

MCROPPOCESSOR

INTRODUCING THE 3000

CONTENTS

INTRODUCING THE SERIES 3000 BIPOLAR MICROPROCESSOR 3
N3001 MICROPROGRAM CONTROL UNIT 9
N3002 CENTRAL PROCESSING ELEMENT 20
S54/N74S182 HIGH SPEED LOOK-AHEAD CARRY GENERATOR 32
82S09 576-BIT BIPOLAR RAM (64×9) 35
$82 S 10$ 1024x1 BIT BIPOLAR RAM (OPEN COLLECTOR) 39
82S11 1024x1 BIT BIPOLAR RAM (TRI-STATE) 39
82S25 64-BIT BIPOLAR SCRATCH PAD MEMORY (16x4 RAM) 43
82S100 BIPOLAR FIELD-PROGRAMMABLE LOGIC ARRAY 47
(16x8x48 FPLA)-TRI-STATE
82S101 BIPOLAR FIELD-PROGRAMMABLE LOGIC ARRAY 47
($16 \times 8 \times 48$ FPLA)-OPEN COLLECTOR
82S114 2048-BIT BIPOLAR ROM (256×8 PROM) 52
82 S115 4096-BIT BIPOLAR ROM (512x8 PROM) 52
$82 S 116$ 256-BIT BIPOLAR RAM (256×1 RAM)-TRI-STATE 58
82S117 256-BIT BIPOLAR RAM (256×1 RAM) -OPEN COLLECTOR 58
82S126 1024-BIT BIPOLAR PROGRAMMABLE ROM (256x4 PROM) 62
82S129 1024-BIT BIPOLAR PROGRAMMABLE ROM (256×4 PROM) 62
8T26A TRI-STATE QUAD BUS TRANSCEIVER 67
8 T28 TRI-STATE QUAD BUS TRANSCEIVER 67
8 T31 8-BIT BIDIRECTIONAL I/O PORT 71
PACKAGE INFORMATION 74
SALES OFFICE LIST 80

INTRODUCING THE SERIES 3000 BIPOLAR MICROPROCESSOR

The introduction of the Signetics Series 3000 Bipolar Microprocessor Chip Set has brought new levels of high performance to microprocessor applications not previously possible with MOS technology. Combining the Schottky bipolar N3001 Microprogram Control Unit (MCU) and N3002 Central Processing Element (CPE) with industry standard memory and support circuits, microinstruction cycle times of 100 nanoseconds are possible.

In the majority of cases, the choice of a bipolar microprocessor slice, as opposed to an MOS device, is based on speed or flexibility of microprogramming. Starting with these characteristics, the design of the Signetics Series 3000 Microprocessor has been optimized around the following objectives:

- Fast cycle time
- All memory and support chips are industry standard
- Cooler operation
- Lower total system cost

Futhermore, systems built with large-scale integrated circuits are much smaller and require less power than equivalent systems using medium and/ or small scale integrated circuits.

The two components of the Series 3000 chip set, when combined with industry standard memory and peripheral circuits, allows the design engineer to construct high-performance processors and/or controllers with a minimum amount of auxillary logic. Features such as the multiple independent address and data buses, tri-state logic, and separate output enable lines eliminate the need for time-multiplexing of buses and associated hardware.

Each Central Processing Element represents a
complete 2 -bit slice through the data processing section of a computer. Several CPE's may be connected in parallel to form a processor of any desired word length. The Microprogram Control Unit controls the sequence in which microinstructions are fetched from the microprogram memory (ROM/PROM), with these microinstructions controlling the step-by-step operation of the processor.

Each CPE contains a 2-bit slice of five independent buses. Although they can be used in a variety of ways, typical connections are:
$\begin{array}{ll}\text { Input M-bus: } & \begin{array}{l}\text { Carries data from external } \\ \text { memory } \\ \text { Carries data from input/ }\end{array} \\ \text { Input I-bus: } & \begin{array}{l}\text { output device }\end{array} \\ \text { Input K-bus: } & \begin{array}{l}\text { Used for microprogram mask } \\ \text { or literal (constant) value } \\ \text { input }\end{array} \\ \text { Output A-bus: } & \begin{array}{l}\text { Connected to CPE Memory } \\ \text { Address Register }\end{array} \\ \text { Output D-bus: } & \text { Connected to CPE accumula- }\end{array}$ tor.

As the CPE's are paralleled together, all buses, data paths, and registers are correspondingly expanded.

The microfunction input bus (F-bus) controls the internal operation of the CPE, selecting both the operands and the operation to be executed upon them. The arithmetic logic unit (ALU), controlled by the microfunction decoder, is capable of over 40 Boolean and binary operations as outlined in the FUNCTION DESCRIPTION section of the N3002 data sheet. Standard carry look-ahead outputs (X and Y) are generated by the CPE for use with industry standard devices such as the 74S182.

FEATURES OF THE SERIES 3000 MICROCESSOR CHIP SET

N3001

- Signetics Schottky TTL process
- 45 ns cycle time (typ.)
- Direct addressing of standard bipolar PROM or ROM
- 512 microinstruction addressability
- 4 bit program latch
- 3 flag registers
- 11 address control (jump) functions
- 8 flag control functions

N3002

- 45 ns cycle time (typ.)
- Easy expansion to 2 N bits word length
- 11 general purpose registers
- Full function accumulator
- 2's complement arithmetic
- Logical AND, OR, NOT, Exclusive NOR
- Increment, decrement, shift left/right
- Bit testing and zero detect
- Carry look-ahead generation
- Masking via K-bus
- Nondestructive testing of data in accumulator and scratchpad
- 3 input buses
- 2 output buses

FEATURES OF COMPATIBLE PRODUCTS

82S100, 82S101 FPLA

- Field programmable (Ni-Cr Link)
- Input variables - 16
- Output functions-8
- Product terms - 48
- Address access time - 50 ns
- Tri-state (82S100) or open collector (82S101) outputs
- 28 pin ceramic dip

82S115/123/129 PROMs

- Schottky TTL technology
- Single +5V power supply
- 32×8 organization (82S123)
- 256×8 organization (82S129)
- 512×8 organization (82S115)
- Field programmable (Nichrome)
- On-chip storage latches (82S115 only)
- Low current pnp inputs
- Tri-state outputs
- 35 ns typical access time
- Standard 24 pin DIP (82S115)
- Standard 16 pin DIP (82S123, 82S129)

82S25/82S116/82S11 RAMs

- Schottky TTL technology
- 16×4 organization (82S25)
- 256×1 organization (82S116)
- 1024×1 organization (82S11)
- On-chip address decoding
- 16 pin ceramic dip

8T26A/8T28 Quad Transceiver

- Schottky TTL technology
- Four pairs of bus drivers/receivers
- Separate drive and receive enable lines
- Tri-state outputs
- Low current pnp inputs
- High fan out - driver sinks 40mA
- 20 ns maximum propagation delay
- Standard 16 pin DIP

8T31 8-bit Bidirectional Port

- Schottky TTL technology
- Two independent bidirectional busses
- Eight bit latch register
- Independent read, write controls for each bus
- Bus A overrides if a write conflict occurs
- Register can be addressed as a memory location
- via Bus B Master Enable
- 30 ns maximum propagation delay
- Low input current: $500 \mu \mathrm{~A}$
- High fan out - sinks 20mA
- Standard 24 pin DIP

A typical processor configuration is shown in Figure 1. It should be remembered that in working with slice-oriented microprocessors, the final configuration may be varied to enhance speed, reduce component count, or increase dataprocessing capability. One method of maximizing
a processor's performance is called pipelining. To accomplish this, a group of D-type flip-flops or latches (such as the 74174 Hex D-type Flip-Flop) are connected to the microprogram memory outputs (excluding the address control field $\mathrm{AC}_{0}-\mathrm{AC}_{6}$) to buffer the current microinstruction

Figure 1: MICROCOMPUTER BLOCK DIAGRAM
and allow the MCU to overlap the fetch of the next instruction with the execution of the current one. The time saved in pipelining operations is the shorter of either the address set-up time to the microprogram memory (ROM/PROM) or the access time of the ROM/PROM. A convenient way of implementing pipelining is to use ROMs with on-board latches, such as the Signetics 82S115.

Figure 2 shows a typical microinstruction format using the 82S129 PROMs contained in the Signetics 3000 Microprocessor Designer's Evaluation Kit. Although this particular example is for a 40-bit word (10 PROMs), the allocation of bits for the mask (K-bus) and optional processor functions depands on the specific application of the system and the trade offs which the designer wishes to make.

In using the K-bus, it should be kept in mind that the K inputs are always ANDed with the B-multiplexer outputs into the ALU. Bit masking, frequently done in computer control systems, can be performed with the mask supplied to the K-bus directly from the microinstruction.

By placing the K-bus in either the all-one or all-zero condition (done with a single control bit in the microinstruction), the accumulator will either be selected or de-selected, respectively, in a given operation. This feature nearly doubles the amount of microfunctions in the CPE. A description of these various microfunctions can be found in the N3002 data sheet under the heading "FUNCTION DESCRIPTION" by referring to the K-bus conditions of all-ones (11) and all-zeros (00).

The MCU controls the sequence in which microinstructions are fetched from the microprogram memory (ROM/PROM). In its classical form, the MCU would use a next-address field in each microinstruction. However, the N3001 uses a modified classical approach in which the microinstruction field specifies conditional tests on the MCU bus inputs and registers. The nextaddress logic of the MCU also makes extensive use of a row/column addressing scheme, whereby the next address is defined by a 5 -bit row address and 4 -bit column address. Thus, from a particular address location, it is possible to jump unconditionally to any other location within that row or

Figure 2: TYPICAL MICROINSTRUCTION FORMAT.
Note: The mask field need only be used during masking operations. At other times, it is entirely user definable.
column, or conditionally to other specified locations in one operation. Using this method, the processor functions can be executed in aprallel with program branches.

As an example of this flexibility, let us assume a disk controller is being designed. As part of the sequence logic, three bits of the disk drive status word must be tested and all three must be true in order to proceed with the particular sequencing operation. In any sequencing operation using a status word for conditional branch information, there are innumerable combinations of bits which must be tested throughout the sequencing operation. Using discrete logic techniques, this would involve several levels of gating.

However, the entire operation can be done in two microinstructions. First, the mask (K-bus) field in the microinstruction format is encoded with a one for each corresponding status bit to be tested and a zero for each bit to be discarded. The status word is input via the I-bus and ANDed with the K-bus mask using the CPE microfunction operation from F-Group 2, R-Group III. Assuming we are using low-true logic (TRUE $=0$ Volts), we now test the result, which is located in the accumulator AC, for all zeros using the CPE microfunction operation from F-Group 5, R-Group III. Depending on the zero/non-zero status of AC, a one or zero will be loaded into the carryout CO bit. This
bit can now be used as a condition for the next address jump calculation within the N3001 MCU. If the AC was zero (status word was true), we will jump to the next address within our controller sequence. If the AC was non-zero (status word not true), then a jump would be made back to the beginning of this two-microinstruction loop and the test sequence repeated until the status word (all three bits) is true.

Figure 3 shows a typical timing diagram for a system operating in the non-pipelined mode. Keep in mind that the maximum clock rate is dependent upon the total of propagation delay times plus required set-up times. It is at the designer's discretion to resolve the speed versus complexity tradeoffs.

Figure 3: SYSTEM TIMING - NON-PIPELINED CONFIGURATION

PRELIMINARY INFORMATION

DESCRIPTION

The N3001 MCU is one element of a bipolar microcomputer set. When used with the 3002, 74S182, ROM or PROM memory, a powerful microprogrammed computer can be implemented.
The 3001 MCU controls the fetch sequence of microinstructions from the microprogram memory. Functions performed by the 3001 include:

- Maintenance of microprogram address register
- Selection of next microinstruction address
- Decoding and testing of data supplied via several input busses
- Saving and testing of carry output data from the central processing (CP) array
- Control of carry/shift input data to the CP array
- Control of microprogram interrupts

FEATURES

- SCHOTTKY TTL PROCESS
- 45ns CYCLE TIME (TYP.)
- DIRECT ADDRESSING OF STANDARD BIPOLAR PROM OR ROM
- 512 MICROINSTRUCTION ADDRESSIBILITY
- ADVANCED ORGANIZATION:
- 9-BIT MICROPROGRAM ADDRESS REGISTER AND BUS ORGANIZED TO ADDRESS MEMORY BY ROW AND COLUMN
- 4-BIT PROGRAM LATCH
- 2 FLAG REGISTERS
- 11 ADDRESS CONTROL FUNCTIONS:
- 3 JUMP AND TEST LATCH FUNCTION
- 16 WAY JUMP AND TEST INSTRUCTION
- FLIGHT FLAG CONTROL FUNCTIONS:
- 4 FLAG INPUT FUNCTIONS
- 4 FLAG OUTPUT FUNCTIONS

PIN CONFIGURATION

N3001 BLOCK DIAGRAM

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
1-4	$\overline{\mathrm{PX}_{4}}-\overline{\mathrm{PX}}{ }_{7}$	Primary Instruction Bus Inputs Data on the primary instruction bus is tested by the JPX function to determine the next microprogram address.	Active LOW
5, 6, 8, 10	$\bar{s} \mathrm{X}_{0}-\overline{\mathrm{Sx}}{ }_{3}$	Secondary Instruction Bus Inputs Data on the secondary instruction bus is synchronously loaded into the PR-latch while the date on the PX-bus is being tested (JPX). During a subsequent cycle, the contents of the PR-latch may be tested by the JPR, JLL, or JRL functions to determine the next microprogram address.	Active LOW
7,9,11	$\mathrm{PR}_{0}-\mathrm{PR}_{2}$	PR-Latch Outputs The PR-latch outputs are asynchronously enabled by the JCE function. They can be used to modify microinstructions at the outputs of the microprogram memory or to provide additional control lines.	Open Collector
$\begin{aligned} & 12,13, \\ & 15,16 \end{aligned}$	$\mathrm{FC}_{0}-\mathrm{FC}_{3}$	Flag Logic Control Inputs The flag logic control inputs are used to cross-switch the flags (C and Z) with the flag logic input (FI) and the flag logic output (FO).	Active HIGH
14	$\overline{F O}$	Flag Logic Output The outputs of the flags (C and Z) are multiplexed internally to form the common flag logic output. The output may also be forced to a logical O or logical 1.	Active LOW Three-state
17	$\overline{F I}$	Flag Logic Input The flag logic input is demultiplexed internally and applied to the inputs of the flags (C and Z). Note: The flag input data is saved in the F -latch when the clock input (CLK) is low.	Active LOW

PIN DESCRIPTION (Cont'd)

PIN	SYMBOL	NAME AND FUNCTION	TYPE
18	ISE	Interrupt Strobe Enable Output The interrupt strobe enable output goes to logical 1 when one of the JZR functions are selected (see Functional Description). It can be used to provide the strobe signal required by interrupt circuits.	Active HIGH
19	CLK	Clock Input	
20	GND	Ground	
$\begin{aligned} & 21-24 \\ & 37-39 \end{aligned}$	$A C_{0}-A C_{6}$	Next Address Control Function Inputs All jump functions are selected by these control lines.	Active HIGH
25	EN	Enable Input When in the HIGH state, the enable input enables the microprogram address, PR-latch and flag outputs.	
26-29	$M A_{0}-M A_{3}$	Microprogram Column Address Outputs	Three-state
30-34	$M A_{4}-M A_{8}$	Microprogram Row Address Outputs	Three-state
35	ERA	Enable Row Address Input When in the LOW state, the enable row address input independently disables the microprogram row address outputs. It can be used to facilite the implementation of priority interrupt systems.	Active HIGH
36	LD	Microprogram Address Load Input When the active HIGH state, the microprogram address load input inhibits all jump functions and synchronously loads the date on the instructions busses into the microprogram register. However, it does not inhibit the operation of the PR-latch or the generation of the interrupt strobe enable.	Active HIGH
40	V_{CC}	+5 Volt Supply	

THEORY OF OPERATION

The MCU controls the sequence of microinstructions in the microprogram memory. The MCU simultaneously controls 2 flip-flops (C, Z) which are interactive with the carry-in and carry-out logic of an array of CPEs.

The functional control of the MCU provides both unconditional jumps to new memory locations and jumps which are dependent on the state of MCU flags or the state of the "PR" latch. Each instruction has a "jump set" associated with it. This "jump set" is the total group of memory locations which can be addressed by that instruction.

The MCU utilizes a two-dimensional addressing scheme in the microprogram memory. Microprogram memory is organized as 32 rows and 16 columns for a total of 512 words. Word length is variable according to application. Address is accomplished by a 9 -bit address organized as row and column address.

ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Storage Temperature
Supply Voltages
All Input Voltages
Output Currents
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
7 V
$+5.5 \mathrm{~V}$
100 mA

NOTE:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP ${ }^{1}$	MAX			
V_{C}	Input Clamp Voltage (All Input Pins)		$V_{C C}=4.75, I_{C}=-5 \mathrm{~mA}$		-0.8	-1.0	V
$1_{\text {F }}$	Input Load Current: CLK Input EN Input All Other Inputs	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V}$		$\begin{array}{r} -0.075 \\ -0.05 \\ -0.025 \end{array}$	$\begin{aligned} & -0.75 \\ & -0.50 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	
1_{R}	Input Leakage Current: CLK EN Input All Other Inputs	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$			120 80 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
$V_{\text {IL }}$	Input Low Voltage	$V_{C C}=5.0 \mathrm{~V}$			0.8	V	
$V_{1 H}$	Input High Voltage		2.0			V	
ICC	Power Supply Current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}^{2}$		170	240	mA	
V_{OL}	Output Low Voltage (All Output Pins)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.35	0.45	V	
V_{OH}	Output High Voltage (MA $\mathrm{M}_{0}-\mathrm{MA}_{8}$, ISE, FO)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	3.0		V	
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current $\left(\mathrm{MA}_{0}-\mathrm{MA}_{8}\right.$, ISE, FO)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-15	-28	-60	mA	
I_{0} (off)	Off-State Output Current: $\begin{aligned} & P R_{0}-P R_{2}, M A_{0}-M A_{2}, F O \\ & M A_{0}-M A_{8}, F O \end{aligned}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.25 \mathrm{~V} \end{aligned}$			$\begin{array}{r} -100 \\ -100 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	

NOTES:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and 5.0 supply voltage.
2. EN input grounded, all other inputs and outputs open.

FUNCTIONAL DESCRIPTION

The following is a description of each of the eleven address control functions. The symbols shown below are used to specify row and column addresses.

SYMBOL	MEANING
row $_{n}$	5-bit next row address where n is the decimal row address.
col $_{n}$	4-bit next column address where n is the decimal column address.

UNCONDITIONAL ADDRESS CONTROL (JUMP) FUNCTIONS

The jump functions use the current microprogram address (i.e., the contents of the microprogram address register prior to the rising edge of the clock) and several bits from the address control inputs to generate the next microprogram address.

MNEMONIC

FUNCTION DESCRIPTION

JCC Jump in current column. $A C_{0}-A_{4}$ are used to select 1 of 32 row addresses in the current column, specified by $M A_{0}-M A_{3}$, as the next address.
Jump to zero row. $A C_{0}-A C_{3}$ are used to select 1 of 16 column addresses in row ${ }_{0}$, as the next address.
JCR Jump in current row. $\mathrm{AC}_{0}-\mathrm{AC}_{3}$ are used to select 1 of 16 addresses in the current row, specified by $\mathrm{MA}_{4}-\mathrm{MA}_{8}$, as the next address. Jump in current column/row group and enable PR-latch outputs, $A C_{0}-A C_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by $\mathrm{MA}_{7}-\mathrm{MA}_{8}$, as the next row address. The current column is specified by $M A_{0}-M A_{3}$. The PR-latch outputs are asynchronously enabled.

FLAG CONDITIONAL ADDRESS CONTROL (JUMP/TEST) FUNCTIONS

The jump/test flag functions use the current microprogram address, the contents of the selected flag or latch, and several bits from the address control function to generate the next microprogram address.

