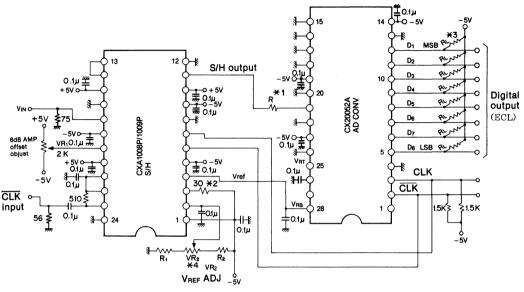
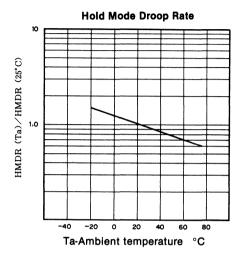


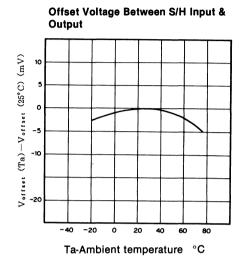
Fig. 5 Connection of CXA 1008P/1008P with CX20052A (1)

*1 R is a ringing preventing resistor. Select between 10 to 50Ω

*2 Pulldown R for Vref

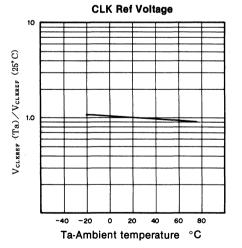

*3 R_L = $4.3k\Omega$

*4 $R_1 = 1k\Omega$, $VR_2 = 2k\Omega$, $R_2 = 2k\Omega$


Notes on Application

- 1. Unless sufficiently stable power supply and GND voltage in the high-frequency range are used, the device characteristics deteriorates. For this reason, bring the power supply bypass capacitor as near to this IC as possible, and make the pattern to the power supply and to the earth terminal as wide as feasible.
- 2. To reduce CLK leak, use waveforms similar to sine waves as far as possible, up to the CLK input. For satisfactory operation, a CLK input ampritude of around 300mV is enough.
- 3. When the S/H input deviates over 1.2V during one sampling period, the output may contain errors.

CXA1008P/1009P



Changes in Characteristics with Temperature

 $(3.58MHz, Vin = 1V_{pp})$

6dB AMP 2ndary Harmonic Level

SONY.

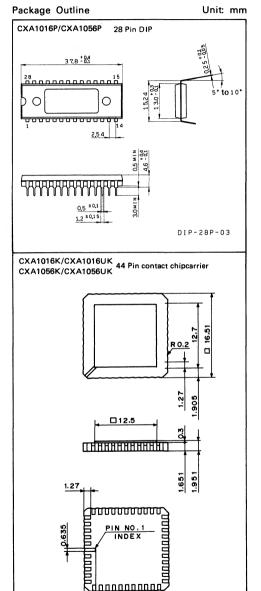
CXA1016P/CXA1016K/CXA1016UK/ CXA1056P/CXA1056K/CXA1056UK

8 bit 30/50 MHz Flash A/D Converter

Description

CXA1016P/CXA1016K/CXA1016UK/CXA1056P/ CXA1056K/CXA1056UK are 8 bit high-speed A/D converter ICs for various applications. They can be used widely for various purposes which require highspeed A/D conversions.

CXA1016P/CXA1056P are assembled in the plastic DIP packages and CXA1016K/CXA1056K are in the ceramic lead-less chip carriers.


CXA1016UK/CXA1056UK are high reliability versions of CXA1016K/CXA1056K with extended temperature range (-55 to $+125^{\circ}$ C) and bias burnin (72 hours at 125° C).

Features (CXA1016P/CXA1016K/CXA1016UK)

 Resolution 	8 bits \pm 1/2 LSB
 High-speed operation 	Maximum conversion
	Rate 30 MS/s
• Wide analog input bandwidth	15 MHz (3 dB)
 Low input capacitance 	35 pF (typ)
 Low power consumption 	420 mW (typ)

Features (CXA1056P/CXA1056K/CXA1056UK)

Resolution	8 bits \pm 1/2 LSB
 High-speed operation 	Maximum conversion
	Rate 50 MS/s
• Wide analog input bandwidth	25 MHz (-3 dB)
 Low input capacitance 	35 pF (typ)
 Low power consumption 	550 mW (ty <u>p</u>)

JEDEC TYPE C

2.159

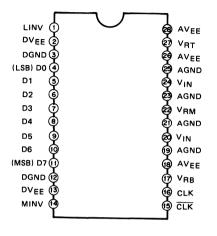
Absolute Maximum Ratings (Ta=25°C)

 Supply voltage 	VEE	0 to -7	V
 Analog input voltage 	VIN	0.5 to Vee	V
Reference input voltage	Vrt, Vrb, Vrm	0.5 to Vee	V
	Vrt-Vrb	2.5	V
 Digital input voltage 	CLK, CLK, MINV, LINV	0.5 to4	v
 VRM pin input current 	IVRM	-3 to +3	mA
 Digital output current 	IDo to ID7	0 to -10	mA
 Operating temperature 	Та	-20 to $+100$	°C (CXA1016P/CXA1056P)
	Тс	-25 to +125	°C (CXA1016K/CXA1056K)*1
	Tc	-55 to +125	°C
			(CXA1016UK/CXA1056UK) ^{*1}
 Storage temperature 	Tstg	-55 to +150	°C
 Allowable power dissipation 	Po	1.48	W (CXA1016P/CXA1056P)
		1.08	W (CXA1016K/CXA1016UK/
			CXA1056K/CXA1056UK)

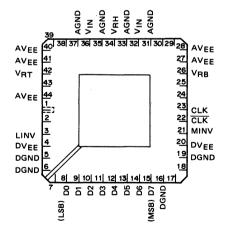
SONY

*1 Heat sinking is required above 100°C (CXA1016K/CXA1016UK)/86°C (CXA1056K/CXA1056UK).

Recommended Operating Conditions (CXA1016P/CXA1016K/CXA1016UK)

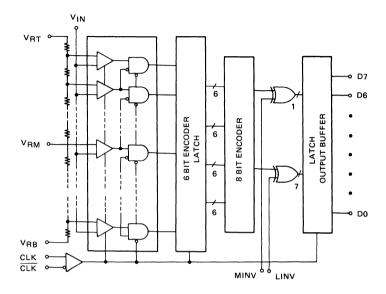

		Min.	Тур.	Max.	Unit
 Supply voltage 	AVEE, DVEE	-5.7	-5.2	-5.0	v
	AVEE-DVEE	-0.05	0	0.05	v
	AGND-DGND	-0.05	0	0.05	v
 Reference input voltage 	Vrt	-0.1	0	0.1	v
	Vrb	-2.2	-2	-1.8	V
 Analog input voltage 	Vin	Vrb		Vrt	
 Clock pulse width 	Tpw1	25			ns
	Tpw0	8			ns

Recommended Operating Conditions (CXA1056P/CXA1056K/CXA1056UK)


		Min.	Тур.	Max.	Unit	
 Supply voltage 	AVEE, DVEE	-5.7	-5.2	-5.0	v	
	AVEE-DVEE	-0.05	0	0.05	v	
	AGND—DGND	-0.05	0	0.05	v	
 Reference input voltage 	Vrt	-0.1	0	0.1	v	
	Vrb	-2.2	-2	-1.8	v	
 Analog input voltage 	VIN	Vrb		Vrt		
 Clock pulse width 	Tpw1	15			ns	
	Tpw0	5			ns	

Pin Configuration (Top View)

The pin numbers without indication are empty pins. (not connected)


CXA1016K/CXA1016UK/ CXA1056K/CXA1056UK

CXA1016P/CXA1056P

SONY.

Block Diagram

Pin Description

Symbol	Function
AVEE	Analog VEE, -5.2 V (typ). Coupled with -6Ω between DVEE.
LINV	Input pin for output polarity inversion of Do (LSB) - D6. (See the code table)
DVEE	Digital VEE, -5.2V (typ).
DGND	Digital GND, which is separated from the Analog GND.
Do - D7	Digital data output pin, ECL level. Do: LSB-D7: MSB. Pull-down resistors are necessary externally.
MINV	Input pin for output polarity inversion of D7 (MSB) (See the code table). ECL level. "O" level is held when it is released.
CLK	Inverse clock input pin, ECL level.
CLK	Clock input pin, ECL level.
Vrb	Reference voltage (bottom), $-2V$ (typ).
AGND	Analog GND
Vin	Analog input, input range is VRT-VRB
Vrm	Middle point of the reference voltage, it can be used as a linearity correction pin.
Vrt	Reference voltage (top), OV (typ). Empty pins (not connected), 2 and 19 are used to be grounded to DGND, the others are used to be grounded to AGND.

Output Coding

MINV LINV	0	0 1	1 0	1 1
٥v	11111	100 00	011 11	000 00
	111 10	100 01	011 10	000 01
•			•	•
·	•	•	•	
•	· · ·	•		•
Vin ·	10000	11111	000 00	01111
•	01111	00000	11111	10000
•			•	
•		•	· ·	
•				
	000 01	011 10	100 01	11110
-2V	00000	011 11	10000	11111

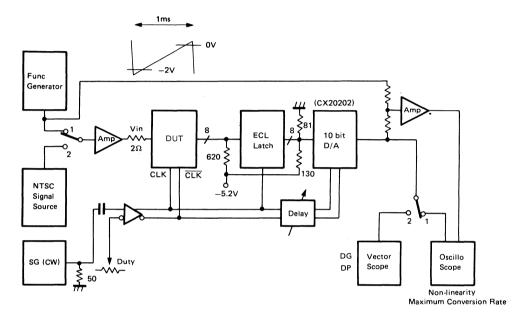
1: Vih, Voh O: Vil, Vol

Electrical Characteristics (CXA1016P/CXA1016K/CXA1016UK)

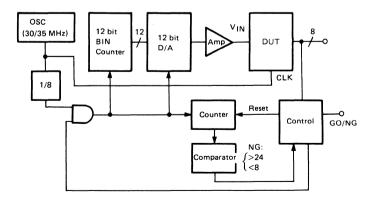
(Ta=25°C, VEE=-5.2V, VRT=0V, VRB=-2V)

Ą.

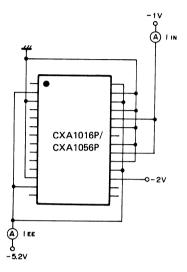
ltem		Symbol	Condition	Min.	Тур.	Max.	Unit
Maximum Conversion Rate		Fc	Vın≕0 to −2V, fin=1 kHz, ramp	30			MS/s
Supply Current		IEE			-75	-100	mA
Analog Input Ca	pacitance	Cin	VIN=-1V+0.07 Vrms		35	40	рF
Analog Input Bia	s Current	lin	VIN=-1V		60	90	μΑ
Reference Resist	or	Rr (Vrt – Vrb)		70	80	100	Ω
Offset Voltage	Vrt			7	9	11	mV
Unset Voltage	Vrb			15	17	19	mV
Disited leave Mail		Viн		-1.0	-0.9	-0.7	v
Digital Input Vol	tage	VIL		-1.9	-1.75	-1.6	v
Divited Jacout Com		Ін	VIH=-0.9V	0		0.4	mA
Digital Input Cur	rent	1ıL	VIL=-1.75V	-0.05		0.35	mA
	- 14	Voн	$R\ell = 620\Omega - Vee$	-1.0			v
Digital Output Vo	bitage	Vol	RE-02032 - VEE			-1.6	v
Output Data Dela	ау	Td	Rℓ=620Ω - Vee		4.0	5.0	ns
Non-linearity Error			Fc=30 MS/s, Vin=0 to $-2V$, fin=1 kHz, ramp			±1/2	LSB
Differential Non-linearity Error			Fc=30 MS/s, 1/16 LSB step ramp			±1/2	LSB
Differential Gain		DG	NTSC 40 IRE mod.			1.5	%
Differential Phase	9	DP	ramp, Fc=30 MS/s			0.5	deg.
Aperture Jitter					45		ps

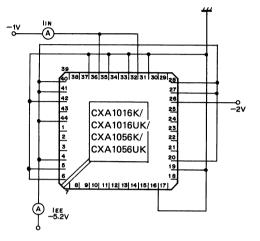

SONY

Electrical Characteristics (CXA1056P/CXA1056K/CXA1056UK)

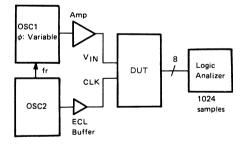

Electrical Chara	cteristics	(CXA1056P/	CXA1056K/CXA1056 (Ta=25°C,	VEE=-5.1	2V, Vrt=	=0V, Vr	кв=−2V
Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Maximum Conver	sion Rate	Fc	Vin=0 to -2V, fin=1 kHz, ramp	50			MS/s
Supply Current		IEE			-95	-120	mA
Analog Input Cap	acitance	Cin	VIN=-1V+0.07 Vrms		35	40	pF
Analog Input Bia	s Current	lin	VIN=-1V		75	115	μΑ
Reference Resiste	or	Rr (Vrt – Vrb)		70	80	100	Ω
	Vrt			7	9	11	mV
Offset Voltage	Vrb			15	17	19	mV
Digital Input Volt	200	Viн		-1.0	-0.9	-0.7	V
Digital input voit	aye	VIL		-1.9	-1.75	-1.6	v
D : 14 14 - 14 D		Ін	Viн=−0.9V	0		0.4	mA
Digital Input Curr	ent	hL	VIL=-1.75V	-0.05		0.35	mA
Digital Output Vo	ltage	Voн	R <i>ℓ</i> =620Ω − Vee	-1.0			v
Digital Output ve	ntage	Vol	HE-02012 - VEE			-1.6	v
Output Data Dela	y	Td	R <i>ℓ</i> =620Ω − Vee		4.0	5.0	ns
Non-linearity Error			Fc=50 MS/s, ViN=0 to $-2V$, fin=1 kHz, ramp			±1/2	LSB
Differential Non-linearity Error			Fc=30 MS/s, 1/16 LSB step ramp			±1/2	LSB
Differential Gain		DG	NTSC 40 IRE mod.			1.5	%
Differential Phase)	DP	ramp, Fc=50 MS/s			0.5	deg.
Aperture Jitter					30		ps

SONY.

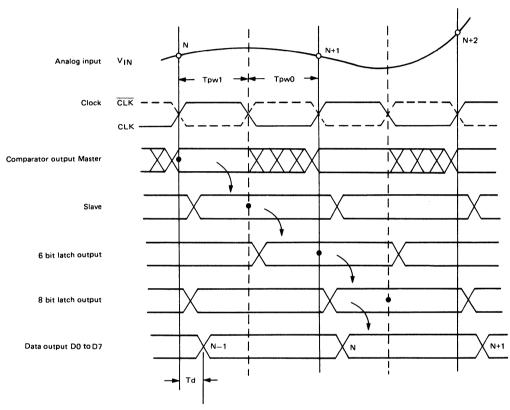

Electrical Characteristics Measuring Circuit Maximum Conversion Frequency Measuring Circuit Non-linearity Measuring Circuit Differential Gain Error Measuring Circuit Differential Phase Error Measuring Circuit



Differential Non-linearity Measuring Circuit



Power Supply Current Measuring Circuit Analog Input Bias Current Measuring Circuit


Aperture Jitter Measuring Circuit

Description of Function (See the block diagram and timing chart.)

- The reference voltage, which is obtained by dividing equally the voltage across VRT to VRB into 256 by the reference resistor ledder, is applied to the respective ⊕ (positive) input sides of 256 clocked comparators. An analog input is applied to the ⊖ (negative) input sides of all the 256 clocked comparators from the VIN pin.
- 2. When the state of CLK is in Low, the master (front stage) of the comparator compares the respective reference voltage and the analog input voltage which is ever-changing.
- 3. When the CLK moves from Low into Hi, each master latches the state immediately prior to the above simultaneously, and as a result, it provides conditions of "11 1100 .. 0" in sequence from the VRT side to the VRB side.
- 4. The output of the master is ANDed between the respective adjacent outputs, and "1" stands only when neighboring 2 outputs become "10", and the all other outputs become "0".
- 5. The result of the AND is latched when CLK moves from Hi into Low. Output of the slave is divided into 4 blocks and each block has 32 clocked comparators, and they are coded into binary codes of 6 bits respectively by the transistor matrix circuit.
- The 6 bit codes are further coded into 8 bit codes by the transistor matrix circuit after they are respectively latched, and they are then output into the ECL level by the output buffer after being 8 bit latched. The output data is delayed 1 clock from the data sampling point and appears at the output pin.
- 7. Two polarity inversion inputs such as MINV and LINV are fed externally to the output buffer, and each of them selects output polarity of MSB and other polarity than MSB respectively.

Timing Chart

Dots (•) in the chart demote respective latch timings.

8 bit 20 MHz Flash A/D Converter

Preliminary

CXA1096P

Description

CXA1096P is an 8 bit 20 MHz high speed A/D converter IC. This IC is suitable for applicated such as digital TV and graphic display.

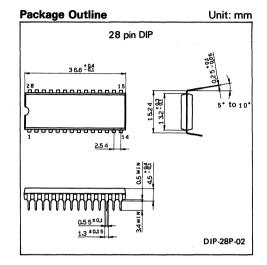
Features

- Resolution
 8 bit ±1/2 LSB
- High speed operation 20MS/s
- Wide band analog 8MHz (-3dB) input
- Low input capacity
- Low power 320mW (Typ.) consumption
- I/O level TTL
- Two ways of power supply (Single +5V or Dual +5V, -5.2V)

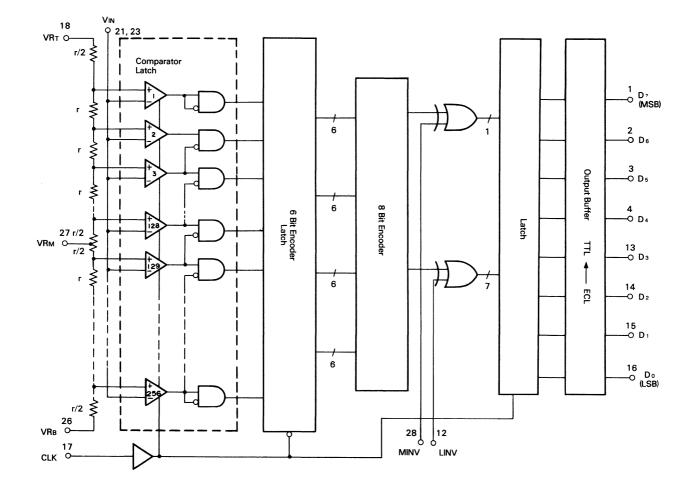
Function

8 bit, 20MS/s parallel A/D converter

Structure


Bipolar silicon monolithic IC

Application


- Digital TV
- High speed signal processing

Absolute Maximum Ratings (Ta = 25°C)

 Supply voltage 	Vcc-GND	0 to +6	v
	VEE-GND	0 to -6	v
Input voltage	VIN		
(analog)	(+5V single power supply)	-0.5 to Vcc	V
-	(dual power supply)	0.5 to VEE	V
Input voltage	VRT, VRB, VRM		v
(reference)	(+5 single power supply)	-0.5 to Vcc	
	(dual power supply)	0.5 to VEE	V
	Vrt – Vrb	2.5	V
 Operating temperature 	Topr	-20 to 75	°C
 Storage temperature 	Tstg	-55 to 150	°C
Recommended Operatin	g Conditions		
 Supply voltage 	Vcc	4.75 to 5.25	V
	VEE	-5.5 to -4.75	V
 Reference input 	VRT	AGND -0.1 to AGND $+0.1$	V
	VRB	AGND - 2.2 to AGND - 1.8	V
 Analog input 	VIN	VRB to VRT	
Clock pulse width	TPW1	30	ns
Clock pulse width	TPWO	10	ns

CXA1096P

SONY.

CXA1096P

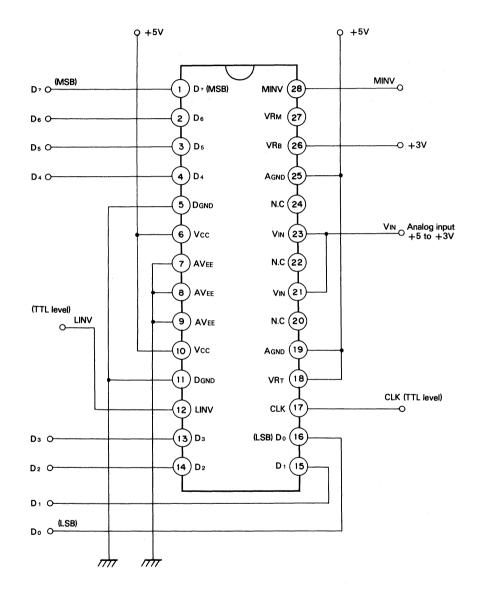
Output coding

MINV	0	0	1	1
LINV	0	1	0	1
AGND	111 11 111 10	100 00 100 01	011 11 011 10	000 00 000 01
VIN	100 00 011 11	111 11 000 00	000 00 111 11	011 11 100 00
AGND – 2V	000 01	011 10	100 01	111 10
	000 00	011 11	100 00	111 11

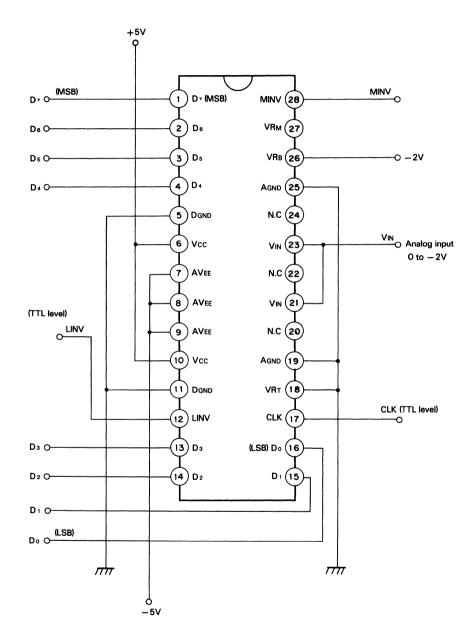
1: Vih, Voh O: Vil, Vol

Electrical Characteristics (Single power supply)

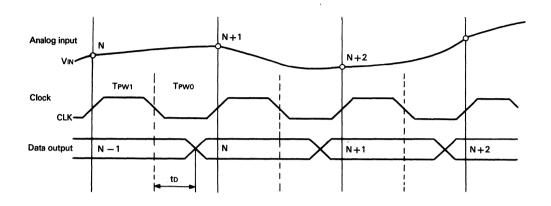
(Vcc=	+5V, DGND = 0V, AGND = $+5V$, VEE = 0V,
	$VRT = +5V, VRB = +3V, Ta = 25^{\circ}C)$


		_				- 101	
	ltem	Symbol	Test condition	Min.	Тур.	Max.	Unit
Maximum conversion frequency		Fc		20			MS/s
Power supply cu	rrent	ICC + IEE			58	70	mA
Reference pin cu	urrent	Iref			14	16	mA
Analog input cap	pacity	Cin			30	35	pF
Analog input bia	s current	lın			50	100	μΑ
Reference resist	ance rate (VRT to VRB)	Rr (VRT to VRB)			130		Ω
Off set voltage	VRT			11	13	15	mV
Uff set voltage	Vrb			3	5	7	mV
		Viн		2.0			v
Digital input volt	age	VIL				0.8	v
Distalizzation	*	lн				10	μΑ
Digital input cur	rent	hL.				-0.3	mA
Disital autout		Vон		2.7	3.4		v
Digital output vo	bitage	Vol				0.5	v
		TDLH		1	23	28	ns
Output data del	ау	VDHL			35	40	ns
Non linearity		DLE	Fc = 20 MS/s			±1/2	LSB
Differential non	linearity	ILE	Fc = 20 MS/s,			±1/2	LSB
Differential gain	error	DG	NTSC 40 IRE mod.			1.5	%
Differential phase error		DP	ramp, Fc = 14.3MS/s			0.5	deg.
Aperture jitter	1.9 <u>00</u>						ps

Electrical Characteristics (Dual power supply)

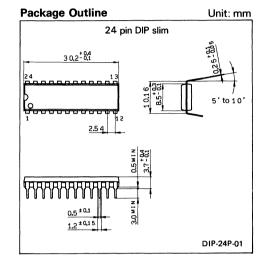

(Vcc = +5V, DGND = 0V, AGND = 0V, VEE = -5V,
$VRT = OV, VRB = -2V, Ta = 25^{\circ}C)$

ltem	Symbol	Test condition	Min.	Тур.	Max.	Unit
Maximum conversion frequency	Fc	fin = 1 kHz, ramp	20			MS/s
Supply current	lcc			8	9.5	mA
Supply current	IEE			53	63.5	mA
Reference pin current	Iref			14	16	mA
Analog input capacity	Cin	$V_{IN} = -1V + 0.07 Vrms$		30	35	pF
Analog input bias current	lin	VIN = -1V		50	100	μΑ
Reference resistance rate (VRT to VRB)	Rr (VRT to VRB)			130		Ω
VRT Off set voltage			11	13	15	mV
VRB			3	5	7	mV
Digital input voltage	Vін		2.0			v
	VIL				0.8	v
Digital input current	ін				10	μΑ
	lı.				-0.3	mA
Digital output voltage	Vон		2.7	3.4		v
Digital output voltage	Vol				0.5	v
Output data delay	TDLH			23	28	nS
	TDHL			35	40	nS
Non linearity	DLE	Fc = 20 MS/s			±1/2	LSB
Differential non linearity	ILE	Fc = 20 MS/s,			±1/2	LSB
Differential gain error	DG	NTSC 40 IRE mod.			1.5	%
Differential phase error	DP	ramp, Fc = 14.3MS/s			0.5	deg.
Aperture jitter						ps


Application Circuit (Single power supply)

(Dual power supply)

Timing chart


CXA1106P

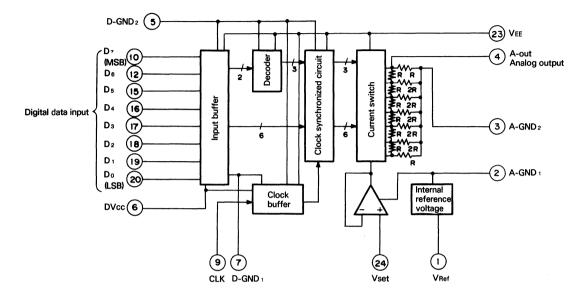
8 bit 35 MHz High-speed D/A Converter

Preliminary

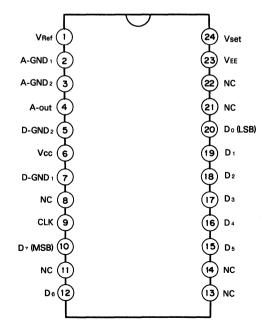
Description

CXA1106P is an 8 bit 35 MHz high speed D/A converter IC. This IC is suitable for application such as digital TV and graphic display.

Features


 Resolution 	8 bit		
 High speed operation 	35MSPS (n	nax. conversion speed)	
 Non linear error 	less than \pm	1/2LSB	
 TTL compatible input 			
• +5 V single power supply	or $\pm 5V$ pov	ver supply	
• Low power consumption	+5V single	200 mW (Typ.)	
	$\pm 5 V$ dual p	power supply	400 mW (Typ.)
Absolute Maximum Ratin	gs		
 Supply voltage 	Vcc	6	V
	VEE	-6	V
Recommended Operating	Range		
 Supply voltage 	Vcc	4.75 to 5.25	V

VEE

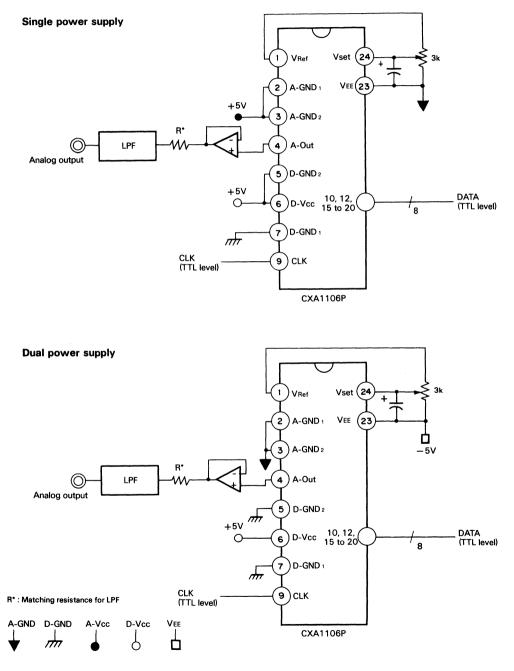

-5.5 to -4.75

v

Block Diagram

Pin Configuration (Top View)

Electrical Characteristics


ingle power supply	$(Vcc = DGND_2 = AGND = +5V, DGND_1 = VEE =$				
ltem	Symbol	Min.	Тур.	Max.	Unit
Current consumption	ICC + IEE		29		mA
Output impedance	Zo		350		Ω
Full scale output voltage	V(FS)		1		Vp-p
Maximum conversion frequency	fc	35			MHz
Differential linear error	DLE	- 1/2	0	+1/2	LSB
Integral linear error	ILE	- 1/2	0	+1/2	LSB
Internal reference voltage	VRef		1.2		v
Digital input	Di		TTL level		

Dual power supply	(Vcc =	= +5V, DGND	1 = D-GND 2 =	A-GND = 0V	, VEE $= -5V$
ltem	Symbol	Min.	Тур.	Max.	Unit
Current consumption (Vcc)	lcc		29		mA
Current consumption (VEE)	lee		- 39		mA
Output impedance	Zo		350		Ω
Full scale output	V(FS)		1		Vp-p
Maximum conversion frequency	fc	35			MHz
Differential linear error	DLE	- 1/2	0	+1/2	LSB
Integral liner error	ILE	- 1/2	0	+1/2	LSB
Internal reference voltage	VRef		1.2		v
Digital input	Di		TTL level		

\backslash	Input code								Output voltage
ply	MSB 1	1	1	1	1	1	1	LSB 1	Vcc
Single power supply	1	0	0	0	0	0	0	0	Vcc – 0.5V
	0	0	0	0	o	0	0	0	Vcc – 1.0V
Viddn	MSB 1	1	1	1	1	1	1	LSB 1	ov
Dual power supply	1	0	0	0	0	0	0	0	-0.5V
	0	0	0	0	o	0	0	0	– 1.0V

I/O Table (Full scale output voltage 1.0V)

Application Circuit

BX-1300

8 bit 20 MHz A/D Converter Module

Description

BX-1300 is an 8-bit A/D converter Module for video signal processing, in which CX20052A (8-bit serial-parallel type high-speed A/D converter IC) and necessary peripheral circuits are combined. It can be operated only by connecting a clock pulse circuit and the power supply.

Its digital output is 8-bit parallel output at TTL level.

