8 BIT MCU FAMILIES EF6801/04/05

DATABOOK

FMYSTDN

spol. sr.o.
Na hirobenech il 1062
14700 Praha 4

S-THOMSON ROELECHONNICS

8 BIT MCU FAMILIES EF6801/04/05

DATABOOK

$1^{\text {st }}$ EDITION

USE IN LIFE SUPPORT MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF SGS-THOMSON Microelectronics. As used herein:

1. Life support devices to systems are devices or systems which, are intended for surgical implant into the body to support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

ALPHANUMERICAL INDEXPage4SELECTION GUIDE 5
EF6801 FAMILY 7
EF6804 FAMILY 8
EF6805 FAMILY 9
EF6801 FAMILY DATASHEETS 11
EF6804 FAMILY DATASHEETS 119
EF6805 FAMILY DATASHEETS 235
DEVELOPMENT TOOLS 441

ALPHANUMERICAL INDEX

Type Number	Function	Page Number
EF6801-EF6803	Microcomputer/Microprocessor (MCU/MPU)	13
EF6801U4-EF6803U4	Microcomputer/Microprocessor	63
EF6804J2	8-Bit Microcomputer . ..	121
EF6804P2	8-Bit Microcomputer	157
EF68HC04P3	HCMOS 8-Bit Microcomputer	193
EF6805P2	8-Bit Microcomputer Unit	237
EF6805P6	8-Bit Microcomputer Unit	267
EF6805R2	8-Bit Microcomputer with A/D	301
EF6805R3	8-Bit Microcomputer with A/D	337
EF6805U2	8-Bit Microcomputer	373
EF6805U3	8-Bit Microcomputer Unit	407
TSTIN48	Development and Emulation Tool ..	443
TSTEV04	Piggy-Back Emulation Tool	445

SELECTION GUIDE

EF6801 FAMILY

8 BIT MICROCONTROLLER PRODUCTS FOR HIGH END MARKET.

* EF6801 : MCU with enhanced capabilities of 6800 family: faster cycle times, new instructions such as multiplication.
* EF6801U4 : 4K ROM version of 6801 with enhanced 16 bit timer.

HMOS TECHNOLOGY		6801	6801 U 4
CLOCK		1 \& 2 MHZ	1 \& 2 MHZ
MEMORY	RAM	128×8	192×8
	ROM	2048×8	4096×8
I/O LINES		32	32
TIMER		- 16 bit free running counter - 1 input capture - 1 output compare	- 16 bit free running counter - 2 input captures - 3 output compares
SERIAL COMMUNICATION INTERFACE		- Full duplex transmitter/rece - Data format: NR2 or biphas - Clock: ext. or int. bit rate - Wake up feature	pendent
PACKAGE		DILP 40 / PLCC 44 / CERDIP 40	
OPERATING TEMP. RANGE		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
COMPATIBILITY		MC6801	MC6801U4

EF6804 FAMILY
 8 BIT MICROCONTROLLER PRODUCTS FOR LOW END APPLICATION.

* EF6804J2 : the highest improvement in cost reduction, a microcontroller at a TTL/LS price level.
* EF6804P2 : High on-chip feature integration well suited for additional 4 bit application extensions.
* EF68HC04P3 :Dedicated to power and data saving applications or requiring protection against mains failures (pin compatible with 6804P2)
* EF68HC04J3 :68HC04P3 with 12 I/O lines

HMOS TECHNOLOGY				$68 \mathrm{HC04J3}$	68HC04P3
HMOS TECHNOLOGY		6804 J 2	6804 P 2		
MEMORY	RAM	32×8	32×8	124×8	$2 \mathrm{~K} \times 8$

* Development tool : Hardware development station INICE
+ Emulator probe EFTMUP4
+ Cross Assembler MSDOS compatible TSR6804

EF6805 FAMILY

8 BIT MICROCONTROLLER PRODUCTS FOR MID-RANGE APPLICATION.

* EF6805P2/P6 : Low cost single chip MCU well suited for economical design with proven capabilities of 6805 based instruction set. Pin compatible with 6804P2 and 68HC04P3.
* EF6805U2/U3 : With 32 I/O lines and 4K ROM, it is a super general purpose MCU covering a wide range of applications such as: answering machine, PC keyboard decoder...
* EF6805R2/R3 : Same as U2/U3 but with A/D converter on board.

HMOS TECHNOLOGY		6805P2/P6	6805U2/U3	6805R2/R3
MEMORY	RAM	64×8	$64 \times 8 / 112 \times 8$	$64 \times 8 / 112 \times 8$
	ROM	$1 \mathrm{~K} \times 8 / 1.8 \mathrm{~K} \times 8$	$2 \mathrm{~K} \times 8 / 4 \mathrm{~K} \times 8$	$2 \mathrm{~K} \times 8 / 4 \mathrm{~K} \times 8$
I/O PORT	BIDIRECTION	20	24	24
	INPUT ONLY	-	8	8
Timer with 7-bit prescaler	HARD. PROG	yes	yes 1-	yes / -
	SOFT. PROG	-	$-/$ yes	$-/$ yes
SPECIAL FEATURES		-	-	A/D
PACKAGE		$\begin{gathered} \text { DIL28 } \\ \text { PLCC28 } \end{gathered}$	$\begin{aligned} & \text { DILP40 } \\ & \text { PLCC44 } \end{aligned}$	$\begin{aligned} & \text { DILP40 } \\ & \text { PLCC44 } \end{aligned}$
OPERATING TEMP. RANGE		$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
COMPATIBILITY		MC6805P2/P6	MC6805U2/U3	MC6805R2/R3

* Development tool : Hardware development station INICE 4-8: TSTIN48
+ Emulator probe TSTMUP5
+ Cross Assembler MSDOS compatible TSR6805

EF6801 FAMILY DATASHEETS

MICROCOMPUTER/MICROPROCESSOR (MCU/MPU)

- ENHANCED EF6800 INSTRUCTION SET
- 8 X 8 MULTIPLY INSTRUCTION
- SERIAL COMMUNICATIONS INTERFACE (SCI)
- UPWARD SOURCE AND OBJECT CODE COMPATIBILITY WITH THE 6800
- 16-BIT THREE-FUNCTION PROGRAMMABLE TIMER
- SINGLE-CHIP OR EXPANDED OPERATION TO 64K BYTE ADDRESS SPACE
- BUS COMPATIBILITY WITH THE 6800 FAMILY
- 2048 BYTES OF ROM (EF6801)
- 128 BYTES OF RAM
- 64 BYTES OF RAM RETAINABLE DURING POWERDOWN
- 29 PARALLEL I/O AND TWO HANDSHAKE CONTROL LINES
- INTERNAL CLOCK GENERATOR WITH DIVIDE-BY-FOUR OUTPUT
- $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- $-40^{\circ} \mathrm{C}$ TO $+105^{\circ} \mathrm{C}$ TEMPERATURE RANGE

PIN CONNECTIONS

DESCRIPTION

The EF6801 is an 8-bit single-chip microcomputer unit (MCU) which significantly enhances the capabilities of the 6800 family of parts. It includes an upgraded 6800 microprocessor unit (MPU) with upward-source and object-code compatibility. Execution times of key instructions have been improved and several new instructions have been added including an unsigned multiply. The MCU can
function as a monolithic microcomputer or can be expanded to a 64 K byte address space. It is TTL compatible and requires one +5 V power supply. On-chip resources include 2048 bytes of ROM, 128 bytes of RAM, a Serial Communications Interface (SCl), parallel I/O, and a three function Programmable Timer. The EF6803 can be considered as an EF6801 operating in Modes 2 or 3. EF6801 MCU Family features include :

Figure 1 : 6801/6803 Bock Diagram.

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$T_{J}=T_{A}+\left(P_{D} \cdot \theta_{J A}\right)$
Where :
TA \equiv Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta \mathrm{JA} \equiv$ Package Thermal Resistance, Junction -to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$

PD \equiv Pint + Pport
Pint \equiv Icc $\times V_{\text {cc }}$, Watts - Chip Internal Power
Pport \equiv Port Power Dissipation, Watts - User Determined
For most applications PPORT<< Pint and can be neglected. PPORT may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is :

$$
\begin{equation*}
P_{D}=K+\left(T_{J}+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives :

$$
\begin{equation*}
\mathrm{K}=\mathrm{PD} \cdot\left(\mathrm{~T}_{\mathrm{A}}+273^{\circ} \mathrm{C}\right)+\theta_{\mathrm{JA}} \cdot \mathrm{PD}^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {cC }}$	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {t }}$	Input Voltage	-0.3 to +7.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	T_{L} to T_{H}	${ }^{\circ} \mathrm{C}$
	EF6801/03, EF6801/03-1, EF68A01/03, EF68B01/03	0 to 70	
	EF6801/03, EF6801/03-1:V Suffix	-40 to 85	
	EF6801/03, EF6801/03-1:A Suffix	-40 to 105	
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to hıgh static voltages or electric fields ; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation it is recommended that $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ be constrained to the range $\mathrm{V}_{\text {SS }} \leq\left(\mathrm{V}_{\text {In }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {Cc }}$. Input protection is enhanced by connecting unused inputs to either $V_{D D}$ or $V_{S S}$.

THERMAL DATA

θ_{JA}	Thermal Resistance	Plastic	50
	PLCC	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

CONTROL TIMING ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	EF6801		EF6801-1		EF68A01		EF68B01		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
f_{0}	Frequency of Operation	0.5	1.0	0.5	1.25	0.5	1.5	0.5	2.0	MHz
$\mathrm{f}_{\text {XTAL }}$	Crystal Frequency	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
4 fo	External Oscillator Frequency	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
t_{rc}	Crystal Oscillator Start Up Time		100		100		100		100	ms
tpCs	Processor Control Setup Time	200		170		140		110		ns

EF6801-EF6803

DC ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted)

Symbol	Parameter	$\begin{gathered} \text { EF6801/03 } \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { EF6801/03 } \\ -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} /+105^{\circ} \mathrm{C} \\ \hline \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	
V_{IH}	Input High Voltage $\begin{gathered}\overline{\text { RESET }} \\ \text { Other Inputs }\end{gathered}$	$\begin{aligned} & V_{S S}+4.0 \\ & V_{S S}+2.0 \end{aligned}$	$V_{C C}$ $V_{C C}$	$\begin{aligned} & V_{S s}+4.0 \\ & V_{s s}+2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	V
$V_{\text {IL }}$	Input Low Voltage All Inputs	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	V
$\mathrm{I}_{\text {In }}$	Input Load Current ($\mathrm{V}_{\text {in }}=0$ to 2.4 V) $\begin{array}{r}\text { Port } 4 \\ \text { SCI }\end{array}$		$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mA
1 In	Input Leakage Current $\left(\mathrm{V}_{\text {In }}=0\right.$ to 5.25 V$) \quad \overline{\mathrm{NMI}}, \overline{\mathrm{RQ}}, \overline{\mathrm{RESET}}$		2.5		5.0	$\mu \mathrm{A}$
$I_{\text {TSI }}$	Hi-Z (off-state) Input Current ($\mathrm{V}_{\text {in }}=0.5$ to 2.4 V) Ports 1, 2, and 3		10		20	$\mu \mathrm{A}$
V OH		$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \end{aligned}$		$\begin{aligned} & V_{S S}^{\prime}+2.4 \\ & V_{S S}+2.4 \end{aligned}$		V
V OL	Output Low Voltage ($\mathrm{L}_{\text {Load }}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$) All Outputs		$V_{S S}+0.5$		$V_{S S}+0.6$	V
IOH	Darlington Drive Current ($\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$) Port 1	1.0	4.0	1.0	5.0	mA
Pint	Internal Power Dissipation (measured at $T_{A}=T_{L}$ in steady-state operation)		1200		1500	mW
$\mathrm{C}_{\text {In }}$	Input Capacitance Port 3, Port 4, SC1 $\left(V_{\text {n }}=0, T_{A}=25^{\circ} \mathrm{C}\right.$, Other Inputs $\left.f_{0}=1.0 \mathrm{MHz}\right)$		$\begin{gathered} 12.5 \\ 10 \end{gathered}$		$\begin{gathered} 12.5 \\ 10 \end{gathered}$	pF
$\begin{aligned} & V_{S B B} \\ & V_{S B} \end{aligned}$	$\mathrm{V}_{\text {cc }}$ Standby $\quad \begin{array}{r}\text { Powerdown } \\ \text { Powerup }\end{array}$	$\begin{gathered} 4.0 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	$\begin{gathered} 4.0 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	V
$I_{\text {SBB }}$	Standby Current Powerdown		6.0		8.0	mA

* Negociable to $-100 \mu \mathrm{~A}$ (for further information contact the factory)

PERIPHERAL PORT TIMING (refer to figures 2-5)

Symbol	Parameter	$\begin{aligned} & \text { EF6801 } \\ & \text { EF6803 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { EF6801-1 } \\ \text { EF6803-1 } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { EF68A01 } \\ \text { EF68A03 } \\ \hline \end{array}$		EF68B01EF68B03		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
tpdsu	Peripheral Data Setup Time	200		200		150		100		ns
$\mathrm{t}_{\text {PDH }}$	Peripheral Data Hold Time	200		200		150		100		ns
tosd1	Delay Time, Enable Positive Transition to $\overline{\mathrm{OS3}}$ Negative Transition		350		350		300		250	ns
tosd2	Delay Time, Enable Positive Transition to $\overline{\mathrm{OS} 3}$ Positive Transition		350		350		300		250	ns
$t_{\text {PWD }}$	Delay Time, Enable Negative Transition to Peripheral Data Valid		350		350		300		250	ns
$\mathrm{t}_{\text {cmos }}$	Delay Time, Enable Negative Transition to Peripheral CMOS Data Valid		2.0		2.0		2.0		2.0	$\mu \mathrm{s}$
$t_{\text {PWIS }}$	Input Strobe Pulse Width	200		200		150		100		ns
t_{H}	Input Data Hold Time	50		50		40		30		ns
$\mathrm{t}_{\text {IS }}$	Input Data Setup Time	20		20		20		20		ns

Figure 2 : Data Setup and Hold Times (MPU read).

* Port 3 non-latched operation (latch enable - 0)

Figure 4 : Port 3 Output Strobe Timing (EF6801 single-chip Mode).

Figure 3 : Data Setup and Hold Times (MPU write).

Notes : 1.10 k Pullup resistor required for Port 2 to reach 0.7 Vcc .
2. Not applicable to P21.
3. Port 4 cannot be pulled above $V_{c c}$.

Figure 5 : Port 3 Latch Timing (EF6801 single-chip mode).

* Access matches Output Strobe Select (OSS = 0, a read. $O S S=1$, a write).
Note : Timing measurements are referenced to and from a low voltage of 0.8 V and a high voltage of 2.0 V , unless otherwise noted.

EF6801-EF6803

BUS TIMING (see notes 1 and 2)

Ident. Number	Symbol	Parameter	$\begin{aligned} & \text { EF6801 } \\ & \text { EF6803 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { EF6801-1 } \\ & \text { EF6803-1 } \end{aligned}$		$\begin{aligned} & \text { EF68A01 } \\ & \text { EF68A03 } \end{aligned}$		$\begin{aligned} & \text { EF68B01 } \\ & \text { EF68B03 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
1	$\mathrm{t}_{\text {cyc }}$	Cycle Time	1.0	2.0	0.8	2.0	0.667	2.0	0.5	2.0	$\mu \mathrm{S}$
2	PWEL	Pulse Width, E Low	430	1000	360	1000	300	1000	210	1000	ns
3	PW ${ }_{\text {EH }}$	Pulse Width, E High	450	1000	360	1000	300	1000	220	1000	ns
4	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Rise and Fall Time		25		25		25		20	ns
9	$t_{\text {AH }}$	Address Hold Time	20		20		20		10		ns
12	$t_{A V}$	Non-muxed Address Valid Time to E*	200		150		115		70		ns
17	$t_{\text {DSR }}$	Read Data Setup Time	80		70		60		40		ns
18	$t_{\text {DHR }}$	Read Data Hold Time	10		10		10		10		ns
19	tow	Write Data Delay Time		225		200		170		120	ns
21	t ${ }_{\text {dHW }}$	Write Data Hold Time	20		20		20		10		ns
22	$t_{\text {AVM }}$	Muxed Address Valid Time to E Rise*	200		150		115		80		ns
24	$t_{\text {ASL }}$	Muxed Address Valid Time to AS Fall*	60		50		40		20		ns
25	$\mathrm{t}_{\mathrm{AHL}}$	Muxed Address Hold Time	20		20		20		10		ns
26	$t_{\text {ASD }}$	Delay Time, E to AS Rise*	90**		70**		60**		45**		ns
27	PW ${ }_{\text {ASH }}$	Pulse Width, AS High*	220		170		140		110		ns
28	$t_{\text {ASED }}$	Delay Time, AS to E Rise*	90		70		60		45		ns
29	$t_{\text {ACC }}$	Usable Access Time*	595		465		380		270		ns

* At specified cycle time.
* * tasD parameters listed assume external TTL clock drive with $50 \% \pm 5 \%$ duty cycle. Devices driven by an external TTL clock with $50 \% \pm 1 \%$ duty cycle or which use a crystal have the following $t_{\text {ASD }}$ specifications: 100 ns min. (1.0 MHz devices), 80 ns min. (1.25 MHz devices), 65 ns min. (1.5 MHz devices), 50 ns min . (2.0 MHz devices).
Figure 6 : Bus Timing.

Notes : 1. Voltage levels shown are $\mathrm{V}_{\mathrm{L}} \leq 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}} \geq 2.4 \mathrm{~V}$, unless otherwise specified.
2 Measurement points shown are 0.8 V and 2.0 V , unless otherwise specified.
3. Usable access tıme is computed by $12+3-17+4$.
4. Memory devices should be enabled only during E high to avoid Port 3 bus contention.

Figure 7 : CMOS Load.

INTRODUCTION

The EF6801 is an 8-bit monolithic microcomputer which can be configured to function in a wide variety of applications. The facility which provides this extraordinary flexibility is its ability to be hardware programmed into eight different operating modes. The operating mode controls the configuration of 18 of the 40 MCU pins, available on-chip resources, memory map, location (internal or external) of interrupt vectors, and type of external bus. The configuration of the remaining 22 pins is not dependent on the operating mode.

Twenty-nine pins are organized as three 8-bit ports and one 5-bit port. Each port consists of at least a Data Register and a write-only Data Direction Register. The Data Direction Register is used to define whether corresponding bits in the Data Register are configured as an input (clear) or output (set).

Figure 8 : Timing Test Load Ports 1, 2, 3, 4.

The term "port", by itself, refers to all of the hardware associated with the port. When the port is used as a "data port" or "l/O port", it is controlled by the port Data Direction Register and the programmer has direct access to the port pins using the port Data Register. Port pins are labled as Pij where i identifies one of four ports and j indicates the particular bit.
The Microprocessor Unit (MPU) is an enhanced EF6800 MPU with additional capabilities and greater throughput. It is upward source and object code compatible with the EF6800. The programming model is depicted in figure 9 , where Accumulator D is a concatenation of Accumulators A and B. A list of new operations added to the 6800 instruction set are shown in table 1.
The EF6803 can be considered an EF6801 that operates in Modes 2 and 3 only.

Figure 9 : Programming Model.

OPERATING MODES

The EF6801 provides eight different operating modes (modes 0 through 7), the EF6803 provides two operating modes (modes 2 and 3). The operating modes are hardware selectable and determine the device memory map, the configuration of Port 3, Port 4, SC1, SC2, and the physical location of the interrupt vectors.

FUNDAMENTAL MODES

The eight operating modes can be grouped into three fundamental modes which refer to the type of bus it supports : Single Chip, Expanded Non-Multiplexed, and Expanded Multiplexed. Single-Chip modes include 4 and 7, Expanded Non-Multiplexed
is Mode 5 and the remaining five are Expanded Multiplexed modes. Table 2 summarizes the characteristics of the operating modes.
EF6801 SINGLE-CHIP MODES (4, 7). In the SingleChip Mode, the four MCU ports are configured as parallel input/output data ports, as shown in figure 10. The MCU functions as a monolithic microcomputer in these two modes without external address or data buses. A maximum of 29 I/O lines and two Port 3 control lines are provided. Peripherals or another MCU can be interfaced to Port 3 in a loosely coupled dual processor configuration, as shown in figure 11.

Table 1 : New Instructions.

Instruction	Description
ABX	Unsigned addition of accumulator B to index register. Adds (without carry) the double accumulator to memory and leaves the sum in the double accumulator.
ASLD or LSLD	Shifts the double accumulator left (towards MSB) one bit ; the LSB is cleared and the MSB is shifted into the C-bit.
BHS	Branch if higher or same ; unsigned conditional branch (same as BCC). BLO Branch if lower ; unsigned conditional branch (same as BCS).
BRN	Branch never. Additional addressing mode direct. LSR
LDD	Loads double accumulator from memory. Shifts memory or accumulator left (towards MSB) one bit ; the LSB is cleared and the MSB is shifted into the C-bit (same as ASL).
LSRD	Shifts the double accumulator right (towards LSB) one bit ; the MSB is cleared and the LSB is shifted into the C-bit.
MUL	Unsigned multiply ; multiplies the two accumulators and leaves the product in the double accumulator.
PSHX	Pushes the index register to stack.
PULX	Pulls the index register from stack. STD
SUBD	Subst the double accumulator to memory. accumulator. memory from the double acccumulator and leaves the difference in the double
CPX	Internal processing modified to permit its use with any conditional branch instruction.

In Single-Chip Test Mode (4), the RAM responds to \$XX80 through \$XXFF and the ROM is removed from the internal address map. A test program must first be loaded into the RAM using modes $0,1,2$, or 6. If the MCU is Reset and then programmed into Mode 4, execution will begin at \$XXFE: XXFF. Mode 5 can be irreversibly entered from Mode 4 without asserting RESET by setting bit 5 of the Port 2 Data Register. This mode is used primarily to test Ports 3 and 4 in the Single-Chip and Non-Multiplexed Modes.
EF6801 EXPANDED NON-MULTIPLEXED MODE (5). A modest amount of external memory space is
provided in the Expanded Non-Multiplexed Mode while significant on-chip resources are retained. Port 3 functions as an 8 -bit bidirectional data bus and Port 4 is configured initially as an input data port. Any combination of the eight least-significant address lines may be obtained by writing to the Port 4 Data Direction Register. Stated alternatively, any combination of AO to A7 may be provided while retaining the remainder as input data lines. Internal pullup resistors pull the Port 4 lines high until the port is configured.
Figure 12 illustrates a typical system configuration in the Expanded Non-Multiplexed Mode. The MCU
interfaces directly with 6800 family parts and can access 256 bytes of external address space at $\$ 100$ through \$1FF. IOS provides an address decode of
external memory (\$100-\$1FF) and can be used as a memory page select or chip select line.

Table 2 : Summary of EF6801/03 Operating Modes.

Common to all Modes :
Reserved Register Area
Port 1
Port 2
Programmable Timer
Serial Communications Interface
Single-chip Mode 7 :
128 Bytes of RAM, 2048 Bytes of ROM
Port 3 is a parallel I/O port with two control lines.
Port 4 Is a parallel I/O port.
SC1 is input strobe 3 (IS3).
SC2 is output strobe (OS3).
Expanded Non-multiplexed Mode 5 :
128 Bytes of RAM, 2048 Bytes of ROM
256 Bytes of External Memory Space
Port 3 is an 8-bit data bus.
Port 4 is an input port/address bus.
SC1 is input/output select (IOS).
SC2 is read/write (R/W).
Expanded Multiplexed Modes 1, $2,3,6 \star:$
Four memory space options (64K address space).
(1) No Internal RAM or ROM (mode 3)
(2) Internal RAM, no ROM (mode 2)
(3) Internal RAM and ROM (mode 1)
(4) Internal RAM, ROM with Partial Address Bus (mode 6)
Port 3 is multiplexed address/data bus.
Port 4 is an address bus (inputs/address in mode 6).
SC1 is address strobe (AS).
SC2 is read/write (R/W).
Test Modes 0 and 4 :
Expanded multiplexed test mode 0.
May be used to test RAM and ROM.
Single chip and non-multiplexed test mode 4.
(1) May be changed to mode 5 without going through reset.
(2) May be used to test ports 3 and 4 as I/O ports.

[^0]Figure 10 : Single-chip Mode.

Figure 11 : Single-chip Dual Processor Configuration.

Figure 12 : Expanded Non-multiplexed Configuration.

EXPANDED-MULTIPLEXED MODES (0, 1, 2, 3, 6). A 64K byte memory space is provided in the expanded multiplexed modes. In each of the expanded multiplexed modes Port 3 functions as a time multiplexed address/data bus with address valid on the negative edge of Address Strobe (AS), and data valid while E is high. In Modes 0 to 3, Port 4 provides address lines A8 to A15. In Mode 6, however, Port 4 initially is configured at RESET as an input data port. The port 4 Data Direction Register can then be changed to provide any combination of address lines, A8 to A15. Stated alternatively, any subset of A8 to A15 can be provided while retaining the remaining port 4 lines as input data lines. Internal pullup resistors pull the Port 4 lines high until software configures the port.
In Mode 0, the Reset vector is external for the first two E-cycles after the positive edge of RESET, and internal thereafter. In addition, the internal and external data buses are connected so there must be no memory map overlap in order to avoid potential bus conflicts. Mode 0 is used primarily to verify the ROM pattern and monitor the internal data bus with the automated test equipment.
Only the EF6801 can operate in each of the expanded multiplexed modes. The EF6803 operates only in Modes 2 and 3.

Figure 13 depicts a typical configuration for the Ex-panded-Multiplexed Modes. Address Strobe can be used to control a transparent D-type latch to capture addresses A0-A7, as shown in figure 14. This allows Port 3 to function as a Data Bus when E is high.

PROGRAMMING THE MODE

The operating mode is determined at $\overline{\text { RESET }}$ by the levels asserted on P22, P21, and P20. These levels are latched into PC2, PC1, and PC0 of the program control register on the positive edge of RESET. The operating mode may be read from the Port 2 Data Register as shown below, and programming levels and timing must be met as shown in figure 15. A brief outline of the operating modes is shown in table 3.

| PORT 2 DATA REGISTER | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| PC2 | PC1 | PCO | P24 | P23 | P22 | P21 | P20 |

Circuitry to provide the programming levels is dependent primarily on the normal system usage of the three pins. If configured as outputs, the circuit shown in figure 16 may be used ; otherwise, threestate buffers can be used to provide isolation while programming the mode.

Table 3 : Mode Selection Summary.

Mode*	$\begin{aligned} & \text { P22 } \\ & \text { PC2 } \end{aligned}$	$\begin{aligned} & \text { P21 } \\ & \text { PC1 } \end{aligned}$	$\begin{aligned} & \text { P20 } \\ & \text { PCO } \end{aligned}$	ROM	RAM	Interrupt Vectors	Bus Mode	Operating Mode
7	H	H	H	1	1	1	1	Single Chip
6	H	H	L	1	1	1	MUX ${ }^{(5,6)}$	Multiplexed/partial Decode
5	H	L	H	I	1	1	NMUX ${ }^{(5,6)}$	Non-multiplexed/partial Decode
4	H	L	L	$1^{(2)}$	$\mathrm{I}^{(1)}$	1	1	Single Chip Test
3	L	H	H	E	E	E	MUX ${ }^{(4)}$	Multiplexed/no RAM or ROM
2	L	H	L	E	1	E	MUX ${ }^{(4)}$	Multiplexed/RAM
1	L	L	H	1	1	E	MUX ${ }^{(4)}$	Multiplexed/RAM \& ROM
0	L	L	L	1	1	$\mathrm{I}^{(3)}$	MUX ${ }^{(4)}$	Multiplexed Test

Legend:

- - Internal

E - External
MUX - Multiplexed
NMUX - Non-Multiplexed
L - Logic " 0 "
H - Logic "1"

* The EF6803 operates only in Modes 2 and 3
(2) Internal ROM is disabled
(3) RESET vector is external for 2 cycles after RESET goes high
(4) Addresses associated with Ports 3 and 4 are considered external in Modes $0,1,2$, and 3
(5) Addresses associated with Port 3 are considered external in Modes 5 and 6
(6) Port 4 default is user data input, address output is optional by writing to Port 4 Data Directıon Register

Figure 13 : Expanded Multiplexed Configuration.

Note : To avoid data bus (Port 3) contention in the expanded multiplexed modes, memory devices should be enabled only during E high time

Figure 14 : Typical Latch Arrangement.

Figure 15 : Mode Programming Timing.

MODE PROGRAMMING (refer to figure 15)

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\text {MPL }}$	Mode Programming Input Voltage Low ${ }^{*}$		1.8	V
$\mathrm{~V}_{\text {MPH }}$	Mode Programmıng Input Voltage High	4.0		V
$\mathrm{~V}_{\text {MPDD }}$	Mode Programming Diode Differential (if diodes are used)	0.6		V
PW RSTL	RESET Low Pulse Width	3.0		E-Cycles
$\mathrm{t}_{\mathrm{MPS}}$	Mode Programming Setup Time	2.0		E-Cycles
$\mathrm{t}_{\mathrm{MPH}}$	Mode Programming Hold Time RESET Rise Time $\geq 1 \mu \mathrm{~s}$ RESET Rise Time $<1 \mu \mathrm{~s}$	0		ns

[^1]Figure 16 : Typical Mode Programming Circuit.

Notes: 1. Mode 7 as shown
2. $R_{2} . C=$ Reset tıme constant
3. $R_{1}=10 \mathrm{k}$ (typıcal)
4. $D=1 \mathrm{~N} 914,1 \mathrm{~N} 4001$ (typical)
5. Diode V_{i} should not exceed $V_{\text {mpdo }}$ min

MEMORY MAPS

The 6801 Family can provide up to 64 K byte address space depending on the operating mode. A memory map for each operating mode is shown in figure 17.

The first 32 locations of each map are reserved for the internal register area, as shown in table 4, with exceptions as indicated.

Figure 17 : EF6801/03 Memory Maps (sheet 1 of 3).

EF6801/03 INTERRUPTS

The 6801 Family supports two types of interrupt requests: maskable and non-maskable. A Non-Maskable Interrupt (NMI) is always recognized and acted upon at the completion of the current instruction. Maskable interrupts are controlled by the Condition Code Register l-bit and by individual enable bits. The I-bit controls all maskable interrupts. Of the maskable interrupts, there are two types: IRQ1 and IRQ2. The Programmable Timer and Serial Communications Interface use an internal IRQ2 interrupt line, as shown in figure 1. External devices (and IS3) use IRQ1. An IRQ1 interrupt is serviced before IRQ2 if both are pending.
All IRQ2 interrupts use hardware prioritized vectors. The single SCl interrupt and three timer interrupts

FUNCTIONAL PIN DESCRIPTIONS

Vcc AND Vss

$V_{c c}$ and $V_{s s}$ provide power to a large portion of the MCU. The power supply should provide +5 volts $(\pm 5 \%)$ to $V_{c c}$, and $V_{s s}$ should be tied to ground. Total power dissipation (including V_{cc} Standby), will not exceed P_{D} milliwatts.

Vcc STANDBY

$V_{C C}$ Standby provides power to the standby portion ($\$ 80$ through $\$ B F$) of the RAM and the STBY PWR and RAME bits of the RAM Control Register. Voltage requirements depend on whether the device is in a powerup or powerdown state. In the powerup state, the power supply should provide +5 volts ($\pm 5 \%$) and must reach VSB volts before RESET reaches 4.0 volts. During powerdown, Vcc Standby must remain above $V_{\text {SBB }}(\mathrm{min})$ to sustain the standby RAM and STBY PWR bit. While in powerdown operation, the standby current will not exceed Isbb.
It is typical to power both $V_{C c}$ and $V_{C c}$ Standby from the same source during normal operation. A diode must be used between them to prevent supplying power to VCC during powerdown operation. VCC Standby should be tied to ground in Mode 3.
are serviced in a prioritized order and each is vectored to a separate location. All interrupt vector locations are shown in table 5.
The Interrupt flowchart is depicted in figure 18 and is common to every interrupt excluding reset. During interrupt servicing the Program Counter, Index Register, A Accumulator, B Accumulator, and Condition Code Register are pushed to the stack. The I-bit is set to inhibit maskable interrupts and a vector is fetched corresponding to the current highest priority interrupt. The vector is transferred to the Program Counter and instruction execution is resumed. Interrupt and RESET timing are illustrated in figures 19 and 20.

Table 4 : Internal Register Area.

Register	Address
Port 1 Data Direction Register***	00
Port 2 Data Direction Register***	01
Port 1 Data Register	02
Port 2 Data Register	03
Port 3 Data Direction Register***	04^{\star}
Port 4 Data Direction Register***	$05^{\star \star}$
Port 3 Data Register	06^{*}
Port 4 Data Register	$07^{* \star}$
Timer Control and Status Register	08
Counter (high byte)	09
Counter (low byte)	0 A
Output Compare Register (high byte)	0 B
Output Compare Register (low byte)	0 C
Input Capture Register (high byte)	0 D
Input Capture Register (low byte)	0 E
Port 3 Control and Status Register	$0 \mathrm{~F}^{\star}$
Rate and Mode Control Register	10
Transmitreceive Control and Status Register	11
Receive Data Register	12
Transmit Data Register	13
RAM Control Register	14
Reserved	$15-1 \mathrm{~F}$

[^2]Table 5 : MCU Interrupt Vector Locations.

MSB	LSB	Interrupt
FFFE	FFFF	$\overline{\mathrm{RESET}}$
FFFC	FFFD	$\overline{\mathrm{NMI}}$
FFFA	FFFB	Software Interrupt (SWI)
FFF8	FFF9	$\overline{\text { IRQ1 (or IS3) }}$
FFF6	FFF7	ICF (input capture) *
FFF4	FFF5	OCF (output compare) *
FFF2	FFF3	TOF (timer overflow)
FFF0	FFF1	SCI (RDRF + ORFE + TDRE)*

* IRQ2 Interrupt

Figure 18 : Interrupt Flowchart.

Internal R/ \bar{W}

XTAL1 AND EXTAL2

These two input pins interface either a crystal or TTL compatible clock to the MCU internal clock generator. Divide-by-four circuitry is included which allows use of the inexpensive 3.58 MHz or 4.4336 MHz Color Burst TV crystals. A 20pF capacitor should be tied from each crystal pin to ground to ensure reliable startup and operation. Alternatively, EXTAL2 may be driven by an external TTL compatible clock at $4 f_{0}$ with a duty cycle of $50 \%(\pm 5 \%)$ with XTAL1 connected to ground.
The internal oscillator is designed to interface with an AT-cut quartz crystal resonator operated in parallel resonance mode in the frequency range specified for fxtal. The crystal should be mounted as close as possible to the input pins to minimize output distortion and startup stabilization time.* The MCU is compatible with most commercially available crystals. Nominal crystal parameters are shown in figure 21.

RESET

This input is used to reset the internal state of the device and provide an orderly startup procedure. During powerup, RESET must be held below 0.8 volts: (1) at least trc after $V_{c c}$ reaches 4.75 volts in order to provide sufficient time for the clock generator to stabilize, and (2) until $V_{c c}$ Standby reaches 4.75 volts. RESET must be held low at least three E-cycles if asserted during powerup operation.

E (ENABLE)

This is an output clock used primarily for bus synchronization. It is TTL compatible and is the slightly skewed divide-by-four result of the device input clock frequency. It will drive one Schottky TTL load and 90 pF , and all data given in cycles is referenced to this clock unless otherwise noted.

$\overline{\mathrm{NMII}}$ (NON-MASKABLE INTERRUPT)

An $\overline{\mathrm{NMI}}$ negative edge requests an MCU interrupt sequence, but the current instruction will be completed before it responds to the request. The MCU will then begin an interrupt sequence. Finally, a vector is fetched from \$FFFC and \$FFFD, transferred to the Program Counter and instruction execution is resumed. NMI typically requires a $3.3 \mathrm{k} \Omega$ (nominal) resistor to V_{Cc}. There is no internal NMI pullup resistor. NMI must be held low for at least one E-cycle to be recognized under all conditions.

IRQ1 (MASKABLE INTERRUPT REQUEST 1)

$\overline{\text { IRQ1 }}$ is a level-sensitive input which can be used to request an interrupt sequence. The MPU will com-
plete the current instruction before it responds to the request. If the interrupt mask bit (l-bit) in the Condition Code Register is clear, the MCU will begin an interrupt sequence. A vector is fetched from \$FFF8 and \$FFF9, transferred to the Program Counter, and instruction execution is resumed.
IRQ1 typically requires an external $3.3 \mathrm{k} \Omega$ (nominal) resistor to VCC for wire-OR applications. IRQ1 has no internal pullup resistor.

SC1 AND SC2 (STROBE CONTROL 1 AND 2)

The function of SC1 and SC2 depends on the operating mode. SC1 is configured as an output in all modes except single chip mode, whereas SC2 is always an output. SC1 and SC2 can drive one Schottky load and 90pF.
SC1 AND SC2 IN SINGLE-CHIP MODE. In SingleChip Mode, SC1 and SC2 are configured as an input and output, respectively, and both function as Port 3 control lines. SC1 functions as IS3 and can be used to indicate that Port 3 input data is ready or output data has been accepted. Three options associated with IS3 are controlled by Port 3 Control and Status Register and are discussed in the Port 3 description. If unused, IS3 can remain unconnected.
SC 2 is configured as $\overline{\mathrm{OS} 3}$ and can be used to strobe output data or acknowledge input data. It is controlled by Output Strobe Select (OSS) in the Port 3 Control and Status Register. The strobe is generated by a read $(O S S=0)$ or write $(O S S=1)$ to the Port 3 Data Register. OS3 timing is shown in figure 4.
SC1 AND SC2 IN EXPANDED NON-MULTIPLEXED MODE. In the Expanded Non-Multiplexed Mode, both SC1 and SC2 are configured as outputs. SC1 functions as Input/Output Select (IOS) and is asserted only when $\$ 0100$ through $\$ 01 F F$ is sensed on the internal address bus.

SC2 is configured as Read/Write and is used to control the direction of data bus transfers. An MPU read is enabled when Read/Write and E are high.

SC1 AND SC2 IN EXPANDED MULTIPLEXED MODE. In the Expanded Multiplexed Modes, both SC1 and SC2 are configured as outputs. SC1 functions as Address Strobe and can be used to demultiplex the eight least significant addresses and the data bus. A latch controlled by Address Strobe captures address on the negative edge, as shown in figure 14.
SC2 is configured as Read/Write and is used to control the direction of data bus transfers. An MPU read is enabled when Read/Write and E are high.

P10-P17 (PORT 1)

Port 1 is a mode independent 8 -bit l/O port with each line an input or output as defined by the Port 1 Data Direction Register. The TTL compatible three-state output buffers can drive one Schottky TTL load and 30 pF , Darlington transistors, or CMOS devices using external pullup resistors. It is configured as a data input port by RESET. Unused lines can remain unconnected.

P20-P24 (PORT 2)

Port 2 is a mode-independent, 5 -bit, multipurpose I/O port. The voltage levels present on P20, P21, and P22 on the rising edge of RESET determine the operating mode of the MCU. The entire port is then configured as a data input port. The Port 2 lines can be selectively configured as data output lines by setting the appropriate bits in the Port 2 Data Direction

Register. The Port 2 Data Register is used to move data through the port. However, if P21 is configured as an output, it will be tied to the timer Output Compare function and cannot be used to provide output from the Port 2 Data Register.
Port 2 can also be used to provide an interface for the Serial Communications Interface and the timer Input Edge function. These configurations are described in the Programmable Timer and Serial Communications Interface (SCl) section.
The Port 2 three-state, TTL-compatible output buffers are capable of driving one Schottky TTL load and 30 pF , or CMOS devices using external pullup resistors.

PORT2 DATA REGISTER

7	6	5	4	3	2		1	

Figure 21 : 6801 Family Oscillator Characteristics.
Nominal Crystal Parameters*

	3.58 MHz	4.00 MHz	5.0 MHz	6.0 MHz	8.0 MHz
RS	60Ω	50Ω	$30-50 \Omega$	$30-50 \Omega$	$20-40 \Omega$
C0	3.5 pF	6.5 pF	$4-6 \mathrm{pF}$	$4-6 \mathrm{pF}$	$4-6 \mathrm{pF}$
C1	0.015 pF	0.025 pF	$0.01-0.02 \mathrm{pF}$	$0.01-0.02 \mathrm{pF}$	$0.01-0.02 \mathrm{pF}$
Q	$>40 \mathrm{~K}$	$>30 \mathrm{~K}$	$>20 \mathrm{~K}$	$>20 \mathrm{~K}$	$>20 \mathrm{~K}$

Note : These are representative AT-cut crystal parameters only. Crystals of other types of cut may also be used.
(a) Nominal Recommended Crystal Parameters

$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (typical)

(b) Oscillator Stabilization Time (tra)

P30-P37 (PORT 3)

Port 3 can be configured as an I/O port, a bidirectional 8-bit data bus, or a multiplexed address/data bus depending on the operating mode. The TTL compatible three-state output buffers can drive one Schottky TTL load and 90pF. Unused lines can remain unconnected.
PORT 3 IN SINGLE-CHIP MODE. Port 3 is an 8-bit I/O port in the Single-Chip Mode, with each line configured by the Port 3 Data Direction Register. There are also two lines, IS3 and OS3, which can be used to control Port 3 data transfers.
Three Port 3 options are controlled by the Port 3 Control and Status Register and are available only in Single-Chip Mode : (1) Port 3 input data can be latched using IS3 as a control signal, (2) OS3 can be generated by either an MPU read or write to the Port 3 Data Register, and (3) an IRQ1 interrupt can be enabled by an IS3 negative edge. Port 3 latch timing is shown in figure 5.

PORT 3 CONTROL AND STATUS REGISTER

Bit 0-2
Bit 3

Bit 5
Bit 6

Not used.
LATCH ENABLE. This bit controls the input latch for Port 3. If set, input data is latched by an IS3 negative edge. The latch is transparent after a read of the Port 3 Data Register. LATCH ENABLE is cleared during reset.

OSS (Output Strobe Select). This bit determines whether OS3 will be generated by a read or write of the Port 3 Data Register. When clear, the strobe is generated by a read ; when set, it is generated by a write. OSS is cleared during reset.
Not used.
IS3 IRQ1 ENABLE. When set, an IRQ1 interrupt will be enabled whenever IS3 FLAG is set ; when clear, the interrupt is inhibited. This bit is cleared during reset.

IS3 FLAG. This read-only status bit is set by an IS3 negative edge. It is cleared by a read of the Port 3 Control and Status Register (with IS3 FLAG set) followed by a read or write to the Port 3 Data Register or during reset.
PORT 3 IN EXPANDED NON-MULTIPLEXED MODE. Port 3 is configured as a bidirectional data bus (D7-D0) in the Expanded Non-Multiplexed Mode. The direction of data transfers is controlled by Read/Write (SC2). Data is clocked by E (Enable).
PORT 3 IN EXPANDED MULTIPLEXED MODE. Port 3 is configured as a time multiplexed address (A0-A7) and data bus (D7-D0) in the Expanded Multiplexed Modes, where Address Strobe (AS) can be used to demultiplex the two buses. Port 3 is held in a high impedance state between valid address and data to prevent bus conflicts.

P40-P47 (PORT 4)

Port 4 is configured as an 8-bit l/O port, as address outputs, or as data inputs depending on the operating mode. Port 4 can drive one Schottky TTL load and 90 pF and is the only port with internal pullup resistors. Unused lines can remain unconnected.
PORT 4 IN SINGLE-CHIP MODE. In Single-Chip Mode, Port 4 functions as an 8-bit l/O port with each line configured by the Port 4 Data Direction Register. Internal pullup resistors allow the port to directly interface with CMOS at 5 volt levels. External pullup resistors to more than 5 volts, however, cannot be used.
PORT 4 IN EXPANDED NON-MULTIPLEXED MODE. Port 4 is configured from reset as an 8-bit input port, where the Port 4 Data Direction Register can be written to provide any or all of eight address lines, A0 to A7. Internal pullup resistors pull the lines high until the Port 4 Data Direction Register is configured.
PORT 4 IN EXPANDED MULTIPLEXED MODE. In all Expanded Multiplexed modes except Mode 6, Port 4 functions as half of the address bus and provides A8 to A15. In Mode 6, the port is configured from reset as an 8-bit parallel input port, where the Port 4 Data Direction Register can be written to provide any or all of upper address lines A8 to A15. Internal pullup resistors pull the lines high until the Port 4 Data Direction Register is configured, where bit 0 controls A8.

RESIDENT MEMORY

The EF6801 provides 2048 bytes of on-board ROM and 128 bytes of on-board RAM.
One half of the RAM is powered through the $V_{C C}$ standby pin and is maintainable during $V_{C C}$ powerdown. This standby portion of the RAM consists of 64 bytes located from $\$ 80$ through $\$ B F$.
Power must be supplied to V_{cc} standby if the internal RAM is to be used regardless of whether standby power operation is anticipated.
The RAM is controlled by the RAM Control Register.

RAM CONTROL REGISTER (\$14)

The RAM Control Register includes two bits which can be used to control RAM accesses and determine the adequacy of the standby power source during powerdown operation. It is intended that RAME be cleared and STBY PWR be set as part of a powerdown procedure.

78						
7	6	5	4	3	2	1

Bit 0-5
Not used
Bit 6 RAME RAM Enable. This read/write bit can be used to remove the en-
tire RAM from the internal memory map. RAME is set (enabled) during reset provided standby power is available on the positive edge of RESET. If RAME is clear, any access to a RAM address is external. If RAME is set and not in mode 3 , the RAM is included in the internal map.
Bit 7 STBY PWR Standby Power. This bit is a read/write status bit which, when once set, remains set as long as Vcc standby remains above $\mathrm{V}_{\text {SBB }}$ (minimum). As long as this bit is set following a period of standby operation, the standby power supply has adequately preserved the data in the standby RAM. If this bit is cleared during a period of standby operation, it indicates that V_{CC} standby had fallen to a level sufficiently below $\mathrm{V}_{\text {SBB }}$ (minimum) to suspect that data in the standby RAM is not valid. This bit can be set only by software and is not affected during reset.

Figure 22 : Block Diagram of Programmable Timer.

PROGRAMMABLE TIMER

The programmable timer can be used to perform input waveform measurements while independently generating an output waveform. Pulse widths can vary from several microseconds to many seconds. A block diagram of the timer is shown in figure 22.

COUNTER (\$09:0A)
The key timer element is a 16-bit free-running counter which is incremented by E (enable). It is cleared during reset and is read-only with one exception : a write to the counter (\$09) will preset it to \$FFF8. This feature, intended for testing, can disturb serial operations because the counter provides the SCI internal bit rate clock. TOF is set whenever the counter contains all ones.

OUTPUT COMPARE REGISTER (\$0B:OC)

The output compare register is a 16-bit read/write register used to control an output waveform or provide an arbitrary timeout flag. It is compared with the free-running counter on each E cycle. When a match occurs, OCF is set and OLVL is clocked to an output level register. If port 2 , bit 1 , is configured as an output, OLVL will appear at P21 and the output compare register and OLVL can then be changed for the next and OLVL is clocked to an output level register. If Port 2, bit 1 , is configured as an output, OLVL will appear at P21 and the Output Compare Register and OLVL can then be changed for the next compare. The function is inhibited for one cycle after a write to its high byte ($\$ 0 \mathrm{~B}$) to ensure a valid compare. The Output Compare Register is set to \$FFFF at RESET.

INPUT CAPTURE REGISTER (\$OD:OE)

The Input Capture Register is a 16-bit read-only register used to store the free-running counter when a "proper" input transition occurs as defined by IEDG. Port 2, bit 0 should be configured as an input, but the edge detect circuit always senses P20 even when configured as an output. An input capture can occur independently of ICF : the register always contains the most current value. Counter transfer is inhibited, however, between accesses of a double byte MPU read. The input pulse width must be at least two E-cycles to ensure an input capture under all conditions.
TIMER CONTROL AND STATUS REGISTER (\$08)
The Timer Control and Status Register (TCSR) is an 8-bit register of which all bits are readable, while only bits $0-4$ can be written. The three most significant bits provide the timer status and indicate if :

- a proper level transition has been detected,
- a match has occured between the free-running counter and the output compare register, and
- the free-running counter has overflowed.

Each of the three events can generate an $\overline{\mathrm{RQ2}}$ interrupt and is controlled by an individual enable bit in the TCSR.

TIMER CONTROL AND STATUS REGISTER (TCSR)

7	6	5	4	3	2	1	0	
ICF	OCF	TOF	EICl	EOCI	ETOI	IEDG	OLVI	

Bit 0

Bit 1

Bit $2 \quad$ ETOI Enable Timer Overflow Interrupt. When set, an IRQ2 interrupt is enabled for a timer overflow ; when clear, the interrupt is inhibited. It is cleared during reset.
Bit $3 \mathrm{EOCI} \quad$ Enable Output Compare Interrupt. When set, an IRQ2 interrupt is enabled for an output compare ; when clear, the interrupt is inhibited. It is cleared during reset.
Bit $4 \mathrm{EICl} \quad$ Enable Input Capture Interrupt. When set, an IRQ2 interrupt is enabled for an input capture ; when clear, the interrupt is inhibited. It is cleared during reset.
Bit 5 TOF Timer Overflow Flag. TOF is set when the counter contains all 1 's. It is cleared by reading the TCSR (with TOF set) then reading the counter high byte (\$09), or during reset.

Output Compare Flag. OCF is set when the Output Compare Register matches the free-running counter. It is cleared by reading the TCSR (with OCF set) and then writing to the Output Compare Register (\$0B or $\$ 0 C$), or during reset.

SERIAL COMMUNICATIONS INTERFACE (SCI)

A full-duplex asynchronous Serial Communications Interface (SCI) is provided with two data formats and a variety of rates. The SCI transmitter and receiver are functionally independent, but use the same data format and bit rate. Serial data formats include standard mark/space (NRZ) and Biphase and both provide one start bit, eight data bits, and one stop bit. "Baud" and "bit rate" are used synonymously in the following description.

WAKE-UP FEATURE

In a typical serial loop multi-processor configuration, the software protocol will usually identify the addresse(s) at the beginning of the message. In order to permit uninterested MPU's to ignore the remainder of the message, a wake-up feature is included whereby all further SCI receiver flag (and interrupt) processing can be inhibited until its data line goes idle. An SCI receiver is re-enabled by an idle string of ten consecutive 1 's or during reset. Software must provide for the required idle string between consecutive messages and prevent it within messages.

PROGRAMMABLE OPTIONS

The following features of the SCl are programmable :

- format : standard mark/space (NRZ) or Bi-phase
- clock : external or internal bit rate clock
- Baud : one of 4 per E-clock frequency, or external clock (x 8 desired baud)
- wake-up feature : enabled or disabled
- interrupt requests : enabled individually for transmitter and receiver
- clock output : internal bit rate clock enabled or disabled to P22

SERIAL COMMUNICATIONS REGISTERS

The Serial Communications Interface includes four addressable registers as depicted in figure 23. It is controlled by the Rate and Mode Control Register and the Transmit/Receive Control and Status Register. Data is transmitted and received utilizing a write-only Transmit Register and a read-only Receive Register. The shift registers are not accessible to software.

RATE AND MODE CONTROL REGISTER (RMCR) (\$10). The Rate and Mode Control Register controls the SCl bit rate, format, clock source, and under certain conditions, the configuration of P22. The register consists of four write-only bits which are cleared during reset. The two least significant bits control the bit rate of the internal clock and the remaining two bits control the format and clock source.

RATE AND MODE CONTROL REGISTER (RMCR)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | X | X | X | CC 1 | CCO | SS 1 | SSO |
| $\$ 20010$ | | | | | | | | Bit 1: Bit $0 \quad$ SS1: SS0 Speed Select. These two-bits select the Baud rate when using the internal clock. Four rates may be selected which are a function of the MCU input frequency. Table 6 lists bit time and rates for three selected MCU frequencies.

Bit 3 : Bit $2 \quad$ CC1 : CC0 Clock Control and Format Select. These two bits control the format and select the serial clock source. If CC1 is set, the DDR value for P22 is forced to the complement of CCO and cannot be altered until CC1 is cleared. If CC1 is cleared after having been set, its DDR value is unchanged. Table 7 defines the formats, clock source, and use of P22.

If both CC1 and CC0 are set, an external TTL compatible clock must be connected to P22 at eight times (8 X) the desired bit rate, but not greater than E, with a duty cycle of 50% ($\pm 10 \%$). If CC1 : $C C 0=10$, the internal bit rate clock is provided at P22 regardless of the values for TE or RE.
NOTE : The source of SCl internal bit rate clock is the timer free running counter. An MPU write to the counter can disturb serial operations.

Figure 23 : SCI Registers.

TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER (TRCSR) (\$11). The Transmit/Receive Control and Status Register controls the transmitter, receiver, wake-up feature, and two individual interrupts and monitors the status of serial operations. All eight bits are readable while bits 0 to 4 are also writable. The register is initialized to $\$ 20$ by RESET.

TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER (TRCSR)

7	6	5	4	3	2	1	0	
RDRF	ORFE	TDRE	RIE	RE	TIE	TE	WU	\$001

Bit 1 TE Transmit Enable. When set, P24 DDR bit is set, cannot be changed, and will remain set if TE is subsequently cleared. When TE is changed from clear to set, the transmitter is connected to P24 and a preamble of nine consecutive 1's is transmitted. TE is cleared during reset.
Bit 2 TIE Transmit Interrupt Enable. When set, an IRQ2 interrupt is
enabled when TDRE is set ; when clear, the interrupt is inhibited. TE is cleared during reset.

Bit 3 RE Receive Enable. When set, the P23 DDR bit is cleared, cannot be changed, and will remain clear if RE is subsequently cleared. While RE is set, the SCl receiver is enabled. RE is cleared during reset.
Receiver Interrupt Enable. When set, an IRQ2 interrupt is enabled when RDRF and/or ORFE is set ; when clear, the interrupt is inhibited. RIE is cleared during reset.
Bit 5 TDRE Transmit Data Register Empty. TDRE is set when the Transmit Data Register is transferred to the output serial shift register or during reset. It is cleared b.y reading the TRCSR (with TDRE set) and then writing to the Transmit Data Register. Additional data will be transmitted only if TDRE has been cleared.

Bit 6 ORFE Overrun Framing Error. If set, ORFE indicates either an overrun or framing error. An overrun is a new byte ready to transfer to the Receiver Data Register with RDRF still set. A receiver framing error has occurred when the byte boundaries of the bit stream are not synchronized to the bit counter. An overrun can be distinguished from a framing error by the state of RDRF : if RDRF is set, then an overrun has occurred ; otherwise a framing error has been detected. Data is not transferred to the Receive Data Register in an overrun condition. Unframed data causing a
framing error is transferred to the Receive Data Register. However, subsequent data transfer is blocked until the framing error flag is cleared.* ORFE is cleared by reading the TRCSR (with ORFE set) then the Receive Data Register, or during reset.

Bit 7 RDRF Receive Data Register Full. RDRF is set when the input serial shift register is transferred to the Receive Data Register. It is cleared by reading the TRCSR (with RDRF set), and then the Receive Data Register, or during reset.

Table 6 : SCI Bit Times and Rates.

SS1: SS0		$4 \mathrm{f}_{0} \rightarrow$	2.4576 MHz	4.0MHz	4.9152 MHz
		E	614.4 kHz	1.0 MHz	1.2288 MHz
0	0	+16	$26 \mu s / 38.400$ Baud	$16 \mu \mathrm{~s} / 62.500$ Baud	$13.0 \mu \mathrm{~s} / 76.800$ Baud
0	1	+ 128	$208 \mu \mathrm{~s} / 4.800$ Baud	$128 \mu \mathrm{~s} / 7812.5$ Baud	$104.2 \mu \mathrm{~s} / 9.600$ Baud
1	0	+1024	$1.67 \mathrm{~ms} / 600$ Baud\$	$1.024 \mathrm{~ms} / 976.6$ Baud	$833.3 \mu \mathrm{~s} / 1.200$ Baud
1	1	+ 4096	$6.67 \mathrm{~ms} / 150$ Baud	$4.096 \mathrm{~ms} / 244.1$ Baud	$3.33 \mathrm{~ms} / 300$ Baud
*External (P22)			13.0 $\mu \mathrm{s} / 76.800$ Baud	8.0 $\mu \mathrm{s} / 125.000$ Baud	$6.5 \mu \mathrm{~s} / 153.600$ Baud

* Usıng maxımum clock rate

Table 7 : SCI Format and Clock Source Control.

CC1:CC0	Format	Clock Source	Port 2 Bit 2
00	Bi-phase	Internal	Not used
01	NRZ	Internal	Not used
10	NRZ	Internal	Output
11	NRZ	External	Input

SERIAL OPERATIONS

The SCI is initialized by writing control bytes first to the Rate and Mode Control Register and then to the Transmit/Receive Control and Status Register. When TE is set, the output of the transmit serial shift register is connected to P24 and serial output is initiated by transmitting a 9 -bit preamble of 1 's.
At this point one of two situations exist : 1) if the Transmit Data Register is empty (TDRE = 1), a continuous string of 1 's will be sent indicating an idle line, or 2) if a byte has been written to the TransmitData Register $($ TDRE $=0)$, it will be transferred to
the output serial shift register (synchronized with the bit rate clock), TDRE will be set, and transmission will begin.

The start bit (0), eight data bits (beginning with bit 0) and a stop bit (1), will be transmitted. If TDRE is still set when the next byte transfer should occur, 1 's will be sent until more data is provided. In Bi-phase format, the output toggles at the start of each bit and at half-bit time when a " 1 " is sent. Receive operation is controlled by RE which configures P 23 as an input and enables the receiver. SCI data formats are illustrated in figure 24.

INSTRUCTION SET

The EF6801/03 is upward source and object code compatible with the EF6800. Execution times of key instructions have been reduced and several new instructions have been added, including a hardware multiply. A list of new operations added to the EF6800 instruction set is shown in table 1.
In addition, two new special opcodes, 4E and 5E, are provided for test purposes. These opcodes force the Program Counter to increment like a 16-bit counter, causing address lines used in the expanded modes to increment until the device is reset. These opcodes have no mnemonics.
The coding of the first (or only) byte corresponding to an executable instruction is sufficient to identify the instruction and the addressing mode. The hexadecimal equivalents of the binary codes, which result from the translation of the 82 instructions in all valid modes of addressing, are shown in table 8. There are 220 valid machine codes, 34 unassigned codes, and 2 codes reserved for test purposes.

PROGRAMMING MODEL

A programming model for the EF6801/03 is shown in figure 10. Accumulator A can be concatenated with accumulator B and jointly referred to as accumulator D where A is the most significant byte. Any operation which modifies the double accumulator will also modify accumulator A and/or B. Other registers are defined as follows :

PROGRAM COUNTER. The program counter is a 16-bit register which always points to the next instruction.

STACK POINTER. The stack pointer is a 16 -bit register which contains the address of the next available location in a pushdown/pullup (LIFO) queue. The stack resides in random access memory at a location defined by the programmer.

INDEX REGISTER. The Index Register is a 16-bit register which can be used to store data or provide an address for the indexed mode of addressing.
ACCUMULATORS. The MPU contains two 8-bit accumulators, A and B , which are used to store operands and results from the arithmetic logic unit (ALU). They can also be concatenated and referred to as the D (double) accumulator.

CONDITION CODE REGISTERS. The condition code register indicates the results of an instruction and includes the following five condition bits : Negative (N), Zero (Z), Overflow (V), Carry/Borrow from MSB (C), and Half Carry from bit $3(H)$. These bits are testable by the conditional branch instructions. Bit 4 is the interrupt mask (1 -bit) and inhibits all maskable interrupts when set. The two unused bits, B6 and B7, are read as ones.

Figure 24 : SCI Data Formats.

ADDRESSING MODES

Six addressing modes can be used to reference memory. A summary of addressing modes for all instructions is presented in table 9, 10, 11, and 12, where execution times are provided in E-cycles. Instruction execution times are summarized in table 13. With an input frequency of 4 MHz , E-cycles are equivalent to microseconds. A cycle-by-cycle description of bus activity for each instruction is provided in table 14 and a description of selected instructions is shown in figure 25.
IMMEDIATE ADDRESSING. The operand or "immediate byte(s)" is contained in the following byte(s) of the instruction where the number of bytes matches the size of the register. These are two or three byte instructions.
DIRECT ADDRESSING. The least significant byte of the operand address is contained in the second byte of the instruction and the most significant byte is assumed to be $\$ 00$. Direct addressing allows the user to access $\$ 00$ through $\$ F F$ using two byte instructions and execution time is reduced by elimi-
nating the additional memory access. In most applications, the 256 -byte area is reserved for frequently referenced data.
EXTENDED ADDRESSING. The second and third bytes of the instruction contain the absolute address of the operand. These are three byte instructions.
INDEXED ADDRESSING. The unsigned offset contained in the second byte of the instruction is added with carry to the Index Register and used to reference memory without changing the Index Register. These are two byte instructions.
INHERENT ADDRESSING. The operand(s) are registers and no memory reference is required. These are single byte instructions.
RELATIVE ADDRESSING. Relative addressing is used only for branch instructions. If the branch condition is true, the Program Counter is overwritten with the sum of a signed single byte displacement in the second byte of the instruction and the current Program Counter. This provides a branch range of - 126 to 129 bytes from the first byte of the instruction. These are two byte instructions.

Table 8 : CPU Instruction Map.

OP	MNEM	MODE	~	\#	OP	MNEM	MODE	~	\#		MNEM	MODE					MNEM	MODE				EM	MODE	~ \#
00	*				34	DES	INHER	3	1	68	ASL	INDXD	6	2		9C	CPX	DIR	5	2	D0	SUBB	DIR	32
01	NOP	INHER	2	1	35	TXS	-	3	1	69	ROL	-	6	2		9 D	JSR	\pm	5	2	D1	CMPB	4	32
02		-			36	PSHA		3	1	6A	DEC		6	2		9E	LDS	∇		2	D2	SBCB		32
03	*				37	PSHB		3	1	6B						9 F	STS	DIR	4	2	D3	ADDD		52
04	LSRD		3	1	38	PULX		5	1	6C	INC		6	2		A0	SUBA	INDXD	4	2	D4	ANDB		32
05	ASLD		3	1	39	RTS		5	1	6D	TST		6	2		A1	CMPA	-		2	D5	BITB		32
06	TAP		2	1	3 A	$A B X$		3	1	6E	JMP	V	3	2		A2	SBCA			2	D6	LDAB		32
07	TPA		2	1	3B	RTI		10	1	6 F	CLR	INDXD	6	2		A3	SUBD			2	D7	STAB		32
08	INX		3	1	3 C	PSHX		4	1	70	NEG	EXTND	6	3		A4	ANDA			2	D8	EORB		32
09	DEX		3	1	3D	MUL		10	1	71						A5	BITA			2	D9	ADCB		32
OA	CLV		2	1	3E	WAI		9	1	72						A6	LDAA			2	DA	ORAB		32
OB	SEV		2	1	3 F	SWI		12	1	73	COM		6	3		A7	STAA			2	DB	ADDB		32
OC	CLC		2	1	40	NEGA		2	1	74	LSR		6	3		A8	EORA			2	DC	LDD		42
OD	SEC		2	1	41					75	-					A9	ADCA			2	DD	STD		42
OE	CLI		2	1	42	*				76	ROR			3		AA	ORAA			2	DE	LDX		42
OF	SEI		2	1	43	COMA		2	1	77	ASR		6			$A B$	ADDA			2	DF	STX	DIR	42
10	SBA		2	1	44	LSRA		2	1	78	ASL		6	3		AC	CPX			2	E0	SUBB	INDXD	42
11	CBA		2	1	45					79	ROL		6	3		AD	JSR			2	E1	CMPB	4	42
12	*				46	RORA		2	1	7A	DEC			3		AE	LDS	V	5	2	E2	SBCB		42
13	,				47	ASRA		2	1	7 B						AF	STS	INDXD	5	2	E3	ADDD		62
14					48	ASLA		2	1	7 C	INC		6	3		B0	SUBA	EXTND	4	3	E4	ANDB		42
15					49	ROLA		2	1	7D	TST		6	3		B1	CMPA	\wedge		3	E5	BITB		42
16	TAB		2	1	4A	DECA		2	1	7E	JMP	\checkmark	3	3		B2	SBCA			3	E6	LDAB		42
17	TBA		2	1	4B					7F	CLR	EXTND	6	3		B3	SUBD			3	E7	STAB		42
18	*				4 C	INCA		2	1	80	SUBA	IMMED	2	2		B4	ANDA			3	E8	EORB		42
19	DAA	INHER	2	1	4D	TSTA		2	1	81	CMPA	\uparrow	2	2		B5	BITA			3	E9	ADCB		42
1 A	*				4E	T				82	SBCA		2	2		B6	LDAA			3	EA	ORAB		2
1B	ABA	INHER	2	1	4F	CLRA		2	1	83	SUBD		4	3		B7	STAA			3	EB	ADDB		42
1 C	*				50	NEGB		2	1	84	ANDA			2		B8	EORA			3	EC	LDD		52
1 D	,				51					85	BITA		2	2		B9	ADCA				ED	STD		2
1E	*				52					86	LDAA		2	2		BA	ORAA		4	3	EE	LDX	\checkmark	52
1F					53	COMB		2	1	87						BB	ADDA		4	3	EF	STX	INDXD	52
20	BRA	REL	3	2	54	LSRB		2	1	88	EORA		2	2		BC	CPX		6	3	F0	SUBB	EXTND	43
21	BRN	A	3	2	55					89	ADCA		2	2		BD	JSR			3	F1	CMPB	4	43
22	BHI		3	2	56	RORB		2	1	8A	ORAA		2	2		BE	LDS	∇	5	3	F2	SBCB		3
23	BLS		3	2	57	ASRB		2	1	8B	ADDA	∇	2	2		BF	STS	EXTND	5	3	F3	ADDD		63
24	BCC		3	2	58	ASLB		2	1	8 C	CPX	IMMED	4	3		Co	SUBB	IMMED	2	2	F4	ANDB		3
25	BCS		3	2	59	ROLB		2	1	8D	BSR	REL	6	2		C1	CMPB	4		2	F5	BITB		43
26	BNE		3	2	5A	DECB		2	1	8 E	LDS	IMMED	3	3		C2	SBCB			2	F6	LDAB		3
27	BEQ		3	2	5B					8 F						C3	ADDD			3	F7	STAB		43
28	BVC		3	2	5C	INCB		2	1	90	SUBA	DIR	3	2		C4	ANDB			2		EORB		43
29	BVS		3	2	5D	TSTB		2	1	91	CMPA	4	3	2		C5	BITB			2	F9	ADCB		43
2A	BPL		3	2	5E	T	∇			92	SBCA			2		C6	LDAB			2		ORAB		43
2B	BMI		3	2	5 F	CLRB	INHER	2	1	93	SUBD					C7					FB	ADDB		43
2 C	BGE		3	2	60	NEG	INDXD	6	2	94	ANDA			2		C8	EORB			2	FC	LDD		53
2D	BLT		3	2	61		4			95	BITA		3	2		C9	ADCB			2	FD	STD		53
2 E	BGT	∇	3	2	62					96	LDAA		3			CA	ORAB			2	FE	LDX	\checkmark	53
2 F	BLE	REL	3	2	63	COM			2	97	STAA					CB	ADDB			2	FF	STX	EXTND	53
30	TSX	INHER	3	1	64	LSR		6	2	98	EORA					CC	LDD							
31	INS	\uparrow	3	1	65	*				99	ADCA					CD						UNDEFINE	ED OP C	ODE
32	PULA		4	1	66	ROR	∇	6	2	9A	ORAA					CE	LDX	IMMED	3	3				
33	PULB	∇	4	1	67	ASR	INDXD	6	2	9 B	ADDA	∇	3	2		CF	*							

Notes: 1. Addressing Modes INHER = Inherent REL = Relative

INDXD = Indexed
EXTND = Extended

IMMED = Immediate
DIR = Direct

2 Unassigned opcodes are indicated by " " and should not be executed
3 Codes marked by "T" force the PC to function as a 16-bit counter.

Table 9 ：Index Register and Stack Manipulation Instructions．

Pointer Operations	Mnem	Immed			Direct			Index			Extnd			Inherent			Boolean／ Arithmetic Operation	Condition Codes					
		OP	\sim	\＃		5	4	3	2	1	0												
																		H	1	N	Z	V	C
Compare Index Register	CPX	8C	4	3	9 C	5	2	AC	6	2	BC	6	3				$X-M \cdot M+1$	－	－	$\stackrel{\rightharpoonup}{*}$	：	：	：
Decrement Index Register	DEX													09	3	1	$X-1 \rightarrow X$	－	－	－	：	－	－
Decrement Stack Pointer	DES													34	3	1	$S P-1 \rightarrow S P$	－	－	－	－	－	－
Increment Index Register	INX													08	3	1	$X+1 \rightarrow X$	－	－	－	$\stackrel{1}{1}$	－	－
Increment Stack Pointer	INS													31	3	1	$1 S P+1 \rightarrow S P$	－	－	－	\bullet	－	－
Load Index Register	LDX	CE	3	3	DE	4	2	EE	5	2	FE	5	3				$M \rightarrow X_{H},(M+1) \rightarrow X_{L}$	－	－	$\stackrel{1}{2}$	$\stackrel{\rightharpoonup}{2}$	R	－
Load Stack Pointer	LDS	8E	3	3	9E	4	2	AE	5	2	BE	5	3				$M \rightarrow S P_{H},(M+1) \rightarrow S P_{L}$	－	\bullet	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\text { a }}{ }$	R	－
Store Index Register	STX				DF	4	2	EF	5	2	FF	5	3				$X_{H} \rightarrow M, X_{L} \rightarrow(M+1)$	－	－	$\stackrel{\rightharpoonup}{1}$	$\stackrel{1}{4}$	R	－
Store Stack Pointer	STS				9 F	4	2	AF	5	2	BF	5	3				$S P_{H} \rightarrow M, S P_{L} \rightarrow(M+1)$	－	－	$\stackrel{\rightharpoonup}{2}$	$\stackrel{\rightharpoonup}{1}$	R	－
Index Reg \rightarrow Stack Pointer	TXS													35	3	1	$X-1 \rightarrow S P$	－	－	－	\bullet	－	－
Stack Pntr \rightarrow Index Regıster	TSX													30	3	1	$S P+1 \rightarrow X$	－	－	－	－	－	－
Add	ABX													3 A	3	1	$B+X \rightarrow X$	－	－	－	－	－	－
Push Data	PSHX													3 C	4	1	$\begin{aligned} & X_{L} \rightarrow M_{S P}, S P-1 \rightarrow S P \\ & X_{H} \rightarrow M_{S P}, S P-1 \rightarrow S P \end{aligned}$	－	－	－	－	－	－
Pull Data	PULX													38	5	1	$\begin{aligned} & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{H} \\ & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{L} \end{aligned}$	－	－	－	－	－	－

Table 10 ：Accumulator and Memory Instructions．

Accumulator and Memory Operations	MNE	Immed			Direct				Index			Extend			Inher			Boolean Expression	Condition Codes					
		Op	\sim	\＃		Op	～	\＃	Op	\sim	\＃	Op	～	\＃	0 p	\sim	\＃		H	1	N	Z	V	c
Add Acmitrs	ABA														1B	2	1	$A+B \rightarrow A$	$\hat{\imath}$	－	i	i	$\hat{\imath}$	$\hat{\imath}$
Add B to X	ABX														3 A	3	1	$00: B+X \rightarrow X$	－	－	－	－	－	－
Add with Carry	ADCA	89	2	2	299	99	3	2	A9	4	2	B9	4	3				$A+M+C \rightarrow A$	७	－	$\hat{\imath}$	$\hat{\imath}$	$\stackrel{1}{2}$	\}
	ADCB	C9	2	2	2 D9	D9	3	2	E9	4	2	F9	4	3				$B+M+C \rightarrow B$	$\hat{\imath}$	－	i	$\stackrel{\rightharpoonup}{*}$	人	$\hat{*}$
Add	ADDA	8B	2	2	9B	B	3	2	AB	4	2	BB	4	3				$A+M \rightarrow A$	人	－	ใ	$\hat{\text { 人 }}$	$\hat{\imath}$	$\hat{\imath}$
	ADDB	CB	2	2	DB	DB	3	2	EB	4	2	FB	4	3				$B+M \rightarrow A$	i	－	ث	$\hat{\imath}$	i	＋
Add Double	ADDD	C3	4	3		D3 5	5	2	E3	6	2	F3	6	3				$D+M: M+1 \rightarrow D$	－	－	̂	认	$\hat{\imath}$	$\hat{*}$
And	ANDA	84	2	2	2.94	94	3	2	A4	4	2	B4	4	3				$A-M \rightarrow A$	－	－	－	$\hat{\nu}$	R	\cdot
	ANDB	C4	2	2		24 3	3	2	E4	4	2	F4	4	3				$B-M \rightarrow B$	－	－	$\stackrel{3}{2}$	$\hat{\imath}$	R	\cdot
Shift Left，Arithmetic	ASL								68	6	2	78	6	3					\cdot	－	$\hat{\text { v }}$	$\hat{\imath}$	$\stackrel{\text { i }}{ }$	i
	ASLA														48	2	1		－	－	¡	认	$\hat{\imath}$	$\hat{\imath}$
	ASLB														58	2	1		－	－	i	$\hat{\imath}$	$\stackrel{1}{ }$	i

The Condition Code Register notes are listed after Table 12

Table 10 ：Accumulator and Memory Instructions（continued）．

Accumulator and Memory Operations	MNE	Immed			Direct				Index			Extend				Inher			Boolean Expression	Condition Codes					
		Op	～	\＃		p～	\sim	\＃	Op	～	\＃		Op	\sim	\＃	Op	～	\＃		H	1	N	Z	V	C
Shift Left Dbl	ASLD															05	3	1		－	－	$\hat{\imath}$	$\stackrel{\rightharpoonup}{2}$	$\hat{\downarrow}$	$\hat{\imath}$
Shift Right， Arithmetic	ASR								67	6	2		77.6	6	3					－	－	へ	人	$\hat{\imath}$	人
	ASRA															47	2	1		－	－	¢	i	†	ई
	ASRB															57	2	1		－	－	，	$\hat{*}$	७	$\stackrel{1}{2}$
Bit Test	BITA	85	2	2		953	3	2	A5	4	2		354	4	3				A－M	－	－	$\stackrel{\rightharpoonup}{*}$	$\hat{\imath}$	R	－
	BITB	C5	2	2	D5	53	3	2	E5	4	2		F5 4	4	3				B－M	－	－	＊	人	R	－
Compare Acmitrs	CBA															11	2	1	A－B	－	－	：	－	：	\hat{i}
Clear	CLR								6F	6	2		7 F	6	3				$00 \rightarrow$ M	－	－	R	S	R	R
	CLRA															4F	2	1	00 \rightarrow A	－	－	R	S	R	R
	CLRB															5F	2	1	$00 \rightarrow B$	－	－	R	S	R	R
Compare	CMPA	81	2	2	29	$1{ }^{1} 3$	3	2	A1	4	2		B1 4	4	3				A－M	－	－	$\stackrel{\rightharpoonup}{*}$	－	，	：
	CMPB	C1	2	2	2 D	113	3	2	E1	4	2		F1	4	3				B－M	－	－	$\stackrel{\rightharpoonup}{2}$	人	：	$\stackrel{\square}{1}$
1＇s Complement	COM								63	6	2		73	6	3				$\bar{M} \rightarrow M$	－	－	－	－	R	S
	COMA															43	2	1	$\overline{\mathrm{A}} \rightarrow \mathrm{A}$	－	－	人	－	R	S
	COMB															53	2	1	$\bar{B} \rightarrow B$	－	－	$\stackrel{\rightharpoonup}{2}$	$\stackrel{1}{ }$	R	s
Decımal Adj．，A	DAA															19	2	1	Adj binary sum to BCD	－	－	，	$\stackrel{\rightharpoonup}{2}$	$\stackrel{\rightharpoonup}{2}$	\because
Decrement	DEC								6A	6	2		7A	6	3				$M-1 \rightarrow M$	－	－	$\stackrel{\rightharpoonup}{*}$	：	$\stackrel{\rightharpoonup}{*}$	－
	DECA															4A	2	1	$A-1 \rightarrow A$	－	－	：	－	$\stackrel{\rightharpoonup}{*}$	－
	DECB															5A	2	1	$B-1 \rightarrow B$	－	－	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{2}$	$\stackrel{ }{ }$	－
Exclusive OR	EORA	88	2	2	298	983	3	2	A8	4	2		B8	4	3				$A \oplus M \rightarrow A$	－	－	$\stackrel{\rightharpoonup}{2}$	$\stackrel{\rightharpoonup}{2}$	R	－
	EORB	C8	2	2	2 D	D8 3	3	2	E8	4	2		F8	4	3				$B \oplus M \rightarrow B$	－	－	$\stackrel{\rightharpoonup}{2}$	$\hat{*}$	R	－
Increment	INC								6 C	6	2		7 C	6	3				$M+1 \rightarrow M$	－	－	，	，	：	－
	INCA															4C	2	1	$A+1 \rightarrow A$	－	\cdot	$\stackrel{1}{2}$	i	＊	－
	INCB															5 C	2	1	$B+1 \rightarrow B$	－	－	：	$\stackrel{\rightharpoonup}{2}$	＊	\cdot
Load Acmitrs	LDAA	86	2	2	29	963	3	2	A6	4	2		B6	4	3				$\mathrm{M} \rightarrow \mathrm{A}$	－	－	$\stackrel{\text { i }}{ }$	\hat{i}	R	－
	LDAB	C6	2	2	2 D	D6 3	3	2	E6	4	2		F6	4	3				$M \rightarrow B$	－	－	$\stackrel{\rightharpoonup}{2}$	\checkmark	R	－
Load Double	LDD	cc	3		3 D	DC 4	4	2	EC	5	2		FC	5	3				$\mathrm{M} M+1 \rightarrow \mathrm{D}$	－	－	：	$\stackrel{\text { v }}{ }$	R	\cdot
Logical Shift，Left	LSL								68	6	2		78	6	3				$\sigma-\square_{\mathrm{b} 7}^{\square \prod I \prod_{\mathrm{b}}}-0$	－	－	$\stackrel{\rightharpoonup}{2}$	$\hat{\nu}$	，	，
	LSLA															48	2	1		\cdot	－	\checkmark	خ	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{*}$
	LSLB															58	2	1		－	－	\checkmark	$\stackrel{\rightharpoonup}{2}$	\checkmark	\checkmark
	LSLD															05	3	2		－	－	$\stackrel{\text { ¢ }}{ }$	\checkmark	＊	\checkmark
Shift Rıght，Logical	LSR								64	6	2		74	6	3				$0-\underset{\mathrm{b} 7}{\square \square \prod \prod_{\mathrm{b}}}-\mathrm{a}$	－	－	R	－	：	\checkmark
	LSRA															44	2	1		－	－	R	$\stackrel{\rightharpoonup}{2}$	－	ท
	LSRB															54	2	1		－	－	R	－	ง	）
	LSRD															04	3	1		－	－	R	，	ث	i

The Condition Code Regıster notes are listed after Table 12

Table 10 ：Accumulator and Memory Instructions（continued）．

Accumulator and Memory Operations	MNE	Immed			Direct			Index				Extend			Inher			Boolean Expression	Condition Codes					
		Op	\sim	\＃	Op	～	\＃		p	～	\＃	Op	～	\＃	Op	～	\＃		H	1	N	z	V	C
Multiply	MUL														3D	10	1	$A \times B \rightarrow D$	－	－	－	－	－	：
2＇s Complement （negate）	NEG								00	6	2	70	6	3				$00-\mathrm{M} \rightarrow \mathrm{M}$	－	－	，	$\stackrel{\rightharpoonup}{2}$	＊	$\stackrel{\rightharpoonup}{2}$
	NEGA														40	2	1	00－A \rightarrow A	－	－	$\stackrel{\rightharpoonup}{2}$	：	：	勺
	NEGB														50	2	1	$00-B \rightarrow B$	－	－	认	$\stackrel{\rightharpoonup}{*}$	勺	̂
No Operation	NOP														01	2	1	$P C+1 \rightarrow P C$	－	－	－	－	－	－
Inclusive OR	ORAA	8A	2	2	9A	3	2		AA 4	4	2	BA	4	3				$A+M \rightarrow A$	－	－	$\stackrel{\text { i }}{ }$	$\hat{\imath}$	R	－
	ORAB	CA	2	2	DA	3	2		EA 4	4	2	FA	4	3				$B+M \rightarrow B$	－	－	\uparrow	$\hat{\downarrow}$	R	－
Push Data	PSHA														36	3	1	A \rightarrow Stack	－	－	－	－	－	－
	PSHB														37	3	1	B \rightarrow Stack	－	－	－	－	－	－
Pull Data	PULA														32	4	1	Stack \rightarrow A	－	－	－	－	－	－
	PULB														33	4	1	Stack \rightarrow B	－	－	－	－	－	－
Rotate Left	ROL								696	6	2	79	6	3				(a-aln	－	－	\}	$\hat{\imath}$	ิ	ิे
	ROLA														49	2	1		－	－	$\hat{\imath}$	$\hat{\downarrow}$	$\hat{\text { v}}$	$\hat{\imath}$
	ROLB														59	2	1		－	－	¢	$\hat{\imath}$	$\hat{\imath}$	\uparrow
Rotate Right	ROR								666	6	2	76	6	3				a-	－	－	$\hat{\imath}$	$\stackrel{\rightharpoonup}{2}$	へ	$\hat{1}$
	RORA														46	2	1		－	－	$\stackrel{1}{2}$	$\hat{\downarrow}$	$\underline{1}$	\uparrow
	RORB														56	2	1		－	－	$\hat{\downarrow}$	$\hat{\imath}$	$\hat{\downarrow}$	ิ
Subtract Acmitr	SBA														10	2	1	$A-B \rightarrow A$	－	－	$\hat{\imath}$	$\hat{\text { i }}$	̂	$\hat{\imath}$
Subtract with Carry	SBCA	82	2	2	92	3	2		A2 4	4	2	B2	4	3				$A-M-C \rightarrow A$	－	－	i	i	$\hat{\downarrow}$	$\hat{\imath}$
	SBCB	C2	2	2	D2	3	2		E2	4	2	F2	4	3				$B-M-C \rightarrow B$	－	－	$\stackrel{1}{2}$	$\hat{\imath}$	i	$\stackrel{1}{2}$
Store Acmitrs	STAA				97	3	2		A7	4	2	B7	4	3				$A \rightarrow M$	－	－	$\hat{\imath}$	$\stackrel{\text { t }}{ }$	R	－
	STAB				D7	3	2		27	4	2	F7	4	3				$B \rightarrow M$	－	－	¢	ท	R	－
	STD				DD	4	2		D	5	2	FD	5	3				$D \rightarrow M . M+1$	－	－	ᄂ	$\stackrel{\rightharpoonup}{*}$	R	－
Subtract	SUBA	80	2	2	90	3	2		AO 4	4	2	B0	4	3				$A-M \rightarrow A$	－	－	$\hat{\imath}$	i	$\hat{\downarrow}$	$\hat{\imath}$
	SUBB	C0	2	2	D0	3	2		E 4	4	2	F0	4	3				$B-M \rightarrow B$	－	－	$\hat{\downarrow}$	\}	ث	i
Subtract Double	SUBD	83	4	3	93	5	2		A3 6	6	2	B3	6	3				$D-M \cdot M+1 \rightarrow D$	－	－	$\hat{\imath}$	$\stackrel{\rightharpoonup}{2}$	人	ิ
Transfer Acmitr	TAB														16	2	1	$A \rightarrow B$	－	－	$\stackrel{1}{2}$	\uparrow	R	－
	TBA														17	2	1	$\mathrm{B} \rightarrow \mathrm{A}$	－	－	$\stackrel{1}{2}$	$\stackrel{ }{ }$	R	－
Test，Zero or Mınus	TST								D 6	6	2	7D	6	3				M－ 00	－	－	$\hat{\imath}$	$\stackrel{\text { ¢ }}{ }$	R	R
	TSTA														4D	2	1	A－ 00	－	－	$\stackrel{1}{2}$	$\stackrel{\rightharpoonup}{2}$	R	R
	TSTB														5 D	2	1	B－ 00	－	－	$\stackrel{\rightharpoonup}{*}$	$\stackrel{1}{2}$	R	R

The Condition Code Register notes are listed after table 12.

MUCROEMECTRONOCS

Table 11 : Jump and Branch Instructions.

Operations	MNEM	Direct			Relative				Index			Extend			Inherent			Branch Test	Cond. Code Reg.									
					5	4	3	2				1	0															
		Op	\sim	\#									Op	\sim	\#	Op	\sim		\#	Op	~	\#	H	1	N	Z	V	C
Branch Always	BRA					20	3	2													None	-	-	-	-	-	-	
Branch Never	BRN					21	3	2										None	-	-	-	-	-	-				
Branch if Carry Clear	BCC					24	3	2										$C=0$	-	-	-	-	-	-				
Branch if Carry Set	BCS					25	3	2										$C=1$	-	-	-	-	-	-				
Branch if = Zero	BEQ					27	3	2										$\mathrm{Z}=1$	-	-	-	-	-	-				
Branch if \geq Zero	BGE					2 C	3	2										$N \oplus \mathrm{~V}=0$	-	-	-	-	-	-				
Branch if > Zero	BGT					2 E	3	2										$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=0$	-	-	-	-	-	-				
Branch if Higher	BHI					22	3	2										$C+Z=0$	-	-	-	-	-	-				
Branch if Higher or Same	BHS					24	3	2										$\mathrm{C}=0$	-	-	-	-	-	-				
Branch if \leq Zero	BLE					2 F	3	2										$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=1$	-	-	-	-	-	-				
Branch if Carry Set	BLO					25	3	2										$C=1$	-	-	-	-	-	-				
Branch if Lower or Same	BLS					23	3	2										$C+Z=1$	-	-	-	-	-	-				
Branch if < Zero	BLT					2D	3	2										$N \oplus \mathrm{~V}=1$	-	-	-	-	-	-				
Branch if Minus	BMI					2B	3	2										$\mathrm{N}=1$	-	-	-	-	-	-				
Branch if not Equal Zero	BNE					26	3	2										$\mathrm{Z}=0$	-	-	-	-	-	-				
Branch if Overflow Clear	BVC					28	3	2										$V=0$	-	-	-	-	-	-				
Branch if Overflow Set	BVS					29	3	2										$V=1$	-	-	-	-	-	-				
Branch if Plus	BPL					2A	3	2										$\mathrm{N}=0$	-	-	-	-	-	-				
Branch to Subroutine	BSR					8 D	6	2										See Special	-	-	-	-	-	-				
Jump	JMP								6 E	3	2	7 E	3	3				Operations-	-	-	-	-	-	-				
Jump to Subroutine	JSR	9D	5	2					AD	6	2	BD	6	3				figure 26	-	-	-	-	-	-				
No Operation	NOP														01	2	1		-	-	-	-	-	-				
Return from Interrupt	RTI														3B	10	1		ิ	ᄂ	人)	$\stackrel{ }{*}$	$\stackrel{\rightharpoonup}{*}$				
Return from Subroutine	RTS														39	5	1	See Special	-	-	-	-	-	-				
Sofware Interrupt	SWI														3 F	12	1	figure 26	-	S	-	-	-	-				
Wait for Interrupt	WAI														3 E	9	1		-	-	-	-	-	-				

The Condition Code Register notes are listed after Table 12

Table 12 : Condition Code Register Manipulation Instructions.