MNEMONIC

FUNCTION DESCRIPTION

JFL Jump/test F-latch. $\mathrm{AC}_{0}-\mathrm{AC}_{3}$ are used to select 1 of 16 row addresses in the current row group, specified by MA_{8}, as the next row address. If the current column group, specified by MA_{3}, is $\mathrm{Col}_{0}-\mathrm{Col}_{7}$, the F -latch is used to select Col_{2} or Col_{3} as the next column address. If MA_{3} specifies column group col $_{8}-\mathrm{col}_{15}$, the F-latch is used to select col $_{10}$ or col $_{11}$ as the next column address.

JCF Jump/test C-flag. $A C_{0}-A C_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by $M A_{7}$ and $M A_{8}$, as the next row address. If the current column group specified by MA_{8} is $\mathrm{Col}_{0}-\mathrm{COl}_{7}$, the C-flag is used to select COl_{2} or COl_{3} as the next column address. If MA_{3} specifies column group col $_{8}-\mathrm{col}_{15}$, the C -flag is used to select col_{10} or col_{11} as the next column address.

Jump/test Z-flag. Identical to the JCF function described above, except that the Z-flag, rather than the C-flag, is used to select the next column address.

PX-BUS AND PR-LATCH CONDITIONAL ADDRESS CONTROL (JUMP/TEST) FUNCTIONS

The PX-bus jump/test function uses the data on the primary instruction bus ($\mathrm{PX}_{4}-\mathrm{PX}_{7}$), the current microprogram address, and several selection bits from the address control function to generate the next microprogram address. The PR-latch jump/test functions use the data held in the PR-latch, the current microprogram address, and several selection bits from the address control function to generate the next microprogram address.

MNEMONIC FUNCTION DESCRIPTION

JPR Jump/test PR-latch. $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by MA_{7} and MA_{8}, as the next row address. The four PR-latch bits are used to select 1 of 16 possible column addresses as the next column address.

JLL Jump/test leftmost PR-latch bits. $A C_{0}-A C_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by MA_{7} and MA_{8}, as the next row address. PR_{2} and PR_{3} are used to column addresses in Col_{4} through col_{7} as the next column address.

JRL Jump/test rightmost PR-latch bits. AC_{0} and $A C_{1}$ are used to select 1 of 4 high-order row addresses in the current row group, specified by $M A_{7}$ and $M A_{8}$, as the next row address. PR_{0} and PR_{1} are used to select 1 of 4 possible column addresses in col_{12} through col_{15} as the next column address.

JPX Jump/test PX-bus and load PR-latch. AC $_{0}$ and $A C_{1}$ are used to select 1 of 4 row addresses in the current row group, specified by $\mathrm{MA}_{6}-\mathrm{MA}_{8}$, as the next row address. $\mathrm{PX}_{4}-\mathrm{PX}{ }_{7}$ are used to select 1 of 16 possible column addresses as the next column address. $S X_{0}-S X_{3}$ data is locked in the PR-latch at the rising edge of the clock.

PX-BUS AND PR-LATCH CONDITIONAL
 ADDRESS CONTROL (JUMP/TEST) FUNCTIONS (Continued)

The flag control functions of the MCU are selected by the four input lines designated $\mathrm{FC}_{0}-\mathrm{FC}_{3}$. Function code formats are given in "Flag Control Function summary".

The following is a detailed description of.each of the eight flag control functions.

FLAG INPUT CONTROL FUNCTIONS

The flag input control functions select which flag or flags will be set to the current value of the flag input (FI) line. Data on FI is stored in the F-latch when the clock is low. The content of the F-latch is loaded into the C and/or Z flag on the rising edge of the clock.

MNEMONIC

FUNCTION DESCRIPTION

SCZ

STZ

STC Set C-flag to FI. The C-flag is set to the value of FI . The Z -flag is unaffected.
HCZ Hold C-flag and Z-flag. The values in the Cflag and Z-flag are unaffected.

FLAG OUTPUT CONTROL FUNCTIONS

The flag output control functions select the value to which the flag output (FO) line will be forced.

MNEMONIC

FFO

FFC Force FO to C . FO is forced to the value of the C -flag.

FFZ Force FO to Z. FO is forced to the value of the Z-flag.
FF1

STROBE FUNCTIONS

The load function of the MCU is controlled by the input line designated LD. If the LD line is active HIGH at the rising edge of the clock, the date on the primary and secondary instruction busses, $\mathrm{PX}_{4}-\mathrm{PX}_{7}$ and $\mathrm{SX}_{0}-\mathrm{SX}_{3}$, is loaded into the microprogram address register. $\mathrm{PX}_{4}-\mathrm{PX}_{7}$ are loaded into $M A_{0}-M A_{3}$ and $S X_{0}-S X_{3}$ are loaded into $M A_{4}-M A_{7}$. The high-order bit of the microprogram address register MA_{8} is set to a logical 0 . The bits from the primary instruction bus select 1 of 16 possible column addresses. Likewise, the bits from the secondary instruction bus select 1 of the first 16 row addresses.

The MCU generates an interrupt strobe enable on the output line designated ISE. The line is placed in the active high state whenever a JZR to col_{15} is selected as the address control function. Generally, the start of a macroinstruction fetch sequence is situated at row ${ }_{0}$ and col_{15} so the interrupt control may be enabled at the beginning of

ADDRESS CONTROL FUNCTION SUMMARY

MNEMONIC	DESCRIPTION	FUNCTION							NEXT ROW					NEXT COL			
		$A^{\prime} C_{6}$	5	4	3	2	1	0	MA_{8}	7	6	5	4	MA_{3}	2	1	0
JCC	Jump in current column	0	0	d_{4}	d_{3}	d_{2}	d_{1}	d_{0}	d_{4}	d_{3}	d_{2}	d_{1}	d_{0}	m_{3}	m_{2}		m_{0}
JZR	Jump to zero row	0	1	0	d_{3}	d_{2}	d_{1}	d_{0}	0	0	0	0	0	d_{3}	d_{2}	d_{1}	d_{0}
JCR	Jump in current row	0	1	1	d_{3}	d_{2}	d_{1}	d_{0}	m_{8}	m_{7}	m_{6}	m_{5}	m_{4}	d_{3}	d_{2}	d_{1}	d_{0}
JCE	Jump in column/enable	1	1	1	0	d_{2}	d_{1}	d_{0}	m_{8}	m_{7}	d_{2}	d_{1}	d_{0}	m_{3}	m_{2}	m_{1}	m_{0}
JFL	Jump/test F-latch	1	0	0	d_{3}	d_{2}	d_{1}	d_{0}	m_{8}	d_{3}	d_{2}	d_{1}	d_{0}	m_{3}	0	1	f
JCF	Jump/test C-flag	1	0	1	0	d_{2}	d_{1}	d_{0}	m_{8}	m_{7}	d_{2}	d_{1}	d_{0}	m_{3}	0	1	c
JZF	Jump/test Z-flag	1	0	1	1	d_{2}	d_{1}	d_{0}	m_{8}	m_{7}	d_{2}	d_{1}	d_{0}	m_{3}	0	1	z
JPR	Jump/test PR-latch	1	1	0	0	d_{2}	d_{1}	d_{0}	m_{8}	m_{7}	d_{2}	d_{1}	d_{0}	p_{3}	p_{2}	p_{1}	p_{0}
JLL	Jump/test left PR bits	1	1	0	1	d_{2}	d_{1}	d_{0}	m_{8}	m_{7}	d_{2}	d_{1}	d_{0}	0	1	p_{3}	p_{2}
JRL	Jump/test right PR bits	1	1	1	1	1	d_{1}	d_{0}	m_{8}	m_{7}	1	d_{1}	d_{0}	1	1	p_{1}	p_{0}
JPX	Jump/test PX-bus	1	1	1	1	0	d_{1}	d_{0}	m_{8}	m_{7}	m_{6}	d_{1}	d_{0}	x_{7}	x_{6}	X_{5}	x_{4}

NOTE:

[^0]
STROBE FUNCTIONS Cont'd.

the fetch/execute cycle. The interrupt control responds to the interrupt by pulling the enable row address (ERA) input line low to override the selected next row address from the MCU. Then by gating an alternative next row address on to the row address lines of the microprogram memory, the microprogram may be forced to enter an interrupt handling routine. The alternative row address placed on the microprogram memory address lines does not alter the contents of the microprogram address register. Therefore, subsequent jump functions will utilize the row address in the register, and not the alternative row address, to determine the next microprogram address.

Note, the load function always overrides the address control function on $A C_{0}-A C_{6}$. It does not, however, override the latch enable or load sub-functions of the JCE or JPX instruction, respectively. In addition, it does not inhibit the interrupt strobe enable or any of the flag control functions.

FLAG CONTROL FUNCTION SUMMARY

| TYPE | MNEMONIC | DESCRIPTION | FC $_{\boldsymbol{1}}$ | 0 |
| :--- | :---: | :--- | :--- | :---: | :--- |
| | SCZ | Set C-flag and Z-flag to f | 0 | 0 |
| Flag | STZ | Set Z-flag to f | 0 | 1 |
| Input | STC | Set C-flag to f | 1 | 0 |
| | HCZ | Hold C-flag and Z-flag | 1 | 1 |

TYPE	MNEMONIC	DESCRIPTION	FC_{3}	2
	FFO	Force FO to 0	0	0
Flag	FFC	Force FO to C-flag	0	1
Output	FFZ	Force FO to Z-flag	1	0
	FF1	Force FO to 1	1	1

LOAD FUNCTION			XT	ROW		NEXT COL			
LD	MA_{8}	7	6	5	4	MA_{3}	2	1	0
0	See Appendix A					See Appendix A			
1	0	\times_{3}	x_{2}		x_{0}	x	${ }_{7} \mathrm{x}_{6}$	${ }_{5}$	x_{4}

NOTE:
f Contents of the F-latch
$x_{n}=$ Data on $P X$ - or $S \times$-bus line n (active LOW)

JUMP SET DIAGRAMS

The following ten diagrams illustrate the jump set for each of the eleven jump and jump/test functions of the MCU. Location 341 indicated by the circled square, represents one current row $\left(\mathrm{row}_{21}\right)$ and current column (col_{5})

address. The dark boxes indicate the microprogram locations that may be selected by the particular function as the next address.

JZR JUMP TO ZERO ROW

JUMP SET DIAGRAMS Cont'd.

| |
| :---: | :---: |

JUMP SET DIAGRAMS Cont'd.

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%$

PARAMETER		LIMITS			UNIT
		MIN	TYP ${ }^{1}$	MAX	
${ }^{t_{C Y}}$	Cycle Time	60	45		ns
${ }^{\text {t }}$ WP	Clock Pulse Width	17	10		ns
	Control and Data Input Set-Up Times:				
${ }_{\text {t }}^{\text {SF }}$	LD, $A C_{0}-A C_{6}$	7	0		ns
${ }^{\text {t }}$ SK	$\mathrm{FC}_{0}, \mathrm{FC}_{1}$	7	0		ns
${ }^{\text {t }} \mathrm{S} X$	$\mathrm{SX}_{0}-\mathrm{SX}_{3}, \mathrm{PX}_{4}-\mathrm{PX}_{7}$	28	20		ns
${ }^{\text {ts }}$ S	FI	12	0		ns
	Control and Data Input Hold Times:				
${ }_{\text {thF }}$	LD, AC ${ }_{0}-A C_{6}$	4	0		ns
t_{HK}	$\mathrm{FC}_{0}, \mathrm{FC}_{1}$	4	0		ns
t_{HX}	$\mathrm{SX}_{0}-\mathrm{SX}_{3}, \mathrm{PX}_{4}-\mathrm{PX} 7$	16	0		ns
t_{HI}	FI	16	6		ns
${ }^{\text {t }} \mathrm{CO}$	Propagation Delay from Clock Input (CLK) to Outputs $\left(M A_{0}-M A_{8}, F O\right)$		24	36	ns
t_{KO}	Propagation Delay from Control Inputs FC_{2} and FC_{3} to Flag Out (FO)		13	24	ns
t_{FO}	Propagation Delay from Control Inputs $A C_{0}-A C_{6}$ to Latch Outputs ($\mathrm{PR}_{0}-\mathrm{PR}_{2}$)		21	32	ns
${ }^{\text {teo }}$	Propagation Delay from Enable Inputs EN and ERA to Outputs $\left(\mathrm{MA}_{0}-\mathrm{MA}_{8}, F O, \mathrm{PR}_{0}-\mathrm{PR}_{2}\right)$		17	26	ns
${ }^{\text {t }}$ FI	Propagation Delay from Control Inputs $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ to Interrupt Strobe Enable Output (ISE)		19	32	ns

NOTE:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and 5.0 supply voltage.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

NOTE: ALL RESISTORS VALUES ARE TYPICAL AND IN OHMS.

TEST CONDITIONS

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF .
Speed measurements are taken at the 1.5 volt level.

VOLTAGE WAVEFORMS

CENTRAL PROCESSING ELEMENT |N3002

PRELIMINARY

DESCRIPTION

The N3002 Central Processing Element (CPE) is one part of a bipolar microcomputer set. The N3002 is organized as a 2-bit slice and performs the logical and arithmetic functions required by micro - instructions. A system with any number of bits in a data word can be implemented by using multiple N3002s, the N3001 microcomputer control unit, the N74S182 carry look-ahead unit and ROM or PROM memory.

FEATURES

- 45ns CYCLE TIME (TYP.)
- EASY EXPANSION TO MULTIPLE OF 2 BITS
- 11 GENERAL PURPOSE REGISTERS
- FULL FUNCTION ACCUMULATOR
- USEFUL FUNCTIONS INCLUDE:

2's COMPLEMENT ARITHMETIC
LOGICAL AND, OR, NOT, EXCLUSIVE-NOR
INCREMENT, DECREMENT
SHIFT LEFT/SHIFT RIGHT
BIT TESTING AND ZERO DETECTION
CARRY LOOK-AHEAD GENERATION
MASKING VIA K-BUS
CONDITIONED CLOCKING ALLOWING NONDESTRUCTIVE TESTING OF DATA IN ACCUMULATOR AND SCRATCHPAD

- 3 INPUT BUSSES
- 2 OUTPUT BUSSES
- CONTROL BUS

BIPOLAR MICROPROCESSOR

PIN CONFIGURATION

BLOCK DIAGRAM

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
1,2	$\mathrm{l}_{0} \mathrm{I}_{1}$	External Bus Inputs The external bus inputs provide a separate input port for external input devices.	Active LOW
3,4	$K_{0}-K_{1}$	Mask Bus Inputs The mask bus inputs provide a separate input port for the microprogram memory, to allow mask or constant entry.	Active LOW
5,6	X, Y	Standard Carry Look-Ahead Cascade Outputs The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the 74S 182 Look-Ahead Carry Generator.	Active HIGH
7	CO	Ripple Carry Output The ripple carry output is only disabled during shift right operations.	Active LOW Three-state
8	RO	Shift Right Output The shift right output is only enabled during shift right operations.	Active LOW Three-state
9	LI	Shift Right Input	Active LOW
10	Cl	Carry Input	Active LOW
11	EA	Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs $\left(A_{0}-A_{1}\right)$.	Active LOW
12-13	$A_{0}-A_{1}$	Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR).	Active LOW Three-state
14	GND	Ground	
$\begin{aligned} & 15-17 \\ & 24-27 \end{aligned}$	$\mathrm{F}_{0}-\mathrm{F}_{6}$	Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection.	Active-HIGH
18	CLK	Clock Input	
19-20	$\mathrm{D}_{0}-\mathrm{D}_{1}$	Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC).	Active LOW Three-state
21-22	$M_{0}-M_{1}$	Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data.	Active LOW
23	ED	Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs ($D_{0}-D_{1}$).	Active LOW
28	V_{Cc}	+5 Volt Supply	

SYSTEM DESCRIPTION

1. MICROFUNCTION DECODER AND K-BUS

Basic microfunctions are controlled by a 7 -bit bus ($F_{0}-F_{6}$) which is organized into two groups. The higher 3 bits ($F_{4}-$ $\left.F_{6}\right)$ are designated as F-Group and the lower 4 bits ($\left.F_{0}-F_{3}\right)$
are designated as the R-Group. The F-Group specifies the type of operation to be performed and the R-Group specifies the registers involved.

SYSTEM DESCRIPTION (Continued)

The F-Bus instructs the microfunction decoder to:

- Select ALU functions to be performed
- Generate scratchpad register address
- Control A and B multiplexer

The resulting microfunction action can be:

- Data transfer
- Shift operations
- Increment and decrement
- Initialize stack
- Test for zero conditions
- 2's complement addition and subtraction
- Bit masking
- Maintain program counter

2. A AND B MULTIPLEXERS

A and B multiplexers select the proper two operands to the ALU.
A multiplexer selects inputs from one of the following:

- M-bus (data from main memory)
- Scratchpad registers
- Accumulator

B multiplexer selects inputs from one of the following:

- I-bus (data from external I/O devices)
- Accumulator
- K-bus (literal or masking information from microprogram memory)

3. SCRATCHPAD REGISTERS

- Contains 11 registers ($\mathrm{R}_{0}-\mathrm{R}_{\mathbf{9}}, \mathrm{T}$)
- Scratchpad register outputs are multiplexed to the ALU via the A multiplexer
- Used to store intermediate results from arithmetic/logic operations
- Can be used as program counter

4. ARITHMETIC/LOGIC UNIT (ALU)

The ALU performs the arithmetic and logic operations of the CPE.
Arithmetic operations are:

- 2's complement addition
- Incrementing
- Decrementing
- Shift left
- Shift right

Logical operations are:

- Transfer
- AND
- Inclusive-OR
- Exclusive-OR
- Logic complement

ALU operation results are then stored in the accumulator and/or scratchpad registers. For easy expansion to larger arrays, carry look-ahead outputs (X and Y) and cascading shift inputs (LI, Ro) are provided.

5. ACCUMULATOR

- Stores results from ALU operations
- The output of accumulator is multiplexed into ALU via the A and B multiplexer as one of the operands

6. INPUT BUSES

M-bus Data bus from main memory

- Accepts 2 bits of data from main memory into CPE
- Is multiplexed into the ALU via the A multiplexer

1-bus Data bus from input/output devices

- Accepts 2 bits of data from external input/output devices into CPE
- Is multiplexed into the ALU via the B multiplexer

K-bus A special feature of the N3002 CPE

- During arithmetic operations, the K-bus can be used to mask portions of the field being operated on
- Select or remove accumulator from operation by placing K-bus in all " 1 " or all " 0 " state respectively
- During non-arithmetic operation, the carry circuit can be used in conjunction with the K-bus for word-wise-OR operation for bit testing
- Supply literal or constant data to CPE

7. OUTPUT BUSES

A-bus and Memory Address Register

- Main memory address is stored in the memory address register (MAR)
- Main memory is addressed via the A-bus
- MAR and A-bus may also be used to generate device address when executing I/O instructions
- A-bus has Tri-State outputs

D-bus Data bus from CPE to main memory or to $1 / O$ devices

[^1]FUNCTION DESCRIPTION

$\begin{gathered} \text { F } \\ \text { GROUP } \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \text { GROUP } \end{gathered}$	$\begin{gathered} K \\ \text { BUS } \end{gathered}$	NAME	EQUATION	DESCRIPTION
0	1	XX	-	$\mathrm{R}_{\mathrm{n}}+(A C \wedge K)+\mathrm{Cl} \rightarrow \mathrm{R}_{\mathrm{n}}, A C$	Logically AND AC with the K-bus. Add the result to R_{n} and carry input (CI). Deposit the sum in AC and R_{n}.
		00	ILR	$R_{n}+C l \rightarrow R_{n}, A C$	Conditionally increment R_{n} and load the result in $A C$. Used to load $A C$ from R_{n} or to increment R_{n} and load a copy of the result in AC.
		11	ALR	$A C+R_{n}+C l \rightarrow R_{n}, A C$	Add $A C$ and $C l$ to R_{n} and load the result in $A C$. Used to add $A C$ to a register. If R_{n} is $A C$, then $A C$ is shifted left one bit position.
0	11	XX	-	$M+(A C \wedge K)+C I \rightarrow A T$	Logically AND AC with the K-bus. Add the result to Cl and the M -bus. Deposit the sum in AC or T .
		00	ACM	$\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{AT}$	Add Cl to M -bus. Load the result in AC or T , as specified. Used to load memory data in the specified register, or to load incremented memory data in the specified register.
		11	AMA	$\mathrm{M}+\mathrm{AC}+\mathrm{Cl} \rightarrow \mathrm{AT}$	Add the M -bus to AC and Cl , and load the result in AC or T, as specified. Used to add memory data or incremented memory data to $A C$ and store the sum in the specified register.
0	111	XX	-	$\begin{gathered} A T_{L} \wedge\left(\overline{(1} \wedge \wedge K_{L}\right) \rightarrow R O \\ L I \vee\left[\left(I_{H} \wedge K_{H}\right) \wedge A T_{H}\right] \rightarrow A T_{H} \\ \left.A T_{L} \wedge\left(I_{L} \wedge K_{L}\right)\right] \vee\left[A T_{H} \vee\left(I_{H} \wedge K_{H}\right)\right] \rightarrow A T_{L} \end{gathered}$	None
		00	SRA	$A T_{L} \rightarrow R O \quad A T_{H} \rightarrow A T_{L} \quad L I \rightarrow A T_{H}$	Shift AC or T, as specified, right one bit position. Place the previous low order bit value on RO and fill the high order bit from the data on LI. Used to shift or rotate $A C$ or T right one bit.
1	1	$x \times$	-	$\begin{aligned} K \vee R_{n} & \rightarrow \text { MAR } \\ R_{n}+K+C I & \rightarrow R_{n} \end{aligned}$	Logically OR \mathbf{R}_{n} with the K-bus. Deposit the result in MAR. Add the K-bus to R_{n} and Cl . Deposit the result in R_{n}.
		00	LMI	$\mathrm{R}_{\mathrm{n}} \rightarrow$ MAR $\quad \mathrm{R}_{\mathrm{n}}+\mathrm{Cl} \rightarrow \mathrm{R}_{\mathrm{n}}$	Load MAR from R_{n}. Conditionally increment R_{n}. Used to maintain a macro-instruction program counter.
		11	DSM	$11 \rightarrow$ MAR $\quad \mathrm{R}_{\mathrm{n}}-1+\mathrm{Cl} \rightarrow \mathrm{R}_{\mathrm{n}}$	Set MAR to all one's. Conditionally decrement R_{n} by one. Used to force MAR to its highest address and to decrement R_{n}.