Features

- Offset adjustment available. Built-in buffer amplifier
- Clock input and digital output at TTL level
- Operation possible only by connecting a clock pulse circuit and the power supply

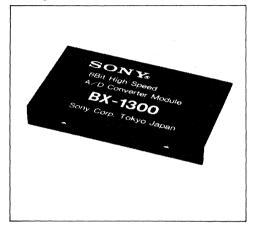
Structure

Hybrid IC

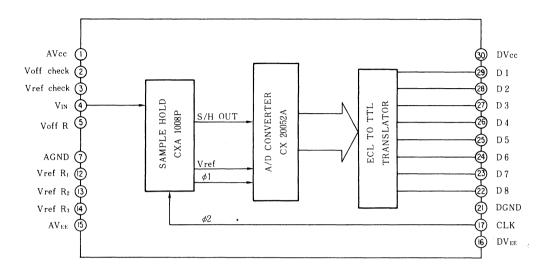
Functions

Resolution	8 bit±1/2 LSB
 Maximum conversion rate 	20 MHz (MIN)
 Analog input level 	1 Vp-р

Digital output level
 TTL level


Absolute Maximum Ratings (Ta = 25° C)

 Supply voltage 	Vcc	+5.5	V
	VEE	- 5.5	V
 Operating temperature 	Topr	- 10 to +65	°C
 Storage temperature 	Tstg	-20 to +80	°C


Recommended Operating Conditions

 Supply voltage 	Vcc	$+5.0 \pm 0.25$	V
	VEE	-5.0 ± 0.25	v
 Clock input voltage 	VCLK	at TTL level	
Input signal voltage	VIN	1	Vp-p
 Reference voltage 	VREF	-2	v

Package Outline

Block Diagram

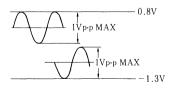
Pin Description

No.	Symbol	Description	No.	Symbol	Description
1	AVcc	Analog +5 V	16	DVEE	Digital — 5 V
2	Voff check	Offset check pin	17	CLK	Clock input (TTL level)
3	Vref check	Reference voltage check pin	21	DGND	Digital GND
4	VIN	Signal input pin	22	D8 (LSB)	ו
5	Voff R	Offset VR pin (2 k Ω)	23	D7	
		5	24	D6	
		1(15)	25	D5	
7	AGND	Analog GND	26	D4	Digital output (TTL)
12	Vref R1] [12]]	27	D3	
13	R2	Reference (13) → \$ 500 Ω	28	D2	
14	R3		29	D1 (MSB)	
15	AVEE	Analog – 5 V	30	DVcc	Digital +5 V

Electrical Characteristics

Ta = 25° C, Vcc = 5V, VEE = -5 V

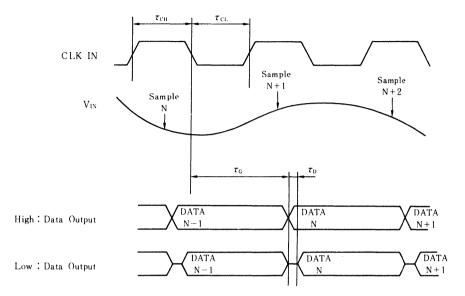
ltem	Symbol	Min.	Тур.	Max.	Unit
Linearity error ¹⁾	LE			±1/2	LSB
Differential gain ²⁾	DG		1.0		%
Differential phase3)	DP		0.5		%
Maximum conversion rate	FCLK MAX	20			MHz
Minimum conversion rate	FCLK MIN			5	MHz
Current consumption	Icc	105	140	175	mA
Current consumption	İEE	240	300	350	mA
Analog input impedance	Rin	71.3	75	78.8	Ω
Clock input impedance	RCLK		2.5		kΩ
Variable range of input offset*)	Vin	- 1.3		0.8	v


Digital output voltage VOD: at TTL level

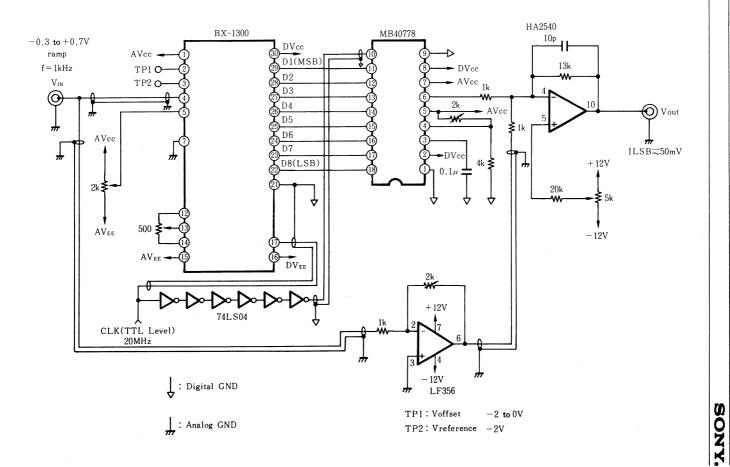
Measurement conditions

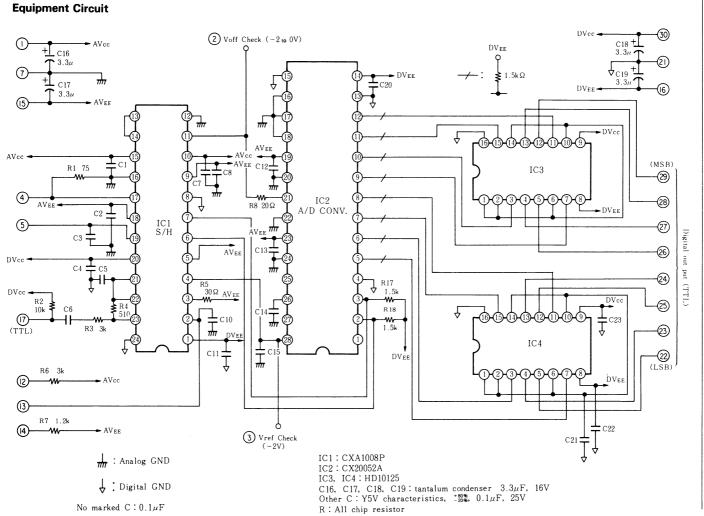
- 1) VIN: -0.3 to +0.7 Vramp
- 2), 3) VIN: NTSC 40IRE mode ramp

CLK: 20 MHz CLK: 20 MHz


*) Input amplitude 1 Vp-p max. See Fig. 1.

f: 1 kHz


Fig. 1 Variable Range of Input Offset


Timing Chart

ltem	Symbol	Min.	Тур.	Max.	Unit
Clock input	auCH	22	25	100	ns
Clock input	τCL	22	25	-	ns
Data dalau	τG	-	40	48	ns
Data delay	τD	-	3	4	ns

Note) Set clock duty at the optimum point as long as the above conditions are satisfied.

BX-1300

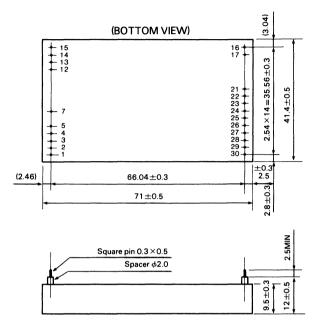
Adjusting Method

(1) Voff check : Terminal for checking offset voltage. Adjust the variable resistor connected to the Voff R terminal so that Sample Hold output falls within the input voltage range (0 to -2 V) of the A/D converter.

(2) Vref check : Terminal for adjusting reference voltage of A/D converter.

Adjust the reference variable resistor (500 Ω) so that the reference voltage (Vref check) of the A/D converter becomes -2 V.

Output Data Format


Input to the A/D converter (output from the Sample Hold) is quantized into an 8-bit format within the range of reference voltage (GND to Vref check).

Step	A/D input signa	I voltage (Voff check)	Digital Output code		
			MSB	LSB	
	over	0. 0000V	11111	111	
0 0 0		0. 0000V	11111	111	
•		•	•		
•		•	•		
•		•	•		
127		-0.9961V	10000	0 0 0	
129		-1.0039V	0 1 1 1 1	1 1 1	
•		•	•		
•		•	•		
•		•	•		
255	-	-2.0000V	0 0 0 0 0	0 0 0	
	under	-2.0000V	0 0 0 0 0	0 0 0	

Notes on Applications

- (1) Output data is regulated by the trailing edge of the CLK input. Adjust latch timing referring to the timing chart.
- (2) Sufficient accuracy may not be achieved for output waveform if fluctuation above 0.6 V occurs in analog input (VIN) during one sample period.

Package Outline

Unit: mm

Note 1) Recommended hold diameter for board mounting is ϕ 1. Note 2) Pins 1, 15, 16 and 30 come with spacers, and others are square pins only.

	(TOP VIEW)			
Pattern Layout				
•	01	30 0		
	0	0		
	. 0	° 1		
	0	0		
	0	0		
		0		
	10	0		
	1	•		
		0		
		° 1		
		1		
	0	1		
	0			
		0		
	015	16 °		
	<u> </u>			

and the second second second second second second second second second second second second second second second

Digital Signal Processors

3) Digital Signal Processors

Туре	Function	Page
CX-7997	10×10bit 15MHz Multiplier/Adder	219
CX23024 CX23067	8bit S-P-S Converter	230
CX23034	Digital Filter for CD	238
CX23038	Programmable Shift Register	249
CX23043	10bit Synchronous Binary Counter	257
CXD1018G	Degital Signal Processing Multipler	266
CXK1201P	Double Scan Converter (P)	283
CXK1202S	Digital Delay Line	295

(P): Preliminary

SONY

CX-7997

10 imes 10 bit 15 MHz Multiplier/Adder

Description

Sony CX-7997 is a CMOS 10 \times 10 +16 parallel multiplier/adder characterized by high speed, high performance, and low power consumption. It has the following functions:

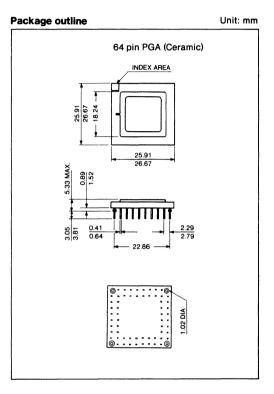
1)	Multiplication	D←A×B
	•	
2)	Addition	D ← BA* + C
3)	Multiplication-A	ddition

Ο,	Multiplication Addition	
	$D \leftarrow A \times B + 0$	С

4) Delay Function $D \leftarrow A, B, BA, C$

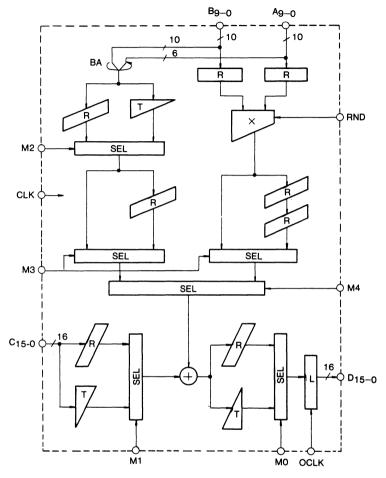
Features

- Single power supply 5.0 V
 Low power 300 mW (typ.) consumption (At 14.4 MHz clock)
- Operating Modes 16
- Delay control function
- TTL compatible for both inputs & outputs
- Word length (2's complement)


Input A, B	10 bits
BA, C	16 bits
Output D	16 bits

* A and B inputs are used as 16 bit data input.

Absolute Maximum Ratings (Ta = 25°C)

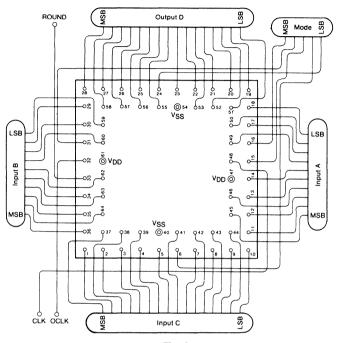

 Supply voltage 	VDD	-0.5 to +7.0	v
 I/O voltage 	Vi/o	-0.5 to VDD + 0.5	V
 Operating temperature 	Topr	0 to + 70	°C
 Storage temperature 	Tstg	-55 to +150	°C

Recommended Operating Condition

٧

Block Diagram

Notes) R : Register


L : Transparent Latch T : Triangular Delay SEL : Selector

× : Multiplier

+ : Adder

All possible combinations of the mode assign inputs M4 - M0 are shown in Fig. 1.

Pin Connections (Top View)

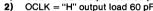
Fig. 2	2
--------	---

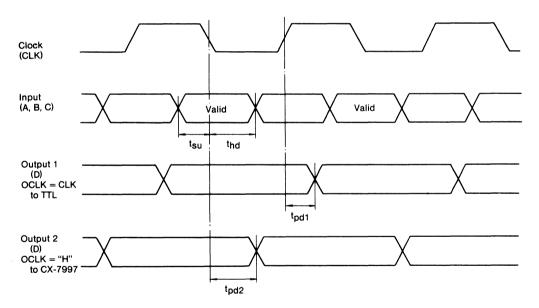
No.	1/0	Name	No.	1/0	Name	No.	1/0	Name	No.	1/0	Name
1	1	C14	17	I	A2	33	ł	RND	49	1	A3
2	I	C12	18	I ·	AO	34	I	B5	50	I.	A1
3	1	C11	19	0	D1	35	I	B7	51	0	DO
4	I	C9	20	0	D3	36	1	B9	52	0	D2
5	I	C8	21	0	D4	37	I	C15	53	0	D5
6	I	M1	22	0	D6	38	I	C13	54	Vss	-
7	I	C6	23	0	D7	39	I	C10	55	0	D8
8	1	C4	24	1	MO	40	Vss	-	56	0	D10
9	I	C2	25	0	D9	41	1	C7	57	0	D12
10	1	CO	26	0	D11	42	1	C5	58	0	D14
11	I	A8	27	0	D13	43	I	СЗ	59	I	BO
12	I	A7	28	0	D15	44	I	C1	60	I	B3
13	1	A5	29	I	B1	45	I	A9	61	VDD	-
14	1	A4	30	I	B2	46	1	A6	62	I	B4
15	I	M2	31	I	мз	47	VDD	-	63	I	B6
16	ł	M4	32	I	OCLK	48	I	CLK	64	I	B8

DC Characteristics

(VDD = 5.0 V \pm 5%, T_{opr} = 0 to 70°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Power Supply	IDDS	Non-operating state VIL = VSS, VIH = VDD	0		0.1	mA	
Output Voltage Level	Vон	IOH = -0.4 mA	4.0		VDD	·	
	Vol	IOL = 3.2 mA	Vss		0.4	V	
Input Voltage Level	Viн		2.2			v	
	VIL				0.8		
Input Leakage Current	lu	Vi = 0 to VDD	-10		10	μA	


I/O Capacitance


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Input pin	CIN	$V_{DD} = VI = 0 V,$ f _M = 1 MHz			9	pF
Output pin	Соит	$V_{DD} = VI = 0 V,$ f _M = 1 MHz			9	pF

I/O Timing

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Maximum Clock Frequency	CLK, OCLK	fck	14.4			MHz
Input Data Set UP Time	A9 to A0, B9 to B0, C15 to C0	^t su	2			ns
Input Data Hold Time	A9 to A0, B9 to B0, C15 to C0	thd	24			ns
Data Output from OCLK (Note 1)	D15 to D0	^t pd 1			36	ns
Data Output from CLK (Note 2)	D15 to D0	^t pd2	24		60	ns

Note 1) OCLK = CLK output load 30 pF 2) OCLK = "H" output load 60 pF

The above timing chart defines tpd, tsu and thd for the clock (CLK). The actual input/output operations are performed with a throughput delay having the number of clocks as shown in the operation mode throughput delay (Fig. 7).

CX-7997

Pin Functions

- CLK (Clock Input Pin) Clock input is distributed to data input register, internal pipeline register, and delay register. Data are transferred at falling edge of CLK ("H" → "L").
- (2) OCLK (Clock Input Pin) OCLK is enable signal to control data output latch. When OCLK = "L", output data are latched. When OCLK = "H", latch is in 'through' state. Data are sampled at falling edge of CLK, and they are transferred to the output pins. (See the I/O timing specification). When output data of CX-7997 are to an external device, transfer of data can be performed by setting OCLK from the external device.
 - (i) When the external device fetches data with the falling edge of the clock, wire each connection as shown in Fig. 4.

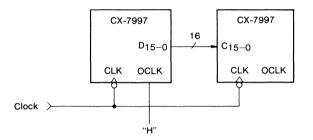


Fig. 4 External Device Interface (1)

(ii) When the external device fetches data at the rising edge of clock (i.e. 74LS374) wire each connection as shown in Fig. 5.

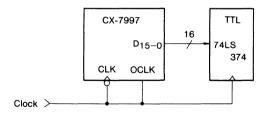


Fig. 5 External Device Interface (2)

CX-7	992	
UA-1	331	

(3)

A9 to A0, B9 to B0 (Data Input Pin) In multiplication-addition mode (M4 = "L"), A and B inputs are used as the 10 bit multiplier data input pins. (A9, B9 \rightarrow MSB, A0, B0 \rightarrow LSB). In addition mode (M4 = "H"), A and B inputs are used as the 16 bit adder data input pins (BA) in the

SONY.

In addition mode (M4 = "H"), A and B inputs are used as the 16 bit adder data input pins (BA) in the following configuration.

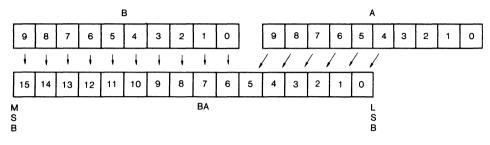


Fig. 6 "BA" Pin Configuration

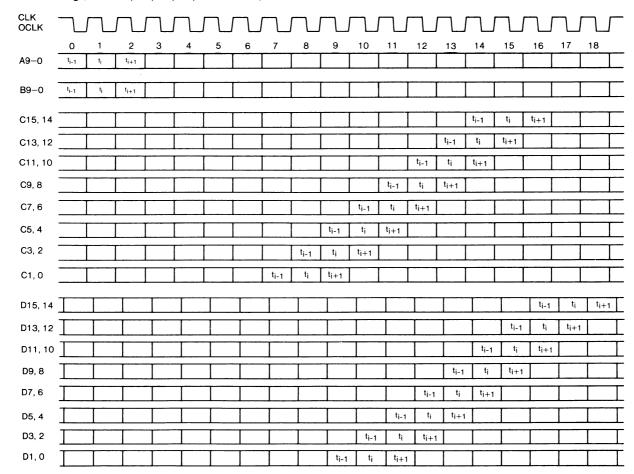
- (4) C15 to C0 (Data Input Pins) Used as 16 bit adder data input pins in multiplication-addition mode and addition mode. (C15 → MSB, C0 → LSB)
- (5) D15 to D0 (Data Output Pins) 16 bit data output pins.
 (D15 → MSB, D0 → LSB)
- (6) M4 to M0 (Mode Assign Inputs) Control signal inputs to assign the operating mode of the CX-7997 among the 16 possible functions. (Shown in Fig. 7).
 When mode assign inputs M4 to M0 are switched, output D15 to D0 becomes unstable for 18 clock cycle times maximum, so attention must be paid. Any mode cannot be utilized except for the assigned modes shown in Fig. 7.
- (7) RND (Round Control Input)

When RND = "L", P4 to P0 (2^{-14} to 2^{-18} : See Fig. 3) of internal multiplier output are discarded. When RND = "H" (2^{-14}) and internal multiplier output is added and P4 to P0 are discarded.

1

Operation Mode Throughput Delay

0


		M4	Мі	ultiplication-Addition		Addition
M4 M3 M2 M1 N	40	МЗ	No delay is	added before adder.	del	4=0, multiplication result is ayed by 2 clocks. I4=1, BA input is delayed by 1 ck.
		M2	A, B, BA ing	outs need bit delay. **	No	delay is needed for A, B, BA inputs.
		M1	C input nee	eds bit delay. **	No	delay is needed for C input.
		мо	D output ha	as bit delay. **	Do	utput has no bit delay. **
CX-7997				Number of	Clock	Delays
	AB	A C	Delay from A	, B and BA inputs to D _N	ISB	B Delay from C input to D _{MSB}
	CD	C	Delay from A	, B and BA inputs to D _L	SB	D Delay from C input to DLSB
			1 1699			
			1 2 2 2 9 9	10010 	10 F	
			1 - - - - - - - - - - - - - - - - - - -			
			$\frac{1}{\frac{3 2}{10 9}}$		E P	011

Note) When mode signal is changed for a maximum of 18 clock cycle times, the output is unstable.

Fig. 7 Operating Mode, Throughput Delay

×.

Example of I/O Timing (When M4, M3, M2, M1, M0 = 00100)

CX-7997

SONY.

Fig. 8

- 227 -

** Bit Delay – A clock delay among the input bits or output bits.

Internal calculation is done for each 2 bit data starting from LSB. For example, Fig. 8 shows the I/O timing of the mode (M4, M3, M2, M1, M0) = (0, 0, 1, 0, 0). In this case, A and B inputs do not have a clock delay. However, C input must have a clock delay for each 2 bit data. Multiplication is done for each 2 bit data starting from LSB. Adder needs to adjust the timing between the output bits of the multiplier and C input bits. This is called pipeline method and CX-7997 can achieve high speed operation with clock rate, 14.4 MHz using this technique.

D output also has this "bit delay" among each 2 bit data at this mode.

In Fig. 8, t_{i-1} represents the timing of 2 bit data which are supplied in A and B inputs at "0" clock timing.

2 bit data from LSB of the multiplied data are added to C1, 0 at "7" clock timing; next 2 bit data are added to C3, 2 at "8" clock timing. 2 bit output data, D1, 0 are transferred to D output at "9" clock timing. In this way, the other data are calculated and are transferred to D output step by step.

The "bit delay" at D output can be compensated by setting the mode (M4, M3, M2, M1, M0) = (00101).

In this mode the triangular delay circuit designated T in Fig. 1, which is connected to M0, compensates the "bit delay".

Internal Operation Word Length

Fig. 9 shows the word length of the data utilized for internal operations in CX-7997. Multiplication results P4 to P0 are discarded (with RND control), and upper data P18 to P5 are added to C input. Since overflow detection is not performed on the operation result, care must be taken with the value of the input data. When the data is in 2's complement form, the decimal values of inputs and outputs must have the following limit

Input
$$-1 \leq A < 1$$
 $-4 \leq C < 1$
 $-1 \leq B < 1$ $-4 \leq BA < 4$
 $-1 < A \times B < 1$
Output $-4 \leq D < 4$

When the value of A and B inputs are both -1, the multiplication result does not become 1 (it becomes -1), so that input data should not be provided in this combination.

Internal Multiplication Result (A \times B)

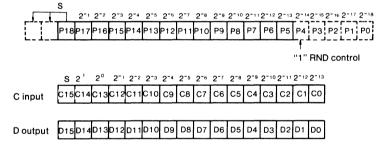


Fig. 9 Operation Word Length

SONY

CX23024/CX23067

8 bit S-P-S Converter

Description

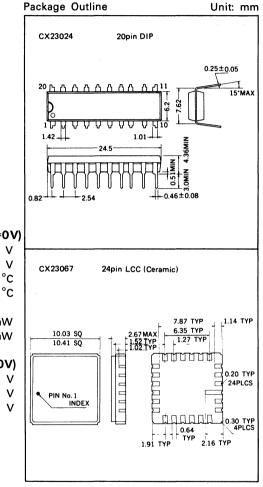
The CX23024/CX23067 is a general 8-bit structured serial/parallel/serial data conversion NMOS IC. It can be applied to high-speed digital processing of various kinds of signals for digital video system, etc.

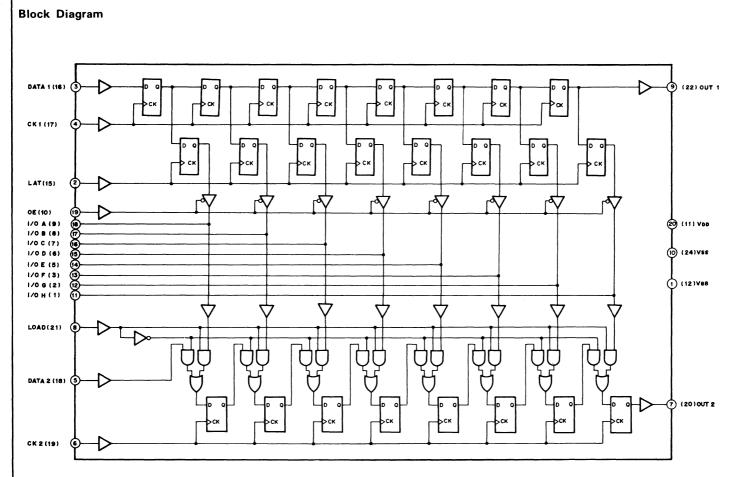
Features

- Operation clock frequency: 50 MHz is guaranteed
- 5V single power supply
- . Input/output level is compatible with TTL

Structure

N-channel Silicon Gate E/D MOS

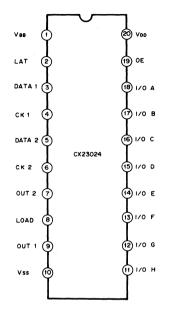

Absolute Maximum Ratings (Ta=25°C, Vss=0V)


- Supply voltage VDD -0.5 to +7
- Input voltage
 VIN −1 to +7
- Operation temperature Topr -20 to +75
- Storage temperature Tstg -55 to +150 °C
- Allowable power dissipation

PD CX23024 500 mW CX23067 1000 mW

Recommended Operating Conditions (Vss=0V)

- Supply voltage VDD +4.5 to +5.5
- High level input voltage VIH +2.0 to VDD+0.5
- Low level input voltage VIL -1.0 to 0.8

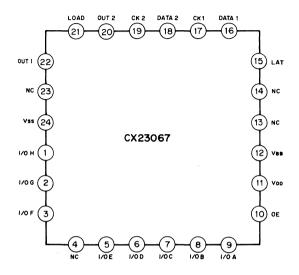

The numbers in parentheses are the pin numbers of CX23067.

- 231 -

SONY

SONY®

Pin Configuration (Top View)



Pin Description

No.	Symbol	Description	
1	Vвв	Substrate (Connect a capacitor of 1000pF between this pin and	ground)
2	LAT	Data latch signal input pin of shift register 1	*
3	DATA1	Serial data input pin of shift register 1	*
4	CK1	Serial data shift clock input pin of shift register 1	*
5	DATA2	Serial data input pin of shift register 2	*
6	CK2	Serial data shift clock input pin of shift register 2	*
7	OUT2	Serial data output pin of shift register 2 Output buffer is of E/E structure	*
8	LOAD	Parallel data input selection input pin of shift register 2	*
9	OUT1	Serial data output pin of shift register 1 Output buffer is of E/E structure	*
10	Vss	Ground	
11 to 18	I/O H to I/O A	Parallel data input/output pin Output buffer is of E/E structure	
19	OE	Output enable	
20	Vdd	Power supply (+5V)	

*Note) Shift register 1 is a shift register which determines CK1 as the shift clock. Shift register 2 is a shift register which determines CK2 as the shift clock.

Pin Configuration (Top View)

Pin Description

No.	Symbol	Description	
1 to 9	I/O H to I/O A	Parallel data input/output pin Output buffer is of E/E structure	
10	OE	Output enable	
11	Vdd	Power supply (+5V)	
12	Vвв	Substrate (Connect a capacitor of 1000pF between this pin and	ground)
15	LAT	Data latch signal input pin of shift register 1	*
16	DATA1	Serial data input pin of shift register 1	*
17	CK1	Serial data shift clock input pin of shift register 1	*
18	DATA2	Serial data input pin of shift register 2	*
19	CK2	Serial data shift clock input pin of shift register 2	*
20	OUT2	Serial data output pin of shift register 2 Buffer is of E/E structure	*
21	LOAD	Parallel data input selection input pin of shift register 2	*
22	OUT1	Serial data output pin of shift register 1 Buffer is of E/E structure	*
24	Vss	Ground	

*Note) Shift register 1 is a shift register which determines CK1 as the shift clock. Shift register 2 is a shift register which determines CK2 as the shift clock.

Electrical Characteristics

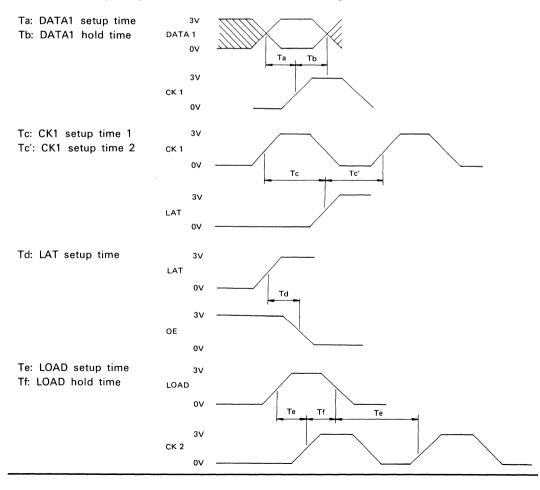
DC Characteristics

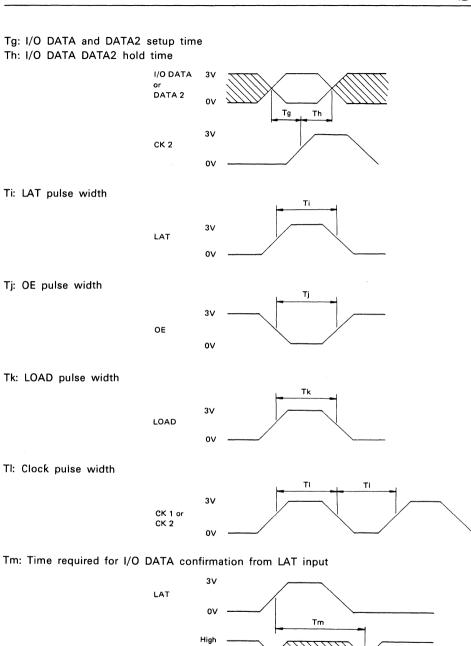
 $(Ta=-20 \text{ to } +75^{\circ}C, Vss=0V \text{ The condition is determined above-mentioned recommended operating condition otherwise specified.)}$

Parameter	Pin	Symbol	Condition	Min.	Тур.	Max.	Unit
Power supply current	Vdd	ldd			30	50	mA
High level output current	All output pins	Іон	Vout=2.7V			-0.5	mA
Low level output current	All output pins	lol	Vout=0.4V	3			mA
High level output voltage	All output pins	Vон	Іон=-0.5mA	2.7			V
Low level output voltage	All output pins	Vol	lol=3mA			0.4	v
Input leakage current	All input pins	lı.	VIN=0 to 5V	-10		10	μΑ
High impedance leakage current	I/O A to I/O H	lнz	Vou⊤=0 to 5V	-10		10	μΑ

Switching Characteristics

(Ta=-20 to $+75^{\circ}$ C, VDD=4.5 to 5.5V) See next page on Timing chart


Parameter	Pin, remarks	Min.	Тур.	Max.	Unit
DATA1 setup time	to CK1	5			ns
DATA1 hold time	to CK1	5			ns
CK1 setup time 1	to LAT	10			ns
CK1 setup time 2	to LAT	5			ns
LAT setup time	to OE	0			ns
LOAD setup time	to CK2	7			ns
LOAD hold time	to CK2	5			ns
I/O DATA and DATA2 setup time	to CK2	7			ns
I/O DATA and DATA2 hold time	to CK2	5			ns
LAT pulse width		20			ns
OE pulse width		25			ns
LOAD pulse width		20			ns
Clock pulse width	Low level and high level of CK1 and CK2	10			ns

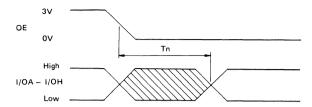

Parameter	From (Input)	To (Output)	Condition	Min.	Тур.	Max.	Unit
Maximum clock frequency	СК1, СК2	OUT1, OUT2				50	MHz
I/O DATA	LAT	I/O A to I/O H	CL=15pF			25	ns
I/O DATA	OE	I/O A to I/O H	CL=15pF			17	ns
OUT DATA	CK2	OUT2	CL=45pF			22	ns
I/O high Z ^{Note)}	OE	I/O A to I/O H				20	ns

Note) I/O high Z means the time required for the I/O to become high impedance after the OE signal is inputted.