Operations	Inherent				Boolean Operation	Condition Code Register						
					5	4	3	2	1	0		
	Mnem	OP	\sim	\#		H	I	N	Z	V	C	
Clear Carry	CLC	OC	2	1		$0 \rightarrow \mathrm{C}$	-	-	-	-	-	R
Clear Interrupt Mask	CLI	OE	2	1	$0 \rightarrow 1$	-	R	-	-	-	-	
Clear Overflow	CLV	OA	2	1	$0 \rightarrow \mathrm{~V}$	-	-	-	-	R	-	
Set Carry	SEC	OD	2	1	$1 \rightarrow C$	-	-	-	-	-	S	
Set Interrupt Mask	SEI	OF	2	1	$1 \rightarrow 1$	\bullet	S	-	-	\bullet	-	
Set Overflow	SEV	OB	2	1	$1 \rightarrow \mathrm{~V}$	-	\bullet	-	-	S	-	
Accumulator A \rightarrow CCR	TAP	06	2	1	$A \rightarrow$ CCR	\uparrow	\uparrow	$\hat{\downarrow}$	\downarrow	\downarrow	\uparrow	
CCR \rightarrow Accumulator A	TPA	07	2	1	CCR \rightarrow A	-	-	-	-	-	-	

LEGEND
OP Operation Code (Hexadecimal)
~ Number of MPU Cycles
Msp Contents of memory location pointed to by Stack Pointer
\# Number of Program Bytes
$+\quad$ Arithmetic Plus

- Arithmetıc Minus
- Boolean AND

X Arithmetic Multıply

+ Boolean Inclusive OR
$\oplus \quad$ Boolean Exclusive OR
\bar{M} Complement of M
$\rightarrow \quad$ Transfer Into
$0 \quad \mathrm{BIt}=$ Zero
00 Byte $=0$

Table 13 : Instruction Execution Times In E-cycles.

	Addressing Mode					
	Immediate	Direct	Extended	Indexed	Inherent	Relative
ABA	-	-	-	-	2	-
$A B X$	\bullet	-	-	-	3	-
ADC	2	3	4	4	-	-
ADD	2	3	4	4	-	-
ADDD	4	5	6	6	\bullet	-
AND	2	3	4	4	\bullet	-
ASL	-	-	6	6	2	-
ASLD	-	-	-	-	3	-
ASR	-	-	6	6	2	-
BCC	-	-	-	-	\bullet	3
BCS	-	-	-	\bullet	-	3
BEQ	-	-	-	-	-	3
BGE	\bullet	\bullet	-	-	-	3
BGT	-	-	-	-	\bullet	3
BHI	-	-	-	-	\bullet	3
BHS	\bullet	-	-	-	-	3
BIT	2	3	4	4	\bullet	-
BLE	-	-	-	-	-	3
BLO	-	-	-	-	-	3
BLS	-	-	-	-	-	3
BLT	-	-	-	-	-	3
BMI	\bullet	-	\bullet	-	-	3
BNE	\bullet	-	-	-	-	3
BPL	-	-	-	-	-	3
BRA	-	-	-	-	-	3
BRN	-	-	-	-	-	3
BSR	-	-	-	-	-	6
BVC	-	-	-	-	-	3
BVS	-	\bullet	-	\bullet	-	3
CBA	-	-	-	-	2	\bullet
CLC	-	-	-	-	2	-
CLI	-	-	-	-	2	-
CLR	-	-	6	6	2	-
CLV	-	-	-	-	2	-
CMP	2	3	4	4	-	-
COM	-	-	6	6	2	-
CPX	4	5	6	6	-	-
DAA	-	-	-	-	2	-
DEC	-	-	6	6	2	-
DES	-	-	-	-	3	-
DEX	-	-	-	-	3	-
EOR	2	3	4	4	-	-
INC	-	-	6	6	-	-
INS	-	-	-	-	3	-

	Addressing Mode					
	Immediate	Direct	Extended	Indexed	Inherent	Relative
INX	-	-	-	-	3	-
JMP	-	-	3	3	-	-
JSR	\bullet	5	6	6	-	-
LDA	2	3	4	4	-	-
LDD	3	4	5	5	-	-
LDS	3	4	5	5	-	-
LDX	3	4	5	5	-	-
LSL	-	\bullet	6	6	2	\bullet
LSLD	-	-	-	-	3	-
LSR	\bullet	-	6	6	2	-
LSRD	-	-	-	\bullet	3	-
MUL	-	-	\bullet	-	10	-
NEG	-	-	6	6	2	-
NOP	-	-	\bullet	-	2	-
ORA	2	3	4	4	-	-
PSH	-	-	-	-	3	-
PSHX	-	\bullet	-	\bullet	4	-
PUL	-	-	-	-	4	-
PULX	-	-	-	-	5	-
ROL	-	-	6	6	2	-
ROR	\bullet	-	6	6	2	-
RTI	\bullet	\bullet	-	-	10	-
RTS	-	-	-	-	5	-
SBA	-	-	-	-	2	-
SBC	2	3	4	4	-	-
SEC	\bullet	-	-	-	2	-
SEI	-	-	-	-	2	-
SEV	-	-	-	\bullet	2	\bullet
STA	-	3	4	4	\bullet	-
STD	-	4	5	5	-	-
STS	\bullet	4	5	5	-	-
STX	-	4	5	5	-	-
SUB	2	3	4	4	-	-
SUBD	4	5	6	6	-	-
SWI	-	-	-	-	12	-
TAB	-	-	-	-	2	-
TAP	-	-	-	-	2	-
TBA	-	-	-	-	2	-
TPA	\bullet	-	\bullet	\bullet	2	-
TST	-	-	6	6	2	-
TSX	-	-	-	-	3	-
TXS	-	-	-	-	3	-
WAI	-	\bullet	-	-	9	-

SUMMARY OF CYCLE-BY-CYCLE OPERATION

Table 14 provides a detailed description of the information present on the address bus, data bus, and the read/write (R/W) line during each cycle of each instruction.
The information is useful in comparing actual with expected results during debug of both software and hardware as the program is executed. The information is categorized in groups according to address-
ing mode and number of cycles per instruction. In general, instructions with the same addressing mode and number of cycles execute in the same manner. Exceptions are indicated in the table.
Note that during MPU reads of internal locations, the resultant value will not appear on the external data bus except in mode 0 . "High order" byte refers to the most-significant byte of a 16 -bit value.

Table 14 : Cycle-by-cycle Operation (sheet 1 of 5)
IMMEDIATE

Address Mode and Instructions		Cycles	Cycle \#	Address Bus	$\begin{aligned} & \text { R/W } \\ & \text { Line } \end{aligned}$	Data Bus
ADC	EOR	2	1	Opcode Address	1	Opcode
ADD	LDA		2	Opcode Address + 1	1	Operand Data
AND	ORA					
BIT	SBC					
CMP	SUB					
LDS		3	1	Opcode Address	1	Opcode
LDX			2	Opcode Address + 1	1	Operand Data (high order byte)
LDD			3	Opcode Address + 2	1	Operand Data (low order byte)
CPX		4	1	Opcode Address	1	Opcode
SUBD			2	Opcode Address + 1	,	Operand Data (high order byte)
ADDD			3	Opcode Address + 2	1	Operand Data (low order byte)
			4	Address Bus FFFF	1	Low Byte of Restart Vector

DIRECT

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \text { R/W } \\ & \text { Line } \end{aligned}$	Data Bus
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand Operand Data
STA	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Destination Address	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	Opcode Destination Address Data from Accumulator
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Address Address of Operand Operand Data (high order byte) Operand Data (low order byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Address Address of Operand Operand Data (high order byte) Operand Data (low order byte)
$\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Operand Address Operand Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Address of Operand Operand Data (high order byte) Operand Data (low order byte) Low Byte of Restart Vector
JSR	5	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Subroutine Address Stack Pointer Stack Pointer - 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Opcode Irrelevant Data First Subroutine Opcode Return Address (low order byte) Return Address (high order byte)

Table 14 : Cycle-by-cycle Operation (sheet 2 of 5)
EXTENDED

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
JMP	3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2	$\overline{1}$	Opcode Jump Address (high order byte) Jump Address (low order byte)
 ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand	1	Opcode Address of Operand Address of Operand (low order byte) Operand Data
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Operand Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode Destination Address (high order byte) Destination Address (low order byte) Data from Accumulator
LDS LDX LDD	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand (high order byte) Address of Operand (low order byte) Operand Data (high order byte) Operand Data (low order byte)
STS STX STD	5	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand (high order byte) Address of Operand (low order byte) Operand Data (high order byte) Operand Data (low order byte)
ASL LSR ASR NEG CLR ROL COM ROR DEC TST* INC	6	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand Address Bus FFFF Address of Operand	1 1 1 1 1 0	Opcode Address of Operand (high order byte) Address of Operand (low order byte) Current Operand Data Low Byte of Restart Vector New Operand Data
CPX SUBD ADDD	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Operand Address Operand Address + 1 Address Bus FFFF	1 1 1 1 1 1 1	Opcode Operand Address (high order byte) Operand Address (low order byte) Operand Data (high order byte) Operand Data (low order byte) Low Byte of Restart Vector

[^3]
EF6801-EF6803

Table 14 : Cycle-by-cycle Operation (sheet 2 of 5)
EXTENDED (continued)

Address Mode and Instructions	Cycles	$\begin{gathered} \text { Cycle } \\ \# \end{gathered}$	Address Bus	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \text { Line } \end{aligned}$	Data Bus
JSR	6		Opcode Address	1	Opcode
		2	Opcode Address + 1	1	Address of Subroutine (high order byte)
		3	Opcode Address + 2	1	Address of Subroutine (low order byte)
		4	Subroutine Starting Address	1	Opcode of Next Instruction
		5	Stack Pointer	0	Return Address (low order byte)
		6	Stack Pointer - 1	0	Return Address (high order byte)

* TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus $=\$$ FFFF.

Table 14 : Cycle-by-cycle Operation (sheet 3 of 5)
INDEXED

Address Mode and Instructions	Cycles	$\begin{gathered} \text { Cycle } \\ \# \end{gathered}$	Address Bus	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \text { Line } \end{aligned}$	Data Bus
JMP	3	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Offset Low Byte of Restart Vector
 ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4		Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset	1	Opcode Offset Low Byte of Restart Vector Operand Data
STA	4	1	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data
$\begin{aligned} & \hline \text { LDS } \\ & \text { LDX } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset Index Register Plus Offset + 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data (high order byte) Operand Data (low order byte)
$\begin{aligned} & \hline \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset Index Register Plus Offset + 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data (high order byte) Operand Data (low order byte)
 ASL LSR ASR NEG CLR ROL COM ROR DEC TST* INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset Address Bus FFFF Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Current Operand Data Low Byte of Restart Vector New Operand Data
$\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register + Offset Index Register + Offset + 1 Address Bus FFFF	1	Opcode Offset Low Byte of Restart Vector Operand Data (high order byte) Operand Data (low order byte) Low Byte of Restart Vector
JSR	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register + Offset Stack Pointer Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Opcode Offset Low Byte of Restart Vector First Subroutine Opcode Return Address (low order byte) Return Address (high order byte

*TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus = \$FFFF.

Table 14 : Cycle-by-cycle Operation (sheet 4 of 5)
INHERENT

Address Mode and Instructions			Cycles	Cycle \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
ABA ASL ASR CBA CLC CLI CLR CLV COM	DAA DEC INC LSR NEG NOP ROL ROR SBA	SEC SEI SEV TAB TAP TBA TPA TST	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address Opcode Address + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction
ABX			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
$\begin{aligned} & \hline \text { ASLD } \\ & \text { LSRD } \end{aligned}$			3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
$\begin{aligned} & \hline \text { DES } \\ & \text { INS } \end{aligned}$			3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Previous Stack Pointer Contents	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction Irrelevant Data
$\begin{array}{\|l\|} \hline \text { INX } \\ \text { DEX } \end{array}$			3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction Low Byte of Restart Vector
$\begin{aligned} & \hline \text { PSHA } \\ & \text { PSHB } \end{aligned}$			3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode Opcode of Next Instruction Accumulator Data
TSX			3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction Irrelevant Data
TXS			3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Opcode of Next Instruction Low Byte of Restart Vector
PULA PULB			4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer Stack Pointer + 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Opcode of Next Instruction Irrelevant Data Operand Data from Stack
PSHX			4	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer Stack Pointer - 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Irrelevant Data Index Register (low order byte) Index Register (high order byte)
PULX			5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address Opcode Address + 1 Stack Pointer Stack Pointer + 1 Stack Pointer +2	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Irrelevant Data Index Register (low order byte) Index Register (high order byte)

Table 14 : Cycle-by-cycle Operation (sheet 4 of 5)
INHERENT (continued)

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
RTS	5	1	Opcode Address	1	Opcode
		2	Opcode Address + 1	1	Irrelevant Data
		3	Stack Pointer	1	Irrelevant Data
		4	Stack Pointer +1	1	Address of Next Instruction (high order byte)
		5	Stack Pointer + 2	1	Address of Next Instruction (low order byte)
WAI	9	1	Opcode Address	1	Opcode
		2	Opcode Address + 1	1	Opcode of Next Instruction
		3	Stack Pointer	0	Return Address (low order byte)
		4	Stack Pointer - 1	0	Return Address (high order byte)
		5	Stack Pointer - 2	0	Index Register (low order byte)
		6	Stack Pointer - 3	0	Index Register (high order byte)
		7	Stack Pointer - 4	0	Contents of Accumulator A
		8	Stack Pointer - 5	0	Contents of Accumulator B
		9	Stack Pointer - 6	0	Contents of Condition Code Register

Table 14 : Cycle-by-cycle Operation (sheet 5 of 5)
INHERENT

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\mathrm{R} / \overline{\mathrm{W}}$ Line	Data Bus
MUL	10	$\begin{gathered} \hline 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	Opcode Addres Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irrelevant Data Low Byte of Restart Vector
RTI	10		Opcode Address	1	Opcode
		2	Opcode Address + 1	1	Irrelevant Data
		3	Stack Pointer	1	Irrelevant Data
		4	Stack Pointer + 1	1	Contents of Condition Code Register from Stack
		5	Stack Pointer +2	1	Contents of Accumulator B from Stack
		6	Stack Pointer +3	1	Contents of Accumulator A from Stack
		7	Stack Pointer +4	1	Index Register from Stack (high order byte)
		8	Stack Pointer + 5	1	Index Register from Stack (low order byte)
		9	Stack Pointer + 6	1	Next Instruction Address from Stack (high order byte)
		10	Stack Pointer + 7	1	Next Instruction Address from Stack (low order byte)

Table 14 : Cycle-by-cycle Operation (sheet 5 of 5)
INHERENT (continued)

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \\ & \hline \end{aligned}$	Data Bus
SWI	12	1	Opcode Address	1	Opcode
		2	Opcode Address + 1	1	Irrelevant Data
		3	Stack Pointer	0	Return Address (low order byte)
		4	Stack Pointer - 1	0	Return Address (high order byte)
		5	Stack Pointer - 2	0	Index Register (low order byte)
		6	Stack Pointer - 3	0	Index Register (high order byte)
		7	Stack Pointer - 4	0	Contents of Accumulator A
		8	Stack Pointer - 5	0	Contents of Accumulator B
		9	Stack Pointer - 6	0	Contents of Condition Code Register
		10	Stack Pointer - 7	1	Irrelevant Data
		11	Vector Address FFFA (hex)	1	Address of Subroutine (high order byte)
		12	Vector Address FFFB (hex)	1	Address of Subroutine (low order byte)

RELATIVE

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
BCC BHT BNE BCS BLE BPL BHS BEQ BLS BRA BRN BGE BLT BVC BGT BMI BVS	3	2	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Branch Offset Low Byte of Restart Vector
BSR	6	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Subroutine Starting Address Stack Pointer Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Branch Offset Low Byte of Restart Vector Opcode of Next Instruction Return Address (low order byte) Return Address (high order byte)

RTN $=$ Address of next instruction in Main Program to be execiuted upon return from subroutine RTN $_{H}=$ Most significant byte of Return Address
RTN $\mathrm{L}=$ Least stgnificant byte of Return Addres
\rightarrow Stack Pointer After Execution
$K=8$-bit Unsigned Value

EF6801-EF6803

PACKAGE MECHANICAL DATA

P SUFFIX - PLASTIC PACKAGE

FN SUFFIX - PLASTIC PACKAGE

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS THOMSON on EPROM(s) or an EFDOS/MDOS* disk file.
To initiate a ROM pattern for the MCU, it is necessary to first contact your local SGS THOMSON representative or distributor.

EPROMs

Two 2708 or one 2716 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below:

After the EPROM (s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS THOMSON. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, SGS-THOMSON will program on blank EPROM from the data
file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by SGS THOMSON. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6801 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process inhouse if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS THOMSON factory representatives.
EFDOS is SGS THOMSON Disk Operating System available on development systems such as DEVICE, ...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...
*Requires prior factory approval

Whenever ordering a custom MCU is required, please contact your local SGS THOMSON representative or SGS THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS THOMSON Microelectronics representative.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Device		Package					Oper. Temp			Screening Level			
		C	J	P	E	FN	L*	V	M	Std	D	G/B	B/B
1.0 MHz	EF6801/03			\bullet		\bullet	-			\bullet			
				\bullet				\bullet		\bullet			
	EF6803							\bullet		-			
1.25 MHz	EF6801/03-1			\bullet		-	-			\bullet			
				\bullet				\bullet		\bullet			
	EF6803-1							\bullet		\bullet			
1.5 MHz	EF68A01/03			\bullet			-			-			
	EF68A03							\bullet		\bullet			
2.0 MHz	EF68B01/03			\bullet			-			\bullet			
Examples : EF6801P, EF6801FN, EF6801PV.													

Package : C : Ceramic DIL, J : Cerdıp DIL, P Plastıc DIL, E : LCCC, FN . PLCC;
Oper. temp. : $L^{*}: 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{M}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, * . may be omitted
Screening level : Std : (no-end suffix), D : NFC 96883 level D,
G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B.
EXORcIser is a registered trade mark of MOTOROLA Inc.

EF6801 FAMILY - MCU CUSTOMER ORDERING SHEET

* Requires prior factory approval	
Yearly quantity forecast :	-start of production date : for a shipment period of :

CUSTOMER CONTACT NAME : DATE :
SIGNATURE : EF6801U4

MICROCOMPUTER/MICROPROCESSOR

ADVANCE DATA

- ENHANCED EF6800 INSTRUCTION SET
- UPWARD SOURCE AND OBJECT CODE COMPATIBILITY WITH THE EF6800 AND EF6801
- BUS COMPATIBILITY WITH THE EF6800 FAMILY
- 8×8 MULTIPLY INSTRUCTION
- SINGLE-CHIP OR EXPANDED OPERATION TO 64K BYTE ADDRESS SPACE
- INTERNAL CLOCK GENERATOR WITH DIVIDE-BY-FOUR OUTPUT
- SERIAL COMMUNICATIONS INTERFACE (SCl)
- 16-BIT SIX-FUNCTION PROGRAMMABLE TIMER
- THREE OUTPUT COMPARE FUNCTIONS
- TWO INPUT CAPTURE FUNCTIONS
- COUNTER ALTERNATE ADDRESS
- 4096 BYTES OF ROM (EF6801U4)
- 192 BYTES OF RAM
- 32 BYTES OF RAM RETAINABLE DURING POWER DOWN
- 29 PARALLEL I/O AND TWO HANDSHAKE CONTROL LINES
- NMI INHIBITED UNTIL STACK LOAD
- $-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$ TEMPERATURE RANGE

PIN CONNECTIONS

DESCRIPTION

The EF6801U4 is an 8 -bit single-chip microcomputer unit (MCU) which enhances the capabilities of the EF6801 and significantly enhances the capabilities of the EF6800 Family of parts. It includes an EF6801 microprocessor unit (MPU) with direct ob-ject-code compatibility and upward object-code compatibility with the EF6800. Execution times of key instructions have been improved over the EF6800 and the new instructions found on the

EF6801 are included. The MCU can function as a monolithic microcomputer or can be expanded to a 64 K byte address space. It is TTL compatible and requires one +5 -volt power supply. On-chip resources include 4096 bytes of ROM, 192 bytes of RAM, a serial communications interface (SCI), parallel I/O, and a 16 -bit six-function programmable timer. The EF6803U4 can be considered as an EF6801U4 operating in modes 2 or 3 ; i.e., those that do not use internal ROM.

EF6801U4 MICROCOMPUTER FAMILY BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {In }}$	Input Voltage	-0.3 to +7.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range EF6801/03U4, EF6801/03U4-1, EF68A01/03U4 EF6801/03U4, EF6801/03U4-1: V Suffix	T_{H} to T_{L}	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	0 to 70	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid applicatıon of any voltage higher than maxımum rated voltages to thıs high-impedance circuit. For proper operation it is recommended that $V_{\text {In }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {In }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{\text {cc }}$. Input protection is enhanced by connecting unused inputs to either $V_{D D}$ or $V_{S S}$.

THERMAL DATA

θ_{JA}	Thermal Resistance	Plastic PLCC	50
		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :

$$
\begin{gather*}
\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{PD}_{\mathrm{D}} \cdot \theta_{\mathrm{JA}}\right) \tag{1}\\
\text { Where }
\end{gather*}
$$

$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
θ JA $=$ Package Thermal Resistance, Junc-
tion-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Pd $=$ Pint + Pport
Pint $=\operatorname{Icc} \times$ Vcc, Watts - Chip Internal Power
PPORT = Port Power Dissipation, Watts - User Determined
For most applications PPORT << Pint and can be neglected. PPORt may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J}
(if PPORT is neglected) is :

$$
\begin{equation*}
P D=K+\left(T_{J}+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives :

$$
\begin{equation*}
\mathrm{K}=\mathrm{P}_{\mathrm{D}} \cdot\left(\mathrm{~T}_{\mathrm{A}}+273^{\circ} \mathrm{C}\right)+\theta_{J A} \cdot \mathrm{PD}^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

CONTROL TIMING ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0$ to $\left.70^{\circ} \mathrm{C}\right)$

Symbol	Parameter	$\begin{aligned} & \text { EF6801U4 } \\ & \text { EF6803U4 } \end{aligned}$		$\begin{aligned} & \text { EF6801U4-1 } \\ & \text { EF6803U4-1 } \end{aligned}$		$\begin{aligned} & \text { EF68A01U4 } \\ & \text { EF68A03U4 } \end{aligned}$		$\begin{aligned} & \text { EF68B01U4 } \\ & \text { EF68B03U4 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
f_{0}	Frequency of Operation	0.5	1.0	0.5	125	0.5	1.5	0.5	2.0	MHz
fxTAL	Crystal Frequency	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
4 fo	External Oscillator Frequency	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
t_{rc}	Crystal Oscillator Startup Time		100		100		100		100	ms
tpcs	Processor Control Setup Time	200		170		140		110		ns

DC ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted)

Symbol	Parameter	$\begin{gathered} \text { EF6801/03U4 (1) } \\ 0 \text { to }+70^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { EF6801U4/6803U4 } \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	
V_{IH}	Input High Voltage $\begin{gathered}\text { RESET } \\ \text { Other Inputs }{ }^{*}\end{gathered}$	$\begin{aligned} & V_{S S}+4.0 \\ & V_{S S}+2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V_{S S}+4.0 \\ & V_{S S}+2.2 \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \mathrm{v}_{\mathrm{cc}} \\ & \hline \end{aligned}$	V
V_{IL}	Input Low Voltage All Inputs*	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\text {SS }}+0.8$	$V_{\text {SS }}-0.3$	$\mathrm{V}_{S S}+0.8$	V
1 In	$\begin{array}{lc}\text { Input Load Current (} \mathrm{V}_{\text {in }}=0 \text { to 2.4V) } & \text { Port } 4 \\ & \text { SCI }\end{array}$		$\begin{aligned} & \hline 0.5 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mA
1 n	Input Leakage Current $\left(V_{\text {In }}=0\right.$ to 5.5 V$) \quad \overline{\text { NMI }}, \overline{\mathrm{RQQ1}}, \overline{\mathrm{RESET}}$		2.5		5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TSI }}$	Hi-Z (off-state) Input Current ($\mathrm{V}_{\text {In }}=0.5$ to 2.4 V) Port 1, Port 2, Port 3		10		20	$\mu \mathrm{A}$
V_{OH}		$\begin{array}{r} V_{\mathrm{ss}}+2.4 \\ V_{\mathrm{ss}}+2.4 \\ \hline \end{array}$		$\begin{aligned} & V_{s s}+2.4 \\ & V_{s s}+2.4 \\ & \hline \end{aligned}$		V
VoL	Output Low Voltage $\left(I_{\text {Load }}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}\right)$		$V_{S S}+0.5$		$V_{S S}+0.6$	V
IOH	Darlington Drive Current $\left(\mathrm{V}_{0}=1.5 \mathrm{~V}\right)$ Port 1	1.0	4.0	1.0	5.0	mA
$\mathrm{P}_{\text {INT }}$	Internal Power Dissipation (measured at $T_{A}=T_{L}$ in steady-state operation)***		1200		1500	mW
$\mathrm{C}_{\text {In }}$	Input Capacitance $\left(V_{\text {In }}=0, T_{A}=25^{\circ} \mathrm{C}\right.$, Port 3, Port 4, SC1 $\left.\mathrm{f}_{0}=1.0 \mathrm{MHz}\right)$ Other Inputs		$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$		$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	pF
$\begin{aligned} & \hline \mathrm{V}_{\text {SBB }} \\ & \mathrm{V}_{\mathrm{SB}} \\ & \hline \end{aligned}$	$V_{C C}$ Standby $\begin{array}{r}\text { Powerdown } \\ \text { Powerup }\end{array}$	$\begin{gathered} 4.0 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	$\begin{gathered} 4.0 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	V
$\mathrm{I}_{\text {SBB }}$	Standby Current Powerdown		3.0		3.5	mA

* Except mode programming levels ; see figure 16.
** Negotiable to $-100 \mu \mathrm{~A}$ (for further information contact the factory).
*** For the EF6801U4/EF6803U4 $T_{L}=0^{\circ} \mathrm{C}$ and the the EF6801U4/EF6803U4 : V suffix $\mathrm{T}_{\mathrm{L}}=-40^{\circ} \mathrm{C}$.
(1) Same values for EF6801/03U4-1, EF68A01/03U4 and EF68B01/03U4.

PERIPHERAL PORT TIMING (refer to figures 1.4)

Symbol	Parameter	EF6801/03U4 EF6801/03U4-1		EF68A01/03U4		$\begin{aligned} & \text { EF68B01U4 } \\ & \text { EF68B03U4 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PDSU }}$	Peripheral Data Setup Time	200		150		100		ns
$t_{\text {PDH }}$	Peripheral Data Hold Time	200		150		100		ns
tosc1	Delay Time, Enable Positive Transition to OS3 Negative Transition		350		300		250	ns
tosd2	Delay Time, Enable Positive Transition to OS3 Positive Transition		350		300		250	ns
$t_{\text {PWD }}$	Delay Time, Enable Negative Transition to Peripheral Data Valid Port 1 Port 2, 3, 4		$\begin{aligned} & 350 \\ & 350 \end{aligned}$		$\begin{array}{r} 300 \\ 300 \\ \hline \end{array}$		250	ns
tcmos	Delay Time, Enable Negative Transition to Peripheral CMOS Data Valid		2.0		2.0		2.0	$\mu \mathrm{s}$
tPWIS	Input Strobe Pulse Width	200		150		100		ns
t_{H}	Input Data Hold Time	50		40		30		ns
$\mathrm{t}_{\text {IS }}$	Input Data Setup Tıme	20		20		20		ns

Figure 1 : Data Setup and Hold Times (MPU Read).

*Port 3 non-latched operation (latch enable $=0$).

Figure 3 : Port 3 Output Strobe Timing (EF6801U4 single-chip mode).

Figure 2 : Data Setup and Hold Times (MPU Write).

Notes: 1.10 k pullup resistor required for port 2 to reach $0.7 \mathrm{~V}_{\mathrm{Cc}}$ 2.Not applicable to P21.
3.Port 4 cannot be pulled above $V_{c c}$

Figure 4 : Port 3 Latch Timing (EF6801U4 single-chip mode).

* Access matches output strobe select (OSS $=0$, a read ;

OSS = 1, a write)
Note : Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 20 volts, unless otherwise noted

Figure 5 : CMOS Load.

Figure 6 : Timing Test Load Ports 1, 2, 3, and 4.

$\mathrm{C}=90 \mathrm{pF}$ for $\mathrm{P} 30-\mathrm{P} 37, \mathrm{P} 40-\mathrm{P} 47, \mathrm{E}, \mathrm{SC1}, \mathrm{SC} 2$
$=30 \mathrm{pF}$ for P10-P17, P20-P24
$R=37 \mathrm{k} \Omega$ for $\mathrm{P} 40-\mathrm{P} 47, \mathrm{SC} 1, \mathrm{SC} 2$
$=24 \mathrm{k} \Omega$ for P10-P17, P20-P24.
$=24 \mathrm{k} \Omega$ for P30-P37, E

BUS TIMING (see notes 1 and 2, and figure 7)

Ident. Number	Symbol	Parameter	$\begin{aligned} & \text { EF6801U4 } \\ & \text { EF6803U4 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { EF6801U4-1 } \\ \text { EF6803U4-1 } \end{array}$		$\begin{aligned} & \text { EF68A01U4 } \\ & \text { EF68A03U4 } \end{aligned}$		$\begin{aligned} & \text { EF68B01U4 } \\ & \text { EF68B03U4 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
1	$t_{\text {cyc }}$	Cycle Time	1.0	2.0	0.8	2.0	0.66	2.0	0.5	2.0	$\mu \mathrm{s}$
2	PWEL	Pulse Wıdth, E Low	430	1000	360	1000	30	1000	210	1000	ns
3	PWEH	Pulse Width, E High	450	1000	360	1000	300	1000	220	1000	ns
4	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Rise and Fall Time		25		25		25		20	ns
9	$t_{\text {AH }}$	Address Hold Time	20		20		20		10		ns
12	$t_{A V}$	Non-muxed Address Valid Time to E*	200		150		115		70		ns
17	$t_{\text {DSR }}$	Read Data Setup Time	80		70		60		40		ns
18	$t_{\text {DHR }}$	Read Data Hold Time	10		10		10		10		ns
19	todw	Write Data Delay Time		225		200		160		120	ns
21	$t_{\text {DHW }}$	Write Data Hold Time	20		20		20		10		ns
22	$\mathrm{t}_{\mathrm{AVM}}$	Muxed Address Valid Time to E Rise*	160		120		100		80		ns
24	$t_{\text {ASL }}$	Muxed Address Valid Time to AS Fall*	40		30		30		20		ns
25	$\mathrm{t}_{\text {AHL }}$	Muxed Address Hold Tıme	20		20		20		10		ns
26	$t_{\text {ASD }}$	Delay Time, E to AS Rise*	200		170		130		110		ns
27	PW ${ }_{\text {ASH }}$	Pulse Width, AS High*	100		80		60		45		ns
28	$t_{\text {ASED }}$	Delay Time, AS to E Rise*	90		70		60		45		ns
29	$t_{\text {ACC }}$	Usable Access Time* (see note 3)	555		435		385		270		ns

[^4]Figure 7 : Bus Timing.

Notes: 1. Voltage levels shown are $\mathrm{V}_{\mathrm{L}} \leq 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}} \geq 24 \mathrm{~V}$, unless otherwise specified.
2. Measurement points shown are 0.8 V and 20 V , unless otherwise specified.
3. Usable access time is computed by $22+3-17+4$.
4. Memory devices should be enabled only during E high to avoid port 3 bus contention
5. Item 26 is different from the EF6801 but it is upward compatible.

INTRODUCTION

The EF6801U4 is an 8-bit monolithic microcomputer which can be configured to function in a wide variety of applications. The facility which provides this extraordinary flexibility is its ability to be hardware programmed into eight different operating modes. The operating mode controls the configuration of 18 of the 40 MCU pins, available on-chip resources, memory map, location (internal or external) of interrupt vectors, and type of external bus. The configuration of the remaining 22 pins is not dependent on the operating mode.
Twenty-nine pins are organized as three 8-bit ports and one 5 -bit port. Each port consists of at least a data register and a write-only data direction regis-
ter. The data direction register is used to define whether corresponding bits in the data register are configured as an input (clear) or output (set).
The term "port" by itself refers to all of the hardware associated with the port. When the port is used as a "data port" or "l/O port", it is controlled by the port data direction register and the programmer has direct access to the port pins using the port data register. Port pins are labeled as Pij where i identifies one of four ports and j indicates the particular bit.
The microprocessor unit (MPU) is an enhanced EF6800 MPU with additional capabilities and greater throughput. It is upward source and object code compatible with the EF6800 and the EF6801. The programming model is depicted in figure 8
where accumulator D is a concatenation of accumulators A and B. A list of new operations added to the EF6800 instruction set are shown in table 1.

The EF6803U4 can be considered an EF6801U4 that operates in modes 2 and 3 only.

Figure 8 : Programming Model.

Table 1 : New Instructions.

Instruction	Description
ABX	Unsigned addition of accumulator B to index register.
ADDD	Adds (without carry) the double accumulator to memory and leaves the sum in the double accumulator.
ASLD or LSLD	Shifts the double accumulator left (towards MSB) one bit, the LSB is cleared, and the MSB is shifted into the C bit.
BHS	Branch if higher or same, unsigned conditional branch (same as BCC).
BLO	Branch if lower, unsigned conditional branch (same as BCS).
BRN	Branch never.
JSR	Additional addressing mode direct.
LDD	Loads double accumulator from memory.
LSL	Shifts memory or accumulator left (towards MSB) one bit, the LSB is cleared, and the MSB is shifted into the C bit (same as ASL).
LSRD	Shifts the double accumulator right (towards LSB) one bit, the MSB is cleared, and the LSB is shifted into the C bit.
MUL	Unsigned multiply, multiplies the two accumulators and leaves the product in the double accumulator.
PSHX	Pushes the index register to stack.
PULX	Pulls the index register from stack.
STD	Stores the double accumulator to memory.
SUBD	Substracts memory from the double acccumulator and leaves the difference in the double accumulator.
CPX	Internal processing modified to permit its use with any conditional branch instruction.

OPERATING MODES

The EF6801U4 provides seven different operating modes (modes 0 through 3 and 5 through 7) and the EF6803U4 provides two operating modes (modes 2 and 3). The operating modes are hardware selectable and determine the device memory map, the configuration of port 3, port 4, SC1, SC2, and the physical location of the interrupt vectors.

FUNDAMENTAL MODES

The seven operating modes ($0-3,5-7$) can be grouped into three fundamental modes which refer to the type of bus it supports : single chip, expanded non-multiplexed, and expanded multiplexed. Single
chip is mode 7, expanded non-multiplexed is mode 5 , and the remaining 5 are expanded multiplexed modes. Table 2 summarizes the characteristics of the operating modes.

EF6801U4 SINGLE-CHIP MODE (7) - In the singlechip mode, the four MCU ports are configured as parallel input/output data ports, as shown in figure 9. The MCU functions as a monolithic microcomputer in this mode without external address or data buses. A maximum of 29 I/O lines and two port 3 control lines are provided. Peripherals or another MCU can be interfaced to port 3 in a loosely coupled dual-processor configuration, as shown in figure 10.

Table 2 : Summary of EF6801U4/EF6803U4 Operating Modes.

```
Single-chip (mode 7)
    192 Bytes of RAM, 4096 Bytes of ROM
    Port 3 is a parallel I/O port with two control lines.
    Port 4 is a parallel I/O port.
Expanded Non-multiplexed (mode 5)
    1 9 2 \text { Bytes of RAM, 4096 Bytes of ROM}
    2 5 6 \text { Bytes of External Memory Space}
    Port 3 is an 8-bit data bus.
    Port 4 is an input port/address bus.
Expanded Multiplexed (modes 0, 1, 2, 3, 6*)
    Four Memory Space Options (total 64K address space)
            (1) Internal RAM and ROM with Partial Address Bus (mode 1)
            (2) Internal RAM, no ROM (mode 2)
            (3) Extended Addressing of Internal I/O and RAM
            (4) Internal RAM and ROM with Partial Address Bus (mode 6)
    Port 3 is multiplexed address/data bus.
    Port 4 is address bus (inputs/address in mode 6).
    Test Mode (mode 0) :
            May be used to test internal RAM and ROM.
            May be used to test ports 3 and 4 as I/O ports by writing into mode }7
    Only modes 5,6, and 7 can be ırreversibly entered from mode 0.
Ressources Common to All Modes
    Reserved Register Area
    Port }1\mathrm{ Input/output Operation
    Port 2 Input/output Operation
    Timer Operatıon
    Serial Communications Interface Operation
```

[^5]Figure 9 : Single-chip Mode.

Figure 10 : Single-chip Dual Processor Configuration.

EF6801U4 EXPANDED NON-MULTIPLEXED MODE (5) - A modest amount of external memory space is provided in the expanded non-multiplexed mode while significant on-chip resources are retained. Port 3 functions as an 8 -bit bidirectional data bus and port 4 is configured initially as an input data port. Any combination of the eight least significant address lines may be obtained by writing to the port 4 data direction register. Stated alternatively, any combination of A0 to A7 may be provided while re-
taining the remainder as input data lines. Internal pullup resistors pull the port 4 lines high until the port is configured.
Figure 11 illustrates a typical system configuration in the expanded non-multiplexed mode. The MCU interfaces directly with EF6800 family parts and can access 256 bytes of external address space at $\$ 100$ through $\$ 1 F F$. IOS provides an address decode of external memory ($\$ 100-\$ 1 F F$) and can be used as a memory-page select or chip-select line.

EXPANDED MULTIPLEXED MODES ($0,1,2,3,6$) - A 64K byte memory space is provided in the expanded multiplexed modes. In each of the expanded multiplexed modes, port 3 functions as a time multiplexed address/data bus with address valid on the negative edge of address strobe (AS) and data valid while E is high. In modes 0,2 , and 3 , port 4 provides address lines A8 to A15. In modes 1 and 6, however, port 4 initially is configured at reset as an input data port. The port 4 data direction register can then be changed to provide any combination of address lines A8 to A15. Stated alternatively, any subset of A8 to A15 can be provided while retaining the remaining port 4 lines as input data lines. Internal pullup resistors pull the port 4 lines high until software configures the port. In mode 1, the internal pullup resistors will hold the upper address lines high producing a value of \$FFXX for a reset vector. A simple method of getting the desired address lines configured as outputs is to have an external EPROM not fully decoded so it appears at two address locations (i.e., \$FXXX and \$BXXX). Then, when the reset vector appears as \$FFFE, the

EPROM will be accessed and can point to an address in the top $\$ 100$ bytes of the internal or external ROM/EPROM that will configure port 4 as desired.
In mode 0 , the reset and interrupt vectors are located at \$BFF0-\$BFFF. In addition, the internal and external data buses are connected, so there must be no memory map overlap in order to avoid potential bus conflicts. By writing the PC0-PC2 bits in the port 2 data register, modes 5,6 , and 7 can be irreversibly entered from mode 0 . Mode 0 is used primarily to verify the ROM pattern and monitor the internal data bus with the automated test equipment.
Only the EF6801U4 can operate in each of the expanded multiplexed modes. The EF6803U4 operates only in modes 2 and 3.
Figure 12 depicts a typical configuration for the expanded multiplexed modes. Address strobe can be used to control a transparent D-type latch to capture addresses A0-A7, as shown in figure 13. This allows port 3 to function as a data bus when E is high.

Figure 11 : Expanded Non-multiplexed Configuration.

Figure 12 : Expanded Multiplexed Configuration.

Note : To avoid data bus (port 3) contention in the expanded multiplexed modes, memory devices should be enabled only during E high time.

Figure 13 : Typical Latch Arrangement.

PROGRAMMING THE MODE

The operating mode is determined at $\overline{\text { RESET }}$ by the levels asserted on P22, P21, and P20. These levels are latched into PC2, PC1, and PC0 of the program control register on the positive edge of RESET. The operating mode may be read from the port 2 data register, as shown below, and programming levels and timing must be met as shown in figure 14. A brief outline of the operating modes is shown in table 3.

PORT 2 DATA REGISTER

7	6	5	4	3	2	1	0	
PC2	PC1	PC0	P24	P23	P22	P21	P20	$\$ 03$

Circuitry to provide the programming levels is dependent primarily on the normal system usage of the three pins. If configured as outputs, the circuit shown in figure 15 may be used ; otherwise, threestate buffers can be used to provide isolation while programming the mode.

MEMORY MAPS

The EF6801U4/EF6803U4 can provide up to 64 K byte address space depending on the operating mode. A memory map for each operating mode is shown in figure 16. The first 32 locations of each map are reserved for the internal register area, as shown in table 4, with exceptions as indicated.

Figure 14 : Mode Programming Timing.

MODE PROGRAMMING (refer to figure 14)

Symbol	Parameter	Min.	Max.	Unit
$V_{\text {MPL }}$	Mode Programming Input Voltage Low		1.8	V
$\mathrm{~V}_{\text {MPH }}$	Mode Programming Input Voltage High	4.0		V
$\mathrm{~V}_{\text {MPDD }}$	Mode Programming Diode Differential (if diodes are used)	0.6		V
PW	RSTL	RESET Low Pulse Width	3.0	
$\mathrm{t}_{\text {MPS }}$	Mode Programming Setup Time	2.0		E Cycles
$\mathrm{t}_{\text {MPH }}$	Mode Programming Hold Time			
RESET Rise Time $\geq 1 \mu \mathrm{~s}$ RESET Rise Time $<1 \mu \mathrm{~S}$	0 100		ns	

Table 3 : Mode Selection Summary.

Mode *	P22 PC2	P21 PC1	P20 PC0	ROM	RAM	Interrupt Vectors	Bus Mode	Operating Mode
7	H	H	H	I	I	I	I	Single Chip
6	H	H	L	I	I	I	MUX $^{(2,3)}$	Multiplexed/partial Decode
5	H	L	H	I	I	I	NMUX $^{(2,3)}$	Non-multiplexed/partial Decode
4	H	L	L					Undefined ${ }^{(4)}$
3	L	H	H	E	I	E	MUX $^{(1,5)}$	Multiplexed/RAM
2	L	H	L	E	I	E	MUX ($^{1)}$	Multiplexed/RAM
1	L	L	H	I	I	E	MUX $^{(1,3)}$	Multiplexed/RAM and ROM
0	L	L	L	I	I	E	MUX $^{(1)}$	Multiplexed Test

Legend
I - Internal
E-External
MUX - Multıplexed
NMUX - Non-Multiplexed
L - Logic "0"
H-Logic "1"
Notes : 1. Addresses associated with ports 3 and 4 are considered external in modes 0,1,2, and 3.
2. Addresses associated with port 3 are considered external in modes 5 and 6
3. Port 4 default is user data input ; address output is optıonal by writing to port 4 data direction register.
4. Mode 4 is a non-user mode and should not be used as an operating mode.
5. Mode 3 has the internal RAM and internal registers relocated at \$D000-\$D0FF.

* The EF6803U4 operates only in modes 2 and 3.

Figure 15 : Typical Mode Programming Circuit.

NOTES .
1 Mode 7 as shown
2 R2 C = Reset time constant
3 R1 $=10 \mathrm{k}$ (typical)
4. $\mathrm{D}=1 \mathrm{~N} 914,1 \mathrm{~N} 4001$ (typical)
5. Diode V_{1} should no exceed $V_{\text {MPDD }}$ min.

Figure 16 : EF6801U4/EF6803U4 Memory Maps (sheet 1 of 4).

Notes : 1 Excludes the following addresses which may be used externally : $\$ 04, \$ 05, \$ 06, \$ 07$, and $\$ 0 F$.
2. The interrupt vectors are at $\$ B F F 0-\$ B F F F$.
3. There must be no overlapping of internal and external memory spaces to avoid driving the data bus with more than one device.
4. This mode is the only mode which may be used to examine the entire ROM using an external RESET vector.
5. Modes $5-7$ can be irreversibly entered from mode 0 by writing to the PCO-PC2 bits of the port 2 data register.

Figure 16 : EF6801U4/EF6803U4 Memory Maps (sheet 2 of 4).

Figure 16 : EF6801U4/EF6803U4 Memory Maps (sheet 3 of 4).

Figure 16 : EF6801U4/EF6803U4 Memory Maps (sheet 4 of 4).

Table 4 : Internal Register Area.

Register	Address	
	Other Modes	Mode 3
Port 1 Data Direction Register***	0000	D000
Port 2 Data Direction Register***	0001	D001
Port 1 Data Register	0002	D002
Port 2 Data Register	0003	D003
Port 3 Data Direction Register***	0004*	D004*
Port 4 Data Direction Register***	0005**	D005**
Port 3 Data Register	0006*	D006*
Port 4 Data Register	0007**	D007**
Timer Control and Status Register	0008	D008
Counter (high byte)	0009	D009
Counter (low byte)	000A	D00A
Output Compare Register (high byte)	000B	D00B
Output Compare Register (low byte)	000C	D00C
Input Capture Register (high byte)	000D	D00D
Input Capture Register (low byte)	000E	DOOE
Port 3 Control and Status Register	000F*	D00F*
Rate and Mode Control Register	0010	D010
Transmit/receive Control and	0011	D011
Status Register		
Receive Data Register	0012	D012
Transmit Data Register	0013	D013
RAM Control Register	0014	D014
Counter Alternate Address (high byte)	0015	D015
Counter Alternate Address (low byte)	0016	D016
Timer Control Register 1	0017	D017
Timer Control Register 2	0018	D018
Timer Status Register	0019	D019
Output Compare Register 2 (high byte)	001A	D01A
Output Compare Register 2 (low byte)	001B	D01B
Output Compare Register 3 (high byte)	001C	D01C
Output Compare Register 3 (low byte)	001D	D01D
Input Capture Register 2 (high byte)	001E	D01E
Input Capture Register 2 (low byte)	001F	D01F

* External addresses in modes $0,1,2,3,5$ and 6 cannot be accessed in mode 5 (no IOS).
** External Addresses in Modes 0, 2, and 3.
*** $1=$ Output, $0=$ Input.

EF6801U4/EF6803U4 INTERRUPTS

The EF6801 Family supports two types of interrupt requests : maskable and non-maskable. A nonmaskable interrupt (NMI) is always recognized and acted upon at the completion of the current instruction. Maskable interrupts are controlled by the condition code register I bit and by individual enable bits. The I bit controls all maskable interrupts. Of the maskable interrupts, there are two types: IRQ1 and IRQ2. The programmable timer and serial communications interface use an internal IRQ2 interrupt line, as shown in the block diagram. External devices and IS3 use IRQ1. An IRQ1 interrupt is serviced before IRQ2 if both are pending.

NOTE

After reset, an $\overline{\mathrm{NMI}}$ will not be serviced until the first program load of the stack pointer. Any NMI generated before this load will be remembered by the processor and serviced subsequent to the stack pointer load.
All $\overline{\mathrm{RQ} 2}$ interrupts use hardware prioritized vectors. The single SCl interrupt and three timer interrupts are serviced in a prioritized order and each is vectored to a separate location. All interrupt vector locations are shown in table 5 . In mode 0 , reset and interrupt vectors are defined as \$BFF0-\$BFFF.
The interrupt flowchart is depicted in figure 17 and is common to every interrupt excluding reset. During interrupt servicing, the program counter, index register, A accumulator, B accumulator, and condition code register are pushed to the stack. The I bit is set to inhibit maskable interrupts and a vector is fetched corresponding to the current highest priority interrupt. The vector is transferred to the program counter and instruction execution is resumed. Interrupt and RESET timing are illustrated in figures 18 and 19.

Table 5 : MCU Interrupt Vector Locations.

Mode 0		Modes 1-3, 5-7		Interrupt***
MSB	LSB	MSB	LSB	
BFFE	BFFF	FFFE	FFFF	RESET
BFFC	BFFD	FFFC	FFFD	Non-maskable Interrupt**
BFFA	BFFB	FFFA	FFFB	Software Interrupt
BFF8	BFF9	FFF8	FFF9	Maskable Interrupt Request 1
BFF6	BFF7	FFF6	FFF7	Input Capture Flag*
BFF4	BFF5	FFF4	FFF5	Output Compare Flag*
BFF2	BFF3	FFF2	FFF3	Timer Overflow Flag*
BFFO	BFF1	FFFO	FFF1	Serial Communications Interface*

* IRQ2 interrupt
** $\overline{\text { NMI }}$ must be armed (by accessing stack pointer) before an $\overline{\text { NMI }}$ is executed.
*** Mode 4 interrupt vectors are undefined.

FUNCTIONAL PIN DESCRIPTIONS

$V_{c c}$ AND Vss

$V_{C C}$ and $V_{S S}$ provide power to a large portion of the MCU. The power supply should provide +5 volts ($\pm 5 \%$) to $V_{C C}$ and $V_{S S}$ should be tied to ground. Total power dissipation (including Vcc standby) will not exceed P_{D} milliwatts.

Vcc STANDBY

$V_{C C}$ standby provides power to the standby portion ($\$ 40$ through $\$ 5 \mathrm{~F}$ in all modes except mode 3 which is \$D040 through \$D05F) of the RAM and the STBY PWR and RAME bits of the RAM control register. Voltage requirements depend on whether the device is in a power-up or power-down state. In the power-up state, the power supply should provide +5 volts ($\pm 5 \%$) and must reach VSB volts before RESET reaches 4.0 volts. During power down, Vcc standby must remain above $\mathrm{V}_{\text {SBB }}$ (minimum) to sustain the standby RAM and STBY PWR bit. While in power-down operation, the standby current will not exceed Isbb.
It is typical to power both $V_{C C}$ and $V_{C C}$ standby from the same source during normal operation. A diode must be used between them to prevent supplying power to VCc during power-down operation.

XTAL1 AND EXTAL2

These two input pins interface either a crystal or TTL-compatible clock to the MCU internal clock generator. Divide-by-four circuitry is included which allows use of the inexpensive 3.58 MHz or 4.4336 MHz color burst TV crystals. A 20pF capacitor should be tied from each crystal pin to ground to ensure reliable startup and operation. Alternatively, EXTAL2 may be driven by an external TTL-compatible clock at $4 \mathrm{f}_{0}$ with a duty cycle of 50% ($\pm 5 \%$) with XTAL1 connected ground.
The internal oscillator is designed to interface with an AT-cut quartz crystal resonator operated in parallel resonance mode in the frequency range specified for fxtal. The crystal should be mounted as close as possible to the input pins to minimize output distortion and startup stabilization time. The MCU is compatible with most commercially available crystals. Nominal crystal parameters are shown in figure 20.

RESET

This input is used to reset the internal state of the device and provide an orderly startup procedure. During power up, RESET must be held below 0.8 volt : (1) at least tRC after $V_{C C}$ reaches 4.75 volts in order to provide sufficient time for the clock gen-
erator to stabilize, and (2) until Vcc standby reaches 4.75 volts. RESET must be held low at least three E cycles if asserted during power-up operation.

E (ENABLE)

This is an output clock used primarily for bus synchronization. It is TTL compatible and is the slightly skewed divide-by-four result of the device input clock frequency. It will drive one Schottky TTL load and 90 pF , and all data given in cycles is referenced to this clock unless otherwise noted.

$\overline{\mathrm{NMI}}$ (NON-MASKABLE INTERRUPT)

An $\overline{\mathrm{NMI}}$ negative edge requests an MCU interrupt sequence, but the current instruction will be completed before it responds to the request. The MCU will then begin an interrupt sequence. Finally, a vector is fetched from SFFFFC and \$FFFD (\$BFFC and \$BFFD in mode 0), transferred to the program counter, and instruction execution is resumed. NMI typically requires a $3.3 \mathrm{k} \Omega$ (nominal) resistor to V cc. There is no internal NMI pullup resistor. NMI must be held low for at least one E cycle to be recognized under all conditions.

NOTE

After reset, an $\overline{\text { NMI }}$ will not be serviced until the first program load of the stack pointer. Any NMI generated before this load will remain pending by the processor.

IRQ1 (MASKABLE INTERRUPT REQUEST 1)

$\overline{\mathrm{IRQ1}}$ is a level-sensitive input which can be used to request an interrupt sequence. The MPU will complete the current instruction before it responds to the request. If the interrupt mask bit (I bit) in the condition code register is clear, the MCU will begin an interrupt sequence. A vector is fetched from \$FFF8 and \$FFF9 (\$BFF8 and \$BFF9 in mode 0), transferred to the program counter, and instruction execution is resumed.
$\overline{\text { IRQ1 }}$ typically requires an external $3.3 \mathrm{k} \Omega$ (nominal) resistor to VCC for wire-OR applications. IRQ1 has no internal pullup resistor.

SC1 AND SC2 (STROBE CONTROL 1 AND 2)

The function of SC1 and SC2 depends on the operating mode. SC1 is configured as an output in all modes except single-chip mode, whereas SC2 is always an output. SC1 and SC2 can drive one Schottky load and 90 pF .
SC1 AND SC2 IN SINGLE-CHIP MODE - In singlechip mode, SC1 and SC2 are configured as an input and output, respectively, and both function as port 3 control lines. SC1 functions as IS3 and can
be used to indicate that port 3 input data is ready or output data has been accepted. Three options associated with IS3 are controlled by the port 3 control and status register and are discussed in the port 3 description ; refer to P30-P37 (PORT 3). If unused, IS3 can remain unconnected.
SC2 is configured as OS3 and can be used to strobe output data or acknowledge innut data. It is controlled by output strobe select (OSS) in the port 3 conyrol and status register. The strobe is generated by a read $(\mathrm{OSS}=0)$ or write $(\mathrm{OSS}=1)$ to the port 3 data register. OS3 timing is shown in figure 3.

SC1 AND SC2 IN EXPANDED NON-MULTI-

 PLEXED MODE - In the expanded non-multiplexed mode, both SC1 and SC2 are configured as outputs.SC1 functions as input/output select (IOS) and is asserted only when $\$ 0100$ through $\$ 01 F F$ is sensed on the internal address bus.
SC2 is configured as read/write and is used to control the direction of data bus transfers. An MPU read is enabled when read/write and E are high.
SC1 AND SC2 IN EXPANDED MULTIPLEXED MODE - In the expanded multiplexed modes, both SC1 and SC2 are configured as outputs. SC1 functions as address strobe and can be used to demultiplex the eight least significant addresses and the data bus. A latch controlled by address strobe captures the lower address on the negative edge, as shown in figure 13.

Figure 20 : EF6801U4/EF6803U4 Family Oscillator Characteristics.

SC2 is configured as read/write and is used to control the direction of data bus transfers. An MPU read is enabled when read/write and E are high.

P10-P17 (PORT 1)

Port 1 is a mode independent 8 -bit I/O and timer port. Each line can be configured as either an input or output as defined by the port 1 data direction register. Port 1 bits 0,1 , and 2 (P10, P11, and P12) can also be used to exercise one input edge function and two output compare functions of the timer. The TTL compatible three-state buffers can drive one Schottky TTL load and 30pF, Darlington transistors, or CMOS devices using external pullup resistors. It is configured as a data input port during RESET. Unused pins can remain unconnected.

P20-P24 (PORT 2)

Port 2 is a mode-independent, 5 -bit, multipurpose I/O port. The voltage levels present on P20, P21, and P22 on the rising edge of RESET determine the operating mode of the MCU. The entire port is then configured as a data input port. The port 2 lines can be selectively configured as data output lines by setting the appropriate bits in the port 2 data direction register. The port 2 data register is used to move data through the port. However, if P21 is configured as an output, it is tied to the timer output compare 1 function and cannot be used to provide output from the port2 data register unless output enable 1 (OE1) is cleared in timer control register 1.
Port 2 can also be used to provide an interface for the serial communications interface and the timer input edge function. These configurations are described in SERIAL COMMUNICATIONS INTERFACE and PROGRAMMABLE TIMER.
The port 2 three-state TTL-compatible output buffers are capable of driving one Schottky TTL load and 30 pF , or CMOS devices using external pullup resistors.

PORT 2 DATA REGISTER

7	6	5	4	3	2	1	0
PC2	PC1	PC0	P24	P23	P22	P21	P20

P30-P37 (PORT 3)
Port 3 can be configured as an I/O port, a bidirectional 8-bit data bus, or a multiplexed address/data bus depending on the operating mode. The TTL compatible three-state output buffers can drive one Schottky TTL load and 90pF. Unused lines can remain unconnected.
PORT 3 IN SINGLE-CHIP MODE - Port 3 is an 8bit I/O port in the single-chip mode with each line configured by the port 3 data direction register.

There are also two lines, IS3 and OS3, which can be used to control port 3 data transfers. Three port 3 options are controlled by the port 3 control and status register and are available only in singlechip mode :1) port 3 input data can be latched using IS3 as a control signal, 2) OS3 can be generated by either an MPU read or write to the port 3 data register, and 3) an IRQ1 interrupt can be enabled by an IS3 negative edge. Port 3 latch timing is shown in figure 4.

PORT 3 CONTROL AND STATUS REGISTER

7	6	5	4	3	2	1	0
IS3 Flag	$\frac{\text { IS3 }}{\text { IRQ1 }}$	X	OSS	Latch Enable	X	X	X

Bits 0-2 Not Used.
Bit 3 Latch Enable - This bit controls the input latch for port 3. If set, input data is latched by an IS3 negative edge. The latch is transparent after a read of the port 3 data register. Latch enable is cleared during reset.
Bit 4 OSS (Output Strobe Select) - This bit determines whether OS3 will be generated by a read or write of the port 3 data register. When clear, the strobe is generated by a read ; when set, it is generated by a write. OSS is cleared during reset.
Bit 5 Not used.
Bit 6 IS3 IRQ1 Enable - When set, an $\overline{\mathrm{IRQ1}}$ interrupt will be enabled whenever the IS3 flag is set ; when clear, the interrupt is inhibited. This bit is cleared during reset.
Bit $7 \quad$ IS3 Flag - This read-only status bit is set by an IS3 negative edge. It is cleared by a read of the port 3 data register or during reset.
PORT 3 IN EXPANDED NON-MULTIPLEXED MODE - Port 3 is configured as a bidirectional data bus (D7-D0) in the expanded non-multiplexed mode. The direction of data transfers is controlled by read/write (SC2). Data is clocked by E (enable).

PORT 3 IN EXPANDED MULTIPLEXED MODE -

Port 3 is configured as a time multiplexed address (A7-A0) and data bus (D7-D0) in the expanded multiplexed mode where address strobe (AS) can be used to demultiplex the two buses. Port 3 is held in a high-impedance state between valid address and data to prevent bus conflicts.

P40-P47 (PORT 4)

Port 4 is configured as an 8 -bit l/O port, as address outputs, or as data inputs depending on the operating mode. Port 4 can drive one Schottky TTL load and 90 pF , and is the only port with external pullup resistors. Unused lines can remain unconnected.

PORT 4 IN SINGLE-CHIP MODE - In single-chip mode, port 4 functions as an 8 -bit I/O port with each line configured by the port 4 data direction register. Internal pullup resistors allow the port to directly interface with CMOS at 5 -volts levels. External pullup resistors to more than 5 volts, however, cannot be used.

PORT 4 IN EXPANDED NON-MULTIPLEXED

 MODE - Port 4 is configured from reset as an 8-bit input port where the port 4 data direction register can be written to provide any or all of eight address lines AO to A7. Internal pullup resistors pull the lines high until the port 4 data direction register is configured.PORT 4 IN EXPANDED MULTIPLEXED MODE In all expanded multiplexed modes except modes 1 and 6 , port 4 functions as half of the address bus and provides A8 to A15. In modes 1 and 6, the port is configured from reset as an 8 -bit parallel input port where the port 4 data direction register can be written to provide any or all of upper address lines A8 to A15. Internal pullup resistors pull the lines high until the port 4 data direction register is configured where bit 0 controls A8.

RESIDENT MEMORY

The EF6801U4 provides 4096 bytes of on-chip ROM and 192 bytes of on-chip RAM.

Thirty-two bytes of the RAM are powered through the $V_{c c}$ standby pin and are maintainable during V_{cc} power down. This standby portion of the RAM consists of 32 bytes located from $\$ 40$ through $\$ 5 \mathrm{~F}$ in all modes except mode 3 which is \$D040 through \$D05F.

Power must be supplied to Vcc standby if the internal RAM is to be used regardless of whether standby power operation is anticipated.
The RAM is controlled by the RAM control register.
RAM CONTROL REGISTER (\$14)
The RAM control register includes two bits which can be used to control RAM accesses and determine the adequacy of the standby power source during power-down operation. It is intended that RAME be cleared and STBY PWR be set as part of a power-down procedure.

RAM CONTROL REGISTER

7	6	5	4	3	2	1	0	
STBY PWR	RAM	X	X	X	X	X	X	$\$ 14$

Bits 0-5 Not Used.
Bit 6 RAM Enable - This read/write bit can be used to remove the entire RAM from the internal memory map. RAME is set (enabled) during reset provided standby power is available on the positive edge of RESET. If RAME is clear, any access to a RAM address is external. If RAME is set, the RAM is included in the internal map.
Bit $7 \quad$ Standby Power - This bit is a read/write status bit which when cleared indicates that V_{cc} standby has decreased sufficiently below $V_{\text {SBB }}$ (minimum) to make data in the standby RAM suspect. It can be set only by software and is not affected during reset.

PROGRAMMABLE TIMER

The programmable timer can be used to perform measurements on two separate input waveforms while independently generating three output waveforms. Pulse widths can vary from several microseconds to many seconds. A block diagram of the timer is shown in figure 21.

COUNTER (\$09:0A), (\$15, \$16)
The key timer element is a 16-bit free-running counter which is incremented by E (enable). It is cleared during reset and is read-only with one exception : in mode 0 a write to the counter (\$09) will configure it to \$FFF8. This feature, intended for testing, can disturb serial operations because the counter provides the SCl internal bit rate clock. The TOF is set whenever the counter contains all ones. If ETOI is set, an interrupt will occur when the TOF is set. The counter may also be read as $\$ 15$ and $\$ 16$ to avoid inadvertently clearing the TOF.

OUTPUT COMPARE REGISTERS (\$0B:0C), (\$1A:1B), (\$1C:1D)
The three output compare registers are 16-bit read/write registers, each used to control an output waveform or provide an arbitrary time-out flag. They are compared with the free-running counter during the negative half of each E cycle. When a match occurs, the corresponding output compare flag (OCF) is set and the corresponding output level (OLVL) is
clocked to an output level register. If both the corresponding output enable bit and data direction register bit are set, the value represented in the output level register will appear on the corresponding port pin. The appropriate OLVL bit can then be changed for the next compare.
The function is inhibited for one cycle after a write to its high byte (\$0B, \$1A, or \$1A, or \$1C) to ensure a valid compare after a double byte write. Writes can be made to either byte of the output compare register without affecting the other byte. The OLVL value will be clocked out independently of whether the OCF has previously been cleared. The output compare registers are set to \$FFFF during reset.

INPUT CAPTURE REGISTERS (\$0D:0E), (\$1E:1F)

The two input capture registers are 16-bit read-only registers used to store the free-running counter when a "proper" input transition occurs as defined by the corresponding input edge bit (IEDG1 or IEDG2). The input pin's data direction register should be configured as an input, but the edge detect circuit always senses P10 and P20 even when configured as an output. The counter value will be
latched into the input capture registers on the second negative edge of the E clock following the transition.

An input capture can occur independently of ICF ; the register always contains the most current value. Counter transfer is inhibited, however, between accessed of a double byte MPU read. The input pulse width must be at least two E cycles to ensure an input capture under all conditions.

TIMER CONTROL AND STATUS REGISTERS

Four registers are used to provide the EF6801U4/EF6803U4 with control and status information about the three output compare functions, the timer overflow function, and the two input edge functions of the timer. They are :

Timer Control and Status Register (TCSR)
Timer Control Register 1 (TCR1)
Timer Control Register 2 (TCR2)
Timer Status Register (TSR)

TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08) - The timer control and status register is an 8-bit register of which all bits are readable, while only bits 0-4 can be written. All the bits in this register are also accessible through the two timer control registers and the timer status register. The three most significant bits provide the timer status and indicate if :

1. a proper level transition has been detected at P20,
2. a match has occurred between the free-running counter and output compare register 1 , or
3. the free-running counter has overflowed.

Each of the three events can generate an IRQ2 interrupt and is controlled by an individual enable bit in the TCSR.

TIMER CONTROL AND STATUS REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICF1 | OCF1 | TOF | EICI1 | EOCI1 | ETOI | IEDG1 | OLVL1 | \$ 08 |

Bit $0 \quad$ Output Level 1 - OLVL1 is clocked to output level register 1 by a successful output compare and will appear at P21 if bit 1 of the port 2 data direction register is set and the OE1 control bit in timer control register 1 is set. OLVL1 and output level register 1 are cleared during reset. Refer to TIMER CONTROL REGISTER 1 (TCR1) (\$17).
Bit 1 Input Edge 1 - IEDG1 is cleared during reset and controls which level transition on P20 will trigger a counter transfer to input capture register 1:
IEDG1 $=0$ transfer on a negative-edge
IEDG1 = 1 transfer on a positive-edge
Refer to TIMER CONTROL REGISTER 1 (TCR1) (\$17).
Bit 2 Enable Timer Overflow Interrupt When set, an IRQ2 interrupt will be generated when the timer overflow flag is set ; when clear, the interrupt is inhibited. ETOI is cleared during reset. Refer to TIMER CONTROL REGISTER 2 (TCR2) (\$18).
Bit 3 Enable Output Compare Interrupt 1 When set, an IRQ2 interrupt will be generated when output compare flag 1 is set ; when clear, the interrupt is inhibited. EOCl1 is cleared during reset. Refer to TIMER CONTROL REGISTER 2 (TCR2) (\$18).
Bit 4 Enable Input Capture Interrupt 1 When set, an IRQ2 interrupt will be gener-
ated when input capture flag 1 is set ; when clear, the interrupt is inhibited. EICI1 is cleared during reset. Refer to TIMER CONTROL REGISTER 2 (TCR2) (\$18).
Bit 5 Timer Overflow Flag - The TOF is set when the counter contains all ones (\$FFFF). It is cleared by reading the TCSR or the TSR (with TOF set) and the counter high byte (\$09), or during reset. Refer to TIMER STATUS REGISTER (TSR) (\$19).
Bit 6 Output Compare Flag 1 - OCF1 is set when output compare register 1 matches the free-running counter. OCF1 is cleared by reading the TCSR or the TSR (with OCF1 set) and then writing to output compare register 1 (\$0B or \$OC), or during reset. Refer to TIMER STATUS REGISTER (TSR) (\$19).
Bit 7 Input Capture Flag - ICF1 is set to indicate that a proper level transition has occurred ; it is cleared by reading the TCSR or the TSR (with ICF1 set) and the input capture register 1 high byte (\$0D), or during reset. Refer to TIMER STATUS REGISTER (TSR) (\$19).
TIMER CONTROL REGISTER 1 (TCR1) (\$17) Timer control register 1 is an 8 -bit read/write register which contains the control bits for interfacing the output compare and input capture registers to the corresponding I/O pins.

TIMER CONTROL REGISTER 1

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OE3 | OE2 | OE1 | IEDG2 | IEDG1 | OLVL3 | OLVL2 | OLVL1 | $\$ 17$ |

Bit $0 \quad$ Output Level 1 - OLVL1 is clocked to output level register 1 by a successful output compare and will appear at P21 if bit 1 of the port 2 data direction register is set and the OE1 control bit is set. OLVL1 and output level register 1 are cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 1 Output Level 2-OLVL2 is clocked to output level register 2 by a successful output compare and will appear at P11 if bit 1 of port 1 data direction register is set and the OE2 control bit is set. OLVL2 and output level register 2 are cleared during reset.
Bit 2 Output Level 3-OLVL3 is clocked to output level register 3 by a successful output compare and will appear at P12 if bit 2 of port 1 data direction register is set and the

OE3 control bit is set. OLVL3 and output level register 3 are cleared during reset.
Bit 3 Input Edge 1 - IEDG1 is cleared during reset and controls which level transition on P20 will trigger a counter transfer to input capture register 1.
IEDG1 = 0 transfer on a negative-edge IEDG1 = 1 transfer on a positive-edge Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 4 Input Edge 2 - IEDG2 is cleared during reset and controls which level transition on P20 will trigger a counter transfer to input capture register 2.
IEDG2 $=0$ transfer on a negative-edge IEDG2 = 1 transfer on a positive-edge
Bit 5 Output Enable $1-\mathrm{OE} 1$ is set during reset and enables the contents of output level register 1 to be connected to P21 when bit 1 of port 2 data direction register is set. OE1 $=0$ port 2 bit 1 data register output OE1 = 1 output level register 1
Bit 6 Output Enable 2 - OE2 is cleared during reset and enables the contents of output level register 2 to be connected to P11 when bit 1 of port 1 data direction register is set.
OE2 $=0$ port 1 bit 1 data register output OE2 $=1$ output level register 2
Bit 7 Output Enable 3 - OE3 is cleared during reset and enables the contents of output level register 3 to be connected to P12 when bit 2 of port 1 data direction register is set
OE3 $=0$ port 1 bit 2 data register output OE3 = 1 output level register 3
TIMER CONTROL REGISTER 2 (TCR2) (\$18) Timer control register 2 is an 8 -bit read/write register (except bits 0 and 1) which enable the interrupts associated with the free-running counter, the output compare registers, and the input capture registers. In test mode 0, two more bits (clock and test) are available for checking the timer.

TIMER CONTROL REGISTER 2 (non-test modes)

7	6	5	4	3	2	1	0
EICl2	EICI1	EOCl3	EOCl2	EOCl1	ETOI	1	1

\$18
Bits 0-1 Read-only Bits - When read, these bits return a value of 1 . Refer to TIMER CONTROL REGISTER 2 (test mode).
Bit 2 Enable Timer Overflow Interrupt When set, an IRQ2 interrupt will be gener-
ated when the timer overflow flag is set ; when clear, the interrupt is inhibited. ETOI is cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 3 Enable Output Compare Interrupt 1 When set, an IRQ2 interrupt will be generated when the output compare flag 1 is set ; when clear, the interrupt is inhibited. EOCl1 is cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 4 Enable Output Compare Interrupt 2 When set, an IRQ2 interrupt will be generated when the output compare flag 2 is set ; when clear, the interrupt is inhibited. EOCl 2 is cleared during reset.
Bit 5 Enable Output Compare Interrupt 3 When set, an IRQ2 interrupt will be generated when the output compare flag 3 is set ; when clear, the interrupt is inhibited. EOCl3 is cleared during reset.
Bit 6 Enable Input Capture Interrupt 1 When set, an IRQ2 interrupt will be generated when the input capture flag 1 is set ; when clear, the interrupt is inhibited. EICI1 is cleared during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 7 Enable Input Capture Interrupt 2 When set, an IRQ2 interrupt will be generated when the input capture flag 2 is set ; when clear, the interrupt is inhibited. EICI2 is cleared during reset.
The timer test bits (test and clock) allow the free-running counter to be tested as two separate 8-bit counters to speed testing.

TIMER CONTROL REGISTER 2
 (test mode)

7	6	5	4	3	2	1	0	
EICl2	EICl1	EOCl3	EOCl2	EOCl1	ETOI	TEST	CLOCK	$\$ 18$

Bit 0 CLOCK - The CLOCK control bit selects which half of the 16-bit free-running counter (MSB or LSB) should be clocked with E . The CLOCK bit is a read/write bit only in mode 0 and is set during reset. CLOCK $=0$ - Only the eight most significant bits of the three-running counter run with $\mathrm{TEST}=0$.
CLOCK = 1 - Only the eight least significant bits of the free-running counter run when $\mathrm{TEST}=0$.

Bit 1 TEST - the TEST control bit enables the timer test mode. TEST is a read/write bit in mode 0 and is set during reset.
TEST $=0$ - Timer test mode enabled :
a) The timer LSB latch is transparent which allows the LSB to be read independently of the MSB.
b) Either the MSB or the LSB of the timer is clocked by E , as defined by the CLOCK bit.
TEST = 1 - Timer test mode disabled.
Bits 2-7 See TIMER CONTROL REGISTER 2 (non-test modes). (these bits function the same as in the non-test modes).
TIMER STATUS REGISTER (TSR) (\$19) - The timer status register is an 8 -bit read-only register which contains the flags associated with the freerunning counter, the output compare registers, and the input capture registers.

TIMER STATUS REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICF2 | ICF1 | OCF3 | OCF2 | OCF1 | TOF | 1 | 1 |

Bits 0-1 Not used.
Bit 2 Timer Overflow Flag - The TOF is set when the counter contains all ones (\$FFFF). It is cleared by reading the TSR or the TCSR (with TOF set) and then the counter high byte (\$09), or during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 3 Output Compare Flag 1 - OCF1 is set when output compare register 1 matches the free-running counter. OCF1 is cleared by reading the TSR or the TCSR (with OCF1 set) and then writing to output compare register 1 (\$0B or \$0C), or during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 4 Output Compare Flag 2 - OCF2 is set when output compare register 2 matches the free-running counter. OCF2 is cleared by reading the TSR (with OCF2 set) and then writing to output compare register 2 (\$1A or \$1B), or during reset,
Bit 5 Output Compare Flag 3 - OCF3 is set when output compare register 3 matches the free-running counter. OCF3 is cleared by reading the TSR (with OCF3 set) and then writing to output compare register 3 (\$1C or \$1D), or during reset.

Bit 6 Input Capture Flag 1 - ICF1 is set to indicate that a proper level transition has occurred ; it is cleared by reading the TSR or the TCSR (with ICF1 set) and the input capture register 1 high byte (\$0D), or during reset. Refer to TIMER CONTROL AND STATUS REGISTER (TCSR) (\$08).
Bit 7 Input Capture Flag 2 - ICF2 is set to indicate that a proper level transition has occurred ; it is cleared by reading the TSR (with ICF2 set) and the input capture register 2 high byte (\$1E), or during reset.

SERIAL COMMUNICATIONS INTERFACE

A full-duplex asynchronous serial communications interface (SCI) is provided with two data formats and a variety of rates. The SCl transmitter and receiver are functionally independent but use the same data format and bit rate. Serial data formats include standard mark/space (NRZ) and biphase and both provide one start bit, eight data bits, and one stop bit. "Baud" and "bit rate" are used synonymously in the following description.

WAKE-UP FEATURE

In a typical serial loop multiprocessor configuration, the software protocol will usually identify the addresse(s) at the beginning of the message. In order to permit uninterested MPUs to ignore the remainder of the message, wake-up feature is included whereby all further SCI receiver flag (and interrupt) processing can be inhibited until its data line goes idle. An SCl receiver is re-enabled by an idle string of ten consecutive ones or during reset. Software must provide for the required idle string between consecutive messages and prevent it within messages.

PROGRAMMABLE OPTIONS

The following features of the SCl are programmable :

- Format : standard mark/space (NRZ) or bi-phase
- Clock : external or internal bit rate clock
- Baud : one of eight per E clock frequency or external clock (x 8 desired baud)
- Wake-up Feature : enabled or disabled
- Interrupt Requests : enabled individually for transmitter and receiver
- Clock Output : Internal bit rate clock enabled or disabled to P22

SERIAL COMMUNICATIONS REGISTERS

The serial communications interface includes four addressable registers as depicted in figure 22. It is controlled bythe rate and mode control register and the transmit/receive control and status register.

Data is transmitted and received utilizing a writeonly transmit register and a read-only receive register. The shift registers are not accessible to software.

Figure 22 : SCI Registers.

RATE AND MODE CONTROL REGISTER (RMCR) (\$10)

The rate and mode control register controls the SCl bit rate, format, clock source, and under certain conditions, the configuration of P22. The register consists of five write-only bits in conjunction with bit 7 control the bit rate of the internal clock and the remaining two bits control the format and clock source.

RATE AND MODE CONTROL REGISTER

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EBE | X | X | X | CC 1 | CC 0 | SS 1 | SS 0 |

Bit 1: SS1: SS0 Speed Select - These two bits Bit 0 select the baud when using the internal clock. Eight rates may be selected (in conjunction with bit 7) which are a function of the MCU input frequency. Table 6 lists bit time and rates for three selected MCU frequencies.
Bit 3 : CC1 : CC0 Clock Control and Format Bit 2 Select - These two bits control the format and select the serial clock source. If CC1 is set, the DDR value for P 22 is forced to the complement of CCO and cannot be altered until CC1 is cleared. If CC1 is
cleared after having been set, its DDR value is unchanged. Table 7 defines the formats, clock source, and use of P22.
Bits 4-6 Not used.
Bit 7 EBE Enhanced Baud Enable - EBE selects the standard EF6801 baud rates when clear and the additional baud rates when set (table 6). This bit is cleared by reset and is a write-only control bit.
EBE $=0$ standard EF6801 baud rates $\mathrm{EBE}=1$ additional baud rates

If both CC1 and CCO are set, an external TTL-compatible clock must be connected to P22 at eight times (8 x) the desired bit rate, but not greater than E, with a duty cycle of 50% ($\pm 10 \%$). If CC1 : CC0 $=10$, the internal bit rate clock is provided at P22 regardless of the values for TE or RE.

NOTE

The source of SCl internal bit rate clock is the timer free-running counter. An MPU write to the counter in mode 0 can disturb serial operations.

Table 6 : SCI Bit Times and Rates.

EBE	SS1:SS0		$4 \mathrm{f}_{\mathrm{o}} \rightarrow$	2.4576 MHz		4.0 MHz		4.9152 MHz		
			E	614.4 kHz		1.0 MHz		1.2288 MHz		
			Baud	Time	Baud	Time	Baud	Time		
0	0	0		$\div 16$	38400.0	$26 \mu \mathrm{~s}$	62500.0	$16.0 \mu \mathrm{~s}$	76800.0	$13.0 \mu \mathrm{~s}$
0	0	1	- 128	4800.0	$208.3 \mu \mathrm{~s}$	7812.5	$128.0 \mu \mathrm{~s}$	9600.0	$104.2 \mu \mathrm{~s}$	
0	1	0	- 1024	600.0	1.67 ms	976.6	1.024 ms	1200.0	$833.3 \mu \mathrm{~s}$	
0	1	1	$\div 4096$	150.0	6.67 ms	244.1	4.096 ms	300.0	3.33 ms	
1	0	0	$\div 64$	9600.0	$104.2 \mu \mathrm{~s}$	15625.0	$64 \mu \mathrm{~s}$	19200.0	$52.0 \mu \mathrm{~s}$	
1	0	1	$\div 256$	2400.0	416.6 \%	3906.3	$256 \mu \mathrm{~s}$	4800.0	$208.3 \mu \mathrm{~s}$	
1	1	0	-512	1200.0	$833.3 \mu \mathrm{~s}$	1953.1	$512 \mu \mathrm{~s}$	2400.0	$416.6 \mu \mathrm{~s}$	
1	1	1	$\div 2048$	300.0	3.33 ms	488.3	2.05 ms	600.0	1.67 ms	
External (P22)*				76800.0	$13.0 \mu \mathrm{~s}$	125000.0	$8.0 \mu \mathrm{~s}$	153600.0	$6.5 \mu \mathrm{~s}$	

* Using maximum clock rate

Table 7 : SCI Format and Clock Source Control.

CC1:CC0	Format	Clock Source	Port 2 Bit 2
00	Bi-phase	Internal	Not used
01	NRZ	Internal	Not used
10	NRZ	Internal	Output
11	NRZ	External	Input

TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER (TRCSR) (\$11) - The transmit/receive control and status register controls the transmitter, receiver, wake-up feature, and two individual interrupts, and monitors the status of serial operations. All eight bits are readable while bits 0 to 4 are also writable. The register is initialized to $\$ 20$ by RESET.

TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER

7	6	5	4	3	2	1	0
RDRF	ORFE	TDRE	RIE	RE	TIE	TE	WU

"Wake-Up" on Idle Line - When set, WU enables the wake-up function; it is cleared by ten consecutive ones or during reset. WU will not be set if the line is idle. Refer to WAKE-UP FEATURE.
Bit 1 Transmit Enable - When set, P24 DDR bit is set, cannot be changed, and will remain set if $T E$ is subsequently cleared. When TE is changed from clear to set, the transmitter is connected to P 24 and a preamble of nine consecutive ones is transmitted. TE is cleared during reset.
Bit 2 Transmit Interrupt Enable - When set, an IRQ2 is set ; when clear, the interrupt is inhibited. TE is cleared during reset.

Bit 3 Receive Enable - When set, the P23 DDR bit is cleared, cannot be changed, and will remain clear if RE is subsequently cleared. While RE is set, the SCI receiver is enabled. RE is cleared during reset.

Bit 4 Receiver Interrupt Enable - When set, an IRQ2 interrupt is enabled when RDRF and/or ORFE is set; when clear, the interrut is inhibited. RIE is cleared during reset.
Bit $5 \quad$ Transmit Data Register Empty - TDRE is set when the transmit data register is transferred to the output serial shift register or during reset. It is cleared by reading the RCSR (with TDRE set) and then writing to the transmit data register. Additional data will be transmitted only if TDRE has been cleared.
Bit 6 Overrun Framing Error - If set, ORFE indicates either an overrun or framing error. An overrun is a new byte ready to transfer to the receiver data register with RDRF still set. A receiver framing error has occurred when the byte boundaries of the bit stream are not synchronized to the bit counter. An overrun can be distinguished from a framing error by the state of RDRF : if RDRF is set, then an overrun has occurred ; otherwise, a framing error has been detected. Data is not transferred to the receive data register in an overrun condition. Unframed data causing a framing error is transferred to the receive data register. However, subsequent data transfer is blocked until the framing error flag is cleared. ORFE is cleared by read-
ing the TRCSR (with ORFE set) then the receive data register, or during reset.
Bit 7 Receive Data Register Full - RDRF is set when the input serial shift register to the receive data registers, or during reset.

SERIAL OPERATIONS

The SCI is initialized by writing control bytes first to the rate and mode control register and then to the transmit/receive control and status register. When TE is set, the output of the transmit serial shift register is connected to P24 and serial output is initiated by transmitting a 9 -bit preamble of ones.
At this point, one of two situations exists : 1) if the transmit data register is empty (TDRE $=1$), a continuous string of ones will be sent indicating an idle line ; or 2) if a byte has been written to the transmit data register (TDRE $=0$), it will be transferred to the output serial shift register (synchronized with the bit rate clock), TDRE will be set, and transmission will begin.
The start bit (0), eight data bits (beginning with bit 0), and a stop bit (1) will be transmitted. If TDRE is still set when the next byte transfer occurs, ones will be sent until more data is provided. In bi-phase format, the output toggles at the start of each bit and at half-bit time when a one is sent. Receive operation is controlled by RE which configures P23 as an input and enables the receiver. SCI data formats are illustrated in figure 23.

Figure 23 : SCI Data Formats.

INSTRUCTION SET

The EF6801U4/EF6803U4 is directly source compatible with the EF6801 and upward source and object code compatible with the EF6800. Execution times of key instructions have been reduced and several instructions have been added, including a hardware multiply. A list of new operations added to theEF6800 instruction set is shown in table 1.
In addition, two special opcodes, 4E and 5E, are provided for test purposes. These opcodes force the program counter to increment like a 13-bit counter
causing address lines used in the expanded modes to increment until the device is reset. These opcodes have no mnemonics.

The coding of the first (or only) byte corresponding to an executable instructions is sufficient to identify the instruction and the addressing mode. The hexadecimal equivalents of the binary codes, which result from the translation of the 82 instructions in all valid modes of addressing, are shown in table 8. There are 220 valid machine codes, 34 unassigned codes, and 2 codes reserved for test purposes.

Table 8 : CPU Instruction Map.