$\stackrel{\text { F }}{\text { GROUP }}$	$\begin{gathered} \text { R } \\ \text { GROUP } \end{gathered}$	$\begin{gathered} K \\ \text { BUS } \end{gathered}$	NAME	EQUATION	
1	11	$x \times$	-	$\begin{gathered} K \vee M \rightarrow M A R \\ M+K+C I \rightarrow A T \end{gathered}$	Logically OR the M-bus with the K-bus. Deposit the result in MAR. Add the K-bus to the M-bus and Cl . Deposit the sum in AC or T .
		00	LMM	$\mathrm{M} \rightarrow$ MAR $\quad \mathrm{M}+\mathrm{Cl} \rightarrow$ AT	Load MAR from the M-bus. Add Cl to the M-bus. Deposit the result in $A C$ or T. Used to load the address register with memory data for macroinstructions using indirect addressing.
		11	LDM	$\begin{aligned} 11 & \rightarrow \text { MAR } \\ \mathrm{M}-1 & +\mathrm{Cl} \rightarrow \mathrm{AT} \end{aligned}$	Set MAR to all ones. Subtract one from the M-bus. Add Cl to the difference and deposit the result in AC or T, as specified. Used to load decremented memory data in AC or T .
1	1 I	$x \times$	-	$(\overline{A T} \vee K)+(A T \wedge K)+C I \rightarrow A T$	Logically OR the K-bus with the complement of $A C$ or T, as specified. Add the result to the logical AND of specified register with the K-bus. Add the sum to Cl . Deposit the result in the specified register.
		00	CIA	$\overline{A T}+\mathrm{Cl} \rightarrow \mathrm{AT}$	Add Cl to the complement of AC or T , as specified. Deposit the result in the specified register. Used to form the 1's or 2's complement of AC or T.
		11	DCA	$A T-1+\mathrm{Cl} \rightarrow \mathrm{AT}$	Subtract one from $A C$ or T, as specified. Add Cl to the difference and deposit the sum in the specified register. Used to decrement AC or T.
2	1	XX	-	$(A C \wedge K)-1+C I \rightarrow R_{n}$ (See Note 1)	Logically AND the K-bus with AC. Subtract one from the result and add the difference to CI . Deposit the sum in R_{n}.
		00	CSR	$\mathrm{Cl}-1 \rightarrow \mathrm{R}_{\mathrm{n}}$ (See Note 1)	Subtract one from Cl and deposit the difference in R_{n}. Used to conditionally clear or set R_{n} to all 0 's or 1 's, respectively.
		11	SDR	$\mathrm{AC}-1+\mathrm{Cl} \rightarrow \mathrm{R}_{\mathrm{n}}$ (See Note 1)	Subtract one from AC and add the difference to Cl . Deposit the sum in R_{n}. Used to store $A C$ in R_{n} or to store the decremented value of $A C$ in R_{n}.
2	11	XX	-	$(A C \wedge K)-1+C I \rightarrow A T$ (See Note 1) $\mathrm{Cl}-1 \rightarrow \mathrm{AT}$ (See Note 1)	Logically AND the K-bus with AC. Subtract one from the result and add the difference to Cl . Deposit the sum in AC or T , as specified. Subtract one from Cl and deposit the difference in AC or T . Used to conditionally clear or set AC or T.
		00	CSA		
		11	SDA	$A C-1+C I \rightarrow A T$ (See Note 1)	Subtract one from AC and add the difference to Cl . Deposit the sum in $A C$ or T. Used to store $A C$ in T, or decrement $A C$, or store the decremented value of $A C$ in T.

FUNCTION DESCRIPTION (CONT’D)

F GROUP	$\begin{gathered} \text { R } \\ \text { GROUP } \end{gathered}$	$\begin{gathered} \text { K } \\ \text { BUS } \end{gathered}$	NAME	EQUATION	DESCRIPTION
2	III	$x x$ 00 II	CAS LDI	$\begin{gathered} (1 \wedge \mathrm{~K})-1+\mathrm{Cl} \rightarrow \mathrm{AT} \\ \text { (See Note } 1) \\ \mathrm{Cl}-1 \rightarrow \mathrm{AT} \\ \mathrm{I}-1+\mathrm{Cl} \rightarrow \mathrm{AT} \end{gathered}$	Logically AND the data of the K-bus with the data on the I-bus. Subtract one from the result and add the difference to CI . Deposit the sum in AC or T, as specified. Subtract one from Cl and deposit the difference in AC or T . Used to conditionally clear or set AC or T. Subtract one from the data on the I-bus and add the difference to Cl . Deposit the sum in AC or T, as specified. Used to load input bus data or decremented input bus data in the specified register.
3	I	$\begin{gathered} x X \\ 00 \\ 11 \end{gathered}$	INR ADR	$\begin{gathered} R_{n}+(A C \wedge K)+C I \rightarrow R_{n} \\ R_{n}+C I \rightarrow R_{n} \\ A C+R_{n}+C I \rightarrow R_{n} \end{gathered}$	Logically AND AC with the K-bus. Add R_{n} and Cl to the result. Deposit the sum in R_{n}. Add Cl to R_{n} and deposit the sum in R_{n}. Used to increment R_{n}. Add $A C$ to R_{n}. Add the result to Cl and deposit the sum in R_{n}. Used to add the accumulator to a register or to add the incremented value of the accumulator to a register.
3	II	$x X$ 00 11	ACM AMA	$\begin{gathered} M+(A C \wedge K)+C I \rightarrow A T \\ M+C I \rightarrow A T \\ M+A C+C I \rightarrow A T \end{gathered}$	Logically AND AC with the K-bus. Add the result to Cl and the M-bus Deposit the sum in $A C$ or T. Add Cl to M-bus. Load the result in AC or T , as specified. Used to load memory data in the specified register, or to load incremented memory data in the specified register. Add the M-bus to $A C$ and $C I$, and load the result in $A C$ or T, as specified. Used to add memory data or incremented memory data to $A C$ and store the sum in the specified register.
3	III	$x x$ 00 II	INA AIA	$\begin{gathered} A T+(I \wedge K)+C I \rightarrow A T \\ A T+C I \rightarrow A T \\ I+A T+C I \rightarrow A T \end{gathered}$	Logically AND the K-bus with the I-bus. Add Cl and the contents of AC or T, as specified, to the result. Deposit the sum in the specified register. Conditionally increment $A C$ or T. Used to increment $A C$ or T. Add the I -bus to AC or T . Add Cl to the result and deposit the sum in the specified register. Used to add input data or incremented input data to the specified register.

FUNCTION TRUTH TABLE

FUNCTION GROUP	F_{6}	F_{5}	F_{4}
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
REGISTER GROUP	REGISTER	$F_{3} \quad F_{2}$	$F_{1} \quad F_{0}$
1	R_{0}	00	00
	R_{1}	00	01
	R_{2}	00	10
	R_{3}	00	11
	R_{4}	01	00
	R_{5}	01	01
	R_{6}	$0 \quad 1$	10
	R 7	01	11
	R_{8}	10	00
	R9	10	01
	T	11	00
	AC	11	01
11	T	10	10
	AC	10	11
111	${ }^{\top}$	11	10
	AC	11	11

SYMBOL	MEANING
I, K, M	Data on the $1, K$, and M busses, respectively
CI, LI	Data on the carry input and left input, respectively
CO, RO	Data on the carry output and right output, respectively
R_{n}	Contents of register n including T and AC (R-Group I)
AC	Contents of the accumulator
AT	Contents of AC or T, as specified
MAR	Contents of the memory address register
L, H	As subscripts, designate low and high order bit, respectively
+	2's complement addition
-	2 's complement subtraction
\wedge	Logical AND
\checkmark	Logical OR
$\bar{\oplus}$	Exclusive-NOR
\rightarrow	Deposit into

NOTE:

1. 2's complement arithmetic adds 111 . . . 11 to perform subtraction of 000 . . . 01.

FUNCTION DESCRIPTION (CONT'D)

F GROUP	R GROUP	$\begin{gathered} K \\ \text { BUS } \end{gathered}$	NAME	EQUATION	DESCRIPTION
4	I	XX	-	$\begin{gathered} C I \vee\left(R_{n} \wedge A C \wedge K\right) \rightarrow C O \\ R_{n} \wedge(A C \wedge K) \rightarrow R_{n} \end{gathered}$	Logically AND the K-bus with AC. Logically AND the result with the contents of R_{n}. Deposit the final result in R_{n}. Logically OR the value of Cl with the word-wise OR of the bits of the final result. Place the value of the carry OR on the carry output (CO) line.
		00	CLR	$\mathrm{CI} \rightarrow \mathrm{CO} \quad 0 \rightarrow \mathrm{R}_{\mathbf{n}}$	Clear R_{n} to all O^{\prime} s. Force CO to Cl . Used to clear a register and force CO to Cl .
		11	ANR	$\begin{gathered} \mathrm{CI} \vee\left(R_{n} \wedge A C\right) \rightarrow C O \\ R_{n} \wedge A C \rightarrow R_{n} \end{gathered}$	Logically AND AC with R_{n}. Deposit the result in R_{n}. Force $C O$ to one if the result is non-zero. Used to AND the accumulator with a register and test for a zero result.
4	11	$x \times$	-	$\begin{aligned} & C l \vee(M \wedge A C \wedge K) \rightarrow C O \\ & \quad M \wedge(A C \wedge K) \rightarrow A T \end{aligned}$	Logically AND the K-bus with AC. Logically AND the result with the M-bus. Deposit the final result in AC or T. Logically OR the value of Cl with the word-wise OR of the bits of the final result. Place the value of the carry OR on CO.
		00	CLA	$\mathrm{Cl} \rightarrow \mathrm{CO} \quad \mathrm{O} \rightarrow \mathrm{AT}$	Clear AC or T, as specified, to all O^{\prime} s. Force CO to CI . Used to clear the specified register and force CO to Cl .
		11	ANM	$\begin{gathered} C I \vee(M \wedge A C) \rightarrow C O \\ M \wedge A C \rightarrow A T \end{gathered}$	Logically AND the M-bus with AC. Deposit the result in AC or T. Force CO to one if the result is non-zero. Used to AND M-bus data to the accumulator and test for a zero result.
4	III	XX	-	$\begin{gathered} C I \vee(A T \wedge I \wedge K) \rightarrow C O \\ A T \wedge(I \wedge K) \rightarrow A T \end{gathered}$	Logically AND the I-bus with the K-bus. Logically AND the result with $A C$ or T. Deposit the final result in the specified register. Logically OR CI with the word-wise OR of the final result. Place the value of the carry OR on CO.
		00	CLA	$\mathrm{Cl} \rightarrow \mathrm{CO} \quad \mathrm{O} \rightarrow \mathrm{AT}$	Clear AC or T, as specified, to all 0 's. Force CO to CI . Used to clear the specified register and force CO to Cl .
		11	ANI	$\begin{gathered} C I \vee(A T \wedge I) \rightarrow C O \\ A T \wedge I \rightarrow A T \end{gathered}$	Logically AND the I-bus with AC or T, as specified. Deposit the result in the specified register. Force CO to one if the result is non-zero. Used to AND the I-bus to the accumulator and test for a zero result.
5	1	$x \times$	-	$\begin{gathered} C I \vee\left(R_{n} \wedge K\right) \rightarrow C O \\ K \wedge R_{n} \rightarrow R_{n} \end{gathered}$	Logically AND the K-bus with \mathbf{R}_{n}. Deposit the result in R_{n}. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.
		00	CLR	$\mathrm{Cl} \rightarrow \mathrm{CO} \quad \mathrm{O} \rightarrow \mathrm{R}_{\mathrm{n}}$	Clear R_{n} to all 0 's. Force CO to Cl . Used to clear a register and force CO to Cl .
		11	TZR	$\begin{gathered} \mathrm{CI} \vee R_{n} \rightarrow \mathrm{CO} \\ R_{n} \rightarrow R_{n} \end{gathered}$	Force CO to one if R_{n} is non-zero. Used to test a register for zero. Also used to AND K-bus data with a register for masking and, optionally, testing for a zero result.
5	11	XX	-	$\begin{gathered} C I \vee(M \wedge K) \rightarrow C O \\ K \wedge M \rightarrow A T \end{gathered}$	Logically AND the K-bus with the M-bus. Deposit the result in AC or T, as specified. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.
		00	CLA	$\mathrm{Cl} \rightarrow \mathrm{CO} \quad \mathrm{O} \rightarrow \mathrm{AT}$	Clear AC or T , as specified, to all O 's. Force CO to CI . Used to clear the specified register and force CO to Cl .
		11	LTM	$\begin{gathered} \mathrm{CI} \vee \mathrm{M} \rightarrow \mathrm{CO} \\ \mathrm{M} \rightarrow \mathrm{AT} \end{gathered}$	Load AC or T, as specified, from the M-bus. Force $C O$ to one if the result is non-zero. Used to load the specified register from memory and test for a zero result. Also used to AND the K-bus with the M-bus for masking and, optionally, testing for a zero result.
5	111	$x \times$	-	$\begin{gathered} C I \vee(A T \wedge K) \rightarrow C O \\ K \wedge A T \rightarrow A T \end{gathered}$	Logically AND the K-bus with AC or T, as specified. Deposit the result in the specified register. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.
		00	CLA	$\mathrm{Cl} \rightarrow \mathrm{CO} \quad 0 \rightarrow$ AT	Clear AC or T, as specified, to all O's. Force CO to CI. Used to clear the specified register and force CO to CI .
		11	TZA	$\begin{gathered} \mathrm{CI} \vee \mathrm{AT} \rightarrow \mathrm{CO} \\ \mathrm{AT} \rightarrow \mathrm{AT} \end{gathered}$	Force CO to one if AC or T, as specified, is non-zero. Used to test the specified register for zero. Also used to AND the K-bus to the specified register for masking and, optionally, testing for a zero result.

FUNCTION DESCRIPTION (CONT'D)

F GROUP	R GROUP	$\begin{gathered} \text { K } \\ \text { BUS } \end{gathered}$	NAME	EQUATION	DESCRIPTION
6	I	$\begin{gathered} x X \\ 00 \\ 11 \end{gathered}$	NOP ORR	$\begin{aligned} & \mathrm{CI} \vee(\mathrm{AC} \wedge K) \rightarrow \mathrm{CO} \\ & \mathrm{R}_{\mathrm{n}} \vee(\mathrm{AC} \wedge K) \rightarrow \mathrm{R}_{\mathrm{n}} \\ & \mathrm{CI} \rightarrow \mathrm{CO} \quad R_{n} \rightarrow R_{\mathrm{n}} \\ & \mathrm{CI} \vee A C \rightarrow C O \\ & R_{n} \vee A C \rightarrow R_{n} \end{aligned}$	Logically OR CI with the word-wise OR of the logical AND of AC and the K-bus. Place the result of the carry OR on CO. Logically OR R_{n} with the logical AND of AC and the K-bus. Deposit the result in R_{n}. Force CO to Cl . Used as a null operation or to force CO to Cl . Force $C O$ to one if $A C$ is non-zero. Logically $O R A C$ with R_{n}. Deposit the result in R_{n}. Used to OR the accumulator to a register and, optionally, test the previous accumulator value for zero.
6	11	$x X$ 00 11	LMF ORM	$\begin{aligned} & \mathrm{CI} \vee(A C \wedge K) \rightarrow C O \\ & \mathrm{M} \vee(A C \wedge K) \rightarrow A T \\ & \\ & \mathrm{CI} \rightarrow \mathrm{CO} \quad \mathrm{M} \rightarrow \mathrm{AT} \\ & \mathrm{CI} \vee A C \rightarrow C O \\ & M \vee A C \rightarrow A T \end{aligned}$	Logically OR CI with the word-wise OR of the logical AND of AC and the K-bus. Place the carry OR on CO. Logically OR the M-bus, with the logical AND of AC and the K-bus. Deposit the final result in $A C$ or T. Load AC or T, as specified, from the M-bus. Force CO to Cl . Used to load the specified register with memory data and force CO to Cl . Force $C O$ to one if $A C$ is non-zero. Logically OR the M-bus with AC. Deposit the result in AC or T, as specified. Used to OR M-bus with the $A C$ and, optionally, test the previous value of $A C$ for zero.
6	III	$\begin{aligned} & \text { XX } \\ & 00 \\ & \text { II } \end{aligned}$	NOP ORI	$\begin{aligned} & \mathrm{CI} \vee(I \wedge K) \rightarrow C O \\ & A T \vee(I \wedge K) \rightarrow A T \\ & \\ & \\ & \mathrm{CI} \rightarrow \mathrm{CO} \quad R_{n} \rightarrow R_{n} \\ & C I \vee I \rightarrow C O \\ & I \vee A T \rightarrow A T \end{aligned}$	Logically OR CI with the word-wise OR of the logical AND of the I-bus and the K-bus. Place the carry OR on CO. Logically AND the K-bus with the I-bus. Logically OR the result with AC or T, as specified. Deposit the final result in the specified register. Force CO to Cl . Used as a null operation or to force CO to Cl . Force CO to one if the data on the 1 -bus is non-zero. Logically OR the I-bus to $A C$ or T, as specified. Deposit the result in the specified register. Used to $O R$ I-bus data with the specified register and, optionally, test the I-bus data for zero.

FUNCTION TRUTH TABLE

FUNCTION GROUP	F6	F_{5}	F_{4}
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
REGISTER GROUP	REGISTER	$F_{3} \quad F_{2}$	$F_{1} \quad F_{0}$
	R_{0}	00	00
	R_{1}	00	01
	R_{2}	00	10
	R_{3}	00	11
	R_{4}	01	00
	R_{5}	01	01
1	R_{6}	01	10
	R_{7}	01	11
	R_{8}	10	00
	R 9	10	01
	T	11	00
	AC	11	01
11	${ }^{\top}$	10	10
	AC	10	11
III	T	11	10
	AC	11	11

SYMBOL	MEANING
I, K, M	Data on the I, K, and M busses, respectively
Cl, LI	Data on the carry input and left input, respectively
CO, RO	Data on the carry output and right output, respectively
R_{n}	Contents of register n including T and AC (R-Group I)
AC	Contents of the accumulator
AT	Contents of AC or T, as specified
MAR	Contents of the memory address register
L, H	As subscripts, designate low and high order bit, respectively
+	2's complement addition
-	2 's complement subtraction
\wedge	Logical AND
\checkmark	Logical OR
$\bar{\square}$	Exclusive-NOR
\rightarrow	Deposit into

NOTE:

1. 2's complement arithmetic adds 111 . . 11 to perform subtraction of 000 . . 01.