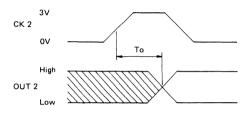
Timing Chart

Note) The input signal level is low level=0V and high level=3V, and 5 ns for both rise and fall. The voltage judgment level for both low level and high level is 1.5V.

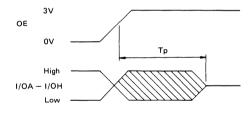
SONY®


Note The low level and high level are output level of CX23024/

CX23067.


I/ОА – I/ОН

Low


Tn: Time required for I/O DATA confirmation from OE input

To: Time required for OUT2 DATA confirmation from CK2 input

Tp: Time required for I/O to become high impedance from OE input

Description of Operation

(1) Serial data/parallel data conversion mode

Input the 8-bit serial data into the DATA1 pin and its input clock into the CK1 pin and fetch the 8-bit data. The fetched data is latched to the latch circuit by inputting the latch signal to the LAT pin. Thereafter, by inputting the output control signal to the OE pin, the 8-bit serial data is converted to the parallel data and is output to the I/O A through I/O H.

(2) Parallel data/serial data conversion mode

The 8-bit parallel data is fetched by inputting the 8-bit parallel data to the I/O A through I/O H and inputting the load signal into the LOAD pin. By inputting the shift clock into the CK2 pin, the parallel data is converted to the serial data and is output to OUT2 pin.

SONY

Digital Filter for CD

Description

The CX23034 is a silicon gate CMOS LSI which has been developed as a digital filter for compact disc player. Excellent filter characteristics can easily be realized by inserting CX23034 between digital signal processing LSI CX23035 for CD and D/A converter.

Features

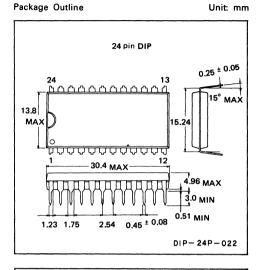
- · Composition of filter.
 - Stereo signal processing with 1 chip Two times sampling rate conversion FIR filter with 16-bit coefficient Filter length 96
- · Characteristics of filter.
 - Linear phase

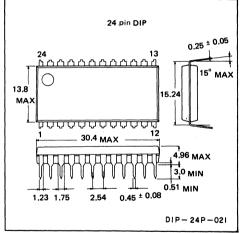
Band passing ripple lower than +0.01 dB Stopband attenuation higher than 80 dB Frequency characteristics designed to correct the aperture effect of D/A converter

- Overflow limiter
- · Formmats of the output data can be selected either to two's complement or offset binary
- Interface possible with 16-bit serial input D/A converter
- Use together with CX23035 in pair

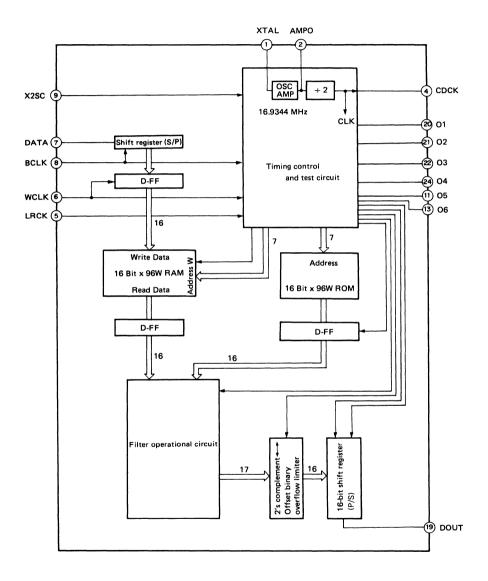
Structure

Silicon gate CMOS

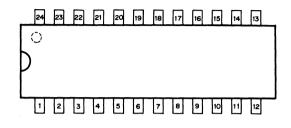

Absolute Maximum Ratings (Ta=25°C)


 Power supply voltage 	Vdd	Vss* -0.3 to +7.0	v
 Input_voltage 	Vin	Vss* -0.3 to +7.0	v
 Output voltage 	Vout	Vss* -0.3 to +7.0	v
 Operating temperature 	Topr	-20 to +75	°C
• Storage temperature * $V_{SS} = 0V$	Tstg	-55 to +150	°C

Recommended Operating Conditions


٠	Power supply	voltage	Vdd	4.5 to 5.5	v

- Input voltage VIN Vss -0.3 to VDD +0.3 v °C
- Operating temperature -20 to +75 Topr



Block Diagram

Pin Configuration (TOP VIEW)

Pin Description

No.	Symbol	I/O	Description
1	XTAL		Input for crystal oscillator (16.9344 MHz)
2	AMPO	0	Output for crystal oscillator (16.9344 MHz)
3	TSET1	1	Input for testing (Normally connected to Vss)
4	CDCK	0	Clock output (8.4672 MHz)
5	LRCK	1	44.1 kHz strobe input
6	WCLK	1	88.2 kHz strobe input
7	DATA	1	Serial data input (Two's complement, MSB first)
8	BCLK	1	Bit clock input (input for serial data)
9	X2SC	I	Input for output format selection (High offset binary, low two's complement)
10	TEST2	1	Input for test (normally connected to Vss)
11	O5	0	Timing signal
12	Vss	—	GND pin (OV)
13	O6	0	Timing signal
14	TEST3	0	Test data output (normally open)
15	TEST4	0	Test data output (normally open)
16	TEST5	0	Test data output (normally open)
17	TEST6	0	Test data output (normally open)
18	TEST7	0	Test data output (normally open)
19	DOUT	0	Serial data output (MSB first)
20	01	0	Timing signal
21	02	0	Timing signal
22	03	0	Timing signal
23	04	0	Timing signal
24	Vdd		Power supply pin (+5V)

Note) The frequencies shown are values to be used for CD.

Input/Output Capacity

ltem	Symbol	Min.	Тур.	Max.	Unit
Input pin	Cin		8	12	pF
Output pin	Соит		10	12	pF

Measuring condition: VDD=VIN=OV, FM=1 MHz

Electrical Characteristics

DC characteristics

VDD=5V±10%, Vss=0V, Topr=-20 to +75°C

lt	em	Symbol	Condition	Min.	Тур.	Max.	Unit
		loo	VDD=5.0V		35		mA
Supply current		ldds	VDD=5.0V VIH=VDD VIL=VSS			0.1	mA
Input voltage (1) H level		VIH1		0.7Vdd			V
Input voltage (1) L level	A group (note)	VIL1				0.3Vdd	V
Input voltage (2) H level		Vih2		2.2			V
Input voltage (2) L level	B group (note)	V1L2				0.8	V
Output voltage H level		Vон	lон=1 mA	VDD-0.5		VDD	v
Output voltage L level	C group (note)	Vol	loi=1 mA	0		0.4	v
Input leakage current	B group (note)	lu		-5		5	μΑ

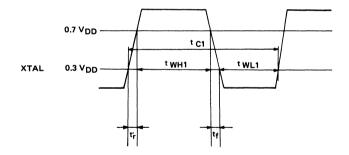
Note) Pins of from A to C groups are shown as below.

A group	XTAL
B group	TEST1, TEST2, X2SC, DATA, BCLK, WCLK, LRCK
C group	CDCK, 01, 02, 03, 04, 05, 06, DOUT, TEST3, TEST4, TEST5, TEST6, TEST7

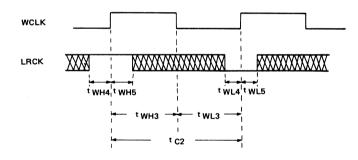
AC Characteristics

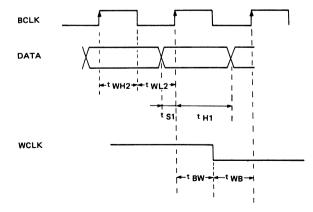
Input AC characteristics

Topr=-20 to +75°C, VDD=5V±10%


(1) XTAL pin

(1) In the event crystal oscillator is used


ltem	Symbol	Min.	Тур.	Max.	Unit
Oscillating frequency	fмах			18.432	MHz


2 In the event pulse is input while crystal oscillator is not being used

ltem	Symbol	Min.	Тур.	Max.	Unit
Pulse cycle	tc1	54	59		ns
"H" level pulse width	twH1	12	19.5		ns
"L" level pulse width	twL1	12	19.5		ns
Rising time	tr		10	15	ns
Falling time	tr		10	15	ns

ltem	Symbol	Min.	Тур.	Max.	Unit
BCLK "H" level pulse width	twH2	59			ns
BCLK "L" pulse level width	twL2	48			ns
DATA hotting-up time	ts1	13			ns
DATA holding time	tH1	59			ns
WCLK "H" level pulse width	twнз	3543		7795	ns
WCLK "L"level pulse width	twL3	3543		7795	ns
WCLK pulse cycle	tc2		11338		ns
From rising of BCLK to falling of WCLK	tBW	65			ns
From falling of WCLK to rising of BCLK	twв	22			ns
LRCK "H" level pulse width 1	twH4	0			ns
LRCK "H" level pulse width 2	twn5	473			ns
LRCK "L" level pulse width 1	twL4	0			ns
LRCK "L" level pulse width 2	tw15	473			ns

SONY

Function Explanation

(1) Oscillation circuit

Connect a crystal oscillator with a oscillation frequency of 384 fs (16.9344 MHz) between XTAL pin and AMPO pin, as shown in Fig. 1. In the event crystal oscillation is not used, input clock signal with a frequency of 384 fs to the XTAL pin.

The clock signal of 192fs (8.4672 MHz), which is divided by 2 of the crystal oscillation frequency, is output from the CDCK pin.

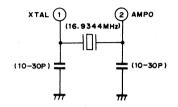


Fig. 1 Oscillation circuit

(2) Regarding initialization

The initialization of this LSI requires a XTAL time of approx. 770 clocks after the power supply is turned on, provided that all inputs are in normal condition. (It takes approx. 46 μ s when XTAL 16.9344 MHz.) The output is not valid until the initialization is completed.

(3) Interface with signal processing LSI

Interfacing with the signal processing LSI can be carried out as shown in Fig. 2.

The input data 16 bit (two's complement) is input to DATA pin with MSB first, and individual bits of DATA input are fetched into the shift register within the IC at rising of BCLK. Accordingly, individual bits of DATA input should be changed at the falling of BCLK. Thus, 16 bits of data in the shift register within the LSI at the falling of WCLK is latched as a writting data of RAM.

Therefore, BCLK signal requires at least 16 pulses during its falling time of WCLK to the next falling time of same. If the BCLK signal has 17 pulses or over during its falling time of WCLK to the next falling time of same, 16 bits before WCLK falling time become writting data of RAM.

The input data becomes L-ch signal when LRCK is "H", and R-ch signal when LRCK is "L".

(4) Interface with D/A converter

It enables to be interfaced with various D/A converter by using X2SC pin. The output timing chart is as shown in Fig. 2.

X2SC (Switchover of offset binary two's complement)

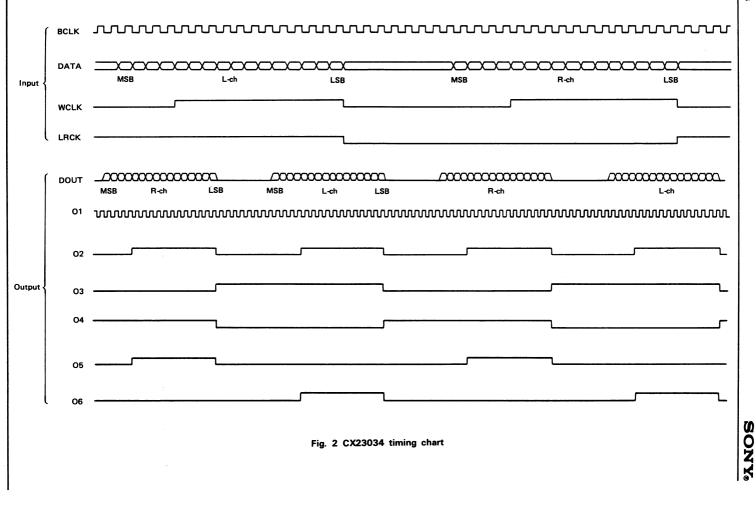
- X2SC = "H" offset binary
- X2SC = "L" two's complement

Offset binary is MSB inverse of two's complement.

(5) Regarding synchronizing with input and output signals

If the relative relation between rising of WCLK when LRCK is "L" and output signal differs by more than 2 clocks of CDCK (236 ns), the operation within the IC is momentarily stopped, and synchronization of input signal and output signal is performed again.

(6) Regarding frequency characteristics of filter


The frequency characteristics of this LSI are as shown in Figs. 3 and 4.

(7) Correction of aperture effect frequency characteristics of D/A converter

The digital output of this LSI is output after correcting the frequency characteristics against the aperture effect of the D/A converter. In addition, this correction is carried out on the assumption that the sample and hold type DEGRETCHER is used as an analog output of the D/A converter.

245 -

CX23034

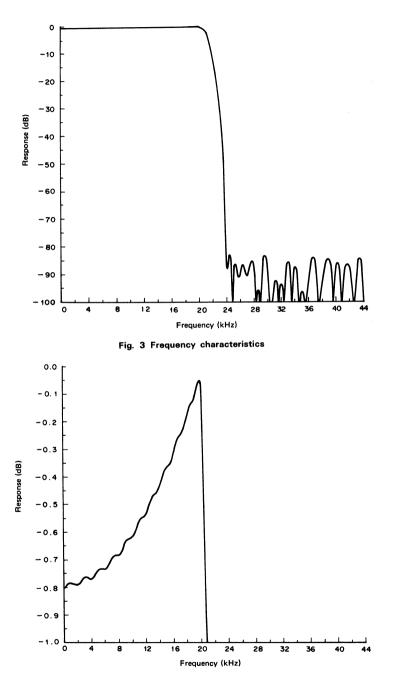
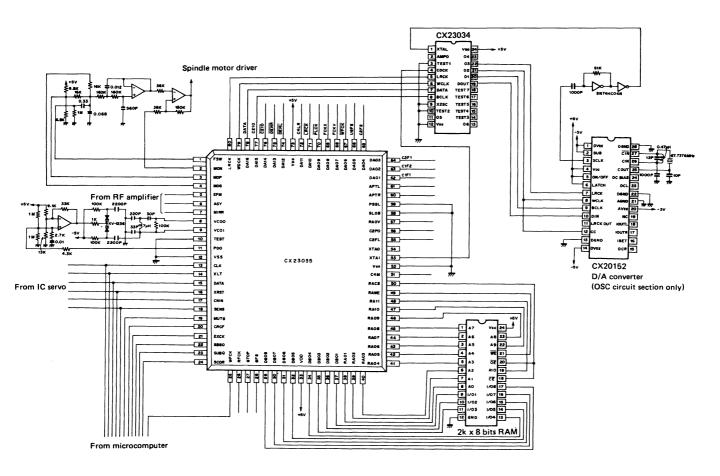
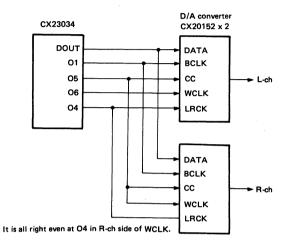



Fig. 4 Band passing characteristics

- 246 -

Example of Application Circuit


(1) Connection of CX23034, CX23035 and CX20152

CX23034

- 247

(2) L-ch and R-ch same phase connection method

SONY

CX23038

Programmable Shift Register

Description

The CX23038 is an LSI which has a programmable shift register (PSR) circuit, bit slice delay PSR circuit, and number of dynamic stages selecting function.

Features

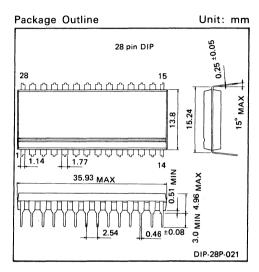
- 5V single power supply
- Low power consumption 250 mW (Typ.)
- Operates by the sampling signal (14.3 MHz) of the standard TV signal.
- Capable of setting various kinds of operating modes

Structure

Silicon gate CMOS

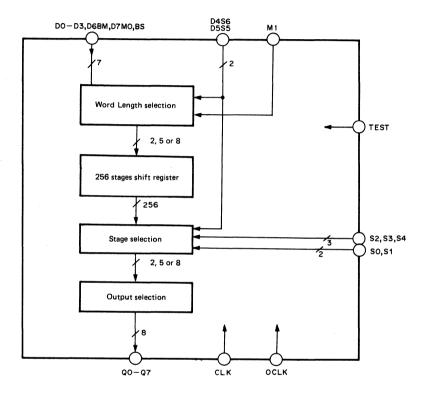
Absolute Maximum Rating (Ta=25°C)

 Supply voltage 	Vdd	$V_{SS} = 0.5$ to $+7.0$	V
 Input voltage 	Vi	Vss-0.5 to V_{DD} +0.5	v
 Output voltage 	Vo	Vss-0.5 to Vpp+0.5	V
 Operating temperature 	Topr	0 to +70	°C
 Storage temperature 	Tstg	-55 to +150	°C
Note) Vss=0V			

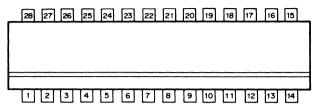

Recommended Operating Conditions

 Supply voltage 	Vdd	4.75 to 5.25	V
 Operating temperature 	Topr	0 to +70	°C

Input/Output Capacity


 Input pin 	Cin	9	рF
 Output pin 	Соит	9	pF
• I/O pin	Cı/o	11	pF

Measuring condition VDD=VI=0V, fM=1 MHz



SONY®

Block Diagram

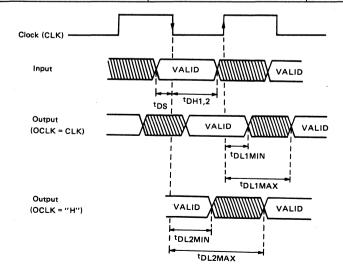
Pin Configuration (Top View)

Pin Description

No.	Symbol	I/O	Description
1	DO	I	Data input pin
2	D1	I	Data input pin
3	D2	I	Data input pin
4	D3	I	Data input pin
5	D4S6	I	Data or stage selecting signal input pin
6	D5 S5	I	Data or stage selecting signal input pin
7	GND		GND pin
8	CLK	I	Main clock input pin
9	D6BM	I	Data or bit slice delay form determining signal input pin
10	D7 M0	1	Data or word length selecting signal input pin
11	M1	I	Word length selecting signal input pin
12	S4	I	Stage selecting signal input pin
13	S3	ł	Stage selecting signal input pin
14	S2	I	Stage selecting signal input pin
15	TEST	1	Test input pin Normally at "L".
16	BS	I	Bit slice delay switching signal input pin
17	S1	I	Stage selecting signal input pin
18	SO	1	Stage selecting signal input pin
19	07	0	Data output pin
20	Q6	0	Data output pin
21	Vdd,	_	+5V power supply
22	OCLK	1	Output clock pin
23	Q5	0	Data output pin
24	Q4	0	Data output pin
25	03	0	Data output pin
26	02	0	Data output pin
27	Q1	0	Data output pin
28	00	0	Data output pin

Electrical Characteristics

DC characteristics


VDD=5V \pm 5%, Vss=0V, Topr=0 to 70°C

Item		Symbol	Condition	Min.	Max.	Unit
Power supply current		ldds	Static state VIH=VDD, VIL=VSS	0	0.1	mA
	H level	Voн	Іон=-0.4mA	4.0	Vdd	V
Output voltage	L level	Vol	loL=3.2mA	Vss	0.4	V
	H level	Viн		2.2		V
Input voltage	L level	VIL			0.8	V
Input leakage current		lu		-10	10	μΑ
Input leakage current (During the tri-state pin input)		lız	VI=0V toVDD	-40	40	μΑ

AC characteristics

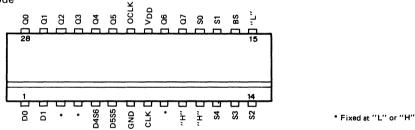
VDD=5V \pm 5%, Vss=0V, Topr=0 to 70°C, CL=60 pF

ltem	Pin name	Symbol	Min.	Max.	Unit	
Maximum clock frequency	CLK, OCLK	fcк	14.32		MHz	
Input data set up time	D0 to D3, D4 S6, D5 S5, D6 BM, D7 M0, M1, BS, S0 to S4	tDS	4		ns	
Input data hold time	D0 to D3, D4 S6, D5 S5, D6 BM, D7 M0, M1, BS	tDH1	22		ns	
	SO to S4	tDH2	14			
Output data delay from OCLK (Note 1 OCLK=CLK)	Q0 to Q7	tDL1	7	36	ns	
Output data delay from CLK (Note 2 OCLK=H)	Q0 to Q7	tDL2	22	58	ns	

Description of Functions

The CX23038 has the following modes.

- (1) PSR 2-bit mode
- (2) PSR 5-bit mode
- (3) PSR 8-bit mode

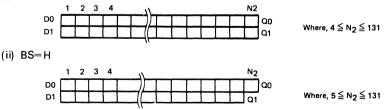

The relationship between each modes and D7MO and M1 pins is as follows:

	D7 M0	M1
PSR 2-bit mode	н	Н
PSR 5-bit mode	L	Н
PSR 8-bit mode	d	L

Here d denotes that it is an input pin of data.

<Description of respective mode>

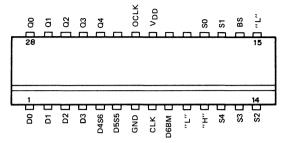
1 2-bit mode


The data is input from D0 and D1 and output from the respective Q0 and Q1 after passing through the stages which specified by the stage selecting signal.

The S0, S1, S2, S3, S4, D5S5 and D4S6 are the input pins of the stage selecting signal. Here, assuming that

- (i) D4S6="H" $N_2=2^6+2^4\times S4+2^3\times S3+2^2\times S2+2\times S1+S0+4$
- (ii) D4S6="L" $N_2=25 \times D5S5+24 \times S4+23 \times S3$

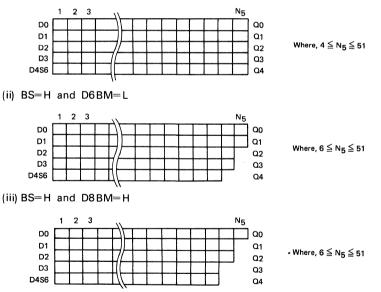
 $+2^{2}\times$ S2 $+2\times$ S1+S0+4


At this point, the number of stages of the shift registers become as shown in figure below. (i) BS=L

In addition, the stage selecting signal determines number of the output stages after 3 clocks. Moreover, the data input from D0 and D1 are output from O2 and Q3 respectively, after passing through the 128 stages DFF (When BS="H", D1 is 127 stages). $\overline{\text{Q0}}$ and $\overline{\text{Q1}}$ are output respectively from Q4 and Q5. From Q6 and Q7, similar data to Q0 and Q1 are output respectively.

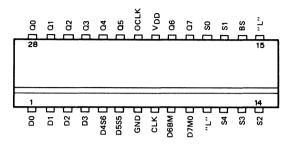
CX23038

25-bit mode

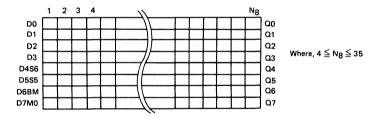


The data is input from D0, D1, D2, D3 and D4S6 and output from Q0, Q1, Q2, Q3 and Q4 respectively, after passing through the stages which is specified by the stage selecting signal. The S0 to S4 and D5S5 are the input pins of the stage selecting signal. Now, assuming that (i) D5S5="H" $N_5=2^5+2^2\times S2+2S1+S0+4$

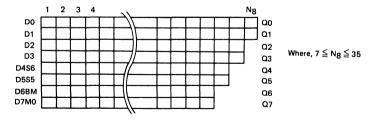
(ii) D5S5= "L" $N_5=2^4S4+2^3\times S3+2^2\times S2+2\times S1+S0+4$


At this point, the number of stages of the shift register become as shown in figure below.

(i) BS=L


The stage selecting signal determines the number of the output stages after 3 clocks.

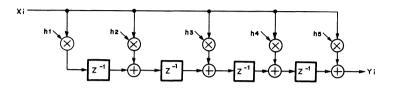
3 8-bit mode



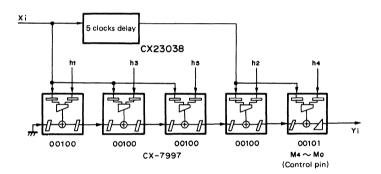
The data is input from D0, D1, D2, D3, D4S6, D5S5, D6BM and D7M0 pins and output from Q0, Q1, Q2, Q3, Q4, Q5, Q6 and Q7 respectively, after passing through the stages specified by the stage selecting signal. The S0 to S4 are the input pins of the stage selecting signal. The S0 to S4 determine the number of the output stages after 3 clocks. Now, assuming that $N_8=2^4 \times S4+2^3 \times S3+2^2 \times S2+2 \times S1+S0+4$, the number of stages of the shift register become as shown in figure below.

(i) BS=L

(ii) BS=H

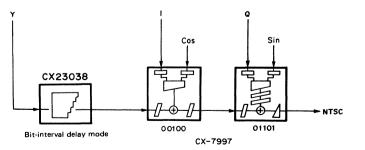


CX23038


Application Circuits

(1) Example of FIR Digital Filter

5 TAP Yi= $\sum_{j=0}^{4} h_{(5-j)} \cdot X_{(i-j)}$


Combination of the CX-7997 and CX23038

(2) Example of NTSC Encoder

NTSC=Y+I. Cos (Wsc. $t+\phi$)+Q. Sin (Wsc. $t+\phi$)

Combination of the CX-7997 and CX23038

* When the chroma signal is picked up which has been modulated as shown in Fig. above, the CX23038 of the bit-interval delay mode is used.

SONY

CX23043

10 bit Synchronous Binary Counter

Description

The CX23043 is a 10 bit synchronous binary counter designed using SONY's high-speed N-channel silicon-gate MOS technology.

Features

- The maximum operating clock frequency of 30 MHz is warranted.
- Single +5V supply.
- Directly TTL compatible: All inputs and outputs
- Low power consumption (Typ. 100 mW).
- Provided with ENABLE T and ENABLE P input.
- Provided with LOAD input.
- Provided with OE input.
- Plural cascade connections are possible.

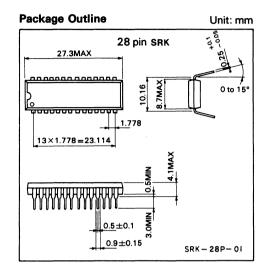
Structure

N-channel silicon-gate E/D MOS

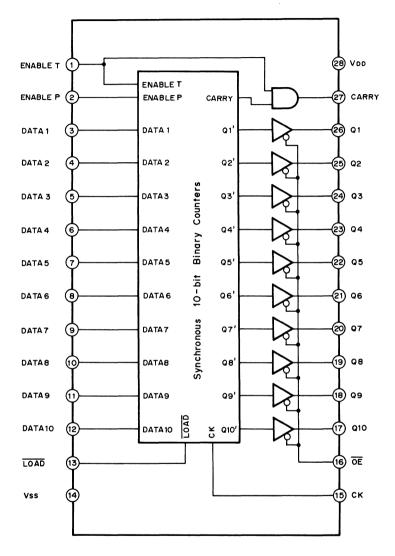
Applications

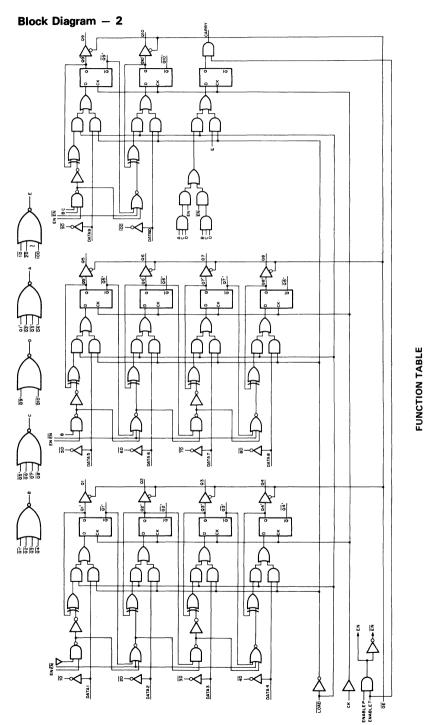
- Programmable counter
- Memory address generation

Functions


Synchronous 10 bit binary counter

Absolute Maximum Ratings (VSS = 0V, Ta = $25^{\circ}C$)


Power supply voltage	VDD	-0.5 to +7	v
Input terminal voltage	VIN	-1 to +7	v
 Operating temperature 	Topr	- 20 to + 75	°C
 Storage temperature 	Tstg	-55 to +150	°C
 Allowable power dissipation 	PD	500	mW


Recommended Operating Conditions (VSS = 0V)

Power supply voltage	VDD	+4.5 to +5.5	v
 Operating temperature 	Topr	-20 to +75	°C
 High level input voltage 	VIH	+2.0 to VDD+0.5	v
 Low level input voltage 	VIL	- 1.0 to +0.8	v

Block Diagram - 1

ACTIVE ACTIVE

I

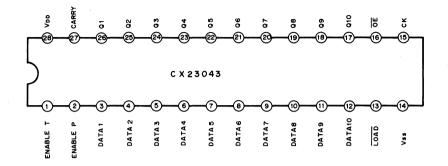
т I

SONY.