0 P	MNEM	MODE	\sim		OP	MNEM	MODE	\sim		OP	MNEM	MODE	~	\#	OP	MNEM	MODE	~	\#		M	M	~ \#
00					34	DES	INHER	3		68	ASL	INDXD	6	2	9C	CPX	DIR	5	2	DO	SUBB	DIR	2
01	NOP	INHER	2	1	35	TXS		3		69	ROL	4	6	2	9 D	JSR	4	5	2	D1	CMPB	4	2
02		\uparrow			36	PSHA		3		6 A	DEC				$9 E$	LDS	∇	4	2		SBCB		32
03					37	PSHB				6B	*				9 F	STS	DIR	4	2	D3	ADDD		52
04	LSRD		3	1	38	PULX		5		6C	INC		6		A0	SUBA	INDXD	4	2	D4	ANDB		32
05	ASLD		3	1	39	RTS		5		6D	TST		6		A1	CMPA	\uparrow	4	2	D5	BITB		32
06	TAP		2	1	3A	ABX		3		6E	JMP	V	3	2	A2	SBCA		4	2	D6	LDAB		3
07	TPA		2	1	3B	RTI		10		6F	CLR	INDXD	6	2	A3	SUBD		6	2	D7	STAB		3
08	INX		3	1	3 C	PSHX		4	1	70	NEG	EXTND	6	3	A4	ANDA			2	D8	EORB		3
09	DEX		3	1	3D	MUL		10		71	*	\uparrow			A5	BITA		4	2		ADCB		32
OA	CLV		2	1	3E	WAI				72					A6	LDAA		4	2		ORAB		3
OB	SEV		2	1	3 F	SWI		12		73	COM		6	3	A7	STAA		4	2	DB	ADDB		3
OC	CLC		2	1	40	NEGA		2	1	74	LSR		6		A8	EORA		4	2	DC	LDD		42
OD	SEC		2	1	41	*				75	*				A9	ADCA		4	2	DD	STD		4
OE	CLI		2	1	42	-				76	ROR		6		AA	ORAA		4		DE	LDX	\checkmark	42
OF	SEI		2	1	43	COMA		2		77	ASR		6.	3	$A B$	ADDA		4	2	DF	STX	DIR	42
10	SBA		2	1	44	LSRA		2		78	ASL		6		$A C$	CPX		6	2	E0	SUBB	INDXD	4
11	CBA		2	1	45	*				79	ROL				AD	JSR		6	2	E1	СMPB	\uparrow	42
12	*				46	RORA		2		7A	DEC		6	3	AE	LDS	\downarrow	5	2	E2	SBCB		42
13					47	ASRA		2		7B	*				AF	STS	INDXD	5	2	E3	ADDD		62
14					48	ASLA		2	1	78	INC		6	3	B0	SUBA	EXTND	4	3	E4	ANDB		2
15					49	ROLA		2		7D	TST		6		B1	CMPA	\uparrow	4	3	E5	BITB		2
16	TAB		2	1	4A	DECA		2	1	7E	JMP	\checkmark	3	3	B2	SBCA		4	3	E6	LDAB		2
17	TBA		2	1	4 B					7 F	CLR	EXTND	6	3	B3	SUBD		6	3	E7	STAB		2
18					4C	INCA		2	1	80	SUBA	IMMED	2	2	B4	ANDA		4	3	E8	EORB		42
19	DAA	INHER	2	1	4D	TSTA		2	1	81	CMPA	4	2	2	B5	BITA		4	3	E9	ADCB		42
1A	*				4E	T				82	SBCA		2		B6	LDAA		4	3	EA	ORAB		
1B	ABA	INHER	2	1	4 F	CLRA		2		83	SUBD		4		B7	STAA		4	3		ADDB		2
1 C	*				50	NEGB		2		84	ANDA		2		B8	EORA		4	3	EC	LDD		2
1 D	*				51	*				85	BITA		2		B9	ADCA		4	3	ED	STD		52
1E	*				52					86	LDAA		2	2	BA	ORAA		4	3	EE	LDX	\checkmark	52
1F					53	COMB		2		87					BB	ADDA		4	3	EF	STX	INDXD	52
20	BRA	REL	3	2	54	LSRB		2	1	88	EORA		2	2	BC	CPX		6	3	F0	SUBB	EXTND	43
21	BRN	$\stackrel{1}{4}$	3	2	55					89	ADCA		2		BD	JSR		6	3		CMPB	4	3
22	BHI		3	2	56	RORB		2		8A	ORAA			2	BE	LDS	∇	5	3		SBCB		43
23	BLS		3	2	57	ASRB		2	1	8B	ADDA	\checkmark	2	2	BF	STS	EXTND	5	3	F3	ADDD		3
24	BCC		3	2	58	ASLB		2	1	8 C	CPX	IMMED	4	3	Co	SUBB	IMMED	2	2	F4	ANDB		43
25	BCS		3	2	59	ROLB		2		8D	BSR	REL	6	2	C1	CMPB	4	2	2	F5	BITB		43
26	BNE		3	2	5A	DECB		2		8E	LDS	IMMED	3	3	C2	SBCB		2	2	F6	LDAB		43
27	BEQ		3	2	5B					8F					C3	ADDD		4	3		STAB		43
28	BVC		3	2	5 C	INCB		2		90	SUBA	DIR	3	2	C4	ANDB		2	2	F8	EORB		3
29	BVS		3	2	5D	TSTB		2		91	CMPA	4	3	2	C5	BITB		2	2	F9	ADCB		43
2A	BPL		3	2	5 E	T	∇			92	SBCA		3	2	C6	LDAB		2	2		ORAB		3
2B	BMI		3	2	5 F	CLRB	INHER	2	1	93	SUBD		5		C7					FB	ADDB		43
2C	BGE		3	2	60	NEG	INDXD	6	2	94	ANDA		3	2	C8	EORB		2	2		LDD		53
2 D	BLT		3	2	61	*	4			95	BITA		3		C9	ADCB		2			STD		53
2E	BGT	∇	3	2	62	*				96	LDAA		3		CA	ORAB		2	2		LDX	∇	53
2 F	BLE	REL	3	2	63	COM		6		97	STAA		3		CB	ADDB			2	FF	STX	EXTND	5
30	TSX	INHER	3	1	64	LSR		6		98	EORA				CC	LDD				- UNDEFINED OP CODE			
31	INS	4	3	1	65	*				99	ADCA				CD		,						
32	PULA		4	1	66	ROR	∇	6		9A	ORAA		3		CE	LDX	IMMED	3	3				
33	PULB	∇	4	1	67	ASR	INDXD	6	2	9B	ADDA	∇	3	2	CF	*							

Notes : 1. Addressing Modes INHER = Inherent REL = Relative

IMMED = Immediate
DIR = Direct
2 Unassigned opcodes are indicated by " $=$ " and should not be executed.
3. Codes marked by "T" force the PC to function as a 16 -bit counter.

PROGRAMMING MODEL

A programming model for the EF6801U4/ EF6803U4 is shown in figure 8. Accumulator A can be concatenated with accumulator B and jointly referred to as accumulator D where A is the most significant byte. Any operation which modifies the double accumulator will also modify accumulators A and/or B. Other registers are defined as follows :
PROGRAM COUNTER - The program counter is a 16 -bit register which always points to the next instruction.
STACK POINTER - The stack pointer is a 16-bit register which contains the address of the next available location in a pushdown/pullup (LIFO) queue. The stack resides in random-access memory at a location defined by the programmer.
INDEX REGISTER - The index register is a 16-bit register which can be used to store data or provide an address for the indexed mode of addressing.
ACCUMULATORS - The MPU contains two 8-bit accumulators, A and B, which are used to store operands and results from the arithmetic logic unit (ALU). They can also be concatenated and referred to as the D (double) accumulator.
CONDITION CODE REGISTER - The condition code register indicates the results on an instruction and includes the following five condition bits : negative (N), zero (Z), overflow (V), carry/borrow from MSB (C), and half carry from bit $3(\mathrm{H})$. These bits are testable by the conditional branch instructions. Bit 4 is the interrupt mask (I bit) and inhibits all maskable interrupts when set. The two unused bits, B6 and B7, are read as ones.

ADDRESSING MODES

Six addressing modes can be used to reference memory. A summary of addressing modes for all instructions is presented in tables $9,10,11$, and 12 where execution times are provided in E cycles. Instruction execution times are summarized in table 13 . With an input frequency of 4 MHz , one E cycle is equivalent to one microsecond. A cycle-by-cycle description of bus activity for each instruction is provided in table 14 and descriptions of selected instructions are shown in figure 24.
IMMEDIATE ADDRESSING - The operand or "immediate byte(s)" is contained in the following byte(s) of the instruction where the number of bytes mat-
ches the size of the register. These are two or three byte instructions.
DIRECT ADDRESSING - The least significant byte of the operand address in contained in the second byte of the instruction and the most significant byte is assumed to be $\$ 00$. Direct addressing allows the user to access $\$ 00$ through $\$$ FF using two byte instructions and execution time is reduced by eliminating the additional memory access. In most applications, the 256 -byte area is reserved for frequently referenced data.
EXTENDED ADDRESSING - The second and third bytes of the instruction contain the absolute address of the operand. These are three byte instructions.
INDEXED ADDRESSING - The unsigned offset contained in the second byte of the instruction is added with carry to the index register and is used to reference memory without changing the index register. These are two byte instructions.
INHERENT ADDRESSING - The operand(s) is a register and no memory reference is required. These are single byte instructions.
RELATIVE ADDRESSING - Relative addressing is used only for branch instructions. If the branch condition is true, the program counter is overwritten with the sum of a signed single byte displacement in the second byte of the instruction and the current program counter. This provides a branch range of -126 to +129 bytes from the first byte of the instruction. These are two byte instructions.

SUMMARY OF CYCLE-BY-CYCLE OPERATION

Table 14 provides a detailed description of the information presednt on the address bus, data bus, and the read/write (R / \bar{W}) line during each cycle of each instruction.
The information is useful in comparing actual with expected results during debug of both software and hardware as the program is executed. The information is categorized in groups according to addressing mode and number of cycles per instruction. In general, instructions with the same addressing mode and number of cycles execute in the same manner. Exceptions are indicated in the table.
Note that during MPU reads of internal locations, the resultant value will not appear on the external data bus except in mode 0. "High order" byte refers to the most significant byte of a 16 -bit value.

Table 9 : Index Register and Stack Manipulation Instructions.

Pointer Operations	M ${ }^{\text {S }}$ M	Immed			Direct				Index			Extnd			Inherent			Boolean/ Arithmetic Operation	Condition Codes						
		Op	\sim	\#		Op	~	\#	Op	\sim	\#	Op	~	\#	Op	\sim	\#		5	4	3	2	1	0	
						H													1	N	Z	V	C		
Compare Index Register	CPX	8 C	4	3	9 C		c	5	2	AC	6	2	BC	6	3				X-M : M + 1	-	-	\vdots	i	\dagger	i
Decrement Index Register	DEX														09	3	1	$\mathrm{X}-1 \rightarrow \mathrm{X}$	-	-	-	७	-	-	
Decrement Stack Pointer	DES														34	3	1	SP-1 \rightarrow SP	-	-	-	-	-	-	
Increment Index Register	INX														08	3	1	$X+1 \rightarrow X$	-	-	-	\dagger	-	-	
Increment Stack Pointer	INS														31	3	1	$1 S P+1 \rightarrow$ PP	-	-	-	-	-	-	
Load Index Register	LDX	CE	3	3	D		4	2	EE	5	2	FE	5	3				$M \rightarrow X_{H}(M+1) \rightarrow X_{L}$	-	-	ई	i	R	-	
Load Stack Pointer	LDS	8 E	3	3	39		4	2	AE	5	2	BE	5	3				$M \rightarrow S P_{H_{1}}(M+1) \rightarrow S P_{L}$	-	-	\downarrow	$\hat{\downarrow}$	R	-	
Store Index Register	STX				D	F	4	2	EF	5	2	FF	5	3				$X_{H} \rightarrow M, X_{L} \rightarrow(M+1)$	-	-	\dagger	\ddagger	R	-	
Store Stack Pointer	STS				9	F	4	2	AF	5	2	BF	5	3				$S P_{H} \rightarrow M, S P_{L} \rightarrow(M+1)$	-	-	\downarrow	\dagger	R	-	
Index Reg \rightarrow Stack Pointer	TXS														35	3	1	$\mathrm{X}-1 \rightarrow \mathrm{SP}$	-	-	-	-	-	-	
Stack Pntr \rightarrow Index Register	TSX														30	3	1	SP + $1 \rightarrow X$	-	-	-	-	-	-	
Add	ABX														3 A	3	1	$B+X \rightarrow X$	-	-	-	-	-	-	
Push Data	PSHX														3 C	4	1	$\begin{aligned} & X_{L} \rightarrow M_{S P}, S P-1 \rightarrow S P \\ & X_{H} \rightarrow M_{S P}, S P-1 \rightarrow S P \end{aligned}$	-	-	-	-	-	-	
Pull Data	PULX														38	5	1	$\begin{aligned} & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{H} \\ & S P+1 \rightarrow S P, M_{S P} \rightarrow X_{L} \end{aligned}$	-	-	-	-	-	-	

The condition code register notes are listed after Table 12.

Table 10 : Accumulator and Memory Instructions (sheet 1 of 3).

Accumulator and Memory Operations	MNEM	Immed							Index			Extend			Inher			Boolean Expression	Condition Codes								
												5	4	3				2	1	0							
		Op	\sim	\#		Op	\sim	\#	Op	\sim	\#				0 p	~	\#		0 p	~	\#	H	1	N	z	V	C
Add Accumulators	ABA														1B	2	1		$A+B \rightarrow A$	$\hat{\imath}$	-	̂	̂̀	$\hat{\imath}$	$\hat{\imath}$		
Add B to X	ABX														3 A	3	1	00. $B+X \rightarrow X$	-	-	-	-	-	-			
Add with Carry	ADCA	89	2	2		99	3	2	A9	4	2	B9	4	3				$A+M+C \rightarrow A$	$\hat{\imath}$	-	ิ	$\hat{\imath}$	\hat{i}	$\hat{\imath}$			
	ADCB	C9	2	2		D9	3	2	E9	4	2	F9	4	3				$B+M+C \rightarrow B$	$\hat{\imath}$	-	$\hat{\downarrow}$	$\hat{\imath}$	$\hat{\imath}$	$\hat{\imath}$			
Add	ADDA	8B	2	2		9	3	2	AB	4	2	BB	4	3				$A+M \rightarrow A$	\downarrow	-	i	$\hat{\imath}$	$\hat{\imath}$	i			
	ADDB	CB	2	2		DB	3	2	EB	4	2	FB	4	3				$B+M \rightarrow A$	$\hat{\imath}$	-	\hat{i}	$\hat{\imath}$	$\hat{\downarrow}$	$\hat{\imath}$			
Add Double	ADDD	C3	4	3		D3	5	2	E3	6	2	F3	6	3				$D+M: M+1 \rightarrow D$	-	-	\downarrow	$\stackrel{1}{1}$	\downarrow	$\hat{\downarrow}$			
And	ANDA	84	2	2		94	3	2	A4	4	2	B4	4	3				$A \cdot M \rightarrow A$	-	-	$\hat{\downarrow}$	$\stackrel{1}{2}$	R	-			
	ANDB	C4	2	2		D4	3	2	E4	4	2	F4	4	3				$B \cdot M \rightarrow B$	-	-	t	$\hat{\downarrow}$	R	-			
Shift Left, Arithmetic	ASL								68	6	2	78	6	3				$\mathrm{G}-\mathrm{m}_{\mathrm{b} 7}^{\square \prod \prod_{\mathrm{b}}}-0$	-	-	\downarrow	$\stackrel{\rightharpoonup}{*}$	\downarrow	\downarrow			
	ASLA														48	2	1		-	-	$\hat{\downarrow}$	$\hat{\imath}$	$\hat{\imath}$	$\stackrel{\rightharpoonup}{2}$			
	ASLB														58	2	1		-	-	i	$\hat{\imath}$	$\hat{\downarrow}$	$\hat{\imath}$			
Shift Left Double	ASLD														05	3	1		-	-	ิ	$\hat{\imath}$	$\hat{\downarrow}$	i			
Shift Right, Arithmetic	ASR								67	6	2	77	6	3				回- חाT?	-	-	$\hat{\downarrow}$	$\hat{\imath}$	ई	i			
	ASRA														47	2	1		-	-	$\hat{\downarrow}$	$\hat{\imath}$	\uparrow	\downarrow			
	ASRB														57	2	1		-	-	+	$\hat{\downarrow}$	$\hat{\downarrow}$	-			
Bit Test	BITA	85	2	2		95	3	2	A5	4	2	B5	4	3				$A \cdot M$	-	-	ई	$\stackrel{1}{1}$	R	-			
	BITB	C5	2	2		D5	3	2	E5	4	2	F5	4	3				B. M	-	-	\downarrow	\uparrow	R	-			
Compare Accumulators	CBA														11	2	1	$A-B$	-	-	\downarrow	$\stackrel{1}{2}$	\hat{i}	i			
Clear	CLR								6F	6	2	7F	6	3				$00 \rightarrow \mathrm{M}$	-	-	R	S	R	R			
	CLRA														4F	2	1	$00 \rightarrow$ A	-	-	R	S	R	R			
	CLRB														5F	2	1	$00 \rightarrow B$	-	-	R	S	R	R			
Compare	CMPA	81	2	2		91	3	2	A1	4	2	B1	4	3				A - M	-	-	\downarrow	$\stackrel{1}{1}$	t	\downarrow			
	CMPB	C1	2	2		D1	3	2	E1	4	2	F1	4	3				$B-M$	-	-	$\stackrel{1}{2}$	$\stackrel{1}{1}$	1	t			
1's Complement	COM								63	6	2	73	6	3				$\mathrm{M} \rightarrow \mathrm{M}$	-	-	७	$\stackrel{\rightharpoonup}{1}$	R	S			
	COMA														43	2	1	$A \rightarrow A$	-	-	t	\downarrow	R	S			
	COMB														53	2	1	$B \rightarrow B$	-	-	$\stackrel{1}{2}$	$\stackrel{1}{1}$	R	S			

The condition code register notes are listed after Table 12

Table 10 ：Accumulator and Memory Instructions（sheet 2 of 3）．

Accumulator and Memory Operations	MNEM	Immed				Direct			Index			Extend			Inher			Boolean Expression	Condition Codes								
						H	4	3				2	$\begin{array}{\|l\|} \hline 1 \\ \hline \mathrm{v} \\ \hline \end{array}$	O													
		Op～\＃			$\begin{array}{\|l\|l\|l\|} \hline 0 \mathrm{p} & \sim \\ \hline \end{array}$				Op	\＃					Op	\sim	\＃		Op	\sim	\＃						
Decimal Adjust，A	DAA																	19	2	1	Adj binary sum to BCD	－	－	$\hat{\downarrow}$	$\hat{\downarrow}$	$\hat{\imath}$	\ddagger
Decrement	DEC								6A	6	2	7A	6	3				$\mathrm{M}-1 \rightarrow \mathrm{M}$	－	－	\uparrow	\downarrow	\uparrow	－			
	DECA														4A	2	1	$A-1 \rightarrow A$	－	－	$\hat{\imath}$	人	$\hat{\imath}$	－			
	DECB														5A	2	1	$B-1 \rightarrow B$	－	－	$\stackrel{\rightharpoonup}{4}$	人	－	－			
Exclusive OR	EORA	88	2	2	2	98	3	2	A8	4	2	B8	4	3				$A \oplus M \rightarrow A$	－	－	ث	¢	R	－			
	EORB	C8	2	2	2 D	D8	3	2	E8	4	2	F8	4	3				$B \oplus M \rightarrow B$	－	－	＊	\hat{i}	R	－			
Increment	INC								6C	6	2	7 C	6	3				$M+1 \rightarrow M$	－	－	$\stackrel{\rightharpoonup}{*}$	$\hat{*}$	－	－			
	INCA														4 C	2	1	$A+1 \rightarrow A$	－	－	＊	＊	＊	－			
	INCB														5 C	2	1	$B+1 \rightarrow B$	－	－	$\stackrel{\rightharpoonup}{*}$	\％	$\hat{*}$	－			
Load Accumulators Load Double	LDAA	86	2	2	29	96	3	2	A6	4	2	B6	4	3				$\mathrm{M} \rightarrow \mathrm{A}$	－	－	－	＊	R	－			
	LDAB	C6	2	2	2 D	D6	3	2	E6	4	2	F6	4	3				$\mathrm{M} \rightarrow \mathrm{B}$	－	－	$\stackrel{\rightharpoonup}{*}$	＊	R	－			
	LDD	CC	3	3	3 D	DC	4	2	EC	5	2	FC	5	3				$M: M+1 \rightarrow D$	－	－	ใ	$\stackrel{\text { ¢ }}{ }$	R	－			
Logıcal Shift，Left	LSL								68	6	2	78	6	3				$\sigma-\square_{\mathrm{b} 7}^{\square \longrightarrow D_{0}}-0$	\cdot	－	\checkmark	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\square}{2}$	$\stackrel{\rightharpoonup}{1}$			
	LSLA														48	2	1		－	－	－	$\stackrel{1}{2}$	交	$\stackrel{1}{2}$			
	LSLB														58	2	1		－	－	$\stackrel{\rightharpoonup}{2}$	७	$\stackrel{\rightharpoonup}{*}$	$\stackrel{1}{2}$			
	LSLD														05	3	2		－	－	亡	$\hat{\text { 人 }}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{1}{2}$			
Shift Right，Logical	LSR								64	6	2	74	6	3				$0-\underset{b 7}{\square \prod \prod_{b}}-\mathbb{0}$	－	－	R	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{1}{2}$			
	LSRA														44	2	1		－	－	R	$\stackrel{\rightharpoonup}{2}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\square}{2}$			
	LSRB														54	2	1		－	－	R	$\stackrel{\rightharpoonup}{2}$	－	t			
	LSRD														04	3	1		－	－	R	$\stackrel{\rightharpoonup}{2}$	$\stackrel{\rightharpoonup}{*}$	\hat{i}			
Multiply	MUL														3 D	10	1	$A \times B \rightarrow D$	－	－	－	\cdot	－	$\stackrel{1}{i}$			
2＇s Complement （negate）	NEG								60	6	2	70	6	3				OO－M \rightarrow M	－	－	$\stackrel{\rightharpoonup}{*}$	$\stackrel{1}{2}$	$\stackrel{1}{2}$	$\stackrel{1}{2}$			
	NEGA														40	2	1	$00-A \rightarrow A$	－	－	$\stackrel{1}{2}$	$\stackrel{1}{*}$	\checkmark	－			
	NEGB														50	2	1	$00-B \rightarrow B$	－	－	t	ث	$\stackrel{\rightharpoonup}{2}$	$\hat{+}$			
No Operation	NOP														01	2	1	$P C+1 \rightarrow P C$	－	－	－	－	\cdots	－			
Inclusive OR	ORAA	BA	A 2	2	2	9A	3	2	AA	4	2	BA	4	3				$A+M \rightarrow A$	－	－	ฟ	\dagger	R	－			
	ORAB	CA	2	2	2	DA	3	2	EA	4	2	FA	4	3				$B+M \rightarrow B$	－	－	$\stackrel{\rightharpoonup}{*}$	ث	R	\cdot			
Pusch Data	PSHA														36	3	1	A \rightarrow Stack	－	－	－	－	－	－			
	PSHB														37	3	1	B \rightarrow Stack	－	－	－	－	－	－			
Pull Data	PULA														32	4	1	Stack \rightarrow A	－	－	－	－	－	－			
	PULB														33	4	1	Stack \rightarrow B	－	\cdot	－	－	－	－			

The condition code register notes are listed after Table 12.

Table 10 : Accumulator and Memory Instructions (sheet 3 of 3).

Accumulator and Memory Operations	MNEM	Immed			Direct			Index			Extend			Inher			Boolean Expression	Condition Codes											
					5	4	3				2	1	0																
		Op	\sim	\#				Op	~	\#				Op	~	\#		Op	~	\#	Op	~	\#	H	1	N	Z	V	C
Rotate Left	ROL							69	6	2	79	6	3					-	-	$\hat{\imath}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\text { v }}{ }$	$\hat{\text { i }}$						
	ROLA													49	2	1		-	-	ิ	$\stackrel{\rightharpoonup}{2}$	\hat{i}	\hat{i}						
	ROLB													59	2	1		-	-	७	i	$\hat{\imath}$	$\hat{\imath}$						
Rotate Right	ROR							66	6	2	76	6	3				$Q-\sqrt[\square]{\square 7} \prod_{0}-\mathbb{D}$	-	-	$\stackrel{\rightharpoonup}{1}$	ิ	$\hat{\imath}$	$\stackrel{1}{2}$						
	RORA													46	2	1		-	-	$\hat{\downarrow}$	¢	$\hat{\imath}$	$\stackrel{1}{2}$						
	RORB													56	2	1		-	-	へ	\downarrow	$\hat{\dagger}$	$\hat{\downarrow}$						
Subtract Accumulator	SBA													10	2	1	$A-B \rightarrow A$	-	-	\downarrow	$\hat{\downarrow}$	$\hat{\imath}$	$\stackrel{1}{2}$						
Subtract with Carry	SBCA	82	2	2	92	3	2	A2	4	2	B2	4	3				$A-M-C \rightarrow A$	-	-	+	+	+	+						
	SBCB	C2	2	2	D2	3	2	E2	4	2	F2	4	3				$B-M-C \rightarrow B$	-	-	$\stackrel{\text { v }}{ }$	¢	ث	$\stackrel{+}{1}$						
Store Accumulators	STAA				97	3	2	A7	4	2	B7	4	3				$A \rightarrow M$	-	-	$\hat{\downarrow}$	$\hat{\downarrow}$	R	\cdot						
	STAB				D7	3	2	E7	4	2	F7	4	3				$B \rightarrow M$	-	-	\downarrow	$\hat{\downarrow}$	R	-						
	STD				DD	4	2	ED	5	2	FD	5	3				$D \rightarrow M: M+1$	-	-	+	人	R	-						
Subtract	SUBA	80	2	2	90	3	2	AO	4	2	B0	4	3				$A-M \rightarrow A$	-	-	\downarrow	$\hat{1}$	i	$\stackrel{1}{2}$						
	SUBB	C0	2	2	D0	3	2	E0	4	2	F0	4	3				$B-M \rightarrow B$	-	-	\downarrow	\downarrow	$\hat{1}$	$\stackrel{1}{2}$						
Subtract Double	SUBD	83	4	3	93	5	2	A3	6	2	B3	6	3				$D-M: M+1 \rightarrow D$	-	-	+	$\stackrel{\text { i }}{ }$	\ddagger	$\stackrel{1}{2}$						
Transfer Accumulator	TAB													16	2	1	$A \rightarrow B$	-	-	t	$\hat{\imath}$	R	-						
	TBA													17	2	1	$B \rightarrow A$	-	-	¢	\downarrow	R	-						
Test, Zero or Mınus	TST							6D	6	2	7D	6	3				M - 00	-	-	+	\downarrow	R	R						
	TSTA													4D	2	1	A - 00	-	-	+	$\stackrel{1}{1}$	R	R						
	TSTB													5D	2	1	B - 00	-	-	t	$\stackrel{\rightharpoonup}{1}$	R	R						

The condition code register notes are listed after Table 12.

Table 11 : Jump and Branch Instructions.

Operations	MNEM	Direct			Relative				Index			Extend			Inherent			Branch Test	Condition Code Reg.												
					5	4	3	2				1	0																		
		Op	~	\#					Op	~	\#					Op	~		\#	Op	~	\#	Op	\sim	\#	H	1	N	Z	V	C
Branch Always	BRA				20	3	2											None	-	-	-	-	-	-							
Branch Never	BRN				21	3	2											None	-	-	-	-	-	-							
Branch if Carry Clear	BCC				24	3	2											$C=0$	-	-	-	-	-	-							
Branch if Carry Set	BCS				25	3	2											$C=1$	-	-	-	-	-	-							
Branch if = Zero	BEQ				27	3	2											$Z=1$	-	-	-	-	-	-							
Branch if \geq Zero	BGE				2 C	3	2											$\mathrm{N} \oplus \mathrm{V}=0$	-	-	-	-	-	-							
Branch if $>$ Zero	BGT				2 E	3	2											$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=0$	-	-	-	-	-	-							
Branch if Higher	BHI				22	3	2											$C+Z=0$	-	-	-	-	-	-							
Branch if Higher or Same	BHS				24	3	2											$C=0$	-	-	-	-	-	-							
Branch if \leq Zero	BLE				2 F	3	2											$Z+(N \oplus V)=1$	-	-	-	-	-	-							
Branch if Carry Set	BLO				25	3	2											$C=1$	-	-	-	-	-	-							
Branch if Lower or Same	BLS				23	3	2											$C+Z=1$	-	-	-	-	-	-							
Branch if < Zero	BLT				2 D	3	2											$\mathrm{N} \oplus \mathrm{V}=1$	-	-	-	-	-	-							
Branch if Minus	BMI				2B	3	2											$\mathrm{N}=1$	-	-	-	-	-	-							
Branch if not Equal Zero	BNE				26	3	2											$\mathrm{Z}=0$	-	-	-	-	-	-							
Branch of Overilow Clear	BVC				28	3	2											$V=0$	-	-	-	-	-	-							
Branch if Overflow Set	BVS				29	3	2											$V=1$	-	-	-	-	-	-							
Branch if Plus	BPL				2 A	3	2											$\mathrm{N}=0$	-	-	-	-	-	-							
Branch to Subroutine	BSR				8D	6	2												-	-	-	-	-	-							
Jump	JMP								6 E	3	2	7 E	3	3				See Special Operations-figure 24	-	-	-	-	-	-							
Jump to Subroutine	JSR	9D	5	2					AD	6	2	BD	6	3					-	-	-	-	-	-							
No Operation	NOP														01	2	1		-	-	-	-	-	-							
Return from Interrupt	RTI														3B	10	1		\downarrow	\downarrow	\ddagger	i	ڤ	-							
Return from Subroutine	RTS														39	5	1	See Special	-	-	-	-	-	-							
Sofware Interrupt	SWI														3 F	12	1	Operations-figure 24	-	S	-	-	-	-							
Wait for Interrupt	WAI														3 E	9	1		-	-	-	-	-	-							

Table 12 : Condition Code Register Manipulation Instructions.

Operations	Inherent				Boolean Operation	Condition Code Register						
					5	4	3	2	1	0		
	MNEM	Op	~	\#		H	1	N	Z	v	C	
Clear Carry	CLC	OC	2	1		$0 \rightarrow$ C	-	-	-	-	-	R
Clear Interrupt Mask	CLI	OE	2	1	$0 \rightarrow 1$	-	R	-	-	-	-	
Clear Overflow	CLV	OA	2	1	$0 \rightarrow \mathrm{~V}$	-	-	-	-	R	-	
Set Carry	SEC	OD	2	1	$1 \rightarrow \mathrm{C}$	-	-	-	-	-	S	
Set Interrupt Mask	SEI	OF	2	1	$1 \rightarrow 1$	-	S	-	-	-	-	
Set Overflow	SEV	OB	2	1	$1 \rightarrow \mathrm{~V}$	-	-	-	-	S	-	
Accumulator A \rightarrow CCR	TAP	06	2	1	$\mathrm{A} \rightarrow$ CCR	\downarrow	\downarrow	\ddagger	\downarrow	\downarrow	\uparrow	
CCR \rightarrow Accumulator A	TPA	07	2	1	CCR \rightarrow A	-	-	-	-	-	-	

LEGEND
Op Operation Code (hexadecimal)
~ Number of MPU Cycles
Msp Contents of memory location pointed to by Stack Pointer
\# Number of Program Bytes

+ Arithmetic Plus
- Arithmetic Minus
- Boolean AND

X Arithmetic Multiply

+ Boolean Inclusive OR
- Boolean Exclusive OR

M Complement of M
\rightarrow Transfer Into
$0 \quad$ Bit $=$ Zero
$00 \quad$ Byte $=$ Zero

Table 13 : Instruction Execution Times in E-cycles.

,	Addressing Mode					
	Immediate	Direct	Extended	Indexed	Inherent	Relative
ABA	\bullet	-	-	-	2	-
ABX	\bullet	\bullet	\bullet	\bullet	3	\bullet
ADC	2	3	4	4	-	-
ADD	2	3	4	4	-	\bullet
ADDD	4	5	6	6	-	-
AND	2	3	4	4	-	-
ASL	\bullet	-	6	6	2	-
ASLD	-	\bullet	-	-	3	-
ASR	-	-	6	6	2	\bullet
BCC	\bullet	-	-	\bullet	\bullet	3
BCS	-	-	\bullet	-	-	3
BEQ	-	-	\bullet	\bullet	-	3
BGE	-	-	-	-	-	3
BGT	\bullet	-	\bullet	-	-	3
BHI	-	\bullet	\bullet	\bullet	\bullet	3
BHS	\bullet	\bullet	-	-	-	3
BIT	2	3	4	4	-	\bullet
BLE	\bigcirc	-	\bigcirc	-	-	3
BLO	-	\bullet	-	\bullet	-	3
BLS	-	-	-	\bullet	-	3
BLT	-	-	-	-	-	3
BMI	-	-	-	-	-	3
BNE	-	\bullet	\bullet	-	-	3
BPL	\bigcirc	-	-	-	\bigcirc	3
BRA	-	-	-	\bullet	-	3
BRN	\bullet	\bullet	\bullet	\bullet	-	3
BSR	-	-	-	-	-	6
BVC	-	-	-	-	-	3
BVS	-	-	-	-	-	3
CBA	-	-	-	-	2	-
CLC	\bullet	\bullet	-	\bullet	2	\bullet
CLI	-	-	-	-	2	-
CLR	\bullet	\bullet	6	6	2	-
CLV	-	-	\bullet	-	2	-
CMP	2	3	4	4	-	-
COM	\bullet	-	6	6	2	-
CPX	4	5	6	6	\bullet	-
DAA	-	-	-	-	2	-
DEC	\bullet	-	6	6	2	-
DES	-	-	-	-	3	-
DEX	\bullet	-	\bullet	\bullet	3	-
EOR	2	3	4	4	-	-
INC	\bullet	-	6	6	\bullet	\bullet
INS	\bullet	-	-	\bullet	3	-

	Addressing Mode					
	Immediate	Direct	Extended	Indexed	Inherent	Relative
INX	-	-	-	-	3	-
JMP	-	-	3	3	-	-
JSR	-	5	6	6	-	-
LDA	2	3	4	4	-	-
LDD	3	4	5	5	-	-
LDS	3	4	5	5	-	-
LDX	3	4	5	5	-	\bullet
LSL	-	-	6	6	2	-
LSLD	-	-	-	-	3	-
LSR	-	-	6	6	2	-
LSRD	-	-	-	-	3	-
MUL	-	-	-	-	10	-
NEG	-	-	6	6	2	-
NOP	-	-	\bullet	-	2	-
ORA	2	3	4	4	\bullet	\bullet
PSH	-	-	-	-	3	-
PSHX	-	-	-	-	4	-
PUL	-	-	-	-	4	-
PULX	-	-	-	-	5	\bullet
ROL	-	-	6	6	2	-
ROR	-	-	6	6	2	-
RTI	-	-	-	-	10	-
RTS	-	-	-	\bullet	5	-
SBA	-	-	-	-	2	-
SBC	2	3	4	4	-	-
SEC	-	-	-	-	2	-
SEI	-	-	-	-	2	-
SEV	-	-	-	-	2	-
STA	\bullet	3	4	4	-	-
STD	-	4	5	5	-	-
STS	-	4	5	5	-	-
STX	-	4	5	5	-	-
SUB	2	3	4	4	-	-
SUBD	4	5	6	6	-	-
SWI	-	-	-	\bullet	12	-
TAB	-	-	-	-	2	-
TAP	-	-	-	-	2	-
TBA	-	-	-	-	2	-
TPA	-	-	-	-	2	-
TST	-	-	6	6	2	-
TSX	-	-	-	-	3	-
TXS	-	-	-	-	3	-
WAI	-	-	-	-	9	-

Table 14 : Cycle-by-cycle Operation (sheet 1 of 6).
IMMEDIATE

Address Mode and Instructions		Cycles	Cycle \#	Address Bus	$\begin{aligned} & \text { R/W } \\ & \text { Line } \end{aligned}$	Data Bus
ADC	EOR	2	1	Opcode Address	1	Opcode
ADD	LDA		2	Opcode Address + 1	1	Operand Data
AND	ORA					
BIT	SBC					
CMP	SUB					
LDS		3	1	Opcode Address	1	Opcode
LDX			2	Opcode Address + 1	1	Operand Data (high order byte)
LDD			3	Opcode Address + 2	1	Operand Data (low order byte)
CPX		4	1	Opcode Address	1	Opcode
SUBD			2	Opcode Address + 1	1	Operand Data (hıgh order byte)
ADDD			3	Opcode Address + 2	1	Operand Data (low order byte)
			4	Address Bus FFFF	1	Low Byte of Restart Vector

DIRECT

Address Mode and Instructions		Cycles	Cycle \#	Address Bus	$\begin{array}{\|l} \hline R / \bar{W} \\ \text { Line } \end{array}$	Data Bus
ADC ADD AND BIT CMP	$\begin{aligned} & \text { EOR } \\ & \text { LDA } \\ & \text { ORA } \\ & \text { SBC } \\ & \text { SUB } \end{aligned}$	3	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand Operand Data
STA		3	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode Destination Address Data from Accumulator
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \end{aligned}$		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand Operand Data (high order byte) Operand Data (low order byte)
$\begin{aligned} & \hline \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$		4	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address of Operand Address of Operand + 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Address of Operand Register Data (high order byte) Register Data (low order byte)
$\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$		5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address Opcode Address + 1 Operand Address Operand Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand Operand Data (high order byte) Operand Data (low order byte) Low Byte of Restart Vector
JSR		5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Subroutine Address Stack Pointer Stack Pointer - 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Irrelevant Data First Subroutine Opcode Return Address (low order byte) Return Address (high order byte)

Table 14 : Cycle-by-cycle Operation (sheet 2 of 6).

EXTENDED

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Jump Address (high order byte) Jump Address (low order byte)
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand Address of Operand (low order byte) Operand Data
STA	4	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Operand Destination Address	0	Opcode Destination Address (high order byte) Destination Address (low order byte) Data from Accumulator
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand Address of Operand + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode Address of Operand (high order byte) Address of Operand (low order byte) Operand Data (high order byte) Operand Data (low order byte)
$\begin{aligned} & \hline \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	5	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand Address of Operand + 1	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Address of Operand (high order byte) Address of Operand (low order byte) Operand Data (high order byte) Operand Data (low order byte)
 ASL LSR ASR NEG CLR ROL COM ROR DEC TST* INC	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Address of Operand Address Bus FFFF Address of Operand		Opcode Address of Operand (high order byte) Address of Operand (low order byte) Current Operand Data Low Byte of Restart Vector New Operand Data
$\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Operand Address Operand Address + 1 Address Bus FFFF	1 1 1 1 1 1 1	Opcode Operand Address (high order byte) Operand Address (low order byte) Operand Data (high order byte) Operand Data (low order byte) Low Byte of Restart Vector
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2 Subroutine Starting Address Stack Pointer Stack Pointer - 1	1 1 1 1 1 0 0	Opcode Address of Subroutine (high order byte) Address of Subroutine (low order byte) Opcode of Next Instruction Return Address (low order byte) Return Address (high order byte

[^6]Table 14 : Cycle-by-cycle Operation (sheet 3 of 6).
INDEXED

Address Mode and Instructions	Cycles	Cycle	Address Bus	$\begin{array}{\|l} \hline \mathrm{R} / \overline{\mathrm{W}} \\ \text { Line } \end{array}$	Data Bus
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode Offset Low Byte of Restart Vector
 ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data
$\begin{aligned} & \hline \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset Index Register Plus Offset + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data (high order byte) Operand Data (low order byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	5	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset Index Register Plus Offset + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data (high order byte) Operand Data (low order byte)
ASL LSR ASR NEG CLR ROL COM ROR DEC TST* INC	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register Plus Offset Address Bus FFFF Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Current Operand Data Low Byte of Restart Vector New Operand Data
$\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register + Offset Index Register + Offset + 1 Address Bus FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Offset Low Byte of Restart Vector Operand Data (high order byte) Operand Data (low order byte) Low Byte of Restart Vector
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	Opcode Address Opcode Address + 1 Address Bus FFFF Index Register + Offset Stack Pointer Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode Offset Low Byte of Restart Vector First Subroutine Opcode Return Address (low order byte) Return Address (high order byte)

[^7]Table 14 : Cycle-by-cycle Operation (sheet 4 of 6).
INHERENT

$\begin{array}{c}\text { Address Mode and } \\ \text { Instructions }\end{array}$	Cycles	$\begin{array}{c}\text { Cycle } \\ \#\end{array}$	$\begin{array}{l}\text { Address Bus }\end{array}$	$\begin{array}{c}\text { R/W } \\ \text { Line }\end{array}$	Data Bus
ABA	DAA	SEC			
ASL	DEC	SEI			

Table 14 : Cycle-by-cycle Operation (sheet 5 of 6).
INHERENT

| Address Mode and
 Instructions | Cycles | Cycle
 $\#$ | Address Bus | R/W
 Line | Data Bus |
| :--- | :---: | :---: | :--- | :--- | :--- |$|$| RTS |
| :--- |
| RTS |
| |

Table 14 : Cycle-by-cycle Operation (sheet 6 of 6).
INHERENT (continued)

Address Mode and Instructions	Cycles	Cycle \#	Address Bus	$\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \text { Line } \end{aligned}$	Data Bus
SWI	12	1	Opcode Address	1	Opcode
		2	Opcode Address + 1	1	Irrelevant Data
		3	Stack Pointer	0	Return Address (low order byte)
		4	Stack Pointer - 1	0	Return Address (high order byte)
		5	Stack Pointer - 2	0	Index Register (low order byte)
		6	Stack Pointer - 3	0	Index Register (high order byte)
		7	Stack Pointer - 4	0	Contents of Accumulator A
		8	Stack Pointer - 5	0	Contents of Accumulator B
		9	Stack Pointer - 6	0	Contents of Condition Code Register
		10	Stack Pointer - 7	1	Irrelevant Data
		11	Vector Address FFFA (hex)	1	Address of Subroutine (high order byte)
		12	Vector Address FFFB (hex)	1	Address of Subroutine (low order byte)

RELATIVE

PACKAGE MECHANICAL DATA

DIL-PLASTIC PACKAGE

PLASTIC CHIP CARRIER

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS-THOMSON on EPROM(s) or an EFDOS/MDOS* disk file.

To initiate a ROM pattern for the MCU, it is ecessary to first contact your local SGS-THOMSON representative or distributor.

EPROMs

Two ET2716 or one ET2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed signed, and returned to SGS-THOMSON. The signed verification
form consitutes the contractual agreement for creation of the customer mask. If desired, SGS-THOMSON will program on blank EPROM from the data file used to create the custom mask and aid in the verifications process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not produce parts. The RVUs are thus not guaranteed by SGS-THOMSON. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6801 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process inhouse if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS-THOMSON' Disk Operating System available on development systems such as DEVICE...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser...

[^8][^9]
ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Device	Package					Oper. Temp			Screening Level			
	C	J	P	E	FN	L*	V	M	Std	D	G/B	B/B
EF6801/03U4 (1.0MHz)			\bullet		\bullet	\bullet			\bullet			
			\bullet				\bullet		\bullet			
EF6801/03U4-1 (1.25MHz)			\bullet		\bullet	\bullet			\bullet			
			-				\bullet		\bullet			
EF68A01/03U4 (1.5MHz)			\bullet			\bullet			\bullet			
Examples : EF6801P, EF6801FN, EF6801PV												

Package : C : Ceramic DIL, J : Cerdip DIL, P • Plastic DIL, E : LCCC, FN : PLCC.
Oper. temp. : $L^{*} \cdot 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{M}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, * : may be omitted.
Screening level : Std : (no-end suffix), D: NFC 96883 level D,
G/B : NFC 96883 level, G, B/B : NFC 96883 level B and MIL-STD-883C level B.
EXORciser is a regıstered trade mark of MOTOROLA Inc.

EF6804 FAMILY DATASHEETS

8 BIT MICROCOMPUTER

HARDWARE FEATURES

- 5-VOLT SINGLE SUPPLY
- 32 BYTES OF RAM
- MEMORY MAPPED I/O
- 1012 BYTES OF PROGRAM ROM
- 64 BYTES OF DATA ROM
- 12 BIDIRECTIONAL I/O LINES (eight lines with high current sink capability)
- ON-CHIP CLOCK GENERATOR
- SELF-TEST MODE
- MASTER RESET
- COMPLETE DEVELOPMENT SYSTEM SUPPORT ON INICE ${ }^{\circledR}$
- SOFTWARE PROGRAMMABLE 8-BIT TIMER CONTROL REGISTER AND TIMER PRESCALER (7 bits, 2^{n})
- TIMER PIN IS PROGRAMMABLE AS INPUT OR OUTPUT
- ON-CHIP CIRCUIT FOR ROM VERIFY

SOFTWARE FEATURES

- SOFTWARE FEATURES
- SIMILAR TO EF6805 HMOS FAMILY
- BYTE EFFICIENT INSTRUCTION SET
- EASY TO PROGRAM
- TRUE BIT MANIPULATION
- BIT TEST AND BRANCH INSTRUCTION
- SEPARATE FLAGS FOR INTERRUPT AND NORMAL PROCESSING
- VERSATILE INDIRECT REGISTERS
- CONDITIONAL BRANCHES
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- TRUE LIFO STACK ELIMINATES STACK POINTER
- NINE POWERFUL ADDRESSING MODES
- ANY BIT IN DATA SPACE MEMORY MAY BE TESTED
- ANY BIT IN DATA SPACE MEMORY CAPABLE OF BEING WRITTEN TO MAY BE SET OR CLEARED

USER SELECTABLE OPTIONS

- 12 BIDIRECTIONAL I/O LINES WITH LSTTL, LSTTL/CMOS, OR OPEN-DRAIN INTERFACE

INICE ${ }^{\circledR}$ is SGS-THOMSON development/emulation too

- CRYSTAL OR LOW-COST RESISTOR-CAPACITOR OSCILLATOR
- MASK SELECTABLE EDGE- OR LEVEL- SENSITIVE INTERRUPT PIN

DESCRIPTION

The EF6804J2 microcomputer unit (MCU) is a member of the EF6804 Family of very low-cost single-chip microcomputers. This 8-bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the EF6800-based instruction set.

SECTION 2

FUNCTIONAL PIN DESCRIPTION, MEMORY, CPU, AND REGISTERS

This section provides a description of the functional pins, memory spaces, the central processing unit (CPU), and the various registers and flags.

2.1. FUNCTIONAL PIN DESCRIPTION

2.1.1. Vcc AND Vss. Power is supplied to the MCU using these two pins. $V_{C C}$ is power and $V_{S S}$ is the ground connection.
2.1.2. $\overline{\mathrm{RQ}}$. This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to 4.1. INTERRUPT for additional information.
2.1.3. XTAL AND EXTAL. These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor and capacitor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to 4.4. Internal Clock Generator Options for recommendations concerning these inputs.
2.1.4. TIMER. In the input mode, the timer pin is connected to the prescaler input and serves as the timer clock. In the output mode, the timer pin signals that a time out of the timer has occurred. Refer to Section 3 Timer for additional information.
2.1.5. $\overline{\operatorname{RESET}}$. The $\overline{\operatorname{RESET}}$ pin is used to restart the processor of the EF6804J2 to the beginning of a program. This pin, together with the MDS pin, is also used to select the operating mode of the EF6804J2. If the MDS pin is at zero volts, the normal mode is selected and the program counter is loaded with the user restart vector. However, if the MDS pin is at +5 volts, then pins PA6 ad PA7 are decoded to allow selection of the operating mode. Refer to 4.3. Reset for additional information.
2.1.6. MDS. The MDS (mode select) pin is used to place the MCU into special operating modes. If MDS is held at +5 volts at the exit of the reset state, the decoded state of PA6 and PA7 is latched to determine the operating mode (single-chip, self-test, or ROM verify). However, if MDS is held at zero volts at the exit of the reset state, the single-chip operating mode is automatically selected (regardless of PA6 and PA7 state).

For those users familiar with the EF6801 microcomputer, mode selection is similar but much less complex in the EF6804J2. No special external diodes, switches, transistors, etc. are required in the EF6804J2.
2.1.7. INPUT/OUTPUT LINES (PA4-PA7, PBOPB7). These 12 lines are arranged into one 4 -bit port (A) and one 8 -bit port (B). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to Section 5 Input/output Ports for additional information.

2.2. MEMORY

The MCU operates in three different memory spaces : program space, data space, and stack space. A representation of these memory spaces is shown in figure 2.1. The program space (figure 2.1a) contains all of the instructions that are to be executed, as well as the data required for the immediate addressing mode instructions, and the self-test and user vectors. The data space (figure 2.1b) contains all of the RAM locations, plus I/O locations and some ROM used for storage of tables ad constants. The stack space (figure 2.1c) contains RAM which is used for stacking subroutine and interrupt return addresses.
The MCU is capable of addressing 4096 bytes of program space memory with its program counter and 256 bytes of data space memory with its instructions. The data space memory contains three bytes for port data registers, three bytes for port data direction registers, one byte for timer status/control, 64 bytes ROM, 32 bytes RAM (which includes two bytes for X and Y indirect registers), two bytes for timer prescaler and count registers, and one byte for the accumulator. The program space section includes 304 bytes of self-test ROM, 1008 bytes program ROM, and eight bytes of vectors for self-test and user programs.

2.3. CENTRAL PROCESSING UNIT

The PCU of the EF6804 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with 1/O and memory via internal addresses, data, and control buses.

EF6804J2

Figure 2.1 : EF6804J2 MCU Address Map.

2.4. REGISTERS

The EF6804 Family CPU has four registers and two flags available to the programmer. They are shown in figure 2.2. and are explained in the following paragraphs.
2.4.1. ACCUMULATOR (A). The accumulator is an 8 -bit general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator is implemented as the highest RAM location (\$FF) in data space and thus implies that several instructions exist which are not explicitly implemented. Refer to 6.3. Implied Instructions for additional information.
2.4.2. INDIRECT REGISTERS (X,Y). These two indirect registers are used to maintain pointers to other memory locations in data space. They are used in the register-indirect addressing mode, and can be accessed with the direct, indirect, short direct, or bit set/clear addressing modes. These registers are implemented as two of the 32 RAM locations ($\$ 80, \$ 81$) and as such generate implied instructions and may be manipulated in a manner similar to any RAM memory location in data space. Refer to 6.3. Implied Instructions for additional information.
2.4.3. PROGRAM COUNTER (PC). The program counter is a 12-bit register that contains the address of the next ROM word to be used (may be opcode, operand, or address of operand). The 12 -bit program counter is contained in PCL (low byte) and PCH (high nibble).
2.4.4. FLAGS (C, Z). The carry (C) bit is set on a carry or a borrow out of the ALU. It is cleared if the result of an arithmetic operation does not result in a
carry or a borrow. The (C) bit is also set to the value of the bit tested in a bit test instruction, and participates in the rotate left instruction.
The zero (Z) bit is set if the result of the last arithmetic or logical operation was equal to zero, otherwise it is cleared.
There are two sets of these flags, one set is for interrupt processing, the other for all other routines. When an interrupt occurs, a context switch is made from the program flags to the interrupt flags (interrupt mode). An RTI forces the context switch back to the program flags (program mode). While in either mode only the flags for that mode are available. Further, the interrupt flags will not be cleared upon entering the interrupt mode. Instead, the flags will be as they were at the exit of the last interrupt mode. Both sets of flags are cleared by reset.
2.4.5. STACK. There is a true LIFO stack incorporated in the EF6804J2 which eliminates the need for a stack pointer. Stack space is implemented in separate RAM (12-bits wide) shown in figure 2.1c. Whenever a subroutine call (or interrupt) occurs, the contents of the PC are shifted into the top register of the stack. At the same time (same cycle), the top register is shifted to the next level deeper. This happens to all registers with the bottom register falling out the bottom of the stack.
Whenever a subroutine or interrupt return occurs, the top register is shifted into the PC and all lower registers are shifted up one level higher. The stack RAM is four levels deep. If the stack is pulled more than four times without any pushes, the address that was stored in the bottom level will be shifted into the PC.

Figure 2.2 : Programming Model.

SECTION 3

TIMER

3.1. INTRODUCTION

A block diagram of the EF6804J2 timer circuitry is shown in figure 3.1. The timer logic in the MCU is comprised of a simple 8-bit counter (timer count register, TCR) with a 7 -bit prescaler, and a timer status/control register (TSCR). The timer count register, which may be loaded under program control, is decremented towards zero by a clock input (prescaler output). The prescaler is used to extend the maximum interval of the overall timer. The prescaler tap is selected by bits 0-2 (PS0-PS2) of the timer status/control register. Bits PS0-PS2 control the actual division of the prescaler within the range of divide-by-1 $\left(2^{0}\right)$ to divide-by-128 (2 2^{7}. The timer count register (TCR) and prescaler are decremented on rising clock edges. The coding of the TCSR PSO-PS2 bits produce a division in the prescaler as shown in table 3.1.

Table 3.1 : Prescaler Coding Table.

PS2	PS1	PS0	Divide By
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

The TIMER pin may be programmed as either an input or an output depending on the status of TOUT (TSCR bit 5). Refer to figure 3.1. In the input mode, TOUT is a logic zero and the TIMER pin is connected directly to the prescaler input. Therefore, the timer prescaler is clocked by the signal applied from the TIMER pin. The prescaler then divides its clock input by a value determined by the coding of the TSCR bits PSO-PS2 as shown in table 3.1. The divided prescaler output then clocks the 8 -bit timer count register (TCR). When the TCR is decremented to zero, it sets the TMZ bit in the timer status/control register (TSCR). The TMZ bit can be tested under program control to perform a timer function whenever it goes high. The frequency of the external clock applied to the TIMER pin must be less than tbyte (fosd 48).
In the output mode, TOUT is a logic one and the TIMER pin is connected to the DOUT latch. Therefore, the timer prescaler is clocked by the internal sync pulse (divide-by-48 of the internal oscillator). Operation is similar to that described above for the input mode. However, in the output mode, the low-to-high TMZ bit transition is used to latch the DOUT bit ofhte TSCR and provide it as output of the TIMER pin.
NOTE :
TMZ is normally set to logic one when the timer times out (TCR decrements to \$00) ; however, it may be set by a write of $\$ 00$ to the TCR or by a write to bit 7 of the TSCR.

EF6804J2

EF6804J2

During reset, the timer count register and prescaler are set to \$FF, while the timer status/control register is cleared to $\$ 00$ and the DOUT LATCH (TIMER pin is in the high-impedance input mode) is forced to a logic high. The prescaler and timer count register are implemented in data space RAM locations
(\$FD, \$FE) ; therefore, they are both readable and writeable. A write to either will predominate over the TCR decrement-to- $\$ 00$ function ; i.e., if a write and a TCR decrement-to-\$00 occur simultaneously, the write will take precedence, and the TMZ bit is not set until the next timer time out.

3.2. TIMER REGISTERS

3.2.1. TIMER COUNT REGISTER (TCR). The timer count register indicates the state of the internal 8-bit counter.

7	0
MSB	LSB

3.2.2. TIMER STATUS/CONTROL REGISTER (TSCR).

7	6	5	4	3	2	1	0
TMZ	Not Used	TOUT	DOUT	PSI	PS2	PS1	PS0

TSCR address = \$09
b7, TMZ. Low-to-high transition indicates the timer count register has decremented to zero since the timer status/control register was last read. Cleared by a read of TSCR register if TMZ was read as a logic one.
b6. Not used.
b5, TOUT. When low, this bit selects the input mode for the timer. When high, the output mode is selected.
b4, DOUT. Data sent to the timer output pin when TMZ is set high (output mode
3.2.3. TIMER PRESCALER REGISTER. The timer prescaler register indicates the state of the internal 7 -bit prescaler. This 7 -bit prescaler divide ratio is
only).
b3, $\overline{\mathrm{PSI}}$. Used to initialize the prescaler and inhibit its counting while $\overline{\mathrm{PSI}}=0$. The initialized value is set to $\$ F F$. The timer count register will also be inhibited (contents unchanged). When PSI = 1 the prescaler begins to count downward.
b0, b1, b2, PSO-These bits are used to select the PS1-PS2. prescaler divide-by ratio ; therefore, effecting the clock input frequency to the timer count register.
normally determined by bits PSO-PS2 of the timer status/control register (see table 3.1).

MSB	0	
	TPR Address $=$ \$FD	LSB

SECTION 4

INTERRUPT, SELF-TEST, RESET AND INTERNAL CLOCK GENERATOR

4.1. INTERRUPT

The EF6804J2 can be interrupted by applying a logic low signal to the $\overline{\mathrm{IRQ}}$ pin ; however, a mask option selected at the time of manufacture determines whether the negative-going edge or the actual low level is sensed to indicate an interrupt.
4.1.1. EDGE-SENSITIVE OPTION. When the $\overline{\mathrm{IRQ}}$ pin is pulled low, the internal interrupt request latch is set. Prior to each instruction fetch, the interrupt request latch is tested and, if its output is high, an interrupt sequence is initiated at the end of the current instruction (provided the interrupt mask is cleared). Figure 4.1 contains a flowchart which illustrates both the reset and interrupt sequence. The interrupt sequence consists of one cycle during which : the interrupt request latch is cleared, the interrupt mode flags are selected, the PC is saved on the stack, the interrupt mask is set, and the IRQ vector (single chip mode $=\$$ FFC/\$FFD, self-test mode $=\$ F F 8 / \$ F F 9$) is loaded into the PC. Internal processing of the interrupt continues until an RTI (return from interrupt) instruction is processed. During the RTI instruction, the interrupt mask is cleared and the program mode flags are selected. The next instruction of the program is then fetched and executed. Once the interrupt was initially detected and the interrupt sequence started, the interrupt request latch is cleared so that the next (second) interrupt may be detected even while the previous (first) one is being serviced. However, even though the second interrupt sets the interrupt request latch during processing of the first interrupt, the second interrupt sequence will not be initiated until completion of the interrupt service routine for the first interrupt. Completion of an interrupt service routine is always accomplished using an RTI instruction to return to the main program. The interrupt mask (which is not directly available to the programmer) is cleared during the last cycle of the RTI instruction.
4.1.2. LEVEL-SENSITIVE OPTION. The actual operation of the level-sensitive and edge-sensitive options are similar except that the level-sensitive option does not have an interrupt request latch. With no interrupt request latch, the logic level of the IRQ pin is checked for detection of the interrupt. Also, in the interrupt sequence, there is no need to clear the interrupt request latch. These differences are illustrated in the flowchart of figure 4.1.
4.1.3. POWER UP AND TIMING. During the powerup sequence the interrupt mask is set to preclude any false or "ghost" interrupts from occurring. To clear the interrupt mask, the programmer should write a JSR (instead of a JMP) instruction to an initialization routine as the first instruction in a program. The initialization routine should end with an RTI (instead of RTS). Maximum interrupt response time is eight machine (tbyte) cycles (see 4.4. Internal Clock Generator Options). This includes five machine cycles for the longest instruction, plus one machine cycle for stacking the PC and switching flags, plus two machine cycles for synchronization of the IRQ input with the internal clock. Minimum response time is one machine cycle for stacking PC and switching flags (see 2.4.4. flags (C, Z)).

4.2. SELF-TEST

The EF6804J2 MCU has a unique internal ROMbased off-line self-test capability using signature analysis techniques. A test program stored in the on-chip ROM is initiated by configuring pins PA6 and PA7 during reset. The test results are sampled on a cycle-by-cycle basis by a 16 -bit on-chip signature analysis register configured as a linear feedback shift register (LFSR) using the standard CCITT CRC16 polynomial. A schematic diagram of the selftest connections is shown in figure 4.2. To perform a test of the MCU, connect it as shown in figure 4.2a and monitor the LEDs for a 1101 (\$D) pattern.
A special ROM self-test utilizing the signature analysis circuitry is also included. To initiate a test of the ROM, connect the circuit as shown in figure 4.2b. This mode also uses the on-chip signature analysis register to verify the contents of the custom ROM by monitoring an internal bus. The "Good" LED indicates that all ROM words have been read and that the result was the correct signature.
The on-chip self-test and the ROM test are the basis of SGS-THOMSON Microelectronics production testing for the EF6804J2. These tests have been fault graded using statistical methods and have been found to provide high fault coverage using automatic test equipment (ATE) or the circuit of figure 4.2.

4.3. RESET

The MCU can be reset in two ways : by initial power up (see figure 4.1) and by the external reset input (RESET). During power up, a delay of $t_{\text {RHL }}$ is needed before allowing the RESET input to go high.

Figure 4.1 : Reset and Interrupt Processing Flowchart.

This time delay allows the internal clock generator to stabilize. Connecting a capacitor and resistor to the RESET input, as shown in figure 4.3, typically provides sufficient delay.

4.4. INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor-capacitor, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. A manufacturing mask option is required to select either the crystal oscillator or the RC oscillator circuit. The different clock generator option connection methods are shown in figure 4.4, crystal specifications and suggested PC board layouts are given in figure 4.5, resistor-capacitor se-
lection graph is given in figure 4.6, and a timing diagram is illustrated in figure 4.7. The crystal oscillator startup time is a function of many variables : crystal parameters (especially Rs), oscillator load capacitance (C_{L}), IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator startup, neither the crystal characteristics nor the load capacitance should exceed recommendations. The oscillator output frequency is internally divided by four to produce the internal $\phi 1$ and $\phi 2$ clocks. The $\phi 1$ clock is divided by twelve to produce a machine byte (cycle) clock. A byte cycle is the smallest unit needed to execute any operation (i.e., increment the program counter). An instruction may need two, four, or five byte cycles to execute.

Figure 4.2 : Self-test Circuit.

* Used with crystal optıon only.
(a) Functional Test

(b) Simple ROM Verify Test

Figure 4.3 : Power-up Reset Delay Circuit.

Figure 4.4 : Clock Generator Options.

Figure 4.5 : Crystal Motional Arm Parameters and Suggested PC Board Layout.

Figure 4.6 : Typical Frequency Selection for Resistor-capacitor Oscillator Option ($C_{L}=17 \mathrm{pF}$).

Figure 4.7 : Clock Generator Timing Diagram.

SECTION 5

INPUT/OUTPUT PORTS

5.1. INPUT/OUTPUT

There are 12 input/output pins. All pins (port A and B) are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset, all the DDRs are initialized to a logic zero state to put the ports in the input mode. The port output registers are not initialized on reset but should be initialized before changing the DDR bits
to avoid undefined levels. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading ; see figure 5.1. All input/output pins are LSTTL compatible as both inputs and outputs. In addition, both ports may have one of two mask options : 1) internal pullup resistor for CMOS output compatibility, or2) open drain output. The address map in figure 2.1 gives the address of data registers and DDRs. The register configuration is discussed under the registers paragraph below and figure 5.2 provides some examples of port connections.

Figure 5.1 : Typical I/O Port Circuitry.

Data Direction Register Bit	Output Data Bit	Output State	Input to MCU
1	0	0	0
1	1	1	1
0	X	$\mathrm{Hi}-\mathrm{Z}$	Pin

Figure 5.2 : Typical Port Connections.

(a) Input Mode

Port A, bit 7 programmed as output, dnving CMOS loads and bit 4 drving one LSTTL load directly (using CMOS output option)

Port B, bit 0, and bit 1 programmed as output, drving LEDs directly
(b) Output Mode

The latched output data bit (see figure 5.1) may always be written. Therefore, any write to a port writes to all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input (0) and corresponds to the latched output data when the DDR is an output (1). The 12 bidirectional lines may be configured by port to be LSTTL (standard configuration), LSTTL/CMOS (mask option), or open drain (mask option). Port B outputs are LED compatible.
NOTE
The mask option only allows changes by port. For
example, if the customer wishes PA7 to be open drain, then PA4-PA7 must all be open drain.

5.2. REGISTERS

The registers described below are implemented as RAM locations and thus may be read or written.
5.2.1. PORT DATA REGISTER. The source of data read from the port data register will be the port I/O pin or previously latched output data depending upon the contents of the corresponding data direction register (DDR). The destination of data written to the port data register will be an output data latch. If the corresponding data direction register (DDR) for the port I/O pin is programmed as an output, the data will then appear on the port pin.

7

[^10]Port B Address $=\$ 01$
5.2.2. PORT DATA DIRECTION REGISTER. The port DDRs configure the port pins as either inputs or outputs. Each port pin can be programmed individually to act as an input or an output. A zero in the
pins corresponding bit position will program that pin as an input while a one in the pins corresponding bit position will program that pin as an output.

SECTION 6

SOFTWARE AND INSTRUCTION SET

6.1. SOFTWARE

6.1.1. BIT MANIPULATION. The EF6804J2 MCU has the ability to set or clear any register or single random access memory (RAM) writable bit with a single instruction (BSET, BCLR). Any bit in data space, including ROM, can be tested, using the BRSET and BRCLR instructions, and the program may branch as a result of its state. The carry bit is set to the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or
register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.
The coding example in figure 6.1 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line (to clock data one bit at a time, MSB first, out of the device). The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in the accumulator.

Figure 6.1 : Bit Manipulation Example.

6.1.2. ADDRESSING MODES. The EF6804J2 MCU has nine addressing modes which are explained briefly in the following paragraphs. The EF6804J2 deals with objects in three different address spaces : program space, data space, and stack space. Program sapce contains the instructions which are to be executed, plus the data for immediate mode instructions. Data space contains all of the RAM Icoatin, X and Y registers, accumulator, timer, I/O locations, and some ROM (for storage of tables and constants). Stack space contains RAM for use in stacking the return addresses for subroutines and interrupts.
The term "Effective Address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.

6.1.2.1. Immediate

In the immediate addressing mode, the operand is located in program ROM and is contained in a byte
following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

6.1.2.2. Direct

In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the 256 bytes in data space memory with a single two-byte instruction.

6.1.2.3. Short Direct

The MCU also has four locations in data space RAM ($\$ 80, \$ 81, \$ 82, \$ 83$) which may be used in a shortdirect addressing mode. In this mode the lower two bits of the opcode determine the data space. RAM location, and the instruction is only one byte. Short direct addressing is a subset of the direct addressing mode. (The X and Y registers are at locations $\$ 80$ or $\$ 81$ respectively).

6.1.2.4. Extended

In the extended addressing mode, the effective address is obtained by concatenating the four least significant bits of the opcode with the byte following the opcode (12-bit address). Instructions using the extended addressing mode (JMP, JSR) are capable of branching anywhere in program space. An extended addressing mode instruction is two bytes long.

6.1.2.5. Relative

The relative addressing mode is only used in conditional branch instructions. In relative addressing, the address is formed by adding the sign extended lower five bits of the opcode (the offset) to the program counter if and only if the condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from - 15 to +16 from the opcode address. The programmer need not worry about calculating the correct offset when using the Motorola assembler since it calculates the proper offset and checks to see if it is within the span of the branch.

6.1.2.6. Bit Set/Clear

In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any bit in the 256 locations of data space memory, which can be written to, can be set or cleared.

6.1.2.7. Bit Test and Branch

The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested is included in the opcode, and the data space address of the byte to be tested is in the single byte immediately following the opcode byte. The third byte is sign extended to twelve bits and becomes the offset added to the program counter if the condition is true. The single three-byte instruction allows the program to branch based on the condition of any bit in data space memory. The span of branching is from - 125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry flag.

6.1.2.8. Register-indirect

In the register-indirect addressing mode, the operand is at the address (in data space) pointed to by the contents of one of the indirect registers (X or Y). The particular X or Y register is selected by bit 4 of the opcode. Bit 4 of the opcode is then decoded into an address which selects the desired X or Y register ($\$ 80$ or $\$ 81$). A register-indirect instruction is one byte long.

6.1.2.9. Inherent

In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. These instructions are one byte long.

6.2. INSTRUCTION SET

The EF6804J2 MCU has a set of 42 basic instructions, which when combined with nine addressing modes produce 242 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

6.2.1. REGISTER/MEMORY INSTRUCTIONS.

Most of these instructions use two operands. One operand is the accumulator and the other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to table 6.1.
6.2.2. READ-MODIFY-WRITE INSTRUCTIONS. These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. There are ten instructions which utilize read-modify-write cycles. All INC and DEC forms along with all bit manipulation instructions use this method. Refer to table 6.2.
6.2.3. BRANCH INSTRUCTIONS. The branch instructions cause a branch from the program when a certain condition is met. Refer to table 6.3.
6.2.4. BIT MANIPULATION INSTRUCTIONS. These instructions are used on any bit in data space memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to table 6.4.

		Addresaing Modes																			
		Indirect				Immediate			Direct			Inherent			Extended			Short-D rect			
		Opcode		Bytes	Cycles	Opcode	$\stackrel{\#}{\#}$	Cycles	Opcode	Bytes		Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	Opcode	Bytes	$\stackrel{*}{\text { Cycles }}$	Opcode	Bytes	Cycles	Special Notes
Function	Mnem	X	∇																		
Losed A from Memory	LDA	EO	FO	1	4	E8	2	4	F8	2	4	-	-	-	-	-	-	AC-AF	1	4	1
Load XP from Memory	LDXI	-.	-	-	-	B0	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Load YP from Memory	LDYI	-	-	-	-	80	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Store A in Memory	STA	E1	F1	1	4	-	-	-	F9	2	4	-	-	-	-	-	-	BC. BF	1	4	2
Add to A	ADD	E2	F2	1	4	EA	2	4	FA	2	4	-	-	-	-	-	-	-	-	-	-
Subtract from A	SUB	E3	F3	1	4	EB	2	4	FB	2	4	-	-	-	-	-	-	-	-	-	-
Arthmetic Compare with Memory	CMP	E4	F4	1	4	EC	2	4	FC	2	4	-	-	-	-	-	-	-	-	-	-
AND Memory to A	AND	E5	F6	1	4	ED	2	4	FD	2	4	-	-	-	-	-	-	-	-	-	-
Jump to Subroutine	JSR	-	-	-	-	-	-	-	-	-	-	-	-	-	8 (TAR)	2	4	-	-	-	3
Jump Unconditional	JMP	-	-	-	-	-	-	-	-	-	-	-	-	-	9 (TAR)	2	4	-	-	-	3
Clear A	CLRA	-	-	-	-	-	-	-	FB	2.	4	-	-	-	-	-	-	-	-	-	-
Clear XP	CLRX	-	-	-	-	-	-	-	F8	2	4	-	-	-	-	-	-	-	-	-	-
Clear YP	CLRY	-	-	-	-	-	-	-	FB	2	4	-			-	-	-	-	-	-	-
Corrplement A	COMA	-	-	-	-	-	-	-	-	-	-	B4	1	4	-	-	-	-	-	-	-
Move Immediate Value to Memory	MV1	-	-	-	-	80	3	4	80	3	4	-	-	-	-	-	-	-	-	-	5
Rotete A Left and Carn	ROLA	-	-	-	-	-	-	-	-	-	-	B6	1	4	-	-	-	-	-	-	-
Arthmetic Left Shitt of A	ASLA	-	-	-	-	-	-	-	FA	2	4	-	-	-	-	-	-	-	-	-	-

1. In Short-Direct adoressing, the LDA mnemonic represents opcodo AC, AD. AE, and AF. This is equrvalent to RAM locations ss0 (AC), s81 (AD), s82 (AE), and \$83 (AF) 2. In Short-Direct addressing, the STA mnemonic represents opcode BC BD, BE, and BF. This is equivalent to RAM locations \$80 (BC). \$81 (BD), \$82 (BE), and \$83 (BF), 3. In Extended sedressing, the lour LSBs of the opcode (Mnemonic JSA and JMP) are formed by the four MSBs ol the target address. (TAR)
2. In Immediate addressing, the LDXI and LDYI are mnemonics which are recognized as follows:

LDXI=MVI \$80,daia
LDYI= MVI 81.data
Where data is a one-byte hexadeermal number.
5. The MVI Instruction refers to both Immediate and Direct addressing.

1. In short-direct addressing, the INC mnemonic represents opcode $A B, A B, A A$ and $A B$. These are equivalent to RAM locattons $\$ 80$ (AB), $\$ 81$ (AB), $\$ 82$ (AA) and $\$ 83$ (AB). 2. In sthort-direct addressing, the DEC mnemonic represents opcode B8, B8, BA and BB. These aro squivalent to RAM locations $\$ 80$ ($B 8$), $\$ 81$ (B8), $\$ 82$ ($B A$) and $\$ 83$ (BB)
2. In Indirect addressing, the INC mnemonic represents opcode E6 or F6, and causes the location polntec to by X ($E 6$ opcode) or Y (F6 opcode) to be Incremented.
3. In indirect addressing, the INC mnemonlc represents opcode E7 or F7, and causes the locatlon pointec to by X (E7 opcode) or Y (F7 opcode) to be Incremented.

Table 6.3 : Branch Instructions.

	Relative Addressing Mode				
Function	Mnem	Opcode	$\#$ Bytes	$\#$ Cycles	Special Notes
Branch if Carry Clear	BCC	$40-5 \mathrm{~F}$	1	2	1
Branch if Higher or Same	BHS	$40-5 \mathrm{~F}$	1	2	1,2
Branch if Carry Set	BCS	$60-7 \mathrm{~F}$	1	2	1
Branch if Lower	BLO	$60-7 \mathrm{~F}$	1	2	1,3
Branch if Not Equal	BNE	$00-1 \mathrm{~F}$	1	2	1
Branch if Equal	BEQ	$20-3 \mathrm{~F}$	1	2	1

SPECIAL NOTES 1 Each mnemonic of the Branch Instructions covers a range of 32 opcodes, e g, BCC ranges from 40 through 5F The actual memory location (target address) to which the branch is made is formed by adding the sign extended lower five bits of the opcode to the contents of the program counter.
2 The BHS instruction (shown in parentheses) is identical to the BCC instruction. The C bit is clear if the register was higher or the same as the location in the memory to which it was compared
3 The BLO instruction (shown in parentheses) is identical to the BCS instruction. The C bit is set if the register was lower than the location in memory to which it was compared

Table 6.4 : Bit Manipulation Instructions.

		Addressing Modes						
		Bit Set/Clear			Bit Test and Branch			
Function	Mnem	Opcode	\# Bytes	\# Cycles	Opcode	\# Bytes	\# Cycles	Special Notes
Branch IFF Bit n is set	BRSET $n\left(\begin{array}{ll}n=0 & 7\end{array}\right)$				$\mathrm{C} 8+\mathrm{n}$	3	5	1
Branch IFF Bit n is clear	BRCLR $\mathrm{n}(\mathrm{n}=0 \mathrm{l}$)				$\mathrm{CO}+\mathrm{n}$	3	5	1
Set Bit n	BSET $n(\mathrm{n}=0 \quad 7)$	$\mathrm{D} 8+\mathrm{n}$	2	4				1
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=0 \mathrm{ll}$)	$\mathrm{D} 0+\mathrm{n}$	2	4				1

SPECIAL NOTE 1 The opcode is formed by adding the bit number (0-7) to the basic opcode. For example to clear bit six using the BSET6 instruction the opcode becomes $D E(D 8+6)$, BCLR5 becomes $(C 0+5)$, etc
6.2.5. CONTROL INSTRUCTIONS. The control instructions control the MCU operations during program execution. Refer to table 6.5.
6.2.6. ALPHABETICAL LISTING. The complete instruction set is given in alphabetical order in table 6.6. There are certain mnemonics recognized by the assembler and converted to other instructions. The fact that all registers and accumulator are in RAM allows many implied instructions to exist. The implied instructions recognized by the assembler are identified in table 6.6.
6.2.7. OPCODE MAP SUMMARY. Table 6.7 contains an opcode map for the instructions used on the MCU.

6.3. IMPLIED INSTRUCTIONS

Since the accumulator and all other registers are located in RAM many implied instructions exist. The assembler-recognized implied instructions are given in table 6.6. Some examples not recognized by the assembler are shown below.
BCLR, 7 \$FF
Ensures accumulator is plus
BSET, 7 \$FF
BRCLR, 7 \$FF
BRSET, 7 \$FF
BRCLR, 7 \$80
BRSET, $7 \$ 80$
BRCLR, 7 \$81
BRSET, 7 \$81

Ensures accumulator is minus
Branch iff accumulator is plus
Branch iff accumulator is minus
Branch iff X is plus (BXPL)
Bracnh iff X is minus (BXMI)
Branch iff Y is plus (BYPL)
Branch iff Y is minus (BYMI)

		Addressing Modes									
		Short－Direct			Inherent			Relative			Special Notes
Functlon	Mnem	Opcode			Opcode		Cycles	Opcode	\＃ Bytes	\＃ Cycles	
Transfer A to X	TAX	BC	1	4							
Transfer A to Y	TAY	BD	1	4							
Transfor X to A	TXA	AC	1	4							
Transfer Y to A	TYA	AD	1	4							
Return from Subroutine	RTS				B3	1	2				
Return from Interrupt	RTI				B2	1	2				
No－operation	NOP										1

1．The NOP Instruction is equivalent to a branch if equal（BEQ）to the location designated by $P C+1$ ．

Table 6.6 : Instruction Set.

Flag Symbols Z = Zero, C = Carryborrow, ^ = Test and Set if True, Cleared Otherwise, ${ }^{\boldsymbol{*}}=$ Not affected

Table 6.7 : EF6804P2 Microcomputer Instruction Set Opcode Map.

Table 6.7 : (continued).

SECTION 7

ELECTRICAL SPECIFICATIONS

7.1. INTRODUCTION

This section contains the electrical specifications and associated timing for the EF6804J2.

7.2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.3 to +7.0	V
$V_{\text {In }}$	Input Voltage	-0.3 to +7.0	V
TA	Operating Temperature Range Standard or L Suffix \checkmark Suffix T Suffix	$\begin{gathered} \text { TL to TH } \\ 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
TJ	Junction Temperature Range Plastic	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high statıc voltages of electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maxımum rated voltages to this high impedance circuit For proper operation it is recommended that $V_{\text {In }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S}\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) V_{c c}$ Reliability of operation is enhanced if unused input except EXTAL are connected to an appropriate logic voltage level (e g., either V_{SS} or V_{CC})

7.3. THERMAL DATA

θ_{JA}	Thermal Resistance Plastic	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 7.3: LSTTL Equivalent Test Load (port A and TIMER).

Figure 7.2 : CMOS Equivalent Test Load (port A and B).

Figure 7.1 : LSTTL Equivalent Test Load (port B).

7.4. POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$T_{J}=T_{A}+\left(P_{D} \cdot \theta J_{A}\right)$
Where :
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}=$ Package Thermal Resistance, Junction-toAmbient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD $=\mathrm{P}_{\text {INT }}+\mathrm{P}_{\text {PORT }}$
$P_{\text {Int }}=\operatorname{lcc} \times \mathrm{V}_{\mathrm{cc}}$, Watts - Chip Internal Power
Pport = Port Power Dissipation, Watts - User Determined

For most applications PPORT << PINT and can be neglected. PPORT may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if Pport is neglected) is :
$P_{D}=K \div\left(T J+273^{\circ} \mathrm{C}\right)$
Solving equations 1 and 2 for K gives :
$K=P D \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta_{J A} \cdot P_{D}{ }^{2}$
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) interatively for any value of T_{A}.

7.5. ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
PINT	$\begin{aligned} \text { Internal Power Dissipation-No Port Loading } \begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \\ T_{A} & =-40^{\circ} \mathrm{C} \end{aligned} \end{aligned}$		135	$\begin{aligned} & 170 \\ & 210 \end{aligned}$	mV
$\mathrm{V}_{\text {IH }}$	Input High Voltage	4.0		V Cc	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}$		0.8	V
$\mathrm{C}_{\text {In }}$	Input Capacitance		10		pF
$\mathrm{I}_{\text {In }}$	Input Current(IRQ, $\overline{\mathrm{RESET}})$		2	20	$\mu \mathrm{A}$

7.6. ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$f_{\text {Osc }}$	Oscillator Frequency	4.0		11.0	MHz
$\mathrm{t}_{\text {bit }}$	Bit Time	0.364		1.0	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {byte }}$	Byte Cycle Time	4.36		12.0	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{WL}}, \mathrm{t}_{\mathrm{WH}}$	$\overline{\mathrm{IRQ}}$ and TIMER Pulse Width	$2 \times \mathrm{t}_{\text {byte }}$			
$\mathrm{t}_{\text {RWL }}$	$\overline{R E S E T}$ Pulse Width	$2 \times \mathrm{t}_{\text {byte }}$			
$\mathrm{t}_{\text {RHL }}$	$\overline{R E S E T}$ Delay Time (external capacitance $=1.0 \mu \mathrm{~F})$	100			ms

7.7. PORT DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{S S}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)
TIMER AND PORTS A (standard)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=0.4 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-50 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		4	40	$\mu \mathrm{~A}$

TIMER AND PORTS A (open drain)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$V_{\text {OL }}$	Output Low Voltage, I Load $=0.4 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\text {IH }}$	Input HIgh Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}$		0.8	V
$\mathrm{I}_{\text {TSI }}$	Hi-Z State Input Current		4	40	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {LOD }}$	Open Drain Leakage $\left(\mathrm{V}_{\text {Out }}=\mathrm{V}_{\mathrm{CC}}\right)$		4	40	$\mu \mathrm{~A}$

TIMER AND PORTS A (CMOS drive)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {OL }}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=0.4 \mathrm{~mA}$ (sink)			0.5	V
$\mathrm{~V}_{\text {OH }}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}-1.0$			V
$\mathrm{~V}_{\text {OH }}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-50 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A} \mathrm{Max}$	V_{SS}		0.8	V
$\mathrm{I}_{\text {TSI }}$	Hi-Z State Input Current $\left(\mathrm{V}_{\text {In }}=0.4 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			-300	$\mu \mathrm{~A}$

PORT B (standard)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.0 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			1.5	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	$\mathrm{V}_{\text {ISS }}$		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		8	80	$\mu \mathrm{~A}$

PORT B (open drain)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.0 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			1.5	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\text {TSI }}$	Hi-Z State Input Current		8	80	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {LOD }}$	Open Drain Leakage $\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}\right)$		8	80	$\mu \mathrm{~A}$

PORT B (CMOS drive)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {OL }}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.0 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OL}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink $)$			1.5	V
$\mathrm{~V}_{\text {OH }}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}-1.0$			V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current $\left(\mathrm{V}_{\text {In }}=0.4 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			-300	$\mu \mathrm{~A}$

SECTION 8

MECHANICAL DATA

This section contains the pin assignment and package dimension diagrams for the EF6804J2 microcomputer.

MECHANICAL DATA

(1) Nominal dimension
(2) True geometrical positior

SECTION 9

ORDERING INFORMATION

9.1. INTRODUCTION

The following information is required when ordering a custom MCU. The information may be transmitted to SGS-THOMSON in the following media :
EPROM(s), 2716 or 2732
EFDOS/MDOS *, disk file
To initiate a ROM pattern for the MCU, it is necessary to first contact your local field service office, local sales person, or your local SGS-THOMSON representative.
9.1.1. EPROMs. One 2716 or one 2732 type EPROM, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. Since all program and data space information will fit on one 2716 or 2732 EPROM, the EPROM must be programmed as follows in order to emulate the EF6804J2 MCU. For a 2716, start the data space ROM at EPROM address $\$ 020$ and start program space ROM at EPROM address $\$ 410$ and continue to memory space \$7FF. Memory spaces \$7F8 through \$7FB are reserved for SGS-THOMSON self-test vectors. For a 2732, the memory map shown in figure 2.1 can be used. All unused bytes, including the user's space, must be set to zero. For shipment to SGSTHOMSON the EPROMs should be placed in a conductive IC carrier and packed securely. Do not use styrofoam.
9.1.2. EFDOS/MDOS * DISK FILE. An EFDOS/MDOS* disk, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. When using the EFDOS/MDOS* disk, include the entire memory image of both data and program space. All unused bytes, including the user's space, must be set to zero.

9.2. VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS-THOMSON. The signed verification form constitutes the contractural agreement for creation of the customer mask. If desired, SGS-THOM-

SON will program a blank 2716, 2732, or EFDOS/MDOS* disk (supplied by the customer) from the data file used to create the custom mask to aid in the verification process.

* Requires prior factory approval

9.3. ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually tested only at room temperature, five volts and may be unmarked and packaged in ceramic. These RVUs are included in the mask charge and are not production parts.
These RVUs are not backed nor guaranteed by SGS-THOMSON Quality Assurance.

9.4. FLEXIBLE DISKS

The disk media submitted must be single-sided single density, 8 -inch, EFDOS/MDOS* compatible floppies. The customer must clearly label the disk with the ROM pattern file name. The minimum EFDOS/MDOS* system files as well as the absolute binary object file (file name. LO type of file) from the 6804 cross assembler must be on the disk. An object file made from a memory dump, using the ROLLOUT command is also admissable. Consider submitting a source listing as well as : file name, LX (DEVICE/EXORciser loadable format). This file will of course be kept confidential and is used 1) to speed up the process in house if any problems arise, and 2) to speed up our customer to factory interface if a user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS-THOMSON Disk Operating System available on development systems such as DEVICE.
MDOS is MOTOROLA's Disk Operating System available on development systems such as EXORciser...

* Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local SGS-THOMSON Microelectronics distributor and/or complete and send the attached "MCU customer ordering sheet SEMICONDUCTEURS representative.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Package : C : Ceramıc DIL, P : Plastıc DIL, FN : PLCC
Oper. temp. : $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C},{ }^{*}$: may be omitted
Screening level : Std : (no-end suffix), D : NFC 96883 level D
EXORciser is a registered trademark of MOTOROLA Inc

These specifications are subject to change without notice Please inquire with our sales offices about the availability of the different packages

EF6804 FAMILY - MCU CUSTOMER ORDERING SHEET

ROM capacity required :
 bytes

Temperature range :
$\begin{array}{ll}\square & 0^{\circ} \mathrm{C} / \\ \text { Package }\end{array}$
\square Plastic
Quality level :
$\begin{array}{ll}\square & \text { STD } \\ \square & \text { D }\end{array}$
Other* (customer's quality specification ref.) :

Software developed by :
SGS-THOMSON Microelectronics application lab.
External lab.
\square Customer

PATTERN MEDIA (a listing may be supplied in addition
for checking purpose) :

OPTION LIST

-Oscillator input :
$\square \begin{aligned} & \text { Ital } \\ & \mathrm{RC}\end{aligned}$

- Interrupt Trigger :

Edge -sensitive sensitive

- Port A output drive (41/Os)
\square Enabled
- Disabled
- Port B output drive :
CMOS and TTL
TL only
Open drain
* Requires prior factory approval

Yearly quantity forecast :

- start of production date :
- for a shipment period of :

EF6804P2

8 BIT MICROCOMPUTER

HARDWARE FEATURES

- 8-BIT ARCHITECTURE
- PIN COMPATIBLE WITH THE EF6805P2 AND EF68HC04P3
- 32 BYTES OF RAM
- MEMORY MAPPED I/O
- 1020 BYTES OF USER ROM
- 64 BYTES OF ROM FOR LOOK-UP TABLES
- 20 TTL/CMOS COMPATIBLE BIDIRECTIONAL I/O LINES (eight lines are led compatible)
- 8-BIT TIMER WITH 7-BIT SOFTWARE PROGRAMMABLE PRESCALER
- ON-CHIP CLOCK GENERATOR
- SELF-CHECK MODE AND ROM VERIFY MODE
- MASTER RESET
- COMPLETE DEVELOPMENT SYSTEM SUPPORT ON INICE ©
- 5 VOLT SINGLE SUPPLY
- TIMER PIN IS PROGRAMMABLE AS INPUT OR OUTPUT
SOFTWARE FEATURES
- SIMILAR TO EF6805 HMOS FAMILY
- BYTE EFFICIENT INSTRUCTION SET
- EASY TO PROGRAM
- TRUE BIT MANIPULATION
- BIT TEST AND BRANCH INSTRUCTION
- SEPARATE FLAGS FOR INTERRUPT AND NORMAL PROCESSING
- VERSATILE INDIRECT REGISTERS
- CONDITIONAL BRANCHES
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- TRUE LIFO STACK ELIMINATES STACK POINTER
- EIGHT POWERFUL ADDRESSING MODES
- ANY BIT IN DATA SPACE MEMORY MAY BE TESTED
- ANY BIT IN DATA SPACE MEMORY CAPABLE OF BEING WRITTEN TO MAY BE SET OR CLEARED
USER SELECTABLE OPTIONS
- 20 BIDIRECTIONAL I/O LINES WITH LSTTL, LSTTL/CMOS, OR OPEN-DRAIN INTERFACE
- CRYSTAL OR LOW-COST RESISTOR-CAPACITOR OSCILLATOR
- MASK SELECTABLE EDGE- OR LEVEL-SENSITIVE INTERRUPT PIN

DESCRIPTION

The EF6804P2 Microcomputer Unit (MCU) is a member of the EF6804 Family of very low-cost single-chip microcomputers. This 8-bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, INICE® is SGS THOMSON development/emulation tool

I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the EF6800-based instruction set. The following are some of the hardware and software highlights of the EF6804P2 MCU.