FUNCTION DESCRIPTION (CONT’D)

$\begin{gathered} \text { F } \\ \text { GROUP } \end{gathered}$	R GROUP	K BUS	NAME	EQUATION	DESCRIPTION
7	I	$x x$ 00 II	CMR XNR	$\begin{gathered} \mathrm{CI} \vee\left(R_{n} \wedge A C \wedge K\right) \rightarrow C O \\ R_{n} \bar{\oplus}(A C \wedge K) \rightarrow R_{n} \\ C l \rightarrow C O \quad \overline{R_{n}} \rightarrow R_{n} \\ C l \vee\left(R_{n} \wedge A C\right) \rightarrow C O \\ R_{n} \bar{\oplus}_{A C} \rightarrow R_{n} \end{gathered}$	Logically OR CI with the word-wise OR of the logical AND of R_{n} and AC and the K-bus. Place the carry OR on CO. Logically AND the K-bus with $A C$. Exclusive-NOR the result with R_{n}. Deposit the final result in R_{n}. Complement the contents of R_{n}. Force CO to Cl . Force $C O$ to one if the logical AND of AC and R_{n} is non-zero. ExclusiveNOR AC with R_{n}. Deposit the result in R_{n}. Used to exclusive-NOR the accumulator with a register.
7	11	$x X$ 00 II	LCM XNM	$\begin{gathered} C I \vee(M \wedge A C \wedge K) \rightarrow C O \\ M \bar{\oplus}(A C \wedge K) \rightarrow A T \\ C l \rightarrow C O \quad \bar{M} \rightarrow A T \\ C I \vee(M \wedge A C) \rightarrow C O \\ M \bar{\oplus} A C \rightarrow A T \end{gathered}$	Logically OR CI with the word-wise OR of the logical AND of AC and the K-bus and M-bus. Place the carry OR on CO. Logically AND the K-bus with AC. Exclusive NOR the result with the M-bus. Deposit the final result in AC or T. Load the complement of the M-bus into AC or T, as specified. Force CO to Cl . Force CO to one if the logical AND of AC and the M-bus is non-zero. Exclusive-NOR AC with the M-bus. Deposit the result in AC or T, as specified. Used to exclusive-NOR memory data with the accumulator.
7	III	$x X$ 00 II	CMA XNI	$C I \vee(A T \wedge I \wedge K) \rightarrow C O$ $A T \oplus(1 \wedge K) \rightarrow A T$ $\begin{gathered} \mathrm{CI} \rightarrow \mathrm{CO} \quad \overline{\mathrm{AT}} \rightarrow \mathrm{AT} \\ \mathrm{CI} \vee(\mathrm{AT} \wedge I) \rightarrow C O \\ \\ \quad \mathrm{I} \oplus \mathrm{AT} \rightarrow \mathrm{AT} \end{gathered}$	Logically OR CI with the word-wise OR of the logical AND of the specified register and the I-bus and K-bus. Place the carry OR on CO. Logically AND the K-bus with the I-bus. Exclusive-NOR the result with $A C$ or T, as specified. Deposit the final result in the specified register. Complement AC or T, as specified. Force CO to Cl . Force CO to one if the logical AND of the specified register and the I-bus is non-zero. Exclusive-NOR AC with the I-bus. Deposit the result in AC or T, as specified. Used to exclusive-NOR input data with the accumulator.

FUNCTION TRUTH TABLE

FUNCTION GROUP	F_{6}	F5		F_{4}
0	0	0		0
1	0	0		1
2	0	1		0
3	0	1		1
4	1	0		0
5	1	0		1
6	1	1		0
7	1	1		1
REGISTER GROUP	REGISTER	$F_{3} \quad F_{2}$	F_{1}	F_{0}
I	R_{0}	$0 \quad 0$	0	0
	R_{1}	00	0	1
	R_{2}	00	1	0
	R_{3}	00	1	1
	R_{4}	01	0	0
	R_{5}	$0 \quad 1$	0	1
	R_{6}	01	1	0
	R_{7}	01	1	1
	R_{8}	10	0	0
	R_{9}	10	0	1
	T	11	0	0
	AC	11	0	1
11	T	10	1	0
	AC	10	1	1
111	T	11	1	0
	AC	11	1	1

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output and Supply Voltages	-0.5 V to +7 V
All Input Voltages	-1.0 V to +5.5 V
Output Currents	100 mA

SYMBOL	MEANING
I, K, M	Data on the I, K, and M busses, respectively
Cl, LI	Data on the carry input and left input, respectively
CO, RO	Data on the carry output and right output, respectively
R_{n}	Contents of register n including T and AC (R-Group I)
AC	Contents of the accumulator
AT	Contents of AC or T, as specified
MAR	Contents of the memory address register
L., H	As subscripts, designate low and high order bit, respectively
+	2's complement addition
-	2 's complement subtraction
\wedge	Logical AND
\checkmark	Logical OR
$\bar{\oplus}$	Exclusive-NOR
\rightarrow	Deposit into

NOTE:

1. 2's complement arithmetic adds 111 . . 11 to perform subtraction of 000 . . . 01.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

microcycle timing sequence

DC CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP ${ }^{1}$	MAX			
V_{c}	Input Clamp Voltage (All Input Pins)		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$		-0.8	-1.0	V
I_{F}	Input Load Current: $\begin{aligned} & F_{0}-F_{6}, C L K, K_{0}, K_{1}, E A, E D \\ & I_{0}, I_{1}, M_{0}, M_{1}, L I \\ & C I \end{aligned}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V}$		$\begin{array}{r} -0.05 \\ -0.85 \\ -2.3 \end{array}$	$\begin{array}{r} -0.25 \\ -1.5 \\ -4.0 \end{array}$	mA mA $m A$	
I_{R}	Input Leakage Current: $\begin{aligned} & F_{0}-F_{6}, C L K, K_{0}, K_{1}, E A, E D \\ & I_{0}, I_{1}, M_{0}, M_{1}, \mathrm{LI} \\ & \mathrm{CI} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$			40 60 180	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
$V_{\text {IL }}$	Input Low Voltage	$V_{C C}=5.0 \mathrm{~V}$			0.8	v	
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0			V	
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}^{2}$		145	190	mA	
$\mathrm{V}_{\text {OL }}$	```Output Low Voltage Except X and Y X and Y```	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		$\begin{array}{r} 0.3 \\ 0.35 \end{array}$	$\begin{aligned} & 0.45 \\ & 0.50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
V_{OH}.	Output High Voltage (All Output Pins)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	3.0		V	
Ios	Short Circuit Output Current (All Output Pins)	$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	-15	-25	-60	mA	
10 (off)	Off State Output Current A_{0}, A_{1}, D_{0} and D_{1} Only	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.25 \mathrm{~V} \end{aligned}$			$\begin{array}{r} -100 \\ 100 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	

NOTES:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and typical supply voltage.
2. CLK input grounded, other inputs open.

SIGNETICS CENTRAL PROCESSING ELEMENT ■ N3002
SWITCHING CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT
${ }^{t} \mathrm{C} Y$	Clock Cycle Time	70	45		ns
twp	Clock Pulse Width	17	10		ns
$\mathrm{t}_{\text {FS }}$	Function Input Set-Up Time (F_{0} through F_{6})	48	31		ns
	Data Set-Up Time:				
$t_{\text {DS }}$	$I_{0}, I_{1}, M_{0}, M_{1}, K_{0}, K_{1}$	40	24		ns
${ }^{\text {t }}$ S	LI, Cl	21	7		ns
	Data and Function Hold Time:				
t_{FH}	F_{0} through F_{6}	4	0		ns
${ }^{\text {t }}$ D ${ }^{\text {H }}$	$I_{0}, I_{1}, M_{0}, M_{1}, K_{0}, K_{1}$	4	0		ns
${ }_{\text {t }}^{\text {SH }}$	LI, Cl	12	0		ns
	Propagation Delay to $\mathrm{X}, \mathrm{Y}, \mathrm{RO}$ from:				
${ }^{\text {t }}$ XF	Any Function Input		28	41	ns
${ }^{\text {t }} \times$ D	Any Data Input		18	33	ns
${ }^{\text {t }} \times 1$	Trailing Edge of CLK		33	48	ns
${ }^{\text {t }}$ KL	Leading Edge of CLK	13	$18 \rightarrow 40$	73	ns
	Propagation Delay to CO from:				
${ }^{\text {t }}$ CL	Leading Edge of CLK	16	24 $\rightarrow 44$	84	ns
${ }^{\text {t }}$ CT	Trailing Edge of CLK		40	56	ns
${ }^{\text {t }}$ CF	Any Function Input		35	52	ns
${ }^{\text {t }}$ CD	Any Data Input		23	44	ns
${ }^{\text {t }} \mathrm{C}$	Cl (Ripple Carry)		13	20	ns
	Propagation Delay to $A_{0}, A_{1}, D_{0}, D_{1}$ from:				
${ }^{t}$ DL	Leading Edge of CLK		25	40	ns
${ }_{\text {t }}$ D	Enable Input ED, EA		12	20	ns

NOTE:

1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and typical supply voltage.

PARAMETER MEASUREMENT INFORMATION

TEST LOAD CIRCUIT

TEST CONDITIONS

Input pulse amplitude: 2.5 V
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 10 mA and 50 pF .
Speed measurements are made at 1.5 volt levels.

NOTE: ALL RESISTORS VALUES ARE TYPICAL AND IN OHMS.

PARAMETER MEASUREMENT INFORMATION

TYPICAL CONFIGURATIONS

CARRY LOOK-AHEAD CONFIGURATION

HIGH SPEED LOOK-AHEAD CARRY GENERATOR

S54S182-B,F,W • N74S182-B,F DIGITAL 54/74 TIL SERIES

DESCRIPTION

The S54S182 and N74S182 are high-speed, look-ahead carry generators capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, gener-ate-carry, and propagate-carry functions are provided as enumerated in the pin designation table above.

When used in conjunction with the '181, 'LS181, or 'S181 arithmetic logic unit (ALU), these generators provide high-speed carry look-ahead capability for any word length. Each '182 or 'S182 generates the look-ahead (anticipated carry) across a group of four ALU's and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n -bits. The method of cascading ' 182 or 'S182 circuits to perform multi-level look-ahead is illustrated under typical application data.

Carry input and output of the '181, 'LS181, and 'S181 ALU's are in their true form and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate, and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU. Reinterpretations of carry functions as explained on the '181, 'LS181, and 'S181 data sheet are also applicable to and compatible with the look-ahead generator. Positive logic equations for the 'S182 are:

$$
\begin{aligned}
\mathrm{C}_{n+x} & =\bar{G}_{0}+\bar{P}_{0} C_{n} \\
C_{n+y} & =\bar{G}_{1}+\bar{P}_{1} \bar{G}_{0}+\bar{P}_{1} \bar{P}_{0} C_{n} \\
C_{n+z} & =\bar{G}_{2}+\bar{P}_{2} \bar{G}_{1}+\bar{P}_{2} \bar{P}_{1} \bar{G}_{0}+\bar{P}_{2} \bar{P}_{1} \bar{P}_{0} C_{n} \\
\bar{G} & =\bar{G}_{3}\left(\bar{P}_{3}+\bar{G}_{2}\right)\left(\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right)\left(\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right) \\
\bar{P} & =\bar{P}_{3} \bar{P}_{2} \bar{P}_{1} \bar{P}_{0}
\end{aligned}
$$

PIN CONFIGURATION (Top View)

RECOMMENDED OPERATING CONDITIONS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{2}{*}{PARAMETER}} \& \multicolumn{3}{|c|}{545182} \& \multicolumn{3}{|c|}{74S182} \& \multirow{2}{*}{UNIT}

\hline \& \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \&

\hline $V_{C C}$ \& Supply voltage \& \multirow[t]{3}{*}{4.5} \& \multirow[t]{4}{*}{5} \& 5.5 \& \multirow[t]{4}{*}{4.75

0} \& \multirow[t]{4}{*}{5} \& 5.25 \& V

\hline ${ }^{\mathrm{IOH}}$ \& High-level output current \& \& \& -1 \& \& \& -1 \& mA

\hline IOL \& Low-level output current \& \& \& 20 \& \& \& 20 \& mA

\hline TA \& Operating free-air temperature \& -55 \& \& 125 \& \& \& 70 \& ${ }^{\circ} \mathrm{C}$

\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS Over Recommended Operating Free-air Temperature Range Unless Otherwise Noted

PARAMETER			TEST CONDITIONS ${ }^{1}$	545182			74S182			UNIT	
			MIN	TYP2	MAX	MIN	TYP2	MAX			
$\left\lvert\, \begin{aligned} & V_{I H} \\ & V_{I L} \\ & V_{I} \end{aligned}\right.$	High-level inp Low-level inp Input clamp			$V_{C C}=$ MIN, $\quad I_{1}=-18 \mathrm{~mA}$	2		0.8 -1.2	2		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ V
VOH	High-level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\text {IH }}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{array}$	2.5	3.4		2.7	3.4		V	
VOL	Low-level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & I_{O L}=20 \mathrm{~mA} \end{array}$			0.5			0.5	V	
11	Input current at maximum input voltage		$V_{C C}=M A X, ~ V_{1}=5.5 \mathrm{~V}$			1			1	mA	
I/H	High-level input current	C_{N} input P3 input P2 input P0, P1, or G3 input G0 or G2 input G1 input	$V_{C C}=M A X, \quad V_{1}=2.7 V$			$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \\ 350 \\ 400 \end{array}$			$\begin{array}{r} \hline 50 \\ 100 \\ 150 \\ 200 \\ 350 \\ 400 \end{array}$	$\mu \mathrm{A}$	
IIL	Low-level input current	C_{n} input P3 input P2 input P0, P1, or G3 input G0 or G2 input G1 input	$V_{C C}=M A X, \quad V_{1}=0.5 V$			$\begin{array}{r} \hline-2 \\ -4 \\ -6 \\ -8 \\ -14 \\ -16 \end{array}$			$\begin{array}{r} \hline-2 \\ -4 \\ -6 \\ -8 \\ -14 \\ -16 \end{array}$	mA	
$\begin{aligned} & \mathrm{I} \mathrm{OS} \\ & \mathrm{I}^{\mathrm{CCH}} \\ & \mathrm{I}^{\mathrm{CCL}} \end{aligned}$	Short-circuit Supply curren Supply curren	high	$\begin{array}{ll} V_{C C}=M A X \\ V_{C C}=5 V, & \text { See Note } 3 \\ V_{C C}=M A X, & \text { See Note } 4 \end{array}$	-40	$\begin{aligned} & 35 \\ & 69 \end{aligned}$	$\begin{array}{r} -100 \\ 99 \end{array}$	-40	$\begin{aligned} & 35 \\ & 69 \end{aligned}$	$\begin{array}{r} -100 \\ 109 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	

${ }^{1}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
${ }^{2}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{3}$ Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.
NOTES: 3. ' CCH is measured with all outputs open, inputs P 3 and G 3 at 4.5 V , and all other inputs grounded.
4. ICCL is measured with all outputs open, inputs GO, G1, and G2 at 4.5 V , and all other inputs grounded.

SWITCHING CHARACTERISTICS $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{1}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH tPHL	$\begin{aligned} & \text { G0, G1, G2, G3, } \\ & \text { P0, P1, P2, or P3 } \end{aligned}$	$\begin{gathered} C_{n+x}, C_{n+y} \\ \text { or } C_{n+z} \end{gathered}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=280 \Omega \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	7 7	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\begin{gathered} \text { G0, G1, G2, G3, } \\ \text { P1, P2, or P3 } \end{gathered}$	G			5 7	$\begin{array}{r} 7.5 \\ 10.5 \end{array}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	P0, P1, P2, or P3	P			$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{array}{r} 6.5 \\ 10 \end{array}$	ns
tPLH tPHL	C_{n}	$\begin{gathered} C_{n+x}, C_{n+y}, \\ \quad \text { or } C_{n+z} \end{gathered}$			$\begin{array}{r} 6.5 \\ 7 \end{array}$	$\begin{array}{r} 10 \\ 10.5 \end{array}$	ns

[^2]
FUNCTIONAL BLOCK DIAGRAM AND SCHEMATICS OF INPUTS AND OUTPUTS

TYPICAL APPLICATION DATA

64-BIT ALU, FULL-CARRY LOOK-AHEAD IN THREE LEVELS

A and B inputs and F outputs of $554 / 74 S 181$ are not shown.

Load circuit and typical waveforms are shown at the front of this section.

JUNE 1975
 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82 S 09 is a 576 -Bit, Schottky clamped TTL, random access memory, organized as 64X9. This organization allows byte manipulation of data, including parity. Where parity is not monitored, the ninth bit can be used as a flag or status indicator for each word stored. With a typical access time of 30ns, it is ideal for scratch-pad, push-down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.

The 82 S 09 is fully TTL compatible, and features open collector outputs, chip enable input, and a very low current PNP input structure to enhance memory expansion.
During WRITE operation, the logic state of the device output follows the complement of the data input being written. This feature allows faster execution of WRITEREAD cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.
The 82 S 09 is available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify $\mathrm{N} 82 \mathrm{~S} 09,1$. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S09, I.

FEATURES

- ORGANIZATION - 64×9
- ADDRESS ACCESS TIME:

S82S09 - 80ns, MAXIMUM
N82S09 - 45ns, MAXIMUM

- WRITE CYCLE TIME:

S82S09 - 70ns, MAXIMUM
N82S09 - 45ns, MAXIMUM

- POWER DISSIPATION - 1.3mW/BIT TYPICAL
- INPUT LOADING:

S82S09 - $(-150 \mu \mathrm{~A})$ MAXIMUM
N82S09 - ($-100 \mu \mathrm{~A})$ MAXIMUM

- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT DURING WRITE
- ON-CHIP ADDRESS DECODING
- OPEN COLLECTOR OUTPUTS
- CHIP ENABLE FOR WORD EXPANSION
- BYTE I/O MANIPULATION, INCLUDING PARITY

APPLICATIONS

BUFFER MEMORY
CONTROL REGISTER
FIFO MEMORY
PUSH DOWN STACK
SCRATCH PAD

PIN CONFIGURATION

TRUTH TABLE

MODE	CE	WE	IN $^{\prime}$	ON $_{\mathbf{N}}$
READ	0	1	\times	Complement of Data Stored
WRITE " 0 "	0	0	0	1
WRITE " 1 "	0	0	1	0
DISABLED	1	X	X	1

$X=$ Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$		RATING	UNIT
$V_{\text {cc }}$	Power Supply Voltage	+7	Vdc
$V_{\text {in }}$	Input Voltage	+5.5	Vdc
V_{OH}	High Level Output Voltage (82S10)	+5.5	Vdc
$T_{\text {A }}$	Operating Temperature Range (N82S09) (S82S09)	$\begin{gathered} 0^{\circ} \text { to }+75^{\circ} \\ -55^{\circ} \text { to }+125^{\circ} \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{T}_{\text {sto }}$	Storage Temperature Range	-65° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\begin{array}{lll} & \text { S82S09 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \\ & \text { N82S09 } & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25\end{array}$

PARAMETER ${ }^{1}$		TEST CONDITIONS	S82S09			N82S09			UNIT	
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX			
$V_{\text {IL }}$	Low Level Input Voltage		$V_{C C}=$ MIN	2.2	-1.0	. 80	2.0	-1.0	. 85	V
$V_{\text {IH }}$	High Level Input Voltage	$V_{C C}=M A X$	V							
$V_{\text {IC }}$	Input Clamp Voltage	$\begin{aligned} & V_{C C}=M I N, I_{I N}=-12 \mathrm{~mA} \\ & (\text { Note } 5) \end{aligned}$	-1.5			-1.5			V	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=6.4 \mathrm{~mA} \\ & \text { (Note 6) } \end{aligned}$	0.35		0.50	0.35		0.5	V	
Iolk	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=5.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	1		60	1		40	$\mu \mathrm{A}$	
$I_{\text {IL }}$	Low Level Input Current	$V_{\text {IN }}=0.45 \mathrm{~V}$	-10		-150	-10		-100	$\mu \mathrm{A}$	
${ }_{1 / \mathrm{H}}$	High Level Input Current	$V_{\text {IN }}=5.5 \mathrm{~V}$	1		40	1		25	$\mu \mathrm{A}$	
1 Cc	$V_{\text {CC }}$ Supply Current	$V_{C C}=$ MAX (Note 3)	150		200	150		190	mA	
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	$V_{C C}=5.0 \mathrm{~V}, V_{1 N}=2.0 \mathrm{~V}$	5			5			pF	
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	8			8			pF	

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. ICC is measured with the write enable and memory enable input grounded, all other inputs at 4.5 V , and the outputs open.
4. Measured with $V_{I H}$ applied to $\overline{C E}$.
5. Test each input one at the time.
6. Measured with the logic " $O^{\prime \prime}$ stored. Output sink current is supplied through a resistor to $V_{C C}$.
7. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up.