COUNTER	INACTIVE
ENABLE P	F

ENABLE T

_ _


INACTIVE INACTIVE ACTIVE

т _

CARRY ----_

Pin Configuration (Top View)

CX23043

Pin Description

No.	Symbol	Description
1	ENABLE T	Counter enable input terminal (CK, CARRY controlled)
2	ENABLE P	Counter enable input terminal (CK only controlled)
3 to 12	DATA1 to DATA10	Data input terminal
13	LOAD	Data input control terminal
14	Vss	Ground terminal
15	СК	Clock input terminal
16	ŌĒ	Data output control terminal
17 to 26	Q10 to Q1	Data output terminal; output buffer is E/E composed.
27	CARRY	Carry output terminal; output buffer is E/E composed
28	VDD	Power supply (+5V)

Electrical Characteristics

(1) D.C Electrical Characteristics

(VSS = 0V. Unless otherwise specified, the conditions are as per the recommended operating conditions described above.)

ltem	Terminal	Symbol	Condition	Min	Тур	Max	Unit
Power supply current	VDD	ldd	Note 2		20	30	mA
High level output current	All output terminals	Юн	Vout = 2.7V			-0.1	mA
Low level output current	All output terminals	lol	Vout = 0.4V	3			mA
High level output voltage	All output terminals	Vон	IOH = -0.1 mA	2.7			v
Low level output voltage	All output terminals	Vol	IOL = 3mA			0.4	v
Input leakage current	All input terminals	IIL.	VIN = 0 to VDD Note 1	- 10		10	μA
Hi-impedance leakage current	Q1 to Q10	lнz	VOUT = 0 to VDD Note 1	- 10		10	μΑ

Note 1 Ta = 25° C Note 2 VDD = 5V, Ta = 25° C

(2) A.C Electrical Characteristics

(Ta = -20 to +75°C, VDD = 4.5 to 5.5V, VSS = 0V, see next page for timing chart)

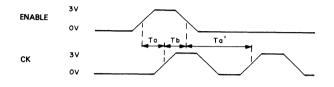
ltem	Terminal note	Min	Тур	Max	Unit
ENABLE T setup time	to CK	20			ns
ENABLE T holding time	to CK	5			ns
ENABLE P setup time	to CK	20			ns
ENABLE P holding time	to CK	5			ns
DATA setup time	to CK	10			ns
DATA holding time	to CK	10			ns
LOAD setup time	to CK	10			ns
LOAD holding time	to CK	10			ns
Clock pulse width	Low or High	15			ns

ltem		Input	Output	Condition	Min	Тур	Max	Unit
Maximum operatir frequency	ng	СК	Q1 to Q10 CARRY	CL = 30pF	30			MHz
Data		СК	Q1 to Q10	CL = 30pF			27	ns
Carry		СК	CARRY	CL = 30pF			30	ns
Carry		ENABLE T	CARRY	CL = 30pF			25	ns
Data		ŌĒ	Q1 to Q10	CL = 30pF			27	ns
HIGH Z	Note 1	ŌĒ	Q1 to Q10	CL = 30pF			20	ns

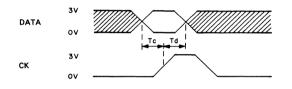
Note 1) Time required for the output Q1 to Q10 to go from $\overline{\text{OE}}$ to a high impedance.

(3) A.C Electrical Characteristics

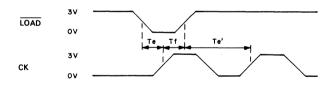
(Ta = +25°C, VDD = 5.0V, VSS = 0V, see next page for timing chart)

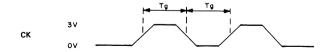

ltem	Terminal note	Min	Тур	Max	Unit
ENABLE T setup time	to CK		10		ns
ENABLE T holding time	to CK		-2		ns
ENABLE P setup time	to CK		10		ns
ENABLE P holding time	to CK		-2		ns
DATA setup time	to CK		1		ns
DATA holding time	to CK		3		ns
LOAD setup time	to CK		3		ns
LOAD holding time	to CK		2		ns
Clock pulse width	Low or High		10		ns

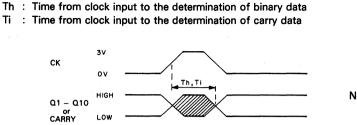
Iter	m	Input	Output	Condition	Min	Тур	Max	Unit
Maximum ope frequency	erating	СК	Q1 to Q10 CARRY	CL = 30pF		50		MHz
Data		СК	Q1 to Q10	CL = 30pF		18		ns
Carry		СК	CARRY	CL = 30pF		20		ns
Carry		ENABLE T	CARRY	CL = 30pF		16		ns
-Data		ŌE	Q1 to Q10	CL = 30pF		18		ns
HIGH Z	Note 1	ŌE	Q1 to Q10	CL = 30pF		10		ns


Note 1) Time required for the output Q1 to Q10 from to go \overline{OE} to a high impedance.

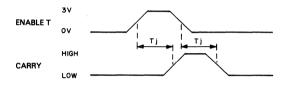
Timing Chart

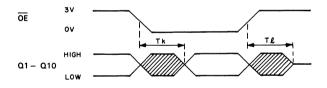

- Note 1) Input signal level is Low level = 0V, High level = 3V, 5 nsec both for rise and fall.
 - 2) Voltage determination level is 1.5V for Low and High levels.
- Ta, Ta' : ENABLE T setup time, ENABLE P setup time
 - Tb : ENABLE T holding time, ENABLE P holding time


- Tc : DATA setup time
- Td : DATA holding time



Te, Te' : LOAD setup time Tf : LOAD holding time


Tg : Clock pulse width

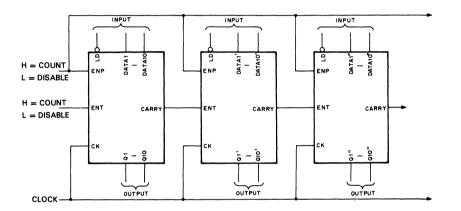

Note) Low and High are the CX23043 output level.

Tj : Time from the ENABLE T input to the determination of carry data

Tk : Time from OE input to the determination of binary data

TL : Time from \overline{OE} input to the output high impedance

Description of Operations


The CX23043 is a synchronous 10 bit binary counter. Data is input to DATA1 to DATA10 with the LOAD at low level, then CK is input and data is loaded in the output terminals Q1 to Q10 with the rise of CK regardless of the ENABLE level (high or low).

When the ENABLE T and P are at high level, the counter is in operation. When either ENABLE is at low level, the counter is in recess. When the ENABLE T is at low level, the CARRY output enters low level.

When \overline{OE} is at low level, the output buffer (Q1 to Q10) is in operation. When the \overline{OE} is at high level, the output buffer (Q1 to Q10) outputs high impedance.

Application Example

Connection of plural cascades is as follows.

SONY

CXD1018G

Digital Signal Processing Multiplier

Description

The CXD1018G is a 16-bit ⋅ 32-bit → 36-bit parallel multiplier.

Features

- For X inputs (16-bit), either one of two types, 2'S complements and unsigned straight binaries, may be selected.
- By employing a Booth algorithm + Wallace tree + CLA adder structure, this LSI enables high speed operations (at 75 ns typ.)
- Incorporates a 36-bit accumulator.
- With its mode selection, the LSI serves either as the multiplier for an CX23015 (audio signal processor) (also corresponds to a two CX23015s employing mode), or as a general purpose multiplier-adder.
- When its extension output pins (PSGN and ARCO) are utilized to have a 4-bit full adder and a 4-bit register connected externally, a 40-bit accumulator structure may be enabled.
- Low power consumption (at 100 mW typ.)

Function

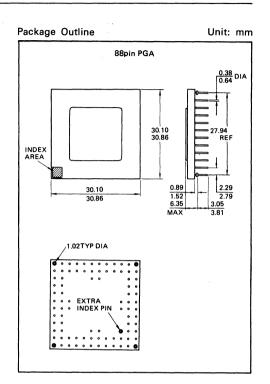
Multiplier

Structure

Silicon gate CMOS IC

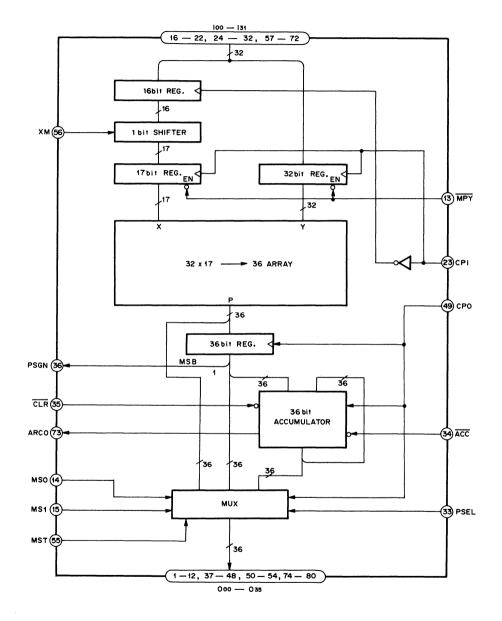
Absolute Maximum Ratings (Ta=25°C) • Supply voltage Vbb Vss* -0.5 to 7.0 • Input voltage Vi Vss* -0.5 to Vbb+0.5

- Input voltage
 Vi
 Vss* -0.5 to Vbb+0.5
 V


 Output voltage
 Vo
 Vss* -5.0 to Vbb+0.5
 V

 Operating temperature
 Topr
 -20 to +75
 °C

 Storage temperature
 Tstg
 -40 to +125
 °C
 - * Vss=0V


Recommended Operating Conditions

٠	Supply voltage	Vdd	5.0±0.25	V
•	Operating temperature	Topr	-20 to +75	°C

v

Block Diagram

Electrical Characteristics

1. DC characteristics


VDD=5V±5% Vss=0V Topr=-20 to 75°C

Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit
Power our	alv ourroat	loo	,		20		mA
Power sup	pry current	IDDS	Standby state*			0.1	mA
Output voltage	H level	Vон	Іон = −0.4 mA	4.0		VDD	V
Output voltage	L level	Vol	lo∟=3.2 mA	Vss		0.4	V
Innut voltage	H level	Viн		2.4			V
Input voltage	L level	VIL				0.8	V
Input leaka	ge current	lu	Vi≡0V to Vpp	-10		10	μΑ

* VIH=VDD, VIL=VSS

2. AC characteristics

ltem	Symbol	Тур.	Max.	Unit	Remark
ko to l31 Set-up time 1	tsu1	0	5	ns	Multiplicand X (16-bit)
koo to kan Hold time 1	thd1	7	14	ns	Multiplicand X (16-bit)
loo to l31 Set-up time 2	tsu2	5	10	ns	Multiplier Y (32-bit)
loo to l31 Hold time 2	thd2	0	11	ns	Multiplier Y (32-bit)
MPY Set-up time	tsบ3	15	26	ns	
MPY Hold time	tнdз	0	5	ns	
XM Set-up time	tsu4	15	25	ns	
XM Set-up time	thd4	0	6	ns	
MSo, MS1 Set-up time 1	tsu5	4	9	ns	MST=H mode
MSo, MS1 Hold time 1	thd5	1	7	ns	MST=H mode
MSo, MS1 Set-up time 2	ts∪6	0	6	ns	MST=L mode
MSo, MS1 Hold time 2	thd6	6	12	ns	MST=L mode

3. Input/output capacitance

ltem	Symbol	Min.	Тур.	Max.	Unit
Input pin	Cin			9	рF
Output pin	Соит			9	рF

Test condition VDD=VI=0V, fM=1 MHz

Pin Configuration

	@ 34	0 33	0 32	0 31	0 30	0 29	0 28	0 27	0 26	0 25	0 24	8 23
	0 35	0 72	0 71	0 70	0 69	0 68	0 67	0 66	0 65	0 64	0 63	0 22
	0 36	0 73				0 86	0 85				0 62	0 21
	0 37	0 74									0 61	0 20
	0 38	0 75									ဓိ	0 19
	0 39	0 76	0 87		(тор	VIEW	1)		0 84	0 59	0 18
	0 40	0 77	0 88							83 83	0 58	0 17
	0 41	0 78									0 57	0 16
	0 42	0 79									0 56	0 15
	0 43	80				0 81	0 82				0 55	0 14
	0 44	0 45	0 46	0 47	0 48	0 49	0 50	0 51	0 52	0 53	0 54	0 13
EX 1	*• 1	2	0 3	0 4	5	0 6	97	0 8	9 9	0 10	0 11	• 12

SONY.

No.	Pin Name	I/O	No.	Pin Name	I/O	No.	Pin Name	I/O	No.	Pin Name	1/0
1	O22	0	23	CPI	I	45	O 27	0	67	I 21	1
2	O28	0	24	l 07	1	46	O 30	0	68	120	1
3	O29	0	25	108	I	47	O31	0	69	l19	I
4	O32	0	26	lo9	Ι	48	O34	0	70	l18	1
5	O33	0	27	lıo	I	49	СРО	0	71	I 17	1
6	O35	0	28	l11	I	50	O21	0	72	l16	1
7	O 20	0	29	l12	1	51	O18	0	73	ARCO	0
8	O19	0	30	l13	I	52	O17	0	74	O 00	0
9	O16	0	31	I 14	I	53	O14	0	75	Ооз	0
10	O15	0	32	l15	I	54	O13	0	76	O 04	0
11	O12	0	33	PSEL	Ι	55	MST	ł	77	O 07	0
12	O11	0	34	ACC	I	56	ХМ	1	78	O 08	0
13	MPY	I	35	CLR	I	57	İ 31	I	79	O25	0
14	MSo	1	36	PSGN	0	58	130	1	80	O26	0
15	MS1	1	37	O 01	0	59	l 29	I	81	Vss	—
16	loo	I	38	O 02	0	60	l 28	I	82	Vdd	—
17	l 01	I	39	O 05	0	61	l 27	I	83	Vdd	—
18	lo2	1	40	O 06	0	62	l 26	I	84	Vss	_
19	юз	1	41	O 09	0	63	l 25	I	85	Vss	-
20	I 04	1	42	O 10	0	64	 24	I	86	Vdd	—
21	l 05	Т	43	O24	0	65	I 23	I	87	VDD	_]
22	106	Ι	44	O23	0	66	l 22	I	88	Vss	-

Description of Individual Blocks

The detailed structure of the internal circuits is described below, broken down into four blocks: Input block that includes input registers and shifters, multiply array block that performs actual multiplyig operations, accumulator block that performs accumulating operations, and output block that switches outputs in accordance with the designated output format.

1. Input block

This block separately latches multiplicand X and multiplier Y that have been input through pins 100 through 131 by time sharing, and after aligning their timings together, outputs X and Y to multiply array. The block is composed of registers and 1-bit shifters.

[Registers]

After being latched at the negative edge of CPI, multiplicand X is latched again at the positive edge thereof, while multiplier Y is latched directly at the positive edge. For all the registers and equivalent, type D FFs (flip-flops) have been employed, and to the second stage X latch registers and Y latch registers, enable pins have been provided to enable latching operations exclusively in "L" MPY modes. These enable pins have been built in by providing a selector on the D input side of each FF, as shown in Fig. 1.

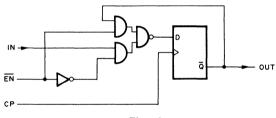
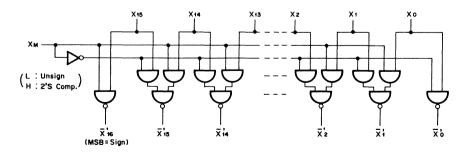
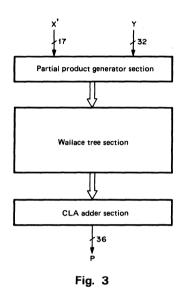
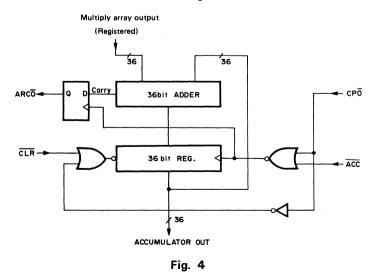



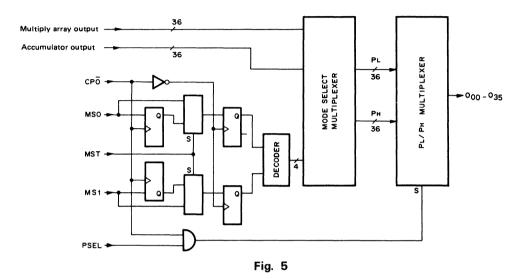
Fig. 1

[1-bit shifters]


A 1-bit shifter has been provided between the first and second stage latch units of \cdot circuits, and serves for switching \cdot values in accordance with whether the \cdot is a 2'S complement or an unsigned straight binary. Specifically, because multiply array block in the next stage is capable only of 2'S comp. \cdot 2'S comp. multiplying operations, it will add a 1-bit sign bit "0" onto the upper MSB when \cdot is unsigned, to convert it into a 17-bit 2'S complement. When on the other hand, \cdot is a 2'S complement, the shifter will add a 1-bit "0" to trail behind the LSB side to make it 17-bits in length. There operations are performed by the hardware shown in Fig. 2.

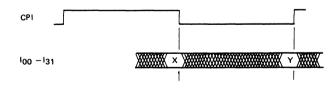

2. Multiply block

This block actually multiplies multiplicand x and multiplier Y together that have been aligned together in the input block, and consists of three sections as shown in Fig.3; namely, partial product generator section, Wallace tree section, and CLA adder section.


3. Accumulator block

This block performs the so-called accumulating operation of adding earlier multiplied results (36 bits) and newly multiplied results (36 bits) together and providing the cumulative sum of such added results, and is basically constructed of 36-bit+36-bit adders and registers that hold earlier added results (Fig. 4).

4. Output block


This block switches its output in accordance with the mode selected by MSO and MS1 and delivers 000 through 035 to the output pin. The block consists of a decoder and multiplexers. Its block diagram is shown in Fig. 5. It has two stages of multiplexers, one for mode switching and the other for switching between PL and PH.

Terminal Explanation

loo through 131 (pins 16 through 22, 24 through 32, and 57 through 72)

These pins serve for inputting multiplicand X (16-bit) and multiplier Y (32-bit) by time sharing. Specifically, at the negative edge of a signal input to the CPI pin (pin 23), X is latched internally, as shown in Fig. 7, where 16-bit of X are input by the use of los serving as LSB through l23, and 32-bit of Y input by the use of los serving as LSB through l31, with the two inputs in 32-bit parallel with each other.

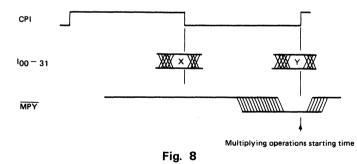
I 31	130	1 29	 28	 27	1 26	1 25	124	123	122	 21	120	119	 18	l17	 16	 15	 14	 13	 12	 11	1 10	109	108	107	I 06	l05	1 04	юз	102	l 01	loo	
-	_				—	-	_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-			_			-	—	-x
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-Y

F	i	a.	7
•	•		

The data formats for multiplicand X and multiplier Y are shown below, where XM is the pin for switching the X expression between a 2'S complement and an unsigned straight binary and its further details will be given in the paragraph on "XM (pin 56)".

$$X = -1 * X_{15} + \sum_{n=0}^{14} 2^{-(15-n)} * X_n \qquad (XM = "H")$$
$$X = \sum_{n=0}^{15} 2^{-(16-n)} * X_n \qquad (XM = "L")$$
$$Y = -1 * Y_{31} + \sum_{n=0}^{30} 2^{-(31-n)} * Y_n$$

Multiplied P results will be given by:


$$P = -1 * P_{35} + \sum_{n=0}^{34} 2^{-(35-n)} * P_n$$

This LSI is capable of multiplying all X and Y combinations except just one (when X=-1, Y=-1) where multiplied results will overflow and become:

X(-1)*Y(-1)=P(-1)calling for due caution.

MPY (pin 13)

This pin serves for inputting a multiplying operations starting command. When this pin is "L" and the positive edge of a signal input to the CPI pin (pin 23) has arrived, multiplying operations will commence. As multiplier Y for the operations, a signal input from loo through I31 at the CPI positive edge is employed, and multiplicand X employs a signal input at the negative edge immediately preceding it. (Fig. 8)

XM (pin 56)

This pin serves for inputting the signal with which to switch the multiplicand X expression between a 2'S complement and an unsigned straight binary. X is made a 2'S complement at XM="H" or an unsigned straight binary at XM="L". The signal is latched internally at the CPI positive edge in an \overline{MPY} (pin 13)="L" mode, and may be made to determine the expression for an X input at the immediately preceding negative edge.

CPI (pin 23) and CPO (pin 49)

These pins serve as the system clock input that determines operating cycles of the multiplier, and input a 50% duty square wave at 6 MHz max. CPI serves for latching multiplicand X and multiplier Y as well as the $\overline{\text{MPY}}$ and XM signals, while CPO serves for the MSO, MS1, and MST latching, the output multiplexer switching, and the determination of accumulator operating cycles (internal generation of $\overline{\text{ACC}}$ and $\overline{\text{CLR}}$ signals). Normally, the same signal is input to CPI and CPO, but the two inputs may be mutually phase-shifted depending on the external circuitry for control of the LSI.

* For example, when X, Y, control signals MPY, XM, etc., and the timing for fetching the multiplied results P that have been output by this LSI all synchronize with CPO, CPI may be made to lead CPO as shown in Fig. 9. Such an arrangement offers the advantage of a shorter cycle time (CPI/CPO cycle).

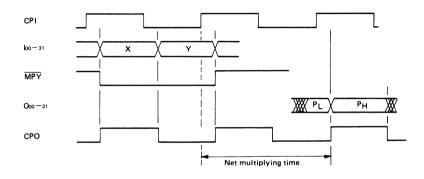
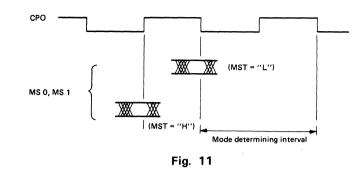


Fig. 9


MSO (pin 14), MS1 (pin 15), and MST (pin 55)

These pins serve as mode switching inputs that determine bit assignments for the output of multiplied results P to 000 through 035 (pins 1 through 12, 37 through 48, 50 through 54, and 74 through 80), and the modes switched include those shown in Fig. 10. Bit assignments and similar other aspects will be discussed in greater detail in the paragraph on "000 through 035".

Mode	MS1	MS0	Function
0	0	0	CX23015: Standard (28-bit) or extended (36-bit with two CX23015 employed)
1	0	1	CX23015-extended 12-bit right shift mode
2	1	0	General purpose 16×32→36-bit with no ACC
3	1	1	General purpose $16 \times 32 \rightarrow 36$ -bit with ACC output

|--|

In the above, MST (pin 55) is the input pin that dictates the timing for internally latching MSO and MS1. At MST="L", MSO and MS1 are latched at the negative edge of a signal input to the CPO pin (pin 49), and immediately afterward, the Ooo through O35 signals will continue to be output in that mode until the next negative edge arrives. At MST="H", MSO and MS1 are latched at the positive edge of CPO, and the mode for Ooo through O35 are maintained unaltered for the interval starting with a negative edge that immediately follows the said positive edge and ending with the next negative edge (Fig. 11).

Ooo through O35 (pins 1 through 12, 37 through 48, 50 through 54, and 74 through 80), and PSEL (pin 33)

Pins Ooo through O35 output either multiplied results P or the accumulator data, and when PSEL (pin 33) is made "L", the output will emerge at Ooo through O35 that has been time-multiplexed by CPO to permit its direct connection to an ADSP. Specifically, when CPO is "L" the LSB side of P, or PL, is output, and when it is "H", the MSB side of P, or PH, is output. When no time-multiplexing is required for general purpose applications, PSEL may be set at "H" to fix the output at PH. These output timings are shown in Fig. 12. In addition, the detailed output format at individual pins is shown in Fig. 13.

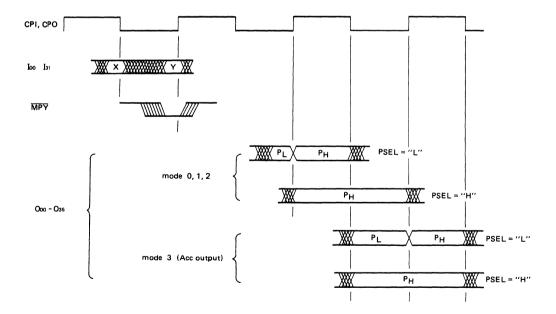
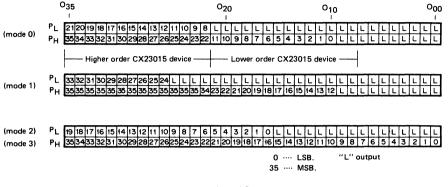



Fig. 12

ACC (pin 34) and CLR (pin 35)

 $\overline{\text{ACC}}$ is the input pin through which adding commands are issued to the accumulator within, and when $\overline{\text{ACC}}$ is "L", the internal accumulator register contents and the immediately preceding multiplied results that have been summed together are freshly latched by the accumulator register as soon as CPO is made "L". CLR is the input pin that reduces the accumulator register contents all to "O", and similarly to $\overline{\text{ACC}}$, "O" is loaded to the accumulator register as soon as CLR and CPO have together been made "L".

Note that the internal accumulation and accumulator register clear operations are not executed by the negative edge of CPO at \overrightarrow{ACC} (or \overrightarrow{CLR})=""L", but at the simultaneous "L" levels of CPO and \overrightarrow{ACC} (or \overrightarrow{CLR}), so that in a case illustrated in Fig. 14, internal operations will be performed not only at timing "a" but at timing "b" as well. With \overrightarrow{ACC} , in particular, since a spurious addition unrelated to the CPO cycle is made at timing "b", utmost caution should be exercised.

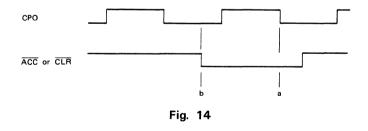


Fig. 15 shows normal CLR and ACC operational timings.

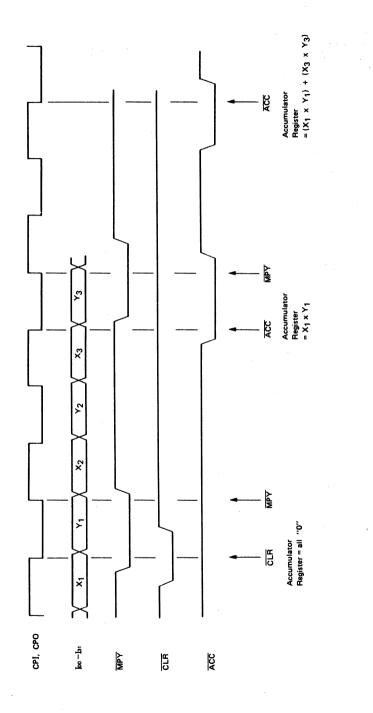
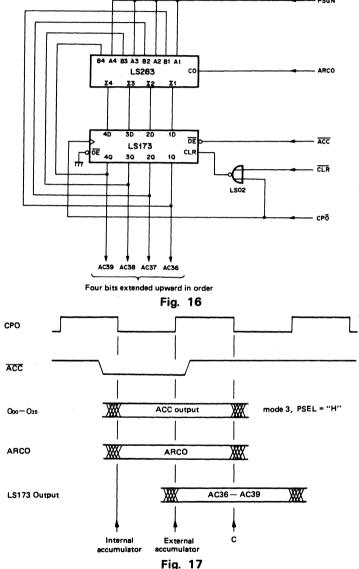
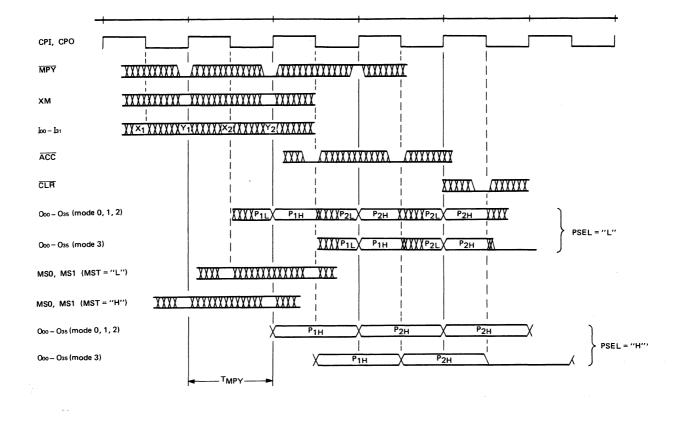



Fig. 15

CXD1018G


PSGN (pin 36) and ARCO (pin 73)

PSGN and ARCO are the exit pins for the extension of accumulator beyond 36-bit, and an example 40-bit accumulator that has been constructed by the use of these pins is shown in Fig. 16, together with its timing chart in Fig. 17.

Note that accumulations in the external circuit are made at the positive edge of CPO so that, as shown in Fig. 17, the ACC signal will have to be held at an 'L" level at the positive edge of CPO as well. Because the externally accumulated results are made valid after the positive edge, 40-bit accumulations that have been extended upward beyond MSB by 4-bit may be achieved by latching Ooo through O35 and the four outputs of LS173 at timing "C" of Fig. 17, and thereby expanding the overflow limit of the 36-bit accumulator.

CXD1018G

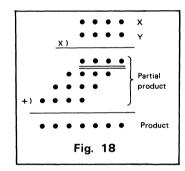
.

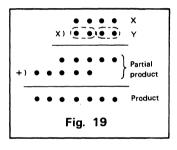
- 280 -

SONY

Supplementary Presentations

[Supplement 1] Booth algorithms


Booth algorithms represent a technique for the multiplication of binary numbers expressed in 2'S complements, and will not only reduce the number of partial products involved but also eliminate the need for corrections that accompany the 2'S complement expression.


When multiplying binary numbers in general, partial products equal in quantity to the bits in Y and marked in Fig. 18 with double underlines are generated. By deriving partial products for every two bits of multiplier as shown in Fig. 19, their quantity may be reduced in half. When simply employed, however this approach will generate partial products that take on one of four values of 0, X, 2X, and 3X. Of these, 0, X, and 2X may readily be obtained as X itself or in its shifted form, but 3X presents quite a challenge for hardware to generate.

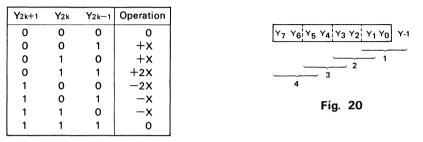
Now, a (n+1)-bit multiplier, Y, expressed in 2'S comple-ments, may be written as:

$$Y = -Y_{n}2^{n} + \sum_{k=0}^{n-1} Y_{k}2^{k}$$
(1)

By assuming for simplicity's sake, the length of Y (n:1) to be an even number, and $Y_{-1}=0$ to hold true, the above equation may be rewritten as follows:

$$Y = -Y_{n} \cdot 2^{n} + Y_{n-1} \cdot 2^{n-1} + Y_{n-2} \cdot 2^{n-2} + \dots + Y_{3} \cdot 2^{3} + Y_{2} \cdot 2^{2} + Y_{1} \cdot 2^{1} + Y_{0} \cdot 2^{0} = (Y_{n-2} + Y_{n-1} - 2Y_{n}) 2^{n-1} + (Y_{n-4} + Y_{n-3} - 2Y_{n-2}) \cdot 2^{n-3} + \dots + (Y_{1} + Y_{2} - 2Y_{3}) \cdot 2^{2} + (Y_{-1} + Y_{0} - 2Y_{1}) \cdot 2^{0} = \sum_{k=0}^{n-1/2} (Y_{2k-1} + Y_{2k} - 2Y_{2k+1}) \cdot 2^{2k}$$
(2)

Accordingly, multiplied result P=X·Y may be written as:


$$P = X \cdot Y$$

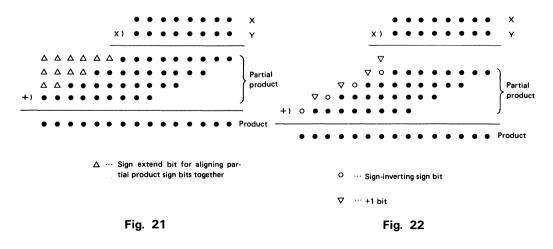
= $\sum_{k=0}^{n-1/2} (Y_{2k-1} + Y_{2k} - 2Y_{2k+1}) X \cdot 2^{2k}$ (3)

where $(Y_{2k-1}+Y_{2k}-2Y_{2k+1})X \cdot 2^{2k}$ represents the partial products under discussion. From equation (3), their quantity will be (n+1)/2 or half the number of bits in Y.