Figure 1.1 : EF6804P2 MCU Block Diagram.

Note : 8-Bit indirect registers XP and YP, although shown as part of the CPU, are actually located in the 32×8 RAM at locations $\$ 80$ and $\$ 81$.

SECTION 2

FUNCTIONAL PIN DESCRIPTION, MEMORY, CPU, AND REGISTERS

This section provides a description of the functional pins, memory spaces, the central processing unit (CPU), and the various registers and flags.

2.1. FUNCTIONAL PIN DESCRIPTION

2.1.1. V_{CC} and V_{SS}. Power is supplied to the MCU using these two pins. VCc is power and $V_{S S}$ is the ground connection.
2.1.2. $\overline{\mathrm{RQ}}$. This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to 4.1. INTERRUPT for additional information.
2.1.3. XTAL and EXTAL. These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor and capacitor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to 4.4 INTERNAL CLOCK GENERATOR OPTIONS for recommendations concerning these inputs.
2.1.4. TIMER. In the input mode, the timer pin is connected to the prescaler input and serves as the timer clock. In the output mode, the timer pin signals that a time out of the timer has occurred. Refer to SECTION 3 TIMER for additional information.
2.1.5. $\overline{\operatorname{RESET}}$. The $\overline{\operatorname{RESET}}$ pin is used to restart the processor of the EF6804P2 to the beginning of a program. This pin, together with the MDS pin is also used to select the operating mode of the EF6804P2. If the MDS pin is at zero volts, the normal mode is selected and the program counter is loaded with the user restart vector. However, if the MDS pin is at +5 volts, then pins PA6 and PA7 are decoded to allow selection of the operating mode. Refer to 4.3 RESET for additional information.
2.1.6. MDS. The MDS (mode select) pin is used to place the MCU into special operating modes. If MDS is held at +5 volts at the exit of the reset state, the decoded state of PA6 and PA7 is latched to determine the operating mode (single-chip, self-check, or ROM verify). However, if MDS is held at zero volts at the exit of the reset state, the single-chip operating mode is automatically selected (regardless of PA6 and PA7 state).

For those users familiar with the EF6801 microcomputer, mode selection is similar but much less complex in the EF6804P2. No special external diodes, switches, transistors, etc. are required in the EF6804P2.
2.1.7. INPUT/OUTPUT LINES (PAO-PA7, PBOPB7, PC0-PC3). These 20 lines are arranged into two 8 -bit ports (A and B) and one 4-bit port (C). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to SECTION 5 INPUT/OUTPUT PORTS for additional information.

2.2. MEMORY

The MCU operates in three different memory spaces : program space, data space, and stack space. A representation of these memory spaces is shown in figure 2.1. The program space (figure2.1a) contains all of the instructions that are to be executed, as well as the data required for the immediate addressing mode instructions, and the selfcheck and user vectors. The data space (figure 2.1b) contains all of the RAM locations, plus I/O locations and some ROM used for storage of tables and constants. The stack space (figure 2.1c) contains RAM which is used for stacking subroutine and interrupt return addresses.
The MCU is capable of addressing 4096 bytes of program space memory with its program counter and 256 bytes of data space memory with its instructions. The data space memory contains three bytes for port data registers, three bytes for port data direction registers, one byte for timer status/control, 64 bytes ROM, 32 bytes RAM (which includes two bytes for XP and YP indirect registers), two bytes for timer prescaler and count registers, and one byte for the accumulator. The program space section includes 288 bytes of self-check ROM, 1016 bytes program ROM, and eight bytes of vectors for selfcheck and user programs.

2.3. CENTRAL PROCESSING UNIT

The CPU of the EF6804 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with $1 / O$ and memory via internal addresses, data, and control buses.

Figure 2.1 : EF6804P2 MCU Address Map.

2.4. REGISTERS

The EF6804 Family CPU has four registers and two flags available to the programmer. They are shown
in figure 2.2 and are explained in the following paragraphs.

Figure 2.2 : Programming Model.
2.4.1. ACCUMULATOR (A). The accumulator is an 8 -bit general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator is implemented as the highest RAM location (\$FF) in data space and thus implies that several instructions exist which are not explicitly implemented. Refer to 6.3 IMPLIED INSTRUCTIONS for additional information.
2.4.2. INDIRECT REGISTERS (XP, YP). These two indirect registers are used to maintain pointers to other memory locations in data space. They are used in the register-indirect addressing mode, and can be accessed with the direct, indirect, short direct, or bit set/clear addressing modes. These registers are implemented as two of the 32 RAM locations ($\$ 80, \$ 81$) and as such generate implied instructions and may be manipulated in a manner similar to any RAM memory location in data space. Refer to 6.3. IMPLIED INSTRUCTIONS for additional information.
2.4.3. PROGRAM COUNTER (PC). The program counter is a 12-bit register that contains the address of the next ROM word to be used (may be opcode, operand, or address of operand). The 12 -bit program counter is contained in PCL (low byte) and PCH (high nibble).
2.4.4. FLAGS (C, Z). The carry (C) bit is set on a carry or a borrow out of the ALU. It is cleared if the result of an arithmetic operation does not result in a carry or a borrow. The (C) bit is also set to the value of the bit tested in a bit test instruction, and participates in the rotate left instruction.
The zero (Z) bit is set if the result of the last arithmetic or logical operation was equal to zero, otherwise it is cleared.
There are two sets of these flags, one set is for interrupt processing, the other for all other routines. When an interrupt occurs, a context switch is made from the program flags to the interrupt flags (inter-

EF6804P2

rupt mode). An RTI forces the context switch back to the program flags (program mode). While in either mode, only the flags for that mode are available. Further, the interrupt flags will not be cleared upon entering the interrupt mode. Instead, the flags will be as they were at the exit of the last interrupt mode. Both sets of flags are cleared by reset.
2.4.5. STACK. There is a true LIFO stack incorporated in the EF6804P2 which eliminates the need for a stack pointer. Stack space is implemented in separate RAM (12-bits wide) shown in figure 2-1c. Whenever a subroutine call (or interrupt) occurs, the
contents of the PC are shifted into the top register of the stack. At the same time (same cycle), the top register is shifted to the next level deeper. This happens to all registers with the bottom register falling out the bottom of the stack.
Whenever a subroutine or interrupt return occurs, the top register is shifted into the PC and all lower registers are shifted up one level higher. The stack RAM is four levels deep. If the stack is pulled more than four times without any pushes, the address that was stored in the bottom level will be shifted into the PC.

SECTION 3

TIMER

3.1. INTRODUCTION

A block diagram of the EF6804P2 timer circuitry is shown in figure 3.1. The timer logic in the MCU is comprised of a simple 8-bit counter (timer count register, TCR) with a 7 -bit prescaler, and a timer status/control register (TSCR). The timer count register, which may be loaded under program control, is decremented towards zero by a clock input (prescaler output). The prescaler is used to extend the maximum interval of the overall timer. The prescaler tap is selected by bits 0-2 (PS0-PS2) of the timer status/control register. Bits PS0-PS2 control the actual division of the prescaler within the range of divide-by-1 $\left(2^{0}\right)$ to divide-by-128 $\left(2^{7}\right)$. The timer count register (TCR) and prescaler are decremented on rising clock edges. The coding of the TCSR PS0-PS2 bits produce a division in the prescaler as shown in table 3.1.

Table 3.1 : Prescaler Coding Table.

PS2	PS1	PS0	Divide By
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

The TIMER pin may be programmed as either an input or an output depending on the status of TOUT (TSCR bit 5). Refer to figure 3.1. In the input mode, TOUT is a logic zero and the TIMER pin is connected directly to the prescaler input. Therefore, the timer prescaler is clocked by the signal applied from the TIMER pin. The prescaler then divides its clock input by a value determined by the coding of the TSCR bits PSO-PS2 as shown in table 3.1. The divided prescaler output then clocks the 8-bit timer count register (TCR). When the TCR is decremented to zero, it sets the TMZ bit in the timer status/control register (TSCR). The TMZ bit can be tested under program control to perform a timer function whenever it goes high. The frequency of the external clock applied to the TIMER pin must be less than tbyte (fosd 48).
In the output mode, TOUT is a logic one and the TIMER pin is connected to the DOUT latch. Therefore, the timer prescaler is clocked by the internal sync pulse (divide-by-48 of the internal oscillator). Operation is similar to that described above for the input mode. However, in the output mode, the low-to-high TMZ bit transition is used to latch the DOUT bit of the TSCR and provide it as output for the TIMER pin.
NOTE :
TMZ is normally set to logic one when the timer times out (TCR decrements to \$00) ; however, it may be set by a write of $\$ 00$ to the TCR or by a write to bit 7 of the TSCR.

During reset, the timer count register and prescaler are set to \$FF, while the timer status/control register is cleared to $\$ 00$ and the DOUT LATCH (TIMER pin is in the high-impedance input mode) is forced to a logic high. The prescaler and timer count register are implemented in data space RAM locations (\$FD, \$FE) ; therefore, they are both readable and writeable. A write to either will predominate over the

TCR decrement-to-\$00 function ; i.e., if a write and a TCR decrement-to-\$00 occur simultaneously, the write will take precedence, and the TMZ bit is not set until the next timer time out.

3.2. TIMER REGISTERS

3.2.1. Timer Count Register (TCR)
\qquad
MSB LSB

TSCR Address = \$FE

The timer count register indicates the state of the internal 8-bit counter.
3.2.2. TIMER STATUS/CONTROL REGISTER (TSCR)

7	6	5	4	3	2	1	0
TMZ	Not used	TOUT	DOUT	$\overline{\text { PS1 }}$	PS2	PS1	PS0

TSCR Address $=\$ 09$

b7, TMZ	Low-to-high transition indicates the timer count register has de- cremented to zero since the timer status/control register was last read. Cleared by a read of TSCR register if TMZ was read as a logic one.
b6	Not used.
b5, TOUT	When low, this bit selects the input mode for the timer. When high, the
output mode is selected.	

Used to initialize the prescaler and inhibit its counting while $\overline{\mathrm{PSI}}=0$. The initialized value is set to \$FF. The timer count register will also be inhibited (contents unchanged).
When $\overline{\mathrm{PSI}}=1$ the prescaler begins to count downward.
b0, b1, b2 These bits are used to select the PS0-PS1-PS2 prescaler divide-by ratio; therefore, effecting the clock input frequency to the timer count register.
3.2.3. TIMER PRESCALER REGISTER

6

TPR Address = \$FD

The timer prescaler register indicates the state of the internal 7 -bit prescaler. This 7 -bit prescaler
divide ratio is normally determined by bits PSO-PS2 of the timer status/control register (see table 3.1).

SECTION 4

INTERRUPT, SELF-CHECK, RESET, AND INTERNAL CLOCK GENERATOR

4.1. INTERRUPT

The EF6804P2 can be interrupted by applying a logic low signal to the IRQ pin ; however, a mask option selected at the time of manufacture determines whether the negative-going edge or the actual low level is sensed to indicate an interrupt.
4.1.1. EDGE-SENSITIVE OPTION. When the $\overline{I R Q}$ pin is pulled low, the internal interrupt request latch is set. Prior to each instruction fetch, the interrupt request latch is tested and, if its output is high, an interrupt sequence is initiated at the end of the current instruction (provided the interrupt mask is cleared). Figure 4.1 contains a flowchart which illustrates both the reset and interrupt sequence. The interrupt sequence consists of one cycle during which : the interrupt request latch is cleared, the interrupt mode flags are selected, the PC is saved on the stack, the interrupt mask is set, and the IRQ vector (single chip mode $=\$$ FFC/\$FFD, self-check mode $=\$$ FF8/ \$FF9) is loaded into the PC. Internal processing of the interrupt continues until an RTI (return from interrupt) instruction is processed. During the RTI instruction, the interrupt mask is cleared and the program mode flags are selected. The next instruction of the program is then fetched and executed. Once the interrupt was initially detected and the interrupt sequence started, the interrupt request latch is cleared so that the next (second) interrupt may be detected even while the previous (first) one is being serviced. However, even though the second interrupt sets the interrupt request latch during proces-
sing of the first interrupt, the second interrupt sequence will not be initiated until completion of the interrupt service routine for the first interrupt. Completion of an interrupt service routine is always accomplished using an RTI instruction to return to the main program. The interrupt mask (which is not directly available to the programmer) is cleared during the last cycle of the RTI instruction.
4.1.2. LEVEL-SENSITIVE OPTION. The actual operation of the level-sensitive and edge-sensitive options are similar except that the level-sensitive option does not have an interrupt request latch. With no interrupt request latch, the logic level of the IRQ pin is checked for detection of the interrupt. Also, in the interrupt sequence, there is no need to clear the interrupt request latch. These differences are illustrated in the flowchart of figure 4.1.
4.1.3. POWER UP AND TIMING. During the powerup sequence the interrupt mask is set to preclude any false or "ghost" interrupts from occurring. To clear the interrupt mask, the programmer should write a JSR (instead of a JMP) instruction to an initialization routine as the first instruction in a program. The initialization routine should end with an RTI (instead of RTS). Maximum interrupt response time is eight machine (tbyte) cycles (see 4.4 INTER-
NAL CLOCK GENERATOR OPTIONS). This includes five machine cycles for the longest instruction, plus one machine cycle for stacking the PC and switching flags, plus two machine cycles for synchronization of the IRQ input with the internal clock. Minimum response time is one machine cycle for stacking PC and switching flags (see 2.4.4 Flags (C, Z)).

Figure 4.1 : Reset and Interrupt Processing Flowchart.

4.2. SELF-CHECK

The self check capability of the EF6804P2 MCU provides an internal check to determine if the part is functional. A schematic diagram of the self-check connections is shown in figure 4.2. To perform a functional check of the MCU, connect it as shown in figure 4.2a and monitor the LEDs for a 00100 (\$04) pattern on port A. To initiate a ROM self-check of the memory simply connect the circuit as shown in figure 4.2b and check that the "good" LED turns on to indicate a good memory. The ROM verify uses a cyclical redundancy check (CRC) to conduct a ROM check by means of signature analysis circuit.This circuit consists of two 8 -bit shift registers configured to perform the check using the CCITT polynominal.

4.3. RESET

The MCU can be reset in two ways : by initial power up (see figure 4.1) and by the external reset input (RESET). During power up, a delay of tRHL is needed before allowing the RESET input to go high. This time delay allows the internal clock generator to stabilize. Connecting a capacitor and resistor to the RESET input, as shown in figure 4.3, typically provides sufficient delay.

4.4. INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor-capacitor, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. A manufacturing mask option is required to select either the crystal oscillator or the RC oscillator circuit. The different clock generator option connection methods are shown in figure 4.4, crystal specifications and suggested PC board layouts are given in figure 4.5 , resistor-capacitor selection graph is given in figure 4.6, and a timing diagram is illustrated in figure 4.7. The crystal oscillator startup time is a function of many variables : crystal parameters (especially Rs), oscillator load capacitance (CL), IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator startup, neither the crystal characteristics nor the load capacitance should exceed recommendations.
The oscillator output frequency is internally divided by four to produce the internal $\phi 1$ and $\phi 2$ clocks. The $\phi 1$ clock is divided by twelve to produce a machine byte (cycle) clock. A byte cycle is the smallest unit needed to execute any operation (i.e., increment the program counter). An instruction may need two, four, or five byte cycles to execute.

Figure 4.2 : Self-Check Circuit.

* Used with crystal option only
(a) functional check

[^11](b) Simple ROM Verify Check

Figure 4.3 : Power-Up Reset Delay Circuit.

Figure 4.4 : Clock Generator Options.

Figure 4.5 : Crystal Motional Arm Parameters and Suggested PC Board Layout.

Note : Keep crystal leads and circuit connections as short as possible.
Figure 4.6 : Typical Frequency Selection For Resistor-Capacitor Oscillator Option ($\left.C_{L}=17 p F\right)$.

EF6804P2

Figure 4.7 : Clock Generator Timing Diagram.

SECTION 5

INPUT/OUTPUT PORTS

5.1. INPUT/OUTPUT

There are 20 input/output pins. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset, all the DDRs are initialized to a logic zero state to put the ports in the input mode. The port output registers are not initialized on reset but should be initialized
before changing the DDR bits to avoid undefined levels. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading ; see figure 5-1. All input/output pins are LSTTL compatible as both inputs and outputs. In addition, all three ports may have one of two mask options : 1) internal pullup resistor for CMOS output compatibility, or 2) open drain output. The address map in figure 2-1 gives the address of data registers and DDRs. The register configuration is discussed under the registers paragraph below and figure 5.2 provides some examples of port connections.

Figure 5.1 : Typical I/O Port Circuitry.

Figure 5.2 : Typical Port Connections.

LSTTL Driving Port A Directly

MC14069

(Typical)

CMOS and LSTTL Driving Port C Directly

Port B, bit 0 , and bit 1 programmed as output, driving LEDs directly.

CMOS or LSTTL Driving Port B Directly

Port A, bit 7 programmed as output, driving CMOS loads and bit 4 driving one LSTTL load directly (using CMOS output option)

Port C open drain option, with bits 0-3 programmed as output, driving CMOS load via wired-ORed configuration.

The latched output data bit (see figure 5.1) may always be written. Therefore, any write to a port writes to all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input (0) and corresponds to the latched output data when the DDR is an output (1). The 20 bidirectional lines may be configured by port to be LSTTL (standard configuration),

LSTTL/CMOS (mask option), or open drain (mask option). Port B outputs are LED compatible.

NOTE :

The mask option only allows changes by port. For example, if the customer wishes PA7 to be open drain, then PA0-PA7 must all be open drain.

5.2. REGISTERS

The registers described below are implemented as RAM locations and thus may be read or written.

5.2.1. PORT DATA REGISTER

The source of data read from the port data register will be the port I/O pin or previously latched output data depending upon the contents of the corresponding data direction register (DDR). The destina7

MSB LSB

5.2.2. PORT DATA DIRECTION REGISTER

The port DDRs configure the port pins as either inputs or outputs. Each port pin can be programmed individually to act as an input or an output. A zero in
tion of data written to the port data register will be an output data latch. If the corresponding data direction register (DDR) for the port I/O pin is programmed as an output, the data will then appear on the port pin.

> Port A Address $=\$ 04$
> Port B Address $=\$ 05$
> Port C Address $=\$ 06$ (bits $0-3)$
the pins corresponding bit position will program that pin as an input while a one in the pins corresponding bit position will program that pin as an output.

SECTION 6

SOFTWARE AND INSTRUCTION SET

6.1. SOFTWARE

6.1.1. BIT MANIPULATION. The EF6804P2 MCU has the ability to set or clear any register or single random access memory (RAM) writable bit with a single instruction (BSET, BCLR). Any bit in data space, including ROM, can be tested, using the BRSET and BRCLR instructions, and the program may branch as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or
register. The capability to work with any bit in RAM, ROM or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.
The coding example in figure 6.1 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line (to clock data one bit at a time, MSB first, out of the device). The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in the accumulator.

Figure 6.1 : Bit Manipulation Example.

6.1.2. ADDRESSING MODES. The EF6804P2 MCU has nine addressing modes which are explained briefly in the following paragraphs. The EF6804P2 deals with objects in three different address spaces : program space, data space, and stack space. Program space contains the instructions which are to be executed, plus the data for immediate mode instructions. Data space contains all of the RAM locations, XP and YP registers, accumulator, timer, I/O locations, and some ROM (for storage of tables and constants). Stack space contains RAM for use in stacking the return addresses for subroutines and interrupts.
The term "Effective Address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
6.1.2.1. Immediate.

In the immediate addressing mode, the operand is located in program ROM and is contained in a byte
following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

6.1.2.2. Direct.

In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the 256 bytes in data space memory with a single two-byte instruction.

6.1.2.3. Short Direct.

The MCU also has four locations in data space RAM ($\$ 80, \$ 81, \$ 82, \$ 83$) which may be used in a shortdirect addressing mode. In this mode the opcode determines the data space RAM location, and the instruction is only one byte. Short direct addressing is a subset of the direct addressing mode. (The XP and YP registers are at locations $\$ 80$ and $\$ 81$ respectively).

6.1.2.4. Extended.

In the extended addressing mode, the effective address is obtained by concatenating the four least significant bits of the opcode (12-bit address). Instructions using the extended addressing mode (JMP, JSR) are capable of branching anywhere in program space. An extended addressing mode instruction is two bytes long.

6.1.2.5. Relative.

The relative addressing mode is only used in conditional branch instructions. In relative addressing, that address is formed by adding the sign extended lower five bits of the opcode (the offset) to the program counter if and only if the condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -15 to +16 from the opcode address. The programmer need not worry about calculating the correct offset when using the assembler since it calculates the proper offset and checks to see if it is within the span of the branch.

6.1.2.6. Bit Set/clear.

In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any bit in the 256 locations of data space memory, which can be written to, can be set or cleared.
6.1.2.7. Bit Test And Branch.

The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which is to be tested is included in the opcode, and the data space address of the byte to be tested is in the single byte immediately following the opcode byte. The third byte is sign extended to twelve bits and becomes the offset added to the program counter if the condition is true. The single three-byte instruction allows the program to branch based on the condition of any bit in data space memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry flag.

6.1.2.8. Register-indirect.

In the register-indirect addressing mode, the operand is at the address (in data space) pointed to by the contents of one of the indirect registers (X or Y). The particular X or Y register is selected by bit 4 of the opcode. Bit 4 of the opcode is then decoded into an address which selects the desired X or Y register ($\$ 80$ or $\$ 81$). A register-indirect instruction is one byte long.

6.1.2.9. Inherent.

In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. These instructions are one byte long.

6.2. INSTRUCTION SET

The EF6804P2 MCU has a set of 42 basic instructions which when combined with nine addressing modes produce 242 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

6.2.1. REGISTER/MEMORY INSTRUCTIONS.

Most of these instructions use two operands. One operand is the accumulator and the other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to table 6.1.

6.2.2. READ-MODIFY-WRITE INSTRUCTIONS.

These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. There are ten instructions which utilize read-modify-write cycles. All INC and DEC forms along with all bit manipulation instructions use this method. Refer to table 6.2.
6.2.3. BRANCH INSTRUCTIONS. The branch instructions cause a branch from the program when a certain condition is met. Refer to table 6.3.

6.2.4. BIT MANIPULATION INSTRUCTIONS.

These instructions are used on any bit in data space memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to table 6.4.

		Addressing Modes																			
		Indirect				Immediate			Direct			Inherent			Extended			Short-Direct			
Function	Mnem	$\frac{\mathrm{Op}}{\mathrm{XP}}$	¢P	Bytes	Cycles	Opcode	Bytes	Cycles	Special Notes												
Load A from Memory	LDA	EO	FO	1	4	E8	2	4	F8	2	4	-	-	-	-	-	-	AC-AF	1	4	1
Load XP from Memory	LDXI	-	-	-	-	B0	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Load YP from Memory	LDYI	-	-	-	-	B0	3	4	-	-	-	-	-	-	-	-	-	-	-	-	4
Store A in Memory	STA	E1	F1	1	4	-	-	-	F9	2	4	-	-	-	-	-	-	BC-BF	1	4	2
Add to A	ADD	E2	F2	1	4	EA	2	4	FA	2	4	-	-	-	-	-	-	-	-	-	-
Subtract from A	SUB	E3	F3	1	4	EB	2	4	FB	2	4	-	-	-	-	-	-	-	-	-	-
Arithmetic Compare with Memory	CMP	E4	F4	1	4	EC	2	4	FC	2	4	-	-	-	-	-	-	-	-	-	-
AND Memory to A	AND	E5	F5	1	4	ED	2	4	FD	2	4	-	-	-	-	-	-	-	-	-	-
Jump to Subroutine	JSR	-	-	-	-	-	-	-	-	-	-	-	-	-	8 (TAR)	2	4	-	-	-	3
Jump Unconditional	JMP	-	-	-	-	-	-	-	-	-	-	-	-	-	9 (TAR)	2	4	-	-	-	3
Clear A	CLRA	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear XP .	CLRX	-	-	-	-	-	-	-	FB	2	4	-	-	-	-	-	-	-	-	-	-
Clear YP	CLRY	-	-	-	-	-	-	-	FB	2	4	-			-	-	-	-	-	-	-
Complement A	COMA	-	-	-	-	-	-	-	-	-	-	B4	1	4	-	-	-	-	-	-	-
Move Immediate Value to Memory	MVI	-	-	-	-	B0	3	4	B0	3	4	-	-	-	-	-	-	-	-	-	5
Rotate A Left and Carry	ROLA	-	-	-	-	-	-	-	-	-	-	B5	1	4	-	-	-	-	-	\rightarrow	-
Arithmetic Left Shift of A	ASLA	-	-	-	-	-	-	-	FA	2	4	-	-	-	-	-	-	-	-	-	-

SPECIAL NOTES

1. In Short-Direct addressing, the LDA mnemonic represents opcode $A C, A D, A E$, and $A F$. This is equivalent to RAM locations $\$ 80$ ($A C$), $\$ 81$ ($A D$), $\$ 82$ (AE), and $\$ 83$ ($A F$)
2. In Short-Direct addressing, the STA mnemonic represents opcode BC, BD, BE, and BF This is equivalent to RAM locations $\$ 80$ ($B C$), $\$ 81$ ($B D$), $\$ 82$ ($B E$), and $\$ 83$ ($B F$).
3. In Extended addressing. the four LSBs of the opcode (Mnemonic JSR and JMP) are formed by the four MSBs of the target address. (TAR)
4. In Immediate addressing, the LDXI and LDYI are mnemonics which are recognized as follows:
LDXI=MVI $\$ 80$,data
LDYI = MVI \$81, data Where data is a one-byte hexadecimal number.
5. The MVI instruction refers to both Immediate and Direct addressing.

Table 6.2 : Read-modify-write Instructions.

		Addressing Modes										Special Notes
		Indirect				Direct			Short-direct			
		Op	ode	\#	\#	Op			Op	\#	\#	
Function	Mnem	XP	YP	Bytes	Cycles	code	Bytes	Cycles	code	Bytes	Cycles	
Increment Memory Location	INC	E6	F6	1	4	FE	2	4	A8-AB	1	4	1, 3
Increment A	INCA					FE	2	4				
Increment XP	INCX								A8	1	4	
Increment YP	INCY								A9	1	4	
Decrement Memory Location	DEC	E7	F7	1	4	FF	2	4	B8-BB	1	4	2, 4
Decrement A	DECA					FF	2	4				
Decrement XP	DECX								B8	1	4	
Decrement YP	DECY								B9	1	4	

SPECIAL NOTES : 1.In Short-direct addressing, the INC mnemonic represents opcode A8, A9, AA, and AB. These are equivalent to RAM locations $\$ 80$ (A8), $\$ 81$ (A9), $\$ 82$ (AA), and $\$ 83$ (AB).
2 In Short-direct addressing, the DEC mnemonic represents opcode B8, B9, BA, and BB. These are equivalent to RAM locations $\$ 80$ (B8), $\$ 81$ (B9), $\$ 82$ (BA), and $\$ 83$ (BB).
3.In Indirect addressing, the INC mnemonic represents opcode E6 or F6, and causes the location pointed to by XP (E6 opcode) or YP (F6 opcode) to be incremented.
4.In Indirect addressing, the INC mnemonic represents opcode E7 or F7, and causes the location pointed to by XP (E7 opcode) or YP (F7 opcode) to be incremented.

Table 6.3 : Branch Instructions.

		Relative Addressing Mode			
Function	Mnem	Opcode	$\#$ Bytes	$\#$ Cycles	Special Notes
Branch if Carry Clear	BCC	$40-5 \mathrm{~F}$	1	2	1
Branch if Higher or Same	(BHS)	$40-5 \mathrm{~F}$	1	2	1,2
Branch if Carry Set	BCS	$60-7 \mathrm{~F}$	1	2	1
Branch if Lower	(BLO)	$60-7 \mathrm{~F}$	1	2	1,3
Branch if Not Equal	BNE	$00-1 \mathrm{~F}$	1	2	1
Branch if Equal	BEQ	$20-3 \mathrm{~F}$	1	2	1

SPECIAL NOTES : 1 Each mnemonic of the Branch Instructions covers a range of 32 opcodes, e.g, BCC ranges from 40 through 5 F . The actual memory location (target address) to which the branch is made is formed by adding the sign extended lower five bits of the opcode to the contents of the program counter.
2 The BHS instruction (shown in parentheses) is identical to the BCC instruction. The C bit is clear if the register was higher or the same as the location in the memory to which it was compared
3.The BLO instruction (shown in parentheses) is identical to the BCS instruction The C bit is set if the register was lower than the location in memory to which it was compared.

Table 6.4 : Bit Manipulation Instructions.

		Addressing Modes						Special Notes
Function	Mnem	Bit Set/clear			Bit Test and Branch			
		Opcode	\# Bytes	\# Cycles	Opcode	\# Bytes	\# Cycles	
Branch IFF Bit n is set.	BRSET $\mathrm{n}(\mathrm{n}=07)$				$\mathrm{C} 8+\mathrm{n}$	3	5	1
Branch IFF Bit n is clear.	BRCLR $\mathrm{n}(\mathrm{n}=0 . \ldots . .7)$				$\mathrm{CO}+\mathrm{n}$	3	5	1
Set Bit n	BSET $n(\mathrm{n}=0 . \ldots . .7)$	D8 + n	2	4				1
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=0 . \ldots .7)$	$\mathrm{D} 0+\mathrm{n}$	2	4				1

SPECIAL NOTE : 1 The opcode is formed by adding the bit number (0-7) to the basic opcode. For example . to clear bit six using the BSET6 instruction the opcode becomes $D E(D 8+6)$; BCLR5 becomes $(C 0+5)$, etc.
6.2.5. CONTROL INSTRUCTIONS. The control instructions control the MCU operations during program execution. Refer to table 6-5.
6.2.6. ALPHABETICAL LISTING. The complete instruction set is given in alphabetical order in table 66 . There are certain mnemonics recognized by the assembler and converted to other instructions. The fact that all registers and accumulator are in RAM allows many implied instructions to exist. The implied instructions recognized by the assembler are identified in table 6-6.
6.2.7. OPCODE MAP SUMMARY. Table 6-7 contains an opcode map for the instructions used on the MCU .

6.3. IMPLIED INSTRUCTIONS

Since the accumulator and all other registers are located in RAM many implied instructions exist. The assembler-recognized implied instructions are given in table 6-6. Some examples not recognized by the assembler are shown below.
BCLR, 7 \$FF Ensures accumulator is plus BSET, 7 \$FF Ensures accumulator is minus BRCLR, 7 \$FF BRSET, 7 \$FF
BRCLR, 7 \$80
BRSET, 7 \$80
BRCLR, 7 \$81
BRSET, $7 \$ 81$

Branch iff accumulator is plus Branch iff accumulator is minus Branch iff X is plus (BXPL) Branch iff X is minus (BXMI) Branch iff Y is plus (BYPL) Branch iff Y is minus (BYMI)

Table 6.5 : Control Instructions.

		Addressing Modes									
		Short-direct			Inherent			Relative			Special Notes
Function	Mnem	Op code	\# Bytes	Cycles	Op code	\# Bytes	Cycles	Op code	\# Bytes	\# Cycles	
Transfer A to XP	TAX	BC	1	4							
Transfer A to YP	TAY	BD	1	4							
Transfer XP to A	TXA	AC	1	4							
Transfer YP to A	TYA	AD	1	4							
Return from Subroutine	RTS				B3	1	2				
Return from Interrupt	RTI				B2	1	2				
No-operation	NOP										1

SPECIAL NOTE : 1.The NOP instruction is equivalent to a branch if equal (BEQ) to the location designated by PC + 1

Table 6.6 : Instruction Set.

Mnemonic	Addressing Modes									Flags	
	Inherent	Immediate	Direct	Short Direct	Bit/set Clear	Bit-test Branch	Register Indirect	Extended	Relative	Z	C
ADD		X	X				X			\wedge	\wedge
AND		X	X				X			\wedge	\bullet
ASLA			Assembler converts this to "ADD \$FF"							\bullet	\bullet
BCC									X	\wedge	\wedge
BCLR					X					\bullet	\bullet
BCS									X	\bullet	\bullet
BEQ									X	\bullet	\bullet
BHS			Assembler converts this to "BCC"							\bullet	\bullet
BLO			Assembler converts this to "BCS"							\bullet	\bullet
BNE									X	\bullet	\bullet
BRCLR						X				\bullet	\wedge
BRSET						X				\bullet	\wedge
BSET					X					\bullet	\bullet
CLRA			Assembler converts this to "SUB SFF"							\wedge	\wedge
CLRX			Assembler converts this to "MVI \# 0, \$80".							\bullet	\bullet
CLRY			Assembler converts this to "MVI $\# 0, \$ 81$ ".							\bullet	\bullet
CMP		X	X				X			\wedge	\wedge
COMA	X									\wedge	\wedge
DEC			X	X			X			\wedge	\bullet
DECA			Assembler converts this to "DEC \$FF".							\wedge	\bullet
DECX			Assembler converts this to "DEC \$80"							\wedge	\bullet
DECY			Assembler converts this to "DEC \$81"							\wedge	\bullet
INC			X	X			X			\wedge	\bullet
INCA			Assembler converts this to "INC \$FF".							\wedge	\bullet
INCX			Assembler converts this to "INC $\$ 80$ "							\wedge	\bullet
INCY			Assembler converts this to "INC \$81"							\wedge	\bullet
JMP								X		\bullet	\bullet
JSR								X		\bullet	\bullet
LDA		X	X	X			X			\wedge	\bullet
LDXI			Assembler converts this to "MVI DATA, \$80"							-	\bullet
LDYI			Assembler converis this to "MVI DATA, \$81"							\bullet	\bullet
MVI		X	X							-	\bullet
NOP			Assembler converts this to "BEQ (PC) + 1".							\bullet	\bullet
ROLA	X									\wedge	\wedge
RTI	X									\wedge	\wedge
RTS	X									\bullet	\bullet
STA			X	X			X			\wedge	\bullet
SUB		X	X				X			\wedge	\wedge
TAX	Assembler converts this to "STA \$80"									\wedge	\bullet
TAY	Assembler converts this to "STA $\$ 81$ "									\wedge	\bullet
TXA	Assembler converts this to "LDA \$80"									\wedge	\bullet
TYA	Assembler converts this to "LDA \$81"									\wedge	\bullet

Flag Symbols Z = Zero. C = Carry/Borrow. $\Lambda=$ Test and Set if True, Cleared Otherwise, •= Not Affected

Table 6.7 : EF6804P2 Microcomputer Instruction Set Opcode Map.

	Branch Instructions														
Low	$\begin{gathered} 0 \\ 0000 \end{gathered}$														
$\begin{gathered} 0 \\ 0000 \end{gathered}$	BNE 1 REL	2 1		2 1	$\begin{aligned} & Q \\ & \text { REL } \end{aligned}$	1	$\begin{aligned} & \text { Q } \\ & \text { REL } \end{aligned}$	1	REL	2 1	C REL	1	S REL	1	REL
$\begin{gathered} 1 \\ 0001 \end{gathered}$	$\begin{array}{lr} 2 & \\ & \\ & \mathrm{BNE} \\ 1 & \mathrm{REL} \\ \hline \end{array}$	2 1		1		1		1		1	$\begin{aligned} & \mathrm{C} \\ & \mathrm{REL} \end{aligned}$	1	$\begin{aligned} & S \\ & R E L \\ & \hline \end{aligned}$	2 1	$\begin{aligned} & S \\ & \text { REL } \end{aligned}$
$\begin{gathered} 2 \\ 0010 \end{gathered}$	$\begin{array}{ll} 2 & \\ & \mathrm{BNE} \\ 1 & \mathrm{REL} \\ \hline \end{array}$	2 1	REL	2 1		2		2 1		2	C REL	2 1	S REL	2 1	
$\begin{gathered} 3 \\ 0011 \end{gathered}$		2 1		2 1		2 1		2 1		2 1	REL	2		1	
$\begin{gathered} 4 \\ 0100 \end{gathered}$	$\begin{array}{lr} 2 & \\ & \\ & \mathrm{BNE} \\ 1 & \mathrm{REL} \\ \hline \end{array}$	1		2 1		2 1		1		1	C REL	1	S REL	1	S REL
$\begin{gathered} 5 \\ 0101 \end{gathered}$	BNE 1 REL	2 1		2 1		2 1		2 1		2 1	$\begin{aligned} & \mathrm{C} \\ & \mathrm{REL} \end{aligned}$	2	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$	2 1	$\begin{aligned} & S \\ & \text { REL } \end{aligned}$
$\begin{gathered} 6 \\ 0110 \end{gathered}$	2 BNE 1 REL	2 1		2 1		2 1		1		2 1	REL	2	REL	1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$
$\begin{gathered} 7 \\ 0111 \end{gathered}$	BNE 1 REL	2 1		2 1		2		2 1		2 1	REL	2 1		2 1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$
$\begin{gathered} 8 \\ 1000 \end{gathered}$	BNE 1 REL	2 1		2 1		2 1		1		2 1		2 1		2 1	
$\begin{gathered} 9 \\ 1001 \end{gathered}$	BNE 1 REL	2 1		2 1		2		2 1		2 1		2		2 1	REL
$\begin{gathered} A \\ 1010 \end{gathered}$	BNE 1 REL	2 2		2 1	$\begin{aligned} & Q \\ & R E L \end{aligned}$	2 1	REL	2 1	REL	2 1		2 1		2 1	$\begin{aligned} & S \\ & R E L \end{aligned}$
$\begin{gathered} B \\ 1011 \end{gathered}$	$\begin{array}{ll} 2 & \\ & \text { BNE } \\ 1 & \text { REL } \\ \hline \end{array}$	1		2 1		2 1		2 1		2 1	REL	1	REL	1	REL
$\begin{gathered} C \\ 1100 \end{gathered}$	BNE 1 REL	2		2 1		2		2 1		2 1		2		2	S
$\begin{gathered} D \\ 1101 \end{gathered}$		2 1		2 1	REL	2 1	QEL	2 1	REL	2 1	REL	1	REL	1	REL
$\begin{gathered} E \\ 1110 \end{gathered}$	BNE	2		2 1		2 1	REL	2 1		2 1	REL	1	REL	2 1	REL
$\begin{gathered} F \\ 1111 \end{gathered}$	BNE REL	2 1		2 1		1		2 1	REL	1	REL	1	REL	1	REL

Abbreviations for Address Modes
INH Inherent
S-D Short Direct
B-T-B Bit Test and Branch
IMM Immediate
DIR Direct

EXT Extended
REL Relative
BSC Bit Set/Clear
R-IND Register Indirect

* Indicates Instruction Reserved for Future Use

Indicates Illegal Instruction

Table 6.7 : (continued).

Register/memory, Control, and Read/modify/write Instructions				Bit Manipulation Instructions		Register/memory and Read/modify/write		
$\begin{gathered} 8 \\ 1000 \end{gathered}$	$\begin{gathered} 9 \\ 1001 \end{gathered}$	$\begin{gathered} \text { A } \\ 1010 \end{gathered}$	$\begin{gathered} B \\ 1011 \end{gathered}$	$\begin{gathered} C \\ 1100 \end{gathered}$	$\begin{gathered} \hline D \\ 1101 \end{gathered}$	$\begin{gathered} E \\ 1110 \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 1111 \end{gathered}$	Hi Low
$\begin{array}{ll} 4 & \\ & \\ & \text { JSRn } \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} 4 & \\ & \\ & \mathrm{JMPn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	*	$\begin{array}{lr} \hline 4 & \\ & \mathrm{MVI} \\ 3 & \text { IMM } \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline 5 \\ \mathrm{BRCLRO} \\ 3 \end{array} \quad \mathrm{~B}-\mathrm{T}-\mathrm{B} \right\rvert\,$	$\begin{array}{ll} \hline 4 & \\ \hline & \text { BCLRO } \\ 2 & \mathrm{BSC} \\ \hline \end{array}$	$$	$\begin{aligned} & \hline 4 \text { LDA } \\ & \\ & 1 \quad \mathrm{R}-\mathrm{IND} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 0000 \end{gathered}$
$\begin{array}{\|lr} \hline 4 & \\ & \\ & \mathrm{JSRn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{aligned} & 4^{4} \mathrm{JMPn} \\ & 2 \quad \mathrm{EXT} \\ & \hline \end{aligned}$	*	*	5 BRCLR1 3 B-T-B	$\begin{array}{ll} \hline 4 \\ 3 & \\ 3 & \\ 2 & B S L R 1 \\ \hline \end{array}$	$$	$\begin{aligned} & 4 \\ & \\ & \\ & \text { STA } \\ & 1 \end{aligned} \quad \text { R-IND }$	$\begin{gathered} 1 \\ 0001 \end{gathered}$
$\begin{array}{lr} 4 & \\ & \\ & \text { JSRn } \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} 4 \\ & \\ \\ & \mathrm{JMPn} \\ 2 & \text { EXT } \\ \hline \end{array}$	*	$\begin{array}{lll} 2 & \mathrm{RTI} & \\ & & \\ & & \mathrm{INH} \\ \hline \end{array}$	$\begin{array}{ll} 5 \\ \mathrm{BRCLR} 2 \\ 3 & \mathrm{~B}-\mathrm{T}-\mathrm{B} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \mathrm{ADD} \\ & +\quad \mathrm{R} \cdot \mathrm{IND} \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 4 & \\ & \text { ADD } \\ 1 & \mathrm{R} \text {-IND } \\ \hline \end{array}$	$\begin{gathered} 2 \\ 0010 \end{gathered}$
$\begin{array}{lll} \hline 4 & & \\ & \mathrm{JSRRn} \\ 2 & & \\ \hline \end{array}$	$\begin{array}{ll} 4 \\ 4 & \\ & \text { JMPn } \\ 2 & \text { EXT } \\ \hline \end{array}$	*	$\begin{array}{lll\|} \hline 2 & & \\ & \text { RTS } & \\ 1 & & \mathrm{INH} \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline 5 \\ \text { BRCLR3 } \\ 3 \end{array} \quad \mathrm{~B}-\mathrm{T}-\mathrm{B} \right\rvert\,$	$\begin{aligned} & \hline 4 \\ & \hline \end{aligned} \mathrm{BCLR}^{2} \mathrm{BSC}$	$\begin{array}{ll} \hline 4 & \\ & \text { SUB } \\ 1 & \text { R-IND } \\ \hline \end{array}$	$\begin{array}{cc} 4^{4} \text { SUB } \\ & \text { R-IND } \\ \hline \end{array}$	$\begin{gathered} 3 \\ 0011 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \\ & \text { JSRR } \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{lr} \hline 4 & \\ & \mathrm{JMPn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	*	$\begin{aligned} & { }^{2} \mathrm{COMA} \\ & { }^{1} \quad \mathrm{INH} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ \mathrm{BRCLR} 4 \\ 3 \end{array} \quad \mathrm{~B}-\mathrm{T}-\mathrm{B}$	$\begin{aligned} & \hline 4 \\ & \hline \end{aligned} \mathrm{BCLR}^{4} \mathrm{BSC}$	$\begin{aligned} & 4 \\ & \hline \end{aligned} \begin{gathered} \text { CMP } \\ 1 \\ 1 \end{gathered}$		$\begin{gathered} 4 \\ 0100 \end{gathered}$
$\begin{array}{lll} \hline 4 & & \\ & \mathrm{JSRRn} \\ 2 & & \\ \hline \end{array}$	$\begin{array}{lr} 4 \\ & \\ & \mathrm{JMPn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	*	$\begin{array}{ll} \hline 2 & \\ \\ \text { ROLA } \\ 1 & \mathrm{INH} \\ \hline \end{array}$	$\begin{array}{ll} \hline 5 & \\ \mathrm{BRCLR} 5 \\ 3 & \mathrm{~B}-\mathrm{T}-\mathrm{B} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \hline \\ & \text { BCLR5 } \\ & 2 \quad B S C \\ & \hline \end{aligned}$	$\quad \text { R-IND }$	$\begin{array}{ll} \hline 4 & \\ & \text { AND } \\ 1 & \text { R-IND } \\ \hline \end{array}$	$\begin{gathered} 5 \\ 0101 \end{gathered}$
$\begin{array}{\|lr} \hline 4 & \\ \hline & \\ & \mathrm{JSRn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{aligned} & 4^{4} \mathrm{JMPn} \\ & 2 \quad \mathrm{EXT} \\ & \hline \end{aligned}$	*	*	5 BRCLR 6 3 B-T-B		$\begin{array}{ll} 4 & \text { INC } \\ 1 & \text { R-IND } \\ \hline \end{array}$	$\begin{array}{ll} 4 & \\ & \text { INC } \\ 1 & R-I N D \\ \hline \end{array}$	$\begin{gathered} 6 \\ 0110 \end{gathered}$
$$	$\begin{aligned} & 4^{4} \mathrm{JMPn} \\ & 2 \quad \mathrm{EXT} \\ & \hline \end{aligned}$	*	*	$\begin{array}{ll} \hline 5 \\ \mathrm{BRCLR} 7 \\ 3 & \mathrm{~B}-\mathrm{T}-\mathrm{B} \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ 4 & B C L R 7 \\ 2 & B S C \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \\ & \\ & \\ & \hline \end{aligned} \quad \mathrm{REC} \text {-IND }$	$\begin{aligned} & 4 \\ & \\ & \\ & \\ & \hline \end{aligned} \quad \mathrm{REC} \text {-IND }$	$\begin{gathered} 7 \\ 0111 \end{gathered}$
$\begin{array}{ll} \hline 4 & \\ & \mathrm{JSRn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} 4 \\ & \\ & \mathrm{JMPn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	$$	$\begin{aligned} & 4 \\ & \\ & \\ & \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \text { BRSETO } \\ & 3 \end{aligned}$	$\quad \mathrm{BSC} .$	$\begin{aligned} & 4 \\ & \\ & \\ & \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \\ \\ \\ 2 \\ \hline \end{array}$	$\begin{gathered} 8 \\ 1000 \end{gathered}$
$\begin{array}{lll} \hline 4 & & \\ & \mathrm{JSRRn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{aligned} & { }^{4} \mathrm{JMPn} \\ & 2 \quad \mathrm{EXT} \\ & \hline \end{aligned}$	$\begin{array}{ll} 4 & \\ & \text { INC } \\ 1 & \text { S-D } \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ & \text { DEC } \\ 1 & \text { S-D } \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline 5 \\ \text { BRSET1 } \\ 3 \end{array} \quad \mathrm{~B}-\mathrm{T}-\mathrm{B} \right\rvert\,$	$\begin{aligned} & 4 \\ & \hline \\ & { }^{3} \mathrm{BSET} 1 \\ & 2 \end{aligned}$	\#	$\begin{array}{ll} \hline 4 & \\ & \text { STA } \\ 2 & \text { DIR } \\ \hline \end{array}$	$\begin{gathered} 9 \\ 1001 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \mathrm{JSRn} \\ \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ & \mathrm{JMPn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	$\begin{array}{lr} 4^{4} \text { INC } \\ 1 & \text { S.D } \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ & \text { DEC } \\ 1 & \text { S-D } \\ \hline \end{array}$	$\begin{array}{ll} \hline 5 & \\ \text { BRSET2 } \\ 3 & \mathrm{~B}-\mathrm{T}-\mathrm{B} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{array}{ll} 4 & \\ & \\ & \text { ADD } \\ 1 & 1 \mathrm{MM} \\ \hline \end{array}$	$\begin{array}{ll} \hline & \\ \hline \end{array} \mathrm{ADD}$	$\begin{gathered} A \\ 1010 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \text { JSRn } \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} 4 & \\ \hline \end{array}$	$$	$\begin{array}{ll} \hline 4 & \\ & \text { DEC } \\ 1 & S-D \\ \hline \end{array}$	$\begin{array}{ll} \hline 5 \\ \text { BRSET3 } \\ 3 & \mathrm{~B}-\mathrm{T}-\mathrm{B} \\ \hline \end{array}$	$$	$\begin{array}{ll} \hline 4 & \\ & \text { SUB } \\ 1 & \text { IMM } \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ \hline & \text { SUB } \\ 2 & \text { DIR } \\ \hline \end{array}$	$\begin{gathered} B \\ 1011 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \\ & \mathrm{JSRRn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} 4 \\ & \\ & \mathrm{JMPn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	$\begin{array}{lr} \hline 4 & \\ & \text { LDA } \\ 1 & \text { S-D } \\ \hline \end{array}$	$\begin{array}{lr} \hline{ }^{4} & \\ & \text { STA } \\ & \\ 1 & \text { S-D } \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline 5 \\ \hline \text { BRSET4 } \\ 3 \end{array} \quad \mathrm{~B}-\mathrm{T}-\mathrm{B} \right\rvert\,$	$\begin{array}{\|c\|} \hline 4 \\ \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ & \\ & \text { CMP } \\ 1 & \text { IMM } \\ \hline \end{array}$	$\begin{array}{ll} \hline{ }^{4} & \\ & \\ & \text { DMP } \\ 2 \end{array}$	$\begin{gathered} C \\ 1100 \end{gathered}$
$\begin{array}{\|ll\|} \hline 4 & \\ & \\ & \text { JSRR } \\ 2 & \\ \hline 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{lr} 4 \\ \\ 2 & \mathrm{JMPn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ & \text { LDA } \\ & \text { S-D } \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ \hline & \text { STA } \\ & \text { S.D } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ \text { BRSET5 } \\ 3 \end{array} \quad \mathrm{~B} \cdot \mathrm{~T}-\mathrm{B}$	$$	AND IMM	$\begin{array}{ll} \hline 4 & \\ \hline \end{array}$	$\begin{gathered} D \\ 1101 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \\ & \mathrm{JSRn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} 4 \\ & \\ & \mathrm{JMPn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{lr} \hline 4 & \\ & \text { LDA } \\ & \text { S-D } \\ \hline \end{array}$	$\begin{array}{ll} 4 & \\ & \\ & \text { STA } \\ 1 & \text { S-D } \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline 5 \\ \text { BRSET6 } \\ 3 \end{array} \mathrm{~B}-\mathrm{T}-\mathrm{B} \right\rvert\,$		\#	$\begin{array}{ll} \hline 4 & \\ & \\ & \text { INC } \\ 2 & \text { DIR } \\ \hline \end{array}$	$\begin{gathered} E \\ 1110 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \mathrm{JSRn} \\ 2 & \text { EXT } \\ \hline \end{array}$	$\begin{array}{ll} \hline 4 & \\ & \mathrm{JMPn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	${ }^{4}$ LDA ${ }^{\text {L }}$ S ${ }^{\text {S }}$ S-D	$\begin{array}{ll} \hline 4 & \\ & \\ & \text { STA } \\ 1 & \text { S-D } \\ \hline \end{array}$	$\begin{array}{ll\|} \hline 5 \\ \hline \end{array} \begin{array}{ll} \text { BRSET7 } \\ 3 & \text { B-T-B } \\ \hline \end{array}$	$$	\#	$\begin{array}{lr} \hline 4 & \\ & \text { DEC } \\ 2 & \text { DIR } \\ \hline \end{array}$	$\begin{gathered} \text { F } \\ 1111 \end{gathered}$

SECTION 7

ELECTRICAL SPECIFICATIONS

7.1. INTRODUCTION

This section contains the electrical specifications and associated timing for the EF6804P2.

7.2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\mathrm{In}}$	Input Voltage	-0.3 to +7.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	TL to TH	${ }^{\circ} \mathrm{C}$
	Standard or L Suffix	0 to 70	
	V Suffix	-40 to 85	
	T Suffix	-40 to 105	
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{1}	Junction Temperature Range		${ }^{\circ} \mathrm{C}$
	Plastic	150	
	PLCC	150	

This device contains circuitry to protect the inputs against damage due to high static voltages of electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maxımum rated voltages to this high impedance circult. For proper operation it is recommended that $\mathrm{V}_{\text {In }}$ and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{ss}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {cc }}$ Reliability of operatıon is enhanced if unused inputs except EXTAL are connected to an appropriate logic voltage level (e g., etther $\mathrm{V}_{\text {ss }}$ or $\mathrm{V}_{c c}$).

7.3. THERMAL DATA

$\theta_{\text {JA }}$	Thermal Resistance	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Plastic	90	
	PLCC	90	

Figure 7.1 : LSTTL Equivalent Test Load (port B).

Figure 7.3 : LSTTL Equivalent Test Load (port A, C, and TIMER).

Figure 7.2 : CMOS Equivalent Test Load (port A, B, C).

7.4. POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :

$$
\begin{equation*}
T_{J}=T_{A}+\left(P_{D} \cdot \theta_{J A}\right) \tag{1}
\end{equation*}
$$

Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
θ JA = Package Thermal Resistance, Junction-
to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{PD}_{\mathrm{D}}=\mathrm{Pint}^{2}+\mathrm{P}_{\text {PORT }}$
$P_{\text {Int }}=I_{\text {cc }} \times V_{\text {CC }}$, Watts - Chip Internal Power
Pport $=$ Port Power Dissipation, Watts - User Determined
For most applications PPORT< PINT and can be neglected. PPORT may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is :

$$
\begin{equation*}
\mathrm{PD}_{\mathrm{D}}=\mathrm{K} \div\left(\mathrm{T}_{J}+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
K=P_{D} \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D}{ }^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

7.5. ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{P}_{\text {INT }}$	Internal Power Dissipation-No Port Loading $T_{A}=0^{\circ} \mathrm{C}$		135	170	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$			210

7.6. SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted $)$

Symbol	Parameter	Min.	Typ.	Max.	Unit
$f_{\text {OsC }}$	Oscillator Frequency	4.0		11.0	MHz
$t_{\text {bit }}$	Bit Time	0.364		1.0	$\mu \mathrm{~s}$
$t_{\text {byte }}$	Byte Cycle Time	4.36		12.0	$\mu \mathrm{~s}$
$t_{\text {WL }}, t_{\text {WH }}$	$\overline{\mathrm{IRQ}}$ and TIMER Pulse Width	$2 \times \mathrm{t}_{\text {byte }}$			
$\mathrm{t}_{\text {RWL }}$	$\overline{\text { RESET Pulse WIdth }}$	$2 \times \mathrm{t}_{\text {byte }}$			
$\mathrm{t}_{\text {RHL }}$	$\overline{R E S E T}$ Delay Time (external capacitance $=1.0 \mu \mathrm{~F})$	100			ms

7.7. PORT DC ELECTRICAL CHARACTERISTICS
$\left(V_{C C}=+5.0 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=G N D, T_{A}=T_{L}\right.$ to T_{H} unless otherwise noted)
TIMER AND PORTS A AND C (standard)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, I $\mathrm{I}_{\text {oad }}=0.4 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-50 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		4	40	$\mu \mathrm{~A}$

PORTS A AND C (open drain)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=0.4 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		4	40	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {LOD }}$	Open Drain Leakage $\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}\right)$		4	40	$\mu \mathrm{~A}$

PORTS A AND C (CMOS drive)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {OL }}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=0.4 \mathrm{~mA}$ (sink)			0.5	V
$\mathrm{~V}_{\text {OH }}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}-1.0$			V
$\mathrm{~V}_{\text {OH }}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-50 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max.	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max.	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current $\left(\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			-300	$\mu \mathrm{~A}$

PORT B (standard)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.0 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			1.5	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		8	80	$\mu \mathrm{~A}$

7.7 PORT DC ELECTRICAL CHARACTERISTICS (continued)

PORT B (open drain)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.0 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sInk)			1.5	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		8	80	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {LOD }}$	Open Drain Leakage $\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}\right)$		8	80	$\mu \mathrm{~A}$

PORTS B (CMOS drive)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.0 \mathrm{~mA}$			0.5	V
$\mathrm{~V}_{\mathrm{OL}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink $)$			1.5	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}-1.0$			V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.3			V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max.	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ Max.	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current $\left(\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			-300	$\mu \mathrm{~A}$

EF6804P2

PACKAGE MECHANICAL DATA

28-PINS - PLASTIC PACKAGE

28-PIN - FN SUFFIX PLCC 28

SECTION 8

ORDERING INFORMATION

8.1. INTRODUCTION

The following information is required when ordering a custom MCU. The information may be transmitted to SGS-THOMSON in the following media :

EPROM(s), 2716 or 2732
EFDOS/MDOS* disk file
To initiate a ROM pattem for the MCU, it is necessary to first contact your local field service office, local sales person, or your local SGS-THOMSON representative.
8.1.1. EPROMs. One 2716 or one 2732 type EPROM, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. Since all program and data space information will fit on one 2716 EPROM, the EPROM must be programmed as follows in order to emulate the EF6804P2 MCU : start the data space ROM at EPROM address $\$ 020$ and start program space ROM at EPROM address $\$ 400$ and continue to memory space $\$ 7 F F$. All unused bytes, including the user's space, must be set to zero, memory space \$7F8 to \$7FB is reserved for self-check vectors. When using one 2732 EPROM, the memory map shown in figure 2-1 can be used. For shipment to SGS-THOMSON the EPROMs should be placed in a conductive IC carrier and packed securely. Do not use styrofoam.

8.1.2. EFDOS/MDOS* DISK FILE. An EFDOS/

MDOS* disk, programmed with the customer program (positive logic sense for address and data) may be submitted for pattern generation. When using the EFDOS/MDOS* disk, include the entire memory image of both data and program space. All unused bytes, including the user's space, must be set to zero.

8.2. VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS-THOMSON. The signed verification form constitutes the contractural agreement for creation of the customer mask. If desired, SGSTHOMSON will program a blank 2716, 2732, or

EFDOS/MDOS* disk (supplied by the customer) from the data file used to create the custom mask to aid in the verification process.

* Requires prior factory approval.

8.3. ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and five volts. These RVUs are included in the mask charge and are not production parts. These RVUs are not backed nor guaranteed by SGS-THOMSON Quality Assurance.

8.4. FLEXIBLE DISKS

The disk media submitted must be single-sided, single density, 8 -inch, EFDOS/MDOS* compatible floppies. The customer must clearly label the disk with the ROM pattern file name. The minimum EFDOS/MDOS* system files as well as the absolute binary object file (file name. LO type of file) from the 6804 cross-assembler must be on the disk. An object file made from a memory dump, using the ROLLOUT command is also admissable. Consider submitting a source listing as well as : file name,. LX (DEVICE/EXORciser loadable format). This file will of course be kept confidential and is used 1) to speed up the process in house if any problems arises, and 2) to speed up our customer to factory interface if an user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
MDOS* (fully compatible with EFDOS) is Motorola's Disk Operating System available on development systems Such as EXORcisers, EXORsets, etc.
EFODS is SGS-THOMSON Disk Operating System available on development systems such as DEVICE/EXOR...

Whenever ordering a custom MCU is required, please contact your local SGS-THOMSON representative or SGS-THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS-THOMSON representative.

* Requires prior factory approval.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Device	Package					Oper. Temp				Screening Level			
	C	C	J	P	E	FN	L*	V	T	Std	D		
EF6804P2			\bullet		\bullet	\bullet	\bullet		\bullet	\bullet			

Package : C : Ceramıc DIL, P : Plastıc DIL, FN : PLCC.
Oper. temp. : $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}: 40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C},{ }^{*}$. may be omitted.
Screening level : Std : (no-end suffix), D : NFC 96883 level D
EXORciser is a registered trademark to Motorola Inc

These specifications are subject to change without notice.
Please inquire with our sales offices about the availability of the different packages.

EF68HC04P3

HCMOS 8-BIT MICROCOMPUTER
PRELIMINARY INFORMATION

SECTION 1 - INTRODUCTION

The EF68HC04P3 microcomputer unit (MCU) is a member of the EF68HC04 family of very low cost and low power single chip microcomputers. This 8 bit microcomputer contains a CPU, on-chip clock, ROM, RAM, I/O, and timer. It is designed for the user who needs an economical microcomputer with the proven capabilities of the EF6800 based instruction set. The following are some of the hardware and software highlights of the EF68HC04P3 MCU.

HARDWARE FEATURES

- Low power HCMOS
- Power saving stop and wait modes
- Single 2.0 to 6.0 volt power supply
- 8-bit architecture
- Fully static operation
- Pin compatible with the EF6805P2 and EF6804P2
- 124 bytes of on-chip RAM with standby mode
- 2 Kbytes of program ROM including 356 bytes for self-check program
- 72 bytes of user data ROM for look-up tables
- 20 CMOS compatible bidirectional I/O lines
- On-chip clock generator
- Extensive self-check capability allowing complete functional test of the chip (including ROM content)
- Master reset and power-on-reset
- 8-bit timer with 7-bit software programmable prescaler
- Timer pin programmable as input or output
- Complete development system support on device ${ }^{\circledR}$

SOFTWARE FEATURES

- Similar to EF6800 family
- Byte efficient instruction set
- Easy to program
- True bit manipulation
- Stop, wait and bit manipulation instructions
- Bit test and branch instructions
- Versatile interrupt handling
- Separate flags for normal and interrupt processing
- True LIFO 4-level stack eliminating stack pointer
- Maskable timer interrupt

PIN CONNECTIONS

- Versatile indirect registers
- Conditional branches
- Single instruction memory examine/change
- 9 powerful addressing modes

USER SELECTABLE OPTIONS

- Crystal or low-cost resistor oscillator option
- Mask selectable internal clock generator options
- Mask selectable edge or level sensitive interrupt pin
- Program rom protection option
- Optional pull-down devices on I/O lines
- Optional pull-up devices on INT and RESET pins DEVICE $®$ is SGS THOMSON' Microelectronics development/emulation tool.

Figure 1.1 : EF68HC04P3 MCU Block Diagram.

Note : 8-Bit Indırect Regısters X and Y, although shown as part of the CPU are actually located in the 124×8 RAM at locations
$\$ 80$ and $\$ 81$

SECTION 2

FUNCTIONAL PIN DESCRIPTION, MEMORY, CPU, AND REGISTERS
This section provides a description of the functional pins, memory spaces, the central processing unit (CPU), and the various registers and flags.

2.1. FUNCTIONAL PIN DESCRIPTION

2.1.1. $V_{C C}$ AND $V_{S S}$. Power is supplied to the MCU using these two pins. $V_{C C}$ is power and $V_{S S}$ is the ground connection.
2.1.2 IRQ. This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to 4.1. INTERRUPT for additional information.
2.1.3. XTAL AND EXTAL. These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor and capacitor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to 4.4. INTERNAL CLOCK GENERATOR OPTIONS for recommendations concerning these inputs.
2.1.4. TIMER. In the input mode, the timer pin is connected to the prescaler input and serves as the timer clock or as an enable input for the internal clock. In the output mode, the timer pin signals that a time out of the timer has occurred. Refer to SECTION 3 TIMER for additional information.
2.1.5. RESET. The RESET pin is used to restart the processor of the EF68HC04P3 to the beginning of a program. This pin, together with the MDS pin is also used to select the operating mode of the EF68HC04P3. If the MDS pin is at zero volts, the normal mode is selected and the program counter is loaded with the user restart vector. However, if the MDS pin is at +5 volts, then pins PA6 and PA7 are decoded to allow selection of the operating mode. Refer to 4.3. RESET for additional information.
2.1.6. MDS. The MDS (mode select) pin is used to place the MCU into special operating modes. If MDS is held at +5 volts at the exit of the reset state, the decoded state of PA6 and PA7 is latched to determine the operating mode (single-chip, self-check, or ROM verify). However, if MDS is held at zero volts at the exit of the reset state, the single-chip operating mode is automatically selected (regardless of PA6 and PA7 state).
For those users familiar with the EF6801 microcomputer, mode selection is similar but much less com-
plex in the EF68HC04P3. No special external diodes, switches, transistors, etc. are required in the EF68HC04P3.
2.1.7. PORT INPUT/OUTPUT LINES (PAO-PA7, PB0-PB7, PC0-PC3). These 20 lines are arranged into two 8 -bit ports (A and B) and one 4 -bit port (C). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to SECTION 5 INPUT/OUTPUT PORTS for additional information.

2.2. MEMORY

The MCU operates in three different memory spaces : program space, data space, and stack space. A representation of these memory spaces is shown in figure 2.1. The program space (figure 2.1a) contains all of the instructions that are to be executed, as well as the data required for the immediate addressing mode instructions, and the self-check and user vectors. The data space (figure 2.1b) contains all of the RAM locations, plus I/O locations and some ROM used for storage of tables and constants. The stack space (figure 2.1c) contains RAM which is used for stacking subroutine and interrupt return addresses.
The MCU is capable of addressing 4096 bytes of program space memory with its program counter and 256 bytes of data space memory with its instructions. The data space memory contains three bytes for port data registers, three bytes for port data direction registers, one byte for timer status/control, 72 bytes ROM, 124 bytes RAM (which includes two bytes for XP and YP indirect registers), two bytes for timer prescaler and count registers, and one byte for the accumulator. The program space section contains 2048 bytes of ROM including 356 bytes of self-check ROM and 8 bytes of vectors for selfcheck and user programs.
2.2.1. PROGRAM ROM PROTECTION. A manufacturing mask option is available to the user to enable program ROM protection. If enabled, this security feature prevents the ROM contents being output during any operating mode.

2.3. CENTRAL PROCESSING UNIT

The CPU of the EF68HC04 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal addresses, data, and control buses.

Figure 2.1 : EF68HC04P3 MCU Address Map.

2.4. REGISTERS

The EF68HC04 Family CPU has four registers and two flags available to the programmer. They are
shown in figure 2.2 and are explained in the following paragraphs.

Figure 2.2 : Programming Model.

2.4.1. ACCUMULATOR (A). The accumulator is an 8-bit general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator is implemented as the highest RAM location (\$FF) in data space and thus implies that several instructions exist which are not explicitly implemented. Refer to 6.3. IMPLIED INSTRUCTIONS for additional information.
2.4.2. INDIRECT REGISTERS (XP, YP). These two indirect registers are used to maintain pointers to other memory locations in data space. They are used in the register-indirect addressing mode, and can be accessed with the direct, indirect, short direct, or bit set/clear addressing modes. These registers are implemented as two of the 124 RAM locations ($\$ 80, \$ 81$) and as such generate implied instructions and may be manipulated in a manner similar to any RAM memory location in data space. Refer to 6.3. IMPLIED INSTRUCTIONS for additional information.
2.4.3. PROGRAM COUNTER (PC). The program counter is a 12-bit register that contains the address of the next ROM word to be used (may be opcode, operand, or address of operand). The 12 -bit program counter is contained in PCL (low byte) and PCH (high nibble).
2.4.4. FLAGS (C, Z). The carry (C) bit is set on a carry or a borrow out of the ALU. It is cleared if the result of an arithmetic operation does not result in a carry or a borrow. The (C) bit is also set to the value of the bit tested in a bit test instruction, and participates in the rotate left instruction.
The zero (Z) bit is set if the result of the last arithmetic or logical operation was equal to zero, otherwise it is cleared.
There are two sets of these flags, one set is for interrupt processing, the other for all other routines. When an interrupt occurs, a context switch is made from the program flags to the interrupt flags (inter-

EF68HC04P3

rupt mode). An RTI forces the context switch back to the program flags (program mode). While in either mode, only the flags for that mode are available. Further, the interrupt flags will not be cleared upon entering the interrupt mode. Instead, the flags will be as they were at the exit of the last interrupt mode. Both sets of flags are cleared by reset.
2.4.5. STACK. There is a true LIFO stack incorporated in the EF68HC04P3 which eliminates the need for a stack pointer. Stack space is implemented in separate RAM (12-bits wide) shown in figure 2.1c.

Whenever a subroutine call (or interrupt) occurs, the contents of the PC are shifted into the top register of the stack. At the same time (same cycle), the top register is shifted to the next level deeper. This happens to all registers with the bottom register falling out the bottom of the stack.
Whenever a subroutine or interrupt return occurs, the top register is shifted into the PC and all lower registers are shifted up one level higher. Stack level 4 is loaded with the previous content of stack level 3 . The stack RAM is four levels deep.

Figure 2.3 : Stack Operation when RTS or RTI occurs.

2.4.6. CRC REGISTERS. Two eight bit registers are implemented in RAM primarily for use in self-check and ROM verify modes. These two registers are memory mapped in data space at addresses \$0A (CRC low) and \$0B (CRC high).
Provided no write or read/modify/write operation is performed to change the contents of these two lo-
cations, the registers are configured to perform CRC calculations. Hence by simply reading a register, a pseudo random number may be generated. If a write or read/modify/write is performed on addresses \$0A or \$0B then the CRC circuitry is disabled and both registers can be used as a RAM location until such time as a RESET enables the CRC circuitry again.

SECTION 3

3.1. INTRODUCTION

A block diagram of the EF68HC04P3 timer circuitry is shown in figure 3.1. The timer logic in the MCU is comprised of a simple 8-bit counter (timer count register, TCR) with a 7 -bit prescaler, and a timer status/control register (TSCR). The timer count register, which may be loaded under program control is decremented towards zero by a clock input (prescaler output). The prescaler is used to extend the maximum interval of the overall timer. The prescaler tap is selected by bits 0-2 (PS0-PS2) of the timer status/control register. Bits PSO-PS2 control the actual division of the prescaler within the range of divide-by- $1\left(2^{0}\right)$ to divide-by-128 (2 $\left.2^{7}\right)$. The timer count register (TCR) and prescaler are decremented on rising clock edges. The coding of the TCSR PS0-PS2 bits produces a division in the prescaler as shown in table 3.1.

Table 3.1 : Prescaler Coding Table.

PS2	PS1	PS0	Divide By
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

TIMER pin may be programmed as either an output or an input depending on the status of DOUT and TOUT bits. Three modes are available.

Output mode (TOUT = 1)
The TIMER pin is connected to the DOUT latch. Therefore, the timer prescaler is clocked by the internal SYNC pulse. (Divide-by-12, -24 or -48 of the internal oscillator according to selected mask option, refer to 4.4. INTERNAL CLOCK GENERATOR OPTIONS). The prescaler then divides its clock input by a value determined by the coding of the

TSCR bits PSO-PS2 as shown in table 3.1. The divided prescaler output then clocks the 8 -bit timer count register (TCR). When the TCR count reaches zero, it sets the TMZ bit in the TSCR. The TMZ bit can be tested under program control to perform a timer function whenever it goes high. The low-tohigh TMZ bit transition is used to latch the DOUT bit of the TSCR and provides it for the TIMER pin.

Controlled mode (TOUT $=0$, DOUT $=1$)
The TIMER pin is an input which controls the counting by the prescaler-timer. When high, it enables counting Counting is disabled as long as this input remains low. Operation is similar to that described for the output mode.

Clock input mode (TOUT $=0$, DOUT $=0$)
The TIMER pin is connected directly to the prescaler input. Therefore the timer prescaler is clocked by the signal applied from the TIMER pin. Operation is similar to that described for the output mode. The frequency of the signal applied to the TIMER pin must be less than $1 /$ byte (fosc $\div 12, \div 24$ or $\div 48$ according to selected mask option) because of internal synchronization.

NOTE
TMZ is normally set to logic one when the timer times out (TCR count reaches \$00); however, it may be set by a write of $\$ 00$ to the TCR or by a write to bit 7 of the TSCR.

TMZ bit is cleared by a read-only of the TSCR even if TMZ bit is not concerned by this read.

Timer Status			
Timer Pin	TOUT	DOUT	Timer Mode
Input	0	0	Clock Input Mode
	0	1	Controlled Mode
	1	0	Output
	1	1	

Figure 3.1 : Timer Block Diagram.

During reset, the timer count register and prescaler are set to \$FF, while the timer status/control register is cleared to $\$ 00$ and the DOUT LATCH (TIMER pin is in the high-impedance input mode) is forced to a logic high. The prescaler and timer count register are implemented in data space RAM locations (\$FD, \$FE) ; therefore, they are both readable and writeable. A write to either will predominate over the TCR decrement-to-\$00 function ; i.e., if a write and a TCR decrement-to-\$00 occur simultaneously, the write will take precedence, and the TMZ bit is not set until the next timer time out.

3.2. TIMER REGISTERS

3.2.1. TIMER COUNT REGISTER (TCR). The timer count register indicates the state of the internal 8 -bit counter.

7	0
MSB	LSB

TCR Address = \$FE
3.2.2. TIMER STATUS/CONTROL REGISTER (TSCR).

7	6	5	4	3	2	1	0
TMZ	ETI	TOUT	DOUT	PSI	PS2	PS1	PS0

TSCR Address $=\$ 09$
b7, TMZ. Low-to-high transition indicates the timer count register has decremented to zero since the timer status/control register was last read. Cleared by a
read of TSCR register if TMZ was read as a logic one.
b6, ETI. This bit, when set, enables the timer interrupt.
b5, TOUT. When low, this bit selects the input modes for the timer. When high, the output mode is selected.
b4, DOUT. Data sent to the timer output pin when TMZ is set high (output mode only). Choice of input mode (input mode only).
b3, PSI. Used to initialize the prescaler and inhibit its counting while $\mathrm{PSI}=0$. The initialized value is set to $\$ F F$. The timer count register will also be inhibited (contents unchanged). When PSI =1 the prescaler begins to count downward.
b0, b1, b2, These bits are used to select the pres-PSO-PS1- caler divide-by ratio ; therefore, effecPS2. ting the clock input frequency to the timer count register.
3.2.3. TIMER PRESCALER REGISTER. The timer prescaler register indicates the state of the internal 7-bit prescaler. This 7-bit prescaler divide ratio is normally determined by bits PS0-PS2 of the timer status/control register (see table 3.1).

6	0
MSB	TPR Address $=$ \$FD

SECTION 4

INTERRUPT, POWER SAVING MODES, SELFCHECK, RESET, AND INTERNAL CLOCK GENERATOR

4.1. INTERRUPT

There are two ways in which the MC68HC04P3 can be interrupted. Firstly by an external interrupt and secondly by a timer interrupt provided the ETI bit in TSCR is set. Note that both types of interrupt share the same vector (\$FFC). The only way to differentiate a timer interrupt from an external interrupt is to test the TMZ bit (Timer Interrupt Request bit). The interrupt mask bit (IMASK), which controls interrupt processing, is not directly available to the programmer. It is set during reset and power up sequences to preclude any false or ghost interrupts from occurring, there after it is set during interrupt processing and cleared by the execution of an RTI instruction. To clear interrupt mask bit and so enable interrupts, an RTI instruction must be executed. A simple way to do this is to call a subroutine at the start of the program to do any required initialisation and return from the subroutine using an RTI instruction instead of RTS. See Figure 4.1 for an example of this technique.
Figure 4.4a illustrates the instruction processing sequence.
The external and timer interrupt sequences are detailed in Figure 4.4b. The interrupt sequence consists of one cycle during which :

- interrupt request latch is cleared
- interrupt condition code flags are selected
- PC is saved on the stack
- interrupt mask is set
- address of the IRQ vector location is loaded onto the PC
The vector locations \$FFC/\$FFD must contain the appropriate two-byte JMP instruction.

Figure 4.1 : Clearing the Interrupt Mask.

START	JSR INIT	Clear INT Mode BIt
	1	
etc.	Rest of Program	
INIT MVI \# \$FF, DDRA	Do any Required Initialisation	
	1	RTI
	Use RTI to Clear INT MASK	
SFFE	JMP START	Reset Vector

Internal processing of the interrupt continues until an RTI (return from interrupt) instruction is processed. During the RTI instruction, the interrupt mask is cleared, the program condition code flags are selected and the PC is restored. Providing no interrupt
is pending the next instruction is then fetched and executed. An interrupt service routine must always finish with an RTI.
4.1.1. EXTERNAL INTERRUPTS. An external interrupt is requested by pulling the $\overline{\mathrm{RQ}}$ pin low. The $\overline{\mathrm{IRQ}}$ pin can be pulled low by external circuitry.
The maximum response time to an external interrupt is 8 machine (tbyte) cycles. This includes five machine cycles for the longest instruction, plus one machine cycle for stacking PC and switching flags and a max of 2 cycles to synchronise IRQ input with the internal machine cycle frequency.
There are 2 external interrupt options available on the 68 HC 04 P 3 , selectable by a manufacturing mask option.

4.1.1.1. IRQ Pin Pull-up Option

This is a manufacturing mask option for an internal high impedance pull-up device on the $\overline{\mathrm{RQ}}$ pin designed to reduce external component count. In a noisy environment however, it is recommended that a lower impedance external pull-up be used instead.

4.1.1.2. External Interrupt Edge Sensitive Option

A 1 to 0 (negative) transition on the $\overline{\mathrm{IRQ}}$ pin will set the internal interrupt request latch. Prior to each instruction fetch, the interrupt request latch is tested and, if valid, an interrupt service sequence will be initiated at the end of the current instruction (providing the interrupt mask is clear). When the interrupt service routine is entered the interrupt request latch is cleared so that if a second edge occurs on the IRQ pin while the first interrupt is being serviced, it will be latched so that it can be serviced after the first interrupt sequence is complete. On return from an interrupt the interrupt request latch is tested before the next instruction is executed.

4.1.1.3. External Interrupt Level Sensitive Option

With this option there is no interrupt request latch, instead a check is made on the level of the IRQ pin after completion of each instruction and if low, an interrupt service sequence will be initiated. If on completion of this interrupt sequence the IRQ pin is low, a further interrupt will be recognised and the interrupt service sequence will be re-entered. As there is no interrupt request latch, the state of the IRQ pin during the interrupt service sequence will have no effect on program flow. The absence of the latch also means that a glitch on the interrupt pin of less than 60 interval clock cycles (max. instruction execution time) may not be recognised by the level sensitive option.
4.1.2. TIMER INTERRUPT. A timer interrupt is requested when the TMZ bit of the timer status/control register (TSCR) is set. The TMZ bit can be set either by the timer count register (TCR) reaching the zero state or by any program instruction that writes a one to the TMZ bit. Timer interrupt request is maskable by clearing ETI, bit 6 of TSCR (ETI is cleared on Reset). See Section 3.2.2 for more details.

4.2. STOP MODE

The STOP instruction places the EF68HC04P3 in its lowest power consumption mode. After a STOP instruction has been executed the interrupt mask is cleared and the internal oscillator is turned off causing all internal processing to be halted and the current consumption to drop to leakage levels. (see Section 7 ELECTRICAL SPECIFICATION).
The contents of the timer status/control register, the accumulator and all data space RAM are unchanged by STOP providing that the supply voltage, $V_{D D}$, remains within data sheet limits. The processor can only be brought out of STOP mode by pulling the IRQ or RESET pins low. The timer is used to provide a delay, of 1920 external clock cycles, for the oscillator to stabilize during exit from STOP before processing is continued. Hence, the contents of timer count register (TCR) and the prescaler must be considered to be corrupted.

4.3. WAIT MODE

The WAIT instruction places EF68HC04P3 in a low power consumption mode. In WAIT mode, the clock is disabled from all internal circuitry except the timer circuit, halting all internal processing. The timer may continue to count down if PSI bit of TSCR is set. External interrupts are enabled. All other registers, memory and I/O lines remain in their last state. ETI bit of TSCR may be enabled by software prior to entering WAIT. This allows an exit from WAIT via a timer interrupt in addition to an external interrupt (IRQ) or RESET.

4.4. OPERATING MODES AND SELF-TEST

There are four operating modes on the $68 \mathrm{HCO4P3}$, one is the normal program execution mode (single
chip mode), two are self test modes and the last is for Motorola internal use only (non user mode or NUM). The operating mode entered is determined during RESET by the state of the Mode Select pin (MDS) and the port pins PA6 and PA7. If MDS is held low at the exit from RESET then single chip mode will be selected, if however, MDS is high then the state of PB6 and PB7 determine the operating mode according to Figure 4.3.
4.4.1. SELF-CHECK MODE. Self-Check is one of the two self test modes of the 68HC04P3. It uses the on board cyclic redundancy checker (CRC) circuit to perform a very extensive functional check of the MCU by signature analysis. The simple external circuitry required to implement this test is shown in Figure 4.5 a. Figure 4.6 illustrates the self check program flow, the RESET and Interrupts being supplied by the user. The status of the program is shown on the LEDs as shown beside the flow diagram, if the LEDs become "stuck" at one of these values then it indicates a fail in the previous section of the test.
4.4.2. ROM VERIFY MODE. ROM verify is the second of the two self test modes of the 68HC04P3. It uses the CRC to perform a signature analysis test of the Program ROM contents (Data ROM is tested in Self Check). The simple circuitry required to implement this test is shown in Figure 4.5b. The test is started by a RESET and successful completion will result in data output of \$AA from CRCHI and $\$ 55$ from CRCLO, thus illuminating the good LED, otherwise the bad LED will be lit. The ROM verify mode also gives access to the internal processor clocks sync and PHI1 via pins 18 and 19.

See Section 4.6. INTERNAL CLOCK GENERATOR OPTIONS for more details.

Figure 4.3 : Mode Selection.

MDS			Mode
0	X	X	Single Chip
1	0	0	Single Chip
1	0	1	Self Check
1	1	0	NUM
1	1	1	ROM Verify

4.5. SELF-CHECK

The self-check capability of the EF68HC04P3 MCU provides an internal check to determine if the part a functional check of the MCU, connect it as shown in Figure 4.2a and monitor the LEDs for a 00100 ($\$ 04$) pattern on port A. The MCU is left in the WAIT mode. A logical low signal applied to the $\overline{\mathrm{RQ}}$ pin places the MCU in the STOP mode. A 00101 (\$05) pattern appears on port A. Another logical low signal applied on the IRQ pin enables exit from the STOP mode. The "final good" pattern (00110-\$06) appears on
port A). To initiate a ROM self-check of the memory simply connect the circuit as shown in Figure 4.2b and check that the "good" LED turns on to indicate a good memory. The ROM verify uses a cyclical redundancy check (CRC) to conduct a ROM check by means of signature analysis circuit. This circuit consists of two 8-bit shift registers configured to perform the check using the CCITT polynominal. A manufacturing mask option inhibits the outputs of the CRC data and the ROM data until the final result is available in order to protect the program ROM when the option is selected.

Self-Check Flowchart

Figure 4.1 : STOP, WAIT, INTERRUPT and RESET Processing Flowchart.

Figure 4.2 : ROM Verify Circuit.

Figure 4.3 : Self-Check Circuit.

4.6. RESET

The MCU can be reset in two ways : by the external reset input (RESET) and by power-up detect (PUD).
4.6.1. $\overline{R E S E T}$ INPUT. This input can be used to reset the MCU internal state and provides an orderly software start-up procedure.
An external reset is achieved by pulling the RESET pin low for a minimum of two clock cycles. The oscillator start up delay is not implemented in this case.
After reset the MCU will be in the following state :

- All DDRs ($\$ 04, \$ 05, \$ 06$) set to $\$ 00$
- TCR (\$FE) and prescaler register (\$FD) set to \$FF
- TSCR (\$09) set to \$00, DOUT latch set
- STOP and WAIT latches cleared
- All condition code flags cleared
- CRC (\$0A, \$0B) registers set to \$FF
- All other registers are not affected
- Interrupt request latch cleared
- Restart vector loaded into PC
- Interrupt mask bit set
4.6.2. PUD. It occurs when a positive transition is detected on Vcc on initial power-up. No external RC network is needed. PUD is used strictly for power turn-on conditions and should not be used to detect any drops in the power supply voltage. There is no provision in this block for power-down detect. When the MCU is reset by means of PUD, an internal delay of 1920 oscillator clock periods is generated for the oscillator to stabilize. The MCU emerges from the reset condition at the end of this temporization.
4.6.3. RESET PIN PULL-UP OPTION. This is a manufacturing mask option for an internal high impedance pull-up device on the reset pin, designed
to reduce external component count. In a noisy environment however, it is recommended that a lower impedance external pull-up be used instead.

4.7. INTERNAL CLOCK GENERATOR OP. TIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor-capacitor, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. A manufacturing mask option is required to select either the crystal oscillator or the RC oscillator circuit. The different clock generator option connection methods are shown in Figure 4.4, crystal specifications and suggested PC board layouts are given in Figure 4.5, resistor-capacitor selection graph is given in Figure 4.6, and a timing diagram is illustrated in Figure 4.7. The crystal oscillator startup time is a function of many variables: crystal parameters (especially Rs), oscillator load capacitance (C_{L}), IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator startup, neither the crystal characteristics nor the load capacitance should exceed recommendations.
The oscillator output frequency is internally divided by four, two or one depending upon a manufacturing mask option selection to produce the internal $\varnothing 1$ and $\varnothing 2$ clocks. The $\varnothing 1$ clock is divided by twelve to produce a machine byte (cycle) clock (internal SYNC pulse). A byte cycle is the smallest unit needed to execute any operation (i.e., increment the program counter). An instruction may need two, four, or five byte cycles to be executed.
If the application is to be driven by an external signal, then the crystal mask option should be selected.

Figure 4.4 : Clock Generator Options.

Figure 4.5 : Crystal Motional Arm Parameters and Suggested PC Board Layout.

Figure 4.6 : Typical Frequency Selection for Resistor-capacitor Oscillator Option.

(CL = $22 \mathrm{pF} . \mathrm{Vcc}=5 \mathrm{~V}$)
Figure 4.7 : Clock Generator Timing Diagram.

SECTION 5

5.1. INPUT/OUTPUT

There are 20 input/output pins. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset, all the DDRs are initialized to a logic zero state to put the ports in the input mode. The port output registers are not initialized on reset but should be initialized before changing the DDR
bits to avoid undefined levels. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading; see figure 5.1. A manufacturing mask option enables the choice of additional pull-down devices on all I/O pins (Selection in 5 groups : PA7, PA(5:6), PA(1:4), Port B, PA0 + Port C).