$\begin{array}{llll}\text { SWITCHING CHARACTERISTICS }\end{array} \quad \begin{array}{ll}\text { S82S09 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \\ & \text { N82S09 }\end{array} 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$								
PARAMETER	TEST CONDITIONS	S82S09			N82S09			UNIT
		MIN	TYP ${ }^{1}$	MAX	MIN	TYP ${ }^{1}$	MAX	
Propagation Delays								
$T_{A A}$ Address Access Time $T_{C E}$ Chip Enable Access Time $T_{C D}$ Chip Enable Output Disable Time	$\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & R_{1}=600 \Omega \\ & R_{2}=900 \Omega \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 5 \\ 35 \\ 5 \end{array}$	$\begin{aligned} & 30 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 30 \\ & 30 \end{aligned}$	ns ns ns
Write Set-up Times			$\begin{array}{r} 0 \\ 25 \\ 0 \end{array}$					
TwsA Address to Write Enable TWSD Data In to Write Enable TWSC $\overline{\mathrm{CE}}$ to Write Enable						$\begin{array}{r} 0 \\ 25 \\ 0 \end{array}$		ns ns ns
Write Hold Times								
$T_{\text {WHA }}$ Address to Write Enable $T_{\text {WHD }}$ Data In to Write Enable $T_{\text {WHC }}$ $\overline{\mathrm{CE}}$ to Write Enable $T_{\text {WP }}$ Write Enable Pulse Width (Note 2)		$\begin{array}{r} 10 \\ 5 \\ 10 \\ 50 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 25 \end{array}$		5 5 5 35	0 0 0 25		ns ns ns ns

AC TEST LOAD

NOTES:

1. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.
3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up.

PARAMETER MEASUREMENT INFORMATION

READ CYCLE

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
$T_{C D}$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.

TAA Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

TwSC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TWHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TWP Width of WRITE ENABLE pulse.
TWSA Required delay between beginning of valid ADD. RESS and beginning of WRITE ENABLE pulse.
TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.

TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
TwHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

FEBURARY 1975
 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The $82 \mathrm{~S} 10 / 11$ is a high speed 1024 -bit random access memory organized as 1024 words $X 1$ bit. With a typical access time of 30 ns , it is ideal for cache buffer applications and for systems requiring very high speed main memory.
Both the 82S10 and 82S11 require a single +5 volts power supply and feature very low current PNP input structures. They are fully TTL compatible, and include on-chip decoding and a chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.
Both 82S10 and 82S11 devices are available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify $\mathrm{N} 82 \mathrm{~S} 10 / 11$, I. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82S10/11, I.

FEATURES

- ORGANIZATION - 1024 X 1
- ADDRESS ACCESS TIME:

S82S10/11 - 70ns, MAXIMUM
N82S10/11 - 45ns, MAXIMUM

- WRITE CYCLE TIME:

S82S10/11 - 75ns, MAXIMUM N82S10/11 - 45ns, MAXIMUM

- POWER DISSIPATION - 0.5mW/BIT, TYPICAL
- INPUT LOADING:

S82S10/11 - (-150 $\mu \mathrm{A})$ MAXIMUM
N82S10/11 - $(-100 \mu A)$ MAXIMUM

- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS:

```
        82S10 - OPEN COLLECTOR
```

 82 S 11 - TRI-STATE
 - NON-INVERTING OUTPUT
- BLANKED OUTPUT DURING WRITE
- 16 PIN CERAMIC PACKAGE

APPLICATIONS

HIGH SPEED MAIN FRAME CACHE MEMORY BUFFER STORAGE WRITABLE CONTROL STORE

PIN CONFIGURATION

TRUTH TABLE

MODE	$\bar{*} \overline{\mathbf{C E}}$	$\overline{\mathrm{WE}}$	DIN	DOUT	
				$\mathbf{8 2 S 1 0}$	$\mathbf{8 2 S 1 1}$
READ	0	1	X	STORED DATA	STORED DATA
WRITE " $0^{\prime \prime}$	0	0	0	1	High-Z
WRITE " 1 "	0	0	1	1	High-Z
DISABLED	1	X	X	1	High-Z

$X=$ Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$		RATING	UNIT
$V_{\text {cc }}$	Power Supply Voltage	+7	Vdc
$V_{\text {in }}$	Input Voltage	+5.5	Vdc
V_{OH}	High Level Output Voltage (82S10)	+5.5	Vdc
V_{O}	Off-State Output Voltage (82S11)	+5.5	Vdc
T_{A}	Operating Temperature Range (N82S10/11) (S82S10/11)	$\begin{gathered} 0^{\circ} \text { to }+75^{\circ} \\ -55^{\circ} \text { to }+125^{\circ} \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{9}$
S82S $10 / 11-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5$
N82S10/11 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$

	PARAMETER	TEST CONDITIONS	S82S10/11			N82S10/11			UNIT
			MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX	
$V_{\text {IL }}$	Low Level Input Voltage	$\mathrm{V}_{\text {cc }}=\mathrm{MIN}$ (Note 1)			. 80			. 85	v
$V_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$ (Note 1)	2.1			2.1			v
$V_{\text {IC }}$	Input Clamp Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN, } \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA} \\ & (\text { Note } 1,7) \end{aligned}$		-1.0	-1.5		-1.0	-1.5	v
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}^{2}=16 \mathrm{~mA} \\ & \text { (Note 1. 8) } \end{aligned}$		0.35	0.50		0.35	0.45	v
V_{OH}	High Level Output Voltage (82S11)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, } \mathrm{IOH}_{\mathrm{O}}=-2 \mathrm{~mA} \\ & (\text { Note } 1,5) \end{aligned}$	2.4			2.4			v
lolk	Output Leakage Current (82S10)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{OUT}}=5.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$		1	60		1	40	$\mu \mathrm{A}$
lotoff)	Hi-Z State Output Current (82S11)	$\begin{aligned} & V_{\mathrm{CC}}=M A X, V_{\text {OUT }}=5.5 \mathrm{~V} \\ & V_{\mathrm{CC}}=M A X, V_{\text {OUT }}=0.45 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$		1 -1	100 -100		1 -1	60 -60	${ }_{\mu \mathrm{A}}^{\mathrm{A}}$
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$		-10	-150		-10	-100	$\mu \mathrm{A}$
I_{IH}	High Level Input Current	$V_{\text {IN }}=5.5 \mathrm{~V}$		1	40		1	25	$\mu \mathrm{A}$
los	Short Circuit Output Current (82S11)	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=0 V \\ & \text { (Note 3) } \end{aligned}$	-20		-100	-20		-100	mA
Icc	$\mathrm{V}_{\text {cc }}$ Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { MAX }(\text { Note 4) } \\ 0<\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} \geqslant 25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} \leqslant 0^{\circ} \mathrm{C} \end{gathered}$		$\begin{array}{r} 120 \\ 95 \end{array}$	$\begin{aligned} & 155 \\ & 130 \\ & 170 \end{aligned}$		$\begin{array}{r} 120 \\ 95 \end{array}$	$\begin{aligned} & 1555 \\ & 130 \\ & 170 \end{aligned}$	$\begin{aligned} & m A \\ & m A \\ & m A \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		4			4		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$		7			7		pF

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Duration of the short-circuit should not exceed one second.
4. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V , and the output open.
5. Measured with $V_{I L}$ applied to $\overline{C E}$ and a logic " 1 " stored.
6. Measured with $V_{1 H}$ applied to $\overline{C E}$.
7. Test each input one at the time.
8. Measured with a logic " 0 " stored. Output sink current is supplied through a resistor to V_{CC}.
9. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
$\phi_{\text {JA }}$ Junction to Ambient at 400 fpm air flow $-50^{\circ} \mathrm{C} /$ Watt
$\phi_{\text {JA }}$ Junction to Ambient - still air $-90^{\circ} \mathrm{C} /$ Watt
$\phi_{\text {JA }}$ Junction to Case $-20^{\circ} \mathrm{C} /$ Watt

SWITCHING CHARACTERISTICS

PARAMETER	TEST CONDITIONS	S82S10/11			N82S10/11			UNIT
		MIN	TYP ${ }^{1}$	MAX	MIN	TYP ${ }^{1}$	MAX	
Propagation Delays								
TAA Address Access Time	$\begin{aligned} & C_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{R}_{1}=270 \Omega \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$	15555	30	70		30	45	ns
TCE Chip Enable Access Time			15	45		15	30	ns
TCD Chip Enable Output Disable Time			15	45		15	30	ns
TWD Write Enable to Output Disable Time			20	45		20	30	ns
TWR Write Recovery Time			20	45		20	30	ns
Write Set-up Times								
TWSA Address to Write Enable			0		5	0		ns
TwSD Data In to Write Enable			35		40	35		ns
TWsc $\overline{\mathrm{CE}}$ to Write Enable			0		5	0		ns
Write Hold Times								
TWHA Address to Write Enable		10	0		5	0		ns
TWHD Data In to Write Enable		5	0		5	0		ns
TWHC $\overline{\mathrm{CE}}$ to Write Enable		5	0		5	0		ns
TWP Write Enable Pulse Width (Note 2)		50	25		35	25		ns

AC TEST LOAD

NOTES:

1. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.
3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
$\theta_{\text {JA }}$ Junction to Ambient at 400 fpm air flow $-50^{\circ} \mathrm{C} /$ Watt
$\theta_{\text {JA }}$ Junction to Ambient - still air $-90^{\circ} \mathrm{C} /$ Watt
$\theta_{\text {JA }}$ Junction to Case $-20^{\circ} \mathrm{C} / \mathrm{Watt}$

SWITCHING PARAMETERS MEASUREMENT INFORMATION

READ CYCLE
ADDRESS ACCESS TIME

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

$T_{\text {WR }}$		TWHD	delay between end of WRITE d end of valid INPUT DATA.
	ADDRESS still valid-not as show		Width of WRITE ENABLE pulse.
$\mathrm{T}_{\text {CE }}$	Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.	TwSA	Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.
T	Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.	TwSD	Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
$\mathrm{T}_{\text {A }}$		TWD	and when DATA OUTPUT is in off state.
	CHIP ENABLE low) and when DATA OUTPUT becomes valid.	Twhc	Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
$T_{\text {WS }}$	ENABLE and beginning of WRITE ENABLE pulse.	TWHA	Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

64-BIT BIPOLAR SCRATCH PAD MEMORY (16×4 RAM) ($\mathbf{8 2 S} 25$

FEBRUARY 1975
DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The $82 S 25$ is a 64 -bit, Schottky clamped TTL, ReadWrite Random Access Memory ideal for use in scratch pad and high-speed buffer memory applications.

The 82 S 25 is a fully decoded memory array organized as 16 words of 4 bits each, with separate input and output lines. It features PNP inputs, one chip enable line, and open collector outputs for ease of memory expansion.

The outputs of the 82 S 25 assume a logic " 1 " state during write. This allows both memory inputs and outputs to share a common bus for minimizing interconnections, and more effective utilization of common I/O circuitry.

The 82S25 is available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S25, B or F. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S25, Fonly.

FEATURES

- ORGANIZATION - 16×4
- ADDRESS ACCESS TIME:

S82S25-60ns, MAXIMUM
N82S25 - 50ns, MAXIMUM

- WRITE CYCLE TIME:

S82S25 - 50ns, MAXIMUM
N82S25 - 35ns, MAXIMUM

- POWER DISSIPATION - $6.25 \mathrm{~mW} / \mathrm{BIT}$, TYPICAL
- INPUT LOADING:

S82S25 - ($-150 \mu \mathrm{~A})$ MAXIMUM
N82S25 - ($-100 \mu \mathrm{~A})$ MAXIMUM

- OUTPUT BLANKING DURING WRITE
- ON-CHIP ADDRESS DECODING
- OPEN COLLECTOR OUTPUTS
- 16 PIN CERAMIC DIP

PIN CONFIGURATION

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathrm{WE}}$	In	$\overline{\mathrm{D}} \mathbf{n}$
Read	0	1	X	Complement of data stored
Write " 0 "'	0	0	0	1
Write " 1 "	0	0	1	1
Disabled	1	X	X	1

$X=$ Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$		RATING	UNIT
V_{cc}	Power Supply Voltage	+7	Vdc
$V_{\text {in }}$	Input Voltage	+5.5	Vdc
V_{OH}	High Level Output Voltage	+5.5	Vdc
T_{A}	Operating Temperature Range (N82S25) (S82S25)	$\begin{gathered} 0^{\circ} \text { to }+75^{\circ} \\ -55^{\circ} \text { to }+125^{\circ} \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { SB2S25 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S25 } & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

	PARAMETER	TEST CONDITIONS	S82S25 ${ }^{1,2,3}$			N82S25 ${ }^{1,2,3}$			UNIT
			MIN	TYP ${ }^{8}$	MAX	MIN	TYP ${ }^{8}$	MAX	
IIL	" 0 " Input Current	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$		-10	-150		-10	-100	$\mu \mathrm{A}$
$1_{1 H}$	"1" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			25			10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	" 0 " Level Input Voltage	$V_{C C}=$ MIN			. 80			. 85	V
$V_{\text {IH }}$	"1" Level Input Voltage	$V_{C C}=M A X$	2.0			2.0			V
$V_{\text {IC }}$	Input Clamp Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \text { (Note 6) } \end{aligned}$		-1.0	-1.5		-1.0	-1.5	V
V_{OL}	"0" Output Voltage	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { MIN }(\text { Notes } 4,5) \end{aligned}$		0.35	0.5		0.35	0.45	V
$\mathrm{CiN}_{\text {I }}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		5			5		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{CE}={ }^{\prime \prime}{ }^{\prime \prime} \end{aligned}$		8			8		pF
Icc	Power Supply Current	(Note 5)		80	120		80	105	mA
lolk	Output Leakage Current	$\begin{aligned} & \overline{\mathrm{CE}}=" 1^{\prime \prime}, \mathrm{V}_{\mathrm{OUT}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} \end{aligned}$		<1	100		<1.0	100	$\mu \mathrm{A}$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Positive current is defined as into the terminal referenced.
3. Positive logic definition: " 1 " = HIGH $\approx+5.0 \mathrm{~V} ; " 0$ " = LOW \approx GRD.
4. Output sink current is supplied through a resistor to V_{CC}.
5. All sense outputs in " 0 " state.
6. Test each input one at a time.
7. To guarantee a WRITE into the slowest bit.
8. Typical values are at $V_{C C}=+5.0 \vee$ and $T_{A}=+25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS $\begin{array}{ll}\text { S82S25 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S25 } & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C} 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

PARAMETER	TEST CONDITIONS	S82S25			N82S25			UNIT
		MIN	TYP ${ }^{8}$	MAX	MIN	TYP ${ }^{8}$	MAX	
Propagation Delays								
TAA Address Access Time			35	60		35	50	ns
TCE Chip Enable Access Time			20	35		20	35	ns
TCD Chip Enable Output Disable Time			20	35		20	35	ns
TwD Write Enable to Output Disable Time			20	30		20	25	ns
TWR Write Recovery Time			35	60		35	50	ns
Write Set-up Times	$\begin{aligned} & R_{1}=270 \Omega \\ & R_{2}=600 \Omega \end{aligned}$							
TWSA Address to Write Enable	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	10	-8		0	-8		ns
TWSD Data In to Write Enable		25	5		20	5		ns
TWSC $\overline{\mathrm{CE}}$ to Write Enable		0	-5		0	-5		ns
Write Hold Times								
TWHA Address to Write Enable		10	0		5	0		ns
TWHD Data In to Write Enable		10	-3		5	-3		ns
TWHC $\overline{\mathrm{CE}}$ to Write Enable		5	0		5	0		ns
TwP Write Enable Pulse Width (Note 7)		30	18		30	18		ns

AC TEST LOAD AND WAVEFORMS

SWITCHING PARAMETERS MEASUREMENT INFORMATION

READ CYCLE

ADDRESS ACCESS TIME

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

TWR Delay between end of WRITE ENABLE pulse and when DATA OUTPUT becomes valid. (Assuming ADDRESS still valid - not as shown.)

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
$T_{C D} \quad$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.

TAA Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

Twsc Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TWHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TwP Width of WRITE ENABLE pulse.
TwSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.

TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.

TwD Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT is in off state.

TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

DIGITAL 8000 SERIES TTL/MEMORY

PIN CONFIGURATION

TRUTH TABLE

LET:

$\begin{aligned} P_{\mathrm{n}}=\Pi_{0}^{15}\left(\mathrm{k}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}}+\mathrm{j}_{\mathrm{m}} \overline{\bar{I}_{\mathrm{m}}}\right) \quad ; \quad \mathrm{k} & =0,1, \mathrm{X} \text { (Don't Care) }, \\ \mathrm{n} & =0,1,2, \ldots \ldots, 47\end{aligned}$
where:

Unprogrammed state	$: j_{m}=k_{m}=0$
Programmed state	$: j_{m}=\overline{k_{m}}$
$S_{r}=f\left(\Sigma_{0}^{47} P_{n}\right)$	$; r \equiv p=0,1,2, \ldots, 7$

MODE	P_{n}	$\overline{C E}$	F_{p}	F_{p}^{*}	$S_{r} \stackrel{?}{\underline{~ f ~}}\left(P_{n}\right)$
$\begin{aligned} & \text { Disabled } \\ & \text { (82S101) } \end{aligned}$	X	1	1	1	X
$\begin{aligned} & \hline \text { Disabled } \\ & \text { (82S100) } \end{aligned}$			Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	
Read	1	0	1	0	YES
	0	0	0	1	
	X	0	0	1	NO

N

APPLICATIONS

LARGE READ ONLY MEMORY

RANDOM LOGIC

CODE CONVERSION
PERIPHERAL CONTROLLERS
LOOK-UP AND DECISION TABLES
MICROPROGRAMMING
ADDRESS MAPPING
CHARACTER GENERATORS
SEQUENTIAL CONTROLLERS
TRI-STATE OUTPUTS - 82S100
OPEN COLLECTOR OUTPUTS - 82S101

- OUTPUT DISABLE FUNCTION:

TRI-STATE - Hi-Z
OPEN COLLECTOR - Hi

- CERAMIC DIP
- POWER DISSIPATION - 600mW, TYPICAL
- INPUT LOADING - $(-100 \mu \mathrm{~A})$, MAXIMUM
- OUTPUT OPTION:

OQUNTAL CONTROLLERS

BLOCK DIAGRAM

FPLA TYPICAL LOGIC PATH

ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$\mathrm{~V}_{\text {in }}$	Input Voltage	+5.5
$\mathrm{~V}_{\mathrm{OH}}$	High Level Output Voltage (82S101)	+5.5
$\mathrm{~V}_{\mathrm{O}}$	Off-State Output Voltage (82S100)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	0° to $+75^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$
Vdc		

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C} ; 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS		LIMITS			UNIT	NOTES		
		MIN	TYP ${ }^{2}$	MAX						
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage			$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V}, 1_{I N}=-18 \mathrm{~mA} \end{aligned}$		2	-0.8	$\begin{array}{r} 0.8 \\ -1.2 \end{array}$	$V$$V$$V$	1
$V_{\text {IL }}$	Low-Level Input Voltage	1								
$V_{\text {IC }}$	Input Clamp Voltage	1,7								
V_{OH}	High-Level Output Voltage (82S100)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4			V	1,5		
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}$			0.35	0.45	V	1, 8		
Iolk	Output Leakage Current (82S101)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\begin{aligned} & V_{\text {OUT }}=5.25 \mathrm{~V} \\ & V_{\text {OUT }}=5.25 \mathrm{~V} \\ & V_{\text {OUT }}=0.45 \mathrm{~V} \end{aligned}$		1	40	$\mu \mathrm{A}$	6		
lo(off)	Hi-Z State Output Current (82S100)				-1	40 -40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$		
$\begin{aligned} & I_{I H} \\ & I_{I L} \end{aligned}$	High-Level Input Current Low-Level Input Current	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V} \\ & V_{I N}=0.45 \mathrm{~V} \end{aligned}$			$\begin{array}{r} <1 \\ -10 \end{array}$	$\begin{array}{r} 25 \\ -100 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$			
los	Short-Circuit Output Current (82S100)	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		-20		-70	mA	3, 7		
ICC	$V_{C C}$ Supply Current (82S100, 82S101)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			120	170	mA	4		
$\begin{aligned} & C_{I N} \\ & C_{0} \end{aligned}$	Input Capacitance Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} \end{aligned}$		5 8		pF pF	6		

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Duration of short circuit should not exceed one second.
4. I C is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.
5. Measured with VIL applied to $\overline{C E}$ and a logic "1" stored.
6. Measured with $V_{I H}$ applied to $\overline{C E}$.
7. Test each output one at the time.
8. Measured with a programmed logic condition for which the output under test is at a " 0 " logic level. Output sink current is supplied thru a resistor to VCC.