Since $(Y_{2k-1}+Y_{2k}-2Y_{2k+1})$ takes on the values at 0, ±1, and ±2 against three sucessive bits $(Y_{2k-1}, Y_{2k}, Y_{2k+1})$, partial products $(Y_{2k-1}, +Y_{2k}-2Y_{2k+1})X$ will take on one of five values of 0, ±X, and ±2X. Of these, 2X may be generated by a single bit shift, and for negative number -X, obtaining \overline{X} and adding 1 to LSB will suffice due to its 2'S complement expression.

Accordingly, by designating the operational format out of 0, $\pm X$, and $\pm 2X$ from three successive bits, the generation will be enabled with relatively simple hardware of the partial products whose quantity equals half the bits in Y, or half the quantity involved in normal calculations.

Given in Table 1 below is a list of types of operations against three successive bits if Y, and Fig. 20 shows how to fetch three successive bits out of Y that is 8 bits in length.



Since as is evident in Fig. 20, the three bits $(Y_{2k-1}, Y_{2k}, Y_{2k+1})$ each have one bit overlapping with their neighbors, they appear as if Y has been segmented at every other bit. This is the reason why this process is known as the second order Booth algorithms.

[Supplement 2] +1 algorithm

When in multiplying binary numbers expressed in 2'S complements, partial products are obtained by Booth algorithms, each individual partial product is also expressed in 2'S complements so that the MSB of the lower order partial products will have to be sign-extended as shown in Fig. 21 to yield a valid product. Such sign extensions, however, will increase the number of bits in partial products, levying a large burden on the partial products adding hardware and lowering its multiplying speed. Accordingly, the partial product MSB (= sign bit) is inverted and "1" added on at the prescribed locations, to enable the addition with no sign extensions that in turn brings about higher speed operations. This process is known as the +1 algorithm.

SONY

Double Scan Converter

Preliminary

Description

The CXK1201P is a digital line memory for non-interlace TV 8-bit structure which employs silicon gate CMOS process. It is enabled to perform line interpolation and scan conversion of horizontal frequency.

Features

- Most suitable to the digital TV system of its sampling frequency of 4 fsc (NTSC).
- Incorporates H sync, H blanking, clock for A/D converter and clear signal generation circuit to synchronize with external circuit.
- Memory structure $910 \times 8 \times 2$ bit
- High speed cycle time Minimum write cycle time 66 ns Minimum read cycle time 33 ns
- I/O level Compatible with TTL level
- Data output three states
- 5V single power supply
- Low power consumption 200 mW (typ.)

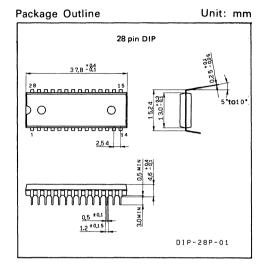
Structure

Silicon gate CMOS

Application

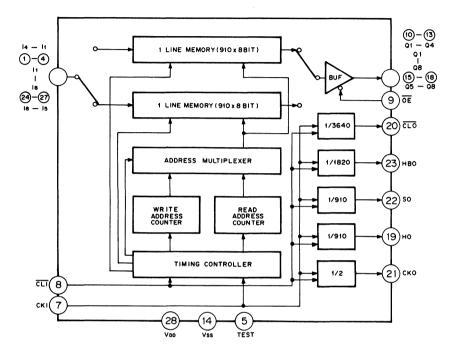
Double scan monitior

Function

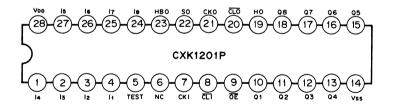

Double scan conversion

Absolute Maximum Ratings

 Supply voltage 	Vdd	-0.3 to $+7.0$	V
 Input voltage 	Vin	-0.3 to $+7.0$	V
 Operating temperature 	Topr	-10 to +85	°C
 Storage temperature 	Tstg	-55 to 150	°C
 Power consumption 	PD	500	mW


Recommended Operating Conditions (Ta=0 to $+70^{\circ}$ C)

 Supply voltage 	Vdd	4.5 to 5.5	V (5.0V Typ.)
 Supply voltage 	Vss	0	V
 Input voltage "H" level 	Vін	2.4 to VDD+0.3	V
 Input voltage "L" level 	VIL	-0.3 to +0.8	V



CXK1201P

Block Diagram

Pin Configuration (Top View)

Pin Description

No.	Symbol	Description
1 - 4	14 — Iı	Data input
5	TEST	Test signal input
6	NC	Non-connection
7	СКІ	Clock input
8	CLI	Clear input
9	ŌĒ	Output enable input
10-13	Qı – Q4	Data output
14	Vss	Ground
15-18	Q5 – Q8	Data output
19	но	2H output (The same frequency as H sync, duty 50%)
20	CLO	Clear output
21	ско	Clock output (Frequency is 1/2 of CKI)
22	SO	H sync output
23	НВО	H blanking output
24 – 27	l8 – l5	Data input
28	Vdd	Power supply (+5V)

Pin Function

(1) I1 to I8 (Input)

The data inputs.The data set up time and hold time are determined from the rising edge of the clock.

(2) Q1 to Q8 (Output)

The data outputs. The access time is determined from the rising edge of the clock. (3) CKI (Input)

A lock input. The I/O timing of the respective signals are defined against the clock which has been input from this pin.

(4) CLI (Input)

A clear input. The input which is used in order to initialize the write address and read address. When it is necessary to synchronize with the externals (data inputs), there are two ways, the one is to use this clear input and the other is to use the H blanking signal which will be described later in this description.

- (5) OE (Input) An output enable. When it is at "L" level, the data outputs (Q₁ – Q₈) become into output mode. When at "H" level, they become into high impedance state.
- (6) CLO (Output)

A clear output. When plural numbers of this LSI are used in parallel, it is possible to synchronize with the respective LSIs by inputting the clear output of which is specified as the reference, to the clear inputs of other LSIs.

(7) CKO (Output)

A clock output pin. The frequency is 1/2 that of the input colck signal and is possible to be used as clock of the A/D converter.

(8) SO (Output)

An H SYNC signal output pin. It is possible to be used as a signal to synchronize the data output and monitor. However, this signal is an H SYNC signal during double speed (The frequency is twice as much as that of normal.)

(9) HO (Output)

A signal output pin which outputs the signal of 50% duty and whose frequency is equivalent to the H SYNC signal.

(10) HBO (Output)

A H blanking signal output pin. It is possible to be used as a synchronizing signal with the data input signal.

(11) TEST (Input)

A test signal input pin. It is a pin used during the test of LSI and is normally used at $^{\prime\prime}\text{H}^{\prime\prime}$ level.

(12) VDD

The power supply pin. (+5V)

(13) Vss

The grounding pin.

Electrical Characteristics

DC characteristics

VDD=5.0V, Ta=25°C

ltem	Symbol	Min.	Тур.	Max.	Unit	Condition
Power supply current (active)	ldd			70	mA	
Input leakage current	١L	-2		2	μΑ	VIN=0V-VDD
Output leakage current	IOL	-2		2	μA	Vout=0V-Vdd
Output voltage "H" level	Vон	2.7			V	Іон=-400 <i>µ</i> А
Output voltage "L" level	Vol			0.4	V	Iol=4.0mA

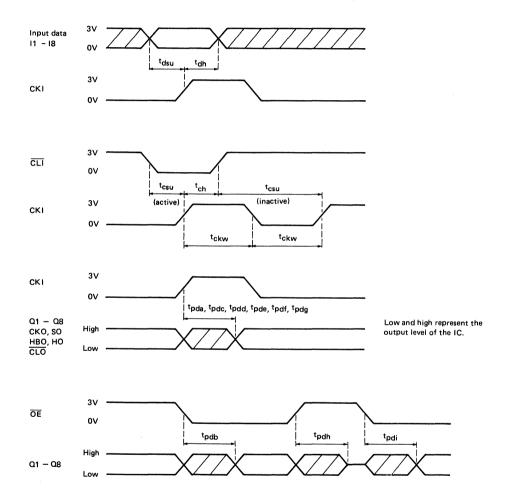
AC characteristics

VDD=4.5V to 5.5V, Ta= 0° C to 70° C (See the timing chart on next page)

				1000 1110		enare en nexe page,
ltem	Symbol	Min.	Тур.	Max.	Unit	Remarks
Data set up time	tdsu	0			ns	
Data hold time	tdh	25			ns	
CLI set up time	tcsu	10			ns	
CLI hold time	tch	5			ns	
Clock pulsewidth	tckw	15			ns	Low or high

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Clock frequency	f			30	MHz	
From clock input to determination of Q1 – Q8	tpda	7		25	ns	
From \overline{OE} input to determination of $Q_1 - Q_8$	tpdb	7		25	ns	
From clock input to determination of CKO	tpdc	7		25	ns	
From clock input to determination of CLO	tpdd	7		25	ns	CL=30pF
From clock input to determination of SO	tpde	7		25	ns	
From clock input to determination of HBO	tpdf	7		25	ns	
From clock input to determination of HO	tpdg	7		25	ns	
Output disable time (from $\overline{\text{OE}}$)	t pdh	7		25	ns	
Output enable time (from \overline{OE})	tpdi	7		25	ns	

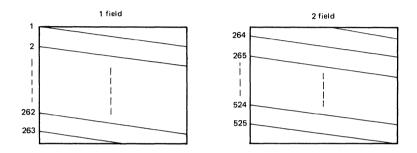
Pin capacitance

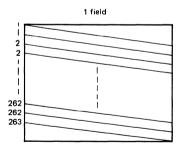

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Input capacitance	CIN			7	pF	Ta=25°C, f=1MHz
Output capacitance	Соит			10	pF	VIN=VOUT=0V

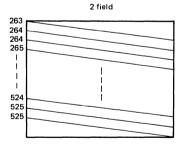
10111-10

СХК1201Р

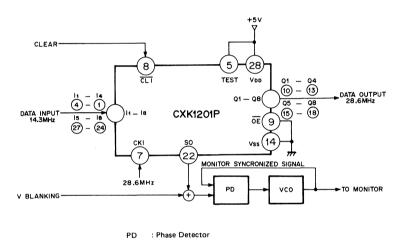
Timing chart


- (1) Input signal levels are at the low level = 0V and at the high level = 3V, and 5 ns for both rising and falling time.
- (2) The voltage judging levels of both low and high are 1.5V.


Description of Operation


The video signal of the NTSC format performs interlacing with one field 525/2 scanning lines. Accordingly, to perform scan conversion of horizontal frequency (one field 525 scanning lines), it is required to make line interpolation and the horizontal scanning frequency twice as much. The conceptual diagrams when performing the scan conversion by using a CXK1201P are as shown below.

NTSC format video signal


Video signal after being converted into scan conversion

An application example, which is provided as a reference in order to operate the converter in the manner as shown in the conceptual diagrams, is as shown in Fig. 1, and its timing chart is as shown in Fig. 2. At first, initialize the write address and read address of the CXK1201P by inputting clear signal. After that, by inputting the digital data having been sampled by $4f_{sc}$ (14.3 MHz), the data having been converted by double speed can be obtained in synchronization with the clock at $8f_{sc}$ (28.6 MHz).

Moreover, to synchronize with the monitor, carry out the phase comparison with the composite sync signal which is provided by adding the H sync signal generated from the CXP1201 P and the V blanking signal extracted from the input data and the composite sync signal within the monitor, and by changing the frequency and phase of the composite sync signal within the monitor so as to make no differences in the phases.

VCO : Voltage Controlled Oscillator

Fig. 1 Application circuit, No. 1

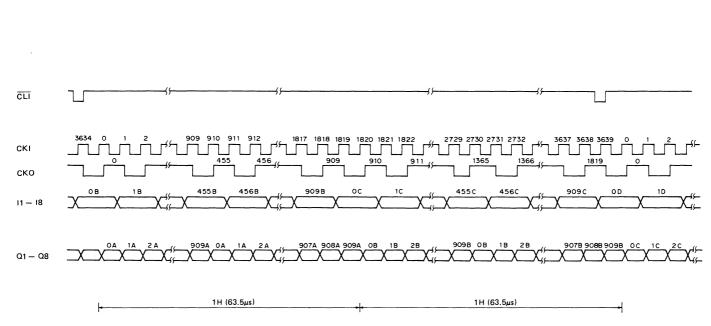


Fig. 2 Double speed conversion timing chart

291

ł

CXK1201P

Moreover, an application example when the clear input is not used is as shown in Fig. 3. In this case, extract the H sync signal from the input video signal and make the sync signal having the same frequency as the input H sync by the H blanking signal and HO signal from the CXP1201 P. Perform the phase comparison of thus provided sync signal and change the frequency and phase of the clock (28.6 MHz) so as to make no difference in the phase.

In addition, the method to synchronize it with the composite signal of the monitor, the same procedures as using the clear input mentioned above should be taken.

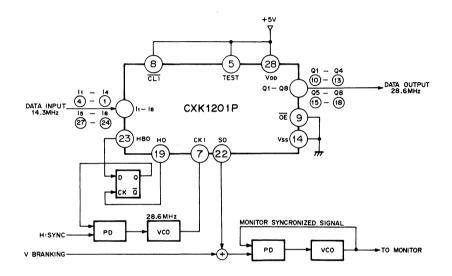


Fig. 3 Application circuit, No. 2

The CXK1201P generates various kinds of synchronizing signals in order to synchronize with the external signals. The phase relationship between the synchronizing signals and their respective timings are shown in Figs. 4 and 5 respectively.

SONY®

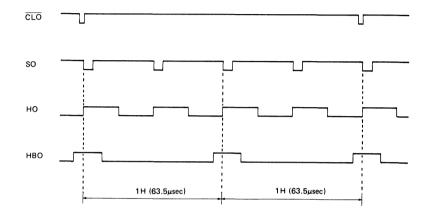


Fig. 4 The phase relationship between the respective outputs

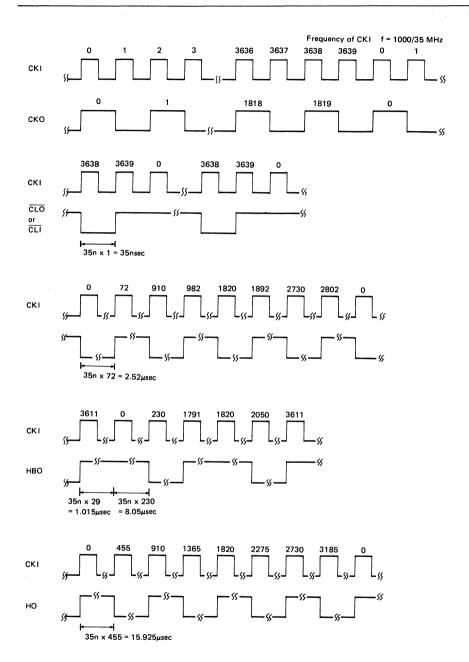


Fig. 5 The respective output timings against the input CKI

SONY

CXK1202S

Digital Delay Line

Description

The CXK1202S is a digital line memory pertaining to 8-bit structure which employs silicon gate CMOS process. It can easily be used to realize compensation for dropout of VTR and used as a digital filter, noise reduction, etc.

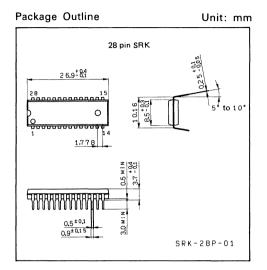
Features

- 1144 words imes 8 bit structure
- Number of delay steps is 17 to 1144 bits and variable.
- Possible to select the following 16 delay lines (Peripheral circuit is unnecessary) for NTSC, PAL and SECAM

905 to 912 bits

- 1129 to 1136 bits
- High speed cycle time Minimum write cycle time 25ns Minimum read cycle time 25ns
- I/O level Compatible with TTL level
- · Data output three-states
- 5V single power supply operation
- Low power dissipation (200 mW typ.)

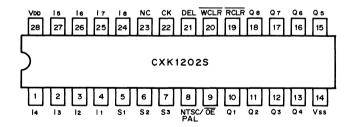
Structure


Silicon gate CMOS

Absolute Maximum Ratings

 Supply voltage 	Vdd	-0.5 to +7.0	V
 Input voltage 	Vin	-0.3 to $+7.0$	V
• Operating temperature	Topr	-10 to +85	°C
Storage temperature	Tstg	-55 to 150	°C
Power consumption	PD	500	mW

Recommended Operating Conditions (Ta= 0° C to 70° C)


 Supply voltage 	VDD	4.5 to 5.5	V (5.0V typ.)
 Supply voltage 	Vss	0	V
 Input voltage "H" level 	Viн	2.4 to V _{DD} +0.3	V
 Input voltage "L" level 	VIL	-0.3 to $+0.8$	V

Block Diagram

Pin Configuration (Top view)

Pin Description

No.	Symbol	Description
1 – 4	l4 – l1	Data input pins. Data set up time and hold time are determined from the rising edge of the clock.
5 - 7	S1 - S3	These are small delay steps setting input pins. The setting number of the delay steps is determined by the cycle of the clear signal and the level of S1 to S3. At this point, the clear signal sets rough number of delay steps of every multiple of 8 bits. However, pins S1 to S3 set delay step of 1 bit-unit with 8-bit width.
8	NTSC/PAL	An input pin which selects the number of delay steps either 905 to 912 bits or 1129 to 1136 bits when the DEL pin is set at "H" level. The 905 to 912 bits of delay steps are selected when it is at "H" level and 1129 to 1136 bits of delay steps are selected when it is at "L" level.
9	ŌĒ	An output enable input pin. The data output pins (Q_1 to Q_8) become into output mode when they are at "L" level. They become into high impedance state when they are at "H" level.
10-13	Q1 - Q4	These are data output pins. The outputs against the respective inputs of I1 to I4 correspond to Ω_1 to Ω_4 . The access time is determined from the rising edge of the clock.
14	Vss	A grounding pin.
15 – 18	Q5 - Q8	Data output pins. The outputs against the respective inputs of Is to Is correspond to Q_5 to Q_8 . The access time is determined from the rising edge of the clock.
19	RCLR	A clear signal input pin of the read address counter. It becomes into input mode when the DEL pin is at "L" level. The signal is input into IC at the rising edge of the CK. The signal input from the RCLR pin is ignored when the DEL pin is at "H".
20	WCLR	A clear signal input pin of the write address counter. It becomes into input mode when the DEL pin is at "L" level. The signal is input into IC at the rising edge of the CK. The signal input from the $\overline{\text{WCLR}}$ pin is ignored when the DEL pin is at "H".
21	DEL	An input pin which selects the external and internal clear signals. When at "L", it becomes into external clear signal input mode and the number of delay steps can be set at any bit from 17 to 1144 bits. When at "H", it becomes into internal clear signal using mode and the number of delay steps can be set at any bit from 905 to 912 bits and from 1129 to 1136 bits.
22	СК	A clock input pin. The I/O timing of the respective signals and the delay step, etc. can be defined against the clock input from this pin.
23	NC	Non-connection
24 - 27	l8 – l5	Data input pins. The data set up time and hold time are determined from the rising edge of the clock.
28	Vdd	The power supply pin (+5V).

Electrical Characteristics

(1) DC characteristics

V_{DD}=5.0V, Ta=25°C

ltem	Symbol	Min.	Тур.	Max.	Unit	Condition
Power supply current (Active)	ldd	—	—	70	mA	
Input leakage current	հւ	-2	_	2	μA	VIN=0V VDD
Output leakage current	IOL	-2	-	2	μΑ	Vout=0V Vdd
Output voltåge "H" level	Vон	2.7	-		V	Іон=−400 <i>µ</i> А
Output voltage "L" level	Vol	_	-	0.4	V	lol=4.0mA

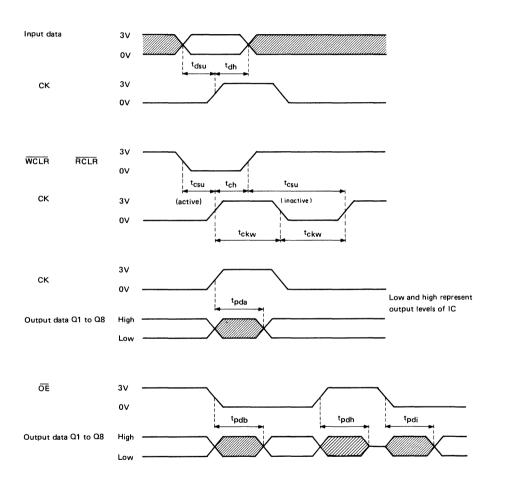
(2) AC characteristics

 V_{DD} =4.5V to 5.5V, Ta=0°C to 70°C (Regarding the timing chart, see next page.)

ltem	Symbol	Min.	Тур.	Max.	Unit	Remarks
Data set up time	tdsu	5	—	—	ns	
Data hold up time	tdh	5		-	ns	
WCLR, RCLR set up time	t _{csu}	15		_	ns	
WCLR, RCLR hold time	tch	5		_	ns	
Clock pulse width	tckw	10		_	ns	Low or high

Item	Symbol	Min.	Тур.	Max.	Unit	Condition	
Clock frequency	f		_	40	MHz		
From clock input to output data determination	tpda		_	25	ns		
From \overline{OE} input to output data determination	tpdb		_	25	ns	C∟=30pF	
Output disable time (from \overline{OE})	tpdh		_	25	ns		
Output enable time (from \overline{OE})	tpdi	—	-	25	ns		

(3) Pin capacity


Ta=25°C, fM=1MHz, VIN=VOUT=0V

Item	Symbol	Min.	Тур.	Max.	Unit
Input pin capacity	CIN			7	pF
Output pin capacity	Соит		-	10	pF

CXK1202S

Timing Chart

- (1) The input signal levels are at the low level = 0V and at the high level = 3V, and 5ns for both rising and falling edges.
- (2) The voltage judging level of the low and high levels is 1.5V

Application

1. 1H delay line (Delay steps 905 to 912 bits, 1129 to 1136 bits)

Since a clear signal generation circuit is incorporated in the CXK1202S, an external clear signal is unnecessary when it is used as an 1 H delay line. By selecting the DEL pin (pin 21) to "H" level and the \overline{OE} pin (pin 9) to "L" level, they can be used as the delay lines of the delay steps as shown in Tables 1 and 2.

A circuit and timing chart when they are used as the delay line of the delay step 908 bits are as shown in Figs. 1 and 2.

NTSC/PAL (pin 8) pin is at "H"								
S 1	S2	S ₃	Delay step					
L	L	L	905					
н	L	L	906					
L	н	L	907					
н	н	L	908					
L	L	н	909					
н	L	н	910					
L	н	н	911					
Н	Н	н	912					

NTSC/PAL (pin 8) pin is at "L"							
S1	S2	S3	Delay step				
L	L	L	1129				
н	L	L	1130				
L	н	L	1131				
н	н	L	1132				
L	L	н	1133				
Н	L	н	1134				
L	н	н	1135				
н	н	н	1136				

Table 1. Delay steps when NTSC mode

Table 2. Delay steps when PAL mode

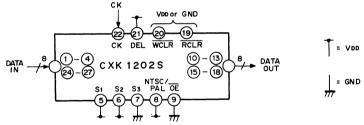
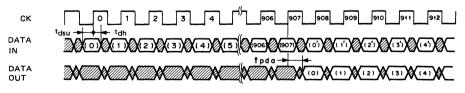



Fig. 1 Circuit of 908 bits delay

2. Delay line (Delay step 17 to 1144 bits)

By setting the DEL pin (pin21), NTSC/PAL pin (pin 8), and \overline{OE} pin (pin 9) to "L" level, they can be used as a delay line of delay steps 17 to 1144 bits.

The delay steps can be determined by the clear signal and the input level of S1 to S3. The clear signal is input always every 8n (n is an integer. $n=1, 2, \ldots$ 141) clocks. At that time, the obtained delay step is either one from 8 steps of 8(n+1)+1 to 8(n+2) bits. The selection is performed by S1 to S3 pins. The number of delay steps to be obtained by the input levels of S1 to S3 are tabulated in Table 3.

For example, when used as a delay line of delay step of 123, it is written as 123=8(14+1)+3 and it becomes n=14. Accordingly, input the clear signal every $8\times14=112$ clocks and set the S1, S2 and S3 pins respectively to "L", "H" and "L" levels and it can be used as a delay line of delay step of 123 bits. The circuit and timing chart at that time are respectively as shown in Figs. 3 and 4.

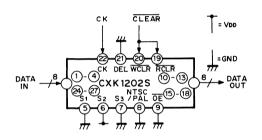


Fig. 3 Circuit of 123 bits delay

n	n=1, 2,141						
S	1	S2	S3	Delay step			
L	-	L	L	8(n+1)+1			
H H	I	L	L	8(n+1)+2			
L		н	L	8(n+1)+3			
F		н	L	8(n+1)+4			
L	-	L	н	8(n+1)+5			
I F	I	L	н	8(n+1)+6			
L	-	н	н	8(n+1)+7			
F		Н	н	8(n+2)			

Table 3. Delay steps when clear signal isinput every 8n clocks

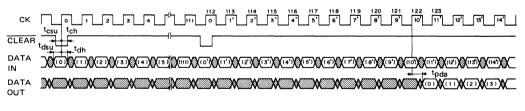


Fig. 4 Timing chart of 123 bits delay

3. Special Application Example — Data Holding

Since SRAM is incorporated in the CXK1202S, data holding can be carried out. However, it is unable to perform random access of the held data. The maximum data holding amount is 1120 words \times 8 bit.

The data holding can be carried out by controlling the input timing and clock of the WCLR and RCLR signals. Set to WCLR and RCLR signals input modes by selecting the DEL pin (pin 21) to "L" level. By selecting the NTSC/PAL pin (pin 8) to "L" level, the maximum data holding amount of it becomes 1120 words \times 8 bit.

• Data writing in

When the WCLR signal is input so as to fetch it at the rising edge of the clock signal, the write address counter is cleared and the data input at that moment is written into the top address. After the WCLR signal has been transferred to "H" level from "L" level, the write address counter is incremented and the data are recorded in the order they have been input. If there are data, which are desired to be written in, up to i-th (i is an integer: i=0, 1, $2 \dots 1119$) and when the condition is $8m \le i \le 8m + 7$ (m is an integer: m=0, 1, 2, ... 139), input the clock signals up to 8(m+1)+2 to 8(m+1)+7 counted from the WCLR signal input and it becomes necessary to stop the input of the clock signal there-after. (Fig. 6)

- Note) Be sure that if the clock signal after 8(m+1)+7th clock signal is not stopped, it keeps counting on as if there are input data.
 - When the clock is stopped at other than 8(m+1)+2 to 8(m+1)+7, the power supply current is somewhat increased so it is desired not to stop it.
- Data read out

When the RCLR signal is input so as to fetch it at the rising edge of the clock signal, the data having been held commence to output data after 8 to 15 clocks from that clock. The data are output in the same order as they have been written in. The data output commencing period is dependent on the levels of S1 to S3 as shown in Table 4. A circuit example when data is output from after 11 clocks is as shown in Fig. 5 and its timing chart is as shown in Fig. 7.

Moreover, the data read out once is held unless it is rewritten.

- Note) If the RCLR signal is input during data writing, reading out from after 8 to 15 clocks is possible. At that time, input the RCLR signal after 8k clocks (k is an integer. k=1, 2, 3, ... 141) from the WCLR signal input. (Fig. 8)
 - Do not stop the clock while reading the data is being performed.

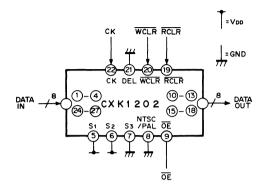
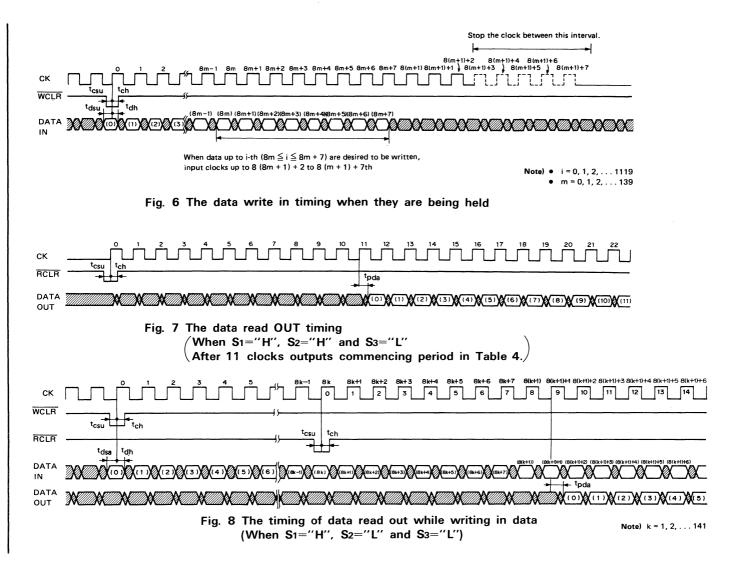



Fig. 5 A circuit from the RCLR signal is input to the data output commencement

S1	S2	S3	Output commencing period
L	L	L	After 8 clocks
н	L	L	After 9 clocks
L	н	L	After 10 clocks
н	н	L	After 11 clocks
L	L	н	After 12 clocks
н	L) н	After 13 clocks
L	н	н	After 14 clocks
н	н	н	After 15 clocks

Table 4. Number of clocks when the RCLRsignal is input to the data outputcommencement (Make clock inwhich RCLRsignal has beeninput to 0)

- 304

SONY

CXK1202S

Evaluation Printed Circuit Boards

4) Evaluation Printed Circuit Boards

Туре	Function	Page
СХ20017 РСВ	CX20017 Evaluation Board	307
СХ20018 РСВ	CX20018 Evaluation Board	311
CX20052A PCB-3A/3B	8bit 20/15MHz A/D Converter Evaluation Board	322
CX20116/U CXA1066K/UK PCB	8bit 100MHz A/D Evaluation Board	328
СХ23060 РСВ	CX23060 Evaluation Board	336
CXA1016P/K/UK CXA1056P/K/UK PCB	8bit 50MHz/30MHz A/D Evaluation Board	343
FCX20220A-1/-2	10bit/9bit 20MHz Sub-ranging A/D Converter Evaluation Board	352

SONY

CX20017PCB

CX20017 Evaluation Board

Description

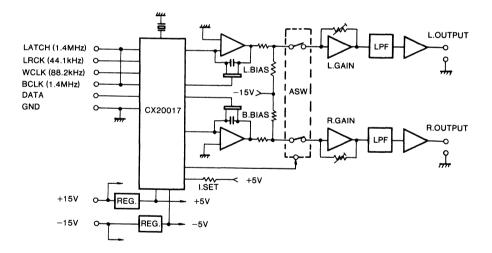
CX20017PCB is the evaluation board for CX20017, Dual 16 bit, 44 kHz, Multiplexed D/A. This board consists of CX20017, a pair of Sample Hold Amplifiers (Deglitchers), an Analog switch, a pair of LPF, and a pair of output drive Amps.