The address map in figure 2.1 gives the address of data registers and DDRs. The register configuration is discussed under the registers paragraph below.

Figure 5.1 : Typical I/O Circuitry.

Data Direction Register Bit	Output Data Bit	Output State	Input to MCU
1	0	0	0
1	1	1	1
0	X	$\mathrm{HI}-\mathrm{Z}$	PIn

The latched output data bit (see figure 5.1) may always be written. Therefore, any write to a port writes to all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs ; however, care must be exercised when using read-modifywrite instructions since the data read corresponds to the pin level if the DDR is an input (0) and corresponds to the latched output data when the DDR is an output (1).

5.2. REGISTERS

The registers described below are implemented as RAM locations and thus may be read or written.
5.2.1. PORT DATA REGISTER. The source of data read from the port data register will be the port I/O pin or previously latched output data depending upon the contents of the corresponding data direction register (DDR). The destination of data written to the port data register will be an output data latch. If the corresponding data direction register (DDR) for the port I/O pin is programmed as an output, the data will then appear on the port pin.

MSB	
	Port A Address $=\$ 00$
Port B Address $=\$ 01$	
Port C Address $=\$ 02$ (Bits 0-3)	

5.2.2. PORT DATA DIRECTION REGISTER. The port DDRs configure the port pins as either inputs or outputs. Each port pin can be programmed in-
dividually to act as an input or an output. A zero in the pins corresponding bit position will program that pin as an input while a one in the pins corresponding bit position will program that pin as an output. During reset the DDRs are initialized to $\$ 00$.

$$
\begin{array}{|cc|}
\hline 7 & 0 \\
\hline \text { MSB } & \text { LSB } \\
\hline & \text { Port A Address }=\$ 04 \\
& \text { Port B Address }=\$ 05 \\
& \text { C Address }=\$ 06(\text { Bits 0-3) }
\end{array}
$$

5.3. PULL DOWN DEVICE OPTION

The implementation of pull down devices on particular groupings of I/O port pins is a manufacturing mask option available to the user. This is typically of benefit in applications where keyboards are interfaced directly to the MCU and similar situations.
The permitted groupings are as follows :

- Port C
- Port C and Pin PAO
- Pins PA1, PA2, PA3, PA4
- Pins PA5, PA6
- Pin PA7
- Pins PA4, PA5, PA6, PA7
- Pins PAO, PA1, PA2, PA3
- Pins PB3, PB4, PB5, PB6, PB7
- Pins PB1, PB2
- Pin PB0

Note : That all the pull down device is disabled when the port pin is programmed as an output.

SECTION 6

SOFTWARE AND INSTRUCTION SET

6.1. SOFTWARE

6.1.1. BIT MANIPULATION. The EF68HC04P3 MCU has the ability to set or clear any register or single random access memory (RAM) writable bit with a single instruction (BSET, BCLR). Any bit in data space, including ROM, can be tested, using the BRSET and BRCLR instructions, and the program may branch as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or
register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.
The coding example in figure 6.1 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an ex= ternal serial device. The external device has a data ready signal, a data output line, and a clock line (to clock data one bit at a time, MSB first, out of the device). The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in the accumulator.

Figure 6.1 : Bit Manipulation Example.

6.1.2. ADDRESSING MODES. The EF68HC04P3

MCU has nine addressing modes which are explained briefly in the following paragraphs. The EF68HC04P3 deals with objects in three different address spaces : program space, data space, and stack space. Program space contains the instructions which are to be executed, plus the data for immediate mode instructions. Data space contains all of the RAM locations, XP and YP registers, accumulator, timer, I/O locations, and some ROM (for storage of tables and constants). Stack space contains RAM for use in stacking the return addresses for subroutines and interrupts.
The term "Effective Address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.

6.1.2.1. Immediate

In the immediate addressing mode, the operand is located in program ROM and is contained in a byte following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

6.1.2.2. Direct

In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the 256 bytes in data space memory with a single two-byte instruction.

6.1.2.3. Short Direct

The MCU also has four locations in data space RAM ($\$ 80, \$ 81, \$ 82, \$ 83$) which may be used in a shortdirect addressing mode. In this mode the opcode determines the data space RAM location, and the instruction is only one byte. Short direct addressing is a subset of the direct addressing mode. (Note : $\$ 80$ and $\$ 81$ are the X and Y register locations).
6.1.2.4. Extended

In the extended addressing mode, the effective address is obtained by concatenating the four least significant bits of the opcode with the byte following the opcode (12-bit address). Instructions using the extended addressing mode (JMP, JSR) are capable of branching anywhere in program space. An extended addressing mode instruction is two bytes long.

6.1.2.5. Relative

The relative addressing mode is only used in conditional branch instructions. In relative addressing, that address is formed by adding the sign extended lower five bits of the opcode (the offset) to the program counter if and only if the condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -15 to +16 from the opcode address. The programmer need not worry about calculating the correct offset when using the assembler since it calculates the proper offset and checks to see if it is within the span of the branch.

6.1.2.6. Bit Set/Clear

In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any bit in the 256 locations of data space memory, which can be written to, can be set or cleared.

6.1.2.7. Bit Test and Branch

The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which is to be tested is included in the opcode, and the data space address of the byte to be tested is in the single byte immediately following the opcode byte. The third byte is sign extended to twelve bits and becomes the offset added to the program counter if the condition is true. The single three-byte instruction allows the program to branch based on the condition of any bit in data space memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry flag.

6.1.2.8. Register-Indirect

In the register-indirect addressing mode, the operand is at the address (in data space) pointed to by the contents of one of the indirect registers (X or Y). The particular X or Y register is selected by bit 4
of the opcode. Bit 4 of the opcode is then decoded into an address which selects the desired X or Y register ($\$ 80$ or $\$ 81$). A register-indirect instruction is one byte long.

6.1.2.9. Inherent

In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. These instructions are one byte long.

6.2. INSTRUCTION SET

The EF68HC04P3 MCU has a set of 44 basic instructions, which when combined with nine addressing modes produce 244 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.
6.2.1. REGISTER/MEMORY INSTRUCTIONS. Most of these instructions use two operands. One operand is the accumulator and the other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to table 6-1.
6.2.2. READ-MODIFY-WRITE INSTRUCTIONS. These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. There are ten instructions which utilize read-modifywrite cycles. All INC and DEC forms along with all bit manipulation instructions use this method. Refer to table 6-2.
6.2.3. BRANCH INSTRUCTIONS. The branch instructions cause a branch from the program when a certain condition is met. Refer to table 6-3.
6.2.4. BIT MANIPULATION INSTRUCTIONS. These instructions are used on any bit in data space memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to table 6-4.

Function	Mnem	Addressing Modes																				
		Indirect				Immediate			Direct			Inherent			Extended			Short－Direct				
		$\frac{\mathrm{Op}}{} \mathrm{P}^{\text {P }}$	de YP	$\stackrel{A}{\text { Bytes }}$	$\begin{gathered} \prime \prime \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Opcode	$\begin{gathered} \text { \# } \\ \text { Bytes } \end{gathered}$		Opcode	$\stackrel{\#}{\\|}$	Cycles	Opcode	$\stackrel{\#}{\text { Bytes }}$		Opcode	Bytes	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	Special Notes	
Load A from Memory	LDA	EO	FO	1	4	E8	2	4	F8	2	4	－	－	－	－	－	－	AC－AF	1	4	1	
Load XP from Memory	LDXI	－－	－	－	－	80	3	4	－	－	－	－	－	－	－	－	－	－	－	－	4	
Load YP from Memory	LDYI	－	－	－	－	B0	3	4	－	－	－	－	－	－	－	－	－	－	－	－	4	
Store A in Memory	STA	E1	F1	1	4	－	－	－	F9	2	4	－	－	－	－	－	－	BC－BF	1	4	2	
Add to A	ADD	E2	F2	1	4	EA	2	4	FA	2	4	－	－	－	－	－	－	－	－	－	－	
Subtract from A	SUB	E3	F3	1	4	EB	2	4	FB	2	4	－	－	－	－	－	－	－	－	－	－	
Arithmetic Compare with Memory	CMP	E4	F4	1	4	EC	2	4	FC	2	4	－	－	－	－	－	－	－	－	－	－	
AND Memory to A	AND	E5	F5	1	4	ED	2	4	FD	2	4	－	－	－	－	－	－	－	－	－	－	
Jump to Subroutine	JSR	－	－	－	－	－	－	－	－	－	－	－	－	－	8 （TAR）	2	4	－	－	－	3	
Jump Unconditional	JMP	－	－	－	－	－	－	－	－	－	－	－	－	－	9 （TAR）	2	4	－	－	－	3	
Clear A	CLRA	－	－	－	－	－	－	－	FB	2	4	－	－	－	－	－	－	－	－	－	－	
Clear XP	CLRX	－	－－	－	－	－	－	－	FB	2	4	－	－	－	－	－	－	－	－	－	－	
Clear YP	CLRY	－	－	－	－	－	－	－	FB	2	4	－			－	－	－	－	－	－	－	
Complement A	COMA	－	－	－	－	－	－	－	－	－	－	B4	1	4	－	－	－	－	－	－	－	
Move Immediate Value to Memory	MVI	－	－	－	－	B0	3	4	B0	3	4	－	－	－	－	－	－	－	－	－	5	
Rotate A Left and Carry	ROLA	－	－	－	－	－	－	－	－	－	－	B5	1	4	－	－	－	－	－	－	－	
Arithmetic Left Shift of A	ASLA	－	－	－	－	－	－	－	FA	2	4	－	－	－	－	－	－	－	－	－	－	

1 in Short－Direct addressing，the LDA mnemonic represents opcode $A C, A D, A E$ ，and $A F$ This is equivalent to RAM locations $\$ 80$（AC），$\$ 81$（AD），$\$ 82(A E)$ ，and $\$ 83$（AF）
2．In Short－Direct addressing，the STA mnemonic represents opcode BC，BD，BE，and BF This is equivalent to RAM locations $\$ 80(B C)$ ，$\$ 81$（ $B D$ ），$\$ 82(B E)$ ，and $\$ 83(B F)$ ．
3．In Extended addressing，the four LSBs of the opcode（Mnemonic JSR and JMP）are formed by the four MSBs of the target address（TAR）．
4．In Immediate addressing，the LDXI and LDY are mnemonics which are recognized as follows

5 The MVI instruction refers to both Immediate and Direct addressing．

[^12]1. In short-direct addressing, the INC mnemonic represents opcode A8, A9, AA, and AB. These are equivalent to RAM locations $\$ 80$ (A8), $\$ 81$ (A9), $\$ 82$ (AA), and $\$ 83$ (AB). 2. In short-direct addressing, the DEC mnemonic represents opcode B8, B9, BA, and BB. These are equivalent to RAM locations $\$ 80$ (B8), $\$ 81$ (B9), $\$ 82$ (BA), and $\$ 83(8 B)$ 3. In indirect addressing, the INC mnemonic represents opcode E6 or F6, and causes the location pointed to by XP (E6 opcode) or YP (F6 opcode) to be incremented. 4. In indirect addressing, the INC mnemonic represents opcode E7 or F7, and causes the location pointed to by XP (E7 opcode) or YP (F7 opcode) to be incremented.

Table 6.3 : Branch Instructions.

		Relative Addressing Mode			
Function	Mnem	Opcode	$\#$ Bytes	$\#$ Cycles	Special Notes
Branch if Carry Clear	BCC	$40-5 \mathrm{~F}$	1	2	1
Branch if Higher or Same	(BHS)	$40-5 \mathrm{~F}$	1	2	1,2
Branch if Carry Set	BCS	$60-7 \mathrm{~F}$	1	2	1
Branch if Lower	(BLO)	$60-7 \mathrm{~F}$	1	2	1,3
Branch if Not Equal	BNE	$00-1 \mathrm{~F}$	1	2	1
Branch if Equal	BEQ	$20-3 F$	1	2	1

SPECIAL NOTES
1 Each mnemonic of the Branch Instructions covers a range of 32 opcodes, eg, BCC ranges from 40 through $5 F$. The actual memory location (target address) to which the branch is made is formed by adding the sign extended lower five bits of the opcode to the contents of the program counter
2 The BHS instruction (shown in parentheses) is identical to the BCC instruction The C bit is clear if the register was higher or the same as the location in the memory to which it was compared
3 The BLO instruction (shown in parentheses) is identical to the BCS instruction The C bit is set if the register was lower than the location in memory to which it was compared

Table 6.4 : Bit Manipulation Instructions.

		Addressing Modes						
		Bit Set/Clear			Bit Test and Branch			
Function	Mnem	Opcode	\# Bytes		Opcode	\# Bytes	\# Cycles	Special Note
Branch IFF bit n is set	BRSET $\mathrm{n}(\mathrm{n}=0 . . .7)$				$\mathrm{C} 8+\mathrm{n}$	3	5	1
Branch IFF bit n is clear.	BRCLR $n(\mathrm{n}=0 . . .7)$				$\mathrm{C} 0+\mathrm{n}$	3	5	1
Set Bit n	BSET n ($\mathrm{n}=0 . \ldots .7$)	$\mathrm{D} 8+\mathrm{n}$	2	4				1
Clear Bit n	BCLR n ($\mathrm{n}=0 . . .7$)	D0 + n	2	4				1

SPECIAL NOTE
1 The opcode is formed by adding the bit number (0-7) to the basic opcode. For example : to clear bit six using the BSET6 instruction the opcode becomes $D E(D 8+6)$, $B C L R 5$ becomes $(C 0+5)$, etc
6.2.5. CONTROL INSTRUCTIONS. The control instructions control the MCU operations during program execution. Refer to table 6-5.
6.2.5.1. Stop Instruction

The STOP instruction place the EF68HC04P3 in its lowest power consumption mode. In STOP mode the internal oscillator is turned off causing all internal processing and the timer to be halted. In STOP mode, timer STATUS/CONTROL register bits 6 (ETI) and 7 (TMZ) are cleared to remove any pending timer interrupt requests and to disable any further timer interrupts. External interrupts are enabled. All I/O lines remain unchanged. The processor can only be brought out of the STOP mode by pulling low IRQ or RESET input pins. During the exit from the STOP mode, the timer is used to provide a delay of 1920 oscillator clock periods for the oscillator to stabilize. If an external clock is used, it should be kept high during all the time the MCU is in STOP mode.

6.2.5.2. Wait Instruction

The WAIT instruction places EF68HC04P3 in a lowpower consumption mode, but WAIT mode consumes more power than the STOP mode. In WAIT mode the clock is disabled from all internal circuitry except the timer circuit. Thus all internal processing is halted. The timer may, if desired, continue to count down (PSI bit of TCSR).
During the WAIT mode, external interrupts are enabled. All other registers memory, and I/O lines remain in their last state. Timer interrupt (ETI bit) may be enabled by software prior to entering the WAIT mode to allow an exit from the WAIT mode via a Timer Interrupt.
6.2.6. ALPHABETICAL LISTING. The complete instruction set is given in alphabetical order in table 66 . There are certain mnemonics recognized by the assembler and converted to other instructions. The fact that all registers and accumulator are in RAM al-
lows many implied instructions to exist. The implied instructions recognized by the assembler are identified in table 6-6.
6.2.7. OPCODE MAP SUMMARY. Table 6-7 contains an opcode map for the instructions used on the MCU.

6.3. IMPLIED INSTRUCTIONS

Since the accumulator and all other registers are located in RAM many implied instructions exist. The assembler-recognized implied instructions are given in table 6-6. Some examples not recognized
by the assembler are shown below.
BCLR, 7 \$FF Ensures accumulator is plus
BSET, 7 \$FF Ensures accumulator is minus
BRCLR, 7 \$FF Branch iff accumulator is plus
BRSET, 7 \$FF Branch iff accumulator is minus
BRCLR, $7 \$ 80 \quad$ Branch iff X is plus (BXPL)
BRSET, $7 \$ 80 \quad$ Branch iff X is minus (BXMI)
BRCLR, $7 \$ 81 \quad$ Branch iff Y is plus (BYPL)
BRSET, $7 \$ 81 \quad$ Branch iff Y is minus (BYMI)

1. The NOP Instruction is equivalent to a branch if equal (BEQ) to the location designated by PC +1 .

EF68HC04P3

Table 6.7. : EF68HC04P3 Microcomputer Instruction Set Opcode Map.

Low	Branch Instructions														
	$\begin{gathered} 0 \\ 0000 \\ \hline \end{gathered}$					$\begin{gathered} 3 \\ 0011 \\ \hline \end{gathered}$		$\begin{gathered} 4 \\ 0100 \end{gathered}$		$\begin{gathered} 5 \\ 0101 \end{gathered}$		$\begin{gathered} 6 \\ 0110 \end{gathered}$		$\begin{gathered} 7 \\ 0111 \end{gathered}$	
$\begin{gathered} 0 \\ 0000 \end{gathered}$	$$	2 1		1	REL			1	CC REL	2 1	C REL	2 1	REL	1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$
$\begin{gathered} 1 \\ 0001 \end{gathered}$	BNE 1 REL	2 1		2 1				2	CC REL	2 1	$\begin{aligned} & \mathrm{C} \\ & \mathrm{REL} \\ & \hline \end{aligned}$	2 1	$\begin{aligned} & S \\ & \text { REL } \end{aligned}$	2 1	$\begin{aligned} & \text { S } \\ & \text { REL } \end{aligned}$
$\begin{gathered} 2 \\ 0010 \end{gathered}$	BNE 1 REL	2 1		1	$\begin{aligned} & Q \\ & R E L \end{aligned}$			2 1	CC REL	2 1	C REL	${ }^{2}$		2 1	S REL
$\begin{gathered} 3 \\ 0011 \end{gathered}$	2 BNE 1 REL	2 1		1				2 1	CC REL	2 1	REL	1	REL	2 1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$
$\begin{gathered} 4 \\ 0100 \end{gathered}$	2 BNE 1 REL	1		2 1				2 1	CC REL	2 1	REL	2 1	REL	2 1	$\begin{aligned} & \text { S } \\ & \text { REL } \end{aligned}$
$\begin{gathered} 5 \\ 0101 \end{gathered}$	2 BNE 1 REL	2 1		2 1		2 1		2 1	CC REL	2 1	REL	${ }^{2}$	REL	2 1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \\ & \hline \end{aligned}$
$\begin{gathered} 6 \\ 0110 \end{gathered}$	$\begin{aligned} & 2 \\ & \\ & \\ & 1 \\ & \hline \end{aligned}$	2 1		2 1		2 1		2 1	CC REL	1	REL	${ }^{2}$		2 1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$
$\begin{gathered} 7 \\ 0111 \end{gathered}$	2 BNE 1 REL	1		2 1				2 1	CC REL	2 1	REL	1	REL	2	; REL
$\begin{gathered} 8 \\ 1000 \end{gathered}$	BNE 1 REL	2 1		2 1				2 1	CC REL	2 1	REL	2 1	REL	2	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$
$\begin{gathered} 9 \\ 1001 \end{gathered}$	BNE 1 REL	2 1		2 1				2 1	CC REL	2 1	REL	2 1		2 1	$\begin{aligned} & \text { SEL } \end{aligned}$
$\begin{gathered} A \\ 1010 \end{gathered}$	$\begin{array}{lr} 2 \\ & \\ & \text { BNE } \\ 1 & \mathrm{REL} \\ \hline \end{array}$	2 1		2 1				2 1	CC REL	2 1		2 1		2 1	
$\begin{gathered} B \\ 1011 \end{gathered}$	2 BNE 1 REL	2 1		2		2		2 1	CC REL	2 1	REL	2 1	REL	2	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \\ & \hline \end{aligned}$
$\begin{gathered} C \\ 1100 \end{gathered}$	2 BNE 1 REL	2 1	REL	2 1					CC REL	2 1	$\begin{aligned} & \mathrm{C} \\ & \mathrm{REL} \end{aligned}$	2 1		2	$\begin{aligned} & S \\ & \text { REL } \end{aligned}$
$\begin{gathered} \text { D } \\ 1101 \end{gathered}$	2 BNE 1 REL	2 1		2 1		2 1		2 1	CC REL	2 1	REL	2 1		2 1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{REL} \end{aligned}$
$\begin{gathered} E \\ 1110 \end{gathered}$	2 BNE 1 REL	2 1		2		2		2	CC REL	2 1	REL	2 1	REL	2 1	S REL
$\begin{gathered} F \\ 1111 \end{gathered}$	2 BNE 1 REL	2 1		1	REL	1	REL	1	cc REL	1	REL	1	REL	1	S REL
Abbreviations for Address Modes						EXT Extended									
INH S-D B-T-B IMM DIR	erent ort Direct Test and Branch mediate ect						R		Relative Bit Set/ Registe Indıcate Indicate	ar	on Re struct		uture		

Table 6.7. : EF68HC04P3 Microcomputer Instruction Set Opcode Map (continued).

Register/Memory,Control, and Read/Modify/Write Instructions							Bit Manipulation Instructions				Register/Memory and Read/Modify/Write				Hi Low
$\begin{gathered} 8 \\ 1000 \end{gathered}$				$\begin{gathered} \text { A } \\ 1010 \end{gathered}$		$\begin{gathered} \mathrm{B} \\ 1011 \end{gathered}$									
$\begin{array}{ll} { }^{4}{ }_{2} \mathrm{JSRn} \\ \hline \end{array}$	4 2			*	3	MVI IMM	5 8 3	$\begin{aligned} & \text { RO } \\ & \text { B-T-B } \end{aligned}$	2	$\begin{aligned} & 30 \\ & \mathrm{BSC} \end{aligned}$	4 1	$\begin{aligned} & \text { A } \\ & \text { R-IND } \end{aligned}$		A R-IND	$\begin{gathered} 0 \\ 0000 \end{gathered}$
$\begin{array}{ll} { }^{4} \mathrm{JSRn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	4 2			*		*	5 8 3	R1 $B-T-B$	${ }_{4}^{4}$	BSC	4 1	$\begin{aligned} & \text { FA } \\ & \text { R-IND } \\ & \hline \end{aligned}$	1	$\begin{aligned} & \text { KA } \\ & \text { R-IND } \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 0001 \end{gathered}$
$\begin{array}{ll} { }^{4} \mathrm{JSRR} \\ 2 & \text { EXT } \\ \hline \end{array}$	2			*	2 1	RTI	3	$\begin{aligned} & \mathrm{R} 2 \\ & \mathrm{~B}-\mathrm{T}-\mathrm{B} \end{aligned}$	2	BSC	4 1	R-IND	${ }^{4}$	D R-IND	$\begin{gathered} 2 \\ 0010 \end{gathered}$
$\begin{array}{\|lll} \hline 4 & & \\ & \mathrm{JSRR} & \\ 2 & & \text { EXT } \\ \hline \end{array}$	4 2			*	2 1	RTS INH	5 3 3	$\begin{aligned} & \text { R3 } \\ & \mathrm{B} \cdot \mathrm{~T}-\mathrm{B} \end{aligned}$	2	BSC	4 1	$\begin{aligned} & \mathrm{JB} \\ & \mathrm{R} \cdot \mathrm{IND} \\ & \hline \end{aligned}$	1	$\begin{aligned} & \mathrm{JB} \\ & \mathrm{R}-\mathrm{IND} \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ 0011 \end{gathered}$
$\begin{array}{\|lll} \hline 4 & & \\ & \mathrm{JSRn} \\ 2 & & \\ \hline \end{array}$	4 2			*	4 1	COMA INH	3	$\begin{aligned} & \mathrm{R} 4 \\ & \text { B-T-B } \end{aligned}$	2	BSC	4 1 1	R-IND		MP R-IND	$\begin{gathered} 4 \\ 0100 \end{gathered}$
$\begin{array}{\|ll\|} \hline 4 & \\ & \\ & \mathrm{JSRn} \\ 2 & \\ \hline \end{array}$	4			*	4 1	ROLA INH	5 3 3	$\begin{aligned} & \text { LR5 } \\ & \text { B-T-B } \end{aligned}$	4 2 2	$\begin{aligned} & 35 \\ & \mathrm{BSC} \\ & \hline \end{aligned}$	4 1	D R-IND	${ }^{4}$	$\begin{aligned} & \text { ND } \\ & \text { R-IND } \end{aligned}$	$\begin{gathered} 5 \\ 0101 \end{gathered}$
$\begin{array}{\|lr} \hline 4 & \\ & \\ & \mathrm{JSRRn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	2			*	1	STOP INH	3	$\begin{aligned} & \text { LR6 } \\ & \text { В-T-B } \end{aligned}$	2	$\begin{aligned} & 16 \\ & B S C \end{aligned}$	4 1	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \cdot \mathrm{IND} \\ & \hline \end{aligned}$	4 1	C R-IND	$\begin{gathered} 6 \\ 0110 \end{gathered}$
$\begin{array}{lll} \hline 4 & & \\ & \mathrm{JSRn} \\ 2 & \\ \hline \end{array}$	4 2			*	1	WAIT INH	5 3 3	$\begin{aligned} & \text { LR7 } \\ & \text { В-T-B } \end{aligned}$	2	BSC	4 1 4	C	4 1	C R-IND	$\begin{gathered} 7 \\ 0111 \end{gathered}$
${ }_{2}{ }^{\text {JSRn }} \text { EXT }$	2		4 1	INC S-D	4 1	$\begin{array}{r} \text { DEC } \\ \text { S-D } \\ \hline \end{array}$	3	$\begin{aligned} & \text { ETO } \\ & \text { B-T-B } \end{aligned}$	4	BSC	4 2	IMM	4 2	A DIR	$\begin{gathered} 8 \\ 1000 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \\ & \text { JSRR } \\ 2 & \\ 2 & \text { EXT } \\ \hline \end{array}$	2		4 1	INC S-D	1	$\mathrm{DEC}_{\mathrm{S}-\mathrm{D}}$	5 3 3	$\begin{aligned} & \mathrm{ET} 1 \\ & \text { B-T-B } \end{aligned}$	2	$8 \mathrm{BC}$				A DIR	$\begin{gathered} 9 \\ 1001 \end{gathered}$
$\begin{array}{\|lll} \hline 4 & & \\ & \text { JSRn } \\ 2 & & \\ \hline \end{array}$	4 2		4 1	INC S-D	4 1	$\begin{aligned} & \text { DEC } \\ & \text { S-D } \end{aligned}$	3	ET2 B-T-B	4	BSC	4 2	IMM	${ }^{4}$	D DIR	$\begin{gathered} A \\ 1010 \end{gathered}$
$\begin{array}{\|lr\|} \hline 4 & \\ & \text { JSRR } \\ & \\ 2 & \\ \hline \end{array}$	2		4 1	INC_{S-D}	4 1	$\begin{array}{r} \text { DEC } \\ \quad \mathrm{S.D} \\ \hline \end{array}$	3	$\begin{aligned} & \mathrm{ET} 3 \\ & \mathrm{~B} \cdot \mathrm{~T}-\mathrm{B} \end{aligned}$	2	BSC	4 2	IMM	4 2	UB DIR	$\begin{gathered} B \\ 1011 \end{gathered}$
$\begin{array}{ll} 4 & \\ { }^{4} \text { JSRn } \\ 2 & \text { EXT } \\ \hline \end{array}$	2		4 1 4	$\begin{aligned} & \text { LDA } \\ & \\ & \text { S-D } \end{aligned}$	4 1	$\begin{aligned} \text { STA } \\ \text { S-D } \end{aligned}$	3	$\begin{aligned} & \mathrm{ET} 4 \\ & \mathrm{~B} \cdot \mathrm{~T}-\mathrm{B} \end{aligned}$	2	BSC	4 2	IMM	4 2	MP DIR	$\begin{gathered} C \\ 1100 \end{gathered}$
$\begin{array}{ll} 4 & \\ { }^{4} & \text { JSRR } \\ 2 & \text { EXT } \\ \hline \end{array}$	2		4 1	$\begin{gathered} \text { LDA } \\ \\ \hline \text { S-D } \\ \hline \end{gathered}$	1	$\begin{aligned} & \text { STA } \\ & \quad \text { S-D } \\ & \hline \end{aligned}$	3	ET5 B.T-B	2	$B S C$	2	IMM	2	VD DIR	$\begin{gathered} D \\ 1101 \end{gathered}$
$\begin{array}{ll} \hline 4 & \\ & \\ & \mathrm{JSRn} \\ 2 & \mathrm{EXT} \\ \hline \end{array}$	2		4 1	$\begin{gathered} \text { LDA } \\ \\ \hline \text { S-D } \\ \hline \end{gathered}$	1	$\begin{aligned} \text { STA }_{\text {S-D }} \end{aligned}$	3	ET6 B-T-B	2	BSC			2	vC DIR	$\begin{gathered} E \\ 1110 \end{gathered}$
JSRn 2 EXT	2	EXT	1	$\begin{aligned} & \text { LDA } \\ & \quad \text { S-D } \end{aligned}$	1	$\begin{aligned} & \text { STA } \\ & \text { S-D } \\ & \hline \end{aligned}$	3	$\begin{aligned} & \text { ET7 } \\ & \text { B-T-B } \end{aligned}$	2	BSC			2	$\begin{aligned} & \text { EC } \\ & \hline \end{aligned}$	$\begin{gathered} F \\ 1111 \end{gathered}$

EF68HC04P3

SECTION 7

ELECTRICAL SPECIFICATIONS

7.1. INTRODUCTION

This section contains the electrical specifications and associated timing for the EF68HC04P3.
7.2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{V}_{\text {In }}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+0.3$	V
1	Current Drain per Pin	10	mA
$\begin{aligned} & 1_{1} \\ & 1_{0} \\ & \hline \end{aligned}$	Total Current for Ports A, B, C and XTAL, TIMER Pins Sink Source	$\begin{gathered} 30 \\ -15 \end{gathered}$	mA
$\mathrm{T}_{\text {A }}$	Operatıng Temperature Range L Range D Range \checkmark Range	$\begin{gathered} T_{L} \text { to } T_{H} \\ 0 \text { to }+70 \\ -25 \text { to } 70 \\ -40 \text { to } 85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	- 55 to 150	${ }^{\circ} \mathrm{C}$
TJ	Junction Resistance $\begin{gathered}\text { Plastic } \\ \text { PLCC }\end{gathered}$	$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages of electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S}\left(V_{\text {in }}\right.$ or $V_{\text {out }}$) $V_{c c}$ Reliability of operation is enhanced if unused inputs except EXTAL are connected to an appropriate logic voltage level (eg, elther V_{sS} or V_{cc})

7.3. EQUIVALENT TEST LOAD

Figure 7.1 : Open Collector LSTTL Compatible Equivalent Test Load (Ports A, B, C,).

Figure 7.2 :CMOS Equivalent Test Load (Ports A, B, C,).

7.5. POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$T_{J}=T_{A}+\left(P_{D} \theta_{J A}\right)$
Where :
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta_{J A}=$ Package Thermal Resistance, Junction-toAmbient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{D}=P_{\text {INT }}+P_{\text {Port }}$
$P_{\text {INT }}=\operatorname{Icc} \times$ Vcc, Wafts - Chip Internal Power
Pport = Port Power Dissipation, Watts - User Determined
For most applications PPORT \leq PINT and can be
neglected. Pport may become significant if the device is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is :
$P_{D}=K \div\left(T_{J}+273^{\circ} \mathrm{C}\right)$
Solving equations 1 and 2 for K gives :
$K=P_{D} \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta \mathrm{JA} \cdot P_{D}{ }^{2}$
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS + 5.0V

($\mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{Vdc} \pm 10 \% ; 0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted).

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL} VOH	Output Voltage$\left(I_{\text {Load }}=10 \mathrm{~A}\right)$ $\left(I_{\text {Load }}=10 \mathrm{~A}\right)$	$V_{C c}-0.1$		0.1	V
V_{OL}	Output Low Voltage ($\mathrm{L}_{\text {Load }}=0.8 \mathrm{~mA}$) - Timer Ports			0.4	V
V_{OH}	Output High Voltage ($\mathrm{L}_{\text {Load }}=0.8 \mathrm{~mA}$) - Timer Ports	$V_{C C}-0.4$			V
$\begin{aligned} & V_{\text {IL }} \\ & V_{\text {IL }} \end{aligned}$	Input Low Voltage Ports, Timer XTAL, MDS, IRQ, RESET	$\begin{aligned} & V_{S S} \\ & V_{S S} \end{aligned}$		$\begin{aligned} & 03 V_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	V
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input High Voltage Ports, Timer XTAL, MDS, IRQ, RESET	$0.7 \mathrm{~V}_{\mathrm{cc}}$ 0.8 VCC		$\begin{aligned} & V_{C C} \\ & V_{C C} \end{aligned}$	V
$\begin{aligned} & I_{D D} \\ & I_{D D} \\ & I_{D D} \\ & \hline \end{aligned}$	Total Supply Current (no dc loads, fosc $=6 \mathrm{Mhz}$) (no dc loads, $\mathrm{V}_{\mathrm{IL}}=0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$) RUN Mode WAIT Mode (*) STOP Mode (*)		$\begin{aligned} & 1.5 \\ & 05 \\ & 05 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$I_{\text {TSI }}$	I/O Hi-Z Leakage Current ($\mathrm{V}_{\mathrm{In}}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$) Timer, Ports (with no pull-down)	-1		1	$\mu \mathrm{A}$
Itsi	Hi-Z State Input Current ($\mathrm{V}_{\mathrm{In}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$) Timer, Ports (with pull-downs)	10		250	$\mu \mathrm{A}$
1 in	Input Current IRQ, RESET, XTAL, MDS (with no pull up)	-1		+1	$\mu \mathrm{A}$
$1{ }_{\text {In }}$	Input Current IRQ, RESET, (with pull up) $\left(V_{I N}=V_{C C}-0.4 V\right)$	- 100		-4	$\mu \mathrm{A}$
Cout	I/O Output Capacitance Timer, Ports			12	pF
$\mathrm{C}_{\text {In }}$	Input Capacitance IRQ, RESET, XTAL, MDS			8	pF

Note : Test conditions for loo as follows
XTAL input is a square wave from 0.2 V to $\mathrm{Vcc}-02 \mathrm{~V}$
EXTAL output load $=10 \mathrm{pF}$
Circuit in self check-mode
In WAIT and STOP Modes, Port A is programmed as output, Port B and C are programmed as inputs
In STOP Mode . all inputs are tied to V_{IL} excepted IRQn RST, MDS, XTAL, EXTAL which are tied to V_{H} (when IRQ, RST have no pull up) when IRQ, RST have pull up, these pins are tied to $V_{c c}$
Ports pull downs not enabled, if ports pull downs enabled connect to $V_{s s}$

CONTROL TIMING CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{Vdc} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$f_{\text {OsC }}$	Oscillator Frequency	0		12	Mhz
f_{CL}	PHI 1 Clock Frequency	0		6	Mhz
$\mathrm{f}_{\mathrm{CYC}}$	Cycle Time (min)	2			s
$\mathrm{t}_{\text {IWL }}$	IRQ Pulse Width	$2 \times \mathrm{t}_{\mathrm{CYC}}$			s
$\mathrm{t}_{\text {RWLC }}$	RESET Pulse WIdth	$2 \times \mathrm{t}_{\mathrm{CYC}}$			s
$\mathrm{t}_{\mathrm{OL}} \mathrm{t}_{\mathrm{OH}}$	Oscillator Clock Puise Width	45			ns

ELECTRICAL CHARACTERISTICS + 3.0V

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{Vdc} \pm 10 \% ; 0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted).

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL} V_{OH}	Oútput Voltage $\begin{aligned} & \left(I_{\text {Load }}=10 \mathrm{~A}\right) \\ & \left(I_{\text {Load }}=10 \mathrm{~A}\right)\end{aligned}$	$V_{c c}-0.1$		0.1	V
V_{OL}	Output Low Voltage ($\mathrm{I}_{\text {Load }}=0.8 \mathrm{~mA}$) - Timer Ports			0.3	V
V_{OH}	Output High Voltage ($\mathrm{L}_{\text {Load }}=0.8 \mathrm{~mA}$) - Timer Ports	$V_{C C}-0.3$			V
$\begin{aligned} & V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input Low Voltage Ports, Timer XTAL, MDS, IRQ, RESET	$\begin{aligned} & V_{S S} \\ & V_{S S} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.3 V_{C C} \\ & 0.2 V_{C C} \end{aligned}$	V
$\begin{aligned} & V_{I H} \\ & V_{I H} \end{aligned}$	Input High Voltage Ports, Timer XTAL, MDS, IRQ, RESET	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.8 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	V
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \hline \end{aligned}$	Total Supply Current (no dc loads, fosc $=4.5 \mathrm{Mhz}$) (no dc loads, $\mathrm{V}_{\mathrm{IL}}=0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$) RUN Mode WAIT Mode (*) STOP Mode (*)	.	$\begin{aligned} & 0.6 \\ & 02 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 0.75 \\ 0.75 \\ \hline \end{gathered}$	mA mA $\mu \mathrm{A}$
ITSI	$\mathrm{I} / \mathrm{O} \mathrm{Hi}-\mathrm{Z}$ Leakage Current $\left(\mathrm{V}_{\mathrm{tn}}=0.4 \mathrm{~V}\right.$ to $\mathrm{V}_{\mathrm{Cc}}-0.3 \mathrm{~V}$) Timer, Ports (with no pull-down)	-1		1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TS }}$	$\mathrm{Hi}-\mathrm{Z}$ State Input Current $\left(\mathrm{V}_{\mathrm{In}}=\mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V}\right)$ Timer, Ports (with pull-downs)		125		$\mu \mathrm{A}$
1 In	Input Current IRQ, RESET, XTAL, MDS (with no pull up)	-1		+1	$\mu \mathrm{A}$
$1{ }_{\text {In }}$	Input Current IRQ, RESET, (with pull up) $\left(V_{I N}=V_{C C}-0.3 V\right)$		-10		$\mu \mathrm{A}$
Cout	I/O Output Capacitance Timer, Ports			12	pF
$\mathrm{C}_{1 \text { I }}$	Input Capacitance IRQ, RESET, XTAL, MDS			8	pF

Note : Test conditions for lod as follows
XTAL input is a square wave from 02 V to $\mathrm{V}_{\mathrm{Cc}}-02 \mathrm{~V}$.
EXTAL output load $=10 \mathrm{pF}$
Circuit in self check-mode
In WAIT and STOP Modes, Port A is programmed as output, Port B and C are programmed as inputs
In STOP Mode • all inputs are tied to V_{I} excepted IRQn RST, MDS, XTAL, EXTAL which are tied to $\mathrm{V}_{\mathbb{H}}$ (when IRQ, RST have no pull up) when IRQ, RST have pull up, these pins are tied to $V_{c c}$
Ports pull downs not enabled, if ports pull downs enabled connect to $V_{S S}$

CONTROL TIMING CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{Vdc} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$f_{\text {OsC }}$	Oscillator Frequency	0		12	Mhz
f_{CL}	PHI 1 Clock Frequency	0		4.5	Mhz
$\mathrm{f}_{\mathrm{CYC}}$	Cycle Time (min)	2			s
$\mathrm{t}_{\text {IWL }}$	IRQ Pulse WIdth	$2 \times \mathrm{t}_{\mathrm{CYC}}$			s
$\mathrm{t}_{\text {RWLC }}$	RESET Pulse Width	$2 \times \mathrm{t}_{\mathrm{CYC}}$			s
$\mathrm{t}_{\mathrm{OL}} \mathrm{t}_{\mathrm{OH}}$	Oscillator Clock Pulse Width	45			ns

ELECTRICAL CHARACTERISTICS +2.2 V
$\left(V_{C C}=+2.2 \mathrm{Vdc} \pm 10 \% ; 0 \mathrm{Vdc}, T_{A}=T_{L}\right.$ to T_{H} unless otherwise noted).

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL} V_{OH}	Output Voltage$\left(I_{\text {Load }}=10 \mathrm{~A}\right)$ $\left(I_{\text {Load }}=10 \mathrm{~A}\right)$	$V_{C C}-0.1$		0.1	V
V_{OL}	Output Low Voltage ($\mathrm{L}_{\text {Load }}=0.8 \mathrm{~mA}$) - Timer Ports			0.3	V
V_{OH}	Output High Voltage ($\mathrm{L}_{\text {Load }}=0.8 \mathrm{~mA}$) - Timer Ports	$V_{C C}-0.3$			V
$\begin{aligned} & V_{\text {IL }} \\ & V_{\text {IL }} \end{aligned}$	Input Low Voltage Ports, Timer XTAL, MDS, IRQ, RESET	$\begin{aligned} & V_{S S} \\ & V_{S S} \end{aligned}$		$\begin{aligned} & 0.3 V_{C C} \\ & 02 V_{C C} \\ & \hline \end{aligned}$	V
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Input High Voltage Ports, Timer XTAL, MDS, IRQ, RESET	$0.7 \mathrm{~V}_{\mathrm{Cc}}$ $0.8 \mathrm{~V}_{\mathrm{CC}}$		$\begin{aligned} & V_{C C} \\ & V_{C C} \end{aligned}$	V
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \hline \end{aligned}$	Total Supply Current (no dc loads, fosc $=3 \mathrm{Mhz}$) (no dc loads, $\mathrm{V}_{\mathrm{IL}}=0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$) RUN Mode WAIT Mode (*) STOP Mode (*)		$\begin{aligned} & 0.3 \\ & 0.1 \\ & 02 \end{aligned}$	$\begin{gathered} 1 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\text {TS }}$	I/O Hi-Z Leakage Current ($\mathrm{V}_{\mathrm{in}}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V}$) Timer, Ports (with no pull-down)	-1		1	$\mu \mathrm{A}$
$I_{\text {TS }}$	$\mathrm{HI}-\mathrm{Z}$ State Input Current $\left(\mathrm{V}_{\mathrm{In}}=\mathrm{V}_{\mathrm{CC}}-03 \mathrm{~V}\right)$ Timer, Ports (with pull-downs)		75		$\mu \mathrm{A}$
1 In	Input Current IRQ, RESET, XTAL, MDS (with no pull up)	-1		+1	$\mu \mathrm{A}$
$1{ }_{\text {In }}$	Input Current IRQ, RESET, (with pull up) $\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}\right)$		- 10		$\mu \mathrm{A}$
Cout	I/O Output Capacitance Timer, Ports			12	pF
$\mathrm{C}_{\text {In }}$	Input Capacitance IRQ, RESET, XTAL, MDS			8	pF

Note : Test conditions for lod as follows :
XTAL input is a square wave from 0.2 V to $\mathrm{V}_{\mathrm{Cc}}-02 \mathrm{~V}$
EXTAL output load $=10 \mathrm{pF}$
Circuit in self check-mode
In WAIT and STOP Modes, Port A is programmed as output, Port B and C are programmed as inputs
In STOP Mode all inputs are tied to V_{IL} excepted IRQn RST, MDS, XTAL, EXTAL which are tied to $\mathrm{V}_{\mathbb{I}}$ (when IRQ, RST have no pull up)
when IRQ, RST have pull up, these pins are tied to $V_{c c}$
Ports pull downs not enabled, if ports pull downs enabled connect to $\mathrm{V}_{\text {SS }}$

EF68HC04P3

CONTROL TIMING CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=+2.2 \mathrm{Vdc} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.70^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency	0		12	Mhz
f_{CL}	PHI 1 Clock Frequency	0		3	Mhz
$\mathrm{f}_{\mathrm{CYC}}$	Cycle Time (min)	2			s
$\mathrm{t}_{\mathrm{IWL}}$	IRQ Pulse Width	$2 \times \mathrm{t}_{\mathrm{CYC}}$			s
$\mathrm{t}_{\mathrm{RWLC}}$	RESET Pulse Width	$2 \times \mathrm{t}_{\mathrm{CYC}}$			s
$\mathrm{t}_{\mathrm{OL}} \mathrm{t}_{\mathrm{OH}}$	Oscillator Clock Pulse Width	45			ns

SECTION 8

MECHANICAL DATA

This section contains the pin assignment and package dimension diagrams for the EF68HC04P3 microcomputer.

8.1 PIN ASSIGNMENTS

8.2 PHYSICAL DIMENSIONS

68HCO4P3•TYPICAI WAIT--IDD/FREQUENCY

68HCO4P3:TYPICAL RUN-IDD/FREQUENCY

68HCO4P3: VOH-IOH
TYPICAL CHARACTERISTICS Vdd=5V

68HCO4P3 : VOL-IOL
TYPICAL CHARACTERISTICS Vdd=5V

$68 \mathrm{HCO} 4 \mathrm{P} 3: \mathrm{VOH}-\mathrm{IOH}$
TYPICAL CHARACTERISTICS Vdd $=33 \mathrm{~V}$

68 HCO 4 P 3 : VOL-IOL
TYPICAL CHARACTERISTICS Vdd $=33 \mathrm{~V}$

SECTION 9

ORDERING INFORMATION

9.1. INTRODUCTION

The following information is required when ordering a custom MCU. The information may be transmitted to SGS-THOMSON Microelectronics in the following media:
EPROM(s), ET2732
To initiate a ROM pattern for the MCU, it is necessary to first contact your local field service office, local sales person, or your local SGS-THOMSON Microelectronics representative.
9.1.1. EPROMs. A 2716 or 2732 type EPROM, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. Since all program and data space information will fit on one 2716 or 2732 EPROM, the EPROM must be programmed as follows in order to emulate the EF68HC04P3 MCU. Start the data space ROM at EPROM address $\$ 018$ and start program space ROM at EPROM address $\$ 960$ and continue to memory space \$FFF. All unused bytes, including the user's space, must be set to zero. For shipment to SGS-THOMSON Microelectronics the EPROMs should be placed in a conductive IC carrier and packed securely. Do not use styrofoam.

9.2. VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS-THOMSON Microelectronics. The signed verification form constitutes the contractural agreement for creation of the customer mask. If desired, SGS-THOMSON Microelectronics will program a blank 2716, 2732, or EFDOS disk (supplied by the customer) from the data file used to create the custom mask to aid in the verification process.

9.3. ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and five volts. These RVUs are included in the mask charge and are not production parts. These RVUs are not backed nor guaranteed by SGS-THOMSON Microelectronics Quality Assurance.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating and screening level. Other possibilities on request.

Device	Package			Oper. Temp			Screening Level		
	C	P	FN	L*	D	V	Std	D	
EF68HC04P3		\bigcirc	\bullet	\bullet	\bigcirc	\bullet	\bullet		
Examples : EF68HC04P3P, EF68HC04P3FN.									

Package : C : Ceramic DIL, DIL, P : Plastic DIL, FN : PLCC
Oper. temp. : $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{D}:-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Screening level : Std : (no-end suffix), D : NFC 96883 level D,
*May be omitted
A reduced-packaged version of the EF68HC04P3 (28pins) will be avalable in a 20 -pin package EF68HC04J3

EF6805 FAMILY DATASHEETS

8-BIT MICROCOMPUTER UNIT

HARDWARE FEATURES

- 8-BIT ARCHITECTURE
- 64 BYTES OF RAM
- MEMORY MAPPED I/O
- 1100 BYTES OF USER ROM
- 20 TTLCMOS COMPATIBLE BIDIRECTIONAL I/O LINES (8 Lines are LED Compatible)
- ON-CHIP CLOCK GENERATOR
- SELF-CHECK MODE
- ZERO CROSSING DETECTION
- MASTER RESET
- COMPLETE DEVELOPMENT SYSTEM SUPPORT ON INICE®
- 5V SINGLE SUPPLY

SOFTWARE FEATURES

- SIMILAR TO 6800 FAMILY
- BYTE EFFICIENT INSTRUCTION SET
- EASY TO PROGRAM
- TRUE BIT MANIPULATION
- BIT TEST AND BRANCH INSTRUCTION
- VERSATILE INTERRUPT HANDLING
- VERSATILE INDEX REGISTER
- POWERFUL INDEXED ADDRESSING FOR TABLES
- FULL SET OF CONDITIONAL BRANCHES
- MEMORY USABLE AS REGISTER/FLAGS
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- 10 POWERFUL ADDRESSING MODES
- ALL ADDRESSING MODES APPLY TO ROM, RAM, AND I/O

USER SELECTABLE OPTIONS

- INTERNAL 8-BIT TIMER WITH SELECTABLE CLOCK SOURCE (external timer input or internal machine clock)
- TIMER PRESCALER OPTION (7 Bits, $2^{\text {n }}$)
- 8 BIDIRECTIONAL I/O LINES WITH ttl OR TTL/CMOS INTERFACE OPTION
- CRYSTAL OR LOW-COST RESISTOR OSCILLATOR OPTION
- LOW VOLTAGE INHIBIT OPTION
- VECTORED INTERRUPTS TIMER, SOFTWARE, AND EXTERNAL

Inice ${ }^{\bullet}$ SGS THOMSON development/emulation tool
ADVANCE DATA

DESCRIPTION

The EF6805P2 Microcomputer Unit (MCU) is a member of the EF6805 Family of low-cost singlechip microcomputers. This 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs
an economical microcomputer with the proven capabilities of the 6800-based instruction set. A comparison of the key features of several members of the 6805 Family is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805P2 MCU.

Figure 1 : EF6805P2 HMOS Microcomputer Block Diagram.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
$V_{C C}$	Supply Voltage		-0.3 to +7.0	V
$V_{\text {In }}$	Input Voltage (except pin 6)		-0.3 to +7.0	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range (T_{L} to T_{H})	\checkmark Suffix	$\begin{gathered} 0 \text { to } 70 \\ -40 \text { to }+85 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$
TJ	Junction Temperature Plastic PLCC		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit For proper operation it is recommended that $V_{\text {In }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{c c}$ Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e g , either $\mathrm{V}_{s s}$ or V_{cc}).

THERMAL DATA

θ_{JA}	Thermal Resistance Plastic	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	PLCC.	110	

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$T_{J}=T_{A}+\left(P_{D} \cdot \theta_{J A}\right)$
Where :
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
θ JA $=$ Package Thermal Resistance, Junction-to-
Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\mathrm{D}}=\mathrm{Pint}_{\text {IN }}+\mathrm{P}_{\text {PORT }}$
$P_{\text {Int }}=\operatorname{lcc} \times V_{c c}$, Watts - Chip Internal Power
Pport $=$ Port Power Dissipation, Watts - User Determined
For most applications PPORT << Pint and can be neglected. PPORt may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPort is neglected) is :
$P_{D}=K \div\left(T J+273^{\circ} \mathrm{C}\right)$
Solving equations 1 and 2 for K gives :
$\mathrm{K}=\mathrm{PD} \cdot\left(\mathrm{T}_{\mathrm{A}}+273^{\circ} \mathrm{C}\right)+\theta_{\mathrm{JA}} \cdot \mathrm{P}_{\mathrm{D}}{ }^{2}$
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage $\begin{aligned} & \text { RESET }\left(4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.75\right) \\ & \left.\quad \mathrm{V}_{\mathrm{CC}}<4.75\right) \\ & \operatorname{INT}\left(4.75 \leq \mathrm{V}_{\mathrm{cc}} \leq 5.75\right) \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}<4.75\right) \\ & \text { All Other (except TIMER) } \\ & \hline \end{aligned}$	$\begin{gathered} 4.0 \\ V_{c c}-0.5 \\ 4.0 \\ V_{c c}-0.5 \\ 2.0 \\ \hline \end{gathered}$	*	$V_{C C}$ $V_{c c}$ $V_{c c}$ $V_{C c}$ $V_{C c}$	V
V_{IH}	Input High Voltage Timer Timer Mode Self-check Mode	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	10.0	$\begin{gathered} V_{C C}+1 \\ 15.0 \end{gathered}$	V
VIL	Input Lów Voltage INT All Other	$\begin{aligned} & V_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	*	$\begin{aligned} & 1.5 \\ & 0.8 \end{aligned}$	V
VIRES + VIRES -	$\overline{\text { RESET }}$ Hystereris Voltage (see figures 10, 11 and 12) "Out of Reset" "Into Reset"	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	V
$V_{\text {INT }}$	INT Zero Crossing Input Voltage, through a Capacitor	2.0		4.0	$V_{\text {ac p-p }}$
$\mathrm{P}_{\text {INT }}$	Internal Power Dissipation - No Port Loading $\mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		400	690	mW
$\mathrm{C}_{\text {ı }}$	Input Capacitance EXTAL All Other		$\begin{aligned} & 25 \\ & 10 \end{aligned}$		pF
$V_{\text {LVR }}$	Low Voltage Recover			4.75	V
$\mathrm{V}_{\text {LVI }}$	Low Voltage Inhibit0 to $+70^{\circ} \mathrm{C}$ -40 to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & 2.75 \\ & 3.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$		V
1 In	Input Current $\begin{aligned} & \text { TIMER }\left(\mathrm{V}_{\text {In }}=0.4 \mathrm{~V}\right) \\ & \text { INT }\left(\mathrm{V}_{\text {In }}=2.4 \mathrm{~V} \text { to } \mathrm{V} \text { cC }\right) \\ & \operatorname{EXTAL}^{\left(\mathrm{V}_{\text {In }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\text {cc }}, \text { crystal option }\right)} \\ & \quad\left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}, \text { crystal option }\right) \\ & \operatorname{RESET}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right) \end{aligned}$ (external capacitor charging current)	- 4.0	20	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

[^13]
EF6805P2

PORT DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)
PORT A WITH CMOS DRIVE ENABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}-1.0$			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}(\max)$.	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage, $\mathrm{I}_{\text {Load }}=-500 \mu \mathrm{~A}(\mathrm{max})$.	V_{SS}		0.8	V
I_{IH}	Hi-Z State Input Current $\left(\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			-300	$\mu \mathrm{~A}$
I_{IL}	Hi-Z State Input Current $\left(\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}\right)$			-500	$\mu \mathrm{~A}$

PORT B

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{OL}} \cdot$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			1.0	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-200 \mu \mathrm{~A}$	2.4			V
I_{OH}	Darlington Current Drive (source), $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	-1.0		-10	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		2	10	$\mu \mathrm{~A}$

PORT C AND PORT A WITH CMOS DRIVE DISABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
$V_{\text {OL }}$	Output Low Voltage, $I_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		2	10	$\mu \mathrm{~A}$

SWITCHING CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$f_{\text {osc }}$	Oscillator Frequency EF6805P2 EF68A05P2 EF68B05P2	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 4.2 \\ & 6.0 \\ & 8.0 \end{aligned}$	MHz
$t_{\text {cyc }}$	Cycle Time ($4 / \mathrm{f}_{\text {osc }}$)	0.95		10	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WL }}, \mathrm{t}_{\text {WH }}$	INT and TIMER Pulse Width (see interrupt section)	$t_{\text {cyc }}+250$			ns
$t_{\text {RWL }}$	RESET Pulse Width	$t_{\text {cyc }}+250$			ns
$\mathrm{t}_{\mathrm{RHL}}$	$\overline{\text { RESET }}$ Delay Time (external capacitance $=1.0 \mu \mathrm{~F}$)		100		ms
$\mathrm{f}_{\text {INT }}$	INT Zero Crossing Detection Input Frequency ($\pm 5^{\circ}$ Accuracy)	0.03		1.0	kHz
	External Clock Input Duty Cycle (EXTAL)	40	50	60	\%

Figure 2 : TTL Equivalent Test Load (port B).

Figure 3 : CMOS Equivalent Test Load (port A).
Test Point

Figure 4 : TTL Equivalent Test Load (port A and C).

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in figure 1, are described in the following paragraphs.

Vcc AND Vss. Power is supplied to the MCU using these two pins. $V_{c c}$ is power and $V_{S s}$ is the ground connection.
INT. This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts section for additional information.
XTAL AND EXTAL. These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options section for recommendations about these inputs.

TIMER. This pin allow an external input to be used to decrement the internal timer circuitry. Refer to Timer section for additional information about the timer circuitry.
RESET. This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. Refer to Resets section for additional information.

NUM. This pin is not for user application and must be connected to Vss.
INPUT/OUTPUT LINES (PAO-PA7, PBO-PB7, PCOPC3)
These 20 lines are arranged into two 8 -bit ports (A and B) and one 4-bit port (C). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to Inputs/Outputs section for additional information.

MEMORY

As shown in figure 5, the MCU is capable of addressing 2048 bytes of memory and I/O registers with is program counter. The EF6805P2 MCU has implemented 1288 of these locations. This consists of : 1100 bytes of user ROM, (from $\$ 080$ to $\$$ OFF and from \$3CO to \$783) 116 bytes of self-check ROM, 64 bytes of user RAM, 6 bytes of port I/O, and 2 timers registers. The ROM division allows 128 bytes of ROM to be addressed with direct instructions.

The stack area is used during the processing of interrupt and subroutine calls to save the processor state. The register contents are pushed onto the stack in the order shown in figure 6. Because the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first ; then the high order three bits (PCH) are stacked. This ensures that the program counter is loaded correctly, during pulls from the stack, since the stack pointer increments during pulls. A subroutine call results in only the program counter (PCL, $\mathrm{PCH})$ contents being pushed onto the stack. The remaining CPU registers are not pushed.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with $1 / O$ and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in figure 7 and are explained on the following paragraphs.

Figure 5 : MCU Address Map.

Figure 6 : Interrupt Stacking Order.

ACCUMULATOR (A)

The accumulator is a general purpose 8-bit register used to hold operands and results of arithmetic calculations or data manipulations.
INDEX REGISTER (X). The index register is an 8bit register used for the indexed addressing mode. It contains an 8-bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read modify-write instructions. The index register may also be used as a temporary storage area.
PROGRAM COUNTER (PC). The program counter is an 11-bit register that contains the address of the next instruction to be executed.
STACK POINTER (SP). The stack pointer is an 11bit register that contains the address of the next free location on the stack. Initially, the stack pointer is set to location $\$ 07 \mathrm{~F}$ and is decremented as data is pushed onto the stack and incremented as data is pulled from the stack. The six most significant bits of the stack pointer are permanently configured to 000011. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to

Figure 7 : Programming Model.

location \$07F. Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls.
CONDITION CODE REGISTER (CC). The condition code register is a 5-bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each individual condition code register bit is explained in the following paragraphs.
HALF CARRY (H) - Set during ADD and ADC instructions to indicate that a carry occurred between bits 3 and 4.

INTERRUPT (I) - This bit is set to mask (disable) the timer and external interrupt (INT). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt is cleared.
NEGATIVE (N) - Used to indicate that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in result equal to a logical one).
ZERO (Z) - Used to indicate that the result of the last arithmetic, logical, or data manipulation was zero.

CARRY/BORROW (C) - Used to indicate that a carry or borrow out of the arithmetic logic unit (ALU) occurred during the last arithmetic logic unit (ALU) occurred during the last airhtmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The EF6805P2 MCU timer circuitry is shown in figure 8 . The 8 -bit counter may be loaded under program control and is decremented toward zero by the clock input (prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control register (TCR) is set. The timer interrupt can be masked (disabled) by setting the timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (I bit) in the condition code register also pre-
vents a timer interrupt from being processed. The MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$7F8 and \$7F9, and exexuting the interrupt routine ; see the Interrupts section. THE TIMER INTERRUPT REQUEST BIT MUST BE CLEARED BY SOFTWARE.
The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the TIMER input pin or it can be the internal 2 signal. Three machine cycles are required for a change in state of the TIMER pin to decrement the timer prescaler. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled twl, twh. The pin logic that recognizes the high (or low) state on

Figure 8 : Timer Block Diagram.

the pin must also recognize the low state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows: (assumes 50/50 duty cycle for a given period).
$t_{\text {cyc }} \times 2+250 \mathrm{~ns}=$ period $=\frac{}{\text { freq }}$
The period is not simply twL + twh. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250ns twice).
When the $\phi 2$ signial is used as the source, it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. (NOTE : For ungated $\phi 2$ clock inputs to the timer prescaler, the TIMER pin should be tied to V_{cc}). The source of the clock input is one of the mask options that is specified before manufacture of the MCU.

A prescaler option can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture. To avoid truncation errors, the prescaler is cleared when bit 3 of the timer counter register is written to a logic one. (This bit always needs a logic 0).

The timer continues to count past zero, falling from $\$ 00$ to $\$ F F$ and then continuing the countdown. Thus, the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occurred without disturbing the counting process.

At power-up or reset, the prescaler and counter are initialized with all logical ones, the timer interupt request bit (bit 7) is cleared and the timer interrupt mask bit (bit 6) is set.

SELF-CHECK

The self-check capability of the EF6805P2 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in figure 9 and monitor the output of port C bit 3 for an oscillation of approximately 7 Hz . A 10 volt level on the TIMER input, pin 7, energizes the ROM-based selfcheck feature. The self-check program exercises the RAM, ROM, TIMER, interrupts, and I/O ports.

RESETS

The MCU can be reset three ways : by initial powerup, by the external reset input (RESET) and by optional, internal, low-voltage detect circuits. The RESET input consists mainly of a Schmitt trigger that senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in figure 11. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the RESET pin.

POWER-ON RESET (POR)

An internal reset is generated upon power-up that allows the internal clock generator to stabilize. A delay of tRHL $^{\text {milliseconds }}$ is required before allowings the RESET input to go high. See the power and reset timing diagram (see figure 10). Connecting a capacitor to the RESET input (see figure 12) typically provides sufficient delay. During power-up, the Schmitt trigger switches on (removes reset) when RESET rise to $\mathrm{V}_{\text {IRES }}{ }^{+}$.

EXTERNAL RESET INPUT

The MCU is reset when a logic zero is applied to the RESET input for a period longer than one machine cycle (tcyc). Under this type of reset, the Schmitt trigger switches off are VIREs- to provide an internal reset voltage.

Figure 9 : Self-check Connections.

SELF-CHECK ERROR PATTERNS

PC1	PC0	Problem
0	0	Interrupt Failure
0	1	Bad Port A or Port B
1	0	Bad RAM
1	1	Bad RAM
All 4 LEDs Flashing	Good Device	

Note: When PC1 or PCO is 0 , the LED is on.

LOW VOLTAGE INHIBIT (LVI)

The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level ($\mathrm{V}_{\mathrm{LVI}}$). The only requirement is that the V_{CC} must remain at or below the V_{LV} threshold for one tcyc minimum.
In this applications, the Vcc bus filter capacitor will eliminate negative-going voltage glitches of less than one tcyc. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal
reset is removed once the power supply voltage rises above a recovery level (VLVR) at which time a normal power-one reset occurs.

INTERNAL CLOCK GENERATORS OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs.
A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in figure 13. Crystal specifications and suggested PC board layouts are given in figure 14. A resistor selection graph is given in figure 15.
The crystal oscillator start-up time is a function of many variables : crystal parameters (especially Rs, oscillator load capacitances, IC parameters, ambient temperature, supply voltage and supply voltage turn-on time). To ensure rapid oscillator start-up, neitherthe crystal characteristics nor the load capacitances should exceed recommendations.

When utilizing the on-board oscillator, the MCU should remain in the reset condition (RESET pin voltage below $\mathrm{V}_{\text {IRES }}{ }^{+}$) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating current specifications.
One VCC minimum is reached, the external RESET capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from Vcc through a large resistor, so its functions almost like a constant current source until the reset voltages rises above $\mathrm{V}_{\text {IRES }}{ }^{+}$. Therefore, the RESET pin will charge a approximately
$\left(\mathrm{V}_{\text {IRES }}{ }^{+}\right) \cdot \mathrm{C}_{\text {ext }}=\mathrm{I}_{\text {Res }} \cdot \mathrm{t}_{\text {RHL }}$

Figure 10 : Power and Reset Timing.

Figure 11 : Typical Reset Schmitt Trigger Hysteresis.

Figure 12 : Power-up Reset Delay Circuit.

Figure 13 : Clock Generator Options.

Approximately 25\% to 50\% Accuracy
Typical ${ }^{\mathrm{c}} \mathrm{cyc}=1.25 \mu \mathrm{~s}$
External Jumper

Note : The recommended C_{L} value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approxımately 25 pF on the XTAL pın For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF on XTAL The exact value depends on the Motional-Arm parameters of the crystal used

Figure 14 : Crystal Motional ARM Parameters and Suggested PC Board Layout.

Note : Piezoelectric ceramic resonators which have the equivalent specifications may be use instead of crystal oscillator. Follow ceramic resonator manufacturer's suggestions for $\mathrm{C}_{0}, \mathrm{C}_{1}$ and R values..

Figure 14 : Crystal Motional Arm Parameters and Suggested PC Board Layout (continued).

Figure 15 : Typical Frequency Selection for Resistor Oscillator Option.

INTERRUPTS

The EF6805P2 MCU can be interrupted three different ways through the external interrupt (INT) input pin, the internal timer interrupt request, or the software interrupt instruction (SWI). When any interrupt occurs, the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address and the interrupt routine is executed. Stacking the CPU registers, setting
the I bit, and vector fetching requires a total of 11 $t_{\text {cyc }}$ periods for completion.
A flowchart of the interrupt sequence is shown in figure 16. The interrupt service routine must end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise, the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt device.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.
The external interrupt is internally synchronized and then latched on the falling edge of INT. A sinusoidal input signal (fint maximum) can be used to generate an external interrupt, as shown in figure 17(a), for use as a zero-crossing detector (for negative transitions of the ac sinusoid). This allows applications such as servicing time-of-day routines and engaging/disengaging ac power control devices. Off-chip full-wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a $2 f$ clock.

For digital applications, the INT pin can be driven by a digital signal. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled twl, twh. The pin logic that recognizes the high (or low) state on the pin must also recognize the low (or high) state on the pin in order to "rearm" the internal logic. Therefore, the period can be calculated as follows : (assumes 50/50 duty cycle for a given period)

$$
\mathrm{t}_{\text {cyc }} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The period is not simply twL + twh. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 ns twice). See figure 17(b).
A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. Note that if the I bit is zero, SWI executes after the other interrupts. SWIs are usually used as break-points for debugging or as system calls.

Figure 16 : $\overline{\text { RESET }}$ and Interrupt Processing Flowchart.

Figure 17 : Typical Interrupt Circuits.

INPUT/OUTPUT

There are 20 input/output pins. The INT pin may also be polled with branch instructions to provide an additional input pin. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding write-only data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic "1" for output or a logic " 0 " state to put the ports in the input mode. To avoid undefined levels, the port output registers are not initialized on reset, but may be written before setting the DDR bits. When programmed as outputs, the latched output data is readable as input data, regardless of the logic levels at the output pin due to output loading; see figure 18. When port B is programmed for outputs, it is capable of sinking 10 mA and sourcing 1 mA on each pin.
All input/output lines are TTL compatible as both inputs and outputs. Ports B and C are CMOS compatible as inputs. Port A may be made CMOS compatible as outputs with a mask option. The address map in figure 5 gives the address of data registers and DDRs. The register configuration is
provided in figure 19 and figure 20 provides some examples of port connections.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004$, $\$ 005, \$ 006)$. A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a singlestore instruction.

The latched output data bit (see figure 18) may always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input ("0") and corresponds to the latched output data when the DDR is an output ("1").

Figure 18 : Typical Port I/O Circuitry.

*DDR is a write-only register and reads as all "1s"
** Ports A (with CMOS drive disabled), B, and C are three state ports Port A has optıonal internal pullup devices to provide CMOS drive capability See Electrical Characteristics tables for complete information

Figure 19 : MCU Register Configuration.

Figure 20 (a) : Typical Output Mode Port Connections.

Figure 20 (b) : Typical Output Mode Port Connections.

TTL driving port A directly

CMOS or TTL driving port B directly

CMOS and TTL driving port C directly

SOFTWARE

BIT MANIPULATION

The EF6805P2 MCU has the ability to set or clear any single random access memory or input/output bit (except the data direction register, see Caution below), with a single instruction (BSET, BCLR). Any bit in page zero including ROM, except the DDRs, can be tested, using the BRSET and BRCLR instructions, and the program branches as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial input data in a RAM location or register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.
The coding example in figure 21 illustrates the usefulness of the bit manipulation and test instructions.

Assume that the MCU is to communicate with an external serial device.
The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time. LSB first, out of the device. The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in a RAM location.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, $\$ 005$, and \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

Figure 21 : Bit Manipulation Example.

ADDRESSING MODES

The EF6805P2 MCU has 10 addressing modes which are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the 6805 Family User's Manual.
The term "effective address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g;, a constant used to initialize a loop counter).

DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addresing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This includes the on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.
EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions using extended addressing are capable of referencing arguments anywhere in memory with a single 3-byte instruction. When using the Motorola assembler, the programmer need not specify whether an instruction uses direct or extended addressing. The as-
sembler automatically selects the shortest for of the instruction.
RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if and only if the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from - 126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset when using the Motorola assembler since it calculates the proper offset and checks to see if it is within the span of the branch.
INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.
INDEXED, 8 -BIT OFFSET - In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2 -byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ($\$ 1$ FE is the last location at which the instruction may begin).
INDEXED, 16-BIT OFFSET - In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset, except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended addressing, the Motorola assembler determines the shortest form of indexed addressing.
BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2-byte instruction.

Caution

The corresponding DDRs for ports A, B, and C
are write-only registers (registers at \$004, $\$ 005$, and \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which, is to be tested is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset is in the third byte and is added to the value of the PC if the branch condition is true. This single 3-byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code register.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004$, $\$ 005$, and \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instruction with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805P2 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.
REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The
other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to table 1.
READ-MODIFY-WRITE MODIFICATIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is included in read-modify-write instructions through it does not perform the write. Rfer to table 2.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, $\$ 005$, and \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to table 3.

BIT MANIPULATION INSTRUCTIONS-These instructions are used on any bit in the first 256 bytes of the memory. One group either sets or clears. The other group performs the bit test branch operations. Refer to table 4.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, $\$ 005$, and \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.

CONTROL INSTRUCTIONS - The control instructions control the MCU operations during program execution. Refer to table 5.
ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in table 6.
OPCODE MAP SUMMARY - Table 7 is an opcode map for the instructions used on the MCU.

		Addressing Modes																	
		Immediate			Direct			Extended						$\begin{gathered} \text { Indexed } \\ \text { (8 Bit Offsel) } \end{gathered}$			$\begin{gathered} \text { Indexed } \\ (16 \text { Bit Offset }) \end{gathered}$		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \ddot{\prime} \\ \text { Cycles } \\ \hline \end{array}$	$\begin{array}{c\|} \hline 0 p \\ \text { Code } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Eytes } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \neq \\ \text { Cycles } \end{array}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} \# \\ \text { Cycles } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { OP } \\ \hline \text { Code } \\ \hline \end{array}$	$\begin{gathered} \hline \begin{array}{c} 7 \\ \text { Bytes } \\ \hline \end{array}{ }^{2} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \neq \\ \text { Cycles } \\ \hline \end{array}$
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	06	3	6
Load X from Memory	LOX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DF	3	6
Store A in Memory	STA	-	-		87	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX	-	-		BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	AB	2	2	8B	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	89	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	80	2	4	co	3	5	FO	1	4	EO	2	5	00	3	6
Subtract Memory fiom A with Botrow	SBC	A^{2}	2	2	82	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory 10 A	AND	A4	2	2	84	2	4	C4	3	5	F4	1	4	E4	2	5	04	3	6
OR Memory with A	ORA	AA	2	2	8A	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A 1	2	2	81	2	4	Cl	3	5	Fi	1	4	E1	2	5	D1	3	6
Arithmetic Compare \bar{X} with Memory	CPx	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (Logical Compare)	BIT	A5	2	2	85	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jume Unconditional	JMP				BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	${ }^{\text {JSR }}$	-			B0	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

Addressing Modes

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			Indexed (No Offsei)			Indexed(8 B O Offset)		
Function	Mnemonic	$\begin{gathered} \text { Op } \\ \operatorname{Code} \end{gathered}$		Cycles	Op Code	Bytes	\# Cycles	$\begin{array}{\|c\|} \hline \mathrm{Op} \\ \text { Code } \\ \hline \end{array}$		\# Cycles	Op Code	\# Bytes	* Cycles	Op Code		\# Cycles
Increment	INC	4 C	1	4	5C	1	4	3C	2	6	7C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7 A	1	6	6 A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3 F	2	6	7 F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
$\begin{aligned} & \hline \text { Negate } \\ & \text { (2's Complement) } \end{aligned}$	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Srift Lef:	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Srift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	40	1	4	5D	1	4	3D	2	6	70	1	6	6D	2	7

Table 3 : Branch Instructions.

Function		Relative Addressing Mode		
	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFF Higher	BHI	22	2	4
Branch IFF Lower or Same	BLS	23	2	4
Branch IFF Carry Clear	BCC	24	2	4
(branch IFF higher or same)	(BHS)	24	2	4
Branch IFF Carry Set	BCS	25	2	4
(branch IFF lower)	(BLO)	25	2	4
Branch IFF Not Equal	BNE	26	2	4
Branch IFF Equal	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branch IFF Plus	BPL	2 A	2	4
Branch IFF Minus	BMI	$2 B$	2	4
Branch IFF interrupt mask bit is clear.	BMC	$2 C$	2	4
Branch IFF interrupt mask bit is set.	BMS	$2 D$	2	4
Branch IFF interrupt line is low.	BIL	$2 E$	2	4
Branch IFF interrupt line is high.	BIH	$2 F$	2	4
Branch to Subroutine	BSR	AD	2	8

Table 4 : Bit Manipulation Instructions.

Function		Addressing Modes					
	Mnemonic	Bit Set/clear			Bit Test and Branch		
		$\begin{gathered} \text { Op } \\ \text { Code } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{array}{c\|} \hline \# \\ \text { Cycles } \end{array}$	$\begin{gathered} \text { Op } \\ \text { Code } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Branch IFF Bit n is set	BRSET $\mathrm{n}(\mathrm{n}=0 \ldots 7)$				2•n	3	10
Branch IFF Bit n is clear	BRCLR $\mathrm{n}(\mathrm{n}=0 \ldots 7)$				$01+2 \cdot n$	3	10
Set Bit n	BSET n ($\mathrm{n}=0 . . .7$)	$10+2 \cdot n$	2	7			
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=0 . . .7)$	$11+2 \cdot n$	2	7			

Table 5 : Control Instructions.

Function		Inherent		
	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	$9 F$	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	$9 B$	1	2
Clear Interrupt Mask Bit	CLI	9 A	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	9 C	1	2
No-operation	NOP	$9 D$	1	2

Table 6 : Instruction Set.

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	Indexed (no offset)	Indexed (8 Bits)	Indexed (16 Bits)	Bit Set/Clear		H	1	N	z	C
ADC		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
ASL	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
ASR	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
BCC					X						\bullet	\bullet	\bullet	\bullet	\bullet
BCLR									X		\bullet	\bullet	\bullet	\bullet	\bullet
BCS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BEQ					X						\bullet	\bullet	\bullet	\bullet	\bullet
BHCC					X						\bullet	-	\bullet	\bullet	\bullet
BHCS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BHI					X						\bullet	\bullet	\bullet	\bullet	\bullet
BHS					X						\bullet	-	\bullet	\bullet	\bullet
BIH					X						\bullet	\bullet	\bullet	-	\bullet
BIL					X						\bullet	\bullet	\bullet	\bullet	\bullet
BIT		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
BLO					x						\bullet	\bullet	\bullet	\bullet	\bullet
BLS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BMC					X						\bullet	\bullet	\bullet	\bullet	\bullet
BMI					X						\bullet	\bullet	-	\bullet	\bullet
BMS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BNE					X						\bullet	\bullet	-	\bullet	\bullet
BPL					X						\bullet	\bullet	\bullet	\bullet	\bullet
BRA					X						\bullet	\bullet	\bullet	\bullet	\bullet
BRN					X						\bullet	\bullet	\bullet	\bullet	\bullet
BRCLR										X	\bullet	\bullet	\bullet	\bullet	\wedge
BRSET										X	\bullet	\bullet	\bullet	\bullet	\wedge
BSET									X		\bullet	\bullet	\bullet	\bullet	\bullet
BSR					X						\bullet	\bullet	\bullet	\bullet	\bullet
CLL	X								\cdot		\bullet	\bullet	\bullet	\bullet	0

EF6805P2

Table 6': Instruction Set (continued).

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	$\left\|\begin{array}{c} \text { Indexed } \\ \text { (no offset) } \end{array}\right\|$	Indexed (8 Bits)	Indexed (16 Bits)	$\begin{array}{\|c} \text { Bit } \\ \text { Set/clear } \end{array}$	Bit Branch	H	1	N	Z	C
CLI	X										\bullet	0	-	-	-
CLR	X		X			X	X				\bullet	-	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			X	X				\bullet	\bullet	\wedge	\wedge	1
CPX		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
DEC	X		X			X	X				\bullet	-	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
INC	X		X			X	, x				\bullet	\bullet	\wedge	\wedge	\bullet
JMP			X	X		X	X	X			\bullet	-	-	\bullet	\bullet
JSR			X	X		X	X	X			\bullet	\bullet	\bullet	\bullet	\bullet
LDA		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
LSL	x		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
LSR	X		X			X	X				\bullet	\bullet	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
NOP	X										\bullet	\bullet	\bullet	\bullet	\bullet
ORA		X	x	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
ROL	x		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
RSP	X										\bullet	\bullet	\bullet	\bullet	\bullet
RTI	X										?	?	$?$?	?
RTS	X										\bullet	\bullet	\bullet	\bullet	\bullet
SBC		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SEC	X										\bullet	\bullet	\bullet	\bullet	1
SEI	X										\bullet	1	\bullet	\bullet	\bullet
STA			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
STX			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SWI	X										\bullet	1	\bullet	\bullet	\bullet
TAX	X										\bullet	\bullet	\bullet	-	\bullet
TST	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\bullet
TXA	X										\bullet	-	\bullet	\bullet	\bullet
Condition Code Symbols :							Z Zero								
H	Half Carry (from bit 3)						,	Caro Carryborrow							
1	Interrupt MaskNegative (sign bit)						\wedge	Test and Set if True, Cleared Otherwise							
N							-								

HMOS 6805 FAMILY

Features	EF6805P2	EF6805P6	EF6805R2	EF6805R3	EF6805U2	EF6805U3
Technology	HMOS	HMOS	HMOS	HMOS	HMOS	HMOS
Number of Pins	28	28	40	40	40	40
On-chip RAM (bytes)	64	64	64	112	64	112
On-chip User ROM (bytes)	1100	1796	2048	3776	2048	3776
External Bus	None	None	None	None	None	None
Bidirectional I/O Lines	20	20	24	24	24	24
Unidirectional I/O Lines	None	None	6 Inputs	6 Inputs	8 Inputs	8 Inputs
Other I/O Features	Timer	Timer	Timer, A/D	Timer, A/D	Timer	Timer
External Interrupt Inputs	1	1	2	2	2	2
STOP and WAIT	No	No	No	No	No	No

Low	Bit Manipulation		Branct	Re	
	${ }^{\text {B／}}$	15	HEL		INM
	0×0	C011	$\infty^{2} 18$	∞^{3}	0100
${ }_{0}^{0} 0$	${ }_{3}^{\text {Tu }}$ BRSETO	$L_{2} \text { BSETO }{ }^{\circ}$	BRA		NEG
001	$\begin{array}{\|l} \hline{ }^{10} \text { BRCLIFO } \\ 3 \\ \hline \end{array}$	BCLRO	${ }_{2}^{4} \mathrm{BRN}$		
${ }^{2}+10$	$\begin{array}{\|c\|} \hline \text { BRSET1 } \\ 3 \\ \hline \end{array}$	${ }_{2}^{\text {BSET } 1} \text { ESC }$	${ }_{2}^{4} \text { 日HI }$		
－311	${ }_{3}{ }^{\text {BRCLF }} 1$	$\text { BCLR1 } 1$	BLS	${ }_{2}^{6} \mathrm{COM}$	${ }^{4} \text { COMA }$
${ }_{0100}^{4}$	Po	BSET2 asc	${ }_{2}^{4} \mathrm{BCC}$	${ }_{2} \text { LSR }$	${ }^{4}$ LSRA
$\begin{gathered} 5 \\ 8101 \end{gathered}$	$\begin{array}{\|c} 18 \\ \text { BRCLF2 } \\ -\quad \text { BIB } \\ \hline \end{array}$	${ }_{2}^{\text {BCLR2 }}$	${ }_{2}^{4} \mathrm{BCS}$		
$\stackrel{6}{0}$	$\begin{array}{\|l\|} \hline \text { Y } \\ \text { BRSET3 } \\ 3 \end{array}$	$\begin{gathered} \text { BSET3 } \\ \hline \text { QSC } \\ \hline \end{gathered}$	$-{ }_{4}^{\mathrm{BNE}_{\mathrm{BE}}}$	${ }_{3}^{6} \text { FOR }$	$\begin{array}{\|l\|} \hline \\ 1 \\ \hline \end{array}$
87	$\begin{array}{\|cc\|} \hline 10 & \\ 3 R C L F 3 \\ 3 & \text { ATB } \\ \hline \end{array}$	$\begin{aligned} & \text { BCLR3 } \\ & \hline \text { QSSC } \end{aligned}$	BEO	${ }_{2}{ }^{\text {ASR }}$	${ }_{1}^{4}{ }_{4}^{\text {ASRA }} \mathrm{NH}$
$\stackrel{8}{1000}$	$\begin{array}{\|c\|} \hline 6 \\ 3 R S E T 4 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} \text { BSET4 } \\ 2 \quad \text { OSE } \\ \hline \end{array}$	${ }_{2}{ }_{2}^{B H C C} C_{B L}$	$L_{D, B}$	$\begin{aligned} & 4 \\ & \hline \\ & \hline \end{aligned}$
$\stackrel{9}{100}$	$\begin{aligned} & 10 \\ & \text { BRCLF4 } \\ & 2 \end{aligned}$	$\begin{aligned} & 7 \text { BCLR4 } \\ & 2 \text { 日SC } \end{aligned}$	${ }_{2}^{4} \mathrm{BHCS}$		ROLA
${ }_{121}$	$\begin{array}{cc} C \\ 3 R S E T 5 \\ 3 & \text { OTA } \end{array}$	$\overbrace{-}^{\text {BSET5 }}$	$2_{2}^{B P L}{ }_{R E L}$	${ }_{2}{ }^{2} C_{D I A}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { DECA } \\ 1 \\ \hline \end{array}$
${ }_{1211}^{8}$	$\begin{array}{cc} 16 & \\ 3 \text { BCLR5 } \\ 3 & \text { OTO } \\ \hline \end{array}$	${ }_{2}^{8 C L R 5}$	${ }_{3}^{4} 3 M_{\mathrm{AEL}}$		
$\underset{10}{\text { C }}$	$\begin{array}{\|c\|} \hline \text { T0 } \\ \text { BRSETB } \\ 70 \end{array}$	$\begin{gathered} \text { BSET6 } \\ \hline \end{gathered}$	${ }_{2}{ }_{2} \mathrm{BMC}_{\mathrm{AEL}}$	${ }^{1 N C_{C l \mid}}$	$\begin{array}{\|ll\|} \hline 4 & \text { INCA } \\ 1 & \\ \hline \end{array}$
${ }_{11} 1$	$\left[\begin{array}{cc} T \\ \text { BRCLR6 } \\ 3 & B y B \end{array}\right]$	$\begin{gathered} \text { BCLRE } \\ \text { OSC } \end{gathered}$	${ }_{2}{ }_{2} \mathrm{BMS}$	$2^{T S T} T_{018}$	$\begin{aligned} & 4 \\ & \hline \\ & 1 \\ & \hline \end{aligned}$
$\underset{1}{\mathrm{E}}$	$\begin{array}{\|l\|} \hline 14 \\ \text { BRSET7 } \\ 3 \\ \hline \end{array}$	${ }_{3}^{7} \text { BSET7 }$	${ }_{2}^{4} \quad \mathrm{BIL}$		
${ }_{1111}$	$\begin{array}{\|c\|} \hline 6 \\ \text { BRCLR7 } \\ 3 \\ \hline \end{array}$	${ }_{2}{ }_{2}^{\text {BCLR } 78} \text { BSC }$	$2_{2}^{\mathrm{BIH}} \mathrm{REL}^{2}$	$\begin{array}{lll} 6 & { }_{2}^{6} R \\ & \\ \hline \end{array}$	$\begin{array}{ll} \hline{ }^{4} \mathrm{CLRA} \\ 1 & \mathrm{INH} \\ \hline \end{array}$

	$\frac{1 N H}{8}$
	\cdots
Ix	$1 .$
	${ }^{6}$ RTS
	${ }^{11}$ SW
I)	
$1 \times$	
${ }_{{ }_{I X}}$	
${ }_{i x}$	
$1 \times$	
x	
Ix	
ix	
T IX	
｜ $1 \times$	

IMM
1010

Repurtor
EXI
$\stackrel{C}{100}$
$\operatorname{sug}_{\mathrm{EXT}}$

Abbreviations for Address Modes

Immediate
Direct
Direct
Extended
Relative
Bit Set／Clear
Bit Set／Clear
Bit Test and Branch
Indexed（No Offset）
Indexed，I Byte（8－Bit）Offset
Indexed， 2 Byte（16－Bit）Offset

PACKAGE MECHANICAL DATA

CB-132 PLASTIC PACKAGE

CB-520 PLCC28

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS-THOMSON on EPROM(s) or an EFDOS/MDOS* disk file.
To initiate a ROM pattern for the MCU, it is necessary to first contact your local SGS-THOMSON representative or distributor.

EPROMs

One 2716 or 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation.

XXX = Customer ID)
After the EPROM is marked, it should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS-THOMSON. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, SGS-THOMSON will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask change and are not production parts. The RVUs are thus not guaranteed by SGS THOMSON. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process inhouse if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS-THOMSON Disk Operating System available on development systems such as DEVICE...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser...

* Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local SGS-THOMSON representative or SGS-THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS-THOMSON Microelectronics representative.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Device	Package			Oper. Temp			Screening Level		
	C	P	F N	L*	V	T	Std	D	
EF6805P2 (1.0MHz)		\bullet	\bigcirc	\bullet	\bullet		\bigcirc	\bigcirc	
Examples : EF6805P2P, EF6805P2FN, EF6805P2PLD, EF6805P2FNLD.									