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	LIMITS			UNIT
		MIN	TYP ${ }^{2}$	MAX	
Propagation Delay					
$\mathrm{T}_{1 A} \quad$ Input to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	50	ns
TCD Chip Disable to Output	$\mathrm{R}_{1}=270$		15	20	ns
TCE Chip Enable to Output	$\mathrm{R}_{2}=600$		15	20	ns

AC TEST FIGURE AND WAVEFORM

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $V_{C C}=5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.

OBJECTIVE PROGRAMMING PROCEDURE

The 82S100/101 are shipped in an unprogrammed state, characterized by:
A. All internal $\mathrm{Ni}-\mathrm{Cr}$ links are intact.
B. Each product term (P-term) contains both true and complement values of every input variable I_{m} (P-terms always logically "FALSE").
C. The Sum Matrix contains all 48 P-terms.
D. The polarity of each output is set to active HIGH (F_{p} function).
E. All outputs are at a LOW logic level.

To program each of 8 Boolean logic functions of 16 true or complement variables, including up to 48 P-terms, follow the Program/Verify procedures for the Product Matrix, Sum Matrix, and Output Polarity outlined below.

OUTPUT POLARITY

PROGRAM ACTIVE LOW (F_{p}^{*} Function)
Program output polarity before programming Product Matrix and Sum Matrix. Program one output at the time.

1. Set GND (pin 14) to OV.
2. Do not apply power to the device (V_{CC}, pin 28 , open).
3. Apply $\mathrm{V}_{\mathrm{OUT}}=+18 \mathrm{~V}$ to the appropriate output for 1 ms , and return to OV .
4. Repeat step 3 to program other outputs.

VERIFY OUTPUT POLARITY

1. Set GND (pin 14) to $O V$, and $V_{C C}(p i n 28)$ to $+5 V$.
2. Enable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to LOW logic level.
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to all inputs I_{0} through I_{15}.
4. Verify output polarity by sensing the logic state of outputs F_{0} through F_{7}. All outputs at a HIGH logic level are programmed active HIGH (F_{p} function), while all outputs at a LOW logic level are programmed active LOW (F_{p}^{*} function).
5. Remove $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ from inputs I_{0} through I_{15}.

PRODUCT MATRIX

PROGRAM INPUT VARIABLE

Program one input at the time and one P-term at the time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P-terms.

1. Set GND (pin 14) to $O V$, and $V_{C C}$ (p in 28) to $+5 V$.
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to HIGH logic level.
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to all inputs I_{0} through l_{15}.
4. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to
outputs F_{0} through F_{5} with F_{0} as LSB. Use standard TTL logic levels.
5 a. If the P-term contains neither I_{0} nor $\overline{I_{0}}$ (input is a Don't Care), fuse both I_{0} and $\overline{I_{0}}$ links by executing both steps 5 b and 5 c , before continuing with step 7.
$5 b$. If the P-term contains I_{0}, set to fuse the \bar{I}_{0} link by lowering the input voltage to I_{0} from $V_{I N}=+10 \mathrm{~V}$ to a HIGH logic level. Execute step 6.
$5 c$. If the P-term contains $\overline{I_{0}}$, set to fuse the I_{0} link by lowering the input voltage to I_{0} from $V_{I N}=+10 \mathrm{~V}$ to a LOW logic level. Execute step 6.
6a. After 10μ s delay, raise FE (pin 1) from 0 V to +17 V . The source must have a current limit of 250 mA , and rise time of 10 to $50 \mu \mathrm{~s}$.
6 . After 10μ s delay, pulse the $\overline{\mathrm{CE}}$ input to +10 V for a period of 1 ms .

6c. After 10μ s delay, return FE input to OV .
7. Return input I_{0} to a disable state by applying $\mathrm{V}_{\mathrm{IN}}=$ +10 V .
8. Repeat steps 5 through 7 for all other input variables.
9. Repeat steps 4 through 8 for all other P-terms.
10. Remove $\mathrm{V} / \mathrm{N}=+10 \mathrm{~V}$ from all input variables.

VERIFY INPUT VARIABLE

1. Set GND (pin 14) to 0 V , and V_{CC} (pin 28) to +5 V .
2. Enable F_{7} output by setting $\overline{\mathrm{CE}}$ to +10 V .
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to inputs I_{0} through 115 .
4. Address the P-term to be verified (No. O through 47) by applying the corresponding binary code to outputs F_{0} through F_{5}.
5. Interrogate input variable I_{0} as follows:
A. Lower the input voltage to I_{0} from $V_{I N}=+10 \mathrm{~V}$ to a HIGH logic level, and sense the state of output F_{7}.
B. Lower the input voltage to 10 from a HIGH to a LOW logic level, and sense the logic state of output F7.
The state of I_{0} contained in the P-term is determined in accordance with the following truth table:

I_{0}	F_{7}	Input Variable State Contained In P-Term
0	1	$\overline{I_{0}}$
1	0	I_{0}
0	0	Dont Care
1	1	$\left(I_{0}\right),\left(\overline{I_{0}}\right)$
0	1	
1	1	0

Note that two tests are required to uniquely determine the state of the input variable contained in the P-term.
6. Return input I_{0} to a disable state by applying $V_{I N}$ $=+10 \mathrm{~V}$.
7. Repeat steps 5 and 6 for all other input variables.
8. Repeat steps 4 through 7 for all other P-terms.
9. Remove $\mathrm{V}_{1 \mathrm{~N}}=+10 \mathrm{~V}$ from all input variables.

SUM MATRIX

PROGRAM PRODUCT TERM

Program one output at the time for one P-term at the time. All P_{n} links of unused P-terms in the Sum Matrix are not required to be fused.

1. Set GND (pin 14) to 0 V , and V_{CC} (pin 28) to +8.5 V .
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to a HIGH logic level.
3. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input variables I_{0} through I_{5}, with I_{0} as LSB. Use standard TTL levels.

4a. If the P -term is contained in output function F_{0} ($F_{0}=1$ or $F_{0}^{*}=0$), go to step 6.
4b. If the P -term is not contained in output function $F_{0}\left(F_{0}=0\right.$ or $\left.F_{0}^{*}=1\right)$, set to fuse the P_{n} link by applying $\mathrm{V}_{\mathrm{OUT}}=+10 \mathrm{~V}$ to output F_{0}.
5a. After $10 \mu \mathrm{~s}$ delay, raise FE (pin 1) from 0 V to +17 V .
5 b. After $10 \mu \mathrm{~s}$ delay, pulse the $\overline{\mathrm{CE}}$ input to +10 V for a period of 1 ms .

5c. After 10μ s delay, return FE input to OV.
6. Repeat steps 4 and 5 for all other output functions.
7. Repeat steps 3 through 6 for all other P-terms.
8. Remove +8.5 V from V_{CC}.

VERIFY PRODUCT TERM

1. Set GND (p in 14) to $0 V$, and $V_{C C}$ (pin 28) to +8.5 V .
2. Enable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to a LOW logic leve!.
3. Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to input variables I_{0} through I_{5}, with I_{0} as the LSB. Use standard TTL levels.
4. To determine the status of the P_{n} link in the Sum Matrix for each output function F_{p} or F_{p}^{*}, sense the state of outputs F_{0} through F_{7}. The status of the link is given by the following truth table:

Output		P-term Link
Active HIGH $\left(\mathbf{F}_{\mathbf{p}}\right)$	Active LOW $\left(\mathbf{F}_{\mathbf{p}}^{*}\right)$	
0	1	FUSED
1	0	PRESENT

5. Repeat steps 3 and 4 for all other P-terms.
6. Remove +8.5 V from V_{CC}.

DESCRIPTION

The 82S114 and 82S115 are Schottky-clamped Read Only Memories, incorporating on-chip data output registers. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S114 and 82 S 115 are supplied with all outputs at logical " 0 ". Outputs are programmed to a logic " 1 " level at any specified address by fusing a Ni-Cr link matrix.
The 82S114 and 82S115 are fully TTL compatible, and include on-chip decoding and two chip enable inputs for ease of memory expansion. They feature Tri-State outputs for optimization of word expansion in bussed organizations. A D-type latch is used to enable the Tri-State output drivers. In the TRANSPARENT READ mode, stored data is addressed by applying a binary code to the address inputs while holding STROBE high. In this mode the bit drivers will be controlled solely by $\overline{\mathrm{CE}}$ and CE2 lines. In the LATCHED READ mode, after the desired address is applied and both $\overline{C E 1}$ and CE2 are enabled, data will enter the output latches following the positive transition of STROBE, and the data out lines will be locked into their last valid state following the negative transition of STROBE. The latches will remain set and the outputs enabled until the chip is disabled and STROBE is brought high.
Both 82S114 and 82S115 devices are available in the commercial temperature range. For the commercial temperature range, $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S $114 / 115$, I.

FEATURES

- ORGANIZATION:

$$
\begin{aligned}
& 82 S 114-256 \times 8 \\
& 82 S 115-512 \times 8
\end{aligned}
$$

- ADDRESS ACCESS TIME - 60ns, MAXIMUM
- POWER DISSIPATION $-165 \mu \mathrm{~W} /$ BIT, TYPICAL
- INPUT LOADING - $(-100 \mu A)$, MAXIMUM
- ON-CHIP ADDRESS DECODING
- ON-CHIP STORAGE LATCHES

- TRI-STATE OUTPUTS

- FAST PROGRAMMING - 5 SEC., MAXIMUM
- PIN COMPATIBLE TO N8204/N8205 ROMs

APPLICATIONS

MICROPROGRAMMING

HARDWIRE ALGORITHMS
CHARACTER GENERATION
CONTROL STORE
SEQUENTIAL CONTROLLERS

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {IN }}$	Input Voltage	+5.5
V_{O}	Off-State Output Voltage	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	0° to $+75^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$

PARAMETER		TEST CONDITIONS	LIMITS ${ }^{1}$			UNIT	
		MIN	TYP ${ }^{2}$	MAX			
$I_{\text {IL }}$	" 0 " Input Current		$V_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$I_{1 H}$	" 1 " Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			25	$\mu \mathrm{A}$	
$V_{\text {IL }}$	" 0 " Level Input Voltage				. 85	V	
$\mathrm{V}_{\text {IH }}$	"1" Level Input Voltage		2.0			V	
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.8	-1.2	\checkmark	
V_{OL}	"0' Output Voltage	$\mathrm{I}_{\text {OUT }}=9.6 \mathrm{~mA}$			0.5	V	
V_{OH}	"1" Output Voltage	$\begin{aligned} & \overline{C E}=" 0^{\prime \prime}, C E_{2}=" 1^{\prime \prime}, \\ & \text { IOUT }=-2 \mathrm{~mA}, \quad{ }^{\prime \prime} \text { STORED } \end{aligned}$	2.7	3.3		V	
IO(OFF)	HI-Z State Output Current	$\begin{aligned} & \overline{\mathrm{CE}}=" ' 1 \text { " or } C E_{2}=0, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}={ }^{\prime}=1 \text { ' or } C E_{2}=0, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$			40 -40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
$C_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		5		pF	
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} \\ & \overline{\mathrm{CE}}{ }_{1}={ }^{\prime \prime} 1^{\prime \prime} \text { or } C E_{2}=0 \end{aligned}$		8		pF	
$I_{\text {cc }}$	$V_{\text {CC }}$ Supply Current			135	185	mA	
los	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 3)	-20		-70	mA	

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP ${ }^{2}$	MAX			
$\mathrm{T}_{\text {AA }}$	Address Access Time		LATCHED or TRANSPARENT READ		35	60	ns
$\mathrm{T}_{\text {ce }}$	Chip Enable Access Time	$\mathrm{R}_{1}=270 \Omega, \mathrm{R}_{2}=600 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	40	ns	
$T_{C D}$	Chip Disable Time	(Note 4)		20	40	ns	
TADH	Address Hold Time	LATCHED READ ONLY$\begin{gathered} R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 p F \\ (\text { Note } 5) \end{gathered}$	0	-10	30	ns	
$\mathrm{T}_{\text {CDH }}$	Chip Enable Hold Time		10	0		ns	
$\mathrm{T}_{\text {SW }}$	Strobe Pulse Width		30	20		ns	
TSL	Strobe Latch Time		60	35		ns	
T_{DL}	Strobe Delatch Time					ns	
$\mathrm{T}_{\text {CDS }}$	Chip Enable Set-up Time		40			ns	

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$.
3. No more than one output should be grounded at the same time and strobe should be disabled. Strobe is in " 1 " state.
4. If the strobe is high, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear T_{A} nanoseconds after the address has changed and $T_{C E}$ nanoseconds after the output circuit is enabled. $T_{C D}$ is the time required to disable the output and switch it to an "off" or high impedance state after it has been enabled.
5. In Latched Read Mode data from any selected address will be held on the output when strobe is lowered. Only when strobe is raised will new location data be transferred and chip enable conditions be stored. The new data will appear on the outputs if the chip enable conditions enable the outputs.

MEMORY TIMING

AC TEST LOAD AND WAVEFORMS

TYPICAL FUSING PATH

RECOMMENDED PROGRAMMING PROCEDURE

The $82 \mathrm{~S} 114 / 115$ are shipped with all bits at logical " 0 " (low). To write logical " 1 ", proceed as follows:

SET-UP

a. Apply GND to pin 12.
b. Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to $V_{C C}$.
c. Set $\overline{C E} 1$ to logic " 0 ", and CE2 to logic " 1 " (TTL levels).
d. Set Strobe to logic " 1 " level.

PROGRAM-VERIFY SEQUENCE

Step 1 Raise $V_{C C}$ to $V_{C C P}$, and address the word to be programmed by applying TTL " 1 " and " 0 " logic levels to the device address inputs.
Step 2 After 10μ s delay, apply to FE1 (pin 13) a voltage source of $+5.0 \pm 0.5 \mathrm{~V}$, with 10 mA sourcing current capability.

Step 3 After 10μ s delay, apply a voltage source of +17.0 $\pm 1.0 \mathrm{~V}$ to the output to be programmed. The source must have a current limit of 200 mA . Program one output at the time.

Step 4 After 10μ s delay, raise FE2 (pin 11) from $0 V$ to $+5.0 \pm 0.5 \mathrm{~V}$ for a period of 1 ms , and then return to $0 V$. Pulse source must have a 10 mA sourcing current capability.

Step 5 After 10μ s delay, remove +17.0 V supply from programmed output.
Step 6 To verify programming, after 10μ s delay, return FE1 to 0 V . Raise V_{CC} to $\mathrm{V}_{\mathrm{CCH}}=+5.5 \pm .2 \mathrm{~V}$. The programmed output should remain in the " 1 " state. Again, lower $V_{C C}$ to $V_{C C L}=+4.5 \pm .2 \mathrm{~V}$, and verify that the programmed output remains in the " 1 " state.
Step 7 Raise $V_{C C}$ to $V_{C C P}$, and repeat steps 2 through 6 to program other bits at the same address.

Step 8 Repeat steps 1 through 7 to program all other address locations.

TYPICAL PROGRAMMING SEQUENCE

PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $T_{A}=+25^{\circ} \mathrm{C}$

NOTES:

1. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu \mathrm{~F}$ capacitor to reduce voltage spikes.
2. Care should be taken to insure the $17 \pm 1 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
3. V_{S} is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
4. Continuous fusing for an unlimited time is also allowed, provided that a 60% duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period ($\mathrm{VCC}_{\mathrm{cc}}=0 \mathrm{~V}$) of 3 mS .

82S114/115 MANUAL PROGRAMMER

TIMING SEQUENCE

FEBRUARY 1975
 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S116 and 82 S 117 are Schottky clamped TTL, read/write memory arrays organized as 256 words of one bit each. They feature either open collector or tri-state output options for optimization of word expansion in bussed organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and PNP input transistors which reduce input loading to $25 \mu \mathrm{~A}$ for a " 1 " level, and $-100 \mu \mathrm{~A}$ for a " 0 " level.

During WRITE operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of WRITE-READ cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.

Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as "Cache", buffers, scratch pads, writable control stores, etc.

Both 82S116 and 82S117 devices are available in the commercial temperature range. For the commercial temperature range, $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S116/117, B or F .

FEATURES

- ORGANIZATION - 256×1
- ADDRESS ACCESS TIME - 40ns, MAXIMUM
- WRITE CYCLE TIME - 25ns, MAXIMUM
- POWER DISSIPATION - $1.5 \mathrm{~mW} /$ BIT. TYPICAL
- INPUT LOADING - $(-100 \mu \mathrm{~A})$ MAXIMUM
- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT DURING WRITE
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION:

TRI-STATE - 82S116
OPEN COLLECTOR - 82S117

- 16 PIN CERAMIC DIP

APPLICATIONS

BUFFER MEMORY

WRITABLE CONTROL STORE
MEMORY MAPPING
PUSH DOWN STACK
SCRATCH PAD

PIN CONFIGURATION

TRUTH TABLE

MODE	$\overline{\mathrm{CE}}{ }^{*}$	$\overline{W E}$	DIN	$\overline{\text { DOUT }}$	
				82S116	82S117
READ	0	1	X	$\frac{\text { STORED }}{\overline{\text { DATA }}}$	$\frac{\text { STORED }}{\overline{\text { DATA }}}$
WRITE " 0 "	0	0	0	1	1
WRITE "1"	0	0	1	0	0
DISABLED	1	X	X	High-Z	1

"' 0 " = All $\overline{C E}$ inputs low; "1" = one or more $\overline{C E}$ inputs high
$X=$ Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {IN }}$	Input Voltage	+5.5
$V_{\text {OUT }}$ High Level Output Voltage (82S117)	+5.5	Vdc
V_{O}	Off-State Output Voltage (82S116)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	0° to $+75^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS		LIMITS			UNIT	NOTES		
		MIN	TYP ${ }^{2}$	MAX						
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage			$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			V	
$V_{\text {IL }}$	Low-Level Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			0.85		V	1		
$\mathrm{V}_{\text {IC }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$		-1.0	-1.5		V	1,8		
V_{OH}	High-Level Output Voltage (82S116)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$		2.6			V	1,6		
V_{OL}	Low-Level Output Vôltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.35	0.45	V	1,7		
Iolk	Output Leakage Current (82S117)	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			1	40	$\mu \mathrm{A}$	5		
IO(OFF)	HI-Z State Output Current (82S116)	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			1	40	$\mu \mathrm{A}$	5		
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$			-1	-40	$\mu \mathrm{A}$	5		
$\mathrm{I}_{1 \mathrm{H}}$	High-Level Input Current	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V} \end{aligned}$			1	25	$\mu \mathrm{A}$	8		
$I_{\text {IL }}$	Low-Level Input Current				-10	-100	$\mu \mathrm{A}$	8		
Ios	Short-Circuit Output Current (82S116)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$		-20		-70	mA	3		
${ }^{\text {I Cc }}$	V_{CC} Supply Current (82S116)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$			80	115	mA	4		
	$V_{C C}$ Supply Current (82S117)				80	115	mA	4		
C_{IN} Cout	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		5		pF			
	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$			8		pF			

notes:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$.
3. Duration of the short-circuit should not exceed one second.
4. ${ }^{\mathrm{C}} \mathrm{CC}$ is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V , and the output open.
5. Measured with $V_{1 H}$ applied to $\overline{C E 1}, \overline{C E 2}$ and $\overline{C E 3}$.
6. Measured with a logic " O " stored and $V_{I L}$ applied to $\overline{C_{1}}, \overline{C E_{2}}$ and $\overline{C E_{3}}$.
7. Measured with a logic " 1 " stored. Output sink current is supplied through a resistor to V_{CC}.
8. Test each input one at the time.