1) This PCB requires the following Input signals and power supplies

- 1. The digital control signals
 - BCLK TTL input
 - WCLK TTL input
 - LRCK TTL input
- 2. Data input
 - DATA TTL input

- 3. Power supplies $-\pm 15V$ (+15V - 100mA,
 - -15V 200mA)

2) The interface connectors


AMP, Inc MTA-100 Closed End Housings - 6 Pin Connector

- 3 Pin Connector
- -2 Pin Connector ($\times 2$)

3) The output from the PCB

- 1. L.OUTPUT
- 2. R.OUTPUT

4) CX20017PCB Block Diagram

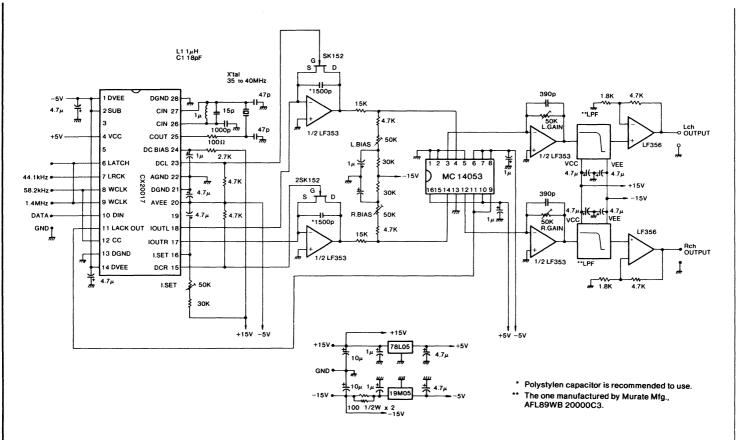


Fig. 1 CX20017PCB Schematic Diagram

CX20017PCB

- 308 -

SONY.

SONY.

Unit: mm

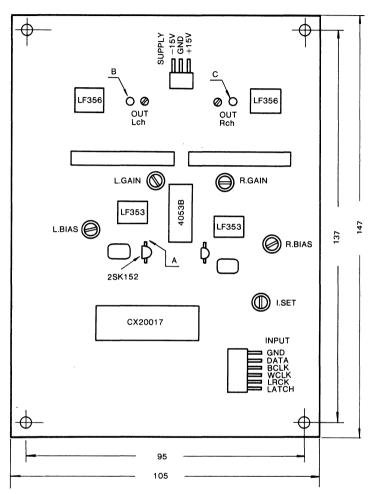
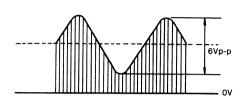


Fig. 2 shows the adjustment points (A, B, C). Point A is the drain of the FET (2SK152). Points B and C are the Lch and Rch Outputs respectively. LRCK is the same signal as WCLK in A/D Converter. When the maximum Input (10 Vp-p) is supplied to A/D, a max. digital input data (01 - 1 to 10 - 0) is supplied to D/A data input (10 pin of CX20017). We will adjust both outputs to 10 Vp-p. The following are the adjustment procedures:

1) I. SET

Check point A. Adjust the variable resistor I. SET to get the 6 Vp-p output level. (See Fig. 3).


2) L. BIAS and L. GAIN

Check point B. Turn the input level to 0 Vrms and adjust the variable resistor L.BIAS to get the 0 level output offset.

Supply the max. input 10 Vp-p to A/D and adjust the output level to 10 Vp-p with L.GAIN variable resistor.

3) R.BIAS and R.GAIN19c

Change the check point to point C, and repeat adjustments with R.BIAS and R.GAIN variable resistors.

SONY

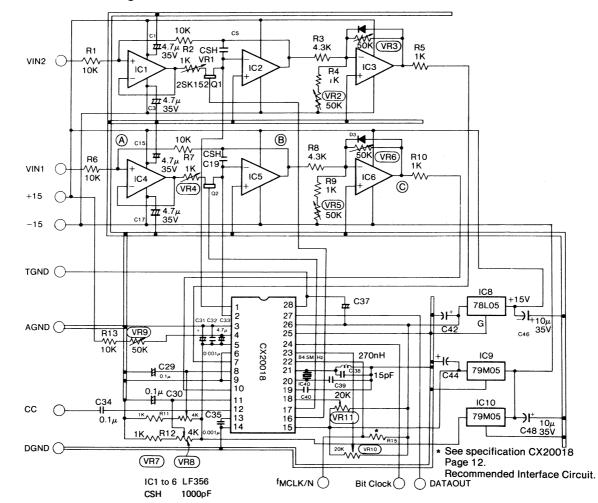
Fig. 3 The Waveform at Point A

CX20018PCB

CX20018 Evaluation Board

Description

SONY

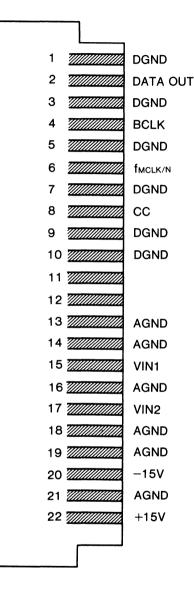

CX20018PCB is an evaluation board for CX20018, Dual 16 bit, 44 kHz, Multiplexed A/D. This board consists of CX20018, a pair of Sample Hold Amplifiers, 84.6 MHz MCLK Oscillator Circuit, and ±5V Voltage Regulators.

- 1) This PCB requires the following Input signals and power supplies
 - 1. The digital control signals
 - BCLK TTL input TTL input
 - CC 2. Analog Inputs
 - Vin1, Vin2
 - 10 Vp-p max. 3. Power supplies
 - (+15V 100mA) $-\pm15V$
 - -15V 200mA)

The interface connector for the PCB is recommended to use 22 positions edge connector, supplied by AMP, Inc or the other vendors.

- 2) The output from the PCB
- 1. DATA OUT 2. fMCLK/n
 - TTL output Check CX20018 data sheet

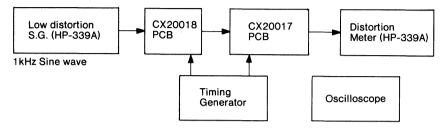
CX20018PCB Schematic Diagram



CX20018PCB

SONY

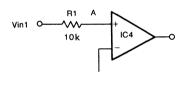
CX20018PCB

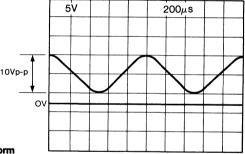

SONY.

Pin Configuration for PCB

CX20017/18 Adjustment Procedure

Fig. 1 shows the test system for CX20018PCB and CX20017PCB.




1. CX20018PCB Adjustment

CX20018PCB consists of 2 S/H and A/D, and 2 channel signal can be converted to a serial digital signal. Adjustment should be achieved for both S/H respectively. At first adjust Vin1.

1) Check point A. (IC4 Input)

Input analog signal level at point A should be adjusted to 10 Vp-p. (See Fig. 2)

Fig. 2 Point A Waveform

2) Check either L.OUTPUT or R.OUTPUT of CX20017PCB.

Adjust VR5 and VR9 to get the maximum output by eliminating a clipping waveform. VR5 is DC offset adjustment volume and VR9 is lset adjustment volume.

HC5 B

3) Check point B (IC5 output) and CC. (Pin8 of CX20018PCB)

Adjust VR4 to get the integrated waveform. (See Fig. 3) VR4 is the adjustment volume for the settling time of S/H.

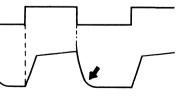
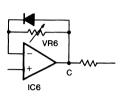


Fig. 3 Integrated Waveform

Integrated waveform


cc

When the sinusoidal waveform is observed at point B, magnify the range of time base. Then, the integrated waveform will be observed.

4) Check point C. (IC6 output)

Adjust VR6 to get the waveform at point C as the waveform in Fig. 4. After this adjustment, check CX20017PCB output.

If the output waveform is clipped, adjust VR5 to eliminate this clipping.

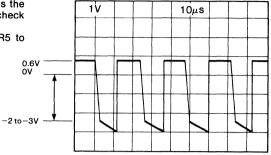


Fig. 4 Point C Waveform

5) Check the waveform at the monitor output of the distortion meter. VR8 is the refference voltage adjustment volume.

Adjust VR8 to get approximately -90 dB distortion level.

6) Adjust VR4 again and get the distortion level less than -90dB. (See Fig. 5)

7) Adjustment procedure for Vin2 and the other S/H circuit is just the same as the procedure (1 through 6). However do not touch VR9, because this volume is shared for S/H1 and S/H2.

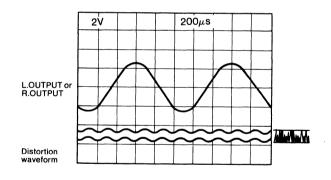
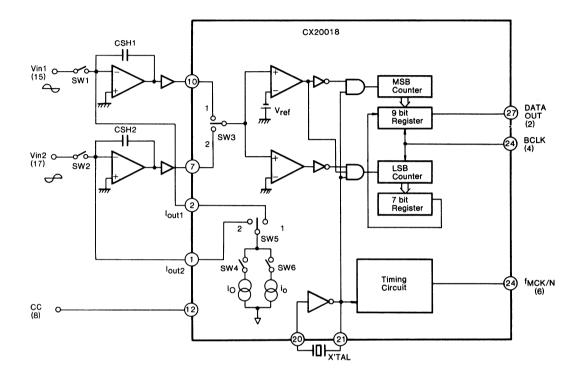
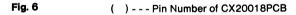




Fig. 5 Distortion Level (-90dB)

CX20018PCB Block Diagram

2. CX20017PCB Adjustment

Fig. 1 is also the measurement system for CX20017PCB. Fig. 8 shows the adjustment points (A, B, C). Point A is the drain of the FET (2SK152). Points B and C are the Lch and Rch Outputs respectively. LRCK is the same signal as CC in A/D converter. When the maximum input (10 Vp-p) is supplied to A/D, a maximum digital input data (01 – 1 to 10 – 0) is supplied to D/A data input (10 pin of CX20017). We will adjust both outputs to 10 Vp-p. The following are the adjustment procedures:

1) I. SET

Check point A. Adjust the variable resistor I.SET to get the 6Vp-p output level. (See Fig. 7.)

2) L.BIAS and L.GAIN

Check point B. Turn the input level to 0 Vrms and adjust the variable resistor L.BIAS to get the 0 level output offset.

Supply the maximum input 10 Vp-p to A/D and adjust the output level to 10 Vp-p with L.GAIN variable resistor.

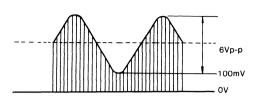


Fig. 7 The Waveform at Point A

3) R.BIAS and R.GAIN

Change the check point to point C, and repeat adjustments with R.BIAS and R.GAIN variable resistors.

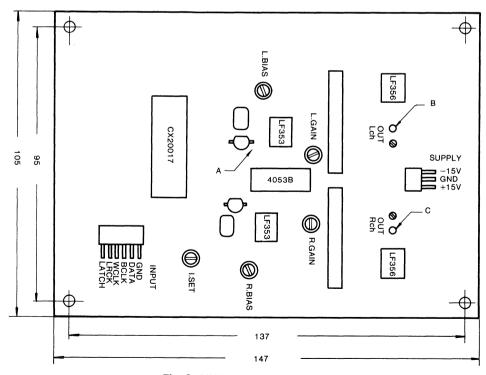


Fig. 8 CX20017PCB Check Points

SONY.

11

3. Timing Generater

Fig. 9 shows the example of the Timing Generater circuit. Fig. 10 is the timing chart for this circuit. 1 7 9 10 16 1 7 9 10 16 15 Vin1 (**`**• 6 CP 2 2 11 CX20018PCB LS163 2 LS163 Vin2 8 8 4 12 8 12 Lch OUT DIN • CX20017PCB Rch OUT BCLK $(\bullet$ WCLK LRCK

Fig. 9 Timing Generater

* The frequency of CP is 10.58MHz when VR10 of CX20018PCB is adjusted to -4V.

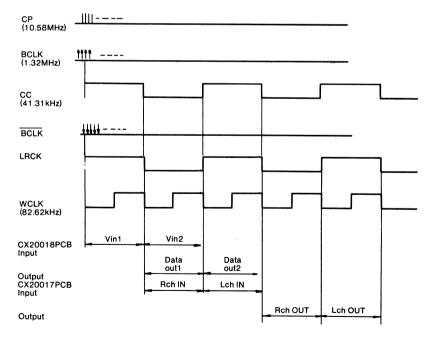
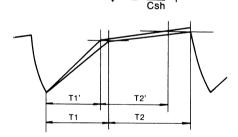


Fig. 10 Timing Chart

CX20018PCB DC Offset Compensation Circuit

Monolithic A/D Converter CX20018 claims 16 bit resolutions for audio signal processing. However, if the fairly high temperature stability is required, the following two issues should be considered:

- 1. Temperature characteristics for the integration current
- 2. DC offset compensation


1. Temperature characteristics for the integration current

The pair of integration current, lo and io has temperature dependence. If the current source lset is held in the fixed current level, and measured the current ratio lo/lset and io/lset, both the temperature coefficients are around 90ppm/°C (typ.). As shown in the following figure, the integration time will be reduced for the same Input signal level when temperature comes up.

Assumes the following parameters:

- T: integration time
- V: threshold voltage
- Csh: Sample-hold capacitance
- I: Integration current

$$I \cdot T = Csh \cdot V$$

 $V = -I \cdot T$

I/Csh should be kept constant for temperature change. If the temperature coefficient for Io/Iset, Iset, and Csh are defined as EI(Ei), Es, and Ec Total temperature coefficient is

Etotal = EI + Es - Ec

Because of insuring high reliability CX20018PCB adopted the polystyrene capacitors for Csh. The temperature coefficient is around -160 ppm/°C (typ.). Current source lset is adjusted by the volume VR9. To minimize the value of Etotal, this volume should be replaced by the fixed value resistor having the positive temperature coefficient.

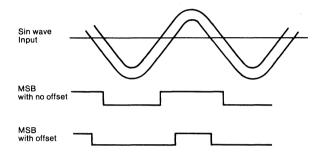
For example, a metal film resistor has around 100 ppm/°C temperature coefficient. Etotal will be around 150 ppm/°C. To minimize the value Etotal, use the polycarbonate capacitor having the positive temperature coefficient.

2. DC offset compensation

There are several factors to be considered to compensate DC offset, including the offset of CX20018 internal comparators, external OP amplifier's DC offset drift, and so forth.

There is one idea to compensate the total offset drift.

The recommended circuit is shown in Fig. 1.


* Circuit operation

Any audio signals can be separated into several components of the sine wave signal.

Pick up one sine wave signal.

When this signal is digitized, MSB will be high level for the signal portion above ϕ level and MSB will be low level for the signal portion below ϕ level. (See A in Fig. 11)

If there is DC offset, MSB waveform will change to B)

In Fig. 11, integration OP amplifier output.

Stays ϕ level when there is no DC offset.

If there is positive DC offset, the negative feedback signals come back to the limiter amplifier, IC3 or IC6 respectively.

Adjust the trimming resistor (1 $M\Omega)$ to get to the minimal DC offset.

Fig. 12 shows the timing chart of the compensation circuit.

D Flip Flops are used to sample MSB digital output for Vin1 and Vin2. The signal output at point B and C are corresponding to the DC offsets for Vin1 and Vin2.

SONY.

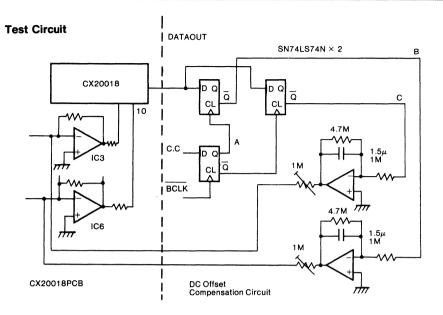


Fig. 11

Timing Chart

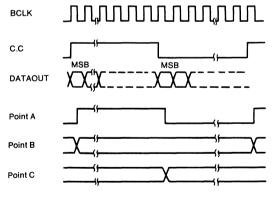


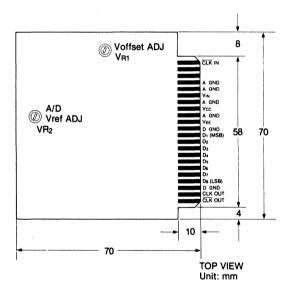
Fig. 12

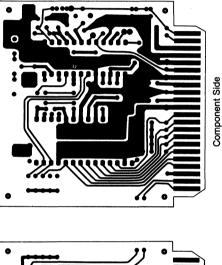
SONY.

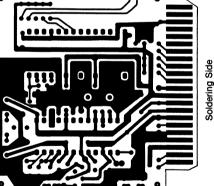
CX20052A PCB-3A/3B

8 bit 20/15 MHz A/D Converter Evaluation Board

Description

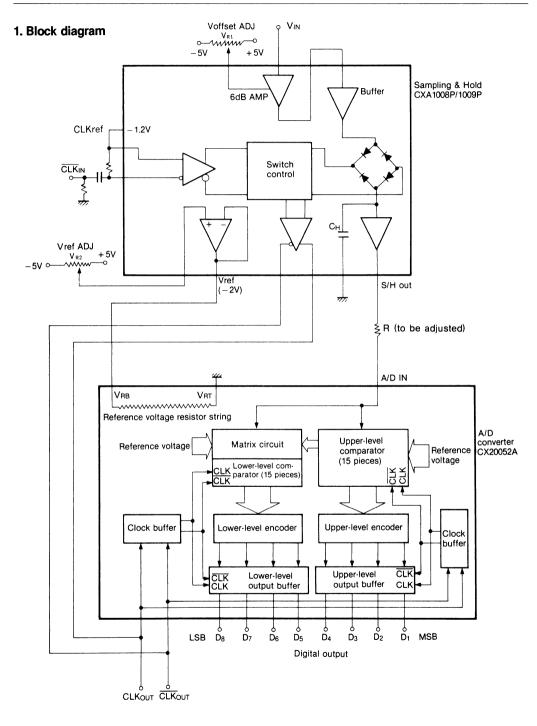

CX20052A PCB-3A/3B is an 8 bit A/D converter board for video signal processing. A high speed S/H IC CXA1008P/1009P and a high speed 8 bit A/D converter CX20052A are assembled on single small printed circuit board.


CX20052A PCB-3A with CXA1008P mounted, operates up to 20 MHz of conversion rate, and CX20052A PCB-3B with CXA1009P mounted, operates up to 15 MHz of conversion rate.


Features

- Resolution
- Conversion rate
- Analog input level
- Digital output level
- Digital Output level
- Power supply

8 bit ± 1/2 LSB 20 MHz CX20052A PCB-3A 15 MHz CX20052A PCB-3B 1Vp-p ECL level ±5V



CX20052A PCB-3A/3B Pattern

SONY.

2. Characteristics

1. Supply Voltage

$(Ta = 25^{\circ}C,$	$V_{EE} = -5$	V, $V_{cc} = 5V$)
----------------------	---------------	--------------------

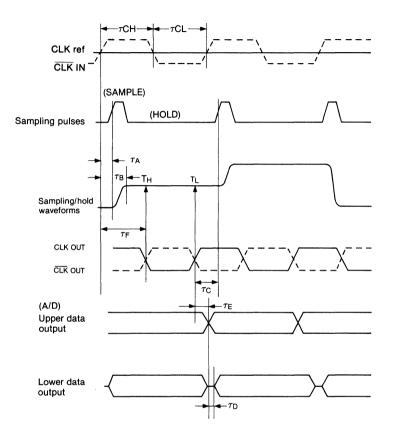
	Item		Symbol	Min	Тур	Max	Unit
V _{cc}	+ 5V	CX20052A PCB-3A	Icc I _{EE}		70 220	80 240	mA mA
V _{EE}	-5V	CX20052A PCB-3B	lcc I _{EE}		50 200	60 220	mA mA

2. Analog Input (VIN)

Item	Symbol	Min	Тур	Max	Unit
AC Input Voltage Amplitude	V _{IN}			1	v
Offset Adjustable Range		± 1.5	±2.0		v
Input Impedance	Zin				
CX20052APCB-3A			75		Ω
CX20052APCB-3B			75		Ω

3. Digital Input (CLK IN)

Item	Symbol	Min	Тур	Max	Unit
Input Voltage (p-p)	V _{CLK}	0.3	0.8	4	V
Input Impedance	ZINCL		50		Ω


4. Digital Output (D1– D8) (1.5k Ω to V_{EE})

Item	Symbol	Min	Тур	Max	Unit
Output Voltage	V _{он}	-0.90	-0.75		v
	V _{OL}		- 1.50	- 1.35	V

5. Clock Output (CLKout, CLKout) (See timing chart)

Item		Symbol	CX20	0052A PC	B-3A		CX20052/	A PCB-3B	1
		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output voltage	Amplitude	VCLK	0.2	0.3	0.4	0.2	0.3	0.4	v
	Low Level	VCLKL	- 1.2	-1.1	-0.9	- 1.2	-1.1	-0.9	v
Rise time		tr		6	10		6	10	ns
Fall time		tf		12	15		12	15	ns
CLK Delay		7F	20	28	34	36	38	45	ns

3. Timing Chart

 $T_{\rm H}$ shows a timing when the A/D latches upper 4 bits. $T_{\rm L}$ shows a timing when the A/D latches lower 4 bits.

Itom	Symbol	CX20052A PCB-3A			CX20052A PCB-3B				
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
	∕сн		25			33		ns	
Clock in	TCL		25			33		ns	
Sampling delay	τ _A		6			12		ns	
Sampling delay	τ _B		25			36		ns	
Clock out	τF	20	28	34	36	38	45	ns	
Data delay	τ _E			8			8	ns	
Data dolay	7D			4			4	ns	

4. Adjustment

- (1) Offset Voltage (Voffset ADJ)
- VR₁ should be adjusted so that the S/H output meets the input voltage range of the A/D (0 to -2V). (2) A/D reference voltage (Vref ADJ).
 - The reference voltage of the A/D (TP5) is to be -2V. VR2 should be adjusted.

5. Output Data Format

The input of the A/D converter IC (S/H out) is quantized in 8 bit within the reference voltage range of V_{RT} and V_{RB} . The V_{RT} and V_{RB} are set at 0V and -2V respectively on the printed circuit board.

Step	A/D input signal voltage		Digital output o	code	
				MSB	LSB
	over	0. 0 0 0 0 V		111111	1 1
000		0. 0 0 0 0 V	(V _{RT})	111111	11
				•	
127		-0.9961V		100000	00
129		-1.0039V		011111	11
		•		•	
•		•		•	
255		-2.000V	(V _{RB})	0 0 0 0 0 0	0 0
	under	-2.000V		0 0 0 0 0 0	0 0

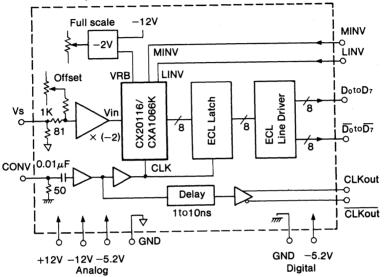
6. Note on application

- (1) Although the pull down resistors (RL: 4.3kΩ) are mounted on the PCB, additional pull down is recommended in an external circuit. The output current at the A/D output terminal should not exceed 10 mA.
- (2) Digital output data should be latched by an external circuit to achieve a rated performance. Output data can be latched at a rising edge of CLK_{OUT}. CLK_{OUT} AND CLK_{OUT} should be reshaped by an ECL line receiver such as MC10116 in an external circuit.
- CLK_{OUT} AND CLK_{OUT} should be resnaped by an ECL line receiver such as MC10116 in an external circuit.
 (3) The reference voltage is derived from the V_{EE} by a simple resistor dividing network. The power supply (±5V) should be stabilized to reduce voltage drift of the reference voltage.
- (4) To reduce CLK leak, use waveforms similar to sine waves as far as possible up to the CLK input. For satisfactory operation, a CLK input amplitude of around 300m V_{PP} is enough.
- (5) When the S/H input deviates over 1.2V during one sampling period, the output may contain errors.

CX20052A PCB-3A/3B Circuit

SONY.

- *1. R is a ringing preventing resistor. Select between 10 to 50Ω according to pattern length.
- *2. Pulldown R for Vref.
- *3. $R_L = 4.3 k \Omega$
- *4. $R_1 = 2k\Omega$, $VR_2 = 2k\Omega$, $R_2 = 1k\Omega$


SONY

CX20116 PCB/CX20116U PCB CXA1066K PCB/CXA1066UK PCB

8 bit 100 MHz A/D Evaluation Board

Description

The CX20116 PCB/CX20116U PCB/CXA1066K PCB/CXA1066UK PCB are the evaluation printed circuit boards for 8 bit high speed A/D converter CX20116/CX20116U/CXA1066K/CXA1066UK. On this one board, A/D, driver, standard voltage source, latches and ECL line drivers are mounted, and this PCB is designed to achieve the best performance of the A/D converter.

PCB Characteristics

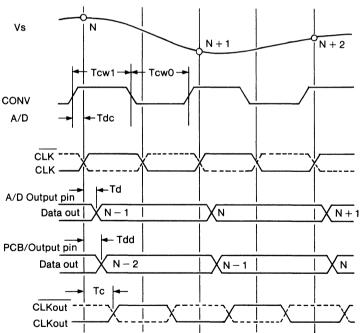
- Analog input band width 40 MHz (at -3 dB)
- Analog input impedance 75Ω
- Complementary ECL output
- Clock output (Delay time 0 to 10ns adjustable)

Supply Voltage

 Analog 	+12V	80 (Max.)	mA
	-12V	80 (Max.)	mA
	-5.2V	250 (Max.)	mA
 Digital 	-5.2V	460 (Max.)	mA

1. Analog Input (Vs)

Item	Min.	Тур.	Max.	Unit
AC Input Voltage Amplitude*	-	1 .	1.1	v
Offset Adjustable Range	-0.25	0	1	v
Input Impedance	_	75	-	Ω


* peak to peak

2. Convert Input Signal (CONV)

1	tem	Min.	Тур.	Max.	Unit
Input Voltage*		0.6		1.0	V
Input Impedance)	-	50	_	Ω
DC Level		-3		3	v
Pulse Width	Tcw 1	7.5			ns
	Pulse Width Tcw 0				ns

* peak to peak

- 3. Control Input (MINV, LINV) ECL 10K compatible
- Digital Output (D₀toD 7, D₀toD 7)
 ECL 10K compatible, complementary output
- 5. Clock Output ECL 10K compatible, complementary output Delay time adjustable
- 6. Timing Chart

Item	Symbol	Min.	Тур.	Max.	Unit
Conversion Delay	Tdc		3.5		ns
Data Delay	Tdd		5.5		ns
Clock Delay Adjustable Range*	Тс	1		10	ns

* Adjustable in 1ns step by taps

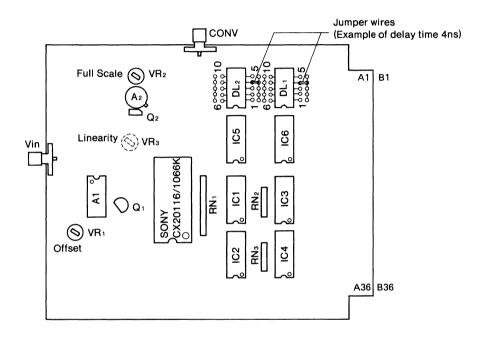
SONY:

7. Output Coding

MINV LINV	0 0	0 1	1 0	1 1
ov	111 11	100 00	011 11	000 00
	111 10	100 01	011 10	000 01
				•
	•	•		
Vin .		•		•
· · · ·	10000	111 11	000 00	01111
	011 11	000 00	111 11	100 00
			•	
	•	•		
•	•		•	
	000 01	01110	100 01	11110
-2V	000 00	011 11	100 00	11111

1: Vін

0 : Vi∟


CX20116 PCB/CX20116U PCB/CXA1066K PCB/CXA1066UK PCB

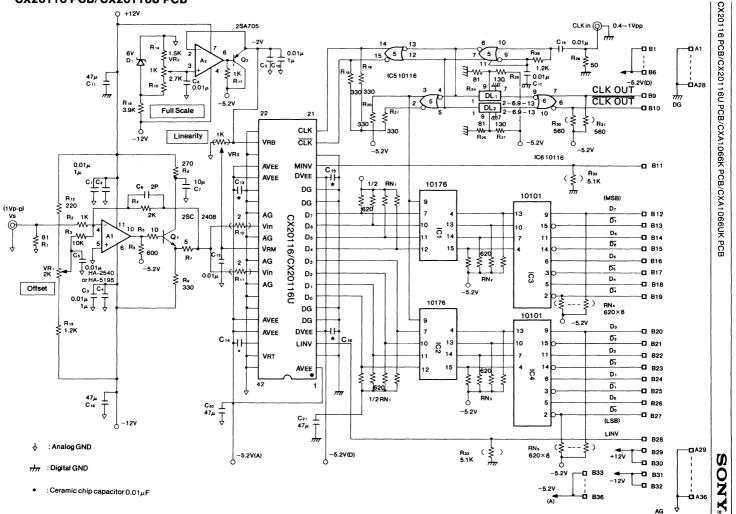
8. Adjusting Method of Clock Output Delay Time

Clock output delay time can be adjusted by jumper wires position on the PCB. Tap positions should be changed simultaneously in CLK and CLK, avoiding the effect of waveform distortion.

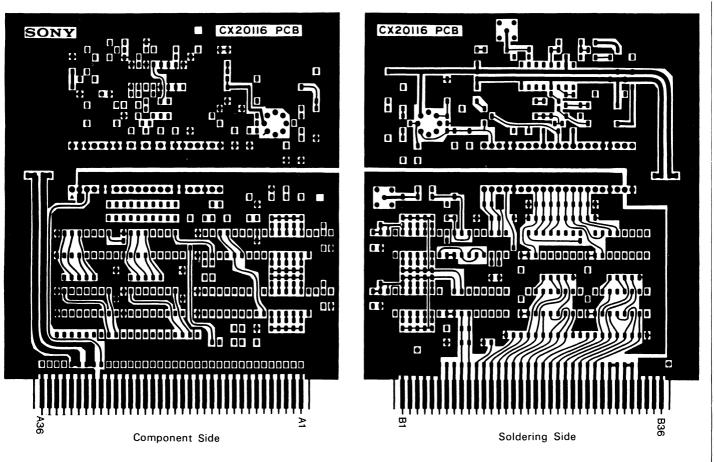
SONY.

Delay time in each taps are 1ns.

9. Note on Application


9-1. GND, VEE

Avoiding the noise effect, GND and VEE are separated in the analog and the digital system respectively. Take care not to happen potential difference more than 50 mV between the both systems.