Package : C : Ceramic DIL, J : Cerdip DIL, P : Plastic DIL, E: LCCC, FN : PLCC
Oper. temp. : $\mathrm{L}^{\star}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C},{ }^{*}$: may be omitted
Screening level : Std : (no-end suffix), D : NFC 96883 level D,
EXORciser is a registered trademark of MOTOROLA Inc

EF6805P6

8-BIT MICROCOMPUTER UNIT

ADVANCE DATA

HARDWARE FEATURES

- 8-BIT ARCHITECTURE
- 64 BYTES OF RAM
- MEMORY MAPPED I/O
- 1796 BYTES OF USER ROM
- 20 TTL/CMOS COMPATIBLE BIDIRECTIONAL I/O LINES (8 lines are LED compatible)
- ON-CHIP CLOCK GENERATOR
- SELF-CHECK MODE
- ZERO CROSSING DETECTION
- MASTER RESET
- COMPLETE DEVELOPMENT SYSTEM SUPPORT ON INICE ${ }^{\circledR}$
- 5V SINGLE SUPPLY

SOFTWARE FEATURES

- SIMILAR TO 6800 FAMILY
- BYTE EFFICIENT INSTRUCTION SET
- EASY TO PROGRAM
- TRUE BIT MANIPULATION
- BIT TEST AND BRANCH INSTRUCTION
- VERSATILE INTERRUPT HANDLING
- VERSATILE INDEX REGISTER
- POWERFUL INDEXED ADDRESSING FOR TABLES
- FULL SET OF CONDITIONAL BRANCHES
- MEMORY USABLE AS REGISTER/FLAGS
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- 10 POWERFUL ADDRESSING MODES
- ALL ADDRESSING MODES APPLY TO ROM, RAM, AND I/O

USER SELECTABLE OPTIONS

- INTERNAL 8-BIT TIMER WITH SELECTABLE CLOCK SOURCE (external timer input or internal machine clock)
- TIMER PRESCALER OPTION (7 Bits, 2^{n})
- 8 BIDIRECTIONAL I/O LINES WITH TTL OR TTL/CMOS INTERFACE OPTION
- CRYSTAL OR LOW-COST RESISTOR OSCILLATOR OPTION
- LOW VOLTAGE INHIBIT OPTION
- VECTORED INTERRUPTS : TIMER, SOFTWARE, AND EXTERNAL
- PORT B OPEN DRAIN DRIVE OPTION

NICE $^{\text {© }}$ SGS-THOMSON development/emulation tool

PIN CONNECTIONS

DESCRIPTION

The EF6805P6 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip microcomputers. This 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and

TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800-based instruction set. The following are some of the hardware and software high-lights of the EF6805P6 MCU.

Figure 1 : EF6805P6 HMOS Microcomputer Block Diagram.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage (except pin 6)	-0.3 to +7.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{1}	Junction Temperature	Plastic SURPICOP (Plastic chip-carrier)	150
${ }^{\circ} \mathrm{C}$			
		150	

This device contains circuitry to protect time inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit For proper operation it is recommended that V_{m} and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{Ss}} \leq\left(\mathrm{V}_{\mathrm{m}}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{cc}}$ Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g. either V_{ss} or V_{cc}).

THERMAL DATA

θ_{JA}	Thermal Resıstance	Plastıc SURPICOP (plastic chip-carrier)	120
		120	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$T_{J}=T_{A}+\left(P_{D} \cdot \theta_{J A}\right)$
Where :
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
θ JA $=$ Package Thermal Resistance, Junction-to-
Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\mathrm{D}}=\mathrm{Pint}_{\text {IN }}+\mathrm{P}_{\text {PORT }}$
$P_{\text {int }}=\operatorname{lcc} \times V_{c c}$, Watts - Chip Internal Power
Pport $=$ Port Power Dissipation, Watts - User Determined
For most applications PPORT \ll PINT and can be ne-
glected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPort is neglected) is :
$P_{D}=K \div\left(T_{J}+273^{\circ} \mathrm{C}\right)$
Solving equations 1 and 2 for K gives :
$K=P D \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta_{J A} \cdot P_{D}{ }^{2}$
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{H}	$\begin{aligned} & \text { Input High Voltage } \\ & \text { RESET }\left(4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.75\right) \\ & \text { (Vcc }<4.75) \\ & \mathrm{INT}\left(4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.75\right) \\ & \text { (VCC }<4.75) \\ & \text { All Other } \end{aligned}$	$\begin{gathered} 4.0 \\ \mathrm{v}_{\mathrm{cc}}-0.5 \\ 4.0 \\ \mathrm{v}_{\mathrm{cc}}-0.5 \\ 2.0 \\ \hline \end{gathered}$	*	$V_{c c}$ $V_{c c}$ Vcc $V_{c c}$ $V_{c c}$	V
V_{IH}	Input High Voltage Timer Timer Mode Self-check Mode	2.0	10.0	$\begin{aligned} & V_{c c} \\ & 15.0 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage RESET INT All Other	$\begin{aligned} & -0.3 \\ & -0.3 \\ & -0.3 \end{aligned}$	*	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	v
VIRES + VIRES -	$\overline{\text { RESET }}$ Hysteresis Voltage (See figures 11, 12, and 13) "Out of Reset" "Into Reset"	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	V
$V_{\text {INT }}$	$\overline{\mathrm{INT}}$ Zero Crossing Input Voltage, Through a Capacitor	2.0		4.0	$\mathrm{Vac}_{\text {a } \mathrm{p}}$
Pint	$\begin{array}{\|l} \hline \text { Internal Power Dissipation - No Port Loading } \\ \mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ \hline \end{array}$		400	690	mW
$\mathrm{C}_{\text {In }}$	Input Capacitance XTAL All Other		$\begin{aligned} & 25 \\ & 10 \end{aligned}$		pF
$\mathrm{V}_{\text {LVR }}$	Low Voltage Recover			4.75	V
$\mathrm{V}_{\text {LVI }}$	Low Voltage Inhbit $\begin{array}{r}0 \text { to }+70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C}\end{array}$	$\begin{gathered} 2.75 \\ 3.1 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$		V
1 In	Input Current TIMER $\left(\mathrm{V}_{\text {In }}=0.4 \mathrm{~V}\right)$ INT ($\mathrm{V}_{\text {In }}=2.4 \mathrm{~V}$ to V_{cc}) EXTAL ($\mathrm{V}_{\mathrm{In}}=2.4 \mathrm{~V}$ to V_{cc}, crystal option) ($\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$, crystal option) $\overline{\operatorname{RESET}}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right)$ (external capacitor charging current)	-4.0	20	$\begin{aligned} & 20 \\ & 50 \\ & 10 \\ &-1600 \\ &- 50 \end{aligned}$	$\mu \mathrm{A}$

* Due to internal biasing, this input (when unused) floats to approximately 20 Vdc .

PORT DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{Cc}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{Ss}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)
PORT A WITH CMOS DRIVE ENABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	3.5			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage, $\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}(\mathrm{max})$	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage, $\mathrm{I}_{\text {Load }}=-500 \mu \mathrm{~A}(\mathrm{max})$	0.3		0.8	V
I_{IH}	Hi-Z State Input Current $\left(\mathrm{V}_{\mathrm{In}}=2.0 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			-300	$\mu \mathrm{~A}$
I_{IL}	Hi-Z State Input Current $\left(\mathrm{V}_{\mathrm{In}}=0.4 \mathrm{~V}\right)$			-500	$\mu \mathrm{~A}$

PORT B

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage, $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			1.0	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-200 \mu \mathrm{~A}$	2.4			V
I_{OH}	Darlington Current Drive (source), $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	-1.0		-10	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	-0.3		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		2	20	$\mu \mathrm{~A}$

PORT B WITH OPEN DRAIN OPTION

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OH}	Output High Voltage	2.4		13.0	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		2	20	$\mu \mathrm{~A}$

PORT C AND PORT A WITH CMOS DRIVE DISABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	-0.3		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	Hi-Z State Input Current		2	20	$\mu \mathrm{~A}$

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency	0.4		4.2	MHz
$\mathrm{t}_{\text {cyc }}$	Cycle Time ($4 / \mathrm{f}_{\text {osc }}$)	0.95		10	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WL }}, \mathrm{t}_{\text {WH }}$	$\overline{\text { INT }}$ and TIMER Pulse Width (see interrupt section)	$t_{\text {cyc }}+250$			ns
$t_{\text {RWL }}$	$\overline{\text { RESET Pulse Width }}$	$\mathrm{t}_{\mathrm{cyc}}+250$			ns
$\mathrm{t}_{\text {RHL }}$	$\overline{\text { RESET }}$ Delay Time (external capacitance $=10 \mu \mathrm{~F}$)		100		ms
$\mathrm{f}_{\text {INT }}$	INT Zero Crossing Detection Input Frequency ($\pm 5^{\circ}$ accuracy)	0.03		1.0	kHz
	External Clock Input Duty Cycle (EXTAL)	40	50	60	\%

Figure 3 : TTL Equivalent Test Load (port B).

Figure 4 : CMOS Equivalent Test Load (port A).

Figure 5 : TTL Equivalent Test Load (ports A and C).

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in figure 1, are described in the following paragraphs.
Vcc AND Vss. Power is supplied to the MCU using these two pins. $V_{c c}$ is power and $V_{s s}$ is the ground connection.
INT. This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts section for additional information.
XTAL AND EXTAL. These pins provide connections to the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on the user selectable manufacturing mask option, can be connected to these pins to provide a system clock source with various stability/cost tradeoffs. Lead lengths and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options section for recommendations about these inputs.
TIMER. This pin allows an external input to be used to decrement the internal timer circuitry. Refer to Timer section for additional information about the timer circuitry.
RESET. This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. Refer to Resets section for additional information.
NUM. This pin is not for user application and must be connected to $V_{\text {ss }}$.
INPUT/OUTPUT LINES (PAO-PA7, PB0-PB7, PCOPC3). These 20 lines are arranged into two 8 -bit ports (A and B) and one 4-bit port (C). All lines are programmable as either inputs or outputs under software control of the data direction registers. Refer to Inputs/outputs section for additional information.

MEMORY

As shown in figure 6, the MCU is capable of addressing 2048 bytes of memory and I/O registers with its program counter. The EF6805P6 MCU has implemented 1984 of these locations. This consists of : 1796 bytes of user ROM, 116 bytes of self-check ROM, 64 bytes of user RAM, 6 bytes of port I/O, and 2 timer registers.
The stack area is used during the processing of interrupt and subroutine calls to save the processor state. The register contents are pushed onto the stack in the order shown in figure 7. Because the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first ; then the high order three bits (PCH) are stacked. This ensures that the program counter is loaded correctly, during pulls from the stack, since the stack pointer increments during pulls. A subroutine call results in only the program counter (PCL, $\mathrm{PCH})$ contents being pushed onto the stack. The remaining CPU registers are not pushed.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with $1 / O$ and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in figure 8 and are explained in the following paragraphs.

Figure 6 : MCU Address Map.

Figure 7 : Interrupt Stacking Order.

ACCUMULATOR (A). The accumulator is a general purpose 8-bit register used to hold operands and results of arithmetic calculations or data manipulations.

INDEX REGISTER (X). The index register is an 8bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The index register may also be used as a temporary storage area.

PROGRAM COUNTER (PC). The program counter is an 11-bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP). The stack pointer is an 11bit register that contains the address of the next free location on the stack. Initially, the stack pointer is set to location \$07F and is decremented as data is pushed onto the stack and incremented as data is pulled from the stack. The six most significant bits of the stack pointer are permanently configured to 000011 . During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F. Subroutines and interrupts may be nested down to location $\$ 061$ (31 bytes maximum)

Figure 8 : Programming Model.

which allows the programmer to use up to 15 levels of subroutine calls.

CONDITION CODE REGISTER (CC). The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each individual condition code register bit is explained in the following paragraphs.
HALF CARRY (H) - Set during ADD and ADC instructions to indicate that a carry occurred between bits 3 and 4.
INTERRUPT (I) - This bit is set to mask (disable) the timer and external interrupt (INT). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt is cleared.
NEGATIVE (IN) - Used to indicate that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in result equal to a logical one).
ZERO (Z) - Used to indicate that the result of the last arithmetic, logical, or data manipulation was zero.
CARRY/BORROW (C) - Used to indicate that a carry or borrow out of the arithmetic logic unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The EF6805P6 MCU timer circuitry is shown in figure 9 . The 8 -bit counter may be loaded under program control and is decremented toward zero by the clock input (prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control register (TCR) is set. The timer interrupt can be masked (disabled) by setting the timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (I bit) in the condition code register also prevents a timer interrupt from being processed. The MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$7F8 and \$7F9, and executing the interrupt routine ; see the Interrupt section. THE TIMER INTERRUPT REQUEST BIT MUST BE CLEARED BY SOFTWARE.
The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the TIMER input pin or it can be the internal $\phi 2$ sig-
nal. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled twl, twh. The pin logic that recognizes the high (or low) state on the pin must also recognize the low (or high) state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows: (assumes 50/50 duty cycle for a given period)
$\mathrm{t}_{\mathrm{cyc}} \times 2+250 \mathrm{~ns}=$ period $=\frac{1}{\text { freq }}$
The period is not simply twl + twh. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 ns twice).
When the $\phi 2$ signal is used as the source, it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. (NOTE : For ungated $\phi 2$ clock inputs to the timer prescaler, the TIMER pin should be tied to $V_{C C}$). The source of the clock input is one of

Figure 9 : Timer Block Diagram.

the mask options that is specified before manufacture of the MCU.
A prescaler option can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture.
The timer continues to count past zero, falling through to \$FF from zero and then continuing the count. Thus, the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occurred and not disturb the counting process.
At power-up or reset, the prescaler and counter are initialized with all logical ones, the timer interrupt request bit (bit 7) is cleared, and the timer interrupt mask bit (bit 6) is set.

SELF-CHECK

The self-check capability of the EF6805P6 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in figure 10 and monitor the output of port C bit 3 for an oscillation of approximately 7 Hz . A 9 -volt level on the TIMER input, pin 7, energizes the ROM-based selfcheck feature. The self-check program exercises the RAM, ROM, TIMER, interrupts, and I/O ports.

RESETS

The MCU can be reset three ways : by initial powerup, by the external reset input (RESET), and by an optional internal low voltage detect circuit ; see
figure 11. The internal circuit connected to the RESET pin consists of a Schmitt trigger which senses the RESET line logic level. The Schmitt trigger provides an internal reset voltage if it senses a logic " 0 " on the RESET pin. During power-up, the Schmitt trigger switches on (removes reset) when the RESET pin voltage rises to VIREs +. When the RESET pin voltage falls to a logical " 0 " for a period longer than one tcyc, the Schmitt trigger switches off to provide an internal reset voltage. The "switch off" voltage occurs at VIRES -. A typical reset Schmitt trigger hysteresis curve is shown in figure 12.
During power-up, a delay of $t_{\text {RHL }}$ is needed before allowing the RESET input to go high. This time allows the internal clock generator to stabilize. Connecting a capacitor to the RESET input, as shown in figure 13 , typically provides sufficient delay. See figure 17 under Interrupts section for the complete reset sequence.

INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. A manufacturing mask option is required to select either the crystal oscillator or the RC oscillator circuit. The oscillator frequency is internally divided by four to produce the internal system clocks.
The different connection methods are shown in figure 14. The crystal specifications and suggested PC board layouts are given in figure 15. A resistor selection graph is given in figure 16.

Figure 10 : Self-check Connections.

* This connection depends on the clock oscillator user selectable mask option Use crystal if that option is selected

The crystal oscillator startup time is a function of many variables : crystal parameters (especially Rs), oscillator load capacitance, IC parameters, ambient temperature, and supply voltage. To ensure rapid
oscillator startup, neither the crystal characteristics nor the load capacitance should exceed recommendations.

Figure 11 : Power and RESET Timing.

Figure 12 : Typical Reset Schmitt Trigger Hysteresis.

Figure 13 : Power-up Reset Delay Circuit.

Figure 14 : Clock Generator Options.

Approximately 25% to 50\% Accuracy
Typical $t_{\text {cyc }}=1.25 \mu \mathrm{~s}$
External Jumper

Note: The recommended CL value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF on XTAL. The exact value depends on the Motional-Arm parameters of the crystal used.

Figure 15 : Crystal Motional Arm Parameters and Suggested PC Board Layout.

Note : Keep crystal leads and circuit connections as short as possible.

Figure 16 : Typical Frequency Selection for Resistor Oscillator Option.

INTERRUPTS

The EF6805P6 MCU can be interrupted three different ways: through the external interrupt (INT) input pin, the internal timer interrupt request, or the software interrupt instruction (SWI). When any interrupt occurs : processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU registers, setting the I bit, and vector fetching requires a total of 11 $t_{c y c}$ periods for completion.

A flowchart of the interrupt sequence is shown in figure 17. The interrupt service routine must end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.
When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise, the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.
If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.
The external interrupt is internally synchronized and then latched on the falling edge of INT. A sinusoidal input signal (fint maximum) can be used to generate an external interrupt, as shown in figure 18(a), for use as a zero-crossing detector. This allows applications such as servicing time-of-day routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a $2 f$ clock.
For digital applications, the INT pin can be driven by a digital signal. The maximum frequency of a signal that can be recognized by the TIMER or INT pin logic is dependent on the parameter labeled twl, twh. The pin logic that recognizes the high (or low) state on

Figure 17 : $\overline{\text { RESET }}$ and Interrupt Processing Flowchart.

Figure 18 : Typical Interrupt Circuits.

the pin must also recognize the low (or high) state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows : (assumes 50/50 duty cycle for a given period).

$$
\operatorname{tcyc} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The period is not simply twL + twh. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250ns twice). See figure 18(b).
A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as break-points for debugging or as system calls.

INPUT/OUTPUT

There are 20 input/output pins. The $\overline{\mathrm{INT}}$ pin may also be polled with branch instructions to provide an additional input pin. All pins (port A, B, and C) are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic " 1 " for output or a logic " 0 " for input. On reset, all the DDRs are initialized to a logic "0" state to put the ports in the input mode. The port output registers are not initialized on reset but may be written to before setting the DDR bits to avoid undefined levels. When programmed as outputs, the latched output data is readable as input data, re-
gardless of the logic levels at the output pin due to output loading ; see figure 19. When port B is programmed for outputs, it is capable of sinking 10 mA and sourcing 1 mA on each pin.
All input/output lines are TTL compatible as both inputs and outputs. Ports B and C are CMOS compatible as inputs. Port A may be made CMOS compatible as outputs with a mask option. The address map in figure 6 gives the address of data registers and DDRs. The register configuration is provided in figure 20 and figure 21 provides some examples of port connections.

Caution

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004$, $\$ 005$, and \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set or clear a DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
The latched output data bit (see figure 19) may always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data registers and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions since the data read corresponds to the pin level if the DDR is an input ("0") and corresponds to the latched output data when the DDR is an output ("1").

Figure 19 : Typical Port I/O Circuitry.

*DDR is a write-only register and reads as all "1s"
** Ports A (with CMOS drive disabled), B and C are three state ports Port A has optional intemal pullup devices to provide CMOS drive capabilty. See Electrical Characteristics tables for complete information

Figure 20 : MCU Register Configuration.

Figure 21 (a) : Typical Output Mode Port Connections.

Port A, bit 7. programmed as output, driving CMOS loads and bit 4 driving one TTL load directly using CMOS output option.

Port B, bit 0 and bit 1 programmed as output, driving LEDs directiy.

Port B. bit 5 programmed as output, dnving Darlington-base directly.

Port C, bits 0-3 programmed as output, driving CMOS loads, using external pullup resistors

Figure 21(b) : Typical Input Mode Port Connections.

TTL driving port A directly.

CMOS or TTL driving port B directly.

CMOS and TTL driving port C directly.

SOFTWARE

BIT MANIPULATION

The EF6805P6 MCU has the ability to set or clear any single random access memory or input/output bit (except the data direction register, see Caution under Input/Output section), with a single instruction (BSET, BCLR). Any bit in page zero including ROM, except the DDRs, can be tested, using the BRSET and BRCLR instructions, and the program branches as a result of its state. The carry bit equals the value of the bit referenced by BRSET or BRCLR. A rotate instruction may then be used to accumulate serial
input data in a RAM location or register. The capability to work with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle I/O bits as control lines.
The coding example in figure 22 illustrates the usefulness of the bit manipulation and test instructions. Assume that the MCU is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, LSB first, out of the device. The MCU waits until the data is ready, clocks the external device, picks up the data in the carry flag (C bit), clears the clock line, and finally accumulates the data bit in a RAM location.

Figure 22 : Bit Manipulation Example.

ADDRESSING MODES

The EF6805P6 MCU has 10 addressing modes which are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the 6805 Family User's Manual.
The term "effective address" (EA) is used in describing the address modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This includes the on-chip RAM and I/O registers and

128 bytes of ROM. Direct addressing is an effective use of both memory and time.
EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions using extended addressing are capable of referencing arguments anywhere in memory with a single 3-byte instruction. When using the assembler, the programmer need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.

RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if and only if the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset when using the assembler
since it calculates the proper offset and checks to see if it is within the span of the branch.

INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.
INDEXED, 8-BIT OFFSET - In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ($\$ 1 \mathrm{FE}$ is the last location at which the instruction may begin).
INDEXED, 16-BIT OFFSET - In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset, except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended addressing, the assembler determines the shortest form of indexed addressing.

BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2-byte instruction. See Caution under the Input/Output section.
BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit and condition (set or clear) which is to be tested is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset is in the third byte and is added to the value of the PC if the branch condition is true. This single 3-byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the
opcode address. The state of the tested bit is also transferred to the carry bit of the condition code register. See Caution under the Input/Output section.
INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instruction with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805P6 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operands. Refer to table 1.
READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register (see caution under Input/output section). The test for negative or zero (TST) insruction is included in read-modify-write instructions though it does not perform the write. Refer to Table 2.
BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to table 3.
BIT MANIPULATIONINSTRUCTIONS - These instructions are used on any bit in the first 256 bytes of the memory (see caution under Input/output section). One group either sets or clears. The other group performs the bit test branch operations. Refer to table 4.

CONTROL INSTRUCTIONS - The control instructions control the MCU operations during program execution. Refer to table 5.

ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in table 6.
OPCODE MAP SUMMARY - Table 7 is an opcode map for the instructions used on the MCU.

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			$\begin{gathered} \text { Indexed } \\ \text { (no offset) } \end{gathered}$			Indexed(8 bit offset)		
Function	Mnemonic	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \# \\ \text { Cycles } \end{array}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \\ \text { Bytes } \\ \hline \end{array}{ }^{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \\ \text { Cycles } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { code } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \# \\ \text { Byites } \end{array}$	$\begin{array}{c\|} \hline \# \\ \text { Cycles } \end{array}$
Increment	INC	4C	1	4	5C	1	4	3C	2	6	7 C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3F	2	6	7F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2's complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	5D	1	4	3D	2	6	7 D	1	6	6D	2	7

Table 3 : Branch Instructions.

		Relative Addressing Mode		
Function	Mnemonic	Op Code	\# Bytes	\# Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFF Higher	BHI	22	2	4
Branch IFF Lower or Same	BLS	23	2	4
Branch IFF Carry Clear	BCC	24	2	4
(branch IFF higher or same)	(BHS)	24	2	4
Branch IFF Carry Set	BCS	25	2	4
(branch IFF lower)	(BLO)	25	2	4
Branch IFF Not Equal	BNE	26	2	4
Branch IFF Equal	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branch IFF Plus	BPL	2 A	2	4
Branch IFF Minus	BMI	2B	2	4
Branch IFF Interrupt Mask Bit is Clear	BMC	2 C	2	4
Branch IFF Interrupt Mask Bit is Set	BMS	2D	2	4
Branch IFF Interrupt Line is Low	BIL	2 E	2	4
Branch IFF Interrupt Line is High	BIH	2 F	2	4
Branch to Subroutine	BSR	AD	2	8

Table 4 : Bit Manipulation Instructions.

Function	Mnemonic	Addressing Modes					
		Bit Set / Clear			Bit Test and Branch		
		Op Colde	\# Bytes	\# Cycles	$O p$ Code	\# Bytes	\# Cycles
Branch IFF Bit n is set	BRSET $\mathrm{n}(\mathrm{n}=0 . .7$)				$2 \cdot n$	3	10
Branch IFF Bit n is clear	BRCLR $n(n=0 . . .7)$				$01+2 \cdot n$	3	10
Set Bit n	BSET $\mathrm{n}(\mathrm{n}=0 \ldots 7)$	$10+2 \cdot n$	2	7			
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=0 \ldots 7)$	$11+2 \cdot n$	2	7			

Table 5 : Control Instructions.

		Inherent		
Function	Mnemonic	Op Code	\# Bytes	
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	9 F	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	9B	1	2
Clear Interrupt Mask Bit	CLI	9A	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	9C	1	2
No-operation	NOP	9D	1	2

Table 6 : Instruction Set.

	Addressing Modes										Condition Code				
Mnem.	Inherent	Immediate	Direct	Extended	Relative	$\begin{array}{\|l\|} \hline \text { Indexed } \\ \text { (no offset) } \end{array}$	Indexed (8 bits)	Indexed (16 bits)	$\begin{gathered} \text { Bit } \\ \text { Set/Clear } \end{gathered}$	$\begin{aligned} & \text { Bit } \\ & \text { Test \& } \\ & \text { Branch } \end{aligned}$	H	1	N	Z	C
ADC		X	X	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
ADD		X	x	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			-	-	\wedge	\wedge	-
ASL	X		X			X	X				-	-	\wedge	\wedge	\wedge
ASR	X		X			X	X				-	-	\wedge	\wedge	\wedge
BCC					X						-	-	-	-	-
BCLR									X		-	-	-	-	-
BCS					X						-	-	-	-	-
BEQ					X						-	-	-	-	-
BHCC					X						-	-	-	-	-
BHCS					X						-	-	-	-	-
BHI					X						-	-	-	-	-
BHS					X						-	-	-	-	-
BIH					X						-	-	-	-	-
BIL					X						-	-	-	-	-
BIT		X	X	X		X	X	X			-	-	\wedge	\wedge	-
BLO					X						-	-	-	-	-
BLS					X						-	-	-	-	-
BMC					X						-	-	-	-	-
BMI					X						-	-	-	-	-
BMS					X						-	-	-	-	-
BNE					X						-	-	-	-	-
BPL					X						-	-	-	-	-
BRA					X						-	-	-	-	-
BRN					X						-	-	-	-	-
BRCLR										X	-	-	-	-	\wedge
BRSET										X	-	-	-	-	\wedge
BSET									X		-	-	-	-	-
BSR					X						-	-	-	-	-
CLL	X										-	-	-	-	0

Table 6: Instruction Set (continued).

Table 7 : EF6805 HMOS Family OP Code Mape.

Table 7 : (continued).

Abbreviations for Address Modes
INH Inherent
IMM Immediate
DIR Direct
EXT Extended
REL Relative
BSC Bit Set/clear
BTB Bit Test and Branch
IX Indexed (no offset)
IX1 Indexed, 1 Byte (8-bit) Offset
IX2 Indexed, 2 Byte (16-bit) Offset

PACKAGE MECHANICAL DATA

DIL-132 PLASTIC PACKAGE

PLASTIC LEADED CHIP CARRIER

EF6805 HMOS FAMILY

Features	EF6805P2	EF6805P6	EF6805R2	EF6805R3	EF6805U2	EF6805U3
Technology	HMOS	HMOS	HMOS	HMOS	HMOS	HMOS
Number of Pins	28	28	40	40	40	40
On-chip RAM (bytes)	64	64	64	112	64	112
On-chip User ROM (bytes)	1100	1796	2048	3776	2048	3776
External Bus	None	None	None	None	None	None
Bidirectional I/O Lines	20	20	24	24	24	24
Unidirectional I/O Lines	None	None	6 Inputs	6 Inputs	8 Inputs	8 Inputs
Other I/O Features	Timer	Timer	Timer, A/D	Timer, A/D	Timer	Timer
External Interrupt Inputs	1	1	2	2	2	2
STOP and WAIT	No	No	No	No	No	No

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS-THOMSON Microelectronics on EPROM(s) or an EFDOS/MDOS* disk file.
To initiate a ROM pattern for the MCU, it is necessary to first contact your local SGS-THOMSON representative or distributor.

EPROMs

The ET2716 or ET2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS-THOMSON. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, SGS-THOM-

SON will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by SGS THOMSON Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, single-density, 8 -inch, EFDOS/MDOS* compatible floppies. The customer must write the binary file name and company name on the disk with a felt-tippen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process in-house if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS-THOMSON Microelectronics Disk Operating System available on development systems such as DEVICE...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser...

[^14]
ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and quality level. Other possibilities on request.

Part Number	Package			Oper. Temp.				Quality Level			
	P	FN	\mathbf{L}^{\star}	V	A	Std $^{\star \star}$	\mathbf{D}	G	B		
EF6805P6	\bullet	\bullet	\bullet	\bullet		\bullet					

Examples: EF6805P6P, EF6805P6FN, EF6805P6PV, EF6805P6FNV
P : Plastic DIL, FN : SURPICOP (plastic chip-carier at JEDEC std 050 " center leaded type A)
$\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{A}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C},{ }^{*}$: may be omitted
Quality levels in accordance with NFC $96883-{ }^{* *}$: No end-suffix for standard level products.
EXORciser is a registered trademark of MOTOROLA Inc.

8-BIT MICROCOMPUTER WITH A/D

HARDWARE FEATURES

- A/D CONVERTER
- 8-BIT CONVERSION, MONOTONIC
- 4 MULTIPLEXED ANALOG INPUTS
- RATIOMETRIC CONVERSION
- 32 TTL/CMOS COMPATIBLE I/O LINES
- 24 BIDIRECTIONAL (8 Lines are LED Compatible)
- 8 INPUT-ONLY
- 2048 BYTES OF USER ROM
- 64 BYTES OF RAM
- SELF-CHECK MODE
- ZERO-CROSSING DETECT/INTERRUPT
- INTERNAL 8-BIT TIMER WITH 7-BIT MASK PROGRAMMABLE PRESCALER AND CLOCK SOURCE
- 5V SINGLE SUPPLY

SOFTWARE FEATURES

- 10 POWERFUL ADDRESSING MODES
- BYTE EFFICIENT INSTRUCTION SET WITH TRUE BIT MANIPULATION, BIT TEST, AND BRANCH INSTRUCTIONS
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- POWERFUL INDEXED ADDRESSING FOR TABLES
- FULL SET OF CONDITIONAL BRANCHES
- MEMORY USABLE AS REGISTER/FLAGS
- COMPLETE DEVELOPMENT SYSTEM SUPPORT INICE ${ }^{\text {® }}$

USER SELECTABLE OPTIONS

- INTERNAL 8-BIT TIMER WITH SELECTABLE CLOCK SOURCE (external timer input or internal machine clock)
- TIMER PRESCALER OPTION (7 Bits, 2^{n})
- 8 BIDIRECTIONAL I/O LINES WITH TTL OR TTL/CMOS INTERFACE OPTION
- 8 BIDIRECTIONAL I/O LINES WITH TTL OR OPEN-DRAIN INTERFACE OPTION
- CRYSTAL OR LOW-COST RESISTOR OSCILLATOR OPTION
- LOW VOLTAGE INHIBIT OPTION
- VECTORED INTERRUPTS : TIMER, SOFTWARE, AND EXTERNAL
- USER CALLABLE SELF-CHECK SUBROUTINES

DESCRIPTION

The EF6805R2 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, 4-channel 8-bit A/D, and TIMER. It is designed for the user
who needs an economical microcomputer with the proven capabilities of the 6800-based instruction set. A comparison of the key features of several members of the 6805 Family of Microcomputers is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805R2 MCU.

Figure 1 : EF6805R2 HMOS Microcomputer Block Diagram.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	Supply Voltage	-0.3 to +7.0	V
$\mathrm{V}_{\text {In }}$	Input Voltage (except TIMER in self-check mode and open-drain inputs)	-0.3 to +7.0	V
$V_{\text {In }}$	Input Voltage (open-drain pins, TIMER pin in self-check mode)	-0.3 to +15.0	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range $\left(T_{L}\right.$ to $\left.T_{H}\right)$ S Suffix S Suffix	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
TJ	Junction TemperaturePlastic Package PLCC	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{c c}$ Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level (e g., either $\mathrm{V}_{s S}$ or V_{cc}).

THERMAL DATA

$\theta_{\text {JA }}$	Thermal Resistance	Plastic PLCC	50
		80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER CONSIDERATIONS

The average chip-junction temperature, $T J$, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+(\mathrm{PD} \cdot \theta \mathrm{JA})$
Where :
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
θ JA $=$ Package Thermal Resistance, Junction-to-
Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{PD}_{\mathrm{D}}=\mathrm{P}_{\text {INT }}+\mathrm{P}_{\text {PORT }}$
$P_{\text {INT }}=\operatorname{Icc} \times$ VCc, $^{\text {, Watts }}$ - Chip Internal Power
Pport = Port Power Dissipation, Watts - User Determined

For most applications PPORT << Pint and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is :
$P_{D}=K \div\left(T_{J}+273^{\circ} \mathrm{C}\right)$
Solving equations 1 and 2 for K gives :
$K=P D \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J A \cdot P_{D}{ }^{2}$
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage $\begin{aligned} & \text { RESET }\left(4.75 \leq \mathrm{V}_{C C} \leq 5.75\right) \\ & \left(V_{C C}<4.75\right) \\ & \overline{\text { INT }}\left(4.75 \leq V_{c C} \leq 5.75\right) \\ & \left(V_{c c}<4.75\right) \end{aligned}$ All Other (except timer)	$\begin{gathered} 4.0 \\ V_{c c}-0.5 \\ 4.0 \\ V_{c c}-0.5 \\ 2.0 \end{gathered}$	\bullet	$V_{C C}$ $V_{C C}$ $V_{c c}$ $V_{C c}$ $V_{C C}$	V
V_{IH}	Input High Voltage Timer Timer Mode Self-check Mode	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	10.0	$\begin{gathered} V_{C C}+1.0 \\ 15.0 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	```Input Low Voltage RESET INT All Other (except A/D inputs)```	$\begin{aligned} & V_{S S} \\ & V_{S S} \\ & V_{S S} \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	V
ViRES + VIRES -	RESET Hystereris Voltages (see figures 10, 11 and 12) "Out of Reset" "Into Reset"	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	V
$V_{\text {INT }}$	INT Zero Crossing Input Voltage, Through a Capacitor	2		4	$V_{\text {ac p-p }}$
PD	$\begin{array}{r} \text { Power Dissipation - (no port loading, } \mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V} \text {) } \\ \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 520 \\ & 580 \\ & \hline \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \end{aligned}$	mW
$\mathrm{C}_{\text {In }}$	Input Capacitance EXTAL All Other Except Analog Inputs (see note)		$\begin{aligned} & 25 \\ & 10 \end{aligned}$		pF
V LVR	Low Voltage Recover			4.75	V
$\mathrm{V}_{\text {LVI }}$	Low Voltage Inhibit	2.75	3.75	4.70	V
1 In	Input Current $\begin{aligned} & \text { TIMER }\left(V_{\text {in }}=0.4 \mathrm{~V}\right) \\ & \text { INT }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\text {cc }}\right) \\ & \text { EXTAL }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\text {cc }}-\text { crystal option }\right) \\ & \left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}-\text { crystal option }\right) \\ & \text { RESET }\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right)-\text { External Capacitor Charging } \\ & \text { Current } \end{aligned}$	-4.0	20	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

Note: Port D Analog Inputs, when selected, $\mathrm{C}_{\mathrm{m}}=25 \mathrm{pF}$ for the first 5 out of 30 cycles

* Due to internal biasing this input (when unused) floats to approximately 2.2V.

SWITCHING CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency	0.4		4.2	MHz
$\mathrm{t}_{\mathrm{cyc}}$	Cycle Time (4/fosc)	0.95		10	$\mu \mathrm{S}$
$t_{\text {WL }}, t_{\text {WH }}$	$\overline{\mathrm{INT}}$, $\overline{\mathrm{N} T 2}$, and TIMER Pulse Width (see interrupt section)	$t_{\text {cyc }}+250$			ns
$\mathrm{t}_{\text {RWL }}$	RESET Pulse Width	$\mathrm{t}_{\mathrm{cyc}}+250$			ns
$\mathrm{f}_{\text {INT }}$	$\overline{\text { INT Zero-crossing Detection Input Frequency }}$	0.03		1	kHz
	External Clock Input Duty Cycle (EXTAL)	. 40	50	60	\%
	Crystal Oscillator Start-up Time*			100	ms

* See Figure 16 for typical crystal parameters.

A/D CONVERTER CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{Cc}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Parameter	Comments	Min.	Typ.	Max.	Unit
Resolution		8	8	8	Bits
Non-linearity	For $\mathrm{V}_{\mathrm{RH}}=4.0$ to 5.0 V and $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$			$\pm 1 / 2$	LSB
Quantizing Error				$\pm 1 / 2$	LSB
Conversion Range		V_{RL}		$\mathrm{V}_{\text {RH }}$	V
$\mathrm{V}_{\text {RH }}$	A/D accuracy may decrease			$\mathrm{V}_{\text {CC }}$	V
V_{RL}	proportionately as V_{RH} is reduced below 4.0 V . The sum of V_{RH} and V_{RL} must not exceed V_{Cc}.	$\mathrm{V}_{\text {Ss }}$		0.2	V
Conversion Time	Includes Sampling Time	30	30	30	$\mathrm{t}_{\text {cyc }}$
Monotonicity	Inherent (within total error)				
Zero Input Reading	$\mathrm{V}_{\text {In }}=0$	00	00	01	Hexadecimal
Ratiometric Reading	$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {RH }}$	FE	FF	FF	Нехаdecimal
Sample Time		5	5	5	$\mathrm{t}_{\text {cyc }}$
Sample/hold Capacitance, Input				25	pF
Analog Input Voltage	Negative transients on any analog lines (pins 19-24) are not allowed at any time during conversion	V_{RL}		V_{RH}	V

PORT ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)
PORT A WITH CMOS DRIVE ENABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {OL }}$	Output Low Voltage ($\mathrm{L}_{\text {Load }}=1.6 \mathrm{~mA}$)			0.4	V
V_{OH}	$\begin{gathered} \text { Output High Voltage } \\ \mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ V_{c c}-1.0 \end{gathered}$			V
V_{IH}	Input High Voltage ($\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ max.)	2.0		$V_{\text {cc }}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage ($\mathrm{I}_{\text {Load }}=-500 \mu \mathrm{~A}$ max.)	$\mathrm{V}_{\text {SS }}$		0.8	V
I_{IH}	High Z State Input Current ($\mathrm{V}_{\text {In }}=2.0 \mathrm{~V}$ to V_{CC})			-300	$\mu \mathrm{A}$
1 IL	High Z State Input Current ($\mathrm{V}_{\text {ın }}=0.4 \mathrm{~V}$)			- 500	$\mu \mathrm{A}$

PORT B

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage				V
	$\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$ $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			1.0	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\mathrm{I}_{\text {Load }}=-200 \mu \mathrm{~A}$	2.4			V
I_{OH}	Darlington Current Drive (source) $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	-1.0		-10	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High Z State Input Current		<2	10	$\mu \mathrm{~A}$

PORT C AND PORT A WITH CMOS DRIVE DISABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High Z State Input Current		<2	10	$\mu \mathrm{~s}$

PORT C (open-drain option)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	2.0		13.0	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\text {LOD }}$	Input Leakage Current		<3	15	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V

PORT D (digital inputs only)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\text {In }}$	Input Current ${ }^{*}$		<1	5	$\mu \mathrm{~A}$

[^15]Figure 2 : TTL Equivalent Test Load (port B).

Figure 4 : TTL Equivalent Test Load (port A and C).

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in figure 1, are described in the following paragraphs.
$V_{C C}$ and $V_{s s}$ - Power is supplied to the MCU using these two pins. $V_{C C}$ is power and $V_{S S}$ is the ground connection.

INT - This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts Section for additional information.
NUM (NON USER MODE) - This pin is not for user application and must be connected to $V_{\text {ss }}$.
XTAL AND EXTAL - These pins provide control input for the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on user selectable manufacturing mak option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead length and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generatop Options Section for recommendations about these inputs.
TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Section for additional information about the timer circuitry.
RESET - This pins allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pull-

Figure 3 : CMOS Equivalent Test Load (port A).

Figure 5 : Open-Drain Equivalent Test Load (port C).

ing RESET low. Refer to Resets Section for additional information.
INPUT/OUTPUT LINES (PAO-PA7, PB0-PB7, PC0-PC7, PD0-PD7) - These 32 lines are arranged into four 8-bit ports (A, B, C, and D). Ports A, B, and C are programmable as either inputs or outputs under software control of the data direction registers (DDRs). Port D has up to four analog inputs, plus two voltage reference inputs when the A / D converter is used (PD5/ V_{RH}, PD4/ VRL), and an INT2 input, and from one to eight digital inputs. If any analog input is used, then the voltage reference pins (PD5/VRH, PD4/VRL) must be used in the analog mode. Refer to Input/Output Section, A/D Converter Section, and Interrupts Section for additional information.
MEMORY - The MCU is capable of addressing 4096 bytes of memory and I/O registers with its program counter. The EF6805R2 MCU has implemented 2316 of these bytes. This consists of : 2048 user ROM bytes, 192 self-check ROM bytes, 64 user RAM bytes, 7 port I/O bytes, 2 timer registers. $2 \mathrm{~A} / \mathrm{D}$ registers, and a miscellaneous register; see figure 6 for the Address map. The user ROM has been split into three areas. The main user ROM area is from $\$ 080$ to $\$ \mathrm{OFF}$ and from $\$ 7 \mathrm{C} 0$ to $\$ F 37$. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.
The MCU reserves the first 16 memory locations for I/O features, of which 12 have been implemented.

These locations are used for the ports, the ports DDRs, the timer, the INT2 miscellaneous register, and the A/D. Of the 64 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.

The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in
figure 7. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order four bits (PCH) are stacked. This ensures that the program counter is loaded correctly during pulls from the stack since the stack pointer increments when it pulls data from the stack. A subroutine call results in only the program counter (PCL, PCH) contents being pushed onto the stack ; the remaining CPU registers are not pushed.

Figure 6 : EF6805R2 MCU Address Map.

Figure 7 : Interrupt Stacking Order.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with $1 / O$ and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in figure 8 and are explained in the following paragraphs.

ACCUMULATOR (A) - The accumulator is a general purpose 8-bit register used to hold operands and results of arithmetic calculations or data manipulations.
INDEX REGISTER (X) - The index register is an 8bit register used for the indexed addressing mode. It contains an 8-bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used as a temporary storage area.

Figure 8 : Programming Model.

PROGRAM COUNTER (PC) - The program counter is a 12-bit register that contains the address of the next instruction to be executed.
STACK POINTER (SP) - The stack pointer is a 12bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F.
The stack pointer is then decremented as data is pushed onto the stack and incremented as data is then pulled from the stack. The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location $\$ 061$ (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).
CONDITION CODE REGISTER (CC) - The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.
Half Carry (H) - Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4.
Interrupt (I) - When this bit is set, the timer and external interrupt (INT and INT2) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.
Negative (N) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical "1").
Zero (Z) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.
Carry/Borrow (C) - When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The timer circuitry for the MC6805R2 is shown in figure 10. The 8 -bit counter may be loaded under program control and is decremented toward zero by the clock input (or prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control register (TCR) is set. The timer interrupt can be masked (disabled) by setting the
timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (I bit) in the condition code register also prevents a timer interrupt from being processed. The MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$FF8 and \$FF9 and executing the interrupt routine (see RESET, CLOCK, AND INTERRUPT STRUCTURE SECTIONS). The timer interrupt request bit must be cleared by software. The TIMER and INT2 share the same interrupt vector. The interrupt routine must check the request bits to determine the source of the interrupt.
The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the TIMER input pin, or it can be the internal phase two signal. Three machine cycles are required for a change in state of the TIMER pin to decrement the timer prescaler. The maximum frequency of a signal that can be recognized by the TIMER pin logic is dependent on the parameter labeled twh. The pin logic that recognizes the high state on the pin must also recognize the low state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows (assumes 50/50 duty cycle for a given period) :

$$
\operatorname{tcyc} \times 2+250 \mathrm{~ns}=\text { period }=\quad \frac{1}{\text { freq }}
$$

The period is not simply twl + twh. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 nanoseconds times two).
When the phase two signal is used as the source, it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. The source of the clock input is one of the mask options that is specified before manufacture of the MCU.

NOTE

For ungated phase two clock input to the timer prescaler, the TIMER pin should be tied to $V_{c c}$.
A prescaler option, divide by 2^{n}, can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture. To avoid truncation errors, the prescaler is cleared when bit 3 of the timer control register is written to a logic one (this bit always reads a logic zero). See figure 9.

Figure 9 : Timer Register (TCR).

7	6	5	4	3	2	1		\$009
		1	1		1	1		
TCR7 - Timer Interrupt Request Status Bit. Set when TDR goes to zero ; must be cleared by software. Cleared to 0 by Reset. TCR6 - Timer Interrupt Mask Bit . $1=$ timer interrupt masked (disabled). Set to 1 by Reset. TCR3- Clear prescaler always reads as a 0 , clears prescaler when written to a logic "1". TCR Bits 5, 4, 2, 1, 0 reads "1s" - unused bits.								

Figure 10 : Timer Block Diagram.

The timer continues to count past zero, falling through to $\$ F F$ from $\$ 00$ and then continuing the countdown. Thus, the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occurred, and not disturb the counting process.
At power up or reset, the prescaler and counter are initialized with all logic ones ; the timer interrupt request bit (bit 7) is cleared and the timer interrupt mask bit (bit 6) is set.

SELF-CHECK

The self-check capability of the EF6805R2 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10 -volt level (through a 10 k resistor) on the timer input, pin 8 and press-
ing then releasing the RESET button, energizes the ROM-based self-check feature. The self-check program exercises the RAM, ROM, TIMER, A/D, interrupts, and I/O ports.
Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM, and 4-channel A/D tests. The timer routine may also be called if the timer input is the internal $\phi 2$ clock.
To call those subroutines in customer applications, please contact your local SGS THOMSON sales office in order to obtain the complete description of the self-check program and the entrance/exit conditions.
RAM SELF-CHECK SUBROUTINE - The RAM self-check is called at location \$F6F and returns with the Z bit clear if any error is detected; otherwise the Z bit is set. The walking diagnostic pattern method is used on the EF6805R2.

The RAM test must be called with the stack pointer at $\$ 07 \mathrm{~F}$. When run, the test checks every RAM cell except for $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ which are assumed to contain the return address.
The A and X registers and all RAM locations except \$07F and \$07E are modified.

ROM CHECKSUM SUBROUTINE - The ROM selfcheck is called at location \$F8A. If any error is detected, it returns with the Z bit cleared ; otherwise Z $=1, X=0$ on return, and A is zero if the test passes. RAM location $\$ 040$ to $\$ 043$ is overwritten. The checksum is the complement of the execution OR of the contents of the user ROM.

Figure 11 : Self-Check Connections.

LED MEANINGS

PC0	PC1	PC2	PC3	Remarks [1:LED ON ; 0 : LED OFF] $]$
1	0	1	0	Bad I/O
0	0	1	0	Bad Timer
1	1	0	0	Bad RAM
0	1	0	0	Bad ROM
1	0	0	0	Bad A/D
0	0	0	0	Bad Interrupts or Request Flag
Any Flashing			Good Device	

Anything else bad Device. Bad Port C, etc
ANALOG-TO-DIGITAL CONVERTER SELFCHECK - The A/D self-check is called at location \$FA4 and returns with the Z bit cleared if any error was found, otherwise $Z=1$.
The A and X register contents are lost. The X register must be set to 4 before the call. On return, $X=8$ and A / D channel 7 is selected. The A / D test uses the internal voltage references and confirms port connections.
TIMER SELF-CHECK SUBROUTINE - The timer self-check is called at location \$FCF and returns with the Z bit cleared if any error was found ; otherwise $Z=1$.
In order to work correctly as a user subroutine, the internal 2 clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is
running and the interrupt mask is not set so the caller must protect from interrupts if necessary.
The A and X register contents are lost. The timer self-check routine counts how many times the clock counts in 128 cycles. The number of counts should be a power of 2 since the prescaler is a power of 2 . If not, the timer is probably not counting correctly. The routine also detects a timer which is not running.

RESET

The MCU can be reset three ways : by initial powerup, by the external reset input (RESET) and by an optional internal low-voltage detect circuit. The RESET input consists mainly of a Schmitt trigger which senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in figure 12. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the RESET pin.
Power-On Reset (POR) - An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of $\mathrm{t}_{\mathrm{RHL}}$ milliseconds is required before allowing the RESET input to go high. Refer to the power and reset timing diagram of figure 13. Connecting a capacitor to the RESET input (as illustrated in figure 14) typically provides sufficient delay. During powerup, the Schmitt trigger switches on (removes reset) when RESET rises to VIRES+.

Figure 12 : Typical Reset Schmitt Trigger Hysteresis.

Figure 13 : Power and Reset Timing.

Figure 14 : $\overline{\text { RESET }}$ Configuration.

External Reset Input - The MCU will be reset if a logical zero is applied to the RESET input for a period longer than one machine cycle (tcyc). Under this type of reset, the Schmitt trigger switches off at VIRES- to provide an internal reset voltage.
Low-Voltage Inhibit (LVI) - The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level ($\mathrm{V}_{\mathrm{LVI}}$). The only requirement is that V_{Cc} remains at or below the V_{Lv} threshold for one $\mathrm{t}_{\text {cyc }}$ minimum. In typical applications, the Vcc bus filter capacitor will eliminate negative-going voltage glitches of less than one tcyc. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level (VLVR), at which time a normal power-on-reset occurs.

INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crys-
tal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.
The different connection methods are shown in figure 15. Crystal specifications and suggested PC board layouts are given in figure 16. A resistor selection graph is given in figure 17.
The crystal oscillator start-up time is a function of many variables : crystal parameters (especially Rs), oscillator load capacitances, IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.
When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage below $\mathrm{V}_{\text {IRES+}}$) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating the external reset capacitor required to satisfy this condition: the oscillator start-up voltage,
the oscillator stabilization time, the minimum $\mathrm{V}_{\text {IRES }}^{+}$, and the reset charging current specification.
Once $\mathrm{V}_{\text {cc }}$ minimum is reached, the external RESET capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from $V_{c c}$ through a large resistor, so it appears
almost like a constant current source until the reset voltage rises above VIRES+. Therefore, the RESET pin will charge at approximately :
$\left(V_{\text {IRES }}\right) \cdot C_{\text {ext }}=I_{\text {RES }} \cdot t_{\text {RHL }}$
Assuming the external capacitor is initially discharged.

Figure 15 : Clock Generator Options.

Note : The recommended $C_{\text {L }}$ value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratıo For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approxımately 25 pF on XTAL The exact value depends on the Motional-Arm parameters of the crystal used.

Figure 16 : Crystal Monotial Arm Parameters and Suggested PC Board Layout.

Figure 17 : Typical Frequency Selection for Resistor (oscillator option).

INTERRUPTS

The microcomputers can be interrupted four different ways : through the external interrupt (INT) input pin, the internal timer interrupt request, the external port D bit 6 (INT2) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of 11 tyyc periods for completion. A flowchart of the interrupt sequence is shown in figure 18. The interrupt service routine must end with a return from interrupt (RTI)
instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.
When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceedswith interrupt processing ; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.
If both an external interrupt and a timer interupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.

Figure 18 : Reset and Interrupt Processing Flowchard.

NOTE

The timer and INT2 interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both TCR b7 and MR b7 can only be written to zero by software.
The external interrupt, $\overline{\mathrm{NT}}$ and $\overline{\mathrm{NT} 2}$, are synchronized and then latched on the falling edge of the input signal. The INT2 interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The INT2 interrupt is inhibited when the mask bit is set. The INT2 is always read as a digital input on port D. The INT2 and timer interrupt request bits, if set, cause the MCU to process an interrupt when the condition code I bit is clear.

A sinusoidal input signal (fint maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-of-day routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a $2 f$ clock. See figure 19.
NOTE
The INT (pin 3) is internally biased at approximately 2.2 V due to the internal zero-crossing detection.
A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as break-points for debugging or as systems calls.

Figure 19 : Typical Interrupt Circuits.

INPUT/OUTPUT CIRCUITRY

There are 32 input/output pins. The INT pin may be polled will branch instructions to provide an additional input pin. All pins on ports A, B, and C are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below I/O port control registers configuration. The port I/O programming is accomplished by writing the corresponding bit in the port

DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode. The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic at the output pin, due to output loading. Refer to figure 20.

PORT DATA REGISTER
7

Port A Addr $=\$ 000$
Port B Addr $=\$ 001$
Port C Addr $=\$ 002$
Port D Addr $=\$ 003$

PORT DATA DIRECTION REGISTER (DDR)
7
\square
(1) Write Only ; reads as all "1s"
(2) $1=$ Output, $0=$ Input Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006$

Figure 20 : Typical Port I/O Circuitry.

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and Dlines are CMOS compatible as inputs. Port D lines are input only ; thus, there is no corresponding DDR. When programmed as outputs, port B is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.
Port D provides the reference voltage, $\overline{\text { INT2 }}$, and multiplexed analog inputs. All of these lines are shared with the port D digital inputs. Port D may always be used as digital inputs and may also be used as analog inputs providing V_{RH} and V_{RL} are connected to the appropriate reference voltages. The V_{RL} and V_{RH} lines (PD4 and PD5) are internally connected to the A/D resistor. Analog inputs may be prescaled to attain the V_{RL} and V_{RH} recommended input voltage range.
The address map (figure 6) gives the addresses of data registers and data direction registers. Figure 21 provides some examples of port connections.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
The latched output data bit (see figure 20) must always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).

Figure 21 : Typical Port Connections.

Port B, bit 0 and bit 1 programmed as output, ditivng LEDs drectly
 ton base directly

Port C. bits 0-3 programmed as output driving CMOS loads, using external pullup resistors lrequired if Port C is open-drain)
(b) Input Modes

CMOS or IIL driving Port B directly

CMOS or TTL driving Port D directly

ANALOG-TO-DIGITAL CONVERTER

The EF6805R2 has an 8-bit analog-to-digital (A/D) converter implemented on the chip using a successive approximation technique, as shown in figure 22. Up to four external analog inputs, via port D , are connected to the A/D through a multiplexer. Four internal analog channels may be selected for
calibration purposes ($\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}, \mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}} / 2, \mathrm{~V}_{\mathrm{RH}}-$ $\mathrm{V}_{\mathrm{RL}} / 4$, and V_{RL}). The accuracy of these internal channels will not necessarily meet the accuracy specifications of the external channels.
The multiplexer selection is controlled by the A/D control register (ACR) bits 0, 1, and 2 ; see table 1. This register is cleared during any reset condition.

Figure 22 : A/D Block Diagram.

Table 1: A/D Input Mux Selection.

A/D Control Register			Input Selected	A/D Output (hex)		
ACR2	ACR1	ACRO		Min.	Typ.	Max.
0	0	0	ANO			
0	0	1	AN1			
0	1	0	AN2			
0	1	1	AN3			
1	0	0	$\mathrm{V}_{\text {RH }}{ }^{\text {* }}$	FE	FF	FF
1	0	1	$\mathrm{V}_{\mathrm{RL}}{ }^{*}$	00	00	01
1	1	0	$\mathrm{V}_{\text {RH/4 }}{ }^{*}$	3 F	40	41
1	1	1	$\mathrm{V}_{\mathrm{RH} / 2}{ }^{*}$	$7 \mathrm{~F}^{\prime}$	80	81

* Internal (calibration) levels

MISCELLANEOUS REGISTER (MR)

7	0						
		1	1	1	1	1	1

MR7 Bit $7-\overline{\text { INT2 }}$ Interrupt Request Bit : Set when falling edge detected on INT2 pin, must be cleared by software. Cleared to 0 by Reset
MR6 Bit $6-\overline{\text { INT2 }}$ Interrupt Mask Bit $\cdot 1=\overline{\text { INT2 }}$ Interrupt masked (disabled). Set to 1 by Reset.
MR Bits 5, 4, 3, 2, 1, 0 - Read as "1s" - unused bits.

A/D RESULT REGISTER (ARR)
7
0

| MSB | 1 | 1 | 1 | 1 | 1 | LSB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Whenever the ACR is written, the conversion in progress is aborted, the conversion complete flag (ACR bit 7) is cleared, and the selected input is sampled for five machine cycles and held internally. During these five cycles, the analog input will appear ap-
proximately like a 25 picofarad (maximum) capacitor (plus approximately 10pF for packaging) charging through a 2.6 kiloohm resistor (typical). Refer to figure 23.

Figure 23 : Effective Analog Input Impedance (during sampling only).
(

The converter operates continuously using $30 \mathrm{ma}-$ chine cycles to complete a conversion of the sampled analog input. When the conversion is complete, the digitized sample of digital value is placed in the A/D result register (ARR), the conversion complete flag is set, the selected input is sampled again, and a new conversion is started.
The A/D is ratiometric. Two reference voltages (VRH and $V_{\text {RL }}$) are supplied to the converter via port D pins. An input voltage equal to V_{RH} converts to $\$ \mathrm{FF}$ (full scale) and an input voltage equal to VRL converts to $\$ 00$. An input voltage greater than $V_{R H}$ converts to SFF and no overflow indication is provided. Similarly, an input voltage less than VRL, but greater than V_{ss} converts to $\$ 00$. Maximum and minimum ratings must not be exceeded. For ratiometric conversion, the source of each analog input should use
V_{RH} as the supply voltage and be referenced to V_{RL}. To maintain the full accuracy on the $A / D, V_{R H}$ should be equal to or less than $V_{D D}, V_{\text {RL }}$ should be equal to or greater than Vss but less than the maximum specification and ($\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}$) should be equal to or greater than 4 volts.
The A/D has a built-in LSB offset intended to reduce the magnitude of the quantizing error to LSB, rather than $+0,-1$ LSB with no offset. This implies that, ignoring errors, the transition point from $\$ 00$ to $\$ 01$ occurs at LSB above VRL. Similarly, the transition from \$FE to \$FF occurs 1 1/2 LSB below VRH, ideally. Refer to figure 24 and 25 .
On release of reset, the A/D control register (ACR) is cleared therefore after reset, channel zero will be selected and the conversion complete flag will be clear.

Figure 24 : Ideal Converter Transfer Characteristic.

Figure 25 : Types of Conversion Errors.
(a) OHset Error

BIT MANIPULATION

The EF6805R2 as the ability to set or clear any single RAM or I/O bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines.

CAUTION

The corresponding data direction registers for ports A, B, and C are write-only registers locations $\$ 004$, $\$ 005$, and $\$ 006$). A read operation on these regis-
ters is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected" bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.
The coding examples shown in figure 26 illustrate the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit first out, of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.

Figure 26 : Bit Manipulation Example.

ADDRESSING MODES

The EF6805R2 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the EF6805 Family Users Manual.
The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.
EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3-byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.
RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from - 126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset if he uses the assembler, since it calculates the proper offset and checks to see if it is within the span of the branch.
INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.

INDEXED, 8 -BIT OFFSET - In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ($\$ 1 \mathrm{FE}$ is the last location at which the instruction may begin).
INDEXED, 16-BIT OFFSET - In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.
BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2-byte instruction.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be must written using a single-store instruction.
BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3-byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be must written using a single-store instruction.
INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805R2 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to table 1.

READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register ; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-modify-write instruction though it does not perform the write. Refer to table 2.
BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to table 3.
BIT MANIPULATION INSTRUCTIONS - The instructions are used on any bit in the first 256 bytes of the memory; One group either sets or clears. The other group performs the bit test and branch operations. Refer to table 4.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be must written using a single-store instruction.
CONTROL INSTRUCTION - The control instructions control the MCU operations during program execution. Refer to table 5.
ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in table 6.
OPCODE MAP - Table 8 is an opcode map for the instruction used on the MCU.

Addressing Modes

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed (no offset)			Indexed (8 blt offset)			Indexed (16 blt offset)		
Function	Mnemonic	$\begin{array}{\|c\|} \hline O p \\ \operatorname{Cod} \theta \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline 0 p \\ \operatorname{Cod} \theta \\ \hline \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cyclos	$\begin{array}{\|c\|} \hline 0 p \\ \operatorname{cod\theta } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycios	$\begin{gathered} O p \\ \operatorname{Cod} \theta \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{array}{c\|} \hline O p \\ \operatorname{Cod} \theta \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} O p \\ C o d e \end{gathered}$	$\begin{array}{\|c} \# \\ \text { Bytes } \end{array}$	Cyclos
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA				B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX				BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Peld Memory to A	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	B0	2	4	CO	3	5	F0	1	4	E0	2	5	D0	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	AB	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	B1	2	4	C1	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (logical compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP				BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR				BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

9 9ع

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			Indexed (no offset)			Indexed (8 bit offset)		
Function	Mnem	Op Code	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cyclos } \end{gathered}$	$\begin{aligned} & 0 p \\ & \operatorname{Cod\theta } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} 0 p \\ \operatorname{cod} \theta \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{aligned} & 0 p \\ & \operatorname{code} \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{aligned} & \mathrm{Op} \\ & \operatorname{code} \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles
Increment	INC	4C	1	4	5C	1	4	3C	2	6	7 C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5F	1	4	3F	2	6	7F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2's complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	5D	1	4	3D	2	6	7D	1	6	6D	2	7

Table 3 : Branch Instructions.

Function		Relative Addressing Mode		
	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFF Higher	BHI	22	2	4
Branch IFF Lower or Same	BLS	23	2	4
Branch IFF Carry Clear	BCC	24	2	4
Branch IFF Higher or Same	BHS	24	2	4
Branch IFF Carry Set	BCS	25	2	4
Branch IFF Lower	BLO	25	2	4
Branch IFF Not Equal	BNE	26	2	4
Branch IFF Equal	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branch IFF Plus	BPL	2 A	2	4
Branch IFF Minus	BMI	$2 B$	2	4
Branch IFF interrupt mask bit is clear.	BMC	2 C	2	4
Branch IFF interrupt mask bit is set.	BMS	$2 D$	2	4
Branch IFF interrupt line is low.	BIL	$2 E$	2	4
Branch IFF interrupt line is high.	BIH	$2 F$	2	4
Branch to Subroutine	BSR	AD	2	8

Table 4 : Bit Manipulation Instructions.

Function		Addressing Modes					
	Mnemonic	Bit Set/Clear			Bit Test and Branch		
		$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \\ \hline \end{gathered}$	$\begin{gathered} \text { Op } \\ \text { Code } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Branch IFF bit n is set.	BRSET $\mathrm{n}(\mathrm{n}=0 . .7$)				$2 \cdot n$	3	10
Branch IFF bit n is clear.	BRCLR $\mathrm{n}(\mathrm{n}=0 . .7$)				$01+2 \cdot n$	3	10
Set Bit n	BSET $n(\mathrm{n}=0 . . .7$)	$11+2 \cdot n$	2	7			
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=0 . . .7$)	$11+2 \cdot n$	2	7			

Table 5 : Control Instructions.

Function		Inherent		
	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	9 F	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	$9 B$	1	2
Clear Interrupt Mask Bit	CLI	9 A	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	$9 C$	1	2
No-operation	NOP	$9 D$	1	2

Table 6 : Instruction Set.

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	Indexed (no offset)	$\begin{gathered} \text { Indexed } \\ (8 \text { Bits }) \end{gathered}$	Indexed (16 Bits)	$\begin{array}{\|c\|} \text { Bit } \\ \text { Set/Clear } \end{array}$	$\begin{aligned} & \text { Bit } \\ & \text { Test \& } \\ & \text { Branch } \end{aligned}$	H	1	N	Z	C
ADC		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
ASL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
ASR	X		X			X	X				-	\bullet	\wedge	\wedge	\wedge
BCC					X						\bullet	\bullet	\bullet	\bullet	\bullet
BCLR									X		\bullet	\bullet	\bullet	\bullet	\bullet
BCS		.			X						-	-	\bullet	-	\bullet
BEQ					X						-	-	\bullet	-	\bullet
BHCC					X						\bullet	\bullet	-	-	\bullet
BHCS					X						\bullet	\bullet	-	\bullet	\bullet
BHI					X						\bullet	\bullet	-	\bullet	\bullet
BHS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BIH					x						\bullet	-	\bullet	\bullet	\bullet
BIL					X						-	\bullet	-	-	\bullet
BIT		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
BLO					X						-	-	\bullet	\bullet	\bullet
BLS					X						-	\bullet	\bullet	\bullet	\bullet
BMC					X						\bullet	\bullet	-	\bullet	\bullet
BMI					X						\bullet	-	\bullet	\bullet	\bullet
BMS					X						-	\bullet	\bullet	-	\bullet
BNE					X						\bullet	\bullet	\bullet	-	\bullet
BPL					X						-	\bullet	\bullet	-	\bullet
BRA					X						\bullet	-	-	-	-
BRN					X						\bullet	\bullet	-	-	-
BRCLR										X	\bullet	\bullet	\bullet	\bullet	\wedge
BRSET										X	\bullet	\bullet	\bullet	\bullet	\wedge
BSET									X		\bullet	\bullet	\bullet	\bullet	\bullet
BSR					X						\bullet	\bullet	-	-	-
CLL	X										\bullet	\bullet	-	-	0

Condition Code Symbols:
H Half Carry (from bit 3)
I Interrupt Mask
$\mathrm{N} \quad$ Negative (sign bit)

Z Zero
C Carryborrow
Λ Test and Set if True, Cleared Otherwise Not Affected

Table 6 : Instruction Set (continued).

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	Indexed (no offset)	Indexed (8 Bits)	Indexed (16 Bits)	Bit Set/clear		H	1	N	Z	C
CLI	X										\bullet	0	\bullet	-	\bullet
CLR	X		X			X	X				\bullet	-	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			X	X				\bigcirc	-	\wedge	\wedge	1
CPX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
DEC	X		X			X	X				-	-	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
INC	X		X			X	X				\bullet	-	\wedge	\wedge	\bullet
JMP			X	X		X	X	x			\bullet	-	\bullet	\bullet	\bullet
JSR			X	X		X	X	X			\bullet	-	\bullet	-	\bullet
LDA		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LSL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
LSR	X		X			X	X				\bullet	-	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
NOP	X										\bullet	\bullet	\bullet	\bullet	\bullet
ORA		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
ROL	x		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
RSP	X										\bullet	\bullet	\bullet	\bullet	\bullet
RTI	X										?	$?$?	?	?
RTS	X										\bullet	\bullet	\bullet	\bullet	\bullet
SBC		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
SEC	X										\bullet	-	\bullet	\bullet	1
SEI	X										\bullet	1	\bullet	-	\bullet
STA			x	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
STX			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SWI	x										\bullet	1	\bullet	\bullet	\bullet
TAX	X										\bullet	\bullet	\bullet	\bullet	\bullet
TST	x		x			X	x				-	\bullet	\wedge	\wedge	\bullet
TXA	X										\bullet	\bullet	\bullet	\bullet	\bullet

Condition Code Symbols:

H Half Carry (from bit 3)
I Interrupt Mask
$\mathrm{N} \quad$ Negative (sign bit)
Z Zero

C Carry/borrow
\wedge Test and Set if True, Cleared Otherwise

- Not Affected
? Load CC Register from Stack

EF6805 HMOS FAMILY

Features	EF6805P2	EF6805P6	EF6805R2	EF6805R3	EF6805U2	EF6805U3
Technology	HMOS	HMOS	HMOS	HMOS	HMOS	HMOS
Number of Pins	28	28	40	40	40	40
On-chip RAM (bytes)	64	64	64	112	64	112
On-chip User ROM (bytes)	1100	1796	2048	3776	2048	3776
External Bus	None	None	None	None	None	None
Bidirectional I/O Lines	20	20	24	24	24	24
Unidirectional I/O Lines	None	None	6 Inputs	6 Inputs	8 Inputs	8 Inputs
Other I/O Features	Timer	Timer	Timer, A/D	Timer, A/D	Timer	Timer
External Interrupt Inputs	1	1	2	2	2	2
STOP and WAIT	No	No	No	No	No	No

	Bit Manipulation		Branch	Roed－Modity－Write					Control		Register／Memory						
Low	$\begin{aligned} & \text { Bfo } \\ & 0 \times 00 \end{aligned}$	$\begin{aligned} & B S C \\ & \text { con } \end{aligned}$	$\begin{aligned} & \frac{B E L}{2} \\ & \infty^{2} \end{aligned}$	$\begin{aligned} & 016 \\ & 3 \\ & 0.11 \end{aligned}$	$\begin{aligned} & \text { INH } \\ & \text { aroo } \end{aligned}$	$\begin{gathered} 1 \mathrm{NH} \\ 5 \\ 0101 \\ \hline \end{gathered}$	$\begin{aligned} & \frac{1 \times 1}{6} \\ & 6 \text { one } \end{aligned}$	$\begin{aligned} & \frac{1 x}{7} \\ & 011 \end{aligned}$	$\begin{gathered} \text { INH } \\ 1000 \end{gathered}$	$\begin{aligned} & \text { INH } \\ & 9.001 \end{aligned}$	IMM	$\begin{gathered} \hline \text { pin } \\ \text { 1011 } \\ \hline \end{gathered}$	$\begin{gathered} \frac{E X I}{C} \\ 110 \end{gathered}$	$\begin{aligned} & 1 x^{2} \\ & \frac{1}{2} \\ & 101 \end{aligned}$	$\begin{aligned} & \frac{1 \times 1}{1} \\ & \hline 1 \\ & \hline \end{aligned}$	$\begin{gathered} \frac{1 x}{x} \\ 111 \end{gathered}$	${ }_{\text {Hi Low }}$
${ }^{0} 0$	$\begin{aligned} & 10 \\ & \text { BRSETO } \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BSETO } \\ & \text { BSC } \end{aligned}$	${ }_{2}^{4} \text { BRA }$	${ }_{2}^{6} \text { NEG }$	${ }_{1}$ NEG ${ }_{\text {INM }}$	$1 \text { NEG }$	${ }_{2} \mathrm{NEG}_{\|x\|}$	${ }_{1}^{6}$ NEG ${ }^{1}$	$\begin{array}{ll} 9 & \text { RTI } \\ \hline \end{array}$		$\int_{2}^{2} \text { sus }$	${ }_{2}^{4} \mathrm{SUB}_{\mathrm{OLR}}$	${ }_{3}^{5} \text { SUB }{ }_{E \times T}$	${ }_{3}^{6} \text { sus }$	$\mathrm{SUB}_{1 \times 1}$	SUB ${ }_{\text {IX }}$	${ }_{0}^{0}$
1	$\begin{aligned} & 10 \\ & \text { BRCLRO } \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{BCLRO} \\ & 3 \\ & \hline \end{aligned}$, BRN						$\begin{array}{\|ll} 6 \\ { }_{2} & \text { RTS } \\ \hline \end{array}$		${ }_{2}^{2} \text { CMP }$	${ }_{3}^{4} \mathrm{CMP}$	${ }_{3}^{5} \mathrm{CMP}$	$\mathrm{CMP}_{1 \times 2}$	${ }^{\text {CMP }}$	${ }^{\text {CMP }}{ }^{\text {Ix }}$	0001
α^{2}	$\begin{array}{\|c\|c\|} \hline 10 \\ 38 S E T 1 \\ 3 \\ \hline \end{array}$	$2{ }_{2}^{\text {BSETI }}$	${ }_{2}{ }^{8 \mathrm{H}} \mathrm{BELL}^{2}$								$\left[_{2}^{2} \mathrm{SBC}\right.$	$3 \mathrm{SBC}_{\mathrm{OlP}}$	${ }_{\text {SBC }}^{\text {EXI }}$	${ }^{S B C_{1 \times 2}}$	${ }^{\text {SBC }}{ }_{(1 \times 1}$	${ }_{1}^{\text {SBC }}$	$0^{2} 10$
${ }_{0}^{3}$	$\begin{aligned} & 10 \\ & \text { BRCLR1 } \\ & B_{0} \quad \text { BIR } \end{aligned}$	BCLR1	$\text { BLS }_{\mathrm{AEL}}$	${ }_{2}^{6} \mathrm{COM}_{\mathrm{DID}}$	$\begin{array}{\|l\|} \hline{ }^{4} \text { COMA } \\ \hline 1 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \\ 1 \\ \hline \end{array}$	${ }_{2}^{7} \operatorname{Com}\|x\|$	${ }_{1}^{6}{ }_{6}{ }^{\text {COM }}$	${ }^{11} \mathrm{sWi}_{\mathrm{INH}}$		$\int_{2}^{2} \text { CPX }$	$\mathrm{CPX}_{\mathrm{ODR}}$	${ }_{\text {CPX }}^{\text {EXI }}$	$\operatorname{CPX}_{1 \times 2}$	${ }_{\text {CPX }}{ }_{\text {｜x｜}}$	CPX ${ }_{1 \times}$	${ }_{0}^{3} 11$
${ }_{0100}^{4}$	$\begin{aligned} & 10 \\ & \text { BRSET2 } \\ & 3 \quad \text { BIR } \end{aligned}$	$2^{\text {BSET2 }}$ SC	${ }_{2}{ }^{\text {BCC }}$	$\begin{array}{\|lll} \hline 0 & \text { LSR } \\ 2 & \text { OTR } \\ \hline \end{array}$	$\begin{array}{ll} \hline \text { LSAA } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 \\ \hline \end{array}$	$\text { LSR }{ }_{\|x\|}$	$\begin{array}{\|lll\|} \hline 6 & \text { LSR } \\ 1 & & \\ \hline \end{array}$			${ }_{2}^{2} \text { AND }$	ANC	${ }^{\text {AND }}$	${ }^{\text {AND }}{ }_{1 \times 2}$	AND 1×1		${ }_{010}^{4}$
${ }_{0}^{5}$	$\begin{gathered} 10 \\ 8 B C L R 2 \\ -3 I B \\ \hline \end{gathered}$	${ }_{3}^{8 C L R 2}$	${ }_{2}^{4} \mathrm{BCS}_{\mathrm{BEL}}$								2	$2{ }_{2}$	${ }^{\text {BIT } \mathrm{EXI}^{2}}$	${ }_{1 \times 2}$	${ }^{81 T_{1 \times 1}}$	${ }^{\text {BIT }}$ IX	${ }_{0}^{5}$
${ }_{0}^{6}$	$\begin{aligned} & \text { To _eve } \\ & \text { BRSETJ } \\ & \hline \end{aligned}$	${ }_{2}^{\text {BSETS }}$	${ }_{2}^{4} \mathrm{BNE}_{\mathrm{AEL}}$	$\begin{array}{\|ll\|} \hline 6 & R_{2} \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 3 \text { RORA } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array}$	${ }_{2}^{R_{1 \times 1}}$	$\mathrm{ROR}_{\mathrm{IX}}$			${ }_{2}^{2}$ LDA	$2{ }_{2}{ }^{2} A_{D, R}$	$\text { LDA }_{\text {EXI }}$	LOA $_{1 \times 2}$	LDA ${ }_{\text {I }}$｜	LDA $1 \times$	${ }_{0110}^{6}$
${ }^{7} 11$	$\begin{aligned} & 10 \\ & 8 R C L R 3 \\ & 3 \quad \text { BIB } \\ & \hline \end{aligned}$	${ }_{2}^{8 \mathrm{BCLR}}{ }_{\text {BSC }}$	${ }_{2} \mathrm{BEO}_{8 E L}$	${ }_{2}^{6} \text { ASR }$	${ }_{1}^{4} \text { ASRA }$	$\begin{array}{\|c\|} \hline 4 \\ \hline \end{array}$	${ }_{2}{ }^{A S R_{1 \times 1}}$	${ }^{6}{ }^{1}{ }^{1}$		$\begin{aligned} & 2 \text { TAX } \\ & 1 \\ & \hline \end{aligned}$		STA	STA EXI	$\operatorname{STA}_{1 \times 2}$	$\text { STA }_{\mid \times 1}$	$\begin{array}{\|lll} \hline 5 & \\ \hline \end{array}$	${ }^{7} 711$
${ }_{1000}^{8}$	$\begin{aligned} & 10 \\ & 3 R S E T 4 \\ & 3 \\ & 3 \end{aligned}$	${ }_{2}^{8 B E T A}$	${ }_{2}{ }_{2} \mathrm{BHCC}$	$\mathrm{LSL}_{\mathrm{O}, \mathrm{~B}}$	$\mathrm{A}_{\mathrm{A}}^{\mathrm{L}} \mathrm{LSLA}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { LSLX } \\ 1 \\ \hline \end{array}$	$\operatorname{LSL}_{\|x\|}$	${ }_{1}^{6}{ }^{\text {LSL }}$｜${ }^{\text {d }}$		$\begin{array}{\|ll} 2 & \mathrm{CLC} \\ 1 & \\ \hline \end{array}$	$\begin{array}{ll} \hline 2 & \text { EOR } \\ 2 & \text { IMM } \\ \hline \end{array}$	${ }_{2} \mathrm{EOR}_{\mathrm{OLR}}$	$\mathrm{EOR}_{E \times I}$	$\operatorname{EOR}_{1 \times 2}$	${ }^{\text {EOR }}{ }_{1 \times 1}$	${ }_{1}$ EOR $1 x$	$\stackrel{8}{1000}$
${ }_{109}^{9}$	$\begin{aligned} & 10 \\ & { }^{8 R C L R A} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { BCLR4 } \\ & -\quad \text { OSC } \end{aligned}$	${ }_{2}^{4} \text { BHCS }$	$\mathrm{ROL}_{\mathrm{O}, \mathrm{R}}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { ROLA } \\ 1 & \text { INH } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 \\ \mathrm{R}_{1} \\ \mathrm{ROLN} \\ \hline \end{array}$	$\mathrm{ROL}_{1 \times 1}$	${ }_{1}^{6}{ }_{6}^{\text {ROL }}{ }_{1 \times}$		$\begin{array}{\|ll\|} \hline 2 & \mathrm{SEC} \\ 1 & \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ADC} \\ & \hline \end{aligned}$	${ }_{3}^{4} A D C_{018}$	${ }_{3} A D C E:_{\text {EXI }}$	${ }^{A D C_{1 \times 2}}$	${ }^{A D C}{ }_{\mid \times 1}$	${ }_{1}{ }_{1} D^{1 \times}$	${ }_{100}^{9}$
${ }_{1010}$	$\begin{aligned} & 10 \\ & \text { BRSET5 } \\ & 3 \quad \text { STI } \end{aligned}$	BSET5	$2{ }_{2}^{\mathrm{BPL}}$	$\begin{array}{\|ll} \hline 6 \\ 2 & D E C \\ 2 \\ \hline \end{array}$	${ }^{4} \text { DECA }$	$\begin{array}{\|l\|l\|} \hline{ }^{4} \text { DECX } \\ 1 \\ \hline \end{array}$	${ }_{3} D E C_{1 \times 1}$	${ }_{1}^{6}$ DEC ${ }^{\text {a }}$		$\begin{array}{\|ll\|} \hline 2 & \mathrm{CLI} \\ 1 & \mathrm{CLNH} \\ \hline \end{array}$	$2 \text { ORA }$	$\text { ORA }_{\mathrm{DIR}}$	${ }_{3}^{3} \text { ORA } E_{E T}$	$\mathrm{ORA}_{1 \times 2}$	$\text { ORA }{ }_{1 \times 1}$	ORA $1 \times$	${ }_{1010}$
${ }_{1011}$	$\begin{aligned} & 10 \\ & 3 \text { RCLA5 } \\ & 3 \quad \text { BTB } \end{aligned}$	$3 \text { BCLR5 }$	${ }_{2} \text { BMI }$							$\begin{array}{\|l\|l\|} \hline 2 & \mathrm{SEI} \\ \hline \end{array}$	${ }^{2} A D D_{M M}$	$2 A D D_{D, R}$	$A D D_{E \times T}$	$A_{1 \times 2}$	${\stackrel{A D}{ }{ }_{1 \times 1},}$	${ }^{\text {ADD }}{ }_{\text {ix }}$	${ }_{1011}$
$\stackrel{C}{110}$	$\begin{aligned} & \text { T0 } \\ & \text { BRSET6 } \\ & 3 \end{aligned}$	BSETB	BMC REL	$2^{I N C_{D R R}}$	$\begin{array}{\|ll\|} \hline 1 & \\ \hline & \text { INCA } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { INCX } \\ 1 \\ \hline \end{array}$	$\operatorname{INC}_{1 \times 1}$			$\begin{array}{lll} 2 & \text { RSP } \\ 1 & \text { INH } \\ \hline \end{array}$		${ }_{2}^{3} J M P_{P I R}$	${ }^{J M P}{ }_{E X T}$	${ }^{\mathrm{JMP}}{ }_{1 \times 2}$	$J M P_{\|x\|}$	${ }_{1}^{3}$ JMP ${ }^{1} \times$	$\stackrel{\text { C }}{100}$
${ }_{10}$	$\begin{aligned} & 10 \\ & \text { BRCLRE } \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} B C L R B \\ -{ }_{2} \quad \begin{array}{l} \text { BSC } \end{array} \\ \hline \end{gathered}$	BMS	${ }_{2}{ }^{T S T} T_{0,1}$	$\begin{array}{\|l\|} \hline 1 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \mathrm{TSTX} \\ , & \mathrm{NHH} \\ \hline \end{array}$	${ }_{2}{ }_{2} \mathrm{TST}_{1 \times 1}$	$\begin{aligned} & 6{ }^{6}{ }^{\text {TST }}{ }_{1} \\ & \hline \end{aligned}$		$\begin{array}{ll} { }^{2} \\ 1 \\ 1 \end{array}$	$8 \mathrm{BSR}$	$\text { JSR }{ }_{D, 1 p}$		${ }^{J S R_{1 \times 2}}$	${ }^{\text {JSR }}{ }_{1 \times 1}$	${ }^{\text {JSR }}{ }_{\text {Ix }}$	${ }_{101}$
${ }_{11}{ }^{\text {E }}$	$\begin{aligned} & 10 \\ & 3 R S E T 7 \\ & 3 \quad \text { 日IE } \end{aligned}$, BSETT	$B_{R E 1}$								$\int_{2}^{2} \mathrm{LDX}$	$L_{0, R}$	$\operatorname{LDX}_{E \times T}$	$\operatorname{LDX}_{1 \times 2}$	$\operatorname{LOX}_{\|\times 1\|}$	${ }_{1} \mathrm{LDX}_{\mathrm{x}}$	${ }_{11}^{\mathrm{E}}$
${ }_{1111}$	$\begin{aligned} & \text { B6 } \\ & 3 \text { BRCLR7 } \\ & 3 \quad B 7 B \\ & \hline \end{aligned}$	$\begin{gathered} \text { BCLR7 } \\ \hline \text { BSC } \end{gathered}$	${ }^{81 H_{A E L}}$	${ }_{2}^{6} \mathrm{CLR}_{\mathrm{DiA}}$	$\begin{array}{\|c\|} \hline 4, \text { CLRA } \\ \hline \end{array}$	${ }_{1}^{4} \text { CLRXX }$	$\int_{2} \mathrm{CLR}_{1 \times 1}$	${ }^{6} \mathrm{CLR}_{\mathrm{IX}}$		$\begin{array}{\|cc\|} \hline 2 & \mathrm{TXA} \\ 1 & \mathrm{INH} \\ \hline \end{array}$		$\begin{array}{ll} 5 & \\ \hline 2 & \operatorname{six} \\ \hline \end{array}$	$\underbrace{}_{E \times T}$	${ }_{3} \mathrm{STX}_{1 \times 2}$	${ }_{2} \operatorname{sT} X_{\|x\|}$	$\int_{1}^{5} \text { six }{ }_{1 x}$	F 111

Abbreviations for Address Modes

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
REL	Relative
BSC	Bit Set／Clear
BTB	Bit Test and Branch
IX	Indexed（No Offset）
IX1	Indexed，1 Byte（B－Bit）Offset
IX2	Indexed，2 Byte（16－Bit）Offse

PACKAGE MECHANICAL DATA

P SUFFIX - PLASTIC PACKAGE

FN SUFFIX - PLCC44

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS-THOMSON on EPROM(s) or an EFDOS/MDOS* disk file.
To initiate a ROM pattern for the MCU, it is necessary to first contact your local SGS THOMSON representative or distributor.

EPROMs

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filled for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS THOMSON. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, SGS-THOMSON will program on blank EPROM from the data
file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by SGS-THOMSON. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process inhouse if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS THOMSON' Disk Operating System available on development systems such as DEVICE...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser, ...

* Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local SGS THOMSON representative or SGS THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS THOMSON representative.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating and screening level. Other possibilities on request.

Device	Package					Oper. Temp			ScreeningLevel			
	C	J	P	E	FN	L*	V	T	Std	D	G/B	B/B
EF6805R2			\bullet		\bullet	\bigcirc	\bullet	\bullet	\bullet	\bullet		
Examples: EF6805R2P, EF6805R2FN, EF6805R2PV, EF6805R2FNV.												

Package : C : Ceramic DIL, J : Cerdip DIL, P : Plastic DIL, E : LCCC, FN : PLCC.
Oper. temp. : $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, * $:$ may be omitted.
Screening level : Std : (no-end suffix), D : NFC 96883 level D,
G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B.
EXORciser is a regıstered trademark of MOTOROLA Inc.