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	LIMITS			UNIT	NOTE
		MIN	TYP ${ }^{1}$	MAX		
Propagation Delays						
TAA Address Access Time			30	40	ns	
TCE Chip Enable Access Time	$\mathrm{R}_{1}=270 \Omega$		15	25	ns	
TCD Chip Enable Output Disable Time	$\mathrm{R}_{2}=600 \Omega$		15	25	ns	
TWD Write Enable to Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		30	40	ns	
Write Set-up Times						
TwSA Address to Write Enable		0	-5		ns	
TWsD Data In to Write Enable		25	15		ns	
Twsc $\overline{\mathrm{CE}}$ to Write Enable		0	-5		ns	
Write Hold Times						
TWHA Address to Write Enable		0	-5		ns	
TWHD Data In to Write Enable		0	-5		ns	
TWHC $\overline{\mathrm{CE}}$ to Write Enable		0	-5		ns	
TWP Write Enable Pulse Width		25	15		ns	2

AC TEST LOAD

NOTES:

1. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.

SWITCHING PARAMETERS MEASUREMENT INFORMATION

READ CYCLE

ADDRESS ACCESS TIME

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
$T_{C D} \quad$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
$T_{A A}$ Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

Twsc Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TwhD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

Twp Width of WRITE ENABLE pulse.
TwSA Required delay between beginning of valid ADD. RESS and beginning of WRITE ENABLE pulse.

TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
$T_{\text {WD }}$ Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT reflects complement of DATA INPUT.
TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

1024-BIT BIPOLAR PROGRAMMABLE ROM (256×4 PROM)

FEBRUARY 1975

DESCRIPTION

The 82S126 (Open Collector Outputs) and the 82S129 (Tri-State Outputs) are Bipolar 1024-Bit Read Only Memories, organized as 256 words by 4 bits per word. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S126 and 82S129 devices are supplied with all outputs at logical " 0 ". Outputs are programmed to a logic " 1 " level at any specified address by fusing a Ni - Cr link matrix.

The 82S126 and 82S129 are fully TTL compatible, and include on-chip decoding and two chip enable inputs for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.

Both 82S126 and 82S129 devices are available in the commercial and military temperature ranges. For the commercial temperature range ($0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) specify $\mathrm{N} 82 \mathrm{~S} 126 / 129, \mathrm{~B}$ or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S $126 / 129$, F only.

FEATURES

- ORGANIZATION - 256×4
- ADDRESS ACCESS TIME:

S82S126/129 - 70ns, MAXIMUM
N82S126/129 - 50ns, MAXIMUM

- POWER DISSIPATION $-0.5 \mathrm{~mW} /$ BIT TYPICAL
- INPUT LOADING:

S82S126/129 - (-150 $\mu \mathrm{A})$ MAXIMUM N82S126/129 - (-100 μ A) MAXIMUM

- TWO CHIP ENABLE INPUTS
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION:

OPEN COLLECTOR - 82S126
TRI-STATE - 82S129

- NO SEPARATE "FUSING" PINS
- UNPROGRAMMED OUTPUTS ARE "0" LEVEL
- 16-PIN CERAMIC DIP

APPLICATIONS

PROTOTYPING/VOLUME PRODUCTION
SEQUENTIAL CONTROLLERS
MICROPROGRAMMING
HARDWIRED ALGORITHMS
CONTROL STORE
RANDOM LOGIC
CODE CONVERSION

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage	+5.5	Vdc
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage (82S126)	+5.5	Vdc
V_{O}	Off-State Output Voltage (82S129)	+5.5	Vdc
T_{A}	Operating Temperature Range		
	(N82S126/129)	0° to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
	(S82S126/129)	-55° to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { S82S126/S82S } 129 & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S } 126 / \mathrm{N} 82 S 129 \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

SWITCHING CHARACTERISTICS $\begin{array}{ll}\text { S82S } 126 / 129 ~ & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S126/129 }\end{array} 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	S82S126/129			N82S126/129			UNIT
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX	
Propagation Delay								
TAA Address to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	70		35	50	ns
$T_{C D}$ Chip Disabie to Output	$\mathrm{R}_{1}=270 \Omega$		15	35		15	20	ns
$\mathrm{T}_{\text {CE }}$ Chip Enable to Output	$\mathrm{R}_{2}=600 \Omega$		15	35		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PROGRAMMING PROCEDURE

1. Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to VCC.
2. Select the Address to be programmed, and raise V_{CC} to $V_{C C P}=8.75 \pm .25 \mathrm{~V}$.
3. After $10 \mu \mathrm{~s}$ delay, apply $\mathrm{V}_{\text {OUT }}=+17 \pm 1 \mathrm{~V}$ to the output to be programmed. Program one output at the time.
4. After $10 \mu \mathrm{~s}$ delay, pulse both $\overline{\mathrm{CE}}$ inputs to logic " 0 " for 1 to 2 ms .
5. After $10 \mu \mathrm{~s}$ delay, remove +17 V from the programmed output.
6. To verify programming, after 10μ s delay, lower $V_{C C}$ to $\mathrm{V}_{\mathrm{CCH}}=+5.5 \pm .2 \mathrm{~V}$, and apply a logic " 0 " level to both $\overline{\mathrm{CE}}$ inputs. The programmed output should remain in the " 1 " state. Again, lower $V_{C C}$ to $V_{C C L}=+4.5 \pm .2 \mathrm{~V}$, and verify that the programmed output remains in the "1" state.
7. Raise $V_{C C}$ to $V_{C C P}=8.75 \pm .25 \mathrm{~V}$, and repeat steps 3 through 6 to program other bits at the same address.
8. After 10μ s delay, repeat steps 2 through 7 to program all other address locations.

NOTES:

1. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu F$ capacitor to reduce voltage spikes.
2. Care should be taken to insure the $17 \pm 1 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant Curren source clamped a t the specified votrase imit:
3. V_{S} is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a sucicessful fusing attempt.
4. Continuous fusing for an unlimited time is also allowed, provided that a 33% duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period ($V_{\mathrm{CC}}=0 \mathrm{~V}$) of 4 ms .

AC TEST FIGURE AND WAVEFORM

TYPICAL FUSING PATH

TYPICAL PROGRAMMING SEQUENCE

MANUAL PROGRAMMER

TIMING SEQUENCE

$8 T 26 A-B, F \bullet 8 T 28-B, F$
DIGITAL $8 T$ SERIES INTERFACE TTL/MSI

DESCRIPTION

The 8T26A/28 consists of four pairs of Tri-State logic elements configured as Quad Bus Drivers/Receivers along with separate buffered receiver enable and driver enable lines. This single IC Quad Transceiver design distinguishes the 8T26A/28 from conventional multi-IC implementations. In addition, the 8T26/28's ultra high speed while driving heavy bus capacitance (300 pF) makes these devices particularly suitable for memory systems and bidirectional data buses.

Both the Driver and Receiver gates have Tri-State outputs and low-current PNP inputs. Tri-State outputs provide the high switching speeds of totempole TTL circuits while offering the bus capability of open collector gates. PNP inputs reduce input loading to $200 \mu \mathrm{~A}$ maximum.

FEATURES

- 8T26A HAS INVERTING OUTPUTS

- 8 T28 HAS NON-INVERTING OUTPUTS
- SCHOTTKY-CLAMPED TTL
- TRI-STATE OUTPUTS (40mA CURRENT SINK)
- LOW CURRENT PNP INPUTS
- SCHOTTKY INPUT CLAMP DIODES
- HIGH SPEED (20ns WITH 300pF LOAD)

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS

Commercial: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Military: $\quad V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP	MAX			
Driver							
	Low Level Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$	
IIL	Low Level Input Current (Disabled)	$V_{\text {IN }}=0.4 \mathrm{~V}$			-25	$\mu \mathrm{A}$	
I_{IH}	High Level Input Current ($\mathrm{D}_{\text {IN }}, \mathrm{D}_{\mathrm{E}}$)	$V_{\text {IN }}=V_{\text {CC }}$ MAX			25	$\mu \mathrm{A}$	
V_{OL}	Low Level Output Voltage (Pins 3, 6, 10, 13)	$\mathrm{I}_{\text {OUT }}=48 \mathrm{~mA}$ (Note 8)			0.5	v	
V_{OH}	High Level Output Voltage (Pins 3, 6, 10, 13)	$\begin{aligned} & \text { IOUT }=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { MIN } \\ & \text { (Note } 7 \text {) } \end{aligned}$	2.4			v	
los	Short Circuit Output Current (Pins 3, 6, 10, 13)	$\begin{aligned} & V_{\text {OUT }}=0 V, V_{\text {CC }}=V_{\text {CC }} \text { MAX } \\ & \text { (Note 12) } \end{aligned}$	-50		-150	mA	
Receiver							
$I_{\text {IL }}$	Low Level Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$	
$I_{1 H}$	High Level Input Current (R_{E})	$V_{\text {IN }}=V_{\text {CC }}$ MAX			25	$\mu \mathrm{A}$	
V_{OL}	Low Level Output Voltage	$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}$ (Note 8)			0.5	V	
V_{OH}	High Level Output Voltage (Pins 2, 5, 11, 14)	$\begin{aligned} & I_{\text {OUT }}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=-2.0 \mathrm{~mA}(\text { Note } 7) \end{aligned}$	3.5 2.4			$\begin{aligned} & V \\ & V \end{aligned}$	
Ios	Short Circuit Output Current (Pins 2, 5, 11, 14)	$V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=V_{\text {CC }}$ MAX	-30		-75	mA	
Both Driver and Receiver							
V_{TL}	Low Level Input Threshold Voltage		0.85			v	
$V_{\text {TH }}$	High Level Input Threshold Voltage				2	V	
	Low Level Output Off Leakage Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$	
	High Level Output Off Leakage Current	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$	
v_{1}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-1.0	v	
	Power/Current Consumption						
	$\begin{aligned} & 8 \mathrm{~T} 26 \\ & 8 \mathrm{~T} 28 \end{aligned}$	$\begin{aligned} & V_{C C}=V_{C C} \text { MAX } \\ & V_{C C}=V_{C C} M A X \end{aligned}$			457/87	$\mathrm{mW} / \mathrm{mA}$ $\mathrm{mW} / \mathrm{mA}$	

SWITCHING CHARACTERISTICS

PARAMETER	TEST CONDITIONS	8T26A	8 T 28	UNIT
		MAX	MAX	
Propagation Delay				
ton Dout to ROUT toff Dout to Rout	$C_{L}=30 \mathrm{pF}$, Note 9	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	ns
ton $D_{\text {IN }}$ to DOUT toff $D_{\text {IN }}$ to DOUT	$C_{L}=300 \mathrm{pF}$, Note 9	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	ns
Data Enable to Data Output				
$t_{P Z L}$ High Z to O tplz O to High Z	$C_{L}=300 \mathrm{pF}$, Note 9	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 28 \\ & 23 \end{aligned}$	ns
Receiver Enable to Receiver Output				
$t_{P Z L}$ High Z to O tplz O to High Z	$C_{L}=30 \mathrm{pF}$, Note 9	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	ns

NOTES:

1. All voltage measurements are referenced to the ground terminal
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referenced.
4. Positive NAND Logic definition: "UP" Level $=" 1 "$ "DOWN" Level $=$ " 0 "
5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings.
6. Measurements apply to each output and the associated data input independently.
7. Output source current is supplied through a resistor to ground.
8. Output sink current is supplied through a resistor to V_{CC}.
9. Refer to AC test circuits.
10. Manufacturer reserves the right to make design and process changes and improvements.
11. $V_{C C}=5.25 \mathrm{~V}$.
12. Do not ground more than one outpuit at a time.

AC TEST CIRCUITS AND WAVEFORMS

PROPAGATION DELAY (DIN TO DOUT)

INPUT PULSE:
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ (10% to 90%) freq $=10 \mathrm{MHz}$ (50% duty cycle) Amplitude $=2.6 \mathrm{~V}$

PROPAGATION DELAY (DATA ENABLE TO DATA OUTPUT)

INPUT PULSE:
$t_{r}=t_{f}=5 \mathrm{~ns}$ (10% to 90%) freq $=5 \mathrm{MHz}(50 \%$ duty cycle) Amplitude $=2.6 \mathrm{~V}$

PROPAGATION DELAY (RECEIVE ENABLE TO RECEIVE OUTPUT)

INPUT PULSE:
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
freq $=5 \mathrm{MHz}$ (50% duty cycle)
Amplitude $=2.6 \mathrm{~V}$

TYPICAL APPLICATIONS
BIDIRECTIONAL DATA BUS

BLOCK DIAGRAM

ADVANCE INFORMATION

DESCRIPTION

The 8T31 8-bit Bidirectional I/O Port is designed to function as a general purpose I/O interface element in minicomputers, microcomputers and other bus oriented digital systems. It consists of 8 clocked latches with two sets of bidirectional inputs/outputs, Bus $A\left(B_{A 0}-B_{A}\right)$ and $B u s B\left(B_{B 0}-B_{B 7}\right)$. Each Bus has a write control line and a read control line. The two buses operate independently except for the case where the user is attempting to write data in from each bus simultaneously. In that case, the data on Bus A will be written into the latches while Bus B will be forced into a high impedance state. Data written into one Bus will appear inverted at the other Bus.

A master enable (\bar{M}_{E}) is provided that enables or disables Bus B regardless of the state of the other inputs.

A unique feature of the 8 T 31 is its ability to start up in a predetermined state. If the clock is maintained at a voltage less than .8 V until the power supply reaches 3.5 V , Bus A will always be all logic 1 levels, while Bus B will be all logic 0 levels.

FEATURES

- LOW INPUT CURRENT--500 $\mu \mathrm{A}$ AT $\mathrm{V}_{\mathrm{IN}}=.55 \mathrm{~V}, 100 \mu \mathrm{~A}$ AT $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ FOR EASY BUS INTERFACE AND MOS INTERFACE
- COMPLETE BIDIRECTIONAL CAPABILITY

- MASTER ENABLE FOR PORT SELECTION (BUS B ONLY)

- bUS A OVERRIDES IF BOTH bUSES ARE IN WRITE MODE SIMULTANEOUSLY
- HIGH FANOUT-IOL=20mA MIN, AT VOL $=.55 \mathrm{~V}$ 10 SCHOTTKY LOADS, 12 STANDARD TTL LOADS, 50 LOW POWER SCHOTTKY LOADS
- HIGH CAPACITIVE DRIVE CAPACITY-IOH=-3.2mA AT $\mathrm{VOH}^{=}=2.4 \mathrm{~V}$
- STARTS UP IN A KNOWN STATE (ALL LOGIC 1 LEVELS ON BUS A, ALL LOGIC 0 LEVELS ON BUS B) WHEN CLOCK IS HELD BELOW .8V UNTIL VCC REACHES 3.5V

PIN CONFIGURATION

CONTROL FUNCTION TABLES

BUS A					
$\bar{R}_{\text {BA }}$	$\overline{W_{B A}}$		CLK		BUS A
X		0	1		WRITE (INPUT)
0		1	X		READ (OUTPUT)
1		1	X		Hi-Z
BUS B					
$\bar{R}_{\text {BB }}$	$W_{\text {BB }}$	$\overline{W_{B A}}$	CLK	$\overline{\mathrm{ME}}$	BUS B
X	X	X	X	1	HI-Z
1	0	X	X	0	HI-Z
X	1	0	X	0	HI-Z
0	0	X	X	0	READ (OUTPUT)
X	1	1	1	0	WRITE (INPUT)

SCHEMATIC

*LOW VOLTAGE CONTROL CIRCUIT

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP	MAX			
V_{OH} V_{OL} High Level Output Voltage V_{I} Input Clampl Output Voltage $\mathrm{I}_{\text {IH }}$ High Level Input Current I_{IL} Low Level Input Current $\mathrm{V}_{\text {IH }}$ High Level Input Voltage $\mathrm{V}_{\text {IL }}$ Low Level Input Voltage I_{OS} Output Short Circuit Current $\mathrm{I}_{\mathrm{OHB}}$ Bus B High Level Output Current I_{CC} Supply Current $\mathrm{C}_{\text {IN }}$ Input Capacitances Control Data			$\begin{aligned} & \text { I OUT }=-3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { IOUT }=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\text {IN }}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0.55 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$	2.4			v
		0.55				v	
		-1				V	
		100				$\mu \mathrm{A}$	
		-500				$\mu \mathrm{A}$	
		2		5.5		v	
		-1		0.8		v	
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$	-20	-200		mA	
		-10		mA			
			150	mA			
		$\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V} \\ & V_{\text {IN }}=0 \mathrm{~V} \\ & V_{\text {IN }}=3 \mathrm{~V} \end{aligned}$		6		pF	
			12	pF			
			9	pF			

SWITCHING CHARACTERISTICS

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP	MAX			
$\begin{aligned} & \mathrm{t}_{\mathrm{ZL}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{ZL}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{HZ}} \end{aligned}$	Propagation Delay From Read ($\overline{\mathrm{R}}_{\mathrm{BB}}$), Write (W_{BB}) and Master Enable ($\overline{\mathrm{M}}_{\mathrm{E}}$) to Bus B		$\begin{aligned} & C_{L}=300 \mathrm{pF} \\ & C_{L}=300 \mathrm{pF} \\ & C_{L}=30 \mathrm{pF} \\ & C_{L}=30 \mathrm{pF} \\ & C_{L}=30 \mathrm{pF} \\ & C_{L}=30 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 27 \\ & 29 \\ & 17 \\ & 14 \\ & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \\ & 30 \\ & 25 \\ & 20 \\ & 30 \end{aligned}$	ns ns ns ns ns ns
${ }^{\mathrm{t}}$ SETUP thold 1 $t_{\text {HOLDO }}$	Bus A Data Setup and Hold Times		$\begin{array}{r} 0 \\ 10 \\ 25 \end{array}$	$\begin{array}{r} -10 \\ 4 \\ 16 \end{array}$		ns ns ns	
${ }^{\text {t }}$ SETUP $t_{\text {HOLD }}$	Bus A Write Setup and Hold Times		$\begin{array}{r} 30 \\ 0 \end{array}$	$\begin{array}{r} 20 \\ -30 \end{array}$		ns ns	
${ }^{\text {t }}$ SETUP $t_{\text {HOLD }}$	Bus B Data Setup and Hold Times		0			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

[^3]
B PACKAGE

NOTES:

1. Lead Material: Alloy 42 or equivalent
2. Body dimensions do not include molding flash.
3. Body Material: Plastic.
4. Thermal Resistance: $\Theta \mathrm{Ja}=.16^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.08^{\circ} \mathrm{C} / \mathrm{mW}$.
5. Tolerances non cumulative.
6. Signetics symbol denotes Lead No. 1 :
7. Lead spacing shall be measured within this zone.
8. All dimensions shown in parentheses are English. (Inches)

FJ PACKAGE

NOTES

1. Lead material: Alloy 42 or equivalent, tin plated.

Body material: Ceramic with glass seal.
Tolerances non cumulative.
Signetics symbol denotes Lead No. 1.
5. Lead spacing shall be measured within this zone.
6. Thermal resistance: $\Theta \mathrm{Ja}=.090^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.025^{\circ} \mathrm{C} / \mathrm{mW}$.
7. All dimensions shown in parentheses are English. (Inches)

FN PACKAGE

- Leadno. 1

NOTES:

1. Lead material: Alloy 42 or equivalent, tin plated.
2. Body material: Ceramic with glass seal.
3. Tolerances non cumulative.
4. Signetics symbol denotes Lead No. 1.
5. Lead spacing shall be measured within this zone.
6. Thermal resistance: $\Theta \mathrm{Ja}=.050^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.012^{\circ} \mathrm{C} / \mathrm{mW}$.
7. All dimensions shown in parentheses are English. (Inches)

IJ PACKAGE

NOTES:

1. Lead material: Kovar or equivalent, gold plated.
2. Body material: Ceramic with Kovar or equivalent.
3. Lid material: Kovar or equivalent, gold plated, alloy seal.
4. Tolerances non cumulative.
5. Signetics symbol denotes Lead No. 1.