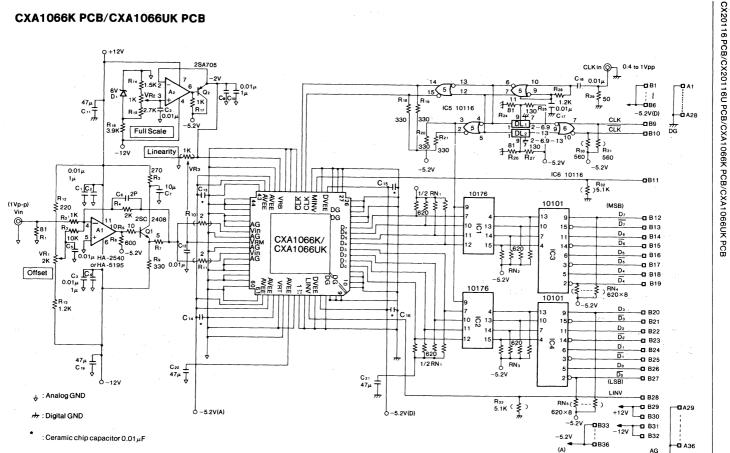

9-2. Termination of Digital Output

Termination resistance of digital output is not mounted on the PCB. To prevent waveform distortions by reflection, it is recommended to terminate on a PCB that receives the signal.

CX20116 PCB/CX20116U PCB

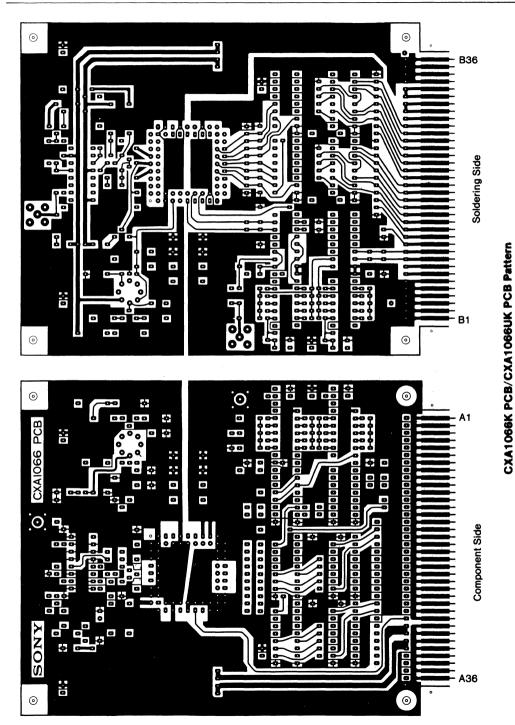
332

1


333

1

CX20116PCB/CX20116U PCB Pattern


SONY

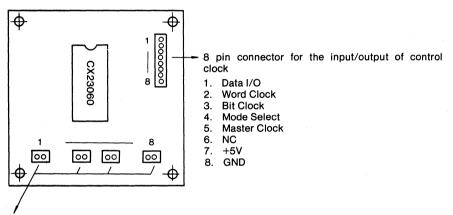
CXA1066K PCB/CXA1066UK PCB

334 1

SONA

CX20116 PCB/CX20116U PCB/CXA1066K PCB/CXA1066UK PCB

SONY.

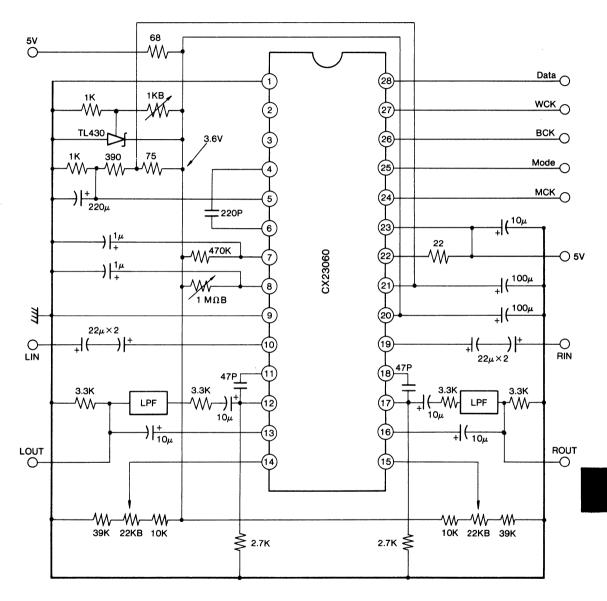

SONY

CX23060PCB

CX23060 Evaluation Board

Description

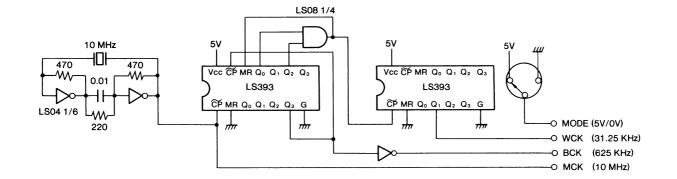
The CX23060PCB is an evaluation board for the 10 bit 1 chip A/D-D/A converter CX23060. It incorporates all parts required for the conversion operation and the variable resistors on the board have been preset to a reference value before shipment from the factory, allowing users to evaluate the 10 bit D/A-A/D conversion by supplying the control clock in accordance with a specified timing format.

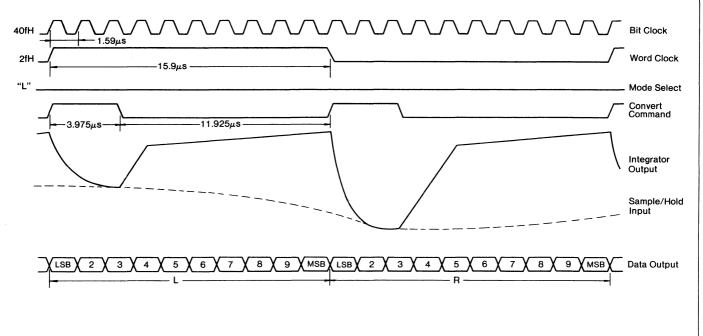

CX23060PCB I/O Assignment (Top View)


2 pin \times 4 connectors for the input/output of analog signal

- 1. GND
- 2. Ch.1 Analog Input
- 3. GND
- 4. Ch.1 Analog Output
- 5. GND
- 6. Ch.2 Analog Output
- 7. GND
- 8. Ch.2 Analog Input

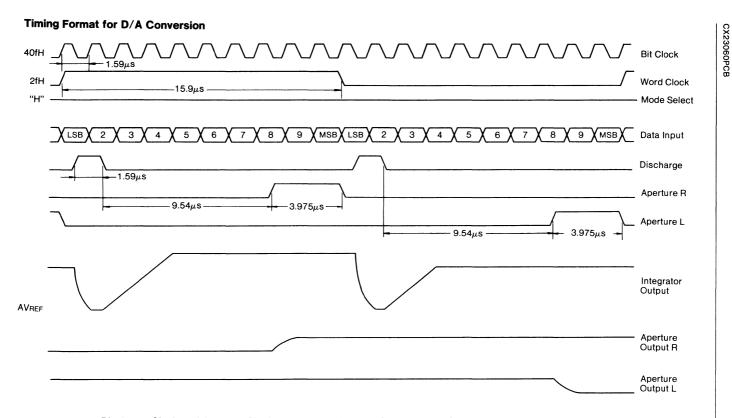
SONY.


CX23060 PCB Circuit



SONY

CX23050 Test Signal Generation Circuit


- The CX23060 operates as a D/A converter by setting the MODE signal to 5V and as an A/D converter by setting to 0 V. Its DATA I/O terminal is connected to the internal tri-state buffer allowing external data to be input in the D/A mode and output in the A/D mode. Input/Output data are 10 bit serial data starting with LSB and coded in 2's complement.
- It is desirable for the above test circuit, where 10 MHz is used as MCK, to use an external resistor of 470 kΩ for pin 7. However, to obtain the optimum A/D conversion gain, this external resistor should be 510 kΩ. A/D conversion gain will increase about 5% of full scale level.
- The current set A/D analog input/output level is set to -10 dBs IN/OUT (about 0.245 Vrms). This means full-scale data are obtained when -10 dBs analog input is added to the LIN or RIN in the A/D mode. In the D/A mode, -4 dBs analog output is obtained when full-scale data are added to the DATA I/O terminal. The analog output level becomes -10 dBs a low pass filter 6dB insertion loss.

"Convert Command" is generated in the IC when Mode Select is set to "L" state with Bit Clock (625 kHz) and Word Clock (31.25 kHz) input to the CX23060. When this "Convert Command" is at "H" state, sampling the analog input is performed, and the A/D conversion is performed at "L" state. Since the CX23060 has a coarse-fine integrating A/D conversion system, analog signal to the Sample/Hold Input while the Convert Command is at "H" state is sampled, and then the constant current weighted with the inverted analog signal is integrated when the Convert Command becomes at "L" state. By measuring the time integrated by coarse and fine constant currents, preset data on, the upper 6 bits and the lower 4 bits counters are determined. The counter data are set to the shift register when the Convert Command becomes "H" state again, and they are output serially with the LSB data leading in sync with the rising edge of the Bit Clock.

CX23060PCB

SONY

Discharge Clock and Aperture Clock are generated in the IC when Mode Select is set to "H" state with Bit Clock (625 kHz) and Word Clock (31.25 kHz) input to the CX23060. The DATA input starting with LSB are loaded into the shift register in sync with the fall edge of the Bit Clock and they are divided into the upper 6 bits MSBs and lower 4 bits LSBs respectively and preseting the upper/lower counters. They start counting when Discharge Clock becomes "L" state and simultaneously the coarse and fine constant currents corresponding to the upper and lower counters are output. When the constant current output is integrated by an integrator, the D/A conversion is performed. When the counters are filled up, the counting will stop and integrating is simultaneously stopped, and the terminal voltage of the integrating capacitor at this time is sampled by the Sample/Hold aperture in the next stage while Aperture Clock is at "H" state and held while at "L" state.

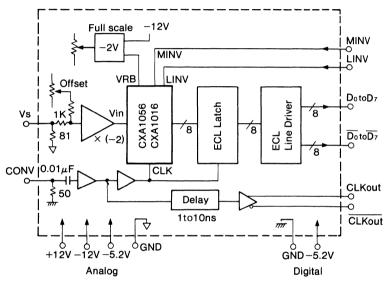
SONY

341

Selection of parts to be used

- (1) Use an integrating capacitor of less dielectric absorption (e.g.polystyrene) between Pin 4 and Pin 6.
- (2) Adjust the 1 KB semi-fixed resistor so the reference voltage to be generated by the reference voltage IC (TI's TL430 or TL431) becomes 3.6 V.
- (3) Tolerance of the three-division resistors, 75Ω, 390Ω and 1 kΩ to give voltage to Pins 5, 20 and 21 is 5% respectively. Approximate values of each terminal voltage is 2.5 V for Pin 5, 3.6 V for Pin 20 and 3.4 V for Pin 21.
- (4) Tolerance 1% is recommended for a 470 kΩ resistor (to be connected to Pin 7) which is an integrating current setting resistor giving the A/D conversion gain during the A/D conversion.

Adjustment method


- (1) Use the 1MΩB semi-fixed resistor connected to Pin 8 to adjust the playback level during the D/A conversion. (910 K is provided with CX23060PCB). Input digital data corresponding to the sine wave (1 kHz) of full-scale level to Pin 28 and adjust the 1 MΩB so that the D/A output level of Lout and Rout becomes -10 dBs (0.245 Vrms). The maximum level difference between Lout and Rout channel is ±0.3 dB.
- (2) Adjustment of the A/D conversion gain during the A/D conversion is not described, but adjust the D/A output level of the reference DAC (adjusted to become -10 dBs output level described in (1)), when the analog input to be given to Pins 10 and 19 is also set to -10 dBs (0.245 Vrms). In practice, there are no correlation between analog input level of A/D and analog output level of separate D/A, because both A/D and D/A have deviations in conversion gain. So it is effective to change the analog input level of Pins 10 and 19 properly, or to provide a level adjustment amp to Pins 13 and 16.
- (3) For the offset adjustment during A/D conversion, adjust the variable resistor (22KB), which is used with the resistors of 10 and 39K. In practice, adjust the 22KB so that the data output of pin 28 becomes "0000000000" when the analog input of LIN and RIN are shorted to the ground. Least significant 2 to 3 bits may be affected by noise.

SONY CXA1056P PCB/CXA1056K PCB/CXA1056UK PCB CXA1016P PCB/CXA1016K PCB/CXA1016UK PCB

8 bit 50 MHz/30 MHz A/D Evaluation Board

Description

The CXA1056P PCB/CXA1056K PCB/CXA1056UK PCB/CXA1016P PCB/CXA1016K PCB/CXA1016UK PCB are the evaluation printed circuit boards for 8 bit high speed A/D converter CXA1056P/CXA1056K/ CXA1056UK/CXA1016P/CXA1016K/CXA1016UK. On this one board, A/D converter, driver, reference voltage source, latches and ECL line drivers are mounted, and this PCB is designed to achieve the best performance of the A/D converter.

PCB Characteristics

Analog input band width

20 MHz (at -3 dB): CXA1056P PCB 15 MHz (at -3 dB): CXA1016P PCB

Analog input impedance

Complementary ECL output

• Clock output (Delay time 0 to 10ns adjustable)

75Ω

SONY.

Supply Voltage

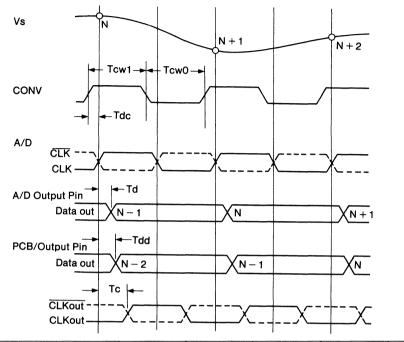
 Analog 	+12V	80 (Max.)	mA
	-12V	80 (Max.)	mA
	-5.2V	250 (Max.)	mA
 Digital 	-5.2V	460 (Max.)	mA

1. Analog Input (Vs)

Item	Min.	Тур.	Max.	Unit
AC Input Voltage Amplitude*		1	1.1	v
Offset Adjustable Range	-0.25	0	1	v
Input Impedance		75		Ω

* peak to peak

2. Convert Input Signal (CONV)


	Item		Min.	Тур.	Max.	Unit
Input Voltage*		0.6		1.0	v	
Input Impedance			_	50	_	Ω
DC Level Range		-3		3	v	
	CXA1056P PCB CXA1056K PCB	Tcw 1	14.0			ns
Pulse Width	CXA1056UK PCB	Tcw O	4.5			ns
	CXA1016P PCB CXA1016K PCB	Tcw 1	22.5			ns
	CXA1016UK PCB	Tcw O	7.5			ns

* peak to peak

- 3. Control Input (MINV, LINV) ECL 10K compatible
- 4. Digital Output (DotoDr, DotoDr) ECL 10K compatible, complementary output
- 5. Clock Output ECL 10K compatible, complementary output Delay time adjustable

CXA1056P PCB/CXA1056K PCB/CXA1056UK PCB/ CXA1016P PCB/CXA1016K PCB/CXA1016UK PCB

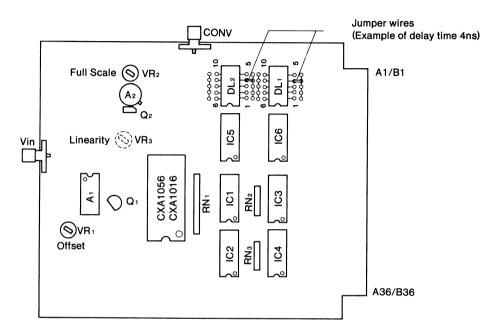
6. Timing Chart

Item	Symbol	Min.	Тур.	Max.	Unit
Conversion Delay	Tdc		4.0		ns
Data Delay	Tdd		5.5		ns
Clock Delay Adjustable Range*	Тс	1		10	ns

* Adjustable in 1ns step by taps

7. Output Coding

MINV LINV	0 0	0 1	1 0	1 1
ov	111 11 111 01	100 00 100 01	01111 01110	000 00 000 01
		10001		
Vin	100 00		000 00	
	011 11	000 00	111 11	100 00
-2V	000 01 000 00	011 10 011 11	100 01 100 00	111 10 111 11


1: Vін

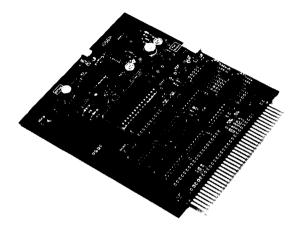
 $\mathbf{O}:\mathbf{V}_{\mathsf{IL}}$

CXA1056P PCB/CXA1056K PCB/CXA1056UK PCB/ CXA1016P PCB/CXA1016K PCB/CXA1016UK PCB

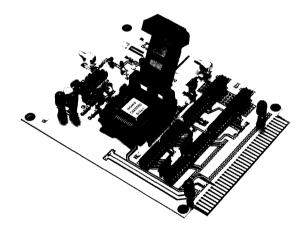
 Adjusting Method of Clock Output Delay Time Clock output delay time can be adjusted by jumper wires position on the PCB. Tap positions should be changed simultaneously in CLK and CLK, avoiding the effect of waveform distortion.

Delay time in each taps are 1ns.

SONY.

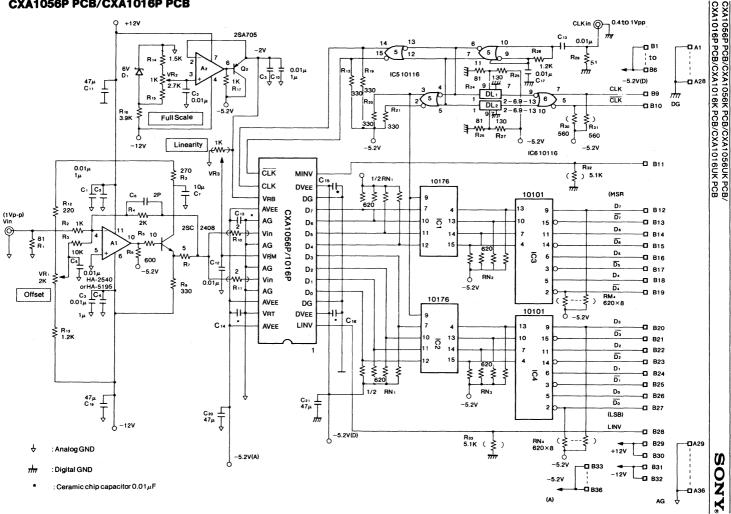

9. Note on Application

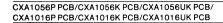
9-1. GND, VEE

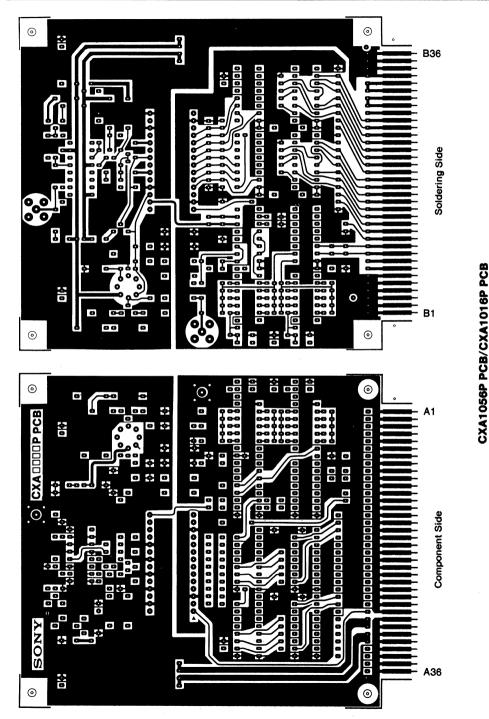

Avoiding the noise effect, GND and VEE are separated in the analog and the digital system respectively. Take care not to happen potential difference more than 50 mV between the both systems.

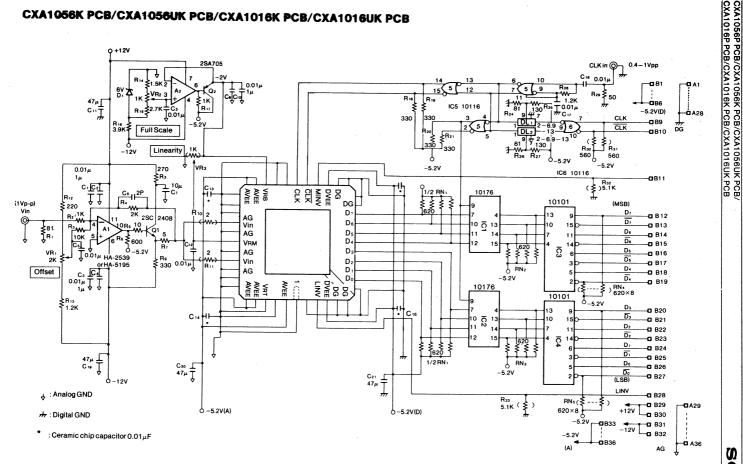
9-2. Termination of Digital Output

Termination resistance of digital output is not mounted on the PCB. To prevent waveform distortions by reflection, it is recommended to terminate on a PCB that receives the signal.

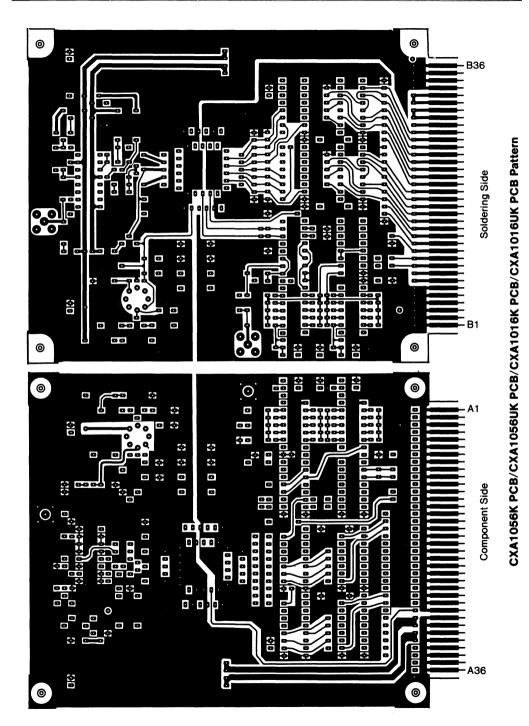



CXA1056P/CXA1016P


CXA1056K PCB/CXA1056UK PCB/CXA1016K PCB/CXA1016UK PCB


CXA1056P PCB/CXA1016P PCB

SONY.



CXA1056K PCB/CXA1056UK PCB/CXA1016K PCB/CXA1016UK PCB

350

SONY.

>

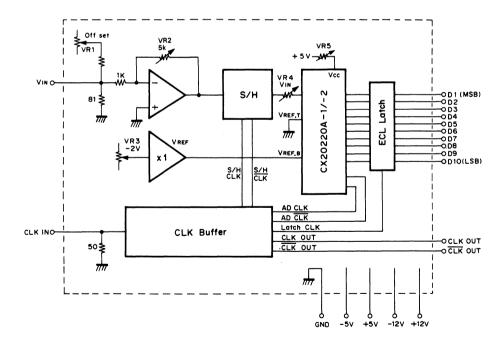
SONY

FCX20220A-1/-2

10/9 Bit 20 MHz Sub-ranging A/D Converter Evaluation Board

Description

The FCX20220A-1/-2 is an evaluation printed circuit board for the 10/9-bit high speed A/D converter CX20220A-1/-2. On this one board, A/D converter, sample hold, voltage reference and ECL line drivers are mounted, and this PCB is designed to achieve the best performance of the A/D converter. Conversion up to 20 MHz is possible.


Features

Resolution

	(FCX20220A-1) 9 bit ± 1 LSB
	(FCX20220A-2)
 Maximum conversion rate 	20 MHz
 Analog input level 	1 Vp-p
 Digital input level 	ECL level
 Digital output level 	ECL level
 Supply voltage 	±12
	±5V
 Analog input band width 	10 MHz

10 bit \pm 1 LSB

• Analog input 75Ω impedance

Block Diagram

FCX20220A-1/-2

Supply Voltage

ltem	Symbol	Min.	Тур.	Max.	Unit
+12V	Ivcc1		110	130	mA
- 12V	IVEE 1		- 170	- 200	mA
+5V	lvcc2		80	100	mA
-5V	IVEE2		-450	- 520	mA

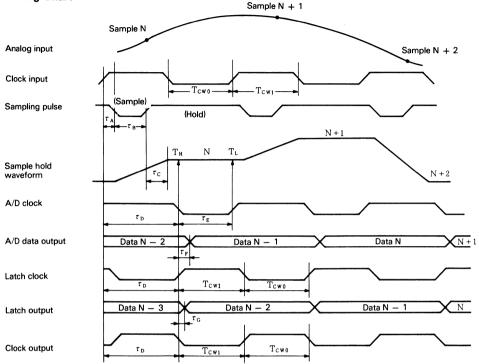
Analog Input

ltem	Symbol	Min.	Тур.	Max.	Unit
AC input voltage amplitude	VIN		1	2	v
Offset adjustable range		-2		+2	v
Input impedance	Zin		75		Ω

Digital Input

ltem	Symbol	Min.	Тур.	Max.	Unit
Input voltage	Vclk h	- 1.1			v
Input impedance	ZIN CLK		50		Ω

Digital Output (D1 to D10)


ECL 10K compatible (open emitter)

Clock Output

ECL 10K compatible, complementary output (open emitter).

SONY.

TH is the timing in which the upper level comparator compares VIN and VREF and latch the result. TL is the timing in which the lower level comparator compares VIN and VREF and latches the result.

Item	Symbol	Min.	Тур.	Max.	Unit
Input clock pulse width	TPWO	25			ns
hiput clock puise width	TPW1	25			ns
Sampling pulse delay	τA		2		ns
Sampling pulse width *1	τв		10		ns
Sampling delay	τC		5		ns
A/D clock delay *2	τD		30		ns
A/D clock pulse width *3	τΕ		22		ns
A/D output data delay	τF		10		ns
Latch output data delay	τG		2		ns
Clock output delay	τD		30		ns

Note) *1 Adjustable in 2ns step using taps of delay line 1 (DL1).

*2 Adjustable in 5ns step using taps of delay line 2 (DL2).

*3 Adjustable in 2ns step using taps of delay line 3 (DL3).

Output Data Format

A/D converter input (S/H out) is quantized to 10/9 bit under the reference voltage range of VREF.T to VREF.B. VREF.T = OV, VREF.B = -2V are set on this PCB.

A/D input signal voltage		St	ер		MS	βB	-			-		odii	1	LSE
						2	3	4	5	ь	8	9	0	10
VREF. T	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	0	0	0	1	1	1	1	1	1	1	1	1	1	0
		5	1	1	1	0	0	0	0	0	0	0	0	1
		5	1	2	1	0	0	0	0	0	0	0	0	0
		5	1	3	0	1	1	1	1	1	1	1	1	1
	1	0	2	3	0	0	0	0	0	0	0	0	0	1
VREF. B	1	0	2	3	0	0	0	0	0	0	0	0	0	0

(FCX20220A-1)

SONY.

0: VOL

Adjusting Procedure

1. VREF (Full Scale) adjustment

Adjust VR3 (Full Scale), monitoring TP3 (VREF.B), for the voltage reading of -2V.

2. Offset adjustment

Apply sine wave of 1 Vp-p to VIN pin, and monitor TP2 (A/D input). Adjust VR2 (offset) so that the input voltage for the A/D is centered at -1V.

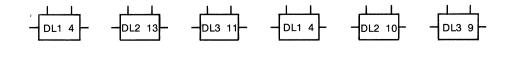
3. Vgain adjustment

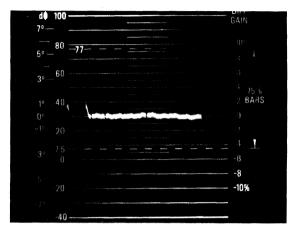
Adjust VR2 (Gain) monitoring TP2 so that the input voltage for the A/D falls into the range of 0V to -2V.

4. VCC adjustment

Check TP4 (VCc) and adjust VR5 (VCc adj) so that the voltage reading is around +2V.

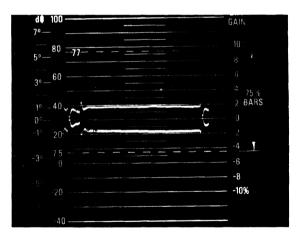
5. Dumping resistance adjustment

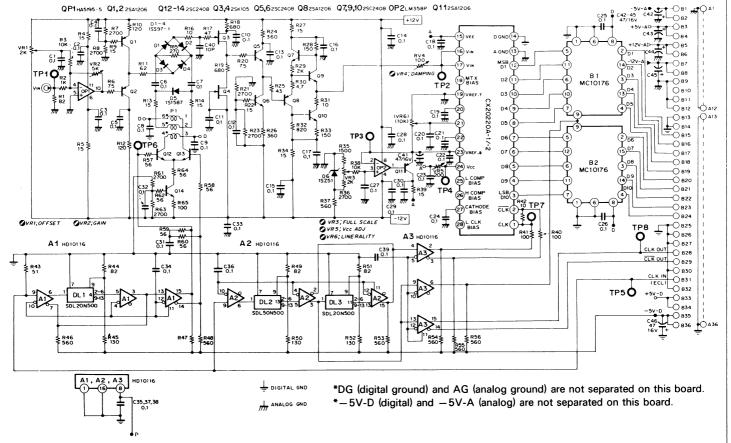

Adjust VR4 (Damping) so that the A/D performs best result for the electrical characteristics (Linearity, DG, DP and so on).


Notes on Application

- 1. Termination resistance of digital output is not mounted on the PCB. To prevent waveform distortion by reflection, it is recommended to terminate on a PCB that receives the signal.
- 2. (Adjustment around DL1, DL2 and DL3) See Application Circuit on page 6.

1. In case of 20 MHz, sampling frequency


2. In case of 14 MHz, sampling frequency



Differential Gain Wave Form

Differential Phase Wave Form

Condition Clock: 20 MHz Signal: NTSC. 40IRE mod. ramp.

FCX20220A-1/-2

SONK

List of Parts

Resistance			Semi-co	nstant resistance
R1	82 Ω	Carbon	VR1	2k Ω
R2	1kΩ	"	VR2	5k Ω
R3	10k Ω	"	VR3	2k Ω
R4	15 Ω	"	VR4	100 Ω
R5	15Ω	"	VR5	200 Ω
R6	75 Ω	"		
R7	2.7k Ω	"	Capacito	T
R8	2.7k Ω	"	C1	-0.1μF
R9	15Ω	"		0.1 m
R10	120 Ω	"		
R11	62 Ω	"		1
R12	120Ω	"	c'39	0.1µF
R13	15Ω	"	C40	10pF
R14	15Ω	"	C41	47μ/16V
R15	270Ω	"		+/μ/100
R16	10 \\Omega	"	Ì	1
R17	47Ω	"	1	1
R18	680Ω	"	C46	47μ/16V
R19	680 Ω	"	040	47μ/10 V
R20	75Ω	"	Transist	or
R21	2.7kΩ	"	Q1	2SA1206
		"		
R22	15Ω 27kΩ	"	02	2SA1206
R23 R24	2.7kΩ	"	Q3 Q4	2SK105 2SK105
	360Ω 260Ω	"		
R26	360Ω	"	Q5	2SC2408
R27	15Ω 15Ω	"	Q6	2SC2408
R28	150 Ω	"	07	2SC2408
R29	$2k\Omega$	"	08	2SA1206
R30	4.7Ω	"	Q9	2SC2408
R31	10Ω		Q10	2SC2408
R32	820 Ω	"	Q11	2SA1206
R33	150 Ω	"	Q12	2SC2408
R34	15Ω	"	Q13	2SC2408
R35	1.5k Ω		Q14	2SC2408
R36	2.7k Ω	"		
R37	56 0 Ω	"	Diode	
R39	15Ω	,,	D1	1SS97-1
R 40	100Ω		D2	1SS97-1
R41	100Ω	"	D3	1SS97-1
R42	10Ω	"	D4	1SS97-1
R43	51 Ω	"	D5	1S1587
R44	82 Ω		D6	1SZ51
R45	130Ω	"		
R46	56 0 Ω	"	IC	
R47	56 0 Ω	"	OP1	HA5195-5
R48	56 0 Ω	"	OP2	LM358P
R49	82 Ω	"	A1	HD10116
R50	13 0Ω	"	A2	HD10116
R51	82 Ω	"	A3	HD10116
R52	130 Ω	"	B1	MC10176
R53	560 Ω	"	B2	MC10176
R54	560 <u>(</u>)	"		
R55	560 Ω	"	Others	
R56	560 <u>Ω</u>	"	DL1	SDL20N500
R57	56 Ω	"	DL2	SDL50N500
R58	56 Ω	"	DL3	SDL20N500
R59	56 Ω	"	P1	
R60	56 Ω	"	TP1	
R61	2.7kΩ	"	·; ·	
R62	56 Ω	"	i	
R63	2.7kΩ	"	i	
R64	56Ω	"	TPS	
R65	100 Ω	"		NS-LR020
1100	10011			

SONY.