8 BIT MICROCOMPUTER WITH A/D

- A/D CONVERTER

8-BIT CONVERSION, MONOTONIC 4 MULTIPLEXED ANALOG INPUTS RATIOMETRIC CONVERSION

- 32 TTL/CMOS COMPATIBLE I/O LINES 24 BIDIRECTIONAL (8 lines are LED compatible)
8 INPUT-ONLY
- 3776 BYTES OF USER ROM
- 112 BYTES OF RAM
- SELF-CHECK MODE
- ZERO-CROSSING DETECT/INTERRUPT
- INTERNAL 8-BIT TIMER WITH 7-BIT SOFTWARE PROGRAMMABLE PRESCALER AND CLOCK SOURCE
- 5V SINGLE SUPPLY

SOFTWARE FEATURES

- 10 POWERFUL ADDRESSING MODES
- BYTE EFFICIENT INSTRUCTION SET WITH TRUE BIT MANIPULATION, BIT TEST, AND BRANCH INSTRUCTIONS
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- POWERFUL INDEXED ADDRESSING FOR TABLES
- FULL SET OF CONDITIONAL BRANCHES
- MEMORY USABLE AS REGISTER/FLAGS
- COMPLETE DEVELOPMENT SYSTEM SUPPORT ON INICE ${ }^{\circledR}$

USER SELECTABLE OPTIONS

- 8 BIDIRECTIONAL I/O LINES WITH TTL OR TTLCMOS INTERFACE OPTION
- 8 BIDIRECTIONAL I/O LINES WITH TTL OR OPEN-DRAIN INTERFACE OPTION
- CRYSTAL OR LOW-COST RESISTOR OSCILLATOR OPTION
- LOW VOLTAGE INHIBIT OPTION
- VECTORED INTERRUPTS : TIMER, SOFTWARE, AND EXTERNAL
- USER CALLABLE SELF-CHECK SUBROUTINES

PIN CONNECTIONS

$v_{s s} 5$	40 Pa7
RESET ${ }^{\text {a }}$	39 JPa6
int 0^{3}	38 IPA5
vCCO^{4}	31 PPA4
extalds	${ }_{36} \mathrm{PPA}$
xtald ${ }^{\text {a }}$	${ }_{35} \mathrm{PaA}$
NCO,	34.5 PAI
timerdis	33 PAO
PCOLS	$32 \mathrm{PB7}$
PCIC 10	${ }_{31} \mathrm{Pbg}^{\text {d }}$
PC2411	$30 \mathrm{PPB5}$
PC3 ${ }^{12}$	29.8884
$\mathrm{PC4} 413$	${ }_{28} \mathrm{P}^{\text {P\%s }}$
PCS5 ${ }^{14}$	${ }^{27} \mathrm{P}^{\text {P82 }}$
PC6 15	${ }^{26} \mathrm{~PB}^{1}$
PC7C 16	25 Pbo
PD7 ${ }^{17}$	${ }^{24}$ PDDO/ANO
P6/iNT2 Cl^{18}	${ }^{23}$ PDDI/AN1
PDS/VRHC 19	${ }_{22} \mathrm{PDD2/AN2}$
PDA/VRLQ ${ }^{\text {P }}$	21. PDO/AN3

DESCRIPTION

The EF6805R3 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, 4-channel 8-bit A/D, and TIMER. It is designed for the user who needs an economical microcomputer with the
proven capabilities of the 6800-based instruction set. A comparison of the key features of several members of the 6805 Family of Microcomputers is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805R3 MCU.

Figure 1 : EF6805R3 HMOS MICROCOMPUTER BLOCK DIAGRAM.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{C c}$	Supply Voltage	-0.3 to +7.0	V
$V_{\text {In }}$	Input Voltage (except TIMER in self-check mode and open-drain inputs)	-0.3 to + 7.0	V
$V_{\text {In }}$	Input Voltage (open-drain pins, TIMER pin in self-check mode)	-0.3 to +15.0	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range $\begin{array}{ll}\left(T_{L} \text { to } T_{H}\right) & V \text { Suffix } \\ & T \text { Suffix }\end{array}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
TJ	Junction Temperature Plastic Package PLCC	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{\text {ss }} \leq\left(V_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {cc }}$ Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level (e.g., either $V_{s s}$ or $V_{c c}$).

THERMAL DATA

$\theta_{\text {JA }}$	Thermal Resistance Plastic	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	PLCC	80	

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :

$$
\begin{equation*}
T_{J}=T_{A}+\left(P_{D} \cdot \theta_{J A}\right) \tag{1}
\end{equation*}
$$

Where :
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}=$ Package Thermal Resistance, Junc-tion-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD $=$ PINT + PPORT
$P_{\text {INT }}=$ Icc \times VCC, Watts - Chip Internal Power
Pport = Port Power Dissipation, Watts - User Determined
For most applications PPORT << PINT and can be neglected. PPORT may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between PD_{D} and T_{J} (if PPORT is neglected) is :

$$
\begin{equation*}
P_{D}=K \div\left(T_{J}+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
\mathrm{K}=\mathrm{P}_{\mathrm{D}} \cdot\left(\mathrm{~T}_{\mathrm{A}}+273^{\circ} \mathrm{C}\right)+\theta_{\mathrm{JA}} \cdot \mathrm{P}_{\mathrm{D}}^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}		$\begin{gathered} 4.0 \\ v_{c c}-0.5 \\ v_{c c}-0.5 \\ 2.0 \\ \hline \end{gathered}$		$V_{c c}$ $V_{C C}$ $V_{c c}$ $V_{c c}$ $V_{c c}$	V
V_{IH}	Input High Voltage Timer Timer Mode Self-check Mode	$\begin{aligned} & 2.0 \\ & 9.0 \\ & \hline \end{aligned}$	10.0	$\begin{gathered} V_{C C}+1 \\ 15.0 \end{gathered}$	V
VIL	```Input Low Voltage RESET INT All Other (except A/D inputs)```	$\begin{aligned} & \mathrm{V}_{S S} \\ & \mathrm{~V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	V
$\mathrm{V}_{\text {IRES }}+$ Vires -	$\overline{\text { RESET }}$ Hystereris Voltages (see figures 10, 11 and 12) "Out of Reset" "Into Reset"	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 2.0 \\ & \hline \end{aligned}$	V
$\mathrm{V}_{\text {INT }}$	$\overline{\text { INT }}$ Zero Crossing Input Voltage, through a Capacitor	2		4	$\mathrm{Vac}_{\text {a p-p }}$
P_{D}	$\begin{array}{r} \text { Power Dissipation - (no port loading, } \begin{array}{r} \mathrm{V} C \mathrm{C} \end{array}=5.75 \mathrm{~V} \text {) } \\ T_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ T_{A}=-40^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 520 \\ & 580 \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \end{aligned}$	mW
$\mathrm{C}_{\text {In }}$	Input Capacitance EXTAL All Other Except Analog Inputs (see note)		$\begin{aligned} & 25 \\ & 10 \end{aligned}$		pF
$\mathrm{V}_{\text {LVR }}$	Low Voltage Recover			4.75	V
$\mathrm{V}_{\text {LVI }}$	Low Voltage Inhibit	2.75	3.75	4.70	V
$\mathrm{I}_{\text {I }}$	```Input Current TIMER (\(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\)) INT \(\left(\mathrm{V}_{\text {tn }}=2.4 \mathrm{~V}\right.\) to \(\left.\mathrm{V}_{\mathrm{cc}}\right)\) EXTAL (\(\mathrm{V}_{\mathrm{In}}=2.4 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{cc}}\), crystal option) (\(\mathrm{V}_{\mathrm{In}}=0.4 \mathrm{~V}\), crystal option) \(\overline{\operatorname{RESET}}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right.\)) (external capacitor charging current)```	-4.0	20	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

Note : Port D Analog Inputs, when selected, $\mathrm{C}_{\mathrm{in}}=25 \mathrm{pF}$ for the first 5 out of 30 cycles.

* Due to internal biasing this input (when unused) floats to approximately 2.2 V .

SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency	0.4		4.2	MHz
$\mathrm{t}_{\text {cyc }}$	Cycle Tıme (4/fosc)		0.95		10
$\mathrm{t}_{\text {WL }}, \mathrm{t}_{\mathrm{WH}}$	$\overline{\mathrm{N} T}, \overline{\mathrm{INT2}}$ and TIMER Pulse Width $($ see interrupt section)	$\mathrm{t}_{\text {cyc }}+250$			ns
$\mathrm{t}_{\text {RWL }}$	$\overline{\text { RESET Pulse Width }}$	$\mathrm{t}_{\text {cyc }}+250$			ns
$\mathrm{f}_{\text {INT }}$	$\overline{\text { INT Zero-crossing Detection Input Frequency }}$	0.03		1	kHz
	External Clock Input Duty Cycle (EXTAL)	40	50	60	$\%$
	Crystal Oscillator Start-up Time				100

[^16]
A/D CONVERTER CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Parameter	Comments	Min.	Typ.	Max.	Unit
Resolution		8	8	8	Bits
Non-linearity	For $\mathrm{V}_{\mathrm{RH}}=4.0$ to 5.0 V and $\mathrm{V}_{\mathrm{BL}}=0 \mathrm{~V}$			$\pm 1 / 2$	LSB
Quantizing Error				$\pm 1 / 2$	LSB
Conversion Range		V_{RL}		$\mathrm{V}_{\text {RH }}$	V
$\mathrm{V}_{\text {RH }}$	A/D accuracy may decrease			V_{CC}	V
$V_{\text {RL }}$	proportionately as $V_{\text {RH }}$ is reduced below 4.0 V . The sum of V_{RH} and V_{RL} must not exceed V_{Cc}.	V_{ss}		0.2	V
Conversion Time	Includes Sampling Time	30	30	30	$\mathrm{t}_{\mathrm{cyc}}$
Monotonicity	Inherent (within total error)				
Zero Input Reading	$\mathrm{V}_{\text {In }}=0$	00	00	01	Hexadecimal
Ratiometric Reading	$\mathrm{V}_{\mathrm{In}}=\mathrm{V}_{\mathrm{RH}}$	FE	FF	FF	Hexadecimal
Sample Tıme		5	5	5	$\mathrm{t}_{\text {cyc }}$
Sample/hold Capacitance, Input				25	pF
Analog Input Voltage	Negative transients on any analog lines (pins 19-24) are not allowed at any time during conversion.	V_{RL}		$\mathrm{V}_{\text {RH }}$	V

PORT ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)
PORT A WITH CMOS DRIVE ENABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {OL }}$	Output Low Voltage ($\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$)			0.4	V
V_{OH}	$\begin{gathered} \text { Output High Voltage } \\ I_{\text {Load }}=-100 \mu \mathrm{~A} \\ I_{\text {Load }}=-10 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ V_{C C}-1.0 \\ \hline \end{gathered}$			V
V_{IH}	Input High Voltage ($\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ max.)	2.0		V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage ($\mathrm{I}_{\text {Load }}=-500 \mu \mathrm{~s}$ max.)	$\mathrm{V}_{\text {SS }}$		0.8	V
I_{IH}	High-Z State Input Current ($\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ to V_{CC})			-300	$\mu \mathrm{A}$
	High-Z State Input Current ($\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$)			-500	$\mu \mathrm{A}$

PORT ELECTRICAL CHARACTERISTICS (continued)
PORT B

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage $\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$ LLaad $=10 \mathrm{~mA}$ (sink)			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage,Load$=-200 \mu \mathrm{~A}$	2.4			V
I_{OH}	Darlington Current Drive (source), $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	-1.0		-10	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High-Z State Input Current		<2	10	$\mu \mathrm{~A}$

PORT C AND PORT A WITH CMOS DRIVE DISABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage, I Load $=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage, I $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}$		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High-Z State Input Current		<2	10	$\mu \mathrm{~A}$

PORT C (open-drain option)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		13.0	V
$\mathrm{~V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}$		0.8	V
$\mathrm{I}_{\text {LOD }}$	Input Leakage Current		<3	15	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V

PORT D (digital inputs only)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
I_{In}	Input Current ${ }^{\star}$		<1	5	$\mu \mathrm{~A}$

* PD4 $N_{\mathrm{RL}}-$ PD5 N_{RH} : The A/D conversion resistor ($15 \mathrm{k} \Omega$ typical) is connected internally between these two lines, impacting their use as digital inputs in some applications.

Figure 2 : TTL Equivalent Test Load (port B).

Figure 3 : CMOS Equivalent Test Load (port A).

Figure 4 : TTL Equivalent Test Load (ports A and C).

SIGNAL DESCRIPTION

The input and output signals for the CMU, shown in figure 1, are described in the following paragraphs.
VCc AND VSS . Power is supplied to the MCU using these two pins. $V_{C C}$ is power and $V_{S S}$ is the ground connection.
$\overline{\mathrm{INT}}$. This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts Section for additional information.
XTAL AND EXTAL. These pins provide control input for the on-chip clock oscillator circuit. A crystal, aresistor, or an external signal, depending on user selectable manufacturing mask option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead lenght and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options Section for recommendations about these inputs.
Note : Pin 7 in DIL package/Pin 8 in PLCC package is connected to internal protection.
TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Section for additional information about the timer circuitry.
RESET. This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pulling RESET low. Refer to Resets Section for additional information.
INPUT/OUTPUT LINES (PAO-PA7, PB0-PB7, PCOPC7, PDO-PD7). These 32 lines are arranged into four 8-bit ports (A, B, C, and D). Ports A, B, and C are programmable as either inputs or outputs under software control of the data direction registers

Figure 5 : Open - Drain Equivalent Test Load (port C).

(DDRs). Port D has up to four analog inputs, plus two voltage reference inputs when the A/D converter is used (PD5/ $V_{\text {RH }}$, PD4 $/ N_{\text {RL }}$), and an INT2 input, and from one to eight digital inputs. If any analog input is used, then the voltage reference pins (PD5/ V_{RH}, PD4/ $V_{\text {RL }}$) must be used in the analog mode. The two analog reference inputs are tied together internally with a resistor, therefore, if they are both used as digital inputs problems may occur. Refer to Input/Output Section, A/D Converter Section, and Interrupts Section for additional information.
MEMORY. The MCU is capable of addressing 4096 bytes of memory and I/O registers with its program counter. The EF6805R3 MCU has implemented 4092 of these bytes. This consists of : 3776 user ROM bytes, 192 self-check ROM bytes, 112 user RAM bytes, 7 port I/O bytes, 2 timer registers, 2 A/D registers, and a miscellaneous register ; see figure 6 for the Address map. The user ROM has been split into two areas. The main user ROM area is from $\$ 080$ to $\$$ F37. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.
The MCU reserves the first 16 memory locations for I/O features, of which 12 have been implemented. These locations are used for the ports, the port DDRs, the timer, the INT2 miscellaneous register, and the A/D. Of the 112 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.
The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in figure 7. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order four bits (PCH) are stacked. This ensures that the program counter is loaded correctly during pulls from the stack since the
stack pointer increments when it pulls data from the stack. A subroutine call results in only the program
counter (PCL, PCH) contents being pushed onto the stack ; the remaining CPU registers are not pushed.

Figure 6 : EF6805R3 CMU Address Map.

* Caution : Data direction registers (DDRs) are write-only ; they read as \$FF.

Figure 7 : Interrupt Stacking Order.

* For subroutine calls, only PCH and PCL are stacked.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with I/O and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in figure 8 and are explained in the following paragraphs.
ACCUMULATOR (A). The accumulator is a general purpose 8-bit register used to hold operands and results of arithmetic calculations or data manipulations.
INDEX REGISTER (X). The index register is an 8bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used as a temporary storage area.
PROGRAM COUNTER (PC). The program counter is a 12-bit register that contains the address of the next instruction to be executed.
STACK POINTER (SP). The stack pointer is a 12bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location \$07F.
The stack pointer is then decremented as data is pushed onto the stack and incremented as data is
then pulled from the stack. The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).
CONDITION CODE REGISTER (CC). The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.
Half Carry (H). Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4.
Interrupt (I). When this bit is set, the timer and external interrupts (INT and INT2) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.
Negative (N). When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical "1").
Zero (Z).When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.
Carry/Borrow (C). When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

Figure 8 : Programming Model.

TIMER

The timer circuitry for the EF6805R3 is shown in figure 10. The timer contains a single 8 -bit software programmable counter with a 7 -bit software selectable prescaler. The counter may be preset under program control and decrements toward zero. When the counter decrements to zero, the timer interrupt request bit, i.e., bit 7 of the timer control register (TCR), is set. Then if the timer interrupt is not masked, i.e., bit 6 of the TCR and the I bit in the condition code register are both cleared, the processor receives an interrupt. After completion of the current instruction, the processor proceeds to store the appropriate registers on the stack, and then fetches the timer interrupt vector from locations \$FF8 and $\$ F F 9$ in order to begin servicing the interrupt.
The counter continues to count after it reaches zero, allowing the software to determine the number of internal or external input clocks since the timer interrupt request bit was set. The counter may be read at any time by the processor without disturbing the count. The contents of the counter become stable prior to the read portion of a cycle and do not change during the read. The timer interrupt request bit remains set until cleared by the software. If a write occurs before the timer interrupt is serviced, the interrupt is lost. TCR7 may also be used as a scanned status bit in a non-interrupt mode of operation (TCR6 = 1).
The prescaler is a 7 -bit divider which is used to extend the maximum length of the timer. Bit 0 , bit 1 , and bit 2 of the TCR are programmed to choose the appropriate prescaler output which is used as the counter input. The processor cannot write into or read from the prescaler ; however, its contents are cleared to all zeros by the write operation into TCR when bit 3 of the written data equals one, which allows for truncation-free counting.
The timer input can be configured for three different operating modes, plus a disable mode, depending on the value written to the TCR4 and TCR5 control bits. For further information see figure 9.
Timer Input Mode 1 - If TCR5 and TCR4 are both programmed to a zero, the input to the timer is from an internal clock and the external TIMER input is disabled. The internal clock mode can be used for periodic interrupt generation, as well as a reference in frequency and event measurement. The internal clock is the instruction cycle clock.

Timer Input Mode 2- With TCR5 $=0$ and TCR4 = 1, the internal clock and the TIMER input pin are ANDed to form the timer input signal. This mode can be used to measure external pulse widths. The external timer input pulse simply turns on the internal clock for the duration of the pulse widths.
Timer Input Mode 3-If TCR5 $=1$ and TCR4 $=0$, then all inputs to the timer are disabled.
Timer Input Mode 4 - If TCR5 = 1 and TCR4 = 1, the internal clock input to the timer is disabled and the TIMER input pin becomes the input to the timer. The external TIMER pin can, in this mode, be used to count external events as well as external frequencies for generating periodic interrupts.

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCR7 | TCR6 | TCR5 | TCR4 | TCR3* | TCR2 | TCR1 | TCR0 $\$ 009$ |

* Write only (read as zero)

TCR7 - Timer Interrupt Request Bit :
1 - Set when TDR goes to zero, or under program control
0 - Cleared on external Reset, Power-OnReset, or under Program Control.

TCR6 - Timer Interrupt Mask Bit :
1 - Timer Interrupt masked (disabled) Set on external Reset, Power-On-Reset, or under Program Control
0 - Cleared under Program Control.
TCR5 - External or Internal Clock Source Bit :
1 - External Clock Source. Set on external Reset, Power-On-Reset, or under Program Control
0 - Cleared under Program Control.
TCR4 - External Enable Bit :
1 - Enable external TIMER pin. Set on external Reset, Power-On-Reset, or under Program Control.
0 - Cleared under Program Control.

TCR5	TCR4	Result
0	0	Internal Clock to Timer
0	1	AND of Internal Clock and TIMER
1	0	Pin to Timer
1	1	Input to Timer Disabled
TIMER Pin to Timer		

TCR3 - Timer prescaler reset bit : A read of TCR3 always indicates a zero.
1 - Set on external Reset, Power-On-Reset or under Program Control.
0 - Cleared under Program Control.
TCR2, TCR1, and TCRO - Prescaler address bits :
1-All set on external Reset, Power-OnReset or under Program Control.
0 - Cleared under Program Control.

Figure 9 : Timer Control Register (TCR).

TCR2	TCR1	TCRO	Result
0	0	0	+1
0	0	1	+2
0	1	0	+4
0	1	1	+8
1	0	0	+16
1	0	1	+32
1	1	0	+64
1	1	1	+128

Figure 10 : Timer Block Diagram.

Notes : 1. Prescaler and 8-bit counter are clocked on the failing edge of the internal clock (AS) or external input
2. Counter is written to during data strobe (DS) and counts down continuously.

SELF-CHECK

The self-check capability of the EF6805R3 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10 -volt level (through a 10 k resistor) on the timer input, pin 8 and pressing then releasing the RESET button, energizes the ROM-based self-check feature. The self-check program exercises the RAM, ROM, TIMER, A/D, interrupts, and I/O ports.

Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM, and 4-channel A/D tests. The timer routine may also be called if the timer input is the internal ø2 clock.

To call those subroutines in customer applications, please contact your local SGS THOMSON sales office in order to obtain the complete description of the self-check program and the entrance/exit conditions.
RAM SELF-CHECK SUBROUTINE. The RAM selfcheck is called at location $\$ F 84$ and returns with the Z bit clear if any error is detected ; otherwise the Z bit is set. The RAM test causes each byte-to count from 0 up to 0 again with a check after each count.
The RAM test must be called with the stack pointer at $\$ 07 \mathrm{~F}$ and $\mathrm{A}=0$. When run, the test checks every RAM cell except for $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ which are assumed to contain the return address.
The A and X registers and all RAM locations except \$07F and \$07E are modified.

ROM CHECKSUM SUBROUTINE - The ROM selfcheck is called at location \$F95. The A register should be cleared before calling the routine. If any error is detected, it returns with the Z bit cleared ;
otherwise $Z=1, X=0$ on return, and A is zero if the test passes. RAM location $\$ 40$ to $\$ 043$ is overwritten. The checksum is the complement of the execution OR of the contents of the user ROM.

Figure 11 : Self-check Connections.

* This connection depends on clock oscillator user selectable mask option. Use jumper if the RC mask option is selected

LED Meanings

PC0	PC1	PC2	PC3	Remarks $[1:$ LED ON ;0 : LED OFF]
1	0	1	0	Bad I/O
0	0	1	0	Bad Timer
1	1	0	0	Bad RAM
0	1	0	0	Bad ROM
1	0	0	0	Bad ADD
0	0	0	0	Bad Interrupts or Request Flag
All Flashing			Good Device	

Anything else bad Device, Bad Port C, etc.

ANALOG-TO-DIGITAL CONVERTER SELFCHECK. The A/D self-check is called at location \$FAE. It returns with the Z bit cleared if any error was found ; otherwise the Z bit is set. The A and X register contents are lost. The X register must be set to four before the call. On return, $X=8$ and A / D channel 7 is selected. The A/D test uses the internal voltage references and confirms port connections.
TIMER SELF-CHECK SUBROUTINE. The timer self-check is called at location \$F6D and returns with the Z bit cleared if any error was found ; otherwise $Z=1$.

In order to work correctly as a user subroutine, the internal $\varnothing 2$ clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is running and the interrupt mask is not set so the caller must protect from interrupts if necessary.
The A and X register contents are lost. This routine sets the prescaler for divide-by-128 and the timer data register is cleared. The X register is configured to count down the same as the timer data register. The two registers are then compared every 128 cycles until they both count down to zero. Any mis-
match during the count down is considered as an error. The A and X registers are cleared on exit from the routine.

RESET

The MCU can be reset three ways : by initial powerup, by the external reset input (RESET) and by an optional internal low-voltage detect circuit. The RESET input consists mainly of a Schmitt trigger which senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in figure 12. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the RESET pin.
Power-On Reset (POR).An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of trHL milliseconds is required before allowing the RESET input to go high. Refer to the power and reset timing diagram of figure 13. Connecting a capacitor to the RESET input (as illustrated in figure 14) typically provides sufficient delay. During powerup, the Schmitt trigger switches on (removes reset) when RESET rises to VIRES + .

Figure 12 : Typical Reset Schmitt Trigger Hysteresis.

Figure 13 : Power and Reset Timing.

Figure 14 : $\overline{\text { RESET }}$ Configuration.

External Reset Input. The MCU will be reset if a logical zero is applied to the RESET input for a period longer than one machine cycle (tcyc). Under this type of reset, the Schmitt trigger switches off at Vires- to provide an internal reset voltage.
Low-Voltage Inhibit (LVI). The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level ($\mathrm{V}_{\mathrm{LVII}}$). The only requirement is that V_{cc} remains at or below the $\mathrm{V}_{\text {LVI }}$ threshold for one tcyc minimum. In
typical applications, the V V_{Cc} bus filter capacitor will eliminate negative-going voltage glitches of less than one tcyc. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level ($\mathrm{V}_{\mathrm{LVR}}$), at which time a normal power-on-reset occurs.

INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.
The different connection methods are shown in figure 15. Crystal specifications and suggested PC board layouts are given in figure 16. A resistor selection graph is given in figure 17.

The crystal oscillator start-up time is a function of many variables : crystal parameters (especially Rs_{s}), oscillator load capacitances, IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.

When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage below VIRES_{+}) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating the external reset capacitor required to satisfy this condition : the oscillator start-up voltage, the oscillator stabilization time, the minimum $\mathrm{V}_{\text {IRES }}^{+}$, and the reset charging current specification.
Once Vcc minimum is reached, the external $\overline{\text { RESET }}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from Vcc through a large resistor, so it appears almost like a constant current source until the reset voltage rises above VIRES+. Therefore, the RESET pin will charge at approximately :

$$
\left(\mathrm{V}_{\text {IRES }}^{+}\right) ~ \cdot C_{\text {ext }}=\text { IRES } \cdot t_{\text {RHL }}
$$

Assuming the external capacitor is initially discharged.

Figure 15 : Clock Generator Options.

Note : The recommended C_{L} value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin. For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approxımately 50 pF on EXTAL and approxımately 25 pF on XTAL The exact value depends on the Motional-Arm parameters of the crystal used.

EF6805R3

Figure 16 : Crystal Monotional Arm Parameters and Suggested PC Board Layout.

Note : Keep crystal leads and circuit connections as short as possible.
Figure 17 : Typical Frequency Selection for Resistor (oscillator option).

INTERRUPTS

The microcomputers can be interrupted four different ways : through the external interrupt (INT) input pin, the internal timer interrupt request, the external port D bit 6 (INT2) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of $11 \mathrm{t}_{\mathrm{cyc}}$ periods for completion. A flowchart of the interrupt sequence is shown in figure 18. The interrupt service routine must end with a return from interrupt (RTI) instruction which allows the MCU to resume pro-
cessing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.
When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.

Figure 18 : $\overline{\text { RESET }}$ and Interrupt Processing Flochward.

NOTE

The timer and $\overline{\mathrm{NT} 2}$ interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both TCR b7 and MR b7 can only be written to zero by software.
The external interrupt, $\overline{\mathrm{INT}}$ and $\overline{\mathrm{NT} 2}$, are synchronized and then latched on the falling edge of the input signal. The INT2 interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The INT2 interrupt is inhibited when the mask bit is set. The INT2 is always read as a digital input on port D. The INT2 and timer interrupt request bits, if set, cause the MCU to process an interrupt when the condition code I bit is clear.

A sinusoidal input signal (fint maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-of-day routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a $2 f$ clock. See figure 19.

NOTE

The $\overline{\mathrm{INT}}$ (pin 3) is internally biased at approximately 2.2 V due to the internal zero-crossing detection.
A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as break-points for debugging or as system calls.

Figure 19 : Typical Interrupt Circuits.

INPUT/OUTPUT CIRCUITRY

There are 32 input/output pins. The $\overline{\mathrm{INT}}$ pin may be polled with branch instructions to provide an additional input pin. All pins on ports A, B, and C are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below I/O port control registers configuration. The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode. The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic levels at
the output pin, due to output loading. Refer to figure 20.

PORT DATA REGISTER
7
0

Port A Addr $=\$ 000$
Port B Addr $=\$ 001$
Port C Addr = \$002
Port D Addr $=\$ 003$
PORT DATA DIRECTION REGISTER (DDR)
7

(1) Write Only, reads as all " 1 s "
(2) $1=$ Output, $0=$ Input Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006$

Figure 20 : Typical Port I/O Circuitry.

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and D lines are CMOS compatible as inputs. Port D lines are input only ; thus, there is no corresponding DDR. When programmed as outputs, port B is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.
Port D provides the reference voltage, $\overline{\mathrm{INT} 2}$, and multiplexed analog inputs. All of these lines are shared with the port D digital inputs. Port D may al-

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
The latched output data bit (see figure 20) must always be written. Therefore, any write to a port writes
ways be used as digital inputs and may also be used as analog inputs providing V_{RH} and V_{RL} are connected to the appropriate reference voltages. The $\mathrm{V}_{\text {RL }}$ and $\mathrm{V}_{\text {RH }}$ lines (PD4 and PD5) are internally connected to the A/D resistor. Analog inputs may be prescaled to attain the V_{RL} and V_{RH} recommended input voltage range.
The address map (figure 6) gives the addresses of data registers and data direction registers. Figure 21 provides some examples of port connections.
all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).

Figure 21 : Typical Port Connections.
(a) Output Modes

Port B, bit 0 and bit 1 programmed as output, diving LEDs difectly

Port C, bits 0-3 programmed as output, driving C.MOS leads, using external pullup resistors frequred if Port C is open-drain)
(b) Input Mades

CMOS or TTL driving Port B directly

Port D used as 4 channel A/D input vath bit 7 used as CMOS digital input

ANALOG-TO-DIGITAL CONVERTER

The EF6805R2 has an 8-bit analog-to-digital (A/D) converter implemented on the chip using a successive approximation technique, as shown in figure 22. Up to four external analog inputs, via port D , are connected to the A / D through a multiplexer. Four internal analog channels may be selected for calibration purposes ($\mathrm{V}_{\mathrm{R}} \mathrm{H}-\mathrm{V}_{\mathrm{RL}}, \mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}} / 2$, $\mathrm{V}_{\mathrm{RH}}{ }^{-}$
$\mathrm{V}_{\mathrm{RL}} / 4$, and V_{RL}). The accuracy of these internal channels will not necessarily meet the accuracy specifications of the external channels.
The multiplexer selection is controlled by the A/D control register (ACR) bits 0,1, and 2 ; see table 1. This register is cleared during any reset condition.

Figure 22 : A/D Block Diagram.

Table 1 : A/D Input Mux Selection.

A/D Control Register			Input Selected	A/D Output (hex)		
ACR2	ACR1	ACRO		Min.	Typ.	Max.
0	0	0	ANO			
0	0	1	AN1			
0	1	0	AN2			
0	1	1	AN3			
1	0	0	$\mathrm{V}_{\text {RH }}$ -	FE	FF	FF
1	- 0	1	V_{RL} -	00	00	01
1	1	0	$\mathrm{V}_{\mathrm{RH} / 4}$.	3 F	40	41
1	1	1	$\mathrm{V}_{\mathrm{RH} / 2}$.	7F	80	81

* Internal (calibration) levels.

A/D RESULT REGISTER (ARR)

7	0
MSB	LSB

MR7 Bit 7 - $\overline{\text { NT2 }}$ interrupt request bit : set when falling edge detected on INT2 pin, must be cleared by software. Cleared to 0 by reset.
MR6 Bit 6 -INT2 interrupt mask bit : $1=\operatorname{INT} 2$ interrupt masked (disabled). Set to 1 by reset.
MR Bits 5, 4, 3, 2, 1, 0 - Read as "1s" - unused bits.

Whenever the ACR is written, the conversion in progress is aborted, the conversion complete flag (ACR bit 7) is cleared, and the selected input is sampled for five machine cycles and held internally. During these five cycles, the analog input will appear ap-
proximately like a 25 picofarad (maximum) capacitor (plus approximately 10pF for packaging) charging through a 2.6 kiloohm resistor (typical). Refer to figure 23.

Figure 23 : Effective Analog Input Impedance (during sampling only).

The converter operates continuously using 30 ma chine cycles to complete a conversion of the sampled analog input. When the conversion is complete, the digitized sample of digital value is placed in the A/D result register (ARR), the conversion complete flag is set, the selected input is sampled again, and a new conversion is started.
The A/D is ratiometric. Two reference voltages (VRH and $V_{\text {RL }}$) are supplied to the converter via port D pins. An input voltage equal to V_{RH} converts to $\$ \mathrm{FF}$ (full scale) and an input voltage equal to $V_{\text {RL }}$ converts to $\$ 00$. An input voltage greater than $V_{\text {RH }}$ converts to SFF and no overflow indication is provided. Similarly, an input voltage less than VRL, but greater than V_{Ss} converts to $\$ 00$. Maximum and minimum ratings must not be exceeded. For ratiometric conversion, the source of each analog input should use
V_{RH} as the supply voltage and be referenced to VRL. To maintain the full accuracy on the A/D, VRH should be equal to or less than $V_{D D}, V_{R L}$ should be equal to or greater than $\mathrm{V}_{S S}$ but less than the maximum specification and ($\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}$) should be equal to or greater than 4 volts.
The A/D has a built-in $1 / 2$ LSB offset intended to reduce the magnitude of the quantizing error to $1 / 2$ LSB, rather than $+0,-1$ LSB with no offset. This implies that, ignoring errors, the transition point from $\$ 00$ to $\$ 01$ occurs at $1 / 2$ LSB above VRL. Similarly, the transition from \$FE to \$FF occurs $11 / 2$ LSB below VRH, ideally. Refer to figure 24 and 25.
On release of reset, the A/D control register (ACR) is cleared therefore after reset, channel zero will be selected and the conversion complete flag will be clear.

Figure 24 : Ideal Converter Transfer Characteristic.

Figure 25 : Types of Conversion Errors.

BIT MANIPULATION

The EF6805R3 has the ability to set or clear any single RAM or I/O bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines.

CAUTION

The corresponding data direction registers for ports A, B, and C are write-only registers (locations $\$ 004$, $\$ 005$, and $\$ 006$). A read operation on these regis-
ters is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected" bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.
The coding examples shown in figure 26 illustrate the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit first, out of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.

Figure 26 : Bit Manipulation Example.

ADDRESSING MODES

The EF6805R3 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the EF6805 Family Users Manual.

The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
IMMEDIATE. In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
DIRECT. In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.
EXTENDED. In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3-byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.
RELATIVE. The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode address. The programmer need not worry about calculating the correct offset if he uses the assembler, since it calculates the proper offset and checks to see if it is within the span of the branch.
INDEXED, NO OFFSET. In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.

INDEXED, 8 -BIT OFFSET. In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 ($\$ 1$ FE is the last location at which the instruction may begin).
INDEXED, 16-BIT OFFSET. In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.
BIT SET/CLEAR. In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2-byte instruction.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
BIT TEST AND BRANCH. The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3-byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from-125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
INHERENT. In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805R3 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.
REGISTER/MEMORY INSTRUCTIONS. Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to table 1.

READ-MODIFY-WRITE INSTRUCTIONS. These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register ; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-modify-write instruction though it does not perform the write. Refer to table 2.
BRANCH INSTRUCTIONS. The branch instructions cause a branch from the program when a certain condition is met. Refer to table 3.
BIT MANIPULATION INSTRUCTIONS. The instructions are used on any bit in the first 256 bytes of the memory; One group either sets or clears. The other group performs the bit test and branch operations. Refer to table 4.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
CONTROL INSTRUCTION. The control instructions control the MCU operations during program execution. Refer to table 5.
ALPHABETICAL LISTING. The complete instruction set is given in alphabetical order in table 6.
OPCODE MAP. Table 8 is an opcode map for the instruction used on the MCU.

Addressing Modes

		Addressing Modes														
		Inherent（A）			Inherent（ X ）			Direct			Indexed （no offset）			Indexed （8 bit offset）		
Function	Mnem	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	0 p Code	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{array}{\|c\|} \hline \# \\ \text { Cycles } \\ \hline \end{array}$	$\begin{gathered} 0 p \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Increment	INC	4C	1	4	5C	1	4	3C	2	6	7C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3 F	2	6	7 F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate （2＇s complement）	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	5D	1	4	3D	2	6	7D	1	6	6D	2	7

EF6805R3

Table 3 : Branch Instructions.

Function		Relative Addressing Mode		
	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFF Higher	BHI	22	2	4
Branch IFF Lower or Same	BLS	23	2	4
Branch IFF Carry Clear	BCC	24	2	4
Branch IFF Higher or Same	BHS	24	2	4
Branch IFF Carry Set	BCS	25	2	4
Branch IFF Lower	BLO	25	2	4
Branch IFF Not Equal	BNE	26	2	4
Branch IFF Equal	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branch IFF Plus	BPL	2 A	2	4
Branch IFF Minus	BMI	$2 B$	2	4
Branch IFF interrupt mask bit is clear.	BMC	$2 C$	2	4
Branch IFF interrupt mask bit is set.	BMS	$2 D$	2	4
Branch IFF interrupt line is low.	BIL	2 2E	2	4
Branch IFF interrupt line is high.	BIH	$2 F$	2	4
Branch to Subroutine	BSR	AD	2	8

Table 4 : Bit Manipulation Instructions.

Function	Mnemonic	Addressing Modes					
		Bit Set/clear			Bit Test and Branch		
		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	\# Bytes	Cycles	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$		Cycles
Branch IFF Bit n is set	BRSET $\mathrm{n}(\mathrm{n}=0 \ldots 7)$				2•n	3	10
Branch IFF Bit n is clear	BRCLR $n(n=0 . . .7)$				$01+2 \cdot n$	3	10
Set Bit n	BSET n ($\mathrm{n}=0 . . .7$)	$10+2 \cdot n$	2	7			
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=0 . . .7)$	$11+2 \cdot n$	2	7			

Table 5 : Control Instructions.

Function		Mnemonic	Op Code	$\#$ Bytes
	$\#$ Cycles			
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	9 F	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	$9 B$	1	2
Clear Interrupt Mask Bit	CLI	9 A	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	9 C	1	2
No-operation	NOP	$9 D$	1	2

Table 6 : Instruction-Set.

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	Indexed (no offset)	Indexed (8 Bits)	Indexed (16 Bits)	$\begin{array}{\|c\|} \text { Bit } \\ \text { Set/clear } \end{array}$	$\begin{gathered} \text { Bit } \\ \text { Test \& } \\ \text { Branch } \end{gathered}$	H	1	N	Z	C
ADC		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
ASL	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
ASR	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
BCC					X						\bullet	-	\bullet	\bullet	\bullet
BCLR									X		\bullet	\bullet	\bullet	\bullet	\bullet
BCS					X						\bullet	\bullet	-	\bullet	\bullet
BEQ					X						\bullet	\bullet	\bullet	\bullet	\bullet
BHCC					X						\bullet	-	-	-	\bullet
BHCS					X						\bullet	-	\bullet	\bullet	\bullet
BHI					X						\bullet	\bullet	-	\bullet	\bullet
BHS					X						-	-	-	-	\bullet
BIH					x						-	\bullet	\bullet	-	\bullet
BIL					X						\bullet	\bullet	\bullet	\bullet	\bullet
BIT		X	X	X		X	X	x			\bullet	\bullet	\wedge	\wedge	\bullet
BLO					X						-	-	\bullet	\bullet	\bullet
BLS					X						\bullet	-	-	-	\bullet
BMC					X						\bullet	\bullet	\bullet	\bullet	\bullet
BMI					X						\bullet	\bullet	-	-	\bullet
BMS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BNE					X						-	-	\bullet	-	-
BPL					X						\bullet	-	\bullet	-	\bullet
BRA					X						-	\bullet	-	-	\bullet
BRN					X						\bullet	\bullet	\bullet	\bullet	\bullet
BRCLR										x	\bullet	\bullet	\bullet	-	\wedge
BRSET										X	\bullet	\bullet	\bullet	\bullet	\wedge
BSET									X		\bullet	\bullet	\bullet	\bullet	\bullet
BSR					X						\bullet	-	\bullet	-	\bullet
CLL	X										\bullet	-	\bullet	-	0

Condition Code Symbols:
H Half Carry (From Bit 3)
I Interrupt Mask
C Carry/Borrow
N Negatıve (Sıgn Bit)
Test and Set if True, Cleared Otherwise
Z Zero

- Not Affected

Table 6 : Instruction Set (continued).

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	Indexed (no offset)	Indexed (8 Bits)	Indexed (16 Bits)	Bit Set/clear		H	1	N	z	C
CLI	X										\bullet	0	\bullet	\bullet	\bullet
CLR	X		x			X	x				-	\bullet	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			X	X				-	-	\wedge	\wedge	1
CPX		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
DEC	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
INC	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\bullet
JMP			X	X		X	X	X			\bullet	\bullet	\bullet	\bullet	\bullet
JSR			X	X		X	X	X			\bullet	\bullet	\bullet	\bullet	\bullet
LDA		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LSL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
LSR	X		X			x	x				\bullet	\bullet	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
NOP	X										\bullet	-	\bullet	\bullet	\bullet
ORA		X	x	X		X	X	X			-	-	\wedge	\wedge	\bullet
ROL	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
RSP	X										\bullet	\bullet	\bullet	\bullet	\bullet
RTI	X										?	?	?	?	$?$
RTS	X										\bullet	\bullet	\bullet	\bullet	\bullet
SBC		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SEC	X										\bullet	\bullet	\bullet	\bullet	1
SEI	X										\bullet	1	\bullet	\bullet	\bullet
STA			x	X		X	x	X			\bullet	-	\wedge	\wedge	\bullet
STX			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SWI	X										\bullet	1	\bullet	\bullet	\bullet
TAX	X										\bullet	\bullet	\bullet	\bullet	\bullet
TST	X		x			X	X				\bullet	-	\wedge	\wedge	\bullet
TXA	X										\bullet	\bullet	\bullet	\bullet	\bullet

Condition Code Symbols:

H Half Carry (From Bit 3)
1 Interrupt Mask
N Negative (Sign Bit)
Z Zero

C Carry/Borrow
\wedge Test and Set if True, Cleared Otherwise

- Not Affected
? Load CC Register From Stack

EF6805 HMOS FAMILY

Features	EF6805P2	EF6805P6	EF6805R2	EF6805R3	EF6805U2	EF6805U3
Technology	HMOS	HMOS	HMOS	HMOS	HMOS	HMOS
Number of Pins	28	28	40	40	40	40
On-chip RAM (bytes)	64	64	64	112	64	112
On-chip User ROM (bytes)	1100	1796	2048	3776	2048	3776
External Bus	None	None	None	None	None	None
Bidirectional I/O Lines	20	20	24	24	24	24
Unidirectional I/O Lines	None	None	6 Inputs	6 Inputs	8 Inputs	8 Inputs
Other I/O Features	Timer	Timer	Timer, A/D	Timer, A/D	Timer	Timer
External Interrupt Inputs	1	1	2	2	2	2
STOP and WAIT	No	No	No	No	No	No

	Bhe Manipulation		Branch	Read-Modity-Write					Control		Reginter/Memory						
Low ${ }^{\text {Mi }}$	$\begin{aligned} & \text { Bj } \\ & 0 \\ & 0 \end{aligned}$	BSC 1 8001		$\frac{016}{\frac{011}{3}}$	$\begin{aligned} & \text { INH } \\ & \hline 10 \infty \end{aligned}$	$\begin{gathered} \frac{1 N H}{5} \\ \text { piot } \end{gathered}$	$\frac{\|x\|}{\frac{1}{6}}$	$\begin{aligned} & \frac{1 x}{7} \\ & \text { oill } \end{aligned}$	[NH		IMM A 1010	$\frac{\mathrm{DIR}}{\frac{1}{8}}$	$\frac{\text { EXT }}{c}$		$\begin{aligned} & \frac{1 \times 1}{E} \\ & \frac{1}{5} \end{aligned}$	$\begin{gathered} \frac{1 x}{f} \\ 111 \end{gathered}$	${ }^{\text {HI }}$
${ }_{0}^{0}$	10 ${ }^{\text {BRSETO }}$	BSETO	$2 \text { BRA }$	$\int_{2}^{6} N E G_{D, R}$	${ }^{4}$ NEG ${ }^{\text {N }}$	${ }_{1}^{4}$ NEG ${ }_{\text {INH }}$	${ }_{2}^{7}{ }^{7}{ }^{1}{ }_{1 \times 1}$	$\int_{1}^{6} \text { NEG }{ }_{1 x}$	$\begin{array}{\|l\|} \hline{ }^{9} \mathrm{RTI} \\ 1 \\ 1 \\ \hline \end{array}$		$2_{2}^{2} \text { sus }$	$\begin{array}{lll} 4 & & \\ 2 & \text { su8 } \\ \hline \end{array}$	${ }_{3}^{5} \text { SUB }$	${ }_{3}^{6} \text { SUB }$	$\int_{2}^{5} \text { sub }_{1 \times 1}$	${ }_{1}^{4}$ SUB ${ }_{\text {Ix }}$	${ }_{0}^{0} 000$
0001	$\begin{aligned} & 100 \text { eHe } \\ & \text { BRCLRO } \\ & 3 \end{aligned}$	$\begin{gathered} \text { BCLRO } \\ 2 \end{gathered}$	$\mathrm{BRN}_{\mathrm{BEL}}$						$\begin{array}{\|ll\|} \hline 6 & \text { RTS } \\ \hline \end{array}$		$\begin{array}{lll} 2 & \mathrm{CMP} \\ 2 & \mathrm{IMMM} \\ \hline \end{array}$	${ }_{2} \mathrm{CMP}_{\mathrm{DIR}}$	$\mathrm{S}_{\mathrm{S}} \mathrm{CMP}$	${ }_{3}^{6} \quad \text { CMP }$	${ }_{2}^{5}{ }_{2}{ }^{\text {CMP }}$	${ }_{1}^{4}$ CMP ${ }_{\text {I }}$	0×01
$0^{2} 10$	$\begin{aligned} & 10 \\ & \text { BRSET1 } \\ & 3 \\ & \hline \end{aligned}$	BSETI BSC	${ }_{2}^{4} \mathrm{BH} \mathrm{REL}$								$\begin{array}{ll} 2 & \mathrm{SBC} \\ \hline \end{array}$	$\mathrm{SBC}_{\mathrm{Df}}$	${ }_{3}^{5} \mathrm{SBC} E \times T$	${ }_{3}{ }_{3} \mathrm{SBC}_{1 \times 2}$	${ }_{2}{ }^{\text {SBC }}{ }_{\|x\|}$	${ }_{1}{ }^{\text {SBC }} 1 \times$	$0^{2} 10$
0_{0}^{3}	$\begin{gathered} \text { BRCLR1 } 1 \\ 3 \end{gathered}$	$\begin{aligned} & \text { BCLR1 } \\ & \text { BCL } \end{aligned}$	${ }_{2}^{4} \text { BLS } \mathrm{REL}^{2}$	${ }_{2}^{6} \mathrm{COM}_{\mathrm{OXR}}$	$\begin{array}{\|l\|l\|} \hline{ }_{1}^{4} \text { COMA } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline{ }_{1}^{4} \operatorname{comx} \\ \hline \end{array}$	${ }_{2}^{7} \operatorname{CoM}_{1 \times 1}$	${ }_{1}^{6} \operatorname{COM}_{1 \mathrm{x}}$	$\begin{array}{\|l\|l\|} \hline 11 \\ { }^{3} \mathrm{SWI}_{\mathrm{INH}} \\ \hline \end{array}$		${ }_{2}^{2} \text { CPX }$	${ }_{2} \mathrm{CPX}_{\mathrm{DIR}}$	${ }_{3}^{5} \mathrm{CPX}$	${ }_{3}^{6} \mathrm{CPX}$	${ }^{C P X_{\|x\|}}$	${ }_{1}^{4} \mathrm{CPX}_{1 \times}$	$0_{0}^{3} 1$
${ }_{0}^{4} 100$	$\begin{aligned} & \text { 10 } \\ & \text { BRSET2 } \\ & 3 \times \text { BTB } \end{aligned}$	BSET2	${ }_{2}^{4} \mathrm{BCC}$	$\begin{array}{\|lll} \hline 6 & \text { LSR } \\ 2 & \text { OTR } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { LSRA } \\ 1 & \text { ANH } \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 1 & \\ \hline & \text { LSRX } \\ \hline & \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline & & \\ \hline 2 & \text { LSR } & \\ \hline \end{array}$	$\begin{array}{\|lll} \hline 6 & & \\ \hline & \text { LSR } & \\ \hline \end{array}$			${ }_{2}^{2} \text { AND }$	ANF	${ }_{3}^{5} \text { AND }$	${ }_{3} \mathrm{AND}_{1 \times 2}$	AND 1×1	${ }_{1}^{4}{ }^{\text {AND }}{ }^{1 \times 1}$	04
$\begin{gathered} 5 \\ 0 \\ \hline 101 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { BRCLR2 } \\ & 3 \end{aligned}$	$\begin{aligned} & 8 \mathrm{CLR2} \\ & \hline \end{aligned}$	${ }_{2} \mathrm{BCS}_{\mathrm{AEL}}$								${ }_{2}^{2}$ BIT	${ }_{\text {BIT }}^{\text {OIR }}$	${ }_{3}^{5}{ }_{3} \mathrm{BIT}$	${ }_{\text {B17 }}^{1 \times 2}$	${ }_{\text {BIT }}^{\text {\|xi }}$	${ }_{1}^{4}$ BIT ${ }^{1}$	05
${ }^{6} 110$	$\begin{aligned} & 10 \\ & \text { BRSET3 } \\ & 3 \quad \text { BTB } \end{aligned}$	BSET3	${ }_{2}^{4} \mathrm{BNE}$	${ }_{2}^{6} \mathrm{ROR}_{\mathrm{ODR}}$	$\begin{array}{\|c} 4 \\ , ~ R O R A \\ \text { INH } \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ \hline \end{array}$	${ }_{2} \mathrm{ROR}_{\mathrm{XXI}}$	$\begin{array}{\|ll\|} \hline 0 & \text { ROR }_{1 \times} \\ \hline \end{array}$			$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{ll} 4 \\ 2 \\ 2 & L D A \\ 0 \end{array}$	$\begin{array}{ll} 5 & \text { LDA } \\ 3 & \text { EXT } \\ \hline \end{array}$	${ }_{3}^{6}{ }^{6} A_{1 \times 2}$	${ }^{\text {LDA }}{ }_{1 \times 1}$	$\begin{array}{\|lll\|} \hline 4 & \text { LOA } \\ \hline \end{array}$	${ }_{0}^{6}$
${ }^{7} 711$	$\begin{aligned} & 10 \\ & 8 R C L R 3 \\ & -3 \end{aligned}$	${ }_{3}^{\text {BCLR }} \text { BSC }$	$2 \mathrm{BEO}$	${ }_{2}^{6} A S R_{D I R}$	${ }^{4} \text { ASRA }$	${ }_{1}^{4} \mathrm{ASRX}$	$\operatorname{ASR}_{1 \times 1}$	$\int_{1}^{6}{ }^{\text {ASA }}$		${ }_{1}^{2}{ }_{2} \mathrm{TAX}_{\mathrm{NH}}$		$\begin{array}{\|ll\|} \hline 5 & \text { STA } \\ 2 & \\ \hline \end{array}$	$\begin{array}{\|l\|} 6 \\ \hline \\ 3 \\ \hline \end{array}$	$\text { STA }_{1 \times 2}$	STA ${ }_{\text {\|x] }}$	${ }_{1}^{5}$ STA ${ }_{4}$	0711
${ }_{1000}^{8}$	$\begin{aligned} & 10 \\ & { }_{3} \\ & 3 R S E T 4 \\ & \text { BTA } \end{aligned}$	${ }_{2}^{\text {BSET4 }}$	$2 \mathrm{BHCC}$	$\int_{2}^{0} \text { LSL }$	${ }^{4} \text { LSLA }$	$\begin{array}{\|c\|c\|} \hline 4 \\ 1 \\ 1 \\ \hline \end{array}$	$2_{2}^{\text {LSL }} \times 1$	$\int_{1}^{6} \text { LSL }$		$\int_{1}^{2} \mathrm{CLC}$	$\begin{array}{\|ll} 2 \\ 2 & \text { EOR } \\ \hline \end{array}$	$\begin{array}{lll} 4 \\ 2 & E O R \\ \\ \hline \end{array}$	${ }_{3}^{5} \text { EOR }$	${ }_{3}{ }^{\text {EOR }}{ }_{1 \times 2}$	$\operatorname{EOR}_{\mid \times 1}$	${ }_{1}$ EOR ${ }_{\text {IX }}$	${ }_{1000}^{8}$
$\stackrel{9}{1001}$	$\begin{aligned} & 10 \\ & \text { BRCLR4 } \\ & 3 \end{aligned}$	${ }_{2}^{8 C L R 4}$	${ }_{2}^{4} \mathrm{BHCS}$	$\int_{2}^{\mathrm{RO}}{ }_{\mathrm{DIR}}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { ROLA } \\ 1 & \text { INH } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ROLX } \\ & { }_{1} \\ & \hline \end{aligned}$	${ }_{2}{ }_{2}^{\mathrm{ROL}} \mathrm{I}_{\mathrm{x}}$	$\begin{array}{\|l\|l\|} \hline 6 \\ 1 \\ \hline \end{array}$		$\int_{1}^{2} \text { SEC }$	$\begin{array}{ll} 2 & A D C \\ 2 & \text { IMM } \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & A D C \\ 2 & D_{1 B} \\ \hline \end{array}$	${ }_{3}^{5} A D C^{5}$	${ }_{3}^{0} A D C_{1 \times 2}$	${ }^{A D C_{\mid \times 1}}$	$A D C_{1 x}$	1001
${ }_{1}{ }_{1010}$	$\begin{aligned} & 10 \\ & \text { BRSET5 } \\ & 3 \end{aligned}$	$\begin{gathered} \text { BSET5 } \\ \hline \end{gathered}$	${ }_{2}{ }^{B P L_{\mathrm{BEL}}}$	$\begin{array}{\|lll} \hline 6 \\ 2 & \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \hline \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 1 \end{aligned}$	${ }_{2} D E C_{1 \times 1}$	$\begin{array}{ll} 6 \\ \mathrm{D}^{6} & \mathrm{xEC} \\ \hline \end{array}$		${ }_{2}^{2} \mathrm{CLI}$	$\begin{array}{\|ll\|} \hline 2 & \text { ORA } \\ 2 & \text { IMM } \\ \hline \end{array}$	$\text { ORA }_{\text {OIR }}$	${ }_{3}^{5} \text { ORA }$	ORA 1×2	${ }^{\text {ORA }}{ }_{1 \times 1}$	ORA $1 \times$	${ }_{1010}$
${ }_{1019}$	$\begin{aligned} & 10 \\ & \text { BRCLR5 } \\ & 3 \\ & 8 T B \end{aligned}$	$\begin{gathered} \text { BCLR5 } \\ \text { B } \\ \hline \end{gathered}$	${ }_{2}^{4} \mathrm{BMI} \mathrm{REL}^{2}$							$\begin{array}{\|ll} \hline 2 & S E I \\ 1 & \\ \hline \end{array}$	$\begin{array}{ll} 2_{2}^{2} & A D D \\ 2 & \mathrm{MMM} \\ \hline \end{array}$	$\underset{D, 1 R}{A D D_{1}}$	${ }_{3}^{5} A D D_{X T}$	${ }^{\frac{1}{6}}{ }^{\prime} \quad D_{1 \times 2}$	${ }^{A D D_{\|x\|}}$	i ${ }^{\text {ADD }}{ }_{1 \times}$	1811
$\stackrel{c}{1100}$	$\begin{aligned} & \text { To } \\ & 3 R S E T 6 \\ & 3 \end{aligned}$	BSET6	${ }_{2} B M C_{\text {REL }}$	${ }_{\frac{2}{6}}{ }^{I N C}$	$\begin{array}{\|c\|} \hline \text { INCA } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & \text { INCX } \\ 1 & \\ \hline \end{array}$	${ }^{1 N C_{1 \times 1}}$	$\begin{array}{\|lll} \hline 6 & & \\ 1 & \\ \hline \end{array}$		$\int_{1}^{2} \text { RSP }$		$\begin{array}{\|ll\|} \hline 3 & \\ \hline & \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 4 & \\ 3 & \\ \hline \end{array}$	${ }^{J M P_{1 \times 2}}$	${ }^{J M P_{\mid \times 1}}$	$\begin{array}{\|ll\|} \hline 3 \\ 1 \\ 1 & \\ \hline \end{array}$	$\xrightarrow[1100]{\text { C }}$
101	$\begin{aligned} & 10 \\ & 3 R C L R 6 \\ & 3 \end{aligned}$	${ }_{2}^{\text {BCLR6 }}$	${ }_{2}^{4} \text { BMS }$	$\begin{array}{\|lll} \hline 6 & & \\ 2 & & \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & \\ \hline & \text { TSTA } \\ 1 & \\ \hline \end{array}$	$\begin{aligned} & 4 \text { TSTX } \\ & 1 \\ & \hline \end{aligned}$	${ }_{2}{ }^{T S T}{ }_{1 \times 1}$	$\begin{array}{\|lll} 6 & & \\ { }_{1}^{6} & \\ \hline \end{array}$		$\mathrm{S}_{1}^{2} \mathrm{NOP}$	$\begin{array}{\|ll\|} \hline 8 & \text { BSR } \\ \hline \end{array}$	$\underbrace{}_{\text {JIR }}$	$\begin{array}{ll} 8_{3} & \text { JSR } \\ { }_{3} \\ \hline \end{array}$	${ }_{3}{ }^{3} \mathrm{SR}_{1 \times 2}$	${ }_{2}{ }_{2} \mathrm{SA}_{\|x\|}$	${ }_{1}^{\text {JSR }}$	10
${ }_{11}{ }^{1}$	$\begin{aligned} & \hline 10 \\ & \hline 3 \text { BSETT } \\ & \hline 10 \end{aligned}$	$\begin{gathered} 7 \text { BSETT } \\ -2 \\ \hline \end{gathered}$	${ }_{2}^{4} \mathrm{BIL}$								$\begin{array}{ll} r_{2}^{2} & \operatorname{LDX} \\ \hline \end{array}$	$\operatorname{LDX}_{\mathrm{D}, \mathrm{R}}$	${ }_{3}^{5} \mathrm{LDX}$	${ }_{3} \mathrm{LOX}_{1 \times 2}$	$\begin{array}{\|l\|l\|} 5 & \operatorname{LDX} \\ \hline \end{array}$	$\operatorname{LDX}_{\mathrm{Ix}}$	${ }_{1110}$
FIII	$\begin{array}{r} \text { TOWCLR7 } \\ 3^{\text {BRCL }} 8 \mathrm{BTB} \\ \hline \end{array}$	${ }_{2}^{\text {BCLA7 }} \text { BSC }$	$\begin{array}{ll} 4 & \mathrm{BIH}_{\mathrm{HEL}} \\ \hline \end{array}$	${ }_{2}^{6} \mathrm{CLR} \mathrm{DIR}^{2}$	$\begin{array}{\|l\|l\|} \hline 4 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ { }_{1}^{4} \mathrm{CLRX} \\ \text { INH } \\ \hline \end{array}$	${ }_{2}^{7} \mathrm{CLR}^{\mathrm{Cx} \mid}$	${ }^{6}, \text { CLR }_{1 x}$		$\begin{array}{ll} 2_{1}^{2} \text { TXA } \\ 1 N H \\ \hline \end{array}$		$\begin{array}{\|lll} \hline \frac{5}{5} & S T X^{2} \\ 2 & & \\ \hline \end{array}$	$\begin{array}{ll} 6 & \text { STX } \\ 3 & \text { EXT } \\ \hline \end{array}$	${ }_{3} \mathrm{STX}_{1 \times 2}$	$\begin{array}{\|ll\|} \hline 6 & \\ \hline & \\ \hline & \\ \hline \end{array}$	${ }_{1}^{5}$ STX ${ }_{\text {Ix }}$	${ }_{111}$

Abbreviations for Address Modes

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
REL	Relative
BSC	Bit Set/Clear
BTB	Bit Test and Branch
IX	Indexed (No Offset)
IX1	Indexed, 1 Byte (8-Bit) Offset
IX2	Indexed, 2 Byte (16-Bit) Offset

PACKAGE MECHANICAL DATA
P SUFFIX - PLASTIC PACKAGE

FN SUFFIX - PLCC44

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS-THOMSON on EPROM(s) or an EFDOS/MDOS* disk file.
To initiate a ROM pattern for the MCU, it is necessary to first contact your local SGS-THOMSON representative or distributor.

EPROMs

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS THOMSON. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, SGS-THOMSON will program on blank EPROM from the data
file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by SGS THOMSON. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process inhouse if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS-THOMSON' Disk Operating System available on development systems such as DEVICE,...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser,...

* Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local SGS-THOMSON representative or SGS-THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS-THOMSON Microelectronics representative.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Device	Package					Oper. Temp			Screening Level			
	C	J	P	E	FN	L*	V	T	Std	D	G/B	B/B
EF6805R3			\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		
Examples : EF6805R3P, EF6805R3FN, EF6805R3PV, EF6805R3FNV.												

Package : C : Ceramic DIL, J : Cerdip DIL, P : Plastic DIL, E : LCCC, FN : PLCC.
Oper. temp. : * : $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, ${ }^{*}$: may be omitted.
Screening level : Std: (no-end suffix), D : NFC 96883 level D,
G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B.
EXORcIser is a registered trademark of MOTOROLA Inc.

EF6805 FAMILY - MCU CUSTOMER ORDERING SHEET

* Requires prior factory approval

Yearly quantity forecast :

- start of production date :
- for a shipment period of :

CUSTOMER CONTACT NAME: DATE :
SIGNATURE :

EF6805U2

8-BIT MICROCOMPUTER

HARDWARE FEATURES

- 32 TTL/CMOS COMPATIBLEI/O LINES
- 24 BIDIRECTIONAL (8 lines are LED compatible)
- 8 INPUT-ONLY
- 2048 BYTES OF USER ROM
- 64 BYTES OF RAM
- SELF-CHECK MODE
- ZERO-CROSSING DETECT/INTERRUPT
- INTERNAL 8-BIT TIMER WITH 7-BIT MASK PROGRAMMABLE PRESCALER AND CLOCK SOURCE
- 5V SINGLE SUPPLY

SOFTWARE FEATURES

- 10 POWERFUL ADDRESSING MODES
- BYTE EFFICIENT INSTRUCTION SET WITH TRUE BIT MANIPULATION, BIT TEST, AND BRANCH INSTRUCTIONS
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- POWERFUL INDEXED ADDRESSING FOR TABLES
- FULL SET OF CONDITIONAL BRANCHES
- MEMORY USABLE AS REGISTER/FLAGS
- COMPLETE DEVELOPMENT SYSTEM SUPPORT ON INICE®

USER SELECTABLE OPTIONS

- INTERNAL 8-BIT TIMER WITH SELECTABLE CLOCK SOURCE (External Timer Input or Internal Machine Clock)
- TIMER PRESCALER OPTION (7 Bits, 2^{n})
- 8 BIDIRECTIONAL I/O LINES WITH TTL OR TTL/CMOS INTERFACE OPTION
- 8 BIDIRECTIONAL I/O LINES WITH TTL OR OPEN-DRAIN INTERFACES OPTION
- CRYSTAL OR LOW-COST RESISTOR OSCILLATOR OPTION
- LOW VOLTAGE INHIBIT OPTION
- VECTORED INTERRUPTS TIMER, SOFTWARE, AND EXTERNAL
- USER CALLABLE SELF-CHECK SUBROUTINES

INICE ${ }^{\circledR}$ is SGS-THOMSON's development/emulation tool.

ADVANCE DATA

PIN CONNECTION

$\mathrm{v}_{\text {SS }} \square^{1}$ -	40.1897
RESET 2	29 Pa6
INT C_{3}	38.1 Pa5
$v \mathrm{Cc} \mathrm{D}_{4}$	$37.18{ }^{\text {Pa }}$
Extal 5	36 P PA3
xtaldg	35 PA2
$\mathrm{ivs}_{\text {SS }}$ ' NUML [$34 . \mathrm{Pa1}$
timer 8	33 PaO
PCOL ${ }^{9}$	32 PB 7
PC10 10	$31 \mathrm{PBE6}$
PC2 ${ }^{\text {P1 }}$	$30 \mathrm{JPB5}$
PC3 12	29 P84
PCA H^{13}	28.1883
PC5 14	${ }_{27}{ }^{\text {P882 }}$
PC6 15	26 PPB 1
PC7 16	25 P80
PD7\% 7	24 PDO
PDE/INT2 ${ }^{\text {d }}$ 18	${ }_{23}{ }^{\text {PPO}}$
PD5 19	${ }_{22} \mathrm{PPD}^{2}$
PD4 42	$21 . \mathrm{PD} 3$

DESCRIPTION

The EF6805U2 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8 -bit microcomputer contains a CPU, on-chip CLOCK, ROM, RAM, I/O, and

TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of several members of the 6805 Family of microcomputers is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805U2 MCU.

Figure 1 : EF6805U2 HMOS Microcomputer Block Diagram.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		-0.3 to +7.0	V
$\mathrm{V}_{\text {In }}$	Input Voltage (except TIMER in self-check mode and open-drain inputs)		-0.3 to +7.0	V
$V_{\text {In }}$	Input Voltage (open-drain pins, TIMER pin in self-check mode)		-0.3 to +15.0	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range $\left(T_{L}\right.$ to $\left.T_{H}\right) \quad$ V Suffix 		$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Junction Temperature	$\begin{aligned} & \text { Plastic Package } \\ & \text { PLCC } \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maxımum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{\text {cc }}$. Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level (e g. either $V_{S S}$ or $V_{c c}$).

THERMAL DATA

日JA	Thermal Resistance	Plastic PLCC	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		80		

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$T_{J}=T_{A}+\left(P_{D} \cdot \theta_{J A}\right)$
Where :
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}=$ Package Thermal Resistance, Juntion-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{PD}_{\mathrm{D}}=\mathrm{Pint}_{\text {IN }}+\mathrm{P}_{\text {PORT }}$
$\mathrm{P}_{\text {INT }}=I_{\mathrm{Ic}} \times \mathrm{V}_{\mathrm{Cc}}$, Watts - Chip Internal Power
Pport = Port Power Dissipation, Watts - User Determined

For most applications Pport \leq Pint and can be neglected. Pport may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between P_{D} and T_{J} (if PPORT is neglected) is :

$$
\begin{equation*}
P D=K+\left(T_{J}+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives :

$$
\begin{equation*}
\mathrm{K}=\mathrm{PD}_{\mathrm{D}} \cdot\left(\mathrm{~T}_{\mathrm{A}}+273^{\circ} \mathrm{C}\right)+\theta_{J A} \cdot \mathrm{PD}^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pretaining to the particular part. K can be determined from equation 3 by measuring PD_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage $\begin{aligned} & \text { RESET }\left(4.75 \leq V_{c c} \leq 5.75\right) \\ & \left(V_{c c}<4.75\right) \\ & \overline{\text { INT }}\left(4.75 \leq V_{c c} \leq 5.75\right) \\ & \left(V_{c c}<4.75\right) \end{aligned}$ All Other (except timer)	$\begin{gathered} 4.0 \\ \mathrm{~V}_{\mathrm{cc}}-0.5 \\ \mathrm{~V}_{\mathrm{cc}}-0.0 .5 \\ 2.0 \end{gathered}$		$V_{c c}$ Vcc $V_{c c}$ $V_{C C}$ $V_{c c}$	V
V_{IH}	Input High Voltage Timer Timer Mode Self-check Mode	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	10.0	$\begin{gathered} V_{c c}+1.0 \\ 15.0 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	```Input Low Voltage RESET INT All Other```	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}} \\ & \mathrm{~V}_{\mathrm{ss}} \\ & \mathrm{~V}_{\mathrm{ss}} \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	V
$\mathrm{V}_{\text {IRES }}+$ $V_{\text {IRES }}-$	$\overline{\text { RESET }}$ Hystereris Voltages (see figures 10, 11 and 12) "Out of Reset" "Into Reset"	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 2.0 \\ & \hline \end{aligned}$	V
$\mathrm{V}_{\text {INT }}$	INT Zero Crossing Input Voltage, Through a Capacitor	2		4	$\mathrm{Vac}_{\text {a }}$-p
PD	$\text { Power Dissipation - (no port loading, } \begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V} \text {) } \\ & T_{A}=0^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 520 \\ & 580 \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \end{aligned}$	mW
C_{1}	Input Capacitance EXTAL All Other		$\begin{aligned} & 25 \\ & 10 \end{aligned}$		pF
$\mathrm{V}_{\text {LVR }}$	Low Voltage Recover			4.75	V
VLvi	Low Voltage Inhibit	2.75	3.75	4.70	V
1 In	Input Current	- 40.0	20	$\begin{array}{r} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{array}$	$\mu \mathrm{A}$

[^17]
SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency	0.4		4.2	MHz
$\mathrm{t}_{\text {cyc }}$	Cycle Time (4/fosc)	0.95		10	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{WL}}, \mathrm{t}_{\text {WH }}$	$\overline{\mathrm{INT}}, \overline{\mathrm{INT} 2}$, and TIMER Pulse Width (see interrupt section)	$t_{c y c}+250$			ns
$t_{\text {RWL }}$	RESET Pulse Width	$t_{c y c}+250$.		ns
$\mathrm{f}_{\text {INT }}$	INT Zero-crossing Detection Input Frequency	0.03		1	kHz
	External Clock Input Duty Cycle (EXTAL)	40	50	60	\%
	Crystal Oscillator Start-up Time*			100	ms

*See figure 16 for typical crystal parameters

PORT ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{Cc}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)
PORT A WITH CMOS DRIVE ENABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage ($\left.\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}\right)$		0.4	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $I_{\text {Load }}=-100 \mu \mathrm{~A}$ $\mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A}$	2.4 $\mathrm{~V}_{\mathrm{CC}}-1.0$			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage ($\mathrm{I}_{\text {Load }}=-300 \mu \mathrm{~A}$ max. $)$	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage $\left(\mathrm{I}_{\text {Load }}=-500 \mu \mathrm{~S}\right.$ max. $)$	V_{SS}		0.8	V
I_{IH}	High Z State Input Current $\left(\mathrm{V}_{\text {In }}=2.0 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			-300	$\mu \mathrm{~A}$
I_{IL}	High Z State Input Current $\left(\mathrm{V}_{\text {In }}=0.4 \mathrm{~V}\right)$			-500	$\mu \mathrm{~A}$

PORT B

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage $\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$ $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\mathrm{I}_{\text {Load }}=-200 \mu \mathrm{~A}$	2.4			V
I_{OH}	Darlington Current Drive (source) $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	-1.0		-10	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High Z State Input Current		<2	10	$\mu \mathrm{~A}$

PORT C AND PORT A WITH CMOS DRIVE DISABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage I Load $=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High Z State Input Current		<2	10	$\mu \mathrm{~s}$

PORT ELECTRICAL CHARACTERISTICS (continued)

PORT C (open-drain option)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$V_{I H}$	Input High Voltage	2.0		13.0	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\text {LOD }}$	Input Leakage Current		<3	15	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V

PORT D

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\text {In }}$	Input Current		<1	5	$\mu \mathrm{~A}$

Figure 2 : TTL Equivalent Test Load (port B).

Figure 4 : TTL Equivalent Test Load (ports A and C).

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in figure 1, are described in the following paragraphs.
$V_{C C}$ AND VSS - Power is supplied to the MCU using these two pins. $V_{c c}$ is power and $V_{s s}$ is the ground connection.
$\overline{\mathrm{INT}}$ - This pin provides the capability for asynchronously applying an external interrupt to the MCU.

Figure 3 : CMOS Equivalent Test Load (port A).

Figure 5 : Open-drain Equivalent Test Load (port C).

Refer to Interrupts Section for additional information.
XTAL AND EXTAL - These pins provide control input for the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on user selectable manufacturing mask option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead length and stray capacitance on these two pins
should be minimized. Refer to Internal Clock Generator Options Section for recommendations about these inputs.
NUM (NON USER MODE) - This pin is not for user application and must be connected to $V_{\text {ss }}$.
TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Selection for additional information about the timer circuitry.
$\overline{\text { RESET }}$ - This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pulling RESET low. Refer to Resets Section for additional information.
INPUT/OUTPUT LINES (PAO-PA7, PB0-PB7, PC0PC7, PD0-PD7) - These 32 lines are arranged into four 8 -bit ports (A, B, C, and D). Ports A, B, and C are programmable as either inputs or outputs under software control of the data direction registers (DDRs). Port D is for digital input only and bit 6 may be used for a second interrupt INT2. Refer to Input/Output Section and Interrupts Section for additional information.

MEMORY - The MCU is capable of addressing 4096 bytes of memory and I/O registers with its program counter. The EF6805U2 MCU has implemented 2314 of these bytes. This consists of 2048 user ROM bytes, 192 self-check ROM bytes, 64 user RAM bytes, 7 port I/O bytes, 2 timer registers, and a miscellaneous register ; see figure 6 for the Address map. The user ROM has been split into three areas. The main user ROM area is from $\$ 080$ to \$OFF and from \$7CO to \$F37. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.
The MCU reserves the first 16 memory locations for I/O features, of which 10 have been implemented. These locations are used for the ports, the port DDRs, the timer and the INT2 miscellaneous register, and the 64 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.
The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in figure 7 . Since the stack pointer decrements during pushes, the low order byte (PCL) of the program.

Figure 6 : EF6805U2 MCU Address Map.

Figure 7 : Interrupt Stacking Order.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with $1 / O$ and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in figure 8 and are explained in the following paragraphs.
ACCUMULATOR (A) - The accumulator is a general purpose 8-bit register used to hold operands and re-
sults of arithmetic calculations or data manipulations.

INDES REGISTER (X) - The index register is an 8bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used as a temporary storage area.
PROGRAM COUNTER (PC) - The Program Counter is a 12 bit register that contains the address of the next instruction to be executed.

Figure 8 : Programming Model.

STACK POINTER (SP) - The stack pointer is a 12bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location $\$ 07 \mathrm{~F}$. The stack pointer is then decremented as data is pushed onto the stack and incremented as data is then pulled from the stack. The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location $\$ 061$ (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).
CONDITION CODE REGISTER (CC) - The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.
Half Carry (H) - Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4.
Interrupt (I) - When this bit is set, the timer and external interrupts (INT and INT2) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.
Negative (N) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical "1"). Zero (Z) - When set, this bit indicates that the result of the last arithmetic, or data manipulation was zero. Carry/Borrow (C) - When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The timer circuitry for the MC6805U2 is shown in figure 10. The 8 -bit counter may be loaded under program control and is decremented toward zero by the clock input (or prescaler output). When the timer reaches zero, the timer interrupt request bit (bit 7) in the timer control register (TCR) is set. The timer interrupt can be masked (disabled) by setting the timer interrupt mask bit (bit 6) in the TCR. The interrupt bit (I bit) in the condition code register also prevents a timer interrupt from being processed. The

MCU responds to this interrupt by saving the present CPU state on the stack, fetching the timer interrupt vector from locations \$FF8 and \$FF9 and executing the interrupt routine (see RESET, CLOCK, AND INTERRUPT STRUCTURE SECTIONS). The timer interrupt request bit must be cleared by software. The interrupt request bit must be cleared by software. The TIMER and INT2 share the same interrupt vector. The interrupt routine must check the request bits to determine the source of the interrupt.
The clock input to the timer can be from an external source (decrementing of timer counter occurs on a positive transition of the external source) applied to the TIMER input pin, or it can be the internal phase two signal. Three machine cycles are required for a change in state of the TIMER pin to decrement the timer prescaler. The maximum frequency of a signal that can be recognized by the TIMER pin logic is dependent on the parameter labeled twh. The pin logic that recognizes the high state on the pin must also recognize the low state on the pin in order to "re-arm" the internal logic. Therefore, the period can be calculated as follows (assumes 50/50 duty cycle for a given period) :

$$
t_{\mathrm{cyc}} \times 2+250 \mathrm{~ns}=\text { period }=\frac{1}{\text { freq }}
$$

The periods is not simply twh + twl. This computation is allowable, but it does reduce the maximum allowable frequency by defining an unnecessarily longer period (250 nanoseconds times two).
When the phase two signal is used as the source, it can be gated by an input applied to the TIMER input pin allowing the user to easily perform pulse-width measurements. The source of the clock input is one of the mask options that is specified before manufacture of the MCU.

NOTE

For ungated phase two clock input to the timer prescaler, the TIMER pin should be tied to V_{cc}.
A prescaler option, divide by 2^{n}, can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before decrementing the counter. This prescaling mask option is also specified before manufacture. To avoid truncation errors, the prescaler is cleared when bit 3 of the timer control register is written to a logic one (this bit always reads a logic zero). See figure 9.

Figure 9 : Timer Control Register (TCR).

7	6	5	4	3	2	1	0	
		1	1		1	1	1	\$009
TCR7 - Timer Interrupt Request Status Bit Set when TDR goes to zero, must be cleared by software Cleared to 0 by Reset TCR6 - Timer Interrupt Mask Bit : $1=$ tımer interrupt masked (disabled) Set to 1 by Reset TCR3 - Clear prescaler always reads as a 0 , clears prescaler when written to a logic "1" TCR Bits 5, 4, 2, 1, 0 reads " 1 s " - unused bits								

The timer continues to count past zero, falling through to \$FF from $\$ 00$ and then continuing the count down. Thus the counter can be read at any time by reading the timer data register (TDR). This allows a program to determine the length of time since a timer interrupt has occured, and not disturb the counting process.

At power up or reset, the prescaler and counter are initialized with all logic ones ; the timer interrupt request bit (bit 7) is cleared and the timer interrupt mask bit (bit 6) is set.

Figure 10 : Timer Block Diagram.

SELF-CHECK

The self-check capability of the EF6805U2MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in Figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10 -volt level (through a 10 k resistor) on the timer input, pin 8 and pressing then releasing the RESET button, energizes the ROM-based self-check feature. The self-check pro-
gram exercises the RAM, ROM, TIMER, interrupts, and I / O ports.
Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM, tests. The timer routine may also be called if the timer input is the internal \varnothing 2 clock.
To call those subroutines in customer applications, please contact your SGS-THOMSON Microelectro-
nics sales office in order to obtain the complete discription of the self-check program and the entrance/exit conditions.
RAM SELF-CHECK SUBROUTINE - The RAM selfcheck is called at location \$F6F and returns with the Z bit clear if any error is detected ; otherwise the Z bit is set. The walking diagnostic pattern method is used on the EF6805U2.
The RAM test must be called with the stack pointer at $\$ 07 \mathrm{~F}$. When run, the test checks every RAM cell except for $\$ 07 \mathrm{~F}$ and $\$ 07 \mathrm{E}$ which are assumed to contain the return address.

The A and X registers and all RAM locations except \$07F and \$07E are modified.
ROM CHECKSUM SUBROUTINE - The ROM selfcheck is called at location \$F8A. If any error is detected, it returns with the Z bit cleared ; otherwise Z $=1, X=0$ on return, and A is zero if the test passes. RAM location $\$ 040$ to $\$ 043$ is overwritten. The checksum is the complement of the execution OR of the contents of the user ROM.

Figure 11 : Self-check connections.

LED MEANINGS

PC0	PC1	PC2	PC3	Remarks (1 : LED ON ; $0:$ LED OFF)
1	0	1	0	Bad I/O
0	0	1	0	Bad Timer
1	1	0	0	Bad RAM
0	1	0	0	Bad ROM
0	0	0	0	Bad Interrupts or Request Flag
All Flashing				Good Device

Note : Anything else bord Device, bad Port C, etc.
TIMER SELF-CHECK SUBROUTINE - The timer self-check is called at location \$FCF and returns with the Z bit cleared if any error was found ; otherwise $Z=1$.
In order to work correctly as a user subroutine, the internal $\varnothing 2$ clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is running and the interrupt mask is not set so the caller must protect from interrupts if necessary.
The A and X register contents are lost. The timer self-check routine counts how many times the clock counts in 128 cycles. The number of counts should be a power of 2 since the prescaler is a power of 2 . If not, the timer is probably not counting correctly. The routine also detects a timer which is not running.

RESET

The MCU can be reset three ways : by initial powerup, by the external reset input (RESET) and by an
optional internal low-voltage detect circuit. The RESET input consists mainly of a Schmitt trigger which senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in figure 12. The Schmitt trigger provides an internal reset voltage if it senses a logical zero on the RESET pin.
Power-On Reset (POR) - An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of tRHL milliseconds is required before allowing the RESET input to go high. Refer to the power and reset timing diagram of figure 13. Connecting a capacitor to the RESET input (as illustrated in figure 14) typically provides sufficient delay. During poerup, the Schmitt trigger switches on (remove reset) when RESET rises to VIRES+.

Figure 12 : Typical Reset Schmitt Trigger Hysteresis

Figure 13 : Power and Reset Timing.

Figure 14 : $\overline{\operatorname{RESET}}$ Configuration.

External Reset Input - The MCU will be reset if a logical zero is applied to the RESET input for a period longer than one machine cycle (tcyc). Under this type of reset, the Schmitt trigger switches off at VIRES to provide an internal voltage.
Low-voltage Inhibit (LVI) - The optional low-voltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level ($V_{\text {LVII }}$). The only requirement is that V_{Cc} remains at or below the V_{LV} threshold for one $\mathrm{t}_{\text {cyc }}$ minimum. In typical applications, the $V_{\text {cc }}$ bus filter capacitor will eliminate negative-going voltage glitches of less than one tcyc. The output from the low voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level (VLVR), at which time a normal power-on-reset occurs.

INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost trade-offs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.
The different connection methods are shown in
figure 15. Crystal specifications and suggested PC board layouts are given in figure 16. A resistor selection graph is given in figure 17.
The crystal oscillator start-up time is a functions of many variables : crystal parameters (especially Rs), oscillator load cpacitances, IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.
When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage below $\mathrm{V}_{\text {IRES+ }}$) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating the external reset capacitor required to satisfy this condition: the oscillator start-up voltage, the oscillator stabilization time, the minimum $\mathrm{V}_{\text {IRES }}+$, and the reset charging current specification.
Once Vcc minimum is reached, the external $\overline{\text { RESET }}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from Vcc through a large resistor, so it appears almost like a constant current source until the reset voltage rises above $\mathrm{V}_{\text {IRES }+ \text {. }}$. Therefore, the RESET pin will charge at approximately :

$$
\left(\mathrm{V}_{\text {IRES }+}\right) \cdot \mathrm{C}_{\text {ext }}=\mathrm{I}_{\text {RES }} \cdot \mathrm{t}_{\text {RHL }}
$$

Assuming the external capacitor is initially discharged.

Figure 15 : Clock Generator Options.

Approximately 25% to 50\% Accuracy
Typıcal $t_{\text {cyc }}=1.25 \mu \mathrm{~s}$
External Jumper

Approximately 10% to 25% Accuracy External Resistor (Excludes Resistor Tolerance)

Note: The recommended C_{L} value with a 4.0 MHz crystal is 27 pF maximum, including system distributed capacitance There is an internal capacitance of approximately 25 pF on the XTAL pin For crystal frequencies other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frequency ratio. For example, with a 2 MHz crystal, use approximately 50 pF on EXTAL and approximately 25 pF on XTAL The exact value depends on the Motional-Arm parameters of the crystal used.
Figure 16 : Crystal Motional ARM Parameters and Suggested PC Board Layout.

EF6805U2

Figure 17 : Typical Frequency Selection for Resistor (oscillator option).

INTERRUPTS

The microcomputers can be interrupted four different ways : through the external interrupt (INT) input pin, the internal timer interrupt request, the external port D bit 6 (INT2) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (1) in the condition code register is set, the address of the interrupt rolioine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of $11 \mathrm{t}_{\mathrm{cyc}}$ periods for completion. A flowchart of the interrupt sequence is shown in figure 18. The interrupt service routine must end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current ins-
truction execution to be halted, but are considered pending until the current instruction execution is complete.
When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.
If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.

NOTE

The timer and $\overline{\text { INT2 }}$ interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both b7 and MR b7 can only be written to zero by software.

Figure 18 : Reset and Interrupt Processing Flowchard.

The external interrupt, $\overline{\text { INT }}$ and $\overline{\text { INT2, are syn- }}$ chronized and then latched on the falling edge of the input signal. The INT2 interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The INT2 interrupt is inhibited when the mask bit is set. The INT2 is always read as a digital input on port D. The INT2 and timer interrupt request bits, if set, cause the MCU to process an interrupt when the condition code I bit is clear.
A sinusoidal input signal (fint maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-of-day routines and engag-
ing/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a $2 f$ clock. See figure 19.

NOTE

The $\overline{\mathrm{NT}}$ (pin 3) is internally biased at approximately 2.2 V due to the internal zero-crossing detection. A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually used as break-points for debugging or as systems calls.

Figure 19 : Typical Interrupt Circuits.

INPUT/OUTPUT CIRCUITRY

PORT DATA REGISTER
There are 32 input/output pins. The INT pin may be polled with branch instructions to provide an additional input pin. All pins on ports A, B, and C are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below I/O port control registers configuration. The port l/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode.
The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic levels at the output pin, due to output loading. Refer to figure 20.

7

Port A Addr $=\$ 000$
Port B Addr $=\$ 001$
Port C Addr $=\$ 002$
Port D Addr $=\$ 003$

PORT DATA DIRECTION REGISTER (DDR)
7
0

(1) Write only, reads as all "1s"
(2) $1=$ Output, $0=$ Input Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$ Port B Addr $=\$ 005$ Port C Addr $=\$ 006$

Figure 20 : Typical Port I/O Circuitry.

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and D lines are CMOS compatible as inputs. Port D lines are input only ; thus, there is no corresponding DDR. When programmed as outputs, port B is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.
The address map (figure 6) gives the addresses of data registers and data direction registers. Figure 21 provides some examples of port connections.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined

Since BSET and BCLR are read-modify write in function, they cannot be used or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
The latched output data bit (see figure 20) must always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).

Figure 21 : Typical Port Connections.

BIT MANIPULATION

The EF6805U2 as the ability to set or clear any single RAM or I/O bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines.

CAUTION

The corresponding data direction registers for ports A, B, and C are write-only registers (locations $\$ 004$, $\$ 005$, and $\$ 006$). A read operation on these regis-
ters is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected" bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.
The coding examples shown in figure 22 illustrates the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit first out of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.

Figure 22 : Bit Manipulation Example.

ADDRESSING MODES

The EF6805U2 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the EF6805 Family Users Manual.
The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
Immediate - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
Direct - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in
memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.
Extended - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3-byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects ths hortest form of the instruction.
Relative - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from - 126 to +129 from the opcode address. The programmer need not worry about cal-
culating the correct offset if he uses the assembler, since it calculates the proper offset and checks to see if it is within the span of the branch.
Indexed, no Offset - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.
Indexed, 8-bit Offset - In the indexed, 8-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8-bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2 -byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 (\$1FE is the last location at which the instruction may begin).
Indexed, 16-bit Offset - In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.
Bit Set/clear - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I/O, can be selectively set or cleared with a single 2-byte instruction.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
Bit Test and Branch - The bit test and branch addressing mode is a combination of direct address-
ing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3-byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from 125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
Inherent - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805U2 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.
Register/memory Instructions - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to table 1.
Read-modify-write Instructions - These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register ; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-mod-ify-write instruction though it does not perform the write. Refer to table 2.

Branch Instructions - The Branch Instructions cause a branch from the program when a certain condition is met. Refer to table 3.
Bit Manipulation Instructions - The instructions are used on any bit in the first 256 bytes of the memory. One group either sets or clears. The other group performs the bit test and branch operations. Refer to Table 4.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined.

Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
Control Instruction - The control instructions control the MCU operations during program execution. Refer to table 5.
Alphabetical Listing - The complete instruction set is given in alphabetical order in table 6.
Opcode Map - Table 7 is an opcode map for the instruction used on the MCU.