6 . Lead spacing shall be measured within this zone
7. Thermal resistance: $\Theta \mathrm{Ja}=.080^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.020^{\circ} \mathrm{C} / \mathrm{mW}$.
8. All dimensions shown in parentheses are English. (Inches)

INC PACKAGE

NOTES:

1. Lead material: Kovar or equivalent, tin plated.
2. Body material: Ceramic with Kovar or equivalent.
3. Lid material: Kovar or equivalent, gold plated, alloy seal.
4. Tolerances non cumulative.
5. Signetics symbol denotes Lead No. 1.
6. Lead spacing shall be measured within this zone.
7. Thermal resistance: $\Theta \mathrm{Ja}=.050^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.015^{\circ} \mathrm{C} / \mathrm{mW}$.
8. All dimensions shown in parentheses are English. (Inches)

IW PACKAGE

NOTES:

1. Lead material: Kovar or equivalent, gold plated.
2. Body material: Ceramic with Kovar or equivalent.
3. Lid material: Kovar or equivalent, gold plated, alloy seal.
4. Tolerances non cumulative.
5. Signetics symbol denotes Lead No. 1.
6. Lead spacing shall be measured within this zone.
7. Thermal resistance: $\Theta \mathrm{Ja}=.050^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.010^{\circ} \mathrm{C} / \mathrm{mW}$.
8. All dimensions shown in parentheses are English. (Inches)

NOTES:

1. Lead material: Kovar or equivalent, tin plated.

Body material: Ceramic with Kovar or equivalent.
3. Lid material: Ceramic, glass seal.
4. Tolerances non cumulative.
5. Signetics symbol denotes Lead No. 1.
6. Lead spacing shall be measured within this zone.
7. Thermal resistance: $\Theta \mathrm{Ja}=.050^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.010^{\circ} \mathrm{C} / \mathrm{mW}$.
8. All dimensions shown in parentheses are English. (Inches)

N PACKAGE

WJ PACKAGE

NOTES:

1. Lead material: Alloy 42 or equivalent, tin plated.
2. Body material: Ceramic with glass seal at leads.
3. Lid material: Ceramic, glass seal.
4. Tolerances non cumulative.
5. Lead spacing shall be measured within this zone.
6. Signetics symbol or angle cut denotes Lead No. 1.
7. Recommended minimum offset before lead bend.
8. Maximum glass climb 010.
9. Thermal resistance: $\Theta \mathrm{Ja}=.195^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.085^{\circ} \mathrm{C} / \mathrm{mW}$.
10. All dimensions shown in parentheses are English. (Inches)

SIGNETICS	TEXAS	MASSACHUSETTS	ARIZONA
	Dallas	Reading	Phoenix
HEADOUARTERS	Phone: (214) 661-1296	Kanan Associates Phone: (617) $944-8484$	Hamilton/Avnet Electronics Phone: (602) 275-7851
811 East Arques Avenue Sunnyvale, California 94086 Phone: (408) 739-7700		MICHIGAN	Kierulff Electronics Phone: (602) 273-7331
	REPRESENTATIVES	Broomfield Hills Ellinger Sales Phone: (313) 642-0203	CALIFORNIA
ARIZONA	ALABAMA	Phone: (313) 642-0203	Culver City
Phoenix Phone: (602) 971-2517	Huntsville	MISSOURI	Hamilton Electro Sales Phone: (213) 558-2131
	20th Century Marketing, Inc. Phone: (205) 772-9237	St. Charles Buckman \& Associates	El Segundo Liberty Electronics
CALIFORNIA	CALIFORNIA	Phone: (314) 724-6690	Phone: (213) 322-8100
Encino Phone: (213) 990-2610		NEW HAMPSHIRE	Los Angeles
	San Diego Mesa Engineering	Portsmouth	Kierulff Electronics Phone: (213) 685-5511
Irvine Phone: (714) 833-8980 (213) 924-1668	Phone: (714) 278-8021	J. J. Theobald, Inc. Phone: (603) 731-8450	Mountain View
	CANADA	NEW JERSEY	Hamilton/Avnet Electronics Phone: (415) 961-7000
San Diego Phone: (714) 560-0242	Downsview, Ont. Kaytronics Phone: (416) 638-5511	Bayonne J. J. Theobald, Inc. Phone: (201) 823-2866	Palo Alto Kierulff Electronics Phone: (415) 968-6292
Sunnyvale Phone: (408) 736-7565	Montreai, Que. Kaytronics	NEW MEXICO	San Diego Hamilton/Avnet Electronics
FLORIDA	Phone: (514) 487-3434	Albuquerque	Phone: (714) 279-2421
$\begin{aligned} & \text { Pompano Beach } \\ & \text { Phone: (305) 782-8225 } \end{aligned}$	COLORADO	The Staley Company, Inc. Phone: (505) 294-2660	Kierulff Electronics Phone: (714) 278-2112
	Denver Parker/Webster Company	NEW YORK	Sunnyvale
ILLINOIS	Parker/Webster Company Phone: (303) 770-1972	Great Neck	Intermark Electronics
Rolling Meadows Phone: (312) 259-8300	CONNECTICUT	Pacent/Di Blasi c/o J. J. Theobald, Inc.	Phone: (408) 738-1111 CANADA
INDIANA	Washington Depot	Phone: (516) 482-4040	
Indianapolis Phone: (317) 293-4777	Kanan Associates Phone: (203) 868.0513	UPSTATE NEW YORK DeWitt	Paar Industrial Electronics, Ltd. Phone: (403) 287-2840
	FLORIDA	Tri-Tech Electronics, Inc.	Downsview, Ontario
KANSAS		Phone: (315) 446-2881	Cesco Electronics
Shawnee Phone: (913) 384-1711	Semtronic Associates	East Rochester	Phone: (416) 661-0220
	Phone: (305) 831-8233	Tri-Tech Electronics, Inc. Phone: (716) 381-2722	Mississauga, Ontario
MASSACHUSETTS	Ft. Lauderdale	Phone: (716) 381-2722 Larchmont	Hamilton/Avnet Electronics Phone: (416) 677-7432
Lexington Phone: (617) 861-0840	Phone: (305) 771-0010	Tri-Tech Electronics, Inc.	Montreal, Quebec
	Largo	Phone: (914) 834-4423	Cesco Electronics Phone: (514) 735-5511
MARYLAND	Phone: (813) 586-1404	OHIO	Zentronics Ltd.
		Centerville	Phone: (514) 735-5361
Rockville Phone: (301) 881-5710	GEORGIA	Norm Case Associates Phone: (513) 433-0966	Ottawa, Ontario
MICHIGAN	Douglasville 20th Century Marketing Inc.	Fairview Park	Cesco Electronics Phone: (613) 729-5118
Southfield Phone: (313) 559-9166 (313) 559-9167	Phone: (404) 942-6483	Norm Case Associates Phone: (216) 333-4120	Hamilton/Avnet Electronics Phone: (613) 226-1700
	ILLINOIS	OREGON	Phone: (613) 226-1700 Zentronics Ltd
	Chicago	Portland	Phone: (613) 238-6411
MINNESOTA	L-Tec Inc.	Western Technical Sales	Quebec City
Minneapolis Phone: (612) 884-7451	Phone: (312) 286-1500	Phone: (503) 297-1711	Cesco Electronics Phone: (418) 524-3518
	INDIANA	UTAH	Toronto Ontario
NEW JERSEY	Indianapolis	Salt Lake City	Zentronics Ltd.
Cherryhill Phone: (609) 665-5071	Ellinger Sales	Parker/Webster Company	Phone: (416) 789-5111
	Phone: (317) 251-2757	Phone: (801) 486-3737	Vancouver, B.C.
Piscataway Phone: (201) 981-0123	KANSAS	WASHINGTON	Bowtek Electronics Co., Ltd. Phone: (604) 736-1141
	Shawnee Mission	Bellevue	
NEW YORK	Buckman \& Associates	Western Technical Sales Phone: (206) 641-3900	Hamilton/Avnet Electronics
Wappingers Falls Phone: (914) 297-4074	Phone: (913) 722-5210		Phone: (514) 331-6443
	Wichita		COLORADO
Woodbury, L.I. Phone: (516) 364-9100	Buckman \& Associates Phone: (316) 267-3655	DISTRIBUTORS	Denver
	MARYLAND	ALABAMA	Hamilton/Avnet Electronics Phone: (303) 534-1212
OHIO			
	Glen Burni	Huntsville	Lakewood
Worthington Phone: (614) 888-7143	Microcomp, Inc. Phone: (301) 761-4600	Hamilton/Avnet Electronics Phone: (205) 533-1170	Acacia Sales, Inc. Phone: (303) 232-2882

CONNECTICUT	Livonia	NORTH CAROLINA	UNITED KINGDOM
Danbury Schweber Electronics Phone: (203) 792-3500	Hamilton/Avnet Electronics Phone: (313) 522-4700	Greensboro	Signetics International Corp.
	Troy	Hammond Electronics Phone: (919) 275-6391	London SE20 Phone: 01-659 2111
Georgetown Hamilton/Avnet Electronics Phone: (203) 762-0361	Schweber Electronics Phone: (313) 583-9242		
		OHIO	WEST GERMANY
	MINNESOTA	Beechwood	Signetics G
Hamden Arrow Electronics Phone: (203) 248-3801	Edina Hamilton/Avnet Electronics Phone: (612) 941-3801	Schweber Electronics	Dusseldorf-Erkrath
		Phone: (216) 464-2970	Phone: (0211) 244238
		Cleveland	Munich
FLORIDA	Schweber Electronics	Arrow Electronics Phone: (216) 464-2000	Phone: (089) 15-20-20 / 15-20-29
Hollywood Hamilton/Avnet Electronics Phone: (305) 925-5401 Schweber Electronics Phone: (305) 922-4506	Minneapolis Semiconductor Specialists Phone: (612) 854-8841	Hamilton/Avnet Electronics Phone: (216) 461-1400	Stuttgart Phone: (0711) 73-50-61
		Pioneer Standard Electronics Phone: (216) 587-3600	REPRESENTATIVES
Orlando Hammond Electronics Phone: (305) 241-6601	MISSOURI	Dayton	ARGENTINA/CHILE
	Hazelwood Hamilton/Avnet Electronics Phone: (314) 731-1144	Arrow Electronics Phone: (513) 253-9176	Electronica del Atlantico SRL Buenos Aires
GEORGIA		Hamilton/Avnet Electronics Phone: (513) 433-0610	Phone: 35-2624
Atlanta Schweber Electronics Phone: (404) 449-9170 Norcross Hamilton/Avnet Electronics Phone: (404) 448-0800	Albuquerque Hamilton/Avnet Electronics Phone: (505) 765-1500	Pioneer Standard Electronics	AUSTRALIA
		Phone: (513) 236-9900	Philips c/o ELCOMA
		TEXAS	Phone: 421261
	NEW YORK	Austin Schweber Electronics	BRAZIL
ILLINOIS	Summit Distributors Phone: (716) 884-3450	Phone: (512) 837-2890	Teleimport Eletronica Ltd.
Elk Grove Schweber Electronics Phone: (312) 593-2740		Dallas Hamilton/Avnet Electronics Phone: (214) 661-8661	Sao Paulo Phone: 221-3296/221-3943
			FINLAND
Elmhurst Semiconductor Specialists Phone: (312) 279-1000	Phone: (315) 437-2642 Farmingdale, L.I.	Schweber Electronics Phone: (214) 661-5010	AB Kuno Kallman OY Helsinki Phone 90 -4 45904/445973
Schiller Park Hamilton/Avnet Electronics Phone: (312) 671-6082	Arrow Electronics Phone: (516) 694-6800	Houston Component Specialties Phone: (713) 771-7237	Phone: $90-445904 / 445973$ HoNG KONG
INDIANA	Wilshire Electronics Phone: (607) 797-1236	Hamilton/Avnet Electronics Phone: (713) 526-4661	Enterprise Systems (Hong Kong) Ltd. Aberdeen Phone: 5-530141/5-531845
Indianapolis Semiconductor Specialists Phone: (317) 243-8271	Rochester Hamilton/Avnet Electronics Phone: (716) 442-7820	Schweber Electronics Phone: (713) 784-3600	INDIA/CEYLON (SRI-LANKA)/ BANGLADESH
KANSAS	Schweber Electronics Phone: (716) 461-4000	UTAH	Semiconductors Limited
Lenexa Hamilton/Avnet Electronics Phone: (913) 888-8900	Westbury, L.I. Hamilton/Avnet Electronics Phone: (516) 333-5800	Salt Lake City Alta Electronics Phone: (801) 486-7227	Bombay Phone: 293667 IRAN
MARYLAND	Schweber Electronics Phone: (516) 334-7474	Hamilton/Avnet Electronics Phone: (801) 262-8451	Berkeh Company Ltd.
Baltimore Arrow Electronics Phone: (301) $247-5200$	NORTHERN NEW JERSEY	WASHINGTON	Phone: 831564/828294
Gaithersburg Pioneer Washington Electronics Phone: (301) 948-0710	Cedar Grove Hamilton/Avnet Electronics Phone: (201) 239-0800	Bellevue Hamilton/Avnet Electronics Phone: (206) 746-8750	RAPAC Electronics Ltd. Tel Aviv
Hanover Hamilton/Avnet Electronics Phone: (301) 796-5000	Saddiebrook Arrow Electronics Phone: (201) 797-5800		Phone: 477 115/116/117 JAPAN
Rockville Schweber Electronics Phone: (301) 881-2970	SOUTHERN NEW JERSEY AND PENNSYLVANIA		Asahi Glass Co. Ltd. Tokyo Phone: 218-5536
MASSACHUSETTS	Cherry Hill, N.J. Milgray-Delaware Valley Phone: (609) 424-1300	INTERNATIONAL SALES	KOREA
Burlington Arrow Electronics Phone: (617) 273-0100 Hamilton/Avnet Electronics Phone: (617) 273-2120	Moorestown, N.J. Arrow/Angus Electronics Phone: (609) 235-1900	EUROPEAN HEADQUARTERS Signetics International Corp. London, SE20 Phone: 01-659 2111	Humho \& Co., Inc.
			Phone: 28-5271/24-3241/22-0404
	Mt. Laurel, N.J. Hamilton/Avnet Electronics Phone: (609) 234-2133		NEW ZEALAND
Waltham Schweber Electronics Phone: (617) 890-8484		SALES OFFICE	Philips Electrical Industries Wellington Phone: 873159
MICHIGAN	CENTRAL NEW JERSEY AND PENNSYLVANIA	FRANCE	PHILIPPINES
Farmington Semiconductor Specialists Phone: (313) 478-2700	Somerset, N.J. Schweber Electronics Phone: (201) 469-6008	Signetics SARL Boulogne-Sur-Seine Phone: 604-8127	Edgeworth Marketing Corp. Manila Phone: 406227/406569/406663

BRAZIL
Teleimport Eletronica Ltd.
Sao Paulo
Phone: 221-3296/221-3943
FINLAND
AB Kuno Kallman OY
Helsinki
Phone: 575231/575362
FRANCE
CESIME
Sarcelles
Phone: 9905623
ELIC
La Tronche
Phone: 76-87-67-71
Fadico
Lorient
Phone: (97) 21-42-96
REA Distribution
Bois Colombes
Phone: 7847119
RTF
Neuilly sur Seine
Phone: 722-70-40

HONG KONG

Enterprise Systems (Hong Kong) Ltd. Aberdeen
Phone: 5-530141/5-531845

IRAN

Berkeh Company Ltd. Tehran Phone: 831564/828294

ISRAEL
RAPAC Electronics Ltd.
Tel-Aviv
Phone: 477 115/116/117
ITALY
Mesa S.P.A.
Milan
Phone: 02-349 1040
Mettroelettronica SAS
Milan
Phone: 546-26-41
JAPAN
Asahi Glass Co., Ltd.
Tokyo
Phone: 218-5536
KOREA
Kumho \& Co., Inc.
Seoul
Phone: 28-5271/24-3241/22-0404

NETHERLANDS
Ritro Electronics B.V.

Barneveld
Phone: (03420) 5041

NEW ZEALAND

Philips Electrical Industries Wellington
Phone: 873159
NORWAY
A S Kjell Bakke
Lillestrom
Phone: 71-18-72/71-53-30
PHILIPPINES
Edgeworth Marketing Corp.
Manila
Phone: 406277/406569/406663
SINGAPORE/MALAYSIA
General Engineers Corp. Pte. Ltd.
Singapore
Phone: 333641/333651/321791
SOUTH AFRICA
Allied Electric (Pty) Ltd.
Johannesburg
Phone: Johannesburg 52-4341

SPAIN

Ataio Ingenieros S.A.
Madrid
Phone: 215-3543/733-0562
Instrumentos Electronicos de Precision SA Madrid
Phone: 2741007

SWEDEN

AB Kuno Kallman
Gothenburg
Phone: 80-30-20
Stockholm
Phone: (08) 67-17 11/67-15-95
SWITZERLAND
Omni Ray AG
Zurich
Phone: (01) 34-07-66
TAIWAN R.O.C.
Dynatek Corp.
Taipei
Phone: 713-362
THAILAND/LAOS
Saeng Thong Radio L.P. Bangkok
Phone: 527195/519763

UNITED KINGDOM
A M Lock \& Co. Limited
Oldham
Phone: (061) 6520434
APEX Components Limited Slough
Phone: Burnham (062 86) 63741
Quarndon Electronics Limited Derby
Phone: (0332) 32651
SDS (Components) Limited
Portsmouth
Phone: (0705) 65311
Semicomps Limited
Wembley
Phone: 01-903 3161
Keighley
Phone: (05352) 65191
Semicomps Northern Limited
Kelso
Phone: Kelso 2366
VENEZUELA, PANAMA
Instrulab C.A.
Caracas
Phone: 614138/614558
WEST GERMANY
Distron GmbH
Berlin
Phone: (030) 82-33-064/5
EBV — Elektronik G mb H
Dusseldorf
Phone: (0211) 84-84-6/7
Frankfurt
Phone: (0611) 72-04-16/18
Munich
Phone: (089) 64-40-55/58
Stuttgart
Phone: (0711) 24-74-81
Mirotronic
Hamburg
Phone: 0404911014
Mutron - Muller \& Co KG Bremen
Phone: (0421) 31-04-85
Elecdis Ruggaber KG
Leonberg
Phone: 07152/7081
\square

[^0]: $d_{n} \quad=$ Data $p m$ address control line n
 m_{n} = Data in microprogram address register bit n
 $p_{\mathrm{n}} \quad=$ Data in PR-latch bit n
 $x_{n} \quad=$ Data on PX-bus line n (active LOW)
 $\mathrm{f}, \mathrm{c}, \mathrm{z}=$ Contents of F -latch, C -flag, or Z-flag, respectively

[^1]: - Sends buffered accumulator outputs to main memory or the external I/O devices
 - D-bus has Tri-State outputs

[^2]: ${ }^{1}$ tPLH $=$ propagation delay time, low-to-high-level output
 $\mathbf{t}_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output

[^3]: *The Bus B Data Setup Time is equal to the clock pulse width.