κ.
Ceramic
Ceramic
Ceramic
Tantalum
tantalum
tantaium
*1 The following is the delay line connection.
NC OUT NC
14 13 12 11 10 9 8 0 0 0 0 0 0 0

2 3 4

IN

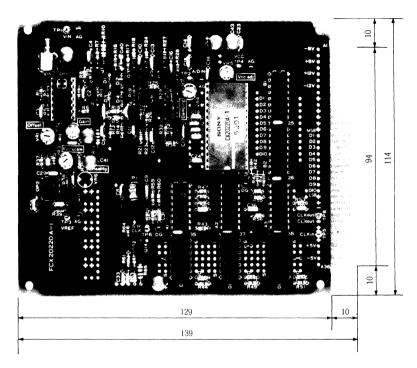
*2 The inductance of the pulse transformer is as folows:

> ა 5 6

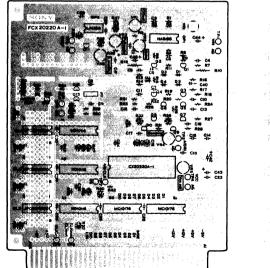
ہ 7

GND

(1) - (6) $7 \pm 3 \mu$ H $(\hat{2}) - (\hat{5}) = 7 \pm 3 \mu H$ $(\dot{a}) - (\dot{4}) = 7 \pm 3 \mu H$


*3 The recommended connectors are NS-P006 and NS-LP017.

*4 The recommended connectors for PCB are KELCORP4610-072-112.


*1 *1 *1 Pulse transformer *2 Test pin Test pin Connector*3

The PCB Pattern and Dimensions


(unit: mm, general tolerance \pm 0.3 mm)

Component Side

Soldering Side

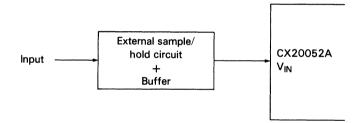
5) Application Notes

Туре	Function	Page
CX20052A	8bit 20MHz Sub-ranging A/D Converter	363
CX20116/U CXA1066K/UK CXA1056P/K/UK CXA1016P/K/UK	8bit High-speed A/D Converter	370

SONY.

APPLICATION NOTE

8 bit 20 MHz Sub-ranging A/D Converter

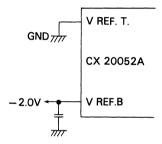

CX20052A

The CX20052A is a serial/parallel A/D converter designed for video signal processing. Because it works on both high-speed clock and 7.8 mV-step analog voltage (at -2.0V full scale) as input signal, care should be taken to the design of a peripheral circuit to obtain a good performance. In addition, attention should also be paid to the relation-between the sampling pulse and the clock of the CX20052A since it requires an external sample/hold circuit.

1. Terminals

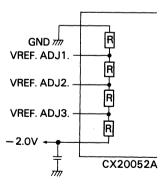
1-1. Analog voltage input terminal VIN

Only the signals that have been held in the external sample/hold circuit should be input to the V_{IN} . The input bias current is about $20\mu A$ and the input capacity is about 70pF.



* Details on the sample/hold circuit will be described later.

1-2. Reference voltage terminals V_{REF.T}, V_{REF.B}


The reference voltage is applied to both the upper and lower comparators by these terminals. The $V_{\text{REF},T}$ and $V_{\text{REF},B}$ should always be connected with the GND and -2.0V, respectively.

There is a resistance value of approximately 50 ohms in between the V_{REF,T} and V_{REF,B}. Current of about 40 mA will flow when voltage of -2.0V is applied there. Because the converter's characteristics may deteriorate if the reference voltage is affected by the clock a by-pass capacitor of which capacity is 1μ F (tantalum) + 1,000pF (ceramic) should also be used.

1-3. Reference voltage adjustment terminals V_{REF.ADJ1}, V_{REF.ADJ2}, V_{REF.ADJ3}

As shown in the figure below, adjustment terminals are provided in the reference resistance as described in the 1-2 section. They are usually opened, and are connected with the GND or the V_{REF,B} through each resistance if an adjustment is required.

1-4. Grounding terminals ANALOG GND, DIGITAL GND

There should be as much GND space as possible for reduced inductance and resistance when the converter is mounted on a printed circuit board. Because both ANALOG GND and DIGITAL GND are provided, it is sometimes recommended that they should be separately positioned on the surface of the printed circuit board.

1-5. Power voltage terminal VEE

The terminal should be connected with -5.0V. In addition, a by-pass capacitor should also be used for GND.

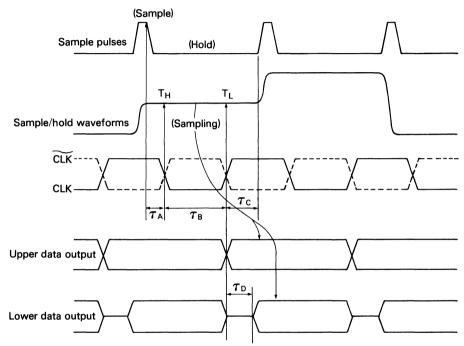
1-6. Digital output terminals D1, D2, D3, D4, D5, D6, D7, D8

All the digital output terminals are provided as an open emitter. Load resistance should be selected so that the output current does not exceed the 10 mA (4.3 kohms are equivalent to about 1 mA). The D_1 denotes MSB, while the D_8 means LSB. The following table shows the relation between analog input voltages and digital output codes.

Step	Input signal voltage	(2V, FS)	Digital output code MSB	LSB
000	0. 0 0 0 0 V		11111111	
127 128	0.9961V 1.0039V		1000000000001111111	
129	1.0118V		01111110	
255	- 2. 0 0 0 0 V		00000000	

1-7. Clock input terminals CLOCK IN, CLOCK IN

The clock input is complementary and is usually driven by the ECL of the complementary output.

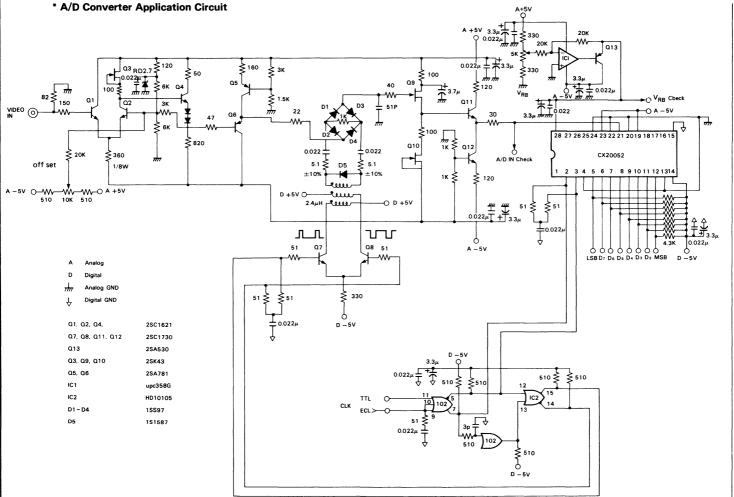

1-8. Other terminals

Although the Pin 1 (H.COMP.BIAS) terminal is not used in the CX20052A, bias voltage keeps generating in the internal circuitry. Therefore, the terminal should not be connected with the GND, power voltage or any other terminals. The Pins 16, 17, and 18 (N.C) are always disconnected.

CX20052A

2. Clock timing

Basically, the CX20052 is a serial/parallel A/D converter so that an external sample/hold circuit is required. Care should therefore be taken to a timing between the clock of the CX20052A and waveforms of the sample/hold circuit.


 T_H means a timing where V_{IN} and V_{REF} are compared and latched by the upper comparator, while T_L denotes a timing where V_{IN} and V_{REF} are compared and latched by the lower comparator.

 $au_A = T_A$ (aperture time + settling time of the sample/hold circuit used)

Although the output data can be picked up as it passes through τD from T_L, it is easier and more accurate to latch it by judging from the rise-up time of the clock. The clock duty should be set at a point where DG and DP are considered optimum.

3. Sample/hold circuit

Refer to the following pages for circuit applications. In addition, a printed circuit board is also available for evaluation, on which a sample/hold IC CXA1008P/1009P and the CX20052A are mounted.

CX20052A

- 369 -

SONA

SONY.

APPLICATION NOTE

8 bit High-Speed A/D Converter

CX20116/CX20116U/CXA1066K/CXA1066UK/ CXA1056P/CXA1056K/CXA1056UK/ CXA1016P/CXA1016K/CXA1016UK

The 8 bit A/Ds for which the flash system has been employed require no externally connected circuits that call for complicated adjustments, and thus make it easy to use. However, because of the high speed conversion they enable, careful design on PCB patterns will be needed to be exercised at relatively high frequencies when operating them.

1. V_{EE}, GND

V_{EE}'s and GND's of the A/Ds have been circuitally separated within the IC into those for the digital circuit and those for the analog circuit. Up to about 50 MHz of clock frequencies the PC board patterns need not be separated, but when employing a higher frequency clock, the separated use of patterns is recommended for noise suppression.

When employing V_{EE}'s separated into digital and analog applications, devices may be destroyed if one end of the V_{EE}'s is turned on with the other left connected to GND via a low impedance for one second or longer.

Both the digital and analog V_{EE} terminals should be bypassed to their respective GNDs with two capacitors each, one 1μ F and the other 0.01μ F, at a location as close to the terminal as possible. For the 0.01μ F, a ceramic chip capacitor is best suited.

2. Timing

The analog input will be sampled at the rising edge of CLK, and digital data is output at the next rising edge of 1CLK cycle later. The delay from the rising edge of CLK to the digital data, Td, is typically 3.5ns, thus it will be possible to latch data with a 10K or 100K series positive edge triggered ECL latch at the same CLK timing and phase as that of the A/Ds.

3. Analog Input (Vin) (See Fig. 1.)

A slew rate of $250V/\mu s$ will be required to take full advantage of the wide 40 MHz and above input frequency band of CX20116/CX20116U/CXA1066/CXA1066UK. Although the analog input capacitance has been reduced to be 35pF or vastly smaller than that of the conventional flash type A/D converters, the A/Ds have to be driven with an input amplifier that has a wide frequency band and

sufficient drive capabilities.

For a simple hook-up, a combination of Harris HA-2540, 5195 or equivalent with an appropriate buffer may be used.

SONY

As the input impedance of the devices is capacitive, the driving amplifier occasionally falles into an instable condition and oscillates locally. This instability can be prevented with a resistor added between the output terminal of the amplifier and the input terminal of the A/D. For this application, a resistor from 2 to 10 ohms is recommended.

4. Clock Inputs (CLK, CLK) (See Fig. 2.)

The clock is usually used to be differentially supplied to two terminals, CLK and $\overline{\text{CLK}}$, but it may also be used as a single input CLK by adding on a capacitor of 1,000pF between the $\overline{\text{CLK}}$ terminal and GND. In this case, the $\overline{\text{CLK}}$ terminal will be held at the threshold potential of the ECL (-1.3V).

5. Logic Control Inputs (MINV, LINV) (See Fig. 3.)

The selection of output codes in response to the analog input will be enabled by the logic states assigned to the MINV and LINV terminals, and will facilitate the application of this converter. The MINV and LINV terminals will be held at a "LOW" level (= "0") when they are in an open state. Their "High" level may be obtained by a pullup to GND with either a single diode stage or $3.9 k \Omega$.

6. Digital Outputs (D0 to D7) (See Fig. 4.)

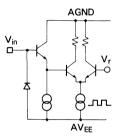
Digital outputs require external pull-down resistors. To pull down to $V_{EE} = -5.2V$, resistors in a range of 500 Ω to 1k Ω are recommended.

7. Reference Inputs (V_{RT}, V_{RM}, V_{RS}) (See Fig. 5.)

The V_{RT} to V_{RB} inter-terminal voltage corresponds to the A/Ds input dynamic range. While slight offsets are presented on the V_{RT} and V_{RB} terminal sides, adjustments will be possible within the range of V_{RT} = $0V\pm0.1V$ and V_{RB} = $-2V\pm0.2V$.

The V_{RB} terminal should be bypassed to GND with 1μ F and 0.01μ F capacitors in parallel.

When the V_{RM} terminal has been bypassed to GND with a 0.01μ F capacitor, high frequency characteristics of the converter will be further stabilized. The V_{RM} terminal may also be utilized as a trimming terminal for more accurate linearity compensation.


8. Blank Terminals

Operations with all blank terminals connected to GND are recommended.

9. Others

The converters are very sensitive to noise level because the comparator hysterisis has been designed extremely small to enable high speed operations. The PC board must be designed carefully to reduce ground plane impedance.

Equivalent input and output circuits

Analog input

Fig. 1

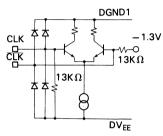


Fig. 2 CLK, CLK input

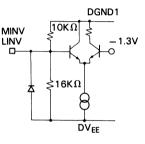
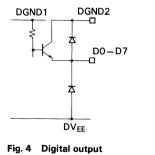



Fig. 3 MINV, LINV input

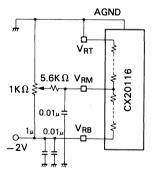
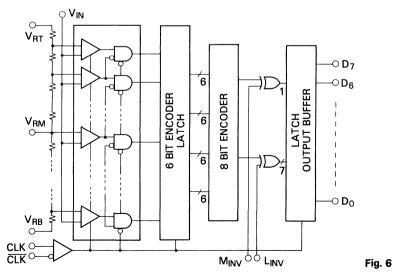


Fig. 5 Linearity compensation

10. Operation (See the block diagram and timing chart.)


The reference voltage, which has been obtained by dividing equally the voltage across V_{RT} to V_{RB} into 256 by the reference resistance, is applied to the respective + (positive) input sides of 256 clocked comparators. An analog input is applied to the - (negative) input sides of all the 256 clocked comparators from the V_{IN} terminal.

CX20116/CX20116U/CXA1066K/CXA1066UK CXA1056P/CXA1056K/CXA1056UK/CXA1016P/CXA1016K/CXA1016UK

2. When the state of CLK is in Low, the master (front stage) of the comparator compares the respective reference voltage and the analog input voltage which is ever-changing.

SONY

- When the CLK moves from Low into Hi, each master simultaneously latches the state prior to the CLK transition, and as a result, it provides conditions of "11 ... 1100 .. 0" in sequence from the V_{RT} side to the V_{RB} side.
- 4. The output of the master is ANDed between the respective adjacent outputs, and "1" stands only when neighboring 2 outputs become "10", and the all other outputs become "0".
- 5. The result of the AND is latched in the slave latch when CLK moves from Hi into Low. Output of the slave is divided into 4 blocks and each block has 32 clocked comparators, and they are coded into binary codes of 6 bits respectively by the transistor matrix circuit.
- 6. The 6 bit codes are further coded into 8 bit codes by the transistor matrix circuit after they are respectively latched, and they are then output into the ECL level by the output buffer after being 8 bit latched. The output data is delayed 1 clock from the data sampling point and appears at the output pin.
- 7. Two polarity inversion inputs such as MINV and LINV are fed externally to the output buffer, and each of them selects output polarity of MSB and LSB's, respectively.

Block Diagram

Timing Chart

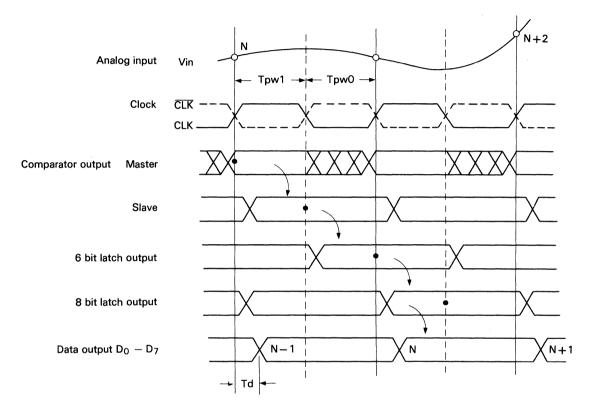
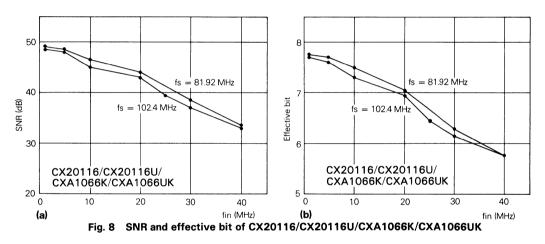
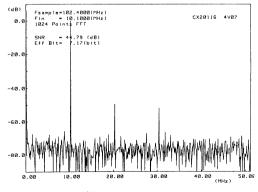
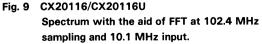


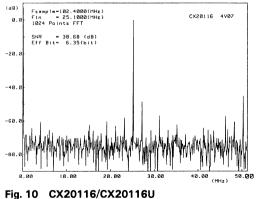
Fig. 7

Dots (•) in the chart demote respective latch timings.

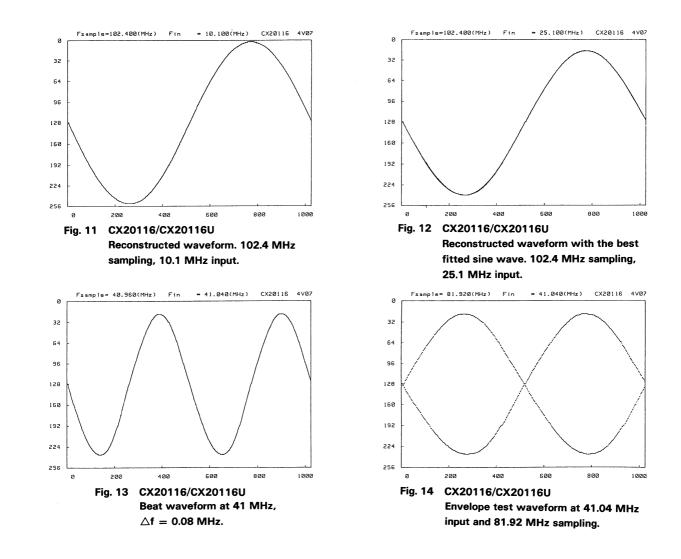

11. Dynamic Performance

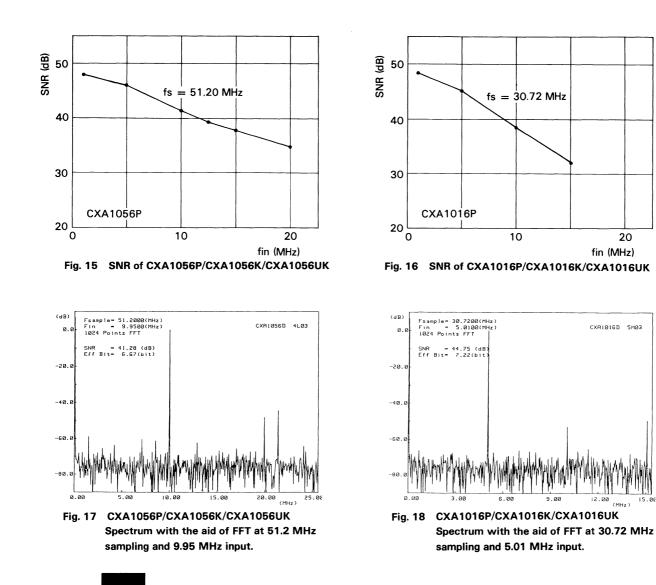

Figures 8 to 18 show the dynamic performance of the A/D's. The performance is measured with the aid of the digital signal processing in which the parameters are derived directly from the A/D's digital output data. SNR is defined as RMS Signal to RMS Noise.


Fig. 8(a) shows the signal to noise ratio (SNR) of the CX20116/CX20116U/CXA1066K/CXA1066UK at a sampling rate of 102.4 MHz and 81.92 MHz. The FFT spectrum is shown in Fig. 9 and Fig. 10.


The effective bit is shown in Fig. 8 (b), which is derived from the difference between the measured data

and an ideal sine-wave best fitted to the measured data.





0 CX20116/CX20116U Spectrum with the aid of FFT at 102.4 MHz sampling and 25.1 MHz input.

SONY

377 -

Sony SALES OFFICES:

Sites	Address	Phone	Fax	
Corporate & Administration Western Office	23430 Hawthorne Blvd. Suite No. 330 Torrance, CA 90505	213-373-9425	213-375-8358	
South East Office	3175 A. Northwoods Pkwy Norcross, GA 30071	404-263-9888	404-446-3615	
North East Office	57 Wells Avenue Newton MA 02159	617-527-4560	617-244-2518	
Central Office	3201 Premier Drive Suite 100 Irving. TX 75063	214-550-5200	214-550-5300	

AREA SALES OFFICES:

NORTHEAST AREA: Sony Corporation of America (617) 527-4540 SOUTHEAST AREA: Sony Corporation of America (404) 263-9888 **CENTRAL AREA:** Sony Corporation of America (214) 550-5200 WESTERN AREA: Sony Corporation of America (213) 373-9425 **REPRESENTATIVE OFFICES:** ALABAMA: Interep Assoc., Inc., (205) 478-1036, (205) 533-1730 ARIZONA: Shefler-Kahn, (602) 257-9015 ARKANSAS: B.P. Sales, (918) 744-9964 CALIFORNIA: (San Diego and Imperial) Addem Sales, (619) 729-9216; (Southern Ca., excluding San Diego) Varigon, Inc., (714) 855-0233, (Northern Ca. Counties: Monterey/kings/Tulare/Inyo) Brooks Technical Group, (415) 960-3880 COLORADO: Electrodyne, (303) 695-8903 CONNECTICUT: New England Technical Sales, (203) 237-8827 DELAWARE: Beacon North, Inc., (800) 336-3747 DISTRICT OF COLUMBIA: Beacon North, Inc., (703) 478-2480 FLORIDA: Donato & Assoc., (305) 352-0727 GEORGIA: Interep Assoc., Inc., (404) 449-8680 HAWAII: Brooks Technical Group, (415) 960-3880 IDAHO: Electrodyne, (801) 486-3801 ILLINOIS: (Northern) Micro-Tex, Inc., (312) 382-3001; (Southern) Kebco, (314) 576-4111 INDIANA: Giesting & Assoc., (317) 844-5222 IOWA: J.R. Sales, (319) 393-2232 KANSAS: Kebco, (913) 541-8431 or (316) 733-1301 KENTUCKY: Giesting & Assoc., (513) 385-1105 LOUISIANA: B.P. Sales, (214) 234-8438 MAINE: New England Technical Sales, (617) 272-0434 MARYLAND: Beacon North, Inc., (800) 336-3747 MASSACHUSETTS: New England Technical Sales, (617) 272-0434 MICHIGAN: Giesting & Assoc., (313) 478-8106 MINNESOTA: High-Tech Sales, (612) 944-7274 MISSISSIPPI: Interep Assoc., Inc., (205) 533-1730 MISSOURI: Kebco, (314) 576-4111 MONTANA: Electrodyne, (801) 486-3801 NEBRASKA: J.R. Sales, (319) 393-2232 NEVADA: (Clark County) Shefler-Kahn, (602) 257-9015, Brooks Technical Group, (916) 477-8096 NEW HAMPSHIRE: New England Technical Sales, (617) 272-0434 NEW JERSEY: S.J. Assoc., Inc. (718) 291-3232, (609) 866-1234 NEW MEXICO: Shefler-Kahn, (505) 345-3591 NEW YORK: (Manhattan) S.J. Assoc., Inc., (718) 291-3232 (Upstate) Advance Comp. Corp., (315) 699-2671 NORTH CAROLINA: Naylor Assoc., Inc., (919) 544-6630 NORTH DAKOTA: High Tech Sales, (612) 944-7274 .

OHIO: Giesting & Assoc., (513) 385-1105, (216) 261-9705, or (513) 433-5832 OKLAHOMA: B. P. Sales, (918) 744-9964 OREGON: Vantage Corp., (503) 620-3280 PENNSYLVANIA: (East) S.J. Assoc., Inc., (609) 866-1234; (West) Giesting & Assoc., (513) 385-1105 RHODE ISLAND: New England Technical Sales, (617) 272-0434 SOUTH CAROLINA: Naylor Assoc., Inc., (919) 544-6630 SOUTH DAKOTA: High-Hech Sales. (612) 944-7274 TENNESSEE: Interep Assoc., Inc., (615) 639-3491 TEXAS: B.P. Sales, (214) 234-8438, (713) 531-4144, or (512) 346-9186; (El Paso County) Shefler-Kahn (505) 345-3591 UTAH: Electrodyne. (801) 486-3801 VERMONT: New England Technical Sales, (617) 272-0434 VIRGINIA: Beacon North, Inc., (703) 478-2480, (804) 239-8486 WASHINGTON: Vantage Corp., (206) 455-3460 WEST VIRGINIA: Giesting & Assoc., (513) 385-1105 WISCONSIN: (Lower) Micro-Tex, Inc., (414) 542-5352; (West Wisconsin Counties: Polk/Barron/Dunn/St. Croix/ Pierce/Pepin/Chippewa, Eua Claire) High-Tech Sales, (612) 944-7274 WYOMING: Electrodyne, (801) 486-3801

DISTRIBUTOR OFFICES:

ALABAMA: HuntsvilleHammond Electronics, (205) 830-4764 HuntsvilleMarshall Industries, (205) 881-9235 ARIZONA: PhoenixMarshall Industries, (602) 968-6181 Scottsdale ······Western Micro, (602) 948-4240 TempeInsight, (602) 829-1800 CALIFORNIA: ChatsworthDiplomat Electronics, (818) 700-8700 IrvineMarshall Industries, (714) 458-5399 CupertinoWestern Micro, (408) 725-1660 Los Angeles ... Marshall Industries, (818) 407-0101 Northridge Western Micro, (818) 700-9922, (800) 538-3401 OrangeRyno Electronics, (714) 637-0200 SacramentoMarshall Industries, (916) 635-9700 San DiegoInsight, (619) 587-0471 San DiegoMarshall Industries, (619) 578-9600 San DiegoRyno Electronics, (619) 453-8430 San Francisco ··· Marshall Industries, (408) 943-4600 SunnyvaleDiplomat Electronics. (408) 737-0204 COLORADO: DenverMarshall Industries. (303) 427-1818 CONNECTICUT: Danbury Diplomat Electronics, (203) 797-9674 Wallingford ······Marshall Industries, (203) 265-3822 FLORIDA: Clearwater Diplomat Electronics, (813) 443-4514 Ft. Lauderdale ... Diplomat Electronics, (305) 974-8700 Ft. Lauderdale ... Hammond Electronics, (305) 973-7103 Ft. Lauderdale ... Marshall Industries, (305) 928-0661 Ft. Lauderdale ... Reptron, (305) 979-8227 Orlando ······Hammond Electronics, (305) 841-1010 Orlando ······Marshall Industries, (305) 841-1878 TampaMarshall Industries, (813) 576-1399 TampaReptron, (813) 855-4656 GEORGIA: AtlantaMarshall Industries, (404) 923-5750 Norcross ... Hammond Electronics, (404) 449-1996 Norcross ... Reptron, (404) 446-1300 ILLINOIS: Chicago Marshall Industries, (312) 490-0155 Schaumburg ... Reptron, (312) 882-1700 INDIANA: Indianapolis...Marshall Industries, (317) 297-0483 KANSAS: Kansas City...Marshall Industries, (913) 492-3121

MARYLAND: BaltimoreHammond Electronics, (301) 583-2525 ColumbiaDiplomat Electronics, (301) 995-1226 ColumbiaVantage Components, (301) 720-5100 Gaithersburg Marshall Industries, (301) 840-9450 MASSACHUSETTS: BostonMarshall Industries, (617) 272-8200 Burlington Western Micro, (617) 229-5819 BillerciaDiplomat Electronics, (617) 667-4670 MICHIGAN : Livonia ··· Marshall Industries, (313) 525-5850 Livonia....Reptron, (313) 525-2700 MINNESOTA: Minneapolis ... Marshall Industries, (612) 559-2211 Minnetonka ···Reptron, (612) 938-0000 PlymouthDiplomat Electronics, (612) 559-2500 NEW JERSEY: CliftonVantage Components, (201) 777-4100 Fairfield Marshall Industries, (201) 882-0320 TotowaDiplomat Electronics, (201) 785-1830 NEW YORK : Binghamton Marshall Industries, (607) 798-1611 CommackVantage Components, (516) 543-2000 HenriettaDiplomat Electronics, (716) 359-4400 LiverpoolDiplomat Electronics, (315) 652-5000 Long Island ······ Marshall Industries, (516) 273-2424 MelvilleDiplomat Electronics, (516) 454-6400 RochesterMarshall Industries, (716) 235-7620 NORTH CAROLINA: Greensboro ... Hammond Electronics. (919) 275-6391 RaleighMarshall Industries, (919) 878-9882 OHIO: Cleveland Marshall Industries, (216) 248-1788 DaytonMarshall Industries, (513) 236-8088 Worthington ··· Reptron, (614) 436-6675 OREGON: Beaverton ... Western Micro, (503) 629-2082 Portland Marshall Industries, (503) 644-5050 PENNSYLVANIA: Philadelphia Marshall Industries, (609) 234-9100 Pittsburgh Marshall Industries, (412) 963-0441 TEXAS: Austin Diplomat Electronics, (512) 836-8707 Austin Marshall Industries, (512) 837-1991 Dallas Diplomat Electronics, (214) 980-1888 Dallas Marshall Industries, (214) 233-5200 Houston Marshall Industries, (713) 895 9200 UTAH: Salt Lake City...Diplomat Electronics, (801) 486-4134 Salt Lake City... Marshall Industries, (801) 261-0901 WASHINGTON: Redmond ... Western Micro (206) 881-6737 SeattleMarshall Industries, (206) 747-9100 WISCONSIN: Milwaukee---Marshall Industries, (414) 797-8400

Sony Semiconductor Integrated Circuit Data Book

1986. Sept. 1st Edition

Printed in USA © Copyright 1986, Sony Corporation of America

Sony Semiconductor