		Addressing Modes																	
		Immedlate			Dlrect			Extended			Indexed (no offset)			Indexed (8 blt offset)			Indexed (16 blt offset)		
Function	Mnemonic	Op Code	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{\|c\|} \hline O p \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{array}{\|c\|} \hline 0 p \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{c\|} \hline O p \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { \# } \\ \hline \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{array}{c\|} \hline 0 p \\ \text { Code } \end{array}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycies	$\begin{array}{\|c\|} \hline \text { Op } \\ \text { Code } \end{array}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \end{array}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Load A from Memory	LDA	AG	2	2	R6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA				B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX				BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	A0	2	2	B0	2	4	CO	3	5	F0	1	4	E0	2	5	D0	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OS Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	B1	2	4	C1	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (logical compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP				BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR				BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

		Addressing Modes														
		Inherent (A)			Inherent (X)			Diract			Indexed (no offset)			Indexed (8 blt offset)		
Function	Mnem	$\begin{gathered} \text { Op } \\ \operatorname{Cod} \theta \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycios } \\ \hline \end{gathered}$	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cyclos } \end{gathered}$	$\begin{gathered} 0 p \\ \operatorname{cod} \theta \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycios } \end{gathered}$	$\begin{gathered} \hline \mathbf{O p} \\ \operatorname{Cod} \theta \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\underset{\mathrm{Cod}}{\mathrm{Op}}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Increment	INC	4C	1	4	5C	1	4	3C	2	6	7C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6A	2	7
Clear	CLR	4F	1	4	5 F	1	4	3F	2	6	7F	1	6	6 F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2'S complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	5D	1	4	3D	2	6	7 D	1	6	6D	2	7

Table 3 : Branch Instructions.

Function			Mnemonic	Relative Addressing Mode Code			$\#$ Bytes	$\#$ Cycles
	BRA	20	2	4				
Branch Always	BRN	21	2	4				
Branch Never	BHI	22	2	4				
Branch IFF Higher	BLS	23	2	4				
Branch IFF Lower or Same	BCC	24	2	4				
Branch IFF Carry Clear	(BHS)	24	2	4				
(Branch IFF Higher or Same)	BCS	25	2	4				
Branch IFF Carry Set	(BLO)	25	2	4				
(Branch IFF Lower)	BNE	26	2	4				
Branch IFF Not Equal	BEQ	27	2	4				
Branch IFF Equal	BHCC	28	2	4				
Branch IFF Half Carry Clear	BHCS	29	2	4				
Branch IFF Half Carry Set	BPL	2 A	2	4				
Branch IFF Plus	BMI	$2 B$	2	4				
Branch IFF Minus	BMC	$2 C$	2	4				
Branch IFF interrupt mask bit is clear.	BMS	$2 D$	2	4				
Branch IFF interrupt mask bit is set.	BIL	$2 E$	2	4				
Branch IFF interrupt line is low.	BIH	$2 F$	2	4				
Branch IFF interrupt line is high.	BSR	AD	2	8				
Branch to Subroutine								

Table 4 : Bit Manipulation Instructions.

Function	Mnemonic	Addressing Modes					
		Bit Set/clear			Bit Test and Branch		
		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	
Branch IFF bit n is set.	BRSET $\mathrm{n}(\mathrm{n}=0 . \ldots . .7)$				2•n	3	10
Branch IFF bit n is clear.	BRCLR $\mathrm{n}(\mathrm{n}=07$)				$01+2 \cdot n$	3.	10
Set Bit n	BSET $\mathrm{n}(\mathrm{n}=0 . \ldots . .7)$	$10+2 \cdot n$	2	7			
Clear Bit n	BCLR $\mathrm{n}(\mathrm{n}=07)$	$11+2 \cdot n$	2	7			

Table 5 : Control Instructions.

Function		Inherent		
	Mnemonic	Op Code	$\#$ Bytes	$\#$. Cycles
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	9 F	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	$9 B$	1	2
Clear Interrupt Mask Bit	CLI	9 A	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	$9 C$	1	2
No-operation	NOP	$9 D$	1	2

EF6805U2

Table 6 : Instruction Set.

Table 6 : Instruction Set (continued).

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	Indexed (no offset)	Indexed (8 Bits)	Indexed (16 Bits)	$\begin{array}{\|c\|} \hline \text { Bit } \\ \text { Set/clear } \end{array}$		H	1	N	Z	C
CLI	x										\bullet	0	\bullet	\bullet	\bullet
CLR	X		X			X	X				-	-	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			X	X				\bullet	\bullet	\wedge	\wedge	1
CPX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
DEC	X		X			X	X				-	-	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
INC	X		X			X	X				\bullet	-	\wedge	\wedge	\bullet
JMP			X	X		X	X	X			\bullet	-	\bullet	\bullet	\bullet
JSR			X	X		X	X	X			\bullet	\bullet	\bullet	\bullet	\bullet
LDA		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
LSL	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
LSR	X		X			X	X				\bullet	\bullet	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
NOP	X										\bullet	\bullet	\bullet	\bullet	\bullet
ORA		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
ROL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
RSP	X										\bullet	-	\bullet	\bullet	\bullet
RTI	X										?	$?$?	2	?
RTS	X										-	\bullet	-	\bullet	\bullet
SBC		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
SEC	X										-	-	\bullet	\bullet	1
SEI	X										\bullet	1	-	\bullet	\bullet
STA			X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
STX			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SWI	x										\bullet	1	\bullet	-	\bullet
TAX	X										\bullet	-	-	-	\bullet
TST	X		X			X	X				\bullet	-	\wedge	\wedge	\bullet
TXA	X										-	-	-	\bullet	\bullet
Condition Code Symbols:							Z	Zero							
H	Half Carry (from bit 3)						C	Carry/borrow							
1	Interrupt Mask						.	Test and Set if True Cleared Otherwise							
N	Negative (sign bit)							Not Affected		Cleared Otherwise					

EF6805U2

EF6805 HMOS FAMILY

Features	EF6805P2	EF6805P6	EF6805R2	EF6805R3	EF6805U2	EF6805U3
Technology	HMOS	HMOS	HMOS	HMOS	HMOS	HMOS
Number of Pins	28	28	40	40	40	40
On-chip RAM (bytes)	64	64	64	112	64	112
On-chip User ROM (bytes)	1100	1796	2048	3776	2048	3776
External Bus	None	None	None	None	None	None
Bidirectional I/O Lines	20	20	24	24	24	24
Unidirectional I/O Lines	None	None	6 Inputs	6 Inputs	8 Inputs	8 Inputs
Other I/O Features	Timer	Timer	Timer, A/D	Timer, A/D	Timer	Timer
External Interrupt Inputs	1	1	2	2	2	2
STOP and WAIT	No	No	No	No	No	No

Abbreviations for Address Modes

LEGEND

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
REL	Relative
BSC	Bit Set/Clear
BTB	Bit Test and Branch
IX	Indexed INo Offset)
IX1	Indexed 1 Byte $(8$ - Bit) Offset
IX2	Indexed. 2 Byte (16-Bit) Offset

PACKAGE MECHANICAL DATA

CB-182 PLASTIC

CB-521

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS THOMSON on EPROM(s) or an EFDOS/MDOS* disk file.
To initiate a ROM pattern for the MCU, it is necessary to first contact your local SGS-THOMSON representative or distributor.

EPROMs

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :
After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filled for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS-THOMSON. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, SGS THOMSON will program on blank EPROM from the data file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will
have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by SGS THOMSON. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided. EFDOS/MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process inhouse if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS-THOMSON Disk Operating System available on development systems such as DEVICE...
MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser...

* Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local SGS-THOMSON representative or SGS-THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS-THOMSON Microelectronics representative.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Device	Package					Oper. Temp			Screening Level			
	C	J	P	E	FN	L*	V	T	Std	D	G/B	B/B
EF6805U2			\bullet		-	\bullet	-	-	-	\bullet		
Examples: EF68	5	N,	68	P	EF6	5U2						

Package : C : Ceramıc DIL, J : Cerdıp DIL, P : Plastıc DIL, E : LCCC, FN : PLCC.
Oper. temp. : $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C},{ }^{*}$: may be omitted
Screening level : Std : (no-end suffix), D : NFC 96883 level D,
G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B
EXORciser is a registered trademark of MOTOROLA Inc.

8-BIT MICROCOMPUTER UNIT

ADVANCE DATA

HARDWARE FEATURES

- 32 TTL/CMOS COMPATIBLE I/O LINES
- 24 BIDIRECTIONAL (8 lines are LED compatible)
- 8 INPUT-ONLY
- 3776 BYTES OF USER ROM
- 112 BYTES OF RAM
- SELF-CHECK MODE
- ZERO-CROSSING DETECT/INTERRUPT
- INTERNAL 8-BIT TIMER WITH 7-BIT SOFTWARE PROGRAMMABLE PRESCALER AND CLOCK SOURCE
- 5V SINGLE SUPPLY

SOFTWARE FEATURES

- 10 POWERFUL ADDRESSING MODES
- BYTE EFFICIENT INSTRUCTION SET WITH TRUE BIT MANIPULATION, BIT TEST, AND BRANCH INSTRUCTIONS
- SINGLE INSTRUCTION MEMORY EXAMINE/CHANGE
- POWERFUL INDEXED ADDRESSING FOR TABLES
- FULL SET OF CONDITIONAL BRANCHES
- MEMORY USABLE AS REGISTER/FLAGS
- COMPLETE DEVELOPMENT SYSTEM SUPPORT ON INICE®

USER SELECTABLE OPTIONS

- 8 BIDIRECTIONAL I/O LINES WITH TTL OR TTLCMOS INTERFACE OPTION
- 8 BIDIRECTIONAL I/O LINES WITH TTL OR OPEN-DRAIN INTERFACE OPTION
- CRYSTAL OR LOW-COST RESISTOR OSCILLATOR OPTION
- LOW VOLTAGE INHIBIT OPTION
- VECTORED INTERRUPTS : TIMER, SOFTWARE, AND EXTERNAL
- USER CALLABLE SELF-CHECK SUBROUTINES

DESCRIPTION

The EF6805U3 Microcomputer Unit (MCU) is a member of the 6805 Family of low-cost single-chip Microcomputers. The 8 -bit microcomputer contains

INICE ${ }^{\text {s }}$ is SGS-THOMSON development/emulation tool

May 1989
This is advance information on a new product now in development or undergoing evaluation Details are subject to change without notice

a CPU, on-chip CLOCK, ROM, RAM, I/O, and TIMER. It is designed for the user who needs an economical microcomputer with the proven capabilities of the 6800-based instruction set. A comparison of the key features of several members of the

6805 Family of Microcomputers is shown at the end of this data sheet. The following are some of the hardware and software highlights of the EF6805U3 MCU.

Figure 1 : EF6805U3 HMOS Microcomputer Block Diagram.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{cc}	Supply Voltage	-0.3 to +7.0	V
$V_{\text {In }}$	Input Voltage (except TIMER in self-check mode and open-drain inputs)	-0.3 to + 7.0	v
$V_{\text {In }}$	Input Voltage (open-drain pins, TIMER pin in self-check mode)	-0.3 to +15.0	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range $\left(T_{L}\right.$ to $\left.T_{H}\right)$ V Suffix T Suffix	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to + 150	${ }^{\circ} \mathrm{C}$
T,	Junction Temperature Plastic Package PLCC	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{m} and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{ss}} \leq\left(\mathrm{V}_{\mathrm{m}}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{cc}}$. Reliability of operation is enhanced if unused inputs except EXTAL are tied to an appropriate logic voltage level (eg , ether V_{ss} or V_{cc}).

THERMAL DATA

$\theta_{\text {JA }}$	Thermal Resistance	Plastic PLCC	
		80	80

POWER CONSIDERATIONS

The average chip-junction temperature, T, in ${ }^{\circ} \mathrm{C}$ can be obtained from :
$\left.T_{J}=T_{A+(P D} \cdot \theta_{J A}\right)$
Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
θ JA $=$ Package Thermal Resistance, Junction-to-
Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{PD}_{\mathrm{D}}=\mathrm{Pint}^{2}+\mathrm{P}_{\text {PORT }}$
$\mathrm{P}_{\text {Int }}=\operatorname{lcc} \times \mathrm{V}_{\mathrm{cc}}$, Watts - Chip Internal Power
Pport = Port Power Dissipation, Watts - User Determined
For most applications PPORT << Pint and can be neglected. PPORT may become significant if the device
is configured to drive Darlington bases or sink LED loads.
An approximate relationship between PD_{D} and T_{J} (if Pport is neglected) is :
$P_{D}=K+\left(T_{J}+273^{\circ} \mathrm{C}\right)$
Solving equations 1 and 2 for K gives :
$K=P_{D} \cdot\left(T_{A}+273^{\circ} C\right)+\theta_{J A} \cdot P_{D}{ }^{2}$
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_{D} (at equilibrium) for a known T_{A}. Using this value of K the values of P_{D} and T_{J} can be obtained by solving equations (1) and (2) iteratively for any value of T_{A}.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage $\begin{aligned} & \text { RESET }\left(4.75 \leq \mathrm{V}_{C C} \leq 5.75\right) \\ & \left(V_{c c}<4.75\right) \\ & \overline{\text { INT }}\left(4.75 \leq V_{c c} \leq 5.75\right) \\ & \left(V_{c c}<4.75\right) \end{aligned}$ All Other (except timer)	$\begin{gathered} 4.0 \\ V_{c c}-0.5 \\ 4.0 \\ V_{c c}-0.5 \\ 2.0 \\ \hline \end{gathered}$	*	$V_{C C}$ $V_{C c}$ $V_{C c}$ $V_{C c}$ $V_{C C}$	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage Timer Timer Mode Self-check Mode	$\begin{aligned} & 2.0 \\ & 9.0 \end{aligned}$	10.0	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}+1.0 \\ 15.0 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage RESET $\overline{\mathrm{INT}}$ All Other	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \\ & \hline \end{aligned}$	*	$\begin{aligned} & 0.8 \\ & 1.5 \\ & 0.8 \end{aligned}$	V
Vires + Vires -	$\overline{\text { RESET }}$ Hystereris Voltages (see figures 10, 11 and 12) "Out of Reset" "Into Reset"	$\begin{aligned} & 2.1 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	V
$V_{\text {INT }}$	$\overline{\text { INT }}$ Zero Crossing Input Voltage, Through a Capacitor	2		4	$V_{\text {acpp }}$
P_{D}	Power Dissipation - (no port loading, $\mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V}$) $\begin{array}{r} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{aligned} & 520 \\ & 580 \\ & \hline \end{aligned}$	$\begin{aligned} & 740 \\ & 800 \\ & \hline \end{aligned}$	mW
$\mathrm{C}_{\text {In }}$	Input Capacitance EXTAL All Other	-	$\begin{aligned} & 25 \\ & 10 \end{aligned}$		pF
$V_{\text {LVR }}$	Low Voltage Recover			4.75	V
$\mathrm{V}_{\text {LVI }}$	Low Voltage Inhibit	2.75	3.75	4.70	V
$\mathrm{I}_{\text {In }}$	Input Current $\begin{aligned} & \text { TIMER }\left(V_{\text {in }}=0.4 \mathrm{~V}\right) \\ & \text { INT }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right) \\ & \text { EXTAL }\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \text { to } \mathrm{V}_{\text {cc }}-\text { crystal option }\right) \\ & \left(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}-\text { crystal option }\right) \\ & \overline{\text { RESET }}\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right)-\text { External Capacitor Charging } \\ & \text { Current } \end{aligned}$	- 4.0	20	$\begin{gathered} 20 \\ 50 \\ 10 \\ -1600 \\ -40 \end{gathered}$	$\mu \mathrm{A}$

[^18]
EF6805U3

SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {osc }}$	Oscillator Frequency	0.4		4.2	MHz
$\mathrm{t}_{\text {cyc }}$	Cycle Time (4/fosc)	0.95		10	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WL }}, \mathrm{t}_{\text {WH }}$	$\overline{\mathrm{INT}}, \overline{\mathrm{INT} 2}$, and TIMER Pulse Width (see interrupt section)	$t_{\text {cyc }}+250$			ns
$t_{\text {RWL }}$	RESET Pulse Width	$\mathrm{t}_{\mathrm{cyc}}+250$			ns
$\mathrm{finT}^{\text {I }}$	$\overline{\text { INT }}$ Zero-crossing Detection Input Frequency	0.03		1	kHz
	External Clock Input Duty Cycle (EXTAL)	40	50	60	\%
	Crystal Oscillator Start-up Time*			100	ms

* See figure 16 for typical crystal parameters

PORT ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted)
PORT A WITH CMOS DRIVE ENABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage ($\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$)			0.4	V
V_{OH}	$\begin{gathered} \text { Output High Voltage } \\ I_{\text {Load }}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\text {Load }}=-10 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ V_{c c}-1.0 \end{gathered}$			V
$\mathrm{V}_{\text {IH }}$	Input High Voltage ($\mathrm{L}_{\text {Load }}=-300 \mu \mathrm{~A}$ max.)	2.0		V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage ($\mathrm{I}_{\text {Load }}=-500 \mu \mathrm{~s}$ max.)	$V_{S S}$		0.8	V
I_{IH}	High Z State Input Current ($\mathrm{V}_{\text {In }}=2.0 \mathrm{~V}$ to V_{CC})			-300	$\mu \mathrm{A}$
IIL	High Z State Input Current ($\mathrm{V}_{\text {ın }}=0.4 \mathrm{~V}$)			-500	$\mu \mathrm{A}$

PORT B

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage $\mathrm{I}_{\text {Load }}=3.2 \mathrm{~mA}$ $\mathrm{I}_{\text {Load }}=10 \mathrm{~mA}$ (sink)			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\mathrm{I}_{\text {Load }}=-200 \mu \mathrm{~A}$	2.4			V
I_{OH}	Darlington Current Drive (source) $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	-1.0		-10	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High Z State Input Current		<2	10	$\mu \mathrm{~A}$

PORT C AND PORT A WITH CMOS DRIVE DISABLED

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OL}	Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\mathrm{I}_{\text {Load }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\mathrm{TSI}}$	High Z State Input Current		<2	10	$\mu \mathrm{~s}$

PORT C (open-drain option)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		13.0	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	V_{SS}		0.8	V
$\mathrm{I}_{\text {LOD }}$	Input Leakage Current		<3	15	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage $\mathrm{I}_{\text {Load }}=1.6 \mathrm{~mA}$			0.4	V

PORT D

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	V_{SS}		0.8	V
I_{In}	Input Current		<1	5	$\mu \mathrm{~A}$

Figure 2 : TTL Equivalent Test Load (port B).

Figure 4 : TTL Equivalent Test Load (port A and C).

Figure 3 : CMOS Equivalent Test Load (port A).

Figure 5 : Open-drain Equivalent Test Load (port C).
Test
Point

SIGNAL DESCRIPTION

The input and output signals for the MCU, shown in figure 1, are described in the following paragraphs.
VCC AND VSS - Power is supplied to the MCU using these two pins. Vcc is power and $V_{S S}$ is the ground connection.
INT - This pin provides the capability for asynchronously applying an external interrupt to the MCU. Refer to Interrupts Section for additional information.
XTAL AND EXTAL - These pins provide control input for the on-chip clock oscillator circuit. A crystal, a resistor, or an external signal, depending on user selectable manufacturing mask option, can be connected to these pins to provide a system clock with various degrees of stability/cost tradeoffs. Lead length and stray capacitance on these two pins should be minimized. Refer to Internal Clock Generator Options Section for recommendations about these inputs.
NOTE: Pin 7 in DIL package/pin 8 in PLCC package is connected to internal protection.
TIMER - The pin allows an external input to be used to control the internal timer circuitry and also to initiate the self test program. Refer to Timer Section for additional information about the timer circuitry.
$\overline{\text { RESET }}$ - This pin allows resetting of the MCU at times other than the automatic resetting capability already in the MCU. The MCU can be reset by pulling RESET low. Refer to Resets Section for additional information.
INPUT/OUTPUT LINES (PA0-PA7, PB0-PB7, PC0PC7, PD0-PD7) - These 32 lines are arranged into four 8 -bit ports (A, B, C, and D). Ports A, B, and C are programmable as either inputs or outputs under
software control of the data direction registers (DDRs). Port D is for digital input only and bit 6 may be used for a second interrupt INT2. Refer to Input/Output Section and Interrupts Section for additional information.

MEMORY - The MCU is capable of addressing 4096 bytes of memory and $1 / O$ registers with its program counter. The EF6805U3 MCU has implemented 4090 of these bytes. This consists of : 3776 user ROM bytes, 192 self-check ROM bytes, 112 user RAM bytes, 7 port l/O bytes, 2 timer registers, and a miscellaneous register; see figure 6 for the Address map. The user ROM has been split into two areas. The main user ROM area is from $\$ 080$ to $\$$ F37. The last 8 user ROM locations at the bottom of memory are for the interrupt vectors.
The MCU reserves the first-16 memory locations for I/O features, of which 10 have been implemented. These locations are used for the ports, the port DDRs, the timer and the INT2 miscellaneous register, and the 112 RAM bytes, 31 bytes are shared with the stack area. The stack must be used with care when data shares the stack area.
The shared stack area is used during the processing of an interrupt or subroutine calls to save the contents of the CPU state. The register contents are pushed onto the stack in the order shown in figure 7. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order four bits (PCH) are stacked. This ensures that the program counter is loaded correctly during pulls from the stack since the stack pointer increments when it pulls data from the stack. A subroutine call results in only the program counter (PCL, PCH) contents being pushed onto the stack ; the remaining CPU registers are not pushed.

Figure 6 : EF6805U3 MCU Address Map.

Figure 7 : Interrupt Stacking Order.

CENTRAL PROCESSING UNIT

The CPU of the EF6805 Family is implemented independently from the I/O or memory configuration. Consequently, it can be treated as an independent central processor communicating with $1 / O$ and memory via internal address, data, and control buses.

REGISTERS

The 6805 Family CPU has five registers available to the programmer. They are shown in figure 8 and are explained in the following paragraphs.

ACCUMULATOR (A) - The accumulator is a general purpose 8-bit register used to hold operands and results of arithmetic calculations or data manipulations.

INDEX REGISTER (X) - The index register is an 8 -bit register used for the indexed addressing mode. It contains an 8 -bit value that may be added to an instruction value to create an effective address. The index register can also be used for data manipulations using the read-modify-write instructions. The Index Register may also be used as a temporary storage area.

Figure 8 : Programming Model.

PROGRAM COUNTER (PC) - The Program Counter is a 12 bit register that contains the address of the next instruction to be executed.

STACK POINTER (SP) - The stack pointer is a 12-bit register that contains the address of the next free location on the stack. During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set to location $\$ 07 \mathrm{~F}$. The stack pointer is then decremented as data is pushed onto the stack and incremented as data is then pulled from the stack. The seven most significant bits of the stack pointer are permanently set to 0000011 . Subroutines and interrupts may be nested down to location \$061 (31 bytes maximum) which allows the programmer to use up to 15 levels of subroutine calls (less if interrupts are allowed).
CONDITION CODE REGISTER (CC) - The condition code register is a 5 -bit register in which four bits are used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their
state. Each bit is explained in the following paragraphs.
Half Carry (H) - Set during ADD and ADC operations to indicate that a carry occurred between bits 3 and 4.

Interrupt (I) - When this bit is set, the timer and external interrupts (INT and INT2) are masked (disabled). If an interrupt occurs while this bit is set, the interrupt is latched and is processed as soon as the interrupt bit is cleared.
Negative (N) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical "1"). Zero (Z) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.
Carry/Borrow (C) - When set, this bit indicates that a carry or borrow out of the Arithmetic Logic Unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions plus shifts and rotates.

TIMER

The timer circuitry for the EF6805U3 is shown in figure 10. The timer contains a single 8 -bit software programmable counter with a 7 -bit software selectable prescaler. The counter may be preset under program control and decrements toward zero. When the counter decrements to zero, the timer interrupt request bit, i.e., bit 7 of the timer control register (TCR), is set. Then if the timer interrupt is not masked, i.e., bit 6 of the TCR and the I bit in the condition code register are both cleared, the processor receives an interrupt. After completion of the current instruction, the processor proceeds to store the appropriate registers on the stack, and then fetches the timer interrupt vector from locations \$FF8 and \$FF9 in order to begin servicing the interrupt.
The counter continues to count after it reaches zero, allowing the software to determine the number of internal or external input clocks since the timer interrupt request bit was set. The counter may be read at any time by the processor without disturbing the count. The contents of the counter become stable prior to the read portion of a cycle and do not change during the read. The timer interrupt request bit remains set until cleared by the software. If a write occurs before the timer interrupt is serviced, the interrupt is lost. TCR7 may also be used as a scanned status bit in a non-interrupt mode of operation (TCR6 $=1$).
The prescaler is a 7 -bit divider which is used to extend the maximum length of the timer. Bit 0 , bit 1 , and bit 2 of the TCR are programmed to choose the appropriate prescaler output which is used as the counter input. The processor cannot write into or read from the prescaler; however, its contents are cleared to all zeros by the write operation into TCR when bit 3 of the written data equals one, which allows for truncation-free counting.
The timer input can be configured for three different operating modes, plus a disable mode, depending on the value written to the TCR4 and TCR5 control bits. For further information see figure 9.
Timer Input Mode 1 - If TCR5 and TCR4 are both programmed to a zero, the input to the timer is from an internal clock and the external TIMER input is disabled. The internal clock mode can be used for periodic interrupt generation, as well as a reference in frequency and event measurement. The internal clock is the instruction cycle clock.

Timer Input Mode $2-$ With TCR5 $=0$ and TCR4 $=1$, the internal clock and the TIMER input pin are ANDed to form the timer input signal. This mode can be used to measure external pulse widths. The ex-
ternal timer input pulse simply turns on the internal clock for the duration of the pulse widths.

Timer Input Mode 3 - If TCR5 = 1 and TCR4 $=0$, then all inputs to the timer are disabled.

Timer Input Mode 4 - If TCR5 = 1 and TCR4 = 1 , the internal clock input to the timer is disabled and the TIMER input pin becomes the input to the timer. The external TIMER pin can, in this mode, be used to count external events as well as external frequencies for generating periodic interrupts.

7	6	5	4	3	2	1	0	
TCR7	TCR6	TCR5	TCR4	TCR3*	TCR2	TCR1	TCR0	$\$ 009$

*Wnte only (read as zero).
TCR7 - Timer Interrupt Request Bit :
1 - Set when TDR goes to zero, or under program control
0 - Cleared on external Reset, Power-OnReset, or under Program Control.
TCR6 - Timer Interrupt Mask Bit :
1 - Timer Interrupt masked (disabled) Set on external Reset, Power-On-Reset, or under Program Control
0 - Cleared under Program Control.
TCR5 - External or Internal Clock Source Bit :
1 - External Clock Source. Set on external Reset, Power-On-Reset, or under Program Control
0 - Cleared under Program Control.
TCR4 - External Enable Bit :
1 - Enable external TIMER pin. Set on external Reset, Power-On-Reset, or under Program Control.
0 - Cleared under Program Control.

TCR5	TCR4	Result
0	0	Internal Clock to Timer
0	1	AND of Internal Clock and TIMER
1	0	Pin to Timer
1	1	Input to timer disabled.
TIMER Pin to Timer		

TCR3 - Timer prescaler reset bit : A read of TCR3 always indicates a zero.

1 - Set on external Reset, Power-On-Reset or under Program Control.
0 - Cleared under Program Control.
TCR2, TCR1, and TCR0 - Prescaler address bits:
1 - All set on external Reset, Power-On-Reset or under Program Control.
0 - Cleared under Program Control.

Figure 9 : Timer Control Register (TCR).

TCR2	TCR1	TCR0	Result					
0	0	0	+1					
0	0	1	+2					
0	1	0	+4					
0	1	1	+8	\quad	1	0	0	+16
:---:	:---:	:---:	:---:					
1	0	1	+32					
1	1	0	+64					
1	1	1	+128					

Figure 10 : Timer Block Diagram.

Notes: 1. Prescaler and 8-bit counter are clocked on the failing edge of the internal clock (AS) or external input.
2 Counter is written to during data strobe (DS) and counts down contınuously.

SELF-CHECK - The self-check capability of the EF6805U3 MCU provides an internal check to determine if the part is functional. Connect the MCU as shown in figure 11 and monitor the output of Port C bit 3 for an oscillation of approximately 7 Hz . A 10volt level (through a 10 k resistor) on the timer input, pin 8 and pressing then releasing the RESET button, energizes the ROM-based self-check feature. The self-check program exercices the RAM, ROM, TIMER, interrupts, and I/O ports.

Several of the self-check subroutines can be called by a user program with a JSR or BSR instruction. They are the RAM, ROM. The timer routine may also be called if the timer input is the internal $\phi 2$ clock.

To call those subroutines in customer application, please contact your local SGS-THOMSON sales office in order to obtain the complete description of the self-check program and the entrance/exit conditions.

RAM SELF-CHECK SUBROUTINE - The RAM selfcheck is called at location \$F84 and returns with the Z bit clear if any error is detected; otherwise the Z bit is set. The RAM test causes each byte to count from 0 up to 0 again with a check after each count.

The RAM test must be called with the stack pointer at $\$ 07 \mathrm{~F}$ and $\mathrm{A}=0$. When run, the test checks every RAM cell except for \$07F and \$07E which are assumed to contain the return address.

The A and X registers and all RAM locations except \$07F and \$07E are modified.
ROM CHECKSUM SUBROUTINE - The ROM selfcheck is called at location \$F95. The A register should be cleared before calling the routine. If any error is detected, it returns with the Z bit cleared ; otherwise $Z=1, X=0$ on return, and A is zero if the test passes. RAM location $\$ 040$ to $\$ 043$ is overwritten. The checksum is the complement of the execution OR of the contents of the user ROM.

Figure 11 : Self-check Connections.

* This connection depends on clock oscillator user selectable mask option. Use jumper if the RC mask option is selected

LED MEANINGS

PC0	PC1	PC2	PC3	Remarks (1:LED ON ; 0 : LED OFF)
1	0	1	0	Bad I/O
0	0	1	0	Bad Timer
1	1	0	0	Bad RAM
0	1	0	0	Bad ROM
0	0	0	0	Bad Interrupts or Request Flag
All Flashing			Good Device	

Anything else bad device. Bad Port C , etc

TIMER SELF-CHECK SUBROUTINE - The timer self-check is called at location \$F6D and returns with the Z bit cleared if any error was found ; otherwise $Z=1$.

In order to work correctly as a user subroutine, the internal $\phi 2$ clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock is running and the interrupt mask is not set so the caller must protect from interrupts if necessary.

The A and X register contents are lost. This routine sets the prescaler for divide-by-128 and the timer data register is cleared. The X register is configured to count down the same as the timer data register. The two registers are then compared every 128 cycles until they both count down to zero. Any mismatch during the count down is considered as an error. The A and X registers are cleared on exit from the routine.

RESET

The MCU can be reset three ways : by initial powerup, by the external reset input (RESET) and by an optional internal low-voltage detect circuit. The RESET input consists mainly of a Schmitt trigger which senses the RESET line logic level. A typical reset Schmitt trigger hysteresis curve is shown in figure 12. The Schmitt trigger provides an internal reset voltage if it senses alogical zero on the RESET pin.
POWER-ON RESET (POR) - An internal reset is generated upon powerup that allows the internal clock generator to stabilize. A delay of trhL milliseconds is required before allowing the RESET input to go high. Refer to the power and reset timing diagram of figure 13. Connecting a capacitor to the RESET input (as illustrated in figure 14) typically provides sufficient delay. During powerup, the Schmitt trigger switches on (removes reset) when RESET rises to $\mathrm{V}_{\text {IRES }}$.

Figure 12 : Typical Reset Schmitt Trigger Hysteresis.

Figure 13 : Power and Reset Timing.

Figure 14 : $\overline{\text { RESET }}$ Configuration.

EXTERNAL RESET INPUT - The MCU will be reset if a logical zero is applied to the RESET input for a period longer than one machine cycle (tcyc). Under this type of reset, the Schmitt trigger switches off at VIRES- to provide an internal reset voltage.
LOW-VOLTAGE INHIBIT (LVI) - The optional lowvoltage detection circuit causes a reset of the MCU if the power supply voltage falls below a certain level ($\mathrm{V}_{\mathrm{LVI}}$). The only requirement is that V_{cc} remains at or below the $\mathrm{V}_{\mathrm{LVI}}$ threshold for one $\mathrm{t}_{\text {cyc }}$ minimum. In typical applications, the $V_{c c}$ bus filter capacitor will eliminate negative-going voltage glitches of less than one tcyc. The output from the low-voltage detector is connected directly to the internal reset circuitry. It also forces the RESET pin low via a strong discharge device through a resistor. The internal reset will be removed once the power supply voltage rises above a recovery level (VLVR), at which time a normal power-on-reset occurs.

INTERNAL CLOCK GENERATOR OPTIONS

The internal clock generator circuit is designed to require a minimum of external components. A crystal, a resistor, a jumper wire, or an external signal may be used to generate a system clock with various stability/cost tradeoffs. The oscillator frequency is internally divided by four to produce the internal system clocks. A manufacturing mask option is used to select crystal or resistor operation.

The different connection methods are shown in figure 15. Crystal specifications and suggested PC board layouts are given in figure 16. A resistor selection graph is given in figure 17.
The crystal oscillator start-up time is a function of many variables : crystal parameters (especially Rs), oscillator load capacitances, IC parameters, ambient temperature, and supply voltage. To ensure rapid oscillator start up, neither the crystal characteristics nor the load capacitances should exceed recommendations.
When utilizing the on-board oscillator, the MCU should remain in a reset condition (reset pin voltage below VIRES_{+}) until the oscillator has stabilized at its operating frequency. Several factors are involved in calculating the external reset capacitor required to satisfy this condition : the oscillator start-up voltage, the oscillator stabilization time, the minimum $\mathrm{V}_{\text {IRES }}^{+}$, and the reset charging current specification.
Once Vcc minimum is reached, the external $\overline{\text { RESET }}$ capacitor will begin to charge at a rate dependent on the capacitor value. The charging current is supplied from $V_{c c}$ through a large resistor, so it appears almost like a constant current source until the reset voltage rises above $\mathrm{V}_{\text {IRES }+ \text {. }}$ Therefore, the RESET pin will charge at approximately :
$\left(\mathrm{V}_{\text {IRES }}+\right.$) $\cdot \mathrm{C}_{\text {ext }}=$ IRES $\cdot \mathrm{t}_{\text {RHL }}$
Assuming the external capacitor is initially discharged.

Figure 15 : Clock Generator Options.

Note: The recommended C_{L} value with a 4.0 MHz crystal is 27 pF , maximum, including system distributed capacitance. There is an internal capacitance of approximately 25 pF on the XTAL pin For crystal frequencles other than 4 MHz , the total capacitance on each pin should be scaled as the inverse of the frquency ratıo. For example, with a 2 MHz crystal, use approxımately 50 pF on EXTAL and approxımately 25 pF on XTAL The exact value depends on the Motional-Arm parameters of the crystal used.
Figure 16 : Crystal Motional Arm Parameters and Suggested PC Board Layout.

Figure 17 : Typical Frequency Selection for Resistor (oscillator option).

Resistance (k Ω)							

INTERRUPTS

The microcomputers can be interrupted four different ways : through the external interrupt (INT) input pin, the internal timer interrupt request, the external port D bit 6 (INT2) input pin, or the software interrupt instruction (SWI). When any interrupt occurs : the current instruction (including SWI) is completed, processing is suspended, the present CPU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of the interrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. Stacking the CPU register, setting the I bit, and vector fetching require a total of 11 tcyc periods for completion. A flowchart of the interrupt sequence is shown in figure 18. The interrupt service routine must end with a return from interrupt (RTI)
instruction which allows the MCU to resume processing of the program prior to the interrupt (by unstacking the previous CPU state). Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete.
When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing ; otherwise the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service.
If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction.

Figure 18 : $\overline{\text { RESET }}$ and Interrupt Processing Flowchard.

NOTE

The timer and $\overline{\mathrm{INT}}$ interrupts share the same vector address. The interrupt routine must determine the source by examining the interrupt request bits (TCR b7 and MR b7). Both TCR b7 and MR b7 can only be written to zero by software.
The external interrupt, $\overline{\mathrm{INT}}$ and $\overline{\mathrm{INT} 2}$, are synchronized and then latched on the falling edge of the input signal. The INT2 interrupt has an interrupt request bit (bit 7) and a mask bit (bit 6) located in the miscellaneous register (MR). The INT2 interrupt is inhibited when the mask bit is set. The INT2 is always read as a digital input on port D. The INT2 and timer interrupt request bits, if set, cause the MCU to
process an interrupt when the condition code I bit is clear.
A sinusoidal input signal (fint maximum) can be used to generate an external interrupt for use as a zero-crossing detector. This allows applications such as servicing time-of-day routines and engaging/disengaging ac power control devices. Off-chip full wave rectification provides an interrupt at every zero crossing of the ac signal and thereby provides a 2 f clock. See figure 19.

NOTE

The $\overline{\mathrm{INT}}$ (pin 3) is internally biased at approximately 2.2 V due to the internal zero-crossing detection.

A software interrupt (SWI) is an executable instruction which is executed regardless of the state of the I bit in the condition code register. SWIs are usually
used as break-points for debugging or as system calls.

Figure 19 : Typical Interrupt Circuits.

INPUT/OUTPUT CIRCUITRY

There are 32 input/output pins. The INT pin may be polled with branch instructions to provide an additional input pin. All pins on ports A, B, and C are programmable as either inputs or outputs under software control of the corresponding data direction register (DDR). See below I/O port control registers configuration. The port I/O programming is accomplished by writing the corresponding bit in the port DDR to a logic one for output or a logic zero for input. On reset all the DDRs are initialized to a logic zero state, placing the ports in the input mode. The port output registers are not initialized on reset and should be initialized by software before changing the DDRs from input to output. A read operation on a port programmed as an output will read the contents of the output latch regardless of the logic levels at the output pin, due to output loading. Refer to figure 20.

PORT DATA REGISTER

Port A Addr $=\$ 000$
Port B Addr $=\$ 001$
Port C Addr $=\$ 002$
Port D Addr $=\$ 003$

PORT DATA DIRECTION REGISTER (DDR)
(1) Write only, reads as all "1s"
(2) $1=$ Output. $0=$ Input Cleared to 0 by Reset
(3) Port A Addr $=\$ 004$

Port B Addr $=\$ 005$
Port C Addr $=\$ 006$

Figure 20 : Typical Port I/O Circuitry.

All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs (mask option) while port B, C, and D lines are CMOS compatible as inputs. Port D lines are input only ; thus, there is no corresponding DDR. When programmed as outputs, port B is capable of sinking 10 milliamperes and sourcing 1 milliampere on each pin.
The address map (figure 6) gives the addresses of data registers and data direction registers. Figure 21 provides some examples of port connections.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$).

A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port be written using a single-store instruction.
The latched output data bit (see figure 20) must always be written. Therefore, any write to a port writes all of its data bits even though the port DDR is set to input. This may be used to initialize the data register and avoid undefined outputs ; however, care must be exercised when using read-modify-write instructions, since the data read corresponds to the pin level if the DDR is an input (zero) and corresponds to the latched output data when the DDR is an output (one).

Figure 21 : Typical Port Connections.

BIT MANIPULATION

The EF6805U3 has the ability to set or clear any single RAM or I/O bit (except the data direction registers) with a single instruction (BSET, BCLR) (see Caution below). Any bit in page zero can be tested using the BRSET and BRCLR instructions and the program branches as a result of its state. The carry bit equals the value of the bit references by BRSET or BRCLR. The capability to working with any bit in RAM, ROM, or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines.

CAUTION

The corresponding data direction registers for ports A, B, and C are write-only registers (locations $\$ 004$, $\$ 005$, and \$006). A read operation on these regis-
ters is undefined. Since BSET and BCLR are read-modify-write functions, they cannot be used to set a data direction register bit (all "unaffected"' bits would be set). It is recommended that all data direction register bits in a port be written using a single-store instruction.
The coding examples shown in figure 22 illustrate the usefulness of the bit manipulation and test instruction. Assume that the microcomputer is to communicate with an external serial device. The external device has a data ready signal, a data output line, and a clock line to clock data one bit at a time, least significant bit first out of the device. The microcomputer waits until the data is ready, clocks the external device, picks up the data in the carry flag, clears the clock line, and finally accumulates the data bit in a random-access memory location.

Figure 22 : Bit Manipulation Example.

ADDRESSING MODES

The EF6805U3 MCU has ten addressing modes available for use by the programmer. They are explained briefly in the following paragraphs. For additional details and graphical illustrations, refer to the EF6805 Family Users Manual.
The term "effective address" (EA) is used in describing the addressing modes. EA is defined as the address from which the argument for an instruction is fetched or stored.
IMMEDIATE - In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
DIRECT - In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256
bytes in memory with a single 2-byte instruction. This address area includes all on-chip RAM and I/O registers and 128 bytes of ROM. Direct addressing is an effective use of both memory and time.
EXTENDED - In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing mode are capable of referencing arguments anywhere in memory with a single 3-byte instruction. When using the assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.
RELATIVE - The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the PC if, and only if, the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -126 to +129 from the opcode
address. The programmer need not worry about calculating the correct offset if he uses the assembler, since it calculates the proper offset and checks to see if it is within the span of the branch.
INDEXED, NO OFFSET - In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8 -bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.
INDEXED, 8 -BIT OFFSET - In the indexed, 8 -bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the unsigned byte following the opcode. This addressing mode is useful in selecting the kth element in an n element table. With this 2-byte instruction, k would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510 (\$1FE is the last location at which the instruction may begin).
INDEXED, 16-BIT OFFSET - In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8 -bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed, 8 -bit offset except that this 3-byte instruction allows tables to be anywhere in memory. As with direct and extended, the assembler determines the shortest form of indexed addressing.

BIT SET/CLEAR - In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Thus, any read/write bit in the first 256 locations of memory, including I / O, can be selectively set or cleared with a single 2-byte instruction.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.

BIT TEST AND BRANCH - The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit which is to be tested and condition (set or clear) is included in the opcode, and the address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8 -bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single 3byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -125 to +130 from the opcode address. The state of the tested bit is also transferred to the carry bit of the condition code registers.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at \$004, \$005, \$006). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
INHERENT - In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, as well as control instructions with no other arguments, are included in this mode. These instructions are one byte long.

INSTRUCTION SET

The EF6805U3 MCU has a set of 59 basic instructions, which when combined with the 10 addressing modes produce 207 usable opcodes. They can be divided into five different types : register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.
REGISTER/MEMORY INSTRUCTIONS - Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to table 1.
READ-MODIFY-WRITE INSTRUCTIONS - These instructions read a memory location or a register, modify or test its contents, and write the modified
value back to memory or to the register ; see Caution under Input/Output section. The test for negative or zero (TST) instruction is included in the read-modify-write instruction though it does not perform the write. Refer to table 2.
BRANCH INSTRUCTIONS - The branch instructions cause a branch from the program when a certain condition is met. Refer to table 3.

BIT MANIPULATION INSTRUCTIONS - The instructions are used on any bit in the first 256 bytes of the memory. One group either sets or clears. The other group performs the bit test and branch operations. Refer to table 4.

CAUTION

The corresponding DDRs for ports A, B, and C are write-only registers (registers at $\$ 004, \$ 005, \$ 006$). A read operation on these registers is undefined. Since BSET and BCLR are read-modify-write in function, they cannot be used to set or clear a single DDR bit (all "unaffected" bits would be set). It is recommended that all DDR bits in a port must be written using a single-store instruction.
CONTROL INSTRUCTION - The control instructions control the MCU operations during program execution. Refer to table 5.
ALPHABETICAL LISTING - The complete instruction set is given in alphabetical order in table 6. OPCODE MAP - Table 7 is an opcode map for the instruction used on the MCU.

		Addressing Modes																	
		Immediate			Direct			Extended			Indexed(no offset)			Indexed (8 bit offset)			Indexed(16 bit offset)		
Function	Mnemonic	$\left\lvert\, \begin{gathered} 0 p \\ \operatorname{code} \end{gathered}\right.$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} 0 p \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} O p \\ \operatorname{Code} \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} 0 p \\ \text { Code } \end{gathered}$	$\begin{array}{\|c\|} \hline \# \\ \text { Bytes } \end{array}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Load A from Memory	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
Load X from Memory	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
Store A in Memory	STA				B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
Store X in Memory	STX				BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
Add Memory to A	ADD	AB	2	2	BB	2	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
Add Memory and Carry to A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	D9	3	6
Subtract Memory	SUB	AO	2	2	B0	2	4	CO	3	5	F0	1	4	E0	2	5	D0	3	6
Subtract Memory from A with Borrow	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5	D2	3	6
AND Memory to A	AND	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR Memory with A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
Exclusive OR Memory with A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
Arithmetic Compare A with Memory	CMP	A1	2	2	B1	2	4	C1	3	5	F1	1	4	E1	2	5	D1	3	6
Arithmetic Compare X with Memory	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
Bit Test Memory with A (logical compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
Jump Unconditional	JMP				BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
Jump to Subroutine	JSR				BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

		Addressing Modes														
		Inherent (A)			Inherent (X)			Direct			$\begin{gathered} \text { Indexed } \\ \text { (no offset) } \end{gathered}$			Indexed (8 bit offset)		
Function	Mnem	$\begin{aligned} & 0 \mathrm{p} \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} 0 p \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	Cycles	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \text { Op } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	\# Cycles
Increment	INC	4C	1	4	5C	1	4	3C	2	6	7C	1	6	6C	2	7
Decrement	DEC	4A	1	4	5A	1	4	3A	2	6	7A	1	6	6 A	2	7
Clear	CLR	4F	1	4	5F	1	4	3 F	2	6	7F	1	6	6F	2	7
Complement	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
Negate (2'S complement)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
Rotate Left Thru Carry	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
Rotate Right Thru Carry	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
Logical Shift Left	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
Logical Shift Right	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
Arithmetic Shift Right	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
Test for Negative or Zero	TST	4D	1	4	5D	1	4	3D	2	6	7D	1	6	6D	2	7

Table 3 : Branch Instructions.

Function		Relative Addressing Mode		
	Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles
Branch Always	BRA	20	2	4
Branch Never	BRN	21	2	4
Branch IFF Higher	BHI	22	2	4
Branch IFF Lower or Same	BLS	23	2	4
Branch IFF Carry Clear	BCC	24	2	4
(Branch IFF Higher or Same)	(BHS)	24	2	4
Branch IFF Carry Set	BCS	25	2	4
(Branch IFF Lower)	(BLO)	25	2	4
Branch IFF Not Equal	BNE	26	2	4
Branch IFF Equal	BEQ	27	2	4
Branch IFF Half Carry Clear	BHCC	28	2	4
Branch IFF Half Carry Set	BHCS	29	2	4
Branch IFF Plus	BPL	2 A	2	4
Branch IFF Minus	BMI	$2 B$	2	4
Branch IFF interrupt mask bit is clear.	BMC	$2 C$	2	4
Branch IFF interrupt mask bit is set.	BMS	$2 D$	2	4
Branch IFF interrupt line is low.	BIL	$2 E$	2	4
Branch IFF interrupt line is high.	BIH	$2 F$	2	4
Branch to Subroutine	BSR	AD	2	8

Table 4 : Bit Manipulation Instructions.

Function	Mnemonic	Addressing Modes					
		Bit Set/Clear			Bit Test and Branch		
		$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$
Branch IFF bit n is set.	BRSET $\mathrm{n}(\mathrm{n}=07$)				2•n	3	10
Branch IFF bit n is clear.	BRCLR $\mathrm{n}(\mathrm{n}=07$)				$01+2 \cdot n$	3	10
Set Bit n	BSET $\mathrm{n}(\mathrm{n}=07)$	$10+2 \cdot n$	2	7			
Clear Bit n	BCLR n ($\mathrm{n}=07$)	$11+2 \cdot n$	2	7			

Table 5 : Control Instructions.

Function		Inherent		
Mnemonic	Op Code	$\#$ Bytes	$\#$ Cycles	
Transfer A to X	TAX	97	1	2
Transfer X to A	TXA	9 F	1	2
Set Carry Bit	SEC	99	1	2
Clear Carry Bit	CLC	98	1	2
Set Interrupt Mask Bit	SEI	$9 B$	1	2
Clear Interrupt Mask Bit	CLI	9 A	1	2
Software Interrupt	SWI	83	1	11
Return from Subroutine	RTS	81	1	6
Return from Interrupt	RTI	80	1	9
Reset Stack Pointer	RSP	$9 C$	1	2
No Operation	NOP	$9 D$	1	2

Table 6 : Instruction Set.

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	$\left\|\begin{array}{c} \text { Indexed } \\ \text { (no offset) } \end{array}\right\|$	Indexed (8 Bits)	Indexed (16 Bits)	$\begin{gathered} \text { Bit } \\ \text { Set/clear } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { Test \& } \\ \text { Branch } \end{gathered}$	H	1	N	z	C
ADC		X	X	X		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
ADD		X	X	X		X	X	X			\wedge	-	\wedge	\wedge	\wedge
AND		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
ASL	x		X			X	X				\bullet	-	\wedge	\wedge	\wedge
ASR	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
BCC					X						\bullet	-	-	\bullet	\bullet
BCLR									X		\bullet	\bullet	\bullet	\bullet	\bullet
BCS					X						\bullet	\bullet	-	\bullet	\bullet
BEQ					X						\bullet	\bullet	\bullet	-	\bullet
BHCC					X						\bullet	-	\bullet	-	\bullet
BHCS					X						\bullet	\bullet	\bullet	-	\bullet
BHI					X						\bullet	-	\bullet	\bullet	\bullet
BHS					X						\bullet	\bullet	\bullet	-	\bullet
BIH					X						\bullet	\bullet	\bullet	\bullet	\bullet
BIL					X						\bullet	-	\bullet	-	\bullet
BIT		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
BLO					X						\bullet	-	\bullet	\bullet	\bullet
BLS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BMC					X						\bullet	\bullet	\bullet	-	\bullet
BMI					X						\bullet	\bullet	\bullet	\bullet	\bullet
BMS					X						-	\bullet	\bullet	-	\bullet
BNE					X						\bullet	\bullet	\bullet	\bullet	\bullet
BPL					X						\bullet	\bullet	\bullet	\bullet	\bullet
BRA					X						\bullet	\bullet	-	\bullet	\bullet
BRN					X						-	\bullet	\bullet	\bullet	\bullet
BRCLR										X	\bullet	\bullet	-	\bullet	\wedge
BRSET										X	-	-	\bullet	-	\wedge
BSET									X		\bullet	-	\bullet	\bullet	\bullet
BSR					X						\bullet	\bullet	\bullet	-	\bullet
CLL	X										\bullet	\bullet	\bullet	\bullet	0

Condition Code Symbols :
Half Carry (from bit 3).
Interrupt Mask.
Negative (sign bit).

Test and Set if True. Cleared Otherwise. Not Affected.

Table 6 : Instruction Set (continued).

	Addressing Modes										Condition Code				
Mnem	Inherent	Immediate	Direct	Extended	Relative	Indexed (no offset)	Indexed (8 Bits)	Indexed (16 Bits)	$\begin{array}{\|c\|} \text { Bit } \\ \text { Set/clear } \end{array}$	$\begin{gathered} \text { Bit } \\ \text { Test \& } \\ \text { Branch } \end{gathered}$	H	1	N	Z	C
CLI	X										-	0	-	\bullet	\bullet
CLR	X		X			X	X				-	-	0	1	\bullet
CMP		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\wedge
COM	X		X			X	X				\bullet	-	\wedge	\wedge	1
CPX		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
DEC	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\bullet
EOR		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
INC	X		X			X	X				\bullet	-	\wedge	\wedge	\bullet
JMP			X	x		X	X	X			\bullet	-	\bullet	\bullet	\bullet
JSR			X	X		X	X	X			\bullet	-	\bullet	-	\bullet
LDA		x	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LDX		X	X	X		X	X	X			\bullet	-	\wedge	\wedge	\bullet
LSL	X		X			X	X				\bullet	-	\wedge	\wedge	\wedge
LSR	X		X			X	X				\bullet	\bullet	0	\wedge	\wedge
NEQ	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
NOP	X										\bullet	\bullet	\bullet	\bullet	\bullet
ORA		X	x	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
ROL	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
RSP	X										\bullet	\bullet	\bullet	\bullet	\bullet
RTI	X										?	?	?	?	$?$
RTS	X										\bullet	\bullet	\bullet	\bullet	\bullet
SBC		X	X	X		X	X	X			-	-	\wedge	\wedge	\wedge
SEC	X										\bullet	-	\bullet	\bullet	1
SEI	X										\bullet	1	\bullet	\bullet	\bullet
STA			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
STX			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SWI	X										\bullet	1	\bullet	\bullet	\bullet
TAX	X										\bullet	\bullet	\bullet	\bullet	\bullet
TST	X		X			X	X				\bullet	\bullet	\wedge	\wedge	\bullet
TXA	X										\bullet	\bullet	\bullet	\bullet	\bullet

Condition Code Symbols:

Half Cary (from bit 3) Interrupt Mask.
$\mathrm{N} \quad$ Negative (sign bit).
Z Zero

- Not Affected.

Carry/Borrow.
$\wedge \quad$ Test and Set If True. Cleared Otherwise
? Load CC Register from Stack.

C

EF6805 HMOS FAMILY

Features	EF6805P2	EF6805P6	EF6805R2	EF6805R3	EF6805U2	EF6805U3
Technology	HMOS	HMOS	HMOS	HMOS	HMOS	HMOS
Number of Pins	28	28	40	40	40	40
On-chip RAM (bytes)	64	64	64	112	64	112
On-chip User ROM (bytes)	1100	1796	2048	3776	2048	3776
External Bus	None	None	None	None	None	None
Bidirectional I/O Lines	20	20	24	24	24	24
Unidirectional I/O Lines	None	None	6 Inputs	6 Inputs	8 Inputs	8 Inputs
Other I/O Features	Timer	Timer	Timer, A/D	Timer, A/D	Timer	Timer
External Interrupt Inputs	1	1	2	2	2	2
STOP and WAIT	No	No	No	No	No	No

	Bre Manipulation		Branch	Read-Modify-Write					Control		Registor/Momory							
	$\frac{818}{0}$	$\frac{\text { BSC }}{1}$	$\frac{\text { AEGL }}{2}$	$\frac{018}{3}$	$\frac{1 \mathrm{NH}}{4}$	INH	$\frac{1 \times 1}{6}$	1x	INH	INH	IMM	$\frac{\text { DIR }}{8}$	$\frac{E \times T}{C}$	$\frac{1 \times 2}{0}$	$\frac{\|x\|}{E}$	$\stackrel{1 \times}{\text { F }}$		
Low	1000	0001	0×10	$0 \cdot 1$	0100	0101	0110	011			10.0						ow	
0_{0}^{0}	\% ${ }_{3}^{\text {BRSETO }}$	${ }_{2}$ BSETO ${ }^{\text {asc }}$	${ }_{2}^{1}{ }_{2}^{\text {Bra }}$	${ }_{2}^{\circ} \mathrm{NEG}{ }_{2,1}$	${ }_{1}^{4}$ NEG ${ }^{\text {a }}$ -	${ }^{1}$ NEG ${ }^{\text {NH }}$	$2_{2}{ }^{\text {EGG }}{ }_{\text {\|x] }}$	${ }_{1}^{6}$ NEG \times	${ }^{3}$. RTI ${ }_{\text {INM }}$		1. sub	${ }_{2}{ }^{\text {SUP }} 019$	${ }_{3}^{5}$ SU8 ${ }_{\text {EXT }}$	${ }_{3}{ }^{\circ}$ SUB ${ }_{1 \times 2}$	${ }_{2}^{5}$ SUB ${ }_{1 \times 1}$	${ }_{1}^{4}$ SUB ${ }_{1 \times}$	0_{0}^{0}	
0001	${ }_{3}^{10}{ }^{10}{ }^{\text {BRCLRO }}$	$\begin{array}{\|c} 7 \\ \hline \\ 2 \\ \hline 2 \end{array}$	${ }_{2}^{1} \text { BRN }$						${ }^{\circ}$ R RTS		${ }_{2}^{2}$ CMP	${ }_{2}^{4}{ }_{2}{ }^{\text {CMP }}$		${ }^{6} \mathrm{CMP}_{1 \times 2}$	${ }_{2}^{5}$ CMP ${ }^{2} \times 1$	${ }_{1}^{4}{ }^{4}$ CMP ${ }^{\text {a }}$	0001	
0_{0}^{2}	$\begin{aligned} & \hline 0 \\ & \text { BRSETI } \\ & 3 \quad \text { OTI } \\ & \hline \end{aligned}$	BSETI	$\int_{2}^{4} \mathrm{BH} \mathrm{AEL}^{2}$								${ }_{2}^{2} \mathrm{SBC}$	$\mathrm{SBCC}_{\text {O1R }}$	${ }_{3} \mathrm{SBC}_{\mathrm{EXT}}$	${ }_{3}^{6}{ }^{\text {SBC }}{ }_{1 \times 2}$	${ }_{2}^{5}{ }_{2}{ }^{\text {SBC }} 1 \times 1$	${ }_{1}^{4}{ }^{\text {SBC }}{ }_{1 \times}$	$0^{2} 10$	
${ }_{0}{ }_{0}{ }^{1}$	BRCLR1 3 3 8 Br8	$\begin{aligned} & \text { BCLR1 } \\ & 2 \quad \text { OSC } \\ & \hline \end{aligned}$	$\int_{2}^{4} \text { BLS }$	${ }_{2}^{6} \mathrm{COM}_{0,18}$	${ }_{1}^{4} \text { COMA }$	${ }^{4} \operatorname{comx}$	${ }_{2}^{7} \operatorname{com}_{1 \times 1}$	${ }_{1}^{5}$ COM	$\begin{array}{\|l\|l\|} \hline 1 S_{1} \\ 1 \\ \hline \end{array}$		$\begin{array}{ll} 2 \\ 2 \\ 2 \end{array}$	${ }_{2}^{4} \mathrm{CPX}_{\mathrm{O}, \mathrm{R}}$	${ }_{3}^{5} \mathrm{CPX} \mathrm{EXI}$	${ }_{3}^{6} \mathrm{CPX}_{1 \times 2}$	$\int_{2}^{5} \operatorname{cpx}\|x\|$	${ }_{1}^{4} \mathrm{CPX}_{1 \mathrm{x}}$	∞^{3}	
${ }_{0100}^{4}$	$\begin{aligned} & 10 \\ & \text { BRSET2 } \\ & 3 \end{aligned}$	$\begin{gathered} \text { BSET2 } \\ \hline \end{gathered}$	${ }_{2} B C C_{\text {REL }}$	$\begin{array}{\|ll\|} \hline 6 & \text { LSR } \\ 2 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline \text { A } & \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 4 & \text { LSRX } \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline & \\ \hline \end{array}$	$\begin{array}{\|lll} \hline 6 & & \\ { }_{1} \text { LSR } \\ \hline \end{array}$			${ }_{2}^{2}$ AND ${ }^{2}$	${ }^{\text {ANC }}$ - ${ }_{\text {ilh }}$	$\int_{3}^{5} \text { AND }$	$\frac{3}{6} \text { AND }$	${ }_{2}{ }^{\text {AND }}{ }_{1 \times 1}$	${ }_{1}^{4}{ }^{\text {AND }}$ [${ }^{\text {a }}$	$\stackrel{4}{0}$	
5 0101	$\begin{aligned} & 10 \\ & \text { BRCLR2 } \\ & 3 \quad \text { BTS } \end{aligned}$	$\begin{aligned} & 8 C L R 2 \\ & 2 \quad 8 S C \end{aligned}$	${ }_{2}^{4} \mathrm{BCS}_{\mathrm{AEL}}$								$2 \mathrm{BIT}$	$2^{81 T_{21 R}}$	${ }_{3}^{3} \text { BIT EXT }$	$\begin{array}{lll} \hline 6 & 81 T & \\ \hline & & 1 \times 2 \\ \hline \end{array}$	$\int_{2}^{5} 81 T_{1}$	$\begin{array}{\|lll\|} \hline 4 & \text { BIT } \\ \hline 1 & & \\ \hline \end{array}$	$\stackrel{5}{010}$	
${ }^{6}$	$\begin{aligned} & 10 \\ & 3 \text { BRSET3 } \\ & 3 \quad \text { OTB } \end{aligned}$	${ }_{2} \text { BSET3 }$	${ }_{2}^{4} B N E_{a E L}$	$\begin{array}{\|l\|l\|} \hline 6 \\ 2 & R_{2} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline A \\ \hline \end{array} \text { RORA }$	$\begin{array}{\|ll\|} \hline 4 & \text { RORX } \\ 1 & \\ \hline \end{array}$	$\stackrel{R O R}{1 \times 1}$	${ }^{0} \text { ROK }$			$2 \mathrm{LDA}$	LDA ${ }_{\text {OIR }}$	${ }_{3}^{5} \text { LDA }{ }_{2}^{5 \times I}$	$\operatorname{LDA}_{1 \times 2}$	${ }_{3}^{\text {LDA }}\|x\|$	${ }_{5}^{\text {LDA }} 1 \mathrm{x}$	${ }_{0}^{6} 110$	
${ }_{0} 111$	$\begin{aligned} & 10 \\ & { }_{3} 8 \mathrm{RCLR} 3 \\ & 3 \\ & \hline 108 \end{aligned}$	${ }_{2}^{1} \mathrm{BCL} \mathrm{RBS}^{2}$	${ }_{2} B E O_{A E L}$	$\int_{2}^{6} \text { ASR }$	$\begin{array}{\|l\|l\|} \hline 4 & \text { ASRA } \\ 1 & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 4 & A S R X \\ 1 & \\ \hline \end{array}$	$\mathrm{ASR}_{\mathrm{I} \times 1}$	${ }_{1}^{6}{ }^{\text {A }}$ (${ }_{\text {Ix }}$		$\begin{array}{\|ll\|} \hline 2 & T A X \\ 1 & \\ \hline \end{array}$		${ }_{2} \text { STA }$	${ }_{3} \text { STA } \mathrm{EXT}$	$S_{1 \times 2}$	$\text { STA } \mid x_{1}$	${ }_{1}^{5}$ STA ${ }^{1 \times}$	$\begin{array}{r}7 \\ 0 \\ \hline 11\end{array}$	
${ }_{1000}^{8}$	$\begin{array}{\|l\|} \hline 10 \\ 3 R S E T A \\ 3 \\ \hline \end{array}$	${ }_{2}^{8 S E T 4}$	${ }_{2}^{4} B H C C$	$\begin{array}{ll} 6 & \mathrm{LSL}_{0 \mid R} \\ { }_{2}^{2} & \\ \hline \end{array}$	${ }_{4}^{4}$ LSLA	$\mathrm{C}_{1}^{4} \text { LSLX }$	${ }_{\text {LSL }}^{\text {\|x }}$ \|	${ }_{1}^{6}$ LSL ${ }_{\text {a }}$		${ }_{1}^{2} \mathrm{CLC}$	$\begin{array}{\|ll\|} \hline 2 & \mathrm{EOR} \\ 2 & \mathrm{IMM} \\ \hline \end{array}$	${ }_{2} \mathrm{EOR}_{\mathrm{OIR}}$	$\begin{aligned} & 5 \\ & \hline \end{aligned}$	${ }_{3} \mathrm{EOR}_{1 \times 2}$	${ }^{\text {EOR }}{ }_{\text {\|x }}{ }^{\text {a }}$: EOR ${ }_{1 \times}$	$\stackrel{8}{1000}$	
901	$\begin{aligned} & 8 \mathrm{BCLR} 4 \\ & 3 \\ & \hline \end{aligned}$	${ }_{2}^{\text {BCLR } 4}$	${ }_{2}^{4} \mathrm{BHCS}$	${ }_{2}^{6} \mathrm{ROL}_{\mathrm{SIR}}$	$\begin{array}{\|ll\|} \hline 4 \\ \hline \end{array}$	$\mathrm{A}_{1} \text { ROLX } \mathrm{NH}$	ROL	$\mathrm{T}_{6}^{\mathrm{R}} \mathrm{ROL}$		$\begin{array}{\|ll\|} \hline 2 & \text { SEC } \\ \hline 1 & \text { inn } \\ \hline \end{array}$	$\begin{array}{ll} 2 & \\ 2 & A D C \\ 2 & \text { Iman } \\ \hline \end{array}$	${ }_{2}^{A D C_{C, 1}}$	$\int_{3}^{5} A D C_{E X I}$	${ }^{6} \quad C_{1 \times 2}$	${ }^{A O C} C_{1 \times 1}$	${ }^{\text {A }}{ }^{\text {dDC }}{ }_{1 \times}$	109,	
$\stackrel{\text { A }}{10}$		$\underset{\text {, }}{\substack{\text { BSETS } \\ \hline}}$	${ }_{2}{ }^{4} \mathrm{BPL}{ }_{\text {aEl }}$	$\int_{2}^{6} \mathrm{DEC}$	${ }^{4}$, DECA	${ }_{\text {, }}^{4}$ DECX ${ }_{\text {ivh }}$	${ }^{\text {DEC }} \times 1$	${ }^{6} \text { DEC }$		${ }^{2}{ }^{2} \mathrm{CLI}{ }_{\text {INH }}$	${ }_{2}^{2}$ ORA ${ }_{2}$	${ }_{2}{ }^{\text {ORA }}$	${ }_{3}^{5} \text { ORA }$	${ }_{3}^{6}$ ORA 1×2	${ }^{\text {ORA }}$ \|x		${ }_{1}^{1}$ ORA ${ }_{\text {Ix }}$	${ }_{1010}$
8109	$\begin{aligned} & 10 \\ & 38 C L R 5 \\ & 3 \\ & 3 \end{aligned}$	$\underset{8}{8 C L}$	$\int_{2}^{4} \mathrm{BMI}_{2 E_{2}}$							$\int^{2} S_{E E}{ }_{\mathrm{NH}}$	$\therefore{ }^{A D D}$	${ }^{A D D_{0, R}}$	$\begin{aligned} & 5 \mathrm{ADD} \\ & \hline \end{aligned}$	${ }_{3}^{0} A D D_{1 \times 2}$	${ }^{A D D_{1 \times}}$	${ }^{\text {ADO }}{ }^{\text {a }}$	$\stackrel{8}{10,1}$	
C	10 BRSET6 3	$\begin{array}{\|c} 3 \\ 3 \\ 3 \end{array}$	$\int_{2}^{4} B M C_{Q E L}$	${ }_{3}{ }^{2 N C} C_{0, R}$	$\begin{array}{\|lll\|} \hline 4 & \text { INCA } \\ \text { INC } \\ \hline \end{array}$	$\int_{1}^{1} \text { INCX }$	${ }^{1 N C_{1 \times 1}}$	${ }^{0} \text { INC }$		$\begin{array}{\|ll\|} \hline 2 & \text { RSP } \\ 1 & \\ \hline \end{array}$		${ }^{\text {JMP }}$ O1a	$3^{\mathrm{jMP}} \mathrm{ExI}^{1}$	$\mathrm{JMP}_{1 \times 2}$		${ }_{1}^{3}$ JMP ${ }_{\text {I }}$	$\stackrel{\text { c }}{110}$	
1101	$\begin{aligned} & 10 \\ & 3 R C L R 6 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { BCLR6 } \\ & \hline \end{aligned}$	$2 M S_{R E L}$	${ }_{2}^{6} \text { TST }$	$\begin{array}{\|l\|} \hline 1 \text { TSTA } \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline 4 & \text { STXX } \\ 1 & & \text { INH } \\ \hline \end{array}$	${ }^{T S T}{ }_{(x)}$	${ }_{1}^{6}{ }^{T S T} \quad \mathrm{IX}$		$\int_{1}^{2} \text { NOP }$	$\begin{array}{ll\|} \hline 8 & \mathrm{BSR}^{2} \\ 2 & \mathrm{AEL}^{2} \\ \hline \end{array}$	${ }^{J S R}$	JSR	${ }^{3} \mathrm{JSR} \cdot \times 2$	$J S R_{\mid \times 1}$	${ }_{1}^{1}$ JSA ${ }_{\text {Ix }}$	101	
${ }_{110}$	$\begin{aligned} & 10 \\ & 3 R S E T 7 \\ & 3 \\ & \hline \end{aligned}$	${ }_{2}^{\text {BSET7 }}$	2								$\begin{array}{ll} 2 \\ 2 & \mathrm{LOX} \\ \hline \end{array}$	$\operatorname{LDX}_{\mathrm{O}, \mathrm{R}}$	${ }_{3}^{2} 10 x_{E x}$	${ }_{3} \text { LOX } x_{2}$	$\operatorname{LDX}_{1 \times 1}$	${ }_{1}^{1}$ L0x ${ }_{\text {dx }}$	${ }_{11}$	
$\stackrel{F}{111}$	BRCLR 3 3	${ }_{2}^{\text {BCLR } 7} \text { BSC }$	${ }_{2}{ }^{\text {BIH }} \mathrm{AEL}$	${ }_{2}^{0} \mathrm{CLR}_{\mathrm{DIR}}$	$\begin{array}{\|l\|} \hline 1 \\ \hline \\ \hline \end{array}$	$\mathrm{C}_{1}^{4} \mathrm{CLRX}$	${ }_{2} \mathrm{CLR}_{1 \times 1}$	$\mathrm{O}_{\mathrm{O}}^{0}$		$L_{1}^{2} \text { TXA }$		STX	${ }_{3}^{6} \operatorname{six}$	$3_{3} \operatorname{six}_{1 \times 2}$	${ }_{2}^{6} \operatorname{six}{ }_{\|x\|}$	${ }_{5}^{5}$ STX ${ }_{\text {ix }}$	$\stackrel{F}{111}$	

Abbreviations for Address Modes

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Exiended
REL	Relative
BSC	Bit Set/Clear
BTB	Bit Test and Branch
IX	Indexed (No Offset)
IX1	Indexed. 1 Byte (8.Bit Offset
IX2	Indexed 2 Byte $116.8 i t$) Otfst

PACKAGE MECHANICAL DATA

40 PINS - PLASTIC PACKAGE

44 PINS - PLASTIC PACKAGE

ORDERING INFORMATION

The information required when ordering a custom MCU is listed below. The ROM program may be transmitted to SGS-THOMSON on EPROM(s) or an EFDOS/MDOS* disk file.
To initiate a ROM pattern for the MCU, it is necessary to first contact your local SGS-THOMSON representative or distributor.

EPROMs

Two 2716 or one 2732 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROM must be clearly marked to indicate which EPROM corresponds to which address space. The recommended marking procedure is illustrated below :

After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

VERIFICATION MEDIA

All original pattern media (EPROMs or floppy disk) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to SGS-THOMSON. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, SGS-THOMSON will program on blank EPROM from the data
file used to create the custom mask and aid in the verification process.

ROM VERIFICATION UNITS (RVUs)

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency they are usually unmarked, packaged in ceramic, and tested only at room temperature and 5 volts. These RVUs are included in the mask charge and are not production parts. The RVUs are thus not guaranteed by SGS-THOMSON. Quality Assurance, and should be discarded after verification is completed.

FLEXIBLE DISKS

The disk media submitted must be single-sided, EFDOS/MDOS* compatible floppies.
The customer must write the binary file name and company name on the disk with a felt-tip-pen. The minimum EFDOS/MDOS* system files, as well as the absolute binary object file (Filename .LO type of file) from the 6805 cross assembler, must be on the disk. An object file made from a memory dump using the ROLLOUT command is also acceptable. Consider submitting a source listing as well as the following files : filename .LX (DEVICE/EXORciser loadable format) and filename .SA (ASCII Source Code). These files will of course be kept confidential and are used 1) to speed up the process inhouse if any problems arise, and 2) to speed up the user-to-factory interface if the user finds any software errors and needs assistance quickly from SGS-THOMSON factory representatives.
EFDOS is SGS-THOMSON' Disk Operating System available on development systems such as DEVICE...

MDOS* is MOTOROLA's Disk Operating System available on development systems such as EXORciser, ...

* Requires prior factory approval.

Whenever ordering a custom MCU is required, please contact your local SGS-THOMSON representative or SGS-THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS-THOMSON Microelectronics. representative.

ORDER CODES

The table below horizontally shows all available suffix combinations for package, operating temperature and screening level. Other possibilities on request.

Device	Package					Oper. Temp			Screening Level			
	C	J	P	E	FN	L*	V	T	Std	D	G/B	B/B
EF6805U3			\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		
Examples : EF68	05	FN	68	3 P	F6	5U3						

Package : C : Ceramıc DIL, J : Cerdıp DIL, P : Plastıc DIL, E : LCCC, FN : PLCC
Oper. temp. : $\mathrm{L}^{*}: 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}:-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, * $:$ may be omitted.
Screening level : Std : (no-end suffix), D : NFC 96883 level D,
G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B
EXORciser is a registered trademark of MOTOROLA Inc

DEVELOPMENT TOOLS

DEVELOPMENT AND EMULATION TOOL

TSTIN48 is a support for :

- EF6805, EF6804 and TS68HC04 MCU Families

SOFTWARE DEVELOPMENT ON IBM-PC

DEVELOPMENT WITH TSTIN48

TSTIN48 is a powerful, lowcost and user friendly stand alone development tool, fully dedicated to support the complete range of 4 and 8 bit MCU's manufactured by SGS-THOMSON Microelectronics.

TSTIN48 offers 2 RS 232 C Serial communication lines:

- one to interface to a host computer IBM-PC which provides functions of human interface and software development.
- the other is used for auxiliary systems such as a line printer. Eprom programmer or centralized mainframe.

The whole development station comprises the host computer IBM-PC, TSTIN48 and a probe dedicated for MCU family.

SOFTWARE DEVELOPMENT ON IBM-PC

The choice of a standard personnal computer for Software purposes (MS DOS operating system) and for hardware (IBM-PC bus) is an important key to obtaining a full evolutive and open system.
It offers access to a very large Software library.
Full screen editor : word, wordstar... (2)
Full range of development software

- MPU and MCU cross assembler
- linking editor.
(2) Software available in library for IBM-PC.

TSTIN48 INTERACTIVE SOFTWARE

Software supplied to control TSTIN48 offers the ability to use the advantages of the powerful architecture hardware.

- Meaningful mnemonics
- Wide choice for characterising values (Decimal, Hexa, ASCII)
- Aids to the operator when in difficulty
- Full range of debugging aides
- On line assembler/disassembler
- 8 hardware breakpoints
- 8 software breakpoints
- Logic analyser triggered breakpoints
- Execution program step by step in RAM and ROM area
- Echo on line printer
- Load and save program through RS 232 C connection
- Memory check
- Operator keyboard entry request can be chained in a command file
- Self test of the entire system TSTIN48 + emulator probe at power up
- Possibility to temporarily leave control of emulation session to access DOS routines, through the emulation session keeps acting.

TSTMU 94

EMULATION WITH TSTIN48 (*)

An advanced architecture for total transparency and dynamic emulation.
Thanks to the dual processor architecture (System bus and emulation bus), the emulated MPU or MCU operates independently of the other system processors.
Therefore, it is possible during execution, to list or modify emulator probe control parameters.

REALTIME EMULATION

With the transparency feature, the emulated processor operates at 100% of the maximum speed specified by the manufacturer.
(*) Each emulator probe is delivered with an interactive software specific to each MPU or MCU family.

OPEN ENDED

- Switching from one MPU or MCU to another by changing only the emulator probe
- Program execution without existing final application
- Shared overlay memory (16 Kbytes) in blocks of 256 bytes
- Write protect facility for individual blocks
- 8 hardware and 8 software breakpoints over entire emulation space.

LOGIC ANALYSER

The logic analyser operates with 1024 words of 32 bits (16 address, 8 data bits, 8 available to user).
With sampling and trigger or recognition of maskable words. Five operating modes are available.

USER'S SELECTION GUIDE

Family	MCU	Development System	Emulator Chip	Emulator Board	Interactive Software*	Emulator Probe
EF6805	EF6805P2	TSTIN48	MC68705P3		TSR6805	TSTMUPS
			MC68705P3			
	EF6805U2		MC68705U3			
	EF6805R2		MC6805R2			
	EF6805U3		MC68705U3			
	EF6805R3		MC68705R3			
EF6804	EF6804P2 EF68HC04P3		MC68704P3	TSTEV04	TSR6804	EFTMUP4

* Cross assembler included.

PIGGY-BACK EMULATION TOOL

The EMU-04 is a printed board module, built around EF68HC04P3, and a standard EPROM.

It fully emulates de EF68HC04P3 in the final applications, with the customer program stored in the board EPROM.

The EMU-04 includes MICRO, RAM, STACK, I/O parts EPROM Data and Program Space.
The following block diagram describes it.

BLOCK DIAGRAM

SOFTWARE

Instructions STOP \& WAIT correctly work on piggyback. Due to PAL \& LS components of P.C. board, supply current does not meet Micro's spec. It stands around 800 mA as it does in RUN mode.
2732 EPROM have been chosen (access time <X300nS) but 2764 or 27128 ones may be used,

DESCRIPTION

All EF68HC04P3 fonctions are restored. Thus application is emulated in real time and user program may be modified.
taking into account that :
_ upper address bit must be correctly setted

- program codes must stand in the lower 4Kbytes space
- one have to wire a socket adaptor between EPROM \& piggy-back EPROM socket.

The DATA space and PROGRAM space are in EPROM space. ADDRESS $\$ 00$ to $\$ 17$ and $\$ 60$ to $\$ 95 \mathrm{~F}$ are unknown.

CLOCK

Instead of using EF68HC04P3 one can plug the piggy-back and use application clock, either quartz
(pin EXTAL-XTAL) or CMOS levels (pin XTAL).

SELECTABLE OPTIONS

As EF68HC04P3 device you can choose maskable option on piggy-back board :

- CLOCK : division by 1, 2, 4
- IRQ : level or negative going edge.

Two ways are available to supply the piggy-back:

- Application supply (pin 3 of EF68CH02P3 socket)
- External power supply through DC supply plugs on piggy-back board.
Due to bipolar components \vee supply must be 5 volts. $(0,8 \mathrm{~A})$.
The following diagram shows where jumpers are located.

SELF-CHECK

A self-check program is available in EPROM to verify piggy-back. To use it you must connect pins ac-
cording to the following diagram. (Piggy-back selfcheck program is different than monochip one).

SALES OFFICES

AUSTRALIA

NSW 2027 EDGECLIFF
Sute 211, Edgecliff centre 203-233, New South Head Road Tel (61-2) 3273922 Telex 071126911 TCAUS
Telefax (61-2) 3276176

BRAZIL

05413 SÃO PAULO

R Henrıque Schaumann 286-CJ33
Tel (55-11) 883-5455
Telex (39-11) 37988 "UMBR BR"

CANADA

BRAMPTON, ONTARIO
341 Main St North
Tel (416) 455-0505
Telefax 416-455-2606

CHINA

BEIJING

Beiling No 5 Semiconductor Device Factory 14 Wu Lu Tong Road
Da Shang Mau Wai
Tel (861) 2024378
Telex 222722 STM CH

DENMARK

2730 HERLEV
Herlev Torv, 4
Tel (45-2) 948533
Telex 35411
Telefax (45-2) 948694

FRANCE

94253 GENTILLY Cedex
7 - avenue Gallienı - BP 93
Tel (33-1) 47407575
Telex 632570 STMHQ
Telefax (33-1) 47407910

67000 STRASBOURG

20, Place des Halles
Tel (33) 88254990
Telex 870001F
Telefax (33) 88222932

HONG KONG

WANCHAI

22nd Floor - Hopewell centre
183 Queen's Road East
Tel (852-5) 8615788
Telex 60955 ESGIES HX
Telefax (852-5) 8656589

INDIA

NEW DELHI 110048
Liason Office
S114, Greater Kallash Part 2
Tel (91) 6414537
Telex 31-62000 SGSS IN

ITALY

20090 ASSAGO (MI)
V le Milanofiori - Strada 4 - Palazzo A/4/A
Tel. (39-2) 892131 (10 linee)
Telex 330131-330141 SGSAGR
Telefax (39-2) 8250449

40033 CASALECCHIO DI RENO (BO)

Via R Fucini, 12
Tel (39-51) 591914
Telex 512442
Telefax (39-51) 591305

00161 ROMA

Via A Torlonaa, 15
Tel (39-6) 8443341/2/3/4/5
Telex 620653 SGSATE I
Telefax (39-6) 8444474

JAPAN

TOKYO 108
Nisseki - Takanawa Bld 4F 2-18-10 Takanawa
Minato-Ku
Tel (81-3) 280-4121
Telefax (81-3) 280-4130

KOREA

SEOUL 121
8th floor Shinwon Bulding
823-14, Yuksam-Dong
Kang-Nam-Gu
Tel (82-2) 552-0399
Telex SGSKOR K29998
Telefax (82-2) 552-1051

NETHERLANDS

5612 AM EINDHOVEN
Dillenburgstraat 25
Tel (31-40) 550015
Telex 51186
Telefax (31-40) 528835

SINGAPORE

SINGAPORE 2056
28 Ang Mo Kıo - Industrial Park 2
Tel (65) 4821411
Telex RS 55201 ESGIES
Telefax (65) 4820240

SPAIN

08021 BARCELONA

Calle Platon, $64^{\text {th }}$ Floor, $5^{\text {th }}$ Door
Tel (34-3) 2022017-2020316
Telefax (34-3) 2021461

28027 MADRID

Calle Albacete, 5
Tel (34-1) 4051615
Telex 27060 TCCEE
Telefax (34-1) 4031134

SWEDEN

S-16421 KISTA

Borgarfjordsgatan, 13 - Box 1094
Tel (46-8) 7939220
Telex 12078 THSWS
Telefax (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX (GENÈVE)
Chemın Franços-Lehmann, 18/A
Tel (41-22) 7986462
Telex 415493 STM CH
Telefax (41-22) 7984869

TAIWAN

TAIPEI

12th Floor
571, Tun Hua South Road
Tel (886-2) 755-4111
Telex 10310 ESGIE TW
Telefax (886-2) 755-4008
UNITED KINGDOM
MARLOW, BUCKS
Planar House, Parkway
Globe Park
Tel (44-628) 890800
Telex 847458
Telefax (44-628) 890391

U.S.A.

NORTH \& SOUTH AMERICAN MARKETING HEADQUARTERS 1000 East Bell Road Phoenix, AZ 85022-2699 (1).(602) $867-6340$

SALES COVERAGE BY STATE

ALABAMA

Huntsville - (205) 533-5995

ARIZONA

Phoenix - (602) 867-6340

CALIFORNIA

Irvine - (714) 250-0455
San Josè - (408) 452-8585

COLORADO

Boulder (303) 449-9000

GEORGIA

Norcross - (404) 242-7444
ILLINOIS
Schaumburg - (312) 517-1890

MARYLAND

Columba - (301) 995-6952
MASSACHUSSETTS
Waltham - (617) 890-6688

NEW JERSEY
Voorhees - (609) 772-6222

OREGON

Tigard - (503) 620-5517

TEXAS

Austin - (512) 339-4191
Carrollton - (214) 466-8844

WASHINGTON

Seattle - (206) 524-6421
FOR RF AND MICROWAVE
POWER TRANSISTORS CONTACT
THE FOLLOWING REGIONAL
OFFICES IN THE USA

CALIFORNIA

Hawthorne - (213) 675-0742

NEW JERSEY

Totowa - (201) 890-0884

PENNSYLVANIA

Montgomeryville - (215) 362-8500

TEXAS

Carrollton - (214) 466-8844

WEST GERMANY

6000 FRANKFURT M1

Gutleutstrabe 322
Tel (49-69) 237492
Telex 176997689
Telefax (49-69) 231957
Teletex $6997689=$ STVBP

8011 GRASBRUNN

Bretonischer Ring 4
Neukeferloh Technopark
Tel . (49-89) 460060
Telex 528211
Telefax (49-89) 4605454
Teletex $897107=$ STDISTR

3000 HANNOVER 1

Eckenerstrasse 5
Tel (49-511) 634191
Telex 175118418
Teletex 5118418 csfbeh
Telefax (49-511) 633552
8500 NÜRNBERG 20
Erlenstegenstrasse, 72
Tel (49-911) 597032
Telex 626243
Telefax (49-911) 5980701

5200 SIEGBURG

Frankfurter Str 22a
Tel (49-2241) 660 84-86
Telex 889510
Telefax (49-2241) 67584

7000 STUTTGART 1

Oberer Kirchhaldenweg 135
Tel (49-711) 692041
Telex 721718
Telefax (49-711) 691408

Information furnished is believed to be accurate and reliable However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics Specifications mentioned in this publication are subject to change without notice This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON MIcroelectronics.

Cover design by Keith \& Koppel, Segrate, Italy
Typesettıng and layout on Desk Top Publishing by AZIMUT, Hénın Bt., France
Prınted by Grafıche Moretti, Segrate, Italy

[^0]: * The EF6803 operates only in modes 2 and 3

[^1]: * For $T_{A}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{MPL}}=1.7 \mathrm{~V}$.

[^2]: *External addresses in Modes $0,1,2,3,5,6$; cannot be accessed in Mode 5 (No IOS)
 ** External addresses in Modes 0, 1, 2, 3
 *** 1 = Output, 0 = Input

[^3]: * TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus = \$FFFF

[^4]: * At specified cycle time

[^5]: * The EF6803U4 operates only in modes 2 and 3

[^6]: * TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus $=$ \$FFFF.

[^7]: * TST does not perform the write cycle during the sixth cycle. The sixth cycle is another address bus = \$FFFF.

[^8]: * Requires prior factory approval

[^9]: Whenever ordering a custom MCU is required, please contact your local SGS-THOMSON representative or SGS-THOMSON distributor and/or complete and send the attached "MCU customer ordering sheet" to your local SGS-THOMSON Microelectronics representative.

[^10]: Port A Address $=\$ 00$

[^11]: * Used with crystal option only.

[^12]: SPECIAL NOTES

[^13]: * Due to internal biasıng, this input (when unused) floats to approximately 20 Vdc

[^14]: * Requires prior factory approval.

[^15]: * PD4NRL - PD5NRH : The A/D conversion resistor ($15 \mathrm{k} \Omega$ typical) is connected internally between these two lines, impacting their use as digital inputs in some applications.

[^16]: * See figure 16 for typical crystal parameters.

[^17]: * Due to internal biasıng this input (when unused) floats to approxımately 2.2V.

[^18]: * Due to internal biasing this input (when unused) floats to approxımately 2.2V.

